
WebSphere Message Broker Version 7.0.0.8

IBM

ii WebSphere Message Broker Version 7.0.0.8

Contents

Chapter 1. WebSphere Message Broker 1

Chapter 2. WebSphere Message Broker
overview 5
WebSphere Message Broker introduction 5
What's new in Version 7.0? 7

New function added in Version 7.0 fix packs . . 15
WebSphere Message Broker technical overview . . 27

Create the broker environment 29
Develop applications 29
Deploy applications to the runtime environment 29
Publish/Subscribe 30
Further information 30
WebSphere Message Broker Toolkit 31
The broker environment 46
WebSphere Message Broker Explorer 57
External systems and resources 61

WebSphere Message Broker business scenario . . . 63
Mergers and acquisitions scenario 63

Welcome to WebSphere Message Broker 65
How do I use the information center? 67
Where can I get an overview of WebSphere
Message Broker?. 69
I am a developer; what tasks am I interested in? 69
I am an administrator; what tasks am I interested
in? 88

Samples 98
Creating the Default Configuration 106

Legal information for WebSphere Message Broker 109
Notices for WebSphere Message Broker. . . . 109
Trademarks in the WebSphere Message Broker
Information Center 112

Glossary of terms and abbreviations 113
Accessibility features for WebSphere Message
Broker 135

Chapter 3. Migrating and upgrading 137
Coexistence with previous versions and other
products 139
Migrating publish/subscribe information to
WebSphere MQ 141

WebSphere MQ migmbbrk command 142
Access Control List (ACL) migration -
publish/subscribe 146
Migrating publish/subscribe from WebSphere
Message Broker Version 6.0 or WebSphere
Message Broker to WebSphere MQ 146
Retained publications with headers in MQRFH
format. 149
Migrating publish/subscribe information from
WebSphere MQ to WebSphere Message Broker
Version 6.0 or WebSphere Message Broker . . 150
Migrating publish/subscribe collectives from
WebSphere Message Broker Version 6.0 or
WebSphere Message Broker to WebSphere MQ . 151

Setting up a new queue-manager cluster . . . 152
Migrating existing z/OS applications 162
Migrating from Version 6.1 products 163

Preparing for migration from Version 6.1 . . . 165
Backing up WebSphere Message Broker
resources 167
Updating ODBC definitions when migrating 168
Migrating the WebSphere Message Broker
Toolkit development resources from Version 6.1
to Version 7.0 170
Migrating a broker from WebSphere Message
Broker to WebSphere Message Broker Version
7.0 172
Migrating Configuration Manager ACLs . . . 179
Migrating a Microsoft Windows WebSphere
Message Broker that is configured using
Microsoft Cluster Services (MSCS) 181

Migrating from Version 6.0 products 183
Preparing for migration from Version 6.0 . . . 185
Backing up WebSphere Message Broker Version
6.0 resources. 187
Updating your ODBC definitions when
migrating. 188
Migrating from SupportPac IA9Q 190
Migrating the WebSphere Message Broker
Toolkit development resources from Version 6.0
to Version 7.0 192
Migrating a broker from WebSphere Message
Broker Version 6.0 to WebSphere Message
Broker Version 7.0 193
Migrating Configuration Manager ACLs . . . 200
Migrating a WebSphere Message Broker that is
configured by using Microsoft Cluster Services
(MSCS) 202

Post-migration tasks 204
Reviewing technical changes in Version 7.0 . . 205
Setting up a command environment 213
Migrating a flow containing HTTPRequest
nodes 214
Migrating a flow containing XMLTransformation
nodes 215
Migrating a flow that contains File nodes . . . 217
Migrating a flow containing data definitions . . 217
Migrating a flow supporting ?wsdl queries . . 220
Migrating CMP applications 220
Updating error processing routines 221

Restoring migrated components to previous
versions 224

Restoring components and resources to Version
6.1 225
Restoring components and resources to Version
6.0 227

Conditions for using migrated resources with
previous versions of the WebSphere Message
Broker Toolkit 229

iii

Chapter 4. Installing and uninstalling 231
Installing 231

Finding the latest information 232
Installation Guide 233
Preparing for installation 235
Coexistence and migration 239
Preparing the system 245
Choosing what to install. 260
Installing by using the Windows Launchpad 262
Installing the Broker component 267
Installing the WebSphere Message Broker
Toolkit. 276
Installing WebSphere Message Broker Explorer 280
Verifying your WebSphere Message Broker
installation 290
Checking the broker operation mode and
function level 298
Installing complementary products 300
Setting up a command environment 305
Applying service 313

Uninstalling 331
Uninstalling the Broker component 332
Uninstalling the WebSphere Message Broker
Toolkit. 340
Uninstalling the WebSphere Message Broker
Explorer 346

Chapter 5. Security 351
Security overview 351

Planning for security when you install
WebSphere Message Broker 353
Authorization for configuration tasks 353
Security exits 354
Public key cryptography 354
Digital certificates 356
Digital signatures 360

Broker administration security. 361
Broker administration security overview . . . 362
Setting up broker administration security . . . 368
Activating broker administration security for
WebSphere MQ Version 7.1, or later 381

Message flow security 382
Message flow security overview 383
Setting up message flow security 431

Broker component security 497
Creating user IDs 498
Considering security for the WebSphere
Message Broker Toolkit and WebSphere Message
Broker Explorer 500
Considering security for a broker. 501
Implementing SSL authentication 504
Using security exits 555

Setting up z/OS security 556
Setting up WebSphere MQ 558
Setting up WebSphere Message Broker Toolkit
access on z/OS 559
Execution group user IDs on z/OS 560
Specifying an alternative user ID to run an
execution group on z/OS 561

Chapter 6. Configuring brokers for
development environments 563
Creating a default configuration 564

Creating the default configuration 564
Removing the default configuration 565

Creating a development environment 567
Creating a broker for a development
environment. 569

Configuring the workbench 570
Changing WebSphere Message Broker Toolkit
preferences 571
Changing workbench capabilities 572
Configuring CVS to run with the WebSphere
Message Broker Toolkit 573
Configuring the WebSphere Message Broker
Toolkit to run Rational ClearCase. 574
Creating a working set 575
Integrating the Rational Team Concert client
with the WebSphere Message Broker Toolkit . . 576

Chapter 7. Configuring brokers for
test and production environments . . 579
Planning a broker environment 580

Considering resource naming conventions . . . 581
Designing the WebSphere MQ infrastructure 584
Considering performance in the broker
environment. 586

Customizing the z/OS environment 591
z/OS customization overview 592
Customizing UNIX System Services on z/OS 598
WebSphere MQ planning for z/OS 601
Resource Recovery Service planning on z/OS 602
Defining the started tasks to z/OS Workload
Manager (WLM) 602
Automatic Restart Manager planning 603
Mounting file systems 604
Checking the permission of the installation
directory 606
Customizing the version of Java on z/OS . . . 607
Checking APF attributes of bipimain on z/OS 607
Collecting broker statistics on z/OS 608
Configuring an execution group address space
as non-swappable on z/OS 608
Creating a broker on WebSphere Message
Broker for z/OS 609

Configuring brokers 610
Creating a broker 611
Verifying brokers 630

Modifying a broker 631
Modifying a broker on Windows, Linux, and
UNIX systems 632
Modifying a broker on z/OS 634

Configuring brokers in the WebSphere Message
Broker Explorer 635

Configuring broker properties in the WebSphere
Message Broker Explorer 637
Using the WebSphere Message Broker Explorer
to work with configurable services 644
Working with UserDefined configurable services 653

iv WebSphere Message Broker Version 7.0.0.8

Changing WebSphere Message Broker Explorer
preferences 654

Changing the operation mode of your broker. . . 655
Moving from Trial Edition 656

Checking the operation mode of your broker . . . 657
Advanced configuration 658

Configuring for applications 659
WS-Security 765
Moving from WebSphere Message Broker on a
distributed system to z/OS 818
Changing locales 819

Configuring for high availability 826
Configuring a WebSphere Message Broker to
run in multi-instance mode. 827
Using a broker with an existing high availability
manager 843
Using a broker with an existing Windows
Cluster (Windows Server 2003 or 2008) 853
HTTP proxy servlet overview 856

Configuring a WebSphere Message Broker as a
WebSphere MQ service 894

Starting and stopping a WebSphere Message
Broker as a WebSphere MQ service 894
Modifying the WebSphere MQ service for a
broker 896
Deleting the WebSphere MQ service for a
broker 897
Reporting and displaying the status of
WebSphere Message Broker that runs as a
WebSphere MQ service 897

Chapter 8. Administering brokers and
broker resources 899
Managing brokers 900

Connecting to a local broker using the
WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer 901
Connecting to a remote broker 902
Connecting to a remote broker on z/OS in the
WebSphere Message Broker Explorer 904
Importing broker definitions into the WebSphere
Message Broker Explorer 906
Exporting broker definitions from the
WebSphere Message Broker Explorer 907
Automatically reconnecting to a broker 908
Disconnecting from a broker in the WebSphere
Message Broker Explorer 909
Using the Administration Queue 910
Working with Service Federation Management
(SFM) 911
Grouping brokers by using broker sets 915
Starting and stopping a broker 921
Viewing broker properties 927
Starting a WebSphere MQ queue manager as a
Windows service 929
Stopping a WebSphere MQ queue manager
when you stop a broker 929
Deleting a broker 930

Managing execution groups 935
Creating an execution group 936

Renaming an execution group using the
WebSphere Message Broker Explorer 940
Starting an execution group using the
WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer 941
Stopping an execution group using the
WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer 944
Deleting an execution group 946

Managing message flows 950
Starting a message flow by using the
WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer 951
Stopping a message flow using the WebSphere
Message Broker Toolkit or WebSphere Message
Broker Explorer 952
Deleting a message flow using the WebSphere
Message Broker Toolkit or WebSphere Message
Broker Explorer 953
Setting user-defined properties dynamically at
run time using the WebSphere Message Broker
Explorer 954

Developing applications that use the
Administration API 956

The Administration API for WebSphere Message
Broker 957
The Administration API samples 958
Configuring an environment for developing and
running CMP applications 969
Connecting to a broker from a CMP application 975
Navigating brokers and broker resources in a
CMP application 977
Deploying resources to a broker from a CMP
application 982
Setting message flow user-defined properties at
run time in a CMP application 985
Working with properties of a configurable
service of type UserDefined at run time in a
JavaCompute node 987
Managing brokers in a CMP application . . . 989
Managing brokers from JavaCompute nodes . . 997
Working with resource statistics in a CMP
application 998
Submitting batch requests from a CMP
application 1000

Managing resources used by brokers 1001
Listing database connections that the broker
holds 1002
Quiescing a database 1002
Using a JDBC connection pool to manage
database resources used by an execution group 1003

Administering Java applications 1005
Tuning JVM parameters 1005
Configuring classloaders for Java user-defined
nodes 1005
Configuring classloaders for JavaCompute
nodes 1006

Accessing Administration log information . . . 1006
Viewing Administration log information . . . 1007
Saving Administration log information . . . 1008
Clearing Administration log information . . . 1009

Contents v

Changing Administration Log view preferences 1010
Changing the location of the work path 1011

Changing the location of the work path on
Windows systems 1011
Changing the location of the work path on
Linux and UNIX systems 1012

Backing up resources 1013
Backing up the broker 1013
Restoring the broker. 1015
Backing up the WebSphere Message Broker
Explorer and WebSphere Message Broker
Toolkit workspace 1016

Chapter 9. Developing message flow
applications 1019
Processing messages. 1021

Message flows overview 1022
Message modeling 1154
Message flow behavior 1277

Developing message flow applications by using
patterns 1309

Patterns 1310
Using patterns 1312
Pattern categories 1331
Built-in patterns 1332
User-defined patterns 1334

Developing message flow applications by using
samples 1406
Developing message flow applications from a
wizard 1408

Quick Start wizards overview 1409
Creating an application from scratch 1411
Creating an application based on WSDL or
XSD files 1413
Creating an application based on an existing
message set 1415
Creating an application that uses WebSphere
Adapters 1416
Creating an application by using the Configure
New Web Service Usage wizard 1417
Creating an application based on SCA import
or export files 1422

Developing message flow applications from
scratch 1423

Managing message flow resources 1424
Designing a message flow 1455
Defining message flow content 1488

Connecting client applications 1537
Processing WebSphere MQ messages 1537
Processing HTTP messages 1579
Processing Web service messages 1601
Processing JMS messages 1679
Processing TCP/IP messages 1733
Processing email messages 1786
Working with files 1807
WebSphere Service Registry and Repository 1875
Connecting to Enterprise Information Systems 1912
Working with WebSphere Process Server . . . 2095
Working with databases 2109
Working with IMS 2128
Working with CORBA 2144

Working with CICS Transaction Server for
z/OS 2172

Routing messages 2209
Using nodes for decision making 2209
Routing using publish/subscribe applications 2215

Transforming and enriching messages 2227
Using message mappings 2228
Developing ESQL 2370
Developing Java 2628
Using XSL Transform 2669
Using PHP 2670

Processing events. 2717
Using aggregation 2717
Using message collections 2755
Using message sequences 2783
Configuring timeout flows 2809

Handling errors in message flows 2823
Connecting failure terminals 2827
Managing errors in the input node 2828
Catching exceptions in a TryCatch node . . . 2835

Constructing message models 2838
Working with a message set project 2838
Working with a message set 2840
Working with a message definition file . . . 2863
Working with MRM message model objects 2870
Creating a multipart message 2919
Linking from one message definition file to
another 2921
Working with a message category file 2923
Working with data structures. 2930
Generating documentation from message sets
and message flows 2962
Generating XML Schemas 2963
Generating a Broker SCA definition from a
message set 2967
Generating a WSDL definition from a message
set. 2968

Developing user-defined extensions 2970
User-defined extensions overview 2971
Implementing the supplied user-defined
extension samples 3017
Implementing user-defined extensions. . . . 3019

Chapter 10. Testing and debugging
message flow applications 3143
Testing message flows by using the Test Client 3144

Test Client overview. 3144
Testing a message flow 3146
Using the Test Client in trace and debug mode 3155

Debugging a message flow 3157
Flow debugger overview 3158
Starting the flow debugger 3160
Working with breakpoints in the flow
debugger 3166
Stepping through message flow instances in
the debugger 3172
Debugging data 3180
Managing flows and flow instances during
debugging 3187
Debugging message flows that contain
WebSphere Adapters nodes 3192

vi WebSphere Message Broker Version 7.0.0.8

Debugging by using trace 3194
Debugging with user trace 3195
Debugging by adding Trace nodes to a
message flow 3205

Chapter 11. Packaging and deploying 3209
Packaging and deployment overview 3210

Deployment methods 3211
Message flow application deployment 3213
WebSphere Adapters deployment 3219

Packaging resources 3221
Creating a broker archive 3222
Adding files to a broker archive 3223
Refreshing the contents of a broker archive 3233

Deploying resources. 3234
Deploying a broker archive file 3235
Deploying a message flow that uses
WebSphere Adapters 3240
Importing a broker archive file to the
WebSphere Message Broker Explorer 3242

Checking the results of deployment 3243
Using the WebSphere Message Broker Toolkit 3243
Using the WebSphere Message Broker Explorer 3244
Using the mqsideploy command. 3244
Using the CMP API 3244

Renaming objects that are deployed to execution
groups 3246
Removing a deployed object from an execution
group 3246

Using the WebSphere Message Broker Toolkit 3247
Using the WebSphere Message Broker Explorer 3247
Using the mqsideploy command. 3247
Using the CMP API 3248

Chapter 12. Performance and
monitoring 3251
Performance 3251

Considering performance in the broker
environment 3252
Tuning the broker 3254
Message flow performance 3260
Tuning the SAP adapter for scalability and
performance 3278
Monitoring message flow performance . . . 3279
Monitoring resource performance 3305
Subscribing to statistics reports 3317

Business-level monitoring 3319
Monitoring basics 3320
Monitoring scenarios 3323
Deciding how to configure monitoring events
for message flows 3325
Configuring monitoring event sources using
monitoring properties 3327
Configuring monitoring event sources using a
monitoring profile 3332
Activating monitoring 3334
Enabling and disabling event sources 3336
Creating a monitoring model for use by
WebSphere Business Monitor 3338
Reporting monitoring settings 3343

Chapter 13. Troubleshooting and
support 3345
Troubleshooting overview 3345

Recording the symptoms of the problem . . . 3346
Re-creating the problem 3346
Eliminating possible causes 3346

Making initial checks 3347
Has WebSphere Message Broker run
successfully before? 3348
Did you log off Windows while WebSphere
Message Broker components were active? . . 3349
Are the Linux and UNIX environment
variables set correctly? 3350
Are there any error messages or return codes
that explain the problem? 3350
Can you see all of your files and folders? . . 3351
Can you reproduce the problem? 3352
Has the message flow run successfully before? 3353
Have you made any changes since the last
successful run? 3355
Is there a problem with descriptive text for a
command? 3356
Is there a problem with a database? 3356
Is there a problem with the network? 3357
Does the problem affect all users? 3358
Have you recently changed a password? . . . 3359
Have you applied any service updates? . . . 3359
Do you have a component that is running
slowly? 3360
Additional checks for z/OS users 3361

Dealing with problems 3363
Resolving problems when running commands 3364
Resolving problems when running samples 3366
Resolving problems when creating resources 3369
Resolving problems that occur when you start
resources 3371
Resolving problems that occur when migrating
or importing resources 3389
Resolving problems when stopping resources 3392
Resolving problems when deleting resources 3394
Resolving problems when developing message
flows 3395
Resolving problems when deploying message
flows or message sets 3436
Resolving problems that occur when
debugging message flows 3453
Resolving problems when developing message
models 3459
Resolving problems when using messages . . 3466
Resolving problems when you use the
WebSphere Message Broker Toolkit. 3480
Resolving problems when using the
WebSphere Message Broker Explorer 3489
Resolving problems when using databases 3491
Resolving problems when using
publish/subscribe 3501
Resolving problems with performance. . . . 3504
Resolving problems when developing
Administration API applications. 3510
Resolving problems with user-defined
extensions 3511

Contents vii

Resolving problems when installing 3517
Resolving problems when uninstalling . . . 3525

Using logs 3526
Windows: Viewing the local error log 3527
Linux and UNIX systems: Configuring the
syslog daemon 3529
z/OS: Viewing broker job logs 3530
Viewing the Eclipse error log. 3532

Using trace 3533
Starting service trace 3534
Checking service trace options 3537
Changing service trace options 3538
Stopping service trace 3540
Retrieving service trace. 3542
Formatting trace 3543
Interpreting trace 3546
Clearing old information from trace files . . . 3548
Changing trace settings from the WebSphere
Message Broker Explorer 3549
ODBC trace 3551
Administration API (CMP) trace. 3554
Switching Trace nodes on and off 3555

Using dumps and abend files 3558
Checking for dumps 3559
Using the DUMP command on z/OS 3560
Checking for abend files 3562

Contacting your IBM Support Center 3563
IBM Support Assistant Data Collector 3565

Collecting data in console mode with IBM
Support Assistant Data Collector 3566
Selecting a problem collector for IBM Support
Assistant Data Collector 3568

Searching knowledge bases 3569
Getting product fixes 3570
Contacting IBM Software Support 3571

Determine the effect of the problem on your
business 3572
Describe your problem and gather background
information 3573
Submit your problem to IBM Software Support 3573

Recovering after failure. 3574
Recovering after the broker fails. 3575
Recovering after an execution group fails. . . 3576
Recovering after the broker's queue manager
fails 3576

Chapter 14. Reference 3579
Migration and upgrade. 3579

Supported migration paths 3579
Installation 3581

System requirements 3581
General industry standards supported by
WebSphere Message Broker 3607
Installation packages 3608
Installation and uninstallation interfaces . . . 3617
Installation and uninstallation authorization 3628
Multicultural support 3628
System changes caused by installation and
configuration 3630

Security requirements for administrative tasks 3644

Tasks and authorizations for broker
administration security 3645
Commands and authorizations for broker
administration security 3646
Security requirements for Linux and UNIX
platforms 3648
Security requirements for Windows systems 3651
Security requirements for z/OS 3655

Configuration and administration 3657
Restrictions that apply in each operation mode 3657
Database configuration 3659
Administration API 3672
Commands. 3672

z/OS configuration and administration specific
information 3979

Administration in z/OS 3979
z/OS customization 3983
z/OS JCL variables 3994
z/OS sample files supplied 3995
Data sources on z/OS 4014

Message flow development 4015
Message flows. 4015
Built-in nodes 4293
Transformation interfaces 4980
User-defined patterns 5344
Message model reference information 5366
Publish/subscribe 6395
User-defined extensions 6411
Web services external standards 6696

Testing and debugging applications 6708
Test Client 6708
Message flow debugger 6718

Performance and monitoring 6723
Message flow accounting and statistics data 6723
Resource statistics data 6745
Monitoring message flows. 6767

WebSphere Message Broker Toolkit. 6783
Perspectives in the WebSphere Message Broker
Toolkit 6783
Editors in the WebSphere Message Broker
Toolkit 6793
Resource types in the WebSphere Message
Broker Toolkit 6821
WebSphere Message Broker Explorer and
WebSphere Message Broker Toolkit keyboard
shortcuts 6828
What's new if you are migrating from Version
6.0. 6831

WebSphere Message Broker Explorer views . . . 6838
Navigator view 6839
Administration Log view 6840
Policy Sets and Policy Set Bindings editor . . 6841

Troubleshooting 6864
Logs 6864
Trace 6871
Dumps 6877
Abend files. 6880
Abend in a user-defined extension 6882
WebSphere Message Broker event reports . . 6883
WebSphere MQ facilities 6890
Database facilities 6891

viii WebSphere Message Broker Version 7.0.0.8

Other sources of diagnostic information on
z/OS 6891
Solutions to similar problems. 6892

Index 6895

Contents ix

x WebSphere Message Broker Version 7.0.0.8

Chapter 1. WebSphere Message Broker

This information center provides information for IBM® WebSphere® Message
Broker Version 7.0.

The information contained here supports Version 7.0.0.8. This information center is
integrated with the WebSphere Message Broker Toolkit and with the WebSphere
Message Broker Explorer. It is also available online. Always refer to the WebSphere
Message Broker online information center to access the most current information.

Topics that have been added since the previous release of this information, and
updated sections within topics, are highlighted with a start of change icon
preceding the updated information and an end of change icon following the
updated information, as shown in this paragraph.

If you are migrating components and resources from previous versions, see
Chapter 3, “Migrating and upgrading,” on page 137.
v “New users: how to find the information you want”
v “Experienced users: how to find the information you want” on page 2
v “Task, concept, and reference topics” on page 2
v “Printing topics” on page 3
v “Feedback” on page 3
v “Links to more information” on page 3

New users: how to find the information you want

The Contents pane on the left lists the categories of task information that are
available; for example, Migrating and Developing applications. Each task category
also contains explanations of the concepts related to those tasks, such as
“Coexistence”, “Message flows”, and “Publish/subscribe”.

The Start here category in the Contents pane contains topics that provide an
introduction for new users to getting started, developing applications, broker
administration, and troubleshooting tasks in WebSphere Message Broker. Each
topic in the Start here category provides overview information and links to
relevant topics in the information center. Read the Start here topics and follow the
links to help you to navigate through the product documentation and find the
information that you want. Alternatively, you can use the following instructions to
help you find the information that you want.

Click the top-level topic that you are interested in. If it describes and lists
information that covers your area of interest, expand the section to read the
associated concepts that give an overview of what you need to understand to
perform tasks in this area. Before you start, make sure that you are familiar with
the concepts and terminology that are associated with the tasks.

The navigation tree in the Contents pane provides a framework in which you can
start to understand the tasks and the context in which you will complete them.
Follow the related links at the end of each task to find information about other
related tasks. You can move backward and forward to revisit topics, and you can
use the Refresh/Show Current Topic button if you have moved to a different area
of the table of contents, and you want to check where you are.

1

http://www.ibm.com/support/knowledgecenter/SSKM8N_7.0.0/

Expand the Reference section to find reference information that is relevant to the
task area that you are interested in. You can see that the sections within the
Reference section largely correspond to the task categories. You will probably have
to refer to one or more of these reference topics to complete any particular task.

For more information, see “Task, concept, and reference topics.” When you are
more familiar with what information is available, and where to find it, try using
the index and the search facility, which are described later in this topic.

Experienced users: how to find the information you want

If you are familiar with what information is available, and where to find it in this
information center, you probably have a specific piece of information in mind. You
can navigate through to the information in the Content pane, or you can take a
more direct route to find specific information:

Search

Enter your search string in the Search box, then click Go. If your string
includes blanks, and you want the whole string treated as one string,
enclose it in quotation marks; for example "search string". The search
results are presented in the Search Results pane on the left, and you can
switch between the Search Results pane and the Content pane, which
contains the navigation tree, by clicking the tabs at the bottom of the pane.

You can limit your search to a particular area of the navigation tree, which
can make a search much quicker and produce fewer results. To limit the
search, click Search scope, then click the New button. Select the area or
areas you want to include in your new scope and enter a name for the
scope so that you can reuse it another time.

Index Find the term that you want in the Index. If more than one entry exists for
the subject that you looked up, click the one that is most appropriate for
your current task.

Use the letter links at the top of the index to link to the sections that start
with that letter; use the letter at the start of a section of index entries to
link back to the top of the index.

If you are new to this version of WebSphere Message Broker, you might find some
of the information in the Start here category in the Contents pane useful. The Start
here topics include links to information about navigating the Information Center,
using the WebSphere Message Broker Toolkit, migration and coexistence, and
troubleshooting WebSphere Message Broker.

Task, concept, and reference topics

The topics in this information center are divided into task, concept, and reference
topics.

Tasks and concepts

Task topics provide steps or actions that tell you how to complete the tasks
to establish and maintain your broker environment.

Concept topics provide definitions and background information that help
you to understand the product and the ways in which you can use it to
solve your business problems. Check the Glossary for a definition of many
of the terms introduced in these topics.
v Chapter 2, “WebSphere Message Broker overview,” on page 5

2 WebSphere Message Broker Version 7.0.0.8

bx09999_index.htm

These topics provide a good introduction to the product and its facilities.
Expand Product Overview to read about the product, and what is new
in this release. You can also read about, and invoke, the Quick Tour, an
online guided introduction to the product components and options.
Access the samples that are supplied too, to understand more about how
your applications can use the broker function.

v Chapter 6, “Configuring brokers for development environments,” on
page 563

v Chapter 7, “Configuring brokers for test and production environments,”
on page 579

v Chapter 8, “Administering brokers and broker resources,” on page 899
v Chapter 9, “Developing message flow applications,” on page 1019
v Chapter 10, “Testing and debugging message flow applications,” on page

3143
v Chapter 11, “Packaging and deploying,” on page 3209
v Chapter 12, “Performance and monitoring,” on page 3251
v Chapter 13, “Troubleshooting and support,” on page 3345

Reference information

Reference topics provide supporting information that help you to complete
the tasks. For example, they provide lists of commands, and tables of
options and parameters.
v Security
v “Configuration and administration” on page 3657
v “z/OS configuration and administration specific information” on page

3979
v “Message flow development” on page 4015
v “Troubleshooting” on page 6864

Printing topics

You can print a single topic or a section of topics from this information center.
Select a topic in the table of contents, then click the printer icon . You can then
choose to print just the selected topic, or the selected topic and all its subtopics.

Feedback

Your feedback on this information center is welcome. For example, you can report
errors, identify missing information, or suggest improvement. A feedback link is
included at the end of every topic; click this link to display a feedback form for the
topic that you are viewing. Your feedback is logged in a database and is forwarded
to the author of the topic.

For general feedback on the information center, see Feedback. This topic also
contains alternative contact details (postal address, fax number, and email address)
that you can use to include attachments with your feedback.

Links to more information

For more information about how to use this information center, and where to find
product information about the Web, see the information center home page. The
information center home page includes links to the following information:
v Migrating from previous versions
v WebSphere MQ family readme files
v IBM Redbooks®

Chapter 1. WebSphere Message Broker 3

bx99994_.htm

v Articles on developerWorks®

v SupportPac offerings

4 WebSphere Message Broker Version 7.0.0.8

Chapter 2. WebSphere Message Broker overview

This section provides introductory information to help you get started with IBM
WebSphere Message Broker:
v “WebSphere Message Broker introduction”
v “What's new in Version 7.0?” on page 7
v Technical overview

– Quick Tour
v Scenarios
v Start here
v “Samples” on page 98
v Legal information
v “Glossary of terms and abbreviations” on page 113
v “Accessibility features for WebSphere Message Broker” on page 135

WebSphere Message Broker introduction
You can use IBM WebSphere Message Broker to connect applications together,
regardless of the message formats or protocols that they support.

This connectivity means that your diverse applications can interact and exchange
data with other applications in a flexible, dynamic, and extensible infrastructure.
WebSphere Message Broker routes, transforms, and enriches messages from one
location to any other location:
v The product supports a wide range of protocols: WebSphere MQ, JMS 1.1, HTTP

and HTTPS, Web Services (SOAP and REST), File, Enterprise Information
Systems (including SAP and Siebel), and TCP/IP.

v It supports a broad range of data formats: binary formats (C and COBOL), XML,
and industry standards (including SWIFT, EDI, and HIPAA). You can also define
your own data formats.

v It supports many operations, including routing, transforming, filtering,
enriching, monitoring, distribution, collection, correlation, and detection.

Your interactions with WebSphere Message Broker can be considered in two broad
categories:
v Application development, test, and deployment. You can use one or more of the

supplied options to program your applications:
– Patterns provide reusable solutions that encapsulates a tested approach to

solving a common architecture, design, or deployment task in a particular
context. You can use them unchanged or modify them to suit your own
requirements.

– Message flows describe your application connectivity logic, which defines the
exact path that your data takes in the broker, and therefore the processing
that is applied to it by the message nodes in that flow.

– Message nodes encapsulate required integration logic, which operates on your
data when it is processed through your broker.

– Message trees describe data in an efficient, format independent way. You can
examine and modify the contents of message trees in many of the nodes that
are provided, and you can supply additional nodes to your own design.

5

– You can implement transformations by using graphical mapping, Java™, PHP,
ESQL, and XSL, and can make your choice based on the skills of your
workforce without having to provide retraining.

v Operational management and performance. WebSphere Message Broker includes
the following features and functionality, which support the operation and
performance of your deployment:
– An extensive range of administration and systems management options for

developed solutions.
– Support for a wide range of operating system and hardware platforms.
– A scalable, highly performing architecture, based on requirements from

traditional transaction processing environments.
– Tight integration with software products, from IBM and other vendors, that

provide related management and connectivity services.
WebSphere Message Broker is available in several modes, so that you can
purchase a solution that meets your requirements. For more information, see
“Operation modes” on page 48.

Application development

Your message processing applications, which you can run on more than 30
industry platforms, can connect to the broker by using one of the supported
protocols already listed. Platforms from IBM, Microsoft, Oracle, and others are
supported.

Diverse applications can exchange information in widely differing formats, with
brokers handling the processing required for the information to arrive in the right
place in the correct format, according to the rules that you have defined. The
applications need only to understand their own formats and protocols, and not
standards used by the applications to which they are connected.

Applications also have much greater flexibility in selecting which messages they
want to receive, because you can apply filters to control the messages that are
made available to them.

WebSphere Message Broker provides a framework that contains a wide variety of
supplied, basic, functions along with user-defined enhancements, to enable rapid
construction and modification of message processing rules.

Your applications can be integrated by providing message and data
transformations in a single place, the broker. This integration helps to reduce the
cost of application upgrades and modifications. You can extend your systems to
reach your suppliers and customers, by meeting their interface requirements within
your brokers. This ability can help you to improve the quality of your interactions,
and allow you to respond more quickly to changing or additional requirements.

Messages are manipulated according to the rules that you define by using the
WebSphere Message Broker Toolkit.

Operational management

WebSphere Message Broker supports a choice of interfaces for operation and
administration of your brokers:
v The WebSphere Message Broker Toolkit

6 WebSphere Message Broker Version 7.0.0.8

v The WebSphere Message Broker Explorer is a graphical user interface, based on
the WebSphere MQ Explorer, for administering your brokers

v Applications that use the Administration API for WebSphere Message Broker
(also known as the CMP API)

v A comprehensive set of commands, that you can run interactively or by using
scripts

WebSphere Message Broker builds on the WebSphere MQ product, which provides
assured, once-only delivery of messages between the applications. WebSphere MQ
is included when you purchase WebSphere Message Broker.

WebSphere Message Broker is complemented by a wide variety of other IBM
products such as Tivoli® Composite Application Manager for SOA, WebSphere
Service Registry and Repository (WSRR), WebSphere Process Server, and
WebSphere Transformation Extender (WTX).
Related concepts:
“WebSphere Message Broker technical overview” on page 27
WebSphere Message Broker enables information packaged as messages to flow
between different business applications, ranging from large traditional systems
through to unmanned devices such as sensors on pipelines.
“What's new in Version 7.0?”
Learn about the main new functions in IBM WebSphere Message Broker Version
7.0.
Related information:

IBM Integration community

WebSphere MQ Library web page

WebSphere Transformation Extender Library web page

WebSphere Service Registry and Repository Library web page

WebSphere Business Process Management Information Center online

Tivoli Composite Application Manager for SOA Information Center online

What's new in Version 7.0?
Learn about the main new functions in IBM WebSphere Message Broker Version
7.0.
v “Simplicity and productivity”
v “Universal connectivity for SOA” on page 10
v “Dynamic operation management” on page 12
v “Platforms and environments” on page 14

Simplicity and productivity

In Version 7.0, both the product and its architecture have been simplified, and the
product has fewer prerequisite products.

Streamlined components and prerequisite product requirements

Version 7.0 consists of a single runtime component, the broker. All
commands and other programs now connect directly to a broker. The
broker security model is now implemented by using WebSphere MQ
queues, and therefore handles both brokers and queue managers.

Chapter 2. WebSphere Message Broker overview 7

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=c7e1448b-9651-456c-9924-f78bec90d2c2
http://www.ibm.com/software/integration/wmq/library/
http://www-01.ibm.com/software/integration/wdatastagetx/library/
http://www-01.ibm.com/software/integration/wsrr/library/
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itcamsoa.doc/toc.xml

Brokers maintain configuration data in the local file system

Brokers create and manage configuration data in an internal
repository in the local file system, and have no requirement for a
database. You can back up and restore the broker component and
its internal repository by using the commands mqsibackupbroker
and mqsirestorebroker.

Database support for message flows and user data is unchanged;
however, supported versions of Relational Database Management
Systems (RDBMS) (supplied by IBM and other vendors) have been
updated on some platforms.

For more information about database support, see “Supported
databases” on page 3591.

Optimized deployment and interactions with the broker

Applications that manage brokers and their resources connect
directly to the broker. These applications include:
v The WebSphere Message Broker Explorer, an administration

toolkit delivered with Version 7.0, which is described later in this
section.

v The WebSphere Message Broker Toolkit.
v Commands; for example, mqsideploy, mqsilist, and

mqsistartmsgflow.
v All applications that are written to the Configuration Manager

Proxy (CMP) API, including the CMP Exerciser.
For more details about the CMP API for Version 7.0, see “The
Administration API for WebSphere Message Broker” on page 54.

You can control which users and applications are able to run
commands against particular brokers or execution groups by using
WebSphere MQ security, as described in the following section.

Administration security

Set up broker administration security to control the authority that
is required by users to complete specific administrative tasks. You
can enable security when you create a broker, or change it later on
an existing broker. This option, which uses WebSphere MQ
facilities, replaces Access Control Lists (ACLs) that were managed
by the Configuration Manager in previous versions.

For further details, see “Broker administration security overview”
on page 362.

For details of new and updated commands, see “Commands” on page
3672.

WebSphere Message Broker Explorer

The WebSphere Message Broker Explorer is an administration interface that
is integrated as a plug-in into WebSphere MQ Explorer, so that you can
administer both brokers and WebSphere MQ queue managers on local and
remote computers.

Important status information is always on view, and you can access details
about what each broker is doing, and has recently done. Configuration and
other changes are monitored, and the user responsible for these changes is
recorded.

8 WebSphere Message Broker Version 7.0.0.8

The WebSphere Message Broker Explorer supports all the function that is
provided by the Broker Administration perspective in the WebSphere
Message Broker Toolkit in previous versions, and offers additional, more
advanced features. Limited administration functionality is still available in
the new Brokers view in the WebSphere Message Broker Toolkit to run a
subset of operations.

The WebSphere Message Broker Explorer includes the following
capabilities:
v You can create, delete, start, and stop local brokers without using the

command line.
v You can see the relationships between your brokers and your queue

managers.
v You can deploy a broker archive file to multiple execution groups in one

step.
v You can see visualizations of your accounting and statistics data.
v You can see visualizations of your resource statistics data.
v You can configure broker properties, including creating and modifying

configurable services.
v You can view the broker administration queue, and remove pending

tasks that have been submitted to the broker.
v You can connect and configure settings for a DataPower® device.

For further details about the WebSphere Message Broker Explorer, see
“WebSphere Message Broker Explorer” on page 57.

For further details about the Brokers view in the WebSphere Message
Broker Toolkit, see “Brokers view” on page 6796.

Publish/subscribe support

All topic-based publish/subscribe operations are handled by
WebSphere MQ. You can use WebSphere Message Broker facilities to
extend publish/subscribe options to include content-based publishers and
subscribers.

All applications use a single topic space that is managed by
WebSphere MQ, and access control is handled by the queue manager. The
concept of broker domains, which is valid in previous versions of
WebSphere Message Broker, no longer exists; equivalent function for broker
domains, broker topologies, and broker collectives is provided by
WebSphere MQ clusters.

The Publication node uses WebSphere MQ publish/subscribe facilities. You
can use the NoMatch terminal, new in Version 7.0, to identify scenarios in
which no subscribers are registered to receive particular topics.

With these changes, your publish/subscribe network requires you to
configure a broker only where you have content-based subscribers, not
throughout the network. The content-based filters that you can specify can
now include full ESQL expressions, including namespace support.

You can migrate JMS applications, and applications that use the MQRFH2
header, directly to WebSphere MQ.

WebSphere MQ Real-time Transport and WebSphere MQ Telemetry
Transport nodes are no longer supported. Therefore, the following nodes
have been removed:
v Real-timeInput

Chapter 2. WebSphere Message Broker overview 9

v Real-timeOptimizedFlow
v SCADAInput
v SCADAOutput

If you use the WebSphere MQ Real-time Transport, your applications can
use equivalent qualities of service provided by WebSphere MQ. Migrate
JMS real-time publishers and subscribers to the “read-ahead get” and
“asynchronous-put” facilities of WebSphere MQ.

Message flows containing these nodes that you have migrated to
WebSphere Message Broker Version 7.0 will not start until these nodes
have been removed from the flow, and the flow has been redeployed.

Contact your account representative for more information about support
for WebSphere MQ Real-time Transport and WebSphere MQ Telemetry
Transport.

For more information about the changes to publish/subscribe see “Routing
using publish/subscribe applications” on page 2215.

WebSphere Message Broker Toolkit

You can administer local and remote brokers in the Brokers view, which is
new in Version 7.0. This view is integrated into the Broker Application
Development perspective, so that you can access basic administration tasks
while you are developing, deploying, debugging, and testing your
applications.

The WebSphere Message Broker Toolkit includes an impact analysis tool
that you can use to discover interdependencies between resources, and
assess the effects of planned changes to those resources. See “Impact
analysis: analyzing the effects of planned changes to your applications” on
page 1150.

Samples are now accessible through the Samples and Tutorials page, and
from the information center in the WebSphere Message Broker Toolkit. For
a full list of the samples, see “Samples” on page 98.

Patterns

A pattern is a reusable solution that encapsulates a top-down tested
approach to solving a common architecture, design, or deployment task in
a particular context. This approach complements bottom-up development
of creating message flows and nodes.

A number of patterns are supplied in the WebSphere Message Broker
Toolkit, and you can use the Patterns Explorer, which includes
comprehensive help, to simplify creation of common scenarios.

You can configure these patterns with values for use in your own
environment to solve specific business problems. The supplied patterns use
preferred techniques in message flow design, to produce efficient and
reliable flows.

For more information, see “Patterns” on page 1310.

Universal connectivity for SOA

Additional nodes and configurable services expand the interaction of the broker
with other products.

SCA nodes for WebSphere Process Server

10 WebSphere Message Broker Version 7.0.0.8

Five new built-in message flow nodes are provided to improve the
interaction between WebSphere Message Broker and WebSphere Process
Server Version 6.2 by using Web Services (SOAP over HTTP) or
WebSphere MQ bindings.

The nodes are the SCAInput, SCAReply, SCARequest, SCAAsyncRequest,
and SCAAsyncResponse nodes.

For more information, see “Service Component Architecture (SCA)
overview” on page 2096.

Enhanced support for the PHPCompute node

Support for the PHP scripting language is available on all operating
systems on which WebSphere Message Broker is supported, except Solaris
on x86-64. The PHPCompute node supports general-purpose
transformation logic in the PHP language, and complements the Compute,
JavaCompute, XSLTransform, and Mapping nodes. In addition, the set of
supported PHP extensions has been increased. For more information, see
“Using PHP” on page 2670 and “PHP extensions” on page 5324.

SAP, Siebel, and Peoplesoft enhancements

Version 7.0 improves connectivity with Enterprise Information Systems.

New WebSphere Adapter nodes

Use the SAPReply node to send a reply to an SAP synchronous
callout. Use this node with an SAPInput node to implement a
message flow application that acts as a remote function call (RFC)
destination.

For more information, see “SAPReply node” on page 4682 and
“BAPI inbound scenarios” on page 1943.

Generic IDoc routing

By using the SAPInput node in passthrough mode, WebSphere
Message Broker can receive any IDoc, and route it according to
IDoc type. By using this method, you can also use a single RFC
program ID to receive all IDoc types, while still allowing
individual IDoc processing.

For more information, see “Generic IDoc routing” on page 1976.

SAP high availability

You can deploy an SAP adapter and a message flow that contains
an SAPInput node to two brokers on your network; these brokers
can accept IDocs concurrently from the same SAP system so that
you can build a highly available environment.

On distributed systems, two brokers share state by using queues
on a third queue manager, which is running in multi-instance
mode. Each broker has client connections to that queue manager.

On z/OS®, the shared state is stored on a shared queue. Each
broker connects to the queue sharing group.

For more information, see “SAP high availability” on page 1947.

Iterative discovery

You can take an adapter component that was created by using the
Adapter Connection wizard in WebSphere Message Broker Version

Chapter 2. WebSphere Message Broker overview 11

7.0, and update it with newly discovered objects from the
Enterprise Information System (EIS) by running the Adapter
Connection - Iterative Discovery wizard. This facility is known as
iterative discovery. You can either add the new objects without
modifying existing objects, or replace existing objects.

For more information, see “Enhancing existing adapters with
newly discovered objects” on page 2063.

Iterative deployment

If your message flow acts as a gateway to an EIS, you can use it to
call new services that did not exist when you developed the flow.
You can also create an event handler to an EIS to handle new event
types that did not exist when you first developed your message
flow. In both cases, if a new service or event is provided by the
EIS, you do not have to modify and retest the message flow. This
facility is called iterative deployment.

For more information, see “WebSphere Adapters deployment” on
page 3219.

Sequence and Resequence nodes

WebSphere Message Broker provides support for adding sequence numbers
to messages, and for reordering messages in the message flow based on
their sequence number. You can use the new Sequence node to add
sequence numbers to the messages, and the new Resequence node to
reorder the messages into their original sequential order.

For more information, see “Sequence node” on page 4736 and “Resequence
node” on page 4651.

New configurable services for EDA nodes

You can use the following configurable services to define the
WebSphere MQ queues on which EDA nodes store event state:
v Aggregation
v Collector
v Resequence
v Timer

You can also use these configurable services to specify timeouts for the
nodes. For more information, see “Configurable services properties” on
page 3766.

Dynamic operation management

Additional features provide better information and control of operations.

Multi-instance brokers

WebSphere Message Broker builds on the multi-instance queue manager
support introduced in WebSphere MQ Version 7.0.1 to provide a highly
available configuration with active and passive brokers.

Multi-instance brokers and queue managers store their configurations on
shared network storage so that if a failure occurs in an active component,
the passive component assumes the configuration and operation of the

12 WebSphere Message Broker Version 7.0.0.8

active component. The use of queue managers in this way avoids the
requirement for a high availability solution, such as HACMP™, supplied by
a vendor software company.

For further information, see “Configuring for high availability” on page
826.

Audit and monitoring

You can now generate comprehensive audit and monitoring events from
message flows, either at design time or operationally, for new and existing
message flows. These events can be consumed by a diverse range of
applications and systems, including WebSphere Business Monitor,
WebSphere MQ and JMS applications, and vendor applications. In
addition to business monitoring, you can use these events for business
intelligence, and audit scenarios.

See “Business-level monitoring” on page 3319 for an overview of
monitoring.

The following improvements to the monitoring of message flows are
introduced:
v A filter can be applied to every event source, to control whether the

event is emitted. See “Configuring monitoring event sources using
monitoring properties” on page 3327 and “Monitoring profile” on page
6768.

v You can export the monitoring information about a message flow from
the WebSphere Message Broker Toolkit, and import it into WebSphere
Business Monitor Version 7.0 to generate a monitor model for your
message flow. See “Creating a monitor model for WebSphere Business
Monitor V7” on page 3341.

v You can choose whether the emission of monitoring events by a message
flow is coordinated with the message flow transaction, is in an
independent unit of work, or is not in a unit of work, which improves
overall monitoring performance; see “Monitoring basics” on page 3320.

v Monitoring events now contain an integer counter, as well as the
creation time of the events, for use in sequencing events. The Sequence
tab has been removed from the WebSphere Message Broker Toolkit.

Resource statistics

You can collect statistics for some of the resources that are used by
execution groups in the broker to help with problem diagnosis and broker
optimization. Supported resources are the Java Virtual Machine (JVM), and
the outbound sockets. For example, you can monitor the sockets that are
used by SOAP nodes in your message flows.

You can start and stop statistics collection at broker or execution group
level by using the WebSphere Message Broker Explorer, the CMP API, or
the mqsichangeresourcestats command.

The resource statistics framework is based on the existing accounting and
statistics for message flows, and generates periodic messages as
publications that your programs can subscribe to. You can also view these
statistics in the WebSphere Message Broker Explorer, which provides both
numeric and graphical representations.

For further details, see “Monitoring resource performance” on page 3305.

Service Federation Management enablement

Chapter 2. WebSphere Message Broker overview 13

You can enable brokers for Service Federation Management. For further
information, see “Working with Service Federation Management (SFM)” on
page 911.

Platforms and environments

The Version 7.0 broker operates in 64-bit mode on z/OS and all distributed
platforms, except Linux on x86 and Windows systems.

Platforms

v The following platforms now support only 64-bit operation, and have a
smaller installation footprint:
– AIX®

– Linux on x86-64
– Solaris on SPARC

See “Migrating a Version 6.1 broker to Version 7.0 on distributed
operating systems” on page 173 or “Migrating a Version 6.0 broker to
Version 7.0 on distributed operating systems” on page 194 for
configuration details.

v WebSphere Message Broker Version 7.0 is not supported on HP-UX on
PA-RISC. If you use this platform, retain Version 6.1, and speak to your
IBM representative about your requirements.

Java

Java 1.6 (Version 6) is supported in all environments. On IBM platforms,
the IBM J9 engine is supplied, which benefits from reduced startup time
and memory footprint.

Migration

You can migrate to WebSphere Message Broker Version 7.0 from
WebSphere Message Broker Version 6.1, WebSphere Message Broker
Version 6.0, and WebSphere Event Broker Version 6.0. You can also install
WebSphere Message Broker Version 7.0 to coexist with previous versions
on the same computer.

For details about how to migrate your components and data, and how
components from different versions can interact, see Chapter 3, “Migrating
and upgrading,” on page 137.

Related concepts:
“New function added in Version 7.0 fix packs” on page 15
Some fix packs and other maintenance packs deliver new functions.
Related tasks:
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
Related reference:
“Reviewing technical changes in Version 7.0” on page 205
Some minor changes in behavior are present in WebSphere Message Broker Version
7.0; for example, those changes caused by defects that have been fixed between
versions.

14 WebSphere Message Broker Version 7.0.0.8

New function added in Version 7.0 fix packs
Some fix packs and other maintenance packs deliver new functions.

The “What's new in Version 7.0?” on page 7 topic introduces you to the main new
function in WebSphere Message Broker Version 7.0. This topic introduces you to
the additional function that has been added in fix packs.

For detailed information about the contents of fix packs and other maintenance
packs, see the WebSphere Message Broker support web page. Click Download,
then Recommended Fixes, and select your product to view available fixes. The
description of each fix pack includes links to Release notes (details of its content)
and Problems fixed (a list of PMRs, APARs, and defects that are included).

To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mqsichangebroker command, as shown in the
following example:
mqsichangebroker MB7BROKER -f 7.0.0.7

For more information about this command, see “mqsichangebroker command” on
page 3723.

Fix pack V7.0.0.7 enhancements
Setting up the JNDI interface for the proxy servlet

The proxy servlet initialization parameters must be configured for the
broker environment that the proxy servlet is connecting to each time the
proxy servlet is deployed to the servlet container. It is now possible to
configure the web.xml parameters only once through the JNDI in
WebSphere Application Server, regardless of how many future
deployments there might be of the proxy servlet. Because the JNDI
configuration parameters take precedence over the initialization parameters
in the web.xml file, using this method means that you need to set up at the
application server side only once for any future deployments of the proxy
servlet.

These setup tasks must all be completed in the WebSphere Application
Server administrative console. For a full list of the steps, see “Setting up
the JNDI interface for the proxy servlet” on page 886.

Configuring the XPath cache

An Execution Group keeps a cache of compiled XPath expressions to help
reduce the processor usage of parsing and re-creating XPath expressions
that are used repeatedly during Message Flow execution. This cache is
shared by all Message Flows within an Execution Group. However, this
default size might become a performance bottleneck for customers who use
many XPath expressions with a single flow invocation completely
invalidating the cache. Altering the size of the XPath cache might improve
message flow performance. For examples and information about altering
the default cache size, see “Configuring the XPath cache” on page 765.

Fix pack V7.0.0.6 enhancements
Setting FTP and SFTP servers dynamically

You can override the Remote server and port property on the FileOutput
node by setting a value in the local environment.

Chapter 2. WebSphere Message Broker overview 15

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

For more information, see “Local environment overrides for the FileOutput
node” on page 4443.

Verify the ODBC environment on Linux and UNIX systems
The mqsicvp command is run automatically when you start a broker by
using the mqsistart command. The command checks that the broker
environment is set up correctly. This checking has been enhanced to verify
that the ODBC environment is configured correctly on Linux and UNIX
systems. When you run this command from the command line on Linux
and UNIX systems, it also validates the connection to all data sources that
are listed in the odbc.ini file that have been associated with the broker by
using the mqsisetdbparms command.

For more information, see “mqsicvp command” on page 3857.

Display the full content of BIP messages

You can view the full content of a runtime BIP message, including the user
response and explanation sections, by using the mqsiexplain command.

For more information, see “mqsiexplain command” on page 3879.

Start an execution group with a different user ID to a broker on z/OS systems

On z/OS systems, you can change the user ID under which an execution
group runs so that it can access resources according to the permissions
assigned to it, rather than the permissions assigned to the main broker user
ID.

For more information, see “Execution group user IDs on z/OS” on page
560.

New ConnectionIdleTimeoutSec property on the IMSConnect configurable
service

You can use the ConnectionIdleTimeoutSec property on the IMSConnect
configurable service to specify the idle connection timeout for cached IMS
Connections. If a cached IMS connection is inactive for more than the
specified ConnectionIdleTimeoutSec, then this connection becomes
ineligible for reuse, and is removed from the cache, and closed cleanly.

For more information, see “Configurable services properties” on page 3766.

Configure the properties of an execution group while it is in offline mode

You can use the -f parameter on the mqsireportproperties and
mqsichangeproperties commands to view and change properties on an
execution group while it is in offline mode.

For more information, see “mqsichangeproperties command” on page
3756.

Additional problem collector for IBM Support Assistant Data Collector
Use the broker problem collector, which is installed with IBM Support
Assistant Data Collector, to gather more extensive broker diagnostic
documents.

For more information, see “Selecting a problem collector for IBM Support
Assistant Data Collector” on page 3568.

New timeoutThreads property

16 WebSphere Message Broker Version 7.0.0.8

An optional property that assigns additional processing threads to enable
processing of timed out aggregation messages in the AggregateReply node.
For more information, see “Processing timed out aggregation messages” on
page 2739.

Fix pack V7.0.0.5 enhancements
Updates to the FileOutput node Basic properties

Support has been added for writing directly to an output file; see
“FileOutput node” on page 4430 for more information.

Java shared classloader
A new shared classloading option has been introduced:
v Execution group classloading – allows only a single defined execution

group to access and load any JAR files that are placed in the execution
group shared-classes directory.

A new classloading precedence order is also defined.

For more information, see “Java shared classloader” on page 2637.

Support for mqsimode command on z/OS
The mqsimode command can be run on z/OS by customizing and
submitting BIPMODE; see “mqsimode command” on page 3899 for more
information.

New jdbcProviderXASupport property

An optional property that controls whether the broker connects to a
database server using XA Protocol. For more information, see “Setting up a
JDBC provider for type 4 connections” on page 684.

IBM Support Assistant Data Collector
Using IBM Support Assistant Data Collector, which is installed with
WebSphere Message Broker, you can collect diagnostic documents and
submit a problem report to IBM.

For more information, see “IBM Support Assistant Data Collector” on page
3565.

WebSphere MQ Version 7.1 and Version 7.5
This fix pack introduces support for WebSphere MQ Version 7.1 and
Version 7.5 within WebSphere Message Broker, with the following
restrictions.
v WebSphere MQ Version 7.1 and Version 7.5 must be configured as the

primary installation.
v WebSphere MQ Version 7.1 and Version 7.5 must be installed in the

default install location on AIX, HP-UX, Linux, and Solaris.

For the latest details of all supported levels of hardware and software, visit
the WebSphere Message Broker Requirements website.

Fix pack V7.0.0.4 enhancements
New nodes for IBM Sterling Connect:Direct®

IBM Sterling Connect:Direct is a managed file transfer product that
transfers files between, and within, enterprises. The following new nodes
have been added to implement the additional features:
v “CDInput node” on page 4305
v “CDOutput node” on page 4312

Chapter 2. WebSphere Message Broker overview 17

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

WebSphere Message Broker nodes work as clients, connecting to an
external Connect:Direct server through the IBM Sterling Connect:Direct
Java Application Interface. For an overview of IBM Sterling Connect:Direct,
see “IBM Sterling Connect:Direct overview and concepts” on page 1810.

Using LocalEnvironment variables with JMSOutput and JMSReply nodes
Use the DestinationData element with DestinationName and
DestinationType child elements to specify the name and type of the JMS
Destination. For more information, see “Using LocalEnvironment variables
with JMSOutput and JMSReply nodes” on page 4242.

Creating a security profile for LDAP
Use the rejectBlankpassword property when configuring a security profile
for Lightweight Directory Access Protocol (LDAP), to specify whether the
security manager rejects a user name that has an empty password token
without passing it to LDAP. For more information, see “Creating a security
profile for LDAP” on page 435, “Configurable services properties” on page
3766, and “SecurityProfiles configurable service properties” on page 3801.

New HTTPConnector property autoRespondHTTPHEADRequests
Use the autoRespondHTTPHEADRequests property to specify if the
connector handles HEAD requests for HTTP traffic in the same way that it
does for SOAP traffic. For more information, see “Execution group HTTP
listener parameters (SOAP and HTTP nodes)” on page 3805.

Millisecond timeouts on HTTPRequest and SOAPRequest nodes
Use the TimeoutMillis local environment setting to define a timeout in
milliseconds and override the Request timeout (sec) property on the node.
For more information, see “HTTPRequest node” on page 4488 and “Local
environment overrides for the SOAPRequest node” on page 4850.

Proxy servlet configuration for SSL connections
Use the SSL connection options when deploying the proxy servlet web.xml
to the servlet container. For more information, see “Proxy servlet
configuration parameters” on page 878.

Support for additional data types on DB2®

GRAPHIC, VARGRAPHIC, LONGVARGRAPHIC, and DBCLOB data type
support on DB2 is now provided for the broker. For more information, see
“Support for Unicode and DBCS data in databases” on page 3668.

Fix pack V7.0.0.3 enhancements
HTTP Transport property hostnameChecking

Use the HTTP Transport property hostnameChecking to specify whether
the host name of the server that is receiving the request must match the
host name in the SSL certificate. For more information, see “HTTPRequest
node” on page 4488, “SOAPRequest node” on page 4828, and
“SOAPAsyncRequest node” on page 4750.

TDS Mnemonics
Use the TDS mnemonic string <X12_ERS> as an element repetition
separator for X12. For more information, see “TDS Mnemonics” on page
5391.

Policy Sets and Policy Set Bindings editor
Use the mustUnderstand attribute in the Policy Sets and Policy Set
Bindings editor to configure the security header of the consumer message.
For more information, see “Policy Sets and Policy Set Bindings editor:
Advanced panel” on page 6863.

18 WebSphere Message Broker Version 7.0.0.8

New configurable service properties
The following configurable service properties are new for 7.0.0.3:
v Use the JDEdwardsConnection configurable service property

assuredOnceDelivery to specify whether to provide assured once-only
delivery for inbound events. For more information, see “Configurable
services properties” on page 3766.

v Use the MonitoringProfiles configurable service property
useParserNameInMonitoringPayload to determine when the payload is
included in a monitoring message. For more information, see
“Configurable services properties” on page 3766 and “Configuring
monitoring event sources using a monitoring profile” on page 762.

v Use the IMSConnect configurable service property CodedCharSetID to
change your IMS system or IMSConnect CCSID from the default value.
For more information, see “Changing connection information for the
IMSRequest node” on page 732 and “Configurable services properties”
on page 3766.

v Use the FtpServer configurable service property preserveRemoteFileDate
to specify whether files that are retrieved from a remote server by the
FileInput node retain the last modified date on the server. For more
information, see “FtpServer configurable service properties” on page
3794 and “Configurable services properties” on page 3766.

Fix pack V7.0.0.2 enhancements
v “Simplicity and productivity”
v “Universal connectivity for SOA” on page 20
v “Dynamic operation management” on page 22
v “Platforms and environments” on page 22

Simplicity and productivity

To simplify the product and increase productivity, WebSphere MQ Telemetry
Transport is now supported by WebSphere MQ, and you can do more with
patterns.

WebSphere MQ Telemetry Transport
WebSphere MQ Telemetry Transport is supported from WebSphere MQ.
For more information, see “Changes to nodes in WebSphere Message
Broker Version 7.0” on page 2217.

Modifying pattern instances by using Java or PHP
Use Java or PHP code to modify pattern instances when the pattern user
generates an instance of a user-defined pattern. For example, to modify the
structure of a message flow that is based on the values of pattern
parameters.

For more information, see “Modifying pattern instances by using Java or
PHP” on page 1364.

Share your user-defined patterns with other users
Package your user-defined pattern into a pattern archive so that the
user-defined pattern can be distributed to pattern users by adding the
pattern archive to a pattern community site.

For more information, see “Packaging and distributing pattern plug-ins”
on page 1397.

Chapter 2. WebSphere Message Broker overview 19

Universal connectivity for SOA

Additional nodes and configurable services expand the interaction of the broker
with other products.

CICSRequest node enhancements

v You can specify a mirror transaction name on the CICSRequest node,
which you can use to run CICS® Transaction Server for z/OS tasks and
programs. This grouping greatly assists in collecting statistics,
accounting, and aids decision making about task priority. For more
information about mirror transactions, see “CICS Transaction Server for
z/OS mirror transactions” on page 2189.

v The CICSRequest node support in WebSphere Message Broker provides
direct communication with CICS (two-tier connection) by sending
Distributed Program Link (DPL) requests over TCP/IP-based IP
InterCommunications (IPIC) protocol, or communication with CICS
through CICS Transaction Gateway for Multiplatforms (three-tier
connection). For more information about the two-tier and three-tier
connection models, see “CICS Transaction Server for z/OS overview” on
page 2173 for a high-level overview, or “CICS Transaction Server for
z/OS two-tier connectivity” on page 2177 and “CICS Transaction Server
for z/OS three-tier connectivity” on page 2181 for detailed conceptual
information.

v You can specify either a COMMAREA data structure or a channel data
structure on the CICSRequest node to use as input for linking to CICS
programs. The data structure that is specified as input returns the same
data structure as output. Channels are an alternative for COMMAREAs,
providing relief from the COMMAREA maximum size of 32766 bytes,
and allowing greater flexibility in input and output data structures. For
more information about using a COMMAREA or channel data structure,
see “COMMAREA or channel data structures” on page 2183.

v The CICS Transaction Server for z/OS Channel Connectivity sample
demonstrates how to call a channel-based CICS program. A CICS
channel structure can be represented in WebSphere Message Broker by a
message collection. This sample demonstrates how to create and
populate a message collection for the CICSRequest node and how to
process the collection after the call.

New EmailInput node
Use the EmailInput node to retrieve an email, with or without attachments,
from an email server that supports Post Office Protocol 3 (POP3) or
Internet Message Access Protocol (IMAP).

For more information, see “EmailInput node” on page 4394.

A sample that demonstrates how you can use the EmailInput node is also
provided. For more information, see Email.

New JDEdwardsInput and JDEdwardsRequest nodes
Use the JDEdwardsInput and JDEdwardsRequest nodes to interact with a
JD Edwards EnterpriseOne server. For example, you can use the
JDEdwardsRequest node to discover JD Edwards EnterpriseOne business
functions, XML lists, and real-time events.

For more information, see “JDEdwardsInput node” on page 4519 and
“JDEdwardsRequest node” on page 4524.

20 WebSphere Message Broker Version 7.0.0.8

A sample that demonstrates how you can use the “JDEdwardsRequest
node” on page 4524 node is also provided. For more information, see JD
Edwards Connectivity.

New FileRead node
Use the FileRead node to read one record, or the entire contents of a file,
from within a message flow.

For more information, see “FileRead node” on page 4444.

The Message Routing sample has been enhanced, and now demonstrates
how to use the FileRead node. For more information about how to process
messages that are based on the contents of an XML or CSV file, see
Message Routing.

FileInput node
Skip the first record in a file. The FileInput node reads the first record in
the file but does not propagate the record to the Out terminal. Records are
propagated as normal, from the second record onwards. Use this option
when the first record is a header that does not need to be processed. It is
not valid to use this option when using the whole file.

For more information, see “FileInput node” on page 4415.

SSL for TCP/IP nodes
You can configure the broker to use SSL for TCP/IP connections; see
“Configuring TCP/IP client nodes to use SSL” on page 551.

HTTP compression for HTTP and SOAP nodes
You can configure HTTP nodes to use HTTP compression and
decompression when sending and receiving messages. Similar HTTP
compression functionality was introduced for the SOAP nodes in fix pack
7.0.0.1. For more information, see “Using compression with HTTP and
SOAP nodes” on page 1597.

JMS transport for SOAP nodes

The SOAPAsyncRequest and SOAPAsyncResponse nodes support JMS as
well as HTTP transport. You can import WSDL with bindings for both JMS
and HTTP transport, and switch transports for the SOAPAsyncRequest
node during a message flow. WS-Security and WS-Addressing are
supported for SOAP/JMS, as well as transactionality. WebSphere Message
Broker supports both W3C (standard) and IBM (proprietary) WSDL
formats for SOAP/JMS. For more information, see “WSDL URI formats for
JMS” on page 1668 and “SOAP over JMS” on page 6698.

Web services gateway

The SOAP nodes support a web services gateway mode, which does not
require a WSDL to configure the SOAP nodes, and allows WebSphere
Message Broker to handle generic SOAP request/response and one-way
messages when used as a web services provider or consumer. WebSphere
Message Broker can also act as a façade between multiple web service
clients and multiple back-end web service providers.

For more information, see “Gateway operation mode for SOAP nodes” on
page 1645.

A sample that demonstrates how you can use a web services gateway is
also provided. For more information, see Web Services Gateway.

DatabaseInput node

Chapter 2. WebSphere Message Broker overview 21

The DatabaseInput node can now generate the code for a simple database
query. After code generation, you can add custom code; see “Configuring a
DatabaseInput node” on page 2120. By using an MQInput node with the
built-in DatabaseInput node the WBI JDBC Adapter Migration sample
re-creates a scenario of migrating a JDBC adapter to invoke a message
flow.

A sample that demonstrates how you can use the DatabaseInput node is
also provided. For more information, see DatabaseInput Node.

JSON domain

Fix pack V7.0.0.2 provides support for a JSON domain. Messages in the
JSON domain are processed by the JSON parser and serializer. The JSON
parser interprets a bit stream by using the JSON grammar, and generates a
corresponding JSON domain logical message tree in the broker.

For more information, see “JSON parser and domain” on page 1128.

RESTful Web Service Using JSON sample

This sample shows how you can use WebSphere Message Broker to front
an existing service as a RESTful web service, providing a JSON message
format interface. The sample also shows how to consume the RESTful Web
Service from a message flow.

For more information, see RESTful Web Service Using JSON.

Web Service Aggregation sample

The sample demonstrates how you can invoke a number of web services
and amalgamate the results by using WebSphere Message Broker
aggregation nodes. The sample illustrates how you can use aggregation for
transports other than WebSphere MQ, and highlights any issues of which
to be aware. For more information, see Web Service Aggregation.

Improved order by support for the MQInput node
You can now sort by any element in the message. For each value of that
element, the messages are processed in arrival order. See “Optimizing
message flow throughput” on page 587 and “MQInput node” on page
4594.

Dynamic operation management

Additional features provide better information and control of operations.

Resource statistics for parsers
View the statistics for a parser to view the number of input and output
messages that are processed by a message flow, and determine if message
flow parsers are using large amounts of memory. For more information,
see “Resource statistics” on page 3306.

Platforms and environments

You can interact with more platforms and environments.

Configuring JMS nodes with Oracle AQ
You can configure the JMS nodes to communicate with Oracle AQ (Oracle
11g and above).

For more information, see “Configuring JMS nodes to communicate with
Oracle AQ” on page 1712.

22 WebSphere Message Broker Version 7.0.0.8

Integrating with the Rational® Team Concert client
You can integrate the Rational Team Concert client with the WebSphere
Message Broker Toolkit.

For more information, see “Integrating the Rational Team Concert client
with the WebSphere Message Broker Toolkit” on page 576

Execution group profiles
You can create and use profiles that apply to a specific execution group.

For more information, see “Execution group-specific command
environment: Windows systems” on page 309 and “Execution
group-specific command environment: Linux and UNIX systems” on page
312.

Fix pack V7.0.0.1 enhancements
v “Simplicity and productivity”
v “Universal connectivity for SOA” on page 24
v “Platforms and environments” on page 26

Simplicity and productivity

Additional patterns are provided to help solve specific business problems.

User-defined patterns
User-defined patterns extend the function of WebSphere Message Broker so
that you can create patterns that you can reuse within your organization.

For more information, see “User-defined patterns” on page 1334.

Solar Pattern Authoring sample
This sample shows how you can build a user-defined pattern. The sample
provides an example message flow project that calculates the sunrise and
sunset times in a PHPCompute node. The sample also provides a pattern
authoring project that configures a pattern.

For more information, see “Samples” on page 98.

Service Access from WebSphere MQ: one-way pattern
Use this pattern to process WebSphere MQ XML messages by using the
data that the pattern contains to call a web service. Use this pattern to
bridge the reliable WebSphere MQ messaging protocols of a client
application with the synchronous requests to services to handle updates
with an assurance that service failures, including timeouts, are reliably
reported.

This pattern provides loose coupling between client applications and
service providers in timing, protocols, and transport. It is appropriate for
service interfaces to existing systems.

For more information, see “Built-in patterns” on page 1332.

Using a subflow as a user-defined node
Develop a user-defined node that packages a subflow, either in the same
way that you create any other user-defined node that has its
implementation based on Java, or by basing it on an existing subflow.

For more information, see “Using a subflow as a user-defined node” on
page 3008.

Chapter 2. WebSphere Message Broker overview 23

Universal connectivity for SOA

Additional nodes and configurable services expand the interaction of the broker
with other products.

New CORBARequest node
Use the CORBARequest node to call an external CORBA application over
Internet Inter-Orb Protocol (IIOP). You can use this node to create a new
external interface for existing CORBA applications.

For more information, see “CORBARequest node” on page 4349.

A sample that demonstrates how to use the CORBARequest node is also
provided. For more information, see “Samples” on page 98.

New CICSRequest node
Use the CICSRequest node to call an external CICS Transaction Server for
z/OS application over TCP/IP-based IP InterCommunications (IPIC)
protocol. By using the CICS support that is provided in WebSphere
Message Broker you can deploy CICS applications into a service-oriented
architecture (SOA).

For more information, see “CICSRequest node” on page 4321.

A sample that demonstrates how to use the CICSRequest node is also
provided. For more information, see “Samples” on page 98.

New WebSphere MQ File Transfer Edition nodes
The FTEOutput and FTEInput nodes transfer files across an existing
WebSphere MQ File Transfer Edition network in a timely and reliable
manner.

For more information, see “Managed file transfers using WebSphere MQ
File Transfer Edition” on page 1869.

A sample that demonstrates how to use the FTEOutput and FTEInput
nodes is also provided. For more information, see “Samples” on page 98.

New DatabaseInput node
The DatabaseInput node enables a message flow to respond to changes to
data in a database.

For more information, see “Event-based database integration” on page
2118.

Samples that demonstrate how to use the DatabaseInput node are also
provided. For more information, see “Samples” on page 98.

You can now create a message definition from a database definition (.dbm
file); see “Creating a message definition from a database definition” on
page 2941.

The New Message Set wizard now includes an option to specify database
records; see “Creating a message set” on page 2842.

New SecurityPEP node
The SecurityPEP node enables you to invoke the message flow security
manager at any point in the message flow between an input node and an
output or request node.

For more information, see “SecurityPEP node” on page 4729.

A sample that demonstrates how to use the SecurityPEP node is also
provided. For more information, see “Samples” on page 98.

24 WebSphere Message Broker Version 7.0.0.8

JMS transport for SOAP nodes

The SOAPInput, SOAPReply, and SOAPRequest nodes support JMS as well
as HTTP transport. You can import WSDL with bindings for both JMS and
HTTP transport, and switch transports during a message flow. WS-Security
and WS-Addressing are supported for SOAP/JMS. WebSphere Message
Broker supports both W3C (standard) and IBM (proprietary) WSDL
formats for SOAP/JMS. For more information, see “WSDL URI formats for
JMS” on page 1668.

For more information, see “SOAP over JMS” on page 6698.

Querying WSDL with ?wsdl

A web service client can send an HTTP GET request with a ?wsdl query
string to message flows implementing web services, and receive a
representation of the WSDL that was used to configure the input node that
provides the endpoint for the service.

For more information, see “Using WSDL to configure message flows” on
page 1664.

HTTP nodes can use the embedded listener in an execution group

You can configure your broker and execution groups so that the HTTP
nodes use the listener within the execution group to communicate with
clients and servers, in preference to the broker-wide listener. The latter
configuration remains the default option, but the execution group listener
might enhance message flow throughput.

For more information, see “HTTP listeners” on page 1589.

New HTTP Timeout terminal on HTTPInput and SOAPInput nodes

You can configure your HTTPInput and SOAPInput nodes to connect
timeout processing nodes to the HTTP Timeout terminal.

On SOAPInput nodes, messages are propagated through this terminal only
when you are using an HTTP binding. On HTTPInput nodes, messages are
propagated through this terminal only when you have configured your
broker and execution groups such that the HTTPInput node is using the
embedded execution group listener.

For more information, see “Using timeouts with HTTP and SOAP nodes”
on page 1595, “SOAPInput node” on page 4795, and “HTTPInput node” on
page 4474.

Securing the connection to IMS by using SSL

You can use the IMSConnect configurable service to configure the
IMSRequest node to use Secure Sockets Layer (SSL) protocol. For more
information, see “Securing the connection to IMS by using SSL” on page
549.

Propagating security credentials to IMS

The IMSRequest node can use an identity that is present on an input
message, and propagate it to IMS, by using the Propagate property on the
security profile that is defined for the node. For more information, see
“Propagating security credentials to IMS” on page 2144.

Closing unused connections to Enterprise Information Systems

To effectively maintain the pool of connections to SAP, Siebel, or
PeopleSoft, you can set a connection timeout value on a configurable

Chapter 2. WebSphere Message Broker overview 25

service. The value determines how long a connection can be idle before it
is closed. For more information, see “Configuring EIS connections to expire
after a specified time” on page 726.

Propagating security credentials to SAP

The SAPRequest node can use an identity that is present on an input
message, and propagate it to SAP, by using the Propagate property on the
security profile that is defined for the node. For more information, see
“Propagating security credentials to an SAP request” on page 2065.

New WS-Trust V1.3 compliant security token server (STS) support for message
flow security

You can use a WS-Trust V1.3 compliant STS, such as Tivoli Federated
Identity Manager (TFIM) V6.2, for message flow security to provide
authentication, mapping, and authorization of the following additional
security tokens:
v SAML assertions
v Kerberos tickets
v LTPA tokens
v RACF® PassTickets
v Universal WSSE tokens

This support is in addition to the existing support for Username, Username
and password, and X.509 certificates. For more information, see “Identity”
on page 390.

The support for this new security provider is in addition to the existing
support for Lightweight Directory Access Protocol (LDAP) and TFIM V6.1.
For more information, see “Message flow security” on page 382.

New WS-Security support for SOAP nodes

You can use the SOAP node support for Kerberos and SAML pass-through
to provide SOAP message security. For more information, see
“WS-Security” on page 765.

Platforms and environments

Support for the Windows platform is enhanced, to include Windows 7 and
Windows Server 2008 R2. You can also now create 64-bit brokers and execution
groups with the new Windows on x86-64 version of the product.

WebSphere Message Broker ODBC Database Extender package
This package is required when you are using WebSphere Message Broker
to interface with an ODBC data source that is not supported through the
DataDirect ODBC drivers.

For further information, see “Installing the WebSphere Message Broker
ODBC Database Extender (IE02)” on page 273 and “Connecting to a
database from Linux and UNIX systems using the WebSphere Message
Broker ODBC Database Extender (IE02)” on page 682

Related concepts:
“What's new in Version 7.0?” on page 7
Learn about the main new functions in IBM WebSphere Message Broker Version
7.0.
Related tasks:

26 WebSphere Message Broker Version 7.0.0.8

“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
Related reference:
“Reviewing technical changes in Version 7.0” on page 205
Some minor changes in behavior are present in WebSphere Message Broker Version
7.0; for example, those changes caused by defects that have been fixed between
versions.

WebSphere Message Broker technical overview
WebSphere Message Broker enables information packaged as messages to flow
between different business applications, ranging from large traditional systems
through to unmanned devices such as sensors on pipelines.

For an animated introduction to the basic concepts and features of WebSphere
Message Broker shown in the diagram, run the Quick Tour.

WebSphere Message Broker processes messages in two ways: message routing and
message transformation.

M
e
s
s
a
g
e

fl
o
w

WebSphere Message Broker

M
e
s
s
a
g
e

s
e
ts

Broker
Application

Application

Application

Application

Message Broker ToolkitMessage Broker Explorer

Repository

Chapter 2. WebSphere Message Broker overview 27

Message routing

Messages can be routed from sender to recipient based on the content of the
message.

The message flows that you design control message routing. A message flow
describes the operations to be performed on the incoming message, and the
sequence in which they are carried out.

Each message flow consists of the following parts:
v A series of steps used to process a message; see “Message flow nodes” on page

1024.
v Connections between the nodes, defining routes through the processing; see

“Message flow connections” on page 1032.

IBM supplies built-in nodes and samples for many common functions. If you
require additional functions, you can write your own user-defined nodes; see
“User-defined extensions overview” on page 2971.

You create message flows in the WebSphere Message Broker Toolkit which is an
integrated development and administration console.

Message transformation

Messages can be transformed before being delivered:
v They can be transformed from one format to another, perhaps to accommodate

the different requirements of the sender and the recipient.
v They can be transformed by modifying, combining, adding, or removing data

fields, perhaps involving the use of information stored in a database.
Information can be mapped between messages and databases. More complex
manipulation of message data can be achieved by writing code, for example in
Extended SQL (ESQL) or Java, within configurable nodes.

Transformations can be made by various nodes in a message flow. Before a
message flow node can operate on an incoming message, it must understand the
structure of that message.
v Some messages contain a definition of their own structure and format. These

messages are known as self-defining messages, which you can handle without
the need for additional information about structure and format; see
“Self-defining elements and messages” on page 1198.

v Other messages do not contain information about their structure and format. To
process them, you must create a model of their structure; see “Message
definition files” on page 1171.

The message definitions that you design are created within a message set which
contains one or more message definitions. Message sets also categorize message
definitions. The category facility, which you can extend using XSLT scripts, is used
for generating Web Services Description Language (WSDL) and documentation; see
“Message categories” on page 1200.

Like message flows, you create message models in the WebSphere Message Broker
Toolkit. They can contain two types of information:
v The logical structure: the abstract arrangement and characteristics of the data,

represented as a tree structure; see “The message model” on page 1160.

28 WebSphere Message Broker Version 7.0.0.8

v One or more physical formats: the way the data is represented and delimited in
the physical bit stream; see “Physical formats in the MRM domain” on page
1211.

Create the broker environment
The work of routing and transforming messages takes place in a broker. Within the
broker, you can define one or more execution groups, which are processes in which
message flows run.

The mode in which your broker is working can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See “Restrictions that apply in each operation mode” on page 3657.

You can install and create one or more brokers on one or more computers that are
running a supported operating system. If you create multiple brokers, you can
configure your environment to provide protection against failure, and you can
separate work across different divisions in a business.

You administer the broker by using product commands, the WebSphere Message
Broker Explorer, the Brokers view within the WebSphere Message Broker Toolkit,
or the Administration API for WebSphere Message Broker (also known as the CMP
API) in your own applications.

Develop applications
After your system administrator has created your brokers, your application
developers can create and modify message flows and message definitions by using
the WebSphere Message Broker Toolkit.

Different perspectives in the WebSphere Message Broker Toolkit are used to
develop message flows, message sets, and other related resources; see “WebSphere
Message Broker Toolkit” on page 31.

You can use a repository to provide access control and version control of your
development resources. A repository also allows multiple developers to work on
the same resources in parallel; see “Development repository” on page 45.

Your applications can communicate with the broker by using a range of protocols
that includes WebSphere MQ, JMS 1.1, HTTP and HTTPS, Web Services (SOAP
and REST), File, Enterprise Information Systems (including SAP and Siebel), and
TCP/IP. For more information about connecting applications, see “Nodes for
connectivity” on page 1028.

Deploy applications to the runtime environment
When you have created and configured your message flows, message sets, and
associated resources by using the Broker Application Development perspective of
the WebSphere Message Broker Toolkit, you can deploy the executable data to one
or more brokers; see “Packaging and deployment overview” on page 3210.

You can deploy data in the following ways:
v From the Brokers view of the WebSphere Message Broker Toolkit
v From the stand-alone administrative interface, the WebSphere Message Broker

Explorer
v From the Test Client environment in the WebSphere Message Broker Toolkit

Chapter 2. WebSphere Message Broker overview 29

v By using a command
v By creating applications that use the Administration API application

programming interface

When you deploy message flows and message sets, they are compiled and
enveloped in a broker archive (BAR) file, and sent to the target broker; see
“Packaging and deployment overview” on page 3210. The BAR file has
configurable system properties. You can override properties such as queue and
database names, without the need to change source files or redevelop the message
flow. This configuration makes it easier to move definitions between systems.

The broker opens the BAR file, removes the contents, makes a record of the
information that it has received, and discards the envelope. It retains the
information in its local storage area within the computer file system, so that it can
restore the application resources and restart messages flows if and when required.

Publish/Subscribe
Publish/subscribe is a style of messaging for which WebSphere Message Broker
provides limited support; in WebSphere Message Broker Version 7.0 this support
was transferred to WebSphere MQ. If you have been connecting publish/subscribe
applications to brokers in previous versions, see “Migrating publish/subscribe
information to WebSphere MQ” on page 141.

Further information
For a basic introduction to WebSphere Message Broker, see the IBM Redbooks
publication WebSphere Message Broker Basics.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“Publish/Subscribe” on page 2215
Publish/subscribe is a style of messaging application in which the providers of
information (publishers) are decoupled from the consumers of that information
(subscribers).

30 WebSphere Message Broker Version 7.0.0.8

http://www.redbooks.ibm.com/abstracts/sg247137.html

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
Related reference:
“General industry standards supported by WebSphere Message Broker” on page
3607
WebSphere Message Broker supports general industry standards that are associated
with message processing.

WebSphere Message Broker Toolkit
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.

Application developers work in separate instances of the WebSphere Message
Broker Toolkit to develop resources associated with message flows. The WebSphere
Message Broker Toolkit connects to one or more brokers to which the message
flows are deployed.

You can install the WebSphere Message Broker Toolkit only on Windows and Linux
on x86. You can only view and interact with brokers that you have created in
WebSphere Message Broker Version 7.0.

The WebSphere Message Broker Toolkit
When you start the WebSphere Message Broker Toolkit, a single window is
displayed. This window is the WebSphere Message Broker Toolkit, which contains
one or more perspectives.

A perspective is a collection of views and editors that you use to complete a
specific task, or work with specific types of resource. The two significant
perspectives in the WebSphere Message Broker Toolkit are the Broker Application
Development perspective for application development, and the Debug perspective
for debugging message flows. The first time that you start the WebSphere Message
Broker Toolkit, the Broker Application Development perspective is displayed.

An additional stand-alone component, the WebSphere Message Broker Explorer, is
supplied for advanced administrative users, and enables additional administration
tasks that you cannot perform in the WebSphere Message Broker Toolkit.

The following figure shows the Broker Application Development perspective with
a message flow open in the Message Flow editor on Windows.

Chapter 2. WebSphere Message Broker overview 31

Accessing context-sensitive help
The Help view provides context-sensitive help throughout the WebSphere Message
Broker Toolkit. You can display the Help view for most aspects of the user
interface (for example, on the Broker Development view, the Message Flow editor,
or a properties page) by bringing focus to the object and pressing F1 (on Windows)
or SHIFT+F1 (on Linux). The Related Topics page shows description and help
topics that are related to the selected object. The About section shows context help
that is specific to your current context, and the Dynamic Help section shows some
search results that might be related.

The following figure shows the Related Topics page of the Help view that is
displayed when you press F1 in the Broker Development view.

32 WebSphere Message Broker Version 7.0.0.8

Use the other pages in the Help view to view and search the contents of the
information center. The All Topics page shows the table of contents of all the books
in the information center. The Index provides an index of keywords of all the
books in the information center. You can enter a keyword in the text field on the
Index page to highlight the best match in the list of keywords. You can use the
Search page to locate topics, samples, and remote documents using keywords in a
search query. You can bookmark topics and other documents of interest, and view
them in the Bookmarks page.

For a basic introduction to using the WebSphere Message Broker Toolkit, see the
IBM Redbooks publication WebSphere Message Broker Basics.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“WebSphere Message Broker Toolkit perspectives” on page 34
A perspective is a group of views and editors that shows various aspects of the
resources in the WebSphere Message Broker Toolkit.
“Editors” on page 35
An editor is a component of the WebSphere Message Broker Toolkit. Editors are
typically used to edit or browse resources, which are the files, folders, and projects
that exist in the workbench.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
“Development repository” on page 45
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

Chapter 2. WebSphere Message Broker overview 33

http://www.redbooks.ibm.com/abstracts/sg247137.html

Related information:
Workbench User Guide - Perspectives
Workbench User Guide - Views
Workbench User Guide - Resources

WebSphere Message Broker Toolkit perspectives
A perspective is a group of views and editors that shows various aspects of the
resources in the WebSphere Message Broker Toolkit.

You can switch perspectives, depending on the task at hand, and customize the
layout of views and editors. Switch between perspectives by clicking Window >
Open Perspective > Other, then clicking the perspective to which you want to
switch.

The following figure shows the Broker Application Development perspective in the
WebSphere Message Broker Toolkit.

The WebSphere Message Broker Toolkit offers the following perspectives:

Broker Application Development perspective

The Broker Application Development perspective is the default perspective
that is displayed the first time that you start the WebSphere Message
Broker Toolkit.

Application developers work in this perspective to develop and modify
message sets, message flows, and other associated resources. You can also
import relational database schemas for ESQL content assist and validation,
and interact with databases by using the Data Project Explorer view and
Data Source Explorer view.

34 WebSphere Message Broker Version 7.0.0.8

The preceding figure shows the Broker Application Development
perspective with a message flow open in the Message Flow editor.

You can use the Brokers view in the Broker Application Development
perspective to create new brokers and deploy resources to connected
brokers. Some of the administrative tasks that are available through the
WebSphere Message Broker Explorer, which is supplied as a separate
component that you can install on computers on which you intend to
perform only administrative tasks, are also supported by the Brokers view.

Debug perspective

The Debug perspective is where application developers test and debug
message flows.

Plug-in Development perspective

The Plug-in Development perspective is where application developers
develop plug-ins for user-defined extensions.

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Editors”
An editor is a component of the WebSphere Message Broker Toolkit. Editors are
typically used to edit or browse resources, which are the files, folders, and projects
that exist in the workbench.
Related reference:
“Editors in the WebSphere Message Broker Toolkit” on page 6793
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Perspectives in the WebSphere Message Broker Toolkit” on page 6783
Related information:
Workbench User Guide - Working with Perspectives

Editors
An editor is a component of the WebSphere Message Broker Toolkit. Editors are
typically used to edit or browse resources, which are the files, folders, and projects
that exist in the workbench.

When you open a file for editing, for example by double-clicking it in the Broker
Development view, the default editor associated with that file opens in the editor
area of the current perspective. By default, the editor area is in the upper-right
corner of the WebSphere Message Broker Toolkit window.

Open resources with the default editor because other editors might not validate the
changes correctly.

The following diagram shows the TextMessenger.msgflow file from the Pager
sample opened in the Message Flow editor, which is part of the Broker Application
Development perspective.

Chapter 2. WebSphere Message Broker overview 35

You can open any number of editors at the same time, but only one editor is active
at a time. The main menu bar and main toolbar display the operations that apply
to the active editor. By default, editors are stacked in the editor area, but you can
tile them to view source files simultaneously. Tabs in the editor area indicate the
names of the resources that are open for editing. An asterisk (*) indicates that an
editor has unsaved changes. If you attempt to close the editor or exit the
WebSphere Message Broker Toolkit with unsaved changes, you are prompted to
save the changes.

To find out about the Pager sample, click the following link:
v Pager

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related reference:
“Editors in the WebSphere Message Broker Toolkit” on page 6793

Workbench User Guide - Tiling editors

Resources
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored

36 WebSphere Message Broker Version 7.0.0.8

with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.

The default locations for the workspace are in the following places:
v On Linux on x86, the default workspace directory is created at

/home/user_ID/IBM/wmbt70/workspace.
v On Windows XP and Windows Server 2003, the default workspace directory is

created at C:\Documents and Settings\user_ID\IBM\wmbt70\workspace.
v On Windows Vista and Windows Server 2008, the default workspace directory is

created at C:\Users\user_ID\IBM\wmbt70\workspace.
where user_ID is the user name with which you are logged on.

You can create projects in other directories in addition to the workspace directory.
You can maintain multiple workspaces by specifying a new location at the prompt
when you start your WebSphere Message Broker Toolkit session.

Typically, you edit and view WebSphere Message Broker Toolkit resources in the
Broker Development view in the Broker Application Development perspective.

The following figure shows a message flow project and a message set project in the
Broker Development view of the Broker Application Development perspective.

Chapter 2. WebSphere Message Broker overview 37

Resource editors do not automatically reflect the changes that you make in one
window in additional windows that you have opened to view the same resource.
Close and reopen additional windows each time that you update a resource in an
editor session.

Types of resource: You can create and work with three basic types of resource:

Source files
Source files are included in your workspace and are accessible from the

38 WebSphere Message Broker Version 7.0.0.8

Broker Application Development perspective. When you create source files,
they are grouped by file type in folders, in the same way as the directories
of a file system. You can also group folders or files in projects. Projects are
used for building, version control, sharing, and resource organization.

The following source files can exist:
v .msgflow files contain the message nodes and connections that you

create to form a message flow. These files are displayed in the Broker
Application Development perspective in a folder called Flows. The
Flows folder is always created and displayed.

v .esql files are optional and contain ESQL code that performs specific
processing steps within a message node. You can code ESQL to tailor
message processing in Compute, Database, and Filter nodes. If you have
created ESQL files, they are displayed in the Broker Application
Development perspective in a folder called ESQLs.

v .msgmap files are optional and map the relationships between different
data sources (typically database tables and messages) that you have
created by using the graphical mapping tools. You can create maps to
tailor message processing in DataDelete, DataInsert, DataUpdate, and
Warehouse nodes. If you have created mapping files, they are displayed
in the Broker Application Development perspective in a folder called
Maps.

v .category files are optional and contain a group of messages, either
related to WSDL operations, or to a user-specific purpose or message
flow. If you have created category files, they are displayed in the Broker
Application Development perspective in a folder called Message
Categories.

v .mxsd files are optional and contain definitions of the messages you have
modeled. If you have created message models, they are displayed in the
Broker Application Development perspective in a folder called Message
Definitions.

v .wsdl files are optional and contain WSDL definitions which you have
imported into the workspace to use as a source for message definitions.
If you have created WSDL files, they are displayed in the Broker
Application Development perspective in a folder called Deployable
WSDL, and are grouped by namespace.

v .insca and .outsca files are optional Broker SCA definition files. A
.insca file contains an SCA import component and is used to configure
SCAInput and SCAReply nodes. A .outsca file contains an SCA export
component and is used to configure SCAAsyncRequest,
SCAAsyncResponse, and SCARequest nodes. They are displayed in the
Broker Application Development perspective in a folder called Broker
SCA Definitions, in the message set project.

You can create resources from a pattern more than once to give unique
pattern instances with different configurations, see “Patterns” on page
1310. The resources for each pattern instance are contained within a single
pattern instance project. The pattern instance project contains links to all
projects containing the resources that are created as a result of generating a
pattern instance from your configuration, such as message flows, Java
classes for JavaCompute nodes, ESQL modules, message maps, test client,
XML files, and style sheet files.

Helper files
Helper files maintain information that supports other activities:

Chapter 2. WebSphere Message Broker overview 39

v .broker files contain definitions of broker connections.
v .bar files contain deployable and other files that you have chosen to

send to a broker.
v .mbtest files contain the steps that define a test that you use with the

Test Client to debug your applications.

Deployable files
Deployable files are included in a broker archive (BAR) file and deployed
to the broker where they are involved in some way in the processing of
messages. A BAR file might contain the following files:
v A .cmf file for each message flow. This file is a compiled version of the

message flow. You can have any number of these files within your BAR
file.

v A .dictionary file for each message set dictionary. You can have any
number of these files within your BAR file.

v One or more XSD compressed files (.xsdzip), if XML schema and WSDL
are defined within a message set.

v A broker.xml file. This file is called the broker deployment descriptor. You
can have only one of these files within your BAR file. This file, in XML
format, is contained in the META-INF folder of the compressed file and
can be modified by using a text editor or shell script.

v One or more XML files (.xml), style sheets (.xsl), and XSLT files (.xlst),
if required by nodes in the message flows you have added to this BAR
file. The XSLTransform node is one that might require these files.

v One or more JAR files, if required by JavaCompute nodes in the message
flows you have added to this BAR file.

v One or more inbound or outbound adapter files (.inadapter or
.outadapter), if required by WebSphere Adapter nodes (for example, the
SiebelInput node) in the message flows you have added to this BAR file.

v One or more PHP script files (.php), if required by PHPCompute nodes
in the message flows you have added to this BAR file.

v Other files that you might want to associate with this BAR file. For
example, you might want to include Java source files, .msgflow files, or
.wsdl files for future reference. BAR files can contain all files types.

References between files:
Source files can refer to content in other files. For example, a message flow can
require an ESQL file. The files on which the message flow depends must be
present when that message flow is compiled; see “By name linking” on page 43.

If you are considering changing a resource, you can see a list of other resources
that refer to it. To search for these resources, you must first enable indexing by
following the instructions in “Enabling and disabling indexing” on page 1454.
Then you can right-click a resource in the Broker Development view and click
Show all references. The search results view shows, in a tree structure, all
references of your resource, including its location, such as a node property or the
line number in an ESQL file. You can double-click a resource to open it in an
appropriate editor, or you can right-click a resource and click Open with to choose
the editor in which to open it. Note that dependent files can be found in another
project. See “Project references” on page 44.

To see which files are dependent on which other files, see “Showing resource
references” on page 1447.

40 WebSphere Message Broker Version 7.0.0.8

If you are considering renaming or moving a resource and you know the new
name or location, you can run an impact analysis. For more information, see
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150.

:

Related concepts:
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
“Working sets” on page 42
A working set is a logical collection of projects, which you can use to limit the
number of resources that are displayed in the Broker Development view. By
creating and using a working set, you can reduce the visual complexity of what is
displayed in the Broker Development view, making it easier to manage and work
with your projects.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“By name linking” on page 43
You identify objects using a combination of a namespace and a name, referred to as
a fully qualified name. The use of fully qualified names, called by name linking,
makes it easy to identify and locate objects, and to correct broken references.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Showing resource references” on page 1447
If you are considering changing a resource, you can see a list of other resources
that would be affected by that change.
“Working with patterns in the Broker Development view” on page 1314
Using the Broker Development view to create patterns.
“Choosing a pattern” on page 1313
Select a pattern in the Patterns Explorer view to create resources to solve a specific
business problem.
“Creating a working set” on page 575
Create a working set to limit the number of resources that are displayed in the
Broker Development view.

Chapter 2. WebSphere Message Broker overview 41

Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Rules for naming workspace objects” on page 6827
Related information:
Workbench User Guide - Resources
Workbench User Guide - Working with projects, folders, and resources

Working sets:

A working set is a logical collection of projects, which you can use to limit the
number of resources that are displayed in the Broker Development view. By
creating and using a working set, you can reduce the visual complexity of what is
displayed in the Broker Development view, making it easier to manage and work
with your projects.

The active working set is the current working set of projects that you choose to
display. If you do not create any working sets, the default active working set
contains all your resources and are contained in the <all resources> section of the
Broker Development view, which displays all of your projects.

The Broker Development view has three sections: the working set selection list,
Pattern Instances (initially collapsed), and Projects (initially expanded). Pattern
instance projects are shown only in the Pattern Instances section, and all other
project types are shown in the Projects section. If no projects exist, the Projects
section contains a list of Quick Start Wizard links.

You can create a new working set in the Broker Development view in one of the
following three ways:
v You can create a new working set and add existing projects to it.
v You can use a Quick Start wizard to set up the basic resources that are required

to develop a message flow. The wizard provides the option of creating a new
working set for the resources.

v You can create a pattern instance project, and a working set of the same name is
created automatically.

When you use the Broker Application Development perspective to create a file or
new project, the new file or project is automatically added to the current active
working set. If you have not identified an active working set, the new file or
project is displayed in the <all resources> section of the Broker Development view,
but is not added to a working set.
Related concepts:
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to

42 WebSphere Message Broker Version 7.0.0.8

create resources that are used to solve a specific business problem.
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“By name linking”
You identify objects using a combination of a namespace and a name, referred to as
a fully qualified name. The use of fully qualified names, called by name linking,
makes it easy to identify and locate objects, and to correct broken references.
Related tasks:
“Working with patterns in the Broker Development view” on page 1314
Using the Broker Development view to create patterns.
“Creating a working set” on page 575
Create a working set to limit the number of resources that are displayed in the
Broker Development view.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Rules for naming workspace objects” on page 6827
Related information:
Workbench User Guide - Resources
Workbench User Guide - Working with projects, folders, and resources

By name linking:

You identify objects using a combination of a namespace and a name, referred to as
a fully qualified name. The use of fully qualified names, called by name linking,
makes it easy to identify and locate objects, and to correct broken references.

For example, if you rename an object, all references to that object are broken. If
you substitute another object with the same name, all the broken references are
corrected.

This concept is important when you are working in a team environment. With by
name linking, you can share files in a repository and concurrently modify, add,
and delete objects in your message flow application. When you integrate the
various parts of the message flow application, you can detect and resolve broken
references to objects that have been moved, renamed, or deleted.
Related concepts:
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.

Chapter 2. WebSphere Message Broker overview 43

“Project references”
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related reference:
“Rules for naming workspace objects” on page 6827

Project references:

When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.

The following scenarios in the WebSphere Message Broker Toolkit give examples of
project references:
v When configuring a Mapping node in a message flow, you must select source

and target messages for the map. The messages are contained within one or
more message sets. In order to select messages, the message flow project must
have a reference to the message sets. You must also have a reference to a data
design project if you want to map to or from a database.

v When configuring a node, such as an MQInput node, you can define the
message template for the message type that the node processes. If you have
chosen MRM, SOAP, XMLNSC, DataObject, or IDOC as the Message domain
property of the node, you must also specify the name of the message sets that
contains the message model. To pre-populate the list of message sets in the
Message set property, the message flow project must have a reference to the
message sets.

v You might want to create a library of reusable ESQL subroutines in a message
flow project, or create a library of message flows to reuse in other flows. A
message flow that you want to use these subroutines or message flows in, must
have a reference to the message flow project from its parent message flow
project.

v You can also use project references to enable Content Assist in the ESQL editor.
(“Content Assist” is context-sensitive help that displays valid ways in which a
code statement can be completed.) If you set up a project reference from a
message flow project containing ESQL code to a message sets, the ESQL editor is
able to display a list of valid message references.

v If you use the Patterns Explorer to generate a pattern instance from a pattern
specification, the generated pattern instance project contains references to all the
other projects generated from the pattern. See “Using patterns” on page 1312.

To create or remove a project reference manually, right-click the project name in the
Broker Development view and select the Properties menu item. Select Project
References from the Properties window, and a list of all regular projects in the
workspace is displayed from which you can select or clear project references.
Message flow, message sets and pattern instance projects have an additional menu
item Add or Remove Project References that launches the Add or Remove Project
References window where you can select or clear project references.

44 WebSphere Message Broker Version 7.0.0.8

If you later close or delete a referenced project, or delete an object within it, it is no
longer available to the referencing project and an error is generated. You can
correct the error by opening the closed project or adding the missing object, with
the correct name, and saving.
Related concepts:
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“By name linking” on page 43
You identify objects using a combination of a namespace and a name, referred to as
a fully qualified name. The use of fully qualified names, called by name linking,
makes it easy to identify and locate objects, and to correct broken references.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Rules for naming workspace objects” on page 6827

Development repository
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

The WebSphere Message Broker Toolkit is based on the Eclipse platform, therefore
you can access Eclipse-supported repositories directly from the WebSphere
Message Broker Toolkit. You can use all repositories that are supported by Eclipse
with WebSphere Message Broker.

You can take the version numbers of resources from the repository, and associate
that version number with the message flows and message sets when they are
deployed. This association allows you to display which version of the flow is
deployed in the WebSphere Message Broker Toolkit. An alternative method of
assigning a version number to a message flow is to specify one in the WebSphere
Message Broker Toolkit when the message flow is created; see “Message flow
version and keywords” on page 1445.
v For information about how to set up the WebSphere Message Broker Toolkit to

run with CVS, see “Configuring CVS to run with the WebSphere Message Broker
Toolkit” on page 573.

v For information about how to integrate the Rational Team Concert client, see
“Integrating the Rational Team Concert client with the WebSphere Message
Broker Toolkit” on page 576.

v For information on how to enable Rational ClearCase®, see “Configuring the
WebSphere Message Broker Toolkit to run Rational ClearCase” on page 574.

v For information about other repositories, read about other team repositories that
are supported by Eclipse.

Related concepts:
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.

Chapter 2. WebSphere Message Broker overview 45

http://phoenix.eclipse.org/community/team.php

Related tasks:
“Configuring CVS to run with the WebSphere Message Broker Toolkit” on page
573
Install CVS as a normal program by following the usual prompts. Not all versions
of CVSNT are supported by Eclipse.
“Configuring the WebSphere Message Broker Toolkit to run Rational ClearCase” on
page 574
To use Rational ClearCase with the WebSphere Message Broker Toolkit, enable the
capability in the Preferences page.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.

The broker environment
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.

Create more than one broker, on one or more computers, to support your
applications; creating more than one broker can provide load balancing, or a
division of responsibilities. For example, you might have one broker that handles
all your financial applications, and another that handles your order processing and
fulfillment.

Application programs connect to and send messages to the broker, and receive
messages from the broker. Code your applications to use one of the supported
protocols for interacting with the broker; for example, WebSphere MQ queues and
connections, Web services, or WebSphere Adapters. The broker routes each
message by using the rules that you have defined in message flows and message
sets, and transforms the data into the structure required by the receiving
application.

You can install the broker component on one or more of the supported platforms,
which are listed in “Operating system requirements” on page 3590. You can create
a broker only on the computer on which you have installed the broker component.
You can use the WebSphere Message Broker Explorer, the WebSphere Message
Broker Toolkit, or the command line to create local brokers.

When you create a broker, it operates in one of a number of modes: enterprise,
adapter, starter, or entry. You must run the broker in the mode that matches the
license that you have purchased; see “Operation modes” on page 48.

Administer the broker by using the WebSphere Message Broker Explorer, the
Broker view in the WebSphere Message Broker Toolkit, or the product commands.
Alternatively, you can write your own programs to use the Administration API for
WebSphere Message Broker (also known as the CMP API).

Manage the application resources of the broker, which include message flows and
message sets, by using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer; these two applications connect to the broker by using a
WebSphere MQ server connection, which is defined to the broker queue manager
when you create the broker.

The following figure shows the relationship between the resources that exist at run
time, and how they interact with the WebSphere Message Broker Explorer and

46 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker Toolkit.

Resources associated with a broker

When you create a broker, the following resources are also defined and created:
v A WebSphere MQ queue manager, if one does not exist.
v A set of fixed-name queues that are defined to the WebSphere MQ queue

manager.
v A default WebSphere MQ SVRCONN channel with a fixed name

SYSTEM.BKR.CONFIG, which is used by the WebSphere Message Broker
Toolkit, the WebSphere Message Broker Explorer, and applications that use the
Administration API (CMP API).

Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the

Broker

Message Broker
Explorer

Message Broker
Toolkit

CMP
applications

Command line
utilities

Execution groups

message
flows

Chapter 2. WebSphere Message Broker overview 47

Eclipse platform for administering your brokers.
Related tasks:
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Related reference:
“System management interfaces” on page 52
The brokers provide a service for independent system management agents.

Operation modes
The operation mode that you use for your broker is determined by the license that
you purchase.

The following modes are supported:
v “Trial Edition mode” on page 49. All features are enabled, but you can use the

product for only 90 days after installation.
v “Entry Edition mode” on page 49. Entry node features are enabled and the types

of node that you can use, and the number of execution groups that you can
create, are limited.

v “Starter Edition mode” on page 49. All features are enabled for use with a single
execution group. The number of message flows that you can deploy are
unlimited.

v “Enterprise mode” on page 49. All features are enabled and no restrictions or
limits are imposed. This mode is the default mode, unless you have the Trial
Edition.

v “Remote Adapter Deployment mode” on page 50. Only adapter-related features
are enabled, and the types of node that you can use, and the number of
execution groups that you can create, are limited.

You must ensure that your brokers are running in the operation mode for which
you have purchased a license. You can set the operation mode when you create a
broker by using the mqsicreatebroker command.

If you have purchased a license for the full package, the Starter Edition, or the
Remote Adapter Deployment mode, the broker is automatically created in
enterprise mode unless you specify the correct mode for your license.

Change the mode of your broker to conform to your license if necessary; see
“Changing the operation mode of your broker” on page 655. You can also report
the current mode of your broker; see “Checking the operation mode of your
broker” on page 657.

The WebSphere Message Broker Toolkit remains the same in all modes. All the
capabilities of the WebSphere Message Broker Toolkit are available in all modes. If
you try to deploy too many message flows or execution groups for the mode, or
try to use a node that is not valid in the mode, the operation is rejected, and an
error message is displayed indicating the reason for the failure; see “Restrictions

48 WebSphere Message Broker Version 7.0.0.8

that apply in each operation mode” on page 3657. Node restrictions for a given
mode also apply to the use of message flows generated by WebSphere Message
Broker patterns.

Fix packs are identical for all modes, and can be applied without affecting the
validity of the mode. The expiry of a Trial Edition is not affected by applying
service; in Trial Edition, by default new brokers continue to be in Trial Edition
mode.

Trial Edition mode

In trial mode, the broker operates with all features enabled. You can use all
available function, and are not limited in the number of resources that you create
and maintain. All capability is available for 90 days after installation.

You cannot revert to Trial Edition from any other mode.

You can download Trial Edition at no charge, from the following website:
WebSphere Message Broker Trial package.

Entry Edition mode

In entry mode, the broker operates with a limited set of nodes available for
deployed flows. You are also limited to one execution group. For a list of nodes
that can be deployed to a broker running in Entry Edition mode, see “Restrictions
that apply in each operation mode” on page 3657. If you attempt to exceed the
limits of this mode, the deployment is rejected. Use this edition for simple use
cases only.

Because the functions that are enabled and the number of execution groups that
you can create are limited, not all samples work in Entry Edition mode. To run
samples, see “Development and unit test” on page 50.

Starter Edition mode

In starter mode, the broker operates with all features enabled. Use this edition if
you expect to use all or most of the features that are available, but intend to
configure a limited environment because of low capacity requirements.

You can use all the available functions, but are limited in the number of resources
that you can create and maintain. You are limited to creating one execution group;
for more information, see “Restrictions that apply in each operation mode” on
page 3657. If you attempt to exceed the limits of this mode, the deployment is
rejected.

You cannot use all the samples when your broker is in starter mode, because of
the preceding restrictions. If you want to run samples, see “Development and unit
test” on page 50.

Enterprise mode

In enterprise mode, the broker operates with all features enabled, and no
operational limits on the creation of execution groups or on the number of flows
deployed to an individual execution group are enforced. If you want to set up a
full broker environment that uses most or all the features available, your brokers
must operate in this mode, and you therefore require the full license. If you do not

Chapter 2. WebSphere Message Broker overview 49

http://www.ibm.com/developerworks/downloads/ws/wmb/

specify another mode, your brokers have the mode set to the default value
enterprise.

Remote Adapter Deployment mode

In adapter mode, the broker operates with a limited set of nodes available for
deployed flows. Use this edition if you expect your typical use of the broker to be
integration with Enterprise Information Systems (EIS). This edition supports the
subset of development resources that provide EIS interaction. For a list of nodes
that can be deployed to a broker running in Remote Adapter Deployment mode,
see “Restrictions that apply in each operation mode” on page 3657.

You can create up to two execution groups, with no limit on the number of
deployed message flows in each of these execution groups; see “Restrictions that
apply in each operation mode” on page 3657. If you attempt to exceed the limits of
this mode, the deployment is rejected.

You cannot use all the patterns and samples when your broker is in adapter mode,
because of the preceding restrictions. If you want to run samples, see
“Development and unit test.”

Development and unit test

Your license also covers use of the product for development and unit test
purposes, but check the license to ensure that you conform to any restrictions for
development and unit test. All developers in your organization who are working
on resources and applications for the WebSphere Message Broker environment can
install all components on their computer. They can create and configure a broker
environment without any functional or resource restrictions, but they can use only
a single broker per WebSphere Message Broker Toolkit. Installation of the
WebSphere Message Broker Toolkit limits this use to Windows and Linux on x86
computers. Developers can create and use development and unit test brokers in
enterprise mode.

You can also install the supplied WebSphere MQ and DB2 products on the
computers on which your developers perform their development and unit test,
regardless of the license agreement that you have purchased.

If you want to run samples to explore and understand the features of the product,
install them on your development and unit test computers.

Integration with Tivoli License Manager

If you use IBM Tivoli License Manager to control and manage your licensed
software products, you must ensure that you choose the correct license for the
WebSphere Message Broker edition that you have purchased. For more
information, see “Installing Tivoli License Manager” on page 301.
Related tasks:
“Checking the operation mode of your broker” on page 657
Use the mqsimode command to find out the operation mode of your broker.
“Changing the operation mode of your broker” on page 655
Change the operation mode in which your broker is working by using the
mqsimode command.
Related reference:

50 WebSphere Message Broker Version 7.0.0.8

“Restrictions that apply in each operation mode” on page 3657
The operation mode in which your broker is working defines how many execution
groups you can use, and which nodes are available.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsimode command” on page 3899
Use the mqsimode command to configure and retrieve operation mode information.

Controlling the functional level of WebSphere Message Broker
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.

About this task

The default functional level of the broker represents the level for WebSphere
Message Broker Version 7.0.0.0. At this level, some functionality added by later fix
packs is not supported by the broker.

Nodes and parsers that are added in later fix packs are available in the WebSphere
Message Broker Toolkit, and you can include these nodes and parsers in a message
flow. You can deploy the message flow to a broker only if you have set the
functional level of that broker to the value that represents the fix pack in which the
nodes and parsers were first delivered.

You can control the functional level of each broker, therefore you can try out new
nodes on test brokers without affecting the operation of your production brokers.
When you are satisfied that the nodes provide the functions that you require, and
work as you expect, you can set the functional level of other brokers in your
domain when appropriate.

To change the function level of a broker, use the mqsichangebroker command and
set the -f parameter to the appropriate value. For more information about the use
of the mqsichangebroker command, see “mqsichangebroker command” on page
3723.

You can check the functional level of a broker by using the mqsireportbroker
command (see “mqsireportbroker command” on page 3919) or through the
WebSphere Message Broker Explorer.

If you enable a certain functional level, you also enable all the functions added at
lower levels. For example, if you enable new fix pack 3 functions, you
automatically enable new functions for fix packs 1 and 2.

You can enable all new functionality by setting the function level to all.

The list of functions that are enabled for each function level is described in the
following sections.

Version 7.0.0.1

You can install Version 7.0.0.1 as a full, generally available version, or as a fix pack.
Version 7.0.0.1 has the functions enabled for V7.0.0.1 regardless of the installation
route chosen.

Chapter 2. WebSphere Message Broker overview 51

Version 7.0.0.2

v JDEdwardsInput node (see “JDEdwardsInput node” on page 4519)
v JDEdwardsRequest node (see “JDEdwardsRequest node” on page 4524)
v EmailInput node (see “EmailInput node” on page 4394)
v FileRead node (see “FileRead node” on page 4444)
v JSON parser (see “JSON parser and domain” on page 1128)
v Execution group profiles (see “Execution group-specific command environment:

Windows systems” on page 309 and “Execution group-specific command
environment: Linux and UNIX systems” on page 312)

Related concepts:
“New function added in Version 7.0 fix packs” on page 15
Some fix packs and other maintenance packs deliver new functions.
Related tasks:
“Checking the broker operation mode and function level” on page 298
You must ensure that your production brokers conform to the terms of your
license. You can also change the function level to enable the use of nodes that are
supplied in the latest fix pack.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsireportbroker command” on page 3919
Use the mqsireportbroker command to display broker registry entries.

System management interfaces
The brokers provide a service for independent system management agents.

This service enables a central management facility to access information about a
network that includes one or more brokers. Therefore, you can extend your
existing system management agents to include WebSphere Message Broker
resources.

Brokers publish event messages, using fixed topics, in response to configuration
changes, state changes, and user actions such as subscription registrations. Brokers
also use architected messages to publish events related to their operational status,
and changes in that status. These messages are published using the reserved topic
root $SYS in code page 1208.

An example of a fixed topic is:
$SYS/Broker/<brokerName>/Status/ExecutionGroup/<executionGroupName>

The topic structure is fixed in this case, but obviously <brokerName> and
<executionGroupName> are replaced with the appropriate values.

An example of the actual message data for this publication is:
<Broker uuid="12345678-1234-1234-1234-123456789012">

<ExecutionGroup uuid="12345678-1234-1234-1234-123456789012">
<Stop>

<AllMessageFlows/>
</Stop>

</ExecutionGroup>
</Broker>

52 WebSphere Message Broker Version 7.0.0.8

A system management agent can subscribe to these topics, or to a subset of these
topics, to receive the detailed information about activity and state changes in the
WebSphere Message Broker components.

The event messages have a fixed structure, defined in XML (Extensible Markup
Language). The format of these messages, constructed in XML, is detailed in “The
XML message body” on page 4262. The messages cover configuration changes,
state changes, error notifications, and detailed subscription and topic information
(for example, a subscription registration).

You can develop or purchase system management adapters or customized
administrative applications. These applications subscribe to the system
management topics generated by WebSphere Message Broker to receive
information about the activity of its resources.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Installing Tivoli License Manager” on page 301
IBM Tivoli License Manager (ITLM) enables you to monitor the use of IBM (and
other) software products. WebSphere Message Broker includes support for ITLM
Version 2.1.
Related reference:
“WebSphere Message Broker event reports” on page 6883
Event messages are published by a broker in response to certain conditions that
occur while the broker is active.
“WebSphere Message Broker event reports: general architecture” on page 6884
Brokers publish messages on reserved topics after significant events within the
broker. By subscribing to these topics, a client can be informed when these events
occur.

Execution groups
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.

Each execution group is started as a separate operating system process, providing
an isolated runtime environment for a set of deployed message flows. Within an
execution group, the assigned message flows run in different thread pools. You can
specify the size of the thread pool (that is, the number of threads) that are assigned
for each message flow by specifying the number of additional instances of each
message flow.

The mode that your broker is working in can affect the number of execution
groups that you can use; see “Restrictions that apply in each operation mode” on
page 3657.

A single default execution group is set up ready for use when you create a
reference to a broker in the WebSphere Message Broker Toolkit. By setting up
additional execution groups, you can isolate message flows that handle sensitive
data such as payroll records, or security information, or unannounced product
information, from other non-sensitive message flows.

Chapter 2. WebSphere Message Broker overview 53

If you create additional execution groups, you must give each group a name that is
unique within the broker, and assign and deploy one or more message flows to
each one.

You can create and deploy execution groups either in the WebSphere Message
Broker Toolkit, or using commands.

An execution group process is also known as a DataFlowEngine (DFE); this term is
typically used in problem determination scenarios (trace contents, diagnostic
messages, and so on). A DFE is created as an operating system process, and has a
one-to-one relationship with the named execution group. If more than one message
flow runs within an execution group, multiple threads are created within the DFE
process.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Using WebSphere MQ trusted applications” on page 613
Configure a broker to run as a WebSphere MQ trusted application.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Support for 32-bit and 64-bit platforms” on page 3589
WebSphere Message Broker operates in 32-bit mode or 64-bit mode, on supported
operating systems.

The Administration API for WebSphere Message Broker
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.

The Administration API for WebSphere Message Broker is also known as
the Configuration Manager Proxy, or CMP API

The Configuration Manager has been removed from Version 7, and the full
name of the API has changed. However, the terms CMP application and

54 WebSphere Message Broker Version 7.0.0.8

CMP API have been retained, and are used in this information center to
refer to the Administration API, for continuity and consistency with the
JAR file ConfigManagerProxy.jar that supplies all the classes.

The Administration API for WebSphere Message Broker (CMP API) consists solely
of a Java implementation, and is referred to as the Message Broker Java API. Your
applications have complete access to the broker functions and resources through
the set of Java classes that constitute the CMP. Use the CMP API to interact with
the broker to perform the following tasks:
v Deploy BAR files
v Change the broker configuration properties
v Create, modify, and delete execution groups
v Inquire and set the status of the broker and its associated resources, and to be

informed if status changes
– Execution groups
– Deployed message flows
– Deployed files used by the message flows (for example, JAR files)

v View the Administration log

Interaction between CMP applications and the broker: The Java classes sit
logically between the user application and the broker, inside the Java Virtual
Machine (JVM) of the user application. The API requires the WebSphere MQ
Classes for Java for connectivity, as shown in the following diagram.

The CMP application can be on the same physical computer as the broker,
connected by a JNI (Java Native Interface) connection to the queue manager that
uses the WebSphere MQ Java Bindings transport. If appropriate, you can distribute
your applications over an Internet Protocol (TCP/IP) network, and connected to
the broker by using a WebSphere MQ SVRCONN channel through the WebSphere
MQ Java Client transport.

You can use the CMP API to communicate with more than one broker from within
the same application, as shown in the following diagram.

JVM

Broker

User
Application

CMP
MQ

Classes
for Java

Chapter 2. WebSphere Message Broker overview 55

Migrating from earlier versions of WebSphere Message Broker: If you are
migrating to Version 7.0 from Version 6.1, the CMP is largely compatible, but you
must take the following actions before you run your applications in a Version 7.0
environment:
v Check the source of your existing applications against the CMP Javadoc

information that is provided with Version 7.0. Although a significant number of
the classes and methods have been deprecated, they are still tolerated by the
CMP, and appropriate action is taken if possible. For example, if your code
connects to a Configuration Manager, the same connection properties are used
by the CMP to connect to a broker.
If appropriate action is not available, the behavior is undefined. Rework your
applications to remove such classes and methods.

v Recompile your applications against the Version 7.0 libraries, even if you have
not changed the source, to ensure that your code can take advantage of
improvements in the updated classes.

You can work only with Version 7.0 brokers from your CMP API applications;
earlier versions are not compatible and are not supported.

For further information about new and deprecated classes and methods, see
“Administration API” on page 3672.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various

SVRCONN

SVRCONN

SVRCONN

JNI

Broker

Broker

Broker

Broker

JVM

User
Application

CMP
MQ

Classes
for Java

56 WebSphere Message Broker Version 7.0.0.8

tasks.
Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
Related information:
Administration API for WebSphere Message Broker (CMP API)

WebSphere Message Broker Explorer
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.

The WebSphere Message Broker Explorer is an extension to the WebSphere MQ
Explorer.

You can install the WebSphere Message Broker Explorer only on Windows and
Linux on x86. You can view and interact only with brokers that you have created
in WebSphere Message Broker Version 7 or later.

The WebSphere Message Broker Explorer
To use the WebSphere Message Broker Explorer, you must start the
WebSphere MQ Explorer. The WebSphere Message Broker Explorer adds the
Brokers and Broker Archive Files folders to the MQ Explorer - Navigator view:
v Use the Brokers folder to create, view, and modify brokers
v Use the Broker Archive Files folder to import, view, and modify broker archive

files before deploying them to your brokers

If you cannot see these two folders in your MQ Explorer session, you have not
installed the broker-specific plug-ins that are provided by WebSphere Message
Broker Explorer. Close your MQ Explorer session, follow the instructions to install
the WebSphere Message Broker Explorer, then start the MQ Explorer again.

The WebSphere Message Broker Explorer provides several QuickViews that you
can use to view the properties of brokers and their resources. These QuickViews
are automatically displayed when you click the resource in the Brokers folder in
the MQ Explorer - Navigator view. A QuickView is also available for viewing the
details of broker archive files that you have imported into the WebSphere Message
Broker Explorer.

The following figure shows the QuickViews that are displayed when a broker is
selected in the WebSphere Message Broker Explorer.

Chapter 2. WebSphere Message Broker overview 57

The following views and editors are provided for working with brokers in the
WebSphere Message Broker Explorer:

Broker Archive editor
Use the Broker Archive editor to create and manage broker archive (BAR)
files.

Broker Statistics and Broker Statistics Graph views
Use the Broker Statistics and Broker Statistics Graph views to view
snapshot accounting and statistics data as it is produced by the broker.

Policy Sets and Policy Set Bindings editor
Use the Policy Sets and Policy Set Bindings editor to edit, save, import,
and export policy sets or bindings.

Security Profiles editor
Use the Security Profiles editor to create a security profile for use with
Lightweight Directory Access Protocol (LDAP) or Tivoli Federated Identity
Manager (TFIM).

DataPower Security wizard
Use the DataPower Security wizard to configure an external DataPower
appliance to handle the WS-Security Policy for your HTTP, HTTPS, and
SOAP nodes within your message flow.

Administration Log view
Use the Administration Log view to view the results of deployment actions
on brokers.

58 WebSphere Message Broker Version 7.0.0.8

Accessing context-sensitive help
The Help view provides context-sensitive help throughout the WebSphere Message
Broker Explorer. You can display the Help view for most aspects of the user
interface by bringing focus to the object and pressing F1 (on Windows) or
SHIFT+F1 (on Linux). The Related Topics page shows description and help topics
that are related to the selected object. The About section shows context help that is
specific to your current context, and the Dynamic Help section shows some search
results that might be related.

The following figure shows the Related Topics page of the Help view that is
displayed when you press F1 when the Brokers folder is selected in the WebSphere
Message Broker Explorer.

Chapter 2. WebSphere Message Broker overview 59

60 WebSphere Message Broker Version 7.0.0.8

Use the other pages in the Help view to view and search the contents of the
information center. The All Topics page shows the table of contents of all the books
in the information center. The Index provides an index of keywords of all the
books in the information center. You can enter a keyword in the text field on the
Index page to highlight the best match in the list of keywords. You can use the
Search page to locate topics, samples, and remote documents using keywords in a
search query. You can bookmark topics and other documents of interest, and view
them in the Bookmarks page.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Viewing message flow accounting and statistics data” on page 3300
You can use the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer to view snapshot accounting and statistics
data as it is produced by the broker.
Related reference:
“WebSphere Message Broker Explorer views” on page 6838
The WebSphere Message Broker Explorer can be used to manage and administer
your brokers and deployed resources.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“Administration Log view” on page 6840
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.

External systems and resources
You can configure WebSphere Message Broker resources to interact with a wide
range of external systems and resources, such as WebSphere Process Server, and
databases.

The products and standards listed here are for guidance only; for details of
supported versions, you must check the WebSphere Message Broker Requirements
Web page.

Chapter 2. WebSphere Message Broker overview 61

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

External systems

WebSphere Message Broker interfaces with other IBM products, and with products
from other software vendors, to provide services that enhance message processing
in the broker:
v IBM WebSphere Service Registry and Repository
v IBM WebSphere Process Server
v IBM WebSphere Integration Developer
v IBM WebSphere Business Monitor
v IBM WebSphere Transformation Extender
v IBM WebSphere MQ File Transfer Edition
v Enterprise Information Systems

– SAP
– Siebel
– Peoplesoft

v Security
– Tivoli Federated Identity Manager (TFIM)
– Lightweight Directory Access Protocol (LDAP)
– RACF and other External Security Managers, on z/OS only

v Management
– Tivoli License Manager

v Citrix Presentation Server

External resources

WebSphere Message Broker interfaces with other IBM resources, and with
resources from other software vendors, to provide extensions to message
processing:
v Databases and ODBC support

– IBM DB2
– Oracle
– Sybase
– Microsoft SQL Server
– IBM Informix®

v Databases and JDBC support
– IBM DB2 Driver for JDBC and SQLJ
– Microsoft SQL Server 2005 JDBC driver
– Oracle JDBC Driver
– Sybase jConnect for JDBC
– IBM Informix JDBC

v File systems
– FTP
– SFTP

v Email systems
v Development repositories

– Rational ClearCase
– CVS
– Other repositories supported by Eclipse

62 WebSphere Message Broker Version 7.0.0.8

v Compilers (C and Java)
v Browsers

– Microsoft Internet Explorer
– Mozilla

v Adobe Flash Player for Quick Tour
v Adobe Acrobat for reading PDF files

External standards

Products and applications that adhere to certain specifications can also interact
with WebSphere Message Broker:
v Java and JMS providers
v XSD
v WSDL
v SOAP
v XSLT
v WS-Addressing
v WS_Security

For further information about standards, see “General industry standards
supported by WebSphere Message Broker” on page 3607.

WebSphere Message Broker business scenario
WebSphere Message Broker manages the flow of information in your business,
applying message processing rules to route, store, retrieve, and transform the
information as required by the different systems in your business and the systems
of your customers, suppliers, partners, and service providers.

The following scenario outlines an example of how WebSphere Message Broker can
be used to solve IT infrastructure problems in a business.

Mergers and acquisitions scenario
This scenario describes how WebSphere Message Broker is used by a fictitious
insurance company to manage two disparate IT infrastructures after a small,
Internet-based insurance company is acquired by a large, more traditional,
insurance company. The description focuses on what happens when a potential
customer requests a motor insurance quotation by using the merged company Web
site. This scenario is based on a larger, more complex scenario that was published
on developerWorks. To read the full scenario see the links at the end of the
scenario description.

Background

Company A is a motor and general insurance company that has been in business
for approximately 50 years and currently has approximately 5 million
policyholders. The company uses agents and a call center to communicate with
customers. The company has a large established IT infrastructure, which includes
CICS Transaction Server for z/OS and IBM DB2 Universal Database™ on z/OS.

Company B is small Internet-based motor insurance company, which currently has
less than 1 000 000 policyholders, and is expanding. The IT infrastructure managed

Chapter 2. WebSphere Message Broker overview 63

by the company includes WebSphere Application Server on Microsoft Windows
Server 2003, and Oracle Enterprise and IBM DB2 Universal Database on Windows
XP.

The problems

Company A acquired Company B to gain access to the Internet-based insurance
market and to use the Internet-based skills and IT infrastructure established in
Company B. The two companies have customer and policy data of different
formats but, for legal reasons, the data from the separate companies cannot be
merged. However, the administration costs of managing the separate IT
infrastructures are high. Also, customers, agents, and call center staff need a single
administration process to interact with the company data.

The solution

Now that the two companies have merged, users can request an insurance
quotation by giving some basic personal information in a form on the Web site of
the new company. WebSphere Application Server, on which the Web site runs,
forwards the request in XML format to WebSphere Message Broker using the
request queue in a WebSphere MQ cluster. WebSphere Message Broker transforms
the XML request to the COMMAREA format that is used by Company A systems,
then routes the request to those systems. WebSphere Message Broker also routes
the request, in XML format, to Company B systems. Both systems return a
quotation to WebSphere Message Broker.

Logic within WebSphere Message Broker also requests a risk assessment from the
internal underwriter and applies the returned risk to the quotations from systems
within Company A and Company B. The broker detects that, in this instance, the
best or lowest quotation for the customer has been generated by Company A
systems. Therefore, the broker transforms the quotation from Company A from
COMMAREA to XML, and routes the quotation back to WebSphere Application
Server to a reply queue in the WebSphere MQ cluster, where the quotation is
stored for up to 14 days. WebSphere Application Server returns the quotation to
the customer.

The following diagram shows the flow of information in this scenario.

64 WebSphere Message Broker Version 7.0.0.8

FIREWALL

Customer

Messaging

ReplyRequest

Transformation

Company A

WebSphere Application Server
on Windows, AIX, Solaris, Linux.

WebSphere Application Server
on Windows with Oracle

Enterprise and IBM
DB2 Universal Database

on Windows.

CICS Transaction Server
on z/OS with IBM DB2

Universal Database
on z/OS.

WebSphere MQ on Windows,
AIX, z/OS, Solaris, Linux.

WebSphere Message Broker
on Windows, AIX, z/OS, Solaris.

Company A
underwriter

Company B

Quote

Welcome to WebSphere Message Broker
New users: Use this topic to help you navigate through the WebSphere Message
Broker information center:
v If you are new to WebSphere Message Broker, look at the Getting started section

first.
v If you are ready to start developing message flows for WebSphere Message

Broker, look at the Developing message flow applications section.
v If you are ready to design and configure your brokers, look at the WebSphere

Message Broker administration section.
v The Additional information section includes links that might be of interest to all

users.

Chapter 2. WebSphere Message Broker overview 65

Use the links in the following sections to go to start here topics that contain useful
links into the information center or to external information. You can recognize the
start here topics by the blue background, as shown in this paragraph. To return to

this page, click Navigation view () to display the contents of the information
center, then select Start here. To find out where the page that you are currently
viewing is located in the contents of the information center, click Show in Table of

Contents (). You can use Back () to go back through the pages you have
previously viewed.

Some of the links in the start here topics work only if you are accessing this
information center from the WebSphere Message Broker Toolkit or the WebSphere
Message Broker Explorer. The links that work only in the WebSphere Message

Broker Toolkit are displayed with this icon . Some of the links in the start here
topics work only if you have a connection to the internet, and these links are

displayed with this icon .

WebSphere iconGetting started

WebSphere Message Broker provides an advanced enterprise service bus,
delivering universal connectivity and data transformation. The following
introductory information describes the high-level concepts of the product and some
basic tasks, including how to use this information center and how to use the
WebSphere Message Broker Toolkit.
v “How do I use the information center?” on page 67 Find out how to use this

information center, including navigation and searching techniques.
v “Where can I get an overview of WebSphere Message Broker?” on page 69 Get

links to introductory information about WebSphere Message Broker.
v “How do I use the WebSphere Message Broker Toolkit?” on page 70 Find out

how to use the WebSphere Message Broker Toolkit.
v “How can I check that my installation was successful?” on page 90 Find out

how to check that your installation was successful.

WebSphere iconDeveloping message flows

Use the links in this section to help you to start developing your own message
flows. Links are also included to help you to understand WebSphere Message
Broker concepts that might be useful when you develop your own message flows.
You can also use the Samples to help you to develop your own message flows.
Most samples provide working examples of message flows, and demonstrate the
features that are available in WebSphere Message Broker. To run samples, or
deploy and test your own message flows, you must first create a broker.

You can use the Default Configuration wizard available in the WebSphere Message
Broker Toolkit or the WebSphere Message Broker Explorer to create a basic broker
configuration for testing message flows, see “Creating the Default Configuration”
on page 106.
v “What do I need to know to start developing applications?” on page 72 Find out

about the WebSphere Message Broker concepts you might want to know before
developing your own message flows.

v “How do I design and develop applications?” on page 72 Start to develop your
own message flows and associated resources.

66 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/features

v “How do I deploy and test message flows?” on page 86 Find out how to deploy
your message flows to a broker and how to test them.

v How do I debug and troubleshoot my applications? Find out how to debug
message flows and troubleshoot problems.

WebSphere iconWebSphere Message Broker Administration

To test and run your message flows, you must create and configure your brokers.
Use the links in this section to find out how to configure and administer your
brokers and message flows:
v “How do I plan and configure brokers?” on page 91 Find out how to plan and

configure brokers for your business.
v “How do I deploy and configure message flow applications?” on page 94 Find

out how to configure your message flows and get them running.
v “How do I administer and monitor brokers?” on page 93 Find out about day to

day administrative tasks and about monitoring the performance of your message
flows.

WebSphere iconAdditional information

Use the following links to get additional information about using WebSphere
Message Broker:
v Where can I find out about the accessibility functions of WebSphere Message

Broker? Find out about accessibility features in WebSphere Message Broker and
shortcut keys to use in the information center.

v How can I troubleshoot any problems? Find out how to debug message flows
and troubleshoot problems.

v “What information is available for users of previous versions?” on page 91 Find
out about migration and what is new for users of previous versions of the
product.

How do I use the information center?
New users: Use this topic to find out how to use the WebSphere Message Broker
information center.

To view most of the following links you must be running the information center
from within the WebSphere Message Broker Toolkit or the WebSphere Message
Broker Explorer.
v What is the information center?

Find out what the information center is, and the alternative ways that you can
use to access it.

v How do I navigate the information center?
Learn how to find your way around the information center.

v What are the accessibility features and keyboard shortcuts in the information
center?
Find out about accessibility in the information center and how to navigate using
keyboard shortcuts.

v How do I search the information center?
Learn how to search the information center, limiting your search scope and
making your searches more effective.

v How do I set bookmarks and print topics?

Chapter 2. WebSphere Message Broker overview 67

Find out how to bookmark information to make it easier to find later. Also find
out how to print topics for reading offline.

v How do I view information in different languages?
Find out how to view the information center in different languages.

v Where can I find other sources of help information?
Find out how the documentation is structured, and what other sources of help
are provided in the information center and the WebSphere Message Broker
Toolkit or the WebSphere Message Broker Explorer.

Where can I find other sources of help information?
New users: Use this topic to find out about the resources available in the
information center. You can also find out about other ways that you can get help
when using WebSphere Message Broker.

What resources are available in the information center?

The Contents pane in the WebSphere Message Broker information center lists
high-level categories of information based on tasks that you might want to
perform, such as configuring, administering, and developing applications. In each
of the high-level categories, concept topics provide definitions and background
information to help you understand the tasks in the product. Task topics provide
the actions or steps that you complete for the associated tasks. You can find
reference topics in the Reference category that provide supporting information to
help you complete the tasks, for example lists of options and parameters for
commands.

Use the following links as alternative ways to help you find the information that
you want:
v Where can I find a glossary of terms and abbreviations?

The glossary contains a list of terms and abbreviations that are used in the
WebSphere Message Broker information center.

v Where can I find the information center index?
Search for information about particular subjects or terms by using the Index.

v Where can I find support and technical documents on IBM Web sites?
Search for WebSphere Message Broker support and technical documents on IBM
Web sites. You must have an Internet connection to use the links on this page.

v Where can I find information about diagnostic messages?
Search for information about diagnostic messages that might be generated when
you use WebSphere Message Broker.

What other sources of help are there in WebSphere Message Broker?

User assistance is provided in WebSphere Message Broker, in the form of messages,
context-sensitive help on wizards, and information provided on the product
interfaces, including the WebSphere Message Broker Toolkit and in the
command-line environment.
v How do I get context-sensitive help in the WebSphere Message Broker Toolkit?

Context-sensitive help and links into the information center are available in the
WebSphere Message Broker Toolkit in the Help view. The Help view can be
launched by selecting an object in the WebSphere Message Broker Toolkit and
pressing the F1 key (on Windows) or SHIFT+F1 (on Linux).

v How do I get context-sensitive help in the WebSphere Message Broker Explorer?

68 WebSphere Message Broker Version 7.0.0.8

bx09999_index.htm

Context-sensitive help and links into the information center are available in the
WebSphere Message Broker Explorer in the Help view. The Help view can be
launched by selecting an object in the WebSphere Message Broker Explorer and
pressing the F1 key (on Windows) or SHIFT+F1 (on Linux).

v How do I get assistance when I am developing my applications?

You can get assistance when you develop your applications by using content
assist. Content assist provides a list of available code options, for example the
XPath functions to use in a message map, or a list of available references, for
example to assist with constructing message references in ESQL. Content assist is
available in the following editors when developing applications:
– ESQL Editor
– Java Editor
– Message Mapping Editor
You can also use content assist to help construct XPath expressions in the
properties of some message flow nodes. Content assist can be displayed in the
properties fields, and in the XPath Expression Builder.
To access content assist, either select Edit > Content Assist or press Ctrl+Space
to display a list of available options. To use content assist to help with
constructing messages, you must have defined the message to the WebSphere
Message Broker Toolkit and linked it to your message flow project; see “Project
references” on page 44.

v How do I get help when I am using commands?

You can get usage information for the commands by entering the command
without any parameters, or alternatively entering the command followed by /?,
for example:
mqsilist /?

Where can I get an overview of WebSphere Message Broker?
New users: Use the links in this topic to get introductory information about
WebSphere Message Broker.
v Where can I get a quick tour of the product?

Learn about the basic concepts and features of WebSphere Message Broker with
this animated tour.

v Where can I get a technical overview of the product?
Learn about the capabilities and components of WebSphere Message Broker with
this technical overview.

v Where can I find a WebSphere Message Broker example scenario?
Learn how WebSphere Message Broker can be used to solve a business problem
with this example scenario.

I am a developer; what tasks am I interested in?
If you are a developer, you will be involved in the tasks to create, test, debug, and
run message flow applications.

Before you start

New users: Read the following introductory topics to the product, and the
information center, before you start application development:
v “How do I use the information center?” on page 67
v “Where can I get an overview of WebSphere Message Broker?”

Chapter 2. WebSphere Message Broker overview 69

v “How do I use the WebSphere Message Broker Toolkit?”

Returning users: Find out what new features are supported for application
development:
v “What's new in Version 7.0?” on page 7

WebSphere iconDeveloping message flow applications

Use the links in this section to help you to start developing your own message
flow applications. Links are also included to help you to understand WebSphere
Message Broker concepts that might be useful when you develop your own
message flow applications.

You can also use the Samples to help you to develop your own message flow
applications. Most samples provide working examples of message flow
applications, and demonstrate the features that are available in WebSphere
Message Broker. To run samples, or deploy and test your own message flow
applications, you must first create a broker; use the Default Configuration wizard
available in the WebSphere Message Broker Toolkit or the WebSphere Message
Broker Explorer, to create a basic broker configuration for testing message flow
applications. For more information about the Default Configuration wizard, see
“Creating the Default Configuration” on page 106.
v “What do I need to know to start developing applications?” on page 72 Find out

about the WebSphere Message Broker concepts you might want to know before
developing your own message flow applications.

v “How do I design and develop applications?” on page 72 Start to develop your
own message flow applications and associated resources.

v “How do I deploy and test message flows?” on page 86 Find out how to deploy
your message flow applications to a broker and how to test them.

What else might I be interested in?

When you develop message flow applications, you might also be interested in the
following questions:
v How can I troubleshoot problems? Find out how to debug message flow

applications and troubleshoot problems.
v Where can I find out about the accessibility functions of WebSphere Message

Broker? Find out about accessibility features in WebSphere Message Broker and
shortcut keys to use in the information center.

How do I use the WebSphere Message Broker Toolkit?
New users: Use the links in this topic to help you get started using the WebSphere
Message Broker Toolkit.

The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform. You can use the
WebSphere Message Broker Toolkit for developing, testing, and debugging your
applications.

Some of the links in this topic work only if you are accessing this information
center from the WebSphere Message Broker Toolkit, or from the WebSphere
Message Broker Explorer.

70 WebSphere Message Broker Version 7.0.0.8

How do I navigate and customize the WebSphere Message Broker
Toolkit?

Use the links in this section to find out how to navigate the WebSphere Message
Broker Toolkit. You can also find information about the different resources that you
can create in the WebSphere Message Broker Toolkit.
v What are the perspectives in the WebSphere Message Broker Toolkit?

A perspective defines the initial set and layout of windows in the workbench.
Each perspective provides a set of functionality aimed at accomplishing a
specific type of task or working with specific types of resources. Follow this link
to find out about the WebSphere Message Broker Toolkit perspectives.

v What are the editors in the WebSphere Message Broker Toolkit?
Follow this link to find out about the different editors in the WebSphere
Message Broker Toolkit.

v What are the views in the WebSphere Message Broker Toolkit?
Use this link to find out how views are used in the Eclipse workbench. You can
use the following links to find out more about the views that are used in
association with different editors in the WebSphere Message Broker Toolkit:
– Project Explorer view
– Problems view
– Tasks view
– Outline view
– Properties view

v What types of resource can I create in the WebSphere Message Broker Toolkit?
Find out about the types of resources and files that you can create and develop
in the WebSphere Message Broker Toolkit.

v What are the keyboard shortcuts in the WebSphere Message Broker Toolkit?
Find out how to navigate by using keyboard shortcuts in the WebSphere
Message Broker Toolkit.

How can I customize the Eclipse workbench?

You can use the instructions in these links to learn how to use any application
running in the Eclipse workbench, including the WebSphere Message Broker
Toolkit and Rational Application Developer.
v How do I work with perspectives?

Find out how to work with perspectives.
v How do I work with views and editors?

Find out how to work with views and editors such as rearranging views and
opening files for editing.

v How do I customize the workbench?
Find out how to work to further customize the Eclipse workbench such as
rearranging the main toolbar and changing the placement of the tabs.

How can I change the WebSphere Message Broker Toolkit
preferences?

You can change a number of settings in the WebSphere Message Broker Toolkit to
suit your requirements. Use these links to get more information about these
settings and how to change them.

Chapter 2. WebSphere Message Broker overview 71

v What WebSphere Message Broker Toolkit preferences can I change?
Use this link to find out about WebSphere Message Broker Toolkit preferences
that you can change, and get links to information about preferences that might
be useful when you develop applications.

v How do I change the WebSphere Message Broker Explorer preferences?
Follow this link to get an overview of how you change preferences to alter the
behavior of the WebSphere Message Broker Explorer.

v How do I change the standard Eclipse preferences?
Follow this link to find out about the standard preferences in the Eclipse
workbench.

How do I design and develop applications?
New users: Use the links in this topic to get information about how to design and
develop message flow applications and related resources.
v “What do I need to know to start developing applications?”

Use this link to get information that it is useful to know before you start
developing your message flow applications.

v How do I design a message flow?
Follow this link to get a comprehensive list of the decisions that you need to
make when designing a message flow.

v “How do I construct message flows?” on page 76
Find out how to construct message flows.

v “How do I program message flows?” on page 78
Find out how to program you message flow nodes by using ESQL, Java,
message mappings, and XML transformations.

v “How do I design and develop a message model?” on page 83
Find out how to develop message models.

v “How do I develop publish/subscribe applications?” on page 86
Find out how to design and develop publish/subscribe applications.

v How do I develop user-defined extensions?
Find out how to develop your own user-defined extensions such as nodes and
parsers.

What do I need to know to start developing applications?:

New users: Before you start developing your applications, use the links in this
topic to get information about concepts that you must understand.

This topic contains the following sections:
v “Basic application development concepts”
v “Advanced application development concepts” on page 76

Basic application development concepts:
What types of resources can I develop?

You can develop the following kinds of resources:
v Message flows

A message flow is a sequence of processing steps that run in the broker when an
input message is received. You define a message flow by including a number of

72 WebSphere Message Broker Version 7.0.0.8

message flow nodes, each of which represents a set of actions that define a
processing step. For more information about message flow nodes, see message
flow nodes.

v Message models
You can define the structure of messages for use with your message flows.

What is WebSphere Message Broker typically used for?

Use the links in this section to find out about the tasks that WebSphere Message
Broker is commonly used for. You can also find out about the alternative ways to
implement message flows for these tasks.
v How can I use WebSphere Message Broker to route messages?

You can select from a number of ways of routing messages using message flows:
– Using a Filter node

You can route messages through a message flow based on the content of the
message using a Filter node. The nodes that are connected to the different
terminals of the Filter node can be used to apply different processing and
routing to messages based on their content.

– Using a Route node
You can route messages through different paths in a message flow, based on
the content of the message using a Route node. The Route node uses XPath
expressions to control processing.

– Using the destination list to route messages
You can create a destination list to define the recipients of output messages
using a Compute, Mapping, PHPCompute, or JavaCompute node. This list
can then be used to route messages using RouteToLabel and Label nodes.
Alternatively, a single message can be sent to many locations using a
destination list for the destination mode, on some output nodes.

You can see examples of how message flows can be used for routing in the
following samples.
– Message Routing
– Airline Reservations
– Simplified Database Routing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

v How can I use WebSphere Message Broker to transform and enrich messages?

You can select from a number of different ways of transforming and enriching
messages using different nodes in message flows. Messages can be enriched with
content from databases, applications, and files. The following methods of
programming nodes in your message flows can be used to transform messages:
– Databases

WebSphere Message Broker supports various database managers so that you
con configure your brokers to interact with databases on behalf of your
message flows. Follow this link to get instructions on how to create and
configure databases and connections.

– ESQL

Chapter 2. WebSphere Message Broker overview 73

Extended Structured Query Language (ESQL) is a programming language
based on Structured Query Language (SQL) that is typically used to work
with databases. ESQL is extended to access and manipulate data in messages
and databases. You can code ESQL to transform and enrich messages using
the Compute node.

– Java
Use the JavaCompute node to add valid Java code to your message flow. You
can access, create, and transform messages in your message flows by using
Java.

– Message mappings
Message mappings use a drag-and-drop interface to transform messages. You
can use conditional logic, ESQL functions, Java functions, and XPath functions
to create complex mappings and transformations. You can also use message
mapping to select and manipulate data in database tables. You can create
message mappings to transform and enrich messages using the Mapping
node.

– PHP
Use the PHPCompute node to add valid PHP code to your message flow. You
can access, create, and transform messages in your message flows by using
PHP.

– XML transformation
You can use the XSLTransform node to transform from one type of XML
message to another, based on rules provided by an Extensible Stylesheet
Language (XSL) style sheet.

The Airline Reservations demonstrates message enrichment, and the following
samples demonstrate message transformation.
– Video Rental
– XSL Transform

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

v How can I use WebSphere Message Broker with Web services?

WebSphere Message Broker provides a number of ways to work with Web
services:
– “WebSphere Message Broker and Web services” on page 1602

Find out how WebSphere Message Broker can be used to integrate
applications using Web services.

– Web services scenarios
Find out about the different Web services scenarios that WebSphere Message
Broker supports.

– “Processing Web service messages” on page 1601
Find out more about working with Web services in WebSphere Message
Broker.

– Web services using HTTP nodes
– SOAP Nodes

74 WebSphere Message Broker Version 7.0.0.8

How can I connect my applications?

Use the links in this section to find out how you can connect your applications to
WebSphere Message Broker.
v What are the application communication models?

Find out about the differences between the two types of application
communication model that WebSphere Message Broker supports.

v What application programming interfaces are supported?
Find out about the many programming interfaces supported by WebSphere
Message Broker.

v Connecting applications
Find out about the communication transports and protocols that WebSphere
Message Broker supports.

v “Publish/Subscribe” on page 2215
Publish/subscribe is a style of messaging in which the providers of information
(publishers) are decoupled from the consumers of that information (subscribers).

What is a logical message tree?

Use the links in this section to find out about the logical message tree and the
internal representation of messages within message flows. When a message is
received by a message flow, a logical structure is created, known as the logical
message tree or the message assembly. The message assembly contains a message
tree, which is the internal representation of the physical message, and a number of
other trees that are used to store information during the processing of the message
in the message flow.
v What is the logical message tree?

Use this link to get more information about the logical message tree and how it
is used in application development. You can get information about the four
subtrees from the following links:
– “Message tree structure” on page 1045
– “Environment tree structure” on page 1055
– “Local environment tree structure” on page 1056
– “Exception list tree structure” on page 1066

v How is the message tree populated?
Follow this link to get detailed information about how the message tree is
populated when a message enters a message flow, and how the structure of the
message tree is affected by the transport protocol that the message is received
on.

What are physical message formats?

Use the links in this section to get information about the physical messages
received by message flows, and to find out how the different structures and
formats are handled by your applications.
v What are the differences between predefined and self-defining messages?

Find out about the differences between predefined and self-defining messages in
WebSphere Message Broker. The design of your applications can be influenced
by your decision to use predefined or self-defining messages. If you use
predefined messages, you must create a message model to define the logical

Chapter 2. WebSphere Message Broker overview 75

message structure to be used by the nodes in your message flows, but you can
use self-defining messages instead, or as well.

v “Why model messages?” on page 1158
Find out about the benefits of modeling messages, even if you use self-defining
messages in your system.

v Where can I find an introduction to message modeling?
Follow this link to get introductory information about message modeling.

v What is a parser?
A parser is used to interpret the physical structure of an incoming message and
create an internal representation of the message in a tree structure - the logical
message tree. Follow this link to get an introduction to parsers.

v Which message domain and format can I use?
A message model has one or more domains that determine which parser is used
to construct the logical tree structure from the physical message. Follow this link
for guidance on selecting a domain and parser for your message model.

v How can I define a physical format for my message?
Follow this link to find out how you can define the physical structure for your
messages. The following links provide information about specific types of
message format:
– What is a Custom Wire Format?
– What is an XML Wire Format?
– What is a Tagged/Delimited String Format?

Advanced application development concepts:
What other resources can I develop?

v “Developing message flows that use WebSphere Adapters” on page 2033
You can develop applications that connect to an Enterprise Information System
(EIS) using WebSphere Adapters.

v “User-defined extensions overview” on page 2971
A user-defined extension is an optional component that is designed by the user
to extend the functions provided by WebSphere Message Broker. A user-defined
extension can be either a node or a parser.

v Administration API applications
The Administration API for WebSphere Message Broker (also known as the CMP
API) is an application programming interface (API) that you can program to
control brokers by using a remote interface to the appropriate broker.

How do I construct message flows?:

New users: when you have considered the various factors involved in designing a
message flow you are ready to create one.

Use the links in this topic to learn how to construct message flows and work with
related resources.

How do I create message flow resources?

v How do I create a message flow project?
A message flow project is a specialized container in which you create and
maintain all the resources associated with one or more message flows. You can
group together related message flows and resources in a single message flow
project to provide an organizational structure to your message flow resources.

76 WebSphere Message Broker Version 7.0.0.8

You must create a project before you can create a message flow. Use this link to
learn how to create a message flow project.

v How do I create a broker schema?
If you want to organize your message flow project resources, and to define the
scope of resource names to ensure uniqueness, you can create broker schemas.
When you first create a message flow project, a default broker schema is created
in the project. Use this link to learn how to create a broker schema.

v How do I create a message flow?
You create a message flow to specify how to process messages in the broker. You
can create any number of message flows and deploy them to one or more
brokers. Use this link to learn how to create a message flow.

How do I construct a message flow?

v How do I add a node?
When you create a message flow, the first action to take to define its function is
to add nodes. A message flow node is a processing step in a message flow. A
message flow node can be a built-in node, a user-defined node, or a subflow
node; see “Message flow nodes” on page 1024. Select the nodes to add to your
message flow from the node palette, see “Message flow node palette” on page
1027.

v How do I rename a message flow node?
To make your message flows easier to understand and to maintain, you can
change the name of any type of node that you have added to your message
flow. For example, you might change the name of an MQInput node to match
the input queue name defined in the node.

v
When you have included an instance of a node in your message flow, you can
customize its function. Each node has a set of properties that are specific to the
function of that node. For a list of nodes that are provided with WebSphere
Message Broker, see “Built-in nodes” on page 4293. Select the required node
from this list to view details of the terminals, and properties, and how to
configure the node. For more information about nodes that can be programmed,
such as the JavaCompute, Compute, and Mapping nodes, see “How do I
program message flows?” on page 78.

v How do I connect nodes?
You connect the nodes in your message flow to indicate how the flow of control
passes from input to output, and the route that messages can take through the
message flow. A message flow node has a fixed number of input and output
points known as terminals. You can connect the failure or catch terminals of
nodes to add error handling to your message flows, see “Handling errors in
message flows” on page 2823.

v How do I align and arrange nodes in a message flow?
You can change the way that the nodes in your message flow are displayed and
arranged, to make them easier to read. You can add a bend point to make the
flow of control easier to follow where node connections cross each other, see
“Adding a bend point” on page 1527.

v How do I save a message flow?
Save the message flow when you want to do any of the following actions:
– Close the workbench
– Work with another resource
– Validate the contents of the message flow

Chapter 2. WebSphere Message Broker overview 77

How do I manage my message flows?

v How do I delete a message flow node?
Learn how to remove a node from your message flow.

v How do I delete a node connection?
Learn how to remove a node connection between nodes in your message flow.

v How do I delete a message flow?
Learn how to delete your message flow.

v How do I rename a message flow?
Learn how to rename your message flow.

v How do I delete a message flow project?
Learn how to delete your message flow project.

v How do I move a message flow?
Learn how to move your message flow between broker schemas or message
flow projects.

v How do I add a subflow?
After you have created message flows, you can embed them in other message
flows as subflows. You can use subflows to reuse function across message flow
projects, reduce development time, and increase the maintainability of your
message flows.

v How do I back up my message flow projects and related resources?
Your message flow projects and other resources are stored in the WebSphere
Message Broker Toolkit workspace and other locations in your file system. You
can use the export function in Eclipse, or take copies of the directories on your
file system, to back up your resources. Alternatively, you can set up the
WebSphere Message Broker Toolkit to work with a repository, see “Development
repository” on page 45.

Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.

How do I program message flows?:

New users: Use the links in this topic to get information about the concepts and
tasks associated with programming message flows.

This topic contains the following sections:
v “How do I use message mappings?”
v “How do I use ESQL?” on page 79
v “How do I use Java?” on page 81
v “How do I use XML transformations?” on page 82
v “How do I use PHP?” on page 82
v “How do I use XPath?” on page 83

How do I use message mappings?: Message mappings use a drag-and-drop
interface to create and transform messages. You can use conditional logic, ESQL
functions, and XPath functions to create complex mappings and transformations.
You can also use message mapping to select and manipulate data in database

78 WebSphere Message Broker Version 7.0.0.8

tables. You must create a message definition for any messages that you include in a
message mapping. Message map files are stored in message flow projects.
v How do I create a message map file?

Follow this link for instructions on how to create a message map in the Broker
Application Development perspective. You can also create a message map from
the nodes that support message mapping including:
– Mapping node
– DataInsert node
– DataUpdate node
– DataDelete node

v What does the Message Mapping editor look like?
You create and modify message mappings in the Message Mapping editor. Use
this link to discover information about the Message Mapping editor.

v How do I configure message mappings?
When you configure message mappings, you can drag content from a source to
a target. The source can be a message, a database, or both, and the target can be
messages, database tables, or both. If your target is a database, you can select
the database operation (insert, update, or delete) that you want to perform on
the table. You can set the value for your target to be a constant, or you can use a
function or expression to produce the value. Additionally, you can configure
conditional mappings to set different values for targets based on the content of
the sources, and to handle repeating elements in sources and targets. Follow this
link to discover more about message mappings.

v Message mapping syntax

When you use an expression to set the value of a target in a message map, the
expression must be in XPath format.
– What syntax is used in mapping nodes?

Use this link to discover more about the XPath syntax used in message maps.
– How do I use expressions in my message maps?

Use this link to discover more about the type of functions that you can use in
expressions in your message maps.

– How can I find out more about XPath query syntax?
To discover more about XPath, follow this link to the W3C recommended
XPath 1.0 query syntax reference document. This link works only if you have
an active internet connection.

v How do I create and call submaps and routines?
You can reuse message maps between different message flows and message flow
projects by using a submap. You can also use a submap to create message
mappings for a wildcard source so that you can select replacement elements, for
example to select the appropriate body element from a SOAP message. In
addition to calling a submap from a message map, you can call a submap from
ESQL. You can also call ESQL routines from a message map. Use this link to
discover more information about creating and using submaps and ESQL
routines.

How do I use ESQL?: Extended Structured Query Language (ESQL) is a
programming language based on Structured Query Language (SQL), which is
commonly used with relational databases such as DB2. ESQL extends the
constructs of the SQL language to provide support for you to work with both
message and database content. ESQL can be used with the Compute, Database,
and Filter nodes.

Chapter 2. WebSphere Message Broker overview 79

http://www.w3.org/TR/xpath

Many of the WebSphere Message Broker “Samples” on page 98 show how to use
ESQL in message flows.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The following samples contain example ESQL code:
v Airline Reservations
v Large Messaging
v Message Routing

Use the following links to discover how to use ESQL in your message flows:
v How do I create an ESQL file?

The ESQL code for each of your nodes is contained within a module in an ESQL
file. Use this topic to discover how to create an empty ESQL file in your
message flow project. Alternatively, you can select Open ESQL to create an
ESQL file when you configure the first node in a message flow that uses ESQL.
This action creates an ESQL file with skeleton ESQL code for a module
associated with the selected node. You can also select an ESQL module for a
node from a different message flow project by creating “Project references” on
page 44.

v What is the ESQL editor?
You can create and modify your ESQL code in the ESQL editor. You can change
the way that code is displayed in the ESQL editor, and modify the way in which
the ESQL editor validates code, by changing your ESQL preferences.

v How do I create ESQL for a node?
Follow this link to get an overview of how to create ESQL for your node,
including more information about the differences between the skeleton ESQL
code generated for the modules associated with the Compute, Database, and
Filter nodes.

v How do I modify ESQL for a node?
Follow this link to discover how to modify the skeleton ESQL module code.

v How do I save an ESQL file?
Discover how to save your ESQL file.

v How do I write ESQL code?
Follow this link to get introductory information about writing ESQL code for
your message flows. Discover how to manipulate the message tree, transform
data, access databases, and work with messages from different message domains
using ESQL.

v ESQL language

Use the following the links to get concept and reference information about the
ESQL language:
– “ESQL data types” on page 2373
– “ESQL variables” on page 2374
– “ESQL operators” on page 2382
– “ESQL field references” on page 2381
– “ESQL statements” on page 2383
– “ESQL functions” on page 2385

80 WebSphere Message Broker Version 7.0.0.8

– “ESQL procedures” on page 2386
– “Special characters, case sensitivity, and comments in ESQL” on page 5305
– “ESQL modules” on page 2388
– “ESQL reserved keywords” on page 5307
– “ESQL non-reserved keywords” on page 5307

How do I use Java?: You can create a Java class file for a JavaCompute node and
code Java functions to tailor the behavior of the node. You can add any valid Java
code to your JavaCompute nodes and use the Java user-defined node API to
process messages. You manage Java files through the Java perspective.

The following sample provides a collection of message flows that show how to use
the JavaCompute node:
v JavaCompute Node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

v How do I use a JavaCompute node?
You can use the JavaCompute node to examine the content of an input message,
transform a message, and build new messages. Follow this link to discover how
to use and configure the JavaCompute node in your message flows.

v How do I create Java code for a JavaCompute node?
Discover how to create a Java class file using the JavaCompute node wizard. The
JavaCompute node wizard creates a Java class with skeleton Java code that is
based on the options that you select in the wizard. You can then modify the
skeleton code to perform your own processing.

v How do I open an existing Java file?
You can modify existing Java code that you have created in a Java Project.

v How do I save a Java file?
Discover how to save your Java file.

v How do I write Java for message flow applications?
Get introductory information about writing Java code for your message flow
applications, including how to manipulate the message tree, access databases,
handle errors, and access broker properties.

v What views and editors do I use when programming Java?
Get a list of concept, task, and reference topics that relate to editors and views
for working with Java.

v Where can I get assistance when programming Java?
You can use code assist to provide a list of available command completions that
you can select to insert into the editor. You can also use command assist to
access Javadoc information about code in the Java editor.

v How do I add Java code dependencies?
Discover how to include references to other Java projects and JAR files in your
JavaCompute node code.

v Where can I find the Java user-defined node API?
Follow this link to the Java API for the WebSphere Message Broker classes for
creating a Java user-defined node, which you can also use to code your
JavaCompute node.

Chapter 2. WebSphere Message Broker overview 81

How do I use XML transformations?: You can use the XSLTransform node to
transform an XML message into another form of XML according to the rules
provided by an XSL (Extensible Stylesheet Language) style sheet. You can specify
the location of the style sheet to apply to this transformation in three ways:
v By using the content of the XML data within the message itself, which

transforms the message according to a style sheet that the message itself defines.
v By setting a value within the LocalEnvironment folder.
v By using node properties, which ensures that the transformation that is defined

by this single style sheet is applied to every message that is processed by this
node.

You can discover links to information about using XML transformation in this
section.
v Where can I find a sample that shows XML transformations?

If you have installed the WebSphere Message Broker Toolkit, you can use this
link to display the XSL Transform sample. The XSL Transform sample is a
message flow sample that shows how to use a message flow to transform an
XML message to another form of XML message according to the rules provided
by an XSL stylesheet.
You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

v How do I use the XSLTransform node?
Follow this link to discover how to use and configure the XSLTransform node to
transform an XML message into another form of XML.

v Where can I find out more about XSL Transformations?
To discover more about XML Transformations, follow this link to the W3C
specification of the syntax and semantics of the XSL Transformations language
for transforming XML documents into other XML documents.

How do I use PHP?: PHP is a scripting language that you can code to route and
transform messages. You can use PHP in the PHPCompute node, which is
supported only on Windows.
v Where can I get an overview of PHP?

Follow this link for an overview of PHP, and links to further information about
how you can use this scripting language.

v Where can I find a sample that shows how to use PHP?
If you have installed the WebSphere Message Broker Toolkit, you can use this
link to display the PHP sample. The PHP sample is a message flow sample that
shows how to use PHP code to transform an XML message.
You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

v How do I use a PHPCompute node?
Follow this link to discover how to use and configure the PHPCompute node in
your message flows.

v How do I create PHP code for a PHPCompute node?

82 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xslt

Discover how to create a PHP script file for the PHPCompute node in your
message flows.

How do I use XPath?: The XML Path Language (XPath) is a language used to
uniquely identify or address parts of an XML document. An XPath expression can
be used to search through an XML document, and extract information from the
nodes (any part of the document, such as an element or attribute) in it. XPath
expressions can be used in message maps, and in the properties of some of the
nodes. Typically, you might use XPath when you are using Java, XML, or PHP.
v Where can I get an overview of XPath?

Follow this link for an overview of XPath, and how you can use XPath with
nodes.

v How do I use the XPath Expression Builder?
You can use the XPath Expression Builder to add XPath expressions to your
node properties. Follow this link for information about how to use the XPath
Expression Builder.

How do I design and develop a message model?:

New users: how to design and create message models.

If the format of the messages that you want to use with your applications is not
self-defining, you must create a message model that defines the structure of your
messages. If your messages are self-defining, you might want to create a message
model to take advantage of runtime validation of messages, reuse of messages,
automatic generation of documentation, and code completion on the message
structure when you use ESQL. If you want to use message mapping, you must also
create a message model for your messages.

You can obtain prebuilt models for common industry standard message formats
such as SWIFT, EDIFACT, X12, FIX, HL7, and TLOG to use with WebSphere
Message Broker. You can also create message models from C header files, COBOL
copybooks, XML Schema and DTDs, and WSDL files. Alternatively, you can use
the Message Definition editor to create your own message models.

For further information, read the logical and physical message structure sections in
“What do I need to know to start developing applications?” on page 72.

What are the components of a message model?

Use the links in this section to learn how to create and configure message set
projects and message set files.
v Use the following links to learn about the different components that are used to

build a message model:
– What is a message set project?

A message set project is a container in which you create and maintain all of
the resources that are associated with a single message set. A message set can
contain one or more message models.

– What is a message set?
A message set is a logical grouping of messages and the objects that comprise
them (elements, types, and groups). A message set can contain one message
set file, message definition files, and message category files.

– What is a message definition file?

Chapter 2. WebSphere Message Broker overview 83

A message definition file contains the messages, elements, types, and groups
that make up a message model. The message definition file contains the
logical model and associated physical model in XML Schema form for a
group of related messages.

– What is a message model object?
Get an overview of the objects that make up a message model.

– What is a message category?
You can use message categories to group your messages for documentation
purposes.

– What is a multipart message?
You can define a message that contains one or more embedded messages
within its structure.

– How can I control the number of occurrences of an element or attribute in a
message?
You can define a message that contains repeating, optional, and mandatory
elements.

How do I create and configure a message model?

Use the links in this section to learn how to create and configure message set
projects and message set files. The following sample provides step-by-step
instructions about how to create a simple message model. The sample also
demonstrates message transformation between three different message formats.
v Video Rental

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
v How can I use the Quick Start wizards to help create resources?

You can use the Quick Start wizards to help you to create a message model and
to set up the resources that you require to develop a WebSphere Message Broker
application.

v How do I create a message set?
You must create a message set before you can add any content to your message
model. When you create a message set, a message set project is also created.

v How do I configure a message set file?

After you have created a message set, you must configure the logical and
physical properties of the message set. You can use the Message set editor to
configure the properties of a message set. See “Message set editor” on page
6819.
– How do I configure the logical properties of my message set?

Learn how to configure logical properties of a message set.
– How do I configure the physical formats of my message set?

Learn how to add and configure different physical format layers in a message
set.

v How do I create a message definition file?
You must create a message definition file before you can create the message
model objects. You can use the New message definition file wizard to create an
empty message definition file, or you can populate a message definition by

84 WebSphere Message Broker Version 7.0.0.8

using existing application message formats by importing data structures. See
“New message definition file wizards” on page 6360 and “Working with data
structures” on page 2930.

v How do I configure the properties of my message definition files?
When you have created a message definition file, you can configure the message
definition file properties described in this topic by using the Message Definition
editor. See “Message Definition editor” on page 6804.

v How do I add and configure message model objects?

When you have created a message definition file you can add message model
objects to your message definition file, to define the structure of your message.
You can also add objects to existing message definition files. You must then
configure the logical, physical, and other properties of the message model
objects.
– How do I add message model objects?

Follow this link to learn how to add different message model objects to a
message definition file.

– How do I configure message model objects?
Follow this link to learn how to configure message model objects.

– What properties do message model objects have?
Follow this link to get reference information about logical, physical, and
documentation properties for all types of message model objects.

– How do I create a multipart message?
You can create a message model that includes a multipart (embedded)
message. Use this link to learn how to create a multipart message.

– How do I link from one message definition file to another?
Follow this link to learn how to link one message definition file to another.

v How are namespaces used in the message model?
Objects in the message model such as elements, attributes, types, and groups are
identified by their name. No two objects in the same scope are allowed to have
the same name. If namespaces are enabled for a message set, each message
definition file within it can specify a namespace. Global objects within
namespaces can share the same name, therefore namespaces provide a way to
avoid name clashes between objects.

How do I manage my message models?

Learn about how to manage your message models:
v How do I generate model representations from message models?

When you have created and populated a message set, you can generate a
message model in different representations for use both by WebSphere Message
Broker and your applications. Use the following links to learn about the types of
model representations that you can generate from your message models:
– “Generate message dictionaries” on page 1271
– “Generate XML schema” on page 1272
– “Generate WSDL” on page 1274

v How do I configure message set preferences?
Follow this link to learn how to make changes to preferences that relate to
message set processing.

v How do I change my viewing preferences for message model editors?

Chapter 2. WebSphere Message Broker overview 85

You can change your viewing preferences for the Message Set editor and the
Message Definition editor, to make it easier to view message definition files.

How do I develop publish/subscribe applications?:

New users: use the links in this topic to get concept and reference information that
is useful when you develop publish/subscribe applications.

Publish/subscribe is a style of messaging application in which the providers of
information (publishers) are decoupled from the consumers of that information
(subscribers) using a broker. The following samples are examples of simple
publish/subscribe message flows, and include associated user applications. You
can view information about samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
v Pager
v Scribble

A publish/subscribe application can consist of a network of brokers connected
together. By connecting brokers together, publications can be received by a client
on any broker in the network.
v Where can I find an overview of publish/subscribe?

For an overview of publish/subscribe, see the following topics:
– “Publishers” on page 2218
– “Publications” on page 2219
– “Subscription points” on page 2222
– “Subscribers” on page 2220

v How do I use a publication node?
Use the Publication node in your message flows to filter output messages and
transmit them to subscribers who have registered an interest in a particular set
of topics.

v What are command messages?
Different types of command messages can be sent from an application to instruct
the broker to perform the required task; for example to publish a message, or
register a subscriber.

How do I deploy and test message flows?:

New users: Use this topic to get information about deploying and testing your
message flows during development. When you have developed your message
flows, message models, and other resources, you are ready to deploy them to a
broker.

You can use features provided in the WebSphere Message Broker Toolkit to help
you test your message flows. Read “How do I deploy and configure message flow
applications?” on page 94 for information about deploying and configuring
message flows for use in a production environment.

Before you can deploy and test your message flows, you must create and configure
at least one broker.

You can create the Default Configuration to create a broker environment that is
suitable for testing message flows during development, see “Creating the Default

86 WebSphere Message Broker Version 7.0.0.8

Configuration” on page 106. You can create the Default Configuration only if you
are accessing the information center from the WebSphere Message Broker Toolkit
or the WebSphere Message Broker Explorer.

How do I deploy message flows and related resources?

Use the links in this section to get instructions on how to deploy your message
flows, message sets, and related resources to a broker. Read “Message flow
application deployment” on page 3213 for an overview of the concepts of
deployment of message flow resources.
v How do I create a broker archive?

A broker archive file is a compressed file that contains compiled message flows,
message dictionaries, and other application development resources. Use this link
for instructions about how to create a broker archive file. You can use the
“Broker Archive editor” on page 6794 to add or remove message flows and
message sets to, or from, your broker archive. You can also use the Broker
Archive editor to edit the configurable properties in your broker archive.

v How do I add files to a broker archive?
You can add message flows and message sets to a broker archive file. The
message flows, message sets, and related resources are compiled when they are
added to the broker archive file. You can also choose to add the source files to
the broker archive file. You cannot add resources to a broker archive file from a
project that contains an error.

v How do I deploy a broker archive?
Find out about the different ways that you can deploy a broker archive file to a
broker. For deploying message flows for development to a test environment, the
simplest method is to use the WebSphere Message Broker Toolkit.

v How do I check the results of the deployment?
Find out about the ways that you can check the results of deployment. When
you deploy message flows to a test environment, the simplest method is to use
the WebSphere Message Broker Toolkit. You can also use the “mqsilist
command” on page 3882 with the name of the broker and execution group to
which you deployed your broker archive file.

v How do I edit configurable properties?
System objects that are defined in message flows have configurable properties
that you can update within the broker archive before deployment. By changing
configurable properties, you can customize a broker archive for a new domain,
without needing to edit and rebuild the message flows or other resources.

v How do I refresh the contents of a broker archive?
You can refresh the contents of a broker archive by removing resources from it
and, having made required changes, add them back again. Alternatively, you can
use the Refresh option in the Broker Archive editor.

How can I test my message flows?

Use the links in this section provide information about the different features
provided in the WebSphere Message Broker Toolkit to help you to test your
message flows.
v How do I test a message flow using the Test Client?

You can test message flows that use WebSphere MQ or HTTP input and output
nodes. If you have a message sets defined for the input nodes in your message

Chapter 2. WebSphere Message Broker overview 87

flow, the message flow test tool can provide an input message template in XML
format, that you can use to develop test messages.

v How can I put a test message onto a WebSphere MQ queue?
Get instructions about how to create and use an enqueue file to put a test
message on to a WebSphere MQ queue.

v How can I get a test message from a WebSphere MQ queue?
Get instructions about how to read a message from a WebSphere MQ queue by
using the Dequeue Message dialog box.

v How can I test my message flows?
You can use the flow debugger to help test your message flows by tracking the
path a message takes through your message flow. You can also step through the
ESQL, Java, and message mappings in your message flows, to view the output
messages that are being constructed.

v “How can I diagnose problems?” on page 96
If you are having difficulty deploying your message flows and other resources,
or receiving unexpected results when you test your message flows, look at the
problem determination information in this topic.

I am an administrator; what tasks am I interested in?
If you are an administrator, you will be involved in the tasks to configure brokers
and associated resources, and support your application developers.

Before you start

New users: Read the following introductory topics to the product, and the
information center, before you start configuration:
v “How do I use the information center?” on page 67
v “Where can I get an overview of WebSphere Message Broker?” on page 69
v “How do I use the WebSphere Message Broker Explorer and WebSphere

Message Broker Toolkit?” on page 89

Returning users: Find out what new features are supported for configuration and
administration:
v “What's new in Version 7.0?” on page 7

WebSphere iconWebSphere Message Broker Administration

To test and run your message flow applications, you must create and configure
your brokers. Use the links in this section to find out how to configure and
administer your brokers and message flow applications:
v “How can I check that my installation was successful?” on page 90 Find out if

your installation has been successful.
v “What information is available for users of previous versions?” on page 91 Find

out what you need to know if you are a user of a previous version or release.
v “How do I plan and configure brokers?” on page 91 Find out how to plan and

configure brokers for your business.
v “How do I administer and monitor brokers?” on page 93 Find out about day to

day administrative tasks and about monitoring the performance of your message
flow applications.

v “How do I deploy and configure message flow applications?” on page 94 Find
out how to configure your message flow applications and get them running.

88 WebSphere Message Broker Version 7.0.0.8

What else might I be interested in?

When you configure and administer your brokers, you might also be interested in
the following questions:
v How can I troubleshoot problems? Find out how to debug message flow

applications and troubleshoot problems.
v Where can I find out about the accessibility functions of WebSphere Message

Broker? Find out about accessibility features in WebSphere Message Broker and
shortcut keys to use in the information center.

How do I use the WebSphere Message Broker Explorer and
WebSphere Message Broker Toolkit?
New users: use the links in this topic to help you get started using the WebSphere
Message Broker Explorer and WebSphere Message Broker Toolkit.

The WebSphere Message Broker Explorer is an administration environment and
graphical user interface based on the Eclipse platform, and integrated with the
WebSphere MQ Explorer. You can configure, administer, view, and monitor your
brokers, and their associated resources, by using the options in this workbench.

The WebSphere Message Broker Toolkit enables you to complete some basic
administration functions for testing and debugging your message flow
applications.

Some of the links in this topic work only if you are accessing this information
center from the WebSphere Message Broker Explorer or the WebSphere Message
Broker Toolkit.

How do I navigate and customize the WebSphere Message Broker
Explorer?

Use the links in this section to find out how to navigate the WebSphere Message
Broker Explorer.
v What are the keyboard shortcuts?

Find out how to navigate by using keyboard shortcuts in the WebSphere
Message Broker Explorer.

How can I customize the Eclipse workbench?

You can use the instructions in these links to learn how to use any application
running in the Eclipse workbench, including the WebSphere Message Broker
Explorer and Rational Application Developer.
v How do I work with perspectives?

Find out how to work with perspectives.
v How do I work with views and editors?

Find out how to work with views and editors such as rearranging views and
opening files for editing.

v How do I customize the workbench?
Find out how to work to further customize the Eclipse workbench such as
rearranging the main toolbar and changing the placement of the tabs.

Chapter 2. WebSphere Message Broker overview 89

How can I change the WebSphere Message Broker Toolkit
preferences?

You can change a number of settings in the WebSphere Message Broker Toolkit to
suit your requirements. Use these links to get more information about these
settings and how to change them.
v What WebSphere Message Broker Toolkit preferences can I change?

Use this link to find out about WebSphere Message Broker Toolkit preferences
that you can change, and get links to information about preferences that might
be useful when you develop message flow applications.

v How do I change WebSphere Message Broker Explorer preferences?
Follow this link to get an overview of how you change preferences to alter the
behavior of the WebSphere Message Broker Explorer.

v How do I change the standard Eclipse preferences?
Follow this link to find out about the standard preferences in the Eclipse
workbench.

How can I check that my installation was successful?
New users: Use the links in this topic to help you to check that your installation of
WebSphere Message Broker was successful.

Most links in this topic work only if you are accessing this information center from
the WebSphere Message Broker Toolkit or the WebSphere Message Broker Explorer.
v “Creating the default configuration” on page 564

Use the Default Configuration wizard from the WebSphere Message Broker
Toolkit or the WebSphere Message Broker Explorer to create a broker to run the
WebSphere Message Broker samples. The default configuration also provides a
useful environment to test and debug your own message flow applications. You
can run a wizard to remove the default configuration when you have finished
with it.

v Where can I find samples?
The WebSphere Message Broker samples are a set of sample message flow
applications and associated resources that demonstrate some of the capabilities
of WebSphere Message Broker. Use the Where can I find samples? link to view a
description of all the samples. You must create the default configuration before
you can run the samples.
You can use the following samples to quickly check that your installation was
successful:
– Pager
– Scribble

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.
The Starter Edition and Entry Edition modes of operation restrict you to a single
execution group. Also, the Entry Edition mode restricts the set of nodes you can
use. As a result, not all samples can be used in these modes of operation. For
more information, see “Restrictions that apply in each operation mode” on page
3657.

90 WebSphere Message Broker Version 7.0.0.8

For more information about how to check that your installation of the WebSphere
Message Broker or the WebSphere Message Broker Explorer was successful, see
“Verifying your WebSphere Message Broker installation” on page 290. This topic
describes how to verify your installation on Linux on x86, Linux on x86-64, or
Windows by using either the WebSphere Message Broker Toolkit or the WebSphere
Message Broker Explorer.

What information is available for users of previous versions?
If you are a user of a previous version of WebSphere Message Broker, use the links
in this topic to get information about what is new in WebSphere Message Broker
Version 7.0, and how to migrate from previous versions.

What's new?

Use the links in this section to find out about the main enhancements and changes
in this release. You can find out more about the new functions and capabilities of
this release by looking at the new WebSphere Message Broker Version 7.0 samples.
v “What's new in Version 7.0?” on page 7

Find out about the main new function in this release, and new features added at
Version 7.0.

v Where can I find sample applications?
Look at the new samples introduced in Version 7.0 that demonstrate WebSphere
Message Broker capabilities. Follow this link to get a description of all the
samples and a direct link to each one. You can view information about samples
only when you use the information center that is integrated with the WebSphere
Message Broker Toolkit or the online information center. You can run samples
only when you use the information center that is integrated with the WebSphere
Message Broker Toolkit.

What do I need to know about migration and coexistence?

Use the links in this section to find out how to migrate to WebSphere Message
Broker Version 7.0 from previous versions of the product.
v How does WebSphere Message Broker Version 7.0 coexist with previous

versions?
WebSphere Message Broker Version 7.0 can coexist with previous versions. You
can therefore perform a staged migration when you want to migrate from a
previous version. See this topic for details about coexistence on a single
computer.

v How do I migrate from Version 6.1 products?
If you are migrating from Version 6.1 products, see this topic for information
about planning for migration, and the steps involved in carrying out a migration
from your specific product.

v How do I migrate from Version 6.0 products?
If you are migrating from Version 6.0 products, see this topic for information
about planning for migration, and the steps involved in carrying out a migration
from your specific product.

How do I plan and configure brokers?
New users: Use the links in this topic to find out how to plan and configure
brokers.

You can create a broker for testing purposes on your WebSphere Message Broker
Toolkit computer by using the Default Configuration wizard. When you are ready

Chapter 2. WebSphere Message Broker overview 91

to create brokers for testing on platforms other than Windows or Linux on x86, or
for production purposes, you must plan your configuration carefully, by using the
information provided in the WebSphere Message Broker information center.

What do I need to know about brokers?

Use the links in this section to find information that you might find useful before
planning and designing your brokers.
v What is a broker?

A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in-flight messages. Follow this link to get
information about brokers, and the resources that you need to create and
configure your brokers.

v What is an operation mode?
The operation mode that you use is determined by the license that you
purchased when you bought the product. The mode can either give you the full
operating capabilities of your broker, that is, enterprise mode, or restrict the
operating capabilities of your broker, that is, starter, adapter, or entry modes.
You can set the operation mode when you create a broker, however, brokers are
created, or migrated from previous versions, in enterprise mode by default.
Follow this link to get information about the various modes that are available.

v What do I need to know about databases?
You can configure your message flows to access data in databases; you can read
from, write to, and update the information in a supported database. Follow this
link to find out more about databases and how to create connections to them.

What do I need to know about authorization and security?

You must set up access and authorization credentials for some of the resources that
you use with WebSphere Message Broker; for example, databases. Follow the links
in this section to get information about authorization, access control, and security
for your broker.
v What authorizations are needed for configuration tasks?

Authorization is the process of granting or denying access to a system resource.
Use this link to get examples of the tasks in WebSphere Message Broker that
require authorization. Use the following links to get more details about the
security requirements for administrative tasks on the different platforms:
– “Security requirements for Linux and UNIX platforms” on page 3648
– “Security requirements for Windows systems” on page 3651
– “Security requirements for z/OS” on page 3655

v What authorizations are required for access to runtime resources?
If you want to set up administrative authority for the resources managed by the
broker (including the broker itself), you must set up WebSphere MQ
authorizations for brokers and execution groups.

v Where can I find out about security for publish/subscribe?
Follow this link to get an overview of publish/subscribe security.

How do I plan brokers and configure prerequisites?

Use the following links to find out how to plan your brokers. You can also find out
about tasks you must complete before you can configure your brokers.
v How do I plan brokers?

92 WebSphere Message Broker Version 7.0.0.8

Follow this link to find out what you must consider when you plan your
brokers, and your WebSphere MQ infrastructure.

v How do I set up broker security?
Follow this link for information about how to set up security for your brokers.
Each link comprises a list of reminders or questions about the security tasks to
consider for your broker configuration. The answers to the questions provide the
security information that you need to configure your brokers, and also give you
further information about other security controls that you might want to deploy.

How do I create and configure brokers?

You can create one or more brokers on one or more computers. The use of multiple
brokers can help you to spread the load of the message processing that you want
to achieve, or to allocate different functions to different brokers or computers. For
example, you might set up a broker to run personnel applications, and another to
run financial or order systems. To support each broker, you must create a
WebSphere MQ queue manager, and you might need to create a WebSphere MQ
infrastructure of channels or a WebSphere MQ cluster to connect the brokers
together.

You might also create several execution groups on each broker to manage the
message flow applications that you deploy to the broker.

To create a broker, complete the following tasks in order:
1. How do I create a broker?

On Windows and Linux on x86, you can create brokers in the WebSphere
Message Broker Toolkit. On all platforms, you can create the brokers by using
the command-line commands. Create as many brokers as you require.

2. How do I verify that the broker has been created successfully?
You can use the mqsilist command to check that your brokers were created
successfully

3. How do I start a broker?
Follow this link to get instructions on how to start a broker.

How do I administer and monitor brokers?
New users: Use the links in this topic to get information about administering
brokers.

How do I administer my brokers?

Use the links in this section to find out about the tasks that you operate frequently
to activate and run your brokers.
v How do I start and stop a broker?

Use this link to find out how to start and stop a broker on the different
platforms. You can stop and start a broker by using the command line.

v How do I connect to a broker?
Use the following links to find out how to connect to your broker:
– Using the WebSphere Message Broker Toolkit or the WebSphere Message

Broker Explorer
– Using the Administration API (CMP API)
– On z/OS

v How do I start and stop message flows?

Chapter 2. WebSphere Message Broker overview 93

Use the following links to find out how to start and stop message flows:
– Using the WebSphere Message Broker Explorer in stand-alone mode (link to

follow)
– Start and Stop message flows using the command line
– Using the CMP API

v How do I deploy a broker archive file?
Use this link to find out how to deploy a broker archive file to a broker by using
the WebSphere Message Broker Toolkit, the WebSphere Message Broker Explorer,
the mqsideploy command, and the CMP API.

v How do I submit batch requests using the CMP API?
You can use the CMP API to group multiple requests destined for the same
broker together, and submit them as a single unit of work.

v How do I modify my broker?
You might want to change the configuration of your broker. See How do I
modify a broker? and follow the link for your broker platform.

v How do I delete my broker?
You might want to delete your broker. See How do I delete a broker? for a link
to your platform.

v How do I back up my resources?
Follow this link to find out how to back up your broker and application
resources.

How can I monitor my brokers?

Use the links in this section to find out how you can monitor the events and
performance of your brokers.
v How can I view administration log information?

The “Administration Log view” on page 6840 in the WebSphere Message Broker
Toolkit contains information about events that occur during operation. These
events can be information, errors, or warnings, and relate to your own actions.

v How can I view message flow accounting and statistics data?
Message flow accounting and statistics data is the information that can be
collected by a broker to record performance and operating details of message
flow execution. Follow this link to get an overview of message flow accounting
and statistics, and links to further information.

v What are the system management interfaces?
The brokers provide a service for independent system management agents so
that a central management facility can access information about a network that
includes one or more brokers. Use this link to find out how you can use the
system management publications from WebSphere Message Broker to develop or
use system management adapters or customized administrative applications to
receive information about broker activity.

How do I deploy and configure message flow applications?
New users: Use the links in this topic to get information about deploying and
configuring message flow applications and related resources.

94 WebSphere Message Broker Version 7.0.0.8

What do I need to know about deployment?

Deployment is the process of transferring data to an execution group that belongs
to a broker, so that it can take effect in the broker. Use the following links to find
out more about deployment.
v Where can I get an overview of deployment?

Use this link to find out about the WebSphere Message Broker Toolkit, the
WebSphere Message Broker Explorer, the mqsideploy command, and the
Administration API (also known as the CMP API) as environments for
deployment.

v What do I need to know about message flow application deployment?
Use this link to find out more about deploying message flow applications and
related resources.

v What is a broker archive?
You add message flow applications and related resources to a broker archive to
deploy the resources to an execution group. Use this link to find out about the
files that can be associated with a broker archive file.

v What are configurable properties of broker archives?
System objects that are defined in message flows can have configurable
properties that you can update within the broker archive file before deployment.
You can use configurable properties to update target-dependent properties, such
as queue names, queue manager names, and database connections.

v How do I view version and keyword information for deployable resources?
Follow this link to find out how to view the version and keyword information of
deployable objects. You can use version and keyword information to track
resources that have been deployed to a broker.

How do I deploy message flow applications?

You must create, configure, and start at least one broker to deploy message flow
applications to an execution group. Use the links in this section to find out how to
deploy your message flow applications and related resources to an execution
group.
v How do I add an execution group?

An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes. You can create more execution groups in a
number of different ways:
– Using the WebSphere Message Broker Toolkit or WebSphere Message Broker

Explorer
– Using the command line
– Using the CMP API

v How can I create a broker archive?
A broker archive file (BAR file) is a compressed file that contains compiled
message flows, message dictionaries, and other development resources. Use this
link to find out how to create a broker archive. You can use the “Broker Archive
editor” on page 6794 to add or remove message flows and message sets to or
from your broker archive, and to edit the configurable properties within your
BAR file.

v How can I add resources to a broker archive?

Chapter 2. WebSphere Message Broker overview 95

You can add message flows and message sets to a broker archive file. The
message flows, message sets, and related resources are compiled when they are
added to the broker archive file. You can also choose to add the source files to
the broker archive file. You cannot add resources to a broker archive file from a
project that contains an error.

v How can I deploy a broker archive file?
Find out about the different ways that you can deploy a broker archive file to a
broker. For deploying message flow applications during development to a test
environment, the simplest method is to use the WebSphere Message Broker
Toolkit. When you deploy to a broker, you select an execution group to deploy
to.

v How do I check the results of deployment?
Use this link to find out how you can check the results of a deployment.

v How do I refresh the contents of a broker archive?
You can refresh the contents of a broker archive by removing resources from it
and, having made required changes, add them back again. Alternatively, you can
use the Refresh option in the Broker Archive editor.

How can I configure message flow applications?

Use the links in this section to find out how to configure your message flow
applications for use in a production environment.
v How do I edit configurable properties?

System objects that are defined in message flows can have configurable
properties that you can update within the broker archive file before deployment.
By changing configurable properties, you can customize a broker archive file for
a new broker, without needing to edit and rebuild the message flows or other
resources.

v How do I configure message flows at deployment time using user-defined
properties?
User-defined properties (UDPs) give you the opportunity to configure message
flows at deployment time, without modifying program code.

v How can I optimize message flow throughput?
Use this link to find out how you can optimize the throughput of messages in
your message flows using parallel processing.

v How do I add multiple instances of a message flow to a broker archive?
You can edit the name of your files in the broker archive so that you can deploy
multiple instances of a message flow with different values for the configurable
properties.

v How do I configure global coordination of transactions?
To ensure data integrity during transactions, you can globally coordinate
message flow transactions with a WebSphere MQ queue manager. Follow this
link to find out how to configure your databases, queue managers, and message
flow applications for global coordination.

How can I diagnose problems?
New users: Use the links in this topic to find out how to debug message flow
applications and get help with troubleshooting problems.

How can I debug and troubleshoot my message flow applications?

96 WebSphere Message Broker Version 7.0.0.8

A number of tools and sources of information are available to help you solve
problems with your message flow applications. If you can see errors or warnings
in the Problems view in the WebSphere Message Broker Toolkit, your message flow
applications and related resources might have problems that prevent you from
adding them to a broker archive file. Also, your message flow applications might
not work as you expect when they are deployed.

Use the information in the error or warning messages to fix the problem. If you
have difficulty deploying message flow application resources, see How can I
troubleshoot problems when deploying message flow applications? in this topic
for more information. If you have successfully deployed your message flow
applications, you can use the following links to debugging and troubleshooting
topics to help you solve any problems.
v How do I use the flow debugger?

You can test and debug your message flow applications by using the debugger
in the WebSphere Message Broker Toolkit. By adding breakpoints to your
message flows, you can use the debugger to view the path that messages take
through your message flow. You can also view the contents of the message
passing through the flow, and step through code to view the output messages
being constructed. The debugger is launched from the “Debug perspective” on
page 6789.

v Where can I find useful logs?
Find out where to find useful logs that are used in WebSphere Message Broker.

v How do I use trace?
User trace can be used to get further information about problems with messages
passing through your message flows. You can use the following sequence of
tasks to get user trace to troubleshoot a problem with a message flow:
1. “Starting user trace” on page 3197
2. “Retrieving user trace” on page 3204
3. “Formatting trace” on page 3543
4. “Interpreting trace” on page 3546

v How can I resolve problems when developing message flows?
Follow this link for information about some common problems when developing
message flows.

v How can I resolve problems when developing message models?
Follow this link for information about some common problems when developing
message models.

How can I troubleshoot problems when deploying message flow applications?

If your message flow applications or related resources contain an error, they cannot
be added to a broker archive file. Sometimes message flow applications that are
successfully added to a broker archive file can fail to be deployed, for example,
because of a problem with the broker or with the message flow applications. Use
the following links to find out how to check the results of deployment and get
help solving problems.
v How can I check the results of deployment?

Find out how to check the results of a deployment by using the “Administration
Log view” on page 6840, the mqsideploy command, and the Administration API
(also known as the CMP API).

v How can I resolve problems when deploying message flows or message sets?

Chapter 2. WebSphere Message Broker overview 97

Follow this link to find tips on resolving problems when deploying message
flows and message sets.

Where can I get other help on troubleshooting and solving problems?

Use the links in this section to find out more information about troubleshooting
and how to get support.
v What initial checks can I make?

Follow this link to get more in-depth advice on checks to make if you have
problems with WebSphere Message Broker.

v How do I deal with problems?
Use the links in this topic to find out about common problems that you might
see when you use WebSphere Message Broker. Check to see if one of these
problems match the symptoms you are observing.

v Where can I get more help with problems?
View this topic for links to more techniques for diagnosing problems with
WebSphere Message Broker, and links to information about getting support.

Samples
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.

Use the samples to learn how to use WebSphere Message Broker.
v You can view information about samples only when you use the information

center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

v Not all samples work in all modes. If you try to use a sample in a mode that is
restricted, you receive a message indicating the reason; see “Restrictions that
apply in each operation mode” on page 3657. You can run all samples in a
development and unit test broker; see “Development and unit test” on page 50.

v You might receive the following error:
SEVERE: Could not find the connection files.

If you receive this error, copy the .broker file for your default broker from the
runtime workspace in which you created your default configuration to your
current runtime workspace.

v To ensure that all available samples are displayed in the Samples and Tutorials
tab in the WebSphere Message Broker Toolkit, in the "More samples" panel in the
Samples and Tutorials tab click Retrieve and select the sample categories that
you want to display.

The samples are categorized as either Application or Technology samples.

Application samples
The Application samples are small end-to-end WebSphere Message Broker
message flow applications that show how to transform and route messages
through message flows.
v Application samples

98 WebSphere Message Broker Version 7.0.0.8

Technology samples
The Technology samples are small WebSphere Message Broker message
flow applications that each show a specific feature of WebSphere Message
Broker.
v Controlling and Routing samples
v File Processing samples
v Industry samples
v Message Formats samples
v Message Transformation samples
v Monitoring samples
v Security samples
v Transports and Connectivity samples
v Web Service samples

Before you can use the samples you must create the Default Configuration, see
“Creating the Default Configuration” on page 106.

The following table lists the Application samples that are available in WebSphere
Message Broker.

Sample name Description

Airline Reservations This sample shows how to use a range of nodes,
including nodes for aggregation, routing, tracing,
filtering, and updating database tables.

Coordinated Request Reply This sample shows how two applications with different
message formats communicate with each other through
the use of WebSphere MQ messages in a request-reply
processing pattern, coordinated by the use of an MQGet
node.

DatabaseInput Node This sample demonstrates how to take data from a
database, as it is being updated, and process the data
within WebSphere Message Broker.

Data Warehouse This sample contains a message flow that archives data,
such as sales data, to a database.

Error Handler This sample contains a message flow and a subflow to
show error handling in message flow applications.

Large Messaging This sample shows how to process messages that contain
repeating structures, and how to minimize the virtual
storage requirements for the message flow.

Message Routing This sample shows how to use a message flow to route
messages to different WebSphere MQ queues based on
data stored in a database table or a file.

Pager This sample shows simple point-to-point messaging and
publish/subscribe messaging. Use graphical interfaces to
send text messages to a pager application, or to subscribe
to publications about the surf on selected beaches.

Scribble This sample is a small, graphical whiteboard application
on which you draw by using your mouse pointer.
Depending on the options you choose, you can see the
effects of message transformation by using WebSphere
MQ transport or RealTime transport.

Chapter 2. WebSphere Message Broker overview 99

Sample name Description

Solar Pattern Authoring This sample shows how to build a WebSphere Message
Broker pattern. The sample provides an example
message flow project that calculates the sunrise and
sunset times in a PHPCompute node. The sample also
provides a pattern authoring project that configures a
pattern.

User-defined Extension These two samples show the use of user-defined nodes
written in the C and Java programming languages.

Video Rental This sample shows message transformation between
three different formats: XML, Custom Wire Format
(CWF), and Tagged/Delimited String (TDS) Format.

WBI JDBC Adapter Migration This sample re-creates a scenario of migrating a JDBC
adapter to invoke a message flow, by using an MQInput
node with the built-in DatabaseInput node.

Web Service Aggregation This sample demonstrates how to invoke a number of
web services and amalgamate the results by using
WebSphere Message Broker aggregation nodes. The
sample illustrates how aggregation can be used for
transports other than WebSphere MQ, and highlights
issues to be aware of. The sample also shows how you
can use message flow monitoring to audit data across the
aggregation fan-out and fan-in by using Collector node
techniques.

The following tables list the Technology samples that are available in WebSphere
Message Broker.

Control and Routing samples

Sample name Description

Aggregation This sample shows how to use the Aggregation nodes to
perform a basic four-way aggregation operation, with
simple fan-out and fan-in message flows.

Collector Node This sample shows how to configure the Collector node
to gather input from different input sources. It also
shows some alternative methods for completing
collections.

Simplified Database Routing This sample shows how to use the following range of
simplified (non-programming) message flow nodes:
Route, DatabaseRoute, and DatabaseRetrieve. The sample
illustrates how to access databases by using JDBC, and
how to use values held in an acquired result set,
gathered from a database query, to either dynamically
route messages or update the content of the messages.

Timeout Processing This sample shows how to use the timeout nodes to add
timeouts to message flows.

File Processing samples

100 WebSphere Message Broker Version 7.0.0.8

Sample name Description

Batch Processing This sample shows how to use the FileInput and
FileOutput nodes to read different input files and
append them to one output file. It also shows you how
to read a file "as is" from one local input directory and
write the file to a different local output directory.

File Output This sample shows how a FileOutput node can write a
message to a file during a message flow. The sample
shows a flow updating a SOAP message, the FileOutput
node writing this updated message to a file, and the
message being sent back to the sender by using HTTP as
the transport mechanism.

Managed File Transfer This sample shows how the FTEOutput node writes a
message to a file by using WebSphere MQ File Transfer
Edition to manage the transfer of the file. The sample
shows a Retail HQ to Branch product provisioning
scenario. The flow receives a stream of WebSphere MQ
messages with product data, and a file is created with an
FTEOutput node. The built-in FTEAgent operates with
the FTEOutput node to manage the transfer of the file to
a remote location.

WildcardMatch This sample shows how to access the
LocalEnvironment.Wildcard.WildcardMatch variable set
in the FileInput node. The sample then gives an example
of how, by using this variable, you can dynamically
override the output file name and directory properties
set in the FileOutput node.

Industry samples

Sample name Description

Healthcare This sample is a development accelerator, decreasing the
time an integration developer within the healthcare
industry requires to deliver integration solutions. This
sample provides a number of Healthcare assets that solve
key healthcare-specific integration problems.

TLOG Processor This sample is a set of customized message sets,
subflows, message flows, and style sheets that process
transaction log (TLOG) data from retail stores. These
samples provide sample TLOG input messages that are
generated by various IBM Retail applications to test the
TLOG message flows. Customers and service teams can
customize or extend the TLOG Processor samples by
modifying the message sets and flows, or by
recombining these components in alternative ways.

Message Formats samples

Sample name Description

Comma Separated Value (CSV) This sample shows how to model common CSV message
variants, and how to transform the sample CSV
messages to and from XML.

EDIFACT This sample shows an industry-standard message set for
Edifact messages.

Chapter 2. WebSphere Message Broker overview 101

Sample name Description

FIX This sample shows an industry-standard message set for
Fix messages.

SWIFT This sample shows an industry-standard message set for
Swift messages.

X12 This sample shows an industry-standard message set for
X12 messages.

XMLNSC Namespaces This sample shows how to change the existing
namespace of a message, remove a namespace from a
message, and add a namespace to a message.

XMLNSC Validation This sample shows the capability of the XMLNSC parser
to validate messages against an XML schema.

Message Transformation samples

Sample name Description

JavaCompute Node This sample shows how to use the JavaCompute node to
perform tasks such as calling an external service and
propagating a new message based on the results of the
call.

Message Map This sample shows how to author message maps in the
WebSphere Message Broker Toolkit.

PHPCompute Node This sample shows how to use the PHPCompute node in
a message flow to transform an XML message.

XSL Transform This sample shows how to use a message flow to
transform an XML message to another form of XML
message according to the rules provided by an XSL
stylesheet.

Monitoring samples

Sample name Description

WebSphere Business Monitor This sample provides resources to help you use the
monitoring events produced by your message flows for
business process modeling by using WebSphere Business
Monitor.

Security samples

Sample name Description

Security Identity Propagation This sample shows how to use Identity Security features
to extract the security credentials from the messages on
the MQInput and HTTPInput nodes. So that the sample
can run stand-alone, the sample does not include
security validation with an external security provider
system, such as LDAP or TFIM. The sample also shows
how to manipulate the security credentials by using
ESQL, then how to propagate the identity to the
MQOutput and HTTPRequest nodes.

Security Policy Enforcement Point (PEP) This sample demonstrates how to use the SecurityPEP
node as the Policy Enforcement Point in a message flow.

102 WebSphere Message Broker Version 7.0.0.8

Transports and Connectivity samples

Sample name Description

Browsing WebSphere MQ Queues This sample shows how a message flow can browse
WebSphere MQ messages that are in a queue, therefore
retrieving the messages non-destructively. This sample
also shows how to examine the contents of the browsed
message to determine whether to get the message.
Getting the message is a destructive process that removes
the message from the queue.

CICS Transaction Server for z/OS Connectivity This sample is based on a scenario in which a business
wants to retrieve a record from a file resource on CICS
Transaction Server for z/OS. The sample demonstrates
how to use the CICSRequest node. With this node, you
can run CICS applications, and retrieve data from CICS
regions.

CICS Transaction Server for z/OS Channel Connectivity This sample demonstrates how to call a channel-based
CICS program. A CICS channel structure can be
represented in WebSphere Message Broker by a message
collection. This sample demonstrates how to create and
populate a message collection for the CICSRequest node
and how to process the collection after the call.

CORBA nodes This sample is based on a product warehouse scenario
where a stock administrator wants to manage a stock
control management system hosted on a CORBA server.
The sample demonstrates how to use the CORBARequest
node to invoke CORBA server applications.

Email This sample consists of three message flow applications
that show the use of sending and receiving emails. The
emailform message flow provides an HTML input form
to construct and submit an email message. The
sendemail message flow receives the message and
processes all the details that are associated with the
email message. The recipients specified on the form
receive the message as an email in the appropriate
format, with any attachments. The getemail message
flow processes the email that is sent and filters the email
either to a WebSphere MQ queue, or saves the
attachment to a file by using the FileOutput node.

HTTPHeader node This sample consists of three message flows that show
the different ways in which you can use an HTTPHeader
node. The three message flows are:

v Single WebService in MQ flow sample. This sample
message flow shows how to create an interface
between a WebSphere MQ application and web-based
applications by using the HTTPHeader and
MQHeader nodes.

v Multiple WebService requests sample. This sample
shows how to create and reset HTTP headers by using
the HTTPHeader node.

v Set Cookie HTTP reply sample. This sample shows
how to add an HTTPReply header by using the
HTTPHeader node in a request-reply session.

Chapter 2. WebSphere Message Broker overview 103

Sample name Description

IMS Synchronous Request This sample shows how to call an IBM Information
Management System (IMS) transaction synchronously
from within a message flow. The sample uses the
IMSRequest node to make the synchronous calls by
using IMS Connect. This sample uses the IMS sample
transaction DSPALLI (Display All Invoices), which is
typically available on all IMS systems. The DSPALLI
transaction can call a REXX or COBOL program,
although REXX is the default that is typically installed
on IMS.

JD Edwards Connectivity This sample consists of a message flow application that
demonstrates the use of the JDEdwardsRequest node.
This sample message flow uses the JD Edwards business
function call "retrieve" to fetch a record from a JD
Edwards EnterpriseOne server. The record is then put on
a WebSphere MQ queue.

JMS Nodes This sample shows how to use the JMS nodes as a JMS
Consumer and Producer to an external JMS provider.

JMSHeader node This sample shows how to use the JMSHeader node in a
JMS coordinated request-reply scenario.

MQHeader node This message flow sample shows how to use the
MQHeader node to add and remove an MQMD header.

SAP callout to a synchronous system This sample consists of a single message flow application
that demonstrates the use of the SAPInput node with the
SAPReply node to enable a message flow to act as a
synchronous BAPI. The message flow is used to service
requests for four different BAPIs that create, update,
retrieve, and delete customer details.

SAP callout to an asynchronous system This sample consists of three message flow applications
that demonstrate the use of the SAPInput node with the
SAPReply node to enable a message flow to act as a
synchronous BAPI that wraps an asynchronous
application. The message flows are used to service
requests for four different BAPIs that create, update,
retrieve, and delete customer details.

SAP Connectivity This sample consists of two message flow applications
that show the use of the SAPInput node and the
SAPRequest node. The SAPInput node scenario shows
how to use a message flow to receive IDocs from the
SAP Material Master, then send the data to a WebSphere
MQ output queue for processing by another message
flow or application. The SAPRequest node scenario
shows how to use a message flow to create a customer in
SAP, then update and retrieve the customer details.

104 WebSphere Message Broker Version 7.0.0.8

Sample name Description

SCA nodes This sample shows how to use the SCAInput, SCAReply,
SCAAsyncRequest, and SCAAsyncResponse nodes to
exchange message requests and responses with a
business process in WebSphere Process Server.

The sample re-creates a scenario in which a savings
account is linked to a current account, and money can be
transferred between the two accounts. In the outbound
scenario, WebSphere Message Broker passes money
transfer requests to WebSphere Process Server, which
hosts the savings account.

This sample can be extended to include an inbound
scenario where WebSphere Process Server passes requests
onto WebSphere Message Broker, which hosts the current
account.

TCPIP Client Nodes This sample consists of three message flows that show
both synchronous and asynchronous communication
from the WebSphere Message Broker to a TCP/IP server.
It also includes a simple message flow to simulate the
TCP/IP server.

TCPIP Handshake This sample shows how to implement an
application-level handshake protocol for a synchronous
request reply model of communication between a client
and a server. The sample also includes two other
message flows to emulate the client and server
applications. You can replace these applications by
external applications which use the same interfaces.

Twineball Example EIS Adapter This sample shows how to use the WebSphere Adapter
nodes by using the Twineball adapter, a self contained
EIS, to synchronize a C system with an EIS.

Web Service samples

Sample name Description

Address Book This sample shows how to use the
SOAPInput, SOAPReply, and SOAPRequest
nodes to provide and consume a web
service. Two sets of example input messages
are provided: one set to call the consumer
flow which in turn calls the provider flow,
and one set to call the provider flow directly.
This sample can also be extended to show
how to set up WS-Security for existing
message flows for both a provider and a
consumer.

Asynchronous Consumer This sample shows how to use the
asynchronous SOAP nodes when you call a
web service. The web service simulates an
order service, and the client shows how
existing WebSphere MQ interfaces can be
extended to make web service requests.

Chapter 2. WebSphere Message Broker overview 105

Sample name Description

RESTful Web Service Using JSON This sample shows how to front an existing
service as a RESTful web service providing a
JSON message format interface. The sample
also shows how to consume the RESTful
web service from a message flow.

SOAP Nodes This sample shows the use of SOAP nodes
to both provide and consume a web service.

Web services using HTTP nodes This sample shows how to use WebSphere
Message Broker to front an existing
application as a web service.

Web Services Gateway This sample demonstrates how to use the
SOAP nodes in a Web Services Gateway
mode, which allows WebSphere Message
Broker to handle generic SOAP
request/response and one-way messages
when used as a web services provider or
consumer.

WebSphere Service Registry and Repository
Connectivity

This sample shows how to retrieve
documents by using the WebSphere Service
Registry and Repository nodes. You can use
these nodes to query Service Registry
information, and to use this information at
run time. You can also use these nodes to
acquire WSDL or other generic descriptions
of available services.

Related tasks:
“Creating the Default Configuration”
You can create the Default Configuration of WebSphere Message Broker by using
the Default Configuration wizard. You can also remove the Default Configuration
by using the link provided.
“Resolving problems when running samples” on page 3366
Use the advice given here to help you to resolve common problems that can arise
when you run or remove samples.
Related reference:
“What the Default Configuration wizard creates” on page 107
A table of the components that are created by the wizard, details of how to resolve
problems, and how to view errors.

Creating the Default Configuration
You can create the Default Configuration of WebSphere Message Broker by using
the Default Configuration wizard. You can also remove the Default Configuration
by using the link provided.

About this task

The Default Configuration wizard creates all the components that you need to
import and deploy the WebSphere Message Broker samples, and to build your own
samples. For more information about the Default Configuration wizard and the
authorities your user account must have to successfully create the Default
Configuration, see “What the Default Configuration wizard creates” on page 107.

106 WebSphere Message Broker Version 7.0.0.8

You can use the following links only when you use the information center that is
integrated with the WebSphere Message Broker Toolkit or the WebSphere Message
Broker Explorer.

Procedure

Click the following link to start the Default Configuration wizard:
v Start the Default Configuration wizard

What to do next

When you have finished using the Default Configuration, you can remove it by
clicking the following link:
v Remove the Default Configuration wizard
Related concepts:
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Creating a default configuration” on page 564
Use the Default Configuration wizard to create and test a basic broker
configuration.
Related reference:
“What the Default Configuration wizard creates”
A table of the components that are created by the wizard, details of how to resolve
problems, and how to view errors.

What the Default Configuration wizard creates
A table of the components that are created by the wizard, details of how to resolve
problems, and how to view errors.

Purpose

The components that are created by the Default Configuration wizard are listed in
the following table.

Component Name

broker MB7BROKER

queue manager MB7QMGR

v WebSphere Message Broker automatically scans for a free queue manager port
starting at 2414.

v The HTTP listener port that is automatically used is 7080.

Target environment of the wizard

The target environment contains the default components that are created by the
Default Configuration wizard.
Target Environment of Wizard
--
Summarized resource updates listed below will be
applied to installation
[C:\Program Files\IBM\MQSI\7.0]

Chapter 2. WebSphere Message Broker overview 107

javascript:liveAction('com.ibm.etools.mft.eou','com.ibm.etools.mft.eou.wizards.defaultcfgwiz.DefaultCfgWizActiveHelp','')
javascript:liveAction('com.ibm.etools.mft.eou','com.ibm.etools.mft.eou.wizards.defaultcfgwiz.DefaultCfgWizActiveHelp','remove')

All actions are logged to file
[DefaultConfigurationWizard.log]
in the workspace directory
[C:\Documents and Settings\Administrator\IBM\wmbt70\
workspace\.metadata]

All actions are applied under account:
LocalSystem
Queue manager name: MB7QMGR
Queue manager port: 2414

Default broker details
Broker name: MB7BROKER
Queue manager name: MB7QMGR

HTTP listener port: 7080

Resolving problems when creating and running the Default
Configuration

If you have problems when you run the Default Configuration wizard, consider
whether the following issues apply to you:
v If you have any existing brokers that are using the default HTTP listener port of

7080, you must ensure that the existing brokers are stopped before you create
and deploy to the Default Configuration. If a sample does not run as you expect,
check the Event Log for errors such as BIP3144:
BIP3144
(MB8BROKER.HTTPListener) An error has occurred during HTTP
listener startup:
the specified TCPIP port (’7080’) is already in use.

The HTTP listener needs to bind to a TCPIP port for correct
operation to be possible.
The broker-specific TCPIP port number ’7080’ is in use by
another application.

Stop other applications from using the specified port,
or change the broker-specific port.

v Linux On Linux: Ensure that your user account belongs to the mqbrkrs
group.

Viewing errors

To view errors generated by the Default Configuration wizard look at the
DefaultConfigurationWizard.log file:

v Windows On Windows: This file is, by default, in C:\Documents and
settings\user_name\IBM\wmbt70\workspace\.metadata\
DefaultConfigurationWizard.log

v Linux On Linux: This file is, by default, in /home/user_name/IBM/wmbt70/
workspace/.metadata/DefaultConfigurationWizard.log

To view Eclipse errors that are caused by the Default Configuration wizard look at
the Eclipse Error log, see “Viewing the Eclipse error log” on page 3532. The Error
Log view opens in the perspective in which you are currently working.
Related concepts:

108 WebSphere Message Broker Version 7.0.0.8

“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Creating a default configuration” on page 564
Use the Default Configuration wizard to create and test a basic broker
configuration.
“Creating the Default Configuration” on page 106
You can create the Default Configuration of WebSphere Message Broker by using
the Default Configuration wizard. You can also remove the Default Configuration
by using the link provided.
“Viewing the Eclipse error log” on page 3532
The Eclipse error log captures internal errors that are caused by the operating
system or your code.

Legal information for WebSphere Message Broker
Read the information that describes the legal statements for this product.
v Notices
v Trademarks

This information center provides links or references to non-IBM Web sites and
resources. IBM makes no representations, warranties, or other commitments
whatsoever about any non-IBM Web sites or third-party resources (including any
Lenovo Web site) that may be referenced, accessible from, or linked to any IBM
site. A link to a non-IBM Web site does not mean that IBM endorses the content or
use of such Web site or its owner. In addition, IBM is not a party to or responsible
for any transactions you may enter into with third parties, even if you learn of
such parties (or use a link to such parties) from an IBM site. Accordingly, you
acknowledge and agree that IBM is not responsible for the availability of such
external sites or resources, and is not responsible or liable for any content, services,
products, or other materials on or available from those sites or resources. When
you access a non-IBM Web site, even one that may contain the IBM-logo, be aware
that it is independent from IBM, and that IBM does not control the content on that
Web site. It is up to you to take precautions to protect yourself from viruses,
worms, trojan horses, and other potentially destructive programs, and to protect
your information as you deem appropriate.

Notices for WebSphere Message Broker
Read the legal notices for WebSphere Message Broker.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

Chapter 2. WebSphere Message Broker overview 109

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN

110 WebSphere Message Broker Version 7.0.0.8

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Privacy policy considerations

IBM Software products, including software as a service solutions, ("Software
Offerings") may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is described below.

For WebSphere Message Broker, the Software Offering does not use cookies or
other technologies to collect personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details/us/en

Chapter 2. WebSphere Message Broker overview 111

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details/us/en

sections entitled "Cookies, Web Beacons and Other Technologies" and "Software
Products and Software-as-a Service".

COPYRIGHT LICENSE

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks in the WebSphere Message Broker Information
Center

Review the trademark information for WebSphere Message Broker.

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States and/or other countries.

Intel, Itanium, and Pentium are trademarks of Intel Corporation in the United
States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliate.

Other company, product, or service names may be trademarks or service marks of
others.

112 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Glossary of terms and abbreviations
This glossary defines WebSphere Message Broker terms and abbreviations that are
used in this online information center.

A B C D E F G H I J K L M N O P Q R S T U V W X Y
Z

A

active working set
The logical collection of application projects that is currently displayed in
the Broker Application Development perspective. See also working set.

adapter
An intermediary software component that allows two other software
components to communicate with one another.

Administration API (CMP)
An application programming interface that your applications can use to
control brokers through a remote interface. For continuity and consistency,
this API is referred to as the CMP, its name in previous versions.

aggregation
See message element aggregation.

AMI See Application Messaging Interface.

Application Messaging Interface (AMI)
The programming interface, provided by WebSphere MQ, that defines a
high-level interface to message queuing services. See also Message Queue
Interface (MQI) and Java Message Service (JMS). Applications that use the
AMI connect to the broker using WebSphere MQ Enterprise Transport.

attribute
A characteristic or trait of an entity that describes the entity; for example,
the telephone number of an employee is one of the employee attributes.

An attribute may have a type, which indicates the range of information
given by the attribute, and a value, which is within that range. In XML, for
example, an attribute consists of a name-value pair within a tagged
element, that modifies features of the element.

attribute group
A set of attributes that can appear in a complex type.

TOP

B

BAR file
See broker archive file.

bend point
A point that is introduced in a connection between two message flow
nodes at which the line that represents the connection changes direction. A
bend point can be used to make node alignment and processing logic
clearer and more effectively displayed.

binary large object (BLOB)
A block of bytes of data (for example, the body of a message) that has no
discernible meaning, but is treated as one entity that cannot be interpreted.

Chapter 2. WebSphere Message Broker overview 113

BLOB See binary large object.

BLOB domain
The message domain that includes all messages with content that cannot
be interpreted or subdivided into smaller sections of information. Messages
in this domain are processed by the BLOB parser. See also DataObject
domain, IDOC domain, JMS domain, MIME domain, MRM domain, SOAP
domain, XML domain, XMLNS domain, and XMLNSC domain.

BLOB parser
A program that interprets a message that belongs to the BLOB domain,
and generates the corresponding tree from the bit stream on input, or the
bit stream from the tree on output.

broker
A set of execution processes that host one or more message flows. Also
known as a message broker.

broker archive file
The unit of deployment to the broker; also known as a BAR file. The
broker archive file contains a number of different files, including compiled
message flows (.cmf) and message sets (.dictionary and .xsdzip files),
that are used by the broker at run time. It can also contain additional
user-provided files that your message flows might need at run time, if the
file extension does not overlap with extensions that are used by the broker.

broker schema
A symbol space that defines the scope of uniqueness of the names of
resources that are defined within it. The resources include message flows,
ESQL files, and mapping files.

built-in node
A message flow node that is supplied by the product. Some of the
supplied nodes provide basic processing such as input and output.

built-in pattern
A pattern that covers a set of commonly encountered message flow
scenarios and that is packaged and released with WebSphere Message
Broker.

business component
This term is specific to the WebSphere Adapters. A component that defines
the structure, behavior, and information that is displayed by a particular
subject, such as a product, contact, or account, in Siebel Business
Applications.

business graph
This term is specific to the WebSphere Adapters. A wrapper that is added
around a simple business object or a hierarchy of business objects to
provide additional capabilities. For example, a wrapper might carry change
summary and event summary information related to the business objects in
the business graph. See also business object.

business object
A software entity that represents a business entity, such as an invoice. A
business object includes persistent and nonpersistent attributes, actions that
can be performed on the business object, and rules that the business object
is governed by. See also business graph.

TOP

114 WebSphere Message Broker Version 7.0.0.8

C

callback function
See implementation function.

cardinality
See mapping cardinality.

certificate authority
A trusted third-party organization or company that issues the digital
certificates. The certificate authority typically verifies the identity of the
individuals who are granted the unique certificate.

cmf See compiled message flow.

compiled message flow (cmf)
A message flow that has been compiled to prepare it for deployment to the
broker. A cmf file is sent to the broker within a BAR file.

complex element
A named structure that contains simple elements within the message.
Complex elements can contain other complex elements, and can also
contain groups. The content of a complex element is defined by a complex
type. See also simple element.

complex type
A type that can contain elements, attributes, and groups organized into a
hierarchy.

A complex type structure within a message contains elements, attributes,
and groups organized into a hierarchy. See also simple type.

component
A set of processes that perform a specific set of functions. WebSphere
Message Broker consists of two components, the broker and the WebSphere
Message Broker Toolkit.

component directory
In z/OS, the root directory of the component's runtime environment.

component name
The external name of a component. Each component requires a name,
which is used, for example, in the WebSphere Message Broker Toolkit and
in commands.

component PDSE
In a z/OS environment, a PDSE that contains jobs to define resources to
WebSphere MQ, DB2, and the broker started task. See partitioned data set.

connection
See message flow node connection. For broker-to-broker connections, see
publish/subscribe topology.

connection factory
A set of configuration values that produces connections that enable a Java
EE component to access a resource. Connection factories provide
on-demand connections from an application to an enterprise information
system (EIS).

content-based filter
In publish/subscribe, an expression that is included as part of a
subscription to determine whether a publication message is received based
on its content. The expression can include wildcards.

Chapter 2. WebSphere Message Broker overview 115

Custom Wire Format (CWF)
The physical representation of a message in the MRM domain that is
composed of a number of fixed-format data structures or elements. In
CWF, these structures are not separated by delimiter characters.

CWF See Custom Wire Format.

TOP

D

data element separation
For a complex type, defines to the MRM parser TDS physical format which
method of identifying data elements is to be used, and how the data
elements are constructed. The following separation types are supported:
data pattern separation, delimited separation, fixed-length separation, and
tagged separation

DataFlowEngine (DFE)
See execution group.

datagram
A form of asynchronous messaging in which an application sends a
message, but does not want a response. Also known as send-and-forget.
Contrast with request/reply.

DataObject domain
The message domain that includes all messages that are exchanged
between the broker and enterprise information system applications such as
SAP, PeopleSoft, and Siebel. Messages in this domain are processed by the
DataObject parser. You must create a message model for messages that you
process in this domain. See also BLOB domain, IDOC domain, JMS
domain, MIME domain, MRM domain, SOAP domain, XML domain,
XMLNS domain, and XMLNSC domain.

DataObject parser
A program that interprets a message that belongs to the DataObject
domain, and generates the corresponding tree from the business object on
input, or the business object from the tree on output.

debugger
See flow debugger.

deploy
To place files or install software into an operational environment.

The process of transferring data to an execution group on a broker.

For deploying message flows and associated resources, the data is
packaged in a broker archive (BAR) file before being sent to the broker,
which unpacks and stores the data.

destination list
See local environment.

digital certificate
An electronic document used to identify an individual, a system, a server,
a company, or some other entity, and to associate a public key with the
entity. A digital certificate is issued by a certificate authority and is
digitally signed by that authority.

116 WebSphere Message Broker Version 7.0.0.8

digital signature
Information that is encrypted with a private key and is appended to a
message or object to assure the recipient of the authenticity and integrity of
the message or object. The digital signature proves that the message or
object was signed by the entity that owns, or has access to, the private key
or shared-secret symmetric key.

distribution list
A list of WebSphere MQ queues to which a message can be put with a
single statement.

document type definition (DTD)
The rules that specify the structure for a particular class of SGML or XML
documents. The DTD defines the structure with elements, attributes, and
notations, and it establishes constraints for how each item can be used
within the particular class of documents. A DTD is analogous to a database
schema in that the DTD completely describes the structure for a particular
markup language.

DOM See Document Object Model.

DTD See document type definition.

TOP

E

editor area
The area in the WebSphere Message Broker Toolkit where files are opened
for editing.

EIS See Enterprise Information System.

element
A named piece of information, or a field, within a message, with a
business meaning agreed by the applications that create and process the
message. See also simple element and complex element.

embedded message
See multipart message.

EMD See Enterprise Metadata Discovery.

endpoint
A JCA application or other client consumer of an event from the enterprise
information system.

Enterprise Information System (EIS)
The applications that comprise an existing enterprise system for handling
company-wide information. An enterprise information system offers a
well-defined set of services that are exposed as local or remote interfaces or
both. (Sun)

Enterprise Metadata Discovery (EMD)
A specification that defines how you can examine an Enterprise
Information System (EIS) and get details of business object data structures
and APIs. An EMD stores the definitions as XML schemas by default, and
builds components that can access the EIS.

Chapter 2. WebSphere Message Broker overview 117

environment
A structure within the message tree that is user-defined and can contain
variable information that is associated with a message while it is being
processed by a message flow.

ESM See external security manager.

ESQL See Extended SQL.

ESQL data type
A characteristic of an item of data that determines how that data is
processed. ESQL supports six data types (Boolean, datetime, null, numeric,
reference, and string). Data that is retrieved from a database or is defined
in a message model is mapped to one of these basic ESQL types when it is
processed in ESQL expressions.

ESQL field reference
A sequence of values, separated by periods, that identify a specific field
(which might be a structure) within a message tree or a database table. An
example of a field reference is Body.Invoice.InvoiceNo.

ESQL function
A single ESQL expression that calculates a resultant value from a number
of specified input values. The function can take input parameters but has
no output parameters; it returns to the caller the value that results from the
implementation of the expression. The ESQL expression can be a
compound expression such as BEGIN END.

ESQL module
A sequence of declarations that define MODULE-scope variables and their
initialization, and a sequence of subroutine (function and procedure)
declarations that define a specific behavior for a message flow node. A
module must begin with the CREATE node_type MODULE statement and end
with an END MODULE statement. The node_type must be one of Compute,
Database, or Filter. The entry point of the ESQL code is the module scope
procedure named MAIN.

ESQL procedure
A subroutine that has no return value. It can accept input parameters from
and return output parameters to the caller.

ESQL variable
A local temporary field that is used to assist in the processing of a
message.

event A change to a state, such as the completion or failure of an operation,
business process, or human task, that can trigger a subsequent action, such
as persisting the event data to a data repository or invoking another
business process.

event store
A persistent cache where event records are saved until a polling adapter
can process them.

exception list
A list of exceptions, with supporting information, that has been generated
during the processing of a message.

execution group
A named grouping of message flows that have been assigned to a broker.

118 WebSphere Message Broker Version 7.0.0.8

The broker enforces a degree of isolation between message flows in distinct
execution groups by ensuring that they execute in separate address spaces,
or as unique processes.

An execution group process is also known as a DataFlowEngine (DFE).
This term is typically used in problem determination scenarios; for
example, trace contents or diagnostic messages). A DFE is created as an
operating system process, and has a one-to-one relationship with the
named execution group. If more than one message flow runs within an
execution group, multiple threads are created within the DFE process.

exemplar
A project that contributes most of its content to a pattern. An exemplar
contains message flows and other resources, such as source code.

Extended SQL (ESQL)
A specialized set of SQL functions and statements that are based on regular
SQL, and extended with functions and statements that are unique to
WebSphere Message Broker.

Extensible Markup Language (XML)
A standard metalanguage for defining markup languages that is based on
Standard Generalized Markup Language (SGML).

Extensible Stylesheet Language (XSL)
A language for specifying style sheets for XML documents. Extensible
Stylesheet Language Transformation (XSLT) is used with XSL to describe
how an XML document is transformed into another document.

External Security Manager (ESM)
In a z/OS environment, a security product that performs security checking
on users and resources. RACF is an example of an ESM.

TOP

F

field reference
See ESQL field reference.

file splitting
The division of an event file, based on a delimiter or based on size, to
separate individual business objects within the file and send them as if
they are each an event file to reduce memory requirements.

filter An ESQL expression that is applied to the content of a message to
determine whether the message matches certain criteria.

For example, a Filter node uses a filter to determine how a message is to
be processed. Alternatively, a filter is applied to the content of a
publication message to determine whether it is to be passed to a
subscriber.

flow debugger
A facility to debug message flows that is provided in the Debug
perspective in the WebSphere Message Broker Toolkit.

TOP

G

Chapter 2. WebSphere Message Broker overview 119

graphical user interface (GUI)
A type of computer interface that presents a visual metaphor of a
real-world scene, often of a desktop. A GUI combines high-resolution
graphics, pointing devices, menu bars and other menus, overlapping
windows, icons, and the object-action relationship.

GUI See graphical user interface.

TOP

I

IBM Runtime Environment for Java
A subset of the IBM Developer Kit for the Java Platform that contains the
core executable files and other files that constitute the standard Java
platform. The IBM Runtime Environment includes the Java virtual machine
(JVM), core classes, and supporting files.

IBM Software Developer Kit for Java
A software package that can be used to write, compile, debug, and run
Java applets and applications.

IDOC domain
The message domain that includes all messages that are exchanged
between the broker and SAP R3 clients by the MQSeries® link for R/3.
Messages in this domain are processed by the IDOC parser. See also BLOB
domain, DataObject domain, JMS domain, MIME domain, MRM domain,
SOAP domain, XML domain, XMLNS domain, and XMLNSC domain.

The IDOC domain is deprecated; use the MRM domain for new messages.

IDOC parser
A program that interprets a message that belongs to the IDOC domain,
and generates the corresponding tree from the bit stream on input, or the
bit stream from the tree on output.

implementation function
A function written for a user-defined node or message parser; also known
as a callback function.

inbound processing
The process by which changes to business information in an enterprise
information system (EIS) are detected, processed, and delivered to a
runtime environment by a JCA Adapter. An adapter can detect EIS changes
by polling an event table or by using an event listener.

input node
A message flow node that represents a source of messages for a message
flow or subflow. See also output node.

installation directory
In a z/OS environment, a file system into which all product data is
installed, and from which it is referenced and retrieved during the
customization phase.

TOP

J

J2EE See Java 2 platform, Enterprise Edition.

120 WebSphere Message Broker Version 7.0.0.8

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications,
defined by Sun Microsystems Inc. The Java EE platform consists of a set of
services, application programming interfaces (APIs), and protocols that
provide the functionality for developing multi-tiered, Web-based
applications. (Sun)

Java Database Connectivity (JDBC)
An industry standard for database-independent connectivity between the
Java platform and a wide range of databases. The JDBC interface provides
a call-level API for SQL-based and XQuery-based database access. See also
Open Database Connectivity.

Java EE Connector Architecture (JCA)
A standard architecture for connecting the J2EE platform to heterogeneous
enterprise information systems (EIS).

Java Message Service (JMS)
An application programming interface that provides Java language
functions for handling messages. See also Application Messaging Interface
(AMI) and Message Queue Interface (MQI).

Java virtual machine (JVM)
A software implementation of a processor that runs compiled Java code
(applets and applications).

JCA See Java EE Connector Architecture.

JCL See Job Control Language

JDBC See Java Database Connectivity.

JMS See Java Message Service.

JMS domain
The message domain that includes all messages that are produced by the
WebSphere MQ implementation of the Java Message Service standard.
These messages, which have a message type of either JMSMap or
JMSStream, are supported in the same way as messages in the XML
domain, and are parsed by the XML parser. See also BLOB domain,
DataObject domain, IDOC domain, MIME domain, MRM domain, SOAP
domain, XML domain, XMLNS domain, and XMLNSC domain.

Job Control Language (JCL)
Job Control Language (JCL) comprises a set of Job Control Statements that
are used to define work requests called jobs. JCL tells the operating system
what program to run, and defines its inputs and outputs.

TOP

K

keystore
In security, a storage object, either a file or a hardware cryptographic card,
where identities and private keys are stored, for authentication and
encryption purposes. Some keystores also contain trusted, or public, keys.

TOP

L

LIL See loadable implementation library.

Chapter 2. WebSphere Message Broker overview 121

loadable implementation library (LIL)
The implementation module for a node or parser written in C. This library
file is implemented in the same way as a dynamic link library, but has a
file extension of .lil not .dll.

local environment
A structure within the message tree that contains broker and, optionally,
user information associated with a message while it is being processed by
a message flow.

In previous releases, the local environment structure was known as the
Destination list; the latter term is retained for compatibility.

local error log
A generic term that refers to the logs to which WebSphere Message Broker
writes records on the local system. Also known as the system log.

TOP

M

map (1) A complete transformation that has source objects that define the
structure of the inputs and target objects that define the structure of the
outputs. A map is represented as a .msgmap file.

(2) To associate a source to a target in a message map.

mapping
A target value expression.

mapping cardinality
The granularity of the way in which message elements are mapped from
message source to message target. For example:
v One-to-one: associates a single source with a single target
v One-sided: associates a value with a target
v Many-to-one: associates multiple sources with a single target

message
Data that is passed from one application to another. Each message must
have a structure and format that is compatible with both the sending and
receiving applications.

message broker
See broker.

message category
An optional grouping of messages that are related in some way. For
example, messages that relate to a particular application might be included
in a single category.

message definition
An annotated XML Schema model of a message format. A message
definition is a structured collection of elements, types, and groups.

message definition file
A file in a message set that contains one or more message definitions.

message dictionary
A data structure that describes all the messages in a message set in a form
suitable for use by the MRM parser.

122 WebSphere Message Broker Version 7.0.0.8

message domain
A grouping of messages that share certain characteristics. A message
domain has an associated parser that interprets messages that are received
and generated by a broker. WebSphere Message Broker supports messages
in the BLOB domain, DataObject domain, IDOC domain, JMS domain,
MIME domain, MRM domain, SOAP domain, XML domain, XMLNS
domain, and XMLNSC domain. You can create additional parsers known
as user-defined parsers to support messages that do not conform to the
supported domains.

message element aggregation
A mapping in which all the repeatable elements in one instance are
mapped to another instance. It is not possible to map the repeatable
elements themselves, only the instances. This aggregation is useful when
mapping all possible inputs to one or more outputs, and can be used for
copying an array, or for assigning a scalar, such as a summation. Use
message element aggregation when the following conditions are met:
v A single source and target are selected.
v Source and target are of simple numeric type.
v The source repeats.

message flow
A sequence of processing steps that run in the broker when an input
message is received. A message flow is created in the WebSphere Message
Broker Toolkit by including a number of message flow nodes that each
represents a set of actions that define a processing step. The connections in
the flow determine which processing steps are carried out, in which order,
and under which conditions. A message flow must include an input node
that provides the source of the messages that are processed. Message flows
are then ready to deploy to a broker for execution. See also subflow.

message flow node
A processing step in a message flow, also called a message processing
node. A message flow node can be a built-in node, a user-defined node, or
a subflow node.

message flow node connection
An entity that connects an output terminal of one message flow node to an
input terminal of another. A message flow node connection represents the
flow of control and data between two message flow nodes.

message format
The definition of the internal structure of a message, in terms of the fields
and the order of those fields. When a message format is self-defining, the
message is interpreted dynamically when it is read.

message group
A list of elements with information about how those elements can appear
in a message. Message groups can be ordered, unordered, or selective.

message model
See message definition.

message parser
A program that interprets an incoming message and creates an internal
representation of the message in a tree structure, and that regenerates a bit
stream for an outgoing message from the internal representation.

message processing node
See message flow node.

Chapter 2. WebSphere Message Broker overview 123

Message Queue Interface (MQI)
The programming interface that is provided by WebSphere MQ queue
managers. Application programs use the programming interface to access
message queuing services. See also Application Messaging Interface (AMI)
and Java Message Service (JMS). Applications that use the MQI, connect to
the broker using WebSphere MQ Enterprise Transport.

message set
A folder in a message set project that contains one or more message
definition files. It can be deployed to a broker in a broker archive file.

message set project
The eclipse container for a message set.

message template
A means of identifying a message format within the broker. It consists of
four parts: message domain, message set, message type, and physical
format.

message tree
The logical tree structure that represents the content and structure of a
message in the broker. The message tree is created by a message parser
from the input message received by a message flow, according to a
message template.

message type
The name given to a message definition in a message definition file.

metadata
The data that describes the characteristic of stored data.

metadata tree
A list in a tree structure that presents all the objects discovered from the
enterprise information system (EIS) by the enterprise service discovery
process. These objects can be selected from the tree to generate a business
object.

MIME See Multipurpose Internet Mail Extensions.

MIME domain
The message domain that includes all messages that conform to the MIME
standard. See also BLOB domain, DataObject domain, IDOC domain, JMS
domain, MRM domain, SOAP domain, XML domain, XMLNS domain, and
XMLNSC domain.

MIME parser
A program that interprets a message that belongs to the MIME domain,
and generates the corresponding tree from the bit stream on input, or the
bit stream from the tree on output.

MQI See Message Queue Interface.

MQRFH
An architected message header that is used to provide metadata for the
processing of a message. This header is supported by the WebSphere MQ
(MQSeries) Publish/Subscribe SupportPac.

MQRFH2
An extended version of MQRFH, providing enhanced function in message
processing.

MRM domain
The message domain that can parse, and write, a wide variety of message

124 WebSphere Message Broker Version 7.0.0.8

formats. This domain is primarily intended for non-XML message formats,
but it can also parse and write XML messages. Message models are created
in the WebSphere Message Broker Toolkit, with one or more physical
formats. Messages in the MRM domain are processed by the MRM parser.
See also BLOB domain, DataObject domain, IDOC domain, JMS domain,
MIME domain, SOAP domain, XML domain, XMLNS domain, and
XMLNSC domain.

MRM parser
A program that interprets a message that belongs to the MRM domain, and
generates the corresponding tree from the bit stream on input, or the bit
stream from the tree on output. Its interpretation depends on the physical
format that you have associated with the input or output message.

multilevel wildcard
A wildcard that can be specified in subscriptions to match any number of
levels in a topic.

multipart message
A message that contains one or more other messages within its structure.
The contained message is sometimes referred to as an embedded message.

Multipurpose Internet Mail Extensions
An Internet standard that defines different forms of data, including video,
audio, or binary data, that can be attached to email without requiring
translation into ASCII text.

TOP

N

namespace
In XML and XQuery, a uniform resource identifier (URI) that provides a
unique name to associate with the element, attribute, and type definitions
in an XML schema, or with the names of elements, attributes, types,
functions, and errors in XQuery expressions.

XML instance documents, XML Schemas, and message definitions can use
namespaces.

node (1) An endpoint or junction used in a message flow. See message flow
node.

(2) Any element in a tree. See tree node.

TOP

O

ODBC
See Open Database Connectivity.

Open Database Connectivity (ODBC)
A standard application programming interface (API) for accessing data in
both relational and non-relational database management systems. By using
this API, database applications can access data stored in database
management systems on various computers, even if each database
management system uses a different data storage format and programming
interface.

Chapter 2. WebSphere Message Broker overview 125

operation mode
A property of a broker that determines what operations it can perform.

outbound processing
The process by which a calling client application uses the adapter to
update or retrieve data in an enterprise information system (EIS). The
adapter uses operations such as create, update, delete, and retrieve to
process the request.

output node
A message flow node that represents a point at which messages leave the
message flow or subflow. See also input node.

TOP

P

package group
A group of one or more packages that are designed to work together and
can be installed to one directory. In WebSphere Message Broker, this term
refers to the group of products that are installed and maintained by
Installation Manager, which includes the WebSphere Message Broker
Toolkit. Products that are installed into a package group share common
files and resources. You can create multiple package groups on a single
computer.

parser See message parser.

partitioned data set (PDS, PDSE)
In a z/OS environment, a data set in direct-access storage that is divided
into partitions, which are called members. A partitioned data set
(extended) (PDSE) is an extension to a PDS that contains an indexed
directory in addition to the members.

pattern
A reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.

pattern archive
An archive file that contains all the installable pattern resources. The
pattern archive can be distributed by using a pattern community site.

pattern author
The developer that creates a pattern to meet a business or technical
requirement.

pattern authoring
The process of configuring one or more regular projects to turn them into a
pattern.

pattern authoring project
A project that contains the information used to create a pattern.

pattern categories
Categories that are based on pattern classification and that structure the
display in the Patterns Explorer view.

pattern community site
An application that supports uploading, browsing, searching, and
downloading pattern archives. The application can be either a website or a
shared file system directory.

126 WebSphere Message Broker Version 7.0.0.8

pattern instance
The implementation of a pattern, consisting of a pattern instance project
and one or more regular WebSphere Message Broker projects that
implement the pattern. A pattern instance is generated by providing
appropriate customization values to the parameters available in the
pattern.

pattern instance project
A project that contains project references to all other projects in the
workspace, relating to a specific pattern instance. A pattern instance project
also contains a pattern instance configuration file that stores the pattern
parameter values.

pattern parameter
A parameter that customizes and configures a pattern. For example, a
queue name from which messages are read.

pattern user
A user who configures a pattern that the pattern author has created. The
pattern is available to a pattern user in the Patterns Explorer view.

PDS, PDSE
See partitioned data set.

perspective
A group of views that show various aspects of the resources in the
WebSphere Message Broker Toolkit. See also view.

physical format
The physical representation of a message within the bit stream. The
supported physical formats are Custom Wire Format, XML Wire Format,
and Tagged/Delimited String Format. Physical format information is used
only by the MRM parser and the IDOC parser.

point-to-point
A style of messaging application in which the sending application knows
the destination of the message. Contrast with publish/subscribe.

predefined element and message
An element or message for which a matching definition exists in the
message model. See also self-defining element and message.

principal
An individual user ID (for example, a login ID) or a group. A group can
contain individual user IDs and other groups, to the level of nesting that is
supported by the underlying facility.

property
A characteristic of an object that describes the object. A property can be
changed or modified. Properties can describe the name, type, value, or
behavior of an object, and various other characteristics.

Resources that are created and maintained in the WebSphere Message
Broker Toolkit and components have properties; for example, message flow
nodes, deployed message flows, and brokers.

publication
In publish/subscribe messaging, a piece of information about a specified
topic that is available to a queue manager, for delivery to subscribed
applications.

Chapter 2. WebSphere Message Broker overview 127

publication node
An end point of a specific path through a message flow to which a client
application subscribes, identified to the client by its subscription point.

publisher
An application that makes information about a specified topic available to
a broker in a publish/subscribe system.

publish/subscribe
A style of messaging application in which the providers of information
(publishers) are de-coupled from the consumers of that information
(subscribers) using a broker. See also topic. Contrast with point-to-point
messaging.

publish/subscribe topology
The brokers, and the connections between them, that support
publish/subscribe applications.

TOP

Q

queue A WebSphere MQ object to which message queuing applications can put
messages, and from which message queuing applications can get messages.

queue manager
A system program that provides queuing services to applications. A queue
manager provides an application programming interface (the MQI) that
enables programs to access messages on the queues that the queue
manager owns.

TOP

R

request/reply
A type of messaging application in which a request message is used to
request a reply from another application. Contrast with datagram.

Resource Recovery Services (RRS)
A z/OS facility that provides two-phase sync point support by
participating resource managers.

retained publication
A published message that is kept at the broker for propagation to clients
that subscribe in the future.

RRS See Resource Recovery Services.

TOP

S

SCADA
See Supervisory, Control, And Data Acquisition.

SCA See Service Component Architecture (SCA).

schema
See XML Schema.

128 WebSphere Message Broker Version 7.0.0.8

self-defining element and message
An element or message for which no matching definition exists in a
message model, but which can be parsed without reference to a model. For
example, a message that is coded in XML can be self-defining. See also
predefined element and message.

send-and-forget
See datagram.

Service Component Architecture (SCA)
An architecture in which all elements of a business transaction, such as
access to Web services, Enterprise Information System (EIS) service assets,
business rules, workflows, databases, and so on, are represented in a
service-oriented way.

shared resources directory
The directory that contains software files or plug-ins that are shared by
packages. In WebSphere Message Broker, this term refers to the directory
that contains Eclipse plug-ins and features, and other common files and
resources, that are used by all products on the computer that are installed
and maintained by Installation Manager, which include the WebSphere
Message Broker Toolkit. The contents of this directory are used by all
products in all the package groups that are defined on the computer.

simple element
A field in a message that is based on a simple type. A simple element can
repeat, and it can define a default or a fixed value. See also complex
element.

simple type
A characteristic of a simple element that defines the type of data within a
message (for example, string, integer, or float). A simple type can have
value constraints which place limits on the values of any simple elements
based on that simple type. See also complex type.

single-level wildcard
A wildcard that can be specified in subscriptions to match a single level in
a topic.

SOAP A lightweight, XML-based protocol for exchanging information in a
decentralized, distributed environment. SOAP can be used to query and
return information and invoke services across the Internet.

SOAP domain
The message domain that includes all messages that conform to the SOAP
standard. You must create a message model for messages that you process
in this domain. See also BLOB domain, DataObject domain, IDOC domain,
JMS domain, MIME domain, MRM domain, XML domain, XMLNS
domain, and XMLNSC domain.

SOAP parser
A program that interprets a message that belongs to the SOAP domain,
and generates the corresponding tree from the bit stream on input, or the
bit stream from the tree on output. The bit stream is a representation of an
XML file.

SQL See Structured Query Language.

SQLJ A Java extension that supports static Structured Query Language
statements embedded within Java code.

Chapter 2. WebSphere Message Broker overview 129

stream
A method of topic partitioning that is used by applications that connect to
WebSphere MQ Publish/Subscribe brokers.

Structured Query Language (SQL)
A standardized programming language that is used to define and
manipulate data in a relational database. ESQL, the language that is used
by WebSphere Message Broker, is based on SQL, and has many similar
constructs.

style sheet
A specification of formatting instructions that, when applied to structured
information, provides a particular rendering of that information (for
example, online or printed). Different style sheets can be applied to the
same piece of structured information to produce different presentations of
the information.

subflow
A sequence of processing steps, implemented by message flow nodes, that
is designed to be embedded in a message flow or in another subflow. A
subflow must include at least one Input or Output node. A subflow can be
started by a broker only as part of the message flow in which it is
embedded, and therefore cannot be deployed.

subflow node
A message flow node that represents a subflow.

subscriber
A publish/subscribe application that requests information about a topic.

subscription
A record that contains the information that a subscriber passes to its local
broker to describe the publications that it wants to receive.

subscription filter
A predicate that specifies the subset of messages that are to be delivered to
a particular subscriber.

subscription point
The name that a subscriber uses to request publications from a particular
set of publication nodes. It is the property of a publication node that
differentiates that publication node from other publication nodes in the
same message flow.

substitution group
An XML Schema feature that provides a means of substituting one element
for another in an XML message. A substitution group contains a list of
global elements that can appear in place of another global element, called
the head element.

Supervisory, Control, And Data Acquisition (SCADA)
A term used to describe any form of remote telemetry system that is used
to gather data from remote sensor devices (for example, flow rate meters
on an oil pipeline) and for the near real-time control of remote equipment
(for example, pipeline valves).

system log
See local error log.

TOP

130 WebSphere Message Broker Version 7.0.0.8

T

Tagged/Delimited String (TDS) Format
The physical representation of a message in the MRM domain that has a
number of data elements separated by tags and delimiters.

target property
A message flow property that is selected by the pattern author to be
configured by the pattern.

TDS Format
See Tagged/Delimited String Format.

terminal
The point at which one node in a message flow is connected to another
node. You can connect terminals to control the route that a message takes,
dependent on the outcome of the operation that is performed on that
message by the node.

topic A character string that describes the nature of the data that is published in
a publish/subscribe system.

topic-based subscription
A subscription specified by a subscribing application that includes a topic
that filters publications.

tree node
An element in a mapping tree; a container for the mapping type such as a
message, database table, a column, or a basic element.

truststore
In security, a storage object, either a file or a hardware cryptographic card,
where public keys are stored in the form of trusted certificates, for
authentication purposes in Web transactions. In some applications, these
trusted certificates are moved into the application keystore to be stored
with the private keys.

type A characteristic of a message element that describes its data content. See
also simple type and complex type.

TOP

U

Unicode Transformation Format, 8-bit encoding form (UTF-8)
A transformation format that is designed for ease of use with existing
ASCII-based systems. UTF-8 is an encoding of Unicode character strings
that optimizes the encoding of ASCII characters in support of text-based
communication.

uniform resource identifier (URI)
An encoded address that represents any resource, such as an HTML
document, image, video clip, or program, on the Web; a URI is an abstract
superclass compared with a Uniform resource locator or a Uniform
resource name, which are concrete entities.

uniform resource locator (URL)
The unique address of an information resource that is accessible in a
network such as the Internet. The URL includes the abbreviated name of
the protocol used to access the information resource and the information
used by the protocol to locate the information resource.

Chapter 2. WebSphere Message Broker overview 131

A Web server typically maps the request portion of the URL to a path and
file name. Also known as universal resource locator.

uniform resource name (URN)
A name that uniquely identifies a Web service to a client.

URI See uniform resource identifier.

URL See uniform resource locator.

URN See uniform resource name.

user-defined extension
An optional component that is designed by the user to extend the
functions of WebSphere Message Broker. A user-defined extension can be
either a node or a message parser. See also user-defined node and
user-defined parser.

user-defined node
An extension to the broker that provides a new message flow node in
addition to the nodes that are supplied with the product. See also
implementation function and utility function.

user-defined parser
An extension to the broker that provides a new message parser in addition
to the parsers that are supplied with the product. See also implementation
function and utility function.

user-defined pattern
A pattern that is created by a pattern author.

UTF-8 See Unicode Transformation Format.

utility function
A function provided by the broker that can be used by developers who
write user-defined nodes or parsers.

TOP

V

value constraint
A limit that sets a restriction on the values that a simple type can
represent.

view In Eclipse-based user interfaces, a pane that is outside the editor area,
which can be used to look at or work with the resources in the WebSphere
Message Broker Toolkit. For example, you can view and edit your project
files in the Broker Development view (previously called the Resource
Navigator view). See also perspective.

TOP

W

warehouse
A persistent, data store for historical events (or messages). The Warehouse
node within a message flow supports the recording of information in a
database for subsequent retrieval and processing by other applications.

Web service
A self-contained, self-describing modular application that can be published,
discovered, and invoked over a network using standard network protocols.

132 WebSphere Message Broker Version 7.0.0.8

Typically, XML is used to tag the data, SOAP is used to transfer the data,
WSDL is used for describing the services available, and UDDI is used for
listing what services are available.

Web Services Description Language (WSDL)
An XML-based specification for describing networked services as a set of
endpoints that operate on messages that contain either document-oriented
or procedure-oriented information. A WSDL document enables a Web
services client to invoke a Web service using the messages defined in a
message definition.

WebSphere Adapters
WebSphere Adapters facilitate the exchange of business objects between
Enterprise Information Systems (such as SAP Software, PeopleSoft
Enterprise, and Siebel Business Application systems) and other
applications.

WebSphere Message Broker Explorer
A graphical user interface based on the Eclipse platform for administering
your brokers.

WebSphere Message Broker pattern
A pattern in the WebSphere Message Broker Toolkit that exposes one or
more pattern parameters for a pattern user to complete.

WebSphere Message Broker Toolkit
A graphical user interface built on Eclipse that is used to provide
integration and connectivity solutions by developing resources associated
with message flows.

WebSphere MQ Enterprise Transport
A transport protocol supported by WebSphere Message Broker that enables
WebSphere MQ application clients to connect to brokers.

WebSphere MQ Everyplace®

A generally available WebSphere MQ product that provides proven
WebSphere MQ reliability and security for mobile and wireless devices.
WebSphere MQ Everyplace applications connect to the broker using
WebSphere MQ Mobile Transport.

WebSphere MQ Mobile Transport
A transport protocol supported by WebSphere Message Broker that enables
WebSphere MQ Everyplace application clients to connect to brokers.

WebSphere MQ Web Services Transport
A transport protocol supported by WebSphere Message Broker that enables
HTTP-compliant application clients to connect to brokers.

wildcard
A character that can be specified in subscriptions to match a range of
topics. See also multilevel wildcard and single-level wildcard.

work_path
The location in the local file system in which the component stores internal
and working data. For example, the default location on Windows XP
systems is C:\Documents and Settings\All Users\Application
Data\IBM\MQSI\.

working set
A logical collection of application projects, that you can use to limit the
number of resources that are displayed in the Broker Application
Development perspective. See also active working set.

Chapter 2. WebSphere Message Broker overview 133

World Wide Web Consortium (W3C)
An international industry consortium set up to develop common protocols
to promote the evolution and interoperability of the World Wide Web.

WSDL
See Web Services Description Language.

W3C See World Wide Web Consortium.

TOP

X

XML See Extensible Markup Language.

XML domain
The message domain that includes all messages that conform to the W3C
XML standard. Messages in this domain are processed by the XML parser.
See also BLOB domain, DataObject domain, IDOC domain, JMS domain,
MIME domain, MRM domain, SOAP domain, XMLNS domain, and
XMLNSC domain.

The XML domain is deprecated; use the XMLNSC domain for new
messages.

XML parser
A program that interprets a message that belongs to the XML domain and
JMS domains, and generates the corresponding tree from the bit stream on
input, or the bit stream from the tree on output. The bit stream is a
representation of an XML file.

XMLNS domain
An extension of the XML domain that contains messages that conform to
the W3C XML standard, and that can also use the namespaces
specification. Messages in this domain are processed by the XMLNS parser.
See also BLOB domain, DataObject domain, IDOC domain, JMS domain,
MIME domain, MRM domain, SOAP domain, XML domain, and XMLNSC
domain.

XMLNS parser
A program that interprets a message that belongs to the XMLNS domain,
and generates the corresponding tree from the bit stream on input, or the
bit stream from the tree on output. The bit stream is a representation of an
XML file.

XMLNSC domain
An extension of the XML domain that provides high-performance XML
parsing and offers optional XML Schema validation. Messages in this
domain are processed by the XMLNSC parser. You can create a message
model for messages that you process in this domain, but a model is
required only if you want to validate the message. See also BLOB domain,
DataObject domain, IDOC domain, JMS domain, MIME domain, MRM
domain, SOAP domain, XML domain, and XMLNS domain.

XMLNSC parser
A program that interprets a message that belongs to the XMLNSC domain,
and generates the corresponding tree from the bit stream on input, or the
bit stream from the tree on output. The bit stream is a representation of an
XML file.

134 WebSphere Message Broker Version 7.0.0.8

XML Path Language (XPath)
A language designed to uniquely identify or address parts of a source
XML document, for use with XSLT. XPath provides basic facilities for the
manipulation of strings, numbers, and Boolean values in message flow
resources. For example, it can be used by Java programs within a
JavaCompute node, or as the expression language within a Mapping node,
or by the properties of several other nodes.

XML Schema
An international standard that defines a language for describing the
structure of XML documents. An XML Schema formally describes and
constrains the content of XML documents by indicating which elements are
valid and in which combinations. (An XML Schema is an alternative to a
document type definition (DTD), and can be used to extend functionality
in the areas of data typing, inheritance, and presentation.) The XML
Schema language is ideally suited to describing the messages that flow
between business applications, and is widely used in the business
community for this purpose. Message definitions are annotated XML
Schema.

XML Schema Definition Language (XSD)
A language for describing XML files that contain XML Schema.

XML Wire Format
The physical representation of a message in the MRM domain that can be
parsed as XML.

XPath See XML Path Language.

XSD See XML Schema Definition Language (XSD).

XSL See Extensible Stylesheet Language.

TOP

Accessibility features for WebSphere Message Broker
Accessibility features help users who have a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in WebSphere Message
Broker. You can use screen-reader software to hear what is displayed on the screen.
v Supports keyboard-only operation
v Supports interfaces commonly used by screen readers

Tip: This information center, and its related publications, are accessibility-enabled
for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

If you are reading a PDF file with a screen reader, the default reading option
typically returns the best results. In some cases, the way in which the PDF file has
been generated might require you to select one of the other reading options; for
example, Use reading order in raw print stream.

Chapter 2. WebSphere Message Broker overview 135

Keyboard navigation

This product uses standard Linux and Microsoft Windows navigation keys.

Visit the IBM Accessibility Center for more information about the commitments
that IBM makes towards accessibility.
Related reference:
“WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
keyboard shortcuts” on page 6828
You can navigate all interfaces in the WebSphere Message Broker Explorer and
WebSphere Message Broker Toolkit by using the keyboard.

Workbench User Guide - Keyboard shortcuts for the Workbench, Java
development tools, and the debugger

136 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/able

Chapter 3. Migrating and upgrading

To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.

Before you begin

Migration information is regularly updated on the WebSphere Message Broker
support web page with the latest details available. Click Troubleshoot and look for
the document "Problems when migrating".

You can migrate your existing components and resources to WebSphere Message
Broker Version 7.0 from previous versions of both WebSphere Message Broker and
WebSphere Event Broker.

The architecture of WebSphere Message Broker Version 7.0 has been simplified:
v The broker has no requirement for a database. When you migrate from a

previous version, the following changes apply:
– Because a database is no longer a mandatory requirement for a broker, DB2

and DB2 Runtime Client (the Derby database supported only on Windows
systems) are not supplied when you purchase WebSphere Message Broker
Version 7.0.

– The mqsicreatebroker and mqsichangebroker commands have been updated
to remove the specification of database parameters.

– The DatabaseInstanceMgr that was available on Windows systems to manage
Derby and DB2 databases has been removed for Version 7.0. Commands that
control the DatabaseInstanceMgr and the Derby database have been removed:

mqsicreatedb

mqsideletedb

mqsichangedbimgr

v The broker security model is implemented by using WebSphere MQ queues. The
Configuration Manager component has been removed and you cannot migrate
existing components of this type. All operational data maintained by the
Configuration Manager components is retrieved when you migrate your brokers.
The commands that controlled this component have been removed:

mqsichangeconfigmgr
mqsicreateconfigmgr
mqsideleteconfigmgr
mqsireportconfigmgr

v All topic-based publish/subscribe operations are handled by WebSphere MQ.
Because access control for publishers and subscribers is managed by
WebSphere MQ, the User Name Server component is no longer required, and
has been removed; you cannot migrate existing components of this type. The
following commands are no longer available:

mqsichangeusernameserver
mqsicreateusernameserver
mqsideleteusernameserver

137

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

After you have migrated, you can control brokers only from the WebSphere
Message Broker Explorer or the WebSphere Message Broker Toolkit Version 7.0.

You can migrate from Version 6.1 or Version 6.0 only to a full edition of Version
7.0, Remote Adapter Deployment, Entry Edition, or Starter Edition. Do not migrate
brokers from an earlier version to the Trial Edition. If you choose to migrate
brokers by using the mqsimigratecomponents command, the brokers are migrated in
enterprise mode. If you have purchased the Remote Adapter Deployment, Entry
Edition, or Starter Edition, you must change the mode of all your migrated brokers
to comply with the terms of your license. For more information, see “Changing the
operation mode of your broker” on page 655.

Procedure
1. Check that your current installation of WebSphere Message Broker (Version 6.1

or Version 6.0) or WebSphere Event Broker (Version 6.0 only) is at a supported
level for migration. Details are provided in “Supported migration paths” on
page 3579.

2. Understand the options that are available to install Version 7.0 components on
the same computer as components from previous versions. These options are
described in “Coexistence with previous versions and other products” on page
139.

3. You must migrate your queue managers to a supported version of
WebSphere MQ before you can migrate your brokers. For the latest details of
all supported levels of hardware and software, visit the WebSphere Message
Broker Requirements website.

4. If your configuration includes publish/subscribe applications, support has
transferred from WebSphere Message Broker to WebSphere MQ. You must take
additional steps to migrate publish/subscribe information from your current
WebSphere Message Broker or WebSphere Event Broker configuration. Details
are provided in “Migrating publish/subscribe information to WebSphere MQ”
on page 141.

5. If you are currently working with WebSphere Message Broker or WebSphere
Message Broker with Rules and Formatter Extension , follow the instructions in
“Migrating from Version 6.1 products” on page 163.

6. If you are currently working with WebSphere Message Broker Version 6.0 or
WebSphere Message Broker with Rules and Formatter Extension Version 6.0,
follow the instructions in “Migrating from Version 6.0 products” on page 183.

7. If you are currently working with WebSphere Event Broker Version 6.0, and
you only use publish/subscribe functions, you can migrate to WebSphere MQ.
This migration path is documented in the Migration section of the WebSphere
MQ Version 7 Information Center online.
If you currently use, or plan to use, additional broker functions, and you want
to migrate to WebSphere Message Broker Version 7.0, follow the instructions in
“Migrating from Version 6.0 products” on page 183. The tasks that you must
complete are the same as those tasks documented for WebSphere Message
Broker Version 6.0.

8. When you have migrated your components and resources, check if the
post-migration tasks apply to your configuration. Guidance is provided in
“Post-migration tasks” on page 204.

Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.

138 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

“Coexistence with previous versions and other products”
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Migrating publish/subscribe information to WebSphere MQ” on page 141
These tasks give an overview of how to migrate publish/subscribe information
from WebSphere Message Broker or WebSphere Message Broker Version 6.0 to
WebSphere MQ.
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
Related reference:
“Migration and upgrade” on page 3579
Consider the factors involved in the migration of components and resources from
Version 6.0 or Version 6.1 to Version 7.0.
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
Related information:

WebSphere Message Broker Requirements

WebSphere Message Broker Support

WebSphere MQ Version 7 Information Center online

Coexistence with previous versions and other products
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.

WebSphere Message Broker Version 7.0 requires a specific minimum supported
version of WebSphere MQ. For systems other than z/OS that allow only one
version of WebSphere MQ on a single computer, you must first install a supported
version of WebSphere MQ and migrate your WebSphere MQ resources to this
version. You can then install WebSphere Message Broker Version 7.0. For the latest
details of all supported levels of hardware and software, visit the WebSphere
Message Broker Requirements website.

Coexistence with previous versions of the product installed on
the same computer

WebSphere Message Broker Version 7.0 can coexist with a Version 6.1 product, a
Version 6.0 product, or both, on the same computer.

Chapter 3. Migrating and upgrading 139

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/support/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Component names must be unique on the computer, regardless of version.

When you migrate from a Version 6.1 or Version 6.0 product to Version 7.0, you do
not have to uninstall the Version 6.1 or Version 6.0 product before installing
Version 7.0. You can install Version 7.0 in a different location on the same
computer, migrate your components and resources to Version 7.0, and uninstall the
Version 6.1 or Version 6.0 product later, when you are sure that you no longer need
it.

For details of default locations for installations of each version, see “Coexistence
and migration” on page 239.

If you attempt to install the broker into a directory that already contains an
installation of the broker at a previous version, you are prompted to confirm that
you want to continue with the installation, because it will overwrite the existing
installation. Cancel the installation and select a different directory to preserve your
existing configuration.

If you install more than one version on a single computer, and you create multiple
components, check that sufficient memory and disk space are available.

When you have installed Version 7.0, you can test your configuration.

Coexistence of Version 7.0 components with components from
previous versions

The following restrictions apply:
v The WebSphere Message Broker Explorer and the WebSphere Message Broker

Toolkit work only with brokers that you have migrated to, or created in, Version
7.0. If you try to connect to brokers at an earlier version, the connection attempt
fails.

v You can run all programs that you have written to the CMP API to interact with
a CMP API at Version 6.1 or Version 6.0 to interact with brokers that you have
migrated to, or have created in, Version 7.0. Programs that start, stop, delete, and
monitor deployed resources continue to work with Version 7.0.

v You can deploy BAR files that you have created in an earlier version of the
WebSphere Message Broker Toolkit from the WebSphere Message Broker Toolkit
Version 7.0 to a broker at Version 7.0, without change.

v You cannot deploy resources that you have created in the WebSphere Message
Broker Toolkit Version 7.0 to brokers that are at Version 6.1 or Version 6.0.

Coexistence with SupportPac IS02

The SupportPac IS02, WebSphere Message Broker Explorer Plug-in, cannot coexist
with the WebSphere Message Broker Explorer in WebSphere Message Broker
Version 7.0. If you have previously installed SupportPac IS02, you must uninstall
the SupportPac before installing the WebSphere Message Broker Explorer. To
remove SupportPac IS02, delete or move the directory to which you extracted the
IS02 zip file supplied with the SupportPac. Delete the BrokerExplorer.link file
which you copied into the C:\Program Files\IBM\WebSphere MQ\eclipseSDK33\
eclipse\links\ directory.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

140 WebSphere Message Broker Version 7.0.0.8

“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
“Resolving problems that occur when you start resources” on page 3371
Use the advice given here to help you to resolve common problems that can occur
when you start resources.
“Installing WebSphere Message Broker Explorer” on page 280
To use WebSphere Message Broker Explorer only, without installing the complete
WebSphere Message Broker Toolkit, use the WebSphere Message Broker Explorer
installation wizard to install the WebSphere Message Broker Explorer.
Related reference:
“Memory and disk space requirements” on page 3584
Check the memory and disk space that is required for your installation.
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.

Migrating publish/subscribe information to WebSphere MQ
These tasks give an overview of how to migrate publish/subscribe information
from WebSphere Message Broker or WebSphere Message Broker Version 6.0 to
WebSphere MQ.

Before you begin

Before you start

v Read about publish/subscribe on WebSphere MQ.
v For the latest details of all supported levels of hardware and software, visit the

WebSphere Message Broker Requirements website.
v Plan your migration, and pay specific attention to your Access Control List

(ACL) authorities.
The migration tool accepts and modifies only your positive ACL entries.
Therefore, you must inspect your ACL entries and modify all that do not meet
the appropriate criteria; see “Access Control List (ACL) migration -
publish/subscribe” on page 146

v Back up your Version 6.1 resources.

To migrate publish/subscribe information to WebSphere Message Broker Version
7.0 you must have WebSphere MQ installed on your system.

About this task

To migrate your existing publish/subscribe information to WebSphere MQ,
complete the following steps.

Procedure
1. Install WebSphere MQ on your system. This step upgrades your queue

managers; for instructions about how to install this product, see the
WebSphere MQ documentation.

Chapter 3. Migrating and upgrading 141

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

2. Install WebSphere Message Broker Version 7.0. This installation must be
alongside your existing WebSphere Message Broker Version 6.1 or Version 6.0
system.

3. Explicitly enable content-based filtering if you are using this option. For further
information, see “Enabling content-based filtering with publish/subscribe” on
page 2224.

4. Use a WebSphere MQ command prompt to run the migmbbrk command. This
command copies data from your WebSphere Message Broker Version 6.1 or
Version 6.0 system to your WebSphere MQ system.

5. Use a WebSphere Message Broker Version 7.0 command prompt to run the
mqsimigratecomponents command; for further information, see
“mqsimigratecomponents command” on page 3894.

6. If you have existing MQRFH format retained publications in WebSphere
Message Broker Version 6.0 or Version 6.1, see “Retained publications with
headers in MQRFH format” on page 149 for further migration considerations.

What to do next

Next: Follow the instructions detailed in “Migrating publish/subscribe from
WebSphere Message Broker Version 6.0 or WebSphere Message Broker to
WebSphere MQ” on page 146
Related concepts:
“Access Control List (ACL) migration - publish/subscribe” on page 146
The function that migrates publish/subscribe configuration data from WebSphere
Event Broker Version 6.0 and WebSphere Message Broker to WebSphere MQ
produces a file containing suggested security commands, and creates topic objects
as required.
Related tasks:
“Migrating publish/subscribe from WebSphere Message Broker Version 6.0 or
WebSphere Message Broker to WebSphere MQ” on page 146
You can migrate publish/subscribe configuration data from WebSphere Message
Broker Version 6.0 or WebSphere Message Broker to WebSphere MQ.
Related reference:
“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.

WebSphere MQ migmbbrk command
Migrate the publish/subscribe information from WebSphere Message Broker
Version 6.0 or WebSphere Message Broker to WebSphere MQ

Purpose

Use the WebSphere MQ migmbbrk command to migrate the publish/subscribe
information from a WebSphere Message Broker Version 6.0 or WebSphere Message
Broker broker to a WebSphere MQ queue manager. The command runs a
migration process that migrates the following publish/subscribe information to the
queue manager that is associated with the named broker:
v Subscriptions
v Subscription points (subscription points are supported only when RFH2

messages are used)
v Streams

142 WebSphere Message Broker Version 7.0.0.8

v Retained publications

When you run the migmbbrk command, you must use the profile for the version of
WebSphere Message Broker from which you are migrating.

The migmbbrk command does not migrate the Access Control List (ACL). Instead,
running the migration with the -t or -r parameters produces a file containing
suggested setmqaut commands to set up a security environment in the queue
manager that is equivalent to the security environment that existed in the broker.
You must review and modify the security command file as needed and run the
commands to set up a security environment in the queue manager, equivalent to
the one that existed in the broker, before you run the migration with the -c
parameter to complete the migration.

Note: On UNIX systems, all authorities are held by user groups internally, not by
principals, which has the following implications:
v If you use the setmqaut command to grant an authority to a principal, the

authority is granted to the primary user group of the principal. Therefore, the
authority is effectively granted to all members of that user group.

v If you use the setmqaut command to revoke an authority from a principal, the
authority is revoked from the primary user group of the principal. Therefore the
authority is effectively revoked from all members of that user group.

You must issue the migmbbrk command from a command environment that can
process both WebSphere MQ and WebSphere Message Broker commands
successfully. Typically, you can issues these commands from a WebSphere Message
Broker command console.

The WebSphere Message Broker Version 6.0, WebSphere Event Broker Version 6.0,
or WebSphere Message Broker publish/subscribe configuration data, which is
stored in the subscription database tables, is not deleted by the migration process.
This configuration data is therefore available to use until you explicitly delete it.

Syntax

►► migmbbrk -c
-r
-t

▼

-l
-o
-s
-z

-b BrokerName ►◄

Parameters

-b BrokerName
(Required) The name of the broker that is the source of the publish/subscribe
information that is to be migrated. The queue manager to which the
publish/subscribe information is migrated is the queue manager that is
associated with the named broker.

Chapter 3. Migrating and upgrading 143

-c
(Required) Complete the migration of the publish/subscribe configuration
data. The completion phase of the migration uses the topic objects that are
created in the initial -t phase. The broker state might have changed since the
initial phase was run, and new additional topic objects might now be required.
If this is the case, the completion phase creates these new topic objects as
necessary. The completion phase does not delete any topic objects that have
become unnecessary; you might need to delete any topic objects that you do
not require.

Before you complete the migration you must review and modify the security
command file produced in the -r or -t phase as required and run the
commands to set up a security environment in the queue manager, equivalent
to the one that existed in the broker.

Before you run this completion phase you must run the initial -t phase. You
cannot use the -c parameter with the -r parameter or the -t parameter. This
phase also creates a migration log.

-r
(Required) Rehearse the migration process but do not change anything. You
can use this before running the migration with the -t parameter, to create a
migration log, including any errors, so that you can observe what the result of
the migration process would be, but without changing the current
configurations.

Rehearsing the migration also produces a file containing suggested setmqaut
commands to set up a security environment in the queue manager that is
equivalent to the security environment that existed in the broker. Before you
complete the migration with the -c parameter you must review and modify
the security command file as required and run the commands to set up a
security environment in the queue manager, equivalent to the one that existed
in the broker.

You cannot use the -r parameter with the -c parameter or the -t parameter.

-t
(Required) Create topic objects that might be needed in the queue manager,
based on the ACL entries that are defined in the broker.

Use of the -t parameter also produces a file containing suggested setmqaut
commands to set up a security environment in the queue manager that is
equivalent to the security environment that existed in the broker. The topic
objects are created in anticipation of you running the security commands to
create ACLs for the topic objects. Before you complete the migration with the
-c parameter you must review and modify the security command file as
required and run the commands to set up a security environment in the queue
manager, equivalent to the one that existed in the broker.

You must run this phase before you run the completion phase with the -c
parameter. You cannot use the -t parameter with the -c parameter or the -r
parameter. This phase also creates a migration log.

-l
(Optional) Leave the broker running. If you do not specify this parameter, the
broker is shut down by default at the end of the migration process.

-o
(Optional) Overwrite subscription or retained publication that already exists in
the queue manager and that has the same name as a subscription or retained

144 WebSphere Message Broker Version 7.0.0.8

publication that is being migrated from the broker, with the publish/subscribe
information that was retrieved from the broker. The -o parameter has no effect
if you use it with the -r parameter.

-s
(Optional) Discard intermediate information that was retained from a previous
instance of the migration process that failed or was interrupted. The migration
process populates private queues with temporary data. If the migration process
completes successfully, the temporary data is deleted. If you do not specify this
parameter and the migration process fails or is interrupted, the temporary data
is retained and is used by the migration process if you restart it, so that the
process resumes at the point where it previously failed or was interrupted.

-z
(Optional) Run the migration process, regardless of whether it has previously
run to a successful completion. If you do not specify this parameter and the
migration process has previously run to a successful completion, the process
recognizes this fact and exits. You can use the -o parameter with the -z
parameter, but this is not mandatory. A previous rehearsal of the migration
using the -r parameter does not count as a successful completion.

Return codes

0 Migration completed successfully
20 An error occurred during processing

Output files

The migration process writes two output files to the current directory:

amqmigrateacl.txt
A file containing a list of setmqaut commands, for you to review, change,
and run if appropriate, to help you to reproduce your ACLs.

amqmigmbbrk.log
A log file containing a record of the details of the migration.

Examples

This command migrates the publish/subscribe information of broker BRK1 into its
associated queue manager and specifies that the migration process runs regardless
of whether it has previously run to a successful completion. It also specifies that
any subscription or retained publication that already exists in the queue manager,
that has the same name as a subscription or retained publication that is being
migrated from the broker, must be overwritten.
migmbbrk -r -z -o -b BRK1

Supported operating systems

The migmbbrk command is supported only on the following platforms that
support WebSphere Event Broker Version 6.0 or WebSphere Message Broker :

Microsoft Windows XP Professional with SP2, 32–bit versions only
Solaris on x86-64: Solaris 10
Solaris on SPARC: Solaris 9 (64–bit)
AIX Version 5.2 or later, 64–bit only
HP-Itanium: HP-UX 11i
Linux on IBM z Systems (64-bit)

Chapter 3. Migrating and upgrading 145

Linux on POWER® (64–bit)
Linux on x86
Linux on x86-64

On z/OS the equivalent function to the migmbbrk command is provided by the
CSQUMGMB utility.

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

Access Control List (ACL) migration - publish/subscribe
The function that migrates publish/subscribe configuration data from WebSphere
Event Broker Version 6.0 and WebSphere Message Broker to WebSphere MQ
produces a file containing suggested security commands, and creates topic objects
as required.

On WebSphere Event Broker Version 6.0 and WebSphere Message Broker , the
default behavior is for all user IDs to have access to any topic unless the ACL
explicitly restricts access. In WebSphere MQ the default behavior is for no user ID
to have access to any topic unless the ACL explicitly authorizes access, and it is
not possible to explicitly restrict access. Because of this difference in security
approaches, the migration process cannot directly migrate WebSphere Event Broker
Version 6.0 and WebSphere Message Broker ACLs to the WebSphere MQ queue
manager.

If the rehearsal or initial phase of the migration finds an ACL entry that denies
access, the process cannot produce a WebSphere MQ equivalent command.
Instead, it reports it in the security command file and advises that the ACL
migration must be performed manually.

You can modify the:
v Broker security settings to match the WebSphere MQ security approach, and run

the rehearsal or initial phase of the migration again to produce a new security
command file, or

v Security command file as needed. You must set up a security environment in the
queue manager, equivalent to the one that existed in the broker, before you run
the completion phase of the migration.

WebSphere Event Broker Version 6.0 and WebSphere Message Broker provide the
capability to define topic trees, but there is no capability to set specific attributes
for a particular individual topic in a topic tree. WebSphere MQ supports the
concept of topic objects that allow you to set specific, nondefault attributes for a
topic. An Access Control List is a property of a topic object. The initial phase of the
migration creates topic objects speculatively, based on the ACL entries that are
defined in the broker and in anticipation of you subsequently running the security
commands to create ACLs for the topic objects. When you have resolved what
security settings you need, you might need to delete the topic objects that you do
not require.

Migrating publish/subscribe from WebSphere Message Broker
Version 6.0 or WebSphere Message Broker to WebSphere MQ

You can migrate publish/subscribe configuration data from WebSphere Message
Broker Version 6.0 or WebSphere Message Broker to WebSphere MQ.

146 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Before you begin

Before you start:

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

This topic assumes the following prerequisite steps:
v You have installed WebSphere MQ.
v You want to migrate publish/subscribe support from WebSphere Message

Broker Version 6.0 or WebSphere Message Broker to WebSphere MQ.
v You want to upgrade from WebSphere Message Broker Version 6.0 or WebSphere

Message Broker to WebSphere Message Broker Version 7.0. You are currently
using the broker as an interface for functions other than, but in addition to,
publishing and subscribing, and you want to continue to use those other
functions after you migrate publish/subscribe information to WebSphere MQ.

v On distributed systems, you have set up and initialized a command
environment in which WebSphere MQ and WebSphere Message Broker
commands can run.

v The WebSphere MQ queue manager is not currently handling any publish or
subscribe messages.

v The queue manager attribute PSMODE is set to COMPAT; run the command ALTER
QMGR PSMODE(COMPAT).

Note: WebSphere MQ publish/subscribe functionality might alter the header
chains in your published message. The message body is not affected, but avoid
assumptions about the value of the CodedCharSetId field in MQRFH2 headers
when subscribing.

About this task

This task upgrades your enterprise from WebSphere Message Broker Version 6.0 or
WebSphere Message Broker to WebSphere Message Broker Version 7.0.

Procedure
1. Uninstall WebSphere MQ Version 6.X from your system.
2. Install WebSphere MQ on your system.
3. Install WebSphere Message Broker Version 7.0 on your system. Do not remove

your existing WebSphere Message Broker installation until you have migrated
your current publish/subscribe data.

4. Start the broker on your WebSphere Message Broker Version 6.0 or Version 6.1
system.

5. Run the migration process with the -r parameter.
For more information, see “WebSphere MQ migmbbrk command” on page
142. This option rehearses the migration of the publish/subscribe
configuration data from the broker to its underlying queue manager without
changing either of the configurations. For example, on supported systems
other than z/OS, use the following command to rehearse the migration from a
broker named BRK1:
migmbbrk -r -b BRK1

On z/OS use the equivalent parameters with the CSQUMGMB utility.
6. Run the following command:

Chapter 3. Migrating and upgrading 147

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

migmbbrk -t -b brokername

then run the security commands that set up the security environment. If you
do not run these commands, migration fails.

7. To check what is to be migrated in a real migration, review the contents of the
log file.

8. Back up the file that contains the security commands, and create your own
copy of the file.

9. Review and, if necessary, edit the commands in your copy of the security
commands file to ensure that they create a security environment that is like
your broker security environment.

10. Run the migration process with the -o parameter.
The migration process migrates the publish/subscribe configuration data to
the queue manager, and creates a log file and a new security commands file.
For example, on supported systems other than z/OS, use the following
command:
migmbbrk -c -o -b BRK1

This command completes the following actions:
v Migrates the publish/subscribe configuration data from broker BRK1
v Overwrites any subscription or retained publication that exists in the queue

manager
v Creates a file that has the same name as a migrating subscription or

retained publication
On z/OS use the equivalent parameters with the CSQUMGMB utility.

11. Stop the broker and check the Administration log to confirm that the broker
has stopped.

Note: After you have stopped the broker, the queue manager is in COMPAT
mode. As a result, the publish/subscribe state cannot be changed in
WebSphere MQ or WebSphere Message Broker, allowing the migration to
proceed.

12. Check the contents of the new security commands file against your backup
copy to make sure that nothing related to the ACL has changed since you
rehearsed the migration. If anything has changed, you might need to edit your
copy of the security commands file.

13. Run the commands that are in your copy of the security commands file.
14. Optional: Remove WebSphere Message Broker Version 6.0 or WebSphere

Message Broker from your system if necessary. Carry out this step only if you
are sure that you are not going to require your WebSphere Message Broker
Version 6.0 or WebSphere Message Broker system in the future.
To reverse the migration process, see “Migrating publish/subscribe
information from WebSphere MQ to WebSphere Message Broker Version 6.0
or WebSphere Message Broker ” on page 150.

15. Run the mqsimigratecomponents command; for more information, see
“mqsimigratecomponents command” on page 3894.

16. To set the PSMODE queue manager attribute to ENABLED, run the following
command:
ALTER QMGR PSMODE(ENABLED)

148 WebSphere Message Broker Version 7.0.0.8

This command starts the queued publish/subscribe interface so that the queue
manager deals with all subsequent publish/subscribe processing.

17. If appropriate, enable content-based filtering on at least one execution group.
For more information, see “Enabling content-based filtering with
publish/subscribe” on page 2224.

18. Restart the broker.
When the broker restarts, it continues to provide message services other than
publish and subscribe functions.

Related tasks:
“Migrating publish/subscribe information to WebSphere MQ” on page 141
These tasks give an overview of how to migrate publish/subscribe information
from WebSphere Message Broker or WebSphere Message Broker Version 6.0 to
WebSphere MQ.
“Migrating publish/subscribe information from WebSphere MQ to WebSphere
Message Broker Version 6.0 or WebSphere Message Broker ” on page 150
Complete these tasks to migrate publish/subscribe configuration data from
WebSphere MQ to WebSphere Message Broker Version 6.0 or WebSphere Message
Broker .
Related reference:
“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.
“WebSphere MQ migmbbrk command” on page 142
Migrate the publish/subscribe information from WebSphere Message Broker
Version 6.0 or WebSphere Message Broker to WebSphere MQ

Retained publications with headers in MQRFH format
Retained publications in MQRFH format might lose data when migrated to
WebSphere MQ.

WebSphere Message Broker applications that communicate with one another using
publish/subscribe can do so regardless of the message format that they use.
WebSphere Message Broker delivers the message in the format of the subscription
and provides automatic conversion to ensure that a subscriber receives messages in
the requested format.

WebSphere Message Broker applications generally use the MQRFH2 message
header, but it is possible that an application might have used the MQRFH format.

The migration of publish/subscribe information from WebSphere Message Broker
to WebSphere MQ requests messages in MQRFH2 format. It is rare for WebSphere
Message Broker client applications to use messages in MQRFH format. However, if
an application does use retained messages in MQRFH format, it is possible that
some truncation of data might occur upon migration. In particular, data passed
using the MQPSStringData and MQPSIntData name/value pairs is not migrated.

The migration function checks for two conditions in the data that is returned from
the broker:
1. That there is at least one retained message stored in the broker
2. That there is at least one MQRFH subscription

Chapter 3. Migrating and upgrading 149

If both these conditions are true, the migration function displays a warning
message and writes a warning message in the migration log stating that MQRFH
retained publications have been migrated with a possible loss of data.

MQRFH2 retained publications are migrated correctly.

Migrating publish/subscribe information from WebSphere MQ
to WebSphere Message Broker Version 6.0 or WebSphere
Message Broker

Complete these tasks to migrate publish/subscribe configuration data from
WebSphere MQ to WebSphere Message Broker Version 6.0 or WebSphere Message
Broker .

Before you begin

Before you start:

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

This task assumes the following prerequisites:
v You want to migrate publish/subscribe support from WebSphere MQ back to

WebSphere Message Broker Version 6.0 or WebSphere Message Broker .
v On distributed systems, you have set up and initialized a command

environment in which WebSphere MQ and WebSphere Message Broker
commands can run.

v The WebSphere MQ queue manager is not currently handling any publish or
subscribe messages.

Procedure
1. Run mqsimigratecomponents on WebSphere Message Broker Version 7.0,

specifying the broker that you want to migrate. For further information about
running this command, see “mqsimigratecomponents command” on page 3894.
This step resets the information to your original specifications in WebSphere
Message Broker Version 6.0 or WebSphere Message Broker .

2. Use the command: ALTER QMGR PSMODE(COMPAT) to set the PSMODE queue
manager attribute to COMPAT. This step starts the queued publish/subscribe
interface so that the queue manager deals with all subsequent
publish/subscribe processing.

3. Restart the broker.
Related tasks:
“Migrating publish/subscribe information to WebSphere MQ” on page 141
These tasks give an overview of how to migrate publish/subscribe information
from WebSphere Message Broker or WebSphere Message Broker Version 6.0 to
WebSphere MQ.
Related reference:
“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.
“WebSphere MQ migmbbrk command” on page 142
Migrate the publish/subscribe information from WebSphere Message Broker

150 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Version 6.0 or WebSphere Message Broker to WebSphere MQ

Migrating publish/subscribe collectives from WebSphere
Message Broker Version 6.0 or WebSphere Message Broker to
WebSphere MQ

Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Before you begin

Before you start:

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

This task assumes the following prerequisites:
v You have installed WebSphere MQ
v You want to migrate publish/subscribe collectives from WebSphere Message

Broker Version 6.0 or WebSphere Message Broker to WebSphere MQ queue
manager clusters.

v You want to upgrade from WebSphere Message Broker Version 6.0 or WebSphere
Message Broker to WebSphere Message Broker Version 7.0.

v On distributed systems, you have set up and initialized a command
environment in which WebSphere MQ and WebSphere Message Broker
commands can run.

v The WebSphere MQ queue manager is not currently handling any publish or
subscribe messages.

You must migrate each broker separately, and if you have a large number of
brokers to migrate, you can administer the process from a WebSphere Message
Broker WebSphere Message Broker Toolkit, using a Configuration Manager to a
mixed environment of WebSphere Message Broker brokers and migrated
WebSphere Message Broker Version 7.0 brokers.

This process is for migration only. You cannot administer new WebSphere Message
Broker Version 7.0 brokers or update, for example, publish/subscribe topologies, or
Access Control Lists

If you inadvertently initiate a publish/subscribe topology deploy, any brokers
already migrated to WebSphere Message Broker Version 7.0 ignore this part of the
deployment and issue a BIP2082 warning message to the system log.

If you use this mixed environment, you must use the “WebSphere MQ migmbbrk
command” on page 142 as part of the migration for each broker.

To migrate each broker separately:

Procedure
1. Remove each broker from the collective.
2. Migrate each broker, as described in “Migrating publish/subscribe from

WebSphere Message Broker Version 6.0 or WebSphere Message Broker to
WebSphere MQ” on page 146.

Chapter 3. Migrating and upgrading 151

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

3. Restart all the brokers. When you have migrated all the brokers you can place
the brokers in a queue manager cluster. See “Setting up a new queue-manager
cluster” for more information on how you carry out this procedure.

Related concepts:
“Setting up a new queue-manager cluster”
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe information to WebSphere MQ” on page 141
These tasks give an overview of how to migrate publish/subscribe information
from WebSphere Message Broker or WebSphere Message Broker Version 6.0 to
WebSphere MQ.

Setting up a new queue-manager cluster
Initial points to consider when setting up a new queue-manager cluster

Scenario:
v You are setting up a new WebSphere MQ network for a chain store. The store

has two branches, one in London and one in New York. The data and
applications for each store are hosted by systems running separate queue
managers. The two queue managers are called LONDON and NEWYORK.

v The inventory application runs on the system in New York, connected to queue
manager NEWYORK. The application is driven by the arrival of messages on the
INVENTQ queue, hosted by NEWYORK.

v The two queue managers, LONDON and NEWYORK, are to be linked in a
cluster called INVENTORY so that they can both put messages to the INVENTQ.

v Examples are given using TCP/IP only.
v Example UNIX systems commands are shown for AIX only.

Carry out the following tasks to set up a new cluster:
1. “Decide on the organization of the cluster and its name” on page 153
2. “Determine which queue managers should hold full repositories” on page 153
3. “Alter the queue-manager definitions to add repository definitions” on page

154
4. “Define the CLUSRCVR channels” on page 154
5. “Define the CLUSSDR channels” on page 155
6. “Define the cluster queue INVENTQ” on page 156
7. “Verify and test the cluster” on page 158

When you have set up your initial cluster you can add further queue managers;
see “Adding a new queue manager to a cluster” on page 159 for further
information.

For further information about setting up queue-manager clusters, refer to the
WebSphere MQ information center.

Note: You can also use one of the wizards supplied with WebSphere MQ Explorer
to create a new cluster similar to the one created by this task. Right-click the
Queue Manager Clusters folder, then click New > Queue Manager Cluster, and
follow the instructions given in the wizard.
Related tasks:

152 WebSphere Message Broker Version 7.0.0.8

“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Decide on the organization of the cluster and its name
Start by linking two queue managers into a cluster. You can use this as a basis for
expansion at a later date.

You have decided to link the two queue managers, LONDON and NEWYORK,
into a cluster. A cluster with only two queue managers offers only marginal benefit
over a network that is to use distributed queuing, but is a good way to start and
provides scope for future expansion. When you open new branches of your store,
you will be able to add the new queue managers to the cluster easily and without
any disruption to the existing network. “Adding a new queue manager to a
cluster” on page 159 describes how to do this.

For the time being the only application you are running is the inventory
application. The cluster name is INVENTORY.
Related concepts:
“Adding a new queue manager to a cluster” on page 159
How to add a queue manager to the cluster you have set up.
“Setting up a new queue-manager cluster” on page 152
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Determine which queue managers should hold full repositories
In any cluster you need to nominate at least one queue manager, or preferably two,
to hold full repositories.

See “Selecting queue managers to hold full repositories” on page 161 for more
information. In this example there are only two queue managers, LONDON and
NEWYORK, both of which hold full repositories.

Note:

1. You can perform the remaining steps in any order.
2. As you proceed through the steps, warning messages might be written to the

queue-manager log or the z/OS system console if you have yet to make some
expected definitions.

3. Before proceeding with these steps, make sure that the queue managers are
started.

Examples of the responses to the commands are shown in a box
like this after each step in this task.
These examples show the responses returned by WebSphere MQ for AIX.
The responses vary on other platforms.

Chapter 3. Migrating and upgrading 153

Related concepts:
“Setting up a new queue-manager cluster” on page 152
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Alter the queue-manager definitions to add repository definitions
On each queue manager that is to hold a full repository, you need to alter the
queue-manager definition.

To alter the queue-manager definition, use the ALTER QMGR command and
specifying the REPOS attribute:
ALTER QMGR REPOS(INVENTORY)

If you enter:

1. C:\..runmqsc LONDON
2. ALTER QMGR REPOS(INVENTORY) (as shown above)

LONDON will be changed to a full repository.

Note: If you just runmqsc and enter the ALTER QMGR command, the local queue
manager will be changed.
Related concepts:
“Setting up a new queue-manager cluster” on page 152
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Define the CLUSRCVR channels
On every queue manager in a cluster you need to define a cluster-receiver channel
on which the queue manager can receive messages.

This definition defines the queue manager's connection name and the CLUSTER
keyword shows the queue manager's availability to receive messages from other
queue managers in the cluster. The queue manager's connection name is stored in
the repositories, where other queue managers can refer to it.

Using transport protocol TCP/IP to define the channel:

On the LONDON queue manager, define:

1 : ALTER QMGR REPOS(INVENTORY)
AMQ8005: Websphere MQ queue manager changed.

154 WebSphere Message Broker Version 7.0.0.8

DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)
DESCR(’TCP Cluster-receiver channel for queue manager LONDON’)

In this example the channel name is TO.LONDON, and the connection name
(CONNAME) is the network address of the machine the queue manager resides
on, which is LONDON.CHSTORE.COM. The network address can be entered as an
alphanumeric DNS hostname, or an IP address in either in IPv4 dotted decimal
form (for example 9.20.9.30) or IPv6 hexadecimal form (for example
fe80:43e4:0204:acff:fe97:2c34:fde0:3485). Do not allow the CONNAME to specify a
generic name. The port number is not specified, so the default port (1414) is used.

On the NEWYORK queue manager, define:
DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)
DESCR(’TCP Cluster-receiver channel for queue manager NEWYORK’)

Related concepts:
“Setting up a new queue-manager cluster” on page 152
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Define the CLUSSDR channels
On every queue manager in a cluster you need to define one cluster-sender
channel on which the queue manager can send messages to one of the full
repository queue managers.

In this case there are only two queue managers, both of which hold full
repositories. They must each have a CLUSSDR definition that points to the
CLUSRCVR channel defined at the other queue manager. Note that the channel
names given on the CLUSSDR definitions must match those on the corresponding
CLUSRCVR definitions.

Using transport protocol TCP/IP:

On the LONDON queue manager, define:
DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)
DESCR(’TCP Cluster-sender channel from LONDON to repository at NEWYORK’)

1 : DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)
DESCR(’TCP Cluster-receiver channel for queue manager LONDON’)

AMQ8014: Websphere MQ channel created.
07/09/98 12:56:35 No repositories for cluster ’INVENTORY’

Chapter 3. Migrating and upgrading 155

On the NEWYORK queue manager, define:
DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)
DESCR(’TCP Cluster-sender channel from NEWYORK to repository at LONDON’)

Related concepts:
“Setting up a new queue-manager cluster” on page 152
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Define the cluster queue INVENTQ
Define the INVENTQ queue on the NEWYORK queue manager, specifying the
CLUSTER keyword.
DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)

The CLUSTER keyword causes the queue to be advertised to the cluster. As soon
as the queue is defined it becomes available to the other queue managers in the
cluster. They can send messages to it without having to make a remote-queue
definition for it.

Now that you have completed all the definitions, if you have not already done so
start the channel initiator on WebSphere MQ for z/OS and, on all platforms, start
a listener program on each queue manager. The listener program listens for
incoming network requests and starts the cluster-receiver channel when it is
needed.

All cluster queue managers need a channel initiator to monitor the system-defined
initiation queue SYSTEM.CHANNEL.INITQ and a channel listener program on
each queue manager. A channel listener program ‘listens' for incoming network
requests and starts the appropriate receiver channel when it is needed; see
“Channel listener” on page 157 for more information.

Channel initiator: This is the initiation queue for all transmission queues
including the cluster transmission queue.

WebSphere MQ for z/OS
There is one channel initiator for each queue manager and it runs as a
separate address space. You start it using the MQSC START CHINIT
command, which you issue as part of your queue manager startup.

1 : DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)
DESCR(’TCP Cluster-sender channel from LONDON to repository at NEWYORK’)

AMQ8014: Websphere MQ channel created.
07/09/98 13:00:18 Channel program started.

1 : DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)
AMQ8006: Websphere MQ queue created.

156 WebSphere Message Broker Version 7.0.0.8

Platforms other than z/OS
When you start a queue manager, a channel initiator is automatically
started if the queue manager attribute SCHINIT is set to QMGR. Otherwise
it can be started using the MQSC START CHINIT command or the
runmqchi control command.

Channel listener:

The implementation of channel listeners is platform specific, however there are
some common features. On all WebSphere MQ platforms, the listener can be
started using the MQSC command START LISTENER. On Windows systems and
UNIX systems, you can make the listener start automatically with the queue
manager by setting the CONTROL attribute of the LISTENER object to QMGR or
STARTONLY.

Platform-specific details follow:

WebSphere MQ for z/OS
Use the channel listener program provided by WebSphere MQ. To start a
WebSphere MQ channel listener, use the MQSC command START
LISTENER, which you issue as part of your channel initiator startup. For
example:
START LISTENER PORT(1414) TRPTYPE(TCP)

As well as a listener for each queue manager, members of a queue-sharing
group can make use of a shared listener. Do not use shared listeners in
conjunction with clusters. Specifically, do not make the CONNAME of the
queue manager's CLUSRCVR channel the address of the queue sharing
group's shared listener. If you do, queue managers might receive messages
for queues for which they do not have a definition.

WebSphere MQ for Windows
Use either the channel listener program provided by WebSphere MQ, or
the facilities provided by the operating system.

To start the WebSphere MQ channel listener use the RUNMQLSR
command. For example:
RUNMQLSR -t tcp -p 1414 -m QM1

WebSphere MQ on UNIX systems
Use either the channel listener program provided by WebSphere MQ, or
the facilities provided by the operating system (for example, inetd for TCP
communications).

To start the WebSphere MQ channel listener use the runmqlsr command.
For example:
runmqlsr -t tcp -p 1414 -m QM1

To use inetd to start channels, configure two files:
1. Edit the file /etc/services. (To do this you must be logged in as a

superuser or root.) If you do not have the following line in that file,
add it as shown:
MQSeries 1414/tcp # Websphere MQ channel listener

where 1414 is the port number required by WebSphere MQ. You can
change this, but it must match the port number specified at the sending
end.

Chapter 3. Migrating and upgrading 157

2. Edit the file /etc/inetd.conf. If you do not have the following line in
that file, add it as shown:
For AIX:
MQSeries stream tcp nowait mqm /usr/mqm/bin/amqcrsta amqcrsta
-m queue.manager.name

The updates become active after inetd has reread the configuration files.
Issue the following commands from the root user ID:

On AIX:
refresh -s inetd

You need to delete the remote queue definition at LONDON for the INVENTQ
queue.

As the INVENTQ is defined to the cluster, the queue managers no longer need
remote-queue definitions for the INVENTQ. At every queue manager, issue the
command:
DELETE QREMOTE(INVENTQ)

Until you do this, the remote-queue definitions will continue to be used and you
will not get the benefit of using clusters.
Related concepts:
“Setting up a new queue-manager cluster” on page 152
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Verify and test the cluster
Issue some DISPLAY commands to verify the cluster that you have set up.

The responses you see should be similar to those shown in the examples that
follow.

From the NEWYORK queue manager, issue the command:
dis clusqmgr(*)

Now issue the corresponding DISPLAY CHANNEL STATUS command:
dis chstatus(*)

1 : dis clusqmgr(*)
AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(NEWYORK) CLUSTER(INVENTORY)
CHANNEL(TO.NEWYORK)

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(LONDON) CLUSTER(INVENTORY)
CHANNEL(TO.LONDON)

158 WebSphere Message Broker Version 7.0.0.8

Because the INVENTQ queue has been advertised to the cluster there is no need
for remote-queue definitions. Applications running on NEWYORK and
applications running on LONDON can put messages to the INVENTQ queue.
They can receive responses to their messages by providing a reply-to queue and
specifying its name when they put messages.

At every queue manager, issue the command:
DELETE QREMOTE(INVENTQ)

Note: The definition for the local queue LONDON_reply does not need the
CLUSTER attribute. NEWYORK replies to this queue by explicitly specifying the
queue manager name.
Related concepts:
“Setting up a new queue-manager cluster” on page 152
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Adding a new queue manager to a cluster
How to add a queue manager to the cluster you have set up.

Scenario:
v The INVENTORY cluster has been set up as described in “Setting up a new

queue-manager cluster” on page 152. It contains two queue managers,
LONDON and NEWYORK, which both hold full repositories.

v A new branch of the chain store is being set up in Paris and you want to add a
queue manager called PARIS to the cluster.

v Queue manager PARIS will send inventory updates to the application running
on the system in New York by putting messages on the INVENTQ queue.

v Network connectivity exists between all three systems.
v The network protocol is TCP.

Procedure

Follow these steps to add a new queue manager to a cluster.

1 : dis chstatus(*)
AMQ8417: Display Channel Status details.

CHANNEL(TO.NEWYORK) XMITQ()
CONNAME(9.20.40.24) CURRENT
CHLTYPE(CLUSRCVR) STATUS(RUNNING)
RQMNAME(LONDON)

AMQ8417: Display Channel Status details.
CHANNEL(TO.LONDON) XMITQ(SYSTEM.CLUSTER.TRANSMIT.QUEUE)
CONNAME(9.20.51.25) CURRENT
CHLTYPE(CLUSSDR) STATUS(RUNNING)
RQMNAME(LONDON)

Chapter 3. Migrating and upgrading 159

1. Determine which full repository PARIS should refer to first

Every queue manager in a cluster must refer to one or other of the full repositories
in order to gather information about the cluster and so build up its own partial
repository. Choose either of the repositories, because as soon as a new queue
manager is added to the cluster it immediately learns about the other repository as
well. Information about changes to a queue manager is sent directly to two
repositories. In this example we choose to link PARIS to the queue manager
LONDON, purely for geographical reasons.

Note: Perform the remaining steps in any order, after queue manager PARIS is
started.

2. Define a CLUSRCVR channel on queue manager PARIS

Every queue manager in a cluster needs to define a cluster-receiver channel on
which it can receive messages. On PARIS, define:
DEFINE CHANNEL(TO.PARIS) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(PARIS.CHSTORE.COM) CLUSTER(INVENTORY)
DESCR(’Cluster-receiver channel for queue manager PARIS’)

This advertises the queue manager's availability to receive messages from other
queue managers in the cluster INVENTORY. There is no need to make definitions
on other queue managers for a sending end to the cluster-receiver channel
TO.PARIS. These will be made automatically when needed.

3. Define a CLUSSDR channel on queue manager PARIS

Every queue manager in a cluster needs to define one cluster-sender channel on
which it can send messages to its initial full repository. On PARIS, make the
following definition for a channel called TO.LONDON to the queue manager
whose network address is LONDON.CHSTORE.COM.
DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)
DESCR(’Cluster-sender channel from PARIS to repository at LONDON’)

Now that you have completed all the definitions, if you have not already done so,
start the channel initiator on WebSphere MQ for z/OS and, on all platforms, start
a listener program on queue manager PARIS. The listener program listens for
incoming network requests and starts the cluster-receiver channel when it is
needed.

By making only two definitions, a CLUSRCVR definition and a CLUSSDR
definition, the queue manager PARIS has been added to the cluster.

Now the PARIS queue manager learns, from the full repository at LONDON, that
the INVENTQ queue is hosted by queue manager NEWYORK. When an
application hosted by the system in Paris tries to put messages to the INVENTQ,
PARIS automatically defines a cluster-sender channel to connect to the
cluster-receiver channel TO.NEWYORK. The application can receive responses
when its queue-manager name is specified as the target queue manager and a
reply-to queue is provided.

160 WebSphere Message Broker Version 7.0.0.8

4. Issue the REFRESH CLUSTER command

If you are adding a queue manager to a cluster that has previously been removed
from the same cluster, you must issue the REFRESH CLUSTER command on the queue
manager you are adding. This completes the task of adding the queue manager.
REFRESH CLUSTER(INVENTORY) REPOS(YES)

Related concepts:
“Setting up a new queue-manager cluster” on page 152
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Selecting queue managers to hold full repositories
In each cluster you must select at least one, preferably two, or possibly more of the
queue managers to hold full repositories.

A cluster can work quite adequately with only one full repository but using two
improves availability. You interconnect the full repository queue managers by
defining cluster-sender channels between them.
v The most important consideration is that the queue managers chosen to hold full

repositories need to be reliable and well managed. For example, it would be far
better to choose queue managers on a stable z/OS system than queue managers
on a portable personal computer that is frequently disconnected from the
network.

v You should also consider the planned outages of the systems hosting your full
repositories, and ensure that they do not have coinciding outages.

v You might also consider the location of the queue managers and choose ones
that are in a central position geographically or perhaps ones that are located on
the same system as a number of other queue managers in the cluster.

v Another consideration might be whether a queue manager already holds the full
repositories for other clusters. Having made the decision once, and made the
necessary definitions to set up a queue manager as a full repository for one
cluster, you might choose to rely on the same queue manager to hold the full
repositories for other clusters of which it is a member.

When a queue manager sends out information about itself or requests information
about another queue manager, the information or request is sent to two full
repositories. A full repository named on a CLUSSDR definition handles the request
whenever possible, but if the chosen full repository is not available another full
repository is used. When the first full repository becomes available again it collects
the latest new and changed information from the others so that they keep in step.

If all of the full repository queue managers go out of service at the same time,
queue managers continue to work using the information they have in their partial
repositories. The repositories are limited to using the information that they have.
New information and requests for updates cannot be processed. When the full
repository queue managers reconnect to the network, messages are exchanged to
bring all repositories (both full and partial) back up-to-date.

Chapter 3. Migrating and upgrading 161

The full repositories republish the publications they receive through the
manually-defined CLUSSDR channels, which must point to other full repositories
in the cluster. You must make sure that a publication received by any full
repository ultimately reaches all of the other full repositories. This is done by
manually defining CLUSSDR channels between the full repositories. Having more
interconnection of full repositories will make the cluster more robust.

Having only two full repositories is sufficient for all but very exceptional
circumstances
Related concepts:
“Setting up a new queue-manager cluster” on page 152
Initial points to consider when setting up a new queue-manager cluster
Related tasks:
“Migrating publish/subscribe collectives from WebSphere Message Broker Version
6.0 or WebSphere Message Broker to WebSphere MQ” on page 151
Complete these tasks to migrate the configuration data from publish/subscribe
collectives in WebSphere Message Broker Version 6.0 or WebSphere Message
Broker to WebSphere MQ queue-manager clusters.

Migrating existing z/OS applications
You must migrate your existing z/OS applications to be 64-bit before you can use
them in WebSphere Message Broker Version 7.0.

You must recompile and link your C code and user exits on z/OS using XPLINK,
ensuring that you use the:
v LP64 flag
v IEEE Floating Point format

Therefore, the options you require are:
v LP64
v FLOAT (IEEE) - the default when you use LP64
v XPLINK - the default when you use LP64

When you make WebSphere MQ calls from within your C code or user exits, you
need to link against the following stub:
++WMQHLQ++.SCSQDEFS(CSQBMB2X)

where ++WMQHLQ++ refers to the high level qualifier for the WebSphere MQ datasets.

You must use the cmqcmb.h header file sipped in WebSphere Message Broker
Version 7.0 to recompile code that uses WebSphere MQ structures.

Using the cmqc.h header file provided by WebSphere MQ results in compilation
errors, as cmqc.h explicitly disallows 64-bit compilation.

Note, that compilation using the cmqcmb.h header file, and linking against CSQBMB2X
are supported only for user extensions running within the WebSphere Message
Broker Version 7.0 address space.

See “Compiling a C user-defined extension” on page 3047 for examples of 64-bit
compilation.
Related tasks:

162 WebSphere Message Broker Version 7.0.0.8

Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.

Migrating from Version 6.1 products
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Before you begin

Before you start:

Read “Preparing for migration from Version 6.1” on page 165.

About this task

You can migrate to WebSphere Message Broker Version 7.0 from the following
products:
v WebSphere Message Broker
v WebSphere Message Broker with Rules and Formatter Extension

For full product version and release levels, see “Supported migration paths” on
page 3579.

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

The instructions in this section apply to all operating systems that are supported
by Version 6.1.

You can migrate to WebSphere Message Broker Version 7.0 only if you do not use
the additional features provided by Rules and Formatter, or you choose not to use
them after migration. If you want to use the additional features provided by Rules
and Formatter, you can migrate to WebSphere Message Broker Version 7.0.0.6 with
WebSphere Message Broker with Rules and Formatter Extension Version 7.0.

Complete the following migration tasks in the order shown to reduce the
possibility of problems:
1. Back up your components and resources to ensure that you can return to your

previous version if necessary. See the information center for your current
product for more information and instructions.
Consider backing up the following resources:
v The internal configuration repository maintained by the Configuration

Manager.
v The broker database.
v Other critical databases that are accessed by your message flows.
v All your development resources; for example, message flows and message

sets.

Chapter 3. Migrating and upgrading 163

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

If you use a repository to manage these resources, check that the product
you use provides sufficient features for you to recover your resources at a
specific version.

2. Migrate your WebSphere MQ installation to a supported version.
3. Optional: In WebSphere Message Broker Version 7.0, publish/subscribe is

controlled by WebSphere MQ. If your applications use publish/subscribe
functions, and you have message flows that include one or more Publication
nodes, you must migrate your subscriptions to WebSphere MQ before you
migrate your broker.
Information about how to run the migmqbrk command to migrate and complete
other tasks that might be required, is provided in “Migrating publish/subscribe
information to WebSphere MQ” on page 141.
When you complete this step, all your subscriptions are migrated to
WebSphere MQ; subsequently, you must use WebSphere MQ facilities to
change subscriptions. A subscription related to the
SYSTEM.BROKER.ADMIN.REPLY queue has to be removed manually.
If you are using cloned WebSphere Message Broker support in Version 6.1, you
must change to use WebSphere MQ Clustering for Publish and Subscribe.

4. Migrate the WebSphere Message Broker Toolkit.
If the users of your toolkit operate in a team environment and share resources
with each other, upgrade all users to Version 7.0 at the same time to ensure
continued access to all resources. Because toolkit resources are stored in a
different format when they are first saved in Version 7.0, your users might
experience compatibility problems in some circumstances if some of their
colleagues are using Version 7.0 and they are still working with a previous
version.

5. Migrate the broker.
6. Optional: If you are migrating from a secure domain, you cannot directly

migrate security settings for brokers. You must set up equivalent security by
using the facilities provided by Version 7.0. To set up administration security
for a broker:
a. Activate broker administration security.
b. Set up your security based on existing ACLs.

7. Start the broker by using the mqsistart command.
8. Review the changes of behavior that are introduced in Version 7.0.
9. Consider the list of post-migration tasks, and follow the guidance provided if

these tasks apply to your environment.
Related concepts:
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Preparing for migration from Version 6.1” on page 165
Plan the order and extent of the migration of components and resources to Version
7.0.
“Migrating publish/subscribe information to WebSphere MQ” on page 141
These tasks give an overview of how to migrate publish/subscribe information
from WebSphere Message Broker or WebSphere Message Broker Version 6.0 to
WebSphere MQ.
“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.

164 WebSphere Message Broker Version 7.0.0.8

|
|

Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
Related information:

WebSphere Message Broker Information Center online

Preparing for migration from Version 6.1
Plan the order and extent of the migration of components and resources to Version
7.0.

Before you begin

Before you start: Check that your current installation of WebSphere Message
Broker Version 6.1 is at a supported level for migration. Details are provided in
“Supported migration paths” on page 3579.

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

About this task

Complete the following steps:

Procedure
1. Decide how you want to migrate the WebSphere Message Broker Version 6.1

product components:
a. Find out what is new in Version 7.0, and learn about new and changed

function. These changes might affect how you want to use your migrated
components in the future.

b. Plan your migration of WebSphere MQ to a supported version. It is a
requirement that a supported version of WebSphere MQ is installed before
installing WebSphere Message Broker Version 7.0.
Publish/subscribe functions are no longer supported in the broker;
WebSphere MQ provides this support. If your applications use the
publish/subscribe communication model, you must migrate your
subscriptions to a supported version of WebSphere MQ before you migrate
your brokers.

c. Check the requirements for other products on which Version 7.0
components might depend. If you have configured your message flows to
use external resources, such as databases, or event monitoring applications,
you might have to modify your configuration. You can find details of
supported versions of optional products on the WebSphere Message Broker
Requirements web page.

d. Decide where you will migrate the product components; you can migrate
them to a different location on the same computer or to a second computer.
For example, you might want to migrate components to another location to
maintain availability during the migration.

Chapter 3. Migrating and upgrading 165

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

e. Decide when to migrate the product components. You might want to
preserve some components at the Version 6.1 level for now, and migrate
them later. Each migration task includes steps for installing WebSphere
Message Broker Version 7.0, so you might decide to carry out the tasks in
parallel, rather than completing one task before starting the next task.

f. Decide the order in which you will migrate your components. No required
order is defined, but your specific circumstances might mean that you
decide to migrate components in a particular order.
A typical order might be:
1) Install the WebSphere Message Broker Toolkit Version 7.0 on a single

computer.
2) Create a Version 7.0 broker, or migrate an existing broker to Version 7.0.
3) Migrate further brokers and toolkits.

“Coexistence with previous versions and other products” on page 139 explains
how WebSphere Message Broker Version 7.0 can coexist on the same computer
with previous versions of the product. It also describes the extent to which
Version 7.0 components can operate with components from previous versions.

2. Decide how you will use your existing development resources with WebSphere
Message Broker Version 7.0.
You do not have to perform specific tasks to migrate your development and
deployment resources, such as message flow files, message set definition files,
ESQL files, XML Schema files, and broker archive files. You can start using
these resources with WebSphere Message Broker Version 7.0 immediately.
However, some migration actions are performed automatically when you open
or rebuild resources in the WebSphere Message Broker Toolkit; see “Migrating
the WebSphere Message Broker Toolkit development resources from Version 6.1
to Version 7.0” on page 170 for details.

3. Decide what testing you will do to ensure a successful migration.
The purpose of testing your migration is to identify problems that might arise
during migration. For example, if problems arise you might need to restore
some migrated resources to the Version 6.1 level that you backed up before you
started the migration; all post-migration changes to these resources are lost in
this situation. If you migrate your development and test domains before you
migrate your production domain, you can identify potential problems and
develop a strategy for dealing with further problems.
Each new release can include changes to address product defects that affect
external behavior. If your resources depend on undocumented or incorrect
behavior (for example, the ESQL code in a Compute node), you might need to
make changes and test these resources to understand the implications in your
business scenarios. Read the guidance provided in “Reviewing technical
changes in Version 7.0” on page 205 to see if your configuration is affected.

4. Optional: When you are ready to migrate, run the mqsimigratecomponents
command with the -c parameter. Use this form of the command to run a
premigration check against the Version 6.1 components to ensure that they can
be migrated. The premigration check identifies potential problems so that you
can correct them before you continue with migration.

5. Optional: Consider adding time to your migration plan to update development
resources in response to changes in product behavior. If you have identified
changes that you must make to one or more of your resources in step 3, you
must allow time during your migration schedule to make the necessary
changes and test those applications.

166 WebSphere Message Broker Version 7.0.0.8

What to do next

Next: After you have planned your migration, back up your resources.
Related concepts:
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.
Related information:

WebSphere Message Broker Requirements

WebSphere Message Broker Support

WebSphere MQ Version 7 Information Center online

Backing up WebSphere Message Broker resources
Back up your resources before you start to migrate components to Version 7.0.

Before you begin

Before you start:

Read “Preparing for migration from Version 6.1” on page 165 to plan your
migration strategy.

About this task

Before you carry out migration tasks, back up your WebSphere Message Broker
resources by completing the following steps:

Procedure
1. Back up the broker database tables. On z/OS, customize and submit the JCL

member BIPBUDB. On other platforms, use the documented procedures that
are provided by your database supplier.

2. Optional: If your message flows access user databases through an ODBC
connection, back up the ODBC files that you use for these connections. Take a
copy of these files and store them safely in a different location.

3. Optional: If you have created or configured configurable services for your
message flows, record the properties of all your configurable services. For
example, a message flow might access user databases through a JDBC

Chapter 3. Migrating and upgrading 167

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/support/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

connection, for which you have set up a JDBCProvider configurable service.
Run the mqsireportproperties for these services, take a copy of the output,
and store it safely in a different location.

4. Back up your WebSphere Message Broker Toolkit workspace and resources; for
example, message flow files, message set definition files, Java files, ESQL files,
mapping files, XML Schema files, and broker archive (BAR) files.
v Export all your projects from your WebSphere Message Broker Toolkit

Version 6.1.
v Archive your workspace resources:

– If you manage your workspace resources in a shared repository, for
example CVS, follow standard backup procedures for safeguarding
versions. Create a version for storing Version 7.0 resources.

– If you maintain your workspace resources on a local or shared disk, copy
your workspace directory to a different location.

Results

For detailed instructions on how to back up these resources, see the WebSphere
Message Broker information center.

What to do next

Next: After you have backed up your WebSphere Message Broker resources,
update your ODBC definitions.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Related information:

WebSphere Message Broker Information Center online

Updating ODBC definitions when migrating
Before you migrate a broker, create ODBC definitions for user databases that
specify appropriate database drivers for WebSphere Message Broker Version 7.0.

About this task

The database drivers that are supported by Version 7.0 are at a later version than
the drivers used by Version 6.1 and Version 6.0.

Complete this update before you run the mqsimigratecomponents command for the
broker that uses these ODBC connections.

Follow the instructions provided for your operating system:

Windows systems

To change the ODBC connection definitions:

1. Open the ODBC Data Source Administrator window.
2. Open the System DSN page.
3. For each Oracle and Sybase database that is accessed by the

broker, associate the data source name with the new ODBC
driver:

168 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp

a. Delete the data source by clicking Remove.
b. Re-create the data source with the new ODBC driver by

clicking Add.
The following table displays the name of the new ODBC driver
for each database management system (DBMS).

DBMS New ODBC driver

Oracle WebSphere Message Broker DataDirect Technologies 6.00 32-BIT Oracle Wire Protocol

Sybase WebSphere Message Broker DataDirect Technologies 6.00 32-BIT Sybase Wire Protocol

To change the XA resource manager definitions:

1. Open the Properties window of the broker queue manager
using the WebSphere MQ Services snap-in.

2. Open the Resources page.
3. For each Oracle and Sybase database that participates in a

global unit of work, coordinated by the broker queue manager,
change the contents of the SwitchFile field. For changes to the
switch file configuration to take effect, you must restart the
broker queue manager.
The following table specifies what you must change for each
database management system (DBMS). WBIMB represents the
fully qualified path name of the directory in which you have
installed WebSphere Message Broker.

DBMS Change ... To ...

Oracle WBIMB\bin\ukor8dtc20.dll

orWBIMB\bin\ukor8dtc22.dll

orWBIMB\bin\ukor8dtc23.dll

WBIMB\bin\ukora24.dll

Sybase WBIMB\bin\ukase20.dll

orWBIMB\bin\ukase22.dll

orWBIMB\bin\ukase23.dll

WBIMB\bin\ukase24.dll

Linux and UNIX systems

To change the ODBC connection definitions:
Create an ODBC definitions file by following the instructions in
“Connecting to a database from Linux and UNIX systems using the
DataDirect drivers” on page 674. Before you run the commands at
the new service level, check that your ODBCINI environment
variable points to the new file and not to the existing file.

To change the XA resource manager definitions:
To change the XA resource manager definitions, edit the queue
manager configuration file (qm.ini) of the queue manager that is
associated with the broker. The qm.ini file is located at
/var/mqm/qmgrs/queue_manager_name/qm.ini, where
queue_manager_name is the name of the queue manager that is
associated with the broker.

In the XAResourceManager stanza for each Oracle and Sybase
database that participates in a global unit of work that is
coordinated by the broker queue manager, change the entry for the

Chapter 3. Migrating and upgrading 169

switch file. For changes to the switch file configuration to take
effect, you must restart the broker queue manager.

The following table specifies what you must change for each
broker operating system and database management system
(DBMS).

DBMS Change ... To ...

Oracle SwitchFile=UKor8dtc20.so

orSwitchFile=UKor8dtc22.so

orSwitchFile=UKoradtc22.so

orSwitchFile=UKor8dtc23.so

orSwitchFile=UKoradtc23.so

SwitchFile=UKoradtc24.so

Sybase (not supported on
Linux on IBM z Systems)

SwitchFile=UKasedtc20.so

orSwitchFile=UKasedtc22.so

orSwitchFile=UKasedtc23.so

SwitchFile=UKasedtc24.so

To check that your ODBC environment is set up correctly on Linux
and UNIX systems, run the mqsicvp command. This command also
validates the connection to all data sources that are listed in the
odbc.ini file that have been associated with a broker by using the
mqsisetdbparms command. For more information, see “mqsicvp
command” on page 3857.

Results

If you revert to a previous version of WebSphere Message Broker, you must
reverse the changes that you make to the ODBC definitions. Update your ODBC
files after you have run the mqsimigratecomponents command, but before you
restart the broker at the earlier version.
Related tasks:
“Restoring components and resources to Version 6.1” on page 225
Restore components and resources that you have migrated from Version 6.1
products to their original state.
“Restoring components and resources to Version 6.0” on page 227
Restore components and resources that you have migrated from Version 6.0
products to their original state.
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.

Migrating the WebSphere Message Broker Toolkit
development resources from Version 6.1 to Version 7.0

You cannot migrate the WebSphere Message Broker Toolkit component from
WebSphere Message Broker Version 6.1, but you can install Version 7.0 to coexist
with Version 6.1, and migrate the development resources that you have created in
your workspace.

170 WebSphere Message Broker Version 7.0.0.8

About this task
v You cannot deploy resources from the WebSphere Message Broker Toolkit

Version 7.0 to brokers at a previous version that you have not migrated to
Version 7.0.

v If any of the following actions have caused an error in the project:
– Creating the metadata information for the user-defined node project
– Correcting the plug-in identifier if it does not match the project name
– Ensuring all the user-defined nodes are in the same category
The WebSphere Message Broker Toolkit flags the error, and you can use a Quick
Fix to rectify the error, see “Applying a Quick Fix to a task list error” on page
2862.However, if you have different user-defined nodes that depend on different
resources that have identical names, the broker archive (BAR) file compiler
produces an error indicating a naming conflict in the dependent resources.
Quick Fix cannot be used to resolve BAR file compiler errors.

v You cannot migrate a deployable JAR file for a user-defined node that was
created in Version 7.0, or before Version 7.0.

To migrate your WebSphere Message Broker Toolkit workspace to Version 7.0,
complete the following steps:

Procedure
1. Install WebSphere Message Broker Toolkit Version 7.0 in a different location

from WebSphere Message Broker Toolkit Version 6.1 or Version 6.0. For detailed
instructions, see “Installing the WebSphere Message Broker Toolkit” on page
276, or refer to the “Installation Guide” on page 233.

2. When you start the WebSphere Message Broker Toolkit Version 7.0 for the first
time, you are prompted to enter a workspace location. Enter the directory that
contains the WebSphere Message Broker Toolkit Version 6.1 or Version 6.0
workspace that you want to migrate and click OK. The workspace and
resources are now available in the WebSphere Message Broker Toolkit Version
7.0.

3. In the Broker Application Development perspective, select Window > Reset
Perspective to ensure that all views and menus are updated for Version 7.0.

4. You must migrate any user-defined node source projects that were developed
in Version 7.0, or before Version 7.0. An error is displayed on all projects that
require migration. You can use a Quick Fix to clear these errors, see “Applying
a Quick Fix to a task list error” on page 2862. After fixing the errors, you must
package the user-defined node source projects and redistribute to the users, see
“Packaging and distributing a user-defined node project” on page 3121.

Results

You can now view and modify existing resources, and create resources. You can
deploy your workspace resources to Version 7.0 brokers.

What to do next

When you have migrated the resources associated with the WebSphere Message
Broker Toolkit, you must migrate your brokers, see “Migrating a broker from
WebSphere Message Broker to WebSphere Message Broker Version 7.0” on page
172.

Chapter 3. Migrating and upgrading 171

When you have completed these tasks, for information about tasks that you might
want to perform after migration, see “Post-migration tasks” on page 204.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Migrating a broker from WebSphere Message Broker to WebSphere Message
Broker Version 7.0”
Migrate one or more brokers to Version 7.0.
“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.

Migrating a broker from WebSphere Message Broker to
WebSphere Message Broker Version 7.0

Migrate one or more brokers to Version 7.0.

Before you begin

Before you start: Read “Preparing for migration from Version 6.1” on page 165.

About this task

To migrate a broker from WebSphere Message Broker to WebSphere Message
Broker Version 7.0, see the appropriate topic for your operating system:
v “Migrating a Version 6.1 broker to Version 7.0 on distributed operating systems”

on page 173
v “Migrating a Version 6.1 broker to Version 7.0 on z/OS” on page 177

Results

You do not have to redeploy resources to a broker that you have migrated. When
you start the broker, it starts all existing message flows.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
Related reference:

172 WebSphere Message Broker Version 7.0.0.8

“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.

Migrating a Version 6.1 broker to Version 7.0 on distributed
operating systems
Migrate a broker to use the enhanced facilities available in Version 7.0.

Before you begin

Before you start:

v Back up your broker resources.
v For the latest details of all supported levels of hardware and software, visit the

WebSphere Message Broker Requirements website.
v Install WebSphere MQ and migrate your queue managers and other resources,

following the instructions provided by WebSphere MQ.
v Optional: If your applications use publish/subscribe functions, and you have

message flows that include one or more Publication nodes, you must migrate
your subscriptions to WebSphere MQ before you migrate the broker.

v Migrate the WebSphere Message Broker Toolkit from Version 6.1 to Version 7.0.
v Check that you have no aggregations in progress on this broker. When you

migrate a broker to Version 7.0, all live data that is being stored for aggregations
in progress is lost.

v If the broker runs in a locale that is not listed in “Locales” on page 3629, check
that the code page is one of the supported code pages, and that the locale is set
up correctly.

About this task

If you stop the broker, you can migrate it immediately to the new version on the
same computer. If you prefer not to stop the broker to avoid problems for your
business applications, or if you want to reproduce the broker function on another
computer, you can associate the application logic on your Version 6.1 broker with a
separate Version 7.0 broker.

Select the topic that is appropriate to your environment:
v “Migrating a Version 6.1 broker to Version 7.0”
v “Migrating application logic to a Version 7.0 broker” on page 174

Migrating a Version 6.1 broker to Version 7.0:
About this task

To migrate a Version 6.1 broker on a distributed operating system to Version 7.0 on
the same computer, complete the following steps:

Procedure

1. Install WebSphere Message Broker Version 7.0 on the same computer as
Version 6.1. Install at least the Broker component; other components are
optional. You must specify a new location for this installation.

2. Open the WebSphere Message Broker Toolkit Version 6.1, and remove the
broker from the domain configuration.

3. Stop all channels that are connected to the Version 6.1 broker.

Chapter 3. Migrating and upgrading 173

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

4. Open a Version 6.1 command environment, and stop the Version 6.1 broker by
using the mqsistop command.

5. Optional: If your message flows access user databases by using ODBC
connections, update the ODBC definitions to Version 7.0 format.

6. Set up the correct Version 7.0 command environment:

v Linux UNIX On Linux and UNIX systems, open a new shell and
run the environment profile mqsiprofile for this Version 7.0 installation.

v Windows On Windows, click Start, and open the Command Console that is
associated with this Version 7.0 installation.
On Windows 7 and Windows Server 2008 systems, you must open a
command console with elevated privileges. To open a command console
with elevated privileges, use the mqsicommandconsole command. For more
information, see “mqsicommandconsole command” on page 3830.

7. Run the mqsimigratecomponents command to migrate the broker. For example:
mqsimigratecomponents Broker1

All configuration data is retrieved from the Version 6.1 broker database. If you
had set a default user ID and password for your Version 6.1 broker by using
the -u and -p options on the mqsicreatebroker command, these values are
migrated with the broker. You can change these values for your Version 7.0
broker by using the mqsisetdbparms command.

8. On the AIX, Linux on x86-64, and Solaris on SPARC platforms, support has
changed from both 32-bit and 64-bit support to 64-bit support only. 32-bit
execution groups are converted to 64-bit. These platforms now require 64-bit
libraries and 64-bit ODBC configurations for databases.
a. Recompile C/C++ user-defined nodes, parsers, and exits to 64-bit, if the

existing ones are 32-bit only.
b. Configure the broker to point at these recompiled extensions by using the

following command:
mqsichangebroker -l userLilPath -x userExitPath

where userLilPath defines one or more paths to your LIL files, and
userExitPath defines one or more paths to your user exit programs.

The following changes are made to environment variables, for all platforms:

Previous version Version 7

MQSI_LILPATH64 and MQSI_LILPATH32 MQSI_LILPATH

MQSI_USER_EXIT_PATH64 and
MQSI_USER_EXIT_PATH

MQSI_USER_EXIT_PATH

MQSI_SECURITY_PROVIDER_PATH64 and
MQSI_SECURITY_PROVIDER_PATH32

MQSI_SECURITY_PROVIDER_PATH

Update all custom profiles that set these environment variables.
9. Copy all additional custom environment settings from your previous

environment into your Version 7.0 environment; for example,
MQSI_FILENODES_ROOT_DIRECTORY.

10. Start the Version 7.0 broker by using the mqsistart command.

Migrating application logic to a Version 7.0 broker:

174 WebSphere Message Broker Version 7.0.0.8

About this task

To migrate application logic from a Version 6.1 broker on a distributed operating
system to a different Version 7.0 broker on the same computer, or on a different
computer, complete the following steps:

Procedure

1. Install WebSphere Message Broker Version 7.0 on the same computer as Version
6.1, or on a different computer. Install at least the Broker component; other
components are optional. If you are installing on the same computer, you must
specify a different location.

2. Optional: If your message flows access user databases by using ODBC
connections, update the ODBC definitions to Version 7.0 format.

3. Set up the correct Version 7.0 command environment:

v Linux UNIX On Linux and UNIX systems, open a new shell and run
the environment profile mqsiprofile for this Version 7.0 installation.

v Windows On Windows, click Start, and open the Command Console that is
associated with this Version 7.0 installation.
On Windows 7 and Windows Server 2008 systems, you must open a
command console with elevated privileges. To open a command console with
elevated privileges, use the mqsicommandconsole command. For more
information, see “mqsicommandconsole command” on page 3830.

4. Create a Version 7.0 broker by using the mqsicreatebroker command; give it a
name and a queue manager name that are different from the names of the
Version 6.1 broker and queue manager. If you have installed one or both of
these components on this computer, you can also create a local broker by using
the WebSphere Message Broker Explorer or the WebSphere Message Broker
Toolkit.

5. Start the Version 7.0 broker by using the mqsistart command. If you have
installed one or both of these components on this computer, you can also start
a local broker by using the WebSphere Message Broker Explorer or the
WebSphere Message Broker Toolkit.

6. Write a list of the execution groups that you have on the Version 6.1 broker,
and create these same execution groups on the Version 7.0 broker. Use the
WebSphere Message Broker Explorer, the Version 7.0 WebSphere Message
Broker Toolkit, or the mqsicreateexecutiongroup command to complete this
step. On the AIX, Linux on x86-64, and Solaris on SPARC platforms, you can
create only 64-bit execution groups.

7. Deploy the message flows and message sets that are in use by the Version 6.1
broker to the Version 7.0 broker from the Version 7.0 WebSphere Message
Broker Toolkit. You cannot complete this step unless you have already migrated
the WebSphere Message Broker Toolkit resources.

8. Configure all other relevant properties of the Version 6.1 broker on the Version
7.0 broker.

9. If you want to delete your Version 6.1 broker at this time, or later:
a. In a Version 6.1 command environment, stop the Version 6.1 broker by

using the mqsistop command.
b. Remove the Version 6.1 broker from the Version 6.1 WebSphere Message

Broker Toolkit.
c. Redeploy the Version 6.1 topology from the Version 6.1 WebSphere Message

Broker Toolkit to update the configuration data held by the Configuration
Manager.

Chapter 3. Migrating and upgrading 175

d. In a Version 6.1 command environment, delete the Version 6.1 broker by
using the mqsideletebroker command.

What to do next

When you have completed these tasks, see the post-migration tasks for information
about tasks that you might want to perform after migration.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
“Backing up WebSphere Message Broker resources” on page 167
Back up your resources before you start to migrate components to Version 7.0.
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Creating an execution group using the mqsicreateexecutiongroup command” on
page 939
Use the mqsicreateexecutiongroup command to create execution groups on your
broker.
Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
“mqsicommandconsole command” on page 3830
Use the mqsicommandconsole command to launch an elevated command console
from which commands that require elevation on Windows can be run.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.

176 WebSphere Message Broker Version 7.0.0.8

“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Migrating a Version 6.1 broker to Version 7.0 on z/OS
Migrate a broker to use the enhanced facilities available in Version 7.0.

Before you begin

Before you start:

v Backup your broker resources.
v For the latest details of all supported levels of hardware and software, visit the

WebSphere Message Broker Requirements website.
v Install WebSphere MQ and migrate your queue managers and other resources,

following the instructions provided by WebSphere MQ.
v Optional: If your applications use publish/subscribe functions, and you have

message flows that include one or more Publication nodes, you must migrate
your subscriptions to WebSphere MQ before you migrate the broker.

v Ensure that you are familiar with the steps involved in creating a broker on
z/OS.

v Ensure that you are familiar with the mqsimigratecomponents command which
the JCL (Job Control Language) file uses to migrate a broker.

v Check that you have no aggregations in progress. When you migrate a broker to
Version 7.0, any live data that is being stored for aggregations in progress is lost.

v If the broker runs in a locale that is not listed in “Locales” on page 3629, check
that the code page is one of the supported code pages and that the locale is set
up correctly.

About this task

To migrate a WebSphere Message Broker Version 6.1 broker to Version 7.0 on
z/OS:

Procedure
1. Stop the Version 6.1 broker and the Version 6.1 Configuration Manager.
2. Create a new broker PDSE.
3. Copy all broker JCL files from the Version 7.0 installed SBIPPROC and

SBIPSAMP PDSEs to the new broker PDSE. You can then customize these files.
Some customization is required for migration, as described in the following
sub-steps. You can update these and other files at a later date, if required. See
“Customizing the broker JCL” on page 625 for more information.
You must take a backup copy of your Version 6.1 ENVFILE file before you
submit the BIPGEN job from the Version 7.0 component data set. The ENVFILE file
is stored in the directory referenced by the ++HOME++ JCL variable.
Subsequently, if you want to migrate back to Version 6.1, restore the ENVFILE
file, either from the backup file location, or by submitting the BIPGEN job from
the Version 6.1 component data set, before you start the Version 6.1 broker.
a. Customize the BIPEDIT file by using the values that are defined in the

Version 6.1 BIPEDIT file.

Chapter 3. Migrating and upgrading 177

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

b. Copy all additional changes that you have made to the Version 6.1 version
of the BIPBPROF and BIPDSNAO files to these files in the Version 7.0
component data set. Submit the BIPGEN job to create the environment file
ENVFILE.

c. Customize and submit the BIPMGCMP (mqsimigratecomponents) job. This job
migrates the registry, queue, and broker database; connection to the broker
database of the previous broker is required to complete this action.
After migration, all information in the broker database is stored in an
internal repository in Version 7.0; the Version 7.0 broker does not require a
database.

4. Copy the renamed started task JCL file BIPBRKP to the procedures library. When
you copy the started task, keep a second copy of the original in a safe place for
backup purposes.

5. Start the Version 7.0 broker. The verification program checks the configuration
of the broker.

What to do next

When you have completed these tasks, see the post-migration tasks for information
about tasks that you might want to perform after migration.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
“Backing up WebSphere Message Broker resources” on page 167
Back up your resources before you start to migrate components to Version 7.0.
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Creating the broker PDSE” on page 622
This is part of the larger task of creating a broker on z/OS.
“Customizing the broker JCL” on page 625
This subtask is part of the larger task of creating a broker on z/OS.
“Copying the broker started task to the procedures library” on page 629
This is part of the larger task of creating a broker on z/OS.
“Starting and stopping a broker on z/OS” on page 924
Run the appropriate command from SDSF to start or stop a broker.
Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
“Sample BIPEDIT file” on page 4009
The sample BIPEDIT file that is shipped with WebSphere Message Broker is

178 WebSphere Message Broker Version 7.0.0.8

included here for your reference.
“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.

Migrating Configuration Manager ACLs
If you are migrating from WebSphere Message Broker , WebSphere Message Broker
Version 6.0, or WebSphere Event Broker Version 6.0, you can use the Access
Control Lists (ACLs) that you set up in the Configuration Manager as the basis for
your security model in Version 7.0.

Before you begin

Before you start:

v Migrate your broker by following the instructions in “Migrating a broker from
WebSphere Message Broker to WebSphere Message Broker Version 7.0” on page
172 or “Migrating a broker from WebSphere Message Broker Version 6.0 to
WebSphere Message Broker Version 7.0” on page 193.

v Activate broker administration security by following the instructions in
“Enabling broker administration security” on page 368.

Administration security for a broker in Version 7.0 is disabled by default. Because
no security details are migrated, when you migrate a broker from a previous
version security is disabled, even if you had set up security in the previous
version.

About this task

The Configuration Manager has been removed as a result of the architectural and
security model changes in Version 7.0, therefore the commands that controlled this
component and its ACLs have been removed:

mqsichangeconfigmgr
mqsicreateconfigmgr
mqsideleteconfigmgr
mqsireportconfigmgr
mqsicreateaclentry
mqsideleteaclentry
mqsilistaclentry

Although you can use the ACLs that you set up in previous versions as the basis
for your security model in Version 7.0, you might choose to reconsider your
security model, and set up different levels of control that match the facilities
available in this version.

If you choose to use your existing ACLs as a basis for your security model in
Version 7.0, consider the following factors:
v You can obtain a list of existing ACLs maintained by your Configuration

Manager by using the mqsilistaclentry command.
v You can migrate existing groups, users, or both, subject to the following factors:

– You must define the user ID on the same computer as the queue manager
associated with the Version 7.0 broker.

– On Linux and UNIX systems, you can grant authority only to the primary
group of a user. All users that you have defined with the same primary group

Chapter 3. Migrating and upgrading 179

automatically get the same level of security access. You must therefore
consider the membership of all your groups to ensure that you give the
required level of control to each user.

v You can grant only broker and execution level authorities for Version 7.0
brokers.

v If you grant read, write, and execute authority to a user ID for a Version 7.0
broker, this permission is equivalent to full control access in previous versions.

v If you grant read authority to a user ID for a Version 7.0 broker, this permission
is equivalent to view access in previous versions.

v Check the authority that write and execute permissions grant for a Version 7.0
broker to determine the best match for edit and deploy access levels in previous
versions.

v Although you can set up access for a particular computer or domain name in
previous versions, you can use only user IDs and groups in Version 7.0. If you
want to establish a more secure environment, consider the use of
WebSphere MQ security exits and SSL.

To set up authorization for your Version 7.0 broker, complete the following steps.

Procedure
1. Review the authorizations that are required for specific tasks and commands.

Details are provided in “Tasks and authorizations for broker administration
security” on page 3645 and “Commands and authorizations for broker
administration security” on page 3646.

2. Grant the authorities that your users require.
v For details of this task on distributed systems, with examples, see “Granting

and revoking authority on Linux, UNIX, and Windows systems” on page
374.

v For details of this task on z/OS, with examples, see “Granting and revoking
authority on z/OS systems” on page 376.

What to do next

Next: Start the broker in the WebSphere Message Broker Explorer, or run the
mqsistart command.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
“Enabling SSL on the WebSphere MQ Java Client” on page 540
The WebSphere MQ Java Client supports SSL-encrypted connections over the
server-connection (SVRCONN) channel between an application and the queue
manager. Configure SSL support for connections between applications that use the
CMP API (including the WebSphere Message Broker Toolkit and the WebSphere

180 WebSphere Message Broker Version 7.0.0.8

Message Broker Explorer) and a broker.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
Related information:

WebSphere MQ Version 7 Information Center online

Migrating a Microsoft Windows WebSphere Message Broker
that is configured using Microsoft Cluster Services (MSCS)

You must complete a specific set of steps to migrate your MSCS cluster to
WebSphere Message Broker Version 7.0.

Before you begin

Read the topics in the section “Migrating from Version 6.1 products” on page 163,
and the topic “Using a broker with an existing high availability manager” on page
843.

About this task

Use the following procedure to migrate a WebSphere Message Broker that is
configured using MSCS.

Migrating from WebSphere Message Broker to WebSphere Message Broker
Version 7.0 .

Procedure
1. Install WebSphere Message Broker Version 7.0 onto each node. You must

specify a new location for this installation.
2. Stop all channels that are connected to the WebSphere Message Broker broker.
3. In MSCS bring the broker resource offline, keeping the cluster disk and

WebSphere MQ resource online on your primary node
4. In a WebSphere Message Broker Version 7.0 command console run the

following command:
mqsimigratecomponents BROKER1 -m

where BROKER1 is the name of your broker
5. Move the broker cluster group to the secondary node. Note that the broker

resource should remain stopped.
6. In a WebSphere Message Broker Version 7.0 command console run the

following command:
mqsimigratecomponents BROKER1 -m -1

7. Copy all additional custom environment settings from your previous
environment into your WebSphere Message Broker Version 7.0 environment; for
example: MQSI_FILENODES_ROOT_DIRECTORY.

8. Bring the cluster disk and WebSphere MQ resource offline.
9. Start the WebSphere Message Broker cluster group on its primary node.

Chapter 3. Migrating and upgrading 181

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

What to do next

Migrating from WebSphere Message Broker Version 7.0 to WebSphere Message
Broker .

1. In MSCS bring the broker resource offline, keeping the cluster disk and
WebSphere MQ resource online on your primary node.

2. In a WebSphere Message Broker Version 7.0 command console run the
following command:
mqsimigratecomponents BROKER1 -s 7.0 -t 6.1

3. In a WebSphere Message Broker command console run the following
command:
mqsistart BROKER1

This is required to update the Windows service to point at the WebSphere
Message Broker binary files.

4. In a WebSphere Message Broker command console run the following
command:
mqsistop BROKER1

5. Move the broker cluster group to the secondary node. Note that the broker
resource should remain stopped.

6. In a WebSphere Message Broker Version 7.0 command console run the
following command:
mqsimigratecomponents BROKER1 -m -s 6.1 -t 7 -1

7. In a WebSphere Message Broker Version 7.0 command console run the
following command:
mqsimigratecomponents BROKER1 -s 7.0 -t 6.1 -1

8. In a WebSphere Message Broker command console run the following
command:
mqsistart BROKER1

This is required to update the Windows service to point at the WebSphere
Message Broker binary files

9. In a WebSphere Message Broker command console run the following
command:
mqsistop BROKER1

10. Bring the cluster disk and WebSphere MQ resource offline.
11. Start the broker cluster group on its primary node.

Due to changes in the file security model used in WebSphere Message Broker
Version 7.0, you might need to alter the file permissions of the shared resource.

If necessary, create a domain group, add the userID of your broker to this group,
and give the group full access to the shared files.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Using a broker with an existing high availability manager” on page 843
You can use WebSphere Message Broker Version 7.0 with an existing high
availability manager, for example HACMP, HA/XD, VCS, or HP-UX Serviceguard.

182 WebSphere Message Broker Version 7.0.0.8

Migrating from Version 6.0 products
Migrate your components and resources to WebSphere Message Broker Version 7.0.

About this task

You can migrate to WebSphere Message Broker Version 7.0 products from the
following products:
v WebSphere Event Broker Version 6.0
v WebSphere Message Broker Version 6.0
v WebSphere Message Broker with Rules and Formatter Extension Version 6.0

For full product version and release levels, see “Supported migration paths” on
page 3579.

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

The instructions in this section apply to all operating systems that are supported
by Version 6.0. The instructions are the same for both WebSphere Event Broker
Version 6.0 and WebSphere Message Broker Version 6.0; in the interests of
readability, only WebSphere Message Broker Version 6.0 is shown.

If your current installation is WebSphere Message Broker with Rules and Formatter
Extension Version 6.0, you can migrate to WebSphere Message Broker Version 7.0
only if you do not use the additional features provided by Rules and Formatter, or
you choose not to use them after migration. If you want to use the additional
features provided by Rules and Formatter, you need to migrate to WebSphere
Message Broker Version 7.0.0.1 or later, with WebSphere Message Broker with
Rules and Formatter Extension Version 7.0.

Some of the migration tasks that you must complete are dependent on the order in
which you start them. Complete these tasks in the order shown, to reduce the
possibility of problems:
1. Read “Preparing for migration from Version 6.0” on page 185.
2. Back up your components and resources to ensure that you can return to your

previous version, if necessary. See the information center for your current
product for more information and instructions.
Consider backing up the following resources:
v The internal configuration repository maintained by the Configuration

Manager.
v The broker database.
v Other critical databases that are accessed by your message flows.
v All your development resources; for example, message flows and message

sets.
If you use a repository to manage these resources, check that the product
you use provides sufficient features for you to recover your resources at a
specific version.

3. If you have installed SupportPac IA9Q, you must uninstall it before you
install WebSphere Message Broker Version 7.0; see “Migrating from
SupportPac IA9Q” on page 190.

4. Migrate your WebSphere MQ installation to a supported version.

Chapter 3. Migrating and upgrading 183

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

5. Optional: If your applications use publish/subscribe functions, and you have
message flows that include one or more Publication nodes, you must migrate
your subscriptions to WebSphere MQ before you migrate your broker.
In WebSphere Message Broker Version 7.0, publish/subscribe is controlled by
WebSphere MQ.
Information about how to run the migmqbrk command to perform this
migration and other tasks that might be required, is provided in “Migrating
publish/subscribe information to WebSphere MQ” on page 141.
When you have completed this step, all your subscriptions have been
migrated to WebSphere MQ; in future, you must use WebSphere MQ facilities
to change subscriptions.

6. Migrate the WebSphere Message Broker Toolkit.
If your toolkit users operate in a team environment, and share resources with
each other, upgrade all users to Version 7.0 at the same time to ensure
continued access to all resources. Because toolkit resources are stored in a
different format when they are first saved in Version 7.0, your users might
experience compatibility problems in some circumstances if some of their
colleagues are using Version 7.0 and they are still working with a previous
version.

7. Migrate the broker.
8. Optional: If you are migrating from a secure domain, you cannot directly

migrate security settings for brokers. You must set up equivalent security by
using the facilities provided by Version 7.0. To set up administration security
for a broker:
a. Activate broker administration security.
b. Set up your security based on existing ACLs.

9. Start the broker by using the mqsistart command.
10. Review the changes of behavior that are introduced in Version 7.0.
11. Consider the list of post-migration tasks, and follow the guidance provided if

these tasks apply to your environment.
Related concepts:
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Preparing for migration from Version 6.0” on page 185
Plan the order and extent of the migration of components and resources to Version
7.0.
“Migrating publish/subscribe information to WebSphere MQ” on page 141
These tasks give an overview of how to migrate publish/subscribe information
from WebSphere Message Broker or WebSphere Message Broker Version 6.0 to
WebSphere MQ.
“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.

184 WebSphere Message Broker Version 7.0.0.8

Related information:

WebSphere Message Brokers Version 6.0 Information Center online

Preparing for migration from Version 6.0
Plan the order and extent of the migration of components and resources to Version
7.0.

Before you begin

Before you start: Check that your current installation of WebSphere Message
Broker or WebSphere Event Broker Version 6.0 is at a supported level for
migration. Details are provided in “Supported migration paths” on page 3579.

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

About this task

Complete the following steps:

Procedure
1. Decide how you want to migrate the WebSphere Message Broker Version 6.0

product components:
a. Find out what is new in Version 7.0 and learn about new and changed

function. These changes might affect how you want to use your migrated
components in the future.

b. Plan your WebSphere MQ migration. A supported version of
WebSphere MQ is required; you must install it before you install
WebSphere Message Broker Version 7.0.
Publish/subscribe functions are no longer supported in the broker;
WebSphere MQ provides this support. If your applications use the
publish/subscribe communication model, you must migrate your
subscriptions to WebSphere MQ before you migrate your brokers.

c. Check the requirements for other products on which Version 7.0
components might depend. If you have configured your message flows to
use external resources, such as databases, or event monitoring applications,
you might have to modify your configuration. You can find details of
supported versions of optional products on the WebSphere Message Broker
Requirements Web page.

d. Decide where you will migrate the product components. Migrate them to a
different location on the same computer or to a second computer. For
example, you might want to migrate components to another location to
maintain availability during the migration.

e. Decide when to migrate the product components. You might want to
preserve some components at the Version 6.0 level for now, and migrate
them later. Each migration task includes steps for installing WebSphere
Message Broker Version 7.0, so you might decide to carry out the tasks in
parallel, rather than completing one task before starting the next task.

f. Decide the order in which you will migrate your components. You can
migrate components in any order, but your specific circumstances might
mean that you need to migrate components in a particular order.
A typical order might be:

Chapter 3. Migrating and upgrading 185

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

1) Install a Version 7.0 toolkit.
2) Create a Version 7.0 broker, or migrate an existing broker to Version 7.0.
3) Migrate further brokers and toolkits.

“Coexistence with previous versions and other products” on page 139 explains
how WebSphere Message Broker Version 7.0 can coexist on the same computer
with previous versions of the product. It also describes the extent to which
Version 7.0 components can operate with components from previous versions.

2. Decide how you will use your existing resources with WebSphere Message
Broker Version 7.0.
You do not have to perform specific tasks to migrate your development and
deployment resources, such as message flow files, message set definition files,
ESQL files, XML Schema files, and broker archive files. You can start using
these resources with WebSphere Message Broker Version 7.0 immediately.
However, some migration actions are performed automatically when you open
or rebuild resources in the WebSphere Message Broker Toolkit; see “Migrating
the WebSphere Message Broker Toolkit development resources from Version 6.0
to Version 7.0” on page 192 for details.

3. Decide what testing you will do to ensure a successful migration.
The purpose of testing your migration is to identify any problems that might
arise during migration. For example, if problems arise you might need to
restore some migrated resources to the Version 6.0 level that you backed up
before you started the migration, and all post-migration changes to these
resources are lost. If you migrate your development and test domains before
you migrate your production domain, you can identify potential problems and
develop a strategy for dealing with further problems.
Each new release can include changes to address product defects that affect
external behavior. If your resources depend on undocumented or incorrect
behavior (for example, the ESQL code in a Compute node), you might need to
change and test these resources to understand the implications in your business
scenarios. Read the guidance provided in “Reviewing technical changes in
Version 7.0” on page 205 to see if your configuration is affected.

4. Optional: When you are ready to migrate, run the mqsimigratecomponents
command with the -c parameter. Use this form of the command to run a
premigration check against the Version 6.0 components to ensure that they can
be migrated. The premigration check identifies potential problems so that you
can correct them before you continue with migration.

5. Optional: Consider adding time to your migration plan to update resources in
response to changes in product behavior. If you have identified changes that
you must make to one or more of your resources in step 3, you must allow
time during your migration schedule to make the necessary changes and test
those applications.

What to do next

Next: After you have planned your migration, back up your resources.
Related concepts:
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

186 WebSphere Message Broker Version 7.0.0.8

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.
Related information:

WebSphere Message Broker Requirements

WebSphere Message Broker Support

WebSphere MQ Version 7 Information Center online

Backing up WebSphere Message Broker Version 6.0 resources
Back up your resources before you start to migrate components to Version 7.0.

Before you begin

Before you start:

Read “Preparing for migration from Version 6.0” on page 185 to determine your
migration strategy.

About this task

Before you carry out migration tasks, back up your WebSphere Message Broker
Version 6.0 resources by completing the following steps:

Procedure
1. Back up the configuration repository. Use the mqsibackupconfigmgr command.
2. Back up the broker database tables. Use the documented procedures that are

provided by your database supplier.
3. Optional: If your message flows access user databases through an ODBC

connection, back up the ODBC files that you use for these connections. Take a
copy of these files and store them safely in a different location.

4. Optional: If you have created or configured configurable services for your
message flows, record the properties of all your configurable services. For
example, a message flow might include a JMSInput node, for which you have
set up a JMSProviders configurable service. Run the mqsireportproperties for
these services, take a copy of the output, and store it safely in a different
location.

5. Back up your WebSphere Message Broker Toolkit workspace and resources; for
example, message flow files, message set definition files, Java files, ESQL files,
mapping files, XML Schema files, and broker archive (BAR) files.
v Export all your projects from your WebSphere Message Broker Toolkit

Version 6.0.
v Archive your workspace resources:

Chapter 3. Migrating and upgrading 187

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/support/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

– If you manage your workspace resources in a shared repository, for
example CVS, follow standard backup procedures for safeguarding
versions. Create a version for storing Version 7.0 resources.

– If you maintain your workspace resources on a local or shared disk, copy
your workspace directory to a different location.

Results

For detailed instructions on how to back up these resources, see the WebSphere
Message Broker Version 6.0 information center.

What to do next

Next: After you have backed up your WebSphere Message Broker Version 6.0
resources, update your ODBC definitions.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Related information:

WebSphere Message Brokers Version 6.0 Information Center online

Updating your ODBC definitions when migrating
As part of migrating a broker, create ODBC definitions for user databases that
specify appropriate database drivers for Version 7.0.

About this task

The database drivers that are supported by Version 7.0 are at a later version than
the drivers used by Version 6.1 and Version 6.0.

Complete this update before you run the mqsimigratecomponents command for the
broker that uses these ODBC connections.

Follow the instructions provided for your operating system:

Windows systems

To change the ODBC connection definitions:

1. Open the ODBC Data Source Administrator window.
2. Open the System DSN page.
3. For each Oracle and Sybase database that is accessed by the

broker, associate the data source name with the new ODBC
driver:
a. Delete the data source by clicking Remove.
b. Re-create the data source with the new ODBC driver by

clicking Add.
The following table displays the name of the new ODBC driver
for each database management system (DBMS).

DBMS New ODBC driver

Oracle WebSphere Message Broker DataDirect Technologies 6.00 32-BIT Oracle Wire Protocol

Sybase WebSphere Message Broker DataDirect Technologies 6.00 32-BIT Sybase Wire Protocol

188 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

To change the XA resource manager definitions:

1. Open the Properties window of the broker queue manager
using the WebSphere MQ Services snap-in.

2. Open the Resources page.
3. For each Oracle and Sybase database that participates in a

global unit of work, coordinated by the broker queue manager,
change the contents of the SwitchFile field. For changes to the
switch file configuration to take effect, you must restart the
broker queue manager.
The following table specifies what you must change for each
database management system (DBMS). WBIMB represents the
fully qualified path name of the directory in which you have
installed WebSphere Message Broker.

DBMS Change ... To ...

Oracle WBIMB\bin\ukor8dtc20.dll

orWBIMB\bin\ukor8dtc22.dll

orWBIMB\bin\ukor8dtc23.dll

WBIMB\bin\ukora24.dll

Sybase WBIMB\bin\ukase20.dll

orWBIMB\bin\ukase22.dll

orWBIMB\bin\ukase23.dll

WBIMB\bin\ukase24.dll

Linux and UNIX systems

To change the ODBC connection definitions:
Create an ODBC definitions file by following the instructions in
“Connecting to a database from Linux and UNIX systems using the
DataDirect drivers” on page 674. Before you run the commands at
the new service level, check that your ODBCINI environment
variable points to the new file and not to the existing file.

To change the XA resource manager definitions:
To change the XA resource manager definitions, edit the queue
manager configuration file (qm.ini) of the queue manager that is
associated with the broker. The qm.ini file is located at
/var/mqm/qmgrs/queue_manager_name/qm.ini, where
queue_manager_name is the name of the queue manager that is
associated with the broker.

In the XAResourceManager stanza for each Oracle and Sybase
database that participates in a global unit of work that is
coordinated by the broker queue manager, change the entry for the
switch file. For changes to the switch file configuration to take
effect, you must restart the broker queue manager.

The following table specifies what you must change for each
broker operating system and database management system
(DBMS).

Chapter 3. Migrating and upgrading 189

DBMS Change ... To ...

Oracle SwitchFile=UKor8dtc20.so

orSwitchFile=UKor8dtc22.so

orSwitchFile=UKoradtc22.so

orSwitchFile=UKor8dtc23.so

orSwitchFile=UKoradtc23.so

SwitchFile=UKoradtc24.so

Sybase (not supported on
Linux on IBM z Systems)

SwitchFile=UKasedtc20.so

orSwitchFile=UKasedtc22.so

orSwitchFile=UKasedtc23.so

SwitchFile=UKasedtc24.so

To check that your ODBC environment is set up correctly on Linux
and UNIX systems, run the mqsicvp command. This command also
validates the connection to all data sources that are listed in the
odbc.ini file that have been associated with a broker by using the
mqsisetdbparms command. For more information, see “mqsicvp
command” on page 3857.

Results

If you revert to a previous version of WebSphere Message Broker, you must
reverse the changes that you make to the ODBC definitions. Update your ODBC
files after you have run the mqsimigratecomponents command, but before you
restart the broker at the earlier version.
Related tasks:
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.

Migrating from SupportPac IA9Q
If you installed SupportPac IA9Q, which introduced the SRRetrieveITService and
SRRetrieveEntity nodes, you must remove this SupportPac before you can upgrade
to WebSphere Message Broker Version 7.0.

About this task

If you do not remove SupportPac IA9Q, you might encounter problems when you
deploy or use the EndpointLookup and RegistryLookup nodes that replace the
SRRetrieveITService and SRRetrieveEntity nodes.

Before you install WebSphere Message Broker Version 7.0, complete the following
steps:

Procedure
1. Write down the properties of your SRRetrieveITService and SRRetrieveEntity

nodes so that you can use the same values when you create the
EndpointLookup and RegistryLookup nodes in WebSphere Message Broker
Version 7.0.

190 WebSphere Message Broker Version 7.0.0.8

2. Remove message flows that contain the SRRetrieveITService and
SRRetrieveEntity nodes from your WebSphere Message Broker Version 6.0
brokers.

3. Remove the dynamic Cache Notification component (the Cache Synchronization
WebSphere Message Broker BAR file), if you deployed it.

4. Edit the broker classpath in bin/mqsiprofile.cmd to remove the following files:
v sibc.jms.jar

v sibc.jndi.jar

v ibm-jaxrpc-client.jar

v Solaris sibc.orb.jar (on the Solaris platform only)

When you have edited the broker classpath, delete the files from your system.
5. Remove the ServiceRegistryMessageBrokerNodes_1.0.0.par file.
6. Remove the following files from the shared classes directory

MQSI_working_path/shared-classes:
v wsrr.properties

v sdo-int.jar

v ServiceRegistryClient.jar

v WMBc4WSRR_1.0.0.jar

7. Remove the WebSphere Message Broker Toolkit plugin directory and files from
the toolkit. The directory was created when you unzipped SupportPac IA9Q;
for example, C:\IBM\MessageBrokersToolkit\6.0\evtoolkit\eclipse\plugins\
com.ibm.sr.mb.nodes_1.0.1

What to do next

Next: When you have removed SupportPac IA9Q, migrate the WebSphere Message
Broker Toolkit.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Related reference:
“Installation Guide” on page 233
Installation information for WebSphere Message Broker is provided in the
Installation Guide that is supplied as a PDF file with your product package.
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

Chapter 3. Migrating and upgrading 191

Migrating the WebSphere Message Broker Toolkit
development resources from Version 6.0 to Version 7.0

You cannot migrate the WebSphere Message Broker Toolkit component from
WebSphere Message Broker Version 6.0, but you can install Version 7.0 to coexist
with Version 6.0, and migrate the development resources that you have created in
your workspace.

About this task
v You cannot deploy resources from the WebSphere Message Broker Toolkit

Version 7.0 to brokers at a previous version that you have not migrated to
Version 7.0.

v If any of the following actions have caused an error in the project:
– Creating the metadata information for the user-defined node project
– Correcting the plug-in identifier if it does not match the project name
– Ensuring all the user-defined nodes are in the same category
The WebSphere Message Broker Toolkit flags the error, and you can use a Quick
Fix to rectify the error, see “Applying a Quick Fix to a task list error” on page
2862.However, if you have different user-defined nodes that depend on different
resources that have identical names, the broker archive (BAR) file compiler
produces an error indicating a naming conflict in the dependent resources.
Quick Fix cannot be used to resolve BAR file compiler errors.

v You cannot migrate a deployable JAR file for a user-defined node that was
created in Version 7.0, or before Version 7.0.

To migrate your WebSphere Message Broker Toolkit workspace to Version 7.0,
complete the following steps:

Procedure
1. Install WebSphere Message Broker Toolkit Version 7.0 in a different location

from WebSphere Message Broker Toolkit Version 6.1 or Version 6.0. For detailed
instructions, see “Installing the WebSphere Message Broker Toolkit” on page
276, or refer to the “Installation Guide” on page 233.

2. When you start the WebSphere Message Broker Toolkit Version 7.0 for the first
time, you are prompted to enter a workspace location. Enter the directory that
contains the WebSphere Message Broker Toolkit Version 6.1 or Version 6.0
workspace that you want to migrate and click OK. The workspace and
resources are now available in the WebSphere Message Broker Toolkit Version
7.0.

3. In the Broker Application Development perspective, select Window > Reset
Perspective to ensure that all views and menus are updated for Version 7.0.

4. You must migrate any user-defined node source projects that were developed
in Version 7.0, or before Version 7.0. An error is displayed on all projects that
require migration. You can use a Quick Fix to clear these errors, see “Applying
a Quick Fix to a task list error” on page 2862. After fixing the errors, you must
package the user-defined node source projects and redistribute to the users, see
“Packaging and distributing a user-defined node project” on page 3121.

Results

You can now view and modify existing resources, and create resources. You can
deploy your workspace resources to Version 7.0 brokers.

192 WebSphere Message Broker Version 7.0.0.8

What to do next

When you have migrated the resources associated with the WebSphere Message
Broker Toolkit, you must migrate your brokers, see “Migrating a broker from
WebSphere Message Broker to WebSphere Message Broker Version 7.0” on page
172.

When you have completed these tasks, for information about tasks that you might
want to perform after migration, see “Post-migration tasks” on page 204.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Migrating a broker from WebSphere Message Broker Version 6.0 to WebSphere
Message Broker Version 7.0”
Migrate one or more brokers to Version 7.0.
“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.

Migrating a broker from WebSphere Message Broker Version
6.0 to WebSphere Message Broker Version 7.0

Migrate one or more brokers to Version 7.0.

Before you begin

Before you start: Read “Preparing for migration from Version 6.0” on page 185.

About this task

To migrate a broker from WebSphere Message Broker Version 6.0 to WebSphere
Message Broker Version 7.0, see the appropriate topic for your operating system:
v “Migrating a Version 6.0 broker to Version 7.0 on distributed operating systems”

on page 194
v “Migrating a Version 6.0 broker to Version 7.0 on z/OS” on page 198

Results

You do not have to redeploy resources to a broker that you have migrated. When
you start the broker, it starts all existing message flows.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:

Chapter 3. Migrating and upgrading 193

“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.

Migrating a Version 6.0 broker to Version 7.0 on distributed
operating systems
Migrate a broker to use the enhanced facilities available in Version 7.0.

Before you begin

Before you start:

v Back up your broker resources.
v For the latest details of all supported levels of hardware and software, visit the

WebSphere Message Broker Requirements website.
v Install a supported version of WebSphere MQ and migrate your queue

managers and other resources, following the instructions provided by
WebSphere MQ.

v Optional: If your applications use publish/subscribe functions, and you have
message flows that include one or more Publication nodes, you must migrate
your subscriptions to WebSphere MQ before you migrate the broker.

v Migrate the WebSphere Message Broker Toolkit from Version 6.0 to Version 7.0.
v Check that you have no aggregations in progress on this broker. When you

migrate a broker to Version 7.0, all live data that is being stored for aggregations
in progress is lost.

v If the broker runs in a locale that is not listed in “Locales” on page 3629, check
that the code page is one of the supported code pages, and that the locale is set
up correctly.

About this task

If you stop the broker, you can migrate it immediately to the new version on the
same computer. If you prefer not to stop the broker to avoid problems for your
business applications, or if you want to reproduce the broker function on another
computer, you can associate the application logic on your Version 6.0 broker with a
separate Version 7.0 broker.

Select the topic that is appropriate to your environment:
v “Migrating a Version 6.0 broker to Version 7.0”
v “Migrating application logic to a Version 7.0 broker” on page 196

Migrating a Version 6.0 broker to Version 7.0:
About this task

To migrate a Version 6.0 broker on a distributed operating system to Version 7.0,
complete the following steps:

194 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Procedure

1. Install WebSphere Message Broker Version 7.0 on the same computer as
Version 6.0. Install at least the broker component; other components are
optional. You must specify a new location for this installation.

2. Open a Version 6.0 command environment, and stop the Version 6.0 broker by
using the mqsistop command.

3. Stop all channels that are connected to the Version 6.0 broker.
4. Optional: If your message flows access user databases by using ODBC

connections, update the ODBC definitions to Version 7.0 format.
5. Set up the correct Version 7.0 command environment:

v Linux UNIX On Linux and UNIX systems, open a new shell and
run the environment profile mqsiprofile for this Version 7.0 installation.

v Windows On Windows, click Start, and open the Command Console that is
associated with this Version 7.0 installation.
On Windows 7 and Windows Server 2008 systems, you must open a
command console with elevated privileges. To open a command console
with elevated privileges, use the mqsicommandconsole command. For more
information, see “mqsicommandconsole command” on page 3830.

6. Enter the mqsimigratecomponents command to migrate the broker. For
example:
mqsimigratecomponents Broker1

All configuration data is retrieved from the Version 6.0 broker database. If you
had set a default user ID and password for your Version 6.0 broker by using
the -u and -p options on the mqsicreatebroker command, these values are
migrated with the broker. You can change these values for your Version 7.0
broker by using the mqsisetdbparms command.

7. If the Version 7.0 support for your platform has changed from both 32 bit and
64-bit support to 64-bit support only, make the following changes to your
environment:

8. On the AIX, Linux on x86-64, and Solaris on SPARC platforms, support has
changed from both 32-bit and 64-bit support to 64-bit support only. 32-bit
execution groups are converted to 64-bit. These platforms now require 64-bit
libraries and 64-bit ODBC configurations for databases.
a. Recompile C/C++ user-defined nodes, parsers, and exits to 64-bit, if the

existing ones are 32-bit only.
b. Configure the broker to point at these recompiled extensions by using the

following command:
mqsichangebroker -l userLilPath -x userExitPath

where userLilPath defines one or more paths to your LIL files, and
userExitPath defines one or more paths to your user exit programs.

The following changes are made to environment variables, for all platforms:

Previous version Version 7

MQSI_LILPATH64 and MQSI_LILPATH32 MQSI_LILPATH

MQSI_USER_EXIT_PATH64 and
MQSI_USER_EXIT_PATH

MQSI_USER_EXIT_PATH

MQSI_SECURITY_PROVIDER_PATH64 and
MQSI_SECURITY_PROVIDER_PATH32

MQSI_SECURITY_PROVIDER_PATH

Chapter 3. Migrating and upgrading 195

Update all custom profiles that set these environment variables.
9. Copy all additional custom environment settings from your previous

environment into your Version 7.0 environment; for example,
MQSI_FILENODES_ROOT_DIRECTORY.

10. Start the Version 7.0 broker by using the mqsistart command.

Migrating application logic to a Version 7.0 broker:
About this task

To migrate application logic from a Version 6.0 broker on a distributed operating
system to a different Version 7.0 broker on the same computer, or on a different
computer, complete the following steps:

Procedure

1. Install WebSphere Message Broker Version 7.0 on the target computer. Install at
least the broker component; other components are optional. If you are installing
on the same computer, you must specify a different location.

2. Optional: If your message flows access user databases by using ODBC
connections, update the ODBC definitions to Version 7.0 format.

3. Set up the correct Version 7.0 command environment:

v Linux UNIX On Linux and UNIX systems, open a new shell and run
the environment profile mqsiprofile for this Version 7.0 installation.

v Windows On Windows, click Start, and open the Command Console that is
associated with this Version 7.0 installation.
On Windows 7 and Windows Server 2008 systems, you must open a
command console with elevated privileges. To open a command console with
elevated privileges, use the mqsicommandconsole command. For more
information, see “mqsicommandconsole command” on page 3830.

4. Create a Version 7.0 broker by using the mqsicreatebroker command; give it a
name and a queue manager name that are different from the names of the
Version 6.0 broker and queue manager. You can also create a local broker by
using the WebSphere Message Broker Explorer or the WebSphere Message
Broker Toolkit, providing you have installed one or both of these components
on this computer.

5. Start the Version 7.0 broker by using the mqsistart command. You can also
start a local broker by using the WebSphere Message Broker Explorer or the
WebSphere Message Broker Toolkit, providing you have installed one or both of
these components on this computer.

6. Write a list of the execution groups that you have on the Version 6.0 broker,
and create these same execution groups on the Version 7.0 broker. Use the
WebSphere Message Broker Explorer, the Version 7.0 WebSphere Message
Broker Toolkit, or the mqsicreateexecutiongroup command to complete this
step. On the AIX, Linux on x86-64, and Solaris on SPARC platforms, you can
create only 64-bit execution groups.

7. Deploy the message flows and message sets that are in use by the Version 6.0
broker to the Version 7.0 broker from the Version 7.0 WebSphere Message
Broker Toolkit. You cannot complete this step unless you have already migrated
the WebSphere Message Broker Toolkit.

8. Configure all other relevant properties of the Version 6.0 broker on the Version
7.0 broker.

9. When you are ready to delete your Version 6.0 broker:

196 WebSphere Message Broker Version 7.0.0.8

a. In a Version 6.0 command environment, stop the Version 6.0 broker by
using the mqsistop command.

b. Remove the Version 6.0 broker from the Version 6.0 WebSphere Message
Broker Toolkit.

c. Redeploy the Version 6.0 topology from the Version 6.0 WebSphere Message
Broker Toolkit to update the configuration data held by the Configuration
Manager.

d. In a Version 6.0 command environment, delete the Version 6.0 broker by
using the mqsideletebroker command.

What to do next

When you have completed these tasks, see the post-migration tasks for information
about tasks that you might want to perform after migration.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Creating an execution group using the mqsicreateexecutiongroup command” on
page 939
Use the mqsicreateexecutiongroup command to create execution groups on your
broker.
Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
“mqsicommandconsole command” on page 3830
Use the mqsicommandconsole command to launch an elevated command console
from which commands that require elevation on Windows can be run.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

Chapter 3. Migrating and upgrading 197

“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Migrating a Version 6.0 broker to Version 7.0 on z/OS
Migrate a broker to use the enhanced facilities available in Version 7.0.

Before you begin

Before you start:

v Back up your broker resources.
v For the latest details of all supported levels of hardware and software, visit the

WebSphere Message Broker Requirements website.
v Install WebSphere MQ and migrate your queue managers and other resources,

following the instructions provided by WebSphere MQ.
v Optional: If your applications use publish/subscribe functions, and you have

message flows that include one or more Publication nodes, you must migrate
your subscriptions to WebSphere MQ before you migrate the broker.

v Ensure that you are familiar with the steps involved in creating a broker on
z/OS.

v Ensure that you are familiar with the mqsimigratecomponents command which
the JCL (Job Control Language) file uses to migrate a broker.

v Check that you have no aggregations in progress. When you migrate a broker to
Version 7.0, any live data that is being stored for aggregations in progress is lost.

v If the broker runs in a locale that is not listed in “Locales” on page 3629, check
that the code page is one of the supported code pages and that the locale is set
up correctly.

About this task

To migrate a WebSphere Message Broker Version 6.0 broker to Version 7.0 on
z/OS:

Procedure
1. Stop the Version 6.0 broker.
2. Create a new broker PDSE.
3. Copy all broker JCL files from the Version 7.0 installed SBIPPROC and

SBIPSAMP PDSEs to the new broker PDSE and customize them all. See
“Customizing the broker JCL” on page 625 for more information.
You must take a backup copy of your Version 6.0 ENVFILE file before you
submit the BIPGEN job from the Version 7.0 component data set. The ENVFILE file
is stored in the directory referenced by the ++HOME++ JCL variable.
Subsequently, if you want to migrate back to Version 6.0, restore the ENVFILE
file, either from the backup file location, or by submitting the BIPGEN job from
the Version 6.0 component data set, before you start the Version 6.0 broker.

198 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

a. Customize the BIPEDIT file by using the values that are defined in the
Version 6.0 BIPEDIT file.

b. Copy all additional changes that you have made to the Version 6.1 version
of the BIPBPROF and BIPDSNAO files to these files in the Version 7.0
component data set. Submit the BIPGEN job to create the environment file
ENVFILE.

c. Customize and submit the BIPMGCMP (mqsimigratecomponents) job. This job
migrates the registry, queues, and broker database. Connection to the
database of the broker that you are migrating is required to run this
command. After migration, all information is stored in an internal
repository in Version 7.0; the Version 7.0 broker does not require a database.

4. Copy the renamed started task JCL BIPBRKP to the procedures library. When
you copy the started task, keep a second copy of the original in a safe place for
backup purposes.

5. The verification program runs when you start the Version 7.0 broker.

What to do next

Next: See the post-migration tasks for information about tasks that you might want
to perform after migration.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.
“Backing up WebSphere Message Broker Version 6.0 resources” on page 187
Back up your resources before you start to migrate components to Version 7.0.
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Creating the broker PDSE” on page 622
This is part of the larger task of creating a broker on z/OS.
“Customizing the broker JCL” on page 625
This subtask is part of the larger task of creating a broker on z/OS.
“Copying the broker started task to the procedures library” on page 629
This is part of the larger task of creating a broker on z/OS.
“Starting and stopping a broker on z/OS” on page 924
Run the appropriate command from SDSF to start or stop a broker.
Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
“Sample BIPEDIT file” on page 4009
The sample BIPEDIT file that is shipped with WebSphere Message Broker is

Chapter 3. Migrating and upgrading 199

included here for your reference.

Migrating Configuration Manager ACLs
If you are migrating from WebSphere Message Broker , WebSphere Message Broker
Version 6.0, or WebSphere Event Broker Version 6.0, you can use the Access
Control Lists (ACLs) that you set up in the Configuration Manager as the basis for
your security model in Version 7.0.

Before you begin

Before you start:

v Migrate your broker by following the instructions in “Migrating a broker from
WebSphere Message Broker to WebSphere Message Broker Version 7.0” on page
172 or “Migrating a broker from WebSphere Message Broker Version 6.0 to
WebSphere Message Broker Version 7.0” on page 193.

v Activate broker administration security by following the instructions in
“Enabling broker administration security” on page 368.

Administration security for a broker in Version 7.0 is disabled by default. Because
no security details are migrated, when you migrate a broker from a previous
version security is disabled, even if you had set up security in the previous
version.

About this task

The Configuration Manager has been removed as a result of the architectural and
security model changes in Version 7.0, therefore the commands that controlled this
component and its ACLs have been removed:

mqsichangeconfigmgr
mqsicreateconfigmgr
mqsideleteconfigmgr
mqsireportconfigmgr
mqsicreateaclentry
mqsideleteaclentry
mqsilistaclentry

Although you can use the ACLs that you set up in previous versions as the basis
for your security model in Version 7.0, you might choose to reconsider your
security model, and set up different levels of control that match the facilities
available in this version.

If you choose to use your existing ACLs as a basis for your security model in
Version 7.0, consider the following factors:
v You can obtain a list of existing ACLs maintained by your Configuration

Manager by using the mqsilistaclentry command.
v You can migrate existing groups, users, or both, subject to the following factors:

– You must define the user ID on the same computer as the queue manager
associated with the Version 7.0 broker.

– On Linux and UNIX systems, you can grant authority only to the primary
group of a user. All users that you have defined with the same primary group
automatically get the same level of security access. You must therefore
consider the membership of all your groups to ensure that you give the
required level of control to each user.

200 WebSphere Message Broker Version 7.0.0.8

v You can grant only broker and execution level authorities for Version 7.0
brokers.

v If you grant read, write, and execute authority to a user ID for a Version 7.0
broker, this permission is equivalent to full control access in previous versions.

v If you grant read authority to a user ID for a Version 7.0 broker, this permission
is equivalent to view access in previous versions.

v Check the authority that write and execute permissions grant for a Version 7.0
broker to determine the best match for edit and deploy access levels in previous
versions.

v Although you can set up access for a particular computer or domain name in
previous versions, you can use only user IDs and groups in Version 7.0. If you
want to establish a more secure environment, consider the use of
WebSphere MQ security exits and SSL.

To set up authorization for your Version 7.0 broker, complete the following steps.

Procedure
1. Review the authorizations that are required for specific tasks and commands.

Details are provided in “Tasks and authorizations for broker administration
security” on page 3645 and “Commands and authorizations for broker
administration security” on page 3646.

2. Grant the authorities that your users require.
v For details of this task on distributed systems, with examples, see “Granting

and revoking authority on Linux, UNIX, and Windows systems” on page
374.

v For details of this task on z/OS, with examples, see “Granting and revoking
authority on z/OS systems” on page 376.

What to do next

Next: Start the broker in the WebSphere Message Broker Explorer, or run the
mqsistart command.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
“Enabling SSL on the WebSphere MQ Java Client” on page 540
The WebSphere MQ Java Client supports SSL-encrypted connections over the
server-connection (SVRCONN) channel between an application and the queue
manager. Configure SSL support for connections between applications that use the
CMP API (including the WebSphere Message Broker Toolkit and the WebSphere
Message Broker Explorer) and a broker.
Related reference:

Chapter 3. Migrating and upgrading 201

“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
Related information:

WebSphere MQ Version 7 Information Center online

Migrating a WebSphere Message Broker that is configured by
using Microsoft Cluster Services (MSCS)

You must complete a specific set of steps to migrate your Microsoft Cluster
Services (MSCS) cluster to WebSphere Message Broker Version 7.0.

Before you begin

Read the topics within the section “Migrating from Version 6.0 products” on page
183, and the topic “Using a broker with an existing high availability manager” on
page 843.

About this task

Use the following procedure to migrate a WebSphere Message Broker that is
configured by using MSCS.

Migrating a WebSphere Message Broker Version 6.0 to WebSphere Message
Broker Version 7.0

Procedure
1. Install WebSphere Message Broker Version 7.0 onto each node. You must

specify a new location for this installation.
2. Stop all channels that are connected to the WebSphere Message Broker Version

6.0 broker.
3. In MSCS bring the broker resource offline, keeping the cluster disk and

WebSphere MQ resource online on your primary node
4. In a WebSphere Message Broker Version 7.0 command console, run the

following command:
mqsimigratecomponents BROKER1 -m

where BROKER1 is the name of your broker.
5. Move the broker cluster group to the secondary node. The broker resource

must remain stopped.
6. In a WebSphere Message Broker Version 7.0 command console, run the

following command:
mqsimigratecomponents BROKER1 -m -1

7. Copy all additional custom environment settings from your previous
environment into your WebSphere Message Broker Version 7.0 environment.
For example: MQSI_FILENODES_ROOT_DIRECTORY.

8. Bring the cluster disk and WebSphere MQ resource offline.
9. Start the WebSphere Message Broker cluster group on its primary node.

202 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

What to do next

Migrating a WebSphere Message Broker Version 7.0 to WebSphere Message
Broker Version 6.0

Due to changes in the file security model that are used in WebSphere Message
Broker Version 7.0, you might be required to alter the file permissions of the
shared resource.

If necessary, create a domain group, add the userID of your broker to this group,
and give the group full access to the shared files.
1. In MSCS bring the broker resource offline, keeping the cluster disk and

WebSphere MQ resource online on your primary node.
2. In a WebSphere Message Broker Version 6.0 command console, run the

following command:
mqsimigratecomponents BROKER1 -s 7.0 -t 6.0

3. In a WebSphere Message Broker Version 6.0 command console, run the
following command:
mqsistart BROKER1

This command is required to update the Windows service to point at the
WebSphere Message Broker Version 6.0 binary files.

4. In a WebSphere Message Broker Version 6.0 command console, run the
following command:
mqsistop BROKER1

5. Move the broker cluster group to the secondary node. The broker resource
must remain stopped.

6. In a WebSphere Message Broker Version 7.0 command console, run the
following command:
mqsimigratecomponents MSCSV61BROKER -m -s 6.0 -t 7 -1

7. In a WebSphere Message Broker Version 7.0 command console, run the
following command:
mqsimigratecomponents MSCSV61BROKER -s 7.0 -t 6.0 -1

8. In a WebSphere Message Broker Version 6.0 command console, run the
following command:
mqsistart BROKER1

This command is required to update the Windows service to point at the
WebSphere Message Broker Version 6.0 binary files.

9. In a WebSphere Message Broker Version 6.0 command console, run the
following command:
mqsistop BROKER1

10. Bring the cluster disk and WebSphere MQ resource offline.
11. Start the broker cluster group on its primary node.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Using a broker with an existing high availability manager” on page 843
You can use WebSphere Message Broker Version 7.0 with an existing high
availability manager, for example HACMP, HA/XD, VCS, or HP-UX Serviceguard.

Chapter 3. Migrating and upgrading 203

Post-migration tasks
After you have migrated to Version 7.0, finish setting up your environment.

About this task

Test the WebSphere Message Broker Version 7.0 broker resources and components
to verify that you experience no loss or unexpected change of functionality. Some
changes in behavior might be caused by defects that have been fixed between
versions.

The following topics describe further tasks that you can complete after migration:

Procedure
v “Reviewing technical changes in Version 7.0” on page 205
v “Setting up a command environment” on page 213
v “Migrating a flow containing HTTPRequest nodes” on page 214
v “Migrating a flow containing XMLTransformation nodes” on page 215
v “Migrating a flow containing data definitions” on page 217
v “Migrating CMP applications” on page 220
v “Updating error processing routines” on page 221

What to do next

Next: Complete the following tasks as required:
v Delete the Version 6.1 or Version 6.0 components (Configuration Manager, User

Name Server, and brokers that you have replaced but not migrated).
If the broker that you have migrated shares a queue manager with the
Configuration Manager, the default server connection channel
SYSTEM.BKR.CONFIG, which was created when you created the Configuration
Manager, is deleted when you delete the Configuration Manager. The Version 7.0
broker requires this channel for connections from the WebSphere Message Broker
Explorer, the WebSphere Message Broker Toolkit, and CMP applications. You
must re-create this channel on the broker queue manager after you have deleted
the Configuration Manager.

v Remove the installed code for Version 6.1 or Version 6.0.
v Delete the broker database. You can also remove the installed database product,

if you do not use it for other purposes.
v If you are migrating from Version 6.0, delete the configuration repository. You

can also remove the installed database product, if you do not use it for other
purposes.

Access the Version 6.1 or Version 6.0 information center for details of these tasks
(or use the links provided).
Related concepts:
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Migrating publish/subscribe information to WebSphere MQ” on page 141
These tasks give an overview of how to migrate publish/subscribe information
from WebSphere Message Broker or WebSphere Message Broker Version 6.0 to

204 WebSphere Message Broker Version 7.0.0.8

WebSphere MQ.
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Related reference:
“Supported migration paths” on page 3579
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.
Related information:

WebSphere Message Broker Information Center online

WebSphere Message Brokers Version 6.0 Information Center online

Reviewing technical changes in Version 7.0
Some minor changes in behavior are present in WebSphere Message Broker Version
7.0; for example, those changes caused by defects that have been fixed between
versions.

If you are migrating from Version 6.0 or Version 6.1, read the following sections to
understand the potential effects on your broker and message flows:
v “Changes to user ID and password requirements”
v “Changes to location of description properties” on page 206
v “Default Configuration wizard and database usage on Windows” on page 206
v “Default execution group when creating brokers” on page 206
v “Starting and stopping execution groups” on page 206
v “Using SOAPAsyncRequest, SOAPInput, and SOAPRequest nodes” on page 207
v “Using HTTPS with HTTPInput and HTTPReply nodes” on page 207
v “Monitoring message flows” on page 207
v “ESQL field references with an index of zero” on page 208
v “Using RegistryLookup nodes” on page 208
v “Interfaces in the WebSphere Message Broker Toolkit” on page 208

If you are migrating from Version 6.0, and you have created message sets, review
the changes in behavior in “Message set migration” on page 209.

Changes to user ID and password requirements

User ID and password management in Version 7.0 has been updated:
v The requirement for a service user ID and password has been removed on all

systems except Windows. These parameters (-i, -a) are no longer used when
you migrate your brokers to Version 7.0.
If you restore a Windows broker to an earlier version, the password value is
restored with the broker. If you have changed the password by using the
mqsichangebroker command, the updated value is set in the previous version.

v Because the Version 7.0 broker has no requirement for a database, the
parameters to define and change database user IDs and passwords have been
removed.

Chapter 3. Migrating and upgrading 205

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

If you had set these values for the brokers that you are migrating, these
parameters (-u, -p) are migrated with the broker, and are used as default values
for data sources (user databases) for which you do not set explicit values. If you
had not set -u, -p, that values for -i, -a are migrated. In Version 7.0, you can
manage these user IDs and passwords for your user databases by using the
mqsisetdbparms command.

v The requirement for the broker service user ID to be a member of the mqm
group has been removed.

v If you change the database user ID and password by using the mqsisetdbparms
command, you no longer need to restart the broker. You can instead restart the
affected execution group by using the mqsireload command.

Changes to location of description properties

Long and short description properties of deployed Message Broker artifacts were
not held in the deployed execution group repository, so they will not have been
migrated to the Version 7.0 broker.

If the following fields have been used to hold keywords:
$MQSI name = value MQSI$

they will not be displayed in the migrated artefacts. To correct this behavior,
redeploy the artefacts directly to the Version 7.0 broker.

For more information about defining keywords, see “Guidance for defining
keywords” on page 4017.

Default Configuration wizard and database usage on Windows

Some of the sample programs use a database; for example, the Airline sample. If
you had used the Default Configuration wizard to set up a default configuration
on Windows, and deploy samples to the default broker, the samples that require a
database use the Derby database that is embedded in the broker. Version 7.0 does
not ship or support the Derby database. You must reconfigure your database
samples by following the updated instructions in the samples documentation.

Default execution group when creating brokers

When you create a broker by using the mqsicreatebroker command, a default
execution group is no longer created.

If you use either the WebSphere Message Broker Toolkit or the WebSphere Message
Broker Explorer to create a broker, you can select an option to create a default
execution group with the name default (unless you specify another name).

You can also create execution groups by using the mqsicreateexecutiongroup
command.

Starting and stopping execution groups

Starting and stopping execution group behavior has been updated in Version 7.0.
When you start or stop an execution group using the mqsistartmsgflow or
mqsistopmsgflow commands without the -m parameter, the execution group process
is stopped or started. When you stop the execution group in this way, or using the
WebSphere Message Broker Toolkit, or the WebSphere Message Broker Explorer,

206 WebSphere Message Broker Version 7.0.0.8

the run state of the message flows deployed to the execution group is remembered.
When you next start the execution group only those message flows that were
running when the execution group was stopped are restarted, unless you
specifically request all flows to be started, or use the -j parameter on the
command.

Using SOAPAsyncRequest, SOAPInput, and SOAPRequest nodes

The Failure action property of the SOAPAsyncRequest, SOAPInput, and
SOAPRequest nodes has changed to be not configurable. If you have set this
property, for example in a BAR file, the setting is ignored.

Using HTTPS with HTTPInput and HTTPReply nodes

The Version 7.0 broker checks for required SSL configuration when you run the
mqsistart command.

If you have deployed a message flow that includes HTTPInput or HTTPReply
nodes to a Version 6.1 or Version 6.0 broker, and you migrate the broker to Version
7.0 and start the broker again, you might see the following error message
generated. (Message lines are continuous, but have been split to improve
readability).

BIP3135S: An exception occurred while starting the servlet engine connector.
Exception text is HTTP Listener LifecycleException:
Protocol handler start failed: java.io.FileNotFoundException: /home/leed/.keystore
(No such file or directory)
at org.apache.coyote.tomcat5.CoyoteConnector.start(CoyoteConnector.java:1529)
at com.ibm.broker.httplistener.ConnectorWrapper.start(ConnectorWrapper.java:166)
at com.ibm.broker.httplistener.TomcatWrapper.startSecureHTTPSConnector
(TomcatWrapper.java:146)
at com.ibm.broker.httplistener.HTTPListenerManager.ensureServletContainer
(HTTPListenerManager.java:290)
at com.ibm.broker.httplistener.HTTPListenerManager.run(HTTPListenerManager.java:153)
at java.lang.Thread.run(Thread.java:735) :
DANBRK.httplistener: /build/S000_P/src/DataFlowEngine/NativeTrace/ImbNativeTrace.cpp: 732:
ensureServletContainer: :

Oct 13 13:47:16 partick user:err|error WebSphere Broker v7000[303572]:
(DANBRK.default)[1]BIP2275E: Error loading message flow ’ef2a0606-2401-0000-0080-984a4915984c’. :
DANBRK.de427601-2401-0000-0080-d525e90f1528: /build/S000_P/src/DataFlowEngine/ImbDataFlowDirector.cpp:
2957: ImbDataFlowDirector::loadAllDataFlowsFromDatabase:
ExecutionGroup: de427601-2401-0000-0080-d525e90f1528

This error is generated because the Version 7.0 broker has detected that you have
configured the HTTP nodes in the message flow to use HTTPS, but you have not
set up the required SSL configuration; the broker does not load the message flow.
In previous versions, this check was not performed and no error generated.

To resolve this error, configure your HTTP nodes to use SSL, and redeploy the
message flow. For SSL configuration information, see “Configuring HTTPInput and
HTTPReply nodes to use SSL (HTTPS)” on page 535.

Monitoring message flows

The default behavior for publishing monitoring events has changed. In versions
before Version 7.0, monitoring events are emitted out of sync point. Now, the
default for all events except transaction rollback is that events are emitted only if
the message flow commits its unit of work successfully. By default, transaction
rollback events are emitted in a second unit of work, independent of the main unit
of work.

Chapter 3. Migrating and upgrading 207

These changes mean that you no longer see events that have been backed out
because of a failed message flow; you see only the transaction start event and the
transaction rollback event, if these events are defined. You also see all other events
that are defined to be in an independent unit of work. See “Monitoring basics” on
page 3320 for more information.

A sequence number has been added to the eventSequence element of the
monitoring event. Because both the creation time and sequence number are always
emitted in the monitoring event, the Sequence tab has been removed from the
monitoring tab in the WebSphere Message Broker Toolkit.

ESQL field references with an index of zero

The validity of using a field reference index of zero has been corrected. If you have
statements in your ESQL modules that include an index of zero, error BIP3226E is
generated when you deploy the message flow.

For example, if you have code that contains the statement:
SET OutputRoot.XMLNSC.Top.A[0].B = 42;

You must update the code to contain the following content:
SET OutputRoot.XMLNSC.Top.A[1].B = 42;

Using RegistryLookup nodes

The default for the Depth Policy property of the RegistryLookup node has been
changed from the value Return matched showing immediate relationships (For
compatibility only) in Version 6.1 to the value Return matched only (Depth = 0) in
Version 7.0.

If you do not explicitly set this property on a RegistryLookup node, it uses the
default value Return matched only (Depth = 0) to determine the depth of the
WSRR query and the contents of the entity data to be returned.

If you want to use the node in deprecated mode in Version 7.0, you must explicitly
set the Depth Policy property to the value Return matched showing immediate
relationships (For compatibility only), and rebuild the BAR file.

For more information about the RegistryLookup node and its properties, see
“RegistryLookup node” on page 4646.

Interfaces in the WebSphere Message Broker Toolkit

The following changes are present in the WebSphere Message Broker Toolkit:

Problems view
In WebSphere Message Broker Toolkit Version 6.1, you can configure the
list of problems shown in the Problems view by clicking either the icon on
the Problems view pane bar, or the down arrow next to the icon, and
selecting Configure filter from the list of options displayed. In WebSphere
Message Broker Toolkit Version 7.0, the icon is no longer shown. Click the
down arrow shown at the right end of the bar, and select Configure
contents.

208 WebSphere Message Broker Version 7.0.0.8

Broker Development view
In WebSphere Message Broker Toolkit Version 7.0, the Broker Development
view shows pattern instance projects in a separate pane, in addition to
other projects in your workspace.

Broker administration perspective
In WebSphere Message Broker Toolkit Version 6.1, you can connect,
configure, and deploy to brokers by using the Broker administration
perspective in the WebSphere Message Broker Toolkit. In Version 7.0, the
Broker Administration perspective has been removed, and you can now
connect, configure and deploy to brokers by using the Brokers view in the
Broker Application Development perspective. For more advanced
configuration tasks, you can use the WebSphere Message Broker Explorer.

Event Log viewer
In WebSphere Message Broker Toolkit Version 6.1, deployment responses
and messages from the broker are displayed in the Event Log viewer. In
Version 7.0, deployment messages from your instance of the WebSphere
Message Broker Toolkit are displayed in the Deployment Log view, in the
Broker Application Development perspective.

Command assistants
In WebSphere Message Broker Toolkit Version 6.1 and Version 6.0, you can
use the command assistants to create, change, and delete components such
as brokers on your local system. In Version 7.0, you can use the Brokers
view to create and delete components. Alternatively, you can use the
WebSphere Message Broker Explorer to create, change, and delete brokers
on your local system.

XPath Expression Builder
In WebSphere Message Broker Toolkit Version 6.1, the Data Types Viewer
shows two top-level categories, Data Types and Variables. In Version 7.0,
you can find the variables under the single top-level category Data Types.

Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Post-migration tasks” on page 204
After you have migrated to Version 7.0, finish setting up your environment.

Message set migration
When you migrate a message flow that uses message sets, review the changes in
behavior in WebSphere Message Broker Version 7.0.

Before you begin

Review this information about message set changes, and potential effects, if you
are migrating from Version 6.0; no message set migration is required from Version
6.1.

You do not have to run migration commands; WebSphere Message Broker Toolkit
Version 7.0 can read a Version 6.0 message set project and automatically convert it
to Version 7.0 format when you modify and save it for the first time.

Chapter 3. Migrating and upgrading 209

For guidance about changes to the behavior of parsers, and for general migration
information, see the following sections:
v “Behavioral changes in the XMLNSC parser”
v “Behavioral changes in the MRM parser” on page 211
v “General migration information” on page 211

Behavioral changes in the XMLNSC parser:
About this task

The following changes are implemented in Version 7.0:
v In Version 6.0, the attributes of an XML element are displayed in the message

tree that is created by the XMLNSC parser in the order in which they are
displayed on the element in the XML document.
In Version 7.0, the XMLNSC parser always displays namespace attributes ahead
of other attributes when it creates the message tree. However, XML attributes are
inherently unordered, therefore do not write message flow logic that assumes
attribute position.

v In Version 6.0, the XMLNSC parser accepts the EBCDIC NEL as an XML line
feed character on z/OS only.
In Version 7.0, NEL is accepted on all platforms.

v In Version 6.0, the XMLNSC parser ignores a node's Validate property setting.
In Version 7.0, the XMLNSC parser honors the Validate property setting. If you
have set this property to Content or Content And Value, the parser validates the
message against the message set defined by the Message Set property.
Therefore, if you have accidentally set the Validate property in Version 6.0 to
Content or Content And Value, the message flow throws an exception after
migration to Version 7.0.
To correct this situation, set the Validate property to None.

v In Version 6.0. the XMLNSC parser uses the default ESQL format
"YYYY-MM-DD hh:mm:ss" when it writes a field of type TIMESTAMP or
GMTTIMESTAMP. This format does not comply with the XML Schema 1.0
specification.
In Version 7.0, the XMLNSC parser uses the format "YYYY-MM-
DD'T'hh:mm:ss.sss", which complies with the XML Schema 1.0 specification. If
you require another format to be written, you must cast the TIMESTAMP or
GMTTIMESTAMP to a CHARACTER. (If the element was originally parsed by
the XMLNSC parser and had a time zone indicator, the time zone indicator is
also written to the output message field.)

v In Version 6.0, the XMLNSC parser uses the default ESQL strings "TRUE" and
"FALSE" when it writes a field of type BOOLEAN. This use does not comply
with the XML Schema 1.0 specification.
In Version 7.0, the XMLNSC parser writes "true" and "false", which complies
with the XML Schema 1.0 specification. If you require strings other than "true
and "false" to be written, cast the BOOLEAN field to a CHARACTER.

v In Version 6.0, the XMLNSC parser does not validate XML documents against
XML Schema generated from a message set.
In Version 7.0, the XMLNSC parser offers this function. When you add a
message set to a broker archive (BAR) file, if the Message Domain property of
the message set is set to XMLNSC, an XML Schema is generated for each
message definition file in the message set for potential use by the XMLNSC
parser. These XML Schema are checked by the XMLNSC parser when the BAR
file is deployed.

210 WebSphere Message Broker Version 7.0.0.8

However, the checks are stricter than the checks that are carried out by the
message definition file editor, and the deployment might fail. If the deployment
fails, you must correct the message definition file to comply with XML Schema
rules. If the message set contains one of the IBM supplied SOAP Envelope
message definition files, reimport the message definition file by using the New
Message Definition File From IBM supplied Message wizard.

Behavioral changes in the MRM parser:
About this task

The following changes are implemented in Version 7.0:
v In Version 6.0, the MRM parser TDS physical format Data Element Separations

Tagged Fixed Length, Tagged Delimited, and Tagged Encoded Length write out
any xsi:type attributes they encounter in the message tree, using a tag name of
"type".
In Version 7.0, the TDS physical format assumes that all xsi:type attributes are
XML-specific, and does not write them out.

v In Version 6.0, the MRM TDS physical format Data Element Separations Fixed
Length, Fixed Length AL3, and Tagged Fixed Length treat an element with a
TDS Length of zero as fixed length when parsing, but as variable length when
writing. Therefore, all data in the message tree for such an element is written to
the bit stream without an exception being thrown.
In Version 7.0, the element is treated as fixed length when parsing and writing.
Therefore, all data in the message tree for such an element causes message
BIP5436E to be generated, unless you have set the TDS property Truncate on
output, in which case nothing is written.

v In Version 6.0, message BIP5374E is generated when a missing mandatory
repeating element (minOccurs > 1) is detected during validation of an MRM
message.
In Version 7.0, two different conditions are detected during validation:
– A mandatory element that is repeating but has no instances in the message

tree. In this case, message BIP5378E is generated, which provides details of
the elements that exist before and after the expected location of the missing
element. Because of this change, you might have to change or enhance
automated error processes that you have in place.

– A mandatory element that is repeating and has the incorrect number of
instances in the message tree. In this case, message BIP5374E is generated as
before, giving details of the existing and the expected instances of the
element.

General migration information:
About this task

The following changes are implemented in Version 7.0:
v A single message set can contain models for MRM or IDOC domains, and also

for other domains such as XMLNSC. In Version 6.0, a .dictionary file for use by
the MRM parser is always generated when the message set is added to a BAR
file.
In Version 7.0, a .dictionary file is generated only if you have either specified
MRM or IDOC as the default message domain, or added MRM or IDOC to
Supported message domains in the message set file. If a .dictionary file is no
longer generated, add MRM or IDOC to Supported message domains.

Chapter 3. Migrating and upgrading 211

v The XML parser is deprecated and might be withdrawn in a future release.
Existing message flows that use the XML parser continue to operate in Version
7.0. Use the XMLNSC domain for most new message flows that need to parse or
write XML documents. For more information, see “Which XML parser should
you use?” on page 1080.

v The IDOC domain and parser are deprecated, and might be withdrawn in a
future release. Existing message flows that use the IDOC parser continue to
operate in Version 7.0. Use the MRM domain TDS physical format for new
message flows that need to parse or write SAP ALE IDocs in text format that
originate from the WebSphere MQ link for R3.

v The location and labeling of some MRM TDS properties have been updated; no
behavioral changes are associated with these changes.
– The Repeating Element Delimiter property has moved into a box labeled

“Occurrences”, to keep all repeating properties together.
– The Virtual Decimal Point and Precision properties are moved below the

“Sign” group of properties, to align them with CWF properties.
– The Length Reference property was not used for local groups, group

references, and complex elements, and is removed from their property sheets.
– The local group property sheet now has two boxes labeled “Field

Identification”, to distinguish the Data Pattern property from the rest, because
Data Pattern applies not to the group itself, but to its inclusion in its parent.

– The message set Boolean representation properties are now displayed with
prefix “Text” to distinguish them from new binary Boolean representation
properties.

– The Physical Type property enumeration value Character is renamed Text.
– The Physical Type property enumeration value Messaging Standard Alternate

is renamed TLOG Specific.
– The Trim Fixed Len String property is renamed Trim On Input, and has

moved into a new box labeled “Fixed length strings”.
– The Derive default length from logical type property has moved into a new

box labeled “General settings”.
v The location and labeling of some MRM CWF properties have been updated; no

behavioral changes are associated with these changes.
– The Format property has moved to be last in the “Physical representation”

section, to align it with TDS properties.
– The element property sheet now has a section labeled “Numeric

representation” section which contains the Sign group of properties and
Virtual Decimal Point, to align these properties with TDS properties.

– The Length Count property is renamed Length, to align this property with
TDS properties.

– The String Justification property is renamed Justification, to align this
property with TDS properties.

– The Sign EBCDIC Custom property is renamed Sign EBCDIC Custom
Overpunched, to align this property with TDS properties.

– The Sign Orientation property enumeration values Leading and Trailing are
renamed Leading Overpunched and Trailing Overpunched, to align these
properties with TDS properties.

– The message set byte order properties are now displayed with the prefix
“Default” to align these properties with TDS properties.

Related concepts:

212 WebSphere Message Broker Version 7.0.0.8

“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Identifying an embedded message by using a Message Identity” on page 1193
You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Input message tree modification
You might see a change in behavior when you migrate message flows that modify
input message trees.

When you migrate message flows from Version 6.0 of WebSphere Message Broker
that have been incorrectly modifying input message trees in ESQL nodes or
user-defined nodes, you might see a change in behavior because the changes are
now reflected in a bit stream that is written from that tree.
Related concepts:
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Manipulating other parts of the message tree” on page 2452
You can access message tree headers, the properties tree, the local environment
tree, the environment tree and the exception list tree.

Setting up a command environment
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.

Chapter 3. Migrating and upgrading 213

About this task

Also complete this task if you have migrated to WebSphere Message Broker
Version 7.0 from an earlier version. A profile is provided to help you set up the
environment.

If appropriate, you can extend the initialization performed by this profile; for
example, for user databases, or for other products that you want to use within the
broker.

Ensure that you use this environment each time you run an administrative
command, or start a broker.

For information about setting up your command and runtime environment on a
Windows system, see “Command environment: Windows systems” on page 306.

For information on setting up your command and runtime environment on Linux
and UNIX systems, see “Command environment: Linux and UNIX systems” on
page 310.

For information about setting up your command and runtime environment for
execution groups on Linux and UNIX systems, see “Execution group-specific
command environment: Linux and UNIX systems” on page 312.

For information about setting up your command and runtime environment for
execution groups on Windows systems, see “Execution group-specific command
environment: Windows systems” on page 309.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Command environment: Windows systems” on page 306
Set up the Windows environment to run WebSphere Message Broker commands.
“Command environment: Linux and UNIX systems” on page 310
Set up the Linux or UNIX environment to run WebSphere Message Broker
commands.
Related reference:
“Runtime commands” on page 3715
The topics in this section describe the WebSphere Message Broker runtime
commands.

Migrating a flow containing HTTPRequest nodes
When you migrate a message flow that contains HTTPRequest nodes from Version
6.0, check how Version 7.0 validates messages in these nodes.

214 WebSphere Message Broker Version 7.0.0.8

About this task

You must complete this task if you are migrating from Version 6.0; no migration is
required from Version 6.1.

In WebSphere Message Broker Version 7.0, message validation for HTTPRequest
nodes has changed. The validation options that you can specify on an
HTTPRequest node apply only to the response message that is received by the
node from the remote server when an HTTP request is made. In Version 6.0, these
options were also applied to the message received by the In terminal of the node.

The message received at the In terminal is no longer validated; however, the
outbound (request) message can still be validated. Set validation options on a
preceding Compute node, or include a Validate node. The HTTPRequest node uses
the validation options associated with the message that is received at the In
terminal to validate that message when it is sent out.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“Validate node” on page 4959
Use the Validate node to check that the message that arrives on its input terminal
is as expected. You can use this node to check that the message has the expected
message template properties, and to check that the content of the message is
correct by selecting message validation.

Migrating a flow containing XMLTransformation nodes
When you migrate a message flow that contains XMLTransformation nodes, check
how WebSphere Message Broker Version 7.0 uses the node properties and search
priorities.

About this task

You must complete this task if you are migrating from Version 6.0; no migration is
required from Version 6.1.

The XMLTransformation node in Version 6.0 is replaced by the XSLTransform node
in Version 7.0. When you migrate a flow that contains one or more
XMLTransformation nodes, consider the following enhancements:

Procedure
v You can no longer set the style sheet search and character set information search

priorities in the node properties in the WebSphere Message Broker Toolkit. The
following fixed search priorities are adopted. However, search priorities set on
existing flows are still respected.
– The node searches for the name of the style sheet to be used by interrogating

each of the following items in turn:

Chapter 3. Migrating and upgrading 215

1. The input message. The node searches the message XML data for
stylesheet location information. For example, if the XML data contains this
entry:
<?xml-stylesheet type="text/xsl" href="aaa.xsl"?>

the node uses "aaa.xsl" as the stylesheet name.
2. The local environment. If no stylesheet name is found in the input

message, the node searches the local environment associated with the
current message for stylesheet information that is stored in an element
called XSL.StyleSheetName.
In Version 6.0, element ComIbmXslXmltStylesheetname is used for the
name of the style sheet, therefore the current node checks both elements.
If both are present, the value in XSL.StyleSheetName takes precedence.

3. The properties of the node. If no stylesheet name is found in the input
message or local environment, the node uses the Stylesheet Name and
Stylesheet Directory properties to determine the correct values.

– The node searches for the character set to use for the output message by
interrogating each of he following items in turn:
1. The local environment. The node searches the local environment

associated with the current message for character set information that is
stored in an element called XSL.OutputCharSet; for example, to encode
the output of the transformation as UTF-16, enter the value 1200 as a
string in this element.
In Version 6.0, element ComIbmXslXmltOutputcharset is used for the
output character set, therefore the current node checks both elements. If
both are present, the value in XSL.OutputCharSet takes precedence.

2. The properties of the node. If no character set information is found in the
local environment, the node uses the Output Character Set property to
determine the correct value.

If the node cannot determine the output character set from either of these two
sources, either because no value is set or the selection priorities are set to
zero, the default value of 1208 (UTF-8) is used.

v You can set additional node properties, or use additional local environment
overrides, to specify the message domain, message set, message type, and
message format of the output message. If you have included a
ResetContentDescriptor node to set these values before passing the message to
the XSLTransform node, you can now optimize the message flow by removing
the ResetContentDescriptor node.

Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Related reference:
“ResetContentDescriptor node” on page 4663
Use the ResetContentDescriptor node to request that the message is reparsed by a
different parser.
“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.

216 WebSphere Message Broker Version 7.0.0.8

Migrating a flow that contains File nodes
If you migrate message flows that contain File nodes to WebSphere Message
Broker Version 7.0, ensure that your NFS server appropriately supports file locking.

About this task

If you use an NFS server, and have File nodes in different execution groups in
WebSphere Message Broker Version 7.0 that access the same directory on the NFS
server, ensure that you are using NFS version 4 to correctly support file locking.
Related tasks:
“Working with files” on page 1807
“Problems when developing message flows with file nodes” on page 3402
Use the advice given here to help you to resolve some common problems that can
arise when you develop message flows that contain file nodes.
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“FileRead node” on page 4444
Use the FileRead node to read one record, or the entire contents of a file, from
within a message flow.

Migrating a flow containing data definitions
When you migrate a message flow that uses data definitions from Version 6.0,
Version 7.0 converts and replaces those definitions.

About this task

You must complete this task if you are migrating from Version 6.0; no migration is
required from Version 6.1.

WebSphere Message Broker Version 7.0 manages data definitions in a data design
project. A single file in the project (a .dbm file) represents the database. This file
replaces the set of .xmi files that you created for each data definition in the Version
6.0 workbench.
v If you are migrating from Version 6.0, migration is performed only when you

rebuild the message flow project in the WebSphere Message Broker Toolkit.
Therefore, you must start a Version 7.0 WebSphere Message Broker Toolkit
session to migrate the data definitions. See “Migrating data definitions in the
workbench” on page 218.

Because the project files are changed by the migration process, and the old format
files are deleted, back up your resources before you start to use existing resources
in the Version 7.0 WebSphere Message Broker Toolkit.

When migration is complete, you can view data design projects in the Broker
Application Development perspective, and you can view the contents of the .dbm
files in the Data Project Explorer and Data Source Explorer views.

If a data definition is not migrated successfully, the database might no longer be
supported. Check the version of the database that is referenced by the data

Chapter 3. Migrating and upgrading 217

definition against the “Supported databases” on page 3591, and upgrade your
database if necessary.

Migrating data definitions in the workbench
About this task

Complete the following steps:

Procedure
1. Start the Version 7.0 WebSphere Message Broker Toolkit.
2. Import the message flow that contains data definitions in .xmi files. You are

asked to confirm that you want migration to be performed.
3. Select Do not show this message again if you want all projects to be migrated

automatically when you import or rebuild them, and click Yes to continue with
migration. The project is rebuilt, all data definitions are converted to the .dbm
file format, and all database references from ESQL modules and mappings are
replaced.
To reset the option that suppresses the confirmation dialog, click Windows >
Preferences, open Broker Development, and click Database Definition.
Change the setting on this panel.

4. Clean all your projects after migration:
a. Click Project > Clean.
b. Select Clean all projects.
c. Click OK.

5. Check the results of the migration. Errors and warnings are displayed in the
Problems view.

Results

If you decide not to continue with migration, some errors might be generated in
ESQL modules (.esql files) and in mappings (.msgmap files) that refer to databases.
You must migrate the database resources in the project before you can deploy the
project. You can start migration later in two ways:
v Rebuild the message flow project.
v Right-click the Database Connections folder and select Database Definition

Migration. (The Database Connections folder appears in the toolkit only if you
have not migrated all your database definitions, and it is removed when all
migration has completed.)

How the migration works
About this task

Changes are made to the workspace resources as follows:

Procedure
v A new data design project is created if database definitions are found in the

project. The first data design project name is set to the message flow project
name, with _DDP appended; for example, FlowProject1_DDP.
Each database definition is converted to Version 7.0 format. That is, the set of
.xmi files is converted and stored as a single file called database_name.dbm.
Multiple unique database definitions are converted and stored in a single data
design project.
You can rename the .dbm file, or the data design project.

218 WebSphere Message Broker Version 7.0.0.8

v If you have created duplicate database definitions for the same database in the
message flow project, another data design project is created for each definition.
In Version 6.0, you can create multiple database definitions for the same
database within a single message flow project. In Version 7.0 you can have only
one definition, for each database, to ensure that mappings are unambiguous.
You can create separate data definitions for the same database in separate data
design projects, but you can refer to only one of these definitions from a single
message flow project.
The .xmi files are converted to a single .dbm file and each duplicate definition is
stored in a separate data design project. The names of additional data design
projects are also based on the name of the message flow project, and are
appended with _DDP2, _DDP3, and so on.
You might have to modify your message flow projects to ensure that all database
references are to the same definition of the database.

v All old database definition files are deleted from the message flow project and
from the file system.

v The first data design project that is created is added as a project reference to the
message flow project.
If data design projects have been created for duplicate database definitions, you
cannot refer to these projects from the same message flow project.
If you change the name of the data design project, you must modify the project
reference in the message flow project.

v During conversion, information and errors are recorded in a log. Errors are also
displayed in a dialog to indicate that migration has failed for a definition, and
the cause of the failure. After migration, view the log file
migratedbdefinitions.log in the .metadata/.plugins/com.ibm.etools.mft.rdb
directory.
The log contains details of the data design projects that have been created, the
.dbm files that have been added to those projects, and the .xmi files that have
been deleted.
If you migrate these resources at a later date, for example when you import a
different message flow project, the log records are appended to the existing
content.

Related concepts:
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Adding a database as a source or target” on page 2274
Add a database as a source, and database tables as targets, to message maps that
support database mappings.
“Adding database definitions to the WebSphere Message Broker Toolkit” on page
2278
Use the New Database Definition File wizard to add database definitions to the
WebSphere Message Broker Toolkit.

Chapter 3. Migrating and upgrading 219

“Modifying databases using message mappings” on page 2277
Create message mappings to read, update, and write to databases.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

Migrating a flow supporting ?wsdl queries
If you want WSDL and XML Schema information to be made available for existing
SOAPInput-SOAPReply flows that implement web services, you must explicitly set
the SOAPInput node property Enable support for ?wsdl and redeploy the flow.

About this task

In the unlikely event you have implemented an HTTPInput-HTTPReply flow to
support ?wsdl queries related to a SOAPInput-SOAPReply flow, you should now
deprecate the HTTP flow. By sending ?wsdl requests directly to the endpoint
exposed by the SOAPInput node, this capability will continue to work even if the
internal WSDL deployment details change in the future.

If you migrate your HTTP flow to use the embedded HTTP listener, the
HTTPInput URL will clash with the SOAPInput URL, and a warning is written to
the event log. In this case the ?wsdl request is always serviced correctly, but web
service requests could be sent to either the SOAPInput or the HTTPInput node.
Related concepts:
“Using WSDL to configure message flows” on page 1664
You can use WSDL to configure message flows.
Related reference:
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.

Migrating CMP applications
If you have written applications that use the CMP API, check that they access the
correct resources.

Procedure
1. Update your CMP applications to use the file that is supplied by Version 7.0.

You cannot use the ConfigManagerProxy.jar file from an earlier version to work
with a Version 7.0 broker.
You do not have to change the methods that the application uses; the Version
7.0 CMP API includes all deprecated classes and takes appropriate action.

2. Update the connection details that are used by your CMP applications to
connect to the appropriate broker.
If the application connects to a broker that is running on the same queue
manager that was previously used by the Configuration Manager to which it
connected, no change is required.

Related concepts:

220 WebSphere Message Broker Version 7.0.0.8

“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.
Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.

Updating error processing routines
Update your message processing to handle new or reused messages, and to delete
obsolete messages.

About this task

WebSphere Message Broker Version 7.0 components generate new diagnostic
messages (BIP messages), and no longer generates others that were reported in
previous versions. The text of some messages have also been updated to reflect
change in behavior and function in Version 7.0, although the meaning has been
retained. One message, BIP8663, has been reused and has different content and
meaning.

If you have applications that check for specific messages, you must update these
routines. For example, you might have programs that automate error reporting, or
identify the occurrence of specific error conditions.

For details of the content of all messages generated by Version 7.0, see Diagnostic
messages.

Version 7.0 generates the following new messages:
v Configuration: messages in the range 1000 - 1999:

BIP1014, BIP1054, BIP1060, BIP1115, BIP1117
BIP1181 to BIP1191
BIP1251 to BIP1269
BIP1280 to BIP1295
BIP1810

v Broker: messages in the range 2000 - 2999:

BIP2082, BIP2289, BIP2319, BIP2358
BIP2372, BIP2676, BIP2829, BIP2830
BIP2850 to BIP2866
BIP2870 to BIP2872
BIP2880 to BIP2883
BIP2890 to BIP2894

Chapter 3. Migrating and upgrading 221

v Built-in nodes: messages in the range 3000 - 3999:

BIP3226
BIP3432 to BIP3439
BIP3451 to BIP3463
BIP3466 to BIP3471
BIP3524 to BIP3526
BIP3574, BIP3635, BIP3687
BIP3747 to BIP3760
BIP3769 to BIP3831
BIP3915 to BIP3925

v Built-in nodes: messages in the range 4000 - 4999:

BIP4015 to BIP4017
BIP4071 to BIP4076
BIP4251 to BIP4254
BIP4359
BIP4513 to BIP4516
BIP4678
BIP4821 to BIP4829
BIP4833 to BIP4865

v Parsers: messages in the range 5000 - 5999:

BIP5031, BIP5637

v WebSphere MQ parsers: messages in the range 6000 - 6999:

BIP6069, BIP6265, BIP6266

v Publish/subscribe: messages in the range 7000 - 7999:

BIP7036 to BIP7038
BIP7042 to BIP7045
BIP7099
BIP7120 to BIP7123

v Commands: messages in the range 8000 - 8999:

BIP8157, BIP8200
BIP8231 to BIP8239
BIP8769 to BIP8783
BIP8919 to BIP8923
BIP8934 to BIP8940
BIP8990 to BIP8993

v z/OS: messages in the range 9000 - 9999:

BIP9284
BIP9286 to BIP9290

Version 7.0 reuses the message BIP8663.

Version 7.0 components no longer generate the following messages:
v Configuration: messages in the range 1000 - 1999:

BIP1002 to BIP1013
BIP1015 to BIP1016
BIP1020 to BIP1023

222 WebSphere Message Broker Version 7.0.0.8

BIP1029, BIP1032, BIP1037, BIP1040
BIP1042 to BIP1045
BIP1055 to BIP1057
BIP1059, BIP1070
BIP1072 to BIP1088
BIP1090, BIP1094
BIP1096 to BIP1107
BIP1109 to BIP1112
BIP1126, BIP1128, BIP1131, BIP1132, BIP1145, BIP1146
BIP1151 to BIP1165
BIP1170 to BIP1173
BIP1201 to BIP1211
BIP1213 to BIP1217
BIP1221 to BIP1230
BIP1301 to BIP1306
BIP1350 to BIP1353
BIP1355 to BIP1363
BIP1401 to BIP1415
BIP1449, BIP1450, BIP1461, BIP1462
BIP1502 to BIP1528
BIP1530 to BIP1552
BIP1557 to BIP1571
BIP1581 to BIP1589
BIP1702 to BIP1703
BIP1705 to BIP1708
BIP1711 to BIP1712
BIP1751 to BIP1760
BIP1762, BIP1764, BIP1765
BIP1767 to BIP1773
BIP1775 to BIP1781
BIP1806 to BIP1807

v Broker: messages in the range 2000 - 2999:

BIP2012, BIP2013
BIP2025 to BIP2028
BIP2032, BIP2035, BIP2036, BIP2040
BIP2048, BIP2049, BIP2053
BIP2072, BIP2073, BIP2090
BIP2092 to BIP2098
BIP2220, BIP2221, BIP2223, BIP2224, BIP2317
BIP2814 to BIP2816

v Built-in nodes: messages in the range 4000 - 4999:

BIP4046

v Parsers: messages in the range 5000 - 5999:

BIP5315

v Publish/subscribe: messages in the range 7000 - 7999:

BIP7003, BIP7007, BIP7011, BIP7012
BIP7028, BIP7029, BIP7060, BIP7090

v Commands: messages in the range 8000 - 8999:

BIP8058, BIP8060, BIP8061, BIP8066, BIP8077, BIP8078
BIP8088, BIP8089, BIP8090

Chapter 3. Migrating and upgrading 223

BIP8102, BIP8103, BIP8106, BIP8107
BIP8109, BIP8110, BIP8112
BIP8118, BIP8119, BIP8148, BIP8180
BIP8201 to BIP8210, BIP8214,
BIP8250 to BIP8263, BIP8286
BIP8301 to BIP8311
BIP8380 to BIP8382
BIP8390 to BIP8394
BIP8617, BIP8618, BIP8620
BIP8664 to BIP8668
BIP8672, BIP8674, BIP8675, BIP8678, BIP8795, BIP8796
BIP8829 to BIP8832
BIP8834 to BIP8839
BIP8842 to BIP8845
BIP8925
BIP8930 to BIP8933
BIP8995

v z/OS: messages in the range 9000 - 9999:

BIP9144 to BIP9146
BIP9801 to BIP9842

Related tasks:
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.

Restoring migrated components to previous versions
You can restore migrated brokers to previous versions of WebSphere Message
Broker.

About this task

You can only restore brokers to the state they were in before you migrated them;
changes that you have made to them after migration, such as updated properties,
are lost.

You might want to restore components if you encounter a problem after you have
migrated your brokers to Version 7.0. For example, if a message flow does not
work as expected in Version 7.0, restore that broker until you can resolve the
problem.

You can restore brokers to a previous version only if they were migrated from that
version originally. You cannot create a new Version 6.1 broker, then restore it to a
previous level. Nor can you create a Version 6.0 broker, migrate it to Version 7.0,
then restore it to Version 6.1.

The topics in this section explain how to restore brokers and resources that you
have migrated from Version 6.1 or Version 6.0 products back to their original state:
v “Restoring components and resources to Version 6.1” on page 225
v “Restoring components and resources to Version 6.0” on page 227

Because you do not migrate Configuration Manager or User Name Server
components, you do not have to restore these. If you have not deleted them, they

224 WebSphere Message Broker Version 7.0.0.8

retain their existing configuration, and can be reused with brokers that you restore
to a previous version.
Related tasks:
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
“Backing up WebSphere Message Broker resources” on page 167
Back up your resources before you start to migrate components to Version 7.0.
“Backing up WebSphere Message Broker Version 6.0 resources” on page 187
Back up your resources before you start to migrate components to Version 7.0.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.

Restoring components and resources to Version 6.1
Restore components and resources that you have migrated from Version 6.1
products to their original state.

About this task

If you have migrated from WebSphere Message Broker Version 6.1 to Version 8.0,
you can restore your installation to Version 6.1, subject to the following restrictions
and procedures.

When you use the mqsimigratecomponents command, you must be logged in to a
Version 8.0Version 7.0 command environment.

See the mqsimigratecomponents command description for usage information and
details of parameters and the format to use when specifying version numbers.

Restrictions

Message flows that you have deployed to a broker after migration to
Version 7.0 might no longer work when you restore that broker to Version
6.1; always check logs to search for errors or warnings about message
flows that the broker cannot start.

Source files in the WebSphere Message Broker Toolkit Version 7.0 are
maintained in a different format from that used in Version 6.1. The files are
migrated to the new format when you save them in the WebSphere
Message Broker Toolkit Version 7.0. After you have saved them, you can
no longer use the resources with the WebSphere Message Broker Toolkit
Version 6.1.

Changes that you made to brokers, the WebSphere Message Broker Toolkit,
and development resources after migration to Version 7.0 are not retained
when you restore your resources back to Version 6.1.

Migrating resources back to Version 6.1
The following sections describe how to restore the WebSphere Message
Broker Toolkit and your brokers to Version 6.1. You can reuse your original
Version 6.1 Configuration Manager and User Name Server components
with the brokers that you restore to Version 6.1.

Restoring the WebSphere Message Broker Toolkit to Version 6.1

Chapter 3. Migrating and upgrading 225

1. Close all WebSphere Message Broker Toolkit Version 7.0
sessions.

2. Restore the Version 6.1 workspace from the backup that you
took before migration.
Ensure that the workspace directories include the .metadata
directory, which contains information that is specific to the
release of Eclipse on which the toolkit is based.

3. Restart WebSphere Message Broker Toolkit Version 6.1.

Restoring brokers to Version 6.1
Use the -s and -t parameters of the mqsimigratecomponents
command to migrate brokers from Version 7.0 to Version 6.1.
v Specify the installed level of Version 7.0 for the source version

parameter (-s), for example 7.0.0.0 for the GA (general
availability) level, or allow this to take the default value.

v Specify the appropriate level of Version 6.1 for the target version
parameter (-t), for example 6.1.0.9 for Version 6.1, Fix Pack 9.

See the mqsimigratecomponents command for detailed information
about these parameters and the format to use when specifying
version numbers.

Restoring brokers on distributed systems

1. Stop the Version 7.0 broker by using the mqsistop
command.

2. Restore the broker to Version 6.1 using the
mqsimigratecomponents command, as shown in the
following example:
mqsimigratecomponents Broker -t 6.1.0.9

3. Reverse the changes that you made to the ODBC
definitions when you migrated to Version 7.0; for more
details, see “Updating your ODBC definitions when
migrating” on page 188.

4. Start the Version 6.1 WebSphere Message Broker
Toolkit, and add the broker to the configuration.

5. Open a Version 6.1 command window, and restart the
broker by using the mqsistart command.

If you migrate to Version 7.0, deploy a message set to the
Version 7.0 broker, and then migrate back to Version 6.1,
Version 6.1 is unable to recognize the message set that was
deployed by Version 7.0. In this case, all message sets that
Version 6.1 is unable to use are deleted and the warning
message BIP8688W is displayed for each message set,
prompting you to redeploy it to Version 6.1 following
successful migration.

Restoring brokers on z/OS

1. Stop the Version 7.0 broker by using one of the
available options.

2. Submit the BIPMGCMP job to call the
mqsimigratecomponents command, specifying the -s
and -t parameters, as described for distributed systems.

3. Start the Version 6.1 WebSphere Message Broker
Toolkit, and add the broker to the configuration.

226 WebSphere Message Broker Version 7.0.0.8

4. Replace the started task JCL file in USER.PROCLIB
with the Version 6.1 copy that you backed up.

Related tasks:
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
“Backing up WebSphere Message Broker resources” on page 167
Back up your resources before you start to migrate components to Version 7.0.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
Related reference:
“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.

Restoring components and resources to Version 6.0
Restore components and resources that you have migrated from Version 6.0
products to their original state.

About this task

If you have migrated from WebSphere Message Broker Version 6.0 to Version 7.0,
you can restore your installation to Version 6.0, subject to the following restrictions
and procedures.

When you use the mqsimigratecomponents command, you must be logged in to a
Version 7.0 command environment.

See the mqsimigratecomponents command description for usage information and
details of parameters and the format to use when specifying version numbers.

Restrictions

Message flows that you have deployed to a broker after migration to
Version 7.0 might no longer work when you restore that broker to Version
6.0; always check logs to search for errors or warnings about message
flows that the broker cannot start.

Source files in WebSphere Message Broker Toolkit Version 7.0 are
maintained in a different format to that used in Version 6.0. The files are
migrated to the new format when you save them in the WebSphere
Message Broker Toolkit Version 7.0. After you have saved them, you can
no longer use the resources in WebSphere Message Broker Toolkit Version
6.0. For detailed information, see “Conditions for using migrated resources
with previous versions of the WebSphere Message Broker Toolkit” on page
229.

Changes that you made to brokers, the WebSphere Message Broker Toolkit,
and development resources after migration to Version 7.0 are not retained.

Migrating resources back to Version 6.0
The following sections describe how to restore the WebSphere Message
Broker Toolkit and your brokers to Version 6.0. You can reuse your original

Chapter 3. Migrating and upgrading 227

Version 6.0 Configuration Manager and User Name Server components
with the brokers that you restore to Version 6.0.

Restoring the WebSphere Message Broker Toolkit to Version 6.0

1. Close all WebSphere Message Broker Toolkit Version 7.0
sessions.

2. Restore the Version 6.0 workspace from the backup that you
took before migration.
Ensure that the workspace directories include the .metadata
directory, which contains information that is specific to the
release of Eclipse on which the toolkit is based.

3. Restart WebSphere Message Broker Toolkit Version 6.0.

Restoring brokers to Version 6.0
Use the -s and -t parameters of the mqsimigratecomponents
command to migrate brokers from Version 7.0 to Version 6.0.
v Specify the installed level of Version 7.0 for the source version

parameter (-s), for example 7.0.0.0 for the GA (general
availability) level, or accept the default value.

v Specify the appropriate level of Version 6.0 for the target version
parameter (-t), for example 6.0.0.9 for Version 6.0, Fix Pack 9.

See the mqsimigratecomponents command for detailed information
about these parameters and the format to use when specifying
version numbers.

Restoring brokers on distributed systems

1. Stop the Version 7.0 broker by using the mqsistop
command.

2. Restore the broker to Version 6.0 by using the
mqsimigratecomponents command, as shown in the
following example:
mqsimigratecomponents Broker -t 6.0.0.9

3. Reverse the changes that you made to the ODBC
definitions when you migrated to Version 7.0.

4. Open a Version 6.0 command window, and restart the
broker by using the mqsistart command.

If you migrate to Version 7.0, deploy a message set to the
Version 7.0 broker, and then migrate back to Version 6.0,
Version 6.0 is unable to recognize the message set that was
deployed by Version 7.0. In this case, all message sets that
Version 6.1 is unable to use are deleted and the warning
message BIP8688W is displayed for each message set,
prompting you to redeploy it to Version 6.1 following
successful migration.

Restoring brokers on z/OS

1. Stop the Version 7.0 broker by using one of the
available options.

2. Submit the BIPMGCMP job to call the
mqsimigratecomponents command, specifying the -s
and -t parameters as described previously.

3. Replace the started task JCL file in USER.PROCLIB
with the Version 6.0 copy that you backed up.

228 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Conditions for using migrated resources with previous versions of the WebSphere
Message Broker Toolkit”
WebSphere Message Broker Version 7.0 can interoperate with components of
previous versions. Conditions apply when you use migrated development and
deployed resources with previous versions of the WebSphere Message Broker
Toolkit.
Related tasks:
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
“Backing up WebSphere Message Broker Version 6.0 resources” on page 187
Back up your resources before you start to migrate components to Version 7.0.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
Related reference:
“mqsimigratecomponents command” on page 3894
Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.

Conditions for using migrated resources with previous versions of the
WebSphere Message Broker Toolkit

WebSphere Message Broker Version 7.0 can interoperate with components of
previous versions. Conditions apply when you use migrated development and
deployed resources with previous versions of the WebSphere Message Broker
Toolkit.

Version 6.1 and Version 6.0 resources

Import Version 6.1 and Version 6.0 resources into your Version 7.0
workspace to view and change them. After you have changed and saved
resources, you can no longer use them in your Version 6.1 or Version 6.0
WebSphere Message Broker Toolkit.

You do not have to perform any explicit migration tasks on imported
resources.

Restrictions after migration

After you have migrated WebSphere Message Broker Toolkit resources to Version
7.0, your use of these resources in the Version 6.1 and Version 6.0 WebSphere
Message Broker Toolkit is restricted.

Development resources

Resources in Version 6.1 and Version 6.0 formats can coexist in the Version
7.0 workspace.

Resources remain in their original format until you save them in the
Version 7.0 WebSphere Message Broker Toolkit. After saving, all resources
are stored in the Version 7.0 format.

Chapter 3. Migrating and upgrading 229

You can no longer use these saved resources in earlier versions of the
WebSphere Message Broker Toolkit. Therefore you cannot share
development resources between the Version 7.0 and previous versions of
the WebSphere Message Broker Toolkit.

If you expect to continue development of these resources, you must retain
a WebSphere Message Broker Toolkit at the version that you require.

Deployment resources
You can deploy broker archive (BAR) files that you edit or create in a
Version 7.0 WebSphere Message Broker Toolkit only to Version 7.0 brokers.

You can import resources that you created in previous versions into your
Version 7.0 workspace, but when you include these resources in a BAR file,
you can deploy that BAR file only to Version 7.0 brokers.

The following table summarizes which of the files that you can include in
a BAR file are deployable and accepted by the broker at each version. A
broker rejects broker archive files that contain file types that are supported
only by later brokers.

File type Version 6.0 Version 6.1 Version 7.0

Compiled message flows (.cmf) Yes Yes Yes

Message dictionaries (.dictionary) Yes Yes Yes

XSL style sheets (.xsl, .xslt, .xml) Yes Yes Yes

Java archives (.jar) Yes Yes Yes

WebSphere TX maps (.mar) No Yes Yes

XSD archives (.xsdzip) No Yes Yes

Inbound adapter configuration (.inadapter) No Yes Yes

Outbound adapter configuration (.outadapter) No Yes Yes

Inbound SCA definitions No No Yes

Outbound SCA definitions No No Yes

The Version 7.0 WebSphere Message Broker Toolkit can coexist with the Version 6.1
and Version 6.0 WebSphere Message Broker Toolkit on the same computer.
However, because you cannot share development resources between the Version
7.0 WebSphere Message Broker Toolkit and previous versions of the WebSphere
Message Broker Toolkit, you might find that it is appropriate to create and
maintain a different workspace for the Version 7.0 WebSphere Message Broker
Toolkit.
Related concepts:
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.

230 WebSphere Message Broker Version 7.0.0.8

Chapter 4. Installing and uninstalling

Install and uninstall WebSphere Message Broker components and service.

Find out where you can see the latest information about installation of WebSphere
Message Broker components, and how to apply service. You can also view
information about complementary products. This section also describes how to
remove service (not available on all operating systems), and how to uninstall
components.
v “Installing”
v “Uninstalling” on page 331
Related tasks:
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
Related reference:
“Installation” on page 3581
Use the reference information in this section to understand installation
requirements, installation options, and how they affect your computer.

Installing
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.

About this task

See “Finding the latest information” on page 232 for details about how to check
that you have access to the most recent information available.

The “Installation Guide” on page 233 defines hardware and software requirements
for WebSphere Message Broker and its corequisite and prerequisite products. It
describes the tasks that you must complete to prepare for installation, to install
WebSphere Message Broker, and to verify the installation. When you have
completed installation, use this information center to create and configure your
components and brokers.

If product fixes or updates are made available, refer to the following topics for
information about how to apply these changes:
v “Applying service to the Broker component” on page 314
v “Applying service to the WebSphere Message Broker Toolkit” on page 325
v “Applying service to the WebSphere Message Broker Explorer” on page 329

231

You do not have to apply service to the runtime components and the WebSphere
Message Broker Toolkit at the same time; all Version 7.0 fix pack levels are
compatible with all other fix pack levels. However, if a fix pack delivers additional
nodes, you must ensure that the WebSphere Message Broker Toolkit and the
brokers to which you deploy the message flows that include these nodes are at the
same fix pack level, and that you have set the correct function level of those
brokers by using the -f flag on the mqsichangebroker command.

To install complementary products, see “Installing complementary products” on
page 300.
Related tasks:
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
“Finding the latest information”
Access the latest information for WebSphere Message Broker.
Related reference:
“Installation” on page 3581
Use the reference information in this section to understand installation
requirements, installation options, and how they affect your computer.
“Support for 32-bit and 64-bit platforms” on page 3589
WebSphere Message Broker operates in 32-bit mode or 64-bit mode, on supported
operating systems.
Related information:

WebSphere Message Broker Library web page

Finding the latest information
Access the latest information for WebSphere Message Broker.

About this task

The following information is provided:

Requirements website
For the latest details of hardware and software requirements on all
supported platforms, visit the WebSphere Message Broker Requirements
website.

readme.html
The product readme file is frequently updated and includes information
about last minute changes and known problems and workarounds. The
latest version is always on the product readmes web page; always check to
see that you have the latest copy. The version of file that is included on the
product media, and which is installed when you install product
components, contains a link to the latest version on the product readmes
web page.

232 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/library/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/support/docview.wss?uid=swg27006913
http://www.ibm.com/support/docview.wss?uid=swg27006913

Installation Guide
The Installation Guide is provided as a PDF file with your product. See
“Installation Guide” for details about how to access the guide online and
where to find installation information in this information center.

Information center
The information center is installed with the WebSphere Message Broker
Toolkit and the WebSphere Message Broker Explorer, and updates are
typically included when you apply service to those components.

The information center is periodically updated independently of the code,
and you can install the latest level from within the toolkit. For instructions
about installing code and documentation updates, see “Applying service to
the WebSphere Message Broker Toolkit” on page 325.

The information center is also available online at WebSphere Message
Broker Library web page.

Support information
The WebSphere Message Broker support web page is regularly updated
with the latest product support information. For example, if you are
migrating from an earlier version, look under the heading "Solve a
problem" for the document "Problems and solutions when migrating".

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
Related reference:
“Installation Guide”
Installation information for WebSphere Message Broker is provided in the
Installation Guide that is supplied as a PDF file with your product package.
“Software requirements” on page 3588
View the operating system, database, and other software requirements.
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.

Installation Guide
Installation information for WebSphere Message Broker is provided in the
Installation Guide that is supplied as a PDF file with your product package.

The installation information provided by the Installation Guide is also contained in
the information center:

See “Installation” on page 3581 for reference information about system
requirements, including operating systems, hardware, and additional software and
memory requirements.

Chapter 4. Installing and uninstalling 233

http://www.ibm.com/software/integration/wbimessagebroker/library/index.html
http://www.ibm.com/software/integration/wbimessagebroker/library/index.html
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

The Installation Guide provides general preparation, planning, and security
information for all platforms. It also provides installation instructions for
distributed systems, common problems and solutions, and the names and locations
of the installation log files. Verification programs on Linux on x86 and Windows
are also provided.

If you are installing on z/OS, the equivalent installation instructions are provided
in the Program Directory that is supplied in hardcopy with your product media.

The Installation Guide does not cover configuration or customization tasks on any
operating system; it describes only how you install the product components onto
your computers. When you have completed installation on distributed systems,
you must initialize the local environment before you can create or configure
resources. This task is described in “Setting up a command environment” on page
213. Environment initialization is not required on z/OS. For information about
designing and configuring your broker environment on all systems, see Chapter 7,
“Configuring brokers for test and production environments,” on page 579.

The Installation Guide PDF file is provided as a convenience for printing and offline
reading. You can find the Installation Guide PDF file in the following locations after
a major release of the information center, such as Version 7.0:
v In English, on the WebSphere Message Broker customer FTP site. To access the

PDF file on the customer FTP site, see WebSphere Message Broker Installation
Guide.

v In English, from the WebSphere Message Broker Library web page.
v In English and supported languages, on the Quick Start CD.
v In English and supported languages, with your product package.

If significant changes are accumulated between major releases, the Installation Guide
PDF file is refreshed and provided in English, on the customer FTP site, and the
Library web page.

The PDF file content is the same as the content that is provided in the information
center at the time of publish. However, the PDF file documentation is updated less
frequently than the information center. For the latest information, see the
“Installation” on page 3581 and “Installing” on page 231 sections in the online
information center.

You can view, search, and print PDF files by using Adobe Reader. To download
Adobe Reader, see the Adobe Systems Inc. website. For more information about
printing the Installation Guide PDF file, see Printing information center topics and
the Installation Guide PDF file.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must

234 WebSphere Message Broker Version 7.0.0.8

ftp://public.dhe.ibm.com/software/integration/wbibrokers/docs/V7.0/messagebroker_InstallationGuide.pdf
ftp://public.dhe.ibm.com/software/integration/wbibrokers/docs/V7.0/messagebroker_InstallationGuide.pdf
http://www.ibm.com/software/integration/wbimessagebroker/library/index.html
http://www.adobe.com

initialize the environment before you can use a runtime component or command.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Applying service to the WebSphere Message Broker Explorer” on page 329
You can apply maintenance or fixes to the WebSphere Message Broker Explorer.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Resolving problems when uninstalling” on page 3525
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Installation” on page 3581
Use the reference information in this section to understand installation
requirements, installation options, and how they affect your computer.

Preparing for installation
Use the instructions in this tutorial for an overview of the installation tasks, and to
prepare for installation of WebSphere Message Broker.

About this task

The tasks that you perform to complete installation are listed here; each task
indicates whether it is required or optional. A summary of each task is provided,
along with pointers to later chapters or sections which describe that task in more
detail.

Procedure
1. Required: Make sure that you have acquired the product packages that you

need for installation.
Physical and electronic packages are available for WebSphere Message Broker
Version 7.0.
For more information about available packages and their contents, see
“Installation packages” on page 3608. If you have ordered the product for
electronic delivery from IBM Passport Advantage®, check that you have
downloaded all the images that you need for all components and all
platforms.
Both DVDs and CDs are supplied in the physical package, where as only CD
images are available from IBM Passport Advantage. The CD images that are
available from IBM Passport Advantage contain the same content as the
physical DVDs, but might be greater in number.

Chapter 4. Installing and uninstalling 235

For example, a physical DVD might contain installation files for the Broker
component, WebSphere Message Broker Toolkit, and WebSphere MQ, where as
IBM Passport Advantage might provide a CD image for the Broker
component, three images for the WebSphere Message Broker Toolkit, and
another image for WebSphere MQ.
Find out how to access, download, and extract product images in “Accessing
CDs and DVDs” on page 252.
For instructions about downloading and applying service updates, see
“Applying service” on page 313.

2. Required: Make sure that you have access to the product documentation that
you need for installation.
v The product readme file readme.html contains the latest available

information.
v The information center describes planning and preparation on all platforms.

The sections of the information center you need for installation are also
available as a PDF file on the Quick Start CD.

v This information center describes installation procedures for all components
on all distributed platforms. The sections of the information center that you
need for installation are also available as a PDF file on the Quick Start CD.

v The Program Directory for WebSphere Message Broker for z/OS describes
installation procedures for all components on z/OS.

Find out how to get these documents in “Finding the latest information” on
page 232.

3. Required: Decide which components you want to install on your computers.
The following information provides a minimum level of detail about
WebSphere Message Broker components; read “Choosing what to install” on
page 260 to find out more about the components.
v The WebSphere Message Broker Toolkit. You must install this component on

at least one computer. You can install this component only on Windows
32-bit, Windows 64-bit, Linux on x86, and Linux on x86-64.
Use the WebSphere Message Broker Toolkit to create, manage, deploy, and
delete message flows and associated resources in a development
environment.

v The WebSphere Message Broker Explorer. You can install this component
only on Windows 32-bit, Windows 64-bit, Linux on x86, and Linux on
x86-64.
Use the WebSphere Message Broker Explorer to administer your brokers in
a production environment.

v The Broker component. You must install this component on at least one
computer.
You can create multiple brokers on a single computer. Deploy your message
flow resources to one or more brokers to process your application messages.

4. Required: Decide which platform you want to install your chosen components
onto.
The following table shows the components that you can install on the
supported platforms.

236 WebSphere Message Broker Version 7.0.0.8

Table 1. Summary of component and platform support

Component Platform

WebSphere Message Broker Toolkit v Linux on x86
v Linux on x86-64
v Windows 32-bit
v Windows 64-bit

WebSphere Message Broker Explorer v Linux on x86
v Linux on x86-64
v Windows 32-bit
v Windows 64-bit

Broker component All supported platforms

5. Required: Prepare each computer on which you are installing one or more
components.
a. Check that your target computers meet the initial hardware, storage, and

software requirements.
The requirements vary depending on what computers you want to install
WebSphere Message Broker on, and what components you are installing;
read the details in “Hardware requirements” on page 3582 and “Operating
system requirements” on page 3590.
The supported hardware and software environments are updated
occasionally. To view the latest requirements, see the product requirements
website:
www.ibm.com/software/integration/wbimessagebroker/requirements/

b. Complete the appropriate tasks for your computer to set up security and
UNIX kernel configuration, and get ready to access the installation media.
All these tasks are described in “Preparing the system” on page 245.

c. Check that your user ID has the required authority to complete
installation:
v AIX systems: Use the user ID root for installation.
v Linux and other UNIX systems: Use either the user ID root, or another

ID and become root.
v Windows systems: Your user ID must be a member of the group

Administrators.
v z/OS systems: Use a user ID that has suitable RACF privileges to

perform installation.
This information is a summary only; more details are provided in “Setting
up security” on page 245.

6. Required: Check the programs that you use to perform component
installation.
The following table lists the programs that are available.

Table 2. Summary of available installation methods

Platform Tools

Windows only The Windows Launchpad.

This program installs prerequisite products if they are not
already installed, and identifies prerequisite products that are
not at the supported level. See “Installing by using the Windows
Launchpad” on page 262.

Chapter 4. Installing and uninstalling 237

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Table 2. Summary of available installation methods (continued)

Platform Tools

Linux, UNIX, and
Windows systems

Installation wizards on each supported platform have unique
names, which are listed in “Installation wizard names” on page
3626.

v To install the Broker component, see “Installing the Broker
component” on page 267.

v To install the WebSphere Message Broker Toolkit, see
“Installing the WebSphere Message Broker Toolkit” on page
276.

v To install the WebSphere Message Broker Explorer, see
“Installing WebSphere Message Broker Explorer” on page 280.

z/OS only SMP/E

To install runtime components, see the Program Directory for
WebSphere Message Broker for z/OS.

7. Required: Install additional products that are required by WebSphere Message
Broker.
WebSphere Message Broker requires other software products to work
successfully. The order in which you install these products is not important.
However, you must install all required products before you can configure and
start WebSphere Message Broker components.
The following table gives a summary of these requirements.

Table 3. Summary of prerequisite products

Component Prerequisite products

WebSphere Message
Broker Toolkit

v A web browser to view the information center.

WebSphere Message
Broker Explorer

v Install WebSphere MQ Explorer.
v A web browser to view the information center.

Broker component v WebSphere MQ to communicate with other components.
v A Java Runtime Environment (JRE).

Full details of all these requirements are provided in “Additional software
requirements” on page 3598:
v For web browsers, see “Browsers” on page 3600.
v For details of supported WebSphere MQ versions, see “WebSphere MQ” on

page 3598.
v For further information about JREs, see “JRE” on page 3599.

8. Optional: Configure a minimum broker domain and verify its operation.
a. To create a minimum broker domain, install the WebSphere Message

Broker Toolkit and the Broker component on a single computer. Because
the WebSphere Message Broker Toolkit is required to complete this task,
you must choose a Linux on x86, Linux on x86-64, or Windows computer.

b. Use the Default Configuration wizard, which you can start from the
WebSphere Message Broker Toolkit, to create the required components
after installation.

c. Use this broker domain to create message flow resources, verify your
installation, investigate how the product works, and explore the product
samples.

238 WebSphere Message Broker Version 7.0.0.8

The verification process is described in “Verifying your WebSphere Message
Broker installation” on page 290.

9. Optional: Change the broker operation mode.
When you install WebSphere Message Broker and create brokers, they are
configured with an operation mode set either to trial (if you have installed
the Trial Edition) or enterprise (all other editions). You must configure your
brokers to conform to the license that you have purchased. Therefore, if you
have purchased the Starter Edition, Entry Edition, or the Remote Adapter
Deployment, you must set the operation mode of all your brokers to the
correct value.
See “Checking the broker operation mode and function level” on page 298 for
more details.

10. Optional: Change the broker function level.
If new message flow nodes are delivered in a fix pack, they show in the
WebSphere Message Broker Toolkit, but are not enabled in the runtime broker
environment. If you deploy a BAR file that includes a message flow that uses
a new node, the deployment fails.
If you want to use and test the new nodes, you can enable them on an
individual broker basis. See “Checking the broker operation mode and
function level” on page 298 for more details.

Results

You have completed the tutorial.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
Related reference:
“Installation” on page 3581
Use the reference information in this section to understand installation
requirements, installation options, and how they affect your computer.
Related information:

WebSphere Message Broker Requirements

Coexistence and migration
WebSphere Message Broker Version 7.0 can coexist with previous versions.

You can install WebSphere Message Broker Version 7.0 on a computer on which
you have installed previous versions, but each version must be installed into its
own directory, referred to as install_dir. Different versions can coexist and can run
independently, and you can migrate brokers from one version to another, if and
when appropriate. For the Broker component and WebSphere Message Broker
Toolkit, you can install multiple instances of the same version on the same
computer, each in its own separate directory. For example, the Broker component
can coexist with different fix pack levels, such as V7.0.0.0 with V7.0.0.1. You can
install multiple instances of the same version of the Broker component and
WebSphere Message Broker Toolkit on the same computer, however only one
version of WebSphere Message Broker Explorer is allowed.

Chapter 4. Installing and uninstalling 239

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

The following sections provide further details:
v “Coexistence”
v “Migration” on page 244

Coexistence
WebSphere Message Broker Version 7.0 can coexist with previous versions as
follows:
v The Broker component can coexist with runtime components at Version 6.0, and

Version 6.1.
v The WebSphere Message Broker Toolkit can coexist with the toolkit at Version

6.0, and Version 6.1.

The following sections describe how to achieve coexistence, and the restrictions
that apply.

Broker component on distributed systems

When you install the Broker component on distributed systems, the default action
taken by the installation wizard is to complete a typical installation, which
installs the Broker component into a default directory. The default directory for a
typical installation is fixed and you cannot change it.

If you accepted the default location during installation, this directory is as follows.
The default directory includes the version and release of the product that you are
installing in the format v.r (version.release):

Linux /opt/ibm/mqsi/v.r

UNIX /opt/IBM/mqsi/v.r

Windows 32-bit
C:\Program Files\IBM\MQSI\v.r

Windows 64-bit
C:\Program Files\IBM\MQSI\v.r for the 64-bit version of WebSphere
Message Broker

C:\Program Files (x86)\IBM\MQSI\v.r for the 32-bit version of WebSphere
Message Broker

These locations define the default value of install_dir on each platform.

Each unique version and release of the product is therefore installed into a
different default location.

The installation wizard differentiates only at version and release level; it does not
differentiate between different modification levels and fix pack levels. The current
modification level is 0 (Version 7.0.0). If a later modification level is made
available, it installs into the same default location, and therefore upgrades the
Version 7.0.0 to the higher modification level (for example, Version 7.0.1).

The installation wizard installs one fix pack over a previous fix pack, but prohibits
you from installing a previous modification or fix pack over a more recent one.

You can install the product at the same version and release more than once; these
installations can be at the same modification or fix pack level, or at different levels.

240 WebSphere Message Broker Version 7.0.0.8

To achieve concurrent installations, you must select the custom installation
option and specify a unique directory for each installation (one of which can be the
default directory).

You can also use the custom installation to install into a non-default directory.

If you have never completed a typical installation of the product on the computer
on which you have selected a custom installation, the directory is initially set to
the default directory, but you can change this default value to your chosen value.

If you attempt to install the Broker component into a directory that already
contains an installation of the Broker component at a previous version, you are
prompted to confirm that you want to continue with the installation, because it
overwrites the existing installation. Cancel the installation and select a different
directory to preserve your existing configuration.

If you install the same version and release more than once, the native installer
support cannot manage these installations in the normal way. For more
information, see “How to uninstall multiple installations of the Broker component”
on page 3620.

You can use multiple installations at different modification or fix pack levels to test
out fixes or new functions, or to stage your adoption of a new fix pack level. For
more information, see “Applying service” on page 313.

During and after installation, files are also stored in the working directory, which is
associated with the user ID with which you are currently logged on. The location
depends on the operating system:

Linux and UNIX
/var/mqsi

Windows
%ALLUSERSPROFILE%\Application Data\IBM\MQSI

The environment variable %ALLUSERSPROFILE% defines the system working
directory. The default directory depends on the operating system:
v On Windows XP and Windows Server 2003: C:\Documents and

Settings\All Users\Application Data\IBM\MQSI

v On Windows Vista and later operating systems: C:\ProgramData\IBM\
MQSI

The actual location might be different on your computer.

If you have multiple installations on a single computer, you can review the
contents of the file install.properties, which is stored in the root of the working
directory. For each installation at Version 6.1 and above, the file is updated with
the location and the level.

This example shows the contents of install.properties on a Windows 32-bit
operating system on which a single installation has completed:
C\:\\Program\ Files\\IBM\\MQSI\\7.0=7.0.0.0

(The backslash character \ is interpreted as an escape character. It is inserted
before each non-alphabetic and non-numeric character in the string to preserve the
character. A colon, a space, and several backslash characters are escaped in this
example.)

Chapter 4. Installing and uninstalling 241

If you want to revert from your latest installation to a previous level for any
reason, you must uninstall the current version and install the previous level of the
product. Before you uninstall, back up any resources that you want to return to a
previous state.

Because the version and release are included in the directory structure when you
complete a typical installation, you can also install Version 7.0 and later releases on
the computer on which you have already installed either Version 6.0, or Version
6.1. The Version 7.0 installation can coexist with the existing installation; you can
operate the two configurations independently.

If you use custom installations for Version 7.0 and later releases, you can specify a
unique installation directory for each release, and therefore achieve coexisting
releases on a single computer.

The number of installations of Version 7.0, or later, is limited only by the
availability of system resources.

Because different versions and releases can coexist, you can migrate to Version 7.0
from an earlier version in a controlled manner, and you do not have to migrate all
brokers at the same time. For more information, see “Migration” on page 244.

Broker component on z/OS

On z/OS, you can install multiple copies of the Broker component on the same
computer if you specify a different installation location for each copy. The
installations can run independently of each other. The code can be at the same or
different version and release levels; Version 6.0, Version 6.1, and Version 7.0. The
number of installations is restricted only by the availability of system resources.

For more details about locations, libraries, and file system paths, see the Program
Directory for WebSphere Message Broker for z/OS on the WebSphere Message Broker
Library web page.

Coexistence with components of the same version

Although you can install multiple versions of the Broker component on the same
system, you should not install both an x86 and an x86-64 version, of the same
version number, on the same system. Some data files used by the Broker
component are specific to each version, and using files of the wrong version with a
broker could cause unpredictable results. This warning applies for all versions of
the product and for all platforms.

WebSphere Message Broker Toolkit on Linux on x86, Linux on x86-64,
and Windows

Linux When you install the WebSphere Message Broker Toolkit, the default action
taken by the installation wizard is to install Installation Manager files,
shared files, and product-specific files into the following directories:
v Installation Manager installation directory:

/opt/IBM/InstallationManager

v Shared resources directory:
/opt/IBM/SDPShared/

v Package group directory:
/opt/IBM/WMBT700

242 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/library/index.html
http://www.ibm.com/software/integration/wbimessagebroker/library/index.html

This location defines the default value of install_dir on this platform.

For a description of these directories, see “Installing the WebSphere
Message Broker Toolkit” on page 276.

You can install multiple instances of the WebSphere Message Broker Toolkit
Version 7.0 at the same modification or fix pack level, or at different levels,
on a single computer. Each installation must be in a separate package
group; package groups are described in more detail in “IBM Installation
Manager” on page 3600.

Windows
When you install the WebSphere Message Broker Toolkit, the default action
taken by the installation wizard is to install Installation Manager files,
shared files, and product-specific files into the following directories:
v Installation Manager installation directory:

C:\Program Files\IBM\InstallationManager for the 32-bit version of
WebSphere Message Broker
C:\Program Files (x86)\IBM\InstallationManager for the 64-bit
version of WebSphere Message Broker

v Shared resources directory:
C:\Program Files\IBM\SDPShared\ for the 32-bit version of
WebSphere Message Broker
C:\Program Files (x86)\IBM\SDPShared\v.r for the 64-bit version of
WebSphere Message Broker

v Package group directory:
C:\Program Files\IBM\WMBT700 for the 32-bit version of WebSphere
Message Broker
C:\Program Files (x86)\IBM\WMBT700 for the 64-bit version of
WebSphere Message Broker

This location defines the default value of install_dir on this platform.

For a description of these directories, see “Installing the WebSphere
Message Broker Toolkit” on page 276.

You can install multiple instances of the WebSphere Message Broker Toolkit
Version 7.0 at the same modification or fix pack level, or at different levels,
on a single computer. Each installation must be in a separate package
group; package groups are described in more detail in “IBM Installation
Manager” on page 3600.

If you install the WebSphere Message Broker Toolkit on Windows and you
specify your own directory location, be aware of the file system limit of
256 characters imposed by Windows file systems. This limit can cause
restrictions in path specification to resources (for example, message flows),
and might cause access problems if the combination of path and resource
name exceeds this limit. Keep installation locations and resource names
short to avoid problems associated with this restriction.

The WebSphere Message Broker Toolkit Version 7.0 can coexist with the WebSphere
Message Broker Toolkit Version 6.0 or Version 6.1. Only one instance of the
WebSphere Message Broker Toolkit Version 6.0 can be installed on a single
computer.

The WebSphere Message Broker Toolkit Version 7.0 can coexist with multiple
installations of the Broker component, subject to the restrictions described for the
Broker component.

Chapter 4. Installing and uninstalling 243

Setting the environment for an installation

Because you can have more than one installation on a single computer, you must
ensure that the commands that you issue on that computer are directed to the
correct version of installed code.
v On Linux and UNIX systems, you must run the profile file mqsiprofile to set up

the correct environment before you run other WebSphere Message Broker
commands, such as mqsicreatebroker. The profile file is stored in
install_dir/bin.
If you add the profile file to your system logon profile, it is run automatically
whenever you log on.

v On Windows systems, a command console is available for each installation. So
you must run commands in the correct window for a particular installation.
If you prefer, you can run the mqsiprofile.cmd file, which is stored in
install_dir\bin.

If you have installed an earlier version of this product on the same computer,
check that the earlier profile is not set for the current user ID. The two profiles are
incompatible and might cause unpredictable results. Consider using a different
user ID for each version and associate the correct profile with each user ID to
avoid potential problems.

This requirement is not applicable on z/OS systems.

For more details about mqsiprofile, see “Setting up a command environment” on
page 213.

WebSphere Message Broker Explorer

Only one copy of WebSphere Message Broker Explorer can be installed at any time
on a single system, so you must ensure the latest level of WebSphere Message
Broker Explorer is installed. For example, if you have WebSphere Message Broker
V7.0.0.0 and WebSphere Message Broker V7.0.0.1 installed on the same system, you
must ensure that WebSphere Message Broker Explorer is installed at the later
V7.0.0.1 level. This only applies to Windows, Linux on x86, and Linux on x86-64
systems.

Migration
Because you can install WebSphere Message Broker Version 7.0 on the same
computer as previous versions and other installations of Version 7.0, you are not
required to complete any migration tasks before you install Version 7.0.

Because WebSphere Message Broker Version 7.0 requires a later version of
WebSphere MQ, you must update any existing WebSphere Message Broker Version
6.0 and WebSphere Message Broker installations to use a supported version of
WebSphere MQ before installing WebSphere Message Broker Version 7.0. For the
latest details of all supported levels of hardware and software, visit the WebSphere
Message Broker Requirements website.

For details about migrating to WebSphere Message Broker Version 7.0, see
Chapter 3, “Migrating and upgrading,” on page 137.
Related tasks:

244 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.

Preparing the system
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.

About this task

You might also want to complete other tasks, depending on your installation
intentions.

Read the following sections before installing:

Procedure
1. “Setting up security.”
2. “Configuring temporary space on distributed systems” on page 251.
3. If you are installing on a distributed system, see “Accessing CDs and DVDs on

the local system” on page 253.
4. If you are installing on Linux or UNIX systems, see “Checking the kernel

configuration on Linux and UNIX systems” on page 259.

What to do next

When you have completed these tasks, follow the installation instructions for
distributed systems in the appropriate chapter:
v On distributed systems, choose which WebSphere Message Broker components

to install. For more information, see “Choosing what to install” on page 260.
v On z/OS, refer to the Program Directory for WebSphere Message Broker for z/OS on

the WebSphere Message Broker Library web page.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
Related information:

WebSphere Message Broker Requirements

Setting up security
Set up the required security before you install WebSphere Message Broker.

Chapter 4. Installing and uninstalling 245

http://www.ibm.com/software/integration/wbimessagebroker/library/index.html
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

About this task

This section describes security requirements for installing the product and
verifying your installation.

After installation, check the topics under the Security heading in the information
center to review and implement the security requirements for additional users
doing other tasks.

Security control of WebSphere Message Broker components, resources, and tasks
depends on the definition of users and groups of users (principals) to the security
subsystem of the operating system. Check that you have the correct authority, and
that the required principals are in place, before you install WebSphere Message
Broker.

User ID restrictions: some operating systems and other products impose
restrictions on user IDs:
v On Windows systems, user IDs can be up to 12 characters long, but on Linux,

UNIX, and z/OS systems, they are restricted to eight characters. Database
products, for example DB2, might also restrict user IDs to eight characters. If
you have a mixed environment, ensure that the user IDs that you use within the
broker environment are limited to a maximum of eight characters.

v Ensure that the case (upper, lower, or mixed) of user IDs in your broker
environment is consistent. In some environments, uppercase and lowercase user
IDs are considered the same, but in other environments, user IDs of different
case are considered unique. For example, on Windows the user IDs 'tester' and
'TESTER' are identical, but on Linux and UNIX systems they are recognized as
different user IDs.

v Check the validity of spaces and special characters in user IDs to ensure that, if
used, these characters are accepted by all relevant systems and products in your
broker environment.

If your user ID does not conform to these restrictions, you might have problems
with installation or verification. If so, use an alternative user ID, or create a new
one, to complete installation and verification.

Set up the security appropriate to the operating systems that you are using:
v If you are installing on Linux or UNIX systems, go to “Security on Linux and

UNIX systems” on page 247.
v If you are installing on Windows, go to “Security on Windows systems” on page

248.
v If you are installing on z/OS, go to “Security on z/OS systems” on page 251.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
Related information:

246 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker Requirements

Security on Linux and UNIX systems:

Set up the required security on Linux and UNIX systems before you install
WebSphere Message Broker.

About this task

Use the security facilities provided by your operating system to complete these
tasks; for example, the Systems Management Interface Tool (SMIT) on AIX, or the
System Administration Manager on HP-Itanium.

Complete the following actions:

Procedure

1. Log into the system.
On AIX, you must log in as root. On Linux and on other UNIX computers,
your user ID must have root authority to complete installation. Follow your
local security guidelines to acquire root authority; either log in as root, or log in
as another user and become root.
The use of a user ID other than root itself has some advantages; it provides an
audit trail of the user ID that installs the product and it limits the scope of root
authority to tasks performed in a single session. The use of a user ID other
than root might also be mandatory if you are logging in from a remote system.
If you are using a Linux on x86 or a Linux on x86-64 system and are not
planning to install the Broker component, continue with step 6.

2. Create a security group called mqbrkrs.
3. Add your current logon ID to the group mqbrkrs.

If you are installing on a system that runs as a production server (with the
Broker component installed), create an additional new user ID for use only
with product components and add it to the mqbrkrs group.
On a Linux on x86 or a Linux on x86-64 system that you are running as a
development or test system, you can use the ID that you logged in with to
complete installation.

4. If you have already installed WebSphere MQ on this system, a group called
mqm and a user called mqm are defined. If you have not yet installed
WebSphere MQ, you must create this group and user.

5. Add to the group mqm the user ID that you logged in with, the new user ID (if
you created one), and the user ID mqm.
On some systems, you must log off and log on again for these new group
definitions (mqbrkrs and mqm) to be recognized.

6. Verification procedures are provided for Linux on x86 and Linux on x86-64. To
complete verification, you do not require root authority. If you do not want to
complete verification with root authority, log off when you have completed
installation. Log in with the same or a different user ID, but do not become
root.
If you log in with another user ID, and have not already added this ID to the
groups mqbrkrs and mqm, do so before you open the WebSphere Message
Broker Toolkit.

Related tasks:

Chapter 4. Installing and uninstalling 247

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
“Setting up security” on page 245
Set up the required security before you install WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Security on Windows systems:

Set up the required security on Windows systems before you install WebSphere
Message Broker.

About this task

Before you install the Broker component, the WebSphere Message Broker Toolkit,
or the WebSphere Message Broker Explorer, log on with a user ID that has
Administrator authority.

If you are installing the Broker component, the installation wizard calls the
mqsisetsecurity command which completes the following tasks:
v Creates a new security group called mqbrkrs.
v Adds your current (logged on) user ID to the group mqbrkrs.
v Adds your current user ID to the group mqm, if that group exists.

The mqm group exists if you have already installed WebSphere MQ on this
system. If you have not, call the mqsisetsecurity command when you have
completed WebSphere MQ installation. If you use the Windows Launchpad
(described in “Installing by using the Windows Launchpad” on page 262), it
completes WebSphere MQ installation first.

If you prefer to create principals before you install WebSphere Message Broker, use
the security facilities provided by the Windows Control Panel.

If you are running Terminal Services on this computer, change user mode to ensure
that actions taken during installation are completed correctly; for example, the
creation of .ini files and other related files in the default system directory
C:\Windows. If you do not change user mode, files might be written to other
locations and, although the installation might complete successfully, the product
might not work as expected.
v Before you install any product components, enter the following command to

change user mode:
change user /install

v When installation is complete, enter the following command to restore the
original user mode:
change user /execute

248 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

To complete verification, your user ID must have Administrator authority. If you
log in with a different user ID from the ID with which you perform installation,
you must add that user ID to the groups mqbrkrs and mqm. Use either the
Windows security facilities or the mqsisetsecurity command (run this command
after you have logged on with that different ID) to complete these additions.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
“Setting up security” on page 245
Set up the required security before you install WebSphere Message Broker.
“Security in a Windows domain environment”
Set up the required security configuration in a Windows domain environment.
Related information:

WebSphere Message Broker Requirements

Security in a Windows domain environment:

Set up the required security configuration in a Windows domain environment.

About this task

You can use Windows domain groups to organize different levels of authorization
to selective WebSphere Message Broker resources across your domain. To design
and implement this domain group topology, add each domain group to the
relevant local security groups on the domain workstations. You can now manage
authorities by adding domain user accounts to the appropriate domain groups. For
information about the group membership required to administer WebSphere
Message Broker resources, see “Security requirements for Windows systems” on
page 3651.

Procedure

1. Design your authorization group categories, and define domain groups on the
domain controller system that correspond to these authorization categories, by
using Windows security. For example, suppose you have a single domain
containing three distinct sets of systems, used in development, testing, and
production. Within your organization, various user roles require different levels
of authorization to WebSphere MQ and WebSphere Message Broker resources
on those systems.
Here is an example of how those authorization categories could map to domain
groups:

Domain group Description

ADM-MQprd WebSphere MQ administrator authorities on
production machines

ADM-MQuat WebSphere MQ administrator authorities on
test machines

Chapter 4. Installing and uninstalling 249

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Domain group Description

ADM-MQdev WebSphere MQ administrator authorities on
development machines

ADM-MBprd WebSphere Message Broker administrator
authorities on production machines

ADM-MBuat WebSphere Message Broker administrator
authorities on test machines

ADM-MBdev WebSphere Message Broker administrator
authorities on development machines

2. Define and configure domain user accounts on the domain controller, by using
Windows security. Add each user account to one or more domain groups to
determine the authorizations granted that account. For example:

Table 4.

Domain user account Role Group membership

MQadmPRD WebSphere MQ
administrator for production
systems

ADM-MQprd

MQadmUAT WebSphere MQ
administrator for test
systems

ADM-MQuat

MQadmDEV WebSphere MQ
administrator for
development systems

ADM-MQdev

MBadmPRD WebSphere Message Broker
administrator for production
systems

ADM-MBprd

MBadmUAT WebSphere Message Broker
administrator for test
systems

ADM-MBuat

MBadmDEV WebSphere Message Broker
administrator for
development systems

ADM-MBdev

john.smith WebSphere MQ and
WebSphere Message Broker
administrator for production
environments

ADM-MQprd, ADM-MBprd

3. Install and configure WebSphere Message Broker on domain workstations.
a. Install WebSphere Message Broker on the workstation.
b. Add your domain groups to local groups mqm or mqbrkrs as appropriate. In

our example, if a particular workstation is to serve as a development
machine, add domain group ADM-MQdev to local group mqm, and domain
group ADM-MBdev to local group mqbrkrs.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.

250 WebSphere Message Broker Version 7.0.0.8

“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
“Setting up security” on page 245
Set up the required security before you install WebSphere Message Broker.
“Security on Windows systems” on page 248
Set up the required security on Windows systems before you install WebSphere
Message Broker.
Related information:

WebSphere Message Broker Requirements

Security on z/OS systems:

User ID security required for z/OS system product installation.

About this task

The user ID that you use to install the product must be no more than eight
characters in length. It must also have suitable RACF privileges to perform SMP/E
installation in your environment. The user ID must have a valid OMVS segment,
because the product installs into the file system paths specified during the SMP/E
APPLY processing.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
“Setting up security” on page 245
Set up the required security before you install WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Configuring temporary space on distributed systems
Configure temporary directory space to enable WebSphere Message Broker Java
components to operate correctly.

About this task

WebSphere Message Broker contains Java components. Some of these components
require temporary directory space on the file system in order to extract class files
from node packages (PAR files) and Java packages (JAR files).

The extracted files might not be visible to interactive users on the system, however,
they consume space in the temporary directory.

The Java Runtime Environment also creates files in the temporary directory to
support debug facilities.

Chapter 4. Installing and uninstalling 251

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

To enable correct operation, allow at least 50 MB of space per execution group in
the file system temporary directory for WebSphere Message Broker components.
This space is required in addition to any space required for operation of user
developed artifacts. Use of JavaCompute nodes, Java user-defined nodes, or
additional plug-in nodes implemented in Java might require further temporary
directory space.

On Linux, UNIX, and z/OS computers, the TMPDIR directory is typically /tmp; on
Windows computers, it is c:\temp. If this directory is not large enough to hold the
JAR files, the broker does not start.

To change the location of the temporary directory, use one of the following
methods:

Procedure
v Use the environment variable TMPDIR.
v Set the system property java.io.tmpdir.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Accessing CDs and DVDs
Accessing CDs and DVDs to install WebSphere Message Broker.

About this task

When you install or upgrade WebSphere Message Broker, you can access CDs or
DVDs on the local system, or you can set up a shared drive and access the shared
resource from multiple computers.

The information in the following sections is relevant to both CDs and DVDs. All
references are to CDs; DVD behavior is identical. DVDs are available for Linux on
x86, Linux on x86-64, Windows 32-bit, and Windows 64-bit only.

You can also install or upgrade from installation images that you have obtained
from Passport Advantage, if you are registered with this scheme:

Procedure
1. Read the instructions that are provided with the packages.
2. Download the images that you require for the operating systems in your

environment.
3. Extract the contents of the images. Specify a short path for the directory to

which you are extracting; the depth of directory structure and the directory

252 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

names might cause problem if restrictions on some operating systems are
reached. For example, the limit of 256 characters on Windows might be
exceeded.

4. Set up local or remote access to these images in the same way that you do for a
CD or DVD. For local installations, see “Accessing CDs and DVDs on the local
system”; for remote installations, see “Accessing CDs and DVDs on a remote
system” on page 256.

What to do next

If you are installing on Windows, you cannot enter a Universal Naming
Convention (UNC) path (\\server\drive) to access the installation program; you
must map the drive, otherwise the Java process times out. If you cannot map the
drive, or choose not to map the drive, copy the contents of the DVD to a local
drive and install from that drive.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Accessing CDs and DVDs on the local system:

If you want to install product components from a local CD or DVD, or a local
downloaded image, complete this task.

About this task

Always consult your operating system documentation for exact details.

AIX

1. Log in as root. You cannot complete installation successfully if you
have logged in as another ID and become root.

2. Complete the security setup described in “Security on Linux and UNIX
systems” on page 247.

3. Create a CD mount point directory:
mkdir /cdbroker

where /cdbroker is the mount point.
4. Insert the CD into the drive of the computer on to which you want to

install product components.
5. Use SMIT to mount the CD, or use the following command:

mount -r -v cdrfs /dev/cd0 /cdbroker

where /dev/cd0 is the CD device and /cdbroker is the mount point.

You are now ready to install the product that is supplied on this CD.

Chapter 4. Installing and uninstalling 253

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

HP-Itanium

The HP-Itanium CDs have the format ISO 9660, with Rockridge extensions
enabled. If volume management software is in use, the CD mounts
automatically when you insert it into the CD drive. Alternatively, you can
mount the CD as described in the following procedure.

If the CD is mounted incorrectly, some of the files cannot be read and the
installation fails with a corrupted directory. You must mount the CD with
Rockridge extensions enabled.
1. Log in and ensure that your user ID has root authority.
2. Complete the security setup described in “Security on Linux and UNIX

systems” on page 247.
3. Create a CD mount point directory and grant read-only access to all

users:
mkdir /cdbroker
chmod 775 /cdbroker

where /cdbroker is the mount point.
4. Insert the CD into the drive of the computer on to which you want to

install product components.
5. Mount the CD by using the following command:

mount -F cdfs /dev/dsk/device /cdbroker

where /device is the CD device, for example /c0t0d0 and /cdbroker is the
mount point.

You are now ready to install the product that is supplied on this CD.

Linux on x86 and Linux on x86-64

1. Log in and ensure that your user ID has root authority.
2. Complete the security setup described in “Security on Linux and UNIX

systems” on page 247.
3. Create a DVD mount point directory:

mkdir /dvdbroker

where /dvdbroker is the mount point.
4. Insert the DVD into the drive of the computer on to which you want to

install product components.
5. Run the following command:

mount -o ro -t iso9660 /dev/dvdrom /dvdbroker

where /dev/dvdrom is the name of your DVD device (for example,
/dev/hdc) and /dvdbroker is the mount point.

You are now ready to install the product that is supplied on this DVD.

Linux, other than Linux on x86 and Linux on x86-64

1. Log in and ensure that your user ID has root authority.
2. Complete the security setup described in “Security on Linux and UNIX

systems” on page 247.
3. Create a CD mount point directory:

mkdir /cdbroker

where /cdbroker is the mount point.

254 WebSphere Message Broker Version 7.0.0.8

4. Insert the CD into the drive of the computer on to which you want to
install product components.

5. Run the following command:
mount -o ro -t iso9660 /dev/cdrom /cdbroker

where /dev/cdrom is the name of your CD device (for example,
/dev/hdc) and /cdbroker is the mount point.

You are now ready to install the product that is supplied on this CD.

Solaris

1. Log in and ensure that your user ID has root authority.
2. Complete the security setup described in “Security on Linux and UNIX

systems” on page 247.
3. Insert the CD into the drive of the computer on to which you want to

install product components.
4. Enter the following command to check whether the Volume Manager is

running on your system:
/usr/bin/ps -ef | /bin/grep vold

If the Volume Manager is running, the CD is mounted on
/cdrom/vol_label automatically, where vol_label is the volume label of
the current CD; for example, wmb6_sol for Runtime Disk 1.

5. If the Volume Manager is not started, run the following commands to
mount the CD:
mkdir -p /cdbroker
mount -F hsfs -o ro /dev/dsk/cdrom /cdbroker

where /dev/dsk/cdrom is the CD location (for example, c0t0d0) and
/cdbroker is the mount point directory.
Check where your CD is located by using the command iostat -En.
Alternatively, use the volcheck command to mount a CD device
automatically.

You are now ready to install the product that is supplied on this CD.

Windows

1. Log on with a user ID that has Administrator authority.
2. Complete the security setup described in “Security on Windows

systems” on page 248.
3. Insert the DVD into the drive of the computer on to which you want to

install product components. The Launchpad opens.

You are now ready to install the product that is supplied on this DVD.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.

Chapter 4. Installing and uninstalling 255

“Accessing CDs and DVDs” on page 252
Accessing CDs and DVDs to install WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Accessing CDs and DVDs on a remote system:

If you want to install product components from a remote (server) CD or DVD,
complete this task.

About this task

Always consult your operating system documentation for exact details of this task.

If you want to perform more than one installation of one or more components, you
might find that a remote server setup provides some performance benefits,
particularly for the WebSphere Message Broker Toolkit which is the largest
component. You might also find this method more convenient if you want to run
installations by using the silent interface.

If you want to install the WebSphere Message Broker Toolkit by using the silent
interface, and you cannot install from DVD, you must copy the installation images
onto a disk drive, as described here, to avoid the requirement to swap CDs during
the process.

To enable a remote installation, you must complete tasks on both the server (the
computer on which the CD, DVD, or shared drive is mounted) and each target
system (on which you want to install the product). For details of the commands
used in these examples, refer to the operating system documentation.

To set up a server, see “Setting up the server.”

To set up a target system, see “Setting up the target system” on page 258.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
“Accessing CDs and DVDs” on page 252
Accessing CDs and DVDs to install WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Setting up the server:

You can either share the CD drive on the server, or copy the installation images
onto a disk and share the directory on that disk.

256 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

About this task

You can share a CD drive on Linux or UNIX with any other supported Linux or
UNIX system, but not with Windows. You can share a Windows CD drive only
with other Windows systems.
1. If you want to share a copy of the installation image, create the copy:

a. Create a directory on the server to store the installation images:

Linux and UNIX
Enter the following command:
mkdir /instbroker

where instbroker is the directory into which you copy the product
files.

Windows
Enter the following command:
md m:\instbroker

where m is the drive on which you want to store the installation
images and instbroker is the directory on that drive.

If you are creating directories for the WebSphere Message Broker Toolkit on
Linux on x86, Linux on x86-64 or Windows, you must create all three disk
subdirectories in the same directory, for example:
/instbroker/disk1
/instbroker/disk2
/instbroker/disk3

Where each subdirectory, for example disk1, is the root level of the
corresponding CD image.
This structure ensures that the installation program does not prompt for
location, and does not fail because it cannot find the right images.

b. Insert and mount the appropriate CD in the drive as described in
“Accessing CDs and DVDs on the local system” on page 253. The
installation programs for the runtime components and the WebSphere
Message Broker Toolkit are on separate CDs; insert the correct CD for the
components that you want to install from this server.
If you have inserted a runtime or toolkit CD on Windows and autorun is
enabled, the Launchpad is started. When the initial window opens, click
Cancel to close it.

c. Copy the complete contents of the CD to the new directory.

Linux and UNIX
Enter the following command:
cp -rf /cdrom/. /instbroker

Windows
Enter the following command:
xcopy f:*.* m:\instbroker /e

where f is the CD drive.
2. Grant users access to the drive that contains the product code. These

instructions are the same for a disk drive on which you have copied the CD
contents, and for the CD drive itself.

AIX Either type smit and click Communications Applications and Services
> NFS > Network File System (NFS) > Add a Directory to Exports

Chapter 4. Installing and uninstalling 257

List, or enter the fast path command smitty mknfsexp. Complete the
fields as appropriate and press Enter.

HP-UX and Linux
Use the exportfs command. The following example gives all users
read-only access using NFS:
exportfs -i -o ro /instbroker
exportfs -a

where /instbroker represents the CD drive or the directory that contains
the CD copy.

Solaris
Use the share and exportfs commands. The following example gives
all users read-only access using NFS:
share -F nfs -o ro -d "Broker LAN server" /instbroker
exportfs -a

where "Broker LAN server" is an optional description and /instbroker
represents the server CD drive or directory containing the CD copy.

Windows
Open Windows Explorer and right-click the drive that you want to
share. Click Sharing and follow the instructions on the Properties
dialog box.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
“Accessing CDs and DVDs” on page 252
Accessing CDs and DVDs to install WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Setting up the target system:

Set up a target system to access CDs and DVDs from a server.

About this task

1. On Linux and UNIX systems, create a new directory on which to mount the
shared directory. Enter the following command:
mkdir /remotebroker

where remotebroker is the name of the new directory.
2. Access the remote directory:

Linux and UNIX
Enter the following command:
mount server name:instbroker /remotebroker

258 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

where server name is the name of the server on which you created the
CD or DVD copy.

Windows
Connect to the appropriate drive and folder by using the net use
command at a command prompt on the target system, for example:
net use x: \\server_name\instbroker

where x: is the required mapped drive on the target system.

If your shared installation directory name contains spaces (for example,
Broker Image), enclose it in double quotation marks.

If your server is protected, you might need to specify a user ID and
password on this command (see the Windows online help for more
information about the net use command). Alternatively, use Windows
Explorer or an alternative method to map the shared resource to a
drive letter.

You cannot enter a UNC path (\\server\drive) to access the
installation program; you must map the drive, as shown, otherwise the
Java process times out. If you cannot map the drive, or choose not to
map the drive, copy the contents of the DVD onto a local drive and
install from that drive. In addition, you cannot enter a UNC path when
the installation wizard requests a path as input; the wizard cannot
interpret a UNC path.

3. Change to the remote image directory. You are now ready to run the
Launchpad (on Windows only) or the installation wizard to install the product
from the remote directory to your local system.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
“Accessing CDs and DVDs” on page 252
Accessing CDs and DVDs to install WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Checking the kernel configuration on Linux and UNIX systems
Check the kernel configuration parameters on Linux and UNIX systems for
prerequisite and corequisite products.

About this task

WebSphere Message Broker has no specific requirements for kernel configuration
parameters; however, other products might require particular settings. If you do
not tune your kernel parameters to suit the products that you have installed, you
might see unexpected results or a deterioration in performance.

Chapter 4. Installing and uninstalling 259

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Follow these steps to configure your kernel parameters:

Procedure
1. Check the documented values for the following products:
v WebSphere MQ
v DB2 (if it is installed)
v Other software that you have installed to work with WebSphere Message

Broker, including other databases.
You can access the relevant information for IBM products through the IBM
product information centers web page.

2. Take the highest value for each parameter and compare it to the corresponding
value in your kernel configuration.

3. If the current value is lower than the highest documented value, update the
current setting by using the appropriate tooling that is supplied by the
operating system provider. If the current value is higher, leave it unchanged.

4. On Solaris, increase the maximum number of concurrent open file descriptors
on your system to at least 256.

5. If you have changed any kernel values, you might need to restart your system
for these changes to take effect. Check the documentation for your operating
system for further information about these parameters.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Preparing the system” on page 245
On some operating systems, you must complete several tasks before you install
WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Choosing what to install
Choose which components and products to install.

Before you begin

On some operating systems, you must complete several tasks before you install
WebSphere Message Broker. For more information, see “Preparing the system” on
page 245.

About this task

WebSphere Message Broker consists of three components; the Broker component,
the WebSphere Message Broker Explorer, and the WebSphere Message Broker
Toolkit. You can also install other products, such as the WebSphere Message Broker
ODBC Database Extender:
v The Broker component
v The WebSphere Message Broker Explorer
v The WebSphere Message Broker Toolkit

260 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/support/publications/us/library/
http://www.ibm.com/support/publications/us/library/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

v The WebSphere Message Broker ODBC Database Extender

You can install the Broker component on all supported operating systems. You can
install the WebSphere Message Broker Explorer and the WebSphere Message
Broker Toolkit on Windows 32-bit, Windows 64-bit, Linux on x86, and Linux on
x86-64.

The Broker component
The Broker component is a set of execution processes that provides
message processing facilities that interact with various application clients
that use both point-to-point and publish/subscribe communications. The
message flows that you create are hosted by the broker. A broker can host
many message flows, in one or more execution groups, and can support
many clients.

You define how messages are received, processed, and delivered to
receiving applications or subscribers:
v You can customize some message processing nodes in a message flow

with mappings, ESQL, Java, PHP, and XSL style sheets.
v You can create message models to define message structures determined

by C and COBOL data structures, industry standards such as SWIFT or
EDIFACT, and XML DTD or schema.

v You can develop user-defined extensions (nodes and parsers) to support
message processing options that are not provided by the supplied nodes
and parsers.

v You can debug message flows and step through processing to check
paths and results.

v You can use message flow aggregation to manage multiple requests and
responses that are generated by a single input message.

You can install more than one WebSphere Message Broker component on
any system. For more details about how different installations can coexist,
see “Coexistence and migration” on page 239.

For installation of the Broker component, you can choose between a typical
installation and a custom installation. These installation options are
explained in “Coexistence and migration” on page 239.

WebSphere Message Broker Explorer

The WebSphere Message Broker Explorer is a stand-alone administration
environment that is based on the Eclipse platform which communicates
with one or more brokers. Administrators use the WebSphere Message
Broker Explorer to manage the resources associated with these brokers.
Install the WebSphere Message Broker Explorer on computers on which
you intend to perform only administrative tasks.

WebSphere Message Broker Toolkit

The WebSphere Message Broker Toolkit is an integrated development
environment and graphical user interface that is based on the Eclipse
platform and the Rational framework.

Application developers work in separate instances of the WebSphere
Message Broker Toolkit to develop message flows, message sets, and
user-defined nodes and parsers. You can access a shared repository (for
example, CVS) to store resources and make them accessible in a secure
manner to multiple users.

WebSphere Message Broker ODBC Database Extender

Chapter 4. Installing and uninstalling 261

The WebSphere Message Broker ODBC Database Extender is required
when using WebSphere Message Broker to interface with an ODBC data
source that is not supported through the DataDirect ODBC drivers.

What to do next

Choose the interface you want to use to install WebSphere Message Broker. For
more information, see “IBM Installation Manager” on page 3600
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
Related information:

WebSphere Message Broker Requirements

Installing by using the Windows Launchpad
Use the Windows Launchpad to install the WebSphere Message Broker components
and the prerequisite products.

Before you begin

Choose which WebSphere Message Broker components to install. For more
information, see “Choosing what to install” on page 260.

About this task

On Windows only, use the Launchpad for additional help with installing:
v The WebSphere Message Broker Toolkit.
v The WebSphere Message Broker Explorer.
v The Broker component.
v Prerequisite products for the Broker component.

If you use the Launchpad, you can install everything that you need, and do not
have to follow the procedures described in other chapters for installing the Broker
component, the WebSphere Message Broker Toolkit, and the WebSphere Message
Broker Explorer.

The Launchpad works with both physical media (the DVD) and with electronic
images that you have downloaded from IBM Passport Advantage; however, the
Launchpad depends on a file structure identical to that on the DVD, therefore you
must not make any changes during or after download.

Multiple installations on a single computer
About this task

You can use the Launchpad to install only one instance of each component on a
single computer. If you have selected and installed the broker or toolkit
components, you cannot use the Launchpad to install these components again in a
different location.

262 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

To install additional instances, run the appropriate installation wizard directly. For
more information about completing these tasks, see “Installing the Broker
component” on page 267, “Installing the WebSphere Message Broker Toolkit” on
page 276, and “Installing WebSphere Message Broker Explorer” on page 280.

The Launchpad also manages only one installation of WebSphere MQ on a single
computer. Refer to the relevant documentation for these products if you want to
install multiple instances.

Installation summary
About this task

The following steps summarize the actions that you must take to complete the
installation.

Procedure
1. Check the readme.html file for any updates to these installation instructions.
2. Check that you have enough memory and disk space; refer to “Memory and

disk space requirements” on page 3584.
3. Decide whether you want to install from a server, or install locally on each

system. These choices are described in “Accessing CDs and DVDs” on page
252.

4. Start the Windows Launchpad to install WebSphere Message Broker and its
prerequisite product; WebSphere MQ. For more information about using the
Launchpad, see “Starting the Windows Launchpad.”

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Starting the Windows Launchpad
Use the instructions to start the Windows Launchpad.

About this task

The Launchpad is available on every DVD and downloaded image from which
product components or prerequisite products can be installed.

If you are using physical product media, the Launchpad starts automatically if
autorun is enabled. If autorun is not enabled, or if you are installing from a
downloaded image, navigate to root directory of the DVD or image, and
double-click the file mqsilaunchpad.exe or type mqsilaunchpad in a command
window and press Enter.

Chapter 4. Installing and uninstalling 263

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

The Installation window displays. On the Installation window, you can install the
set of products that are required for a default configuration of WebSphere Message
Broker, including WebSphere MQ, if it is not already installed. For more
information, see “Installing a default configuration by using the Installation
window” on page 265.

Access further information from the left pane:
v Click Installation Guide to launch a PDF copy of the Installation Guide in

Adobe Reader.
v Click Readme to view the readme file readme.html in a new web browser

window.
v Click Quick Tour to take a tour around the product. See Chapter 2, “WebSphere

Message Broker overview,” on page 5 for further information.

The Launchpad might have to search for an installation wizard for some of your
selections. If you are installing from DVD, all the required products are available,
but if you are installing from a downloaded image, the program might be on
another downloaded image, or might not be in the expected location. If necessary,
the Launchpad prompts you to take the appropriate action to find the file. The
following table shows, for each supplied product, the program names and their
locations on the downloaded images.

Table 5. Installation wizard names and locations used by the Windows Launchpad

Product
Installation wizard
name Directory Downloaded image

WebSphere Eclipse
Platform V3.31

IBM WebSphere Eclipse
Platform V3.3.msi

\WebSphere_MQ_V7.0.1\Prereqs\IES\MSI Runtime Disk 2

WebSphere MQ
V7.0.11

IBM WebSphere MQ.msi \WebSphere_MQ_V7.0.1\MSI Runtime Disk 2

Broker component setup.exe \ (root directory) Runtime Disk 1

WebSphere Message
Broker Explorer

install.exe \MBExplorer Runtime Disk 1

WebSphere Message
Broker Toolkit

install.exe \IBMInstallationManager2 Toolkit Disk 1

Notes:

1. WebSphere Message Broker Trial Edition does not include this product. See
“Installation packages” on page 3608 for further information.

2. The Launchpad starts Installation Manager, which installs itself (if required),
and starts the WebSphere Message Broker Toolkit installation.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Installing by using the Windows Launchpad” on page 262
Use the Windows Launchpad to install the WebSphere Message Broker components
and the prerequisite products.

264 WebSphere Message Broker Version 7.0.0.8

Related information:

WebSphere Message Broker Requirements

Installing a default configuration by using the Installation window:

Use the Windows Launchpad Installation window to install the set of products that
are required for a default configuration of WebSphere Message Broker.

Before you begin

Read “Installing by using the Windows Launchpad” on page 262 for background
information.

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

About this task

1. Start the Windows Launchpad. See “Starting the Windows Launchpad” on page
263 for more information.
When the Launchpad starts, the Installation window opens and displays the
following minimum set of products, along with version numbers, that are
required for a default configuration of WebSphere Message Broker:
v WebSphere MQ
v WebSphere Message Broker
v WebSphere Message Broker Toolkit
v WebSphere Message Broker Explorer

2. Check the initial installation status that is shown for each listed product:
v Required indicates that the product is not installed but is required for a

minimum configuration, or you have cleared the associated check box to
indicate that you do not intend to install the product, or the Launchpad
cannot install it (and no check box is shown).

v Pending indicates that the product is not installed but is required for a
minimum configuration, or the check box is selected to show that this
product is to be installed.

v Installed indicates that the product is already installed at a level that is
supported by WebSphere Message Broker. The installed version is shown and
no check box is displayed.

v Partial Installation indicates that the product is installed, but not all
components required to ensure that the successful operation of a minimum
configuration broker domain are present on the system. The associated check
box is selected to show that additional components are installed.

3. Click the plus sign to the left of each listed product in turn. The Launchpad
displays more information about the product, which you can use to decide if
you want it installed. The additional information also provides an estimate of
the time taken to complete each product installation, if appropriate.

4. Check the Installation has installed all the WebSphere MQ components that
you require. WebSphere Message Broker requires only the server,
WebSphere MQ Explorer, and the Java Messaging component, and only these
components are installed.
If you want additional components, use the WebSphere MQ installer.

Chapter 4. Installing and uninstalling 265

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

5. WebSphere MQ Explorer requires the WebSphere Eclipse Platform to be
installed; when you select WebSphere MQ, the Eclipse Platform is
automatically installed.

6. If you do not want to install a listed product, clear the check box that is
associated with the product. Its status is changed to Required, because you
cannot configure and verify your installation without all the listed products. If
the product you have cleared is a prerequisite for another product, that other
product is also cleared. You can complete installation of any remaining
products, and install the cleared products at a later time.
If you are installing WebSphere Message Broker Trial Edition, you must install
WebSphere MQ and the Eclipse platform before using the Launchpad. These
products are not supplied with the Trial Edition. You must obtain prerequisite
software from other sources to support the WebSphere Message Broker Trial
Edition. See “Installation packages” on page 3608 for more information.

7. Click Launch Installation for WebSphere Message Broker.
If you have cleared one or more of the required products, you are asked to
confirm your choices.
The Launchpad installs the products that you have selected in the order shown.
You cannot change the Installation window after you have started the
installation process. When the Launchpad starts each installation, it updates
status from Pending to In Progress.
If you have the incorrect WebSphere MQ level, for example V6.1, you might
get the following warning:
One or more of the selected installs will upgrade an existing version
of the installed software. Please be aware that the old version may be
removed with no further prompting.
Click OK to continue.

The Launchpad uninstalls the incorrect WebSphere MQ level, and then installs
the correct level of WebSphere MQ.
v If you have selected WebSphere MQ, the Launchpad starts the installation

wizard silent interface for WebSphere Eclipse Platform V3.3; default values
are used for all options. A progress bar is displayed. When the installation
completes, the Launchpad starts the installation wizard silent interface for
WebSphere MQ; default values are used for all options. A progress bar is
displayed so that you can check on progress.

v If you have selected WebSphere Message Broker (the Broker component), the
Launchpad starts the installation wizard graphical interface. You must supply
the input that is required by the installation wizard.
The installation wizard guides you through a series of windows where you
can make choices about where to install the component.
You must also read and accept the Software License Agreement that is
displayed.
The license agreement covers your use of WebSphere MQ. Be aware it is
only licensed for use with WebSphere Message Broker and must not be used
for other purposes.
You are asked if you want to open a command console when the wizard
terminates; select Yes to open a console window that is initialized with the
correct environment for command invocation. The command console is
explained in “Command environment: Windows systems” on page 306. If
you do not want to enter any commands at this time, select No.

v If you have selected the WebSphere Message Broker Toolkit, the Launchpad
starts the installation wizard graphical interface.

266 WebSphere Message Broker Version 7.0.0.8

The process is controlled by Installation Manager, which installs itself if it is
not already installed on this computer. For further information about
Installation Manager, see “Additional software requirements” on page 3598.
The installation wizard guides you through a series of windows where you
can make choices about where to install the component, which package
group to install it in, and which language support you want to install. You
must supply all input that is required by the installation wizard. You must
also accept the Software License Agreement that is displayed.
If you want to launch the WebSphere Message Broker Toolkit when its
installation wizard is complete, select WebSphere Message Broker Toolkit in
the list of installed products that is displayed on the completion window.
When you click Finish, the wizard ends and returns control to the
Launchpad, and the WebSphere Message Broker Toolkit is started.

v If you have selected WebSphere Message Broker Explorer, the Launchpad
starts the installation wizard graphical interface. You must supply the input
that is required by the installation wizard.
The installation wizard guides you through a series of windows where you
can make choices about where to install the component.
You must also read and accept the Software License Agreement that is
displayed.

The status of each product changes to Installed when the Launchpad completes
its installation.
When the Launchpad has installed all your selected products, it returns control
to the Installation window.

8. Click Refresh to check the status of each product listed.
9. Click Exit Launchpad to end the program.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Installing by using the Windows Launchpad” on page 262
Use the Windows Launchpad to install the WebSphere Message Broker components
and the prerequisite products.
Related information:

WebSphere Message Broker Requirements

Installing the Broker component
Use the installation wizard to install the Broker component.

Before you begin

Read the topic on “Preparing for installation” on page 235 and perform the tasks
described in “Preparing the system” on page 245.

Chapter 4. Installing and uninstalling 267

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

About this task

Complete the following tasks to install the Broker component on all supported
operating systems.

If you are installing the Broker component on Windows, you can use the
LaunchPad to complete this task. For more information, see “Installing by using
the Windows Launchpad” on page 262. If you do not want to use the LaunchPad,
complete the tasks in this topic instead.

The following list identifies the choices that you have for installing the Broker
component, and the actions that you must take to complete your chosen task:

Procedure
1. Check the readme.html for any updates to these installation instructions. The

readme file location is shown in “System requirements” on page 3581.
2. Check that you have enough memory and disk space; see “Memory and disk

space requirements” on page 3584.
3. If you do not already have WebSphere MQ installed, install it before you

install the Broker component.
Although you can install WebSphere MQ after you have installed the Broker
component, the installation wizard checks that you have the supported level
of WebSphere MQ, or later, installed. If this check fails when you are using
the graphical or console interface, the installation wizard displays a warning
that lists potential problems. If you decide to continue, you must complete the
installation of WebSphere MQ before you create or start any brokers.
If you start the installer by using the silent interface and WebSphere MQ is
not installed, or WebSphere MQ is installed but it is not at the prerequisite
level, the check for WebSphere MQ fails. If you have not modified the default
behavior by specifying a tailored response file, the wizard terminates without
taking any further action. If you have modified the response file to ignore this
check, the installation wizard continues.

4. Decide if you want to install from a remote server, or to install locally on each
system. These choices are described in “Accessing CDs and DVDs” on page
252 for CDs, DVDs, and for installation images that you can download from
Passport Advantage. The instructions here do not differentiate between CDs,
DVDs, and downloaded images because the behavior is the same.

5. Decide whether to use the graphical installation, a console installation, or a
silent installation. For more information about these interfaces, see “How to
install and uninstall the Broker component” on page 3618.
v To use the graphical installation, continue with these instructions.
v To use a console installation, see “Installing the Broker component in

console mode” on page 270.
v To use a silent installation, see “Installing the Broker component in silent

mode” on page 272.
6. Determine the installation wizard name for your operating system. For more

information, see “Installation wizard names” on page 3626.
7. Start the installation wizard graphical interface locally or remotely.

a. To install locally, load the product CD or DVD, then complete the
following steps:

268 WebSphere Message Broker Version 7.0.0.8

Linux and UNIX
Open a command prompt and navigate to the root directory of the
CD or DVD. Type the installation wizard name with no options,
and press Enter.

Windows
Take one of the following actions:
v If autorun is enabled, the Launchpad is started immediately. To

use the Launchpad, see “Installing by using the Windows
Launchpad” on page 262. To cancel the Launchpad, click Exit
Launchpad.

v In Windows Explorer, navigate to the root directory of the CD or
DVD. Locate the installation wizard and double-click the wizard
to start it.

v Open a command prompt and navigate to the root directory of
the CD or DVD. Type the installation wizard name with no
options, and press Enter.

b. To install from a remote server, access the remote CD or DVD drive or
network drive on which the product media is available. Find the
installation wizard on the CD, DVD, or network drive and start it as
previously described.

8. When the wizard starts, navigate through the windows and provide input
when requested. You must also read and accept the Software License
Agreement.
If the directory that you specify for installation already contains a previous
version of WebSphere Message Broker, for example Version 6.1.0.9, the
installation wizard prevents you from installing Version 7.0 in this location.
You must specify a different location. You can then migrate components to
Version 7.0 from the previous version, when appropriate.

Linux and UNIX only
At the end of this installer, a panel asks if you would like to start the
installation of the WebSphere Message Broker ODBC Database
Extender (IE02) SupportPac. If selected, the IE02 SupportPac installer
automatically launches in GUI mode. For more information, see the
WebSphere Message Broker ODBC Database Extender (IE02)
SupportPac installation instructions, which are located within the IE02
directory contained on the WebSphere Message Broker installation
image.

9. When the summary window displays, check your choices and click Next to
complete the installation. A progress bar displays so that you can check on
progress.

10. If you want to install the WebSphere Message Broker ODBC Database
Extender (IE02) package, select Yes when the window appears at the end of
the installation process. See “Installing the WebSphere Message Broker ODBC
Database Extender (IE02)” on page 273 for further details.

11. If you experience problems during installation, see “Resolving problems when
installing” on page 3517.

What to do next

When you have completed installation, see the following topics:
v “Verifying your WebSphere Message Broker installation” on page 290

Chapter 4. Installing and uninstalling 269

This topic describes how to verify your installation on Linux on x86, Linux on
x86-64, or Windows by using either the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.

v “Checking the broker operation mode and function level” on page 298
v “Start and main menu updates after installation” on page 3631
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Resolving problems when uninstalling” on page 3525
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Installing the Broker component in console mode
Install the Broker component by using the installation wizard in console mode.

Before you begin

On Linux and UNIX systems, ensure that you set up the required security before
you install the Broker component. See “Security on Linux and UNIX systems” on
page 247 for more information.

About this task

The following list identifies the choices that you have for installing the Broker
component in console mode, and the actions that you must take to complete your
chosen task:

Procedure
1. Determine the installation wizard name for your operating system. See

“Installation wizard names” on page 3626.
2. Locate the installation wizard in the root directory of the local or remote CD or

DVD, or the network drive.
3. If you are installing on HP-Itanium, /usr/sbin/ must be included in the PATH

statement.
4. Enter the following command at a command prompt for default invocation:

installer -console (where installer is the installation wizard name).
If you start the installation from a directory other than the one in which the
wizard exists, include the absolute or relative path with the command name.

270 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

5. When the wizard starts, navigate through the windows and provide input
when requested. You must also read and accept the Software License
Agreement.
The installation process specifies a default installation location that, if accepted,
is version specific; for example: C:\Program Files\IBM\MQSI\v.r. The default
directory includes the version and release of the product, in the format v.r
(version.release). You do have the option of specifying a different directory
location, but the installation process does not proceed if the location that you
specify already contains a previous version of the Broker component. If the
location that you specify already contains a previous version of the Broker
component, you must specify a different location. You can then migrate
components to Version 7.0 from the previous version, when appropriate.

Linux and UNIX only
At the end of this installer, a panel asks if you would like to start the
installation of the WebSphere Message Broker ODBC Database Extender
(IE02) SupportPac. If selected, the IE02 SupportPac installer
automatically launches in console mode. For more information, see
“Installing the WebSphere Message Broker ODBC Database Extender
(IE02)” on page 273.

6. When the summary window is displayed, check your choices and enter 1 to
complete installation.

7. If you experience problems during installation, see “Resolving problems when
installing” on page 3517.

What to do next

When you have completed installation, see the following topics:
v “Verifying your WebSphere Message Broker installation” on page 290

This topic describes how to verify your installation on Linux on x86, Linux on
x86-64, or Windows by using either the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.

v “Checking the broker operation mode and function level” on page 298
v “Start and main menu updates after installation” on page 3631
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Installing the Broker component” on page 267
Use the installation wizard to install the Broker component.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
Related information:

Chapter 4. Installing and uninstalling 271

WebSphere Message Broker Requirements

Installing the Broker component in silent mode
Install the Broker component by using the installation wizard in silent mode.

About this task

The following list identifies the choices that you have for installing the Broker
component in silent mode, and the actions that you must take to complete your
chosen task.

Procedure
1. Determine the installation wizard name for your operating system. See

“Installation wizard names” on page 3626.
2. Locate the installation wizard in the root directory of the local or remote CD or

DVD, or the network drive.
3. If you are installing on HP-Itanium, /usr/sbin/ must be included in the PATH

statement.
4. Enter the following command at a command prompt for a typical installation

with default settings.
If you start the installation from a directory other than the one in which the
installation wizard exists, include the absolute or relative path with the
command name.

Linux and UNIX
installer -silent -G licenseAccepted=true (where installer is the
installation wizard name).

Windows
Start the installation wizard within a start command with parameter
/w to ensure that the installation completes before it returns to the
command prompt:
start /w setup.exe -silent -G licenseAccepted=true

If you want to specify non-default settings, include a response file on the
invocation. If you want to install the Broker component in a customized
location, you must specify a response file. For more information about using
response files, creating response files, and editing response files to define your
requirements, see “Using response files with the Broker component” on page
3621.

5. The installation wizard completes without any user interaction.

Linux and UNIX

Note: The WebSphere Message Broker ODBC Database Extender (IE02)
installer cannot be automatically started when running the install in
silent mode. For more information, see “Installing the WebSphere
Message Broker ODBC Database Extender (IE02)” on page 273.

If you experience problems during installation, see “Resolving problems when
installing” on page 3517.

What to do next

When you have completed installation, see the following topics:
v “Verifying your WebSphere Message Broker installation” on page 290

272 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

This topic describes how to verify your installation on Linux on x86, Linux on
x86-64, or Windows by using either the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.

v “Checking the broker operation mode and function level” on page 298
v “Start and main menu updates after installation” on page 3631
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Installing the Broker component” on page 267
Use the installation wizard to install the Broker component.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
Related information:

WebSphere Message Broker Requirements

Installing the WebSphere Message Broker ODBC Database
Extender (IE02)
WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager, which is an implementation of the Open DataBase Connectivity
interface for UNIX systems. This topic describes how you install WebSphere
Message Broker ODBC Database Extender.

Before you begin

Before you start:

Read the information about the unixODBC Project and the IBM solidDB product
family.

Install WebSphere Message Broker Version 7.0.0.1 or later.

About this task

WebSphere Message Broker ODBC Database Extender is required when using
WebSphere Message Broker to interface with an ODBC data source that is not
supported through the DataDirect ODBC drivers.

Procedure
1. To install the WebSphere Message Broker ODBC Database Extender, download

the package for your platform to the directory of your choice, or select the
option to install the WebSphere Message Broker ODBC Database Extender from
the product disk.

Chapter 4. Installing and uninstalling 273

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.unixodbc.org/
http://www-01.ibm.com/software/data/soliddb/
http://www-01.ibm.com/software/data/soliddb/

To download the package externally, select WebSphere Message Broker on the
WebSphere MQ SupportPacs web page and locate the package file.
The package file is called install-ie02.bin on all platforms.
This package must be run with the same privileges (typically root) that you
used when installing WebSphere Message Broker. The default IE02 installation
directory is /opt/ibm/IE02/.

2. Run the installer in one of the following modes:
v Graphical
v Console
v Silent
a. Graphical. From within the directory where you downloaded the package

file, run the following command:
./install-ie02.bin

The installer launches within a separate window and guides you through
the installation process. However, if the installer cannot launch in Graphical
mode, it launches in console mode.

b. Console. From within the directory where you downloaded the package
file, run the following command:
./install-ie02.bin –i console

The installer launches, and guides you through the installation process from
within the same console as the command was run.

c. Silent. When specifying a silent installation, a response file is required to
define the required responses to the options provided by the installer. See
following example file:
This file was built by the Replay feature of InstallAnywhere.
It contains variables that were set by Panels, Consoles or Custom
Code.

#Has the license been accepted
#-----------------------------
LICENSE_ACCEPTED=TRUE

#Choose Install Folder
#---------------------
USER_INSTALL_DIR=/opt/ibm/IE02/

Note the above example specifies that the license has been accepted. By
using this example script you are accepting the terms of the license
agreement.
The response file must be named installer.properties and must be
located in the same directory as the WebSphere Message Broker ODBC
Database Extender installer.
Run the following command from within the directory where you
downloaded the WebSphere Message Broker ODBC Database Extender:
./install-ie02.bin –i silent

After the installation has completed, review the installation log that is
located under the installation path specified during the installation. The file
name of the log is:
WebSphere_Message_Broker_ODBC_Database_Extender_InstallLog.log.
If you are installing over a previous installation (within the same
installation directory), the previous installation is silently uninstalled before
the new version is installed.

274 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/support/supportpacs

What to do next

Next, Configure the WebSphere Message Broker Database Extender.
Related tasks:
“Configuring the WebSphere Message Broker ODBC Database Extender (IE02)”
WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager, which is an implementation of the Open DataBase Connectivity
interface for UNIX systems, and this topic describes how you configure it.
“Connecting to a database from Linux and UNIX systems using the WebSphere
Message Broker ODBC Database Extender (IE02)” on page 682
WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager and this topic describes how you set up and configure the broker
to use it.
Related reference:
“Sample WebSphere Message Broker ODBC Database Extender (IE02) configuration
files” on page 3596
How you use WebSphere Message Broker ODBC Database Extender (IE02) to load
the correct data source driver.

Configuring the WebSphere Message Broker ODBC Database Extender (IE02):

WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager, which is an implementation of the Open DataBase Connectivity
interface for UNIX systems, and this topic describes how you configure it.

Before you begin

Before you start:

Install the WebSphere Message Broker ODBC Database Extender.

About this task

To allow WebSphere Message Broker to take advantage of the additional database
support, it needs to know where you have installed the SupportPac. The location
of the SupportPac needs to be set by the value of the environment variable
IE02_PATH.

This environment variable is automatically set within the WebSphere Message
Broker profile during the installation of the SupportPac, by the creation of the
script called IE02.sh which is placed within the directory /var/mqsi/common/
profiles. See following example file:
#!/usr/bin/sh
This file was created as part of the IBM WebSphere Message
Broker ODBC
Database Extender SupportPac (IE02) install
export IE02_PATH=/opt/ibm/IE02/

Note: If you installed the SupportPac in silent mode, you must create a script in
the directory ${MQSI_WORKPATH}/common/profiles to set the environment variable
IE02_PATH.

If you alter the location of your $MQSI_WORKPATH and, therefore, alter the location
where WebSphere Message Broker dynamically runs additional scripts while

Chapter 4. Installing and uninstalling 275

loading its profile, you must either copy the existing file, or create a new file
containing the required contents within your new ${MQSI_WORKPATH}/common/
profiles directory.

You must not put the lib directory of the WebSphere Message Broker ODBC
Database Extender into your library path (LD_LIBRARY_PATH or equivalent). If you
do so, the WebSphere Message Broker ODBC Database Extender is not correctly
loaded by WebSphere Message Broker and unpredictable results can occur.

What to do next

Configure the database that you are going to use; see “Connecting to a database
from Linux and UNIX systems using the WebSphere Message Broker ODBC
Database Extender (IE02)” on page 682
Related tasks:
“Connecting to a database from Linux and UNIX systems using the WebSphere
Message Broker ODBC Database Extender (IE02)” on page 682
WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager and this topic describes how you set up and configure the broker
to use it.
Related reference:
“Sample WebSphere Message Broker ODBC Database Extender (IE02) configuration
files” on page 3596
How you use WebSphere Message Broker ODBC Database Extender (IE02) to load
the correct data source driver.

Installing the WebSphere Message Broker Toolkit
Use the installation wizard graphical interface to install the WebSphere Message
Broker Toolkit on Windows and Linux on x86.

About this task

If you are installing the WebSphere Message Broker Toolkit on Windows, you can
use the LaunchPad. For more information about using the Windows Launchpad,
see “Installing by using the Windows Launchpad” on page 262.

If you do not want to use the Windows LaunchPad, complete the following steps.

Procedure
1. Check the product readme file, readme.html, for updates to these installation

instructions. The product readme file includes information pertinent to all
components and platforms, and is maintained in US English on the product
readmes web page. Translated readme files are available on the
documentation FTP site.

2. Check that your computer has enough memory and disk space for your
installation. Requirements for memory and disk space depend on the
installation operating system, and on the WebSphere Message Broker
components that you are installing. For more information, see “Memory and
disk space requirements” on page 3584.

3. Before installing WebSphere Message Broker Toolkit on Linux, check that the
default permissions are set correctly by running the following command
under a user ID with root authority:
umask

276 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/support/docview.wss?uid=swg27006913
http://www.ibm.com/support/docview.wss?uid=swg27006913
ftp://public.dhe.ibm.com/software/integration/wbibrokers/docs/

A value of 0022 should be returned, indicating the permissions are correctly
set. If any other value is returned, set the correct permissions by running the
following command:
umask 0022

4. Decide whether you want to install the WebSphere Message Broker Toolkit
from a server or if you want to install the WebSphere Message Broker Toolkit
locally. These choices are described in “Accessing CDs and DVDs” on page
252 for CDs, DVDs, and for installation images that you can download from
Passport Advantage.

5. Decide whether you want to use the installation wizard graphical interface to
install the WebSphere Message Broker Toolkit or if you want to complete a
silent installation. For more information about these interfaces, see “How to
install and uninstall the WebSphere Message Broker Toolkit” on page 3623. If
you decide to use the installation wizard graphical interface, continue with
these instructions. Alternatively, to use a silent installation, see “Installing the
WebSphere Message Broker Toolkit in silent mode” on page 279.
In either scenario, the installation of the WebSphere Message Broker Toolkit is
controlled by the IBM Installation Manager. If the Installation Manager is not
already installed, it is installed before the WebSphere Message Broker Toolkit
is installed.

6. Start the installation wizard graphical interface by navigating to the
/Message_Broker_Toolkit_V7.0/disk1 directory and running the batch file
installToolkit.sh as root on Linux, or installToolkit.bat on Windows. The
installation wizard checks your system locale setting. If the locale setting listed
in “Multicultural support” on page 3628 is supported, the wizard continues in
this locale. If the current setting is not supported, the wizard continues in US
English. This language is used for installation only, and does not affect other
processes on your computer.
The Installation Manager starts and the Install Packages window opens. The
installation wizard is preconfigured to install both the Installation Manager
and the WebSphere Message Broker Toolkit, therefore the WebSphere Message
Broker Toolkit packages are already selected in this window. If the Installation
Manager has not been installed on this computer, its packages are also
selected and cannot be cleared.

7. Click Next to continue. The Software License Agreement window opens.
8. Read the license agreement, select I accept the terms in the license

agreements, and click Next.
If you do not accept the license, the installation wizard ends. If you have not
installed the Installation Manager on this computer, or if you have installed
the Installation Manager but have not yet installed any product that is
managed by the Installation Manager, the Shared Directory window opens.
Continue with step 9. Otherwise, because the shared resources directory has
already been defined, the Package group directory window opens, so you can
continue with step 10 on page 278.

9. If the WebSphere Message Broker Toolkit is not the first product that is
installed by the Installation Manager, you might not be prompted to specify
the shared resources directory. If you are prompted, specify the location of the
shared resources directory that is used by all the products that are managed
by the Installation Manager. The following directories show the default
locations:
v Linux on x86: /opt/IBM/SDPShared/.
v Windows: C:\Program Files\IBM\SDPShared\ for 32-bit editions, or

C:\Program Files (x86)\IBM\SDPShared\v.r for 64-bit editions.

Chapter 4. Installing and uninstalling 277

To specify a different location, type over the default location, or click Browse.
The shared resources directory must not contain another installation of
WebSphere Message Broker Toolkit, or other files or products.
If the Installation Manager is not yet installed, you must also specify its
installation directory. The following directories show the default locations:
v Linux on x86: /opt/IBM/InstallationManager/.
v Windows: C:\Program Files\IBM\InstallationManager\ for 32-bit editions,

or C:\Program Files (x86)\IBM\InstallationManager\ for 64-bit editions.
To specify a different location, type over the default location, or click Browse.
Click Next. The Package group directory window opens. You can create a new
package group for the WebSphere Message Broker Toolkit, which requires you
to specify an installation directory, or you can choose an existing package
group to share the resources.
For more information about installing the WebSphere Message Broker Toolkit
into a package group, and for further reference information about Package
groups, see “IBM Installation Manager” on page 3600.

10. If you want to use the WebSphere Message Broker Toolkit in a locale other
than US English, select additional support from the list presented. English is
always selected and installed; you cannot clear this selection. If you select one
or more alternative locales, documentation and properties files for all
supported languages are installed. Click Next to continue. The Summary
window opens.

11. Check your choices and click Back if you want to make further changes to
your responses on any of the previous windows. This window displays
guidance information for the space required for the packages that you are
about to install and indicates that your disk has sufficient space.
Click Next to start installation. The Install Progress window opens.

12. The features that you are installing, their associated directories, and the locales
that you have selected display for information. A progress bar displays, which
you can use to check the status of the installation. When the installation has
finished, the Completion window opens.

13. The wizard displays an indication of success or failure, and lists the products
and options that have been installed. Click View Log File to check the results
of the installation.
On Windows, you can indicate that you want the WebSphere Message Broker
Toolkit to launch when you click Finish to close the wizard. This option is not
available on Linux on x86 because you might want to complete verification
while logged on as a different user ID that does not have root authority.

14. If you experience problems during installation, see “Resolving problems when
installing” on page 3517.

What to do next

When you have completed the installation, see “Verifying your WebSphere
Message Broker installation” on page 290, “Checking the broker operation mode
and function level” on page 298, and “Start and main menu updates after
installation” on page 3631.

If you do not install optional locales at this time, you can install them later in the
following way:
v On Linux on x86, navigate to the /eclipse directory within the Installation

Manager installation directory, and start the Installation Manager program IBMIM.

278 WebSphere Message Broker Version 7.0.0.8

(You cannot use the main menu entries unless you are already logged on as root;
the menu item does not provide an option to become root, and root authority is
required for all installation tasks.)

v On Windows, click Start > Programs > IBM Installation Manager > IBM
Installation Manager to launch the Installation Manager, and click Modify
Packages to change your installation.
If you prefer to use the command line, navigate to the \eclipse directory within
the Installation Manager installation directory, and start the Installation Manager
program IBMIM.exe.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
Related information:

WebSphere Message Broker Requirements

Installing the WebSphere Message Broker Toolkit in silent mode
Install the WebSphere Message Broker Toolkit by using the installation wizard in
silent mode.

About this task

To perform a silent installation, complete the following steps:

Procedure
1. Determine the installation wizard name for your operating system. See

“Installation wizard names” on page 3626.
2. Locate the installation wizard in the /Message_Broker_Toolkit_V7.0/disk1

directory of the local or remote DVD, or the network drive.
3. Enter the following command at a command prompt for an installation with all

default settings:

Linux on x86
./installToolkit-silent.sh

Windows
installToolkit-silent.bat

Chapter 4. Installing and uninstalling 279

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

The installToolkit-silent.sh and installToolkit-silent.bat files use the
/Message_Broker_Toolkit_V7.0/disk1/IBMInstallationManager/mbtoolkit-
silent.xml response file that contains all the default settings for installation.
If you want to specify non-default settings, include a different response file on
the invocation. To create a different response file, complete the first installation
by using the graphical interface, specifying the -record option. The installation
wizard records a response file that includes all your chosen selections. For more
information about how to record and use response files, see “Using response
files with the WebSphere Message Broker Toolkit” on page 3625.

4. The installation wizard completes without any user interaction. Check the log
for success or failure of the installation process.

5. If you experience problems during installation, refer to “Resolving problems
when installing” on page 3517.

What to do next

When you have completed installation, see “Verifying your WebSphere Message
Broker installation” on page 290, “Checking the broker operation mode and
function level” on page 298, and “Start and main menu updates after installation”
on page 3631.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Installing the WebSphere Message Broker Toolkit” on page 276
Use the installation wizard graphical interface to install the WebSphere Message
Broker Toolkit on Windows and Linux on x86.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
Related information:

WebSphere Message Broker Requirements

Installing WebSphere Message Broker Explorer
To use WebSphere Message Broker Explorer only, without installing the complete
WebSphere Message Broker Toolkit, use the WebSphere Message Broker Explorer
installation wizard to install the WebSphere Message Broker Explorer.

Before you begin

Before you start:

v Alternatively, to install the complete WebSphere Message Broker Toolkit, see
“Installing the WebSphere Message Broker Toolkit” on page 276.

280 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

v The WebSphere Message Broker Explorer installation searches the Windows
registry for a version of WebSphere MQ Explorer. If registry access is disabled
by a local security policy such as "Prevent access to registry editing tools", the
installation cannot find WebSphere MQ Explorer. Before you install WebSphere
Message Broker Explorer, remove this restriction temporarily and reinstate it
after the installation.

About this task

To install WebSphere Message Broker Explorer on Windows or Linux on x86 and
Linux on x86-64, complete the following tasks.

One version only of the WebSphere Message Broker Explorer can be active at any
one time because one version only of the WebSphere MQ Explorer can be installed
on any one system.

If you already have WebSphere Message Broker Explorer installed, and you decide
to install a later version of WebSphere Message Broker Explorer, you must upgrade
the existing version.

If you add another installation of WebSphere MQ after you install WebSphere
Message Broker Explorer, you must install WebSphere Message Broker Explorer
again to enable it in all WebSphere MQ installations.

To upgrade the existing version, complete the following steps.
1. Uninstall WebSphere Message Broker Explorer. For more information, see

“Uninstalling the WebSphere Message Broker Explorer” on page 346. You can
uninstall the WebSphere Message Broker Explorer only if you are the
administration user (for example, root on Linux on x86 and Linux on x86-64, or
Administrator on Windows).

2. Check that no files exist in the previous installation directory.
3. Install WebSphere Message Broker Explorer.

After you install the new version of the WebSphere Message Broker Explorer, if
you are upgrading from an existing version of the WebSphere Message Broker
Explorer, you must complete the following steps:
1. To initialize the new version of the WebSphere Message Broker Explorer, run

the following command from a command line in which that mqsiprofile
command has not run:
strmqcfg -i

To run this command, you must be the administration user.
2. Start WebSphere Message Broker Explorer either by using the WebSphere

Message Broker Explorer Windows shortcut or by running the following
command from a command line in which the mqsiprofile command has not
run:
strmqcfg -c -d

Windows On Windows, the Add/Remove program panels point to the new
installation location. To remove the older version, navigate to the old location on
the file system and run the uninstaller that is located there.

Windows

If you are installing WebSphere Message Broker Explorer on Windows,

you can use the Launchpad to complete this task. If you do not want to use the
Launchpad, complete the tasks in this topic instead.

Chapter 4. Installing and uninstalling 281

To use the installation wizard for the WebSphere Message Broker Explorer with a
Java compatible screen reader for accessibility reasons, see “Installing the
WebSphere Message Broker Explorer by using console mode with a screen reader”
on page 285.

Linux

To install WebSphere Message Broker Explorer on Linux on x86 and

Linux on x86-64, you must have write access to the locations that you want to use
for the installation and data (configuration) directories. If you use an installation
directory in your home directory rather than the default installation directory, do
not use a tilde character (~) as a path prefix. Specify the directory path name in
full. An InstallAnywhere error occurs if you use a tilde character, which means the
product is not installed and you must repeat the installation process. You can
install to a private location if you do not have root access to the default installation
location.

If you encounter problems during the installation process, you can view the
installation log MBExplorer_install.log. The installation log is created in the
installation directory, for example C:\Program Files\IBM\MBExplorer\
MBExplorer_install.log.

Note: The installation log is not created until the installation wizard is complete
and you click Done to exit the wizard.

If you previously installed the IS02: WebSphere Message Broker Explorer plug-in
SupportPac, you must complete the following steps before you install WebSphere
Message Broker Explorer:
1. Move or delete the location to which you extracted the IS02 SupportPac.
2. Delete the BrokerExplorer.link file, which you copied into the links directory.

On Windows, the directory name is C:\Program Files\IBM\WebSphere
MQ\eclipseSDK33\eclipse\links\. On Linux on x86 and Linux on x86-64, the
directory name is /opt/mqm/eclipseSDK33/eclipse/links.

3. Start WebSphere Message Broker Explorer either by using the WebSphere
Message Broker Explorer Windows shortcut or by running the following
command from a command line in which the mqsiprofile command has not
run:
strmqcfg -c -d

4. Optional: If you want a new installation of your WebSphere Message Broker
Explorer, complete one of the following steps:
v Move or delete the WebSphere Message Broker Explorer metadata directory.

On Windows, the directory name is C:\Documents and Settings\<user>\
Application Data\IBM\MQ Explorer\.metadata. On Linux on x86 and Linux
on x86-64, the directory name is /home/user/.mqdata/.metadata.

v Alternatively, switch your Eclipse workspace.
Moving or deleting the metadata directory, or switching your Eclipse
workspace, resets your WebSphere Message Broker Explorer to its initial startup
state. You must then reconnect to any remote queue managers. Any local queue
manager is discovered automatically.

The following list identifies the choices that you have for installing the WebSphere
Message Broker Explorer, and the actions that you must take to complete your
chosen task.

282 WebSphere Message Broker Version 7.0.0.8

Procedure
1. Check the readme.html for any updates to these installation instructions. The

readme file location is shown in “System requirements” on page 3581.
2. Check that you have enough memory and disk space. For more information,

see “Memory and disk space requirements” on page 3584.
3. If you do not already have WebSphere MQ installed, install it before you

install the WebSphere Message Broker Explorer.
4. Decide whether you want to install from a server, or to install locally on each

system. These choices are described in “Accessing CDs and DVDs” on page
252 for both CDs and DVDs, and for images that you downloaded from
Passport Advantage (if you are registered with the scheme). The instructions
here do not differentiate between CDs, DVDs, and downloaded images; their
behavior is the same.

5. Decide whether to use the graphical installation, a console installation, or a
silent installation.
v To use the graphical installation, continue with these instructions.
v To use the installation wizard with a screen reader, see “Installing the

WebSphere Message Broker Explorer by using console mode with a screen
reader” on page 285.

v Windows To use a console installation on Windows, see “Installing the
WebSphere Message Broker Explorer in console mode on Windows” on
page 285.

v Linux To use a console installation on Linux, see “Installing the
WebSphere Message Broker Explorer in console mode on Linux” on page
287.

v To use a silent installation, see “Installing the WebSphere Message Broker
Explorer in silent mode” on page 288.

6. Open the installation wizard by using the executable file or binary file. On
Windows, this file is install.exe. On Linux on x86 and Linux on x86-64, this
file is install.bin. These files are in the \MBExplorer directory on the DVD.

7. When you open the wizard, continue with the installation process by working
through each of the following panels. The installation wizard itself contains
help information about selected panels.

8. Select the language to use for the installation process, then click OK.
9. On the Introduction panel, click Next.

10. Read the software license agreement, select the option to accept the terms of
the license, then click Next.

11. Enter (or browse for) a product installation directory for the WebSphere
Message Broker Explorer, or accept the default location. On Windows, the
default installation directory for WebSphere Message Broker Explorer is
C:\Program Files\IBM\MBExplorer. On Linux on x86 and Linux on x86-64, the
default installation directory is /opt/IBM/MBExplorer.
If the product installation directory exists because you previously installed
WebSphere Message Broker Explorer, either click Refresh to refresh the
existing installation or click Select to select a new product directory.

12. Click Next.
13. Read the summary panel. If necessary, click Previous to go back and modify

earlier panels.
14. Click Install and wait while the files are installed.
15. On the Install complete panel, click Done.

Chapter 4. Installing and uninstalling 283

Results

You can now use the WebSphere Message Broker Explorer. To start the WebSphere
Message Broker Explorer, complete one of the following steps:
v On Windows:

Click Start > All Programs > IBM WebSphere Message Broker 7.0 > IBM
WebSphere Message Broker Explorer.

v On Linux on x86 and Linux on x86-64:
Open a command shell in which the mqsiprofile command has not run and
enter the strmqcfg command, or run /usr/bin/strmqcfg.

What to do next

When you complete installation, see “Verifying your WebSphere Message Broker
installation” on page 290.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Installing the WebSphere Message Broker Explorer by using console mode with a
screen reader” on page 285
You can install the WebSphere Message Broker Explorer by using console mode
with screen reader software for accessibility reasons.
“Installing the WebSphere Message Broker Explorer in console mode on Windows”
on page 285
You can install WebSphere Message Broker Explorer using the installation wizard
in console mode on Windows and Linux.
“Installing the WebSphere Message Broker Explorer in console mode on Linux” on
page 287
You can install WebSphere Message Broker Explorer using the installation wizard
in console mode on Windows and Linux.
“Installing the WebSphere Message Broker Explorer in silent mode” on page 288
You can install WebSphere Message Broker Explorer by using the installation
wizard in silent mode.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
“Verifying your WebSphere Message Broker installation” on page 290
You can verify your installation of WebSphere Message Broker by using the
WebSphere Message Broker Toolkit or the WebSphere Message Broker Explorer.
“Applying service to the WebSphere Message Broker Explorer” on page 329
You can apply maintenance or fixes to the WebSphere Message Broker Explorer.
“Installing the WebSphere Message Broker Toolkit” on page 276
Use the installation wizard graphical interface to install the WebSphere Message
Broker Toolkit on Windows and Linux on x86.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the

284 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker Explorer from your computer.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.

Installing the WebSphere Message Broker Explorer by using
console mode with a screen reader
You can install the WebSphere Message Broker Explorer by using console mode
with screen reader software for accessibility reasons.

About this task

Complete the following steps to use console mode with screen reader software:

Procedure
1. Install a screen reader program, such as JAWS.
2. Install the WebSphere Message Broker Explorer by using console mode. For

more information, see “Installing the WebSphere Message Broker Explorer in
console mode on Windows” or “Installing the WebSphere Message Broker
Explorer in console mode on Linux” on page 287.

Related tasks:
“Installing the WebSphere Message Broker Explorer in console mode on Windows”
You can install WebSphere Message Broker Explorer using the installation wizard
in console mode on Windows and Linux.
“Installing the WebSphere Message Broker Explorer in console mode on Linux” on
page 287
You can install WebSphere Message Broker Explorer using the installation wizard
in console mode on Windows and Linux.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.

Installing the WebSphere Message Broker Explorer in console
mode on Windows
You can install WebSphere Message Broker Explorer using the installation wizard
in console mode on Windows and Linux.

About this task

Use the following steps to install the WebSphere Message Broker Explorer using
the console mode on Windows. If you encounter any problems during the
installation process, you can view the install log MBExplorer_install.log.

Procedure
1. Type the following command on a command line to run a console install:

<dvd_rom>/MBExplorer/install.exe -i console

2. Select the language that you want to use for the installation process by typing
the number next to the language and press Enter. The installer uses the term
"locale" rather than "language". Alternatively, press Enter to accept the default
language.

3. Read the console install instructions, and press Enter to continue.

Chapter 4. Installing and uninstalling 285

4. Read the software license agreement and type 1 to accept the terms of the
license. Press Enter.

5. Type the name of the product installation directory for the WebSphere Message
Broker Explorer and press Enter. Alternatively, press Enter to accept the default
location. The default installation directory for the WebSphere Message Broker
Explorer on Windows is C:\Program Files\IBM\MBExplorer.

6. Read the Pre-Installation Summary information and press Enter to install the
WebSphere Message Broker Explorer. Wait while the files are installed.

7. On the Installation Complete panel, press Enter to exit the console installer.

Results

You can now use the WebSphere Message Broker Explorer. To use the WebSphere
Message Broker Explorer you must start the WebSphere MQ Explorer. To start the
WebSphere MQ Explorer, click Start > All Programs > IBM WebSphere MQ >
WebSphere MQ Explorer, or open a command line in which the mqsiprofile
command has not been run and enter the strmqcfg command.

What to do next

When you have completed installation, see “Verifying your WebSphere Message
Broker installation” on page 290.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Installing the WebSphere Message Broker Explorer in console mode on Linux” on
page 287
You can install WebSphere Message Broker Explorer using the installation wizard
in console mode on Windows and Linux.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Installing WebSphere Message Broker Explorer” on page 280
To use WebSphere Message Broker Explorer only, without installing the complete
WebSphere Message Broker Toolkit, use the WebSphere Message Broker Explorer
installation wizard to install the WebSphere Message Broker Explorer.
“Installing the WebSphere Message Broker Explorer by using console mode with a
screen reader” on page 285
You can install the WebSphere Message Broker Explorer by using console mode
with screen reader software for accessibility reasons.
“Installing the WebSphere Message Broker Explorer in silent mode” on page 288
You can install WebSphere Message Broker Explorer by using the installation
wizard in silent mode.
“Verifying your WebSphere Message Broker installation” on page 290
You can verify your installation of WebSphere Message Broker by using the
WebSphere Message Broker Toolkit or the WebSphere Message Broker Explorer.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.

286 WebSphere Message Broker Version 7.0.0.8

“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.

Installing the WebSphere Message Broker Explorer in console
mode on Linux
You can install WebSphere Message Broker Explorer using the installation wizard
in console mode on Windows and Linux.

About this task

Use the following steps to install the WebSphere Message Broker Explorer using
the console mode on Linux. If you encounter any problems during the installation
process, you can view the install log MBExplorer_install.log.

Procedure
1. Type the following command on a command line to run a console install:

<cd_rom>/MBExplorer/install.bin -i console

2. Select the language that you want to use for the installation process by typing
the number next to the language and press Enter. The installer uses the term
"locale" rather than "language". Alternatively, press Enter to accept the default
language.

3. Read the software license agreement and type 1 to accept the terms of the
license. Press Enter.

4. Type the name of the product installation directory for the WebSphere Message
Broker Explorer and press Enter. Alternatively, press Enter to accept the default
location. The default installation directory for the WebSphere Message Broker
Explorer on Linux systems is /opt/IBM/MBExplorer. If the product installation
directory already exists because you have previously installed the WebSphere
Message Broker Explorer, you can either refresh the existing installation or
select a new product directory.

5. Confirm that the install location is correct, and press Enter to continue.
6. Read the Pre-Installation Summary information and press Enter to install the

WebSphere Message Broker Explorer. Wait while the files are installed.
7. On the Installation Complete panel, press Enter to exit the console installer.

Results

You can now use the WebSphere Message Broker Explorer. To use the WebSphere
Message Broker Explorer you must start the WebSphere MQ Explorer. To start the
WebSphere MQ Explorer, open a command shell in which the mqsiprofile
command has not been run and enter the strmqcfg command, or run
/usr/bin/strmqcfg.

What to do next

When you have completed installation, see “Verifying your WebSphere Message
Broker installation” on page 290.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.

Chapter 4. Installing and uninstalling 287

“Installing the WebSphere Message Broker Explorer in console mode on Windows”
on page 285
You can install WebSphere Message Broker Explorer using the installation wizard
in console mode on Windows and Linux.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Installing WebSphere Message Broker Explorer” on page 280
To use WebSphere Message Broker Explorer only, without installing the complete
WebSphere Message Broker Toolkit, use the WebSphere Message Broker Explorer
installation wizard to install the WebSphere Message Broker Explorer.
“Installing the WebSphere Message Broker Explorer by using console mode with a
screen reader” on page 285
You can install the WebSphere Message Broker Explorer by using console mode
with screen reader software for accessibility reasons.
“Installing the WebSphere Message Broker Explorer in silent mode”
You can install WebSphere Message Broker Explorer by using the installation
wizard in silent mode.
“Verifying your WebSphere Message Broker installation” on page 290
You can verify your installation of WebSphere Message Broker by using the
WebSphere Message Broker Toolkit or the WebSphere Message Broker Explorer.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.

Installing the WebSphere Message Broker Explorer in silent
mode
You can install WebSphere Message Broker Explorer by using the installation
wizard in silent mode.

About this task

Before you can run the installation wizard in silent mode, you must create a
response file that contains the installation options. You can create a response file
during an installation using the graphical installation wizard, or you can use a
sample response file supplied in the samples-scripts directory in the root
directory of the installation media. To install silently, you specify the path to the
response file as an argument to the installation command.

Use the following steps to create the response file and run the installation wizard
in silent mode:

Procedure
1. Create a response file using the graphical installation wizard or by manually

editing a response file:
v Create a response file during an installation using the graphical installation

wizard. You must provide a full path for the response file, or the response
file is not created by the installation wizard.
Enter the following commands into a command prompt:

288 WebSphere Message Broker Version 7.0.0.8

– On Windows:
install.exe -r <filepath>

– On Linux:
install.bin -r <filepath>

This command starts the GUI installation as normal, except that it also
records all your answers and saves them in the file you specified, for
example, c:\temp\mbx-response.properties. You can then use this response
file with the silent installer for subsequent installations of WebSphere
Message Broker Explorer.

v Alternatively, use the supplied template in the samples-scripts directory in
the root directory of the local or remote CD or DVD, or the network drive.
Or use the following template to create a response file manually:
Thu Jul 09 16:44:28 BST 2009
Replay feature output

This file was built by the Replay feature of InstallAnywhere.
It contains variables that were set by Panels, Consoles or Custom Code.

#Has the license been accepted
#-----------------------------
LICENSE_ACCEPTED=TRUE

#Choose Install Folder
#---------------------
USER_INSTALL_DIR=C:\\Program Files\\IBM\\MBExplorer

2. To run the installation wizard in silent mode with the response file, run the
following command:
v On Windows:

install.exe -i silent -f <filename>

v On Linux:
install.bin -i silent -f <filename>

where <filename> is the path to the response file, for example:
d:\messagebroker_runtime1\sample-scripts\mbx-response.properties.

Results

You can now use the WebSphere Message Broker Explorer. To use the WebSphere
Message Broker Explorer you must start the WebSphere MQ Explorer. To start the
WebSphere MQ Explorer, complete one of the following steps:
v On Windows:

Click Start > All Programs > IBM WebSphere MQ > WebSphere MQ Explorer,
or, on a command line in which the mqsiprofile command has not been run,
enter the strmqcfg command.

v On Linux:
Open a command shell in which the mqsiprofile command has not been run
and enter the strmqcfg command, or run /usr/bin/strmqcfg.

What to do next

When you have completed installation, see “Verifying your WebSphere Message
Broker installation” on page 290.
Related tasks:

Chapter 4. Installing and uninstalling 289

“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Installing WebSphere Message Broker Explorer” on page 280
To use WebSphere Message Broker Explorer only, without installing the complete
WebSphere Message Broker Toolkit, use the WebSphere Message Broker Explorer
installation wizard to install the WebSphere Message Broker Explorer.
“Installing the WebSphere Message Broker Explorer by using console mode with a
screen reader” on page 285
You can install the WebSphere Message Broker Explorer by using console mode
with screen reader software for accessibility reasons.
“Installing the WebSphere Message Broker Explorer in console mode on Windows”
on page 285
You can install WebSphere Message Broker Explorer using the installation wizard
in console mode on Windows and Linux.
“Verifying your WebSphere Message Broker installation”
You can verify your installation of WebSphere Message Broker by using the
WebSphere Message Broker Toolkit or the WebSphere Message Broker Explorer.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.

Verifying your WebSphere Message Broker installation
You can verify your installation of WebSphere Message Broker by using the
WebSphere Message Broker Toolkit or the WebSphere Message Broker Explorer.

About this task

This section describes how to verify your installation on Linux on x86, Linux on
x86-64, or Windows by using either the WebSphere Message Broker Toolkit or the
WebSphere Message Broker Explorer.
v “Verifying your installation by using the WebSphere Message Broker Toolkit” on

page 291
v “Verifying your installation using the WebSphere Message Broker Explorer” on

page 295

After verification, you can keep all the components to carry out further
development and unit test. Development and test environments are restricted to
Linux on x86, Linux on x86-64, and Windows computers on which one copy of
each component is installed on each computer. You can also create additional
components and resources on your test computers to investigate the ways in which
your business requirements can be met by this product.

If you have purchased WebSphere Message Broker Remote Adapter Deployment,
Starter Edition, or Entry Edition, you must modify the operation mode of the
broker after you have completed the procedures in this chapter (unless you are

290 WebSphere Message Broker Version 7.0.0.8

running a test environment). The broker operation mode is always set to the
default enterprise when you install the Broker component from the full product
packages. If you intend to keep and use the default broker that you create in this
chapter, you are required to modify its mode to conform to the terms of your
license. See “Checking the broker operation mode and function level” on page 298
for details of this task.

Verifying your installation by using the WebSphere Message
Broker Toolkit
Use the instructions in this tutorial to verify your installation of WebSphere
Message Broker and learn how to run samples with the WebSphere Message
Broker Toolkit.

Before you begin

You must have installed the WebSphere Message Broker Toolkit to run this tutorial.

About this task

To verify your installation by using the WebSphere Message Broker Toolkit,
complete the following tasks:
v Create a Default Configuration.
v Run the Pager samples.
v (Optional) Start the Samples Preparation wizard.
v Remove the samples.

Before you can run sample programs, you must use the Default Configuration
wizard to create a broker, which has a fixed name and properties that the samples
depend on.

The Default Configuration wizard requires that the following conditions are met:
v You have installed the Broker component and the WebSphere Message Broker

Toolkit.
v None of the Default Configuration wizard resources exist (the resources are

listed in the table that is included later in this section).
v This configuration is required for test and evaluation purposes only.
v Your current user ID has the following characteristics on Windows only:

– It is a member of groups mqbrkrs and mqm.
– It has Administrator authority.
– It is a local ID, not a domain ID.
For more information about these security requirements, see “Broker component
security” on page 497.

You cannot complete the configuration and verification described here if the
previously described conditions are not met.

Use the following instructions to complete these tasks:

Procedure
1. Start the WebSphere Message Broker Toolkit:
v On Windows:

Chapter 4. Installing and uninstalling 291

On Windows, you cannot complete verification unless you have
Administrator authority; carry out verification with the same user ID that
you used to complete installation.
If you did not launch the WebSphere Message Broker Toolkit from the
installation wizard, launch it from the Start menu, or run the script file
provided. On a command line, navigate to the root directory of the package
group and enter the following command:
mb.exe

The script file runs the following command; if you prefer you can use this
command yourself:
eclipse.exe -product com.ibm.etools.msgbroker.tooling.ide

v On Linux:
On Linux on x86 and Linux on x86-64, you do not need root authority to
complete verification. You cannot launch the WebSphere Message Broker
Toolkit from the installation wizard because you might experience problems
during operation if you were to create resources such as brokers when you
are logged in as root, and this option is therefore unavailable.
Log off from the user ID with which you have installed the product. Log in
as the same ID (if ID is not root), or log in as another ID, but do not become
root.
Launch the WebSphere Message Broker Toolkit from the main menu or run
the script file provided. On a command line, navigate to the root directory of
the package group and enter the following command:
./launcher

If you prefer, you can also run the application directly:
./eclipse -product com.ibm.etools.msgbroker.tooling.ide

However, you must set the LD_LIBRARY_PATH before running the
application. For details about how to set LD_LIBRARY_PATH, see the
launcher script.

When you first launch the WebSphere Message Broker Toolkit, you are asked to
specify the location of your workspace. This directory exists on your local
drive, and is where the WebSphere Message Broker Toolkit stores all the
resources that you create. You can accept the default directory shown, or you
can specify your own choice either by typing it in, or by clicking Browse to
specify the location. Select Use this as the default and do not ask again to
inhibit the display of the workspace dialog next time you launch the
WebSphere Message Broker Toolkit.
The WebSphere Message Broker Toolkit opens and the Welcome page is
displayed.

2. Click the Get Started icon

to begin the configuration and verification
process.
The Get Started page opens, from which you can start the Quick Tour or create
a default configuration that is used by a sample program to verify that your
installation is successful.

3. Create the Default Configuration:
a. On the Get Started page, click the link to Create the Default Configuration.

The "Creating the Default Configuration" page opens.
b. Click Start the Default Configuration wizard.

292 WebSphere Message Broker Version 7.0.0.8

Follow the guidance provided by the wizard to navigate through its pages.
The wizard creates a default broker that can be used by a sample program
to verify that your installation is successful.
The wizard displays a progress bar that shows which task it is currently
performing. It also reports on all the actions that it takes by writing
progress information into a scrollable text window from which you can
copy and paste some or all of the information displayed.
The information in the text window is also written to a log file in your
workspace directory structure. The default workspace directory is shown in
the example, but you can choose another location when you start the
WebSphere Message Broker Toolkit.

Linux on x86 and Linux on x86-64
user_home_dir/IBM/wmbt70/workspace/.metadata/
DefaultConfigurationWizard.log

Windows
user_home_dir\IBM\wmbt70\workspace\.metadata\
DefaultConfigurationWizard.log

If the wizard encounters an error in processing, it informs you of what has
happened and returns any error information, for example a return code
from a command. If you know why the error has occurred from the error
text, and can correct the situation, you can do so now. Return to the error
message display and click Yes to continue the wizard.
If you do not understand the error, and do not know how to fix it, click No.
If the wizard can, it rolls back all the actions that it has taken so far, so that
when it completes, your system is in the same state as it was before you
started the wizard. The text window shows you exactly what the wizard
has, and has not, done.
Click Open Log File to access the log from the summary page of the
wizard; this option is available whether the wizard has succeeded or failed.
The wizard creates the resources shown in the following table.

Table 6. Resources created by the Default Configuration wizard

Name Type

MB7BROKER Broker

MB7QMGR WebSphere MQ queue manager that hosts the broker.
The queue manager has a listener at the first available
port greater than or equal to 2414.

It also starts the broker so that it is ready to process a sample.
c. On the final page, ignore the option to start the Samples Preparation

wizard; you start this wizard later in these instructions.
d. Click Finish to close the wizard. When the wizard completes, it opens the

Broker Application Development perspective and displays the resources that
the wizard has created.

4. To verify your installation, click Help > Samples and Tutorials > WebSphere
Message Broker Toolkit - Message Broker to open the Samples and Tutorials
panel. The Samples and Tutorials panel can also be opened from the Welcome
page.
a. Expand Application Samples, and click Pager Samples to open the Pager

samples page. The following options are displayed:
v Import and deploy the Pager samples

Chapter 4. Installing and uninstalling 293

This option starts the Samples Preparation wizard, which helps you to
import the samples into your workspace, and to deploy the samples and
associated resources (for example, message flows) to the default broker.

v Run the Pager samples

This option opens the help page that contains a description of each of
three sample programs, and icons that you can click to start each one.

v Find out what the Pager samples do

This option opens a page that describes in detail what the Pager samples
do and how they work. You can examine the message flows that
implement the sample function, and the messages that are handled by
those flows.

b. Click Import and deploy the Pager samples. The Samples Preparation
wizard starts and displays its first page. The option to import and deploy to
the default broker is preselected.

c. Click Next and follow the guidance provided by the wizard to navigate
through its pages.
The wizard displays a progress bar that shows which task it is currently
performing. It also reports on all the actions that it takes by writing
progress information into a scrollable text window.
You can copy and paste some or all of the information that is reported in
this text window. This information is also written to the following log file:

Linux on x86 and Linux on x86-64
user_home_dir/IBM/wmbt70/workspace/.metadata/
samplePreparationWizard.log

Windows
user_home_dir\eclipse\workspace\.metadata\
samplePreparationWizard.log

If the wizard encounters an error in processing, it informs you of what has
happened and returns any error information, for example a return code
from a command. If you know why the error has occurred from the error
text, and can correct the situation, you can do so now. Return to the error
message display and click Yes to continue the wizard.
If you do not understand the error, and do not know how to fix it, click No.
If the wizard can, it rolls back all the actions that it has taken so far, so that
when it completes, your system is in the same state as it was in before you
started the wizard. The text window shows you exactly what the wizard
has, and has not, done.
The wizard displays information messages to show that the Pager samples
and associated resources are deployed and ready to run.

d. Click Next when you have read the messages about the actions that have
been completed by the wizard. The confirmation page is displayed.

e. Click Finish to close the wizard. The "Pager samples" page (from which you
launched the wizard) is redisplayed.

f. Click Run the Pager samples. On the page that opens, click How to use the
applications to read about the Text Messenger and Surf report publisher
applications. When you understand what the applications do, and how to
use them, click the icon that represents the application that you want to run.
If you want more detailed information about the contents of these
applications, and how the message flows work, click Find out what the
Pager samples do.

294 WebSphere Message Broker Version 7.0.0.8

g. When you have sent and received messages successfully, you have verified
that your installation is complete. You can now close your Pager
applications and the Samples Gallery.

5. (Optional) You can start the Samples Preparation wizard to create the resources
and start other supplied sample programs. Click File > New > Other >
Message Broker - Default Configuration and Samples in the WebSphere
Message Broker Toolkit, and select Prepare the Samples. The Samples
Preparation wizard opens, and lists other samples that are available.
You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

6. To remove the sample or samples when you have finished with them, run the
Samples Preparation wizard again and remove the samples that you have
added. This action removes the samples from the broker, and removes the
sample resources from your workspace.
When you have completed your verification tests, run the Default
Configuration wizard to remove all the default resources. Use the same
workspace and the same user ID that you used to create the resources. To start
the wizard from the WebSphere Message Broker Toolkit, click File > New >
Other and expand Message Broker - Default Configuration and Samples. Select
Create the Default Configuration and click Next.

Results

You have completed the tutorial.
Related tasks:
“Creating a default configuration” on page 564
Use the Default Configuration wizard to create and test a basic broker
configuration.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.

Verifying your installation using the WebSphere Message Broker
Explorer
Use the instructions in this tutorial to verify your installation of WebSphere
Message Broker and learn how to deploy broker archive files with the WebSphere
Message Broker Explorer.

Before you begin

You must have installed the WebSphere Message Broker Explorer to run this
tutorial. If you are using the WebSphere Message Broker Toolkit you can verify
your installation using one of the samples. For a list of samples, see “Samples” on
page 98.

About this task

To verify your installation using the WebSphere Message Broker Explorer you can
complete the following tasks:
v Create a Default Configuration
v Deploy a broker archive file
v Check the results of a deployment

Chapter 4. Installing and uninstalling 295

v Test the message flow

Use the following instructions to complete these tasks:

Procedure
1. To use the WebSphere Message Broker Explorer you must start the WebSphere

MQ Explorer. To start the WebSphere MQ Explorer, complete one of the
following steps:
v On Windows:

Click Start > All Programs > IBM WebSphere Message Broker 7.0 > IBM
WebSphere Message Broker Explorer, or open a command line in which the
mqsiprofile command has not been run and enter the strmqcfg command.

v On Linux:
Enter the strmqcfg command on a command line in which the mqsiprofile
command has not been run, or run /usr/bin/strmqcfg.

2. Create the Default Configuration:
v Start the Create the Default Configuration wizard using the following link:

Start the Default Configuration wizard
You can use this link only when you use the information center that is
integrated with the WebSphere Message Broker Toolkit or the WebSphere
Message Broker Explorer.

v Alternatively, you can use the following instructions to start the Create the
Default Configuration wizard:
a. In the WebSphere MQ Explorer - Navigator view, click the Brokers

folder.
b. In the WebSphere MQ Explorer - Content view, click the Create the

Default Configuration button. The Create the Default Configuration
wizard is displayed.

a. You can click Cancel at any time to cancel the creation of the default
configuration.

b. The Default Configuration Summary page lists the resources created. Click
Next to continue.

c. Click Finish.

The default broker is created and started. The broker is also added to the
WebSphere MQ Explorer - Navigator view.

3. Deploy the broker archive file to the broker:
a. Expand the Broker Archive Files folder.
b. Expand the Getting Started folder.
c. Right-click the pager.bar file, and click Deploy File.
d. Select the MB7BROKER broker, and click Finish. The broker archive file is

deployed to the broker.
4. Check the results of the deployment:

a. In the WebSphere MQ Explorer - Navigator view, expand the Brokers.
b. Click MB7BROKER to select the broker.
c. View messages from the broker in the Administration Log view. If the

deployment was successful, message BIP2881I is displayed in the
Administration Log view. You can also see the TextMessenger message flow
and the PagerMessageSets message set deployed to the Default execution
group under the MB7BROKER broker.

296 WebSphere Message Broker Version 7.0.0.8

javascript:liveAction('com.ibm.etools.mft.eou','com.ibm.etools.mft.eou.wizards.defaultcfgwiz.DefaultCfgWizActiveHelp','')

5. Test the message flow:
a. In the WebSphere MQ Explorer - Navigator view, expand MB7QMGR in

the Queue Managers folder.
b. Right-click the Queues folder, and click New > Local Queue.
c. Enter TEXTMESSENGER as the name for the queue, and click Finish. This

queue is the input queue for the Pager message flow.
d. Click OK.
e. Right-click the Queues folder, and click New > Local Queue.
f. Enter TEXTMESSENGER_FAIL as the name for the queue, and click Finish.

This queue is the failure queue for the Pager message flow.
g. Click OK.
h. Right-click the Queues folder, and click New > Local Queue.
i. Enter PAGER as the name for the queue, and click Finish. This queue is the

output queue for the Pager message flow.
j. Click OK.
k. In the WebSphere MQ Explorer - Content view right-click the

TEXTMESSENGER queue, and click Put Test Message. The Put test
message dialog is displayed.

l. Enter the following message in the message data field, and click Put
message to put the test message to the input queue for the Pager message
flow:
<Pager><text>This is my message to the pager.</text></Pager>

The test message is passed through the message flow, transformed, and the
output message is put to the Pager queue.

m. Click Close to close the Put test message dialog.
n. Right-click the Pager queue, and click Browse Messages. The Message

browser dialog opens and displays any messages on the queue. If the test is
successful, the queue shows a message like the following:
<?xml version="1.0"?><!DOCTYPE Pager>
<!--MRM Generated XML Output on :Sat Jun 20 10:38:56 2009-->
<Pager><Text> Powered by IBM.</Text></Pager>

6. Click Close to close the Message browser dialog.

Results

You have completed the tutorial.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a default configuration” on page 564
Use the Default Configuration wizard to create and test a basic broker
configuration.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.

Chapter 4. Installing and uninstalling 297

Checking the broker operation mode and function level
You must ensure that your production brokers conform to the terms of your
license. You can also change the function level to enable the use of nodes that are
supplied in the latest fix pack.

About this task

The following tasks are described in this topic:
v Configure your brokers to conform to your license
v Change the function levels of your brokers

For a full description of the broker operation mode, and behavior associated with
each mode, see “Operation modes” on page 48.

Configuring your brokers to conform to your license
Procedure
v Upgrading from the Trial Edition

If you installed WebSphere Message Broker Trial Edition, and have now
purchased the product, you can keep the components and all the associated
resources that you have already created and configured. You do not have to
uninstall the Trial Edition and reinstall the purchased packages. However, if you
do not reinstall, the operation mode of your existing brokers, and the default
operation mode of all new brokers that you create, has the value trial. To
change the value, complete the following steps.
– If you intend to keep the brokers that you created for your trial domain for

further development and unit test by your developers, change the operation
mode of each broker to enterprise, as described in “Changing the operation
mode of your broker” on page 655.
After this change, your brokers are no longer restricted by the trial period,
but check the license agreement file to ensure that your configuration
conforms to any restrictions for development and unit test. Development and
unit test conditions are described in “License requirements” on page 3606.

– If you intend to use the brokers that you created for your trial domain for
production purposes, change the operation mode to conform to the license
that you have purchased:
- If you have purchased Remote Adapter Deployment, change the operation

mode to adapter.
- If you have purchased Starter Edition, change the operation mode to

starter.
- If you have purchased the full (unrestricted) license, change the operation

mode to enterprise.
- If you have purchased Entry Edition, change the operation mode to entry.

If you do reinstall the Broker component with the new physical or electronic
packages for your purchased product, the default operation mode of all new
brokers that you create has the value enterprise. If you have purchased Starter
Edition, Remote Adapter Deployment, or Entry Edition, you must always
change the mode to conform to the license that you have purchased.
If you also installed a trial version of WebSphere MQ, you are now entitled to
install the restricted license version that is supplied as part of WebSphere
Message Broker. If the supplied products meet your requirements and you
intend to use them only with WebSphere Message Broker, you do not need to
make further purchases.

298 WebSphere Message Broker Version 7.0.0.8

To upgrade your trial version of WebSphere MQ, complete the following steps.
1. Uninstall the trial version.
2. Install a licensed version of WebSphere MQ:

– A version of WebSphere MQ is included with WebSphere Message Broker
for use only with WebSphere Message Broker. Use either the supplied
media or the images that you have downloaded to install this version. If
you are installing on Windows, you can use the Launchpad to install this
product.

– To use WebSphere MQ for applications that are not related to your use of
WebSphere Message Broker, you must purchase a separate license.
To use additions or enhancements that are included in WebSphere MQ,
you can also purchase a separate license.

v Remote Adapter Deployment, Starter Edition, or Entry Edition

If you have purchased WebSphere Message Broker Remote Adapter Deployment,
WebSphere Message Broker Starter Edition, or WebSphere Message Broker Entry
Edition and installed components from the full runtime package, read the
following information.
– All brokers that you have created (for example, by completing the verification

procedures) have an operation mode set to enterprise, which is the default
setting for this installation. You can keep these brokers for further
development and unit test, subject to any restrictions that apply for unit test
environments, as indicated in your license. Development and unit test
conditions are described in “License requirements” on page 3606.

– If you intend to use these brokers for production purposes, follow the
instructions in “Changing the operation mode of your broker” on page 655, to
conform to the license that you have purchased.
- If you have purchased Remote Adapter Deployment, change the operation

mode to adapter.
- If you have purchased Starter Edition, change the operation mode to

starter.
- If you have purchased Entry Edition, change the operation mode to entry.

– When you create new brokers, you must set the operation mode to conform
to the license that you have purchased, because by default the operation
mode is set to the value enterprise. You can use the -o parameter on the
mqsicreatebroker command to override this default value by specifying an
alternative value of adapter, starter, or entry. Alternatively, you can change
the mode by using the mqsimode command for the created broker.

v Full (unrestricted) license for WebSphere Message Broker

If you have purchased a full (unrestricted) license and installed components
from the full runtime package, all brokers that you create have an operation
mode set to the default value of enterprise, which is the correct setting for your
license.
Whenever you create a new broker, on existing installations or on different
installations or computers, the operation mode is set to enterprise, and you do
not need to change this value.
You can continue to work with all the components and associated resources that
you have already created. For example, after you have completed verification,
you might keep the resources that you have created for further development and
unit test (subject to any restrictions that apply for unit test environments, as
indicated in your license). Development and unit test conditions are described in
“License requirements” on page 3606.

Chapter 4. Installing and uninstalling 299

Changing the function levels of your brokers
About this task

Note: Version 7.0.0.1 can be installed as a full generally available version, or as a
fix pack. Version 7.0.0.1 has the function enabled for Version 7.0.0.1 regardless of
the installation route chosen. Subsequent Version 7.0 fix packs use the following
procedure.

When a fix pack is delivered, it might include new nodes that you can add to your
message flows to provide specific functions.

The default function level of the broker is not set to a specific value; the default
value is equivalent to the value 7.0.0.0, which represents the level for Version 7.0.
At this level, nodes that might be added by later fix packs are not supported by
the broker.

Nodes that are added in later fix packs are available in the WebSphere Message
Broker Toolkit, and you can include these nodes in a message flow. You can deploy
the message flow to a broker only if you have set the function level of that broker
to the value that represents the fix pack in which the nodes are first delivered.

Because you can control the function level of each broker, you can try out new
nodes on test brokers without affecting the operation of your production brokers.
When you are satisfied that the nodes provide the function that you require, and
work as you expect, you can set the function level of other brokers in your
domain, when appropriate.

To change the function level of a broker, use the mqsichangebroker command,
specifying the -f flag with the appropriate value.

For more information about nodes added in fix packs, and the use of the
mqsichangebroker command, see “mqsichangebroker command” on page 3723.
Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
“Changing the operation mode of your broker” on page 655
Change the operation mode in which your broker is working by using the
mqsimode command.
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.
Related reference:
“License requirements” on page 3606
Use the reference information in this section to understand license requirements.
“mqsimode command” on page 3899
Use the mqsimode command to configure and retrieve operation mode information.

Installing complementary products
WebSphere Message Broker works with several other products to provide
complementary services.

300 WebSphere Message Broker Version 7.0.0.8

About this task

If you want to use these optional services in your WebSphere Message Broker
environment, refer to the following installation information:
v IBM Tivoli License Manager
v Eclipse plug-ins from another vendor
v “Publishing in a Citrix XenApp environment” on page 302
Related tasks:
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Software requirements” on page 3588
View the operating system, database, and other software requirements.
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.

Installing Tivoli License Manager
IBM Tivoli License Manager (ITLM) enables you to monitor the use of IBM (and
other) software products. WebSphere Message Broker includes support for ITLM
Version 2.1.

About this task

Use ITLM to perform the following software auditing functions:
v Monitor the licenses used by different machines.
v Help keep unnecessary licenses to a minimum.
v Guard against software license compliance problems.

Ensure that you choose the correct ITLM license for the WebSphere Message
Broker edition that you have purchased. See “Operation modes” on page 48.

If you are using one or more of the WebSphere Adapters with WebSphere Message
Broker, you must activate ITLM to include those adapters, for example in
monitoring activities. If you require this support, follow the instructions in
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036.

To find out more about using ITLM to monitor usage of WebSphere Message
Broker and other IBM products, or to purchase ITLM, see the IBM Tivoli License
Manager website.

For information about installing this product, see the IBM Tivoli License Manager
Information Center.
Related tasks:
“Installing complementary products” on page 300
WebSphere Message Broker works with several other products to provide
complementary services.
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.

Chapter 4. Installing and uninstalling 301

http://www.ibm.com/software/tivoli/products/license-mgr
http://www.ibm.com/software/tivoli/products/license-mgr
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itlm.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itlm.doc/toc.xml

Related reference:
“System management interfaces” on page 52
The brokers provide a service for independent system management agents.
“Software requirements” on page 3588
View the operating system, database, and other software requirements.
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.

Installing plug-ins using Eclipse Update Manager
Use Eclipse Update Manager to install and update plug-ins provided by partners
and other software vendors.

About this task

Do not use the Eclipse Update Manager to update or install plug-ins that are
managed by IBM Installation Manager. Always use Installation Manager to work
with products that are installed with Installation Manager. For other products, use
Eclipse Update Manager, but follow the restrictions and guidance provided:
v Do not delete the platform.xml file to prompt Eclipse to regenerate the file. The

regenerated contents will be incomplete and therefore invalid.
v Always save a backup copy of your platform.xml file before you make any

changes to your configuration, for example by using Eclipse Update Manager to
install or update plug-ins that are provided by another software vendor.

v When you use Eclipse Update Manager (graphical interface or command line),
always specify the package group directory as the destination; never specify the
shared resource directory. The shared resource directory is managed by
Installation Manager and is reserved for its use.

v Do not use Eclipse Update Manager to search for updates for features that you
have installed using Installation Manager.

v Do not select Clean up all configuration errors in the Eclipse Update Manager
interface; this option might lose information that is maintained by Installation
Manager.

Related tasks:
“Installing complementary products” on page 300
WebSphere Message Broker works with several other products to provide
complementary services.
Related reference:
“System management interfaces” on page 52
The brokers provide a service for independent system management agents.
“Software requirements” on page 3588
View the operating system, database, and other software requirements.
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.

Publishing in a Citrix XenApp environment
Supply application location and user details to Citrix to publish a WebSphere
Message Broker command console or WebSphere Message Broker Toolkit.

About this task

Read the Citrix documentation for general information about publishing
applications. Publishing does not involve any tasks within WebSphere Message
Broker; you complete the following tasks in the Citrix Presentation Server console.

302 WebSphere Message Broker Version 7.0.0.8

“Publishing a WebSphere Message Broker command console”
“Publishing a WebSphere Message Broker Toolkit”
“Publishing applications using the CMP API”

Publishing a WebSphere Message Broker command console:
About this task

The following steps show how to set the Application Location and User
information to publish a WebSphere Message Broker command console.

Procedure

1. Set the Application Type to Application.
2. Set the Command Line to the following value: This example assumes that you

have installed a 32-bit operating system.
C:\WINDOWS\system32\cmd.exe /k title IBM WebSphere Message Brokers 7.0

&&"install_dir\MQSI\7.0\bin\mqsiprofile.cmd"

On Windows, you can install the Broker component in multiple locations.
Each one can have a different level of service (fix pack) applied and can
support a certain set of brokers. Each installation has its own command
console executable. To publish command consoles corresponding to different
runtime environments, modify the path to mqsiprofile.cmd appropriately.

3. Set the Working Directory to install_dir\MQSI\7.0.
4. Define the users who are authorized to use the WebSphere Message Broker

command console. This must be a subset of users or groups who are
authorized to use the command console locally, on the server.
Attention: Users who have access to the WebSphere Message Broker
command console through Citrix can use the console to run other commands
that are unrelated to the broker.

Publishing a WebSphere Message Broker Toolkit:
About this task

To publish a WebSphere Message Broker Toolkit, set the Application Location and
User information as follows:

Procedure

1. Set the Application Type to Application.
2. Set the Command Line to the package group directory for WebSphere Message

Broker Toolkit that your system uses, for example:
E:\WMBT700\eclipse.exe

3. Set the Working Directory to the appropriate workspace, for example:
E:\workspace\wmbt70\workspace1

When the WebSphere Message Broker Toolkit is run from Citrix, a window
inviting the user to select a workspace is displayed. This is the same window
that you see when you run the WebSphere Message Broker Toolkit locally. At
this stage you can specify a different workspace, for which you have the
necessary Windows read and write file permissions on the server.

4. Define the users who are authorized to use the WebSphere Message Broker
command console. This must be a subset of users or groups who are
authorized to use the command console locally, on the server.

Publishing applications using the CMP API:

Chapter 4. Installing and uninstalling 303

About this task

You can publish a Java application that uses the CMP API programming interface.
The steps are similar to publishing a WebSphere Message Broker Toolkit or
command console.

Example

For example, to publish the CMP API Exerciser sample, publish this file:
install_dir\sample\ConfigManagerProxy\StartConfigManagerProxyExerciser.bat

Related concepts:
“Users and Citrix”
Review the categories of user that might want to use with Citrix, and how to
configure for concurrent multi-users.
Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
Related reference:
“System requirements for Citrix XenApp” on page 3605
This topic gives information about licensing issues, and the software and hardware
that you need to use WebSphere Message Broker in a Citrix XenApp environment.

Users and Citrix:

Review the categories of user that might want to use with Citrix, and how to
configure for concurrent multi-users.

Categories of user

The following categories of user exist:

Application developers
These users do not need to run mqsi commands, but must be placed in an
access control list (ACL) before they can use a broker. Put these users only
in the user list for publishing WebSphere Message Broker Toolkit.

Administrators
If you use Citrix to publish the WebSphere Message Broker Toolkit and the
WebSphere Message Broker command console, put all administrators in the
users lists for both applications. For information about the permissions that
administrators need, see “Security requirements for administrative tasks”
on page 3644.

You can create Windows groups that correspond to the application developer and
administrator categories, put the groups in the appropriate user lists, then allocate
users to the relevant Windows group. Alternatively, you can give appropriate
permissions directly to the user.

Make all users members of the Remote Desktop Users group, so that they can use
Terminal Server.

304 WebSphere Message Broker Version 7.0.0.8

Attention: Users who have access to the WebSphere Message Broker command
console through Citrix can use the console to run other commands that are
unrelated to the broker.

For information about the rights of groups such as mqm, mqbrkrs, and
Administrators, see “Security requirements for Windows systems” on page 3651.

Concurrent multi-users

Allowing multiple concurrent users to access WebSphere Message Broker by Citrix
on a Windows server requires the same planning as allowing multiple concurrent
users to access the WebSphere Message Broker on a Linux or UNIX server. For
example:
v All application developers should have their own execution group, so that they

can deploy message flows and start and stop execution groups without
conflicting with each other during development and testing. However, an
exection group might be administered by more than one administrator. In these
cases, administrators should coordinate their activities so that they do not
conflict with each other. For example, when one administrator is starting an
execution group, no one else should be trying to stop it.

v All users should have their own workspace. The Windows system administrator
should give each user the appropriate read and write permissions for the
directory that corresponds to their workspace.

v The WebSphere Message Broker Toolkit user can create the default configuration
from the Samples; the product samples are deployed to the default
configuration. Because you can create only one default configuration, only one
user should use it at one time.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related tasks:
“Publishing in a Citrix XenApp environment” on page 302
Supply application location and user details to Citrix to publish a WebSphere
Message Broker command console or WebSphere Message Broker Toolkit.
“Creating user IDs” on page 498
When you plan the administration of your broker configuration, you might have to
define one or more user IDs for the tasks associated with particular roles.
Related reference:
“System requirements for Citrix XenApp” on page 3605
This topic gives information about licensing issues, and the software and hardware
that you need to use WebSphere Message Broker in a Citrix XenApp environment.
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

Setting up a command environment
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.

Chapter 4. Installing and uninstalling 305

About this task

Also complete this task if you have migrated to WebSphere Message Broker
Version 7.0 from an earlier version. A profile is provided to help you set up the
environment.

If appropriate, you can extend the initialization performed by this profile; for
example, for user databases, or for other products that you want to use within the
broker.

Ensure that you use this environment each time you run an administrative
command, or start a broker.

For information about setting up your command and runtime environment on a
Windows system, see “Command environment: Windows systems.”

For information on setting up your command and runtime environment on Linux
and UNIX systems, see “Command environment: Linux and UNIX systems” on
page 310.

For information about setting up your command and runtime environment for
execution groups on Linux and UNIX systems, see “Execution group-specific
command environment: Linux and UNIX systems” on page 312.

For information about setting up your command and runtime environment for
execution groups on Windows systems, see “Execution group-specific command
environment: Windows systems” on page 309.
Related tasks:
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Migrating from Version 6.0 products” on page 183
Migrate your components and resources to WebSphere Message Broker Version 7.0.

“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Command environment: Windows systems”
Set up the Windows environment to run WebSphere Message Broker commands.
“Command environment: Linux and UNIX systems” on page 310
Set up the Linux or UNIX environment to run WebSphere Message Broker
commands.
Related reference:
“Runtime commands” on page 3715
The topics in this section describe the WebSphere Message Broker runtime
commands.

Command environment: Windows systems
Set up the Windows environment to run WebSphere Message Broker commands.

306 WebSphere Message Broker Version 7.0.0.8

About this task

On Windows systems, the components run as services, therefore they do not
inherit the environment that is set for the command prompt from which you start
them. The components run the mqsiprofile command when they start, which
completes the environment initialization.

The mqsiprofile command is located in the directory install_dir\bin.

You must not change the location of the mqsiprofile command, or make user
modifications to the command, because it might be replaced if you install service,
or an update, to the product.

If you need to run your own settings, add one or more command files called
your_file_name.cmd to the directory work_path\common\profiles, where work_path
identifies the broker's working directory.

The default working directory is %ALLUSERSPROFILE%\Application Data\IBM\MQSI
where %ALLUSERSPROFILE% is the environment variable that defines the system
working directory. The default directory depends on the operating system:
v On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\Application Data\IBM\MQSI

v On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\MQSI

The actual value might be different on your computer.

If you are unsure of the broker's work path, enter the following command in a
command console:
echo %MQSI_WORKPATH%

When mqsiprofile runs, it automatically calls any additional user-written scripts in
this directory.

A typical reason for adding scripts is “Running database setup scripts” on page
308.

When you have configured any additional setup, you can use one of the following
methods to initialize the runtime environment for components and commands:

Procedure
1. If you have only one installation of the runtime product, open a command

console by clicking Start > All Programs > IBM WebSphere Message Broker
7.0 > Command Console. The mqsiprofile command initializes the
environment and invokes any additional scripts in the common\profiles
directory.

2. If you have one or more installations of the runtime product, open a command
prompt window. Locate and run the mqsiprofile.cmd script in the directory in
which you installed the appropriate product. The mqsiprofile command
initializes the environment and invokes any additional scripts in the
common\profiles directory.

What to do next

Check whether the following conditions apply to your environment:

Chapter 4. Installing and uninstalling 307

v If you have a previous version of the product on this system, ensure that you
run the correct profile before using Version 7.0. The mqsiprofile command
places the Version 7.0 commands and libraries at the front of your search path,
and invokes any user profiles that you have supplied which can override any
combination of PATH, CLASSPATH, or library PATH.

v If you use the same user ID, and you run multiple profiles (from multiple
different installations or versions), you might get unexpected results. Log off and
log on again before you run the specific profile that you require.

Running database setup scripts:
About this task

A broker might require access to user databases from deployed message flows.

When you install a database product on Windows, the relevant settings are
typically made to the system environment. However, some database managers
provide a profile to perform this setup, or provide details of actions that you must
take in their documentation. Always check the database product documentation for
environment setup details; the information provided here is for general guidance
only.

If a profile is provided for the database that you are using, complete the following
steps:

Procedure

1. If you can update the profile to provide permanent values for the details that
are required (for example, the database server name or the installation
directory):
a. Complete the changes to the database profile.
b. Copy the profile file to the directory work_path\common\profiles.

2. If you cannot update the profile permanently, but need to make changes each
time, you must run it independently of the mqsiprofile command before you
start the component.

What to do next

When your environment has been set up, see “Working with databases” on page
2109 for information about setting up your databases for use with the broker.
Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Changing the location of the work path” on page 1011
The work path directory is the location where a component stores internal data,
such as installation logs, component details, and trace output. The shared-classes
directory is also located in the work path directory and is used for deployed Java
code. If the work path directory does not have enough capacity, redirect the
directory to another file system that has enough capacity.
“Command environment: Linux and UNIX systems” on page 310
Set up the Linux or UNIX environment to run WebSphere Message Broker
commands.

308 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Additional software requirements” on page 3598
WebSphere Message Broker requires additional software products to run
successfully.
“Runtime commands” on page 3715
The topics in this section describe the WebSphere Message Broker runtime
commands.

Execution group-specific command environment: Windows
systems
Extend or change the Windows environment that is used when running a specific
WebSphere Message Broker.

About this task

To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mqsichangebroker command. For more information,
see “mqsichangebroker command” on page 3723.

To run your own additional environment settings for a broker, add a script (or
scripts) in the %MQSI_WORKPATH%\config\<my_broker_name>\<my_eg_label>\profiles
directory.

Ensure that the broker name, and any execution groups that you create, contain
only characters that are valid on your file system. You might also have to create
the required directory structure.

All files placed into the %MQSI_WORKPATH%\config\<my_broker_name>\
<my_eg_label>\profiles directory that have a .cmd extension, are processed when
the execution group <my_eg_label> on broker <my_broker_name> starts.

Scripts in the %MQSI_WORKPATH%\config\<my_broker_name>\<my_eg_label>\profiles
directory are run after the mqsiprofile script, and any scripts placed in the
common\profiles directory have been run.

To diagnose any problems, a log file is written that lists the profile scripts that
have been read, and the environment used by this broker. The log file location is
under the work path of the broker and is located at %MQSI_WORKPATH%\common\log\
<my_broker_name>.<my_eg_label>.profilelog

Execution group profile scripts are not removed automatically when an execution
group is deleted. If you no longer need the profile files that you have created,
delete them manually.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Command environment: Windows systems” on page 306
Set up the Windows environment to run WebSphere Message Broker commands.
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.

Chapter 4. Installing and uninstalling 309

Command environment: Linux and UNIX systems
Set up the Linux or UNIX environment to run WebSphere Message Broker
commands.

About this task

When you start a runtime component on Linux and UNIX systems, it inherits the
environment from where you issue the mqsistart command.

You must therefore initialize the environment before you start a component; the
command mqsiprofile located in the directory install_dir/bin, performs this
initialization. If you are starting a broker, you might also need to initialize the
environment for any databases that are accessed by the broker.

You must not change the location of the mqsiprofile command, or make user
modifications to the command, because it might be replaced if you install service,
or an update, to the product.

If you want to run your own additional environment settings, add a script called
your_file_name.sh to the brokers work_path directory which contains the:
/common/profiles

subdirectory.

When you run mqsiprofile again, the command automatically calls the additional
user-written scripts in this location.

You must log out and log back in, to pick up the new files in the /common/profiles
directory, before you run mqsiprofile again

The newly added script is not picked up if you run a mqsistart command from an
existing initialized command shell.

work_path identifies the working directory defined for the broker; if you are unsure
of the work path, enter the following command:
echo $MQSI_WORKPATH

A typical reason for adding scripts is “Running database setup scripts” on page
311.

When you have configured any additional setup, you can initialize the runtime
environment for components and commands:

Procedure
1. Issue the mqsiprofile command:

. install_dir/bin/mqsiprofile

You must include the period and space preceding the location for this
invocation to work correctly. Add this command to your login profile if you
want it to be run at the start of every session.
This command accesses additional scripts that you have copied to the
common/profiles directory, therefore the environment is initialized for runtime
components and other resources such as databases.

2. Start the components that you want to run on this system by means of the
mqsistart command.

310 WebSphere Message Broker Version 7.0.0.8

What to do next

Check if the following conditions apply to your environment:
v If you have a previous version of the product on the system, ensure that you

run the correct profile before using WebSphere Message Broker Version 7.0. The
mqsiprofile command places the Version 7.0 commands and libraries at the
front of your search path, and calls any user profiles that you have supplied that
can override any combination of PATH, CLASSPATH, or library PATH.

v If you use the same user ID, and you run multiple profiles (from multiple
different installations or versions), you might get unexpected results. Log off and
log on again before you run the specific profile that you require.

v ODBC settings on Linux and UNIX systems are found in a text file defined by
the ODBCUOINI environment variable. Set ODBCUOINI to point to a copy of the
sample file install_dir/ODBC/V6.0/odbc.ini .
You can check that your ODBC environment is configured correctly by running
the mqsicvp command. This command also validates the connection to all data
sources that are listed in the odbc.ini file that have been associated with a
broker by using the mqsisetdbparms command. For more information, see
“mqsicvp command” on page 3857.

Running database setup scripts:
About this task

A broker might require access to user databases from deployed message flows.

When you install a database product on Linux and UNIX systems, some database
managers provide a profile to perform the environment setup that the database
requires, or provide details of actions that you must take in their documentation.
Always check the database product documentation for environment setup details;
the information provided here is for general guidance only and might not be
complete.

Procedure

1. If you can update the profile to provide permanent values for the details that
are required (for example, the database server name or the installation
directory):
a. Complete the changes to the profile.
b. Copy the profile file to the directory work_path\common\profiles.

2. If you cannot update the profile permanently, but have to change it each time,
you must run it independently of the mqsiprofile command:
a. Run the appropriate profiles to initialize the environment for the database:
v For DB2, issue the following command for the relevant DB2 instance:

. db2_instance_directory/sqllib/db2profile

v For Oracle, export ORACLE_HOME and ORACLE_SID, then issue the following
command:
. ${ORACLE_HOME}/bin/oraenv

v For Sybase, issue the following command, specifying your installation
directory:
. Sybase_installation_directory/SYBASE.sh

v For Informix, check the documentation for the client on your broker
system for details of the actions that you must take. For example, you
might have to specify the following environment variables:

Chapter 4. Installing and uninstalling 311

export INFORMIXDIR=/installation_directory_of_informix_client_software
export PATH=${INFORMIXDIR}/bin:${PATH}
export INFORMIXSERVER=server_name
export INFORMIXSQLHOSTS=${INFORMIXDIR}/etc/sqlhosts
export TERMCAP=${INFORMIXDIR}/etc/termcap
export TERM=vt100
export LIBPATH=${INFORMIXDIR}/lib:${INFORMIXDIR}/lib/esql:

${INFORMIXDIR}/lib/cli:$LIBPATH

where server_name is defined in the file sqlhosts (the required value is
typically the machine name), and the location of the file sqlhosts is set
up as part of the installation process.
To configure your system to run this setup at the start of every session,
add these statements to the login profile of the user that is going to run
the broker.

What to do next

When your environment has been set up, see “Working with databases” on page
2109 for information about setting up your databases for use with the broker.
Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Changing the location of the work path” on page 1011
The work path directory is the location where a component stores internal data,
such as installation logs, component details, and trace output. The shared-classes
directory is also located in the work path directory and is used for deployed Java
code. If the work path directory does not have enough capacity, redirect the
directory to another file system that has enough capacity.
“Command environment: Windows systems” on page 306
Set up the Windows environment to run WebSphere Message Broker commands.
Related reference:
“Additional software requirements” on page 3598
WebSphere Message Broker requires additional software products to run
successfully.
“Runtime commands” on page 3715
The topics in this section describe the WebSphere Message Broker runtime
commands.

Execution group-specific command environment: Linux and
UNIX systems
Extend or change the Linux or UNIX environment used when running a specific
execution group.

About this task

To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mqsichangebroker command. For more information,
see “mqsichangebroker command” on page 3723.

If you want to run your own additional environment settings, add a script (or
scripts) in the $MQSI_WORKPATH/config/<my_broker_name>/<my_eg_label>/profiles
directory.

312 WebSphere Message Broker Version 7.0.0.8

Ensure that the broker name, and any execution groups that you create, contain
only characters that are valid on your file system. You might also have to create
the required directory structure.

All files placed into the $MQSI_WORKPATH/config/<my_broker_name>/<my_eg_label>/
profiles directory that have a .sh extension, are processed when the execution
group <my_eg_label> on broker <my_broker_name> starts.

Scripts in the $MQSI_WORKPATH/config/<my_broker_name>/<my_eg_label>/profiles
directory are run after the mqsiprofile script, and any scripts placed in the
common/profiles directory have been run.

To diagnose any problems, a log file is written that lists the profile scripts that
have been read, and the environment used by this execution group. The log file
location is under the work path of the broker and is located at:
$MQSI_WORKPATH/common/log/<my_broker_name>.<my_eg_uuid>.profilelog

Execution group profile scripts are not removed automatically when an execution
group is deleted. If you no longer need the profile files that you have created,
deleted them manually.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Command environment: Linux and UNIX systems” on page 310
Set up the Linux or UNIX environment to run WebSphere Message Broker
commands.
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.

Applying service
Apply service to the WebSphere Message Broker Toolkit, the WebSphere Message
Broker Explorer, and the Broker component.

Service updates and other fixes are delivered occasionally in the form of Program
Temporary Fixes (PTFs) or fix packs. You can download these fixes from the web
and update your existing installations. Check regularly for updates and
recommended fixes on the WebSphere Message Broker support web page.

For information on obtaining the function level that your enterprise is using, see
the mqsichangebroker command.

For information about installation directories for fix packs, and installing more
than one fix pack at the same or different levels on a single computer, see
“Coexistence and migration” on page 239.
v “Applying service to the Broker component” on page 314
v “Applying service to the WebSphere Message Broker Toolkit” on page 325
v “Applying service to the WebSphere Message Broker Explorer” on page 329
Related tasks:
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.

Chapter 4. Installing and uninstalling 313

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Uninstalling service for the Broker component” on page 338
On some platforms, you can remove fixes that you have applied.
“Uninstalling service from the WebSphere Message Broker Toolkit” on page 344
Remove maintenance or fixes from the WebSphere Message Broker Toolkit.
“Uninstalling service from the WebSphere Message Broker Explorer” on page 350
You must reinstall the WebSphere Message Broker Explorer to revert to a previous
service level.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Applying service to the Broker component
Apply maintenance updates and program fixes to the Broker component.

Before you begin

Before you apply service, check that you have backed up all associated resources.
You might also choose to back up installation and work path directories. For
details of this task, see “Backing up resources” on page 1013.

About this task

You can download maintenance updates for all components of WebSphere Message
Broker from a website, in the form of a Program Temporary Fix (PTF), also known
as a fix pack. Fix packs are cumulative; therefore, if multiple fix packs are
available, you do not have to install a previous fix pack before you install the latest
available. However, you must first install the GA (general availability) code to
ensure that you comply with your license agreement. You can find the latest
information about current fixes by following the link Recommended fixes in the
Download section of the WebSphere Message Broker support web page.

In some circumstances, fix packs are also provided as a media refresh; CDs and
DVDs are re-created, and electronic images on IBM Passport Advantage are
replaced. Check with your IBM representative if you want a media refresh.

If you have installed the Trial Edition, you can apply service to this installation, if
you are within your 90 day trial period.

Fix packs for WebSphere Message Broker are installed by using the same
technology as the GA release. Therefore product files are consistently tracked and
updated appropriately. For information about the default directories for a typical
installation, see “Coexistence and migration” on page 239.

If you have applied one or more interim fixes to your existing installation, contact
your IBM Service representative for instructions and possible updated interim fixes
for the fix pack level that you are installing.

Because you can install more than one copy of the Broker component on a single
computer, you can choose how to apply service:

314 WebSphere Message Broker Version 7.0.0.8

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

1. Apply service to an existing installation.
When you apply the fix pack, the new level of the product overwrites the
existing level. The installer prohibits you from installing a previous
modification or fix pack over a more recent one. You must stop all brokers
before you apply service. All the brokers and resources that you have defined
are retained. When the fix pack is successfully installed, restart the brokers.

2. Install the fix pack level of the product at a new location.
Fix packs are supplied as complete installations. You can install the product in
a new location on your computer by using the fix pack packages. You can
install only within the terms of your license:
v You must have installed a GA level of the product on this computer.
v You must conform to the license restrictions for the number of installations

on a single computer; your license might permit you to install more than one
copy of the product, but allow you to run only one installation at a time.

This option provides several advantages:
v You do not have to stop brokers to complete the installation.
v You can choose which broker runs at which service level by running the

appropriate mqsiprofile before you start the component.
v You can back out a broker to the previous service level by using the

mqsiprofile from the older code level, and restarting the broker.
If you already have more than one installation on the computer, read the
additional information in “Applying service on computers with multiple
installations” on page 316.

Service is not affected by the operation mode in which you broker is working.

What to do next

If you want to remove service that you have applied, see “Uninstalling service for
the Broker component” on page 338.

Downloading a fix pack:
About this task

Download the latest fix pack from the WebSphere Message Broker support web
page:

Procedure

1. Click Downloads to open the page of available download packages.
2. Click Recommended fixes, then click the appropriate product and version.

Available fixes are displayed.
3. Click the fix that you want to download. Details about the fix, and

instructions for download and installation, are displayed.
4. Click Problems Fixed to find out what PMRs, APARs, and defects have been

fixed in the fix pack.
5. Select your chosen operating system and click FC in the Download package

section to start the download process.
6. If you haven't already signed in, sign in with your IBM ID and password and

click Submit. If you do not have an ID, you can register on this page.
7. Select the fixes you want to download.
8. Select the download method to be used to download fixes.

Chapter 4. Installing and uninstalling 315

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

9. Accept the download terms and conditions.
10. Click Download now.
11. When the download completes, follow the instructions to apply the

maintenance updates for this fix.
a. If you are applying service to an existing installation, the installation

wizard uses this current installation directory as the default directory for
typical installations in graphical, console, and silent modes.
This location might therefore be different from the default directory that is
set for an initial typical installation on a computer on which the product
has not been installed. The default installation directories are described in
“Coexistence and migration” on page 239, “Uninstalling the Broker
component by using the silent interface” on page 336, or “Uninstalling the
Broker component by using the graphical interface” on page 333. If you
have previously installed components into non-default locations, check
carefully that you are installing the fix pack into the required location.
v Windows
v Linux and UNIX
v z/OS

b. If you are applying service by installing an additional copy of the product,
follow the instructions provided in the “Installation Guide” on page 233,
specifying a new installation location.

Applying service on computers with multiple installations:
About this task

If you have installed the Broker component more than once on a single computer,
you can choose to apply service to one or more of these installations in any order.
You might therefore choose to install a service level on one instance initially, and
complete some tests, before you apply the fixes to additional installations.

You must ensure that you comply with the terms of your license at all
circumstances.

Distributed systems

You specify which installation you want a broker to work with by running
the mqsiprofile command that is associated with that installation. Any
resources that you have defined are associated with the installation for
which you have run mqsiprofile. When the mqsiprofile command has
completed, restart the broker.

If you decide to return to a previous level, stop the broker, run the
mqsiprofile command that is associated with the installation at the
previous service level, and restart the broker.

For further details about working with multiple installations, see
“Command environment: Windows systems” on page 306 and “Command
environment: Linux and UNIX systems” on page 310.

z/OS systems
You can create component profiles to work with one of multiple
installations. Details are provided in “Installing service on z/OS” on page
322.

For further information about components, see “z/OS customization
overview” on page 592.

316 WebSphere Message Broker Version 7.0.0.8

If you have a single installation on a computer, and you want to apply service, you
must stop all brokers, apply service, and restart the brokers. The service is applied
to the product code, and you can start the brokers immediately to run against the
new service level.
Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Uninstalling the Broker component” on page 332
You can uninstall the Broker component on distributed systems in a number of
ways.
“Uninstalling service for the Broker component” on page 338
On some platforms, you can remove fixes that you have applied.
Related reference:
“Installation Guide” on page 233
Installation information for WebSphere Message Broker is provided in the
Installation Guide that is supplied as a PDF file with your product package.
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

Installing service on Windows:

Apply maintenance updates and program fixes to the broker component.

Before you begin

Before you start:

v Download the required update package for the WebSphere Message Broker
component, as described in “Applying service to the Broker component” on
page 314.

v Check that your user ID has the correct authority to complete this task; see
“Installation and uninstallation authorization” on page 3628 for details.

About this task

Fix packs are supplied as self-extracting executable programs. Complete the
following steps to install the updates that you have downloaded:

Procedure

1. Check that your user ID has the correct authority to install service for the
broker component. The requirements are defined in “Installation and
uninstallation authorization” on page 3628.

2. Ensure that all WebSphere Message Broker function is stopped:

Chapter 4. Installing and uninstalling 317

a. Stop all brokers on this computer by using the “mqsistop command” on
page 3972, or by stopping the Windows services for these components from
Start > Settings > Control Panel > Administrative Tools > Services.

b. Close all instances of the WebSphere Message Broker Explorer.
c. Close all instances of the WebSphere Message Broker Toolkit.
d. Check that all files associated with WebSphere Message Broker are closed.

3. Close all Windows programs before applying maintenance to the WebSphere
Message Broker component to ensure that data is not lost.

4. Run the fix pack self-extracting program from either Windows Explorer or the
command line.
The program is referred to as FixPackLauncher and its name is in the form
V.R.M-prod-platform-fixpack.exe. Where V.R.M-prod represents the version,
release, and modification level of the product, -platform identifies the platform,
and -fixpack identifies the fix pack. For example, the file name
7.0.0-WS-MB-WINIA32-FP0001.exe identifies the file for Fix Pack 1 on Version
7.0.0 of WebSphere Message Broker on Windows.
v If you start this program from Windows Explorer, or you start it from the

command line with no options, the FixPackLauncher runs with default
options. It extracts the updates from the fix pack file, and starts the graphical
interface of the WebSphere Message Broker installation wizard.

v If you run the wizard from the command line with options, you can choose
the interface that you want to use, and how the WebSphere Message Broker
installation wizard runs.
For further details about how you can install, and other options that you can
specify, see “Installation and uninstallation interfaces” on page 3617 and
“How to install and uninstall the Broker component” on page 3618.
If you start this wizard from a directory other than the one in which the file
is saved, you must include the fully qualified path of the file and its name.

Graphical interface
Use the following command format:
FixPackLauncher -a -gui

-gui specifies that you want to use the graphical interface of the
installation program. The graphical interface is used by default if you
specify only FixPackLauncher.

For example, you can use either of the following commands:
7.0.0-WS-MB-WINIA32-FP0001.exe

7.0.0-WS-MB-WINIA32-FP0001.exe -a -gui

Console interface
Use the following command format:
FixPackLauncher -a -console

-console specifies that you want to use the console interface of the
installation program. You must specify this option if you want the
installation to use this interface.

For example:
7.0.0-WS-MB-WINIA32-FP0001.exe -a -console

Silent interface

Use the following command format:

318 WebSphere Message Broker Version 7.0.0.8

FixPackLauncher -s -a -options "path" -silent

-s specifies that you want the extraction to use its silent interface.
You must specify this option if you want the extraction to be
completed without interaction.

-a specifies that you want to pass options to the installation
program.

-options "path" specifies the path to the silent installation response
file.

-silent specifies that you want to use the silent interface of the
installation program. You must specify this option if you want the
installation to use this interface.

If you do not specify a response file, the default options are used
from the supplied response file. If you want to tailor the options to
suit your installation requirements, create your own response file and
specify its location on the command.

For example, to run both the extractor program and the WebSphere
Message Broker installation program silently with a response file,
enter the following command:
FixPackLauncher -s -a -options "C:\response1.txt" -silent

5. If you use the graphical or console interface of the WebSphere Message Broker
installation program, follow the prompts given and provide any input that is
required to complete the installation.

6. If you run the fix pack installation program or the WebSphere Message Broker
installation program silently, check the installation log to ensure that the
process was successful. File mqsi7_install.log is stored in your installation
directory.
If you accepted the default location during installation, this directory is as
follows. The default directory includes the version and release of the product
that you are installing in the format v.r (version.release):

Linux /opt/ibm/mqsi/v.r

UNIX /opt/IBM/mqsi/v.r

Windows 32-bit
C:\Program Files\IBM\MQSI\v.r

Windows 64-bit
C:\Program Files\IBM\MQSI\v.r for the 64-bit version of WebSphere
Message Broker

C:\Program Files (x86)\IBM\MQSI\v.r for the 32-bit version of
WebSphere Message Broker

These locations define the default value of install_dir on each platform.
7. When installation has successfully completed, review the release notes that are

supplied in the directory readmes, and complete any manual post-installation
tasks that are required.

8. When you have completed any required ODBC changes, restart the components
by using the mqsistart command.

Related tasks:
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker

Chapter 4. Installing and uninstalling 319

Toolkit.
“Uninstalling service for the Broker component” on page 338
On some platforms, you can remove fixes that you have applied.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“How to install and uninstall the Broker component” on page 3618
You can install and uninstall the Broker component by using one of three
interfaces.
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.
“Using response files with the Broker component” on page 3621
You can use a response file to define the behavior of an installation or
uninstallation wizard that is running the silent interface.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Installing service on Linux and UNIX:

Apply maintenance updates and program fixes to the Broker component.

Before you begin

Before you start:

v Download the required update package for the Broker component, as described
in “Applying service to the Broker component” on page 314.

v Check that your user ID has the correct authority to complete this task; see
“Installation and uninstallation authorization” on page 3628 for details.

About this task

To install the updates that you have downloaded:

Procedure

1. Check that your user ID has the correct authority to uninstall the Broker
component. The requirements are defined in “Installation and uninstallation
authorization” on page 3628.

2. Log in to the system. On AIX, you must log in as root. On Linux and on other
UNIX computers, your user ID must have root authority to complete
installation. Follow your local security guidelines to acquire root authority;
either log in as root, or log in as another user and become root.

3. Stop all brokers that are running on this computer by using the mqsistop
command. If you are applying service on a computer that is running Linux on
x86, close all instances of the WebSphere Message Broker Toolkit and the
WebSphere Message Broker Explorer.

320 WebSphere Message Broker Version 7.0.0.8

Check that all files associated with WebSphere Message Broker are closed.
4. Change to the directory where you downloaded the fix pack file. The file

name is in the form V.R.M-prod-platform-fixpack.tar.z, where V.R.M-prod
represents the version, release, and modification level of the product, -platform
identifies the platform, and -fixpack identifies the fix pack. For example, the
file name 7.0.0-WS-MB-AIXPPC64-FP0001.tar.z identifies the file for Fix Pack 1
on Version 7.0.0 of WebSphere Message Broker on AIX.

Note: When using AIX, if you selected HTTP for the download instead of the
Download Director, the file name extension is .tar.tgz instead of .tar.z.

5. Replace the .z file with a .tar file, by entering the following command:
uncompress -fv V.R.M-prod-platform-fixpack.tar.z

6. Untar the image and extract all the directories, subdirectories, and files
required to apply the update, by entering the following command:
tar -xvf V.R.M-prod-platform-fixpack.tar

7. Decide which interface you want to use for the installation; -graphical (the
default option if none is specified), -console, or -silent. For further details of
how you can run and installation, and other options that you can specify, see
“Installation and uninstallation interfaces” on page 3617 and “How to install
and uninstall the Broker component” on page 3618.

8. Depending on the choice you have selected, run one of the following
commands. Where installer is the appropriate installation program for your
platform, as listed in the following table.
v To use the installation wizard graphical interface, type the installer name

with no options at a command prompt, and press Enter. Include the
absolute or relative path names if you start installation from a directory
other than the one in which the wizard exists. When you start the
installation wizard, it guides you through a series of panels where you can
make choices about where to install the components, and which
components you want to install.

v To use the installation wizard console interface, enter installer -console.
Include the absolute or relative path names if you start installation from a
directory other than the one in which the wizard exists. When you start the
installation wizard, it prompts you to enter input for all options, including
where to install the components, and which components you want to
install.

v To use the installation wizard silent interface, enter installer -silent.
Include the absolute or relative path names if you start installation from a
directory other than the one in which the wizard exists. If you want to
specify non-default settings, include a response file on the command. For
more details of how to specify a response file, and how to create and edit a
response file to define your requirements, see “Using response files with the
Broker component” on page 3621.

Platform Installation program

AIX setupaix

HP-Itanium setuphpia64

Linux on POWER setuplinuxppc

Linux on x86 setuplinuxia32

Linux on x86-64 setuplinuxx64

Linux on IBM z Systems setuplinux390

Chapter 4. Installing and uninstalling 321

Platform Installation program

Solaris on SPARC setupsolaris

Solaris on x86-64 setupsolarisx64

The installer extracts the update files and runs according to the arguments
supplied.

9. Follow the instructions presented by the installation program and provide all
input that is required to complete the installation.
When installation has successfully completed, review the release notes that are
supplied in the directory readmes, and complete all manual post-installation
tasks that are required.

10. If you have defined ODBC connections for brokers on this computer, you
must update the odbc.ini files before you restart your brokers.

11. When you have completed any required ODBC changes, restart the brokers by
using the mqsistart command.

Related tasks:
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Uninstalling service for the Broker component” on page 338
On some platforms, you can remove fixes that you have applied.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.
“Using response files with the Broker component” on page 3621
You can use a response file to define the behavior of an installation or
uninstallation wizard that is running the silent interface.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Installing service on z/OS:

Apply maintenance updates to the broker.

Before you begin

Before you start:

v Download the required update package for WebSphere Message Broker, as
described in “Applying service to the Broker component” on page 314.

v Check that your user ID has the correct authority to complete this task; see
“Installation and uninstallation authorization” on page 3628 for details.

322 WebSphere Message Broker Version 7.0.0.8

About this task

Use this three stage process to install service on z/OS:
1. Store the updates on your target system.
2. Install and test the fix pack. If testing is not satisfactory, you can remove this fix

pack at this stage.
3. After testing, confirm the fix pack as your current base level of installation.

Follow these instructions to complete the process:

Procedure

1. Receive the updates. Use SMP/E RECEIVE to transfer the contents of the fix
pack from the tape or the downloaded package to your system at the specified
location.

2. Apply the updates. Use SMP/E APPLY to install the fix pack which completes
the link edit steps and generates a runtime environment in your chosen
location.
The installation process completes updates to USS and to four product data sets
(SBIPSAMP, SBIPINST, SBIPPROC, and SBIPAUTH).
If your SMP/E target system is not on the same file system as your production
system, copy the data sets (including the data set that represents your USS
mount point) to the system where they are to be used, overwriting the current
content. When you complete this action, all runtime components use the
updated data sets when they next restart.
If you do not want all your brokers to use the updated installation, copy the
data sets to a different location and start selected brokers against that copy.
Further details are provided in “Multiple concurrent installations at different
levels.”
You can specify the same destination for receiving the fix pack contents (the
SMP/E target system) and for installing (the production system). If you specify
a different location, you must copy the product data sets to the appropriate
location.
When you have installed the fix pack, test it to ensure that it is working
correctly in your environment. If you find problems at this stage, you can
remove the fix pack by using SMP/E RESTORE. The command restores your
installation to the level that you last accepted (SMP/E ACCEPT).

3. Confirm the update. Use SMP/E ACCEPT to commit the changes and to
establish this fix pack as the current level. When you have completed this step,
you cannot restore your system to a previous service level. If you want to use
an earlier service level, you must reinstall that level.

Multiple concurrent installations at different levels:
About this task

If you want to install a later fix pack level, and retain your existing installation so
that you can use both service levels, install the second level in a different location.
You can then set up additional customization so that one or more of your existing
brokers can use the second service level. By retaining the product files in the first
location, you can switch a broker back to the first level, if required.

Chapter 4. Installing and uninstalling 323

The following steps are a summary of the tasks that you must complete to run a
broker at one service level concurrently with a broker at another service level.
These steps are identical to those you take for setting up an initial installation,
except where indicated.

For a full description of installation and customization for brokers, see “Creating a
broker on z/OS” on page 620.

Procedure

1. To install a second service or fix pack level:
a. Install the second level of the broker by using the instructions provided

with that level.
b. Copy all the template data sets and the main files from the HFS file system

to a unique location.
2. To prepare a broker for use with the second installation:

a. Create and customize a new broker component data set. Complete the steps
described in “Customizing the broker component data set” on page 624.

b. Copy the template JCL from the second location to the new dataset.
c. Customize the JCL to work with the second location. For more details about

this step, see “Customizing the broker JCL” on page 625.
3. To change a broker to work with the second installation:

a. Submit the BIPGEN job to update the environment file ENVFILE for the
broker. This task is described in “Creating the environment file” on page
626.

b. Copy the customized started task from the new data set into the procedures
library, for example USER.PROCLIB.

c. Start the broker; the broker is now associated with the second location.
4. To roll back to the previous version:

a. Open the original broker component data set, that is associated with the
first location.

b. Resubmit the BIPGEN job from that data set.
c. Copy the original PROC into the procedures library USER.PROCLIB.
d. Stop and restart the broker.

Related tasks:
“Installing service on Windows” on page 317
Apply maintenance updates and program fixes to the broker component.
“Installing service on Linux and UNIX” on page 320
Apply maintenance updates and program fixes to the Broker component.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
Related reference:
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

324 WebSphere Message Broker Version 7.0.0.8

Applying service to the WebSphere Message Broker Toolkit
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.

Before you begin

Before you apply a fix pack or other service pack to the WebSphere Message
Broker Toolkit, you might want to preserve the resources that you have created or
imported into Version 7.0. For details of this task, see “Backing up the WebSphere
Message Broker Explorer and WebSphere Message Broker Toolkit workspace” on
page 1016.

Check that your user ID has the correct authority to complete this task; see
“Installation and uninstallation authorization” on page 3628 for details.

About this task

The WebSphere Message Broker Toolkit uses IBM Installation Manager to install
service updates. Occasionally, an update is also required to Installation Manager; if
an update is required, it is downloaded automatically and you are prompted to
apply service to Installation Manager before you can apply service to the
WebSphere Message Broker Toolkit.

Occasionally, updates to the information center are also made available. These
updates are integrated with component updates when they are made available,
and are therefore automatically included when you apply any updates using these
instructions.

If you have installed the Trial Edition, you can apply service to this installation, if
you are within your 90 day trial period.

You can install multiple versions of the WebSphere Message Broker Toolkit at the
same modification or fix pack level, or at different levels, on a single computer.
Each installation must be in a separate package group; package groups are
described in more detail in “IBM Installation Manager” on page 3600.

For information about current fixes, follow the link Recommended fixes in the
Download section of the WebSphere Message Broker support web page. Click the
link for Version 7.0, and select the updates you want to apply. Service release
notes, the list of problems fixed in a fix pack or other maintenance release, and the
instructions you must follow to complete the service upgrade are available. The
instructions provide full details of how to apply each service fix, and include
information about fixes to Installation Manager, if required. Always use those
instructions in preference to the information in this topic, because they are
maintained regularly and provide the latest information.

If you want Installation Manager to retrieve updates from a different location, see
“Changing the update repositories for Installation Manager” on page 327. If you
use FTP or HTTP proxies to allow applications to access the Internet, see “Setting
FTP and HTTP proxies for Installation Manager” on page 329.

Use Installation Manager for all service updates, including those updates to
Installation Manager itself. In most cases, the following instructions are sufficient;
occasionally, further steps are necessary, therefore you must always check with the
instructions provided with each fix on the support website.

Chapter 4. Installing and uninstalling 325

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

Procedure
1. Start Installation Manager by using one of the following two methods:
v From the Linux main menu or the Windows Start menu:

– Linux

On Linux: You can use this option only if you are logged in as

root. If you have logged in as another user, you cannot use the main
menu links, even if you become root.
- On Red Hat: Click System > IBM Installation Manager.
- On SUSE: Click System Tools > IBM Installation Manager.

– Windows

On Windows: Click Start > Programs > IBM Installation

Manager > IBM Installation Manager.
v From the command line:

Navigate to the eclipse subdirectory in the directory in which Installation
Manager is installed and run the following command:

– Linux

IBMIM

– Windows

IBMIM.exe

Installation Manager opens and displays its initial panel.
2. Click Update Packages, then select the package group in which you have

installed the WebSphere Message Broker Toolkit.
3. Click Next. Installation Manager searches the selected update site or sites, and

displays a list of available updates for the products and features that you have
installed.
Initially Show recommended (below the list) is selected, and the latest updates
only are shown. To include earlier updates as well, select Show all.
For information about how you can change the locations that are searched, see
“Changing the update repositories for Installation Manager” on page 327.

4. Select the updates that you want to apply and click Update. The updates are
applied.

5. To return to the Installation Manager initial panel, click OK.
6. To close Installation Manager, click File > Exit. Verify that the changes have

worked; see “Verifying your installation by using the WebSphere Message
Broker Toolkit” on page 291.

Results

If you want to remove service that you have applied, see “Uninstalling service
from the WebSphere Message Broker Toolkit” on page 344.
Related tasks:
“Changing the update repositories for Installation Manager” on page 327
If you have a large number of WebSphere Message Broker Toolkit users, or your
users do not have regular access to the Internet, you might find it more convenient
to download updates to a local site or server, and modify Installation Manager to
access the updates at that alternative site.
“Setting FTP and HTTP proxies for Installation Manager” on page 329
If your environment has a firewall, or uses proxies to control access to the Internet,
you can change the Installation Manager settings to enhance your access security.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.

326 WebSphere Message Broker Version 7.0.0.8

“Backing up the WebSphere Message Broker Explorer and WebSphere Message
Broker Toolkit workspace” on page 1016
The WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
workspaces contain your personal settings and data, such as message flow and
message set resources. You can have multiple workspaces in different locations,
and you can also have references to projects that are in other locations, therefore
consider all these locations when you back up your resources.
“Uninstalling service from the WebSphere Message Broker Toolkit” on page 344
Remove maintenance or fixes from the WebSphere Message Broker Toolkit.
“Uninstalling the WebSphere Message Broker Toolkit” on page 340
Choose the method that you want to use to uninstall the WebSphere Message
Broker Toolkit and follow the instructions to remove the component.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Verifying your installation by using the WebSphere Message Broker Toolkit” on
page 291
Use the instructions in this tutorial to verify your installation of WebSphere
Message Broker and learn how to run samples with the WebSphere Message
Broker Toolkit.
Related reference:
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

Changing the update repositories for Installation Manager:

If you have a large number of WebSphere Message Broker Toolkit users, or your
users do not have regular access to the Internet, you might find it more convenient
to download updates to a local site or server, and modify Installation Manager to
access the updates at that alternative site.

About this task

For example, if you want to limit Internet access to a restricted set of computers, or
if you want to reduce download times, or both, you can set up local repositories
that your users can access to apply updates.

To set up alternative repositories:

Procedure

1. Start Installation Manager from the Start menu (on Windows) or main menu
(on Linux on x86), or from the command line. Installation Manager opens and
displays its initial panel.

2. Click File > Preferences. The Preferences dialog is displayed.
3. Click Repositories in the left pane. The Repositories page is displayed.
4. Click Add Repository. If you know the name and location of the update

repositories that Installation Manager is to search, enter the URL or fully
qualified location of the update file, including the repository name; for
example, repository.config.

Chapter 4. Installing and uninstalling 327

To search for repositories, which can be on a local or a remote computer, click
Browse and navigate to the correct location. The field File of type lists the
values repository.config, diskTag.inf, .jar, and .zip, and repositories with
these names and types are searched for by default. The identity of an update
depends on what type of update it is (for example, disk images are named
diskTag.inf),
If you are not sure what updates you might want, leave the contents of field
File of type unchanged; all available updates are shown. Click the required
repository to select it, then click Open. The repository is added to the displayed
list of repositories. If the repository is not connected, a red cross is displayed in
the Connection column. You might need to check your network connections, or
try again at a later time.
When it is added to the list, the repository is initially shown as selected, to
indicate that its contents will be included when you run Installation Manager
to update packages.
Repeat this step to add additional repositories if appropriate from the same or
another location. You can have one or more locations selected at any time;
Installation Manager searches all selected repositories listed on the Repositories
page.

5. If you want Installation Manager to search only the repositories that you have
added, clear Search service repositories during installation and update. The
service repositories are those locations on the product support Web sites that
host updates. If you clear this option, the default service repositories are not
searched. The service repositories location is fixed and predefined; you cannot
change it.

6. Click OK on the Browse panel if you opened it, and click OK on the
Repositories page.

7. Click Apply to confirm the update, then click OK to close the Preferences
dialog box.

What to do next

To remove a repository from the selected list, clear its selection. If you want to
delete a repository in the list, select the repository and click Remove Repository.
To clear selection of all listed repositories, click Clear Credentials.
Related tasks:
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Backing up the WebSphere Message Broker Explorer and WebSphere Message
Broker Toolkit workspace” on page 1016
The WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
workspaces contain your personal settings and data, such as message flow and
message set resources. You can have multiple workspaces in different locations,
and you can also have references to projects that are in other locations, therefore
consider all these locations when you back up your resources.
“Uninstalling service from the WebSphere Message Broker Toolkit” on page 344
Remove maintenance or fixes from the WebSphere Message Broker Toolkit.
“Uninstalling the WebSphere Message Broker Toolkit” on page 340
Choose the method that you want to use to uninstall the WebSphere Message
Broker Toolkit and follow the instructions to remove the component.

328 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.

Setting FTP and HTTP proxies for Installation Manager:

If your environment has a firewall, or uses proxies to control access to the Internet,
you can change the Installation Manager settings to enhance your access security.

About this task

You do not have to complete this task if you have changed the Installation
Manager repository location to a local site.

Complete the following steps:

Procedure

1. Start Installation Manager from the Start menu (on Windows) or main menu
(on Linux on x86), or from the command line. Installation Manager opens and
displays its initial panel.

2. Click File > Preferences. The Preferences dialog is displayed.
3. Expand the Internet tree in the left pane, and select FTP Proxy or HTTP Proxy.
4. Select Enable proxy server and enter the details in the entry fields that are

required for the protocol that you selected.
5. Click Apply to confirm the updates, then click OK to close the Preferences

dialog box.
Related tasks:
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Backing up the WebSphere Message Broker Explorer and WebSphere Message
Broker Toolkit workspace” on page 1016
The WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
workspaces contain your personal settings and data, such as message flow and
message set resources. You can have multiple workspaces in different locations,
and you can also have references to projects that are in other locations, therefore
consider all these locations when you back up your resources.
“Uninstalling service from the WebSphere Message Broker Toolkit” on page 344
Remove maintenance or fixes from the WebSphere Message Broker Toolkit.
“Uninstalling the WebSphere Message Broker Toolkit” on page 340
Choose the method that you want to use to uninstall the WebSphere Message
Broker Toolkit and follow the instructions to remove the component.
Related reference:
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.

Applying service to the WebSphere Message Broker Explorer
You can apply maintenance or fixes to the WebSphere Message Broker Explorer.

Chapter 4. Installing and uninstalling 329

About this task

Download the latest fix pack from the WebSphere Message Broker support web
page:

Procedure
1. Click Recommended fixes in the Download section of the support page.
2. Click your WebSphere Message Broker product. Available fixes are displayed.
3. Click the fix that you want to download. Details about the fix, and instructions

for download and installation, are displayed.
4. Click Problems fixed to find out what PMRs, APARs, and defects have been

fixed in the fix pack.
5. Click Release notes to read more detail about the fix pack contents.
6. Click FC in the Download package section to start the download process.

Accept the download terms and conditions and sign in to the download site
with your IBM ID. If you do not have an ID, you can register on this page.
When the download completes, extract the executable file or binary file.

7. Decide whether to use the graphical installation, a console installation, or a
silent installation.
v To use the graphical installation, see Installing the WebSphere Message

Broker Explorer.
v To use the installation wizard with a screen reader, see Installing the

WebSphere Message Broker Explorer by using console mode with a screen
reader.

v To use a console installation on Windows, see Installing the WebSphere
Message Broker Explorer in console mode on Windows.

v To use a console installation on Linux, see Installing the WebSphere Message
Broker Explorer in console mode on Linux.

v To use a silent installation, see Installing the WebSphere Message Broker
Explorer in silent mode.

To apply service to any Broker component on Windows using the
fixpacklauncher see Installing service on Windows.

8. Launch the installation wizard by running the executable file or binary file.
The name of this file is in the form V.R.M-prod-platform-fixpack.exe on
Windows and V.R.M-prod-platform-fixpack.bin on Linux platforms. Where
V.R.M represents the version, release, and modification level of the product,
prod identifies the product, platform identifies the platform, and fixpack identifies
the fix pack. For example, the file name 7.0.0-WS-MBX-WINIA32-FP0004.exe
identifies the file for Fix Pack 4 on Version 7.0.0 of WebSphere Message Broker
Explorer on Windows.
On Linux, you must make this file executable by using the chmod command.
For example, use the following command: chmod u+x 7.0.0-WS-MBX-LINUXIA32-
FP0004.bin

9. When you have launched the wizard, continue with the installation process by
working through each of the panels. The installation wizard itself contains help
information about selected panels. You can apply service to a new location on
your system.

Related tasks:
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.

330 WebSphere Message Broker Version 7.0.0.8

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Uninstalling service from the WebSphere Message Broker Explorer” on page 350
You must reinstall the WebSphere Message Broker Explorer to revert to a previous
service level.
“Installing WebSphere Message Broker Explorer” on page 280
To use WebSphere Message Broker Explorer only, without installing the complete
WebSphere Message Broker Toolkit, use the WebSphere Message Broker Explorer
installation wizard to install the WebSphere Message Broker Explorer.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.

Uninstalling
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.

Before you begin

Before you start:

Check that your user ID has the correct authority to complete this task. The
requirements for each platform are defined in “Installation and uninstallation
authorization” on page 3628.

About this task

Follow the appropriate link for the task that you want to complete:
v “Uninstalling the Broker component” on page 332
v “Uninstalling the WebSphere Message Broker Toolkit” on page 340
v “Uninstalling the WebSphere Message Broker Explorer” on page 346
v “Uninstalling the WebSphere Message Broker ODBC Database Extender (IE02)”

on page 339

What to do next

You might also want to uninstall complementary products. See the documentation
provided by those products to complete this task:
v IBM DB2: Access the appropriate information for your installation:

– DB2 V9.1 Information Center (distributed systems)
– DB2 V9.5 Information Center (distributed systems)
– DB2 Information Center (z/OS) (Versions 8 and 9)

v IBM Tivoli License Manager: access the IBM Tivoli License Manager Information
Center.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.

Chapter 4. Installing and uninstalling 331

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itlm.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itlm.doc/toc.xml

“Resolving problems when uninstalling” on page 3525
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.
“Uninstalling the WebSphere Message Broker ODBC Database Extender (IE02)” on
page 339
How you uninstall the WebSphere Message Broker ODBC Database Extender.
Related reference:
“Installation” on page 3581
Use the reference information in this section to understand installation
requirements, installation options, and how they affect your computer.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

Uninstalling the Broker component
You can uninstall the Broker component on distributed systems in a number of
ways.

About this task

This section describes this task for the following systems:
v AIX
v HP-UX
v Linux
v Solaris
v Windows

If you are uninstalling on Linux or UNIX systems, make sure that the directory
/var is not full; the uninstallation wizard requires space in this directory while it is
running.

Procedure
1. Check that your user ID has the correct authority to uninstall the Broker

component, or to uninstall service that you have applied. The requirements are
defined in “Installation and uninstallation authorization” on page 3628.

2. Decide which mode of uninstallation you want to use. The choices are
explained in “How to install and uninstall the Broker component” on page
3618.

3. If you have multiple installations of the Broker component on your system, see
“How to uninstall multiple installations of the Broker component” on page
3620.

4. Follow the uninstallation instructions provided in the appropriate topic:
v “Uninstalling the Broker component by using the graphical interface” on

page 333
v “Uninstalling the Broker component by using the console interface” on page

335
v “Uninstalling the Broker component by using the silent interface” on page

336
v “Uninstalling service for the Broker component” on page 338

332 WebSphere Message Broker Version 7.0.0.8

Results

If, in exceptional circumstances, the uninstallation wizard fails to remove the
product successfully, you can remove the product manually. Contact your IBM
Service Center for assistance if a failure occurs.

For information about removing service updates, see “Uninstalling service for the
Broker component” on page 338.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Resolving problems when uninstalling” on page 3525
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.
Related reference:
“Installation” on page 3581
Use the reference information in this section to understand installation
requirements, installation options, and how they affect your computer.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

Uninstalling the Broker component by using the graphical
interface
Remove the Broker component by using the graphical interface.

Before you begin

Always use the WebSphere Message Broker uninstallation wizard to remove the
Broker component, unless otherwise stated. Do not use the uninstallation program
that is provided by the operating system; for example, geninstall on AIX, or
swremove on HP-UX.

On HP-UX Version 11.23, and on Linux on POWER, a known restriction prevents
the creation of the wizard. If this situation occurs, use the alternative command
that is specified in these instructions. Also, check the readme.html file to ensure
that no additional operating systems are affected by this restriction.

About this task

For information about the graphical interface and alternative interfaces available,
see “How to install and uninstall the Broker component” on page 3618.

To start the graphical interface of the uninstaller, complete the following steps:

Chapter 4. Installing and uninstalling 333

Procedure
1. Stop all running processes that are associated with brokers before you uninstall.

Use the “mqsilist command” on page 3882 to check which brokers are
running. Use the “mqsistop command” on page 3972 to stop each broker.

2. On Windows, Linux on x86, and Linux on x86-64, end all active sessions of the
WebSphere Message Broker Toolkit.

3. If you do not plan to reinstall brokers on this computer, delete all the brokers
that are associated with this installation by using the “mqsideletebroker
command” on page 3863. When you delete a broker, all its associated data and
resources are deleted.

4. Run the following command from outside the installation directory, specifying
the full path. This method of invocation ensures that the full directory structure
is removed during uninstallation. Where install_dir is the home directory of
your WebSphere Message Broker installation:
v On HP-UX systems running Version 11.23 only, and on Linux on POWER

systems:
/install_dir/_uninst_runtime_jvm/bin/java -jar
/install_dir/_uninst_runtime/uninstall.jar

v On all other operating systems:
install_dir/_uninst_runtime/uninstaller

If you accepted the default location during installation, this directory is as
follows. The default directory includes the version and release of the product
that you are installing in the format v.r (version.release):

Linux /opt/ibm/mqsi/v.r

UNIX /opt/IBM/mqsi/v.r

Windows 32-bit
C:\Program Files\IBM\MQSI\v.r

Windows 64-bit
C:\Program Files\IBM\MQSI\v.r for the 64-bit version of WebSphere
Message Broker

C:\Program Files (x86)\IBM\MQSI\v.r for the 32-bit version of
WebSphere Message Broker

These locations define the default value of install_dir on each platform.
Alternatively, if you have a single installation of the Broker component on
Windows, you can navigate to Start > Settings > Control Panel > Add/Remove
Programs. Select WebSphere Message Broker and click Change/Remove. The
uninstaller graphical interface opens.

5. Follow the prompts to complete uninstallation.
Related tasks:
“Uninstalling the Broker component by using the silent interface” on page 336
Remove the Broker component without user interaction by using the silent
interface.
“Uninstalling the Broker component by using the console interface” on page 335
Remove the Broker component by using the console interface.
“Resolving problems when uninstalling” on page 3525
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.
Related reference:

334 WebSphere Message Broker Version 7.0.0.8

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Uninstalling the Broker component by using the console
interface
Remove the Broker component by using the console interface.

Before you begin

Always use the WebSphere Message Broker uninstallation wizard to remove the
Broker component, unless otherwise stated. Do not use the uninstallation program
that is provided by the operating system; for example, geninstall on AIX, or
swremove on HP-UX.

On HP-UX Version 11.23, and on Linux on POWER, a known restriction prevents
the creation of the wizard. If this situation occurs, use the alternative command
specified in these instructions. Also check the readme.html file to ensure that no
additional operating systems are affected by this restriction.

About this task

For information about the console interface and alternative interfaces available, see
“How to install and uninstall the Broker component” on page 3618.

To start the console interface of the uninstaller, complete the following steps:

Procedure
1. Stop all running processes that are associated with brokers before you uninstall.

Use the “mqsilist command” on page 3882 to check which brokers are
running. Use the “mqsistop command” on page 3972 to stop each broker.

2. On Windows, Linux on x86, and Linux on x86-64, end any active sessions of
the WebSphere Message Broker Toolkit.

3. If you do not plan to reinstall brokers on this computer, delete all the brokers
that are associated with this installation by using the “mqsideletebroker
command” on page 3863. When you delete a broker, all its associated data and
resources are deleted.

4. Run the uninstallation program from outside the installation directory,
specifying the full path to ensure that the folders are removed during
uninstallation, where install_dir is the home directory of your WebSphere
Message Broker installation:
v On some HP-UX systems that are running Version 11.23:

/install_dir/_uninst_runtime_jvm/bin/java -jar
/install_dir/_uninst_runtime/uninstall.jar -console

v On some Linux on POWER systems:
/install_dir/_uninst_runtime_jvm/jre/bin/java -jar
/install_dir/_uninst_runtime/uninstall.jar -console

v On all other operating systems:
install_dir/_uninst_runtime/uninstaller -console

Chapter 4. Installing and uninstalling 335

If you accepted the default location during installation, this directory is as
follows. The default directory includes the version and release of the product
that you are installing in the format v.r (version.release):

Linux /opt/ibm/mqsi/v.r

UNIX /opt/IBM/mqsi/v.r

Windows 32-bit
C:\Program Files\IBM\MQSI\v.r

Windows 64-bit
C:\Program Files\IBM\MQSI\v.r for the 64-bit version of WebSphere
Message Broker

C:\Program Files (x86)\IBM\MQSI\v.r for the 32-bit version of
WebSphere Message Broker

These locations define the default value of install_dir on each platform.
5. When started, the uninstaller presents text-based screens on the console.

Navigate between these screens using the following options:
v 1 next
v 2 previous
v 3 cancel
v 4 redisplay

The uninstaller asks you to confirm that you want to uninstall the product and
that the location it is uninstalling from is correct. When you have responded to
these questions, the uninstallation starts.

Related tasks:
“Uninstalling the Broker component by using the graphical interface” on page 333
Remove the Broker component by using the graphical interface.
“Uninstalling the Broker component by using the silent interface”
Remove the Broker component without user interaction by using the silent
interface.
“Uninstalling the Broker component by using the console interface” on page 335
Remove the Broker component by using the console interface.
“Resolving problems when uninstalling” on page 3525
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.
Related reference:
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Uninstalling the Broker component by using the silent interface
Remove the Broker component without user interaction by using the silent
interface.

336 WebSphere Message Broker Version 7.0.0.8

Before you begin

Always use the WebSphere Message Broker uninstallation wizard to remove the
Broker component, unless otherwise stated. Do not use the uninstallation program
that is provided by the operating system; for example, geninstall on AIX, or
swremove on HP-UX.

On HP-UX Version 11.23, and on Linux on POWER, a known restriction prevents
the creation of the wizard. If this situation occurs, use the alternative command
specified in these instructions. Also check the readme.html file to ensure that no
additional operating systems are affected by this restriction.

If you use the silent interface to uninstall the Broker component, the wizard always
uninstalls the Broker component from the last known Version 7.0 installation
location (that is, the most recent installation), regardless of the location of the
uninstallation wizard that you start. If you want to remove the Broker component
from an earlier Version 7.0 installation, use the console or graphical interface.

About this task

You can remove the Broker component without user interaction. This process is
called unattended (or silent) removal. This topic describes how to run the
uninstallation program silently without a response file; the program assumes all
the default values.

If you want to complete a silent uninstallation, but have non-default requirements,
you can use a response file. A response file is a text file that contains values for the
options that you select when you uninstall WebSphere Message Broker. For more
details of how to create, edit, and employ a response file to specify your
requirements, see Using response files.

For information about the silent interface and alternative interfaces available, see
“How to install and uninstall the Broker component” on page 3618.

To start the silent interface of the uninstaller, complete the following steps:

Procedure
1. Stop all running processes that are associated with brokers before you uninstall.

Use the “mqsilist command” on page 3882 to check which brokers are
running. Use the “mqsistop command” on page 3972 to stop each broker.

2. On Windows, Linux on x86, and Linux on x86-64, end any active sessions of
the WebSphere Message Broker Toolkit.

3. If you do not plan to reinstall brokers on this computer, delete all the brokers
that are associated with this installation by using the “mqsideletebroker
command” on page 3863. When you delete a broker, all its associated data and
resources are deleted.

4. Run the following command from outside the installation directory, specifying
the full path (this method of invocation ensures that the full directory structure
is removed during uninstallation), where install_dir is the home directory of
your WebSphere Message Broker installation:
v On some HP-UX systems that are running Version 11.23 only:

/install_dir/_uninst_runtime_jvm/bin/java -jar
/install_dir/_uninst_runtime/uninstall.jar -silent

v On some Linux on POWER systems:

Chapter 4. Installing and uninstalling 337

/install_dir/_uninst_runtime_jvm/jre/bin/java -jar
/install_dir/_uninst_runtime/uninstall.jar -silent

v On all other operating systems:
install_dir/_uninst_runtime/uninstaller -silent

If you accepted the default location during installation, this directory is as
follows. The default directory includes the version and release of the product
that you are installing in the format v.r (version.release):

Linux /opt/ibm/mqsi/v.r

UNIX /opt/IBM/mqsi/v.r

Windows 32-bit
C:\Program Files\IBM\MQSI\v.r

Windows 64-bit
C:\Program Files\IBM\MQSI\v.r for the 64-bit version of WebSphere
Message Broker

C:\Program Files (x86)\IBM\MQSI\v.r for the 32-bit version of
WebSphere Message Broker

These locations define the default value of install_dir on each platform. The
uninstallation program runs without interaction.

Related tasks:
“Uninstalling the Broker component by using the graphical interface” on page 333
Remove the Broker component by using the graphical interface.
“Uninstalling the Broker component by using the console interface” on page 335
Remove the Broker component by using the console interface.
“Resolving problems when uninstalling” on page 3525
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.
Related reference:
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Uninstalling service for the Broker component
On some platforms, you can remove fixes that you have applied.

About this task

Distributed systems
You cannot remove individual fixes that you have applied to the Broker
component on distributed systems. If you want to restore a system to a
previous service level, you must uninstall the product before you reinstall
the required level of service.

If you have a single installation on your computer, create and retain a
backup image, or keep previous GA or fix pack images or media, in case
you experience problems after you have installed service. If you have
multiple installations, each one can be at a different service level and you

338 WebSphere Message Broker Version 7.0.0.8

can transfer the broker to work with an alternative installation at a newer
or older level of service. This option is described in “Applying service to
the Broker component” on page 314.

When you uninstall the product, the components that you have created are
not lost, and you can continue to use these components and associated
resources with the reinstalled product. However, you might want to take a
backup of the installation and work path directories before you start this
procedure.

To restore a system on which you have a single installation to a previous
service level:
1. Uninstall the entire product.
2. Reinstall the GA level of the product. This step is required to ensure

that you comply with your license agreement.
3. Install the required level of fix pack.

z/OS On z/OS systems, you can uninstall service levels under some
circumstances during the installation phase; for further information, see
“Installing service on z/OS” on page 322.

Related concepts:
“Coexistence with previous versions and other products” on page 139
WebSphere Message Broker Version 7.0 supports restricted coexistence with
previous versions and with other products.
Related tasks:
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Uninstalling the Broker component” on page 332
You can uninstall the Broker component on distributed systems in a number of
ways.
“Resolving problems when uninstalling” on page 3525
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.

Uninstalling the WebSphere Message Broker ODBC Database
Extender (IE02)
How you uninstall the WebSphere Message Broker ODBC Database Extender.

Procedure

To uninstall the WebSphere Message Broker ODBC Database Extender, change your
directory to Uninstall_IE02 within the installation path IE02 ($IE02_PATH), and
run the following command:

./Uninstall_IE02

This command launches the uninstaller in the same mode that it was previously
installed. For example, in Graphical, Console, or Silent mode.
The uninstaller does not delete the /var/mqsi/common/profiles/IE02.sh file. You
can remove this file manually after you have removed the SupportPac, although no
problems are caused if the file is not removed.
Related tasks:
“Configuring the WebSphere Message Broker ODBC Database Extender (IE02)” on
page 275
WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager, which is an implementation of the Open DataBase Connectivity

Chapter 4. Installing and uninstalling 339

interface for UNIX systems, and this topic describes how you configure it.
“Installing the WebSphere Message Broker ODBC Database Extender (IE02)” on
page 273
WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager, which is an implementation of the Open DataBase Connectivity
interface for UNIX systems. This topic describes how you install WebSphere
Message Broker ODBC Database Extender.

Uninstalling the WebSphere Message Broker Toolkit
Choose the method that you want to use to uninstall the WebSphere Message
Broker Toolkit and follow the instructions to remove the component.

About this task

Complete the following steps to uninstall the WebSphere Message Broker Toolkit:

Procedure
1. Check that your user ID has the correct authority to uninstall the WebSphere

Message Broker Toolkit or to uninstall service that you have applied. The
requirements are defined in “Installation and uninstallation authorization” on
page 3628.

2. If you are uninstalling the WebSphere Message Broker Toolkit component,
decide which mode of uninstallation you want to use. The choices are
explained in “How to install and uninstall the WebSphere Message Broker
Toolkit” on page 3623.

3. Follow the instructions provided in the appropriate topic:
v “Uninstalling the WebSphere Message Broker Toolkit in graphical mode” on

page 341
v “Uninstalling the WebSphere Message Broker Toolkit in silent mode” on page

343
v “Uninstalling service from the WebSphere Message Broker Toolkit” on page

344

Results

When you uninstall the WebSphere Message Broker Toolkit component, entries are
removed from the system menus:

Linux

If you have installed the WebSphere Message Broker Toolkit more

than once on Linux on x86, the main menu shows a single entry, regardless of
the number of installations that you have completed; the entry always accesses
the last installation that you completed. When you uninstall this component,
the single entry is removed, and you cannot access remaining installations
using the main menu. Navigate to the correct package group installation
directory and start the WebSphere Message Broker Toolkit from the command
line.

Windows

Entries in the Windows Start menu are grouped by package group.

When you uninstall this component, the entry within the appropriate package
group is correctly removed.

Related tasks:
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.

340 WebSphere Message Broker Version 7.0.0.8

“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Uninstalling service from the WebSphere Message Broker Toolkit” on page 344
Remove maintenance or fixes from the WebSphere Message Broker Toolkit.
Related reference:
“Installation Guide” on page 233
Installation information for WebSphere Message Broker is provided in the
Installation Guide that is supplied as a PDF file with your product package.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

Uninstalling the WebSphere Message Broker Toolkit in graphical
mode
The graphical interface guides you through the process of uninstalling the
WebSphere Message Broker Toolkit.

About this task

For information about the modes that are available, see “How to install and
uninstall the WebSphere Message Broker Toolkit” on page 3623.

Complete the following steps:

Procedure
1. Log on to the computer on which WebSphere Message Broker Toolkit is

installed with a user ID that has the correct authority. The authority
requirements are defined in “Installation and uninstallation authorization” on
page 3628.

2. Start the IBM Installation Manager.

v Linux Choose one of the following options:
– The main menu. You can use this option only if you are logged in as root.

If you logged in as another user, you cannot use the main menu links,
even if you become root.
- On Red Hat, click System > IBM Installation Manager.
- On SUSE, click System Tools > IBM Installation Manager.

– Navigate to the eclipse subdirectory in the directory in which Installation
Manager is installed and run the command IBMIM.

– On the command line, start the WebSphere Message Broker Toolkit
uninstallation wizard (where package_group_dir is the directory in which
you installed the package group):
package_group_dir/uninstall/uninstall.sh

For example:
/opt/IBM/WMBT700/uninstall/uninstall.sh

v Windows Choose one of the following options:
– Click Start > Programs > IBM Installation Manager > IBM Installation

Manager.

Chapter 4. Installing and uninstalling 341

– Click Start > Settings > Control Panel > Add/Remove Programs. Open
the package group and select the package group in which you installed
WebSphere Message Broker Toolkit, for example IBM Software
Development Platform_1.

– Navigate to the eclipse subdirectory in the directory in which Installation
Manager is installed and run the command IBMIM.exe.

– On the command line, start the WebSphere Message Broker Toolkit
uninstallation wizard (where package_group_dir is the directory in which
you installed the package group):
package_group_dir\uninstall\uninstall.bat

For example, on Windows XP:
C:\Program Files\IBM\WMBT700\uninstall\uninstall.bat

3. If you started Installation Manager from the Start or main menu, or by running
IBMIM or IBMIM.exe, click Uninstall Packages. The Uninstall Package window
displays.

4. Select the WebSphere Message Broker Toolkit, then click Next. The Uninstall
Summary window is displayed.

5. Check the list of items. Click Back to change items, or click Uninstall to
continue. The uninstallation process starts.

6. Follow the guidance through the series of windows, providing input and
responses as required.

7. When the process completes, check the log file for errors. The file
YYYYMMDD_TIME.xml is written to the following directory:
v Linux /var/ibm/InstallationManager/logs

v Windows %ALLUSERSPROFILE%\Application Data\IBM\Installation
Manager\logs, where %ALLUSERSPROFILE% is the environment variable that
defines the system working directory. The default directory depends on the
operating system:
– On Windows XP and Windows Server 2003: C:\Documents and

Settings\All Users\Application Data\IBM\Installation Manager\logs.
– On Windows Vista and later operating systems: C:\ProgramData\IBM\

Installation Manager\logs.

The actual value might be different on your computer.
8. Restart your computer to complete the uninstallation of the WebSphere

Message Broker Toolkit.
Related tasks:
“Uninstalling the WebSphere Message Broker Toolkit in silent mode” on page 343
Uninstall the WebSphere Message Broker Toolkit without user interaction.
“Uninstalling service from the WebSphere Message Broker Toolkit” on page 344
Remove maintenance or fixes from the WebSphere Message Broker Toolkit.
Related reference:
“How to install and uninstall the WebSphere Message Broker Toolkit” on page
3623
Install and uninstall the WebSphere Message Broker Toolkit by using one of two
interfaces.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

342 WebSphere Message Broker Version 7.0.0.8

Uninstalling the WebSphere Message Broker Toolkit in silent
mode
Uninstall the WebSphere Message Broker Toolkit without user interaction.

About this task

For information about alternative modes that are available, see “How to install and
uninstall the WebSphere Message Broker Toolkit” on page 3623.

Complete the following steps:

Procedure
1. Log on to the computer on which WebSphere Message Broker Toolkit is

installed with a user ID that has the correct authority. The authority
requirements are defined in “Installation and uninstallation authorization” on
page 3628.

2. To silently uninstall the WebSphere Message Broker Toolkit, start IBM
Installation Manager by using the supplied script files.
a. Navigate to the uninstallation directory and open the script file in a text

editor:

v Linux package_group_dir/uninstall/uninstall.sh

For example:
/opt/IBM/WMBT700/uninstall/uninstall.sh

v Windows package_group_dir\uninstall\uninstall.bat

For example, on Windows XP:
C:\Program Files\IBM\WMBT700\uninstall\uninstall.bat

b. Modify the invocation of the IBMIM executable file as follows:

v Linux If you plan to run the script file from the command line in the
uninstallation directory:
IM_dir/IBMIM -nosplash -input uninstall.xml -silent

Otherwise:
IM_dir/IBMIM -nosplash -input package_group_dir/uninstall/uninstall.xml -silent

v Windows If you plan to run the script file from the command line in the
uninstallation directory:
IM_dir\IBMIMc -nosplash -input uninstall.xml -silent

Otherwise:
IM_dir\IBMIMc -nosplash -input package_group_dir\uninstall\uninstall.xml -silent

Replace IM_dir/, or IM_dir\, depending on your platform, with the full path
for Installation Manager on your operating system. If you have installed
Installation Manager in the default location, the full path is:
v Linux /opt/IBM/InstallationManager/eclipse/

v Windows On Windows 32-bit editions: C:\Program Files\IBM\
InstallationManager\eclipse\

v Windows On Windows 64-bit editions: C:\Program Files(x86)\IBM\
InstallationManager\eclipse\

Note, that on Windows you must enclose the full path name in double
quotation marks. For example:

Chapter 4. Installing and uninstalling 343

"C:\Program Files(x86)\IBM\InstallationManager\eclipse\IBMIMc"
-nosplash -input package_group_dir\uninstall\uninstall.xml
-silent

3. Run the file that you just edited. The product is uninstalled silently; control is
returned to the command line when uninstallation is finished.

4. When the process completes, check the log file for errors. The file
YYYYMMDD_TIME.xml is written to the following directory:
v Linux /var/ibm/InstallationManager/logs.
v Windows %ALLUSERSPROFILE%\Application Data\IBM\Installation

Manager\logs where %ALLUSERSPROFILE% is the environment variable that
defines the system working directory. The default directory depends on the
operating system:
– On Windows XP and Windows Server 2003: C:\Documents and

Settings\All Users\Application Data\IBM\Installation Manager\logs.
– On Windows Vista and later operating systems: C:\ProgramData\IBM\

Installation Manager\logs.

The actual value might be different on your computer.
5. Restart your computer to complete the uninstallation of the WebSphere

Message Broker Toolkit.
6. Delete the uninstallation directory if it still exists.
Related tasks:
“Uninstalling the WebSphere Message Broker Toolkit in graphical mode” on page
341
The graphical interface guides you through the process of uninstalling the
WebSphere Message Broker Toolkit.
“Uninstalling service from the WebSphere Message Broker Toolkit”
Remove maintenance or fixes from the WebSphere Message Broker Toolkit.
Related reference:
“How to install and uninstall the WebSphere Message Broker Toolkit” on page
3623
Install and uninstall the WebSphere Message Broker Toolkit by using one of two
interfaces.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

Uninstalling service from the WebSphere Message Broker Toolkit
Remove maintenance or fixes from the WebSphere Message Broker Toolkit.

Before you begin

Linux To remove service from the WebSphere Message Broker Toolkit on Linux
on x86 and Linux on x86-64, your user ID must have root authority. Follow your
local security guidelines to acquire root authority; either log in as root, or log in as
another user and become root.

Windows

To remove service from the WebSphere Message Broker Toolkit on

Windows, your user ID must have Administrator authority.

344 WebSphere Message Broker Version 7.0.0.8

About this task

You can remove WebSphere Message Broker interim fix and service updates from
the toolkit using IBM Installation Manager.

To uninstall service:

Procedure
1. Close all sessions of the WebSphere Message Broker Toolkit on this computer.
2. Start Installation Manager in one of the following ways:
v From the Linux on x86 and Linux on x86-64 main menu, or the Windows

Start menu:
– On Linux, you can use this option only if you are logged in as root. If you

have logged in as another user, you cannot use the main menu links, even
if you become root.
- On Red Hat, click System > IBM Installation Manager.
- On SUSE, click System Tools > IBM Installation Manager.

– On Windows, click Start > Programs > IBM Installation Manager > IBM
Installation Manager .

v Navigate to the eclipse subdirectory in the directory in which Installation
Manager is installed and run the following command:

– Linux

IBMIM

– Windows

IBMIM.exe

Installation Manager starts and displays its initial panel.
3. Click Roll Back Packages, then select the package group in which you have

installed the WebSphere Message Broker Toolkit.
4. Click Next. The Roll Back Packages panel displays the products that you have

installed in the selected group. The service updates that you have applied to
any item in the list are displayed under the item to which they apply.

5. If updates are installed, select the updates that you want to remove from each
particular installation. A summary of the selected updates is displayed. Click
more details... to open the readme file associated with the fix.

6. Click Next to continue. Installation Manager checks that no WebSphere
Message Broker Toolkit sessions are running. If the check fails, an error
message is displayed and you cannot continue with the operation. Close all
active sessions, then return to this step and click Next again.
Installation Manager displays the exact identification of the fixes that you
selected; check that what is listed is correct. If you want to change your
choices, click Back to view the list of fixes again.

7. Click Roll Back. Installation Manager starts to remove the selected fixes. A
progress bar is displayed so that you can monitor the request. A completion
message is displayed; click View log to read the report that is generated by the
removal.

8. If the fix has been removed successfully, click Finish to return to the initial
panel. If the removal failed, examine the contents of the log file to determine
the cause of the error.

9. Click File > Exit to close Installation Manager. Verify that the changes have
worked; see “Verifying your installation by using the WebSphere Message
Broker Toolkit” on page 291.

Related tasks:

Chapter 4. Installing and uninstalling 345

“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Uninstalling the WebSphere Message Broker Toolkit” on page 340
Choose the method that you want to use to uninstall the WebSphere Message
Broker Toolkit and follow the instructions to remove the component.
“Verifying your installation by using the WebSphere Message Broker Toolkit” on
page 291
Use the instructions in this tutorial to verify your installation of WebSphere
Message Broker and learn how to run samples with the WebSphere Message
Broker Toolkit.

Uninstalling the WebSphere Message Broker Explorer
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard, by using the console mode of the installation wizard, or by
using the installation wizard in silent mode.

To uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard, click the link for your operating system and follow the steps in
the topic. To uninstall the WebSphere Message Broker Explorer by using the
console mode, click the appropriate link and follow the steps in the topic. The
steps for console mode are applicable on Windows, Linux on x86, and Linux on
x86-64. You can also uninstall the WebSphere Message Broker Explorer by using
the installation wizard in silent mode.
v “Uninstalling the WebSphere Message Broker Explorer on Windows” on page

347
v “Uninstalling the WebSphere Message Broker Explorer on Linux” on page 347
v “Uninstalling the WebSphere Message Broker Explorer in console mode” on

page 348
v “Uninstalling the WebSphere Message Broker Explorer in silent mode” on page

349

To uninstall service from the WebSphere Message Broker Explorer, you must
reinstall the WebSphere Message Broker Explorer to revert to a previous service
level. For more information about uninstalling service, see “Uninstalling service
from the WebSphere Message Broker Explorer” on page 350.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Installation” on page 3581
Use the reference information in this section to understand installation
requirements, installation options, and how they affect your computer.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

346 WebSphere Message Broker Version 7.0.0.8

Uninstalling the WebSphere Message Broker Explorer on
Windows
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.

About this task

Complete the following steps to uninstall the WebSphere Message Broker Explorer
by using the graphical installation wizard on Windows.

Procedure
1. From the Windows task bar, click Start > Control Panel, or Start > Settings >

Control Panel.
2. Click Add or Remove Programs.
3. Select IBM WebSphere Message Broker Explorer and click Change/Remove.

The WebSphere Message Broker Explorer uninstaller opens.
4. Click Uninstall to uninstall the WebSphere Message Broker Explorer. The

uninstaller lists any items that cannot be uninstalled. You can delete these items
manually.

5. When the uninstall process has completed, click Done to close the uninstaller.
Related concepts:
“Uninstalling the WebSphere Message Broker Explorer” on page 346
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard, by using the console mode of the installation wizard, or by
using the installation wizard in silent mode.
Related tasks:
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Uninstalling the WebSphere Message Broker Explorer on Linux”
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.

Uninstalling the WebSphere Message Broker Explorer on Linux
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.

About this task

Complete the following steps to uninstall the WebSphere Message Broker Explorer
by using the graphical installation wizard on Linux. To uninstall successfully on
Linux systems, you must have write permissions to the installation directory. You
might also need root administrator privileges to complete this task.

Procedure
1. Navigate to the uninstall directory. The default location on Linux is

/opt/IBM/MBExplorer/Uninstall_Message_Broker_Explorer. You can use your
native file explorer to run the file in this directory.

2. Run the ./Uninstall_Message_Broker_Explorer file. The uninstaller launches.
3. Click Uninstall to uninstall the WebSphere Message Broker Explorer. The

uninstaller lists any items that cannot be uninstalled. You can delete these items
manually.

Chapter 4. Installing and uninstalling 347

4. When the uninstall process is completed, click Done to close the uninstaller.
Related concepts:
“Uninstalling the WebSphere Message Broker Explorer” on page 346
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard, by using the console mode of the installation wizard, or by
using the installation wizard in silent mode.
Related tasks:
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Uninstalling the WebSphere Message Broker Explorer on Windows” on page 347
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.

Uninstalling the WebSphere Message Broker Explorer in console
mode
You can uninstall the WebSphere Message Broker Explorer using the console mode
of the installation wizard.

About this task

Use the following steps to uninstall the WebSphere Message Broker Explorer using
the console mode of the installation wizard on Windows and Linux. To uninstall
successfully on Linux systems, you need write permissions to the installation
directory. You are likely to require root administrator privileges for this task.

Procedure
1. Navigate to the Uninstall directory:
v The default location on Windows is C:\Program Files\IBM\MBExplorer\

Uninstall_Message_Broker_Explorer

v The default location on Linux is /opt/IBM/MBExplorer/
Uninstall_Message_Broker_Explorer. You can also use your native file
explorer to run this file.

2. Run the following command: A new uninstaller command window launches:
v On Windows, the command to uninstall the product from the console is:

Uninstall_Message_Broker_Explorer.exe -i console.
v On Linux, the command to to uninstall the product from the console is:

./Uninstall_Message_Broker_Explorer -i console.

The uninstaller launches.
3. Press Enter to uninstall the WebSphere Message Broker Explorer. The

uninstaller lists any items that could not be uninstalled. You can delete these
items manually.

4. When the uninstallation has ended, press Enter to exit the uninstaller.
Related concepts:
“Uninstalling the WebSphere Message Broker Explorer” on page 346
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard, by using the console mode of the installation wizard, or by
using the installation wizard in silent mode.
Related tasks:
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the

348 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker Explorer from your computer.
“Uninstalling the WebSphere Message Broker Explorer on Windows” on page 347
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.
“Uninstalling the WebSphere Message Broker Explorer on Linux” on page 347
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.

Uninstalling the WebSphere Message Broker Explorer in silent
mode
You can uninstall the WebSphere Message Broker Explorer using the installation
wizard in silent mode.

About this task

Use the following steps to uninstall the WebSphere Message Broker Explorer using
the silent mode on Windows and Linux.

Procedure
1. On a command line, navigate to the uninstallation directory for WebSphere

Message Broker Explorer in the file system. The default uninstallation directory
for the WebSphere Message Broker Explorer on Windows is C:\Program
Files\IBM\MBExplorer\Uninstall_Message_Broker_Explorer. The default
uninstallation directory for the WebSphere Message Broker Explorer on Linux
systems is /opt/IBM/MBExplorer/Uninstall_Message_Broker_Explorer.

2. Enter the following command on a command line to start the uninstaller in
silent mode: Uninstall_Message_Broker_Explorer.exe -i silent If you run the
silent uninstallation command directly from a command line, the command
prompt returns immediately, and the installation wizard completes the
uninstallation as a background task. If you run the silent uninstallation
command as part of a batch file or script, control is returned to the batch file or
script after the uninstallation has completed.

Results

The WebSphere Message Broker Explorer files have been removed from your
system.
Related concepts:
“Uninstalling the WebSphere Message Broker Explorer” on page 346
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard, by using the console mode of the installation wizard, or by
using the installation wizard in silent mode.
Related tasks:
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Uninstalling the WebSphere Message Broker Explorer on Windows” on page 347
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.
“Uninstalling the WebSphere Message Broker Explorer on Linux” on page 347
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.

Chapter 4. Installing and uninstalling 349

Uninstalling service from the WebSphere Message Broker
Explorer
You must reinstall the WebSphere Message Broker Explorer to revert to a previous
service level.

About this task

You cannot remove individual fixes that you have applied to the WebSphere
Message Broker Explorer. If you want to restore a system to a previous service
level, you must reinstall the desired level of service. If you have a single
installation on your computer, create and retain a backup image, or keep previous
GA or fix pack images or media, in case of problems after you have installed
service. To restore a Windows or Linux system on which you have an installation
of the WebSphere Message Broker Explorer to a previous service level, you have
two options:
v Uninstall the current level, then reinstall the previous service level of the

WebSphere Message Broker Explorer.
v Install the previous service level of the WebSphere Message Broker Explorer to a

new location on your system.

To uninstall the current level of service from the WebSphere Message Broker
Explorer, and return to a previous level use the following instructions:

Procedure
1. Uninstall the WebSphere Message Broker Explorer.
2. Reinstall the GA level of the WebSphere Message Broker Explorer.
3. Install the desired level of fix pack.
Related concepts:
“Uninstalling the WebSphere Message Broker Explorer” on page 346
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard, by using the console mode of the installation wizard, or by
using the installation wizard in silent mode.
Related tasks:
“Applying service to the WebSphere Message Broker Explorer” on page 329
You can apply maintenance or fixes to the WebSphere Message Broker Explorer.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Uninstalling the WebSphere Message Broker Explorer on Windows” on page 347
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.
“Uninstalling the WebSphere Message Broker Explorer on Linux” on page 347
You can uninstall the WebSphere Message Broker Explorer by using the graphical
installation wizard.

350 WebSphere Message Broker Version 7.0.0.8

Chapter 5. Security

Security is an important consideration for both developers of WebSphere Message
Broker applications, and for system administrators configuring WebSphere Message
Broker authorities.

When you are designing a WebSphere Message Broker application, it is important
to consider the security measures that are needed to protect the information in the
system.

The “Security overview” introduces the concepts that you need to understand
before you set up security for WebSphere Message Broker.

The following topics explain the different aspects of security that you need to
consider when you are designing your applications:
v “Broker administration security” on page 361
v “Message flow security” on page 382
v “Broker component security” on page 497
v “Setting up z/OS security” on page 556
v “Activating broker administration security for WebSphere MQ Version 7.1, or

later” on page 381
Related concepts:
“What's new in Version 7.0?” on page 7
Learn about the main new functions in IBM WebSphere Message Broker Version
7.0.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.

Security overview
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.

An important aspect of securing an enterprise system is the ability to protect the
information that is passed from third parties. This capability includes restricting
access to WebSphere MQ and JMS queues. For information about the steps
involved, refer to the documentation supplied by your transport provider. If you
are using HTTPS, you need to set specific properties in the HTTP nodes. For
information about this option, see “HTTPInput node” on page 4474,
“HTTPRequest node” on page 4488, and “HTTPReply node” on page 4484.

351

In addition to securing the transport, you can secure individual messages based on
their identity. For more information about securing messages in a message flow,
see “Message flow security” on page 382.

Some security configuration is required to enable WebSphere Message Broker to
work correctly and to protect the information in the system. For example, you can
secure the messaging transport with SSL connections, restrict access to queues,
apply WS-Security to Web services, and secure access to message flows.

In addition, system administrators need WebSphere Message Broker authorities
that allow them to perform customization and configuration tasks, run utilities,
perform problem determination, and collect diagnostic materials.

The following topics introduce the concepts that you need to understand before
you set up security for WebSphere Message Broker:
v “Planning for security when you install WebSphere Message Broker” on page

353
v “Broker administration security overview” on page 362
v “Message flow security overview” on page 383
v “WS-Security” on page 765
v “Authorization for configuration tasks” on page 353
v “Security exits” on page 354
v “Public key cryptography” on page 354
v “Digital certificates” on page 356
v “Digital signatures” on page 360

Additionally, if WebSphere MQ Version 7.1, or later, has been selected for the
queue manager and channel auth security is required to be enabled, see
“Activating broker administration security for WebSphere MQ Version 7.1, or later”
on page 381.
Related concepts:
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
“What's new in Version 7.0?” on page 7
Learn about the main new functions in IBM WebSphere Message Broker Version
7.0.
Related tasks:
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
“Setting up broker administration security” on page 368
Control the actions that users can request against a broker and its resources.
Related reference:

352 WebSphere Message Broker Version 7.0.0.8

“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.

Planning for security when you install WebSphere Message
Broker

The Installation Guide describes the security tasks that you must complete before,
during, and after installation.

About this task

On Linux and UNIX systems, you must complete security tasks before you install
WebSphere Message Broker; these tasks are described in the Installation Guide. On
Windows systems, security tasks are completed during and after installation.

Always refer to the Installation Guide for the latest information about installation
tasks.

After installation, refer to “Creating user IDs” on page 498 for further security
considerations.

For an introduction to various aspects of security, see “Security overview” on page
351.
Related reference:
“Installation Guide” on page 233
Installation information for WebSphere Message Broker is provided in the
Installation Guide that is supplied as a PDF file with your product package.

Authorization for configuration tasks
Authorization is the process of granting or denying access to a system resource.

For WebSphere Message Broker, authorization is concerned with controlling who
has permission to access WebSphere Message Broker resources, and ensuring that
users who attempt to work with those resources have the necessary authorization
to do so.

Examples of tasks that require authorization are:
v Configuring a broker using, for example, the “mqsicreatebroker command” on

page 3831.
v Accessing queues, for example, putting a message to the input queue of a

message flow.
v Taking actions within the WebSphere Message Broker Toolkit, for example,

deploying a message flow to an execution group.
Related tasks:
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.

Chapter 5. Security 353

“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Security exits
Use security exit programs to verify that the partner at the other end of a
connection is genuine.

When you connect from the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer to a broker on another computer, a security exit is not
started by default to monitor the connection. If you want to protect access to the
broker from client programs, you can use the WebSphere MQ security exit facility.

You can enable a security exit at each end of the connection between your client
session and the broker:
v Set up a security exit on the channel at the broker end. This security exit has no

special requirements; you can provide a standard security exit.
v Set up a security exit in the WebSphere Message Broker Toolkit or WebSphere

Message Broker Explorer. Identify the security exit properties when you connect
to the broker. The security exit is a standard WebSphere MQ security exit,
written in Java.

For an overview of security exits and details of their implementation, see "Channel
security exit programs" in the Intercommunication section of the WebSphere MQ
Version 7 Information Center online.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Using security exits” on page 555
Define a security exit on the WebSphere MQ channel when you create a broker
connection.
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
Related information:

WebSphere MQ Version 7 Information Center online

Public key cryptography
All encryption systems rely on the concept of a key. A key is the basis for a
transformation, usually mathematical, of an ordinary message into an unreadable
message. For centuries, most encryption systems have relied on private key
encryption. Public key encryption is the only challenge to private key encryption
that has appeared in the last 30 years.

354 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Private key encryption

Private key encryption systems use a single key that is shared between the sender
and the receiver. Both must have the key; the sender encrypts the message by
using the key, and the receiver decrypts the message with the same key. Both the
sender and receiver must keep the key private to keep their communication
private. This kind of encryption has characteristics that make it unsuitable for
widespread general use:
v Private key encryption requires a key for every pair of individuals who need to

communicate privately. The necessary number of keys rises dramatically as the
number of participants increases.

v Keys must be shared between pairs of communicators, therefore the keys must
be distributed to the participants. The need to transmit secret keys makes them
vulnerable to theft.

v Participants can communicate only by prior arrangement. You cannot send a
usable encrypted message to someone spontaneously. You and the other
participant must make arrangements to communicate by sharing keys.

Private key encryption is also called symmetric encryption because the same key is
used to encrypt and decrypt the message.

Public key encryption

Public key encryption uses a pair of mathematically-related keys. A message that is
encrypted with the first key must be decrypted with the second key, and a
message that is encrypted with the second key must be decrypted with the first
key.

Each participant in a public key system has a pair of keys. One key is nominated
as the private key and is kept secret. The other key is distributed to anyone who
wants it; this key is the public key.

Anyone can encrypt a message by using your public key, but only you can read it.
When you receive the message, you decrypt it by using your private key.

Similarly, you can encrypt a message for anyone else by using their public key, and
they decrypt it by using their private key. You can then send the message safely
over an unsecured connection.

This kind of encryption has characteristics that make it very suitable for general
use:
v Public key encryption requires only two keys per participant.
v The need for secrecy is more easily met: only the private key needs to be kept

secret, and because it does not need to be shared, it is less vulnerable to theft in
transmission than the shared key in a symmetric key system.

v Public keys can be published, which eliminates the need for prior sharing of a
secret key before communication. Anyone who knows your public key can use it
to send you a message that only you can read.

Public key encryption is also called asymmetric encryption, because the same key
cannot be used to encrypt and decrypt the message. Instead, one key of a pair is
used to undo the work of the other.

Chapter 5. Security 355

With symmetric key encryption, beware of stolen or intercepted keys. In public key
encryption, where anyone can create a key pair and publish the public key, the
challenge is in verifying the identity of the owner of the public key. Nothing
prevents a user from creating a key pair and publishing the public key under a
false name. The listed owner of the public key cannot read messages that are
encrypted with that key because the owner does not have the corresponding
private key. If the creator of the false public key can intercept these messages, that
person can decrypt and read messages that are intended for someone else. To
counteract the potential for forged keys, public key systems provide mechanisms
for validating public keys and other information with digital certificates and digital
signatures.

Public Key Infrastructure (PKI)

PKI is an infrastructure that uses public key technology to allow applications to
interact securely. PKI uses public key encryption to provide privacy. In practice,
only a small amount of data is encrypted in this way. Typically, a session key is
used with a symmetric algorithm to transmit the bulk of the data efficiently.

In business transactions, trust is even more important than privacy. PKI uses the
private key to allow an application to sign a document. For the recipient to
authenticate the sender, it needs a reliable way to obtain the public key for the
sender. This public key is provided in the form of a digital certificate, which is
mediated by a trusted third party certificate authority (CA).
Related concepts:
“Digital certificates”
Certificates provide a way of authenticating users. Instead of requiring each
participant in an application to authenticate every user, third-party authentication
relies on the use of digital certificates.
“Digital signatures” on page 360
A digital signature is a number that is attached to a document. For example, in an
authentication system that uses public-key encryption, digital signatures are used
to sign certificates.
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.

Digital certificates
Certificates provide a way of authenticating users. Instead of requiring each
participant in an application to authenticate every user, third-party authentication
relies on the use of digital certificates.

A digital certificate is equivalent to an electronic ID card. The certificate serves two
purposes:
v Establishes the identity of the owner of the certificate

356 WebSphere Message Broker Version 7.0.0.8

v Distributes the owner's public key

Certificates are issued by trusted third parties, called certificate authorities (CAs).
These authorities can be commercial ventures or local entities, depending on the
requirements of your application. The CA is trusted to adequately authenticate
users before issuing certificates. A CA issues certificates with digital signatures.
When a user presents a certificate, the recipient of the certificate validates it by
using the digital signature. If the digital signature validates the certificate, the
certificate is recognized as intact and authentic. Participants in an application need
to validate certificates only; they do not need to authenticate users. The fact that a
user can present a valid certificate proves that the CA has authenticated the user.
The designation, "trusted third parties", indicates that the system relies on the
trustworthiness of the CAs.

The certificates and private keys are stored in files called keystores and truststores.
v A keystore holds the private keys and public key certificates for an application.
v A truststore contains the CA certificates required to authenticate certificates that

are presented by another application.

Contents of a digital certificate

A certificate contains several pieces of information, including information about the
owner of the certificate and the issuing CA. Specifically, a certificate includes:
v The distinguished name (DN) of the owner. A DN is a unique identifier, a fully

qualified name including not only the common name (CN) of the owner but also
the owner's organization and other distinguishing information.

v The public key of the owner.
v The date on which the certificate is issued.
v The date on which the certificate expires.
v The distinguished name of the issuing CA.
v The digital signature of the issuing CA. The message-digest function creates a

signature based upon all the previously listed fields.

The idea of a certificate is that a CA takes the public key of the owner, signs the
public key with its own private key, and returns the information to the owner as a
certificate. When the owner distributes the certificate to another party, it signs the
certificate with its private key. The receiver can extract the certificate that contains
the CA signature with the public key of the owner. By using the CA public key
and the CA signature on the extracted certificate, the receiver can validate the CA
signature. If valid, the public key that is used to extract the certificate is considered
good. The owner signature is validated, and if the validation succeeds, the owner
is successfully authenticated to the receiver.

The additional information in a certificate helps an application to determine
whether to honor the certificate. With the expiration date, the application can
determine if the certificate is still valid. With the name of the issuing CA, the
application can check that the CA is considered trustworthy by the site.

An application that needs to authenticate itself must provide its personal
certificate, the one containing its public key, and the certificate of the CA that
signed its certificate, called a signer certificate. In cases where chains of trust are
established, several signer certificates can be involved.

Chapter 5. Security 357

Requesting certificates

To get a certificate, send a certificate request to the CA. The certificate request
includes:
v The distinguished name of the owner or the user for whom the certificate is

requested
v The public key of the owner
v The digital signature of the owner

The message digest function creates a signature based on all the previously listed
fields.

The CA verifies the signature with the public key in the request to ensure that the
request is intact and authentic. The CA then authenticates the owner. Exactly what
the authentication consists of depends on a prior agreement between the CA and
the requesting organization. If the owner in the request is authenticated
successfully, the CA issues a certificate for that owner.

Using certificates: Chain of trust and self-signed certificate

To verify the digital signature on a certificate, you must have the public key of the
issuing CA. Public keys are distributed in certificates, therefore you must have a
certificate for the issuing CA that is signed by the issuer. One CA can certify other
CAs, so a chain of CAs can issue certificates for other CAs, all of whose public
keys you need. Eventually, you reach a root CA that issues itself a self-signed
certificate. To validate a user certificate, you need certificates for all of the
intervening participants back to the root CA. You then have the public keys that
you need to validate each certificate, including the user certificate.

A self-signed certificate contains the public key of the issuer and is signed with the
private key. The digital signature is validated like any other, and if the certificate is
valid, the public key it contains is used to check the validity of other certificates
issued by the CA. However, anyone can generate a self-signed certificate. In fact,
you can probably generate self-signed certificates for testing purposes before
installing production certificates. The fact that a self-signed certificate contains a
valid public key does not mean that the issuer is a trusted certificate authority. To
ensure that self-signed certificates are generated by trusted CAs, such certificates
must be distributed by secure means; for example, hand-delivered on floppy disks,
downloaded from secure sites, and so on.

Applications that use certificates store these certificates in a keystore file. This file
typically contains the necessary personal certificates, its signing certificates, and its
private key. The private key is used by the application to create digital signatures.
Servers always have personal certificates in their keystore files. A client requires a
personal certificate only if the client must authenticate to the server when mutual
authentication is enabled.

To allow a client to authenticate a server, a server keystore file contains the private
key and the certificate of the server and the certificates of its CA. A client truststore
file must contain the signer certificates of the CAs of each server, which the client
must authenticate. The following diagram illustrates how a client authenticates a
server.

358 WebSphere Message Broker Version 7.0.0.8

Server certificateServer certificate

Client

keystore

Server

CA certificate

C1

CA certificate

C1

CA certificate

C1

truststore

If mutual authentication is needed, the client keystore file must contain the client
private key and certificate. The server truststore file requires a copy of the
certificate of the client CA. The following diagram illustrates mutual
authentication.

Server certificateServer certificateClient certificate

Client certificate truststore

Client

keystorekeystore

Server

CA certificate

C1

CA certificate

C2

CA certificate

C1

CA certificate

C1

CA certificate

C2

CA certificate

C2

truststore

Related concepts:
“Public key cryptography” on page 354
All encryption systems rely on the concept of a key. A key is the basis for a
transformation, usually mathematical, of an ordinary message into an unreadable
message. For centuries, most encryption systems have relied on private key
encryption. Public key encryption is the only challenge to private key encryption
that has appeared in the last 30 years.

Chapter 5. Security 359

“Digital signatures”
A digital signature is a number that is attached to a document. For example, in an
authentication system that uses public-key encryption, digital signatures are used
to sign certificates.
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.

Digital signatures
A digital signature is a number that is attached to a document. For example, in an
authentication system that uses public-key encryption, digital signatures are used
to sign certificates.

This signature establishes the following information:
v The integrity of the message: Is the message intact? That is, has the message

been modified between the time it was digitally signed and now?
v The identity of the signer of the message: Is the message authentic? That is, was

the message signed by the user who claims to have signed it?

A digital signature is created in two steps. The first step distills the document into
a large number. This number is the digest code or fingerprint. The digest code is
then encrypted, which results in the digital signature. The digital signature is
appended to the document from which the digest code is generated.

Several options are available for generating the digest code. This process is not
encryption, but a sophisticated checksum. The message cannot regenerate from the
resulting digest code. The crucial aspect of distilling the document to a number is
that if the message changes, even in a trivial way, a different digest code results.
When the recipient gets a message and verifies the digest code by recomputing it,
any changes in the document result in a mismatch between the stated and the
computed digest codes.

To stop someone from intercepting a message, changing it, recomputing the digest
code, and retransmitting the modified message and code, you need a way to verify
the digest code as well. To verify the digest code, reverse the use of the public and
private keys. For private communication, it makes no sense to encrypt messages
with your private key; these keys can be decrypted by anyone with your public
key. However, this technique can be useful for proving that a message came from
you. No one can create it because no-one else has your private key. If some
meaningful message results from decrypting a document by using someone's
public key, the decryption process verifies that the holder of the corresponding
private key did encrypt the message.

The second step in creating a digital signature takes advantage of this reverse
application of public and private keys. After a digest code is computed for a

360 WebSphere Message Broker Version 7.0.0.8

document, the digest code is encrypted with the sender's private key. The result is
the digital signature, which is attached to the end of the message.

When the message is received, the recipient follows these steps to verify the
signature:
1. Recomputes the digest code for the message.
2. Decrypts the signature by using the sender's public key. This decryption yields

the original digest code for the message.
3. Compares the original and recomputed digest codes. If these codes match, the

message is both intact and authentic. If not, something has changed and the
message is not to be trusted.

Related concepts:
“Public key cryptography” on page 354
All encryption systems rely on the concept of a key. A key is the basis for a
transformation, usually mathematical, of an ordinary message into an unreadable
message. For centuries, most encryption systems have relied on private key
encryption. Public key encryption is the only challenge to private key encryption
that has appeared in the last 30 years.
“Digital certificates” on page 356
Certificates provide a way of authenticating users. Instead of requiring each
participant in an application to authenticate every user, third-party authentication
relies on the use of digital certificates.
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.

Broker administration security
Broker administration security controls the rights of users to complete
administrative tasks for a broker and its resources.

The following topics introduce the concepts that you need to understand before
you can set up broker administration security, and explain the steps involved in
securing brokers and their resources:
v “Broker administration security overview” on page 362
v “Setting up broker administration security” on page 368
Related concepts:
Chapter 5, “Security,” on page 351
Security is an important consideration for both developers of WebSphere Message
Broker applications, and for system administrators configuring WebSphere Message
Broker authorities.

Chapter 5. Security 361

“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
Related tasks:
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.

Broker administration security overview
Broker administration security controls the rights of users to complete
administrative tasks for a broker and its resources.

Broker administration security is an optional feature of the broker. When you
create a broker, the default setting is that broker administration security is not
enabled. You can specify an additional parameter to enable security when you
create the broker. You can also change the status of the broker administration
security after you have created the broker, and can therefore enable or disable it
when appropriate.

When you have enabled broker administration security, set up security control by
registering WebSphere MQ permissions for specific user IDs. Permissions are
recorded on the following authorization queues that are defined on the broker
queue manager:
v SYSTEM.BROKER.AUTH. This queue represents the broker and its properties.

Only one queue exists of this name for each broker. This queue is defined as a
local queue.

v One SYSTEM.BROKER.AUTH.EG for each execution group that you define on
the broker, where EG is the name of the execution group. These queues are
defined as alias queues.

When you create a broker, the queue SYSTEM.BROKER.AUTH is created. Read,
write, and execute authorities are automatically granted to the user group mqbrkrs
on this queue. This queue is created even if you do not enable security at this time.

If you enable security, the broker checks the authorizations that you have set up on
this queue when it receives a request that views or changes its properties or
resources. If the user ID associated with the request is not authorized, the broker
refuses the request.

When you create an execution group on a broker for which you have enabled
security, the execution group authorization queue SYSTEM.BROKER.AUTH.EG is
created, where EG is the name of the execution group. Read, write, and execute
authorities are automatically granted to the user group mqbrkrs on this queue.

If you are migrating from Version 6.1 or Version 6.0, and you use Access Control
Lists (ACLs) that you define to the Configuration Manager, you cannot migrate
your ACLs directly to Version 7.0. Review the guidance provided in “Migrating

362 WebSphere Message Broker Version 7.0.0.8

Configuration Manager ACLs” on page 179 to understand how to set up security
by using the ACLs as a basis for security in your Version 7.0 environment.

See the following topics for more information about permissions and queues:
v “Broker permissions and equivalent WebSphere MQ permissions” on page 365
v “Authorization queues for broker administration security” on page 366

Authorization on z/OS
On z/OS, WebSphere MQ uses the System Authorization Facility (SAF) to route
requests for authority checks to an external security manager (ESM) such as the
z/OS Security Server Resource Access Control Facility (RACF). WebSphere MQ
does no authority checks of its own. All information about broker administration
security on z/OS assumes that you are using RACF as your ESM. If you are using
a different ESM, you might need to interpret the information provided for RACF in
a way that is relevant to your ESM.

If you are activating security on the WebSphere MQ queue manager on z/OS for
the first time, you must set up the profiles or other resources that are required by
your ESM to access queues. You must also check that the queue manager is
configured to access the security profiles in the correct class; MQQUEUE for
uppercase queue names and MXQUEUE for mixed case queue names.

For further information about queue manager security and security profiles, see the
z/OS System Administration Guide and z/OS System Setup Guide sections of the
WebSphere MQ Version 7 Information Center online.

Authority checking
If you have activated broker administration security, all actions performed by users
of the following interfaces are subject to authority checking:
v A WebSphere Message Broker Toolkit session
v A WebSphere Message Broker Explorer session
v A Java program that uses the CMP API to perform operations on the broker
v All the following commands:

– mqsichangeresourcestats
– mqsicreateexecutiongroup
– mqsideleteexecutiongroup
– mqsideploy
– mqsilist
– mqsimode
– mqsireloadsecurity
– mqsireportresourcestats
– mqsistartmsgflow
– mqsistopmsgflow

For additional authorization required for these commands, see “Commands and
authorizations for broker administration security” on page 3646.
You can run all commands that are not stated here only on the computer on
which the broker is running. Either your user ID, or the ID under which the
broker is running, must be a member of the security group mqbrkrs when you
run the unlisted commands. Each command topic describes the authority that is
required.

Users of the WebSphere Message Broker Explorer and WebSphere Message Broker
Toolkit who do not have read, write, and execute authority for the broker or
execution groups, have only restricted access to those resources. An icon is

Chapter 5. Security 363

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

displayed against each resource to indicate that user authority is restricted. The
actions that the user can request against a resource are determined by the restricted
authority that is in place for that user.

Authority persistence
If a user ID is granted authority to access a broker, the access is retained at least
until the current connection or session is ended by one of the following events:
v The user closes the WebSphere Message Broker Explorer or WebSphere Message

Broker Toolkit session
v The CMP API application disconnects from the BrokerProxy object

Even if you update or remove the authority for this user ID, the authorization does
not change while the connection is active.

However, authorization is always checked for operations against execution groups
and message flows; if you change or remove the authorization for a user ID to an
execution group, subsequent requests in the current connection might fail.

Additional administration security
In your environment, a check on the user ID making a request might not provide a
sufficient level of security. If you require a more secure solution, one or both of the
following options are available:
v You can enable SSL on a WebSphere MQ client connection between the source of

the request (for example, the WebSphere Message Broker Explorer) and the
target queue manager on which the broker is running.

v You can configure your WebSphere MQ network so that certain types of users
can be directed through a specific server connection (SVRCONN) channel,
provided they comply with the CHLAUTH rules. For details of channel security,
see the System Administration Guide section in the WebSphere MQ Version 7
Information Center online.

Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Migrating Configuration Manager ACLs” on page 179
If you are migrating from WebSphere Message Broker , WebSphere Message Broker
Version 6.0, or WebSphere Event Broker Version 6.0, you can use the Access
Control Lists (ACLs) that you set up in the Configuration Manager as the basis for
your security model in Version 7.0.
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
“Enabling SSL on the WebSphere MQ Java Client” on page 540
The WebSphere MQ Java Client supports SSL-encrypted connections over the
server-connection (SVRCONN) channel between an application and the queue
manager. Configure SSL support for connections between applications that use the
CMP API (including the WebSphere Message Broker Toolkit and the WebSphere
Message Broker Explorer) and a broker.

364 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

“Setting up broker administration security” on page 368
Control the actions that users can request against a broker and its resources.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
Related information:

WebSphere MQ Version 7 Information Center online

Broker permissions and equivalent WebSphere MQ permissions
If you have enabled broker administration security, you can give different
permissions to user IDs to allow them to complete various actions against a broker
or its resources.

When a user requests an action against a broker or an execution group, the broker
accesses the appropriate authorization queues to check that the user ID has the
correct authority for that action against the target resource.

Permission to perform a broker administration task is mapped to a
WebSphere MQ authority associated with the relevant authorization queue, and is
created and maintained by the broker administrator. The mapping from broker
permission to WebSphere MQ permission is shown in the following table.

Broker permission WebSphere MQ permission

Read Inquire

Write Put

Execute Set

For information about the authorizations that are required for specific tasks, see
“Tasks and authorizations for broker administration security” on page 3645.

WebSphere MQ specific and generic profiles

WebSphere MQ supports both specific and generic profiles to manage
WebSphere MQ permissions. When you enable broker administration security, you
can create specific profiles to define WebSphere MQ permissions on
SYSTEM.BROKER.AUTH and on one or more SYSTEM.BROKER.AUTH.EG queues
(where EG is the name of a specific execution group).

You might want to grant a user, or group of users, authority to a number of
execution groups, or perhaps all execution groups. You can use a WebSphere MQ
generic profile to grant authority in this way. A generic profile defines authority to
an existing set of execution groups, and all additional groups, that match the
profile. A generic profile is one that uses special characters (wildcard characters) in
the profile name, such as asterisks (*).

For example, if you want to create a generic profile to authorize access to all
execution groups defined on the broker, you can specify
SYSTEM.BROKER.AUTH.**. If you want a profile for a set of execution groups
with names that all start with the same character string, you can specify
SYSTEM.BROKER.AUTH.TEST**.

Chapter 5. Security 365

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

For more information about WebSphere MQ generic profile wildcard characters,
see “Using wildcard characters”, and for information about WebSphere MQ
generic profile priorities, see “Profile priorities”. You can find both topics in the
System Administration Guide section of the WebSphere MQ Version 7 Information
Center online.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Authorization queues for broker administration security”
If you have enabled broker administration security, the broker examines specific
queues to determine if a user has the authority to complete a particular task
against a broker or its resources.
Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
Related reference:
“Tasks and authorizations for broker administration security” on page 3645
If you have enabled broker administration security, users require specific authority
so that they can complete administration tasks.
Related information:

WebSphere MQ Version 7 Information Center online

Authorization queues for broker administration security
If you have enabled broker administration security, the broker examines specific
queues to determine if a user has the authority to complete a particular task
against a broker or its resources.

When you create a broker, the queue SYSTEM.BROKER.AUTH is created. Read,
write, and execute authorities are automatically granted to the user group mqbrkrs
on this queue. This queue is created even if you do not enable security at this time.

The SYSTEM.BROKER.AUTH queue is created as a local queue, and is used to
define which users are authorized to perform actions on the broker and the broker
properties.

When you create an execution group on a broker for which you have enabled
security, the execution group authorization queue SYSTEM.BROKER.AUTH.EG is
created. where EG is the name of the execution group. Read, write, and execute
authorities are automatically granted to the user group mqbrkrs on this queue. The
dedicated execution group queues are created as aliases to the queue
SYSTEM.BROKER.AUTH.

If you create a broker without administration security, you can change it later. If
you have defined one or more execution groups on that broker when you change
its security setting, the required execution group authorization queues are defined.

366 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

A queue can be created only by a user ID that is a member of the WebSphere MQ
security group mqm. Therefore the user ID who creates a broker, changes a broker,
and the ID under which the broker is running when an execution group is created,
must be a member of that security group. If the user ID does not have this
authority, a message is returned to the command (for the mqsichangebroker
command only), or written to the system log, with the error and the name of the
queue. You must create the queue yourself, or ask your WebSphere MQ
administrator to create it for you.

WebSphere MQ restricts the length of a queue name to 48 characters. Queue name
characters must be in the En_US ASCII character set, and contain only uppercase
and lowercase letters, digits, and the following special characters; period (.),
forward slash (/), underscore (_), and percent (%). If the name of your execution
group includes a character that is not valid, that character is replaced in the
WebSphere MQ queue name by an underscore character. For example, if you
create an execution group with the name test@environment, the authorization
queue is created with the name SYSTEM.BROKER.AUTH.test_environment.

If you are running a secure environment, limit the names of your execution groups
to 29 characters. This limit ensures that the authorization queue names generated,
which include the prefix SYSTEM.BROKER.AUTH, do not exceed the
WebSphere MQ limit of 48 characters.

If your execution group names do not all conform to the length and character
requirements, execution groups with similar names might result in a shared
authorization queue. If this situation occurs, a warning message is returned to the
user that issued the command, or is written to the system log, when the second
execution group is created to state that the queue is shared.

When you delete an execution group, its associated authorization queue is
retained. The queue is deleted if you specify the appropriate parameter when you
delete the broker. The queue can be reused if you re-create the execution group,
but you must check the authorities that you have defined on the queue to ensure
that they are still valid.

If you rename an execution group, you must first create an authorization queue
with the appropriate name. You must also re-create the WebSphere MQ
permissions associated with the original authorization queue on this queue before
you rename the execution group; the broker does not perform this task on your
behalf. The broker rejects the rename request if the authorization queue does not
exist, to ensure that security is not affected by the renaming. If you do not re-create
these permissions, no user IDs are authorized to perform a task against the
renamed execution group.

When you delete a broker, you can specify that all its authorization queues are also
deleted; they are not deleted by default. If you specify that the queue manager is
deleted at this time, all queues are deleted.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Broker permissions and equivalent WebSphere MQ permissions” on page 365
If you have enabled broker administration security, you can give different
permissions to user IDs to allow them to complete various actions against a broker

Chapter 5. Security 367

or its resources.
Related tasks:
“Enabling broker administration security”
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
Related information:

WebSphere MQ Version 7 Information Center online

Setting up broker administration security
Control the actions that users can request against a broker and its resources.

About this task

You can activate administrative control for an individual broker when you create it.
If appropriate, you can enable the security after creation by changing broker
properties. When you have activated broker administration security, grant users or
groups authority to complete their expected tasks.
v “Enabling broker administration security”
v “Authorizing users for broker administration” on page 371
v “Disabling broker administration security” on page 380

On z/OS, WebSphere MQ uses the System Authorization Facility (SAF) to route
requests for authority checks to an external security manager (ESM) such as the
z/OS Security Server Resource Access Control Facility (RACF). WebSphere MQ
does no authority checks of its own. All information about broker administration
security on z/OS assumes that you are using RACF as your ESM. If you are using
a different ESM, you might need to interpret the information provided for RACF in
a way that is relevant to your ESM.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Broker administration security overview” on page 362
Broker administration security controls the rights of users to complete
administrative tasks for a broker and its resources.
Related reference:
“Tasks and authorizations for broker administration security” on page 3645
If you have enabled broker administration security, users require specific authority
so that they can complete administration tasks.
“Commands and authorizations for broker administration security” on page 3646
If you have enabled broker administration security, users require specific authority
to be able to run the administration commands.

Enabling broker administration security
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.

368 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

About this task

You can optionally enable administration security for a broker when you create it.
If you decide to enable administrative security after you have created the broker,
you can change the appropriate broker property.

When you create or change a broker, your user ID must be a member of the
WebSphere MQ control group mqm.

Procedure
1. To enable broker administration security when you create the broker, select the

security option in the “Create broker” wizard in WebSphere Message Broker
Explorer, or specify the parameter -s active on the mqsicreatebroker
command. For example, to create a broker called MB7BROKER with security
enabled on AIX, enter the following command:
mqsicreatebroker MB7BROKER -q MB7QMGR -s active

The broker creates the authorization queue SYSTEM.BROKER.AUTH. This
queue is used to define which users are authorized to perform an action on the
broker.
The broker also assigns default permissions of inquire, put, and set authority to
this queue. These permissions grant read, write, and execute authority on the
broker to all members of the mqbrkrs group. Therefore, you must ensure that at
least one member of your broker administration team is a member of this
group. You must also manage the membership of this group with care, and
ensure that this level of authorization is granted only to users who require it.
On z/OS, these permissions are implemented as levels of authority in the
external security manager (ESM) that you are using with WebSphere MQ. If
you are using RACF as your ESM, the levels are hierarchical: for example,
ALTER access implies READ and WRITE access. You must therefore check the
documentation for your ESM to understand the authorization levels that it
supports. On distributed platforms, no equivalent hierarchy exists, and the
three permissions are independent.

2. To enable broker administration security on an existing broker:
a. Stop the broker in the WebSphere Message Broker Explorer, or run the

mqsistop command.
b. Select the security option for this broker in the WebSphere Message Broker

Explorer, or run the mqsichangebroker command, specifying the parameter
-s active. For example, to enable security for the broker MB7BROKER,
enter the following command:
mqsichangebroker MB7BROKER -s active

The broker creates a queue for each defined execution group, with a name
that conforms to the format SYSTEM.BROKER.AUTH.EG, where EG is the
name of the execution group. It assigns default permissions of inquire, put,
and set authority to the queue, which grants read, write, and execute access
to the execution group and its properties, for the mqbrkrs group. These
queues, and the broker authorization queue SYSTEM.BROKER.AUTH, are
now ready for use.
The names of queues that are generated for your execution groups might
not match exactly the name of the execution groups, because
WebSphere MQ enforces some restrictions on the authorization queue
names. For details of these restrictions, and the possible effects, see
“Authorization queues for broker administration security” on page 366.

Chapter 5. Security 369

c. Start the broker in the WebSphere Message Broker Explorer, or run the
mqsistart command.

3. Check that the user ID under which your broker is running is a member of the
WebSphere MQ security group mqm. Without this authority, the broker cannot
create or delete the authorization queues for execution groups at run time.
Because mqm authority grants full access control to all WebSphere MQ
resources, you might not want your broker running with this level of authority.
If you do not want the broker to run with mqm authority, you must work with
your WebSphere MQ administrator to ensure that the required queues are
created (and deleted) at the appropriate time.
If you want to give your broker mqm authority:
v On Linux and UNIX systems, add to mqm the user ID that started the

broker.
v On Windows, add to mqm the user ID that you specified as the service user

ID. When you add this user ID, the same level of authority is granted to all
user IDs defined in the same primary group. You must therefore control
carefully your group memberships to ensure that access is not granted to
user IDs that do not require it.

v On z/OS, grant equivalent permissions to the started task user ID.
4. Check also that the user ID associated with the broker, defined in the previous

step, has WebSphere MQ altuser authority. This authority is required by the
broker to request WebSphere MQ to check authorities.
Display registry entries for a broker by using mqsireportbroker brokerName.

What to do next

Next: Grant authority to users to reflect what tasks you want them to be able to
complete, by populating the queues with the appropriate details. This task is
described in “Authorizing users for broker administration” on page 371.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Broker permissions and equivalent WebSphere MQ permissions” on page 365
If you have enabled broker administration security, you can give different
permissions to user IDs to allow them to complete various actions against a broker
or its resources.
Related tasks:
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
“Disabling broker administration security” on page 380
Disable broker administration security to remove control over a broker and its
resources.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

370 WebSphere Message Broker Version 7.0.0.8

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsireportbroker command” on page 3919
Use the mqsireportbroker command to display broker registry entries.
“Tasks and authorizations for broker administration security” on page 3645
If you have enabled broker administration security, users require specific authority
so that they can complete administration tasks.
“Commands and authorizations for broker administration security” on page 3646
If you have enabled broker administration security, users require specific authority
to be able to run the administration commands.
Related information:

WebSphere MQ Version 7 Information Center online

Authorizing users for broker administration
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.

About this task

You must activate broker administration security before you can grant or revoke
permissions for specific user IDs. When you first activate security, you must set up
initial control for each user to authorize them to perform certain operations. You
can then grant additional authority, revoke permissions, as required.

You can grant authorities to individual principals (user IDs), to groups of users, or
both, on all platforms:
v If you grant a group or a user ID authority at the broker level (on queue

SYSTEM.BROKER.AUTH), it does not inherit authority for execution groups.
You must explicitly grant authority to all, or to individual, execution groups.

v On Linux and UNIX, you can authorize both principals and groups, but if you
specify a principal, you must grant authority to the primary group to which that
principal belongs.

v If a user ID is a member of the WebSphere MQ security group mqm, it
automatically has authority to all WebSphere MQ objects.

v On Windows, if a user ID is a member of the security group Administrators, it
automatically has authority to all WebSphere MQ objects.

When you change authorizations on a queue, the broker accesses the updated
values the next time that a request is processed. You do not have to stop and
restart the broker.

If you update user ID or group membership by using the operating system
facilities on the platform on which the broker queue manager is running, you must
ensure that the queue manager is aware of these changes. Select the option Refresh
Authorization Service in the WebSphere MQ Explorer to notify the queue
manager of the updated status.

The authority that is required depends on the requirements of the user:
v “Required authority for administrators” on page 372
v “Required authority for users who connect to the broker” on page 372
v “Required authority for developers” on page 373

Chapter 5. Security 371

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The way in which you set up the required authorities differs by platform:
v “Granting and revoking authority on Linux, UNIX, and Windows systems” on

page 374
v “Granting and revoking authority on z/OS systems” on page 376

These platform-specific topics also give examples of command usage for viewing
what authorizations are in place by using the WebSphere MQ dspmqaut command,
and for dumping this information by using the dmpmqaut command.

Required authority for administrators:
About this task

When you activate administration security, the WebSphere MQ permissions for
inquire, put, and set are granted for the group mqbrkrs for the queue
SYSTEM.BROKER.AUTH. These permissions grant read, write, and execute
authority on the broker and its properties to all user IDs that are members of
mqbrkrs.

If you want additional user IDs to have administrator authorization, either add
those IDs to the group mqbrkrs, or add WebSphere MQ permissions for inquire,
put, and set for those user IDs to this queue.

The following table summarizes the WebSphere MQ permissions that are required:

Object Name Permissions

Queue manager The queue manager associated
with the broker; for example,
MB7QMGR

Connect
Inquire

Queue SYSTEM.BROKER.DEPLOY.QUEUEPut

Queue SYSTEM.BROKER.DEPLOY.REPLY Get
Put

Queue SYSTEM.BROKER.AUTH Inquire
Put
Set

Queue SYSTEM.BROKER.AUTH.EG Inquire
Put
Set

For more information about permissions on authorization queues, see “Broker
permissions and equivalent WebSphere MQ permissions” on page 365 and “Tasks
and authorizations for broker administration security” on page 3645.

Required authority for users who connect to the broker:
About this task

If a user or application wants to connect to a broker, you must grant them the
appropriate permissions. All applications written to the CMP API, and users of the
WebSphere Message Broker Explorer and the WebSphere Message Broker Toolkit,
require permissions based on their expected actions. The following table shows the
WebSphere MQ permissions that are required:

372 WebSphere Message Broker Version 7.0.0.8

Object Name Permissions

Queue manager The queue manager associated
with the broker; for example,
MB7QMGR

Connect
Inquire

Queue SYSTEM.BROKER.DEPLOY.QUEUEPut

Queue SYSTEM.BROKER.DEPLOY.REPLY Get
Put

Queue SYSTEM.BROKER.AUTH Inquire1

Queue SYSTEM.BROKER.AUTH.EG Inquire1

Notes:

1. Users and applications can connect to the broker without this level of authority,
but are unable to request actions against the broker, including viewing
properties.

Required authority for developers:
About this task

If your users are working with existing execution groups, and development
resources such as BAR files, add the WebSphere MQ permissions inquire, put, and
set for those users to one or more SYSTEM.BROKER.AUTH.EG queues (where EG
is the name of the execution group).

When you run a broker with administration security enabled, you might need to
restrict the names and the length of the names that you give to your execution
groups, because WebSphere MQ enforces some restrictions on the authorization
queue names. For details of these restrictions, and the possible effects, see
“Authorization queues for broker administration security” on page 366.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Broker administration security overview” on page 362
Broker administration security controls the rights of users to complete
administrative tasks for a broker and its resources.
Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Granting and revoking authority on Linux, UNIX, and Windows systems” on
page 374
Grant or revoke authority to one or more groups or users to complete specific
tasks against a broker running on Linux, UNIX, or Windows.
“Granting and revoking authority on z/OS systems” on page 376
Grant or revoke authority to one or more groups or users to complete specific
tasks against a broker running on z/OS.
“Disabling broker administration security” on page 380
Disable broker administration security to remove control over a broker and its
resources.
Related information:

Chapter 5. Security 373

WebSphere MQ Version 7 Information Center online

Granting and revoking authority on Linux, UNIX, and Windows systems:

Grant or revoke authority to one or more groups or users to complete specific
tasks against a broker running on Linux, UNIX, or Windows.

Before you begin

Before you start:

Activate broker administration security for the broker before you grant and revoke
authority for requests sent to that broker.

About this task

Use WebSphere MQ commands to set up and manage your required security
levels. If you prefer, you can make authorization changes to the security queues by
using the WebSphere MQ Explorer.

For security reasons, it is important that authorities are set correctly. The setmqaut
command grants and revokes authorities cumulatively. Therefore, to avoid
retaining unwanted pre-existing authorities, it is helpful to set authorities explicitly
on each setmqaut command, rather than granting and revoking individual
authorities. Granting and revoking is achieved by specifying "-all" (to remove all
authorities) followed by the required authorities.

The following command grants execute authority and retains any pre-existing
authorities:
setmqaut -m test -t queue -n SYSTEM.BROKER.AUTH -g group1 +set

The following command grants execute authority only and does not retain
pre-existing authorities:
setmqaut -m test -t queue -n SYSTEM.BROKER.AUTH -g group1 -all +set

Multiple authorities can also be set in this manner. For example, the following
command grants execute and write authorities only (and not retain pre-existing
authorities):
setmqaut -m test -t queue -n SYSTEM.BROKER.AUTH -g group1 -all +set +put

It is also helpful to use the dspmqaut command after each setmqaut command, to
check that authorities have been correctly set.

For further information about the commands shown in the following examples,
and for details of the parameters, see the WebSphere MQ Version 7 Information
Center online.

Examples

All the examples shown here are for a broker that is associated with the queue
manager test.

Grant only execute authority to the broker to the user IDs that are defined in the
group group1:

374 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

setmqaut -m test -t queue -n SYSTEM.BROKER.AUTH -g group1 -all +set
dspmqaut -m test -t queue -n SYSTEM.BROKER.AUTH -g group1

Grant only execute and write authority to the broker to the user IDs that are
defined in the group group2:
setmqaut -m test -t queue -n SYSTEM.BROKER.AUTH -g group2 -all +set +put
dspmqaut -m test -t queue -n SYSTEM.BROKER.AUTH -g group2

Revoke execute authority from the user IDs that are defined in the group group2:
setmqaut -m test -t queue -n SYSTEM.BROKER.AUTH -g group2 -set
dspmqaut -m test -t queue -n SYSTEM.BROKER.AUTH -g group2

Using a generic WebSphere MQ profile on a UNIX system, grant only write
authority for all execution groups for the user IDs that are defined in the group
group3:
setmqaut -m test -t queue -n "SYSTEM.BROKER.AUTH.**" -g group3 -all +put
dspmqaut -m test -t queue -n "SYSTEM.BROKER.AUTH.**" -g group3

Note: You enclose generic profile names in quotes on UNIX and Linux systems.
For more information see the WebSphere MQ Version 7 Information Center online
and search for the “Using OAM generic profiles on UNIX systems and Windows”
topic.

Using a generic WebSphere MQ revoke write authority on a UNIX system for all
execution groups for the user IDs that are defined in the group group3:
setmqaut -m test -t queue -n "SYSTEM.BROKER.AUTH.**" -g group3 -all –put
dspmqaut -m test -t queue -n "SYSTEM.BROKER.AUTH.**" -g group3

Grant only read authority for a specific execution group called default for group
group4:
setmqaut -m test -t queue -n SYSTEM.BROKER.AUTH.default -g group4 -all +inq
dspmqaut -m test -t queue -n SYSTEM.BROKER.AUTH.default -g group4

Revoke execute and write authority for a specific execution group called default
for group group5:
setmqaut -m test -t queue -n SYSTEM.BROKER.AUTH.default -g group5 -set -put
dspmqaut -m test -t queue -n SYSTEM.BROKER.AUTH.default -g group5

Using a generic WebSphere MQ on a non-UNIX system, dump all WebSphere MQ
authorities for all execution groups:
dmpmqaut -m test -t queue -n SYSTEM.BROKER.AUTH.**

Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Broker administration security overview” on page 362
Broker administration security controls the rights of users to complete
administrative tasks for a broker and its resources.
Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Disabling broker administration security” on page 380
Disable broker administration security to remove control over a broker and its

Chapter 5. Security 375

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
“Granting and revoking authority on z/OS systems”
Grant or revoke authority to one or more groups or users to complete specific
tasks against a broker running on z/OS.
Related information:

WebSphere MQ Version 7 Information Center online

Granting and revoking authority on z/OS systems:

Grant or revoke authority to one or more groups or users to complete specific
tasks against a broker running on z/OS.

Before you begin

Before you start:

Activate broker administration security for the broker before you grant and revoke
authority for requests sent to that broker.

About this task

Configure the external security manager (ESM) that you are using with
WebSphere MQ to grant the required permissions on z/OS systems. For example,
if you are using RACF, set up profiles to hold the information required for
WebSphere MQ security checking. The examples in this topic assume that you are
using RACF.

Complete the following steps:

Procedure

1. Activate security on the queue manager that is associated with the broker.
2. Activate queue security on the same queue manager:
v If you use uppercase profiles, you must define profiles in MQQUEUE (Member

Class) or GMQQUEUE (Group Class).
v If you use mixed case profiles, you must define profiles in MXQUEUE (Member

Class) or GMXQUEUE (Group Class).

For example:
v Define the broker profile for queue manager MQ01:

RDEFINE MQQUEUE MQ01.SYSTEM.BROKER.AUTH UACC(NONE)

v Define the profile for all execution groups on queue manager MQ01:
RDEFINE MXQUEUE MQ01.SYSTEM.BROKER.AUTH.** UACC(NONE)

v Define a profile for the specific execution group called default for queue
manager MQ01:
RDEFINE MXQUEUE MQ01.SYSTEM.BROKER.AUTH.default UACC(NONE)

3. Activate the WebSphere MQ class so that security checks can be made by the
broker. For example, activate the class MQQUEUE:
SETROPTS CLASSACT(MQQUEUE)

376 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

4. Define WebSphere MQ permissions. The mapping between broker permissions,
associated WebSphere MQ permissions, and associated RACF access levels is
shown in the following table.

Broker permission WebSphere MQ permission RACF access level

Read Inquire READ

Write Put UPDATE

Execute Set ALTER

Examples

All the examples shown here are for a broker that is associated with the queue
manager MQ01.

Add execute permission for group GROUP1 to the broker:
PERMIT MQ01.SYSTEM.BROKER.AUTH CLASS(MQQUEUE) ID(GROUP1) ACCESS(ALTER)

Remove broker execute permission to the broker for group GROUP2:
PERMIT MQ01.SYSTEM.BROKER.AUTH CLASS(MQQUEUE) ID(GROUP2) ACCESS(ALTER) DEL

Add write permission to all execution groups for group GROUP3:
PERMIT MQ01.SYSTEM.BROKER.AUTH.** CLASS(MXQUEUE) ID(GROUP3) ACCESS(UPDATE)

Remove write permission to all execution groups for group GROUP4:
PERMIT MQ01.SYSTEM.BROKER.AUTH.** CLASS(MXQUEUE) ID(GROUP4) DEL

Add read permission to a specific execution group called default for group
GROUP5:
PERMIT MQ01.SYSTEM.BROKER.AUTH.default CLASS(MXQUEUE) ID(GROUP5) ACCESS(READ)

The following JCL file shows one way in which you can check the RACF
permissions that you have set for the broker MQTEST:
//RACFDUMP JOB ,MQTEST,USER=MQTEST,TIME=1,MSGCLASS=H
//STEP1 EXEC PGM=IKJEFT01,REGION=64M,DYNAMNBR=99
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
/* LIST ALL EXISTING PROFILES IN THE MQADMIN CLASS */
SEARCH CLASS(MQADMIN)
/* LIST UPPERCASE PROFILES IN THE MQQUEUE MEMBER CLASS */
SEARCH CLASS(MQQUEUE)
/* LIST MIXED CASE PROFILES IN THE MQQUEUE MEMBER CLASS */
SEARCH CLASS(MXQUEUE)
/* LIST THE QMGR PROFILE */
RLIST MQADMIN MI09.NO.SUBSYS.SECURITY ALL
/*

This JCL job might produce results like the following output:
READY
/* LIST ALL EXISTING PROFILES IN THE MQADMIN CLASS */
READY
SEARCH CLASS(MQADMIN)
EP00.NO.SUBSYS.SECURITY
EP01.NO.SUBSYS.SECURITY
EP02.NO.SUBSYS.SECURITY
EP03.NO.SUBSYS.SECURITY
EP04.NO.SUBSYS.SECURITY
MA00.NO.SUBSYS.SECURITY

Chapter 5. Security 377

MA01.NO.SUBSYS.SECURITY
MA02.NO.SUBSYS.SECURITY
MA03.NO.SUBSYS.SECURITY
MA04.NO.SUBSYS.SECURITY
MA05.NO.SUBSYS.SECURITY
MA06.NO.SUBSYS.SECURITY
MA07.NO.SUBSYS.SECURITY
MA08.NO.SUBSYS.SECURITY
MA09.NO.SUBSYS.SECURITY
MA10.NO.SUBSYS.SECURITY
MA11.ALTERNATE.USER.KMCMUL
MA11.ALTERNATE.USER.KMCMUL3
MA11.ALTERNATE.USER.MA15USR
MA11.CHANNEL.MA11.TO.REG1
MA11.CONTEXT
MA11.NO.CMD.CHECKS
MA11.NO.CMD.RESC.CHECKS
MA11.NO.CMDS.CHECKS
MA11.NO.CMDS.RESC.CHECKS
MA11.NO.SUBSYS.SECURITY
MA11.RESLEVEL
MA12.NO.SUBSYS.SECURITY
MA13.NO.SUBSYS.SECURITY
MA14.NO.SUBSYS.SECURITY
MA15.NO.SUBSYS.SECURITY
MA16.NO.SUBSYS.SECURITY
MA17.NO.SUBSYS.SECURITY
MA18.NO.SUBSYS.SECURITY
MA19.NO.SUBSYS.SECURITY
MA20.NO.SUBSYS.SECURITY
MI00.NO.SUBSYS.SECURITY
MI01.NO.SUBSYS.SECURITY
MI02.NO.SUBSYS.SECURITY
MI03.NO.SUBSYS.SECURITY
MI04.NO.SUBSYS.SECURITY
MI05.NO.SUBSYS.SECURITY
MI06.NO.SUBSYS.SECURITY
MI07.NO.SUBSYS.SECURITY
MI08.NO.SUBSYS.SECURITY
MI09.ALTERNATE.USER.MI09STC
MI09.ALTERNATE.USER.NHARRIS
MI09.NO.CMD.CHECKS
MI09.NO.CONNECT.CHECKS
MI09.NO.CONTEXT.CHECKS
MI09.NO.SUBSYS.SECURITY
MI10.NO.SUBSYS.SECURITY
MI11.NO.SUBSYS.SECURITY
MI12.NO.SUBSYS.SECURITY
MI13.NO.SUBSYS.SECURITY
MI14.NO.SUBSYS.SECURITY
MI15.NO.SUBSYS.SECURITY
MI16.NO.SUBSYS.SECURITY
MI17.NO.SUBSYS.SECURITY
MI18.NO.SUBSYS.SECURITY
MI19.NO.SUBSYS.SECURITY
MI20.NO.SUBSYS.SECURITY
MI09.CHANNEL.** (G)
MI09.QUEUE.** (G)
READY
/* LIST UPPERCASE PROFILES IN THE MQQUEUE MEMBER CLASS */
READY
SEARCH CLASS(MQQUEUE)
MA11.INPUT2.QUEUE
MA11.KMBRK
MA11.MA11.DEAD.QUEUE
MA11.MA15
MA11.REG1

378 WebSphere Message Broker Version 7.0.0.8

MA11.SUBSCRIBER.RESULTS.QUEUE
MA11.SUBSCRIBER3.RESULTS.QUEUE
MA11.SUBSCRIBER4.RESULTS.QUEUE
MA11.SUBSCRIBER5.RESULTS.QUEUE
MA11.SUBSCRIBER6.RESULTS.QUEUE
MA11.SUBSCRIBER9.RESULTS.QUEUE
MA11.SYSTEM.CHANNEL.EVENT
MA11.SYSTEM.CHANNEL.SYNCQ
MA11.SYSTEM.CLUSTER.COMMAND.QUEUE
MA11.SYSTEM.COMMAND.INPUT
MA11.SYSTEM.COMMAND.REPLY.MODEL
MI09.SYSTEM.BROKER.AUTH.SECURITY_EXE
MA11.SYSTEM.BROKER.** (G)
MA11.SYSTEM.** (G)
MA11.** (G)
MI09.** (G)
READY
/* LIST MIXED CASE PROFILES IN THE MQQUEUE MEMBER CLASS */
READY
SEARCH CLASS(MXQUEUE)
NO ENTRIES MEET SEARCH CRITERIA
READY
/* LIST THE QMGR PROFILE */
READY
RLIST MQADMIN MI09.NO.SUBSYS.SECURITY ALL
CLASS NAME
----- ----
MQADMIN MI09.NO.SUBSYS.SECURITY

GROUP CLASS NAME
----- ----- ----
GMQADMIN

RESOURCE GROUPS
-------- ------
NONE

LEVEL OWNER UNIVERSAL ACCESS YOUR ACCESS WARNING
----- -------- ---------------- ----------- -------
00 MQTEST NONE NONE NO

INSTALLATION DATA

NONE

APPLICATION DATA

NONE

SECLEVEL

NO SECLEVEL

CATEGORIES

NO CATEGORIES

SECLABEL

NO SECLABEL

AUDITING

FAILURES(READ)

NOTIFY

Chapter 5. Security 379

NO USER TO BE NOTIFIED

CREATION DATE LAST REFERENCE DATE LAST CHANGE DATE
(DAY) (YEAR) (DAY) (YEAR) (DAY) (YEAR)
------------- ------------------- ----------------

237 09 237 09 237 09

ALTER COUNT CONTROL COUNT UPDATE COUNT READ COUNT
----------- ------------- ------------ ----------

000000 000000 000000 000000

USER ACCESS ACCESS COUNT
---- ------ ------ -----
NO USERS IN ACCESS LIST

ID ACCESS ACCESS COUNT CLASS ENTITY NAME
-------- ------- ------------ -------- ---------------------------------------
NO ENTRIES IN CONDITIONAL ACCESS LIST
READY
END

Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Broker administration security overview” on page 362
Broker administration security controls the rights of users to complete
administrative tasks for a broker and its resources.
Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Disabling broker administration security”
Disable broker administration security to remove control over a broker and its
resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
“Granting and revoking authority on Linux, UNIX, and Windows systems” on
page 374
Grant or revoke authority to one or more groups or users to complete specific
tasks against a broker running on Linux, UNIX, or Windows.

Disabling broker administration security
Disable broker administration security to remove control over a broker and its
resources.

About this task

You can disable administrative security for a broker by updating the relevant
broker property.

Procedure
1. Stop the broker in the WebSphere Message Broker Explorer, or run the mqsistop

command.

380 WebSphere Message Broker Version 7.0.0.8

2. Clear the security option for this broker in the WebSphere Message Broker
Explorer, or run the mqsichangebroker command, specifying the parameter -s
inactive. For example, to disable security for the broker MB7BROKER, enter
the following command:
mqsichangebroker MB7BROKER -s inactive

3. Start the broker in the WebSphere Message Broker Explorer, or run the
mqsistart command.

Results

When this command completes, all users are able to complete tasks against the
broker; for example, they can run the mqsichangeproperties command to change
broker properties. They can also complete all tasks against all execution groups
that have been defined, and are defined in the future, on this broker.

When you disable broker administration security, the authorization queues that are
associated with this broker are retained. If you enable security again, these queues
are reused, therefore you must ensure that the authorizations defined by these
queues are correct.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Broker administration security overview” on page 362
Broker administration security controls the rights of users to complete
administrative tasks for a broker and its resources.
Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Activating broker administration security for WebSphere MQ
Version 7.1, or later

Describes how to enable channel authentication security and the effect of this on a
broker queue manager.

About this task

When you create a broker, if the WebSphere MQ queue manager does not exist, the
queue manager is automatically created. If WebSphere MQ Version 7.1, or later, has
been selected for the queue manager, the channel authentication security will be
automatically disabled.

Chapter 5. Security 381

If more precise control over the access granted to connecting systems is required at
a channel level, channel authentication security can be enabled. For more details,
see WebSphere MQ Version 7.1 Channel authentication records

To enable channel authentication security in order to start using channel
authentication records you must run this MQSC command:
ALTER QMGR CHLAUTH(ENABLED

Once enabled, there will be consequences for any channel based communication
with a broker. However, this should not affect any privileged or non-privileged
user from accessing local brokers. See following table for a definition of privileged
users who have full administrative authorities:

Table 7. . Privileged users by platform.

Platform Privileged users

Windows systems v SYSTEM

v Members of the mqm group

v Members of the Administrators group

UNIX and Linux systems v Members of the mqm group

Privileged or non-privileged users wanting to remotely administer a broker by
means of CMP/API/MBX/Toolkit must run the following commands in order to grant
their user access:

Procedure
1. Enable remote administration on Queue Manager
2. setmqaut -m QMNAME -n SYSTEM.MQEXPLORER.REPLY.MODEL -t queue -p username

+dsp +inq +put +get

3. SET CHLAUTH('SYSTEM.BKR.CONFIG')TYPE(ADDRESSMAP)ADDRESS('address-of-
machine-who-is-allowed')MCAUSER('NonPrivilegedUser')ACTION(ADD)
Where 'NonPrivilegedUser' is a user defined on the remote machine.

What to do next

The rule would need to be set up for any ip-address wanting to administer the
broker remotely.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Message flow security
Control access to individual messages in a message flow, using the identity of the
messages.

382 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/zs14190_.htm

The following topics introduce the concepts that you need to understand before
you can configure message flow security, and they explain the steps involved in
setting up security for your message flows:
v “Message flow security overview”
v “Setting up message flow security” on page 431
Related concepts:
Chapter 5, “Security,” on page 351
Security is an important consideration for both developers of WebSphere Message
Broker applications, and for system administrators configuring WebSphere Message
Broker authorities.
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
Related tasks:
“Setting up broker administration security” on page 368
Control the actions that users can request against a broker and its resources.
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.

Message flow security overview
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.

You can configure the broker to perform end-to-end processing of an identity
carried in a message through a message flow. This capability enables you to
configure security for a message flow, allowing you to control access based on the
identity associated with the message and providing a security mechanism that is
independent of both transport type and message format.

If you do not enable message flow security, the default security facilities in
WebSphere Message Broker are based on the facilities provided by the transport
mechanism. In this case, the broker processes all messages that are delivered to it,
using the broker service identity as a proxy identity for all message instances. Any
identity that is present in the incoming message is ignored.

Instead of delegating this authority to the transport mechanism, the security
manager enables the broker to:
v Extract the identity from an inbound message
v Authenticate the identity (using an external security provider)
v Map the identity to an alternative identity (using an external security provider)
v Check that either the alternative identity or the original identity is authorized to

access the message flow (using an external security provider)
v Propagate either the alternative identity or the original identity with an

outbound message.

Chapter 5. Security 383

The security functions that are associated with a message flow are controlled by
using “Security profiles” on page 387, which are created by the broker
administrator and accessed by the security manager at run time. The following
external security providers (also known as Policy Decision Points or PDPs) are
supported:
v WS-Trust V1.3 compliant security token servers (including TFIM V6.2) for

authentication, mapping, and authorization
v Tivoli Federated Identity Manager (TFIM) V6.1 for authentication, mapping, and

authorization
v Lightweight Directory Access Protocol (LDAP) for authentication and

authorization

You can invoke message flow security by configuring either a security enabled
input node or a SecurityPEP node. The SecurityPEP node enables you to invoke
the message flow security manager at any point in the message flow between an
input node and an output (or request) node.

For an overview of the sequence of events that occur when the message flow
security manager is invoked using either a security enabled input node or a
SecurityPEP node, see the following topics:
v “Invoking message flow security using a security enabled input node” on page

406
v “Invoking message flow security using a SecurityPEP node” on page 411

The input nodes that support message flow security are:
v MQInput
v HTTPInput
v SCAInput
v SCAAsyncResponse
v SOAPInput

However, the support for treating security exceptions as normal exceptions is
provided by only the MQInput, HTTPInput, SCAInput, and SCAAsyncResponse
nodes; it is not available in the SOAPInput node.

The output nodes that support identity propagation are:
v MQOutput
v HTTPRequest
v SCARequest
v SCAAsyncRequest
v SOAPRequest
v SOAPAsyncRequest

If the message flow is a Web Service that is implemented by using the “SOAP
nodes” on page 1609, the identity can be taken from the “WS-Security” on page
765 header tokens that are defined through appropriate “Policy sets” on page 774
and bindings.

To improve performance, the authentication, authorization, and mapping
information from the configured providers is cached for reuse. You can use the

384 WebSphere Message Broker Version 7.0.0.8

mqsireloadsecurity command to reload the security cache, and you can use the
mqsichangeproperties command to set the expiry and sweep intervals for the
security cache.

For a SOAPRequest and SOAPAsyncRequest node, an appropriate policy set and
bindings can be defined to specify how the token is placed in the WS-Security
header (rather than the underlying transport headers). For more information, see
“Policy sets” on page 774.

The following topics in this section provide more detailed information about
message flow security:
v “Identity” on page 390
v “Security profiles” on page 387
v “Authentication and validation” on page 398
v “Authorization” on page 401
v “Identity mapping” on page 403
v “Identity and security token propagation” on page 426
v “Invoking message flow security using a security enabled input node” on page

406
v “Invoking message flow security using a SecurityPEP node” on page 411
v “Authentication, mapping, and authorization with TFIM V6.2 and TAM” on

page 419
v “Authentication, mapping, and authorization with TFIM V6.1 and TAM” on

page 416
v “Security exception processing” on page 429
Related concepts:
“Invoking message flow security using a security enabled input node” on page 406
You can invoke the message flow security manager by configuring a security
enabled input node.
“Invoking message flow security using a SecurityPEP node” on page 411
You can invoke the message flow security manager at any point in a message flow,
between an input node and an output or request node, by using a SecurityPEP
node.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.

Chapter 5. Security 385

“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsireloadsecurity command” on page 3911
Use the mqsireloadsecurity command to force the immediate expiry of some or all
the entries in the security cache.
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that
you want to change.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

386 WebSphere Message Broker Version 7.0.0.8

“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Security profiles
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.

Security profiles are configured by the broker administrator before deploying a
message flow, and are accessed by the security manager at run time.

A security profile allows a broker administrator to specify whether identity and
security token propagation, authentication, authorization, and mapping are
performed on the identity or security tokens associated with messages in the
message flow, and if so, which external security provider (also known as a Policy
Decision Point or PDP) is used. IBM Tivoli Federated Identity Manager (TFIM)
V6.1, and WS-Trust v1.3 compliant security token servers (including TFIM V6.2),
are supported for authentication, authorization, and mapping. Lightweight
Directory Access Protocol (LDAP) is supported for authentication and
authorization.

Security profiles apply to the SecurityPEP node and to security enabled input,
output, and request nodes, and are configured by the administrator at deployment
time in the Broker Archive editor. These nodes have a Security Profile property
(in the Broker Archive editor), which can be left blank, set to No Security, or set to
a specific security profile name. Set No Security to explicitly turn off security for the
node. If you leave the Security Profile property blank, the node inherits the
Security Profile property that is set at the message flow level. If you leave the
Security Profile property blank at both levels, security is turned off for the node.
When this property is set to the name of a specific security profile, that profile
determines what message flow security is configured. If the named security profile
does not exist in the run time, the message flow fails to deploy. If the specified
external security provider does not support the type of token configured on the
node for the security operation, an error is reported and the message flow fails to
deploy.

The security profile also specifies whether propagation is required. A
pre-configured profile that specifies propagation is provided for use by output and
request nodes. This profile is the Default Propagation security profile. This profile
can also be used on an input node to extract tokens and put them into the message
tree ready for propagation or processing in a SecurityPEP node.

Security profiles contain values for the following properties:

authentication
Defines the type of authentication that is performed on the source identity.

Chapter 5. Security 387

This property applies only to SecurityPEP nodes and input nodes. For
more information, see “Authentication and validation” on page 398.

authenticationConfig
Defines the information that the broker needs to connect to the provider,
and the information needed to look up the identity tokens. It is a
provider-specific configuration string. This property applies only to
SecurityPEP nodes and input nodes.

mapping
Defines the type of mapping that is performed on the source identity. This
property applies only to SecurityPEP nodes and input nodes. For more
information, see “Identity mapping” on page 403.

mappingConfig
Defines how the broker connects to the provider, and contains additional
information required to look up the mapping routine. It is a
provider-specific configuration string. This property applies only to
SecurityPEP nodes and input nodes.

authorization
Defines the types of authorization checks that are performed on the
mapped or source identity. This property applies only to SecurityPEP
nodes and input nodes. For more information, see “Authorization” on page
401.

authorizationConfig
Defines how the broker connects to the provider, and contains additional
information that can be used to check access (for example, a group that can
be checked for membership). It is a provider-specific configuration string.
This property applies only to SecurityPEP nodes and input nodes.

passwordValue
Defines how passwords are treated when they enter a message flow. If
PLAIN is selected, the password appears in the Properties folder in plain
text. If OBFUSCATE is selected, the password appears in the Properties
folder in base64 encoding. If MASK is selected, the password appears in
the Properties folder as four asterisks (****). This property applies only to
SecurityPEP nodes and input nodes.

Propagation
Enables or disables identity propagation on output and request nodes. On
the security enabled input nodes, you can choose to select only identity
propagation, without specifying any other security operations, to make the
extracted incoming identity or security token available for use in the other
nodes in the message flow, such as output or request nodes. For more
information, see “Identity and security token propagation” on page 426.

For information on configuring a security profile for LDAP, TFIM, or a WS-Trust
v1.3 compliant security token server (STS), see “Creating a security profile” on
page 433.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is

388 WebSphere Message Broker Version 7.0.0.8

being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

Chapter 5. Security 389

“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

Identity
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.

When a SecurityPEP node or a supported input node is configured with a security
profile, the extracted identity is held in the broker as eight properties in the
Properties folder of the message tree structure. These properties define two
identities in the broker: source and mapped. For both the source and mapped
identities, values are held for Type, Token, Password, and IssuedBy properties:

390 WebSphere Message Broker Version 7.0.0.8

IdentitySourceType

Properties

IdentitySourceToken

IdentitySourcePassword

IdentitySourceIssuedBy

IdentityMappedType

IdentityMappedToken

IdentityMappedPassword

IdentityMappedIssuedBy

The Identity token type property on the security-enabled input nodes can be set
to a value of Transport Default, which causes the token type to be created from the
default identity header or fields of the transport. For WebSphere MQ, Transport
Default provides an identity type of Username. For HTTP, Transport Default provides
an identity type of Username and Password. The Identity token type property on the
SecurityPEP node can be set to Current Token, which enables it to use the identity
in the Properties folder fields instead of extracting a new identity from the
message.

The following table shows the support that is provided (by the message flow
security manager and external security providers) for the extraction of different
types of security token. For information about the token types that are supported
for identity propagation, see “Identity and security token propagation” on page
426.

Chapter 5. Security 391

Table 8. Support for security token types - token extraction

Token type (format)
Broker security manager
support for token extraction

External security provider
support

Username Username tokens are
supported for extraction by
the following nodes:
v HTTPInput
v MQInput
v SCAInput
v SCAAsyncResponse
v SecurityPEP
v SOAPInput

The token is obtained from
one of the following
transport headers:
v MQ

– From MQMD user ID
v HTTP

– From HTTP BasicAuth
header containing only
a username part

v SOAP
– From a WS-Security

UsernameToken header.
The policy set and
binding (associated with
the SOAP node) must
define a username
profile, and the
wsse:UsernameToken
must contain only a
wsse:Username element.

– From the Kerberos
subject in a WS-Security
header. The policy set
and binding (associated
with the SOAP node)
must define a Kerberos
profile.

– From the HTTP
BasicAuth header
containing only a
username part if no
policy set is defined on
the SOAP node.

Alternatively, the token can
be taken from any part of the
message tree when the token
location is specified (on the
node) using an XPath
expression or ESQL field
path.

The literal string value used
by the broker (and which
you can use to specify the
token type in an ESQL or
Java program) is username.

LDAP: Authorization

392 WebSphere Message Broker Version 7.0.0.8

Table 8. Support for security token types - token extraction (continued)

Token type (format)
Broker security manager
support for token extraction

External security provider
support

Username and password
or
Username and RACF PassTicket

Username and password
tokens are supported for
extraction by the following
nodes:
v HTTPInput
v MQInput
v SCAInput
v SecurityPEP
v SCAAsyncResponse
v SOAPInput

The token is obtained from
one of the following
transport headers:
v HTTP

– From HTTP BasicAuth
header containing both
a username and
password part

v SOAP
– From a WS-Security

UsernameToken header.
The policy set and
binding (associated with
the SOAP node) must
define a username
profile and the
wsse:UsernameToken
must contain both
wsse:Username and
wsse:Password elements.

– From the HTTP
BasicAuth header
containing only a
username part if no
policy set is defined on
the SOAP node

Alternatively, the token can
be obtained from any part of
the message tree when the
token location is specified
(on the node) using an XPath
expression or ESQL path.

The password token can
carry either a clear text
password or a RACF
PassTicket. If you are using a
WS-Trust V1.3 STS (such as
TFIM V6.2), you can use it to
map (issue) or validate
RACF PassTickets, by
specifying the token type as
Username and password. This
support is available with
security enabled input nodes
and SecurityPEP nodes.

The literal string value used
by the broker (and which
you can use to specify the
token type in an ESQL or
Java program) is
usernameAndPassword.

LDAP:
v Authentication
v Authorization

TFIM V6.1:
v Authentication
v Mapping
v Authorization

WS-Trust V1.3 STS (including
TFIM V6.2):
v Authentication
v Mapping
v Authorization

Chapter 5. Security 393

Table 8. Support for security token types - token extraction (continued)

Token type (format)
Broker security manager
support for token extraction

External security provider
support

SAML assertion SAML tokens are supported
for extraction by the
following nodes:
v SecurityPEP
v MQInput
v HTTPInput
v SCAInput
v SCAAsyncResponse
v SOAPInput

The token is obtained from
one of the following places:

v SOAP

– From a WS-Security
header. The policy set
and binding (associated
with the SOAP node)
must define a SAML
profile.

v Any part of the message
tree when the token
location is specified using
an XPath expression or
ESQL path.

The literal string value used
by the broker (and which
you can use to specify the
token type in an ESQL or
Java program) is SAML.

WS-Trust V1.3 STS (including
TFIM V6.2):
v Authentication
v Mapping
v Authorization

394 WebSphere Message Broker Version 7.0.0.8

Table 8. Support for security token types - token extraction (continued)

Token type (format)
Broker security manager
support for token extraction

External security provider
support

Kerberos GSS v5 AP_REQ Kerberos tickets are
supported for processing by
the message flow security
manager from the
SecurityPEP node. A
WS-Security Kerberos token
profile is supported by the
following SOAP nodes, but
in this case, the Kerberos
Key Distribution Center is
communicated with directly,
and the properties folder is
populated with a Username
token representing the
Kerberos subject:
v SOAPInput

The token is obtained from
any part of the message tree
at a SecurityPEP node, if the
token location is specified
using an XPath expression or
ESQL path.

The literal string value used
by the broker (and which
you can use to specify the
token type in an ESQL or
Java program) is
kerberosTicket.

WS-Trust V1.3 STS (including
TFIM V6.2):
v Authentication
v Mapping
v Authorization

LTPA v2 token LTPA tokens are supported
for extraction by the
following nodes:
v SecurityPEP
v SOAPInput

The token is obtained from
any part of the message tree
at a SecurityPEP node, if the
token location is specified
using an XPath expression or
ESQL path.

The literal string value used
by the broker (and which
you can use to specify the
token type in an ESQL or
Java program) is LTPA.

WS-Trust V1.3 STS (including
TFIM V6.2):
v Authentication
v Mapping
v Authorization

Chapter 5. Security 395

Table 8. Support for security token types - token extraction (continued)

Token type (format)
Broker security manager
support for token extraction

External security provider
support

X.509 Certificate X.509 tokens are supported
for extraction by the
following nodes:
v SecurityPEP
v MQInput
v HTTPInput
v SCAInput
v SCAAsyncResponse
v SOAPInput

The token is obtained from
one of the following places:

v SOAP

– From a WS-Security
header. The policy set
and binding (associated
with the SOAP node)
must define an X.509
profile.

v Any part of the message
tree when the token
location is specified using
an XPath expression or
ESQL path.

The literal string value used
by the broker (and which
you can use to specify the
token type in an ESQL or
Java program) is X.509.

TFIM V6.1:
v Authentication
v Mapping
v Authorization.

WS-Trust V1.3 STS (including
TFIM V6.2):
v Authentication
v Mapping
v Authorization.

Universal WSSE token Universal WSSE tokens are
supported for extraction by
the SecurityPEP node only.

The token is obtained from
any part of the message tree
at a SecurityPEP node, if the
token location is specified
using an XPath expression or
ESQL path.

The literal string value used
by the broker (and which
you can use to specify the
token type in an ESQL or
Java program) is
UniversalWsse.

WS-Trust V1.3 STS (including
TFIM V6.2):
v Authentication
v Mapping
v Authorization.

The source identity is set by the SecurityPEP or input node only if a security
profile is associated with the node. The information to complete these fields is
typically found in the headers of a message but can also be located in the body
(provided that the node has been configured with an ESQL Path or XPath reference
for the various properties). If multiple identities are available (for example, if you
are using message aggregation), the first identity is used. The token extraction is
transport specific and can be performed only using transports that support the

396 WebSphere Message Broker Version 7.0.0.8

flow of identities. These transports are: Websphere MQ, HTTP(S), and SOAP. See
“MQInput node” on page 4594 and “HTTPInput node” on page 4474 for more
information.

You can modify the values in the properties (for example, from ESQL), but do not
write to the IdentitySource* values. For example, you can create a custom identity
mapping routine in ESQL or Java by using the IdentitySource* values to create
custom IdentityMapped* values.

SAML and Universal WSSE tokens are stored in the Properties tree
IdentitySourceToken or IdentityMappedToken field as a character bit stream. To
access this data as a message tree, parse it into a suitable parser, such as XMLNSC:
-- Parse the mapped SAML2.0 token in the properties folder and set it in the message body

CREATE LASTCHILD OF OutputRoot DOMAIN(’XMLNSC’) PARSE(InputRoot.Properties.IdentityMappedToken,
InputProperties.Encoding, InputProperties.CodedCharSetId);

To set either SAML or Universal WSSE tokens into the properties fields, you must
obtain the bit stream of a tree; for example, by using the ESQL ASBITSTREAM
function.
Related concepts:
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate

Chapter 5. Security 397

and authorize it.
“Configuring authentication with HTTP basic authentication” on page 451
Use a security profile to configure HTTP basic authentication in the HTTPRequest
or SOAPInput nodes.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

Authentication and validation
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.

In WebSphere Message Broker message flow security, authentication involves the
security manager passing the identity type and token to an external security
provider. For more information about security tokens, see “Identity” on page 390.

398 WebSphere Message Broker Version 7.0.0.8

IdentitySourceTypeProperties

IdentitySourceToken

IdentitySourcePassword

IdentitySourceIssuedBy

IdentityMappedType

IdentityMappedToken

IdentityMappedPassword

IdentityMappedIssuedBy

Authentication

Identity
Provider

The following external security providers (also known as Policy Decision Points)
are supported for authentication:
v Lightweight Directory Access Protocol (LDAP)
v Tivoli Federated Identity Manager (TFIM) V6.1
v WS-Trust V1.3 security token servers (STS), including TFIM V6.2

The external security provider checks the identities and returns a value to confirm
whether the identity is authentic. If the identity is not authentic, a security
exception is raised.

Some identity providers support only a single type of authentication token. If a
token of another type is passed into the message flow, an exception is raised. For
example, LDAP supports only a Username and password token.

You can use an LDAP provider for the authentication of an incoming identity
token. The LDAP server must be LDAP Version 3 compliant.

Alternatively, you can use a WS-Trust v1.3 STS provider (for example, TFIM
Version 6.2) for the authentication of an incoming identity or security token. The
security manager invokes the WS-Trust v1.3 provider once, even if it is set for
additional security operations (such as mapping or authorization). As a result,
when you are using TFIM, you must configure a single module chain to perform
all the required authentication, mapping, and authorization operations.

For more information about using TFIM V6.2 for authentication, see
“Authentication, mapping, and authorization with TFIM V6.2 and TAM” on page
419.

Chapter 5. Security 399

TFIM V6.1 is also supported, for compatibility with previous versions of
WebSphere Message Broker. For more information about using TFIM V6.1 for
authentication, see “Authentication, mapping, and authorization with TFIM V6.1
and TAM” on page 416.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring authentication with HTTP basic authentication” on page 451
Use a security profile to configure HTTP basic authentication in the HTTPRequest
or SOAPInput nodes.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

400 WebSphere Message Broker Version 7.0.0.8

“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

Authorization
Authorization is the process of verifying that an identity token has permission to
access a message flow.

If authentication and mapping are configured, they are used to verify the identity
before it is authorized.

IdentitySourceTypeProperties

IdentitySourceToken

IdentitySourcePassword

IdentitySourceIssuedBy

IdentityMappedType

IdentityMappedToken

IdentityMappedPassword

IdentityMappedIssuedBy

Authorization
/Policy

Enforcement
Point

Access Manager
/Policy Decision

Point

If a mapped identity exists, authorization is applied to the mapped identity. If a
mapped identity does not exist, the source identity is used.

If you specify LDAP as the provider for authorization, the security manager
queries the configured LDAP server (which must be LDAP Version 3 compliant), to
validate that the identity is a member of the LDAP group that is configured in the
security profile.

If you specify WS-Trust v1.3 STS as the provider for authorization, the security
manager invokes the security token server (STS), such as Tivoli Federated Identity
Manager (TFIM) V6.2, to validate that the identity token provided has permission
to access the message flow. If you are using TFIM V6.1 rather than TFIM V6.2, you
can specify TFIM as the provider for authorization.

For more information about using TFIM V6.2 for authorization, see
“Authentication, mapping, and authorization with TFIM V6.2 and TAM” on page
419.

Chapter 5. Security 401

For information about using TFIM V6.1 for authorization, see “Authentication,
mapping, and authorization with TFIM V6.1 and TAM” on page 416.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
“Authentication, mapping, and authorization with TFIM V6.2 and TAM” on page
419
You can use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM)
V6.2, and Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.
“Authentication, mapping, and authorization with TFIM V6.1 and TAM” on page
416
Use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM) V6.1,
and Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.
Related tasks:
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.

402 WebSphere Message Broker Version 7.0.0.8

“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

Identity mapping
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.

IdentitySourceTypeProperties

IdentitySourceToken

IdentitySourcePassword

IdentitySourceIssuedBy

IdentityMappedType

IdentityMappedToken

IdentityMappedPassword

IdentityMappedIssuedBy

Identity
Mapping

Identity Mapper
/FIM

WebSphere Message Broker provides support for identity mapping (also known as
identity federation) and token issuance and exchange. Identity mapping is the
process of mapping an identity in one realm to another identity in a different
realm. For example, you might map User001 from the eSellers realm to
eSellerUser01 in the eShipping realm. Token issuance and exchange involves the
mapping of a token of one type to a token of a different type. For example, an
incoming Username and Password token from a client over MQ might be mapped
into an equivalent SAML assertion, to be propagated to a Web Services call.
Alternatively, you might exchange a SAML 1.1 assertion from a client application
for an equivalent SAML 2.0 assertion for an updated backend server.

Chapter 5. Security 403

Mapping using a WS-Trust provider

The WebSphere Message Broker security manager supports mapping operations
through WS-Trust V1.3 compliant security token servers (STS), such as IBM Tivoli
Federated Identity Manager (TFIM) V6.2. Mapping is performed for SecurityPEP
nodes and input nodes that have an associated security profile that includes a
mapping operation configured with a WS-Trust V1.3 STS.

WS-Trust V1.3 (TFIM V6.2) can also be selected for authentication and
authorization in the profile. However, if more than one security operation is
associated with the security profile, only one WS-Trust request is issued to the STS.
As a result, the STS must be configured to perform all the required operations. For
example, if a TFIM V 6.2 server is specified, the TFIM module chain that is
invoked must include the appropriate validate, authorize, and issue modules. If
you require each operation to be performed through a separate WS-Trust call, you
must use a series of SecurityPEP nodes, each associated with a different security
profile that is configured for only one security operation (authentication,
authorization, or mapping).

If the security profile specifies only mapping with WS-Trust v1.3 STS, the request is
sent with a request type of Issue, whereas a mixed set of security operations sends
a request type of Validate. When mapping is included, the STS must return a token
in its response, even if it is the original token; otherwise, an error occurs.

To provide compatibility with previous versions of WebSphere Message Broker,
support is also provided for TFIM V6.1.

In the broker, identity mapping is performed at the input node or SecurityPEP
node, after authentication but before authorization. The source identity is passed to
an identity mapper for processing. If both mapping and authorization are
configured, the authorization operation uses the mapped output token rather than
the source token, which means that the authorization is performed on the
federated identity.

Mapping is not performed in output nodes, even if the node has been configured
with a security profile.

WebSphere Message Broker supports mapping between any type of security token
that is supported by the configured security provider. For more information about
the support provided, see “Identity” on page 390.

When mapping from an X.509 certificate, TFIM can validate the certificate but
cannot verify the identity of the original sender. However, if it is required, this
verification integrity check can be performed by the SOAPInput node. For more
information, see “WS-Security mechanisms” on page 768.

For more information about using TFIM V6.2 for mapping, see “Authentication,
mapping, and authorization with TFIM V6.2 and TAM” on page 419.

For information about using TFIM V6.1, see “Authentication, mapping, and
authorization with TFIM V6.1 and TAM” on page 416.

User-defined mapping

When you develop a message flow, you can implement a custom token mapping to
be used for identity propagation. For example, you can implement a custom token

404 WebSphere Message Broker Version 7.0.0.8

mapping using a compute node (which can be a Compute, JavaCompute, or
PHPCompute node) following the input node. In the compute node, you can read
the source identity values from the Properties folder, process them, then write the
new identity values to the mapped identity fields. If there is no identity provided
in the message, you can still use a compute node to insert some identity
credentials into the mapped identity fields. The mapped identity fields are then
used in place of the source identity fields by subsequent nodes. Any security
operations that are configured on the input node are performed using the source
identity, before you can create a new identity in the mapped identity fields (by
using the compute node). However, you can include a SecurityPEP node after your
compute node has created a new mapped identity.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Authentication, mapping, and authorization with TFIM V6.1 and TAM” on page
416
Use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM) V6.1,
and Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.
“Authentication, mapping, and authorization with TFIM V6.2 and TAM” on page
419
You can use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM)
V6.2, and Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.
Related tasks:
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

Chapter 5. Security 405

“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

Invoking message flow security using a security enabled input
node
You can invoke the message flow security manager by configuring a security
enabled input node.

The following diagram shows an example message flow and gives an overview of
the sequence of events that occur when an input message is received by a security
enabled input node in the message flow:

406 WebSphere Message Broker Version 7.0.0.8

IdentitySourceType

Properties

IdentitySourceToken

IdentitySourcePassword

IdentitySourceIssuedBy

IdentityMappedType

IdentityMappedToken

IdentityMappedPassword

IdentityMappedIssuedBy

Security
enabled Input

node

DB
parms

Security
Profiles

Security
ProfilesDB

Mapping
Provider

Security
Cache

Authorization
Provider

Authentication
Provider

LDAP
WS-Trust

LDAP
WS-Trust

MQ
HTTP(S)

SOAP

MQ
HTTP(S)

SOAP

WS-Trust

Security Processing

1110

7

1

2

3 4 5

86

9

The following steps explain the sequence of events that occur when a message
arrives at a security enabled input node in the message flow. The numbers
correspond to those in the preceding diagram:
1. When a message arrives at a security enabled input node (MQ, HTTP, SCA, or

SOAP), the presence of a security profile associated with the node indicates
whether message flow security is configured. SOAP nodes can implement
some WS-Security capabilities without using the broker's security manager; for
more information, see “Implementing WS-Security” on page 769. The broker's
security manager is called to read the profile, which specifies the combination
of propagation, authentication, authorization, and mapping to be performed
with the identity of the message. It also specifies the external security provider
(also known as the Policy Decision Point or PDP) to be used.
You can create security profiles by using either the
mqsicreateconfigurableservice command or an editor in the WebSphere
Message Broker Explorer. You then use the Broker Archive editor to configure

Chapter 5. Security 407

the security profile on either an individual node or the whole message flow. If
you associate the security profile with the message flow, the security profile
applies to all security enabled input and output nodes and SecurityPEP nodes
in the message flow. However, a security profile that is associated with an
individual node takes precedence over a security profile that is associated
with the message flow. A predefined security profile, called Default propagation,
is provided for setting identity propagation. To explicitly set no security on a
node, set the security profile to No security.

2. If a security profile is associated with the node or message flow, the security
enabled input node extracts the identity information from the input message
(based on the configuration on the node's Security properties page) and sets
the Source Identity elements in the Properties folder. If the security tokens
cannot be successfully extracted, a security exception is raised.
If you require a SOAPInput node to use the identity in the WS-Security
header (rather than an underlying transport identity), you must also define
and specify an appropriate policy set and bindings for the relevant token
profile. For more information, see “Policy sets” on page 774.
For MQ, HTTP, or SCA input nodes, the Security properties page is used to
configure the extraction of the identity. This defaults to Transport Default. For
example, an HTTPInput node extracts a username and password from the
HTTP BasicAuth header. The Security properties page allows the Identity
token type and its location to be explicitly configured to control the extraction.
This source identity information can be in a message header, the message
body, or both.
For information about the tokens that are supported by each node, see
“Identity” on page 390.

3. If authentication is specified in the security profile, the security manager calls
the configured security provider to authenticate the identity. A failure results
in a security exception being returned to the node. The security providers that
are supported by Message Broker for authentication are LDAP, WS-Trust v1.3
compliant security token servers (such as TFIM V6.2) and TFIM V6.1.
A security cache is provided for the authentication result, which enables
subsequent messages (with the same credentials) arriving at the message flow
to be completed with the cached result, provided that it has not expired.

4. If identity mapping is specified in the security profile, the security manager
calls the configured security provider to map the identity to an alternative
identity. A failure results in a security exception being returned to the node.
Otherwise, the mapped identity information is set in the Mapped Identity
elements in the Properties folder.
The security providers that are supported by Message Broker for identity
mapping are WS-Trust V1.3 compliant security token servers (such as TFIM
V6.2) and TFIM V6.1.
A security cache is provided for the result of the identity mapping.
Alternatively, you can use a SecurityPEP node at any point in the message
flow to map the identity that was authenticated at the security enabled input
node. For more information, see “Invoking message flow security using a
SecurityPEP node” on page 411.

5. If authorization is specified in the security profile, the security manager calls
the configured security provider to authorize that the identity (either mapped
or source) has access to this message flow. A failure results in a security
exception being returned to the node.

408 WebSphere Message Broker Version 7.0.0.8

The security providers that are supported by Message Broker for authorization
are LDAP, WS-Trust V1.3 compliant security token servers (such as TFIM
V6.2) and TFIM V6.1.
A security cache is provided for the authorization result.
Alternatively, you can use a SecurityPEP node at any point in the message
flow to authorize the identity that was authenticated at the security enabled
input node. For more information, see “Invoking message flow security using
a SecurityPEP node” on page 411.

6. When all security processing is complete, or when a security exception is
raised by the message flow security manager, control returns to the input
node.
When a security exception is returned to the security enabled input node, it
performs the appropriate transport handling and ends the message flow
transaction. For example, an HTTPInput node returns an HTTP header with a
401 HTTP response code, without propagating to an output terminal. A
SOAPInput node returns a SOAP Fault, reporting the security exception.
Alternatively, if the Treat security exceptions as normal property is set on
the security enabled input node, a security exception is propagated to the
node's Failure terminal. The security enabled input node propagates to its Out
terminal only if all the configured operations in the associated security profile
complete successfully.

7. The message, including the Properties folder and its source and mapped
identity information, is propagated down the message flow.

8. At subsequent nodes in the message flow an identity might be required to
access a resource such as a database. The identity used to access such a
resource is a proxy identity, either the broker's identity or an identity
configured for the specific resource by using the mqsisetdbparms command.

9. When you are developing a message flow you can use the identity fields in
the Properties folder for application processing (for example, identity-based
routing or content building based on identity). Also, as an alternative to
invoking mapping through a WS-Trust V1.3 enabled STS (such as TFIM V6.2)
or TFIM V6.1, you can set the mapped identity fields in a compute node, such
as a Compute, JavaCompute, PHPCompute, or Mapping node.

10. When the message reaches a security enabled output or request node
(MQOutput, HTTPRequest, SOAPRequest, or SOAPAsyncRequest), a security
profile (with propagation enabled) associated with the node indicates that the
current identity token is to be propagated when the message is sent.
If the security profile indicates that propagation is required, the mapped
identity is used. If the mapped identity is not set, or if it has a token type that
is not supported by the node, the source identity is used. If no identity is set,
or if neither the mapped nor source identity has a token type that is
supported by the node, a security exception is returned to the node.
SOAP nodes also require the appropriate policy set and bindings for the token
profile to be associated with the node.
If you want to include a security token in the message that is issued at an
output node, and if the output node is not able to propagate that type of
token, you can use a compute node (before the output node) to put the token
from the properties tree into the relevant message location.
For information about the tokens that are supported by each node, see
“Identity and security token propagation” on page 426.

11. The propagated identity is included in the appropriate message header when
it is sent.

Chapter 5. Security 409

Related concepts:
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“Invoking message flow security using a SecurityPEP node” on page 411
You can invoke the message flow security manager at any point in a message flow,
between an input node and an output or request node, by using a SecurityPEP
node.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.

410 WebSphere Message Broker Version 7.0.0.8

“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsireloadsecurity command” on page 3911
Use the mqsireloadsecurity command to force the immediate expiry of some or all
the entries in the security cache.
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that
you want to change.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Invoking message flow security using a SecurityPEP node
You can invoke the message flow security manager at any point in a message flow,
between an input node and an output or request node, by using a SecurityPEP
node.

The following diagram shows an example message flow and gives an overview of
the sequence of events that occur when an input message is received by an input
node that is not security enabled (or that has no associated security profile) and is
later processed by a SecurityPEP node in the message flow:

Chapter 5. Security 411

IdentitySourceType

Properties

IdentitySourceToken

IdentitySourcePassword

IdentitySourceIssuedBy

IdentityMappedType

IdentityMappedToken

IdentityMappedPassword

IdentityMappedIssuedBy

SecurityPEP
node

Security
Profiles

Mapping
Provider

Security
Cache

Authorization
Provider

Authentication
Provider

LDAP
WS-Trust

LDAP
WS-Trust

Output/
Request

node

Input
node

WS-Trust

Security Processing

10

82

1

3

4 5 6

7

9

The following steps explain the sequence of events that occur when a message
arrives at an input node that is not security enabled (or that has no associated
security profile). The numbers correspond to those in the preceding diagram:
1. You can use a SecurityPEP node at any point in a message flow between an

input and an output or request node. The SecurityPEP node enables security
to be applied in a message flow in the following situations:
v When the message flow input node is not security enabled (for example,

FileInput, TCPIPClientInput, SAPInput, and JMSInput nodes).
v When the message flow input node is security enabled and might be

configured to perform authentication operations, but the message flow is
required to perform some routing or filtering before the business function
being invoked is known; as a result, authorization needs to be performed
later in the message flow logic.

412 WebSphere Message Broker Version 7.0.0.8

v When the message flow includes multiple output or request nodes, which
require a specific identity mapping to be performed before each node, to
obtain the appropriate security tokens for propagation.

The message tree that is propagated into the SecurityPEP node includes the
properties tree identity fields. These fields are empty, unless a security enabled
input node (or a prior SecurityPEP node) has already extracted identity
tokens, and possibly performed some security operations.

2. When a message arrives at a SecurityPEP, the presence of a security profile
associated with the node indicates whether message flow security is
configured. The broker's security manager is called to read the profile, which
specifies the combination of propagation, authentication, authorization, and
mapping to be performed with the identity of the message. It also specifies
the external security provider (also known as the Policy Decision Point or
PDP) to be used.
You can create security profiles by using either the
mqsicreateconfigurableservice command or an editor in the WebSphere
Message Broker Explorer. You then use the Broker Archive editor to configure
the security profile on either an individual node or the whole message flow. If
you associate the security profile with the message flow, the security profile
applies to all security enabled input and output and SecurityPEP nodes in the
message flow. However, a security profile that is associated with an individual
node takes precedence over a security profile that is associate with the
message flow. Predefined security profiles are provided for setting identity
propagation and for explicitly setting no security on a node.

3. If a security profile is associated with the SecurityPEP node or message flow,
the node extracts the identity information from the message tree based on the
node configuration and sets the Source Identity elements in the Properties
folder. If the node sets a token type of Current token, the existing identity
tokens in the Mapped Identity properties fields are used (if they exists); if
there are no identity tokens in the Mapped Identity properties fields, the
tokens in the Source Identity properties fields are used. If the security tokens
cannot be successfully extracted, a security exception is raised and propagated
to the failure terminal (if wired).

4. If authentication is specified in the security profile, the security manager calls
the configured security provider to authenticate the identity. A failure results
in a security exception being returned to the node. The security providers that
are supported by Message Broker for authentication are LDAP, WS-Trust v1.3
compliant security token servers (such as TFIM V6.2), and TFIM V6.1.
A security cache is provided for the authentication result, which enables
subsequent messages (with the same credentials) arriving at the message flow
to be completed with the cached result, provided that it has not expired.

5. If identity mapping is specified in the security profile, the security manager
calls the configured security provider to map the identity to an alternative
identity. A failure results in a security exception being returned to the node.
Otherwise, the mapped identity information is set in the Mapped Identity
elements in the Properties folder.
The security providers that are supported by Message Broker for identity
mapping are WS-Trust V1.3 compliant security token servers (such as TFIM
V6.2) and TFIM V6.1.
A security cache is provided for the result of the identity mapping.

Chapter 5. Security 413

6. If authorization is specified in the security profile, the security manager calls
the configured security provider to authorize that the identity (either mapped
or source) has access to this message flow. A failure results in a security
exception being returned to the node.
The security providers that are supported by Message Broker for authorization
are LDAP, WS-Trust V1.3 compliant security token servers (such as TFIM
V6.2) and TFIM V6.1.
A security cache is provided for the authorization result.

7. When all security processing is complete, or when a security exception is
raised by the message flow security manager, control returns to the
SecurityPEP node.
When a security exception is returned to the SecurityPEP node, the exception
is either propagated to the failure terminal if it is connected, or returned to the
preceding node as a recoverable exception. The SecurityPEP node propagates
to its Out terminal only if all the configured operations in the associated
security profile complete successfully.

8. The message, including the populated Properties folder and its source and
mapped identity information, is propagated down the message flow.

9. When you are developing a message flow, you can use the identity fields in
the Properties folder for application processing (for example, identity-based
routing or content building based on identity). If the identity is to be
propagated in an outbound message from an output or request node that does
not support propagation of the token, you can use a compute node (including
a Compute, JavaCompute, PHPCompute, or Mapping node), to move the
identity token into the required transport header or message body location.

10. When the message reaches an output node, a security profile associated with
the node can indicate whether an identity is to be taken from the Properties
folder and propagated when the message is sent. Only specific transport
nodes can propagate tokens that are the default for the transport; any other
token type must be handled by a compute node, as described above.

Related concepts:
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“Invoking message flow security using a security enabled input node” on page 406
You can invoke the message flow security manager by configuring a security
enabled input node.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.

414 WebSphere Message Broker Version 7.0.0.8

“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsireloadsecurity command” on page 3911
Use the mqsireloadsecurity command to force the immediate expiry of some or all
the entries in the security cache.
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that
you want to change.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.

Chapter 5. Security 415

“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Authentication, mapping, and authorization with TFIM V6.1 and
TAM
Use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM) V6.1,
and Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.

Note: Support for TFIM V6.1 is included for compatibility with previous versions
of WebSphere Message Broker. If possible, upgrade to TFIM V6.2 and refer to the
information in “Authentication, mapping, and authorization with TFIM V6.2 and
TAM” on page 419.

WebSphere Message Broker makes a single TFIM WS-Trust call for an input node
that is configured with a TFIM security profile, which means that a single module
chain must be configured to perform all the required authentication, mapping, and
authorization operations.

The following diagram shows the configuration of WebSphere Message Broker,
TFIM, and TAM to enable authentication, mapping, and authorization of an
identity in a message flow:

416 WebSphere Message Broker Version 7.0.0.8

1

3

2 9

4 5 6

7

8

Input Message

Module Chain

Authentication
Module

Authorization ModuleMapping
Module

Token(s)

XSLT

Token(s)

Broker

Execution
Group

Flow

Identity
Issuer

Address =
Issuer =

"<Broker>.<ExecutionGroup>.<FlowName>"
"<Issuer>"

ProjectedObjectRoot="<root>"

PO Root="<root>"

Users
LDAP

TAM

TFIM

LDAP

Group

ACL

PortType"<Flow>"

PortType".." Operation".."

Operation".."

Operation
"MessageFlowAccess"

Allow "i" for
"WebService"

by "Group"

PortType".."PO Root="..."

The numbers in the preceding diagram correspond to the following sequence of
events:
1. A message enters a message flow.
2. A WS-Trust request is issued by the broker, with these properties:
v RequestType = Validate
v Identity = Token(s) from input message
v Issuer = Issuer from input message
v AppliesTo Address = "Broker.ExecutionGroup.FlowName"

v PortType = "FlowName"

v Operation = "MessageFlowAccess"

Chapter 5. Security 417

3. TFIM selects a module chain to process the WS-Trust request, based on the
AppliesTo Address and Issuer properties of the request.

4. A module chain can perform authentication if it includes a module (such as a
UsernameTokenSTSModule or X509STSModule) in validate mode.

5. A module chain can perform mapping by using an XSLTransformationModule
in mapping mode to manipulate the identity information.

6. A module chain can perform authorization by using an
AuthorizationSTSModule in other mode. The module chain must be configured
with a Protected Object Root value.

7. The AuthorizationSTSModule performs the authorization check by making a
request to TAM with these properties:
v Action = “i” (invoke)
v Action Group = “WebService"
v Protected Object = "ProtectedObjectRoot.FlowName.MessageFlowAccess"

where “i” and “WebService” are default values used by an
AuthorizationSTSModule; and FlowName and MessageFlowAccess are the
WS-Trust request PortType and Operation values.

8. TAM processes the authorization request by:
a. Finding the Access Control Lists (ACLs) associated with protected object

"<ProtectedObjectRoot>.<FlowName>.MessageFlowAccess".
b. Checking whether or not the ACLs grant action “i” on action group

“WebService” to the user (with the user either named directly, or by
membership of a named group).

9. The WS-Trust reply is returned to the broker. If this action is the result of a
mapping request, the WS-Trust reply contains the mapped identity token.

For further information about how to configure TFIM, see the IBM Tivoli Federated
Identity Manager Information Center.

For information about how to configure TAM, see the IBM Tivoli Access Manager
Information Center.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:

418 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm

“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring authorization with TFIM V6.1” on page 483
You can configure a message flow to perform authorization on an identity by using
Tivoli Federated Identity Manager (TFIM) V6.1.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

Authentication, mapping, and authorization with TFIM V6.2 and
TAM
You can use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM)
V6.2, and Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.

WebSphere Message Broker makes a single TFIM WS-Trust call for an input node
or SecurityPEP node that is configured with a WS-Trust V1.3 STS security profile.
As a result, a single module chain must be configured to perform all the required
authentication, mapping, and authorization operations.

Chapter 5. Security 419

When you use a WS-Trust v1.3 STS for authentication, authorization, or mapping, a
request is made to the trust service with the following parameters, which control
the STS processing. If you are using TFIM V6.2, these parameters are used in the
selection of the TFIM module chain:

Parameter Value

RequestType The type of request issued to the trust
service. Valid values are:

Issue This value can be specified when
mapping is the only operation that
is set to WS-Trust V1.3 STS in the
security profile. It is not valid if
WS-Trust V1.3 STS is specified for
authentication or authorization.

The namespace qualified value is
http://docs.oasis-open.org/ws-
sx/ws-trust/200512/Issue, which
shows in TFIM V6.2 as Issue Oasis
URI.

Validate
This value must be set when the
security profile also includes
authentication or authorization (in
addition to mapping) for the same
WS-Trust V1.3 STS provider.

The namespace qualified value is
http://docs.oasis-open.org/ws-
sx/ws-trust/200512/Validate,
which shows in TFIM V6.2 as
Validate Oasis URI.

Issuer This value is determined by the effective
setting of the IssuedBy property on the Basic
tab of the SecurityPEP node or the Security
tab of the input node.

420 WebSphere Message Broker Version 7.0.0.8

Parameter Value

AppliesTo This value is determined by the type of
node:

MQInput or SCAInput node with MQ
binding:

The WebSphere MQ IRI of the
node's input queue; for example:

wmq://msg/queue/queue_name@queue_manager_name

HTTPInput, SOAPInput, or
SOAPAsyncResponse node with HTTP
binding:

The endpoint URL; for example:

http://myflow/myInputNodePath

SecurityPEP node with a default (blank)
WS-Trust AppliesTo address:

The URN for the message flow that
contains the node; for example:

urn:/broker_name.execution_group_name.flow_name

SecurityPEP node with WS-Trust AppliesTo
address set on the Advanced tab of the
node: The URI value configured in the

property. This value is typically the
URL of the target service that is
used when you invoke a mapping
operation to obtain the required
token for the following request
node; for example:

http://remotehost.ibm.com:9080/targetservice

You can also set the AppliesTo
service name and AppliesTo port
type properties on the Advanced
tab of the node. The WS-Trust
request includes these optional
elements only when they are
configured. These values are
typically valid QNames; for
example:

http://myservice.mycom.com:myservicename

When you set these properties in
the SecurityPEP node, you must
configure them in the TFIM module
chain:

v In the service name and port
type TFIM properties, the
information to the left of the
colon must match the namespace
URI of the WS-Addressing
namespace that is used for the
PortType and ServiceName
elements in the WS-Trust request
set by the broker, which is:

http://www.w3.org/2005/08/addressing

v The information to the right of
the colon in the service name and
port type TFIM properties must
match the value configured on
the SecurityPEP node. You can
also configure a regular
expression in TFIM to specify a
match.

Chapter 5. Security 421

This section describes an authorization configuration that you can use to perform
the authorization operation with TFIM V6.2 and TAM.

In the security profile, set the TFIM V6.2 endpoint for the authorization operation.
When you create a module chain to be used by a security enabled input node or
SecurityPEP node, and resolved by AppliesTo information, you must include the
TFIM TAMAuthorizationSTModule to invoke TAM authorization.

The TAMAuthorizationSTSModule requires the following TFIM STS universal user
context attributes:

PrincipalName
The username to be authorized. This username must exist in your TAM
user repository.

ObjectName
The TAM object name of the resource on which an authorization check is
to be made. Typically this is derived from the AppliesTo information that is
passed by the message flow security manager from the security enabled
input node or SecurityPEP node.

Action
The TAM action to be authorized; for example, x (eXecute).

The TAM Access Control List (ACL), which determines the authorization decision,
is located in the TAM protected object space using the path that is set on the
ObjectName attribute of the TFIM STS universal user context input to the
TAMAuthorizationSTSModule module.

The following diagram shows the configuration of WebSphere Message Broker,
TFIM V6.2, and TAM to enable authentication, mapping, and authorization of an
identity in a message flow:

422 WebSphere Message Broker Version 7.0.0.8

1

3

2 9

4 5 6

7

8

Input Message

Module Chain

Protected Object

Authentication
Module

Authorization ModuleMapping
Module

Token(s)

XSLT

Token(s)

Broker

Execution
Group

Flow Node

Identity
Issuer

RequestType:
Identity:

"Validate / Issue OASIS"
"Tokens(s) from input message"

Issuer:"Issuer From input message"
Applies-To Address:"urn set depends on node"

ServiceName: Can be set in SecurityPEP"
PortType: Can be set in SecurityPEP"

"ObjectName" - set by Mapping Module

Users
LDAP

TAM

TFIM

LDAP

Group

ACL
Allow "<a>" for
"WebService"

by "Group"

The numbers in the preceding diagram correspond to the following sequence of
events:
1. A message enters a message flow.
2. A WS-Trust request is issued by the broker, with the RequestType, Issuer, and

AppliesTo properties set.
3. TFIM selects a module chain to process the WS-Trust request, based on the

RequestType, Issuer, and AppliesTo properties of the request.
4. A module chain can perform authentication if it includes a module in Validate

mode that is appropriate to the token type that is being passed in the request
from the message flow input message. For example, a Username and Password
token can be authenticated using a UsernameTokenSTSModule .

Chapter 5. Security 423

5. The module chain must perform some mapping by using an
XSLTransformationModule in mapping mode to manipulate the identity
information and to provide the required context attributes in the TFIM stsuser
object for use by subsequent modules.

6. A module chain can perform authorization in TAM by using the
TAMAuthorizationSTSModule.

7. The TAMAuthorizationSTSModule performs the authorization check by making
a request to TAM with these properties:
v Action = a (where a is the stsuser context action attribute). For example, x for

eXecute could be set using the following code:
<stsuuser:ContextAttributes>

<!-- Action -->
<stsuuser:Attribute name="Action" type="urn:ibm:names:ITFIM:stsmodule:tamazn">
<stsuuser:Value>x</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:ContextAttributes>

v Action Group = WebService

v Protected Object = ProtectedObjectName (where ProtectedObjectName is the
stsuser context action attribute). For example, x for eXecute could be set
using the following code:
<stsuuser:ContextAttributes>

<!-- ObjectName -->
<stsuuser:Attribute name="ObjectName" type="urn:ibm:names:ITFIM:stsmodule:tamazn">
<stsuuser:Value>ProtectedObjectName</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:ContextAttributes>

Typically, ProtectedObjectName is set conditionally from the AppliesTo
information in the request.

8. TAM processes the authorization request by:
a. Finding the Access Control Lists (ACLs) associated with protected object

ProtectedObjectName

b. Checking whether the ACLs grant action a on action group WebService to
the user (the user is named either directly or indirectly, through
membership of a named group).

9. The WS-Trust reply is returned to the broker. If this action is the result of a
mapping request, the WS-Trust reply contains the mapped identity token.

For further information about how to configure TFIM, see the IBM Tivoli Federated
Identity Manager Information Center.

For information about how to configure TAM, see the IBM Tivoli Access Manager
Information Center.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to

424 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm

access a message flow.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

Chapter 5. Security 425

Identity and security token propagation
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.

In an enterprise system, you can use different physical identities or security tokens
(such as user names, certificates, and SAML assertions) to represent a single logical
identity through different parts of the enterprise. The propagation of an identity or
security token ensures that the logical identity is kept throughout the system by
mapping between the various physical forms as necessary. For example, a message
might enter the system using a certificate, but a user name token might be
required for server processing of the message. Identity mapping is used to convert
from the certificate to the username token, and identity propagation ensures that
the mapped identity is placed in the correct place for the outbound transport.

When an output or request node propagates an identity, the mapped identity is
used. If the mapped identity is not set, or if it has a token type that is not
supported by the node, the source identity is used. If no identity is set, or if
neither the mapped nor source identity has a token type that is supported by the
node, a security exception is thrown by the node.

The output nodes that support identity propagation are:
v CICSRequest
v HTTPRequest
v IMSRequest
v MQOutput
v SAPRequest
v SCAAsyncRequest
v SCARequest
v SOAPAsyncRequest
v SOAPRequest

The following table shows the support that is provided by the message flow
security manager for the propagation of the different types of security token. For
more information about these security tokens, see “Identity” on page 390.

Table 9. Support for security token types - token propagation

Token type
(format) Broker security manager support Token propagated in

Username Username tokens are supported
for propagation by the following
nodes:

v CICSRequest

v HTTPRequest

v IMSRequest

v MQOutput

v SCAAsyncRequest

v SCARequest

CICS The request security
credentials

HTTP BasicAuth header

IMS The request security
credentials

MQ MQMD.UserIdentifier
transport header

426 WebSphere Message Broker Version 7.0.0.8

Table 9. Support for security token types - token propagation (continued)

Token type
(format) Broker security manager support Token propagated in

Username and
password

Username and password tokens
are supported for propagation by
the following nodes:

v CICSRequest

v HTTPRequest

v IMSRequest

v MQOutput

v SAPRequest

v SCAAsyncRequest

v SCARequest

v SOAPAsyncRequest

v SOAPRequest

CICS The request security
credentials

HTTP BasicAuth header

IMS The request security
credentials

MQ MQMD.UserIdentifier
transport header

SAP The request security
credentials

SOAP
v BasicAuth header, if

there is no policy set
and binding

v SOAP header, if a
policy set and binding
sets the Username
token profile

v Kerberos client
credentials, if a policy
set and binding sets
the Kerberos token
profile

SAML assertion SAML tokens are supported for
propagation by the following
nodes:

v SOAPRequest

v SOAPAsyncRequest

SOAP header when a policy set
and binding sets the SAML token
profile

X.509 certificate X.509 tokens are supported for
propagation by the following
nodes:

v SOAPRequest

v SOAPAsyncRequest

SOAP header when a policy set
and binding sets the X.509 binary
token profile

LTPA v2 token LTPA v2 tokens are supported for
propagation by the following
nodes:
v SOAPRequest
v SOAPAsyncRequest

SOAP header when a policy set
and binding sets the LTPA token
profile

Universal WSSE
token

Universal WSSE tokens are not
supported for propagation by any
node.

For information about how to configure a message flow to propagate a message
identity, see “Configuring for identity propagation” on page 492. For more
information about how one physical identity is converted to another, see “Identity
mapping” on page 403.
Related concepts:

Chapter 5. Security 427

“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Configuring authentication with HTTP basic authentication” on page 451
Use a security profile to configure HTTP basic authentication in the HTTPRequest
or SOAPInput nodes.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Propagating security credentials to an SAP request” on page 2065
The SAPRequest node can use an identity that is present in the Properties folder of
the message tree structure for the security credentials in a request, by using the
Propagate property on the security profile that is defined on the node.
“Propagating security credentials to IMS” on page 2144
The IMSRequest node can use an identity that is present in the Properties folder of
the message tree structure for the security credentials in a request, by using the
Propagate property on the security profile that is defined for the node.
“Propagating security credentials to CICS Transaction Server for z/OS” on page
2208
The CICSRequest node can use an identity that is present in the Properties folder
of the message tree structure for the security credentials in a request, by using the
Propagate property on the security profile that is defined on the node.

428 WebSphere Message Broker Version 7.0.0.8

Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SCARequest node” on page 4719
Use the SCARequest node to send a request to WebSphere Process Server. The
node is a synchronous request and response node, and blocks after sending the
request until the response is received. The node can also send one-way requests.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

Security exception processing
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.

Security exceptions are processed in a different way from other errors on the input
node. An error is typically caught on the input node and routed down the Failure
terminal for error processing, but security exceptions are not processed in the same
way. By default, the broker does not allow security exceptions to be caught within
the message flow, but backs the message out or returns an error (as in the case of
HTTP). Security exceptions in input nodes are managed in this way to prevent a
security denial of service attack filling the logs and destabilizing the system.

However, security exceptions in SecurityPEP nodes are managed in a different way.
If a security operation fails in a SecurityPEP node, a security exception is raised,
wrapped in a normal recoverable exception, which invokes the error handling that
is provided by the message flow.

If you have designed the message flow to be in a secure area and you want to
explicitly perform processing of security exceptions, you can select the Treat
Security Exceptions as normal exceptions property on the MQInput or
HTTPInput nodes. This property causes security exceptions to be processed in the
same way as other exceptions in the message flow.

Chapter 5. Security 429

If you associate the Default Propagation security profile with an output or request
node, the token type of the mapped or source security token must be the same as
the transport default for that node; otherwise, a security exception occurs. For
example, for an MQOutput node, the token type must be Username, for an
HTTPRequest node, the token type must be Username + Password, and for a
SOAPRequest node, the token type must be the type that is defined in either the
policy set and binding or the transport binding.

For information on how to diagnose the causes of security exceptions, see
“Diagnosing security problems” on page 496.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Diagnosing security problems” on page 496
This topic explains how to find out why access to a secured flow has been denied.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

430 WebSphere Message Broker Version 7.0.0.8

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.

Setting up message flow security
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.

About this task

You can configure the broker to perform end-to-end processing of an identity
carried in a message through a message flow. Administrators can configure
security at message flow level, controlling access based on the identity flowed in a
message. This security mechanism is independent of both the transport and the
message format.

To set up security for a message flow, perform the tasks described in the following
topics:

Procedure
1. “Creating a security profile” on page 433
2. “Configuring the extraction of an identity or security token” on page 447
3. “Configuring identity authentication and security token validation” on page

450
4. “Configuring identity mapping” on page 463
5. “Configuring authorization” on page 470
6. “Configuring for identity propagation” on page 492
7. “Database security” on page 495
8. “Diagnosing security problems” on page 496

What to do next

If the message flow is a Web service implemented by using the “SOAP nodes” on
page 1609, and the identity is to be taken from the “WS-Security” on page 765
header tokens, you must also create appropriate “Policy sets” on page 774 and
bindings, then configure them on the relevant SOAP nodes (in addition to the
security profile). See “Associating policy sets and bindings with message flows and
nodes” on page 785.

To work with an identity, you must configure the policy sets and bindings for the
relevant capabilities:
v To work with a Username and Password identity, configure the policy sets and

bindings for “Username token capabilities” on page 791.
v To work with an X.509 Certificate identity, configure the policy sets and bindings

for “X.509 certificate token capabilities” on page 795.
In the policy set binding, the Certificates mode of the X.509 certificate
authentication token must be set as Trust Any (rather than Trust Store), so that

Chapter 5. Security 431

the certificate is passed to the security provider defined by the security profile.
Setting Trust Store causes the certificate to be validated in the local broker trust
store.

v To work with a SAML assertion, configure the policy sets and bindings for
“SAML token capabilities” on page 804.

v To work with an LTPA token, configure the policy sets and bindings for “LTPA
token capabilities” on page 813.

v To work with a Kerberos ticket, configure the policy sets and bindings for
“Kerberos token capabilities” on page 809.

For more information, see “Policy Sets and Policy Set Bindings editor:
Authentication and Protection Tokens panel” on page 6854.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.

432 WebSphere Message Broker Version 7.0.0.8

“Creating a security profile for LDAP” on page 435
Create a security profile for use with Lightweight Directory Access Protocol
(LDAP) or Secure LDAP (LDAPS), by using either the
mqsicreateconfigurableservice command or an editor in the WebSphere Message
Broker Explorer.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.

Creating a security profile
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.

About this task

Before you can enable security on a node or a message flow, you need to create a
security profile that defines the security operations that you want to perform.

You can create a security profile for use with external security providers to provide
the required security enforcement and mapping. You can configure the security
profile to use different security providers for different security functions; for
example, you might use LDAP for authentication and WS-Trust V1.3 STS for
mapping and authorization.

If you want to extract and propagate an identity without security enforcement or
mapping, you can use the supplied security profile called Default Propagation. The
Default Propagation profile is a predefined profile that requests only identity
propagation.

To create a security profile, see:
v “Creating a security profile for LDAP” on page 435
v “Creating a security profile for WS-Trust V1.3 (TFIM V6.2)” on page 440
v “Creating a security profile for TFIM V6.1” on page 444
Related concepts:

Chapter 5. Security 433

“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.

434 WebSphere Message Broker Version 7.0.0.8

Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

Creating a security profile for LDAP:

Create a security profile for use with Lightweight Directory Access Protocol
(LDAP) or Secure LDAP (LDAPS), by using either the
mqsicreateconfigurableservice command or an editor in the WebSphere Message
Broker Explorer.

Before you begin

Before you start:

Ensure that you have an LDAP server that is LDAP Version 3 compliant, for
example:
v IBM Tivoli Directory Server
v Microsoft Active Directory
v OpenLDAP.

About this task

If your LDAP directory does not permit login by unrecognized user IDs, and does
not grant search access rights on the subtree, you must also set up a separate
authorized login ID that the broker can use for the search. For information on how
to do this, see “Configuring authorization with LDAP” on page 472 or
“Configuring authentication with LDAP” on page 453.

Creating a security profile using mqsicreateconfigurableservice:
About this task

You can use the mqsicreateconfigurableservice command to create a security
profile that uses LDAP for authentication, authorization, or both. The security
profile ensures that each message has an authenticated ID and is authorized for the
message flow.

Procedure

1. Open a command window that is configured for your environment.
2. Enter the mqsicreateconfigurableservice command on the command line. For

example:
mqsicreateconfigurableservice WBRK_BROKER -c SecurityProfiles -o LDAP
-n authentication,authenticationConfig,authorization,authorizationConfig,propagation,rejectBlankpassword
-v "LDAP,\"ldap://ldap.acme.com:389/ou=sales,o=acme.com\",LDAP,
\"ldap://ldap.acme.com:389/cn=All Sales,ou=acmegroups,o=acme.com\",TRUE,TRUE

You must enclose the LDAP URL (which contains commas) with escaped
double quotation marks (\" and \") so that the URL commas are not confused
with the comma separator of the value parameter of
mqsicreateconfigurableservice.
If the LDAP URL includes an element name with a space, in this case cn=All
Sales, the set of values after the -v flag must be enclosed by double quotation
marks, (")

Chapter 5. Security 435

For more information about the structure of the command, refer to the
“mqsicreateconfigurableservice command” on page 3849.
You can define the security-specific parts of the command in the following way:
a. Set the authentication to LDAP. This ensures that the incoming identity is

validated.
b. Set the authenticationConfig using the following syntax:

ldap[s]://server[:port]/baseDN[?[uid_attr][?[base|sub]]]

For example:
ldap://ldap.acme.com:389/ou=sales,o=acme.com
ldaps://localhost:636/ou=sales,o=acme?cn?base

ldap: (Required) Fixed protocol string.

s: (Optional) Specifies whether SSL should be used. Default is not to
use SSL.

server: (Required) The name or IP address of the LDAP server to contact.

port: (Optional) The port to connect to. Default is 389 (non-SSL). For
LDAP servers with SSL enabled, the port is typically 636.

baseDN
(Required) String defining the base distinguished name (DN) of all
users in the directory. If users exist in different subtrees, specify a
common subtree under which a search on the username uniquely
resolves to the required user entry, and set the sub attribute.

uid_attr:
(Optional) String defining the attribute to which the incoming
username maps, typically uid, CN, or email address. Default is uid.

base|sub:
(Optional) Defines whether to perform a base or subtree search. If
base is defined, the authentication is faster because the DN of the
user can be constructed from the uid_att, username, and baseDN
values. If sub is selected, a search must be performed before the DN
can be resolved. Default is sub.

c. Set the authorization to LDAP. This ensures that the incoming identity is
checked for group membership in LDAP.

d. Set the authorizationConfig using the following syntax:
ldap[s]://server[:port]/groupDN[?[member_attr]
[?[base|sub][?[x-userBaseDN=baseDN,
x-uid_attr=uid_attr]]]]

For example:
ldap://ldap.acme.com:389/cn=All Sales,ou=acmegroups,
o=acme.com?uniquemember?sub?x-userBaseDN=ou=sales%2co=ibm.com,
x-uid_attr=emailaddress

ldap: (Required) Fixed protocol string

s: (Optional) Specifies whether SSL is used. Default is not to use SSL.

server: (Required) The name or IP address of the LDAP server to contact.

port: (Optional) The port to connect to. Default is 389 (non-SSL). For
LDAP servers with SSL enabled, the port is typically 636.

groupDN
(Required) Fully defined distinguished name of the group in which
users must be members to be granted access.

436 WebSphere Message Broker Version 7.0.0.8

member_attr:
(Optional) The attribute of the group used to filter the search.
Default is to look for both member and uniquemember attributes.

The following options are required only if authentication has not preceded
the authorization, and if the authentication configuration string has not
been specified. If the authentication configuration string has been specified,
the following parameters are ignored and those provided by the baseDN,
uid_attr, and [base|sub] for authentication are used instead:

base|sub:
(Optional) Defines whether to perform a base or subtree search. If
base is defined, the authentication is faster because the DN of the
user can be constructed from uid_att + username + baseDN. If sub
is selected, a search must be performed before the DN can be
resolved. Default is sub.

baseDN
(Optional) String defining the base distinguished name of all users
in the directory. Must be preceded by the string x-userBaseDN. Any
commas in the BaseDN must be rendered as %2c.

x-uid_attr:
(Optional) String defining the attribute to which the incoming
username should map, typically uid, CN, or email address. Default
is uid. Must be preceded by the string x-uid_attr.

When you submit the command from a batch (.bat) file or command (.cmd) file,
if the LDAP URL includes an extension with LDAP URL “percent hex hex”
escaped characters (for example, a comma replaced by %2c, or a space replaced
by %20), the percent signs must be escaped from the batch interpreter with an
extra percent sign (%%). For example:
mqsicreateconfigurableservice WBRK_BROKER -c SecurityProfiles -o LDAP_URI_FUN
-n authentication,authenticationConfig,authorization,authorizationConfig -v
"LDAP,\"ldap://ldap.acme.com:389/ou=sales,o=acme.com?emailaddress?sub\",
LDAP,\"ldap://ldap.acme.com:389/cn=All Sales,ou=acmegroups,
o=acme.com?report?base?x-BaseDN=ou=sales%%2co=acme.com,
x-uid_attr=emailaddress\""

The selected group must be defined on the LDAP server, and all of the required
users must be members of the group.

3. If you need to reconfigure the security profile after it has been created, use the
mqsichangeproperties command.

Creating a security profile using the WebSphere Message Broker Explorer:
About this task

You can use the WebSphere Message Broker Explorer to create a security profile for
LDAP.

Procedure

1. In the WebSphere Message Broker Explorer, right-click on the broker with
which you want to work, and click Properties.

2. In the Properties window, select the Security tab, and click Security Profiles.
The Security Profiles window is displayed, containing a list of existing security
profiles for the broker on the left, and a pane in which you can configure the
profile on the right.

3. Click Add to create a new profile and add it to the list. You can edit the name
of the security profile by highlighting it in the list and pressing F2.

Chapter 5. Security 437

4. Configure the security profile using the entry fields on the right side of the
pane:
a. Select the type of Authentication required. This can be LDAP, TFIM, or NONE.
b. If you have selected LDAP for authentication, edit the following fields in

the LDAP Parameters section:
v LDAP Host
v LDAP baseDN
v LDAP uid attr
v LDAP search Scope
The values that you enter in the LDAP Parameters fields create a
configuration string, which is displayed in the Authentication Config field.
For information about the valid values for the parameters, see “Creating a
security profile using mqsicreateconfigurableservice” on page 435.

c. Select the type of Mapping required. This can be either TFIM or NONE.
d. If you have selected TFIM for mapping, type the URL of the TFIM server in

the TFIM Configuration field of the TFIM Parameters section.
The value that you specify in the TFIM Configuration field creates a
configuration string, which is displayed in the Mapping Config field.

e. Select the type of Authorization required. This can be LDAP, TFIM, or NONE.
f. If you have selected LDAP for authorization, edit the following fields in the

LDAP Parameters section:
v LDAP Host
v LDAP baseDN
v LDAP uid attr
v LDAP search Scope
v LDAP group baseDN
v LDAP group member.
The values that you enter in the LDAP Parameters fields create a
configuration string, which is displayed in the Authorization Config field.
For information about the valid values for the parameters, see “Creating a
security profile using mqsicreateconfigurableservice” on page 435.

g. In the Propagation field, specify whether you require the identity to be
propagated. The default is False.

h. In the Reject Empty Password field, specify whether you want the security
manager to reject a username that has an empty password token, without
passing it to LDAP. The default is False, which means that a username is
passed to LDAP even if it has an empty password token.

i. In the Password Value field, select the way in which the password is
displayed in the properties folder. The options are:

PLAIN The password appears in the Properties folder as plain text.

OBFUSCATE
The password appears in the Properties folder as base64 encoding.

MASK The password appears in the Properties folder as four asterisks (****).
5. Click Finish to deploy the security profile to the broker.

Results

To delete an existing security profile, select the profile in the list and then click
Delete.

438 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.

Chapter 5. Security 439

“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Creating a security profile for WS-Trust V1.3 (TFIM V6.2):

You can create a security profile for a WS-Trust V1.3 compliant Security Token
Server (STS), for example, Tivoli Federated Identity Manager (TFIM) V6.2, for any
combination of the following security operations: authentication, authorization, and
mapping.

440 WebSphere Message Broker Version 7.0.0.8

About this task

You can use either the mqsicreateconfigurableservice command or an editor in
the WebSphere Message Broker Explorer to create the security profile:
v “Creating a profile using mqsicreateconfigurableservice”
v “Creating a profile using the WebSphere Message Broker Explorer” on page 442

Creating a profile using mqsicreateconfigurableservice:
About this task

To create a security profile that uses a WS-Trust V1.3 compliant Security Token
Server (STS), you can use the mqsicreateconfigurableservice command by setting
the configuration parameter to the full URL of the STS. The URL must consist of
the transport scheme, host name, port, and path. For TFIM V6.2 WS-Trust V1.3
endpoint, the path is /TrustServerWST13/services/RequestSecurityToken. For
example:
http://stsserver.mycompany.com:9080/TrustServerWST13/services/RequestSecurityToken

Procedure

To create a security profile that uses WS-Trust v1.3 for mapping, enter the
following command:
mqsicreateconfigurableservice brokername -c SecurityProfiles
-o profilename -n mapping,mappingConfig
-v "WS-Trust v1.3 STS",http://stsserver.mycompany.com:9080/TrustServerWST13/services/RequestSecurityToken

If the URL specifies an address beginning with https://, an SSL secured
connection is used for requests to the WS-Trust v1.3 server. For example, to create
a security profile that uses an HTTPS connection to WS-Trust v1.3 for mapping,
enter the following command:
mqsicreateconfigurableservice brokername -c SecurityProfiles
-o profilename -n mapping,mappingConfig
-v "WS-Trust v1.3 STS",https://stsserver.mycompany.com:9080/TrustServerWST13/services/RequestSecurityToken

In addition to specifying the security profile URL as an address beginning with
https://, you can configure the following advanced parameters, by setting broker
environment variables:

MQSI_STS_SSL_PROTOCOL
The version of the SSL protocol to be used. Valid values are:
v SSL
v SSLv3
v TLS

The initial value is SSLv3.

MQSI_STS_SSL_ALLOWED_CIPHERS
A space-separated list of the encryption ciphers that can be used. For a list
of all the cipher suites that are supported by WebSphere Message Broker,
see the Java product information for your operating system. For operating
systems that use IBM Java, see Appendix A of the IBM JSSE2 Guide:
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/
jsse2Docs/JSSE2RefGuide.html

MQSI_STS_REQUEST_TIMEOUT
The STS request timeout, specified in seconds. The initial value is 100. For
information about providing environment variables to the broker, see
“Setting up a command environment” on page 213.

Chapter 5. Security 441

If WS-Trust v1.3 STS is selected for more than one operation (for example, for
authentication and mapping), the WS-Trust v1.3 server URL must be identical for
all the operations, and is therefore specified only once.
The following example creates a security profile that uses TFIM V6.2 for
authentication, mapping, and authorization:
mqsicreateconfigurableservice MYBROKER -c SecurityProfiles -o MyWSTrustProfile
-n authentication,mapping,authorization,propagation,mappingConfig
-v "WS-Trust v1.3 STS","WS-Trust v1.3 STS","WS-Trust v1.3 STS",TRUE,http://stsserver.mycompany.com:9080/TrustServerWST13/services/RequestSecurityToken

Creating a profile using the WebSphere Message Broker Explorer:
About this task

You can use the WebSphere Message Broker Explorer to create a security profile for
using WS-Trust v1.3.

Procedure

1. In the WebSphere Message Broker Explorer, right-click on the broker with
which you want to work, and click Properties.

2. In the Properties window, select the Security tab, and click Security Profiles.
The Security Profiles window is displayed, containing a list of existing security
profiles for the broker on the left and, on the right, a pane in which you can
configure the profile.

3. Click Add to create a new profile and add it to the list. You can edit the name
of the security profile by highlighting it in the list and pressing F2. The security
profile name must not include spaces.

4. Configure the security profile using the entry fields on the right side of the
pane:
a. Select the security provider that you require for Authentication, Mapping,

and Authorization. When you select WS-Trust v1.3 STS for any of these
options, the STS URI field in the Security Token Service (STS) Parameters
group is enabled.

b. Type the URL of the WS-Trust v1.3 STS into the STS URL field. The STS
URL must contain the following URL parts:
v Transport scheme (http or https)
v Host name (a fully qualified domain name)
v Port
v Path (for example, for TFIM V6.2: /TrustServerWST13/services/

RequestSecurityToken)

For example:
http://stsserver.mycompany.com:9080/TrustServerWST13/services/RequestSecurityToken

The URL that you enter forms a configuration string, which is displayed in
one or more of the configuration fields (Authentication Config, Mapping
Config, and Authorization Config), depending on the security operations
that are configured to use WS-Trust v1.3 STS.
For more information about the valid values for the configuration
parameter, see “Creating a profile using mqsicreateconfigurableservice” on
page 441.

c. In the Propagation field, specify whether you require the identity to be
propagated. The default is False.

442 WebSphere Message Broker Version 7.0.0.8

d. In the Password Value field, select the way in which the password is
displayed in the properties folder. The password is optional, and is required
only when the token type is Username + Password. The options are:

PLAIN The password is shown in the Properties folder as plain text.

OBFUSCATE
The password is shown in the Properties folder as base64 encoding.

MASK The password is shown in the Properties folder as four asterisks
(****).

5. Click Finish to deploy the security profile to the broker.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.

Chapter 5. Security 443

“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

Creating a security profile for TFIM V6.1:

You can create a security profile for Tivoli Federated Identity Manager (TFIM) V6.1
for any combination of the following functions: authentication, authorization, and
mapping. You can use either the mqsicreateconfigurableservice command or an
editor in the WebSphere Message Broker Explorer to create the security profile.

About this task

Note: Support for TFIM V6.1 is included for compatibility with previous versions
of WebSphere Message Broker. If possible, upgrade to TFIM V6.2 and follow the
instructions in “Creating a security profile for WS-Trust V1.3 (TFIM V6.2)” on page
440.

Creating a profile using mqsicreateconfigurableservice:
About this task

To create a security profile that uses TFIM V6.1, you can use the
mqsicreateconfigurableservice command by setting the configuration parameter
to the URL of the TFIM server. For example: http://
tfimserver.mycompany.com:9080

Procedure

To create a security profile that uses TFIM V6.1 for mapping, enter the following
command:
mqsicreateconfigurableservice brokername -c SecurityProfiles -o profilename
-n mapping,mappingConfig -v TFIM,http://tfimserver.mycompany.com:9080

444 WebSphere Message Broker Version 7.0.0.8

If the URL specifies an address beginning with https://, an SSL secured
connection is used for requests to the TFIM server. For example, to create a
security profile that uses an HTTPS connection to TFIM for mapping, enter the
following command:
mqsicreateconfigurableservice brokername -c SecurityProfiles -o profilename
-n mapping,mappingConfig -v TFIM,https://tfimserver.mycompany.com:9443

where https://tfimserver.mycompany.com:9443 is the address of the TFIM server.
If TFIM is selected for more than one operation (for example, for authentication
and mapping), the TFIM server URL must be identical for all the operations, and is
therefore specified only once.
The following example creates a security profile that uses TFIM for authentication,
mapping, and authorization:
mqsicreateconfigurableservice MYBROKER -c SecurityProfiles -o TFIM
-n authentication,mapping,authorization,propagation,mappingConfig
-v TFIM,TFIM,TFIM,TRUE,http://tfimhost1.ibm.com:9080

Creating a profile for TFIM V6.1 using the WebSphere Message Broker Explorer:
About this task

You can use the WebSphere Message Broker Explorer to create a security profile for
using TFIM V6.1.

Procedure

1. In the WebSphere Message Broker Explorer, right-click on the broker with
which you want to work, and click Properties.

2. In the Properties window, select the Security tab, and click Security Profiles.
The Security Profiles window is displayed, containing a list of existing security
profiles for the broker on the left and, on the right, a pane in which you can
configure the profile.

3. Click Add to create a new profile and add it to the list. You can edit the name
of the security profile by highlighting it in the list and pressing F2.

4. Configure the security profile using the entry fields on the right side of the
pane:
a. Select the type of Authentication, Mapping, and Authorization required. If

you select TFIM V6.1 for any of these options, the TFIM Configuration field
at the bottom of the pane is enabled.

b. If you have selected TFIM V6.1 for authentication, mapping or
authorization, type the URL of the TFIM server into the TFIM
Configuration field. The URL that you enter forms a configuration string,
which is displayed in one or more of the configuration fields
(Authentication Config, Mapping Config, and Authorization Config)
depending on the entry fields that have TFIM selected.
For more information about the valid values for the configuration
parameter, see “Creating a profile using mqsicreateconfigurableservice” on
page 444.

c. In the Propagation field, specify whether you require the identity to be
propagated. The default is False.

d. In the Password Value field, select the way in which the password is
displayed in the properties folder. The options are:

PLAIN The password is shown in the Properties folder as plain text.

OBFUSCATE
The password is shown in the Properties folder as base64 encoding.

Chapter 5. Security 445

MASK The password is shown in the Properties folder as four asterisks
(****).

5. Click Finish to deploy the security profile to the broker.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.

446 WebSphere Message Broker Version 7.0.0.8

“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

Configuring the extraction of an identity or security token
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.

Before you begin

Before you start:

Check that an appropriate security profile exists or create a new security profile.
See “Creating a security profile” on page 433.

About this task

If an input node or SecurityPEP node is associated with a profile that specifies a
security operation (authentication, mapping, or authorization), or specifies
propagation as enabled, the node can retrieve an identity or security token from
the message bit stream.
v An MQInput node, with the Identity token type security property set to

Transport default, retrieves the UserIdentifier element from the message
descriptor (MQMD) and puts it into the Identity Source Token element of the
Properties folder. At the same time, it sets the Identity Source Type element to
username and the Identity Source Issued By element to MQMD.PutApplName (the
put application name).

v An HTTPInput node, with the Identity token type security property set to
Transport default, retrieves the BasicAuth header from the HTTP request,
decodes it, and puts it into the Identity Source Token and Password elements in
the Properties folder. At the same time, it sets the Identity Source Type element
to username + Password and the Identity Source Issued By element to the HTTP
header UserAgent property.

v A SOAPInput node retrieves the appropriate tokens as defined by the configured
WS-Security policy sets and bindings, or (if they are not set), the transport
binding determines the token type; for example, HTTP transport is BasicAuth.
The SOAPInput node then populates the identity source fields in the Properties

Chapter 5. Security 447

folder with the retrieved tokens. With a Kerberos policy set and bindings, the
token type is a Username containing the Service Principal Name (SPN) from the
Kerberos ticket.

v A SecurityPEP node, with the Identity token type property set to Current
token, can use the token that has been extracted by an upstream input or
SecurityPEP node and stored in the Properties folder.

In some cases, the information extracted from the transport headers is not set or is
insufficient to perform authentication or authorization. For example, for
authentication to occur, a Username + Password type token is required; however,
with WebSphere MQ, only a username is available, which means that the incoming
identity has to be trusted. However, you can increase security by applying
transport-level security using WebSphere MQ Extended Security Edition.

If the transport header cannot provide the required identity credentials, the
information must be provided as part of the body of the incoming message. To
enable the identity information to be taken from the body of the message, you
must specify the location of the information by using either the Security tab on the
HTTP, MQ, and SCA input nodes or the Basic tab on the SecurityPEP node, or by
configuring the required policy set and bindings WS-Security profile on the SOAP
node. A SOAP node with a Kerberos policy set and bindings extracts a Username
token containing the Service Principal Name (SPN) of the Kerberos ticket.

Procedure
1. In Identity Token Type, specify the type of identity token that is in the

message. The type can have one of the following values:
v Transport Default (on the security enabled input nodes)
v Current token (on the SecurityPEP node)
v Username

v Username and password

v X.509 Certificate

v SAML assertion

v Kerberos GSS v5 AP_REQ (on the SecurityPEP node)
v LTPA v2 token (on the SecurityPEP node)
v Universal WSSE token (on the SecurityPEP node)

On the security enabled input nodes, the default value is Transport Default. On
the SecurityPEP node, the default value is Current token, which means that the
token type that exists in the identity mapped or source field in the Properties
folder is used.

2. In Identity Token Location, specify the location in the message where the
identity is specified. This string is in the form of an ESQL field reference, XPath
expression, or string literal, and must resolve to a token with the type Username,
Username and password, SAML assertion, Kerberos GSS v5 AP_REQ, LTPA v2
token, or X.509 Certificate. If you use a string literal, it must be enclosed in
single quotes and must not contain a period (.).

3. In Identity Password Location, enter the location in the message where the
password is specified. This string is in the form of an ESQL field reference,
XPath expression, or string literal, and must resolve to a string containing a
password. If you use a string literal, it must be enclosed in single quotes and
must not contain a period (.). This option can be set only if the Identity Token
Type is set to Username and password.

448 WebSphere Message Broker Version 7.0.0.8

4. In Identity IssuedBy Location, specify a string or path expression to show
where (in the message) information about the issuer of the identity is held. This
string is in the form of an ESQL field reference, XPath expression, or string
literal, defining where the identity was defined. If you use a string literal, it
must be enclosed in single quotes and must not contain a period (.).
If you leave this property blank on the security enabled input nodes, the
transport header value is used (if there is one). For example, for MQ the
MQMD.PutApplName value is used. If you leave this property blank on the
SecurityPEP node, the WS-Trust request is sent to the STS without the optional
Issuer element in the WS-Trust message.

5. (Optional) Ensure that all input nodes share the same information by
promoting the properties to the message flow.

What to do next

To enable the extraction of an identity in a security enabled input node or
SecurityPEP node, select a security profile that has at least one security operation
configured (authentication, mapping, or authorization) or propagation enabled:
1. In the Message Broker Toolkit, right-click the BAR file, then click Open with >

Broker Archive Editor.
2. Click the Manage and Configure tab.
3. Click the flow or node on which you want to set the security profile. The

properties that you can configure for the message flow or for the node are
displayed in the Properties view.

4. In the Security Profile Name field, select a security profile.
5. Save the BAR file.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,

Chapter 5. Security 449

SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
Related tasks:
“Configuring identity authentication and security token validation”
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

Configuring identity authentication and security token validation
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.

Before you begin

Before you start:

Check that an appropriate security profile exists, or create a new security profile.
See “Creating a security profile” on page 433.

450 WebSphere Message Broker Version 7.0.0.8

About this task

For information about configuring authentication with HTTP basic authentication,
LDAP, a WS-Trust V1.3 STS (TFIM V6.2), or TFIM V6.1, see:
v “Configuring authentication with HTTP basic authentication”
v “Configuring authentication with LDAP” on page 453
v “Configuring authentication or security token validation with a WS-Trust v1.3

STS (TFIM V6.2)” on page 457
v “Configuring authentication with TFIM V6.1” on page 459
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring authentication with LDAP” on page 453
This topic describes how to configure a message flow to perform identity
authentication using Lightweight Directory Access Protocol (LDAP).
“Configuring authentication with TFIM V6.1” on page 459
You can configure a message flow to perform identity authentication by using
Tivoli Federated Identity Manager (TFIM) V6.1.
“Configuring authentication or security token validation with a WS-Trust v1.3 STS
(TFIM V6.2)” on page 457
You can configure supported message flow input nodes or SecurityPEP nodes to
perform identity authentication or security token validation using a WS-Trust v1.3
compliant security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.

Configuring authentication with HTTP basic authentication:

Use a security profile to configure HTTP basic authentication in the HTTPRequest
or SOAPInput nodes.

About this task

Basic authentication is a common extension in the HTTP protocol that allows a
client to provide identity information to a remote web server in the form of a
username and password sent in the HTTP header data. Security profiles in
WebSphere Message Broker provide a way for message flow designers to provide
these credentials without building the HTTP headers in a Compute node.

Chapter 5. Security 451

If identity propagation is enabled for the selected security profile, the
HTTPRequest and SOAPRequest nodes automatically pick up username and
password credentials, if present, from the Properties tree. See “Configuring for
identity propagation” on page 492. The predefined security profile Default
Propagation has this setting enabled.

To enable basic authentication, select an appropriate security profile for the output
node or the message flow in the Broker Archive editor. The credentials are picked
up from the following Properties tree locations if set:
Properties.IdentityMappedType
Properties.IdentityMappedToken
Properties.IdentityMappedPassword

If the mapped identity fields are not set, the credentials are picked up from the
following Properties tree locations:
Properties.IdentitySourceType
Properties.IdentitySourceToken
Properties.IdentitySourcePassword

For basic authentication both a username and password are required, therefore the
appropriate Type field must be set to the string usernameAndPassword. For example:
SET OutputRoot.Properties.IdentitySourceType=’usernameAndPassword’;
SET OutputRoot.Properties.IdentitySourceToken = ’myUser’;
SET OutputRoot.Properties.IdentitySourcePassword = ’myPassw0rd’;

These fields are interpreted by a subsequent HTTPRequest or SOAPRequest node
and converted into a basic authentication HTTP header.

You can also propagate credentials from an input message by setting a security
profile which includes propagation on an input node, and then using the input
node properties Identity token type, Identity Token location and Identity
password location. These three properties take an XPath expression that specifies
the location in the input message to retrieve the appropriate token or password
from. When configured correctly, these properties place the identity information in
the Properties.IdentitySourceType, Properties.IdentitySourceToken and
Properties.IdentitySourcePassword fields. HTTPRequest or SOAPRequest nodes
then use these values directly, with an appropriate security policy.

You can override the configuration of the security profile by selecting the build
option Override configurable property values in the Broker Archive editor.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.

452 WebSphere Message Broker Version 7.0.0.8

“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
Related reference:
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.

Configuring authentication with LDAP:

This topic describes how to configure a message flow to perform identity
authentication using Lightweight Directory Access Protocol (LDAP).

Before you begin

Before you start:

Before you can configure a message flow to perform identity authentication using
LDAP, you need to check that an appropriate security profile exists, or create a
new security profile. See “Creating a security profile for LDAP” on page 435.

About this task

To authenticate the identity of a user or system, the broker attempts to connect to
the LDAP server using the username and password associated with the identity. To
do this, the broker needs the following information:
v To resolve the username to an LDAP entry, the broker needs to know the base

distinguished name (base DN) of the accepted login IDs. This is required to
enable the broker to differentiate between different entries with the same name.

v If the identities do not all have a common base DN, but can be uniquely
resolved from a subtree, the DN can be specified in the broker configuration.
When a subtree search has been specified, the broker must first connect to the

Chapter 5. Security 453

LDAP server and search for the given username in order to obtain the full
username distinguished name (DN) to be used for authentication. If your LDAP
directory does not permit login of unrecognized IDs, and does not grant search
access rights on the subtree, you must set up a separate authorized login ID that
the broker can use for the search. Use the mqsisetdbparms command to specify a
username and password. For example:
mqsisetdbparms -n ldap::LDAP -u username -p password

or
mqsisetdbparms -n ldap::<servername> -u username -p password

where <servername> is your base LDAP server name, for example,
ldap.mydomain.com.
If you specify ldap::LDAP, it creates a default setting for the broker, which the
broker attempts to use if you have not explicitly used the mqsisetdbparms
command to create a login ID for a specific <servername>. All servers that do not
have an explicit ldap::servername entry then start using the credentials in the
ldap::LDAP entry. This means that any servers that were previously using
anonymous bind by default will start using the details in ldap::LDAP.
The username that you specify in the -u parameter must be recognized by the
LDAP server as a complete user name. In most cases this means that you need
to specify the full DN of the user. Alternatively, by specifying a username to be
anonymous, you can force the broker to bind anonymously to this LDAP server.
This might be useful if you have specified a non-anonymous bind as your
default (ldap::LDAP). For example:
mqsisetdbparms -n ldap::<servername> -u anonymous -p password

In this case, the value specified for password is ignored.

Steps for enabling LDAP authentication:

Procedure

To enable an existing message flow to perform identity authentication, use the
Broker Archive editor to select a security profile that uses LDAP for authentication.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the BAR file and then click Open

with > Broker Archive Editor.
3. Click the Manage and Configure tab.
4. Click the flow or node on which you want to set the security profile. The

properties that you can configure for the message flow or for the node are
displayed in the Properties view.

5. In the Security Profile Name field, select a security profile that uses LDAP for
authentication.

6. Save the BAR file.

What to do next

For a SOAPInput node to use the identity in the WS-Security header (rather than
an underlying transport identity) an appropriate policy set and bindings must also
be defined and specified. For more information, see “Policy sets” on page 774.

454 WebSphere Message Broker Version 7.0.0.8

If the message identity does not contain enough information for authentication, the
information must be taken from the message body. For example, if a password is
required for authentication but the message came from WebSphere MQ with only a
username, the password information must be taken from the message body. For
more information, see “Configuring the extraction of an identity or security token”
on page 447.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.

Chapter 5. Security 455

“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

456 WebSphere Message Broker Version 7.0.0.8

Configuring authentication or security token validation with a WS-Trust v1.3
STS (TFIM V6.2):

You can configure supported message flow input nodes or SecurityPEP nodes to
perform identity authentication or security token validation using a WS-Trust v1.3
compliant security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2.

Before you begin

Before you start:

Before you can configure identity authentication or token validation, you need to
check that an appropriate security profile exists, or create a new security profile.
See “Creating a security profile for WS-Trust V1.3 (TFIM V6.2)” on page 440.

About this task

When the security profile is configured to use WS-Trust V1.3 STS for
authentication, the broker security manager issues trust requests and processes
trust responses according to the WS-Trust V1.3 standard.

When you use a WS-Trust v1.3 STS for authentication, a request is made to the
trust service with the following parameters, which control the STS processing. If
you are using TFIM V6.2, the following parameters are used in the selection of the
TFIM module chain:
v RequestType
v Issuer
v AppliesTo

For more information about these parameters, see:“Authentication, mapping, and
authorization with TFIM V6.2 and TAM” on page 419.

The WS-Trust v1.3 specification, published by OASIS, is available at:
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

.

Steps for enabling WS-Trust v1.3 authentication:

Procedure

To enable an existing message flow to perform authentication or token validation,
use the Broker Archive editor to select a security profile that uses a WS-Trust v1.3
STS for authentication and to associate it with the node or message flow. If a
security profile is specified on either a message flow or a node, the profile must be
available when the message flow is deployed; otherwise, a deployment error
occurs.
1. In the Message Broker Toolkit, right-click the BAR file, then click Open with >

Broker Archive Editor.
2. Click the Manage and Configure tab.
3. Click the flow or node on which you want to set the security profile. The

properties that you can configure for the message flow or for the node are
displayed in the Properties view.

Chapter 5. Security 457

4. In the Security Profile Name field, select a security profile that configures
WS-Trust v1.3 STS for authentication.

5. Save the BAR file.

What to do next

For a SOAPInput node to use the identity in the WS-Security header (rather than
an underlying transport identity) an appropriate policy set and bindings must also
be defined and specified. For more information, see “Policy sets” on page 774.

If the message identity (or security token) does not contain enough information for
authentication, the information must be taken from the message body. For
example, if a password is required for authentication but the message came from
WebSphere MQ with only a username, the password information must be taken
from the message body. For more information, see “Configuring the extraction of
an identity or security token” on page 447.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.

458 WebSphere Message Broker Version 7.0.0.8

“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

Configuring authentication with TFIM V6.1:

You can configure a message flow to perform identity authentication by using
Tivoli Federated Identity Manager (TFIM) V6.1.

Chapter 5. Security 459

Before you begin

Before you start:

Before you can configure a message flow to perform identity authentication, you
need to check that an appropriate security profile exists, or create a new security
profile. See “Creating a security profile for TFIM V6.1” on page 444.

About this task

Note: Support for TFIM V6.1 is included for compatibility with previous versions
of WebSphere Message Broker. If possible, upgrade to TFIM V6.2 and follow the
instructions in “Configuring authentication or security token validation with a
WS-Trust v1.3 STS (TFIM V6.2)” on page 457.

When you use TFIM V6.1 for authentication, a request is made to the TFIM trust
service with the following three parameters, which select the module chain:
v Issuer = Properties.IdentitySourceIssuedBy
v Applies To = The Fully Qualified Name of the Flow: <Brokername>.<Execution

Group Name>.<Message Flow Name>
v Token = Properties.IdentitySourceToken

For more information about these parameters, see “Authentication, mapping, and
authorization with TFIM V6.1 and TAM” on page 416.

For further information about how to configure TFIM, see the IBM Tivoli Federated
Identity Manager Information Center.

Steps for enabling TFIM authentication:

Procedure

To enable an existing message flow to perform identity authentication, use the
Broker Archive editor to select a security profile that uses TFIM for authentication.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the BAR file, then click Open with

> Broker Archive Editor.
3. Click the Manage and Configure tab.
4. Click the flow or node on which you want to set the security profile. The

properties that you can configure for the message flow or for the node are
displayed in the Properties view.

5. In the Security Profile Name field, select a security profile that uses TFIM for
authentication.

6. Save the BAR file.

What to do next

For a SOAPInput node to use the identity in the WS-Security header (rather than
an underlying transport identity) an appropriate policy set and bindings must also
be defined and specified. For more information, see “Policy sets” on page 774.

460 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml

If the message identity does not contain enough information for authentication, the
information must be taken from the message body. For example, if a password is
required for authentication but the message came from WebSphere MQ with only a
username, the password information must be taken from the message body. For
more information, see “Configuring the extraction of an identity or security token”
on page 447.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.

Chapter 5. Security 461

“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

462 WebSphere Message Broker Version 7.0.0.8

Configuring identity mapping
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.

Before you begin

Before you start:

Before you can configure a message flow to perform identity mapping, you need to
check that an appropriate security profile exists, or create a new security profile.
For information about security profiles, see “Creating a security profile” on page
433.

About this task

WebSphere Message Broker provides support for identity mapping (also known as
identity federation) and token issuance and exchange. Identity mapping is the
process of mapping an identity in one realm to another identity in a different
realm. For example, you might map User001 from the eSellers realm to
eSellerUser01 in the eShipping realm. Token issuance and exchange involves the
mapping of a token of one type to a token of a different type. For example, an
incoming Username and Password token from a client over MQ might be mapped
into an equivalent SAML assertion, to be propagated to a Web Services call.
Alternatively, you might exchange a SAML 1.1 assertion from a client application
for an equivalent SAML 2.0 assertion for an updated backend server.

For information about configuring identity mapping with either a WS-Trust V1.3
STS (for example, TFIM V6.2) or with TFIM V6.1, see:
v “Configuring identity mapping with a WS-Trust V1.3 STS (TFIM V6.2)” on page

465
v “Configuring identity mapping with TFIM V6.1” on page 467
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a

Chapter 5. Security 463

message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

464 WebSphere Message Broker Version 7.0.0.8

“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring identity mapping with a WS-Trust V1.3 STS (TFIM V6.2):

Configure a WS-Trust V1.3 compliant security token server (STS), such as Tivoli
Federated Identity Manager (TFIM) V6.2, to map the incoming security token and,
if required, to authenticate and authorize it.

Before you begin

Before you start:

Before you can configure a message flow to perform identity mapping, you need to
check that an appropriate security profile exists, or create a new security profile.
For information about security profiles, see “Creating a security profile” on page
433.

About this task

To configure TFIM V6.2 to map an incoming security token, you must create a
custom module chain in TFIM, which performs the security operations. The TFIM
configuration controls the token type that is returned from the mapping.

When you use a WS-Trust V1.3 STS for identity mapping, a request is made to the
security token server with the following parameters, which control the STS
processing:
v RequestType
v Issuer
v AppliesTo

If you are using TFIM V6.2, these parameters are used in the selection of the
module chain.

The security manager invokes the WS-Trust v1.3 provider only once, even if it is
set for additional security operations (such as authentication or authorization). As a
result, when you are using TFIM V6.2, you must configure a single module chain
to perform all the required authentication, mapping, and authorization operations.

When the security profile includes a mapping operation, the STS (for example,
TFIM V6.2) must return a security token in its response. The STS can return the
original unmodified token if no token exchange is required.

For more information about these parameters, see:“Authentication, mapping, and
authorization with TFIM V6.2 and TAM” on page 419.

The WS-Trust v1.3 specification, published by OASIS, is available at:
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

For information on how to configure TFIM, see the IBM Tivoli Federated Identity
Manager Information Center.

Follow these steps to enable an existing message flow to perform identity
mapping.

Chapter 5. Security 465

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml

Procedure

Using the Broker Archive editor, select a security profile that has mapping enabled.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.
1. In the Message Broker Toolkit, right-click the BAR file, then click Open with >

Broker Archive Editor.
2. Click the Manage and Configure tab.
3. Click the message flow or node on which you want to set the security profile.

The properties that you can configure for the message flow or for the node are
displayed in the Properties view.

4. In the Security Profile Name field, enter the name of a security profile that has
mapping enabled.

5. Save the BAR file.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for

466 WebSphere Message Broker Version 7.0.0.8

compatibility with previous versions of WebSphere Message Broker.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring identity mapping with TFIM V6.1:

Configure Tivoli Federated Identity Manager (TFIM) V6.1 to map the incoming
security token and, if required, to authenticate and authorize it.

Before you begin

Before you start:

Before you can configure a message flow to perform identity mapping, you need to
check that an appropriate security profile exists, or create a new security profile.

Chapter 5. Security 467

For information about security profiles, see “Creating a security profile” on page
433.

About this task

Note: Support for TFIM V6.1 is included for compatibility with previous versions
of WebSphere Message Broker. If possible, upgrade to TFIM V6.2 and follow the
instructions in “Configuring identity mapping with a WS-Trust V1.3 STS (TFIM
V6.2)” on page 465.

To configure TFIM V6.1 to map the incoming security token, you need to create a
custom module chain in TFIM, which performs the security operations. The TFIM
configuration controls the token type that is returned from the mapping.

When you use TFIM for mapping, a request is made to the TFIM trust service with
the following three parameters, which select the module chain:
v Issuer = Properties.IdentitySourceIssuedBy
v AppliesTo = The fully qualified name of the flow: Brokername.Execution Group

Name.Message Flow Name

v Token = Properties.IdentitySourceToken

The security manager invokes the security provider only once, even if it is set for
additional security operations (such as authentication or authorization). As a result,
when you are using TFIM V6.1, you must configure a single module chain to
perform all the required authentication, mapping, and authorization operations.

For information on how to configure TFIM, see the IBM Tivoli Federated Identity
Manager Information Center.

Follow these steps to enable an existing message flow to perform identity
mapping.

Procedure

Using the Broker Archive editor, select a security profile that has mapping enabled.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.
1. In the Message Broker Toolkit, right-click the BAR file, then click Open with >

Broker Archive Editor.
2. Click the Manage and Configure tab.
3. Click the flow or node on which you want to set the security profile. The

properties that you can configure for the message flow or for the node are
displayed in the Properties view.

4. In the Security Profile Name field, enter the name of a security profile that has
mapping enabled.

5. Save the BAR file.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.

468 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml

“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Creating a security profile for LDAP” on page 435
Create a security profile for use with Lightweight Directory Access Protocol
(LDAP) or Secure LDAP (LDAPS), by using either the
mqsicreateconfigurableservice command or an editor in the WebSphere Message
Broker Explorer.
“Creating a security profile for TFIM V6.1” on page 444
You can create a security profile for Tivoli Federated Identity Manager (TFIM) V6.1
for any combination of the following functions: authentication, authorization, and
mapping. You can use either the mqsicreateconfigurableservice command or an
editor in the WebSphere Message Broker Explorer to create the security profile.

Chapter 5. Security 469

“Configuring authorization”
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring authorization
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.

470 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Check that an appropriate security profile exists, or create a new security profile.
See “Creating a security profile” on page 433.

About this task

For information about configuring authorization for LDAP, WS-Trust V1.3 (TFIM
V6.2), or TFIM V6.1, see:
v “Configuring authorization with LDAP” on page 472
v “Configuring authorization with a WS-Trust v1.3 STS (TFIM V6.2)” on page 475
v “Configuring authorization with TFIM V6.1” on page 483

What to do next
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
Related tasks:
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring authorization with LDAP” on page 472
This topic describes how to configure a message flow to perform authorization on
an identity using Lightweight Directory Access Protocol (LDAP).
“Configuring authorization with a WS-Trust v1.3 STS (TFIM V6.2)” on page 475
You can configure supported message flow input nodes or SecurityPEP nodes to
perform authorization of an identity or security token by using a WS-Trust v1.3
compliant security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2.
“Configuring authorization with TFIM V6.1” on page 483
You can configure a message flow to perform authorization on an identity by using
Tivoli Federated Identity Manager (TFIM) V6.1.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.

Chapter 5. Security 471

“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.

Configuring authorization with LDAP:

This topic describes how to configure a message flow to perform authorization on
an identity using Lightweight Directory Access Protocol (LDAP).

Before you begin

Before you start:

Before you can configure a message flow to perform authorization, you need to
check that an appropriate security profile exists, or create a new security profile.
See “Creating a security profile for LDAP” on page 435.

About this task

When LDAP is used for authorization, the broker needs to determine whether the
incoming username is a member of the given group. To do this, the broker requires
the following information:
v To resolve the username to an LDAP entry, the broker needs to know the base

distinguished name (Base DN) of the accepted login IDs. This is required to
enable the broker to differentiate between different entries with the same name.

v To get an entry list from a group name, the group name must be the
distinguished name of the group, not just a common name. An LDAP search is
made for the group, and the username is checked by finding an entry matching
the distinguished name of the user.

v If your LDAP directory does not permit login by unrecognized IDs, and does
not grant search access rights on the subtree, you must set up a separate
authorized login ID that the broker can use for the search. Use the
mqsisetdbparms command to specify a username and password:
mqsisetdbparms -n ldap::LDAP -u username -p password

or
mqsisetdbparms -n ldap::<servername> -u username -p password

where <servername> is your base LDAP server name. For example:
ldap.mydomain.com.
If you specify ldap::LDAP, it creates a default setting for the broker, which the
broker attempts to use if you have not explicitly used the mqsisetdbparms
command to create a login ID for a specific <servername>. All servers that do not
have an explicit ldap::servername entry then start using the credentials in the

472 WebSphere Message Broker Version 7.0.0.8

ldap::LDAP entry. This means that any servers that were previously using
anonymous bind by default will start using the details in ldap::LDAP.
The username that you specify in the -u parameter must be recognized by the
LDAP server as a complete user name. In most cases this means that you need
to specify the full DN of the user. Alternatively, by specifying a username to be
anonymous, you can force the broker to bind anonymously to this LDAP server.
This might be useful if you have specified a non-anonymous bind as your
default (ldap::LDAP). For example:
mqsisetdbparms -n ldap::<servername> -u anonymous -p password

In this case, the value specified for password is ignored.

Steps for enabling LDAP authorization:

Procedure

To enable an existing message flow to perform authorization using LDAP, use the
Broker Archive editor to select a security profile that has authorization enabled.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the BAR file and then click Open

with > Broker Archive Editor.
3. Click the Manage and Configure tab.
4. Click the flow or node on which you want to set the security profile. The

properties that you can configure for the message flow or for the node are
displayed in the Properties view.

5. In the Security Profile Name field, select a security profile that uses LDAP for
authorization.

6. Save the BAR file.

What to do next

For a SOAPInput node to use the identity in the WS-Security header (rather than
an underlying transport identity) an appropriate policy set and bindings must also
be defined and specified. For more information, see “Policy sets” on page 774.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.

Chapter 5. Security 473

“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Creating a security profile for LDAP” on page 435
Create a security profile for use with Lightweight Directory Access Protocol
(LDAP) or Secure LDAP (LDAPS), by using either the
mqsicreateconfigurableservice command or an editor in the WebSphere Message
Broker Explorer.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a

474 WebSphere Message Broker Version 7.0.0.8

broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring authorization with a WS-Trust v1.3 STS (TFIM V6.2):

You can configure supported message flow input nodes or SecurityPEP nodes to
perform authorization of an identity or security token by using a WS-Trust v1.3
compliant security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2.

Before you begin

Before you start:

Before you configure a message flow to perform authorization with a WS-Trust
v1.3 STS:
v Check that an appropriate security profile exists, or create a new security profile.

See “Creating a security profile for WS-Trust V1.3 (TFIM V6.2)” on page 440.

About this task

The message flow security manager issues an authorization request to the
WS-Trust service with the following parameters, which select the TFIM module
chain to be used:
v RequestType

Chapter 5. Security 475

v Issuer
v AppliesTo

For more information about these parameters, see:“Authentication, mapping, and
authorization with TFIM V6.2 and TAM” on page 419.

In addition to configuring Message Broker to perform authorization with a
WS-Trust compliant STS, you must configure TAM. For information about how to
do this, see the following topics:
v “Creating a module chain in TFIM V6.2” on page 478
v “Configuring TAM for authorization using TFIM V6.2” on page 480

Steps for enabling authorization using a WS-Trust v1.3 STS provider:

Procedure

To enable an existing message flow to enforce authorization using a WS-Trust v1.3
STS provider, use the Broker Archive editor to select a security profile that has
authorization set for that provider. You can set a security profile on a message flow
or on individual input nodes or SecurityPEP nodes. If you leave the Security
Profile property blank, the node inherits the Security Profile property that is set
at the message flow level. If you leave the property blank at both levels, security is
turned off for the node.
1. In the Message Broker Toolkit, right-click the BAR file, then click Open with >

Broker Archive Editor.
2. Click the Manage and Configure tab.
3. Click the flow or node on which you want to set the security profile. The

properties that you can configure for the message flow or for the node are
displayed in the Properties view.

4. In the Security Profile Name field, select a security profile that has
authorization set for WS-Trust V1.3 STS.

5. Save the BAR file.

What to do next

For a SOAPInput node to use the token in the WS-Security header (rather than an
underlying transport identity) an appropriate policy set and bindings must also be
defined and specified. For more information, see “Policy sets” on page 774.

The WS-Trust v1.3 specification is available at: http://docs.oasis-open.org/ws-sx/
ws-trust/200512/ws-trust-1.3-os.html.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent

476 WebSphere Message Broker Version 7.0.0.8

identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.

Chapter 5. Security 477

“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Creating a module chain in TFIM V6.2:

This topic describes how to create a module chain in Tivoli Federated Identity
Manager (TFIM) V6.2.

About this task

When you use a WS-Trust v1.3 security token server (STS) for authentication,
authorization, or mapping (or any combination of those operations), a single
WS-Trust request is made to the trust service with the required parameters, which
control the STS processing.

To enable WebSphere Message Broker to use TFIM V6.2 for authorization, you
need to configure TFIM to process the single WS-Trust request from the broker
security manager. To configure TFIM, you must create a module chain to handle
the request:

Procedure

1. Create a Custom module chain, and ensure that the chain performs all the
actions that are specified in the broker security profile (Authenticate, Map,
Authorize).

2. Set the RequestType, Issuer and AppliesTo properties of the module chain, so that
it is invoked for the requests from the security enabled input node or
SecurityPEP node. The parameters that are passed by the broker to TFIM are
shown in the table in “Authentication, mapping, and authorization with TFIM
V6.2 and TAM” on page 419.

478 WebSphere Message Broker Version 7.0.0.8

What to do next

If your module chain includes an authorization module, and if the module
specifies TAM, you must configure TAM to process the authorization requests from
TFIM. For more information about how to do this, see “Configuring TAM for
authorization using TFIM V6.2” on page 480.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Authentication, mapping, and authorization with TFIM V6.2 and TAM” on page
419
You can use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM)
V6.2, and Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring TAM for authorization using TFIM V6.2” on page 480
Configure Tivoli Access Manager (TAM) to enable authorization using Tivoli
Federated Identity Manager (TFIM) V6.2.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring authorization with a WS-Trust v1.3 STS (TFIM V6.2)” on page 475
You can configure supported message flow input nodes or SecurityPEP nodes to
perform authorization of an identity or security token by using a WS-Trust v1.3
compliant security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a

Chapter 5. Security 479

message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring TAM for authorization using TFIM V6.2:

Configure Tivoli Access Manager (TAM) to enable authorization using Tivoli
Federated Identity Manager (TFIM) V6.2.

About this task

To configure TAM for a TFIM V6.2 TAMAuthorizationSTSModule, complete the
following steps using the pdadmin utility.

Procedure

1. Check that the action group used by the TFIM authorization module is
available. The action group used is WebService:
action group list

If WebService is not listed, create it:
action group create WebService

480 WebSphere Message Broker Version 7.0.0.8

2. Display the action in the action group used by the TFIM authorization module.
The action used is "i":
action list WebService

If action "i" <label> 0 is not listed, create it. The value of <label> can vary:
action create i <label> 0 WebService

3. Create the Access Control List (ACL) that will be used to grant access to one or
more message flows. First, create the ACL and give the administrators access to
it. In this example, iv-admin is the administration group and sec_master is the
main administrator:
acl create <AclName>
acl modify <AclName> set Group iv-admin TcmdbsvaBRxl[WebService]i
acl modify <AclName> set User sec_master TcmdbsvaBRxl[WebService]i

4. Grant access to all authenticated users, or specific groups, by adding them to
the ACL. Grant any authenticated identity access:
acl modify <AclName> set Any-other Trx[WebService]i

To add a specific group:
acl modify <AclName> set group <GroupName> Trx[WebService]i

In these strings, each occurrence of Trx[] is an action, and corresponds to the
value of the stsuser Action context attribute that is passed into the
TAMAuthorizationSTSModule. For more information, see “Authentication,
mapping, and authorization with TFIM V6.2 and TAM” on page 419.

5. Create a protected object space path in TAM to correspond to the value of the
stsuser ObjectName context attribute that is passed into the
TAMAuthorizationSTSModule using the following command syntax:
objectspace create /<ObjectName>

For more information, see “Authentication, mapping, and authorization with
TFIM V6.2 and TAM” on page 419.

6. Attach the ACL to the protected object space path that you have created. Each
node in the object space inherits ACLs from its parent, and a lower level ACL
can override a higher level one. Use the following command syntax to attach
an ACL to a node in the object space path:
acl attach /<ObjectSpacePath> <AclName>

What to do next

For further information about configuring TAM, see the IBM Tivoli Access
Manager Information Center.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.

Chapter 5. Security 481

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm

“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
“Authentication, mapping, and authorization with TFIM V6.2 and TAM” on page
419
You can use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM)
V6.2, and Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.
Related tasks:
“Creating a module chain in TFIM V6.2” on page 478
This topic describes how to create a module chain in Tivoli Federated Identity
Manager (TFIM) V6.2.
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:

482 WebSphere Message Broker Version 7.0.0.8

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring authorization with TFIM V6.1:

You can configure a message flow to perform authorization on an identity by using
Tivoli Federated Identity Manager (TFIM) V6.1.

Before you begin

Before you start:

Before you configure a message flow to perform authorization with TFIM V6.1:
v Check that an appropriate security profile exists, or create a new security profile.

See “Creating a security profile for TFIM V6.1” on page 444.
v Define the required users and groups in TFIM.

About this task

Note: Support for TFIM V6.1 is included for compatibility with previous versions
of WebSphere Message Broker. If possible, upgrade to TFIM V6.2 and follow the
instructions in “Configuring authorization with a WS-Trust v1.3 STS (TFIM V6.2)”
on page 475.

Chapter 5. Security 483

The broker security manager issues an authorization request to the TFIM trust
service with the following three parameters, which select the TFIM module chain
to be used:
v Issuer = Properties.IdentitySourceIssuedBy
v Applies To = The Fully Qualified Name of the Flow: <Brokername>.<Execution

Group Name>.<Message Flow Name>
v Token = Properties.IdentitySourceToken

Authorization is performed with TFIM using an instance of the TFIM
AuthorizationSTSModule in the selected module chain. The TFIM
AuthorizationSTSModule must be set with Mode = Other. This
AuthorizationSTSModule authorizes a user by checking an Access Control List
(ACL) from Tivoli Access Manager (TAM). TFIM performs the authorization check
by verifying that the action "i" (invoke) has been granted in an ACL for the
WebService action group.

The ACL is found starting from the root of the TAM object space using a path
formed from the Authorization module Web service protected object name
parameter, followed by the Port Type and Operation Name from the authorization
request. When the broker makes an authorization request to TFIM, the Port Type
and Operation Name parameters have the following values:
v PortType:<Message flow name>
v Operation "MessageFlowAccess"

Therefore, the ACL is found at this location in the TAM object space:
/<WSProtectedObjectName>.<MessageFlowName>."MessageFlowAccess"

For more information about this process and the parameters, see “Authentication,
mapping, and authorization with TFIM V6.1 and TAM” on page 416.

Steps for enabling TFIM authorization:

Procedure

To enable an existing message flow to perform authorization with TFIM, use the
Broker Archive editor to select a security profile that has authorization enabled.
You can set a security profile on a message flow or on individual input nodes. If
no security profile is set for the input nodes, the setting is inherited from the
setting on the message flow.
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the BAR file, then click Open with

> Broker Archive Editor.
3. Click the Manage and Configure tab.
4. Click the flow or node on which you want to set the security profile. The

properties that you can configure for the message flow or for the node are
displayed in the Properties view.

5. In the Security Profile Name field, select a security profile that has
authorization enabled.

6. Save the BAR file.

484 WebSphere Message Broker Version 7.0.0.8

What to do next

For a SOAPInput node to use the identity in the WS-Security header (rather than
an underlying transport identity) an appropriate policy set and bindings must also
be defined and specified. For more information, see “Policy sets” on page 774.

In addition to configuring Message Broker to perform authorization with TFIM,
you must configure TFIM and TAM. For information about how to do this, see the
following topics:
v “Creating a module chain in TFIM V6.1” on page 487
v “Configuring TAM for authorization using TFIM V6.1” on page 489.

For further information on how to configure TFIM, see the IBM Tivoli Federated
Identity Manager Information Center.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.

Chapter 5. Security 485

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml

“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

486 WebSphere Message Broker Version 7.0.0.8

Creating a module chain in TFIM V6.1:

This topic describes how to create a module chain in Tivoli Federated Identity
Manager (TFIM) V6.1.

About this task

To enable Message Broker to use TFIM V6.1 for authorization, you need to
configure TFIM to process the security request from the message flow. To do this
you need to create a module chain in TFIM to handle the request:

Procedure

1. Create a Custom module chain, and ensure that the chain performs all the
actions required (Authenticate, Map, Authorize).

2. Set the Issuer and AppliesTo properties of the module chain, so that it is invoked
for the requests from the message flow. When the broker makes a request to
TFIM, the Port Type and Operation Name parameters have the following values:
v PortType:<Message flow name>

v Operation "MessageFlowAccess"

The RequestType is always set to Validate.
3. To perform authorization in a module chain, add an instance of the

Authorization module in other mode, which allows the module parameter Web
Service protected object name to be set for the Tivoli Access Manager (TAM)
configuration.

What to do next

When you have created the module chain in TFIM, see “Configuring TAM for
authorization using TFIM V6.1” on page 489 for information on how to configure
TAM to process authorization requests from TFIM.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Authentication, mapping, and authorization with TFIM V6.1 and TAM” on page
416
Use WebSphere Message Broker, Tivoli Federated Identity Manager (TFIM) V6.1,
and Tivoli Access Manager (TAM) to control authentication, mapping, and
authorization.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during

Chapter 5. Security 487

security processing in an input node or SecurityPEP node.
Related tasks:
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring TAM for authorization using TFIM V6.1” on page 489
This topic describes how to configure Tivoli Access Manager (TAM) to enable
authorization using Tivoli Federated Identity Manager (TFIM) V6.1.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

488 WebSphere Message Broker Version 7.0.0.8

“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring TAM for authorization using TFIM V6.1:

This topic describes how to configure Tivoli Access Manager (TAM) to enable
authorization using Tivoli Federated Identity Manager (TFIM) V6.1.

About this task

To configure TAM to process an authorization request from TFIM, complete the
following steps. The examples relate to the TAM Version 6.01 pdadmin utility:

Procedure

1. Check that the action group used by the TFIM authorization module is
available. The action group used is WebService:
action group list

If WebService is not listed, create it:
action group create WebService

2. Display the action in the action group used by the TFIM authorization module.
The action used is "i":
action list WebService

If action "i" <label> 0 is not listed, create it. The value of <label> can vary:
action create i <label> 0 WebService

3. Create the Access Control List (ACL) that will be used to grant access to one or
more message flows. First, create the ACL and give the administrators access to
it. In this example, iv-admin is the administration group and sec_master is the
main administrator:
acl create <AclName>
acl modify <AclName> set Group iv-admin TcmdbsvaBRxl[WebService]i
acl modify <AclName> set User sec_master TcmdbsvaBRxl[WebService]i

4. Grant access to all authenticated users, or specific groups, by adding them to
the ACL. Grant any authenticated identity access:
acl modify <AclName> set Any-other Trx[WebService]i

To add a specific group:
acl modify <AclName> set group <GroupName> Trx[WebService]i

5. Define protected object spaces in TAM for authorization of message flows:
a. Create the application container object as the root of the protected object

space. This is the name that is used to link an instance of a TFIM
AuthorizationSTSModule (within a module chain) into the TAM object
space. The container object name is specified to match the Web Service
protected object name parameter on a TFIM Authorization module.
objectspace create /<ContainerObjectName> <Description> 14

b. Create the container objects in the tree for each broker message flow that is
being authorized. The message flow name is used by TFIM to locate a point
in the TAM Object Space tree for Authorization, through the attached ACL.
The message flow name is passed as the PortType in the WS-Trust request
to TFIM. Use the following command to create the object tree node
representing each flow to be authorized:

object create /<ContainerObjectName>/<FlowName> <Description> 11 ispolicyattachable yes

Chapter 5. Security 489

The ispolicyattachable parameter applies to all levels, so you can attach
an ACL at any level.

c. Create the leaf object that represents the authorized object to grant access to
the message flow. This is the fixed string MessageFlowAccess, which the
broker sends to TFIM through the TFIM OperationName extension to the
WS-Trust request. A fixed name (MessageFlowAccess) is used instead of a
true operation name, because the broker does not necessarily know at the
input node which operation a flow is going to perform. The command
syntax is:

object create /<ContainerObjectName>/<FlowName>/MessageFlowAccess <Description> 12 ispolicyattachable yes

where <FlowName> has been created in a previous step.
6. Attach the ACL to the relevant node in the protected object space tree. Each

node in the object space inherits ACLs from its parent, and a lower level ACL
can override a higher level one. Use the following command syntax to attach
an ACL to a node in the object space:
acl attach /<ObjectSpacePath> <AclName>

To attach an ACL to the leaf node:
acl attach /<ContainerObjectName>/<FlowName>/MessageFlowAccess <AclName>

What to do next

For further information about configuring TAM, see the IBM Tivoli Access
Manager Information Center.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:

490 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm

“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

Chapter 5. Security 491

“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring for identity propagation
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.

Before you begin

Before you start:

Before you can configure a message flow to perform identity propagation, you
must check that an appropriate security profile exists, or create a new security
profile. See “Creating a security profile” on page 433.

About this task

An input node extracts security tokens if it is configured with a security profile at
deployment time. An output node propagates an identity if it is configured with a
security profile that enables propagation at deployment time.

To enable a message flow to perform identity propagation, complete the following
steps.

Procedure

By using the Broker Archive editor, select a security profile that has identity
propagation enabled. You can use the Default Propagation profile, which is a
predefined profile that requests only identity propagation. You can set a security
profile on a message flow or on individual input and output nodes. If no security
profile is set for the input and output nodes, the setting is inherited from the
setting on the message flow.
1. In the Broker Development view, right-click the BAR file, then click Open with

> Broker Archive Editor.
2. Click the Manage and Configure tab.
3. Click the flow or node on which you want to set the security profile. The

properties that you can configure for the message flow or for the node are
displayed in the Properties view.

4. In the Security Profile Name field, select a security profile that has identity
propagation enabled.

5. Save the BAR file.

What to do next

For a SOAPRequest or SOAPAsyncRequest node, you can define an appropriate
policy set and bindings to specify how the propagated identity is placed in the

492 WebSphere Message Broker Version 7.0.0.8

WS-Security header (rather than the underlying transport headers). For more
information, see “Policy sets” on page 774.

On SOAPRequest and SOAPAsyncRequest nodes, only Username and SAML
tokens can be propagated. However, on the SOAPRequest and SOAPAsyncRequest
nodes with a Kerberos policy set and bindings, a Username and password token
can be propagated into the node to provide the Kerberos client credentials.

For the SAPRequest node, you can propagate only the user name and password.
For the CICSRequest and IMSRequest nodes, you can propagate the user name, or
the user name and password.

If the message identity does not contain enough information for identity
propagation, you can use any of the following methods to acquire the necessary
information:
v Take the information from the message body. For example, if the message comes

from WebSphere MQ with only a username token, and the output is an HTTP
request node requiring a Username + Password token, the password might be
present in the body of the incoming message. For more information, see
“Configuring the extraction of an identity or security token” on page 447.

v Configure an identity mapper using TFIM. For more information, see the IBM
Tivoli Federated Identity Manager Information Center.

v Use ESQL or Java to set the Mapped Identity fields in the Properties tree.
Related concepts:
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
Related tasks:

Chapter 5. Security 493

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.tivoli.fim.doc/toc.xml

“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Configuring identity authentication and security token validation” on page 450
You can configure a message flow to perform identity authentication or security
token validation using Lightweight Directory Access Protocol (LDAP) or a
WS-Trust V1.3 compliant security token sever (STS) such as Tivoli Federated
Identity Manager (TFIM) Version 6.2. Support for TFIM V6.1 is also provided, for
compatibility with previous versions of WebSphere Message Broker.
“Configuring identity mapping” on page 463
Configure a security token server (STS), such as Tivoli Federated Identity Manager
(TFIM) V6.2, to map the incoming security token and, if required, to authenticate
and authorize it.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Configuring authorization” on page 470
Configure the broker to use an external security provider to authorize an identity
in a message flow. You can use either Lightweight Directory Access Protocol
(LDAP) or a WS-Trust V1.3 compliant security token server (STS) such as Tivoli
Federated Identity Manager (TFIM) V6.2. Support for TFIM V6.1 is also provided
for compatibility with previous versions of WebSphere Message Broker.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.

494 WebSphere Message Broker Version 7.0.0.8

“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Database security
You can access databases from the message flows that you deploy to your brokers,
and must therefore consider the steps you might want to take to secure that access.

About this task

After you have defined user IDs that you want the broker to use for database
access by using the mqsisetdbparms command, you must authorize those IDs so
that the broker can access your databases from deployed message flows.

If you have migrated your broker from a previous release, the broker accessed a
database for its own use, and you might have defined the user ID and password
used to access that database by specifying a database connection user ID and
password with the -u and -p parameters on the mqsicreatebroker command.
Alternatively, you might have used the broker service user ID and its password
(specified with the -i and -a parameters on the same command). When you
migrate the broker, these parameters are migrated and stored, and are used by the
migrated broker for access to databases that do not have specific ID access defined.
On WebSphere Message Broker Version 7.0, you can use only the mqsisetdbparms
command to set or change values for database access by the broker, because the
parameters have been deprecated. (The service user ID and password are required
on Windows, but are no longer used for database access.)

WebSphere Message Broker does not provide special commands to administer
databases. Discuss your database security requirements with the database
administrator for the database manager that you are using, or refer to the
documentation provided by your database supplier.

For further information about possible security requirements, and examples of
setting up security for DB2 and Oracle databases, see “Authorizing access to user
databases” on page 662.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Chapter 5. Security 495

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Diagnosing security problems
This topic explains how to find out why access to a secured flow has been denied.

About this task

By default, security exceptions occurring in an input node are not processed in the
same way as other errors (see “Security exception processing” on page 429).
Security exceptions are not logged to the system event log, to prevent a security
denial of service attack filling the logs and destabilizing the system.

This means that, by default, you cannot diagnose input node security exceptions in
the same way as other errors. However, in a SecurityPEP node, a failing security
operation causes a security exception to be raised, wrapped in a normal
recoverable exception, which invokes the error handling that is provided by the
message flow.

To see what might be causing the security exceptions, you can do either of the
following things:
v Select the Treat Security Exceptions as normal exceptions property on the

input nodes.
v Use the user trace.

The following steps show you how to use the user trace to find out why access to
a secured message flow has been denied:

Procedure
1. Use the mqsireloadsecurity command to clear the security cache, so that the

traced request goes to the security provider rather than using a result held in
the cache. This ensures that the reason codes returned from the security
provider are displayed in the traced exception.

2. Enable user trace for the message flow, using either the workbench or the
mqsichangetrace command (see “Starting user trace” on page 3197 for more
information).

3. Resend the request that has been rejected by the security provider.
4. Stop the user trace, using either the workbench or the mqsichangetrace

command.
5. Use the mqsireadlog command to examine the trace information that was

recorded by the user trace. This trace information contains the error codes
provided by the broker and the security provider.

Related concepts:
“Security exception processing” on page 429
A security exception is raised when a message flow security failure occurs during
security processing in an input node or SecurityPEP node.
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the

496 WebSphere Message Broker Version 7.0.0.8

message.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Stopping user trace” on page 3202
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Stop user trace facilities by using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Retrieving user trace” on page 3204
Use the mqsireadlog command to access the trace information that is recorded by
the user trace facilities.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
Related reference:
“mqsireloadsecurity command” on page 3911
Use the mqsireloadsecurity command to force the immediate expiry of some or all
the entries in the security cache.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that
you want to change.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

Broker component security
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.

About this task

For an introduction to various aspects of security, see “Security overview” on page
351.

This section does not apply to z/OS. Refer to “Setting up z/OS security” on page
556 and “Summary of required access (z/OS)” on page 3985 for information about
setting up broker security on z/OS.

Chapter 5. Security 497

Before you start setting up security for your brokers, refer to “Planning for security
when you install WebSphere Message Broker” on page 353, which contains links to
security information that you need before, during, and after installation of
WebSphere Message Broker.

Use the following list of tasks as a security checklist. Each item comprises a list of
reminders or questions about the security tasks to consider for your brokers. The
answers to the questions provide the security information that you require to
configure your brokers, and also give you information about other security controls
that you might want to employ.
v “Creating user IDs”
v “Considering security for the WebSphere Message Broker Toolkit and WebSphere

Message Broker Explorer” on page 500
v “Considering security for a broker” on page 501
v “Implementing SSL authentication” on page 504
v “Using security exits” on page 555
Related tasks:
“Planning for security when you install WebSphere Message Broker” on page 353
The Installation Guide describes the security tasks that you must complete before,
during, and after installation.
“Considering security for a broker” on page 501
Consider several factors when you are deciding which users can execute broker
commands, and which users can control security for other broker resources.
“Considering security for the WebSphere Message Broker Toolkit and WebSphere
Message Broker Explorer” on page 500
Set up appropriate levels of security for the WebSphere Message Broker Toolkit
and WebSphere Message Broker Explorer.
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
Related reference:
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

“Security requirements for Linux and UNIX platforms” on page 3648
View a summary of the authorizations in a Linux or UNIX environment.
“Summary of required access (z/OS)” on page 3985
The professionals in your organization require access to components and resources
on z/OS.

Creating user IDs
When you plan the administration of your broker configuration, you might have to
define one or more user IDs for the tasks associated with particular roles.

About this task

Some operating systems, and other products, impose restrictions on user IDs:
v On Windows systems, user IDs can be up to 12 characters long, but on Linux,

UNIX, and z/OS systems, they are restricted to eight characters.
v Database products might also restrict user IDs to eight characters; for example

DB2 has this restriction. If you have a mixed environment, ensure that the user
IDs that you use are limited to a maximum of eight characters.

498 WebSphere Message Broker Version 7.0.0.8

v Ensure that the case (upper, lower, or mixed) of user IDs is consistent. In some
environments, uppercase and lowercase user IDs are considered the same, but in
other environments, user IDs of different case are considered unique.
For example, on Windows systems, the user IDs 'tester' and 'TESTER' are
identical; on Linux and UNIX systems, they are recognized as different user IDs.

v Check the validity of spaces and special characters in user IDs to ensure that, if
used, these characters are accepted by all relevant systems and products that
you install.

Consider the following roles:

Procedure
v Administrator user IDs that can issue mqsi* commands. Ensure that all these

user IDs are members of the mqbrkrs group.
If you enable broker administration security, you must set up additional
authorization for user IDs for the commands listed in “Commands and
authorizations for broker administration security” on page 3646. For more
information about broker administration security, see “Broker administration
security overview” on page 362.

v On Windows only, service user IDs under which brokers run. For further
information, see “Deciding which user account to use for the broker service ID”
on page 502.

v Workbench users. See “Considering security for the WebSphere Message Broker
Toolkit and WebSphere Message Broker Explorer” on page 500 for information
about checking and securing connections from the WebSphere Message Broker
Toolkit.

Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Broker administration security overview” on page 362
Broker administration security controls the rights of users to complete
administrative tasks for a broker and its resources.
Related tasks:
“Considering security for a broker” on page 501
Consider several factors when you are deciding which users can execute broker
commands, and which users can control security for other broker resources.
“Authorizing access to user databases” on page 662
When you have created a user database, you must authorize the broker and its
execution groups to access it.
Related reference:
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

“Security requirements for Linux and UNIX platforms” on page 3648
View a summary of the authorizations in a Linux or UNIX environment.
“Installation Guide” on page 233
Installation information for WebSphere Message Broker is provided in the
Installation Guide that is supplied as a PDF file with your product package.

Chapter 5. Security 499

Considering security for the WebSphere Message Broker
Toolkit and WebSphere Message Broker Explorer

Set up appropriate levels of security for the WebSphere Message Broker Toolkit
and WebSphere Message Broker Explorer.

Before you begin

When you create a broker, a default SVRCONN channel, SYSTEM.BKR.CONFIG, is
created. This channel supports connections from one or more remote clients to the
broker. Clients that are running on the same computer as the broker connect
directly to the queue manager; they do not require a connection through a channel.

If you want to secure the connection between your WebSphere Message Broker
Toolkit session, or WebSphere Message Broker Explorer session, and the broker,
you can configure the SVRCONN channel to specify security options.

You can use a single channel for all client connections, create a channel for each
client connection, or share connections between two or more clients that have the
same security requirements. You can use the default channel, and create additional
channels if required. If you do not use the default channel, you must set the
alternative name in the connection properties.

You can secure the connection between the WebSphere Message Broker Explorer,
the WebSphere Message Broker Toolkit, a command that uses the CMP interface
(mqsichangeresourcestats, mqsicreateexecutiongroup, mqsideleteexecutiongroup,
mqsideploy, mqsilist, mqsimode, mqsireloadsecurity, mqsireportresourcestats,
mqsistartmsgflow, mqsistopmsgflow), or a CMP application, by using one or both
of the following options:
v WebSphere MQ channel security exits
v Secure Socket Layer (SSL)

See “Securing the channel between the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer and the broker” for details about how to set
up the security you want.

Ensure that user IDs are not more than eight characters long.

Securing the channel between the WebSphere Message Broker
Toolkit or WebSphere Message Broker Explorer and the broker
About this task

Implement one or both of the following options for the WebSphere Message Broker
Toolkit and WebSphere Message Broker Explorer clients:

Procedure
v Create and enable a pair of WebSphere MQ security exits to run at the client

and broker ends of the SVRCONN channel that connects the two components.
Program these exits to verify client users with the security manager on the
computer on which the broker is running.
For more information about creating and enabling security exits, see “Security
exits” on page 354.

v Implement SSL security on the channel. You must have the appropriate software
to manage SSL certificate stores; for example, you can install either the

500 WebSphere Message Broker Version 7.0.0.8

WebSphere MQ Client or the Server, and use the IBM Key Management tools for
the client. You can use either JKS or PKCS12 stores.
1. Use WebSphere MQ facilities to update the SVRCONN definition to specify

the required value in the SSLCIPH attribute.
2. In the WebSphere Message Broker Toolkit or WebSphere Message Broker

Explorer, define the connection to the broker. You can set the SSL fields only
when you define the connection; you cannot change them later. If you have
already defined your connection, delete it, and define it again.

3. Select the cipher suite that matches the value you set for the SSLCIPH
property of the SVRCONN channel.

4. Enter the full path and name for the keystore and truststore, or click Browse
to search for them.

5. Add the queue manager certificate to the client truststore.
6. If you want server-only (one way) certification, set the SVRCONN channel

attribute SSLCAUTH to OPTIONAL.
7. If you want mutual (two way) certification:

– Set the SVRCONN channel attribute SSLCAUTH to REQUIRED.
– Add the client certificate to the queue manager truststore.

For further details about setting up SSL configuration, see “Enabling SSL on the
WebSphere MQ Java Client” on page 540.
For more information about configuring connections to be secured with SSL, see
the WebSphere MQ Java Client developerWorks article.

Related concepts:
“Security exits” on page 354
Use security exit programs to verify that the partner at the other end of a
connection is genuine.
Related tasks:
“Using security exits” on page 555
Define a security exit on the WebSphere MQ channel when you create a broker
connection.
Related reference:
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Considering security for a broker
Consider several factors when you are deciding which users can execute broker
commands, and which users can control security for other broker resources.

Chapter 5. Security 501

http://www.ibm.com/developerworks/websphere/library/techarticles/0510_fehners/0510_fehners.html

About this task

Although most security for the broker and broker resources is optional, you might
find it appropriate to restrict the tasks that some user IDs can perform. You can
then apply greater control to monitor changes.

You can control all broker administration tasks by enabling broker administration
security when you create a broker. You can also change existing brokers to enable
administration security. This option is described in “Setting up broker
administration security” on page 368, and is independent of the options described
in this section.

When you are deciding which users are to perform the different tasks, consider the
following steps:

Procedure
1. “Deciding which user account to use for the broker service ID”
2. “Setting security on the broker queues” on page 503
3. “Securing the broker registry” on page 503

Deciding which user account to use for the broker service ID
About this task

On a Linux or UNIX operating system, when you run the mqsistart command
with a user ID that is a member of the mqm and mqbrkrs groups, the user ID
under which you run the mqsistart command becomes the user ID under which
the broker component process runs.

On the Windows platform the broker runs under a service user account. To decide
which user ID to use for the broker service ID answer the following questions:

Procedure
1. Do you want your broker to run under a Windows local account?

a. No: Go to the next question.
b. Yes: Ensure that your user ID has the following characteristics:
v It is defined in your local domain.
v It is a member of the mqbrkrs group.
Go to “Setting security on the broker queues” on page 503.

2. Do you want your broker to run under a Windows domain account?
a. No: Go to the next question.
b. Yes: Assume that your computer named, for example, WKSTN1, is a

member of a domain named DOMAIN1. When you run a broker using, for
example, DOMAIN1\user1, ensure that:
v Your user ID has been granted the Logon as a service privilege (from

the Local Security Policy).
v DOMAIN1\user1 is a member of DOMAIN1\MyDomainGroup group,

where MyDomainGroup is a domain group which you have defined on
your domain controller.

v DOMAIN1\MyDomainGroup is a member of WKSTN1\mqbrkrs.
Go to “Setting security on the broker queues” on page 503.

3. Do you want your broker to run under theWindows built in LocalSystem
account?

502 WebSphere Message Broker Version 7.0.0.8

a. Yes: Specify LocalSystem for the –i parameter on the mqsicreatebroker or
mqsichangebroker command.
In either case you must enter the –a (password) parameter on the command
line, but the value entered is ignored.
Go to “Setting security on the broker queues.”

Results

Note that for cases one and two above, the user ID chosen must be granted the
Logon as a service privilege.

This is normally done automatically by the mqsichangebroker command or the
mqsichangeproperties command when a service user ID is specified that does not
have this privilege.

However, if you want to do this manually before running these commands, you
can do this by using the Local Security Policy tool in Windows, which you can
access by selecting Control Panel > Performance and maintenance >
Administrative Tools > Local Security Policy.

Setting security on the broker queues
About this task

When you run the mqsicreatebroker command, the local mqbrkrs group is granted
access to internal queues whose names begin with the characters
SYSTEM.BROKER.

Securing the broker registry
About this task

Broker operation depends on the information in the broker registry, which you
must secure to guard against accidental corruption. The broker registry is stored in
the Windows registry or the Linux or UNIX file system. Set your operating system
security options so that only user IDs that are members of the group mqbrkrs can
read from or write to brokername/CurrentVersion and all subkeys.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Authorization for configuration tasks” on page 353
Authorization is the process of granting or denying access to a system resource.
Related reference:
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Chapter 5. Security 503

Implementing SSL authentication
Use SSL authentication to enhance security in your broker environment.

About this task

The following topics contain instructions for implementing SSL authentication:
v “Setting up a public key infrastructure”
v “Listing SSL cipher suites” on page 511
v “Implementing SSL authentication on z/OS” on page 512
v “Configuring the broker to use SSL with JMS nodes” on page 530
v “Configuring SOAPInput and SOAPReply nodes to use SSL (HTTPS)” on page

532
v “Configuring SOAPRequest and SOAPAsyncRequest nodes to use SSL (HTTPS)”

on page 533
v “Configuring HTTPInput and HTTPReply nodes to use SSL (HTTPS)” on page

535
v “Configuring an HTTPRequest node to use SSL (HTTPS)” on page 538
v “Enabling SSL on the WebSphere MQ Java Client” on page 540
v “Securing the connection to CICS Transaction Server for z/OS by using SSL” on

page 547
v “Securing the connection to IMS by using SSL” on page 549
v “Configuring TCP/IP client nodes to use SSL” on page 551
v “Configuring TCP/IP server nodes to use SSL” on page 553
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.

Setting up a public key infrastructure
Configure keystores, truststores, passwords, and certificates to enable SSL
communication, and Web Services Security.

Before you begin

Decide how you will use the public key infrastructure (PKI). You can configure
keystores and truststores at either broker level (one keystore, one truststore, and
one personal certificate for each broker) or at execution group level (one keystore,
one truststore, and one personal certificate for each execution group). Execution
groups that do not have PKI configured use the broker-level PKI configuration.

Encryption strength

The WebSphere Message Broker Java runtime environment (JRE) is provided with
strong but limited strength encryption. If you cannot import keys into keystores,

504 WebSphere Message Broker Version 7.0.0.8

limited strength encryption might be the cause. Either start ikeyman by using the
strmqikm command, or download unrestricted jurisdiction policy files from IBM
developer kits: Security information.

Important: Your country of origin might have restrictions on the import,
possession, use, or re-export to another country, of encryption software. Before
downloading or using the unrestricted policy files, you must check the laws of
your country. Check its regulations and its policies concerning the import,
possession, use, and re-export of encryption software, to determine whether it is
permitted. Note that when applying a fix pack to an existing Message Broker
installation, the JVM is overwritten, including any updated policy set files. These
must be restored before you restart the broker.

WebSphere Message Broker currently supports up to 4096 bit keys. Larger keys
require more CPU resources for encryption and decryption.

About this task

This topic uses the command line tool, gsk7cmd, to create and populate keystores
and truststores. The gsk7cmd tool is a part of the Global Secure Toolkit, supplied
with WebSphere MQ. Other options, supplied with the WebSphere Message Broker
JVM, include:
v A command-line tool, keytool.
v A graphical tool, iKeyman.

To create the infrastructure, complete the following tasks:
1. “Creating a keystore file or a truststore”
2. “Creating a self-signed certificate for test use” on page 506
3. “Importing a certificate for production use” on page 506
4. “Viewing details of a certificate” on page 506
5. “Extracting a certificate” on page 507
6. “Adding a signer certificate to the truststore” on page 508
7. “Listing all certificates in a keystore” on page 509
8. “Configuring PKI at broker level” on page 509
9. “Configuring PKI at execution group level” on page 510

Creating a keystore file or a truststore:

The keystore file contains the personal certificate for the broker or for the execution
group. You can have only one personal certificate in the keystore. You can store
signer certificates in the same file, or create a separate file, known as a truststore.

Procedure

1. Set the JAVA_HOME environment variable, for example:
set JAVA_HOME=C:\WMB70\7.0\jre15

2. Issue the following command:
gsk7cmd -keydb -create

-db keystore_name
[-pw password]
-type jks

The password argument is optional. If you omit it, you are prompted to enter a
password. For example:

Chapter 5. Security 505

|
|

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

gsk7cmd -keydb -create
-db myBrokerKeystore.jks
-type jks

A password is required to access this key database.
Please enter a password:

Creating a self-signed certificate for test use:

Use self-signed certificates only for testing SSL, not in production.

Procedure

Enter the following command:
gsk7cmd -cert -create

-db keystore_name
[-pw password]
-label cert_label
-dn "distinguished_name"

For example:
gsk7cmd -cert -create

-db myBrokerKeystore.jks
-label MyCert
-dn "CN=MyBroker.Server,O=IBM,OU=ISSW,L=Hursley,C=GB"

A password is required to access this key database.
Please enter a password:

Importing a certificate for production use:

Import a personal certificate from a certificate authority for production use.

Procedure

Issue the following command:
gsk7cmd -cert -import

-db pkcs12_file_name
[-pw pkcs12_password]
-label label
-type pkcs12
-target keystore_name
[-target_pw keystore_password]

For example:
gsk7cmd -cert -import

-db SOAPListenerCertificate.p12
-label soaplistener
-type pkcs12
-target myBrokerKeystore.jks
-target_pw myBrokerKpass

A password is required to access this key database.
Please enter a password:

Viewing details of a certificate:
Procedure

Issue the following command:
gsk7cmd -cert -details

-db keystore_name
[-pw password]
-label label

506 WebSphere Message Broker Version 7.0.0.8

For example:
gsk7cmd -cert -details

-db myKeyStore.jks
-label MyCert

A password is required to access this key database.
Please enter a password:

Label: MyCert
Key Size: 1024
Version: X509 V3
Serial Number: 4A D7 39 1F
Issued By: MyBroker.Server
ISSW
IBM
Hursley, GB
Subject: MyBroker.Server
ISSW
IBM
Hursley, GB
Valid From: 15 October 2009 16:00:47 o’clock BST To: 15 October 2010 16:00:47 o’
clock BST
Fingerprint: 98:5D:C4:70:A0:28:84:72:FB:F6:3A:D2:D2:F5:EE:8D:30:33:87:82
Signature Algorithm: 1.2.840.113549.1.1.4
Trust Status: enabled

Extracting a certificate:

Generate a copy of a self-signed certificate that you can import as a trusted (or
signer certificate) into a truststore file. Use this procedure only for testing, not
production.

About this task

Certificates can be extracted in two formats:
v Base64-encoded ASCII data (.arm). This format is convenient for inclusion in

XML messages, and transmission over the Internet.
v Binary DER data (.der).

Procedure

Issue the following command:
gsk7cmd -cert -extract

-db keystore_name
-pw keystore_passwd
-label label
-target file_name
[-format ascii | binary]

For example:
gsk7cmd -cert -extract

-db myBrokerKeystore.jks
-pw myKeyPass
-label MyCert
-target MyCert.arm
-format ascii

You can then view the certificate in a text editor, such as Notepad:
notepad MyCert.arm
-----BEGIN CERTIFICATE-----
MIICIzCCAYygAwIBAgIEStc5HzANBgkqhkiG9w0BAQQFADBWMQswCQYDVQQGEwJHQjEQMA4GA1UE
BxMHSHVyc2xleTEMMAoGA1UEChMDSUJNMQ0wCwYDVQQLEwRJU1NXMRgwFgYDVQQDEw9NeUJyb2tl

Chapter 5. Security 507

ci5TZXJ2ZXIwHhcNMDkxMDE1MTUwMDQ3WhcNMTAxMDE1MTUwMDQ3WjBWMQswCQYDVQQGEwJHQjEQ
MA4GA1UEBxMHSHVyc2xleTEMMAoGA1UEChMDSUJNMQ0wCwYDVQQLEwRJU1NXMRgwFgYDVQQDEw9N
eUJyb2tlci5TZXJ2ZXIwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMwkK5kFLwC29YsHLXlf
hd0CgqFeytHlI0sZesdi8hEPXKsOzs3OQta2b0GZyUbBkh4tNeUHNWE9o7Hx2/SfziPQRKUw908R
F/6FPaHGezRkkaLJGX3uEhjt/2+n5tOJGytnKWaWJTpzdmZ79c0XjFvO83q3yXPYjKzq8rS1iVBf
AgMBAAEwDQYJKoZIhvcNAQEEBQADgYEAQEjpvZkjRcg3AHqY4RWbSMtXVWFFyoHSbjymR8IdURoQ
DCGZ2jsv3kxQLADaCXOBYgohGJAHS7PzkQoHUCiHR0kusyuAt1MNYbhEcs+BYAzvsSz1ay4oiqCw
Qs3aeNLVOb9c1RyzbuKYZl0uX59GAfGVLvyk6vQ/g7wPVL4TVgc=
-----END CERTIFICATE-----

Adding a signer certificate to the truststore:

Add a signer certificate to the truststore of a broker or execution group.

About this task

The following steps show how to add an extracted certificate as signer certificate to
the truststore file. Adding the broker self-signed certificate to a broker or execution
group truststore enables request nodes (HTTP or SOAP) to send test messages to
input nodes (HTTP or SOAP) when the flows are running on the broker or
execution group.

Procedure

Issue the following command:
gsk7cmd -cert -add

-db truststore_name
[-pw password]
-label label
-file file_name
-format [ascii | binary]

For example:
gsk7cmd -cert -add

-db myBrokerTruststore.jks
-label CACert
-file TRUSTEDPublicCerticate.arm
-format ascii

You can view details of the certificate:
gsk7cmd -cert -details -db myBrokerTruststore.jks -label CACert
A password is required to access this key database.
Please enter a password:

Label: CACert
Key Size: 1024
Version: X509 V3
Serial Number: 49 49 23 1B
Issued By: VSR1BK
ISSW
IBM
GB
Subject: VSR1BK
ISSW
IBM
GB
Valid From: 17 December 2008 16:04:43 o’clock GMT To: 17 December 2009 16:04:43
o’clock GMT
Fingerprint: CB:39:E7:D8:1D:C0:00:A1:3D:B1:97:69:7A:A7:77:19:6D:09:C2:A7
Signature Algorithm: 1.2.840.113549.1.1.4
Trust Status: enabled

508 WebSphere Message Broker Version 7.0.0.8

Listing all certificates in a keystore:
Procedure

Issue the following command:
gsk7cmd -cert -list

-db keystore_name

For example:
gsk7cmd -cert -list

-db myBrokerKeystore.jks
A password is required to access this key database.
Please enter a password:

Certificates in database: myBrokerKeystore.jks
verisign class 1 public primary certification authority - g3
verisign class 4 public primary certification authority - g3
verisign class 1 public primary certification authority - g2
verisign class 4 public primary certification authority - g2
verisign class 2 public primary certification authority
entrust.net global client certification authority
rsa secure server certification authority
verisign class 2 public primary certification authority - g3
verisign class 2 public primary certification authority - g2
verisign class 3 secure server ca
verisign class 3 public primary certification authority
verisign class 3 public primary certification authority - g3
verisign class 3 public primary certification authority - g2
thawte premium server ca
verisign class 1 public primary certification authority
entrust.net global secure server certification authority
thawte personal basic ca
thawte personal premium ca
thawte personal freemail ca
verisign international server ca - class 3
thawte server ca
entrust.net certification authority (2048)
cacert
entrust.net client certification authority
entrust.net secure server certification authority
soaplistener
mycert

Configuring PKI at broker level:

Define the broker registry properties that identify the location, name, and
password of the keystore and truststore files.

About this task

1. Start the broker:
mqsistart broker_name

2. Display the current settings of the broker registry properties:
mqsireportproperties broker_name

-o BrokerRegistry
–r

3. Set the keystore property:
mqsichangeproperties broker_name

-o BrokerRegistry
-n brokerKeystoreFile
-v C:\WMB\MQSI\7.0\MyBrokerKeystore.jks

4. Set the truststore property:

Chapter 5. Security 509

mqsichangeproperties broker_name
-o BrokerRegistry
-n brokerTruststoreFile
-v C:\WMB\MQSI\7.0\MyBrokerTruststore.jks

5. Stop the broker:
mqsistop broker_name

6. Set the password for the keystore:
mqsisetdbparms broker_name

-n brokerKeystore::password
-u ignore
-p keystore_pass

7. Set the password for the truststore:
mqsisetdbparms broker_name

-n brokerTruststore::password
-u ignore
-p truststore_pass

8. Start the broker:
mqsistart broker_name

9. Display and verify the broker registry properties:
mqsireportproperties broker_name

-o BrokerRegistry –r

Configuring PKI at execution group level:

Define the ComIbmJVMManager properties for the required execution group to
identify the location, name, and password of the keystore and truststore files.

About this task

1. Start the broker.
mqsistart broker_name

2. Display the current settings of the ComIbmJVMManager properties.
mqsireportproperties broker_name

-e exec_grp_name
-o ComIbmJVMManager -r

3. Set the keystore property.
mqsichangeproperties broker_name

-e exec_grp_name
-o ComIbmJVMManager
-n keystoreFile
-v C:\WMB\MQSI\7.0\MyBrokerexec_grp_name Keystore.jks

4. Set the keystore password key property. The value for this property is in the
format any_prefix_name::password. This value is used to correlate the
password defined in the mqsisetdbparms command.
mqsichangeproperties broker_name

-e exec_grp_name
-o ComIbmJVMManager
-n keystorePass
-v exec_grp_nameKeystore::password

5. Set the truststore property.
mqsichangeproperties broker_name

-e exec_grp_name
-o ComIbmJVMManager
-n truststoreFile
-v C:\WMB\MQSI\7.0\MyBrokerexec_grp_name Truststore.jks

510 WebSphere Message Broker Version 7.0.0.8

6. Set the truststore password key property. The value for this property is in the
format any_prefix_name::password. This value is used to correlate the
password defined in the mqsisetdbparms command.
mqsichangeproperties broker_name

-e exec_grp_name
-o ComIbmJVMManager
-n truststorePass
-v exec_grp_nameTruststore::password

7. Stop the broker.
mqsistop broker_name

8. Set the password for the keystore.
mqsisetdbparms broker_name

-n exec_grp_nameKeystore::password
-u ignore
-p keystore_pass

9. Set the password for the truststore.
mqsisetdbparms broker_name

-n exec_grp_nameTruststore::password
-u ignore
-p truststore_pass

10. Start the broker.
mqsistart broker_name

11. Display and verify the ComIbmJVMManager properties.
mqsireportproperties broker_name

-e exec_grp_name
-o ComIbmJVMManager -r

For information about cipher-suite requirements (such as the cryptographic
algorithm and corresponding key lengths), see the developerWorks article on the
Java Secure Socket Extension (JSSE) IBMJSSE2 Provider.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Configuring the broker to use SSL with JMS nodes” on page 530
Configure your broker to work with a JMS provider that supports JMS clients that
can connect by using the Secure Sockets Layer (SSL) protocol.
“Configuring HTTPInput and HTTPReply nodes to use SSL (HTTPS)” on page 535
Configure the HTTPInput and HTTPReply nodes to communicate with other
applications that use HTTPS by creating a keystore file, configuring the broker or
execution group to use SSL, and creating a message flow to process HTTPS
requests.
“Configuring an HTTPRequest node to use SSL (HTTPS)” on page 538
Configure the HTTPRequest node to communicate with other applications that use
HTTP over SSL.

Listing SSL cipher suites
You can view the available cipher suites in the WebSphere Message Broker Toolkit
when you connect to a remote broker. You can also view a list of the cipher suites
that are supported by WebSphere Message Broker.

About this task

A cipher suite is a collection of algorithms that are used to encrypt data. During
SSL authentication, the client and server compare cipher suites and select the first

Chapter 5. Security 511

http://www.ibm.com/developerworks/java/jdk/security/50/secguides/jsse2Docs/JSSE2RefGuide.html
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/jsse2Docs/JSSE2RefGuide.html

one that they have in common. If no suitable cipher suites exist, the server returns
a handshake failure alert and closes the connection.

To use SSL encryption, you need a Java Secure Socket Extension (JSSE) provider.
WebSphere Message Broker supports the ciphers that are provided by the JSSE
provider. For more information about Java security, see IBM Java security web
page.

You can view the available cipher suites in the WebSphere Message Broker Toolkit
when you connect to a remote broker:
1. In the Brokers view, right-click Brokers, then click Connect to a Remote

Broker.
2. Provide a queue manager name, host name, and port number, then click Next.
3. Click the arrow to the right of Cipher suite.

A list of the cipher suites that are available in the Toolkit is displayed.

For a list of all the cipher suites that are supported by WebSphere Message Broker,
see Appendix A of the IBM JSSE2 Guide.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Connecting to a remote broker” on page 902
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.
“Connecting to a remote broker on z/OS in the WebSphere Message Broker
Explorer” on page 904
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.
“Configuring TCP/IP client nodes to use SSL” on page 551
Configure a TCP/IP configuration to use SSL to secure connectivity to and from
the TCPIP client nodes.
“Configuring TCP/IP server nodes to use SSL” on page 553
Configure a TCP/IP configuration to use SSL to secure connectivity to and from
the TCPIP server nodes.
Related reference:
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

IBM Java security web page
IBM JSSE2 Guide

Implementing SSL authentication on z/OS
Use SSL authentication to enhance security in your broker environment.

About this task

Complete the following tasks to implement SSL authentication for brokers running
on z/OS.

512 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/jsse2Docs/JSSE2RefGuide.html
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/jsse2Docs/JSSE2RefGuide.html

1. “Generate a broker certificate using RACF as the Certification Authority
(z/OS)”

2. “Create and initialize the broker keystore and truststore (z/OS)” on page 514
3. “Configure WebSphere Message Broker on z/OS for SSL” on page 516

Alternatively, you can enable SSL for WebSphere Message Broker on z/OS by
following the instructions in “Enabling SSL on z/OS by using AT-TLS” on page
517.

Generate a broker certificate using RACF as the Certification Authority (z/OS):

You can use RACF as the Certification Authority (CA) for internal certificates in
your enterprise.

About this task

To generate broker certificates, take the following steps:
1. Create the RACF CA signer certificate. This self-signed certificate is used to

sign any other personal certificates created or requested in RACF. This step is
required once.

2. Export the RACF CA signer certificate in CERTDER format. This certificate
must be extracted without private keys; CERTDER is a binary format that
guarantees that no private keys are exported.

3. Create the broker personal certificate. A copy of the certificate and of the
private keys is maintained in RACF for future reissue or validation. This
certificate must be associated with the broker user ID. Create a personal
certificate for each broker or execution group for which you want to enable
SSL.

4. Export the broker personal certificate in PKCS12DER format. PKCS12DER is a
password-protected, binary format that contains the broker certificate and its
private keys. You will later import it into the broker keystore; see “Create and
initialize the broker keystore and truststore (z/OS)” on page 514.

Example commands for each step are as follows:

Procedure

1. Create the RACF CA signer certificate. For example:
RACDCERT CERTAUTH GENCERT +

SUBJECTSDN(CN(’RACF Cert Authority’) T(’PROD’) +
OU(’RACF Group’) +
O(’IBM’) +
L(’HURSLEY’) SP(’WINCHESTER’) C(’GB’)) +
KEYUSAGE(CERTSIGN) +
WITHLABEL(’RACFCA’) +
NOTAFTER(DATE(2020/01/30)) +
SIZE(1024)

2. Export the RACFCA certificate in CERTDER format. For example:

RACDCERT CERTAUTH EXPORT(LABEL(’RACFCA’)) +
DSN(’CSQP.CSQPBRK.CACERT.DER’) FORMAT(CERTDER)

OPUT ’CSQP.CSQPBRK.CACERT.DER’ +
’/u/CSQPBRK/ssl/csqpbrk.ca.der’ +
BINARY CONVERT(NO)

The OPUT command is optional. It is used to copy the certificate into a HFS
file before FTP to another server.

Chapter 5. Security 513

3. Create the broker personal certificate. For example:
RACDCERT ID(CSQPBRK) +

GENCERT SUBJECTSDN(CN(’BROKER.HTTP.CSQPBRK’) T(’PROD’) +
OU(’ISSW’) O(’IBM’) +
L(’HURSLEY’) SP(’WINCHESTER’) C(’GB’)) +
WITHLABEL(’CSQPBRKCERT’) SIZE(1024) +
SIGNWITH(CERTAUTH LABEL(’RACFCA’)) +
KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN) +
NOTAFTER(DATE(2020/01/30))

4. Export the broker certificate in PKCS12 format. For example:
RACDCERT ID(CSQPBRK) EXPORT(LABEL(’CSQPBRKCERT’)) +

DSN(’CSQP.CSQPBRK.PERSCERT.P12’) +
FORMAT(PKCS12DER) PASSWORD(’changeit’)

OPUT ’CSQP.CSQPBRK.PERSCERT.P12’ +
’/u/CSQPBRK/ssl/csqpbrk.pers.p12’ +
BINARY CONVERT(NO)

What to do next

What to do next: Create the broker keystore and import the personal certificate
and RACF CA signer certificates.
Related tasks:
“Implementing SSL authentication on z/OS” on page 512
Use SSL authentication to enhance security in your broker environment.
“Create and initialize the broker keystore and truststore (z/OS)”
Create a keystore and import your personal certificate and signer certificates.
“Configure WebSphere Message Broker on z/OS for SSL” on page 516
Define the location of the keystore and truststore, set passwords, and enable SSL.

Create and initialize the broker keystore and truststore (z/OS):

Create a keystore and import your personal certificate and signer certificates.

Before you begin

Before you start:

v Create the necessary certificates.

Note: Due to export restrictions, the IBM JDKs ship with a set of restricted policy
files that limit the size of the cryptographic keys that are supported. To overcome
these restrictions, use the unrestricted policy files in the $JAVA_HOME/lib/security
directory:
v local_policy.jar
v US_export_policy.jar

The unrestricted policy files are the same for the IBM JDK 1.4.2, IBM JDK 5, and
IBM JDK 6. These files are in the JAVA_HOME/demo/jce/policy-files/unrestricted
directory.

About this task

This topic describes how to use the same file as keystore and truststore. To specify
different files, complete the process twice:
v Do not import signer certificates into the keystore.

514 WebSphere Message Broker Version 7.0.0.8

v Do not import personal certificates into the truststore.

The tasks use keytool to create the keystore. An alternative is the ikeyman
graphical tool, which requires an X Window System.

The following are the steps required to create and initialize the broker keystore:
1. Create the keystore. keytool requires a dummy key to be created to force the

creation of the keystore file. The dummy key is deleted after the keystore is
created.

2. Import the CA signer certificate or certificates. These are certificates that have
signed certificates of client applications that connect to the WebSphere Message
Broker and that are accepted as trusted applications.

Example commands for each step are as follows:

Procedure

1. Create the JKS keystore. For example:
/usr/lpp/java/J6.0/bin/keytool -genkey

-alias DUMMY
-keystore /u/CSQPBRK/ssl/csqpbrkKeystore.jks
-storetype jks
-dname "CN=DUMMY,OU=BROKER,O=IBM,L=Hursley,C=GB"
-storepass changeit
-keypass changeit

2. Delete the dummy key. For example:
/usr/lpp/java/J6.0/bin/keytool -delete

-alias DUMMY
-keystore /u/CSQPBRK/ssl/csqpbrkKeystore.jks
-storepass changeit

3. Optional: Import the CA signer certificates. Omit this step if you require
separate files for a keystore and truststore, and are creating a keystore. For
example:
/usr/lpp/java/J6.0/bin/keytool -import

-keystore /u/CSQPBRK/ssl/csqpbrkKeystore.jks
-storepass changeit
-alias RACFCA
-file /u/CSQPBRK/ssl/csqpbrk.ca.der -v

4. Optional: Import the broker personal certificate. Omit this step if you require
separate files for a keystore and truststore, and are creating a truststore. For
example:
/usr/lpp/java/J6.0/bin/keytool -import

-keystore /u/CSQPBRK/ssl/csqbrkKeystore.jks
-storepass changeit
-alias CSQPBRK
-file /u/CSQPBRK/ssl/csqpbrk.pers.p12
-v
-pkcs12
-keypass changeit
-noprompt

5. List the contents of the broker keystore. For example:
/usr/lpp/java/J6.0/bin/keytool -list

-keystore /u/CSQPBRK/ssl/csqbrkKeystore.jks
-storepass changeit

Chapter 5. Security 515

What to do next

What to do next: “Configure WebSphere Message Broker on z/OS for SSL.”
Related tasks:
“Implementing SSL authentication on z/OS” on page 512
Use SSL authentication to enhance security in your broker environment.
“Generate a broker certificate using RACF as the Certification Authority (z/OS)”
on page 513
You can use RACF as the Certification Authority (CA) for internal certificates in
your enterprise.
“Configure WebSphere Message Broker on z/OS for SSL”
Define the location of the keystore and truststore, set passwords, and enable SSL.

Configure WebSphere Message Broker on z/OS for SSL:

Define the location of the keystore and truststore, set passwords, and enable SSL.

Before you begin

Before you start: complete the following tasks:
v “Generate a broker certificate using RACF as the Certification Authority (z/OS)”

on page 513
v “Create and initialize the broker keystore and truststore (z/OS)” on page 514

About this task

The process is essentially the same as on Windows and UNIX. This topic describes
how to enable SSL at broker level; it can also be done at execution group level for
the SOAP nodes. See “Configuring SOAPInput and SOAPReply nodes to use SSL
(HTTPS)” on page 532 and “Configuring SOAPRequest and SOAPAsyncRequest
nodes to use SSL (HTTPS)” on page 533 for a description of the process on
distributed platforms.

To execute the following commands, you can run the BIPCHPR job in the broker
component library.

Procedure

1. Define the location of the keystore. This example shows how to define a
keystore at broker level. For example:
BPXBATSL PGM -

/usr/lpp/mqsi/V7R0M0/bin/-
mqsichangeproperties -

CSQPBRK -
-o BrokerRegistry -
-n brokerKeystoreFile -
-v /u/CSQPBRK/ssl/csqbrkKeystore.jks

2. Define the location of the truststore. For example:
BPXBATSL PGM -

/usr/lpp/mqsi/V7R0M0/bin/-
mqsichangeproperties -

CSQPBRK -
-o BrokerRegistry -
-n brokerTruststoreFile -
-v /u/CSQPBRK/ssl/csqbrkKeystore.jks

516 WebSphere Message Broker Version 7.0.0.8

3. Enable the HTTPS Connector. For example:
BPXBATSL PGM -

/usr/lpp/mqsi/V7R0M0/bin/-
mqsichangeproperties -

CSQPBRK –
-b httplistener -
-o HTTPListener -
-n enableSSLConnector -
-v true

4. Optional: Enable client authentication. For example:
BPXBATSL PGM -

/usr/lpp/mqsi/V7R0M0/bin/-
mqsichangeproperties -

CSQPBRK –
-b httplistener -
-o HTTPSConnector -
-n clientAuth -
-v true

5. Stop the broker. You must stop the broker before you can define passwords.
6. Define the keystore password. For example:

BPXBATSL PGM -
/usr/lpp/mqsi/V7R0M0/bin/-

mqsisetdbparms -
CSQPBRK –
-n brokerKeystore::password –
-u ignore -
-p changeit

7. Define the truststore password. For example:
BPXBATSL PGM -

/usr/lpp/mqsi/V7R0M0/bin/-
mqsisetdbparms -

CSQPBRK –
-n brokerTruststore::password –
-u ignore -
-p changeit

8. Start the broker.
9. Verify and test your configuration.
Related tasks:
“Implementing SSL authentication on z/OS” on page 512
Use SSL authentication to enhance security in your broker environment.
“Generate a broker certificate using RACF as the Certification Authority (z/OS)”
on page 513
You can use RACF as the Certification Authority (CA) for internal certificates in
your enterprise.
“Create and initialize the broker keystore and truststore (z/OS)” on page 514
Create a keystore and import your personal certificate and signer certificates.
“Starting and stopping a broker on z/OS” on page 924
Run the appropriate command from SDSF to start or stop a broker.

Enabling SSL on z/OS by using AT-TLS:

You can use Application Transparent Transport Layer Security (AT-TLS) to provide
Secure Sockets Layer (SSL) services on behalf of WebSphere Message Broker on
z/OS. AT-TLS is part of z/OS Communication Server.

Chapter 5. Security 517

About this task

You can enable SSL on z/OS by following the instructions in “Implementing SSL
authentication on z/OS” on page 512. This topic describes an alternative method
that uses AT-TLS to enable SSL without the need to complete configuration steps in
WebSphere Message Broker. AT-TLS provides the following benefits when using
SSL/TLS protocols with WebSphere Message Broker on z/OS:
v AT-TLS uses RACF key rings and certificates.
v The Policy Agent (PAGENT) manages the rules and policies that define how SSL

is used to connect to WebSphere Message Broker.
v PAGENT can distribute the rules and policies in a z/OS SYSPLEX environment.
v The WebSphere Message Broker administrator does not have to set any

WebSphere Message Broker properties for SSL.
v HTTP or SOAP nodes in message flows can have standard HTTP settings (no

SSL/HTTPS).

To configure AT-TLS in your z/OS environment for WebSphere Message Broker,
complete the following steps.

Procedure

1. Create a RACF key ring by following the instructions in “Creating a RACF key
ring” on page 520.

2. Configure and activate PAGENT by following the instructions in “Configuring
and activating the policy agent (PAGENT)” on page 522.

3. Define and install AT-TLS policies for WebSphere Message Broker by following
the instructions in “Defining and installing AT-TLS policies” on page 524.

4. Test and verify AT-TLS by using WebSphere Message Broker, as described in
“Testing and verifying AT-TLS” on page 527.

Related concepts:
“Application Transparent Transport Layer Security” on page 519
AT-TLS is a service provided by the z/OS Communication Server Policy Agent
(PAGENT) and the TCP/IP stack. The AT-TLS service manages SSL connections on
behalf of applications that are running on z/OS. The z/OS applications are
unaware that SSL is used in the connection with partner applications.
Related tasks:
“Creating a RACF key ring” on page 520
To create a RACF key ring, you must first generate a RACF CA certificate and a
personal certificate for WebSphere Message Broker, then connect the certificates to
the key ring.
“Configuring and activating the policy agent (PAGENT)” on page 522
Configure PAGENT by updating the TCP/IP profile, granting RACF permission to
TCP/IP resources, preparing the PAGENT startup JCL, and activating syslogd.
“Defining and installing AT-TLS policies” on page 524
Define and install AT-TLS policies by using the IBM Configuration Assistant for
z/OS Communications Server.
“Testing and verifying AT-TLS” on page 527
Test and verify AT-TLS by using the SOAP Nodes sample.
“Diagnosing problems with PAGENT and AT-TLS” on page 529
To help with problem determination with PAGENT and AT-TLS, activate tracing
and logging.

518 WebSphere Message Broker Version 7.0.0.8

Application Transparent Transport Layer Security:

AT-TLS is a service provided by the z/OS Communication Server Policy Agent
(PAGENT) and the TCP/IP stack. The AT-TLS service manages SSL connections on
behalf of applications that are running on z/OS. The z/OS applications are
unaware that SSL is used in the connection with partner applications.

The following diagram shows how AT-TLS works. The numbers in the diagram
represent the steps that follow the diagram.

AT_TLS
policies

RACF
keyring

Server and/or client SSL roles

WebSphere Message Broker

Server and/or client SSL roles

Partner application

Policy agent
PAGENT

Network interface

IP network layer

Sockets

TCP network layer

System SSL call

4

31

SSL

2

1. Step 1 represents an SSL connection when AT-TLS is not used, which requires
that WebSphere Message Broker and the partner application are both enabled
for SSL.

2. The SSL handshake is managed by AT-TLS in the TCP layer.
3. Inbound or outbound application data is received or sent in the clear by

WebSphere Message Broker. The TCP layer validates and decrypts inbound
data from partner applications, or encrypts outbound data to partner
applications.

4. Inbound or outbound application data is protected by SSL.

AT-TLS components

RACF key ring
The RACF key ring contains the WebSphere Message Broker personal
certificate and the partner application signer certificate.

AT-TLS policies
This file contains the rules and policies that control the SSL connections

Chapter 5. Security 519

that are managed by AT-TLS. These policies are created by the network
administrator, and are checked and enforced by the TCP network layer of
the TCP/IP stack.

Policy Agent
This component manages and distributes network policies, including
AT-TLS policies, to the TCP/IP stack or stacks. The policy agent is also
called PAGENT. For AT-TLS to function successfully, PAGENT must be
configured correctly and operational.

TCP/IP stack
The TCP/IP stack is the component that implements the AT-TLS services.
The TCP network layer is where SSL connections are intercepted, the SSL
handshake is performed, and data is decrypted and encrypted. The
TCP/IP stack uses RACF services to validate and accept certificates that
are presented by the partner application during the handshake. RACF
retrieves the WebSphere Message Broker personal certificate from the key
ring.

Related tasks:
“Enabling SSL on z/OS by using AT-TLS” on page 517
You can use Application Transparent Transport Layer Security (AT-TLS) to provide
Secure Sockets Layer (SSL) services on behalf of WebSphere Message Broker on
z/OS. AT-TLS is part of z/OS Communication Server.
“Creating a RACF key ring”
To create a RACF key ring, you must first generate a RACF CA certificate and a
personal certificate for WebSphere Message Broker, then connect the certificates to
the key ring.
“Configuring and activating the policy agent (PAGENT)” on page 522
Configure PAGENT by updating the TCP/IP profile, granting RACF permission to
TCP/IP resources, preparing the PAGENT startup JCL, and activating syslogd.
“Defining and installing AT-TLS policies” on page 524
Define and install AT-TLS policies by using the IBM Configuration Assistant for
z/OS Communications Server.
“Testing and verifying AT-TLS” on page 527
Test and verify AT-TLS by using the SOAP Nodes sample.
“Diagnosing problems with PAGENT and AT-TLS” on page 529
To help with problem determination with PAGENT and AT-TLS, activate tracing
and logging.

Creating a RACF key ring:

To create a RACF key ring, you must first generate a RACF CA certificate and a
personal certificate for WebSphere Message Broker, then connect the certificates to
the key ring.

About this task

Each RACF key ring has its own name up to 237 characters long and is associated
with a user ID. A RACF key ring is connected to a set of personal certificates and
trusted certificates that are stored in the RACF database. The RACF command
RACDCERT is used to create and delete key rings and to connect or disconnect
certificates to the key rings. RACF key rings are also called System Authorization
Facility (SAF) key rings. SAF is an open standard to access security services.

520 WebSphere Message Broker Version 7.0.0.8

To create a RACF key ring to be used by AT-TLS on behalf of WebSphere Message
Broker, complete the following steps.

Procedure

1. Generate a RACF certificate authority (CA) certificate.
You can use RACF as a CA to generate and sign personal certificates for their
internal systems or applications. This certificate must be created once, and it is
used to sign every personal certificate that is generated by RACF. The following
example shows how to use a RACF command to generate a RACF CA
certificate.
RACDCERT CERTAUTH GENCERT +

SUBJECTSDN(CN(’MQRootCA’) +
OU(’ISSW’) +
O(’IBM’) +
L(’HURSLEY’) SP(’WINCHESTER’) C(’GB’)) +
KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN CERTSIGN) +
WITHLABEL(’MQRootCA’) +
NOTAFTER(DATE(2020/01/30)) +
SIZE(1024)

2. Generate a personal certificate for WebSphere Message Broker.
This certificate identifies a specific instance of WebSphere Message Broker. This
certificate is presented to the partner application during the SSL handshake.
This certificate must be associated with the user ID under which WebSphere
Message Broker is running. The following example shows how to use a RACF
command to generate the personal certificate for a broker called WI02BRK that
is running under user ID WI02USR.
RACDCERT ID(WI02USR) +

GENCERT SUBJECTSDN(CN(’WI02BRK’) +
OU(’ISSW’) O(’IBM’) +
L(’HURSLEY’) SP(’WINCHESTER’) C(’GB’)) +
WITHLABEL(’WI02BRK’) SIZE(1024) +
SIGNWITH(CERTAUTH LABEL(’MQRootCA’)) +
KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN) +
NOTAFTER(DATE(2012/01/30))

3. Create a RACF key ring and connect the certificates to the key ring.
The RACF key ring must be associated with a user ID (in this case, the
WebSphere Message Broker user ID). The key ring must have a name (in this
case, the same name as the broker), and the WebSphere Message Broker
personal certificate must be connected to the key ring. The following example
shows how to use a RACF command to create a key ring and connect the
WebSphere Message Broker personal certificate.
RACDCERT ID(WI02USR) ADDRING(WI02BRK)
RACDCERT ID(WI02USR) +
CONNECT(ID(WI02USR) LABEL(’WI02BRK’) RING(WI02BRK))

RACDCERT ID(WI02USR) LISTRING(WI02BRK)

For RACF to validate a partner application certificate, you must import the
signer certificate of the CA that generated and signed the personal certificate of
the partner application. Typically, this certificate is extracted from the partner
application keystore, transferred to z/OS as a data set
(WI02USR.VSR1BK.DER), imported to RACF, and connected to the RACF key
ring as signer (trusted) certificate. The following example shows how to use a
RACF command to add a signer certificate to RACF and connect it to the RACF
key ring.

Chapter 5. Security 521

RACDCERT CERTAUTH ADD(’WI02USR.VSR1BK.DER’) +
WITHLABEL(’VSR1BK’) TRUST
RACDCERT CERTAUTH LIST(LABEL(’VSR1BK’)
RACDCERT ID(WI02USR) +
CONNECT(CERTAUTH LABEL(’VSR1BK’) RING(WI02BRK))

RACDCERT ID(WI02USR) LISTRING(WI02BRK)

What to do next

Next: Configure and activate the policy agent by following the instructions in
“Configuring and activating the policy agent (PAGENT).”
Related concepts:
“Application Transparent Transport Layer Security” on page 519
AT-TLS is a service provided by the z/OS Communication Server Policy Agent
(PAGENT) and the TCP/IP stack. The AT-TLS service manages SSL connections on
behalf of applications that are running on z/OS. The z/OS applications are
unaware that SSL is used in the connection with partner applications.
Related tasks:
“Enabling SSL on z/OS by using AT-TLS” on page 517
You can use Application Transparent Transport Layer Security (AT-TLS) to provide
Secure Sockets Layer (SSL) services on behalf of WebSphere Message Broker on
z/OS. AT-TLS is part of z/OS Communication Server.
“Configuring and activating the policy agent (PAGENT)”
Configure PAGENT by updating the TCP/IP profile, granting RACF permission to
TCP/IP resources, preparing the PAGENT startup JCL, and activating syslogd.
“Defining and installing AT-TLS policies” on page 524
Define and install AT-TLS policies by using the IBM Configuration Assistant for
z/OS Communications Server.
“Testing and verifying AT-TLS” on page 527
Test and verify AT-TLS by using the SOAP Nodes sample.
“Diagnosing problems with PAGENT and AT-TLS” on page 529
To help with problem determination with PAGENT and AT-TLS, activate tracing
and logging.

Configuring and activating the policy agent (PAGENT):

Configure PAGENT by updating the TCP/IP profile, granting RACF permission to
TCP/IP resources, preparing the PAGENT startup JCL, and activating syslogd.

Before you begin

Before you start:

v Create a RACF key ring by following the instructions in “Creating a RACF key
ring” on page 520.

About this task

To enable PAGENT for AT-TLS, complete the following steps. For a more detailed
description of how to install and configure PAGENT, see the Policy-based networking
chapter of the z/OS Communications Server IP Configuration Guide on the z/OS
library web page.

522 WebSphere Message Broker Version 7.0.0.8

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves

Procedure

1. Update the TCP/IP profile.
You must make two changes to the TCP/IP profile to enable AT-TLS:
v Add the statement TCPCONFIG TTLS to activate the functionality of AT-TLS

inside the TCP/IP stack.
v Add PAGENT to the AUTOLOG list.

2. Grant RACF permissions to TCP/IP resources.
Users require permissions to the following resources as part of activating
PAGENT:
a. Define PAGENT as a started task with its own user ID.
b. The EZB.INITSTACK.sysname.tcpprocname resource profile controls which

users can have access to the TCP/IP stack before PAGENT is active. Give
READ access to all users who do not require PAGENT policies to access the
TCP/IP stack; for example, PAGENT, NETVIEW, DB2, and so on.

c. The EZB.PAGENT.sysname.tcpprocname.* resource controls which users can
start, stop, and refresh PAGENT. Give READ access to the users who are
allowed to run the TSO/Unix commands Pagent or pasearch.

d. The user ID of PAGENT must have READ access to the BPX.DAEMON
facility.

For more detailed information about the RACF permissions, check the sample
EZARACF in the TCPIP.SEZAINST library.

3. Prepare the PAGENT startup JCL.
a. Copy the sample JCL PAGENT in the TCPIP.SEZAINST library to the system

procedure library (for example, SYS1.PROCLIB).
b. Edit the JCL according to your installation standards. Specify the location of

the PAGENT configuration file (for example, /etc/pagent/pagent.config).
You can specify the location and name of the configuration file by setting
the environment variable PAGENT_CONFIG_FILE=/etc/pagent/pagent.config.
The environment variables for the TCP/IP stack are usually specified in a
member (for example, ENVVARS) of the TCP/IP parameters library (for
example, TCPIP.PARMS). The PAGENT JCL has ddname STDENV that points
to the member with the environment variables definitions.
The PAGENT configuration file (/etc/pagent/pagent.config) specifies the
location and name of the PAGENT stack-specific configuration file by using
the statement TcpImage: TcpImage TCPIP /etc/pagent/TCPIP.image FLUSH
NOPURGE 1800.
The stack-specific configuration file (/etc/pagent/TCPIP.image) specifies the
location and name of the AT-TLS policies file by using the statement
TTLSConfig: TTLSConfig /etc/pagent/TCPIP_TTLS.policy.

4. Activate the system log daemon (syslogd).
Syslogd acts as the central message logging facility for PAGENT and AT-TLS.
Syslogd is not specific to the policy infrastructure, but the policy infrastructure
depends on syslogd to provide a central logging facility to maintain an audit
trail. If you do not start syslogd, messages are lost. Start one syslog daemon
per LPAR.

What to do next

Define and install AT-TLS policies for WebSphere Message Broker by following the
instructions in “Defining and installing AT-TLS policies” on page 524.
Related concepts:

Chapter 5. Security 523

“Application Transparent Transport Layer Security” on page 519
AT-TLS is a service provided by the z/OS Communication Server Policy Agent
(PAGENT) and the TCP/IP stack. The AT-TLS service manages SSL connections on
behalf of applications that are running on z/OS. The z/OS applications are
unaware that SSL is used in the connection with partner applications.
Related tasks:
“Enabling SSL on z/OS by using AT-TLS” on page 517
You can use Application Transparent Transport Layer Security (AT-TLS) to provide
Secure Sockets Layer (SSL) services on behalf of WebSphere Message Broker on
z/OS. AT-TLS is part of z/OS Communication Server.
“Creating a RACF key ring” on page 520
To create a RACF key ring, you must first generate a RACF CA certificate and a
personal certificate for WebSphere Message Broker, then connect the certificates to
the key ring.
“Defining and installing AT-TLS policies”
Define and install AT-TLS policies by using the IBM Configuration Assistant for
z/OS Communications Server.
“Testing and verifying AT-TLS” on page 527
Test and verify AT-TLS by using the SOAP Nodes sample.
“Diagnosing problems with PAGENT and AT-TLS” on page 529
To help with problem determination with PAGENT and AT-TLS, activate tracing
and logging.

Defining and installing AT-TLS policies:

Define and install AT-TLS policies by using the IBM Configuration Assistant for
z/OS Communications Server.

Before you begin

Before you start:

v Configure and activate PAGENT by following the instructions in “Configuring
and activating the policy agent (PAGENT)” on page 522.

About this task

You can create the AT-TLS policies by using the IBM Configuration Assistant for
z/OS Communications Server, a Java application that you can download from
IBM. Complete the following steps to define the policies required to enable SSL
support on behalf of WebSphere Message Broker for z/OS running SOAPInput and
SOAPRequest nodes:

Procedure

1. Start the configuration assistant by clicking Start > All Programs > IBM
Programs > IBM Configuration Assistant for z/OS > Configuration Assistant
V1R10.

2. Click Add a New z/OS Image, enter the name of your z/OS image (LPAR)
and a description, then click OK.

3. In the Configuration Assistant Navigation pane, select the image that you
added in step 2, click Add New TCP/IP Stack, enter the stack name and
description, then click OK.

4. In the Configuration Assistant Navigation pane, select the stack that you
added in step 3, select AT-TLS from the list of technologies, then click Enable.

524 WebSphere Message Broker Version 7.0.0.8

5. Click Configure.
6. Click Add. The Connectivity Rule wizard opens. Click Next

7. Identify the data endpoints by completing the following fields. A generic rule
facilitates testing, but can be made more specific later.
a. In the Local data endpoint field, select ALL_IP_Addresses.
b. In the Remote data endpoint field, select ALL_IP_Addresses.
c. In the Connectivity Rule Name field, enter a suffix for the name of the

rules, then click Next.
8. Select a requirement map by clicking Add. The map is used to match the type

of IP traffic with the security level to be implemented by AT-TLS.
9. Enter a name and description for the requirement map, then click Work with

Traffic Descriptors. Two traffic descriptors are required: one for the inbound
SOAP requests (WebSphere Message Broker is the server), and another for the
outbound SOAP requests (WebSphere Message Broker is the client).

10. Create an inbound traffic descriptor by clicking Add , enter a name and
description, then click OK.

11. Enter details about the inbound traffic descriptor:
a. For the local port, select Single port and set the port number to 7800 (the

port on which the SOAPInput node normally listens).
b. For the remote port, select All ports.
c. Set the Indicate the TCP connect direction field to Inbound only.
d. In the Jobname field, enter an asterisk (*).
e. In the User ID field, enter an asterisk (*).
f. Select Use the following key ring database.
g. Select Key ring is in SAF produce (such as RACF), then enter the name of

the key ring.
h. Set the AT-TLS handshake role to Server, then click AT-TLS Advanced.
i. Enter the label of the WebSphere Message Broker personal certificate, then

click OK.
12. Click OK to save the traffic details for inbound SOAP traffic, then click OK to

create the traffic descriptor for inbound SOAP.
13. Create an outbound traffic descriptor by clicking Add, add a name and

description, then click OK .
14. Enter details about the outbound traffic descriptor:

a. For the local port, select All ports.
b. For the remote port, select Single port and set the port number to 7843.
c. Set the Indicate the TCP connect direction to Outbound only.
d. In the Jobname field, enter an asterisk (*).
e. In the User ID field, enter an asterisk (*).
f. Select Use the following key ring database.
g. Select Key ring is in SAF produce (such as RACF), then enter the name of

the key ring.
h. Set the AT-TLS handshake role to Client, then click AT-TLS Advanced.
i. Enter the label of the WebSphere Message Broker personal certificate, then

click OK.
15. Click OK to save the traffic details for outbound SOAP traffic, then click OK

to create the traffic descriptor for outbound SOAP.
16. Click Close.

Chapter 5. Security 525

17. To create a security level for WebSphere Message Broker, click Work with
Security Levels, then click Add.
a. On the Name and Type tab, enter a name and description.
b. On the Ciphers tab, select Use TLS V1, Use SSL V3, and Use System SSL

defaults, then click OK.
18. To add traffic descriptors to the requirement map, select SOAP_Server and

SOAP_Client from the Objects list, then click Add.
19. For each traffic descriptor, select the AT-TLS security level that you created in

step 17, then click OK.
20. Click Next and set the appropriate Optional Connectivity Rule Settings, which

are used to set tracing levels, tuning parameters, and timings when the rule is
in effect..

21. Click Finish.
22. To save changes to the AT-TLS rules, click Apply changes, then click Main

perspective.
23. To install the AT-TLS policy, select AT-TLS technology, click Install, then click

FTP to send the policy rules to the LPAR.
24. Specify the FTP parameters:

a. Enter the LPAR host name and set the port number to 21.
b. Enter your user ID and password.
c. Enter the AT-TLS policy file location and name (for example,

/etc/pagent/TCPIP_TTLS.policy.
d. Select Default transfer mode.
e. Click Send, wait for file transfer to complete, then check that the transfer

was successful.
f. Click Close.
g. After the file transfer, refresh or restart PAGENT.

The AT-TLS policies have been created and deployed.

What to do next

Next: Test and verify AT-TLS for WebSphere Message Broker by following the
instructions in “Testing and verifying AT-TLS” on page 527.
Related concepts:
“Application Transparent Transport Layer Security” on page 519
AT-TLS is a service provided by the z/OS Communication Server Policy Agent
(PAGENT) and the TCP/IP stack. The AT-TLS service manages SSL connections on
behalf of applications that are running on z/OS. The z/OS applications are
unaware that SSL is used in the connection with partner applications.
Related tasks:
“Enabling SSL on z/OS by using AT-TLS” on page 517
You can use Application Transparent Transport Layer Security (AT-TLS) to provide
Secure Sockets Layer (SSL) services on behalf of WebSphere Message Broker on
z/OS. AT-TLS is part of z/OS Communication Server.
“Creating a RACF key ring” on page 520
To create a RACF key ring, you must first generate a RACF CA certificate and a
personal certificate for WebSphere Message Broker, then connect the certificates to
the key ring.
“Configuring and activating the policy agent (PAGENT)” on page 522
Configure PAGENT by updating the TCP/IP profile, granting RACF permission to

526 WebSphere Message Broker Version 7.0.0.8

TCP/IP resources, preparing the PAGENT startup JCL, and activating syslogd.
“Testing and verifying AT-TLS”
Test and verify AT-TLS by using the SOAP Nodes sample.
“Diagnosing problems with PAGENT and AT-TLS” on page 529
To help with problem determination with PAGENT and AT-TLS, activate tracing
and logging.

Testing and verifying AT-TLS:

Test and verify AT-TLS by using the SOAP Nodes sample.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a RACF key ring” on page 520
v “Configuring and activating the policy agent (PAGENT)” on page 522
v “Defining and installing AT-TLS policies” on page 524

About this task

Use the following scenario to test and verify AT-TLS with WebSphere Message
Broker:

Chapter 5. Security 527

RACF
key ring

JKS
keystore

http://mywindows.host:7843/acmeOrders/WADDR/ProcessOrders

http://mylpar.host:7800/acmeOrders/WADDR/ProcessOrders

SOAPRequest node
No SLL enabled

SOAPInput node
Port 7843

SSL enabled

SOAPInput node
Port 7800

SOAPRequest node

WebSphere Message Broker

WebSphere Message Broker

Server and/or client SSL roles

AT-TLS

SOAPConsumerFlow

SOAPConsumerFlow

SOAPConsumerFlow

SOAPConsumerFlow

z/OS

Windows

This scenario has the following components:
v One instance of WebSphere Message Broker is running on z/OS.
v Another instance of WebSphere Message Broker is running on Windows.
v SOAP node sample flows from the WebSphere Message Broker Toolkit samples

gallery are deployed to the two WebSphere Message Broker instances.
v The broker instance running on z/OS is not enabled to use SSL. The SSL

services are provided by AT-TLS.
v AT-TLS policies are active and PAGENT is running.
v The broker instance running on Windows is enabled to use SSL, and it has

keystores defined with personal and signer certificates loaded.

The flows receive or send SOAP inbound and outbound requests between the two
instances of WebSphere Message Broker. The SOAP consumer flow in one broker
sends requests to the SOAP provider flow in the other broker. The SOAP nodes on
the Windows broker are SSL enabled. The scenario shows the URLs that are
configured on the SOAPRequest node on each broker.

For more information about how to configure, deploy, and run the SOAP Nodes
sample, see “Samples” on page 98.
Related concepts:

528 WebSphere Message Broker Version 7.0.0.8

“Application Transparent Transport Layer Security” on page 519
AT-TLS is a service provided by the z/OS Communication Server Policy Agent
(PAGENT) and the TCP/IP stack. The AT-TLS service manages SSL connections on
behalf of applications that are running on z/OS. The z/OS applications are
unaware that SSL is used in the connection with partner applications.
Related tasks:
“Enabling SSL on z/OS by using AT-TLS” on page 517
You can use Application Transparent Transport Layer Security (AT-TLS) to provide
Secure Sockets Layer (SSL) services on behalf of WebSphere Message Broker on
z/OS. AT-TLS is part of z/OS Communication Server.
“Creating a RACF key ring” on page 520
To create a RACF key ring, you must first generate a RACF CA certificate and a
personal certificate for WebSphere Message Broker, then connect the certificates to
the key ring.
“Configuring and activating the policy agent (PAGENT)” on page 522
Configure PAGENT by updating the TCP/IP profile, granting RACF permission to
TCP/IP resources, preparing the PAGENT startup JCL, and activating syslogd.
“Defining and installing AT-TLS policies” on page 524
Define and install AT-TLS policies by using the IBM Configuration Assistant for
z/OS Communications Server.
“Diagnosing problems with PAGENT and AT-TLS”
To help with problem determination with PAGENT and AT-TLS, activate tracing
and logging.

Diagnosing problems with PAGENT and AT-TLS:

To help with problem determination with PAGENT and AT-TLS, activate tracing
and logging.

About this task

PAGENT has its own log file with the default name /tmp/pagent.log, which
contains messages about loading AT-TLS rules. Invalid rules are rejected, and
errors are written to the PAGENT log file. You can specify different levels of
logging in the PAGENT configuration file by using the statement LogLevel.
LogLevel 511 gives the most verbose logging.

The TCP/IP stack and the AT-TLS service log messages use SYSLOGD. The AT-TLS
level of tracing is specified by using the advanced options in the connectivity rules.
The highest (more verbose) level of tracing is 255.

The name and location of the log files are specified in the configuration file of the
SYSLOGD (/etc/syslog.conf). The following example shows a configuration that
can be used during testing:
. /var/log/%Y/%m/%d/errors

This syslogd configuration creates log files with names like /var/log/2010/03/20/
errors. Every time syslogd is restarted, it creates a directory based on the current
date. A good procedure is to restart syslogd once a day at midnight.

For more information, see the Diagnosing Policy Agent problems chapter of the z/OS
Communications Server IP Diagnosis Guide on the z/OS library web page.
Related concepts:

Chapter 5. Security 529

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves

“Application Transparent Transport Layer Security” on page 519
AT-TLS is a service provided by the z/OS Communication Server Policy Agent
(PAGENT) and the TCP/IP stack. The AT-TLS service manages SSL connections on
behalf of applications that are running on z/OS. The z/OS applications are
unaware that SSL is used in the connection with partner applications.
Related tasks:
“Enabling SSL on z/OS by using AT-TLS” on page 517
You can use Application Transparent Transport Layer Security (AT-TLS) to provide
Secure Sockets Layer (SSL) services on behalf of WebSphere Message Broker on
z/OS. AT-TLS is part of z/OS Communication Server.
“Creating a RACF key ring” on page 520
To create a RACF key ring, you must first generate a RACF CA certificate and a
personal certificate for WebSphere Message Broker, then connect the certificates to
the key ring.
“Configuring and activating the policy agent (PAGENT)” on page 522
Configure PAGENT by updating the TCP/IP profile, granting RACF permission to
TCP/IP resources, preparing the PAGENT startup JCL, and activating syslogd.
“Defining and installing AT-TLS policies” on page 524
Define and install AT-TLS policies by using the IBM Configuration Assistant for
z/OS Communications Server.
“Testing and verifying AT-TLS” on page 527
Test and verify AT-TLS by using the SOAP Nodes sample.

Configuring the broker to use SSL with JMS nodes
Configure your broker to work with a JMS provider that supports JMS clients that
can connect by using the Secure Sockets Layer (SSL) protocol.

Before you begin

Before you start: Create a keystore file to store the broker's certificates: “Setting up
a public key infrastructure” on page 504.

About this task

The JMS 1.1 Specification states that JMS does not provide features for controlling
or configuring message integrity or message privacy. JMS providers typically
support these additional features, and provide their own administration tools to
configure these services. Clients can get the appropriate security configuration as
part of the administered objects that they use.

If you want to apply SSL security to the JMS connections created by the three
built-in nodes JMSInput, JMSOutput, and JMSReply, check the documentation
supplied by your chosen JMS provider. The configuration of the JNDI administered
objects that are used by the JMS nodes is specific to each JMS provider.

The three built-in nodes JMSInput, JMSOutput, and JMSReply are referred to in
this topic by the generic term JMS nodes; apply the information and instructions
here to the specific type of node that you are using.

One example of a JMS provider that provides SSL support for connecting JMS
clients is TIBCO Enterprise Message Service (EMS). The following sections describe
the authentication model used for JMS nodes, with specific reference to TIBCO
EMS, and provide information about how to connect JMS nodes to a TIBCO EMS
JMS Server securely by using SSL:

530 WebSphere Message Broker Version 7.0.0.8

1. “SSL authentication model for the JMS nodes”
2. “Configuring your JMS nodes to use SSL-enabled JNDI administered objects”

SSL authentication model for the JMS nodes:
About this task

The JMS provider TIBCO EMS supports Java clients that can use either the Java
Secure Sockets Extension (JSSE) Java package, or an SSL implementation supplied
by Entrust. For details about the services provided, see the documentation
provided with your chosen package.

TIBCO EMS supports a number of different authentication scenarios, but JMS
nodes can use only client authentication to the server. In this scenario, the TIBCO
EMS server requests the client's digital certificate during an SSL handshake, and
checks its issuer against the server's list of trusted Certificate Authorities. If the
authority is not in the server's list, further communications are prevented with the
JMS node.

Therefore, you must configure the EMS server to explicitly enable client
authentication of the SSL certificates in its configuration file; configure the JNDI
administered SSL JMS connection factories for the same level of support.

Configuring your JMS nodes to use SSL-enabled JNDI administered objects:
About this task

The JMS nodes use JNDI to look up a connection factory object that is used to
create JMS connections to a TIBCO EMS server.

Procedure

1. Configure the JMS node property Connection factory name to specify a
pre-configured connection factory that is enabled for SSL connectivity.
Make sure that you have set the appropriate parameters in the corresponding
SSL JMS connection factory definition:
v Enable client authentication
v Specify the SSL protocol in the server URL
v Set other parameters to define the support your require.

See the provider's documentation for information about how to generate this
JNDI administered object:

2. Configure the JMS node property Location JNDI Bindings with the URL that
points to the JNDI bindings containing the JNDI administered objects for SSL
connectivity.
For TIBCO EMS , this URL takes the following format:
tibjmsnaming://server_name:ssl_port

v server_name is the host name of the computer where the server is installed.
v ssl_port is the server port for SSL connectivity; typically, this is port 7243 for

a TIBCO EMS server.
3. Make the TIBCO EMS client JAR files available to the broker to which you

deploy the message flow that includes your JMS nodes. Use the
mqsicreateconfigurableservice or the mqsichangeproperties command to set
the JMSProviders configurable service property jarsURL to point to the
directory that contains the JMS provider's client JAR files and the SSL vendor's
JAR files.

Chapter 5. Security 531

If you are using JSSE for the SSL support, the following JAR files are typically
located in the jarsURL directory:
v jsse.jar

v net.jar

v jcert.jar

v tibcrypt.jar

You can find standard non-SSL client JAR files in the same location.

Configuring SOAPInput and SOAPReply nodes to use SSL
(HTTPS)
Configure the SOAP nodes to communicate with other applications that use
HTTPS by creating a keystore file, and configuring the broker to use SSL.

Before you begin

Before you start: Set up a public key infrastructure (PKI) at broker or execution
group level: “Setting up a public key infrastructure” on page 504.

About this task

Follow these steps to configure the SOAPInput and SOAPReply nodes to
communicate with other applications using HTTP over SSL:
1. Configure HTTP listener properties for an execution group
2. Test your configuration

Configuring HTTP listener properties for an execution group:

You do not need to set properties to enable the HTTP listener for an execution
group, but can optionally change values.

Procedure

1. Optional: Enable Client Authentication (mutual authentication):
mqsichangeproperties broker_name

-e execution_group_name
-o HTTPSConnector
-n clientAuth -v true

2. Optional: Change the SSL protocol. The default protocol for the SOAPInput
node is TLS. Issue the following command to change it to SSL:
mqsichangeproperties broker_name

-e execution_group_name
-o HTTPSConnector
-n sslProtocol -v SSL

What to do next

If you have changed any of the HTTP listener properties for the execution group,
take the following steps:
1. Restart the broker.
2. Use the following command to display HTTP listener properties:

mqsireportproperties broker_name
-e execution_group_name
-o HTTPSConnector -r

Testing your configuration:

532 WebSphere Message Broker Version 7.0.0.8

About this task

Use the SOAP Nodes sample to test your configuration. You can view information
about samples only when you use the information center that is integrated with
the WebSphere Message Broker Toolkit or the online information center. You can
run samples only when you use the information center that is integrated with the
WebSphere Message Broker Toolkit.

Procedure

1. Import the sample.
2. Enable SSL in the SOAPNodesSampleConsumerFlow message flow:

a. Open the Invoke_submitOP subflow.
b. Change the HTTPTransport properties for the SOAPRequest node. Set an

https Web service URL, and change other SSL properties as necessary.
3. Enable SSL in the SOAPNodesSampleProvider message flow. Select Use HTTPS

in the HTTP Transport properties panel.
4. Refresh the BAR file and deploy.
5. Test the sample.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Configuring an HTTPRequest node to use SSL (HTTPS)” on page 538
Configure the HTTPRequest node to communicate with other applications that use
HTTP over SSL.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

Configuring SOAPRequest and SOAPAsyncRequest nodes to
use SSL (HTTPS)
Configure the SOAPRequest and SOAPAsyncRequest nodes to communicate with
other applications that use HTTP over SSL.

Chapter 5. Security 533

Before you begin

Before you start: Set up a public key infrastructure (PKI) at broker or execution
group level: “Setting up a public key infrastructure” on page 504.

Configuring the nodes:
Procedure

1. On the HTTP Transport page of the properties for the node, set the Web Service
URL to point to the HTTP server to call.

2. Set other SSL properties as appropriate.

What to do next

Test your configuration.

Testing your configuration:
About this task

Use the SOAP Nodes sample to test your configuration. You can view information
about samples only when you use the information center that is integrated with
the WebSphere Message Broker Toolkit or the online information center. You can
run samples only when you use the information center that is integrated with the
WebSphere Message Broker Toolkit.

Procedure

1. Import the sample.
2. Enable SSL in the SOAPNodesSampleConsumerFlow message flow:

a. Open the Invoke_submitOP subflow.
b. Change the HTTPTransport properties for the SOAPRequest node. Set an

https Web service URL, and change other SSL properties as necessary.
3. Enable SSL in the SOAPNodesSampleProvider message flow. Select Use HTTPS

in the HTTP Transport properties panel.
4. Refresh the BAR file and deploy.
5. Test the sample.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Configuring an HTTPRequest node to use SSL (HTTPS)” on page 538
Configure the HTTPRequest node to communicate with other applications that use
HTTP over SSL.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

534 WebSphere Message Broker Version 7.0.0.8

“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

Configuring HTTPInput and HTTPReply nodes to use SSL
(HTTPS)
Configure the HTTPInput and HTTPReply nodes to communicate with other
applications that use HTTPS by creating a keystore file, configuring the broker or
execution group to use SSL, and creating a message flow to process HTTPS
requests.

Before you begin

Before you start: Set up a public key infrastructure (PKI) at broker level by
following the instructions in “Setting up a public key infrastructure” on page 504.

About this task

Follow these steps to configure the HTTPInput and HTTPReply nodes to
communicate with other applications using HTTP over SSL:
1. If you are using the broker listener:Configure the broker to use SSL
2. If you are using the execution group listener: Configure the execution group to

use SSL
3. Create a message flow
4. Test your configuration

If you have configured your broker and execution groups such that the broker
listener is used for some execution groups, and the execution group listener for
other execution groups, you must complete step 1 for the first set of execution
groups and step 2 for each execution group in the second set.

For information about which listener to use for HTTPS messages, see “HTTP
listeners” on page 1589.

Configuring the broker to use SSL:
About this task

Complete the following steps:

Procedure

1. Turn on SSL support in the broker, by setting a value for enableSSLConnector
mqsichangeproperties broker name

-b httplistener -o HTTPListener
-n enableSSLConnector -v true

2. Optional: If you do not want to use the default port 7083 for HTTPS messages,
specify the port on which the broker listens:

Chapter 5. Security 535

mqsichangeproperties broker name
-b httplistener -o HTTPSConnector
-n port -v Port to listen on for https

On UNIX systems, only processes that run under a privileged user account (in
most cases, root) can bind to ports lower than 1024.For the broker to listen on
these ports, the user ID under which the broker is started must be root.

3. Optional: Enable Client Authentication (mutual authentication):
mqsichangeproperties broker_name -b httplistener -o HTTPSConnector

-n clientAuth -v true

4. Restart the broker after changing one or more of the HTTP listener properties.
5. Optional: Use the following commands to display HTTP listener properties:

mqsireportproperties broker_name -b httplistener -o AllReportableEntityNames -a
mqsireportproperties broker_name -b httplistener -o HTTPListener -a
mqsireportproperties broker_name -b httplistener -o HTTPSConnector -a

Configuring an execution group to use SSL:
About this task

Complete the following steps:

Procedure

1. Optional: Specify a specific port on which the execution group listens for
HTTPS requests, or leave the value unset to use the next available port number.
mqsichangeproperties broker name

-e execution_group_name -o HTTPSConnector
-n explicitlySetPortNumber -v port_number

On UNIX systems, only processes that run under a privileged user account (in
most cases, root) can bind to ports lower than 1024. For the execution group to
listen on these ports, the user ID under which the broker is started must be
root.
If you do not complete this step, the first available port in the default range
(7843 - 7884) is used.

2. Optional: Enable Client Authentication (mutual authentication):
mqsichangeproperties broker_name

-e execution_group_name -o HTTPSConnector
-n clientAuth -v true

3. Optional: Change the SSL protocol. The default protocol for the HTTPInput
node is TLS. Run the following command to change it to SSL:
mqsichangeproperties broker_name

-e execution_group_name -o HTTPSConnector
-n sslProtocol -v SSL

4. Restart the broker after changing one or more of the listener properties.
5. Optional: Use the following command to display HTTPS properties:

mqsireportproperties broker_name
-e execution_group_name -o HTTPSConnector -r

Creating a message flow to process HTTPS requests:
About this task

You can create a simple message flow to use HTTPS by connecting an HTTPInput
node to an HTTPReply node. The two most important properties to set on the
HTTPInput node are:
v Path suffix for URL; for example, /* or /testHTTPS.

536 WebSphere Message Broker Version 7.0.0.8

v Use HTTPS.

/* means that the HTTPInput node matches against any request that is sent to the
HTTP listener on a designated port. This option is useful for testing purposes, but
is not suitable for production systems.

You can now deploy the message flow to the broker. If you have completed all the
documented steps, message BIP3132 is written to the local system log (on
Windows, the event log), stating that the HTTPS listener has been started.

You can now test the system.

Testing your configuration:
About this task

The simplest method of testing whether HTTPS is configured correctly is to use a
Web browser to make a request to the broker over HTTPS.

Start a Web browser and enter the following URL:
https://localhost:7083/testHTTPS

Change values in the URL to reflect the changes that you have made in your
broker configuration; for example, the port number. When a window is displayed
asking you to accept the certificate, select Yes. The browser refreshes the window
and displays an empty HTML page:
v In Mozilla browsers, the empty HTML page looks like the following example:

<html>
<body/>

</html>

v In Internet Explorer, the following information is displayed:
XML document must have a top level element. Error processing resource
’https://localhost:7083/testHTTPS’

These responses mean that a blank page was returned, indicating that the setup
worked correctly. To add content to the empty page, you can add a Compute node
to the flow.

You can use another HTTPS client to process HTTPS requests. Read the
documentation for the client to find out how to configure it to make client
connections over SSL.

You can also use another HTTPS client, such as a Java or .net client, instead of the
Web browser. Depending on the type of client, you might need to export the
certificate (which was created with keytool) from the keystore file associated with
the HTTP listener, then import it into the keystore for the client. Read the client
documentation to find out how to configure the client to make client connections
over SSL.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.

Chapter 5. Security 537

“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Configuring an HTTPRequest node to use SSL (HTTPS)”
Configure the HTTPRequest node to communicate with other applications that use
HTTP over SSL.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

Configuring an HTTPRequest node to use SSL (HTTPS)
Configure the HTTPRequest node to communicate with other applications that use
HTTP over SSL.

Before you begin

Before you start: Set up a public key infrastructure (PKI) at broker level: “Setting
up a public key infrastructure” on page 504

About this task

This topic describes the steps that you need to follow when configuring an
HTTPRequest node on a Windows system. The steps that you must follow on
other operating systems are almost identical.

To enable an HTTPRequest node to communicate using HTTP over SSL, an HTTPS
server application is required. The information provided in this topic shows how
to use the HTTPInput node for SSL as the server application, but the same details
also apply when you are using any other server application.

Complete the following sub-tasks:
1. “Creating a message flow to make HTTPS requests” on page 539
2. “Testing your example” on page 539.

538 WebSphere Message Broker Version 7.0.0.8

Creating a message flow to make HTTPS requests:
About this task

The following message flow creates a generic message flow for converting a
WebSphere MQ message into an HTTP Request:

Procedure

1. Create a message flow with the nodes MQInput->HTTPRequest->Compute-
>MQOutput.

2. On the MQInput node, set the queue name to HTTPS.IN1 and create the
WebSphere MQ queue.

3. On the MQOutput node, set the queue name to HTTPS.OUT1 and create the
WebSphere MQ queue.

4. On the HTTPRequest node, set the Web Service URL to point to the HTTP
server to call. To call the HTTPInput node, use https://localhost:7083/
testHTTPS.

5. On the Advanced properties tab of the HTTPRequest node, set the Response
message location in tree property to OutputRoot.BLOB.

6. On the Compute node, add the following ESQL code:
CREATE COMPUTE MODULE test_https_Compute

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- CALL CopyMessageHeaders();
CALL CopyEntireMessage();
set OutputRoot.HTTPResponseHeader = null;
RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER;
DECLARE J INTEGER;
SET I = 1;
SET J = CARDINALITY(InputRoot.*[]);
WHILE I < J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;

END WHILE;
END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;

END;
END MODULE;

What to do next

The message flow is now ready to be deployed to the broker and tested.

Testing your example:
About this task

To test that the example works, complete the following steps:

Procedure

1. Follow the instructions in “Configuring HTTPInput and HTTPReply nodes to
use SSL (HTTPS)” on page 535, including testing the example.

2. Deploy the HTTPRequest message flow.

Chapter 5. Security 539

3. Put a message to the WebSphere MQ queue HTTPS.IN1. If successful, a
message appears on the output queue. If the process fails, an error appears in
the local error log (which is the event log on Windows).

Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Configuring HTTPInput and HTTPReply nodes to use SSL (HTTPS)” on page 535
Configure the HTTPInput and HTTPReply nodes to communicate with other
applications that use HTTPS by creating a keystore file, configuring the broker or
execution group to use SSL, and creating a message flow to process HTTPS
requests.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Creating ESQL for a node” on page 2394
Create ESQL code to customize the behavior of a Compute, Database,
DatabaseInput, or Filter node in an ESQL file.
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

Enabling SSL on the WebSphere MQ Java Client
The WebSphere MQ Java Client supports SSL-encrypted connections over the
server-connection (SVRCONN) channel between an application and the queue

540 WebSphere Message Broker Version 7.0.0.8

manager. Configure SSL support for connections between applications that use the
CMP API (including the WebSphere Message Broker Toolkit and the WebSphere
Message Broker Explorer) and a broker.

About this task

For one-way authentication, when the client CMP application authenticates the
broker, perform the following steps:

Procedure
1. Generate or obtain all the appropriate keys and certificates. You must include a

signed pkcs12 certificate for the server and the appropriate public key for the
certificate authority that signed the pkcs12 certificate. See “Creating SSL
certificates for the WebSphere MQ Java Client” on page 542, for some example
steps for creating keys and certificates.

2. Add the pkcs12 certificate to the queue manager certificate store and assign it
to the queue manager. Use the standard WebSphere MQ facilities; for example,
WebSphere MQ Explorer.

3. Add the certificate of the certificate authority to the JSSE truststore of the Java
Virtual Machine (JVM) at the CMP application end using a tool such as
Keytool.

4. Decide which cipher suite to use and change the properties on the
server-connection channel by using WebSphere MQ Explorer, to specify the
cipher suite to be used. This channel has a default name of SYSTEM.BKR.CONFIG;
this name is used unless you have specified a different name on the Connect to
Remote Broker wizard; see “Connecting to a remote broker” on page 902 and
“Connecting to a remote broker on z/OS in the WebSphere Message Broker
Explorer” on page 904.

5. Add the required parameters (cipher suite, for example) to the CMP
application. If a truststore other than the default is used, its full path must be
passed in by the truststore parameter.

Results

When you have performed these steps, the CMP application connects to the broker
if it has a valid signed key that has been signed by a trusted certificate authority.

What to do next

For two-way authentication, when the broker also authenticates the CMP
application, perform the following additional steps:
1. Generate or obtain all the appropriate keys and certificates. You must include a

signed pkcs12 certificate for the client and the appropriate public key for the
certificate authority that signed the pkcs12 certificate. See “Creating SSL
certificates for the WebSphere MQ Java Client” on page 542, for some example
steps for creating keys and certificates.

2. Add the certificate of the certificate authority to the queue manager certificate
store by using the standard WebSphere MQ facilities.

3. Set the server-connection channel to always authenticate. Specify
SSLCAUTH(REQUIRED) in runmqsc, or in WebSphere MQ Explorer.

4. Add the pkcs12 certificate to the JSSE keystore of the JVM at the CMP
application end by using a tool such as Keytool.

Chapter 5. Security 541

5. If you are not using the default keystore, its full path must be passed into the
CMP through the keystore parameter

When you have performed these steps, the broker allows the CMP application to
connect only if that application has a certificate signed by one of the certificate
authorities in its keystore.

You can make further restrictions by using the sslPeerName field; for example, you
can allow connections only from certificate holders with a specific company or
department name in their certificates. In addition, you can invoke a security exit
for communications between the CMP applications and the broker; see “Using
security exits” on page 555.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Using security exits” on page 555
Define a security exit on the WebSphere MQ channel when you create a broker
connection.
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Considering security for the WebSphere Message Broker Toolkit and WebSphere
Message Broker Explorer” on page 500
Set up appropriate levels of security for the WebSphere Message Broker Toolkit
and WebSphere Message Broker Explorer.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
Related information:

WebSphere MQ Version 7 Information Center online

Creating SSL certificates for the WebSphere MQ Java Client:

The WebSphere MQ Java Client supports SSL-encrypted connections over the
server-connection (SVRCONN) channel between an application and the queue
manager. To configure SSL-encrypted connections you must first create key stores
and certificates.

Before you begin

Before you start:

v Create a broker
v Start the broker
v Set the environment variable JAVA_HOME to the location of the IBM Key

Management tools in the WebSphere MQ install, for example C:\Program
Files\IBM\WebSphere MQ\gskit\jre\ or /opt/mqm/ssl/jre.

542 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

About this task

Each WebSphere MQ queue manager has a key repository for certificates. When an
application attempts to connect to a secure queue manager, the application's
certificate must be validated against the contents of the queue manager's key
repository. One option for configuring SSL for the queue manager is to use a
self-signed certificate.

Two certificates must be signed and created. One must be created for the server
queue manager, and a second created for the client, for example the WebSphere
Message Broker Explorer.

The instructions in this topic use the gsk7cmd command to create and sign the
certificates. Run the gsk7cmd for a full list of the parameters you can use on the
command. To run the gsk7cmd command:
v On Windows, enter the following command on a command line:

C:\Program Files\IBM\gsk7\bin\gsk7cmd

v On Linux, enter the following command on a command line:
/opt/mqm/ssl/jre/bin/gsk7cmd

Refer to the WebSphere MQ security documentation for more information about
SSL, and creating certificates.

Creating a server certificate for the queue manager:
About this task

Use the IBM Key Management tools on the command line to create a certificate for
the queue manager. In the following example you must replace the following
parameters with your own values:

password
A password for the certificate repository.

qmname
The name of the queue manager for which you want to create a certificate
in lower case.

QMNAME
The name of the queue manager for which you want to create a certificate
in upper case.

Procedure

1. Run the following command to create a key repository of type cms:
gsk7cmd

-keydb-create
-dbkey.kdb
-pwPASSWORD
-typecms -stash

The key.crl, key.kdb, key.rdb, and key.sth key files are created.
2. Run the following command to create a self-signed certificate, where the -dn

flag contains details of your organization:
gsk7cmd

-cert-create
-dbkey.kdb

Chapter 5. Security 543

-pwPASSWORD
-label"qmname"
-dn"CN=My Queue Manager,O=My Company,C=UK"
-expire1000

3. Run the following command to create a request for a personal certificate:
gsk7cmd

-certreq-create
-dbkey.kdb
-pwPASSWORD
-label"ibmwebspheremqqmname"
-dn"CN=My Queue Manager,O=My Company,C=UK"
-fileQMNAME_request.arm

4. Sign the certificate using a certificate authority.
v To obtain a certificate from a certificate authority, you must send the file

containing a certificate signing request to your chosen certificate authority.
v Alternatively you can use the IBM Key Management tools on the command

line to sign the certificate.
gsk7cmd
-cert-sign
-dbkey.kdb
-pwPASSWORD
-label"qmname"
-fileQMNAME_request.arm
-targetQMNAME_signed.arm
-expire364

5. Run the following command to add the signed certificate to the repository:
gsk7cmd

-cert-receive
-dbkey.kdb
-pwPASSWORD
-fileQMNAME_signed.arm

6. Run the following command to export the signed client userid certificate in a
transferable format (in this case PKCS12), with the associated private key and
public CA certificate:
gsk7cmd

-cert-export
-dbkey.kdb
-pwPASSWORD
-label"ibmwebspheremqqmname"
-targetQMNAME_personal.p12
-target_pwPASSWORD
-target_typepkcs12

7. Delete the certificate from the repository:
gsk7cmd

-cert-delete
-dbkey.kdb
-pwPASSWORD
-label"ibmwebspheremqqmname"

8. Create a subdirectory called QMNAME_CMS, and navigate to this directory on the
command line.

9. Run the following command to create a certificate repository in the
QMNAME_CMS directory:
gsk7cmd

-keydb-create
-dbkey.kdb
-pwPASSWORD
-typecms –stash

10. Run the following command to import the PKCS12 file into the repository:

544 WebSphere Message Broker Version 7.0.0.8

gsk7cmd
-cert-import
-file"QMNAME_personal.p12"
-pwPASSWORD
-typepkcs12
-targetkey.kdb
-target_pwPASSWORD
-target_typecms

11. Return to the original directory in which you created the key repository in
step 1.

What to do next

Follow the steps in the next section to create a client certificate for the WebSphere
Message Broker Explorer.

Creating a client certificate for the WebSphere Message Broker Explorer:
About this task

Use the IBM Key Management tools on the command line to create a certificate for
the WebSphere Message Broker Explorer. In the following example you must
replace the following parameters with your own values:

password
A password for the certificate repository.

qmname
The name of the queue manager for which you want to create a certificate
in lower case. This is the same value used in the steps to create a client
certificate for the queue manager.

USERID
The user id for which you want to create a certificate.

Procedure

1. In the directory where you created a key repository for the server queue
manager in step 1 above, run the following command to create a request
(private key plus certificate details) for a certificate to be signed for the server
queue manager:
gsk7cmd

-certreq-create
-dbkey.kdb
-pwPASSWORD
-label"ibmwebspheremqqmname"
-dn"CN=userid@mycompany.com,O=My Company,C=UK"
-fileUSERID_request.arm

2. Run the following command to sign the certificate:
gsk7cmd

-cert-sign
-dbkey.kdb
-pwPASSWORD
-label"qmname"
-fileUSERID_request.arm
-targetUSERID_signed.arm
-expire364

3. Run the following command to add the signed certificate to the repository:

Chapter 5. Security 545

gsk7cmd
-cert-receive
-dbkey.kdb
-pwPASSWORD
-fileUSERID_signed.arm

4. Run the following command to export the signed client userid certificate in a
transferable format (in this case pkcs12), with the associated private key and
public CA certificate:
gsk7cmd

-cert-export
-dbkey.kdb
-pwPASSWORD
-label"ibmwebspheremqqmname"
-targetUSERID_personal.p12
-target_pwPASSWORD
-target_typepkcs12

5. Delete the certificate from the repository:
gsk7cmd

-cert-delete
-dbkey.kdb
-pwPASSWORD
-label"ibmwebspheremqqmname"

6. Create a subdirectory called USERID_JKS, and navigate to this directory on the
command line.

7. Run the following command to create a certificate repository in the USERID_JKS
directory:
gsk7cmd

-keydb-create
-dbkeyStore.jks
-pwPASSWORD
-typejks

8. Run the following command to import the pkcs12 file into the repository:
gsk7cmd

-cert-import
-file"USERID_personal.p12"
-pwPASSWORD
-typepkcs12
-targetkeyStore.jks
-target_pwPASSWORD
-target_typejks"

9. Return to the original directory in which you created the key repository in step
1.

What to do next

You must now copy the files from the Label_CMS directory to your queue
manager's SSL directory. For example, /var/mqm/qmgrs/QM1/ssl or C:\Program
Files\IBM\WebSphere MQ\Qmgrs\QM1\ssl. The keystore.jksfile in the LABEL_JKS
directory must be on the same machine as the WebSphere Message Broker
Explorer. You might also require the AMQCLCHL.TAB file to be copied to the same
system as the WebSphere Message Broker Explorer. This file can be found in the
queue manager's @ipcc directory, for example, /var/mqm/qmgrs/QM1/@ipcc or
C:\Program Files\IBM\WebSphere MQ\qmgrs\QM1\@ipcc.

When you configure the SSL settings in the WebSphere Message Broker Explorer
you must specify the full path to the keystore.jksfile.
Related concepts:

546 WebSphere Message Broker Version 7.0.0.8

“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Using security exits” on page 555
Define a security exit on the WebSphere MQ channel when you create a broker
connection.
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Enabling SSL on the WebSphere MQ Java Client” on page 540
The WebSphere MQ Java Client supports SSL-encrypted connections over the
server-connection (SVRCONN) channel between an application and the queue
manager. Configure SSL support for connections between applications that use the
CMP API (including the WebSphere Message Broker Toolkit and the WebSphere
Message Broker Explorer) and a broker.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
Related information:

WebSphere MQ Version 7 Information Center online

Securing the connection to CICS Transaction Server for z/OS by
using SSL
Configure the CICSRequest node to communicate with CICS Transaction Server for
z/OS over the Secure Sockets Layer (SSL) protocol by updating a CICSConnection
configurable service or the CICSRequest node to use SSL.

Before you begin

Before you start:

Ensure that you have completed the following tasks:
1. The CICSRequest node does not support a separate truststore, so the keystore

file must provide both personal and signer certificates. If client-authentication
(CLIENTAUTH) is enabled in the TCPIPSERVICE in CICS, the broker keystore
file must also contain a personal certificate that is trusted by CICS. To set up a
public key infrastructure (PKI) at broker or execution group level, follow the
instructions in “Setting up a public key infrastructure” on page 504.

2. Create a message flow project and message set project, as described in
“Creating a message flow project” on page 1425 and “Working with a message
set project” on page 2838.

3. Define the COMMAREA data structure as a message set, as described in
“Defining a CICS Transaction Server for z/OS data structure” on page 2193.

4. Configure IP InterCommunications (IPIC) protocol on CICS, as described in
“Preparing the environment for the CICSRequest node” on page 736.

About this task

To configure the CICSRequest node to use SSL, complete the following steps:

Chapter 5. Security 547

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Procedure
1. For client-authenticated (CLIENTAUTH) SSL connections, CICS expects the SSL

client certificate to be mapped to a RACF user ID. Therefore the SSL client
certificate must be mapped to a RACF user ID before attempting to establish
the SSL connection to CICS. If the client certificate is not mapped to a RACF
user ID, the broker might display a ECI_ERR_NO_CICS response. You can map a
client certificate to a RACF user ID by using the RACF command RACDCERT,
which stores the client certificate in the RACF database and associates a user ID
with it, or by using RACF certificate name filtering. Client certificates can be
mapped one-to-one with a user ID, or a mapping from one to the other can be
provided to allow a many-to-one mapping. You can achieve this mapping by
using one of the following methods:
v Associating a client certificate with a RACF user ID

a. Copy the certificate that you want to process into an MVS™ sequential
file. The file must have variable length, blocked records (RECFM=VB),
and be accessible from TSO.

b. Run the RACDCERT command in TSO by using the following syntax:
RACDCERT ADD(’datasetname’) TRUST [ID(userid)]

Where:
– datasetname is the name of the data set containing the client certificate.
– userid is the user ID to be associated with the certificate. This

parameter is optional. If omitted, the certificate is associated with the
user issuing the RACDCERT command.

When you issue the RACDCERT command, RACF creates a profile in the
DIGTCERT class. This profile associates the certificate with the user ID.
You can then use the profile to translate a certificate to a user ID without
giving a password. For full details of RACF commands, see z/OS
Security Server RACF Command Language Reference.

v RACF certificate name filtering

With certificate name filtering, client certificates are not stored in the RACF
database. The association between one or more certificates and a RACF user
ID is achieved by defining a filter rule that matches the distinguished name
of the certificate owner or issuer (CA). A sample filter rule might look like
the following example:
RACDCERT ID(DEPT3USR) MAP SDNFILTER
(OU=DEPT1.OU=DEPT2.O=IBM.L=LOC.SP=NY.C=US)

This sample filter rule would associate user ID DEPT3USR with all
certificates when the distinguished name of the certificate owner contains the
organizational unit DEPT1 and DEPT2, the organization IBM, the locality
LOC, the state/province NY, and the country US.

2. Turn on SSL support in the broker by setting the cicsServer property on the
CICSConnection configurable service, as shown in the following example. This
example changes the CICSRequest node that is configured to use the
myCICSConnection configurable service for the CICS instance that is running at
mycicsregion.com port 56789. After you run this command, the CICSRequest
node connects to CICS over SSL.
mqsichangeproperties MB7BROKER -c CICSConnection -o myCICSConnection -n
cicsServer -v ssl://mycicsregion.com:56789

Alternatively you can configure the CICS server property directly on the
CICSRequest node.

548 WebSphere Message Broker Version 7.0.0.8

What to do next

Next: When you have configured the broker or the CICSRequest node to use SSL,
develop a message flow that contains a CICSRequest node by following the steps
in “Developing a message flow with a CICSRequest node” on page 2199.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

Securing the connection to IMS by using SSL
Configure the IMSRequest node to communicate with IMS over the Secure Sockets
Layer (SSL) protocol by creating a keystore file, and configuring the broker to use
SSL.

Chapter 5. Security 549

Before you begin

Before you start:

Set up a public key infrastructure (PKI) at broker level by following the
instructions in “Setting up a public key infrastructure” on page 504.

About this task

To configure the IMSRequest node to use SSL, complete the following steps.

Procedure
1. Turn on SSL support in the broker by setting the UseSSL and SSLEncryptionType

properties on the IMSConnect configurable service, as shown in the following
example.
This example changes the IMSRequest node that is configured to use the
myIMSConnectService configurable service. After you run this command, the
IMSRequest node connects to IMS over SSL.
mqsichangeproperties MB7BROKER -c IMSConnect -o myIMSConnectService -n
UseSSL,SSLEncryptionType -v True,Weak

2. Optional: Develop a message flow that contains a IMSRequest node.
3. Test your configuration.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“IMS connections” on page 2137
Open Transaction Manager Access (OTMA) is used to provide access to IMS from
WebSphere Message Broker.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Changing connection information for the IMSRequest node” on page 732
You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

550 WebSphere Message Broker Version 7.0.0.8

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

SSL and the TCP/IP nodes
Configure a TCP/IP configuration to use SSL to secure connectivity to and from
the TCPIP nodes.
Related tasks:
“Configuring TCP/IP client nodes to use SSL”
Configure a TCP/IP configuration to use SSL to secure connectivity to and from
the TCPIP client nodes.
“Configuring TCP/IP server nodes to use SSL” on page 553
Configure a TCP/IP configuration to use SSL to secure connectivity to and from
the TCPIP server nodes.
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.

Configuring TCP/IP client nodes to use SSL:

Configure a TCP/IP configuration to use SSL to secure connectivity to and from
the TCPIP client nodes.

You can create or modify TCP/IP client connections that use SSL, by creating or
modifying a configurable service. You can specify the type of protocol, and the
allowed cipher suites. By default, SSL is not enabled for any configurable services.
The nodes use the standard broker keystore and truststore configuration.

Before you begin

Before you start: Set up a public key infrastructure (PKI) at broker or execution
group level by following the instructions in “Setting up a public key
infrastructure” on page 504.

About this task

Follow these steps to configure the TCPIP nodes to use SSL:
1. “Changing a TCP/IP client configuration to use SSL”
2. “Creating a TCP/IP client configuration that uses SSL” on page 552

Changing a TCP/IP client configuration to use SSL:
About this task

Use the mqsichangeproperties command to change an existing TCPIPClient
configurable service.

Chapter 5. Security 551

Procedure

1. The following command specifies that the myTCPIPClientService configurable
service must use SSLv3 as the protocol, with any available cipher suite.
mqsichangeproperties MYBROKER

-c TCPIPClient
-o myTCPIPClientService
-n SSLProtocol
-v SSLv3

2. Restart the execution group that contains the message flows.

Creating a TCP/IP client configuration that uses SSL:
About this task

Use the mqsicreateconfigurableservice command to create a TCPIPClient
configurable service.

Procedure

1. The following command creates a TCPIPClient configurable service for making
connections on port 1455 on the local machine. It uses the SSL protocol SSLv3
with a specific list of allowed cipher suites.
mqsicreateconfigurableservice MYBROKER

-c TCPIPClient
-o myTCPIPClientService
-n Port,Hostname,SSLProtocol,SSLCiphers
-v 1455,localhost,SSLv3,SSL_RSA_WITH_RC4_128_MD5;

SSL_RSA_WITH_3DES_EDE_CBC_SHA

2. Restart the execution group that contains the message flows.

Testing your configuration:
About this task

Use either a TCPIPClientInput node, or a TCPIPClientOutput node to open a
connection to a remote SSL server application that is listening on a TCP/IP port.
Related concepts:
“SSL and the TCP/IP nodes” on page 551
Configure a TCP/IP configuration to use SSL to secure connectivity to and from
the TCPIP nodes.
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Configuring TCP/IP server nodes to use SSL” on page 553
Configure a TCP/IP configuration to use SSL to secure connectivity to and from
the TCPIP server nodes.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

552 WebSphere Message Broker Version 7.0.0.8

“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Configuring TCP/IP server nodes to use SSL:

Configure a TCP/IP configuration to use SSL to secure connectivity to and from
the TCPIP server nodes.

You can create or modify TCP/IP server connections that use SSL, by creating or
modifying a configurable service. You can specify:

The type of protocol.
The allowed cipher suites.
A key alias.
Whether a connecting client should provide authentication information.

By default, SSL is not enabled for any configurable services. The nodes use the
standard broker keystore and truststore configuration.

Before you begin

Before you start: Set up a public key infrastructure (PKI) at broker level by
following the instructions in “Setting up a public key infrastructure” on page 504.

About this task

Follow these steps to configure the TCPIP nodes to use SSL:
1. “Changing a TCP/IP server configuration to use SSL”
2. “Creating a TCP/IP server configuration that uses SSL”

Changing a TCP/IP server configuration to use SSL:
About this task

Use the mqsichangeproperties command to change an existing TCPIPServer
configurable service.

Procedure

1. The following command changes a TCPIPServer configurable service to use
SSLv3 with any available cipher suite. Connecting clients are not asked to
authenticate.
mqsichangeproperties MYBROKER

-c TCPIPClient
-o myTCPIPServerService
-n SSLProtocol
-v SSLv3

2. Restart the execution group that contains the message flows.

Creating a TCP/IP server configuration that uses SSL:
About this task

Use the mqsicreateconfigurableservice command to create a TCPIPServer
configurable service.

Chapter 5. Security 553

Procedure

1. The following command creates a TCPIPServer configurable service for making
connections on port 1455. It uses the SSL protocol SSLv3 with a specific list of
allowed cipher suites. Connecting clients are required to authenticate.
mqsicreateconfigurableservice MYBROKER

-c TCPIPServer
-o myTCPIPServerService
-n Port,SSLProtocol,SSLCiphers,SSLClientAuth
-v 1455,SSLv3,SSL_RSA_WITH_RC4_128_MD5;

SSL_RSA_WITH_3DES_EDE_CBC_SHA,require

2. Restart the execution group that contains the message flows.

Using an SSL key alias:
About this task

A key alias identifies the key that is to be used for the SSL connection, if the
keystore for your broker or execution group contains more than one key. Use the
mqsichangeproperties or mqsicreateconfigurableservice as appropriate, with the
SSLKeyAlias property. The default value "" or none, means that an SSL key alias is
not used. Any other string identifies the alias.

Note: If the keystore contains more than one key, and no key alias is defined, the
Java virtual machine arbitrarily chooses a key at run time.

The following command creates a TCPIPServer configurable service for making
connections on port 1455. It uses the SSL protocol SSLv3 with the cipher suites
SSL_RSA_WITH_RC4_128_MD5 and SSL_RSA_WITH_3DES_EDE_CBC_SHA. It
requires the client to authenticate itself, and uses the key alias MyKey to identify the
key to be used.
mqsicreateconfigurableservice MYBROKER

-c TCPIPServer
-o myTCPIPServerService
-n Port,SSLProtocol,SSLCiphers,SSLClientAuth,SSLKeyAlias
-v 1455,SSLv3,SSL_RSA_WITH_RC4_128_MD5;SSL_RSA_WITH_3DES_EDE_CBC_SHA

,require,MyKey

The following command changes a TCPIPServer configurable service to use the
first key retrieved from the keystore, with SSL protocol SSLv3. SSLClientAuth is
disabled.
mqsichangeproperties MYBROKER

-c TCPIPClient
-o myTCPIPServerService
-n SSLProtocol
-v SSLv3

Testing your configuration:
About this task

To test your configuration, connect an SSL-enabled client, such as another program,
or a web browser, to the server port. Connection error messages, such as
handshake failures, or untrusted keys, indicate that you must change the
configuration.

Client identity:
About this task

If SSL client authentication is requested or required, and the client successfully
authenticates, the distinguished name is present as an identity source token in the

554 WebSphere Message Broker Version 7.0.0.8

properties parser, in the tree propagated from the Open terminal at connection
time. This applies only to the TCPIPServerInput node.

The IdentitySourceToken field is set to the distinguished name from the client
certificate.
The IdentitySourceType field is set to the string username.
The IdentitySourceIssuedBy field is set to the issuer of the certificate presented
by the client.

If SSL client authentication is requested, and the client does not provide the
required credentials, the fields are set to blank.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Using security exits
Define a security exit on the WebSphere MQ channel when you create a broker
connection.

About this task

To create a security exit on the WebSphere MQ channel that you define for
communications between the WebSphere Message Broker Toolkit, or WebSphere
Message Broker Explorer and the broker, you must define a security exit when you
create the connection.

Procedure
1. Select from the following options:
v In the WebSphere Message Broker Toolkit, right-click the Brokers folder and

click Add Remote Broker.
v In the WebSphere Message Broker Explorer, right-click the Brokers folder and

click Connect > Remote Broker.

The Create a Broker Connection wizard opens.
2. Enter the values for Queue Manager Name, Host, and Port that you want to

use. In the WebSphere Message Broker Explorer, click Next.
3. Enter the Security Exit Class name. The name must be a valid Java class name.

Chapter 5. Security 555

4. Set the JAR File location for the Security Exit that is required on this
connection. Click Browse to find the file location.

Results

The security exit is started every time a message passes across the connection.

What to do next

Alternatively, use SSL to communicate between the Administration API for
WebSphere Message Broker (also known as the CMP API) and the broker; see
“Implementing SSL authentication” on page 504.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Security exits” on page 354
Use security exit programs to verify that the partner at the other end of a
connection is genuine.
Related tasks:
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.

Setting up z/OS security
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.

About this task

The steps you need to follow are described in this topic and also in the following
topics:
v “Setting up WebSphere MQ” on page 558
v “Setting up WebSphere Message Broker Toolkit access on z/OS” on page 559

Decide on the started task name of the broker. This name is used to set up started
task authorizations, and to manage your system performance.

Decide on a data set naming convention for your WebSphere Message Broker
PDSE. A typical name might be WMQI.MQP1BRK.CNTL, where MQP1 is the queue
manager name. You must give the WebSphere Message Broker, WebSphere MQ,

556 WebSphere Message Broker Version 7.0.0.8

and z/OS administrators access to these data sets. You can give these professionals
controlled access in several ways, for example:
v Give each user individual access to the specific data set.
v Define a generic data set profile, defining a group that contains the user IDs of

the administrators. Grant the group control access to the generic data set profile.

Define an OMVS group segment for this group so that information can be
extracted from the External Security Manager (ESM) database to enable you to use
Publish/Subscribe security.

Define an OMVS segment for the started task user ID and give its home directory
sufficient space for any WebSphere Message Broker dumps. Consider using the
started task procedure name as the started task user ID. Check that your OMVS
segment is defined by using the following TSO command:
LU userid OMVS

The command output includes the OMVS segment, for example:
USER=MQP1BRK NAME=SMITH, JANE OWNER=TSOUSER
CREATED=99.342 DEFAULT-GROUP=TSOUSER PASSDATE=01.198
PASS-INTERVAL=30
......
OMVS INFORMATION

UID=0000070594
HOME=/u/MQP1BRK
PROGRAM=/bin/sh
CPUTIMEMAX=NONE
ASSIZEMAX=NONE
FILEPROCMAX=NONE
PROCUSERMAX=NONE
THREADSMAX=NONE
MMAPAREAMAX=NONE

The command:
df -P /u/MQP1BRK

displays the amount of space used and available, where /u/MQP1BRK is the value
from HOME (on a previous line). This command shows you how much space is
currently available in the file system. Check with your data administrators that this
space is sufficient. You require a minimum of 400 000 blocks available if a dump is
taken.

Associate the started task procedure with the user ID to be used. For example, you
can use the STARTED class in RACF. The WebSphere Message Broker and z/OS
administrators must agree on the name of the started task.

WebSphere Message Broker administrators need an OMVS segment and a home
directory. Check the setup previously described.

The started task user IDs and the WebSphere Message Broker administrators need
access to the install processing files, the component-specific files, and the home
directory of the started task. During customization, the file ownership can be
changed to alter group access. This change might require super user authority.

When the service user ID is root, all libraries loaded by the broker, including all
user-written plug-in libraries, and all shared libraries that they might access, also

Chapter 5. Security 557

have root access to all system resources (for example, file sets). Review and assess
the risk involved in granting this level of authorization.

For more information about various aspects of security, see “Security overview” on
page 351.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Setting up WebSphere MQ”
This is part of the larger task of setting up security on z/OS, and gives details of
the authorities that your user ID needs to perform the required operations.
“Setting up WebSphere Message Broker Toolkit access on z/OS” on page 559
Access to the WebSphere Message Broker Toolkit is controlled from Windows or
Linux on x86.
Related reference:
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.
“Summary of required access (z/OS)” on page 3985
The professionals in your organization require access to components and resources
on z/OS.

Setting up WebSphere MQ
This is part of the larger task of setting up security on z/OS, and gives details of
the authorities that your user ID needs to perform the required operations.

About this task

The user ID of the person running the create broker (BIPCRBK) job needs UPDATE
access to the component PDSE, READ/EXECUTE access to the installation
directory, and READ/WRITE/EXECUTE access to the broker directory.

If you do not use queue manager security, you do not need to read the rest of this
topic. Topic “Creating the broker component” on page 629 provides detailed
statements on how to protect your queues.

By default, the broker's internal queues, which all have names of the form:
SYSTEM.BROKER.*

should be protected. These names cannot be changed. Restrict access to the broker
started task user ID, and to WebSphere Message Broker administrators.

If you are using Publish/Subscribe, subscribers must have authority to PUT to
SYSTEM.BROKER.CONTOL.QUEUE.

You can control which applications can use queues used by message flows.
Applications must be able to PUT and GET to queues defined in all nodes.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the

558 WebSphere Message Broker Version 7.0.0.8

system.
Related tasks:
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
“Setting up WebSphere Message Broker Toolkit access on z/OS”
Access to the WebSphere Message Broker Toolkit is controlled from Windows or
Linux on x86.
“Security considerations on z/OS” on page 597
“Creating the broker component” on page 629
When you are creating a broker on z/OS, one of the tasks is to create the broker
component.
Related reference:
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.
“Summary of required access (z/OS)” on page 3985
The professionals in your organization require access to components and resources
on z/OS.

Setting up WebSphere Message Broker Toolkit access on z/OS
Access to the WebSphere Message Broker Toolkit is controlled from Windows or
Linux on x86.

About this task

The WebSphere Message Broker Toolkit must run on Windows or Linux on x86.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
“Setting up WebSphere MQ” on page 558
This is part of the larger task of setting up security on z/OS, and gives details of
the authorities that your user ID needs to perform the required operations.
“Security considerations on z/OS” on page 597
Related reference:
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.
“Summary of required access (z/OS)” on page 3985
The professionals in your organization require access to components and resources
on z/OS.
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

“Security requirements for Linux and UNIX platforms” on page 3648
View a summary of the authorizations in a Linux or UNIX environment.

Chapter 5. Security 559

Execution group user IDs on z/OS
On z/OS, you can specify an alternative user ID to run an execution group so that
it accesses resources according to the permissions assigned to it, rather than the
permissions assigned to the main broker user ID.

You can specify an alternative user ID to run an execution group, which means
that you can run one or more message flows under a different user ID from the
main broker ID. When external resources are accessed by a message flow, access is
granted according to the permissions assigned to the user ID that is running the
execution group. By having different user IDs for different execution groups, you
can control the access to resources at the level of the execution group rather than at
the level of the main broker user ID. The user IDs for the execution groups must
be in the same group as the main broker user ID, so that shared resources can be
read and updated.

On z/OS, the user ID assigned to the broker is the started task (STC) user ID that
is assigned to the started task JCL. By default, each broker on z/OS has a single
started task JCL, which is used to start the main broker address space and all
associated execution group address spaces. However, you can specify a different
started task JCL, and therefore a different user ID, for one or more execution
groups. As a result, execution groups can be started using a different started task
JCL and run under different user IDs with different permissions to access
resources. For example, an execution group can access messages from WebSphere
MQ through the execution group's task ID (rather than the main broker ID) by
default. Execution groups can also access files according to the permissions that are
assigned to the execution group's user ID.

You can specify the required environment variable in the main broker profile,
BIPBPROF. You can use the MQSI_STARTEDTASK_FIXED_EG,
MQSI_STARTEDTASK_MULTI_EG, or MQSI_STARTEDTASK_DEFAULT environment variables
to specify a different started task and user ID, for one or more execution groups.
These environment variables override the started task and user ID that are
associated with the broker, and replace them with the started task and user ID
associated with a specific execution group:
v Use the MQSI_STARTEDTASK_FIXED_EG=STC environment variable to specify the

name of a single execution group (where EG is the 8-character name of the
execution group, and STC is the name of the execution group started task JCL).

v Use the MQSI_STARTEDTASK_MULTI_EG=STC environment variable to override the
user ID for multiple execution groups (where EG functions as a wildcard and
STC is the name of the started task JCL that is used to start each of the
execution groups). For example, specify MQ05 in place of EG to override the user
ID for any execution groups in which the last 8 characters start with MQ05.

v Use the MQSI_STARTEDTASK_DEFAULT=STC environment variable to override the
started task JCL (STC) for all execution groups, unless it is overridden by the
MQSI_STARTEDTASK_FIXED_EG or MQSI_STARTEDTASK_MULTI_EG environment
variable.

For information about how to define a user ID on an execution group, see
“Specifying an alternative user ID to run an execution group on z/OS” on page
561.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.

560 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Specifying an alternative user ID to run an execution group on z/OS”
You can change the user ID under which an execution group runs so that it can
access resources according to the permissions assigned to it, rather than the
permissions assigned to the main broker user ID.
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Customizing the broker JCL” on page 625
This subtask is part of the larger task of creating a broker on z/OS.
“Creating the environment file” on page 626
This is part of the larger task of creating a broker on z/OS.
“Copying the broker started task to the procedures library” on page 629
This is part of the larger task of creating a broker on z/OS.

Specifying an alternative user ID to run an execution group on
z/OS

You can change the user ID under which an execution group runs so that it can
access resources according to the permissions assigned to it, rather than the
permissions assigned to the main broker user ID.

Before you begin

Before you start

Before starting this task, read the following topics:
v “Creating a broker on z/OS” on page 620
v “Execution group user IDs on z/OS” on page 560

About this task

Complete the following steps to specify an alternative user ID for the execution
group, to be used instead of the broker's user ID:

Procedure
1. Create the new RACF started task profile with a new user ID, which will be

used to run the execution group. Consider the following points when you are
creating the new started task:
v The new started task must be created with an OMVS segment including a

unique UID, home directory, and the ability to create data sets under the
broker's HLQ and alias.

v The started task procedure name to be used for the execution group address
space must start with the same four characters as the main broker started
task. For example, if the main broker started task is MQ01BRK, the started task
name for the execution group could be MQ01EG1 but not MQ02EG2. As a result,
consistency is maintained between the main broker started task, the
execution group, and the queue manager, which helps to identify the
relationship between them. If the first four characters are not the same, the
execution group is started using the main broker started task JCL.

Chapter 5. Security 561

2. Ensure that the new user ID associated with the new started task JCL has the
same RACF primary group as the existing broker user ID, so that they can
access shared resources. Also ensure that the new user ID has the required
privileges to the existing broker filesystem and dataset (which it should have
through the primary group access).

3. Ensure that the MQ and SMF authorizations are updated for the new user ID;
for more information, see “Summary of required access (z/OS)” on page 3985.

4. Copy the existing broker started task JCL to the new started task JCL in the
PROCLIB.

5. Ensure that the main broker user ID has been granted permission to the
SUPERUSER.PROCESS.KILL RACF profile. This permission is required so that
the main control address space can recover any existing execution group
address spaces in the event of a failure.

6. Refresh the started RACF classes to implement the updates.
7. Change the user ID by adding the appropriate environment variable to the

broker’s profile.
v The execution group name specified in the environment variable is the last 8

characters of the execution group, after any overrides have been applied.
This is the same 8-character name that is displayed as the STEPNAME
against the execution group address space in SDSF.

v Ensure that the execution group name contains only characters that are valid
in the environment variable. If invalid characters are used, the user ID
cannot be overridden.

v If you specify more than one environment variable, they are read in the
following order (with MQSI_STARTEDTASK_FIXED_EG taking precedence):
a. MQSI_STARTEDTASK_FIXED_EG

b. MQSI_STARTEDTASK_MULTI_EG

c. MQSI_STARTEDTASK_DEFAULT
8. Submit BIPGEN to the broker's ENVFILE.
9. Restart the broker.
Related concepts:
“Execution group user IDs on z/OS” on page 560
On z/OS, you can specify an alternative user ID to run an execution group so that
it accesses resources according to the permissions assigned to it, rather than the
permissions assigned to the main broker user ID.
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Customizing the broker JCL” on page 625
This subtask is part of the larger task of creating a broker on z/OS.
“Creating the environment file” on page 626
This is part of the larger task of creating a broker on z/OS.
“Copying the broker started task to the procedures library” on page 629
This is part of the larger task of creating a broker on z/OS.

562 WebSphere Message Broker Version 7.0.0.8

Chapter 6. Configuring brokers for development environments

Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.

About this task

If you are new to WebSphere Message Broker, you can set up a basic development
environment on either Windows or Linux on x86 by installing the broker
component and the WebSphere Message Broker Toolkit, and creating a default
configuration. Run the Default Configuration wizard to create a broker, and try the
sample programs that are supplied in the WebSphere Message Broker Toolkit.

Some of the samples depend on the default configuration, which creates a broker
that has the fixed name, MB7BROKER, and a queue manager for the broker that
has the fixed name, MB7QMGR.

Details of the default configuration are provided in “Creating a default
configuration” on page 564.

When you have tried out your first few samples, you can create and configure
more brokers, and set up an environment that can support your application
developers. Many samples are supplied, and provide education and guidance
about how to use many of the facilities of WebSphere Message Broker.

See the full list of samples in “Samples” on page 98. The samples are grouped in
sections according to the features that they use, and the operations that they
perform. For example, the section "Web services samples" lists the samples that use
Web services nodes to communicate with WebSphere Service Registry and
Repository (WSRR) and other Web applications.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

To create and configure brokers in addition to, or instead of, the default
configuration, follow the instructions in “Creating a development environment” on
page 567.

When you start the WebSphere Message Broker Toolkit, a workbench session
opens, which you can use to create, configure, and manage your application
development resources. You can configure your workbench session in various ways
to suit your working environment and preferences. These options are described in
“Configuring the workbench” on page 570.
Related tasks:
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.

563

Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.

Creating a default configuration
Use the Default Configuration wizard to create and test a basic broker
configuration.

Before you begin

Before you run the Default Configuration wizard, complete the following steps:
v Install the WebSphere Message Broker Toolkit, the Broker component, and the

Broker component prerequisite products on this computer.
v Access the Default Configuration wizard through the WebSphere Message

Broker Toolkit, which is available only on Linux on x86 and Windows.

About this task

By using the Default Configuration wizard, you create a default configuration on
your local computer so that you can explore the product and run the samples. You
can also remove the default configuration, if it exists, that has been created on your
logon account.
v “Creating the default configuration”
v “Removing the default configuration” on page 565

The default configuration is described in more detail in “Verifying your WebSphere
Message Broker installation” on page 290. This topic describes how to verify your
installation on Linux on x86, Linux on x86-64, or Windows by using either the
WebSphere Message Broker Toolkit or the WebSphere Message Broker Explorer.

Creating the default configuration
About this task

The wizard creates the following resources:
v A sample broker named MB7BROKER.
v A WebSphere MQ queue manager named MB7QMGR.

Procedure
1. Start the Default Configuration wizard from the WebSphere Message Broker

Toolkit Welcome page, which is displayed the first time you start the
WebSphere Message Broker Toolkit. If the Welcome page is not displayed, open
it in the WebSphere Message Broker Toolkit by clicking Help > Welcome.

2. Click Get Started on the Welcome page, then click Create the Default
Configuration.

3. Click Start the Default Configuration wizard. The Default Configuration
wizard is displayed.

4. The Welcome page of the wizard describes what is about to happen, click Next
to continue. You can click Cancel at any time to cancel the creation of the
default configuration.

564 WebSphere Message Broker Version 7.0.0.8

The wizard checks that the default configuration is not already created.
5. The Default Configuration Summary page lists the resources that will be

created. Click Next to continue.
6. The Default Configuration Progress page lists the background configuration

actions as they occur, and indicates successful completion. You can cancel the
creation of the default configuration by clicking Cancel. The wizard backs out
all the configuration tasks and displays the progress and success of the process.
The configuration process is written to a log file in the Eclipse workspace
directory:

v Linux /home/user_name/IBM/wmbt70/workspace/.metadata/
DefaultConfigurationWizard.log

v Windows C:\Documents and settings\user_name\IBM\wmbt70\workspace\
.metadata\DefaultConfigurationWizard.log

If the default configuration is created successfully, you see an appropriate
message. If errors occur, you see an appropriate message and the wizard backs
out all the configuration tasks. If an error occurs during the back out process,
the wizard displays a list of resources that you must remove manually.

7. You can use the samples to verify the default configuration. Launch Samples
Wizard when finished is selected by default. Click Finish to open the Prepare
the Samples wizard.
If you do not want to open the Prepare the Samples wizard, clear Launch
Samples Wizard when finished before clicking Finish.
If you are viewing this information from within the WebSphere Message Broker
Toolkit, you can open the samples manually by clicking the following sample:
v Pager

Alternatively, click Product Overview > Samples in the WebSphere Message
Broker information center in the WebSphere Message Broker Toolkit, to display
a list of the available samples.
You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

Removing the default configuration
Procedure
1. Start the Default Configuration wizard from the WebSphere Message Broker

Toolkit Welcome page, which is displayed after you start the WebSphere
Message Broker Toolkit. If the Welcome page is not displayed, open it in the
WebSphere Message Broker Toolkit by clicking Help > Welcome.

2. Click Get Started on the Welcome page, then click Create the Default
Configuration.

3. Click Remove the Default Configuration wizard. The Default Configuration
wizard is displayed.

4. The Welcome page of the wizard describes what is about to happen. You can
click Cancel at any time to cancel the removal of the default configuration.
The wizard checks that the default configuration is already created.

5. The Remove Default Configuration Summary page lists the resources that will
be removed. Click Next to continue.

Chapter 6. Configuring brokers for development environments 565

6. The Default Configuration Progress page lists the removal actions as they occur,
and indicates successful completion. The removal process is written to a log file
in the Eclipse workspace directory:

v Linux /home/user_name/IBM/wmbt70/workspace/.metadata/
DefaultConfigurationWizard.log

v Windows C:\Documents and settings\user_name\IBM\wmbt70\workspace\
.metadata\DefaultConfigurationWizard.log

7. A message confirms that the default configuration has been removed
successfully. Click Finish to close the wizard.
If errors occur during the removal of the default configuration, the wizard
displays the errors, and also writes them to the log file. Follow the advice in
the log, and try each step again.

Results

If you experience problems when you are using the wizard to remove the default
configuration, you might have to remove the default configuration manually. For
more information, see “You experience problems with the default configuration”
on page 3382.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Creating a development environment” on page 567
Create a development environment on Linux on x86 or Windows to develop your
message flow applications.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Resolving problems that occur when you start resources” on page 3371
Use the advice given here to help you to resolve common problems that can occur
when you start resources.
“Resolving problems when running samples” on page 3366
Use the advice given here to help you to resolve common problems that can arise
when you run or remove samples.
Related reference:
“Installation Guide” on page 233
Installation information for WebSphere Message Broker is provided in the
Installation Guide that is supplied as a PDF file with your product package.
“WebSphere MQ resources for the broker” on page 585
Each broker depends on a number of WebSphere MQ resources: some are required,
others are optional, and depend on your environment and requirements. Some of
these resources are created for you, but others you must define for yourself.

566 WebSphere Message Broker Version 7.0.0.8

Creating a development environment
Create a development environment on Linux on x86 or Windows to develop your
message flow applications.

Before you begin

Before you start:

v “Installing the Broker component” on page 267
v “Installing the WebSphere Message Broker Toolkit” on page 276

On Windows, you can use the Launchpad to install both these components. For
details, see “Installing by using the Windows Launchpad” on page 262.

If you are new to WebSphere Message Broker, and have not created a default
configuration, you might want to use that option to set up your first configuration.
You can use the default environment to run some of the supplied sample
programs, and explore the features that are supported by WebSphere Message
Broker. Follow the instructions in “Creating a default configuration” on page 564.

About this task

To create your own development environment on a computer that is running Linux
on x86 or Windows, complete the following steps:

Procedure
1. Start the WebSphere Message Broker Toolkit in one of the following ways:

v Linux From the main menu:
– On Red Hat, click Programming > IBM WebSphere Message Broker

Toolkit.
– On SUSE Linux, click All Applications > WebSphere Message Broker

Toolkit.

v Windows Click Start > All Programs > IBM WebSphere Message Broker
Toolkit > IBM WebSphere Message Broker Toolkit 7.0 > WebSphere
Message Broker Toolkit 7.0, or double-click the shortcut on your desktop.

v Use the following commands in a command prompt from their location in
the root directory for the package group:

– Linux

./eclipse -product com.ibm.etools.msgbroker.tooling.ide

– Windows

eclipse.exe -product com.ibm.etools.msgbroker.tooling.ide

A new session of the WebSphere Message Broker Toolkit opens, and prompts
you for the name of a workspace in which to store the resources that you create
in this session.
You can accept the default value, workspace, type your preferred name into the
text field, or click Browse to select the location of your choice. Select Use this
as the default and do not ask again to inhibit the display of the workspace
dialog next time you start the WebSphere Message Broker Toolkit.

2. Click OK to confirm the location of your workspace. Your WebSphere Message
Broker Toolkit session opens, and displays the Welcome page. You can tailor
various settings in the WebSphere Message Broker Toolkit to suit your

Chapter 6. Configuring brokers for development environments 567

requirements and your working environment; for example, the colors and fonts.
These options are described in “Configuring the workbench” on page 570.

3. Close the Welcome page. You can return to the Welcome page later by clicking
Help > Welcome. If more than one option is listed, select WebSphere Message
Broker.

4. In the Broker Application Development perspective, select the Brokers view.
Alternatively, click Window > Show view > Other > Broker Runtime >
Brokers to show the Brokers view.

5. Right-click WebSphere Message Brokers, and click New > Local Broker to
create a broker, and complete the wizard for this task.
If you want more detailed instructions, see “Creating a broker for a
development environment” on page 569.
Your configuration might be affected by the operation mode of your broker.
The default operation mode is enterprise mode, in which your broker runs with
no restrictions. Check with your broker administrator which operation mode
applies to your organization; you might have to change the mode of your
broker after you have created it. For more information about operation modes,
see “Operation modes” on page 48.

6. You must create at least one execution group on your broker. To add additional
execution groups to your broker, right-click the broker, and click New >
Execution Group. Enter a name for your execution group, and click OK.
The execution group is the runtime environment in which your message flows
run. You can create many execution groups on a single broker, and you can
deploy your message flows to one or more execution groups on one or more
brokers.
For more detailed instructions about this task, see “Creating an execution group
using the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer” on page 937.

Results

Your configuration is now ready to use.

What to do next

Next: You can start to develop resources to deploy to your broker. You can create
your own message flows, or you can use the patterns and samples that are
provided to get you started. For details of these options, see Chapter 9,
“Developing message flow applications,” on page 1019.

This task has covered the minimum set of steps that you must complete to create a
broker and configure your development environment. Typically, as an application
developer, you are working in a single platform environment to create, deploy, and
test your message flows before they are ready for use in a test of production
environment.

More options are available for enhanced configurations, including configurable
services. When the requirements of your message flow applications extend beyond
this basic configuration, and you need additional configuration to support those
requirements, you can find details of these more advanced options in Chapter 7,
“Configuring brokers for test and production environments,” on page 579.
Related tasks:

568 WebSphere Message Broker Version 7.0.0.8

Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.
“Creating a default configuration” on page 564
Use the Default Configuration wizard to create and test a basic broker
configuration.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Creating a broker for a development environment
Create a broker by using the WebSphere Message Broker Toolkit on Linux on x86
or Windows.

Before you begin

Before you start:

If you are using the WebSphere Message Broker Explorer, see “Creating a broker
using the WebSphere Message Broker Explorer” on page 618.
v On Windows, you must have administrator access rights to create brokers by

using the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer. When creating a broker, you might be prompted to agree to the use of
administrator rights or be prompted to enter an administrator user ID and
password.

v If you want to configure the broker as a WebSphere MQ trusted application, see
“Using WebSphere MQ trusted applications” on page 613.

v Read “Considering security for a broker” on page 501.
v Check which operation mode you are licensed to use. If you do not set a mode,

the automatic default is enterprise mode; see “Operation modes” on page 48.

About this task

When you create a broker, if the WebSphere MQ queue manager does not exist,
the queue manager is automatically created. If WebSphere MQ Version 7.1, or later,
has been selected for the queue manager, the channel auth security is automatically
disabled.

If the specified queue manager already exists when creating the broker, then it is
assumed that the user has applied the appropriate security configuration to meet
their requirements, and therefore channel auth security is not disabled.

To create a broker by using the WebSphere Message Broker Toolkit:

Chapter 6. Configuring brokers for development environments 569

Procedure
1. In the Broker Application Development perspective, select the Brokers view.

Alternatively, click Window > Show view > Other > Broker Runtime >
Brokers to show the Brokers view.

2. Right-click the Brokers folder, and click New > Local Broker. The New Local
Broker wizard is displayed.

3. Enter a name for the broker and queue manager. You cannot create a broker on
a queue manager that is already associated with a broker.

4. On Windows, enter your user name and password. These parameters are not
required on Linux on x86.

5. Optional: On Windows, select whether to start the broker automatically when
Windows starts.

6. Enter a name for the default execution group, or accept the value “default”.
7. Optional: Enter a value for the flow debug port for the default execution group.
8. Click Finish.

Results

You have created and started a broker.

What to do next

Return to the instructions in “Creating a development environment” on page 567.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Creating a default configuration” on page 564
Use the Default Configuration wizard to create and test a basic broker
configuration.

Configuring the workbench
You can configure various settings in the workbench to suit your requirements and
your working environment.

About this task

The following topics show you how to configure aspects of the workbench:

570 WebSphere Message Broker Version 7.0.0.8

Procedure
v “Changing WebSphere Message Broker Toolkit preferences”
v “Changing workbench capabilities” on page 572
v “Changing WebSphere Message Broker Explorer preferences” on page 654
v “Configuring CVS to run with the WebSphere Message Broker Toolkit” on page

573
v “Configuring the WebSphere Message Broker Toolkit to run Rational ClearCase”

on page 574
v “Creating a working set” on page 575
v “Integrating the Rational Team Concert client with the WebSphere Message

Broker Toolkit” on page 576

Results

A minimum display resolution of at least 1024 x 768 is required for some dialog
boxes, such as the Preferences dialog box.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related reference:
“WebSphere Message Broker Toolkit” on page 6783
The WebSphere Message Broker Toolkit provides your application development
environment on Windows and Linux on x86.

Changing WebSphere Message Broker Toolkit preferences
The WebSphere Message Broker Toolkit has a large number of preferences that you
can change to suit your requirements. Some of these are specific to the product
plug-ins that you have installed within the workbench, including those for
WebSphere Message Broker. Others control more general options, such as the
colors and fonts in which information is displayed.

About this task

To access the WebSphere Message Broker Toolkit preferences:

Procedure
1. Select Window > Preferences.
2. Click the plus sign associated with Workbench, typically the first entry in the

left pane. An expanded list of options appears, Select the aspect of the
WebSphere Message Broker Toolkit that you want to modify. These options
might be of interest:

Startup and shutdown
Switch on, or off, the prompt at toolkit startup that asks you to confirm
the workspace location. Typically you switch this prompt off, so that it
does not appear, but you can force it to appear next time you start the
WebSphere Message Broker Toolkit if you want to specify a different
location.

You can also specify whether to display the dialog box that asks you to
confirm shutdown of the WebSphere Message Broker Toolkit.

Chapter 6. Configuring brokers for development environments 571

Colors and fonts
Change the default fonts and colors that appear in the WebSphere
Message Broker Toolkit.

Perspectives
On this dialog, your choices include the option to open a new
perspective in a new window.

3. When you have made your changes, click OK to close the Preferences dialog.

What to do next

Below the Workbench category in the Preference dialog are items that refer
specifically to WebSphere Message Broker resources, such as message flows.
Review the following topics for information about setting preferences and other
values that are specific to your use of these resources:
v “Message flow preferences” on page 4016
v “Changing ESQL preferences” on page 2408
v “Configuring message set preferences” on page 2840
v Chapter 10, “Testing and debugging message flow applications,” on page 3143
v Changing trace settings
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related reference:
“WebSphere Message Broker Toolkit” on page 6783
The WebSphere Message Broker Toolkit provides your application development
environment on Windows and Linux on x86.

Changing workbench capabilities
You can configure the workbench to disable access to some of the functional
capabilities of WebSphere Message Broker.

About this task

Capabilities is an Eclipse concept that allows you to enable or disable the
components of a product. By default, all components of the workbench are
enabled.

To access the workbench capabilities:

Procedure
1. Select Window > Preferences.
2. Click the plus sign associated with General. An expanded list of options

appears.
3. Click Capabilities. You can use the capabilities that are listed to enable or

disable various product components; the capabilities are grouped according to a
set of predefined categories.

4. Select Message Broker Toolkit from the list of capabilities that is displayed,
and select the Advanced button. A window opens that has a check box for each
of the predefined categories.

572 WebSphere Message Broker Version 7.0.0.8

5. Select the check boxes for the categories that you want to either enable or
disable; click either the Enable All or Disable All button and click OK. A pane
describes the functionality that is enabled following this action.

What to do next

The predefined categories for the workbench are listed together with a reference to
more information about the relevant functional area of WebSphere Message Broker:
v Message Broker Toolkit - Administration. See Chapter 8, “Administering

brokers and broker resources,” on page 899.
v Message Broker Toolkit - Core. See “WebSphere Message Broker Toolkit” on

page 31.
v Message Broker Toolkit - Development. See Chapter 9, “Developing message

flow applications,” on page 1019.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related reference:
“WebSphere Message Broker Toolkit” on page 6783
The WebSphere Message Broker Toolkit provides your application development
environment on Windows and Linux on x86.

Configuring CVS to run with the WebSphere Message Broker
Toolkit

Install CVS as a normal program by following the usual prompts. Not all versions
of CVSNT are supported by Eclipse.

Procedure
1. Configure CVS by carrying out the following tasks:

a. Create a directory on your computer, for example, on Windows -
c:\CVSRepository.

b. Start the CVSNT control panel. Select Start > Programs > CVSNT to see the
icon on the desktop.

c. Stop both the CVS Service and the CVS Lock Service.
d. Select the Repositories tag, click Add and create a new repository. Note

that no entry appears on the screen the first time that you do this.
e. Use the ... button on the next window to select the directory that you

created in step 1a and click OK. Note that when CVS has finished
formatting its repository the backslash in the directory name is changed to a
forward slash.

f. Select the Service Status tab and restart both the CVS Service and the CVS
Lock Service.

2. Enable the CVS Revision tag to be populated in the Eclipse Version fields in the
WebSphere Message Broker Toolkit. To do this on Windows:
a. Select Window->Preferences
b. Expand the Team section and click CVS

c. Use the drop down in the Default keyword substitution: field and set the
value to ASCII with keyword expansion(-kkv)

Chapter 6. Configuring brokers for development environments 573

3. Add the WebSphere Message Broker file types to the Eclipse CVS configuration.
To do this:
a. Select File Content in the Team section of the window you opened in step 2

on page 573
b. Click Add and add msgflow as an allowable file extension. Ensure that the

value is set to ASCII.
c. Repeat the above procedure for the following file extensions that the broker

uses:
v esql

v mset

v mxsd

If you use CVS to store other file types, for example, COBOL copybooks
add the appropriate file types as well.

d. Click OK when you have finished.
Related concepts:
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related reference:
“Description properties for a message flow” on page 4016
The description properties for a message flow include the Version, Short
Description and Long Description. To view and edit the properties of a message
flow click Flow > Properties.
“Message flow preferences” on page 4016
You can change preferences that determine properties of message flows when you
create them.
“Message set preferences” on page 5366
Preferences for message sets.

Configuring the WebSphere Message Broker Toolkit to run
Rational ClearCase

To use Rational ClearCase with the WebSphere Message Broker Toolkit, enable the
capability in the Preferences page.

About this task

To enable Rational ClearCase in the WebSphere Message Broker Toolkit:

Procedure
1. Click Window > Preferences to open the Preferences window.
2. Expand General in the left pane, and click Capabilities.
3. In the Capabilities pane, click Advanced. The Advanced window opens.
4. Expand Team, and ensure that ClearCase SCM Adapter is selected.
5. Click OK to close the Advanced window.
6. Click OK or Apply to apply your changes.

Results

After you enable the ClearCase capability, the ClearCase menu is displayed in the
Broker Application Development perspective.

574 WebSphere Message Broker Version 7.0.0.8

What to do next

To work with ClearCase:
1. Click ClearCase > Connect to Rational ClearCase.
2. Right-click your project and click Team > Add to Version Control to add your

projects to the ClearCase source control.
3. After you have added your projects to the ClearCase source control, you can

perform ClearCase operations.
Related concepts:
“Development repository” on page 45
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related tasks:
“Configuring CVS to run with the WebSphere Message Broker Toolkit” on page
573
Install CVS as a normal program by following the usual prompts. Not all versions
of CVSNT are supported by Eclipse.
Related reference:
“Message flow preferences” on page 4016
You can change preferences that determine properties of message flows when you
create them.
“Message set preferences” on page 5366
Preferences for message sets.

Creating a working set
Create a working set to limit the number of resources that are displayed in the
Broker Development view.

Before you begin

Before you start:

To read about working sets, see “Working sets” on page 42.

About this task

By creating and using a working set, you can reduce the visual complexity of what
is displayed in the Broker Development view, making it easier to manage and
work with your projects.

To create a new working set, complete the following steps:

Procedure
1. Click the down arrow of the working set section, <all resources>, in the Broker

Development view. A list is displayed containing existing working sets and
options for editing and deleting existing working sets, and for creating a new
working set.

2. Click New Working Set. The New Working Set wizard opens.

Chapter 6. Configuring brokers for development environments 575

3. Enter a name for the working set.
4. Select the resources that you want to include in this working set. You can also

include all the projects that are dependent on your selected resources by
selecting Automatically include dependent projects in this working set.

5. Click Finish.

Results

The new working set and its associated resources are displayed in the Broker
Development view.

What to do next

Next:

In addition to creating new working sets, you can also select, edit, and delete
existing working sets by using the options in the Broker Development view menu.
Related concepts:
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
“Quick Start wizards overview” on page 1409
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to
containers for the resources that you need when you develop a message flow.
Related tasks:
“Creating an application from scratch” on page 1411
Use the "Start from scratch" wizard to create the basic resources that are required
to develop a broker application.
“Creating an application based on WSDL or XSD files” on page 1413
You can use existing WSDL or XSD files as the basis for your solution.
“Creating an application based on an existing message set” on page 1415
Create a new application that is based on an existing message set.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Integrating the Rational Team Concert client with the
WebSphere Message Broker Toolkit

How you integrate the Rational Team Concert™ client with the WebSphere Message
Broker Toolkit.

About this task

To integrate the Rational Team Concert client with the WebSphere Message Broker
Toolkit, you must have the Rational Team Concert client in the same package
group as the WebSphere Message Broker Toolkit.

576 WebSphere Message Broker Version 7.0.0.8

The supported version of Rational Team Concert is V2.0.0.2.

Procedure

Use the Installation Manager to install the Rational Team Concert client into the
same package group as the WebSphere Message Broker Toolkit.
Using the Installation Manager adds all the Rational Team Concert client capability
into the WebSphere Message Broker Toolkit workspace.
You can also install the WebSphere Message Broker Toolkit into the Rational Team
Concert client package group.
If the products are in the same package group, they can be installed in any order.

What to do next

To work with Rational Team Concert source control:
1. Start the WebSphere Message Broker Toolkit.
2. Open the Work Items perspective and click Window > Open Perspective >

Other > Work Items.
3. Click the Create Repository Connection link in the Team Artifacts view.
4. Follow the dialog and enter the information given to you by your Jazz™

administrator.
5. To add your project to the repository, right-click the project and select Team >

Share Project.
6. In the Share Project window, select Jazz Source Control as the repository type.

See Getting started in your Rational Team Concert source control workspace for
more details about the Rational Team Concert source control operations.

You can also use the Jazz Team Build as your build engine for the WebSphere
Message Broker Toolkit; see Building with Jazz Team Build for more information.
Related reference:
“Message flow preferences” on page 4016
You can change preferences that determine properties of message flows when you
create them.
“Message set preferences” on page 5366
Preferences for message sets.

Chapter 6. Configuring brokers for development environments 577

http://publib.boulder.ibm.com/infocenter/rtc/v2r0m0/index.jsp?topic=/com.ibm.team.scm.doc/topics/t_scm_eclipse_singleuser.html
http://publib.boulder.ibm.com/infocenter/rtc/v2r0m0/index.jsp?topic=/com.ibm.team.build.doc/topics/t_build_overview.html

578 WebSphere Message Broker Version 7.0.0.8

Chapter 7. Configuring brokers for test and production
environments

Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.

About this task

On Linux on x86 and Windows, you can install the broker and the WebSphere
Message Broker Toolkit, and create an initial configuration to learn about
WebSphere Message Broker, and start to develop your applications. You can also
configure an environment for more advanced application development and unit
test. These tasks are described in Chapter 6, “Configuring brokers for development
environments,” on page 563.

To configure your test and production environments, use the information in this
section to plan and configure the resources that you want:

Procedure
1. Plan the system.
2. If you are configuring a broker on z/OS, Customize the z/OS environment.
3. Ensure that you have the correct authorization and permissions to create and

access components. For more information, see “Authorization for
configuration tasks” on page 353 and “Broker component security” on page
497.

4. Create the components.
5. If you are using the WebSphere Message Broker Toolkit or WebSphere

Message Broker Explorer, Configure brokers in the developer or administrator
workbench.

6. If you want to ensure that you are using the correct operation mode for your
license, Check the operation mode of your broker.

7. Create and configure the databases.
8. If you want to ensure the data integrity of transactions, Configure global

coordination of transactions.
9. If you want to connect to external resources such as Enterprise Information

Systems, IMS, or JMS, Configure properties to connect to external resources.
10. If you want to configure the storage of events for aggregation, Collector, or

timeout nodes, or configure monitoring event sources, Configure internal
resources that are required by message flows.

11. If you want to view objects in a different language or code page, Change the
locale.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.

579

“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“Authorization for configuration tasks” on page 353
Authorization is the process of granting or denying access to a system resource.
Related tasks:
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.

Planning a broker environment
When you start to plan your broker environment, you must first consider your
resource naming conventions and the design of the WebSphere MQ infrastructure.

About this task

The following topics describe these factors:
v “Considering resource naming conventions” on page 581
v “Designing the WebSphere MQ infrastructure” on page 584

You might also want to consider how your configuration might affect performance
of your brokers and message flows. See “Considering performance in the broker
environment” on page 586 for information about these aspects.

Procedure

You must also consider how to configure your brokers:
1. Performance: What is the required message throughput? See “Optimizing

message flow throughput” on page 587.
What is the size of the messages that are being processed? Larger messages
take longer to process. A few brokers handling many messages might degrade
overall performance. See “Considering performance in the broker environment”
on page 586.

2. Operation mode: The mode in which your broker is working can affect the
number of execution groups and message flows that you can deploy, and the
types of node that you can use. See “Restrictions that apply in each operation
mode” on page 3657. (This option does not apply to brokers that you create on
z/OS systems.)

3. Application independence: Do you need to isolate applications from each
other? You might want to separate applications that serve different functions;
for example, personnel and finance.

Related concepts:

580 WebSphere Message Broker Version 7.0.0.8

“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Routing using publish/subscribe applications” on page 2215
You can route your messages to applications using the publish/subscribe method
of messaging.
Related tasks:
“Configuring brokers” on page 610
Create and configure the brokers that you want on the operating system of your
choice.
“Considering performance in the broker environment” on page 586
When you design your broker environment, and the resources associated with the
brokers, decisions that you make can affect the performance of your brokers and
applications.
“Configuring user databases” on page 659
Configure databases to hold application or business data that you can access from
your message flows.

Considering resource naming conventions
When you plan a new WebSphere Message Broker network, one of your first tasks
must be to establish a convention for naming the resources that you create within
this network.

Information is provided about the following resources:
v Product component naming conventions
v WebSphere MQ naming conventions
v Database naming conventions
Related reference:
“Designing the WebSphere MQ infrastructure” on page 584
You must create and manage the WebSphere MQ resources that are required to
support your brokers, and the applications that connect to them to supply or
receive messages.

Naming conventions for brokers and associated resources
Establish a naming convention for all the WebSphere Message Broker resources in
your broker environment to ensure that names are unique, and that users creating
new resources can be confident of not introducing duplication or confusion.

Consider the names that you use for your brokers and resources:

Brokers

When you create a broker, give it a name that is unique within your broker
environment. You must use the same name for that broker when you create
it on the system in which it is installed, using the command
mqsicreatebroker. Broker names are case sensitive except on Windows
platforms.

Execution groups

Each execution group name must be unique within a broker.

Message flows and message processing nodes

Chapter 7. Configuring brokers for test and production environments 581

Each message processing node must be unique within the message flow it
is assigned to. For example, if you include two MQOutput nodes in a
single message flow, provide a unique name for each one.

Message flow names must be unique within the broker. All references to
that name are always to the same message flow. If you assign the same
message flow to more than one broker, you must ensure that you maintain
unique message flow names across those brokers.

Message sets and messages

Each message name must be unique within the message set to which it
belongs.

Message set names must be unique within the broker. All references to that
name are always to the same message set. If you assign the same message
set to more than one broker, you must ensure that you maintain unique
message set names across those brokers.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“Naming conventions for WebSphere Message Broker for z/OS” on page 3984
Decide upon a naming convention for your WebSphere Message Broker for z/OS
broker to make customizing, operating, and administering easier.

WebSphere MQ naming conventions
All WebSphere Message Broker resources have dependencies on WebSphere MQ
services and objects. You must therefore also consider what conventions to adopt
for WebSphere MQ object names. If you already have a WebSphere MQ naming
convention, use a compatible extension of this convention for WebSphere Message
Broker resources.

When you create a broker, you must specify a queue manager name. This queue
manager is created for you if it does not already exist. Every broker must have a
dedicated queue manager.

Ensure that every queue manager name is unique within your network of
interconnected queue managers, whether or not every queue manager is in your
WebSphere Message Broker network. This ensures that each queue manager can
unambiguously identify the target queue manager to which any given message
must be sent, and that WebSphere Message Broker applications can also interact
with basic WebSphere MQ applications.

582 WebSphere Message Broker Version 7.0.0.8

WebSphere MQ supports a number of objects defined to queue managers. These
objects (queues, channels, and processes) also have naming conventions and
restrictions.

In summary, the restrictions are:
v All names must be a maximum of 48 characters in length (channels have a

maximum of 20 characters).
v The name of each object must be unique within its type (for example, queue or

channel).
v Names for all objects starting with the characters SYSTEM. are reserved for use

by IBM.

Additionally, there is a restriction to the length of the user identifier on each
platform:
v On AIX, UNIX systems, and z/OS, the maximum length is eight characters.
v On Windows, the maximum length is 20 characters.

There are a few restrictions for naming resources: see “Naming conventions for
WebSphere Message Broker for z/OS” on page 3984.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
Related reference:
“Naming conventions for WebSphere Message Broker for z/OS” on page 3984
Decide upon a naming convention for your WebSphere Message Broker for z/OS
broker to make customizing, operating, and administering easier.

Database naming conventions
Consider the naming conventions you use for databases that you create for
application use.

Ensure that the databases that you use for application data, which are accessed
through your deployed message flows, are uniquely named throughout your
network, so that confusion and errors are avoided by all your users.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating the user databases” on page 661
If your message flows create, update, retrieve, or delete application and business
data in one or more user databases, create the databases before you deploy the
message flows to a broker.
“Configuring brokers” on page 610
Create and configure the brokers that you want on the operating system of your
choice.

Chapter 7. Configuring brokers for test and production environments 583

Designing the WebSphere MQ infrastructure
You must create and manage the WebSphere MQ resources that are required to
support your brokers, and the applications that connect to them to supply or
receive messages.

Brokers

A broker uses WebSphere MQ messages to provide information, status, and
instructions about its internal operations. Connections are also required by each
WebSphere Message Broker Toolkit with each broker with which it communicates.

Some of these resources that are required are created for you when you create
brokers and execution groups. The requirements associated with the broker are
described in “WebSphere MQ resources for the broker” on page 585.

Applications and message flows

Your applications exchange messages and other data by communicating with
message flows that are running in the broker. You can connect your applications to
the broker by using one of the supported communications methods. If your
applications are written to use WebSphere MQ, the requirement for the channels or
client connections are determined by the types of nodes that you include in your
message flows. These resources are application-specific, and you must create these
resources yourself.

The following nodes might require WebSphere MQ resources:
v MQInput and MQOutput
v MQReply and MQGet

For more information about creating resources, see the Intercommunication section
of the WebSphere MQ Version 7 Information Center online.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Configuring brokers” on page 610
Create and configure the brokers that you want on the operating system of your
choice.
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.

584 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Related information:

WebSphere MQ Version 7 Information Center online

WebSphere MQ resources for the broker
Each broker depends on a number of WebSphere MQ resources: some are required,
others are optional, and depend on your environment and requirements. Some of
these resources are created for you, but others you must define for yourself.

WebSphere MQ resources created for you

When you create a broker, the following WebSphere MQ resources are created for
you:
v On distributed systems, the queue manager for the broker. Each broker must be

associated with a dedicated queue manager. Specify a queue manager name
when you create the broker. If this queue manager does not exist, it is created
for you.

v Fixed-name queues on the queue manager that hosts this broker. The broker
uses these queues to send messages to provide information, status, and
instructions about its internal operations

WebSphere MQ resources that you must create yourself

Depending on the setup of your broker, you might need to create some WebSphere
MQ resources yourself. You might need some or all the following resources:
v If you create a broker on z/OS, you must create the queue manager. See

“Creating a broker on z/OS” on page 620 for more details.
v Define listener connections on the broker queue manager. You must define one

listener connection for every protocol that your applications use; for example,
TCP/IP.

Create WebSphere MQ resources by using one of the following commands and
utilities:
v runmqsc

v The PCF interface
v WebSphere MQ Explorer
v WebSphere Message Broker Explorer

For more information about creating resources, see the Intercommunication section
of the WebSphere MQ Version 7 Information Center online.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
Related reference:
“Designing the WebSphere MQ infrastructure” on page 584
You must create and manage the WebSphere MQ resources that are required to
support your brokers, and the applications that connect to them to supply or
receive messages.
Related information:

Chapter 7. Configuring brokers for test and production environments 585

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

WebSphere MQ Version 7 Information Center online

Considering performance in the broker environment
When you design your broker environment, and the resources associated with the
brokers, decisions that you make can affect the performance of your brokers and
applications.

About this task

Message flows
A message flow includes an input node that receives a message from an
application over a particular protocol; for example, WebSphere MQ. The
message must be parsed by the input node, although some parsers support
partial parsing which might reduce processing, because only the parts of
the message that are referenced are parsed. Other processing in a message
flow that might affect performance are the amount, efficiency, and
complexity of ESQL, access to databases, and how many message tree
copies are made.

You must consider how you split your business logic; how much work
should the application do, and how much should the message flow do?
Every interaction between an application and a message flow involves I/O
and message parsing, and therefore adds to processing time. Design your
message flows, and design or restructure you applications, to minimize
these interactions.

For more information about these factors, see “Optimizing message flow
response times” on page 3264.

Messages and message models
The type, format, and size of the messages that are processed can have a
significant effect on the performance of a message flow. For example, if
you process persistent messages, they have to be stored for safekeeping.

You might need to process messages with a well-defined structure; if so,
you can create MRM models for your messages. If you do not plan to
interrogate the structure, you can work with undefined messages, such as
BLOB messages.

If you are working in XML, be aware that it can be verbose, and therefore
produce large messages, but XML message content is easier to understand
than other formats, such as CWF. Field size and order might be important;
these factors can be included in your MRM model.

For more information about these factors, see “Optimizing message flow
response times” on page 3264 and Performance considerations for regular
expressions in TDS messages.

Broker configuration
You can create and configure one or more brokers, on one or more
computers, and for each broker you can create multiple execution groups,
and multiple message flows. Your configuration decisions can influence
message flow performance, and how efficiently messages can be processed.

For more information about these factors, see “Tuning the broker” on page
3254, “Optimizing message flow throughput” on page 587.

All these factors are examined in more detail in the Designing for Performance
SupportPac (IP04).

586 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www.ibm.com/support/docview.wss?uid=swg24006518
http://www.ibm.com/support/docview.wss?uid=swg24006518

For a description of common performance scenarios, review “Resolving problems
with performance” on page 3504.

For further articles about WebSphere Message Broker and performance, review
these sources:
v The Business Integration Zone on developerWorks. This site has a search facility;

enter "performance" and review the links that are returned.
v The developerWorks article on message flow performance.
v The developerWorks article on monitoring resource use.
Related tasks:
“Optimizing message flow throughput”
Each message flow that you design must provide a complete set of processing for
messages received from a certain source. This design might result in very complex
message flows that include large numbers of nodes that can cause a performance
overhead, and might create potential bottlenecks. You can increase the number of
message flows that process your messages to provide the opportunity for parallel
processing and therefore improved throughput.
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
“Setting configuration timeout values” on page 3258
Change timeout values that affect configuration tasks in the broker.
“Tuning the broker” on page 3254
You can complete several tasks that enable you to tune different aspects of the
broker performance.
“Resolving problems with performance” on page 3504
Use the advice given here to help you to resolve common problems with
performance.
Related reference:
“Performance considerations when using regular expressions” on page 6309
Take care when specifying regular expressions: some forms of regular expression
can involve a large amount of work to find the best match, which might degrade
performance.

Optimizing message flow throughput
Each message flow that you design must provide a complete set of processing for
messages received from a certain source. This design might result in very complex
message flows that include large numbers of nodes that can cause a performance
overhead, and might create potential bottlenecks. You can increase the number of
message flows that process your messages to provide the opportunity for parallel
processing and therefore improved throughput.

About this task

The mode that your broker is working in can affect the number of message flows
that you can use; see “Restrictions that apply in each operation mode” on page
3657.

You can also consider the way in which the actions taken by the message flow are
committed, and the order in which messages are processed.

Consider the following options for optimizing message flow throughput:

Multiple threads processing messages in a single message flow
When you deploy a message flow, the broker automatically starts an

Chapter 7. Configuring brokers for test and production environments 587

http://www.ibm.com/developerworks/websphere/zones/businessintegration/
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0407_dunn/0407_dunn.html

instance of the message flow for each input node that it contains. This
behavior is the default. However, if you have a message flow that handles
a very large number of messages, the input source (for example, a
WebSphere MQ queue) might become a bottleneck.

You can update the Additional Instances property of the deployed
message flow in the BAR file: the broker starts additional copies of the
message flow on separate threads, providing parallel processing. This
option is the most efficient way of handling this situation, if you are not
concerned about the order in which messages are processed.

If the message flow receives messages from a WebSphere MQ queue, you
can influence the order in which messages are processed by setting the
Order Mode property of the MQInput node:
v If you set Order Mode to By User ID, the node ensures that messages

from a specific user (identified by the UserIdentifier field in the MQMD)
are processed in guaranteed order. A second message from one user is
not processed by an instance of the message flow if a previous message
from this user is currently being processed by another instance of the
message flow.

v If you set Order Mode to By Queue Order, the node processes one
message at a time to preserve the order in which the messages are read
from the queue. Therefore, this node behaves as though you have set the
Additional Instances property of the message flow to zero.

v If you set Order Mode to User Defined, you can order messages by any
message element, by setting an XPath or ESQL expression in the Order
field location property. The node ensures that messages with the same
value in the order field message element are processed in guaranteed
order. A second message with the same value in the order field message
element is not processed by an instance of the message flow if a
previous message with the same value is currently being processed by
another instance of the message flow.
If the field is missing, an exception is raised, and the message is rolled
back. NULL and empty values are processed separately, in parallel.
If you set Order Mode to By User ID or User Defined, and the message
flow uses transformation nodes, it is advisable to set the Parse Timing
to Immediate.

For publish/subscribe applications that communicate with the broker over
any supported protocol, messages for a particular topic are published by
brokers in the same order as they are received from publishers (subject to
reordering based on message priority, if applicable). Therefore each
subscriber receives messages from a particular broker, on a particular topic,
from a particular publisher, in the order that they are published by that
publisher.

However, it is possible for messages, occasionally, to be delivered out of
order. This situation can happen, for example, if a link in the network fails
and subsequent messages are routed by another link.

If you need to ensure the order in which messages are received, you can
use either the SeqNum (sequence number) or PubTime (publish time stamp)
parameter on the Publish command for each published message, to
calculate the order of publishing.

For more information about the techniques recommended for all MQI and
AMI users, see the Application Programming Reference and Application
Programming Guide sections in the WebSphere MQ Version 7 Information

588 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Center online for programs written to the MQI, and the WebSphere MQ
Application Messaging Interface book for programs written to the AMI.

The WebSphere MQ Application Messaging Interface book is available from
the WebSphere MQ Library web page (listed under Version 5.3), or from
SupportPac MA0F on the WebSphere MQ SupportPacs web page.

See also the Publish/Subscribe User's Guide section in the WebSphere MQ
Version 7 Information Center online.

The broker does not provide message ordering for messages received
across WebSphere MQ Web Services Transport.

Multiple copies of the message flow in a broker
You can also deploy several copies of the same message flow to different
execution groups in the same broker. This option has similar effects to
increasing the number of processing threads in a single message flow,
although typically provides less noticeable gains.

This option also removes the ability to determine the order in which the
messages are processed, because, if there is more than one copy of the
message flow active in the broker, each copy can be processing a message
at the same time, from the same queue. The time taken to process a
message might vary, and multiple message flows accessing the same queue
might therefore read messages from the input source in a random order.
The order of messages produced by the message flows might not
correspond to the order of the original messages.

Ensure that the applications that receive message from these message flows
can tolerate out-of-order messages. Additionally, ensure that the input
nodes in these message flows are suitable for deployment to different
processes.

Copies of the message flow in multiple brokers
You can deploy several copies of the same message flow to different
brokers. This option requires changes to your configuration, because you
must ensure that applications that supply messages to the message flow
can put their messages to the right input queue or port. You can often
make these changes when you deploy the message flow by setting the
message flow's configurable properties.

The scope of the message flow
You might find that, in some circumstances, you can split a single message
flow into several different flows to reduce the scope of work that each
message flow performs. If you do split your message flow, be aware that it
is not possible to run the separate message flows in the same unit of work,
and if transactional aspects to your message flow exist (for example, the
updating of multiple databases), this option does not provide a suitable
solution.

The following two examples show when you might want to split a
message flow:
1. In a message flow that uses a RouteToLabel node, the input queue has

become a bottleneck. You can use another copy of the message flow in
a second execution group, but this option is not appropriate if you
want all of the messages to be handled in the order in which they are
shown on the queue. You can consider splitting out each branch of the
message flow that starts with a Label node by providing an input
queue and input node for each branch. This option might be

Chapter 7. Configuring brokers for test and production environments 589

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/support/supportpacs
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

appropriate, because when the message is routed by the RouteToLabel
node to the relevant Label node, it has some level of independence
from all other messages.
You might also need to provide another input queue and input node to
complete any common processing that the Label node branches connect
to when unique processing has been done.

2. If you have a message flow that processes very large messages that
take a considerable time to process, you might be able to:
a. Create other copies of the message flow that use a different input

queue (you can set this option up in the message flow itself, or you
can update this property when you deploy the message flow).

b. Set up WebSphere MQ queue aliases to redirect messages from
some applications to the alternative queue and message flow.

You can also create a new message flow that replicates the function of
the original message flow, but only processes large messages that are
immediately passed on to it by the original message flow, that you
modified to check the input message size and redirect the large
messages.

The frequency of commits
If a message flow receives input messages on a WebSphere MQ queue,
you can improve its throughput for some message flow scenarios by
modifying its default properties after you have added it to a BAR file.
(These options are not available if the input messages are received by other
input nodes; commits in those message flows are performed for each
message.)

The following properties control the frequency with which the message
flow commits transactions:
v Commit Count. This property represents the number of messages

processed from the input queue before an MQCMIT is issued.
v Commit Interval. This property represents the time interval that elapses

before an MQCMIT is started.
Related tasks:
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you

590 WebSphere Message Broker Version 7.0.0.8

select the Manage and Configure tab for the broker archive file.
“Publish message” on page 6405
Related information:

WebSphere MQ Version 7 Information Center online

Customizing the z/OS environment
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.

About this task

Although you might be installing only one broker initially, you might want to
consider how the product will be used in your organization in a few years time.
Planning ahead makes developing your WebSphere Message Broker configuration
easier.

The following rules apply to the configuration:
v A broker requires access to a queue manager.
v A broker cannot share its queue manager with another broker.
v You cannot use WebSphere MQ shared queues to hold data related to

WebSphere Message Broker as SYSTEM.BROKER queues, but you can use
shared queues for your message flow queues.

You can find details of the WebSphere MQ queues that are created and used by
WebSphere Message Broker on z/OS in “mqsicreatebroker command” on page
3831.

When planning to work in a z/OS environment, you must complete the following
tasks:
v Create started task procedures for each broker that you plan to use. These

procedures must be defined, in the started task table, with an appropriate user
ID.

v Decide on your recovery strategy. As part of your systems architecture, you
must have a strategy for restarting systems if they end abnormally. Common
solutions are to use automation products like Tivoli NetView® for z/OS or the
Automatic Restart Manager (ARM) facility. You can configure WebSphere
Message Broker to use ARM.

v Plan for corequisite products, including UNIX System Services, Resource
Recovery Services (RRS), WebSphere MQ, and Java.
You might also want to include DB2 in your configuration, if your message
flows access databases.

v Ensure that the runtime library system (RTLS) for the broker is turned off in the
default options of the Language Environment® for the system. This setting is
required because the broker code is compiled using XPLINK, and XPLINK
applications cannot be started while RTLS is active.

v Collect broker statistics on z/OS.

See the following topics for more information:
v “z/OS customization overview” on page 592
v “Customizing UNIX System Services on z/OS” on page 598

Chapter 7. Configuring brokers for test and production environments 591

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v “WebSphere MQ planning for z/OS” on page 601
v “Resource Recovery Service planning on z/OS” on page 602
v “Defining the started tasks to z/OS Workload Manager (WLM)” on page 602
v “Automatic Restart Manager planning” on page 603
v “Mounting file systems” on page 604
v “Checking the permission of the installation directory” on page 606
v “Customizing the version of Java on z/OS” on page 607
v “Checking APF attributes of bipimain on z/OS” on page 607
v “Collecting broker statistics on z/OS” on page 608
v “Configuring an execution group address space as non-swappable on z/OS” on

page 608

For an overview of how to create WebSphere Message Broker brokers, see
“Creating a broker on WebSphere Message Broker for z/OS” on page 609.
Related tasks:
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
“Creating a broker on WebSphere Message Broker for z/OS” on page 609
An overview of how you create a broker on WebSphere Message Broker for z/OS.
“Using WebSphere MQ shared queues for input and output (z/OS)” on page 1546
On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows. You might need to serialize access to those
messages.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

z/OS customization overview
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.

The following diagram gives an overview of the post-installation process.

592 WebSphere Message Broker Version 7.0.0.8

To perform the customization, update and submit the required JCL. All necessary
JCL is supplied to create the runtime environments of your broker. You start the
broker using one of the supplied JCL files, which is run as a started task.

For more information, see:
v “Installation directory on z/OS”
v “Components on z/OS” on page 594
v “Component directory on z/OS” on page 594
v “Component PDSE on z/OS” on page 595
v “XPLink on z/OS” on page 595
v “Using the file system on z/OS” on page 596
v “Administration log messages on z/OS” on page 597
v “Security considerations on z/OS” on page 597
v Overview of message serialization on z/OS
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.

Installation directory on z/OS
On z/OS, the SMP/E installation places all the product executable files into a
directory of a file system under UNIX System Services (USS).

For further information on mounting file systems and allocating space, including
performance considerations, see “Mounting file systems” on page 604
Related concepts:
“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located

Component
PDSE

Component
Directory

Started Task
JCL

Installation
Directory

SBIPSAMP
PDSE

SBIPPROC
PDSE

SBIPAUTH
PDSE

SMP/E
Tape

Installation Customization

WebSphere
MQ

Chapter 7. Configuring brokers for test and production environments 593

in the PDS <hlq>.SBIPAUTH.
“Component directory on z/OS”
The component directory is the root directory of the component's runtime
environment.
Related tasks:
“Mounting file systems” on page 604
WebSphere Message Broker requires several directories to be defined on the file
system at run time.

Components on z/OS
A component is a set of runtime processes that perform a specific set of functions,
and comprises a broker.

A broker that is running has a control address space and one additional address
space for each deployed execution group. When the control address space is
started, the broker component is started automatically. This behavior can be
changed by an optional start parameter in the started task.

The component name is the external name of the component and is used, for
example, in the WebSphere Message Broker WebSphere Message Broker Toolkit.

Each component requires a name, which is usually the name of the started task
that runs the component. This is typically the queue manager name with a suffix
of the facility; for example, MQP1BRK for the broker.

Each component has its own runtime environment in UNIX System Services and
needs its own WebSphere MQ queue manager.
Related concepts:
“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
“Component directory on z/OS”
The component directory is the root directory of the component's runtime
environment.

Component directory on z/OS
The component directory is the root directory of the component's runtime
environment.

The component directory is also referred to as ComponentDirectory in some instances
within the code. Both the WebSphere Message Broker administrator and the
component require read and write access to the component directory.

An example directory for the broker component is /mqsi/brokers/MQP1BRK

For further information on mounting file systems and allocating space, including
performance considerations, see “Mounting file systems” on page 604
Related concepts:

594 WebSphere Message Broker Version 7.0.0.8

“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
“Components on z/OS” on page 594
“Installation directory on z/OS” on page 593
On z/OS, the SMP/E installation places all the product executable files into a
directory of a file system under UNIX System Services (USS).
Related tasks:
“Mounting file systems” on page 604
WebSphere Message Broker requires several directories to be defined on the file
system at run time.

Component PDSE on z/OS
On z/OS, the component PDSE contains jobs customized for a single component.
These jobs are used to create and administer the component.

The members specific to a component type are copied from<hlq>.SBIPSAMP and
<hlq>.SBIPPROC to the component PDSE. These are then customized for the
component.

The broker started-task user ID requires read access to its component PDSE at run
time.

You must not share a PDSE across more than one SYSplex or GRSplex.
Related concepts:
“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
“Components on z/OS” on page 594
“Component directory on z/OS” on page 594
The component directory is the root directory of the component's runtime
environment.
“Installation directory on z/OS” on page 593
On z/OS, the SMP/E installation places all the product executable files into a
directory of a file system under UNIX System Services (USS).

XPLink on z/OS
XPLink is a z/OS technology used by the C and C++ compilers to reduce the cost
of function calling for programs written in these languages.

Many products, including WebSphere Message Broker for z/OS, use XPLink
technology to improve their performance. To ensure the highest possible
performance gains, WebSphere Message Broker requires as many as possible of the
software components it uses to be XPLink-compliant. These include the broker,
Java runtime, ODBC, and z/OS Language Environment.

The WebSphere Message Broker broker has been compiled by IBM to use XPLink
technology and has been link-edited within the SMP/E environment to call the

Chapter 7. Configuring brokers for test and production environments 595

appropriate XPLink routines of the software components it uses. Normally, these
XPLink-enabled components are configured during their customization, and the
broker needs only to locate the appropriate libraries to become XPLink-enabled.
Related concepts:
“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
Related tasks:
“Customizing the version of Java on z/OS” on page 607
Check the version of Java in your enterprise, and change it, if necessary.

Using the file system on z/OS
If you have more than one MVS image, consider how you will use the file system.
You can share files in a file system with different members of a sysplex. The file
system is mounted on one MVS image and requests to the file are routed to the
owning system using XCF from systems which do not have it mounted.

About this task

This is part of the larger task of customizing your z/OS environment.

Moving a broker from one image to another is straightforward and the files can be
shared.

However, there is a performance overhead when using files shared between images
in a file system because the data flows through the Coupling Facility (this is true
for trace and other diagnostic data).

For further information on mounting file systems and allocating space, including
performance considerations, see “Mounting file systems” on page 604

Space requirements:
About this task

For details of the disk space required, see “Disk space requirements on z/OS” on
page 3586.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Mounting file systems” on page 604
WebSphere Message Broker requires several directories to be defined on the file
system at run time.
Related reference:
“Disk space requirements on z/OS” on page 3586
The installation of WebSphere Message Broker for z/OS uses approximately 400
MB of disk space; plan on using 500 MB to allow for the component directories,
and for new service fixes to be applied.
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.

596 WebSphere Message Broker Version 7.0.0.8

Administration log messages on z/OS
About this task

This is part of the larger task of customizing your z/OS environment.

On z/OS, all address spaces have a job log where BIP messages issued by
WebSphere Message Broker appear. Additionally, all messages appear on the
syslog and important operator messages are filtered to the console using MPF
(Message Processing Facility).

To prevent the operator's console receiving unnecessary BIP messages, you must
configure MPF to suppress all BIP messages, with the exception of important
messages. Note that you do not need to have the USS SYSLOG configured.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
Related reference:
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.

Security considerations on z/OS
About this task

This is part of the larger task of customizing your z/OS environment.

The role of the WebSphere Message Broker administrator includes customizing and
configuring, running utilities, performing problem determination, and collecting
diagnostic materials. People involved in these activities need WebSphere Message
Broker authorities. You must set up some security for WebSphere Message Broker
to work properly. The information that you need to do this is in “Setting up z/OS
security” on page 556.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
“Setting up WebSphere MQ” on page 558
This is part of the larger task of setting up security on z/OS, and gives details of
the authorities that your user ID needs to perform the required operations.
“Setting up WebSphere Message Broker Toolkit access on z/OS” on page 559
Access to the WebSphere Message Broker Toolkit is controlled from Windows or
Linux on x86.
Related reference:
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.

Chapter 7. Configuring brokers for test and production environments 597

Customizing UNIX System Services on z/OS
WebSphere Message Broker requires the setup of some UNIX System Services
system parameters.

About this task

This task is part of the larger task of customizing your z/OS environment.

You can use the SETOMVS operator command for dynamic changes or the
BPXPRMxx PARMLIB member for permanent changes. See the z/OS UNIX System
Services section in the z/OS V1R9.0 LibraryCenter.

Use the DISPLAY OMVS,OPTIONS command to display your current OMVS options.

Do not include the broker addresses if you use the IEFUSI exit to limit the region
size of OMVS address spaces.

Set the UNIX System Services parameters shown in the following table.

Description Parameter Value

The maximum core dump file size
(in bytes) that a process can create.
Allow an unlimited size.

MAXCORESIZE 2 147 483 647

The CPU time (in seconds) that a
process is allowed to use. Allow an
unlimited CPU time.

If you do not set MAXCPUTIME
to the maximum value, shown
here, you can set it on the TIME
parameter of the broker started
task JCL. For more information,
see Statements and parameters for
BIPXPRMxx in the MVS
Initialization Tuning and Reference
of the z/OS V1R9.0 LibraryCenter.

MAXCPUTIME 2 147 483 647

The address space region size. Set
to the size of the biggest address
space.

MAXASSIZE > 1 073 741 824

A minimum value of 393 216 000
bytes is required.

The maximum number of
processes for each user.

MAXPROCUSER Set to a number greater than all
brokers and associated execution
groups, as well as any queue
managers and channel initiators
that are running with the same
user ID.

The maximum number of file
descriptors that a single process
can have open concurrently.

MAXFILEPROC The number of descriptors includes
all open files, directories, sockets,
and pipes.

A minimum value of 65536 is
required.

598 WebSphere Message Broker Version 7.0.0.8

http://publibz.boulder.ibm.com/libraryserver/zosv1r9/
http://publibz.boulder.ibm.com/libraryserver/zosv1r9/

Description Parameter Value

Specifies the maximum number of
threads that a single process can
have active. Depends on the
definitions of message flows.

MAXTHREADS
MAXTHREADTASKS

The value of MAXTHREADS and
MAXTHREADTASKS depends on
your application. To calculate the
value needed for each message
flow:

1. Multiply the number of input
nodes by the number of
instances (additional threads
+1).

2. Sum the values of all message
flows, then add 10 to the sum.

3. Add to the sum the number of
threads used for each HTTP
listener.

Deploying a message flow that starts an execution group in a new address space
uses z/OS UNIX System Services Semaphore and SharedMemorySegment
resources. Each new address space uses a semaphore and SharedMemorySegment.
The SharedMemorySegment is deleted immediately after the new address space
has started, but the semaphore remains for the life of the new address space.

Certain z/OS UNIX System Services system parameters can affect the start of a
new execution group address space, if you set them incorrectly. These parameters
include:
v IPCSEMNIDS
v IPCSHMNIDS
v IPCSHMNSEGS

You must have a minimum of three semaphores for each execution group address
space that is started.

You must set IPCSEMNIDS to a value four times the number of potential execution
group address spaces on a system.

You must have one SharedMemorySegment for each execution group address
space that is started. You must set IPCSEMNIDS to a value that exceeds the
number of potential execution group address spaces on a system.

A control address space (BIPSERVICE and BIPBROKER processes) can be attached
to many SharedMemorySegments - potentially, one for each execution group
address space started for that broker. You must set IPCSHMNSEGS to a value that
exceeds the potential number of execution groups for each broker.

Ensuring sufficient space for temporary files

The environment variable TMPDIR is the path name of the directory being used
for temporary files. If it is not set, the z/OS shell uses /tmp.

When starting WebSphere Message Broker components, sufficient space is required
in the directory referenced by TMPDIR. In particular, Java requires sufficient space
to hold all JAR files required by WebSphere Message Broker.

If you do not allocate sufficient space, the execution group address spaces abend
with a 2C1 code.

Chapter 7. Configuring brokers for test and production environments 599

Allow at least 50 MB of space in this directory for WebSphere Message Broker
components. More space might be needed if you deploy large user-defined nodes
or other JAR files to the broker component.

Defining WebSphere Message Broker files as shared-library programs

The shared library region is a z/OS feature that enables address spaces to share
dynamic link library (DLL) files. This feature enables brokers to share DLLs rather
than each broker having to load the DLLs individually. The shared DLLs can be
broker DLLs, or DLLs from other products such as Java. The amount of real
storage used by MVS, and the time it takes for each broker to start, can thus be
greatly reduced.

If you plan to deploy to more than one execution group on z/OS, you can reduce
the amount of storage required by the execution group address spaces. Set the
shared-library extended attribute on the following files:

/usr/lpp/mqsi/bin/*
/usr/lpp/mqsi/lil/*
/usr/lpp/mqsi/lib/*
/usr/lpp/mqsi/lib/wbimb/*

To set the shared-library attribute, use the OMVS extattr command with the +1
option. For example:

extattr +l /usr/lpp/mqsi/bin/*

To find out if the shared-library extended attribute has been set, use the ls -E
command. For example, use the command ls -E bipimain to generate the
following response:
-rwxr-x--- a-l- 1 USER GROUP 139264 Mar 15 10:05 bipimain

where l (lowercase L, as in a-l-) shows that the program is enabled to run in a
shared address space.

For more information, on using the shared library extended attribute, see the z/OS
V1R9.0 LibraryCenter .

The storage that is reserved for the shared library region is allocated in each broker
address space when the first address space is started. The amount of storage that is
allocated is controlled by the SHRLIBRGNSIZE parameter in z/OS, which is in the
BPXPRMxx member of SYS1.PARMLIB. You can tune the amount of storage that is
allocated for the shared library region. Investigate how much space you need,
bearing in mind that other applications besides WebSphere Message Broker might
be using the shared library region. Then, adjust the SHRLIBRGNSIZE parameter
accordingly.

Use the following MVS command to check that you have enough
SHRLIBRGNSIZE to contain all the shared-library programs that are to be used on
the system:

DISPLAY OMVS,LIMITS

If there is unused space in the shared library region, modify SHRLIBRGNSIZE to
reduce the amount of storage allocated for the shared library region.

Storage is carved out of the high end of private storage of each address space that
loads a system shared library object. The amount of storage allocated from each of
these address spaces is based on the value of the SHRLIBRGNSIZE parameter in

600 WebSphere Message Broker Version 7.0.0.8

http://publibz.boulder.ibm.com/libraryserver/zosv1r9/
http://publibz.boulder.ibm.com/libraryserver/zosv1r9/

the BPXPRMxx PARMLIB member. If this value is too high, the storage set aside
for mapping the shared library region might interfere with the private storage
requirements of individual address spaces. Therefore, specify the minimum size
that is required to contain all of the shared library programs that are to be used on
the system.

Note: z/OS UNIX attempts to map the entire SHRLIBRGNSIZE into the private
region, not just the portion that contains programs. If the private region is too
small to map the entire SHRLIBRGNSIZE, this shared library region is not used.
No message is issued to indicate what has happened.

Use the SETOMVS operator command to change SHRLIBRGNSIZE dynamically, or
the BPXPRMxx PARMLIB member for permanent changes. See the z/OS UNIX
System Services section in the z/OS V1R9.0 LibraryCenter.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
Related reference:
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.
Related information:

z/OS V1R9.0 LibraryCenter

WebSphere MQ planning for z/OS
This is part of the larger task of customizing your z/OS environment.

About this task

You are required to have a separate WebSphere MQ queue manager for each
broker.

All WebSphere Message Broker for z/OS system queues are defined during
customization.

Your queue manager must have a dead-letter queue. Check that this queue exists
by using the WebSphere MQ command:
+cpf DIS QMGR DEADQ

Check that the queue exists by using the command:
+cpf DIS QL(name) STGCLASS

Then use the:
+cpf DIS STGCLASS(...)

to check the STGCLASS value is valid. If the queue manager does not have a valid
dead-letter queue, you must define one.

Creating and deleting components on z/OS requires the command server on the
WebSphere MQ queue manager to be started. This component is normally started
automatically (refer to the see the z/OS System Administration Guide section of the
WebSphere MQ Version 7 Information Center online for more details).

Chapter 7. Configuring brokers for test and production environments 601

http://publibz.boulder.ibm.com/libraryserver/zosv1r9/
http://publibz.boulder.ibm.com/libraryserver/zosv1r9/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The command server requires a reply-to queue based on
SYSTEM.COMMAND.REPLY.MODEL; by default, this model queue is defined as
permanent dynamic. However, if you leave the queue defined in this way, each
time you run a create or delete component command these reply-to queues remain
defined to the queue manager. To avoid these queues persisting, you can set the
SYSTEM.COMMAND.REPLY.MODEL queue as temporary dynamic.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
Related information:

WebSphere MQ Version 7 Information Center online

Resource Recovery Service planning on z/OS
About this task

This is part of the larger task of customizing your z/OS environment.

WebSphere Message Broker for z/OS uses Resource Recovery Service (RRS) to
coordinate changes to WebSphere MQ and DB2 resources. Ensure it is configured
and active on your system, because your broker cannot connect to DB2 unless RRS
is active.

Refer to the following manuals for detailed information about RRS: z/OS V1R5.0
MVS Setting Up a Sysplex and z/OS V1R5.0 MVS Programming: Resource Recovery
SA22-7616.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
Related reference:
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.

Defining the started tasks to z/OS Workload Manager (WLM)
This is part of the larger task of customizing your z/OS environment.

About this task

With z/OS workload management (WLM), you define performance goals and
assign a business importance to each goal. You define the goals for work in
business terms, and the system decides how much resource, such as CPU and
storage, should be given to it to meet the goal. Workload Manager constantly
monitors the system, and adapts processing to meet the goals.

602 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

WebSphere Message Broker automatically defines the JOBACCT token for each
execution group started, so that the broker systems administrator can use WLM
classification to map the JOBACCT token to specific Service and Report classes.

Each execution group can be assigned to a different Service and Report class.
Whenever an execution group address space is started, the STEPNAME is assigned
to the JOBACCT token.

When an execution group address space is started on z/OS, the STEPNAME is
derived from the execution group label; the STEPNAME is defined as the last eight
characters. Any characters that are not valid for a STEPNAME are replaced with
the @ character.

For example, an execution group address space with the label MyExecutionGroup,
has a STEPNAME of IONGROUP and assigns this same value to the JOBACCT.

The STEPNAME/JOBACCT is not guaranteed to be unique across multiple
execution group address spaces on the same LPAR. If you require a unique
STEPNAME/JOBACCT across multiple execution groups, you must use a suitable
execution group naming standard.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
Related reference:
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.

Automatic Restart Manager planning
This is part of the larger task of customizing your z/OS environment.

WebSphere Message Broker for z/OS allows you to register a component to the
Automatic Restart Manager (ARM).

When customizing a component, you register it with ARM by editing the following
environment variables in the component profile:

Description Name

Switch that determines whether ARM is
used (YES or NO).

MQSI_USE_ARM

ARM element name MQSI_ARM_ELEMENTNAME

ARM element type MQSI_ARM_ELEMENTTYPE

By default components do not register to ARM; the initial setting is
MQSI_USE_ARM=NO. You can override this default value by setting MQSI_USE_ARM=YES
and providing an ARM element name and type.

Chapter 7. Configuring brokers for test and production environments 603

MQSI_ARM_ELEMENTNAME must be a maximum of eight characters in length, because
WebSphere Message Broker adds a prefix of SYSWMQI. For example, if you supply
the value MQP1BRK to ARM_ELEMENTNAME, the element you define in your ARM policy
is SYSWMQI_MQP1BRK.

To enable automatic restart you must also:
v Set up an ARM couple data set.
v Define the automatic restart actions that you want z/OS to perform in an ARM

policy.
v Start the ARM policy.

The following manuals provide detailed information about ARM couple data sets,
including samples:
v z/OS MVS Programming: Sysplex Services Guide

v z/OS MVS Programming: Sysplex Services Reference

v z/OS MVS Setting up a Sysplex

You can access these manuals from the z/OS V1R8.0 LibraryCenter
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.

Mounting file systems
WebSphere Message Broker requires several directories to be defined on the file
system at run time.

About this task

++HOME++ is the location of the environment file (ENVFILE) used to create the
runtime environment in which WebSphere Message Broker runs.

++INSTALL++ refers to the WebSphere Message Broker installation directories.

++COMPONENTDIRECTORY++ is the location where all deployed configuration is written
to and read from by the WebSphere Message Broker runtime libraries.

++JAVA++ is the location of the Java installation.

++MQPATH++ is the location of theWebSphere MQ installation.

Because WebSphere Message Broker can run in a shared file system sysplex
environment, it is important for performance reasons that these directories are
mounted locally to the LPAR in which WebSphere Message Broker is started. This
is particularly important for startup performance; if the WebSphere Message Broker
installation directories are not mounted locally, startup times can increase
significantly.

604 WebSphere Message Broker Version 7.0.0.8

http://publibz.boulder.ibm.com/libraryserver/zosv1r8/

You can check file system ownership from USS using the command df -v. For
example, the following output shows that the broker installation file system is
owned by MVS1:

/usr/lpp/mqsi/V7R0M0:>df -v .
Mounted on Filesystem Avail/Total Files Status
/usr/lpp/mqsi/V7R0M0 (OMVS.PLEXS.MQSI.V700.WBIMB) 7984/806400 4294966503

Available
HFS, Read/Write, Device:89, ACLS=Y
File System Owner : MVS1 Automove=Y Client=N
Filetag : T=off codeset=0

To create a directory in an already mounted file system use the mkdir command.
For example:
mkdir -p /mqsi/brokers/MQP1BRK

To mount a new file system, follow the instructions given in the z/OS UNIX System
Services Planning manual.

From USS, use the following instructions:
mkdir -p /mqsi/brokers/MQP1BRK
mount -f MQSI.BROKER.MQP1BRK /mqsi/brokers/MQP1BRK

From TSO, use the following instructions:
ALLOCATE DATASET(’MQSI.BROKER.MQP1BRK’) DSNTYPE(HFS) SPACE(5,5) DIR(1) CYL
FREE DATASET(’MQSI.BROKER.MQP1BRK’)
MOUNT FILESYSTEM(’MQSI.BROKER.MQP1BRK’) TYPE(HFS)

MOUNTPOINT(’/mqsi/brokers/MQP1BRK’)

Note that the preceding ALLOCATE command is an example; the dataset should be
allocated the correct amount of storage as described in “Disk space requirements
on z/OS” on page 3586
Related concepts:
“Component directory on z/OS” on page 594
The component directory is the root directory of the component's runtime
environment.
“Installation directory on z/OS” on page 593
On z/OS, the SMP/E installation places all the product executable files into a
directory of a file system under UNIX System Services (USS).
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Using the file system on z/OS” on page 596
If you have more than one MVS image, consider how you will use the file system.
You can share files in a file system with different members of a sysplex. The file
system is mounted on one MVS image and requests to the file are routed to the
owning system using XCF from systems which do not have it mounted.
Related reference:
“Disk space requirements on z/OS” on page 3586
The installation of WebSphere Message Broker for z/OS uses approximately 400
MB of disk space; plan on using 500 MB to allow for the component directories,
and for new service fixes to be applied.

Chapter 7. Configuring brokers for test and production environments 605

Checking the permission of the installation directory
This is part of the larger task of customizing your z/OS environment.

About this task

You must ensure that the appropriate user IDs, for example, the WebSphere
Message Broker Administrator and all component Started Task user IDs, have
READ and EXECUTE permission to the WebSphere Message Broker installation
directory.

Using group access control to set these permissions.

Procedure
1. Display the permissions on the installation directory using the ls command.

ls -l /usr/lpp/mqsi

This command displays lines like the following response:
drwxr-xr-x 2 TSOUSER MQM 8192 Jun 17 09:54 bin

In this example, MQM is the group associated with the directory. Those user
IDs requiring permission to the directory must be a member of this group.
This example also shows the permissions defined for the directory. User
TSOUSER has rwx (READ, WRITE, and EXECUTE), group MQM has rx, and any
other user ID has rx.

2. Ensure that the user IDs requiring permission have a group that matches that
of the installation directory. Use the following command, where userid is the
ID you want to check:
id <userid>

3. If the installation directory does not have a valid group, use the command
chgrp to set the group of the directory:
chgrp -R <group> <pathname>

For example:
chgrp -R MQSI /usr/lpp/mqsi

You must be the owner of the group or have superuser authority to use this
command.

4. If the installation directory does not have the correct permissions for the group
(READ / EXECUTE), use the command chmod to change the permissions:
chmod -R g=rx <pathname>

For example:
chmod -R g=rx /usr/lpp/mqsi

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
Related reference:

606 WebSphere Message Broker Version 7.0.0.8

“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Customizing the version of Java on z/OS
Check the version of Java in your enterprise, and change it, if necessary.

About this task

This task is part of the larger task of customizing your z/OS environment.

For information about the levels of Java that WebSphere Message Broker supports,
see WebSphere Message Broker Requirements. The 64 bit version of Java is
required.

To check the current version of Java in a broker component, complete the following
steps.

Procedure
1. Change to the bin directory in which you installed your Java product.

For example, if Java is installed in /usr/lpp/java, change to the
/usr/lpp/java/bin directory, and type ./java -fullversion. You receive the
following response, or a response with similar content:

java version "1.6.0"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.6.0)
Classic VM (build 1.6.0 J2RE 1.6.0 IBM z/OS Persistent Reusable VM build cm142-20040917
(JIT enabled: jitc))

The response in this example confirms that Java 1.6.0 is the current version,
which is the minimum level required for this platform.

2. If you want to set, or change, the current Java version, edit JAVAHOME in the
broker profile (BIPBPROF).
For further details about the broker profile, see “Creating a broker on
WebSphere Message Broker for z/OS” on page 609.

3. Run BIPGEN to re-create the broker ENVFILE and any execution group specific
ENVFILEs

4. Restart the broker to pick up changes to the ENVFILE.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Creating a broker on WebSphere Message Broker for z/OS” on page 609
An overview of how you create a broker on WebSphere Message Broker for z/OS.

Checking APF attributes of bipimain on z/OS
This task is part of the larger task of setting up your z/OS environment.

About this task

Use the extattr command to display the attributes of the object bipimain. For
example:
extattr /usr/lpp/mqsi/bin/bipimain

Chapter 7. Configuring brokers for test and production environments 607

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

The attribute APF authorized must be set to YES. If it is not, use extattr +a
bipimain to set this attribute. For example:
extattr +a /usr/lpp/mqsi/bin/bipimain

You must have the appropriate authorization to issue this command.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.

Collecting broker statistics on z/OS
About this task

If you need to write broker statistics to SMF, you need to have the library
<HLQ>.SBIPAUTH in your STEPLIB.

This library and all the libraries in the STEPLIB concatenation need to be APF
authorized.

You can use the “mqsichangeflowstats command” on page 3744 with o=SMF for this
purpose.

You must not share a PDSE across more than one SYSplex or GRSplex.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
Related reference:
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.

Configuring an execution group address space as
non-swappable on z/OS

About this task

Because broker execution groups run as processes in UNIX System Services they
cannot be set as NOSWAP in the PPT.

Instead, you can set the following environment variables in the broker
environment file so that some, or all, of the address spaces of the broker execution
groups request that they become non-swappable by the system; see “Creating the
environment file” on page 626 for further information on adding an environment
variable to a broker.
MQSI_NOSWAP=yes

608 WebSphere Message Broker Version 7.0.0.8

sets the address spaces of all the execution groups to be non-swappable.
MQSI_NOSWAP_egname=yes

issues a request to the system, for each execution group labelled egname, that the
address space be set as non-swappable.
MQSI_NOSWAP_uuid=yes

issues a request to the system, for each execution group with the UUID labelled
uuid, that the address space be set as non-swappable.

In order for the above requests to succeed, the broker's started task ID needs READ
access to the BPX.STOR.SWAP facility class through their external security manager,
for example, RACF.

When an application makes an address space non-swappable, it can cause
additional real storage in the system to be converted to preferred storage. Because
preferred storage cannot be configured offline, using this service can reduce the
installation's ability to re-configure storage in the future.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Creating the environment file” on page 626
This is part of the larger task of creating a broker on z/OS.

Creating a broker on WebSphere Message Broker for z/OS
An overview of how you create a broker on WebSphere Message Broker for z/OS.

About this task

Before you start

Before starting this task, you must have installed:
v WebSphere MQ for z/OS, with the optional JMS feature applied; for example,

mounted at /usr/lpp/mqm.
v WebSphere Message Broker for z/OS, with a broker file system mounted; for

example, /usr/lpp/mqsi.

If you want to connect a WebSphere Message Broker Toolkit directly to your z/OS
system, you must install the optional WebSphere MQ Client Attach feature.

If you do not have the WebSphere MQ Client Attach feature installed, you can
connect the WebSphere Message Broker Toolkit through an intermediate queue
manager.

Read through all the sub topics in the “Customizing the z/OS environment” on
page 591 section, and follow the guidance within those topics.

Chapter 7. Configuring brokers for test and production environments 609

Procedure
1. Determine the customization information for your environment. The following

list of topics contains tables of information that needs to be gathered before you
can proceed with creating a broker on z/OS. Complete the information that
your enterprise requires.
If necessary, discuss the requirements with your system and WebSphere MQ
administrators.
v Broker:

– “Installation information - broker” on page 621
– “Component information - broker” on page 622

2. Set up security for the started task user IDs. Start with “Setting up z/OS
security” on page 556.

3. Create the broker by carrying out the tasks listed in “Creating a broker on
z/OS” on page 620. Start with “Creating the broker PDSE” on page 622.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related information:

WebSphere MQ Version 7 Information Center online

Configuring brokers
Create and configure the brokers that you want on the operating system of your
choice.

Before you begin

Before you start:

Ensure that the following requirements are met:
v Your user ID has the correct authorizations to perform the task. The

authorizations are defined in “Security requirements for administrative tasks” on
page 3644.

v Windows On Windows: you have created a user ID to be used as the service
user ID. You specify this ID when you create the broker; it is used to run the
broker.
For more information about user ID authorization and creation, refer to
“Planning for security when you install WebSphere Message Broker” on page
353.

v You have initialized the command environment on distributed systems; see
“Setting up a command environment” on page 213.

About this task

To set up a default configuration, or an environment for application development
on Linux on x86 or Windows, see Chapter 6, “Configuring brokers for
development environments,” on page 563. If you are creating brokers for test and
production environments, use the tasks included in this section.

610 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

When you have created your physical components, you can administer your test
and production environments either by using the WebSphere Message Broker
Explorer, or programmatically by using the Administration API (the CMP API).

This collection of tasks uses specific resource names and user IDs. These names are
examples only; you can use your own names. Follow existing naming conventions
for WebSphere MQ and other resources.

Procedure
v “Creating a broker”
v “Verifying brokers” on page 630

What to do next

Next: Continue your broker configuration tasks in the WebSphere Message Broker
Explorer. For day to day administration of your brokers and associated resources,
see Chapter 8, “Administering brokers and broker resources,” on page 899.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
“Planning for security when you install WebSphere Message Broker” on page 353
The Installation Guide describes the security tasks that you must complete before,
during, and after installation.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.

Creating a broker
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.

Before you begin

Before you start:

Complete the following tasks:
v Ensure that your user ID has the correct authorizations to perform the task.

Refer to “Security requirements for administrative tasks” on page 3644.

Chapter 7. Configuring brokers for test and production environments 611

v On distributed systems, you must set up your command-line environment
before creating a broker, by running the product profile or console; refer to
“Setting up a command environment” on page 213.

v On z/OS, you must create and start the queue manager for this broker before
you create the component.

About this task

Create a broker by using the command line on the computer on which you have
installed the broker component. On Windows and Linux on x86, you can
alternatively use the WebSphere Message Broker Toolkit or WebSphere Message
Broker Explorer to complete this task.
v You must give the broker a name that is unique on the local computer.
v Broker names are case sensitive on all supported platforms, except Windows.
v You must associate each broker with its own dedicated WebSphere MQ queue

manager.
v Brokers can access only local queue managers, so you cannot create a broker on

a queue manager that is on a remote system.

The mode in which your broker is working can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See “Restrictions that apply in each operation mode” on page 3657.

To create a broker, follow the link for the appropriate platform. Alternatively,
follow the link to create a broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer.
v Linux and UNIX
v Windows
v z/OS
v “Creating a broker using the WebSphere Message Broker Explorer” on page 618
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
“Configuring a WebSphere Message Broker as a WebSphere MQ service” on page
894
If you want to operate your WebSphere Message Broker as a WebSphere MQ
service.
“Using WebSphere MQ trusted applications” on page 613
Configure a broker to run as a WebSphere MQ trusted application.
“Modifying a broker” on page 631
Modify a broker by using the command line on the system where the broker
component is installed.
“Viewing broker properties” on page 927
You can view broker properties by using the mqsireportbroker command. You can
also use the WebSphere Message Broker Explorer to view broker properties.

612 WebSphere Message Broker Version 7.0.0.8

“Deleting a broker” on page 930
Delete a broker using the command line on the system where the broker
component is installed.
“Considering security for a broker” on page 501
Consider several factors when you are deciding which users can execute broker
commands, and which users can control security for other broker resources.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
“Support for 32-bit and 64-bit platforms” on page 3589
WebSphere Message Broker operates in 32-bit mode or 64-bit mode, on supported
operating systems.

Using WebSphere MQ trusted applications
Configure a broker to run as a WebSphere MQ trusted application.

Before you begin

Before you start:

You must complete the following tasks:
v Ensure that your user ID is a member of the mqm group. On UNIX and Linux,

specify the user ID mqm as the service user ID when you create the broker. On
Windows, use any service user ID that is a member of mqm. Refer to “Security
requirements for administrative tasks” on page 3644.

v Review the restrictions that WebSphere MQ places on trusted applications that
apply to your environment. See the section "Connection to a queue manager
using the MQCONNX call" in the Application Programming Guide section of the
WebSphere MQ Version 7 Information Center online.

About this task

You can configure a broker to run as a trusted (fastpath) application on all
supported platforms except z/OS, where the option is not applicable. If the broker
is configured as a trusted application, it runs in the same process as the
WebSphere MQ queue manager agent, and all broker processes benefit from an
improvement in the overall system performance.

A broker does not run as a trusted application by default; you either create a
trusted application by using the “mqsicreatebroker command” on page 3831, or
modify an existing broker by using the “mqsichangebroker command” on page
3723.

Configuring a broker as a trusted application does not affect the operation of
WebSphere MQ channel agents or listeners. For more information about running
these as trusted applications, see the section "Running channels and listeners as
trusted applications" in the Intercommunication section of the WebSphere MQ
Version 7 Information Center online.

Chapter 7. Configuring brokers for test and production environments 613

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Take care when deploying user-defined nodes or parsers. Because a trusted
application (the broker) runs in the same operating system process as the queue
manager, a user-defined node or parser might compromise the integrity of the
queue manager. Consider fully the restrictions that apply to your environment and
test user-defined nodes and parsers in a non-trusted environment before deploying
them in a trusted broker.

You can either configure a broker to run as a trusted application when you create
it, or modify an existing broker.

Procedure
v To create a broker on a command line, run the mqsicreatebroker command with

the -t flag, which specifies that the broker is created as a trusted application.
For example, enter the following command to create a broker called
MB7BROKER as a trusted application:
mqsicreatebroker MB7BROKER -q MB7QMGR -i mqm -t

See “Creating a broker” on page 611 for more detailed information about how to
create a broker for your platform.

v To modify an existing broker:
1. Run the mqsistop command on the command line to stop the broker.
2. Run the mqsichangebroker command with the -t flag. For example, enter the

following command to modify a broker called MB7BROKER to run as a
trusted application:
mqsichangebroker MB7BROKER -t

See “Modifying a broker” on page 631 for more detailed information about
how to modify a broker for your platform.

3. Restart the broker by using the mqsistart command. The broker restarts with
fastpath set.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Modifying a broker” on page 631
Modify a broker by using the command line on the system where the broker
component is installed.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

614 WebSphere Message Broker Version 7.0.0.8

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
Related information:

WebSphere MQ Version 7 Information Center online

Creating a broker on Linux and UNIX systems
On Linux and UNIX systems, create brokers on the command line; on Linux on
x86, you can also create brokers in the WebSphere Message Broker Toolkit.

Before you begin

Before you start:

v If you want to configure the broker as a WebSphere MQ trusted application, see
“Using WebSphere MQ trusted applications” on page 613.

v Read “Considering security for a broker” on page 501.
v Check which operation mode you are licensed to use. If you do not set a mode,

the automatic default is enterprise mode; see “Operation modes” on page 48.

About this task

When you create a broker, if the WebSphere MQ queue manager does not exist,
the queue manager is automatically created. If WebSphere MQ Version 7.1, or later,
has been selected for the queue manager, the channel auth security is automatically
disabled.

If the specified queue manager already exists when creating the broker, then it is
assumed that the user has applied the appropriate security configuration to meet
their requirements, and therefore channel auth security is not disabled.

To create a broker:

Procedure
1. Ensure that you are logged in using a user ID that has authority to run the

mqsicreatebroker command.
2. Run the mqsiprofile script to set up the command environment for the broker:

. install_dir/bin/mqsiprofile

You must run this script before you can run the WebSphere Message Broker
commands.
For more information, see “Setting up a command environment” on page 213.

3. The command mqsicreatebroker defaults to using the primary installation of
WebSphere MQ, if present, for the creation of queue managers.
If you are creating a broker on a queue manager that already exists, there is no
need to configure your WebSphere MQ environment.

4. Use the mqsicreatebroker command to create the broker.
For example, if you want to create a broker called MB7BROKER on a queue
manager called MB7QMGR, enter the following command:
mqsicreatebroker MB7BROKER -q MB7QMGR

5. To enable function that becomes available in WebSphere Message Broker fix
packs, use the -f parameter on the mqsichangebroker command. For more
information, see “mqsichangebroker command” on page 3723.

Chapter 7. Configuring brokers for test and production environments 615

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Results

You have created a broker.

What to do next

Next: Complete the following tasks:
1. Start the broker by using the mqsistart command.
2. Connect to the broker from the WebSphere Message Broker Toolkit, the

WebSphere Message Broker Explorer, or a CMP API application.

When you have completed these tasks, you can create the resources that you want
to associate with the broker; for example message flows. You can create and work
with resources by using either the WebSphere Message Broker Toolkit or the CMP
API.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Using WebSphere MQ trusted applications” on page 613
Configure a broker to run as a WebSphere MQ trusted application.
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.

Creating a broker on Windows
On Windows, you can create brokers on the command line.

Before you begin

Before you start:

v If you want to configure the broker as a WebSphere MQ trusted application, see
“Using WebSphere MQ trusted applications” on page 613.

v Read “Considering security for a broker” on page 501.
v Check which operation mode you are licensed to use. If you do not set a mode,

the automatic default is enterprise mode; see “Operation modes” on page 48.

616 WebSphere Message Broker Version 7.0.0.8

About this task

When you create a broker, if the WebSphere MQ queue manager does not exist,
the queue manager is automatically created. If WebSphere MQ Version 7.1, or later,
has been selected for the queue manager, the channel auth security is automatically
disabled.

If the specified queue manager already exists when creating the broker, then it is
assumed that the user has applied the appropriate security configuration to meet
their requirements, and therefore channel auth security is not disabled.

To create a broker by using the command line, complete the following steps:

Procedure
1. Open a WebSphere Message Broker command prompt for the runtime

installation in which you want to create the broker. For more information about
initializing the runtime environment, see “Command environment: Windows
systems” on page 306.
On Windows 7 and Windows Server 2008 systems, you must open a command
console with elevated privileges. To open a command console with elevated
privileges, use the mqsicommandconsole command. For more information, see
“mqsicommandconsole command” on page 3830.

2. The command mqsicreatebroker defaults to using the primary installation of
WebSphere MQ, if present, for the creation of queue managers.
If you are creating a broker on a queue manager that already exists, there is no
need to configure your WebSphere MQ environment.

3. Use the mqsicreatebroker command to create the broker.
For example, if you want to create a broker called MB7BROKER on a queue
manager called MB7QMGR, enter the following command:
mqsicreatebroker MB7BROKER -i wbrkuid -a wbrkpw -q MB7QMGR

where wbrkuid and wbrkpw are the user name and password under which the
broker runs.
For more information about the command options, see “mqsicreatebroker
command” on page 3831.

Results

You have created a broker.

What to do next

Next: Complete the following tasks:
1. Start the broker by using the mqsistart command.
2. Connect to the broker from the WebSphere Message Broker Toolkit or a CMP

API application.

When you have completed these tasks, you can create the resources that you want
to associate with the broker; for example message flows. You can create and work
with resources by using either the WebSphere Message Broker Toolkit or the CMP
API.
Related concepts:

Chapter 7. Configuring brokers for test and production environments 617

“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Using WebSphere MQ trusted applications” on page 613
Configure a broker to run as a WebSphere MQ trusted application.
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
Related reference:
“mqsicommandconsole command” on page 3830
Use the mqsicommandconsole command to launch an elevated command console
from which commands that require elevation on Windows can be run.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.

Creating a broker using the WebSphere Message Broker
Explorer
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.

Before you begin

Before you start:

If you are using the WebSphere Message Broker Toolkit, see “Creating a broker for
a development environment” on page 569.
v On Windows, you must have administrator access rights to create brokers by

using the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer. When creating a broker, you might be prompted to agree to the use of
administrator rights or be prompted to enter an administrator user ID and
password.

v If you want to configure the broker as a WebSphere MQ trusted application, see
“Using WebSphere MQ trusted applications” on page 613.

v Read “Considering security for a broker” on page 501.
v Check which operation mode you are licensed to use. If you do not set a mode,

the automatic default is enterprise mode; see “Operation modes” on page 48.

About this task

When you create a broker, if the WebSphere MQ queue manager does not exist,
the queue manager is automatically created. If WebSphere MQ Version 7.1, or later,
has been selected for the queue manager, the channel auth security is automatically
disabled.

618 WebSphere Message Broker Version 7.0.0.8

If the specified queue manager already exists when creating the broker, then it is
assumed that the user has applied the appropriate security configuration to meet
their requirements, and therefore channel auth security is not disabled.

To create a broker by using the WebSphere Message Broker Explorer:

Procedure
1. Right-click the Brokers folder, and click New > Local Broker. The Create Broker

wizard is displayed.
2. Enter a name for the broker, and click Next.
3. Enter a name for the queue manager, or select an existing queue manager from

the list of available local queue managers. You cannot create a broker on a
queue manager that is already associated with a broker, or on a queue manager
that is on a remote system.

4. Enter values for your user name and password. On Windows only, the default
user ID is LocalSystem (for the Windows Local System Account). Local System
is a special account and has no password, therefore the password entry field is
unavailable.

5. You must create an execution group for the broker. By default, an execution
group called default is created. If you want to create an execution group with a
different name, enter the new name in Create execution group. You can create
additional execution groups using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer after the broker is created.

6. Optional: On Windows, select whether to start the broker automatically when
Windows starts.

7. Optional: Select Enable administration security to activate broker
administration security to control which users can complete specific tasks
against that broker and its resources.

8. The wizard starts processing your request. If the action succeeds, the wizard
displays messages in the summary panel. If an action fails, the wizard reports
the error in a message dialog.
If you know what is causing the error, and can fix it, correct the error and click
Yes. The wizard reissues the command. If you do not know what is causing the
error, or you cannot fix it, click No. The wizard backs out any actions that have
already completed and returns your system to its initial state.

9. Click Finish to close the wizard.

Results

You have created and started a broker.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Creating a default configuration” on page 564
Use the Default Configuration wizard to create and test a basic broker
configuration.

Chapter 7. Configuring brokers for test and production environments 619

“Setting up broker administration security” on page 368
Control the actions that users can request against a broker and its resources.
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Creating a broker on z/OS
Create the broker component and the other resources on which it depends.

About this task

To create your broker, perform the following tasks in order:
1. “Collecting the information required to create a broker”
2. “Creating the broker PDSE” on page 622
3. “Creating the broker directory on z/OS” on page 623
4. “Customizing the broker component data set” on page 624
5. “Customizing the broker JCL” on page 625
6. “Creating the environment file” on page 626
7. “Creating an execution group specific environment file” on page 627
8. “Creating the broker component” on page 629
9. “Copying the broker started task to the procedures library” on page 629

What to do next

To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mqsichangebroker command. For more information,
see “mqsichangebroker command” on page 3723.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Modifying a broker on z/OS” on page 634
Use the mqsichangebroker command on z/OS to modify your broker.
“Deleting a broker on z/OS” on page 933
Delete the physical broker component.
“Starting and stopping a broker on z/OS” on page 924
Run the appropriate command from SDSF to start or stop a broker.
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.

Collecting the information required to create a broker:

This is part of the larger task of creating a broker on z/OS.

620 WebSphere Message Broker Version 7.0.0.8

About this task

You must complete the information in each of the tables, at the following links,
before continuing:
v “Installation information - broker”
v “Component information - broker” on page 622
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
Related reference:
“Customization planning checklist for z/OS” on page 3991
Use the information contained in the following tables to make a note of the values
to use when you customize your system variables on z/OS.

Installation information - broker:

Decide on the values for the list of the JCL variables for your system; an example
installation value is provided for each one.

Collect the information shown in the Description column, and complete the values
that you require for your particular system. You can see a complete list of the
variables that you can customize in “z/OS JCL variables” on page 3994.

Description JCL variable
Example installation
value Your installation value

Fully qualified name of the
product's SBIPPROC data set

N/A <hlq>.SBIPPROC

Fully qualified name of the
product's SBIPSAMP data set

N/A <hlq>.SBIPSAMP

File system directory where the
product has been installed

++INSTALL++ /usr/lpp/mqsi

The letter for the language in
which you want messages
shown.

++LANGLETTER++2 E (English) E

Locale of environment where
commands are run by
submitting JCL

++LOCALE++ C

Time zone of environment
where commands are run by
submitting JCL

++TIMEZONE++ GMT0BST

Location of Java installation ++JAVA++ /usr/lpp/java/IBM/J1.6

WebSphere MQ high-level
qualifier

++WMQHLQ++ MQM.V700

Notes:

1. See the WebSphere MQ documentation for a list of supported national
languages.

Chapter 7. Configuring brokers for test and production environments 621

Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Collecting the information required to create a broker” on page 620
This is part of the larger task of creating a broker on z/OS.
Related information:

WebSphere MQ Version 7 Information Center online

Component information - broker:

Decide on the details of your broker component.

Collect the information shown in the Description column and complete the values
you require for your particular system. You can see a complete list of variables you
can customize in “z/OS JCL variables” on page 3994.

Description JCL variable Example component value

Your
component
value

Home directory of the file
system for the broker user ID

++HOME++ /u/mqp1usr/mqp1brk

Queue Manager associated
with the broker

++QUEUEMANAGER++ MQP1

File system directory where the
broker is to exist

++COMPONENTDIRECTORY++ /mqsi/brokers/MQP1BRK

Broker name ++COMPONENTNAME++ MQP1BRK

Data set where all JCL relevant
to the broker is saved

++COMPONENTDATASET++ TESTDEV.BROKER.MQP1BRK

Name of the Started Task JCL;
can be a maximum of eight
characters

++STARTEDTASKNAME++ MQP1BRK

mqsicreatebroker options ++OPTIONS++ Any additional optional
parameters for the
mqsicreatebroker
command

Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Collecting the information required to create a broker” on page 620
This is part of the larger task of creating a broker on z/OS.

Creating the broker PDSE:

This is part of the larger task of creating a broker on z/OS.

About this task

Each broker requires a PDSE or a PDS. A PDSE is preferable to a PDS because free
space is available without the need to compress the data set.

622 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Create the broker PDSE, for example using option 3.2 on ISPF. The name of the
PDSE must be the same as the JCL variable ++COMPONENTDATASET++. Allocate a data
set that has the following characteristics:
v Eight directory blocks
v 15 tracks (or 1 cylinder) of 3390 DASD with a record format of fixed blocked 80
v A suitable block size (for example 27920)
v A data set type of library
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Creating the broker directory on z/OS”
This is part of the larger task of creating a broker on z/OS.

Creating the broker directory on z/OS:

This is part of the larger task of creating a broker on z/OS.

About this task

Before you start

Before starting this task, you must have completed “Collecting the information
required to create a broker” on page 620 and “Creating the broker PDSE” on page
622.

Procedure

1. Use the TSO command OMVS to get into OMVS.
2. Create the broker root directory using the command:

mkdir -p <ComponentDirectory>

The name of the directory must be the same as the JCL variable
++COMPONENTDIRECTORY++.

3. Display the contents of the directory, which is currently empty, using the
command:
ls -dl /var/wmqi/MQP1BRK

4. Display the permissions on the directory using the command:
ls -al /var/wmqi/MQP1BRK

5. Ensure that the user ID of the person doing the customization has a group that
matches the group of the directory. Use the following command, where userid
is the ID you want to check:
id <userid>

6. Check that the directory has a valid group, and that the group has rwx
permissions. If they do not, use the following command to set the group of the
directory:
chgrp <group> <pathname>

For example:

Chapter 7. Configuring brokers for test and production environments 623

chgrp WMQI /var/wmqi/MQP1BRK

You must be the owner of the group, or have superuser authority, to use this
command.

7. To give the group READ, WRITE, and EXECUTE access, use the following
command:
chmod g=rwx <pathname>

For example:
chmod g=rwx /usr/wmqi/MQP1BRK

8. To display the amount of space used and available, use the following
command:
df -P /var/wmqi/MQP1BRK

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Creating the broker PDSE” on page 622
This is part of the larger task of creating a broker on z/OS.
“Checking the permission of the installation directory” on page 606
This is part of the larger task of customizing your z/OS environment.

Customizing the broker component data set:

This is part of the larger task of creating a broker on z/OS.

About this task

Before you start

Before starting this task, you must have completed “Collecting the information
required to create a broker” on page 620.

Create the broker data set in TSO, identified by ++COMPONENTDATASET++, as
instructed in the following steps:

Procedure

1. Copy all the listed files from <hlq>.SBIPSAMP to ++COMPONENTDATASET++.
2. Copy all the listed files from <hlq>.SBIPPROC to ++COMPONENTDATASET++.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Collecting the information required to create a broker” on page 620
This is part of the larger task of creating a broker on z/OS.
Related reference:

624 WebSphere Message Broker Version 7.0.0.8

“Contents of the broker PDSE” on page 3991
After you have successfully customized the broker, the broker PDSE members have
been set up.

Customizing the broker JCL:

This subtask is part of the larger task of creating a broker on z/OS.

About this task

Before you start

Before starting this task, you must have completed “Customizing the broker
component data set” on page 624.

All JCL has a standard header, which includes the following items:
v A brief description of its function.
v A description where further information can be found, relating to the function of

the JCL.
v If appropriate, a topic number.
v The section listing the JCL variables themselves.

Each JCL file defines its own STEPLIB.

You can customize the files using an ISPF edit macro that you have to tailor, or
you can change each of the PDSE members manually.

BIPEDIT is a REXX program that you can use to help you customize your JCL.
After you have customized BIPEDIT, you can run this REXX program against the
other JCL files to change their JCL variables.

When you update BIPBPROF (the broker profile), the changes are not accessible until
you run BIPGEN to copy the profile to the file system and create the ENVFILE. You
must run BIPGEN each time you update BIPBPROF for the changes to take effect. If
you have execution group specific profiles, and you change either BIPBPROF or
BIPEPROF (renamed to the execution group label), you must also run BIPGEN.

Procedure

1. Customize the renamed BIPEDIT file. Use the information you collected in:
v “Installation information - broker” on page 621
v “Component information - broker” on page 622

2. Activate the renamed BIPEDIT file before you customize other JCL files, by
running the following TSO command:

ALTLIB ACTIVATE APPLICATION(EXEC) DA(’COMPONENTDATASET’)

where ’COMPONENTDATASET’ is identical to ++COMPONENTDATASET++.
This command is active for the local ISPF session for which it was issued. If
you have split screen sessions, the other sessions are not able to use this
command. If you use ISPF option 6 to issue the command, use ISPF option 3.4
to edit the data set, which enables you to use the edit command.

3. Edit each JCL file. Run the renamed BIPEDIT file by typing its name on the
command line (for example MQ01EDBK). Instead of editing a member, you might
want to View it until you have resolved all problems in your REXX program.
Alternatively, you can Cancel the Edit session instead of saving it.

Chapter 7. Configuring brokers for test and production environments 625

You must set a value for all the variables listed in the JCL; if you do not do so,
the JCL does not work correctly.

What to do next

Some JCL files include ++OPTIONS++ for a command; you must replace them with
additional optional parameters specific to the command on z/OS, or remove them.
Typically, you must replace or remove these options in addition to running
BIPEDIT. If you do not require additional options, remove ++OPTIONS++ by using the
following command:

"c ++OPTIONS++ ’’ all"

where ' ' represents two single quotation marks.

Save the edit macro and run this macro against all the members except the edit
macro itself.

If the user ID submitting the BIPCRBK command has the appropriate
WebSphere MQ authorities, you can ignore the optional mqsicreatebroker
parameters -1 and -2.

If you expect different administrators to create the WebSphere MQ resources, you
can consider using one of these optional parameters; see “mqsicreatebroker
command” on page 3831 for further information.

You must be aware that another process might be using the current ENVFILE,
therefore you must consider whether updating the current ENVFILE in the file
system might have other effects.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Creating the environment file:

This is part of the larger task of creating a broker on z/OS.

About this task

Before you start

Before starting this task, you must have completed “Customizing the broker JCL”
on page 625

Procedure

1. Review the BIPBPROF member. If you define parameters for all users, you can
configure BIPBPROF to use these parameters.

626 WebSphere Message Broker Version 7.0.0.8

Note that the BIPBPROF environment file is the main broker file, and it is used
by default for any execution group address spaces, unless a specific execution
group environment file exists.
For example, if the time zone option TZ is set as a system-wide parameter for
all users, you can remove it from BIPBPROF.

2. Submit member BIPGEN. Review the job output and make sure that the
environment file in the output contains the parameters that you expect.
If you change BIPBPROF, or system-wide parameters, you must submit BIPGEN
again to pick up the changes.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Customizing the broker JCL” on page 625
This subtask is part of the larger task of creating a broker on z/OS.

Creating an execution group specific environment file:

You can create an execution group specific environment file, which is used instead
of the default broker environment file when you restart the execution group.

Before you begin

Before you start

Before starting this task, you must have completed “Customizing the broker JCL”
on page 625

About this task

This task forms an optional step of the larger task of creating a broker on z/OS.

By default a broker has a single environment file (ENVFILE), which is created from
BIPBPROF by submitting BIPGEN. The main broker address space and any execution
group address spaces use this environment file.

You might find it necessary to have an execution group specific environment file
and you can achieve this by carrying out the following procedure. In this situation,
on restart, the execution group address space uses the specific environment file
and not the default broker environment file.

This functionality is enabled only when the function level of the WebSphere
Message Broker fix packs is set, for example, 7.0.0.7. To enable function that
becomes available in WebSphere Message Broker fix packs, use the -f parameter
on the mqsichangebroker command. For more information, see “mqsichangebroker
command” on page 3723.

Procedure

1. Review the BIPBPROF member. If you define parameters required by the broker
and all execution group address spaces, you can configure BIPBPROF to use
these parameters.

Chapter 7. Configuring brokers for test and production environments 627

2. Take a copy of BIPEPROF and rename the copy of the file to be the same as the
execution group label in the component dataset, using the following rule.
The name should equal the last eight characters of the execution group label.
Note that any characters that are not valid for a STEPNAME are replaced with
the @ character.
Furthermore, if the first character of a STEPNAME is not an alphabetic
character, that character is replaced with an A.
For more information about characters that you can use, see “Administration in
z/OS” on page 3979.
For example, an execution group address space with the label
MyExecutionGroup, has an execution group specific profile called IONGROUP.

3. Customize the renamed BIPEPROF file to include any environment variable
settings specific to the execution group.

4. Edit BIPGEN, adding an additional step at the end for the new execution group
specific profile, for example:
//BIPEG01 EXEC PROC=BIPEGEN,EG=IONGROUP

5. Submit member BIPGEN to re-create the default broker environment file, and to
create the new execution group specific environment file. Review the job output
and make sure that the environment file in the output contains the parameters
that you expect.
If you change BIPBPROF, or the renamed BIPEPROF file, or system-wide
parameters, you must submit BIPGEN again to pick up the changes.

What to do next

Multiple Execution Group specific environment files

If you have a requirement for multiple execution group specific files, carry out the
following tasks:
1. Create an execution group specific profile for each, following the naming rules

specified in Step 2 above.
2. Add additional steps to the end of BIPGEN giving each step a different name,

and specifying the correct eight character execution group label.
3. Resubmit BIPGEN to create all the environment files.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Customizing the broker JCL” on page 625
This subtask is part of the larger task of creating a broker on z/OS.
“Creating the environment file” on page 626
This is part of the larger task of creating a broker on z/OS.
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.

628 WebSphere Message Broker Version 7.0.0.8

Creating the broker component:

When you are creating a broker on z/OS, one of the tasks is to create the broker
component.

About this task

If the user ID submitting the BIPCRBK command has the appropriate
WebSphere MQ authority, you can ignore the optional mqsicreatebroker
parameters -1 and -2. If it is your intention to have different administrators create
the WebSphere MQ resources, you can consider using one of these optional
parameters; see “mqsicreatebroker command” on page 3831 for further
information.

Procedure

1. Submit job BIPCRBK with option -1. This job creates the files and directories that
are placed in the default storage group. You must run this job first; to run this
job you need authority to access the broker root directory.

2. Edit BIPCRBK and submit the job with option -2. This job creates the
WebSphere MQ queues. If you do not have the requisite authority, ask your
WebSphere MQ system administrator to run the job.

3. Ensure that the jobs have run successfully by:
Checking the STDOUT stream in the JOBLOG.
Viewing STDOUT for any errors and checking for BIP8071I: Successful
command completion.

What to do next

If you encounter any problems, delete the broker and re-create it using the
following procedure. You must have the appropriate authority to run the jobs.
1. Edit and configure job BIPDLBK.
2. Run job BIPDLBK with the same option, or options, that caused the problems

when you ran the BIPCRBK job.
3. Correct the problems and run the BIPCRBK job again.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Copying the broker started task to the procedures library:

This is part of the larger task of creating a broker on z/OS.

About this task

Before you start

Chapter 7. Configuring brokers for test and production environments 629

Before starting this task, you must have completed “Creating the broker
component” on page 629.

Procedure

1. Ensure that the user ID for the broker started task is defined and that the
broker procedure is associated with the user ID. If you are using a security
manager, for example RACF, update the started class for your broker. See
“Setting up z/OS security” on page 556 and “Summary of required access
(z/OS)” on page 3985 for more information.

2. Copy the Started Task JCL (BIPBRKP) to the procedures library, for example
USER.PROCLIB.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Creating the broker component” on page 629
When you are creating a broker on z/OS, one of the tasks is to create the broker
component.
“Starting and stopping a broker on z/OS” on page 924
Run the appropriate command from SDSF to start or stop a broker.
Related reference:
“Summary of required access (z/OS)” on page 3985
The professionals in your organization require access to components and resources
on z/OS.

Verifying brokers
Use the mqsilist command to display the brokers that you have created on your
computer.

About this task

If you run the mqsilist command with no parameters, a one line summary for
every broker that you have created for the current installation is displayed. For
example:
BIP1281I: Broker ’BrokerA’ on queue manager ’QMA’ is running.

BIP1281I: Broker ’MB7BROKER’ on queue manager ’MB7QM’ is running.

BIP1281I: Broker ’MBTEST1’ on queue manager ’TESTQM’ is stopped.

BIP8071I: Successful command completion.

You can request further details about all resources by specifying parameter -d 1 or
-d 2 on the command, You can also specify the -r parameter so that the command
recursively returns information about execution groups, and the message flows and
files that you have deployed to those execution groups.

630 WebSphere Message Broker Version 7.0.0.8

You can also use this command to display a list of brokers that you have created
for all concurrent installations on this computer. For example, you might have
installed both Version 6.0 and Version 7.0 for assessment and migration.
mqsilist -a

In earlier versions, only brokers that you have created are displayed. If you want
to view information about other components, you must run the corresponding
command for that version
Related reference:
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.

Modifying a broker
Modify a broker by using the command line on the system where the broker
component is installed.

Before you begin

Before you start:

You must have completed the following tasks:
v Ensure that your user ID has the correct authorizations to perform the task; see

“Security requirements for administrative tasks” on page 3644.
v Create a broker.
v On Windows, Linux, and UNIX systems, you must set up your command-line

environment before performing this task by running the product profile or
console; see “Setting up a command environment” on page 213.

About this task

The parameters you can change on the broker affect the physical broker that was
created by using the command line.

You can also modify the broker in the WebSphere Message Broker Explorer, where
you can change broker properties, such as security settings.

Choose the appropriate task for your platform from the following links:
v “Modifying a broker on Windows, Linux, and UNIX systems” on page 632
v “Modifying a broker on z/OS” on page 634
v “Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Deleting a broker” on page 930
Delete a broker using the command line on the system where the broker

Chapter 7. Configuring brokers for test and production environments 631

component is installed.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Viewing broker properties” on page 927
You can view broker properties by using the mqsireportbroker command. You can
also use the WebSphere Message Broker Explorer to view broker properties.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsireportbroker command” on page 3919
Use the mqsireportbroker command to display broker registry entries.

Modifying a broker on Windows, Linux, and UNIX systems
Use the mqsichangebroker command on Windows, Linux, and UNIX to modify
your broker.

Before you begin

Before you start:

You must have completed the following task for the appropriate platform:
v “Creating a broker on Linux and UNIX systems” on page 615
v “Creating a broker on Windows” on page 616

About this task

To modify a broker on Windows, Linux, and UNIX:

Procedure
1. Stop the broker by using the mqsistop command.
2. Enter the mqsichangebroker command, specifying the broker name and one or

more parameters that you want to change.
mqsichangebroker brokername
<<-i ServiceUserID> -a ServicePassword>
<-t | -n> <-l UserLilPath>
<-g ConfigurationTimeout> <-k ConfigurationDelayTimeout>
<-v StatisticsMajorInterval> <-P httpListenerPort> <-y ldapPrincipal>
<-z ldapCredentials> <-c ICUconverterpath> <-x userExitPath>
<-e activeUserExits> <-o operationMode> <-f functionlevel>

where:

brokername
Is the broker name.

-i Is the service user ID that is used to run the broker (applicable on
Windows only).

-a Is the password for the service user ID (applicable on Windows only).

-t Indicates that the broker runs as a WebSphere MQ trusted application.

632 WebSphere Message Broker Version 7.0.0.8

-n Indicates that the broker must cease to run as a WebSphere MQ trusted
application.

-l Indicates from where LIL (loadable implementation libraries) files are
loaded.

-g Is the maximum time (in seconds) to allow a broker to process a
deployed message.

-k Is the maximum time (in seconds) to allow a broker to process a
minimum size deployed message.

-v Is the time (in minutes) for the duration of the interval for collecting
statistics archive records.

-P Is the port that the broker HTTP listener will use.

The broker starts this listener when a message flow that includes HTTP
nodes or Web Services support is started

-y Is the user principal for access to an LDAP directory.

-z Is the user password for access to LDAP.

-c Is a delimited set of directories to search for additional code page
converters.

-x Is the path that contains the location of all user exits to be loaded for
execution groups in this broker.

-e Is the list of active user exits.

-o Is the operation mode that the broker will use.

-f Indicates the maximum function level of your broker that you want to
enable.

-s Indicates whether broker administration security is enabled.

For example:
v To change the user ID that is used to run the broker on Windows, enter the

following command:
mqsichangebroker MB7BROKER -i wbrkuid -a wbrkpw

v To change the configuration timeout, enter the following command:
mqsichangebroker MB7BROKER -g 500

v To activate broker administration security, enter the following command:
mqsichangebroker MB7BROKER -s active

For further information about these parameters, and more examples, see
“mqsichangebroker command - Linux and UNIX systems” on page 3724 and
“mqsichangebroker command - Windows systems” on page 3729.

3. Restart the broker by using the mqsistart command. The broker restarts with
the new properties.

Results

You cannot change all the parameters with which you created a broker. If you
cannot change a property by using the mqsichangebroker command, delete the
broker and create another broker with the new properties.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to

Chapter 7. Configuring brokers for test and production environments 633

route, transform, and enrich in flight messages.
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Deleting a broker” on page 930
Delete a broker using the command line on the system where the broker
component is installed.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Modifying a broker on z/OS
Use the mqsichangebroker command on z/OS to modify your broker.

Before you begin

Before you start:

You must have completed the following task:
v “Creating a broker on z/OS” on page 620

About this task

To modify a broker:

Procedure
1. Ensure that the broker is running.
2. Stop the broker components by issuing the following command:

/F BROKERNAME, PC

3. When the broker has stopped, use the MVS MODIFY command with the
changebroker parameters that you want to change. For example:
/F <BROKERNAME>,cb g=100,k=200

4. Restart the broker components by issuing the following command:
/F BROKERNAME, SC

The broker now uses the changed parameters.

634 WebSphere Message Broker Version 7.0.0.8

What to do next

You cannot change all the parameters with which you created a broker. If you
cannot modify a parameter that you want to change by using the changebroker
command, delete the broker and create a new one. By creating another broker you
can redefine all the parameters.

You can change the following parameters:

g ConfigurationChangeTimeout

k InternalConfigurationTimeout

l UserLilPath

v StatisticsMajorInterval

P HTTPListenerPort

y LdapPrincipal

z LdapCredentials

c ICUConverterPath

x UserExitPath

e ActiveUserExits

f functionlevel

For further information about these parameters, see “mqsichangebroker command -
z/OS” on page 3733.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Deleting a broker on z/OS” on page 933
Delete the physical broker component.
Related reference:
“START and STOP commands on z/OS” on page 3981
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Configuring brokers in the WebSphere Message Broker Explorer
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.

Chapter 7. Configuring brokers for test and production environments 635

Before you begin

If you are using systems other than Linux on x86 or Windows, you must first
create your brokers on those systems; see “Configuring brokers” on page 610.

If you are using Windows, you must have administrator access rights to create
brokers by using the WebSphere Message Broker Explorer. When creating a broker,
you might be prompted to agree to the use of administrator rights or be prompted
to enter an administrator user ID and password.

About this task

On Linux on x86 or Windows, use the WebSphere Message Broker Explorer to
create local brokers, and to configure, modify, and administer your local and
remote brokers.

To start the WebSphere Message Broker Explorer:

v Linux Open a command shell in which the mqsiprofile command has not
been run and enter the strmqcfg command, or run /usr/bin/strmqcfg.

v Windows Click Start > All Programs > IBM WebSphere MQ > WebSphere MQ
Explorer, or double-click the shortcut on your desktop labeled 'WebSphere MQ
Explorer'. On Windows Vista and Windows Server 2008 systems, you must
right-click WebSphere MQ Explorer, and select Run as Administrator to start
the application with the appropriate privileges.

In the WebSphere Message Broker Explorer you can configure broker, execution
group and message flow properties including security and configurable services.
See the following tasks for more information:
v “Configuring broker properties in the WebSphere Message Broker Explorer” on

page 637
v “Using the WebSphere Message Broker Explorer to work with configurable

services” on page 644
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Planning a broker environment” on page 580
When you start to plan your broker environment, you must first consider your
resource naming conventions and the design of the WebSphere MQ infrastructure.
“Configuring brokers” on page 610
Create and configure the brokers that you want on the operating system of your
choice.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Viewing message flow accounting and statistics data” on page 3300
You can use the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer to view snapshot accounting and statistics
data as it is produced by the broker.
“Changing WebSphere Message Broker Explorer preferences” on page 654
Change preferences in the WebSphere Message Broker Explorer.

636 WebSphere Message Broker Version 7.0.0.8

Configuring broker properties in the WebSphere Message
Broker Explorer

Brokers and associated resource such as execution groups and message flows have
properties that can modified. Use the WebSphere Message Broker Explorer to
configure the properties for your brokers, execution groups and message flows.
Alternatively you can use the command line or the Administration API.

About this task

See the following tasks for properties on message flows:
v “Configuring description properties in the WebSphere Message Broker Explorer”
v “Configuring DataPower security settings” on page 639

See the following tasks for properties on execution groups:
v “Configuring description properties in the WebSphere Message Broker Explorer”
v “Configuring the flow debug port in the WebSphere Message Broker Explorer”

on page 641
v “Configuring DataPower security settings” on page 639

See the following tasks for properties on brokers:
v “Configuring description properties in the WebSphere Message Broker Explorer”
v “Changing the operation mode of your broker using the WebSphere Message

Broker Explorer” on page 642
v “Changing the broker security settings in the WebSphere Message Broker

Explorer” on page 643
v “Configuring DataPower security settings” on page 639
Related tasks:
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.
“Configuring brokers” on page 610
Create and configure the brokers that you want on the operating system of your
choice.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Configuring description properties in the WebSphere Message
Broker Explorer
Use the WebSphere Message Broker Explorer to configure the Long Description
and Short Description on your brokers, execution groups and deployed message
flows. Alternatively, you can use the Administration API to configure the Long
Description properties.

About this task

The Short Description is stored and used by the WebSphere Message Broker
Explorer. The Long Description is stored by the broker, and can be viewed within

Chapter 7. Configuring brokers for test and production environments 637

the WebSphere Message Broker Explorer or Administration API. You can also use
the Long Description to add keywords to your message flows.

To configure the Long Description and Short Description on your brokers,
execution groups, or message flows:

Procedure
1. In the Navigator view, expand the Brokers folder.
2. Right-click the object with which you want to work, and click Properties. This

object can be a broker, execution group, or message flow. The Properties
window is displayed. The Long Description and Short Description are fields
on the General tab.

3. Enter the values for the Long Description, Short Description, or both. If you
are working with a message flow, you can add keywords into the Long
Description field. When you define a keyword, you must follow certain rules
to ensure that the information can be parsed. The following example shows
some values that you might want to define in the Long Description property:
$MQSI Author=John Smith MQSI$
$MQSI Flow 1 Version=v1.3.2 MQSI$

Do not use the following characters within keywords, because they cause
unpredictable behavior:
^ $. | \ < > ? + * = & [] ()

You can use these characters in the values that are associated with keywords;
for example:
v $MQSI RCSVER=$id$ MQSI$ is acceptable
v $MQSI $name=Fred MQSI$ is not acceptable

4. Click Apply to update the description properties.
5. Click OK to exit the Properties window.

Results

The description properties for the selected object are now updated, and you can
view these properties in the Properties QuickView for the object in the WebSphere
Message Broker Explorer.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.
Related tasks:
“Configuring broker properties in the WebSphere Message Broker Explorer” on
page 637
Brokers and associated resource such as execution groups and message flows have
properties that can modified. Use the WebSphere Message Broker Explorer to
configure the properties for your brokers, execution groups and message flows.
Alternatively you can use the command line or the Administration API.
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker

638 WebSphere Message Broker Version 7.0.0.8

Explorer.
Related reference:
“WebSphere Message Broker Explorer views” on page 6838
The WebSphere Message Broker Explorer can be used to manage and administer
your brokers and deployed resources.

Configuring DataPower security settings
Use the DataPower Security wizard in the WebSphere Message Broker Explorer to
configure an external DataPower appliance to handle the WS-Security Policy for
your HTTP, HTTPS input, and SOAP nodes within your message flow. The
DataPower box is configured to decrypt incoming messages to your flow and
encrypt outgoing messages from your flow without requiring any changes to the
message flows or broker configuration.

Before you begin

Before you start:

To use the DataPower Security wizard you must have access to the
SYSTEM.DEF.SVRCONN channel on the broker's queue manager. Your clients must
send their messages direct to the DataPower appliance on a Client port you
specify.

About this task

The following steps are required to configure a DataPower appliance for
WS-Security for your message flows:
v Select which HTTP(S)Input and SOAP nodes you want to configure your

security for.
v Create a DataPower connection profile or edit an existing profile.
v Use or alter the default Policy Sets to specify your encryption and decryption

WS- Security parameters.
v Specify which specific Crypto Keys to use from the DataPower box

On the DataPower appliance the following configuration is created after you run
the DataPower Security wizard:
v An XML Firewall with optionally Back (for HTTPSInput Nodes) and Front

(Client) SSL connection.
v An XML Firewall Policy consisting of a list of inbound/ request rules and an

outbound/ response rule per HTTP Input or SOAP Node.
v Each inbound/ request rule consists of a decryption action with parameters

specified from the Policy Set.
v Each outbound/ response rule consists of an encryption action with parameters

specified from the Policy Set.

To configure DataPower security for your message flows:

Procedure
1. Right-click on the message flow or execution group with which you want to

work, and click Properties. You can enable security handling on a single
message flow containing HTTP, HTTPS input and SOAP nodes, or you can
select an execution group to enable security handling for these nodes in all the
message flows in the execution group.

Chapter 7. Configuring brokers for test and production environments 639

2. In the Properties window, click DataPower on the left to open the DataPower
tab.

3. Click Configure Security to open the Security on DataPower Appliance
window. The HTTP, HTTPS input, and SOAP nodes from your message flows
are displayed in the Flow Details table.

4. Select a Policy Set Binding from the list of options. If you select the No Policy
Set Bindings option, no encryption or decryption nodes are specified in your
policy rules. You can use this option as a test for the communication channels
before applying a policy set binding. To create a policy set binding, click Edit
Policy Sets. See “Policy Sets and Policy Set Bindings editor” on page 6841, for
more information about the Policy Sets and Policy Set Bindings editor.

5. In the DataPower details section, select a User profile from the list of options.
Click Edit Profiles to create or edit connection profiles. To create a profile:
a. In the DataPower Connection Profiles window, click Add.
b. Click in the relevant cell in the table to edit the values. You must provide a

valid user name, domain, and the host name of your DataPower appliance.
c. Click Finish. The new or edited profile is now available to select in the

Security on DataPower Appliance window.
d. Add a password for the profile in the Password field.

You can also use the DataPower Connection Profiles window to import and
export profiles in the WebSphere Message Broker Explorer on different
machines.

6. You must now decide whether to create a new Policy or merge with an
existing Policy. If you attempt to merge with a policy that does not exist, a
new one is created. A merge adds request and response rules to your policy,
but it does not overwrite any preexisting rules. A merge also does not alter
your existing firewall settings.

7. Enter the name or names of your XML Firewalls, and the Client Ports on
which your HTTP clients connect to your DataPower box.

8. Optional: Select the nodes to configure in the Flow Details section, and click
Next to select XML Firewall SSL settings, Decryption, and Encryption rules for
your DataPower device.

9. Click Finish. An attempt is made to connect to your domain on your
DataPower box to retrieve your Crypto Profiles.

10. Click Yes to confirm that you want to alter the configuration of your
DataPower appliance.

Results

You have configured DataPower security settings for your message flow or
execution group.
Related concepts:
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.

640 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Configuring broker properties in the WebSphere Message Broker Explorer” on
page 637
Brokers and associated resource such as execution groups and message flows have
properties that can modified. Use the WebSphere Message Broker Explorer to
configure the properties for your brokers, execution groups and message flows.
Alternatively you can use the command line or the Administration API.
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.

Configuring the flow debug port in the WebSphere Message
Broker Explorer
Before you can debug a message flow, you must configure and enable the flow
debug port. The flow debug port is also known as the Java debug port, and the
JVM debug port.

About this task

Use the WebSphere Message Broker Explorer, or WebSphere Message Broker
Toolkit to set the flow debug port value to enable the flow debugger to be
connected to an execution group. Alternatively, you can use the command console
or the Administration API to configure this property.

Using the WebSphere Message Broker Toolkit:
Procedure

1. Select the broker with which you want to work in the Brokers view.
2. Right-click the execution group which you want to work, and click Launch

Debugger. If the flow debug port is already configured, the port number is
displayed in the Enable window.

3. To change the flow debug port, click Configure.
4. Set a port number for the debug port. The port number must be a number that

is not already in use.
5. Click OK. The execution group is stopped and restarted, and the flow debug

port is configured to use the specified port.
6. If you want to continue to attach the debugger to the execution group for

debugging, click OK. To exit the Enable window without attaching the
debugger, click Cancel.

What to do next

To start debugging your message flows, switch to the Debug perspective.
Right-click the execution group, and click Terminate Debugger to stop debugging
on the selected execution group.

Using the WebSphere Message Broker Explorer:
Procedure

1. Expand the Brokers folder in the Navigator view.
2. Right-click the execution group which you want to work, and click Properties.

The Properties window is displayed.
3. Click Flow Debug Port on the left to display the Flow Debug Port tab.
4. Set a port number for the debug port. The port number must be a number that

is not already in use.

Chapter 7. Configuring brokers for test and production environments 641

5. Click Apply.
6. Click OK to exit the Properties view.
7. Right-click the execution group, and click Flow Debug Port > Enable to enable

debugging on the selected execution group.

What to do next

You can connect the flow debugger to your execution group by using the
WebSphere Message Broker Toolkit, see the instructions in “Using the WebSphere
Message Broker Toolkit” on page 641. Click Flow Debug Port > Disable to disable
debugging on the selected execution group.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Configuring broker properties in the WebSphere Message Broker Explorer” on
page 637
Brokers and associated resource such as execution groups and message flows have
properties that can modified. Use the WebSphere Message Broker Explorer to
configure the properties for your brokers, execution groups and message flows.
Alternatively you can use the command line or the Administration API.
“Attaching the flow debugger to an execution group for debugging” on page 3160
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.
Related reference:
“JVM parameter values” on page 3813
Select the objects and properties associated with the Java Virtual Machine (JVM)
that you want to change.

Changing the operation mode of your broker using the
WebSphere Message Broker Explorer
You must ensure that your brokers are running in the operation mode for which
you have purchased a license. You can change the operation mode of your broker
WebSphere Message Broker Explorer. Alternatively, you can use the mqsimode
command to change the operation mode.

About this task

To change the operation mode of your broker by using the WebSphere Message
Broker Explorer:

Procedure
1. Switch to the WebSphere Message Broker Explorer, and expand the Brokers

folder in the Navigator view.
2. Right-click the broker which you want to work, and click Properties. The

Properties window is displayed.
3. Enter the value for the mode of your broker in the Operation Mode field, in the

General tab. The options you can set in this field are:
v enterprise

642 WebSphere Message Broker Version 7.0.0.8

v starter

v adapter

v entry

4. Click Apply.
5. Click OK to exit the Properties view.

Results

The operation mode of your broker is updated. You can see the operation mode of
your broker in the Properties QuickView.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
“Configuring broker properties in the WebSphere Message Broker Explorer” on
page 637
Brokers and associated resource such as execution groups and message flows have
properties that can modified. Use the WebSphere Message Broker Explorer to
configure the properties for your brokers, execution groups and message flows.
Alternatively you can use the command line or the Administration API.
Related reference:
“mqsimode command” on page 3899
Use the mqsimode command to configure and retrieve operation mode information.

Changing the broker security settings in the WebSphere
Message Broker Explorer
Use the WebSphere Message Broker Explorer to configure security settings for your
broker. Alternatively, you can use the command line to change these values.

About this task

You can use the WebSphere Message Broker Explorer to configure the following
security settings on your broker:
v Cache Sweep Interval
v Cache Timeout
v Security Profiles
v Policy Sets

Procedure
1. In the WebSphere Message Broker Explorer, expand the Brokers folder in the

Navigator view.
2. Right-click the execution group which you want to work with, and click

Properties. The Properties window is displayed.
3. Click Security on the left to display the Security tab.
4. Enter a value in seconds for the Cache Sweep Interval field. The default value

for this field is 300.

Chapter 7. Configuring brokers for test and production environments 643

5. Enter a value in seconds for the Cache Timeout field. The default value for this
field is 60.

6. Click Apply to update the Cache Sweep Interval and Cache Timeout properties.
7. Click Security Profiles to configure security profiles on your broker. See

“Creating a security profile” on page 433, for more information about the
creating Security Profiles.

8. Click Policy Sets See “Policy Sets and Policy Set Bindings editor” on page 6841,
for more information about the Policy Sets and Policy Set Bindings editor.

9. Click OK to exit the Properties view.

Results

You have configured security settings for your broker.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
Related tasks:
“Configuring broker properties in the WebSphere Message Broker Explorer” on
page 637
Brokers and associated resource such as execution groups and message flows have
properties that can modified. Use the WebSphere Message Broker Explorer to
configure the properties for your brokers, execution groups and message flows.
Alternatively you can use the command line or the Administration API.
Related reference:
“WebSphere Message Broker Explorer views” on page 6838
The WebSphere Message Broker Explorer can be used to manage and administer
your brokers and deployed resources.
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that
you want to change.

Using the WebSphere Message Broker Explorer to work with
configurable services

Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.

Instead of defining properties on the node or message flow, you can create
configurable services so that nodes and message flows can refer to them to find
properties at run time. If you use this method, you can change the values of
attributes for a configurable service on the broker, which then affects the behavior
of a node or message flow without the need for redeployment.

644 WebSphere Message Broker Version 7.0.0.8

Unless it is explicitly stated by the function that is using the configurable service,
you need to stop and start the execution group, or the applicable message flows,
for the change of property value to take effect.

You can create and name new configurable services, based on IBM defined
templates. Alternatively, you can modify the existing IBM defined configurable
services. If you modify an IBM defined configurable services, their default values
are overwritten in the system registry.

Use the WebSphere Message Broker Explorer to complete the following tasks for
configurable services:
v “Creating a new configurable service”
v “Viewing configurable services” on page 647
v “Modifying an IBM defined configurable service” on page 648
v “Modifying a configurable service” on page 649
v “Importing a configurable service” on page 650
v “Exporting a configurable service” on page 651
v “Deleting a configurable service” on page 652

Alternatively, you can use the runtime commands to work with configurable
services, see “Configurable services” on page 1296.

For a full list of configurable services and their properties, see “Configurable
services properties” on page 3766.
Related concepts:
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Creating a new configurable service
Use the WebSphere Message Broker Explorer to create a new configurable service
to define properties for an external service on which the broker relies.

Chapter 7. Configuring brokers for test and production environments 645

About this task

You can add a new configurable service to your broker based on an IBM defined
configurable service template using the WebSphere Message Broker Explorer. You
must provide a name for your configurable service, which must not duplicate an
existing configurable service name.

As an alternative to creating a new configurable service, you can modify an IBM
defined configurable service, see “Modifying an IBM defined configurable service”
on page 648.

Not all configurable service types are available to select within WebSphere
Message Broker Explorer. If you want to create a configurable service and the type
is not listed, you must first create an instance of that type via the command line.
For information about creating configurable services by using the command line,
see “mqsicreateconfigurableservice command” on page 3849.

To add a new configurable service using the WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view, expand the broker on which you want to add a new

configurable service.
2. Right-click the Configurable Services folder and click New > Configurable

service. The Configurable services window is displayed.
3. Enter a name for your configurable service.
4. Select the type of configurable service to create.
5. For some configurable services, you can select an IBM defined template to

provide default values you can use or update. If appropriate, select the IBM
defined template to use for your configurable service.

6. Enter values for the configurable service properties. The properties are
populated with default values.

7. Click OK to create the new configurable service.

What to do next

The properties for the configurable service are not used by the broker until you
restart the message flows that use the configurable service. You can stop and start
the broker to ensure that the configurable service is available to all resources
running on the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable

646 WebSphere Message Broker Version 7.0.0.8

services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Viewing configurable services
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.

About this task

You can view the properties of configurable services that you have defined on the
broker, or you can view the properties of IBM defined configurable services.

To view a configurable service:

Procedure
1. In the Navigator view, expand the broker on which you want to view the

configurable services.
2. Expand the Configurable Services folder. If you want to view IBM defined

configurable services, right-click the Configurable Services folder, and click
Show IBM Templates.

3. Right-click the configurable service that you want to view, and click Properties.
The Configurable services window is displayed, and shows the properties for
the selected configurable service.

4. Click OK to close the Configurable services.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Creating a new configurable service” on page 645
Use the WebSphere Message Broker Explorer to create a new configurable service
to define properties for an external service on which the broker relies.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.

Chapter 7. Configuring brokers for test and production environments 647

“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Modifying an IBM defined configurable service
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.

About this task

You can modify IBM defined configurable services to add a new configurable
service to your broker. You cannot change the name of an IBM defined
configurable service, and you cannot delete it. If you want to use a custom name
for a configurable service, or if you want to create different configurable services of
the same type, see “Creating a new configurable service” on page 645.

To modify an IBM defined configurable service:

Procedure
1. In the Navigator view, expand the broker on which you want to modify an

IBM defined configurable service.
2. Expand the Configurable Services folder.
3. Right-click the configurable service that you want to modify, and click

Properties. The Configurable services window is displayed.
4. Enter values for the configurable service properties. The Basic tab shows the

key properties for the configurable service. Additional properties to configure
can be found on the Advanced tab. The properties are populated with default
values.

5. Click OK to update the configurable service.

What to do next

The properties for the configurable service are not used by the broker until you
restart the message flows that use the configurable service. You can stop and start
the broker to ensure that the configurable service is available to all resources
running on the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.

648 WebSphere Message Broker Version 7.0.0.8

“Creating a new configurable service” on page 645
Use the WebSphere Message Broker Explorer to create a new configurable service
to define properties for an external service on which the broker relies.
“Modifying a configurable service”
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Modifying a configurable service
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.

About this task

You can modify all the properties of an existing configurable service, except for the
name.

To modify a configurable service:

Procedure
1. In the Navigator view, expand the broker on which you want to modify a

configurable service.
2. Expand the Configurable Services folder. If you want to modify an IBM defined

configurable service that is not displayed, right-click the Configurable Services
folder, and click Show IBM Templates. The predefined services are displayed
in the Configurable Services folder.

3. Right-click the configurable service that you want to modify, and click
Properties. The Configurable services window is displayed.

4. Enter values for the configurable service properties. The properties are
populated with default values.

5. Click OK to update the configurable service.

What to do next

The properties for the configurable service are not used by the broker until you
restart the message flows that use the configurable service. You can stop and start
the broker to ensure that the configurable service is available to all resources
running on the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:

Chapter 7. Configuring brokers for test and production environments 649

“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Creating a new configurable service” on page 645
Use the WebSphere Message Broker Explorer to create a new configurable service
to define properties for an external service on which the broker relies.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Importing a configurable service
Use the WebSphere Message Broker Explorer to import a configurable service from
another broker.

About this task

The properties of a configurable service can be exported from a broker, and
imported by a new broker. The properties of the configurable service are stored in
a .configurableservice file.

If the configurable service is defined on a broker in the WebSphere Message Broker
Explorer, you can drag the configurable service from the broker to a new broker.

Alternatively, to a import a configurable service from a .configurableservice file:

Procedure
1. In the Navigator view, expand the broker to which you want to import a

configurable service.
2. Right-click the Configurable Services folder, and click Import

*.configurableservice.
3. Click the configurable service files that you want to import, and click OK.

What to do next

You must restart the message flows that used the configurable service for the
change to be recognized by the message flows. You can stop and start the broker to
ensure that the configurable service is updated for all the resources running on the
broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.

650 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Creating a new configurable service” on page 645
Use the WebSphere Message Broker Explorer to create a new configurable service
to define properties for an external service on which the broker relies.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Exporting a configurable service”
Use the WebSphere Message Broker Explorer to export a configurable service to
use on another broker.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Exporting a configurable service
Use the WebSphere Message Broker Explorer to export a configurable service to
use on another broker.

About this task

The properties of a configurable service can be exported from a broker, and
imported by a new broker. The properties of the configurable service are stored in
a .configurableservice file.

If the configurable service is defined on a broker in the WebSphere Message Broker
Explorer, you can drag the configurable service from the broker to a new broker.

Alternatively, to export a configurable service to a .configurableservice file:

Procedure
1. In the Navigator view, expand the broker to which you want to import a

configurable service.
2. Expand the Configurable Services folder.
3. Right-click the configurable service that you want to export, and then click

Export *.configurableservice.
4. Enter a name for the .configurableservice file, and click OK.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:

Chapter 7. Configuring brokers for test and production environments 651

“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Creating a new configurable service” on page 645
Use the WebSphere Message Broker Explorer to create a new configurable service
to define properties for an external service on which the broker relies.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Importing a configurable service” on page 650
Use the WebSphere Message Broker Explorer to import a configurable service from
another broker.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Deleting a configurable service
Use the WebSphere Message Broker Explorer to delete custom configurable
services.

About this task

You can delete custom configurable services that you have defined on a broker, but
you cannot delete the IBM defined configurable services on a broker, even if you
have previously modified the IBM defined configurable service.

To delete a configurable service:

Procedure
1. In the Navigator view, expand the broker on which you want to delete a

configurable service.
2. Expand the Configurable Services folder.
3. Right-click the configurable service that you want to delete, and click Delete.
4. Click OK to confirm you want to delete the configurable service.

What to do next

You must restart the message flows that used the configurable service for the
change to be recognized by the message flows. You can stop and start the broker to
ensure that the configurable service is updated for all the resources running on the
broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to

652 WebSphere Message Broker Version 7.0.0.8

view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Creating a new configurable service” on page 645
Use the WebSphere Message Broker Explorer to create a new configurable service
to define properties for an external service on which the broker relies.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Working with UserDefined configurable services
Use the WebSphere Message Broker Explorer to create, view, and modify a
UserDefined configurable service.

About this task

For further information on using the WebSphere Message Broker Explorer with
configurable services, see:
v “Creating a new configurable service” on page 645
v “Viewing configurable services” on page 647
v “Modifying a configurable service” on page 649

To add a new configurable service:

Procedure
1. Switch to the WebSphere MQ Explorer perspective.
2. In the Domains view, expand the broker on which you want to add a new

configurable service.
3. Right-click the Configurable Services folder and click New > Configurable

service. The Configurable Service window is displayed.
4. Enter a name for your configurable service.
5. Select UserDefined as the type of configurable service to create.
6. Enter the values you require for the configurable service properties, using the

add and delete buttons that become enabled for UserDefined configurable
services. There are no predefined values for a UserDefined configurable service.

7. Click Finish to create the new configurable service.
Related concepts:

Chapter 7. Configuring brokers for test and production environments 653

“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Creating a new configurable service” on page 645
Use the WebSphere Message Broker Explorer to create a new configurable service
to define properties for an external service on which the broker relies.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
“Working with properties of a configurable service of type UserDefined at run time
in a JavaCompute node” on page 987
Use the CMP API in a JavaCompute node to query, set, create, and delete
properties dynamically at run time in configurable services that you have defined
with type UserDefined.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Changing WebSphere Message Broker Explorer preferences
Change preferences in the WebSphere Message Broker Explorer.

About this task

You can change the following preferences to tailor how you work in the
WebSphere Message Broker Explorer:
v Display resources in the Broker Explorer view.
v Warn before deleting Administration log events.
v Broker connection wait times.
v DataPower configuration properties.
v Service trace properties
v SSL parameters.

To change WebSphere Message Broker Explorer preferences:

Procedure
1. Start the WebSphere Message Broker Explorer.
2. Click Window > Preferences.
3. Expand the Broker Explorer category in the left pane.
4. Make your selections.
5. Click OK.

654 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Configuring the workbench” on page 570
You can configure various settings in the workbench to suit your requirements and
your working environment.
“Changing trace settings from the WebSphere Message Broker Explorer” on page
3549
Collect trace information, in addition to user and service trace, by selecting options
in the WebSphere Message Broker Explorer.

Changing the operation mode of your broker
Change the operation mode in which your broker is working by using the
mqsimode command.

About this task

You must change your broker configuration to ensure that your brokers are
running in the operation mode for which you have purchased a license. You can
change the mode to starter, adapter, entry, or enterprise.

When you view the broker in the WebSphere Message Broker Explorer, the current
mode of each broker is displayed. If the resources deployed to a broker exceed the
permitted amounts, the display indicates these violations. You can change the
broker mode in the WebSphere Message Broker Explorer, see “Changing the
operation mode of your broker using the WebSphere Message Broker Explorer” on
page 642. Alternatively, you can use the mqsimode command to make any required
changes.

Procedure
1. Open a command prompt.

v Linux On Linux, run the mqsiprofile command to initialize the
command environment.

v Windows On Windows, click Start > Programs > IBM WebSphere Message
Broker 7.0 > Command Console to open a command console.

2. Run the mqsimode command with the -o parameter to change the mode of the
broker, or without the -o parameter to view the current setting; see “mqsimode
command” on page 3899.

3. Check for error messages. If you attempt to reconfigure the broker to a mode
which is not sufficient for the deployed resources, the mqsimode command
issues a warning indicating that changing the mode is not allowed. Resolve any
violations, if required; see “Resolving problems that occur during deployment
of message flows” on page 3440.

4. (Optional) Run the mqsimode command again to confirm that there are no
violations.

Chapter 7. Configuring brokers for test and production environments 655

Example

See further examples of changing the mode of your broker:
v “Example: Changing the operation mode of your broker” on page 3904
v “Example: Changing the Trial Edition to the full edition” on page 3903

What to do next
Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
“Checking the operation mode of your broker” on page 657
Use the mqsimode command to find out the operation mode of your broker.
“Moving from Trial Edition”
You want to convert from Trial Edition mode to an alternative edition.
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Related reference:
“Restrictions that apply in each operation mode” on page 3657
The operation mode in which your broker is working defines how many execution
groups you can use, and which nodes are available.
“mqsimode command” on page 3899
Use the mqsimode command to configure and retrieve operation mode information.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Moving from Trial Edition
You want to convert from Trial Edition mode to an alternative edition.

Before you begin

Before you start: Contact your IBM representative to upgrade your license.

Procedure
1. Open a command prompt:

v Linux On Linux and UNIX, run the mqsiprofile command to initialize
the command environment.

v Windows On Windows, click Start > Programs > IBM WebSphere Message
Broker 7.0 > Command Console to open a command console.

2. Use the mqsimode command to change the mode of each broker. Specify the
mode that you require for each broker by setting the -o parameter (Mode_Type)
to enterprise, starter, entry, or adapter. For example, to change a local
broker to run in enterprise mode, run the following command:
mqsimode MB7BROKER –o enterprise

where MB7BROKER is the name of your broker.

656 WebSphere Message Broker Version 7.0.0.8

To change a remote broker, specify a configuration file that defines the broker
(brokername.broker), or one or more connection parameters that identify the
broker -i, -p, -q).

3. Restart all your brokers; see “Starting and stopping a broker” on page 921.

What to do next

Next: Ensure that you upgrade other required products (for example,
WebSphere MQ) if you have trial versions of those products.

You must change your broker configuration to ensure that your brokers are
running in the operation mode for which you have purchased a license; see
“Changing the operation mode of your broker” on page 655.

Note: If you installed WebSphere Message Broker using the Trial Edition package,
all brokers are created in trial mode by default and you have to follow these steps
for every newly created broker. In order to create brokers with a default mode of
operation other than trial, you have to uninstall the WebSphere Message Broker
Trial Edition product and install the full WebSphere Message Broker product; see
“Uninstalling” on page 331 and “Installing the Broker component” on page 267.
Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
“Checking the operation mode of your broker”
Use the mqsimode command to find out the operation mode of your broker.
“Changing the operation mode of your broker” on page 655
Change the operation mode in which your broker is working by using the
mqsimode command.
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Related reference:
“Restrictions that apply in each operation mode” on page 3657
The operation mode in which your broker is working defines how many execution
groups you can use, and which nodes are available.
“mqsimode command” on page 3899
Use the mqsimode command to configure and retrieve operation mode information.

Checking the operation mode of your broker
Use the mqsimode command to find out the operation mode of your broker.

About this task

Run the mqsimode command to report the mode that is being used by your broker.
Use one form of the connection parameters to identify the broker that you want to
check.

Running this command also reports all mode violations.

Chapter 7. Configuring brokers for test and production environments 657

Example

For example:
mqsimode –i localhost –p 1414 –q MB7QMGR

where -i (IP address), -p (port), and -q (queue manager) parameters represent the
connection details for the queue manager associated with your broker. If you have
created the broker on the computer on which you run this command, you can
specify the broker name instead.

If your broker is running in starter mode, and the name of your broker is
Broker_Name, this command displays the following messages:
BIP1044: Connecting to the broker’s queue manager...
BIP1807: Discovering mode information from broker ’Broker_Name’...
BIP1802: Broker ’Broker_Name’ is in starter mode.
BIP8071: Successful command completion.

Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
“Changing the operation mode of your broker” on page 655
Change the operation mode in which your broker is working by using the
mqsimode command.
Related reference:
“Restrictions that apply in each operation mode” on page 3657
The operation mode in which your broker is working defines how many execution
groups you can use, and which nodes are available.
“mqsimode command” on page 3899
Use the mqsimode command to configure and retrieve operation mode information.

Advanced configuration
Change your broker configuration to use one or more of the advanced options
available.

About this task
v If you are developing message flows that include resources such as the

WebSphere Adapters nodes, IMS nodes, or the CICSRequest node, you must set
up your broker environment to support these applications. Details of the setup
that you require is in “Configuring for applications” on page 659.

v You can use WS-Security with your web services message flows to provide
quality of protection through message integrity, message confidentiality, and
single message authentication. See “WS-Security” on page 765.

v If you have been working with WebSphere Message Broker on z/OS, and want
to move your configuration to a distributed platform, see “Moving from
WebSphere Message Broker on a distributed system to z/OS” on page 818.

v WebSphere Message Broker supports a number of locales on each platform;
details of what is supported, and how to use code converters, are provided in
“Changing locales” on page 819.

Related tasks:

658 WebSphere Message Broker Version 7.0.0.8

“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Configuring brokers” on page 610
Create and configure the brokers that you want on the operating system of your
choice.
“Changing the operation mode of your broker” on page 655
Change the operation mode in which your broker is working by using the
mqsimode command.

Configuring for applications
If you are developing message flows that access external resources such as
databases, Enterprise Information Systems, IMS, CICS Transaction Server for z/OS,
or email servers, you must set up your broker environment to support these
applications.

About this task
v “Configuring user databases”
v “Configuring global coordination of transactions (two-phase commit)” on page

697
v “Configuring properties to connect to external resources” on page 716
v “Configuring internal resources required by flows” on page 753
Related tasks:
“Configuring brokers” on page 610
Create and configure the brokers that you want on the operating system of your
choice.
“Connecting to Enterprise Information Systems” on page 1912
Use WebSphere Adapters to communicate with Enterprise Information Systems
(EIS) such as SAP, Siebel, PeopleSoft, and JD Edwards.
“Working with IMS” on page 2128
You can use the IMSRequest node to connect to IMS, a message-based transaction
manager and hierarchical-database manager for z/OS.
“Working with CICS Transaction Server for z/OS” on page 2172
Use the CICSRequest node to connect to CICS Transaction Server for z/OS
applications.
“Processing email messages” on page 1786
You can configure the EmailOutput node to deliver an email from a message flow
to an email server that supports Simple Mail Transfer Protocol (SMTP). You can
also configure the EmailInput node to retrieve an email from an email server that
supports Post Office Protocol 3 (POP3) or Internet Message Access Protocol
(IMAP).

Configuring user databases
Configure databases to hold application or business data that you can access from
your message flows.

About this task

Databases that hold application or business data are known as user databases, and
are read from and written to by nodes within the message flows that you deploy
to one or more brokers in your domain.

Chapter 7. Configuring brokers for test and production environments 659

In some situations, and for some applications, you might need to ensure the
integrity of the data that you hold in user databases across multiple systems and
resource managers by coordinating table updates and the writing to one database
with the deletion of data in another. To achieve these goals, you must configure
your databases, your brokers, and your message flows to be globally coordinated.

For more information about the requirement for, and set up of, user databases, and
the restrictions that apply, see “Databases overview” on page 2109.

The process of making databases available has the following phases:
1. Optional: Create and configure user databases. If your message flows interact

with databases, you must create and configure those databases ready for
connection by the broker on behalf of the message flows. For user databases,
you can configure ODBC and JDBC connections.

2. Optional: If your user databases contain critical information, coordinate their
updates through a transaction manager.
On distributed systems, the WebSphere MQ queue manager is the transaction
manager that interacts with the resource managers (the database providers). On
z/OS, RRS provides equivalent coordination.

To complete these phases:

Procedure
1. If you want to access user databases from your deployed message flows, create

and configure the databases and the connections to them:
a. Create the databases.
b. Authorize access to the databases.
c. Optional: If you want your databases to participate in globally coordinated

transactions, configure the databases for global coordination.
2. On distributed platforms, create and configure connections to the databases that

you have created:
a. If your message flows use an ODBC connection to a database, enable an

ODBC connection for that database. Repeat this step for each database that
you want to access in this way.
Note that you can use the mqsicvp command as an ODBC test tool; see
“Enabling ODBC connections to the databases” on page 668 for further
information.

b. If your message flows use a JDBC connection to a database, enable a JDBC
connection for that database. Repeat this step for each database that you
want to access in this way.

3. On z/OS, connect to the database.
4. Optional: If you want your databases to participate in globally coordinated

transactions, configure the environment for global coordination.
Related tasks:
“Configuring brokers” on page 610
Create and configure the brokers that you want on the operating system of your
choice.
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
Related reference:

660 WebSphere Message Broker Version 7.0.0.8

“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

Creating the user databases:

If your message flows create, update, retrieve, or delete application and business
data in one or more user databases, create the databases before you deploy the
message flows to a broker.

About this task

For information about which databases you can use, see “Supported databases” on
page 3591.

To create the databases on distributed systems:

Procedure

1. Create the databases that you require. Discuss your requirements with your
database administrator, or see the documentation supplied with the database
product that you are using. Make sure that you run a database profile, if
required for your platform and database manager.
The following samples use databases, and provide outline instructions for
creating DB2 and Oracle databases:
v Airline Reservations
v Data Warehouse
v Error Handler
v Message Routing
v Simplified Database Routing
v TLOG Processor (DB2 only)
You might find it helpful to use the instructions in these samples as a starting
point for database creation.
You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

2. If you are creating Sybase databases on AIX, run the Sybase profile before you
run mqsiprofile. For more information about using mqsiprofile to initialize
command environments on Linux and UNIX platforms, see “Command
environment: Linux and UNIX systems” on page 310.

Results

You have now created a database for business data.

What to do next

Next: If you have been following the instructions in “Working with databases” on
page 2109, the next task is “Authorizing access to user databases” on page 662.
Related reference:

Chapter 7. Configuring brokers for test and production environments 661

“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Database locations” on page 3595
The broker can access databases set up on the local computer or on a remote
server, subject to restrictions.

Authorizing access to user databases:

When you have created a user database, you must authorize the broker and its
execution groups to access it.

Before you begin

Before you start: create the databases.

Use the mqsisetdbparms command to specify a user ID and password that the
broker can use to access each database. If you want to define a default user ID and
password that the broker can use if you have not defined specific values for a
particular database, run the mqsisetdbparms command and set the ResourceName to
the value dsn::DSN with your chosen default user ID and password.

If you have migrated your broker from a previous release, the broker accessed a
database for its own use, and you might have defined the user ID and password
used to access that database by specifying a database connection user ID and
password with the -u and -p parameters on the mqsicreatebroker command.
Alternatively, you might have used the broker service user ID and its password
(specified with the -i and -a parameters on the same command). When you
migrate the broker, these parameters are migrated and stored, and are used by the
migrated broker for access to databases that do not have specific ID access defined.

The following values and order of preference are used by the broker:
1. First, on all platforms: The user ID and password that you have set for the

specific database, by using the mqsisetdbparms and specifying the database in
the -n parameter.

2. Second, on all platforms: The user ID and password that you have set for all
other databases, by using the mqsisetdbparms and specifying dsn::DSN in the -n
parameter.

3. Third, the values are platform-specific:

a. Windows On Windows: The broker service ID and password that you
specified on the mqsicreatebroker command.

b. Linux UNIX On Linux and UNIX: The user ID mqsiUser and
password ******** (these values are fixed).

c. z/OS On z/OS: The user ID "" and password "", which cause the
connection to be made with the broker started task user ID.

On z/OS only, if you do not specify a password when you specify dsn::DSN in the
-n parameter, the broker connects to the DB2 database with its started task user ID.
The broker uses the user ID that you have specified on the command when it
creates a fully-qualified SQL statement, such as in ESQL, for stored procedures. For
non-stored procedure SQL statements, where the schema is not specified, DB2 uses
the CURRENTSQLID value. If you have not specified a CURRENTSQLID value,

662 WebSphere Message Broker Version 7.0.0.8

the broker uses the user ID that you specified on the mqsisetdbparms command. If
you have not provided a user ID by using that command, DB2 uses the broker
started task ID.

The user ID that the broker uses to access databases must have the following
authorizations:
v The user ID must be authorized to connect to the database.
v The user ID must have appropriate privileges on the user database objects that

are accessed by the message flow; for example, tables, procedures, and indexes.

If you expect to deploy message flows that participate in globally coordinated
transactions to a broker, you must provide additional authorization. For more
information, see “Configuring databases for global coordination of transactions” on
page 665.

About this task

The way that you authorize access depends on the database manager that you are
using, and the platform on which you have created the database. The instructions
might also vary from release to release of a single database. Consult your database
administrator, or see the documentation for the appropriate database when you
perform this task.

The following sections provide examples of the steps that you can take to provide
the required authorization for specific databases:
v “DB2 authorization”
v “Oracle authorization” on page 664

DB2 authorization:
About this task

To authorize access to a DB2 database, you can use either the DB2 Control Center
or the DB2 command line:

Procedure

v To use the DB2 Control Center:
1. Start the DB2 Control Center.
2. Expand the object tree until you find the database that you created.
3. Expand the tree under the database then click the User and Group Objects

folder. The DB Users and DB Groups folders are displayed in the right
pane.

4. In the right pane, right-click the DB Users folder then click Add. The Add
User notebook opens.

5. From the list, click the user ID that you want to authorize to access the
database (for example, mqsiuid). The user ID that you select must be the user
ID that you specify to be used for access to this database when you run the
mqsisetdbparms command. The user ID must exist on the operating system
before you can select it; if it does not exist, define the user ID on the
operating system.

6. Select the appropriate options from the choices in the dialog box that is
labeled Choose the appropriate authorities to grant to the selected user for
the database. The following options are available:
– Connect database
– Create tables

Chapter 7. Configuring brokers for test and production environments 663

– Create packages
– Register functions to run in database manager process

7. Click OK. The authorities are granted. The dialog box closes.
8. Close the DB2 Control Center.

v To use the DB2 command line:
1. Open a DB2 command window.
2. Connect to the database with a user ID that has DB2 system administration

(SYSADM or DBADM) authority. Substitute the correct database and ID in
the following example command:
db2 connect to broker_db user SysAd_id

3. Run the following command to grant the required privileges to the user ID
that the broker will use to connect to the database. Substitute the correct ID
for your broker in the following example command, if you are not using
mqsiuid:
db2 grant connect, createtab, bindadd, create_external_routine on

database to user mqsiuid

What to do next

Next: If you have been following the instructions in “Working with databases” on
page 2109, the next task is “Configuring databases for global coordination of
transactions” on page 665.

Oracle authorization:
About this task

You must have database administrator (DBA) privileges to authorize access to an
Oracle database.

To authorize access to an Oracle database:

Procedure

1. Log on as the Oracle database administrator (DBA) to the database using
SQL*Plus.

2. Modify the privileges of the user ID that you have specified for database
connection to ensure that the broker can successfully access the database.

3. If appropriate, increase the quota (disk space) available for table spaces
associated with this database.

What to do next

Next: If you have been following the instructions in “Working with databases” on
page 2109, the next task is “Configuring databases for global coordination of
transactions” on page 665.
Related concepts:
“Message flow transactions” on page 1281
A transaction describes a set of updates that are made by an application program,
which must be managed together. The updates might be made to one or more
systems. The updates made by the program are controlled by the environment in
which the program executes, and either all are completed, or none. This property
of a transaction is known as consistency: transactions might have other properties of
atomicity, isolation, and durability.
Related tasks:

664 WebSphere Message Broker Version 7.0.0.8

“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
“Configuring databases for global coordination of transactions”
If your message flow interacts with a user database, and you want to globally
coordinate the updates made to the database with other actions within the message
flow, configure your databases for global coordination.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
Related information:

DB2 V9.1 Information Center (distributed systems)

Configuring databases for global coordination of transactions:

If your message flow interacts with a user database, and you want to globally
coordinate the updates made to the database with other actions within the message
flow, configure your databases for global coordination.

Before you begin

Before you start: Create your database and authorize access to it.

About this task

If you restart a user database while the broker is still running, you must also
restart the broker. The broker cannot detect that the database has stopped, and
WebSphere MQ therefore retains its old connections to the database. When the
database starts again, the broker tries, and fails, to use these connections.

To configure databases for coordinated message flows, follow the instructions
relevant to your database manager:
v DB2
v Oracle
v Sybase

Configuring DB2 for global coordination of transactions:
Before you begin

You must complete these steps for databases that you connect to with an ODBC or
a JDBC connection.

Chapter 7. Configuring brokers for test and production environments 665

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

You must have database administrator (DBA) privileges to perform the following
tasks.

About this task

To configure DB2 database instances for global coordination of transactions:

Procedure

1. Windows Linux Windows and Linux on x86 systems only: for each 32-bit
instance that is involved in the global coordination, run the following
commands to set the Transaction Process Monitor name (TP_MON_NAME) to
MQ:
db2 update dbm cfg using TP_MON_NAME MQ
db2stop
db2start

UNIX Linux On Linux and UNIX systems (except for Linux on x86), do
not set this variable for 32-bit or 64-bit instances.

2. Ensure that you have adequate connection resources and find out from the
broker administrator whether the broker uses TCP/IP or shared memory to
connect to databases.
To use TCP/IP connections, see the example in the section about message
SQL1224N in “Resolving problems when using databases” on page 3491.
To enable extended shared memory:
a. On the DB2 server, run the following commands:

export EXTSHM=ON
db2set DB2ENVLIST=EXTSHM
db2stop
db2start

b. Ensure that shared memory support is enabled in the broker environment.
For more information, see “Configuring global coordination with DB2” on
page 700.

3. If you are connecting a broker on a distributed platform to a DB2 instance on
z/OS, you must configure DB2 Connect™ to enable support for global
coordination. Ensure that you have already configured a DB2 alias to represent
the database by using DB2 Connect.
Perform the following tasks on the system that hosts the broker:
a. Turn on the Connection Concentrator by configuring the DB2 database

manager configuration parameters so that the value of the MAX_CONNECTIONS
parameter is greater than the value of the MAX_COORDAGENTS parameter:
db2 update dbm cfg using MAX_CONNECTIONS max_connections_value

where max_connections_value is greater than the existing value of the
MAX_COORDAGENTS parameter.

b. Define the SPM name as the name of the system that hosts the broker:
db2 update dbm cfg using SPM_NAME host_name

where host_name is the TCP/IP name of the system that hosts the broker.
c. Stop, then restart DB2 on the system that hosts the broker to apply the

changes:
db2stop
db2start

666 WebSphere Message Broker Version 7.0.0.8

DB2 Connect is now configured to enable global coordination of message
flows that are deployed to the broker (on a distributed platform) and that
access DB2 on z/OS.

Results

The DB2 database instances are now configured for global coordination.

What to do next

Next: See “Configuring ODBC connections for globally coordinated transactions”
on page 699.

Configuring Oracle for global coordination of transactions:
Before you begin

You must complete these steps for databases that you connect to with an ODBC
connection only.

You must have database administrator (DBA) privileges to perform the following
tasks.

About this task

To configure Oracle databases for global coordination of transactions:

Procedure

1. Ensure that the JAVA_XA package is present on the Oracle database by using,
for example, the following Oracle SQLPLUS command:
describe JAVA_XA;

For more information, see the Oracle product documentation.
2. Ensure that the user ID that the broker uses to access the database has the

necessary Oracle privileges to access the DBA_PENDING_TRANSACTIONS
view. You can grant the required access by using, for example, the following
Oracle SQLPLUS command:
grant select on DBA_PENDING_TRANSACTIONS to userid;

Results

The Oracle databases are now configured for global coordination.

What to do next

Next: See “Configuring ODBC connections for globally coordinated transactions”
on page 699.

Configuring Sybase for global coordination of transactions:
Before you begin

You must complete these steps for databases that you connect to with an ODBC
connection only.

You must have database administrator (DBA) privileges to perform the following
tasks.

Chapter 7. Configuring brokers for test and production environments 667

Procedure

To configure Sybase databases for global coordination of transactions, ensure that
the user ID that the broker uses to access the database has been granted the Sybase
role of dtm_tm_role.

Results

The Sybase databases are now configured for global coordination.

What to do next

Next: See “Configuring ODBC connections for globally coordinated transactions”
on page 699.
Related concepts:
“The transactional model” on page 1285
The transactional model describes the way in which you can use transactions in
message flows to accomplish certain tasks and results.
Related tasks:
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Configuring ODBC connections for globally coordinated transactions” on page
699
Configure the definition of your ODBC databases to the transaction manager (the
queue manager).
“Enabling ODBC connections to the databases”
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
Related information:

WebSphere MQ Version 7 Information Center online

Enabling ODBC connections to the databases:

Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.

About this task

You can configure both ODBC and Java Database Connectivity (JDBC) connections
for access to user databases:
v To set up ODBC connections to user databases, follow the instructions in this

section.

668 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Optionally, after configuring the ODBC connection parameters, run the mqsicvp
command to verify that the broker can connect to the data source, and to
provide useful information about the data source and its interface.On Linux and
UNIX systems, this command also checks that the ODBC environment is set up
correctly.

v To set up JDBC connections to user databases, see “Enabling JDBC connections
to the databases” on page 683.

v On z/OS systems, see “Data sources on z/OS” on page 4014 for information
about enabling connections to databases. You do not have to follow the tasks
described in this section.

Delete the ODBCINI64 environment variable if it exists; it is not required by
WebSphere Message Broker Version 7.0.

For more information, see “User database connections” on page 2110.

The sample odbc.ini file that is supplied, and the information contained in these
configuration topics, include all the connection parameters that are supported for
connections to your databases. Any additional parameters that are provided by the
DataDirect drivers are not tested or supported in a broker environment; consider
your requirements carefully before specifying other parameters in your tailored
ODBC .ini files.

To enable connections on distributed systems:

Procedure

Define the ODBC DSNs according to your platform:

Windows On Windows:
Follow the instructions in “Connecting to a database from Windows
systems” on page 670.

Linux UNIX On Linux and UNIX systems using the DataDirect Drivers:
These drivers are used to access DB2, Informix, Oracle, Sybase, and
SQLServer databases.

Follow the instructions in “Connecting to a database from Linux and UNIX
systems using the DataDirect drivers” on page 674.

Linux UNIX On Linux and UNIX systems using the WebSphere Message
Broker Database Extender:

Follow the instructions in “Connecting to a database from Linux and UNIX
systems using the WebSphere Message Broker ODBC Database Extender
(IE02)” on page 682.

You have now configured the ODBC DSNs for your user databases.

Results

You have now enabled the broker to make connections to your user databases.

What to do next

Next: If you have been using the instructions in “Working with databases” on page
2109, the next task is “Configuring ODBC connections for globally coordinated
transactions” on page 699 (optional).

Chapter 7. Configuring brokers for test and production environments 669

Related concepts:
“User database connections” on page 2110
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.
Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
“Connecting to a database from Linux and UNIX systems using the DataDirect
drivers” on page 674
To enable a broker to connect to a database, define the ODBC data source name
(DSN) for the database.
“Connecting to a database from Linux and UNIX systems using the WebSphere
Message Broker ODBC Database Extender (IE02)” on page 682
WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager and this topic describes how you set up and configure the broker
to use it.
Related reference:
“Support for 32-bit and 64-bit platforms” on page 3589
WebSphere Message Broker operates in 32-bit mode or 64-bit mode, on supported
operating systems.
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Sample DataDirect odbc.ini file” on page 3660
A copy of the sample DataDirect ODBC definition file that is supplied with
WebSphere Message Broker.
“Sample WebSphere Message Broker ODBC Database Extender (IE02) configuration
files” on page 3596
How you use WebSphere Message Broker ODBC Database Extender (IE02) to load
the correct data source driver.
“mqsicvp command” on page 3857
Use the mqsicvp command to perform verification tests on a broker, or to verify
ODBC connections.

Connecting to a database from Windows systems:

To enable a broker to connect to a database, define the ODBC data source name
(DSN) for the database.

Before you begin

Before you start: check that you have set up your environment so that the broker
can connect to the database. Most database managers set up the required
environment when you install, but others supply a database profile that you must
run. For information about environments and running database profiles, see Setting
up a command environment: Windows platforms.

For 32-bit Data Flow Engines (DFEs), you must use the 32-bit ODBC driver
manager to make the 32-bit ODBC definitions. Similarly, for 64 bit DFEs, you must

670 WebSphere Message Broker Version 7.0.0.8

use the 64-bit ODBC driver manager to make the 64-bit ODBC definitions.

About this task

Configure an ODBC data source by using the ODBC Data Source Administrator:
1. Click Start > Control Panel > Administrative Tools > Data Sources (ODBC).

If you are using 32-bit DFEs on Windows 64-bit systems, complete the
following steps:
a. Make a copy of Data Sources (ODBC).
b. Right-click the Data Sources (ODBC) shortcut and select properties.
c. In the 64 bit ODBC dialogue, by default the target points to

%SystemRoot%\system32\odbcad32.exe. Copy the shortcut, modify the target
to point to %SystemRoot%\SysWoW64\Odbcad32.exe, and use the revised copy
of the shortcut instead.

2. Click the System DSN tab and click Add.
3. Complete the steps in the following sections for the databases that you are

working with.
If you need more information about a particular database product, see the
product-specific documentation.

DB2 UDB
Define a data source for DB2 UDB:
1. Select the driver IBM DB2 ODBC DRIVER.
2. Enter the data source name (DSN) and description.
3. Select the correct database alias from the list.
4. Click Finish to save your definition.
5. Click OK to close the ODBC Data Source Administrator.

You must register the data source as a system data source.

If you prefer, you can use the Configuration Assistant instead of the ODBC
Data Source Administrator:
1. Open the DB2 Configuration Assistant.
2. Right-click the database and select Change Database.
3. Select Data Source.
4. Select Register this database for ODBC. Select the system data source

option.
5. Click Finish.
6. The Test Connection dialog opens automatically and you can test the

various connections.

Informix Dynamic Server
Define a data source for Informix Dynamic Server:
1. Select the driver IBM INFORMIX ODBC DRIVER.
2. On the Connection tab, specify:
v The Informix server name.
v The server host name.
v The Informix network service name (as defined in the services file).
v The network protocol (for example, olsoctcp).
v The Informix data source name.
v The user identifier to access the data source within.

Chapter 7. Configuring brokers for test and production environments 671

v The password for that user identifier.
3. Click Apply.
4. Click Test Connection to check your supplied values.
5. Click OK to close the ODBC Data Source Administrator.

Microsoft SQL Server
Define a data source for Microsoft SQL Server:
1. Select the driver for the version of SQL Server that you are using:
v SQL Native Client for SQL Server 2005.
v SQL Native Client 10.0 for SQL Server 2008.

2. Specify a name and description.
3. Select the correct server from the list.
4. Click Finish to save your definition.
5. Click OK to close the ODBC Data Source Administrator.

Oracle
Define a data source for Oracle:
1.

v If you are using WebSphere Message Broker for Windows 32-bit ,
select the driver WebSphere Message Broker DataDirect
Technologies 6.0 32-BIT Oracle Wire Protocol.

v If you are using WebSphere Message Broker for Windows 64-bit ,
select the driver WebSphere Message Broker DataDirect
Technologies 6.0 64-BIT Oracle Wire Protocol.

The ODBC Oracle Driver Setup dialog box opens.
2. On the General tab:

a. Enter the DSN name, description, and host name of the machine
where Oracle is running, the port number on which Oracle is
listening, and the Oracle SID that you want to connect to.

3. On the Advanced tab:
a. Select Enable SQLDescribeParam.
b. Select Procedure Returns Results. The resultant ODBC definition

in the Windows registry has a string value called
ProcedureRetResults with the value 1.

c. Select Login Timeout and set the value to 0.
4. Click OK to close the ODBC Data Source Administrator.
5. Click Start > Run.
6. Type REGEDIT in the Open field and click OK.
7. In the Registry Editor, navigate to the correct location.
v If you are using WebSphere Message Broker for Windows 32-bit on

Windows 32-bit editions: HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\
ODBC.INI

v If you are using WebSphere Message Broker for Windows 32-bit on
Windows 64-bit editions: HKEY_LOCAL_MACHINE\SOFTWARE\
Wow6432Node\ODBC\ODBC.INI

v If you are using WebSphere Message Broker for Windows 64-bit on
Windows 64-bit editions: HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\
ODBC.INI

8. Expand that location, and right-click your DSN entry. Select New >
String Value.

672 WebSphere Message Broker Version 7.0.0.8

9. Specify WorkArounds for the string name.
a. Right-click WorkArounds.
b. Select Modify.
c. Type the data value 536870912.

10. Close the Registry Editor.

Sybase Adaptive Server Enterprise
Define a data source for Sybase Adaptive Server Enterprise:
1.

v If you are using WebSphere Message Broker for Windows 32-bit ,
select the driver WebSphere Message Broker DataDirect
Technologies 6.0 32-BIT Sybase Wire Protocol.

v If you are using WebSphere Message Broker for Windows 64-bit ,
select the driver WebSphere Message Broker DataDirect
Technologies 6.0 64-BIT Sybase Wire Protocol.

2. Enter the DSN name, description, and network address of the server,
where the network address is made up of
MyHostMachineName,MyHostMachinePortNumber.

3. On the Advanced tab:
v Select Enable Describe Parameter.
v Select Login Timeout and set the value to 0.

4. On the Performance tab:
v Ensure that the Prepare Method setting is 1 - Partial.

5. Click Start > Run.
6. Type REGEDIT in the Open field and click OK.
7. In the Registry Editor, navigate to the correct location:
v If you are using WebSphere Message Broker for Windows 32-bit on

Windows 32-bit editions: HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\
ODBC.INI

v If you are using WebSphere Message Broker for Windows 32-bit on
Windows 64-bit editions: HKEY_LOCAL_MACHINE\SOFTWARE\
Wow6432Node\ODBC\ODBC.INI

v If you are using WebSphere Message Broker for Windows 64-bit on
Windows 64-bit editions: HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\
ODBC.INI

8. Expand that location, and right-click your DSN entry. Select New >
String Value. Specify SelectUserName for the string, and set the value
to 1.

9. Right-click your DSN again, and select New > String Value. Specify
EnableSPColumnTypes for the string, and set the value to 2.

10. Right-click your DSN again, and select New > String Value. Specify
TimestampTruncationBehavior for the string, and set the value to 1.

11. Right-click your DSN again, and select New > String Value. Specify
XAConnOptBehaviour for the string, and set the value to 3.

12. Close the Registry Editor.

solidDB
Define a data source for solidDB:
1. Select the driver IBM solidDB - (Unicode) DRIVER.
2. Enter the description.

Chapter 7. Configuring brokers for test and production environments 673

3. Enter the communication port in the network location field, for
example, tcp 2315.

4. Click Finish to save your definition.
5. Click OK to close the ODBC Data Source Administrator.

The solidDB is only supported on Windows 32-bit operating systems.

Results

You have now configured your ODBC data source names on Windows.

What to do next

Next: Configure the environment for issuing console commands, and for running
the broker, so that the broker can access the required database libraries. For more
information, see “Setting your environment to support 32-bit access to databases”
on page 681.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

Connecting to a database from Linux and UNIX systems using the DataDirect drivers:

To enable a broker to connect to a database, define the ODBC data source name
(DSN) for the database.

Before you begin

The following information is for DB2, Informix, Oracle, Sybase, and SQLServer
databases only. For all other supported databases, see “Connecting to a database
from Linux and UNIX systems using the WebSphere Message Broker ODBC
Database Extender (IE02)” on page 682.

Before you start:
v Ensure that the database has been created, see “Creating the user databases” on

page 661.
v Ensure that the broker is authorized to access the database, see “Authorizing

access to user databases” on page 662.
v Check that you have set up your environment so that the broker can access the

database; you might have to run a database profile supplied by the database
vendor. For further information, see Setting up a command environment: Linux
and UNIX systems.

Procedure

1. Copy the odbc.ini sample file that is supplied in the install_dir/ODBC/V6.0
directory to a location of your choice. For example, copy the file to /var/mqsi
which is the user directory for WebSphere Message Broker, and the preferred
location for this copied file. Each broker service user ID on the system can
therefore use its own DSN definitions.

674 WebSphere Message Broker Version 7.0.0.8

See the sample file contents in “Sample DataDirect odbc.ini file” on page 3660.
2. Ensure that the odbc.ini file has file ownership of mqm:mqbrkrs and has the

same permissions as the supplied sample file.
3. Set the ODBCINI environment variable to point to your odbc.ini file,

specifying a full path and file name. Make sure that you point to the copy, do
not point to the odbc.ini file in the installation directories.

4. If you are connecting to DB2 or Informix databases, set the library search path
environment variable to show the location of the libraries for the database
manager that you are using.
For more information about the library search path, ask your database
administrator (DBA), or see the documentation for your database manager.
The library search path environment variable depends on your platform:

v Linux Solaris On Linux and Solaris, set LD_LIBRARY_PATH.

v HP-UX On HP-UX, set SHLIB_PATH.

v AIX On AIX, set LIBPATH.
Updates to the library search path are not required for other supported
databases.

5. If you are using a DB2 database instance that is installed on AIX, a single
process can make a maximum of 10 connections that use shared memory to a
DB2 database. Use TCP/IP mode to connect to the database instance; see “DB2
error message SQL1224N is issued when you connect to DB2” on page 3494.

6. Edit the final stanza in the odbc.ini file, the [ODBC] stanza, to specify the
location of the ODBC Driver Manager and to control tracing. The exact details
in the stanza depend on the platform.
To ensure that you edit the correct odbc.ini file, you can open the file in the vi
text editor by using the following command:
vi $ODBCINI

a. In InstallDir, add the WebSphere Message Broker installation location to
complete the fully qualified path to the ODBC directory. If you do not
specify this value correctly, the ODBC definition does not work.

b. In TraceFile, type the fully qualified path and file name to which the
ODBC trace is written. Trace files can become large; specify a directory with
plenty of free disk space.

c. In TraceDll, add the WebSphere Message Broker installation location to
complete the fully qualified path to the ODBC trace DLL.

d. Accept the default values shown in the sample odbc.ini file for all the
other entries in the stanza.
For example on AIX:
;##
;###### Mandatory information stanza ######
;##

[ODBC]
;# To turn on ODBC trace set Trace=1
Trace=0
TraceOptions=3
TraceFile=<A Directory with plenty of free space to hold trace
output>/odbctrace.out
TraceDll=<Your Broker install directory>/ODBC/V6.0/lib/odbctrac.so
InstallDir=<Your Broker install directory>/ODBC/V6.0
UseCursorLib=0
IANAAppCodePage=4
UNICODE=UTF-8

Chapter 7. Configuring brokers for test and production environments 675

7. Edit the first stanza in the odbc.ini file, the [ODBC Data Sources] stanza, to list
the DSN of each database.
For example on AIX:
;##
;###### List of data sources stanza #######
;##
[ODBC Data Sources]
DB2DB=IBM DB2 ODBC Driver
ORACLEDB=DataDirect 6.0 Oracle Wire Protocol
ORACLERACDB=DataDirect 6.0 Oracle Wire Protocol (Real Application Clusters)
SYBASEDB=DataDirect 6.0 Sybase Wire Protocol
SYBASEDBUTF8=DataDirect 6.0 Sybase UTF8 Wire Protocol
SQLSERVERDB=DataDirect 6.0 SQL Server Wire Protocol
INFORMIXDB=IBM Informix ODBC Driver

List all your DSNs in your odbc.ini file, regardless of the database manager.
On Oracle and Sybase, you can define multiple DSNs to resolve to the same
database; however, if you are using global coordination of transactions, do not
use this option because it might cause data integrity problems.

8. For each database that you listed in the [ODBC Data Sources] stanza, create a
stanza in the odbc.ini file after the [ODBC Data Sources] stanza. The entries in
the stanza depend on the database manager. Slight differences also occur
between operating systems, for example the file paths to the drivers.

For a DB2 database instance:
For Linux on x86:
a. In Driver, add the full path of your DB2 installation.
b. In Description, type a meaningful description of the database. This

field is for information only and does not affect the connection.
c. In Database, type the DB2 alias. The data source name must be the

same as the database alias name. If you are using a remote DB2
database, you must set up your client-server connection to resolve
this alias to the correct database.
If the requirement is to have multiple stanzas that refer to the same
DB2 database, aliases must be created in DB2 by using the DB2
CATALOG command. These aliases can then have their own stanza
in the ODBCINI file.
The ODBCINI file cannot be used to set up aliases for DB2.
For more information, see the DB2 documentation.
For example:
;# DB2 stanza
[DB2DB]
Driver=<Your DB2 install directory>/lib32/libdb2.so
Description=DB2 ODBC Database
Database=DB2DB

For all other platforms:
a. In Driver, accept the value as shown in the sample odbc.ini file.
b. In Description, type a meaningful description of the database. This

field is for information only and does not affect the connection.
c. In Database, type the DB2 alias. The data source name must be the

same as the database alias name. If you are using a remote DB2
database, you must set up your client-server connection to resolve
this alias to the correct database. For more information, see the DB2
documentation.

676 WebSphere Message Broker Version 7.0.0.8

If the requirement is to have multiple stanzas that refer to the same
DB2 database, aliases must be created in DB2 by using the DB2
CATALOG command. These aliases can then have their own stanza
in the ODBCINI file.
The ODBCINI file cannot be used to set up aliases for DB2.
For example, on AIX:
;# DB2 stanza
[DB2DB]
DRIVER=libdb2Wrapper.so
Description=DB2DB DB2 ODBC Database
Database=DB2DB

For an Oracle database:
For all platforms:
a. In Driver, add the WebSphere Message Broker installation location

to complete the fully qualified path to the driver shown in the
sample odbc.ini file.

b. In Description, type a meaningful description of the database. This
field is for information only and does not affect the connection.

c. In HostName, type the name or IP address of the machine that is
hosting your Oracle system.

d. In PortNumber, type the number of the port on which your Oracle
server is listening on the machine you specified in HostName.

e. In SID, type the Oracle service name that you want to connect to on
the system you specified in HostName.

f. Accept the default values shown in the sample odbc.ini file for all
the other entries in the stanza.
For example on AIX:
;# Oracle stanza
[ORACLEDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKora24.so
Description=DataDirect 6.0 Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
SID=<Your Oracle SID>
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

For an Oracle database that uses Real Application Clusters:
For all platforms:
a. In Driver, add the WebSphere Message Broker installation location

to complete the fully qualified path to the driver shown in the
sample odbc.ini file.

b. In Description, type a meaningful description of the database. This
field is for information only and does not affect the connection.

c. In HostName, type the name or IP address of the machine that is
hosting your primary (preferred) Oracle instance.

d. In PortNumber, type the number of the port on which your Oracle
server is listening on the machine you specified in HostName.

Chapter 7. Configuring brokers for test and production environments 677

e. In ServiceName, type the Oracle Real Application Cluster service
name that you want to connect to on the instance you specified in
HostName.

f. In AlternateServers, provide a list of alternative locations for this
service for situations when the primary location, defined in
HostName, is unavailable. Each location specification consists of three
parts, separated by colons. Enter these values as one continuous
string; the text in this example has been split to improve readability.
HostName=<Alternative host name>
:PortNumber=<Oracle listner port on alternative server>
:ServiceName=<Service name on the alternative server>

If you want to specify more than one AlternateServer, separate each
additional location specification with a comma. Whenever a new
database connection is required, for example after an Oracle instance
failover, the primary location will be tried first. However, if the
primary location is unavailable, the driver will try the list of
alternative locations in turn.

g. Accept the default values shown in the sample odbc.ini file for all
the other entries in the stanza.
For example on AIX:
;# Oracle Real Application Clusters stanza
[ORACLERACDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKora24.so
Description=DataDirect 6.0 Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
ServiceName=<Your Oracle Real Application Cluster Service Name>
AlternateServers=(HostName=<Your alternative host name>:PortNumber=<Port on
which Oracle is listening on the alternative host>:ServiceName=<Your
Oracle Real Application Cluster Service Name>)
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

For a Sybase database:
For all platforms except Linux on IBM z Systems:
a. In Driver, add the WebSphere Message Broker installation location

to complete the fully qualified path to the driver shown in the
sample odbc.ini file.

b. In Description, type a meaningful description of the database. This
field is for information only and does not affect the connection.

c. In Database, type the name of the database to which you want to
connect by default. If you do not specify a value, the default value
is the database defined by your system administrator for each user.

d. In NetworkAddress, type the network address of your Sybase ASE
server (this address is required for local and remote databases).
Specify an IP address or server name as follows:
<Your Sybase server name or IP address>,<Your Sybase port number>

678 WebSphere Message Broker Version 7.0.0.8

For example: Sybaseserver,5000. You can also specify the IP
address directly, for example 199.226.224.34,5000. You can find the
port number in the Sybase interfaces file that is named interfaces.

e. Accept the default values shown in the sample odbc.ini file for all
the other entries in the stanza.
For example on AIX:
;# Sybase Stanza
[SYBASEDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKase24.so
Description=DataDirect 6.0 Sybase Wire Protocol
Database=<Your Database Name>
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
SelectMethod=0
NetworkAddress=<Your Sybase Server Name>,<Your Sybase Port Number>
SelectUserName=1
ColumnSizeAsCharacter=1
EnableSPColumnTypes=2
LoginTimeout=0
TimestampTruncationBehavior=1
XAConnOptBehaviour=3

If you want to use a UNICODE UTF8 Sybase data source, add the
following line to the end of your Sybase stanza:
Charset=UTF8

For remote access to an SQL Server database
For all platforms except Linux on POWER, Linux on IBM z Systems,
and Solaris on x86-64:
a. In Driver, add the WebSphere Message Broker installation location

to complete the fully qualified path to the driver shown in the
sample odbc.ini.

b. In Description, type a meaningful description of the database. This
field is for information only and does not affect the connection.

c. In Address, either:
1) Specify an IP address or server name and a port number to

locate the SQLServer database you want to connect to, as
follows:
<Your SQLServer machine name or IP address>,<Your SQLServer port number>

or
2) Specify an IP address or server name and an instance name to

locate the SQLServer database you want to connect to, as
follows:
<Your SQLServer machine name or IP address>\<Your SQLServer instance name>

If your instance name is blank, specify <Your SQLServer machine
name or IP address>

d. In Database, type the name of the database to which you want to
connect by default. If you do not specify a value, the default value
is the database defined by your system administrator for each user.

e. Accept the default values shown in the sample odbc.ini file for all
the other entries in the stanza.
For example, on AIX:

Chapter 7. Configuring brokers for test and production environments 679

;# UNIX to SQLServer stanza
[SQLSERVERDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKmsss24.so
Description=DataDirect 6.0 SQL Server Wire Protocol
Address=<Your SQLServer Machine Name>,<Your SQLServer Port Number>
;# Alternative way to locate server using a named instance
;# Address=<Your SQLServer Machine Name>\<Your SQLServer Instance Name>
AnsiNPW=Yes
Database=db
QuotedId=No
ColumnSizeAsCharacter=1

For an Informix database

For Linux on x86

a. In Driver, add the full path of your Informix Client library.
b. In Description, type a meaningful description of the database. This

field is for information only and does not affect the connection.
c. In ServerName, type the name of the Informix IDS server.
d. In Database, type the name of the database to which you want to

connect by default. If you do not specify a value, the default value
is the database that is defined by your system administrator for
each user.
For example
;# Informix Stanza
[INFORMIXDB]
Driver=<Your Informix Client Directory>/lib/cli/iclit09b.so
Description=IBM Informix ODBC Driver
ServerName=<Your Informix Server Name>
Database=<Your Database Name>

For all other platforms:

a. In Driver, accept the value as shown in the sample odbc.ini file.
b. In Description, type a meaningful description of the database. This

field is for information only and does not affect the connection.
c. In ServerName, type the name of the Informix IDS server.
d. In Database, type the name of the database to which you want to

connect by default. If you do not specify a value, the default value
is the database that is defined by your system administrator for
each user.
For example, on AIX:
;# Informix Stanza
[INFORMIXDB]
Driver=libinfWrapper.so
Description=IBM Informix ODBC Driver
ServerName=<Your Informix Server Name>
Database=<Your Database Name>

9. Ensure that you have edited all three parts of the odbc.ini file:
v The [ODBC Data Source] stanza at the top of the odbc.ini file.
v A stanza for each data source.
v The [ODBC] stanza at the end of the odbc.ini file.

If you do not configure all three parts correctly, the ODBC DSNs do not work
and the broker is unable to connect to the database.

680 WebSphere Message Broker Version 7.0.0.8

Results

You have now configured database connections on Linux and UNIX. You can check
that the ODBC environment is configured correctly by running the mqsicvp
command. For more information, see “mqsicvp command” on page 3857.
Related tasks:
“Creating the user databases” on page 661
If your message flows create, update, retrieve, or delete application and business
data in one or more user databases, create the databases before you deploy the
message flows to a broker.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Sample DataDirect odbc.ini file” on page 3660
A copy of the sample DataDirect ODBC definition file that is supplied with
WebSphere Message Broker.
Related information:

WebSphere MQ Version 7 Information Center online

Setting your environment to support 32-bit access to databases:

When you have configured your ODBC data source names (DSNs), you must also
configure the environment so that you can issue console commands, and the
brokers that you start can access the required database libraries. For example, if
you have a DB2 database, you must add the DB2 client libraries to your library
search path.

About this task

Windows On Windows platforms, the environment is typically set up for you
when you install the database product, and no further action is required. However,
some database managers provide a database profile that you must run to enable
the connection from the broker; for further information, see Setting up a command
environment: Windows platforms.

Linux

UNIX

On Linux and UNIX systems, run a profile for each database

you want to access. For example, on DB2 you must run db2profile; other database
vendors have similar profiles. For further information, see Setting up a command
environment: Linux and UNIX systems.

What to do next

Next: If you have been following the instructions in “Working with databases” on
page 2109, the next task is “Configuring ODBC connections for globally
coordinated transactions” on page 699 (optional).
Related tasks:
“Connecting to a database from Linux and UNIX systems using the DataDirect
drivers” on page 674
To enable a broker to connect to a database, define the ODBC data source name
(DSN) for the database.
Related reference:

Chapter 7. Configuring brokers for test and production environments 681

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

“Support for 32-bit and 64-bit platforms” on page 3589
WebSphere Message Broker operates in 32-bit mode or 64-bit mode, on supported
operating systems.
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Sample DataDirect odbc.ini file” on page 3660
A copy of the sample DataDirect ODBC definition file that is supplied with
WebSphere Message Broker.

Connecting to a database from Linux and UNIX systems using the WebSphere
Message Broker ODBC Database Extender (IE02):

WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager and this topic describes how you set up and configure the broker
to use it.

Before you begin

Before you start:

Read the information about the unixODBC Project and the IBM solidDB product
family.

About this task

WebSphere Message Broker ODBC Database Extender is required when using
WebSphere Message Broker to interface with an ODBC data source that is not
supported through the DataDirect ODBC drivers.

Procedure

To configure the broker:
1. Make a copy of the sample odbc.ini file supplied in install_dir/ODBC/

unixodbc/odbc.ini, where install.dir is the directory in which you installed
WebSphere Message Broker. For example, copy the file to /var/mqsi which is
the user directory for WebSphere Message Broker, and the preferred location for
this copied file.

2. Set up the environment variable ODBCUOINI to point to the full path and name
of this file. Make sure that you point to the copy, do not point to the odbc.ini
file in the installation directories.

3. Make a copy of the sample odbcinst.ini file supplied in install_dir/ODBC/
unixodbc/odbcinst.ini, where install.dir is the directory in which you
installed WebSphere Message Broker. For example, copy the file to /var/mqsi
which is the user directory for WebSphere Message Broker, and the preferred
location for this copied file.

4. Set up the environment variable ODBCSYSINI to point to the directory containing
your odbcinst.ini file. Make sure that you point to the copy, do not point to
the odbcinst.ini file in the installation directories.

For information about how to populate the configuration files see “Sample
WebSphere Message Broker ODBC Database Extender (IE02) configuration files” on
page 3596
Related tasks:

682 WebSphere Message Broker Version 7.0.0.8

http://www.unixodbc.org/
http://www-01.ibm.com/software/data/soliddb/
http://www-01.ibm.com/software/data/soliddb/

“Connecting to a database from Windows systems” on page 670
To enable a broker to connect to a database, define the ODBC data source name
(DSN) for the database.
Related reference:
“Sample WebSphere Message Broker ODBC Database Extender (IE02) configuration
files” on page 3596
How you use WebSphere Message Broker ODBC Database Extender (IE02) to load
the correct data source driver.

Enabling JDBC connections to the databases:

Configure connections to a user database through a JDBCProvider service.

About this task

Use a JDBC connection from Java programs that are associated with a
JavaCompute node or a user-defined node that is written in Java.

You must also set up JDBC connections if your message flows include
DatabaseRetrieve or DatabaseRoute nodes.

If you configure a JDBC type 4 connection from an application running on a Linux,
UNIX, or Windows system, you can configure your broker and queue manager to
include interactions with the databases in globally-coordinated transactions. On
z/OS, JDBC connections can be broker-coordinated only.

The information provided in this section is independent of whether your operating
systems, brokers, execution groups, queue managers, and databases operate in
32-bit or 64-bit mode, except where stated.

When you write Java classes for a JavaCompute node or a user-defined node, your
code must comply with the following restrictions:
v Do not include any code that performs a COMMIT or a ROLLBACK function.
v Do not close the connection to the database. The broker manages all connections,

and closes a connection if it is idle for approximately one minute, or if the
message flow completes.

To configure JDBC type 4 connections:

Procedure

1. Set up your JDBC provider definition.
2. Optional: Set up security.
3. Optional: Configure for global-coordination of transactions.
4. Optional: If your broker is running on a Windows system, authorize access to

JDBCProvider resources.

What to do next

Next: If you have been following the instructions in “Working with databases” on
page 2109, the next task is “Setting up a JDBC provider for type 4 connections” on
page 684.

Chapter 7. Configuring brokers for test and production environments 683

When you have completed configuration of the databases, add or modify Java
code in your JavaCompute or user-defined nodes to access the database that is
identified in the JDBCProvider service.
Related concepts:
“Databases overview” on page 2109
Brokers can access user databases to manipulate your business data. If you have
user databases, you must configure them before you can access them from your
message flow.
Related tasks:
“Interacting with databases by using the JavaCompute node” on page 2661
Access databases from Java code included in the JavaCompute node.
“Extending the capability of a Java message processing or output node” on page
3069
Within a message processing or output node, you can add extended functions to
your Java node.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

Setting up a JDBC provider for type 4 connections:

Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.

Before you begin

Before you start:

v Create a broker
v Create your database following the database documentation.

About this task

When you include a DatabaseRetrieve, DatabaseRoute, JavaCompute, Mapping, or
Java user-defined node in a message flow, and interact with a database in that
node, the broker must establish a connection with the database to fulfill the
operations that are performed by the node. You must define a JDBCProvider
configurable service to provide the broker with the information that it needs to
complete the connection.

A JDBCProvider configurable service supports connections to one database only;
you must create a service for each database that your nodes or Java applications
connect to.

To set up a JDBC provider for type 4 connections by using the WebSphere Message
Broker Explorer, see “Creating a new configurable service” on page 645.

To set up a JDBC provider for type 4 connections by using the
mqsicreateconfigurableservice or mqsichangeproperties commands, complete the
following steps:

Procedure

1. Identify the type of database for which you require a JDBCProvider service.

684 WebSphere Message Broker Version 7.0.0.8

Supported JDBC drivers and databases are shown in “Supported databases” on
page 3591; support for globally coordinated (XA) transactions is restricted on
some platforms and for some databases.

2. Run the mqsireportproperties command to view the list of available
JDBCProvider services. Substitute the name of your broker in place of
broker_name.

mqsireportproperties broker_name -c JDBCProviders -a -o AllReportableEntityNames

The command response lists all the JDBCProvider configurable services that are
defined. If you have not created your own definitions, the following list of
default supplied services is shown:
v DB2
v Informix
v Informix_With_Date_Format
v Microsoft_SQL_Server
v Oracle
v Sybase_JConnect6_05
If you are connecting to an Informix database:
v Use Informix_With_Date_Format for compatibility with client applications

that are dependent on the date format connection attribute that was used by
earlier versions of Informix servers.

v Use Informix for client applications that are not dependent on the date
format attribute.

3. View the contents of the relevant JDBCProvider service definition. For example,
run the following command to display the supplied Oracle definition:

mqsireportproperties broker_name -c JDBCProviders -o Oracle -r

The command response lists all the properties for the Oracle definition. If you
have not changed this definition, the properties are set to initial values, some of
which you must change to create a viable definition. For example, the property
databaseName is set to default_Database_Name, and you must change it to
identify the specific database that you want to connect to.
A JDBCProvider service has the following properties:
v connectionUrlFormat. A pattern that represents the connection URL

definition, which is specific to a particular database type. For example, the
pattern for DB2 is defined with the following content:
jdbc:db2://[serverName]:[portNumber]/[databaseName]:user=[user];password=[password];

The pattern is used and completed by the broker at run time when it
connects to the database. The values in brackets, for example [serverName],
are substituted by the broker into the pattern by using the values that you
have specified on the mqsicreateconfigurableservice,
mqsichangeproperties, or mqsisetdbparms commands.
The following values and order of preference are used by the broker to
substitute the user ID and password in the pattern:
a. First, on all platforms: The user ID and password that you have set for

the specific database, by using the mqsisetdbparms and specifying the
database in the -n parameter.

b. Second, on all platforms: The user ID and password that you have set for
all other databases, by using the mqsisetdbparms and specifying
jdbc::JDBC in the -n parameter.

c. Third, the values are platform-specific:

1) Windows On Windows: The broker service ID and password that you
specified on the mqsicreatebroker command.

Chapter 7. Configuring brokers for test and production environments 685

2) Linux UNIX On Linux and UNIX: The user ID mqsiUser and
password ******** (these values are fixed).

3) z/OS On z/OS: The user ID "" and password "".
If you are using one of the supplied JDBCProvider services, do not use the
mqsichangeproperties command to change the pattern itself; changes made
to the pattern might cause unpredictable results.
If you use the mqsicreateconfigurableservice command to define your own
JDBCProvider service, use the mqsireportproperties command to check that
the content of the connectionUrlFormat string exactly matches the default
supplied provider for the database type that you are using.
In addition, if you are working on z/OS, and are using the JCL files
BIPCRCS and BIPCHPR to define your JDBCProvider service, ensure that
your 3270 emulator is configured to use the same code page that the broker
is running in. If the code pages do not match, the connectionUrlFormat
string pattern that you define might not be recognized correctly by the
broker.

v connectionUrlFormat Attr1-5. If the defined URL pattern for a database
contains non-standard JDBC data source properties, such as a server
identifier, specify these properties in addition to the standard attributes by
using one of five general-purpose connection URL attributes. For example:
– If connectionURLFormat = jdbc:oracle:thin:[user]/

[password]@[serverName]:[portNumber]:[connectionUrlFormatAttr1],
connectionUrlFormatAttr1 must contain an Oracle server identifier, which
you must supply by defining the value for the property
connectionUrlFormatAttr1 on the mqsicreateconfigurableservice or
mqsichangeproperties command. The broker can then substitute all the
required values into the required pattern.

– If connectionURLFormat = jdbc:informix-sqli://
[serverName]:[portNumber]/
[databaseName]:informixserver=[connectionUrlFormatAttr1];
user=[user];password=[password], connectionUrlFormatAttr1 must
contain the name of the Informix instance on the server (typically
specified by the INFORMIXSERVER environment variable). This value is
case-sensitive.

v databaseName. The name of the database to which the data source entry
enables connections; for example, employees.

v databaseType. The database type; for example, DB2.
v databaseVersion. The database version; for example, 9.1.
v description. An optional property to describe the data source definition.
v environmentParms. ForDB2 only. An optional property specifying a list of

data source properties of the form name=value each separated by a semicolon.
v jarsURL. The local directory path, on the system on which the broker is

running, where the JAR file that contains the type 4 driver class is located.
In addition, a storage area network disk can be used for the directory path,
but a mapped network drive to a remote computer cannot be used.

v maxConnectionPoolSize. Optionally set this property to create a JDBC
connection pool. For more information, see “Using a JDBC connection pool
to manage database resources used by an execution group” on page 1003.

v portNumber. The port number on which the database server is listening; for
example, 50000.

686 WebSphere Message Broker Version 7.0.0.8

v securityIdentity. A unique security key to perform a second broker registry
lookup to find an entry under the broker security identities, which store the
encrypted password for the user on the associated host system; for example,
mysecurityIdentity.
Create a security identity by using the mqsisetdbparms command, as
described in “Securing a JDBC type 4 connection” on page 689. The value of
securityIdentity (for example, mysecurityIdentity) must match the value
that you specify following the prefix jdbc:: for the parameter -n on that
command.
The security identity provides a user ID and password value pair, which are
used to access the specified data source defined for a particular
JDBCProvider service entry. This property is ignored if the connection URL
does not contain both a user ID and password pair, which require property
values to be substituted for such inserts.
The default values, which you can set by specifying a ResourceName of
jdbc::JDBC on the mqsisetdbparms command, are used under the following
conditions:
– If the securityIdentity is blank, or if you have not changed it from the

default value default_User@default_Server, but the identity is required
for the connection URL pattern.

– If you have entered a valid unique security identity key, but it cannot be
found under the DSN key.

v serverName. The name of the server; for example, host1.
v type4DatasourceClassName. The name of the JDBC data source class name

that is used to establish a type 4 connection to a remote database, and to
coordinate transaction support. For example, specify
com.ibm.db2.jcc.DB2XADataSource for DB2, or specify
oracle.jdbc.xa.client.OracleXADataSource for Oracle. You must specify the
XA class name when using the getJDBCType4Connection() API call for
coordinated transactions. If the database server does not support XA
transactions, or you do not want to use the XA protocol, this property is
optional and you must set the jdbcProviderXASupport property to false.

v type4DriverClassName. The name of the JDBC type 4 driver class name that
is used to establish a connection. For example, specify
com.ibm.db2.jcc.DB2Driver for DB2, or specify oracle.jdbc.OracleDriver
for Oracle.

v jdbcProviderXASupport. An optional property that controls whether the
broker connects to a database server using the XA Protocol. By default this
property is set to true. If the database server is not enabled for XA Support,
or coordinated transactions are not required, set the value to false. In which
case the type 4 driver specified using the type4DriverClassName property is
used, instead of the type 4 datasource specified in the
type4DatasourceClassName property.

4. If you want to use the provided definition, run the mqsichangeproperties
command to replace default values with the values specific to your database
and environment. If you are in any doubt about the required values, consult
your database administrator, or check the documentation that is provided with
your chosen database. Some values depend on how and where you have
installed the database product; for example, the property jarsURL identifies the
location of the JAR files supplied and installed by the database provider.

5. If you want to create a new configurable service, perhaps because you want to
retain the supplied service as a template for future definitions, run the
mqsicreateconfigurableservice command to create the definition.

Chapter 7. Configuring brokers for test and production environments 687

mqsicreateconfigurableservice broker_name -c JDBCProviders -o provider_name
-n list of properties -v list of values

Enter the command on a single line; the example is split to enhance readability.
Specify all the properties that are required by the database provider that you
have chosen. To specify a list of properties and values, separate the items after
each flag with a comma. For example, -n databaseName,databaseType -v
EmployeeDB,DB2. If you do not specify all the properties on the
mqsicreateconfigurableservice command, you can update them later with the
mqsichangeproperties command.

6. When you have set up or modified your JDBCProvider service, you must
reload any execution groups which currently use, or intend to use, the
JDBCProvider service.

What to do next

Next: If required, set up security for the JDBC connection, set up the environment
to include the JDBCProvider service in globally coordinated transactions, or both.
Related concepts:
“Databases overview” on page 2109
Brokers can access user databases to manipulate your business data. If you have
user databases, you must configure them before you can access them from your
message flow.
Related tasks:
“Securing a JDBC type 4 connection” on page 689
Set up security for the JDBC connection if required by the database provider.
“Configuring a JDBC type 4 connection for globally coordinated transactions” on
page 691
If you want the database that you access through a JDBC type 4 connection to
participate in globally coordinated transactions, set up the appropriate
environment.
“Authorizing access to JDBC type 4 JDBCProvider resources on Windows” on page
694
Authorize the broker and queue manager to access shared resources that are
associated with the JDBCProvider. This task is required only if you want the
database updates to be included in globally coordinated transactions on Windows
systems.
“Interacting with databases by using the JavaCompute node” on page 2661
Access databases from Java code included in the JavaCompute node.
“Extending the capability of a Java message processing or output node” on page
3069
Within a message processing or output node, you can add extended functions to
your Java node.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a

688 WebSphere Message Broker Version 7.0.0.8

broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Securing a JDBC type 4 connection:

Set up security for the JDBC connection if required by the database provider.

Before you begin

Before you start: Set up your JDBC provider definition.

About this task

Some databases require all access to be associated with a known user ID; for others
this association is optional. For example, DB2 requires a data source login name
and password on all connections. If the database requires secure access to be
defined, or if you choose to implement security in an optional situation, complete
the task described here.

Procedure

1. Identify the user ID that you want to associate with the JDBC connection, or
create a user ID with a password, following the appropriate instructions for
your operating system and database.

2. Run the mqsisetdbparms command to associate the user ID and password with
the security identity that is associated with the database that you will access
using the JDBCProvider configurable service.
The following values and order of preference are used by the broker for the
JDBC connection:
a. First, on all platforms: The user ID and password that you have set for the

specific database, by using the mqsisetdbparms and specifying the database
in the -n parameter.

b. Second, on all platforms: The user ID and password that you have set for
all other databases, by using the mqsisetdbparms and specifying jdbc:JDBC
in the -n parameter.

c. Third, the values are platform-specific:

1) Windows On Windows: The broker service ID and password that you
specified on the mqsicreatebroker command.

2) Linux UNIX On Linux and UNIX: The user ID mqsiUser and
password ******** (these values are fixed).

3) z/OS On z/OS: The user ID "" and password "".

Use the following command format:
mqsisetdbparms broker_name -n security_identity -u userID -p password

For example, if you want user ID myuserid with a password of secretpw to
access a database on broker BROKER1, run the following command:

mqsisetdbparms BROKER1 -n jdbc::mySecurityIdentity -u myuserid -p secretpw

Chapter 7. Configuring brokers for test and production environments 689

In the example, the mySecurityIdentity is prefixed with jdbc:: to indicate the
type of the connection for which the user ID and password are defined.
If you want to use the same user ID and password for more than one database,
you can specify a resource name of jdbc::JDBC on this command, as shown in
the following example:
mqsisetdbparms BROKER1 -n jdbc::JDBC -u defaultuid -p defaultpw

3. Update the corresponding securityIdentity property for the JDBCProvider
configurable service to associate the connection with the security identity that
you have defined. Use the following command format:

mqsichangeproperties broker_name -c JDBCProviders -o service_name -n securityIdentity -v security_identity

For example, if you are using the supplied JDBCProvider definition for Oracle:
mqsichangeproperties BROKER1 -c JDBCProviders -o Oracle -n securityIdentity -v mySecurityIdentity

You can use the same user ID and password definition for more than one
JDBCProvider service if appropriate; specify the same security identity that you
specified on the mqsisetdbparms command as the value for the
securityIdentity property in each JDBCProvider service definition that uses
the same access security. If you are using a default user ID and password that
you have defined by specifying a ResourceName of jdbc::JDBC on the
mqsisetdbparms command, do not change this property; retain the default value
default_User@default_Server to cause the broker to use the default values that
you have set.

What to do next

Next: if you are setting up a connection on Windows, see “Authorizing access to
JDBC type 4 JDBCProvider resources on Windows” on page 694. Otherwise, see
“Configuring a JDBC type 4 connection for globally coordinated transactions” on
page 691.
Related concepts:
“Databases overview” on page 2109
Brokers can access user databases to manipulate your business data. If you have
user databases, you must configure them before you can access them from your
message flow.
Related tasks:
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.
“Configuring a JDBC type 4 connection for globally coordinated transactions” on
page 691
If you want the database that you access through a JDBC type 4 connection to
participate in globally coordinated transactions, set up the appropriate
environment.
“Authorizing access to JDBC type 4 JDBCProvider resources on Windows” on page
694
Authorize the broker and queue manager to access shared resources that are
associated with the JDBCProvider. This task is required only if you want the
database updates to be included in globally coordinated transactions on Windows
systems.
“Interacting with databases by using the JavaCompute node” on page 2661
Access databases from Java code included in the JavaCompute node.

690 WebSphere Message Broker Version 7.0.0.8

“Extending the capability of a Java message processing or output node” on page
3069
Within a message processing or output node, you can add extended functions to
your Java node.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Configuring a JDBC type 4 connection for globally coordinated transactions:

If you want the database that you access through a JDBC type 4 connection to
participate in globally coordinated transactions, set up the appropriate
environment.

Before you begin

Before you start: Set up your JDBC provider definition.

About this task

Updates that you make to a database across a JDBC type 4 connection can be
coordinated with other actions taken within the message flow, if you set up the
resources to support coordination.

Complete the following steps:

Procedure

1. Check that the definition of your JDBCProvider service is appropriate for
coordinated transactions.
For example, to set up the required JDBC classes:
v For DB2, set type4DatasourceClassName to com.ibm.db2.jcc.DB2XADataSource

and type4DriverClassName to com.ibm.db2.jcc.DB2Driver
v For Oracle, set type4DatasourceClassName to

oracle.jdbc.xa.client.OracleXADataSource and type4DriverClassName to
oracle.jdbc.OracleDriver

Consult your database administrator or the documentation provided by your
database supplier, to confirm that all the JDBCProvider service properties are
set appropriately. For example, a database supplier might require secure access
if it is participating in coordinated transactions.

Chapter 7. Configuring brokers for test and production environments 691

2. Define the switch file and the database properties:

a. Linux UNIX On Linux and UNIX systems, open the qm.ini file for
the broker queue manager with a text editor. Add the following stanza for
each database:
XAResourceManager:

Name=Database_Name
SwitchFile=JDBCSwitch
XAOpenString=JDBC_DataSource
ThreadOfControl=THREAD

Database_Name is the database name (DSN) of the database defined to the
JDBCProvider configurable service (for example, specified by -n
databaseName -v Database_Name on the mqsichangeproperties command).
JDBCSwitch is a fixed generic name that represents the switch file for XA
coordination. Use this value, or another single fixed value, in each stanza;
the specific switch file that the queue manager uses is defined by the
symbolic links you create in the next step.
JDBC_DataSource is the identifier of the JDBCProvider configurable service
(the value that you specified for the -o parameter on the
mqsichangeproperties command).
Define a stanza for each database (DSN) that you connect to from this
broker. You must create separate definitions even if the DSNs resolve to the
same physical database. Therefore, you must have a stanza for each
JDBCProvider configurable service that you have defined, because each
service can define the properties for a single database.

b. Windows On Windows on x86 systems, open WebSphere MQ Explorer and
select the queue manager for your broker, for example BROKERQM.
Open the XA resource manager page, and modify the attributes to create
the definition of the database. The attributes are the same as those shown
for Linux and UNIX; Name, SwitchFile, XAOpenString, and
ThreadofControl. Leave the additional attribute, XACloseString, blank.
Enter the fully qualified file name in SwitchFile; install_dir\bin\
JDBCSwitch.dll.

c. Windows On Windows on x86-64 systems, open WebSphere MQ Explorer
and select the queue manager for your broker, for example BROKERQM.
Open the XA resource manager page, and modify the attributes to create
the definition of the database. The attributes are the same as those shown
for Linux and UNIX; Name, SwitchFile, XAOpenString, and
ThreadofControl. Leave the additional attribute, XACloseString, blank.
Enter JDBCSwitch in SwitchFile.

3. Set up queue manager access to the switch file:

a. Linux UNIX On Linux and UNIX systems, create a symbolic link to
the switch files that are supplied in your install_dir/lib directory.
install_dir is the directory to which you installed the Broker component. The
default location for this directory is /opt/ibm/mqsi/v.r on Linux, or
/opt/IBM/mqsi/v.r on UNIX systems. The default directory includes the
version and release of the product, in the format v.r (version.release).
Set up links in the /var/mqm/exits directory, or the /var/mqm/exits64
directory, or both. The file names for each platform are shown in the
following table.

692 WebSphere Message Broker Version 7.0.0.8

Platform 32-bit file 64-bit file

AIX libJDBCSwitch.so

HP-Itanium libJDBCSwitch.so

Linux on POWER libJDBCSwitch.so

Linux on IBM z Systems libJDBCSwitch.so

Linux on x86 libJDBCSwitch.so

Linux on x86-64 libJDBCSwitch.so

Solaris on SPARC libJDBCSwitch.so

Solaris
on x86-64

libJDBCSwitch.so

Specify the same name of the switch file, JDBCSwitch or your own value, in
both the /exits and /exits64 directories. For example, on AIX:
ln -s install_dir/lib/libJDBCSwitch.so /var/mqm/exits/JDBCSwitch

and

ln -s install_dir/lib/libJDBCSwitch.so /var/mqm/exits64/JDBCSwitch

b. Windows On Windows, for the 32-bit version of WebSphere Message
Broker, copy the JDBCSwitch.dll file from the install_dir\bin directory to
the \exits subdirectory in the WebSphere MQ installation directory.

c. Windows On Windows, for the 64-bit version of WebSphere Message
Broker, copy the JDBCSwitch32.dll file from the install_dir\bin directory
to the \exits subdirectory in the WebSphere MQ installation directory, and
rename the file to JDBCSwitch.dll. Then, copy the JDBCSwitch.dll file from
the install_dir\bin directory to the \exits64 subdirectory in the
WebSphere MQ installation directory.

4. Configure the message flow that includes one or more nodes that access
databases that are to participate in a globally coordinated transaction.
a. Open a WebSphere Message Broker Toolkit session.
b. Switch to the Broker Application Development perspective.
c. Add the message flow that includes the node or nodes that connect to the

database that is to participate in a globally coordinated transaction to a new
or existing BAR file.

d. Build the BAR file.
e. Click the Configure tab, select the message flow that you have added, and

select the Coordinated Transaction check box.

What to do next

Next: If your broker is running on Windows, authorize the broker and its queue
manager to access resources associated with the JDBCProvider configurable service.

If you have been following the instructions in “Working with databases” on page
2109, the next task is “Configuring ODBC connections for globally coordinated
transactions” on page 699 (optional).
Related concepts:
“Databases overview” on page 2109
Brokers can access user databases to manipulate your business data. If you have
user databases, you must configure them before you can access them from your

Chapter 7. Configuring brokers for test and production environments 693

message flow.
Related tasks:
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.
“Authorizing access to JDBC type 4 JDBCProvider resources on Windows”
Authorize the broker and queue manager to access shared resources that are
associated with the JDBCProvider. This task is required only if you want the
database updates to be included in globally coordinated transactions on Windows
systems.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Interacting with databases by using the JavaCompute node” on page 2661
Access databases from Java code included in the JavaCompute node.
“Extending the capability of a Java message processing or output node” on page
3069
Within a message processing or output node, you can add extended functions to
your Java node.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

Authorizing access to JDBC type 4 JDBCProvider resources on Windows:

Authorize the broker and queue manager to access shared resources that are
associated with the JDBCProvider. This task is required only if you want the
database updates to be included in globally coordinated transactions on Windows
systems.

Before you begin

Before you start: Set up your JDBC provider definition.

About this task

When the queue manager coordinates transactions, both queue manager and
broker access shared memory to control a connection to the databases with which
the message flow interacts. Therefore, they require the same access control of the
shared memory. One method to achieve this control is to use the same ID for the
broker service ID and the queue manager administrative ID.

Complete the following steps on the Windows system on which the broker is
running:

694 WebSphere Message Broker Version 7.0.0.8

Procedure

v If you defined the broker queue manager when you created the broker by
running the mqsicreatebroker command, the two components share the same
administrative ID, defined as the broker service ID, and you do not have to take
further action.

v If you specified an existing queue manager when you created the broker, check
that its administrative ID is the same ID as the one used for the service ID of the
broker. If the ID is not the same, change the queue manager ID to be the same
as the broker service ID:
1. Click Start > Run and enter dcomcnfg. The Component Services window

opens.
2. In the left pane, expand Component Services > Computers > My Computer

and click DCOM Config.
3. In the right pane, right-click the WebSphere MQ service labeled IBM

MQSeries Services, and click Properties.
4. Click the Identity tab.
5. Select This user and enter the user ID and password for the broker service

ID to associate that ID with the queue manager.
6. Click OK to confirm the change.

What to do next

Next: If you have been following the instructions in “Working with databases” on
page 2109, the next task is “Configuring ODBC connections for globally
coordinated transactions” on page 699 (optional).
Related concepts:
“Databases overview” on page 2109
Brokers can access user databases to manipulate your business data. If you have
user databases, you must configure them before you can access them from your
message flow.
Related tasks:
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.
“Securing a JDBC type 4 connection” on page 689
Set up security for the JDBC connection if required by the database provider.
“Configuring a JDBC type 4 connection for globally coordinated transactions” on
page 691
If you want the database that you access through a JDBC type 4 connection to
participate in globally coordinated transactions, set up the appropriate
environment.
“Interacting with databases by using the JavaCompute node” on page 2661
Access databases from Java code included in the JavaCompute node.
“Extending the capability of a Java message processing or output node” on page
3069
Within a message processing or output node, you can add extended functions to
your Java node.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific

Chapter 7. Configuring brokers for test and production environments 695

versions on supported operating systems.

Connecting to a user database on z/OS:

Complete these tasks to connect to your user databases on z/OS.

Before you begin

Before you start: Create the broker and the database.

Procedure

1. Obtain the following DB2 values for the DB2 subsystem that you want to
connect your broker to. Use these values to customize the BIPEDIT, BIPDSNAO,
and BIPBRKP files.

JCL variable Description Example value

++DB2CONVERSION++The DB2 converter SINGLE

++DB2SUBSYSTEM++ The DB2 subsystem ID which the
component connects

DFK4

++DB2LOCATION++ The DB2 location value of the DB2
subsystem to which the component
connects

DSN910PK

++DB2CURRENTSQLID++The default DB2 user ID for connecting MQP1BRK

++DB2DSNACLIPLAN++The DB2 plan name. DSNACLI

++DB2HLQ++ The DB2 high-level-qualifier SYS2.DB2.V910

++DB2RUNLIB++ The DB2 run library value DSN910PK.RUNLIB.LOAD

2. Copy the supplied sample BIPDSNAO file into the component data set, and
customize its content based on the values obtained in step 1. The stanza for
your database will look like the following content:
[COMMON]
APPLTRACE=0
APPLTRACEfilename="DD:APPLTRC"
TRACETIMESTAMP=3
CONNECTTYPE=2
DIAGTRACE=0
DIAGTRACE_NO_WRAP=0
MAXCONN=0
MULTICONTEXT=0
MVSDEFAULTSSID=DFK4

; SUBSYSTEM
[DFK4]
MVSATTACHTYPE=RRSAF
PLANNAME=DSNACLI

; DATASOURCES
[DSN910PK]
CURRENTSQLID=MQP1BRK

3. Update the broker profile BIPBPROF in the component data set.
a. Check that the environment variable DSNAOINI points to your copy of the

BIPDSNAO file in the component data set. By default, it is set to the correct
value; update this variable if you use a different name.

b. Check that the environment variable MQSI_DB2_CONVERSION is set correctly.
4. Submit BIPGEN to re-create the broker ENVFILE and any execution group specific

profiles.

696 WebSphere Message Broker Version 7.0.0.8

5. Update the EGENV and EGNOENV steps in the broker started task JCL to include
the following DB2 data sets:
//STEPLIB DD DISP=SHR,DSN=&DB2HLQ..SDSNEXIT
// DD DISP=SHR,DSN=&DB2HLQ..SDSNLOAD
// DD DISP=SHR,DSN=&DB2HLQ..SDSNLOD2
// DD DISP=SHR,DSN=++DB2RUNLIB++

Check that the PROC variable DB2HLQ=’++DB2HLQ++’ is not commented out.
6. Start the broker by using the start (/S) command.

What to do next

Next: You can set up your databases to participate in coordinated transactions by
using the Resource Recovery Service (RRS). For more information, see “Resource
Recovery Service planning on z/OS” on page 602.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Database locations” on page 3595
The broker can access databases set up on the local computer or on a remote
server, subject to restrictions.
“Sample BIPDSNAO file” on page 4008
The sample BIPDSNAO file that is shipped with WebSphere Message Broker is
included here for your reference.
“Sample BIPBPROF file” on page 3995
The sample BIPBPROF file that is shipped with WebSphere Message Broker is
included here for your reference.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.

Configuring global coordination of transactions (two-phase
commit)
Globally coordinate message flow transactions with a transaction manager to
ensure the data integrity of transactions. On distributed systems, the WebSphere
MQ queue manager that is associated with the broker performs the transaction
manager role.

Before you begin

Before you start:

Read “Message flow transactions” on page 1281 to understand how the broker
handles transactions. Depending on the external resource managers that the broker
accesses during the processing of its deployed message flows, you must complete
the appropriate resource-dependent set of tasks to ensure that all resources are
configured correctly. For example, you might have to create and configure
databases.

You, or your message flow developer, must also ensure that the message flows
deployed to the broker are set up to support coordination. The tasks involved in
configuring the message flows correctly are described in “Configuring
transactionality for message flows” on page 1290.

Chapter 7. Configuring brokers for test and production environments 697

About this task

You can access the following external resources in a message flow transaction:
v WebSphere MQ queues and messages
v Databases
v JMS providers

On distributed platforms, the default behavior of the broker is to manage all
message flow transactions by using a one-phase commit approach. In many
contexts this approach is sufficient, but if your business requires assured data
integrity and consistency (for example, for audit reasons, or for financial
transactions), you can configure the broker and its WebSphere MQ queue manager
to manage the message flow transactions in a two-stage commit approach, by
using the XA protocol standard.

You configure the WebSphere MQ queue manager by updating its qm.ini file, to
add definitions of the additional resource managers with which you want
WebSphere MQ to coordinate updates. Follow the instructions provided for the
resource managers that are relevant in your environment:
v ODBC connections to databases
v JDBC connections to databases
v JMS providers

z/OS

On z/OS, all transactions are globally coordinated by Resource Recovery

Service (RRS), therefore the instructions in this topic do not apply. However, you
must ensure that RRS is available; see “Resource Recovery Service planning on
z/OS” on page 602.

Results

When you have completed these steps, your message flows are processed by using
global coordination, which is managed by the queue manager.

You must complete all the steps correctly; if you do not, global coordination will
not work.

Example

For an example of how you can use WebSphere MQ to globally coordinate
transactions, look at the following sample:
v Error Handler

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“The transactional model” on page 1285
The transactional model describes the way in which you can use transactions in
message flows to accomplish certain tasks and results.
Related tasks:

698 WebSphere Message Broker Version 7.0.0.8

“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Configuring databases for global coordination of transactions” on page 665
If your message flow interacts with a user database, and you want to globally
coordinate the updates made to the database with other actions within the message
flow, configure your databases for global coordination.
“Resource Recovery Service planning on z/OS” on page 602
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.

Configuring ODBC connections for globally coordinated transactions:

Configure the definition of your ODBC databases to the transaction manager (the
queue manager).

Before you begin

Before you start:

You must create and configure the databases by following the instructions in
“Working with databases” on page 2109.

You, or your message flow developer, must also ensure that the message flows
deployed to the broker are set up to support coordination. The tasks involved in
configuring the message flows correctly are described in “Configuring
transactionality for message flows” on page 1290.

Procedure

1. Ensure that your databases are configured for global coordination. For the
databases that your message flows connect to, complete the tasks described in
“Configuring databases for global coordination of transactions” on page 665.

2. Configure the broker environment so that the broker queue manager
coordinates transactions with database resource managers. The steps to
configure the broker environment depend on the database manager that you
are using.
v “Configuring global coordination with DB2” on page 700
v “Configuring global coordination with Oracle” on page 705
v “Configuring global coordination with Sybase” on page 710

Results

When you have completed these steps, your message flows are processed by using
global coordination, which is managed by the queue manager.

Chapter 7. Configuring brokers for test and production environments 699

You must complete all the steps correctly; if you do not, global coordination will
not work.
Related concepts:
“The transactional model” on page 1285
The transactional model describes the way in which you can use transactions in
message flows to accomplish certain tasks and results.
Related tasks:
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Configuring databases for global coordination of transactions” on page 665
If your message flow interacts with a user database, and you want to globally
coordinate the updates made to the database with other actions within the message
flow, configure your databases for global coordination.
“Resource Recovery Service planning on z/OS” on page 602
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.

Configuring global coordination with DB2:

Configure your broker environment to globally coordinate message flow
transactions with updates in DB2 databases under the control of your broker queue
manager.

Before you begin

Ensure that the databases are configured for global coordination of transactions,
see “Configuring databases for global coordination of transactions” on page 665.

Procedure

Follow the instructions appropriate to your platform:

v Linux UNIX “Linux and UNIX”

v Windows “Windows 32-bit” on page 702

v Windows “Windows 64-bit” on page 703

Linux and UNIX: Linux UNIX

Procedure

1. Linux On Linux on x86: decide whether the broker needs to connect to
databases by using TCP/IP or shared memory.
For more information about TCP/IP connections, see the example in the section
about message SQL1224N in “Resolving problems when using databases” on
page 3491.

700 WebSphere Message Broker Version 7.0.0.8

To enable shared memory:
a. Stop the broker by running the following command, where broker is the

name of your broker:
mqsistop broker

b. Run the following command to ensure that the broker is run in an
environment with the extended memory variable exported:
export EXTSHM=ON

c. Restart the broker by running the following command, where broker is the
name of your broker:
mqsistart broker

d. On the DB2 server, ensure that shared memory support is turned on. For
more information, see “Configuring databases for global coordination of
transactions” on page 665.

2. Linux UNIX Run the mqsimanagexalinks command. For more
information, see “mqsimanagexalinks command” on page 3891.

3. Linux UNIX Configure the broker queue manager with XA resource
manager information for each database that is involved in the transaction that
the queue manager will globally coordinate.
a. Open the queue manager's qm.ini file in a text editor. The qm.ini file is

located at /var/mqm/qmgrs/queue_manager_name/qm.ini, where
queue_manager_name is the name of the broker that is associated with the
queue manager.

b. At the end of the qm.ini file, paste the following stanza:
XAResourceManager:
Name=DB2
SwitchFile=db2swit
XAOpenString=db=MyDataSource,uid=MyUserId,pwd=MyPassword,toc=t
XACloseString=
ThreadOfControl=THREAD

The switch file is supplied by WebSphere Message Broker.
c. On the XAOpenString line, replace the following values with values that are

appropriate for your configuration:
v MyDataSource is the name of the data source to which you want to

connect.
v MyUserId must be the user name that the broker uses to connect to the

database.
You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:
1) A specific user name and password for this data source name (DSN),

that you have defined by running the mqsisetdbparms command.
2) A default user name and password for all DSNs, that you have

defined by running the mqsisetdbparms command.
3) A default user name and password for all DSNs, that you have

defined by specifying the -u parameter on the mqsicreatebroker
command.
This parameter is valid only for brokers that you have migrated from
previous releases.

4) The broker service user name, which you define with the -i
parameter on the mqsicreatebroker command

Chapter 7. Configuring brokers for test and production environments 701

v MyPassword is the password that is associated with the user name.
d. Accept the default values for all the other lines in the stanza. For example:

XAResourceManager:
Name=DB2
SwitchFile=db2swit
XAOpenString=db=MYDB,uid=wbrkuid,pwd=wbrkpw,toc=t
XACloseString=
ThreadOfControl=THREAD

4. Linux UNIX Stop then restart the queue manager to apply the changes,
because qm.ini is read only while the queue manager is running.
To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:
endmqm queue_manager_name
strmqm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mqm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to qm.ini are applied.

Results

DB2 is now configured for global coordination with the broker queue manager
coordinating transactions.

What to do next

Next: you can deploy globally coordinated message flows to the broker.

Windows 32-bit: Windows

Procedure

1. Windows Configure the broker queue manager with XA resource manager
information for each database that is involved in the transaction that the queue
manager will globally coordinate.
a. From the Start menu, open WebSphere MQ Explorer.
b. Open the queue manager Properties dialog box, then open XA resource

managers.
c. Click the Add button to create a resource manager.

1) In the Name field, enter a name to refer to a resource manager.
2) In the SwitchFile field, enter the full path to the switch file, as shown in

the following example where install_dir is the location in which the
broker is installed:
install_dir\sample\xatm\db2swit.dll

3) In the XAOpenString field, paste the following string:
db=MyDataSource,uid=MyUserId,pwd=MyPassword,toc=t

4) In the XAOpenString field, replace the values with values that are
appropriate for your configuration:
a) MyDataSource is the name of the data source to which you want to

connect.
b) MyUserId must be the user name that the broker uses to connect to

the database.

702 WebSphere Message Broker Version 7.0.0.8

You can define the user name that the broker uses in a number of
ways; make sure that you specify the correct name in this file. The
broker determines the user name by checking the following
conditions in the order listed:
i. A specific user name and password for this data source name

(DSN), that you have defined by running the mqsisetdbparms
command.

ii. A default user name and password for all DSNs, that you have
defined by running the mqsisetdbparms command.

iii. A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mqsicreatebroker
command.
This parameter is valid only for brokers that you have migrated
from previous releases.

iv. The broker service user name, which you define with the -i
parameter on the mqsicreatebroker command

c) MyPassword is the password that is associated with the user name.

For example:
db=MYDB,uid=wbrkuid,pwd=wbrkpw,toc=t

5) Accept the default values for all the other fields on the page.

2. Windows Stop then restart the queue manager to apply the changes.
To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:
endmqm queue_manager_name
strmqm -si queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
install_dir\WebSphere MQ\Qmgrs\MB7QMGR\errors, where install_dir is the location
in which the broker is installed. When the queue manager restarts successfully,
the changes that you made are applied.

Results

DB2 is now configured for global coordination with the broker queue manager
coordinating transactions.

What to do next

Next: you can deploy globally coordinated message flows to the broker.

Windows 64-bit: Windows

Procedure

1. Windows Configure the broker queue manager with XA resource manager
information for each database that is involved in the transaction that the queue
manager will globally coordinate.
a. From the Start menu, open WebSphere MQ Explorer.
b. Open the queue manager Properties dialog box, then open XA resource

managers.
c. Click the Add button to create a resource manager.

1) In the Name field, enter a name to refer to a resource manager.
2) In the SwitchFile field, enter db2swit

Chapter 7. Configuring brokers for test and production environments 703

3) Copy the provided DB2 switch files from the broker install location to
the queue managers exits and exits64 directories (by default under
C:\Program Files (x86)\IBM\WebSphere MQ).
Copy the file:
install_dir\sample\xatm\db2swit32.dll

into the queue managers exits directory, and rename it to db2swit.dll.
Copy the file
install_dir\sample\xatm\db2swit.dll

into the queue managers exits64 directory.
4) In the XAOpenString field, paste the following string:

db=MyDataSource,uid=MyUserId,pwd=MyPassword,toc=t

5) In the XAOpenString field, replace the values with values that are
appropriate for your configuration:
a) MyDataSource is the name of the data source to which you want to

connect.
b) MyUserId must be the user name that the broker uses to connect to

the database.
You can define the user name that the broker uses in a number of
ways; make sure that you specify the correct name in this file. The
broker determines the user name by checking the following
conditions in the order listed:
i. A specific user name and password for this data source name

(DSN), that you have defined by running the mqsisetdbparms
command.

ii. A default user name and password for all DSNs, that you have
defined by running the mqsisetdbparms command.

iii. A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mqsicreatebroker
command.
This parameter is valid only for brokers that you have migrated
from previous releases.

iv. The broker service user name, which you define with the -i
parameter on the mqsicreatebroker command

c) MyPassword is the password that is associated with the user name.

For example:
db=MYDB,uid=wbrkuid,pwd=wbrkpw,toc=t

6) Accept the default values for all the other fields on the page.

2. Windows Stop then restart the queue manager to apply the changes.
To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:
endmqm queue_manager_name
strmqm -si queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
install_dir\WebSphere MQ\Qmgrs\MB7QMGR\errors, where install_dir is the location
in which the broker is installed. When the queue manager restarts successfully,
the changes that you made are applied.

704 WebSphere Message Broker Version 7.0.0.8

Results

DB2 is now configured for global coordination with the broker queue manager
coordinating transactions.

What to do next

Next: you can deploy globally coordinated message flows to the broker.
Related tasks:
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Configuring ODBC connections for globally coordinated transactions” on page
699
Configure the definition of your ODBC databases to the transaction manager (the
queue manager).
Related reference:
“mqsimanagexalinks command” on page 3891
Use the mqsimanagexalinks command to set up links for a supported database on
and UNIX systems for XA coordination under the control of WebSphere MQ.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
Related information:

WebSphere MQ Version 7 Information Center online

Configuring global coordination with Oracle:

Configure your broker environment to globally coordinate message flow
transactions with updates in Oracle databases under the control of a WebSphere
MQ queue manager.

Before you begin

Before you start:
v Ensure that you have configured the databases for global coordination of

transactions.

About this task

Configure your broker environment for global coordination by using a 64-bit queue
manager as the transaction manager with the DataDirect drivers:

Procedure

1. Linux UNIX On Linux and UNIX, run the mqsimanagexalinks
command.

Chapter 7. Configuring brokers for test and production environments 705

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

2. Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate.

Linux

UNIX

On Linux (except Linux on x86) and UNIX:

a. Open the queue managers qm.ini file in a text editor. The qm.ini file is
located at /var/mqm/qmgrs/queue_manager_name/qm.ini. Where
queue_manager_name is the name of the broker that is associated with the
queue manager.

b. Add one of the following stanzas to the end of the qm.ini file:
v If you are not using Oracle Real Application Clusters:

XAResourceManager:
Name=OracleXA
SwitchFile=UKoradtc24.so
XAOpenString=ORACLE_XA

+HostName=MyHostName
+PortNumber=MyPortNumber
+Sid=MySID
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE
+DataSource=MyDataSourceName
+K=2+

XACloseString=
ThreadOfControl=THREAD

v If you are using Oracle Real Application Clusters:
XAResourceManager:
Name=OracleXA
SwitchFile=UKoradtc24.so
XAOpenString=ORACLE_XA

+HostName=MyHostName
+PortNumber=MyPortNumber
+ServiceName=MyServiceName
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE
+DataSource=MyDataSourceName
+K=2+

XACloseString=
ThreadOfControl=THREAD

c. On the XAOpenString line, replace the following values with values that are
appropriate for your configuration:
v MyHostName is the name of the TCP/IP host that hosts the Oracle

database listener. When you are using Oracle Real Application Clusters
with multiple listeners for the given Service Name, if the Oracle listener
identified by the values for MyHostName and MyPortNumber in the
XAOpenString is unavailable, the alternative Oracle listeners that you
might have defined in the AlternateServers list in your odbc.ini file are
also tried.

v MyPortNumber is the TCP/IP port on which the Oracle database listener
is listening.

v MySID is the Oracle System Identifier (SID) of the database.
v MyUserId must be the user name that the broker uses to connect to the

database.
You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:

706 WebSphere Message Broker Version 7.0.0.8

1) A specific user name and password for this data source name (DSN),
that you have defined by running the mqsisetdbparms command.

2) A default user name and password for all DSNs, that you have
defined by running the mqsisetdbparms command.

3) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mqsicreatebroker
command.
This parameter is valid only for brokers that you have migrated from
previous releases.

4) The broker service user name, which you define with the -i
parameter on the mqsicreatebroker command

v MyPassword is the password that is associated with the user name.
v MyDataSourceName is the ODBC data source name for the database, as

defined in your odbc.ini file.
v MyServiceName is the value set for the Service Name in the stanza for

MyDataSourceName in your odbc.ini file.

Note: The XAOpenString might also contain the lines
+SQLNET=MyNetServiceName and +DB=MyDataSourceName, but these lines are
ignored.

d. Accept the default values for all the other lines in the stanza. For example:
v On AIX:

– If you are not using Oracle Real Application Clusters:
XAResourceManager:
Name=OracleXA
SwitchFile=UKoradtc24.so
XAOpenString=ORACLE_XA

+HostName=diaz.hursley.ibm.com
+PortNumber=1521+Sid=diaz
+ACC=P/wbrkuid/wbrkpw
+sestm=100+threads=TRUE
+DataSource=MYDB+K=2+

XACloseString=
ThreadOfControl=THREAD

– If you are using Oracle Real Application Clusters:
XAResourceManager:
Name=OracleXA
SwitchFile=UKoradtc24.so
XAOpenString=ORACLE_XA

+HostName=diaz.hursley.ibm.com
+PortNumber=1521
+ServiceName=racxa.test.com
+ACC=P/wbrkuid/wbrkpw
+sestm=100+threads=TRUE
+DataSource=MYDB+K=2+

XACloseString=
ThreadOfControl=THREAD

e. If you are using Oracle Real Application Clusters:
v Set the ODBCINI environment variable to be visible in the environment

from which you start your queue manager. The ODBCINI variable must
reference the same file as the one being used by your broker.

v An optional additional property, CTO=Value, is available for the
XAOpenString. CTO is the value set for a Connection TimeOut, indicating
the number of seconds that the Oracle XA switch file will wait for a
response from the Oracle database to an XA request. For example, the
timeout can be used to prevent long delays in the broker failing over to

Chapter 7. Configuring brokers for test and production environments 707

an alternative Oracle Real Application Clusters node, when the active
Oracle instance fails abruptly leaving socket connections hanging. The
Value should be set to a value larger than the Oracle session timeout
sestm value set in the XAOpenString. If this property is not used, or is set
to zero, there will be no timeout (this is the default behaviour).

Windows

On Windows 32-bit

a. From the Start menu, open WebSphere MQ Explorer.
b. Open the queue manager Properties dialog box, then open XA resource

managers.
c. In the SwitchFile field, enter the full path to the switch file, as shown in the

following example. Where install_dir is the location in which the broker is
installed:
install_dir\bin\UKora24.dll

d. In the XAOpenString field, paste the following string:
v If you are not using Oracle Real Application Clusters:

ORACLE_XA
+HostName=MyHostName
+PortNumber=MyPortNumber
+Sid=MySID
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE
+DataSource=MyDataSourceName
+K=2+

v If you are using Oracle Real Application Clusters:
ORACLE_XA

+HostName=MyHostName
+PortNumber=MyPortNumber
+ServiceName=MyServiceName
+ACC=P/MyUserId/MyPassword
+sestm=100+threads=TRUE
+DataSource=MyDataSourceName
+K=2+

e. In the XAOpenString field, replace the values with values that are
appropriate for your configuration:
v MyHostName is the name of the TCP/IP host that hosts the Oracle

database listener. When you are using Oracle Real Application Clusters
with multiple listeners for the given Service Name, if the Oracle listener
identified by the values for MyHostName and MyPortNumber in the
XAOpenString is unavailable, the alternative Oracle listeners that you
might have defined in the AlternateServers list in your odbc.ini file
arealso tried.

v MyPortNumber is the TCP/IP port on which the Oracle database listener
is listening.

v MySID is the Oracle System Identifier (SID) of the database.
v MyUserId must be the user name that the broker uses to connect to the

database.
You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:
1) A specific user name and password for this data source name (DSN),

that you have defined by running the mqsisetdbparms command.
2) A default user name and password for all DSNs, that you have

defined by running the mqsisetdbparms command.

708 WebSphere Message Broker Version 7.0.0.8

3) A default user name and password for all DSNs, that you have
defined by specifying the -u parameter on the mqsicreatebroker
command.
This parameter is valid only for brokers that you have migrated from
previous releases.

4) The broker service user name, which you define with the -i
parameter on the mqsicreatebroker command

v MyPassword is the password that is associated with the user name.
v MyDataSourceName is the ODBC data source name for the database, as

defined in your odbc.ini file.
v MyServiceName is the value set for the Service Name in the stanza for

MyDataSourceName in your odbc.ini file.

Note: The XAOpenString might also contain the lines
+SQLNET=MyNetServiceName and +DB=MyDataSourceName, but these lines are
ignored.
For example:
v If you are not using Oracle Real Application Clusters:

ORACLE_XA+SQLNET=diaz
+HostName=diaz.hursley.ibm.com
+PortNumber=1521+Sid=diaz
+ACC=P/wbrkuid/wbrkpw
+sestm=100+threads=TRUE
+DataSource=MYDB+DB=MYDB+K=2+

v If you are using Oracle Real Application Clusters:
ORACLE_XA+SQLNET=WMBSERVICE

+HostName=diaz.hursley.ibm.com
+PortNumber=1521
+ServiceName=racxa.test.com
+ACC=P/wbrkuid/wbrkpw
+sestm=100+threads=TRUE
+DataSource=MYDB+DB=MYDB+K=2+

f. Accept the default values for all the other fields on the page.

3. AIX On AIX, if you want to enable Oracle data sources for use in global
coordination from a queue manager and broker to perform dynamic XA
registration, set the following environment variable:
DDTEK_XA_DYNAMIC_REGISTRATION=1

4. Linux UNIX Stop then restart the queue manager to apply the changes,
because qm.ini is read only while the queue manager is running.
To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:
endmqm queue_manager_name
strmqm queue_manager_name

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mqm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to qm.ini are applied.

5. Windows Stop then restart the queue manager to apply the changes.
To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:
endmqm queue_manager_name
strmqm -si queue_manager_name

Chapter 7. Configuring brokers for test and production environments 709

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mqm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made are applied.

Results

Oracle is now configured for global coordination with the broker queue manager
coordinating transactions.

What to do next

Next: You can deploy globally coordinated message flows to the broker.
Related tasks:
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Configuring ODBC connections for globally coordinated transactions” on page
699
Configure the definition of your ODBC databases to the transaction manager (the
queue manager).
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsimanagexalinks command” on page 3891
Use the mqsimanagexalinks command to set up links for a supported database on
and UNIX systems for XA coordination under the control of WebSphere MQ.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
Related information:

WebSphere MQ Version 7 Information Center online

Configuring global coordination with Sybase:

Configure your broker environment to globally coordinate message flow
transactions with updates in Sybase databases under the control of a queue
manager.

Before you begin

Before you start:
v Ensure that the databases are configured for global coordination of transactions.

710 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

About this task

To configure your broker environment for global coordination using a
WebSphere MQ queue manager as the transaction manager with the DataDirect
drivers:

Procedure

1. Linux UNIX On Linux and UNIX, run the mqsimanagexalinks
command.

2. Configure the broker queue manager with XA resource manager information
for each database that is involved in the transaction that the queue manager
will globally coordinate.

Linux

UNIX

On Linux and UNIX:

a. Open the queue manager's qm.ini file in a text editor. The qm.ini file is
located at /var/mqm/qmgrs/queue_manager_name/qm.ini, where
queue_manager_name is the name of the broker that is associated with the
queue manager.

b. At the end of the qm.ini file, paste the following stanza:
XAResourceManager:

Name=SYBASEXA
SwitchFile=UKasedtc24.so
XAOpenString=-NSYBASEDB -AMyServerName,MyPortNumber -Uuid -Ppwd -K2
XACloseString=
ThreadOfControl=THREAD

c. On the XAOpenString line, replace the following values with values that are
appropriate for your configuration:
v MyServerName is the name of the TCP/IP host that hosts the Sybase ASE

server.
v MyPortNumber is the TCP/IP port on which the Sybase ASE server is

listening.
v uid must be the user name that the broker uses to connect to the

database.
You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:
1) A specific user name and password for this data source name (DSN),

that you have defined by running the mqsisetdbparms command.
2) A default user name and password for all DSNs, that you have

defined by running the mqsisetdbparms command.
3) A default user name and password for all DSNs, that you have

defined by specifying the -u parameter on the mqsicreatebroker
command.
This parameter is valid only for brokers that you have migrated from
previous releases.

4) The broker service user name, which you define with the -i
parameter on the mqsicreatebroker command

v pwd is the password that is associated with the user name.
d. Accept the default values for all the other lines in the stanza. For example:
v On AIX:

Chapter 7. Configuring brokers for test and production environments 711

XAResourceManager:
Name=SYBASEXA
SwitchFile=UKasedtc24.so
XAOpenString=-NSYBASEDB -Adiaz,1521 -Uwbrkuid -Pwbrkpw -K2
XACloseString=
ThreadOfControl=THREAD

Windows On Windows 32-bit:

a. From the Start menu, open WebSphere MQ Explorer.
b. Open the Properties dialog box for the queue manager, then open XA

resource managers.
c. In the SwitchFile field, enter the full path to the switch file, as shown in the

following example where install_dir is the location in which the broker is
installed:
install_dir\bin\ukase24.dll

d. In the XAOpenString field, paste the following string:
-NSYBASEDB -AMyServerName,MyPortNumber -WWinsock -Uuid -Ppwd -K2

e. In the XAOpenString field, replace the values with values that are
appropriate for your configuration:
v install_dir is the location in which the broker is installed.
v MyServerName is the name of the TCP/IP host that hosts the Sybase ASE

server.
v MyPortNumber is the TCP/IP port on which the Sybase ASE server is

listening.
v uid must be the user name that the broker uses to connect to the

database.
You can define the user name that the broker uses in a number of ways;
make sure that you specify the correct name in this file. The broker
determines the user name by checking the following conditions in the
order listed:
1) A specific user name and password for this data source name (DSN),

that you have defined by running the mqsisetdbparms command.
2) A default user name and password for all DSNs, that you have

defined by running the mqsisetdbparms command.
3) A default user name and password for all DSNs, that you have

defined by specifying the -u parameter on the mqsicreatebroker
command.
This parameter is valid only for brokers that you have migrated from
previous releases.

4) The broker service user name, which you define with the -i
parameter on the mqsicreatebroker command

v pwd is the password that is associated with the user name.

For example:
-NSYBASEDB -Adiaz,1521 -WWinsock -Uwbrkuid -Pwbrkpw -K2

f. Accept the default values for all the other fields on the page.
3. Stop then restart the queue manager to apply the changes, because qm.ini is

read only while the queue manager is running.
To stop and restart the queue manager, enter the following commands, where
queue_manager_name is the name of the queue manager:
endmqm queue_manager_name
strmqm queue_manager_name

712 WebSphere Message Broker Version 7.0.0.8

When the queue manager restarts, check the queue manager log for all
warnings that are associated with the restart. The log files are located in
/var/mqm/qmgrs/queue_manager_name/errors, where queue_manager_name is the
name of the queue manager that you restarted. When the queue manager
restarts successfully, the changes that you made to qm.ini are applied.

Results

Sybase is now configured for global coordination with your queue manager
coordinating transactions.

What to do next

Next: you can deploy globally coordinated message flows to the broker.
Related tasks:
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Configuring ODBC connections for globally coordinated transactions” on page
699
Configure the definition of your ODBC databases to the transaction manager (the
queue manager).
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsicreatebroker command - Linux and UNIX systems” on page 3835
Use the mqsicreatebroker command to create a broker on a Linux or UNIX
systems.
“mqsicreatebroker command - Windows systems” on page 3840
Use the mqsicreatebroker command to create a broker on a Windows system.
“mqsimanagexalinks command” on page 3891
Use the mqsimanagexalinks command to set up links for a supported database on
and UNIX systems for XA coordination under the control of WebSphere MQ.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
Related information:

WebSphere MQ Version 7 Information Center online

Configuring a JDBC type 4 connection for globally coordinated transactions:

If you want the database that you access through a JDBC type 4 connection to
participate in globally coordinated transactions, set up the appropriate
environment.

Before you begin

Before you start: Set up your JDBC provider definition.

Chapter 7. Configuring brokers for test and production environments 713

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

About this task

Updates that you make to a database across a JDBC type 4 connection can be
coordinated with other actions taken within the message flow, if you set up the
resources to support coordination.

Complete the following steps:

Procedure

1. Check that the definition of your JDBCProvider service is appropriate for
coordinated transactions.
For example, to set up the required JDBC classes:
v For DB2, set type4DatasourceClassName to com.ibm.db2.jcc.DB2XADataSource

and type4DriverClassName to com.ibm.db2.jcc.DB2Driver
v For Oracle, set type4DatasourceClassName to

oracle.jdbc.xa.client.OracleXADataSource and type4DriverClassName to
oracle.jdbc.OracleDriver

Consult your database administrator or the documentation provided by your
database supplier, to confirm that all the JDBCProvider service properties are
set appropriately. For example, a database supplier might require secure access
if it is participating in coordinated transactions.

2. Define the switch file and the database properties:

a. Linux UNIX On Linux and UNIX systems, open the qm.ini file for
the broker queue manager with a text editor. Add the following stanza for
each database:
XAResourceManager:

Name=Database_Name
SwitchFile=JDBCSwitch
XAOpenString=JDBC_DataSource
ThreadOfControl=THREAD

Database_Name is the database name (DSN) of the database defined to the
JDBCProvider configurable service (for example, specified by -n
databaseName -v Database_Name on the mqsichangeproperties command).
JDBCSwitch is a fixed generic name that represents the switch file for XA
coordination. Use this value, or another single fixed value, in each stanza;
the specific switch file that the queue manager uses is defined by the
symbolic links you create in the next step.
JDBC_DataSource is the identifier of the JDBCProvider configurable service
(the value that you specified for the -o parameter on the
mqsichangeproperties command).
Define a stanza for each database (DSN) that you connect to from this
broker. You must create separate definitions even if the DSNs resolve to the
same physical database. Therefore, you must have a stanza for each
JDBCProvider configurable service that you have defined, because each
service can define the properties for a single database.

b. Windows On Windows on x86 systems, open WebSphere MQ Explorer and
select the queue manager for your broker, for example BROKERQM.
Open the XA resource manager page, and modify the attributes to create
the definition of the database. The attributes are the same as those shown
for Linux and UNIX; Name, SwitchFile, XAOpenString, and
ThreadofControl. Leave the additional attribute, XACloseString, blank.

714 WebSphere Message Broker Version 7.0.0.8

Enter the fully qualified file name in SwitchFile; install_dir\bin\
JDBCSwitch.dll.

c. Windows On Windows on x86-64 systems, open WebSphere MQ Explorer
and select the queue manager for your broker, for example BROKERQM.
Open the XA resource manager page, and modify the attributes to create
the definition of the database. The attributes are the same as those shown
for Linux and UNIX; Name, SwitchFile, XAOpenString, and
ThreadofControl. Leave the additional attribute, XACloseString, blank.
Enter JDBCSwitch in SwitchFile.

3. Set up queue manager access to the switch file:

a. Linux UNIX On Linux and UNIX systems, create a symbolic link to
the switch files that are supplied in your install_dir/lib directory.
install_dir is the directory to which you installed the Broker component. The
default location for this directory is /opt/ibm/mqsi/v.r on Linux, or
/opt/IBM/mqsi/v.r on UNIX systems. The default directory includes the
version and release of the product, in the format v.r (version.release).
Set up links in the /var/mqm/exits directory, or the /var/mqm/exits64
directory, or both. The file names for each platform are shown in the
following table.

Platform 32-bit file 64-bit file

AIX libJDBCSwitch.so

HP-Itanium libJDBCSwitch.so

Linux on POWER libJDBCSwitch.so

Linux on IBM z Systems libJDBCSwitch.so

Linux on x86 libJDBCSwitch.so

Linux on x86-64 libJDBCSwitch.so

Solaris on SPARC libJDBCSwitch.so

Solaris
on x86-64

libJDBCSwitch.so

Specify the same name of the switch file, JDBCSwitch or your own value, in
both the /exits and /exits64 directories. For example, on AIX:
ln -s install_dir/lib/libJDBCSwitch.so /var/mqm/exits/JDBCSwitch

and

ln -s install_dir/lib/libJDBCSwitch.so /var/mqm/exits64/JDBCSwitch

b. Windows On Windows, for the 32-bit version of WebSphere Message
Broker, copy the JDBCSwitch.dll file from the install_dir\bin directory to
the \exits subdirectory in the WebSphere MQ installation directory.

c. Windows On Windows, for the 64-bit version of WebSphere Message
Broker, copy the JDBCSwitch32.dll file from the install_dir\bin directory
to the \exits subdirectory in the WebSphere MQ installation directory, and
rename the file to JDBCSwitch.dll. Then, copy the JDBCSwitch.dll file from
the install_dir\bin directory to the \exits64 subdirectory in the
WebSphere MQ installation directory.

4. Configure the message flow that includes one or more nodes that access
databases that are to participate in a globally coordinated transaction.
a. Open a WebSphere Message Broker Toolkit session.

Chapter 7. Configuring brokers for test and production environments 715

b. Switch to the Broker Application Development perspective.
c. Add the message flow that includes the node or nodes that connect to the

database that is to participate in a globally coordinated transaction to a new
or existing BAR file.

d. Build the BAR file.
e. Click the Configure tab, select the message flow that you have added, and

select the Coordinated Transaction check box.

What to do next

Next: If your broker is running on Windows, authorize the broker and its queue
manager to access resources associated with the JDBCProvider configurable service.

If you have been following the instructions in “Working with databases” on page
2109, the next task is “Configuring ODBC connections for globally coordinated
transactions” on page 699 (optional).
Related concepts:
“Databases overview” on page 2109
Brokers can access user databases to manipulate your business data. If you have
user databases, you must configure them before you can access them from your
message flow.
Related tasks:
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.
“Authorizing access to JDBC type 4 JDBCProvider resources on Windows” on page
694
Authorize the broker and queue manager to access shared resources that are
associated with the JDBCProvider. This task is required only if you want the
database updates to be included in globally coordinated transactions on Windows
systems.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Interacting with databases by using the JavaCompute node” on page 2661
Access databases from Java code included in the JavaCompute node.
“Extending the capability of a Java message processing or output node” on page
3069
Within a message processing or output node, you can add extended functions to
your Java node.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

Configuring properties to connect to external resources
You can use configurable services to prepare the environment for external
resources, or change connection details for external resources.

716 WebSphere Message Broker Version 7.0.0.8

About this task

The following topics describe how to prepare your environment to connect to
external resources.
v “Configuring for Enterprise Information Systems”
v “Configuring for IMS” on page 731
v Configuring for CORBA
v “Configuring for CICS Transaction Server for z/OS” on page 736
v “Configuring for JMS” on page 747
v Configuring for WS-Security
v Configuring for email

Configuring for Enterprise Information Systems:

You can use configurable services to enable the WebSphere Adapters nodes in the
broker runtime environment to connect with Enterprise Information Systems such
as SAP, Siebel, and PeopleSoft.

About this task

The following topics describe how to prepare the environment to connect to
Enterprise Information Systems, and how to change the connection details for
adapters without the need to redeploy them.
v “Preparing the environment for WebSphere Adapters nodes”
v “Changing connection details for SAP adapters” on page 719
v “Changing connection details for Siebel adapters” on page 720
v “Changing connection details for PeopleSoft adapters” on page 722
v “Changing connection details for JD Edwards adapters” on page 724
v “Configuring EIS connections to expire after a specified time” on page 726

Preparing the environment for WebSphere Adapters nodes:

Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).

Before you begin

Before you start:

Read “WebSphere Adapters nodes” on page 1914.

About this task

To enable the WebSphere Adapters nodes in the broker runtime environment,
configure the broker with the location of the EIS provider JAR files and native
libraries. (On Windows, the location of the JAR files cannot be a mapped network
drive on a remote Windows computer; the directory must be local or on a Storage
Area Network (SAN) disk.)

Chapter 7. Configuring brokers for test and production environments 717

Procedure

1. The WebSphere Adapters nodes require libraries from the EIS vendors. For
more information on how to obtain and use these libraries, see “Developing
message flows that use WebSphere Adapters” on page 2033.

2. Use the following commands to make the JAR files and shared libraries
available to the WebSphere Adapters nodes.
v To set up the dependencies, use the following command.

mqsichangeproperties broker name -c EISProviders -o EIS type -n jarsURL -v jar directory
mqsichangeproperties broker name -c EISProviders -o EIS type -n nativeLibs -v bin directory

For example:
mqsichangeproperties brk6 -c EISProviders -o SAP -n jarsURL -v c:\sapjco\jars
mqsichangeproperties brk6 -c EISProviders -o SAP -n nativeLibs -v c:\sapjco\bin

After you have run the mqsichangeproperties command, restart the broker
so that the changes take effect.

v To report the dependencies, use the following command.
mqsireportproperties broker name -c EISProviders -o EIS type -r

For example:
mqsireportproperties brk6 -c EISProviders -o SAP -r

v On z/OS, run this command by customizing and submitting BIPJADPR.
You can also connect to different versions of Siebel by creating a custom
EISProviders configurable service and setting the location of the appropriate
library files. For more information, see “Connecting to different versions of
Siebel” on page 2077.

What to do next

When you have set up the environment for the WebSphere Adapters nodes, you
can perform the preparatory tasks that are listed in “Developing message flows
that use WebSphere Adapters” on page 2033.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

718 WebSphere Message Broker Version 7.0.0.8

Changing connection details for SAP adapters:

SAP nodes can get SAP connection details from either the adapter component or a
configurable service. By using configurable services, you can change the connection
details for adapters without the need to redeploy the adapters. To pick up new
values when a configurable service is created or modified, you must reload the
broker or execution group to which the adapter was deployed, by using the
mqsistop and mqsistart commands, or the mqsireload command.

Before you begin

Before you start:

v Read “WebSphere Adapters nodes” on page 1914 and “Configurable services” on
page 1296 for background information.

About this task

Use the SAPConnection configurable service to change connection details for an
SAP adapter. The SAP node reads all connection properties from the adapter
component that it is configured to use. If a configurable service exists that has the
same name as the node's adapter component, the node uses the values that are
defined in that configurable service to override the corresponding properties from
the adapter. If any properties on the configurable service are set to an empty
string, the values that are configured in the .inadapter or .outadapter file are
used. The properties of the SAP configurable services are described in
“Configurable services properties” on page 3766.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates an SAPConnection configurable service for the SAP adapter
mySAPAdapter.outadapter that connects to the SAP host test.sap.ibm.com, and
uses client 001 for the connections into that server:
mqsicreateconfigurableservice MB7BROKER -c SAPConnection
-o mySAPAdapter.outadapter -n applicationServerHost,client
-v test.sap.ibm.com,001

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This
example changes the connections that are used by the adapter
mySAPAdapter.outadapter. After you run this command, all adapters connect to
the production system (production.sap.ibm.com) instead of the test system
(test.sap.ibm.com):
mqsichangeproperties MB7BROKER -c SAPConnection -o mySAPAdapter.outadapter
-n applicationServerHost -v production.sap.ibm.com

To pick up the updated values in the configurable service, restart the execution
group and message flow.

Chapter 7. Configuring brokers for test and production environments 719

v To display all SAPConnection configurable services, use the WebSphere Message
Broker Explorer, or the mqsireportproperties command, as shown in the
following example:
mqsireportproperties MB7BROKER -c SAPConnection -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:
mqsideleteconfigurableservice MB7BROKER -c SAPConnection
-o mySAPAdapter.outadapter

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Changing connection details for Siebel adapters:

Siebel nodes can get Siebel connection details from either the adapter component
or a configurable service. By using configurable services, you can change the
connection details for adapters without the need to redeploy the adapters. To pick

720 WebSphere Message Broker Version 7.0.0.8

up new values when a configurable service is created or modified, you must
reload the broker or execution group to which the adapter was deployed, by using
the mqsistop and mqsistart commands, or the mqsireload command.

Before you begin

Before you start:

v Read “WebSphere Adapters nodes” on page 1914 and “Configurable services” on
page 1296 for background information.

About this task

Use the SiebelConnection configurable service to change connection details for a
Siebel adapter. The Siebel node reads all connection properties from the adapter
component that it is configured to use. If a configurable service exists that has the
same name as the adapter component of the node, the node uses the values that
are defined in that configurable service to override the corresponding properties
from the adapter. If a configurable service is being used, all properties that are
exposed by the configurable service are taken from the configurable service. The
only properties that are taken from the adapter are those that you cannot set on
the configurable service. The properties of the Siebel configurable service are
described in “Configurable services properties” on page 3766.

You can also connect to different versions of Siebel by creating a custom
EISProviders configurable service and setting the location of the appropriate library
files. For more information, see “Connecting to different versions of Siebel” on
page 2077.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates a SiebelConnection configurable service for the Siebel
instance that is running on my.siebel.qa.com:

mqsicreateconfigurableservice MB7BROKER -c SiebelConnection -o mySiebelAdapter.outadapter
-n connectString -v "siebel://my.siebel.qa.com/SBA_80/SSEObjMgr_enu"

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This
example changes the connections that are used by the adapter
mySiebelAdapter.outadapter. After you run this command, all adapters connect to
the production system (my.siebel.production.com) instead of the test system
(my.siebel.qa.com):

mqsichangeproperties MB7BROKER -c SiebelConnection -o mySiebelAdapter.outadapter -n connectString
-v "siebel://my.siebel.production.com/SBA_80/SSEObjMgr_enu"

To pick up the updated values in the configurable service, restart the execution
group and message flow.

Chapter 7. Configuring brokers for test and production environments 721

v To display all SiebelConnection configurable services, use the WebSphere
Message Broker Explorer, or the mqsireportproperties command, as shown in
the following example:

mqsireportproperties MB7BROKER -c SiebelConnection -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:

mqsideleteconfigurableservice MB7BROKER -c SiebelConnection -o mySiebelAdapter.outadapter

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Changing connection details for PeopleSoft adapters:

PeopleSoft nodes can get PeopleSoft connection details from either the adapter
component or a configurable service. By using configurable services, you can
change the connection details for adapters without the need to redeploy the

722 WebSphere Message Broker Version 7.0.0.8

adapters. To pick up new values when a configurable service is created or
modified, you must reload the broker or execution group to which the adapter was
deployed, by using the mqsistop and mqsistart commands, or the mqsireload
command.

Before you begin

Before you start:

v Read “WebSphere Adapters nodes” on page 1914 and “Configurable services” on
page 1296 for background information.

About this task

Use the PeopleSoftConnection configurable service to change connection details for
a PeopleSoft adapter. The PeopleSoft node reads all connection properties from the
adapter component that it is configured to use. If a configurable service exists that
has the same name as the node's adapter component, the node uses the values that
are defined in that configurable service to override the corresponding properties
from the adapter. If a configurable service is being used, all properties that are
exposed by the configurable service are taken from the configurable service. The
only properties that are taken from the adapter are those that you cannot set on
the configurable service. The properties of the PeopleSoft configurable service are
described in “Configurable services properties” on page 3766.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates a PeopleSoftConnection configurable service for the
PeopleSoft instance that is running on my.peoplesoft.qa.com:

mqsicreateconfigurableservice MB7BROKER -c PeopleSoftConnection -o myPeopleSoftAdapter.outadapter
-n hostName,port -v "my.peoplesoft.qa.com",9000

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This
example changes the connections that are used by the adapter
myPeopleSoftAdapter.outadapter. After you run this command, all adapters connect
to the production system (my.peoplesoft.production.com) instead of the test
system (my.peoplesoft.qa.com):

mqsichangeproperties MB7BROKER -c PeopleSoftConnection -o myPeopleSoftAdapter.outadapter -n hostName
-v "my.peoplesoft.production.com"

To pick up the updated values in the configurable service, restart the execution
group and message flow.

v To display all PeopleSoftConnection configurable services, use the WebSphere
Message Broker Explorer, or the mqsireportproperties command, as shown in
the following example:

mqsireportproperties MB7BROKER -c PeopleSoftConnection -o AllReportableEntityNames -r

Chapter 7. Configuring brokers for test and production environments 723

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:

mqsideleteconfigurableservice MB7BROKER -c PeopleSoftConnection -o myPeopleSoftAdapter.outadapter

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Changing connection details for JD Edwards adapters:

JD Edwards nodes can get JD Edwards EnterpriseOne connection details from
either the adapter component or a configurable service. By using configurable
services, you can change the connection details for adapters without the need to
redeploy the adapters. To pick up new values when a configurable service is
created or modified, you must reload the broker or execution group to which the
adapter was deployed, by using the mqsistop and mqsistart commands, or the
mqsireload command.

724 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

v Read “WebSphere Adapters nodes” on page 1914 and “Configurable services” on
page 1296 for background information.

About this task

Use the JDEdwardsConnection configurable service to change connection details
for a JD Edwards adapter. The JD Edwards node reads all connection properties
from the adapter component that it is configured to use. If a configurable service
exists that has the same name as the nodes adapter component, the node uses the
values that are defined in that configurable service to override the corresponding
properties from the adapter. If a configurable service is being used, all properties
that are exposed by the configurable service are taken from the configurable
service. The only properties that are taken from the adapter are the ones that you
cannot set on the configurable service. The properties of the JD Edwards
configurable service are described in “Configurable services properties” on page
3766.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates a JDEdwardsConnection configurable service to connect to
the DV7333 development Environment for a user with the Role of administrator.

mqsicreateconfigurableservice MYBROKER -c JDEdwardsConnection -o myJdedwardsAdapter.outadapter
-n Environment,Role -v "dv7333,administrator"

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This
example changes the connection that is used by the adapter
myJdedwardsAdapter.outadapter to connect to the PD7333 production Environment.
After you run this command, all adapters connect to the production
Environment (PD7333) instead of the development system (DV7333).

mqsichangeproperties MYBROKER -c JDEdwardsConnection -o myJdedwardsAdapter.outadapter -n Environment,Role
-v PD7333,administrator

To pick up the updated values in the configurable service, restart the execution
group and message flow.

v To display all JDEdwardsConnection configurable services, use the WebSphere
Message Broker Explorer, or the mqsireportproperties command, as shown in
the following example:

mqsireportproperties MYBROKER -c JDEdwardsConnection -o AllReportableEntityNames -r

v You can delete a configurable service that has been created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:

mqsideleteconfigurableservice MYBROKER -c JDEdwardsConnection -o myJdedwardsAdapter.outadapter

Chapter 7. Configuring brokers for test and production environments 725

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“JDEdwardsRequest node” on page 4524
Use the JDEdwardsRequest node to interact with a JD Edwards EnterpriseOne
server.

Configuring EIS connections to expire after a specified time:

You can configure connections to SAP, Siebel, and PeopleSoft to expire after a
specified time by using a configurable service.

About this task

You can use the connectionIdleTimeout property on a configurable service to
control the number of connections to SAP, Siebel and PeopleSoft by closing
connections that have not been used for a specified time.

Procedure

Use the mqsicreateconfigurableservice command to set up connections that
expire when they have not been used for a specified length of time.

726 WebSphere Message Broker Version 7.0.0.8

In the following example, the SAPConnection configurable service is configured to
close connections when they have not been used for 120 seconds.
mqsicreateconfigurableservice MB7BROKER -c SAPConnection -o mySAPAdapter.outadapter
-n connectionIdleTimeout -v 120

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Advanced configuration properties when using IBM Sterling Connect:Direct
nodes:

CDInput and CDOutput nodes can get connection details and staging directories in
conjunction with a configurable service. To pick up new values when a
configurable service is created or modified, you must reload the broker or
execution group, by using the mqsistop and mqsistart commands, or the
mqsireload command.

Before you begin

Before you start:

v Read “IBM Sterling Connect:Direct overview and concepts” on page 1810 and
“Configurable services” on page 1296 for background information.

Chapter 7. Configuring brokers for test and production environments 727

About this task

Use the CDServer configurable service to change connection details for a IBM
Sterling Connect:Direct node. The properties of the CDServer configurable services
are described in “CDServer configurable service properties” on page 3798.

Use the following scenarios as examples of how you use the staging directories.

Procedure

v What should I do if I have WebSphere Message Broker and IBM Sterling
Connect:Direct on the same machine, and want the files to be staged for
output within the WebSphere Message Broker work path?

You need not set any of the properties; the default settings allow this to happen.
v Output

1. What should I do if I have WebSphere Message Broker and IBM Sterling
Connect:Direct on the same machine but want to use a specified location
to create files for output? Set the brokerPathToStagingDir to the location
you want. You do not need to set the cdPathToStagingDir, as WebSphere
Message Broker assumes this to be the same as the brokerPathToStagingDir.

2. Can I have WebSphere Message Broker and IBM Sterling Connect:Direct
on separate machines? You can, but you must ensure that both machines
have:
– Access to the same shared filesystem.
– The same timezone setting.
As IBM Sterling Connect:Direct does not support NFS file systems on z/OS,
this configuration does not work on z/OS

3. Can I have this shared filesystem mounted at different places on my
WebSphere Message Broker and IBM Sterling Connect:Direct machines for
platforms other than Windows? Set the brokerPathToStagingDir to be the
location where it is mounted on the WebSphere Message Broker machine,
and the cdPathToStagingDir to where it is mounted on the IBM Sterling
Connect:Direct machine.

4. Can I have this shared filesystem mounted at different places on my
WebSphere Message Broker and IBM Sterling Connect:Direct machines for
Windows platforms? You must use the \\hostname\directory path syntax to
the shared drive, rather than a mapped drive letter. Moreover, the user ID
accessing the \\hostname\directory path, that is the:

WebSphere Message Broker user ID, or
IBM Sterling Connect:Direct user ID

- depending on which one is running on Windows, must have full (write)
access to the file system, using the same password.
Set the brokerPathToStagingDir to be the location where it is mounted on
the WebSphere Message Broker machine, and the cdPathToStagingDir to
where it is mounted on the IBM Sterling Connect:Direct machine.

v Input

1. Can I process files in the CDInput node if the WebSphere Message Broker
and receiving Connect:Direct server are on different machines? You can,
but you must ensure that both machines have:
– Access to the same shared filesystem.
– The same timezone setting.

728 WebSphere Message Broker Version 7.0.0.8

As IBM Sterling Connect:Direct does not support NFS file systems on z/OS,
this configuration does not work on z/OS

2. Can I have this shared filesystem mounted at different places on my
WebSphere Message Broker and IBM Sterling Connect:Direct machines for
platforms other than Windows? Set the brokerPathToInputDir to be the
location where it is mounted on the WebSphere Message Broker machine,
and the cdPathToInputDir to where it is mounted on the IBM Sterling
Connect:Direct machine.

3. Can I have this shared filesystem mounted at different places on my
WebSphere Message Broker and IBM Sterling Connect:Direct machines for
Windows platforms? You must use the UNC path syntax to the shared
drive, rather than a mapped drive letter. Moreover, the user ID accessing the
UNC path, that is the:

WebSphere Message Broker user ID, or
IBM Sterling Connect:Direct user ID

- depending on which one is running on Windows, must have full (write)
access to the file system, using the same password.
Set the brokerPathToInputDir to be the location where it is mounted on the
WebSphere Message Broker machine, and the cdPathToInputDir to where it is
mounted on the IBM Sterling Connect:Direct machine.

Results

To create a configurable service, use the WebSphere Message Broker Explorer; see
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the mqsicreateconfigurableservice
command.
mqsicreateconfigurableservice MYBROKER -c CDServer -o myCDServer

where

MYBROKER
is the name of the broker

CDServer
is the name of the configurable service

myCDServer
is the object name.

Note the -o ObjectName parameter can take any value.

Output

This example transfers a file using the CDOutput node called CDOutput, in a
message flow called messageflow1, in execution group default, on broker
MYBROKER.

The broker stages the file in the local file path /tmp/cdtransfer/MYBROKER/default/
messageflow1/CDOutput.

The Connect:Direct server then tries to transfer the file using the file path
/cdserver/transfers/MYBROKER/default/messageflow1/CDOutput.

These properties are used when the files systems are mounted differently on the
broker and Connect:Direct server machines.

Chapter 7. Configuring brokers for test and production environments 729

mqsichangeproperties MYBROKER -c CDServer
-o myCDServer -n brokerPathToStagingDir,cdPathToStagingDir
-v /tmp/cdtransfer,/cdserver/transfers

To pick up the updated values in the configurable service, restart the execution
group and message flow.

Input

This example receives a file using the CDInput node called CDInput, in a message
flow called messageflow1, in execution group default, on broker MYBROKER.

A file is transferred to the Connect:Direct server, to the directory
/cdserver/transfers/example1.

WebSphere Message Broker attempts to process the same file, but using the path
/tmp/cdtransfer/example1.

These properties are used when the file systems are mounted differently on the
WebSphere Message Broker and Connect:Direct server machines.
mqsichangeproperties MYBROKER -c CDServer -o myCDServer
-n brokerPathToInputDir,cdPathToInputDir
-v /tmp/cdtransfer/example1,/cdserver/transfers/example1

To pick up the updated values in the configurable service, restart the execution
group and message flow.

To display Connect:Direct server configurable services, use the
mqsireportproperties command, as shown in the following example:
mqsireportproperties MYBROKER -c CDServer -o AllReportableEntityNames -r

Related concepts:
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Initiating a managed file transfer using IBM Sterling Connect:Direct” on page
1873
Use a CDOutput node to send a file from a specified directory on your primary
Connect:Direct server (PNODE) to a filename and directory on a secondary
Connect:Direct server (SNODE).
“Receiving a file using IBM Sterling Connect:Direct” on page 1847
Use the CDInput node to receive files from an IBM Sterling Connect:Direct
network.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

730 WebSphere Message Broker Version 7.0.0.8

“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“CDServer configurable service properties” on page 3798
Select the objects and properties that you want to change for the CDServer
configurable service.

Configuring for IMS:

You can use configurable services to enable the IMS nodes in the broker runtime
environment to connect with the IMS system.

About this task

The following topics describe how to prepare the environment to connect to the
IMS system, and how to change the connection details without the need to
redeploy your message flow.
v “Preparing the environment for IMS nodes”
v “Changing connection information for the IMSRequest node” on page 732

Preparing the environment for IMS nodes:

Before you can use the IMS nodes, you must set up the broker runtime
environment so that you can access the IMS system.

Before you begin

Before you start:

Read “IBM Information Management System (IMS)” on page 2129.

About this task

Complete the following steps to ensure that WebSphere Message Broker can
connect to the IMS system.

Procedure

1. Ensure that IMS Connect is installed and started on the IMS system.
2. If you do not want to configure IMS connection properties directly on the

IMSRequest node, define a configurable service for each IMS system to which
you want to connect.
For example, to create an IMSConnect configurable service for the IMS instance
IMSA that is running on test.ims.ibm.com, port 9999, run the
mqsicreateconfigurableservice command as shown:
mqsicreateconfigurableservice MB7BROKER -c IMSConnect -o myIMSConnectService
-n Hostname,PortNumber,DataStoreName -v test.ims.ibm.com,9999,IMSA

Chapter 7. Configuring brokers for test and production environments 731

For details about how to create, change, and report configurable services, see
“Changing connection information for the IMSRequest node.” You can use the
IMSConnect configurable service to configure the IMSRequest node to use
Secure Sockets Layer (SSL) protocol. For more information, see “Securing the
connection to IMS by using SSL” on page 549.

3. Use the mqsisetdbparms command to set security details in the broker store.
For example, to associate a user ID and password pair with an IMS Connect
connection, run the mqsisetdbparms command as shown:
mqsisetdbparms MB7BROKER -n ims::mySecurityIdentity -u myuserid -p mypassword

Related concepts:
“IBM Information Management System (IMS)” on page 2129
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.
Related tasks:
“Changing connection information for the IMSRequest node”
You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.
“Securing the connection to IMS by using SSL” on page 549
Configure the IMSRequest node to communicate with IMS over the Secure Sockets
Layer (SSL) protocol by creating a keystore file, and configuring the broker to use
SSL.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Changing connection information for the IMSRequest node:

You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection

732 WebSphere Message Broker Version 7.0.0.8

properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.

Before you begin

Before you start:

v Read “Configurable services” on page 1296 to find out more about configurable
services.

v Read “IBM Information Management System (IMS)” on page 2129 for
background information.

About this task

Use the IMSConnect configurable service to change the connection information for
the IMSRequest node. Two configurable services can connect to the same instance
of IMS Connect. The properties of the IMSConnect configurable service are
described in “Configurable services properties” on page 3766.

You can use the IMSConnect configurable service to configure the IMSRequest
node to use Secure Sockets Layer (SSL) protocol. For more information, see
“Securing the connection to IMS by using SSL” on page 549.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates an IMSConnect configurable service for the IMS instance
IMSA that is running on test.ims.ibm.com port 9999:
mqsicreateconfigurableservice MB7BROKER -c IMSConnect -o myIMSConnectService
-n Hostname,PortNumber,DataStoreName -v test.ims.ibm.com,9999,IMSA

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This
example changes all the nodes that are configured to use the
myIMSConnectService configurable service. After you run this command, the
IMSRequest node connects to the production system (production.ims.ibm.com)
instead of the test system (test.ims.ibm.com). The command also changes to
coded character set identifier (CCSID) to 37.
mqsichangeproperties MB7BROKER -c IMSConnect -o myIMSConnectService -n Hostname,CodedCharSetID
-v production.ims.ibm.com,37

See “Securing the connection to IMS by using SSL” on page 549 for information
about how to turn on SSL support in the broker by setting the UseSSL and
SSLEncryptionType IMSConnect configurable service properties.

v To display all IMSConnect configurable services, use the WebSphere Message
Broker Explorer, or the mqsireportproperties command, as shown in the
following example:
mqsireportproperties MB7BROKER -c IMSConnect -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:

Chapter 7. Configuring brokers for test and production environments 733

mqsideleteconfigurableservice MB7BROKER -c IMSConnect -o myIMSconnectService

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Securing the connection to IMS by using SSL” on page 549
Configure the IMSRequest node to communicate with IMS over the Secure Sockets
Layer (SSL) protocol by creating a keystore file, and configuring the broker to use
SSL.
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

Defining where the CORBARequest node gets the object reference:

You can specify an object reference name either on the CORBARequest node or by
using a configurable service.

734 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

v Read “Common Object Request Broker Architecture (CORBA)” on page 2145 and
“Configurable services” on page 1296 for background information.

About this task

By using configurable services, you can specify the location from which the
CORBARequest node gets the object reference without the need to redeploy the
message flow. You can also use the configurable service to specify this location for
multiple CORBARequest nodes. To pick up new values when a configurable
service is created or modified, you must reload the broker or execution group to
which the message flow was deployed, by using the mqsistop and mqsistart
commands, or the mqsireload command.

The properties of the CORBA configurable services are described in “Configurable
services properties” on page 3766.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer (as
described in “Using the WebSphere Message Broker Explorer to work with
configurable services” on page 644) or the mqsicreateconfigurableservice
command shown in the following example.
This example creates a CORBA configurable service called "myCORBAService"
that connects to the CORBA host on the local host on port 2809, and looks for
the object reference called "Europe.region/Market.object". (For more information
about how to specify the object reference, see “CORBA naming service” on page
2154.)
mqsicreateconfigurableservice MB7BROKER -c CORBA -o myCORBAService
-n namingService,objectReferenceName -v localhost:2809,Europe.region/Market.object

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer or
the mqsichangeproperties command shown in the following example.
This example changes the location of the object reference.
mqsichangeproperties MB7BROKER -c CORBA -o myCORBAService -n namingService,objectReferenceName -v production.corba.ibm.com:2809,Europe.region/Market.object

To pick up the updated values in the configurable service, restart the execution
group and message flow.

v To display all CORBA configurable services, use the WebSphere Message Broker
Explorer or the mqsireportproperties command shown in the following
example.
mqsireportproperties MB7BROKER -c CORBA -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer or the mqsideleteconfigurableservice
command shown in the following example.
mqsideleteconfigurableservice MB7BROKER -c CORBA -o myCORBAService

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Chapter 7. Configuring brokers for test and production environments 735

Related concepts:
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Working with CORBA” on page 2144
Use CORBA nodes to connect to CORBA Internet Inter-Orb Protocol (IIOP)
applications.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

Configuring for CICS Transaction Server for z/OS:

You can use configurable services to enable the CICSRequest node in the broker
runtime environment to connect with CICS Transaction Server for z/OS.

About this task

The following topics describe how to prepare the environment to connect to CICS,
and how to change the connection details without the need to redeploy your
message flow.
v “Preparing the environment for the CICSRequest node”
v “Changing connection information for the CICSRequest node” on page 738

Preparing the environment for the CICSRequest node:

Before you can use the CICSRequest node, you must configure IP
InterCommunications (IPIC) protocol on the target CICS Transaction Server for
z/OS.

736 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Read “CICS Transaction Server for z/OS connectivity” on page 2174 for
background information.

About this task

The CICSRequest node can send IPIC requests over TCP/IP to CICS Transaction
Server for z/OS Version 3.2 and later. Complete the following steps on CICS to
perform this configuration:

Procedure

1. Set the System Initialization (SIT) parameter TCPIP=YES.
2. Define the TCP/IP address and host name for CICS. By default, they are

defined in the PROFILE.TCPIP and TCPIP.DATA data sets.
3. Add a TCP/IP listener to CICS by using the following CEDA command to define

a TCPIPSERVICE resource in a group:
CEDA DEF TCPIPSERVICE(service-name) GROUP(group-name)

Ensure that the group in which you define the service is in the GRPLIST
system initialization parameter, so that the listener starts when CICS is started.
Key fields are explained as follows:

POrtnumber:
The port on which the TCP/IP service listens.

PROtocol:
The protocol of the service is IPIC.

TRansaction:
The transaction that CICS runs to handle incoming IPIC requests. Set
the field to CISS, which is the default.

Backlog:
The Backlog field is the number of TCP/IP connection requests are sent
to CICS, which are placed in a TCP/IP queue to be assigned an
IPCONN connection to CICS. The default value is 1. Do not use a value
of 0; a value of 0 indicates that no TCP/IP connection requests are to
be assigned an IPCONN connection to CICS, which disables incoming
connection requests.

Ipaddress:
The IP address, in dotted decimal form, on which the TCPIPSERVICE
resource listens. For configurations with more than one IP stack, specify
ANY to make the TCPIPSERVICE resource listen on all addresses.

SOcketclose:
Whether CICS waits before closing the socket after issuing a receive for
incoming data on that socket. To ensure that the connection from the
CICSRequest node always remains open, set SOcketclose to NO for
IPIC connections.

SSl: Whether the CICS TCP/IP service is to use Secure Sockets Layer (SSL)
protocol for encryption and authentication. Valid values are NO, YES,
or CLIENTAUTH. Where:
v NO indicates that SSL is not to be used.

Chapter 7. Configuring brokers for test and production environments 737

v YES indicates that the personal certificate of the CICS region must be
trusted by WebSphere Message Broker.

v CLIENTAUTH indicates that the personal certificate of the CICS
region must be trusted by WebSphere Message Broker, and the
WebSphere Message Broker personal certificate must be trusted by
CICS.
The CICSRequest node does not support a separate truststore, so the
keystore file must provide both personal and signer certificates. For
more information, see “Securing the connection to CICS Transaction
Server for z/OS by using SSL” on page 547.

4. Use the following command to install the TCPIPSERVICE definition:
CEDA INS TCPIPSERVICE(service-name) GROUP(group-name)

Related concepts:
“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.
Related tasks:
“Changing connection information for the CICSRequest node”
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Changing connection information for the CICSRequest node:

You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.

738 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

v Read “Configurable services” on page 1296 to find out more about configurable
services.

v Read “CICS Transaction Server for z/OS overview” on page 2173 for
background information.

About this task

Use the CICSConnection configurable service to change the CICS Transaction
Server for z/OS connection information for the CICSRequest node. The advantage
being that you can change the host name, performance, and security identity
values without needing to redeploy your message flow. The properties of the
CICSConnection configurable service are described in “Configurable services
properties” on page 3766.

You can use the CICSConnection configurable service to configure the CICSRequest
node to use Secure Sockets Layer (SSL) protocol. For more information, see
“Securing the connection to CICS Transaction Server for z/OS by using SSL” on
page 547.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates a CICSConnection configurable service for the CICS
instance that is running at test.cics.ibm.com port 12345. The broker is
identified by APPLID BRKApp and qualifier BRKQual. The connection timeout is
10 seconds, the request timeout is 5 seconds, and the security identity is
identified by mySecurityIdentity in this example:
mqsicreateconfigurableservice MB7BROKER -c CICSConnection -o myCICSConnectionService
-n cicsServer,clientApplid,clientQualifier,connectionTimeoutSecs,requestTimeoutSecs,
securityIdentity
-v tcp://test.cics.ibm.com:12345,BRKApp,BRKQual,10,5,mySecurityIdentity

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. You
must stop and start the execution group for the change of property value to take
effect. This example changes the CICSRequest node that is configured to use the
myCICSConnectionService configurable service. After you run this command, the
CICSRequest node connects to the production system (tcp://
production.cics.ibm.com:12345) instead of the test system (tcp://
test.cics.ibm.com:12345).
mqsichangeproperties MB7BROKER -c CICSConnection -o myCICSConnectionService

-n cicsServer -v tcp://production.cics.ibm.com:12345

See “Securing the connection to CICS Transaction Server for z/OS by using SSL”
on page 547 for information about how to turn on SSL support in the broker by
setting the cicsServer CICSConnection configurable service property.

v To display all CICSConnection configurable services, use the WebSphere
Message Broker Explorer, or the mqsireportproperties command, as shown in
the following example:

Chapter 7. Configuring brokers for test and production environments 739

mqsireportproperties MB7BROKER -c CICSConnection -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:
mqsideleteconfigurableservice MB7BROKER -c CICSConnection -o myCICSConnectionService

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Preparing the environment for WebSphere MQ File Transfer Edition nodes:

Prepare the file system and queue managers, and determine the name of the
broker agent.

About this task

v “Preparing the file system” on page 741
v “Preparing the queue manager” on page 741
v “Setting the coordination queue manager” on page 741
v “Naming execution groups” on page 742

740 WebSphere Message Broker Version 7.0.0.8

v “Determining the agent name” on page 743

Preparing the file system:

WebSphere Message Broker uses a location in its work path to store transfers to
remote agents. It uses another location as the default directory for received files.
The high-level directory path for both locations is:
v workpath/common/FTE

Ensure that enough space is available here for files that you will transfer to and
from the broker by WebSphere MQ File Transfer Edition.

Preparing the queue manager:

WebSphere Message Broker tries to create all the required artifacts on the queue
manager for the agent, and the coordination queue manager, if appropriate. It
might not be possible to create all artifacts, due to the configuration of your
machine, or permissions. If it fails to create them, or you want to create them
yourself in advance, see “Scripts to create artifacts required for WebSphere MQ File
Transfer Edition” on page 744.

Setting the coordination queue manager:

When a message flow that contains a WebSphere MQ File Transfer Edition node is
deployed to an execution group, an agent is automatically created and started in
that execution group. By default, the agent uses the broker's local queue manager
as the coordination queue manager.
v If the broker's queue manager is being used as the coordination queue manager,

the broker configures it as a coordination queue manager.
v If you are using a different queue manager as the coordination queue manager,

refer to the WebSphere File Transfer Edition Information Center for details of
how to configure it as a coordination queue manager.

Unless you have previously defined the coordination queue manager, the agent is
temporary; it is deleted when the flow is undeployed or the broker is stopped.
This behavior is acceptable in a test environment. However, for production, the
administrator must specify the coordination queue manager for the execution
group. Specifying a coordination queue manager:

Ensures that the correct queue manager is used when the agent is created.
Makes the agent permanent. If a coordination queue manager has been defined,
the agent is deleted only after you undefine the coordination queue manager
(for example, by setting it to an empty string), and restart the execution group.

A warning is written to the log if the coordination queue manager is not changed
from the default.

The following state diagram illustrates how the presence of nodes and a defined
coordination queue manager affect the state of the agent.

Chapter 7. Configuring brokers for test and production environments 741

http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/index.jsp

Create execution group

Agent does not exist
state

Agent stopped
state

Agent running
state

Agent exists
state

Agent exists in temporary node
state

FTE node already deployed and deleted/delete succeeds

deploy or start flow containing FTE node
stop or underploy flow [not last fte flow]

Deploy or start flow containing

FTE node /start agent

Delete flow containing FTE node[last flow]

/stop agent

FTE node deployed or started

/create FTE config, queues and register using

broker qmgr as coordinating qmgr and write warning

Delete flow containing FTE node[last flow]

/stop agent and delete FTE config, queues and deregister

Unset EG coordination queue manager property

/delete FTE config, queues and deregister

Unset EG coordination queue manager property

/recreate FTE config, queues and deregister agent

and stop message flow (fail start)

Set EG coordination queue manager property

[FTE nodes deployed]

/create FTE config, queues and register

Set EG coordination queue manager property

[no FTE nodes deployed]

/create FTE config, queues and register

Deploy another flow using FTE
Delete flow using FTE [not last one]

About this task

Use one of the following methods to set the coordination queue manager.

Procedure

1. Optional: Use the mqsichangeproperties command.
For example, to set the coordination queue manager to QM2 for execution
group myExecutionGroup in broker MB7BROKER:
mqsichangeproperties MB7BROKER -e myExecutionGroup
-o FTEAgent -n coordinationQMgr -v QM2

After running this command, you must reload the execution group for the
change to take effect.

2. Optional: Use the WebSphere Message Broker Explorer. Right-click the
execution group, and select the appropriate options from the pop-up menu.

Naming execution groups:
About this task

The execution group name is used to form the queue name for WebSphere MQ File
Transfer Edition queues. Consequently, the names of your execution groups must
conform to the rules for naming WebSphere MQ objects. You cannot deploy a flow
that contains a WebSphere MQ File Transfer Edition node unless this requirement
is met. Permitted characters are:
v Uppercase A-Z
v Lowercase a-z (but there are restrictions on the use of lowercase letters for z/OS

console support)
On systems using EBCDIC Katakana you cannot use lowercase characters.

v Numerics 0-9
v Period (.)

742 WebSphere Message Broker Version 7.0.0.8

v Forward slash (/)
v Underscore (_)
v Percent sign (%)

See the WebSphere MQ Version 7 Information Center online for full details of
naming requirements.

Determining the agent name:
About this task

To send a file to a given execution group, users need to know the name of the
agent that the broker creates. The agent name is derived from
Broker.ExecutionGroup, and is not configurable. The total name length is limited to
28 characters, with a maximum 12 characters for the broker name, and 15
characters for the execution group. Broker and execution group names longer than
these limits are truncated to form the agent name. The name must be a valid
format for generating MQ Series queue name. Ensure that:
v The broker name is 12 characters or fewer (or at least unique in the first 12

characters).
v The execution group names are 15 characters or fewer (or at least unique in the

first 15 characters).
v The broker and execution groups do not contain any characters that are invalid

for queue names.
v The broker.executiongroup tuples are all unique, even if case is ignored.

The value used is written to the event log in message BIP3358. Use one of the
following methods to determine the agent name.

Procedure

1. Optional: Use the mqsireportproperties command.
For example, to display the FTE agent name for execution group FTESAMPLE
in broker MB7BROKER:
mqsireportproperties MB7BROKER -e FTESAMPLE -o FTEAgent -n agentName

If the agent has been created, the command returns the agent name. If the
agent has not been created, the command returns an empty string.

2. Optional: Use the WebSphere Message Broker Explorer. Right-click the
execution group, and select the appropriate options from the pop-up menu.

Related concepts:
“Managed file transfers using WebSphere MQ File Transfer Edition” on page 1869
Transfer files, with file transfer metadata, in a timely and reliable manner.
Related tasks:
“Changing the location of the work path” on page 1011
The work path directory is the location where a component stores internal data,
such as installation logs, component details, and trace output. The shared-classes
directory is also located in the work path directory and is used for deployed Java
code. If the work path directory does not have enough capacity, redirect the
directory to another file system that has enough capacity.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

Chapter 7. Configuring brokers for test and production environments 743

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.

Scripts to create artifacts required for WebSphere MQ File Transfer Edition:

WebSphere MQ script (MQSC) commands for use if WebSphere Message Broker
cannot create all the required artifacts, or you want to create them yourself.

Queues for the FTE agent

Before running the following command, replace Agent name with the name of your
FTE agent; see “Determining the agent name” on page 743.

DEFINE QLOCAL(SYSTEM.FTE.COMMAND.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(4194304) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.DATA.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(4194304) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.REPLY.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(4194304) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +

744 WebSphere Message Broker Version 7.0.0.8

NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.STATE.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(4194304) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.EVENT.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(4194304) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.AUTHAGT1.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(0) +
MAXMSGL(0) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.AUTHTRN1.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(0) +
MAXMSGL(0) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.AUTHOPS1.Agent name) +

Chapter 7. Configuring brokers for test and production environments 745

DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(0) +
MAXMSGL(0) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.AUTHSCH1.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(0) +
MAXMSGL(0) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.AUTHMON1.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(0) +
MAXMSGL(0) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.AUTHADM1.Agent name) +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(0) +
MAXMSGL(0) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

Queues for the coordination queue manager

DEFINE TOPIC('SYSTEM.FTE') TOPICSTR('SYSTEM.FTE') REPLACE
ALTER TOPIC('SYSTEM.FTE') NPMSGDLV(ALLAVAIL) PMSGDLV(ALLAVAIL)

746 WebSphere Message Broker Version 7.0.0.8

DEFINE QLOCAL(SYSTEM.FTE) LIKE(SYSTEM.BROKER.DEFAULT.STREAM) REPLACE
ALTER QLOCAL(SYSTEM.FTE) DESCR('Stream for WMQFTE Pub/Sub interface')
* Altering namelist: SYSTEM.QPUBSUB.QUEUE.NAMELIST
* Value prior to alteration:
DISPLAY NAMELIST(SYSTEM.QPUBSUB.QUEUE.NAMELIST)
ALTER NAMELIST(SYSTEM.QPUBSUB.QUEUE.NAMELIST) +
NAMES(SYSTEM.BROKER.DEFAULT.STREAM+
,SYSTEM.BROKER.ADMIN.STREAM,SYSTEM.FTE)

* Altering PSMODE. Value prior to alteration:
DISPLAY QMGR PSMODE
ALTER QMGR PSMODE(ENABLED)
DEFINE QLOCAL(SYSTEM.FTE.DATABASELOGGER.REJECT) +
DESCR('Messages rejected by the FTE database logger.') +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(999999999) +
MAXMSGL(4194304) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(999999999) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

DEFINE QLOCAL(SYSTEM.FTE.DATABASELOGGER.COMMAND) +
DESCR('Command messages to control the FTE database logger.') +
DEFPRTY(0) +
DEFSOPT(SHARED) +
GET(ENABLED) +
MAXDEPTH(999999999) +
MAXMSGL(4194304) +
MSGDLVSQ(PRIORITY) +
PUT(ENABLED) +
RETINTVL(5000) +
SHARE +
NOTRIGGER +
USAGE(NORMAL) +
REPLACE

Related tasks:
“Preparing the environment for WebSphere MQ File Transfer Edition nodes” on
page 740
Prepare the file system and queue managers, and determine the name of the
broker agent.

Configuring for JMS:

You can use configurable services to configure WebSphere Message Broker for JMS.

About this task

v “Configuring the broker to enable a JMS provider's proprietary API” on page
748

v “Connecting to different versions of the same JMS provider” on page 750
v “Configuring the JMSInput node for batch message processing” on page 751

Chapter 7. Configuring brokers for test and production environments 747

Configuring the broker to enable a JMS provider's proprietary API:

Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java class
to interface with that proprietary API.

About this task

For example, BEA WebLogic uses a component called a Client Interposed Transaction
Manager to allow a JMS client to obtain a reference to the XAResource that is
associated with a user transaction.

If the WebSphere Message Broker JMS nodes use BEA WebLogic as the JMS
provider, and the nodes must participate in a globally coordinated message flow,
you must modify the configurable services properties that are associated with that
vendor. The following table shows the properties that have been added to the
configurable service for BEA WebLogic.

JMS provider Property Purpose Default value

BEA_WebLogic proprietaryAPIHandler The name of the IBM supplied Java
class to interface with a JMS
provider's proprietary API.

com.ibm.broker.apihandler.
BEAWebLogicAPIHandler

proprietaryAPIAttr1 The Initial Context Factory class name
for the vendor

weblogic.jndi.
WLInitialContextFactory

proprietaryAPIAttr2 The URL of the WebLogic bindings URL JNDI bindings

proprietaryAPIAttr3 The DNS name of the JMS server Server name

In the list of JMS provider configurable services, the name of the IBM supplied
Java class is set to the default value for the proprietaryAPIHandler property.
Typically, you do not need to change this value, unless you are instructed to do so
by an IBM Service team representative.

Procedure

v Use the mqsichangeproperties command to modify values of the properties for
this JMS provider.
The following example shows how to change the values of the properties
proprietaryAPIAttr2 and proprietaryAPIAttr3 for the JMS provider
configurable service definition called BEA_Weblogic, where these properties
represent the URL of the WebLogic bindings and the DNS Server name of the
BEA WebLogic JMS Server:
mqsichangeproperties MB7BROKER -c JMSProviders -o BEA_Weblogic
-n proprietaryAPIAttr2,proprietaryAPIAttr3 -v t3://9.20.94.16:7001,BEAServerName

v Use the mqsireportproperties command to display the properties for a JMS
provider.
The following example shows how to display the properties for all the broker's
JMS provider resources (the default JMS provider resources and those
configurable services that are defined with the mqsicreateconfigurableservice
command):
mqsireportproperties MB7BROKER -c JMSProviders -o BEA_WebLogic –r

The result of this command has the following format:

748 WebSphere Message Broker Version 7.0.0.8

ReportableEntityName=’’
JMSProviders

BEA_Weblogic=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
proprietaryAPIAttr1=’weblogic.jndi.WLInitialContextFactory’
proprietaryAPIAttr2=’t3://9.20.94.16:7001’
proprietaryAPIAttr3=’BEAServerName’
proprietaryAPIAttr4=’default_none’
proprietaryAPIAttr5=’default_none’
proprietaryAPIHandler=’com.ibm.broker.apihandler.BEAWebLogicAPIHandler’

The default location for the JMS provider JAR files is the broker's shared-classes
directory. You can specify an alternative location for the JAR files by using the
mqsichangeproperties command, as shown in the following example:
mqsichangeproperties MB7BROKER -c JMSProviders -o BEA_WebLogic -n jarsURL
-v /var/mqsi/WebLogic

On Windows, the file location cannot be a mapped network drive on a remote
Windows computer; the directory must be local or on a Storage Area Network
(SAN) disk.

v Use the mqsicreateconfigurableservice command to add a JMS provider.
The following example shows how to add a JMS provider called BEAV91 for
broker MB7BROKER, specifying the name of an IBM supplied Java class called
com.ibm.broker.apihandler.BEAWebLogicAPIHandler to handle vendor-specific
API calls:
mqsicreateconfigurableservice MB7BROKER -c JMSProviders -o BEAV91
-n proprietaryAPIHandler,proprietaryAPIAttr1,proprietaryAPIAttr2,proprietaryAPIAttr3
–v com.ibm.broker.apihandler.BEAWebLogicAPIHandler,weblogic.jndi.WLInitialContextFactory,
t3://9.20.94.16:7001,BEAServerName

v If you have defined a user-defined JMS provider configurable service, set the
value for the proprietaryAPIHandler property manually.

Related concepts:
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.

Chapter 7. Configuring brokers for test and production environments 749

“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

Connecting to different versions of the same JMS provider:

To use different versions of the same JMS provider, create a configurable service
for the JMS provider, and set the jarsURL property to a unique path.

About this task

To connect to two versions of the same JMS provider (for example, JBoss),
complete the following steps.

Procedure

1. Create a separate JMSProviders configurable service for each version of the JMS
provider.
For more information, see “mqsicreateconfigurableservice command” on
page 3849 or “Creating a new configurable service” on page 645.

2. Set the jarsURL property of the JMSProviders configurable service to a unique
path.
For a description of the properties of the JMSProviders configurable service, see
“JMSProviders configurable service” on page 3780.

Related concepts:
“Connection to different JMS providers” on page 1709
The JMSInput and JMSOutput nodes are compatible with all JMS providers that
conform to the Java Message Service Specification, version 1.1.
Related tasks:
“Creating a new configurable service” on page 645
Use the WebSphere Message Broker Explorer to create a new configurable service
to define properties for an external service on which the broker relies.
“Working with JMS” on page 1709
Learn about the concepts and tasks involved in configuring message flows to
support JMS messages.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“Troubleshooting JMS nodes” on page 1730
Review possible problems with nodes using JMS transport.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

750 WebSphere Message Broker Version 7.0.0.8

“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.

Configuring the JMSInput node for batch message processing:

Configure JMS message flows to send a batch acknowledgment for receipt of
non-transactional JMS messages.

About this task

When the JMSInput node works in non-transactional mode, receipt and
acknowledgment of messages take place in one step, followed by the message
processing. In some scenarios, this acknowledgment response to the JMS server for
each message might create an unacceptable level of network traffic. For example,
using this messaging model to receive JMS messages across a wide area network
that is already handling large volumes of traffic might result in non-optimal
throughput rates for JMS messages.

The JMSInput node can acknowledge message receipt in batches rather than
individually for non-transactional messages. Batch acknowledgment is enabled
using the JMSProviders configurable service properties clientAckBatchSize and
clientAckBatchTime. You can set these properties separately, or use them together,
to tune the number of messages that are received and processed by the node
before an acknowledgment response is returned to the source JMS server.

clientAckBatchSize
This an integer value that represents the threshold number of messages
received before the batch acknowledgment is sent.

clientAckBatchTime
This is an integer value that represents the length, in milliseconds, of a
repeating interval. At the end of each interval a batch acknowledgment is sent
for all unacknowledged non-transactional JMS messages that were received
during the preceding interval.

A batch acknowledgment is also sent when:
v There are no more input messages on the JMS server
v An error occurs during message processing. In this case, all previous messages

in the batch that were successfully processed are first acknowledged, before
handling the error.

v The message flow stops.

To disable batch acknowledgment, set both clientAckBatchSize and
clientAckBatchTime to 0.
Related concepts:
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and

Chapter 7. Configuring brokers for test and production environments 751

properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

Importing a policy set and policy set binding:

Use the mqsichangeproperties command to import a policy set and associated
binding.

About this task

This topic shows how to import policy set myPolicySet to broker myBroker from a
file called myPolicySet.xml. The associated binding is myPolicySetBinding, which you
import from myPolicySetBinding.xml.

Procedure

1. Create a configurable service for the policy set, if one does not already exist.
mqsicreateconfigurableservice myBroker -c PolicySets -o myPolicySet
BIP8071I: Successful command completion.

2. Create a configurable service for the policy set binding, if one does not already
exist.
mqsicreateconfigurableservice myBroker -c PolicySetBindings -o myPolicySetBinding
BIP8071I: Successful command completion.

3. Import the policy set.
mqsichangeproperties myBroker -c PolicySets -o myPolicySet -n ws-security -p myPolicySet.xml

4. Import the policy set binding.
mqsichangeproperties myBroker -c PolicySetBindings -o myPolicySetBinding

-n ws-security -p myPolicySetBinding.xml

5. Change the value of the associatedPolicySet attribute. Set it to the name of the
policy set with which this policy set binding was originally associated.
mqsichangeproperties myBroker -c PolicySetBindings -o myPolicySetBinding

-n associatedPolicySet -v myPolicySet

Related concepts:
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
Related tasks:
“Exporting a policy set and policy binding” on page 786
Use the mqsireportproperties command to export a policy set and associated
binding to a file.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

752 WebSphere Message Broker Version 7.0.0.8

Configuring for email:

You can use configurable services to enable the EmailOutput node and EmailInput
node in the broker runtime environment to connect with email servers.

About this task

The following topics describe how to prepare the environment to connect to email
servers, and how to change the connection details without the need to redeploy
your message flow.
v “Changing connection information for the EmailOutput node” on page 1798
v “Changing connection information for the EmailInput node” on page 1805

Configuring internal resources required by flows
You can use configurable services to configure the internal resources that are
required by some message flows.

About this task

The following topics describe how to configure the storage of events for certain
message flow nodes.
v “Configuring the storage of events for aggregation nodes”
v “Configuring the storage of events for Collector nodes” on page 755
v “Configuring the storage of events for Resequence nodes” on page 758
v “Configuring the storage of events for timeout nodes” on page 760
v “Configuring the XPath cache” on page 765
v “Configuring monitoring event sources using a monitoring profile” on page 762

Configuring the storage of events for aggregation nodes:

You can use an Aggregation configurable service to control the storage of events
for AggregateControl and AggregateReply nodes.

About this task

By default, the storage queues used by all aggregation nodes are:
v SYSTEM.BROKER.AGGR.CONTROL
v SYSTEM.BROKER.AGGR.REPLY
v SYSTEM.BROKER.AGGR.REQUEST
v SYSTEM.BROKER.AGGR.UNKNOWN
v SYSTEM.BROKER.AGGR.TIMEOUT

However, you can control the queues that are used by different aggregation nodes
by creating alternative queues containing a QueuePrefix, and using an Aggregation
configurable service to specify the names of those queues for storing events.

Follow these steps to specify the queues that are used to store event states, and to
set the expiry time of an aggregation:

Procedure

1. Create the storage queues to be used by the aggregation nodes. The following
queues are required:

Chapter 7. Configuring brokers for test and production environments 753

v SYSTEM.BROKER.AGGR.QueuePrefix.CONTROL
v SYSTEM.BROKER.AGGR.QueuePrefix.REPLY
v SYSTEM.BROKER.AGGR.QueuePrefix.REQUEST
v SYSTEM.BROKER.AGGR.QueuePrefix.UNKNOWN
v SYSTEM.BROKER.AGGR.QueuePrefix.TIMEOUT
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queues, WebSphere Message Broker creates the
set of queues when the node is deployed; these queues are based on the default
queues. If the queues cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create an Aggregation
configurable service. You can create a configurable service to be used with
either a specific aggregation or with all aggregations in an execution group.
a. If the configurable service is to be used with a specific aggregation, ensure

that the name of the configurable service is the same as the name that you
specify in the Aggregate name property on the AggregateControl and
AggregateReply nodes. If the configurable service is to be used with all
aggregations in an execution group, create the configurable service with the
same name as the execution group.

b. Set the Queue prefix property to the required value.
c. Optional: Set the Timeout property to control the expiry time of an

aggregation.

For example, create a configurable service called myAggregation, which specifies
queues prefixed with SYSTEM.BROKER.AGGR.SET1 and a timeout of 60
seconds:
mqsicreateconfigurableservice MYBROKER -c Aggregation -o myAggregation
-n queuePrefix,timeoutSeconds -v SET1,60

You can use the mqsideleteconfigurableservice command to delete the
Aggregation configurable service. However, the storage queues are not deleted
automatically when the configurable service is deleted, so you must delete
them separately.For more information, see “Configurable services properties”
on page 3766

3. In the AggregateControl and AggregateReply nodes:
a. Ensure that the name of the Aggregation configurable service is the same as

the name specified in the Aggregate name property on the Basic tab; for
example, myAggregation. If no Aggregation configurable service exists with
the same name as the Aggregate name property, and if a configurable service
exists with the same name as the execution group, that configurable service
is used instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.

754 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Configuring the storage of events for Collector nodes:

You can use a Collector configurable service to control the storage of events for
Collector nodes.

Chapter 7. Configuring brokers for test and production environments 755

About this task

By default, the storage queues used by all Collector nodes are:
v SYSTEM.BROKER.EDA.EVENTS
v SYSTEM.BROKER.EDA.COLLECTIONS

These queues are also used by the Resequence node.

However, you can control the queues that are used by different Collector nodes by
creating alternative queues that contain a QueuePrefix variable, and by using a
Collector configurable service to specify the names of those queues for storing
events.

Follow these steps to specify the queues that are used to store event states, and to
set the expiry for the collection:

Procedure

1. Create the storage queues to be used by the Collector node. The following
queues are required:
v SYSTEM.BROKER.EDA.QueuePrefix.EVENTS
v SYSTEM.BROKER.EDA.QueuePrefix.COLLECTIONS
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queues, WebSphere Message Broker creates the
set of queues when the node is deployed; these queues are based on the default
queues. If the queues cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create a Collector
configurable service. You can create a configurable service to be used with
either a specific collection or with all collections in an execution group.
a. If you are creating a configurable service to be used with a specific

collection, ensure that the name of the configurable service is the same as
the name that you specify in the Configurable service property on the
Collector node. If you are creating a configurable service to be used with all
collections in the execution group, ensure that the configurable service has
the same name as the execution group.

b. Set the Queue prefix property to the required value.
c. Optional: Set the Collection expiry property.

For example, create a Collector configurable service called myCollectorService,
which uses queues prefixed with SYSTEM.BROKER.EDA.SET1, and with a
collection expiry of 60 seconds:
mqsicreateconfigurableservice MYBROKER -c Collector -o myCollectorService
-n queuePrefix,collectionExpirySeconds -v SET1,60

You can use the mqsideleteconfigurableservice command to delete the
Collector configurable service. However, the storage queues are not deleted
automatically when the configurable service is deleted, so you must delete
them separately.
For more information, see “Configurable services properties” on page 3766

3. In the Collector node:
a. If the configurable service is to be used for a specific collection, specify the

name of the configurable service in the Configurable service property on

756 WebSphere Message Broker Version 7.0.0.8

the Advanced tab; for example, myCollectorService. If you do not set the
Configurable service property, and if a configurable service exists with the
same name as the execution group, that configurable service is used instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Chapter 7. Configuring brokers for test and production environments 757

Configuring the storage of events for Resequence nodes:

You can use a Resequence configurable service to control the storage of events for
Resequence nodes.

About this task

By default, the storage queues used by all Resequence nodes are:
v SYSTEM.BROKER.EDA.EVENTS
v SYSTEM.BROKER.EDA.COLLECTIONS

These queues are also used by the Collector node.

However, you can control the queues that are used by different Resequence nodes
by creating alternative queues that contain a QueuePrefix variable, and by using a
Resequence configurable service to specify the names of those queues for storing
events.

Follow these steps to specify the queues that are used to store event states, and to
set the timeout and the start and end of the sequence:

Procedure

1. Create the storage queues to be used by the Resequence node. The following
queues are required:
v SYSTEM.BROKER.EDA.QueuePrefix.EVENTS
v SYSTEM.BROKER.EDA.QueuePrefix.COLLECTIONS
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queues, WebSphere Message Broker creates the
set of queues when the node is deployed; these queues are based on the default
queues. If the queues cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create a Resequence
configurable service. You can create a configurable service to be used with
either a specific sequence or with all sequences in an execution group.
a. If you are creating a configurable service to be used with a specific

sequence, ensure that the name of the configurable service is the same as
the name that you specify in the Configurable service property on the
Resequence node. If you are creating a configurable service to be used with
all sequences in the execution group, ensure that the configurable service
has the same name as the execution group.

b. Set the Queue prefix property to the required value.
c. Optional: Set the Missing message timeout, Start of sequence, and End of

sequence properties.

For example, create a Resequence configurable service called
myResequenceService, which uses queues prefixed with
SYSTEM.BROKER.EDA.SET1, with a missing message timeout of 60 seconds,
and which waits five seconds before determining the start and end numbers in
a sequence:
mqsicreateconfigurableservice MYBROKER -c Resequence -o myResequenceService
-n queuePrefix,missingMessageTimeoutSeconds,startSequenceSeconds,endSequenceSeconds -v SET1,60,5,5

758 WebSphere Message Broker Version 7.0.0.8

You can use the mqsideleteconfigurableservice command to delete the
Resequence configurable service. However, the storage queues are not deleted
automatically when the configurable service is deleted, so you must delete
them separately.For more information, see “Configurable services properties”
on page 3766

3. In the Resequence node:
a. If the configurable service is to be used for a specific sequence, specify the

name of the configurable service on the Advanced tab; for example,
myResequenceService. If you do not set the Configurable service property,
and if a configurable service exists with the same name as the execution
group, that configurable service is used instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,

Chapter 7. Configuring brokers for test and production environments 759

are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Configuring the storage of events for timeout nodes:

You can use a Timer configurable service to control the storage of events for
TimeoutNotification and TimeoutControl nodes.

About this task

By default, the storage queue used by all timeout nodes is the
SYSTEM.BROKER.TIMEOUT.QUEUE.

However, you can control the queues that are used by different timeout nodes by
creating alternative queues that contain a QueuePrefix variable, and by using a
Timer configurable service to specify the names of those queues for storing events.

Follow these steps to specify the queue that is used to store event states:

Procedure

1. Create the storage queue to be used by the timeout nodes. The following queue
is required:
v SYSTEM.BROKER.TIMEOUT.QueuePrefix.QUEUE
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queue, WebSphere Message Broker creates the
queue when the node is deployed; this queue is based on the default queue. If
the queue cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create a Timer
configurable service. You can create a configurable service to be used with
either specific timeout requests or with all timeout requests in an execution
group.
a. If the configurable service is to be used with specific timeout requests,

create the configurable service with the same name as the Unique
identifier property on the TimeoutNotification and TimeoutControl nodes.
If the configurable service is to be used with all timeout requests in an
execution group, create the configurable service with the same name as the
execution group.

b. Set the Queue prefix property to the required value.

For example, create a Timer configurable service that uses a queue prefixed
with SYSTEM.BROKER.TIMEOUT.SET1:
mqsicreateconfigurableservice MB7BROKER -c Timer -o myTimer
-n queuePrefix -v SET1

760 WebSphere Message Broker Version 7.0.0.8

You can use the mqsideleteconfigurableservice command to delete the Timer
configurable service. However, the storage queue is not deleted automatically
when the configurable service is deleted, so you must delete it separately.For
more information, see “Configurable services properties” on page 3766.

3. In the TimeoutNotification and TimeoutControl nodes:
a. Ensure that the name of the Timer configurable service is the same as the

name specified in the Unique Identifier property on the Basic tab; for
example, myTimer. If there is no Timer configurable service with the same
name as the Unique Identifier, and if there is a configurable service with
the same name as the execution group, that configurable service is used
instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
“Configuring timeout flows” on page 2809
Use the TimeoutControl and TimeoutNotification nodes in message flows to
process timeout requests or to generate timeout notifications at specified intervals.
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:

Chapter 7. Configuring brokers for test and production environments 761

“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Configuring monitoring event sources using a monitoring profile:

You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.

Before you begin

Before you start:

Read the following topics:
v “Business-level monitoring” on page 3319
v “Monitoring basics” on page 3320

You must have a message flow that contains a node to which you want to add a
monitoring event.

You can use XPath 1.0 expressions to configure a monitoring event.

Creating a monitoring profile:
About this task

First create a monitoring profile XML file. This is a file that lists the event sources
in the message flow that will emit events, and defines the properties of each event.

Procedure

Follow the guidance at “Monitoring profile” on page 6768 to create your
monitoring profile XML file.

Applying a monitoring profile:
About this task

When you have created a monitoring profile XML file, follow these steps to apply
it.

762 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Use the mqsicreateconfigurableservice command to create a configurable
service for the monitoring profile. In the following command example, replace
myBroker with the name of your broker, and myMonitoringProfile with the name
of your monitoring profile.
mqsicreateconfigurableservice myBroker -c MonitoringProfiles

-o myMonitoringProfile

2. Use the mqsichangeproperties command to associate your monitoring profile
XML file with the configurable service. In the following command example,
replace myBroker with the name of your broker, myMonitoringProfile with the
name of your monitoring profile, and myMonitoringProfile.xml with the name of
the monitoring profile XML file.
mqsichangeproperties myBroker -c MonitoringProfiles -o myMonitoringProfile

-n profileProperties -p myMonitoringProfile.xml

Set the useParserNameInMonitoringPayload property to TRUE to force the
wmb:applicationData/wmb:complexContent/wmb:elementName attribute to hold
the name of the input node parser, if present. See “MonitoringProfiles
configurable service” on page 3781 for details.
mqsichangeproperties myBroker -c MonitoringProfiles -o myMonitoringProfile

-n useParserNameInMonitoringPayload -v TRUE

3. Use the mqsichangeflowmonitoring command to apply a monitoring profile
configurable service to one or more message flows.
v Apply a monitoring profile to a single message flow messageflow1 in

execution group EG1:
mqsichangeflowmonitoring myBroker -e EG1

-f messageflow1 -m myMonitoringProfile

v Apply a monitoring profile to all message flows in all execution groups:
mqsichangeflowmonitoring myBroker -g -j -m myMonitoringProfile

Monitoring for the flow is inactive; applying the monitoring profile does not
activate it.

4. Alternatively, use the broker archive editor to apply a monitoring profile
configurable service to one or more message flows, by setting message flow
property Monitoring Profile Name.
a. In the WebSphere Message Broker Toolkit, switch to the Broker Application

Development perspective.
b. In the Broker Development view, right-click the BAR file, then click Open

with > Broker Archive Editor.
c. Click the Manage and Configure tab.
d. Click the message flow on which you want to set the monitoring profile

configurable service. The properties that you can configure for the message
flow are displayed in the Properties view.

e. In the Monitoring Profile Name field, enter the name of a monitoring
profile.

f. Save the BAR file.
g. Deploy the BAR file.

Monitoring for the flow is inactive; deploying the BAR file does not activate it.
5. Activate monitoring for the flow using the mqsichangeflowmonitoring -c

command.
v Activate monitoring for a single message flow messageflow1 in execution

group EG1:

Chapter 7. Configuring brokers for test and production environments 763

mqsichangeflowmonitoring myBroker -e EG1
-f messageflow1 -c active

v Activate monitoring for all message flows in all execution groups:
mqsichangeflowmonitoring myBroker -g -j -c active

Updating a monitoring profile:
Procedure

1. Follow the guidance at “Monitoring profile” on page 6768 to update your
monitoring profile XML file.

2. Use the mqsichangeproperties command to update the configurable service to
use the new XML file. For example:
mqsichangeproperties myBroker -c MonitoringProfiles -o myMonitoringProfile

-n profileProperties -p myMonitoringProfile.xml

Related concepts:
“Monitoring basics” on page 3320
Message flows can be configured to emit events. The events can be read and used
by other applications for transaction monitoring, transaction auditing, and business
process monitoring.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
“Activating monitoring” on page 3334
Use the mqsichangeflowmonitoring command to activate monitoring after you have
configured monitoring event sources.
Related reference:
“Monitoring profile” on page 6768
To customize events after a message flow has been deployed, but without
redeploying the flow, use a monitoring profile configurable service. By using this
service, you can apply a monitoring profile to one or more message flows.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.
“mqsireportflowmonitoring command” on page 3924
Use the mqsireportflowmonitoring command to display the current options for
monitoring that have been set using the mqsichangeflowmonitoring command.
“Example XPath expressions for event filtering” on page 6781
Use numeric, string, or Boolean expressions when configuring an event source, to
determine whether the event is emitted.

764 WebSphere Message Broker Version 7.0.0.8

Configuring the XPath cache:

The XPath cache has a default size of 100 elements. However, this default size
might become a performance bottleneck for customers who use many XPath
expressions with a single flow invocation completely invalidating the cache.
Altering the size of the XPath cache might improve message flow performance.

An Execution Group keeps a cache of compiled XPath expressions to help reduce
the processor usage of parsing and re-creating XPath expressions that are used
repeatedly during Message Flow execution. This cache is shared by all Message
Flows within an Execution Group. The default size of this cache is 100.

It might be necessary to alter the size of this cache for optimal message flow
performance if many XPath expressions are created for each Message Flow
invocation. In a highly multi-threaded environment where many XPath expressions
are evaluated on each Message Flow invocation, it might be necessary to disable
the cache to remove thread contention on the cache.

The property can be set by running the following mqsichangeproperties command:
mqsichangeproperties <broker> -e <eg> -o ExecutionGroup -n compiledXPathCacheSizeEntries -v <value>

where <value> is the size of the cache to be set. The size can be set to any value
greater than or equal to 100. A value of 0 means that the cache is disabled. The
default value is 100.

The configured value can be reported by running the following
mqsireportproperties command:
mqsireportproperties <broker> -e <eg> -o ExecutionGroup -n compiledXPathCacheSizeEntries

and can also be reported as part of the other ExecutionGroup level properties:
mqsireportproperties <broker> -e <eg> -o ExecutionGroup -a

To disable the cache for broker BRK1 and execution group EG1, run the following
command:
mqsichangeproperties BRK1 -e EG1 -o ExecutionGroup -n compiledXPathCacheSizeEntries -v 0

Related concepts:
“XPath overview” on page 1507
The XML Path Language (XPath) is used to uniquely identify or address parts of
an XML document. An XPath expression can be used to search through an XML
document, and extract information from any part of the document, such as an
element or attribute (referred to as a node in XML) in it. XPath can be used alone
or in conjunction with XSLT.
Related tasks:
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.

WS-Security
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.

Chapter 7. Configuring brokers for test and production environments 765

WS-Security is a message-level standard that is based on securing SOAP messages
through XML digital signature, confidentiality through XML encryption, and
credential propagation through security tokens. The Web services security
specification defines the facilities for protecting the integrity and confidentiality of
a message and provides mechanisms for associating security-related claims with
the message.

WS-Security provides a general-purpose mechanism for associating security tokens
with messages. No specific type of security token is required by WS-Security. It is
designed to be extensible, for example, to support multiple security token formats.

WS-Security also describes how to encode binary security tokens and attach them
to SOAP messages. Specifically, the WS-Security profile specifications describe how
to encode the following tokens:
v Username tokens
v X.509 certificates
v SAML assertions
v Kerberos tickets
v LTPA binary tokens

With WS-Security, the domain of these mechanisms can be extended by carrying
authentication information in Web services requests. WS-Security also includes
extensibility mechanisms that can be used to further describe the credentials that
are included with a message. WS-Security is a building block that can be used in
conjunction with other Web service protocols to address a wide variety of
application security requirements.

There are numerous advantages to using WS-Security.
v Different parts of a message can be secured in a variety of ways. For example,

you can use integrity on the security token (user ID and password) and
confidentiality on the SOAP message body.

v Intermediaries can be used and end-to-end message-level security can be
provided through any number of intermediaries.

v WS-Security works across multiple transports and is independent of the
underlying transport protocol.

v Authentication of both individual users and multiple party identities is possible.

Traditional Web security mechanisms, such as HTTPS, might be insufficient to
manage the security requirements of all Web service scenarios. For example, when
an application sends a SOAP message using HTTPS, the message is secured only
for the HTTPS connection, meaning during the transport of the message between
the service requester (the client) and the service. However, the application might
require that the message data be secured beyond the HTTPS connection, or even
beyond the transport layer. By securing Web services at the message level,
message-level security is capable of meeting these expanded requirements.

Message-level security, or securing Web services at the message level, addresses the
same security requirements as for traditional Web security. These security
requirements include: identity, authentication, authorization, integrity,
confidentiality, nonrepudiation, and basic message exchange. Both traditional Web
and message-level security share many of the same mechanisms for handling
security, including digital certificates, encryption, and digital signatures.

766 WebSphere Message Broker Version 7.0.0.8

With message-level security, the SOAP message itself either contains the
information needed to secure the message or it contains information about where
to get that information to handle security needs. The SOAP message also contains
information relevant to the protocols and procedures for processing the specified
message-level security. However, message-level security is not tied to any
particular transport mechanism. Because the security information is part of the
message, it is independent of a transport protocol, such as HTTPS.

The client adds to the SOAP message header security information that applies to
that particular message. When the message is received, the Web service endpoint,
using the security information in the header, verifies the secured message and
validates it against the policy. For example, the service endpoint might verify the
message signature and check that the message has not been tampered with. It is
possible to add signature and encryption information to the SOAP message
headers, as well as other information such as security tokens for identity (for
example, an X.509 certificate) that are bound to the SOAP message content.

Without message-level security, the SOAP message is sent in clear text, and
personal information such as a user ID or an account number is not protected.
Without applying message-level security, there is only a SOAP body under the
SOAP envelope in the SOAP message. By applying features from the WS-Security
specification, the SOAP security header is inserted under the SOAP envelope in the
SOAP message when the SOAP body is signed and encrypted.

To keep the integrity or confidentiality of the message, digital signatures and
encryption are typically applied.
v Confidentiality specifies the confidentiality constraints that are applied to

generated messages. This includes specifying which message parts within the
generated message must be encrypted, and the message parts to attach
encrypted Nonce and time stamp elements to.

v Integrity is provided by applying a digital signature to a SOAP message.
Confidentiality is applied by SOAP message encryption.

You can add an authentication mechanism by inserting various types of security
tokens, such as the Username token (element). When the Username token is
received by the Web service server, the user name and password are extracted and
verified. Only when the user name and password combination is valid, will the
message be accepted and processed at the server. Using the Username token is just
one of the ways of implementing authentication. This mechanism is also known as
basic authentication.

The OASIS Web Services Security Specification provides a set of mechanisms to
help developers of Web Services secure SOAP message exchanges. For details of
the OASIS Web Services Security Specification, see OASIS Standard for
WS-Security Specification.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“WS-Security capabilities” on page 790
Web service security capabilities are supported by the broker.

Chapter 7. Configuring brokers for test and production environments 767

http://www.oasis-open.org/specs/index.php#wssv1.1
http://www.oasis-open.org/specs/index.php#wssv1.1

“Public key cryptography” on page 354
All encryption systems rely on the concept of a key. A key is the basis for a
transformation, usually mathematical, of an ordinary message into an unreadable
message. For centuries, most encryption systems have relied on private key
encryption. Public key encryption is the only challenge to private key encryption
that has appeared in the last 30 years.
“Digital certificates” on page 356
Certificates provide a way of authenticating users. Instead of requiring each
participant in an application to authenticate every user, third-party authentication
relies on the use of digital certificates.
“Digital signatures” on page 360
A digital signature is a number that is attached to a document. For example, in an
authentication system that uses public-key encryption, digital signatures are used
to sign certificates.
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.

WS-Security mechanisms
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.

Authentication

This mechanism uses a security token to validate the user and determine whether
a client is valid in a particular context. A client can be a user, computer, or
application. Without authentication, an attacker can use spoofing techniques to
send a modified SOAP message to the service provider.

In authentication, a security token is inserted in the request message. Depending
on the type of security token that is being used, the security token can also be
inserted in the response message. The following types of security token are
supported for authentication:
v Username tokens
v X.509 certificates
v SAML assertions
v Kerberos tickets
v LTPA binary tokens

Username tokens are used to validate user names and passwords. When a Web
service server receives a username token, the user name and password are
extracted and passed to a user registry for verification. If the user name and
password combination is valid, the result is returned to the server and the message
is accepted and processed. When used in authentication, username tokens are
typically passed only in the request message, not the response message.

X.509 tokens are validated by using a certificate path.

The broker support for SAML assertions is restricted to passing the token to a
WS-Trust security token server (STS) for validation.

Kerberos tickets are validated against the host's Kerberos keytab file.

768 WebSphere Message Broker Version 7.0.0.8

The broker support for LTPA binary tokens is restricted to passing the token to a
WS-Trust STS for validation.

All types of token must be protected. For this reason, if you send them over an
untrusted network, take one of the following precautions:
v Use HTTPS
v Configure the policy set to protect the appropriate elements in the SOAP header

Integrity

This mechanism uses message signing to ensure that information is not changed,
altered, or lost accidentally. When integrity is implemented, an XML digital
signature is generated on the contents of a SOAP message. If unauthorized changes
are made to the message data, the signature is not validated. Without integrity, an
attacker can use tampering techniques to intercept a SOAP message between the
Web service client and server, and modify it.

Confidentiality

This mechanism uses message encryption to ensure that no party or process can
access or disclose the information in the message. When a SOAP message is
encrypted, only a service that knows the appropriate key can decrypt and read the
message.
Related concepts:
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
“Public key cryptography” on page 354
All encryption systems rely on the concept of a key. A key is the basis for a
transformation, usually mathematical, of an ordinary message into an unreadable
message. For centuries, most encryption systems have relied on private key
encryption. Public key encryption is the only challenge to private key encryption
that has appeared in the last 30 years.
“Digital certificates” on page 356
Certificates provide a way of authenticating users. Instead of requiring each
participant in an application to authenticate every user, third-party authentication
relies on the use of digital certificates.
“Digital signatures” on page 360
A digital signature is a number that is attached to a document. For example, in an
authentication system that uses public-key encryption, digital signatures are used
to sign certificates.
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.

Implementing WS-Security
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.

Chapter 7. Configuring brokers for test and production environments 769

About this task

You use the Policy Sets and Policy Set Bindings editor in the WebSphere Message
Broker Explorer to configure the following aspects of WS-Security:

“Authentication”
“Confidentiality” on page 771
“Integrity” on page 772
“Expiration” on page 773

Authentication:
About this task

The following tokens are supported:
v Username
v X.509
v SAML assertions
v Kerberos tickets
v LTPA binary tokens

Configuring authentication with username tokens:

1. In the WebSphere Message Broker Explorer, right-click on the broker
with which you want to work, and click Properties.

2. In the Properties window, select the Security tab, and click Policy Sets.
3. Create a policy set and add UserName authentication tokens to it; see

“Policy Sets and Policy Set Bindings editor: Authentication tokens
panel” on page 6843.

4. Further configure any X.509 authentication tokens defined in the
associated policy set; see “Policy Sets and Policy Set Bindings editor:
Authentication and Protection Tokens panel” on page 6854.

5. Configure a security profile; see “Message flow security and security
profiles” on page 788.

6. Associate the policy set with a message flow or node; see “Associating
policy sets and bindings with message flows and nodes” on page 785.

Configuring authentication with X.509 tokens:

1. If you are using the broker's truststore to hold the trusted certificate,
you must configure it; see “Viewing and setting keystore and truststore
runtime properties at broker level” on page 780 or “Viewing and
setting keystore and truststore runtime properties at execution group
level” on page 783 depending on where you want to set keystore and
truststore runtime properties.

2. Create a policy set and add UserName and X.509 authentication tokens
to it; see “Policy Sets and Policy Set Bindings editor: Authentication
tokens panel” on page 6843.

3. Configure the certificate mode for either broker truststore or an external
security provider; see “Policy Sets and Policy Set Bindings editor:
Authentication and Protection Tokens panel” on page 6854.

4. If you are using an external security provider, configure a security
profile; see “Message flow security and security profiles” on page 788.

5. Associate the policy set with a message flow or node; see “Associating
policy sets and bindings with message flows and nodes” on page 785

Configuring authentication with SAML assertions:

770 WebSphere Message Broker Version 7.0.0.8

1. In the WebSphere Message Broker Explorer, right-click on the broker
with which you want to work, and click Properties.

2. In the Properties window, select the Security tab, and click Policy Sets.
3. Create a policy set and add SAML pass-through 1.1 or SAML

pass-through 2.0 tokens to it; see “Policy Sets and Policy Set Bindings
editor: Authentication tokens panel” on page 6843. SAML pass-though
does not enforce subject confirmation, but the assertion is simply
provided as a token to be processed in the external Security Token
Server specified in the security profile that is associated with the node.

4. Configure a security profile. The security profile must be configured to
use a WS-Trust v1.3 STS. For more information, see “Message flow
security and security profiles” on page 788.

5. Associate the policy set with a message flow or node; see “Associating
policy sets and bindings with message flows and nodes” on page 785.

Configuring authentication with Kerberos tickets:

1. In the WebSphere Message Broker Explorer, right-click on the broker
with which you want to work, and click Properties.

2. In the Properties window, select the Security tab, and click Policy Sets.
3. Create a policy set and add your Kerberos token type as symmetric

tokens; see “Policy Sets and Policy Set Bindings editor: Message Level
Protection panel” on page 6845.

4. Associate the policy set with a message flow or node; see “Associating
policy sets and bindings with message flows and nodes” on page 785.

5. Configure the host's Kerberos keytab file. For more information about
Kerberos configuration, see the documentation for your broker's host
system. For example, for Windows, see the "Step-by-Step Guide to
Kerberos 5 (krb5 1.0) Interoperability", which you can access at
http://technet.microsoft.com/en-us/library/.

Configuring authentication with LTPA binary tokens:

1. In the WebSphere Message Broker Explorer, right-click on the broker
with which you want to work, and click Properties.

2. In the Properties window, select the Security tab, and click Policy Sets.
3. Create a policy set and add LTPA tokens to it; see “Policy Sets and

Policy Set Bindings editor: Authentication tokens panel” on page 6843.
The LTPA binary token is passed through to the external Security Token
Server (STS) specified in the security profile that is associated with the
node.

4. Configure a security profile. The security profile must be configured to
use a WS-Trust v1.3 STS. For more information, see “Message flow
security and security profiles” on page 788.

5. Associate the policy set with a message flow or node; see “Associating
policy sets and bindings with message flows and nodes” on page 785.

Confidentiality:
About this task

Confidentiality is provided by XML encryption, and requires either X.509 tokens or
Kerberos tickets.

Configuring XML encryption with X.509 tokens:

1. If you are using the broker's truststore to hold the trusted certificate,
you must configure it; see “Viewing and setting keystore and truststore

Chapter 7. Configuring brokers for test and production environments 771

runtime properties at broker level” on page 780 or “Viewing and
setting keystore and truststore runtime properties at execution group
level” on page 783, depending on where you want to set keystore and
truststore runtime properties.

2. In the WebSphere Message Broker Explorer, right-click on the broker
with which you want to work, and click Properties.

3. In the Properties window, select the Security tab, and click Policy Sets.
4. Create a policy set, enable XML encryption, create encryption tokens,

and select the encryption algorithms that you will use; see “Policy Sets
and Policy Set Bindings editor: Message Level Protection panel” on
page 6845.

5. Define which parts of a message are to be encrypted; see “Policy Sets
and Policy Set Bindings editor: Message Part Protection panel” on page
6849.

6. Further configure message part encryption; see “Policy Sets and Policy
Set Bindings editor: Message Part Policies panel” on page 6856.

7. Further configure the keystore and truststore; see “Policy Sets and
Policy Set Bindings editor: Key Information panel” on page 6858.

8. Associate the policy set with a message flow or node; see “Associating
policy sets and bindings with message flows and nodes” on page 785.

Configuring XML encryption with Kerberos tickets:

1. Configure your host for Kerberos, providing a krb.conf configuration
file. This step is required on all operating systems, including Windows.

2. Provide the broker with the Kerberos client credentials for accessing the
Kerberos Key Distribution Center (KDC). These credentials (which are
required for SOAPRequest nodes) can be provided in the Broker
properties tree, or by using the mqsisetdbparms command. The
credentials are taken in order of priority:
v The node has a security profile with the propagation property set to

True and the Properties tree username and password token is present.
If no Username and password token exists, an exception in thrown.

v mqsisetdbparms kerberos::<realm>::<execution group name>
v mqsisetdbparms kerberos::<realm>
v mqsisetdbparms kerberos::kerberos

3. In the WebSphere Message Broker Explorer, right-click on the broker
with which you want to work, and click Properties.

4. In the Properties window, select the Security tab, and click Policy Sets.
5. Create a policy set and add the required Kerberos token type as

Symmetric Tokens; see “Policy Sets and Policy Set Bindings editor:
Message Level Protection panel” on page 6845.

Integrity:
About this task

Integrity is provided by XML signature, and requires either X.509 tokens or
Kerberos tickets.

Configuring XML signature with X.509 tokens:

1. If you are using the broker's truststore to hold the trusted certificate,
you must configure it; see “Viewing and setting keystore and truststore
runtime properties at broker level” on page 780 or “Viewing and

772 WebSphere Message Broker Version 7.0.0.8

setting keystore and truststore runtime properties at execution group
level” on page 783 depending on where you want to set keystore and
truststore runtime properties.

2. In the WebSphere Message Broker Explorer, right-click on the broker
with which you want to work, and click Properties.

3. In the Properties window, select the Security tab, and click Policy Sets.
4. Create a policy set, enable XML signature, and create signature tokens;

see “Policy Sets and Policy Set Bindings editor: Message Level
Protection panel” on page 6845.

5. Define which parts of a message are to be signed; see “Policy Sets and
Policy Set Bindings editor: Message Part Protection panel” on page
6849.

6. Further configure message part signature; see “Policy Sets and Policy
Set Bindings editor: Message Part Policies panel” on page 6856.

7. Further configure the keystore and truststore; see “Policy Sets and
Policy Set Bindings editor: Key Information panel” on page 6858.

8. Associate the policy set with a message flow or node; see “Associating
policy sets and bindings with message flows and nodes” on page 785.

Configuring XML signature with Kerberos tickets:

1. Configure your host for Kerberos, providing a krb.conf configuration
file. This step is required on all operating systems, including Windows.

2. Provide the broker with the Kerberos client credentials for accessing the
Kerberos Key Distribution Center (KDC). These credentials (which are
required for SOAPRequest nodes) can be provided in the Broker
properties tree, or by using the mqsisetdbparms command. The
credentials are taken in the following order of priority:
v The node has a security profile with the propagation property set to

True and the Properties tree username and password token is present.
If no Username and password token exists, an exception in thrown.

v mqsisetdbparms kerberos::<realm>::<execution group name>
v mqsisetdbparms kerberos::<realm>
v mqsisetdbparms kerberos::kerberos

3. In the WebSphere Message Broker Explorer, right-click on the broker
with which you want to work, and click Properties.

4. In the Properties window, select the Security tab, and click Policy Sets.
5. Create a policy set and add the required Kerberos token type as

Symmetric Tokens; see “Policy Sets and Policy Set Bindings editor:
Message Level Protection panel” on page 6845.

Expiration:
Procedure

To configure message expiration, see “Policy Sets and Policy Set Bindings editor:
Message Expiration panel” on page 6862.
Related concepts:
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
“WS-Security capabilities” on page 790
Web service security capabilities are supported by the broker.

Chapter 7. Configuring brokers for test and production environments 773

Related tasks:
“Viewing and setting keystore and truststore runtime properties at broker level” on
page 780
Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
“Viewing and setting keystore and truststore runtime properties at execution group
level” on page 783
Configure an execution group to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
“Associating policy sets and bindings with message flows and nodes” on page 785
Use the Broker Archive editor to associate policy sets and bindings with message
flows and nodes, so that they are available to the broker at run time.
Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.

Policy sets
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.

A policy set is a container for the WS-Security policy type.

A policy set binding is associated with a policy set and contains information that is
specific to the environment and platform, such as information about keys.

Use policy sets and bindings to define the following items for both request and
response SOAP messages:
v Authentication for the following tokens:

– Username tokens (requires a security profile to specify the external security
provider)

– X.509 certificates (requires the broker keystore and truststore, or a security
profile to specify the external security provider)

– SAML assertions, using SAML 1.1 or 2.0 pass-through (requires a security
profile to specify the external security provider)

– LTPA tokens, using LTPA pass-through (requires a security profile to specify
the external security provider)

v Asymmetric encryption (confidentiality) using X.509 certificates (requires the
broker keystore and truststore)

v Symmetric encryption (confidentiality) using Kerberos tokens (requires the host
to be configured for Kerberos)

v Asymmetric signature (integrity) (requires the broker keystore and truststore)

Either the whole SOAP message body, or specific parts of the SOAP message
header and body can be encrypted and signed.

You administer policy sets and bindings from WebSphere Message Broker Explorer,
which can add, delete, display and edit policy sets and bindings. Any changes to

774 WebSphere Message Broker Version 7.0.0.8

policy sets or bindings in the toolkit are saved directly to the associated broker.
You must stop and then restart the message flow for the new configuration
information to take effect.

You can also export and import policy sets and bindings from a broker.
v “Exporting a policy set and policy binding” on page 786
v “Importing a policy set and policy set binding” on page 752

Policy sets and their associated bindings must be saved and restored together.

Policy sets are associated with a message flow, a node or both in the Broker
Archive editor. For convenience, you can specify settings for provider and consumer
at the message flow level. The provider setting applies to all SOAPInput and
SOAPReply nodes in the message flow. The consumer setting applies to all
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes. Individual
policy set and binding assignments can be applied at the node level in the Broker
Archive editor, and these take precedence over the flow-level provider and
consumer settings. The default setting is none, meaning that no policy set and
bindings are to be used.

Several nodes in the same message flow can refer to the same policy set and
bindings. It is the responsibility of the administrator to ensure that the required
policy sets are available to the broker at run time. An error is reported if the broker
cannot find the associated policy set or bindings.

The rest of this topic describes some of the terms that you will meet when
configuring policy sets and bindings.

Default policy set and bindings

When a broker is created, a default policy set and bindings are created called
WSS10Default. This default contains a limited security policy which specifies that a
Username token is present in request messages (inbound) to SOAPInput nodes in
the associated message flow.

The default policy set binding refers to the default WSS10Default policy set. They
are not editable.

Consumer and provider nodes

Nodes are either consumers or providers.

Consumer nodes

SOAPRequest
SOAPAsyncRequest
SOAPAsyncResponse

Provider nodes

SOAPInput
SOAPReply

Request and response

Request and response is a message exchange pattern (MEP). It describes a client
that sends a SOAP Request message to a Web services server, which in turn sends
a Response SOAP message back to the client. The Request message is always the

Chapter 7. Configuring brokers for test and production environments 775

SOAP message from the client to the server, and the Response message is always
the SOAP message reply from server to the client. The following table describes
this pattern in relation to the WebSphere Message Broker SOAP nodes:

Node Broker viewpoint Request Response

SOAPInput SOAP message
inbound

Inbound message Not applicable

SOAPReply SOAP message
outbound

Not applicable Outbound message

SOAPRequest SOAP message
outbound followed
by a SOAP message
inbound

Outbound message Inbound message

SOAPAsyncRequest SOAP message
outbound

Outbound message Not applicable

SOAPAsyncResponse SOAP message
inbound

Not applicable Inbound message

Initiator and recipient

Initiator and recipient are roles defined in the exchange of SOAP messages.

Initiator
The role that sends the initial message in a message exchange.

Recipient
The targeted role to process the initial message in a message exchange.

The following table describes these roles in relation to the Message Broker SOAP
nodes:

Node Broker viewpoint Initiator Recipient

SOAPInput SOAP message
inbound

External client
sending SOAP
message to the
broker.

SOAPInput node

SOAPReply SOAP message
outbound

External client that
sent the original
SOAP message to the
broker.

SOAPReply node

SOAPRequest
(outbound)

SOAP message
outbound followed
by a SOAP message
inbound

SOAPRequest node External provider
receiving the SOAP
message

SOAPRequest
(inbound)

SOAP message
outbound followed
by a SOAP message
inbound

SOAPRequest node External provider
receiving the SOAP
message

SOAPAsyncRequest SOAP message
outbound

SOAPAsyncRequest
node

External provider
receiving the SOAP
message

SOAPAsyncResponse SOAP message
inbound

SOAPAsyncRequest
node

External provider
receiving the SOAP
message

776 WebSphere Message Broker Version 7.0.0.8

SOAPInput and SOAPReply nodes

In this diagram, the broker acts as recipient. A SOAPInput node receives a message
from a client (initiator). A SOAPReply node replies. Inbound and outbound
messages are signed and encrypted.

Client

Initiator

Recipient
Encryption

Token

Recipient
Signature

Token

Recipient
Encryption

Token

Recipient
Signature

Token

Public

Public

Private

Private

Encryption

Encryption

Signature

Signature

Public

Public

Private

Private

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator
Signature

Token

Initiator
Encryption

Token

Recipient

M
e

s
s

a
g

e
 B

ro
k

e
r

SOAPInput

SOAPReply

SOAPInput

SOAPReply

In the request:

v The initiator uses the broker's public encryption token to encrypt the message,
and its own private signature token to sign it.

v The broker uses its own private encryption token to decrypt the message, and
the initiator's public signature token to verify the signature.

In the response:

v The broker uses the initiator's public encryption token to encrypt the message,
and its own private signature token to sign the message.

v The initiator uses its own private encryption token to decrypt the message, and
the broker's public signature token to verify the signature.

SOAPRequest node

This diagram shows the broker acting as an initiator. It uses the SOAPRequest
node to make a synchronous request to an external provider (the recipient).
Inbound and outbound messages are signed and encrypted. Use of tokens is
similar to the example of the asynchronous SOAP nodes, shown earlier.

Chapter 7. Configuring brokers for test and production environments 777

Server

Recipient

Recipient
Encryption

Token

Recipient
Signature

Token

Recipient
Encryption

Token

Recipient
Signature

Token

Public

Public

Private

Private

Encryption

Encryption

Signature

Signature

Public

Public

Private

Private

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator

M
e

s
s

a
g

e
 B

ro
k

e
r

SOAPRequest

SOAPRequest

In the request:

v The broker uses the recipient's public encryption token to encrypt the message,
and its own private signature token to sign the message.

v The recipient uses its own private encryption token to decrypt the message, and
the broker's public signature token to verify the signature.

In the response:

v The recipient uses the broker's public encryption token to encrypt the message,
and its own private signature token to sign the message.

v The broker uses its own private encryption token to decrypt the message, and
the initiator's public signature token to verify the signature.

Asynchronous SOAP nodes

This diagram shows the broker acting as an initiator. It uses the asynchronous
SOAP nodes to make a request to an external provider (the recipient). Inbound and
outbound messages are signed and encrypted.

778 WebSphere Message Broker Version 7.0.0.8

Server

Recipient

Recipient
Encryption

Token

Recipient
Signature

Token

Recipient
Encryption

Token

Recipient
Signature

Token

Public

Public

Private

Private

Encryption

Encryption

Signature

Signature

Public

Public

Private

Private

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator

M
e

s
s

a
g

e
 B

ro
k

e
r

SOAPAsyncRequest

SOAPAsyncRequest

SOAPAsyncResponse

SOAPAsyncResponse

In the request:

v The broker uses the recipient's public encryption token to encrypt the message,
and its own private signature token to sign the message.

v The recipient uses its own private encryption token to decrypt the message, and
the broker's public signature token to verify the signature.

In the response:

v The recipient uses the broker's public encryption token to encrypt the message,
and its own private signature token to sign the message.

v The broker uses its own private encryption token to decrypt the message, and
the initiator's public signature token to verify the signature.

Related concepts:
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.

Chapter 7. Configuring brokers for test and production environments 779

“Public key cryptography” on page 354
All encryption systems rely on the concept of a key. A key is the basis for a
transformation, usually mathematical, of an ordinary message into an unreadable
message. For centuries, most encryption systems have relied on private key
encryption. Public key encryption is the only challenge to private key encryption
that has appeared in the last 30 years.
“Digital certificates” on page 356
Certificates provide a way of authenticating users. Instead of requiring each
participant in an application to authenticate every user, third-party authentication
relies on the use of digital certificates.
“Digital signatures” on page 360
A digital signature is a number that is attached to a document. For example, in an
authentication system that uses public-key encryption, digital signatures are used
to sign certificates.
Related tasks:
“Viewing and setting keystore and truststore runtime properties at broker level”
Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
“Viewing and setting keystore and truststore runtime properties at execution group
level” on page 783
Configure an execution group to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
“Associating policy sets and bindings with message flows and nodes” on page 785
Use the Broker Archive editor to associate policy sets and bindings with message
flows and nodes, so that they are available to the broker at run time.
“Exporting a policy set and policy binding” on page 786
Use the mqsireportproperties command to export a policy set and associated
binding to a file.
“Importing a policy set and policy set binding” on page 752
Use the mqsichangeproperties command to import a policy set and associated
binding.
Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.

Viewing and setting keystore and truststore runtime properties at broker level:

Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.

780 WebSphere Message Broker Version 7.0.0.8

About this task

Keystores and truststores are both keystores. They differ only in the way they are
used.

Put all private keys and public key certificates (PKC) in the keystore.
Put all trusted root certificate authority (CA) certificates in the truststore. These
certificates are used to establish the trust of any inbound public key certificates.

The only supported type of store is Java keystore (JKS).

Each instance of a broker can be configured to refer to one keystore and one
truststore.

The following properties of the broker registry component must be defined
correctly for policy sets and bindings:

brokerKeystoreFile
The directory and file location of the keystore.

brokerTruststoreFile
The directory and file location of the truststore.

Listing existing broker registry entries:
About this task

To display all broker registry values, run the command:
mqsireportproperties broker_name -o BrokerRegistry -a

This returns entries like these:
BrokerRegistry=’’

uuid=’BrokerRegistry’
brokerKeystoreType=’JKS’
brokerKeystoreFile=’’
brokerKeystorePass=’brokerKeystore::password’
brokerTruststoreType=’JKS’
brokerTruststoreFile=’’
brokerTruststorePass=’brokerTruststore::password’
httpConnectorPortRange=’’
httpsConnectorPortRange=’’

Updating the broker reference to a keystore:
About this task

To update the broker reference to a keystore, use the following command:
mqsichangeproperties broker_name -o BrokerRegistry

–n brokerKeystoreFile
-v c:\keystore\server.keystore

Where c:\keystore\server.keystore is the keystore to be referenced.

Updating the broker reference to a truststore:
About this task

To update the broker reference to a truststore, use the following command:
mqsichangeproperties broker_name -o BrokerRegistry

–n brokerTruststoreFile
-v c:\truststore\server.truststore

Chapter 7. Configuring brokers for test and production environments 781

Where c:\truststore\server.truststore is the truststore to be referenced.

Updating the broker with the keystore password:
About this task

Keystores and truststores normally require passwords for access. Use the
mqsisetdbparms command to add these passwords to the broker runtime
component.
mqsisetdbparms broker_name

-n brokerKeystore::password
-u temp -p pa55word

The user ID, which can be any value, is not required to access the keystore.

Updating the broker with the truststore password:
About this task

To update the broker with the truststore password, use the following command:
mqsisetdbparms broker_name

-n brokerTruststore::password
-u temp -p pa55word

The user ID, which can be any value, is not required to access the keystore.

Updating the broker with a private key password:
About this task

Private keys in the keystore might have their own individual passwords. These can
be configured based on the alias name that is specified for the key in the Policy
sets and bindings editor. If a key password based on the alias is not found, the
keystore password is used. The following command updates the broker with the
private key password for the key whose alias is encKey.
mqsisetdbparms broker_name

-n brokerTruststore::keypass::encKey
-u temp -p pa55word

The user ID, which can be any value, is not required to access the keystore.
Related concepts:
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
Related tasks:
“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
“Associating policy sets and bindings with message flows and nodes” on page 785
Use the Broker Archive editor to associate policy sets and bindings with message
flows and nodes, so that they are available to the broker at run time.
“Viewing and setting keystore and truststore runtime properties at execution group
level” on page 783
Configure an execution group to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
Related reference:

782 WebSphere Message Broker Version 7.0.0.8

“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.

Viewing and setting keystore and truststore runtime properties at execution
group level:

Configure an execution group to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.

About this task

An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes. For more information about execution groups, see
“Execution groups” on page 53.

Execution group keystore and truststore runtime property values override
equivalent property values on the broker, if any are set.

Keystores can contain two kinds of entries: key entries and trusted certificate
entries. If a keystore is used to contain trusted certificates, it is typically referred to
as a truststore. WebSphere Message Broker can refer to a keystore and a truststore
per execution group. When the broker is encrypting or decrypting, it uses entries
in its keystore; if the broker is verifying a signature or performing X.509
authentication, it uses entries in its truststore.

The following sample demonstrates the use of viewing and setting keystore and
truststore runtime properties at execution group level:
v Address Book

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Displaying execution group level properties:
About this task

To display execution group level properties, run the command:
mqsireportproperties broker_name -o ComIbmJVMManager -a -e execution_group

Updating the execution group reference to a keystore:
About this task

To update the broker reference to a keystore at an execution group level, use the
following command:
mqsichangeproperties broker_name -e execution_group -o ComIbmJVMManager

–n keystoreFile
-v c:\keystore\server.keystore,JKS

where c:\keystore\server.keystore,JKS is a Java keystore (JKS).

Chapter 7. Configuring brokers for test and production environments 783

Updating the execution group reference to a truststore:
About this task

To update the broker reference to a truststore at an execution group level, use the
following command:
mqsichangeproperties broker_name -e execution_group -o ComIbmJVMManager

–n truststoreFile
-v c:\truststore\server.truststore

where c:\truststore\server.truststore is the truststore to be referenced.

Updating the keystore and truststore passwords:
About this task

The commands used to update the keystore and truststore passwords at execution
group level are the same as those used when setting keystore and truststore
runtime properties at broker level.
v To update the broker with the keystore password; see “Updating the broker with

the keystore password” on page 782.
v To update the broker with the truststore password; see “Updating the broker

with the truststore password” on page 782.
v To update the broker with a private key password; see “Updating the broker

with a private key password” on page 782.

To use the default broker password for the keystore, the keystorePass parameter
must be blank, or it must be set to brokerKeystore::password. To use a password
other than the default broker password, use the following commands:
mqsichangeproperties broker_name -e execution_group -o ComIbmJVMManager -n keystorePass
-v execution_group::keystorePass

mqsisetdbparms broker_name -n execution_group::keystorePass -u na -p password

To use the default broker password for the truststore, the truststorePass parameter
must be blank, or it must be set to brokerTruststore::password. To use a
password other than the default broker password, use the following commands:
mqsichangeproperties broker_name -e execution_group -o ComIbmJVMManager -n truststorePass
-v execution_group::truststorePass

mqsisetdbparms broker_name -n execution_group::truststorePass -u na -p password

Adding new certificates to a keystore or truststore:
About this task

If you add new certificates to a keystore or truststore, to ensure that the new
certificates are picked up, you must reload the Java virtual machine (JVM). You can
reload the JVM by restarting the execution group.
Related concepts:
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
Related tasks:
“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.

784 WebSphere Message Broker Version 7.0.0.8

“Associating policy sets and bindings with message flows and nodes”
Use the Broker Archive editor to associate policy sets and bindings with message
flows and nodes, so that they are available to the broker at run time.
“Viewing and setting keystore and truststore runtime properties at broker level” on
page 780
Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
“Stopping an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 944
You can stop all the message flows in an execution group by using the WebSphere
Message Broker Toolkit or WebSphere Message Broker Explorer.
“Starting an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 941
You can start an execution group and all the deployed message flows in an
execution group by using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer.
Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.

Associating policy sets and bindings with message flows and nodes:

Use the Broker Archive editor to associate policy sets and bindings with message
flows and nodes, so that they are available to the broker at run time.

Before you begin

Before you start

Use the Policy Sets and Policy Set Bindings editor to create and configure policy
sets and bindings.

About this task

Associations can be made between policy sets and message flow, or specific nodes.
Associations made with a flow apply to all nodes described in the Policy Set and
Bindings file. Associations at the flow level are defined as being either for
consumer or provider nodes.

An association at the node level overrides any association made at the flow level.
You do not enter information about consumer or provider for an association at
node level.

Procedure

1. In the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer, open the BAR file in the Broker Archive editor.

2. Click the Manage and Configure tab.
3. Click the message flow or node that you want to associate with a policy set

and binding. The properties that you can configure for the message flow or for
the node are displayed in the Properties view.

Chapter 7. Configuring brokers for test and production environments 785

4. If you are configuring a message flow, enter values in the following fields in
the Properties view, as appropriate:

Provider Policy Set Bindings

Provider Policy Set

Consumer Policy Set Bindings

Consumer Policy Set

5. If you are configuring a node, enter values in the following fields in the
Properties view:

Policy Set

Policy Set Bindings

Example

What to do next

For new associations to take effect, the BAR file must be redeployed and the
message flows stopped and restarted.
Related concepts:
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
Related tasks:
“Viewing and setting keystore and truststore runtime properties at broker level” on
page 780
Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
“Viewing and setting keystore and truststore runtime properties at execution group
level” on page 783
Configure an execution group to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.

Exporting a policy set and policy binding:

Use the mqsireportproperties command to export a policy set and associated
binding to a file.

786 WebSphere Message Broker Version 7.0.0.8

About this task

This topic shows how to export policy set myPolicySet from broker myBroker to a
file called myPolicySet.xml. The associated binding is myPolicySetBinding, which you
export to myPolicySetBinding.xml.

Procedure

1. Export the policy set to a file:
mqsireportproperties myBroker -c PolicySets -o myPolicySet -n ws-security -p myPolicySet.xml

2. Export the policy set binding to a file:
mqsireportproperties myBroker -c PolicySetBindings -o myPolicySetBinding

-n ws-security -p myPolicySetBinding.xml

What to do next

Make a note of the policy set that is associated to the binding; you will need this
information when you import the policy set and binding. This command displays
the policy set associated with a binding:
mqsireportproperties myBroker -c PolicySetBindings -o myPolicySetBinding -n associatedPolicySet

This displays:
PolicySetBindings myPolicySetBinding associatedPolicySet=’myPolicySet’
BIP8071I: Successful command completion.

Related tasks:
“Importing a policy set and policy set binding” on page 752
Use the mqsichangeproperties command to import a policy set and associated
binding.
Related reference:
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Importing a policy set and policy set binding:

Use the mqsichangeproperties command to import a policy set and associated
binding.

About this task

This topic shows how to import policy set myPolicySet to broker myBroker from a
file called myPolicySet.xml. The associated binding is myPolicySetBinding, which you
import from myPolicySetBinding.xml.

Procedure

1. Create a configurable service for the policy set, if one does not already exist.
mqsicreateconfigurableservice myBroker -c PolicySets -o myPolicySet
BIP8071I: Successful command completion.

2. Create a configurable service for the policy set binding, if one does not already
exist.
mqsicreateconfigurableservice myBroker -c PolicySetBindings -o myPolicySetBinding
BIP8071I: Successful command completion.

3. Import the policy set.
mqsichangeproperties myBroker -c PolicySets -o myPolicySet -n ws-security -p myPolicySet.xml

Chapter 7. Configuring brokers for test and production environments 787

4. Import the policy set binding.
mqsichangeproperties myBroker -c PolicySetBindings -o myPolicySetBinding

-n ws-security -p myPolicySetBinding.xml

5. Change the value of the associatedPolicySet attribute. Set it to the name of the
policy set with which this policy set binding was originally associated.
mqsichangeproperties myBroker -c PolicySetBindings -o myPolicySetBinding

-n associatedPolicySet -v myPolicySet

Related concepts:
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
Related tasks:
“Exporting a policy set and policy binding” on page 786
Use the mqsireportproperties command to export a policy set and associated
binding to a file.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

Message flow security and security profiles
WebSphere Message Broker provides a security manager for implementing
message flow security, so that end-to-end processing of a message through a
message flow is secured based on an identity carried in that message instance.

For details of the supported external providers and the operation of the message
flow security manager, see “Message flow security overview” on page 383. For
information about the token types that are supported by the SOAP nodes and by
external security providers, see “Identity” on page 390.

When the message flow is a Web service implemented by using “SOAP nodes” on
page 1609 and the identity is to be taken from the “WS-Security” on page 765
SOAP headers, the SOAP nodes are the Policy Enforcement Point (PEP) and the
external provider defined by the “Security profiles” on page 387 is the Policy
Decision Point (PDP).

The following configuration is required to implement message flow security based
on an identity carried in WS_Security tokens.
v “Policy sets” on page 774 define the type of tokens used for the identity.

– To work with a Username and Password identity, configure the policy and
binding for Username token “Authentication” on page 770.

– To work with a X.509 Certificate identity, configure the policy and binding for
X.509 certificate token “Authentication” on page 770.

In the Policy Set Binding, set the X.509 certificate Authentication Token
certificates mode to Trust Any. You set it this way (and not to Trust
Store) so that the certificate is passed to the security provider defined by
the Security Profile. Setting it to Trust Store will cause the certificate to

788 WebSphere Message Broker Version 7.0.0.8

be validated in the local Broker Trust Store. For more details, see “Policy
Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854.

– To work with a SAML assertion token, configure the policy and binding for
SAML token “Authentication” on page 770.

v The message flow security operation and external provider are defined by the
“Security profiles” on page 387

As an alternative to message flow security and an external PDP, the broker's
truststore can be used as a local PDP for X.509 certificate authentication. For
WS-Security signing and encryption using only the local broker capability, you
must configure the broker's truststore. For details, see “Viewing and setting
keystore and truststore runtime properties at broker level” on page 780, or
“Viewing and setting keystore and truststore runtime properties at execution group
level” on page 783.

Kerberos based WS-Security is supported in the SOAP nodes. When you use
Kerberos for security, the SOAP node's WS-Security processing links directly with
the host's Kerberos infrastructure. The broker host must be configured for
Kerberos, providing a krb.conf file to define the Kerberos Key Distribution Center
(KDC) and default realm. A Kerberos keytab file must also be configured. For more
information about configuring Kerberos, see your host's Kerberos documentation.

To work with Kerberos WS-Security in SOAP nodes, create a policy set and
bindings specifying Kerberos symmetric encryption tokens on the Message Level
Protection panel; see “Policy Sets and Policy Set Bindings editor: Message Level
Protection panel” on page 6845. Also configure the required settings on the
Kerberos settings panel, as described in “Policy Sets and Policy Set Bindings editor:
Kerberos settings panel” on page 6860, and then associate this policy set and
bindings with the SOAP node. You can also associate SOAP nodes with a security
profile that sets only propagation, so that Kerberos can be used to:
v Extract the service principal as a Username token from SOAP input nodes
v Propagate the Kerberos Key Distribution Center (KDC) credentials as a

Username and password to SOAP request nodes.
Related concepts:
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
“Username token capabilities” on page 791
This topic describes WS-Security username token capabilities of the broker.

Chapter 7. Configuring brokers for test and production environments 789

“X.509 certificate token capabilities” on page 795
Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.
“Viewing and setting keystore and truststore runtime properties at broker level” on
page 780
Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
Related reference:
“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.

WS-Security capabilities
Web service security capabilities are supported by the broker.

Web service security mechanisms are defined by OASIS standards. See OASIS
Standard for WS-Security Specification

For information about the token profile standards, see:
v OASIS Web Services Security Username Token Profile
v OASIS Web Services Security X.509 Certificate Token Profile
v OASIS Web Services Security Kerberos Token Profile

SAML pass-through support is provided, which enables interoperability with
WS-Security SAML profiles, without performing subject confirmation processing.
This means that it does not provide validation of the trust relationship between the
SAML subject and message content signatures. For information about the SAML
token profile standards, see:
v OASIS Web Services Security SAML Token Profile 1.1
v SAML V2 Specification

LTPA pass-through support is also provided, which enables LTPA binary tokens to
be passed to an external security token server (STS) for processing.

For more information about using the token profiles, see the following topics:
v “Username token capabilities” on page 791
v “X.509 certificate token capabilities” on page 795

790 WebSphere Message Broker Version 7.0.0.8

http://www.oasis-open.org/specs/index.php#wssv1.1
http://www.oasis-open.org/specs/index.php#wssv1.1
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-UsernameTokenProfile-01.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-x509TokenProfile-01.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://saml.xml.org/saml-specifications

v “SAML token capabilities” on page 804
v “Kerberos token capabilities” on page 809
v “LTPA token capabilities” on page 813
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.

OASIS Standard for WS-Security Specification
OASIS Web Services Security Username Token Profile
OASIS Web Services Security X.509 Certificate Token Profile

Username token capabilities:

This topic describes WS-Security username token capabilities of the broker.

For details of using WS-Security username token, see the following capabilities:
v “Username token capabilities for encryption, decryption, signing, and verifying”
v “Username token capabilities for authentication and authorization” on page 792
v “Username token capabilities for identity mapping” on page 793
v “Username token capabilities for extraction and propagation” on page 794
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.

Username token capabilities for encryption, decryption, signing, and verifying:

For Web services, you cannot complete encryption, decryption, signing, and
verification by using username tokens.

The username token is not applicable, or supported, for the following in any
configuration or direction:
v Encryption
v Decryption
v Signing
v Verification
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Username token capabilities”
This topic describes WS-Security username token capabilities of the broker.
Related reference:

Chapter 7. Configuring brokers for test and production environments 791

http://www.oasis-open.org/specs/index.php#wssv1.1
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-UsernameTokenProfile-01.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-x509TokenProfile-01.pdf

“Username token capabilities for authentication and authorization”
For Web services, you can complete authentication and authorization by using a
Web Services Security username token.
“Username token capabilities for identity mapping” on page 793
For Web services, you can map an identity by using a username token.
“Username token capabilities for extraction and propagation” on page 794
This topic describes broker capability for extraction, propagation, or both using a
username token in Web services.

Username token capabilities for authentication and authorization:

For Web services, you can complete authentication and authorization by using a
Web Services Security username token.

For authentication, the Web Services Security username token must include both
the username and the optional password.

The Web Services Security username token “Authentication” on page 768 and
“Authorization” on page 401 is supported only in the following configuration:

Capability
v Authenticate
v Authorize

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a security policy and binding that defines that a Web Services
Security username token is present for authentication; see “Authentication” on
page 770. You can use the default policy and binding WSS10Default; see
“Default policy set and bindings” on page 775.
Configured with a security profile defining the Policy Decision Point (PDP); see
the PDP section that follows.

Trust Store or PDP
v LDAP

Configured by using an LDAP security profile specifying authentication,
authorization, or both; see “Creating a security profile for LDAP” on page 435.
For authentication, both a username and password are required.

v WS-Trust v1.3 STS
Configured by using a WS-Trust v1.3 STS security profile specifying
authentication, authorization or both; see “Creating a security profile for
WS-Trust V1.3 (TFIM V6.2)” on page 440. For authentication, both a username
and password are required.

v TFIM V6.1
Configured by using a TFIM security profile specifying authentication,
authorization or both; see “Creating a security profile for TFIM V6.1” on page
444. For authentication, both a username and password are required.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.

792 WebSphere Message Broker Version 7.0.0.8

“Username token capabilities” on page 791
This topic describes WS-Security username token capabilities of the broker.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
Related reference:
“Username token capabilities for encryption, decryption, signing, and verifying” on
page 791
For Web services, you cannot complete encryption, decryption, signing, and
verification by using username tokens.
“Username token capabilities for identity mapping”
For Web services, you can map an identity by using a username token.
“Username token capabilities for extraction and propagation” on page 794
This topic describes broker capability for extraction, propagation, or both using a
username token in Web services.

Username token capabilities for identity mapping:

For Web services, you can map an identity by using a username token.

“Identity mapping” on page 403 from a username identity token to a mapped
username identity token is supported only in the following configurations:

Capability
v Identity mapping

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a security policy and binding that defines that a username
taken is present. You can use the default policy and binding WSS10Default; see
“Default policy set and bindings” on page 775.
Configured with a security profile defining the external Policy Decision Point
(PDP); see the PDP section that follows.

Trust store or PDP
v WS-Trust v1.3 STS

Configured by using a WS-Trust v1.3 STS security profile that specifies identity
mapping; see “Creating a security profile for WS-Trust V1.3 (TFIM V6.2)” on
page 440.

v TFIM V6.1
Configured by using a TFIM security profile that specifies identity mapping; see
“Creating a security profile for TFIM V6.1” on page 444.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Username token capabilities” on page 791
This topic describes WS-Security username token capabilities of the broker.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent

Chapter 7. Configuring brokers for test and production environments 793

identity in another realm.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related reference:
“Username token capabilities for encryption, decryption, signing, and verifying” on
page 791
For Web services, you cannot complete encryption, decryption, signing, and
verification by using username tokens.
“Username token capabilities for authentication and authorization” on page 792
For Web services, you can complete authentication and authorization by using a
Web Services Security username token.
“Username token capabilities for extraction and propagation”
This topic describes broker capability for extraction, propagation, or both using a
username token in Web services.

Username token capabilities for extraction and propagation:

This topic describes broker capability for extraction, propagation, or both using a
username token in Web services.

The extraction of username into the Properties folder source “Identity” on page 390
fields, is supported in the following configurations:

Capability
v Extraction

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a security policy and binding which defines that a username
taken is present. You can use the default policy and binding WSS10Default; see
“Default policy set and bindings” on page 775.
Configured with a security profile that defines propagation; see “Creating a
security profile” on page 433

The propagation of a username token into the SOAP WS-Security header, from the
token present in either the mapped or the source identity fields in the properties
folder, is supported in the following configuration. See “Identity” on page 390.

Capability
v Propagate

Policy Enforcement Point (PEP) and direction
v Out (consumer)

“SOAPRequest node” on page 4828
“SOAPAsyncRequest node” on page 4750

Configured with a security profile that defines propagation; for example, Default
Propagation. See “Security profiles” on page 387

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web

794 WebSphere Message Broker Version 7.0.0.8

services at the message level: authentication, integrity, and confidentiality.
“Username token capabilities” on page 791
This topic describes WS-Security username token capabilities of the broker.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
Related reference:
“Username token capabilities for encryption, decryption, signing, and verifying” on
page 791
For Web services, you cannot complete encryption, decryption, signing, and
verification by using username tokens.
“Username token capabilities for authentication and authorization” on page 792
For Web services, you can complete authentication and authorization by using a
Web Services Security username token.
“Username token capabilities for identity mapping” on page 793
For Web services, you can map an identity by using a username token.

X.509 certificate token capabilities:

Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.

For details of using the X.509 certificates, see the following capabilities:
v “X.509 certificate token capabilities for encryption” on page 796
v “X.509 certificate token capabilities for decryption” on page 797
v “X.509 certificate token capabilities for signing” on page 798
v “X.509 certificate token capabilities for verifying” on page 799
v “X.509 certificate token capabilities for authentication” on page 800
v “X.509 certificate token capabilities for authorization” on page 801
v “X.509 certificate token capabilities for identity mapping” on page 802
v “X.509 certificate token capabilities for extraction and propagation” on page 803
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.

Chapter 7. Configuring brokers for test and production environments 795

X.509 certificate token capabilities for encryption:

For Web services, you can complete encryption by using an X.509 certificate token.

X.509 certificate token encryption for providing message “Confidentiality” on page
769 on outgoing SOAP messages from the broker is supported in the following
configurations:

Capability
v Encrypt (by using a partner public key)

Policy Enforcement Point (PEP) and direction
v Out (consumer)

“SOAPRequest node” on page 4828
“SOAPAsyncRequest node” on page 4750

v Out (provider)
“SOAPReply node” on page 4819

Configured with a policy set and binding defining the message “Confidentiality”
on page 771.

Trust Store or Policy Decision Point (PDP)
v Broker Truststore; for more details, see “Viewing and setting keystore and

truststore runtime properties at broker level” on page 780.

Encryption is not supported with external PDPs such as TFIM or LDAP.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“X.509 certificate token capabilities” on page 795
Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.
Related tasks:
“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
Related reference:
“X.509 certificate token capabilities for decryption” on page 797
For Web services, you can complete decryption by using an X.509 certificate token.

“X.509 certificate token capabilities for signing” on page 798
For Web services, you can use an X.509 certificate token for signing.
“X.509 certificate token capabilities for verifying” on page 799
For Web services, you can verify a signing by using an X.509 certificate token
profile.
“X.509 certificate token capabilities for authentication” on page 800
For Web services, you can complete authentication by using an X.509 certificate
token.
“X.509 certificate token capabilities for authorization” on page 801
The X.509 certificate token is not supported for authorization in any configuration
or direction.

796 WebSphere Message Broker Version 7.0.0.8

“X.509 certificate token capabilities for identity mapping” on page 802
For Web services, you can map an identity by using an X.509 certificate token.
“X.509 certificate token capabilities for extraction and propagation” on page 803
This topic describes broker Web services capability for extraction and propagation
X.509 certificate token.

X.509 certificate token capabilities for decryption:

For Web services, you can complete decryption by using an X.509 certificate token.

X.509 certificate token decryption for incoming SOAP message “Confidentiality” on
page 769 is supported in the following configurations:

Capability
v Decrypt (by using a broker private key)

Policy Enforcement Point (PEP) and direction.
v In (provider)

“SOAPInput node” on page 4795
v In (consumer)

“SOAPRequest node” on page 4828
“SOAPAsyncResponse node” on page 4777

Configured with a policy set and binding defining the message “Confidentiality”
on page 771.

Trust Store or Policy Decision Point (PDP).
v Broker Truststore; for details, see “Viewing and setting keystore and truststore

runtime properties at broker level” on page 780.

Decryption is not supported with external PDPs such as TFIM or LDAP.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“X.509 certificate token capabilities” on page 795
Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.
Related tasks:
“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
Related reference:
“X.509 certificate token capabilities for encryption” on page 796
For Web services, you can complete encryption by using an X.509 certificate token.

“X.509 certificate token capabilities for signing” on page 798
For Web services, you can use an X.509 certificate token for signing.
“X.509 certificate token capabilities for verifying” on page 799
For Web services, you can verify a signing by using an X.509 certificate token
profile.

Chapter 7. Configuring brokers for test and production environments 797

“X.509 certificate token capabilities for authentication” on page 800
For Web services, you can complete authentication by using an X.509 certificate
token.
“X.509 certificate token capabilities for authorization” on page 801
The X.509 certificate token is not supported for authorization in any configuration
or direction.
“X.509 certificate token capabilities for identity mapping” on page 802
For Web services, you can map an identity by using an X.509 certificate token.
“X.509 certificate token capabilities for extraction and propagation” on page 803
This topic describes broker Web services capability for extraction and propagation
X.509 certificate token.

X.509 certificate token capabilities for signing:

For Web services, you can use an X.509 certificate token for signing.

X.509 certificate token signing for outgoing SOAP message “Integrity” on page 769
is supported in the following configurations:

Capability
v Sign (by using a broker private key)

Policy Enforcement Point (PEP) and direction
v Out (consumer)

“SOAPRequest node” on page 4828
“SOAPAsyncRequest node” on page 4750

v Out (provider)
“SOAPReply node” on page 4819

Configured with a policy set and binding defining the message “Integrity” on
page 772.

Trust Store or Policy Decision Point (PDP)
v Broker Truststore; for details, see “Viewing and setting keystore and truststore

runtime properties at broker level” on page 780.

Signing is not supported with an external PDP such as TFIM or LDAP.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“X.509 certificate token capabilities” on page 795
Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.
Related tasks:
“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
Related reference:
“X.509 certificate token capabilities for encryption” on page 796
For Web services, you can complete encryption by using an X.509 certificate token.

798 WebSphere Message Broker Version 7.0.0.8

“X.509 certificate token capabilities for decryption” on page 797
For Web services, you can complete decryption by using an X.509 certificate token.

“X.509 certificate token capabilities for verifying”
For Web services, you can verify a signing by using an X.509 certificate token
profile.
“X.509 certificate token capabilities for authentication” on page 800
For Web services, you can complete authentication by using an X.509 certificate
token.
“X.509 certificate token capabilities for authorization” on page 801
The X.509 certificate token is not supported for authorization in any configuration
or direction.
“X.509 certificate token capabilities for identity mapping” on page 802
For Web services, you can map an identity by using an X.509 certificate token.
“X.509 certificate token capabilities for extraction and propagation” on page 803
This topic describes broker Web services capability for extraction and propagation
X.509 certificate token.

X.509 certificate token capabilities for verifying:

For Web services, you can verify a signing by using an X.509 certificate token
profile.

X.509 certificate token verification of the “Integrity” on page 769 of a signed
incoming SOAP message is supported in the following configurations:

Capability
v Verify signature (by using a partner public key)

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
v In (consumer)

“SOAPRequest node” on page 4828
“SOAPAsyncResponse node” on page 4777

Configured with a policy set and binding defining the message “Integrity” on
page 772

Trust Store or Policy Decision Point (PDP)
v Broker Trust store; for details, see “Viewing and setting keystore and truststore

runtime properties at broker level” on page 780.
Signature verification is not supported with an external PDP, such as TFIM or
LDAP.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“X.509 certificate token capabilities” on page 795
Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.
Related tasks:

Chapter 7. Configuring brokers for test and production environments 799

“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
Related reference:
“X.509 certificate token capabilities for encryption” on page 796
For Web services, you can complete encryption by using an X.509 certificate token.

“X.509 certificate token capabilities for decryption” on page 797
For Web services, you can complete decryption by using an X.509 certificate token.

“X.509 certificate token capabilities for signing” on page 798
For Web services, you can use an X.509 certificate token for signing.
“X.509 certificate token capabilities for authentication”
For Web services, you can complete authentication by using an X.509 certificate
token.
“X.509 certificate token capabilities for authorization” on page 801
The X.509 certificate token is not supported for authorization in any configuration
or direction.
“X.509 certificate token capabilities for identity mapping” on page 802
For Web services, you can map an identity by using an X.509 certificate token.
“X.509 certificate token capabilities for extraction and propagation” on page 803
This topic describes broker Web services capability for extraction and propagation
X.509 certificate token.

X.509 certificate token capabilities for authentication:

For Web services, you can complete authentication by using an X.509 certificate
token.

The X.509 certificate token “Authentication” on page 768 of an incoming SOAP
message is supported in the following configurations:

Capability
v Authenticate

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a policy set and binding defining the certificate
“Authentication” on page 770.
Optionally configured with a security profile defining an external Policy
Decision Point (PDP); see the PDP section that follows.

Trust Store or PDP
v Broker Trust store; for details, see “Viewing and setting keystore and truststore

runtime properties at broker level” on page 780.
v WS-Trust v1.3 STS

Configured by using a WS-Trust v1.3 STS security profile specifying
authentication; see “Creating a security profile for WS-Trust V1.3 (TFIM V6.2)”
on page 440.

v TFIM V6.1

800 WebSphere Message Broker Version 7.0.0.8

Configured by using a TFIM security profile specifying authentication; for
details, see “Creating a security profile for TFIM V6.1” on page 444.

Certificate authentication with an external LDAP PDP is not supported.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“X.509 certificate token capabilities” on page 795
Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.
Related tasks:
“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
Related reference:
“X.509 certificate token capabilities for encryption” on page 796
For Web services, you can complete encryption by using an X.509 certificate token.

“X.509 certificate token capabilities for decryption” on page 797
For Web services, you can complete decryption by using an X.509 certificate token.

“X.509 certificate token capabilities for signing” on page 798
For Web services, you can use an X.509 certificate token for signing.
“X.509 certificate token capabilities for verifying” on page 799
For Web services, you can verify a signing by using an X.509 certificate token
profile.
“X.509 certificate token capabilities for authorization”
The X.509 certificate token is not supported for authorization in any configuration
or direction.
“X.509 certificate token capabilities for identity mapping” on page 802
For Web services, you can map an identity by using an X.509 certificate token.
“X.509 certificate token capabilities for extraction and propagation” on page 803
This topic describes broker Web services capability for extraction and propagation
X.509 certificate token.

X.509 certificate token capabilities for authorization:

The X.509 certificate token is not supported for authorization in any configuration
or direction.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“X.509 certificate token capabilities” on page 795
Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.
Related tasks:

Chapter 7. Configuring brokers for test and production environments 801

“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
Related reference:
“X.509 certificate token capabilities for encryption” on page 796
For Web services, you can complete encryption by using an X.509 certificate token.

“X.509 certificate token capabilities for decryption” on page 797
For Web services, you can complete decryption by using an X.509 certificate token.

“X.509 certificate token capabilities for signing” on page 798
For Web services, you can use an X.509 certificate token for signing.
“X.509 certificate token capabilities for verifying” on page 799
For Web services, you can verify a signing by using an X.509 certificate token
profile.
“X.509 certificate token capabilities for authentication” on page 800
For Web services, you can complete authentication by using an X.509 certificate
token.
“X.509 certificate token capabilities for identity mapping”
For Web services, you can map an identity by using an X.509 certificate token.
“X.509 certificate token capabilities for extraction and propagation” on page 803
This topic describes broker Web services capability for extraction and propagation
X.509 certificate token.

X.509 certificate token capabilities for identity mapping:

For Web services, you can map an identity by using an X.509 certificate token.

The broker supports “Identity mapping” on page 403 from an X.509 certificate
token in an incoming SOAP message header to username tokens in the following
configurations:

Capability
v Identity mapping

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a policy set and binding defining the certificate
“Authentication” on page 770.
Configured with a security profile defining an external Policy Decision Point
(PDP); see the PDP section that follows.

Trust Store or PDP
v TFIM V6.1

Configured by using a TFIM security profile specifying identity mapping; for
details, see “Creating a security profile for TFIM V6.1” on page 444.

v WS-Trust v1.3 STS (TFIM V6.2)
Configured by using a WS-Trust v1.3 STS security profile specifying identity
mapping; for details, see “Creating a security profile for WS-Trust V1.3 (TFIM
V6.2)” on page 440.

802 WebSphere Message Broker Version 7.0.0.8

Identity mapping is not supported with LDAP, or at outbound nodes.

Username tokens only can be propagated.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“X.509 certificate token capabilities” on page 795
Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.
Related tasks:
“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
Related reference:
“X.509 certificate token capabilities for encryption” on page 796
For Web services, you can complete encryption by using an X.509 certificate token.

“X.509 certificate token capabilities for decryption” on page 797
For Web services, you can complete decryption by using an X.509 certificate token.

“X.509 certificate token capabilities for signing” on page 798
For Web services, you can use an X.509 certificate token for signing.
“X.509 certificate token capabilities for verifying” on page 799
For Web services, you can verify a signing by using an X.509 certificate token
profile.
“X.509 certificate token capabilities for authentication” on page 800
For Web services, you can complete authentication by using an X.509 certificate
token.
“X.509 certificate token capabilities for authorization” on page 801
The X.509 certificate token is not supported for authorization in any configuration
or direction.
“X.509 certificate token capabilities for extraction and propagation”
This topic describes broker Web services capability for extraction and propagation
X.509 certificate token.

X.509 certificate token capabilities for extraction and propagation:

This topic describes broker Web services capability for extraction and propagation
X.509 certificate token.

The broker does not support propagation of an X.509 certificate.

The X.509 certificate token extraction is supported in the following configurations:

Capability
v Extraction

Chapter 7. Configuring brokers for test and production environments 803

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a policy set and binding defining the X.509 certificate is
present; see “Implementing WS-Security” on page 769.
Configured with a security profile defining propagation; see the “Security
profiles” on page 387.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“X.509 certificate token capabilities” on page 795
Various WS-Services Security X.509 certificate token profile standards are
supported by WebSphere Message Broker.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
Related reference:
“X.509 certificate token capabilities for encryption” on page 796
For Web services, you can complete encryption by using an X.509 certificate token.

“X.509 certificate token capabilities for decryption” on page 797
For Web services, you can complete decryption by using an X.509 certificate token.

“X.509 certificate token capabilities for signing” on page 798
For Web services, you can use an X.509 certificate token for signing.
“X.509 certificate token capabilities for verifying” on page 799
For Web services, you can verify a signing by using an X.509 certificate token
profile.
“X.509 certificate token capabilities for authentication” on page 800
For Web services, you can complete authentication by using an X.509 certificate
token.
“X.509 certificate token capabilities for authorization” on page 801
The X.509 certificate token is not supported for authorization in any configuration
or direction.
“X.509 certificate token capabilities for identity mapping” on page 802
For Web services, you can map an identity by using an X.509 certificate token.

SAML token capabilities:

This topic describes WS-Security SAML token capabilities of the broker.

804 WebSphere Message Broker Version 7.0.0.8

The broker provides SAML pass-through support, which means that the
mechanisms for subject confirmation are not enforced. The SAML token is
extracted and passed to an external security token service (STS) for validation. The
STS to be used is specified on a security profile.

For information about using WS-Security SAML tokens, see the following topics:
v “SAML token capabilities for encryption, decryption, signing, and verifying”
v “SAML token capabilities for authentication and authorization” on page 806
v “SAML token capabilities for identity mapping” on page 807
v “SAML token capabilities for extraction and propagation” on page 808
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.

SAML token capabilities for encryption, decryption, signing, and verifying:

The broker provides SAML pass-through support, which means that the
encryption, decryption, signing, and verifying mechanisms for achieving SAML
subject confirmation are not enforced by the broker.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“SAML token capabilities” on page 804
This topic describes WS-Security SAML token capabilities of the broker.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related reference:
“SAML token capabilities for authentication and authorization” on page 806
For Web services, you can complete authentication and authorization using a
SAML token.
“SAML token capabilities for identity mapping” on page 807
This topic describes the broker Web services capability for identity mapping using
a SAML token.
“SAML token capabilities for extraction and propagation” on page 808
This topic describes broker capability for extraction, propagation, or both using a
SAML token in Web services.

Chapter 7. Configuring brokers for test and production environments 805

SAML token capabilities for authentication and authorization:

For Web services, you can complete authentication and authorization using a
SAML token.

The SAML token “Authentication” on page 768 and “Authorization” on page 401
are supported only in the following configuration:

Capability
v Authenticate
v Authorize

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a security policy set and binding that defines that a SAML
pass-through 1.1 or SAML pass-through 2.0 token is present for authentication;
see “Authentication” on page 770. The broker provides only SAML pass-through
support, which means that the SAML token is extracted and passed to an
external security token service (STS) for validation. The STS to be used is
specified in a security profile. The STS processing can be used to implement
authentication based on the SAML principal, and authorization based on SAML
attributes.
Configured with a security profile defining the Policy Decision Point (PDP); see
the PDP section that follows.

Trust Store or PDP
v WS-Trust v1.3 STS

Configured by using a WS-Trust v1.3 STS security profile specifying
authentication, authorization or both; see “Creating a security profile for
WS-Trust V1.3 (TFIM V6.2)” on page 440.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“SAML token capabilities” on page 804
This topic describes WS-Security SAML token capabilities of the broker.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related reference:

806 WebSphere Message Broker Version 7.0.0.8

“SAML token capabilities for encryption, decryption, signing, and verifying” on
page 805
The broker provides SAML pass-through support, which means that the
encryption, decryption, signing, and verifying mechanisms for achieving SAML
subject confirmation are not enforced by the broker.
“SAML token capabilities for identity mapping”
This topic describes the broker Web services capability for identity mapping using
a SAML token.
“SAML token capabilities for extraction and propagation” on page 808
This topic describes broker capability for extraction, propagation, or both using a
SAML token in Web services.

SAML token capabilities for identity mapping:

This topic describes the broker Web services capability for identity mapping using
a SAML token.

“Identity mapping” on page 403 from a SAML identity token to a mapped SAML
identity token is supported only in the following configurations:

Capability
v Identity mapping

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a security policy set and bindings that specifies a SAML
pass-though 1.1 or SAML pass-through 2.0 authentication token.
Configured with a security profile defining the external Policy Decision Point
(PDP); see the PDP section that follows.

Trust store or PDP
v WS-Trust v1.3 STS

Configured by using a WS-Trust v1.3 STS security profile that specifies identity
mapping; see “Creating a security profile for WS-Trust V1.3 (TFIM V6.2)” on
page 440.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“SAML token capabilities” on page 804
This topic describes WS-Security SAML token capabilities of the broker.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related reference:

Chapter 7. Configuring brokers for test and production environments 807

“SAML token capabilities for encryption, decryption, signing, and verifying” on
page 805
The broker provides SAML pass-through support, which means that the
encryption, decryption, signing, and verifying mechanisms for achieving SAML
subject confirmation are not enforced by the broker.
“SAML token capabilities for authentication and authorization” on page 806
For Web services, you can complete authentication and authorization using a
SAML token.
“SAML token capabilities for extraction and propagation”
This topic describes broker capability for extraction, propagation, or both using a
SAML token in Web services.

SAML token capabilities for extraction and propagation:

This topic describes broker capability for extraction, propagation, or both using a
SAML token in Web services.

The extraction of a SAML token into the Properties folder source “Identity” on
page 390 fields, is supported in the following configurations:

Capability
v Extraction

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a security policy set and bindings that specifies a SAML
pass-though 1.1 or SAML pass-through 2.0 authentication token.
Configured with a security profile that defines propagation; see “Creating a
security profile” on page 433

The propagation of a SAML token into the SOAP WS-Security header, from the
token present in either the mapped or the source identity fields in the properties
folder, is supported in the following configuration. For more information, see
“Identity” on page 390.

Capability
v Propagate

Policy Enforcement Point (PEP) and direction
v Out (consumer)

“SOAPRequest node” on page 4828
“SOAPAsyncRequest node” on page 4750

Configured with a security profile that defines propagation. For more
information, see “Security profiles” on page 387.
Configured with a security policy set and bindings that specifies SAML
pass-though 1.1 or SAML pass-through 2.0 authentication token.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.

808 WebSphere Message Broker Version 7.0.0.8

“SAML token capabilities” on page 804
This topic describes WS-Security SAML token capabilities of the broker.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
Related reference:
“SAML token capabilities for encryption, decryption, signing, and verifying” on
page 805
The broker provides SAML pass-through support, which means that the
encryption, decryption, signing, and verifying mechanisms for achieving SAML
subject confirmation are not enforced by the broker.
“SAML token capabilities for identity mapping” on page 807
This topic describes the broker Web services capability for identity mapping using
a SAML token.
“SAML token capabilities for authentication and authorization” on page 806
For Web services, you can complete authentication and authorization using a
SAML token.

Kerberos token capabilities:

This topic describes WS-Security Kerberos token capabilities of the broker.

For details of using WS-Security Kerberos tokens, see the following topics:
v “Kerberos token capabilities for encryption, decryption, signing, and verifying”

on page 810
v “Kerberos token capabilities for authentication and authorization” on page 811
v “Kerberos token capabilities for identity mapping” on page 812
v “Kerberos token capabilities for extraction and propagation” on page 812
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.

Chapter 7. Configuring brokers for test and production environments 809

Kerberos token capabilities for encryption, decryption, signing, and verifying:

You can use Kerberos tokens for encryption, decryption, signing, and verifying.

Kerberos token encryption for providing message “Confidentiality” on page 769
and “Integrity” on page 769 on outgoing SOAP messages from the broker is
supported in the following configurations:

Capability
v Encrypt, by using a Kerberos Key Distribution Center (KDC)
v Decrypt, by using the Kerberos keytab file

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
v In (consumer)

“SOAPRequest node” on page 4828
“SOAPAsyncResponse node” on page 4777

Configured with a policy set and binding defining the message “Integrity” on
page 772

v Out (consumer)
“SOAPRequest node” on page 4828
“SOAPAsyncRequest node” on page 4750

v Out (provider)
“SOAPReply node” on page 4819

Configured with a Kerberos policy set and binding.

Trust Store or Policy Decision Point (PDP)
v Kerberos KDC.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“Kerberos token capabilities” on page 809
This topic describes WS-Security Kerberos token capabilities of the broker.
Related reference:
“Kerberos token capabilities for authentication and authorization” on page 811
This topic describes the broker Web services capability for authentication,
authorization, or both using a Kerberos token.
“Kerberos token capabilities for identity mapping” on page 812
This topic describes broker Web services capability for identity mapping using a
Kerberos token.

810 WebSphere Message Broker Version 7.0.0.8

“Kerberos token capabilities for extraction and propagation” on page 812
This topic describes broker capability for extraction, propagation, or both using a
Kerberos token in Web services.

Kerberos token capabilities for authentication and authorization:

This topic describes the broker Web services capability for authentication,
authorization, or both using a Kerberos token.

Kerberos is not applicable to authorization. Kerberos token encryption for
providing message “Authentication” on page 770 on outgoing SOAP messages
from the broker is supported in the following configurations:

Capability
v Authenticate using a Kerberos keytab file.

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
v In (consumer)

“SOAPRequest node” on page 4828
“SOAPAsyncResponse node” on page 4777

Configured with a policy set and binding defining the message “Integrity” on
page 772

Trust Store or Policy Decision Point (PDP)
v Kerberos keytab file.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“Kerberos token capabilities” on page 809
This topic describes WS-Security Kerberos token capabilities of the broker.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
Related reference:
“Kerberos token capabilities for encryption, decryption, signing, and verifying” on
page 810
You can use Kerberos tokens for encryption, decryption, signing, and verifying.

Chapter 7. Configuring brokers for test and production environments 811

“Kerberos token capabilities for identity mapping”
This topic describes broker Web services capability for identity mapping using a
Kerberos token.
“Kerberos token capabilities for extraction and propagation”
This topic describes broker capability for extraction, propagation, or both using a
Kerberos token in Web services.

Kerberos token capabilities for identity mapping:

This topic describes broker Web services capability for identity mapping using a
Kerberos token.

Kerberos tickets from SOAP nodes are not supported for token mapping with an
external security token server (STS) configured in the security profile.

On the Inbound route, with SOAPInput and SOAPAsyncResponse nodes, the
presence of a security profile with propagation enabled causes the Kerberos Service
Principal Name (SPN) to be placed in the properties tree as a Username token.

On the Outbound route, with SOAPRequest and SOAPAsyncRequest nodes,
identity propagation can be used to provide the Kerberos Key Distribution Center
(KDC) credentials. Arrange for the KDC credentials to be set as a Username and
password token in the properties tree and associate the SOAP node with a security
profile that specifies propagation; otherwise the KDC credentials are obtained
using the Kerberos resource credentials that are created using the mqsisetdbparms
command.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Kerberos token capabilities” on page 809
This topic describes WS-Security Kerberos token capabilities of the broker.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related reference:
“Kerberos token capabilities for encryption, decryption, signing, and verifying” on
page 810
You can use Kerberos tokens for encryption, decryption, signing, and verifying.
“Kerberos token capabilities for authentication and authorization” on page 811
This topic describes the broker Web services capability for authentication,
authorization, or both using a Kerberos token.
“Kerberos token capabilities for extraction and propagation”
This topic describes broker capability for extraction, propagation, or both using a
Kerberos token in Web services.

Kerberos token capabilities for extraction and propagation:

This topic describes broker capability for extraction, propagation, or both using a
Kerberos token in Web services.

812 WebSphere Message Broker Version 7.0.0.8

Kerberos tickets from SOAP nodes are not supported for token extraction and
propagation with an external security token server (STS) configured in the security
profile.

On the Inbound route, with SOAPInput and SOAPAsyncResponse nodes, the
presence of a security profile with propagation enabled causes the Kerberos Service
Principal Name (SPN) to be placed in the properties tree as a Username token.

On the Outbound route, with SOAPRequest and SOAPAsyncRequest nodes,
identity propagation can be used to provide the Kerberos Key Distribution Center
(KDC) credentials. Arrange for the KDC credentials to be set as a Username and
password token in the properties tree and associate the SOAP node with a security
profile that specifies propagation; otherwise the KDC credentials are obtained
using the Kerberos resource credentials that are created using the mqsisetdbparms
command.
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Kerberos token capabilities” on page 809
This topic describes WS-Security Kerberos token capabilities of the broker.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
Related reference:
“Kerberos token capabilities for encryption, decryption, signing, and verifying” on
page 810
You can use Kerberos tokens for encryption, decryption, signing, and verifying.
“Kerberos token capabilities for authentication and authorization” on page 811
This topic describes the broker Web services capability for authentication,
authorization, or both using a Kerberos token.
“Kerberos token capabilities for identity mapping” on page 812
This topic describes broker Web services capability for identity mapping using a
Kerberos token.

LTPA token capabilities:

This topic describes WS-Security LTPA token capabilities of the broker.

The broker provides LTPA pass-through support, which means that the LTPA token
is extracted and passed to an external security token service (STS) for validation.
The STS to be used is specified on a security profile.

Chapter 7. Configuring brokers for test and production environments 813

For information about using WS-Security LTPA tokens, see the following topics:
v “LTPA token capabilities for encryption, decryption, signing, and verifying”
v “LTPA token capabilities for authentication and authorization” on page 815
v “LTPA token capabilities for identity mapping” on page 816
v “LTPA token capabilities for extraction and propagation” on page 817
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.

LTPA token capabilities for encryption, decryption, signing, and verifying:

This topic describes broker Web services capability for encryption, decryption,
signing, and verifying using LTPA tokens.

The LTPA token is not applicable, or supported, for the following in any
configuration or direction:
v Encryption
v Decryption
v Signing
v Verifying
Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“LTPA token capabilities” on page 813
This topic describes WS-Security LTPA token capabilities of the broker.
Related reference:
“LTPA token capabilities for authentication and authorization” on page 815
For Web services, you can complete authentication and authorization using an
LTPA token.
“LTPA token capabilities for identity mapping” on page 816
This topic describes the broker Web services capability for identity mapping using
an LTPA token.
“LTPA token capabilities for extraction and propagation” on page 817
This topic describes broker capability for extraction, propagation, or both using an
LTPA token in Web services.

814 WebSphere Message Broker Version 7.0.0.8

LTPA token capabilities for authentication and authorization:

For Web services, you can complete authentication and authorization using an
LTPA token.

The LTPA token “Authentication” on page 768 and “Authorization” on page 401
are supported only in the following configuration:

Capability
v Authenticate
v Authorize

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a security policy set and binding that defines that an LTPA
token is present for authentication; see “Authentication” on page 770. The broker
provides only LTPA pass-through support, which means that the LTPA token is
extracted and passed to an external security token service (STS) for validation.
The STS to be used is specified in a security profile. The STS processing can be
used to implement authentication and authorization based on the LTPA principal
and realm.
Configured with a security profile defining the Policy Decision Point (PDP); see
the PDP section that follows.

Trust Store or PDP
v WS-Trust v1.3 STS

Configured by using a WS-Trust v1.3 STS security profile specifying
authentication, authorization or both; see “Creating a security profile for
WS-Trust V1.3 (TFIM V6.2)” on page 440.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“LTPA token capabilities” on page 813
This topic describes WS-Security LTPA token capabilities of the broker.
“Authorization” on page 401
Authorization is the process of verifying that an identity token has permission to
access a message flow.
“Authentication and validation” on page 398
Authentication is the process of establishing the identity of a user or system and
verifying that the identity is valid. Applying authentication to a SAML security
token involves validating the assertions that it carries and confirming that it is
being processed within its validity period.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related reference:
“LTPA token capabilities for identity mapping” on page 816
This topic describes the broker Web services capability for identity mapping using
an LTPA token.

Chapter 7. Configuring brokers for test and production environments 815

“LTPA token capabilities for extraction and propagation” on page 817
This topic describes broker capability for extraction, propagation, or both using an
LTPA token in Web services.
“LTPA token capabilities for encryption, decryption, signing, and verifying” on
page 814
This topic describes broker Web services capability for encryption, decryption,
signing, and verifying using LTPA tokens.

LTPA token capabilities for identity mapping:

This topic describes the broker Web services capability for identity mapping using
an LTPA token.

“Identity mapping” on page 403 from or to an LTPA identity token is supported
only in the following configurations:

Capability
v Identity mapping

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a security policy set and bindings that specifies an LTPA
pass-through authentication token.
Configured with a security profile defining the external Policy Decision Point
(PDP); see the PDP section that follows.

Trust store or PDP
v WS-Trust v1.3 STS

Configured by using a WS-Trust v1.3 STS security profile that specifies identity
mapping; see “Creating a security profile for WS-Trust V1.3 (TFIM V6.2)” on
page 440.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“LTPA token capabilities” on page 813
This topic describes WS-Security LTPA token capabilities of the broker.
“Identity mapping” on page 403
Identity mapping is the transformation of a security token from one format to
another format, or the federation of an identity from one realm to an equivalent
identity in another realm.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
Related reference:
“LTPA token capabilities for authentication and authorization” on page 815
For Web services, you can complete authentication and authorization using an
LTPA token.
“LTPA token capabilities for extraction and propagation” on page 817
This topic describes broker capability for extraction, propagation, or both using an
LTPA token in Web services.

816 WebSphere Message Broker Version 7.0.0.8

“LTPA token capabilities for encryption, decryption, signing, and verifying” on
page 814
This topic describes broker Web services capability for encryption, decryption,
signing, and verifying using LTPA tokens.

LTPA token capabilities for extraction and propagation:

This topic describes broker capability for extraction, propagation, or both using an
LTPA token in Web services.

The extraction of an LTPA token into the Properties folder source “Identity” on
page 390 fields, is supported in the following configurations:

Capability
v Extraction

Policy Enforcement Point (PEP) and direction
v In (provider)

“SOAPInput node” on page 4795
Configured with a security policy set and bindings that specifies an LTPA
pass-though authentication token.
Configured with a security profile that defines propagation; see “Creating a
security profile” on page 433

The propagation of an LTPA token into the SOAP WS-Security header, from the
token present in either the mapped or the source identity fields in the properties
folder, is supported in the following configuration. For more information, see
“Identity” on page 390.

Capability
v Propagate

Policy Enforcement Point (PEP) and direction
v Out (consumer)

“SOAPRequest node” on page 4828
“SOAPAsyncRequest node” on page 4750

Configured with a security profile that defines propagation. For more
information, see “Security profiles” on page 387.
Configured with a security policy set and bindings that specifies an LTPA
pass-through authentication token.

Related concepts:
“WS-Security mechanisms” on page 768
The WS-Security specification provides three mechanisms for securing Web
services at the message level: authentication, integrity, and confidentiality.
“LTPA token capabilities” on page 813
This topic describes WS-Security LTPA token capabilities of the broker.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and

Chapter 7. Configuring brokers for test and production environments 817

on to target applications through output or request nodes.
Related tasks:
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
Related reference:
“LTPA token capabilities for authentication and authorization” on page 815
For Web services, you can complete authentication and authorization using an
LTPA token.
“LTPA token capabilities for identity mapping” on page 816
This topic describes the broker Web services capability for identity mapping using
an LTPA token.
“LTPA token capabilities for encryption, decryption, signing, and verifying” on
page 814
This topic describes broker Web services capability for encryption, decryption,
signing, and verifying using LTPA tokens.

Moving from WebSphere Message Broker on a distributed
system to z/OS

Define resources for WebSphere Message Broker for z/OS and move your message
flow applications.

About this task

Read the following topics for guidance on what action you might want to take in
moving part of your operations to z/OS:
v “z/OS customization overview” on page 592
v “Customizing the z/OS environment” on page 591
v “Creating a broker on z/OS” on page 620
v “Administration in z/OS” on page 3979

After reviewing your requirements, re-create your broker on z/OS and deploy
your message flows and execution groups to the broker on z/OS. If you have
extended WebSphere Message Broker in a distributed environment with
user-defined parsers or message processing nodes, port them to run under z/OS.

Also consider the following points:
v Floating point conversion: z/OS runs under z/OS floating point format, so

floating point operations on z/OS run in a different range and accuracy from
distributed systems.

v Administration commands are partially implemented as console commands and
partially as JCL commands. Some commands provide both options.

v Event log messages: All address spaces have a JOBLOG where messages appear.
In addition to this, all messages appear on the SYSLOG, with important operator
messages being filtered to the console through MPF (Message Processing
Facility).

For information about message flow transactionality, see “Message flow
transactions” on page 1281.

818 WebSphere Message Broker Version 7.0.0.8

Moving user applications
About this task

You can write your own applications to work with WebSphere Message Broker. If
these applications use the common subset of functionality of all WebSphere
Message Broker brokers, no migration is necessary. If you are using functionality
that is available on some WebSphere Message Broker systems only, for example
message segmentation and WebSphere MQ message groups, be aware that
WebSphere Message Broker for z/OS does not provide support for this migration.
Related concepts:
“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
Related reference:
“Administration in z/OS” on page 3979
In the z/OS environment, commands are issued through the console and others in
batch jobs.

Changing locales
You can change the locale for the system on which a runtime component is
installed.

About this task

The way in which you change the locale depends on the operating system:
v “Changing your locale on Linux and UNIX systems” on page 820
v “Changing your locale on Windows” on page 822
v “Changing your locale on z/OS” on page 823

WebSphere Message Broker uses code page converters to support character sets
from different environments. “Code page converters” on page 823 describes what a
code page converter is, and how to generate new converters.
Related reference:
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.
“Locales” on page 3629
Message support is provided in a number of locales.

Chapter 7. Configuring brokers for test and production environments 819

Changing your locale on Linux and UNIX systems
You can change your system locale on UNIX and Linux systems.

About this task

You can set environment variables to control the system locale. You can set these
variables to be system-wide, or on a per-session basis:

LC_ALL Overrides all LC_* environment variables with the given value

LC_CTYPE
Character classification and case conversion

LC_COLLATE
Collation (sort) order

LC_TIME
Date and time formats

LC_NUMERIC
Non-monetary numeric formats

LC_MONETARY
Monetary formats

LC_MESSAGES
Formats of informative and diagnostic messages, and of interactive
responses

LC_PAPER
Paper size

LC_NAME
Name formats

LC_ADDRESS
Address formats and location information

LC_TELEPHONE
Telephone number formats

LC_MEASUREMENT
Measurement units (Metric or Other)

LC_IDENTIFICATION
Metadata about the locale information

LANG The default value, which is used when either LC_ALL is not set, or an
applicable value for LC_* is not set

NLSPATH
Delimited list of paths to search for message catalogs

TZ Time zone

LC_MESSAGES and NLSPATH are the most important variables to the broker. These
variables define the language and location of response messages that the broker
uses. The broker profile file, mqsiprofile, sets NLSPATH. Either you, or your system
must set LC_MESSAGES. The value set in LC_MESSAGES must be a value that is
installed on your machine and that the broker recognizes. LC_CTYPE is also
important to the broker because it defines the character conversion that the broker
performs when interacting with the local environment.

820 WebSphere Message Broker Version 7.0.0.8

Before setting these variables, check that the language and code page are installed
on your machine, and are supported by WebSphere Message Broker.

You can use the command locale to show your current locale. The command
locale -a displays all the locales that are currently installed on the machine. Make
sure that the locale you select for LANG and LC_ALL is in the list that is returned by
the command locale -a. The values that locale uses and returns are case
sensitive, therefore copy them exactly when assigning them to an environment
variable.

For information on languages and code pages supported by WebSphere Message
Broker, see “Locales” on page 3629 and “Supported code pages” on page 4176.

If you use common desktop environment (CDE), use this environment to set the
locale instead of setting LANG and LC_ALL directly. The NLSPATH variable respects
either method.

For example, to set WebSphere Message Broker to run in a UTF-8 environment set
the following values in the profile:
LANG=en_US.utf-8
LC_ALL=en_US.utf-8

where en_US sets the language, and utf-8 sets the code page.

When you start a broker component, the locale of that component is inherited from
the shell in which it is started. The broker component uses the LC_MESSAGES
environment variable as the search path in the NLSPATH environment variable
(LC_MESSAGES is set when variable LC_ALL is exported).

Messages are sent to the syslog in the code page set by this locale. If you have
multiple brokers that write to this syslog, their messages are in the code page of
the locale in which they were started, for example:

locale syslog code page ccsid

pt_BR iso8859-1 819

pt_BR ibm-850 850

pt_BR utf-8 1208

Set the locale of the user ID that runs the syslog daemon to one that is compatible
with the locales of all brokers that write to the syslog on that system, for example,
utf-8. For compatibility, you can set the default locale. On Solaris, set the LANG and
LC_ALL variables in /etc/default/init. On AIX and Linux, these variables are in
/etc/environment. This task is not required on HP-UX.

For full-time zone support in the broker, set the TZ variable using Continent/City
notation. For example set TZ to Europe/London to make London, England the
time zone, or set it to America/New_York to make New York, America the time
zone.

If you want to add a new locale, refer to the operating system documentation for
information about how to complete that task. If the code page of the new locale is
not supported by WebSphere Message Broker you must add it by “Generating a
new code page converter” on page 824.
Related tasks:

Chapter 7. Configuring brokers for test and production environments 821

“Generating a new code page converter” on page 824
Generate a code page converter to handle conversions of data that belongs to a
code page that is not in the default set of code pages provided by WebSphere
Message Broker.
Related reference:
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.

Changing your locale on Windows
Change your system locale on Windows to view objects and information in a
different language or code page.

About this task

Brokers are started as services on Windows, and are therefore influenced by the
system locale. The command-line functions are influenced by the locale that is set
for the current user. WebSphere Message Broker on Windows has all locale
information installed by default. However, you might have to install additional
locale packages, if prompted to do so by the Windows operating system.

To change locale, use one of the following methods:
v Install a locale-specific operating system.
v Alter the system or user locale by selecting Regional Settings in the Control Panel.

Messages are sent to the Event Log in the code page set by the current locale.

You can use the chcp command to change the active console code page. Enter the
command at a command prompt; if you enter chcp without a parameter, it displays
the current setting. If you enter it with a code page, it changes the locale to that
code page.

For example, to check the current code page setting:
C:\>chcp
Active code page: 437

The current page is displayed (437 represents US-ASCII). If you want to change the
value to GB18030, enter:
C:\>chcp 54936
Active code page: 54936

Before you use a code page, search for windows-number where number is the active
code page you want to use in the list of “Supported code pages” on page 4176. If
the code page is not in the list, either use a code page that is in the list, or generate
a new code page converter.
Related tasks:
“Generating a new code page converter” on page 824
Generate a code page converter to handle conversions of data that belongs to a
code page that is not in the default set of code pages provided by WebSphere
Message Broker.
Related reference:

822 WebSphere Message Broker Version 7.0.0.8

“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.

Changing your locale on z/OS
You can change your system locale on z/OS. If you want to change your system
locale on z/OS, set the LANG, LC_ALL, and NLSPATH variables.

About this task

See “Installation information - broker” on page 621 for further information.

The locale is set in the broker profile (BIPBPROF) and you must run BIPGEN to create
the broker ENVFILE and any execution group specific ENVFILE.

You can use the UNIX System Services (USS) executable locale to show your
current locale. The command locale -a displays all the locales currently installed
on the computer. Refer to the operating system documentation for information
about adding new locales. If you add a new locale after you have installed
WebSphere Message Broker, install that locale's message catalogs from the original
install media.

You can set WebSphere Message Broker to operate with a specific code page. Set
the code page after a period in the LANG and LC_ALL variable. This example sets
the locale to En_us and the code page to IBM-1140 (EBCDIC En_us with euro):
LANG=En_us.IBM-1140
LC_ALL=En_us.IBM-1140

Make sure that the selected code page is one of the “Supported code pages” on
page 4176. If the code page is not in the list, either use a code page that is in the
list, or generate a new code page converter.
Related tasks:
“Generating a new code page converter” on page 824
Generate a code page converter to handle conversions of data that belongs to a
code page that is not in the default set of code pages provided by WebSphere
Message Broker.
Related reference:
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.

Code page converters
Brokers complete string operations in Universal Character Set coded in 2 octets
(UCS-2). If incoming strings are not encoded in UCS-2, they are converted to
UCS-2 on arrival.

The broker uses international components for Unicode (ICU) code page converters
to convert data. The Unicode Consortium has further information on Unicode.

Chapter 7. Configuring brokers for test and production environments 823

http://www.unicode.org/

A code page converter is a mapping from the byte sequence in one code page to a
serialized representation of UCS-2, known as UCS Transformation Format 16 bit
form (UTF-16). A code page converter allows the broker to create a UCS-2
representation of an incoming string.

When you handle UTF-16 data, CCSIDs 1200, 13488 and 17584 are treated
differently to others. Traditionally, in ICU usage, the endian encoding of these
CSSIDs was platform-specific, and WebSphere Message Broker uses an encoding
parameter with these CSSIDs. You can specify the encoding parameter as
MQENC_INTEGER_REVERSED to use these CCSIDs to explicitly produce little
endian data.

Consider this example of the use of a code page converter. A message comes in on
a queue from z/OS, with the WebSphere MQ CCSID field set to 1047 (LATIN-1
Open Systems without euro). The broker looks up ibm-1047 and uses the resulting
converter to create a UCS-2 representation for internal use.

If you try to convert from a Unicode to a Non-Unicode character set, the following
errors might occur:
v The target buffer is too small. This error causes a recoverable exception, which

you can handle; alternatively, the message is rolled back.
v A code point in the source does not have an equivalent value in the target. At

first, fallback mappings are attempted (for example, if you are converting to
Japanese, a backslash (\) can be mapped to a yen (¥) if the conversion supplies
it as a fallback mapping). If fallback mappings are not present, a recoverable
exception is thrown. You can handle the exception, or the message is rolled back.
The MRM parser substitutes invalid code points with substitution characters.

WebSphere Message Broker currently supports the code pages listed in “Supported
code pages” on page 4176. If you need support for an additional code page, or if
you require a different variant of a code page, you can extend the broker to
support this code page.
Related tasks:
“Generating a new code page converter”
Generate a code page converter to handle conversions of data that belongs to a
code page that is not in the default set of code pages provided by WebSphere
Message Broker.
Related reference:
“Supported code pages” on page 4176
Application messages must conform to supported code pages.

Generating a new code page converter:

Generate a code page converter to handle conversions of data that belongs to a
code page that is not in the default set of code pages provided by WebSphere
Message Broker.

Before you begin

Before you start:

v Read “Code page converters” on page 823, which provides information about
what a code page converter is, and about the code pages that WebSphere
Message Broker supports.

824 WebSphere Message Broker Version 7.0.0.8

About this task

To generate a new code page converter:

Procedure

1. Create or find a mapping data file with the file extension .ucm for the converter
that you require. You can download .ucm files from the ICU Character set
mapping files archive. These mapping data files are available and can be
modified without restriction. An example mapping data file is
ibm-1284_P100-1996.ucm. (ICU is an external open source project, not an IBM
tool.)

2. Rename the .ucm to a file name with the format ibm-number.ucm where number
is a number that you choose to identify the code page. Make sure that this
number is not already used in one of the “Supported code pages” on page
4176. For example, you could rename ibm-1284_P100-1996.ucm to ibm-1284.ucm.

3. Go to ICU downloads and download the binary distribution for your system.
An exact match is not important provided that the binary files are compatible.
If you have problems building the converter, see the ICU user guide.

4. Extract the files from the binary distribution archive into a temporary directory.
5. Copy the library and binary files to a directory in the environment PATH and

LIBPATH. (Alternatively, copy the library and binary files to directory that is
not temporary and modify the environment PATH and LIBPATH to include this
directory.)

6. One of the extracted files is makeconv.exe; use this makeconv tool to convert
the mapping data file (.ucm files) into a binary converter file (.cnv file), by
entering the following command:
makeconv mapping_file.ucm

where mapping_file.ucm is the mapping data file that you are using.
The name of the binary converter file that makeconv produces is:
mapping_file.cnv

where mapping_file.cnv is the name of the mapping data file that was converted.
To make the .cnv file for ibm-1284.ucm, use the following command:
makeconv ibm-1284.ucm

7. Copy the file with the file extension .cnv for the code page that you need, into
a directory that WebSphere Message Broker can access.
The name and location of the file is of the form
ibm-1284.cnv

and is located in the $ICU_DATA/icudt38<platform-suffix> directory, where the
<platform-suffix> is one of the following values:
v l for little-endian ASCII platforms
v b for big-endian ASCII platforms
v e for EBCDIC platforms

8. Optional: If you do not want the new code page converter to be in the same
location as other ICU data, you must associate the broker with the new
directory where the converter is stored (the directory added must contain the
full path, not including the icudt38x subdirectory):
v To create a new broker that is associated with the converter, include the -c

parameter on the mqsicreatebroker command.

Chapter 7. Configuring brokers for test and production environments 825

http://bugs.icu-project.org/trac/browser/data/trunk/charset/data/ucm
http://bugs.icu-project.org/trac/browser/data/trunk/charset/data/ucm
http://icu.sourceforge.net/download/.
http://icu.sourceforge.net/userguide/icudata.html

v To alter an existing broker to recognize the converter, include the -c
parameter on the mqsichangebroker command.

v To affect all the products and the broker command-line tools that are using
ICU, add the directory to the ICU_DATA environment variable. If you have
used either the mqsicreatebroker command or the mqsichangebroker
command to specify the code page converter to be used, the broker ignores
the ICU_DATA value.

Note: To ensure consistent behavior in all components, modify the ICU_DATA
environment variable.

Related concepts:
“Code page converters” on page 823
Brokers complete string operations in Universal Character Set coded in 2 octets
(UCS-2). If incoming strings are not encoded in UCS-2, they are converted to
UCS-2 on arrival.
Related tasks:
“Changing locales” on page 819
You can change the locale for the system on which a runtime component is
installed.
Related reference:
“Supported code pages” on page 4176
Application messages must conform to supported code pages.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Configuring for high availability
If you want to operate your WebSphere Message Broker instances in a highly
available configuration, you can set up your brokers to work either with a high
availability manager, such as HACMP, or with WebSphere MQ multi-instance
queue managers.

About this task
v “Configuring a WebSphere Message Broker to run in multi-instance mode” on

page 827
v “Using a broker with an existing high availability manager” on page 843
v “Using a broker with an existing Windows Cluster (Windows Server 2003 or

2008)” on page 853
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
Related tasks:

826 WebSphere Message Broker Version 7.0.0.8

Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.

Configuring a WebSphere Message Broker to run in
multi-instance mode

How you configure a WebSphere Message Broker to run in multi-instance mode.

Before you begin

Before you start:

Read the overview of multi-instance queue managers on WebSphere MQ; see
“Multi-instance queue managers” on page 828. For further information on
multi-instance queue managers see the WebSphere MQ information center.

About this task

The set of tasks describing how you configure a multi-instance broker on
WebSphere Message Broker assumes the following:
v A network server is being configured to host the shared work path for the

multi-instance broker and the shared directories for the multi-instance queue
manager.

v The network server is shared between two client machines, each of which has a
licensed copy of the WebSphere Message Broker and WebSphere MQ products
installed.

v The platform for the illustration is assumed to be AIX, but the steps are true for
all platforms supported by WebSphere Message Broker and WebSphere MQ
except for z/OS.
Multi-instance brokers and multi-instance queue managers are not supported on
z/OS

There are three steps in configuring a WebSphere Message Broker to run in
multi-instance mode:

Procedure
1. Create a Shared work path directory on an NFS or NAS server. On Windows

there is the option to use a shared UNC path.
2. Create a WebSphere MQ multi-instance queue manager.
3. Create a Multi-instance broker
Related concepts:
“Multi-instance queue managers” on page 828
A multi-instance queue manager restarts automatically on a standby server.
Related tasks:
“Creating the shared directories” on page 829
How you create the shared directories that you need for your multi-instance
WebSphere Message Broker.
“Creating the WebSphere MQ multi-instance queue manager” on page 830
How you create the WebSphere MQ multi-instance queue manager that you need
for your multi-instance WebSphere Message Broker.

Chapter 7. Configuring brokers for test and production environments 827

“Creating the multi-instance broker” on page 837
How you create the multi-instance broker.
Related information:

WebSphere MQ Version 7 Information Center online

Multi-instance queue managers
A multi-instance queue manager restarts automatically on a standby server.

Figure 1 shows a multi-instance configuration for QM1. WebSphere MQ is installed
on two servers, one of which is a spare. One queue manager, QM1, has been
created. One instance of QM1 is active, and is running on one server. The other
instance of QM1 is running in standby on the other server, doing no active
processing, but ready to take over from the active instance of QM1, if the active
instance fails.

When you intend to use a queue manager as a multi-instance queue manager,
create a single queue manager on one of the servers using the WebSphere MQ
crtmqm command, placing its queue manager data and logs in shared network
storage. On the other server, rather than create the queue manager again, use the
WebSphere MQ addmqinf command to create a reference to the queue manager
data and logs on the network storage.

You can now run the queue manager from either of the servers. Each of the servers
references the same queue manager data and logs; there is only one queue
manager, and it is active on only one server at a time.

The queue manager can run either as a single instance queue manager, or as a
multi-instance queue manager. In both cases only one instance of the queue
manager is running, processing requests. The difference is that when running as a
multi-instance queue manager, the server that is not running the active instance of
the queue manager runs as a standby instance, ready to take over from the active
instance automatically if the active server fails.

Queue manager
data and log

Remote
Storage

QM1
(Active)

QM1

QM1
(Standby)

Server Spare

Figure 1. Multi-instance queue manager

828 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The only control you have over which instance becomes active first is the order in
which you start the queue manager on the two servers. The first instance to
acquire read/write locks to the queue manager data becomes the active instance.

You can swap the active instance to the other server, once it has started, by
stopping the active instance using the switchover option to transfer control to the
standby.

The active instance of QM1 has exclusive access to the shared queue manager data
and logs folders when it is running. The standby instance of QM1 detects when
the active instance has failed, and becomes the active instance. It takes over the
QM1 data and logs in the state they were left by the active instance, and accepts
reconnections from clients and channels.

The active instance might fail for various reasons that result in the standby taking
over:
v Failure of the server hosting the active queue manager instance.
v Failure of connectivity between the server hosting the active queue manager

instance and the file system.
v Unresponsiveness of queue manager processes, detected by WebSphere MQ,

which then shuts down the queue manager.

You can add the queue manager configuration information to multiple servers, and
choose any two servers to run as the active/standby pair.

A multi-instance queue manager is one part of a high availability solution. You
need some additional components to build a useful high availability solution.
v Client and channel reconnection to transfer WebSphere MQ connections to the

computer that takes over running the active queue manager instance.
v A high performance shared network file system that manages locks correctly and

provides protection against media and file server failure.
v Resilient networks and power supplies to eliminate single points of failure in the

basic infrastructure.
v Applications that tolerate failover. In particular you need to pay close attention

to the behavior of transactional applications, and to applications that browse
WebSphere MQ queues.

v Monitoring and management of the active and standby instances to ensure that
they are running, and to restart active instances that have failed. Although
multi-instance queue managers restart automatically, you need to be sure that
your standby instances are running, ready to take over, and that failed instances
are brought back online as new standby instances.

WebSphere MQ clients and channels reconnect automatically to the standby queue
manager when it becomes active. Reconnection, and the other components in a
high availability solution are discussed in related topics.

Creating the shared directories
How you create the shared directories that you need for your multi-instance
WebSphere Message Broker.

Before you begin

Before you start:

Chapter 7. Configuring brokers for test and production environments 829

Before you create the shared directory, read the documentation supplied with your
NFS or NAS product used at your enterprise (or on Windows a shared UNC path).
Note that, if you are intending to use an NFS server, this server must use NFSv4.

About this task

The following procedure gives a generalized set of instructions for a NFS shared
path, because the specific instructions vary by product:

Procedure
1. Create an NFS Share on the server for the multi-instance WebSphere MQ queue

manager.
2. Mount the NFS Share on both client nodes A and B, for the WebSphere MQ

multi-instance queue manager, using a suitable location; for example,
/Shared/Location/WMQ.

3. Ensure that the WMQ directories are owned by user and group mqm, and that the
access permissions are set to rwx for user and group. For example ls -al
displays:
drwxrwxr–x mqm mqm 4096 Jun 14 14:38 WMQ

4. Create an NFS share on the server for the multi-instance broker.
5. Mount the NFS Share on both client nodes A and B, for the multi-instance

broker, using a suitable location; for example, /Shared/Location/WMB.
6. Ensure that the WMB directories are owned by user and group mqbrkrs, and that

the access permissions are set to rwx for user and group. For example ls -al
displays:
drwxrwxr–x mqbrkrs mqbrkrs 4096 Jun 14 14:39 WMB

7. If you are working on AIX you must turn off attribute caching so that you use
the NFS server solely for multi-instance tasks.
Use the following command, on both client nodes A and B, to turn off attribute
caching for the example share locations used in the preceding instructions:

nfs4cl setfsoptions /Shared/Location/WMQ noac
nfs4cl setfsoptions /Shared/Location/WMB noac

For further information, see AIX NFS commands

What to do next

Create a WebSphere MQ multi-instance queue manager.
Related tasks:
“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
“Creating the WebSphere MQ multi-instance queue manager”
How you create the WebSphere MQ multi-instance queue manager that you need
for your multi-instance WebSphere Message Broker.
“Creating the multi-instance broker” on page 837
How you create the multi-instance broker.

Creating the WebSphere MQ multi-instance queue manager
How you create the WebSphere MQ multi-instance queue manager that you need
for your multi-instance WebSphere Message Broker.

830 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds4/nfs4cl.htm

Before you begin

Before you start:

Create the shared directories that you require for the multi-instance queue
manager; see “Creating the shared directories” on page 829.

About this task

The following procedure gives an overview of how you create a multi-instance
WebSphere MQ queue manager. See “Creating a multi-instance queue manager”
on page 832 for more information.

Procedure
1. Create a multi-instance WebSphere MQ queue manager called QM1 on client

node A. You do this by using the following command:
-crtmqm -md /SharedLocation/WMQ/data

-ld /SharedLocation/WMQ/logs QM1

where:

md Is the name of the directory used to hold data files for a queue
manager.

ld Is the name of the directory used to hold log files.
Note that it is important that the name of the queue manager goes at the end
of the syntax. See the WebSphere MQ documentation for further information
on the crtmqm command.

2. Add the details of WebSphere MQ queue manager QM1 onto client node B. You
do this by using the following command:
-addmqinf -v Name=QM1 -v Directory=WMQ -v Prefix=/var/mqm

-v DataPath=/SharedLocation/WMQ/data/QM1

where:

Name Is the name of the queue manager.

Directory
Is the name of the queue manager data directory.

Prefix Is the directory path under which this queue manager data directory is
stored by default.

Data Path
Is the data path where the queue manager data files are placed. The
value of Directory is not appended automatically to this path; you
must provide the transformed queue manager name as part of
DataPath.

The parameters listed above are all required parameters on Windows and
UNIX platforms, with the exception of DataPath, which is optional on UNIX
platforms only.
See the WebSphere MQ documentation for further information on the addmqinf
command.

3. Start queue manager QM1 on client node A in multi-instance mode. You do this
by using the following command:
strmqm -x QM1

See the WebSphere MQ documentation for further information on the strmqm
command.

Chapter 7. Configuring brokers for test and production environments 831

4. Observe the queue manager running in active mode. You do this by using the
following command:
dspmq -x

See the WebSphere MQ documentation for further information on the dspmq
command.

5. Start queue manager QM1 on client node B. Observe the queue manager running
in standby mode.

6. Ensure that queue manager QM1 works as follows when simulating a failover
from node A to node B:
a. Stop queue manager QM1 on client node A. You do this by using the

following command:
endmqm -s QM1

Observe on client node B, queue manager QM1 running in active mode, and
on client node A that queue manger QM1 is now stopped.

b. Restart queue manager QM1 on client node A. You do this by using the
following command:
strmqm -x QM1

Observe on client node A, queue manager QM1 running in standby mode,
and on client node B, queue manager QM1 running in active mode.

What to do next

Create a multi-instance broker.
Related concepts:
“Creating a multi-instance queue manager”
Create a multi-instance queue manager by creating the queue manager on one
server, and configuring WebSphere MQ on another server to use the shared queue
manager data and logs.
Related tasks:
“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
“Creating the shared directories” on page 829
How you create the shared directories that you need for your multi-instance
WebSphere Message Broker.
“Creating the multi-instance broker” on page 837
How you create the multi-instance broker.

Creating a multi-instance queue manager:

Create a multi-instance queue manager by creating the queue manager on one
server, and configuring WebSphere MQ on another server to use the shared queue
manager data and logs.

Most of the work of setting up a multi-instance queue manager involves setting up
the network storage that holds the queue manager data and log files, and making
the files available to other servers using network shares. These tasks need to be
performed by someone with administrative authority, such as root on UNIX
systems. Once the shares are set up, and a normal queue manager has been created
using the shares for its queue manager data and logs, you only need to configure
WebSphere MQ on the other servers. You do not create the queue manager again
on the other servers.

832 WebSphere Message Broker Version 7.0.0.8

File access control

You need to take care that the user and group mqm on all other servers have
permission to access the shares.

On UNIX platforms, you need to make the uid and gid of mqm the same on all the
systems. You might need to edit /etc/passwd on each system to set a common uid
and gid for mqm, then reboot your UNIX systems.

On Microsoft Windows, you must install WebSphere MQ on a domain server, and
create a user to own WebSphere MQ resources. The user must either be a member
of domain group mqm or a member of another global domain group which is
directly or indirectly a member of mqm. Make this user the owner of the shared
queue manager and log files. The sid of the user who owns the queue manager
and log files is then the same as the sid of the user that runs instances of the
queue manager.

Configuration information

Configure as many queue manager instances as you need by modifying the
WebSphere MQ configuration information about each server that has
WebSphere MQ installed and is to run a queue manager instance. The commands,
dspmqinf and addmqinf help you to configure the additional queue manager
instances, or you can edit the mqs.ini file on UNIX servers directly. The topics,
“Create a multi-instance queue manager on Linux” on page 834 and “Create a
multi-instance queue manager on Windows Server” on page 836 are examples
showing how to configure a multi-instance queue manager.

On UNIX systems, you can share a single mqs.ini file by placing it on the network
share and setting the AMQ_MQS_INI_LOCATION environment variable to point to it.

On Microsoft Windows, WebSphere MQ has for a number of releases kept its
configuration information in the Windows registry. In release level 7.0.1 (or later),
some configuration information is moved from the registry into configuration files.

Multi-instance queue manager configuration is moved out of the registry into
qm.ini and qmstatus.ini files, which are located in the queue manager data
directory. The WebSphere MQ configuration information (mqs.ini on UNIX
platforms) remains in the registry on Windows as does all the configuration
information for existing queue managers and new queue managers that are
configured to use the default data directory.

Restrictions

1. Configure multiple instances of the same queue manager only on servers
having the same operating system, architecture (both machines having 32-bit or
64-bit word size, for example), and endian settings.

2. All WebSphere MQ installations must be at release level 7.0.1 (or later).
3. Typically active and standby installations are maintained at the same

maintenance level. Consult the maintenance instructions for each upgrade to
check if you must upgrade all installations together.

4. The network share that contains queue manager data and logs can only be
shared between queue managers that are configured with the same
WebSphere MQ user, group, and access control mechanism. For example, the
network share set up on a Linux server could contain separate queue manager
data and logs for AIX, Solaris, HP-UX, and Linux queue managers.

Chapter 7. Configuring brokers for test and production environments 833

5. On UNIX systems, configure the shared file system on networked storage with
a hard, interruptible, mount rather than a soft mount. A hard interruptible
mount forces the queue manager to hang until it is interrupted by a system
call. Soft mounts do not guarantee data consistency after a server crash.

6. On Microsoft Windows, the domain group mqm must have full access to shared
WebSphere MQ log and data directories.

7. The shared log and data directories cannot be stored on a FAT, or an NFSv3 file
system.

8. z/OS does not support multi-instance queue managers; use queue sharing
groups.

9. Multi-instance queue managers are supported only on the platform on which
they are created.

Related concepts:
“Create a multi-instance queue manager on Linux”
An example shows how to set up a multi-instance queue manager on Linux. The
setup is small to illustrate the concepts involved. The example is based on Linux
Red Hat Enterprise 5. The steps differ on other UNIX platforms.
“Create a multi-instance queue manager on Windows Server” on page 836
An example shows how to set up an example multi-instance queue manager on
Windows Server. The setup is small and simple, to demonstrate the concepts
involved, rather than being production scale. The example is based on Windows
Server 2003. The steps might differ on other versions of Windows Server.
Related tasks:
“Creating the shared directories” on page 829
How you create the shared directories that you need for your multi-instance
WebSphere Message Broker.

Create a multi-instance queue manager on Linux:

An example shows how to set up a multi-instance queue manager on Linux. The
setup is small to illustrate the concepts involved. The example is based on Linux
Red Hat Enterprise 5. The steps differ on other UNIX platforms.

The example is set up on a 2 GHz notebook computer with 3 GB RAM running
Windows XP Service Pack 2. Two VMware virtual machines run Linux Red Hat
Enterprise 5 in 640 MB images. A WebSphere MQ client is installed on an
additional 400 MB VMware image that runs Windows XP Service Pack 2 and runs
the sample high availability applications. All the virtual machines are configured
as part of a VMware host-only network for security reasons. Although it is
generally recommended not to use an automatically generated IP address, it is
acceptable to use one for a short demonstration, because the IP address is unlikely
to change.

Example

Table 10. Illustrative multi-instance queue manager configuration on Linux

Server 1 Server 2

Log in as root

Follow the instructions in WebSphere MQ Quick Beginnings for Linuxto install WebSphere MQ, create the mqm
user and group, and define /var/mqm.

Carry out the task, “Verifying shared file system locking” on page 837 to check the file system supports
multi-instance queue managers.

834 WebSphere Message Broker Version 7.0.0.8

Table 10. Illustrative multi-instance queue manager configuration on Linux (continued)

Server 1 Server 2

Check what uid and gid /etc/passwd displays for mqm,
for example,

mqm:x:501:100:MQ User:/var/mqm:/bin/bash

Match the uid and gid for mqm in /etc/passwd and
reboot if you have had to change the values.

Create log and data directories in a common folder,
/MQHA, that is to be shared. For example,

1. mkdir /MQHA

2. mkdir /MQHA/logs

3. mkdir /MQHA/qmgrs

Create the folder, /MQHA, to mount the shared file system.
Keep the path the same as on server 1; for example:

1. mkdir /MQHA

Ensure that the MQHA directories are owned by user and group mqm, and the access permissions are set to rwx for
user and group; for example ls -al displays,

drwxrwxr–x mqm mqm 4096 Nov 27 14:38 MQDATA

1. chown -R mqm:mqm /MQHA

2. chmod -R ug+rwx /MQHA

Create the queue manager:

crtmqm -ld /MQHA/logs -md /MQHA/qmgrs -q QM1

Add(The ’*’ allows all machines that can reach this one
mount /MQHA for read/write. Restrict access on a
production machine.) /MQHA
*(rw,sync,no_wdelay,fsid=0) to /etc/exports

Start the NFS daemon: /etc/init.d/nfs start

Discover the host name or IP address of server 1:
ifconfig(Try the command /sbin/ifconfig if the simple
ifconfig command does not work.)

Mount the exported file system /MQHA:

mount -hard -intr -t nfs4 192.168.217.130:/ /MQHA

Copy the queue manager configuration details from
Server 1,

dspmqinf -o command QM1

and copy the result to the clip board,

addmqinf -s QueueManager
-v Name=QM1
-v Directory=QM1
-v Prefix=/var/mqm
-v DataPath=/MQHA/qmgrs/QM1

Paste the queue manager configuration command into
Server 2,

addmqinf -s QueueManager
-v Name=QM1
-v Directory=QM1
-v Prefix=/var/mqm
-v DataPath=/MQHA/qmgrs/QM1

Start the queue manager instances, in either order, with the -x parameter: strmqm -x QM1

Related concepts:
“Creating a multi-instance queue manager” on page 832
Create a multi-instance queue manager by creating the queue manager on one
server, and configuring WebSphere MQ on another server to use the shared queue
manager data and logs.
“Create a multi-instance queue manager on Windows Server” on page 836
An example shows how to set up an example multi-instance queue manager on
Windows Server. The setup is small and simple, to demonstrate the concepts
involved, rather than being production scale. The example is based on Windows
Server 2003. The steps might differ on other versions of Windows Server.

Chapter 7. Configuring brokers for test and production environments 835

Create a multi-instance queue manager on Windows Server:

An example shows how to set up an example multi-instance queue manager on
Windows Server. The setup is small and simple, to demonstrate the concepts
involved, rather than being production scale. The example is based on Windows
Server 2003. The steps might differ on other versions of Windows Server.

Before you begin

On Windows, multi-instance queue managers must run on a domain controller. For
this reason, and for this example, install two Windows servers, and configure them
as domain controllers in the same domain.

The example was set up on a 2 GHz notebook computer with 3 GB RAM running
Windows XP Service Pack 2. Two VMware virtual machines ran Windows Server
2003 Service Pack 2 in 500 MB images. A WebSphere MQ client was installed on
an additional 400 MB VMware image that ran Windows XP Service Pack 2 to run
the sample high availability applications. All the virtual machines were configured
as part of a VMware host-only network for security reasons. Although it is
recommended not to use automatically generated IP address, for a short
demonstration it is satisfactory as the IP addresses ought not to change. As part of
the configuration you need to update the TCP/IP properties of the virtual
machines with the address of the domain server you have chosen to be the DNS
server.

If you configure a queue manager to run as a service, you need to check that the
user the service logs on as is a member of the local group mqm.

Example

Table 11. Illustrative multi-instance queue manager configuration on Windows Server 2003

Server 1 Server 2

Log in with user who is a member of the local group mqm.

Create log and data directories in a folder on an NTFS
drive, c:\MQHA, making sure that the owner is a member
of mqm, and mqm has full-control authority to the folders.

C:\MQHA\data
C:\MQHA\log

Create a share MQHA for C:\MQHA. Connect to \\hostname\MQHA

Using WebSphere MQ Explorer, create a queue
manager, QM1, overriding the default paths to the data
and log folders and use UNC names to refer to the data
and log folders. \\hostname\MQHA\data and
\\hostname\MQHA\log.

On a command-line run,

dspmqinf -o command QM1

and copy the result to the clip board,

addmqinf -s QueueManager
-v Name=QM1
-v Directory=QM1
-v Prefix="C:\IBM\MQ\Data"
-v DataPath="\\hostname\MQHA\data\QM1"

Paste and run the command,

addmqinf -s QueueManager
-v Name=QM1
-v Directory=QM1
-v Prefix="C:\IBM\MQ\Data"
-v DataPath="\\hostname\MQHA\data\QM1"

Using WebSphere MQ Explorer, start the manager instances with the Permit a standby instance check box selected.

836 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Creating a multi-instance queue manager” on page 832
Create a multi-instance queue manager by creating the queue manager on one
server, and configuring WebSphere MQ on another server to use the shared queue
manager data and logs.
“Create a multi-instance queue manager on Linux” on page 834
An example shows how to set up a multi-instance queue manager on Linux. The
setup is small to illustrate the concepts involved. The example is based on Linux
Red Hat Enterprise 5. The steps differ on other UNIX platforms.

Verifying shared file system locking:

Run the WebSphere MQ amqmfsck command to check obtaining and releasing file
locks, and concurrent writing on UNIX systems.

Before you begin

Before you start:

You need a machine with networked storage, and two other machines connected to
it that have WebSphere MQ installed. You need to have administrator (root)
authority to configure the file system, and be a WebSphere MQ administrator to
run amqmfsck.

About this task

Create the directory or directories on the networked storage that you are going to
use to share queue manager data and logs. The directory owner needs to be a
WebSphere MQ administrator, that is, a member of the mqm group on UNIX. The
user who runs the tests must have WebSphere MQ administrator authority.

Use the example of exporting and mounting a file system in “Create a
multi-instance queue manager on Linux” on page 834 to help you through
configuring the file system. Different file systems require different configuration
steps. Refer to the file system documentation.

Procedure

1. Export the shared directory on the networked storage system and start the NFS
daemon.

2. Mount the exported directory on the two WebSphere MQ servers.
3. Run amqmfsck, without any options, on each system to check basic locking
4. Run amqmfsck on both WebSphere MQ systems simultaneously, using the -c

option, to test writing to the directory concurrently.
5. Run amqmfsck on both WebSphere MQ systems at the same time, using the -w

option, to test waiting for and releasing a lock on the directory concurrently.

Creating the multi-instance broker
How you create the multi-instance broker.

Before you begin

Before you start:

1. Create the WebSphere MQ multi-instance queue manager; see “Creating the
WebSphere MQ multi-instance queue manager” on page 830.

Chapter 7. Configuring brokers for test and production environments 837

2. Create the shared directories that you require for the multi-instance broker; see
“Creating the shared directories” on page 829.

About this task

A multi-instance broker can be created by using the mqsicreatebroker command
only. It is not possible to convert an existing broker to a multi-instance broker by
using the mqsichangebroker command, nor is it possible to migrate a broker from a
previous release to a Version 7.0 multi-instance broker.

Similarly, a broker instance can be created by using the mqsiaddbrokerinstance
command only.

You can configure a multi-instance broker to start as a WebSphere MQ service.

The following procedure gives an overview of how you create a multi-instance
broker:

Procedure
1. Create a multi-instance broker called MB1 on client node A. Do this by using the

following command:
mqsicreatebroker MB1 –q QM1 –e /SharedLocation/WMB

On Windows 7 and Windows Server 2008 systems, to run the mqsicreatebroker
command you must open a command console with elevated privileges. To open
a command console with elevated privileges, use the mqsicommandconsole
command. For more information, see “mqsicommandconsole command” on page
3830.
Specify -d defined on the mqsicreatebroker command to start the
multi-instance broker as a WebSphere MQ service.
You must ensure that the SharedLocation exists, and that your user ID has
access to the shared location before you run this command.
See the “mqsicreatebroker command” on page 3831 for further information.

2. Add the details of broker MB1 onto client node B. Do this by using the following
command:
mqsiaddbrokerinstance MB1 –e /SharedLocation/WMB

See “mqsiaddbrokerinstance command” on page 3715 for further information.
Note that the preceding example is for a UNIX system.

3. Start broker MB1 on client node A. Do this by using the following command:
mqsistart MB1

Observe the broker becoming active. Note that this assumes that queue
manager QM1 is active on client node A.

4. Start broker MB1 on client node B. Observe that broker MB1 is running in standby
mode against the standby queue managerQM1. Do this by using the following
command:
mqsilist

5. Ensure that broker MB1 works as follows:
a. Stop broker MB1 and queue manager QM1 on client node A. Observe on client

node B that broker MB1 and queue manager QM1 change from standby to
active mode.

838 WebSphere Message Broker Version 7.0.0.8

b. Restart queue manager QM1 and broker MB1 on client node A. Observe on
client node B that queue manager QM1 and broker MB1 return to standby
mode.

Related tasks:
“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
“Creating the shared directories” on page 829
How you create the shared directories that you need for your multi-instance
WebSphere Message Broker.
“Creating the WebSphere MQ multi-instance queue manager” on page 830
How you create the WebSphere MQ multi-instance queue manager that you need
for your multi-instance WebSphere Message Broker.
“Configuring a WebSphere Message Broker as a WebSphere MQ service” on page
894
If you want to operate your WebSphere Message Broker as a WebSphere MQ
service.
Related reference:
“mqsicommandconsole command” on page 3830
Use the mqsicommandconsole command to launch an elevated command console
from which commands that require elevation on Windows can be run.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsiaddbrokerinstance command” on page 3715
Use the mqsiaddbrokerinstance command to create a multi-instance broker on a
server where WebSphere Message Broker has been installed.

Deleting a multi-instance broker
How you delete a multi-instance broker.

About this task

The order of deletion of a multi-instance message broker and its associated
instances is important. You should take care to use the correct command for each
step in the process.

Ideally, you should remove all of the broker instances using the
mqsiremovebrokerinstance command before you attempt to remove the broker
itself. This command removes all local references to the broker instance, but does
not affect the shared configuration for the multi-instance broker on the shared
work path (which was specified with the -e option on the mqsicreatebroker and
mqsiaddbrokerinstance commands).

Note that the mqsiremovebrokerinstance command cannot be issued against a
standby broker instance. Stop the active broker instance before you run this
command.

Now, remove the multi-instance broker using the mqsideletebroker command. This
process removes all references to the broker on both the local and shared work
paths.

Chapter 7. Configuring brokers for test and production environments 839

If you make a mistake, and unintentionally remove a broker instance, it can be
re-created using the mqsiaddbrokerinstance command, providing that the
mqsideletebroker command has not been used to delete the broker.

If the multi-instance broker has been removed using the mqsideletebroker
command before removing any associated broker instances, it will not be possible
to start the broker instances.

To recover from this situation, re-create the multi-instance broker using the
mqsicreatebroker command with the -e option, specifying the original shared
work path location.

The following procedure gives an overview of how you delete a multi-instance
broker:

Procedure
1. Stop the multi-instance broker MB1 on client node A.
2. Stop the multi-instance broker MB1 on client node B.
3. Remove the broker instance MB1 on client node B. Do this by using the

following command:
-mqsiremovebrokerinstance MB1

See “mqsiremovebrokerinstance command” on page 3918 for further
information.

4. Remove the broker MB1 on client node A. Do this by using the following
command:
-mqsideletebroker MB1

See “mqsideletebroker command” on page 3863 for further information.
Note, that you must remove broker instances created by using the
mqsiaddbrokerinstance command before you remove the main broker created
using the mqsicreatebroker command.

Related tasks:
“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
“Creating the shared directories” on page 829
How you create the shared directories that you need for your multi-instance
WebSphere Message Broker.
“Creating the WebSphere MQ multi-instance queue manager” on page 830
How you create the WebSphere MQ multi-instance queue manager that you need
for your multi-instance WebSphere Message Broker.
Related reference:
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsiremovebrokerinstance command” on page 3918
Use the mqsiremovebrokerinstance command to remove a multi-instance broker
from a server where WebSphere Message Broker has been installed.

840 WebSphere Message Broker Version 7.0.0.8

Deleting a multi-instance queue manager
To delete a multi-instance queue manager completely, you need to use the
WebSphere MQ dltmqm command to delete the queue manager, then remove
instances from other servers using either the WebSphere MQ rmvmqinf or
WebSphere MQ dltmqm commands.

Run the WebSphere MQ dltmqm command to delete a queue manager that has
instances defined on other servers, on any server where that queue manager is
defined. You do not need to run the WebSphere MQ dltmqm command on the same
server that you created it on. Then run the WebSphere MQ rmvmqinf or
WebSphere MQ dltmqm command on all the other servers which have a definition
of the queue manager.

You can only delete a queue manager when it is stopped. At the time you delete it
no instances are running, and the queue manager, strictly speaking, is neither a
single or a multi-instance queue manager; it is simply a queue manager that has its
queue manager data and logs on a remote share. When you delete a queue
manager, its queue manager data and logs are deleted, and the queue manager
stanza is removed from the mqs.ini file on the server on which you issued the
WebSphere MQ dltmqm command. You need to have access to the network share
containing the queue manager data and logs when you delete the queue manager.
On Windows there is no mqs.ini file; instead, the queue manager stanza is
removed from the registry.

On other UNIX platform servers where you have previously created instances of
the queue manager there are also entries in the mqs.ini files on those servers. You
need to visit each server in turn, and remove the queue manager stanza by
running the WebSphere MQ command rmvmqinf Queue manager stanza name. On
Windows, run the same command, and the queue manager stanza is removed from
the registry.

On UNIX platforms, if you have placed a common mqs.ini file in network storage
and referenced it from all the servers by setting the AMQ_MQS_INI_LOCATION
environment variable on each server, you need to delete the queue manager from
only one of its servers as there is only one mqs.ini file to update.

Example

First server
dltmqm QM1

Other servers where instances are defined
rmvmqinf QM1, or

dltmqm QM1

Related concepts:
“Creating a multi-instance queue manager” on page 832
Create a multi-instance queue manager by creating the queue manager on one
server, and configuring WebSphere MQ on another server to use the shared queue
manager data and logs.
Related tasks:
“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
“Creating the shared directories” on page 829
How you create the shared directories that you need for your multi-instance

Chapter 7. Configuring brokers for test and production environments 841

WebSphere Message Broker.

Listing a multi-instance broker
How you list a multi-instance broker.

Procedure

Use the mqsilist command to view multi-instance brokers. Do this by using the
following command:
mqsilist

The output from the mqsilist command is of the following format:
BIP1284I: Broker ’BK1’ on queue manager ’QM1’ is running.
BIP1292I: The multi-instance Broker ’BKHA1’ on multi-instance queue manager
’QMHA1’ has stopped.
BIP1294I Broker ’BKHA2’ is a multi-instance broker running in standby mode
on multi-instance queue manager ’QMHA2’.
BIP1295I Broker ’BKHA3’ is a multi-instance broker running in active mode on
multi-instance queue manager ’QMHA3’
BIP8071I: Successful command completion.

Results

The preceding results show:
v A standard broker BK1 running
v A multi-instance broker BKHA1 stopped
v A multi-instance broker BKHA2 started in Standby mode
v A multi-instance broker BKHA3 running in Active mode.
Related tasks:
“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
“Creating the shared directories” on page 829
How you create the shared directories that you need for your multi-instance
WebSphere Message Broker.
“Creating the WebSphere MQ multi-instance queue manager” on page 830
How you create the WebSphere MQ multi-instance queue manager that you need
for your multi-instance WebSphere Message Broker.
Related reference:
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.

Back up and restore a multi-instance broker
How you back up and restore a multi-instance broker.

Before you begin

Before you start:

To ensure that the backup is complete and correct, back up the broker when the
broker is stopped, or when it is not processing a configuration change (such as a
deployment or property change).

842 WebSphere Message Broker Version 7.0.0.8

About this task

When you back up a multi-instance broker, you back up the registry and
configuration from the shared work path of the broker and its associated instances.

Hence you perform the backup procedure described in this topic for the
multi-instance broker only. There are no additional steps for backing up the
associated instances of the broker.

When you restore a multi-instance broker, you re-create associated instances by
using the mqsiaddbrokerinstance command.

Procedure
1. Back up a multi-instance broker in the standard way by using the

mqsibackupbroker command. Do this by using the following command:
mqsibackupbroker MB1 –d /BackupDirectory/WMB

where:
v MB1 is the name of the broker.
v /BackupDirectory/WMB is the directory in which the backup file is created.
The command detects a multi-instance broker and backs up the registry and
configuration from the shared work path of the broker.
There are no additional backup steps for the associated instances of the broker.

2. Restore a multi-instance broker in the standard way by using the
mqsirestorebroker command. Do this by using the following command:
mqsirestorebroker MB1 –d /BackupDirectory/WMB -a 20091009.zip

where:
v MB1 is the name of the broker.
v /BackupDirectory/WMB is the directory in which the backup file is stored.
v 20091009.zip is the name of the backup (archive) file.
The command detects a multi-instance broker and restores the registry and
configuration to the shared work path of the broker.

3. Re-create associated instances of the multi-instance broker by using the
mqsiaddbrokerinstance command. See the “mqsiaddbrokerinstance command”
on page 3715 for further information.

Related tasks:
“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
Related reference:
“mqsibackupbroker command” on page 3720
Use the mqsibackupbroker command to back up the current configuration of a
broker.
“mqsirestorebroker command” on page 3952
Use the mqsirestorebroker command to restore the broker configuration from a
backup file.

Using a broker with an existing high availability manager
You can use WebSphere Message Broker Version 7.0 with an existing high
availability manager, for example HACMP, HA/XD, VCS, or HP-UX Serviceguard.

Chapter 7. Configuring brokers for test and production environments 843

About this task

With the introduction of multi-instance message brokers, configuring WebSphere
Message Broker Version 7.0 with a high availability (HA) manager is much easier.
Previously, support pack IC91 was provided to assist in configuring this
requirement.

A number of scripts were provided, but most of these are no longer required
because WebSphere Message Broker Version 7.0 has built in many of the functions
as a result of the multi-instance work.

This topic summarizes how to complete the following tasks:
1. Create a broker.
2. Add a broker instance.
3. Start a broker.
4. Stop a broker.
5. Monitor a broker.
6. Delete a broker.

Procedure
1. To create a broker, mount the shared resource onto your primary node and use

the following mqsicreatebroker command with the -e parameter to specify
your shared resource location.
mqsicreatebroker MyBroker -q MQ1 -e /MQHA/MyBroker/

where:
v MyBroker is the name of the broker.
v MQ1 is the name of the queue manager.
v /MQHA/MyBroker/ is the directory for your shared resource.

2. To add another broker instance, mount the shared resource onto your
secondary nodes and use the following mqsiaddbrokerinstance command.
mqsiaddbrokerinstance MyBroker –e /MQHA/MyBroker/

where:
v MyBroker is the name of the broker.
v /MQHA/MyBroker/ is the directory for your shared resource.

3. To start a broker, you can use one of the following script files:
hamqsi_start_broker

#!/bin/ksh
Module:
hamqsi_start_broker
#
Args:
BROKER = name of broker to start
#
Description:
This script attempts to start the MQSI Broker
#
Runs as the userid which runs broker, and must have
the user’s environment (i.e. invoke from "su - $MQUSER ..")
#

BROKER=$1

if [-z "$BROKER"]
then

844 WebSphere Message Broker Version 7.0.0.8

echo "hamqsi_start_broker: ERROR! No Broker name supplied"
echo " Usage: hamqsi_start_broker <BROKER>"
exit 1

fi

Ensure that the broker is not already running. In this test
we look for any broker-related processes, which might have
been left around after a previous failure. Any that remain
must now be terminated. This is a brutal means of mopping
up broker processes.
We stop the processes in the following order:
bipservice - first so it cannot issue restarts
bipbroker - next for same reason
biphttplistener
startDataFlowEngine
DataFlowEngine - last
#
echo "hamqsi_start_broker: Ensure $BROKER not already running"
for process in bipservice bipbroker biphttplistener startDataFlowEngine DataFlowEngine
do

Output of kill redirected to /dev/null in case no processes
ps -ef | grep "$process $BROKER" | grep -v grep | \

awk ’{print $2}’| xargs kill -9 > /dev/null 2>&1
done

Start the Broker
echo "hamqsi_start_broker: Start Broker " $BROKER
mqsistart $BROKER > /dev/null 2>&1
if [$? -ne "0"]
then

echo "hamqsi_start_broker: Bad result from mqsistart for $BROKER"
exit 1

fi

Check to see if the broker service has started. This loop
uses a fixed online timeout of approx. 10 seconds.
TIMED_OUT=yes
i=0
while [$i -lt 10]
do

Check for Broker start. We look for bipservice and
bipbroker to be running; there might be no message flows
deployed.
Look to see whether bipservice is running
cnt=`ps -ef | grep "bipservice $BROKER" | grep -v grep | wc -l`
if [$cnt -gt 0]
then
Look to see whether bipbroker is running
cnt=`ps -ef | grep "bipbroker $BROKER" | grep -v grep | wc -l`
if [$cnt -gt 0]
then

Broker is online
echo "hamqsi_start_broker: ${BROKER} is running"
TIMED_OUT=no
break # out of timing loop

fi
fi
Manage the loop counter
i=`expr $i + 1`
sleep 1

done

Report error if broker failed to start in time
if [${TIMED_OUT} = "yes"]
then

echo "hamqsi_start_broker: Broker service failed to start: " $BROKER

Chapter 7. Configuring brokers for test and production environments 845

exit 1
fi

exit 0

hamqsi_start_broker_as

#
#!/bin/ksh
Module:
hamqsi_start_broker_as
#
Args:
broker = broker name
qm = name of broker queue manager
mquser = user account under which QM and Broker are run
#
Description:
Starting an MQSI Broker requires the following services:
(1) The MQSeries Queue Manager which supports the Broker
(2) The MQSI Broker service
This script provides a single source to initiate the required
services in sequence.
#
Queue Manager:
This script uses the strmqm script supplied by MQSeries V7
#
Broker:
This script then invokes the hamqsi_start_broker script which
checks that the broker is fully stopped and then starts it.
#
The hamqsi_start_broker_as script should be run as root.

Check running as root
if [`id -u` -ne 0]
then

echo "Must be running as root"
exit 1

fi

BROKER=$1
QM=$2
MQUSER=$3

Check all parameters exist

if [-z "$BROKER"]
then

echo "hamqsi_start_broker_as: ERROR! No Broker name supplied"
echo " Usage: hamqsi_start_broker_as <BROKER> <QM> <MQUSER>"
exit 1

fi

if [-z "$QM"]
then

echo "hamqsi_start_broker_as: ERROR! No queue manager name supplied"
echo " Usage: hamqsi_start_broker_as <BROKER> <QM> <MQUSER>"
exit 1

fi

if [-z "$MQUSER"]
then

echo "hamqsi_start_broker_as: ERROR! No Userid supplied"
echo " Usage: hamqsi_start_broker_as <BROKER> <QM> <MQUSER>"
exit 1

846 WebSphere Message Broker Version 7.0.0.8

fi

Start the Queue Manager
#
echo "hamqsi_start_broker_as: Start Queue manager " $QM
su $MQUSER -c "/opt/mqm/bin/strmqm $QM"
rc=$?
if [$rc -ne 0]
then

echo "hamqsi_start_broker_as: Could not start the queue manager"
exit $rc

fi

Start the Broker
#
Ensure that the Broker is not already running and start the Broker
su - $MQUSER -c "/MQHA/bin/hamqsi_start_broker $BROKER"
rc=$?
if [$rc -ne 0]
then

echo "hamqsi_start_broker_as: Could not start the broker"
exit $rc

fi

exit $rc

4. To stop a broker, you can use one of the following script files:
hamqsi_stop_broker

#!/bin/ksh
Module:
hamqsi_stop_broker
#
Args:
broker = name of broker
timeout = max time to allow for each phase of termination
#
Description:
This script stops the broker, forcibly if necessary.
The script should be run by the user account under which
the broker is run, including environment.

BROKER=$1
TIMEOUT=$2

if [-z "$BROKER"]
then

echo "hamqsi_stop_broker: ERROR! No broker name supplied"
echo " Usage: hamqsi_stop_broker <BROKER> <TIMEOUT>"
exit 1

fi

if [-z "$TIMEOUT"]
then

echo "hamqsi_stop_broker: ERROR! No timeout supplied"
echo " Usage: hamqsi_stop_broker <BROKER> <TIMEOUT>"
exit 1

fi

for severity in normal immediate terminate
do

Issue the stop method in the background - we don’t
want to risk having it hang us up, indefinitely. We
want to be able to concurrently run a TIMEOUT timer
to give up on the attempt, and try a more forceful
stop. If the kill version fails then there is nothing

Chapter 7. Configuring brokers for test and production environments 847

more we can do here anyway.

echo "hamqsi_stop_broker: Attempting ${severity} stop of ${BROKER}"
case $severity in

normal)
Minimum severity of stop is to issue mqsistop
mqsistop $BROKER > /dev/null 2>&1 &
;;

immediate)
This is an immediate stop.
mqsistop $BROKER -i > /dev/null 2>&1 &
;;

terminate)
This is a brutal means of mopping up Broker processes.
We stop the processes in the following order:
bipservice - first so it cannot issue restarts
bipbroker - next for same reason
biphttplistener
startDataFlowEngine
DataFlowEngine - last
for process in bipservice bipbroker biphttplistener startDataFlowEngine DataFlowEngine
do

Output of kill redirected to /dev/null in case no processes
ps -ef | grep "$process $BROKER" | grep -v grep | \
awk ’{print $2}’| xargs kill -9 > /dev/null 2>&1

done
;;

esac

echo "hamqsi_stop_broker: Waiting for ${severity} stop of ${BROKER} to complete"
TIMED_OUT=yes
SECONDS=0
while (($SECONDS < ${TIMEOUT}))
do
See whether there are any broker processes still running
cnt=`ps -ef | \

grep -E "bipservice $BROKER|bipbroker $BROKER|startDataFlowEngine
$BROKER|DataFlowEngine $BROKER|biphttplistener $BROKER" | \
grep -v grep | wc -l`

if [$cnt -gt 0]
then

It’s still running...wait for timeout
sleep 1 # loop granularity

else
It’s stopped, as desired
echo "${BROKER} has stopped"
TIMED_OUT=no
break # out of while ..offline timeout loop

fi
done # timeout loop

if [${TIMED_OUT} = "yes"]
then
continue # to next level of urgency

else
break # instance is stopped, job is done

fi

done # next level of urgency

if [${TIMED_OUT} = "no"]
then

echo "hamqsi_stop_broker: Completed"

848 WebSphere Message Broker Version 7.0.0.8

exit 0
else

echo "hamqsi_stop_broker: Completed with errors"
exit 1

fi

hamqsi_stop_broker_as

#!/bin/ksh
Module:
hamqsi_stop_broker_as
#
Arguments are:
broker = name of broker
qm = name of broker queue manager
mquser = user account under which QM and broker run
timeout = max time to allow each phase of stop processing
#
Description:
This script stops the Broker, Queue Manager in that sequence.
#
Broker:
The script invokes the hamqsi_stop_broker script to stop the
broker, which checks that the broker is fully stopped.
#
Queue Manager:
This script uses the strmqm script supplied by MQSeries V7
#
The hamqsi_stop_broker_as script should be run as root.

Check running as root
if [`id -u` -ne 0]
then

echo "Must be running as root"
exit 1

fi

BROKER=$1
QM=$2
MQUSER=$3
TIMEOUT=$4

Check all parameters

if [-z "$BROKER"]
then

echo "hamqsi_stop_broker_as: ERROR! No Broker name supplied"
echo " Usage: hamqsi_stop_broker_as <BROKER> <QM> <MQUSER> <TIMEOUT>"
exit 1

fi

if [-z "$QM"]
then

echo "hamqsi_stop_broker_as: ERROR! No queue manager name supplied"
echo " Usage: hamqsi_stop_broker_as <BROKER> <QM> <MQUSER> <TIMEOUT>"
exit 1

fi

if [-z "$MQUSER"]
then

echo "hamqsi_stop_broker_as: ERROR! No userid supplied"
echo " Usage: hamqsi_stop_broker_as <BROKER> <QM> <MQUSER> <TIMEOUT>"
exit 1

fi

if [-z "$TIMEOUT"]

Chapter 7. Configuring brokers for test and production environments 849

then
echo "hamsi_stop_broker_as: ERROR! No Timeout value supplied"
echo " Usage: hamqsi_stop_broker_as <BROKER> <QM> <MQUSER> <TIMEOUT>"
exit 1

fi

METHOD_STATUS="OK"

Stop the BROKER
#
echo "hamqsi_stop_broker_as: Stop Broker " $BROKER
su - $MQUSER -c "/MQHA/bin/hamqsi_stop_broker $BROKER $TIMEOUT"
if [$? -ne "0"]
then

Even if the above operation failed, just report and then continue by
stopping other components
echo "hamqsi_stop_broker_as: Attempt to stop broker $BROKER failed"
METHOD_STATUS="Error"

fi

Stop the Queue Manager, using script from MQ V7
#
echo "hamqsi_stop_broker_as: Stop Queue Manager $QM"
su $MQUSER -c "/opt/mqm/bin/endmqm -i $QM"
if [$? -ne "0"]
then

Even if the above operation failed, just report and then continue by
stopping other components
echo "hamqsi_stop_broker_as: Attempt to stop queue manager $QM failed"
METHOD_STATUS="Error"

fi

if [${METHOD_STATUS} = "OK"]
then

exit 0
else

echo "hamqsi_stop_broker_as: Completed with errors"
exit 1

fi

5. To monitor a broker, you can use the following script file that checks only for
the existence of the main broker processes and provides a successful return
code if they are found:
hamqsi_monitor_broker_as

#!/bin/ksh
Module:
hamqsi_monitor_broker_as
#
Args:
BROKER = name of broker in AppServer
QM = name of queue manager in AppServer
MQUSER = userid under which queue manager and broker run
#
Description:
This is the application monitor script used with HACMP/ES. It
needs to be invoked by a parameter-less wrapper script because
HACMP does not allow parameters to be passed to application
monitor scripts.
#
This hamqsi_monitor_broker_as script is run as root, and uses
su as needed to monitor the 3 components of the application server.
#
This script is tolerant of a queue manager that is still in

850 WebSphere Message Broker Version 7.0.0.8

startup. If the queue manager is still starting this application
monitor script will exit with 0 - which indicates
to HACMP that there’s nothing wrong. This is to allow for
startup time for the queue manager which might exceed the
Stabilisation Interval set for the Application Monitor in HACMP/ES.
#
#
Exit codes:
0 => Broker & QM are all running OK or starting
>0 => One or more components are not responding.
#

Check running as root
if [`id -u` -ne 0]
then

echo "Must be running as root"
exit 1

fi

BROKER=$1
QM=$2
MQUSER=$3

Check the parameters

if [-z "$BROKER"]
then

echo "hamqsi_monitor_broker_as: ERROR! No broker name supplied"
exit 1

fi

if [-z "$QM"]
then

echo "hamqsi_monitor_broker_as: ERROR! No queue manager name supplied"
exit 1

fi

if [-z "$MQUSER"]
then

echo "hamqsi_monitor_broker_as: ERROR! No mquser supplied"
exit 1

fi

Use a state variable to reflect the state of components as they
are tested. Valid values are "stopped", "starting" and "started"
Initialise it to "stopped" for safety.
STATE="stopped"

--
Check that the queue manager is running or starting.
#
su - $MQUSER -c "echo ’ping qmgr’ | runmqsc ${QM}" > /dev/null 2>&1
pingresult=$?
pingresult will be 0 on success; non-zero on error (man runmqsc)
if [$pingresult -eq 0]
then

ping succeeded
echo "hamqsi_monitor_broker_as: Queue Manager ${QM} is responsive"
STATE="started"

else
ping failed
Don’t condemn the QM immediately, it might be in startup.
The following regexp includes a space and a tab, so use tab-friendly
editors.
srchstr=" $QM[]*$"
cnt=`ps -ef | grep strmqm | grep "$srchstr" | grep -v grep \

| awk ’{print $2}’ | wc -l`

Chapter 7. Configuring brokers for test and production environments 851

if [$cnt -gt 0]
then
It appears that QM is still starting up, tolerate
echo "hamqsi_monitor_broker_as: Queue Manager ${QM} is starting"
STATE="starting"

else
There is no sign of QM start process
echo "hamqsi_monitor_broker_as: Queue Manager ${QM} is not responsive"
STATE="stopped"

fi
fi

Decide whether to continue or to exit
case $STATE in

stopped)
echo "hamqsi_monitor_broker_as: Queue manager ($QM) is not running correctly"
exit 1
;;

starting)
echo "hamqsi_monitor_broker_as: Queue manager ($QM) is starting"
echo "hamqsi_monitor_broker_as: WARNING - Stabilisation Interval might be too short"
echo "hamqsi_monitor_broker_as: WARNING - No test of broker $BROKER will be conducted"
exit 0
;;

started)
echo "hamqsi_monitor_broker_as: Queue manager ($QM) is running"
continue
;;

esac

--
Check the MQSI Broker is running
#
Re-initialise STATE for safety
STATE="stopped"
#
The broker runs as a process called bipservice which is responsible
for starting and re-starting the admin agent process (bipbroker).
The bipbroker is responsible for starting any DataFlowEngines. The
bipbroker starts the DataFlowEngines using the wrapper script
startDataFlowEngine. If no execution groups have been assigned to
the broker there will be no DataFlowEngine processes. There should
always be a bipservice and bipbroker process pair. This monitor
script only tests for bipservice, because bipservice should restart
bipbroker if necessary - the monitor script should not attempt to
restart bipbroker and it might be premature to report an absence
of a bipbroker as a failure.
#
cnt=`ps -ef | grep "bipservice $BROKER" | grep -v grep | wc -l`
if [$cnt -eq 0]
then

echo "hamqsi_monitor_broker_as: MQSI Broker $BROKER is not running"
STATE="stopped"

else
echo "hamqsi_monitor_broker_as: MQSI Broker $BROKER is running"
STATE="started"

fi

Decide how to exit
case $STATE in

stopped)
echo "hamqsi_monitor_broker_as: Broker ($BROKER) is not running correctly"
exit 1
;;

started)

852 WebSphere Message Broker Version 7.0.0.8

echo "hamqsi_monitor_broker_as: Broker ($BROKER) is running"
exit 0
;;

esac

If you require more information than that supplied by the preceding example,
you can code your monitor to do the following actions:
v Subscribe to WebSphere Message Broker accounting and statistics, and

analyze the results.
v Put a dummy message through the broker and analyze the results.

6. Before you delete the broker on the primary node, you must delete any brokers
on the standby nodes. To delete a broker, use the mqsiremovebrokerinstance
command on the secondary nodes, and the mqsideletebroker command on the
primary node.

Results

For further information about configuring WebSphere MQ with a high availability
manager, refer to the WebSphere MQ Version 7 Information Center online.

See the:
v addmqinf command
v dspmqinf command
v rmvmqinf. command

and the -md option on the crtmqm command.
Related tasks:
“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsiaddbrokerinstance command” on page 3715
Use the mqsiaddbrokerinstance command to create a multi-instance broker on a
server where WebSphere Message Broker has been installed.
“mqsiremovebrokerinstance command” on page 3918
Use the mqsiremovebrokerinstance command to remove a multi-instance broker
from a server where WebSphere Message Broker has been installed.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
Related information:

WebSphere MQ Version 7 Information Center online

Using a broker with an existing Windows Cluster (Windows
Server 2003 or 2008)

You can use WebSphere Message Broker Version 7.0 with the existing high
availability manager for Windows Server 2003 (Microsoft Cluster Service - MSCS)
or Windows Server 2008 (Failover Cluster Manager).

Chapter 7. Configuring brokers for test and production environments 853

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

About this task

With the introduction of multi-instance brokers, configuring WebSphere Message
Broker Version 7.0 with a high availability (HA) manager is much easier.
Previously, support pack IC91 was provided to assist in configuring this
requirement.

A number of scripts were provided in support pack IC91, but most of these scripts
are no longer required because WebSphere Message Broker Version 7.0 has built-in
many of the functions as a result of the multi-instance work.

This topic summarizes how to complete the following tasks:
1. Complete the prerequisite setup.
2. Configure a local group.
3. Create a broker.
4. Add broker instances to the additional nodes.
5. Add the broker service to the cluster configuration
6. Start and stop a broker.
7. Delete a broker.

Procedure
1. To complete the prerequisite setup, complete the following steps:

a. Validate your MSCS configuration (on Windows Server 2003) or Failover
Cluster Manager configuration (on Windows Server 2008).

b. Complete all of the steps documented in 'Supporting the Microsoft Cluster
Service' of the WebSphere MQ documentation to create a cluster
configuration that contains the queue manager on which you want the
broker to run.

c. Note the haregtyp.exe command as a prerequisite for creating
WebSphere MQ resources in the cluster.

2. To configure a local group, ensure that the domain user under which you want
the broker to run exists in the local mqbrkrs group on all nodes on which you
want the broker to run.

3. To create a broker, use the following mqsicreatebroker command on the node
on which your cluster is currently running.
mqsicreatebroker MyBroker -q MQ1 -e E:\Broker\Workspace

where:
v MyBroker is the name of the broker.
v MQ1 is the name of the queue manager.
v E:\Broker\Workspace is the directory of a shared disk (nonquorum) in your

cluster configuration.
4. To add this broker instance to the other nodes in your cluster, switch your

cluster to each node in turn. When a node is active, use the following
mqsiaddbrokerinstance command.
mqsiaddbrokerinstance MyBroker –e E:\Broker\Workspace

where:
v MyBroker is the name of the broker.
v E:\Broker\Workspace is the directory of a shared disk (nonquorum) in your

cluster configuration.

854 WebSphere Message Broker Version 7.0.0.8

5. To add a broker generic service resource to the cluster which contains the
broker queue manager, complete the following steps:
a. Select the IBM WebSphere Message Broker component MyBroker service

when asked. All other settings can be left unchanged.
b. Add a dependency on the WebSphere MQ resource, to ensure that the

queue manager is started before the broker.
6. To start and stop the broker resource, use the MSCS configuration (on Windows

Server 2003) or Failover Cluster Manager (on Windows Server 2008).
7. To delete a broker resource from the MSCS configuration (on Windows Server

2003) or Failover Cluster Manager (on Windows Server 2008), complete the
following steps:
a. Delete the broker generic service from the cluster configuration.
b. Use the mqsiremovebrokerinstance command on all nodes but one, moving

the cluster between nodes before running each command.
c. On the final node, use the mqsideletebroker command to completely

remove the broker configuration.

Results

For further information about configuring WebSphere MQ with a high availability
manager for Windows Server 2003 or Windows Server 2008, see the WebSphere
MQ Version 7 Information Center online.

See the following topics:
v Introducing MSCS clusters
v Supporting the Microsoft Cluster Service (MSCS)
v Setting up WebSphere MQ for MSCS clustering
Related tasks:
“Using a broker with an existing high availability manager” on page 843
You can use WebSphere Message Broker Version 7.0 with an existing high
availability manager, for example HACMP, HA/XD, VCS, or HP-UX Serviceguard.

“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsiaddbrokerinstance command” on page 3715
Use the mqsiaddbrokerinstance command to create a multi-instance broker on a
server where WebSphere Message Broker has been installed.
“mqsiremovebrokerinstance command” on page 3918
Use the mqsiremovebrokerinstance command to remove a multi-instance broker
from a server where WebSphere Message Broker has been installed.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
Related information:

WebSphere MQ Version 7 Information Center online

Chapter 7. Configuring brokers for test and production environments 855

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

HTTP proxy servlet overview
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.

By using the HTTP proxy servlet in an external web servlet container, you can
support a larger number of concurrent HTTP sessions, high availability, load
distribution, and access to the broker from multiple IP addresses and ports.You can
use the servlet to replace either the broker-wide listener, or an embedded listener
in a specific execution group.

The HTTP proxy servlet supports SSL (HTTPS) secure protocol when it is deployed
in a properly configured web servlet container.

You cannot use the HTTP proxy servlet if you configure your broker environment
to use multi-instance WebSphere MQ queue managers; the servlet cannot connect
to the standby queue manager when it becomes active.

For a detailed description of the proxy servlet, its location in the runtime directory
path, and its function, see: “HTTP proxy servlet; proxy servlet component” on
page 865

Before you install and test the HTTP proxy servlet, ensure you understand the
following concepts:
v “HTTP traffic handling in WebSphere Message Broker” on page 857
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859
v “HTTP proxy servlet; descriptions of required components” on page 863

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you install and test the HTTP proxy servlet:
v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.

856 WebSphere Message Broker Version 7.0.0.8

“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.
“Configuring a WebSphere Message Broker to run in multi-instance mode” on
page 827
How you configure a WebSphere Message Broker to run in multi-instance mode.
Related reference:
“Proxy servlet configuration parameters” on page 878
Before you can deploy the proxy servlet web.xml to the servlet container, you must
configure it with the following initialization parameters for the broker environment
that the servlet connects to.

HTTP traffic handling in WebSphere Message Broker
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.

WebSphere Message Broker supports Web services requests over HTTP. Brokers
have HTTP listeners that receive requests, which are propagated to message flows
that contain the following nodes:
v HTTPInput
v HTTPReply
v SOAPInput
v SOAPReply

WebSphere Message Broker has two types of listeners:
v A listener that is started and managed by the broker, which you can use for

messages for the HTTP nodes. This listener supports two ports, one for HTTP
and one for HTTPS (HTTP over SSL) messages.

v A listener that is started and managed by an execution group (an embedded
listener), which you can use for messages for the SOAP and HTTP nodes. This
listener also supports two ports for HTTP and HTTPS messages.

HTTP traffic handling is based on node type:
v HTTP nodes: The default configuration for HTTP nodes is for the broker listener

to handle HTTP messages through port 7080. Connections are made into the
broker HTTP listener, which places requests on the SYSTEM.BROKER.WS.INPUT
queue, from which the HTTPInput nodes read the data. After the flow has
reached an HTTPReply node, the reply data is placed on the
SYSTEM.BROKER.WS.REPLY queue, where the data is read by the HTTP
listener and sent back to the HTTP client.
If you want HTTP nodes to handle HTTPS messages, you must update the
broker configuration to define a second port for HTTPS, and set the property to
enable HTTPS processing, by using the mqsichangeproperties command. You
can also change the port or ports on which the listener is listening by using this
command.
Because WebSphere MQ queues are used to couple the HTTP listener to the
message flows, requests received by the HTTP listener can be processed by any
message flow in any execution group (provided that the Web address selector
matches), and the reply can come back from any execution group.
You can also use the embedded execution group listener to process HTTP and
HTTPS messages. You can change the configuration and port numbers by using
the mqsichangeproperties command.

Chapter 7. Configuring brokers for test and production environments 857

Connections are made directly to the execution groups, and requests are passed
to the HTTPInput nodes in that execution group. The HTTP data is passed to
the HTTPInput node, processed in the flow, and sent back directly from the
HTTPReply node.
Because the network connection is made to a particular execution group, the
reply must be sent back from that execution group.

v SOAP nodes: Connections are made directly to the execution group listener, and
requests are passed to the SOAPInput nodes in that execution group. The HTTP
data is passed to the SOAPInput node, processed in the flow, and sent back
directly from the SOAPReply node.
Because the network connection is made to a particular execution group, the
reply must be sent back from that execution group.

For more details about these listeners, see “Processing HTTP messages” on page
1579.

Before you install and test the HTTP proxy servlet, ensure that you understand the
following concepts:
v “HTTP proxy servlet overview” on page 856
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859
v “HTTP proxy servlet; descriptions of required components” on page 863

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you to install and test the HTTP proxy servlet:
v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.

858 WebSphere Message Broker Version 7.0.0.8

“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.

HTTP traffic handling by using the proxy servlet in an external
web servlet container
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.

The proxy servlet is a Java servlet that produces the function of the broker HTTP
listeners in an external web servlet container, such as WebSphere Application
Server or Apache Tomcat. After the proxy servlet is deployed and running on the
web servlet container, it uses the HTTP listener of the container to receive HTTP
requests. If the web servlet container is configured to support SSL (HTTPS), web
services requests are received by the message flows by using a secure
communications protocol. For more information, see: “HTTP proxy servlet; proxy
servlet component” on page 865

Components and configurations supported by the proxy servlet:

The following figures show the components and configurations that are supported
by the proxy servlet, for descriptions of the components listed in these figures, see:
“HTTP proxy servlet; descriptions of required components” on page 863

Chapter 7. Configuring brokers for test and production environments 859

Web Services

Client

Application

BROKER

Execution Group

Execution Group

Message
Flow

Message
Flow

Message
Flow

Message
Flow

LOCAL SERVLET

CONTAINER

Proxy
Servlet

WMQ
Bindings

wsplugin6.conf

HTTP/HTTPS

Web Services

Client

Application

In the above figure the proxy servlet is running on the same server as the message
broker. The proxy servlet connects to the broker queue manager by using bindings
mode (local connection) and the servlet is configured to access only HTTP nodes
and therefore has been configured to access the HTTP nodes configuration file
wsplugin6.conf.

Web Services

Client

Application

BROKER

Execution Group

Execution Group

Message
Flow

Message
Flow

Message
Flow

Message
Flow

LOCAL SERVLET

CONTAINER

Proxy
Servlet

WMQ
Bindings

soapplugin6.conf

HTTP/HTTPS

Web Services

Client

Application

In the above figure the proxy servlet is running on the same server as the message
broker. The proxy servlet connects to the broker queue manager by using bindings
mode (local connection) and the servlet is configured to access only SOAP nodes
and therefore has been configured to access the SOAP nodes configuration file
soapplugin6.conf.

860 WebSphere Message Broker Version 7.0.0.8

Web Services

Client

Application

BROKER

Execution Group

Execution Group

Message
Flow

Message
Flow

Message
Flow

Message
Flow

REMOTE SERVLET

CONTAINER

Proxy
Servlet

WMQ
Client

ConnectionHTTP/HTTPS

Web Services

Client

Application

SYSTEM
BROKER
WS.ACK

In the above figure the proxy servlet is running on a remote server to the message
broker. The proxy servlet connects to the broker queue manager by using client
mode (remote connection) and the servlet can be configured to access HTTP or
SOAP nodes and the HTTP or SOAP node configuration is retrieved from the
SYSTEM.BROKER.WS.ACK queue.

Chapter 7. Configuring brokers for test and production environments 861

Web Services

Client

Application

BROKER A'

BROKER A''

Execution Group

Execution Group

Execution Group

Execution Group

Message
Flow

Message
Flow

Message
Flow

Message
Flow

Message
Flow

Message
Flow

Message
Flow

Message
Flow

REMOTE SERVLET

CONTAINER

Proxy
Servlet

Network

Dispatcher

WMQ
Client

Connection

SYSTEM
BROKER
WS.ACK

SYSTEM
BROKER
WS.ACK

HTTP/HTTPS

Web Services

Client

Application

In the above figure the proxy servlet is configured to load balance WebSphere MQ
connections across multiple message brokers. Network dispatchers or load
balancers are required for this configuration to work.

When the proxy servlet is configured to connect to multiple brokers, the brokers
must be identical clones of each other, which means that the same HTTP and
SOAP flows are deployed with the same web addresses.

The proxy servlet sends the HTTP requests over the WebSphere MQ connections
trying to distribute the load between the active broker connections.

Before you install and test the HTTP proxy servlet, ensure you understand the
following concepts:
v “HTTP proxy servlet overview” on page 856
v “HTTP traffic handling in WebSphere Message Broker” on page 857

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you install and test the HTTP proxy servlet:

862 WebSphere Message Broker Version 7.0.0.8

v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP proxy servlet; descriptions of required components”
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

HTTP proxy servlet; descriptions of required components
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.

Ensure that you are familiar with the following components and concepts required
by the proxy servlet:
v “HTTP proxy servlet; message flows component” on page 864
v “HTTP proxy servlet; proxy servlet component” on page 865
v “HTTP proxy servlet; servlet container component” on page 867
v “HTTP proxy servlet; web addresses component” on page 868
v “HTTP proxy servlet; Broker component” on page 870
v “HTTP proxy servlet; web services clients component” on page 871

Before you install and test the HTTP proxy servlet, ensure you understand the
following concepts:
v “HTTP proxy servlet overview” on page 856
v “HTTP traffic handling in WebSphere Message Broker” on page 857
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you install and test the HTTP proxy servlet:
v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:

Chapter 7. Configuring brokers for test and production environments 863

“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

HTTP proxy servlet; message flows component:

The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients. Ensure that you are familiar with the message flows component.

Message flows execute the functions of transforming, logging, enriching, and
routing messages. Message flows can use HTTP or SOAP input nodes to receive
requests and HTTP or SOAP reply nodes to send responses. Each HTTP or SOAP
input node has a web address configured in the node properties. The HTTP or
SOAP input nodes only receive request messages addressed to the configured web
address.

The proxy servlet is not aware of the execution groups that the message flows are
deploying.

Before you install and test the HTTP proxy servlet, ensure you understand the
following concepts:
v “HTTP proxy servlet overview” on page 856
v “HTTP traffic handling in WebSphere Message Broker” on page 857
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859
v “HTTP proxy servlet; descriptions of required components” on page 863

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you install and test the HTTP proxy servlet:
v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:

864 WebSphere Message Broker Version 7.0.0.8

“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

HTTP proxy servlet; proxy servlet component:

The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients. Ensure that you are familiar with the proxy servlet component.

A Proxy servlet is a Java Web Application Archive (WAR) file that is part of the
runtime environment in WebSphere Message Broker Version 6.1 Fix Pack 3 (6.1.0.3)
and above, and can be found in the following directory:

WMB61_runtime_install_path/tools. Where WMB61_runtime_install_path specifies
the name of your runtime installation directory.

The proxy servlet is a Java servlet that receives HTTP requests. The proxy servlet
matches the received web address with the web address that the HTTP or SOAP
input nodes are monitoring, then passes the HTTPRequest to the correct HTTP or
SOAP input node flow using WebSphere MQ.

The proxy servlet receives response messages from the HTTP or SOAP reply nodes
and sends them back to the client applications over HTTP or HTTPS. The message
broker has several internal WebSphere MQ queues, SYSTEM.BROKER.WS.* queues,
that are used for the communication between the proxy servlet and the HTTP or
SOAP input and reply nodes.

Each HTTP or SOAP input node monitors the arrival of requests associated to
specific web addresses. The message broker has internal configuration files, and an
internal WebSphere MQ queue SYSTEM.BROKER.WS.ACK, that contain the list of
web addresses that are monitored by the different HTTP or SOAP input nodes in
message flows deployed on any execution groups. The proxy servlet accesses the

Chapter 7. Configuring brokers for test and production environments 865

internal file, or queue, to match the web addresses received in HTTP or HTTPS
requests with the web addresses that the HTTP or SOAP input nodes that are
waiting for.

The configuration files, or queue, have a unique correlation ID associated with
each web address. The HTTP or SOAP input node uses this correlation ID to get
the messages from the internal queue SYSTEM.BROKER.WS.INPUT, and the proxy
servlet uses the same correlation ID to put the messages on this queue. This is the
mechanism used to correlate the incoming HTTP or HTTPS requests and the HTTP
or SOAP input nodes in the message flows.

The HTTP or SOAP input node copies the WebSphere MQ input message ID in the
LocalEnvironment.Destination.HTTP.RequestIdentifier to be used by the HTTP or
SOAP reply node for WebSphere MQ output message correlation ID. The proxy
servlet does a selective GET by correlation ID to the reply queue
SYSTEM.BROKER.WS.REPLY, and receives the response messages.

The proxy servlet accepts GET and POST HTTP or HTTPS requests.

Before you install and test the HTTP proxy servlet, ensure you understand the
following concepts:
v “HTTP proxy servlet overview” on page 856
v “HTTP traffic handling in WebSphere Message Broker” on page 857
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859
v “HTTP proxy servlet; descriptions of required components” on page 863

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you install and test the HTTP proxy servlet:
v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this

866 WebSphere Message Broker Version 7.0.0.8

topic to complete each of the tasks to then move onto testing the proxy servlet.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

HTTP proxy servlet; servlet container component:

The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients. Ensure that you are familiar with the servlet container component.

A Servlet container is the runtime environment for servlets and Java Server Pages
(JSP). WebSphere Application Server and Apache Tomcat are two examples of
servlet containers (or web containers) that are available. The proxy servlet can be
deployed in a local servlet container that is running on the same server as message
broker or on a remote servlet container that is running on a remote server to
message broker. The servlet container must allow the proxy servlet to configure
and call the WebSphere MQ classes for Java.

The servlet container provides the SSL (HTTPS) listener support for web services
applications. SSL must be configured and available in the container. The proxy
servlet does not have to be configured for SSL but it enforces HTTP requests over
SSL if the HTTP or SOAP input node is configured to use SSL.

Before you install and test the HTTP proxy servlet, ensure you understand the
following concepts:
v “HTTP proxy servlet overview” on page 856
v “HTTP traffic handling in WebSphere Message Broker” on page 857
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859
v “HTTP proxy servlet; descriptions of required components” on page 863

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you install and test the HTTP proxy servlet:
v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.

Chapter 7. Configuring brokers for test and production environments 867

“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

HTTP proxy servlet; web addresses component:

The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients. Ensure that you are familiar with the web addresses component.

web addresses, or Universal Resource Locators (URLs), have an important role when
HTTP or SSL (HTTPS) protocols are used. In WebSphere Message Broker, each
HTTP or SOAP input node expects to receive requests from a specific web address,
or web addresses when wildcard characters are used. The servlet container also
uses the web address to locate the servlets that are going to process the HTTP or
HTTPS requests received by the listener in the container.

The proxy servlet passes the requests from the servlet container to the broker and
vice versa. web addresses have the dual function of locating servlets and locating
HTTP or SOAP input nodes. This affects the format of the web addresses used for
the broker.

A web address is made up of the following structure:
<schema>://<hostname>:<port>/<url_path>

web address structure definition:
v <schema>

v <hostname>

v <port>

v <url_path>

<schema> is HTTP or HTTPS.

<hostname> is the hostname, or IP address, of the server where the servlet
container is running.

<port> is the port number that the servlet container is listening on.

<url_path> is a series of tokens separated by slashes /. These are used to indicate
the location of the servlet and the location of the HTTP or SOAP input nodes.

Because the <url_path> is used for mapping two resources (instead of one with the
broker internal listener) the format of the web address will change when the proxy
servlet is used.

The broker structure of the <url_path> is:

868 WebSphere Message Broker Version 7.0.0.8

/<url_path>=/<context_root>/<node_url_path>

Broker <url_path> structure definition:
v <context_root>

v <node_url_path>

v <port>

v <url_path>

<context_root> is the <url_path> allocated to the proxy servlet by the container
when the servlet is installed and deployed.

<node_url_path> is the part of the web address path that is added to make the web
address unique to a specific HTTP or SOAP input node.

The entire <url_path> has to be configured in the properties of the HTTPInput
node.

In some web servlet containers, it is possible to configure the proxy servlet to
receive all the HTTP or HTTPS requests arriving to the container (<context_root> =
“/*”). In this case, the existing web addresses in the HTTP nodes do not have to
change when the proxy servlet is implemented.

Before you install and test the HTTP proxy servlet, ensure you understand the
following concepts:
v “HTTP proxy servlet overview” on page 856
v “HTTP traffic handling in WebSphere Message Broker” on page 857
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859
v “HTTP proxy servlet; descriptions of required components” on page 863

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you install and test the HTTP proxy servlet:
v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web

Chapter 7. Configuring brokers for test and production environments 869

services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

HTTP proxy servlet; Broker component:

The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and Web
services clients. Ensure that you are familiar with the Broker component.

The Broker component is the runtime environment for the message flows. Message
flows can receive requests over HTTP when there are HTTP or SOAP input nodes
in the flow.

WebSphere Message Broker has two types of HTTP listener: broker-wide listeners
and execution group (embedded listeners). For more information about the two
types of listener, see “HTTP listeners” on page 1589.

Each listener has its unique TCP/IP port to listen for HTTP and HTTPS requests.

The proxy servlet implements the HTTP or HTTPS listener function in an external
servlet container.

Before you install and test the HTTP proxy servlet, ensure that you understand the
following concepts:
v “HTTP proxy servlet overview” on page 856
v “HTTP traffic handling in WebSphere Message Broker” on page 857
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859
v “HTTP proxy servlet; descriptions of required components” on page 863

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you install and test the HTTP proxy servlet:
v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.

870 WebSphere Message Broker Version 7.0.0.8

“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

HTTP proxy servlet; web services clients component:

The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients. Ensure that you are familiar with the web services clients
component.

web services clients are applications that send and receive SOAP (or simple HTTP)
requests and responses to and from web services implemented in message flows
running in a broker.

Before you install and test the HTTP proxy servlet, ensure you understand the
following concepts:
v “HTTP proxy servlet overview” on page 856
v “HTTP traffic handling in WebSphere Message Broker” on page 857
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859
v “HTTP proxy servlet; descriptions of required components” on page 863

When you have gained an understanding of the proxy servlet concept, read the
following topics to help you install and test the HTTP proxy servlet:
v “Installing the proxy servlet” on page 872
v “Testing the proxy servlet” on page 892
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.

Chapter 7. Configuring brokers for test and production environments 871

“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet”
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

Installing the proxy servlet
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.

Before you begin

Before you install the HTTP proxy servlet, ensure that you understand the
following concepts:
v “HTTP traffic handling in WebSphere Message Broker” on page 857
v “HTTP traffic handling by using the proxy servlet in an external web servlet

container” on page 859
v “HTTP proxy servlet; descriptions of required components” on page 863

About this task

The proxy servlet proxyservlet.war (WAR) file is part of the runtime environment
in WebSphere Message Broker Version 6.1 Fix Pack 3 (6.1.0.3) and above, and can
be found in the following directory:

WMB61_runtime_installation_path/tools. Where WMB61_runtime_installation_path
specifies the name of your runtime installation directory.

Supported operating systems

The proxy servlet runs on any operating system that is supported by the servlet
container. The documentation in this section describes the installation on Windows
XP but the proxy servlet can be installed on other operating systems.

Prerequisites

The proxy servlet requires:
v WebSphere Message Broker Version 7.0, or later.
v A supported version of WebSphere MQ. For the latest details of all supported

levels of hardware and software, visit the WebSphere Message Broker
Requirements website.

v A servlet container and web server, such as WebSphere Application Server
Version 6, or Apache Tomcat Version 6.

872 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

To install the proxy servlet:

Procedure
1. Install and customize a web servlet container, such as WebSphere Application

Server or Apache Tomcat. For more information, see “Installing and
customizing a web servlet container for the proxy servlet.”

2. Configure the proxy servlet with the initialization parameters that are used by
the proxy servlet. For more information, see “Configuring the proxy servlet” on
page 876.

3. Enable the WebSphere MQ listener on each execution group where message
flows with SOAP nodes are deployed so that the proxy servlet can access the
SOAPInput and SOAPReply nodes. For more information, see “Enabling the
WebSphere MQ listener for SOAP nodes for the proxy servlet to access” on
page 889.

4. Deploy the proxy servlet in the web servlet container. For more information,
see “Deploying the proxy servlet in the web servlet container” on page 891.

Results

You are now ready to test the proxy servlet. For information about how to
complete this task, see “Testing the proxy servlet” on page 892.
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

Installing and customizing a web servlet container for the proxy servlet:

Download, install, and customize a web servlet container, such as WebSphere
Application Server or Apache Tomcat, for the proxy servlet to use to receive HTTP
requests from web services client applications.

Chapter 7. Configuring brokers for test and production environments 873

Before you begin

Before you install the servlet container, you must have completed the following
tasks:
v Installed WebSphere Message Broker.
v If you are planning to install Apache Tomcat V6 as your web servlet, you must

have installed a Java SDK that is compatible with Apache Tomcat V6.

About this task

The documentation in this section is based on an Apache Tomcat Version 6
installation, however this procedure can be used to guide you through the
installation of a different web servlet container because the procedures are similar.
This information describes the Apache Tomcat V6 installation on Windows XP and
assumes WebSphere Message Broker is installed and running on the same server.

Windows

Windows

Procedure

1. Download Apache Tomcat V6 to your local directory from the Apache Tomcat 6
Downloads website at: Apache Tomcat 6 download page

2. Run the Apache Tomcat V6 installer.
a. Accept the license agreement.
b. Select the required Apache Tomcat components and features to install.
c. Select the destination directory for the Apache Tomcat installation. For

example, C:\Tomcat6.
d. Enter an HTTP listener port. For example, 8181.
e. Type an administrator user ID and password. For example, admin.
f. Browse and select a path for the J2SE 5.0 Java Runtime Environment (JRE).

For example, C:\Program Files\IBM\Java50\jre.
g. Click Install to start the installation.

3. Restart Windows. Apache Tomcat is now running as a Windows Service.
4. Open a web browser, such as Internet Explorer, and enter web address

http://localhost:8181. Apache Tomcats home page is displayed.
5. Find file catalina.properties in your local directory. For example,

<tomcat_installation_path>/conf. Where <tomcat_installation_path> specifies the
name of your Apache Tomcat installation directory.

6. Edit catalina.properties and change shared.loader= to shared.loader=
${catalina.home}/shared/lib,${catalina.home}/shared/lib/*.jar.

7. Create a directory called <tomcat_installation_path>/shared/lib.
8. Copy the required WebSphere MQ JAR files into the Apache Tomcat shared

loader directory. The proxy servlet uses WebSphere MQ to communicate with
WebSphere Message Broker. It requires the following JAR files to exist in the
Apache Tomcat shared loader directory: com.ibm.mq.jar and connector.jar.
From WebSphere MQ Version 7.0 onwards, you also require the following JAR
files:
v com.ibm.mq.commonservices.jar

v com.ibm.mq.headers.jar

v com.ibm.mq.pcf.jar

v com.ibm.mq.jmqi.jar

874 WebSphere Message Broker Version 7.0.0.8

http://tomcat.apache.org/download-60.cgi

Copy the JAR files from <WebSphere_MQ_installation_path>\Java\lib to
<tomcat_installation_path>\shared\lib.

Results

You have downloaded, installed, and customized Apache Tomcat V6 ready for use
by the proxy servlet.

You must now configure the proxy servlet, see:
v “Configuring the proxy servlet” on page 876
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Configuring the proxy servlet” on page 876
Configure the proxy servlet with the initialization parameters that are used by the
proxy servlet. These parameters need to be configured for the broker environment
that the proxy servlet is connecting to before the proxy servlet can be deployed to
the servlet container.
“Enabling the WebSphere MQ listener for SOAP nodes for the proxy servlet to
access” on page 889
Enable the WebSphere MQ listener on each execution group where message flows
with SOAP nodes are deployed so that the proxy servlet can access the SOAPInput
and SOAPReply nodes.
“Deploying the proxy servlet in the web servlet container” on page 891
Load and install the proxy servlet file in the web servlet container, such as
WebSphere Application Server or Apache Tomcat.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.
Related reference:

Chapter 7. Configuring brokers for test and production environments 875

“Proxy servlet configuration parameters” on page 878
Before you can deploy the proxy servlet web.xml to the servlet container, you must
configure it with the following initialization parameters for the broker environment
that the servlet connects to.

Configuring the proxy servlet:

Configure the proxy servlet with the initialization parameters that are used by the
proxy servlet. These parameters need to be configured for the broker environment
that the proxy servlet is connecting to before the proxy servlet can be deployed to
the servlet container.

Before you begin

Before you configure the proxy servlet, you must complete the following task:
v “Installing and customizing a web servlet container for the proxy servlet” on

page 873

About this task

The configuration of the proxy servlet is done by editing the Web Deployment
Descriptor web.xml file that is packaged in the compressed proxyservlet.war
(WAR) file. The WAR file can be found in the following directory:

<WMB_runtime_install_path>/tools.

You can either use the WebSphere Message Broker toolkit to edit the Web
Deployment Descriptor web.xml file, or you can extract the proxyservlet.war file,
find the web.xml file and edit it using an appropriate editor, such as Notepad. Both
procedures are described in this section:

Procedure

1. To configure the Web Deployment Descriptor web.xml file by using the
WebSphere Message Broker toolkit, start the toolkit, and switch to the J2EE
perspective.

2. Click File > Import, expand the Web section, select WAR file in the list, and
click Next.

3. Click Browse to find the WAR file in <WMB_runtime_install_path>/tools.
Where <WMB_runtime_install_path> specifies the name of your runtime
installation path. For example, in C:\Program Files\IBM\MQSI\7.0\tools\
proxyservlet.war.

4. Set the name of the Web Project to proxyservlet.
5. Click Finish. The proxy servlet is now ready for configuring by using the J2EE

perspective.
6. Expand proxyservlet in the Project Explorer view and double-click

Deployment Descriptor to view the Web Deployment Descriptor.
7. Find the Servlets and JSPs section in the Web Deployment Descriptor, and

click the servlet link called WBIMBServlet to display the servlet web address
mappings and initialization parameters. The same parameters in the web.xml
file can be configured through JNDI in WebSphere Application Server. This
alternative method means that you set up at the application server side only
once for any future deployment of the proxy servlet. This operation is possible
because the JNDI configuration parameters take precedence over the
initialization parameters in the web.xml file. For more information about

876 WebSphere Message Broker Version 7.0.0.8

setting up the JNDI interface for the proxy servlet, see “Setting up the JNDI
interface for the proxy servlet” on page 886

8. Click the Source tab, which is found at the bottom of the Web Deployment
Descriptor view. You might need to click >> (Show List) to see the Source tab
option. The source of the Web Deployment Descriptor web.xml displays the
proxy servlet parameters.

9. Edit the proxy servlet parameters with initialization parameters specified at:
“Proxy servlet configuration parameters” on page 878

10. When the configuration is complete, save the changes to the Deployment
Descriptor web.xml file by pressing Ctrl S.

11. Export the configured proxy servlet ready for deployment to Tomcat. Click
File > Export, expand the Web section, select WAR file in the list, and click
Next.

12. Click Browse, specify a location for the configured WAR file, enter WAR file
name HTTPVSR1BKproxyserlet.war, and click Save.

13. Enter the Web module name proxyservlet, and click Finish. You have now
configured the proxy servlet by using the WebSphere Message Broker toolkit.

Results

To configure the Web Deployment Descriptor web.xml file directly, find and extract
the proxyservlet.war file, find the web.xml file in the extracted contents, right-click
the web.xml file, and select an appropriate editor, such as Notepad to edit the
web.xml file with initialization parameters specified at: “Proxy servlet configuration
parameters” on page 878.

You have now configured the proxy servlet with the initialization parameters.

In order that the proxy servlet can access the SOAPInput and SOAPReply nodes,
you must now enable the WebSphere MQ listener on each execution group where
message flows with SOAP nodes are deployed, see:
v “Enabling the WebSphere MQ listener for SOAP nodes for the proxy servlet to

access” on page 889
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:

Chapter 7. Configuring brokers for test and production environments 877

“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Installing and customizing a web servlet container for the proxy servlet” on page
873
Download, install, and customize a web servlet container, such as WebSphere
Application Server or Apache Tomcat, for the proxy servlet to use to receive HTTP
requests from web services client applications.
“Enabling the WebSphere MQ listener for SOAP nodes for the proxy servlet to
access” on page 889
Enable the WebSphere MQ listener on each execution group where message flows
with SOAP nodes are deployed so that the proxy servlet can access the SOAPInput
and SOAPReply nodes.
“Deploying the proxy servlet in the web servlet container” on page 891
Load and install the proxy servlet file in the web servlet container, such as
WebSphere Application Server or Apache Tomcat.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.
“Setting up the JNDI interface for the proxy servlet” on page 886
The JNDI interface for the proxy servlet requires a one time setup of the
WebSphere Application Server full profile.

Proxy servlet configuration parameters:

Before you can deploy the proxy servlet web.xml to the servlet container, you must
configure it with the following initialization parameters for the broker environment
that the servlet connects to.

This topic contains the following sections:
v “General options”
v “Information options” on page 880
v “ReplyToQ and QMgr options” on page 880
v “SSL connection options” on page 880
v “MQ connection options” on page 881

General options:

Parameter name Default value Description

brokerName * (auto-detect from config
data for broker)

broker name or “*”

Use this parameter to set the name used for
error messages; the value is auto-detected if
set to "*"'.

Set a value if several brokers are being
proxied, and a single name is required for
error messages.

878 WebSphere Message Broker Version 7.0.0.8

Parameter name Default value Description

forwardingNodes http http, soap, or both

If you configure the servlet to replace the
broker-wide listener, set this property to
<http>. If you configure the servlet to
replace the embedded execution group
listener, set this property to <soap>.

Use both with caution, because the merging
of web address selectors might lead to
unexpected results in conflicting cases; for
example, if an HTTP node and a SOAP node
both use /fnerble as a web address selector.

configFilePath /var/mqsi/components/
MB7BROKER/config/
wsplugin6.conf

full path to config file

If the proxied broker is local, set this
parameter to the wsplugin6.conf file (for
HTTP nodes) or the soapplugin6.conf (for
SOAP nodes) for the broker.

This file is used only when the parameter
useQueueManagerDataInsteadOfConfigFile
is set to blank. The configuration file can be
used only when the proxy servlet is running
on the same server as the broker, and it has
access to the file.

In Windows, the file is stored in
C:\install_dir\config\wsplugin.conf or
C:\Documents and Settings\All
Users\Application Data\IBM\MQSI\
components\broker_ name\config\
wsplugin6.conf.

On Linux and UNIX, the file is stored in
/var/mqsi/config/wsplugin.conf or in
/var/mqsi/components/broker_
name/config/wsplugin6.conf.

useFastpathBindingsConnection false true or false

Causes the servlet to connect in fastpath
mode, if using a local queue manager.

traceFileName full path to trace file

Specify the location and name of the trace
file. If this parameter is not specified the
trace is sent to stdout.

turnTraceOn 0 0, 1, or 2

Set 0 for no trace, 1 for normal trace, or 2
for debug trace.

Chapter 7. Configuring brokers for test and production environments 879

Information options:

Parameter name Default
value

Description

enableStatusPage

(WebSphere Message Broker V6.1 FP 4 or
later)

false true or false

Switches display of the status page. When true, the page is
visible at http://hostname:port/proxy_context/
messagebroker/httpproxy/statuspage

enableInfoHeaders

(WebSphere Message Broker V6.1 FP 4 or
later)

false true or false

Causes the servlet to add extra headers in the response.
These headers are:

X-WMB-Broker-Name

X-WMB-QM-Name

X-WMB-MQ-URL-CorrelId

and contain details of the configuration used for that
message.

ReplyToQ and QMgr options:

Parameter name Default value Description

useClusterMode false true or false

Set to true if the servlet is required
to put reply-to queue and queue
manager information in the
MQMD of sent messages to enable
the broker to respond to the
correct queue manager in a cluster.

clusterModeQueueManagerName SOME_OTHER_
QUEUE_MANAGER

queue manager name

Queue manager name for initial
MQCONN and ReplyToQMgr.

clusterModeReplyToQ OUR.REPLYTO.QUEUE reply queue name

Queue name on which to listen.

SSL connection options:

Parameter name Default value Description

useSecuredChannel false true or false

Set the value of useSecuredChannel
to true if SSL is configured on MQ
Channel. If set to true, the servlet
attempts to establish a secured
connection to the MQ Channel by
using the keyStore,
keyStorePassword, trustStore,
trustStorePassword, and
cipherSuite parameter values.

880 WebSphere Message Broker Version 7.0.0.8

Parameter name Default value Description

keyStore full path to the keystore file

The fully qualified path to the key
store file, which is of type "JKS".

For example, in Windows:
C:\\Program Files\\IBM\\MQSI\\
keystore.jks

On Linux and UNIX:
/var/mqsi/keystore.jks

keyStorePassword changeit The password to the keystore file.

trustStore full path to the truststore fileThe
fully qualified path to the
truststore file, which is of type
"JKS".

For example, on Windows:
C:\\Program Files\\IBM\\MQSI\\
truststore.jks

On Linux and UNIX:
/var/mqsi/truststore.jksThis
field is mandatory if
useSecuredChannel is set to true.

trustStorePassword changeit The password to the truststore file.

cipherSuite The encryption type that is
configured in the MQ Channel. For
example: SSL_RSA_WITH_NULL_MD5
This field is mandatory if
useSecuredChannel is set to true.

MQ connection options:

Parameter name Default value Description

useClientMode false true or false

Use WebSphere MQ client (true) or bindings
connection (false). Normally,
useQueueManagerDataInsteadOfConfigFile
would also be set to the broker queue
manager if this parameter is set to true.

clientModeHostname localhost hostname or IP address

Hostname or IP for the Queue Manager.

clientModeChannelName SYSTEM.DEF.
SVRCONN

WebSphere MQ SVRCONN channel name

The name of the WebSphere MQ SVRCONN
to use.

clientModePortNumber 1414 port number

WebSphere MQ listener port number.

Chapter 7. Configuring brokers for test and production environments 881

Parameter name Default value Description

clientModeConnectRetryCount

(WebSphere Message Broker V6.1 FP 4 or
later)

1 integer

Number of times to retry the WebSphere
MQ connect call. Use this parameter in cases
where a network dispatcher or load balancer
is being used to distribute work to a set of
queue managers and one fails. A new
connect might fail the first time, but succeed
the second time. The retry count must be set
to a high number to provide the greatest
chance of success.

useQueueManagerDataInsteadOfConfigFile queue manager name, “*”, or blank

Queue manager name, ‘*' (remote proxy), or
blank for none (local proxy).

This option causes the servlet to read Web
address data from a queue, and avoid the
need for a config file to be accessible from
the servlet.

sleepBeforeGet 0 time in seconds

Sleep time in seconds. This value causes the
servlet to wait before issuing an MQGET for
a response message from the broker.

disconnectBeforeSleep true true or false

To release WebSphere MQ handle while
sleeping. Useful for keeping the number of
simultaneous WebSphere MQ connections
down.

reconnectActiveLinksAge

(WebSphere Message Broker V6.1 FP 4 or
later)

-1 time in seconds, 0, or -1

If set to a number greater than zero, this
parameter causes WebSphere MQ
connections to be disconnected and
reconnected if they have been inactive,
because of low traffic volumes, for more
than the specified number of seconds.

Setting this to -1 prevents this reconnection.
Setting it to 0 causes all connections to be
used once only.

This parameter is of most use if the
connection to WebSphere MQ goes through
a firewall that closes connections after a
period of inactivity.

Setting this parameter to a value less than
the firewall timeout might prevent clients
from getting WebSphere MQ 2009
(connection broken) errors.

882 WebSphere Message Broker Version 7.0.0.8

Parameter name Default value Description

testConnectionBeforeReuse

(WebSphere Message Broker V6.1 FP 4 or
later)

false true or false

If set to true, the servlet attempts an
MQINQ before doing the MQPUT of the
HTTP data message. All problems with a
cached WebSphere MQ client connection are
detected at that point, and a new connection
is established for the MQPUT of the actual
data (and MQGET of the response).

This parameter causes significant extra
network traffic, and must be used only if
problems have been seen with dropped
connections, which are usually seen as
WebSphere MQ 2009 errors, indicating
connection broken.

maximumConnectionAge

(WebSphere Message Broker V6.1 FP 6 or
later)

-1 time in seconds, 0, or -1

If set to a number greater than zero, this
parameter causes WebSphere MQ
connections to be disconnected and
reconnected if they are older than the
specified number of seconds.

Setting this parameter to -1 prevents these
reconnections; setting this parameter to 0
causes all connections to be used only once.

This parameter is of most use, if the
frequent changes to the WebSphere MQ
connection parameters are expected due to
redeploys of the WebSphere Message Broker
flows and you require the ProxyServlet to
reflect these changes within the specified
number of seconds.

You can define one or more mappings that are supported by the proxy servlet.
These mappings are used by the servlet container to filter Web address requests
before executing the correct instance of the proxy servlet.

The mappings are the /node_url_path paths described in “HTTP proxy servlet;
web addresses component” on page 868 (/url_path=/context_root/
node_url_path).

You can define a /node_url_path equal to "/*" to accept Web address paths similar
to this example: /HTTPMyBrkServletProxy/your_value.

Example configuration scenarios:

In each of the following scenarios, forwardingNodes must be set for the HTTP and
SOAP nodes:
v Scenario 1: The Web servlet container is on the same server as WebSphere

Message Broker:
In this configuration example, you must set useClientMode and
useQueueManagerDataInsteadOfConfigFile to false, and the configFile

Chapter 7. Configuring brokers for test and production environments 883

parameter must point to a valid file. The servlet attempts to connect to the local
queue manager for the broker after reading the queue manager name from the
config file.

v Scenario 2: The Web servlet container is on a different server to WebSphere
Message Broker with an WebSphere MQ client link to the broker queue
manager:
In this configuration example, you must set useClientMode to true,
useQueueManagerDataInsteadOfConfigFile to "*", or the broker queue
manager name, and clientModeHostname, clientModeChannelName, and
clientModePortNumber to the correct values defined in this section. The servlet
attempts to connect to the remote queue manager for the broker, reading the
required node configuration data from the broker from the WebSphere MQ client
connection.
You can copy the config file from the broker server to the Web servlet container
server, and then use configFile, after ensuring that
useQueueManagerDataInsteadOfConfigFile is set to blank to force reading
from the config file. However, you must copy the config file every time it is
changed by the broker.

v Scenario 3: The Web container is on a different server to WebSphere Message
Broker with its own queue manager and a WebSphere MQ channel link to the
broker queue manager:
This configuration example is similar to scenario 1 in that client mode is not
used, but you must set useClusterMode to true,
clusterModeQueueManagerName to the queue manager of the Web servlet
container, and clusterModeReplyToQ to a queue that exists on that queue
manager.
The servlet tries to open the queue SYSTEM.BROKER.WS.INPUT on the
specified queue manager by using the queue manager name from the config file.
Therefore, you must set up channels and transmit queues beforehand, to ensure
the messages arrive on the broker queue manager.
You must copy the config files from the broker server in this scenario.

v Scenario 4: This scenario is the same as scenario 2, but uses a network
load-balancer for distributing work for several brokers:
The configuration can be the same as scenario 2, with the network load-balancer
IP address taking the place of the broker server. In general, config files cannot be
used, because there are several brokers behind one virtual IP address, and each
one has a different config file. The servlet loads information on a per-connection
basis, and uses the correct configuration information for each broker.
Because failover is often one of the reasons for this configuration, the following
extra options can be useful:
Set clientModeConnectRetryCount to ensure that a single failed server does not
cause intermittent errors, even if the load-balancer does simple round connection
dispatching. Setting the parameter to a high enough value to attempt to connect
to all the brokers prevents problems in these cases, and the servlet uses the first
available broker.
Use reconnectActiveLinksAge to avoid reusing old connections that might have
been discarded by firewalls in between the servlet and the load-balancer (or the
load-balancer and the brokers). Set this parameter to a value less than the
firewall timeout, to ensure connections are used only when they are valid.
Use testConnectionBeforeReuse as an alternative way to handle dropped
WebSphere MQ links between the Web servlet container and broker queue
managers. This option causes an MQINQ to be performed before attempting to
put any data to the broker. If the MQINQ fails, a new connection is established,

884 WebSphere Message Broker Version 7.0.0.8

and the data is sent over the new connection. Because configuration adds
another operation to the MQPUT and MQGET, it results in a significant
overhead for every message; use this option only if no alternative options are
available.

To finish completing the proxy servlet configuration, see “Configuring the proxy
servlet” on page 876.
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Installing and customizing a web servlet container for the proxy servlet” on page
873
Download, install, and customize a web servlet container, such as WebSphere
Application Server or Apache Tomcat, for the proxy servlet to use to receive HTTP
requests from web services client applications.
“Configuring the proxy servlet” on page 876
Configure the proxy servlet with the initialization parameters that are used by the
proxy servlet. These parameters need to be configured for the broker environment
that the proxy servlet is connecting to before the proxy servlet can be deployed to
the servlet container.
“Enabling the WebSphere MQ listener for SOAP nodes for the proxy servlet to
access” on page 889
Enable the WebSphere MQ listener on each execution group where message flows
with SOAP nodes are deployed so that the proxy servlet can access the SOAPInput
and SOAPReply nodes.
“Deploying the proxy servlet in the web servlet container” on page 891
Load and install the proxy servlet file in the web servlet container, such as
WebSphere Application Server or Apache Tomcat.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

Chapter 7. Configuring brokers for test and production environments 885

Setting up the JNDI interface for the proxy servlet:

The JNDI interface for the proxy servlet requires a one time setup of the
WebSphere Application Server full profile.

About this task

The proxy servlet initialization parameters must be configured for the broker
environment that the proxy servlet is connecting to each time the proxy servlet is
deployed to the servlet container. It is now possible to configure the web.xml
parameters only once through the JNDI in WebSphere Application Server,
regardless of how many future deployments there might be of the proxy servlet.
Because the JNDI configuration parameters take precedence over the initialization
parameters in the web.xml file, using this method means that you need to set up at
the application server side only once for any future deployments of the proxy
servlet.

These setup tasks must all be completed in the WebSphere Application Server
administrative console.

Creating a resource environment provider:
About this task

Configure a resource environment provider, which encapsulates the referenceables
that convert resource environment entry data into resource objects. These resource
objects can then be accessed by applications.

Procedure

1. Select Resources > Resource Environment > Resource Environment Providers.
The Resource environment providers wizard opens.

2. Click New. The Configuration panel opens so that you can configure a new
resource environment provider.

3. Type a name for the resource environment provider in the Name filed. For
example, MyResourceEnvironmentProvider. It is recommended that you enter a
meaningful description in the Description field, but it is not required. Click OK
to continue and then save the changes.

Results

The new resource environment provider is listed in the wizard.

Creating a referenceable object:
About this task

Configure a new referenceable, which specifies the factory class that converts data
in the Java Naming and Directory Interface (JNDI) name space into an object that
represents your resource to WebSphere Application Server.

Procedure

1. Select Resources > Resource Environment > Resource Environment Providers.
The Resource environment providers wizard opens.

2. From the Resource environment providers panel, select the provider that you
created in the previous task: In this example, it is called
MyResourceEnvironmentProvider.

3. Click Referenceables. The Referenceables panel opens.

886 WebSphere Message Broker Version 7.0.0.8

4. Click New. The Configuration panel opens.
5. In the Configuration panel, type the following values:

a. In the Factory class name field, type:
com.ibm.broker.httpproxy.MQResourceConnectionFactory

b. In the Class name field, type:
com.ibm.broker.httpproxy.MQResourceConnection

6. Click OK and save the changes.

Creating resource environment entries:
About this task

Configure resource environment entries, which are objects that contain information
about a resource, and represent it in the JNDI name space.

Procedure

1. Select Resources > Resource Environment > Resource Environment Providers
> MyResourceEnvironmentProvider. The Resource environment providers
wizard opens at the configuration panel for your provider.

2. Click Resource environment entries. The Resource environment entries panel
opens.

3. Click New. The Configuration panel opens.
4. In the Configuration panel, type your values. In this example, the values are:

a. In the Name field, type for example: MQResourceReference
b. In the JNDI name field, type for example: proxyservlet/reference/

MQResourceReference . This JNDI name is used during application
deployment resource mapping.

c. In the Referenceables drop-down list, ensure that
com.ibm.broker.httpproxy.MQResourceConnectionFactory is selected.

5. Click OK and save the changes.

Creating custom properties or define the parameters to be configured:
About this task

Specify custom properties that your enterprise information system (IES) requires
for the resource providers and resource factories that you configure. For example,
most database vendors require extra custom properties for data sources that access
the database.

Procedure

1. Select Resources > Resource Environment > Resource Environment Providers
> MyResourceEnvironmentProvider > ResourceEnvironment Entries >
MQResourceReference. where MyResourceEnvironmentProvider and
MQResourceReference are your own specified values. The Resource environment
providers wizard opens at the configuration panel for your entry.

2. Click Custom properties. The Configuration panel opens.
3. Click New.
4. In the Configuration panel, you must type your values for all the resources that

are administered through the administrative console. For example: The message
broker name, the configuration file path, the client mode channel name, and the
client mode port number. For each resource, you must provide values for
Name, Value, Description, and Type. The following example is for the message
broker name

Chapter 7. Configuring brokers for test and production environments 887

Option Description

Name This field refers to the value in the
"<param-name> </param-name>" tag in the
web.xml. For example: brokerName

Value This field refers to the value in the
"<param-value> </param-value>" tag in the
web.xml. For example: RRB

Description Optional. It is recommended that you
provide a meaningful description.

Type Specify the type. For example:
java.lang.String

5. Click OK to save the configuration.
6. Click New to create a new configuration for the remaining resources.

Results

You have a list of configured resources that is similar to the following table, but
with the values that you specified:

Table 12. .

Name Value Description Required

brokerNameRRB Message Broker Name false

configFilePathC:\\Documents and Settings\\All
Users.WINDOWS\\Application
Data\\IBM\\MQSI\\components\\RRB\\
config\soapplugin6.conf

Configuration File Path false

clientModeChannelNameSYSTEM.DEF.SVR.CONN Client Mode Channel Name false

clientModePortNumber2908 Client Mode Port Number false

The WebSphere Application Server wizard does not provide an option to specify
the Required attribute and so the default value is set to false. This attribute can be
ignored.

What to do next

After you complete these tasks, you must deploy the proxyservlet.war file. During
the deployment, you must provide the JNDI reference name for the Resource
Environment reference that is defined in the web.xml file. For example:
proxyservlet/reference/MQResourceReference.

After the deployment, proxyservlet gives precedence to the values configures in
the Resource Environment Entries. If there is an environment change, the values
must be modified in the custom properties of the Resource Environment Entries.
After you modify a value, restart the Proxyservlet application in WebSphere
Application Server for the new values to take effect.
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.

888 WebSphere Message Broker Version 7.0.0.8

“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Configuring the proxy servlet” on page 876
Configure the proxy servlet with the initialization parameters that are used by the
proxy servlet. These parameters need to be configured for the broker environment
that the proxy servlet is connecting to before the proxy servlet can be deployed to
the servlet container.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

Enabling the WebSphere MQ listener for SOAP nodes for the proxy servlet to
access:

Enable the WebSphere MQ listener on each execution group where message flows
with SOAP nodes are deployed so that the proxy servlet can access the SOAPInput
and SOAPReply nodes.

Before you begin

Before you start:

Before you enable the WebSphere MQ listener, you must have completed the
following tasks:
v “Installing and customizing a web servlet container for the proxy servlet” on

page 873
v “Configuring the proxy servlet” on page 876

If your message flow uses HTTPS, you must also set the proxy servlet, browser,
application server, and broker to use HTTPS.

Procedure

1. Open a command window that is configured for your environment and enter
the following command:
mqsichangeproperties <broker_name> -e <execution_group_name> -o HTTPConnector
-n enableMQListener -v true

For example:
mqsichangeproperties VSR1BK -e default -o HTTPConnector -n enableMQListener -v true

Chapter 7. Configuring brokers for test and production environments 889

2. Stop and start the broker.
3. Enter the following command to verify the property value:

mqsireportproperties <broker_name> -e <execution_group_name> -o HTTPConnector
-n enableMQListener

For example:
mqsireportproperties VSR1BK -e default -o HTTPConnector –n enableMQListener

4. Repeat these steps for all execution groups where message flows with SOAP
nodes are deployed.

Results

You have enabled the WebSphere MQ listener for all execution groups where
message flows with SOAP nodes are deployed.

You are now ready to deploy the proxy servlet in the Web servlet container. For
information about how to complete this task, see “Deploying the proxy servlet in
the web servlet container” on page 891.
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Installing and customizing a web servlet container for the proxy servlet” on page
873
Download, install, and customize a web servlet container, such as WebSphere
Application Server or Apache Tomcat, for the proxy servlet to use to receive HTTP
requests from web services client applications.
“Configuring the proxy servlet” on page 876
Configure the proxy servlet with the initialization parameters that are used by the
proxy servlet. These parameters need to be configured for the broker environment
that the proxy servlet is connecting to before the proxy servlet can be deployed to
the servlet container.
“Deploying the proxy servlet in the web servlet container” on page 891
Load and install the proxy servlet file in the web servlet container, such as

890 WebSphere Message Broker Version 7.0.0.8

WebSphere Application Server or Apache Tomcat.
“Testing the proxy servlet” on page 892
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

Deploying the proxy servlet in the web servlet container:

Load and install the proxy servlet file in the web servlet container, such as
WebSphere Application Server or Apache Tomcat.

Before you begin

The documentation in this section is based on deploying the proxy servlet in
Apache Tomcat Version 6 on Windows XP and assumes WebSphere Message
Broker is installed and running on the same server.

Before you deploy the proxy servlet in Apache Tomcat, you must complete the
following tasks:
v “Installing and customizing a web servlet container for the proxy servlet” on

page 873
v “Configuring the proxy servlet” on page 876
v “Enabling the WebSphere MQ listener for SOAP nodes for the proxy servlet to

access” on page 889

Procedure

1. Open a web browser and enter web address http://localhost:8181 to open the
Tomcat home page.

2. ClickTomcat Manager and enter the admin user ID and password.
3. Scroll down to the section WAR file to deploy and click Browse and search for

the HTTPVSR1BKproxyservlet.war file.
4. Click Deploy. The <context_root> associated to the proxy servlet is the same as

the WAR file name. It is possible to rename the .war file before deploying it to
Tomcat to have a different <context_root>. See “HTTP proxy servlet; web
addresses component” on page 868 for a description of the <context_root>.

5. Click /HTTPVSR1BKproxyservlet on the Applications view to test if the servlet
is active. If the proxy servlet trace is enabled, the trace file shows that the
servlet has received the request and rejected it.

Results

The proxy servlet is now ready to be tested with a message broker that receives
HTTP (not HTTPS) requests and passes them to a message flow. For information
about how to complete this task see:
v “Testing the proxy servlet” on page 892
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.

Chapter 7. Configuring brokers for test and production environments 891

“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Installing and customizing a web servlet container for the proxy servlet” on page
873
Download, install, and customize a web servlet container, such as WebSphere
Application Server or Apache Tomcat, for the proxy servlet to use to receive HTTP
requests from web services client applications.
“Configuring the proxy servlet” on page 876
Configure the proxy servlet with the initialization parameters that are used by the
proxy servlet. These parameters need to be configured for the broker environment
that the proxy servlet is connecting to before the proxy servlet can be deployed to
the servlet container.
“Enabling the WebSphere MQ listener for SOAP nodes for the proxy servlet to
access” on page 889
Enable the WebSphere MQ listener on each execution group where message flows
with SOAP nodes are deployed so that the proxy servlet can access the SOAPInput
and SOAPReply nodes.
“Testing the proxy servlet”
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

Testing the proxy servlet
Test the proxy servlet with a message broker that receives HTTP requests and
passes them to a message flow.

Before you begin

To test the proxy servlet, use an existing web services client application or write
your own SSL test client application using Java.

Before you test the proxy servlet, you must have completed the following tasks:
v “Installing and customizing a web servlet container for the proxy servlet” on

page 873
v “Configuring the proxy servlet” on page 876
v “Enabling the WebSphere MQ listener for SOAP nodes for the proxy servlet to

access” on page 889
v “Deploying the proxy servlet in the web servlet container” on page 891

Procedure

To test the proxy servlet, complete the following steps:
1. Install a client application that can send HTTP or SSL (HTTPS) requests. There

are several options that can be used, such as:

892 WebSphere Message Broker Version 7.0.0.8

v Nettool: An open source graphical utility available from the Internet at:
Nettool downloads website. You can use this tool to send HTTP requests or
to tunnel a request.

v OpenSSL: Another open source tool available from the Internet at: OpenSSL
downloads website that can be used to send SSL (HTTPS) requests to the
web servlet container.

v A broker message flow that has an HTTPRequest or SOAPRequest node can
generate and send HTTP requests to an HTTP listener.

v A web browser using web pages or Java Server Pages (JSP) that can send
HTTP POST requests. Most web browsers support HTTP and SSL (HTTPS).

v A client application that sends requests by using HTTP, or (SSL) HTTPS, or
both.

2. Configure the proxy servlet to access the message broker in the web.xml file.
3. Configure a message flow with HTTP and SOAP input and reply nodes. The

message flow receives the messages from the proxy servlet. If an HTTP and
SOAP reply node is configured, responses are sent back to the proxy servlet.

Results

You have now finished testing the proxy servlet.
Related concepts:
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
“HTTP traffic handling in WebSphere Message Broker” on page 857
Before reading about HTTP traffic handling using the proxy servlet in an external
Web container, ensure that you understand the basic structure of HTTP traffic
handling in WebSphere Message Broker.
“HTTP traffic handling by using the proxy servlet in an external web servlet
container” on page 859
Before you install and test the HTTP proxy servlet, ensure that you understand the
structure of HTTP traffic handling by using the proxy servlet in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat.
“HTTP proxy servlet; descriptions of required components” on page 863
The HTTP proxy servlet requires a number of components such as message flows,
a proxy servlet, a servlet container, web addresses, the Broker component, and web
services clients.
Related tasks:
“Installing the proxy servlet” on page 872
The installation of the proxy servlet is made up of a number of tasks. Use this
topic to complete each of the tasks to then move onto testing the proxy servlet.
“Installing and customizing a web servlet container for the proxy servlet” on page
873
Download, install, and customize a web servlet container, such as WebSphere
Application Server or Apache Tomcat, for the proxy servlet to use to receive HTTP
requests from web services client applications.
“Configuring the proxy servlet” on page 876
Configure the proxy servlet with the initialization parameters that are used by the
proxy servlet. These parameters need to be configured for the broker environment
that the proxy servlet is connecting to before the proxy servlet can be deployed to

Chapter 7. Configuring brokers for test and production environments 893

http://www.nettool.org
http://www.openssl.org/
http://www.openssl.org/

the servlet container.
“Enabling the WebSphere MQ listener for SOAP nodes for the proxy servlet to
access” on page 889
Enable the WebSphere MQ listener on each execution group where message flows
with SOAP nodes are deployed so that the proxy servlet can access the SOAPInput
and SOAPReply nodes.
“Deploying the proxy servlet in the web servlet container” on page 891
Load and install the proxy servlet file in the web servlet container, such as
WebSphere Application Server or Apache Tomcat.

Configuring a WebSphere Message Broker as a WebSphere MQ
service

If you want to operate your WebSphere Message Broker as a WebSphere MQ
service.

About this task
v “Starting and stopping a WebSphere Message Broker as a WebSphere MQ

service”
v “Modifying the WebSphere MQ service for a broker” on page 896
v “Deleting the WebSphere MQ service for a broker” on page 897
v “Reporting and displaying the status of WebSphere Message Broker that runs as

a WebSphere MQ service” on page 897
Related tasks:
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Creating the multi-instance broker” on page 837
How you create the multi-instance broker.

Starting and stopping a WebSphere Message Broker as a
WebSphere MQ service

Configuring a WebSphere Message Broker to start and stop as a WebSphere MQ
service.

Before you begin

Before you start:

Ensure that you make the mqm user ID a member of the mqbrkrs group. On
Windows, you must reboot your workstation for the change to take effect.

About this task

To configure a WebSphere Message Broker to run as a WebSphere MQ service, use
one of the following options:

Procedure
v Create a broker to start as a WebSphere MQ service by using the

mqsicreatebroker command with the -d parameter. For example,

894 WebSphere Message Broker Version 7.0.0.8

mqsicreatebroker MyBroker –q MyQMGR –d defined

where

MyBroker
Is the name of the broker that you want to start and stop as a
WebSphere MQ service.

MyQMGR
Is the name of the queue manager associated with the broker.

v Modify an existing broker to start as a WebSphere MQ service by using the
mqsichangebroker command with the -d parameter. For example,
mqsichangebroker MyBroker –d defined

where

MyBroker
Is the name of the broker that you want to start and stop as a
WebSphere MQ service.

Results

When you have configured a broker to start and stop as a WebSphere MQ service:
v The broker starts and stops automatically when its associated queue manager

starts and stops. For a multi-instance broker, this action can occur during
failover of the active queue manager.

v A multi-instance broker cannot be started in standby mode when its
WebSphere MQ service is defined as active.

v You can stop the broker manually by using the mqsistop command, but the
broker does not restart until the queue manager is stopped and started again.
Alternatively, you can start the broker manually with the mqsistart command,
which invokes the WebSphere MQ service to start the broker.

v On UNIX systems the broker environment is inherited from WebSphere MQ. Set
any required environment variables (such as ODBCINI) by using a script in the
work_path/common/profiles directory. See “Command environment: Linux and
UNIX systems” on page 310 for more information.

Related tasks:
“Creating the WebSphere MQ multi-instance queue manager” on page 830
How you create the WebSphere MQ multi-instance queue manager that you need
for your multi-instance WebSphere Message Broker.
“Creating the multi-instance broker” on page 837
How you create the multi-instance broker.
“Configuring a WebSphere Message Broker as a WebSphere MQ service” on page
894
If you want to operate your WebSphere Message Broker as a WebSphere MQ
service.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Chapter 7. Configuring brokers for test and production environments 895

Modifying the WebSphere MQ service for a broker
How you modify the WebSphere MQ service for a broker.

About this task

To alter the status of a WebSphere Message Broker so that it runs as a
WebSphere MQ service use the mqsichangebroker command.

Carry out the following procedure:

Procedure
1. Stop the broker and its associated queue manager. If it is a multi-instance

broker, you must stop all broker instances, and the multi-instance queue
manager, if you want the changes to take affect immediately after the queue
manager restarts.

2. Use the mqsichangebroker command with the –d defined option to activate the
WebSphere MQ service as follows:
mqsichangebroker MyBroker –d defined

where

MyBroker
Is the name of the broker that you want to modify.

If the WebSphere MQ service did not previously exist, it is defined, and the
service CONTROL attribute is set to QMGR.
You should no longer start the broker with the mqsistart command. The broker
starts and stops automatically when the queue manager starts and stops.
You can stop the broker manually with the mqsistop command, but the broker
will not restart until the queue manager is stopped and started again. For a
multi-instance broker this can occur during failover of the active queue
manager.

3. Use the mqsichangebroker command with the –d undefined option to remove
the WebSphere MQ service as follows:
mqsichangebroker MyBroker –d undefined

where

MyBroker
Is the name of the broker that you want to modify.

When a WebSphere MQ service is being removed, and the queue manager is
stopped, the mqsichangebroker command needs to start the queue manager to
perform the deletion of the service. The command then stops the queue
manager. The following example shows a possible output:
>mqsichangebroker BK3 -d undefined
WebSphere MQ queue manager ’QM3’ starting.
5 log records accessed on queue manager ’QM3’ during the log replay phase.
Log replay for queue manager ’QM3’ complete.
Transaction manager state recovered for queue manager ’QM3’.
WebSphere MQ queue manager ’QM3’ started.
Waiting for queue manager ’QM3’ to end.
Waiting for queue manager ’QM3’ to end.
WebSphere MQ queue manager ’QM3’ ended.
BIP8071I: Successful command completion.

You can start the broker manually using the mqsistart command, which
invokes the WebSphere MQ service to restart the broker.

896 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Starting and stopping a WebSphere Message Broker as a WebSphere MQ service”
on page 894
Configuring a WebSphere Message Broker to start and stop as a WebSphere MQ
service.
“Creating the multi-instance broker” on page 837
How you create the multi-instance broker.
“Configuring a WebSphere Message Broker as a WebSphere MQ service” on page
894
If you want to operate your WebSphere Message Broker as a WebSphere MQ
service.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Deleting the WebSphere MQ service for a broker
How you delete a WebSphere MQ service for a broker.

About this task

You can use either of the following methods to delete the WebSphere MQ service
from a WebSphere Message Broker:

Procedure
1. Use the mqsichangebroker command with the –d undefined option, as

described in step 3 on page 896 of “Modifying the WebSphere MQ service for a
broker” on page 896 This reverts the broker to manual stop and start operation.

2. Use the mqsideletebroker command. Using this command also removes a
previously configured WebSphere MQ service when the broker is removed.

Related tasks:
“Modifying the WebSphere MQ service for a broker” on page 896
How you modify the WebSphere MQ service for a broker.
“Configuring a WebSphere Message Broker as a WebSphere MQ service” on page
894
If you want to operate your WebSphere Message Broker as a WebSphere MQ
service.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Reporting and displaying the status of WebSphere Message
Broker that runs as a WebSphere MQ service

How you report and display the status of a WebSphere Message Broker that runs
as a WebSphere MQ service

Chapter 7. Configuring brokers for test and production environments 897

Procedure
1. Use the mqsireportbroker command to show the property that displays the

broker running as a WebSphere MQ service.
The StartAsMQService property is set to defined if the broker is set to start as a
WebSphere MQ service, otherwise this property is set to undefined.
See the Windows, Linux, and UNIX systems version of the “mqsireportbroker
command” on page 3919 for an example output from the command.

2. Use the mqsilist command to display the status of a broker that starts as a
WebSphere MQ service. Message bip1297 is output when a broker is stopped,
but will start as a WebSphere MQ service.

Related tasks:
“Creating the multi-instance broker” on page 837
How you create the multi-instance broker.
“Configuring a WebSphere Message Broker as a WebSphere MQ service” on page
894
If you want to operate your WebSphere Message Broker as a WebSphere MQ
service.
Related reference:
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.
“mqsireportbroker command” on page 3919
Use the mqsireportbroker command to display broker registry entries.

898 WebSphere Message Broker Version 7.0.0.8

Chapter 8. Administering brokers and broker resources

Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

About this task

Administration of brokers includes the following tasks:
v “Managing brokers” on page 900
v “Managing execution groups” on page 935
v “Managing message flows” on page 950
v “Developing applications that use the Administration API” on page 956
v “Managing resources used by brokers” on page 1001
v “Administering Java applications” on page 1005
v “Accessing Administration log information” on page 1006
v “Changing the location of the work path” on page 1011
v “Backing up resources” on page 1013

These tasks can be performed by using one, or more, of the administrative
techniques supported by WebSphere Message Broker:
v The WebSphere Message Broker Toolkit
v The WebSphere Message Broker Explorer
v The WebSphere Message Broker commands
v The Administration API for WebSphere Message Broker (also known as the CMP

API)

For each task, the administrative techniques that you can use are identified.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of

899

your message flows.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
Related reference:
“Administration in z/OS” on page 3979
In the z/OS environment, commands are issued through the console and others in
batch jobs.

Managing brokers
Work with your existing brokers to manage their connections and their active
status by using the WebSphere Message Broker Toolkit or WebSphere Message
Broker Explorer. You can use the Administration API (also known as the CMP API)
to complete some of these actions.

About this task
v “Connecting to a local broker using the WebSphere Message Broker Toolkit or

WebSphere Message Broker Explorer” on page 901
v “Connecting to a remote broker” on page 902
v “Connecting to a remote broker on z/OS in the WebSphere Message Broker

Explorer” on page 904
v “Disconnecting from a broker in the WebSphere Message Broker Explorer” on

page 909
v “Starting and stopping a broker” on page 921
v “Modifying a broker” on page 631
v “Viewing broker properties” on page 927
v “Preparing the environment for WebSphere Adapters nodes” on page 717
v “Preparing the environment for IMS nodes” on page 731
v “Preparing the environment for the CICSRequest node” on page 736
v “Changing the operation mode of your broker” on page 655
v “Checking the operation mode of your broker” on page 657
v “Moving from WebSphere Message Broker on a distributed system to z/OS” on

page 818
v “Starting a WebSphere MQ queue manager as a Windows service” on page 929
v “Stopping a WebSphere MQ queue manager when you stop a broker” on page

929
v “Deleting a broker” on page 930
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.

900 WebSphere Message Broker Version 7.0.0.8

Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Managing execution groups” on page 935
Work with your existing execution groups to manage the message flows that you
have deployed to them by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer. You can use the command line, and the
Administration API (also known as the CMP API) to complete some of these
actions.
“Managing message flows” on page 950
Work with your existing messages that you have deployed to execution groups by
using the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer. You can use the Administration API (also known as the CMP API) to
complete some of these actions.
“Configuring a WebSphere Message Broker as a WebSphere MQ service” on page
894
If you want to operate your WebSphere Message Broker as a WebSphere MQ
service.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Connecting to a local broker using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer

To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.

Before you begin

Before you start:

v Create a broker

About this task

In the WebSphere Message Broker Toolkit, local brokers are automatically
connected. You must manually connect to remote brokers. In the WebSphere
Message Broker Explorer you can choose to disconnect from both local and remote
brokers. You can also choose to automatically reconnect to a broker when you start
the WebSphere Message Broker Explorer.

To connect to a broker in the WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view, expand the Brokers folder.
2. Right-click the broker you want to connect to, and click Connect.

Results

You can now view properties and configure your broker by using the WebSphere
Message Broker Toolkit or the WebSphere Message Broker Explorer.
Related concepts:

Chapter 8. Administering brokers and broker resources 901

“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Connecting to a remote broker”
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.
“Automatically reconnecting to a broker” on page 908
You can configure each broker so that the WebSphere Message Broker Explorer
automatically reconnects to it if the connection is lost; for example, if the network
connection to a remote queue manager fails.
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Connecting to a remote broker
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.

Before you begin

Before you start:

v Create a broker

Before you can connect to a remote broker, the broker and its queue manager must
be running. You must also complete the following steps:
v Ensure that a command server is running on the queue manager.
v Ensure a server-connection channel has been defined on the broker queue

manager. When you create a broker, a default SVRCONN channel, called
SYSTEM.BKR.CONFIG, is created. This channel supports connections from one or
more remote clients to the broker.

v Create a TCP/IP listener on the broker queue manager.
v Ensure that the listener is running.
v Create a group and a user ID on the computer where the broker is running by

using the local system facilities; for example, the Groupadd command on Linux
on x86. Add the user ID to the group.

v Run the setmqaut command on the broker queue manager to grant authority to
the group:
setmqaut -m queueManager -t qmgr -g group +connect

About this task

You can create a connection to a remote broker, or you can create a connection to a
remote broker by using settings from a .broker file. Right-click the Brokers folder,

902 WebSphere Message Broker Version 7.0.0.8

and click Connect to a Remote Broker Using *.broker File. Select the .broker file,
and click Open. The connection to the remote broker is created in your workspace.

To create a connection to a remote broker:

Procedure
1. Open the WebSphere Message Broker Explorer, or open the Brokers view in the

WebSphere Message Broker Toolkit.
2. To create a connection to a remote broker, right-click the Brokers folder, and

click Connect to a Remote Broker.
3. In the Connect to a broker wizard, enter the following values:

a. The value for the Queue Manager name that your remote broker is using.
b. The Host name or IP address of the computer on which your broker is

running.
c. The TCP Port on which the WebSphere MQ queue manager is listening (the

default is 1414). This property must be a valid positive number.
d. Optional: The name of the server-connection channel in the SVRCONN

Channel Name field. The channel has a default name of SYSTEM.BKR.CONFIG.
You can create more than one server-connection channel and define a
different SSL certificate on each channel to enforce; for example, users with
view access on to one channel and users with deploy access on to a different
channel.
You can then create WebSphere MQ exits on each channel to provide
additional authentication of the WebSphere MQ message sent to the broker.
You must create the server-connection channel manually on the broker
queue manager by using one of the following options:
v The WebSphere MQ runmqsc command to create a channel with options

CHLTYPE(SVRCONN) and TRPTYPE(TCP).
v The WebSphere MQ Explorer to create a server-connection channel with

the transmission protocol set to TCP.

For more information see your WebSphere MQ documentation.
If you do not change the name, or attempt to delete it, the default name of
SYSTEM.BKR.CONFIG is assumed. The name of the server-connection channel
is changed only if you enter another name in place of SYSTEM.BKR.CONFIG.

e. Optional: The Class of the Security Exit required to connect to the
WebSphere MQ queue manager. This property must be a valid Java class
name, but you can leave this field blank if it does not apply to your domain
connection.

f. Optional: The JAR File Location for the Security Exit required to connect to
the WebSphere MQ queue manager. Click Browse to find the file location. If
this field does not apply to your domain connection, you can leave it blank.
If you enter a Security Exit Class, you must provide a JAR File Location.

g. Optional: The Cipher Suite, Distinguished Names, CRL Name List, Key
Store, and Trust Store parameters are required to enable SSL. For more
information, see “Implementing SSL authentication” on page 504. The
Cipher Suite field lists available cipher suites. Click More to configure
Custom SSL Cipher Suites in the Broker Administration Preferences
window. If a Cipher Suite is not specified, all of the other fields in the SSL
section are unavailable.

Chapter 8. Administering brokers and broker resources 903

If you specify a keystore or truststore when you define the connection
information, you are prompted for the keystore or truststore when you
connect to the remote broker.

4. Click Finish to connect to the remote broker.

Results

You can now view properties and configure your broker using the WebSphere
Message Broker Toolkit or WebSphere Message Broker Explorer.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Security exits” on page 354
Use security exit programs to verify that the partner at the other end of a
connection is genuine.
Related tasks:
“Considering security for the WebSphere Message Broker Toolkit and WebSphere
Message Broker Explorer” on page 500
Set up appropriate levels of security for the WebSphere Message Broker Toolkit
and WebSphere Message Broker Explorer.
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Connecting to a remote broker on z/OS in the WebSphere
Message Broker Explorer

To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.

Before you begin

Before you start:

v Create a broker

About this task

To connect to a remote broker on z/OS:

Procedure
1. In the Navigator view, or Brokers view, right-click the Brokers folder, and click

Connect > Remote Broker.
2. In the Connect to a broker wizard, enter the following values:

a. The value for the Queue Manager name that your remote broker is using.

904 WebSphere Message Broker Version 7.0.0.8

b. The Host name or IP address of the machine on which your broker is
running.

c. The TCP Port on which the WebSphere MQ queue manager is listening (the
default is 1414). This property must be a valid positive number.

d. Optional: The name of the server-connection channel in the SVRCONN
Channel Name field. The channel has a default name of SYSTEM.BKR.CONFIG.
You can create more than one server-connection channel and define a
different SSL certificate on each channel to enforce; for example, users with
view access on to one channel and users with deploy access on to a different
channel.
You can then create WebSphere MQ exits on each channel to provide
additional authentication of the WebSphere MQ message sent to the broker.
You must create the server-connection channel manually on the queue
manager for the broker by using one of the following options:
v The WebSphere MQ runmqsc command to create a channel with options

CHLTYPE(SVRCONN) and TRPTYPE(TCP).
v The WebSphere MQ Explorer to create a server-connection channel with

the transmission protocol set to TCP.

For more information see your WebSphere MQ documentation.
The default name of SYSTEM.BKR.CONFIG is assumed if you do not change
the name, or attempt to delete it. The name of the server-connection channel
is changed only if you enter another name in place of SYSTEM.BKR.CONFIG.

e. Optional: The Class of the Security Exit required to connect to the
WebSphere MQ queue manager. This property must be a valid Java class
name, but you can leave this field blank if it does not apply to your domain
connection.

f. Optional: The JAR File Location for the Security Exit required to connect to
the WebSphere MQ queue manager. Click Browse to find the file location.
You can leave this field blank if it does not apply to your domain
connection. You must provide a JAR File Location if you enter a Security
Exit Class.

g. Optional: The Cipher Suite, Distinguished Names, CRL Name List, Key
Store, and Trust Store parameters are required to enable SSL. For more
information, see “Implementing SSL authentication” on page 504. The
Cipher Suite field displays available cipher suites. Click More to configure
Custom SSL Cipher Suites in the Broker Administration Preferences
window. If a Cipher Suite is not specified, all of the other fields in the SSL
section are unavailable.

3. Click Finish to connect to the remote broker.

Results

You can now view properties and configure your broker by using the WebSphere
Message Broker Toolkit or WebSphere Message Broker Explorer.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Security exits” on page 354
Use security exit programs to verify that the partner at the other end of a
connection is genuine.

Chapter 8. Administering brokers and broker resources 905

Related tasks:
“Considering security for the WebSphere Message Broker Toolkit and WebSphere
Message Broker Explorer” on page 500
Set up appropriate levels of security for the WebSphere Message Broker Toolkit
and WebSphere Message Broker Explorer.
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Connecting to a remote broker” on page 902
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.

Importing broker definitions into the WebSphere Message
Broker Explorer

Import broker connection details that have been created by another user into your
session of the WebSphere Message Broker Explorer or WebSphere Message Broker
Toolkit, to use the broker.

About this task

The properties of a broker connection can be exported from one instance of the
WebSphere Message Broker Explorer, and imported into a different instance. You
can also import a broker connection into an instance of the WebSphere Message
Broker Toolkit. The properties of the broker connection are stored in a .broker file.

Importing a broker definition into the WebSphere Message
Broker Toolkit
About this task

To import broker connection properties from a .broker file into the WebSphere
Message Broker Toolkit:

Procedure
1. In the Brokers view, right-click the Brokers folder and click Add Remote

Broker From *.broker.
2. Navigate to the broker connection files that you want to import, and click

Open.

Results

The .broker file is imported, and the broker is displayed in the Brokers folder. You
can now connect to the broker.

906 WebSphere Message Broker Version 7.0.0.8

Importing a broker definition into the WebSphere Message
Broker Explorer
About this task

To import broker connection properties from a .broker file into the WebSphere
Message Broker Explorer:

Procedure
1. In the Navigator view, right-click the Brokers folder and click Import *.broker.
2. Navigate to the broker connection files that you want to import, and click OK.

Results

The .broker file is imported, and the broker is displayed in the Brokers folder. You
can now connect to the broker.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.
“Exporting broker definitions from the WebSphere Message Broker Explorer”
Use the WebSphere Message Broker Explorer to export broker connection details
for another user.
“Connecting to a remote broker” on page 902
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.
“Connecting to a remote broker on z/OS in the WebSphere Message Broker
Explorer” on page 904
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.

Exporting broker definitions from the WebSphere Message
Broker Explorer

Use the WebSphere Message Broker Explorer to export broker connection details
for another user.

About this task

The properties of a broker connection can be exported from one instance of the
WebSphere Message Broker Explorer and imported into a different instance. The
properties of the broker connection are stored in a .broker file.

To a export broker connection properties to a .broker file:

Procedure
1. In the Navigator view, expand the Brokers folder.
2. Select the broker for which you want to export the connection details for, and

click Export *.broker.

Chapter 8. Administering brokers and broker resources 907

3. Select a location to save the .broker file, and click Save.

Results

The .broker file is exported. Another user can now import the .broker file to
connect to the broker.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.
“Importing broker definitions into the WebSphere Message Broker Explorer” on
page 906
Import broker connection details that have been created by another user into your
session of the WebSphere Message Broker Explorer or WebSphere Message Broker
Toolkit, to use the broker.
“Connecting to a remote broker” on page 902
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.
“Connecting to a remote broker on z/OS in the WebSphere Message Broker
Explorer” on page 904
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.

Automatically reconnecting to a broker
You can configure each broker so that the WebSphere Message Broker Explorer
automatically reconnects to it if the connection is lost; for example, if the network
connection to a remote queue manager fails.

About this task

If you manually disconnect a broker, the broker is not automatically reconnected
until the next time that you close and restart the WebSphere Message Broker
Explorer. To configure a broker to automatically reconnect when you start the
WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view, expand the Brokers folder.
2. Right-click your broker, and select Properties.
3. Ensure Autoreconnect is selected in the General tab.
4. Click OK.

Results

The broker is automatically reconnected when you next start the WebSphere
Message Broker Explorer.

908 WebSphere Message Broker Version 7.0.0.8

What to do next

If you want to configure the broker so that it is not automatically reconnected
when you start the WebSphere Message Broker Explorer, clear Autoreconnect in
the broker properties window.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Connecting to a remote broker” on page 902
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.
“Connecting to a remote broker on z/OS in the WebSphere Message Broker
Explorer” on page 904
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.

Disconnecting from a broker in the WebSphere Message
Broker Explorer

You can disconnect from all brokers that you are not currently configuring to
improve performance in the WebSphere Message Broker Explorer.

About this task

To disconnect from a broker WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view, expand the Brokers folder.
2. Right-click the broker you want to disconnect from, and click Disconnect.

Results

You have disconnected from the selected broker.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or

Chapter 8. Administering brokers and broker resources 909

WebSphere Message Broker Explorer, you must be connected to the broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Using the Administration Queue
The Administration Queue shows pending and submitted tasks that have been sent
to the broker, and are waiting to be processed. Use the WebSphere Message Broker
Explorer to view details of the tasks, and to cancel tasks in the queue.

About this task

Each broker that is connected in the WebSphere Message Broker Explorer displays
an icon labeled Administration Queue. When you click the Administration Queue
icon, tasks submitted to the broker are displayed in the Administration Queue
QuickView in the Content pane. The Administration Queue icon changes to
indicate the number of messages on the Administration Queue.

The following properties are displayed for each task on the Administration Queue:
v Order
v Status
v Username
v Operation Type
v Object Name
v Object Type
v Creation Time
v Elapsed Time
v Identifier

You can remove tasks from the Administration Queue if you want to cancel
requests that have been sent to a broker. To remove tasks from the Administration
Queue:

Procedure
1. In the Navigator view, expand the Brokers folder.
2. Expand the broker with which you want to work, and right-click

Administration Queue.
3. Click Cancel Work Items The Administration Queue window is displayed.
4. Select the task or tasks that you want to remove from the Administration

Queue, and click Cancel Work Items.

Results

The selected tasks are removed from the Administration Queue.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.

910 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Chapter 12, “Performance and monitoring,” on page 3251
You can change various aspects of your broker configuration to tune brokers and
message flows, and monitor message flows and publish/subscribe applications.

Working with Service Federation Management (SFM)
You can use a broker as a connectivity server that can be administered by a Service
Federation Management (SFM) console provided with WebSphere Service Registry
and Repository (WSRR) V7.0. The SFM console can then configure SFM proxies in
the broker.

Your enterprise might have separate enterprise service buses (ESBs) in different
business units. Each ESB and associated service registry constitute a separate
domain of connected service applications. This configuration can result in
expensive duplication of applications between domains and also in increased
development effort to implement application connectivity across domains.

SFM, provided in WebSphere Service Registry and Repository (WSRR) V7.0, allows
you to establish bridges between separate ESBs, allowing services and applications
to be shared between domains. SFM provides:
v A federation model which provides a unifying view of federation-relevant

content.
v A protocol, Service Control Management Protocol (SCMP), which accesses the

service connectivity and registry components supporting a domain. SCMP is
based on the Atom Publishing Protocol (Atom).

v A console for controlling service domains.

By using SFM, you can configure services in one domain so that they are available
to service consumers in another domain; the service endpoints in one domain are
manifested as service proxy endpoints in another domain.

You can use the SFM console to administer a broker as an SFM connectivity server
to enable the creation of proxies running in a broker execution group. You can
share services between domains by using proxies. You must use the
mqsichangeproperties command to enable a broker to be administered by the SFM
console. You can then use the SFM console federation facilities so that SCMP Atom
requests can be issued to the broker on the configured HTTP or HTTPS port.

After you enable WebSphere Message Broker as an SFM connectivity server, the
execution groups in a broker are available to act as SFM connectivity providers.
Connectivity providers are added in the SFM console to domains to provide an
ESB facility which can then create and host proxy instances to enable the sharing
of services.

Service federation proxy instances are runtime resources that are separate from
WebSphere Message Broker message flows, and are therefore not listed in the

Chapter 8. Administering brokers and broker resources 911

execution group. The service federation proxy instances of an execution group can
be reported by the Service Federation Management properties of that execution
group.

To enable a broker for SFM, or configure the SFM properties of an execution,
follow the appropriate link:
v “Enabling a broker for Service Federation Management”
v “Configuring the Service Federation Management properties of an execution

group” on page 914

For more information about SFM, see the WebSphere Service Registry and
Repository V7.0 Information Center at http://publib.boulder.ibm.com/infocenter/
sr/v7r0/topic/com.ibm.sr.sfm.doc/wsrr_sfm_homepage.html.
Related tasks:
“Enabling a broker for Service Federation Management”
Use the mqsichangeproperties command to enable a broker for Service Federation
Management (SFM).
“Configuring the Service Federation Management properties of an execution
group” on page 914
Using the mqsichangeproperties command, you can configure the Service
Federation Management (SFM) properties of an execution group in a broker that
has been enabled for SFM. These properties determine how proxies are created.
Related information:

WebSphere Service Registry and Repository Version 7.0 Information Center
online

Enabling a broker for Service Federation Management
Use the mqsichangeproperties command to enable a broker for Service Federation
Management (SFM).

Before you begin

Before you start:

v Create a broker

About this task

Procedure
1. Run the mqsichangeproperties command to enable SFM in the broker.

To enable SFM in the broker and to use HTTP as the protocol for
communication between SFM and the broker, run the following command:
mqsichangeproperties broker_name -b servicefederation -o scmp
-n enabled,enableSSL -v true,false

To enable SFM in the broker and to use HTTPS as the protocol for
communication between SFM and the broker, run the following command:
mqsichangeproperties broker_name -b servicefederation -o scmp
-n enabled,enableSSL -v true,true

2. You must also set the hostname and context root for the service document URL
that will be required when you add the broker to the Service Federation
Console. Use the full domain qualified hostname for your broker to ensure
reliable addressing.
mqsichangeproperties broker_name -b servicefederation -o scmp
-n hostname,contextRoot -v brokerhost.ibm.com,/scmp

912 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/sr/v7r0/topic/com.ibm.sr.sfm.doc/wsrr_sfm_homepage.html
http://publib.boulder.ibm.com/infocenter/sr/v7r0/topic/com.ibm.sr.sfm.doc/wsrr_sfm_homepage.html
http://publib.boulder.ibm.com/infocenter/sr/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/sr/v7r0/index.jsp

3. Use the mqsireportproperties command to review the SFM properties that you
have set by using the mqsichangeproperties command:
mqsireportproperties broker_name -b servicefederation -o scmp -r

4. Run the mqsichangeproperties command to configure the properties relating to
the HTTP or HTTPS port to be used. If you are using HTTP:
mqsichangeproperties broker_name -b servicefederation -o HTTPConnector -n port
-v 8085

If you are using HTTPS:
mqsichangeproperties broker_name -b servicefederation -o HTTPSConnector
-n port,keystoreFile,keystorePass -v 8086,keys.jks,keypwd

5. If you need to secure the SFM HTTP or HTTPS port with basic access
authentication user name and password credentials, run the mqsisetdbparms
command and use a resource type of sfm::scmp:
mqsisetdbparms broker_name -n sfm::scmp -u ConsoleUsername -p
ConsolePwd

6. Stop the broker by using the mqsistop command.
7. Start the broker by using the mqsistart command. Review the system log to

ensure that the Service Federation listener has successfully started. The message
BIP3769 also confirms the service document URL value that must be configured
into the SFM console.
Service Federation SCMP listener initialized. Additional information :
’’SCMP Service Document URL’’
’’http://brokerhost.ibm.com:8085/scmp/servicedocument’’

What to do next

You have now enabled the broker for SFM. As a consequence of enabling the
broker for SFM, the execution groups in the broker are also enabled for SFM; they
can now create and host the proxy instances to provide service availability. You
might want to configure the properties of the execution group that relate to the
creation of proxy instances; see “Configuring the Service Federation Management
properties of an execution group” on page 914.
Related concepts:
“Working with Service Federation Management (SFM)” on page 911
You can use a broker as a connectivity server that can be administered by a Service
Federation Management (SFM) console provided with WebSphere Service Registry
and Repository (WSRR) V7.0. The SFM console can then configure SFM proxies in
the broker.
Related tasks:
“Configuring the Service Federation Management properties of an execution
group” on page 914
Using the mqsichangeproperties command, you can configure the Service
Federation Management (SFM) properties of an execution group in a broker that
has been enabled for SFM. These properties determine how proxies are created.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and

Chapter 8. Administering brokers and broker resources 913

properties of broker resources.
“Parameter values for the servicefederation component” on page 3816
Select the objects and properties associated with the servicefederation component
that you want to change.

Configuring the Service Federation Management properties of an
execution group
Using the mqsichangeproperties command, you can configure the Service
Federation Management (SFM) properties of an execution group in a broker that
has been enabled for SFM. These properties determine how proxies are created.

Before you begin

Before you start:

v Create a broker
v Start the broker
v Create an execution group
v Enable SFM in the broker

About this task

When you enable a broker for SFM, the execution groups in the broker are also
enabled for SFM; they act as connectivity providers and create and host the proxy
instances for use by service consumers in other domains.

Procedure

Run the mqsichangeproperties command to configure the properties that relate to
the SFM capability of an execution group.
For example, to set a host name, insecure port, and secure port to be used in the
endpoint address of SFM proxies created in an execution group:

mqsichangeproperties TEST -e exgroup1 -o ServiceFederationManager
-n proxyURLHostName,port,securePort -v mbhost.ibm.com,8811,8844

If an SFM proxy is configured to use SSL, its input proxy URL transport is HTTPS;
it will need to use the keystore at either the execution group level or broker level
to obtain its private key. If an SFM proxy has a target service that requires SSL, its
target service URL transport is HTTPS; it will need to use the truststore at either
the execution group level or the broker level to obtain the public key of the service.
In such cases, you must configure either the execution group or the broker to
reference keystores and truststores that have been loaded with these certificates. If
both are set, the execution group level setting is used.
To review the properties that relate to the SFM capability of an execution group,
run the mqsireportproperties command with the -a all properties option:

mqsireportproperties broker_name -e execution_group_name -o
ServiceFederationManager -a

To review details of SFM proxies that have been created in an execution group, run
the mqsireportproperties command with the -r all recursive child properties
option:

mqsireportproperties broker_name -e execution_group_name -o
ServiceFederationManager -r

Related concepts:

914 WebSphere Message Broker Version 7.0.0.8

“Working with Service Federation Management (SFM)” on page 911
You can use a broker as a connectivity server that can be administered by a Service
Federation Management (SFM) console provided with WebSphere Service Registry
and Repository (WSRR) V7.0. The SFM console can then configure SFM proxies in
the broker.
Related tasks:
“Enabling a broker for Service Federation Management” on page 912
Use the mqsichangeproperties command to enable a broker for Service Federation
Management (SFM).
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Viewing and setting keystore and truststore runtime properties at broker level” on
page 780
Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
“Viewing and setting keystore and truststore runtime properties at execution group
level” on page 783
Configure an execution group to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“ServiceFederationManager object property values” on page 3818
Select the properties associated with the ServiceFederationManager component that
you want to change.

Grouping brokers by using broker sets
You can create a manual or an automatic broker set to visually group your brokers
in the WebSphere Message Broker Explorer.

About this task

If you have a large number of brokers displayed in the WebSphere Message Broker
Explorer, you might find it helpful to group the brokers by using broker sets. You
can create manual broker sets, automatic broker sets, or a combination of both
types. When you create a broker set for the first time, two sets are created; a set
called All and a set with a name that you provided when you created it. The All
broker set contains all your local brokers, and any remote brokers definitions in
your workspace. If you delete all of the broker sets that you have created, the All
broker set is automatically removed. You cannot rename, modify, or delete the All
broker set manually.

A manual broker set is empty until you add brokers to the broker set from the All
broker set or another broker set. You can add or remove brokers from the manual
broker set at any time.

An automatic broker set uses broker tags to dynamically add and remove brokers
from a set based on values you provide or the current state of the brokers.

Chapter 8. Administering brokers and broker resources 915

See the following topics for more information about how to create and use broker
sets in the WebSphere Message Broker Explorer:
v “Creating a manual broker set in the WebSphere Message Broker Explorer”
v “Adding and modifying broker tags in the WebSphere Message Broker Explorer”

on page 917
v “Creating an automatic broker set in the WebSphere Message Broker Explorer”

on page 918
v “Modifying broker sets in the WebSphere Message Broker Explorer” on page 920

Creating a manual broker set in the WebSphere Message Broker
Explorer
You can create a manual broker set, and add brokers to visually group your
brokers in the WebSphere Message Broker Explorer.

Before you begin

Before you start:

v Create a broker

About this task

A manual broker set is empty until you add brokers to the broker set from the All
broker set, or from another broker set. You can add or remove brokers from the
manual broker set at any time.

To create a manual broker set in the WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view right-click the Brokers folder, and click Broker Sets >

New Broker Set. The Create New Broker Set wizard is displayed.
2. Enter a name for the broker set.
3. Ensure Manual is selected as the set type.
4. Click Finish.

Results

The broker set is added to the Brokers folder. If this set was the first broker set that
you have created, the All broker set is also added to the Brokers folder. The All
broker set contains all your local brokers, and all remote brokers definitions in
your workspace.

What to do next

You can now move brokers from your All broker set, or other broker sets, into the
manual broker set that you have created.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Managing brokers” on page 900
Work with your existing brokers to manage their connections and their active
status by using the WebSphere Message Broker Toolkit or WebSphere Message
Broker Explorer. You can use the Administration API (also known as the CMP API)

916 WebSphere Message Broker Version 7.0.0.8

to complete some of these actions.
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.
“Grouping brokers by using broker sets” on page 915
You can create a manual or an automatic broker set to visually group your brokers
in the WebSphere Message Broker Explorer.
“Creating an automatic broker set in the WebSphere Message Broker Explorer” on
page 918
Create an automatic broker set in the WebSphere Message Broker Explorer to
group brokers dynamically based on values you provide, or their current state.

Adding and modifying broker tags in the WebSphere Message
Broker Explorer
Add or modify the broker tags on your brokers to change the brokers that are
grouped in an automatic set in the WebSphere Message Broker Explorer.

Before you begin

Before you start:

v Create a broker

About this task

An automatic broker set uses broker tags to dynamically add and remove brokers
from a set based on values you provide or the current state of the brokers. You
must add the appropriate tags to your brokers before they can be dynamically
added to an automatic broker set. You can select from the following included
broker tags, or you can configure your own custom broker tags:
v brokerEnvironment:Development
v brokerEnvironment:Test
v brokerEnvironment:QA
v brokerEnvironment:Production

You can also remove tags that you have previously added to a broker to stop the
broker being added to an automatic set.

To add or modify broker tags in the WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view, expand the Brokers folder.
2. Right-click the broker for which you want to add or modify broker tags, and

click Modify Broker Tags.
3. Select the broker tags to add to the broker:
v Select broker tags from the available list.
v Add a custom broker tag:

a. Enter a name for the tag in the Tags field.
b. Click Add.

You can also select a tag and click Remove to remove it from the list of
available broker tags.

v Clear tags that you want to remove from the broker.
4. Click Finish.

Chapter 8. Administering brokers and broker resources 917

Results

The selected broker tags are added to the broker. If the broker tags are matched in
an automatic broker set, the broker appears in the broker set. If the broker tags no
longer match in an automatic broker set, the broker no longer appears in the
broker set.

What to do next

You can create or modify an automatic broker set to use one or more of the broker
tags that you have created.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Grouping brokers by using broker sets” on page 915
You can create a manual or an automatic broker set to visually group your brokers
in the WebSphere Message Broker Explorer.
“Creating a manual broker set in the WebSphere Message Broker Explorer” on
page 916
You can create a manual broker set, and add brokers to visually group your
brokers in the WebSphere Message Broker Explorer.
“Creating an automatic broker set in the WebSphere Message Broker Explorer”
Create an automatic broker set in the WebSphere Message Broker Explorer to
group brokers dynamically based on values you provide, or their current state.
“Modifying broker sets in the WebSphere Message Broker Explorer” on page 920
Modify an automatic broker set in the WebSphere Message Broker Explorer to
change or add broker tags used to filter brokers in the broker set.

Creating an automatic broker set in the WebSphere Message
Broker Explorer
Create an automatic broker set in the WebSphere Message Broker Explorer to
group brokers dynamically based on values you provide, or their current state.

Before you begin

Before you start:

v Create a broker
v Add broker tags to your brokers

About this task

An automatic broker set uses broker tags to dynamically add and remove brokers
from a set based on values you provide or the current state of the brokers. You
must add the appropriate tags to your brokers before they can be dynamically
added to an automatic broker set. You can select a single tag, or multiple tags, for
an automatic broker set.

You can select from the following included broker tags, or any custom tags you
have added:
v brokerEnvironment:Development

918 WebSphere Message Broker Version 7.0.0.8

v brokerEnvironment:Test
v brokerEnvironment:QA
v brokerEnvironment:Production
v brokerStatus:Started
v brokerStatus:Stopped
v brokerStatus:Connected
v brokerStatus:Disconnected

To create an automatic broker set:

Procedure
1. In the Navigator view right-click the Brokers folder, and click Broker Sets >

New Broker Set. The Create New Broker Set wizard is displayed.
2. Enter a name for the broker set.
3. Ensure Automatic is selected as the set type.
4. Click Next.
5. Select the conditions under which you want the broker to be a part of the

broker set from the list of available filters. Click the Add button to move them
into the selected filters pane.

6. Decide if you want the broker to match all the selected conditions, or one or
more of them:
v If you want the broker to match all the selected conditions ensure matches

ALL of the selected filters is selected.
v If you want the broker to match one or more of the selected conditions

ensure matches ANY of the selected filters is selected.
7. Click Finish.

Results

The broker set is added to the Brokers folder, and all brokers that match the
selected filters are added to the broker set. If this set is the first broker set that you
have created, the All broker set is also added to the Brokers folder. The All broker
set contains all your local brokers, and all remote brokers definitions in your
workspace.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Grouping brokers by using broker sets” on page 915
You can create a manual or an automatic broker set to visually group your brokers
in the WebSphere Message Broker Explorer.
“Creating a manual broker set in the WebSphere Message Broker Explorer” on
page 916
You can create a manual broker set, and add brokers to visually group your
brokers in the WebSphere Message Broker Explorer.
“Adding and modifying broker tags in the WebSphere Message Broker Explorer”
on page 917
Add or modify the broker tags on your brokers to change the brokers that are
grouped in an automatic set in the WebSphere Message Broker Explorer.

Chapter 8. Administering brokers and broker resources 919

“Modifying broker sets in the WebSphere Message Broker Explorer”
Modify an automatic broker set in the WebSphere Message Broker Explorer to
change or add broker tags used to filter brokers in the broker set.

Modifying broker sets in the WebSphere Message Broker
Explorer
Modify an automatic broker set in the WebSphere Message Broker Explorer to
change or add broker tags used to filter brokers in the broker set.

Before you begin

Before you start:

v Create a broker
v Create an automatic broker set

About this task

An automatic broker set uses broker tags to dynamically add and remove brokers
from a set based on values you provide or the current state of the brokers. You
must add the appropriate tags to your brokers before they can be dynamically
added to an automatic broker set. You can select from the following included
broker tags or any custom tags you have added:
v brokerEnvironment:Development
v brokerEnvironment:Test
v brokerEnvironment:QA
v brokerEnvironment:Production
v brokerStatus:Started
v brokerStatus:Stopped
v brokerStatus:Connected
v brokerStatus:Disconnected

To modify an automatic broker set in the WebSphere Message Broker Explorer

Procedure
1. In the Navigator view expand the Brokers folder.
2. Right-click the broker set that you want to modify, and click Modify Broker

Set.
3. Select the conditions under which you want the broker to be a part of the

broker set from the list of available filters:
v Click the Add button to move them into the selected filters pane.
v Click the Remove button to remove them from the selected filters pane.

4. Decide if you want the broker to match all the selected conditions or one or
more of them:
v If you want the broker to match all the selected conditions ensure matches

ALL of the selected filters is selected.
v If you want the broker to match one or more of the selected conditions

ensure matches ANY of the selected filters is selected.
5. Click Finish.

920 WebSphere Message Broker Version 7.0.0.8

Results

The broker set is modified, and all brokers that match the selected filters are added
to the broker set.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Grouping brokers by using broker sets” on page 915
You can create a manual or an automatic broker set to visually group your brokers
in the WebSphere Message Broker Explorer.
“Creating a manual broker set in the WebSphere Message Broker Explorer” on
page 916
You can create a manual broker set, and add brokers to visually group your
brokers in the WebSphere Message Broker Explorer.
“Creating an automatic broker set in the WebSphere Message Broker Explorer” on
page 918
Create an automatic broker set in the WebSphere Message Broker Explorer to
group brokers dynamically based on values you provide, or their current state.
“Adding and modifying broker tags in the WebSphere Message Broker Explorer”
on page 917
Add or modify the broker tags on your brokers to change the brokers that are
grouped in an automatic set in the WebSphere Message Broker Explorer.

Starting and stopping a broker
Run the appropriate command to start or stop a broker.

Before you begin

Before you start:

v Ensure that your user ID has the correct authorizations to perform the task.
Refer to “Security requirements for administrative tasks” on page 3644.

v On Linux, UNIX, and Windows systems, you must set up your command-line
environment before performing this task, by running the product profile or
console; refer to “Setting up a command environment” on page 213.

About this task

To start and stop a broker, you can use the mqsistart and mqsistop commands
from the command line. Alternatively, on Windows and Linux, use the WebSphere
Message Broker Toolkit or the WebSphere Message Broker Explorer to start and
stop brokers.

To start or stop a broker using the WebSphere Message Broker Toolkit or the
WebSphere Message Broker Explorer, follow the appropriate link:
v “Starting a local broker using the WebSphere Message Broker Toolkit or

WebSphere Message Broker Explorer” on page 925
v “Stopping a local broker using the WebSphere Message Broker Toolkit or

WebSphere Message Broker Explorer” on page 926

To start or stop a broker using commands from the command line, follow the link
for the appropriate platform:

Chapter 8. Administering brokers and broker resources 921

Procedure
v “Starting and stopping a broker on Linux and UNIX systems”
v “Starting and stopping a broker on Windows” on page 923
v “Starting and stopping a broker on z/OS” on page 924
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Starting and stopping a broker on Linux and UNIX systems
Run the appropriate command to start or stop a broker.

Procedure
1. Run ’./install_dir/bin/mqsiprofile’ to source the mqsiprofile script and set

up the environment for a single targeted runtime environment. You must
complete this setup before you can run a WebSphere Message Broker
command.

2. To start a broker, enter the following command on the command line:
mqsistart MB7BROKER

Substitute your own broker name for MB7BROKER. The broker and its
associated queue manager are started.
Check the system log to ensure that the broker has initialized successfully. The
log contains messages about verification procedures; if all tests are successful,
only an initial start message is recorded. If any verification test is unsuccessful,
the log also includes messages that provide details of the tests that have failed.
If errors have been reported, review the messages and take the suggested
actions to resolve these problems.

3. To stop a broker, enter the following command on the command line:
mqsistop MB7BROKER

Substitute your own broker name for MB7BROKER.
You can also request that the broker queue manager is stopped by this
command. Refer to “Stopping a WebSphere MQ queue manager when you stop
a broker” on page 929.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.

922 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Linux and UNIX systems: Configuring the syslog daemon” on page 3529
On Linux and UNIX systems, all WebSphere Message Broker messages (other than
messages that are generated by the command-line utilities) are sent to the syslog
subsystem.
“Stopping a WebSphere MQ queue manager when you stop a broker” on page 929
If you are preparing to stop a broker, you can stop the broker's WebSphere MQ
queue manager at the same time.
Related reference:
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Starting and stopping a broker on Windows
Run the appropriate command to start or stop a broker.

Procedure
1. Open the WebSphere Message Broker command console. When you open the

console, it sets up the environment that you need to run the WebSphere
Message Broker commands.
If you prefer, you can run the install_dir/bin/mqsiprofile command to set
up the environment.

2. To start a broker, enter the following command on the command line:
mqsistart MB7BROKER

Substitute your own broker name for MB7BROKER.
You can also request that the broker queue manager is started as a Windows
service. Refer to “Starting a WebSphere MQ queue manager as a Windows
service” on page 929.
The broker and its associated queue manager are started. The command
initiates the startup of the broker's Windows service.
Check the Application Log in the Event Viewer to ensure that the broker has
initialized successfully. The log contains messages about verification
procedures; if all tests are successful, only an initial start message is recorded. If
one or more verification tests are unsuccessful, the log also includes messages
that provide details of the tests that have failed. If errors have been reported,
review the messages and take the suggested actions to resolve these problems.

3. To stop a broker, enter the following command on the command line:
mqsistop MB7BROKER

Substitute your own broker name for MB7BROKER.
You can also request that the broker queue manager is stopped by this
command. Refer to “Stopping a WebSphere MQ queue manager when you stop
a broker” on page 929.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to

Chapter 8. Administering brokers and broker resources 923

route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on Windows” on page 616
On Windows, you can create brokers on the command line.
“Starting a WebSphere MQ queue manager as a Windows service” on page 929
On Windows, you can start a WebSphere MQ queue manager as a Windows
service to ensure the queue manager starts when you start your other components.

“Stopping a WebSphere MQ queue manager when you stop a broker” on page 929
If you are preparing to stop a broker, you can stop the broker's WebSphere MQ
queue manager at the same time.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
Related reference:
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Starting and stopping a broker on z/OS
Run the appropriate command from SDSF to start or stop a broker.

Procedure
1. Start the component by using the command /S <broker name>. This command

produces the following output, where MQP1BRK is the name of the broker:
+BIP9141I MQP1BRK 0 The component was started

Substitute your own broker name for MQP1BRK.
The verification step runs, followed by starting the control process and any
DataFlowEngine (execution group) address spaces.
If the verification step fails, the errors are reported to the STDOUT stream in
the JOBLOG. The control process and DataFlowEngine address spaces are not
started. Review the messages to see what errors have been reported, and take
the suggested actions to resolve these problems.

2. Alternatively, start the control process only by using the command:
/S broker_name,STRTP=MAN

If the verification step fails for any reason, the errors are reported to the
STDOUT stream in the JOBLOG; the control process is not started. Review the
messages to see what errors have been reported, and take the suggested actions
to resolve these problems.
No DataFlowEngine address spaces are started automatically if you specify
STRTP=MAN. If the verification step is successful and the control process starts
successfully, fully start the broker by issuing the console command:
/F <broker name>, SC

3. To stop a broker, run the following command:
/P <broker name>

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.

924 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
Related reference:
“START and STOP commands on z/OS” on page 3981
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Starting a local broker using the WebSphere Message Broker
Toolkit or WebSphere Message Broker Explorer
You can start your local brokers by using the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.

About this task

On Windows and Linux use the WebSphere Message Broker Toolkit or the
WebSphere Message Broker Explorer to start and stop brokers. Alternatively, you
can use the mqsistart and mqsistop commands from the command line to start or
stop a broker.

Starting a local broker using the WebSphere Message Broker Toolkit:
About this task

To start a local broker by using the WebSphere Message Broker Toolkit:

Procedure

1. Open the WebSphere Message Broker Toolkit, and switch to the Broker
Application Development perspective.

2. In the Brokers view, right-click the broker, and click Start.

Results

You have started the selected broker.

Starting a local broker using the WebSphere Message Broker Explorer:
About this task

To start a local broker by using the WebSphere Message Broker Explorer:

Procedure

1. Open the WebSphere Message Broker Explorer.
2. In the Navigator view, expand the Brokers folder.
3. Right-click the broker you want to start, and click Start.

Results

You have started the selected broker.
Related concepts:

Chapter 8. Administering brokers and broker resources 925

“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Stopping a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer”
You can stop your local brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Related reference:
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Stopping a local broker using the WebSphere Message Broker
Toolkit or WebSphere Message Broker Explorer
You can stop your local brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer.

About this task

On Windows and Linux on x86, use the WebSphere Message Broker Toolkit or the
WebSphere Message Broker Explorer to start and stop brokers. Alternatively, you
can use the mqsistop command from the command line to stop a broker.

Stopping a local broker using the WebSphere Message Broker Toolkit:
About this task

To stop a local broker by using the WebSphere Message Broker Toolkit:

Procedure

1. Open the WebSphere Message Broker Toolkit, and switch to the Broker
Application Development perspective.

2. In the Brokers view, right-click the broker, and click Stop.

926 WebSphere Message Broker Version 7.0.0.8

Results

You have stopped the selected broker.

Stopping a local broker using the WebSphere Message Broker Explorer:
About this task

To stop a local broker by using the WebSphere Message Broker Explorer:

Procedure

1. Open the WebSphere Message Broker Explorer.
2. In the Navigator view, expand the Brokers folder.
3. Right-click the broker you want to stop, and click Stop > Broker. You can also

click Stop > Broker Immediately if you have already tried, and failed, to stop
the broker in a controlled fashion.

Results

You have stopped the selected broker.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Starting a local broker using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer” on page 925
You can start your local brokers by using the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Viewing broker properties
You can view broker properties by using the mqsireportbroker command. You can
also use the WebSphere Message Broker Explorer to view broker properties.

Chapter 8. Administering brokers and broker resources 927

Before you begin

Before you start:

You must have completed the following tasks:
v Ensure that your user ID has the correct authorizations to perform the task; see

“Security requirements for administrative tasks” on page 3644.
v Create a broker.
v On Windows, Linux, and UNIX systems, you must set up your command-line

environment before performing this task by running the product profile or
console; see “Setting up a command environment” on page 213.

About this task

Use the mqsireportbroker command or domain to view all the properties
associated with a broker. The command shows both parameters entered on the
command line and viewable in the workbench.

Procedure
1. Run the mqsireportbroker command. For example, to view the properties of

the broker SOAPBR, run the following command:
mqsireportbroker SOAPBR

2. View responses of the mqsireportbroker command to check on current settings.
Examples are given in “mqsireportbroker command” on page 3919.

3. If you want to make any changes, run the mqsichangebroker command,
specifying the required parameters.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

928 WebSphere Message Broker Version 7.0.0.8

Starting a WebSphere MQ queue manager as a Windows
service

On Windows, you can start a WebSphere MQ queue manager as a Windows
service to ensure the queue manager starts when you start your other components.

Before you begin

Before you start:

You must complete the following task:
v Stop the queue manager for the Broker component by using the endmqm

command. If you prefer, you can use the WebSphere MQ Explorer.

About this task

When you start a broker, the “mqsistart command” on page 3965 starts the
associated queue manager if it is not already running.

When you start a broker on Windows, the broker starts as a service on Windows,
but the associated queue manager does not.

You can change the properties of the queue manager service to set the startup type
to automatic to enable the queue manager to run as a Windows service.

This change ensures that the operation of the queue manager is independent of the
logged-on status of the user that starts the broker.

To start a WebSphere MQ queue manager as a Windows service:

Procedure
1. Click Start > Programs > IBM WebSphere MQ > WebSphere MQ Explorer.
2. In the left pane, right-click the queue manager and select Properties. The

Properties dialog opens. The General properties are displayed.
3. Find the Startup property and set it to Automatic.
4. Click OK. The Properties dialog closes and the change is applied.
5. Restart the queue manager for the broker by using the strmqm command or

WebSphere MQ Explorer. The changes to the queue manager's startup type
take effect when you restart Windows.

6. Start the broker by using the mqsistart command.
Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.

Stopping a WebSphere MQ queue manager when you stop a
broker

If you are preparing to stop a broker, you can stop the broker's WebSphere MQ
queue manager at the same time.

Chapter 8. Administering brokers and broker resources 929

About this task

You can specify a -q parameter on the mqsistop command to initiate a controlled
shutdown of the queue manager for a broker.

Procedure

To stop a WebSphere MQ queue manager enter the following command on the
command line:
mqsistop MB7BROKER -q

where:
MB7BROKER is the name of the broker.
-q stops the WebSphere MQ queue manager associated with the component.
The command cannot complete until shutdown of the queue manager has
completed.
Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Deleting a broker
Delete a broker using the command line on the system where the broker
component is installed.

Before you begin

Before you start: Check that your user ID has the correct authorizations to perform
the task; for details, see “Security requirements for administrative tasks” on page
3644.

About this task

On Windows and Linux systems, you can delete a broker using the WebSphere
Message Broker Toolkit or the WebSphere Message Broker Explorer. For
instructions on deleting the broker using the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer, see “Deleting a broker using the
WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer” on
page 933.

On Windows, Linux, and UNIX systems, you must set up your command-line
environment before deleting a broker, by running the product profile or console;
see “Setting up a command environment” on page 213.

Follow the link for the appropriate platform:

Procedure
v “Deleting a broker on Linux and UNIX systems” on page 931
v “Deleting a broker on Windows” on page 932
v “Deleting a broker on z/OS” on page 933
Related concepts:

930 WebSphere Message Broker Version 7.0.0.8

“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Modifying a broker” on page 631
Modify a broker by using the command line on the system where the broker
component is installed.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

Deleting a broker on Linux and UNIX systems
Delete the physical broker component.

About this task

To delete a broker on Linux and UNIX systems:

Procedure
1. Stop the broker by using the mqsistop command.
2. Enter the following command to delete the broker:

mqsideletebroker MB7BROKER

where MB7BROKER is the broker name.
3. If you have created execution group profiles for this broker, delete these

profiles if they are no longer required.
4. If you have created execution group shared-classes directories for this broker,

delete these directories if they are no longer required.

Results

On completion of this task, you have:
v Removed the broker data from the database.
v Removed the record for the component in the broker registry. It is therefore

removed from the list of components that are displayed when you run the
mqsilist command.

v Removed any execution group profile scripts that are no longer needed.
v Removed any execution group shared-classes directories that are no longer

needed.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.

Chapter 8. Administering brokers and broker resources 931

Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.

Deleting a broker on Windows
Delete the physical broker component.

About this task

Windows To delete a broker:

Procedure
1. Stop the broker by using the mqsistop command.
2. Enter the following command to delete the broker:

mqsideletebroker MB7BROKER

where MB7BROKER is the broker name.
3. If you have created execution group profiles for this broker, delete these

profiles if they are no longer required.
4. If you have created execution group shared-classes directories for this broker,

delete these directories if they are no longer required.

Results

On completion of this task, you have:
v Stopped the Windows service that runs the broker.
v Removed the record for the component in the broker registry. It is therefore

removed from the list of components that are displayed when you run the
mqsilist command.

v Removed any execution group profile scripts that are no longer needed.
v Removed any execution group shared-classes directories that are no longer

needed.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was

932 WebSphere Message Broker Version 7.0.0.8

created). You can also specify that the queue manager is to be deleted.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.

Deleting a broker on z/OS
Delete the physical broker component.

About this task

To delete a broker:

Procedure
1. Stop the broker, by stopping the started task.
2. Customize and submit the delete job BIPDLBK in your component PDSE to

delete the broker component and WebSphere MQ. This action does not delete
all files from the component directory in the file system.

3. If you have created an execution group shared-classes directory for this
broker, delete this directory if it is no longer required.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
“Modifying a broker on z/OS” on page 634
Use the mqsichangebroker command on z/OS to modify your broker.
Related reference:
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Deleting a broker using the WebSphere Message Broker Toolkit
or WebSphere Message Broker Explorer
On Windows and Linux on x86 you can delete brokers by using the WebSphere
Message Broker Toolkit or WebSphere Message Broker Explorer.

Before you begin

Before you start: Check that your user ID has the correct authorizations to perform
the task; for details, see “Security requirements for administrative tasks” on page
3644.

About this task

You can delete a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer. You cannot delete a remote broker using the

Chapter 8. Administering brokers and broker resources 933

WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer, but
you can remove the connection to the remote broker from your workspace. To
remove the connection to a remote broker in the WebSphere Message Broker
Toolkit, right-click the broker in the Brokers view, and click Remove Connection.
To remove the connection to a remote broker in the WebSphere Message Broker
Explorer, right-click the broker in the Navigator view, and click Remove.

Deleting a broker using the WebSphere Message Broker Toolkit:
About this task

To delete a broker using the WebSphere Message Broker Toolkit:

Procedure

1. Open the WebSphere Message Broker Toolkit, and switch to the Broker
Application Development perspective.

2. In the Brokers view, right-click the broker, and click Delete. If the broker is a
remote broker, the connection to the broker is removed from your workspace.
If the broker is a local broker, the Delete Local Broker wizard is displayed:
a. Optional: If you want to delete the queue manager associated with the

broker, ensure Delete the broker's queue manager is selected.
b. Click Finish to delete the broker. The wizard stops the broker if it is

running.

Results

You have deleted the broker.

Deleting a broker using the WebSphere Message Broker Explorer:
About this task

To delete a broker using the WebSphere Message Broker Explorer:

Procedure

1. Open the WebSphere Message Broker Explorer.
2. In the Navigator view, expand the broker's queue manager, or the Brokers

folder.
3. Right-click the broker, and click Delete > Broker. The Delete Broker wizard is

displayed.
4. If you want to delete the queue manager associated with the broker, ensure

Delete the broker's queue manager is selected.
5. Click Next. The wizard stops the broker if it is running.
6. Click Finish to close the wizard.

Results

You have deleted the broker. If you choose to delete the queue manager, the queue
manager continues to be displayed in the Navigator view until the views are
refreshed. The time this takes depends on your queue manager refresh settings, but
the default refresh value is 15 seconds.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.

934 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Deleting a broker” on page 930
Delete a broker using the command line on the system where the broker
component is installed.
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Modifying a broker” on page 631
Modify a broker by using the command line on the system where the broker
component is installed.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

Managing execution groups
Work with your existing execution groups to manage the message flows that you
have deployed to them by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer. You can use the command line, and the
Administration API (also known as the CMP API) to complete some of these
actions.

About this task
v “Creating an execution group” on page 936
v “Renaming an execution group using the WebSphere Message Broker Explorer”

on page 940
v “Starting an execution group using the WebSphere Message Broker Toolkit or

WebSphere Message Broker Explorer” on page 941
v “Stopping an execution group using the WebSphere Message Broker Toolkit or

WebSphere Message Broker Explorer” on page 944
v “Deleting an execution group” on page 946
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.

Chapter 8. Administering brokers and broker resources 935

“Managing brokers” on page 900
Work with your existing brokers to manage their connections and their active
status by using the WebSphere Message Broker Toolkit or WebSphere Message
Broker Explorer. You can use the Administration API (also known as the CMP API)
to complete some of these actions.
“Managing message flows” on page 950
Work with your existing messages that you have deployed to execution groups by
using the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer. You can use the Administration API (also known as the CMP API) to
complete some of these actions.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Creating an execution group
Create execution groups by using WebSphere Message Broker Toolkit, the
WebSphere Message Broker Explorer, or the command line.

Before you begin

Before you start:

Complete the following tasks:
v Create a broker
v Connect to the broker:

– “Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901

– “Connecting to a remote broker” on page 902
– “Connecting to a remote broker on z/OS in the WebSphere Message Broker

Explorer” on page 904

About this task

The mode that your broker is working in can affect the number of execution
groups that you can use; see “Restrictions that apply in each operation mode” on
page 3657.

Use one of the following methods to complete this task:
v The WebSphere Message Broker Toolkit or the WebSphere Message Broker

Explorer. See “Creating an execution group using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer” on page 937 for more
information.

v The mqsicreateexecutiongroup command. Details are provided in “Creating an
execution group using the mqsicreateexecutiongroup command” on page 939.

You can also use the CMP API to create execution groups on all platforms; see
“Developing applications that use the Administration API” on page 956.

For information about why you might want to create multiple execution groups,
see “Execution groups” on page 53.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to

936 WebSphere Message Broker Version 7.0.0.8

route, transform, and enrich in flight messages.
Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Managing brokers” on page 900
Work with your existing brokers to manage their connections and their active
status by using the WebSphere Message Broker Toolkit or WebSphere Message
Broker Explorer. You can use the Administration API (also known as the CMP API)
to complete some of these actions.
“Managing message flows” on page 950
Work with your existing messages that you have deployed to execution groups by
using the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer. You can use the Administration API (also known as the CMP API) to
complete some of these actions.
Related reference:
“mqsicreateexecutiongroup command” on page 3854
Use the mqsicreateexecutiongroup command to add a new execution group to a
broker.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Creating an execution group using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.

Before you begin

Before you start: Check that you have completed the prerequisite tasks, and see
what other options you can use to create execution groups, in “Creating an
execution group” on page 936.

About this task

You must create an execution group before you can deploy message flows and
related resources to a broker.

Creating an execution group using the WebSphere Message Broker Toolkit:
Before you begin

Before you start:

v Create a broker
v Optional: “Connecting to a remote broker” on page 902

About this task

To add an execution group to a broker:

Chapter 8. Administering brokers and broker resources 937

Procedure

1. In the Brokers view, right-click the broker to which you want to add an
execution group, and click New Execution Group.

2. In the New Execution Group dialog, enter the Execution Group name.
3. Click OK to add the execution group to the broker.

Results

The execution group is added to the appropriate broker, and can be viewed as a
child of the selected broker.

Creating an execution group using the WebSphere Message Broker Explorer:
Before you begin

Before you start:

v Create a broker
v Connect to a local broker or “Connecting to a remote broker” on page 902

About this task

To add an execution group to a broker:

Procedure

1. In the Navigator view, expand the Brokers folder.
2. Right-click the broker to which you want to add an execution group, and click

New > Execution Group.
3. In the New Execution Group dialog, enter the Execution Group name.
4. Click OK to add the execution group to the broker.

Results

The execution group is added to the appropriate broker, and can be viewed as a
child of the selected broker.

Note: If you do not immediately see the execution group that you added, you can
refresh the broker by right-clicking on it and selecting Refresh.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Renaming an execution group using the WebSphere Message Broker Explorer” on
page 940
You can rename an execution group by using the WebSphere Message Broker
Explorer.
“Importing a broker archive file to the WebSphere Message Broker Explorer” on
page 3242
Before you can deploy broker resources to your brokers by using the WebSphere
Message Broker Explorer, you must first import a broker archive file into a Broker

938 WebSphere Message Broker Version 7.0.0.8

Archive Folder.
“Deploying a broker archive file” on page 3235
After you have created and populated a broker archive (BAR) file, deploy the file
to an execution group on a broker, so that the file contents can be used in the
broker.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Connecting to a remote broker” on page 902
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.
“Deleting an execution group by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 947
You can delete an execution group by using the WebSphere Message Broker Toolkit
or WebSphere Message Broker Explorer.

Creating an execution group using the mqsicreateexecutiongroup
command
Use the mqsicreateexecutiongroup command to create execution groups on your
broker.

Before you begin

Before you start: Check that you have completed the prerequisite tasks, and see
what other options you can use to create execution groups, in “Creating an
execution group” on page 936.

You must create an execution group before you can deploy message flows and
related resources to a broker.

Procedure
1. If you are creating an execution group on Linux, UNIX, and Windows systems:

a. Open a command prompt that has the environment configured for your
current installation.

b. Enter the mqsicreateexecutiongroup command, specifying the parameters
for the execution group that you want to create.
v If the broker is local, specify the broker name. For example:

mqsicreateexecutiongroup MB7BROKER -e EGroup_2

v If the broker is remote, you can specify a configuration file. For example:
mqsicreateexecutiongroup -n MB7BROKER.broker -e EGroup_2

v If the broker is remote, you can alternatively specify one or more of the
connection parameters -i, -p, -q. For example:
mqsicreateexecutiongroup -q MB7QMGR -e EGroup_2

See the mqsicreateexecutiongroup command description for more details
about these options.

2. If you are creating an execution group on z/OS:
a. Configure the BIPCREG job to specify the properties for the execution group

that you want to create.
b. Run the BIPCREG job.

Chapter 8. Administering brokers and broker resources 939

Results

On completion of this task, the execution group has been created on the specified
broker.

What to do next

Next: You can deploy message flows to the execution group by using the
WebSphere Message Broker Toolkit or the WebSphere Message Broker Explorer.
Related concepts:
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
Related tasks:
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Renaming an execution group using the WebSphere Message Broker Explorer”
You can rename an execution group by using the WebSphere Message Broker
Explorer.
“Deleting an execution group by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 947
You can delete an execution group by using the WebSphere Message Broker Toolkit
or WebSphere Message Broker Explorer.
“Deleting an execution group by using the mqsideleteexecutiongroup command”
on page 949
Use the command line to delete an execution group from the broker.
Related reference:
“mqsicreateexecutiongroup command” on page 3854
Use the mqsicreateexecutiongroup command to add a new execution group to a
broker.
“mqsideleteexecutiongroup command” on page 3869
Use the mqsideleteexecutiongroup command to remove an execution group from a
broker.

Renaming an execution group using the WebSphere Message
Broker Explorer

You can rename an execution group by using the WebSphere Message Broker
Explorer.

Before you begin

Before you start:

v Create a broker
v Start the broker
v Connect to a local broker, connect to a remote broker, or connect to a remote

broker on z/OS
v Create an execution group

940 WebSphere Message Broker Version 7.0.0.8

About this task

To rename an execution group:

Procedure
1. Open the WebSphere Message Broker Explorer.
2. In the Navigator view, expand the Brokers folder.
3. Expand your broker.
4. Right-click the execution group that you want to rename, and click Rename.
5. Enter a name for the execution group, and click OK.

Results

You have renamed the selected execution group.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Starting a local broker using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer” on page 925
You can start your local brokers by using the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Starting an execution group using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer

You can start an execution group and all the deployed message flows in an
execution group by using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer.

About this task

If resources are deployed to your execution group, the started or stopped state of
the message flows is retained when you next start the execution group. You can
use the menu to start or stop all message flows after the execution group has been
started.

Chapter 8. Administering brokers and broker resources 941

If you prefer, you can start execution groups by using the mqsistartmsgflow
command.

Starting an execution group with the WebSphere Message
Broker Toolkit
About this task

To start an execution group by using the WebSphere Message Broker Toolkit:

Procedure
1. Open the WebSphere Message Broker Toolkit, and switch to the Broker

Application Development perspective.
2. In the Brokers view, expand your broker.
3. Right-click the execution group, and click Start.

Results

A message is sent to the broker to start the selected execution group. Right-click
the message flows that you want to start, and click Start to start the message flows
deployed to the execution group.

Starting an execution group with the WebSphere Message
Broker Explorer
About this task

To start an execution group by using the WebSphere Message Broker Explorer:

Procedure
1. Open the WebSphere Message Broker Explorer.
2. In the Navigator view, expand the Brokers folder.
3. Expand your broker.
4. Right-click the execution group, and click Start > Execution Group.

Results

A message is sent to the broker to start the selected execution group. Click Start >
All Flows to start all the message flows deployed to the execution group.

Starting an execution group with the mqsistartmsgflow command
About this task

To start an execution group by using the mqsistartmsgflow command:

Procedure
1. Open a command prompt that has the environment configured for your current

installation.
2. Enter the mqsistartmsgflow command, specifying the parameters for the

execution group that you want to start.
v If the broker is local, specify the broker name. For example:

mqsistartmsgflow MB7BROKER -e EGroup_2

v If the broker is remote, you can specify a configuration file. For example:
mqsistartmsgflow -n MB7BROKER.broker -e EGroup_2

942 WebSphere Message Broker Version 7.0.0.8

v If the broker is remote, you can alternatively specify one or more of the
connection parameters -i, -p, -q. For example:
mqsistartmsgflow -q MB7QMGR -e EGroup_2

What to do next

If you want to start all the execution groups on a broker, specify the -g flag instead
of -e.

See the mqsistartmsgflow command description for more details about these
options.

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Starting a local broker using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer” on page 925
You can start your local brokers by using the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Starting a message flow by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 951
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to start a message flow.
“Stopping a message flow using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 952
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to stop a message flow.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Related reference:
“mqsistartmsgflow command” on page 3969
Use the mqsistartmsgflow command to start execution groups and message flows.

Chapter 8. Administering brokers and broker resources 943

Stopping an execution group using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer

You can stop all the message flows in an execution group by using the WebSphere
Message Broker Toolkit or WebSphere Message Broker Explorer.

About this task

If resources are deployed to your execution group, the started or stopped state of
the message flows is remembered when you stop the execution group. You can use
the menu to start or stop all message flows before the execution group has been
stopped.

If you prefer, you can stop execution groups by using the mqsistopmsgflow
command.

The broker processes all inflight messages and associated transactions for each
message flow before stopping it. See “Message flow transactions” on page 1281 for
information on how outstanding units of work are handled in this situation.

Stopping an execution group with the WebSphere Message
Broker Toolkit
About this task

To stop an execution group by using the WebSphere Message Broker Toolkit:

Procedure
1. Open the WebSphere Message Broker Toolkit, and switch to the Broker

Application Development perspective.
2. In the Brokers view, expand your broker.
3. Right-click the execution group, and click Stop.

Results

A message is sent to the broker to stop the selected execution group.

Stopping an execution group with the WebSphere Message
Broker Explorer
About this task

To stop an execution group by using the WebSphere Message Broker Explorer:

Procedure
1. Open the WebSphere Message Broker Explorer.
2. In the Navigator view, expand the Brokers folder.
3. Expand your broker.
4. Right-click the execution group, and click Stop > Execution Group.

Results

A message is sent to the broker to stop the selected execution group.

944 WebSphere Message Broker Version 7.0.0.8

Stopping an execution group with the mqsistopmsgflow command
About this task

To start an execution group by using the mqsistopmsgflow command:

Procedure
1. Open a command prompt that has the environment configured for your current

installation.
2. Enter the mqsistopmsgflow command, specifying the parameters for the

execution group that you want to stop.
v If the broker is local, specify the broker name. For example:

mqsistopmsgflow MB7BROKER -e EGroup_2

v If the broker is remote, you can specify a configuration file. For example:
mqsistopmsgflow -n MB7BROKER.broker -e EGroup_2

v If the broker is remote, you can alternatively specify one or more of the
connection parameters -i, -p, -q. For example:
mqsistopmsgflow -q MB7QMGR -e EGroup_2

What to do next

If you want to stop all the execution groups on a broker, specify the -g flag instead
of -e.

See the mqsistopmsgflow command description for more details about these
options.

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Starting a local broker using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer” on page 925
You can start your local brokers by using the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Starting an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 941
You can start an execution group and all the deployed message flows in an
execution group by using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer.

Chapter 8. Administering brokers and broker resources 945

Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Related reference:
“mqsistopmsgflow command” on page 3975
Use the mqsistopmsgflow command to stop execution groups and message flows.

Deleting an execution group
Delete execution groups by using WebSphere Message Broker Toolkit, the
WebSphere Message Broker Explorer, or the command line.

Before you begin

Before you start:

Complete the following tasks:
v Create an execution group
v Check that the execution group is running; you cannot delete an execution

group that is stopped.

About this task

Use one of the following methods to complete this task:
v The WebSphere Message Broker Toolkit or the WebSphere Message Broker

Explorer. See “Deleting an execution group by using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer” on page 947 for more
information.

v The mqsideleteexecutiongroup command. Details are provided in “Deleting an
execution group by using the mqsideleteexecutiongroup command” on page
949.

You can also use the CMP API to delete execution groups on all platforms; see
“Developing applications that use the Administration API” on page 956.

For information about why you might want to create multiple execution groups,
see “Execution groups” on page 53.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.

946 WebSphere Message Broker Version 7.0.0.8

“Managing brokers” on page 900
Work with your existing brokers to manage their connections and their active
status by using the WebSphere Message Broker Toolkit or WebSphere Message
Broker Explorer. You can use the Administration API (also known as the CMP API)
to complete some of these actions.
“Managing message flows” on page 950
Work with your existing messages that you have deployed to execution groups by
using the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer. You can use the Administration API (also known as the CMP API) to
complete some of these actions.
Related reference:
“mqsideleteexecutiongroup command” on page 3869
Use the mqsideleteexecutiongroup command to remove an execution group from a
broker.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Deleting an execution group by using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer
You can delete an execution group by using the WebSphere Message Broker Toolkit
or WebSphere Message Broker Explorer.

Before you begin

Before you start: Check that you have completed the prerequisite tasks, and see
what other options you can use to delete execution groups, in “Deleting an
execution group” on page 946.

Deleting an execution group by using the WebSphere Message Broker Toolkit:
About this task

To delete an execution group by using the WebSphere Message Broker Toolkit

Procedure

1. Open the WebSphere Message Broker Toolkit, and switch to the Broker
Application Development perspective.

2. In the Brokers view, expand your broker.
3. Right-click the execution group that you want to delete, and click Delete >

Execution Group.

Results

Your execution group and all resources deployed to it are deleted. If you have
created any execution group profiles, or an execution group shared-classes
directory, for this execution group, delete them manually if they are no longer
required.

Deleting an execution group by using the WebSphere Message Broker Explorer:
About this task

To delete an execution group by using the WebSphere Message Broker Explorer:

Chapter 8. Administering brokers and broker resources 947

Procedure

1. Open the WebSphere Message Broker Explorer.
2. In the Navigator view, expand the Brokers folder.
3. Expand your broker.
4. Right-click the execution group, and click Delete > Execution Group.
5. If you have deployed resources, you must confirm that you want to remove all

deployed resources before the execution group is deleted. Click OK to remove
the deployed resources.

Results

Your execution group and all resources deployed to it are deleted. If you have
created any execution group profiles, or an execution group shared-classes
directory, for this execution group, delete them manually if they are no longer
required.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Starting a local broker using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer” on page 925
You can start your local brokers by using the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Deleting an execution group by using the mqsideleteexecutiongroup command”
on page 949
Use the command line to delete an execution group from the broker.
“Starting a message flow by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 951
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to start a message flow.
“Stopping a message flow using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 952
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to stop a message flow.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

948 WebSphere Message Broker Version 7.0.0.8

Deleting an execution group by using the
mqsideleteexecutiongroup command
Use the command line to delete an execution group from the broker.

Before you begin

Before you start: Check that you have completed the prerequisite tasks, and see
what other options you can use to delete execution groups, in “Deleting an
execution group” on page 946.

Procedure
1. If you are deleting an execution group on Linux, UNIX, and Windows systems:

a. Open a command prompt that has the environment configured for your
current installation.

b. Enter the mqsideleteexecutiongroup command, specifying the parameters
for the execution group that you want to delete.
v If the broker is local, specify the broker name; for example:

mqsideleteexecutiongroup MB7BROKER -e EGroup_2

v If the broker is remote, you can specify a configuration file; for example:
mqsideleteexecutiongroup -n MB7BROKER.broker -e EGroup_2

v If the broker is remote, you can alternatively specify one or more of the
connection parameters -i, -p, and -q; for example:
mqsideleteexecutiongroup -q MB7QMGR -e EGroup_2

See the mqsideleteexecutiongroup command description for more details
about these options.

c. If you have created execution group profiles and they are no longer
required, delete them manually.

d. If you have created an execution group shared-classes directory and it is
no longer required, delete it manually.

2. If you are deleting an execution group on z/OS:
a. Configure the BIPDLEG job to specify the properties for the execution group

that you want to delete.
b. Run the BIPDLEG job.
c. If you have created an execution group shared-classes directory and it is

no longer required, delete it manually.

Results

On completion of this task, the execution group has been deleted from the
specified broker. In addition:
v All message flows that were running on the execution group are stopped.
v Any execution group profile scripts that are no longer needed have been

removed.
v Any execution group shared-classes directory that is no longer needed has

been removed.
Related concepts:
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.

Chapter 8. Administering brokers and broker resources 949

Related tasks:
“Creating an execution group using the mqsicreateexecutiongroup command” on
page 939
Use the mqsicreateexecutiongroup command to create execution groups on your
broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Deleting an execution group by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 947
You can delete an execution group by using the WebSphere Message Broker Toolkit
or WebSphere Message Broker Explorer.
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
Related reference:
“mqsicreateexecutiongroup command” on page 3854
Use the mqsicreateexecutiongroup command to add a new execution group to a
broker.
“mqsideleteexecutiongroup command” on page 3869
Use the mqsideleteexecutiongroup command to remove an execution group from a
broker.

Managing message flows
Work with your existing messages that you have deployed to execution groups by
using the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer. You can use the Administration API (also known as the CMP API) to
complete some of these actions.

About this task
v “Starting a message flow by using the WebSphere Message Broker Toolkit or

WebSphere Message Broker Explorer” on page 951
v “Stopping a message flow using the WebSphere Message Broker Toolkit or

WebSphere Message Broker Explorer” on page 952
v “Deleting a message flow using the WebSphere Message Broker Toolkit or

WebSphere Message Broker Explorer” on page 953
v “Setting user-defined properties dynamically at run time using the WebSphere

Message Broker Explorer” on page 954
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.

950 WebSphere Message Broker Version 7.0.0.8

Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Managing brokers” on page 900
Work with your existing brokers to manage their connections and their active
status by using the WebSphere Message Broker Toolkit or WebSphere Message
Broker Explorer. You can use the Administration API (also known as the CMP API)
to complete some of these actions.
“Managing execution groups” on page 935
Work with your existing execution groups to manage the message flows that you
have deployed to them by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer. You can use the command line, and the
Administration API (also known as the CMP API) to complete some of these
actions.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Starting a message flow by using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer

Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to start a message flow.

About this task

You can start an individual message flow in the WebSphere Message Broker
Toolkit, or multiple message flows in the WebSphere Message Broker Explorer. If
you stop the execution group in which the message flow is running, the started or
stopped status of the message flow is retained.

Starting a message flow by using the WebSphere Message
Broker Toolkit
Procedure
1. In the Brokers view, expand the broker and execution group.
2. Right-click the message flow that you want to start, and click Start.

Results

A message is sent to the broker to start the message flow.

Starting a message flow by using the WebSphere Message
Broker Explorer
Procedure
1. In the Navigator view, expand the Brokers folder.
2. Expand the broker and execution group, and right-click the message flow or

message flows that you want to start, and click Start.

Results

A message is sent to the broker to start the message flows.

Chapter 8. Administering brokers and broker resources 951

Note: A message flow can also be started using the command line utility
mqsistartmsgflow. For more information see mqsistartmsgflow command.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Stopping a message flow using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer”
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to stop a message flow.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Stopping a message flow using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer

Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to stop a message flow.

About this task

You can stop an individual message flow in the WebSphere Message Broker
Toolkit, or multiple message flows in the WebSphere Message Broker Explorer. If
you stop the execution group in which the message flow is running, the started or
stopped status of the message flow is remembered.

You can also use the mqsistopmsgflow command to stop a message flow.

Stopping a message flow using the WebSphere Message Broker
Toolkit
Procedure
1. In the Brokers view, expand the broker and execution group.
2. Right-click the message flow that you want to stop, and click Stop.

Results

A message is sent to the broker to stop the selected message flow.

Stopping a message flow using the WebSphere Message Broker
Explorer
Procedure
1. In the Navigator view, expand the Brokers folder.
2. Expand the broker and execution group, and right-click the message flow or

message flows that you want to stop, and click Stop.

952 WebSphere Message Broker Version 7.0.0.8

Results

A message is sent to the broker to stop the selected message flows.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Starting a message flow by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 951
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to start a message flow.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Related reference:
“mqsistopmsgflow command” on page 3975
Use the mqsistopmsgflow command to stop execution groups and message flows.

Deleting a message flow using the WebSphere Message
Broker Toolkit or WebSphere Message Broker Explorer

Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to remove message flows from an execution group.

About this task

You can delete an individual message flow in the WebSphere Message Broker
Toolkit, or multiple message flows in the WebSphere Message Broker Explorer.

Deleting a message flow using the WebSphere Message Broker
Toolkit
Procedure
1. In the Brokers view, expand the broker and execution group.
2. Right-click the message flow that you want to delete, and click Delete.

Results

A message is sent to the broker to delete the selected message flow.

Deleting a message flow using the WebSphere Message Broker
Explorer
Procedure
1. In the Navigator view, expand the Brokers folder.
2. Expand the broker and execution group, and right-click the message flow or

message flows that you want to delete, and click Delete.

Chapter 8. Administering brokers and broker resources 953

Results

A message is sent to the broker to delete the selected message flows.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Starting a local broker using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer” on page 925
You can start your local brokers by using the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Starting a message flow by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 951
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to start a message flow.
“Stopping a message flow using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 952
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to stop a message flow.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Setting user-defined properties dynamically at run time using
the WebSphere Message Broker Explorer

Use the WebSphere Message Broker Explorer to view and set user-defined
properties on a message flow dynamically at run time.

Before you begin

For user-defined properties on a message flow to be discoverable, the message
flow must comply with the following conditions:
v The message flow must contain at least one of the following nodes:

– JavaCompute
– Compute
– Database
– Filter
– PHPCompute

v The message flow must define the relevant user-defined property and provide
an override value.

954 WebSphere Message Broker Version 7.0.0.8

About this task

Tip: Use meaningful names and values for the properties that you define, so that
you can understand their purpose and intent quickly. For example, a user-defined
property named property01, with an initial value of valueA is not as useful as a
property named RouteToAorB with an initial value of RouteA.

Use the following instructions to view and modify user-defined properties on your
message flows using the WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view, expand the Brokers folder, and navigate to the message

flow on which you want view the user-defined properties.
2. Right-click the message flow, and click Properties.
3. Click User Defined Properties to display a list of the user-defined properties

and their value defined on the message flow.
4. Optional: if you want to modify the user-defined properties, change the value

in the appropriate rows in the Value column, and click Apply. A message is
sent to the broker to change the value of the user-defined property.

5. Click OK to close the Properties window.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
Related tasks:
“Configuring a message flow at deployment time with user-defined properties” on
page 2626
Use user-defined properties (UDPs) to configure message flows at deployment and
run time, without modifying program code. You can give a UDP an initial value
when you declare it in your program, or when you use the Message Flow editor to
create or modify a message flow.
“Accessing message flow user-defined properties from a JavaCompute node” on
page 2659
Customize a JavaCompute node to access properties that you have associated with
the message flow in which the node is included.
Related reference:
“ESQL variables” on page 5048
ESQL variables can be described as external variables, normal variables, or shared
variables; their use is defined in the DECLARE statement.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you

Chapter 8. Administering brokers and broker resources 955

select the Manage and Configure tab for the broker archive file.

Developing applications that use the Administration API
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.

Before you begin

Before you start:

Read an overview of the “The Administration API for WebSphere Message Broker”
on page 54, and how you can use it to manage the resources associated with your
brokers.

Samples are provided to demonstrate typical CMP scenarios. Run and explore the
samples to learn about what you can do with the CMP; see “The Administration
API samples” on page 958.

About this task

To write administrative applications that run tasks in your brokers, see the
following information:
v Configuring the environment
v Connecting to a broker
v Navigating brokers and broker resources
v Deploying resources
v Setting message flow user-defined properties at run time
v Working with UserDefined configurable service properties in JavaCompute

nodes
v Managing brokers
v Managing brokers from JavaCompute nodes
v Working with resource manager statistics
v Submitting batch requests

Results

When you have created your applications, test their operation in your test
environment. Check the results of the operations that the programs have
performed by using the Deployment Log view.

What to do next

When you have written and tested your applications, distribute them to the
computers from which you want your administrators to perform the tasks that you
have developed.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.

956 WebSphere Message Broker Version 7.0.0.8

“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related information:
Administration API for WebSphere Message Broker (CMP API)

The Administration API for WebSphere Message Broker
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.

The Administration API for WebSphere Message Broker is also known as
the Configuration Manager Proxy, or CMP API

The Configuration Manager has been removed from Version 7, and the full
name of the API has changed. However, the terms CMP application and
CMP API have been retained, and are used in this information center to
refer to the Administration API, for continuity and consistency with the
JAR file ConfigManagerProxy.jar that supplies all the classes.

The Administration API for WebSphere Message Broker (CMP API) consists solely
of a Java implementation, and is referred to as the Message Broker Java API. Your
applications have complete access to the broker functions and resources through
the set of Java classes that constitute the CMP. Use the CMP API to interact with
the broker to perform the following tasks:
v Deploy BAR files
v Change the broker configuration properties
v Create, modify, and delete execution groups
v Inquire and set the status of the broker and its associated resources, and to be

informed if status changes
– Execution groups
– Deployed message flows
– Deployed files used by the message flows (for example, JAR files)

v View the Administration log
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.

Chapter 8. Administering brokers and broker resources 957

“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“The Administration API samples”
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.
Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
Related information:
Administration API for WebSphere Message Broker (CMP API)

The Administration API samples
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.

Deploy BAR

The Deploy BAR sample deploys a BAR file to an execution group, and displays
the outcome. Read about this sample in “Running the CMP Deploy BAR sample”
on page 959.

Broker management

The broker management sample uses the CMP API to display to the screen the
complete run state of the broker. “Running the CMP broker management sample”
on page 960 describes this sample in more detail.

The CMP API Exerciser

The CMP API Exerciser is a graphical interface to the CMP that you can use to
view and manipulate brokers. Use the CMP API Exerciser sample to view and
manage a broker, or record and play back configuration scripts. You can also
customize the CMP API Exerciser to tailor the tasks to suit your requirements. See
“Running the CMP API Exerciser sample” on page 962 for more information.

Modify CMP API samples

You can modify the CMP API samples, and change various parameters that affect
how the samples run. Read “Modifying the CMP samples” on page 968 and follow
the guidance given about possible changes.
Related concepts:

958 WebSphere Message Broker Version 7.0.0.8

“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Running the CMP Deploy BAR sample”
Run the CMP Deploy BAR sample to deploy a broker archive file to a broker.
“Running the CMP broker management sample” on page 960
Run the broker management sample to display the complete run state of a broker.
“Running the CMP API Exerciser sample” on page 962
Run the CMP API Exerciser sample to view and manage a broker, customize the
CMP API Exerciser, or record and play back configuration scripts.
“Modifying the CMP samples” on page 968
Modify the CMP samples to change the parameters that they use to complete their
tasks.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Running the CMP Deploy BAR sample
Run the CMP Deploy BAR sample to deploy a broker archive file to a broker.

Before you begin

Before you start:

The BAR file and execution group name, and the connection details that define the
target broker, are hard coded into the application. You can run this sample
unchanged, or you can modify the values and parameters that it uses to apply
them to your own configuration.

If you modify the Deploy BAR sample, you must update and recompile the source
file before you run it. The source file for this sample is located in the following
directory:
install_dir/sample/ConfigManagerProxy/cmp/DeployBar.java

About this task

Use the Deploy BAR sample to deploy a BAR file to an execution group, and
display the outcome.

Procedure
1. Run the Deploy BAR sample by entering the appropriate command for your

platform:

v Windows On Windows, open a Command Console and run the following
command:
install_dir\sample\ConfigManagerProxy\StartDeployBAR.bat

v Linux UNIX z/OS On other platforms:
a. Start a broker command environment by running mqsiprofile, or follow

the guidance provided in the StartDeployBar shell script to configure the
correct CLASSPATH for your environment.

b. Run the shell script:
install_dir\sample\ConfigManagerProxy\StartDeployBAR

Chapter 8. Administering brokers and broker resources 959

The default connection parameters used by the sample are shown in the
following table.

Connection parameter Description

"localhost" Host name of the computer where the broker is running.

"MB7QMGR" Name of the broker queue manager.

2414 Port on which the broker queue manager is listening

"default" Name of the execution group.

"mybar.bar" Fully qualified name of the BAR file to deploy.

The CMP connects to the broker that is running on the local computer (defined
by localhost). The queue manager MB7QMGR must be listening on port 2414.
Next, the CMP deploys the file mybar.bar to the predefined execution group
default.

2. Check the results of the sample by viewing the broker in the WebSphere
Message Broker Toolkit, or by using the CMP API Exerciser.

What to do next

Next: Run another sample, or work with the CMP API Exerciser.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Running the CMP broker management sample”
Run the broker management sample to display the complete run state of a broker.
“Running the CMP API Exerciser sample” on page 962
Run the CMP API Exerciser sample to view and manage a broker, customize the
CMP API Exerciser, or record and play back configuration scripts.
“Modifying the CMP samples” on page 968
Modify the CMP samples to change the parameters that they use to complete their
tasks.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Running the CMP broker management sample
Run the broker management sample to display the complete run state of a broker.

Before you begin

Before you start:

960 WebSphere Message Broker Version 7.0.0.8

You can run this sample unchanged, or you can modify the values and parameters
that it uses to apply them to your own configuration.

If you modify this management sample, you must update and recompile the
source file before you run it. The source file for this sample is located in the
following directory:

install_dir/sample/ConfigManagerProxy/cmp/BrokerInfo.java

About this task

Use the broker management sample to display the complete run state of the target
broker.

Procedure
v Run the broker management sample by entering the appropriate command for

your platform. Replace connection_file with the fully qualified file path to the
broker file (with extension .broker).

– Windows

On Windows, use the Command Console to run the following

command:
install_dir\sample\ConfigManagerProxy\StartBrokerInfo.bat connection_file

– Linux

UNIX

z/OS

On other platforms:

1. Start a broker command environment by running mqsiprofile, or follow
the guidance provided in the StartBrokerInfo shell script to configure the
correct CLASSPATH for your environment.

2. Run the shell script:
install_dir\sample\ConfigManagerProxy\StartBrokerInfo connection_file

The complete run state of the broker is displayed. You can see responses like the
following output:
(28/01/09 11:47:43) Connecting. Please wait...
(28/01/09 11:47:46) Successfully connected to the broker’s queue manager.
(28/01/09 11:47:49) Successfully connected to the broker.
(28/01/09 11:47:49) Broker ’MB7BROKER’ is running.
(28/01/09 11:47:50) Execution group ’default’ on ’MB7BROKER’ is running.
(28/01/09 11:47:51) Message flow ’simpleflow’ on ’default’ on ’MB7BROKER’ is running.
(28/01/09 11:47:51) Disconnected.

v If you prefer, you can run this sample in interactive mode, which causes the
sample to listen for changes to the broker.
1. To run the sample in interactive mode, specify the -i option on the

command.
For example:
\sample\ConfigManagerProxy\StartBrokerInfo.bat
c:\myBroker.broker -i

In interactive mode, you see the output shown earlier, and the additional
response:
(13/08/08 15:53:46) Listening for changes to the broker...

2. To stop the sample when it is running in interactive mode, force it to end by
using CTRL+C.

Chapter 8. Administering brokers and broker resources 961

What to do next

Next: Run another sample, or work with the CMP API Exerciser.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.
Related tasks:
“Running the CMP Deploy BAR sample” on page 959
Run the CMP Deploy BAR sample to deploy a broker archive file to a broker.
“Running the CMP API Exerciser sample”
Run the CMP API Exerciser sample to view and manage a broker, customize the
CMP API Exerciser, or record and play back configuration scripts.
“Modifying the CMP samples” on page 968
Modify the CMP samples to change the parameters that they use to complete their
tasks.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Running the CMP API Exerciser sample
Run the CMP API Exerciser sample to view and manage a broker, customize the
CMP API Exerciser, or record and play back configuration scripts.

Before you begin

Before you start:

You can run this sample unchanged, or you can modify the values and parameters
that it uses to apply them to your own configuration.

If you modify the CMP API Exerciser sample, you must update and recompile the
source file before you run it. The source file for this sample is located in the
following directory:
install_dir/sample/ConfigManagerProxy/cmp/exerciser

About this task

Use the CMP API Exerciser to complete the following tasks:
v “Viewing and managing a broker in the CMP API Exerciser” on page 963
v “Customizing the CMP API Exerciser” on page 965
v “Recording and playing back configuration scripts using the CMP API Exerciser”

on page 967
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a

962 WebSphere Message Broker Version 7.0.0.8

remote interface.
“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.
Related tasks:
“Modifying the CMP samples” on page 968
Modify the CMP samples to change the parameters that they use to complete their
tasks.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Viewing and managing a broker in the CMP API Exerciser:

Use the CMP API Exerciser sample to view and manage a broker.

About this task

To view and manage a broker by using the CMP API Exerciser, complete the
following steps:

Procedure

1. Start the CMP API Exerciser:

v Windows On Windows, click Start > All Programs > IBM WebSphere
Message Broker 7.0 > Java Programming APIs > CMP API Exerciser.

v Linux UNIX z/OS On other platforms:
a. Start a broker command environment by running mqsiprofile, or follow

the guidance provided in the StartConfigManagerProxyExerciser shell
script to configure the correct CLASSPATH for your environment.

b. Ensure that your user ID has writer permission to the current directory.
The CMP API Exerciser stores its configuration settings in a file in this
directory.

c. Run the shell script:
install_dir\sample\ConfigManagerProxy\StartConfigManagerProxyExerciser

The CMP API Exerciser window opens.
2. Connect to a running broker by clicking either File > Connect to Local Broker

or File > Connect to Remote Broker.
The Connect to a Broker dialog opens.

3. Enter the connection parameters to the broker, then click Submit.
Broker information is retrieved and displayed in the CMP API Exerciser
window. You have now connected to the broker.
The upper left of the screen contains a hierarchical representation of the broker
to which you are connected. Selecting objects in the tree causes the table on the
right to change, reflecting the attributes of the object that you select. The
Method column lists CMP API methods that you can call in your own Java
applications, and the Result column indicates the data that is returned by
calling the CMP API method on the selected object.

4. Run a CMP API method against a broker object. CMP API methods are used to
manage objects in a broker.

Chapter 8. Administering brokers and broker resources 963

a. In the navigation tree, right-click a broker.
A pop-up menu opens to show all the available CMP API methods.

b. Select Create execution group. The Create execution group dialog opens.
c. Enter the name for a new execution group and click Submit. The output

from the method is displayed in the log window at the bottom of the
screen. For example:

(31/03/09 16:53:50) ----> cmp.exerciser.ClassTesterForBrokerProxy.testCreateEG
(MB7BROKER, "eg1")
(31/03/09 16:53:50) The request was successfully sent to the broker.
(31/03/09 16:53:50) <---- cmp.exerciser.ClassTesterForBrokerProxy.testCreateEG

You also see messages that are returned from the broker when the method
is called. For example:

(31/03/09 16:53:50) ----> cmp.exerciser.ExerciserAdministeredObjectListener.processActionResponse(...)
(31/03/09 16:53:50) affectedObject = MB7BROKER
(31/03/09 16:53:50) completionCode = success
(31/03/09 16:53:50) (Reference property) commsmessage.lastinbatch=true
(31/03/09 16:53:50) (Reference property) uuid=595e1d10-3875-11d4-a485-000629be5bf8
(31/03/09 16:53:50) (Reference property) child.uuid=1d8b3c5d-2001-0000-0080-c2000502e620
(31/03/09 16:53:50) (Reference property) configmanagerproxy.osname=Windows XP
(31/03/09 16:53:50) (Reference property) child.name=eg1
(31/03/09 16:53:50) (Reference property) userid=Matt
(31/03/09 16:53:50) (Reference property) configmanagerproxy.hostname=lucas
(31/03/09 16:53:50) (Reference property) commsmessage.configobjecttype=Broker
(31/03/09 16:53:50) (Reference property) type=Broker
(31/03/09 16:53:50) (Reference property) child.type=ExecutionGroup
(31/03/09 16:53:50) (Reference property) commsmessage.operationtype=createchild
(31/03/09 16:53:50) (Reference property) configmanagerproxy.noeventlog=false
(31/03/09 16:53:50) (Reference property) eg.arch=0
(31/03/09 16:53:50) <---- cmp.exerciser.ExerciserAdministeredObjectListener.processActionResponse()

In this example, completionCode = success means that the request to create
the execution group is successful. The lines marked (Reference property)
describe the request to which the response refers.

Results

During these steps you connected to a broker, viewed the broker information, and
performed a management task by using the CMP API Exerciser.

What to do next

Next: Continue to work with the CMP API Exerciser, or run another sample.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.
Related tasks:
“Running the CMP API Exerciser sample” on page 962
Run the CMP API Exerciser sample to view and manage a broker, customize the
CMP API Exerciser, or record and play back configuration scripts.

964 WebSphere Message Broker Version 7.0.0.8

“Customizing the CMP API Exerciser”
Enable or disable a selection of options to customize the CMP API Exerciser to
meet your requirements.
“Recording and playing back configuration scripts using the CMP API Exerciser”
on page 967
Use the CMP API Exerciser to record and play back configuration scripts.
“Modifying the CMP samples” on page 968
Modify the CMP samples to change the parameters that they use to complete their
tasks.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Customizing the CMP API Exerciser:

Enable or disable a selection of options to customize the CMP API Exerciser to
meet your requirements.

About this task

To customize the CMP API Exerciser, complete the following steps:

Procedure

1. Start the CMP API Exerciser.

v Windows On Windows, click Start > All Programs > IBM WebSphere
Message Broker 7.0 > Java Programming APIs > CMP API Exerciser.

v Linux UNIX z/OS On other operating systems, run the following
shell script:
install_dir\sample\ConfigManagerProxy\StartConfigManagerProxyExerciser

The CMP API Exerciser window opens.
2. Customize the CMP API Exerciser by selecting one or more of the following

options from the File menu.
a. Optional: Click File > Discover Subcomponent Tree Recursively to enable

or disable this option.
v If you enable this option, the CMP API Exerciser connects to a broker and

discovers all defined broker objects.
v If you disable this option, only the top-level objects are discovered; you

must select the context-sensitive option, Discover subcomponents, to
iterate down the object hierarchy.

b. Optional: Click File > Use Incremental Deployment to enable or disable
this option.
v If you enable this option, all deploy operations cause a delta

(incremental) deploy where relevant.
v If you disable this option, all deploy operations cause a complete deploy.

c. Optional: Click File > Show Advanced Properties to enable or disable this
option.
v If you enable this option, output from all available methods is displayed

in the right pane of the CMP API Exerciser.
v If you disable this option, output from a subset of the available methods

is displayed in the right pane of the CMP API Exerciser.
d. Optional: Click File > Connect Using .broker Properties File to enable or

disable this option.

Chapter 8. Administering brokers and broker resources 965

v If you enable this option, a file dialog opens when you connect to a
broker. Use the file dialog to navigate to a file with a .broker extension,
which provides the connection parameters to the queue manager that
hosts the broker.

v If you disable this option, you are prompted to enter the queue manager
connection parameters, security exit parameters, host name, and port.

e. Optional: Click File > Enable MQ Java Client Service Trace to enable or
disable this option.
v If you enable this option, a level 5 service trace of the WebSphere MQ

Classes for Java runs. A trace dialog opens; specify a file name to which
trace records are written.

v If you disable this option, level 5 service tracing of the WebSphere MQ
Classes for Java is not done.

f. Optional: Click File > Enable Broker Administration Service Trace to
enable or disable this option.
v If you enable this option, a service trace of the CMP API run. A trace

dialog opens; specify a file name to which trace records are written.
v If you disable this option, service tracing of the CMP API is not done.

g. Optional: Click File > Set Timeout Characteristics.
Specify the time, in seconds, that the CMP API Exerciser waits for responses
from the broker. The default wait interval is 6 seconds.

What to do next

Next: Continue to work with the CMP API Exerciser, or run another sample.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.
Related tasks:
“Modifying the CMP samples” on page 968
Modify the CMP samples to change the parameters that they use to complete their
tasks.
“Running the CMP API Exerciser sample” on page 962
Run the CMP API Exerciser sample to view and manage a broker, customize the
CMP API Exerciser, or record and play back configuration scripts.
“Viewing and managing a broker in the CMP API Exerciser” on page 963
Use the CMP API Exerciser sample to view and manage a broker.
“Recording and playing back configuration scripts using the CMP API Exerciser”
on page 967
Use the CMP API Exerciser to record and play back configuration scripts.
Related information:
Administration API for WebSphere Message Broker (CMP API)

966 WebSphere Message Broker Version 7.0.0.8

Recording and playing back configuration scripts using the CMP API Exerciser:

Use the CMP API Exerciser to record and play back configuration scripts.

About this task

You can run a script file from the command line, a shell window, or from a batch
file. If you run the script by using one of these methods, ensure the first action
completed by the script is to connect to a broker.

Procedure

1. Start the CMP API Exerciser.

v Windows On Windows, click Start > All Programs > IBM WebSphere
Message Broker 7.0 > Java Programming APIs > CMP API Exerciser.

v Linux UNIX z/OS On other operating systems, run the following
shell script:
install_dir\sample\ConfigManagerProxy\StartConfigManagerProxyExerciser

The CMP API Exerciser window opens.
2. Start recording a script by clicking Scripting > Record New Script. The Save

dialog opens. Type a name for the script file, select an appropriate file location,
and click Save.
a. Complete one or more actions on a broker by using the CMP API Exerciser.

If you start recording before you run actions against the broker, the first
action taken is to connect to the broker; however, you can start recording a
script at any point during the management of a broker.

b. Optional: Insert a pause by clicking Scripting > Insert a pause.
The CMP API Exerciser pauses so that responses can be returned before the
next action is issued. Use this option to avoid naming conflicts if you are
deleting and recreating objects of the same name.
The Insert a pause dialog opens; specify the duration of the pause in
seconds.

c. Stop recording the script by clicking Scripting > Stop Recording.
Information about the actions taken are saved to the script file.

3. To replay the script file:
a. Click Scripting > Play Back Recorded Script.

The Open dialog opens.
b. Select the appropriate script file and click Open. The script file is replayed.

What to do next

Next: Continue to work with the CMP API Exerciser, or run another sample.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various

Chapter 8. Administering brokers and broker resources 967

tasks.
Related tasks:
“Running the CMP API Exerciser sample” on page 962
Run the CMP API Exerciser sample to view and manage a broker, customize the
CMP API Exerciser, or record and play back configuration scripts.
“Viewing and managing a broker in the CMP API Exerciser” on page 963
Use the CMP API Exerciser sample to view and manage a broker.
“Customizing the CMP API Exerciser” on page 965
Enable or disable a selection of options to customize the CMP API Exerciser to
meet your requirements.
“Modifying the CMP samples”
Modify the CMP samples to change the parameters that they use to complete their
tasks.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Modifying the CMP samples
Modify the CMP samples to change the parameters that they use to complete their
tasks.

About this task

If you change a sample, you must recompile the source code to implement those
changes. For example, you might choose to change the default connection
parameters. If you modify these and other values, you change the behavior of the
sample.

To modify a sample, perform the following steps:

Procedure
1. Set up the environment by following the instructions provided in “Configuring

an environment for developing and running CMP applications” on page 969.
2. Locate the source file for the sample that you want to change.

The source files for the samples are located in the following directories:

Deploy BAR sample
install_dir/sample/ConfigManagerProxy/cmp/DeployBar.java

Broker management sample
install_dir/sample/ConfigManagerProxy/cmp/BrokerInfo.java

CMP API Exerciser sample
install_dir/sample/ConfigManagerProxy/cmp/exerciser.java

3. Open the source file, and modify the appropriate parameters.
4. Save and recompile the source file.

What to do next

Next: Run the modified sample by following the instructions in the appropriate
link:
v “Running the CMP Deploy BAR sample” on page 959
v “Running the CMP broker management sample” on page 960
v “Running the CMP API Exerciser sample” on page 962
Related concepts:

968 WebSphere Message Broker Version 7.0.0.8

“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“The Administration API samples” on page 958
Explore the samples to learn the basic features that are provided by the
Administration API (also known as the CMP API). Run the samples to deploy a
BAR file or manage a broker, or use the CMP API Exerciser to implement various
tasks.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Configuring an environment for developing and running CMP
applications

Prepare the environment in which you want to run your CMP applications.

Before you begin

Before you start:

To develop and run Java applications that use the CMP API, you must install the
following prerequisite software in your local computer environment:
v The WebSphere MQ Classes for Java.

These classes provide the internal wire protocol that your applications use to
communicate with the broker.
You can install the classes from the media supplied with WebSphere Message
Broker.

v An IBM Java Development Kit (JDK) at a supported Java level. Java support is
defined in “Additional software requirements” on page 3598.
WebSphere Message Broker does not supply a JDK; you must acquire and install
a suitable product yourself.
You must use an IBM JDK to develop CMP applications and an IBM Java
Runtime Environment (JRE) to run these applications.

About this task

To set up your computer in preparation for building and running CMP
applications, you must configure your class path environment variable so that it
includes the WebSphere MQ Classes for Java, and the JAR file that defines the
CMP.

Follow the instructions provided for the appropriate environment:
v “Configuring the Windows command-line environment to run CMP

applications” on page 970
v “Configuring Linux, UNIX, and z/OS command-line environments to run CMP

applications” on page 971
v “Configuring the Eclipse environment to run CMP applications” on page 972

You can also run CMP applications, and therefore control one or more broker
components, from computers on which you have not installed WebSphere Message
Broker. For more information, see “Configuring environments without the broker
component installed” on page 973.

Chapter 8. Administering brokers and broker resources 969

The JAR file ConfigManagerProxy.jar contains the English message catalog for
displaying broker (BIP) messages from the Administration log of the broker. If you
want a CMP application to display broker messages in a language other than
English, you must also add the directory that contains the localized message
catalogs to your class path; for example, C:\Program Files\IBM\MQSI\v.r\messages
on Windows operating systems. The default directory includes the version and
release of the product, in the format v.r (version.release).

You can also use the CMP to display or log messages from a catalog that you
create yourself.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring the Windows command-line environment to run CMP applications”
Use system facilities to configure environment variables on your Windows
computers to run your CMP applications.
“Configuring Linux, UNIX, and z/OS command-line environments to run CMP
applications” on page 971
Use system facilities to configure environment variables on your Linux, UNIX, and
z/OS computers to run your CMP applications.
“Configuring the Eclipse environment to run CMP applications” on page 972
Use Eclipse facilities to configure the environment to run your CMP applications.
“Configuring environments without the broker component installed” on page 973
Install and run CMP applications and other utilities on computers, when you are
using a local ID only, on which you have not installed the broker component.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
Related reference:
“Additional software requirements” on page 3598
WebSphere Message Broker requires additional software products to run
successfully.
Related information:
Administration API for WebSphere Message Broker (CMP API)

WebSphere MQ Version 7 Information Center online

Configuring the Windows command-line environment to run CMP
applications
Use system facilities to configure environment variables on your Windows
computers to run your CMP applications.

About this task

Update the CLASSPATH environment variable:

Procedure
1. Add the CMP JAR file to your CLASSPATH. For example:

set CLASSPATH = %CLASSPATH%;%install_dir%\classes\ConfigManagerProxy.jar

970 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

2. Add the WebSphere MQ Classes for Java JAR file com.ibm.mq.jar to your
CLASSPATH in the same way.
On 32-bit operating system editions, the file is typically stored in the directory
C:\Program Files\IBM\WebSphere MQ\java\lib. On 64-bit operating system
editions, the file is typically stored in the directory C:\Program Files
(x86)\IBM\WebSphere MQ\java\lib.
For more information about the WebSphere MQ Classes for Java, see the Using
Java section in the WebSphere MQ information center.

3. Add your Java development directory to the CLASSPATH in the same way.

What to do next

Next: Use the tools that are provided by your JDK to build and run your CMP
applications.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Configuring Linux, UNIX, and z/OS command-line environments to run CMP
applications”
Use system facilities to configure environment variables on your Linux, UNIX, and
z/OS computers to run your CMP applications.
“Configuring the Eclipse environment to run CMP applications” on page 972
Use Eclipse facilities to configure the environment to run your CMP applications.
Related information:
Administration API for WebSphere Message Broker (CMP API)

WebSphere MQ Version 7 Information Center online

Configuring Linux, UNIX, and z/OS command-line environments
to run CMP applications
Use system facilities to configure environment variables on your Linux, UNIX, and
z/OS computers to run your CMP applications.

About this task

Update the CLASSPATH environment variable:

Procedure
1. Add the CMP JAR to your CLASSPATH. For example:

export CLASSPATH = $CLASSPATH%;$install_dir/sample/ConfigManagerProxy/ConfigManagerProxy.jar

2. Add the WebSphere MQ Classes for Java JAR file com.ibm.mq.jar to your
CLASSPATH in the same way.
On Linux and UNIX systems, the file is typically installed in the directory
MQ_INSTALLATION_PATH/java/lib.
For more information about the WebSphere MQ Classes for Java, see the Using
Java section in the WebSphere MQ information center.

Chapter 8. Administering brokers and broker resources 971

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

3. Add your Java development directory to the CLASSPATH in the same way.

What to do next

Next: Use the tools that are provided by your JDK to build and run your CMP
applications.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Configuring the Windows command-line environment to run CMP applications”
on page 970
Use system facilities to configure environment variables on your Windows
computers to run your CMP applications.
“Configuring the Eclipse environment to run CMP applications”
Use Eclipse facilities to configure the environment to run your CMP applications.
Related information:
Administration API for WebSphere Message Broker (CMP API)

WebSphere MQ Version 7 Information Center online

Configuring the Eclipse environment to run CMP applications
Use Eclipse facilities to configure the environment to run your CMP applications.

About this task

Update the CLASSPATH environment variable:

Procedure
1. In your Eclipse environment, select File > New > Project. The New Project

wizard opens.
2. Select Java Project from the options displayed. Click Next. The New Java

Project window opens.
3. Enter a name for your new project. Click Next.
4. Select the Libraries tab, and click Add External Jars.
5. To set up the build environment, navigate to the install_dir/classes

subdirectory. For example, for Version 7.0 on Windows 32-bit operating system
editions, navigate to the directory C:\Program Files\IBM\MQSI\7.0\classes.
Select the file ConfigManagerProxy.jar, and click Open. The file is added to the
list in the window for the Libraries tab.

6. When you have added the file ConfigManagerProxy.jar to the build path, set
up the runtime environment. Click Add External Jars again, and navigate to
the WebSphere_MQ_installation_directory/java/lib subdirectory. For example,
on Linux on x86, navigate to the directory /opt/mqm/java/lib. Select the file
com.ibm.mq.jar, and click Open. This file is also added to the list.
For more information about the WebSphere MQ Classes for Java, see the Using
Java section in the WebSphere MQ information center.

972 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

7. Click Finish to close the New Project wizard.

What to do next

Next: Use the Eclipse development tools to build and run your CMP applications.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Configuring the Windows command-line environment to run CMP applications”
on page 970
Use system facilities to configure environment variables on your Windows
computers to run your CMP applications.
“Configuring Linux, UNIX, and z/OS command-line environments to run CMP
applications” on page 971
Use system facilities to configure environment variables on your Linux, UNIX, and
z/OS computers to run your CMP applications.
Related information:
Administration API for WebSphere Message Broker (CMP API)

WebSphere MQ Version 7 Information Center online

Configuring environments without the broker component
installed
Install and run CMP applications and other utilities on computers, when you are
using a local ID only, on which you have not installed the broker component.

About this task

You can run Java applications that use the CMP API even where you have not
installed the broker component. These CMP applications include your own
applications, and the following command utilities:
v mqsicreateexecutiongroup

v mqsideleteexecutiongroup

v mqsimode

v mqsireloadsecurity; the CMP application version of mqsireloadsecurity is
called mqsireloadsecurityscript.

v mqsistartmsgflow

v mqsistopmsgflow

To install CMP applications in an environment that does not have the broker
component installed, complete the following steps:

Procedure
1. Ensure that the target computer has a compatible Java Runtime Environment

(JRE). Because you are not installing the broker component, which includes a
JRE, you must use an alternative option.

Chapter 8. Administering brokers and broker resources 973

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Note, that you must also set MQSI_JREPATH to the installation path of your
JRE.
Java support is defined in “Additional software requirements” on page 3598.

2. Copy the following set of files from a computer that has the broker component
installed to the target computer:
a. ConfigManagerProxy.jar from the classes directory.
b. The WebSphere MQ Classes for Java.
v On Windows, these classes are located in the file com.ibm.mq.jar.
v On other platforms, these classes are located in the component's

installation image.
c. Your CMP application and all configuration files, for example .broker files.
d. If you want to run the broker commands on the target computer, complete

the following steps:
1) Copy brokerutil.jar from the classes directory.
2) Copy the required utility bat files, or shell scripts, from the bin

directory. Shell scripts have a .bat extension on Windows or no
extension on UNIX platforms:
v mqsicreateexecutiongroup or mqsicreateexecutiongroup.bat
v mqsideleteexecutiongroup or mqsideleteexecutiongroup.bat
v mqsimode or mqsimode.bat
v mqsireloadsecurity or mqsireloadsecurityscript.bat
v mqsistartmsgflow or mqsistartmsgflow.bat
v mqsistopmsgflow or mqsistopmsgflow.bat

e. If you want to display broker (BIP) messages in English environments other
than US English, copy all BIPmsgs*.properties files from the messages
directory.

3. On the target computer, use system facilities to update the CLASSPATH
environment variable to include the following files:
v The JAR file that contains the definitions of the CMP classes,

ConfigManagerProxy.jar.
v Your applications that import the CMP classes.
v The WebSphere MQ Classes for Java, com.ibm.mq.jar, and any additional

JAR files required by this package.
v Any other required JAR files and directories. For example, if you require any

of the available command utilities on the target computer, include
brokerutil.jar; if you require the broker (BIP) messages to be displayed in
locales other than US English, include a directory that contains
BIPmsgs*.properties.

4. Ensure that the user ID that the target computer uses has the following
authorities:
v Authority to connect to the queue manager that the broker uses.
v Authority to manipulate broker objects.

What to do next

Next: You can run your CMP applications, and the specified command utilities, on
the target computer.
Related concepts:

974 WebSphere Message Broker Version 7.0.0.8

“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Managing brokers in a CMP application” on page 989
Manage the brokers and their resources from a CMP application.
Related reference:
“Additional software requirements” on page 3598
WebSphere Message Broker requires additional software products to run
successfully.
“mqsicreateexecutiongroup command” on page 3854
Use the mqsicreateexecutiongroup command to add a new execution group to a
broker.
“mqsideleteexecutiongroup command” on page 3869
Use the mqsideleteexecutiongroup command to remove an execution group from a
broker.
“mqsimode command” on page 3899
Use the mqsimode command to configure and retrieve operation mode information.

“mqsireloadsecurity command” on page 3911
Use the mqsireloadsecurity command to force the immediate expiry of some or all
the entries in the security cache.
“mqsistartmsgflow command” on page 3969
Use the mqsistartmsgflow command to start execution groups and message flows.
“mqsistopmsgflow command” on page 3975
Use the mqsistopmsgflow command to stop execution groups and message flows.
Related information:

WebSphere MQ Version 7 Information Center online

Connecting to a broker from a CMP application
Connect an application that uses the CMP API to a broker, to send requests about
its status and its resources.

Before you begin

Before you start

Before starting this step, you must have completed “Configuring an environment
for developing and running CMP applications” on page 969.

About this task

Consider the following program BrokerRunStateChecker.java. It connects to a
broker that is running on the default queue manager of the local computer.
import com.ibm.broker.config.proxy.*;

public class BrokerRunStateChecker {

Chapter 8. Administering brokers and broker resources 975

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

public static void main(String[] args) {

// The ip address of where the broker is running
// and the port number of the queue manager listener.
displayBrokerRunState("localhost", 2414, "");

}

public static void displayBrokerRunState(String hostname,
int port,
String qmgr) {

BrokerProxy b = null;
try {

BrokerConnectionParameters bcp =
new MQBrokerConnectionParameters(hostname, port, qmgr);

b = BrokerProxy.getInstance(bcp);
String brokerName = b.getName();

System.out.println("Broker ’"+brokerName+
"’ is available!");

b.disconnect();
} catch (ConfigManagerProxyException ex) {

System.out.println("Broker is NOT available"+
" because "+ex);

}
}

}

The first line of the program requests Java to import the CMP API classes, which
are supplied in the package com.ibm.broker.config.proxy.

The first line of code inside the try block of the displayBrokerRunState() method
instantiates a BrokerConnectionParameters object. This method is an interface
which states that implementing classes are able to provide the parameters to
connect to a broker.

The class MQBrokerConnectionParameters implements this interface; it defines a
set of WebSphere MQ connection parameters. The constructor used here takes
three parameters:
1. The host name of the computer that the broker is running on
2. The port on which the WebSphere MQ listener service for the broker is

listening
3. The name of the queue manager that is associated with the broker

When you have defined this object, you can connect to the queue manager that is
defined by those characteristics. The connection is achieved by the static
getInstance() factory method just inside the try block. When a valid handle to the
queue manager is returned, the application requests the name of the broker by
using b.getName(), and displays it.

getName(), and other methods that request information from the broker, block
until the information is supplied, or a timeout occurs. Therefore, if the broker is
not running, the application hangs for a period. You can control the timeout period
by using the BrokerProxy.setRetryCharacteristics() method. Typically, blocking only
occurs when a given resource is accessed for the first time within an application.

Finally, the program calls the disconnect() method. This method frees up resources
associated with the connection in both the CMP and the broker.

976 WebSphere Message Broker Version 7.0.0.8

When a BrokerProxy handle is first returned from the getInstance() method, the
broker service does not have to be running. It is only when the application uses
the handle (by calling getName() in this example) that the application can be
assured that a two-way connection with the broker is active.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Navigating brokers and broker resources in a CMP application
Explore the status and attributes of the broker that your CMP application is
connected to, and discover information about its resources.

Before you begin

Before you start

Before starting this step, you must have completed “Connecting to a broker from a
CMP application” on page 975.

About this task

Each resource that the broker can control is represented as a single object in the
CMP API. An application can request status and other information about the
following objects:
v Brokers
v Execution groups
v Deployed message flows
v Administration log

The CMP also handles deployed message sets; these resources are handled as
attributes of deployed execution groups.

Collectively known as administered objects, these objects provide most of the
interface to the broker, and are therefore fundamental to an understanding of the
CMP.

Each administered object is an instance of a Java class that describes the
underlying type of object in the broker. The main Java classes are shown in the
following table.

Java class Class function

BrokerProxy Describes brokers.

ExecutionGroupProxy Describes execution groups.

Chapter 8. Administering brokers and broker resources 977

Java class Class function

MessageFlowProxy Describes message flows that have already been deployed to
execution groups; does not describe message flows in the Broker
Application Development perspective of the WebSphere Message
Broker Toolkit.

LogProxy Represents the log of recent administrative activity on the broker,
for all users.

Each administered object describes a single object that can be controlled by the
broker. For example, every execution group within a broker has one
ExecutionGroupProxy instance that represents it within the application.

The LogProxy object includes messages, created as LogEntry objects, that record
recent changes made to the administered objects. These messages include the
following information:
v Administration requests; for example, a request to deploy a BAR file
v Results of administration requests
v Changes that have been made to objects; for example, a change to a property

value through an administration task
v Changes that have been made to objects as a result of starting a broker at a new

fix pack level or version.

You can use the AdminQueueProxy object to examine what items of work are in
progress or are waiting for processing by the broker. The following code shows
how you can access the queue:
BrokerConnectionParameters bcp =

new MQBrokerConnectionParameters("localhost", 1414, "QMGR");
BrokerProxy b = BrokerProxy.getInstance(bcp);
AdminQueueProxy l = b.getAdministrationQueue();

A set of public methods is available for each administered object, which
applications can use to inquire and manipulate properties of the underlying broker
to which the instance refers. To access an administered object through its API, your
application must first request a handle to that object from the object that logically
owns it.

For example, because brokers logically own execution groups, to gain a handle to
execution group EG1 running on broker B1, the application must ask the
BrokerProxy object represented by B1 for a handle to the ExecutionGroupProxy
object represented by EG1.

On a BrokerProxy object that refers to broker B1, the application can call methods
that cause the broker to reveal its run-state, or cause it to start all its message
flows. You can write applications to track the changes that are made to the broker
objects by reading the messages maintained as LogEntry objects.

In the following example, a handle is requested to the BrokerProxy object. The
BrokerProxy is logically the root of the administered object tree, therefore your
application can access all other objects in the broker directly, or indirectly.

The broker directly owns the execution groups, therefore applications can call a
method on the BrokerProxy object to gain a handle to the ExectionGroupProxy
objects. Similarly, the execution group logically contains the set of all message
flows, therefore the application can call methods on the ExecutionGroupProxy
object to access the MessageFlowProxy objects.

978 WebSphere Message Broker Version 7.0.0.8

The complete hierarchy of these access relationships is shown in the following
diagram.

The following application traverses the administered object hierarchy to discover
the run-state of a deployed message flow. The application assumes that message
flow MF1 is deployed to EG1 on broker B1; you can substitute these values in the
code for other values that are valid in the broker.
import com.ibm.broker.config.proxy.*;

public class GetMessageFlowRunState {

public static void main(String[] args) {

BrokerProxy b = null;
try {

BrokerConnectionParameters bcp =
new MQBrokerConnectionParameters(
"localhost",
1414,
"");

b = BrokerProxy.getInstance(bcp);
} catch (ConfigManagerProxyException cmpex) {

System.out.println("Error connecting: "+cmpex);
}

if (b != null) {
System.out.println("Connected to broker!");
displayMessageFlowRunState(b, "EG1", "MF1");
b.disconnect();

}
}

private static void displayMessageFlowRunState(
BrokerProxy b,
String egName,
String flowName) {

try {
ExecutionGroupProxy eg =
b.getExecutionGroupByName(egName);

if (eg != null) {
MessageFlowProxy mf =

eg.getMessageFlowByName(flowName);

if (mf != null) {
boolean isRunning = mf.isRunning();

Broker
Proxy

Log Proxy
Execution

Group
Proxy

Admin
Queue
Proxy

Message
Flow
Proxy

Chapter 8. Administering brokers and broker resources 979

System.out.print("Flow "+flowName+" on " +
egName+" on "+b.getName()+" is ");

if (isRunning) {
System.out.println("running");

} else {
System.out.println("stopped");

}
} else {

System.err.println("No such flow "+flowName);
}

} else {
System.err.println("No such exegrp "+egName+"!");

}

} catch(ConfigManagerProxyPropertyNotInitializedException
ex) {

System.err.println("Comms problem! "+ex);
}

}
}

The method displayMessageFlowRunState() does most of the work. This method
takes the valid BrokerProxy handle gained previously, and discovers the run-state
of the message flow in the following way:
1. The BrokerProxy instance is used to gain a handle to the ExecutionGroupProxy

object with the name described by the string egName
2. If a valid execution group is returned, the ExecutionGroupProxy instance is used

to gain a handle to the MessageFlowProxy object with the name described by the
string flowName.

3. If a valid message flow is returned, the run-state of the MessageFlowProxy object
is queried, and the result is displayed.

The application does not have to know the names of objects that it can manipulate.
Each administered object contains methods to return sets of objects that it logically
owns. The following example demonstrates this technique by looking up the
names of all execution groups within the broker.
import java.util.Enumeration;
import com.ibm.broker.config.proxy.*;

public class DisplayExecutionGroupNames {

public static void main(String[] args) {

BrokerProxy b = null;
try {

BrokerConnectionParameters bcp =
new MQBrokerConnectionParameters(
"localhost",
1414,
"");

b = BrokerProxy.getInstance(bcp);
} catch (ConfigManagerProxyException cmpex) {

System.out.println("Error connecting: "+cmpex);
}

if (b != null) {
System.out.println("Connected to broker!");
displayExecutionGroupNames(b);
b.disconnect();

}
}

980 WebSphere Message Broker Version 7.0.0.8

private static void displayExecutionGroupNames(BrokerProxy b)
{
try {

Enumeration<ExecutionGroupProxy> allEGs = b.getExecutionGroups(null);

while (allEGs.hasMoreElements()) {
ExecutionGroupProxy thisEG =

allEGs.nextElement();
System.out.println("Found EG: "+thisEG.getName());

}
} catch(ConfigManagerProxyPropertyNotInitializedException

ex) {
System.err.println("Comms problem! "+ex);

}
}

}

The key method is BrokerProxy.getExecutionGroups(Properties). When supplied
with a null argument, this method returns an enumeration of all the
ExecutionGroupProxy objects in the broker. The application uses this method to
look at each ExecutionGroupProxy in turn, and display its name.

The Properties argument of the method
BrokerProxy.getExecutionGroups(Properties) can be used to exactly specify the
characteristics of the execution groups that are sought. The application can use this
argument for nearly all the methods that return administered objects, and is a
powerful way of filtering those objects with which the application needs to work.

Examples of the characteristics that can be used to filter object lookups are the
run-state and short description, as well as more obvious properties such as the
name and UUID. To write logic to achieve filtered lookups, you must understand
how each administered object stores its information.

The properties of each administered object are stored locally inside the object by
using a hash table, where each property is represented as a {key, value} tuple.
Each key is the name of an attribute (for example, name) and each value is the
value (for example, BROKER1).

Each key name must be expressed by using a constant from the
AttributeConstants class (com.ibm.broker.config.proxy). A complete set of keys
and possible values for each administered object is described in the Java
documentation for the AttributesConstant class, or by using the Show raw
property table for this object function in the CMP API Exerciser sample
application. The latter displays the complete list of {key, value} pairs for each
administered object.

The Properties argument that is supplied to the lookup methods is a set of those
{key, value} pairs that must exist in each administered object in the returned
enumeration. Consider the following code fragment:
Properties p = new Properties();

p.setProperty(AttributeConstants.OBJECT_RUNSTATE_PROPERTY,
AttributeConstants.OBJECT_RUNSTATE_RUNNING);

Enumeration<MessageFlowProxy> mf = executionGroup.getMessageFlows(p);

Providing that the variable executionGroup is a valid ExecutionGroupProxy object,
the returned enumeration contains only active message flows (that is,
OBJECT_RUN_STATE_PROPERTY equal to OBJECT_RUNSTATE_RUNNING).

Chapter 8. Administering brokers and broker resources 981

When property filtering is applied to a method that returns a single administered
object rather than an enumeration of objects, only the first result is returned (which
is non-deterministic if more than one match applies). Therefore the following code:
Properties p = new Properties();
p.setProperty(AttributeConstants.NAME_PROPERTY,

"EG1");
ExecutionGroupProxy eg1 = brokerProxy.getExecutionGroup(p);

is an alternative to the following statement:
ExecutionGroupProxy eg1 = brokerProxy.getTopicByName("EG1");

If multiple {key, value} pairs are added to a property filter, all properties must be
present in the child object for an object to match. If you want a method to perform
a logical OR, or a logical NOT, on a filter, you must write specific application code
for this purpose.

When AdministeredObjects are first instantiated in an application, the CMP API
asks the broker for the current set of properties for that object. This action happens
asynchronously, therefore the first time a property is requested, the CMP API
might pause while it waits for the information to be supplied by the broker. If the
information does not arrive within a certain time (for example, if the broker is not
running), a ConfigManagerProxyPropertyNotInitializedException is thrown. Your
application can control the maximum time that the CMP API waits by using the
BrokerProxy.setRetryCharacteristics() method.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Connecting to a broker from a CMP application” on page 975
Connect an application that uses the CMP API to a broker, to send requests about
its status and its resources.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Deploying resources to a broker from a CMP application
Deploy BAR files to the brokers in your broker network from a CMP application.

About this task

You can also check the result of a deployment by using the CMP.

Example

An example

This example connects to a broker that is running on the local computer. Its queue
manager, MB7QMGR, is listening on port 2414. The code deploys a BAR file called
MyBAR.bar to an execution group called default that is running on the broker, and
displays the result.

982 WebSphere Message Broker Version 7.0.0.8

import com.ibm.broker.config.proxy.*;
public class DeployBAR {

public static void main(String[] args) {
BrokerConnectionParameters bcp =

new MQBrokerConnectionParameters("localhost", 2414, "MB7QMGR");
try {

BrokerProxy b = BrokerProxy.getInstance(bcp);
ExecutionGroupProxy eg = b.getExecutionGroupByName("default");
DeployResult dr = eg.deploy("MyBAR.bar", true, 30000);
System.out.println("Result = "+dr.getCompletionCode());

} catch (Exception e) {
e.printStackTrace();

}
}

}

CMP API Exerciser
About this task

You can also use the CMP API Exerciser to deploy files and check the results. For
example:

Procedure
1. Connect to the broker by clicking File > Connect to Broker. This action opens

the Connect to Broker dialog.
2. Enter the relevant connection parameters in the dialog. A hierarchical

representation of the broker and its resources is displayed.
3. Complete one or more of the following operations:
v Click an object in the tree to display the attributes of that object.
v Right-click an object in the tree to call CMP API methods that manipulate

that object. For example, right-clicking a broker opens a menu that includes
the items Start user trace.

v Use the log pane at the bottom of the screen to view useful information that
relates to the operation in progress.

Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Checking the results of deployment in a CMP application” on page 984
When you deploy from a CMP application, you can check the results of that action.

“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.

Chapter 8. Administering brokers and broker resources 983

“Administration API (CMP) trace” on page 3554
Enable or disable service trace for the Administration API for WebSphere Message
Broker (also known as the CMP API).
“Resolving problems when developing Administration API applications” on page
3510
Use the advice given here to help you to resolve problems that can arise when
developing Administration API for WebSphere Message Broker (also known as the
CMP API) applications.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Checking the results of deployment in a CMP application
When you deploy from a CMP application, you can check the results of that action.

About this task

Code your application to test the results of the deploy actions that it takes. You can
use code like the following snippet:
DeployResult dr = eg.deploy("MyBAR.bar", true, 30000);
System.out.println("Overall result = "+dr.getCompletionCode());

// Display log messages
Enumeration logEntries = dr.getLogEntries();
while (logEntries.hasMoreElements()) {

LogEntry le = (LogEntry)logEntries.nextElement();
System.out.println("General message: " + le.getDetail());

}

The deploy method blocks other processes until the broker has responded to the
deployment request. When the method returns, the DeployResult object represents
the outcome of the deployment at the time when the method returned; the object is
not updated by the CMP API.

If the deployment message could not be sent to the broker, a
ConfigManagerProxyLoggedException exception is thrown at the time of the
deployment. If the broker receives the deployment message, log messages for the
overall deployment are displayed, followed by completion codes specific to each
broker that is affected by the deployment. The completion code, shown in the
following table, is one of the static instances from the CompletionCodeType class.

Completion code Description

pending The deployment is held in a batch and is not sent until you call
BrokerProxy.sendUpdates().

submitted The deploy message was sent to the broker, but no response was received before the
timeout period expired.

success The broker has successfully completed the deployment.

failure The broker has generated one or more errors during deployment. You can call the
getLogEntries() method of the DeployResult class to get more information about the
deployment failure. This method returns an enumeration of available LogEntry
objects.

Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are

984 WebSphere Message Broker Version 7.0.0.8

packaged in broker archive (BAR) files for deployment.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Viewing Administration log information” on page 1007
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.
“Administration API (CMP) trace” on page 3554
Enable or disable service trace for the Administration API for WebSphere Message
Broker (also known as the CMP API).
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
“Resolving problems when developing Administration API applications” on page
3510
Use the advice given here to help you to resolve problems that can arise when
developing Administration API for WebSphere Message Broker (also known as the
CMP API) applications.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Setting message flow user-defined properties at run time in a
CMP application

Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.

Before you begin

For user-defined properties on a message flow to be discoverable, the message
flow must comply with the following conditions:
v The message flow must contain at least one of the following nodes:

– JavaCompute
– Compute
– Database
– Filter
– PHPCompute

v The message flow must define the relevant user-defined property and provide
an override value.

About this task

Tip: Use meaningful names and values for the properties that you define, so that
you can understand their purpose and intent quickly. For example, a user-defined
property named property01, with an initial value of valueA is not as useful as a
property named RouteToAorB with an initial value of RouteA.

Chapter 8. Administering brokers and broker resources 985

To query, discover, and set user-defined properties on a message flow, use the CMP
API to issue the following calls. For details about the calls, including the syntax
and parameters to use, see the CMP API documentation (“Administration API” on
page 3672).

Procedure
1. Call MessageFlowProxy.getUserDefinedPropertyNames() to retrieve a list of all

the user-defined properties that were defined by the Message Flow editor on
the message flow or subflows.
A string array is returned that contains the property names.

2. Call MessageFlowProxy.getUserDefinedProperty() to retrieve the value of the
specified user-defined property.
The value of the property is returned as a Java.lang.String value.

3. Call MessageFlowProxy.setUserDefinedProperty() to set a new value for the
specified user-defined property.
The property must exist. You cannot change the data type of the existing
user-defined property (Java.lang.String); therefore, you must ensure that the
new value complies with the existing data type. The value that you set with the
MessageFlowProxy.setUserDefinedProperty() call is populated to all relevant
nodes in the message flow, including nodes in subflows.

Related concepts:
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“ESQL variables” on page 2374
An ESQL variable is a data field that is used to help process a message.
Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
“Configuring a message flow at deployment time with user-defined properties” on
page 2626
Use user-defined properties (UDPs) to configure message flows at deployment and
run time, without modifying program code. You can give a UDP an initial value
when you declare it in your program, or when you use the Message Flow editor to
create or modify a message flow.
“Accessing message flow user-defined properties from a JavaCompute node” on
page 2659
Customize a JavaCompute node to access properties that you have associated with
the message flow in which the node is included.
Related reference:

986 WebSphere Message Broker Version 7.0.0.8

“Administration API” on page 3672
Use the Administration API for WebSphere Message Broker (CMP API) Java classes
and methods to develop CMP applications.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.

Working with properties of a configurable service of type
UserDefined at run time in a JavaCompute node

Use the CMP API in a JavaCompute node to query, set, create, and delete
properties dynamically at run time in configurable services that you have defined
with type UserDefined.

Before you begin

Before you start:

Complete the following tasks.
v Read the concept topic, “Configurable services” on page 1296.
v “Creating a message flow” on page 1431.

About this task

If you have created a UserDefined configurable service, and created properties for
that service, you can work with those properties in a JavaCompute node. For
example, you can create a UserDefined configurable service to set timeouts for
processing HTTP messages.

You can create and delete configurable services in JavaCompute nodes, in the
WebSphere Message Broker Explorer, and by using the
mqsicreateconfigurableservice and mqsideleteconfigurableservice commands.

Procedure
1. Right-click the JavaCompute node and click Open Java to create and open a

Java file in the Editor view, or open an existing file.
2. Create the Java class for the node in which you want to include CMP methods.
3. Add the CMP JAR file install_dir/classes/ConfigManagerProxy.jar to the

Java build path for the associated Java project.
4. Import com.ibm.broker.config.proxy.* in your code.
5. Add the following static method to the class you have created:

BrokerProxy b = BrokerProxy.getLocalInstance();

This method returns an instance of the BrokerProxy object for the broker to
which the message flow (that contains this node) is deployed.

6. To ensure that the BrokerProxy object has been populated with data from the
broker before you access the configurable service, add the following code:
while(!b.hasBeenPopulatedByBroker()) { Thread.sleep(100); }

7. Access the appropriate UserDefined configurable service:
a. If you know the name of the configurable service, use the following code to

access it:
ConfigurableService myUDCS = b.getConfigurableService("UserDefined", "UD1");

Chapter 8. Administering brokers and broker resources 987

b. If you want to select from a set of UserDefined configurable services, use
the following code to get a list of all services of a particular type:
ConfigurableService[] UD_set = b.getConfigurableServices("UserDefined");

8. Add further code to access and use the specific properties that you are
interested in. For example:
v Retrieve the properties that are defined to that service:

String[] props = myUDCS.getProperties();

v Create a new property:
String newprop = ’VerifyRequestTimeout’;
String newval = ’15’;
myUDCS.setProperty(newprop, newval);

v Delete a property:
myUDCS.deleteProperty(newprop);

You can also use the deleteProperties() method to delete more than one
property.
You can delete properties in UserDefined configurable services only. If you
use this method on a configurable service of a different type, a
ConfigManagerProxyLoggedException is generated.

9. Deploy the JAR file, and all associated message flows, in a BAR file. You do not
have to deploy the ConfigManagerProxy.jar file to the target execution group,
because the broker can access these classes independently.

Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Using timeouts with HTTP and SOAP nodes” on page 1595
Connect the HTTP Timeout terminal of the HTTPInput or SOAPInput nodes to
further nodes to process timeouts.
Related reference:
“Administration API” on page 3672
Use the Administration API for WebSphere Message Broker (CMP API) Java classes
and methods to develop CMP applications.

988 WebSphere Message Broker Version 7.0.0.8

“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.

Managing brokers in a CMP application
Manage the brokers and their resources from a CMP application.

Before you begin

Before you start

Before you start this task, you must have completed the task “Connecting to a
broker from a CMP application” on page 975.

About this task

Use the CMP API to change the state of objects in the domain; you can create,
delete, modify, and deploy objects stored within it. The following example sets the
long description field of the broker:
import com.ibm.broker.config.proxy.*;

public class SetLongDescription {

public static void main(String[] args) {

BrokerProxy b = null;
try {

BrokerConnectionParameters bcp =
new MQBrokerConnectionParameters(
"localhost",
1414,
"");

b = BrokerProxy.getInstance(bcp);
b.setLongDescription("this is my broker");
b.disconnect();

} catch (ConfigManagerProxyException cmpex) {
System.out.println("Error connecting: "+cmpex);

}
}

}

The broker processes requests to change properties from the CMP asynchronously,
therefore if your application calls getLongDescription() immediately following the
call to setLongDescription(), the response might return the old value of the
property. For more information, see “Checking the results of broker management
with the most recent completion code in a CMP application” on page 992.

What to do next

Next:

Chapter 8. Administering brokers and broker resources 989

Most state-changing CMP methods return control immediately without informing
the calling application of the outcome of the request. To discover this information,
see “Checking the results of broker management in a CMP application” on page
991.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Connecting to a broker from a CMP application” on page 975
Connect an application that uses the CMP API to a broker, to send requests about
its status and its resources.
“Managing brokers from JavaCompute nodes” on page 997
You can use the CMP API to manage brokers and their associated resources from
JavaCompute nodes in deployed message flows.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Creating objects in a CMP application
Create new objects associated with a broker.

About this task

The following example adds an execution group called EG2 to the connected
broker.
import com.ibm.broker.config.proxy.*;

public class AddExecutionGroup {

public static void main(String[] args) {

BrokerProxy b = null;
try {

BrokerConnectionParameters bcp =
new MQBrokerConnectionParameters(
"localhost",
1414,
"");

b = BrokerProxy.getInstance(bcp);
ExecutionGroupProxy e = b.createExecutionGroup("EG2");
b.disconnect();

} catch (ConfigManagerProxyException cmpex) {
System.out.println("Error connecting: "+cmpex);

}
}

}

Because requests are processed asynchronously by the broker, the
ExecutionGroupProxy object that is returned from the createExecutionGroup()
method is a skeleton object when it is returned to your application, because it
refers to an object that might not yet exist in the broker. The application can
manipulate the object as if it existed on the broker, although the actual creation of
the underlying object might not happen for some time.

990 WebSphere Message Broker Version 7.0.0.8

If the request to create the object described by the skeleton fails, all requests that
use the skeleton also fail. Therefore, if execution group EG2 cannot be created, all
subsequent requests that concern the skeleton object fail. However, unless the
application explicitly checks for errors, it works in the same way as it does in the
successful case, because no exception is thrown unless, because of a
communication problem, a message cannot be sent to the broker.

See “Checking the results of broker management in a CMP application” for further
information about how to detect problems such as these.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Checking the results of broker management in a CMP application”
When you have made a change to the broker, use one of the supplied methods to
check if the change has been successful.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Related information:
Administration API for WebSphere Message Broker (CMP API)

Checking the results of broker management in a CMP application
When you have made a change to the broker, use one of the supplied methods to
check if the change has been successful.

About this task

Choose one of three methods in the CMP API to determine the outcome of
requests to create, delete, modify, and deploy resources:
v If you have initiated a deployment method, you can use the return code from

the deployment API; this technique is shown in “Checking the results of
deployment in a CMP application” on page 984.

v You can query an object's most recent completion code; this option is shown in
“Checking the results of broker management with the most recent completion
code in a CMP application” on page 992.

v You can use the administered object notification mechanism; by using this
approach, you can code specific routines to handle the responses and take
appropriate action, and improve the efficiency of your program. See “Checking
the results of broker management with object notification in a CMP application”
on page 993.

v If you prefer to make property changes synchronously, call the method
BrokerProxy.setSynchronous() before making your changes.
If subsequent property change methods give a successful return, the request has
been successfully completed by the broker. If the changes are rejected by the
broker, or time out (they cannot be completed successfully by the broker before

Chapter 8. Administering brokers and broker resources 991

the timeout period expires), the methods throw either a
ConfigManagerProxyRequestFailure or a ConfigManagerProxyRequestTimeout
exception.
For more information on synchronous property changes, see the description of
the BrokerProxy.setSynchronous() method in the CMP API Javadoc information.

Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Checking the results of broker management with the most recent completion code
in a CMP application”
Use an object's most recent completion code to determine the outcome of a request
that your application made against that object.
“Checking the results of broker management with object notification in a CMP
application” on page 993
Use object notification to determine the outcome of a request that your application
made against the object.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Checking the results of broker management with the most recent completion
code in a CMP application:

Use an object's most recent completion code to determine the outcome of a request
that your application made against that object.

About this task

Most state-changing methods in the CMP API do not provide return code that
indicates the success or failure of a specific action. For these methods, you must
write different code to discover the outcome of the action. Assuming that
administered objects are not shared across threads, the following code fragment
can be used to discover the outcome of a request to modify a broker's
LongDescription, where b is an instance of a BrokerProxy object:
GregorianCalendar oldCCTime =

b.getTimeOfLastCompletionCode();
b.setLongDescription(newDesc);
GregorianCalendar newCCTime = oldCCTime;
while ((newCCTime == null) || (newCCTime.equals(oldCCTime))) {

newCCTime = b.getTimeOfLastCompletionCode());
Thread.sleep(1000);

}
CompletionCodeType ccType = b.getLastCompletionCode();
if (ccType == CompletionCodeType.success) {

// etc.
}

In this example, the application initially determines when an action on the broker
was last completed, using the getTimeOfLastCompletionCode() method. This
method returns the time that the topology last received a completion code or, if no

992 WebSphere Message Broker Version 7.0.0.8

return codes have been received, a null value. The application updates the broker's
LongDescription, then continually monitors the topology, waiting for the results of
the setLongDescription() command to be returned to the CMP. When the results
are returned, control breaks out of the while loop and the last completion code is
determined.

As well as being unsuitable for a multi-threaded application, this algorithm for
determining the outcome of commands is inefficient, because it causes the CMP
application to wait while the broker processes the request.

For a more efficient application, and one that is suitable for a multi-threaded
environment, code the alternative approach that uses administered object
notifications; see “Checking the results of broker management with object
notification in a CMP application.”

If you prefer, you can make property changes synchronously by using the
methodBrokerProxy.setSynchronous() method. When you make synchronous
property changes, methods such as setLongDescription() do not return until the
change has been processed by the broker. For more information on synchronous
property changes, see the description of the BrokerProxy.setSynchronous()) method
in the CMP API Javadoc information.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Checking the results of broker management in a CMP application” on page 991
When you have made a change to the broker, use one of the supplied methods to
check if the change has been successful.
“Checking the results of broker management with object notification in a CMP
application”
Use object notification to determine the outcome of a request that your application
made against the object.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Checking the results of broker management with object notification in a CMP
application:

Use object notification to determine the outcome of a request that your application
made against the object.

About this task

The CMP can notify applications whenever commands complete, or whenever
changes occur to administered objects. By making use of the OBSERVER design
pattern, your CMP application can define a handle to a user-supplied object that
has a specific method that is called if an object is modified or deleted, or whenever
a response to a previously submitted action is returned from the broker.

Chapter 8. Administering brokers and broker resources 993

The user-supplied code must implement the AdministeredObjectListener interface.
This interface defines methods that are invoked by the CMP when an event occurs
on an administered object to which the listener is registered. The following
methods are defined:

processModify(...)

processModify(...) is called when the administered object to which the
listener is registered has one or more of its attributes modified by the
broker. The following information is included in the notification through
the use of the processModify() method arguments:
1. A handle to the AdministeredObject to which the notification refers.
2. A list of strings that contain the key names that have been changed.
3. A list of strings that describe new subcomponents that have been

created for the object; for example, new execution groups in a broker.
4. A list of strings that describe subcomponents that have been removed

from the object.

The format of the strings passed to the final two parameters is an internal
representation of the administered object. You can turn this representation
into an administered object type by using the
getManagedSubcomponentFromStringRepresentation() method.

Consider the following additional information:
1. Strings are passed within these lists to enhance performance; the CMP

does not use resource instantiating administered objects, unless they are
specifically requested by the calling application.

2. The first time you call the processModify() method for a listener, the
changed attributes parameter can include a complete set of attribute
names for the object, if the application is using a batch method, or if
the CMP is experiencing communication problems with the broker.

processDelete(...)

processDelete(...) is called if the object with which the listener is registered
is completely removed from the broker. Supplied to processDelete(...) is
one parameter – a handle to the administered object that has been deleted;
when this method returns, the administered object handle might no longer
be valid. At about the same time that a processDelete(...) event occurs, a
processModify(...) event is sent to listeners of the deleted object's parent, to
announce a change in the parent's list of subcomponents.

processActionResponse(...)

processActionResponse(...) is the event that informs the application that a
previous action submitted by that application is complete. Only one
processActionResponse(...) event is received for each state-changing
operation issued by the CMP application. This event contains the following
items of information:
1. A handle to the administered object for which a request was submitted.
2. The completion code of the request.
3. A set of zero, or more, informational (BIP) messages associated with the

result.
4. A set of (key, value) pairs that describes the submitted request in more

detail. Check the documentation for information about how to parse
these pairs.

994 WebSphere Message Broker Version 7.0.0.8

To register a listener, each administered object has a registerListener() method that
is used to tell the CMP to call the supplied code whenever an event occurs on that
object. You can register the same AdministeredObjectListener for notifications
from multiple administered objects. You can also register multiple
AdministeredObjectListeners against the same administered object.

The following example demonstrates this technique by registering a listener on the
broker object, and displaying a message whenever it is modified:
import com.ibm.broker.config.proxy.*;
import com.ibm.broker.config.proxy.CompletionCodeType;
import java.util.List;
import java.util.ListIterator;
import java.util.Properties;

public class MonitorBroker implements AdministeredObjectListener {

public static void main(String[] args) {

BrokerProxy b = null;
try {

BrokerConnectionParameters bcp =
new MQBrokerConnectionParameters(
"localhost",
1414,
"");

b = BrokerProxy.getInstance(bcp);
} catch (ConfigManagerProxyException cmpex) {

System.out.println("Error connecting: "+cmpex);
}

if (b != null) {
System.out.println("Connected to broker");
listenForChanges(b);
b.disconnect();

}
}

private static void listenForChanges(AdministeredObject obj)
{
if (obj != null) {

obj.registerListener(new MonitorBroker());
while(true) {
// thread could do something else here instead
try {

Thread.sleep(10000);
} catch (InterruptedException ex) {

// ignore
}

}
}

}

public void processActionResponse(AdministeredObject obj,
CompletionCodeType cc,
List bipMessages,
Properties refProperties) {

// Event ignored in this example
}

public void processDelete(AdministeredObject deletedObject) {
// Event ignored in this example

}

public void processModify(AdministeredObject affectedObject,
List changedAttributes,

Chapter 8. Administering brokers and broker resources 995

List newChildren,
List removedChildren) {

try {
System.out.println(affectedObject+" has changed:");
ListIterator e = changedAttributes.listIterator();
while (e.hasNext()) {
String changedAttribute = (String) e.next();
System.out.println("Changed: "+changedAttribute);

}
ListIterator e2 = newChildren.listIterator();
while (e2.hasNext()) {
String newChildStr = (String) e2.next();
AdministeredObject newChild =

affectedObject.getManagedSubcomponentFromStringRepresentation(newChildStr);
System.out.println("New child: "+newChild);

}
ListIterator e3 = removedChildren.listIterator();
while (e3.hasNext()) {
String remChildStr = (String) e3.next();
AdministeredObject removedChild =

affectedObject.getManagedSubcomponentFromStringRepresentation(remChildStr);
System.out.println("Removed child: "+removedChild);

}
} catch (ConfigManagerProxyPropertyNotInitializedException ex) {

ex.printStackTrace();
}

}
}

The listenForChanges() method attempts to register an instance of the
MonitorBroker class for notifications of broker changes. If successful, the main
thread pauses indefinitely to prevent the application from ending when the
method returns. When the listener is registered, whenever the broker changes (for
example, if an execution group is added), the processModify() method is called.
This method displays details of each notification on the screen.

You must register separate listeners for each administered object on which you
want to receive notifications. You can use the same listener instance for multiple
administered objects.

You can stop receiving notifications in three ways:
v AdministeredObject.deregisterListener(AdministeredObjectListener)
v ConfigManagerProxy.deregisterListeners()
v ConfigManagerProxy.disconnect()

The first method de-registers a single listener from a single administered object; the
other two methods deregister all listeners connected with that BrokerProxy
instance. In addition, the final method shows that all listeners are implicitly
removed when connection to the broker is stopped.

You can also implement the AdvancedAdministeredObjectListener interface which,
when registered, yields additional information to applications.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:

996 WebSphere Message Broker Version 7.0.0.8

“Checking the results of broker management in a CMP application” on page 991
When you have made a change to the broker, use one of the supplied methods to
check if the change has been successful.
“Checking the results of broker management with the most recent completion code
in a CMP application” on page 992
Use an object's most recent completion code to determine the outcome of a request
that your application made against that object.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Managing brokers from JavaCompute nodes
You can use the CMP API to manage brokers and their associated resources from
JavaCompute nodes in deployed message flows.

Before you begin

Before you start

Before starting this step, you must create a “JavaCompute node” on page 4514 in a
message flow.

About this task

Use CMP methods and classes in your JavaCompute node to explore and manage
brokers and other resources.

Procedure
1. Create the Java class for the node in which you want to include CMP methods.
2. Add the CMP JAR file install_dir/classes/ConfigManagerProxy.jar to the

Java build path for the associated Java project.
3. Add the following static method to the class:

BrokerProxy thisBroker = BrokerProxy.getLocalInstance();

This method returns an instance of the BrokerProxy object for the broker to
which the message flow (that contains this node) is deployed.

4. To work with an execution group on this broker, add the following static
method to your code:
ExecutionGroupProxy thisEG = ExecutionGroupProxy.getLocalInstance();

This method returns an instance of the ExecutionGroupProxy object for the
execution group to which the message flow is deployed.

5. If you want to connect to a different broker that you have created on the
computer to which your node and message flow are deployed, you can use a
variant of this class:
BrokerProxy secondBroker = BrokerProxy.getLocalInstance(string)

Specify the name of the alternative local broker as the value of the variable
string. Your code can manage this second broker, and its associated resources,
by using the BrokerProxy object that is returned by this call.

6. Include additional CMP methods in your Java code to run the operations that
you want against the broker or execution group by using the objects obtained
in previous steps. You can follow the guidance that is provided in other topics
in this section for further information and examples that show how to use CMP
methods in CMP applications.

Chapter 8. Administering brokers and broker resources 997

If you include methods that affect the message flow in which your CMP
application is running, it might not be able to receive all notifications that these
operations have successfully completed. Stopping, deleting, and redeploying
the message flow are examples in this category; consider carefully the
consequences of using these methods.

7. Deploy the JAR file, and all associated message flows, in a BAR file. You do not
have to deploy the ConfigManagerProxy.jar file to the target execution group,
because the broker can access these classes independently.

Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Creating Java code for a JavaCompute node” on page 2629
Use these instructions to associate Java code with your JavaCompute node.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Working with resource statistics in a CMP application
Start, stop, and review status of resource statistics collection in your CMP
applications.

Before you begin

Before you start:
v Read the concept topic about resource statistics.

About this task

You can create CMP applications to examine and control the collection of resource
statistics.

Checking what resource types can return statistics
///
// Sample CMP API code that connects to a local broker
// called ’testbrk’ and writes out available
// resource types on the broker that have the
// ability to emit resource-level statistics.
BrokerProxy b = null;
try {

b = BrokerProxy.getLocalInstance("testbrk");
String[] resourceNames = b.getResourceTypeNames();
for (String thisResource : resourceNames) {
System.out.println(thisResource);
}
} catch (ConfigManagerProxyLoggedException e) {

998 WebSphere Message Broker Version 7.0.0.8

e.printStackTrace();
} catch (ConfigManagerProxyPropertyNotInitializedException e) {
e.printStackTrace();
}

Checking for resource names associated with a specific resource type
///
// Sample CMP API code that connects to a local broker
// called ’testbrk’ and writes out resource property
// names reported for a specific resource type.
BrokerProxy b = null;
try {

b = BrokerProxy.getLocalInstance("testbrk");
String[] resourcePropertyNames =

b.getResourceTypeStatisticsPropertyNames("JVM");
for (String thisResourceProperty : resourcePropertyNames) {
System.out.println(thisResourceProperty);
}
} catch (ConfigManagerProxyLoggedException e) {
e.printStackTrace();
} catch (ConfigManagerProxyPropertyNotInitializedException e) {
e.printStackTrace();
}

Starting statistics collection
///
// Sample CMP API code that connects to a local broker
// called ’testbrk’ and gets a reference to the execution
// group called ’default’. It then enables resource
// statistics for all the execution group’s resource types.
BrokerProxy b = null;
try {

b = BrokerProxy.getLocalInstance("testbrk");
ExecutionGroupProxy eg = b.getExecutionGroupByName("default");
if (eg != null) {
eg.setResourceStatisticsEnabled(null, true);
}
} catch (ConfigManagerProxyLoggedException e) {
e.printStackTrace();
} catch (ConfigManagerProxyPropertyNotInitializedException e) {
e.printStackTrace();
}

Stopping statistics collection
///
// Sample CMP API code that connects to a local broker
// called ’testbrk’ and gets a reference to the execution
// group called ’default’. It then disables resource
// statistics for all the execution group’s resource types.
BrokerProxy b = null;
try {

b = BrokerProxy.getLocalInstance("testbrk");
ExecutionGroupProxy eg = b.getExecutionGroupByName("default");
if (eg != null) {
eg.setResourceStatisticsEnabled(null, false);
}
} catch (ConfigManagerProxyLoggedException e) {
e.printStackTrace();
} catch (ConfigManagerProxyPropertyNotInitializedException e) {
e.printStackTrace();
}

Viewing statistics collection status
///
// Sample CMP API code that connects to a local broker
// called ’testbrk’ and gets a reference to the execution
// group called ’default’. It then writes out if resource
// statistics is enabled.

Chapter 8. Administering brokers and broker resources 999

BrokerProxy b = null;
try {

b = BrokerProxy.getLocalInstance("testbrk");
ExecutionGroupProxy eg = b.getExecutionGroupByName("default");
if (eg != null) {
System.out.println(eg.getResourceStatisticsEnabled(null));
}
} catch (ConfigManagerProxyLoggedException e) {
e.printStackTrace();
} catch (ConfigManagerProxyPropertyNotInitializedException e) {
e.printStackTrace();
}

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.

Submitting batch requests from a CMP application
Use the CMP API to group multiple requests that are destined for the same broker,
and submit them as a single unit of work.

About this task

To start a batch, your application must call the beginUpdates() method on the
BrokerProxy handle. The CMP API delays submitting any state-changing requests
to the broker until it is told a batch of requests is ready to be sent.

The sendUpdates() method tells the CMP API to submit as a batch all requests
received since the last beginUpdates() call. The clearUpdates() method can be used
to discard a batch without submitting it to the broker. The application can check if
a batch is currently in progress by using the isBatching() method. Only one batch
for a CMP API handle can be in progress at any one time.

One advantage of using a batch method is that it provides an assurance that no
other applications can have messages processed by the broker during the batch.
When a broker receives a batch of requests, it processes each request in the batch
in the order it was added to the batch (FIFO), and requests from no other CMP
application are processed until the entire batch is completed.

Consider the following sequence of commands:
ExecutionGroupProxy e = b.createExecutionGroup("EG2");
e.deploy("mybar.bar");

1000 WebSphere Message Broker Version 7.0.0.8

Without using a batch method, the application cannot guarantee the success of
these actions. For example, even if each command would otherwise succeed, a
second (possibly remote) application might delete the execution group EG2 after it
has been created by the first application, but before the other command is
processed.

If the sequence is extended to use a batch method, the broker is now guaranteed to
process all the commands together, therefore no other application can disrupt the
logic intended by the application.
b.startUpdates();
ExecutionGroupProxy e = b.createExecutionGroup("EG2");
e.deploy("mybar.bar");
b.sendUpdates();

Another advantage of using a batch method is performance. The CMP typically
sends one WebSphere MQ message to the broker for each request.

In a situation that requires lots of requests to be sent in quick succession, the use
of a batch has a significant effect on performance, reducing both time taken to
process the requests, and the memory used. For example, your application might
create a number of execution groups on a single broker. Each batch of requests is
sent in a single WebSphere MQ message, therefore reducing the processing that is
required for each method.

Batch mode does not provide transactional (commit and backout) capability; some
requests in a batch might succeed and others fail. If the broker processes a request
in a batch that fails, it continues to process the next request in the batch until it has
attempted all requests in the batch.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Configuring an environment for developing and running CMP applications” on
page 969
Prepare the environment in which you want to run your CMP applications.
“Connecting to a broker from a CMP application” on page 975
Connect an application that uses the CMP API to a broker, to send requests about
its status and its resources.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Managing resources used by brokers
Manage the resources used by brokers.

About this task
v “Listing database connections that the broker holds” on page 1002
v “Quiescing a database” on page 1002
v “Using a JDBC connection pool to manage database resources used by an

execution group” on page 1003
Related tasks:

Chapter 8. Administering brokers and broker resources 1001

“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.

Listing database connections that the broker holds
The broker does not provide an interface that you can use to list the connections
that it has to a database. You must use the facilities of the database suppliers to list
connections.

For further information about how to list database connections, refer to the
documentation that is provided by your database vendor.
Related concepts:
“User database connections” on page 2110
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.
Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Quiescing a database”
The broker and database exhibit specific behaviors when you quiesce the database.

“WebSphere MQ connections” on page 4222
The number of WebSphere MQ connections a broker requires to its queue manager
depends on the actions of the message flows that access the WebSphere MQ
resource.
Related information:

DB2 V9.1 Information Center (distributed systems)

DB2 V9.5 Information Center (distributed systems)

DB2 Information Center (z/OS)

Quiescing a database
The broker and database exhibit specific behaviors when you quiesce the database.

If you access databases from one or more message flows, your database
administrator might occasionally want to issue the quiesce instruction on a
database. This action is a function of the database, not of the broker.

The following three assumptions are made for the database that you are quiescing:
v The database can be quiesced (not all databases support this function).
v New connections to the database are blocked by the database when it is

quiescing.
v Message flows that access the database eventually become idle.

1002 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp

The following list shows the behavior that is expected while a database is
quiescing:
v Run the command that quiesces the database. When this command starts, the

connections that are in use remain in use, but no new connections to the
database are allowed.

v Messages that are being processed by message flows, which use existing
connections to the database, continue to use their connections until the
connections become idle. Therefore if messages continue to be received by the
message flow, it might be a long time before the quiesce occurs. To ensure that
messages are no longer processed, stop the message flow. Stopping the message
flow stops messages being processed, and releases the database connections that
the flow was using. This action ensures that the database connections that the
flow holds become idle.

v Database connections for the message flow become idle. This situation causes
the broker to release the connections to the user databases that the message flow
is using. When all connections to the database from the broker, and from any
other applications that are using the database, are released, the database can
complete its quiesce function.

For more information, see “User database connections” on page 2110.
Related concepts:
“User database connections” on page 2110
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.
Related tasks:
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
“Authorizing access to user databases” on page 662
When you have created a user database, you must authorize the broker and its
execution groups to access it.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Listing database connections that the broker holds” on page 1002
The broker does not provide an interface that you can use to list the connections
that it has to a database. You must use the facilities of the database suppliers to list
connections.
“WebSphere MQ connections” on page 4222
The number of WebSphere MQ connections a broker requires to its queue manager
depends on the actions of the message flows that access the WebSphere MQ
resource.

Using a JDBC connection pool to manage database resources
used by an execution group

Use broker JDBC provider resources to configure the use of thread pools
independently of message flow and input node thread pools.

Chapter 8. Administering brokers and broker resources 1003

About this task

WebSphere Message Broker manages JDBC connections in the following ways:
v Non-pooled connections:

– WebSphere Message Broker creates a JDBC connection on demand for each
message flow instance that requires one.

– Each JDBC connection is associated with the message flow instance for which
it was created. This association is maintained until the connection is closed.

– Each JDBC connection that is idle for 60 seconds is closed, and is no longer
associated with a message flow instance.

– After a JDBC connection that was associated with a message flow instance is
closed, if the same message flow instance requires a JDBC connection,
WebSphere Message Broker creates a new JDBC connection on demand.

v Pooled connections:
– When a message flow instance requires a JDBC connection, WebSphere

Message Broker assigns an unused connection from the pool.
– If all pooled JDBC connections are being used, and the maximum pool size

has not been reached, WebSphere Message Broker creates a new pooled JDBC
connection. The maximum pool size is specified in the maxConnectionPoolSize
property of the “JDBCProviders configurable service” on page 3778.

– Each pooled JDBC connection remains associated with a message flow
instance only for the processing of one input message.

– When a message flow instance completes the processing of an input message,
the association with a JDBC connection is removed, and the JDBC connection
is returned to the pool.

– Each pooled JDBC connection that is idle for 15 minutes is closed, and is
removed from the pool.

– Pooled JDBC connections are not applicable to the DatabaseRetrieve and
DatabaseRoute nodes.

Using a JDBC connection pool enable you to scale database access independently
of the number of message flow threads.

You can create a JDBC connection pool by setting the maxConnectionPoolSize
property of the “JDBCProviders configurable service” on page 3778 to a non-zero
integer value. The maxConnectionPoolSize property acts at the execution group
level to specify the maximum number of JDBC connection threads that can be
used. A value of zero defaults to the standard WebSphere Message Broker Version
7.0 behavior, where one JDBC connection is created for each message flow thread.

All message flows within an execution group that use the same JDBCProviders
configurable service also share a connection pool. You can monitor the behavior of
a JDBC connection pool by using broker resource statistics

The maxConnectionPoolSize property is applicable to JDBC connections obtained
using the getJDBCType4Connection() API of the JavaCompute node.

Note: The maxConnectionPoolSize property does not apply to the JDBC
connections used by the DatabaseRetrieve or DatabaseRoute nodes.
Related tasks:

1004 WebSphere Message Broker Version 7.0.0.8

“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Viewing the status of resource statistics collection in the WebSphere Message
Broker Explorer” on page 3317
Use the WebSphere Message Broker Explorer to view the status of resource
statistics collection in the Broker Resources view.
“Managing resources used by brokers” on page 1001
Manage the resources used by brokers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Administering Java applications
Manage the Java applications that are deployed to a broker.

About this task

You can deploy message flows that contain Java applications to a broker. The Java
code is run within a JVM that is created by the execution group. The JVM runs in
the same process as other broker components such as message parsing and nodes
that are not Java-based.

Administration of Java applications includes the following tasks:
v “Tuning JVM parameters”
v “Configuring classloaders for Java user-defined nodes”
v “Configuring classloaders for JavaCompute nodes” on page 1006

Tuning JVM parameters
About this task

Use the mqsichangeproperties command to tune the JVM parameters to ensure
that there are sufficient resources for all the Java applications that are deployed to
the execution group. For more details, see “mqsichangeproperties command” on
page 3756 and “JVM parameter values” on page 3813.

Configuring classloaders for Java user-defined nodes
About this task

Java user-defined nodes are manually installed onto a broker as either a PAR file
or a JAR file. Because PAR and JAR files are only loaded by the broker on startup,
the broker must be restarted. For more details, see “Packaging a Java user-defined
node” on page 3118.

A PAR file is given its own Java classloader, ensuring that the node classes are
isolated from any other node classes.

Chapter 8. Administering brokers and broker resources 1005

For more details, see “User-defined node class loading” on page 3120.

Configuring classloaders for JavaCompute nodes
About this task

A JavaCompute node is deployed to an execution group as part of a BAR file. A
JavaCompute node can specify a JavaClassLoader configurable service to be used
by the node. A JavaClassLoader configurable service defines the behavior of the
classloaders that are used by the node. For more details, see “JavaCompute node
classloading” on page 2635.

If a JavaCompute node specifies a JavaClassloader configurable service, you must
define a configurable service with the name specified by the node on the broker.
For more details, see “JavaCompute node classloading using a configurable
service” on page 2636.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“JavaCompute node classloading” on page 2635
Details the default Java classloader options and the precedence order of each type.
“JavaCompute node classloading using a configurable service” on page 2636
Details alternative configurable Java classloader options and the precedence order
of each type.
“User-defined node class loading” on page 3120
Details the Java classes packaging options and loading order precedence for
user-defined nodes.
Related tasks:
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Accessing Administration log information
Active brokers record information about their operations in the Administration log.
Access the events that are written by the broker by using the WebSphere Message
Broker Explorer and the WebSphere Message Broker Toolkit. For some actions, you
can also use the Administration API (also known as the CMP API).

About this task
v “Viewing Administration log information” on page 1007
v “Saving Administration log information” on page 1008
v “Clearing Administration log information” on page 1009
v “Changing Administration Log view preferences” on page 1010
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.

1006 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Administration Log view” on page 6840
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Viewing Administration log information
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.

About this task

Follow the instructions in this topic to use the WebSphere Message Broker
Explorer. If you prefer to use the CMP API, see “Developing applications that use
the Administration API” on page 956 and “Administration API” on page 3672.

Administration log information is written to the Administration Log view in the
WebSphere Message Broker Explorer. The Administration Log view displays
actions performed on the broker by all users. Alternatively, you can view the
results of deployment actions from a single user using the Deployment Log view
in the WebSphere Message Broker Toolkit, see “Deployment Log view” on page
6797.

The Administration Log view contains information about events that occur within
your brokers. These events can be information, errors, or warnings and relate to
your own actions. To view events for a particular broker, look for the name of the
broker in the Source column.

Each event contains the following information:
v Message: The event number.
v Source: Where the event has come from.
v TimeStamp: The date and time that the event occurred. Time stamps are taken

from the computer that is hosting the broker.
v Details: What has caused the event and what action is needed to rectify it.

You can only view Administration log information for a specific broker using the
WebSphere Message Broker Explorer if the broker is both running and connected.
Local brokers are automatically connected, but you must manually connect to
remote brokers.

Procedure
1. To view Administration log information in the WebSphere Message Broker

Explorer, ensure that the Administration Log view is visible. If the
Administration Log view is not visible, from the menu, click Window > Show
View > Administration Log.

2. Expand the Brokers folder, and select the broker with which you want to work.
The Administration log information for the selected broker is displayed in the
Administration Log view. The Administration log information is displayed in
time and date order.

Chapter 8. Administering brokers and broker resources 1007

3. Double-click the message to display the full details for a message. The message
is opened in a new window.

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Clearing Administration log information” on page 1009
Clear Administration log information to reduce the size of the log by using either
the WebSphere Message Broker Explorer or the CMP API.
“Saving Administration log information”
Save the Administration log information that is written to the Administration Log
view in the WebSphere Message Broker Explorer.
Related reference:
“Administration Log view” on page 6840
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.

Saving Administration log information
Save the Administration log information that is written to the Administration Log
view in the WebSphere Message Broker Explorer.

About this task

Administration log information is deleted automatically from the broker when the
broker restarts. You can save the log contents to file if you want to retain them.
You cannot save the Administration log information from the Deployment Log
view in the WebSphere Message Broker Toolkit.

Procedure
1. In the WebSphere Message Broker Explorer, expand the Brokers folder in the

Navigator view.
2. Select the broker with which you want to work, to display the Administration

log information in the Administration Log view.
3. Right-click in the Administration Log view, and click Save Log As.
4. Enter an appropriate directory in which to save the log information.
5. Enter a name for the log file, and click Save Log.

Results

Each message recorded in the Administration log is written to the text file with the
same information that is detailed in the Administration log itself.

1008 WebSphere Message Broker Version 7.0.0.8

To view the saved log, open the log file in an appropriate text editor.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Viewing Administration log information” on page 1007
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.
“Clearing Administration log information”
Clear Administration log information to reduce the size of the log by using either
the WebSphere Message Broker Explorer or the CMP API.
Related reference:
“Administration Log view” on page 6840
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.

Clearing Administration log information
Clear Administration log information to reduce the size of the log by using either
the WebSphere Message Broker Explorer or the CMP API.

About this task

Follow the instructions in this topic to use the WebSphere Message Broker Explorer
to clear the log. If you prefer to use the CMP API, see “Developing applications
that use the Administration API” on page 956 and “Administration API” on page
3672. You can empty the contents of the Deployment Log view in the WebSphere
Message Broker Toolkit by right-clicking in the Deployment Log view, and clicking
Clean Log. Emptying the contents of the Deployment Log view does not remove
the entries from the Administration log.

To clear all the Administration log information from the Administration log:

Procedure
1. Expand the Brokers folder in the Navigator view.
2. Select the broker with which you want to work, to display the Administration

log information in the Administration Log view.
3. Right-click in the Administration Log view, and click Clear Administration

Log.
If you have set the Broker Explorer preference to warn before deleting log events,
a prompt asks you to confirm deletion. Click OK.
If you have not set the Broker Explorer preference to warn before deleting log
events, the Administration log is cleared automatically.
All log entries will be deleted for this user.

Related concepts:

Chapter 8. Administering brokers and broker resources 1009

“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Viewing Administration log information” on page 1007
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.
“Saving Administration log information” on page 1008
Save the Administration log information that is written to the Administration Log
view in the WebSphere Message Broker Explorer.
Related reference:
“Administration Log view” on page 6840
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Changing Administration Log view preferences
You can change preferences for the Administration Log view by using the Broker
Explorer preferences page in the WebSphere Message Broker Explorer.

About this task

You can choose not to display a warning before deleting log events. The default is
to display a warning. You can also choose how long to wait for responses from the
broker after a deployment.

To change preferences:

Procedure
1. Click Window>Preferences.
2. Expand the Broker Explorer category in the left pane.
3. Make your selections.
4. Click OK.
Related tasks:
“Accessing Administration log information” on page 1006
Active brokers record information about their operations in the Administration log.
Access the events that are written by the broker by using the WebSphere Message
Broker Explorer and the WebSphere Message Broker Toolkit. For some actions, you
can also use the Administration API (also known as the CMP API).
Related reference:

1010 WebSphere Message Broker Version 7.0.0.8

“Administration Log view” on page 6840
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.

Changing the location of the work path
The work path directory is the location where a component stores internal data,
such as installation logs, component details, and trace output. The shared-classes
directory is also located in the work path directory and is used for deployed Java
code. If the work path directory does not have enough capacity, redirect the
directory to another file system that has enough capacity.

About this task

The work path is fixed at installation time so that WebSphere Message Broker can
always find the information that it needs, and always knows where to store new
information.

If you need to change the location (for example, if you do not have enough
capacity on the automatically-designated file system), do not change the path to
the directory; instead, redirect the old work path directory to a new location.

Changing the location of the work path on Windows systems
About this task

When you change the location of the work path, you mount the new partition at
the location of the old work path directory.

To change the location of the work path on Windows:

Procedure
1. Shut down all WebSphere Message Broker services and processes.
2. Create a new partition on the system. The new partition can be on the same

drive as the old work path, or on a different drive.
3. Locate the work path directory for your installation on the local system by

running the following command:
echo %MQSI_WORKPATH%

4. Copy the contents of the work path directory to the new partition.
5. Delete the contents of the old work path directory.
6. Open the Computer Management dialog: click Start > Settings > Control

Panel > Administrative Tools > Computer Management; the Computer
Management dialog opens.

7. In the left pane of the Computer Management dialog, click Disk
Management. The new partition that you added, and any existing partitions,
are listed in the right pane.

8. Right-click the new partition, then click Change Drive Letter and Paths. The
Change Drive Letter and Paths dialog opens.

9. Click Add. The Add Drive Letter or Path dialog opens.
10. Ensure that Mount in the following empty NTFS folder is selected, then

browse to the old work path location.

Chapter 8. Administering brokers and broker resources 1011

11. Click OK, then click OK again.

Results

Any files that WebSphere Message Broker creates in the work path location are
stored on the new partition.

Changing the location of the work path on Linux and UNIX
systems

About this task

When you change the location of the work path, you can either mount the new
partition at the location of the old work path directory, or you can replace the old
work path directory with a soft link that points to the new work path directory.

To change the location of the work path on UNIX and Linux:

Procedure
1. Shut down all WebSphere Message Broker services and processes.
2. Create a new directory on a suitable file system.
3. Locate the work path directory for your installation on the local system by

running the following command:
echo $MQSI_WORKPATH

4. Copy the contents of the work path directory to the new partition.
5. Delete the contents of the old work path directory.
6. Perform one of the following tasks so that the WebSphere Message Broker

installation uses the new work path location:
v Use the mount command to mount the new work path directory at the

location of the old work path directory.
v Delete the old work path directory and replace it with a soft link. Give the

soft link the same name as the old work path directory and point the link to
the new work path directory.

Results

Any files that WebSphere Message Broker creates in the work path location are
stored in the new location.
Related tasks:
“Can you see all of your files and folders?” on page 3351
How to show all files in Windows Explorer:
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

1012 WebSphere Message Broker Version 7.0.0.8

Backing up resources
Back up your broker components, and the working files associated with brokers,
the WebSphere Message Broker Explorer, and the WebSphere Message Broker
Toolkit, so that you can restore these resources if required.

About this task

Back up your broker components regularly to ensure that you can return to a
known operational state if necessary. In addition to configuration and operation
state, the broker maintains additional resources in its work path, and you can
request that these resources are also backed up.

Back up the workspaces and connection files that you have created in the
WebSphere Message Broker Explorer.

Back up the workspaces you have created in the WebSphere Message Broker
Toolkit; these resources contain your application development resources; for
example message flows and message sets. If you use a development repository to
store application resources, such as Rational ClearCase, see the documentation
associated with that repository to check how you can back up this data.

The following topics tell you how to back up and restore brokers and the
WebSphere Message Broker Toolkit workspace:
v “Backing up the broker”
v “Restoring the broker” on page 1015
v “Backing up the WebSphere Message Broker Explorer and WebSphere Message

Broker Toolkit workspace” on page 1016

On distributed systems, you can use the backed up components to restore the
broker only on an identical operating environment. The operating system must be
at the same level, and the broker and queue manager names must be identical.
Related concepts:
“Development repository” on page 45
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

Related tasks:
“Recovering after failure” on page 3574
Follow a set of procedures to recover after a serious problem.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Backing up the broker
Back up the broker configuration and all associated resources.

Before you begin

Before you start: Create the broker.

Chapter 8. Administering brokers and broker resources 1013

About this task

You can back up the broker and its resources to preserve the current state of the
broker configuration. You can use the backup file that is created to restore a broker
in an identical operating environment: the operating system must be at the same
level, and the broker and queue manager names must be identical.

You can run this command for a broker that is active. However, you must
not take a backup while the broker is processing configuration changes and
deployments; the backup file created might contain incomplete
information. If the file contains partial records, you cannot use it to restore
the broker at a later time.

To ensure that the backup is complete and correct, take a backup either
when the broker is not processing a configuration change (such as a
deployment or change property) or when the broker is stopped.

Procedure
1. If you want to back up an active broker, check that no configuration change

requests are in progress. For example, if you are changing broker properties, or
have initiated a deployment, wait for these actions to complete before you back
up the broker. Active message flows are unaffected by the backup process.
If you prefer, you can stop the broker before you take a backup by using the
mqsistop command.

2. Back up the broker. Specify the broker name and the location in which the
backup file is created. You can also optionally specify the name of the backup
file, and the name of a file to which a detailed trace is written.

v Linux UNIX Windows Run the mqsibackupbroker command,
specifying the broker name and the directory to which the backup file is
written.
For example, to back up a broker on Windows, enter the following
command:
mqsibackupbroker MB7BROKER -d c:\MQSI\BACKUP

v z/OS Customize and submit the JCL member BIPBUBK.
3. When the command has completed successfully, you can continue to use the

broker. If you stopped the broker, restart it by using the mqsistart command.

Results

The current broker configuration is saved in the backup file. Keep the file safe so
that you can restore the broker at a later date if required.
Related tasks:
“Restoring the broker” on page 1015
Restore a broker configuration that you backed up previously.
“Customizing the broker JCL” on page 625
This subtask is part of the larger task of creating a broker on z/OS.
Related reference:
“mqsibackupbroker command” on page 3720
Use the mqsibackupbroker command to back up the current configuration of a
broker.
“mqsirestorebroker command” on page 3952
Use the mqsirestorebroker command to restore the broker configuration from a

1014 WebSphere Message Broker Version 7.0.0.8

backup file.
“Sample BIPBUBK file” on page 4004
The sample BIPBUBK file that is shipped with WebSphere Message Broker is
included here for your reference.
“Sample BIPRSBK file” on page 4012
The sample BIPRSBK file that is shipped with WebSphere Message Broker is
included here for your reference.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Restoring the broker
Restore a broker configuration that you backed up previously.

Before you begin

Before you start: Back up the broker.

About this task

You can restore a broker on a computer that has an identical configuration by
using the backup file that you created. The operating system must be at the same
level, and the broker and queue manager names must be identical.

Procedure
1. If you have deleted the broker and it no longer exists, or if you are restoring it

on a different computer, create it by using the mqsicreatebroker command. Use
the same name and parameters that you used for the broker that you backed
up, including the name of the queue manager.

2. If the broker is running, stop it by using the mqsistop command. If you intend
to restore common configuration information from other brokers that you have
configured on this computer, you must also stop all the brokers that share this
common information. For example, you can restore profile information from
common files.

3. Restore the broker. Specify the broker name and the name and location of the
backup file. If you want to restore common configuration information, or if you
want a trace of the actions taken, specify the appropriate parameters for your
platform.

v Linux UNIX Windows Run the mqsirestorebroker command.
For example, to restore a broker on Windows, enter the following command:
mqsirestorebroker WBRK_BROKER -d c:\MQSI\BACKUP -a mybroker.zip

v z/OS Customize and submit the JCL member BIPRSBK.
4. When the command has completed successfully, start the broker by using the

mqsistart command.

What to do next

Next: The broker configuration has been restored; you can continue your work
with this broker.
Related tasks:

Chapter 8. Administering brokers and broker resources 1015

“Backing up the broker” on page 1013
Back up the broker configuration and all associated resources.
“Customizing the broker JCL” on page 625
This subtask is part of the larger task of creating a broker on z/OS.
Related reference:
“mqsibackupbroker command” on page 3720
Use the mqsibackupbroker command to back up the current configuration of a
broker.
“mqsirestorebroker command” on page 3952
Use the mqsirestorebroker command to restore the broker configuration from a
backup file.
“Sample BIPBUBK file” on page 4004
The sample BIPBUBK file that is shipped with WebSphere Message Broker is
included here for your reference.
“Sample BIPRSBK file” on page 4012
The sample BIPRSBK file that is shipped with WebSphere Message Broker is
included here for your reference.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Backing up the WebSphere Message Broker Explorer and
WebSphere Message Broker Toolkit workspace

The WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
workspaces contain your personal settings and data, such as message flow and
message set resources. You can have multiple workspaces in different locations,
and you can also have references to projects that are in other locations, therefore
consider all these locations when you back up your resources.

About this task

The default workspace directory for the WebSphere Message Broker Explorer
depends on the platform on which it is running:

v Windows On Windows XP and Windows Server 2003: C:\Documents and
Settings\<userid>\Application Data\IBM\MQ Explorer\<server project>\.

v Windows On Windows Vista and Windows Server 2008, the default workspace
directory is created at C:\Users\user_ID\IBM\MQ Explorer\<server project>\.

v Linux On Linux, the default workspace directory is created at
/home/user_ID/IBM/MQ Explorer\/<server project>/.

where user_ID is the user name with which you are logged on. Back up files in
these locations, and in all other locations in which you have saved workspace files.

The default workspace directory for the WebSphere Message Broker Toolkit
depends on the platform on which it is running:

v Windows On Windows XP and Windows Server 2003: C:\Documents and
Settings\user_ID\IBM\wmbt70\workspace.

v Windows On Windows Vista and Windows Server 2008: C:\Users\user_ID\IBM\
wmbt70\workspace.

1016 WebSphere Message Broker Version 7.0.0.8

v Linux On Linux: /home/user_ID/IBM/wmqi70/workspace.

where user_ID is the user name with which you are logged on. Back up files in
these locations, and in all other locations in which you have saved workspace files.

The WebSphere Message Broker Toolkit workspace directory contains a directory
called .metadata, which contains your personal settings and preferences for the
WebSphere Message Broker Toolkit. If the .metadata directory gets corrupted, you
lose these settings, and the WebSphere Message Broker Toolkit reverts to the
default layout and preferences. If you have not backed up the .metadata directory,
you must manually set all preferences again, and import all projects, such as
message flow projects, that were displayed in the Broker Development view. To
back up the .metadata directory, take a copy of the directory.

The WebSphere Message Broker Toolkit workspace also contains a directory for
each project (for example, a message flow project) that you have created in the
WebSphere Message Broker Toolkit. These directories contain your data, which you
must back up.

Use one of the following methods to back up the data in your workspace; the
instructions are the same for both the WebSphere Message Broker Explorer and the
WebSphere Message Broker Toolkit.

Procedure
v Export your working projects. You can export the projects directly as a

compressed file. For further information, see Exporting in the Eclipse Workbench
User Guide.

v Copy the project directories from the workspace directory to another location.
v WebSphere Message Broker Explorer only: Export all .broker connection files to

save the details of connections to all your brokers.
v WebSphere Message Broker Toolkit only: Take copies of all your BAR files to

back up their contents. Include all the associated source files when you build
your broker archive (BAR) files; you can then save all content by saving only the
BAR file. To add resources to a BAR file that is ready for deployment, select
Include source files, which adds the message flow and message set source files,
and the compiled files.

What to do next

If you want to restore the resources, copy the directories back into your workspace
directory and import the projects. For instructions, see Importing in the Eclipse
Workbench User Guide.

Related concepts:
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:

Chapter 8. Administering brokers and broker resources 1017

“Backing up resources” on page 1013
Back up your broker components, and the working files associated with brokers,
the WebSphere Message Broker Explorer, and the WebSphere Message Broker
Toolkit, so that you can restore these resources if required.
Related information:
Workbench User Guide - Customizing the Workbench

1018 WebSphere Message Broker Version 7.0.0.8

Chapter 9. Developing message flow applications

Develop message flows to process your business messages and data.

About this task

WebSphere Message Broker provides several ways in which you can develop the
message flow applications that you need to support your business processes. Your
client applications can use many different techniques to interact with a broker, and
the message flows that you have deployed to it.

The following steps provide a typical route that you might take through this
section of the information center to understand the concepts associated with
message flows, develop your own, and establish the ways in which your client
applications can use message flows. When you are familiar with the basic concepts
and behavior, you can progress to more complex options by adding further
resources for your message flows to use.

Procedure
1. If you are not familiar with WebSphere Message Broker, read “Processing

messages” on page 1021. This section defines the concepts associated with
message flows, and is essential reading whatever your planned use of the
broker. It also covers the general processing performed by a broker on all
messages, regardless of origin. For example, it explains how a broker handles
errors in your message flows, and how you can set up coordinated
transactions.

2. When you have reached an understanding of what a message flow is, and how
it can process your messages and data, you can review the different ways in
which you can create your own message flows. Choose from the following
options:
v “Developing message flow applications by using patterns” on page 1309. The

supplied patterns provide reusable solutions that encapsulate a tested
approach to solving a common architecture, design, or deployment task in a
particular context. Much of the work of design and development has been
done for you when you use a pattern.
You can use these patterns unchanged, or modify them to meet your own
requirements. You must create additional resources to complement the
pattern and complete the solution.

v “Developing message flow applications by using samples” on page 1406. The
supplied samples provide tested message flows that focus on a particular
feature or function supported by WebSphere Message Broker. They are more
limited in scope than patterns, but provide comprehensive examples of
typical message processing in particular scenarios. They are stand-alone
applications; you can use them without having to create and configure
additional resources.
Because they are created to demonstrate a particular facet of the product, the
samples are not always designed to use the preferred techniques for a
particular task. Therefore, use them as examples to learn how particular
functions work, not as complete production-level solutions. You might find
them helpful as a starting point to developing your own message flows, or
as part of a larger solution.

1019

v “Developing message flow applications from a wizard” on page 1408. You
can run one of several Quick Start wizards in the WebSphere Message Broker
Toolkit. These wizards create message flows and associated resources that are
dependent on particular requirements; for example, adapter connections. You
can use the messages flows created by these wizards as the basis for other
message flows that change or add to the original result.

v “Developing message flow applications from scratch” on page 1423. If you
prefer, you can create a message flow by using the basic building blocks
available in the Message Flow editor. You decide which nodes are
appropriate, and how to connect them together, to provide the processing
that your messages require.

3. Connect your business process applications and data to your message flows.
You can use a number of different protocols to communicate with the broker.
You can also interact from your message flows with other products and
services. Find out what options are available in “Connecting client
applications” on page 1537.

4. You can design your message flows to handle your messages and data in
different ways. You can choose from a range of nodes that support:
v “Routing messages” on page 2209
v “Transforming and enriching messages” on page 2227
v “Processing events” on page 2717
v “Handling errors in message flows” on page 2823

5. Message flows can process self-defining messages, predefined messages, or
both. Predefined messages might provide extra value in your environment, and
offer additional processing options within your message flows, Learn about
these benefits, and how you can define your own message models, in
“Constructing message models” on page 2838.

6. Your message processing environment might need some special processing that
is not provided by WebSphere Message Broker. You can explore further options
in “Developing user-defined extensions” on page 2970, and learn about how to
customize your broker in additional ways.

What to do next

When you develop your message flows, and when you run them in the broker,
you can tune the way the message flows work to improve message flow
performance. For further information, see “Message flow performance” on page
3260.

When you create a project, it is recommended to avoid using spaces in the project
name. Although using spaces in the name is valid, you might encounter problems.
For example: A scenario where an XML schema file located in project X references
an XML schema file project Y, either through import or include statements. If the
referenced schema in the project contain spaces in project name, the name does not
resolve, and you receive errors
Related tasks:
Chapter 10, “Testing and debugging message flow applications,” on page 3143
Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

1020 WebSphere Message Broker Version 7.0.0.8

Processing messages
Process your business messages and data by interacting with a broker, which you
can configure to provide services and to communicate with other applications and
systems.

About this task

You can use WebSphere Message Broker to integrate client applications that use
different protocols and message formats. A broker provides a flexible environment
that you can configure to route and transform messages in many ways from one
application to all other applications. In many cases, you can reuse existing
applications with little or no change, to use the services provided by a broker.

A broker manages three sets of resources to integrate your applications, messages,
and data:
v Message flows
v Nodes
v Message models

You can configure message flows to support your applications that use one or both
of the supported communication models, point-to-point and publish/subscribe.
You can connect your client applications to the message flows that are running in a
broker by using one of several supported protocols.

This section introduces you to conceptual details of message flows, message
models, and their associated resources. It also describes the default behavior taken
by a broker when it runs message flows. Read this section to gain an overall
understanding of applications, messages, and brokers, and understand the generic
tasks that are independent of the protocol your applications use.
v “Message flows overview” on page 1022
v “Message modeling” on page 1154
v “Message flow behavior” on page 1277

Some of the examples used in these topics have characteristics that apply to
specific environments; these characteristics are clearly stated where applicable.
Exceptions to the default behavior of the broker for particular protocols, or
message formats, are stated in the sections where they apply. Additional
characteristics of specific protocols of messages are also described where they
apply.
Related tasks:
“Developing message flow applications by using patterns” on page 1309
Create resources that are used to solve a specific business problem by using
patterns.
“Developing message flow applications by using samples” on page 1406
Use the samples to learn more about the features that are available in WebSphere
Message Broker, and how to use them.
“Developing message flow applications from a wizard” on page 1408
A Quick Start wizard sets up the basic resources that are required to develop a
message flow application. The wizard sets up and gives names to containers for
the resources in which you then develop your message flow.
“Developing message flow applications from scratch” on page 1423
Design, create, and configure message flows by using the WebSphere Message
Broker Toolkit.

Chapter 9. Developing message flow applications 1021

“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Message flows overview
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

You define a message flow in the WebSphere Message Broker Toolkit by including
a number of message flow nodes, each of which represents a set of actions that
define a processing step. The way in which you join the message flow nodes
together determine which processing steps are carried out, in which order, and
under which conditions. The path that you create between one node and another is
known as a connection.

A message flow must include an input node that provides the source of the
messages that are processed. You can process the message in one or more ways,
and optionally deliver it through one or more output nodes; see “Connecting client
applications” on page 1537. The message is received as a bit stream, and is
converted by a parser into a tree structure that is used internally in the message
flow. Before the message is delivered to a final destination, it is converted back
into a bit stream. For more information about these conversions, see “Parsers” on
page 1072 and “The message tree” on page 1041.

When you want to exchange messages between multiple applications, you might
find that the applications do not understand or expect messages in the same
format. You might must provide some processing between the sending and
receiving applications that ensures that both can continue to work unchanged, but
can exchange messages successfully. For more information about the options
available, see “Transforming and enriching messages” on page 2227.

You define the processing that is required when you create and configure a
message flow. You can include built-in nodes, nodes that are supplied by a vendor,
nodes that you have created yourself (user-defined nodes), or other message flows
(known as subflows).

The processing that you set up determines what actions are completed on a
message when it is received, the order in which the actions are completed, and the
final destinations of the message. All these actions manage the route that a
message takes through a message flow; more information about these actions is
provided in “Routing messages” on page 2209. To complete more complex
processing involving more than one message, you can use the nodes described in
“Processing events” on page 2717.

You can configure additional properties to make your message flow transactional,
or multithreaded. You can also add error paths that ensure every message is
handled in an appropriate way.

1022 WebSphere Message Broker Version 7.0.0.8

When you want to run a message flow to process messages, you deploy it to a
broker, where it is run in an execution group.

The mode in which your broker is working can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See “Restrictions that apply in each operation mode” on page 3657.

The following topics describe the concepts that you must understand to design,
create, and configure a message flow and its associated resources:
v “Message flow nodes” on page 1024
v “Message flow connections” on page 1032
v “Message flow projects” on page 1035
v “Broker schemas” on page 1036
v “Client application programming interfaces” on page 1038
v “The message tree” on page 1041
v “Parsers” on page 1072
v “Properties” on page 1143
v “Impact analysis: analyzing the effects of planned changes to your applications”

on page 1150
v “Data conversion” on page 1151
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Message flow behavior” on page 1277
Message flow behavior is initially defined by the broker, but you can change or
add to that behavior in some situations.
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.
“Properties” on page 1143
You can view and change properties that define broker characteristics, and those
properties of associated resources such as message flows.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.

Chapter 9. Developing message flow applications 1023

Message flow nodes
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.

A message flow node receives a message, performs a set of actions against the
message, and optionally passes the original message, and none or more other
messages, to the next node in the message flow.

A message flow node has a fixed number of input and output points known as
terminals. You can make connections between the terminals to define the routes
that a message can take through a message flow. Message flow nodes are
displayed in the node palette that is associated with the Message Flow editor. The
palette is arranged in categories, which group together nodes that provide related
processing; for example, transformation.

Input nodes do not have input terminals. The message flow starts when a message
is retrieved from an input device; for example, a WebSphere MQ queue. The
message flow ends when none or more output messages have been sent by one or
more output nodes, and control returns back to the input node. The input node
either commits or rolls back the transaction. Input and output nodes can be
protocol-specific, to interact with particular systems such as Web Services.

Most nodes are processing nodes, that you can include between your input and
output nodes and connect together to define the flow of control. These nodes
typically transform a message from one format to another, or route a message
along a particular path, or provide more complex options such as aggregation or
filtering.

You can configure a node by setting or changing the values for its properties. Some
nodes have mandatory properties, for which you must set a value. Other properties
must have a value, but are assigned a default value which you can leave
unchanged. The remaining properties are optional properties; no value is required.

When you develop a message flow, the way in which you set the properties of the
nodes in that flow influences the way in which the messages are processed by that
flow. For example, by setting properties that define input and output
WebSphere MQ queue names, you determine where the message flow receives the
message from, and where it delivers the message.

You can also configure nodes by using promoted properties; promote one or more
node properties to become properties of the message flow that contains those
nodes. You can then change these properties at the flow level, rather than having
to update one or more individual nodes. You can also promote equivalent
properties from more than one node to the same message flow property; for
example, you might use this technique to set, at the flow level, the name of the
database that all the nodes in the message flow must connect to.

A subset of node properties is configurable properties; that is, you can change their
values when you deploy the message flow to a broker for execution. You might
find this ability useful if you deploy a message flow to more than one broker, and
want it to behave in a slightly different way on each broker. For example, when
you deploy the message flow to a test broker, you can set a configurable property
to force the flow to interact with a test database. When you deploy the same
message flow to a production broker, you can set the same property to the value of
a production database, without having to update the message flow itself.

1024 WebSphere Message Broker Version 7.0.0.8

The mode that your broker is working in can affect the types of node that you can
use; see “Restrictions that apply in each operation mode” on page 3657.

You can add nodes of three types into your message flows:

Built-in node
A built-in node is a message flow node that is supplied by WebSphere
Message Broker. The built-in nodes provide input and output,
manipulation and transformation, decision making, collating requests, and
error handling and reporting functions.

For information about all of the built-in nodes supplied by WebSphere
Message Broker, see “Built-in nodes” on page 4293.

For information about the nodes that you can use to connect WebSphere
Message Broker to your applications, see “Nodes for connectivity” on page
1028.

User-defined node
A user-defined node is an extension to the broker that provides a new
message flow node in addition to the nodes that are supplied with the
product. A user-defined node must be written to the user-defined node API
provided by WebSphere Message Broker for both C and Java languages.
The following sample demonstrates how you can write your own nodes in
both C and Java languages.
v User-defined Extension

You can view information about samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit or the online information center. You can run samples only when
you use the information center that is integrated with the WebSphere
Message Broker Toolkit.

Subflow
A subflow is a directed graph that is composed of message flow nodes and
connectors and is designed to be embedded in a message flow or in
another subflow. To connect your subflow to other nodes in the main flow,
you can add Input and Output nodes to the subflow. A subflow must
include at least one Input node or one Output node. A subflow can be
executed by a broker only as part of the message flow in which it is
embedded, and therefore cannot be independently deployed.

A message is received by an Input node and processed according to the
definition of the subflow. That might include being stored through a
Warehouse node, or delivered to another message target, for example
through an MQOutput node. If required, the message can be passed
through an Output node back to the main flow for further processing.

The subflow, when it is embedded in a main flow, is represented by a
subflow node, which has a unique icon. The icon is displayed with the
correct number of terminals to represent the Input and Output nodes that
you have included in the subflow definition.

The most common use of a subflow is to provide processing that is
required in many places within a message flow, or is to be shared between
several message flows. For example, you might code some error processing
in a subflow, or create a subflow to provide an audit trail (storing the
entire message and writing a trace entry).

For more information, see “Subflows” on page 1030.

Chapter 9. Developing message flow applications 1025

A node does not always produce an output message for every output terminal:
often it produces one output for a single terminal based on the message received
or the result of the operation of the node. For example, a Filter node typically
sends a message on either the True terminal or the False terminal, but not both.

If you have connected more than one terminal to another node, the processing in
the node determines the order in which the message is propagated to the nodes
that it is connected to; you cannot change this order. The node sends the output
message on each terminal, but sends on the next terminal only when the
processing has completed for the current terminal.

Updates to a message are never propagated to nodes which have been previously
executed, only to nodes that follow the node in which the update has been made.
The order in which the message is propagated to the different output terminals is
determined by the broker; you cannot change this order. The only exception to this
rule is the FlowOrder node, in which the terminals indicate the order in which the
message is propagated to each.

All built-in nodes include error handling as part of their processing. If an error is
detected within the node, the message is propagated to the failure terminal. What
happens then depends on the structure of your message flow. You can use only the
basic error handling provided by the broker, or you can enhance your flow by
adding error processing nodes and flows to provide more comprehensive failure
processing. For more information about these options, see “Handling errors in
message flows” on page 2823.

The message flow can accept a new message for processing only when all paths
through the message flow (that is, all connected nodes from all output terminals)
have been completed, and control has returned to the input node which commits
or rolls back the transaction.

The following sample uses environment variables in the XML_Reservation sample
to store information that has been taken from a database table and to pass that
information to a node downstream in the message flow.
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flow projects” on page 1035
A message flow project is a specialized container in which you create and maintain
all the resources associated with one or more message flows.
“Message flow node palette” on page 1027
The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.
“Message flow connections” on page 1032
A connection is an entity that connects an output terminal of one message flow
node to an input terminal of another. The connection represents the flow of control
and data between two message flow nodes.

1026 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Defining a promoted property” on page 1297
When you create a message flow, you can promote properties from individual
nodes in that message flow to the message flow level. Properties promoted in this
way override the property values that you have set for the individual nodes.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flow projects and files” on page 6822
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
Related information:
Java user-defined extensions API

Message flow node palette:

The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.

When you first open the WebSphere Message Broker Toolkit, the default drawers
contain built-in nodes that are related in function. For example, one drawer
contains all the nodes that handle input and output to WebSphere MQ queues.
Another drawer, Transformation, groups the nodes that you can use to convert the
input message into a different form, including the Compute and JavaCompute
nodes.

You can drag the nodes that you use most often into the Favorites drawer for easy
access. If you create your own nodes, you can also add them to the palette. You
can drag a node from the palette onto the canvas, and create a connection between
two nodes. You can also use the palette to create an annotation on a message flow
or node.

Right-click the palette to add a selected node to the canvas, or customize the
appearance and behavior of the palette.

Use the Customize Palette dialog box to reorder node categories, set the drawer
behavior for individual categories, and rename or hide nodes or categories.

You cannot move a category above the Favorites category. You can hide the
Favorites category, but you cannot delete or rename it.

Use the Palette Settings dialog box to set the palette layout, determine the behavior
of palette drawers, and choose a particular font.

The following topics explain how to change the palette layout and settings:
v “Changing the palette layout” on page 1490
v “Changing the palette settings” on page 1490

Chapter 9. Developing message flow applications 1027

v “Customizing the palette” on page 1491
Related tasks:
“Adding nodes to the Favorites category on the palette” on page 1492
The nodes on the palette are organized in categories. The first category is
Favorites, which is usually empty. You can drag the nodes that you use most often
to the Favorites category.
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Creating a user-defined node in the WebSphere Message Broker Toolkit” on page
3081
Create the representation of a user-defined node created in Java and C only, in the
WebSphere Message Broker Toolkit.
“Adding annotations to a message flow or node” on page 1531
You can add annotations to a message flow, a node, or multiple nodes. You can use
these annotations to record reminders, issues arising during the development of a
message flow, or informal documentation to facilitate team development.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Plug-in Development projects and files” on page 6825

Nodes for connectivity:

WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.

You can connect WebSphere Message Broker to your applications by adding the
appropriate nodes to your message flow. The nodes you use can be tailored to
support the protocols and subsystems that your applications already use.
WebSphere Message Broker supplies nodes to support different protocols and
subsystems; you can also create your own nodes to support additional protocols
and subsystems if required.
v Nodes are supplied to support the protocols that are described in “Connecting

client applications” on page 1537; for example, WebSphere MQ and HTTP.
v Nodes are supplied to support the subsystems listed in “External systems and

resources” on page 61.

Within your message flow, you can include the following types of nodes to
communicate with your applications. The icons for the nodes in each group
described are based on a common appearance, which is shown with that group.

Input nodes
The input node reads data from a subsystem or input application, which
might be in the form of a message, or a record (for example, from a file).
The input node calls a parser to interpret the data and create an internal
message tree structure. The node can split the input message into records if
required. When the message is ready, the input node sends it to the rest of
the message flow for processing.

1028 WebSphere Message Broker Version 7.0.0.8

Input nodes are represented by icons that conform to this template:

Output nodes
An output node takes data from the message tree, calls a parser to serialize
the tree into the appropriate message or record format, and writes out the
message or record to one or more specified end applications or subsystems.
If appropriate, you can configure your message flow to continue processing
a message after it has generated one or more output messages through
output nodes.

Output nodes are represented by icons that conform to this template:

Reply nodes
A reply node is a specialized form of an output node. Typically, the reply
node is associated with an input node in the same flow, and uses context
information from that input node to decide where to send the reply.
Depending on the protocol of the input node, the context information
might be created for you by that node; for other protocols, the context
information might be contained within the message itself.

Reply nodes are represented by icons that conform to this template:

Get and receive nodes
A get (receive) node reads extra data from a subsystem, and includes it in
the current message tree, during message flow processing.

Get nodes are represented by icons that conform to this template:

Request nodes
A request node writes a request to an external system, reads the response,
and incorporates some or all that response data into the current message
tree.

Request nodes are represented by icons that conform to this template:

Asynchronous request and response nodes
These two nodes are specialized form of a request node, in which you can
generate a request and handle the response in a second message flow.
Typically, you use these nodes when you are making a request that might
take some time to complete. By using this technique, you can have several
outstanding requests, without suspending flow processing.

Asynchronous request nodes are represented by icons that conform to this

template:

Chapter 9. Developing message flow applications 1029

Asynchronous response nodes are represented by icons that conform to

this template:

You can connect applications that use different protocols by choosing an
appropriate mix of input and output nodes. You must also include nodes that can
transform the input message into the appropriate output format between the input
and output nodes.

Because of the extent of the support provided by the nodes in WebSphere Message
Broker, you can configure your brokers to act as clients to many different
subsystems, and to interact with them based on the contents of the message tree
created for each individual input message.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Processing messages” on page 1021
Process your business messages and data by interacting with a broker, which you
can configure to provide services and to communicate with other applications and
systems.
“Developing message flow applications from scratch” on page 1423
Design, create, and configure message flows by using the WebSphere Message
Broker Toolkit.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Subflows
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.

You can define a subflow once, and use it in more than one message flow, and in
more than one message flow project. Therefore, a subflow provides the following
benefits:
v Reusability and reduced development time.
v Consistency and increased maintainability of your message flows (consider a

subflow as analogous to a programming macro, or to inline code that is written
once but used in many places).

v Flexibility to tailor a subflow to a specific context (for example, by updating the
output queue or data source information).

However, remember that a subflow is not a single node, and its inclusion increases
the number of nodes in the message flow, which might affect its performance.

1030 WebSphere Message Broker Version 7.0.0.8

Consider these examples of subflow use:
v You can define a subflow that provides a common sequence of actions that

applies to several message flows if an error is encountered. For example, you
might have a common error routine that writes the message to a database
through the Warehouse node, and puts it to a queue for processing by an error
recovery routine. The use of this routine in multiple message flows, or in several
places within one message flow, provides an efficient and consistent use of
resources and avoids reinventing such routines every time an error is
encountered.

v You might want to perform a common calculation on messages that pass
through several different message flows; for example, you might access currency
exchange rates from a database and apply them to calculate prices in several
different currencies. You can include the currency calculator subflow in each of
the message flows in which it is appropriate.

Use the Passthrough node to enable version control of a subflow at run time. By
including a Passthrough node, you can add a label to your message flow or
subflow. By combining this label with keyword replacement from your version
control system, you can identify which version of a subflow is included in a
deployed message flow. You can use this label for your own purposes. If you have
included the correct version keywords in the label, you can see the value of the
label:
v Stored in the broker archive (BAR) file, by using the mqsireadbar command
v As last deployed to a particular broker, on the properties of a deployed message

flow in the WebSphere Message Broker Toolkit
v In the runtime environment, if you enable user trace for that message flow

The message that it propagates on its Out terminal is the same message that it
received on its In terminal; for example, if you develop an error processing
subflow to include in several message flows, you might want to modify that
subflow. However, you might want to introduce the modified version initially to
just a subset of the message flows in which it is included. Set a value for the
instance of the Passthrough node that identifies which version of the subflow you
have included.

The use of subflows is demonstrated in the following samples:
v Error Handler
v Coordinated Request Reply

Error Handler uses a subflow to trap information about errors and store the
information in a database. Coordinated Request Reply uses a subflow to
encapsulate the storage of the ReplyToQ and ReplyToQMgr values in a WebSphere
MQ message so that the processing logic can be reused in other message flows,
and to allow alternative implementations to be substituted.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 9. Developing message flow applications 1031

“Promoted properties” on page 1145
A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Adding a subflow” on page 1501
In a message flow, you can include an embedded message flow, also known as a
subflow. For example, you might define a subflow that provides error handling,
and include it in a message flow connected to a failure terminal on a node that can
generate an error in some situations.
“Defining a promoted property” on page 1297
When you create a message flow, you can promote properties from individual
nodes in that message flow to the message flow level. Properties promoted in this
way override the property values that you have set for the individual nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Message flow connections
A connection is an entity that connects an output terminal of one message flow
node to an input terminal of another. The connection represents the flow of control
and data between two message flow nodes.

Most nodes have one input terminal, and many have more than one output
terminal. You can connect an output terminal to more than one target node, so that
the same message can be processed in a number of different ways. For example,
you might want to send the same information to more than one remote application
for further processing.

The connections of the message flow, represented by black lines in the Message
Flow editor, determine the path that a message takes through the message flow.
You can add bend points to the connection to alter the way in which it is
displayed.

For a description of bend points, see “Bend points” on page 1033. For a description
of terminals, see “Message flow node terminals” on page 1034.
Related concepts:
“Bend points” on page 1033
A bend point is added to a connection between two message flow nodes where the
line that represents the connection changes direction.
“Message flow node terminals” on page 1034
A terminal is the point at which one node in a message flow is connected to
another node.

1032 WebSphere Message Broker Version 7.0.0.8

“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
“Message flow projects” on page 1035
A message flow project is a specialized container in which you create and maintain
all the resources associated with one or more message flows.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flow projects and files” on page 6822
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Bend points:

A bend point is added to a connection between two message flow nodes where the
line that represents the connection changes direction.

Use bend points to change the visual path of a connection to display node
alignment and processing logic more clearly and effectively. Bend points have no
effect on the behavior of the message flow; they are visual modifications only.

A connection is initially made as a straight line between the two connected nodes
or brokers. Use bend points to move the representation of the connection, without
moving its start and end points.
Related concepts:
“Message flow projects” on page 1035
A message flow project is a specialized container in which you create and maintain
all the resources associated with one or more message flows.
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
“Message flow node terminals” on page 1034
A terminal is the point at which one node in a message flow is connected to
another node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Message flow projects and files” on page 6822
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Chapter 9. Developing message flow applications 1033

Message flow node terminals:

A terminal is the point at which one node in a message flow is connected to
another node.

Use terminals to control the route that a message takes, depending on whether the
operation that is performed by a node on that message is successful. Terminals are
wired to other node terminals by using message flow node connections to indicate
the flow of control.

Every built-in node has a number of terminals to which you can connect other
nodes. Input nodes (for example, MQInput) do not have input terminals; all other
nodes have at least one input terminal through which to receive messages to be
processed. Most built-in nodes have failure terminals that you can use to manage
the handling of errors in the message flow. Most nodes have output terminals
through which the message can flow to a subsequent node.

If you have any user-defined nodes, these might also have terminals that you can
connect to other built-in or user-defined node terminals.

Dynamic terminals are terminals that you can add to certain nodes after you have
added them to a message flow in the Message Flow editor. For example, you can
add dynamic output terminals to the PHPCompute, Route, and DatabaseRoute
nodes, or you can add dynamic input terminals to the Collector node. You can also
delete and rename dynamic terminals. If a node has five or more terminals, they
are displayed in a group. For example, the following example shows a node with

more than four output terminals.
Related concepts:
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
“Bend points” on page 1033
A bend point is added to a connection between two message flow nodes where the
line that represents the connection changes direction.
Related tasks:
“Using dynamic terminals” on page 1518
You can add, rename, and remove dynamic terminals on a node in the Message
Flow editor.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“DatabaseRoute node” on page 4373
Use the DatabaseRoute node to route messages using information from a database

1034 WebSphere Message Broker Version 7.0.0.8

in conjunction with XPath expressions.
“Route node” on page 4669
Use the Route node to direct messages that meet certain criteria down different
paths of a message flow.
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Message flow projects
A message flow project is a specialized container in which you create and maintain
all the resources associated with one or more message flows.

You can create a message flow project to contain a single message flow and its
resources, or you can group together related message flows and resources in a
single message flow project to provide an organizational structure to your message
flow resources.

Message flow project resources are created as files, and are displayed in the project
in the Broker Development view. These resources define the content of the message
flow, and additional objects that contain detailed configuration information. For
example, a project might contain ESQL modules or message mappings, used by
one or more nodes in the message flow.

Import one of the following samples to see how the message flow resources of the
sample are stored in a message flow project. If the sample has a message set, the
message set resources are stored in a Message Set project.
v Video Rental
v Comma Separated Value (CSV)

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
“Message flow connections” on page 1032
A connection is an entity that connects an output terminal of one message flow
node to an input terminal of another. The connection represents the flow of control
and data between two message flow nodes.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

Chapter 9. Developing message flow applications 1035

Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flow projects and files” on page 6822
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Broker schemas
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.

The broker schema is defined as the relative path from the project source directory
to the flow name. When you first create a message flow project, a default broker
schema named (default) is created within the project.

You can create new broker schemas to provide separate symbol spaces within the
same message flow project. A broker schema is implemented as a folder, or
subdirectory, within the project, and provides organization within that project. You
can also use project references to spread the scope of a single broker schema across
multiple projects to create an application symbol space that provides a scope for all
resources associated with an application suite.

If you create a new broker schema while in category mode, the empty schema is
not visible in the Broker Development view. To show the empty schema in the

Broker Development view, click Hide Categories on the toolbar.

A broker schema name must be a character string that starts with a Unicode
character followed by zero or more Unicode characters or digits, and the
underscore. You can use the period to provide a structure to the name, for example
Stock.Common. A directory is created in the project directory to represent the
schema, and if the schema is structured using periods, further subdirectories are
defined. For example, the broker schema Stock.Common results in a directory Common
within a directory Stock within the message flow project directory.

If you create a resource (for example, a message flow) in the default broker schema
within a project, the file or files associated with that resource are created in the
directory that represents the project. If you create a resource in another broker
schema, the files are created within the schema directory.

For example, if you create a message flow in the default schema in the message
flow project Project1, its associated files are stored in the Project1 directory. If you
create another message flow in the Stock.Common broker schema within the project
Project1, its associated files are created in the directory Project1\Stock\Common.

Because each broker schema represents a unique name scope, you can create two
message flows that share the same name within two broker schemas. The broker
schemas ensure that these two message flows are recognized as separate resources.
The two message flows, despite having the same name, are considered unique.

1036 WebSphere Message Broker Version 7.0.0.8

If you move a message flow from one project to another, you can continue to use
the message flow within the original project if you preserve the broker schema. If
you do this, you must update the list of dependent projects for the original project
by adding the target project. If, however, you do not preserve the broker schema,
the flow becomes a different flow because the schema name is part of the fully
qualified message flow name, and it is no longer recognized by other projects. This
action results in broken links that you must manually correct. For further
information about correcting errors after moving a message flow, see “Moving a
message flow” on page 1439.

Do not move resources by moving their associated files in the file system; you
must use the WebSphere Message Broker Toolkit to move resources to ensure that
all references are corrected to reflect the new organization.

The following scope and reuse conditions apply when you create functions,
procedures, and constants in a broker schema:

Functions

v Functions are locally reusable and can be called by module-scope
subroutines or mappings within the same schema.

v Functions are globally reusable and can be called by other functions or
procedures in ESQL or mapping files within any schema defined in the
same or another project.

Procedures

v Procedures are locally reusable and can be called from module-scope
subroutines in ESQL files within the same schema.

v Procedures are globally reusable and can be called by other functions or
procedures in ESQL files within any schema defined in the same or
another project.

Procedures cannot be used in mapping files.

Constants

v Constants are locally reusable and can be used where they are defined in
any ESQL or mapping file within the same broker schema.

v Constants are not globally reusable; you cannot use a constant that is
declared in another schema.

If you want to reuse functions or procedures globally:
v Specify the path of the function or procedure:

– If you want to reuse a function or procedure in an ESQL file, either provide a
fully-qualified reference, or include a PATH statement that defines the path.
If you define the path, code the PATH statement in the same ESQL file as that
in which the function is coded, but not within any MODULE.

– If you want to reuse a function in a mapping file, do one of the following:
- Qualify the function in the Composition Expression editor.
- Select Organize Schema References in the outline view. This detects

dependent PATHs and automatically updates the reference.
- Select Modify Schema References in the outline view. You can then select

the schema in which the function is defined.

(You cannot reuse a procedure in a mapping file.)
v Set up references between the projects in which the functions and procedures are

defined and used.

Chapter 9. Developing message flow applications 1037

Related concepts:
“By name linking” on page 43
You identify objects using a combination of a namespace and a name, referred to as
a fully qualified name. The use of fully qualified names, called by name linking,
makes it easy to identify and locate objects, and to correct broken references.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Creating a broker schema” on page 1429
To organize your message flow project resources, and to define the scope of
resource names to ensure uniqueness, you can create broker schemas. A default
schema is created when you create the message flow project, but you can create
additional schemas.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Client application programming interfaces
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.

You can use one of the following options for converting message formats in your
message flows:

Mappings
The Message Mapping editor in the WebSphere Message Broker Toolkit is a
graphical interface that displays a visual representation of messages. You
can use this editor to:
v Drag fields from a source message to a target message
v Map data from databases to the message structure
v Apply functions

You can use mappings in the DataDelete, DataInsert, DataUpdate,
Mapping, and Warehouse nodes.

Use this option if the transformations you want to perform are not
complex, or you do not want to use a programming language.

ESQL Use ESQL to manipulate data in both messages and database tables. ESQL

1038 WebSphere Message Broker Version 7.0.0.8

is a programming language that is specific to WebSphere Message Broker,
and based on SQL. You can code ESQL statements to create, reference, and
update message fields and database content. ESQL provides a rich set of
statements and functions that you can use to achieve sophisticated
transformations.

You can use ESQL in the Compute, Database, and Filter nodes.

Use this option if the transformations you want to perform are complex,
and your message flow designers are familiar with procedural
programming languages.

Java Use the Java programming language to route or transform your messages.
You can use XPath to create, reference, and update message fields. You can
also use JDBC to access database tables.

You can use Java only in the JavaCompute node.

Use this option if your message flow designers are familiar with the Java
programming language.

XSL style sheets
Use standard XSL style sheets to convert XML messages to other formats
supported by the broker.

You can use XSL only in theXSLTransform node.

Use this option if your message flows are processing XML messages, and
your message flow designers are familiar with the XSL style sheets.

PHP Use the PHP programming language to route or transform your messages.
You can use PHP to create, reference, and update message fields.

You can use PHP only in the PHPCompute node.

Use this option if your message flow designers are familiar with the PHP
scripts and the programming language.

When you configure your message flows and nodes, you create a set of files that
are stored in your workspace.

The files created are of the following types:
v A message flow definition file, <message_flow_name>.msgflow. This file is

mandatory, and is created automatically for you. It contains details about the
message flow characteristics and contents; for example, what nodes it includes
and its promoted properties.

v One or more message mappings files, <message_flow_name><_nodename>.msgmap.
A unique file is required for each node in the message flow that uses the
Message Mapping editor. This file is required only if your message flow contains
one or more of the nodes that you can customize by using mappings. You can
create this file yourself, or you can cause it to be created for you by requesting
specific actions against a node.
You can customize the following built-in nodes by specifying how input values
map to output values.

Node Usage

“DataDelete
node” on page
4382

Use this node to delete one or more rows from a database table without creating an output
message.

Chapter 9. Developing message flow applications 1039

Node Usage

“DataInsert
node” on page
4386

Use this node to insert one or more rows in a database table without creating an output message.

“DataUpdate
node” on page
4390

Use this node to update one or more rows in a database table without creating an output
message.

“Mapping
node” on page
4571

Use this node to construct output messages and populate them with information that is new,
modified from the input message, or taken from a database. You can also use the Mapping node
to update, insert, or delete rows in a database table.

“Warehouse
node” on page
4963

Use this node to store all or part of a message in a database table without creating an output
message.

You can use built-in ESQL functions and statements to define message
mappings, and you can use your own ESQL functions.
The “Extract node” on page 4412 also uses mappings to create an output
message that contains a subset of the contents of the input message. However,
the Extract node is deprecated in WebSphere Message Broker Version 6.0 and
later releases. Although message flows that contain an Extract node remain valid
in WebSphere Message Broker Version 6.0, redesign your message flows to
replace Extract nodes by Mapping nodes to take advantage of later
enhancements.

v One or more ESQL resources files, <message_flow_name>.esql. An ESQL file is
required only if your message flow includes one or more of the nodes that must
be customized by using ESQL modules, or contains functions that are called by
your message mappings. You can create this file yourself, or you can cause it to
be created for you by requesting specific actions against a node.
You can customize the following built-in nodes by creating free-form ESQL
statements that use the built-in ESQL statements and functions, and your own
user-defined functions:
– Compute
– Database
– Filter

v One or more Java programming files, <message_flow_name>.java. A Java file is
required only if your message flow includes one or more JavaCompute nodes.
You can create this file yourself, or you can cause it to be created for you by
requesting specific actions against a node.

v One or more XSL stylesheets, <message_flow_name>.xslt. An XSLT file is
required only if your message flow includes one or more XSLTransform nodes.
You can create this file yourself, or you can cause it to be created for you by
requesting specific actions against a node.

v One or more PHP scripts, <message_flow_name>.php. A PHP script file is
required only if your message flow includes one or more PHPCompute nodes.
You can create this file yourself, or you can cause it to be created for you by
requesting specific actions against a node.

You can include other files in your message flow project so that they are deployed
to the broker with your message flow. The broker stores these extra files but does
not process them in any way.

For details of how to create the files to support these transform options, and create
their content, see “Transforming and enriching messages” on page 2227.

1040 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.
Related reference:
“Transformation interfaces” on page 4980
View the reference material associated with the different ways in which you can
transform messages in message flows.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

The message tree
A message tree is a structure that is created, either by one or more parsers when
an input message bit stream is received by a message flow, or by the action of a
message flow node.

A message is used to describe:
v A set of business data that is exchanged by applications
v A set of elements that are arranged in a predefined structure
v A structured sequence of bytes

WebSphere Message Broker routes and manipulates messages after converting
them into a logical tree. The process of conversion, called parsing, makes obvious
the content and structure of a message, and simplifies later operations. After the
message has been processed, the parser converts it back into a bit stream.

WebSphere Message Broker supplies a range of parsers to handle the many
different messaging standards in use. See Parsers.

After a message has been parsed, it can be processed in a message flow.

The logical tree has contents that are identical to the message, but the logical tree is
easier to manipulate in the message flow. The message flow nodes provide an
interface to query, update, or create the content of the tree.
Related concepts:

Chapter 9. Developing message flow applications 1041

“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Logical tree structure:

The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.

When a message arrives at a broker, it is received by an input node that you have
configured in a message flow. Before the message can be processed by the message
flow, the message must be interpreted by one or more parsers that create a logical
tree representation from the bit stream of the message data.

The tree format contains identical content to the bit stream from which it is
created, but it is easier to manipulate in the message flow. Many of the built-in
message flow nodes provide an interface for you to query and update message
content in the tree, and perform other actions against messages and databases to
help you to provide the required function in each node.

Several interfaces are provided:
v ESQL, a programming language that you can code in the Compute, Database,

and Filter nodes.
v Java, a programming language that you can code in the JavaCompute node.
v Mappings, a graphical method of achieving transformation from input to output

structures, available in the DataDelete, DataInsert, DataUpdate, Mapping, and
Warehouse nodes.

v XSL, a language for transforming XML that you can use in the XSLTransform
node.

v PHP, a scripting language that you can code in the PHPCompute node.

The tree structure that is created by the parsers is largely independent of any
message format (for example, XML). The exception to this is the subtree that is
created as part of the message tree to represent the message body. This subtree is
message dependent, and its content is not further described here.

1042 WebSphere Message Broker Version 7.0.0.8

The input node creates this message assembly, which consists of four trees:
v “Message tree structure” on page 1045
v “Environment tree structure” on page 1055
v “Local environment tree structure” on page 1056
v “Exception list tree structure” on page 1066

The first of these trees is populated with the contents of the input message bit
stream, as described in “How the message tree is populated” on page 1047; the
remaining three trees are initially empty.

Each of the four trees created has a root element (with a name that is specific to
each tree). Each tree is made up of a number of discrete pieces of information
called elements. The root element has no parent and no siblings (siblings are
elements that share a single parent). The root is parent to a number of child
elements. Each child must have a parent, can have zero or more siblings, and can
have zero or more children.

The four trees are created for both built-in and user-defined input nodes and
parsers.

The input node passes the message assembly that it has created to subsequent
message processing nodes in the message flow:
v All message processing nodes can read the four trees.
v You can code ESQL in the Database and Filter nodes, or use mappings in the

nodes that support that interface to modify the Environment and
LocalEnvironment trees only.

v The Compute node differs from other nodes in that it has both an input message
assembly and at least one output message assembly. Configure the Compute
node to determine which trees are included in the output message assembly; the
Environment tree is an exception in that it is always retained from input
message assembly to output message assembly.
To determine which of the other trees are included, you must specify a value for
the Compute mode property of the node (displayed on the Advanced tab). The
default action is for only the message to be created. You can specify any
combination of message, LocalEnvironment, and ExceptionList trees to be
created in the output message assembly.
If you want the output message assembly to contain a complete copy of the
input message tree, you can code a single ESQL SET statement to make the copy.
If you want the output message to contain a subset of the input message tree,
code ESQL to copy those parts that you want. In both cases, your choice of
Compute mode must include Message.
If you want the output message assembly to contain all or part of the input
LocalEnvironment or ExceptionList tree contents, code the appropriate ESQL to
copy information you want to retain in that tree. Your choice of Compute mode
must include LocalEnvironment, or Exception, or both.
You can also code ESQL to populate the output message, Environment,
LocalEnvironment, or ExceptionList tree with information that is not copied
from the input tree. For example, you can retrieve data from a database, or
calculate content from the input message data.

v You can produce similar results in the JavaCompute node. See “Writing Java” on
page 2638 for more information.

v You can also achieve results like these in the PHPCompute node. See “Using
PHP” on page 2670 for more information.

Chapter 9. Developing message flow applications 1043

Related concepts:
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.
“How the message tree is populated” on page 1047
The message tree is initially populated by the input node of the message flow.
“Environment tree structure” on page 1055
The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Manipulating other parts of the message tree” on page 2452
You can access message tree headers, the properties tree, the local environment
tree, the environment tree and the exception list tree.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“User-defined nodes” on page 6415
You can define your own nodes to use in WebSphere Message Broker message
flows.
“MQRFH2 header” on page 6397
The MQRFH2 header is used to pass messages to and from a message broker that
belongs to WebSphere Message Broker.

1044 WebSphere Message Broker Version 7.0.0.8

Message tree structure:

The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.

The root of a message tree is called Root. The message tree is always present, and
is passed from node to node in a single instance of a message flow.

The message tree includes all the headers that are present in the message, in
addition to the message body. The tree also includes the Properties subtree
(described in “Parsers” on page 1072), if that is created by the parser. If a supplied
parser has created the message tree, the element that represents the Properties
subtree is followed by zero or more headers.

If the message has been received across the WebSphere MQ Enterprise Transport or
WebSphere MQ Mobile Transport, the first header (the second element) must be
the MQMD. Any additional headers that are included in the message appear in the
tree in the same order as in the message. The last element beneath the root of the
message tree is always the message body.

If a user-defined parser has created the message tree, the Properties tree, if present,
is followed by the message body.

The message tree structure is shown in the following section. If the input message
is not a WebSphere MQ message, the headers that are shown might not be present.
If the parser that created this tree is a user-defined parser, the Properties tree might
not be present.

Root

BodyOther headersMQMDProperties

Element1/Format1

Element3/Field3Element2/Field2

The Body tree is a structure of child elements that represents the message content
(data), and reflects the logical structure of that content. The Body tree is created by
a body parser (either a supplied parser or a user-defined parser), as described in
“Parsers” on page 1072.

Each element in the parsed tree is one of three types:

Name element
A name element has a string associated with it, which is the name of the
element. An example of a name element is XMLElement, as described in
“XML element” on page 4267. A name element also has a second string
associated with it, which is the namespace of the element; this string might
be empty.

Chapter 9. Developing message flow applications 1045

Value element
A value element has a value associated with it. An example of a value
element is XMLContent, as described in “XML content” on page 4267.

Name-value element
A name-value element is an optimization of the case where a name
element contains only a value element and nothing else. The element
contains both a name and a value. An example of a name-value element is
XMLAttribute, as described in “XML attribute” on page 4264.

For information about how the message tree is populated, see “How the message
tree is populated” on page 1047.

Properties folder: The Properties folder is the first element of the message tree and
holds information about the characteristics of the message.

The root of the Properties folder is called Properties. It is the first element under
Root. All message trees that are generated by the built-in parsers include a
Properties folder for the message. If you create your own user-defined parser, you
can choose whether the parser creates a Properties folder. However, for consistency,
you should include this action in the user-defined parser.

The Properties folder contains a set of standard properties that you can manipulate
in the message flow nodes in the same way as any other property. Some of these
fields map to fields in the supported WebSphere MQ headers, if present, and are
passed to the appropriate parser when a message is delivered from one node to
another.

For example, the MQRFH2 header contains information about the message set,
message type, and message format. These values are stored in the Properties folder
as MessageSet, MessageType, and MessageFormat. To access these values using
ESQL or Java in the message processing nodes, refer to these values in the
Properties folder; do not refer directly to the fields in the headers from which they
are derived.

The Properties parser ensures that the values in the header fields match the values
in the Properties folder on input to, and output from, every node. For any field, if
only one header is changed (the Properties header or a specific message header),
that value is used. If both the Properties header and the specific message header
are changed, the value from the Properties folder is used.

When the message flow processing is complete, the Properties folder is discarded.
Related concepts:
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

1046 WebSphere Message Broker Version 7.0.0.8

“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Accessing the Properties tree” on page 2460
The Properties tree has its own correlation name, Properties, and you must use this
in all ESQL statements that refer to or set the content of this tree.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

How the message tree is populated:

The message tree is initially populated by the input node of the message flow.

When the input node receives the input message, it creates and completes the
Properties tree (the first subtree of the message tree). See “Message tree structure”
on page 1045.

The node then examines the contents of the input message bit stream and creates
the remainder of the message tree to reflect those contents. This process depends to
some extent on the input node itself, which is governed by the transport across
which the message is received:

WebSphere MQ Enterprise Transport protocol
If your application communicates with the broker across these protocols,
and your message flow includes the corresponding MQInput node, all
messages that are received must start with a Message Queue Message
Descriptor (MQMD) header. If a valid MQMD is not present at the start of
the message, the message is rejected, and no further processing takes place.

The input node first invokes the MQMD parser and creates the subtree for
that header.

A message can have zero or more additional headers following the
MQMD. These headers are chained together, with the Format field of one
header defining the format of the following header, up to and including

Chapter 9. Developing message flow applications 1047

the last header, which defines the format of the message body. If an
MQRFH and an MQRFH2 header exist in the chain, the name and value
data in either of these two headers can also contain information about the
format of the following data. If the value that is specified in Format is a
recognized parser, this value always takes precedence over the name and
value data.

The broker invokes the appropriate parser to interpret each header,
following the chain in the message. Each header is parsed independently.
The fields in a single header are parsed in an order that is governed by the
parser. You cannot predict the order that is chosen, but the order in which
fields are parsed does not affect the order in which the fields are displayed
in the header.

The broker ensures that the integrity of the headers that precede a message
body is maintained. The format of each part of the message is defined,
either by the Format field in the immediately preceding header (if the
following part is a recognized WebSphere MQ format), or by the values
that are set in the MQRFH or MQRFH2 header:
v The format of the first header is known because it must be MQMD.
v The format of any subsequent header in the message is set in the Format

field in the preceding header.
v The format of the body corresponds to the message domain and the

parser that must be invoked for the message body (for example,
XMLNSC). This information is set either in the MQRFH or MQRFH2
header, or in the Message Domain property of the input node that
receives the message.

This process is repeated as many times as required by the number of
headers that precede the message body. You do not need to populate these
fields yourself; the broker handles this sequence for you.

The broker completes this process to ensure that Format fields in headers
correctly identify each part of the message. If the broker does not complete
this process, WebSphere MQ might be unable to deliver the message. The
message body parser is not a recognized WebSphere MQ header format,
therefore the broker replaces this value in the last headers Format field
with the value MQFMT_NONE. The original value in that field is stored in
the Domain field in the MQRFH or MQRFH2 header to retain the
information about the contents of the message body.

For example, if the MQRFH2 header immediately precedes the message
body, and its Format field is set to XMLNSC, which indicates that the
message body must be parsed by the XMLNSC parser, the MQRFH2
Domain field is set to XMLNSC, and its Format field is reset to
MQFMT_NONE.

These actions might result in information that is stored explicitly by an
ESQL or Java expression being replaced by the broker.

The CodedCharSetId and Encoding fields are not populated in the same
way as the Format field. In particular, the message body is not used to
determine the CodedCharSetId and Encoding values. Rather, these values
affect the way in which the message body is written. This can cause
unexpected results if an intermediate header (for example MQRFH2) is
removed without updating the preceding header in the chain with the
removed header values.

1048 WebSphere Message Broker Version 7.0.0.8

When all the headers have been parsed, and the corresponding sub-trees
have been created in the message tree, the input node associates the
specified parser with the message body. Specify the parser that is to be
associated with the message body content, either in a header in the
message (for example, the <mcd> folder in the MQRFH2 header), or in the
input node properties (if the message does not include headers). The input
node makes the association as described in the following list:
v If the message has an MQRFH or MQRFH2 header, the domain that is

identified in the header (either in Format or the name and value data)
determines the parser that is associated with this message.

v If the message does not have an MQRFH or MQRFH2 header, or if the
header does not identify the domain, the Message Domain property of the
input node indicates the domain of the message, and the parser that is
to be used. You can specify a user-defined domain and parser.

v If the message domain cannot be identified by header values or by the
Message Domain property of the input node, the message is handled as a
binary object (BLOB). The BLOB parser is associated with the message.
A BLOB can be interpreted as a string of hexadecimal characters, and
can be modified or examined in the message flow by specifying the
location of the subset of the string.

By default, the message body is not parsed straight away, for performance
reasons. The message body might not need to be parsed during the
message flow. It is parsed only when a reference is made to its contents.

For example, the message body is parsed when you refer to a field in the
message body, for example: Root.XMLNSC.MyDoc.MyField. Depending on the
paths that are taken in the message flow, this can take place at different
points. This parsing when first needed approach is also referred to as
"partial parsing" or "on-demand parsing", and in typical processing does
not affect the logic of a message flow. However, there are some
implications for error handling scenarios; see “Handling errors in message
flows” on page 2823.

If you want a message flow to accept messages from more than one
message domain, include an MQRFH2 header in your message from which
the input nodes extract the message domain and related message definition
information (message set, message type, and message format).

If you set up the message headers or the input node properties to identify
a user-defined domain and parser, the way in which it interprets the
message and constructs the logical tree might differ from that described
here.

WebSphere Broker File Transport, WebSphere Broker Adapters Transport,
WebSphere MQ Web Services Transport, and WebSphere Broker JMS Transport
protocols

If your application communicates with the broker across these supported
protocols, and your message flow includes the corresponding input nodes,
messages that are received do not have to include a particular header. If
recognized headers are included, the input node invokes the appropriate
parsers to interpret the headers and to build the relevant parts of the
message tree, as described for the other supported protocols.

If there are no headers, or these headers do not specify the parser for the
message body, set the input node properties to define the message body
parser. If you do not set the node properties in this way, the message is
treated as a BLOB. You can specify a user-defined parser.

Chapter 9. Developing message flow applications 1049

The specified parser is associated with the message body by the input
node (in the same way as it is for the WebSphere MQ Enterprise Transport
protocol), and by default the message body is not parsed immediately.

If you set up the message headers or the input node properties to identify
a user-defined domain and parser, the way in which it interprets the
message and constructs the logical tree might differ from that described
here.

All other protocols
If you want your message flow to accept messages from a transport
protocol for which WebSphere Message Broker does not provide built-in
support, or you want it to provide some specific processing on receipt of a
message, use either the Java or the C language programming interface to
create a new user-defined input node.

This interface does not automatically generate a Properties subtree for a
message (this subtree is discussed in “Message tree structure” on page
1045). A message does not need to have a Properties subtree, but you
might find it useful to create one to provide a consistent message tree
structure, regardless of input node. If you are using a user-defined input
node, you must create a Properties subtree in the message tree yourself.

To process messages that do not conform to any of the defined message
domains, use the C language programming interface to create a new
user-defined parser.

Refer to the node interface to understand how it uses parsers, and whether
you can configure it to modify its behavior. If the node uses a user-defined
parser, the tree structure that is created for the message might differ
slightly from that created for built-in parsers. A user-defined input node
can parse an input message completely, or it can participate in partial
parsing in which the message body is parsed only when it is required.

You can also create your own output and message processing nodes in C
or Java.

Properties versus MQMD folder behavior for various transports

Differences exist in the way the Properties folder and the MQMD folder are treated
with respect to which folder takes precedence for the same fields. This treatment is
characterized by the transport type (for example, HTTP or WebSphere MQ) that
you use.

When the message flow is sourced by an MQInput node, you have an MQMD to
parse. In this case, the Properties folder is sourced by the MQMD values and so
the MQMD folder takes precedence over the Properties folder in terms of value
propagation between the folders. This scenario means that you can perform ESQL,
for example, SET OutputRoot.MQMD.CorrelId and this command updates the
Properties folder value.

When the message flow is sourced from an input node that is not the MQInput
node (such as the HTTPInput node or a user-defined input node), no MQMD is
parsed. In this scenario, the Properties folder is not sourced from an input MQMD;
it is created and populated with transport values that come from other transport
specific headers. When you create an MQMD folder in a message flow that was
not sourced from the WebSphere MQ transport, the MQMD header does not take

1050 WebSphere Message Broker Version 7.0.0.8

precedence over the Properties folder because the WebSphere MQ transport did
not populate the Properties folder. Therefore, in this case, the Properties folder
overwrites any values in MQMD.

The Properties folder is constructed and represents a message received on the
transport. In this scenario two entirely different transports are being used which
have different meanings and, therefore, different requirements of the Properties
folder. When sourced from an HTTPInput node, the HTTP headers have control
over the Properties folder for like fields. When sourced from an MQInput node the
MQMD has control over the Properties folder for like fields.

Therefore, when you add an MQMD folder to a tree that was created by the HTTP
Transport, this MQMD folder does not have control over the Properties folder, and
the value propagation direction is not MQMD to Properties, it is Properties to
MQMD. The correct approach is to set the replyIdentifier field of the Properties
folder and to use it to populate the MQMD:
SET OutputRoot.Properties.ReplyIdentifier = X’ ’;

The behavior is not unique to just the CorrelId to ReplyIdentifier fields. It applies
for all like fields between the MQMD and Properties folder:
v CorrelId

v Encoding

v CodedCharSetId

v Persistence

v Expiry

v Priority

In summary:
1. When your message flow is sourced by an MQInput node, the MQMD takes

precedence over the Properties folder in terms of value propagation between
the folders.

2. When your message flow is sourced from an input node that is not the
MQInput node (such as the HTTPInput node or a user-defined input node), the
MQMD header does not take precedence over Properties folder .

3. When an MQMD folder is added in a tree that was created by the HTTP
Transport, this MQMD does not have control over the Properties folder and the
value propagation direction is not MQMD to Properties; it is Properties to
MQMD.

Example
SET OutputRoot.Properties = InputRoot.Properties;
SET OutputRoot.MQMD.Version = 2;
SET OutputRoot.MQMD.CorrelId = X’4d454e53414a453320202020202020202020202020202020’;
SET OutputRoot.MQMD.Encoding = 785;
SET OutputRoot.MQMD.CodedCharSetId = 500;
SET OutputRoot.MQMD.Persistence = 1;
SET OutputRoot.MQMD.Expiry = 10000;
SET OutputRoot.MQMD.Priority = 9;
SET OutputRoot.BLOB.BLOB = X’01’;

When sourced from an HTTPInput node none of these changes take effect and the
MQMD output from the Compute node is:
(0x01000000):MQMD = (

(0x03000000):Version = 2
(0x03000000):CorrelId = X’00’

Chapter 9. Developing message flow applications 1051

(0x03000000):Encoding = 546
(0x03000000):CodedCharSetId = 1208
(0x03000000):Persistence = FALSE
(0x03000000):Expiry = -1
(0x03000000):Priority = 0

Related concepts:
“Logical tree structure” on page 1042
The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.
“Environment tree structure” on page 1055
The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“User-defined nodes” on page 6415
You can define your own nodes to use in WebSphere Message Broker message
flows.
“MQRFH2 header” on page 6397
The MQRFH2 header is used to pass messages to and from a message broker that
belongs to WebSphere Message Broker.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.

Message tree contents after an exception:

The contents of the message tree are updated if an exception is raised.

1052 WebSphere Message Broker Version 7.0.0.8

If no exception occurs while processing the message, the tree structure and content
received by an individual node is determined by the action of previous nodes in
the flow. If an exception occurs in the message flow, the content of the four trees
depends on the following factors:
v If the exception is returned to the input node, and the input node Catch terminal

is not connected, the trees are discarded. If the message is in a transaction, it is
returned to the input queue for further processing. When the message is
processed again, a new tree structure is created. If the message is not in a
transaction, it is discarded.

v If the exception is returned to the input node and the Catch terminal is
connected, the message and local environment trees that were created originally
by the input node, and propagated through the Out terminal, are restored, and
any updates that you made to their content in the nodes that followed the input
node are lost. The environment tree is not restored, and its contents are
preserved. If the nodes following the input node include a Compute node that
creates a new local environment or message tree, those trees are lost. The
exception list tree reflects the one or more exceptions that have been recorded.

v If the exception is caught in the message flow by a TryCatch node, the message
and local environment trees that were previously propagated through the Try
terminal of the TryCatch node are restored and propagated through the Catch
terminal. Any updates that you made to their content in the nodes that followed
the TryCatch node are lost. The environment tree is not restored, and its contents
are preserved. If the nodes following the TryCatch node include a Compute
node that creates a new local environment or message tree, those trees are lost.
The exception list tree reflects the one or more exceptions that have been
recorded.

Exception handling paths in a message flow: Exception handling paths start at a
failure terminal (most message processing nodes have these), the Catch terminal of
an input node, a TryCatch node, or an AggregateReply node, but are no different
in principle from a normal message flow path. Such a flow consists of a sequence
of nodes connected together by the designer of the message flow. The exception
handling paths differ in the kind of processing that they do to record or react to
the exception. For example, they might examine the exception list to determine the
nature of the error, and take appropriate action or log data from the message or
exception.

The local environment and message tree that are propagated to the exception
handling message flow path are those at the start of the exception path, not those
at the point when the exception is thrown. The following figure illustrates this
point:

v A message (M1) and local environment (L1) are being processed by a message
flow. They are passed through the TryCatch node to Compute1.

v Compute1 updates the message and local environment and propagates a new
message (M2) and local environment (L2) to the next node, Compute2.

TryCatch

M1
L1

M1
L1

A
B

M2
L2

Compute1 Compute2

Chapter 9. Developing message flow applications 1053

v An exception is thrown in Compute2. If the failure terminal of Compute2 is not
connected (point B), the exception is propagated back to the TryCatch node, but
the message and local environment are not. The exception handling path starting
at point A has access to the first message and local environment, M1 and L1.
The environment tree is also available and retains the content it had when the
exception occurred.

v If the failure terminal of Compute2 is connected (point B), the message and local
environment M2 and L2 are propagated to the node connected to that failure
terminal. The environment tree is also available and retains the content it had
when the exception occurred.

Related concepts:
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.
“Environment tree structure” on page 1055
The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Accessing the ExceptionList tree using ESQL” on page 2471
The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“TryCatch node” on page 4949
Use the TryCatch node to provide a special handler for exception processing.

1054 WebSphere Message Broker Version 7.0.0.8

Environment tree structure:

The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.

The root of the environment tree is called Environment. This tree is always present
in the input message; an empty environment tree is created when a message is
received and parsed by the input node. You can use this tree as you choose, and
create both its content and structure.

WebSphere Message Broker uses fields in the Environment tree in only two
situations. (Contrast this with the “Local environment tree structure” on page 1056,
which the broker uses in many situations):
v If you have requested data collection for message flow accounting and statistics,

and have indicated that accounting origin basic support is required, the broker
checks for the existence of the field Environment.Broker.AccountingOrigin. If the
field exists, the broker uses its value to set the accounting origin for the current
data record. For further information about the use of this field, see “Setting
message flow accounting and statistics accounting origin” on page 3290.

v If you have activated a message flow to emit monitoring events the broker stores
correlation attributes in the Environment tree. For further information, see
“Correlation and monitoring events” on page 6778

The environment tree differs from the local environment tree in that a single
instance of it is maintained throughout the message flow. If you include a
Compute node, a Mapping node, or a JavaCompute node in your message flow,
you do not have to specify whether you want the environment tree to be included
in the output message. The environment tree is included automatically, and the
entire contents of the input environment tree are retained in the output
environment tree, subject to any modifications that you make in the node. Any
changes that you make are available to subsequent nodes in the message flow, and
to previous nodes if the message flows back (for example, to a FlowOrder or
TryCatch node).

If you want to create your own information, create it in the environment tree in a
subtree called Variables.

The following figure shown an example of an environment tree:

bread countrywine

Variables

Environment

colors

currencyname

cheese

You could use the following ESQL statements to create the content shown above.

Chapter 9. Developing message flow applications 1055

When the message flow processing is complete, the Environment tree is discarded.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Local environment tree structure”
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Accessing the environment tree” on page 2469
The environment tree has its own correlation name, Environment, and you must
use this name in all ESQL statements that refer to, or set, the content of this tree.
“Setting message flow accounting and statistics accounting origin” on page 3290
When you request accounting origin support for collecting message flow
accounting and statistics data on the mqsichangeflowstats command, you must
also configure your message flows to provide the correct identification values that
indicate what the data is associated with.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Local environment tree structure:

The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.

The root of the local environment tree is called LocalEnvironment. This tree is
always present in the input message, it is created when a message is received by
the input node. Some input nodes create local environment fields, others leave it
empty.

The local environment tree is made up of the following structure:

SET Environment.Variables =
ROW(’granary’ AS bread, ’riesling’ AS wine, ’stilton’ AS cheese);

SET Environment.Variables.Colors[] =
LIST{’yellow’, ’green’, ’blue’, ’red’, ’black’};

SET Environment.Variables.Country[] = LIST{ROW(’UK’ AS name, ’pound’ AS currency),
ROW(’USA’ AS name, ’dollar’ AS currency)};

1056 WebSphere Message Broker Version 7.0.0.8

v Anything in the format of
LocalEnvironment.Destination.output_or_request_node_name, for example;
LocalEnvironment.Destination.Email, decides what happens when information is
going into an output or request node.

v Anything in the format of
LocalEnvironment.WrittenDestination.output_or_request_node_name, for
example; LocalEnvironment.WrittenDestination.FTE, gives you information about
the processed output of an output or a request node.

v Anything in the format of LocalEnvironment.input_node_name.input, for
example; LocalEnvironment.Adapter.Input, contains information that has been
stored by an input node.

Use the local environment tree to store variables that can be referred to and
updated by message processing nodes that occur later in the message flow. You
can also use the local environment tree to define destinations (that are internal and
external to the message flow) to which a message is sent. WebSphere Message
Broker also stores information in LocalEnvironment in some circumstances, and
references it to access values that you might have set for destinations. (Contrast
this to the Environment tree structure, which the broker uses only in specific
situations, see “Environment tree structure” on page 1055.)

The following figure shows an example of the local environment tree structure. The
children of Destination are protocol-dependent.

In the tree structure shown, LocalEnvironment has several children:

LocalEnvironment.Variables
This subtree is optional. If you create local environment variables, store
them in a subtree called Variables. It provides a work area that you can use
to pass information between nodes. This subtree is never inspected or
modified by any supplied node.

Variables in the local environment can be changed by any subsequent
message processing node, and the variables persist until the node that
created them goes out of scope.

The variables in this subtree are persistent only within a single instance of
a message flow. If you have multiple instances of a message passing
through the message flow, and need to pass information between them,
you must use an external database.

Chapter 9. Developing message flow applications 1057

LocalEnvironment.Destination

Destination

HTTPFTE RouterList CORBA CICS

Defaults

File SOAP MQ JMSDestinationList

DestinationDataDestinationDataDestinationData

Email TCPIP

This subtree consists of a number of children that indicate the transport
types to which the message is directed (the Transport identifiers), or the
target Label nodes that are used by a RouteToLabel node.
v Transport information

Transport information is used by some input and output nodes,
including Email, File, FTE, HTTP, JMS, MQ, SOAP, and TCPIP.
LocalEnvironment.Destination.CICS

If the message flow includes a CICSRequest node, you can override the
following properties with elements in this subtree:
– Program name
– Commarea length
– Mirror transaction ID
– Set EIBTRNID only
– Message domain
– Message set
– Message type
– Message format
– Message coded character set ID
– Message encoding

For more information, see “Local environment overrides for the
CICSRequest node” on page 2191.
You can also set LocalEnvironment values for CICS channels and
containers. For more information, see “COMMAREA or channel data
structures” on page 2183.
LocalEnvironment.Destination.CORBA

If the message flow includes a CORBARequest node, you can override
its Operation name property by specifying a value in the following
location:
$LocalEnvironment/Destination/CORBA/Request/OperationName

For more information about the operation name, see “CORBARequest
node” on page 4349.
LocalEnvironment.Destination.Email

If the message flow includes an EmailOutput node, then information
defined in this subtree will specify or override the SMTP server
connection information and attachments associated with each email sent
by the node. Multiple attachments can be specified for inclusion in the
email sent, including the specification of the attachment name, content,
and type. See “EmailOutput node” on page 4400.
LocalEnvironment.Destination.File

1058 WebSphere Message Broker Version 7.0.0.8

If the message flow includes a FileOutput node, you can override its
directory and name properties with elements in this subtree. See “Using
local environment variables with file nodes” on page 1820.
LocalEnvironment.Destination.FTE

If the message flow includes an FTEOutput node, you can override its
properties with elements in this subtree. See “Using local environment
variables with file nodes” on page 1820.
LocalEnvironment.Destination.HTTP

If the message flow starts with an HTTPInput node, a single name
element HTTP is added to Destination. The element
HTTP.RequestIdentifier is created and initialized so that it can be used
by an HTTPReply node. You can also create other fields in the HTTP
structure for use by the HTTPRequest node; for example, the URL of the
service to which the request is sent. For more information, see Local
environment overrides in the topic “HTTPRequest node” on page 4488,
and examples in “Populating Destination in the local environment tree”
on page 2467.
LocalEnvironment.Destination.JMSDestinationList

A JMSOutput node can be configured to send to multiple JMS Queues or
to publish to multiple JMS Topics using a destination list created in the
local environment by a transformation node.
The JMSOutput node searches the local environment for data elements
called DestinationData under the folder Destination.JMSDestinationList.
The node sends the JMS message to each DestinationData entry found in
that folder. See the example in “Populating Destination in the local
environment tree” on page 2467.
LocalEnvironment.Destination.MQ

If the message flow includes an MQOutput node, each element is a
name element, MQ (A deprecated alternative exists, called
MQDestinationList. Use MQ for all new message flows). If more than one
element exists, each is processed sequentially by the node. See the
example in “Populating Destination in the local environment tree” on
page 2467.
You can configure MQOutput nodes to examine the list of destinations
and send the message to those destinations, by setting the property
Destination Mode to Destination List. If you do so, you must create this
subtree and its contents to define those destinations, giving it the name
Destination. If you do not do so, the MQOutput node cannot deliver the
messages.
If you prefer, you can configure the MQOutput node to send messages
to a single fixed destination, by setting the property Destination Mode to
Queue Name or Reply To Queue. If you select either of these fixed
options, the destination list has no effect on broker operations and you
do not have to create this subtree.
You can construct the MQ element to contain a single optional Defaults
element. The Defaults element, if created, must be the first child and
must contain a set of name-value elements that give default values for
the message destination and its PUT options for that parent.
You can also create a number of elements called DestinationData within
MQ. Each of these can be set up with a set of name-value elements that
defines a message destination and its PUT options.

Chapter 9. Developing message flow applications 1059

The set of elements that define a destination is described in “Data types
for elements in the MQ DestinationData subtree” on page 4240.
The content of each instance of DestinationData is the same as the
content of Defaults for each protocol, and can be used to override the
default values in Defaults. You can set up Defaults to contain values that
are common to all destinations, and set only the unique values in each
DestinationData subtree. If you do not set a value either in
DestinationData or Defaults, the value that you have set for the
corresponding node property is used. Similarly, if you specify a field
name or value with the wrong spelling or case, it is ignored, and the
value that you have set for the corresponding node property is used.
The information that you insert into DestinationData depends on the
characteristic of the corresponding node property: This information is
described in “Accessing the local environment tree” on page 2463.
LocalEnvironment.Destination.SOAP

You can place outbound WS-Addressing header information in the local
environment to override the defaults that are generated by the
SOAPReply, SOAPRequest, or SOAPAsyncRequest nodes. See
“WS-Addressing information in the local environment” on page 1656.
If the message flow includes SOAPRequest or SOAPAsyncRequest
nodes, you can override their HTTP Transport and JMS transport
properties in this subtree. See “SOAPRequest node” on page 4828,
“SOAPAsyncRequest node” on page 4750, or “Local environment
overrides for the SOAPRequest node” on page 4850.
If the message flow includes a SOAPAsyncRequest node, you can use
this subtree to pass state and correlation information to a
SOAPAsyncResponse node in another message flow. See
“WS-Addressing with the SOAPAsyncRequest and SOAPAsyncResponse
nodes” on page 1655.
If the message flow includes SOAPReply, SOAPRequest, or
SOAPAsyncRequest nodes, you can override their use of outbound
MTOM messages in this subtree. See “Using SOAP MTOM with the
SOAPReply, SOAPRequest, and SOAPAsyncRequest nodes” on page
1678.
LocalEnvironment.Destination.TCPIP

If the message flow includes a TCPIPClientOutput node or a
TCPIPServerOutput node, you can override its TCPIP connection with
elements in this subtree. See “TCPIPClientOutput node” on page 4867
and “TCPIPServerOutput node” on page 4903.

v Routing information
The child of Destination is RouterList. It has a single child element called
DestinationData, which has a single entry called labelName. If you are
using a dynamic routing scenario involving the RouteToLabel and Label
nodes, you must set up the Destination subtree with a RouterList that
contains the reference labels.

LocalEnvironment.Wildcard
This subtree contains information about the wildcard characters that are
stored by the FileInput node.

On the FileInput node you can specify a file name pattern that contains
wildcard characters.

More details about the information that is stored in this subtree are in
“Using local environment variables with file nodes” on page 1820.

1060 WebSphere Message Broker Version 7.0.0.8

LocalEnvironment.WrittenDestination

Written
Destination

HTTP

HTTP

Request

MQ File Email SOAP TCPIP

Reply TransportDestinationDataDestinationData

JMSFTE

This subtree contains the addresses to which the message has been written.
Its name is fixed and it is created by the message flow when a message is
propagated through the Out terminal of a request, output, or reply node.
The subtree includes transport-specific information (for example, if the
output message has been put to a WebSphere MQ queue, it includes the
queue manager and queue names).

You can use one of the following methods to obtain information about the
details of a message after it has been sent by the nodes:
v Connect a transformation node to the Out terminal.
v Configure a user exit to process an output message callback event, as

described in “Exploiting user exits” on page 2985.

The topic for each node that supports WrittenDestination information
contains details about the data that it contains.

LocalEnvironment.Adapter
This subtree contains information that is stored by the WebSphere
Adapters nodes.

For a WebSphere Adapters input node:
v MethodName is the name of the business method that corresponds to

the Enterprise Information System (EIS) event that triggered this
message delivery.
The bindings for EIS events or business methods are created by the
Adapter Connection wizard.

v Type describes the type of adapter that is being used:
– SAP
– Siebel
– PeopleSoft
– JD Edwards

For a WebSphere Adapters request node:

MethodName is the name of the business method that the request node
must use.

LocalEnvironment.CD and LocalEnvironment.CD.Transfer
These subtrees contain information that is stored by the CDInput node.
The LocalEnvironment.CD subtree contains information about the current

Chapter 9. Developing message flow applications 1061

record. The LocalEnvironment.CD.Transfer subtree contains information
received from IBM Sterling Connect:Direct regarding the file.

More details about the information that is stored in these subtrees are in
“Using local environment variables with file nodes” on page 1820.

LocalEnvironment.Database
This subtree contains information that is propagated from the
DatabaseInput node.

The LocalEnvironment.Database.Input.Event.Usr subtree contains
user-defined data associated with an event. It is initialized in the
ReadEvents procedure of the ESQL module associated with the
DatabaseInput node.

LocalEnvironment.Database.Input.Event.Key holds a unique key for an
event. It is set in the ReadEvents procedure of the ESQL module associated
with the DatabaseInput node.

LocalEnvironment.Database.Input.Event.FailureCount contains a value for
the number of times an attempt to process an event has failed. This count
includes all unhandled exceptions occurring either in the ESQL module or
the message flow.

LocalEnvironment.File
This subtree contains information that is stored by the FileInput node.

This information describes the file, and also contains data about the current
record.

More details about the information that is stored in this subtree are in
“Using local environment variables with file nodes” on page 1820.

LocalEnvironment.FTE and LocalEnvironment.FTE.Transfer
These subtrees contain information that is stored by the FTEInput node.
The LocalEnvironment.FTE subtree contains information about the current
record. The LocalEnvironment.FTE.Transfer subtree contains information
received from WebSphere MQ File Transfer Edition regarding the file.

More details about the information that is stored in these subtrees are in
“Using local environment variables with file nodes” on page 1820.

LocalEnvironment.ServiceRegistry
This subtree contains information for queries by the EndpointLookup and
RegistryLookup nodes.

More details about the information that is stored in this subtree are in
“Dynamically defining the search criteria” on page 1891, “EndpointLookup
node output” on page 1894, and “RegistryLookup node output” on page
1897.

LocalEnvironment.SOAP
This subtree contains information that is stored by SOAPInput,
SOAPAsyncResponse, or SOAPRequest nodes.

More details about the information that is stored in this subtree are in
“WS-Addressing information in the local environment” on page 1656.

If the message flow includes a SOAPAsyncResponse node, you can use this
subtree to receive state and correlation information passed by a
SOAPAsyncRequest node in another message flow.

1062 WebSphere Message Broker Version 7.0.0.8

More details about the information that is stored in this subtree are in
“WS-Addressing with the SOAPAsyncRequest and SOAPAsyncResponse
nodes” on page 1655.

LocalEnvironment.TCPIP

If the message flow includes a TCPIPClientReceive node or a
TCPIPServerReceive node, you can override its TCPIP connection with
elements in this subtree. See “TCPIPClientReceive node” on page 4877 and
“TCPIPServerReceive node” on page 4913.

This subtree contains information that is stored by the TCPIPClientInput,
TCPIPClientReceive, TCPIPServerInput, and TCPIPServerReceive nodes.

This information describes the connection that the node is using.

More details about the information that is stored in this subtree are in
“TCPIPClientInput node” on page 4854, “TCPIPClientReceive node” on
page 4877, “TCPIPServerInput node” on page 4890, and
“TCPIPServerReceive node” on page 4913.

When the message flow processing is complete, the local environment tree is
discarded.

The following samples demonstrate how to use the local environment to
dynamically route messages based on the destination list:
v Airline Reservations
v Message Routing
v Managed File Transfer

The following samples use the local environment tree to store information that is
later added to the output message that is created by the message flow:
v User-defined Extension
v Managed File Transfer

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Environment tree structure” on page 1055
The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.
“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
“WS-Addressing information in the local environment” on page 1656
WS-Addressing header information can be placed in the local environment tree
where it is visible to a message flow. WS-Addressing header information is only
processed by the SOAP nodes.

Chapter 9. Developing message flow applications 1063

“Dynamically defining the search criteria” on page 1891
You can use the RegistryLookup and EndpointLookup nodes to issue WebSphere
Service Registry and Repository (WSRR) queries specified in the local environment.

“EndpointLookup node output” on page 1894
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).
“RegistryLookup node output” on page 1897
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
“Using scratchpad areas in the local environment” on page 2465
The local environment tree includes a subtree called variables. This subtree is
always created, but is never populated by the message flow. Use this area for your
own purposes; for example, to pass information from one node to another. You can
create other subtrees of the local environment tree.
“Populating Destination in the local environment tree” on page 2467
Use the Destination subtree to set up the target destinations that are used by
output nodes, the HTTPRequest node, the SOAPRequest node, the
SOAPAsyncRequest node, and the RouteToLabel node. The following examples
show how you can create and use an ESQL procedure to perform the task of
setting up values for each of these uses.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

1064 WebSphere Message Broker Version 7.0.0.8

“EmailOutput node” on page 4400
Use the EmailOutput node to send email messages to one or more recipients.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“JMSReply node” on page 4562
Use the JMSReply node to send messages to JMS destinations.
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“Data types for elements in the MQ DestinationData subtree” on page 4240
The DestinationData subtree is part of the Destination subtree in the local
environment. Local environment trees are created by input nodes when they
receive a message and, optionally, by Compute nodes. When created, the trees are
empty but you can create data in them by using ESQL statements coded in any of
the SQL nodes.

Chapter 9. Developing message flow applications 1065

Exception list tree structure:

The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.

The root of the exception list tree is called ExceptionList, and the tree consists of a
set of zero or more exception descriptions. The exception list tree is populated by
the message flow if an exception occurs. If no exception conditions occur during
message flow processing, the exception list that is associated with that message
consists of a root element only. This list is, in effect, an empty list of exceptions.

The exception list tree can be accessed by other nodes in the message flow that
receive the message after the exception has occurred. You can modify the contents
of the exception list tree only in a node that provides an interface to modify the
outbound message tree; for example, the Compute node.

If an exception condition occurs, message processing is suspended and an
exception is thrown. Control is passed back to a higher level; that is, an enclosing
catch block. An exception list is built to describe the failure condition, and the
whole message, together with the local environment tree, and the newly-populated
exception list, is propagated through an exception-handling message flow path.

The child of ExceptionList may be any one of the exception types that is included
in the following list. Typically, only one child of the root is created, although more
than one might be generated in some circumstances. The child of ExceptionList
contains a number of children, each of which may also be any one of the types in
the following list. The last of these children provides further information specific to
the type of exception.
v FatalException
v RecoverableException
v ConfigurationException
v SecurityException
v ParserException
v ConversionException
v DatabaseException
v UserException
v CastException
v MessageException
v SqlException
v SocketException
v SocketTimeoutException
v UnknownException

The following figure shows the structure of the exception list tree for a recoverable
exception:

1066 WebSphere Message Broker Version 7.0.0.8

The exception description structure can be both repeated and nested to produce an
exception list tree. In this tree:
v The depth (that is, the number of parent-child steps from the root) represents

increasingly detailed information for the same exception.
v The width of the tree represents the number of separate exception conditions

that occurred before processing was abandoned. This number is usually one, and
results in an exception list tree that consists of a number of exception
descriptions that are connected as children of each other.

v At the numbered points in the tree:
1. This child can be any one of the exception types that are listed earlier in this

topic. All of these elements have the children shown; if present, the last child
is the same element as its parent.

2. This element might be repeated.
3. If present, this child contains the same children as its parent.

The children in the tree take the form of a number of name-value elements that
give details of the exception, and zero or more name elements whose name is
Insert. The NLS (National Language Support) message number identified in a
name-value element identifies a WebSphere Message Broker error message. The
Insert values are used to replace the variables in this message and provide further
detail about the cause of the exception.

The name-value elements in the exception list shown in the figure above are
described in the following table.

Name Type Description

File1 String C++ source file name

Line1 Integer C++ source file line number

Function1 String C++ source function name

Type2 String Source object type

Name2 String Source object name

Label2 String Source object label

Text1 String Optional non-NLS text

Recoverable
Exception (3)

ExceptionList

RecoverableException

Recoverable
Exception (1)

NumberSeverityCatalog TextLabelNameTypeFunctionLineFile

Line

Type Text

Insert
(2)

NumberSeverityCatalog TextLabelNameTypeFunctionFile

Chapter 9. Developing message flow applications 1067

Name Type Description

Catalog3 String NLS message catalog name4

Severity3 Integer
1 = information
2 = warning
3 = error

Number3 Integer NLS message number4

Insert3 Type Integer The data type of the value:

0 = Unknown
1 = Boolean
2 = Integer
3 = Float
4 = Decimal
5 = Character
6 = Time
7 = GMT Time
8 = Date
9 = Timestamp
10 = GMT Timestamp
11 = Interval
12 = BLOB
13 = Bit Array
14 = Pointer

Text String The data value

Notes:

1. Do not use the File, Line, Function, and Text elements for exception handling
decision making. These elements ensure that information can be written to a
log for use by IBM Service personnel, and are subject to change in both content
and order.

2. The Type, Name, and Label elements define the object (usually a message flow
node) that was processing the message when the exception condition occurred.

3. The Catalog, Severity, and Number elements define an NLS message: the Insert
elements that contain the two name-value elements shown define the inserts
into that NLS message.

4. NLS message catalog name and NLS message number refer to a translatable
message catalog and message number.

When the message flow processing is complete, the exception list tree is discarded.

The following sample uses the exception list in the XML_Reservation message flow
to pass error information to the Throw node, which generates an error message
that includes the information from ExceptionList:
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

1068 WebSphere Message Broker Version 7.0.0.8

input message is received.
“Message tree contents after an exception” on page 1052
The contents of the message tree are updated if an exception is raised.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Accessing the ExceptionList tree using ESQL” on page 2471
The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

Correlation names:

A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.

When you access data in any of the four trees (message, environment, local
environment, or exception list), the correlation names that you can use depend on
the node for which you create ESQL or mappings, and whether the node creates an
output message. For example, a Trace node does not alter the content of the
message as it passes through the node, but a Compute node can construct a new
output message.

You can introduce new correlation names with SELECT expressions, quantified
predicates, and FOR statements. You can create non-correlation names in a node by
using reference variables.

Chapter 9. Developing message flow applications 1069

Correlation names in nodes that do not create an output message: Most message flow
nodes do not create an output message; all ESQL expressions that you write in
ESQL modules or in mappings in these nodes refer to just the input message. Use
the following correlation names in the ESQL modules that you write for Database
and Filter nodes:

Root The root of the message passing through the node.

Body The last child of the root of the message; that is, the body of the message.
This name is an alias for Root.*[<].

For a description of how to use the asterisk (*) in field references, see
“Using anonymous field references” on page 2430.

Properties
The standard properties of the input message.

Environment
The structure that contains the current global environment variables that
are available to the node. Environment can be read and updated from any
node for which you can create ESQL code or mappings.

LocalEnvironment
The structure that contains the current local environment variables that are
available to the node. LocalEnvironment can be read and updated from
any node for which you can create ESQL code or mappings.

DestinationList
The structure that contains the current local environment variables
available to the node. Its preferred name is LocalEnvironment, although
the DestinationList correlation name can be used for compatibility with
earlier versions.

ExceptionList
The structure that contains the current exception list to which the node has
access.

You cannot use these correlation names in the expression of any mapping for a
Mapping, Extract, Warehouse, DataInsert, DataUpdate, or DataDelete node.

Correlation names in nodes that create an output message: If you are coding ESQL for
a Compute node, the correlation names must distinguish between the two message
trees involved: the input message and the output message. The correlation names
in ESQL in these nodes are:

InputBody
The last child of the root of the input message. This name is an alias for
InputRoot.*[<].

For a description of how to use *, see “Using anonymous field references”
on page 2430.

InputRoot
The root of the input message.

InputProperties
The standard properties of the input message.

Environment
The structure that contains the current global environment variables that
are available to the node. Environment can be read and updated.

1070 WebSphere Message Broker Version 7.0.0.8

InputLocalEnvironment
The structure that contains the local environment variables for the message
passing through the node.

InputDestinationList
The structure that contains the local environment variables for the message
passing through the node. Use the correlation name InputDestinationList
for compatibility with earlier versions; if compatibility is not required, use
the preferred name InputLocalEnvironment

InputExceptionList
The structure that contains the exception list for the message passing
through the node.

OutputRoot
The root of the output message.

In a Compute node, the correlation name OutputBody is not valid.

OutputLocalEnvironment
The structure that contains the local environment variables that are sent
out from the node.

While this correlation name is always valid, it has meaning only when the
Compute Mode property of the Compute node indicates that the Compute
node is propagating the LocalEnvironment.

OutputDestinationList
The structure that contains the local environment variables that are sent
out from the node. Use the correlation name OutputDestinationList for
compatibility with earlier versions; if compatibility is not required, use the
preferred name OutputLocalEnvironment

OutputExceptionList
The structure that contains the exception list that the node is generating.

While this correlation name is always valid, it has meaning only when the
Compute Mode property of the Compute node indicates that the Compute
node is propagating the ExceptionList.

Related concepts:
“Environment tree structure” on page 1055
The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“ESQL field references” on page 2381
An ESQL field reference is a sequence of period-separated values that identify a
specific field (which might be a structure) within a message tree or a database
table.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:

Chapter 9. Developing message flow applications 1071

Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Manipulating other parts of the message tree” on page 2452
You can access message tree headers, the properties tree, the local environment
tree, the environment tree and the exception list tree.
“Using anonymous field references” on page 2430
You can refer to the array of all children of a particular element by using a path
element of *.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.

Parsers
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.

A parser is called when the bit stream that represents an input message is
converted to the internal form that can be handled by the broker; this invocation of
the parser is known as parsing. The internal form, a logical tree structure, is
described in “Logical tree structure” on page 1042. It is described as a tree because
messages are typically hierarchical in structure; a good example of this structure is
XML. The way in which the parser interprets the bit stream is unique to that
parser; therefore, the logical message tree that is created from the bit stream varies
from parser to parser.

The parser that is called depends on the structure of a message, referred to as the
message template. Message template information comprises the message domain,
message set, message type, and physical format of the message. Together, these values
identify the structure of the data that the message contains.

A parser is also called when a logical tree that represents an output message is
converted into a bit stream; this action by the parser is known as writing. Typically,
an output message is generated by an output node at the end of the message flow.
However, you can connect more nodes to an output node to continue processing of
the message.

The message domain identifies the parser that is used to parse and write instances
of the message. The remaining parts of the message template, message set,
message type, and physical format, are optional, and are used by model-driven
parsers such as the MRM parser.

1072 WebSphere Message Broker Version 7.0.0.8

The logical structure of the message typically maps to the business content of the
message; for example, it contains a customer name, address, and account number.
It is only when you send a message across a connection that the physical
characteristics are important, and influence the construction of the bit stream.

The broker requires access to a parser for every message domain to which your
input messages and output messages belong. In addition, the broker requires a
parser for every identifiable message header that is included in the input or output
message. Parsers are called when required by the message flow.

Body parsers

WebSphere Message Broker provides built-in support for messages in the following
message domains by providing message body parsers:
v MRM (“MRM parser and domain” on page 1111)
v XMLNSC, XMLNS, and XML (“XML parsers and domains” on page 1084)
v SOAP (“SOAP parser and domain” on page 1082)
v DataObject (“DataObject parser and domain” on page 1114)
v JMSMap and JMSStream (“JMS parsers and domains” on page 1116)
v MIME (“MIME parser and domain” on page 1117)
v BLOB (“BLOB parser and domain” on page 1124)
v IDOC (“IDOC parser and domain” on page 1126)
v JSON (“JSON parser and domain” on page 1128)

See “Which body parser should you use?” on page 1077 for a discussion about
which message body parser to use under what circumstances.

You specify which message domain to use for your message at the place in the
message flow where parsing or writing is initiated.
v To parse a message bit stream, typically you set the Message Domain property of

the input node that receives the message. But, if you are initiating the parse
operation in ESQL, use the DOMAIN clause of the CREATE statement.
The message tree that is created is described in “Message tree structure” on page
1045. Its exact form might change as it progresses through the message flow,
depending on what the nodes are doing.
The last child element of the Root element of the message tree takes the name of
the body parser that created the tree. For example, if the Message Domain
property was set to MRM, the last child element of Root is called MRM, which
indicates that the message tree is owned by the MRM parser.

v To write a message, the broker calls the owning body parser to create the
message bit stream from the message tree.

Some body parsers are model-driven, which means that they use predefined
messages from a message set when parsing and writing. The MRM, SOAP,
DataObject, IDOC, and (optionally) XMLNSC parsers are model-driven parsers. To
use these parsers, messages must be modeled in a message set and deployed to the
broker from the WebSphere Message Broker Toolkit.

Other body parsers are programmatic, which means that the messages that they
parse and write are self-defining messages, and no message set is required. See
“Predefined and self-defining messages” on page 1076.

Chapter 9. Developing message flow applications 1073

When you use a model-driven parser, you must also specify the Message Set and,
optionally, the Message Type and Message Format so that the parser can locate the
deployed message definition with which to guide the parsing or writing of the
message.

To parse a message bit stream, typically you set the Message Set, Message Type, and
Message Format properties of the input node that receives the message. Or, if you
are initiating the parse operation in ESQL, you use the SETTYPE, and FORMAT clauses
of the CREATE statement. This information is copied into the Properties folder of the
message tree.

To write a message, the broker calls the owning body parser to create the message
bit stream from the message tree. If the parser is a model-driven parser, it uses the
MessageSet, MessageType, and MessageFormat fields in the Properties folder.

Whether Message Type or Message Format are needed depends on the message
domain.

Even if the body parser is not model-driven, it is good practice to create and use a
message set in the WebSphere Message Broker Toolkit, because it simplifies the
development of your message flow applications, even though the message set is
not deployed in the broker runtime environment. See “Why model messages?” on
page 1158 for information about the advantages of creating a message set.

Header parsers

WebSphere Message Broker also provides parsers for the following message
headers, which your applications can include in input or output messages:
v WMQ MQMD (“The MQMD parser” on page 4249)
v WMQ MQMDE (“The MQMDE parser” on page 4251)
v WMQ MQCFH (“The MQCFH parser” on page 4245)
v WMQ MQCIH (“The MQCIH parser” on page 4246)
v WMQ MQDLH (“The MQDLH parser” on page 4248)
v WMQ MQIIH (“The MQIIH parser” on page 4248)
v WMQ MQRFH (“The MQRFH parser” on page 4252)
v WMQ MQRFH2 and MQRFH2C (“The MQRFH2 and MQRFH2C parsers” on

page 4253)
v WMQ MQRMH (“The MQRMH parser” on page 4253)
v WMQ MQSAPH (“The MQSAPH parser” on page 4254)
v WMQ MQWIH (“The MQWIH parser” on page 4255)
v WMQ SMQ_BMH (“The SMQ_BMH parser” on page 4256)
v JMS header (“Representation of messages in the JMS Transport” on page 1691)
v HTTP headers (“HTTP headers” on page 1583)

All header parsers are programmatic and do not use a message set when parsing
or writing.

User-defined parsers

To parse or write message body data or headers that the supplied parsers do not
handle, you can create user-defined parsers that use the WebSphere Message
Broker user-defined parser programming interface.

1074 WebSphere Message Broker Version 7.0.0.8

Tip: No parser is provided for messages, or parts of messages, in the WMQ format
MQFMT_IMS_VAR_STRING. Data in this format is often preceded by an MQIIH header
(format MQFMT_IMS). WebSphere Message Broker treats such data as a BLOB
message. If you change the CodedCharSetId or the encoding of such a message in
a message flow, the MQFMT_IMS_VAR_STRING data is not converted, and the message
descriptor or preceding header does not correctly describe that part of the message.
If you need the data in these messages to be converted, use the MRM domain and
create a message set to model the message content, or provide a user-defined
parser.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.
“Message domains and parsers” on page 1159
WebSphere Message Broker supplies a range of parsers to parse and write message
formats.
“Which body parser should you use?” on page 1077
The characteristics of the messages that your applications exchange indicate which
body parser you must use.
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.

Chapter 9. Developing message flow applications 1075

Predefined and self-defining messages:

Both predefined and self-defining messages are supported.

Each message that flows through a broker has a specific structure that is
meaningful to the applications that send or receive that message.

You can use:
v Messages that you have modeled in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit; these messages are
referred to as predefined messages. A model-driven parser requires predefined
messages.

v Messages that can be parsed without a model; these are called self-defining
messages.

Predefined messages: When you create a message in the WebSphere Message Broker
Toolkit, you define the fields (Elements) in the message, along with special field
types that you might need, and specific values (Value Constraints) to which the
fields might be restricted.

Every message that you model in the WebSphere Message Broker Toolkit must be a
member of a message set. You can group related messages together in a message
set; for example, request and response messages for a bank account query can be
defined in a single message set.

When you deploy a message set to a broker, the message model is sent to the
broker in a form appropriate to the parser that is used to parse and write the
message.

For information about the benefits of predefining messages, see “Why model
messages?” on page 1158

The following samples demonstrate how to model messages in XML, CWF and
TDS formats:
v Video Rental
v Comma Separated Value (CSV)

The following samples provide message sets for industry-standard message
formats:
v EDIFACT
v FIX
v SWIFT
v X12

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Self-defining messages: You can create and route messages that are self-defining.
The best example of a self-defining message is an XML document.

You can also model self-defining messages in the WebSphere Message Broker
Toolkit. However, you do not need to deploy these message sets to the brokers that

1076 WebSphere Message Broker Version 7.0.0.8

support those message flows. For further information about why you might want
to model these messages, see “Why model messages?” on page 1158.

Several samples, including the following, use self-defining XML messages and do
not require a message set, consequently fewer resources need to be defined:
v Large Messaging
v Airline Reservations

The following sample demonstrates how you can transform a message from
self-defining XML to a predefined binary format:
v Coordinated Request Reply

The following sample demonstrates how you can extract information from an XML
message and transform it into BLOB format for storage in a database:
v Data Warehouse

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Which body parser should you use?:

The characteristics of the messages that your applications exchange indicate which
body parser you must use.

Chapter 9. Developing message flow applications 1077

WebSphere Message Broker provides a range of message parsers. Each parser
processes either message body data for messages in a particular message domain
(for example, XML), or particular message headers (for example, the MQMD).

Review the messages that your applications send to the broker, and determine to
which message domain the message body data belongs, using the following criteria
as a guide.

If your application data uses SOAP-based web services, including SOAP with
Attachments (MIME) or MTOM

Use the SOAP domain. The SOAP domain has built-in support for
WS-Addressing and WS-Security standards.

If your application data uses JSON format, as maybe used in RESTful web
services

Use the JSON domain.

If your application data is in XML format other than SOAP
The domain that you use depends on the nature of the XML documents
and the processing that you want to perform. See “Which XML parser
should you use?” on page 1080

If your application data comes from a C or COBOL application, or consists of
fixed-format binary data

Use the MRM domain with a Custom Wire Format (CWF) physical format.

If your application data consists of formatted text, perhaps with field content
that is identified by tags, or separated by specific delimiters, or both

Use the MRM domain with a Tagged/Delimited String (TDS) physical
format.

If your application data is created using the JMS API
The domain that you use depends on the type of the JMS message. For a
full description of JMS message processing, see “JMS message as input” on
page 1693.

If your application data is from a WebSphere Adapter such as the adapters for
SAP, PeopleSoft, or Siebel

Use the DataObject domain.

If your application data is in SAP text IDoc format, such as those exported using
the WebSphere MQ Link for R3

Use the MRM domain with a Tagged/Delimited String (TDS) physical
format.

If your application data is in MIME format other than SOAP with Attachments
(for example, RosettaNet)

Use the MIME domain. If the message is multipart MIME, you might have
to parse specific parts of the message with other parsers. For example, you
might use the XMLNSC parser to parse the XML content of a RosettaNet
message.

If you do not know, or do not have to know, the content of your application
data Use the BLOB domain.
Related concepts:
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C

1078 WebSphere Message Broker Version 7.0.0.8

XML standard.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.
“MIME parser and domain” on page 1117
Use the MIME domain if your messages use the MIME standard for multipart
messages.
“BLOB parser and domain” on page 1124
The BLOB message domain includes all the messages with content that cannot be
interpreted and subdivided into smaller sections of information.
“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“WebSphere Broker JMS Transport” on page 1681
The WebSphere Broker JMS Transport is a service that connects applications that
send and receive messages that conform to the Java Message Service (JMS)
standard.
“JMS message as input” on page 1693
The JMS message is a Java object, and therefore you cannot parse the message as a
bit stream. When the message is received, the header data, property data, and
payload data are extracted by using the JMS API.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Chapter 9. Developing message flow applications 1079

Which XML parser should you use?:

If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.

Note: Although SOAP XML can be parsed using any namespace-aware XML
parser, use the dedicated SOAP domain to parse SOAP XML because the SOAP
domain provides full support for SOAP with Attachments, and standards such as
WS-Addressing and WS-Security.

Note: The XML domain is deprecated. Do not use it for developing new message
flows. The XML domain still works with existing message flows.

Which XML parser you choose depends on the nature of your XML messages, and
the transformation logic that you want to use. The differentiating features of each
domain are:
v The XMLNSC parser has a new architecture that gives significant performance

improvements over the XMLNS and XML parsers.
v The XMLNSC parser can be used with or without an XML Schema that is

generated from a message set. Using a message set with the XMLNSC parser
allows the parser to operate in validating mode which provides the following
capabilities:
– XML Schema 1.0 compliant validation when parsing and writing.
– The XML Schema indicates the real data type of a field in the message instead

of always treating the field as a character string.
– Base64 binary data can be automatically decoded.

v The MRM parser must be used with a message dictionary that is generated from
a message set. This message dictionary enables the MRM parser to provide the
following capabilities: For example:
– Validation against the dictionary when parsing and writing. Note that

validation is not XML Schema 1.0 compliant.
– The dictionary indicates the real data type of a field in the message instead of

always treating the field as a character string.
– Base64 binary data can be automatically decoded.

v The XMLNS parser is programmatic and does not use a model when parsing.
This means that:
– All data in an XML message is treated as character strings.
– Validation is not possible when parsing and writing.

v The MRM parser uses information from the XML physical format of a message
set to simplify the task of creating transformation logic:
– Date and time information can be extracted from a data value using a

specified format string.
– When creating output messages, the MRM parser can automatically generate

the XML declaration, and other XML constraints.
v The XMLNSC and XMLNS parsers do not use XML physical format information

from a message set. Transformation logic must explicitly create all constructs in
an output message.

1080 WebSphere Message Broker Version 7.0.0.8

v The MRM parser discards some parts of an XML message when parsing; for
example, white space formatting, XML comments, XML processing instructions,
and inline DTDs. If you use this parser, you cannot create these constructs when
building an output message.

v The XMLNSC parser, by default, discards white space formatting, XML
comments, XML processing instructions, and inline DTDs. However, options are
provided to preserve all of these constructs, except inline DTDs. You can create
them all, except inline DTDs, when constructing an output message.

v The XMLNS parser preserves all parts of an XML document, including white
space formatting. You can create all XML constructs when constructing an
output message.

v The XMLNSC and MRM parsers build compact message trees that use fewer
syntax elements than the XMLNS parser for attributes and simple elements. This
makes these parsers more suitable than the XMLNS parser for parsing large
XML messages.

v The XMLNS parser builds a message tree that conforms more closely than the
XMLNSC or MRM parsers to the XML Data Model. You might want to use this
parser if you are using certain XPath expressions to access the message tree, and
the relative position of parent and child nodes is important, or if you are
accessing text nodes directly.

v The XMLNS parser holds the text content of an element as a child of the
element, whereas the XMLNSC parser builds a compact tree. To update a text
value in the compact tree of the XMLNSC parser, use ESQL to set the VALUE of
the target node. For example:
Set OutputRoot.XMLNSC.TestMsg.Value3 VALUE = InputRoot.XMLNSC.TestMsg.Value2;

Tip: If performance is critical, use the XMLNSC domain.

Tip: If you need to validate the content and values in XML messages, use the
XMLNSC domain.

Tip: If you need to preserve formatting in XML messages on output, use the
XMLNSC domain with the option to retain mixed content.

Tip: If you require the message tree to conform as closely as possible to the XML
data model, perhaps because you are using certain XPath expressions to access the
message tree, use the XMLNS domain.

Tip: If you are taking non-XML data that has been parsed by the CWF or TDS
formats of the MRM domain, and merely transforming the data to the equivalent
XML, use the MRM domain. You can achieve this by adding an XML physical
format to the message set with default values, and changing the Message Format
in the Properties folder of the message tree.

“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write
message formats. Some message formats are self-defining and can be parsed
without reference to a model. Most message formats, however, are not
self-defining, and the parser must have access to a predefined model that
describes the message, if it is to parse it correctly.
“The message model” on page 1160
The message model consists of the following components.

Chapter 9. Developing message flow applications 1081

“Which body parser should you use?” on page 1077
The characteristics of the messages that your applications exchange indicate
which body parser you must use.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the
W3C XML standard.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“SOAP parser and domain”
You can use the SOAP parser to create a common WSDL-based logical tree
format for working with Web services, independent of the physical bitstream
format.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.

SOAP parser and domain:

You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.

Use the SOAP parser in conjunction with the SOAP nodes in your message flow.

Messages in the SOAP domain are processed by the SOAP parser. The SOAP
parser creates a common logical tree representation for all SOAP-based Web
services and validates the message against a WSDL definition. If a runtime
message is not allowed by the WSDL, an exception is thrown, otherwise the
portType and operation names from the WSDL are saved in the logical tree.

The SOAP domain offers WS-* processing, together with a canonical tree shape that
is independent of the wire format (XML or MIME).

The standards supported are:
v WSDL 1.1
v SOAP 1.1 and 1.2
v MIME 1.0
v Message Transmission Optimization Mechanism (MTOM) 1.0

A WSDL 1.1 definition must be deployed to describe the web service messages that
the SOAP domain needs to parse and write at run time. Therefore, the SOAP
parser is always model-driven. The bitstream format for these runtime messages
can be SOAP 1.1 or SOAP 1.2, optionally wrapped by MIME as an SwA (SOAP
with Attachments) or MTOM message.

When a message set that supports the SOAP domain is added to a broker archive
(BAR) file, XML schemas are created automatically from the message definition
files in the message set, and any WSDL files in the message set are added to the
BAR file. The WSDL and XML schema are deployed to the broker and used by the
SOAP parser.

If you want the SOAP domain to parse your SOAP Web service, complete the
following steps:

1082 WebSphere Message Broker Version 7.0.0.8

1. Create a new message set, or locate an existing message set.
2. Ensure that either the message set has its Default message domain project set to

SOAP, or the SOAP check box (under Supported message domains) is selected, to
indicate that the message set supports the SOAP domain.

3. Import your WSDL file to create a message definition file. The WSDL is also
added to the message set. Message definition files for the SOAP envelope and
the SOAP logical tree are also added to the message set automatically.

4. Add the message set to a broker archive (BAR) file, which generates the
required XML Schema and WSDL in a file with extension .xsdzip, and deploy
the BAR file to the broker.

5. If you associate your WSDL with a SOAP node in your message flow, the
Message Set property is automatically set in the node. The Message domain
property is always pre-selected as SOAP.

Tip: The SOAP parser invokes the XMLNSC parser to parse and validate the XML
content of the SOAP Web service. See “XMLNSC parser” on page 1090.
Related concepts:
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“SOAP message details” on page 1084
A SOAP message consists of an <Envelope>, which is the root element in every
SOAP message, and this contains two child elements, an optional <Header> and a
mandatory <Body>.
“SOAP tree overview” on page 1611
This tree format allows you to access the key parts of the SOAP message in a
convenient way.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 9. Developing message flow applications 1083

SOAP message details:

A SOAP message consists of an <Envelope>, which is the root element in every
SOAP message, and this contains two child elements, an optional <Header> and a
mandatory <Body>.

If the SOAP message has attachments, the 'envelope' is wrapped by MIME, or is
encoded as MTOM.

For further information on the structure of a SOAP message, see “The structure of
a SOAP message” on page 1605.
Related concepts:
“The SOAP body” on page 1608
The SOAP body (the <Body> element) is a mandatory sub-element of the SOAP
envelope, which contains information intended for the ultimate recipient of the
message.
“The SOAP header” on page 1606
The SOAP header (the <Header> element) is an optional sub-element of the SOAP
envelope, and is used to pass application-related information that is processed by
SOAP nodes along the message flow.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.

XML parsers and domains:

You can use XML domains to parse and write messages that conform to the W3C
XML standard.

The term XML domains refers to a group of three domains that are used by
WebSphere Message Broker to parse XML documents.

When reading an XML message, the parser that is associated with the domain
builds a message tree from the input bit stream. The input bit stream must be a
well-formed XML document that conforms to the W3C XML Specification (version
1.0 or 1.1).

When writing a message, the parser creates an XML bit stream from a message
tree.

The domains have different characteristics, for guidance about which domain to
choose, see “Which XML parser should you use?” on page 1080.

XMLNSC domain
The XMLNSC domain is the preferred domain for parsing all general
purpose XML messages, including those messages that use XML
namespaces. This parser is the preferred parser for the following reasons:
v The XMLNSC parser has an architecture that results in ultra-high

performance when parsing all kinds of XML.
v The XMLNSC parser reduces the amount of memory that is used by the

logical message tree that is created from the parsed message. The default
behavior of the parser is to discard non-significant white space and

1084 WebSphere Message Broker Version 7.0.0.8

mixed content, comments, processing instructions, and embedded DTDs;
however controls are provided to retain mixed content, comments, and
processing instructions, if required.

v The XMLNSC parser can operate as a model-driven parser, and can
validate XML messages against XML Schemas generated from a message
set, to ensure that your XML messages are correct.

XMLNS domain
If the XMLNSC domain does not meet your requirements, use the
alternative namespace-aware domain and parser.

XML domain
The XML domain is not namespace-aware. It is deprecated and must not
be used to develop new message flows.

The MRM domain also provides XML parsing and writing facilities. For guidance
on when you might use MRM XML instead of one of the XML parsers, see “Which
XML parser should you use?” on page 1080.

By default, the three XML parsers are programmatic parsers and do not use a
message set at run time when parsing and writing. However, the XMLNSC parser
can operate as a model-driven parser and can validate XML messages for
correctness against XML Schemas generated from a message set.

When you use the XMLNS or XML parsers, or the XMLNSC parser without a
message set, it is good practice to create and use a message set in the WebSphere
Message Broker Toolkit; this action simplifies the development of your message
flow applications, even though the message set is not deployed to the broker run
time.

For the advantages of creating a message set, see “Why model messages?” on page
1158.

The XML parsers are on-demand parsers. For more information, see “Parsing on
demand” on page 4173.

The topics in this information center provide a summary of XML terminology,
concepts, and message constructs. These aspects are important when you use XML
messages in your message flows.

Tip: For more detailed information about XML, see the World Wide Web
Consortium (W3C) Web site.

Example XML message parsing: A simple XML message might take the following
form:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE Envelope
PUBLIC "http://www.ibm.com/dtds" "example.dtd"
[<!ENTITY Example_ID "ST_TimeoutNodes Timeout Request Input Test Message">]
>
<Envelope version="1.0">
<Header>
<Example>&Example_ID;</Example>
<!-- This is a comment -->
</Header>
<Body version="1.0">
<Element01>Value01</Element01>
<Element02/>
<Element03>

Chapter 9. Developing message flow applications 1085

http://www.w3.org/
http://www.w3.org/

<Repeated>ValueA</Repeated>
<Repeated>ValueB</Repeated>
</Element03>
<Element04><P>This is bold text</P></Element04>
</Body>
</Envelope>

The following sections show the output that is created by the Trace node when this
example message has been parsed in the XMLNS and XMLNSC parsers. They
demonstrate the differences in the internal structures that are used to represent the
data as it is processed by the broker.

Example XML Message parsed in the XMLNS domain: In the following example, the
white space elements within the tree are present because of the space, tab, and line
breaks that format the original XML document; for clarity, the actual characters in
the trace have been replaced with ’WhiteSpace’. White space within an XML
element does have business meaning, and is represented by using the Content
syntax element. The XmlDecl, DTD, and comments, are represented in the XML
domain using explicit syntax elements with specific field types.
(0x01000010):XMLNS = (

(0x05000018):XML = (
(0x06000011): = ’1.0’
(0x06000012): = ’UTF-8’
(0x06000014): = ’no’

)
(0x06000002): = ’WhiteSpace’
(0x05000020):Envelope = (

(0x06000004): = ’http://www.ibm.com/dtds’
(0x06000008): = ’example.dtd’
(0x05000021): = (
(0x05000011):Example_ID = (

(0x06000041): = ’ST_TimeoutNodes Timeout Request Input Test Message’
)

)
)
(0x06000002): = ’WhiteSpace’
(0x01000000):Envelope = (

(0x03000000):version = ’1.0’
(0x02000000): = ’WhiteSpace’
(0x01000000):Header = (
(0x02000000): = ’WhiteSpace’
(0x01000000):Example = (

(0x06000020): = ’Example_ID’
(0x02000000): = ’ST_TimeoutNodes Timeout Request Input Test Message’
(0x06000021): = ’Example_ID’

)
(0x02000000): = ’WhiteSpace’
(0x06000018): = ’ This is a comment ’
(0x02000000): = ’WhiteSpace’

)
(0x02000000): = ’WhiteSpace’
(0x01000000):Body = (
(0x03000000):version = ’1.0’
(0x02000000): = ’WhiteSpace’
(0x01000000):Element01 = (

(0x02000000): = ’Value01’
)
(0x02000000): = ’WhiteSpace’
(0x01000000):Element02 =
(0x02000000): = ’WhiteSpace’
(0x01000000):Element03 = (

(0x02000000): = ’WhiteSpace’
(0x01000000):Repeated = (
(0x02000000): = ’ValueA’

1086 WebSphere Message Broker Version 7.0.0.8

)
(0x02000000): = ’WhiteSpace’
(0x01000000):Repeated = (

(0x02000000): = ’ValueB’
)
(0x02000000): = ’WhiteSpace’

)
(0x02000000): = ’WhiteSpace’
(0x01000000):Element04 = (

(0x01000000):P = (
(0x02000000): = ’This is ’
(0x01000000):B = (
(0x02000000): = ’bold’

)
(0x02000000): = ’ text’

)
)
(0x02000000): = ’WhiteSpace’

)
(0x02000000): = ’WhiteSpace’

)

Example XML Message parsed in the XMLNSC domain: The following trace shows
the elements that are created to represent the same XML structure within the
compact XMLNSC parser in its default mode. In this mode, the compact parser
does not retain comments, processing instructions, or mixed text.

The example illustrates the significant saving in the number of syntax elements
that are used to represent the same business content of the example XML message
when using the compact parser.

By not retaining mixed text, all of the white space elements that have no business
data content are no longer taking any space in the broker message tree at run time.
However, the mixed text in Element04.P is also discarded, and only the value of
the child folder, Element04.P.B, is held in the tree; the text This is and text in P is
discarded. This type of XML structure is not typically associated with business
data formats; therefore, use of the compact XMLNSC parser is typically desirable.
However, if you want to this type of processing, either do not use the XMLNSC
parser, or use it with Retain mixed text mode enabled.

The handling of the XML declaration is also different in the XMLNSC parser. The
version, encoding, and stand-alone attributes are held as child entities of the
XmlDeclaration, rather than as elements with a particular field type.
(0x01000000):XMLNSC = (

(0x01000400):XmlDeclaration = (
(0x03000100):Version = ’1.0’
(0x03000100):Encoding = ’UTF-8’
(0x03000100):StandAlone = ’no’

)
(0x01000000):Envelope = (

(0x03000100):version = ’1.0’
(0x01000000):Header = (
(0x03000000):Example = ’ST_TimeoutNodes Timeout Request Input Test Message’

)
(0x01000000):Body = (
(0x03000100):version = ’1.0’
(0x03000000):Element01 = ’Value01’
(0x01000000):Element02 =
(0x01000000):Element03 = (

(0x03000000):Repeated = ’ValueA’
(0x03000000):Repeated = ’ValueB’

)

Chapter 9. Developing message flow applications 1087

(0x01000000):Element04 = (
(0x01000000):P = (
(0x03000000):B = ’bold’

)
)

)

The following samples use the XML parser to process messages:
v Coordinated Request Reply
v Large Messaging
v Message Routing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Some predefined message models are supplied with the WebSphere Message
Broker Toolkit and can be imported by using the New Message Definition File
wizard and selecting the IBM supplied message option. See “IBM supplied
messages that you can import” on page 6367.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
“XML parser” on page 1110
The XML domain is very similar to the XMLNS domain, but the XML domain has
no support for XML namespaces or opaque parsing.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are

1088 WebSphere Message Broker Version 7.0.0.8

produced by the implementations of the Java Messaging Service standard.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“Logical tree structure” on page 1042
The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.
Related reference:
“IBM supplied messages that you can import” on page 6367
You can import IBM supplied messages to create a new message definition file.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“XML constructs” on page 4257
A self-defining XML message carries the information about its content and
structure within the message in the form of a document that adheres to the XML
specification. Its definition is not held anywhere else.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.

developerWorks

Chapter 9. Developing message flow applications 1089

http://www.ibm.com/developerworks

XMLNSC parser:

The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.

The XMLNSC parser has a range of options that make it suitable for most XML
processing requirements. Some of these options are only available in the XMLNSC
parser.

Although the XMLNSC parser is capable of parsing XML documents without an
XML Schema, extra features of the parser become available when it operates in
model-driven mode. In model-driven mode, the XMLNSC parser is guided by an
XML Schema, which describes the shape of the message tree (the logical model).

XML Schemas are created automatically from the content of a message set when
the message set is added to a broker archive (BAR) file. The XML Schemas are
deployed to the broker and used by the XMLNSC parser to validate your XML
messages. Validation is fully compliant with the XML Schema 1.0 specification.

For guidance on when to use the XMLNSC domain and parser, see “Which XML
parser should you use?” on page 1080.

If you want the XMLNSC domain to parse a message, select Message Domain as
XMLNSC on the appropriate node in the message flow. Additionally, if you want the
XMLNSC parser to validate your messages, perform the additional steps that are
described in “XMLNSC validation” on page 1099.

Features of the XMLNSC parser

Feature Present Description

Namespace support Yes Namespace information is
used if it is present. No user
configuration is required. See
“XML parsers namespace
support” on page 1109.

On-demand parsing Yes See “Parsing on demand” on
page 4173.

Compact message tree Yes Less memory is used when
building a message tree from
an XML document. See
“Manipulating messages in
the XMLNSC domain” on
page 2546.

Opaque parsing Yes One or more elements can be
parsed opaquely. See
“XMLNSC opaque parsing”
on page 1097.

Ultra high performance Yes The architecture of the
XMLNSC parser means that
the parser's use of processor
resources is significantly less
than that of the other XML
parsers.

Validation Yes See the table that follows this
one.

1090 WebSphere Message Broker Version 7.0.0.8

Feature Present Description

Inline DTD support Partial Inline DTDs are processed
but discarded. See “XMLNSC
DTD support” on page 1103.

XML Data Model compliance Partial The compact nature of the
message tree means that
some XPath queries are not
supported.

The following features are only available when message validation is enabled. See
“XMLNSC validation” on page 1099.

Feature Description

Message validation Validates compliance with the XML Schema
1.0 specification.

xsi:nil support Sets the value of an element to NULL if it
has xsi:nil=”true” and the XML Schema
indicates that it is nillable.

Default value support Sets the value of an empty element, or
missing attribute, to its default value,
according to XML Schema rules.

Use correct simple types Allows the use of the simple types that are
defined in the XML Schema when building
the message tree.

Base64 support Converts base64 data to BLOB when
parsing. Converts BLOB to base64 when
writing.

If you specify the SOAP domain as the owner of a SOAP Web Services message,
the SOAP parser invokes the XMLNSC parser in model-driven mode to parse the
XML content of the SOAP message.

If you specify the DataObject domain as the owner of a WebSphere Adapter
message, and the message is written to a destination other than a WebSphere
Adapter, the DataObject parser invokes the XMLNSC parser to write the message
as XML.
Related concepts:
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“XML parsers namespace support” on page 1109
Namespaces in XML messages are supported by the XMLNSC and XMLNS
parsers. Namespaces are not supported by the XML parser.
“XMLNSC opaque parsing” on page 1097
Opaque parsing is a performance feature that is offered by the XMLNSC domain.
“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.

Chapter 9. Developing message flow applications 1091

“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

XMLNSC empty elements and null values:

Empty elements and null values occur frequently in XML documents.

A robust message flow must be able to recognize and handle empty elements and
null values. Similarly, elements in a message tree might have a NULL value, an
empty value, or no value at all. This topic explains the parsing and writing of
these values by the XMLNSC domain. For details on processing null values in
Graphical Data Maps and ESQL, see “Handling null values” on page 1140.

Parsing

Description
XML input parsed by
XMLNSC

Value of 'element' in
message tree

Empty element value <element/> Empty string

Empty element value <element></element> Empty string

Folder with child elements <element><childElement/></
element>

No value

Nil element value <element xsi:nil="true"/> No value and a child
xsi:nil attribute with the
value 'true'.

1092 WebSphere Message Broker Version 7.0.0.8

Both forms of an empty element result in the same value in the message tree.

Writing

Description
Value of 'element' in
message tree

XML output from XMLNSC
parser

Empty element value Empty string <element/>

Null element value NULL <element/>

Folder with child elements No value <element><childElement/></
element>

Nil element value Empty string, NULL, or
Folder

<element xsi:nil="true"/>

Note that the XMLNSC
parser produces only xsi:nil
attributes that are already in
the message tree. It does not
automatically produce
xsi:nil attributes for all
message tree elements that
have a NULL value and are
'nillable'.

Empty elements

An empty element can take two forms in an XML document:
- <element/>
- <element></element>

The XMLNSC parser treats both forms in the same way. The element is added to
the message tree with a value of "" (the empty string).

When a message tree is produced by the XMLNSC parser, it always uses the first
form for elements that have a value of "" (the empty string) in the input XML
message.

Elements with an xsi:nil attribute

If validation is enabled for the flow, the XMLNSC parser performs the following
validations:
v The 'nillable' property of an element definition in the XML schema is set to

'true'.
If the element in the document has an xsi:nil attribute with the value 'true', the
element must not have a value, or contain any child elements.

v The 'nillable' property of an element definition in the XML schema is set to
'false'.
The element in the input document must not have an xsi:nil attribute.

If an element in the input document has an xsi:nil attribute, the XMLNSC parser
creates an element in the message tree with no value, and a child xsi:nil attribute
with the value 'true' or 'false'.

When a message tree is written to a bit stream by the XMLNSC parser, if the value
of the element is empty, NULL, or no value, and the element has no child

Chapter 9. Developing message flow applications 1093

elements, the element is written as <element/>. If the element has an xsi:nil
attribute, it is written exactly like any other attribute.

Note that the XMLNSC parser produces only xsi:nil attributes that are already in
the message tree. It does not automatically produce xsi:nil attributes for all
message tree elements that have a NULL value and are 'nillable'.
Related concepts:
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“XML parsers namespace support” on page 1109
Namespaces in XML messages are supported by the XMLNSC and XMLNS
parsers. Namespaces are not supported by the XML parser.
“XMLNSC data types” on page 1102
Mapping between XML Schema simple types and the data types that the XMLNSC
parser uses in the message tree when Build tree using XML Schema types is
specified.
“XMLNSC opaque parsing” on page 1097
Opaque parsing is a performance feature that is offered by the XMLNSC domain.
“XMLNSC validation” on page 1099
The XMLNSC parser offers high-performance, standards-compliant XML Schema
validation at any point in a message flow.
“XMLNSC message tree options” on page 1101
The XMLNSC options that are described in this section affect the parsing of an
XML document by the XMLNSC parser. They have no effect on XML output.
“XMLNSC DTD support” on page 1103
The input XML message might contain an inline DTD.
“Handling null values” on page 1140
A business message might contain fields that are either empty or have a specific
out-of-range value. In these cases, the application that receives the message is
expected to treat the field as if it did not have a value. The logical message tree
supports this concept by enabling the value of any element to be set to NULL.

XMLNSC: Using field types:

The XMLNSC parser sets the field type on every syntax element that it creates.

The field type indicates the type of XML construct that the element represents. The
XMLNSC parser uses the field type when writing a message tree. The field type
can be set by using ESQL or Java to control the output XML. The field types that
are used by the XMLNSC parser must be referenced by using constants with
names that are prefixed by 'XMLNSC.'

Tip: Field type constants that have the prefix 'XML.' are for use with the XMLNS
and XML parsers only, and are not valid with the XMLNSC or MRM parsers.

Field types for creating syntax elements

Use the following field type constants to create syntax elements in the message
tree. The XMLNSC parser uses these values when creating a message tree from an
input message.

1094 WebSphere Message Broker Version 7.0.0.8

XML construct XMLNSC Field Type constant Value

Simple Element XMLNSC.Field
XMLNSC.CDataField

0x03000000
0x03000001

Attribute XMLNSC.SingleAttribute
XMLNSC.Attribute

0x03000101
0x03000100

Mixed content XMLNSC.Value
XMLNSC.CDataValue

0x02000000
0x02000001

Namespace Declaration XMLNSC.SingleNamespaceDecl
XMLNSC.NamespaceDecl

0x03000102
0x03000103

Complex element XMLNSC.Folder 0x01000000

Inline DTD XMLNSC.DocumentType 0x01000300

XML declaration XMLNSC.XmlDeclaration 0x01000400

Entity reference XMLNSC.EntityReference 0x02000100

Entity definition XMLNSC.SingleEntityDefinition
XMLNSC.EntityDefinition

0x03000301
0x03000300

Comment XMLNSC.Comment 0x03000400

Processing Instruction XMLNSC.ProcessingInstruction 0x03000401

Field types for path expressions (generic field types)

Use the following field type constants when querying the message tree by using a
path expression; for example:
SET str = FIELDVALUE(InputRoot.e1.(XMLNSC.Attribute)attr1)

It is good practice to specify field types when querying a message tree built by the
XMLNSC parser. This makes your ESQL code more specific and more readable,
and it avoids incorrect results in some cases. However, care is required when
choosing which field type constant to use. When you use the XMLNSC parser, use
a generic field type constant when querying the message tree. This allows your
path expression to tolerate variations in the input XML.

The generic field type constants are listed in the following table:

XML construct XMLNSC Field Type constant Purpose

Tag XMLNSC.Element Matches any tag, whether it contains
child tags (XMLNSC.Folder) or a
value (XMLNSC.Field)

Element XMLNSC.Field Matches a tag which contains normal
text, CData, or a mixture of both.
Does not match tags which contain
child tags.

Attribute XMLNSC.Attribute Matches single-quoted and
double-quoted attributes

Mixed content XMLNSC.Value Matches normal text, CData, or a
mixture of both

XML Declaration XMLNSC.NamespaceDecl Matches single- and double-quoted
declarations

If you write
InputRoot.e1.(XMLNSC.DoubleAttribute)attrName

Chapter 9. Developing message flow applications 1095

your path expression does not match a single-quoted attribute. If you use the
generic field type constant XMLNSC.Attribute, your message flow works with
either single-quoted or double-quoted attributes.

Note that you should always use the field type constants and not their numeric
values.

Field types for controlling output format

The following field types are provided for XML Schema and base64 support. Do
not use these field type constants in path expressions; use them in conjunction
with XMLNSC.Attribute and XMLNSC.Field to indicate the required output format
for DATE and BLOB values. See “XMLNSC: XML Schema support” on page 2559
for further information.

XMLNSC Field Type constant Purpose Value

XMLNSC.gYear The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gYear format.

0x00000010

XMLNSC.gYearMonth The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gYearMonth format.

0x00000040

XMLNSC.gMonth The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gMonth format.

0x00000020

XMLNSC.gMonthDay The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gMonthDay format.

0x00000050

XMLNSC.gDay The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gDay format.

0x00000030

XMLNSC.base64Binary The value must be a BLOB. The value is produced
with base64 encoding.

0x00000060

XMLNSC.List The element must be XMLNSC.Attribute or
XMLNSC.Field. If the field type includes this value,
the values of all child elements in the message tree
are produced as a space-separated list.

0x00000070

Field types for direct output

Use the following field types to produce pre-constructed segments of an XML
document. Character escaping is not done; therefore, take extra care not to
construct a badly-formed output document. Use these constants only after carefully
exploring alternative solutions.

XMLNSC Field Type constant Purpose Value

XMLNSC.Bitstream The value of this syntax element must be a
BLOB. The value is written directly to the
output bit stream. For more information about
its usage, see “Working with large XML
messages” on page 2543.

0x03000200

1096 WebSphere Message Broker Version 7.0.0.8

XMLNSC Field Type constant Purpose Value

XMLNSC.AsisElementContent The value of this syntax element must be
CHARACTER. The value is written directly to
the output bit stream. No character
substitutions are performed. Use this element
with care.

0x03000600

Related concepts:
“XMLNSC: The message body” on page 2549
The XMLNSC parser builds a message tree from the body of an XML document.
“XMLNSC: Element values and mixed content” on page 2556
The XMLNSC parser is a compact parser; therefore, an element with single content
is parsed as a single syntax element. When an element has both child elements and
some text, the text is called mixed content.
“XMLNSC: Comments and Processing Instructions” on page 2558
The XMLNSC parser discards comments and processing instructions because both
comments and processing instructions are auxiliary information with no business
meaning.
Related reference:
“XMLNSC: Attributes and elements” on page 2552
The XMLNSC parser uses field types to represent attributes and elements.
“XMLNSC: Namespace declarations” on page 2554
The XMLNSC parser provides full support for namespaces.

XMLNSC opaque parsing:

Opaque parsing is a performance feature that is offered by the XMLNSC domain.

If you are designing a message flow and you know that certain elements in a
message are never referenced by the message flow, you can specify that these
elements are parsed opaquely. This reduces the costs of parsing and writing the
message, and might improve performance in other parts of the message flow.

Use the property Opaque Elements on the Parser options page of the relevant
message flow node to specify the elements that you want to be parsed opaquely.
This property specifies a list of element names. If an element in the input XML
message is named in this list, the element is parsed as a single string.

An opaque element cannot be queried like an ordinary element; its value is the
segment of the XML bit stream that belongs to the element, and it has no child
elements in the message tree, even though it can represent a large subtree in the
XML document.

When an opaque element is serialized, the value of the element is copied directly
into the output bit stream. The string is converted to the correct code page, but no
other changes are made. Because this might produce a bit stream that is not valid
XML, some care is required.

Do not parse an element opaquely in any of the following cases:
v The message flow must access one of its child elements.
v The message flow changes the namespace prefix in a way that affects the opaque

element or one of its child elements and the element is to be copied to the
output bit stream.

Chapter 9. Developing message flow applications 1097

v The element, or any child element, contains a reference to an internal entity that
is defined in an inline DTD and the element is to be copied to the output bit
stream.

v The element contains child attributes that have default values that are defined in
an inline DTD and the element is to be copied to the output bit stream.

Make sure that you check the above points before you specify an element for
opaque parsing.

Using opaque parsing has some drawbacks. When opaque parsing is enabled,
some parts of the message are never parsed, and XML that is either badly formed
or not valid is allowed to pass through the message flow without being detected.
For this reason, if you enable validation, you cannot use opaque parsing.

The XMLNS domain offers a more limited opaque parsing facility, but this is
provided only to support existing applications. Use the XMLNSC domain in new
message flows if you want to use opaque parsing.
Related tasks:
“Specifying opaque elements for the XMLNSC parser”
Specify an element as an opaque element so that its content is ignored by the
XMLNSC parser.

Specifying opaque elements for the XMLNSC parser:

Specify an element as an opaque element so that its content is ignored by the
XMLNSC parser.

Before you begin

About this task

To specify the elements that are to be skipped by the XMLNSC parser:

Procedure

1. Right-click the selected message flow node, click Properties and select Parser
Options.

2. At the bottom of the XMLNSC Parser Options panel is an area that lists the
elements that have already been selected as opaque elements. Click Add to add
an element to this list. A new pane Add Opaque elements Entry opens.

3. In the Add Opaque elements Entry pane, specify the new XML element that
you want to be opaquely parsed. Each opaque element must be specified as an
ESQL element name or an XPath expression of the form //prefix:name (or
//name, if your input document does not contain namespaces).

Note: A prefix is used rather than a full URI to identify the namespace; for
further information, see “XPath namespace support” on page 2650.

What to do next

Click Edit or Delete to edit the list of opaque elements.
Related concepts:
“XMLNSC opaque parsing” on page 1097
Opaque parsing is a performance feature that is offered by the XMLNSC domain.

1098 WebSphere Message Broker Version 7.0.0.8

“Extracting information from a message by using XPath 1.0 and a JavaCompute
node” on page 2648
XPath is a query language designed for use with XML documents, but you can use
it with any tree structure to query contents.

XMLNSC validation:

The XMLNSC parser offers high-performance, standards-compliant XML Schema
validation at any point in a message flow.

Validation of the input XML message or the message tree is performed against the
XML Schemas that are deployed.

Validation is not the same as parsing. When parsing, the XMLNSC parser always
checks that the input document is well-formed XML, according to the XML
specification. If validation is enabled, the XMLNSC parser also checks that the
XML document obeys the rules in the XML Schema.

Enabling XML Schema validation in a message flow

You must complete the following tasks to construct a message flow that validates
an XML document in accordance with an XML Schema:
v Enable validation at the appropriate point in the message flow. This is typically

achieved by setting the Validate property of the appropriate node to Content or
Content and Value. See “Validating messages” on page 1478.

v Ensure that all required XML Schema files are deployed. See “Deploying XML
Schemas” later in this section.

v Specify the message set in which the XML Schemas are deployed. Typically, you
specify the message set by selecting the Message Set property on the node.

Deploying XML Schemas

All XML Schemas that are used by WebSphere Message Broker must be created as
message definition files within a message set.

To create and deploy a message set for XML Schema validation:
1. Create a new message set or locate an existing message set.
2. Ensure that the message set has its Default message domain set to XMLNSC, or that

the XMLNSC check box under Supported message domains is selected, to indicate
that the message set supports the XMLNSC domain.

3. Create a message definition file in the message set to represent your message. If
you have an existing XML Schema or DTD that describes your message, you
can import it. You can repeat this step for each message that you want to
validate.

4. Add the message set to a broker archive (BAR) file, which generates the
required XML Schema in a file with extension .xsdzip, and deploy the BAR file
to the broker.

Standards compliant validation

XMLNSC validation complies fully with XML Schema v1.0 as defined in the
specifications that are available at http://www.w3.org/TR/xmlschema-1/ and
http://www.w3.org/TR/xmlschema-2/, with the following minor exceptions:
v Any floating point value that is smaller than 10E-43 is treated as zero.

Chapter 9. Developing message flow applications 1099

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

v Any member of a group or complex type, that has both minOccurs > 1024 and
maxOccurs > 1024, is validated as if minOccurs = 0 and maxOccurs is
unbounded.

Validating XML v1.1 documents

You can validate documents that conform to the XML v1.1 specification, but
support is limited by the fact that the XML Schema v1.0 documents must conform
to XML v1.0.

As an example, you cannot always declare an XML v1.1 tag name in XML Schema
v1.0. This limitation is not imposed by the XMLNSC parser implementation; it is a
limitation of XML Schema v1.0.

Interpreting validation errors

A validation error is an error that results when the XML document breaks the rules
that are defined in the XML schema. The XML Schema standard specifies exactly
what these rules are, and how they should be applied. Validation errors that the
XMLNSC parser issues contain information that links the error to the XML Schema
rule that has been violated.

All validation errors are reported in BIP5025 or BIP5026 messages. Both messages
begin with text in the following form:
XML schema validation error ’[cvc-error key: error description]’

Examples:
’cvc-minInclusive-valid: The value "2" is not valid with respect to the minInclusive facet
with value "3" for type "po:itemCountType".’

’cvc-complex-type.2.4.a: Expecting element with local name "numItems" but saw "totalValue".’

To find the XML Schema rule that has been violated, open the XML Schema
specification and search for the error key.

Example 1: Open http://www.w3.org/TR/xmlschema-1/ and search for
‘cvc-minInclusive-valid'. Follow the link to the XML Schema rules for the
minInclusive facet.

Example 2: Open http://www.w3.org/TR/xmlschema-1/ and search for
‘cvc-complex-type'. Follow the link to the XML Schema rules for validating the
content of a complex type. In this case, the error key contains extra information.
The ‘2.4.a' refers to the exact sub-rule that was violated. It should not be included
when searching for the rule.

If the XML Schema specification does not provide enough information, you can
find more information using a search engine. The XML Schema standard is very
widely used, and many online tutorials and other resources are available.
Related concepts:
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“XML parsers namespace support” on page 1109
Namespaces in XML messages are supported by the XMLNSC and XMLNS
parsers. Namespaces are not supported by the XML parser.

1100 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

“XMLNSC empty elements and null values” on page 1092
Empty elements and null values occur frequently in XML documents.
“XMLNSC message tree options”
The XMLNSC options that are described in this section affect the parsing of an
XML document by the XMLNSC parser. They have no effect on XML output.
“XMLNSC data types” on page 1102
Mapping between XML Schema simple types and the data types that the XMLNSC
parser uses in the message tree when Build tree using XML Schema types is
specified.
“XMLNSC DTD support” on page 1103
The input XML message might contain an inline DTD.
“XMLNSC opaque parsing” on page 1097
Opaque parsing is a performance feature that is offered by the XMLNSC domain.
“Handling null values” on page 1140
A business message might contain fields that are either empty or have a specific
out-of-range value. In these cases, the application that receives the message is
expected to treat the field as if it did not have a value. The logical message tree
supports this concept by enabling the value of any element to be set to NULL.
Related tasks:
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.

XMLNSC message tree options:

The XMLNSC options that are described in this section affect the parsing of an
XML document by the XMLNSC parser. They have no effect on XML output.

Retain Mixed Content

Mixed content is XML text which occurs between elements.
<parent>

<childElement1>Not mixed content</childElement1>
This text is mixed content
<childElement2>Not mixed content</childElement2>

</parent>

By default, the XMLNSC parser discards all mixed content. Mixed content is
retained in the message tree if you select Retain mixed content in the Parser options
page of the input node. For further information, see 'Element with mixed content'
in “XMLNSC: Element values and mixed content” on page 2556.

Retain Comments

By default, the XMLNSC parser discards all comments in the input XML.
Comments are retained in the message tree if you select Retain comments in the
Parser options page of the input node. For further information, see 'Comments' in
“XMLNSC: Comments and Processing Instructions” on page 2558.

Chapter 9. Developing message flow applications 1101

Retain Processing Instructions

By default, the XMLNSC parser discards all processing instructions in the input
XML. Processing instructions are retained in the message tree if you select Retain
processing instructions in the Parser options page of the input node. For further
information, see 'Processing Instructions' in “XMLNSC: Comments and Processing
Instructions” on page 2558.

Build tree using XML Schema data types

By default, the XMLNSC parser uses the CHARACTER data type for all element
and attribute values that the parser creates in the message tree. However, if you
are using the XMLNSC parser to validate the XML document, you can select Build
tree using XML Schema data types in the Parser options page of the input node. This
causes element and attribute values to be cast to the message broker data type that
most closely matches their XML Schema simple type. The exact mapping between
XML schema types and message broker types can be found in “XMLNSC data
types.”
Related concepts:
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“XML parsers namespace support” on page 1109
Namespaces in XML messages are supported by the XMLNSC and XMLNS
parsers. Namespaces are not supported by the XML parser.
“XMLNSC opaque parsing” on page 1097
Opaque parsing is a performance feature that is offered by the XMLNSC domain.
“XMLNSC validation” on page 1099
The XMLNSC parser offers high-performance, standards-compliant XML Schema
validation at any point in a message flow.
“XMLNSC data types”
Mapping between XML Schema simple types and the data types that the XMLNSC
parser uses in the message tree when Build tree using XML Schema types is
specified.
“XMLNSC DTD support” on page 1103
The input XML message might contain an inline DTD.
Related tasks:
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.

XMLNSC data types:

Mapping between XML Schema simple types and the data types that the XMLNSC
parser uses in the message tree when Build tree using XML Schema types is
specified.

For mapping details, see “ESQL to XML Schema data type mapping” on page 5044.
Base64 decoding is automatically performed by the XMLNSC parser.

1102 WebSphere Message Broker Version 7.0.0.8

List types

In the message tree, a list type is represented as a parent node with an anonymous
child node for each list item. This allows repeating lists to be handled without any
loss of information.

If a list element repeats, the occurrences appear as siblings of one another, and
each occurrence has its own set of child nodes representing its own list items.
Related concepts:
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“XML parsers namespace support” on page 1109
Namespaces in XML messages are supported by the XMLNSC and XMLNS
parsers. Namespaces are not supported by the XML parser.
“XMLNSC opaque parsing” on page 1097
Opaque parsing is a performance feature that is offered by the XMLNSC domain.
“XMLNSC validation” on page 1099
The XMLNSC parser offers high-performance, standards-compliant XML Schema
validation at any point in a message flow.
“XMLNSC message tree options” on page 1101
The XMLNSC options that are described in this section affect the parsing of an
XML document by the XMLNSC parser. They have no effect on XML output.
“XMLNSC DTD support”
The input XML message might contain an inline DTD.
Related reference:
“ESQL to XML Schema data type mapping” on page 5044
Mapping from XML Schema simple type to ESQL message tree data type.

XMLNSC DTD support:

The input XML message might contain an inline DTD.

Parsing

If the input XML document has an inline DTD, the XMLNSC parser reads and uses
information in the DTD while parsing, but does not add the DTD information to
the message tree.

Internal entity definitions in the DTD are used to automatically expand entity
references that are encountered in the body of the document.

Attributes that are missing from the input document are automatically supplied
with the default value specified in the DTD.

The XMLNSC parser never adds the DTD to the message tree because the
information that it contains has already been used during the parse. This behavior
keeps the message tree compact and reduces CPU usage, and means that the
XMLNSC parser does not always produce exactly the same document as it parsed.
However, the business meaning of the output document is not altered.

If these restrictions are a problem, the XMLNS domain and parser provide full
support for parsing and writing of the DTD. See “XMLNS DTD support” on page
1108.

Chapter 9. Developing message flow applications 1103

Writing

The XMLNSC parser can produce a DTD that contains entity definitions only. This
behavior allows the XMLNSC parser to be used for writing out XML documents
that use internal entities (the most common reason for using a DTD). See
“Manipulating messages in the XMLNSC domain” on page 2546 for further details.

External DTDs

No support is offered for external DTDs
Related concepts:
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“XML parsers namespace support” on page 1109
Namespaces in XML messages are supported by the XMLNSC and XMLNS
parsers. Namespaces are not supported by the XML parser.
“XMLNSC empty elements and null values” on page 1092
Empty elements and null values occur frequently in XML documents.
“XMLNSC validation” on page 1099
The XMLNSC parser offers high-performance, standards-compliant XML Schema
validation at any point in a message flow.
“XMLNSC message tree options” on page 1101
The XMLNSC options that are described in this section affect the parsing of an
XML document by the XMLNSC parser. They have no effect on XML output.
“XMLNSC data types” on page 1102
Mapping between XML Schema simple types and the data types that the XMLNSC
parser uses in the message tree when Build tree using XML Schema types is
specified.
“XMLNSC opaque parsing” on page 1097
Opaque parsing is a performance feature that is offered by the XMLNSC domain.
“Handling null values” on page 1140
A business message might contain fields that are either empty or have a specific
out-of-range value. In these cases, the application that receives the message is
expected to treat the field as if it did not have a value. The logical message tree
supports this concept by enabling the value of any element to be set to NULL.
Related tasks:
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.

XMLNS parser:

The XMLNS parser is a flexible, general-purpose XML parser.

The XMLNS parser is not model-driven and does not use an XML Schema when
parsing XML documents.

For guidance on when to use the XMLNS domain and parser, see “Which XML
parser should you use?” on page 1080.

If you want the XMLNS domain to parse a particular message, you must select
Message Domain as XMLNS on the appropriate node in the message flow.

1104 WebSphere Message Broker Version 7.0.0.8

Features of the XMLNS parser

Feature Present Description

Namespace support Yes Namespace information is
used if it is present. No user
configuration is required. See
“Namespace support” on
page 1508.

On-demand parsing Yes See “Parsing on demand” on
page 4173.

Compact message tree No

Opaque parsing Partial Limited support from ESQL
only for parsing a single
element opaquely. See
“XMLNS opaque parsing” on
page 1107.

Ultra high performance No

Validation No

Inline DTD support Yes Inline DTDs are processed
and retained in the message
tree. See “XMLNS DTD
support” on page 1108.

XML Data Model compliance Yes The resultant message tree
conforms to the XML Data
Model.

Related concepts:
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“Namespace support” on page 1508
The XPath Expression builder provides qualified support for namespaces.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.

Chapter 9. Developing message flow applications 1105

Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

XMLNS empty elements and null values:

Empty elements and null values occur frequently in XML documents.

A robust message flow must be able to recognize and handle empty elements and
null values. Similarly, elements in a message tree might have a NULL value, an
empty value, or no value at all. This topic explains the parsing and writing of
these values by the XMLNS domain. For advice on good ESQL or Java coding
practices see “Handling null values” on page 1140.

Parsing

Description
XML input parsed by
XMLNS

Value of ‘element' in
message tree

Empty element value <element/> Empty string

Empty element value <element></element> Empty string

Folder with child elements <element><childElement/
></element>

No value

Nil element value <element xsi:nil="true"/> Empty string

Note that both forms of an empty element result in the same value in the message
tree.

Note also that a NULL value is never put into the message tree by the XMLNS
parser.

Writing

Description
Value of ‘element' in
message tree

XML output from XMLNS
parser

Empty element value Empty string <element/>

Null element value NULL <element/>

Folder with child elements No value <element><childElement/
></element>

Empty elements

An empty element can take two forms in an XML document:
- <element/>
- <element></element>

1106 WebSphere Message Broker Version 7.0.0.8

The XMLNS parser treats both forms in the same way. The element is added to the
message tree with a value of “” (the empty string).

When a message tree is produced by the XMLNS parser, it always uses the first
form for elements that have a value of “” (the empty string).

Elements with an xsi:nil attribute

The XMLNS parser treats the xsi:nil attribute exactly like any other attribute. When
xsi:nil is encountered while parsing, it does not set the value of the parent element
to NULL. If you require this behavior you should use the XMLNSC parser. When
writing a message tree, if an xsi:nil attribute exists it will be produced in the same
way as any other attribute.
Related concepts:
“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
“XMLNS opaque parsing”
Opaque parsing is a performance feature that is offered by the XMLNS domain.
“Handling null values” on page 1140
A business message might contain fields that are either empty or have a specific
out-of-range value. In these cases, the application that receives the message is
expected to treat the field as if it did not have a value. The logical message tree
supports this concept by enabling the value of any element to be set to NULL.

XMLNS opaque parsing:

Opaque parsing is a performance feature that is offered by the XMLNS domain.

XMLNS opaque parsing has been superseded by the opaque parsing feature of the
XMLNSC domain. Do not use the XMLNS parser for opaque parsing unless your
message flow requires features that are only offered by the XMLNS parser.

If you are designing a message flow, and you know that a particular element in a
message is never referenced by the message flow, you can specify that that element
is to be parsed opaquely. This reduces the costs of parsing and writing the
message, and might improve performance in other parts of the message flow.

To specify that an XML element is to be parsed opaquely, use an ESQL CREATE
statement with a PARSE clause to parse the XML document. Set the FORMAT
qualifier of the PARSE clause to the constant, case-sensitive string
'XMLNS_OPAQUE' and set the TYPE qualifier of the PARSE clause to the name of
the XML element that is to be parsed in an opaque manner.

The TYPE clause can specify the element name with no namespace (to match any
namespace), or with a namespace prefix or full namespace URI (to match a specific
namespace).

XMLNS opaque elements cannot be specified via the node properties.

Consider the following example:
DECLARE soap NAMESPACE ’http://schemas.xmlsoap.org/soap/envelope/’;

DECLARE BitStream BLOB ASBITSTREAM(InputRoot.XMLNS
ENCODING InputRoot.Properties.Encoding
CCSID InputRoot.Properties.CodedCharSetId);

--No Namespace

Chapter 9. Developing message flow applications 1107

CREATE LASTCHILD OF OutputRoot
DOMAIN(’XMLNS’)

PARSE (BitStream
ENCODING InputRoot.Properties.Encoding
CCSID InputRoot.Properties.CodedCharSetId
FORMAT ’XMLNS_OPAQUE’
TYPE ’Body’);

--Namespace Prefix
CREATE LASTCHILD OF OutputRoot
DOMAIN(’XMLNS’)

PARSE (BitStream
ENCODING InputRoot.Properties.Encoding
CCSID InputRoot.Properties.CodedCharSetId
FORMAT ’XMLNS_OPAQUE’
TYPE ’soap:Body’);

--Namespace URI
CREATE LASTCHILD OF OutputRoot
DOMAIN(’XMLNS’)

PARSE (BitStream
ENCODING InputRoot.Properties.Encoding
CCSID InputRoot.Properties.CodedCharSetId
FORMAT ’XMLNS_OPAQUE’
TYPE ’{http://schemas.xmlsoap.org/soap/envelope/}:Body’);

Related concepts:
“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
“XMLNSC opaque parsing” on page 1097
Opaque parsing is a performance feature that is offered by the XMLNSC domain.
Related reference:
“CREATE statement” on page 5082
The CREATE statement creates a new message field.

XMLNS DTD support:

The input XML might contain an inline DTD.

Parsing

If the input XML document has an inline DTD, the XMLNS parser reads and uses
information in the DTD while parsing, and adds the DTD information to the
message tree.

Internal entity definitions in the DTD are used to automatically expand entity
references that are encountered in the body of the document.

Attributes that are missing from the input document are automatically supplied
with the default value specified in the DTD.

Writing

The XMLNS parser can produce any inline DTD that has been constructed in the
message tree.

External DTDs

No support is offered for external DTDs
Related concepts:

1108 WebSphere Message Broker Version 7.0.0.8

“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
“XMLNSC opaque parsing” on page 1097
Opaque parsing is a performance feature that is offered by the XMLNSC domain.
Related reference:
“CREATE statement” on page 5082
The CREATE statement creates a new message field.

XML parsers namespace support:

Namespaces in XML messages are supported by the XMLNSC and XMLNS
parsers. Namespaces are not supported by the XML parser.

Parsing

The XMLNS and XMLNSC parsers can parse any well-formed XML document,
whether or not the document contains namespaces. If elements or attributes have
namespaces, those namespaces are applied to the elements and attributes in the
message tree. Namespace prefix mappings are also carried in the message tree, and
are used when serializing the message tree back to XML.
v If an element or attribute in the input XML has a namespace, the corresponding

node in the message tree also has that namespace.
v If an element contains a namespace declaration (an xmlns attribute), a child

element that contains its prefix and namespace URI is created in the message
tree.

While the message is passing through a message flow, namespaces and namespace
mappings can be modified using ESQL or any of the other transformation
technologies that are offered by message broker.

Writing

Namespaces and their prefixes are preserved in the message tree when parsing,
and are used when the XMLNS and XMLNSC parsers convert a message tree to an
XML bit stream.
v When serializing a message tree, the parser scans for namespace declarations on

each XML element. If any are found, it uses them to select the namespace
prefixes in the output document.

v If an element in the message tree has a namespace, but there is no in-scope
namespace declaration for its namespace URI, a valid namespace prefix is
automatically generated and used in the output XML. Auto-generated prefixes
have the form NS1, NS2, and so on.

Tip: If an element in the message tree has a child element that is a ‘default
namespace' declaration, every child of that element (whether an XML element or
an XML attribute, at any nesting depth) must have a namespace. If this rule is not
enforced message broker cannot generate correct XML output for the message tree.
Related concepts:
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.

Chapter 9. Developing message flow applications 1109

“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.

XML parser:

The XML domain is very similar to the XMLNS domain, but the XML domain has
no support for XML namespaces or opaque parsing.

The XML domain is deprecated, but existing message flows that use the XML
domain continue to work. Use the XMLNSC domain when developing new
message flows.

The XML parser is not model-driven and does not use an XML Schema when
parsing XML documents.

If you want the XML domain to parse a particular message, you must select
Message Domain as XML on the appropriate node in the message flow.

Tip: The XMLNSC and XMLNS parsers both support XML messages that do not
use namespaces, with no extra configuration.

Features of the XML parser

Feature Present Description

Namespace support No

On-demand parsing Yes See “Parsing on demand” on
page 4173.

Compact message tree No

Opaque parsing No

Ultra high performance No

Validation No

Inline DTD support Yes Inline DTDs are processed
and retained in the message
tree.

XML Data Model compliance Yes The resultant message tree
conforms to the XML Data
Model.

Related concepts:
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.

1110 WebSphere Message Broker Version 7.0.0.8

“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.
Related tasks:
“Manipulating messages in the XML domains” on page 2535
You can manipulate messages in the XML, XMLNS, and XMLNSC domains.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

MRM parser and domain:

You can use the MRM domain to parse and write a wide range of message
formats.

The MRM domain can be used to parse and write a wide variety of message
formats. It is primarily intended for non-XML message formats, but it can also
parse and write XML. For guidance on when to consider using the MRM parser,
instead of one of the XML parsers, to parse XML, see “Which XML parser should
you use?” on page 1080

The key features of the MRM domain are:
v Support for messages from applications that are written in C, COBOL, PL/I and

other languages, by using the Custom Wire Format (CWF) physical format. This
support includes the ability to create a message model directly from a C header
file or COBOL copybook.

v Support for text messages, perhaps with field content that is identified by tags,
separated by specific delimiters, or both, by using the Tagged Delimited String
(TDS) physical format. This includes industry standards such as CSV, HL7,
SWIFT, EDIFACT, and X12.

v Support for XML messages, including those that use XML namespaces, by using
the XML physical format.

WebSphere Message Broker uses the MRM parser to read and write messages that
belong to the MRM domain. When reading a message, the MRM parser constructs

Chapter 9. Developing message flow applications 1111

a message tree from a bit stream. When writing a message, the MRM parser creates
a bit stream from a message tree. The MRM parser is always model-driven, and it
is guided by a message dictionary that describes the shape of the message tree (the
logical model) and the physical layout of the bytes or characters in the bit stream
(the physical format). A message dictionary is created automatically from the
content of a message set when it is added to the broker archive (BAR) file.
Therefore, when you create a message set for use with the MRM domain, you must
define both the logical model and the appropriate physical format information.

The operation of the parser depends on the physical format that you have
associated with the input or output message:
v For a binary message, the parser reads a set sequence of bytes according to

information in the CWF physical format, and translates them into the fields and
values in the message tree.

v For a text message, the parser uses a key piece of TDS physical format
information called Data Element Separation to decide how to parse each portion
of the message bit stream. This informs the parser whether the message uses
delimiters, tags, fixed length elements, patterns, and so on. The parser then
reads the data according to information in the TDS physical format, and
translates it into the fields and values in the message tree.

v For an XML message, the parser reads the XML markup language (element tags
and attributes), guided by information in the XML physical format, and
translates them into the fields and values in the message tree.

Because the MRM parser is model-driven, it can perform validation of messages
against the model that is defined in the deployed dictionary. The level of
validation that is performed by the MRM parser is similar to that defined by XML
Schema 1.0, but is not fully compliant. If you use XML messages, and you want
fully compliant XML Schema 1.0 validation, use the XMLNSC domain.

The MRM parser is an on-demand parser. See “Parsing on demand” on page 4173.

If you want to use the MRM domain to parse a particular message:
1. Create a new message set with an appropriate CWF, TDS, or XML physical

format; or locate an existing message set.
2. Ensure that the message set has its Default message domain set to MRM, or that the

MRM check box under Supported message domains is selected to indicate that the
message set supports the MRM domain.

3. Create a message definition file in the message set to represent your message,
ensuring that both logical and physical format information is provided. If you
have an existing C, COBOL, XML Schema, or DTD description of your
message, you can import the description by using a wizard.

4. Add the message set to a broker archive (BAR) file which will generate a
message dictionary for use by the MRM parser, and deploy the BAR file to the
broker.

5. Select MRM as Message Domain on the appropriate node in your message flow.
6. Additionally set values for Message Set, Message Type, and Message Format on the

node. Message Type is the name of the message in the message definition file.

The following samples all use the MRM parser to process messages:
v Video Rental
v Comma Separated Value (CSV)
v EDIFACT

1112 WebSphere Message Broker Version 7.0.0.8

v FIX
v SWIFT
v X12

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Some predefined message models are supplied with the WebSphere Message
Broker Toolkit and can be imported by using the New Message Definition File
From IBM supplied Message wizard. The CSV, ALE IDoc, and File IDoc models are
specifically for use with the MRM domain. See “IBM supplied messages that you
can import” on page 6367.

IBM supplies predefined message sets for industry standard formats SWIFT, X12,
EDIFACT, and FIX. For more information, contact Dublin Adapters at
dubadapt@ie.ibm.com.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and

Chapter 9. Developing message flow applications 1113

Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Manipulating messages in the MRM domain” on page 2581
How to use messages that have been modeled in the MRM domain, and that are
parsed by the MRM parser.
Related reference:
“IBM supplied messages that you can import” on page 6367
You can import IBM supplied messages to create a new message definition file.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.

DataObject parser and domain:

Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
v “Using the DataObject domain with WebSphere Adapters”
v “Using the DataObject domain with CORBA” on page 1115

Using the DataObject domain with WebSphere Adapters: You must use the DataObject
domain when you use WebSphere Adapter nodes in your message flow.

WebSphere Message Broker uses the DataObject parser to read and write message
from Enterprise Information Systems (EIS) such as SAP, PeopleSoft, and Siebel.
Such messages belong to the DataObject domain.

When it receives a message from an adapter, the DataObject parser constructs a
message tree from the business object that it receives from the EIS. When it writes
a message, the DataObject parser creates from the message tree the business object
that it sends to the EIS. The DataObject parser is always model-driven, and it is
guided by the XML Schemas that model the EIS business objects. The XML
Schemas are created automatically from the content of a message set when the
message set is added to the broker archive (BAR) file.

If you want to parse a message using the DataObject domain, you must:
1. Create a message set, or locate an existing message set.
2. Ensure that either the message set has its Default message domain project set to

DataObject, or the DataObject check box (under Supported message domains) is
selected, to indicate that the message set supports the DataObject domain.

3. Create a message definition file in the message set to represent your EIS
business object. Use the New adapter connection wizard to connect to the EIS and
retrieve the Business object metadata.

1114 WebSphere Message Broker Version 7.0.0.8

4. Add the message set to a broker archive (BAR) file, which generates XML
Schema for the DataObject parser to use, and deploy the BAR file to the broker.

5. If you associate your adapter inbound or outbound message with an adapter
node in your message flow, the Message Set property is automatically set in the
node. The Message domain property is always pre-selected as DataObject.

Tip: If a message that belongs to the DataObject domain is written to a destination
other than a WebSphere Adapter, the DataObject parser invokes the XMLNSC
parser to write the message as XML.

The following adapter samples use the DataObject parser to process messages:
v SAP Connectivity
v Twineball Example EIS Adapter

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Using the DataObject domain with CORBA: You must use the DataObject domain
when you use CORBA nodes in your message flow.

WebSphere Message Broker uses the DataObject parser to read and write message
from CORBA applications. Such messages belong to the DataObject domain.

For information about how to build the tree under the DataObject domain for use
with CORBA, see “CORBA operation parameters” on page 2156 and “IDL data
types” on page 2150.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.

Chapter 9. Developing message flow applications 1115

“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.
“TwineballInput node” on page 4951
Use the TwineballInput node to discover how the WebSphere Adapters nodes
work.
“TwineballRequest node” on page 4955
Use the TwineballRequest node to discover out how WebSphere Adapters nodes
work.
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

JMS parsers and domains:

The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.

Use the JMSMap domain when handling JMS messages of type MapMessage. Use
the JMSStream domain when handling JMS messages of type StreamMessage.

These message types appear in the broker in XML format, and are therefore
supported in an identical way to XML domain messages.

For a full description of JMS MapMessage and StreamMessage processing, see
“WebSphere Broker JMS Transport” on page 1681.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.

1116 WebSphere Message Broker Version 7.0.0.8

“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Manipulating messages in the JMS domains” on page 2609
This topic provides information specific to dealing with messages that belong to
the JMSMap and JMSStream domains. These messages are parsed by the generic
XML parser.
Related reference:
“WebSphere Broker JMS Transport” on page 1681
The WebSphere Broker JMS Transport is a service that connects applications that
send and receive messages that conform to the Java Message Service (JMS)
standard.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

MIME parser and domain:

Use the MIME domain if your messages use the MIME standard for multipart
messages.

The MIME (Multipurpose Internet Mail Extension) parser does not support the full
MIME standard, but does support common uses of MIME. You can send the
messages to the broker over HTTP or over other transport types, such as
WebSphere MQ. Use the MIME domain if your messages use the MIME standard
for multipart messages.

The MIME domain does not support Content-Type values with a media type of
message.

To specify that a message uses the MIME domain, select MIME as the Message
Domain on the relevant message flow node.

Use the MIME domain and parser to parse and write MIME messages. The MIME
parser creates a logical tree, and sets up the broker ContentType property. You can
use Compute nodes and JavaCompute nodes to manipulate the logical tree. Set the
Content-Type value using the ContentType property in the MIME domain.

Example MIME message

The following example shows a simple multipart MIME message. The message
shown is a SOAP with Attachments message with two parts: the root part and one
attachment part. The boundary string MIME_boundary delimits the parts.

Chapter 9. Developing message flow applications 1117

Example MIME logical tree

The following diagram shows a MIME logical tree, which is described in “MIME
tree details” on page 1123. A MIME logical tree does not need to contain all of the
children that are shown in the diagram. The value of the Content-Type header of a
MIME message is the same as the ContentType field in the Properties subtree. The
Transport-headers are headers from the transport that is used, such as an MQMD
or HTTP.

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml
Content-Description: Optional description of message.

Optional preamble text
--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <rootpart@example.com>

<?xml version=’1.0’ ?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header xmlns:ins="http://myInsurers.com">
<ins:ClaimReference>abc-123</ins:ClaimReference>

</SOAP-ENV:Header>

<SOAP-ENV:Body xmlns:ins="http://myInsurers.com">
<ins:SendClaim>

<ins:ClaimDetail>myClaimDetails</ins:ClaimDetail>
<ins:ClaimPhoto>

<href>cid:claimphoto@example.com</href>
</ins:ClaimPhoto>

</ins:SendClaim>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-ID: <claimphoto@example.com>

myBinaryData
--MIME_boundary--
Optional epilogue text

1118 WebSphere Message Broker Version 7.0.0.8

You can further parse the BLOB data in the tree (for example, by using an ESQL
CREATE statement) if you know about the format of that MIME part. You might
be able to find information about the format from its Content-Type field in the
logical tree. Alternatively, you might know the format that your MIME messages
take, and be able to parse them appropriately. For example, you might know that
the first MIME Part is always an XML message, and that the second MIME Part is
a binary security signature.

When the EmailInput node receives an email from an email server that supports
Post Office Protocol 3 (POP3) or Internet Message Access Protocol (IMAP), the
body of the email message, and any attachments, are propagated in the MIME
domain. All other information relating to the email is stored in the Root.Transport
headers MIME logical tree; for example, Root.EmailInputHeader.To. Where To is
the storage location of one of the email elements. For a complete list of the email
elements that are propagated in the MIME logical tree when you use an
EmailInput node, see “EmailInput node” on page 4394.

You must specify how to parse other message formats, such as tagged delimited or
binary data, within your message flow, because the MIME parser does not do this.
You must also specify how to handle encoded and signed message parts, because
the MIME parser does not process these.

Some pre-defined MIME message models are supplied with the WebSphere
Message Broker Toolkit and can be imported using the New Message Definition
From IBM Supplied Message wizard.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.

Root

Properties

MIME-Version

Domain

Content-Type

ContentType

Transport headers

Content-Description

MIME

Parts

Optional epiloguePartPart PartOptional preamble

Content-Type Content-Transfer-Encoding Content-ID Data

BLOB

Chapter 9. Developing message flow applications 1119

“MIME tree details” on page 1123
A MIME message is represented in the broker as a logical tree. When it writes a
message, the MIME parser creates a message bit stream by using the logical
message tree.
“MIME messages”
A MIME message consists of both data and metadata. MIME metadata consists of
HTTP-style headers and MIME boundary delimiters.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Processing email messages” on page 1786
You can configure the EmailOutput node to deliver an email from a message flow
to an email server that supports Simple Mail Transfer Protocol (SMTP). You can
also configure the EmailInput node to retrieve an email from an email server that
supports Post Office Protocol 3 (POP3) or Internet Message Access Protocol
(IMAP).
Related reference:
“IBM supplied messages that you can import” on page 6367
You can import IBM supplied messages to create a new message definition file.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

MIME messages:

A MIME message consists of both data and metadata. MIME metadata consists of
HTTP-style headers and MIME boundary delimiters.

MIME headers

Each header is a colon-separated name-value pair on a line. The ASCII sequence
<CR><LF> terminates the line. A sequence of these headers, called a header block, is
terminated by a blank line: <CR><LF><CR><LF>. Any headers that are in this HTTP
style can appear in a MIME document. Some common MIME headers are
described in “MIME standard header fields” on page 6323.

Content-Type

The only header that must be present is the Content-Type header. This header
specifies the type of the data in the message. If the Content-Type value starts with
“multipart”, the message is a multipart MIME message. For multipart messages the
Content-Type header must also include a boundary attribute that gives the text
that is used to delimit the message parts. Each MIME part has its own

1120 WebSphere Message Broker Version 7.0.0.8

Content-Type field that specifies the type of the data in the part. This can also be
multipart, which allows multipart messages to be nested. MIME parts with any
other Content-Type values are handled as BLOB data.

If a MIME document is sent over HTTP, the Content-Type header appears in the
HTTP header block rather than in the MIME message body. For this reason, the
broker manages the value of the Content-Type header as the ContentType property
in the Properties folder of the logical tree. This allows the MIME parser to obtain
the Content-Type value for a MIME document that is received over HTTP. If you
need to either create a new MIME tree or modify the value of the Content-Type,
set the Content-Type value using the ContentType property in the MIME domain.
If you set the Content-Type value directly in the MIME tree or HTTP tree, this
value might be ignored or used inconsistently. The following ESQL is an example
of how to set the broker ContentType property:
SET OutputRoot.Properties.ContentType = ’text/plain’;

Parsing

The MIME domain does not enforce the full MIME specification. Therefore, you
can work with messages that might not be valid in other applications. For
example, the MIME parser does not insist on a MIME-Version header. The MIME
parser imposes the following constraints:
v The MIME headers must be properly formatted:

– Each header is a colon-separated name-value pair, on a line of its own,
terminated by the ASCII sequence <CR><LF>.

– The header line must use 7-bit ASCII.
– Semicolons are used to separate parameters:

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml

– A header might contain a comment in parentheses, for example:
MIME-Version: 1.0 (Generated by XYZ)

v A line that starts with white space is treated as a continuation of the previous
line. Therefore, a long header can be split across more than one line.

v If two or more headers in a header block have the same name, their values are
concatenated into a comma-separated list.

v A top-level MIME Content-Type header must be available. The header is not
case-sensitive. If the transport is HTTP, any Content-Type value in the HTTP
header is used as the top-level Content-Type. If the transport is not HTTP, the
Content-Type must appear in the initial header block of the MIME message.

v The Content-Type value is a media type followed by the / character and a
subtype. Examples of this are text/xml and multipart/related. The parser does
not validate subtypes. The Content-Type value can be followed by one or more
parameters that are separated by semicolons.

v If the media type of a message is multipart, a boundary attribute must provide
the text that is used to delimit the separate MIME parts.

v Each individual MIME part can have its own Content-Type header. The part
header can have a media type of multipart, so that multipart messages can be
nested. In this case, a valid boundary attribute must be provided, and its value
must be different from any that has been previously defined in the message.
MIME parts that have any other Content-Type value are handled as BLOB data.

v MIME multipart boundary delimiters are represented in 7-bit ASCII. The
boundary delimiter consists of a line starting with a hyphen pair, followed by a
boundary string. This sequence must not occur within the MIME message at any

Chapter 9. Developing message flow applications 1121

point other than as a boundary. A MIME end-delimiter is a hyphen pair,
followed by the MIME boundary string, followed by a further hyphen pair. All
delimiter lines must end in the ASCII sequence <CR><LF>. An example of a
delimited message is:
--MIME_boundary
message data
--MIME_boundary
message data
--MIME_boundary--

where MIME_boundary is the boundary delimiter string, and message data
represents message data.

v The MIME media type message is not supported and results in an error at run
time.

v Any preamble data (text between the initial MIME header block and the first
boundary delimiter) or epilogue data (text after the final boundary delimiter) is
stored in the logical tree as a value-only element. Preamble data and epilogue
data can appear only as the first and last children, respectively, of a Parts node.

v The MIME parser does not support on-demand parsing and ignores the Parse
Timing property. The parser does not validate MIME messages against a message
model, and ignores the WebSphere Message Broker Toolkit Validate property.

Special cases of multipart MIME

The MIME parser is intended primarily for use with multipart MIME messages.
However, the parser also handles some special cases:
v Multipart MIME with just one part. The logical tree for the MIME part saves the

Content-Type and other information as usual, but the Data element for the
attachment is empty.

v Single-part MIME. For single-part MIME, the logical tree has no Parts child. The
last child of the MIME tree is the Data element. The Data element is the parent
of the BLOB that contains the message data.

v MIME parts with no content.

Secure MIME (S/MIME)

S/MIME is a standard for sending secure email messages. S/MIME has an outer
level Content-Type of multipart/signed with parameters protocol and micalg that
define the algorithms that are used to encrypt the message. One or more MIME
parts can have encoded content. These parts have Content-Type values such as
application/pkcs7-signature and a Content-Transfer-Encoding of base64. The MIME
domain does not attempt to interpret or verify whether the message is signed.
Related concepts:
“MIME tree details” on page 1123
A MIME message is represented in the broker as a logical tree. When it writes a
message, the MIME parser creates a message bit stream by using the logical
message tree.
“Logical tree structure” on page 1042
The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
Related tasks:

1122 WebSphere Message Broker Version 7.0.0.8

“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
Related reference:
“MIME standard header fields” on page 6323
Check this quick reference to the common MIME headers.

MIME tree details:

A MIME message is represented in the broker as a logical tree. When it writes a
message, the MIME parser creates a message bit stream by using the logical
message tree.

Logical tree elements

A MIME message is represented in the broker as a logical tree with the following
elements:
v The root of the tree is a node called MIME.
v All correctly formatted headers are stored in the logical tree, regardless of

whether they conform to the MIME standard. The headers appear in the logical
tree as name=value, as shown here:
Content-Type=text/xml

v A multipart MIME message is represented by a subtree with a root node called
Parts.

v Any preamble or epilogue data associated with a multipart MIME message is
represented by value-only elements appearing as the first and last children of
Parts.

v In the special case of single-part MIME, the content is represented by a subtree
with the root called Data.

v Each part of a multipart MIME message is represented by an element called Part
with a child element for each MIME header, and a last child called Data.

v The Data element represents the content of a MIME part. This makes it easier to
test for the presence of body content by using ESQL because the Data element is
always the last child of its parent.

Writing MIME messages

When it writes a message, the MIME parser creates a message bit stream by using
the logical message tree. The MIME domain does not enforce all of the constraints
that the MIME specification requires, therefore it might generate MIME messages
that do not conform to the MIME specification. The constraints that the MIME
parser imposes are:
v The tree must have a root called MIME, and constituent Parts, Part, and Data

elements, as described in “Logical tree elements.”
v Exactly one Content-Type header must be present at the top level of the tree, or

be available by using the ContentType property. Media subtypes are not
validated.

v If the media type is multipart, a valid boundary parameter must also exist.
v Any constituent MIME parts can have exactly one Content-Type header. If the

value of this header starts with multipart, it must also include a valid boundary
parameter. The value of this boundary parameter must not be the same as other
boundary parameter values in the definition.

Chapter 9. Developing message flow applications 1123

v The MIME Content-Type value “message” is not supported and results in an
error at run time.

v All name-value elements in the tree are written as name: value followed by the
ASCII sequence <CR><LF>.

If you have other elements in the tree, the parser behaves in the same way as the
HTTP header parser:
v A name-only element or a NameValue element with a NULL value results in

Name: NULL .
v Any children of a name-value element are ignored.

The message flow must serialize subtrees if they exist; you can use the ESQL
command ASBITSTREAM.
Related concepts:
“MIME parser and domain” on page 1117
Use the MIME domain if your messages use the MIME standard for multipart
messages.
“MIME messages” on page 1120
A MIME message consists of both data and metadata. MIME metadata consists of
HTTP-style headers and MIME boundary delimiters.
“Logical tree structure” on page 1042
The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
Related tasks:
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.

BLOB parser and domain:

The BLOB message domain includes all the messages with content that cannot be
interpreted and subdivided into smaller sections of information.

Messages in this domain are processed by the BLOB parser. The BLOB parser is a
program that interprets a bit stream or message tree that represents a message that
belongs to the BLOB domain. The parser then generates the corresponding tree
from the bit stream on input, or a bit stream from the tree on output.

A BLOB message is handled as a single string of bytes, and although you can
manipulate it, you cannot identify specific pieces of the byte string using a field
reference, in the way that you can with messages in other domains.

You can process messages in the BLOB domain in the following ways:
v You can refer to the message content if you know the location (offset) of

particular information within the message. You can specify offset values in ESQL
statements within nodes in a message flow to manipulate the information.

v You can store the message in an external database, in whole or in part (where
the part is identified by the offset of the data that is to be stored).

1124 WebSphere Message Broker Version 7.0.0.8

v You can use the Mapping node to map to and from a predefined BLOB message,
and to map to and from items of BLOB data. The BLOB message cannot be:
– The message content in a message where Content Validation is defined as

Open or Open Defined (for example, the message body of a SOAP envelope)
– The message represented by a wildcard inside another message

The UnknownParserName field is ignored.

The BLOB message body parser does not create a tree structure in the same way
that other message body parsers do. It has a root element BLOB, which has a child
element, also called BLOB, which contains the data.

For example, InputBody.BLOB.BLOB[10] identifies the tenth byte of the message
body; substring(InputBody.BLOB.BLOB from 10 for 10) references 10 bytes of the
message data starting at offset 10.

If you want to use the BLOB parser to parse a particular message, select BLOB as
the Message Domain on the relevant node in your message flow.

The following sample demonstrates how you can extract information from an XML
message and transform it into BLOB format to store it in a database.
v Data Warehouse

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Logical tree structure” on page 1042
The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
Related tasks:
“Manipulating messages in the BLOB domain” on page 2615
How to deal with messages that belong to the BLOB domain, and that are parsed
by the BLOB parser.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.

Chapter 9. Developing message flow applications 1125

“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Creating a BLOB output message using a message map” on page 2262
Use the Message Mapping editor to create a bit stream from a message source, and
create it as a BLOB output message.
“Storing a BLOB message in a database table using a message map” on page 2297
Use the Message Mapping editor to create a bit stream from a BLOB message, and
store it in a database table.
“Mapping from a BLOB message to an output message” on page 2263
Use the Message Mapping editor to parse a BLOB message.
“Mapping from a BLOB field in a database table to an output message” on page
2298
Use the Message Mapping editor to parse a bit stream from a field in a database
table into a folder in a target message.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

IDOC parser and domain:

The IDOC domain can be used to process messages that are sent to the broker by
SAP R3 clients across the WebSphere MQ link for R3. Such messages are known as
SAP ALE IDocs.

Note: The IDOC domain is deprecated and is not recommended for developing
new message flows. Instead use the MRM domain with a TDS physical format. See
“MRM parser and domain” on page 1111.

A typical ALE IDoc message that has been sent from SAP to the WebSphere MQ
link for R3 consists of an MQMD header, an MQSAPH header, and the ALE IDoc
itself. The IDoc is made up of fixed size structures:
v The first structure is the Control Structure (DC). This is a complex element 524

bytes long that contains a fixed set of SAP-defined simple elements.
v One or more Data Structures (DDs). Each DD is a complex element 1063 bytes

long that contains a fixed set of SAP-defined simple elements that occupies 63
bytes, followed by 1000 bytes of user-defined segment data.

WebSphere Message Broker uses the IDOC parser to read and write ALE IDocs
that belong to the IDOC domain. When reading a message, the IDOC parser
constructs a message tree from a bit stream. When writing a message, the IDOC
parser creates a bit stream from a message tree.

The IDOC parser processes the SAP-defined elements in the DC, then, for each
DD, the IDOC parser processes the SAP-defined elements, then calls the MRM
parser to process the user-defined segment data, using its CWF physical format.

1126 WebSphere Message Broker Version 7.0.0.8

The IDOC parser is therefore a model-driven parser, and requires that you create a
message set in which to model the IDoc message, and deploy it to the broker.

If you want the IDOC domain to parse a particular message, you must:
1. Create a new message set with a CWF physical format, or locate an existing

message set.
2. Ensure that either the message set has its Default message domain project set to

IDOC, or the IDOC check box (under Supported message domains) is selected, to
indicate that the message set supports the IDOC domain.

3. Create message definition files in the message set to represent your message.
See “Building the message model for the IDOC parser” on page 6330 for the
steps involved.

4. Add the message set to a broker archive (BAR) file which generates a message
dictionary for use by the MRM parser, and deploy the BAR file to the broker.

5. Select Message Domain as IDOC on the appropriate node in your message flow.
6. Additionally, select Message Set and Message Format on the node. (You do not

need to select Message Type).
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
Related tasks:
“Building the message model for the IDOC parser” on page 6330
The ALE IDoc messages that are sent to, and received from, SAP applications by
using the WebSphere MQ Link for R3, can be processed by the IDOC parser, which
requires a message model to interpret the data correctly. This topic describes how
to build the message model.
“Manipulating messages in the IDOC domain” on page 2610
Use ESQL from a Compute node to copy the incoming IDoc to the outgoing IDoc,
and manipulate the message.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Manipulating messages in the MRM domain” on page 2581
How to use messages that have been modeled in the MRM domain, and that are
parsed by the MRM parser.
Related reference:
“Field names of the IDOC parser structures” on page 6333
The field names of the Control Structure (DC) and the Data Structure (DD) that are
used by the IDOC parser.

Chapter 9. Developing message flow applications 1127

“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

JSON parser and domain:

JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.

WebSphere Message Broker provides support for a JSON domain. Messages in the
JSON domain are processed by the JSON parser and serializer. The JSON parser
interprets a bit stream using the JSON grammar, and generates a corresponding
JSON domain logical message tree in the broker. When processing data for output,
the JSON serializer generates a JSON formatted bit stream from a JSON domain
logical message tree.

The JSON parser and serializer do not support message validation because JSON
message modeling is not supported by the broker.

To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mqsichangebroker command. For more information,
see “mqsichangebroker command” on page 3723.

JSON is a language-independent text format, based on two structures:
v Objects (name-value pairs) with the following types:

– String
– Number
– Boolean
– Null

v Ordered collections of values (arrays)

Objects and arrays can be nested.

For more information about JSON message structure, see “JSON message details”
on page 1135.

JSON data streams can be parsed from any coded character set ID (CCSID) that is
supported by the broker. The data stream is parsed according to the CCSID that is
defined by the transport when the JSON parser is invoked from an input or
request node, or defined by the CCSID parameter in a PARSE clause on a CREATE
function call. If no CCSID is specified, or if a value of 0 is set, the parser attempts
to detect (by examining the first few bytes of the data stream) whether one of the
following Unicode encodings is being used:
v UTF-8
v UTF-16BE
v UTF-16LE
v UTF-32BE
v UTF-32LE

If a UTF-* CCSID is explicitly specified, the JSON parser tolerates the
corresponding Byte Order Mark (BOM) at the beginning of the data stream.

1128 WebSphere Message Broker Version 7.0.0.8

JSON data streams are parsed into a logical message tree under the Data element
below the JSON parser root. The logical tree structure is shown in the “Example
JSON message” on page 1130.

The Data element can be accessed and manipulated from ESQL as JSON.Data, from
Java as JSON/Data, from PHP as JSON->Data, or from XPath as $Body/Data. The
JSON parser issues an error if a bit stream is not formatted according to the JSON
grammar.

The JSON serializer serializes message trees into a JSON format data stream. The
CCSID can be defined by either the broker properties tree, or by transport headers
in the message assembly. If no CCSID is defined, the serializer defaults to the
queue manager default CCSID for all nodes except HTTP nodes, which default to
UTF-8 encoding.

When the JSON serializer is invoked through an ASBITSTREAM function call, the
CCSID is defined by the CCSID parameter. If no CCSID parameter is provided, or
if the value is set to 0, the JSON serializer defaults to using UTF-8 encoding.

To process messages with the JSON parser, select JSON as the Message Domain on
the relevant node in the message flow. The Mapping node and the XSLTransform
node do not support the JSON domain.

The broker sets the HTTP Content-Type header to application/json when
serializing a JSON message tree, unless an explicit value is set by the message flow.

JSON objects are modeled in the broker message tree as a sequence of NameValue
elements. The parser builds the message tree in the order in which it encounters
the members in the bit stream. The serializer writes the object members into the bit
stream in the tree order.

JSON arrays are modeled in the broker message tree as a Name element with a
JSON parser-specific type flag of JSON.Array and ordered children. The children
can be any of the following types of array:
v An array containing simple values; for example:

"array1" : ["thing1", 1]

The following message tree is produced:
(0x01001000:Array): array1 = (

(0x03000000:NameValue):Item = ’thing1’ (CHARACTER)
(0x03000000:NameValue):Item = 1 (INTEGER)

)

The JSON parser assigns the name Item to the NameValue elements.
v An array containing objects; for example:

"array2" : [{"a" : 1}, {"b" : 2}]

The following message tree is produced:
(0x01001000:Array):array2 = (

(0x01000000:Object):Item = (
(0x03000000:NameValue):a = 1 (INTEGER)

)
(0x01000000:Object):Item = (

(0x03000000:NameValue):b = 2 (INTEGER)
)

)

v A multidimensional array; for example:
"array3" : [[1.1], [2.1]]

Chapter 9. Developing message flow applications 1129

The following message tree is produced:
(0x01001000:Array):array3 = (

(0x01001000:Array):Item = (
(0x03000000:NameValue):Item = 1.1E+0 (FLOAT)

)
(0x01001000:Array):Item = (

(0x03000000:NameValue):Item = 2.1E+0 (FLOAT)
)

)

Example JSON message

The following example shows a simple JSON message:
{

"name" : "John Doe",
"age" : -1.0,
"known" : false,
"address" : { "street" : null,

"city" : "unknown" },
"belongings" : ["item1", "item2", "item3"]

}

This JSON input produces the following broker logical message tree:
(0x01000000:Object):JSON = ([’json’ : 0xd55fc8]

(0x01000000:Object):Data = (
(0x03000000:NameValue):name = ’John Doe’ (CHARACTER)
(0x03000000:NameValue):age = -1E+0 (FLOAT)
(0x03000000:NameValue):known = FALSE (BOOLEAN)
(0x01000000:Object):address = (

(0x03000000:NameValue):street = NULL
(0x03000000:NameValue):city = ’unknown’ (CHARACTER)

)
(0x01001000:Array):belongings = (

(0x03000000:NameValue):Item = ’item1’ (CHARACTER)
(0x03000000:NameValue):Item = ’item2’ (CHARACTER)
(0x03000000:NameValue):Item = ’item3’ (CHARACTER)

)
)

)

Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“JSON message details” on page 1135
A JSON message consists of name-value pairs (objects), and ordered collections of
values (arrays). Objects, arrays, or both structures can be nested.
“Message tree mapping in the JSON domain” on page 1138
When reading a JSON message, the parser builds a message tree from the input bit
stream by mapping JSON values to corresponding message tree element types.
When serializing a message tree into the output bit stream, tree element types are
mapped to JSON value types.
“Manipulating messages in the JSON domain” on page 2617
You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.
“Which body parser should you use?” on page 1077
The characteristics of the messages that your applications exchange indicate which
body parser you must use.

1130 WebSphere Message Broker Version 7.0.0.8

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
Related tasks:
“Changing the parser used in a message flow” on page 1485
If you need to change the parser that is used in a message flow, use the
ResetContentDescriptor node to request that the message is reparsed by a different
parser.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.
Related reference:
“Available parsers” on page 6689
A parser is called by the broker only when that parser is required. The parser that
is called depends upon the parser that has been specified.
“IBM supplied messages that you can import” on page 6367
You can import IBM supplied messages to create a new message definition file.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

JSONP support in the JSON domain:

JSONP (JavaScript Object Notation with Padding) is an extension of the JavaScript
Object Notation (JSON) format.

WebSphere Message Broker provides support for JSONP services. A JSONP service,
or Remote JSON Service, is a Web service that returns JSON data padded with a
user-defined JavaScript function call. The JSONP response message can be
interpreted as an executable script, so this functionality can be used to create
cross-domain function calls.

For example:
http://brokerhost:7080/flowUrlPathSuffix?jsonp=scriptFn

This URL includes a query string, where:

Chapter 9. Developing message flow applications 1131

v jsonp tells the JSONP service that any response from the URL must be returned
as a JSONP message

v scriptFn is the name of a client-side executable function

Responses to the URL would therefore be in the JSONP format:
scriptFn(response)

The JSON message tree provides a top level Padding element, into which the JSON
parser places the name of the client-side JSONP function. Similarly, the JSON
serializer pads a JSON message if the top-level element Padding is present in the
tree.

For more information about JSON, see “JSON parser and domain” on page 1128.

For information about how to use WebSphere Message Broker to provide a JSONP
service, see “Providing a JSONP service” on page 1133.

For information about how to use WebSphere Message Broker to consume a JSONP
service response, see “Consuming a JSONP service response” on page 1134.

Example JSONP message

The following example shows a simple JSONP message:
scriptFn (

{
"name" : "John Doe",
"age" : -1.0,
"known" : false,
"address" : { "street" : null,

"city" : "unknown" },
"belongings" : ["item1", "item2", "item3"]

}
)

This JSONP input produces the following broker logical message tree:
(0x01000000:Object):JSON = ([’json’ : 0xd55fc8]
(0x03000000:NameValue):Padding = ’scriptFn’ (CHARACTER)
(0x01000000:Object):Data = (

(0x03000000:NameValue):name = ’John Doe’ (CHARACTER)
(0x03000000:NameValue):age = -1E+0 (FLOAT)
(0x03000000:NameValue):known = FALSE (BOOLEAN)
(0x01000000:Object):address = (
(0x03000000:NameValue):street = NULL
(0x03000000:NameValue):city = ’unknown’ (CHARACTER)

)
(0x01001000:Array):belongings = (
(0x03000000:NameValue):Item = ’item1’ (CHARACTER)
(0x03000000:NameValue):Item = ’item2’ (CHARACTER)
(0x03000000:NameValue):Item = ’item3’ (CHARACTER)

)
)

)

Related concepts:
“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“Manipulating messages in the JSON domain” on page 2617
You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.

1132 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“What is a Web service?” on page 1603
A Web service is defined by the World Wide Web Consortium (W3C) as a software
system designed to support interoperable machine-to-machine interaction over a
network.
Related tasks:
“Providing a JSONP service”
Configure your WebSphere Message Broker message flow to provide a JSONP
service response.
“Consuming a JSONP service response” on page 1134
When a message flow is configured to use the JSON domain, the JSON parser
automatically detects JSONP messages. The JSON parser puts the JSON padding in
the top level Padding element, and the JSON data under the Data element.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.

Providing a JSONP service:

Configure your WebSphere Message Broker message flow to provide a JSONP
service response.

Before you begin

Before you start:

Before completing this task, read the following overview topics about JSON:
v “JSON parser and domain” on page 1128
v “JSONP support in the JSON domain” on page 1131

About this task

You can use ESQL, PHP, or Java to configure your message flow to provide a
JSONP response.

The code examples in this task assume that the client application provides a
JavaScript call in the following format:
<script type="text/javascript"
src="http://brokerhost:7080/flowUrlPathSuffix?jsonp=scriptFn">
</script>

Procedure

1. On the Advanced tab of your HTTPInput node, select Parse Query String.
This option enables you to access the JSONP script prefix that is included in the
incoming URL, for example scriptFn, from the local environment tree.

2. Insert the following code, as appropriate:
v If your message flow uses a Compute node:

SET OutputRoot.JSON.Padding = InputLocalEnvironment.HTTP.Input.QueryString.jsonp;
SET OutputRoot.JSON.Data.objectName = ’thing1’;

v If your message flow uses a PHPCompute node:

Chapter 9. Developing message flow applications 1133

$output_assembly->JSON->Padding =
$input_assembly[MB_LOCAL_ENVIRONMENT]->HTTP->input->QueryString->jsonp;

$output_assembly->JSON->Data->ObjectName = "thing1";

v If your message flow uses a JavaCompute node:
MbMessage outMessage = new MbMessage();
MbElement outRoot = outMessage.getRootElement();
MbElement outParser = outRoot.createElementAsLastChild(MbJSON.PARSER_NAME);
String paddingString =

assembly.getLocalEnvironment().getRootElement().getFirstElementByPath("HTTP/Input/QueryString/jsonp").getValueAsString();
MbElement padding = outParser.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Padding", paddingString);
MbElement data = outParser.createElementAsLastChild(MbElement.TYPE_NAME, "Data", null);
data.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,"objectName","thing1");

This code generates the following bit stream, sent as the HTTP reply:
scriptFn({"objectName":"thing1"})

This bit stream causes the JavaScript function scriptFn to be called with the
JSON object as a parameter.

Related concepts:
“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“Manipulating messages in the JSON domain” on page 2617
You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.
“What is a Web service?” on page 1603
A Web service is defined by the World Wide Web Consortium (W3C) as a software
system designed to support interoperable machine-to-machine interaction over a
network.
Related tasks:
“Consuming a JSONP service response”
When a message flow is configured to use the JSON domain, the JSON parser
automatically detects JSONP messages. The JSON parser puts the JSON padding in
the top level Padding element, and the JSON data under the Data element.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Consuming a JSONP service response:

When a message flow is configured to use the JSON domain, the JSON parser
automatically detects JSONP messages. The JSON parser puts the JSON padding in
the top level Padding element, and the JSON data under the Data element.

Before you begin

Before you start:

Before completing this task, read the following overview topics about JSON:
v “JSON parser and domain” on page 1128
v “JSONP support in the JSON domain” on page 1131

1134 WebSphere Message Broker Version 7.0.0.8

About this task

You can process both JSON and JSONP messages in a single message flow, because
the parser puts the JSON data under the Data element in the message tree. If
JSONP padding is detected, the name of the client-side script is placed in the top
level Padding element.

Follow these steps to test for the presence of padding:

Procedure

1. Create a message flow with an HTTPInput node, an HTTPReply node, and
your choice of a Compute, PHPCompute, or JavaCompute node.

2. On the Input Message Parsing tab of your HTTPInput node, set the Message
domain property to JSON : For JavaScript Object Notation messages.

3. Insert the following code, as appropriate:
v If your message flow uses a Compute node:

DECLARE PaddingRef REFERENCE TO InputRoot.JSON.Padding
IF LASTMOVE(PaddingRef) THEN

-- JSON Padding is present
ELSE

-- No JSON Padding present
END IF;

v If your message flow uses a PHPCompute node:
if ($input_assembly->JSON->Padding != null)

// JSON Padding is present
else

// No JSON Padding

v If your message flow uses a JavaCompute node:
if (message.getRootElement().getFirstElementByPath("JSON/Padding") != null){

//JSON Padding is present
}
else{

//No JSON Padding
}

Related concepts:
“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“Manipulating messages in the JSON domain” on page 2617
You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.
“What is a Web service?” on page 1603
A Web service is defined by the World Wide Web Consortium (W3C) as a software
system designed to support interoperable machine-to-machine interaction over a
network.
Related tasks:
“Providing a JSONP service” on page 1133
Configure your WebSphere Message Broker message flow to provide a JSONP
service response.

JSON message details:

A JSON message consists of name-value pairs (objects), and ordered collections of
values (arrays). Objects, arrays, or both structures can be nested.

Chapter 9. Developing message flow applications 1135

For more detailed information about JSON, see the JavaScript Object Notation
(JSON) web site.

JSON object

In a JSON message, an object is an unordered set of comma-separated name-value
pairs that begins with a left brace ({) and ends with a right brace (}). Each name is
followed by a colon (:).

JSON object

►► { ▼

,

string : value } ►◄

JSON array

A JSON array is an ordered collection of comma-separated values that begins with
left bracket ([) and ends with right bracket (]).

JSON array

►► [▼

,

value] ►◄

JSON value

A JSON value can be any of the following structures, any of which can be nested:
v A string in double quotation marks
v A number
v Boolean
v Null
v An object
v An array

1136 WebSphere Message Broker Version 7.0.0.8

http://json.org/
http://json.org/

JSON value

►► string
number
object
array
true
false
null

►◄

JSON string

A JSON string is very much like a C or Java string. A string is a collection of zero
or more Unicode characters, wrapped in double quotation marks, using backslash
escapes. A character is represented as a single character string.

JSON string

►► "
Any UNICODE character except " or \ or a control character

\
“ (quotation mark)
\\ (backslash)
/ (forward slash)
b (backspace)
f (formfeed)
n (newline)
r (carriage return)
t (horizontal tab)
u (4 hexadecimal digits)

" ►◄

JSON number

A JSON number is the same as a C or Java number, except that the octal and
hexadecimal formats are not used.

Chapter 9. Developing message flow applications 1137

JSON number

►►
−

▼ 0
digit 1-9

▼

−

digit 0-9

▼

e
E

+
−

digit 0-9

►◄

Whitespace can be inserted between any pair of tokens.
Related concepts:
“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“Manipulating messages in the JSON domain” on page 2617
You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.

Message tree mapping in the JSON domain:

When reading a JSON message, the parser builds a message tree from the input bit
stream by mapping JSON values to corresponding message tree element types.
When serializing a message tree into the output bit stream, tree element types are
mapped to JSON value types.

The following tables show how JSON message values are mapped to message tree
element types:
v “JSON bit stream to message tree value mapping”
v “Message tree to JSON message value mapping” on page 1139

JSON bit stream to message tree value mapping

The JSON parser maps JSON values to message tree element types according to
the rules in the following table:

JSON value present in bit stream Parsed as

String CHARACTER

1138 WebSphere Message Broker Version 7.0.0.8

JSON value present in bit stream Parsed as

JSON Number value presented as:
v A minus sign prefix if the value is negative
v At least one digit, which can be zero
v No dot fractional part
v No exponent

INTEGER

JSON Number value presented as:
v A minus sign prefix if the number is

negative
v At least one digit in the integer part, which

can be zero
v Either or both of:
v A dot and at least one digit in the fractional

part, which can be zero
v An exponent using uppercase 'E' or

lowercase 'e', an optional plus or minus
sign, and at least one digit

FLOAT

Boolean BOOLEAN

Null NULL

Message tree to JSON message value mapping

The JSON serializer maps message tree elements to JSON value types according to
the rules in the following table:

Message tree Element type JSON Domain serializes as

JSON
type

Format

BIT String Any number of 0 and 1s

BLOB String Even number of hexadecimal digits

CHARACTER String Char data with JSON string escaping for any double quotation
mark (") or backslash (\) character within the CHAR

DATE String The standard ESQL string representation, 'yyyy-mm-dd'

TIME, GMTTIME String The standard ESQL string representation, 'hh:mm:ss.ffffff'

INTEGER Number v A minus sign prefix if the number is negative
v At least one digit, which can be zero
v No dot fractional
v No exponent

FLOAT Number v A minus sign prefix if the number is negative
v At least one digit in the integer part, which can be zero
v At least one digit in the fractional part, which can be zero
v An exponent part using uppercase 'E', a plus or minus sign, and

at least one digit

DECIMAL Number v A minus sign prefix if the number is negative
v At least one digit in the integer part, which can be zero
v At least one digit in the fractional part, which can be zero

Decimal literals ‘NAN', ‘INF', and so on, are not supported when
serializing to JSON.

BOOLEAN Boolean true or false

The serializer only serializes Boolean logical tree elements with
true or false values; unknown is not supported

Chapter 9. Developing message flow applications 1139

Message tree Element type JSON Domain serializes as

NULL Null Null

ROW Object Note: Assigning a ROW directly to a JSON Domain tree does not
produce JSON arrays.

DECLARE myRow ROW;
SET myRow.rowData[1].fieldOne = ’Row1Field1’;
SET myRow.rowData[1].fieldTwo = ’Row1Field2’;
SET myRow.rowData[2].fieldOne = ’Row2Field1’;
SET myRow.rowData[2].fieldTwo = ’Row2Field2’;
SET OutputRoot.JSON.Data.aRow = myRow;

Produces the following JSON bit stream

"aRow":{
"rowData": {"fieldOne":"Row1Field1","fieldTwo":"Row1Field2"},"
"rowData": {"fieldOne":"Row2Field1","fieldTwo":"Row2Field2"}

}

ROW Array To produce a JSON array from a ROW type the JSON.Array field
would also be set.

SET OutputRoot.JSON.Data.aRow = myRow;
SET OutputRoot.JSON.Data.aRow TYPE = JSON.Array;

Produces the following JSON bit stream

"aRow":[
{"fieldOne":"Row1Field1","fieldTwo":"Row1Field2"},
{"fieldOne":"Row2Field1","fieldTwo":"Row2Field2"}

]

Related concepts:
“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“Manipulating messages in the JSON domain” on page 2617
You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.

Handling null values:

A business message might contain fields that are either empty or have a specific
out-of-range value. In these cases, the application that receives the message is
expected to treat the field as if it did not have a value. The logical message tree
supports this concept by enabling the value of any element to be set to NULL.

Ways to represent a null value: In an XML document, the usual way to represent a
null value is to leave the element or attribute empty.

For example: <price></price> or <element price=""/>

1140 WebSphere Message Broker Version 7.0.0.8

The xsi:nil attribute provides a way to make this more explicit:
price=<xsi:nil="true"/>

Some business messages use a special value to represent a null value:
<price>-999</price>

This style of null representation is supported only by the MRM parser.

ESQL support for null values: Using ESQL, you can set the value of a message tree
element to NULL:

SET OutputRoot.XMLNSC.myField VALUE = NULL;

Note that this is different from SET OutputRoot.XMLNSC.myField = NULL; which
would cause myField to be deleted from the message tree.

The same effect can be achieved using Java or a Mapping node.

XMLNSC parser support for null values: Typically, the XML parsers (XMLNSC,
XMLNS, and XML) do not create null values in the message tree; an empty
element or an empty attribute value merely produces an empty string value in the
message tree.

If validation is enabled, the XMLNSC parser detects and processes any xsi:nil
attributes in the input document. If the xsi:nil attribute is set to 'true', and the
element is nullable, the attribute's parent element in the message tree is given a
null value.

For more information about XML parser support for empty elements and null
values, see “XMLNSC empty elements and null values” on page 1092 and
“XMLNS empty elements and null values” on page 1106.

MRM parser support for null values: XML physical format

When parsing, the MRM XML parser can detect and process xsi:nil attributes in the
input XML document. If the xsi:nil attribute is set to 'true', and the element is
nullable, the attribute's parent element in the message tree is given a null value.

For information about enabling xsi:nil support in the MRM parser, see “XML Null
handling options” on page 6258.

The following topics provide more information about handling null values in the
MRM parser:
v “MRM Custom wire format: NULL handling” on page 1216
v “MRM XML physical format: NULL handling” on page 1249
v “MRM TDS format: NULL handling” on page 1240

All physical formats

The MRM parser can detect a null value that is represented by an out-of-range
value. The null value must be specified in the physical format of the message set.

While parsing, the MRM parser checks the null value for each element in the
message. If the value in the bit stream matches the null value in the message set,
the MRM parser sets the value in the message tree to NULL.

Chapter 9. Developing message flow applications 1141

The same check is performed when converting a message tree to a bit stream. If
the value in the message tree is NULL, the MRM parser outputs the null value
from the message set.

JSON parser support for null values: The JSON format supports NULL as a JSON
value type.

When a JSON message includes an object with a null value, the JSON parser sets
the value in the message tree to NULL.

When serializing an element in the message tree with a null value, the JSON bit
stream is constructed as a JSON object with a value of null.
Related concepts:
“Logical tree structure” on page 1042
The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“MRM Custom wire format: NULL handling” on page 1216
CWF supports the handling of explicit NULL values within messages, if the logical
nillable property of the element is set.
“MRM XML physical format: NULL handling” on page 1249
The purpose of null handling is to specify how messages deal with null values;
that is, the absence of a meaningful value for an element.
“MRM TDS format: NULL handling” on page 1240
NULL handling dictates the way in which the MRM parser for TDS messages
handles elements that have been set to Null.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Querying null values in a message in the MRM domain” on page 2597
You can use an ESQL statement to compare an element to NULL.
“Setting null values in a message in the MRM domain” on page 2599
You can use implicit or explicit null processing to set the value of an element to
NULL in an output message.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message

1142 WebSphere Message Broker Version 7.0.0.8

models.

Properties
You can view and change properties that define broker characteristics, and those
properties of associated resources such as message flows.

Broker properties
Each broker has a set of properties that define certain characteristics that
you can control:
v You can set some broker properties only at the time that you create the

broker by using the mqsicreatebroker command; for example, its
associated queue manager.

v You can change some of the broker properties by using the
mqsichangebroker command; for example, timeout values for processing
configuration requests.

v You can view all broker properties by using the mqsireportbroker
command.

v You can access some broker properties from ESQL and Java programs
that you run in message flow nodes. For details of these options, see
“Broker properties” on page 1144.

Node properties
Each built-in (supplied) node has at least one property that you can
configure; some properties are mandatory, others are optional. In addition
to setting these properties for each node when you add it to a message
flow, you can also use the following configuration techniques:
v You can promote properties, so that you can set them at the message

flow level. For information about how and why you might want to use
this technique, see “Promoted properties” on page 1145.

v You can configure properties when you add the message flow to a BAR
file for deployment. In each node description, the subset of node
properties that you can use in this way are identified. For more
information, see “Editing configurable properties” on page 3227.

Node properties are discussed in “Message flow nodes” on page 1024.

User-defined properties
You can create your own properties when you create a message flow, and
access those properties from ESQL and Java programs in your message
flow nodes. For further details, see “User-defined properties” on page 1147

Configurable service properties
You can modify some of the properties of the configurable services that are
supplied to enhance your message flow processing options. For example,
configurable services are supplied to communicate with enterprise
information systems such as SAP.

You can also create your own configurable services, as variants of the
supplied services, or to provide additional options.

For further information, see “Configurable services” on page 1296.
Related concepts:
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.

Chapter 9. Developing message flow applications 1143

“Broker properties”
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.
“Promoted properties” on page 1145
A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsireportbroker command” on page 3919
Use the mqsireportbroker command to display broker registry entries.

Broker properties:

For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.

Broker properties are divided into four categories:
v Properties that relate to a specific node
v Properties that relate to nodes in general
v Properties that relate to a message flow
v Properties that relate to the execution group

For a description of the broker, flow, and node properties that are accessible from
ESQL and Java, see “Broker properties that are accessible from ESQL and Java” on
page 5302.

Broker properties have the following characteristics.
v They are grouped by broker, execution group, flow, and node.
v They are case-sensitive. Their names always start with an uppercase letter.
v They return NULL if they do not contain a value.

All nodes for which user programs can edit ESQL support access to broker
properties. These nodes are:
v Compute nodes
v Database nodes
v DatabaseInput nodes

1144 WebSphere Message Broker Version 7.0.0.8

v Filter nodes
v All derivatives of these nodes

User-defined properties can be queried, discovered, and set at run time to
dynamically change the behavior of a message flow. You can use the
Administration API for WebSphere Message Broker(CMP API) to manipulate these
properties, which can be used by a systems monitoring tool to perform automated
actions in response to situations that it detects in the monitored systems. For more
information, see “User-defined properties” on page 1147.

A complex property is a property to which you can assign multiple values. Complex
properties are displayed in a table in the Properties view, where you can add, edit,
and delete values, and change the order of the values in the table. You cannot
promote complex properties; therefore, they are not shown in the Promote
properties dialog box. Nor can you configure complex properties; therefore, they
are not supported in the Broker Archive editor. For an example of a complex
property, see the Query elements property of the DatabaseRoute node.

For more information about editing the properties of a node, see “Configuring a
message flow node” on page 1503.
Related concepts:
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
Related tasks:
“Accessing broker properties from ESQL” on page 2625
You can access broker properties, at run time, from the ESQL modules in your
message flow nodes.
“Accessing broker properties from the JavaCompute node” on page 2658
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your Java programs. It can be useful, during
the run time of your code, to have real-time access to details of a specific node,
flow, or broker.
Related reference:
“Broker properties that are accessible from ESQL and Java” on page 5302
You can access broker, message flow, and node properties from ESQL and Java.
“DatabaseRoute node” on page 4373
Use the DatabaseRoute node to route messages using information from a database
in conjunction with XPath expressions.

Promoted properties:

A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.

A message flow contains one or more message flow nodes. You can promote the
properties of a message flow node to apply to the message flow to which it

Chapter 9. Developing message flow applications 1145

belongs. In this case, any user of the message flow can override these promoted
properties at the message flow level, without being aware of the message flow's
internal structure.

You can promote compatible properties (that is, properties that represent
comparable values) from more than one node to the same promoted property; you
can then set a single property that affects multiple nodes.

For example, you might want to set the name of a data source as a property of the
message flow, rather than a property of each individual node in the message flow
that references that data source. You create a message flow that accesses a database
called SALESDATA. However, while you are testing the message flow, you want to
use a test database called TESTDATA. If you set the data source properties of each
individual node in the message flow to refer to SALESDATA, you can promote the
data source property for each node in the flow that refers to it, and update the
property to have the value TESTDATA; this value overrides the data source
properties on the nodes while you test the message flow (the promoted property
always takes precedence over the settings for the properties in any relevant nodes).

A subset of message flow node properties is also configurable (that is, the
properties can be updated at deployment time). You can promote configurable
properties: if you do so, the promoted property (which can have a different name
from the property or properties that it represents) is the one that is available to
update at deployment time. Configurable properties are those associated with
system resources; for example, queues and data sources. An administrator can set
these properties at deployment time, without the need for a message flow
developer.

You cannot promote a complex property, so it does not appear in the Promote
properties dialog box. For more information about complex properties, see “Broker
properties” on page 1144.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“Broker properties” on page 1144
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.
Related tasks:
“Promoting a property” on page 1298
You can promote a node property to the message flow level to simplify the
maintenance of the message flow and its nodes, and to provide common values for
multiple nodes in the flow by converging promoted properties.
“Renaming a promoted property” on page 1302
If you have promoted a property from the node to the message flow level, it is
initially assigned the same name that it has at the node level. You can rename the
property to have a more meaningful name in the context of the message flow.

1146 WebSphere Message Broker Version 7.0.0.8

“Removing a promoted property” on page 1304
If you have promoted a property from the node to the message flow level, you can
remove (delete) it if you no longer want to specify its value at the message flow
level. The property reverts to the value that you specified at the node level. If you
remove a promoted property that is a mandatory property, ensure that you have
set a value at the node level. If you have not, you cannot successfully deploy a
broker archive file that includes this message flow.
“Converging multiple properties” on page 1306
You can promote properties from several nodes in a message flow to define a
single promoted property, which applies to all those nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.

User-defined properties:

A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.

The advantage of UDPs is that their values can be changed by operational staff at
deployment and run time. You do not need to change your application programs.
For example, if you use the UDPs to hold data about your computer center, you
can configure a message flow for a particular computer, task, or environment at
deployment time, without having to change the code at the message node level.

When you launch the Message Flow editor to either create a message flow or
modify an existing message flow, as well as deciding which nodes are required in
the message flow, you also have the option (provided by the tab) of defining and
giving initial values to some user-defined properties. Use the User Defined
Properties tab at the bottom of the edit window. See “Message Flow editor” on
page 6810 for more information.

As well as being defined using the Message flow editor, you must also define a
UDP either by using a DECLARE statement with the EXTERNAL keyword in all
ESQL programs that use it, or by calling the getUserDefinedAttribute method in all
JavaCompute nodes that use it.

See the “DECLARE statement” on page 5117 for details of the DECLARE
statement, and see “Accessing message flow user-defined properties from a
JavaCompute node” on page 2659 for more information about how to use a UDP
in a JavaCompute node.

Values that you give to a UDP when you define it in a message flow override the
value of that variable in your ESQL program.

You can also modify the value of a UDP at deployment time by using the Broker
Archive editor to edit the BAR file. This value overrides the value that was set
when you defined the message flow.

The value of the UDP is set at the message flow level, and is the same for all
eligible nodes that are contained in the flow. An eligible node is a node that
supports UDPs and is within the scope of the declaration that declares the UDP to
your application. For example, if you use the Message Flow editor to change the
value of a user property called timezone, which is declared in a schema called

Chapter 9. Developing message flow applications 1147

mySchema, in a message flow called myFlow, the UDP is available at run time to all
the nodes in myFlow that support UDPs and that fall within mySchema.

Similarly, if you use the Message Flow editor to change the value of a user-defined
property in a subflow, the newly edited property is available to all the nodes in the
subflow that support UDPs, and that are within the scope of the declaration. The
property is not available, for example, to nodes in the parent flow.

A UDP has global scope and is not specific to a particular subflow. If you reuse a
subflow in a message flow, and those subflows have identical UDPs, you cannot
set the UDPs to different values.

Controlling user-defined properties at run time

User-defined properties can be queried, discovered, and set at run time to
dynamically change the behavior of a message flow. You can use the
Administration API for WebSphere Message Broker (also known as the CMP API)
or WebSphere Message Broker Explorer to manipulate these properties, which can
be used by a systems monitoring tool to perform automated actions in response to
situations that it detects in the monitored systems.

For example, a message flow contains a Route node, which is used to differentiate
between the classes of customer that are defined in the message. The Route node
has a user-defined property called ProcessClasses, which is set with an initial
value of All. When ProcessClasses is set to All, the node routes messages from all
classes of customer to its first terminal for immediate processing.

When certain conditions are detected (for example, the monitoring system detects
that the request load is causing the service level agreement to fall below its target),
the Route node must be set to pass requests from only "Gold" class customers for
immediate processing, while other customer requests are sent to another output
terminal, which queues them for later batch processing. Therefore, the monitoring
application sets ProcessClasses to Gold, so that the Route node routes the less
critical messages to the second terminal.

To make it easier to know what a user-defined property does, and what values it
can have, adopt a suitable naming convention. For example, a user-defined
property named property01, with an initial value of valueA is not as useful as a
property named RouteToAorB with an initial value of RouteA.

For more information, see “Setting message flow user-defined properties at run
time in a CMP application” on page 985 or “Setting user-defined properties
dynamically at run time using the WebSphere Message Broker Explorer” on page
954.

Precedence of UDP value overriding

You can define a user-defined property in the following ways:
v In the ESQL code
v In the Message Flow editor
v Through a BAR file override
v By using the CMP API

A BAR file override takes precedence over changes in the Message Flow editor,
and changes in the Message Flow editor take precedence over changes in the ESQL
code.

1148 WebSphere Message Broker Version 7.0.0.8

The precedence of the values for user-defined properties is shown in the following
sequence:
1. The user-defined property ProcessClasses is set to All in a message flow BAR

file. After deployment of the BAR file, the value of ProcessClasses is All.
2. The same user-defined property (ProcessClasses) is set to Gold by using the

CMP API to issue the call setUserDefinedProperty(“ProcessClasses”, “Gold”).
After successful completion of this method, the value of ProcessClasses is
Gold.

3. The broker is shut down and restarted. The value of ProcessClasses is still
Gold.

4. The original flow BAR file is redeployed. After deployment, the value of
ProcessClasses is All.

You can find more information about defining user-defined properties in the
following related topics.
Related concepts:
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
“ESQL variables” on page 2374
An ESQL variable is a data field that is used to help process a message.
Related tasks:
“Configuring a message flow at deployment time with user-defined properties” on
page 2626
Use user-defined properties (UDPs) to configure message flows at deployment and
run time, without modifying program code. You can give a UDP an initial value
when you declare it in your program, or when you use the Message Flow editor to
create or modify a message flow.
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.
“Setting user-defined properties dynamically at run time using the WebSphere
Message Broker Explorer” on page 954
Use the WebSphere Message Broker Explorer to view and set user-defined
properties on a message flow dynamically at run time.
“Accessing message flow user-defined properties from a JavaCompute node” on
page 2659
Customize a JavaCompute node to access properties that you have associated with
the message flow in which the node is included.
Related reference:
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

Chapter 9. Developing message flow applications 1149

“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“ESQL variables” on page 5048
ESQL variables can be described as external variables, normal variables, or shared
variables; their use is defined in the DECLARE statement.

Impact analysis: analyzing the effects of planned changes to
your applications
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.

You can analyze the effects of renaming the following artifacts:
v Files

– MXSD files
– Deployable WSDL files
– Map files
– Message flow files (including subflows)

v Global artifacts in message sets (MXSD)
– Element definitions
– Complex and simple type definitions
– Model groups
– Attribute groups
– Attributes
– Message definitions

v ESQL modules
v Schema-scope ESQL constants
v Maps, including submaps
v Schema-scope ESQL routines

You can analyze the effects of moving the following artifacts within the originating
project:
v Schema-scope ESQL routines
v Schema-scope ESQL constants
v ESQL modules
v Map files
v Message flow files

Impact analysis lists two types of impact. Primary impacts are the immediate
consequences if a change is performed. For example, if you analyze the impact of
renaming a file, the primary impact is the renaming of that specific file. Secondary
impacts are any other artifacts or contents of an artifact that are affected by the
primary change. A single change can create many secondary impacts. If another
artifact called S2 references the name of the file that you want to rename, there is a
secondary impact upon artifact S2. Impact analysis does not report third-level
impacts; artifacts that depend on the validity of S2 are not listed.

1150 WebSphere Message Broker Version 7.0.0.8

For example, when a global artifact in a message set, such as message or global
element, is renamed, impact analysis generates a list of artifacts that are likely to
be affected:

MXSDs
Flows
Deployable WSDLs
Maps
ESQL paths in the ESQL module

See “Impact analysis: reference” on page 4174 for details of artifacts and paths that
are not reported under secondary analysis.

Note: Impact analysis does not change any resources.

Impact analysis results are shown either in the Impact Analysis dialog box, or in
the Impact Analysis view in the WebSphere Message Broker Toolkit. For more
information about how to view information about selected resources, mark changes
as complete, and view previous results, see “Impact Analysis view” on page 6801.

Indexing

Indexing must be enabled to support impact analysis. The act of indexing
determines what definitions and relationships exist in WebSphere Message Broker
artifacts. These definitions and relationships are used to perform impact analysis.
By default, indexing is disabled, for performance reasons.
Related tasks:
“Enabling and disabling indexing” on page 1454
Enable indexing to support impact analysis.
“Analyzing planned changes to message model objects” on page 2897
Use impact analysis to analyze the effect of renaming message model objects.
“Analyzing planned changes to ESQL objects” on page 2403
Use impact analysis to analyze the effect of renaming or moving ESQL objects, or
moving or changing the broker schema of an ESQL file.
“Analyzing the impact of changes to message maps” on page 2234
Use impact analysis to analyze the effect of renaming or moving message maps.
“Analyzing planned changes to message flows” on page 1436
Use impact analysis to analyze the effect of renaming or moving message flows,
including subflows.
“Analyzing planned changes to message set resources” on page 1165
Use impact analysis to analyze the effect of renaming message definition or
deployable WSDL files.
Related reference:
“Impact analysis: reference” on page 4174
Some artifacts are excluded from secondary analysis.

Data conversion
Convert data that your message flows are transferring between different
environments by using WebSphere MQ or WebSphere Message Broker facilities.

Data conversion is the process by which data is transformed from the format
recognized by one operating system into the format recognized by a second
operating system with different characteristics such as numeric order.

Chapter 9. Developing message flow applications 1151

If you are using a network of systems that use different methods for storing
numeric values, or you need to communicate between users who view data in
different code pages, you must consider how to implement data conversion.

Code page conversions
Code page conversion might be required for one or more of the following
reasons:
v ASCII versus EBCDIC
v Code pages that are specific to national language
v Code pages that are specific to operating systems

In WebSphere MQ, these factors are handled by the CCSID field in the
MQMD header. For more information about the MQMD header, see
"MQMD - Message descriptor" in the Application Programming Reference
section of the WebSphere MQ Version 7 Information Center online. For
more information about code page support, see "Code page conversion",
also in the Application Programming Reference section.

Encoding
Encoding (byte order) conversion might be required for one or both of the
following reasons:
v Big endian versus little endian

Endian is an attribute of data that describes whether it is stored in
computer memory or transmitted with the most significant byte first (big
endian) or last (little endian).

v Floating point number representations

In WebSphere MQ, these factors are handled by the Encoding field in the
MQMD header. For more information about the MQMD header, see
"MQMD - Message descriptor" in the Application Programming Reference
section of the WebSphere MQ Version 7 Information Center online. For
more information about encoding, see "Machine encoding", also in the
Application Programming Reference section.

If you are configuring a message flow to receive messages:
v Messages received across a WebSphere MQ protocol that uses WebSphere MQ

headers, contain code page encoding characteristics in the MQMD header, and
optionally in other WebSphere MQ headers.

v Messages received across protocols that do not use WebSphere MQ headers do
not include these characteristics. Configure these characteristics by using
properties on the nodes in your message flows. For example, set the Message
coded character set ID and Message encoding properties on the FileInput node.

If you are configuring a message flow to send messages to other applications or
systems:
v Messages sent across a WebSphere MQ protocol contain code page encoding

characteristics in the MQMD header, and optionally in other WebSphere MQ
headers.

v Messages sent across protocols that do not use WebSphere MQ headers must be
modified to include these characteristics in the Properties folder in the logical
message tree structure. The parser called by the output node uses these values to
generate the correct bit stream.

When you use WebSphere Message Broker, you can use the data conversion
facilities of WebSphere Message Broker, WebSphere MQ, or both.

1152 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

WebSphere Message Broker facilities
You can model your messages in the MRM through the WebSphere
Message Broker Toolkit. Predefined elements of the messages are converted
according to their type and physical layer characteristics. For further
details, see “Configuring physical properties” on page 2912. You can also
use self-defining messages. You can then use the Compute, JavaCompute,
or PHPCompute node to configure encoding and CCSIDs. You do not need
WebSphere MQ data conversion exits.
v String data is converted according to the CCSID setting.
v Decimal integer and float extended decimal types are converted

according to the CCSID setting.
v Decimal integer and float (other physical data types) are converted

according to the Encoding setting.
v Binary and Boolean data is not converted.

WebSphere Message Broker can also convert the WebSphere MQ headers
for which parsers are provided.

When you use WebSphere Message Broker facilities, the whole message is
not converted to the specified encoding and CCSID: you can specify a
different encoding, or CCSID, or both, in each header to perform a
different conversion for the following part of the message. The encoding
and CCSID in the last header defines the values for the message body.

WebSphere MQ facilities

Headers and message body are converted according to the values set in the
appropriate MQMD fields, and other header format names. You might
need to set up data conversion exits to convert the body of your messages.

When you use WebSphere MQ facilities, the whole message is converted to
the specified encoding and CCSID, according to the setting of the format in
the WebSphere MQ header.

For more detail about data conversion using WebSphere MQ facilities, see
"Data conversion" in the Application Programming Reference section of the
WebSphere MQ Version 7 Information Center online.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
Related tasks:
“Configuring message flows for data conversion” on page 1293
If you exchange messages between applications that run on systems that are
incompatible in some way, you can configure your system to provide data
conversion as the message passes through the broker.
“Converting code page and message encoding” on page 2476
You can use ESQL within a Compute node to convert data for code page and
message encoding.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.

Chapter 9. Developing message flow applications 1153

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.
Related information:

WebSphere MQ Version 7 Information Center online

Message modeling
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

Applications typically use a combination of messages, including those that are
defined by the following structures or standards:
v C and COBOL data structures
v Industry standards such as SWIFT or EDIFACT
v XML DTD or Schema

You can model a wide variety of message formats so that they can be understood
by WebSphere Message Broker message flows.

When the message format is known, the broker can parse an incoming message bit
stream and convert it into a logical message tree for manipulation by a message
flow. After the message has been processed by the message flow, the broker
converts the message tree back into a message bit stream.

The following topics together give an overview of Message modeling:
v “Message modeling concepts” on page 1155
v “Why model messages?” on page 1158
v “Message domains and parsers” on page 1159
v “The message model” on page 1160
v “Physical formats in the MRM domain” on page 1211
v “Ways to create message definitions” on page 1253
v “Generate model representations” on page 1270

You can import either of the following samples to explore message set projects to
understand how the sample's messages are modeled in different formats.
v Video Rental
v Comma Separated Value (CSV)

The following samples also have message sets supplied:
v EDIFACT
v FIX
v SWIFT
v X12

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online

1154 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

If you want to analyze the effect of changing a message model object, see
“Analyzing planned changes to message model objects” on page 2897.
Related concepts:
“Message modeling concepts”
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Analyzing planned changes to message model objects” on page 2897
Use impact analysis to analyze the effect of renaming message model objects.

Message modeling concepts
Message modeling is a way of predefining the message formats that are used by
your applications.

When you have created your message models, include them in your broker archive
(BAR) file with the message flows that use those models. Deploy the BAR file to
the broker, which uses your message models to automatically parse and write your
message formats.

When you model messages, you must understand the following concepts:
v Message set projects

v Message sets

v Message definition files

v Web Services Description Language (WSDL) files

v SCA definition files

v Message categories

v Model importers

v Model editors

v Model generators

v Model validator

v Domains and parsers

Chapter 9. Developing message flow applications 1155

A message set project is a specialized project (container) in which you create and
maintain all the resources that are associated with exactly one message set.

A message set is a logical grouping of your messages and the objects that comprise
them (elements, types, groups). A message set contains the following files:
v Exactly one message set file
v Zero or more message definition files
v Zero or more WSDL files
v Zero or more message category files

Model
Validator

Message Category
Editor

WSDL editor

Message Definition
Editor

Message Set
Editor

.mxsd
files

.category
files

.wsdl
files

messageSet.mset
file

Importers

XML
DTD

SCA
definition

Repository

Message Set

XML
Schema

COBOL
copybook

C header WSDL EIS

Generators

Documentation
XML

Schema

XML
application

Message
Dictionary

WMB
broker

WSDL

Web Services
client

W
e

b
S

p
h

e
re

 M
e

s
s
a

g
e

 B
ro

k
e

r
T
o

o
lk

it

1156 WebSphere Message Broker Version 7.0.0.8

The message set file provides message model information that is common to all the
messages in the message set. You can create this information using the message set
editor.

When you have created a message set, you typically import application message
formats described by XML DTD, XML Schema, WSDL files, C structures, COBOL
structures, or EIS systems, creating and populating message definition files. You can
then edit the logical structure of your messages, and create and edit physical
formats that describe the precise appearance of your message bit stream during
transmission, using the message definition editor. Alternatively, you can create an
empty message definition file and create your messages using just the editor.

When your message definition files are complete, you can then generate the
message set in a form that can be used by a broker, parser, or application. This
might be in one of the following forms:
v A message dictionary for deployment to a broker
v An XML Schema for use by an application to validate XML messages, or for

deployment to a broker
v Web Services Description Language (WSDL) for a Web services client, or for

deployment to a broker
v Documentation to give to programmers or business analysts

Messages can be optionally grouped into message categories for convenience . You
can add messages to message categories using the message category editor.

Each time you save a message set file, message definition file, or message category
file, the content is validated to ensure that the message model that you are creating
follows certain rules. There are rules for both the logical structure and the physical
formats. This 'model validation' ensures the integrity of your model, but does not
necessarily prevent you from saving a message model file that is not valid.

WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Each parser is suited to a particular class of messages (for example,
fixed-length binary, delimited text, or XML) known as a message domain. When you
create a message set, you specify which domains the message set supports. This
determines which parsers can be used when you parse and write messages that are
defined within that message set.
Related concepts:
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.

Chapter 9. Developing message flow applications 1157

“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
“Message model integrity” on page 1210
When you create your message model, it is important that it is internally
consistent.
“Message domains and parsers” on page 1159
WebSphere Message Broker supplies a range of parsers to parse and write message
formats.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.
“Message Category editor” on page 6802
The Message Category editor is the default editor provided by the Broker
Application Development perspective for working with message category
(.category) files in a message set.

Why model messages?
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.

An example of a self-defining message format is XML. In XML the message itself
contains metadata as well as data values, enabling an XML parser to understand
an XML message even if no model is available.

Examples of messages that do not have a self-defining message format are binary
messages that originate from a COBOL program, and from SWIFT formatted text
messages. Neither contain sufficient metadata to enable a parser to understand the
messages.

Even if your messages are self-defining and do not require modeling, the following
advantages of modeling them might be useful:
v Runtime validation of messages. Without a model, a parser cannot check

whether input and output messages have the correct structure and data values.
v Enhanced parsing of XML messages. Although XML is self-defining, without a

model, all data values are treated as strings. If a model is used, the parser
knows the data type of data values, and can cast the data accordingly.

v Improved productivity when writing ESQL. When you are creating ESQL
programs for WebSphere Message Broker message flows, the ESQL editor can
use message models to provide code completion assistance.

v Drag-and-drop operations on message maps. When you are creating message
maps for WebSphere Message Broker message flows, the Mapping editor uses
the message model to populate its source and target views. Without message
models, you cannot use the Mapping editor.

v Reuse of message models, in whole or in part, by creating additional messages
that are based on existing messages.

1158 WebSphere Message Broker Version 7.0.0.8

v Generation of documentation.
v Provision of version control and access control for message models by storing

them in a central repository.

To make full use of the facilities that are offered by WebSphere Message Broker,
model your message formats.

To speed up the creation of message models, importers are provided to read
metadata such as C header files, COBOL copybooks, XML Schema and DTDs,
WSDL files, and EIS metadata, and create message models from that metadata.
Additionally, predefined models are available for common industry standard
message formats such as SWIFT, EDIFACT, X12, FIX, HL7, and TLOG.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Which body parser should you use?” on page 1077
The characteristics of the messages that your applications exchange indicate which
body parser you must use.
“The message model” on page 1160
The message model consists of the following components.
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

Message domains and parsers
WebSphere Message Broker supplies a range of parsers to parse and write message
formats.

A parser is invoked when the bit stream that represents an input message is
converted to the internal form that can be handled by the broker. The internal
form, a logical tree structure, is described in “Logical tree structure” on page 1042.
Similarly, a parser is invoked to convert a logical tree back into a bit stream.

Each parser is suited to a particular class of messages (for example, fixed-length
binary, delimited text, or XML) known as a message domain.

When you create a message set, you specify which message domains the message
set supports. This determines which parsers are used when you parse and write
messages that are defined within that message set.

The parsers that are supplied with WebSphere Message Broker are described in
“Parsers” on page 1072.
Related concepts:

Chapter 9. Developing message flow applications 1159

“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

The message model
The message model consists of the following components.
v Message set projects
v Message sets
v Message definition files
v WSDL files
v Message categories

See “Message modeling concepts” on page 1155 for a summary of these
components, and the relationship between them. See Related Concepts later in this
section for a detailed description of each component.

The majority of your model content is described by message definition files. These
files use XML Schema to represent your messages. XML Schema is an international
standard that defines a language for describing the structure of XML documents. It
is ideally suited to describing the messages that flow between business
applications, and it is widely used in the business community for this purpose.
WebSphere Message Broker uses XML Schema to describe the structure of all kinds
of message format, not just XML.

Each message definition file describes both the logical structure of your messages,
and the physical formats that describe the appearance of your message bit stream
during transmission. If you are using the MRM or IDOC domains, you must
provide physical format information. This tells the parser exactly how to parse the
message bit stream. If you are not using the MRM or IDOC domains, physical
format information is not needed

To understand the different ways that you create and populate message definition
files, see “Ways to create message definitions” on page 1253. See “Physical formats
in the MRM domain” on page 1211 for a description of the physical formats that
are available to you.

Related Concepts

1160 WebSphere Message Broker Version 7.0.0.8

“Message set projects”
A message set project is a specialized container in which you create and maintain
all the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups
which make up a message model within a message set.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“What is WSDL?” on page 1615
WSDL is an XML notation for describing a web service. A WSDL definition tells
a client how to compose a web service request and describes the interface that
is provided by the web service provider.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You
can have many message category files in a message set.
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Generate model representations” on page 1270
After you have created and populated a message set, you can generate a
message model in several different representations for use by a broker, a parser,
or your applications.
Related Tasks

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks
that are involved in working with message models.

Message set projects:

A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.

The content of a message set project is a single message set folder. If the message
set is modeling messages from EIS systems, the name of the message set project
provides the name of the message set and, optionally, a single Adapters folder. You
can create a message set project using the following methods:
v The New Message Set wizard.
v The Quick Start wizards.

These restrictions apply to message set projects:
v A message set project must contain just one message set.
v A message set project cannot refer to any other message set.

Chapter 9. Developing message flow applications 1161

Import either of the following samples to see how message set resources are stored
in a message set project. The sample's message flow resources are stored separately
in a Message Flow project.
v Video Rental
v Comma Separated Value (CSV)

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message sets overview”
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Quick Start wizards overview” on page 1409
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to
containers for the resources that you need when you develop a message flow.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Deleting a message set project” on page 2839
Delete a message set project and, optionally, the contents of the associated project
directory.

Message sets overview:

A message set is a container for grouping messages and associated message
resources (elements, types, groups).

A message set is a folder in a message set project that contains a messageSet.mset
file. The name of the folder is the name of the message set. A message set project
can contain just one message set.

When you create a new message set, a new message set project is automatically
created with a name that is the same as that of the message set.

You can base your new message set on an existing message set. In this case, all the
definitions in the existing message set are copied into the new message set.

1162 WebSphere Message Broker Version 7.0.0.8

When you have created your message set, you must specify the following key
properties:

Supported message domains
The message domains that are supported by the message set. The
supported domains determine what is generated for deployment to a
broker, and are used when parsing and writing the messages that are
defined within the message set.

Default message domain
The default domain of the message set.

Use namespaces
Indicates whether the message definitions that you create within the
message set are XML namespace aware.

Related concepts:
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message set resources”
Resources in a message set are created as files, and are displayed under the
message set folder in the Broker Development view.
“Message set identification” on page 1167
A message set is identified by the name of the message set folder in the message
set.
“Message set limitations” on page 1168
A message set is the original container for message models used by WebSphere
Message Broker.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message domains and parsers” on page 1159
WebSphere Message Broker supplies a range of parsers to parse and write message
formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Message set resources:

Resources in a message set are created as files, and are displayed under the
message set folder in the Broker Development view.
v Message set file messageSet.mset

Chapter 9. Developing message flow applications 1163

There is always one, and only one, messageSet.mset file in a message set. This
file contains message model properties that are common to all the content of the
message set. It is also where you define the physical formats that you want for
this message set. These can be Custom Wire Format (CWF), Tagged Delimited
String Format (TDS), and XML Wire Format (XML).
The file is created for you when a new message set is created, and you
manipulate its content with the Message Set Editor.

v Message definition files that have the suffix .mxsd
You can have many message definition files in a message set. Each file contains
the logical model and the associated physical model, in XML Schema form, for a
group of related messages.

v Deployable WSDL files that have the suffix .wsdl
These files are used by the SOAP domain. You can have many WSDL files in a
message set.

v Message category files that have the suffix .category
These files are optional. You can have many message category files in a message
set. A message category provides another way of grouping your messages,
perhaps for documentation purposes.

When you have completed the resources in your message set, you can generate the
content of the message set in a form that can be used by a broker parser or an
application. This might be:
v a message dictionary for deployment to a broker
v XML Schema for use by an application building XML messages, or for

deployment to a broker
v Web Services Description Language (WSDL) for a web services client, or for

deployment to a broker
v documentation to give to programmers or business analysts

You can analyze the effects of changes to certain resources; see “Analyzing planned
changes to message set resources” on page 1165.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
“Message domains and parsers” on page 1159
WebSphere Message Broker supplies a range of parsers to parse and write message
formats.

1164 WebSphere Message Broker Version 7.0.0.8

“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“Generate model representations” on page 1270
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Deleting a message set project” on page 2839
Delete a message set project and, optionally, the contents of the associated project
directory.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
Related reference:
“What is WSDL?” on page 1615
WSDL is an XML notation for describing a web service. A WSDL definition tells a
client how to compose a web service request and describes the interface that is
provided by the web service provider.
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Analyzing planned changes to message set resources:

Use impact analysis to analyze the effect of renaming message definition or
deployable WSDL files.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Enabling and disabling indexing” on page 1454

You must also have created message set content, for example by importing a
WSDL file.

Chapter 9. Developing message flow applications 1165

About this task

You can analyze the effect of renaming the following objects:
v Message definition files (.mxsd)
v Deployable WSDL files (.wsdl)

Procedure

1. In the Broker Development view, right-click the file that you want to rename,
then click Impact Analysis > Rename.

2. In the Impact Analysis - Rename Artifact window, type the new name of the
file, then click Analyze Impact.
The Rename Artifact dialog box shows the results of impact analysis, listing
primary and secondary impacts.
You can view the results of impact analysis in the Impact Analysis dialog box,
or the Impact Analysis view of the WebSphere Message Broker Toolkit. For
more information about how to view information about selected resources,
mark changes as complete, copy results to an external application, and view
previous results, see “Impact Analysis view” on page 6801.

:

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Enabling and disabling indexing” on page 1454
Enable indexing to support impact analysis.
“Analyzing planned changes to ESQL objects” on page 2403
Use impact analysis to analyze the effect of renaming or moving ESQL objects, or
moving or changing the broker schema of an ESQL file.
“Analyzing the impact of changes to message maps” on page 2234
Use impact analysis to analyze the effect of renaming or moving message maps.
“Analyzing planned changes to message flows” on page 1436
Use impact analysis to analyze the effect of renaming or moving message flows,
including subflows.
“Analyzing planned changes to message model objects” on page 2897
Use impact analysis to analyze the effect of renaming message model objects.
Related reference:
“Impact analysis: reference” on page 4174
Some artifacts are excluded from secondary analysis.
“Impact Analysis view” on page 6801
The Impact Analysis view shows information about selected resources, which
changes have been marked as complete, and previous results. You can also use this
view to copy results to the clipboard.

1166 WebSphere Message Broker Version 7.0.0.8

Message set identification:

A message set is identified by the name of the message set folder in the message
set.

When you must refer to a message set from a message flow (for example, when
setting the Message Set property of an input node), use the message set name.

A message set also has a 13-character identifier that is guaranteed to be unique.
You can use this identifier, instead of the message set name, to refer to a message
set, but only if you are using the MRM or IDOC domains. Other domains do not
recognize the identifier.

A message set also has an alias. An alias can be used only with MRM multipart
messages.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
“Message domains and parsers” on page 1159
WebSphere Message Broker supplies a range of parsers to parse and write message
formats.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
“Deleting a message set project” on page 2839
Delete a message set project and, optionally, the contents of the associated project
directory.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.

Chapter 9. Developing message flow applications 1167

“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Message set limitations:

A message set is the original container for message models used by WebSphere
Message Broker.

You can have as many message definition files as you want within one message
set, but you must limit your message sets to a few related message definition files
that share the same physical formats.

There are several reasons for the suggested limitations:
v Generation of a message dictionary and other representations is quicker.
v Generated documentation is more manageable.
v MRM physical formats apply to all objects within the message set.

Therefore, for example, if you are using the MRM domain and have an XML
message and an unrelated CWF message modeled in the same message set, CWF
physical format properties are present for all objects. But the CWF properties are
of no interest to the XML message and therefore take default values in those
objects, which can result in unwanted task list warnings.

v You cannot use recursion for MRM CWF and TDS physical formats.
Therefore, if you are modeling XML messages that have a recursive structure,
you must ensure that recursive XML messages do not share a message set with
MRM CWF or TDS physical formats.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.

1168 WebSphere Message Broker Version 7.0.0.8

“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Deleting a message set project” on page 2839
Delete a message set project and, optionally, the contents of the associated project
directory.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Message set version and keywords:

When you develop a message set, you can define the version of the message set,
and other key information that you want to be associated with it.

After you have deployed the message set in a BAR file, you can view the message
set properties in the WebSphere Message Broker Toolkit and WebSphere Message
Broker Explorer. The properties include the deployment and modification dates
and times (the default information that is displayed), and the additional version or
keyword information that you have set.

You can define information to give details of the message set that has been
deployed; therefore, you can check that it is the message set that you expect.

Version

You can set the version of the message set in the Version property.

You can also define a default message set version in the Default version tag of
the message set preferences. All message sets that you create after you have set
this property have this default applied to the Version property at the message set
level.

Chapter 9. Developing message flow applications 1169

Keywords

You must define keywords in the Documentation property of the message set.
Keywords follow certain rules to ensure that the information can be parsed. The
following example shows the type of information that you can define in the
Documentation property:
$MQSI Author=John Smith MQSI$

The following table contains the information that is displayed by the WebSphere
Message Broker Toolkit or Explorer:

Message set name

Deployment Time 28-Aug-2004 15:04

Modification Time 28-Aug-2004 14:27

Version 1.0

Author John Smith

In this display, the version information has been defined by using the Version
property of the object. If you have not defined version information by using the
Version property, it is omitted from this display.

Restrictions within keywords

Do not use the following characters within keywords, because they cause
unpredictable behavior:
^ $. | \ < > ? + * = & [] ()

You can use these characters in the values that are associated with keywords; for
example:
v $MQSI RCSVER=$id$ MQSI$ is acceptable
v $MQSI $name=Fred MQSI$ is not acceptable
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Deleting a message set project” on page 2839
Delete a message set project and, optionally, the contents of the associated project

1170 WebSphere Message Broker Version 7.0.0.8

directory.
Related reference:
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.
“Message set preferences” on page 5366
Preferences for message sets.

Message definition files:

A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.

Every message set requires at least one message definition file to describe its
messages. Message definition files use the XML Schema language to describe the
logical format of one or more messages. Extra information in the form of XML
Schema annotations is used to describe any physical formats that you define for the
messages.

Large message sets can contain several message definition files. This keeps the
individual files to a manageable size, making them faster and easier to work with.

Message definition files can be created by using the Message Definition editor, or
can be imported from a range of different file formats as described in “Importing
from other model representations to create message definitions” on page 1254.

A message definition file can be associated with a namespace, so that all message
model objects that are declared within the file belong to that namespace.
Namespaces provide a means of avoiding name clashes among similarly named
global objects. They are described in detail in “Namespaces in the message model”
on page 1201.

One message definition file can reuse message model objects that are defined in
another message definition file. XML Schema provides two mechanisms to do this:
import and include. For more information, see “Reusing message model files” on
page 1209.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.

Chapter 9. Developing message flow applications 1171

“Reusing message model files” on page 1209
One message definition file can reuse message model objects defined in another
file.
Related tasks:
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.

XML Schema:

XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.

The XML Schema language is ideally suited to describing the messages that flow
between business applications, and it is widely used in the business community for
this purpose.

WebSphere Message Broker uses XML Schema 1.0 to describe the logical structure
of messages. At a simple level, the types and elements in the message are modeled
by using XML Schema types and elements. However, when the need arises, all of
the advanced modeling features of XML Schema are available for modeling
messages.

Some important restrictions and extensions of XML Schema exist. These are
documented in “XML Schema restrictions in message sets” and “XML Schema
extensions in message sets” on page 1173.

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) website.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“XML Schema restrictions in message sets”
Some XML Schema 1.0 features are not supported when message models are
contained in message sets.
“XML Schema extensions in message sets” on page 1173
WebSphere Message Broker provides some additional facilities that are not
specified in the XML Schema 1.0 specification. When using a message set, further
extensions are provided.

XML Schema restrictions in message sets:

Some XML Schema 1.0 features are not supported when message models are
contained in message sets.

Unsupported XML Schema features: The following feature is accepted, but not
supported, and causes validation errors if it is used in your message model:
v Redefines

A quick fix is provided to convert Redefines into Include.

1172 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) website.
Related concepts:
“XML Schema extensions in message sets”
WebSphere Message Broker provides some additional facilities that are not
specified in the XML Schema 1.0 specification. When using a message set, further
extensions are provided.
Related reference:
“Importing from XML Schema: unsupported features” on page 6359
A number of features in XML Schema are not supported, or their support is
restricted in some way.

XML Schema extensions in message sets:

WebSphere Message Broker provides some additional facilities that are not
specified in the XML Schema 1.0 specification. When using a message set, further
extensions are provided.

Messages: A message is a global element that represents an entire message (rather
than a structure within a message). Within a message definition file, a message is
represented by a special global element that carries the extra information required
by WebSphere Message Broker.

Composition: The message model in a message set adds the following compositions
that are beyond the XML Schema 1.0 specification:

message
A refinement of choice that can contain only a set of references to messages
within the same message set. Groups and complex types with composition
of message are used when modeling multipart messages.

orderedSet
A set of elements that must be present in the order that they are listed.
Groups cannot be used within an orderedSet. Elements can repeat, but
duplicate elements cannot be used.

unorderedSet
A set of elements that can be present in any order. Groups cannot be used
within an unorderedSet. Unlike an all group, elements within an
unorderedSet can repeat. However, duplicate elements cannot be used.

Compositions orderedSet and unorderedSet enable message models that were
produced in earlier versions of the product to be supported.

Content validation: The message model in a message set adds a validation control
called ‘Content validation' that is used only if the domain is MRM or IDOC, and if
validation is selected. It determines how strictly the content of the group is
validated. See MRM content validation for more details.

The Content validation property does not affect validation in the XMLNSC or
SOAP domains. Validation in these domains follows the rules of XML Schema 1.0.

Physical format information: If one or more physical formats are defined for a
message set, the XML Schema objects within the message set can hold extra
information about how they must be parsed and serialized.

Chapter 9. Developing message flow applications 1173

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) website.
Related concepts:
“XML Schema restrictions in message sets” on page 1172
Some XML Schema 1.0 features are not supported when message models are
contained in message sets.

Message model objects:

An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.

Message
A message describes the structure and content of a set of data that is
exchanged between applications that send and receive the data. A message
is a special complex element.

Simple element
A simple element describes one or more named data fields in a message. It
is based on a simple type (for example, string, integer or float). A simple
element can repeat, and it can define a default or a fixed value.

Simple type
A simple type describes a class of data within a message. It describes the
type of data (for example, string, integer or float) and it can have value
constraints which place limits on the values of any simple elements based
on that simple type.

Complex element
A complex element describes a named complex structure within the message.
The content of a complex element is defined by a complex type. A complex
element can repeat.

Complex type
A complex type describes a complex structure within a message. It contains
elements (simple or complex), attributes (if the data is XML), and groups that
are organized into a tree-like hierarchy.

Group A group describes a list of elements with information about how those
elements can appear in a message. Groups can be ordered (sequence),
unordered (all), or selective (choice). A group can repeat.

Attribute
An attribute describes an XML attribute. Attributes are similar to simple
elements, but they require special treatment when used with XML
messages. In messages that are not XML messages, attributes are not used.

Global and local objects: Most objects in the message model can be either global or
local. A global object must have a unique name, which is used to refer to the object
from one or more places in the message model. Local objects are defined and used
in only one place in the message model.

Make objects local unless they must be used in more than one place. This reduces
the probability of name clashes among the global objects in the message model,
and makes the message set easier to work with.

Properties of message model objects: All message model objects have properties. The
properties fall into three categories:

1174 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

Logical
The logical properties of an object are defined by XML Schema. They relate
to the format-independent description of the object called the 'logical
model'. Logical properties describe what data the object contains without
saying anything about how it is written down.

Physical
If the message model is for a data format that is not XML, additional
physical properties are provided for an object that describe how the object
is written down. These properties control the parsing and writing of the
object. If the message model is in a message set, then the properties are an
IBM proprietary set that is understood by the MRM domain and parser.

Documentation
This field is present for all message model objects. It provides a standard
place for any description of the object that you might require. Text entered
here does not affect the processing of messages in any way.

Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.

Message model objects: messages:

A message describes the structure and content of a set of data that is passed from
one application to another.

A message consists of elements that are organized into a logical structure agreed
by the sending and receiving applications. This logical structure can be modeled so
that message data can be parsed into a logical tree and manipulated easily by the
broker.

In the message model, a message is always based on a global element. The
complex type of a global element describes the contents of the global element, and
therefore describes all of the content of the message.

Multipart messages: If necessary, a message can contain other messages, and is
necessary for modeling certain large and complex messaging standards such as
SWIFT and EDIFACT. Such a message is known as a multipart message. The
contained messages are known as embedded messages.

Message identification: Messages are identified by their name. In a message set only,
a message can also be identified by an alias. The alias is an optional user-specified
string that identifies the (multipart) message. The name and alias of a message
must be unique within a message set.

XML Schema model: In the message definition file, a message is modeled as an
XML Schema global element declaration. Extra information is provided by XML
Schema annotations on the element declaration.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere

Chapter 9. Developing message flow applications 1175

Message Broker extension to XML Schema.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Message model objects: elements”
An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.
Related reference:
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.

Message model objects: elements:

An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.

An element has a specific meaning that is agreed by the applications that create
and process the message. For example, a message might include a string that your
applications have agreed is a 'Customer Name'. An element is always based on a
type, either simple or complex.

An element:
v Has a business meaning.
v Is an instantiation of a simple or complex type.
v Can be accessed by name from ESQL, Java, or PHP.
v Is further defined by its type; for example, the type defines the range of values

that an element can have.
v Can be defined globally or locally.

Simple and complex elements: Elements can be simple or complex. A simple element
is a single, named piece of information such as 'Age' or 'Customer Name'. A simple
element is based on a simple type that defines its content.

A complex element is a named structure that contains other elements. A complex
element named 'Customer Details' might contain the simple elements 'Age' and
'Customer Name'. A complex element can also contain other complex elements. A
complex element is based on a complex type that defines its content and structure.

Global and local elements: Elements can be global or local. A global element can be
used in several different messages, or even in several places within the same
message. It must be given a unique name by which it can be referenced by an
element reference. A local element is defined in one position within one complex type
or group, and is not available for reuse elsewhere in the message model.

Optional and repeating elements: Elements can be defined as optional, mandatory,
and repeating, by using the properties Min Occurs and Max Occurs. For further
information, see “Cardinality: optional, required, and repeating elements” on page
1197.

Default and fixed values: An element can be given a default value, so that if no
value is supplied by the message, the default value is used. Alternatively, a fixed
value can be defined, and the element always takes that value. The precise use of
default and fixed values is dependent on the message domain.

1176 WebSphere Message Broker Version 7.0.0.8

Value constraints: The value of an element can be constrained by using value
constraints which define the range of legal values for the element. The value
constraints are associated with the simple type on which the element is based. For
further information, see “Message model objects: simple types” on page 1180. The
XML Schema term for a value constraint is a facet.

Defining substitution groups: If you are modeling XML messages, an element can be
marked as a valid substitute for another element by using the substitution group
property on the element. In this way, groups of elements can be assembled where
any of the elements in the group can substitute for one element, the head element.
For further information, see “Substitution groups in the message model” on page
1199.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: simple types” on page 1180
A simple type is an abstract definition of an item of data such as a number, a string,
or a date.
“Message model objects: complex types” on page 1178
A complex type describes the structure of one or more complex elements.
“Message model objects: simple type value constraints” on page 1188
Value constraints, also known as facets in XML Schema, refine a simple type by
defining limits on the values that it can represent.
“Cardinality: optional, required, and repeating elements” on page 1197
The number of occurrences of an element can be controlled using the properties
Min Occurs and Max Occurs. Using these properties, an element can be defined as
mandatory, optional or repeating.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.

Message model objects: types:

Types describe the data content of elements.

Simple types describe simple elements with data types such as string, integer, or
dateTime.

Complex types describe complex elements - elements that contain a hierarchy of
other elements.

For more information, see:
v “Message model objects: simple types” on page 1180
v “Message model objects: complex types” on page 1178

Chapter 9. Developing message flow applications 1177

v “Message model objects: type inheritance” on page 1182
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

Message model objects: complex types:

A complex type describes the structure of one or more complex elements.

Complex types are an essential part of every message model because they define
the logical structure of the messages and elements in the model.

What is a complex type for?: Complex types define the structure of the messages
and elements in the message model. By combining elements, attributes, groups,
and wildcards, almost any message structure can be modeled.

Contents of a complex type:

Elements

Most complex types contain some elements, and some contain a large
hierarchy of complex elements. The elements within a complex type are
always contained within a group. This group can be local to the complex
type, in which case the Message Definition Editor hides it from view.

Alternatively, the group that contains the elements can be a global group,
and this group defines the element content, the composition, and the
content validation for the complex type.

If a complex type is derived from a simple type, it cannot contain any
element content.

Attributes
If you are modeling XML messages, your complex types can contain
attributes. The attributes for a complex type can be local or global, and
they can be contained within an attribute group.

Groups
Groups enable sets of elements to be included in a complex type. The
members of the group are included as peers of the other elements. For
more information about their use, see “Message model objects: groups” on
page 1183.

Wildcards
If you are modeling XML messages, your complex types can contain
wildcard elements. Wildcard elements enable unmodeled elements to be
present in the complex type. Any such, elements must be present within
the message at the same position as the wildcard. Complex types can also
contain wildcard attributes. Wildcard attribute enable unmodeled attributes
to be present within any elements that are based on the complex type.

1178 WebSphere Message Broker Version 7.0.0.8

Global and local complex types: Complex types can be global or local. A global
complex type can be used as the basis for more than one complex element. It must
be given a unique name by which it can be referenced. A local complex type is
associated with a single complex element, and is not available for reuse elsewhere
in the message model. Local types do not have a name, and are sometimes referred
to as anonymous types.

Composition: The composition of a complex type describes how the members of
the type are organized. For more information, see “Message model objects: groups”
on page 1183.

Controlling validation of type content: The Content validation parameter on a complex
type specifies how strictly the contents of the type is validated. For more
information, see “Message model objects: groups” on page 1183.

Substitution settings: A complex type has parameters that control whether other
types can be derived from it (final) and whether other types can substitute for it
(block). For more information, see “Substitution groups in the message model” on
page 1199 and “Message model objects: type inheritance” on page 1182.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: Wildcard elements” on page 1186
For XML messages, a wildcard element represents an element that is not present in
the message model, but which might be present at the position of the wildcard
element in a message.
“Message model objects: simple types” on page 1180
A simple type is an abstract definition of an item of data such as a number, a string,
or a date.
“Message model objects: groups” on page 1183
A group is a list of elements that defines how those elements appear in a message.
Groups define the composition and content validation of a complex type.
“Message model objects: Wildcard attributes” on page 1187
For XML messages, a wildcard attribute enables unmodeled attributes to be present
in a message.
“Message model objects: type inheritance” on page 1182
The XML Schema language allows a type definition to be based on another type
definition. In this way, a hierarchy of types can be constructed.
“Substitution groups in the message model” on page 1199
Substitution groups are an XML Schema feature that provides a way of substituting
one element for another in an XML message.
Related reference:
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.

Chapter 9. Developing message flow applications 1179

Message model objects: simple types:

A simple type is an abstract definition of an item of data such as a number, a string,
or a date.

The purpose of a simple type is to define the content of one or more simple
elements. Simple types (and any elements that are based on simple types) cannot
contain attributes or child elements. Simple types stand in contrast to complex
types, which define the structure of an element, but typically do not define any
simple data.

Global and local simple types

Simple types can be global or local. A global simple type can be used as the basis
for more than one element. It must be given a unique name by which it can be
referenced. A local simple type is associated with a single element, and is not
available for reuse elsewhere in the message model. Local types do not have a
name and are sometimes referred to as anonymous types.

Variations of simple types

Built-in

XML Schema defines many simple types for you to use, covering all the
standard data types such as strings, integers, decimals, and floats.

Restriction

You can define your own simple types by deriving from another simple
type (the base type) by restriction. A restriction type can have value
constraints applied to it.

A restriction type can derive from a built-in simple type or a restriction
simple type.

List

For XML messages only, a list type is a way of rendering a repeating
simple value in XML. The notation is more compact than the notation for a
repeating element, and offers a way to have multi-valued attributes.

A list type can be based on a union type (introduced later in this section).
This can describe a space-separated list of items in which each item can be
based on any of the simple types in the union.

A list of lists is not legal. The item type of a list cannot be a list itself, or
derived at any level from another list type.

A list type can have the facets of minLength, maxLength, and length
applied to it. These facets restrict the number of items in the list. To restrict
the values of each item in the list, facets must be applied to the item type
and not to the list itself. The message definition editor provides additional
support for enumeration and pattern facets directly on a List type, to
enable the import of any schema that uses them, but issues a warning that
enumeration and pattern facets are ignored by the broker.

Union

A union type is a union of two or more other simple types.

A union type enables a value to conform to any one of several different
simple types. The simple types that comprise a union type are known as

1180 WebSphere Message Broker Version 7.0.0.8

its member types. There is no upper limit on how many member types can
exist, but there must be at least one. A member type can be defined as a
built-in simple type, a user defined simple type, or a local simple type
defined anonymously within the union type.

A union type can also include list, union, and restricted simple types,
among its members.

MRM domain

The MRM parser does not apply value constraints until the data is in the logical
tree. This means that it is not possible to choose between two simple types that are
derived from the same fundamental type, but have different value constraints (for
example, an integer in the range 1-10 and an integer in the range 11-20). If you
attempt to choose between two such types, a warning is displayed in the task list,
and the parser ignores the value constraints when it resolves the union. The
message definition editor provides additional support for enumeration and pattern
facets directly on a Union type, to enable the import of any schema that uses them,
but the editor issues a warning that enumeration and pattern facets are ignored by
the MRM parser.

Value constraints

Value constraints are known as facets by XML Schema. Any value constraints that
are applied to a derived type must further restrict the base type. It is not valid for
a derived type to weaken or remove a value constraint that its base type has
defined. If no value constraints are applied to the derived type, the derived type is
almost identical to its base type, but it is treated as a restriction of the base type in
situations where that is relevant (type inheritance and element substitution).
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: type inheritance” on page 1182
The XML Schema language allows a type definition to be based on another type
definition. In this way, a hierarchy of types can be constructed.
“Message model objects: simple type value constraints” on page 1188
Value constraints, also known as facets in XML Schema, refine a simple type by
defining limits on the values that it can represent.
“Substitution groups in the message model” on page 1199
Substitution groups are an XML Schema feature that provides a way of substituting
one element for another in an XML message.
Related tasks:
“Adding a simple type” on page 2886
Add a simple type to your message model.
Related reference:
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.

Chapter 9. Developing message flow applications 1181

“Simple type logical properties” on page 5450
The logical properties of a simple type.

Message model objects: type inheritance:

The XML Schema language allows a type definition to be based on another type
definition. In this way, a hierarchy of types can be constructed.

This topic outlines the concepts of type inheritance, and highlights some important
issues relating to substitution.

A full discussion of XML Schema type inheritance can be found on the World Wide
Web Consortium (W3C) website, or in numerous books about XML Schema.

Restriction and extension: A type is a restriction of its base type, if elements of the
derived type have a smaller range of valid values (or valid type members) than
elements of the base type.
v

For example, a restriction of a complex type might reduce the number of
occurrences of one of its type members, or might omit that type member
completely.

v
Similarly, a restriction of a simple type might lower the Max Inclusive facet
value, or raise the Min Inclusive facet value.

A type is an extension of its base type if elements of the derived type have a wider
range of valid values (or valid type members) than elements of the base type.
v

For example, an extension of a complex type might add type members that were
not present in the base type, or might allow a type member to repeat.

v
Similarly, an extension of a simple type must always be a complex type that is
based on the simple type; you cannot extend a simple type by widening its
range of valid values.

Special rules apply to the derivation of simple types. A simple type cannot extend
another simple type. This ensures that restrictions that are imposed by a simple
type cannot be removed by deriving another simple type from it.

However, a complex type can extend a simple type. This does not affect the range
of valid values of the simple type, but it does allow attributes to be added. The
result of extending a simple type is always a complex type that contains zero or
more attributes.

Controlling type inheritance: The final attribute on a complex type can take three
values, with the following effects:
v restriction: It is not valid to derive another complex type from this type by

restriction.
v extension: It is not valid to derive another complex type from this type by

extension.
v all: It is not valid to derive another complex type from this type by either

extension or restriction

1182 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/
http://www.w3.org/

Type inheritance and substitution: XML Schema provides two different substitution
mechanisms, both of which use type inheritance information to allow or disallow
substitutions.

Element substitution is controlled by substitution groups, and element substitution
can be blocked or allowed for extension and restriction by settings on either the
element itself or the type of the element.

Type substitution allows the type of the element to be defined within the instance
document, using the xsi:type attribute on the element, so that the real type of the
element is not known until the element has been partly parsed. This mechanism
can also be blocked or allowed based on the derivation method of the types
involved.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.

Message model objects: groups:

A group is a list of elements that defines how those elements appear in a message.
Groups define the composition and content validation of a complex type.

Groups can be ordered (sequence or orderedSet) unordered (all or unorderedSet),
or selective (choice or message). Groups define the composition and content
validation of a set of type members.

What are groups for?: Groups can be used for any of the following purposes:
v To define the entire element content of a complex type.

A complex type can refer to a global group that completely defines its content.
(If it does not, the content of the complex type is defined by an anonymous local
group, which is hidden within the Message Definition Editor.)

v To represent a common substructure within more than one type.
Two or more complex types can refer to the same global group, if they both
contain the same subset of elements.

v To change the composition midway through a complex type.
You might have a complex type that is a sequence of three members, but the
second member is a choice of two elements. To model this circumstance, a group
with composition set to choice can be inserted as the second member of the
sequence.

Contents of a group: Groups can contain complex elements, simple elements,
wildcard elements, and groups.

By combining these components, the structure of any message can be modeled.
Wildcard elements can be included to enable the presence of unmodeled elements,
thus making the message model robust and flexible.

Global and local groups: Groups can be global or local.

Chapter 9. Developing message flow applications 1183

A global group can be used in more than one place in the message model. It
represents a structure that is present in more than one place in the message model.
A global group must be given a unique name by which it can be referenced.

A local group is defined in one position within one group, and is not available for
reuse elsewhere in the message model. Local groups do not have a name, and are
displayed by using the composition of the group.

Composition: In XML Schema, a group can have its composition set to sequence,
all, or choice.
v A sequence is a set of elements that must be present in the same order as they

are listed.
v An all group is a set of elements that can be present in any order, and cannot

repeat.
v A choice is a set of elements, only one of which can be present in any given

message.

When using a message set, other compositions are also possible. For more
information, see “XML Schema extensions in message sets” on page 1173.

Content validation: The Content validation property is applied only if the domain
is MRM or IDOC, and if validation is selected.

Content validation determines how strictly the content of the group is validated.
See “MRM content validation” on page 5422 for more details.

Allowable values of the Content validation property are:

Closed
The contents of the group are validated strictly against the model. Only
elements that are defined as children of the group can be present as
children.

Open Defined
Elements that are declared within the same message set can be present as
children of the group, even if they are not defined as children.

Open Any elements can be present as children of the group.

The Content validation property does not affect validation in the XMLNSC or
SOAP domains. Validation in these domains follows the rules of XML Schema 1.0.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: complex types” on page 1178
A complex type describes the structure of one or more complex elements.
“XML Schema extensions in message sets” on page 1173
WebSphere Message Broker provides some additional facilities that are not
specified in the XML Schema 1.0 specification. When using a message set, further
extensions are provided.

1184 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Adding a global group” on page 2890
Add a global group to your message model.
Related reference:
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.

Message model objects: attributes:

An attribute describes an XML attribute. They are used only when the data is XML.

Attributes are provided to simplify the modeling of XML messages; if none of your
messages use the XML physical format, use simple elements instead.

Attributes and XML: The most common use for an attribute is to model an XML
attribute within an XML message. In this scenario, each attribute that can be
present in the XML message has a corresponding attribute in the logical message
definition.

Attributes in other physical formats: Sometimes a message must be parsed as XML,
but written in another physical format (Custom Wire Format or Tagged Delimited
String Format). In this case, any attributes in the message are treated in the same
way as simple elements with the same properties.

Global and local attributes: Attributes can be global or local.

A global attribute can be used in more than one place in the message model. It must
be given a unique name by which it can be referenced by an attribute reference.

A local attribute is defined in one position within one complex type, and cannot be
used elsewhere in the message model.

Optional attributes: Attributes can be defined in XML Schema as optional, required,
or prohibited. Attributes cannot repeat. For further information, see “Cardinality:
optional, required, and repeating elements” on page 1197.

Default and fixed values: An attribute can be given a default value so that, if the
attribute is missing from the message, the default is used. Alternatively, a fixed
value can be defined, and the attribute always takes that value. The precise use of
default and fixed values is dependent on the message domain.

Value constraints: The value of an attribute can be constrained by using value
constraints, which define the range of legal values for the attribute. Value
constraints are associated with the simple type on which the attribute is based. For
more details, see “Message model objects: simple types” on page 1180. In XML
Schema, the term for value constraint is facet.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.

Chapter 9. Developing message flow applications 1185

Related tasks:
“Adding a global attribute” on page 2881
Add a global attribute to your message model.
“Adding a local attribute” on page 2882
Add a local attribute to a message, complex type, or complex element.

Message model objects: Wildcard elements:

For XML messages, a wildcard element represents an element that is not present in
the message model, but which might be present at the position of the wildcard
element in a message.

Wildcard elements provide a means of adding flexibility to the message model, so
that messages can be parsed even if they do not exactly match the message model.

Wildcard elements can be present only within a complex type or group with
Composition of sequence and Content Validation of closed. Wildcard elements
provide a similar capability to setting the Content Validation property of a
complex type or group to Open or Open Defined.

The Process Content and Namespace properties control the namespace to which
elements that are present at the position of the wildcard element must belong.

MRM domain

If you have enabled validation in your message flow, and your message is
in the MRM domain, wildcard elements are validated against the model
according to the following rules:
v If Process Content is set to strict, only elements that are declared in the

same message set are able to be present in the position of the wildcard
element.

v If Process Content is set to lax or skip, any element is able to be present
in place of the wildcard element.

If you are working with WebSphere Message Broker Version 6.0 or earlier,
the number of elements that can match the wildcard element is
unpredictable (Min Occurs and Max Occurs are ignored).

Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: complex types” on page 1178
A complex type describes the structure of one or more complex elements.
“Message model objects: groups” on page 1183
A group is a list of elements that defines how those elements appear in a message.
Groups define the composition and content validation of a complex type.
“Message model objects: Wildcard attributes” on page 1187
For XML messages, a wildcard attribute enables unmodeled attributes to be present
in a message.
Related tasks:

1186 WebSphere Message Broker Version 7.0.0.8

“Adding a wildcard element” on page 2880
Add a wildcard element to a message, type, group, or complex element in a
message model.
“Adding a wildcard attribute” on page 2885
Add a wildcard attribute to a message, complex type, or complex element.
Related reference:
“MRM content validation” on page 5422
Content Validation is applied when the domain is MRM and validation is
enabled. The Content Validation property specifies how strictly the MRM parser
validates the members of a complex type or group.

Message model objects: Wildcard attributes:

For XML messages, a wildcard attribute enables unmodeled attributes to be present
in a message.

The Process Content and Namespace properties control the namespace to which
attributes that are present in the position of the wildcard must belong.

MRM domain

If you have enabled validation in your message flow, and your message is
in the MRM domain, wildcard attributes are validated against the model
according to the following rules:
v If Process Content is set to strict, only attributes which are declared in

the same message set can be present in the position of the wildcard
attribute.

v If Process Content is set to lax or skip, any attribute can be present in
the position of the wildcard attribute.

Tip: If the namespace property is set to the namespace of the message set,
these rules are then similar to the behavior of the XMLNSC domain in
validating mode.

Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: complex types” on page 1178
A complex type describes the structure of one or more complex elements.
“Message model objects: groups” on page 1183
A group is a list of elements that defines how those elements appear in a message.
Groups define the composition and content validation of a complex type.
Related tasks:
“Adding a wildcard element” on page 2880
Add a wildcard element to a message, type, group, or complex element in a
message model.
“Adding a wildcard attribute” on page 2885
Add a wildcard attribute to a message, complex type, or complex element.
Related reference:

Chapter 9. Developing message flow applications 1187

“MRM content validation” on page 5422
Content Validation is applied when the domain is MRM and validation is
enabled. The Content Validation property specifies how strictly the MRM parser
validates the members of a complex type or group.

Message model objects: attribute groups:

For XML messages, an attribute group defines a set of attributes that can be present
in a complex type.

An attribute group provides a way to include the same set of attributes in more
than one complex type, without duplicating the definitions.

For example, if most of the elements in your message model have the attributes
'amount', 'currency' and 'date', these elements can be contained in a single attribute
group, which is referenced by all the complex types that use them.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: complex types” on page 1178
A complex type describes the structure of one or more complex elements.
“Message model objects: attributes” on page 1185
An attribute describes an XML attribute. They are used only when the data is XML.

Message model objects: simple type value constraints:

Value constraints, also known as facets in XML Schema, refine a simple type by
defining limits on the values that it can represent.

It is often useful to be able to constrain the values that an element or attribute can
take, perhaps to ensure that messages conform to business rules. This topic
describes how to add value constraints to a simple type, in order to constrain the
values of all elements or attributes that are based on that simple type.

If the model is deployed to WebSphere Message Broker, elements and attributes
can be validated against value constraints, so that violations are reported as errors
or warnings. The XMLNSC domain uses all the different types of value constraint
when validating. The MRM domain uses a subset; the restrictions are noted later in
this section.

Types of value constraint:

Length Constraints: Length, Min Length, Max Length
Using length constraints, the length of all elements based on the simple
type can be constrained, or even limited to a single value.

Length constraints can be applied to simple types that are derived from
xsd:hexBinary, xsd:base64Binary or xsd:string (including built-in schema
types such as xsd:normalisedString).

1188 WebSphere Message Broker Version 7.0.0.8

Length constraints are inherited from ancestor types, and any length
constraints that are defined for a simple type must not relax the constraints
that are imposed by any of its ancestor types. For example, a type
'longString' (Max Length=100) cannot be derived from a type 'shortString'
(Max Length=10).

Note: For the MRM domain, by default, Length value constraints are
converted to Max Length constraints when a message set is added to a BAR
file. This default avoids WebSphere Message Broker raising spurious
validation errors for fixed-length data structures, where the strings tend to
be padded to fit a fixed-width field. If strict length validation is required,
this default can be changed in the message set properties by changing the
flag Broker treats Length facet as MaxLength.

Range constraints: Min Inclusive, Max Inclusive, Min Exclusive, Max Exclusive
Range constraints specify the allowable range of values for all elements
that are based on the simple type. Inclusive constraints include the
specified endpoints in the permitted range, whereas exclusive constraints
do not. Range constraints can be applied to simple types that are numeric,
or that relate to calendar and time values. They cannot be applied to
strings, because the ordering of string values depends on the character set
that is used.

Range constraints are inherited from ancestor types, and any range
constraints that are defined for a simple type must not relax the constraints
that are imposed by any of its ancestor types. For example, a type
'largeNumber' (Max Inclusive=100) cannot be derived from a type
'smallNumber' (Max Inclusive=10).

Note: For the MRM domain, exclusive constraints cannot be applied to
non-integral types (float, decimal, double, dateTime, and other non-integral
types).

Enumeration constraints
An enumeration constraint specifies a single permitted value for all
elements that are based on the simple type. A list of permitted values can
be specified by defining more than one enumeration constraint for the
same simple type. Enumeration constraints can be applied to all simple
types.

Enumeration constraints are inherited from ancestor types, and any set of
enumeration constraints that are defined for a simple type must not
increase the range of permitted values. For example, a type 'AllColors'
(with enumerations for all colors of the rainbow) cannot be derived from a
type 'MonoColors' (with enumerations for 'black' and 'white' only).

Precision constraints: Total Digits and Fraction Digits
Precision constraints relate only to decimal and integer values. They limit
the number of significant digits (total digits) and, for decimals, the number
of decimal places (fraction digits) for all elements that are based on the
simple type. Precision constraints can be applied to simple types that are
derived from xsd:decimal and xsd:integer.

Precision constraints are inherited from ancestor types, and any precision
constraints that are defined for a simple type must not relax the constraints
that are imposed by any of its ancestor types. For example, a type
'veryPrecise' (Fraction Digits=10) cannot be derived from a type
'notVeryPrecise' (Fraction Digits=1).

Chapter 9. Developing message flow applications 1189

Note: For the MRM domain, the broker applies these constraints only to
xsd:decimal and user types that are derived from it; precision constraints
that are applied to an integer simple type are ignored.

Pattern constraints
A pattern constraint is a regular expression that specifies a set of permitted
values for all elements that are based on the simple type. Multiple patterns
can be defined for the same simple type, permitting complex validation
rules to be expressed in logically separate parts. Each pattern constraint on
a simple type contributes to the set of permitted values for elements that
are based on the simple type; that is, all the patterns are combined by
using Boolean OR.

As with all value constraints, a simple type can inherit pattern constraints
from the simple type on which it is based. In this case, the set of pattern
constraints that are contributed by each ancestor type must be satisfied, in
addition to the set that is contributed by the simple type itself; that is, the
sets of pattern constraints from each level in the type hierarchy are
combined by using Boolean AND.

Note: For the MRM domain, pattern constraints can be applied only to
simple types that are derived from xsd:string.

White space constraints
A white space constraint specifies how a parser treats white space for all
elements that are based on the simple type.

Note: For the MRM domain, white space constraints are not applied. The
MRM physical formats enable white space to be precisely controlled for
each physical format that is defined for the message, but these physical
properties are separate from the white space constraint in the logical
model, and are not used for validation.

Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: complex types” on page 1178
A complex type describes the structure of one or more complex elements.
“Message model objects: type inheritance” on page 1182
The XML Schema language allows a type definition to be based on another type
definition. In this way, a hierarchy of types can be constructed.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

1190 WebSphere Message Broker Version 7.0.0.8

“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.

Message model object identification:

Objects in a message model (elements, attributes, types, groups) are identified by
their name only.

This means that no two objects in the same scope can have the same name. Name
clashes can be avoided more easily if global objects are used only when necessary.
Local objects are not visible outside of the scope of their parent object, so their
names can be reused without causing a name clash.

Namespaces
If namespaces are enabled for a message set, each message definition file
within the message set can specify a namespace. Namespaces are an XML
Schema mechanism for organizing groups of related objects into a named
'module'.

Global objects in different namespaces can share the same name. Therefore,
namespaces offer another means of avoiding name clashes among global
objects.

Valid names
Since the message model is based on the XML Schema language, the name
of every message model object must be a valid XML Schema identifier. For
information about what constitutes a valid XML Schema identifier, see
XML Schema Part 0: Primer.

For details about XML Schema, see XML Schema Part 0: Primer on the World Wide
Web Consortium (W3C) website.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.

Multipart messages:

A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.

Tip: Multipart messages are used when working with messages that are modeled
by using message sets.

A multipart message must contain a group, or a complex type, with its
Composition property set to Message. This group or complex type can contain a list
of references to messages that can be present at that location in the message
structure. If the group or complex type is empty, any message can be present.
When a message is parsed, only one embedded message can be present in that
location.

Chapter 9. Developing message flow applications 1191

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Message envelopes: A common use of multipart messages is to define an outer
message with a fixed structure. This outer message is called the message envelope.
Within the message envelope a group or complex type is included, as described
earlier in this topic. Examples of message standards that can be modeled by using
this technique are EDIFACT, X12, SWIFT, SOAP XML, SAP ALE IDoc, multipart
MIME, and RosettaNet.

Identifying the embedded message: When a multipart message is parsed, the parser
must be able to identify the embedded message; it might be any of the messages
that are referenced by the group or complex type, or it might be a message that is
not referenced by the group or complex type, perhaps from a different message set.
This is achieved by using one of four techniques, Automatic, Message Identity,
Message Path, or Manual.

Automatic
Used when parsing XML messages, such as SOAP. The parser
automatically identifies and parses embedded messages by using the tag in
the XML document.

Message Identity
Used by the MRM parser. See “Identifying an embedded message by using
a Message Identity” on page 1193.

Message Path
Used by the MRM parser. See “Identifying an embedded message by using
a Message Path” on page 1196.

Manual
Used by the MIME parser. The parser treats embedded messages as
BLOBs. If you want to parse the BLOB by using another parser, you must
do so manually by using ESQL, or Java, or a ResetContentDescriptor node.

Restrictions: Unless using the Manual identification technique, all embedded
messages must be of the same physical format as the outermost message, and have
the same character set and encoding.

When using the Automatic or Message Path identification techniques, all embedded
messages must be from the same message set as the multipart message.
Related concepts:
“Identifying an embedded message by using a Message Identity” on page 1193
You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.
“Identifying an embedded message by using a Message Path” on page 1196
The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“MRM Custom wire format: Multipart messages” on page 1217
The Custom Wire Format (CWF) supports both the Message Identity technique and
the Message Path technique of identifying embedded messages within a multipart
message.

1192 WebSphere Message Broker Version 7.0.0.8

“MRM XML physical format: Multipart messages” on page 1250
Identify embedded messages by using either a Message Identity or a Message
Path.
“MRM TDS format: Multipart messages” on page 1241
The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.
“MIME parser and domain” on page 1117
Use the MIME domain if your messages use the MIME standard for multipart
messages.
Related tasks:
“Creating a multipart message” on page 2919
A multipart message occurs when you embed a message in another message.
“Accessing embedded messages in the MRM domain” on page 2594
If you have defined a multipart message, you have at least one message embedded
within another. Within the overall complex type that represents the outer messages,
you can model the inner message in two ways.

Identifying an embedded message by using a Message Identity:

You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.

Tip: Multipart messages are used when working with messages that are modeled
by using message sets.

The Message Identity technique for identifying embedded messages is useful when
a multipart message has a format such as that shown in the diagram:

In this example, the Message Header and Message Trailer act as an envelope for
the message body. They typically have a fixed structure, although the Message
Body can be defined with many different structures.

A place holder for an embedded message is created by setting the Composition
property of the complex type or group of the Message Body element to Message.
This enables an embedded message to be added within the outer Message, creating
a multipart message.

When using the Message Identity technique to parse such a multipart message, the
embedded message must be identified earlier in the Message Header by using a
Message Identity element. A Message Identity Element is a string element (or
attribute) that precedes the embedded message in the model and whose Interpret
Value As property is set to Message Identity.

When a multipart message is input to a message flow, the Message Identity
element must have a value that corresponds to either the Name or the Message

Message Body

Message Identity

Message

Message Trailer

Message Header

Chapter 9. Developing message flow applications 1193

Alias of the next embedded message in the bit stream. This enables the MRM
parser to correctly identify the embedded message in the model.

For cases where the Message Identity element value does not match the Name of the
message, use the Message Alias property to specify this value. The MRM parser
tries to match on Name first, and if that fails, it tries to match on Message Alias.

When the MRM parser has encountered a Message Identity element, its value
applies to all embedded messages that are contained immediately within the
current message. This does not apply to embedded messages within embedded
messages; any embedded message must have its identity provided by a Message
Identity element within its immediate parent message.

If a second Message Identity element is encountered within the current message,
its value overrides any previously held. This enables different peer embedded
messages to exist within a given message.

Message Identity takes priority over Message Path. If both are specified, Message
Identity is used. Use only one of these techniques for a given multipart message.

Embedded messages defined in different message sets

By default, an embedded message is assumed to be defined within the same
message set as the current message. This can be overridden by using a Message Set
Identity, which works in a similar manner to a Message Identity.

An embedded message that is defined within a different message set must have its
message set identified earlier in the message, by using a Message Set Identity
element. A Message Set Identity Element is a string element (or attribute) that
precedes the embedded message in the model and whose Interpret Value As
property is set to Message Set Identity.

When a multipart message is input to a message flow, the Message Set Identity
element must have a value that corresponds to either the Identifier, Name, or
Message Set Alias of the message set that defines the next embedded message in
the bit stream. This enables the MRM parser to correctly identify the message set
to use.

If the Message Set Identity element value does not match the Identifier or Name of
the message set, use the Message Set Alias property to specify this value. The
MRM parser tries to match on Identifier first, then on Name, and finally on
Message Set Alias.

After the MRM parser has encountered a Message Set Identity element, its value
applies to all embedded messages that are contained within the current message. It
also applies to embedded messages within embedded messages, unless an
embedded message also contains a Message Set Identity element.

If a second Message Set Identity element is encountered within the current
message, its value overrides any previously held. This enables peer embedded
messages to be contained within different message sets.

The following example of an X12 message shows the use of both Message Identity
and Message Set Identity. The field that contains 004010X092 within the GS
segment on line 0002 holds the Message Set Identity as a Message Set Alias. The

1194 WebSphere Message Broker Version 7.0.0.8

207 on line 0003 in the ST segment is the Message Identity held as a Message
Alias. The embedded message is from line 0004 - 0015 inclusive.

Note: The line numbers and spaces at the beginning of each line are for illustrative
purposes only and do not exist in the actual message.
0001 ISA*00* *00* *30*12-3456789 *ZZ

*9876543-21 *000104*1820*U*00401*000000001*0*T*:!
0002 GS*HS*HOSP CLAIM*PAYER ADJDEPT*20000104*1820*1*X*004010X092!
0003 ST*270*1234!
0004 BHT*0022*13*10001234*19990501*1319!
0005 HL*1**20*1!
0006 NM1*PR*2*ABCCOMPANY*****PI*842610001!
0007 HL*2*1*21*1!
0008 NM1*1P*2*BONE AND JOINT CINIC*****SV*2000035!REF*N7*234899!
0009 N3*55*HIGH STREET!
0010 N4*SEATTLE*WA*98123!
0011 HL*3*2*22*0!TRN*1*93175-12547*9877281234!
0012 NM1*IL*1*SMITH*ROBERT*B***MI*11122333301!
0013 REF*1L*599119!
0014 DMG*D8*19430519*M!
0015 DTP*472*RD8*19990501-19990515!EQ*30**FAM!SE*17*1234!
0016 GE*1*1!IEA*1*000000001!

Physical format considerations

Both Message Identity and Message Set Identity are applicable to all physical
formats. Versions of the TDS physical format before Version 6.0 included
embedded message identification by Message Key, which worked in a similar
manner to Message Identity. Message Key has been deprecated and is superseded
by Message Identity.
Related concepts:
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Identifying an embedded message by using a Message Path” on page 1196
The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.
“MRM Custom wire format: Multipart messages” on page 1217
The Custom Wire Format (CWF) supports both the Message Identity technique and
the Message Path technique of identifying embedded messages within a multipart
message.
“MRM XML physical format: Multipart messages” on page 1250
Identify embedded messages by using either a Message Identity or a Message
Path.
“MRM TDS format: Multipart messages” on page 1241
The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.
Related tasks:
“Creating a multipart message” on page 2919
A multipart message occurs when you embed a message in another message.
“Accessing embedded messages in the MRM domain” on page 2594
If you have defined a multipart message, you have at least one message embedded
within another. Within the overall complex type that represents the outer messages,
you can model the inner message in two ways.

Chapter 9. Developing message flow applications 1195

Identifying an embedded message by using a Message Path:

The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.

Tip: Multipart messages are used when working with messages that are modeled
by using message sets.

This technique is used by the MRM domain.

In the diagram, the Message Header and Message Trailer act as an envelope for the
message body. Typically, they have a fixed structure, but the Message Body can be
defined with many different structures.

A place holder for an embedded message is created by setting the Composition
property of the complex type or group of the Message Body element to Message.
This enables an embedded message to be added within the outer message, creating
a multipart message.

When using the Message Path technique to parse such a multipart message, the
embedded message must be identified by a fixed path to the innermost message
from the outermost message. For this example, this would be:
Message/Message Body

If the path to the innermost message contains intermediate elements, these
intermediate elements must also be included in the path. In the following example,
these elements are shown in bold:
Message/Data1/Data12/Message Body

This technique can be used to identify nested embedded messages as well, by
extending the path. For example:
Message/Data1/Data12/Message Body/Data2/Inner Message

The path is specified by using one or both of two properties, the Message Type
property of a WebSphere Message Broker input node (or MQRFH2 header) and the
Message Type Prefix property of the containing message set. These two properties
are combined to produce a final path that is used to locate embedded messages.

Message Identity takes priority over Message Path. If both are specified, Message
Identity is used. Use only one of these techniques for a given multipart message.

You cannot use the Message Path technique to identify multiple peer embedded
messages.

Embedded messages defined in different message sets

This option is not supported by the Message Path technique.

Message Body

Message

Message Trailer

Message Header

1196 WebSphere Message Broker Version 7.0.0.8

Physical format considerations

The Message Path technique is applicable to all physical formats.
Related concepts:
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Identifying an embedded message by using a Message Identity” on page 1193
You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.
“MRM Custom wire format: Multipart messages” on page 1217
The Custom Wire Format (CWF) supports both the Message Identity technique and
the Message Path technique of identifying embedded messages within a multipart
message.
“MRM XML physical format: Multipart messages” on page 1250
Identify embedded messages by using either a Message Identity or a Message
Path.
“MRM TDS format: Multipart messages” on page 1241
The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.
Related tasks:
“Creating a multipart message” on page 2919
A multipart message occurs when you embed a message in another message.
“Accessing embedded messages in the MRM domain” on page 2594
If you have defined a multipart message, you have at least one message embedded
within another. Within the overall complex type that represents the outer messages,
you can model the inner message in two ways.
Related reference:
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Cardinality: optional, required, and repeating elements:

The number of occurrences of an element can be controlled using the properties
Min Occurs and Max Occurs. Using these properties, an element can be defined as
mandatory, optional or repeating.

Elements: A mandatory, or required, element has Min Occurs>= 1. A mandatory
element must occur at least once in the message.

An optional element has Min Occurs = 0. An optional element can be omitted from
the message.

A repeating element has Max Occurs> 1 to indicate a bounded number of repeats, or
Max Occurs=unbounded (sometimes displayed as -1), to indicate an unlimited
number of repeats. A repeating element occurs more than once in the message, and
all the occurrences must appear together without any other elements between
them.

Chapter 9. Developing message flow applications 1197

If a complex type or a group contains two, or more, members that refer to the
same element, the second reference is a duplicate. This is different from a repeating
element, because the two references are typically separated by other members of
the type or group. In the message, the second occurrence typically does not appear
immediately after the first occurrence.

Attributes: The number of occurrences of an attribute can be controlled by setting
it to required, optional or prohibited.

A required attribute is similar to a mandatory element - it must occur in the
message.

An optional attribute is similar to an optional element - it can be omitted from the
message.

A prohibited attribute must not appear in the message.

An attribute is not allowed to repeat, and duplicate attribute references are not
allowed within an attribute group.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: elements” on page 1176
An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.
“Message model objects: types” on page 1177
Types describe the data content of elements.
“Message model objects: attributes” on page 1185
An attribute describes an XML attribute. They are used only when the data is XML.

Self-defining elements and messages:

An instance element is predefined if it is possible for the parser to find a matching
element definition in the message model with an appropriate set of properties and
in the correct context. Otherwise, it is self-defining. Similarly, an entire message is
self-defining if no corresponding message is present in the message model.

Self-defining elements can be used only when the format of the message is a
self-describing one, such as XML or JSON. For general text or binary formats (for
example, comma separated), you must ensure that your message model defines
every message and every element that must be parsed.

If you have chosen not to model your messages, or you have a model but have
chosen not to deploy it to the broker, all messages and elements are self-defining.
In this situation, you cannot use message definitions to influence the parsing and
writing of elements; the self-defining elements are parsed and written according to
the default behavior of the parser and writer.

1198 WebSphere Message Broker Version 7.0.0.8

Self-defining elements, and all elements within a self-defining message, are not
validated against value constraints, and any missing fields are not assigned default
or fixed values, and all data is assumed to be string type unless the parser is able
to deduce the type in a reliable manner.
Related concepts:
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.
“Message model objects: simple type value constraints” on page 1188
Value constraints, also known as facets in XML Schema, refine a simple type by
defining limits on the values that it can represent.

Substitution groups in the message model:

Substitution groups are an XML Schema feature that provides a way of substituting
one element for another in an XML message.

A substitution group is a list of global elements that can be present in place of
another global element, called the head element.

A substitution group is defined by setting the substitution group property on one
global element (the member element) to point at another global element (the head
element). This adds the member element to the substitution group of the head
element.

Head elements
A head element is an element that can be substituted. When a message is
parsed, one of its member elements can be present in place of the head
element without causing a validation error.

Abstract elements
An abstract element is a head element which must be substituted, and is
indicated by the 'abstract' attribute on the element. Typically, abstract
elements have other elements in their substitution group, otherwise they
are of little use. Wherever an abstract element is present in a message
definition, a member of its substitution group must be present instead.

The block attribute on elements
The block attribute on an element limits the set of global elements that can
substitute for the element. The block attribute can take any subset of the
values restriction, extension, substitution, or all.
v If the block attribute contains restriction, an element that is based on a

restriction of the type of the element cannot be substituted for the
element.

v If the block attribute contains extension, an element that is based on an
extension of the type of the element cannot be substituted for the
element.

v If the block attribute contains substitution, an element that is a member
of the substitution group of the element cannot be substituted for the
element.

v If the block attribute contains all, all of the above limits apply.

Chapter 9. Developing message flow applications 1199

The final attribute on elements
The final attribute on an element limits the set of global elements that can
be a member of the substitution group of the element. The final attribute
can take any subset of the values restriction, extension, or all.
v If the final attribute contains restriction, an element that is based on a

restriction of the type of the element cannot be in the substitution group
of the element.

v If the final attribute contains extension, an element that is based on an
extension of the type of the element cannot be in the substitution group
of the element.

v If the final attribute contains all, both of the above limits apply.

The block attribute on complex types
The block attribute on a complex type limits the set of other types that can
substitute for that type. The block attribute can take values restriction,
extension, or all. The meanings for these values are the same as the values
that are shown for the block attribute on an element. An element that is a
member of a substitution group can substitute only for the head element if
its type is compatible with the block attribute on the type of the head
element.

Default block and final attributes
A default for the block and final attributes can be set at the message
definition file level. If a default for one or both of these attributes has been
set and the relevant block or final attribute has not been set at the object
level, the default setting is used for that object. You can override the
default setting at the object level.

Related concepts:
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“Message model objects: type inheritance” on page 1182
The XML Schema language allows a type definition to be based on another type
definition. In this way, a hierarchy of types can be constructed.

Message categories:

Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.

A message category provides another way of grouping your messages, perhaps for
documentation or convenience purposes. A message category can also be used for
assisting in the generation of Web Services Description Language (WSDL) files, but
this use is deprecated. For more information, see “Generate WSDL” on page 1274.

A message set category file is created by using the New Message Category File
wizard.

When you have created your message category file, you must specify one key
property.

Message Category Kind
The Message Category Kind indicates whether the message category is to
participate in the generation of WSDL files.

1200 WebSphere Message Broker Version 7.0.0.8

You can then add messages to the message category file. If the message category is
to participate in WSDL generation, assign appropriate values to the Role Name and
Role Type properties of each member message.

Message category identification: The name of a message category is provided by the
name of the .category file. You can change the message category name by
renaming the file.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Creating a message category file” on page 2924
Create a message category file to add categories that you can use to group
different message sets.
“Deleting a message category file” on page 2930
You can delete a message category file from your message model.
Related reference:
“Message Category editor” on page 6802
The Message Category editor is the default editor provided by the Broker
Application Development perspective for working with message category
(.category) files in a message set.
“Message category properties” on page 5413
A message category provides a way of grouping your messages.

Namespaces in the message model:

Use namespaces to qualify message model object names.

A single XML instance document can contain elements and attributes that are
defined for, and possibly used by, multiple applications. Two different elements or
attributes within the same document might require the same name. Individual
applications must be able to recognize the elements and attributes that they are
designed to process. In circumstances such as this, the definitions can be
distinguished from each other by qualifying each element with a different
namespace. This avoids problems of name collision and mistaken recognition.

XML Schemas can define a target namespace. Global elements, attributes, groups,
and types that are defined within an XML Schema are qualified by the target
namespace, if it has been defined. Optionally, local elements and attributes can also
be qualified by the target namespace. Therefore, namespaces assist in the
development of a library of XML Schemas that can be developed independently. If
the namespace name that is used for an XML Schema is unique, you do not have
to be concerned about name clashes with objects that are defined within other
XML Schemas.

Chapter 9. Developing message flow applications 1201

The scope of a namespace extends beyond the scope of its containing document
and is identified by a Uniform Resource Identifier (URI). In order to serve its
purpose, a URI must be unique. You might be more familiar with the concept of a
Universal Resource Locator (URL). URIs often use the same syntax as URLs, but
the URI definition is broader than the specification of a URL. This is an example of
a URI: http://mycompany.com/xml_schema

A namespace prefix is declared as a shorthand for the full URI name and this is
used to qualify all elements that belong to that namespace. The prefix to be
substituted for a namespace in an XML instance document or XML Schema is
specified by using an xmlns attribute. A default namespace can also be defined by
using an xmlns attribute. If a default namespace is defined, any element or
attribute with no prefix is qualified with the default namespace. If no default
namespace is defined, any element or attribute with no prefix is not qualified by a
namespace.

Namespaces and the message model
The message model supports namespaces within message sets. However,
you can choose whether to enable or disable namespaces for your message
set. If you disable namespaces when you create your message set, you can
enable namespaces later. However, when you have enabled namespaces for
a message set you cannot disable namespaces.

A single message set which has namespaces enabled can contain a number
of different namespaces. Each namespace is represented by a different
Message Definition File. When you create a Message Definition File, you
can choose whether it has an associated namespace, or whether it is in the
notarget namespace. If you associate a namespace with a Message
Definition File, you must also choose a prefix.

If the Message Definition File has an associated namespace, the following
global objects are qualified with the namespace:
v Elements
v Attributes
v Simple Types
v Complex Types
v Groups
v Attribute Groups

Optionally, local elements and attributes can be qualified with the
namespace.

Objects that are defined within a Message Definition File can reference
objects in other Message Definition Files within the same message set. To
do this, import or include one Message Definition file within another
Message Definition File.

Message parsing and message flows
WebSphere Message Broker parsers for XML data recognize prefixed names
in the XML messages that they parse, and internally map these to the
correct namespace. The message tree stores the name and the namespace of
the element or attribute.

Namespaces can be used even when the data is not XML. Adapter schema,
and message definition files can be created with an associated target
namespace. Though the data itself does not contain prefixed names, the
namespace is obtained from the corresponding element in the file. Again,
the message tree stores the name and the namespace of the element.

1202 WebSphere Message Broker Version 7.0.0.8

If you are using XML format in the MRM domain, elements or attributes
are matched, based on the namespace in the dictionary when the parsed
message is matched against the dictionary that is generated from the
message model. Therefore, for an element or attribute in a message to
match with the dictionary, both its name and its namespace must match.

If you are using the DataObject domain, the SOAP domain, or the
XMLNSC domain (in validating mode), elements or attributes are matched,
based on the namespace in the XML Schema when the parsed message is
matched against the XML Schema that is generated from the message
model. Therefore, for an element or attribute in a message to match the
XML Schema, both the name and the namespace of the element or attribute
must match.

You can specify namespaces when writing ESQL or Java. It is not necessary
to write ESQL or Java that is namespace aware if you are not using
namespaces. However, if you decide to use namespaces it is necessary to
write namespace-aware ESQL or Java. The namespace in which an element
is contained is stored in the message tree when parsed. This is a logical
property and it is held regardless of the physical wire format in which
messages are parsed and written. Syntax has been added to ESQL to make
it easy to reference namespaces of other elements by using defined
prefixes. In Java, XPath expressions are used to reference elements.

Importing from other formats
The message model enables you to create Message Definition files from
other formats by importing them into the WebSphere Message Broker
Toolkit.
v If you import an XML DTD file, the Message Definition File that is

created is in the notarget namespace.
v If you import an XML Schema file, the target namespace of the created

Message Definition File depends on whether namespaces have been
enabled for the message set.
– If namespaces are enabled, the target namespace of the Message

Definition File that is created is the target namespace of the XML
Schema that is being imported.

– If namespaces are disabled for the message set, the created Message
Definition File is in the notarget namespace. This type of import does
not provide full namespace support. If you are using WebSphere
Message Broker, you do not have to write namespace-aware ESQL or
Java to process an XML message that is parsed against the dictionary
that is generated from this message model. For reasons why you
might want to do this, see “Importing XML Schema into message sets
with namespaces disabled” on page 1259

v If you import a COBOL Copybook or a C Header file, the target
namespace of the created Message Definition File depends on whether
namespaces have been enabled for the message set.
– If namespaces are enabled, the target namespace of the Message

Definition File that is created is the notarget namespace. This default
namespace can be overridden by specifying a target namespace in the
New Message Definition File wizard. For reasons why you might
want to do this, see “Namespaces with non-XML messages” on page
1206.

– If namespaces are disabled for the message set, the Message
Definition File that is created is in the notarget namespace

Chapter 9. Developing message flow applications 1203

Further information about XML: On the World Wide Web Consortium (W3C)
website, see:
v Extensible Markup Language (XML)
v XML Schema Part 0: Primer
v Namespaces in XML
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Namespaces with non-XML messages” on page 1206
The use of namespaces by WebSphere Message Broker is not necessarily limited to
XML message models.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Reusing message model files” on page 1209
One message definition file can reuse message model objects defined in another
file.
“Importing XML Schema into message sets with namespaces disabled” on page
1259
You can import an XML Schema file with a target namespace even if the message
set does not have namespaces enabled.
“Importing from XML Schemas to create message definitions” on page 1256
You can populate a message set with message definitions by importing XML
Schema files, by using the New Message Definition File From XML Schema file
wizard, the Start from WSDL and/or XSD files quick start wizard, or the
mqsicreatemsgdefs command-line utility.
Related tasks:
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Configuring XML Wire Format properties: Message model objects” on page 2916
You can configure the XML Wire Format properties of a message model object.
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

1204 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml-names/

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Namespaces with MRM XML messages:

The namespace that is associated with a message definition file is part of the
logical layer of the message model.

Therefore, it is not dependent on an XML Wire Format being present. However, if
you have an XML Wire Format, the namespace information from the logical layer
is used to populate some of the properties of the XML Wire Format. If namespaces
are enabled for a Message Set, in the XML Wire Format, a table of namespace
URI/prefix pairs is maintained. This table is initially populated with the
namespaces of all of the Message Definition Files with their prefixes when they
were created.

If your message set has namespaces enabled, the broker does not store the values
of any xmlns attributes in the tree when it parses an XML instance document. It
also does not store the values of any Schema Location and No Namespace Schema
Location attributes. When an XML document is written out, the broker regenerates
this information from the properties of the XML Wire Format of the message set.

The table of namespace URI/prefix pairs is used by the MRM Domain when it
produces an XML message. Elements and attributes that are qualified by a
namespace are prefixed with the corresponding prefix from the table. The broker
also manages the output of the corresponding xmlns attributes that map the
prefixes to namespaces. You can choose whether xmlns attributes for all of the
entries in the namespace URI/prefix table are written at the start of the document,
or whether they are only written in the document when required.

If namespaces are enabled for a Message Set, in the XML Wire Format there is a
table of schema locations that map namespace URIs to file names. You can add
entries to this table and you can map a file name to the notarget namespace. If you
are using WebSphere Message Broker, this table is used to produce schemaLocation
and No Namespace Schema Location attributes at the start of the XML document.
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Namespaces with non-XML messages” on page 1206
The use of namespaces by WebSphere Message Broker is not necessarily limited to
XML message models.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Reusing message model files” on page 1209
One message definition file can reuse message model objects defined in another
file.
“Importing XML Schema into message sets with namespaces disabled” on page
1259
You can import an XML Schema file with a target namespace even if the message
set does not have namespaces enabled.

Chapter 9. Developing message flow applications 1205

“Importing from XML Schemas to create message definitions” on page 1256
You can populate a message set with message definitions by importing XML
Schema files, by using the New Message Definition File From XML Schema file
wizard, the Start from WSDL and/or XSD files quick start wizard, or the
mqsicreatemsgdefs command-line utility.
Related tasks:
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Configuring XML Wire Format properties: Message model objects” on page 2916
You can configure the XML Wire Format properties of a message model object.
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Namespaces with non-XML messages:

The use of namespaces by WebSphere Message Broker is not necessarily limited to
XML message models.

There is one scenario where the use of namespaces by non-XML message models
can simplify the ESQL or Java code that you write. Before describing this scenario,
it is important to understand that the MRM parser, when parsing messages that
are defined in a file that has a target namespace, produces a logical message tree
that contains both name and namespace information. For non-XML messages, the
namespace is obtained from the element declaration in the file, and not from the
data.

Consider a transformation scenario where a message from a COBOL application
requires to be transformed into namespace-aware XML; for example, a SOAP XML
message. The transform must map the logical message tree that was created for the
COBOL message to a logical message tree that matches the XML message. If the
COBOL message tree does not contain namespace information, each mapping from
a COBOL field to an XML element must set the namespace for the XML element.
However, if the COBOL message tree already contains the required namespace
information, this mapping is much simpler.

1206 WebSphere Message Broker Version 7.0.0.8

To enable the MRM parser to create namespace information in a message tree that
was created from a non-XML message, you must specify a target namespace for
the message definition file. For MRM, this must be done as part of the file creation
process. Make the target namespace of the file the same as the target namespace of
the XML message into which the non-XML message is being transformed.
v If you are creating your non-XML message model by hand in the message editor,

use the New Message Definition File wizard to specify a target namespace.
v If you are importing from COBOL or C, use the New Message Definition File

wizard, or the mqsicreatemsgdefs command options file, to specify a target
namespace.

When dealing with both the message tree for the non-XML message and the
message tree for the XML message, the ESQL or Java code that you write to
perform the transformation must be namespace aware.
Related concepts:
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Namespaces with MRM XML messages” on page 1205
The namespace that is associated with a message definition file is part of the
logical layer of the message model.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Reusing message model files” on page 1209
One message definition file can reuse message model objects defined in another
file.
Related tasks:
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
“Importing from C” on page 2934
Create a message definition file from a C header file for use in the MRM and
IDOC domains.
“Importing from COBOL copybooks” on page 2937
This topic describes how to create a new message definition from a COBOL data
structure using the New Message Definition File wizard in the WebSphere Message
Broker Toolkit.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Chapter 9. Developing message flow applications 1207

Specifying namespaces in the Message Type property:

When using the MRM domain, the Message Type property is used to specify the
name of the message.

The format of a simple message type is {namespace-uri}:name where name is the
name of the message, and namespace-uri. identifies the namespace. The namespace
must be the full URI specification and must be enclosed in braces.

The format {namespace-uri}name (that is, with no colon) is also valid. This
maintains compatibility with previous versions of the broker product.

If you omit {namespace-uri}, the first match for the name that is found in the
model is used. You can do this if namespaces are not enabled for the message set,
or if a name is unique within a message set. However, if a name is not unique, you
must specify the namespace to be sure that the correct match is made in the model.

The following are examples of message types:
v A simple message type for a message in a real target namespace:

{http://www.ibm.com/space}:name

v A simple message type for a message in the notarget namespace: {}:name
v A simple message type for a message in a message set that does not support

namespaces: name

When identifying an embedded message using a message path, a message type
path would be entered as A simple message type for a message in a real target
namespace: {http://www.ibm.com/space}:name

The same name can occur in more than one namespace. To specify that a name is
to be qualified with a specific namespace, the name must be prefixed with the
namespace within the Message Type.

For example a Message Type with a single name would be entered as:
{http://www.ibm.com/space}:id/.../{http://www.ibm.com/space}:name

Related concepts:
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Identifying an embedded message by using a Message Path” on page 1196
The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.
“Namespaces with MRM XML messages” on page 1205
The namespace that is associated with a message definition file is part of the
logical layer of the message model.
“Namespaces with non-XML messages” on page 1206
The use of namespaces by WebSphere Message Broker is not necessarily limited to
XML message models.
“Reusing message model files” on page 1209
One message definition file can reuse message model objects defined in another
file.
Related tasks:

1208 WebSphere Message Broker Version 7.0.0.8

“Applying a Quick Fix to a task list error” on page 2862
During the creation, migration and manipulation of message models, warnings or
errors might occur; these are listed in the Problems view of the Broker Application
Development perspective. Some of these warnings or errors can be cleared by
applying a Quick Fix.
“Handling large MRM messages” on page 2605
When an input bit stream is parsed, and a logical tree created, the tree
representation of an MRM message is typically larger, and in some cases much
larger, than the corresponding bit stream.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
Related reference:
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Reusing message model files:

One message definition file can reuse message model objects defined in another
file.

There are two mechanisms that XML Schema provides to reuse message definition
files: import and include. The namespaces of the two files determine which of the
import or include commands is be used:

Target file has a target
namespace

Target file has notarget
namespace

Parent file has a target
namespace

xsd:import xsd:include1

Parent file has notarget
namespace

xsd:import xsd:include

Note: When a target namespace file includes a notarget namespace file, referencing
an object in the target file from the parent file causes the object to be present in the
namespace of the parent file.

When import or include are used, global objects from the target file can be used in
the parent file. For example, an element in the parent file can be given a complex
type defined in the target file.

The namespace of objects in the target file is preserved in the parent file, with the
exception noted in the previous table of a target namespace file that includes a
notarget namespace file. This exception is sometimes called the chameleon
namespace effect.

Chameleon namespaces have limited support when used with the MRM domain.
When referenced in the parent file, the objects in the target file are present in the
namespace of the parent file, but they are assigned default physical format
information. Therefore, physical format information defined in the target file is not
available for use in the parent file. Use Chameleon Namespaces in the MRM
domain to model XML messages only if physical format information has not
changed from the default.

Chapter 9. Developing message flow applications 1209

XML Schema provides a variation of xsd:include called xsd:redefine, which is not
supported by WebSphere Message Broker. Using xsd:redefine gives a task list error.
A Quick Fix is offered to convert occurrences of xsd:redefine into xsd:include when
using message definition files.
Related concepts:
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Namespaces with non-XML messages” on page 1206
The use of namespaces by WebSphere Message Broker is not necessarily limited to
XML message models.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
Related tasks:
“Applying a Quick Fix to a task list error” on page 2862
During the creation, migration and manipulation of message models, warnings or
errors might occur; these are listed in the Problems view of the Broker Application
Development perspective. Some of these warnings or errors can be cleared by
applying a Quick Fix.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
Related reference:
“Message definition file properties” on page 5409
The properties of a message definition file.

Message model integrity:

When you create your message model, it is important that it is internally
consistent.

To assist with this, whenever you save a message definition file, it is validated as
follows:

Logical validation
This validation ensures that the logical model is correct. For message
definition files, this involves ensuring that the rules of XML Schema have
been correctly followed.

Physical validation
This validation ensures that any physical properties that you have
specified for your model have been correctly populated and are consistent.
There is a set of checks for each of the MRM domain physical formats -
CWF, XML, and TDS.

After model validation has taken place, any errors or warnings are shown
in the task list. Double clicking a task list entry opens the file and positions
the editor at the object in error. Organize the task list so that errors are
shown before warnings. In this way, errors are not hidden. The task list
provides a comprehensive filtering capability if you want to hide low
priority warnings, or warnings that you are know about and are
comfortable with.

The deployment of a message model in a broker archive (BAR) file is
prevented if any errors are present. The presence of warnings alone does

1210 WebSphere Message Broker Version 7.0.0.8

not prevent deployment, but high priority warnings must be reviewed
because a model that generates such warnings might be incomplete.

Where task list warnings or errors occur, these are listed in the Problems view of
the Broker Application Development perspective. While a majority of these require
you to manually investigate and resolve them, a number of warnings and errors
that meet specific criteria can be repaired by using a quick fix process.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Physical formats in the MRM domain”
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
Related tasks:
“Applying a Quick Fix to a task list error” on page 2862
During the creation, migration and manipulation of message models, warnings or
errors might occur; these are listed in the Problems view of the Broker Application
Development perspective. Some of these warnings or errors can be cleared by
applying a Quick Fix.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model task list errors that have a quick fix” on page 6336
You can apply a quick fix to some message modeling task list warnings or errors to
correct them.

Physical formats in the MRM domain
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.

Chapter 9. Developing message flow applications 1211

If you are using the MRM domain or the IDOC domain, physical format
information must be provided, as it tells the parser exactly how to parse the
message bit stream.

You can think of a message as a packet of data that is sent from one place to
another. The sender and receiver of the message will have agreed the structure of
the message and what each field in the message means. This is the platform and
protocol independent logical structure.

The sender and receiver will have also agreed on the physical representation of the
message, how the data is physically laid out on the wire. For example, if you
define a message that conveys information about a debit of an individual's bank
account, it can be represented in different physical forms (examples are XML, or a
fixed structure such as a COBOL copybook). The meaning and data are the same
in both cases: only the physical layout has changed.

If you are using the MRM domain, you can model various different physical
representations by using named physical formats.
v Use the Custom Wire Format (CWF) physical format to model fixed-format

messages from applications that are written in C, COBOL, PL/I and other
languages. This support includes the ability to create a message model directly
from a C header file or COBOL copybook.

v Use the Tagged Delimited String Format (TDS) physical format to model
formatted text messages, perhaps with field content identified by tags or
separated by specific delimiters or both. This support is rich enough to model
industry standards such as SWIFT, EDIFACT, and X12.

v Use the XML physical format to model XML messages, including those that use
XML namespaces. This support includes the ability to create a message model
directly from an XML DTD or XML Schema file.

Different physical representations: The following example shows how a simple
logical message can have different physical representations.

The logical model defines the structure and order of the message. In the following
example, the three fields are simple integers, and C follows B, which follows A:
int A;
int B;
int C;

v A typical Custom Wire Format representation for this logical message would be
12 bytes of data, with each of A, B and C occupying 4 bytes. Alternatively,
perhaps A is 4 bytes long, but B and C are only 2 bytes long. You supply the
precise physical information for each field in the message as CWF properties.

v TDS enables several different representations to be modeled. Each integer can be
preceded by a tag to identify it and a delimiter to terminate it, as follows:
{A_tag:xxxxxxxx;B_tag:xxxxxxxx;C_tag:xxxxxxxx}

An alternative might rely on the data being ordered so only the terminating
delimiter must be specified, as follows:
[xxxxxxxx;xxxxxxxx;xxxxxxxx]

You supply the precise identification regime as TDS properties.
v A typical XML representation of this model is as follows:

<Msg><A>xxxxxxxxxxxxxxxx<C>xxxxxxxx</C></Msg>

1212 WebSphere Message Broker Version 7.0.0.8

where xxxxxxxx is the value of the integer represented as a string (XML deals
only with strings). An alternate representation might be:
<Msg A="xxxxxxxx" B="xxxxxxxx" C="xxxxxxxx"/>

where the values of the integers are stored as XML attributes rather than XML
elements. You supply the precise XML rendering for each field in the message as
XML properties.

This shows that the logical model is unchanged. It is constant, regardless of the
physical representation that you choose to model on top of it, using the physical
format support provided by the MRM domain. The MRM parser is able to
transform the message from the input physical representation to any number of
output representations, based on the physical format layers that you have defined.

Creating physical formats: When you have created your message set, you can
create physical formats. You do this using the Message Set Editor. When you next
save the messageSet.mset file, any new physical formats are added to all the
objects in all the message definition files in that message set.

The next time you edit an object in a message definition file, you see the physical
formats in the properties hierarchy pane of the Properties tab. If you click a
physical format for an object, you are presented with a property sheet where you
can enter the information for that physical format for that object.

Not all objects have properties in all physical formats. For example:
v CWF properties apply only to local elements and attributes, and element and

attribute references.
v Complex types and groups have only TDS properties.
v Messages have only XML properties.

These differences occur because of the different nature of each physical format, and
are explained in more detail in the section for each physical format.

There is no limit to the number of physical formats you can create in a given
message set. However there are some recommendations that apply if you want to
mix physical formats of different kinds in the same message set.

Physical formats can be deleted if no longer required.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.

Chapter 9. Developing message flow applications 1213

“MRM Custom Wire Format”
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

MRM Custom Wire Format:

Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.

Within a CWF messaging environment, it is not possible to distinguish one element
from the next without knowledge of the message structure. To correctly determine
the values of individual elements, the following information must be made
available to the message parser:
v The order (this is defined in the logical properties)
v The length (can be specified in bytes, characters, or character units)
v The cardinality (that is, the number of repeats)
v The type of data contained in each element (this is partly defined in the logical

properties but can be further qualified in the CWF physical format)
v A number of characteristics based upon the logical type of the data

A CWF physical format is typically used to describe messages which are mapped
to a C structure, a COBOL copybook, or other programming language data
structure definition.

You can add more than one CWF physical format to a message set, but within that
message set, each physical format must have a unique name. When parsing a CWF
message by using the MRM parser, the physical format name specifies the physical
properties that are to be used by the parser.

1214 WebSphere Message Broker Version 7.0.0.8

Adding a CWF physical format to a message set enables you to process input
messages and construct output messages in this format. Messages can be
transformed between CWF and the other physical representations (for example
TDS or XML). While the other physical representations support self-defining
elements (that is elements which do not have a definition in the logical model)
within the MRM domain, the parsing of a CWF message does not. Consequently,
any such self-defining elements are discarded during the output of messages in
CWF format.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
“Configuring Custom Wire Format (CWF) properties: Message sets” on page 2849
Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
Related reference:
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

MRM Custom wire format: Message model integrity:

When you save a message definition file, the definitions that it contains are
checked to ensure that they make sense and provide sufficient information about
the message. This action is called model validation.

The CWF physical format depends on fixed-format data structures. Therefore, most
tests that are applied to a CWF message confirm that each fragment of a message -
and therefore, the message as a whole - has a well-defined length. Therefore, these
tests examine properties such as Length, Length Reference and Length Units.

Typically, one or other of Length and Length Reference must be set. If Length
Reference is set, it must refer to an element that is of simple type integer and that
appears earlier in the message than the current item.

Tests other than these tend to be both simple and obvious so that, for example, the
message set property First Day of Week must be the name of a day in the week.

The fact that CWF relies on fixed-format data structures also imposes some
limitations on the messages that can be represented:

Chapter 9. Developing message flow applications 1215

v CWF cannot represent a message that includes the use of XML Schema wild
cards; this is a consequence of its inability to handle undefined content.

v CWF cannot represent a message that includes recursive definitions.
v CWF cannot represent a message that includes the use of substitution groups,

because there is no way to recognize the substituted element.
Related concepts:
“Message model integrity” on page 1210
When you create your message model, it is important that it is internally
consistent.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
“Configuring Custom Wire Format (CWF) properties: Message sets” on page 2849
Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
Related reference:
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

MRM Custom wire format: NULL handling:

CWF supports the handling of explicit NULL values within messages, if the logical
nillable property of the element is set.

An explicit null is identified by a specific value that identifies an element as being
null.

The Boolean Null Value can be specified at the message set level, and applies to
the Boolean elements of all messages that are defined in that message set. The null
value of all other element types can be specified individually for each element.

CWF supports the representation of null values by using the Encoding Null and
Encoding Null Value element properties. Together, this information controls how
null values are handled by the MRM parser.

The Encoding Null property can be set to one of four values:

NullLogicalValue

1216 WebSphere Message Broker Version 7.0.0.8

The Encoding Null Value property is interpreted as a logical value.
Therefore, if its value is set to 0, for example, both 0 and 0.00 are
interpreted as null values.

NullLiteralValue

The Encoding Null Value property is interpreted as a string value.
Therefore, the value of the element in the bit stream must match exactly
the value that is specified to be interpreted as a null value.

NullPadFill

Used for fixed-length elements. On output, any element with a null value
is padded to the appropriate length with the specified padding character.

NullLiteralFill

The Encoding Null Value property is interpreted as a single character
string value. Therefore, each character of the value of the element in the bit
stream must match exactly the character value specified to be interpreted
as a null value.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
“Configuring Custom Wire Format (CWF) properties: Message sets” on page 2849
Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
Related reference:
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

MRM Custom wire format: Multipart messages:

The Custom Wire Format (CWF) supports both the Message Identity technique and
the Message Path technique of identifying embedded messages within a multipart
message.

Chapter 9. Developing message flow applications 1217

Alternatively, you can resolve an embedded message by using ESQL or Java to
identify the message. The first message that you reference in this way is assumed
to be the selected message. This technique works in an identical manner to
unresolved choice handling.
Related concepts:
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Identifying an embedded message by using a Message Identity” on page 1193
You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.
“Identifying an embedded message by using a Message Path” on page 1196
The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
Related tasks:
“Creating a multipart message” on page 2919
A multipart message occurs when you embed a message in another message.
“Accessing embedded messages in the MRM domain” on page 2594
If you have defined a multipart message, you have at least one message embedded
within another. Within the overall complex type that represents the outer messages,
you can model the inner message in two ways.
Related reference:
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

MRM Custom wire format: Data Conversion:

The Custom Wire Format supports the conversion of data to a different code page
(for string simple types) or encoding (for numeric simple types), or both.

A message set contains properties to enable the character (CCSID) and numeric
encoding (Byte Order / Float Format) information to be specified. If you generate
a message dictionary for deployment to a WebSphere Message Broker, this
information can be overridden by using the appropriate fields of the
WebSphere MQ message header, or other transport header.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:

1218 WebSphere Message Broker Version 7.0.0.8

“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
“Configuring Custom Wire Format (CWF) properties: Message sets” on page 2849
Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.
Related reference:
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

MRM Custom wire format: Relationship to the logical model:

Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.

Composition: A CWF message is always written with the elements in the sequence
that is specified in the logical message model definition. However, you do not
always have to specify the ESQL or Java that builds the elements in that sequence.
The following rules for coding ESQL are given for each value of the type
Composition property.

Sequence
You must build the output message to match the sequence of the elements
or groups in the message. You can normally do this using ESQL SET
statements to assign a value to each element or type. The first SET
statement sets the value of the first element or type in the message, the
second SET statement sets the value for the second element or type, and so
on. You can vary this sequence of statements by using ESQL ATTACH,
CREATE, and MOVE statements.

If the elements or types have default values, and you do not build the
message in the correct sequence, those elements that are built out of
sequence contain their default values, not the values that you set. This is
because elements that are built out of sequence are assumed to be
self-defining and, for CWF, these are discarded when the message is
written to the bit stream.

Ordered Set
You must build the output message to match the sequence of the elements
in the message. You can normally do this using ESQL SET statements to
assign a value to each element. The first SET statement sets the value of
the first element in the message, the next SET statement sets the value for
the second element, and so on. You can vary this sequence of statements
by using ESQL ATTACH, CREATE, and MOVE statements.

If the elements have default values, and you do not build the message in
the correct sequence, those elements that are built out of sequence contain
their default values, not the values that you set. This is because elements

Chapter 9. Developing message flow applications 1219

that are built out of sequence are assumed to be self-defining and, for
CWF, these are discarded when the message is written to the bit stream.

Unordered Set
You can build elements of the output message in any sequence. On output,
the elements are written in the order that is specified in the logical
message model definition.

All You can build elements of the output message in any sequence. Each
element must be present only once (that is, it must not repeat). On output,
the elements are written in the order that is specified in the logical
message model definition.

Choice
A choice cannot be resolved purely from the data. The receiving program
must interpret the data and decide which option of the choice the message
instance contains. This process is known as unresolved choice handling. The
first reference in the application to any one of the choice elements resolves
the choice to the option that contains that element.

Message
Mechanisms for the resolution of embedded messages are discussed in the
“MRM Custom wire format: Multipart messages” on page 1217 topic.

Content validation: CWF is a fixed format, and all elements must be present in a
message. Therefore, content validation is ignored. On output, all elements must be
set explicitly (for example, by using ESQL SET), set implicitly (by using a tree copy
function), or must have a default value defined.

Default values: On output of a CWF message in the MRM domain, any element, or
occurrence of an element for which a value has not been set (either explicitly or
implicitly), inherits the specified default value of the element. If no default value
has been specified then an exception is thrown.

Min Occurs and Max Occurs: The logical properties Min Occurs and Max Occurs
specify the permitted number of occurrences of an element, or group, in a message.
These properties are used when parsing and writing messages, and when
validating the content of a message.

In CWF, Max Occurs occurrences are expected when parsing, and Max Occurs
occurrences are produced when writing. Default values are used for missing
elements, and any excess elements are discarded.
v A varying number of occurrences (Min Occurs <> Max Occurs) is ignored, Max

Occurs is assumed.
v Optional occurrence (Min Occurs = 0) is ignored, Max Occurs is assumed.
v Always absent (Max Occurs = 0) is allowed.
v An unbounded number of occurrences (Max Occurs = -1) is allowed if the

element or group is the last child in its parent group, and the group is
terminated by the end of the message bit stream. On writing, the writer writes
all occurrences in the message tree, if this number is less than Min Occurs,
additional default values are written.

These rules arise because, in a CWF message format, there are no tags or other
markup that can be used to determine the end of a variable number of repeats.

1220 WebSphere Message Broker Version 7.0.0.8

However this behavior is overridden if the CWF property Repeat Reference is set,
which indicates that the number of occurrences is given instead by an integer
element that occurs earlier in the message. In this case Max Occurs is ignored.

When validating, Min Occurs and Max Occurs are both used to check that the
content of the message tree matches the model.

Simple types – lists and unions: Lists and unions are XML-specific concepts. An
element or attribute of a simple type that is a list or a union causes a task list
warning if a CWF physical format is present in the message set. The user can
choose whether to make this an error, warning, or information by editing the
Validation preferences. The dictionary generator omits messages defined to contain
such elements or attributes from the CWF section of the dictionary.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Multipart messages” on page 1217
The Custom Wire Format (CWF) supports both the Message Identity technique and
the Message Path technique of identifying embedded messages within a multipart
message.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
“Configuring Custom Wire Format (CWF) properties: Message sets” on page 2849
Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
Related reference:
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

MRM TDS format:

The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.

The TDS physical format is designed to model messages that consist of text strings,
but it can also handle binary data. Examples of TDS messages are those that
conform to the ACORD AL3, EDIFACT, HL7, SWIFT, or X12 standards. The TDS
physical format allows a high degree of flexibility when defining message formats,
and is not restricted to modeling specific industry standards; therefore, you can use
the TDS format to model your own messages.

Chapter 9. Developing message flow applications 1221

TDS message characteristics: There are a number of features of text string messages
that are common to many formats. This is an overview of the main features that
are supported by the TDS physical format:

Tags The text strings in the message can have a tag or a label preceding the data
value. The tag is a string that uniquely identifies the data value. The TDS
format allows you to associate a tag with each element when you define
the element.

Delimiters and tagged data separators
The message can contain various special characters or strings in addition to
the tags and text string data values. The TDS format supports a number of
different types of special characters or strings.

Some messages have a special character or string that separates each data
value from the next. In the TDS format this is a known as a delimiter.

In formats that have a tag before each data value, the tag can be separated
from its data value by a special character or string. In the TDS format this
is known as a tag data separator.

Group indicators and terminators
A message can be split into a number of substructures in a similar manner
to a COBOL or C structure. You can model each of these substructures
separately by defining groups, complex types, or elements for each one.

A substructure can have a special character or string that indicates its start
within the data. This is known in the TDS format as a group indicator.

A substructure can also have a special character or string that indicates its
end in the data. In the TDS format, this is known as a group terminator.

A group indicator and group terminator can also be defined for the whole
message. Group indicators and group terminators are optional for the
message and each substructure.

Fixed-length strings
Some text strings within a message can be of fixed length; therefore, a
delimiter between each data value is not necessary. This is supported by
the TDS format.

Fixed-length tags
Some tags can be defined as fixed length; therefore, a tag data separator is
not necessary.

Separation types
The TDS property that controls the way text strings are separated is Data
Element Separation. It has several options, for example, whether tags are
used, whether strings lengths are fixed or variable, and what types of text
strings are permitted.

The substructures within a message can use different types of data element
separation and use different special characters. Therefore the TDS format
allows you to define different types of data element separation and special
characters for each complex type within the message.

Regular Expressions
If you choose the Use data pattern option for Data Element Separation,
you can use regular expressions to identify parts of the message data to be
assigned to sub fields. This is done by setting the regular expression in the
Data Pattern property.

1222 WebSphere Message Broker Version 7.0.0.8

The following diagram shows an example data message with each of its
components labeled.

v At the top level, each data value has a tag associated with it, each tag is
separated from its data value by using a tag data separator of colon (:), and the
data values are separated from each other using the asterisk delimiter (*).

v The group indicator for the message is the left brace ({) and the group terminator is
the right brace (}).

v The data values Data2 and Data3 are in a substructure in which there are no
tags, and each data element is separated from the next using the plus delimiter
(+). The group indicator for this substructure is the left bracket ([) and the group
terminator is the right bracket (]).

v The data values Data4 and Data5 are in a substructure in which the values are
fixed length, and are therefore not separated by a delimiter. The group indicator
for this substructure is the less than symbol (<) and the group terminator is the
greater than symbol (>).

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format: Data element separation” on page 1225
Data element separation defines how a TDS message is to be parsed.
“Message model objects: elements” on page 1176
An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.
“MRM TDS format: Determining the length of simple data values” on page 1224
The TDS format supports two categories of simple data types: textual and
non-textual.
“Message model objects: types” on page 1177
Types describe the data content of elements.
Related tasks:
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.

{Tag1:Data1*Tag2:[Data2+Data3]*Tag3:<Data4Data5>}

Tag
Separator

Data Tag
Separator

Data Tag
Separator

Data

Delimiter DelimiterDelimiter

Tag TagTag

Group
Indicator

Group
Indicator

Group
Indicator

Group
Terminator

Group
Terminator

Group
Terminator

Chapter 9. Developing message flow applications 1223

“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
Related reference:
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: Determining the length of simple data values:

The TDS format supports two categories of simple data types: textual and
non-textual.

The Physical Type of an element determines whether it is categorized as textual or
non-textual.

Textual data
Physical Type is either Text or TLOG Specific. For textual data, the Data
Element Separation of the parent complex type or group determines how
the length of the data is determined. See “MRM TDS format: Data element
separation” on page 1225 and its subtopics.

Non-textual data
Elements of all other Physical Types are non-textual. The length of
non-textual data is determined by the Physical Type of the element. For
non-textual data, the Data Element Separation property of the parent
complex type or group does not determine the length, unless Data Element
Separation is Use Data Pattern. See “MRM TDS format: Data pattern
separation types” on page 1237 for more information.

The following table describes how the length of data is determined for
each Physical Type.

Physical Type Determination of Length

Text
TLOG Specific

The Data Element Separation of the parent
complex type or group determines how the
length of the data is determined.

External Decimal
Integer
Packed Decimal
Float
Time Seconds
Time Milliseconds

Uses the value of the Length property of the
element.

If Physical Type is Time Seconds, the Length
property is set to 4. If Physical Type is Time
Milliseconds, the Length property is set to
8. In neither case can this value be changed.

Length Encoded String 1
Length Encoded String 2

Uses the encoded length value in the data.

Null Terminated String Uses the null terminator at the end of the
data.

Binary Uses the value of the Length Reference or
Length property of the element.

Related concepts:
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.

1224 WebSphere Message Broker Version 7.0.0.8

“MRM TDS format: Fixed-length separation types” on page 1227
For fixed-length separation types, each data value is a fixed length.
“MRM TDS format: Tagged separation types” on page 1228
For tagged separation types, each data value is preceded by a tag that is specified
as an element property.
“MRM TDS format: Delimited separation types” on page 1232
For delimited separation types, a delimiter is used to separate data fields, but there
are no tags present. The data fields must be given in the correct order in the bit
stream and elements cannot be omitted from the middle of the bit stream.
“MRM TDS format: Data pattern separation types” on page 1237
For a data pattern separation type, each data value is matched with a regular
expression that is specified as a property of each element.
“MRM TDS format: Message model integrity” on page 1239
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.
Related tasks:
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.
Related reference:
“TDS message model integrity” on page 6295
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. These rules are checked whenever the
project is saved.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: Data element separation:

Data element separation defines how a TDS message is to be parsed.

Data element separation defines which method of identifying data elements is to
be used and how the data elements are constructed. The different methods vary
from full flexibility to fixed format, depending on how they are defined.

The four main types of data element separation are:

Fixed-length types
Fixed-length types are dependent on each element having a length. See
“MRM TDS format: Fixed-length separation types” on page 1227.

Tagged separation types
Tagged separation types are dependent on each element having tag prefix
to identify it. See “MRM TDS format: Tagged separation types” on page
1228.

Chapter 9. Developing message flow applications 1225

Delimited separation types
Delimited separation types use delimiters to identify the end of one data
elements and the beginning of the next. See “MRM TDS format: Delimited
separation types” on page 1232.

Data pattern types
Data pattern types use a regular expression to identify each element. See
“MRM TDS format: Data pattern separation types” on page 1237.

There is a fifth category, which is different from the four described earlier in this
topic:

Undefined separation types
Undefined separation types contain no data elements. They are applicable
to embedded messages only. They use none of the TDS type-specific
parameters other than Data Element Separation. See “Multipart messages”
on page 1191.

Related concepts:
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“MRM TDS format: Fixed-length separation types” on page 1227
For fixed-length separation types, each data value is a fixed length.
“MRM TDS format: Tagged separation types” on page 1228
For tagged separation types, each data value is preceded by a tag that is specified
as an element property.
“MRM TDS format: Delimited separation types” on page 1232
For delimited separation types, a delimiter is used to separate data fields, but there
are no tags present. The data fields must be given in the correct order in the bit
stream and elements cannot be omitted from the middle of the bit stream.
“MRM TDS format: Data pattern separation types” on page 1237
For a data pattern separation type, each data value is matched with a regular
expression that is specified as a property of each element.
“MRM TDS format: Message model integrity” on page 1239
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.
Related tasks:
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.
Related reference:
“TDS message model integrity” on page 6295
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. These rules are checked whenever the
project is saved.

1226 WebSphere Message Broker Version 7.0.0.8

“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: Fixed-length separation types:

For fixed-length separation types, each data value is a fixed length.

For fixed-length data element separation types, all textual elements have a length
or length reference, and are padded out to their full length in the bit stream. No
tags or delimiters are used, and each data value directly follows the preceding data
value.

For example:
data1data200data30

The first element is length 5, the second is length 7, and the third is length 6. The
padding character is "0".

For non-textual elements, the length is determined by the Physical Type of the
element. See “MRM TDS format: Determining the length of simple data values” on
page 1224.

Fixed-length type: In fixed-length type, all textual elements must have a length or
length reference, and must be written out to that full length. The elements must be
presented in the correct order, and all elements must be written in the bit stream.
This includes all repeats of any repeating element (that is, the Maximum Occurrences
must be written out for each element).

For non-textual elements, the length is determined by the Physical Type of the
element. See “MRM TDS format: Determining the length of simple data values” on
page 1224.

For example:
data10data2data2data2data300

The first element is length 6, the second is length 5, and repeats three times, and
the third element is length 7. The padding character is "0".

Applicable parameters: The main parameters for this format are the Length or
Length Reference of the element. All fields must be padded out to their full length
for the bit stream to be correctly specified to the parser.

Tag and delimiter parameters are ignored. Group indicators and terminators are
observed, because they are of fixed length.

Default values are required for each field that might not be set, because then every
field can be produced as output, even if it is not filled with data from the message.

Fixed-length AL3 type (Deprecated): This separation type has been deprecated.
ACORD AL3 support will be provided by a different method in a future release, at
which time this separation type will be removed from service.

Fixed-length AL3 types are similar to fixed-length types, but follow extra rules that
are specified by the ACORD AL3 format regarding truncation and missing
elements. If elements are missing from the end of an AL3 type, they can be
truncated. They cannot be omitted from the middle of a bit stream. If a field is

Chapter 9. Developing message flow applications 1227

missing from the middle of the bit stream, that field is produced for output as the
appropriate length string of the "?" character.

Applicable parameters: The main parameters for this format are the Length or
Length Reference of the element. All fields must be padded out to their full length
for the bit stream to be correctly specified to a parser.

Tag and delimiter parameters are ignored. Group Indicators and Terminators are
observed, because they are of fixed length.
Related concepts:
“MRM TDS format: Data element separation” on page 1225
Data element separation defines how a TDS message is to be parsed.
“MRM TDS format: Tagged separation types”
For tagged separation types, each data value is preceded by a tag that is specified
as an element property.
“MRM TDS format: Delimited separation types” on page 1232
For delimited separation types, a delimiter is used to separate data fields, but there
are no tags present. The data fields must be given in the correct order in the bit
stream and elements cannot be omitted from the middle of the bit stream.
“MRM TDS format: Data pattern separation types” on page 1237
For a data pattern separation type, each data value is matched with a regular
expression that is specified as a property of each element.
“MRM TDS format: Message model integrity” on page 1239
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.
Related tasks:
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.
Related reference:
“TDS message model integrity” on page 6295
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. These rules are checked whenever the
project is saved.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: Tagged separation types:

For tagged separation types, each data value is preceded by a tag that is specified
as an element property.

The Tag Data Separator, or specific Length of Tag parameter is used to determine
where the tag ends and the data starts. Different methods are used by each
separation type to determine the end of the data.

1228 WebSphere Message Broker Version 7.0.0.8

After considering these two parameters, this topic describes the following
supported tagged separation types:
v “Tagged Delimited separation”
v “Tagged Fixed Length separation” on page 1230
v “Tagged Encoded Length separation” on page 1230

Tagged separation is a flexible format. The elements do not have to occur in a
specific order. They do not all need to be present, and can be absent from any
point in the message.

Tag Data Separator and Tag Lengths: Either Tag Data Separator and Length of
Tag are used by all tagged separation types. But only one of these parameters can
be set at the same time.

The point at which a tag ends and data starts can be determined by one of two
methods. If the Tag Data Separator is set, then this character indicates where the
data ends. For example, the string might be:
tag1:data1

where Tag Data Separator is :

However if the Tag Data Separator is not set and the Length of Tag field is set,
then the tag is the specified length, and is immediately followed by the data. No
separating character is required. For example, the string might be:
tag1data1

where Length of Tag is 4

Tagged Delimited separation: Tagged Delimited separation is a flexible format.
Elements are separated by a predefined delimiter. The textual elements are not of
specific lengths. For non-textual elements, the length is determined by the Physical
Type of the element. See “MRM TDS format: Determining the length of simple data
values” on page 1224.

Applicable parameters: These parameters are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.
v Delimiter separates the data elements within a group or complex type.
v Tag for each element, indicates the tag needed to precede the data in that field.
v Either Tag Data Separator or Tag Length as described earlier in this topic.

Examples: If Tag Data Separator is set to :
{tag1:data1*tag2222222:data2*tag333:data3}

where:
v Group Indicator is {.
v Group Terminator is }.
v Delimiter is *.
v Tag defined for each element, is tag1 (for data1), tag2222222 (for data2), and

tag333 (for data3).

or, for example, if Length of Tag is set to 5
{tag11data1*tag22data2*tag33data3}

Chapter 9. Developing message flow applications 1229

where parameters are as above, except:
v Tag, defined for each element (fixed at five characters), is tag11 (for data1), tag22

(for data2), and tag33 (for data3).

Tagged Fixed Length separation: Although Tagged Fixed Length separation is a
flexible format, the data must be a specific length. This means that a delimiter is
not needed to determine the end of each element.

Applicable parameters: These parameters are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.
v Tag for each element, indicates the tag needed to precede the data in that field.
v For each textual element, Length or Length Reference indicates the length of the

data (this value does not include the length of the tag). For non-textual elements,
the length is determined by the Physical Type of the element. See “MRM TDS
format: Determining the length of simple data values” on page 1224.

v Either Tag Data Separator or Tag Length as described earlier in this topic.

Examples: If Tag Data Separator is set to :
{tag1:data1tag22222222:data2000tag333:data300}

where:
v Group Indicator is {.
v Group Terminator is }.
v Delimiter is *.
v Tag, defined for each element, is tag1 (for data1), tag22222222 (for data2000), and

tag333 (for data300).
v Length, defined for each element, is 5 (data1), 8 (data2000), and 7 (data300).

or, for example, if Length of Tag is set to 5
{tag11data1tag22data2000tag33data300}

where parameters are as above, except:
v Tag, defined for each element (fixed at five characters), is tag11 (data1), tag22

(data2000), and tag33 (data300).

Tagged Encoded Length separation: This method has both a tag and a length field
before the data. The length field indicates to the parser the length of the data
following it.

The length of this length field is itself defined in the Length of Encoded Length
parameter. Extra lengths to be added in this, such as the length of the field itself, is
set in the Extra Chars in Encoded Length parameter.

Only textual elements and elements with a Binary logical and physical type are
supported within a Tagged Encoded Length separation.

These examples show how the values set in these parameters are applied:
v tagA007dataAAAtagB006dataBBtagC009dataCCCCC

If Length of Tag is 4, Length of Encoded Length is 3, Extra Chars in Encoded
Length is 0, then in this bit stream, TagA is followed by the three character long
length field. This indicates that the following data (dataAAA) is seven characters
long. The next field, tagB is then considered, and so on.

1230 WebSphere Message Broker Version 7.0.0.8

v tagA012dataAAAAAtagB010dataBBBtagC016dataCCCCCCCCC

If Length of Tag is 4, Length of Encoded Length is 3, Extra Chars in Encoded
Length is 3, then in this bit stream, TagA is followed by the three-character length
field. This indicates that the following data, plus extra characters, is 12
characters long: length of the length field (3) + length of data (9) = 12. Therefore
the length of the actual data is only 12-3 = 9. The next field, tagB is then
considered, and so on. In each case the length given in the bit stream is 3 greater
than the actual length of the data.

Applicable parameters: These parameters are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.
v Tag for each element, indicates the tag needed to precede the data in that field.
v Length of Encoded Length indicates the length of the length field in the bit

stream.
v Extra Chars in Encoded Length indicates how many extra characters should be

included in calculating the value for the length field in the bit stream.
v Either Tag Data Separator or Tag Length as described earlier in this topic.

Examples: If Tag Data Separator is set to :
{tag1111:008data1tag222222222:010data2AAtag3333:009data3A}

where:
v Group Indicator is {
v Group Terminator is }
v Length of Encoded Length is 3
v Extra Chars in Encoded Length is 3
v Tag, defined for each element, is tag1111, tag222222222, tag3333, and so on

or, for example, if Length of Tag is set to 5
{tag11008data1tag22010data2AAtag33009data3A}

where parameters are as above, except:
v Tag, defined for each element (fixed at five characters), is tag11, tag22, tag33, and

so on
Related concepts:
“MRM TDS format: Data element separation” on page 1225
Data element separation defines how a TDS message is to be parsed.
“MRM TDS format: Fixed-length separation types” on page 1227
For fixed-length separation types, each data value is a fixed length.
“MRM TDS format: Delimited separation types” on page 1232
For delimited separation types, a delimiter is used to separate data fields, but there
are no tags present. The data fields must be given in the correct order in the bit
stream and elements cannot be omitted from the middle of the bit stream.
“MRM TDS format: Data pattern separation types” on page 1237
For a data pattern separation type, each data value is matched with a regular
expression that is specified as a property of each element.
“MRM TDS format: Message model integrity” on page 1239
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.

Chapter 9. Developing message flow applications 1231

Related tasks:
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.
Related reference:
“TDS message model integrity” on page 6295
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. These rules are checked whenever the
project is saved.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: Delimited separation types:

For delimited separation types, a delimiter is used to separate data fields, but there
are no tags present. The data fields must be given in the correct order in the bit
stream and elements cannot be omitted from the middle of the bit stream.

The All Elements Delimited separation type means that data fields are delimited by
a pre-specified character or string. In this example, four data fields are separated
by an asterisk (*) delimiter:
data1*data2*data3*data4

Delimited separation types are restrictive in the ordering and presence of elements:
v The elements must be given in the order specified.
v No element can be omitted in the middle of a group or complex type, because

the parser cannot determine this from the resulting bit stream.
v Elements can sometimes be absent from the end of a complex type or group.

After considering “Delimiter suppression and truncation rules,” this topic describes
the following delimited separation types:
v “All Elements Delimited” on page 1233
v “Variable Length Elements Delimited” on page 1234

Delimiter suppression and truncation rules:

v Elements cannot be omitted from the middle of a group or complex type. An
absent element results in the inclusion of a zero-length string.
For example, with all elements present, the string might be:
data1*data2*data3*data4

where Delimiter is *
If data2 is missing, the string would read:
data1**data3*data4

1232 WebSphere Message Broker Version 7.0.0.8

v It is possible to suppress the delimiters at the end of a string for absent
elements. The Suppress Absent Element Delimiter property determines whether
this is done. If this property is set to End of Type, this can be done (with one
exception, shown later in this section).
In this case, for the example with data3 and data4 missing, the string would
read:
data1*data2

That is, the delimiters have been suppressed from the end of this group or
complex type.

v If the Suppress Absent Element Delimiter property is set to Never, delimiter
suppression never takes place. The string would read:
data1*data2**

That is, the delimiters must be present to indicate absent (zero-length) elements.
An exception to the above rule occurs in the case where the same delimiters are
used at multiple levels in the model.
For example, you have a complex type or group with delimiter * and this
contains an element of another complex type (indicated by the element3 prefix
on data fields in the following example), which also has delimiter *. If both
types use a delimited separation type, with all elements present, you might
have:
data1*data2*element3Data1*element3Data2*element3Data3*data4

If element3Data2 and element3Data3 are missing, and the delimiters are
suppressed, it is not possible for the parser to determine which elements are
missing.
Therefore, in this case, you must override the Suppress Absent Element
Delimiter property, and write out all the delimiters to clearly define the message
to the parser. Therefore, the string must be:
data1*data2*element3Data1***data4

This restriction also applies where Group Indicators and Group Terminators use
the same character strings as delimiters; otherwise, the bit stream is not clear to
the parser.

All Elements Delimited: In an All Elements Delimited separation type, all elements
are separated by a delimiter; for example:
data1*data2*data3*data4*data5

where Delimiter is *.

An All Elements Delimited separation type does not use tags or their associated
parameters.

For textual elements, the length is determined by the delimiter, and the Length
property is ignored unless the Observe Element Length property is set.

For non-textual elements, the length is determined by the Physical Type of the
element. See “MRM TDS format: Determining the length of simple data values” on
page 1224.

Applicable properties: These properties are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.

Chapter 9. Developing message flow applications 1233

v Delimiter indicates the separator between the data elements within a group or
complex type.

v Suppress Absent Element Delimiters indicates whether delimiter suppression is
permitted.

For example:
{data1*data22222*data3}

where:
v Group Indicator is {
v Group Terminator is }
v Delimiter is *

Repeating element rules: If an element must be repeated when the separation type
is All Elements Delimited, the Repeating Element Delimiter (RED), is used to
separate the repeated elements.

For example if data2 repeats five times:
data1*data2:data2:data2:data2:data2*data3*data4

where:
v Delimiter is *
v Repeating Element Delimiter is:

If the Suppress Absent Element Delimiters property is set to End of Type, you can
use delimiter suppression. Therefore, if only the first data2 element was present in
the previous example, the bit stream reads:
data1*data2*data3*data4

However, if the Suppress Absent Element Delimiters property is set to Never, the
bit stream reads:
data1*data2::::*data3*data4

If Delimiter and RED match, two delimiters are output to indicate that the repeat is
ending. Therefore, if the delimiter and RED are *, the bit stream reads:
data1*data2**data3*data4

Variable Length Elements Delimited: In a complex type with Variable Length
Elements Delimited separation, some elements are determined by their length, and
other elements are delimited. This combination of a delimited and a fixed-length
format follows rules that are associated with both formats. Lengths can be given
and used, but they are not mandatory.
v If a length is present for a textual element, it is used, and a delimiter is not

needed to terminate that element. The element must be padded to the correct
length, and cannot exceed that length.

v If no length is given for a textual element, the delimiter is required.
v For non-textual elements, the length is determined by the Physical Type of the

element. See “MRM TDS format: Determining the length of simple data values”
on page 1224.

1234 WebSphere Message Broker Version 7.0.0.8

A complex type with Variable Length Elements Delimited separation that contains
only variable length elements resembles a complex type with All Elements
Delimited separation. If it contains only fixed-length elements, it resembles a Fixed
Length type.

For example:
data1*data2*data3*data4000data5

where:
v Delimiter is *
v data4 has a length of 8

Applicable properties: The following properties are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.
v Delimiter indicates the separator between the data elements within a group or

complex type.
v Suppress Absent Element Delimiters indicates whether delimiter suppression is

permitted.
v (Optionally) Length or Length Reference indicates the length of a textual

element. If a textual element has a length, this length is used. Because the length
of this element is known, it is not necessary to output a delimiter after it. If the
length is not known, a delimiter is required. A delimiter is never required for a
non-textual element.

In this example, the fourth field (containing data4) is of fixed length 8 and its
padding character is 0:
{data1*data22222*data3*data4000data5}

where:
v Group Indicator is {
v Group Terminator is }
v Delimiter is *

Repeating element rules: The action of a repeating element in a Variable Length
Elements Delimited environment is dependent on the minimum and maximum
number of repeats and whether the element has a length.

Delimited Element Repeating: If a delimited element (that is, an element with no
length) is repeated, a Repeating Element Delimiter (RED) is required and the rules
for All Elements Delimited are followed. A delimiter is therefore required after the
last repeat. Delimiter suppression of this repeat can also occur.

For example, if data2 is repeating:
data1*data2:data2:data2:data2:data2:data2*data3*data4000data5

where:
v Delimiter is *
v Repeating Element Delimiter is :
v data4 has a fixed length of 8

Chapter 9. Developing message flow applications 1235

If the Suppress Absent Element Delimiters field is set to End of Type, you can use
delimiter suppression.

If in the above example only the first data2 is present:
data1*data2*data3*data4000data5

However, if Suppress Absent Element Delimiters is set to Never, the bit stream
reads:
data1*data2:::::*data3*data4000data5

If the delimiter and RED match, two delimiters are output to indicate that the repeat
is ending. So if the delimiter and RED are both *, the bit stream reads:
data1*data2**data3*data4

This also applies for a non-fixed length complex type or group inside a Variable
Length Elements Delimited environment.

Fixed Length Element Repeating: If an element with a defined length (a fixed-length
element) is repeating and the minimum occurrences is not the same as maximum
occurrences, an RED is not required, but a delimiter is required after the last repeat.
Delimiter suppression of this repeat can occur.

For example, if data4 (with a fixed length of 8) is repeating, and its minimum
occurrences is 2, maximum occurrences is 4:
data1*data2*data3*data400data400data400data400*data5

where Delimiter is *

Or, if there are only two occurrences of data4:
data1*data2*data3*data4000data4000*data5

If an element with a defined length (a fixed-length element) is repeated, and the
minimum occurrences is the same as maximum occurrences, an RED is not required.
A delimiter is also not required after the last repeat. Truncation of this repeat
cannot occur and all elements need to be present.

For example, if data4 (with a fixed length of 8) repeats four times:
data1*data2*data3*data4000data4000data4000data4000data5

where Delimiter is *

Or, if there are only two occurrences of data4:
data1*data2*data3*data4000data40000000000000000000data5

This also applies for a non-fixed length complex type or group inside a Variable
Length Elements Delimited environment.

If a complex type has Variable Length Elements Delimited separation, a delimiter
is always output between an included ('child') complex element and the next
element even if the separation of the 'child' complex element is Fixed Length. On
input, the parser accepts the bit stream with or without such a delimiter.
Related concepts:
“MRM TDS format: Data element separation” on page 1225
Data element separation defines how a TDS message is to be parsed.

1236 WebSphere Message Broker Version 7.0.0.8

“MRM TDS format: Tagged separation types” on page 1228
For tagged separation types, each data value is preceded by a tag that is specified
as an element property.
“MRM TDS format: Delimited separation types” on page 1232
For delimited separation types, a delimiter is used to separate data fields, but there
are no tags present. The data fields must be given in the correct order in the bit
stream and elements cannot be omitted from the middle of the bit stream.
“MRM TDS format: Data pattern separation types”
For a data pattern separation type, each data value is matched with a regular
expression that is specified as a property of each element.
“MRM TDS format: Message model integrity” on page 1239
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.
Related tasks:
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.
Related reference:
“TDS message model integrity” on page 6295
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. These rules are checked whenever the
project is saved.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: Data pattern separation types:

For a data pattern separation type, each data value is matched with a regular
expression that is specified as a property of each element.

The length of both textual and non-textual data is determined by the Data Pattern
property of the element. If the Physical Type of the element is Length Encoded
String 1 or Length Encoded String 2, the regular expression must match both the
encoded length and the following data. The length in the encoded length must be
consistent with the length matched by the regular expression. If the Physical Type
of the element is Null Terminated String, the regular expression must match both
the data and the following null terminator.

The Data Pattern separation type uses a regular expression that is specified for
each element to match the data. The parser matches the data with the regular
expression in the Data Pattern property for that element. TDS parsing in the MRM
parser uses the regular expression in Data Pattern to determine the length of the
element, whether it is repeating, and whether it is present in the bit stream.

No delimiters or tags, other than those coded as part of the regular expression
pattern, are used in the bit stream. See “Using regular expressions to parse data
elements” on page 6301 for an explanation of pattern matching.

Chapter 9. Developing message flow applications 1237

For example, if the first three Data Pattern properties are, respectively:
v [A-Z]{1,3}
v [0-9]+
v [a-z]*

and the message data is:
DT31758934information for you

Then, in this example:
v First data element = DT
v Second data element = 31758934
v Third data element = information

The first data pattern means "from one to three characters in the range A to Z", the
second means "one or more characters in the range 0 to 9", and the third means
"zero or more characters in the range a to z". Note how each element's data was
terminated by the first character that did not match the element's Data Pattern.

If the TDS message that is being parsed is encoded in a single-byte code page, the
Data Pattern property can include hexadecimal values. A hexidecimal value is
specified as \xNN, where N is a hexadecimal digit in the range 0 to F. Note,
however, that the value \x00 is not valid.

Performance issues

The parsing required in Data Pattern separation type is the slowest of all the
different separation types because of its complexity.

Therefore, use Data Pattern separation type only when no other separation type
models the message. Do not use it, for example, when you can use Fixed Length
separation type.

Applicable parameters: Only one parameter is used:

Data Pattern for each element, indicates the regular expression that is used for
string matching.
Related concepts:
“MRM TDS format: Data element separation” on page 1225
Data element separation defines how a TDS message is to be parsed.
“MRM TDS format: Fixed-length separation types” on page 1227
For fixed-length separation types, each data value is a fixed length.
“MRM TDS format: Tagged separation types” on page 1228
For tagged separation types, each data value is preceded by a tag that is specified
as an element property.
“MRM TDS format: Delimited separation types” on page 1232
For delimited separation types, a delimiter is used to separate data fields, but there
are no tags present. The data fields must be given in the correct order in the bit
stream and elements cannot be omitted from the middle of the bit stream.
“MRM TDS format: Message model integrity” on page 1239
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.
Related tasks:

1238 WebSphere Message Broker Version 7.0.0.8

“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.
Related reference:
“TDS message model integrity” on page 6295
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. These rules are checked whenever the
project is saved.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: Message model integrity:

When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.

Rules of TDS physical format properties: Restrictions to message formats are checked.
These restrictions follow the rules specified in “TDS message model integrity” on
page 6295. Most rules are applied for at least one of these reasons:

Rules for message definition
Some rules are necessary for the message to be defined.

For example, in a Fixed Length separation type all elements must have
some length defined, either directly or by using a Length Reference.
Without this information, it is impossible to tell in the message bit stream
where one data element ends and the next starts.

Rules for nesting
Nesting rules relate to which separation types can be nested inside each
other.

Such rules are applied when an element of a complex type is present
inside another complex type. An example is that it is not possible to have a
Tagged Delimited separation type inside a Fixed Length type. Because a
Tagged Delimited separation type is of variable length, the parent Fixed
Length type would be unable to tell where that particular element ended,
as there would be no length provided. Therefore the message could not be
processed.

Rules linking to the logical model
There are also rules linking TDS to the logical model.

These rules occur where a group composition or group content validation
cannot be used with a particular separation type. Again this is for message
integrity. For example, a separation type of All Elements Delimited cannot
have a group composition of Open, as there is no information as to what
the extra elements represent and where they are in the bit stream.

Related Concepts

Chapter 9. Developing message flow applications 1239

“MRM TDS format: Data element separation” on page 1225
Data element separation defines how a TDS message is to be parsed.
“MRM TDS format: NULL handling”
NULL handling dictates the way in which the MRM parser for TDS messages
handles elements that have been set to Null.
“MRM TDS format: Multipart messages” on page 1241
The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.
“MRM TDS format: Data conversion” on page 1242
TDS string data is subject only to CCSID conversion.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such
as group composition and group content validation.
Related Tasks

“Configuring logical properties: Message sets” on page 2846
Configure the logical properties of a message set using the Message Set editor.
“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message
set using the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.
Related Reference

“TDS message model integrity” on page 6295
When you use the TDS wire format, you must conform to a number of rules
that apply to the setting of values of properties. These rules are checked
whenever the project is saved.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: NULL handling:

NULL handling dictates the way in which the MRM parser for TDS messages
handles elements that have been set to Null.

Null handling takes place only if the logical Nillable property of the element is set.
The rules for whether nulls are permitted are described in “TDS Null handling
options” on page 6293.

Null properties: The element properties Encoding Null and Encoding Null Value
control how null handling is represented for individual elements.

You can select the Encoding Null property from the enumerated values
NULLPadFill, NULLLogicalValue, NULLLiteralValue, and NULLLiteralFill. The use
of the Encoding Null Value property is dependent on the value that you select for
the Encoding Null property.

NULL values are not defined for schema xsd:hexBinary simple types. The
properties Encoding Null and Encoding Null Value are therefore not set for
xsd:hexBinary types.

1240 WebSphere Message Broker Version 7.0.0.8

NULL values for schema Boolean simple types are defined at the message set level.
The message set property Boolean Null Representation specifies the value to be
used for Boolean Null representation.
Related concepts:
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Data element separation” on page 1225
Data element separation defines how a TDS message is to be parsed.
“MRM TDS format: Message model integrity” on page 1239
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.
“MRM TDS format: Multipart messages”
The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.
“MRM TDS format: Data conversion” on page 1242
TDS string data is subject only to CCSID conversion.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.
Related reference:
“TDS Null handling options” on page 6293
TDS supports the handling of null values within messages, provided that the
logical Nillable property of the element is set.
“TDS message model integrity” on page 6295
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. These rules are checked whenever the
project is saved.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: Multipart messages:

The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.

The SWIFT, X12, and EDIFACT messaging standards can all be modeled by using
the Message Identity technique.
Related concepts:

Chapter 9. Developing message flow applications 1241

“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Identifying an embedded message by using a Message Identity” on page 1193
You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.
“Identifying an embedded message by using a Message Path” on page 1196
The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.
Related tasks:
“Creating a multipart message” on page 2919
A multipart message occurs when you embed a message in another message.
“Accessing embedded messages in the MRM domain” on page 2594
If you have defined a multipart message, you have at least one message embedded
within another. Within the overall complex type that represents the outer messages,
you can model the inner message in two ways.
Related reference:
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

MRM TDS format: Data conversion:

TDS string data is subject only to CCSID conversion.

All TDS message data apart from binary types are handled as strings. All string
data is therefore subject to CCSID conversion only. This includes the special
characters used as delimiters, data separators, and so on\.
Related concepts:
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Data element separation” on page 1225
Data element separation defines how a TDS message is to be parsed.
“MRM TDS format: Message model integrity” on page 1239
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.
“MRM TDS format: NULL handling” on page 1240
NULL handling dictates the way in which the MRM parser for TDS messages
handles elements that have been set to Null.
“MRM TDS format: Multipart messages” on page 1241
The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.

1242 WebSphere Message Broker Version 7.0.0.8

“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
“Configuring TDS properties: Message model objects” on page 2914
You can configure the Tagged/Delimited String (TDS) properties of a message
model object.
Related reference:
“CWF data conversion” on page 6255
You can convert an MRM message to a different code page or encoding, or both.

MRM TDS format: Relationship to the logical model:

TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.

The rules that govern these options are explained in “Restrictions for nesting
complex types” on page 6298.

These rules exist to ensure the integrity of the message. A combination of
separation type and group composition or group content validation must not lead
to a message that is unclear to a TDS parser.

Default values

In TDS, Default values are only observed by fixed-length elements:

Separation Type Use of Default values

Tagged Delimited
Tagged Fixed Length
Tagged Encoded Length
All Elements Delimited
Data Pattern

Default values are never observed.

Fixed Length
Fixed Length AL3

Default values are observed on output by all elements.
An absent element that has no Default value defined,
causes an error on writing.

Variable Length Elements Delimited Default values are only observed by fixed-length
elements on output. Absent fixed-length values must
have a Default value available to them. An absent
element that has no Default value defined, causes an
error on writing.

Simple types – lists and unions

Lists and unions are XML-specific concepts. An element or attribute of a simple
type that is a list or a union causes a task list warning if a TDS physical format is
present in the message set. The user can choose whether to make this an error,
warning, or information by editing the Validation preferences. If a dictionary is
generated from the message set, and an attempt is made to parse a TDS message
defined to contain such elements or attributes, a runtime error occurs.

Chapter 9. Developing message flow applications 1243

Min Occurs and Max Occurs

The logical properties Min Occurs and Max Occurs specify the permitted number of
occurrences of an element or group in a message. They are used when parsing and
writing messages, and when validating the content of a message.

When parsing and writing, the exact interpretation of these properties depends on
the Data Element Separation property of the parent complex type or group as
shown in the following table.

However, this behavior is overridden if the TDS Repeat Reference property is set,
which indicates that the number of occurrences is given instead by an integer
element that occurs earlier in the message. See “Repeat reference” on page 1245 for
more information.

When validating, Min Occurs and Max Occurs are both used to check that the
content of the message tree matches the model.

Separation type Interpretation of Min Occurs and Max Occurs

Tagged Delimited
Tagged Fixed Length
Tagged Encoded Length

Min Occurs and Max Occurs are effectively ignored when parsing and writing. When
parsing, the number of occurrences is identified by the tags in the message. When
writing, the writer outputs all occurrences in the message tree.

v A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.

v Optional occurrence (Min Occurs = 0) is allowed.

v Always absent (Max Occurs = 0) is allowed.

v An unbounded number of occurrences (Max Occurs = -1) is allowed.

All Elements Delimited Max Occurs is used only when parsing and writing, with the element's Repeating
Element Delimiter property, and the parent type's Suppress Absent Element
Delimiters property.

A varying number of occurrences (Min Occurs <> Max Occurs) is allowed if Suppress
Absent Element Delimiters is set to End of Type.

v If the Delimiter is different from the Repeating Element Delimiter, the Delimiter
signifies the end of the occurrences.

v If the Delimiter is the same as the Repeating Element Delimiter, an empty repeat
signifies the end of the occurrences.

v In both these cases, Max Occurs is the maximum number of repeats that are
expected.

If Suppress Absent Element Delimiters is Never, all occurrences are expected when
parsing, and produced when writing, although parsing accepts elements being absent.

Optional occurrence (Min Occurs = 0) is ignored and a delimiter is still expected when
parsing, and produced when writing.

Always absent (Max Occurs = 0) is allowed. No delimiter is expected when parsing,
nor output when writing.

An unbounded number of occurrences (Max Occurs = -1) is only allowed if the
Repeating Element Delimiter is different from the Delimiter. The repeats must be
terminated by the delimiter, or a containing group's Group Terminator or Delimiter,
or by the end of the message bit stream. On writing, the writer outputs all
occurrences in the message tree.

1244 WebSphere Message Broker Version 7.0.0.8

Separation type Interpretation of Min Occurs and Max Occurs

Fixed Length
Fixed Length AL3

Max Occurs is used only when parsing and writing. In general, Max Occurs
occurrences are expected when parsing, and Max Occurs occurrences are produced
when writing; default values are used for missing elements, and any excess elements
are discarded.

A varying number of occurrences (Min Occurs <> Max Occurs) is ignored, Max Occurs
is assumed.

Optional occurrence (Min Occurs = 0) is ignored, Max Occurs is assumed.

Always absent (Max Occurs = 0) is allowed.

Fixed Length only. An unbounded number of occurrences (Max Occurs = -1) is
allowed if the element or group is the last child in its parent group, and the group is
terminated by a Group Terminator or a containing group's Group Terminator or
Delimiter or by the end of the message bit stream. On writing, the writer outputs all
occurrences in the message tree, if this number is less than Min Occurs, additional
default values are written.

Variable Length Elements
Delimited

For fixed length simple elements, the rules for Fixed Length separation above are
followed with two differences.

1. A varying number of occurrences (Min Occurs <> Max Occurs) is allowed, the end
of the occurrences being signified by an extra delimiter.

2. An unbounded number of occurrences (Max Occurs = -1) is allowed, the end of the
occurrences being signified by an extra delimiter. On writing, the writer outputs
all occurrences in the message tree, followed by an extra delimiter.

For variable length simple elements, all complex elements and groups, the rules for
All Elements Delimited above are followed.

Data Pattern Min Occurs and Max Occurs are effectively ignored when parsing and writing. When
parsing, the pattern is matched as many times as possible. When writing, the writer
outputs all occurrences in the message tree. Note that on parsing, if the data pattern
permits a zero length match, and a zero length match occurs, an element is added to
the message tree, and the matching terminates to prevent an infinite loop.

A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.

Optional occurrence (Min Occurs = 0) is allowed. Always absent (Max Occurs = 0) is
allowed.

An unbounded number of occurrences (Max Occurs = -1) is allowed.

Repeat reference

The TDS property Repeat reference specifies a field that holds the number of
repeats of an object (Element or Group) within a message. The field that holds the
number of repeats must be within the message before the object that it refers to.

From a parsing perspective, the Repeat reference property replaces the role of the
minOccurs and maxOccurs properties.

If a value for the Repeat reference property is specified for an object, values that
are specified for minOccurs and maxOccurs are ignored when parsing and writing.
However, values that are specified for minOccurs and maxOccurs are used by logical
validation.

Chapter 9. Developing message flow applications 1245

When parsing and writing, the exact interpretation of the Repeat reference
property depends on the Data Element Separation property of the parent complex
type or group as shown in the following table.

Separation type Interpretation of Repeat reference

Tagged Delimited
Tagged Fixed Length
Tagged Encoded Length

Repeat reference is effectively ignored when parsing and writing. When parsing, the
number of occurrences is identified by the tags in the message. When writing, the
writer outputs all occurrences in the message tree.

All Elements Delimited Repeat reference is used when parsing and writing, with the element's Repeating
Element Delimiter property, and the parent type's Suppress Absent Element
Delimiters property.

A Repeat reference is allowed only if the parent complex type or group has Suppress
Absent Element Delimiters set to Never. All Repeat reference occurrences are
expected when parsing, and produced when writing. However, parsing accepts
elements being absent.

Repeat reference = 0 is allowed. No delimiter is expected when parsing, nor
produced when writing.

Fixed Length
Fixed Length AL3

Repeat reference is used when parsing and writing. Repeat reference occurrences
are expected when parsing, and are produced when writing, with default values used
for missing elements.

Repeat reference = 0 is allowed.

Variable Length Elements
Delimited

For fixed length simple elements, the rules for Fixed Length separation above are
followed.

For variable length simple elements, all complex elements and groups, the rules for
All Elements Delimited that are listed above are followed.

Data Pattern Repeat reference is effectively ignored when parsing and writing. When parsing, the
pattern is matched as many times as possible. When writing, the writer outputs all
occurrences in the message tree. Note that, on parsing, if the data pattern permits a
zero length match, and a zero length match occurs, an element is added to the
message tree, and the matching terminates to prevent an infinite loop.

Related concepts:
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Data element separation” on page 1225
Data element separation defines how a TDS message is to be parsed.
“MRM TDS format: Message model integrity” on page 1239
When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. This is necessary to avoid any
discrepancies when processing a message within the specified model.
“MRM TDS format: NULL handling” on page 1240
NULL handling dictates the way in which the MRM parser for TDS messages
handles elements that have been set to Null.
“MRM TDS format: Multipart messages” on page 1241
The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.
“MRM TDS format: Data conversion” on page 1242
TDS string data is subject only to CCSID conversion.
Related reference:

1246 WebSphere Message Broker Version 7.0.0.8

“Restrictions for nesting complex types” on page 6298
If you include a group within another group or complex type, the Data Element
Separation property for the nested group must be compatible with the Data
Element Separation property of the parent group or complex type.

MRM XML physical format:

The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.

An XML wire format describes the physical representation of a message that is
written according to the standards given in the W3C Extensible Markup Language
(XML) specification. The wire format defines information that is used to parse or
write XML messages in a runtime environment such as a broker. XML versions 1.0
and 1.1 are both supported.

You can add more than one XML physical format to a message set, but within that
message set, each physical format must have a unique name. The default name for
an XML wire format is XML1. The physical format name identifies the definitions
that are to be used by the broker at run time.

After adding an XML physical format, all XML properties for all existing objects in
the message set are set to default values. Therefore, immediately after adding the
format and deploying the message set to a runtime environment, you can process
XML messages by using MRM features.

You can configure XML properties for the message set, and for objects within the
message set. Objects that can have XML properties are messages, elements, and
attributes. For example, a message object can be customized to define a specific
DTD declaration on output; an element can have a tag name assigned to it which
is different from its element name in the model.

Adding an XML wire format to a message set allows you to both process input
messages, and to construct output messages in this format. You can also transform
messages between XML and either CWF or TDS.

XML messages are, by their nature, self-describing: each piece of data is prefixed
by a tag name or an attribute name. Therefore, it is possible for an XML message
instance to contain elements that are not in the definition for that message.
v If such an element exists in the message set, the model objects for that element

are used in parsing or writing the message.
v If the element does not exist in the message set, it is treated as a self-defining

element, and its data type is set to string.

Although it is possible to define an XML message 'by hand', using the Message
Definition Editor, WebSphere Message Broker also provides importers for both
XML Schema and DTD, and these are often quicker and easier than manual
definition.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.

Chapter 9. Developing message flow applications 1247

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Configuring XML Wire Format properties: Message model objects” on page 2916
You can configure the XML Wire Format properties of a message model object.
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
“Configuring XML Wire Format properties: Message sets” on page 2855
Configure the XML Wire Format properties of a message set using the Message Set
editor.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

MRM XML physical format: Message model integrity:

When you save a message definition file, the definitions that it contains are
checked to ensure that they make sense and provide sufficient information about
the message. This action is called model validation.

For XML, these checks mostly concern the uniqueness and validity of XML names
in global elements and attributes, and also for elements and attributes within
complex types or groups.

Tests other than these tend to be both simple and obvious so that, for example, the
message set property First Day of Week must be the name of a day in the week.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.

1248 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Configuring XML Wire Format properties: Message model objects” on page 2916
You can configure the XML Wire Format properties of a message model object.
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

MRM XML physical format: NULL handling:

The purpose of null handling is to specify how messages deal with null values;
that is, the absence of a meaningful value for an element.

Null properties for the MRM XML physical format are set for the message set only,
and apply to all the defined objects within the message set, by using the four
properties Encoding Null Num, Encoding Null Non-Num, Encoding Null Num Val and
Encoding Null Non-Num Val.

Null handling takes place only if the logical Nillable property of the element is set.

The purpose of these parameters is to specify how messages deal with null values.
In an XML message there are several options. Most obviously an element could
omit a value, for example:
<element1></element1>

Or, the element could include a distinctive value that means that no real value is
present, for example.
<element1>null</element1>

Or, the element could follow XML Schema instance rules:
<element1 xsi:nil="true"/>

The properties Encoding Null Num and Encoding Null Non-Num specify the style of
null handling, for example, that null is represented by an empty element.

The properties Encoding Null Num Val and Encoding Null Non-Num Val provide a
value (if needed) to represent a null value. For an element of type string, this
might be null or unspecified while for a number it might be 0 or 0.0.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.

Chapter 9. Developing message flow applications 1249

“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Configuring XML Wire Format properties: Message model objects” on page 2916
You can configure the XML Wire Format properties of a message model object.
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

MRM XML physical format: Multipart messages:

Identify embedded messages by using either a Message Identity or a Message
Path.

If you are using the MRM XML physical format, an embedded message can be
identified in any of the following ways:
v Message Identity

See “Identifying an embedded message by using a Message Identity” on page
1193.

v Message Path
See “Identifying an embedded message by using a Message Path” on page 1196.

v Automatic
The MRM parser identifies the message by matching the next XML tag in the bit
stream against the XML Name of a message definition.

If you choose the Message Identity or Message Path technique, the MRM parser
still checks that the next XML tag name matches the XML Name of the message
that was identified. If the XML Name does not match, an exception is thrown.

Where you have defined the embedded message in a different message set, you
must use a Message Set Identity element or attribute value to specify the target
message set. Note that the message sets within which the root and subsequent
embedded messages are defined must be consistent in their use of the 'Use
Namespace' property of the message set. That is, embedded messages that are
defined in a namespace-aware message set and that are contained within a parent
message that is defined in a message set that is not namespace-aware, are not
supported. Similarly, embedded messages that are defined in a message set that is
not namespace-aware and that are contained within a parent message that is
defined in a namespace-aware message set, are not supported.

If the embedded message definition is a complex type, the message definition
contains a complex element based on that complex type. This complex element has

1250 WebSphere Message Broker Version 7.0.0.8

its own tag, which appears in the bit stream before the tag for the embedded
message. If you want to avoid this extra tag, you can create the embedded message
definition from a group, and insert the group at the appropriate position in the
message model.

Tip: Note that the root tag property of an embedded message is not applicable.
Related concepts:
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Identifying an embedded message by using a Message Identity” on page 1193
You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.
“Identifying an embedded message by using a Message Path” on page 1196
The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.
Related tasks:
“Creating a multipart message” on page 2919
A multipart message occurs when you embed a message in another message.
“Accessing embedded messages in the MRM domain” on page 2594
If you have defined a multipart message, you have at least one message embedded
within another. Within the overall complex type that represents the outer messages,
you can model the inner message in two ways.

MRM XML physical format: Relationship to the logical model:

The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

These restrictions are documented in “MRM restrictions” on page 6252.

Default values

The MRM XML physical format ignores default and fixed values on elements and
attributes. If validation is enabled in WebSphere Message Broker, this can lead to
unexpected validation errors for missing elements, even though they have default
or fixed values.

Simple types – unions and lists

The XML properties of an element or attribute of a simple type that is a union or
list vary depending on the members of the union or the itemType of the list. If the
union or list includes a dateTime type (or other date/time related type) the Date
Format field is displayed. If the union includes a binary type, the Encoding field is
displayed.

Min Occurs and Max Occurs

The logical properties Min Occurs and Max Occurs specify the permitted number of
occurrences of an element or group in a message. They are used when validating
the content of a message.

Chapter 9. Developing message flow applications 1251

When parsing and writing, using the MRM XML physical format, Min Occurs and
Max Occurs are effectively ignored. When parsing, the number of occurrences is
identified by the tags in the message. When writing, the writer outputs all
occurrences in the message tree.
v A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.
v Optional occurrence (Min Occurs = 0) is allowed.
v Always absent (Max Occurs = 0) is allowed
v An unbounded number of occurrences (Max Occurs = -1) is allowed.

When validating, Min Occurs and Max Occurs are both used to check that the
content of the message tree matches the model.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related reference:
“MRM restrictions” on page 6252
The MRM parser does not exactly follow the XML Schema 1.0 specification.

MRM XML physical format: Handling xsi:type attributes:

The prefix "xsi" is the namespace prefix used by convention for the XML Schema
instance namespace. XML documents can contain elements that have an xsi:type
attribute. This behavior provides an explicit data type for the element.

The MRM XML parser in sensitive to xsi:type attributes in the XML document. It
modifies the data type of the element accordingly and adds the xsi:type attribute
into the message tree.

The MRM XML writer is sensitive to xsi:type attributes in the message tree. It
produces xsi:type attributes according to XML Wire Format message set property
Output policy for xsi:type attributes. For example, xsi:type attributes can be
removed, output on all elements or output according to rules specified in the
SOAP standard.

If validation is enabled for a WebSphere Message Broker message flow, the
validation logic is sensitive to xsi:type attributes and uses them to modify the
validation of the element. It also validates the values of xsi:type attributes by using
the rules described in XML Schema Part 1: Structures on the World Wide Web
Consortium (W3C) website.

There are several important points to remember when parsing and writing XML
documents that contain xsi:type attributes.
v In order to detect and use xsi:type attributes, the message set must be

namespace-enabled. To make a message set namespace-enabled, check the
message set property Use namespaces.

v If the value of the xsi:type attribute contains a namespace prefix, the prefix is
expanded into a fully qualified URI by the MRM XML parser. If the same
xsi:type attribute is produced later by the MRM XML writer, the same prefix is

1252 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-1/

not automatically used for the value. You can control the prefixes used on
output by using the Namespace settings list in the XML Wire Format message
set properties. If no prefix is supplied, the XML writer assigns a default prefix.

v If the xsi:type attribute of an element does not resolve to a type in the model,
the behavior depends on whether MRM validation is enabled. If not validating,
the MRM assumes that the type of the element is that declared in the model,
and continue. If validating, a validation exception occurs.

v If MRM validation is enabled, any required xsi:type attributes must be present in
the message tree at the point when validation is performed. An xsi:type attribute
is required when its value is different from the data type of the element as
defined in the message model (this most commonly occurs when using XML
Schema type derivation).
– If validation is being performed on an input message, the MRM XML parser

ensures that xsi:type attributes appear in the message tree, as described
above.

– If validation is being performed on an output message, you must ensure that
the correct xsi:type attributes appear in the message tree. Ensure that any
required xsi:type attributes are copied from input message tree to output
message tree, or are explicitly created in the output message tree.

v If you are using simple types that are xsd:unions, an xsi:type attribute can be
used to direct the MRM XML parser when resolving the union.

v If you have migrated from an earlier version of WebSphere Message Broker that
was not sensitive to xsi:type attributes, you might notice some changes of
behavior. For example, xsi:type attributes are no longer treated as self-defining
attributes, so they appear in the message tree with the name ‘type' instead of
‘@type'. If your message flow logic is sensitive to xsi:type attributes in the
message tree, change your message flow to comply with the current behavior.

For more information about xsi:type attributes, see XML Schema Part 0: Primer on
the World Wide Web Consortium (W3C) website.
Related concepts:
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
Related reference:
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.

Ways to create message definitions
When you have created a message set, you must populate the message set with
message definitions.

You can populate the message set in one of the following ways:
v By importing application message formats that are described by XML Schemas,

IBM supplied messages, XML DTD, C structures, COBOL structures, SCA
imports or exports, or WSDL definitions; use the wizards that are started from
the New Message Definition File From wizard.

v By creating empty message definition files, then creating your messages by
using the Message Definition Editor; use the New Message Definition File
wizard.

v By using the Adapter Connection wizard to import EIS metadata.

Chapter 9. Developing message flow applications 1253

http://www.w3.org/TR/xmlschema-0/

Additionally, you can import application message formats by using the
mqsicreatemsgdefs or mqsicreatemsgdefsfromwsdl command line utilities.

The mqsicreatemsgdefs command has a bulk import capability, but
mqsicreatemsgdefsfromwsdl imports only one WSDL definition at a time.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Importing from other model representations to create message definitions”
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Working with data structures” on page 2930
You can create a message definition file in a message set by importing from XML
Schema, XML DTD, SCA import or export components, IBM supplied messages,
WSDL definitions, IDL files, C header files, and COBOL copybooks. This topic area
describes how to import from these data structures using the command line or the
WebSphere Message Broker Toolkit.
Related reference:
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“mqsicreatemsgdefsfromwsdl command” on page 3712
Use the mqsicreatemsgdefsfromwsdl command to import a single WSDL definition.

Importing from other model representations to create message definitions:

You can add message definitions to your message set by importing application
message formats that already exist.

You can import the following message formats to create message sets:
v XML Schema files
v IBM supplied messages
v XML DTD files
v C header files
v COBOL copybooks
v WSDL definitions
v SCA imports or exports
v EIS metadata

1254 WebSphere Message Broker Version 7.0.0.8

When you import one of these formats, a new message model is created that
consists of the elements, attributes, groups, and types that are required to represent
your message format. You can choose the name of the message model; if it already
exists, the content is deleted and re-created as part of the import operation.

The new message model that is created can consist of both logical and physical
information.

To find out which wizards to use to import message formats, see “Ways to create
message definitions” on page 1253.

You can also import C header files, COBOL copybooks, XML DTD files, or XML
Schema files by using the mqsicreatemsgdefs command-line utility. The
mqsicreatemsgdefs command allows you to import several middle-format files in a
single operation, and allows you to create a message set (based on an existing
message set) into which the message definition files are placed.

WSDL definitions can be imported by using the mqsicreatemsgdefsfromwsdl
command-line utility. This utility imports only one WSDL definition at a time.

Client application access to messages

Client applications must have access to message definitions to be able to construct
the messages that they send, and to interpret the messages that they receive.
v If the message formats have been imported from C or COBOL structures by

using the WebSphere Message Broker Toolkit, your applications can continue to
use the same C and COBOL data structures that were imported to create the
message dictionary that is used by the brokers.

v If the messages are self-defining XML, the client applications must construct
valid messages by using the structures that can be understood by the recipients
of the message.

Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Importing from C header files to create message definitions” on page 1263
Create a message definition file from a C header file for use in the MRM and
IDOC domains.
“Importing from COBOL copybooks to create message definitions” on page 1265
You can populate your message set with message definitions by importing COBOL
copybook files, by using either the "New Message Definition File From COBOL
file" wizard or the mqsicreatemsgdefs command.
“Importing WSDL files to create message definitions” on page 1267
Import WSDL files by using the New Message Definition File From WSDL file
wizard, the Start from WSDL and/or XSD files Quick Start wizard, or the
mqsicreatemsgdefsfromwsdl command.

Chapter 9. Developing message flow applications 1255

“Importing from IBM supplied messages to create message definitions” on page
1261
You can add messages to a message set by using the New Message Definition File
From IBM supplied messages wizard to import IBM supplied messages.
“Message sets: Importing from DTDs to create message definitions” on page 1261
You can populate a message set with message definitions by importing DTD files,
by using either the New Message Definition File From XML DTD file wizard or the
mqsicreatemsgdefs command.
“Importing from XML Schemas to create message definitions”
You can populate a message set with message definitions by importing XML
Schema files, by using the New Message Definition File From XML Schema file
wizard, the Start from WSDL and/or XSD files quick start wizard, or the
mqsicreatemsgdefs command-line utility.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing from C” on page 2934
Create a message definition file from a C header file for use in the MRM and
IDOC domains.
“Importing from COBOL copybooks” on page 2937
This topic describes how to create a new message definition from a COBOL data
structure using the New Message Definition File wizard in the WebSphere Message
Broker Toolkit.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Importing from IBM supplied messages” on page 2942
You can create a new message definition file from an IBM supplied message.
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.

Importing from XML Schemas to create message definitions:

You can populate a message set with message definitions by importing XML
Schema files, by using the New Message Definition File From XML Schema file
wizard, the Start from WSDL and/or XSD files quick start wizard, or the
mqsicreatemsgdefs command-line utility.

Each XML Schema file that you import results in a new message definition file
within the message set. The root name of the message definition file defaults to the
root name of the XML Schema file, but the New Message Definition File From
XML Schema file wizard allows you to choose a different root file name.

If the message definition file already exists, you must have enabled overwriting to
occur for the import to proceed, in which case the existing content is deleted and
re-created.

1256 WebSphere Message Broker Version 7.0.0.8

The namespace to which the message definition file created belongs depends on
whether namespaces have been enabled for the message set.
v If namespaces have been enabled, the message definition file belongs to the

target namespace of the XML Schema file that is imported.
v If namespaces have not been enabled for the message set, the message definition

file belongs to the noTarget XML namespace irrespective of the target namespace
of the imported XML Schema file and therefore is contained in the (default)
location in your workspace. The implications of importing into a message set
with namespaces disabled are described in “Importing XML Schema into
message sets with namespaces disabled” on page 1259.

A report file is created during the import operation. This is located by default in
the log folder of the message set. By default it takes the name of the message
definition file, with .report.txt appended.

Import by using the New Message Definition File From XML Schema file wizard: When
you import by using the New Message Definition File From XML Schema file
wizard, you can specify which of the global elements or global complex types
within the imported XML Schema file are to be messages within the message
definition file.

You can import only one XML Schema file with each import operation. If your
XML Schema file references other XML Schema files, with import or include
elements, these XML Schema files must be imported into the same message set by
using a separate import operation.

Import by using the command-line: When you import by using the command line
you have the option of either creating no messages or creating a message for each
global element and global complex type within the imported XML Schema file. The
import operation creates a message and corresponding global element in the
message definition file for each global element you specify. If you do not specify
that messages are to be created, you must create them manually using the message
definition editor after the import has completed.

You can import several XML Schema files in each import operation.

Physical information: In addition to creating logical information, the import can
also create physical information. If the message set contains any XML wire format
physical formats, the physical format properties for all XML Wire Format layers is
populated. If the message set does not contain any XML physical formats, only
logical information is created. Also, if you import from the command line, only
logical information is created in the new message set by default. If you want
physical information created as well, see “Importing from the command line” on
page 2936 for details.

MRM CWF and TDS physical format properties are not populated and so take
default values.

If you have one or more CWF or TDS layers, the import can cause entries in the
task list, warning you that certain CWF or TDS properties must be set if the XML
structures you have imported are to appear in a CWF or TDS message.

If the CWF or TDS physical formats are not applicable to your XML structures, you
can ignore these task list entries because they are just warnings, they do not
prevent your model being generated in another form; for example, as a message
dictionary.

Chapter 9. Developing message flow applications 1257

Command-line invocation: The mqsicreatemsgdefs command-line utility allows you
to import several XML Schema files in a single operation. All the XML Schema files
must be in single directory, and the directory location must be passed as a
parameter to the utility.

When you import into a message set for which namespaces are not enabled, the
action to take for unsupported constructs can be specified by using an XML
options file. This must contain an XML element called <XSD_NO_NS> that holds a set
of information that applies to all XML Schema files that are imported during an
invocation of the utility. A default XML options file, called mqsicreatemsgdefs.xml,
is supplied. If you want to apply different sets of information to different XML
Schema files, you must create multiple XML files and run the utility multiple
times.

When you are importing into a message set for which namespaces are not enabled,
there are two other options that you can specify in the <XSD_NO_NS> element in the
XML options file:
v The prefix to use for the http://www.w3.org/2001/XMLSchema-instance

namespace; the default is xsi.
v Additional namespace URI and prefix pairs.

The mqsicreatemsgdefs utility also allows you to create a message set into which
the message definition files are placed, as part of the import operation. You can
also choose to base the message set created on an existing message set. This facility
enables you to prepare an empty message set that contains an XML physical
format and pre-populated message set level XML properties, which are then copied
into the message set that is created by the import.

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) website.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Importing XML Schema into message sets with namespaces disabled” on page
1259
You can import an XML Schema file with a target namespace even if the message
set does not have namespaces enabled.
“Quick Start wizards overview” on page 1409
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to
containers for the resources that you need when you develop a message flow.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.

1258 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.
“Creating an application based on WSDL or XSD files” on page 1413
You can use existing WSDL or XSD files as the basis for your solution.
Related reference:
“XML Schema Importer” on page 5370
Preferences for the message set XML Schema Importer.
“Importing from XML Schema: unsupported features” on page 6359
A number of features in XML Schema are not supported, or their support is
restricted in some way.
“XSD options file for the mqsicreatemsgdefs command” on page 3709
Specify the options for the mqsicreatemsgdefs command when you import an XML
Schema file.

Importing XML Schema into message sets with namespaces disabled:

You can import an XML Schema file with a target namespace even if the message
set does not have namespaces enabled.

When you import an XML Schema file with a target namespace into a message set
for which namespaces have not been enabled, the created message definition file is
placed in the XML no target namespace. In some cases, this action can lead to
name conflicts if global constructs have the same name in different namespaces in
the XML Schema files imported into the same message set. These conflicts cause
error entries in the task list that you must resolve before generating the model in
another format, such as a message dictionary.

Because all the message definition files are in the XML no target namespace, the
namespace information associated with the XML Schema file is lost. However, the
importer provides a limited form of namespace support by prefixing the XML
names in the XML Wire Format layers with a namespace prefix. To allow this
namespace support to work, an imported XML Schema file must specify an xmlns
attribute with a non-empty prefix for the target namespace of the XML Schema file.
This prefix is used in the XML names in the XML Wire Format layers.

Therefore you cannot specify the target namespace of the XML file as the default
namespace. Each namespace in the XML Schema files must use a unique prefix
and the same namespace must always use the same prefix. Any XML instance
documents against which you match any of the forms generated from the model,
must also use the same prefixes for the namespaces.

The XML Schema importer creates a number of optional attributes in an attribute
group to represent namespace information. This attribute group is referenced by
the type of any message. An attribute is created to represent the location of the
XML Schema file, and an attribute is created to represent the mapping of the prefix

Chapter 9. Developing message flow applications 1259

to the http://www.w3.org/2001/XMLSchema-instance namespace. An attribute is
also created for each xmlns attribute in the XML Schema document.

When importing using the Message Definition File wizard the prefix
http://www.w3.org/2001/XMLSchema-instance namespace can be changed and
additional namespace URI/prefix pairs added using the last panel of the Message
Definition File wizard. When you use the mqsicreatemsgdefs command line utility,
the same modifications can be made using the XML options file.

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Related Concepts

“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups
which make up a message model within a message set.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Importing XML Schema into message sets with namespaces disabled” on page
1259
You can import an XML Schema file with a target namespace even if the
message set does not have namespaces enabled.
Related Tasks

“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model
objects.
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere
Message Broker Toolkit to create a new message definition from an XML
Schema
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.
Related References

“XML Schema Importer” on page 5370
Preferences for the message set XML Schema Importer.
“Importing from XML Schema: unsupported features” on page 6359
A number of features in XML Schema are not supported, or their support is
restricted in some way.
“XSD options file for the mqsicreatemsgdefs command” on page 3709
Specify the options for the mqsicreatemsgdefs command when you import an
XML Schema file.

1260 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

Importing from IBM supplied messages to create message definitions:

You can add messages to a message set by using the New Message Definition File
From IBM supplied messages wizard to import IBM supplied messages.

Each IBM supplied message that you import results in a new message definition
file in the message set. The name of the message definition file defaults to the
name of the IBM supplied message, but you can use the New Message Definition
File From IBM supplied messages wizard to choose a different file name.

For information about what IBM supplied messages can be imported, see
“Importing from the command line” on page 2936.

When you import message by using the New Message Definition File From IBM
supplied messages wizard, you can specify only one IBM supplied message
definition for each import operation.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and re-created.

A report file is generated during the import operation that allows you to examine
what occurred during the import process and check any errors that resulted.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.

Message sets: Importing from DTDs to create message definitions:

You can populate a message set with message definitions by importing DTD files,
by using either the New Message Definition File From XML DTD file wizard or the
mqsicreatemsgdefs command.

Each XML DTD file that you import results in a new message definition file within
the message set. The root name of the message definition file defaults to the root
name of the XML DTD file, but the New Message Definition File From XML DTD
file wizard allows you to choose a different root file name.

If the message definition file exists, you must have permitted overwriting to occur
for the import to proceed, in which case the existing content is deleted and
re-created.

All message definition files that are created as a result of DTD file import belong
to the noTarget XML namespace and so are contained in the (default) location in
your workspace.

Chapter 9. Developing message flow applications 1261

A report file is created during the import operation, by default in the log folder of
the message set. By default, it takes the name of the message definition file, with
.report.txt appended.

Import by using the New Message Definition File From XML DTD file wizard: When
you import by using the "New Message Definition File From XML DTD file"
wizard, you can specify which of the elements within the imported XML DTD file
are to be messages within the message definition file.

You can import only one XML DTD file with each import operation.

Import by using the command line: When you import by using the command line
you have the option of either creating no messages or creating a message for each
element within the imported XML DTD file. The import operation creates a
message and a corresponding element in the message definition file for each
element that you specify. If you do not specify that messages are to be created, you
must create them manually using the message definition editor after the import
has completed.

You can import several XML DTD files in each import operation.

Physical information: In addition to creating logical information, the import can
also create physical information. If the message set contains any XML wire format
physical formats, the physical format properties for all XML Wire Format layers is
populated. If the message set does not contain any XML physical formats, only
logical information is created. Also, if you import from the command line, only
logical information is created in the new message set by default. If you want
physical information created as well, see “Importing from the command line” on
page 2936 for details.

MRM CWF and TDS physical format properties are not populated and therefore
take default values.

If you have one or more CWF or TDS layers, the import can cause entries in the
task list, warning you that certain CWF or TDS properties must be set if the XML
structures that you have imported are to appear in a CWF or TDS message.

If the CWF or TDS physical formats are not applicable to your XML structures, you
can ignore these task list entries because they are just warnings; they do not
prevent your model being generated in another form, such as a message dictionary.

Command-line invocation: The mqsicreatemsgdefs command-line utility allows you
to import several XML DTD files in a single operation. All the XML DTD files
must be in single directory, and the directory location must be passed as a
parameter to the utility.

The mqsicreatemsgdefs utility also allows you to create a message set into which
the message definition files are placed, as part of the import operation. You can
also choose to base the message set created on an existing message set. This facility
enables you to prepare an empty message set that contains an XML physical
format and pre-populated message set level XML properties, which are then copied
into the message set that is created by the import.

Further information about XML DTDs: For details about XML DTDs, see the World
Wide Web Consortium (W3C) website.
Related concepts:

1262 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/
http://www.w3.org/

“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Importing from C header files to create message definitions:

Create a message definition file from a C header file for use in the MRM and
IDOC domains.

You can populate your message set with message definitions by importing C
header files, by using either the New Message Definition File From C header file
wizard or the mqsicreatemsgdefs command.

Each C header file that you import results in a new message definition file. The
root name of the message definition file defaults to the root name of the C header
file, but the "New Message Definition File From C header file" wizard allows you
to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and re-created.

By default, all message definition files that are created as a result of an import
from a C header file belong to the noTarget XML namespace and therefore reside
in the (default) location in your workspace. This default namespace can be
overridden by specifying a target namespace. See “Namespaces with non-XML
messages” on page 1206 for reasons why you might want to do this.

In your C header file there are typically one or more C structures. You can select
which of these structures to import. The import operation then imports those
structures, plus any others that they require. All imported structures are converted
into the equivalent elements, groups, and types in the message definition file.

Chapter 9. Developing message flow applications 1263

You can also specify which of the selected structures are to be messages in the
message definition file. The import operation creates a message and a
corresponding global element in the message definition file for each structure that
you specify. If you do not specify that messages are to be created, you must create
them manually using the Message Definition editor after the import has
completed.

If you import by using the "New Message Definition File From C header file"
wizard you can import only one C header file with each import operation. But, if
you import by using the command-line utility, you can import several C header
files in each import operation.

If your C header file needs any other header files for a successful compilation, you
must provide these and specify their location, because a compilation of your
header file is performed as part of the import operation.

A report file is created during the import operation. This is located by default in
the log folder of the message set. By default, it takes the name of the message
definition file, with .report.txt appended.

Physical information: In addition to creating logical information, the import can
also create physical information.

If the message set contains any Custom Wire Format (CWF) physical formats, the
physical format properties for all CWF layers are populated.

If the message set does not contain any CWF physical formats, only logical
information is created. Also, if you import from the command line, only logical
information is created in the new message set by default.

XML and TDS physical format properties are not populated and so take default
values.

If you have one or more TDS layers, the import can cause entries in the task list,
warning you that certain TDS properties must be set if the C structures you have
imported were to appear in a TDS message.

If the TDS physical format is not applicable to your C structures, you can ignore
these task list entries because they are just warnings; they do not prevent your
model being generated in another form, such as a message dictionary.

Because physical information is created, the application target environment
(platform and compiler) is important because it governs the way that, for example,
integers appear in the message. You can specify environment-specific information
as part of the import operation, and the necessary properties are set accordingly.
There is a range of environments supported; if your environment is not shown,
choose the closest match and review the created physical information by using the
Message Definition Editor after the import has completed.

Command-line invocation: The mqsicreatemsgdefs command-line utility allows you
to import several C header files in a single operation. All the C header files must
be placed in the same directory and the directory location passed as a parameter to
the utility.

You provide the necessary environment-specific information, and include file
location information by using an XML file. This must contain an XML element

1264 WebSphere Message Broker Version 7.0.0.8

called <C> which holds one set of information that applies to all C header files
imported during an invocation of the utility. A default XML file called
mqsicreatemsgdefs.xml is supplied. If you want to apply different sets of
information to different header files, you must create multiple XML files and run
the utility multiple times.

The mqsicreatemsgdefs utility also allows you to create message set into which the
message definition files are placed, as part of the import operation. You can also
choose to base this new message set on an existing message set. This facility
enables you to prepare an empty message set containing a CWF physical format
and message set level CWF properties already populated, which then gets copied
into the message set created by the import.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Importing from COBOL copybooks to create message definitions”
You can populate your message set with message definitions by importing COBOL
copybook files, by using either the "New Message Definition File From COBOL
file" wizard or the mqsicreatemsgdefs command.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing from C” on page 2934
Create a message definition file from a C header file for use in the MRM and
IDOC domains.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Importing from COBOL copybooks to create message definitions:

You can populate your message set with message definitions by importing COBOL
copybook files, by using either the "New Message Definition File From COBOL
file" wizard or the mqsicreatemsgdefs command.

Each COBOL copybook that you import results in a new message definition file.
The root name of the message definition file defaults to the root name of the
COBOL copybook file, but the "New Message Definition File From COBOL file"
wizard allows you to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and re-created.

By default, all message definition files that are created as a result of COBOL
copybook file import belong to the noTarget XML namespace and therefore reside
in the (default) location in your workspace. This default namespace can be

Chapter 9. Developing message flow applications 1265

overridden by specifying a target namespace. See “Namespaces with non-XML
messages” on page 1206 for reasons why you might want to do this.

In your COBOL copybook file there are typically one or more level 01 structures.
You can select which of these structures to import. The import operation then
imports those structures, plus any others that they require. All imported structures
are converted into the equivalent elements, groups, and types in the message
definition file.

You can also specify which of the selected level 01 structures are to be messages in
the message definition file. The import operation creates a message and
corresponding global element in the message definition file for each structure that
you specify. If you do not specify that messages are to be created, you must create
them manually using the Message Definition Editor after the import has
completed.

If you import by using the "New Message Definition File From COBOL file"
wizard, you can import only one COBOL copybook file with each import
operation. If you use the command-line utility, you can import several COBOL
copybook files in each import operation.

If your COBOL copybook file needs any other copybooks in order to compile
successfully, you must provide these in the same directory, because a compilation
of your copybook is performed as part of the import operation.

A report file is created during the import operation. This is located by default in
the log folder of the message set. By default it takes the name of the message
definition file, with .report.txt appended.

The copybook must not contain field names that are COBOL reserved keywords.

Physical information: In addition to creating logical information, the import can
also create physical information. If the message set contains any Custom Wire
Format (CWF) physical formats, the physical format properties for all CWF layers
are populated. If the message set does not contain any CWF physical formats, only
logical information is created. If you import from the command line, only logical
information is created in the new message set by default. If you want physical
information created as well, see “Importing from the command line” on page 2936
for details.

XML and TDS physical format properties are not populated and therefore take
default values.

If you have one or more TDS layers, the import can cause entries in the task list,
warning you that certain TDS properties must be set if the COBOL structures that
you have imported were to appear in a TDS message.

If the TDS physical format is not applicable to your COBOL structures, you can
ignore these task list entries because they are just warnings, they do not prevent
your model being generated in another form, such as a message dictionary.

Because physical information is created, the application target environment
(platform and compiler) is important because it governs the way that, for example,
integers appear in the message. You can specify environment-specific information
as part of the import operation, and the necessary properties are set accordingly.
There is a range of environments supported; if your environment is not shown,

1266 WebSphere Message Broker Version 7.0.0.8

choose the closest match and review the created physical information by using the
Message Definition Editor after the import has completed.

Command-line invocation: The mqsicreatemsgdefs command-line utility allows you
to import several COBOL files in a single operation. All the COBOL copybook files
must be in single directory, and the directory location passed as a parameter to the
utility.

You provide the necessary environment-specific information by using an XML file.
This must contain an XML element called <COBOL> that holds one set of
environment-specific information that applies to all COBOL copybook files that are
imported during an invocation of the utility. A default XML file called
mqsicreatemsgdefs.xml is supplied. If you want to apply different sets of
information to different copybooks, you must create multiple XML files and run
the utility multiple times.

The mqsicreatemsgdefs utility also allows you to create message set into which the
message definition files are placed, as part of the import operation. You can also
choose to base the message set created on an existing message set. This facility
enables you to prepare an empty message set that contains a CWF physical format
and pre-populated message set level CWF properties, which are then copied into
the message set that is created by the import.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Importing from C header files to create message definitions” on page 1263
Create a message definition file from a C header file for use in the MRM and
IDOC domains.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing from COBOL copybooks” on page 2937
This topic describes how to create a new message definition from a COBOL data
structure using the New Message Definition File wizard in the WebSphere Message
Broker Toolkit.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Importing WSDL files to create message definitions:

Import WSDL files by using the New Message Definition File From WSDL file
wizard, the Start from WSDL and/or XSD files Quick Start wizard, or the
mqsicreatemsgdefsfromwsdl command.

Each WSDL file that you import results in one or more new message definition
files within the message set. A new message definition file is created for each

Chapter 9. Developing message flow applications 1267

namespace that is defined for the message set. The name of the message definition
file defaults to the name of the WSDL file, but the New Message Definition File
From WSDL file wizard allows you to choose a different file name.

If the message definition file exists, you must have permitted overwriting to occur
for the import to proceed. The existing content is deleted and re-created.

The message set that you are importing the WSDL file into must be
namespace-enabled. If it uses the MRM domain, it must have an XML physical
format so that the message set is suitable for the runtime parsing of XML messages
such as SOAP.

Use the report generated during the import operation to see what happened and to
check any errors.

You specify a single WSDL definition for each import operation. If the WSDL
definition consists of a hierarchy of files, you must supply the name of the file that
contains the WSDL service or binding definitions. The WSDL definition that is
imported must contain one or more WSDL bindings for the import to proceed. You
can then select multiple bindings from the WSDL definition to define messages to
model in the message set.

Importing by using the New Message Definition File wizard

When you import by using the New Message Definition File wizard, you can
specify only one WSDL definition for each import operation. A WSDL definition
can be held as one or more WSDL files, which are all imported as a result of
importing the definition. The WSDL definition that is imported must contain one
or more WSDL bindings for the import to proceed.

Importing by using the command line

The WSDL command-line importer (mqsicreatemsgdefsfromwsdl) can create a
message set or update an existing one. If the message set project exists, it must be
namespace-enabled and have an XML physical format layer. If the project does not
exist, a new namespace-enabled project is created. If the import succeeds, new
message definition files are added to the message set.

The mqsicreatemsgdefsfromwsdl command allows you to import one WSDL
definition in a single operation.

The mqsicreatemsgdefsfromwsdl command copies the WSDL files it needs into the
workspace before the import runs. These files are the top-level WSDL files and any
imports are resolved by using an absolute or relative location. The files are copied
under the specified message set in a folder called importFiles. They are not
removed after the import; the user can later update or run validation on them in
the WebSphere Message Broker Toolkit.

Physical information

An XML physical format layer is required for the MRM domain, and must be
added to an existing message set before importing the WSDL definition.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by

1268 WebSphere Message Broker Version 7.0.0.8

your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Importing WSDL definitions from the command line” on page 2948
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.
Related reference:
“Importing from WSDL: generated objects and restrictions” on page 6355
Several objects are generated when you import from WSDL but restrictions might
apply.

Relationship of WSDL to Message Model:

If a broker is to communicate with an existing Web service, it typically needs to
send and receive SOAP messages. To take this approach, use the MRM domain.
You must ensure that the broker message model and the WSDL definition used by
the Web service describe the same messages. In general, you can achieve this result
by importing the WSDL for the existing Web service by using the broker tooling.
Currently only WSDL version 1.1 is supported.

Only the WSDL operation, message, and part definitions are represented in the
resulting broker model. Starting with the lowest level, a WSDL definition describes
the following resources:
v A number of logical messages and their constituent parts, which are defined in

terms of XML Schema. The part definitions are imported directly into the
message model to create the corresponding element and type definitions. The
definitions are allocated to message definition files according to the target
namespace of their schema definition. If no targetNamespace is defined on the
<xsd:schema> element, the resulting elements and types have no namespace.

v A number of operations that form the WSDL portType or interface. The
operations define the business payload for the SOAP messages at run time.
Broker messages are created for each possible payload. In the case of rpc-style
WSDL, the message model needs message definitions that correspond to the
WSDL operations themselves. The names of these message definitions are
derived from the WSDL operation name, and their namespace is given by the
namespace attribute on the WSDL <soap:body> definition.

v A SOAP version and encoding style. Message definitions for the SOAP envelope
and, if necessary, the SOAP encoding scheme are imported into the message set.
Currently the WSDL importer assumes the use of SOAP version 1.1. WSDL
version 1.1 can define a Web service that uses SOAP version 1.2, but no standard
method exists to achieve this definition. If your Web service does use SOAP

Chapter 9. Developing message flow applications 1269

version 1.2, you might have to remove the SOAP version 1.1 definitions
manually and import the SOAP version 1.2 definitions.

Resulting message model

The resulting model allows the user to parse incoming SOAP messages by using
the MRM XML parser where the message type is Envelope. The message model for
the SOAP envelope defines the outer SOAP wrapper with its constituent Header
and Body sections and a number of attachment points where the various business
payloads can appear. These attachment points are defined with composition
message, allowing the broker messages that are created by the WSDL importer to
appear at these points.

The allowed attachment points are Envelope.Body, Envelope.Header, and
Envelope.Body.Fault.detail. A message from the user's message model might
appear at each point (in the case of the Envelope.Header, multiple messages might
appear). In the case of rpc-style WSDL, the message expected at Envelope.Body is
the automatically-generated message that corresponds to the WSDL operation. In
all other cases, the messages expected are those defined by the WSDL message
parts for each operation.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Importing WSDL definitions from the command line” on page 2948
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.

Generate model representations
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.

The following representations are supported:
v A message dictionary, for deployment to a broker.
v A W3C XML Schema, for use by an application building or processing XML

messages, or for deployment to a broker.
v Web Services Description Language (WSDL), for a Web services client

application, or for deployment to a broker.
v Documentation, to give to programmers or business analysts.

1270 WebSphere Message Broker Version 7.0.0.8

Generation for deployment to a broker takes place automatically when you add
your message set to a Broker Archive (BAR) file.

Generation for other purposes is achieved using the Generate menu actions.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Generate message dictionaries”
A message dictionary is data structure that describes all of the messages in a
message set in a form suitable for deployment to the MRM parser.
“Generate XML schema” on page 1272
You can generate a schema file from a message model.
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
“Generating message model documentation” on page 1277
When you have created one or more message models, it can be useful to generate
documentation for business analysis and for developers who are involved with the
messages.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Generating documentation from message sets and message flows” on page 2962
You can generate documentation from your message sets, message flows, message
definition files, message maps, Java files, ESQL files, and deployable WSDL files.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.

Generate message dictionaries:

A message dictionary is data structure that describes all of the messages in a
message set in a form suitable for deployment to the MRM parser.

Purpose of a message dictionary: A dictionary describes the logical structure and
content of a set of messages, and typically contains one or more physical formats
that describe how those messages are serialized in a bit stream. The MRM parser
within WebSphere Message Broker uses this information to parse an incoming
message bit stream into a message tree, or to write a message tree into a physical
bit stream.

Contents of a message dictionary: A message dictionary contains the same
information as the message set from which it was created, but in a compressed
form that the MRM parser within WebSphere Message Broker can understand and
use. A message dictionary contains all the elements in the message set, the
structure of the messages, and all the value constraints. A message dictionary also
contains any physical formats that were defined in the message set.

Chapter 9. Developing message flow applications 1271

Generating a message dictionary: Before a message dictionary can be used, it must
be deployed to WebSphere Message Broker. To do this, add the message set to a
BAR file, then deploy the BAR file to a broker. The generation of the message
dictionary is performed automatically when a message set is added to a BAR file,
if the message set supports the MRM domain.

Before adding a message set to a BAR file, the WebSphere Message Broker Toolkit
performs a full validation of the message set. If this validation finds any errors, the
message set is not added to the BAR file, and therefore no message dictionary is
generated.

Dictionary generation report files:

Whenever a message dictionary is generated, a user log file is also generated and
added to the same BAR file. This file contains informational messages and
warnings that relate to the use of the generated dictionary. Always check this file
after generating a message dictionary.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
Related tasks:
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.

Generate XML schema:

You can generate a schema file from a message model.

XML schema is a standard way of describing complex message models.

You can generate a schema file for an individual message definition file, or for all
message definition files in a message set. If any XML physical formats have been
defined for the message set, you can select which of these XML wire formats are to
be applied.

Generating from message sets: If any XML physical formats have been defined for
the message set, you can select which of these XML wire formats are to be applied.
v If an XML format has been selected, the physical format information is also

included.
v If no XML format is selected, the generated schema file contains information

about only the logical message model.

You can choose whether 'strict' or 'lax' schema generation is to be performed. This
is necessary because the logical extensions to the XML schema model provided by
the message definition file cannot be represented in XML schema. So you can
choose either to generate a schema with more strict or more lax validation than the
equivalent validation performed by the message model parser. The affected model
extensions are:

1272 WebSphere Message Broker Version 7.0.0.8

v Content Validation = open
v Content Validation = open defined
v Composition = unordered set

Further information about XML schema: For details about XML schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
Related tasks:
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
“Generating XML Schemas” on page 2963
You can generate either a single XML Schema from a message definition file, or
multiple XML Schemas from a message set.
“Generating multiple XML Schemas” on page 2963
You can generate an XML Schema for each message definition file in a message set.

Validating an XML message against a schema:

The XMLNSC parser can validate an XML message against any deployed XML
schema.

Before you begin

You can validate an XML message against an XML schema when the message is
parsed, when the message is serialized, or at any point within a message flow.

About this task

To construct a message flow for schema validation, you must perform the
following tasks:

Procedure

1. Enable validation at the appropriate point within the message flow. See
“Validating messages” on page 1478.

2. Ensure that you have deployed all XML Schema files that are required. See
“Deploying an XML Schema” on page 1274.

3. Specify the message set in which the schema was deployed; this is done using
the MessageSet property of the message. See “Accessing the Properties tree” on
page 2460.

Chapter 9. Developing message flow applications 1273

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

What to do next

Schemas are deployed within a message set, and are identified by supplying the
message set name in the message properties.
Related concepts:
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“Generate XML schema” on page 1272
You can generate a schema file from a message model.

Deploying an XML Schema:

XML Schemas are created as Message Definition Files within a message set that is
then deployed.

Before you begin

To create and deploy a message set for schema validation you must:

Procedure

1. Create or locate a message set that will contain the schemas.
2. Set the Message Domain property of the message set to XMLNSC.
3. Use the New Message Definition File wizard to create a message definition file

(mxsd) from the XML Schema file (.xsd).
4. Add the message set to a BAR file and deploy the BAR file.

What to do next

Repeat step 3 for each XML Schema file that you want to deploy.

If your XML Schema imports or includes other XML Schema files, you can use the
mqsicreatemsgdefs command to create all the message definition files in a single
operation.
Related concepts:
“Generate XML schema” on page 1272
You can generate a schema file from a message model.
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.

Generate WSDL:

A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.

Use message model files with target namespaces when you generate WSDL. If you
do not, WebSphere Message Broker uses the WSDL target namespace as the default
target namespace.

1274 WebSphere Message Broker Version 7.0.0.8

In the main WSDL document, operations are defined in terms of logical messages,
which are themselves defined in terms of the elements and types that are defined
in these message model files.

WSDL operations are grouped into a logical interface or portType, and are then
associated with a binding which defines the physical format of the messages. You
can select only one of the following bindings when you generate WSDL:
v SOAP (over JMS)
v SOAP (over HTTP)

A WSDL service definition specifies the endpoint where the service is available.
You can elect to have the service, binding, and portType definitions generated as a
single file or as separate files. Tools that use WSDL are typically more tolerant of
the single-file format. If you select single-file, you can also choose whether the
associated XML Schema is generated from the message model as a separate file or
in-line.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“Generate XML schema” on page 1272
You can generate a schema file from a message model.
Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.

Relationship to the message model when generating WSDL:

If a broker is to communicate with a Web service client, it must typically accept
SOAP messages. You can model your messages in the MRM domain, and the
message model you deploy to the broker and the WSDL definition used by the
Web service client must describe the same messages.

If the broker has an existing message model (possibly created by importing a C
header file or COBOL copybook), you can export the model to create a
corresponding WSDL definition for use by the client. At the same time, you must
enhance your message model with appropriate definitions for the SOAP envelope
and (for rpc-style) the WSDL operations. Currently only WSDL version 1.1 is
supported.

To generate WSDL, you need:
1. A way of representing the WSDL operations. The message category performs

this service.

Chapter 9. Developing message flow applications 1275

2. Away of representing the data for these operations. The message model
performs this service

3. A way of soliciting the Web service end-point and binding details. The WSDL
Generator wizard performs this service.

A message category is required for each WSDL operation. The category specifies a
set of messages from the broker model and associates them with the required
WSDL qualifiers for the specified WSDL operation type.

At run time, the format of the SOAP messages depends on the WSDL style
specified in the wizard. If you select rpc-style, the SOAP Envelope contains a
message that corresponds to a WSDL operation. The WSDL generator adds an
appropriate message definition that corresponds to the WSDL operation to your
message set. If you select document-style, the SOAP envelope contains messages
specified in the category, therefore you do not have to add additional message
definitions to your message set.

Message definitions for the SOAP envelope and, if necessary, the SOAP encoding
scheme, are imported into the message set.

Resulting message model

The resulting model allows incoming SOAP messages to be parsed by the MRM
XML parser, where the message type would be Envelope. The message model for
the SOAP envelope defines the outer SOAP wrapper with its constituent header
and body sections and a number of attachment points where the various business
payloads can appear. These attachment points are defined with composition of
type message, allowing broker messages to appear at these points.

The supported attachment points are Envelope.Body, Envelope.Header and
Envelope.Body.Fault.detail. A message from your message model might appear at
each point (in the case of the Envelope.Header, multiple messages can appear). For
rpc-style WSDL, the message expected at Envelope.Body is the automatically
generated message that corresponds to the WSDL operation; for example, the
message category. In all other cases, the messages expected are those referenced by
the message categories.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.

1276 WebSphere Message Broker Version 7.0.0.8

“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.

Generating message model documentation:

When you have created one or more message models, it can be useful to generate
documentation for business analysis and for developers who are involved with the
messages.

Message model schema files contain both logical and physical definitions for the
message model. The generated documentation describes the logical information
only.

The documentation exists as a PDF file.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Generate model representations” on page 1270
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.
Related tasks:
“Generating documentation from message sets and message flows” on page 2962
You can generate documentation from your message sets, message flows, message
definition files, message maps, Java files, ESQL files, and deployable WSDL files.

Message flow behavior
Message flow behavior is initially defined by the broker, but you can change or
add to that behavior in some situations.

When a message is received and processed by a message flow, the broker handles
both successful and failure processing. The default actions taken by the broker,
which are independent of the protocol you are using to exchange messages with
your message flows, are described in “Default message flow behavior” on page
1278.

If the default behavior does not meet your processing requirements in some way,
you can change some aspects of the behavior by tuning or reconfiguring your
message flows.
v Learn about the default behavior supported by the broker.
v Review the options that are available to you if you want to change the behavior.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address

Chapter 9. Developing message flow applications 1277

spaces, or as unique processes.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Default message flow behavior
The broker controls the behavior of your message flows, and defines what actions
are taken if you do not change that behavior.

The broker provides the following default actions for all messages that are
processed by your message flows:

The execution and threading model
When you deploy a message flow to an execution group, the broker
allocates a certain number of threads to that message flow. For further
information about how this processing works, see “Execution and
threading models in a message flow” on page 1279.

Error handling
When you configure your message flows to process messages, you can
include error processing of your own. The broker runs default processing if
an error occurs that you have not provided additional processing for; this
processing is independent of the protocol that you are using to
communicate with the broker. It is described in “Default error handling”
on page 1280.

Transactional support
The broker handles all messages individually, and does not relate an action
taken by the message flow to other actions, processes, or messages. A
message flow that is not configured to implement transactional support
succeeds or fails regardless of the outcome of interactions with or updates
to other resources such as WebSphere MQ queues and databases. Learn
more about transactional support in “Message flow transactions” on page
1281.

Data conversion
Different hardware platforms and operating systems operate in different
code pages. Operating system code pages are also affected by the locale in
which you operate. The broker does not allow for these differences unless
you change some aspects of its configuration. If you are exchanging
messages between unlike systems, you might have to update broker or
WebSphere MQ configuration, or design and supply your own conversion
procedures.

For information about how you can change the configuration of your broker, its
WebSphere MQ queue manager, and your message flows to influence these
behaviors, see “Changing message flow behavior” on page 1288.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

1278 WebSphere Message Broker Version 7.0.0.8

input message is received.
Related tasks:
“Changing message flow behavior” on page 1288
You can change the behavior taken by your message flows to process messages in
different ways and at different times.

Execution and threading models in a message flow:

The execution model is the system used to start message flows which process
messages through a series of nodes.

When an execution group is initialized, the appropriate loadable implementation
library (LIL) files and Plug-in Archive (PAR) files are made available to the
runtime environment. The execution group runtime process starts, and creates a
dedicated configuration thread.

The message flow execution environment is conceptually like procedural
programming. Nodes that you insert into a message flow are like subroutines that
are called by using a function call interface. However, rather than a call-return
interface, in which parameters are passed in the form of input message data, the
execution model is referred to as a propagation-and-return model.

In the message flow execution environment, the message flow is thread-safe. You
can run message flows concurrently on many operating system threads, without
having to consider serialization issues.

Each input message that passes through a message flow for processing by a series
of nodes executes on a single thread; it is processed only by the thread that
received it. If you want to increase the throughput of a message flow, you can
increase the number of threads that are assigned to that message flow. The
memory requirements of an execution group are not unduly affected by running
message flows on more operating system threads.

With a larger number of threads, the message flow can handle peak message loads.
At other times, the additional threads are idle.

You can increase or decrease the number of threads servicing a flow by using the
Additional instances property on the input node of the message flow.

Each instance of a message flow processing node is shared, and used by all the
threads that service the message flow in which the node is defined.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 9. Developing message flow applications 1279

“Message flow behavior” on page 1277
Message flow behavior is initially defined by the broker, but you can change or
add to that behavior in some situations.
“Message flow transactions” on page 1281
A transaction describes a set of updates that are made by an application program,
which must be managed together. The updates might be made to one or more
systems. The updates made by the program are controlled by the environment in
which the program executes, and either all are completed, or none. This property
of a transaction is known as consistency: transactions might have other properties of
atomicity, isolation, and durability.
“Threading considerations for user-defined extensions” on page 2978
Message processing nodes and parsers must work in a multi-instance,
multithreaded environment. Many node objects or parser objects are available, each
with several syntax elements, and many threads can be executing methods on
these objects.
“User-defined extensions execution model” on page 2981
The execution model is the system used to start message flows through a series of
nodes.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.

Default error handling:

The broker provides basic error handling for all your message flows.

When an exception is detected within a node, the message and the exception
information are propagated to the Failure terminal on the node. If the node does
not have a Failure terminal, or it is not connected, the broker throws an exception
and returns control to the closest upstream node that can process it. The default
behavior is that the message is returned to the input node.

The actions taken by the input node are protocol-dependent; if your message flow
starts with an MQInput, its error handling is different from the error handling
provided by a FileInput node.

The actions also depend on whether you have configured the message flow to be
transactional. Some nodes support transactions; others are non-transactional. If the
message is not being processed in a transaction, the message is discarded by the
input node. If the flow is transactional, the message is returned to its source; for
example, it is restored on the WebSphere MQ queue.

If basic error processing is not sufficient, and you want to take specific action in
response to certain error conditions and situations, you can enhance your message
flows to provide your own error handling. For example, you can add in a sequence
of nodes to deal with one or more errors that you might expect to occur in your
flow. You can also configure your flow to handle unexpected errors (exceptions).
For more details about the actions that you can take, see “Handling errors in
message flows” on page 2823.
Related tasks:

1280 WebSphere Message Broker Version 7.0.0.8

“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Message flow transactions:

A transaction describes a set of updates that are made by an application program,
which must be managed together. The updates might be made to one or more
systems. The updates made by the program are controlled by the environment in
which the program executes, and either all are completed, or none. This property
of a transaction is known as consistency: transactions might have other properties of
atomicity, isolation, and durability.

WebSphere Message Broker supports transactions, and every piece of data
processed by a message flow has an associated transaction. A message flow
transaction is started by the broker when input data is received at an input node in
the flow; it is committed when the flow has finished with that message, or rolled
back if an error occurs.

If the flow contains more than one input node, one transaction is started for each
input node when it receives input data. A transaction is started for every type of
input node, including user-defined input nodes.

The nodes that you include in your message flow provide specific processing of a
message, according to the defined function of each node. The processing that they
do includes internal work, some of which you can influence by configuring the
node properties. Some nodes perform additional tasks that might affect systems
that are external to the message flow or the broker.

If an external system, such as a database, supports that concept of commit and
rollback, and it can take part in a broker transaction, you can configure the node so
that the work it does is included in the flow transaction. Depending on the node,
you can also specify if the work done in an external system that supports
transactions is committed immediately, or when the message flow transaction
completes.

Many of the resources with which your message flows can interact are controlled
by resource managers that can participate in coordinated transactions; for example,
databases, WebSphere MQ messages and queues, and JMS messages. Other
resource managers do not provide transactional support; for example, the HTTP
protocol and file systems.

Commit or rollback

If the resource can participate in a transaction, you can configure it so that the
work it does is committed or rolled back only when the message flow completes,
or when the node completes. Databases and WebSphere MQ queues are examples
of resources that you can use in this way. If the resource does not have
transactional behavior, all the work that it does is committed immediately. For
example, files and HTTP connections do not support transactions.

Chapter 9. Developing message flow applications 1281

Updates that are made by a message flow are committed when the flow processes
the input message successfully. The updates are rolled back if both of the following
conditions are met:
v A node in the flow throws an exception that is not caught by a node other than

the input node (for example, the node itself, or a TryCatch node)
v The Catch terminal of the input node is not connected

On distributed systems, message flow transactions are managed by the broker, by
default. These transactions are known as broker-coordinated transactions or partially
coordinated transactions. When control returns to the input node when the flow
finishes processing, the node either commits or rolls back the operations that have
been taken, excluding the individual nodes that have been configured to perform
their own commits and rollbacks, or that have no support for this option.

If more than one resource is accessed by the message flow, an error might occur
that prevents all the resources committing all the work that has been done. The
broker raises an exception, and handles exception processing in a way that is
determined by the transport that is involved. For example, messages that were
read from WebSphere MQ queues are restored to those queues, and fault messages
are sent to applications that submitted a message across HTTP (because HTTP has
no concept of rollback). Because of these actions, the status of the resources might
become inconsistent.

If it is important that your data and operations remain consistent, and that all
operations are committed, or rolled back if one or more operations fail, you can
coordinate the activity of the message flow. Coordination is provided by an
external transaction manager which uses XA protocols to interact with resource
managers. The transaction manager is called by the input node when the message
flow has concluded (successfully or with errors). The transaction manager, rather
than the input node and the broker, interacts with the relevant resource managers
to initiate the correct actions for each resource. Transactions that are controlled by a
transaction manager in this way are known as globally coordinated transactions.

On z/OS, transactions are always globally coordinated; you do not have to choose
or configure for this option.

For a more detailed description of the transaction model in the broker, see “The
transactional model” on page 1285.

The role of the transaction manager

The result of the actions taken by message flows is the same for both partially and
globally coordinated transactions if the message flow is successful in all its actions.
The advantage of a globally coordinated transaction is the ability to ensure that
either all actions are committed, or none.

The external transaction manager, which operates a two-phase commit strategy,
supports cases where one or more external resource managers are temporarily
unavailable during commit processing. This potentially small window for failure
might be costly for your business environment; the external transaction manager
helps to eliminate the occurrence of a failure window. Therefore, the decision to
include an external transaction manager, which involves a performance overhead,
is an administrative decision, not one to be taken at message flow design time.

1282 WebSphere Message Broker Version 7.0.0.8

An external transaction manager does not prevent message loss; even if you use
transaction coordination, you must configure and code your message flows to
handle potential errors as much as you can.

To configure a message flow to be globally coordinated, you must also set up your
environment so that your resource managers are defined to the supported
transaction manager:
v On distributed systems, transactions can be coordinated by WebSphere MQ
v On z/OS, all transactions are globally coordinated by Resource Recovery Service

(RRS)

This configuration might require you to change settings in the transaction manager
as well as the participating resource managers.

Database access modes and locks

You must use separate ODBC connections if you want to include nodes with
Automatic transaction status and nodes with Commit transaction status in the
same message flow, where the nodes operate on the same external database. Set up
one connection for the nodes that are not to commit until the completion of the
message flow, and a second connection for the nodes that are to commit
immediately.
v If nodes with Commit transaction status are followed by a node with Automatic

transaction status, the nodes with Commit transaction status commit
independently of the flow transaction, and the nodes with Automatic transaction
status commit at the end of the flow.

v However, if nodes with Automatic transaction status are followed by a node
with Commit transaction status, and you do not use separate ODBC connections,
error message BIP4001 is issued, because otherwise the node with Commit
transaction status commits the work of the Automatic nodes prematurely.

Linux

UNIX

Windows

On systems other than z/OS, individual relational

databases might not support this mode of operation.

If you define more than one ODBC connection to the same data source, you might
get database locking problems. In particular, if a node with Automatic transaction
status carries out an operation, such as an INSERT or an UPDATE, that causes a
database object (such as a table) to be locked, and a subsequent node tries to access
that database object by using a different ODBC connection, an infinite lock
(deadlock) occurs.

The second node waits for the lock acquired by the first to be released, but the first
node does commit its operations and release its lock until the message flow
completes. However, the flow cannot complete because the second node is waiting
for the database lock held by the first node to be released.

Such a situation cannot be detected by a DBMS automatic deadlock-avoidance
routine because the two operations are interfering with each other indirectly by
using the broker.

You can use either of two options to avoid this type of locking problem:
v Design your message flow so that uncommitted (automatic) operations do not

lock database objects that subsequent operations access across a different ODBC
connection.

Chapter 9. Developing message flow applications 1283

v Configure the lock timeout parameter of your database so that an attempt to
acquire a lock fails after a specified length of time. If a database operation fails
because of a lock timeout, an exception is thrown that the broker handles in the
typical way.

For information concerning which database objects are locked by particular
operations, and how to configure the lock timeout parameter of your database,
consult your database product documentation.

Example of transactions in message flows

The following sample demonstrates the use of globally coordinated transactions,
and the differences in the message flow when database updates are coordinated
(the main flow), and when they are not (the error flow).
v Error Handler

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Database connections for coordinated message flows” on page 4235
When you configure a message flow to access a database, the broker establishes a
connection to that database based on the ODBC DSN.
“Database support for coordinated message flows” on page 4236
If the message flow processing includes interaction with an external database, you
can coordinate the transaction by using XA technology.

1284 WebSphere Message Broker Version 7.0.0.8

The transactional model:

The transactional model describes the way in which you can use transactions in
message flows to accomplish certain tasks and results.

A message flow consists of the following constituent parts:
v An input source
v The message flow or logic, which is defined by a sequence of nodes
v Zero or more external resources that are accessed during the flow
v Zero or more output targets

The following steps represent a typical sequence of events in the message flow
transaction:
1. A message is taken from the input source; for example, a queue.
2. Data is read from or written to one or more external resources; for example, a

database.
3. A message is sent to an output target; for example, a queue.
4. The system quiesces and waits for the next input message.

During this sequence of events, the state of the data in the system changes,
regardless of the number of external resources that the message flow accesses, and
whether it generates an output message.

Consider the following diagram:
-----x---------x---x-------x-------------x----x-----

1 2 3 4 5 6

The line represents the data in the system as time passes. At time 1, a message
arrives and is taken from the input source. At times 2, 3, 4, and 5, data is used to
update external resources; for example, a database table or an output queue.
Changes in the state of the data are indicated in the diagram by the x symbol. At
time 6, the output messages are sent and the system is inactive. Between these
events, the state of the data does not change; this state is indicated in the diagram
by the = symbol.

If a failure occurs on the system (for example, a loss of power to the computer on
which the broker is running), the changes to the state of external resources that
were made before the failure have been implemented, but no more changes take
place after the failure. This situation is unacceptable in certain circumstances; for
example, if a system failure occurs when making a payment from a current
account to a mortgage account, the payment might be taken from the current
account, but it is not added to the mortgage account.

Transactions: To avoid the problem that is described previously, the broker and the
external resource managers with which it works, have a transactional model. The
broker starts a transaction when data is received by an input node in the message
flow, and completes when the processing on that data is finished. For more details
about message flow transactions, see “Message flow transactions” on page 1281.

As processing proceeds in a transaction, additional data is recorded that allows the
original state to be restored in the event of a failure. The following diagram
illustrates the state of this extra data:
-----x=========x===x=======x=============x====x-----

1 2 3 4 5 6

Chapter 9. Developing message flow applications 1285

The line in the diagram represents the extra data in the system as time passes. At
time 1, input data arrives from the input source; for example, a queue. Before time
1, no extra data exists in the system; this state is indicated in the diagram by the -
symbol. After time 1, the state represents the fact that data has been received from
the input source, so that it can be restored, if necessary. At times 2, 3, 4, and 5, data
is used to update external resources such as databases or files. Again, the state of
the extra data changes so that the changes to those external resources can be
undone, if necessary. At time 6, the output messages are sent, the system is
inactive, and extra data in the system no longer exists.

Between these events, the state of the extra data does not change; this state is
indicated by the = symbol. If a failure occurs between time 1 and time 6, the extra
data is used to restore the original state of the data held by the external resources.
Therefore, effectively, no output data has been written to the output target, none of
the external resources have been updated, and the input data has not been
received from the input source. If no failure occurs, the changes become permanent
at time 6 (an undo operation that follows a subsequent failure will not undo the
changes).

This mode of operation is known as coordinated transaction mode. The successful
completion of a transaction is known as its commit. Unsuccessful completion is
known as rollback.

Uncoordinated auxiliary transactions: The key feature of the coordinated transaction
mode of operation is that, regardless of where or when the failure appears, either
all of the changes to external resources that are associated with one input message
are made, or none of the changes are made. However, this behavior is not always
suitable, as the following examples illustrate:
v You want to create an audit log of all attempts at processing. The log entries

must be committed, even when updates to other resources are rolled back.
v You want to send an acknowledgment or non-acknowledgment message back to

the originator of the messages that you are processing, according to whether the
message processing succeeds or fails. These messages must be sent even when
the updates to other resources are rolled back.

If your message flows have requirements like these, you can configure message
flows to change one or more resources in a separate, or auxiliary, transaction. Not
all resource managers support this type of transaction.

For some resources, an auxiliary transaction is automatically started; for example,
each database connection starts a transaction that is specific to that database, and
all updates made in that transaction can be committed or rolled back.

The behavior of an auxiliary transaction is shown in the following diagram:
MAIN -----x=========x===x=======x=============x====x-----

1 2 4 5 8 9

1st AUX --------------x======x========x------
3 6 7

The MAIN line represents the main transaction, which includes the extra data that
is recorded to restore the original state if necessary. The 1st AUX line represents an
auxiliary transaction. At time 3, an external resource is updated, and another
update is made at time 6. At time 7, the message flow determines that all the
changes that must be made under the auxiliary transaction are complete, and it
commits the changes.

1286 WebSphere Message Broker Version 7.0.0.8

If the message flow fails before time 7, the state of the system would be unchanged
because both transactions would be rolled back. If failure occurs after time 7 but
before time 9, the auxiliary transaction would already have been committed.
However, the main transaction would be rolled back. If a failure has not occurred
by time 9, both transactions are committed.

Database auxiliary transactions: You can use more than one auxiliary transaction,
and make a number of updates to database tables that can be committed or rolled
back. You can then make additional changes to the same database tables, or to
different tables, then commit or rollback these changes.

Each database that you use has its own auxiliary transaction; therefore, if the
message flow updates tables that belong to different database instances (different
data source names), an auxiliary transaction exists for each database. You can
optionally commit or roll back these auxiliary transactions individually. Updates
that have not been committed or rolled back when the message flow completes (at
time 9 in the example shown previously) are committed or rolled back
automatically by the broker, according to whether the processing succeeded or
failed.

Use the ESQL COMMIT and ROLLBACK statements to commit and roll back
auxiliary database transactions. Obtain operations outside the main transaction by
specifying the UNCOORDINATED keyword on the individual database statements
(for example, the INSERT and UPDATE statements).

Queue auxiliary transactions: Not all queuing systems have the database capability
that is described in the previous section. With WebSphere MQ, each individual
uncoordinated read or write operation to a queue has an implied commit action.
Therefore, you cannot put two messages, then decide to commit both or roll back
both. The COMMIT and ROLLBACK statements therefore operate only on
databases.

Nodes: The previous sections refer to message flows, but not to nodes. The way in
which a message flow is divided into nodes has no effect on transactions. For
operations on databases, an unlimited number of nodes can make updates to the
main transaction, and to an unlimited number of auxiliary transactions, without
restriction.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow transactions” on page 1281
A transaction describes a set of updates that are made by an application program,
which must be managed together. The updates might be made to one or more
systems. The updates made by the program are controlled by the environment in
which the program executes, and either all are completed, or none. This property
of a transaction is known as consistency: transactions might have other properties of
atomicity, isolation, and durability.
Related tasks:
“Configuring databases for global coordination of transactions” on page 665
If your message flow interacts with a user database, and you want to globally
coordinate the updates made to the database with other actions within the message
flow, configure your databases for global coordination.

Chapter 9. Developing message flow applications 1287

“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Database connections for coordinated message flows” on page 4235
When you configure a message flow to access a database, the broker establishes a
connection to that database based on the ODBC DSN.
“Database support for coordinated message flows” on page 4236
If the message flow processing includes interaction with an external database, you
can coordinate the transaction by using XA technology.

Changing message flow behavior
You can change the behavior taken by your message flows to process messages in
different ways and at different times.

About this task

If one or more of the default behaviors described in “Default message flow
behavior” on page 1278 is not sufficient or appropriate for your message
processing, you can change some characteristics of that behavior at different times
during the design, development, and production cycles:
v “Behavior you can change when you design your message flows”
v “Behavior you can change when you deploy your message flows” on page 1289
v “Behavior you can change during message flow processing” on page 1289

Behavior you can change when you design your message flows:
About this task

You can influence the behavior of your message flows when you set message node
properties, and when you connect together the nodes that you select to run in that
flow.

Transactional support
You can configure your message flows to handle your messages, and other
data, in transactions. These options are described in “Configuring
transactionality for message flows” on page 1290.

Error handling
The broker provides an initial level of error processing for all message
flows. If you require further support in your message flows, you can add
your own processing. You can learn more about these options in
“Handling errors in message flows” on page 2823.

The nodes that support some protocols provide additional default error
handling; this support is described, where relevant, in the sections in
“Connecting client applications” on page 1537.

1288 WebSphere Message Broker Version 7.0.0.8

Data conversion
If you are exchanging messages between unlike systems, you can update
broker or WebSphere MQ configuration, or design and supply your own
conversion procedures. Options are described in “Configuring message
flows for data conversion” on page 1293.

User-defined properties
You can create user-defined properties for your message flows to associate
values with those message flows. You can then configure the nodes in your
message flows to access those properties and their values by coding ESQL
or Java programs. Read more about user-defined properties, and see how
to create them in the “Message Flow editor” on page 6810.

Promoted properties
You can promote some message node properties to the level of the message
flow in which the node is included. The advantages of this technique are
described in “Promoted properties” on page 1145; see “Defining a
promoted property” on page 1297 for details of how to use these
properties.

Behavior you can change when you deploy your message flows:
About this task

After you have decided on the message flow content, you can change some aspects
of its operation before or after deployment.

Configurable properties and BAR overrides
Some of the properties on message flow nodes are configurable; that is,
you can change their values when you deploy the message flow. By using
this option, you can change some characteristics of a deployed message
flow without changing the message flow definitions. For example, you can
update queue manager and data source information in the BAR file when
you deploy it.

You can change these values by using the WebSphere Message Broker
Explorer, the WebSphere Message Broker Toolkit, or the
mqsiapplybaroverride command.

The execution and threading model
You can increase the number of threads that your message flows use to
reduce the time in which your messages are handled. You can also deploy
multiple copies of a message flow to one or more brokers. For further
information, see “Optimizing message flow throughput” on page 587.

Behavior you can change during message flow processing:
About this task

If you want to change the behavior of your message flows in a more dynamic way,
you can use the techniques described here. However, you must design your
message flows so that they can take advantage of these additional services.

Configurable services
By using a configurable service, you can create and configure properties
that relate to external services called by the broker from your message
flows. A number of configurable services are supplied with the broker; you
can modify or add to these default services, and you can create your own
services.

Chapter 9. Developing message flow applications 1289

Learn more about this option in “Configurable services” on page 1296. You
can use the WebSphere Message Broker Explorer to work with configurable
services; several commands are also supplied to create, view, and modify
these services.

Local environment overrides
You can configure some nodes to include your own processing; by coding
ESQL, Java, PHP, or maps, you can modify the contents of the local
environment tree within a message. Some fields in the local environment
are used by nodes to determine how the message is processed, therefore by
changing the tree contents, you can influence the behavior of subsequent
nodes in the message flow. For more details about this option, see
“Transforming and enriching messages” on page 2227.

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Default message flow behavior” on page 1278
The broker controls the behavior of your message flows, and defines what actions
are taken if you do not change that behavior.

Configuring transactionality for message flows:

A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.

Before you begin

Before you start:

Ensure that you have completed the following tasks.
v To ensure that you understand how the broker handles transactions, read

“Message flow transactions” on page 1281.
v Create a message flow by following the instructions in “Creating a message

flow” on page 1431.

About this task

How individual nodes, and the message flow itself, participate in transactions
depends on the way you design and develop the message flow, and the level of
additional configuration you perform:
1. Configure the node properties in your message flow to set the required level of

participation in transactions.
2. If you want the updates made by the message flow to be globally coordinated

by an external transaction manager, configure the message flow properties.

1290 WebSphere Message Broker Version 7.0.0.8

What to do next

When you have finished message flow design and development, you can deploy
the BAR file to the broker or brokers on which you want the message flow to run.
However, if you have configured your message flows for globally coordinated
transactions, additional configuration might be required. You, or your system
administrator, must ensure that your broker environment, the transaction manager,
and the participating resource managers are all correctly configured to support
coordinated transactions, before you run the message flow. For details of what
might be required, see “Configuring global coordination of transactions (two-phase
commit)” on page 697.

If the broker environment, the transaction manager, and the external resource
managers are not correctly configured for global coordination, the message flow
transactions will not be globally coordinated.

Configuring node properties:
About this task

You can configure the nodes in your message flow to determine how the work
taken by each node participates in the message flow transaction. Most nodes for
which transactionality is relevant have one or more properties that you can
configure to dictate behavior. Therefore, you can decide for each individual node
whether it participates in the message flow transaction, or operates independently.
Typically, these properties include an option of Automatic, so that subsequent
nodes in the flow assume the characteristics set by the input node.

Nodes that support transports that cannot participate in transactions might have
other properties to determine what the broker does when a message flow failure
occurs. For example, the FileInput node has a set of Retry properties that you can
set to determine failure behavior.

A few nodes that interact with external resources do not provide properties;
typically, these nodes are included in the message flow transactions, but some
exceptions exist; you must check the section that describes properties and how to
set them, for each node that you include in your flow to ensure that you
understand what action is taken.

If you configure a node not to participate in the message flow transaction, the
actions that it takes are committed, or rolled back, when the node exits. No further
action is taken when the flow itself completes.

To configure message flow behavior by setting node properties:

Procedure

1. Open the message flow that you want to configure.
2. Set the Transaction mode property for the input nodes in this message flow.

The value that you set determines the behavior of the input node, and sets the
default behavior for the rest of the message flow. Typically, you can choose the
value Yes or No;
v Yes means that the input node completes its own operation under sync point,

and the default behavior in the message flow is for actions to be taken under
sync point.

Chapter 9. Developing message flow applications 1291

v No means that the input node completes its own operation out of sync point,
and the default behavior in the message flow is for actions to be taken out of
sync point.

Some nodes have additional or alternative values; for example, you can set the
property on the MQInput node to Automatic, which means that the node gets
the message under sync point if the message is persistent, and out of sync
point if it is non-persistent.
For details of the specific options for and actions taken by each node, see the
relevant node description; the properties, the tabs they are defined on, and the
resulting behavior are not identical across all input nodes.

3. If your message flow includes nodes that interact with external resources,
including output, request, and reply nodes, you can set a transaction property
on most of these nodes.
Set the property only if you want to change the behavior of the individual
node from the default behavior for the message flow, which you set on the
input node. The value that you set on this node has no effect on subsequent
nodes in the message flow. If the node does not have a transactional property,
its behavior is governed by the default behavior for the message flow, which
you set in the input node.
If your message flow is updating a database from multiple nodes in a single
message flow, read the conceptual information about message flow transactions
to understand the possible interactions.
a. Set the Transaction property for each node, if supported.
b. Set the properties that define how errors are handled, if supported. For

example, for nodes like the Compute node that can access databases, set the
Treat warnings as errors and Throw exception on database error
properties to define how that node handles database warnings and errors.
Whether you select these properties, and how you connect the failure
terminals of the nodes, also affect the way in which database updates are
committed or rolled back.

Configuring message flow properties:
About this task

When you have configured your message flow, you must add it to a BAR file
before you can deploy it. When you add it to a BAR file, the message flow is
compiled, and additional properties are available for configuration.

The most important property concerned with transactions on distributed systems is
Coordinated Transaction. By default, this property is cleared (not selected), which
means the message flow is partially coordinated and the broker commits or rolls
back the message flow transaction. If you select this property, the input node calls
the external transaction manager WebSphere MQ for commit and rollback
processing.

This property is ignored when the message flow is deployed to a broker that is
running on a z/OS system.

To configure message flow properties:

Procedure

1. Add the message flow to a broker archive.

1292 WebSphere Message Broker Version 7.0.0.8

2. Select the Manage and Configure tab below the broker archive editor view,
and select the message flow. The configurable properties for the message flow
in the broker archive are displayed in the Properties view.
Select coordinatedTransaction to configure the message flow as globally
coordinated; when you set this property, the external transaction manager
(WebSphere MQ) coordinates the transaction with all the resource managers
that you have defined to the queue manager.

z/OS

On z/OS, transactions are always globally coordinated. The setting of

the coordinatedTransaction property for a message flow is ignored.
Coordination is provided by the transaction manager RRS.

Related concepts:
“Message flow transactions” on page 1281
A transaction describes a set of updates that are made by an application program,
which must be managed together. The updates might be made to one or more
systems. The updates made by the program are controlled by the environment in
which the program executes, and either all are completed, or none. This property
of a transaction is known as consistency: transactions might have other properties of
atomicity, isolation, and durability.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Configuring global coordination of transactions (two-phase commit)” on page 697
Globally coordinate message flow transactions with a transaction manager to
ensure the data integrity of transactions. On distributed systems, the WebSphere
MQ queue manager that is associated with the broker performs the transaction
manager role.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Configuring message flows for data conversion:

If you exchange messages between applications that run on systems that are
incompatible in some way, you can configure your system to provide data
conversion as the message passes through the broker.

About this task

Data conversion might be necessary if either of the following two values are
different on the sending and receiving systems:

Chapter 9. Developing message flow applications 1293

1. CCSID. The Coded Character Set Identifier refers to a set of coded characters
and their code point assignments. WebSphere Message Broker can process and
construct application messages in any code page for which WebSphere MQ
provides conversion to and from Unicode, on all operating systems. For more
information about code page support, see the Application Programming Reference
section of the WebSphere MQ Version 7 Information Center online.
This behavior might be affected by the use of other products in conjunction
with WebSphere Message Broker. Check the documentation for other products,
including any databases that you use, for further code page support
information.

2. Encoding. This setting defines the way in which a machine encodes numbers;
that is, binary integers, packed-decimal integers, and floating point numbers.
Numbers that are represented as characters are handled in the same way as all
other string data.

If the native CCSID and encoding on the sending and receiving systems are the
same, you do not need to call data conversion processes.

WebSphere Message Broker and WebSphere MQ provide data conversion facilities
to support message exchange between unlike systems. Your choice of which
facilities to use depends on the characteristics of the messages that are processed
by your message flows:
v Messages that contain text only
v Message that include numerics
v Messages that are self-defining

Messages that contain text only

Read this section if your messages are WebSphere MQ messages that
contain all text (character data or string).

If WebSphere MQ supports the systems on which both sending and
receiving applications are running for data conversion, use WebSphere MQ
facilities which provide the most efficient data conversion option.

The default behavior of WebSphere MQ is to put messages to queues
specifying the local system CCSID and encoding. Applications issuing
MQGET can request that the queue manager provides conversion to their
local CCSID and encoding as part of get processing.

To use this option:
1. Design messages to be text-only. If you are using COBOL, move

numeric fields to USAGE DISPLAY to put them into string form.
2. Set the Format field in the MQMD to MQFMT_STRING (value

MQSTR).
3. Call MQGET with MQGMO_CONVERT in the receiving application. If

you prefer, you can convert when the message is received by the
broker, by setting the Convert property of the MQInput node to yes (by
selecting the check box).

If you require more sophisticated data conversion than WebSphere MQ
provides in this way (for example, to an unsupported code page), use
WebSphere MQ data conversion exits. For more information about these,
see the Application Programming Reference section of the WebSphere MQ
Version 7 Information Center online.

Messages that include numerics

1294 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Read this section if your messages include numeric data, or are text only
but are not WebSphere MQ messages.

If these messages can be predefined (that is, their content and structure is
known and predictable), use the facilities provided by WebSphere Message
Broker and the MRM.

All application messages are handled by the broker in Unicode, to which
they are converted on input, and from which they are converted on output.
You can configure message flows to influence the way in which output
messages are constructed.

To use this option:
1. Define the output message in the MRM domain. You can create this

definition in one of the following ways:
v Import an external message definition (for example a C header or

COBOL copybook).
v Create the message model in the message definition editor.

2. Configure a message flow to receive and process this message:
a. If you include an MQInput node, do not request conversion by this

node.
b. Include a Compute node in the message flow to create the output

message with the required content:
v If the output message is a WebSphere MQ message, code ESQL

in the Compute node to set the CCSID and encoding for the
target system in the MQMD.
For example, to set values for a target z/OS system running with
CCSID of 37 and encoding of 785:
SET OutputRoot.MQMD.CodedCharSetId = 37;
SET OutputRoot.MQMD.Encoding = 785;

v If the output message is not a WebSphere MQ message, code
ESQL in the Compute node to set the CCSID and encoding for
the target system in the Properties folder.

Messages that are self-defining

Read this section if your messages are self-defining.

Self-defining messages are supported in the XML and JMS domains. These
messages are all text and can be handled by WebSphere MQ, if they
originate from, or are destined for, WebSphere MQ applications. If not, use
WebSphere Message Broker facilities by setting the CCSID and Encoding
fields in the Properties folder in the message when it passes through a
Compute node.

Related concepts:
“Predefined and self-defining messages” on page 1076
Both predefined and self-defining messages are supported.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.

Chapter 9. Developing message flow applications 1295

Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Converting code page and message encoding” on page 2476
You can use ESQL within a Compute node to convert data for code page and
message encoding.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.
Related information:

WebSphere MQ Version 7 Information Center online

Configurable services:

Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.

Instead of defining properties on the node or message flow, you can create
configurable services so that nodes and message flows can refer to them to find
properties at run time. If you use this method, you can change the values of
attributes for a configurable service on the broker, which then affects the behavior
of a node or message flow without the need for redeployment.

Unless it is explicitly stated by the function that is using the configurable service,
you need to stop and start the execution group for the change of property value to
take effect.

You can use the WebSphere Message Broker Explorer to view, add, modify and
delete configurable services, see “Using the WebSphere Message Broker Explorer to
work with configurable services” on page 644.

Alternatively, use the following commands to work with configurable services:
v Use the mqsicreateconfigurableservice command to create configurable

services.
v Use the mqsideleteconfigurableservice command to delete configurable

services.

1296 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v Use the mqsichangeproperties command to set attributes after you have created
the configurable services.

v Use the mqsireportproperties command to report attributes.

For a full list of configurable services and their properties, see “Configurable
services properties” on page 3766.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Defining a promoted property:

When you create a message flow, you can promote properties from individual
nodes in that message flow to the message flow level. Properties promoted in this
way override the property values that you have set for the individual nodes.

Before you begin

Before you start:

Read the concept topic about promoted properties.

About this task

You can perform the following tasks related to promoting properties:
v “Promoting a property” on page 1298
v “Renaming a promoted property” on page 1302
v “Removing a promoted property” on page 1304
v “Converging multiple properties” on page 1306

Some of the properties that you can promote to the message flow are also
configurable; you can modify them when you deploy the broker archive file in
which you have stored the message flow to each broker. If you set values for
configurable properties when you deploy a broker archive file, the values that you

Chapter 9. Developing message flow applications 1297

set override values set in the individual nodes, and those that you have promoted.
Related concepts:
“Promoted properties” on page 1145
A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Promoting a property:

You can promote a node property to the message flow level to simplify the
maintenance of the message flow and its nodes, and to provide common values for
multiple nodes in the flow by converging promoted properties.

Before you begin

Before you start:
v Create a message flow, as described by “Creating a message flow” on page 1431
v Read the concept topic about promoted properties

About this task

The majority of message flow node properties are available for promotion, but you
cannot promote the following properties:
v Properties that name mapping modules
v A property group (but you can promote an individual property)
v A property that you cannot edit (for example, the Fix property of the MQInput

node)
v The description properties (Short Description and Long Description)
v Complex properties (for example, the Query elements property of the

DatabaseRoute node, or the Opaque elements property of the MQInput and
several other nodes)

To promote message flow node properties to the message flow level, complete the
following steps.

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the message flow for which you want to promote properties.
3. Right-click the appropriate node and click Promote Property.

1298 WebSphere Message Broker Version 7.0.0.8

The Promote Property dialog box is displayed.

The Available node properties pane lists all available properties for all the
nodes in the message flow. The properties for the node that you clicked are
expanded. You can expand the properties for all the nodes in the open message
flow, regardless of the node that you clicked initially.
The Promoted properties pane displays the name of the open message flow and
all the properties that are currently promoted to the message flow. If you have
not yet promoted any properties, only the message flow name is displayed as
the root of the promoted property tree, as shown in the previous example. If
you have already promoted properties from this node, the properties appear in
the Promoted properties pane, but not in the Available node properties pane.

4. Select the property or properties that you want to promote to the message flow.
You can select multiple properties by holding down Ctrl and selecting the
properties.

5. Click Promote. The Target Selection dialog box opens and displays valid targets
for the promotion.

6. Select the destination group or property for the properties that you want to
promote. You can group together related properties from the same or different
nodes in the message flow by dropping the selected properties onto a group or
property that already exists, or you can create a new target for the promotion
by clicking New Group or New Property. You can rename groups and
properties by selecting them and clicking Rename.

7. Click OK to confirm your selections and close the Target Selection dialog box.
If you create a new group or property by using the Target Selection dialog box,
the changes persist even if you select Cancel in the dialog box. When the
dialog box closes, groups or properties that you have created by using the

Chapter 9. Developing message flow applications 1299

Target Selection dialog box appear in the Promote Property dialog box. You can
remove any of these properties from the Promote Property dialog box by
selecting them and clicking Remove.

8. Click OK to commit your changes and close the Promoted Property dialog box.
If you click Apply, the changes are committed but the dialog box remains
open.

Results

The message flow node properties are promoted to the message flow. When you
have promoted a property, you can no longer make any changes to that property
at the node level; you can update its value only at the message flow level. To view
the message flow's properties, click the message flow (not the individual nodes) in
the Message Flow editor to display the properties in the Properties view. The
properties that you have promoted are organized in the groups that you created. If
you now set a value for one of these properties, that value appears as the default
value for the property whenever the message flow is included in other message
flows.

When you select an embedded message flow in another message flow (a subflow)
and view its properties, you see the promoted property values. If you look inside
the embedded flow (by selecting Open Subflow), you see the original values for
the properties. The value of a promoted property does not replace the original
property, but it takes precedence when you deploy the message flow.

Promoting properties by dragging:
About this task

You can also promote properties from the Promote Property dialog box by
dragging the selected property or properties from the Available node properties
pane of the Promote Property dialog box to the Promoted properties pane, as
described in the following steps.

Procedure

1. Select the property that you want to promote. You can select multiple
properties by holding down Ctrl, and selecting the properties.

2. You can promote the selected properties using the following methods:
v Drop the selected property or properties in an empty space.

A new group is created automatically for the message flow, and the property
is placed in it, with the original name of the property and the name of the
message flow node from which it came displayed beneath the property entry.
The name of the first group that is created is Group1 by default. If a group
called Group1 already exists, the group is given the name Group2, and so on.
You can rename the group by double-clicking it and entering new text, or by
selecting the group in the Promoted properties pane and clicking Rename.
When you create a new promoted property, the name that you enter is the
name by which the property is known within the system, and must meet
certain Java and XML naming restrictions. These restrictions are enforced by
the dialog box, and a message is displayed if you enter a name that includes
a non-valid character. For example, you cannot include a space or quotation
marks (").
If you are developing a message flow in a user-defined project that will be
delivered as an Eclipse plug-in, you can add translations for the promoted
properties that you have added. Translated names can contain characters,

1300 WebSphere Message Broker Version 7.0.0.8

such as space, that are restricted for system names. The option to provide
translated strings for promoted properties is not available if you are working
with a message flow in a message flow project.

v Drop the selected property or properties onto a group that already exists, to
group together related properties from the same or different nodes in the
message flow.
For example, you might want to group all promoted properties that relate to
database interactions. You can change the groups to which promoted
properties belong at any time by selecting a property in the Promoted
properties pane and dragging it onto a different group.

v Drop the selected property or properties onto a property that already exists,
to converge related properties from the same or different nodes in the
message flow.
For example, you might want to create a single promoted property that
overrides the property on each node that defines a data source.
For more information on converging properties, see “Converging multiple
properties” on page 1306.

Promoting mandatory properties:
About this task

If you promote a property that is mandatory (that is, an asterisk appears beside the
name in the Properties view), the mandatory characteristic of the property is
preserved. When a mandatory property is promoted, its value does not need to be
set at the node level. If the flow that contains the mandatory promoted property is
included as a subflow in another flow, the property must be populated for the
subflow node.

Promoting properties through a hierarchy of message flows:
About this task

You can repeat the process of promoting message flow node properties through
several levels of message flow. You can promote properties from any level in the
hierarchy to the next level above, and so on through the hierarchy to the top level.
The value of a property is propagated from the highest point in the hierarchy at
which it is set down to the original message flow node when the message flow is
deployed to a broker. The value of that property on the original message flow
node is overridden.
Related concepts:
“Promoted properties” on page 1145
A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.
“Broker properties” on page 1144
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:

Chapter 9. Developing message flow applications 1301

“Defining a promoted property” on page 1297
When you create a message flow, you can promote properties from individual
nodes in that message flow to the message flow level. Properties promoted in this
way override the property values that you have set for the individual nodes.
“Renaming a promoted property”
If you have promoted a property from the node to the message flow level, it is
initially assigned the same name that it has at the node level. You can rename the
property to have a more meaningful name in the context of the message flow.
“Converging multiple properties” on page 1306
You can promote properties from several nodes in a message flow to define a
single promoted property, which applies to all those nodes.
“Removing a promoted property” on page 1304
If you have promoted a property from the node to the message flow level, you can
remove (delete) it if you no longer want to specify its value at the message flow
level. The property reverts to the value that you specified at the node level. If you
remove a promoted property that is a mandatory property, ensure that you have
set a value at the node level. If you have not, you cannot successfully deploy a
broker archive file that includes this message flow.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Renaming a promoted property:

If you have promoted a property from the node to the message flow level, it is
initially assigned the same name that it has at the node level. You can rename the
property to have a more meaningful name in the context of the message flow.

Before you begin

Before you start:
v Promote a property
v Read the concept topic about promoted properties

About this task

To rename a promoted property :

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the message flow for which you want to promote properties by

double-clicking the message flow in the Broker Development view. You can also
open the message flow by right-clicking it in the Broker Development view and
clicking Open The message flow contents are displayed in the editor view.

3. In the editor view, right-click the symbol of the message flow node for which
you want to promote properties.

4. Select Promote Property.
The Promote Property dialog box is displayed.

1302 WebSphere Message Broker Version 7.0.0.8

5. Promoted properties are shown in the Promoted properties pane on the right of
the Promote Property dialog box. Double-click the promoted property in the list
of properties that are currently promoted to the message flow level, or select
the property that you want to rename and click Rename. The name is
highlighted, and you can edit it. Modify the existing text or enter new text to
give the property a new name, and press Enter.

6. Click Apply to commit this change without closing the Promote Property
dialog box. Click OK to complete your updates and close the dialog box.

Related concepts:
“Promoted properties” on page 1145
A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.
Related tasks:
“Defining a promoted property” on page 1297
When you create a message flow, you can promote properties from individual
nodes in that message flow to the message flow level. Properties promoted in this
way override the property values that you have set for the individual nodes.
“Promoting a property” on page 1298
You can promote a node property to the message flow level to simplify the
maintenance of the message flow and its nodes, and to provide common values for
multiple nodes in the flow by converging promoted properties.
“Removing a promoted property” on page 1304
If you have promoted a property from the node to the message flow level, you can
remove (delete) it if you no longer want to specify its value at the message flow
level. The property reverts to the value that you specified at the node level. If you
remove a promoted property that is a mandatory property, ensure that you have
set a value at the node level. If you have not, you cannot successfully deploy a

Chapter 9. Developing message flow applications 1303

broker archive file that includes this message flow.
“Converging multiple properties” on page 1306
You can promote properties from several nodes in a message flow to define a
single promoted property, which applies to all those nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Removing a promoted property:

If you have promoted a property from the node to the message flow level, you can
remove (delete) it if you no longer want to specify its value at the message flow
level. The property reverts to the value that you specified at the node level. If you
remove a promoted property that is a mandatory property, ensure that you have
set a value at the node level. If you have not, you cannot successfully deploy a
broker archive file that includes this message flow.

Before you begin

Before you start:
v Promote a property
v Read the concept topic about promoted properties

About this task

If you have promoted one or more message flow node properties, and want to
delete them:

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the message flow for which you want to promote properties by

double-clicking the message flow in the Broker Development view. You can also
open the message flow by right-clicking it in the Broker Development view and
clicking Open The message flow contents are displayed in the editor view.

3. In the Editor view, right-click the symbol of the message flow node whose
properties you want to promote.

4. Select Promote Property.
The Promote Property dialog is displayed.

1304 WebSphere Message Broker Version 7.0.0.8

5. Select the promoted property that you want to remove from the list of
properties in the Promoted properties pane, and click Remove. The property is
removed from the Promoted properties pane and is restored to the list in the
Available node properties pane, in the appropriate place in the tree of
properties for the node from which you promoted it. You can promote this
property again.

6. To delete all the promoted properties in a single group, select the group in the
Promoted properties pane and click Remove. The group and all the properties
it contains are deleted from this list: the individual properties that you
promoted are restored to the nodes from which you promoted them.

7. Click Apply to commit this change without closing the Promote Property
dialog box. Click OK to complete your updates and close the dialog box.

Results

If you have included this message flow in a higher-level message flow, and have
set a value for a promoted property that you have now deleted, the embedding
flow is not automatically updated to reflect the deletion. However, when you
deploy that embedding message flow in the broker domain, the deleted property is
ignored.
Related concepts:
“Promoted properties” on page 1145
A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.
Related tasks:

Chapter 9. Developing message flow applications 1305

“Defining a promoted property” on page 1297
When you create a message flow, you can promote properties from individual
nodes in that message flow to the message flow level. Properties promoted in this
way override the property values that you have set for the individual nodes.
“Promoting a property” on page 1298
You can promote a node property to the message flow level to simplify the
maintenance of the message flow and its nodes, and to provide common values for
multiple nodes in the flow by converging promoted properties.
“Renaming a promoted property” on page 1302
If you have promoted a property from the node to the message flow level, it is
initially assigned the same name that it has at the node level. You can rename the
property to have a more meaningful name in the context of the message flow.
“Converging multiple properties”
You can promote properties from several nodes in a message flow to define a
single promoted property, which applies to all those nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Converging multiple properties:

You can promote properties from several nodes in a message flow to define a
single promoted property, which applies to all those nodes.

Before you begin

Before you start:

v Create a message flow, as described in “Creating a message flow” on page 1431
v Read the concept topic about promoted properties

About this task

One example for the use of promoting properties is for database access. If a
message flow contains two Database nodes that each refer to the same physical
database, you can define the physical database just once on the message flow by
promoting the Data Source property of each Database node to the message flow,
and setting the property at the message flow (promoted) level.

To converge multiple node properties to a single promoted property:

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the message flow in the Message Flow editor.
3. Right-click the node for which you want to promote the properties, then click

Promote Property.
The Promote Property dialog box is displayed.

1306 WebSphere Message Broker Version 7.0.0.8

4. Select the property that you want to converge. The list in the Available node
properties pane initially shows the expanded list of all available properties for
the selected node. If you have already promoted properties from this node,
they do not appear in this pane, but they appear in the Promoted properties
pane.
The Available node properties pane also includes the other nodes in the open
message flow. You can expand the properties that are listed under each node
and work with all these properties at the same time. You do not have to close
the dialog box and select another node from the Message Flow editor to
continue promoting properties.
You can select multiple properties to promote by selecting a property, holding
down Ctrl, and selecting one or more other properties.
If you have you selected multiple properties to converge, all the properties
that you have selected must be available for promotion. If one or more of the
selected properties is not available for promotion, the entire selection becomes
unavailable for promotion, and the Promote button is disabled.

5. Click Promote to promote the property or properties
The Target Selection dialog box opens:
The Target Selection dialog box displays only the valid targets for the
promotion of the previously selected property or properties and allows you to
create a new target for the promotion, such as to a new group or to a new
property.

6. To converge properties from the same or different nodes in the message flow,
expand the tree and click a property that already exists. You can rename the
properties by selecting them and clicking Rename, or by double-clicking the
group or property.

7. Click OK to confirm your selections.

Chapter 9. Developing message flow applications 1307

Note: If you create a new group or property by using the Target Selection
dialog box, the changes persist even if you click Cancel. When the dialog box
closes, groups or properties that you have created by using the Target
Selection dialog box appear in the Promote Property dialog box.

8. Expand the property trees for all the nodes for which you want to promote
properties.

9. Drag the first instance of the property that you want to converge from the
Available node properties pane, and drop it onto the appropriate group in the
Promoted properties pane.
v If the group already contains one or more promoted properties, the new

property is added at the end of the group. You can rename the new
property by double-clicking the property, or by selecting the property and
clicking Rename.

v If you want the promoted property to appear in a new group, drag the
property into an empty space below the existing groups to create a new
group. Alternatively:
a. Select the property that you want to promote, and click Promote. The

Target Selection dialog box opens.
b. Click New Group, and enter the name of the new group.
c. Click OK to confirm your changes.

v If you drag the property onto an existing promoted property of a different
type, a no-entry icon is displayed and you cannot drop the property. You
must create this property as a new promoted property, or drop it onto a
compatible existing promoted property. Properties must be associated with
the same property editor to be compatible. For example, if you are using
built-in nodes, you can converge only properties of the same type (string
with string, Boolean with Boolean).

If you are using user-defined nodes, you must check the compatibility of the
property editors for the properties that you want to converge. If you have
written compiler classes for a node, you must also ensure that converged
properties have the same compiler class.

10. Drag all remaining instances of the property from each of the nodes in the
Available node properties pane onto the existing promoted property. The new
property is added under the existing promoted property, and is not created as
a new promoted property.

11. Click Apply to commit this change without closing the Promote Property
dialog box. Click OK to complete your updates and close the dialog box.
You can also converge properties from the Promote Property dialog box by
dragging the selected property or properties from the Available node
properties pane to the Promoted properties pane:
a. Select the property that you want to promote. You can select multiple

properties to promote by selecting a property, holding down Ctrl, and
selecting one or more other properties.

b. Drop the selected property or properties onto a property in the Promoted
properties pane to converge related properties from the same or different
nodes in the message flow.
For example, you might want to create a single promoted property that
overrides the property on each node that defines a data source.

1308 WebSphere Message Broker Version 7.0.0.8

Results

You have promoted properties from several nodes to define a single promoted
property, which is used for all those nodes.
Related concepts:
“Promoted properties” on page 1145
A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.
Related tasks:
“Defining a promoted property” on page 1297
When you create a message flow, you can promote properties from individual
nodes in that message flow to the message flow level. Properties promoted in this
way override the property values that you have set for the individual nodes.
“Promoting a property” on page 1298
You can promote a node property to the message flow level to simplify the
maintenance of the message flow and its nodes, and to provide common values for
multiple nodes in the flow by converging promoted properties.
“Renaming a promoted property” on page 1302
If you have promoted a property from the node to the message flow level, it is
initially assigned the same name that it has at the node level. You can rename the
property to have a more meaningful name in the context of the message flow.
“Removing a promoted property” on page 1304
If you have promoted a property from the node to the message flow level, you can
remove (delete) it if you no longer want to specify its value at the message flow
level. The property reverts to the value that you specified at the node level. If you
remove a promoted property that is a mandatory property, ensure that you have
set a value at the node level. If you have not, you cannot successfully deploy a
broker archive file that includes this message flow.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Developing message flow applications by using patterns
Create resources that are used to solve a specific business problem by using
patterns.

Before you begin

Before you start: If you are not familiar with message flow concepts, message
model concepts, and common tasks to manage message flow resources, see
“Processing messages” on page 1021.

This section describes one of the four methods that you can use to create message
flow applications. The other three methods are described in the following sections:
v “Developing message flow applications by using samples” on page 1406
v “Developing message flow applications from a wizard” on page 1408
v “Developing message flow applications from scratch” on page 1423

If you are unsure which method to use, see Chapter 9, “Developing message flow
applications,” on page 1019 for a discussion of the advantages of each one.

Chapter 9. Developing message flow applications 1309

About this task

The following areas are included:
v “Patterns”
v “Using patterns” on page 1312
v “Pattern categories” on page 1331
v “Built-in patterns” on page 1332
v “User-defined patterns” on page 1334
Related tasks:
“Developing message flow applications by using samples” on page 1406
Use the samples to learn more about the features that are available in WebSphere
Message Broker, and how to use them.
“Developing message flow applications from a wizard” on page 1408
A Quick Start wizard sets up the basic resources that are required to develop a
message flow application. The wizard sets up and gives names to containers for
the resources in which you then develop your message flow.
“Developing message flow applications from scratch” on page 1423
Design, create, and configure message flows by using the WebSphere Message
Broker Toolkit.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Patterns
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.

A pattern captures a tested solution to a commonly recurring problem, addressing
the objectives that you want to achieve. The specification of a pattern describes the
problem that is being addressed, why the problem is important (the value
statement), and any constraints for the solution. Patterns typically emerge from
common usage and the application of a particular product or technology.

A WebSphere Message Broker pattern can be used to generate customized
solutions to a recurring problem in an efficient way. WebSphere Message Broker
patterns are provided to encourage the adoption of preferred techniques in
message flow design, to produce efficient and reliable flows. Patterns provide the
following benefits:
v Give you guidance for the implementation of solutions
v Increase development efficiency, because resources are generated from a set of

predefined templates
v Result in higher quality solutions, through reuse of assets and common

implementation of programming approaches, such as error handling and logging

A catalog of WebSphere Message Broker patterns is provided in the WebSphere
Message Broker Toolkit in the Patterns Explorer view. The WebSphere Message
Broker patterns are divided into pattern categories. Pattern categories are categories

1310 WebSphere Message Broker Version 7.0.0.8

that are based on the pattern classification and structure the display in the Patterns
Explorer. The catalog provides detailed help that guides you toward a suitable
WebSphere Message Broker pattern to create resources that are used to solve a
specific business problem.

The catalog of WebSphere Message Broker patterns contains built-in patterns and
might also contain user-defined patterns. Built-in patterns cover a set of commonly
encountered message flow scenarios and are packaged and released with
WebSphere Message Broker. You can also create your own user-defined patterns.

Each pattern has values that are known as pattern parameters. Pattern parameters
are parameters that customize and configure a WebSphere Message Broker pattern.
The pattern parameters that you configure depend on the particular pattern, and
on the options that you enable for that pattern. An example of a pattern parameter
is a queue name from where messages are read.

The WebSphere Message Broker patterns provide defaults for most pattern
parameters, and help is provided to explain them. After you have configured the
pattern parameters, you generate a pattern instance project, which contains
references to all other projects in the workspace that relate to your pattern instance.
A pattern instance project also contains a pattern instance configuration file that
stores the pattern parameter values. This configuration file stores the pattern
parameters that you configured. Generating a pattern instance project also creates
one or more additional WebSphere Message Broker projects that typically contain
message flows and other WebSphere Message Broker resources that implement the
pattern.

You can open the pattern instance configuration file at any time to see the values
of the pattern parameters. When a pattern configuration file has been reopened,
you can regenerate the WebSphere Message Broker projects. Regeneration deletes
the generated WebSphere Message Broker projects and re-creates them from
scratch. The pattern instance project contains an HTML summary file and a pattern
instance configuration file. The summary file has a section that explains additional
tasks that might be required, such as creating queues.

You can create resources from each WebSphere Message Broker pattern more than
once to give you unique pattern instances, each with a different configuration. The
pattern parameters that you can configure depend on the particular pattern, and
also the options that you enable for that pattern.

Some of the pattern parameter settings can affect the resources that are generated.
For example, if you enable logging and error handling, the generated projects
contain additional message flows and ESQL scripts.

In all cases, the specification of both the problem and the solution are
indispensable parts of the pattern definition.
Related concepts:
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Built-in patterns” on page 1332
A built-in pattern is a pattern that covers a set of commonly encountered message
flow scenarios and that is packaged and released with WebSphere Message Broker.

Chapter 9. Developing message flow applications 1311

“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Choosing a pattern” on page 1313
Select a pattern in the Patterns Explorer view to create resources to solve a specific
business problem.

Using patterns
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.

Each WebSphere Message Broker pattern is designed to address a specific business
problem. To find out about the patterns that are supplied in the WebSphere
Message Broker Toolkit, see “Built-in patterns” on page 1332. You might also have
user-defined patterns available to use that are created by a pattern author, see
“User-defined patterns” on page 1334.

Each pattern has values known as pattern parameters that you use to create the
pattern resources for use in your environment. The pattern parameters that you
can configure depend on the specific pattern, and also the options that you enable
for that pattern; for example, logging.

When you select a pattern from the Patterns Explorer, the Pattern Specification tab
gives details about the purpose and configuration of each pattern parameter
associated with a pattern, the effects and consequences of changing them, and any
postrequisite tasks. All patterns have pattern parameter properties that distinguish
one application of a pattern template from another.

All patterns are either abstract or implementations and as you move down the tree
the patterns become more specific. At any level in a tree a pattern can be an
implementation.

You can apply pattern implementations only. Pattern implementations map to a
complete specification with prerequisite and postrequisite tasks, and pattern
parameter details. Pattern implementations have a Create New Instance button in
the Pattern Specification tab. Abstract patterns, which cannot be applied, do not
have a Create New Instance button in the Pattern Specification tab.

You can create resources from each pattern more than once to give unique pattern
instances with different configurations. The configuration for each pattern instance
is contained within a single pattern instance project. The pattern instance project
contains links to all projects containing the resources that are created as a result of
generating a pattern instance from your configuration, such as message flows, Java
classes for JavaCompute nodes, ESQL modules, message maps, test client, XML
files, and style sheet files.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Built-in patterns” on page 1332
A built-in pattern is a pattern that covers a set of commonly encountered message
flow scenarios and that is packaged and released with WebSphere Message Broker.

1312 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Choosing a pattern”
Select a pattern in the Patterns Explorer view to create resources to solve a specific
business problem.
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
Related reference:
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Choosing a pattern
Select a pattern in the Patterns Explorer view to create resources to solve a specific
business problem.

Before you begin

Before you start:

Before completing this task, read the following overview topics about patterns:
v “Patterns” on page 1310
v “Using patterns” on page 1312

About this task

To create resources by using a patter, complete the following steps.

Procedure
1. Open the Patterns Explorer view by using one of the following methods.
v In the Broker Development view, click New pattern instance in the Pattern

Instances section.
v Click the Patterns Explorer tab.
v Click the Open Patterns Explorer icon in the task bar.

The Patterns Explorer view is displayed.
2. Click Patterns in the Patterns Explorer view. The Pattern Specification tab

displays information about the patterns. For example, to find out about
message-based integration patterns, complete the following steps:
a. Click Message-based Integration. The Pattern Specification tab displays

information about the selected pattern, and because it is an abstract pattern
the Create New Instance button is not displayed.

b. Under Message-based Integration click another pattern, for example
Message Correlator. The Pattern Specification tab displays information
about the selected pattern, and because it is an abstract pattern the Create
New Instance button is not displayed.

c. Under Message Correlator click another pattern, for example MQ
request-response with persistence. The Pattern Specification tab displays
information about the selected pattern, and because it is a pattern
implementation the Create New Instance button is displayed.

3. Ensure that you look at "Tasks to complete before applying the pattern" and
"Constraints on the use of the pattern" for your chosen pattern before you use
it.

Chapter 9. Developing message flow applications 1313

4. To use a pattern implementation from the Pattern Specification tab, click
Create New Instance. The Create New Instance window opens.

5. Enter a new pattern instance name.
You cannot use the following names:
v The name of an existing project in the current workspace.
v On Windows only: MS-DOS device driver names. For more information, see

the article on the Microsoft support site: MS-DOS device driver names cannot
be used as file names.

6. Click OK. If you click Cancel, no changes are made to the workspace. The
Configure Pattern Parameters page is displayed.

7. On the Configure Pattern Parameters page, complete all the pattern parameter
fields as required. Configure pattern parameters by entering the appropriate
values. If you do not want to generate the pattern immediately, you can save
the parameters to work with later. Before you apply a pattern, you must enter a
value for each pattern parameter. You can accept a default value, if one is
offered. Empty strings are permitted for some fields.
If you have already saved a configuration, you can reuse that configuration by
editing the parameters, see “Editing and regenerating a pattern” on page 1327.
Parameter groups might be marked with error markers. You can click the error
marker to move to the first field that has an error.

What to do next

Next: Now complete the following task:
v “Generating a pattern instance” on page 1326
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Editing and regenerating a pattern” on page 1327
You can regenerate a pattern instance after you have edited a saved configuration
in a pattern instance project.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.

Working with patterns in the Broker Development view
Using the Broker Development view to create patterns.

Before you begin

Before you start:

Before completing this task, read the following overview topics about patterns:
v “Patterns” on page 1310
v “Using patterns” on page 1312

1314 WebSphere Message Broker Version 7.0.0.8

http://support.microsoft.com/kb/74496
http://support.microsoft.com/kb/74496

About this task

The Broker Development view has three sections: the working set selection list
(<all resources>), Pattern Instances (initially collapsed), and Projects (initially
expanded). Pattern instance projects are shown only in the Pattern Instances
section, and all other project types are shown in the Projects section. If no projects
exist, the Projects section contains a list of Quick Starts links. Use the following
instructions to alter the layout of these three sections.

When the workspace contains both pattern instance projects and projects, the
Pattern Instances section and the Projects section each have their own resource
tree. Each section also has its own scroll bar.
v To open the Pattern Instances or the Projects section to its default or last known

size, click the Restore icon in the relevant section. If no pattern instance projects
exist in the workspace, the Pattern Instances section contains a hyperlink
sentence, New pattern instance, click this hyperlink to start working with
patterns:
– To maximize the Pattern Instances section, click its Maximize icon. This action

automatically collapses the Projects section.
– To maximize the Projects section, click its Maximize icon. This action

automatically collapses the Pattern Instances section.
v To use a Quick Starts link, use either of the following options:

– In the Quick Starts list in the Projects section, click the link that you want to
use. However, when the Projects section contains projects, the Quick Starts list
is not shown in the Projects section, you must, therefore, use the other option.

– In the toolbar of the Projects section, click the Quick Starts link.

What to do next

Next: Now complete the following task:
v “Choosing a pattern” on page 1313
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Creating an application from scratch” on page 1411
Use the "Start from scratch" wizard to create the basic resources that are required
to develop a broker application.
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.

Adding or removing project references in a pattern instance project:

A pattern instance project contains references to regular projects and they are listed
in the Project References category of a pattern instance project.

Chapter 9. Developing message flow applications 1315

About this task

The Project References category under a pattern instance project in the Broker
Development view shows the same project references as the Project References
page in the Properties window.

To add another project to the list of project references for your pattern instance
project, complete the following steps:

Procedure

1. Open the Pattern Instances section of the Broker Development view.
2. Right-click the pattern instance project name, select Add or Remove Project

References from the menu. The Add or Remove Project References window for
the pattern instance project opens, which shows a list of all regular projects, but
not pattern instance projects, in the workspace.

3. To add another project to the list of project references, select the project name
and click OK. The Broker Development view shows the selected project name
under the pattern instance Project References category.

4. To remove a project from the list of project references, right-click the project
name, select Add or Remove Project References, clear the project name check
box, and click OK. The project name is removed from the Project References
category.

Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Going to a referenced project”
How to display your pattern instance project in the Broker Development view.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Going to a referenced project:

How to display your pattern instance project in the Broker Development view.

About this task

To display your pattern instance project complete the following steps.

Procedure

1. Open the Pattern Instances section of the Broker Development view.
2. Expand your pattern instance project, and expand Project References.

1316 WebSphere Message Broker Version 7.0.0.8

3. Right-click your pattern instance project reference.
4. Select Go to Referenced Project. The referenced flows project is selected in the

Broker Development view.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Adding or removing project references in a pattern instance project” on page 1315
A pattern instance project contains references to regular projects and they are listed
in the Project References category of a pattern instance project.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Showing a working set for a pattern instance project:

When a pattern instance project is created by the Patterns Explorer, a working set
of the same name is generated, and all projects that are part of that pattern
instance are placed inside it.

About this task

To view all of the projects in your pattern instance:

Procedure

1. In the Broker Development view, select your pattern instance project in the
Working Sets section. The Pattern Instances section displays all of the projects,
and the Projects section displays all of the message flow details that are
associated with that pattern instance.

2. Select <all resources> in the Working Set section, the navigator shows all of the
projects in the workspace.

Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message

Chapter 9. Developing message flow applications 1317

Broker Toolkit.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Focusing on a pattern instance”
Several ways are available for you to focus on a particular pattern instance.
“Creating a working set and focus on a pattern instance” on page 1319
Creating a working set for an imported project interchange file that contains a
pattern instance project and its associated projects.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Focusing on a pattern instance:

Several ways are available for you to focus on a particular pattern instance.

Procedure

To focus on your pattern you can use one of the following methods:
v In the <all resources> section, click the down arrow icon to open the menu, and

select the pattern instance name.
v In the Pattern Instances section, right-click your pattern instance project, select

Focus on Pattern Instance.
v In the toolbar of the Broker Development view, click the down arrow and

select your pattern instance name from the menu.

The navigator refreshes to show the currently selected working set and its
associated projects.
To confirm that your pattern instance project is currently in focus, right-click your
pattern instance project, ensure that the check box to the left of the Focus on
Pattern Instance menu item is selected. If you clear this check box, the navigator
reverts to the <all resources> working set, and shows all of the projects.
If the navigator has focus on your working set, if you click the down arrow in the
WebSphere Message Broker Development toolbar, your working set menu item is
selected in the menu. You cannot clear a working set from this menu to return to
the <all resources> section, but you can select a different working set, if one is
available.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message

1318 WebSphere Message Broker Version 7.0.0.8

Broker Toolkit.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Showing a working set for a pattern instance project” on page 1317
When a pattern instance project is created by the Patterns Explorer, a working set
of the same name is generated, and all projects that are part of that pattern
instance are placed inside it.
“Creating a working set and focus on a pattern instance”
Creating a working set for an imported project interchange file that contains a
pattern instance project and its associated projects.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Creating a working set and focus on a pattern instance:

Creating a working set for an imported project interchange file that contains a
pattern instance project and its associated projects.

About this task

If you import a project interchange file that contains a pattern instance project and
its associated projects, a working set is not automatically created for the pattern
instance project. Therefore, you must create a working set.

Procedure

In the Pattern Instances section of the Broker Development view, right-click the
pattern instance project, and select Create Working Set and Focus on Pattern
Instance in the menu. When this item is selected, a working set is created with the
same name as the pattern instance project, the pattern instance project and its
associated projects are added to that working set, and the working set is given
focus in the navigator.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.

Chapter 9. Developing message flow applications 1319

“Showing a working set for a pattern instance project” on page 1317
When a pattern instance project is created by the Patterns Explorer, a working set
of the same name is generated, and all projects that are part of that pattern
instance are placed inside it.
“Creating a working set and focus on a pattern instance” on page 1319
Creating a working set for an imported project interchange file that contains a
pattern instance project and its associated projects.
“Importing and exporting resources in a Project Interchange file” on page 1452
You can import resources to, or export resources from, WebSphere Message Broker
by using a Project Interchange file.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Deleting a pattern instance project:

Pattern instance projects typically contain references to regular projects. Therefore,
when you select a pattern instance project for deletion you must decide whether to
delete all of the referenced projects from the file system. Some pattern instance
projects have no project references.

About this task

Use the following instructions depending on the type of pattern instance that you
want to delete:
v “Deleting a pattern instance project with project references” on page 1321
v “Deleting a pattern instance project with no project references” on page 1322
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Showing a working set for a pattern instance project” on page 1317
When a pattern instance project is created by the Patterns Explorer, a working set
of the same name is generated, and all projects that are part of that pattern
instance are placed inside it.
“Deleting projects that are referenced by a pattern instance project” on page 1324
If you want to delete a project, you must take into account whether it is referenced

1320 WebSphere Message Broker Version 7.0.0.8

by a pattern instance project.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Deleting a pattern instance project with project references:

Pattern instance projects typically contain references to regular projects. Therefore,
when you select a pattern instance project for deletion you must decide whether to
delete all of the referenced projects from the file system.

About this task

Use the following steps to delete a pattern instance project that has project
references:

Procedure

1. In the Broker Development view, open the Pattern Instances section.
2. Right-click the pattern instance project, or projects, that you want to delete,

click Delete. The Confirm Project Delete window opens, displaying any projects
that are referenced by the pattern instance project. The Also delete the projects
referenced by this pattern instance project check box is selected and the Also
delete contents in the file system check box is cleared by default.

3. Choose one of the following options:
v To delete the pattern instance project, or projects, and the project references,

but leave the contents in the file system, keep the default settings, click Yes.
The working set section of the Broker Development view switches to <all
resources>. The pattern instance project, or projects, and the project
references still exist in the file system.

v To delete the pattern instance project, or projects, and the project references
from the workspace and the file system, ensure that Also delete the projects
referenced by this pattern instance project and Also delete contents in the
file system are both selected, click Yes. The working set is deleted. The
working set section of the Broker Development view switches to <all
resources>.

v To delete your pattern instance project, or projects, from the workspace but
not from the file system and to keep the project references in the workspace
and file system, ensure that Also delete the projects referenced by this
pattern instance project and Also delete contents in the file system are both
cleared. The working set is deleted. The working set section of the Broker
Development view switches to <all resources>.

v If you decide not to delete the pattern instance project, or projects, click No.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.

Chapter 9. Developing message flow applications 1321

“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Showing a working set for a pattern instance project” on page 1317
When a pattern instance project is created by the Patterns Explorer, a working set
of the same name is generated, and all projects that are part of that pattern
instance are placed inside it.
“Deleting a pattern instance project with no project references”
Decide whether to delete your pattern instance project, which has no project
references, from both the workspace and the file system.
“Deleting projects that are referenced by a pattern instance project” on page 1324
If you want to delete a project, you must take into account whether it is referenced
by a pattern instance project.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Deleting a pattern instance project with no project references:

Decide whether to delete your pattern instance project, which has no project
references, from both the workspace and the file system.

About this task

Use the following steps to delete a pattern instance project that has no project
references:

Procedure

1. In the Broker Development view, open the Pattern Instances section.
2. Right-click the pattern instance project, or projects, that you want to delete,

click Delete. The Confirm Project Delete window opens, displaying the pattern
instance project. The Also delete contents under pattern _instance_name check
box is cleared by default. The default is to delete the pattern instance project
from the workspace, but not to delete it from the file system.

3. Choose one of the following options:
v To delete the pattern instance project, or projects, from the workspace, but

not from the file system, click Yes. The working set is also deleted. The
working set section of the Broker Development view switches to <all
resources>.

v To delete the pattern instance project, or projects, from the workspace and
from the file system, select the Also delete contents under
pattern_instance_name check box, click Yes. The working set is also deleted.
The working set section of the Broker Development view switches to <all
resources>.

1322 WebSphere Message Broker Version 7.0.0.8

v If you decide not to delete the pattern instance project, or projects, click No.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Showing a working set for a pattern instance project” on page 1317
When a pattern instance project is created by the Patterns Explorer, a working set
of the same name is generated, and all projects that are part of that pattern
instance are placed inside it.
“Deleting a pattern instance project with project references” on page 1321
Pattern instance projects typically contain references to regular projects. Therefore,
when you select a pattern instance project for deletion you must decide whether to
delete all of the referenced projects from the file system.
“Deleting projects that are referenced by a pattern instance project” on page 1324
If you want to delete a project, you must take into account whether it is referenced
by a pattern instance project.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Deleting projects:

If you want to delete a project, you must take into account whether it is referenced
by a pattern instance project.

About this task

Use the following instructions depending on whether the project that you want to
delete is referenced by a pattern instance project:
v “Deleting projects that are referenced by a pattern instance project” on page 1324
v “Deleting projects that are not referenced by a pattern instance project” on page

1325
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to

Chapter 9. Developing message flow applications 1323

create resources that are used to solve a specific business problem.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Deleting projects that are referenced by a pattern instance project:

If you want to delete a project, you must take into account whether it is referenced
by a pattern instance project.

About this task

Complete the following steps to delete your project if it is referenced by a pattern
instance project.

Procedure

1. In the Broker Development view, select the project that you want to delete, then
click Delete. The Confirm Project Delete window opens with a warning that
the project is referenced by a pattern instance project. The default action is to
delete the selected project from the workspace, not to delete the project from
the file system, and to update the project references of all pattern instance
projects that reference it. Therefore, by default Also remove references from all
pattern instance projects is selected, and Also delete content under
project_name is cleared.

2. Choose one of the following options:
v To delete the projects from the workspace but leave the contents in the file

system, and delete the project reference from the pattern instance projects list
of project references, keep the default settings and click Yes.

v To delete the projects from the workspace and remove the contents in the file
system, and delete the project reference from the pattern instance projects list
of project references, ensure that both Also remove references from all
pattern instance projects and Also delete content under project_name are
selected, and click Yes.

v To delete the projects from the workspace and remove the contents in the file
system, and leave the project reference in the pattern instance projects list of
project references, ensure that Also remove references from all pattern
instance projects is cleared and that Also delete content under project_name
is selected, and click Yes. The icon for this project reference changes to reflect
that the project no longer exists.

v To delete the projects from the workspace but leave the contents in the file
system, and leave the project reference in the pattern instance projects list of

1324 WebSphere Message Broker Version 7.0.0.8

project references, ensure that both Also remove references from all pattern
instance projects and Also delete content under project_name are cleared,
and click Yes. The icon for this project reference changes to reflect that the
project no longer exists.

v If you decide not to delete the projects, click No.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Deleting projects that are not referenced by a pattern instance project”
If you want to delete a project, you must take into account whether it is referenced
by a pattern instance project.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Deleting projects that are not referenced by a pattern instance project:

If you want to delete a project, you must take into account whether it is referenced
by a pattern instance project.

About this task

Complete the following steps to delete your project if it is not referenced by a
pattern instance project:

Procedure

1. In the Broker Development view, select the project that you want to delete, then
click Delete. The Confirm Project Delete window opens asking whether you are
sure that you want to delete the project. The default action is to delete the
project from the workspace, but not to delete it from the file system. Therefore,
by default, the Also delete content under project_name check box is cleared.

2. Choose one of the following options:
v To delete the projects from the workspace, but not to delete it from the file

system, ensure that the Also delete content under project_name check box is
cleared.

Chapter 9. Developing message flow applications 1325

v To delete the projects from the workspace and delete it from the file system,
ensure that the Also delete content under project_name check box is
selected.

v If you decide not to delete the projects, click No.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Generating a pattern instance”
Generate resources from the pattern.
“Deleting projects that are referenced by a pattern instance project” on page 1324
If you want to delete a project, you must take into account whether it is referenced
by a pattern instance project.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Generating a pattern instance
Generate resources from the pattern.

Before you begin

Before you start:

You must have chosen pattern. For more details, see “Choosing a pattern” on page
1313.

About this task

The Generate button is unavailable until all required parameters are complete.

To generate the WebSphere Message Broker Toolkit resources for the pattern,
complete the following steps.

Procedure

On the Configuration page, click Generate. Focus is automatically moved to the
Broker Development view, which lists all the new resources that have been
generated.
All of the other resources are filtered out in this view.

1326 WebSphere Message Broker Version 7.0.0.8

Results

Following a successful Generate action:
v A pattern instance project is created in your workspace and is displayed in the

Broker Development view. The pattern instance project contains a pattern
instance configuration file and a summary file. The summary file describes the
tasks that have been generated, and the tasks that are still required.

v All the resources generated for a pattern instance are packaged into their own
working set and the Broker Development view displays only the resources in
this working set. The name of the working set is always the same as the pattern
instance name provided. This name must always be unique within the
workspace.

v You can regenerate the pattern by using the same instance name, but, if you
confirm the regeneration, existing projects are deleted, see “Editing and
regenerating a pattern.”

What to do next

Next: Now complete the following task:
v “Reviewing the pattern instance summary and tasks” on page 1328
Related concepts:
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Editing and regenerating a pattern”
You can regenerate a pattern instance after you have edited a saved configuration
in a pattern instance project.
“Creating a working set” on page 575
Create a working set to limit the number of resources that are displayed in the
Broker Development view.
Related reference:
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Editing and regenerating a pattern:

You can regenerate a pattern instance after you have edited a saved configuration
in a pattern instance project.

About this task

Before you begin:

You must be in the WebSphere Message Broker Toolkit and have an existing
pattern configuration file in a pattern instance project.

Procedure

1. Open an existing pattern configuration by double-clicking the configuration
XML file in a pattern instance project. The Configure Pattern Parameters page
of the editor displays parameter values for that configuration instance. The

Chapter 9. Developing message flow applications 1327

Broker navigation pane is in focus. The title of the Configure Pattern
Parameters page for the parameter reflects the pattern instance name (not the
pattern name).

2. View and edit the pattern parameters. You can now choose either of the
following options:
v Close the editor without saving the changes.
v Select Generate. Resources, such as projects, already exist in the workspace.

You are warned that these resources will be deleted and you can choose
whether to continue. If you continue, the resources are regenerated; the
existing resources are deleted and re-created. If you decide not to continue,
the pattern configuration remains open and no changes are made to the
pattern resources.
When you make changes in the Pattern Configuration editor, the summary
file and configuration XML file might be out of date because the
instance_name_configuration.xml and the instance_name_summary.html files
do not match the generated resources. The Problems view displays any
warning messages. Double-click the warning message to open the relevant
editor for the resource.

What to do next

Next: Now complete the following task:
v “Reviewing the pattern instance summary and tasks”
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
“Choosing a pattern” on page 1313
Select a pattern in the Patterns Explorer view to create resources to solve a specific
business problem.
“Reviewing the pattern instance summary and tasks”
Showing the summary page for your pattern instance project.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.

Reviewing the pattern instance summary and tasks
Showing the summary page for your pattern instance project.

Before you begin

Before you start:

You must have completed the following tasks:
v “Generating a pattern instance” on page 1326

1328 WebSphere Message Broker Version 7.0.0.8

About this task

After generating the pattern instance, you might have to do additional tasks to
complete your solution and to support its operation following instance. These tasks
are located in a summary file that is created in the pattern reference project, which
has the same name as the instance name.

The summary file lists the resources that were created for the pattern instance,
based on the pattern parameter values that you entered in the Configure Pattern
Parameters page. The summary also lists any outstanding tasks that you must
complete to make the solution operational. For example, you might have to
configure the message set details that are required by one or more input nodes that
form part of the overall solution, or create WebSphere MQ queues for the nodes.

When a pattern has been configured and generated once, it contains both a
configuration file and a summary file. If you edit and save the configuration file,
both the configuration and the summary files display a warning symbol and a
warning also shows in the Problems window indicating that the two files are out
of sync. To get the files back in sync, regenerate the pattern.

To view the summary and tasks:

Procedure
1. Click Windows > Show view > Tasks to open the Task view.
2. In the Path column, find your pattern instance project name, which includes

the pattern instance name that you used when you created the pattern instance.
3. To open the Summary page, double-click anywhere on the task, or right-click

and select Go To.
4. Complete the tasks that are shown in the summary file.

What to do next

Next: Now complete the following task:
v “Adding files to a broker archive” on page 3223
Related concepts:
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Choosing a pattern” on page 1313
Select a pattern in the Patterns Explorer view to create resources to solve a specific
business problem.
“Generating a pattern instance” on page 1326
Generate resources from the pattern.
Related reference:
“Pattern instance projects” on page 6827
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Importing an existing configuration
You can import a pattern configuration XML file from the workspace or file system
and populate your current pattern instance with its values.

Chapter 9. Developing message flow applications 1329

Before you begin

Before you start:

Before completing this task, you must have a compatible pattern configuration.

You must be in the WebSphere Message Broker Toolkit and have a pattern instance
open.

Procedure
1. Open your current configuration. On the Configure Pattern Parameters page,

click the Open existing configuration icon. The Open Pattern Configuration
window opens.

2. You can select an existing pattern XML configuration file either from a
workspace or file system location. Only configuration files created by the same
pattern can be imported.
v To select from a list of compatible XML configuration files that are already in

the workspace, click Workspace. If you select a valid XML configuration file,
the editor is configured with the values from the existing configuration file.
You can then choose one of the following options:
– Save the changes by clicking OK.
– Return to the Configure Pattern Parameters page and discard the changes

by clicking Cancel.
v To select an XML configuration file from the file system by using a standard

file system window, click File System. Select the file that you want to use,
click Open.

The configuration XML is validated against the corresponding pattern schema,
if you select a configuration that is not valid, for example, from a different
pattern, you receive notification. You can then either select the correct file, or
cancel the action.

3. Share the pattern instance projects. To share pattern instance projects between
WebSphere Message Broker Toolkit workspaces, you can export the pattern
instance project into a directory in the file system or into a Project Interchange
File (PIF). You can then import the pattern instance project into another
workspace. For more information, see “Importing and exporting resources in a
Project Interchange file” on page 1452.

What to do next

Next: Now complete the following task:
v “Generating a pattern instance” on page 1326
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Generating a pattern instance” on page 1326
Generate resources from the pattern.

1330 WebSphere Message Broker Version 7.0.0.8

“Editing and regenerating a pattern” on page 1327
You can regenerate a pattern instance after you have edited a saved configuration
in a pattern instance project.
“Creating a working set and focus on a pattern instance” on page 1319
Creating a working set for an imported project interchange file that contains a
pattern instance project and its associated projects.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.

Pattern categories
Pattern categories are used to structure the display in the Patterns Explorer. A
number of categories are provided, and you can also create your own.

A number of pattern categories are available in WebSphere Message Broker, from
which you can choose the WebSphere Message Broker pattern that you want to
use.

WebSphere Message Broker includes the following categories for built-in patterns.
You can also use these pattern categories for your user-defined patterns, or you
can create your own categories.

Message-based Integration
An Enterprise Service Bus can extend an existing messaging infrastructure
by providing an environment for building and deploying infrastructure
level message-based applications. Examples of these applications include
routing and transformation services, and logging services. This
environment can extend a single underlying messaging infrastructure or
provide a bridge between different products and technologies.

Service Enablement
These patterns encapsulate functionality that does not have a service
interface, and present this functionality through a service-oriented
interface. These patterns represent the move from traditional enterprise
application integration into service-oriented architectures, allowing existing
assets to be reused in the new style without requiring radical change.

Service Virtualization
These patterns provide loose coupling between services by providing
additional levels of direction through an Enterprise Service Bus. These
patterns also address the requirements of mediation (for example, routing,
protocol conversion, data transformation, and logging) between services,
when addressing connectivity requirements in a service-oriented
architecture.

Gateway
A Gateway is a part of a message or service bus that provides boundary
functions that apply to all incoming messages, and are not
format-dependent. Boundary functions typically use data from standard
headers (at transport, SOAP, or data level) to determine what action to
take, but are not required to understand the complete format of the
message data or body. A Gateway pattern can then call a service directly,
or call another pattern.

File Processing
An Enterprise Service Bus can provide a managed runtime environment
for processing files locally or by using an FTP protocol. Typically this

Chapter 9. Developing message flow applications 1331

processing involves activities including the transformation or translation of
data held in the files, the shredding of files into multiple individual
transaction records, the routing of records, the accumulation of records into
target files, and the routing of files or records to specified locations.

Event-driven Integration
Event-driven architecture covers different application scenarios in which an
Enterprise Service Bus plays a key role. These scenarios include integration
with complex event processing engines that include the ability to filter
information or event streams, distribute events in real time, and process
events from physical devices, for example, detectors and sensors.

Application Integration
Application Integration is a collection of technologies and services that
form a middleware to enable the integration of systems and applications
across the enterprise.

For more information about individual built-in patterns, see “Built-in patterns.”
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Built-in patterns”
A built-in pattern is a pattern that covers a set of commonly encountered message
flow scenarios and that is packaged and released with WebSphere Message Broker.

“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.

Built-in patterns
A built-in pattern is a pattern that covers a set of commonly encountered message
flow scenarios and that is packaged and released with WebSphere Message Broker.

The built-in patterns that are supplied in WebSphere Message Broker are shown in
the following tables.

You can view patterns in the information center by using the links only when you
use the information center that is integrated with the WebSphere Message Broker
Toolkit, or when you use the online information center.

Message-based Integration patterns

Pattern name Description

Message Correlator for WebSphere MQ: request-response
with persistence

Use this pattern to accept requests from many client
applications on a single queue, and to return responses
to the correct client by using transactional flows and
persistent WebSphere MQ messages.

1332 WebSphere Message Broker Version 7.0.0.8

Pattern name Description

Message Correlator for WebSphere MQ: request-response
without persistence

Use this pattern to accept requests from many client
applications on a single queue, and to return responses
to the correct client by using non-transactional flows and
non-persistent WebSphere MQ messages.

Message Splitter for WebSphere MQ: one-way (for XML) Use this pattern to split a large XML message into
smaller elements for processing by one or more targets
by using transactional flows and persistent
WebSphere MQ messages.

Service Enablement patterns

Pattern name Description

Service Facade to WebSphere MQ: one-way with
acknowledgment

Use this pattern to present a Web service interface to
clients and to fulfill the service requests by using a
WebSphere MQ enabled application.

Service Facade to WebSphere MQ: request-response Use this pattern to provide a Web service facade to
functions that are accessible only through
WebSphere MQ. This pattern creates a bridge between
the synchronous HTTP protocol, which is typically used
with Web services, and existing applications with
WebSphere MQ interfaces that cannot be easily
upgraded.

Service Access from WebSphere MQ: one-way Use this pattern to process WebSphere MQ XML
messages by using the data that the pattern contains to
call a Web service. Use this pattern to bridge from the
reliable WebSphere MQ messaging protocols of client
application with the synchronous requests, to services to
handle updates with an assurance that service failures,
including timeouts, are reliably reported.

This pattern provides loose coupling between client
applications and service providers in timing, protocols,
and transport. It is appropriate for service interfaces to
existing systems.

Service Virtualization patterns

Pattern name Description

Service Proxy: static endpoint Use this pattern to provide decoupling between Web
service requesters and Web service providers by routing
through a virtual service that is bound directly to the
target service provider.

File Processing patterns

Pattern name Description

Record Distribution to WebSphere MQ: one-way Use this pattern to bridge between two styles of
integration, file based and transaction based.

Application Integration patterns

Chapter 9. Developing message flow applications 1333

Pattern name Description

Data distribution SAP to WebSphere MQ: one-way (for
IDoc)

Use this pattern to process various types of IDocs that
have a single program identifier without you being
required to redeploy or rediscover existing message sets
and adapters, even when you are adding different types
of IDocs.

Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Pattern categories” on page 1331
Pattern categories are used to structure the display in the Patterns Explorer. A
number of categories are provided, and you can also create your own.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“User-defined patterns”
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.

User-defined patterns
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.

The pattern author creates a user-defined pattern to meet a business or technical
requirement, and the pattern user configures a user-defined pattern that the pattern
author has created. The user-defined pattern is available to a pattern user in the
Patterns Explorer view in the Broker Application Development perspective of the
WebSphere Message Broker Toolkit.

To create user-defined patterns, you must provide the implementation of the
solution that reflects good practice in your organization. This implementation is
known as an exemplar. An exemplar is a project that holds content for a pattern. An
exemplar contains message flows and other resources, such as source code, Java
classes for JavaCompute nodes, ESQL modules, message maps, test client, XML
files, and style sheet files. Exemplars are used to create pattern plug-ins by
configuring a pattern authoring project.

You can use the Pattern Authoring editor to configure a pattern and create the
pattern plug-ins that implement the pattern. You can distribute the pattern plug-ins
so that other people can use your pattern. Your pattern is displayed in the Patterns
Explorer view and can be used in the same way as the built-in patterns.

To create a user-defined pattern, see “Creating a user-defined pattern” on page
1336.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Pattern categories” on page 1331
Pattern categories are used to structure the display in the Patterns Explorer. A
number of categories are provided, and you can also create your own.

1334 WebSphere Message Broker Version 7.0.0.8

“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Built-in patterns” on page 1332
A built-in pattern is a pattern that covers a set of commonly encountered message
flow scenarios and that is packaged and released with WebSphere Message Broker.

Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Building pattern plug-ins” on page 1395
You must build the pattern plug-ins before you can distribute user-defined patterns
to pattern users.
“Testing a user-defined pattern” on page 1396
Ensure that you test your user-defined pattern before you share it with your
pattern users.
“Packaging and distributing pattern plug-ins” on page 1397
Package the plug-ins for your user-defined pattern into a pattern archive so that
pattern users can download and install the pattern on their own system.

Chapter 9. Developing message flow applications 1335

Creating a user-defined pattern
The workflow showing the actions required for pattern authoring.

The three stages of creating a user-defined pattern are performed by the
WebSphere Message Broker developer, the pattern author, and the pattern user.
1. The WebSphere Message Broker developer develops the exemplar. The

exemplar is fundamental to the pattern authoring process. It assumes that the
exemplar is the starting point for a pattern. Some modifications might be
required to the exemplar to prepare it for pattern authoring.

2. The pattern author creates a pattern plug-in from the exemplar. Authoring a
pattern is a design activity. Some of the pattern authoring focuses on the
resources in WebSphere Message Broker, for example, defining the target
properties for the pattern and configuring the user interface that is presented to
the pattern user.
The pattern author then shares the user-defined pattern with the pattern user.
Patterns are most useful when they are shared with a user base. This user base
can be within an organization, or a broader community, for example, open
source licensing.

3. The pattern user receives a user-defined pattern, and uses it in accordance with
the requirements of the organization.

B
ro

k
e
r

D
e
v
e

lo
p

e
r

P
a

tt
e

rn
 A

u
th

o
r

P
a
tt

e
rn

 U
s
e
r

Pattern Authoring

Exemplar Projects

Pattern Authoring Project

Pattern InstancePattern Instance Project

Define target
properties

Select files
and resources

Customize
pattern

instance

Enter
pattern

parameters

Define
pattern user

interface

Deploy
pattern

instance

Generate
pattern

instance

Build
pattern
plug-ins

Test pattern
instance

Pattern
plug-ins

Test
pattern

Distribute
pattern

Install
pattern

Browse Pattern
Explorer

Develop
exemplarStart

End

1336 WebSphere Message Broker Version 7.0.0.8

Pattern authoring

The following sample shows how to build a WebSphere Message Broker pattern.
The sample provides an example message flow project that calculates the sunrise
and sunset times in a PHPCompute node. The sample also provides a pattern
authoring project that configures a pattern.
v Solar Pattern Authoring

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

To create a user-defined pattern, complete the following tasks. "Extending a
user-defined pattern" is an optional set of tasks that you can use to add features to
your user-defined pattern. For example, by extending a user-defined pattern you
can create user-defined patterns that include parameters that pattern users can
modify.
1. “Creating a pattern authoring project”
2. “Selecting the source files to use for a user-defined pattern” on page 1338
3. Optional: “Adding and removing the project references for a user-defined

pattern” on page 1339
4. Optional: “Extending a user-defined pattern” on page 1340
5. “Building pattern plug-ins” on page 1395
6. “Testing a user-defined pattern” on page 1396
7. “Packaging and distributing pattern plug-ins” on page 1397

When you have created pattern plug-ins for your user-defined pattern, pattern
users can install them to use in WebSphere Message Broker projects, see
“Downloading and installing a pattern archive” on page 1400.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“Pattern categories” on page 1331
Pattern categories are used to structure the display in the Patterns Explorer. A
number of categories are provided, and you can also create your own.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
“Built-in patterns” on page 1332
A built-in pattern is a pattern that covers a set of commonly encountered message
flow scenarios and that is packaged and released with WebSphere Message Broker.

“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.

Creating a pattern authoring project:

Create a pattern authoring project and choose an exemplar for the project.

Chapter 9. Developing message flow applications 1337

About this task

Procedure

To create a pattern authoring project:
1. Click File > New > Other. A window opens in which you can select a wizard.
2. Expand Message Broker - Flow Development, select Pattern Authoring

Project, click Next. The New Pattern Authoring Project wizard opens.
3. Enter a pattern name and a project name for your pattern, then click Next.
4. Select the project references that you require. These references are the

exemplars for the user-defined pattern.
5. Click Finish.

Results

Your pattern folder is displayed in the Projects section of the Broker Development
view and in the Pattern Authoring editor.

What to do next

Next:

Select the source files. For more information, see “Selecting the source files to use
for a user-defined pattern.”
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.

Selecting the source files to use for a user-defined pattern:

Select the source files to include in your pattern.

Before you begin

Before you start:

Complete the following task:
v “Creating a pattern authoring project” on page 1337

Procedure

To select the source files to use in the user-defined pattern:
1. In the Pattern Authoring editor, click the Source Files tab.
2. In the Select Source Files section, select the source files in the referenced

projects that you want to include in your pattern.

What to do next

Next:

v Extend the pattern, see “Extending a user-defined pattern” on page 1340.

1338 WebSphere Message Broker Version 7.0.0.8

v Change the project references, see “Adding and removing the project references
for a user-defined pattern.”

v Build the pattern, see “Building pattern plug-ins” on page 1395.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.

Adding and removing the project references for a user-defined pattern:

Change the project references for a user-defined pattern so that you can change the
source files in the user-defined pattern.

Before you begin

Before you start:

Complete the following task:
v “Creating a pattern authoring project” on page 1337

Procedure

To add or remove project references:
1. In the Pattern Authoring editor, click the Source Files tab. Click Change

Project References.
2. To add a new project reference, select the project reference that you want to

add and click OK. If you add a new project reference, none of the source files
within the project reference are selected. To select source files for the new
project reference, see “Selecting the source files to use for a user-defined
pattern” on page 1338. If your user-defined pattern requires referenced projects
but they are not included as source files in the pattern, you must distribute the
referenced projects to pattern users to ensure the user-defined pattern works.

3. To remove a project reference, clear the project reference that you want to
remove and click OK. If you remove a referenced project from the workspace,
the source files are removed from the pattern authoring project but the project
reference remains. If you later add the project back into the workspace, the
source files are added to the pattern authoring project.

What to do next

Next:

v You can extend the pattern; see “Extending a user-defined pattern” on page
1340.

v If the pattern is complete, you can now build the pattern; see “Building pattern
plug-ins” on page 1395.

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that

Chapter 9. Developing message flow applications 1339

you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.

Extending a user-defined pattern
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338

About this task

A basic user-defined pattern is a copy of an existing message flow, but by
extending a user-defined pattern you can allow the pattern user to customize the
pattern.

Procedure

You can extend a user-defined pattern in the following ways:
v Create documentation for the pattern. Creating documentation provides

guidance to your pattern users. To update the pattern documentation, see
“Creating documentation for a pattern” on page 1342.

v Define the target properties. A user-defined pattern can change the value of
user-defined properties, promoted node properties, and node properties in a
message flow. A property that is changed by a pattern is called a target property.
Pattern users create a pattern instance by configuring pattern parameters. The
values of the pattern parameters that are configured by a pattern user can be
used to configure the target properties in the pattern instance. To define target
properties, see “Defining the target properties” on page 1342.

v Define the user interface. You can customize how the pattern parameters are
displayed to pattern users by defining the user interface. For example, you can
rename or group pattern parameters, and you can define default values for
pattern parameters. To define the user interface, see “Defining the user interface”
on page 1343, “Adding and editing parameter groups” on page 1345, and
“Enabling parameter groups” on page 1347.

v Configure the categories in the Patterns Explorer view. When a pattern user
imports a user-defined pattern, it is shown in the Patterns Explorer view. You
can select which category the user-defined pattern is assigned to in the Patterns
Explorer view and create new categories. To configure the categories, see
“Creating and configuring categories” on page 1350.

v Configure the SOAP nodes. To use SOAP nodes in user-defined patterns, see
“Configuring SOAP nodes for user-defined patterns” on page 1351.

1340 WebSphere Message Broker Version 7.0.0.8

v Change pattern parameter IDs. Pattern parameter IDs are used to refer to
pattern parameters in XPath, Java, and PHP code. You can write the code to
modify pattern parameters or pattern instances. Default parameter IDs are
assigned, but you can change them to custom IDs. To change parameter IDs, see
“Changing pattern parameter IDs” on page 1352.

v Transform the pattern parameters. You can calculate values for pattern
parameters from other pattern parameters by using XPath expressions. To set up
transformations for pattern parameters and then test the transformations, see
“Transforming pattern parameters” on page 1353 and “Testing a transformation
expression” on page 1355.

v Enable or disable the pattern parameters. You can use XPath expressions to
control whether a pattern parameter can be modified by a pattern user based on
the values of other pattern parameters. To set up enabling expressions for
pattern parameters and then test the expressions, see “Enabling pattern
parameters” on page 1357 and “Testing an enabling expression” on page 1358.

v Use enumerated values for the pattern parameters. You can set up enumerated
types for pattern parameters so that pattern users have a predefined list of
values for the pattern parameters. If a target property has a list of possible
values, the pattern authoring tool generates an enumerated type for that target
property. You can modify the enumerated type that is automatically created. To
use enumerated types see “Using enumerated values for pattern parameters” on
page 1360 and “Creating enumerated types for pattern parameters” on page
1361.

v Modify pattern instances by using Java or PHP. You can write code in Java or
PHP that modifies pattern instances when a pattern user generates an instance
of a user-defined pattern. For example, you can write code to modify the
structure of a message flow based on the values of pattern parameters. To use
Java or PHP in user-defined patterns, see “Modifying pattern instances by using
Java or PHP” on page 1364.

What to do next

Next:

After extending your user-defined pattern, you must build the pattern plug-in, see
“Building pattern plug-ins” on page 1395.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Generating a pattern instance” on page 1326
Generate resources from the pattern.

Chapter 9. Developing message flow applications 1341

Creating documentation for a pattern:

When you create a pattern authoring project, a default HTML pattern specification
is created as part of the project. You can edit this pattern specification to document
your user-defined pattern.

Before you begin

Before you start:

Complete the following task:
v “Creating a pattern authoring project” on page 1337

About this task

Procedure

To edit the pattern specification, complete the following steps.
1. Open the Projects section of the Broker Development view.
2. Expand your pattern authoring project, and expand Pattern Specification.
3. Right-click overview.htm and select Open With > HTML Editor. The default

user-defined pattern specification is shown in the HTML editor.
4. Edit the content of the pattern specification in the HTML editor. The default

specification contains example links to suggested HTML files. To ensure that
these links work correctly, you must create the required files and edit the links
in the default specification. If you do not require these additional pages, delete
the example links from the default specification.

5. To save the changes, click File > Save.
6. To view the updated pattern specification, click the Categories tab of the

Pattern Authoring editor.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.

Defining the target properties:

Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.

Before you begin

Before you start:

Create the pattern authoring project and select the source files. For information
about creating a pattern authoring project, see “Creating a pattern authoring
project” on page 1337. For information about selecting the source files, see
“Selecting the source files to use for a user-defined pattern” on page 1338.

Procedure

To identify the target properties that you want to use in the workspace project:

1342 WebSphere Message Broker Version 7.0.0.8

1. In the Broker Development view, double-click the message flow that you want
to use.

2. Open the Select Target Properties window by completing one of the following
steps:
v To select a node property as a target property, in the Message Flow editor,

right-click the node that you want to use and click Pattern > Select Target
Properties.

v To select a user-defined property as a target property, in the Message Flow
editor, right-click the canvas and click Pattern > Select Target Properties.

3. In the Select Target Properties window, select the target properties that you
want to use in the pattern.

4. Close the Select Target Properties window.
5. Save the message flow.

Results

The selected target properties are displayed in the Target Properties panel of the
Source Files tab in the Pattern Authoring editor.

What to do next

Next:

Define the user interface; see “Defining the user interface.”
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Defining the user interface:

To control how pattern users view and edit pattern parameters in the Pattern
Instance editor after the pattern user has created an instance of a user-defined
pattern, you must define the user interface.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342

Chapter 9. Developing message flow applications 1343

About this task

When a pattern user creates an instance of a user-defined pattern, the parameter
groups and pattern parameters that are defined in the Pattern Configuration tab of
the Pattern Authoring editor are displayed in the Pattern Instance editor. If the
Pattern Configuration tab displays groups or parameters that you do not want in
the final pattern, you must delete them from the Pattern Configuration tab before
building the pattern plug-ins.

To define the user interface, open the Pattern Configuration tab of the Pattern
Authoring editor. In the Groups and Parameters list, entries are shown in a
hierarchy in which groups contain pattern parameters, and pattern parameters
contain target properties.

Procedure

To define the user interface, choose one or more of the following options:
1. You can define the groups in which pattern parameters are displayed and

assign target properties to pattern parameters:
a. To define the groups in which pattern parameters are displayed in the

Pattern Instance editor, drag pattern parameters to groups. To add new
groups or edit existing groups, see “Adding and editing parameter groups”
on page 1345. To control whether parameter groups are enabled by using
XPath expressions, see “Enabling parameter groups” on page 1347.

b. To assign target properties to pattern parameters, drag target properties to
pattern parameters. If the target property and pattern parameter do not use
a compatible editor, an error message is displayed; see step 5 on page 1345
to change the parameter editor. If you drag multiple target properties to one
pattern parameter, all target properties in that pattern parameter are
populated with the same value that is entered for the pattern parameter by
the pattern user.

2. To add a new pattern parameter, click Add Parameter, and click OK. To
configure the new parameter, see steps 4 and 5 on page 1345.

3. To remove a pattern parameter or parameter group, select the pattern
parameter or parameter group to remove and click Delete.
v To remove a parameter group it must have no pattern parameters assigned

to it.
v To remove a pattern parameter it must have no target properties assigned to

it. To remove a target property so that you can remove a pattern parameter,
clear the target property in the Message Flow editor of the Broker
Development view. For more information about defining target properties,
see “Defining the target properties” on page 1342. When you remove a target
property in the Message Flow editor, the associated pattern parameter and
parameter group are not automatically deleted in the Pattern Configuration
tab of the Pattern Authoring editor.

4. You can change the name of a pattern parameter, create help text, create a field
prompt, and configure parameter options in the Basic tab. In the Groups and
Parameters list, select the pattern parameter and click Edit, or double-click the
pattern parameter. The Edit Parameter window opens.
v To change the name of the pattern parameter, enter a name for the pattern

parameter in the Display Name field and click OK. The name for the pattern
parameter is changed to the new name.

1344 WebSphere Message Broker Version 7.0.0.8

v To change parameter options, select or clear the Hide the parameter,
Configure during deployment, and Mandatory parameter check boxes, as
required.

v To enter a field prompt, type a text into the Field prompt field.
v To provide help text for the pattern parameter, type the text in the Help Text

(HTML) field.
v To close the Edit Parameter window after you have completed your changes,

click OK.
5. You can change the parameter editor, and set a default value for a pattern

parameter in the Editor tab. In the Groups and Parameters list, select the
pattern parameter and click Edit, or double-click the pattern parameter. The
Edit Parameter window opens. Click the Editor tab.
v To change the parameter editor, select the required editor in the Parameter

editor list.
To use an enumerated type for the parameter, select Drop Down Selection in
the Parameter editor list, then select an enumerated type for the parameter
in the Type selection field. For more information, see “Using enumerated
values for pattern parameters” on page 1360.

v To enter a default value for a pattern parameter, if Parameter editor is Drop
Down Selection or Check Box, select a value from the Default value list.
Otherwise, enter a value in the Default value field.

v To close the Edit Parameter window after you have completed your changes,
click OK.

What to do next

Next:

You can build the pattern plug-ins, see “Building pattern plug-ins” on page 1395.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.

Adding and editing parameter groups:

Edit parameter groups to control how pattern parameters are displayed to pattern
users when they create pattern instances from a user-defined pattern.

Chapter 9. Developing message flow applications 1345

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342

About this task

After defining target properties, a default list of parameter groups is created. You
can edit the default groups or add new groups.

Procedure

v To add a new group:
1. In the Pattern Configuration tab of the Pattern Authoring editor, click Add

Group. The Add Group window opens.
2. Enter a display name for the group in the Display name field.
3. Enter a description for the group in the Description field.
4. The Generate help documentation check box is selected by default. If you

do not want to show the help documentation for the parameters in the
group, clear the Generate help documentation check box. To add help
documentation for pattern parameters, see “Defining the user interface” on
page 1343.

5. If you do not want the group to display with a surrounding box in the
Configure Pattern Parameters page, clear the Display parameters in a group
box check box. If a group is displayed in a group box, pattern users can
expand or collapse the group box to display or hide the parameters in that
group. Parameters in a group that is not shown in a group box are always
visible.

6. Click OK. The new group is shown in the Groups and Parameters list.
v To edit an existing group:

1. In the Pattern Configuration tab of the Pattern Authoring editor,
double-click the group name that you want to edit, or select the group name
and click Edit. The Edit Group window opens.

2. To change the display name, enter a display name for the group in the
Display name field.

3. To change the description, enter a description for the group in the
Description field.

4. If you want to show help documentation for the parameters in the group,
ensure the Generate help documentation check box is selected. To add help
documentation for pattern parameters, see “Defining the user interface” on
page 1343.

5. If you want the group to display with a surrounding box in the Configure
Pattern Parameters page, ensure the Display parameters in a group box
check box is selected. If a group is displayed in a group box, pattern users
can expand or collapse the group box to display or hide the parameters in
that group. Parameters in a group that is not shown in a group box are
always visible.

6. Click OK. The modified group is shown in the Groups and Parameters list.

1346 WebSphere Message Broker Version 7.0.0.8

What to do next

Next:

You can choose whether a parameter group is enabled based on the value of
pattern parameters; see “Enabling parameter groups.”
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Enabling parameter groups:

In a user-defined pattern, control whether parameter groups are enabled based on
the values of pattern parameters.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342

About this task

By default, when pattern users configure an instance of a user-defined pattern, all
the parameter groups that are defined in the user-defined pattern are enabled.
Enabled parameter groups and pattern parameters within those groups are visible
to pattern users in the Configure Parameters page. You can control whether a
parameter group in an instance of a user-defined pattern is enabled by using an
XPath expression:
v If the expression evaluates to Boolean true, the parameter group is enabled.

When a pattern user configures an instance of a user-defined pattern, the
parameter group and pattern parameters within that group are visible to pattern
users in the Configure Parameters page. The values of pattern parameters within
enabled parameter groups populate the target properties of the user-defined
pattern.

Chapter 9. Developing message flow applications 1347

v If the expression evaluates to Boolean false, the parameter group is disabled.
When a pattern user configures an instance of a user-defined pattern, the
parameter group is not shown to pattern users in the Configure Parameters
page. Pattern parameters within disabled groups are not shown to pattern users
and the values of those parameters do not populate the target properties in an
instance of the user-defined pattern.

If no XPath expression is entered for a parameter group, the parameter group is
enabled. For XPath reference information, including information about XPath
functions, see W3C XPath 1.0 Specification.

The pp:getValue() function is included, in addition to the functions in the XPath
1.0 Specification. The pp:getValue() function takes the parameter ID of a pattern
parameter and returns the value of that pattern parameter. To see the parameter ID
for a pattern parameter:
1. In the Pattern Configuration tab of the Pattern Authoring editor, double-click a

parameter group, or select a parameter group and click Edit. The Edit Group
window opens.

2. Click the Visibility tab. The parameter IDs for pattern parameters are shown in
the Parameter ID column of the Pattern Parameters table. To change parameter
IDs, see “Changing pattern parameter IDs” on page 1352.

Procedure

To control whether a pattern parameter group is enabled by using an XPath
expression:
1. In the Pattern Configuration tab of the Pattern Authoring editor, double-click

the parameter group that you want to control, or select the parameter group
and click Edit. The Edit Group window opens.

2. Click the Enable tab. Create an XPath expression for your chosen parameter
group:
v To select a function:

a. Expand Boolean, Number, Pattern, or String in the Functions section,
then click a function. The function is displayed in the Function name
field.

b. Click Use. The function is inserted into the Expression field at the cursor.
v To select an operator:

a. Click an operator in the Operators section. The operator is displayed in
the Operator field.

b. Click Use. The operator is inserted into the Expression field at the cursor.
v To select a pattern parameter:

a. Click a pattern parameter in the Pattern Parameters table. The parameter
ID shown in the Parameter ID column of the Pattern Parameters table for
the chosen parameter is displayed in the Parameter ID field.

b. Click Use. The parameter ID is inserted into the Expression field at the
cursor. To change parameter IDs, see “Changing pattern parameter IDs”
on page 1352.

v You can also edit the expression directly in the Expression field.
3. Repeat the actions in step 2, as required, to create your XPath expression.
4. You can now choose whether to test your expression:
v To test your expression, see “Testing a group enabling expression” on page

1349.

1348 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xpath

v To accept the expression without testing it, click OK. The Edit Group
window closes.

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Testing a group enabling expression”
In a user-defined pattern, test an XPath expression that is used for enabling
parameter groups.
“Changing pattern parameter IDs” on page 1352
Change default pattern parameter IDs to make it easier to write XPath, Java, and
PHP code that uses parameter IDs.

Testing a group enabling expression:

In a user-defined pattern, test an XPath expression that is used for enabling
parameter groups.

Before you begin

Before you can complete this task, you must have completed the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342
v “Enabling parameter groups” on page 1347

Procedure

To test your XPath expression:
1. If the Enable tab in the Edit Group window is not already open, complete the

following steps to open the tab:
a. In the Pattern Configuration tab of the Pattern Authoring editor, select the

parameter group containing the XPath expression that you want to test and
click Edit. The Edit Group window opens.

b. Click the Enable tab.
2. To test the expression, click Evaluate. The expression is evaluated by using the

values in the Test Values column of the Pattern Parameters section, and the
result is shown in the Result field. The result shows whether the parameter
group is enabled or disabled, and the value of the expression is shown in

Chapter 9. Developing message flow applications 1349

parentheses. If the value is true, the associated group is enabled; if the value is
false, the group is disabled. Use the following table to determine the value of
your XPath expression.

Result data
type Evaluates to true Evaluates to false

Boolean true false

Numeric Any non-zero value 0 or 0.0

String Any string that returns true with a match that
is not case-sensitive

Any string that does not return true with a match
that is not case-sensitive

3. To change the test value for a parameter, select the parameter in the Pattern
Parameters section and enter the required test value in the Test value field.
Click Set. The new test value is shown in the Pattern Parameters section.

4. Repeat steps 2 on page 1349 and 3, as required, to test the XPath expression. If
you want to modify the expression, see “Enabling parameter groups” on page
1347.

5. When you have finished testing the expression, click OK. The Edit Group
window closes.

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Enabling parameter groups” on page 1347
In a user-defined pattern, control whether parameter groups are enabled based on
the values of pattern parameters.

Creating and configuring categories:

Configure categories to which to assign user-defined patterns in the Patterns
Explorer view.

Before you begin

Before you start:

Complete the following task:
v “Creating a pattern authoring project” on page 1337

1350 WebSphere Message Broker Version 7.0.0.8

About this task

You can drag your user-defined pattern into any existing category, or you can
create a new category. If you create a category, you can write a category
specification that provides information about the category for other users.
User-defined patterns are shown within these categories in the Patterns Explorer
view.

Procedure

To create a new category, update the category specification, assign your pattern to
a category, rename a category, or remove a category, begin by opening the
Categories tab of the Pattern Authoring editor. You can now choose one or more of
the following options:
v To create a new category as a subcategory of an existing category:

1. Select an existing category.
2. Click Add Category. The Add Category window opens.
3. Enter the name of your new category and click OK. The new category is

added to the category list under the category previously selected. The Save
Your Pattern File window opens, asking you to confirm whether you want to
save your patterns file. Click Yes.

v To edit the category specification for a category:
1. Double-click the category. The HTML editor opens containing the default

category specification.
2. Update the category specification to describe the category, and click File >

Save to save any changes.
v To assign your user-defined pattern to a category, drag your user-defined pattern

to your chosen category.
v To rename a category:

1. Click Rename Category. The Edit Category window opens.
2. Enter the new name, click OK. The Save Your Pattern File window opens,

asking you to confirm whether you want to save your patterns file.
v To remove a category, click Remove category. The Save Your Pattern File

window opens, asking you to confirm whether you want to save your patterns
file. Click Yes.

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Configuring SOAP nodes for user-defined patterns:

Configure the target properties on SOAPInput, SOAPRequest, and
SOAPAsyncRequest nodes by using a WSDL file.

Chapter 9. Developing message flow applications 1351

Before you begin

Before you can complete this task, you must have completed the following tasks:
v “Creating a pattern authoring project” on page 1337

Procedure

To configure target properties on SOAP nodes by using a WSDL file:
1. Select an exemplar that uses a SOAPInput, SOAPRequest, or

SOAPAsyncRequest node. See “Selecting the source files to use for a
user-defined pattern” on page 1338.

2. Define the target properties and ensure that the WSDL file name target property
is selected as a target property in the SOAPInput, SOAPRequest, or
SOAPAsyncRequest node. See “Defining the target properties” on page 1342.

What to do next

When the pattern user generates an instance of the user-defined pattern, the WSDL
file name is presented as a pattern parameter. After the pattern user inputs the
WSDL file name, the properties in the WSDL file are used to configure the SOAP
node target properties. Examples of WSDL properties are the port type, binding,
and service port values.

The target properties are configured with the first occurrence of each WSDL
property.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Changing pattern parameter IDs:

Change default pattern parameter IDs to make it easier to write XPath, Java, and
PHP code that uses parameter IDs.

Before you begin

Before you can complete this task, you must have completed the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342

1352 WebSphere Message Broker Version 7.0.0.8

About this task

Pattern parameter IDs uniquely identify pattern parameters. As a pattern author,
you use pattern parameter IDs when writing XPath expressions to transform or
enable pattern parameters, or when writing Java or PHP code to modify pattern
instances. Every pattern parameter in a user-defined pattern has a default pattern
parameter ID assigned, but you can change pattern parameter IDs from the default
values so that they are easier to identify in your code.

Procedure

To change pattern parameter IDs from the default values:
1. In the Pattern Configuration tab of the Pattern Authoring editor, double-click

the parameter for which you want to change the parameter ID, or select the
parameter and click Edit. The Edit Parameter window opens.

2. In the Parameter ID field of the Basic tab, enter your new parameter ID. The
new parameter ID can be made up of ASCII characters, but must start with a
non-numeric character.

3. Click OK. The Edit Parameter window closes.

What to do next

v To use the new parameter ID in an XPath expression to transform pattern
parameters, see “Transforming pattern parameters.”

v To use the new parameter ID in an XPath expression to enable pattern
parameters, see “Enabling pattern parameters” on page 1357.

v To use the new parameter ID in Java or PHP code to modify pattern instances,
see “Modifying pattern instances by using Java or PHP” on page 1364.

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Transforming pattern parameters:

Calculate a pattern parameter value from the values entered for other pattern
parameters.

Before you begin

Before you start:

Complete the following tasks:

Chapter 9. Developing message flow applications 1353

v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342

About this task

You can transform pattern parameters by using XPath expressions; for example, to
calculate a pattern parameter value from the values entered for other pattern
parameters. WebSphere Message Broker supports XPath 1.0. For XPath reference
information, including information about XPath functions, see W3C XPath 1.0
Specification.
v The pp:getValue() function is included, in addition to the functions in the XPath

1.0 Specification. The pp:getValue() function takes the parameter ID of a pattern
parameter and returns the value of that pattern parameter. To see the parameter
ID for a pattern parameter:
1. In the Pattern Configuration tab of the Pattern Authoring editor,

double-click a parameter, or select a parameter and click Edit. The Edit
Parameter window opens.

2. Click the Transform tab. The parameter IDs for pattern parameters are
shown in the Parameter ID column of the Pattern Parameters table.

v When a pattern instance is generated by a pattern user, transformation
expressions are processed before any Java and PHP code that has been added to
modify pattern instances. Transformation of pattern parameters is processed in
the following sequence:
1. Every parameter that has an XPath transformation expression is evaluated.
2. The value of each parameter that has an XPath transformation expression is

updated with the result of its evaluation, overwriting the value entered by
the pattern user.

3. The parameters are evaluated in top to bottom order, as they are listed in the
Pattern Configuration tab of the Pattern Authoring editor.

Procedure

To transform a pattern parameter by using an XPath expression:
1. In the Pattern Configuration tab of the Pattern Authoring editor, double-click

the parameter that you want to transform, or select the parameter and click
Edit. The Edit Parameter window opens.

2. Click the Transform tab. Create an XPath expression for your chosen
parameter:
v To select a function:

a. Expand Boolean, Number, Pattern, or String in the Functions section,
then click a function. The function is displayed in the Function name
field.

b. Click Use. The function is inserted into the Expression field at the cursor.
v To select an operator:

a. Click an operator in the Operators section. The operator is displayed in
the Operator field.

b. Click Use. The operator is inserted into the Expression field at the cursor.
v To select a pattern parameter:

1354 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

a. Click a pattern parameter in the Pattern Parameters table. The parameter
ID shown in the Parameter ID column of the Pattern Parameters table for
the chosen parameter is displayed in the Parameter ID field.

b. Click Use. The parameter ID is inserted into the Expression field at the
cursor.

v You can also edit the expression directly in the Expression field.
3. Repeat the actions in step 2 on page 1354, as required, to create your XPath

expression.
4. You can now choose whether to test your expression:
v To test your expression, see “Testing a transformation expression.”
v To accept the expression without testing it, click OK. The Edit Parameter

window closes.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Changing pattern parameter IDs” on page 1352
Change default pattern parameter IDs to make it easier to write XPath, Java, and
PHP code that uses parameter IDs.
“Testing a transformation expression”
Test your XPath transformation expression created in a user-defined pattern to
check that it works correctly.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
Related reference:
“General industry standards supported by WebSphere Message Broker” on page
3607
WebSphere Message Broker supports general industry standards that are associated
with message processing.

Testing a transformation expression:

Test your XPath transformation expression created in a user-defined pattern to
check that it works correctly.

Chapter 9. Developing message flow applications 1355

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342
v “Transforming pattern parameters” on page 1353

Procedure

To test your XPath expression:
1. If the Transform tab in the Edit Parameter window is not already open,

complete the following steps to open the tab:
a. In the Pattern Configuration tab of the Pattern Authoring editor,

double-click the parameter containing the XPath expression that you want
to test, or select the parameter and click Edit. The Edit Parameter window
opens.

b. Click the Transform tab.
2. To change the test value for a parameter, select the parameter in the Pattern

Parameters section and enter the required test value in the Test value field.
Click Set. The new test value is shown in the Pattern Parameters section.

3. To test the expression, click Evaluate. The expression is evaluated by using the
values in the Test Values column of the Pattern Parameters section and the
result is shown in the Result field. If the expression is not valid an error
message is displayed in the Result field.

4. Repeat steps 2 and 3, as required, to test the XPath expression. If you want to
modify the expression, see “Transforming pattern parameters” on page 1353.

5. When you have finished testing the expression, click OK. The Edit Parameter
window closes.

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Transforming pattern parameters” on page 1353
Calculate a pattern parameter value from the values entered for other pattern
parameters.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

1356 WebSphere Message Broker Version 7.0.0.8

Enabling pattern parameters:

You can control whether pattern parameters can be edited by pattern users based
on the values of other pattern parameters.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342

About this task

By using XPath expressions you can control whether pattern users can edit pattern
parameters in the Pattern Instance editor . If an expression evaluates to Boolean
true, the pattern user can configure the parameter in the Configure Pattern
Parameters page; if an expression evaluates to Boolean false, the parameter is
read-only, and the pattern user cannot configure it. When the pattern user
configures pattern parameters, expressions are evaluated whenever any of the
pattern parameters used in an expression change.

WebSphere Message Broker supports XPath 1.0. For XPath reference information,
including information about XPath functions, see W3C XPath 1.0 Specification.

The pp:getValue() function is included, in addition to the functions in the XPath
1.0 Specification. The pp:getValue() function takes the parameter ID of a pattern
parameter and returns the value of that pattern parameter. To see the parameter ID
for a pattern parameter:
1. In the Pattern Configuration tab of the Pattern Authoring editor, double-click a

parameter, or select a parameter and click Edit. The Edit Parameter window
opens.

2. Click the Enable tab. The parameter IDs for pattern parameters are shown in
the Parameter ID column of the Pattern Parameters table.

Procedure

To define an XPath expression to control whether a pattern parameter can be
edited:
1. In the Pattern Configuration tab of the Pattern Authoring editor, select the

parameter that you want to configure. Click Edit. The Edit Parameter window
opens.

2. Click the Enable tab. Create an XPath expression for your selected parameter
by applying the following operations as required:
v To select a function:

a. Click a function in the Functions section. The function is displayed in the
Function name field.

b. Click Use. The function is inserted into the Expression field at the cursor.
v To select an operator:

a. Click an operator in the Operators section. The operator is displayed in
the Operator field.

Chapter 9. Developing message flow applications 1357

http://www.w3.org/TR/xpath

b. Click Use. The operator is inserted into the Expression field at the cursor.
v To select a pattern parameter:

a. Click a pattern parameter in the Pattern Parameters table. The ID shown
in the Parameter ID column of the Pattern Parameters table for the
selected parameter is displayed in the Parameter ID field.

b. Click Use. The parameter ID is inserted into the Expression field at the
cursor.

v You can also edit the expression directly in the Expression field.
A common requirement is for a pattern parameter to be read-only. To ensure
that a pattern parameter is read-only, set the XPath expression for the pattern
parameter to false().

3. You can now choose whether to test your expression:
v To test your expression, see “Testing an enabling expression.”
v To accept the expression without testing it, click OK. The Edit Parameter

window closes.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Changing pattern parameter IDs” on page 1352
Change default pattern parameter IDs to make it easier to write XPath, Java, and
PHP code that uses parameter IDs.
“Testing an enabling expression”
Test an XPath enabling expression that you created in a user-defined pattern to
check that it works correctly.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
Related reference:
“General industry standards supported by WebSphere Message Broker” on page
3607
WebSphere Message Broker supports general industry standards that are associated
with message processing.

Testing an enabling expression:

Test an XPath enabling expression that you created in a user-defined pattern to
check that it works correctly.

1358 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342
v “Enabling pattern parameters” on page 1357

Procedure

To test your XPath expression:
1. If the Enable tab in the Edit Parameter window is not already open, complete

the following steps to open the tab:
a. In the Pattern Configuration tab of the Pattern Authoring editor, select the

parameter containing the XPath expression that you want to test and click
Edit. The Edit Parameter window opens.

b. Click the Enable tab.
2. To test the expression, click Evaluate. The expression is evaluated by using the

values in the Test Values column of the Pattern Parameters section, and the
result is shown in the Result field. The result shows whether the parameter is
enabled or disabled, and the value of the expression is shown in parentheses. If
the value is true, the associated parameter is enabled; if the value is false, the
parameter is disabled. Use the following table to determine the value of your
XPath expression.

Result data
type Evaluates to True Evaluates to False

Boolean true false

Numeric Any non-zero value 0 or 0.0

String Any string that returns true with a match that
is not case-sensitive

Any string that does not return true with a match
that is not case-sensitive

3. To change the test value for a parameter, select the parameter in the Pattern
Parameters section and enter the required test value in the Test value field.
Click Set. The new test value is shown in the Pattern Parameters section.

4. Repeat steps 2 and 3, as required, to test the XPath expression. If you want to
modify the expression, see “Enabling pattern parameters” on page 1357.

5. When you have finished testing the expression, click OK. The Edit Parameter
window closes.

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.

Chapter 9. Developing message flow applications 1359

“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Enabling pattern parameters” on page 1357
You can control whether pattern parameters can be edited by pattern users based
on the values of other pattern parameters.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Using enumerated values for pattern parameters:

Use enumerated types to provide predefined values for the pattern parameters in
your user-defined patterns.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342

About this task

You can use enumerated types to provide pattern users with a predefined list of
pattern parameter values to select from. For enumerated types that you create, you
can add, remove, and edit values. As part of the pattern authoring process, any
target properties that use a list of values have enumerated types created for them
automatically. You can remove values from this automatically generated list, but
you cannot add new values or change existing values.

Procedure

v Create your own enumerated types. See “Creating enumerated types for pattern
parameters” on page 1361.

v Edit enumerated types. See “Editing enumerated types for pattern parameters”
on page 1362.

v Assign enumerated types to pattern parameters. See “Defining the user
interface” on page 1343.

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the

1360 WebSphere Message Broker Version 7.0.0.8

pattern interface and pattern users can modify the pattern parameters.

Creating enumerated types for pattern parameters:

Define enumerated types to provide predefined values for pattern parameters in
your user-defined patterns.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342

About this task

Enumerated types give pattern users a predefined list of values to select from
when they choose values for pattern parameters after generating a new pattern
instance.

Procedure

To create a new enumerated type:
1. In the Pattern Authoring editor, click the Pattern Configuration tab. Click

Enumerated Types. The Configure Enumerated Types window opens.
2. Click the Add button that is under the Enumerated type field. The Enter New

Enumeration window opens.
3. Enter a name for the enumeration in the Enter a name for the enumeration

field. Click OK. The new enumeration is displayed in the table of values, and a
display name and default value are entered in the table.

4. For manipulating values, either adding or editing, use the following options:
v To add a new value, click the Add button that is next to the table of values.

A new display name and value are added to the table.
v To edit a display name or value, double-click the display name or value in

the table. Type a new entry and then press Enter to save the new display
name or value.

5. When you have finished adding values and editing display names and values,
click OK. The Configure Enumerated Types window closes.

What to do next

Next:

You can now assign your enumerated type to a pattern parameter, see “Defining
the user interface” on page 1343.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:

Chapter 9. Developing message flow applications 1361

“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Editing enumerated types for pattern parameters:

Edit enumerated types to add, remove or rename values in existing enumerated
types, or to rename an enumerated type. You can edit an existing user-generated
enumerated type to add, remove, or change values and display names within the
enumerated type, or to change the name of the enumerated type.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Defining the target properties” on page 1342
v “Creating enumerated types for pattern parameters” on page 1361

About this task

As part of the pattern authoring process, target properties that use a list of values
have enumerated types automatically created for them. You can remove values
from this automatically generated list or regenerate the original list of values, but
you cannot add new values or edit existing values.

You can duplicate or remove user-generated enumerated types and enumerated
types created from target properties.

For enumerated types that you create, you can add, remove, and edit values.

Procedure

To edit enumerated types:
1. In the Pattern Authoring editor, click the Pattern Configuration tab. Click

Enumerated Types. The Configure Enumerated Types window opens.
2. In the Enumerated type field, select the enumerated type to edit.
3. You can make the following changes to user-generated enumerated types:
v Rename the enumerated type. To rename the enumerated type, click

Rename. The Rename Enumeration window opens. Enter a name for the
enumeration and click OK. The Rename Enumeration window closes.

v Add new values. To add a new value, click the Add button that is next to
the table of values. A new value and display name are added to the table.

1362 WebSphere Message Broker Version 7.0.0.8

v Remove values. To remove a value, select the value to remove and click the
Remove button that is next to the table of values. The value is removed from
the table.
If a value is the only entry in the table, you cannot remove it.

v Change existing values and display names. To edit a value or display name,
double-click the value or display name in the table. Type a new entry and
then press Enter to save the new display name or value.

v Duplicate the enumerated type. To duplicate an enumerated type, click
Duplicate. The duplicate enumerated type is displayed. The name of the
duplicate enumerated type is the same as the original, but with _1 added to
the end.

v Remove the enumerated type. To remove an enumerated type, click Remove.
The enumerated type is removed.
If an enumerated type is being used by a pattern parameter it cannot be
removed. You can check if an enumerated type is being used by a parameter
in the This enumerated type is used by the following parameter field. To
modify a parameter so that it does not use an enumerated type, see
“Defining the user interface” on page 1343.

4. You can make the following changes to enumerated types that are created from
target properties:
v Rename the enumerated type. To rename the enumerated type, click

Rename. The Rename Enumeration window opens. Enter a name for the
enumeration and click OK. The Rename Enumeration window closes.

v Remove values. To remove a value, select the value to remove and click the
Remove button that is next to the table of values. The value is removed from
the table.
If a value is the only entry in the table, you cannot remove it.

v Reset the original values. To restore values you have removed from the list,
click Reset Values. The original list is displayed.

v Duplicate the enumerated type. To duplicate an enumerated type, click
Duplicate. The duplicate enumerated type is displayed. The name of the
duplicate enumerated type is the same as the original, but with _1 added to
the end.

v Remove the enumerated type. To remove an enumerated type, click Remove.
The enumerated type is removed.
If an enumerated type is being used by a pattern parameter it cannot be
removed. You can see if an enumerated type is being used by a parameter in
the This enumerated type is used by the following parameter field. To
modify a parameter so that it does not use an enumerated type, see
“Defining the user interface” on page 1343.

5. Repeat the tasks in steps 3 on page 1362 and 4 until your changes are complete.
Click OK. The Configure Enumerated Types window closes.

What to do next

Next:

You can now build your pattern; see “Building pattern plug-ins” on page 1395.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.

Chapter 9. Developing message flow applications 1363

Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Modifying pattern instances by using Java or PHP:

Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.

When you author user-defined patterns, you can include Java or PHP code to
modify pattern instances. This code is run when the pattern user generates an
instance of a user-defined pattern and can be used to carry out a number of actions
on the pattern.

By using the Java API, you can access all the nodes, connections, and pattern
parameters in a user-defined pattern. Examples of changes that you can make by
using Java code are:
v Adding, removing, and copying nodes
v Changing connections between nodes
v Renaming nodes
v Changing pattern parameter values and user-defined property values
v Renaming message flows

By using the PHP API for user-defined patterns, you can access the pattern
parameters and the pattern instance name of a user-defined pattern. Examples of
changes that you can make by using PHP code are:
v Marking up ESQL files to change the operation of the ESQL file depending on

the value of pattern parameters
v Taking values from an XML file and using them as pattern parameters
v Changing pattern parameter values
v Renaming message flows
v Running other PHP scripts or Java code

Do not use Java or PHP API code to set the WSDL file name property, or any of the
properties set by the WSDL file, on a SOAPInput, SOAPRequest, or
SOAPAsyncRequest node in your user-defined pattern. To set the WSDL file name
property, see “Configuring SOAP nodes for user-defined patterns” on page 1351.
To modify other properties on these nodes, select the properties as target properties
when you create your user-defined pattern. To select target properties, see
“Defining the target properties” on page 1342.

1364 WebSphere Message Broker Version 7.0.0.8

Choosing between Java and PHP

WebSphere Message Broker contains a Java to PHP bridge, therefore you can
complete some pattern authoring tasks by using either Java or PHP. You can
choose which language to use based on the existing skills, assets, or libraries
within your organization. The WebSphere Message Broker Toolkit includes code
completion and a debugger for Java, which make Java a good choice for longer or
more complex code. PHP written in the WebSphere Message Broker Toolkit can be
changed and tested without relaunching the workbench, which makes PHP a good
choice if you want to change your code and view the results quickly. If you do not
have a preference between Java and PHP after considering the skills and assets of
your organization and the testing approach, use Java for changes to the structure
of the message flow and use PHP to modify text files.

Plug-in packaging

The code you write to modify pattern instances is contained in a separate plug-in
from the user-defined pattern. When you create a pattern archive, your code
plug-ins are automatically packaged with the generated pattern plug-ins. For more
information about packaging user-defined patterns, see “Packaging and
distributing pattern plug-ins” on page 1397.

Sequence of actions when a pattern user generates a pattern instance

When a pattern user generates an instance of a user-defined pattern, the following
actions occur in sequence:
1. The pattern instance projects are created and all non-message flow files are

copied into the workspace.
2. The message flows in the pattern plug-ins are loaded into memory.
3. Pattern parameters that are transformed by using XPath expressions are

evaluated. If a pattern parameter is disabled by using an XPath expression, its
parameter values are not changed. All target properties are set in all message
flows within the user-defined pattern based on pattern parameter values.

4. The Java and PHP code targets are run in top-to-bottom order as they are listed
in the Pattern Authoring editor.

5. The message flows are saved into the pattern instance projects.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Examples of Java API code” on page 1369
Use the following examples of Java API code for common tasks to help you write
your own Java code to modify pattern instances.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
“Modifying pattern instances by using PHP” on page 1389
Add PHP code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.

Chapter 9. Developing message flow applications 1365

“Examples of PHP API code” on page 1390
Use the following examples of PHP API code for common tasks to help you write
your own PHP code to modify pattern instances.
“Testing PHP API code” on page 1394
After writing PHP code to modify pattern instances, test the code to check that it
works correctly.

Creating a code plug-in project:

Create a Java and PHP plug-in project to contain pattern instance modification
code.

Before you begin

Before you can complete this task, you must have completed the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338

About this task

You must create a code plug-in project to contain the Java and PHP pattern
instance modification code that you write. You can distribute the Java and PHP
code plug-in project in the pattern archive for the associated user-defined pattern
to pattern users. See “Packaging and distributing pattern plug-ins” on page 1397.

Procedure

To create a Java and PHP code plug-in project:
1. Open the Pattern Configuration tab of the Pattern Authoring editor.
2. Click Add. The Add Java or PHP Code window opens.
3. Click New Project. The New Pattern Authoring Java and PHP Project window

opens.
4. Enter a plug-in ID for the new code plug-in. After the plug-in is created, the

plug-in ID is shown in the Projects section of the Broker Development view.
The plug-in ID is also used to identify the plug-in when you distribute it to
pattern users.

5. Optional: If you want to include PHP code in the code plug-in, select Add PHP
support to the project. If you select this option a main.php template and
example PHP scripts are added to the code plug-in.

6. Optional: If you want to include a Java class in the code plug-in, complete the
following steps:
a. Select Add an example pattern authoring Java class to the project.
b. Enter a package name for the Java class in the Package name field.
c. Enter a class name for the Java class in the Class name field.

7. Click Finish. The New Pattern Authoring Java and PHP Project window closes.
8. You can now add Java or PHP code to a user-defined pattern:
v To add Java code to a user-defined pattern, see “Modifying pattern instances

by using the Java API” on page 1367.
v To add PHP code to a user-defined pattern, see “Modifying pattern instances

by using PHP” on page 1389.
v To return to pattern authoring without adding code, in the Add Java or PHP

Code window, click Cancel.

1366 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Modifying pattern instances by using the Java API”
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Modifying pattern instances by using PHP” on page 1389
Add PHP code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.

Modifying pattern instances by using the Java API:

Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.

Before you begin

Before you can complete this task, you must have completed the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Creating a code plug-in project” on page 1366

About this task

You can add Java code to a code plug-in project so that it runs when a pattern
instance is generated. To add the Java code, select the Java class that you want to
run.

The Java class you select can be created in the following ways:
v If you added a Java class when you created the code plug-in, then a template

Java class is created and added to the project. This class is based on the Pattern
Authoring Class template and contains the basic structure required to function
correctly.

v When you follow the steps in this topic to select a Java class, you can optionally
create a new Java class. A class created in this way is based on the Pattern
Authoring Class template and contains the basic structure required to function
correctly.

v You can write your own Java class. This class must implement the
GeneratePatternInstanceTransform interface.

Chapter 9. Developing message flow applications 1367

Regardless of how the class is created, you must add your own code within the
class to complete the steps you require when the pattern instance is generated. For
examples of Java API code for completing common tasks, see “Examples of Java
API code” on page 1369. For reference information about the Java API, see “Java
API for user-defined patterns” on page 5345.

Procedure

To select a Java class to run when a pattern instance is generated:
1. If the Add Java or PHP Code window is not open, in the Pattern

Configuration tab of the Pattern Authoring editor, click Add. The Add Java or
PHP Code window opens.

2. In the Type of code list, select Java.
3. In the Class name list, select the name of the class that you want to run when a

pattern instance is generated. A class is shown in the Class name list if it is in
the current workspace and if it implements the
GeneratePatternInstanceTransform interface.

4. Optional: You can create a new Java class:
a. Click New Java Class. The New Pattern Authoring Java Class window

opens.
b. In the Source folder field, click Browse and select the folder in which to

store the new Java class file.
c. Optional: In the Package field, enter the name of the Java package for the

new class. If you leave this field blank, the default package is used.
d. Optional: Select Enclosing type and enter an enclosing type in the

Enclosing type field.
e. Enter a name for the new Java class in the Name field.
f. Optional: Change the Superclass for the new Java class in the Superclass

field.
g. Optional: To add an interface for the new Java class, click Add. The

Implemented Interfaces Selection window opens. In the Choose interfaces
field, enter the name of the interface that you want to add, select the
interface in the Matching items list and click OK. The Implemented
Interfaces Selection window closes.

h. Optional: To remove an interface for the Java class, select the interface in the
Interfaces list and click Remove.

i. Optional: Click Next to view information about the Pattern Authoring Class
template, which is used to create the Java class.

j. Click Finish.
5. Click OK. The Add Java or PHP Code window closes and the Java class is

shown in the Java and PHP Code section of the Pattern Configuration tab.
6. Optional: The Java and PHP code listed in the Java and PHP Code section of

the Pattern Configuration tab runs from top to bottom when a pattern instance
is generated. To change the order in which the code is run, select the entry you
want to move in the Java and PHP Code section and click the Up or Down
button to change the position of the entry in the list.

What to do next

In the Java class that you selected to run when the pattern instance is generated,
you must now write the code to perform the steps you require. For examples of
Java API code for completing common tasks, see “Examples of Java API code” on
page 1369

1368 WebSphere Message Broker Version 7.0.0.8

page 1367 For reference information about the Java API, see “Java API for
user-defined patterns” on page 5345. For information about the Java development
views and editors within the WebSphere Message Broker Toolkit, see Java
Development User Guide plug-in - Views and Editors.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
“Examples of Java API code”
Use the following examples of Java API code for common tasks to help you write
your own Java code to modify pattern instances.

Examples of Java API code:

Use the following examples of Java API code for common tasks to help you write
your own Java code to modify pattern instances.

About this task

The following list shows examples of Java code that you can use to complete
common tasks when you are creating user-defined patterns:

Procedure

v “Loading an existing message flow into memory” on page 1370
v “Renaming a node” on page 1371
v “Adding a node and a subflow node” on page 1372
v “Setting the position of a node” on page 1373
v “Copying a node” on page 1374
v “Removing a node” on page 1375
v “Adding connections between nodes” on page 1376
v “Adding and connecting user-defined nodes” on page 1378
v “Removing connections between nodes” on page 1380
v “Changing pattern parameter values” on page 1381
v “Creating or changing user-defined properties” on page 1381

Chapter 9. Developing message flow applications 1369

v “Creating ESQL modules” on page 1382
v “Renaming a message flow” on page 1384
v “Running PHP code using the Java API” on page 1385
v “Updating filter tables on Route nodes” on page 1386

What to do next

Next:

After creating your Java code, test it to check that it works correctly; see “Testing
Java code” on page 1387.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Loading an existing message flow into memory:

Use the Java API to modify a pattern instance to load a message flow into memory
and make it available to other Java API methods.

About this task

You must load a message flow into memory to use it with Java API methods
within your Java code. To load a message flow into memory, use the
getMessageFlow() method of the PatternInstanceManager object, which is
automatically passed to your Java code. The getMessageFlow() method takes the
message flow project containing the required message flow file and the relative
path to the message flow file from this project.

Procedure

v For example, to load a message flow that is in the default schema:
public class MyJava implements GeneratePatternInstanceTransform {

public void onGeneratePatternInstance(PatternInstanceManager patternInstanceManager) {
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
if (mf1 != null) {

// Message flow was found
}
else {

1370 WebSphere Message Broker Version 7.0.0.8

// Message flow was not found
}

}
}

v The following example shows how to load a message flow that is in the mqsi
schema:
public class MyJava implements GeneratePatternInstanceTransform {

public void onGeneratePatternInstance(PatternInstanceManager patternInstanceManager) {
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "mqsi/main.msgflow");
if (mf1 != null) {

// Message flow was found
}
else {

// Message flow was not found
}

}
}

Results

Result:

You can now refer to the instance of the MessageFlow object in your Java code.
Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Renaming a message flow” on page 1384
Use the Java API to modify a pattern instance to rename message flows.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Renaming a node:

Use Java API code to modify a pattern instance to rename a node in a message
flow.

About this task

To rename a node, you must first access the required node. You can access the
node by using the existing name of the node and the getNodeByName() method.
You can then rename the node by using the setNodeName() method, which takes
the new node name as a parameter. For example:

Chapter 9. Developing message flow applications 1371

Example
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
Node mqinNode = mf1.getNodeByName("My Input Node");
mqinNode.setNodeName("New Input Node");

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Adding a node and a subflow node”
Use the Java API to modify a pattern instance to add a new node or subflow node
to a message flow.
“Renaming a message flow” on page 1384
Use the Java API to modify a pattern instance to rename message flows.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Adding a node and a subflow node:

Use the Java API to modify a pattern instance to add a new node or subflow node
to a message flow.

About this task

You can add a new built-in node, or a new subflow node to a message flow.
v When you add a subflow node by using the Java API, you must link the

subflow node with the subflow message flow by using the setSubFlow() method
of the subflow node object. For example, if you have assigned your subflow
message flow to message flow instance sub1 and you have assigned your
subflow node to subflow node instance sfNode, you must use the following
statement to link the subflow node with the subflow message flow:
sfNode.setSubFlow(sub1);

Procedure

v The following example shows you how to add a new built-in node:
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
MQInputNode mqinNode = new MQInputNode();
mqinNode.setNodeName("My Input Node");
mqinNode.setQueueName("INPUTQ");
mf1.addNode(mqinNode);

v The following example shows you how to add a new subflow node to a
message flow:
1. A new subflow node is created and assigned to object sfNode.
2. The subflow node name is set to My Sub Flow Node.

1372 WebSphere Message Broker Version 7.0.0.8

3. The subflow node is linked to the subflow message flow by using the
setSubFlow() method.

4. The new subflow node is added to the message flow held in object mf1.
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
MessageFlow sub1 = patternInstanceManager.getMessageFlow("MyFlowProject", "subflow.msgflow");
SubFlowNode sfNode = new SubFlowNode();
sfNode.setNodeName("My Sub Flow Node");
sfNode.setSubFlow(sub1);
mf1.addNode(sfNode);

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Renaming a node” on page 1371
Use Java API code to modify a pattern instance to rename a node in a message
flow.
“Setting the position of a node”
Use the Java API to modify a pattern instance to set the position of a node on the
canvas in the Broker Development view.
“Copying a node” on page 1374
Use the Java API to modify a pattern instance to copy a node or subflow node to a
message flow.
“Removing a node” on page 1375
Use the Java API to modify a pattern instance to remove a node from a message
flow.
“Adding connections between nodes” on page 1376
Use the Java API to modify a pattern instance to add connections between nodes.
“Adding and connecting user-defined nodes” on page 1378
Use the Java API to modify a pattern instance to add user-defined nodes and to
connect user-defined nodes to other nodes.
“Removing connections between nodes” on page 1380
Use the Java API to modify a pattern instance to remove connections between
nodes.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Setting the position of a node:

Use the Java API to modify a pattern instance to set the position of a node on the
canvas in the Broker Development view.

Chapter 9. Developing message flow applications 1373

About this task

You can set the position of a node on the canvas by using the setLocation() method
of the node object. The following example sets the position of a new MQOutput
node to coordinates x=300 pixels, y=100 pixels:

Example
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
MQOutputNode mqoutNode = new MQOutputNode();
mqoutNode.setLocation(300, 100);

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Adding a node and a subflow node” on page 1372
Use the Java API to modify a pattern instance to add a new node or subflow node
to a message flow.
“Copying a node”
Use the Java API to modify a pattern instance to copy a node or subflow node to a
message flow.
“Removing a node” on page 1375
Use the Java API to modify a pattern instance to remove a node from a message
flow.
“Renaming a message flow” on page 1384
Use the Java API to modify a pattern instance to rename message flows.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Copying a node:

Use the Java API to modify a pattern instance to copy a node or subflow node to a
message flow.

About this task

You can copy a built-in or subflow node by using the clone() method. In the
following example, a new MQInput node mqinNode is created and properties on
the node are set. A new MQInput node mqinNode1 is then created by copying
mqinNode by using the clone() method. When the node is copied, the node
properties are also copied:

1374 WebSphere Message Broker Version 7.0.0.8

Example
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
MQInputNode mqinNode = new MQInputNode();
mqinNode.setNodeName("My Input Node");
mqinNode.setQueueName("INPUTQ");
MQInputNode mqinNode1 = (MQInputNode) mqinNode.clone();
mqinNode1.setNodeName("Copy of My Input Node");
mf1.addNode(mqinNode1);

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Renaming a node” on page 1371
Use Java API code to modify a pattern instance to rename a node in a message
flow.
“Adding a node and a subflow node” on page 1372
Use the Java API to modify a pattern instance to add a new node or subflow node
to a message flow.
“Setting the position of a node” on page 1373
Use the Java API to modify a pattern instance to set the position of a node on the
canvas in the Broker Development view.
“Removing a node”
Use the Java API to modify a pattern instance to remove a node from a message
flow.
“Adding connections between nodes” on page 1376
Use the Java API to modify a pattern instance to add connections between nodes.
“Adding and connecting user-defined nodes” on page 1378
Use the Java API to modify a pattern instance to add user-defined nodes and to
connect user-defined nodes to other nodes.
“Removing connections between nodes” on page 1380
Use the Java API to modify a pattern instance to remove connections between
nodes.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Removing a node:

Use the Java API to modify a pattern instance to remove a node from a message
flow.

Chapter 9. Developing message flow applications 1375

About this task

To remove a node you must first get the required node from the message flow
object. In the following example, the getNodeByName() method is used to get the
required node from message flow object mf1. The node is then removed by using
the removeNode() method. When a node is removed, any connections to or from
the node are also removed:

Example
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
Node mqinNode = mf1.getNodeByName("My Input Node");
mf1.removeNode(mqinNode);

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Adding a node and a subflow node” on page 1372
Use the Java API to modify a pattern instance to add a new node or subflow node
to a message flow.
“Removing connections between nodes” on page 1380
Use the Java API to modify a pattern instance to remove connections between
nodes.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Adding connections between nodes:

Use the Java API to modify a pattern instance to add connections between nodes.

About this task

You can connect both subflow and built-in nodes using the Java API. The first
example shows you how to connect two built-in nodes. The second example shows
you how to connect a built-in node to a subflow node.

To use the terminals of a subflow node, you must link the subflow node with the
subflow message flow by using the setSubFlow() method of the subflow node
object. For example, if you have assigned your subflow message flow to message
flow instance sub1 and you have assigned your subflow node to subflow node
instance sfNode, you must use the following statement to link the subflow node
with the subflow message flow:
sfNode.setSubFlow(sub1);

1376 WebSphere Message Broker Version 7.0.0.8

Procedure

v The following example shows you how to connect two built-in nodes:
1. A MQInput node and a Collector node are created.
2. The getInputTerminal() method is used to create a dynamic Input terminal

called NEWIN on the Collector node.
3. The Input terminal is connected to the Output terminal of the MQInput node

by using the connect() method of the message flow object mf1.
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
MQInputNode mqinNode = new MQInputNode();
mqinNode.setNodeName("My Input Node");
mqinNode.setQueueName("INPUTQ");
CollectorNode colNode = new CollectorNode();
colNode.getInputTerminal("NEWIN");
mf1.connect(mqinNode.OUTPUT_TERMINAL_OUT, colNode.getInputTerminal("NEWIN"));

To use a static terminal on a node you must use the appropriate constant
defined for it in the API. These constants are listed in the Java API reference, see
“Java API for user-defined patterns” on page 5345.

v The following example shows you how to connect a subflow node to a built-in
node. You must load the subflow message flow and link it to a subflow node.
You must use the getInputTerminal(), getInputTerminals(), getOutputTerminal()
or getOutputTerminals() method to access the terminal on the subflow node to
which you want to connect. The example code completes the following steps:
1. The main message flow, main.msgflow, and a Compute node in the main

message flow are loaded into memory.
2. The subflow message flow, subflow.msgflow, and the subflow node in the

main message flow are loaded into memory.
3. The setSubFlow() method of the subflow node is used to link the subflow

message flow sub1 to the subflow node sfNode.
4. The getOutputTerminal() method is used to get the Process terminal of the

subflow node. The connect() method of the message flow object is used to
connect this terminal to the Input terminal of the Compute node.

MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
ComputeNode compNode = (ComputeNode)mf1.getNodeByName("My Compute Node");
MessageFlow sub1 = patternInstanceManager.getMessageFlow("MyFlowProject", "subflow.msgflow");
SubFlowNode sfNode = (SubFlowNode)mf1.getNodeByName("My Subflow Node");
sfNode.setSubFlow(sub1);
mf1.connect(sfNode.getOutputTerminal("Process"), compNode.INPUT_TERMINAL_IN);

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Adding a node and a subflow node” on page 1372
Use the Java API to modify a pattern instance to add a new node or subflow node
to a message flow.
“Setting the position of a node” on page 1373
Use the Java API to modify a pattern instance to set the position of a node on the
canvas in the Broker Development view.

Chapter 9. Developing message flow applications 1377

“Adding and connecting user-defined nodes”
Use the Java API to modify a pattern instance to add user-defined nodes and to
connect user-defined nodes to other nodes.
“Removing connections between nodes” on page 1380
Use the Java API to modify a pattern instance to remove connections between
nodes.
“Renaming a message flow” on page 1384
Use the Java API to modify a pattern instance to rename message flows.
“Running PHP code using the Java API” on page 1385
Use the Java API to modify a pattern instance to run PHP scripts from within your
Java code.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Adding and connecting user-defined nodes:

Use the Java API to modify a pattern instance to add user-defined nodes and to
connect user-defined nodes to other nodes.

About this task

The code required to add and connect user-defined node is different to the code
required for built-in nodes and subflow nodes.

When you write Java code for user-defined nodes you must be aware of the
following information:
v User-defined nodes are supported by instances of the GenericNode class. To add

user-defined nodes to message flows, create instances of GenericNode and add
them to the message flow instance.

v To retrieve existing instances of a user-defined node, call getNodeByName() and
cast the returned object to a GenericNode object.

v The terminals defined on your user-defined nodes are not automatically
available in the Java API. If you create an instance of a GenericNode class, it
does not have any input or output terminals listed. The methods
getInputTerminals() and getOutputTerminals() return empty lists.

v To get an input terminal for a GenericNode, call getInputTerminal() and pass the
terminal name that exists on the generic node. This method returns the input
terminal and makes it available in the message flow object that contains your
generic node. After you have used getInputTerminal() with a known terminal
name, this input terminal is returned if getInputTerminals() is used.

v To get an output terminal for a GenericNode, call getOutputTerminal() and pass
the terminal name that exists on the generic node. This method returns the
output terminal and makes it available in the message flow object that contains
your generic node. After you have used getOutputTerminal() with a known
terminal name, this output terminal is returned if getOutputTerminals() is used.

1378 WebSphere Message Broker Version 7.0.0.8

Example

The following example shows how you can add a user-defined node to a message
flow and connect it to a built-in node:
1. An MQInput node is created and added to the message flow.
2. A user-defined node is created by using the GenericNode class and is added to

the message flow object.
3. The static output terminal of the MQInput is assigned to the variable

outputTerminal.
4. The input terminal of the user-defined node is assigned to the variable

inputTerminal by using the getInputTerminal() method with the known terminal
name In.

5. The nodes are connected by using the connect() method.
6. The final section of code shows that the input node is now available for use in

the message flow, by using the getInputTerminals() method of the user-defined
node instance.

MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");

MQInputNode mqinNode = new MQInputNode();
mqinNode.setNodeName("My Input Node");
mqinNode.setQueueName("IN");
mf1.addNode(mqinNode);

GenericNode myNode = new GenericNode("MyUserDefinedNode");
myNode.setNodeName("MyNode");
mf1.addNode(myNode);

OutputTerminal outputTerminal = mqinNode.OUTPUT_TERMINAL_OUT;
InputTerminal inputTerminal = myNode.getInputTerminal("In");
mf1.connect(outputTerminal, inputTerminal);

InputTerminal[] inputTerminals = myNode.getInputTerminals();
System.out.println("Input terminals on my node:");
for (int i = 0; i < inputTerminals.length; i++) {

InputTerminal inputTerminal = inputTerminals[i];
System.out.println(inputTerminal.getName());

}

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Renaming a node” on page 1371
Use Java API code to modify a pattern instance to rename a node in a message
flow.
“Adding a node and a subflow node” on page 1372
Use the Java API to modify a pattern instance to add a new node or subflow node
to a message flow.
“Setting the position of a node” on page 1373
Use the Java API to modify a pattern instance to set the position of a node on the
canvas in the Broker Development view.

Chapter 9. Developing message flow applications 1379

“Copying a node” on page 1374
Use the Java API to modify a pattern instance to copy a node or subflow node to a
message flow.
“Removing a node” on page 1375
Use the Java API to modify a pattern instance to remove a node from a message
flow.
“Adding connections between nodes” on page 1376
Use the Java API to modify a pattern instance to add connections between nodes.
“Removing connections between nodes”
Use the Java API to modify a pattern instance to remove connections between
nodes.
“Creating or changing user-defined properties” on page 1381
Use the Java API to modify a pattern instance to create or change user-defined
properties (UDPs).
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Removing connections between nodes:

Use the Java API to modify a pattern instance to remove connections between
nodes.

About this task

You can disconnect two nodes by using the disconnect() method of the message
flow object. You must provide this method with the names of the terminal
instances that you want to disconnect. For example:

Example
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
MQInputNode mqinNode = (MQInputNode)mf1.getNodeByName("My Input Node");
MQOutputNode mqoutNode = (MQOutputNode)mf1.getNodeByName("My Output Node");
mf1.disconnect(mqinNode.OUTPUT_TERMINAL_OUT, mqoutNode.INPUT_TERMINAL_IN);

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Adding connections between nodes” on page 1376
Use the Java API to modify a pattern instance to add connections between nodes.

1380 WebSphere Message Broker Version 7.0.0.8

“Adding and connecting user-defined nodes” on page 1378
Use the Java API to modify a pattern instance to add user-defined nodes and to
connect user-defined nodes to other nodes.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Changing pattern parameter values:

Use the Java API to modify a pattern instance to change pattern parameter values.

About this task

You can change a pattern parameter value by using the PatternInstanceManager
object.

Example

The following example sets the value of the pattern parameter with the pattern
parameter ID pp1 to true:
patternInstanceManager.setParameterValue("pp1", "true");

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Creating or changing user-defined properties”
Use the Java API to modify a pattern instance to create or change user-defined
properties (UDPs).
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Creating or changing user-defined properties:

Use the Java API to modify a pattern instance to create or change user-defined
properties (UDPs).

About this task

You can create new UDPs and add them to the message flow, or you can discover
existing UDPs and modify them.

Chapter 9. Developing message flow applications 1381

Procedure

v The following example shows you how to create a UDP and add it to a message
flow:
1. A UDP called Property1 is created in parameter group Group1. The data type

of the UDP is defined as a string and the UDP is given the default value
Hello World!

2. The UDP is then added to the message flow by using the addFlowProperty()
method.

MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
UserDefinedProperty udp = new UserDefinedProperty("Group1", "Property1", UserDefinedProperty.Usage.MANDATORY, UserDefinedProperty.Type.STRING, "Hello World!");
mf1.addFlowProperty(udp);

v In the following example, the existing UDPs in a message flow are discovered
by using the getFlowProperties() method on the message flow. The setName()
method is then used to set the name of the first UDP to Property3:
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
Vector<FlowProperty> flowProperties = mf1.getFlowProperties();
flowProperties.get(0).setName("Property3");

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Copying a node” on page 1374
Use the Java API to modify a pattern instance to copy a node or subflow node to a
message flow.
“Removing a node” on page 1375
Use the Java API to modify a pattern instance to remove a node from a message
flow.
“Changing pattern parameter values” on page 1381
Use the Java API to modify a pattern instance to change pattern parameter values.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Creating ESQL modules:

Use the Java API to modify a pattern instance to create ESQL modules. You can
then associate ESQL modules with nodes that use ESQL. For example, if you create
a Compute node, you can use the Java API to create an ESQL module and then
associate that module with the node.

About this task

Examples of nodes that use ESQL are Compute, Database, DatabaseInput, and
Filter nodes. If you are using a non-default broker schema, you must set the

1382 WebSphere Message Broker Version 7.0.0.8

schema by using the setBrokerSchema() method.

Procedure

v The following example shows you how to create an ESQL module in the mqsi
schema. The module is then assigned to a new Compute node by using the
setComputeExpression() method:
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
ESQLModule module = new ESQLModule();
module.setBrokerSchema("mqsi");
module.setEsqlMain("MyESQLMain");
ComputeNode compNode = new ComputeNode();
compNode.setNodeName("My Compute Node");
compNode.setComputeExpression(module);
mf1.addNode(compNode);

v The following example shows you how to create an ESQL module in the default
schema. The setBrokerSchema() method is not required.
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
ESQLModule module = new ESQLModule();
module.setEsqlMain("MyESQLMain");
ComputeNode compNode = new ComputeNode();
compNode.setNodeName("My Compute Node");
compNode.setComputeExpression(module);
mf1.addNode(compNode);

v The following example shows you how to discover an ESQL module from
within an ESQL file by using the getEsqlModules() method. You can then use
the ESQL module to set the compute expression on a Compute node by using
the setComputeExpression() method.
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
File esql = new File("FileBatchProcessingSample_Branch.esql");
ESQLFile esqlFile = new ESQLFile(esql);
Vector<ESQLModule> esqlModules = esqlFile.getEsqlModules();
ComputeNode compNode = new ComputeNode();
compNode.setNodeName("My Compute Node");
compNode.setComputeExpression(esqlModules.get(0));
mf1.addNode(compNode);

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Loading an existing message flow into memory” on page 1370
Use the Java API to modify a pattern instance to load a message flow into memory
and make it available to other Java API methods.
“Renaming a node” on page 1371
Use Java API code to modify a pattern instance to rename a node in a message
flow.
“Adding a node and a subflow node” on page 1372
Use the Java API to modify a pattern instance to add a new node or subflow node
to a message flow.
“Setting the position of a node” on page 1373
Use the Java API to modify a pattern instance to set the position of a node on the

Chapter 9. Developing message flow applications 1383

canvas in the Broker Development view.
“Copying a node” on page 1374
Use the Java API to modify a pattern instance to copy a node or subflow node to a
message flow.
“Removing a node” on page 1375
Use the Java API to modify a pattern instance to remove a node from a message
flow.
“Adding connections between nodes” on page 1376
Use the Java API to modify a pattern instance to add connections between nodes.
“Adding and connecting user-defined nodes” on page 1378
Use the Java API to modify a pattern instance to add user-defined nodes and to
connect user-defined nodes to other nodes.
“Removing connections between nodes” on page 1380
Use the Java API to modify a pattern instance to remove connections between
nodes.
“Changing pattern parameter values” on page 1381
Use the Java API to modify a pattern instance to change pattern parameter values.
“Creating or changing user-defined properties” on page 1381
Use the Java API to modify a pattern instance to create or change user-defined
properties (UDPs).
“Renaming a message flow”
Use the Java API to modify a pattern instance to rename message flows.
“Running PHP code using the Java API” on page 1385
Use the Java API to modify a pattern instance to run PHP scripts from within your
Java code.
“Updating filter tables on Route nodes” on page 1386
Use the Java API to modify a pattern instance to update filter tables on Route
nodes.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Renaming a message flow:

Use the Java API to modify a pattern instance to rename message flows.

About this task

You can write code to rename a message flow by using the setName() method. In
the following example, a message flow file called main.msgflow is renamed to
mainGenerated.msgflow:

Example
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
mf1.setName(mf1.getName()+"Generated");

Related concepts:

1384 WebSphere Message Broker Version 7.0.0.8

“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Loading an existing message flow into memory” on page 1370
Use the Java API to modify a pattern instance to load a message flow into memory
and make it available to other Java API methods.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Running PHP code using the Java API:

Use the Java API to modify a pattern instance to run PHP scripts from within your
Java code.

About this task

You can run PHP scripts from within the Java API by using the runScript() method
of the PatternInstanceManager object. In the following example, the Java API runs
a PHP script in the com.your.company.domain.code plug-in, templates/script.php:

Example
@Override
public void onGeneratePatternInstance (PatternInstanceManager patternInstanceManager) {
patternInstanceManager.runScript("com.your.company.domain.code", "templates/script.php");
}

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Testing Java code” on page 1387
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Chapter 9. Developing message flow applications 1385

Updating filter tables on Route nodes:

Use the Java API to modify a pattern instance to update filter tables on Route
nodes.

About this task

You can add and update rows on the filter table of a Route node.

Adding a new row
The following example shows you how to add a new row to a filter table
by using the createRow() method:
1. The message flow and the Route node are loaded into memory.
2. The filter table of the Route node is loaded into memory by using the

getFilterTable() method of the RouteNode object.
3. A new filter table row is created by using the createRow() method.
4. The value of the filter pattern property on this new row is set to

value="123" by using the setFilterPattern() method.
5. The routing output terminal property is set to NEWOUT by using the

setRoutingOutputTerminal() method.
6. The new row is then added to the filter table by using the addRow()

method.
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
RouteNode routeNode = (RouteNode)mf1.getNodeByName("My Route Node");
RouteNode.FilterTable filterTable = (RouteNode.FilterTable)routeNode.getFilterTable();
RouteNode.FilterTableRow newRow = filterTable.createRow();
newRow.setFilterPattern("value=\"123\"");
newRow.setRoutingOutputTerminal("NEWOUT");
filterTable.addRow(newRow);

Updating a row
The following example shows you how to update rows on the filter table
of a Route node.
1. The message flow, Route node, and filter table of the Route node are

loaded into memory.
2. The rows of the filter table are loaded into memory by using the

getRows() method.
3. The filter pattern property of the first row of the filter table is set to

value2="456".
4. The routing output terminal property of the first row of the filter

table is set to NEWOUT2.
MessageFlow mf1 = patternInstanceManager.getMessageFlow("MyFlowProject", "main.msgflow");
RouteNode routeNode = (RouteNode)mf1.getNodeByName("My Route Node");
RouteNode.FilterTable filterTable = (RouteNode.FilterTable)routeNode.getFilterTable();
Vector<RouteNode.FilterTableRow> filterTableRows = filterTable.getRows();
filterTableRows.get(0).setFilterPattern("value2=\"456\"");
filterTableRows.get(0).setRoutingOutputTerminal("NEWOUT2");

Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:

1386 WebSphere Message Broker Version 7.0.0.8

“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Loading an existing message flow into memory” on page 1370
Use the Java API to modify a pattern instance to load a message flow into memory
and make it available to other Java API methods.
“Testing Java code”
After writing Java code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“Java API for user-defined patterns” on page 5345
Use the Java API to write Java code to modify user-defined pattern instances.

Testing Java code:

After writing Java code to modify pattern instances, test the code to check that it
works correctly.

Before you begin

Before you test your Java code, you must build the pattern plug-ins; see “Building
pattern plug-ins” on page 1395.

About this task

You can test your Java code either by creating an instance of a pattern and
checking that it is modified as you expect or by using the Java debugger to step
through the code.

Procedure

v To test your user-defined pattern by creating an instance of the pattern, see
“Testing a user-defined pattern” on page 1396.

v To use the Java debugger, you must open a temporary workspace to generate an
instance of your user-defined pattern, then return to the original workspace to
step through the code. To use the Java debugger, complete the following steps:
1. In your Java code file, add a breakpoint to the required line of code. To add

a breakpoint, right-click the marker bar (vertical ruler) to the left of the
required code and click Toggle Breakpoint.

2. In the Pattern Authoring editor, click the Create Pattern tab.
3. Click Debug Pattern. The Workspace Launcher window opens.
4. Select the temporary workspace in which to generate an instance of your

user-defined pattern. Click Browse and select a workspace or enter a
workspace in the Workspace field. Click OK. The selected workspace
opens.

5. In the temporary workspace, you must generate an instance of your
user-defined pattern. In the Broker Development view, click the Patterns
Explorer tab and select your user-defined pattern.

6. In the Pattern Specification tab, click Create New Instance. Enter a name
for the instance of your user-defined pattern and click OK.

7. Enter any mandatory pattern parameters and click Generate. The
generation of the pattern instance stops when it reaches the breakpoint in
your Java code.

Chapter 9. Developing message flow applications 1387

8. In the original workspace, in the Confirm Perspective Switch window, click
Yes. The original workspace switches to debug mode and shows the code
paused at your breakpoint.

9. You can now use the Java debugger to test your code; see “Java Debugger”
on page 6723.

10. When you have finished testing the code in the Java debugger, close the
temporary workspace and switch back to the Broker Application
Development perspective in the original workspace; see “WebSphere
Message Broker Toolkit perspectives” on page 34.

What to do next

Next:

You can either change your Java code and retest it or you can package and
distribute your user-defined pattern:
v To change and retest your Java code, edit the code file and then repeat the steps

in this topic.
v To package and distribute your user-defined pattern, see “Packaging and

distributing pattern plug-ins” on page 1397

To ensure that changes in your Java code are included in your generated pattern,
change the version number of the Java plug-in, as described in the following steps.
1. Update the version number of the Java plug-in in manifest.mf.
2. Update the version number of the pattern on the Create Pattern tab.
3. Re-create the pattern plug-ins and pattern archive, as described in “Building

pattern plug-ins” on page 1395.
To check that the pattern archive contains the correct versions of the plug-ins,
you can look at the feature.xml file.

4. Install the pattern.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Modifying pattern instances by using the Java API” on page 1367
Add Java code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Building pattern plug-ins” on page 1395
You must build the pattern plug-ins before you can distribute user-defined patterns
to pattern users.
“Testing a user-defined pattern” on page 1396
Ensure that you test your user-defined pattern before you share it with your
pattern users.

1388 WebSphere Message Broker Version 7.0.0.8

Modifying pattern instances by using PHP:

Add PHP code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.

Before you begin

Before you can complete this task, you must have completed the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Creating a code plug-in project” on page 1366

About this task

You can add PHP code to a code plug-in project by selecting a PHP script, which
runs when a pattern instance is generated. You can choose whether to write the
output of this script to a file. For example, you can write a PHP script that creates
an ESQL file that is used in your user-defined pattern.

If you added PHP support when you created the code plug-in, a PHP template
and example scripts are created and added to the project. Alternatively, you can
write your own PHP script. Regardless of how the script is created, you must add
your own code within the script to complete the steps you require when the
pattern instance is generated. For examples of PHP code for completing common
tasks, see “Examples of PHP API code” on page 1390. For reference information
about the PHP pattern authoring API, see “PHP API for user-defined patterns” on
page 5345.

Procedure

To select a PHP script to run when a pattern instance is generated:
1. If the Add Java or PHP Code window is not open, in the Pattern

Configuration tab of the Pattern Authoring editor, click Add. The Add Java or
PHP Code window opens.

2. In the Type of code list, select PHP.
3. In the Project name list, select the project or plug-in that contains the PHP

script that you want to run when a pattern instance is generated. If the
required plug-in is installed, but is not in your workspace, click Browse and
select the required plug-in.

4. In the PHP file name list, select the name of the script you want to run when a
pattern instance is generated. The PHP file name list shows all the PHP scripts
in the project or plug-in that you selected.

5. Optional: To write the output of the PHP script to a file, select Write the output
from the PHP file into an output file.
a. In the Pattern instance project list, select the pattern instance project in

which you want to include the output file.
b. In the Output file name field, enter a name for the output file. You can

include a path in this field, for example scripts/example.mqsc to write the
output to the scripts folder.

6. Click OK. The Add Java or PHP Code window closes and the PHP script that
you selected is shown in the Java and PHP Code section of the Pattern
Configuration tab.

Chapter 9. Developing message flow applications 1389

7. Optional: The Java and PHP code listed in the Java and PHP Code section of
the Pattern Configuration tab runs from top to bottom when a pattern instance
is generated. To change the order in which the code runs, select the entry you
want to move in the Java and PHP Code section and click the Up or Down
button to change the position of the entry in the list.

What to do next

Next:

In the PHP script that you selected to run when the pattern instance is generated,
you must now write the code to perform the steps you require. For examples of
PHP code for completing common tasks, see “Modifying pattern instances by
using PHP” on page 1389. For reference information about the PHP pattern
authoring API, see “PHP API for user-defined patterns” on page 5345.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Defining the target properties” on page 1342
Identify the target properties in the workspace project so that you can define the
pattern interface and pattern users can modify the pattern parameters.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Testing PHP API code” on page 1394
After writing PHP code to modify pattern instances, test the code to check that it
works correctly.
“Examples of PHP API code”
Use the following examples of PHP API code for common tasks to help you write
your own PHP code to modify pattern instances.
Related reference:
“PHP API for user-defined patterns” on page 5345
Use the PHP API to write PHP code to develop user-defined pattern applications.

Examples of PHP API code:

Use the following examples of PHP API code for common tasks to help you write
your own PHP code to modify pattern instances.

About this task

The following examples show PHP code that you can use to complete common
tasks when you are creating user-defined patterns:

1390 WebSphere Message Broker Version 7.0.0.8

Procedure

v Running additional PHP scripts. The following example shows how to use a
PHP script to run another PHP script, by using the mb_pattern_run_template()
function. The mb_pattern_run_template() function uses the following
parameters:
1. The first parameter required by mb_pattern_run_template() is the name of

the project containing the PHP template; Transform in this example.
2. The second parameter required by mb_pattern_run_template() is the name of

the PHP script to run; in this example example.esql.php, which is in a
subfolder called mqsi.

3. The third parameter required by mb_pattern_run_template() is the name of
the file to which the output is written; in this example example.esql, in
subfolder mqsi.

The user-defined pattern in this example contains a Boolean pattern parameter
called includeErrorHandling. This pattern parameter is used to create a check
box in the pattern:
<?php

if ($_MB[’PP’][’includeErrorHandling’] == ’true’) {
mb_pattern_run_template("Transform", "mqsi/example.esql.php", "mqsi/example.esql");

}
?>

v Using PHP scripts with markup for ESQL. In the following example, the
user-defined pattern contains a pattern parameter called errorQueue, which can
contain the values none or errorAction:
BROKER SCHEMA mqsi
<?php

if ($_MB[’PP’][’errorAction’] == ’errorQueue’) {
echo "DECLARE ErrorAction EXTERNAL CHARACTER ’".$_MB[’PP’][’errorAction’]."’;";

echo <<<ESQL

CREATE FILTER MODULE CheckErrorAction
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

IF ErrorAction = ’errorQueue’ THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;
END;

END MODULE;

ESQL;
}

?>

v Using PHP scripts to remove files from a project. In the following example, the
script first checks the value of the check box pattern parameter, which has the
pattern parameter ID pp1. If this parameter is set to false, the script deletes the
Log.msgflow and Log.esql files from the pattern instance project. Message flow
files must be deleted by using the removeMessageFlow() function. Non-message
flow files can be deleted by using the standard PHP function unlink():
if ($_MB[’PP’][’pp1’] == ’false’) {

$pim = $_MB["PATTERN_INSTANCE_MANAGER"];

$logmsgflow = $pim->getMessageFlow("Example_Flows", "mqsi/Log.msgflow");
$pim->removeMessageFlow($logmsgflow);

$piworkspace = $pim->getWorkspaceLocation();

Chapter 9. Developing message flow applications 1391

$piname = $pim->getPatternInstanceName();
$logesql = $piworkspace . "/" . $piname . "_Example_Flows/mqsi/Log.esql";
unlink($logesql);

}

v Running Java code from PHP by using a static Java method. The following
example shows a Java class, MyClass, that can be run from within a PHP script.
The class contains a static method:
package com.your.company.domain.code;

import com.ibm.broker.config.appdev.MessageFlow;
import com.ibm.broker.config.appdev.patterns.GeneratePatternInstanceTransform;
import com.ibm.broker.config.appdev.patterns.PatternInstanceManager;

public class MyClass implements GeneratePatternInstanceTransform {

public static void doSomethingUseful(String message) {
System.out.println("Message received [" + message + "]");

}

@Override
public void onGeneratePatternInstance(PatternInstanceManager patternInstanceManager) { }

}

You can run the MyClass class from PHP as shown in the following example. In
the line $class = $pim->getPluginClass("com.your.company.domain.code",
"com.your.company.domain.code.MyClass"), the first argument,
com.your.company.domain.code, is the ID of the plug-in that contains the Java
class. The second argument, com.your.company.domain.code.MyClass, is the
name of the class.
<?php

$pim = $_MB["PATTERN_INSTANCE_MANAGER"];
$class = $pim->getPluginClass("com.your.company.domain.code", "com.your.company.domain.code.MyClass");
java_import("com.your.company.domain.code.MyClass");
MyClass::doSomethingUseful("Hello!");

?>

v Running Java code from PHP by using a non-static Java method. The following
example shows a Java class, MyClass, that can be run from within a PHP script.
The class contains a method that is not static:
package com.your.company.domain.code;

import com.ibm.broker.config.appdev.MessageFlow;
import com.ibm.broker.config.appdev.patterns.GeneratePatternInstanceTransform;
import com.ibm.broker.config.appdev.patterns.PatternInstanceManager;

public class MyClass implements GeneratePatternInstanceTransform {

public void doSomethingUseful(String message) {
System.out.println("Message received [" + message + "]");

}

@Override
public void onGeneratePatternInstance(PatternInstanceManager patternInstanceManager) { }

}

You can run the MyClass class from PHP as shown in the following example. In
the line $class = $pim->getPluginClass("com.your.company.domain.code",
"com.your.company.domain.code.MyClass"), the first argument,
com.your.company.domain.code, is the ID of the plug-in that contains the Java
class. The second argument, com.your.company.domain.code.MyClass, is the
name of the class. A new instance of the class is created in the line $obj =
$class->newInstance(). In the last line of the example, the doSomethingUseful()
method of the class is run.

1392 WebSphere Message Broker Version 7.0.0.8

<?php
$pim = $_MB["PATTERN_INSTANCE_MANAGER"];
$class = $pim->getPluginClass("com.your.company.domain.code", "com.your.company.domain.code.MyClass");
$obj = $class->newInstance();
$obj->doSomethingUseful("Hello!");

?>

v Using PHP scripts to read table values. In the following example, the PHP script
extracts the values from an array stored in the superglobal variable $_MB. First
the script searches inside the array for any values stored in the event and
response variables, and then returns the values:
<?php
$pim = $_MB["PATTERN_INSTANCE_MANAGER"];
$table = $pim->getParameterTable("table1");
$count = $table->getRowCount();
for ($j=0;$j<$count ;$j++) {
echo "".$_MB[’PP’][’table1’][$j][’event’]."’;\n";
echo "".$_MB[’PP’][’table1’][$j][’response’]."’;\n";
}

?>

The array has the following structure:
array(4) {
["PATTERN_INSTANCE_MANAGER"]=>
object(Java)#1 (0) {
}
["PP"]=>
array(10) {
["queueName"]=>string(11) "QP.QUEUE.QS"
["configurePrefixSuffix"]=>string(5) "false"
["queuePrefix"]=>string(3) "QP."
["queueSuffix"]=>string(3) ".QS"
["logging"]=>string(5) "queue"
["generateMessageSet"]=>string(4) "true"
["table1"]=>
array(2) {
[0]=>
array(2) {
["event"]=>string(6) "event1"
["response"]=>string(9) "response1"
}
[1]=>
array(2) {
["event"]=>string(6) "event2"
["response"]=>string(9) "response2"
}

}
}

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Modifying pattern instances by using PHP” on page 1389
Add PHP code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.

Chapter 9. Developing message flow applications 1393

“Testing PHP API code”
After writing PHP code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“PHP API for user-defined patterns” on page 5345
Use the PHP API to write PHP code to develop user-defined pattern applications.

Testing PHP API code:

After writing PHP code to modify pattern instances, test the code to check that it
works correctly.

Before you begin

Before you test your PHP code, you must build the pattern plug-ins; see “Building
pattern plug-ins” on page 1395.

About this task

You can check that your PHP scripts work correctly by creating an instance of your
user-defined pattern. When you test your user-defined pattern, a new workspace is
opened in which to create the instance of your pattern. If you want to change your
PHP code and retest it, you are not required to open a new workspace after each
change. If you make any other changes to the pattern authoring project, you must
rebuild the pattern plug-ins and launch a new workspace.

Procedure

To test your user-defined pattern, see “Testing a user-defined pattern” on page
1396. A new workspace is opened in which you generate an instance of your
user-defined pattern. After the pattern instance is generated, check that your PHP
code has worked correctly. For example, if you write PHP code to remove files
from a pattern instance project, check that the files are deleted.

What to do next

Next:

You can either change your PHP code and retest it or you can package and
distribute your user-defined pattern:
v To change and retest your PHP code, repeat the following steps until all your

changes are complete. You can keep the test workspace open and continue to
change your code and generate pattern instances without closing and
relaunching the test workspace after each change:
1. Edit the PHP code file in your main workspace and save the file.
2. In the test workspace, generate a new instance of your user-defined pattern

and check the results.
v To package and distribute your user-defined pattern, see “Packaging and

distributing pattern plug-ins” on page 1397.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:

1394 WebSphere Message Broker Version 7.0.0.8

“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.
“Modifying pattern instances by using PHP” on page 1389
Add PHP code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Building pattern plug-ins”
You must build the pattern plug-ins before you can distribute user-defined patterns
to pattern users.
“Testing a user-defined pattern” on page 1396
Ensure that you test your user-defined pattern before you share it with your
pattern users.

Building pattern plug-ins
You must build the pattern plug-ins before you can distribute user-defined patterns
to pattern users.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338

About this task

Procedure

To build the pattern plug-ins:
1. In the Pattern Authoring editor, click the Create Pattern tab.
2. Enter values in the Plug-in ID and Version fields for your plug-in according to

the naming and version numbering conventions within your organization. For
more information about naming conventions for Eclipse plug-ins, see
http://wiki.eclipse.org/Naming_Conventions. For more information about
version numbering conventions for Eclipse plug-ins, see http://
wiki.eclipse.org/Version_Numbering.

3. Optional: Select Create translation plug-ins, if required.
4. Click Create Pattern Plug-ins.

The plug-ins for your user-defined pattern are created and displayed in the
Projects section of the Broker Development view. The plug-ins are named
PluginID, and PluginID.doc, where PluginID is the value entered in the Plug-in
ID field in the Create Pattern tab. If Create translation plug-ins is selected,
two additional plug-ins are created, named PluginID.nl1 and
PluginID.nl1.doc.

What to do next

Next:

You must now test the pattern, see “Testing a user-defined pattern” on page 1396.

Chapter 9. Developing message flow applications 1395

http://wiki.eclipse.org/Naming_Conventions
http://wiki.eclipse.org/Version_Numbering
http://wiki.eclipse.org/Version_Numbering

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.

Testing a user-defined pattern
Ensure that you test your user-defined pattern before you share it with your
pattern users.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Building pattern plug-ins” on page 1395

About this task

Before you distribute your user-defined pattern, you can test it to ensure that it
works correctly. To test your user-defined pattern, the Pattern Authoring editor
opens a temporary workspace in which you can generate an instance of your
user-defined pattern. You can then check that your user-defined pattern works
correctly. If your user-defined pattern contains Java pattern authoring API code,
see “Testing Java code” on page 1387. If your user-defined pattern contains PHP
pattern authoring API code, see “Testing PHP API code” on page 1394.

Procedure

To test your user-defined pattern:
1. In the Pattern Authoring editor, click the Create Pattern tab.
2. Click Test Pattern. The Workspace Launcher window opens.
3. Select the temporary workspace in which to generate an instance of your

user-defined pattern. Click Browse. Select a workspace or enter a workspace in
the Workspace field. Click OK. The selected workspace opens.

4. Click the Patterns Explorer tab in the Broker Development view. Your new
user-defined pattern is shown in the Patterns Explorer view.

5. Test your pattern by generating a new pattern instance. See “Using patterns”
on page 1312.

6. If you want to change your pattern, change the pattern authoring project and
then rebuild the pattern plug-ins. If you are changing only Java or PHP pattern
authoring API code, you do not have to rebuild the pattern plug-ins; see
“Testing Java code” on page 1387 and “Testing PHP API code” on page 1394.

1396 WebSphere Message Broker Version 7.0.0.8

What to do next

Next:

After you have tested the pattern, you can share it with the pattern users, see
“Packaging and distributing pattern plug-ins.”
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Creating a pattern authoring project” on page 1337
Create a pattern authoring project and choose an exemplar for the project.
“Selecting the source files to use for a user-defined pattern” on page 1338
Select the source files to include in your pattern.
“Building pattern plug-ins” on page 1395
You must build the pattern plug-ins before you can distribute user-defined patterns
to pattern users.

Packaging and distributing pattern plug-ins
Package the plug-ins for your user-defined pattern into a pattern archive so that
pattern users can download and install the pattern on their own system.

Before you begin

Before you start:

Before you can complete this task, you must have completed the following tasks
for your user-defined pattern:
1. “Creating a pattern authoring project” on page 1337
2. “Selecting the source files to use for a user-defined pattern” on page 1338
3. “Building pattern plug-ins” on page 1395
4. “Testing a user-defined pattern” on page 1396

About this task

To enable pattern users to use your user-defined pattern, you must create a pattern
archive from the pattern plug-ins. The pattern archive is published to a pattern
community site, which is either a website or shared file system directory. The
pattern user can download and install the pattern archive from the pattern
community site. The following tasks describe this process:
v The pattern author creates a pattern archive, see “Creating a pattern archive” on

page 1398.
v The pattern author uploads the pattern archive to a patterns community site, see

“Uploading a pattern archive” on page 1399.

Chapter 9. Developing message flow applications 1397

v The pattern user downloads and installs the pattern archive, see “Downloading
and installing a pattern archive” on page 1400.

If you want to uninstall a user-defined pattern, see “Uninstalling a pattern archive”
on page 1405.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.

Creating a pattern archive:

Package your user-defined pattern as a pattern archive so that you can distribute it
to pattern users.

Before you begin

Before you start:

Before you can complete this task, you must have completed the following tasks:
v “Creating a pattern authoring project” on page 1337
v “Selecting the source files to use for a user-defined pattern” on page 1338
v “Building pattern plug-ins” on page 1395
v “Testing a user-defined pattern” on page 1396

About this task

When you have tested your user-defined pattern and you are satisfied with its
content and quality, package it into a pattern archive so that you can distribute it
to your pattern users.

Procedure

To package your user-defined pattern into a pattern archive, complete the
following tasks:
1. Open your pattern instance project, click the Create Pattern tab.
2. In the Pattern Distribution section, click Create Pattern Archive. The "Create a

Pattern Archive" window opens.
The File name defaults to the first segment of the pattern project name
appended by .patternzip

3. To select a location, click Browse, and navigate to the required location. The
Location is the file system location to which the pattern archive is saved. If you
want to publish the pattern archive directly to a pattern community shared file
system location to which you have write access, select that location.

4. Click Finish. A progress monitor is displayed at the bottom of the window.
v If you click Cancel while the creation process is being run, the progress

monitor stops and a warning message is displayed saying that the operation
has stopped and the pattern archive will not be created. You can choose to
restart the creation process by clicking Finish, or cancel the creation process
by clicking Cancel. If the pattern archive has already been created, it is

1398 WebSphere Message Broker Version 7.0.0.8

removed from the target location and its resources are deleted from the
workspace. If you click Cancel again, the window is closed.

v If an error occurs during the creation process, for example, the disk is full, or
a write access permissions problem has occurred, an error message is
displayed. You can correct the problem without exiting the window, and try
again.

If the process completes successfully, the window closes.

Results

The pattern plug-ins and features are generated in the workspace. If the plug-ins
already exist in the workspace, you are asked if you want to overwrite them; if
you have already created the .doc plug-in or your translated files, you might
choose not to overwrite the plug-ins. The pattern is temporarily displayed in the
Patterns Explorer view. A pattern archive with the extension .patternzip is created
in the target location.

What to do next

Next:

v If you published the pattern archive directly to a pattern community shared file
system location, pattern users can now download the pattern archive, see
“Downloading from a shared file system” on page 1404.

v If you did not publish the pattern archive directly to a pattern community
shared file system location, you can upload the pattern archive to a pattern
community site to distribute the pattern archive to pattern users, see “Uploading
a pattern archive.”

Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Uploading a pattern archive”
The pattern author can upload a pattern archive to a pattern community site so
that it can be distributed to pattern users.
“Downloading and installing a pattern archive” on page 1400
To use a user-defined pattern, download and install the pattern archive for the
user-defined pattern.
“Uninstalling a pattern archive” on page 1405
Uninstall the pattern archive to remove a user-defined pattern from the Patterns
Explorer view.

Uploading a pattern archive:

The pattern author can upload a pattern archive to a pattern community site so
that it can be distributed to pattern users.

Before you begin

Before you start:

Chapter 9. Developing message flow applications 1399

Before you can complete this task, the pattern author must have completed the
following task:
v “Creating a pattern archive” on page 1398

About this task

To publish a user-defined pattern, the pattern author must upload the pattern
archive to a pattern community site, which is either a pattern community website
or a pattern community shared file system location. To upload to a pattern
community website, the pattern author must have write access to the website.

Procedure

v To upload to a pattern community website:
– If the pattern community website supports the upload interface, the pattern

author can specify the pattern metadata, for example, category, icon, and
description, and then upload the pattern archive to the pattern community
website.

– If the pattern community website does not support the upload interface, the
pattern archive must be passed to the administrator of the pattern community
website so that it can be published.

v To upload to a pattern community shared file system location:
– If the pattern author has write access to the shared file location, that location

can be selected when the pattern archive is created. See “Creating a pattern
archive” on page 1398.

– If the pattern author does not have write access to the shared file location, the
pattern archive must be passed to the administrator of the shared file location
so that it can be published.

What to do next

Next:

The pattern user can now download and install the pattern archive, see
“Downloading and installing a pattern archive.”
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Downloading and installing a pattern archive”
To use a user-defined pattern, download and install the pattern archive for the
user-defined pattern.
“Uninstalling a pattern archive” on page 1405
Uninstall the pattern archive to remove a user-defined pattern from the Patterns
Explorer view.

Downloading and installing a pattern archive:

To use a user-defined pattern, download and install the pattern archive for the
user-defined pattern.

1400 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Before you can complete this task, you must decide which user-defined pattern
you want to use from a pattern community site.

About this task

Before you can update a pattern archive to a newer version of an installed pattern
archive, you must uninstall the current version of the pattern archive, see
“Uninstalling a pattern archive” on page 1405.

When you have chosen a user-defined pattern that you want to use from a pattern
community site, download and install the pattern archive for that user-defined
pattern to your local system by using one of the following methods:
v “Downloading from a pattern community website”
v “Downloading from a pattern community website by using a helper application”

on page 1402
v “Downloading from a shared file system” on page 1404

What to do next

Next:

You can now use the user-defined pattern in your projects, see “Using patterns” on
page 1312.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Uninstalling a pattern archive” on page 1405
Uninstall the pattern archive to remove a user-defined pattern from the Patterns
Explorer view.

Downloading from a pattern community website:

To use a user-defined pattern in your WebSphere Message Broker projects,
download and install the pattern archive for the user-defined pattern from a
pattern community website.

Before you begin

Before you start:

Before you can complete this task, you must have the URL of the user-defined
pattern that you want to download.

In this installation use case, only HTTP URLs that have no security are supported.

Chapter 9. Developing message flow applications 1401

About this task

If you want to stop the download process, click Cancel, the pattern is not installed
and the tasks are rolled back. If you click Cancel again, the Download Pattern
window closes.

Procedure

1. In the Patterns Explorer view, click Download. The Download and Install
Pattern window opens.

2. Type in, or copy and paste, the complete URL for the pattern archive into the
File Location field, click Download. The progress monitor starts to run and the
status line shows the individual tasks that are being performed.

Results

The new user-defined pattern is displayed in the Patterns Explorer view.

What to do next

Next:

You can now use the user-defined pattern in your projects. See “Using patterns” on
page 1312.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Downloading from a pattern community website by using a helper application”
To use a user-defined pattern in your WebSphere Message Broker projects,
download and install the pattern archive for the user-defined pattern from a
pattern community website by using a helper application.
“Downloading from a shared file system” on page 1404
To use a user-defined pattern in your WebSphere Message Broker projects,
download and install the pattern archive for the user-defined pattern from a
pattern community site that is a shared file system by using the file URL or by
browsing for a file.
“Uninstalling a pattern archive” on page 1405
Uninstall the pattern archive to remove a user-defined pattern from the Patterns
Explorer view.

Downloading from a pattern community website by using a helper application:

To use a user-defined pattern in your WebSphere Message Broker projects,
download and install the pattern archive for the user-defined pattern from a
pattern community website by using a helper application.

Before you begin

Before you start:

Before you can complete this task, you must be on the pattern community website
that contains the pattern archive that you want to download.

1402 WebSphere Message Broker Version 7.0.0.8

About this task

You can install a pattern archive directly from a pattern community website by
using a helper application.

Procedure

1. Navigate to the pattern archive that you want to download.
2. Click the link for the required pattern archive. A new window opens. The

content of the window depends on your browser, but the typical options are to
either open the file or save the file.

3. Install the pattern archive:

v Windows On Windows:
Select the option to open the pattern archive. The Install Pattern Archive
window opens and shows a progress monitor.
If you have more than one WebSphere Message Broker Toolkit installed on
your workstation, the helper application is for the WebSphere Message
Broker Toolkit that you most recently installed. If you want to control which
WebSphere Message Broker Toolkit is extended with your pattern, download
the file to disk, follow the instructions in “Downloading from a shared file
system” on page 1404, then start the WebSphere Message Broker Toolkit that
you want to extend.

v Linux On Linux:
The exact steps you must complete to install the pattern archive depend on
your Linux distribution and the file explorer and browser you use. Use the
following steps as a guide.
a. Save the pattern archive to your local file system. Select the option in

your browser window to save the pattern archive to your local file
system. Choose a location for the file and start the download.

b. After the download completes, open the pattern archive with the
MBPatternInstaller helper application. Open a file explorer and navigate
to the pattern archive. Use the Open with menu option on the pattern
archive and select MBPatternInstaller.bin. The MBPatternInstaller
application is located in the WebSphere Message Broker Toolkit
installation directory, for example, /opt/IBM/WMBT700. The Install Pattern
Archive window opens and shows a progress monitor.

4. Close and relaunch the WebSphere Message Broker Toolkit.

Results

The new user-defined pattern is displayed in the Patterns Explorer view.

What to do next

Next:

You can now use the user-defined pattern in your projects. See “Using patterns” on
page 1312.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:

Chapter 9. Developing message flow applications 1403

“Downloading from a pattern community website” on page 1401
To use a user-defined pattern in your WebSphere Message Broker projects,
download and install the pattern archive for the user-defined pattern from a
pattern community website.
“Downloading from a shared file system”
To use a user-defined pattern in your WebSphere Message Broker projects,
download and install the pattern archive for the user-defined pattern from a
pattern community site that is a shared file system by using the file URL or by
browsing for a file.
“Uninstalling a pattern archive” on page 1405
Uninstall the pattern archive to remove a user-defined pattern from the Patterns
Explorer view.

Downloading from a shared file system:

To use a user-defined pattern in your WebSphere Message Broker projects,
download and install the pattern archive for the user-defined pattern from a
pattern community site that is a shared file system by using the file URL or by
browsing for a file.

Before you begin

Before you start:

Before you can complete this task, you must have access to the pattern community
site that contains the pattern archive that you want to download.

About this task

v If you want to download and install the pattern archive for the user-defined
pattern from a pattern community website by using a helper application and
you have more than one WebSphere Message Broker Toolkit installed on your
workstation, the helper application is for the WebSphere Message Broker Toolkit
that you most recently installed. If you want to control which WebSphere
Message Broker Toolkit is extended with your pattern, download the file to disk,
complete the following instructions, then start the WebSphere Message Broker
Toolkit that you want to extend.

v If you want to stop the download process, click Cancel, the pattern is not
installed and the tasks are rolled back. If you click Cancel again, the Download
and Install Pattern window closes.

Procedure

In the Patterns Explorer view, click Download. The Download and Install Pattern
window opens.
v If you want to download the pattern by using the file URL, type in, or copy and

paste, the complete URL for the pattern archive into the File Location field, click
Download. The progress monitor starts to run and the status line shows the
individual tasks that are being performed.

v If you want to download the pattern by browsing your local file system:
1. Click Browse. The Select The Pattern Archive To Install window opens.
2. Navigate to the pattern archive that you want to use, click Open.
3. Click Download. The progress monitor starts to run and the status line

shows the individual tasks that are being performed.

1404 WebSphere Message Broker Version 7.0.0.8

Results

The new user-defined pattern is displayed in the Patterns Explorer view.

What to do next

Next:

You can now use the user-defined pattern in your projects; see “Using patterns” on
page 1312.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
Related tasks:
“Downloading from a pattern community website” on page 1401
To use a user-defined pattern in your WebSphere Message Broker projects,
download and install the pattern archive for the user-defined pattern from a
pattern community website.
“Downloading from a pattern community website by using a helper application”
on page 1402
To use a user-defined pattern in your WebSphere Message Broker projects,
download and install the pattern archive for the user-defined pattern from a
pattern community website by using a helper application.
“Uninstalling a pattern archive”
Uninstall the pattern archive to remove a user-defined pattern from the Patterns
Explorer view.

Uninstalling a pattern archive:

Uninstall the pattern archive to remove a user-defined pattern from the Patterns
Explorer view.

Before you begin

Before you start:

Before you can complete this task, you must have completed the following task:
v “Downloading and installing a pattern archive” on page 1400

Each user-defined pattern archive has one pattern feature, the name of which is
based on the name of the main pattern plug-in. If the name of the plug-in is
com.your.company.Test, the name of the pattern feature is
com.your.company.Test.Feature_<plug-in version>. If translation was selected by the
pattern author, the pattern archive has a second pattern feature,
com.your.company.Test.Feature_NL.<plug-in version>. To uninstall a pattern archive
you must know the feature name of the pattern archive to ensure that the correct
user-defined pattern is removed.

About this task

You can uninstall a pattern archive for a user-defined pattern that you have
previously installed. Uninstalling a pattern archive removes the associated
user-defined pattern from the Patterns Explorer view.

Chapter 9. Developing message flow applications 1405

Procedure

To uninstall the pattern archive:
1. Click Help > Software Updates. The "Software Updates and Add-ons" window

opens.
2. Click the Installed Software tab.
3. Browse to and select the pattern feature. If translation was selected by the

pattern author, two pattern features exist and both must be selected.
4. Click Uninstall. The Eclipse Update window opens.
5. You can either restart the workspace, or click Apply Changes.

Results

The pattern archive is removed and the user-defined pattern is removed from the
Patterns Explorer view.
Related concepts:
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Creating a user-defined pattern” on page 1336
The workflow showing the actions required for pattern authoring.
Related tasks:
“Downloading and installing a pattern archive” on page 1400
To use a user-defined pattern, download and install the pattern archive for the
user-defined pattern.

Developing message flow applications by using samples
Use the samples to learn more about the features that are available in WebSphere
Message Broker, and how to use them.

Before you begin

Before you start:

If you are not familiar with message flow concepts, message model concepts, and
common tasks to manage message flow resources, see “Processing messages” on
page 1021.

This section describes one of the four methods that you can use to create message
flow applications. The other three methods are described in the following sections:
v “Developing message flow applications by using patterns” on page 1309
v “Developing message flow applications from a wizard” on page 1408
v “Developing message flow applications from scratch” on page 1423

If you are unsure which method to use, see Chapter 9, “Developing message flow
applications,” on page 1019 for a discussion of the advantages of each option.

About this task

The supplied samples provide tested message flows that focus on a particular
feature or function supported by WebSphere Message Broker. Samples are more
limited in scope than patterns, but provide comprehensive examples of typical

1406 WebSphere Message Broker Version 7.0.0.8

message processing in particular scenarios. These samples are stand-alone; you can
use them without having to create and configure additional resources.

Because they are created to demonstrate a particular facet of the product, the
samples are not always designed to use the preferred techniques for a particular
task. Therefore, use them as examples to learn how particular functions work, not
as complete production-level solutions. You might find them helpful as a starting
point to developing your own message flows, or as part of a larger solution.

To access the samples, complete the following steps.

Procedure
1. Open the samples gallery in the WebSphere Message Broker Toolkit by clicking

Help > Samples and Tutorials > WebSphere Message Broker Toolkit -
Message Broker.

2. Expand the available categories and click a sample to open it.
The following categories of sample are available:

Application samples
The application samples are small end-to-end WebSphere Message
Broker applications that were created by using the WebSphere Message
Broker Toolkit. The Application samples demonstrate how to transform
and route messages through message flows.

Control and Routing samples
The control and routing samples demonstrate how to use WebSphere
Message Broker to control and route messages.

File Processing samples
The file processing samples demonstrate how to process files by using
WebSphere Message Broker.

Industry samples
The Industry samples demonstrate how you can use WebSphere
Message Broker in the retail and healthcare industries.

Message Formats samples
The message formats samples demonstrate how to process messages
with different formats by using WebSphere Message Broker.

Message Transformation samples
The message transformation samples demonstrate alternative ways to
develop WebSphere Message Broker applications to transform
messages.

Monitoring samples
The monitoring samples demonstrate how to monitor your WebSphere
Message Broker flows, including how to use WebSphere Business
Monitor.

Security samples
The security samples demonstrate how to use Identity Security features
in WebSphere Message Broker.

Transports and Connectivity samples
The transports and connectivity samples demonstrate the many ways of
connecting WebSphere Message Broker to other applications, including
EIS systems.

Chapter 9. Developing message flow applications 1407

Web Service samples
The Web Service samples demonstrate how you can use WebSphere
Message Broker as both a consumer and provider of web services.

For a full list of the available samples, see “Samples” on page 98.
3. Follow the instructions to import, deploy, and run the samples. The samples

documentation also describes how to remove the samples when you have
finished with them.

Related tasks:
“Developing message flow applications by using patterns” on page 1309
Create resources that are used to solve a specific business problem by using
patterns.
“Developing message flow applications from a wizard”
A Quick Start wizard sets up the basic resources that are required to develop a
message flow application. The wizard sets up and gives names to containers for
the resources in which you then develop your message flow.
“Developing message flow applications from scratch” on page 1423
Design, create, and configure message flows by using the WebSphere Message
Broker Toolkit.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.
“Creating the Default Configuration” on page 106
You can create the Default Configuration of WebSphere Message Broker by using
the Default Configuration wizard. You can also remove the Default Configuration
by using the link provided.
“Resolving problems when running samples” on page 3366
Use the advice given here to help you to resolve common problems that can arise
when you run or remove samples.
Related reference:
“What the Default Configuration wizard creates” on page 107
A table of the components that are created by the wizard, details of how to resolve
problems, and how to view errors.

Developing message flow applications from a wizard
A Quick Start wizard sets up the basic resources that are required to develop a
message flow application. The wizard sets up and gives names to containers for
the resources in which you then develop your message flow.

Before you begin

Before you start: If you are not familiar with message flow concepts, message
model concepts, and common tasks to manage message flow resources, see
“Processing messages” on page 1021.

This section describes one of the four methods that you can use to create message
flow applications. The other three methods are described in the following sections:

1408 WebSphere Message Broker Version 7.0.0.8

v “Developing message flow applications by using patterns” on page 1309
v “Developing message flow applications by using samples” on page 1406
v “Developing message flow applications from scratch” on page 1423

If you are unsure which method to use, see Chapter 9, “Developing message flow
applications,” on page 1019 for a discussion of the advantages of each one.

To learn about the wizards that you use to start developing message flows, see
“Quick Start wizards overview.”

About this task

Procedure
v “Creating an application from scratch” on page 1411
v “Creating an application based on WSDL or XSD files” on page 1413
v “Creating an application based on an existing message set” on page 1415
v “Creating an application that uses WebSphere Adapters” on page 1416
v “Creating an application by using the Configure New Web Service Usage

wizard” on page 1417
v “Creating an application based on SCA import or export files” on page 1422

What to do next

After you have created a message flow, the next step is to develop it. For more
information about how to start, see “Designing a message flow” on page 1455.
Related tasks:
“Developing message flow applications by using patterns” on page 1309
Create resources that are used to solve a specific business problem by using
patterns.
“Developing message flow applications by using samples” on page 1406
Use the samples to learn more about the features that are available in WebSphere
Message Broker, and how to use them.
“Developing message flow applications from scratch” on page 1423
Design, create, and configure message flows by using the WebSphere Message
Broker Toolkit.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Quick Start wizards overview
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to
containers for the resources that you need when you develop a message flow.

The resources that you can set up are described in the following list.

Chapter 9. Developing message flow applications 1409

Message flow project
A specialized container in which you create and maintain all the resources
that are associated with one or more message flows.

Message set project
A specialized container in which you create and maintain all the resources
that are associated with a message set.

Message set
A container for grouping messages and associated message resources
(elements, types, groups).

Message flow
A container for a sequence of processing steps that run in the broker when
an input message is received.

Working set
A specialized container in which you can group related projects so that you
limit the number of resources that are displayed in the Broker
Development view.

The following Quick Start wizards and links are available.
v Start from scratch, described in “Creating an application from scratch” on page

1411
v Start from existing message set, described in “Creating an application based on

an existing message set” on page 1415
v Start from adapter connection, described in “Creating an application that uses

WebSphere Adapters” on page 1416
v Start from SCA Import or Export, described in “Creating an application based

on SCA import or export files” on page 1422
v Start from patterns link which opens the Patterns Explorer view, described in

“Developing message flow applications by using patterns” on page 1309
v Start from samples link which opens the Samples and Tutorials tab, described

in “Developing message flow applications by using samples” on page 1406
Related concepts:
“Message flow projects” on page 1035
A message flow project is a specialized container in which you create and maintain
all the resources associated with one or more message flows.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:

1410 WebSphere Message Broker Version 7.0.0.8

“Creating a working set” on page 575
Create a working set to limit the number of resources that are displayed in the
Broker Development view.
“Creating an application from scratch”
Use the "Start from scratch" wizard to create the basic resources that are required
to develop a broker application.
“Creating an application based on WSDL or XSD files” on page 1413
You can use existing WSDL or XSD files as the basis for your solution.
“Creating an application based on an existing message set” on page 1415
Create a new application that is based on an existing message set.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Creating an application from scratch
Use the "Start from scratch" wizard to create the basic resources that are required
to develop a broker application.

About this task

The "Start from scratch" wizard creates the following resources:
v A message flow project
v A message set project, and sets up the project dependency
v A message set
v Optional: A message flow
v Optional: A working set

To create these resources, complete the following steps:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the "Start from scratch" wizard by using one of the following methods:
v In the Projects section of the Broker Development view, if no projects are

listed, the Quick Starts links are displayed. Click Start from scratch.
v In the Projects section toolbar, click Quick Starts, the Quick Starts links are

displayed. Click Start from scratch.

The New Message Broker Application panel of the wizard is displayed. In this
panel, you can type the names of the basic resources that are required to
develop a broker application.

3. Type into the appropriate fields, the names of the message flow project, the
message set project, the message set, the message flow, and the name of the
working set that contains the two new projects. Default names of the message
flow project, the message flow, and the working set are already displayed in
the appropriate fields, but you can edit these fields by typing your own names
for these resources.
You can change any of the names that are displayed by typing into the
appropriate field the name that you want. You can also clear either of the check
boxes that relate to the creation of a new message flow or a new working set; if
you clear either of the check boxes, you cannot enter text into the associated
name field, and the associated resource file is not created.

Chapter 9. Developing message flow applications 1411

4. Click Next. The Message Set Physical Formats panel is displayed. The panel
lists three physical formats: XML documents, Binary data (Custom Wire
Format), and Text data (TDS Format).

5. Select one or more of the check boxes to describe the type of message data that
you want to process. If you do not select a check box, XML documents is
selected by default.

6. Click Finish to complete the task. The "Start from scratch" wizard closes.

Results

The wizard creates a message flow project, message set project, message set, and,
optionally, a message flow, with the names that you have specified. It also creates,
optionally, a new working set, with the name that you have specified. The working
set contains all the resources you have created, and the Broker Development view
shows the new working set as the active working set. If you have chosen not to
create a new working set, the projects are created in the active working set
currently shown in the Broker Development view.

The XML, CWF, or TDS formats are created with default names for the message
set.

The message flow, if created, is opened in the message flow editor.

What to do next

Next: If you have created a message flow, you can now go on to “Defining
message flow content” on page 1488.
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“Message flow projects” on page 1035
A message flow project is a specialized container in which you create and maintain
all the resources associated with one or more message flows.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Quick Start wizards overview” on page 1409
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to

1412 WebSphere Message Broker Version 7.0.0.8

containers for the resources that you need when you develop a message flow.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Creating a working set” on page 575
Create a working set to limit the number of resources that are displayed in the
Broker Development view.
“Creating an application based on WSDL or XSD files”
You can use existing WSDL or XSD files as the basis for your solution.
“Creating an application based on an existing message set” on page 1415
Create a new application that is based on an existing message set.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Rules for naming workspace objects” on page 6827

Creating an application based on WSDL or XSD files
You can use existing WSDL or XSD files as the basis for your solution.

Procedure
1. Open the New Message Broker Application wizard.

a. Click File > New > Project, or right-click anywhere in the Broker
Development view, and click New> Project. The New Project window
opens.

b. Double-click Message Brokers. A list of wizards is displayed.
c. Select Start from WSDL and/or XSD files, and click Next.

The first panel of the New Message Broker Application wizard is displayed.
2. Set up the basic resources that are required to develop a broker application that

uses existing WSDL and XSD files as a starting point.
v Type the name of your new application in the Message flow project name

field.
The name that you type is also displayed in the Message set project name
and Message set name fields, but with 'MessageSet' appended.
Similarly, the name that you type is also displayed in the Message flow
name field (with 'Flow' appended), and in the Working set name field.

v Click Next.
You can change any of the names that are displayed by typing into the
appropriate field the name that you want. You can also clear either of the
check boxes that relate to the creation of a new message flow or a new
working set; if you do this, you cannot enter text into the associated name
field.

Chapter 9. Developing message flow applications 1413

3. Select the WSDL or XSD files that you want to use as the initial contents of the
message set.
v To choose WSDL or XSD files that exist in your workspace, click Use

resources from the workspace.
You are presented with a list of resources from which you can choose.
Resources are filtered to show resources only in the active working set.

v To choose WSDL or XSD files that exist outside your workspace, click Use
external resources and type a directory name in the From directory field.
Click Browse.
You are presented with a list of the items in that directory. Make your choice
from this list.

In both cases, a two-pane view is displayed. On the left side, containers (for
example, projects, folders, and message sets) are displayed. On the right side,
the contents of these containers are shown. Depending on which button you
clicked, either a workspace view or a file system view of the resources is
displayed.
If the only use of the XSD file is from the WSDL bindings, you do not have to
select an XSD file that a selected WSDL files depends on.
The view incorporates an option that allows you to copy the source file into the
importFiles directory of the message set.
You can use this option as follows:
v If you choose only WSDL files, you can select the check box.
v If you choose only XSD files, the option is automatically selected and the

check box is greyed out. If you subsequently select a WSDL file, the check
box is enabled but the selection state is not changed; that is, the check box
remains selected.

v Regardless of what you select, if the importFiles folder exists in the message
set project after the import, it is collapsed.

v If you import only WSDL files, the wizard sets the default message domain
to SOAP.

4. Click Next. If you selected one or more WSDL files, the WSDL files that you
selected are shown in a check box tree, with the acceptable bindings for each
file shown as children.

5. Select one or more bindings for each of the WSDL files that you selected. If you
do not select at least one binding for each WSDL file, an error message is
displayed and the Next and Finish buttons are disabled.

6. Click Next. If you selected one or more XSD files, the XSD files that you
selected are displayed in the next pane, with the global elements for each file
shown as children.

7. (Optional) Select the global elements from which you want to create message
definitions. Click Next.

8. (Optional) If any errors or warnings are listed, either click Finish, if you want
the import to be attempted regardless of the errors or warnings listed, or click
Cancel to terminate the import. You can then correct any errors and attempt
the import again.

9. Click Finish.

What to do next

After a WSDL file has been imported into a message set, you can drag the WSDL
file onto the message flow editor. The next step is to develop the message flow. For

1414 WebSphere Message Broker Version 7.0.0.8

more information about how to start, see “Designing a message flow” on page
1455.
Related concepts:
“Generate XML schema” on page 1272
You can generate a schema file from a message model.
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Creating an application based on an existing message set
Create a new application that is based on an existing message set.

Before you begin

Before you start:

You must have created a message set by following the instructions in “Creating a
message set” on page 2842.

About this task

To create a new application, complete the following steps.

Procedure
1. Click File > New > Project, or right-click anywhere in the Broker Development

view and click New > Project. The New Project wizard opens.
2. Click Message Brokers. A list of wizards is displayed.
3. Click Start from existing message set, then click Next. The first panel of the

New Message Broker Application wizard opens.
The Start from existing message set wizard can also be found in the Project
section toolbar. Click Quick Starts and select the Start from existing message
set wizard.

4. Set up the basic resources that are required to develop a broker application
from an existing message set, then click Next.
v If the message set that you want to use is in a compressed (.zip) file, select

Import a message set from a .zip file, and either type the location of the
message set in the .zip file and Compressed message set fields, or click
Browse and select, and open, the .zip file from the list that is displayed.
Then select the required message set.
If the .zip file that you specify does not contain a message set, you receive a
message. You can then type a different location for the message set in the
.zip file field. Otherwise, click Cancel.

Chapter 9. Developing message flow applications 1415

v If the message set that you want to use is not in a compressed file, click
Create a new message set by copying an existing message set and type into
the Message set to copy field the name of the message set file that you want
to copy.
A list is displayed of the message set names from which you can choose.
Message sets are filtered to show resources in the active working set only.

5. Enter the names of the projects, the message flow, the message set, and the
working set that contains the two new projects. Default names of the message
flow project, the message flow, and the working set are already supplied, but
you can replace these names. However, if the message set is copied from a .zip
file that is a project interchange file, you cannot edit the names of the message
set project and the message set; the names are imported from the .zip file.

6. Click Finish.
The new message set project, message set, message flow project, and message
flow are created. A new working set is also created, if required. The new
projects are displayed in the specified working set. The contents of the message
set project and the message flow project are displayed in the Broker
Development view. The message flow is opened in the message flow editor.

What to do next

The next step is to develop the message flow. For more information about how to
start, see “Designing a message flow” on page 1455.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message flow projects” on page 1035
A message flow project is a specialized container in which you create and maintain
all the resources associated with one or more message flows.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Creating an application that uses WebSphere Adapters
Use the Start from adapter connection quick start wizard to create an application
that uses WebSphere Adapters.

Before you begin

Before you start:

v Before you run the Adapter Connection wizard, you must gather some
information from the Enterprise Information System (EIS). For more information
about these prerequisite steps, as well as steps to complete after you have run
the wizard, see “Connecting to an EIS by using the Adapter Connection wizard”
on page 2037.

1416 WebSphere Message Broker Version 7.0.0.8

Procedure
1. In the Projects section of the Broker Development view, click Quick Starts, then

click Start from adapter connection. The Adapter Connection wizard opens.
2. Follow the on-screen instructions.
3. Click Finish.

Results

When you have completed the steps in the wizard, the specified message set
project contains a message set with a message type for each business object, and
the specified message flow project references the message set project.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Creating an application by using the Configure New Web
Service Usage wizard

Use these instructions to generate a message flow by using the Configure New
Web Service Usage wizard.

About this task

This task topic describes how to create a new application by using the Configure
New Web Service Usage wizard.

Procedure
1. Open a message set project that contains a WSDL file.
2. Select a WSDL file from either the message set or the ImportFiles folder and

drag the WSDL file onto the Message Flow editor canvas. Validation occurs and
if any of the following errors occurs, a message appears.

Chapter 9. Developing message flow applications 1417

v The WSDL file does not come from either a message set or ImportFiles
folder of the message set project.
For a multiple-file WSDL, the process also checks that either imports inside
the main WSDL have been properly imported into the message set, or
imports are available in the ImportFiles folder.

v The message set that contains the WSDL file does not support any of the
SOAP, XMLNSC, XMLNS, or MRM domains.
However, if the message set that contains the WSDL file does not support
only the SOAP domain, you can generate a flow based on the HTTP nodes,
and the process continues.

v No HTTP bindings exist in the WSDL file.
v No port types exist in the WSDL file.
For the flow and subflows to be created correctly, the WSDL file that you are
dropping onto the Message Flow editor canvas must be WS-I compliant. If no
errors occur, the first page of the Configure New Web Service Usage wizard
appears. For further information about the fields in the wizard, see Configure
Web Service Usage details.

3. In Web service usage, select Expose message flow as a Web service or Invoke
Web service from message flow. If you select Expose message flow as a Web
service, you can use WebSphere Message Broker with other applications on the
Web. If you select Invoke Web service from message flow, you use WebSphere
Message Broker to start the Web service.

4. Select the Port type that you are going to use. By default, the initially selected
port type is the first one that has at least one HTTP binding associated with it.
You receive an error message in the following circumstances:
v The selected port type does not contain at least one operation.
v No SOAP bindings (with HTTP transport) in the WSDL document are

associated with the port type.
5. Select the Binding that you are going to use. You receive an error message in

the following circumstances:
v The selected binding has no operations associated with it.
v The selected binding has no ports associated with it.
The Service Port field lists all the WSDL ports that point to a selected binding.

6. Select the Binding operations that you require. By default, only those
operations that are implemented by the binding that you choose are selected.
If you select one of the operations that is not implemented by the selected
binding, you receive a warning message, but you can continue.

7. Click Next. For further information on the following fields, see File generation
details.

8. Select HTTP nodes if you have imported the WSDL file from a message set
and do not want the default value of SOAP nodes. If you select HTTP nodes,
you see a message that explains the advantages of using the SOAP nodes. By
using SOAP nodes, you can use features such as WS_Security and
WS_Addressing. However, if the message set does not support the SOAP
domain, you receive an error message.
If you import the WSDL file from the ImportFiles folder, you cannot select
SOAP nodes.
All the file names that are generated, together with their location, are listed on
this page.

1418 WebSphere Message Broker Version 7.0.0.8

A Details pane appears if any warnings occur about the subflow that is
generated.

9. Click Finish to complete the wizard, create the subflow, and add appropriate
nodes to the main flow. For details about the subflow and nodes that generated
by the wizard if you select Expose message flow as a Web service as the initial
step, see “Web service provider message flow generated.”
For details about the subflow and nodes that are generated by the wizard if
you select Invoke Web service from message flow as the initial step, see “Web
service consumer message flow generated” on page 1420.

What to do next

The next step is to develop the message flow. For more information about how to
start, see “Designing a message flow” on page 1455.
Related concepts:
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Configure New Web Service Usage wizard: Configure Web service usage details”
on page 6392
Use this panel of the Configure New Web Service Usage wizard to configure a new
Web service.
“Configure New Web Service Usage wizard: File generation details” on page 6393
Use the Configure New Web Service Usage wizard to specify file generation
details.

Web service provider message flow generated
This provides additional information in relation to the Configure New Web Service
Usage wizard about the message flow generated when the flow is a web service
provider.

Note that the default name for the generated subflow is prefixed by the name of
the WSDL file you selected.

Generated message flow

The message flow generated consists of a:

SoapInput node
This SOAPInput node completes the LocalEnvironment destination tree with
the SOAP operation so that it can be followed either by a:
v SOAPExtract node, or by a
v RouteToLabel node. In this case, appropriate Label nodes need to be in

place.

The out terminal of the SOAPInput node is connected to the in terminal of
the SOAPExtract node.

Chapter 9. Developing message flow applications 1419

Subflow node
The subflow node name reflects the name of the WSDL file.

SOAPReply node
This node sends the response message back to the originating client.

Typically, you connect the output of your node, or nodes, that handle your
operation, or operations, to the in terminal of the SOAPReply node.

Generated message subflow

The generated subflow is constructed as follows:
v The input node is connected to the SOAPExtract node, which removes the SOAP

envelope.
The SOAPExtract node also allows for routing of the SOAP messages, based on
the operation being performed. In particular, the SOAP message is routed to a
Label node within the message flow as identified by the SOAP operation within
the message.

v The Failure output terminal of the SOAPExtract node is connected to the Output
node used when a process fails named, for example, failure.

v A Label node is generated for each SOAP operation and each Label node is
connected to the corresponding Output node.

v Each Output node in the subflow corresponds to an output terminal for the
SOAPExtract node in the main message flow.
Therefore, there is one failure output terminal, plus one output terminal for
each operation.
Typically, you connect the output terminal corresponding to the operation you
require to the node, or nodes, that handle this operation, for example, Compute
node.

Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
“Creating an application by using the Configure New Web Service Usage wizard”
on page 1417
Use these instructions to generate a message flow by using the Configure New
Web Service Usage wizard.
Related reference:
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Web service consumer message flow generated
This provides additional information in relation to the Configure New Web Service
Usage wizard about the message flow generated when the flow is a web service
consumer.

Note that the default name for the generated subflow is prefixed by the name of
the WSDL file you selected.

Generated message flow

The low generated consists of a single node that has a number of output terminals:
v Failure

v Error

1420 WebSphere Message Broker Version 7.0.0.8

v Fault

v One more, corresponding to the name of the selected operation.

Typically, your message flow feeds an input message to the in terminal of the
generated subflow node, and handles various outcomes of the web service
invocation.

The default name of the subflow node is a combination of selected operation and
WSDL file name. You can change the name of the corresponding .msgflow file on
the second page of the wizard; see “Configure New Web Service Usage wizard:
File generation details” on page 6393.

The generated .msgflow file is placed into the gen folder of the message set project;
see “Generated message subflow” for details of this subflow.

Generated message subflow

The generated subflow is constructed as follows:
v A SOAPRequest node immediately follows an Input node. This is a synchronous

request and response node that blocks after sending the request, until the
response is received. The SOAPRequest node parses the response message.

v The Failure and Error terminals are connected to the Output nodes for failure
and error respectively.

v The Out terminal is connected to the SOAPExtract node.
The SOAPExtract node removes the SOAP envelope so that the body of a SOAP
message is extracted.
The SOAPExtract node also allows for routing of the SOAP messages, based on
the operation being performed. Note that only the selected operation and fault
are handled.
In particular, the SOAP message is routed to a Label node within the message
flow as identified by the SOAP operation or a ws__Fault label, if fault is
returned from the web service.
Each Label node is connected to the corresponding Output node.
The Failure terminal of the SOAPExtract node is connected to the Output node
for failure.

v Each Output node in the subflow corresponds to an output terminal for the
subflow node.
Therefore, there are three output terminals:
– Failure

– Fault

– One for the selected operation.
Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
“Creating an application by using the Configure New Web Service Usage wizard”
on page 1417
Use these instructions to generate a message flow by using the Configure New
Web Service Usage wizard.
Related reference:

Chapter 9. Developing message flow applications 1421

“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Creating an application based on SCA import or export files
You can create a new application that is based on existing SCA import or export
files.

Procedure
1. Open the New Message Broker Application wizard by using either of the

following methods:
v In the Projects section of the Broker Development view, click Quick Starts,

then click Start from SCA Import or Export.
v Click File > New > Project, double-click Message Brokers, then click Start

from SCA Import or Export.

The first panel of the New Message Broker Application wizard is shown.
2. Enter names for the projects, message set and message flow, then click Next.

You can change any of the names that are displayed by typing into the
appropriate field the name that you want. You can also clear either of the check
boxes that relate to the creation of a new message flow or a new working set,
but you cannot enter text into the associated name field.

3. Select the project interchange file that contains the SCA import or export files
that you want to use as the initial contents of the message set.
v To choose SCA import or export files that exist in your workspace, click Use

resources from the workspace.
A list of available resources is displayed.

v To choose SCA import or export files that exist outside your workspace, click
Use external resources and enter a directory name, or click Browse to
browse for a directory.
A list of the items in that directory is displayed.

In both cases, a two-pane view is displayed. On the left side, containers (for
example, projects, folders, and message sets) are displayed. On the right side,
the contents of these containers are shown. Depending on which option you
selected, either a workspace view or a file system view of the resources is
displayed.

4. To copy the imported files into the ImportFiles folder, select Copy source file
into the 'ImportFiles' directory of the message set project.

5. To show all resources in the workspace. select Apply working set filtering to
artifact selection(s) on this page; if you clear the check box, only resources in
the current active working set are shown. If no working set is selected, this
check box is not displayed.

6. Click Next. If you selected one or more files, the files that you selected are
shown in a check box tree.

7. Select the project interchange file that contains the SCA components that you
want to import into the message set. The project interchange file contains the
SCA import components that you want to implement in WebSphere Message
Broker, or the SCA export components that you want to invoke from
WebSphere Message Broker.

8. Click Finish. The SCA components that you have selected are added to the
message set that you have specified.

1422 WebSphere Message Broker Version 7.0.0.8

9. Drag an SCA component from the message set in the tree structure in the left
pane onto the message flow editor pane.
Dragging a .outsca file:
v If the .outsca file contains either a single request-response operation, or

more than one operation (one-way or request-response), you are prompted to
select the operation. If the chosen operation is request-response, you can also
choose whether to invoke the service synchronously or asynchronously.
Synchronous invocation is the default value, and creates a SCARequest node.
Choosing the asynchronous option creates a pair of SCAAsyncRequest and
SCAAsyncResponse nodes.

v If the chosen operation is one-way, synchronous invocation is the only
option, and a SCARequest node is created.

Dragging a .insca file:
v If the .insca file contains only one-way operations, dragging a .insca file

onto the canvas creates an SCAInput node.
v Otherwise, a pair of SCAInput and SCAReply nodes is created.

What to do next

Next: Develop the message flow. For more information about how to start, see
“Designing a message flow” on page 1455.
Related concepts:
“Service Component Architecture (SCA) overview” on page 2096
Service Component Architecture (SCA) is a specification that describes a model for
building applications and systems using a service-oriented architecture (SOA).

Developing message flow applications from scratch
Design, create, and configure message flows by using the WebSphere Message
Broker Toolkit.

Before you begin

Before you start: If you are not familiar with message flow concepts, message
model concepts, and common tasks to manage message flow resources, see
“Processing messages” on page 1021.

This section describes one of the four methods that you can use to create message
flow applications. The other three methods are described in the following sections:
v “Developing message flow applications by using patterns” on page 1309
v “Developing message flow applications by using samples” on page 1406
v “Developing message flow applications from a wizard” on page 1408

If you are unsure which method to use, see Chapter 9, “Developing message flow
applications,” on page 1019 for a discussion of the advantages of each one.

About this task

To develop a message flow from scratch follow these activities in order.
1. For information about managing message flows, see “Managing message flow

resources” on page 1424.

Chapter 9. Developing message flow applications 1423

2. To learn about the choices that you have when designing the content of your
message flows to provide the processing that your applications require, see
“Designing a message flow” on page 1455.

3. To learn about constructing and configuring the content of your message flows,
see “Defining message flow content” on page 1488.

Related tasks:
“Developing message flow applications by using patterns” on page 1309
Create resources that are used to solve a specific business problem by using
patterns.
“Developing message flow applications by using samples” on page 1406
Use the samples to learn more about the features that are available in WebSphere
Message Broker, and how to use them.
“Developing message flow applications from a wizard” on page 1408
A Quick Start wizard sets up the basic resources that are required to develop a
message flow application. The wizard sets up and gives names to containers for
the resources in which you then develop your message flow.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Managing message flow resources
Manage your message flows and associated resources in the WebSphere Message
Broker Toolkit.

Before you start: Read “Message flows overview” on page 1022.
v “Creating a message flow project” on page 1425
v “Deleting a message flow project” on page 1427
v “Creating a broker schema” on page 1429
v “Creating a message flow” on page 1431
v “Opening an existing message flow” on page 1433
v “Copying a message flow by using copy” on page 1435
v “Analyzing planned changes to message flows” on page 1436
v “Renaming a message flow” on page 1438
v “Moving a message flow” on page 1439
v “Deleting a message flow” on page 1441
v “Deleting a broker schema” on page 1442
v “Version and keyword information for deployable objects” on page 1443
v “Showing resource references” on page 1447
v “Saving a message flow” on page 1448
v “Importing and exporting resources in a Project Interchange file” on page 1452

To learn more about message flows look at the following sample:
v Airline Reservations

1424 WebSphere Message Broker Version 7.0.0.8

In this sample, you can explore message flow resources, and learn how to create,
delete, and rename the resources.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related tasks:
“Developing message flow applications by using patterns” on page 1309
Create resources that are used to solve a specific business problem by using
patterns.
“Developing message flow applications by using samples” on page 1406
Use the samples to learn more about the features that are available in WebSphere
Message Broker, and how to use them.
“Developing message flow applications from a wizard” on page 1408
A Quick Start wizard sets up the basic resources that are required to develop a
message flow application. The wizard sets up and gives names to containers for
the resources in which you then develop your message flow.
“Developing message flow applications from scratch” on page 1423
Design, create, and configure message flows by using the WebSphere Message
Broker Toolkit.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Creating a message flow project
A message flow project is a container for message flows; you must create a project
before you can create a message flow.

Before you begin

Before you start:

Read the concept topic about “Message flow projects” on page 1035.

About this task

The project and its resources are stored in a file system or in a shared repository. If
you are using a file system, you can use the local file system or a shared drive. If
you store files in a repository, you can use all the available repositories that are
supported by Eclipse; for example, CVS.

To create a message flow project and other resource files that you need to start
developing applications, you can use a Quick Start wizard (as described in “Quick
Start wizards overview” on page 1409).

To create only a message flow project, perform the following actions:

Chapter 9. Developing message flow applications 1425

Procedure
1. Switch to the Broker Application Development perspective.
2. Click File > New > Message Flow Project or right-click any resource in the

Broker Development view and click New > Message Flow Project.
You can also press Ctrl+N to display a dialog box, from which you select the
wizard to create a new object. Click Message Brokers in the left view; the right
view displays a list of objects that you can create for WebSphere Message
Broker. Click Message Flow Project in the right view, then click Next. The New
Message Flow Project wizard opens.

3. Enter a name for the project. Choose a project name that reflects the message
flows that it contains. For example, if you want to use this project for financial
processing message flows, you might give it the name Finance_Flows.

4. To use the default location for the new message project directory (the
\workspace subdirectory of your current installation), leave the Use default
check box selected (it is selected when the dialog box opens). When you choose
this option, you cannot edit the Directory field.
If you do not want to use the default location, clear the Use default check box
and specify a location for the new message flow project files in Directory.

5. If this message flow project depends on other message flow projects or message
set projects, click Next.
A list of current projects is displayed. Select one or more message flow projects,
one or more message set projects, or both, from the list to indicate the
dependencies of this new message flow project. Message flow projects and
message set projects are filtered to show only resources in the active working
set.
This message flow project depends on another message flow project if you
intend to use common resources in it. Common resources that you can share
between message flow projects are:
a. ESQL subroutines (defined in broker schemas)
b. Mappings
c. Message sets
d. Subflows
For example, you might want to reuse a subflow that provides standard error
processing, such as writing the message to a database, or recording a trace
entry.
This message flow project depends on a message set project if you intend to
refer to the message it defines in ESQL in the message flow nodes.
You can add dependencies after you have created the message flow project by
right-clicking the project in the Broker Development view and clicking
Properties. Click Project References and select the dependent message flow or
message set project from the list of projects displayed.

6. Click Finish to complete the task.

Results

The project file is created in a directory that has the same name as your message
flow project in the specified location. All other files that you create that are related
to this message flow project are created in this same directory.

A default broker schema (default) is also created in the project. You can create
and use different schemas in a single project to organize message flow resources
and to provide the scope of resource names to ensure uniqueness.

1426 WebSphere Message Broker Version 7.0.0.8

What to do next

Next: create a message flow.
Related concepts:
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“Development repository” on page 45
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“Quick Start wizards overview” on page 1409
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to
containers for the resources that you need when you develop a message flow.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Deleting a message flow project”
A message flow project is the container in which you create and maintain all the
resources associated with one or more message flows. These resources are created
as files, and are displayed in the project in the Broker Development view. If you do
not want to retain a message flow project, you can delete it.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Creating a broker schema” on page 1429
To organize your message flow project resources, and to define the scope of
resource names to ensure uniqueness, you can create broker schemas. A default
schema is created when you create the message flow project, but you can create
additional schemas.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Rules for naming workspace objects” on page 6827

Deleting a message flow project
A message flow project is the container in which you create and maintain all the
resources associated with one or more message flows. These resources are created
as files, and are displayed in the project in the Broker Development view. If you do
not want to retain a message flow project, you can delete it.

Chapter 9. Developing message flow applications 1427

Before you begin

Before you start:

Complete the following steps.
v “Creating a message flow project” on page 1425
v Read the concept topic about “Message flow projects” on page 1035

About this task

When you delete a message flow project in the WebSphere Message Broker Toolkit,
you delete the project and its resources. If you are using a shared repository, the
repository might retain a copy of a deleted resource.

To delete a message flow project, complete the following steps.

Procedure
1. Select the message flow project that you want to delete, and click Edit >

Delete. You can also press Delete, or right-click the project in the Broker
Development view and click Delete.

2. You must choose if you want the contents of the message flow project folder to
be deleted with this action in the displayed confirmation dialog box. The dialog
box contains two buttons:
v The first button confirms that all contents are to be deleted.
v The second button requests that the directory contents are not deleted. The

default action is not to delete the contents; therefore, the second button is
selected by default when the dialog box is initially displayed.

a. Select the appropriate button. If you choose not to delete the contents of the
message flow project directory, all the files and the directory itself are
retained.
If you later create another project with the same name, and specify the same
location for the project (or accept the location as the default value), you can
access the files previously created.
If you choose to delete all the contents, all files and the directory itself are
deleted.

3. Click Yes to complete the delete request, or No to terminate the delete request.

Results

When you click Yes, the requested objects are deleted.

If you maintain resources in a shared repository, a copy is retained in that
repository. You can follow the instructions provided by the repository supplier to
retrieve the resource, if required.

If you are using the local drive or a shared drive to store your resources, no copy
of the resource is retained. Be careful to select the correct resource when you
complete this task.
Related concepts:
“By name linking” on page 43
You identify objects using a combination of a namespace and a name, referred to as
a fully qualified name. The use of fully qualified names, called by name linking,
makes it easy to identify and locate objects, and to correct broken references.

1428 WebSphere Message Broker Version 7.0.0.8

“Development repository” on page 45
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Creating a message flow project” on page 1425
A message flow project is a container for message flows; you must create a project
before you can create a message flow.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Creating a broker schema
To organize your message flow project resources, and to define the scope of
resource names to ensure uniqueness, you can create broker schemas. A default
schema is created when you create the message flow project, but you can create
additional schemas.

Before you begin

Before you start:

Complete the following steps.
v “Creating a message flow project” on page 1425
v Read the concept topic about broker schemas

About this task

To create a broker schema:

Procedure
1. Switch to the Broker Application Development perspective.
2. Click File > New > Broker Schema or right-click any resource in the Broker

Development view and click New > Broker Schema.
You can also press Ctrl+N. This displays a dialog that allows you to select the
wizard to create a new object. Click Message Brokers in the left view. The right
view displays a list of objects that you can create for WebSphere Message
Broker. Click Broker Schema in the right view, then click Next. The New
Broker Schema wizard displays.

3. Enter the message flow project in which you want the new schema to be
created. If a message flow project or one of its resources is highlighted when
you start the wizard, that project name appears in the dialog box. If a name
does not appear in this field, or if you want to create the schema in another
project, click Browse and select the correct project from the displayed list. The
message flow project list is filtered to show projects in the active working set.
You can type the project name in, but you must enter a valid name. The dialog
box displays a red cross and the error message The specified project does

Chapter 9. Developing message flow applications 1429

not exist if your entry is not a valid project. You must specify a message flow
project; if you select a message set project, you cannot complete the operation.

4. Enter a name for the schema. Choose a name that reflects the resources that it
contains. For example, if you want to use this schema for message flows for
retail applications, you might give it the name Retail.
A broker schema name must be a character string that starts with a Unicode
character followed by zero or more Unicode characters or digits, and the
underscore symbol (_). You can use the period to provide a structure to the
name, for example Stock.Common.

5. Click Finish to complete the task.
If category view is selected in the Broker Development view when you create
the schema, you see a message to say that the schema has been created, but it
might not be visible in the Broker Development view when it is empty. To
show the new schema in the Broker Development view, click Hide Categories

on the Broker Development view toolbar.

Results

The schema directory is created in the project directory. If the schema name is
structured by using periods, further subdirectories are defined. For example, the
broker schema Stock.Common results in a directory Common, in directory Stock, in the
message flow project directory.
Related concepts:
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“Development repository” on page 45
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Creating a message flow project” on page 1425
A message flow project is a container for message flows; you must create a project
before you can create a message flow.
“Deleting a message flow project” on page 1427
A message flow project is the container in which you create and maintain all the
resources associated with one or more message flows. These resources are created
as files, and are displayed in the project in the Broker Development view. If you do
not want to retain a message flow project, you can delete it.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can

1430 WebSphere Message Broker Version 7.0.0.8

create one or more message flows and deploy them to one or more brokers.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Rules for naming workspace objects” on page 6827

Creating a message flow
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.

Before you begin

Before you start:
v Complete the following task: “Creating a message flow project” on page 1425.
v Read the concept topic about “Broker schemas” on page 1036.

About this task

The mode that your broker is working in can affect the number of message flows
that you can use; see “Restrictions that apply in each operation mode” on page
3657.

The message flow and its resources are stored in a file system or in a shared
repository. If you are using a file system, it can be on the local drive, or a shared
drive. If you store files in a repository, you can use all the available repositories
that are supported by Eclipse; for example, CVS.

Use this process to create a complete message flow that you can deploy, or a
subflow that provides a subset of function (for example, a reusable error
processing routine), that you cannot deploy on its own.

To create a message flow and other resource files that you need to start developing
applications, you can use a Quick Start wizard.

To create only a message flow, perform the following actions:

Procedure
1. If you have not already created the message flow project in which you want to

create the message flow, you can either create it now, or you can create the
message flow project as an optional step in creating the message flow (in step
4). If you want to create the message flow project first, see “Creating a message
flow project” on page 1425. The project can be empty, or can have message
flows defined in it.

2. Complete one of the following actions to open a message flow:
v Click File > New > Message Flow.
v Right-click a resource in the Broker Development view and click New >

Message Flow.
v Press Ctrl+N. This action displays a dialog box in which you can select the

wizard to create an object:
a. Click Message Brokers in the left view. The right view displays a list of

objects that you can create for WebSphere Message Broker.
b. Click Message Flow in the right view, then click Next. The New Message

Flow wizard displays.

Chapter 9. Developing message flow applications 1431

3. Identify the project in which you want to define the message flow. This field is
filtered to show only resources in the active working set.
v If you have a resource selected in the Broker Development view, the name of

the corresponding project is displayed in the Message Flow Project field.
v If you do not have a resource selected, the first field is blank.

– If you have already created the message flow project for this message
flow, you can perform either of the following actions:
- Type the name of the project into the field.
- Click the down-arrow and select the appropriate project from the list

displayed.
– If you have not already created the message flow project, select New. The

New Message Flow Project wizard starts, and you can use it to create the
message flow project for your new message flow, as described in
“Creating a message flow project” on page 1425.
When you have finished creating the message flow project, the New
Message Flow Project wizard closes, and the name of your new message
flow project is displayed in the Message Flow Project field of the New
Message Flow window.

If your entry is not a valid project name, the window displays a red cross, and
the error message The specified project does not exist.

4. In the Message flow Name field, enter the name of the new message flow. You
can use all valid characters for the name, but it is helpful to choose a name that
reflects its function, for example, OrderProcessing.

5. Decide whether you want to use the default broker schema. When you create a
message flow project, a default schema is created in it, and this default value is
assumed unless you clear it. You can create and use different schemas in a
single project to organize message flow resources, and to provide the scope of
resource names to ensure uniqueness.
v If you want the message flow to be created in the default broker schema,

ensure that you select Use default in the Flow organization section.
v If you want to use a different broker schema, clear Use default. You can now

perform either of the following actions:
– Enter the name of the broker schema into the Schema field.
– Click Browse to select from the broker schemas in the message flow

project.
6. Click Finish.

Results

The new message flow (<message_flow_name>.msgflow) is displayed in its project in
the Broker Development view. The Editor view is empty, and ready to populate.

What to do next

Next, you can do either of the following tasks:
v “Saving a message flow” on page 1448
v “Defining message flow content” on page 1488
Related concepts:
“Development repository” on page 45
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

1432 WebSphere Message Broker Version 7.0.0.8

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Quick Start wizards overview” on page 1409
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to
containers for the resources that you need when you develop a message flow.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Creating a message flow project” on page 1425
A message flow project is a container for message flows; you must create a project
before you can create a message flow.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Rules for naming workspace objects” on page 6827
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Opening an existing message flow
Open an existing message flow to change or update its contents, or to add or
remove nodes.

Before you begin

Before you start

You must have completed the following task:
v “Creating a message flow” on page 1431

About this task

To open an existing message flow:

Chapter 9. Developing message flow applications 1433

Procedure
1. Switch to the Broker Application Development perspective. The Broker

Development view is populated with all the message flow and message set
projects that you have access to. A message flow is contained in a file called
<message_flow_name>.msgflow.

2. Right-click the message flow that you want to work with, and click Open.
Alternatively you can double-click the message flow in the Broker
Development view.
The graphical view of the message flow is displayed in the editor view. You
can now work with this message flow; for example, you can add or remove
nodes, change connections between nodes, or modify node properties.

3. Click Open ESQL for any node in the flow that requires ESQL, or double-click
the ESQL file (the .esql file) in the Broker Development view to open it, if you
want to work with the ESQL file for this message flow.

4. Click Open Mappings for any node in the flow that requires mappings, or
double-click the mappings file (the .msgmap file) in the Broker Development
view to open it, if you want to work with the mappings file for this message
flow.

5. Click Open Java for any JavaCompute node in the flow, or double-click the
Java file in the Broker Development view to open it, if you want to work with
the Java file for this message flow.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Removing a message flow node” on page 1519
When you have created and populated a message flow, you might need to remove
a node to change the function of the flow, or to replace it with another more
appropriate node. The node can be a built-in node, a user-defined node, or a
subflow node.
“The Message Flow editor experiences problems when opening a message flow,
and opens in error mode” on page 3435
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

1434 WebSphere Message Broker Version 7.0.0.8

Copying a message flow by using copy
You might find it useful to copy a message flow as a starting point for a new
message flow that has similar function. For example, you might want to replace or
remove one or two nodes to process messages in a different way.

Before you begin

Before you start:

To complete this task, you must have created a message flow, as described in
“Creating a message flow” on page 1431.

About this task

To copy a message flow:

Procedure
1. Switch to the Broker Application Development perspective.
2. Select the message flow (<message_flow_name>.msgflow) that you want to copy

in the Broker Development view.
a. Right-click the file and click Copy from the menu.

3. Right-click the broker schema in the message flow project to which you want to
copy the message flow and click Paste. You can copy the message flow in the
same broker schema in the same message flow, or to a different broker schema
in the same message flow project, or to a broker schema in a different message
flow project.
When you copy a message flow, the associated files (ESQL and mapping, if
present) are not automatically copied to the same target message flow project. If
you want these files copied as well, you must do this explicitly following this
procedure.
You might also need to update nodes that have associated ESQL or mappings,
to ensure that modules are unique.
For example, if you have created a message flow Test1 that contains a single
Compute node, and you copy message flow Test1 and its associated .esql file
to the same broker schema in the same message flow project (and give the new
copy a different name, for example Test2), two modules named Test1_Compute
now exist in the single schema. One is in Test1.esql, the second in Test2.esql.
This duplication is not supported, and an error message is written to the
Problems view when you have completed the copy action. You must rename
the associated ESQL modules in the .esql file and update the matching node
properties to ensure that every module in a broker schema is unique.

Results

The message flow is copied with all property settings intact. If you intend to use
this copy of the message flow for another purpose, for example to retrieve
messages from a different input queue, you might have to modify its properties.

You can also use File > Save As to copy a message flow. This task is described in
“Saving a message flow” on page 1448.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

Chapter 9. Developing message flow applications 1435

input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Analyzing planned changes to message flows
Use impact analysis to analyze the effect of renaming or moving message flows,
including subflows.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message flow project” on page 1425.
v “Creating a message flow” on page 1431.
v Ensure that you have enabled indexing, by following the instructions in

“Enabling and disabling indexing” on page 1454.

About this task

This information covers the following tasks:
v “Renaming message flows” on page 1437
v “Moving the message flow file” on page 1437

If a node in the message flow contains either an ESQL path expression, or an
XPath expression, it might not be possible to unambiguously determine which
structure in the message set the expression refers to. Ambiguity occurs when
multiple constructs have the same name, and the parent of the construct cannot be
determined. For example, consider a message definition that has the following
constructs:

Global element declaration with name G1
Global element declaration with name G2
Global element declaration with name G3
G2 contains an element reference to global element G1
G3 contains a local element declaration with name G1

The message flow might contain the following ESQL path:
InputRoot.MRM.ns1:G1

1436 WebSphere Message Broker Version 7.0.0.8

Or the following XPath path:
$InputRoot/MRM/ns1:G1

The construct G1 cannot be unambiguously determined. It can refer to G2/G1 or
G3/G1. In this case, impact analysis reports both G2/G1 and G3/G1 as potential
impacts. The list of secondary impacts might contain references to elements that
are not in fact affected by the primary change.

Renaming message flows:
About this task

Use this procedure to analyze the impact of renaming a message flow.

Procedure

1. In the Broker Development view, right-click the flow or subflow that you want
to rename, then click Impact Analysis > Rename.

2. In the Impact Analysis - Rename Artifact window, type the new name of the
object, then click Analyze Impact.
The Rename Artifact dialog box shows the results of impact analysis, listing
primary and secondary impacts.
You can view the results of impact analysis in the Impact Analysis dialog box,
or the Impact Analysis view of the WebSphere Message Broker Toolkit. For
more information about how to view information about selected resources,
mark changes as complete, copy results to an external application, and view
previous results, see “Impact Analysis view” on page 6801.

Moving the message flow file:
About this task

You can analyze the effects of moving a message flow file.

Procedure

1. Right-click the message flow file, then click Impact Analysis > Move.
2. Select the new container for the object, then click Analyze Impact.

The Impact Analysis - Move Artifact dialog box shows the results of impact
analysis, listing primary and secondary impacts.
You can view the results of impact analysis in the Impact Analysis dialog box,
or the Impact Analysis view of the WebSphere Message Broker Toolkit. For
more information about how to view information about selected resources,
mark changes as complete, copy results to an external application, and view
previous results, see “Impact Analysis view” on page 6801.

:

Related concepts:
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Enabling and disabling indexing” on page 1454
Enable indexing to support impact analysis.

Chapter 9. Developing message flow applications 1437

“Analyzing planned changes to message model objects” on page 2897
Use impact analysis to analyze the effect of renaming message model objects.
“Analyzing planned changes to ESQL objects” on page 2403
Use impact analysis to analyze the effect of renaming or moving ESQL objects, or
moving or changing the broker schema of an ESQL file.
“Analyzing the impact of changes to message maps” on page 2234
Use impact analysis to analyze the effect of renaming or moving message maps.
“Analyzing planned changes to message set resources” on page 1165
Use impact analysis to analyze the effect of renaming message definition or
deployable WSDL files.
Related reference:
“Impact analysis: reference” on page 4174
Some artifacts are excluded from secondary analysis.
“Impact Analysis view” on page 6801
The Impact Analysis view shows information about selected resources, which
changes have been marked as complete, and previous results. You can also use this
view to copy results to the clipboard.

Renaming a message flow
You can rename a message flow. You might want to rename a flow if you have
modified it to provide a different function, and you want the name of the flow to
reflect this new function.

Before you begin

Before you start

This task assumes that you have created a message flow. For more information, see
“Creating a message flow” on page 1431.

About this task

You can use impact analysis to analyze the effect of renaming message flows. For
more information about impact analysis, see “Analyzing planned changes to
message flows” on page 1436.

To rename a message flow, complete the following steps.

Procedure
1. To open the Rename Resource dialog box, select the flow that you want to

rename (message_flow_name.msgflow), then click File > Rename.
2. Enter a new name for the file.
3. Click OK to rename the file, or Cancel to cancel the request. If you click OK,

the file is renamed.
After you have renamed the flow, any references that you have to this flow (for
example, if it is embedded in another message flow) are no longer valid.

4. You must open the affected message flows and correct the references if you are
not sure where you have embedded this message flow.
a. Click File > Save All The save action saves and validates all resources.

Unresolved references are displayed in the Problems view; click each error
listed to open the message flow that makes a non-valid reference in the
editor view.

1438 WebSphere Message Broker Version 7.0.0.8

b. Right-click the subflow icon and click Locate Subflow. The Locate Subflow
dialog box opens, listing the available message flow projects.

c. Expand the list and explore the resources available to locate the required
subflow.

d. Select the correct subflow, and click OK. All references in the current
message flow are updated for you. All related errors are removed from the
Problems view.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Moving a message flow
You can move a message flow from one broker schema to another in the same
project or to a broker schema in another project. You might want to move a flow,
for example, if you are reorganizing the resources in your projects.

Before you begin

Before you start:

Complete the following task:
v “Creating a message flow” on page 1431

You can use impact analysis to analyze the effect of moving message flows and
subflows; for more information, see “Analyzing planned changes to message
flows” on page 1436.

About this task

To move a message flow:

Procedure
1. Drag the message flow that you want to move from its current location to a

broker schema in the same or another message flow project.
If the target location that you have chosen is not valid, a black no-entry icon
appears over the target, an error dialog box is displayed, and the message flow

Chapter 9. Developing message flow applications 1439

is not moved. You can move a message flow to another schema in the same
project or to a schema in another message flow project. If you have created an
empty broker schema for this purpose, it might not be visible in the Broker
Development view if category mode is selected. To see an empty schema in the

Broker Development view, click Hide Categories .
Alternatively, you can use the following method:
a. Right-click the message flow that you want to move

(message_flow_name.msgflow) in the Broker Development view and click
Move, or File > Move. The Move dialog box is displayed, and contains a
list of all valid projects to which you can move this message flow.

b. Select the project and the broker schema in the project to which you want to
move the message flow. You can move a message flow to another schema in
the same project or to a schema in another message flow project.

c. Click OK to complete the move, or Cancel to cancel the move. If you click
OK, the message flow is moved to its new location.

2. Check the Problems view for errors or warnings that are generated by the

move. Errors are indicated by the error icon , warnings are indicated by the

warning icon . The errors in this view include those that are caused by
broker references. When the move is complete, all references to this message
flow (for example, if this message flow is a reusable error routine that you have
embedded in another message flow) are checked.
If you have moved the message flow in the same broker schema (in the same
or another project), all references are still valid. However, if you move the
message flow from one broker schema to another (in the same or a different
project), the references are broken because the resources are linked by a
fully-qualified name of which the broker schema is a part. Information about
broken references is written to the Problems view; for example, Linked or
nested flow mflow1 cannot be located.

3. Double-click each error or warning to correct it. The message flow that contains
the error is opened in the editor view and the node in error is highlighted.

Results

When you move a message flow, the associated files (for example, all ESQL or
mapping files) are not automatically moved to the target broker schema. If you
want to move these files as well, you must do so explicitly by following the
procedure in this topic.
Related concepts:
“By name linking” on page 43
You identify objects using a combination of a namespace and a name, referred to as
a fully qualified name. The use of fully qualified names, called by name linking,
makes it easy to identify and locate objects, and to correct broken references.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or

1440 WebSphere Message Broker Version 7.0.0.8

remove nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Deleting a message flow
Delete message flows from your message flow project when you no longer need
them.

Before you begin

Deleting a message flow in the WebSphere Message Broker Toolkit deletes the
project and its resources. If you are using a shared repository, the repository might
retain a copy of a deleted resource.

Before you start:

This task assumes that you have created a message flow. For more information, see
“Creating a message flow” on page 1431.

Before you delete a message flow, you can list resources that refer to that flow and
would therefore be affected by the deletion; for more information, see “Showing
resource references” on page 1447.

About this task

To delete a message flow, complete the following steps.

Procedure
1. Select the message flow that you want to delete, then click Edit > Delete. A

confirmation dialog box is displayed.
2. Click Yes to delete the message flow, or No to cancel the delete request. When

you click Yes, the requested objects are deleted.
If you maintain resources in a shared repository, a copy is retained in that
repository. You can follow the instructions provided by the repository supplier
to retrieve the resource if required.
If you are using the local file system or a shared file system to store your
resources, no copy of the resource is retained. Be careful to select the correct
resource when you complete this task.

3. Check the Problems view to see if errors have been returned to the delete
request. Errors are generated if you delete a message flow that is embedded in
another flow, because the reference is no longer valid.
a. Click the error in the Problems view. The flow that now has a non-valid

reference is displayed.

Chapter 9. Developing message flow applications 1441

b. Either remove the node that represents the deleted flow from the parent
flow, or create another message flow with the same name to provide
whatever processing is required.

Results

When you delete the message flow, the files that are associated with the flow (the
ESQL and mapping files, if present) are not deleted by this action. If you want to
delete these files also, you must do so explicitly.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Deleting a broker schema
You can delete a broker schema that you have created in a message flow project if
you no longer need it.

Before you begin

Before you start:

This topic assumes that you have already created a broker schema, as described in
“Creating a broker schema” on page 1429. For more information about schemas,
see “Broker schemas” on page 1036.

About this task

To delete a broker schema, complete the following steps.

Procedure
1. If the schema contains resources, delete them. To delete the schema, it must be

empty. The schema might not be visible in the Broker Development view when
it is empty. To show the new schema in the Broker Development view, click

Hide Categories on the Broker Development view toolbar.
2. Select the broker schema, then click Edit > Delete. A confirmation dialog box is

displayed.
3. Click Yes to delete the broker schema directory or No to cancel the delete

request. When you click Yes, the requested objects are deleted.
If you maintain resources in a shared repository, a copy is retained in that
repository. You can follow the instructions provided by the repository supplier
to retrieve the resource, if required.

1442 WebSphere Message Broker Version 7.0.0.8

If you are using the local file system or a shared file system to store your
resources, no copy of the resource is retained. Be careful to select the correct
resource when you complete this task.

Results
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
Related tasks:
“Creating a message flow project” on page 1425
A message flow project is a container for message flows; you must create a project
before you can create a message flow.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Version and keyword information for deployable objects
Use the Broker Archive editor to view the version and keyword information of
deployable objects.

You can display properties of deployed objects, and can modify associated
comments:
v “Object version in the Broker Archive editor”
v “Version, deployment time, and keywords of deployed objects”
v “Path and Comment columns” on page 1444

Object version in the Broker Archive editor

The Version column on the Manage page of the Broker Archive editor displays the
version tag for the following objects that have a defined version.
v .dictionary files
v .cmf files
v Embedded JAR files with a version defined in a META-INF/keywords.txt file

You cannot edit the Version column.

You can use the mqsireadbar command to list the keywords that are defined for
each deployable file within a deployable archive file. For more information, see
“mqsireadbar command” on page 3697.

Version, deployment time, and keywords of deployed objects

In the WebSphere Message Broker Explorer, the Properties QuickView displays the
following properties for all deployed objects:
v Version
v Deployment time

Chapter 9. Developing message flow applications 1443

v All defined keywords

For example, you deploy a message flow with the following literal strings:
v $MQSI_VERSION=v1.0 MQSI$

v $MQSI Author=fred MQSI$

v $MQSI Subflow 1 Version=v1.3.2 MQSI$

The Properties view displays these properties:

Property Description

Deployment Time Date and time of deployment

Modification Time Date and time of modification.
Note: This property has no concept of time
zone, therefore it is only meaningful if you
know in which time zone it was last
modified.

Version v1.0

Author fred

Subflow 1 Version v1.3.2

If the keyword information is not available, a message is displayed in the
Properties view to indicate the reason; for example, if keyword resolution has not
been enabled at deployment time, the Properties view displays the message
Deployed with keyword search disabled.

Path and Comment columns

If you add source files, the Path column on the Manage tab is populated
automatically.

To add a comment, double-click the Comment column and type the text that you
require.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Adding keywords to ESQL files” on page 2486
You can add keywords to ESQL files to contain information that you want to
associate with a message flow.
“Keywords in subflows” on page 1447
You can embed keywords in each subflow that you use in a message flow.
Related tasks:
“Adding keywords to JAR files” on page 2660
If a BAR file contains JAR files, you can associate keywords with the JAR files.
Related reference:
“Description properties for a message flow” on page 4016
The description properties for a message flow include the Version, Short
Description and Long Description. To view and edit the properties of a message
flow click Flow > Properties.
“mqsireadbar command” on page 3697
Use the mqsireadbar command to read a deployable BAR file and identify its

1444 WebSphere Message Broker Version 7.0.0.8

defined keywords.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Adding keywords to XSL style sheets” on page 4975
Embedded keywords in an XSL style sheet; their location is not restricted. You can
also add a keyword as an XML comment.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.

Message flow version and keywords:

When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.

After the message flow has been deployed, you can view the properties of the
message flow in the WebSphere Message Broker Toolkit. These properties include
the deployment and modification dates and times (the default information that is
displayed) as well as any additional version or keyword information that you have
set.

You can define information to give details of the message flow that has been
deployed; therefore, you can check that it is the message flow that you expect.

Version

You can set the version of the message flow in the Version property.

You can also define a default message flow version in the Default version tag of
the message flow preferences. All new message flows that are created after this
value has been set have this default applied to the Version property at the message
flow level.

Keywords

Keywords are extracted from the compiled message flow (the .cmf file) rather than
the message flow source (the .msgflow file). Not all the source properties are added
to the compiled file. Therefore, add message flow keywords in only these places:
v The label property of a Passthrough node
v ESQL comments or string literals
v The Long Description property of the message flow

Any keywords that you define must follow certain rules to ensure that the
information can be parsed. The following example shows some values that you
might want to define in the Long Description property:
$MQSI Author=John Smith MQSI$
$MQSI Subflow 1 Version=v1.3.2 MQSI$

The following table contains the information that the WebSphere Message Broker
Toolkit shows.

Chapter 9. Developing message flow applications 1445

Message flow name Example

Deployment Time 28-Aug-2004 15:04

Modification Time 28-Aug-2004 14:27

Version v1.0

Author John Smith

Subflow 1 Version v1.3.2

In this display, the version information has also been defined using the Version
property of the object. If the version information has not been defined using the
property, it is omitted from this display.

If message flows contain subflows, you can embed keywords in each subflow.

Restrictions within keywords

Do not use the following characters within keywords because they cause
unpredictable behavior:
^ $. | \ < > ? + * = & [] ()

You can use these characters in the values that are associated with keywords; for
example:
v $MQSI RCSVER=$id$ MQSI$ is acceptable
v $MQSI $name=Fred MQSI$ is not acceptable
Related concepts:
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
“Message set version and keywords” on page 1169
When you develop a message set, you can define the version of the message set,
and other key information that you want to be associated with it.
“Adding keywords to ESQL files” on page 2486
You can add keywords to ESQL files to contain information that you want to
associate with a message flow.
“Keywords in subflows” on page 1447
You can embed keywords in each subflow that you use in a message flow.
Related tasks:
“Adding keywords to JAR files” on page 2660
If a BAR file contains JAR files, you can associate keywords with the JAR files.
Related reference:
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.
“Description properties for a message flow” on page 4016
The description properties for a message flow include the Version, Short
Description and Long Description. To view and edit the properties of a message
flow click Flow > Properties.

1446 WebSphere Message Broker Version 7.0.0.8

“Message flow preferences” on page 4016
You can change preferences that determine properties of message flows when you
create them.
“Passthrough node” on page 4628
Use the Passthrough node to enable version control of a subflow at run time.
“Adding keywords to XSL style sheets” on page 4975
Embedded keywords in an XSL style sheet; their location is not restricted. You can
also add a keyword as an XML comment.

Keywords in subflows:

You can embed keywords in each subflow that you use in a message flow.

You must use a different keyword in each instance of a subflow, because only the
first recorded instance of each keyword within the message flow .cmf file is
available to applications that use the Administration API (also known as the CMP
API), which include the WebSphere Message Broker Toolkit.

The order that subflows appear in the .cmf file is not guaranteed.
Related concepts:
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related reference:
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.

Showing resource references
If you are considering changing a resource, you can see a list of other resources
that would be affected by that change.

Before you begin

Before you start:

Before you can search for affected resources, you must enable indexing by
following the instructions in “Enabling and disabling indexing” on page 1454.

About this task

To search for affected resources, complete the following steps.

Procedure
1. Right-click a resource in the Broker Development view and click Show all

references.
The search results view shows all affected references in a tree format, including
the location of that resource, such as a node property or the line number of an
ESQL file.

Chapter 9. Developing message flow applications 1447

2. Optional: To open a resource in the appropriate editor, double-click a resource.
Alternatively, to choose the editor in which to open a resource, right-click the
resource and click Open with.

What to do next

If you are considering renaming or moving a resource, and you know the new
name or location, you can run impact analysis; for more information, see “Impact
analysis: analyzing the effects of planned changes to your applications” on page
1150.
Related concepts:
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Enabling and disabling indexing” on page 1454
Enable indexing to support impact analysis.
Related reference:
“Impact analysis: reference” on page 4174
Some artifacts are excluded from secondary analysis.

Saving a message flow
You might want to save your message flow when you close the WebSphere
Message Broker Toolkit, work with another resource, or validate the contents of the
flow.

Before you begin

Before you start:

This topic assumes that you have created or opened a message flow, as described
in the following topics:
v “Creating a message flow” on page 1431
v “Opening an existing message flow” on page 1433

About this task

To save a message flow, complete the following steps.

Procedure
1. To save the flow without closing it, click File > Save. You can also save

everything by clicking File > Save All.
The message flow is saved and the message flow validator validates the
contents of the flow. The validator reports all errors that it finds in the
Problems view. The flow remains open in the editor view. For example, if you
save a message flow and have not set a mandatory property, an error message

1448 WebSphere Message Broker Version 7.0.0.8

appears in the Problems view and the editor marks the node with the error

icon . The message flow in the Broker Development view is also marked
with the error icon. This error can occur if you have not edited the properties
of an MQInput node to define the queue from which the input node retrieves
its input messages.
You might also get warnings when you save a message flow; warnings are also
shown in the Problems view. Warnings indicate that, although the configuration
of the message flow does not contain an explicit error, the configuration might
result in unexpected results when the flow completes. For example, if you have
included an input node in your message flow that you have not connected to
another node, you get a warning.

2. If you save a message flow that includes a subflow, and the embedded subflow
is no longer available, three error messages are added to the Problems view.
These errors indicate that the input and output terminals and the embedded
subflow itself cannot be located. This error can occur if the embedded subflow
has been moved or renamed.
To resolve this situation, right-click the subflow node in error and click Locate
Subflow. The Locate Subflow dialog box is displayed, listing the available
message flow projects. Expand the list and explore the resources available to
locate the required subflow. Select the correct subflow and click OK. All
references in the current message flow are updated and the errors are removed
from the Problems view.

3. You can also save a message flow when you close it. When you click File >
Close, you are asked if you want to save the flow. Click Yes to save and close.
Validation occurs and all errors and warnings are written to the Problems view.

What to do next

For information about using the File > Save As option to take a copy of the
current flow, see “Copying a message flow by using the save option” on page
1450.

For information about handling errors that occur when you save, see “Correcting
errors from saving a message flow” on page 1451.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Copying a message flow by using the save option” on page 1450
You can copy a message flow by using the File > Save As option.
“Correcting errors from saving a message flow” on page 1451
Correct the errors that are reported when you save a message flow.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.

Chapter 9. Developing message flow applications 1449

“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Copying a message flow by using the save option:

You can copy a message flow by using the File > Save As option.

Before you begin

Before you start:

This topic assumes that you have created or opened a message flow, as described
in the following topics:
v “Creating a message flow” on page 1431
v “Opening an existing message flow” on page 1433

Procedure

1. Click File > Save As.
2. Specify the message flow project in which you want to save a copy of the

message flow. By default, the current project is selected; you can accept this
name, or choose another name from the list.

3. Specify the name for the new copy of the flow. To save this message flow in the
same project, you must either give it another name, or confirm that you want
to overwrite the current copy.
To save the message flow in another project, the project must already exist. You
can save the flow with the same name or another name in another project.

4. Click OK.
The message flow is saved and its contents are validated. The editor provides a
report of errors and warnings in the Problems view.

What to do next

For information about handling errors that occur when you save a message flow,
see “Correcting errors from saving a message flow” on page 1451.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.

1450 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Saving a message flow” on page 1448
You might want to save your message flow when you close the WebSphere
Message Broker Toolkit, work with another resource, or validate the contents of the
flow.
“Correcting errors from saving a message flow”
Correct the errors that are reported when you save a message flow.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Correcting errors from saving a message flow:

Correct the errors that are reported when you save a message flow.

About this task

When you save a message flow, as described in “Saving a message flow” on page
1448, the flow is validated. Errors and warnings are shown in the Problems view.
The following steps describe how to correct errors that occur when you save a
flow.

Procedure

1. Examine the list of errors and warnings in the Problems view.
2. Double-click each entry in turn.

The message flow is opened in the editor view (if it is not already open), and
the editor selects the node in which the error was detected. If the error has
been generated because you have not set a mandatory property, the editor also
opens the Properties view, or dialog box, for that node.
If you have included a user-defined node in your message flow, and have
defined one or more of its properties as configurable, you might get a warning
about a custom property editor. If you define a property as a configurable
property, and you have specified that it uses a custom property editor, the
Broker Archive editor cannot handle the custom property editor, and handles
the property as if it is type string. This action restricts your ability change this
property at deployment time.

3. Correct the error that is indicated by the message. For example, provide a value
for a mandatory property.

Chapter 9. Developing message flow applications 1451

4. When you have corrected all the errors, save the message flow again.
The editor validates all the resources that you have changed, and removes the
corresponding graphical indication from the nodes that you have modified
successfully. Corrected errors are also removed from the Problems view.

Results

You do not have to correct every error to save your work. The editor saves your
resources even if it detects errors or warnings, so that you can continue to work
with them at a later date. However, you cannot deploy a resource that has a
validation error. You must correct every error before you deploy a resource.
Warnings do not prevent successful deployment.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Saving a message flow” on page 1448
You might want to save your message flow when you close the WebSphere
Message Broker Toolkit, work with another resource, or validate the contents of the
flow.
“Copying a message flow by using the save option” on page 1450
You can copy a message flow by using the File > Save As option.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Importing and exporting resources in a Project Interchange file
You can import resources to, or export resources from, WebSphere Message Broker
by using a Project Interchange file.

1452 WebSphere Message Broker Version 7.0.0.8

About this task

You can work with resources created by other products by importing them into
WebSphere Message Broker in a Project Interchange file. For example, you can
define a WebSphere Message Broker message set from WebSphere Process Server
resource files. In this case, you would export the resources from WebSphere
Process Server in the Project Interchange file, then import the file into WebSphere
Message Broker.

Similarly, you can share pattern instance projects between WebSphere Message
Broker Toolkit workspaces. You can export the pattern instance project into a
Project Interchange file, then import the pattern instance project into another
workspace.

Procedure

To import or export a Project Interchange file, complete the following steps.
v To import a Project Interchange file:

1. Click File > Import. The Import wizard opens.
2. Expand Other, click Project Interchange, then click Next.
3. Specify the location of the Project Interchange file that you want to import.
4. Specify the location to which you want to import the resources. By default,

your current workspace is selected.
5. Select the projects that you want to import, then click Finish.

v To export a Project Interchange file:
1. Click File > Export. The Export wizard opens.
2. Expand Other, click Project Interchange, then click Next.
3. Select the projects that you want to export, and specify the location for the

compressed file that is created. You can save the file to a folder on your file
system, or to a disk drive.

4. Click Finish. The Project Interchange file is created in the specified location.
Related concepts:
“Interoperability with WebSphere Process Server” on page 2097
WebSphere Process Server is a business integration server that supports solutions
based on service-oriented architecture (SOA). It uses Service Component
Architecture (SCA) to present all business transactions in a service-oriented way in
its runtime environment. WebSphere Message Broker can accept requests from
WebSphere Process Server, and can also call service components on WebSphere
Process Server.
Related tasks:
“Creating a working set and focus on a pattern instance” on page 1319
Creating a working set for an imported project interchange file that contains a
pattern instance project and its associated projects.
“Importing an existing configuration” on page 1329
You can import a pattern configuration XML file from the workspace or file system
and populate your current pattern instance with its values.
“Resolving problems when developing message flows with WebSphere Adapters
nodes” on page 3428
Advice for dealing with common problems that can arise when you develop
message flows that contain WebSphere Adapters nodes.

Chapter 9. Developing message flow applications 1453

Enabling and disabling indexing
Enable indexing to support impact analysis.

About this task

Indexing must be enabled to support impact analysis. The act of indexing
determines what definitions and relationships exist in WebSphere Message Broker
artifacts. These definitions and relationships are used to perform impact analysis.
By default, indexing is disabled, for performance reasons.

Procedure
1. Click Window > Preferences, then click Broker Development > Impact

Analysis in the left pane.
2. Optional: To enable indexing, select Enable the indexing of Message Broker

artifacts.
v When indexing is enabled, a full build of all artifacts in the workspace occurs

once. Indexing of artifacts occurs on further incremental and full builds. Only
artifacts participating in the builds are indexed.

v Indexes for these artifacts are stored in memory, and written to disk when
the WebSphere Message Broker Toolkit is shut down.

3. Optional: To disable indexing, clear the Enable the indexing of Message
Broker artifacts check box.
v Indexes of artifacts are removed from memory.
v When the WebSphere Message Broker Toolkit is shut down, an index of

items in memory is written to disk. This index is smaller, because the indexes
of artifacts have been removed.

v Artifacts are not indexed during builds, resulting in better performance.
Related concepts:
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Analyzing planned changes to message model objects” on page 2897
Use impact analysis to analyze the effect of renaming message model objects.
“Analyzing planned changes to ESQL objects” on page 2403
Use impact analysis to analyze the effect of renaming or moving ESQL objects, or
moving or changing the broker schema of an ESQL file.
“Analyzing the impact of changes to message maps” on page 2234
Use impact analysis to analyze the effect of renaming or moving message maps.
“Analyzing planned changes to message flows” on page 1436
Use impact analysis to analyze the effect of renaming or moving message flows,
including subflows.
“Analyzing planned changes to message set resources” on page 1165
Use impact analysis to analyze the effect of renaming message definition or
deployable WSDL files.
Related reference:
“Impact analysis: reference” on page 4174
Some artifacts are excluded from secondary analysis.

1454 WebSphere Message Broker Version 7.0.0.8

“Impact Analysis view” on page 6801
The Impact Analysis view shows information about selected resources, which
changes have been marked as complete, and previous results. You can also use this
view to copy results to the clipboard.

Designing a message flow
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.

Before you begin

Before you start:

Read the following concept topic: “Message flow nodes” on page 1024.

About this task

When you design a message flow, consider the following questions and options:
v The mode that your broker is working in can affect the types of node that you

can use and the number of message flows you can deploy. For more
information, see “Restrictions that apply in each operation mode” on page 3657.

v Which nodes provide the function that you require. In many cases, you can
choose between several nodes that provide a suitable function. You might have
to consider other factors listed here to determine which node is best for your
overall needs. You can include built-in nodes, user-defined nodes, and subflow
nodes. For more information, see “Deciding which nodes to use” on page 1457.

v Whether it is appropriate to include more than one input node. For more
information, see “Using more than one input node” on page 1473.

v How to specify the characteristics of the input message. For more information,
see “Defining input message characteristics” on page 1475.

v Whether to determine the path that a message follows through the message
flow, based on the content or the characteristics of the message. Several nodes
provide checks or examination of the message, and have output terminals that
can be connected to direct certain messages to different nodes. For more
information, see “Using nodes for decision making” on page 2209.

v Whether you can use subflows that provide a well-defined subset of processing.
You might be able to reuse subflows that were created for another project (for
example, an error processing routine), or you might create a subflow in your
current project, and reuse it in several places in the same message flow. For
more information, see “Subflows” on page 1030.

v What response times your applications expect from the message flow. This factor
is influenced by several aspects of how you configure your nodes and the
message flow. For more information, see “Optimizing message flow response
times” on page 3264.

v Whether your message flow processing makes demands on system resources
such as stack size. For more information, see “System resources for message flow
development” on page 3267.

v Whether you can use the destination list in the local environment that is
associated with the message to determine the processing in the message flow
(for example, by using RouteToLabel and Label nodes), or the target for the

Chapter 9. Developing message flow applications 1455

output messages (for example, by setting the Destination Mode property of the
MQOutput node to Destination List). For more information, see “Creating
destination lists” on page 1477.

v Whether to use WebSphere MQ cluster queues. For more information, see
“Using WebSphere MQ cluster queues for input and output” on page 1544.

v Whether to use WebSphere MQ shared queues on z/OS . For more information,
see “Using WebSphere MQ shared queues for input and output (z/OS)” on
page 1546.

v Whether to validate input messages that are received by the input node, or
output messages that are generated by the Compute node, or both. For more
information, see “Validating messages” on page 1478.

v Whether to view or record message structure in Trace node output. For more
information, see “Viewing the logical message tree in trace output” on page
1481.

v Whether your message flows access data in databases. You must configure
brokers, databases, and database connections to enable this function, as
described in “Working with databases” on page 2109. You must also configure
your message flows; see “Accessing databases from message flows” on page
2112.
If you include nodes that use ESQL, for information about how to code the
appropriate statements, see “Accessing databases from ESQL” on page 2115. If
you want to access databases from Java nodes by using JDBC, see “Interacting
with databases by using the JavaCompute node” on page 2661 or “Extending the
capability of a Java message processing or output node” on page 3069.
You can also access databases through the Broker Application Development
perspective in the WebSphere Message Broker Toolkit; see “Adding database
definitions to the WebSphere Message Broker Toolkit” on page 2278.

v Whether your message flows access data in files. By using the FileInput and
FileOutput nodes, your message flows can read messages from files and write
messages to files in the local file system, or on a network file system that
appears local to the broker. For more information, see “Connecting client
applications” on page 1537.

v Whether your messages must be handled in a transaction. You can set the
properties of some built-in nodes to control how transactions are managed, and
how messages are processed in a transaction. For more information, see
“Configuring transactionality for message flows” on page 1290.
If you want to include JMSInput and JMSOutput nodes in your message flow
transactions, you must consider the additional information in “Configuring JMS
and SOAP nodes to support global transactions” on page 1716.

v Whether you want your messages to go through data conversion. For
information about the available options, see “Configuring message flows for
data conversion” on page 1293.

v Whether you want to use the MQGet node. For more information about how
messages are processed by the MQGet node, and a description of a request-reply
scenario that uses this node, see “Using MQGet nodes” on page 1564.

v How your message flows can benefit from user exits. For more information, see
“Exploiting user exits” on page 2985.

v What steps to take to ensure that messages are not lost. For more information,
see “Ensuring that messages are not lost” on page 1561.

v How errors are handled in the message flow. You can use the facilities provided
by the broker to handle any errors that arise during message flow execution (for
example, if the input node fails to retrieve an input message, or if writing to a

1456 WebSphere Message Broker Version 7.0.0.8

database results in an error). However, you might prefer to design your message
flow to handle errors in a specific way. For more information, see “Handling
errors in message flows” on page 2823.

v Whether you want a systems monitoring tool to be able to query, discover, and
set certain user-defined properties at run time. For more information, see
“Setting message flow user-defined properties at run time in a CMP application”
on page 985.

For a basic introduction to developing message flows, see the IBM Redbooks
publication WebSphere Message Broker Basics. (This link works only if you are
connected to the Internet.)
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“User-defined nodes” on page 6415
You can define your own nodes to use in WebSphere Message Broker message
flows.

Deciding which nodes to use
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.

Before you begin

Before you start:

Read the concept topic, “Message flow nodes” on page 1024.

About this task

WebSphere Message Broker also provides an interface that you can use to define
your own nodes, known as user-defined nodes.

The mode that your broker is working in can affect the types of node that you can
use; see “Restrictions that apply in each operation mode” on page 3657.

Your decision about which nodes to use depends on the processing that you want
to perform on your messages.

Input, output, and request nodes
Input and output nodes define points in the message flow to which client
applications send messages (input nodes, such as MQInput), and from
which client applications receive messages (output nodes, such as

Chapter 9. Developing message flow applications 1457

http://www.redbooks.ibm.com/abstracts/sg247137.html

MQOutput). Client applications interact with these nodes by putting
messages to, or getting messages from, the I/O resource that is specified
by the node as the source or target of the messages. Although a message
flow must include at least one input node, it does not have to include an
output or request node.

An input node is different from other nodes, because it controls when the
rest of the message flow is triggered to do its processing. The input node is
designed to check when there is data for the message flow to process, read
that data from the transport or server, and present that data to the rest of
the flow for processing. The other nodes do processing, but do not control
when the flow gets invoked.

You can also use reply, request, and response nodes to interact with other
applications from within a message flow; these types of node are supplied
for a subset of protocols only.
v If you are creating a message flow for deployment to a broker, you must

include at least one input node to receive messages. The input node that
you select depends on the source of the input messages, and where in
the flow you want to receive the messages.

v If you want to send the messages that are produced by the message flow
to a target application, you can include one or more output nodes. The
output node that you select depends on the transport across which the
target application expects to receive those messages.

v If you want to make a request, in the middle of your flow, to an external
system, and put the result into the message tree, use a request node.

Nodes for manipulating, enhancing, and transforming messages

Most enterprises have applications that have been developed over many
years, on different systems, using different programming languages, and
different methods of communication. WebSphere Message Broker removes
the need for applications to understand these differences by providing the
ability to configure message flows that transform messages from one
format to another.

For example, personal names are held in many forms in different
applications. Family name first or last, with or without middle initials,
uppercase or lowercase, are just some of the permutations. Because you
can configure your message flow to know the requirements of each
application, each message can be transformed to the correct format without
modifying the sending or receiving application.

You can work with the content of the message to update it in several ways.
Your choices here might depend on whether the message flow must handle
predefined (modeled) messages, self-defining messages (for example,
XML), or both.

A message flow can completely rebuild a message, convert it from one
format to another (for example, changing order of fields, byte order, or
language), remove content from the message, or introduce specific data
into it. For example, a node can interact with a database to retrieve
additional information, or to store a copy of the message (whole or part) in
the database for offline processing.

The following examples show the importance of message transformation:
v An order entry application has a part ID in the body of the message, but

its associated stock application expects it in the message header. The

1458 WebSphere Message Broker Version 7.0.0.8

message is directed to a message flow that knows the two different
formats, and can therefore reformat the information as it is needed.

v A data-entry application creates messages containing stock trade
information. Some applications that receive this message need the
information as provided, but others need additional information added
to the message about the price to earnings (PE) ratio. The stock trade
messages are directed to a message flow that passes the message
unchanged to some output nodes, but calculates and adds the extra
information for the others. The message flow does this calculation by
looking up the current stock price in a database, and uses this value and
the trade information in the original message to calculate the PE value
before passing on the updated message.

You can also create message flows that use these nodes to interact with
each other. Although the default operation of one message flow does not
influence the operation of another message flow, you can force this action
by configuring your message flows to store and retrieve information in an
external source, such as a database.

These nodes are supplied to transform messages.

Nodes for making decisions

You can use nodes that determine the order and flow of control in the
message flow in various ways to decide how messages are processed by
the flow. You can also use nodes (TimeoutControl and TimeoutNotification)
that determine the time, and frequency of occurrence, of events in the
message flow. Routing is independent of message transformation, although
the route that a message takes might determine exactly what
transformation is performed on it.

For example, a money transfer application always sends messages to one
other application. You might decide that every message with a transfer
value of more than $10,000 must also be sent to a second application, to
enable all high-value transactions to be recorded.

In another example, a national auto club offers a premier service to specific
members for orders above a threshold value. Most orders are routed
through the typical channels, but, if the membership number and order
value meet certain criteria, the order gets special treatment.

You can also establish a more dynamic routing option by building
additional routing information into the message when it is processed.
Optional sets of rules are set up to receive messages according to values
(destinations) set into the message. You can establish these rules such that
a message is processed by one or more of the optional sets of rules, in an
order determined by the added message content.

These nodes are provided to decide about the route that a message follows
through the message flow.

Nodes for controlling time-sensitive operations
You might want a batch application process to run every day at a specific
time, or you might want information to be processed and published at
fixed intervals (for example, currency exchange rates are calculated and
sent to banks), or you might want to take a specified recovery action if
certain transactions are not completed within a defined time. For all these
cases, two timeout nodes (TimeoutControl and TimeoutNotification) are
provided; see “Nodes for controlling time-sensitive operations” on page
1471.

Chapter 9. Developing message flow applications 1459

Miscellaneous nodes
Other nodes exist to do the following tasks:
v Collate requests
v Create message collections
v Control the sequence of messages
v Handle and report errors
v Invoke the message flow security manager

See “Miscellaneous nodes” on page 1472 for details.
Related concepts:
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Input nodes:

You must include at least one input node in your message flow.

1460 WebSphere Message Broker Version 7.0.0.8

An input node is different from other nodes, because it controls when the rest of
the message flow is triggered to do its processing. The input node is designed to
check when there is data for the message flow to process, read that data from the
transport or server, and present that data to the rest of the flow for processing. The
other nodes do processing, but do not control when the flow gets invoked.

DatabaseInput node
Use the DatabaseInput node to respond to events in a database. For
example, the broker can keep an external system synchronized with a
database by sending updates to the target system whenever data is
changed in the database.

EmailInput node
Use the EmailInput node to retrieve an email, with or without attachments,
from an email server that supports Post Office Protocol 3 (POP3) or
Internet Message Access Protocol (IMAP).

FileInput node
Use a FileInput node if the messages are contents of files.

FTEInput node
Use the FTEInput node to receive files using WebSphere MQ File Transfer
Edition.

HTTP input node
Use an HTTPInput node if the messages are sent by a Web services client.

Input node
If you are creating a message flow that you want to embed in another
message flow (a subflow) that you will not deploy as a stand-alone
message flow, you must include at least one Input node to receive
messages into the subflow.

An instance of the Input node represents an In terminal. For example, if
you have included one instance of the Input node, the subflow icon shows
one In terminal, which you can connect to other nodes in the main flow in
the same way that you connect any other node.

To deploy a message flow, it must have at least one input node. If your
message flow does not contain an input node, you are prevented from
adding it to the broker archive file. The input node can be in the main
flow, or in a message flow that is embedded in the main flow.

You can use more than one input node in a message flow. For more
information, see “Using more than one input node” on page 1473.

JMSInput node
Use a JMSInput node if the messages are sent by a JMS application.

MQInput node
Use an MQInput node if the messages arrive at the broker on a
WebSphere MQ queue, and the node is to be at the start of a message
flow.

SCAInput node
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.

SOAP input node
Use the SOAPInput node to process client SOAP messages and to
configure the message flow to behave like a SOAP Web Services provider.

Chapter 9. Developing message flow applications 1461

TCPIPClientInput or TCPIPServerInput node
Use a TCPIPClientInput node or a TCPIPServerInput node to create a
TCP/IP connection when messages are sent through raw TCP/IP sockets.

TCPIPClientReceive or TCPIPServerReceive node
Use a TCPIPClientReceive node or a TCPIPServerReceive node to read the
messages that arrive in the message flow through a TCP/IP connection.

User-defined input node
Use a user-defined input node if the message source is a client or
application that uses a different protocol or transport.

WebSphere Adapters nodes
Use the WebSphere Adapters nodes to interact with Enterprise Information
Systems (EIS) such as SAP, Siebel, and PeopleSoft. The following input
nodes are available:
v SAPInput node
v SiebelInput node
v PeopleSoftInput node
v JDEdwardsInput
v TwineballInput node

The WebSphere Adapters input nodes monitor an EIS for a particular
event. When that event occurs, business objects are sent to the input node.
The node constructs a tree representation of the business objects and
propagates it to the Out terminal so that the data can be used by the rest
of the message flow.

The WebSphere Adapters request nodes can send and receive business
data. They request information from an EIS and propagate the data to the
rest of the message flow.

Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Output nodes:

If you want to send the messages that are produced by the message flow to a
target application, include one or more output nodes in the flow.

EmailOutput node
Use the EmailOutput node to send an email message to one or more
recipients.

FileOutput node
Use a FileOutput node if a file is the target of the output messages.

FTEOutput node
Use the FTEOutput node to write messages to files using the WebSphere
MQ File Transfer Edition.

HTTPReply node
Use an HTTPReply node if the messages are in response to a Web services
client request.

1462 WebSphere Message Broker Version 7.0.0.8

JMSOutput and JMSReply nodes
Use a JMSOutput node if the messages are for a JMS destination.

The JMSReply node has a similar function to the JMSOutput node, but the
JMSReply node sends JMS messages only to the reply destination that is
supplied in the JMSReplyTo header field of the JMS message tree. Use the
JMSReply node to treat a JMS message that is produced from a message
flow as a reply to a JMS input message, and when you have no other
routing requirements.

MQOutput and MQReply nodes
Use an MQOutput node if the target application expects to receive
messages on a WebSphere MQ queue, or on the WebSphere MQ reply-to
queue that is specified in the input message MQMD.

Use an MQReply node if the target application expects to receive messages
on the WebSphere MQ reply-to queue that is specified in the input
message MQMD.

Output node
If you are creating a message flow that you want to embed in another
message flow (a subflow) that you will not deploy as a stand-alone
message flow, you must include at least one Output node to propagate
messages to subsequent nodes that you connect to the subflow.

An instance of the Output node represents an Out terminal. For example, if
you have included two instances of the Output node, the subflow icon
shows two Out terminals, which you can connect to other nodes in the
main flow in the same way that you connect any other node.

Publication node
Use a Publication node to distribute the messages using the
publish/subscribe network for applications that subscribe to the broker
across all supported protocols. A Publication node is an output node that
uses output destinations that are identified by subscribers whose
subscriptions match the characteristics of the current message.

SAPReply node
Use this node with the SAPInput node to respond to an incoming SAP
event.

SOAPReply node
Use a SOAPReply node if the target application expects to receive SOAP
messages in response to a message sent to the SOAPInput node.

SCAReply node
Use the SCAReply node to send a message from the broker to the
originating client in response to a message received by a SCAInput node.

TCPIPClientOutput or TCPIPServerOutput node
Use a TCPIPClientOutput node or a TCPIPServerOutput node if the
messages are to be sent to the target application through raw TCP/IP
sockets.

User-defined output node
Use a user-defined output node if the target is a client or application that
uses a different protocol or transport.

Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.

Chapter 9. Developing message flow applications 1463

Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Request nodes:

If you want to make a request, in the middle of your flow, to an external system,
and put the result into the message tree, use a request node.

MQGet node
Use an MQGet node to retrieve a message from a WebSphere MQ queue,
if you want to get the message later in the message flow.

HTTPRequest node
Use an HTTPRequest node if your message flow interacts with a web
service after it has started.

FileRead node
Use the FileRead node to read a file from the middle of a message flow.
The node can:
v Read the entire contents of the file.
v Read a single record.
v Rename or delete the file without reading any data.

WebSphere Adapters nodes
Use the WebSphere Adapters nodes to interact with Enterprise Information
Systems (EIS) such as SAP, Siebel, and PeopleSoft. The following request
nodes are available:
v SAPRequest node
v SiebelRequest node
v PeopleSoftRequest node
v JDEdwardsRequest node
v TwineballRequest node

SOAP nodes
Use the SOAP nodes to process client SOAP messages and to configure the
message flow to behave like a SOAP web Services provider:
v SOAPRequest
v SOAPAsyncRequest
v SOAPAsyncResponse

WebSphere Service Registry and Repository (WSRR) nodes
Use the WebSphere Service Registry and Repository nodes to retrieve web
services information:
v Use the EndpointLookup node to retrieve service endpoint information

held in the WebSphere Service Registry and Repository.
v Use the RegistryLookup node to retrieve any type of entity held in the

WebSphere Service Registry and Repository.

IMSRequest node
Use the IMSRequest node to send a request to run a transaction on a local
or remote IBM Information Management System (IMS) system, and wait
for a response. IMS Connect must be configured and running on the IMS
system.

1464 WebSphere Message Broker Version 7.0.0.8

CORBARequest node
Use the CORBARequest node to call an external CORBA application over
Internet Inter-Orb Protocol (IIOP). You can create a message flow that
contains a CORBARequest node, which calls a CORBA server. The message
flow uses an IDL file to call methods on a remote CORBA object. You can
then give existing CORBA applications a new external interface; for
example, a SOAP interface.

CICSRequest node
Use the CICSRequest node to call an external CICS Transaction Server for
z/OS application over TCP/IP-based IP InterCommunications (IPIC)
protocol. You can create a message flow that contains a CICSRequest node,
which calls an application on CICS. By using the CICS support that is
provided in WebSphere Message Broker you can deploy CICS applications
into a service-oriented architecture (SOA).

Database node
Use the Database node to interact with a database that is identified by the
node properties. The Database node handles both predefined and
self-defining messages. Use the ESQL editor to code ESQL functions to
update database content from the message, insert new information into the
database, and delete information from the database, using information in
the message. Do not use the ESQL code that you develop for use in a
Database node in any other type of node.

This node provides a flexible interface with a wide range of functions. It
also has properties that you can use to control the way in which the
interaction participates in transactions.

You can control the way in which the database is accessed by this node by
specifying user and password information for the data source that you
specify in the node properties. Use the mqsisetdbparms command to
initialize and maintain these values.

You can update only databases from this node; you cannot update message
content. If you want to update message content, use the Compute or
Mapping node.

DataDelete, DataInsert, DataUpdate nodes
The DataDelete, DataInsert, and DataUpdate nodes are specialized forms of
the Database node that provide a single mode of interaction (deletion of
one or more rows, insertion of one or more rows, or update of one or more
existing rows).

The DataDelete, DataInsert, and DataUpdate nodes handle only predefined
messages. Use a mapping editor to develop mappings to perform these
functions. Do not use the mappings that you develop for these nodes in
any other type of node. You can use these nodes to control the
transactional characteristics of the updates that they perform.

You can control the way in which the database is accessed by these nodes
by specifying user and password information for the data source that you
specify in the node property. Use the mqsisetdbparms command to initialize
and maintain these values.

You can update only databases from these nodes; you cannot update
message content. If you want to update message content, use the Compute
or Mapping node.

DatabaseRetrieve node
Use the DatabaseRetrieve node to ensure that information in a message is

Chapter 9. Developing message flow applications 1465

up to date. Use the node to modify a message using information from a
database. For example, you can add information to a message using a key,
such as an account number, that is contained in a message. Use the
DatabaseRetrieve node to implement message routing with minimal
programming logic. For more advanced routing scenarios, use a Compute
node or a JavaCompute node.

Warehouse node
The Warehouse node provides a store interface that you can use to store all
or part of the message in a database, for example, for audit reasons. The
Warehouse node handles only predefined messages. Use the Mapping
editor to develop mappings to perform this action. Do not use the
mappings that you develop for a Warehouse node in any other type of
node.

You can control the way in which the database is accessed by this node by
specifying user and password information for the data source that you
specify in the node property. Use the mqsisetdbparms command to initialize
and maintain these values.

You can update only a database from this node; you cannot update
message content. If you want to update message content, use the Compute
or Mapping node.

SCARequest, SCAAsyncRequest, and SCAAsyncResponse nodes

v The SCARequest node is used to send a request to WebSphere Process
Server. The node is configured using a Broker SCA Definition (.outsca)
file; depending on the contents of the .outsca file, requests are either:
– Two-way, synchronous; the node sends the request, then blocks until

it receives a response, or the timeout period is exceeded.
– One-way; the node sends a request only.

v The SCAAsyncRequest and SCAAsyncResponse nodes are used to
construct a pair of message flows that call a WebSphere Process Server
service component asynchronously.
The SCAAsyncRequest node sends an SCA outbound request to a
service component that runs in WebSphere Process Server.
The SCAAsyncResponse node receives the response from a business
process that is running in WebSphere Process Server and to which the
previous asynchronous request was made. The SCAAsyncResponse node
can be in the same message flow or in a separate message flow.
Calling a WebSphere Process Server service component asynchronously
means that the SCAAsyncRequest node sends a request but does not
wait for the associated response to be received, although it might wait
for an acknowledgment of the request.
The nodes are used as a pair, and correlate responses and requests. See
“SCAAsyncRequest node” on page 4690 and “SCAAsyncResponse node”
on page 4698.

Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

1466 WebSphere Message Broker Version 7.0.0.8

Nodes for manipulating, enhancing, and transforming messages:

Optionally, include nodes to change messages.

Compute node
Use the Compute node to:
v Manipulate message content
v Transform the message in some way
v Interact with a database to modify the content of the message or the

database and pass on one or more new messages

You can use this node to manipulate predefined and self-defining
messages.

Use the ESQL editor to create an ESQL module, specific to this node, that
contains the statements that define the actions to perform against the
message or database. Do not use the ESQL code that you develop for use
in a Compute node in any other type of node.

You can control the way in which the database is accessed by this node by
specifying user and password information for the data source that you
specify in the node property. Use the mqsisetdbparms command to initialize
and maintain these values.

If possible, perform your message manipulation requirements in a single
Compute node. Fewer, more complex Compute nodes perform better than
a larger number of simpler nodes because the broker parses the message
on entry to each Compute node.

JavaCompute node
Use the JavaCompute node to:
v Examine an incoming message and, depending on its content, propagate

it unchanged to one of the node's output terminals. The node behaves in
a similar way to a Filter node, but uses Java instead of ESQL to
determine which output terminal to use.

v Change part of an incoming message and propagate the changed
message to one of the output terminals.

v Interact with a database through a JDBC type 4 connection to modify the
content of the message or the database and pass on one or more new
messages

v Create and build a new output message that is independent of the input
message.

PHPCompute node
Use the PHPCompute node to route and transform an incoming message,
using the PHP scripting language. The node functions in a similar way to
the JavaCompute node, but uses PHP instead of Java for message
transformation and routing.

Mapping node
Use the Mapping node to create a message from the input message by
mapping the content of elements of the output message from elements of
the input message, or from database content. You can also extract parts of
the message, and optionally change their content, to create an output
message that is a partial copy of the message that is received by the node.
The Mapping node handles only predefined messages.

Chapter 9. Developing message flow applications 1467

You can control the way in which the database is accessed by this node by
specifying user and password information for the data source that you
specify in the node property. Use the mqsisetdbparms command to initialize
and maintain these values.

Use the Mapping editor to develop mappings to perform simple
manipulations on predefined messages. Do not use the mappings that you
develop for use in a Mapping node in any other type of node.

Extract node
The Extract node is deprecated in WebSphere Message Broker . Although
message flows that contain an Extract node remain valid in WebSphere
Message Broker , where possible, redesign your message flows so that any
Extract node is replaced by a Mapping node.

With an Extract node, you can create an output message from specified
elements of the input message. You can extract parts of the message, and
optionally change their content, to create an output message that is a
partial copy of the message received by the node. The Extract node
handles only predefined messages.

Use the Mapping editor to develop mappings to perform simple
manipulations on predefined messages in the Extract node. Do not use the
mappings that you develop for use in an Extract node in any other type of
node.

XSLTransform node

Use the XSLTransform node (formerly known as the XMLTransformation
node) to transform an input XML message into another format using XSLT
style sheets and to set the message domain, message set, message type,
and message format for the generated message. It is imperative that the
data can be parsed into an XML message. The style sheet, using the rules
that are defined in it, can perform the following actions:
v Sort the data
v Select data elements to include or exclude based on some criteria
v Transform the data into another format

The Xalan-Java transformation engine (Apache Xalan-java XSLT processor)
is used as the underlying transformation engine. For more information
about XML Transformations, the W3C specification of the syntax, and
semantics of the XSL Transformations language for transforming XML
documents into other XML documents, see W3C XSL Transformations.

You can deploy style sheets and XML files to broker execution groups, to
help with style sheet and XML file maintenance.

JMSMQTransform node
Use the JMSMQTransform node to transform a message with a JMS
message tree into a message that has a tree structure that is compatible
with the format of messages that are produced by the WebSphere MQ JMS
provider.

The JMSMQTransform node can be used to send messages to existing
message flows and to interoperate with WebSphere MQ JMS and
WebSphere MQ Publish/Subscribe.

MQJMSTransform node
Use the MQJMSTransform node to receive messages that have a

1468 WebSphere Message Broker Version 7.0.0.8

http://xml.apache.org/xalan-j
http://www.w3.org/TR/xslt

WebSphere MQ JMS provider message tree format, and transform them
into a format that is compatible with messages that are to be sent to JMS
destinations.

You can use the MQJMSTransform node to send messages to existing
message flows and to interoperate with WebSphere MQ JMS and
WebSphere MQ Publish/Subscribe.

SOAPEnvelope and SOAPExtract nodes
Use the SOAPEnvelope and SOAPExtract nodes to add or remove SOAP
envelopes from the SOAP message body. You can use the SOAPExtract
node both to extract the envelope, and to route the message based on the
message content to a Label node.

Header nodes
Use the HTTPHeader, JMSHeader, or MQHeader nodes to manipulate
HTTP, JMS, and WebSphere MQ transport headers and their properties
without writing compute nodes. You cannot use these nodes to change the
message body.
v Use the HTTPHeader node to add, modify, or delete HTTP headers such

as HTTPInput, HTTPResponse, HTTPRequest and HTTPReply.
v Use the JMSHeader node to modify contents of the JMS Header_Values

and Application properties so that you can control the node's output
without programming.

v Use the MQHeader node to add, modify, or delete MQ Message
Descriptor (MQMD) and MQ Dead Letter Header (MQDLH) headers.

User-defined processing node
Use a user-defined node processing node to handle specific requirements
that are not met by the built-in nodes.

For example, if your node accesses a database, include a user-defined node
to interact with the database. You can control the way in which the
database is accessed by this node by specifying user and password
information for the data source that you specify in the node property. Use
the mqsisetdbparms command to initialize and maintain these values.

Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Nodes for making decisions:

Optionally, use nodes that determine the order and flow of control in the message
flow in various ways to make decisions about how messages are processed by the
flow.

Nodes for making decisions

Validate node
Use the Validate node to check that the message that arrives on its
input terminal is as expected. You can check that the message has
the expected message template properties (that is, the message
domain, message set and message type) and that the content of the

Chapter 9. Developing message flow applications 1469

message is correct. You can check the message against one or more
of message domain, message set, or message type.

The Validate node replaces the Check node, which is deprecated in
WebSphere Message Broker . The Validate node works in the same
way as the Check node, but it has additional Validation properties
to enable the validation of message content by parsers that support
that capability.

Filter node
Use the Filter node with an ESQL statement to determine the next
node to which the message is sent by this node. Do not use the
ESQL code that you develop for use in a Filter node in any other
type of node.

The node's terminals are True, False, Unknown, and Failure; the
message is propagated to the True terminal if the test succeeds,
and to the False terminal if it fails. If the statement cannot be
resolved (for example, it tests the value of a field that is not in the
input message), the message is propagated to the Unknown
terminal. If any other error is detected, the message is propagated
to the Failure terminal.

The test in the ESQL statement can depend on message content,
database content, or a combination of the two.

If you refer to a database, you can control the way in which it is
accessed by this node by specifying user and password information
for each data source defined in the registry on the broker system.
Use the mqsisetdbparms command to initialize and maintain these
values.

Use this node in preference to the Compute node to provide
message selection and routing; the Filter node is more efficient for
this task.

FlowOrder node
You can connect the terminals of this node to force the message to
be processed by one sequence of nodes, followed by a second
sequence of nodes.

Passthrough node
Use the Passthrough node to enable version control of a subflow at
run time. Use this node to add a label to your subflow. By
combining this label with a reserved word replacement from your
version control system, you can identify which version of a
subflow is included in a deployed message flow. You can use this
label for your own purposes. If you have included the correct
version keywords in the label, you can see the value of the label:
v Stored in the broker archive (BAR) file, using the mqsireadbar

command
v As last deployed to a particular broker, on the properties of a

deployed message flow in the WebSphere Message Broker
Toolkit

v In the broker, if you enable user trace for that message flow

Route node
Use the Route node to direct messages that meet certain criteria
down different paths of a message flow. For example, you can
forward a message to different service providers, based on the

1470 WebSphere Message Broker Version 7.0.0.8

request details. You can also use the Route node to bypass
unnecessary steps. For example, you can check to see if certain
data is in a message, and perform a database lookup operation
only if the data is missing. If you set the Distribution Mode
property to All, you can trigger multiple events that each require
different conditions. For example, you can log requests that relate
to a particular account identifier, and send requests that relate to a
particular product to be audited.

Use the Route node to implement message routing with minimal
programming logic. For more advanced routing scenarios, use a
Compute node or a JavaCompute node.

RouteToLabel node
Use the RouteToLabel node following a Compute node or a
JavaCompute node for complex routing. Define a list of
destinations in a Compute or JavaCompute node that are acted on
by the RouteToLabel node, which interrogates the destinations and
passes the message on to the corresponding Label node.

DatabaseRoute node
Use the DatabaseRoute node to route a message using information
from a database in conjunction with applied XPath routing
expressions. The node looks up a collection of named column
values from a located database row and synchronously applies one
or more XPath expressions to these acquired values. Use the
DatabaseRoute node to implement message routing with minimal
programming logic. For more advanced routing scenarios, use a
Compute node or a JavaCompute node.

Label node
Use the Label node as a target for the next sequence of one or
more nodes that are to process a message. Use this node in
combination with the RouteToLabel node for all types of messages,
or with the SOAPExtract node for SOAP messages.

The Label node only routes the message to the next node in the
flow and performs no processing.

ResetContentDescriptor node
Use the ResetContentDescriptor node to set new message
properties that are used when the message bit stream is next
parsed by a subsequent node in the message flow.

Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Nodes for controlling time-sensitive operations:

Run processes at specific times, or at fixed intervals, and take action if transactions
are not completed within a defined time.

TimeoutControl node
Use a TimeoutControl node and a TimeoutNotification node together in a

Chapter 9. Developing message flow applications 1471

message flow to control events that occur at a specific time or at defined
time intervals. The TimeoutControl node receives an input message that
contains a timeout request. All or part of this input message is validated
and stored to be propagated by an associated TimeoutNotification node in
the message flow. The input message is also propagated unchanged to the
next node in the message flow.

More than one TimeoutControl node can be associated with each
TimeoutNotification node.

TimeoutNotification node
Use a stand-alone TimeoutNotification node to generate messages that are
propagated at configured times or time intervals to the next node in the
message flow for further processing.

Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Miscellaneous nodes:

Nodes to perform a variety of tasks.

Nodes for collating requests

Use the AggregateControl, AggregateReply, and AggregateRequest nodes
to collate related requests and responses. Use these nodes to generate
several requests in response to one input message, to control and
coordinate the responses that are received in response to those requests,
and to combine the information that is provided by the responses to
continue processing.

Node for creating message collections

Use the Collector node to generate collections of messages and make
multiple synchronous or asynchronous requests in parallel. The Collector
node does not need an initial fan-out stage, and can group unrelated input
messages by correlating their content. You can configure dynamic input
terminals on a Collector node to receive messages from different sources.
You can also configure properties on the Collector node, known as event
handlers, to determine how messages are added to a message collection,
and when a message collection has completed.

Nodes for controlling the sequence of messages
Use the Sequence node to apply a sequence number to a message received
from an input source, and the Resequence node to change the sequence of
messages that contain a sequence number. You can divide messages into
sequence groups and use the Sequence and Resequence nodes to control
the sequences in groups of messages that arrive at the nodes.

Nodes for handling and reporting errors

Use the following nodes to affect error handling and reporting:

1472 WebSphere Message Broker Version 7.0.0.8

Trace node
Include a Trace node to generate one or more trace entries to
record what is happening in the message flow at this point.

TryCatch node
Include a TryCatch node to control the error processing when
exceptions are thrown.

Throw node
Include a Throw node to force an exception to be thrown, and
specify the identity of the exception, to make it easier to diagnose
the problem.

Node for invoking the message flow security manager
Use the SecurityPEP node to invoke the message flow security manager at
any point in the message flow between an input node and an output (or
request) node. The SecurityPEP node enables you to invoke the security
manager even if your input nodes do not support message flow security.
You can also use the SecurityPEP node to invoke different aspects of
security (for example, authentication and authorization) at different points
in the message flow.

Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Using more than one input node
You can include more than one input node in a single message flow.

Before you begin

Before you start:

Read the following concept topic:
v “Message flow nodes” on page 1024

About this task

You might find this useful in the following situations:
v The message flow provides common processing for messages that are received

from multiple transports. For example, a single message flow might handle:
– Data in messages received from WebSphere MQ, and therefore through a

WebSphere MQ queue and an MQInput node
– Messages that are received from native IP connections (a Real-timeInput

node)
v You need to set standard properties on the MQInput node if input messages:

– are predefined, and
– are all received from WebSphere MQ, and
– do not include an MQRFH2 header.

Chapter 9. Developing message flow applications 1473

If the required standard properties are not always the same for every message,
you can include more than one input node and configure each to handle a
particular set of properties.
This requirement is not necessary for self-defining messages.

v Each input node in a message flow causes the broker to start a separate thread
of execution. Including more than one input node might improve the message
flow performance. However, if you include multiple input nodes that access the
same input source (for example, a WebSphere MQ queue), the order in which
the messages are processed cannot be guaranteed. If you want the message flow
to process messages in the order in which they are received, this option is not
appropriate.
If you are not concerned about message order, consider using additional
instances of the same message flow rather than multiple input nodes. If you set
the Additional Instances property of the message flow when you deploy it to
the broker, multiple copies of the message flow are started in the execution
group. This is the most efficient way of handling multiple instances.

Look at the following sample :
v Scribble

This sample uses two input nodes: an MQInput node and a Real-timeInput node.
You can use these two input nodes to enable the sample's message flow to accept
input from both WebSphere MQ transport and native IP connections. You can view
information about samples only when you use the information center that is
integrated with the WebSphere Message Broker Toolkit or the online information
center. You can run samples only when you use the information center that is
integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

1474 WebSphere Message Broker Version 7.0.0.8

Defining input message characteristics
When a message is received by an input node in a message flow, the node detects
how to interpret that message by determining the domain in which the message is
defined and starting the appropriate parser.

Before you begin

Before you start:

Read the following concept topic:
v “Parsers” on page 1072

About this task

You can provide message domain information to the input node in one of two
ways:
1. You can configure the built-in input nodes to indicate the message domain, and

therefore the parser to be started, for each message that is received.
2. You can set values in the input message itself that specify this information.

Include an MQRFH2 header, which contains a folder that defines the message
characteristics. This approach is more flexible because it means that the input
node can start the appropriate parser based on the content of each message.

If the input message is defined in the MRM domain, and is therefore interpreted
by the MRM parser, you must specify the following additional properties:
v The Message set within which the message is defined
v The Message type, which is defined by the message model
v The Message format, which defines the physical characteristics of the message

The way that these properties are set depends upon the type of message, or node,
that you want to use:
v If the message is a WebSphere MQ message, these properties can be set either in

the input node or in the MQRFH2 header of the incoming message. If the
properties are set in both, the properties of the MQRFH2 header take
precedence. If the properties are not found in either the node or the MQRFH2
header, the default value is empty and the BLOB parser is used.

v If the message is a JMS message, the property that is set on the node takes
precedence. If the Message domain is empty, the Message domain is, by default,
derived according to certain criteria following a predetermined order of
precedence; see “JMS message payload and appropriate parser” on page 1698.

v If the input message belongs to a Message domain other than those for which a
parser is supplied, you must provide a user-defined parser to handle it, and a
user-defined input node to accept it for processing in the message flow. Check
the documentation provided with the user-defined parser and node for further
information.

v If the Message domain is in a TimeoutControl node, an empty Message domain
has either of the following results:
– If the Stored message location property is also empty, the full message is

stored. When the message comes back at TimeoutNotification, it is parsed in
the same way as the original message.

– If the Stored message location property is not empty, a partial message is
stored and no parser is associated, therefore, by default, it is treated as BLOB.

Chapter 9. Developing message flow applications 1475

v If the Message domain is in a ResetContentDescriptor node, an empty Message
domain has either of the following results:
– If Reset message domain is cleared, the domain is not reset.
– If Reset message domain is selected, the default is BLOB.

v If the input node cannot determine the message characteristics, the default value
is empty and the message is considered to be in the BLOB domain, and the BLOB
parser is started.

Import either of the following samples, or another sample that uses a Message set,
and look at the values on the Input Message Parsing properties tab of the input
node in the sample's message flow.
v Video Rental
v Comma Separated Value (CSV)

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Logical tree structure” on page 1042
The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“How the message tree is populated” on page 1047
The message tree is initially populated by the input node of the message flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

1476 WebSphere Message Broker Version 7.0.0.8

“MQRFH2 structure” on page 6397

Creating destination lists
Create a list of destinations to indicate where a message is sent.

Before you begin

Before you start:

Read the concept topic “Message flow nodes” on page 1024.

About this task

You can include a Compute node in your message flow, and configure it to create a
destination list in the local environment subtree. You can then use the destination
list in the following nodes:
v The MQOutput and JMSOutput nodes, to put output messages to a specified list

of destinations.
v The RouteToLabel node, to pass messages to Label nodes.

For details about how this technique is used, look at the following sample:
– Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

For more information about accessing the LocalEnvironment subtree, destination
list contents, and example procedures for setting values for each of these scenarios,
see “Accessing the local environment tree” on page 2463.

For more information about how to populate destination in the LocalEnvironment
subtree, and how to build JMS destination lists, see “Populating Destination in the
local environment tree” on page 2467.

You might find it useful to create the contents of the destination list from an
external database that is accessed by the Compute node. You can then update the
destinations without needing to update and redeploy the message flow.

The use of the destination list to define which applications receive the output
messages is in contrast to the publish/subscribe application model, in which the
recipients of the publications are those subscribers that are currently registered
with the broker. The processing that is completed by the message flow does not
have any effect on the current list of subscribers.
Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:

Chapter 9. Developing message flow applications 1477

“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Validating messages
The broker provides validation based on the message model for predefined
messages.

Before you begin

Before you start:

Read the concept topics about message flows and parsers, especially “MRM parser
and domain” on page 1111 and “XMLNSC parser” on page 1090.

About this task

Validation applies only to messages that you have modeled and deployed to the
broker. Specifically, the message domains that support validation are MRM,
XMLNSC, SOAP, and IDOC.

The broker does not provide any validation for self-defining messages. The
XMLNSC, and SOAP domains validate predefined messages directly against
message model schema filesXML Schema files. The MRM and IDOC parsers
validate predefined messages against the message dictionary generated from a
message set.

Message flows are designed to transform and route messages that conform to
certain rules. By default, parsers perform some validity checking on a message, but
only to ensure the integrity of the parsing operation. However, you can validate a
message more stringently against the message model contained in the message set
by specifying validation options on certain nodes in your message flow.

You can use validation options to validate the following messages:
v Input messages that are received by an input node
v Output messages that are created, for example, by a Compute, Mapping, or

JavaCompute node

These validation options can ensure the validity of data entering and leaving the
message flow. The options provide you with some degree of control over the
validation performed to:
v Maintain a balance between performance requirements and security

requirements

1478 WebSphere Message Broker Version 7.0.0.8

v Validate at different stages of message flow completion; for example, on input of
a message, before a message is propagated, or at any point in between

v Cope with messages that your message model does not fully describe

You can also specify what action to take when validation fails.

Message validation involves navigating a message tree, and checking the validity
of the tree. Message validation is an extension of tree creation when the input
message is parsed, and of bit stream creation when the output message is written.

Validation options are available on the following nodes:

Node type Nodes with validation options

Input node FileInput, FTEInput, HTTPInput, JMSInput, MQInput, SCAInput, ,
SOAPInput,TimeoutNotification,

Output node FileOutput, FTEOutput, HTTPReply, JMSOutput, JMSReply, MQOutput,
MQReply, SCAReply, SOAPReply

Other nodes Compute, CICSRequest, DatabaseRetrieve, HTTPRequest, JavaCompute,
Mapping, MQGet, ResetContentDescriptor, SCAAsyncResponse,
SCARequest, SOAPRequest, SOAPAsyncResponse, Validate, XSLTransform

Validation options can also be specified on the ESQL CREATE statement and the
ASBITSTREAM function.

To validate input messages that are received on an input node, you can specify
validation properties on the input node. The input message is then validated when
the message bit stream is parsed to form the message tree.

You can also use the Parse Timing property of the input node to control whether
the entire message is parsed and validated at this time, or whether individual
fields in the message are parsed and validated only when referenced.

To validate output messages that are created by a transformation node, specify
validation properties either on the node itself, or on the output node that sends the
message. The validation takes place when the message bit stream is created from
the message tree by the output node.

Alternatively, use a Validate node to validate a message tree at a particular place in
your message flow, or use the ESQL ASBITSTREAM function in a Compute, Filter,
or Database node.

A limited amount of validation occurs by default if you leave the validation
settings unaltered. At this default level, an exception is thrown if one of the
following statements is true:
v A data mismatch occurs; for example, the parser cannot interpret the data that is

provided for the field type specified.
v The order of elements in the output message does not match the order of

elements in the logical message tree (MRM CWF, and MRM TDS fixed-length
models only).

Additionally, the MRM parser performs limited remedial action under the
following circumstances:
v Extraneous fields are discarded on output for fixed formats (CWF and TDS

fixed-length models only).

Chapter 9. Developing message flow applications 1479

v If mandatory content is missing, default values are supplied, if available, on
output for fixed formats (CWF and TDS fixed-length models only).

v If the data type of an element in the tree does not match that specified in the
dictionary, the data type is converted on output to match the dictionary
definition, if possible, for all formats.

However, by using validation options you can request more thorough validation of
messages. For example, you might want to validate one or more of the following
conditions, and throw an exception, or log the errors:
v The whole message at the start of the message flow
v That complex elements have the correct Composition and Content Validation
v That all data fields contain the correct type of data
v That data fields conform to the value constraints in the message model
v That all mandatory fields are present in the message
v That only the expected fields are present in the message
v That message elements are in the correct order

The samples illustrate some of these validation options.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

When using validation options, it is important to understand the following
behavior.
v The Parse Timing property, which controls whether on-demand parsing

(sometimes called partial parsing) takes place, affects the timing of the validation
of input messages, including message headers.
For more information about the Parse Timing property, see “Parsing on
demand” on page 4173.

v If a message tree is passed to an output node, by default the output node
inherits the validation options in force for the message tree. You can override
these options by specifying a new set of validation options on the output node.

v If a message tree is passed as input to a Compute, Mapping, XSLTransform,
DatabaseRetrieve, or JavaCompute node, any new output message trees that the
node creates have the validation options specified by the node itself (even if the
whole message is copied). You can override this behavior and specify that the
messages that are created by the node inherit the validation options of the input
message tree.

v (MRM domain only) When the bit stream is written, and validation options are
applied, the entire message is validated. The message tree might contain an
unresolved type (for example, if a Compute node copied an unresolved type
from an input message to an output message without resolving it). If such a
type is encountered, a validation error occurs because it is not possible to
validate the type. To prevent this error, ensure that all unresolved types are
resolved before they are copied to output messages.

v (MRM domain only) Do not select the Truncate fixed length strings check
box because validation is done before truncation, and a fixed-length field fails
validation if its length exceeds the length that is defined in the message set. For

1480 WebSphere Message Broker Version 7.0.0.8

more information about the Truncate fixed length strings property, see
“Custom Wire Format message set properties” on page 5375 and “TDS Format
message set properties” on page 5381.

For information about how you can control validation by using different
properties, see “Validation properties” on page 4169.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Predefined and self-defining messages” on page 1076
Both predefined and self-defining messages are supported.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“CREATE statement” on page 5082
The CREATE statement creates a new message field.
“ASBITSTREAM function” on page 5224
The ASBITSTREAM field function generates a bit stream for the subtree of a given
field according to the rules of the parser that owns the field.

Viewing the logical message tree in trace output
To view the structure of the logical message tree at any point in the message flow,
include a Trace node and write some or all the message (including headers and all
four message trees) to the trace output destination.

Chapter 9. Developing message flow applications 1481

About this task

You might find trace output useful to check or record the content of a message
before and after a node has changed it, or on its receipt by the input node. For
example, if you include a Compute node that builds a destination list in the local
environment tree, you might want a record of the structure that it has created as
part of an audit trail, or you might want to check that the Compute node is
working as you expect it to.

UNIX

On UNIX, syslog entries are restricted in length and messages that are

sent to the syslog are truncated by the newline character. To record a large amount
of data in a log on UNIX, set the Destination property on the Trace node to File
or User Trace instead of Local Error Log.

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the message flow for which you want to view messages. Open an

existing message flow, or create a message flow.
3. Include a Trace node wherever you want to view part or all the message tree

structure. You can include as many Trace nodes as you choose; however, each
node that you introduce can affect the performance of message flow processing.

4. Set the Trace node properties to trace the message, or parts of the message, that
you want to view. Specify the parts of the message by using ESQL field
references. Several examples are included later in this topic.

5. If you have added a Trace node to investigate a particular behavior of your
message flow, and have now resolved your concerns or checked that the
message flow is working correctly, remove the Trace node or nodes, and
redeploy the message flow.

Example

Assume that you have configured a message flow that receives an XML message
on a WebSphere MQ queue in an MQInput node. The input message includes an
MQRFH2 header. The message has the following content:

You can include and configure a Trace node to produce output that shows one or
more of the trees created from this message: the message body, environment, local
environment, and exception trees. If you choose to record the content of the
message body, the Properties tree and the contents of all headers (in this example,
at least an MQMD and an MQRFH2) are included. You specify what you want to
be recorded when you set the Trace node property Pattern. You can use most of
the correlation names to define this pattern (you cannot use those names that are
specific to the Compute node).

Message body
If you want the Trace node to write the message body tree including
Properties and all headers, set Pattern to $Root. If you want only the
message data, set Pattern to ${Body}.

<Trade type=’buy’
Company=’IBM’
Price=’200.20’
Date=’2000-01-01’
Quantity=’1000’/>

1482 WebSphere Message Broker Version 7.0.0.8

The trace output generated for the message tree of the preceding message
with Pattern set to $Root would look like the following example:

Environment
To trace any data in the environment tree, set Pattern to ${Environment}.
This setting produces output like the following example:

To trace particular variables in the variables folder of the environment tree,
you can use a more specific pattern, for example
${Environment.Variables.MyVariable1}. This setting returns the value only
(for example, it returns just the value 3).

LocalEnvironment
To trace data in the local environment tree, set Pattern to
${LocalEnvironment}. The output you get is like the following example,
which shows that a destination list has been created in the local
environment tree:

Root
Properties

CreationTime=GMTTIMESTAMP ’1999-11-24 13:10:00’ (a GMT timestamp field)

... and other fields ...

MQMD
PutDate=DATE ’19991124’ (a date field)

PutTime=GMTTIME ’131000’ (a GMTTIME field)

... and other fields ...

MQRFH
mcd
msd=’xml’ (a character string field)

.. and other fields ...

XML
Trade
type=’buy’ (a character string field)

Company=’IBM’ (a character string field)

Price=’200’ (a character string field)

Date=’2000-01-01’ (a character string field)

Quantity=’1000’ (a character string field)

(0x1000000)Environment = (
(0x1000000)Variables = (

(0x1000000)MyVariable1 = (
(0x2000000) = ’3’

)
(0x1000000)MyVariable2 = (

(0x2000000) = ’Hello’
)

)
)

Chapter 9. Developing message flow applications 1483

Another example, shown here, includes a WrittenDestination folder. This
example represents a trace that has been written by a Trace node that is
included after an MQOutput node, where the Out terminal of the
MQOutput node is connected to a sequence of nodes including the Trace
node. When an Out terminal is connected, the local environment is
augmented with information about the action that the output node has
performed.

ExceptionList
To trace data in the exception list, set Pattern to ${ExceptionList}.

You can also view message structure in the message flow, and other information,
when you use the flow debugger.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

(0x1000000)Destination = (
(0x1000000)MQ = (

(0x1000000)DestinationData = (
(0x3000000)queuename = ’MQOUT’

)
)
(0x1000000)MQDestinationList = (
(0x1000000)DestinationData = (

(0x3000000)queuename = ’OLDMQOUT’
)

)
(0x1000000)RouterList = (

(0x1000000)DestinationData = (
(0x3000000)labelname = ’continue’

)
(0x1000000)DestinationData = (

(0x3000000)labelname = ’custdetails’
)
(0x1000000)DestinationData = (

(0x3000000)labelname = ’trade’
)

)
)

(0x1000000)Destination = (
(0x1000000)MQ = (

(0x1000000)DestinationData = (
(0x3000000)queuename = ’MQOUT’

)
)

(0x1000000)WrittenDestination = (
(0x1000000)MQ = (

(0x1000000)DestinationData = (
(0x3000000)queueName = ’MQOUT’
(0x3000000)queueManagerName = ’MQSI_SAMPLE_QM’
(0x3000000)replyIdentfier = X’414d51204d5153495f53414d504c455f1f442f3b12600100’
(0x3000000)msgId = X’414d51204d5153495f53414d504c455f1f442f3b12600100’
(0x3000000)correlId = X’00’

(0x03000000):GroupId = X’414d512042524f4b45523220202020203f59934620001803’
)

)
)

)

1484 WebSphere Message Broker Version 7.0.0.8

“Logical tree structure” on page 1042
The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Manipulating other parts of the message tree” on page 2452
You can access message tree headers, the properties tree, the local environment
tree, the environment tree and the exception list tree.
Chapter 10, “Testing and debugging message flow applications,” on page 3143
Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.
Related reference:
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“Exception list structure” on page 4224
An exception list contains information about exceptions, such as error numbers, the
name of the node that generated the exception, and the reason for the exception.

Changing the parser used in a message flow
If you need to change the parser that is used in a message flow, use the
ResetContentDescriptor node to request that the message is reparsed by a different
parser.

About this task

Use the ResetContentDescriptor node to set new message properties that are used
when the message bit stream is next parsed by a subsequent node in the message
flow.

Chapter 9. Developing message flow applications 1485

For example, if the format of an incoming message is unknown when it enters a
message flow, the BLOB parser is started. Later on in the message flow, you might
decide that the message is predefined as a message in the MRM domain, and you
can use the ResetContentDescriptor node to set the correct values to use when the
message is parsed by a subsequent node in the message flow.

You can select from the following parsers:
v MRM
v XMLNSC
v DataObject
v XMLNS
v JMSMap
v JMSStream
v MIME
v BLOB
v XML (this domain is deprecated; use XMLNSC)
v IDOC (this domain is deprecated; use MRM)
v JSON

If you specify MRM, XMLNSC, DataObject, or IDOC as the new parser, you can
also specify a different message template (message set, message type, and message
format).

Whether or not the node reparses the message straight away depends on the
settings of the Parse timing option in the node properties. Parse timing is, by
default, set to On Demand, which causes parsing of the message to be delayed. For
more details on controlling when the message is parsed, see “Parsing on demand”
on page 4173.
Related concepts:
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.

1486 WebSphere Message Broker Version 7.0.0.8

“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“ResetContentDescriptor node” on page 4663
Use the ResetContentDescriptor node to request that the message is reparsed by a
different parser.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.

Providing user-defined properties to control behavior
User-defined properties can be set at design time, deployment time, or run time.

About this task

For example, user-defined properties can be queried, discovered, and set at run
time to dynamically change the behavior of a message flow. You can use the
Administration API for WebSphere Message Broker (also known as the CMP API)
to manipulate these properties, which can be used by a systems monitoring tool to
perform automated actions in response to situations that it detects in the
monitored systems.

Procedure
v You can use the Message Flow editor to define a user-defined property when

you construct a message flow. For more information, see “Message Flow editor”
on page 6810.

v You can set user-defined properties at deployment time to configure a message
flow, as described in “Configuring a message flow at deployment time with
user-defined properties” on page 2626.

v You can use the CMP API to manipulate user-defined properties on a message
flow dynamically at run time, as described in “Setting message flow
user-defined properties at run time in a CMP application” on page 985.

Related concepts:
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.

Chapter 9. Developing message flow applications 1487

Related tasks:
“Accessing message flow user-defined properties from a JavaCompute node” on
page 2659
Customize a JavaCompute node to access properties that you have associated with
the message flow in which the node is included.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Defining message flow content
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

About this task

When you create a message flow, the editor view is initially empty. You must
create the contents of the message flow by using a combination of the following
tasks:
v “Adding a message flow node” on page 1494
v “Adding a subflow” on page 1501
v “Renaming a message flow node” on page 1502
v
v “Connecting message flow nodes” on page 1520
v “Inserting nodes into existing message flows” on page 1525
v “Adding a bend point” on page 1527
v “Aligning and arranging nodes” on page 1530

While you are developing message flows, you might want to record notes about
flow development or particular nodes in the flow:
v “Adding annotations to a message flow or node” on page 1531
v “Editing annotations on a message flow or node” on page 1533
v “Copying annotations on a message flow or node” on page 1534
v “Showing and hiding annotations on a message flow or node” on page 1535
v “Deleting annotations from a message flow or node” on page 1536

When you finalize the contents of the message flow, you might also need to
complete the following tasks:
v “Removing a message flow node” on page 1519
v “Removing a node connection” on page 1526
v “Removing a bend point” on page 1528

To learn more about message flow content, you can import either of the following
samples:
v Airline Reservations
v Error Handler

Follow the supplied instructions to build the sample yourself. You can also try
adding and deleting nodes, adding subflows, and connecting nodes together.

1488 WebSphere Message Broker Version 7.0.0.8

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

For a basic introduction to developing message flows, see the IBM Redbooks
publication WebSphere Message Broker Basics.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Using the node palette
The node palette contains all the built-in nodes, which are organized into
categories.

Before you begin

Before you start:

Read the following concept topic “Message flow node palette” on page 1027.

About this task

You can add the nodes that you use most often to the Favorites category by
following the instructions in “Adding nodes to the Favorites category on the
palette” on page 1492.

You can change the palette preferences in the WebSphere Message Broker Toolkit.
The changes that you can make are described in the following topics.

Procedure
v “Changing the palette layout” on page 1490
v “Changing the palette settings” on page 1490
v “Customizing the palette” on page 1491
Related concepts:
“Message flow node palette” on page 1027
The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.
Related tasks:
“Choosing the location of a user-defined node in the palette” on page 3092
Use the Palette editor to edit palette-specific information for user-defined nodes,
add and delete separators, and rearrange user-defined nodes in the palette.
Related reference:

Chapter 9. Developing message flow applications 1489

http://www.redbooks.ibm.com/abstracts/sg247137.html

“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Changing the palette layout:

You can change the layout of the palette in the Message Flow editor.

Procedure

1. Switch to the Broker Application Development perspective
2. Right-click the palette to display the pop-up menu.
3. Click Layout.
4. Click one of the available views:

Columns
Displays named icons in one or more columns. Change the number of
columns by clicking on the right edge of the palette and dragging.

List Displays named icons in a single-column list. The list view is the
default layout.

Icons Only
Displays a list of icons only.

Details
Displays descriptions of the icons.

Related tasks:
“Customizing the palette” on page 1491
If you customize the message flow node palette, you can make it easier to find the
nodes that you use most often.
“Changing the palette settings”
How to use the Palette Settings dialog box.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Changing the palette settings:

How to use the Palette Settings dialog box.

About this task

Change the palette settings in the Message Flow editor using the Palette Settings
dialog box.

Procedure

1. Switch to the Broker Application Development perspective.
2. Right-click the palette to display the pop-up menu.
3. Click Settings. The Palette Settings dialog box opens.
4. Use the dialog to change the appropriate setting:

1490 WebSphere Message Broker Version 7.0.0.8

v Click Change to change the font on the palette.
v Click Restore Default to restore the default palette settings.
v In the Layout list, click the appropriate radio button to change the palette

layout. (See “Changing the palette layout” on page 1490 for more
information.)

v Select User large icons to toggle between large and small icons in the palette.
v In the Drawer options list, click the appropriate radio button to change the

way that drawers are handled in the palette. A drawer is a container for a
list of icons, such as the Favorites drawer on the Message Flow editor's
palette, or the Entity drawer on the Broker Topology editor's palette.

Related tasks:
“Changing the palette layout” on page 1490
You can change the layout of the palette in the Message Flow editor.
“Customizing the palette”
If you customize the message flow node palette, you can make it easier to find the
nodes that you use most often.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Customizing the palette:

If you customize the message flow node palette, you can make it easier to find the
nodes that you use most often.

About this task

This saves time and on-screen space. For example:
v Change the order of the drawers in the palette so that the ones that you use

most often are at the top.
v Hide any drawers that you do not use, to save on-screen space.
v Pin open the drawers that contain the nodes that you use most often.
v Create your own drawers to hold user-defined nodes that you create.

Customize the palette for the Message Flow editor using the Customize Palette
dialog box:

Procedure

1. Switch to the Broker Application Development perspective.
2. Right-click the palette, then click Customize. The Customize Palette dialog box

opens.
v To change the order of entries and drawers in the palette, click the

appropriate item in the list to highlight it, then click Move Down or Move
Up. You cannot move any category above the Favorites category.

v To hide an entry or drawer, click the appropriate item in the list to highlight
it, then select the Hide check box.

v To create a new separator, click New > Separator.
v To create a new drawer:

a. Click New > Drawer.

Chapter 9. Developing message flow applications 1491

b. Type a name and description for the drawer.
c. If required, select the Open drawer at start-up check box.
d. If required, select the Pin drawer open at start-up check box.

3. Click OK or Apply to save your changes.

Results

You have customized the message flow node palette.
Related tasks:
“Changing the palette layout” on page 1490
You can change the layout of the palette in the Message Flow editor.
“Changing the palette settings” on page 1490
How to use the Palette Settings dialog box.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Adding nodes to the Favorites category on the palette:

The nodes on the palette are organized in categories. The first category is
Favorites, which is usually empty. You can drag the nodes that you use most often
to the Favorites category.

Before you begin

Before you start:

Read the concept topic about the message flow node palette.

About this task

The following steps describe how to drag nodes into the Favorites category.

Procedure

1. Switch to the Broker Application Development perspective.
2. On the palette, open the Favorites category.
3. On the palette, open the category that contains the node that you want to add

to the Favorites category.
4. Use the mouse to drag the node into the Favorites category, as shown in the

following example:

1492 WebSphere Message Broker Version 7.0.0.8

Results

Alternatively, right-click the palette and choose the appropriate option to add or
remove nodes from the Favorites category.
Related tasks:
“Changing the palette layout” on page 1490
You can change the layout of the palette in the Message Flow editor.
“Changing the palette settings” on page 1490
How to use the Palette Settings dialog box.
“Customizing the palette” on page 1491
If you customize the message flow node palette, you can make it easier to find the
nodes that you use most often.
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.

Chapter 9. Developing message flow applications 1493

“Creating a user-defined node in the WebSphere Message Broker Toolkit” on page
3081
Create the representation of a user-defined node created in Java and C only, in the
WebSphere Message Broker Toolkit.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Plug-in Development projects and files” on page 6825

Adding a message flow node
When you have created a message flow, add nodes to define its function.

Before you begin

Before you start:
v Create a message flow or open an existing message flow; see “Creating a

message flow” on page 1431 and “Opening an existing message flow” on page
1433.

v Read the concept topic about message flow nodes, see “Message flow nodes” on
page 1024.

About this task

To add a node to a message flow:

Procedure
1. Open the message flow with which you want to work.
2. Open the Palette.
v Hold the mouse pointer over the palette bar while it is in collapsed mode.

The palette bar expands. When you move the mouse pointer away from the
palette bar, it collapses again.

v Click the Show Palette icon at the top of the palette bar. The palette bar
expands and it remains expanded when the mouse is moved away from the
palette bar. To collapse the palette bar again, click the Hide Palette icon at
the top of the palette bar while it is in expanded mode.

3. Click Selection above the palette of nodes.
4. Decide which node you want to add: a built-in node or a user-defined node.

You can select any of the nodes that are displayed in the node palette, but you
can add only one node at a time.
Nodes are grouped in categories according to the function that they provide. To
see descriptions of the nodes in the palette, either hold the mouse pointer over
a node in the palette, or switch to the Details view by following the
instructions in “Changing the palette layout” on page 1490.

5. Drag the node from the node palette onto the canvas.
When you add a node to the canvas, the editor automatically assigns a name to
the node, but the name is highlighted and you can change it by entering a
name of your choice. If you rename the node, the name that you choose must
be unique in the message flow. If you do not change the default name at this
time, you can change it later, see “Renaming a message flow node” on page
1502. The default name is set to the type of node for the first instance. For

1494 WebSphere Message Broker Version 7.0.0.8

example, if you add an MQInput node to the canvas, it is given the name
MQInput; if you add a second MQInput node, the default name is MQInput1;
the third is MQInput2, and so on.

6. Repeat steps 4 on page 1494 and 5 on page 1494 to add further nodes.
7. You can also add nodes from other flows into this flow:

a. Open the other message flow.
b. Select the node or nodes that you want to copy from the editor or outline

views, and press Ctrl+C or click Edit > Copy.
c. Return to the flow with which you are currently working.
d. Press Ctrl+V or click Edit > Paste. This action copies the node or nodes into

your current flow. The node names and properties are preserved in the new
copy.

Results

When you have added the nodes that you want in this message flow, you can
connect them to specify the flow of control through the message flow, and you can
configure their properties.

You can also add user-defined nodes to your message flow. To find out about
user-defined nodes, see “User-defined nodes” on page 2989.

What to do next

Now you can configure the nodes, see “Configuring a message flow node” on
page 1503.
Related concepts:
“Message flow node palette” on page 1027
The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.
“Adding a node by using the keyboard” on page 1498
You can use the keyboard to perform tasks in the Message Flow editor, such as
adding a node to the canvas.
“Dragging a resource from the Broker Development view” on page 1499
Drag a node or a related resource into the Message Flow editor.
“Renaming a message flow node” on page 1502
You can change the name of any type of node (a built-in node, user-defined node,
or subflow node) to reflect its purpose.
“Adding a subflow” on page 1501
In a message flow, you can include an embedded message flow, also known as a
subflow. For example, you might define a subflow that provides error handling,
and include it in a message flow connected to a failure terminal on a node that can
generate an error in some situations.

Chapter 9. Developing message flow applications 1495

“Removing a message flow node” on page 1519
When you have created and populated a message flow, you might need to remove
a node to change the function of the flow, or to replace it with another more
appropriate node. The node can be a built-in node, a user-defined node, or a
subflow node.
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
Related reference:
“WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
keyboard shortcuts” on page 6828
You can navigate all interfaces in the WebSphere Message Broker Explorer and
WebSphere Message Broker Toolkit by using the keyboard.

Installing a user-defined node:

Develop message flows that use a user-defined node.

About this task

You can develop message flows by using the user-defined node in the same way as
the built-in nodes. Before you can use a user-defined node, you must install it into
your WebSphere Message Broker Toolkit. A user-defined node is installed
differently depending on how it was packaged.

Procedure

1. Install the user-defined node project:
v If the user-defined node was packaged as plug-in JAR files, copy your JAR

files into the dropins folder in your WebSphere Message Broker Toolkit
installation location, and run the mb -clean -initialize command to pick
up the new files.

Note: For some WebSphere Message Broker Toolkit installations, the dropins
folder (for example C:\Program Files (x86)\IBM\WMBT700) is not created. In
this case, you can create the dropins folder manually.

v If the user-defined node was packaged as an update site, install the plug-ins
from the update site, see “Installing from an update site” on page 3124.

2. Stop and restart your WebSphere Message Broker Toolkit. The user-defined
nodes are displayed in the palette in the Message Flow editor under the
category that you specified for the user-defined node project.

Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Debugging the message flow in simulation mode” on page 3098
Compile, deploy, test, and debug the message flow that includes your user-defined
node.

1496 WebSphere Message Broker Version 7.0.0.8

“Creating a user-defined node from a subflow” on page 3076
Create user-defined nodes either from scratch, or by using an existing subflow.
“Packaging as plug-in JAR files” on page 3122
Export the user-defined node project as plug-in JAR files to make it available for
other users.
“Packaging as an update site” on page 3122
Create an installation site for Web page distribution of the user-defined node
projects that includes or references other projects or plug-ins. You can either create
a new update site, or use an existing one.
“Installing from an update site” on page 3124
If you have packaged your user-defined nodes into an update site, use the
software update mechanism to install the user-defined nodes.
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.

Message sets packaged with a user-defined node:

Adding message sets to an update site.

About this task

Message sets are automatically packaged into user-defined node JAR files and
update sites. If you drag a user-defined node from the palette onto the canvas, the
WebSphere Message Broker Toolkit detects whether the required message sets are
available in the current workspace.

Procedure

1. If the required message sets are unavailable in the current workspace, a
warning is displayed in the Problems tab, and the Import Required Message
Sets window opens.

2. To import the message set from the user-defined node plug-in, click Import
selected message sets, or you can import the message sets from another source.
If the message set is available in the same execution group at execution time,
you do not have to import the message sets.

Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Creating a user-defined node from a subflow” on page 3076
Create user-defined nodes either from scratch, or by using an existing subflow.
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.

Chapter 9. Developing message flow applications 1497

Adding a node by using the keyboard:

You can use the keyboard to perform tasks in the Message Flow editor, such as
adding a node to the canvas.

Before you begin

Before you start:
v Ensure that you have created or opened a message flow. For more information,

see “Creating a message flow” on page 1431 or “Opening an existing message
flow” on page 1433.

v Read the concept topic, “Message flow nodes” on page 1024.

Procedure

1. Open the message flow to which you want to add a node.
2. Open the Palette view or the Palette bar.
3. Select a node in the Palette view or Palette bar by using the up and down

arrows to highlight the node that you want to add to the canvas.
4. Add the node to the canvas by using one of the following methods:
v Press Alt + L, then press N.
v Press Shift + F10 to open the pop-up menu for the Palette, and press N.

The node that you selected in the Palette bar or Palette view is placed on the
canvas in the Editor view.
When you add a node to the canvas, the editor automatically assigns a name to
the node, but the name is highlighted and you can change it by entering a
name of your choice. If you do not change the default name at this time, you
can change it later by following the instructions in “Renaming a message flow
node” on page 1502. The default name is set to the type of node for the first
instance. For example, if you add an MQInput node to the canvas, it is given
the name MQInput. If you add a second MQInput node, the default name is
MQInput1; the third is MQInput2, and so on.

Results

You can move the node that you have placed on the canvas by using the keyboard
controls described in “WebSphere Message Broker Explorer and WebSphere
Message Broker Toolkit keyboard shortcuts” on page 6828.
Related concepts:
“Message flow node palette” on page 1027
The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.
Related tasks:
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Dragging a resource from the Broker Development view” on page 1499
Drag a node or a related resource into the Message Flow editor.
Related reference:
“WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
keyboard shortcuts” on page 6828
You can navigate all interfaces in the WebSphere Message Broker Explorer and
WebSphere Message Broker Toolkit by using the keyboard.

1498 WebSphere Message Broker Version 7.0.0.8

“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Message Flow editor menus” on page 6813
“Accessibility features for WebSphere Message Broker” on page 135
Accessibility features help users who have a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Dragging a resource from the Broker Development view:

Drag a node or a related resource into the Message Flow editor.

Before you begin

Before you start:

Complete the following tasks:
v Create or open a message flow, as described in “Creating a message flow” on

page 1431 and “Opening an existing message flow” on page 1433.
v Read concept information in “Message flow nodes” on page 1024.

About this task

To create a node, drag a resource from the Broker Development view to an empty
canvas. To modify an existing node, drag a resource onto that node. The following
resources are supported:
v An Adapter file
v An ESQL file
v A Java file
v A subflow
v A WSDL file
v An XSL file

Procedure

1. Open the message flow with which you want to work.
2. Drag one of the supported resources from the Broker Development view onto

the canvas.
v If you drop the resource on an empty canvas, a node is created and

configured automatically.
The following table shows the results when you drag a resource from the
Broker Development view onto an empty canvas:

Resource Node created Property set

Adapter file A “PeopleSoftInput node” on page
4630, “SAPInput node” on page
4676, or “SiebelInput node” on page
4740 is created

Adapter component

CORBA IDL
file

A “CORBARequest node” on page
4349 is created

IDL file

Chapter 9. Developing message flow applications 1499

Resource Node created Property set

ESQL file A “Compute node” on page 4340 is
created

ESQL Module

Java file A “JavaCompute node” on page
4514 is created

Java Class

WSDL file A “SOAPInput node” on page 4795
or “SOAPRequest node” on page
4828 is created

WSDL file name

XSL file An “XSLTransform node” on page
4968 is created

Stylesheet

v If you drop the resource onto an existing node, the relevant node property is
updated with the name of the resource file. For example, if you drop a Java
file onto a JavaCompute node, the Java Class property is set to the class
name of the Java file that you are dropping. If you drop an ESQL file over
any node that uses ESQL, such as a Database node, the ESQL Module property
is set.

Related concepts:
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
Related tasks:
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Adding a subflow” on page 1501
In a message flow, you can include an embedded message flow, also known as a
subflow. For example, you might define a subflow that provides error handling,
and include it in a message flow connected to a failure terminal on a node that can
generate an error in some situations.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

1500 WebSphere Message Broker Version 7.0.0.8

“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.

Adding a subflow
In a message flow, you can include an embedded message flow, also known as a
subflow. For example, you might define a subflow that provides error handling,
and include it in a message flow connected to a failure terminal on a node that can
generate an error in some situations.

Before you begin

Before you start:

To complete this task, you must have created a message flow to use as a subflow,
and a message flow in which to insert the subflow. For more details, see “Creating
a message flow” on page 1431.

About this task

You can embed subflows into your message flow if either of the following
statements is true:
v The flow that you want to embed is defined in the same message flow project.
v The flow is defined in a different message flow project, and you have specified

the dependency of the current message flow project on that other project.

You can embed subflows into other subflows.

Procedure

To add a subflow to a message flow, complete the following steps:
1. Open the message flow in which you want to embed the subflow.
2. To add a subflow, drag the message flow that you want to add from the Broker

Development view to the editor. Alternatively, click Flow > Add subflow, then
select the flow that you want to add from the list. The embedded subflow is
shown in the Message Flow editor as a single node with the terminals that
represent the Input and Output nodes that you have included in the subflow.

3. Connect the subflow node to one or more of the nodes in the main message
flow. For more details, see “Connecting message flow nodes” on page 1520.

4. To add and connect further subflow nodes, repeat steps 2 and 3.
5. To work with the contents of the subflow, double-click the subflow icon. The

subflow opens in the Message Flow editor.

What to do next

You can also package your subflow as a user-defined node so that you can use it
in a message flow; for more information, see “Using a subflow as a user-defined
node” on page 3008.
Related concepts:
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the

Chapter 9. Developing message flow applications 1501

same way.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
“Creating a user-defined node from a subflow” on page 3076
Create user-defined nodes either from scratch, or by using an existing subflow.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Renaming a message flow node
You can change the name of any type of node (a built-in node, user-defined node,
or subflow node) to reflect its purpose.

Before you begin

Before you start:

Complete the following tasks:
v Create a message flow, as described in “Creating a message flow” on page 1431.
v Read the concept topic, “Message flow nodes” on page 1024.

About this task

When you first add a node to the canvas, the editor automatically assigns a name
to the node; the name is highlighted, and you can change it by entering a name of
your choice. If you do not change the default name at this time, you can change it
later, as described in this topic. For example, you might include a Compute node
to calculate the price of a specific part in an order; you could change the name of
the node to Calculate_Price.

When you rename a node, use only the supported characters for this entity. The
editor prevents you from entering unsupported characters.

To rename a node:

1502 WebSphere Message Broker Version 7.0.0.8

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the message flow with which you want to work.
3. You can rename a node in three ways:
v Right-click the node and click Rename. The name is highlighted; enter a

name of your choice and press Enter.
v Click the node to select it, then click the name of the node so that it is

highlighted; enter a name of your choice and press Enter.
v Click the node to select it, then on the Description tab of the Properties view,

enter a name of your choice in the Node name field.

The name that you enter must be unique in the message flow.

What to do next

If you generate ESQL code for a Compute, Database, or Filter node, the code is
contained in a module that is associated with the node. The name of the module in
the ESQL file must match the name specified for the module in the ESQL Module
property of the corresponding node. You can modify the module name, and
change it from its default value (which is the name of the message flow,
concatenated with the name of the node with which the module is associated).
However, ensure that the module in the ESQL file matches the node property.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Configuring a message flow node
When you have included an instance of a node in your message flow, you can
configure its properties to customize how it works.

Before you begin

Before you start:
v Read the concept topic about message flow nodes

Chapter 9. Developing message flow applications 1503

v Add a node

Viewing the properties of a node:
About this task

To view a node's properties:

Procedure

1. In the Message Flow editor, open the message flow with which you want to
work.

2. To open the Properties view, right-click a node and click Properties.
The selected node's properties are displayed. You can edit the properties.

Editing the properties of a node:
About this task

Properties are organized into related groups and displayed on tabs. Each tab is
listed on the left of the Properties view. Click each tab to view the properties that
you can edit.

Procedure

v Every node has at least one tab, Description, where you can change the name of
the node and enter short and long descriptions. The description fields are
optional because they are used only for documentation purposes.

v If a property is mandatory (that is, one for which you must enter a value), the
property name is marked with an asterisk, as shown in the following example:
Queue Name* ________________________________

v Many nodes have properties that require XPath expressions, typically to identify
the location of a particular resource. For example, for the MQInput node, you
can specify the location of the security token and password by using either
ESQL or XPath expressions. For help in constructing an XPath expression, you
can open the XPath Expression Builder by clicking Edit next to each XPath
property. For more information about using XPath expressions, see “Using
XPath” on page 1506.

What to do next

For details of how to configure each individual built-in node, see the node
description. You can find a list of the nodes, with links to the individual topics, in
“Built-in nodes” on page 4293.

If you have included a user-defined node, refer to the documentation that came
with the node to understand if, and how, you can configure its properties.

Editing complex properties:
About this task

A complex property is a property to which you can assign multiple values.
Complex properties are displayed in a table in the Properties view, where you can
add, edit, and delete values, and change the order of the values in the table. This
example shows the Query elements complex property of the DatabaseRoute node.

1504 WebSphere Message Broker Version 7.0.0.8

Procedure

v To add a value to a complex property, click Add, enter the required fields in the
dialog box that opens, then click OK. The values appear in the table. Repeat this
step to enter as many values as are required.

v To edit a value, click any element in a row, click Edit, edit any of the values in
the dialog box, then click OK.

v To delete a value, click any element in a row and click Delete. The entire row is
deleted.

v To change the order of values in the table, click any element in a row and click

the up icon

or down icon

to move the row.

Promoting properties:
About this task

You can promote node properties to their containing message flow; for more
information, see “Promoting a property” on page 1298. Use this technique to set
some values at the message flow level, without having to change individual nodes.
This can be useful, for example, when you embed a message flow in another flow,
and want to override some property such as output queue or data source with a
value that is correct in this context. You cannot promote complex properties. For a
full list of properties that are unavailable for promotion, as well as instructions for
how to promote properties, see “Promoting a property” on page 1298.

Overriding properties at deployment time:
About this task

You can override a small number of node property values when you deploy a
message flow. These property values are known as configurable properties, and
you can use them to modify some characteristics of a deployed message flow
without changing the message flow definitions. For example, you can update
queue manager and data source information.

Even though you can set values for configurable properties at deployment time,
you must set values for these properties within the message flow if they are
mandatory. Each built-in node reference topic contains a table of properties, which
identifies the configurable and mandatory properties.

What to do next

Next: connect the nodes.
Related concepts:
“Promoted properties” on page 1145
A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.

Chapter 9. Developing message flow applications 1505

“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Promoting a property” on page 1298
You can promote a node property to the message flow level to simplify the
maintenance of the message flow and its nodes, and to provide common values for
multiple nodes in the flow by converging promoted properties.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Defining a promoted property” on page 1297
When you create a message flow, you can promote properties from individual
nodes in that message flow to the message flow level. Properties promoted in this
way override the property values that you have set for the individual nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.

Using XPath:

XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.

About this task

In addition to ESQL as a message transformation language, WebSphere Message
Broker supports an alternative expression grammar in property fields. For more
information, see “ESQL-to-XPath mapping table” on page 5046.

You can use ESQL or XPath expressions in built-in nodes, within your message
flows, to query or update message trees that are specified as accessible, and that
you expect to be processed by a given node.

This section provides information on:
v “XPath overview” on page 1507
v “Namespace support” on page 1508
v “XPath Expression Builder” on page 1510
v “Creating XPath expressions” on page 1515
v “Selecting the grammar mode” on page 1516

There examples on configuring the XPath cache in the Configuring Applications
section here: “Configuring the XPath cache” on page 765.
Related concepts:

1506 WebSphere Message Broker Version 7.0.0.8

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

XPath overview:

The XML Path Language (XPath) is used to uniquely identify or address parts of
an XML document. An XPath expression can be used to search through an XML
document, and extract information from any part of the document, such as an
element or attribute (referred to as a node in XML) in it. XPath can be used alone
or in conjunction with XSLT.

Some of the built-in nodes provided in the WebSphere Message Broker Toolkit can
use XPath expressions to specify the part of a message that is processed by the
node. For example, you can use an XPath expression to identify fields in a message
and determine if they match a specified value, or to set the field value by updating
it with the results of a database query.

You can use XPath 1.0 path expressions in your flow to access specific parts of an
incoming message, create or locate parts of an outgoing message, and perform
complex message processing that might involve values present in message trees
accessible by a node so that you can transform, filter, or retrieve values from a
message.

For example, the Route node applies XPath 1.0 general expressions to the content
of message trees associated with the incoming message assembly for this node.
Following evaluation of an expression the result is cast as a Boolean (true or false)
result, and this in turn is used to determine if a copy of the incoming message is
routed down an output terminal associated with the processed expression.

If you have XML schema definition (.mxsd) files present in your workspace, any
elements, attributes or data types defined in such definitions can be loaded into the
Data types viewer and selected to automatically generate a path expressions
mapping to the definition concerned.

Equally, depending on the XPath expressions supported by the property concerned,
you can select XPath functions and operators to include in an expression, or you
can build your own expressions manually.

The Data types viewer contains a list of variables relating to trees that can be
accessed by expressions for the node property concerned.

For example, $InputRoot gives access to the incoming message tree. The fixed
format of standard folders you can expect to exist under this tree, for example,
Properties and MQMD are described without the need to import an .mxsd definition
for them. These structures can be navigated in the viewer and, on selection of an

Chapter 9. Developing message flow applications 1507

element within them, a path expression that maps to the element in question is
built automatically through the XPath 1.0 language.

For further information on XPath 1.0 see W3C XPath 1.0 Specification.

You can use the XPath Expression Builder to visually build XPath expressions to
set the relevant properties in your nodes. You launch the XPath Expression Builder
from buttons located along side property fields present in the Properties viewer,
for those nodes that support the use of XPath expressions as property values.

The XPath files in WebSphere Message Broker are supplied in three property
editors; see “XPath property editors” on page 5047 for more details.

The XPath editor supports both content-assist directly on the text field and also an
Edit... button that launches the XPath builder dialog. The dialog gives you a larger
area in which to build your XPath expressions.

The content assist based control contains two different proposal lists in the
following order:
1. Nodes and Variables
2. Functions and Operators

The node and variable proposals are displayed the first time that you use the
XPath editor. In this view, the status bar reads Press Ctrl+Space to show
Function and Operation Proposals.

Pressing Ctrl+Space when you are in the function and operator level proposals
selects the Node and Variable proposals.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Namespace support:

The XPath Expression builder provides qualified support for namespaces.

The XPath Expression builder dialog contains a namespace settings table that:
v Supports simplified expressions that enable qualified namespace matching at run

time

1508 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xpath

v Can be auto-generated based on imported schema definitions and generated
expressions (based on selections made in the dialog when you build an
expression)

v Allows you to add your own entries to the table

The table encapsulates deployable data passed to the runtime environment, as part
of the nodes attribute data, and is used by the node to modify expressions through
prefix-to-URI substitution. The final expressions support namespace matching,
because they are processed against a target tree when employed by their associated
message processing engine, that is, the XPath 1.0 runtime engine or ESQL runtime
engine.

When you enter an ESQL field reference expression in a read-only or read-write
path field, or an XPath 1.0 path expression in a read-only or read-write path field,
or a general expression field (general expressions can contain zero or more path
expressions), WebSphere Message Broker understands the language from the
syntax you use.

XPath is the default for general expression fields that are validated by ensuring
they conform to the XPath 1.0 grammar. For path expression fields XPath is
assumed if the expression is valid and begins with a $ sign.

The language you can use is dictated by the property editor currently in use for a
node's property field.

Namespace prefixes are used in an XPath or ESQL expression to make the
statements shorter and easier to understand, while still supporting the ability to
qualify an element name match by also matching on its associated namespace URI.

For example, consider the following message, where namespace prefix b is
overridden through an inner declaration:
<b:a xmlns:b=’xyz’>
<!-- the namespace of elements ’a’ and ’c’ using prefix ’b’ is xyz -->
<b:c>
<b:d xmlns:b=’qrs’>
<!-- the namespace of elements ’d’ and ’e’ using prefix ’b’ is now qrs -->
<b:e>100</b:e>
</b:d>
</b:c>
</b:a>

Note that the scope of a namespace declaration declaring a prefix extends from the
beginning of the start tag in which it appears to the end of the corresponding end
tag, excluding the scope of any inner declarations with the same namespace prefix.
In the case of an empty tag, the scope is the tag itself: >.

To navigate to element e in the above message use the following human-readable
XPath expression:

/b:a/b:c/b2:d/b2:e

Note, that to prevent the auto-generated prefix to the URI map produced in the
expression dialog overloading the same prefix (in this case b), the inner b prefix is
appended with a numeric value to distinguish it from the outer b prefix. This
strategy is repeated for each prefix name clash.

This notation is similar to the equivalent human-readable ESQL expression:
Root.b:a.b:c.b2:d.b2:e

Chapter 9. Developing message flow applications 1509

To support namespace prefixes within expressions, the XPath Expression Builder
Dialog automatically generates a prefix to a URI namespace settings table (based
on the content of imported schema definitions, through which expressions are
generated) .

Without the use of namespace prefixes to URI mapping data in this table, the
runtime environment would be forced to take a less efficient approach, where
portable but verbose XPath expressions would be required by it to provide
namespace matching support.

The previous expression:
/b:a/b:c/b2:d/b2:e

would take the form:
/*[namespace-uri()=’xyz’ and local-name()=’a’]/*[namespace-uri()=’xyz’

and local-name()=’c’]/*[namespace-uri()=’qrs’ and
local-name()=’d’]/*[namespace-uri()=’qrs’ and local-name()=’e’]

Related tasks:
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Predefined XPath mapping functions” on page 5001
Some XPath functions are available for use with message maps.

XPath Expression Builder:

You can launch the XPath Expression Builder from most property fields that
support, or expect, XPath expressions as a value that can be entered into the field.

The use of the XPath Expression Builder is optional, in that it is an aid to you in
developing message flow applications. The XPath Expression Builder helps you to
construct message processing expressions in either XPath or ESQL. You are free to
enter expressions by hand, or use the XPath Expression Builder to help construct
such expressions.

The XPath Expression Builder does not support use of the $Body variable. You can
use the $Body variable when you enter an expression by hand, but the XPath
Expression Builder and associated validation in the WebSphere Message Broker
Toolkit do not support it. Use the $Root variable instead.

You can populate the fields, regardless of the state of the node; that is, whether the
node is detached or connected, or fully, partially, or completely unconfigured.

You launch the XPath Expression Builder from a button in the following locations:
v Table cells, located to the right of the text entry field within the cell.
v Add or Edit dialog boxes used to construct rows in tables, located to right of the

property field concerned.
v Tabs in the property viewer for a node, to the right of a property field.

1510 WebSphere Message Broker Version 7.0.0.8

Variables (or in ESQL terminology, correlation names) provide a list of all message
tree start points that are applicable to the property field from which the dialog was
launched.

If a field is a read-only or a read-write path field, expressions must start with such
a variable to indicate which tree in which message assembly the path expression is
mapping to.

XPath variable names map to existing correlation names found in ESQL field
reference expressions, but to conform to the ESQL grammar they are designated as
variable references by prefixing them with the dollar ($) character.

For example:

ESQL Root.XMLNSC.CUST_DETAILS.NAME

XPATH
$Root/XMLNSC/CUST_DETAILS/NAME

The variable indicates to which tree and where in that tree the expression is
anchored.

The XPath Expression Builder dialog box supports validation, which you can turn
off on the XPath preferences page by clearing the Validate when creating XPath
expressions check box.

If you select the $Root or $Body variables and create an expression that refers to the
body of the message, the XPath expression contains the message element. This
expression is correct for message bodies owned by the XMLNSC, XMLNS, XML,
and DataObject domains.

For message bodies that are owned by the MRM, MIME, SOAP, and IDOC
domains, you must remove the message element from the expression.

For example, the XPath expression $Body/my_message/my_field is correct for
XMLNSC, but must be changed to $Body/my_field to be correct for MRM.

Views

There are three main views when functions are supported.

Whether a view is displayed, and what is displayed in it, depends on what type of
property editor you have used to launch the dialog, and its tailored settings; for
example, for path type fields you do not see a functions pane. The operators that
are supported can change as can the list of applicable variables.

Data Types Viewer
This view shows the different schema types, elements, and attributes that
you can use within the XPath expression that you are creating, as well as
the allowable variable references.

XPath Function
This view shows four main top level categories, which are:

String This category corresponds to the description in the XPath 1.0
specification of section-String-Functions.

Chapter 9. Developing message flow applications 1511

Boolean
This category corresponds to the description in the XPath 1.0
specification of section-Boolean-Functions.

Numeric
This category corresponds to the description in the XPath 1.0
specification of section-Number-Functions.

Nodeset
This category corresponds to the description in the XPath 1.0
specification of section-Node-Set-Functions.

For information on the format of XPath 1.0 expressions see the W3C XPath
1.0 Specification.

Operators
This view shows a list of all of the available operators that you can use
within the given XPath expression.

Namespace settings

If you expand Namespace settings in the XPath Expression Builder dialog you see
a table of Prefix and Namespace pair strings. This table is automatically updated
when XPath expressions are created. If the default prefix generated is not what you
want, you can change it by clicking Change Prefix.

To add a prefix and namespace map entry click Add and complete the fields in the
dialog.

To edit or delete an entry in the table, select the item and click Edit or Delete
respectively.

Edit opens another field dialog allowing you to change the prefix and namespace.

For information about the preferences supplied with the XPath editor, see “XPath
editor preferences” on page 1513.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Predefined XPath mapping functions” on page 5001
Some XPath functions are available for use with message maps.

1512 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

XPath editor preferences:

This topic describes the possible options available to you when you use the XPath
editor.

The following lists describe the custom preferences used in the XPath editor.
v Validation option:

Validation when building XPath expressions
Default: checked.

This option is used to perform validation each time you update the
XPath expression. As validation requires re-parsing the expression
against the XML Schema document you can turn this option off, for
example, if you are dealing with very large complex XPath expressions.

v Content Assist display options:

Show XML Schema model groups
Default: not checked.

This option allows you to view XML schema model groups, or not.

Show type in XML Schema tree
Default: checked.

This option allows you to view the <type name> in both the Content
Assist view and the XPath expression builder, or not.

Show function parameters
Default: checked.

This option allows you to have function parameters shown, or not.

Show function return type
Default: checked.

This option allows you to have function return types shown, or not.

Show content assist description
Default: checked.

This option allows you to view the description of a given selected entry
in the Content Assist view, or not..

v Auto-Activation option:

Enable auto activation
Default: checked.

When this option is active, the Content Assist field appears whenever
the cursor is after one of the following:
– / - Forward slash character
– [- left bracket character
– (- Left parentheses character
– , - Comma character

You set the delay time, before the Content Assist field appears, in the
Auto activation delay field. The time is in milliseconds and the range is
a positive number between zero and 9999.

v Content assist color options:

Chapter 9. Developing message flow applications 1513

This preference allows you to customize the background and foreground colors
for the Content Assist fields. The default background color is (red, green, blue -
254, 241, 233) and the default foreground color is (red, green, blue - 0, 0, 0) -
black.

Related tasks:
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
Related reference:
“XPath Expression Builder” on page 1510
You can launch the XPath Expression Builder from most property fields that
support, or expect, XPath expressions as a value that can be entered into the field.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

XPath expressions supported by default:

XPath supports a number of expressions by default.

The following expressions are supported:

Read-only fields
$Root, $Body, $Properties, $LocalEnvironment, $DestinationList,
$ExceptionList, $InputRoot , $InputBody, $InputProperties,
$InputLocalEnvironment, $InputDestinationList,
$InputExceptionList,$Environment.

To exclude variables for a node property from the default list, specify a
comma separated string of variables. For example, specifying:
"com.ibm.etools.mft.ibmnodes.editors.xpath.XPathReadOnlyPropertyEditor", "InputRoot ,
InputBody, InputProperties, InputLocalEnvironment, InputDestinationList,
InputExceptionList"

restricts the XPath field to support only:
$Root, $Body, $Properties, $LocalEnvironment, $DestinationList, $ExceptionList’
$Environment

Read-write fields
$InputRoot , $InputBody, $InputProperties, $InputLocalEnvironment,
$InputDestinationList, $InputExceptionList, $OutputRoot ,
$OutputLocalEnvironment, $OutputDestinationList,
$OutputExceptionList, $Environment.

To exclude variables for a node property from the default list, specify a
comma separated string of variables. For example, specifying:
"com.ibm.etools.mft.ibmnodes.editors.xpath.XPathReadWritePropertyEditor", "InputRoot ,
InputBody, InputProperties, InputLocalEnvironment, InputDestinationList,
InputExceptionList"

restricts the XPath field to support only:
$OutputRoot, $OutputLocalEnvironment, $OutputDestinationList, $OutputExceptionList,
$Environment

Expression fields
$Root, $Body, $Properties, $LocalEnvironment, $DestinationList,
$ExceptionList, $InputRoot , $InputBody, $InputProperties,
$InputLocalEnvironment, $InputDestinationList, $InputExceptionList,

1514 WebSphere Message Broker Version 7.0.0.8

$OutputRoot , $OutputLocalEnvironment, $OutputDestinationList,
$OutputExceptionList, $Environment.

To exclude variables for a node property from the default list, specify a
comma separated string of variables. For example, specifying:
"com.ibm.etools.mft.ibmnodes.editors.xpath.XPathPropertyEditor", "InputRoot ,
InputBody, InputProperties, InputLocalEnvironment, InputDestinationList,
InputExceptionList, OutputRoot , OutputLocalEnvironment, OutputDestinationList,
OutputExceptionList"

restricts the XPath field to support only:
$Root, $Body, $Properties, $LocalEnvironment, $DestinationList, $ExceptionList,
$Environment.

Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Predefined XPath mapping functions” on page 5001
Some XPath functions are available for use with message maps.

Creating XPath expressions:

A number of built-in primitive nodes have properties that can be specified using
an XPath 1.0 expression; most commonly where this language is used to form a
path expression to locate incoming message body elements received by a node.

About this task

Other less common node property fields support the entry of general XPath 1.0
expressions that support a wider range of the language to perform more complex
evaluations in the broker's XPath 1.0 runtime engine.

The XPath Expression builder provides a tree view of a message, and supports the
automatic generation of an XPath 1.0 path expression, through the selection of an
element within the tree.

The Schema Viewer section provides a tree view of the input message. To visually
build your XPath expression follow these steps:

Procedure

1. Add the relevant node to your message flow
2. In the Properties viewer, enter the correlation name, or press Ctrl + Space to

use content assist, or press Edit to use the Expression editor. Content assist is
also invoked by simply typing $ in cell-based property fields. See “Correlation
names” on page 1069 for further information on correlation names.

3. Expand the tree, navigate to the field for which you want to build an
expression, and click to select it. A field is either an element, or an attribute.
Double click the field to add it to the XPath expression. You can also drag
fields, functions, and operators to the desired location in the XPath expression
when using the XPath Expression builder.

4. To set conditions, enter them as you would a normal XPath Expression.

Chapter 9. Developing message flow applications 1515

Results

The complete XPath expression is shown either:
v In the XPath Expression pane if you are using the XPath Expression builder.

The Expression builder dialog is an optional aid for generating expressions that,
when complete, form the value in a node's property field.
If you do not use the Expression builder dialog, the expressions entered
manually are validated using the property editor.

v In the Property field if it is in the node itself.

Messages are displayed at the top of the XPath Editor window to alert you to the
fact that a path or expression you have entered is not valid.

Note: The editor does not prevent you from entering, and saving, an expression
that is not valid.

Example

Here is the XPath expression built in the XPath Expression Builder to filter the
Employee business objects for all employees who are managers:
$Root/XMLNSC/getEmployeeInfo/Emp[isManager=true()].
v $Root/XMLNSC/: The body section of the message; that is, the last child of root.

This example assumes that the XMLNSC domain is being used.
v /getEmployeeInfo: The name of the operation in the interface.
v /Emp: The name of the input message type.
v [isManager=true()]: Checks whether the isManager field is set to true.

In this case the same expression works for both request and response flows,
because the input and output messages for the operation are identical.

For more information on XPath 1.0, see W3C XPath 1.0 Specification.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Predefined XPath mapping functions” on page 5001
Some XPath functions are available for use with message maps.

Selecting the grammar mode:

The grammar mode allows you to use only a restricted set of expressions, in either
XPath or ESQL, and checks whether the syntax you have entered is valid.

1516 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xpath

About this task

WebSphere Message Broker supports the following field categories:
v Read-only path field
v Read-write path field
v Expression field

Each of these field types can be either fixed or mixed language, that is, ESQL,
XPath, or either.

If you use XPath syntax, and the expressions are not supported for the property
you are using, the syntax is rejected during the validation process.

ESQL and XPath have similar restrictions on the syntax that is permitted for the
first two of these field types. There are restrictions to the expression fields as well,
but as this type of field supports general expressions that can be used in either
language, the range of syntax available is greater than in the first two.

WebSphere Message Broker uses code assistance in the grammar management of
XPath 1.0 to validate the syntax of expressions you enter. This assistance is always
available, regardless of the grammar mode you are using.

By default, you are operating in the restricted grammar mode.

Code assistance enables you to construct syntactically correct expressions but it
does not validate those expressions. Validation is performed by property editors in
which such expressions are entered.

If you attempt to use an expression that is not valid, the property editor marks it
as such, either from a syntax or schema validation perspective.

You receive error or warning messages depending on the preference choices you
set in Windows>Preferences>Broker Development>XPath>Validation .

If, under the above validation settings, particular checks are to be marked as
errors, error markers are shown in the problems viewer. This behavior results in a
message flow being marked as broken, and it cannot then be imported into, or
compiled in, a deployable broker archive (BAR) file using the Broker Archive
editor.

If you want to use the appropriate unrestricted grammar to input a specific field
type, property editors do not force restricted forms of ESQL or XPath 1.0
expressions for such fields that expect them. Instead, you can enter the full range
of syntax in the context of the field category concerned, namely, path or general
expression, without the validation checks being applied. This means that if you
need to, you can deploy the full range of syntax supported by the ESQL or XPath
1.0 runtime environment. Note, however, that such expressions might not be in a
form that can be converted to the other language.

To use unrestricted grammar, carry out the following procedure:

Procedure

1. Click Window -> Preferences and expand Broker Development.
2. Expand XPath and click Grammar.
3. Clear the Use XPath and ESQL equivalent grammar check box.

Chapter 9. Developing message flow applications 1517

What to do next

Note that expressions are still checked for valid syntax appropriate in the context
of the field type, but you can now use the full range of grammar supported by the
runtime environment.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related reference:
“Predefined XPath mapping functions” on page 5001
Some XPath functions are available for use with message maps.

Using dynamic terminals
You can add, rename, and remove dynamic terminals on a node in the Message
Flow editor.

Before you begin

Before you start:
v Add a node that supports dynamic terminals; for more details, see “Adding a

message flow node” on page 1494 and “Message flow node terminals” on page
1034.

About this task

Some message flow nodes support dynamic input or output terminals, including
the Collector, Route, and DatabaseRoute nodes. When you have added a node to
the flow editor, you can add, remove, or change dynamic terminals.

Procedure
v Adding a dynamic terminal

1. Right-click the node and click Add Input Terminal or Add Output Terminal.
2. Enter a name for the new terminal and click OK. The name must be unique

for the terminal type. For example, if an input terminal called In already
exists, you cannot create a dynamic input terminal with the name In.
The new terminal is displayed on the node. If a node has five or more
terminals, they are displayed as a terminal group. The following example

shows a Route node with more than four output terminals.

To
connect a particular output terminal, click the terminal group to open the
Terminal Selection dialog box, or right-click the node and select Create
Connection.

v Renaming a dynamic terminal

1. Right-click the node and click Rename Input Terminal or Rename Output
Terminal. These options are available only if you have added one or more
appropriate terminals to this node.

1518 WebSphere Message Broker Version 7.0.0.8

2. Select from the list the name of the terminal that you want to change. Only
dynamic terminals are listed because you cannot change the name of a static
terminal.

3. Enter a new name for the terminal and click OK. Do not rename a dynamic
terminal if one of the node properties is configured to use that name.

v Removing a dynamic terminal

1. Right-click the node and click Remove Input Terminal or Remove Output
Terminal, These options are available only if you have added one or more
appropriate terminals to this node.

2. Select from the list the name of the terminal that you want to remove and
click OK. Only dynamic terminals are listed because you cannot remove a
static terminal. Do not remove a dynamic terminal if one of the node
properties is configured to use that terminal.

What to do next

When you have added dynamic terminals to a node, connect them to other nodes
in the message flow; for more information, see “Connecting message flow nodes”
on page 1520.
Related concepts:
“Message flow node terminals” on page 1034
A terminal is the point at which one node in a message flow is connected to
another node.
Related tasks:
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.
“Route node” on page 4669
Use the Route node to direct messages that meet certain criteria down different
paths of a message flow.
“DatabaseRoute node” on page 4373
Use the DatabaseRoute node to route messages using information from a database
in conjunction with XPath expressions.

Removing a message flow node
When you have created and populated a message flow, you might need to remove
a node to change the function of the flow, or to replace it with another more
appropriate node. The node can be a built-in node, a user-defined node, or a
subflow node.

Before you begin

Before you start:

This topic assumes that you have completed one or more of the following tasks.

Chapter 9. Developing message flow applications 1519

v Create a message flow, or open an existing message flow, as described in
“Creating a message flow” on page 1431 and “Opening an existing message
flow” on page 1433.

v Add a node to the message flow, as described in “Adding a message flow node”
on page 1494.

v Add a subflow, as described in “Adding a subflow” on page 1501.
v Read background information about nodes in “Message flow nodes” on page

1024.

About this task

To remove a node from a message flow, complete the following steps.

Procedure
1. Open the message flow with which you want to work.
2. Highlight the node that you want to remove and click Edit > Delete.

The node is removed from the flow. If you have created any connections
between that node and any other node, those connections are also deleted
when you delete the node.

3. If you delete a node in error, you can restore it by clicking Edit > Undo Delete
or pressing Ctrl+Z. The node and its connections, if any, are restored.

4. If you undo the deletion, but decide that it is correct to delete the node, click
Edit > Redo Delete.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Opening an existing message flow” on page 1433
Open an existing message flow to change or update its contents, or to add or
remove nodes.
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Removing a node connection” on page 1526
The message flow editor displays the nodes and connections in the editor view.
You can remove connections to change the way in which the message flow
processes messages.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Connecting message flow nodes
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.

1520 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Complete the following tasks.
v Add a note to your message flow, as described in “Adding a message flow

node” on page 1494.
v Add a subflow to your message flow, as described in “Adding a subflow” on

page 1501.
v Read the concept topic, “Message flow connections” on page 1032.

About this task

Your message flow might contain just one MQInput node, one Compute node, and
one MQOutput node. Or it might involve a large number of nodes, and perhaps
embedded message flows, that provide a number of paths through which a
message can travel depending on its content. You might also have some error
processing routines included in the flow. You might also need to control the order
of processing.

You can connect a single output terminal of one node to the input terminal of more
than one node (this is known as fan-out). If you do this, the same message is
propagated to all target nodes, but you have no control over the order in which
the subsequent paths through the message flow are executed (except with the
FlowOrder node).

You can also connect the output terminal of several nodes to a single node input
terminal (this is known as fan-in). Again, the messages that are received by the
target node are not received in any guaranteed order.

When you have completed a connection, it is displayed as a black line, and is
drawn as close as possible to a straight line between the connected terminals. This
behavior might result in the connection passing across other nodes. To avoid this
problem, you can add bend points to the connection.

In the Message Flow editor, you can display node and connection metadata by
holding the mouse pointer over a node or subflow in a message flow. To view
metadata information for a node, subflow, or connection:
1. Switch to the Broker Application Development perspective.
2. Open a message flow.
3. In the Message Flow editor, hold the mouse pointer over a node, a subflow, or

a node connection in the open message flow by placing the mouse over the
element.

A custom tooltip is displayed below the element.
v To turn the pop-up window into a scrollable window, press F2.
v To hide the pop-up window, either press Esc or move the mouse away from the

node.

If you define a complex message flow, you might have to create a large number of
connections. The principle is the same for every connection. You create connections
either by using the mouse, or by using the Terminal Selection dialog. See “Creating
node connections with the mouse” on page 1522 and “Creating node connections
with the Terminal Selection dialog box” on page 1523 for more information.

Chapter 9. Developing message flow applications 1521

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Removing a node connection” on page 1526
The message flow editor displays the nodes and connections in the editor view.
You can remove connections to change the way in which the message flow
processes messages.
“Adding a bend point” on page 1527
When you are working with a message flow, and connecting your chosen nodes
together to determine the flow of control, you might find that a connection that
you have made crosses over an intervening node and makes the flow of control
difficult to follow. To help you to display the message flow nodes and their
connections in a clear way, you can add bend points to the connections that you
have made to improve the organization of the display. The addition of bend points
has no effect on the execution of the nodes or the operation of the message flow.
“Removing a bend point” on page 1528
When you are working with a message flow in the editor view, you might want to
simplify the display of the message flow by removing a bend point that you
previously added to a connection between two nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Creating node connections with the mouse:

Use the mouse to connect one node to another.

Before you begin

Before you start:

Read the concept topic about connections.

About this task

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the message flow with which you want to work.
3. Click the terminal from which the connection is to be made; that is, the

terminal from which the message is propagated from the current node.

1522 WebSphere Message Broker Version 7.0.0.8

For example, you can click the Failure, Out, or Catch terminal of the MQInput
node. Hold the mouse pointer over each terminal to see the name of the
terminal. You do not need to keep the mouse button pressed.
Alternatively, click Connection on the palette, then click the node from which
the connection is to be made. The Terminal Selection dialog box opens for you
to choose the terminal from which to make a connection. Click OK. If a node
has five or more input or output terminals (for example, if you have added
dynamic terminals), they are displayed in a group. The following example

shows a node with more than four output nodes.

To select a
particular output terminal, click the grouped output terminal to open the
Terminal Selection dialog box.

4. Click the input terminal of the next node in the message flow (to which the
message passes for further processing). The connection is made when you click
a valid input terminal. The connection appears as a black line between the two
terminals.

Results

In the Message Flow editor, you can display node and connection metadata by
holding the mouse pointer over a node or subflow in a message flow. To view
metadata information for a node, subflow, or connection:
1. Switch to the Broker Application Development perspective.
2. Open a message flow.
3. In the Message Flow editor, hold the mouse pointer over a node, a subflow, or

a node connection in the open message flow by placing the mouse over the
element.

A custom tooltip is displayed below the element.
v To turn the pop-up window into a scrollable window, press F2.
v To hide the pop-up window, either press Esc or move the mouse away from the

node.

What to do next

Next: add a bend point, as described in “Adding a bend point” on page 1527.
Related concepts:
“Message flow node terminals” on page 1034
A terminal is the point at which one node in a message flow is connected to
another node.
Related tasks:
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
“Creating node connections with the Terminal Selection dialog box”
Use the Terminal Selection dialog box to connect one node to another.

Creating node connections with the Terminal Selection dialog box:

Use the Terminal Selection dialog box to connect one node to another.

Chapter 9. Developing message flow applications 1523

Before you begin

Before you start:

Read the concept topic about connections.

About this task

1. Switch to the Broker Application Development perspective.
2. Open the message flow with which you want to work.
3. Click Connection above the node palette.
4. Click the node from which you want the connection to be made. The Terminal

Selection dialog box is displayed.
5. Select the terminal from the list of valid terminals on this node. Click OK. The

dialog box closes.
6. Click the node to which to make the connection. If this node has only one

input terminal, the connection is made immediately. If this node has more than
one input terminal, the Terminal Selection dialog box is displayed again, listing
the input terminals of the selected node. Click the correct terminal and click
OK.

Alternatively, you can make a connection in the following way:

Procedure

1. Click Selection above the node palette.
2. Right-click the node from which you want to make the connection and click

Create Connection. The Terminal Selection dialog box is displayed.
3. Select the terminal from the list of valid terminals on this node. Click OK. The

dialog box closes.
4. Click the node to which to make the connection. If this node has only one

input terminal, the connection is made immediately. If this node has more than
one input terminal, the Terminal Selection dialog box is displayed again, listing
the input terminals of the selected node. Click the correct terminal and click
OK.

Results

In the Message Flow editor, you can display node and connection metadata by
holding the mouse pointer over a node or subflow in a message flow. To view
metadata information for a node, subflow, or connection:
1. Switch to the Broker Application Development perspective.
2. Open a message flow.
3. In the Message Flow editor, hold the mouse pointer over a node, a subflow, or

a node connection in the open message flow by placing the mouse over the
element.

A custom tooltip is displayed below the element.
v To turn the pop-up window into a scrollable window, press F2.
v To hide the pop-up window, either press Esc or move the mouse away from the

node.

1524 WebSphere Message Broker Version 7.0.0.8

What to do next

Next: add a bend point, as described in “Adding a bend point” on page 1527.
Related concepts:
“Message flow node terminals” on page 1034
A terminal is the point at which one node in a message flow is connected to
another node.
Related tasks:
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
“Creating node connections with the mouse” on page 1522
Use the mouse to connect one node to another.

Inserting nodes into existing message flows
You can insert a node into an existing message flow without having to delete
existing connections and create connections for the new node.

Before you begin

Before you start:

The following instructions assume that you have created a message flow, as
described in “Creating a message flow” on page 1431.

About this task

In earlier versions of WebSphere Message Broker, to insert a new node into a
message flow, you had to delete the existing connection between two nodes, insert
the new node, then create new connections between the existing nodes and the
new node. From WebSphere Message Broker Version 7.0 onwards, you can insert a
new node in one step by dropping it onto an existing connection, as described by
the following steps.

Procedure
1. In the Message Flow editor, open the message flow into which you want to

insert a new node.
2. Choose the node that you want to insert from the message flow node palette.
3. Drag the node onto the connection between the two nodes where you want the

new node to be added. When the mouse pointer is over the connection, a label
is displayed saying "Add a node here". When you release the mouse button, the
node is inserted in the message flow and is automatically connected to the
preceding and succeeding nodes.

Related concepts:
“Message flow node palette” on page 1027
The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.
“Managing message flow resources” on page 1424
Manage your message flows and associated resources in the WebSphere Message
Broker Toolkit.

Chapter 9. Developing message flow applications 1525

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Removing a node connection
The message flow editor displays the nodes and connections in the editor view.
You can remove connections to change the way in which the message flow
processes messages.

Before you begin

Before you start:

Complete the following tasks:
v “Connecting message flow nodes” on page 1520.
v Read the concept topic, “Message flow connections” on page 1032.

About this task

To remove a connection that you have created between two nodes:

Procedure
1. Open the message flow that you want to work with.
2. Click Selection above the node palette.
3. Select the connection that you want to delete. When you hold the mouse

pointer over the connection, the editor highlights the connection that you have
selected by thickening its line, adding an arrowhead at the target terminal end,
and annotating the connection with the name of the two terminals connected,
for example Out->In.
When you select the connection, the editor appends a small black square at
each end and at every bend point of the connection, and a small arrowhead at
the target terminal end. The annotation disappears when you select the
connection.

4. Check that the selected connection is the one that you want to delete.
5. Right-click the connection and click Delete, press the Delete key, or click Edit >

Delete. If you want to delete further connections, repeat these actions from step
3.

6. If you delete a connection in error, you can restore it by right-clicking in the
editor view and clicking Undo Delete. The connection is restored.

7. If you undo the delete, but decide that it is the correct delete action, you can
right-click in the editor view and click Redo Delete. You can also delete a
connection by selecting it in the Outline view and pressing the Delete key.

Results

If you delete a node, its connections are automatically removed; you do not have
to do this as a separate task.

1526 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Adding a bend point
When you are working with a message flow, and connecting your chosen nodes
together to determine the flow of control, you might find that a connection that
you have made crosses over an intervening node and makes the flow of control
difficult to follow. To help you to display the message flow nodes and their
connections in a clear way, you can add bend points to the connections that you
have made to improve the organization of the display. The addition of bend points
has no effect on the execution of the nodes or the operation of the message flow.

Before you begin

Before you start:
v Connect the nodes
v Read the concept topic about bend points

About this task

To add a bend point:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the message flow that you want to work with.
3. Click Selection above the node palette.
4. Select the connection to which you want to add a bend point. The editor

appends a small black square to each end of the connection to highlight it.
a. Check that this is the correct connection. The editor also adds a small point

(a handle) in the connection halfway between the in and out terminals that
are joined by this connection.

5. Hold the mouse pointer over this point until the editor displays a black cross to
indicate that you now have control of this bend point.

Chapter 9. Developing message flow applications 1527

a. Hold down the left mouse button and move your mouse to move the black
cross and bend point across the editor view.

6. As you drag your mouse, the connection is updated, retaining its start and end
points with a bend point at the drag point. You can move the bend point
anywhere in the editor view to improve the layout of your message flow.

7. Release the mouse button when the connection is in the correct place. The
editor now displays the bend point that you have created with a small square
(such as those at the ends of the connection), and displays another two small
points in the connection, one between your newly-created bend point and the
out terminal, the other between the new bend point and the in terminal.

Results

If you want to add more than one bend point to the same connection, repeat these
actions from step 4 on page 1527 using the additional small points inserted into the
connection.

What to do next

Next: align and arrange the nodes.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
“Removing a node connection” on page 1526
The message flow editor displays the nodes and connections in the editor view.
You can remove connections to change the way in which the message flow
processes messages.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Removing a bend point
When you are working with a message flow in the editor view, you might want to
simplify the display of the message flow by removing a bend point that you
previously added to a connection between two nodes.

Before you begin

Before you start:
v Add a bend point
v Read the concept topic about bend points

1528 WebSphere Message Broker Version 7.0.0.8

About this task

To remove a bend point:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the message flow that you want to work with.
3. Click Selection above the node palette.
4. Select the connection from which you want to remove the bend point. The

editor highlights the connection and its current bend points by thickening its
line and appending a small black square to each end of the connection, and by
indicating each bend point with a small black square. Check that this is the
correct connection.

5. Right-click over the selected connection, if you added this bend point in the
current edit session.
a. Click Undo Create Bend Point.

The editor removes the selected bend point.
If you right-click in the editor view without a connection being selected, you
can also click Undo Create Bend Point from the menu. However, this removes
the last bend point that you created in any connection, which might not be the
one that you want to remove.

6. Move the bend point to straighten the line if you added this bend point in a
previous edit session, because you cannot use the undo action. When the line is
straight, the bend point is removed automatically.
When the bend point has been removed, the connection remains highlighted.
Both ends of the connection, and any remaining bend points, remain displayed
as small black squares. The editor also inserts small points (handles) into the
connection between each bend point and between each terminal and its
adjacent bend point, which you can use to add more bend points.

7. If you want to remove another bend point from the same connection, repeat
these actions from step 4.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
“Adding a bend point” on page 1527
When you are working with a message flow, and connecting your chosen nodes
together to determine the flow of control, you might find that a connection that
you have made crosses over an intervening node and makes the flow of control
difficult to follow. To help you to display the message flow nodes and their
connections in a clear way, you can add bend points to the connections that you
have made to improve the organization of the display. The addition of bend points
has no effect on the execution of the nodes or the operation of the message flow.

Chapter 9. Developing message flow applications 1529

Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Aligning and arranging nodes
When you are working in the Message Flow editor, you can decide how your
nodes are aligned in the editor view.

Before you begin

This option is closely linked to the way in which your nodes are arranged. The
default for both alignment and arrangement is left to right, which means that the
in terminal of a node appears on its left edge, and its out terminals appear on its
right edge. You can also change this characteristic of a node by rotating the icon
display to right to left, top to bottom, and bottom to top.

Before you start

To complete this task, you must have completed the following task:
v “Adding a message flow node” on page 1494

About this task

To modify the way in which nodes and connections are displayed in the editor:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the message flow that you want to work with.
3. Click Selection above the node palette.
4. Right-click in the editor window and select Manhattan Layout if you want the

connections between the nodes to be displayed in Manhattan style; that is with
horizontal and vertical lines joined at right angles.

5. If you want to change the layout of the complete message flow:
a. Right-click in the editor view and click Layout. The default for the

alignment is left to right, such that your message flow starts (with an input
node) on the left and control passes to the right.

b. From the four further options displayed, Left to Right, Right to Left, Top
to Bottom, and Bottom to Top, click the option that you want for this
message flow. The message flow display is updated to reflect your choice.
As a result of the change in alignment, all the nodes in the message flow
are also realigned.
For example, if you have changed from a left to right display (the default)
to a right to left display, each node in the flow has now also changed to
right to left (that is, the in terminal now appears on the right edge, the out
terminals appear on the left edge).

6. You might want to arrange an individual node in a different direction from that
in which the remaining nodes are arranged in the message flow:
a. Right-click the node that you want to change and click Rotate. Four further

options are displayed: Left to Right, Right to Left, Top to Bottom, and
Bottom to Top. The option that represents the current arrangement of the
node is not available for selection.

b. Click the option that you want for this node.

1530 WebSphere Message Broker Version 7.0.0.8

Results

If you change the alignment of the message flow, or the arrangement of an
individual node, or both, these settings are saved when you save the message flow.
They are applied when another user accesses this same message flow, either
through a shared repository or through shared files or import and export. When
you reopen the message flow, you see these changed characteristics. The alignment
and arrangement that you have selected for this message flow have no effect on
the alignment and arrangement of any other message flow.

You can also access the editor toolbar to select other options related to the display
and arrangement of nodes, for example, snap to grid. These options are defined in
“Message Flow editor” on page 6810.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Connecting message flow nodes” on page 1520
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Adding annotations to a message flow or node
You can add annotations to a message flow, a node, or multiple nodes. You can use
these annotations to record reminders, issues arising during the development of a
message flow, or informal documentation to facilitate team development.

Before you begin

Before you start:

The following instructions assume that you have created a message flow, as
described in “Creating a message flow” on page 1431.

Chapter 9. Developing message flow applications 1531

About this task

Procedure
v Adding an annotation to a message flow

1. Open the message flow that you want to annotate in the Message Flow
editor.

2. In the message flow node palette, click Note, then click the canvas of the
Message Flow editor. A blank note, in editing mode, is added to the canvas.

3. Enter your comments to the note.
4. To exit editing mode, click the canvas outside the note. The note resizes

according to the amount of text that you enter.
5. To save the contents of the note, save the message flow.

v Associating an annotation with a node

1. Add a note to the canvas, as described in the preceding steps.
2. To associate a note with a node in the message flow, move the mouse pointer

over the edge of the note until a connector appears.
3. Click the connector, then click the node with which you want to associate the

note. The sticky note is associated with the selected node. This association is
shown in the Message Flow editor by a dotted line.
You can repeat these steps to associate an annotation with more than one
node.
The following diagram shows that a connector appears when you move the
mouse cursor over the edge of a note, and that a dotted line represents the
association between a node and a note.

What to do next

After you have added an annotation to a message flow or node, you can modify
the annotation in the following ways:
v “Editing annotations on a message flow or node” on page 1533
v “Copying annotations on a message flow or node” on page 1534
v “Showing and hiding annotations on a message flow or node” on page 1535
v “Deleting annotations from a message flow or node” on page 1536
Related concepts:
“Message flow node palette” on page 1027
The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.
“Managing message flow resources” on page 1424
Manage your message flows and associated resources in the WebSphere Message
Broker Toolkit.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

1532 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Editing annotations on a message flow or node:

After you have added an annotation to a message flow or node, in the form of a
sticky note, you can edit the contents of that note.

Before you begin

Before you start:

The following instructions assume that you have added an annotation to a
message flow or node, as described in “Adding annotations to a message flow or
node” on page 1531.

About this task

You can add annotations to message flows or nodes to create reminders, or record
details about message flow development. For example, you might want to add a
list of modifications that need to be made to a message flow. As you complete the
modifications, you might want to edit the annotation to reflect progress. The
following steps describe how to edit an annotation.

Procedure

v Editing the content of a note

1. In the Message Flow editor, open the message flow that contains the note
that you want to edit.

2. To put the note into editing mode, click the text of the note. The note
changes color, acquires a blue border, and a cursor appears.

3. Edit the content of the note. You can use standard cut, copy, and paste
operations.

4. To exit editing mode, click the canvas outside the note. The note resizes
according to the amount of text that you enter.

5. To save the contents of the note, save the message flow.
v Moving a sticky note

– To move a sticky note, click inside the note (not on the text) so that black dots
appear at each corner. You can now drag the note to a new position on the
canvas. If the note is associated with one or more nodes, the association line
also moves.

– You can also move a sticky note by using cut and paste operations.
Right-click the note, click Cut, right-click the canvas where you want the note
to appear, and click Paste.

v Changing the association of a sticky note

– To associate a sticky note with a different node, move the mouse pointer over
the old node, click the end of the association line, hold down the mouse
button, then drag the association line to the new node. When you release the
mouse button, the sticky note is associated with the new node, as indicated
by a dotted line.

Chapter 9. Developing message flow applications 1533

– To associate a node with a different sticky note, move the mouse pointer over
the old sticky note, click the end of the association line, hold down the mouse
button, then drag the association line to the new sticky note. When you
release the mouse button, the node is associated with the new sticky note, as
indicated by a dotted line.

Related tasks:
“Adding annotations to a message flow or node” on page 1531
You can add annotations to a message flow, a node, or multiple nodes. You can use
these annotations to record reminders, issues arising during the development of a
message flow, or informal documentation to facilitate team development.
“Copying annotations on a message flow or node”
You can copy annotations that you have added to a message flow or node to the
same instance of the Message Flow editor, or to a different instance of the editor.
“Showing and hiding annotations on a message flow or node” on page 1535
After you have added an annotation to a message flow or node, you can hide it
without having to delete it.
“Deleting annotations from a message flow or node” on page 1536
Typically an annotation on a message flow or node contains temporary
information, therefore you can delete it when you no longer need it.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Copying annotations on a message flow or node:

You can copy annotations that you have added to a message flow or node to the
same instance of the Message Flow editor, or to a different instance of the editor.

Before you begin

Before you start:

The following instructions assume that you have added an annotation to a
message flow or node, as described in “Adding annotations to a message flow or
node” on page 1531.

Procedure

v In the Message Flow editor, open the message flow that contains the annotation
that you want to copy. A copy of the note appears in the new location. If the
original note is associated with one or more message flow nodes, those
associations are not copied. You can also cut and paste a note in the same way.

v Right-click the note that you want to copy, then click Copy.
v Optional: If you want to copy annotations to a different Message Flow editor,

switch to the Message Flow editor to which you want to copy the note.
v Right-click the Message Flow editor canvas where you want the copy of the note

to appear, then click Paste.
Related tasks:
“Adding annotations to a message flow or node” on page 1531
You can add annotations to a message flow, a node, or multiple nodes. You can use
these annotations to record reminders, issues arising during the development of a

1534 WebSphere Message Broker Version 7.0.0.8

message flow, or informal documentation to facilitate team development.
“Editing annotations on a message flow or node” on page 1533
After you have added an annotation to a message flow or node, in the form of a
sticky note, you can edit the contents of that note.
“Showing and hiding annotations on a message flow or node”
After you have added an annotation to a message flow or node, you can hide it
without having to delete it.
“Deleting annotations from a message flow or node” on page 1536
Typically an annotation on a message flow or node contains temporary
information, therefore you can delete it when you no longer need it.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Showing and hiding annotations on a message flow or node:

After you have added an annotation to a message flow or node, you can hide it
without having to delete it.

Before you begin

Before you start:

The following instructions assume that you have added an annotation to a
message flow or node, as described in “Adding annotations to a message flow or
node” on page 1531.

About this task

Procedure

1. Open a message flow that contains notes.
2. Right-click a note, then click Hide Notes. All notes in the message flow are

hidden.
3. To show all sticky notes, right-click the Message Flow editor canvas, then click

Show Notes.
Related tasks:
“Adding annotations to a message flow or node” on page 1531
You can add annotations to a message flow, a node, or multiple nodes. You can use
these annotations to record reminders, issues arising during the development of a
message flow, or informal documentation to facilitate team development.
“Editing annotations on a message flow or node” on page 1533
After you have added an annotation to a message flow or node, in the form of a
sticky note, you can edit the contents of that note.
“Copying annotations on a message flow or node” on page 1534
You can copy annotations that you have added to a message flow or node to the
same instance of the Message Flow editor, or to a different instance of the editor.
“Deleting annotations from a message flow or node” on page 1536
Typically an annotation on a message flow or node contains temporary
information, therefore you can delete it when you no longer need it.
Related reference:

Chapter 9. Developing message flow applications 1535

“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Deleting annotations from a message flow or node:

Typically an annotation on a message flow or node contains temporary
information, therefore you can delete it when you no longer need it.

Before you begin

Before you start:

The following instructions assume that you have added an annotation to a
message flow or node, as described in “Adding annotations to a message flow or
node” on page 1531.

Procedure

v Deleting a single annotation from a message flow

1. In the Message Flow editor, open the message flow that contains the note
that you want to delete.

2. Right-click the note that you want to delete, then click Delete. The note is
deleted. If the note was associated with any nodes, those associations are
also deleted.

v Deleting multiple annotations from a message flow

1. In the Message Flow editor, open the message flow that contains the notes
that you want to delete.

2. Hold down Ctrl, highlight all the notes that you want to delete by clicking
them (not on the text), then press Delete. The selected notes are deleted. If
any of the notes are associated with nodes, those associations are also
deleted.

v Deleting an association between a note and a message flow node

1. In the Message Flow editor, open the message flow that contains the note
association that you want to delete.

2. Right-click the dotted association line between the note and the node, then
click Delete. The association is deleted, but the note and node remain.

v Deleting multiple associations between a note and message flow nodes

1. In the Message Flow editor, open the message flow that contains the note
associations that you want to delete.

2. Hold down Ctrl, select all the dotted association lines that you want to delete
by clicking them, then press Delete. The selected associations are deleted, but
the notes and nodes remain.

Related tasks:
“Adding annotations to a message flow or node” on page 1531
You can add annotations to a message flow, a node, or multiple nodes. You can use
these annotations to record reminders, issues arising during the development of a
message flow, or informal documentation to facilitate team development.
“Editing annotations on a message flow or node” on page 1533
After you have added an annotation to a message flow or node, in the form of a
sticky note, you can edit the contents of that note.

1536 WebSphere Message Broker Version 7.0.0.8

“Copying annotations on a message flow or node” on page 1534
You can copy annotations that you have added to a message flow or node to the
same instance of the Message Flow editor, or to a different instance of the editor.
“Showing and hiding annotations on a message flow or node” on page 1535
After you have added an annotation to a message flow or node, you can hide it
without having to delete it.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Connecting client applications
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.

About this task
v “Processing WebSphere MQ messages”
v “Processing HTTP messages” on page 1579
v “Processing Web service messages” on page 1601
v “Processing TCP/IP messages” on page 1733
v “Processing email messages” on page 1786
v “Working with files” on page 1807
v “Working with JMS” on page 1709
v “Connecting to Enterprise Information Systems” on page 1912
v “Working with WebSphere Process Server” on page 2095
v “Working with databases” on page 2109
v “Working with IMS” on page 2128
v “Working with CORBA” on page 2144
v “Working with CICS Transaction Server for z/OS” on page 2172
Related tasks:
“Processing messages” on page 1021
Process your business messages and data by interacting with a broker, which you
can configure to provide services and to communicate with other applications and
systems.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Processing WebSphere MQ messages
WebSphere Message Broker provides a number of nodes for handling messages
received from or sent to WebSphere MQ applications.

About this task

WebSphere Message Broker provides the following nodes for working with
message received from or sent to WebSphere MQ applications:

Chapter 9. Developing message flow applications 1537

MQInput node
Use an MQInput node if the messages arrive at the broker on a
WebSphere MQ queue, and the node is to be at the start of a message
flow.

MQGet node
Use an MQGet node to retrieve a message from a WebSphere MQ queue,
if you want to get the message later in the message flow.

MQReply node
Use an MQReply node if the target application expects to receive messages
on the WebSphere MQ reply-to queue that is specified in the input
message MD.

MQOutput node
Use an MQOutput node if the target application expects to receive
messages on a WebSphere MQ queue, or on the WebSphere MQ reply-to
queue that is specified in the input message MD.

MQHeader node
Use the MQHeader nodes to manipulate WebSphere MQ transport headers
and their properties without writing compute nodes. Use the MQHeader
node to add, modify, or delete Message Descriptor (MD) and Dead Letter
Header (DLH) headers.

JMSMQTransform node
Use the JMSMQTransform node to transform a message with a JMS
message tree into a message that has a tree structure that is compatible
with the format of messages that are produced by the WebSphere MQ JMS
provider.

The JMSMQTransform node can be used to send messages to existing
message flows and to interoperate with WebSphere MQ JMS and
WebSphere MQ Publish/Subscribe.

MQJMSTransform node
Use the MQJMSTransform node to receive messages that have a
WebSphere MQ JMS provider message tree format, and transform them
into a format that is compatible with messages that are to be sent to JMS
destinations.

You can use the MQJMSTransform node to send messages to existing
message flows and to interoperate with WebSphere MQ JMS and
WebSphere MQ Publish/Subscribe.

Use the following links to find more information about configuring your message
flows and related resources for handling messages received from or sent to
WebSphere MQ applications:
v “Application programming interfaces” on page 1539
v “WebSphere MQ Enterprise Transport” on page 1542
v “Using WebSphere MQ cluster queues for input and output” on page 1544
v “Using WebSphere MQ shared queues for input and output (z/OS)” on page

1546
v “Configuring flows to handle WebSphere MQ message groups” on page 1553
v “Enabling WebSphere MQ applications” on page 1557
v “Ensuring that messages are not lost” on page 1561
v “Using MQGet nodes” on page 1564
Related tasks:

1538 WebSphere Message Broker Version 7.0.0.8

“Processing messages” on page 1021
Process your business messages and data by interacting with a broker, which you
can configure to provide services and to communicate with other applications and
systems.
“Developing message flow applications from scratch” on page 1423
Design, create, and configure message flows by using the WebSphere Message
Broker Toolkit.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.
“Testing a message flow that has WebSphere MQ nodes” on page 3149
You can configure settings in the Test Client for testing message flows that have
WebSphere MQ nodes.
Related reference:
“MQJMSTransform node” on page 4610
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.
“JMSMQTransform node” on page 4547
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQGet node” on page 4578
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.
“MQReply node” on page 4621
Use the MQReply node to send a response to the originator of the input message.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“MQHeader node” on page 4590
Use the MQHeader node to add, modify, or delete MQ Message Descriptor
(MQMD) and MQ Dead Letter Header (MQDLH) headers.

Application programming interfaces
WebSphere Message Broker supports several programming interfaces that are in
use by WebSphere MQ applications today; it does not provide any unique
programming interfaces.
v Message Queue Interface (MQI)

Chapter 9. Developing message flow applications 1539

The MQI provides a few calls that allow an application to interact with other
applications in a network of WebSphere MQ queue managers. The calls support
a large range of parameters that allow a rich choice of processing options for
each and every message.
Client applications using the MQI can run on any supported WebSphere MQ
operating system, and therefore any limitations that are enforced for language or
function are defined by the relevant product for that operating system.
The MQI is described in the Application Programming Reference and Application
Programming Guide sections in the WebSphere MQ Version 7 Information Center
online . Details are also provided of the programming language and operating
system support available for clients that use this interface.

v Application Messaging Interface (AMI)
The AMI is designed to simplify the application programmer's task by
centralizing the selection of optional parameters outside the application
program. It also provides support for the more advanced functions available
from the broker. The AMI is designed for general messaging applications with
and without a broker.
The principal functions of the AMI are administrator-defined packets of options
known as policies and services. An application specifies a service to determine
the underlying messaging support required, and associates a policy with sending
or receiving a message to control attributes for message processing, such as
priority.
The policies and services mean that the application does not have to understand
details of the MQRFH2 header and the MQI interface.
Client applications using the AMI are restricted to the operating systems and
programming languages supported by this interface. The AMI is defined in the
Publish/Subscribe User's Guide section in the WebSphere MQ Version 7
Information Center online.

If you have existing end-user applications that are written to these interfaces, they
can typically run unchanged in a broker environment. You must create the message
flows to interact with these applications from the supported protocols, using the
appropriate input and output nodes. WebSphere Message Broker provides built-in
input and output nodes for its supported protocols and you can create your own
user-defined nodes to support additional protocols.

You can also create new end-user applications to interact with the broker.

Message headers

WebSphere Message Broker provides parsers for many WebSphere MQ headers,
and can therefore accept messages that contain these headers from the WebSphere
MQ Enterprise Transport protocol.

Messages must include a WebSphere MQ Message Descriptor (MQMD) as the first
header, which must precede user or application data in every message. The
MQMD contains basic control information that must travel with the message,
including:
v The message identifier
v The destination of the reply, if one is to be sent
v Reply and report options (for example, confirm on delivery report)
v The format of any following data in the message

1540 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

When a message is processed by a WebSphere Message Broker broker, it typically
(but not necessarily) has one or more additional headers. The header following the
MQMD is always identified in the format field within the MQMD, and itself
contains another format field to identify either the header that follows, or the
format of the user data.

The additional headers can include:

MQRFH
The Rules and Formatting header is used by WebSphere MQ
Publish/Subscribe.

MQRFH2
The MQRFH2 is an updated version of MQRFH and allows Unicode
strings to be transported without translation, and it can carry numeric data
types. The MQRFH2 header carries a description of the message contents,
so that WebSphere Message Broker can select the correct message parser
when content-based processing is carried out on the message. In addition,
this header contains publish/subscribe command messages.

Use the MQRFH2 header in all new applications written for the WebSphere
Message Broker environment that use a supported protocol based on
WebSphere MQ technology. The MQRFH2 header must be immediately
before the body of the message (that is, the last header).

If an MQRFH2 header is not included (which is normally the case of the
application uses a supported protocol that is not based on WebSphere MQ
technology), you must configure the message flow that processes its
messages to specify the message characteristics (by setting the input node
properties).

Related concepts:
“Publish/Subscribe” on page 2215
Publish/subscribe is a style of messaging application in which the providers of
information (publishers) are decoupled from the consumers of that information
(subscribers).
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Routing using publish/subscribe applications” on page 2215
You can route your messages to applications using the publish/subscribe method
of messaging.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Publish/subscribe” on page 6395
Use the reference information in this section to help you develop
publish/subscribe applications.
“MQRFH2 header” on page 6397
The MQRFH2 header is used to pass messages to and from a message broker that
belongs to WebSphere Message Broker.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
Related information:

Chapter 9. Developing message flow applications 1541

WebSphere MQ Version 7 Information Center online

WebSphere MQ Enterprise Transport
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.

The WebSphere MQ Enterprise Transport is the transport used by WebSphere MQ.
The WebSphere MQ Enterprise Transport supports WebSphere MQ applications
that connect to WebSphere Message Broker to benefit from message routing and
transformation options.

The WebSphere MQ Enterprise Transport provides all the reliable messaging
features available in WebSphere MQ. This transport provides persistent and
non-persistent messaging and supports transactions. To use the WebSphere MQ
Enterprise Transport, you must deploy a message flow that contains an MQInput
node to your broker. If this message flow sends output messages to other
WebSphere MQ applications, it must also include an MQOutput, MQReply, or
Publication node.

The WebSphere MQ Enterprise Transport is a queued transport; applications
communicate with the broker by writing data to and reading data from message
queues. Use the WebSphere MQ Enterprise Transport when you require assured
delivery of messages or need to use transactional support.

WebSphere MQ Enterprise Transport is used by WebSphere MQ clients or
application programs that are written to the Application Messaging Interface (AMI)
or Message Queue Interface (MQI). The client uses the services provided by the
message flows deployed within one or more brokers in the broker network by
interacting with the queues serviced by those message flows.

The queue specified in the MQInput node determines the queue on which the
broker receives publications from publishing applications. Subscribers connect to
the broker by sending a registration request to the broker's
SYSTEM.BROKER.CONTROL.QUEUE. The subscriber specifies a queue on which
they want to receive any publications on the registered topic in the registration
request.

All WebSphere Message Broker applications, like WebSphere MQ applications, can
use all the supported WebSphere MQ interfaces to put messages to the message
flow queues. In fact, every WebSphere MQ application is a potential WebSphere
Message Broker application.

These applications use one of two techniques to gain access to broker services:
v An application can use a WebSphere MQ client connection. You can use all the

WebSphere MQ clients supported by Version 6.0 or later. You can therefore
connect applications running in a wide variety of environments into your broker
network. An application running on the same system as the queue manager to
which it connects can also use a client connection.

v An application running on the same system as a broker can use a local
connection to the queue manager that hosts that broker. If it uses this method,
the client must execute on the same system. It can connect to a queue manager
supporting a broker, or to any other queue manager in the WebSphere MQ
network that has a defined path to the broker's queue manager. (This option is
not possible on z/OS, where clients are not supported.)

1542 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Multiple applications can communicate using separate local queue managers by
using WebSphere MQ intercommunication (remote queue definitions, or clustering).
For more details, see “Concepts of intercommunication” in the Intercommunication
section of the WebSphere MQ information center.

WebSphere Message Broker does not impose any particular conditions or
restrictions on applications.

Receiving applications can get the messages put to the output queue or queues of
a message flow when they have been processed by that message flow. The
applications must be connected, either by a client/server connection, or across a
local connection, to the queue manager that owns the queue or queues defined as
the target for their messages. If the message flow provides a publish/subscribe
service, the Publication node puts the messages to the queue specified by the
subscriber as its local receiver queue.

Applications that connect using WebSphere MQ Enterprise Transport use a mixture
of point-to point and publish/subscribe models.

The following built-in nodes are provided to support this protocol:
v MQInput
v MQOutput
v MQReply
v MQGet
v Publication
v SCA nodes, when communicating with WebSphere Process Server applications.
Related concepts:
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Chapter 9. Developing message flow applications 1543

“MQReply node” on page 4621
Use the MQReply node to send a response to the originator of the input message.
“Publication node” on page 4643
Use the Publication node to filter output messages from a message flow and
transmit them to subscribers who have registered an interest in a particular set of
topics.
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SCAReply node” on page 4726
Use the SCAReply node to send a message from the broker to the originating client
in response to a message received by a SCAInput node.
“SCAAsyncRequest node” on page 4690
Use the SCAAsyncRequest node with the SCAAsyncResponse node to construct a
pair of message flows that invoke a WebSphere Process Server service component
asynchronously.
“SCARequest node” on page 4719
Use the SCARequest node to send a request to WebSphere Process Server. The
node is a synchronous request and response node, and blocks after sending the
request until the response is received. The node can also send one-way requests.
“SCAAsyncResponse node” on page 4698
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.

Using WebSphere MQ cluster queues for input and output
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.

About this task

The use of queue manager clusters has the following significant benefits:
1. Reduced system administration

Clusters need fewer definitions to establish a network; you can set up and
change your network more quickly and easily.

2. Increased availability and workload balancing
You can benefit by defining instances of the same queue to more than one
queue manager, therefore distributing the workload through the cluster.

If you use clusters with WebSphere Message Broker, consider the following queues:

For SYSTEM.BROKER queues:
The SYSTEM.BROKER queues are defined for you when you create
WebSphere Message Broker components, and are not defined as cluster
queues. Do not change this attribute.

For message flow input queues:
If you define an input queue as a cluster queue, consider the implications
for the order of messages or the segments of a segmented message. The
implications are the same as for any WebSphere MQ cluster queue. In
particular, the application must ensure that, if it is sending segmented
messages, all segments are processed by the same target queue, and
therefore by the same instance of the message flow at the same broker.

For message flow output queues:

1544 WebSphere Message Broker Version 7.0.0.8

v WebSphere Message Broker always specifies MQOO_BIND_AS_Q_DEF
when it opens a queue for output. If you expect segmented messages to
be put to an output queue, or want a series of messages to be handled
by the same process, you must specify DEFBIND(OPEN) when you
define that queue. This option ensures that all segments of a single
message, or all messages in a sequence, are put to the same target queue
and are processed by the same instance of the receiving application.

v If you create your own output nodes, specify MQOO_BIND_AS_Q_DEF
when you open the output queue, and DEFBIND(OPEN) when you
define the queue, if you need to ensure message order, or to ensure a
single target for segmented messages.

For publish/subscribe applications:

v If the target queue for a publication is a cluster queue, you must deploy
the publish/subscribe message flow to all the brokers on queue
managers in the cluster. However, the cluster does not provide any of
the failover function to the broker network and function. If a broker to
which a message is published, or a subscriber registers, is unavailable,
the distribution of the publication or registration is not taken over by
another broker.

v When a client registers a subscription with a broker that is running on a
queue manager that is a member of a cluster, the broker forwards a
proxy registration to its neighbors in the broker domain; the registration
details are not advertised to other members of the cluster.

v A client might choose to become a clustered subscriber, so that its
subscriber queue is one of a set of clustered queues that receive a
particular publication. In this case, when registering a subscription, use
the name of an "imaginary" queue manager that is associated with the
cluster; this queue manager is not the one to which the publication is
sent, but an alias for the broker to use. As an administrative activity, a
blank queue manager alias definition is made for this queue manager on
the broker that satisfies this subscription for all clustered subscribers.
When the broker publishes to a subscriber queue that names this queue
manager, resolution of the queue manager name results in the
publication being sent to any queue manager that hosts the subscriber
cluster queue, and only one clustered subscriber receives the publication.
For example, if the clustered subscriber queue was SUBS_QUEUE and
the "imaginary" subscriber queue manager was CLUSTER_QM, the
broker definition is:
DEFINE QREMOTE(CLUSTER_QM) RQMNAME(’ ’) RNAME(’ ’)

This configuration sends broker publications for SUBS_QUEUE on
CLUSTER_QM to one instance of the cluster queue named
SUBS_QUEUE anywhere in the cluster.

To understand more about clusters, and the implications of using cluster queues,
see the Queue Manager Clusters section of the WebSphere MQ Version 7 Information
Center online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:

Chapter 9. Developing message flow applications 1545

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Using WebSphere MQ shared queues for input and output (z/OS)”
On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows. You might need to serialize access to those
messages.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
Related information:

WebSphere MQ Version 7 Information Center online

Using WebSphere MQ shared queues for input and output (z/OS)
On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows. You might need to serialize access to those
messages.

About this task

Shared queues are available only on z/OS. Use the WebSphere MQ for z/OS
product facilities to define these queues and specify that they are shared.

You cannot use shared queues for broker component queues such as the
SYSTEM.BROKER.CONTROL.QUEUE.

If you use shared queues, you can provide failover support between different
images that are running WebSphere Message Broker on a sysplex.

Some messaging transactions depend on the exact sequence of messages from a
queue, and for that sequence to be maintained in the event of a failure of the
queue manager. In these instances, you must serialize the access to those messages.

Serialization of messages is achieved by using specialized connection options, and
a unique connection token. This connection token is used when the application that
empties the messages from a queue issues a connect call to the WebSphere MQ
queue manager that owns that queue.

For example, WebSphere Message Broker can use this feature when multiple
brokers, with multiple execution groups, are each running message flows that
empty from a shared input queue. If one broker queue manager fails, the message
flow can be started automatically on another broker. The transactional integrity
and original sequencing of the messages on the shared queue are maintained.

The following examples demonstrate how these features can be applied:
v “Serialization of input between separate brokers on z/OS” on page 1547

1546 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v “Serialization of input between separate execution groups running on the same
broker on z/OS” on page 1549

v “Serialization of input in an execution group on z/OS” on page 1551

To configure shared input queues and define serialization tokens for message
flows, follow the instructions in “Serialization token - user tasks on z/OS” on page
1552.

For more information, see the z/OS Concepts and Planning section of the WebSphere
MQ Version 7 Information Center online.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.

Serialization of input between separate brokers on z/OS: This example
demonstrates that only one input node at a time takes messages from a shared
queue when the same serialization token is used by message flows running on
separate brokers.

Two brokers (MQ01BRK and MQ02BRK) are configured in this example. The respective
queue managers are called MQ01 and MQ02. The queue managers participate in the
same queue sharing group. Each queue manager has a shared queue INQueue.QSG
that has been defined with a disposition of QSG, and a local queue called INQueue.
The queue managers can be running in the same Logical Partition (LPAR) or
separate LPARs. The Coupling Facility shown in the following diagrams is a
zSeries component that allows z/OS WebSphere MQ queue managers in the same
system image, or different system images, to share queues.

An identical message flow MyFlowA is deployed to an execution group called
MYGroupA on each broker. Note that the message flows do not have to be identical;
the significant point is that an identical serialization token is used in both flows.

The simple message flow in this example consists of an MQInput node connected to
an MQOutput node. The MQInput node in both message flows gets messages from the
shared queue INQueue.QSG; the node attribute Serialization Token is configured
as MyToken123ABC in both MQInput nodes.

The message flow property additional Instances takes the default value of zero
in both message flows, which ensures that input is serialized within the flow.

Chapter 9. Developing message flow applications 1547

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

A typical sequence of events for this example follows:
1. The first broker MQ01BRK starts and runs message flow MyFlowA in execution

group MyGroupA. The input node MyInputNode connects to queue manager MQ01
using a serialization token MyToken123ABC. The input node successfully opens
shared queue INQUeue.QSG and gets input messages.

2. The second broker MQ02BRK starts and begins to run its copy of message flow
MyFlowA in execution group MyGroupA. The Input node MyInputNode attempts to
connect to queue manager MQ02 , also using a serialization token MyToken123ABC.
The following SDSF console message is logged:
BIP2656I MQ02BRK MyGroupA 17 UNABLE TO OPEN QUEUE
’INQueue.QSG’ ON WEBSPHERE BUSINESS INTEGRATION QUEUE
MANAGER ’MQ02’: COMPLETION CODE 2; REASON CODE 2271.
:ImbCommonInputNode(759) BECAUSE SERIALIZATION TOKEN
MyToken123ABC is already in use. NO USER ACTION REQUIRED.

Note that this message is output every 30 minutes.
Message flow MyFlowA in execution group MyGroupA running on broker MQ02BRK
is unable to process input because the serialization token it has passed is
already in use within the queue sharing group. This is indicated by the reason
code 2271 (MQRC_CONN_TAG_IN_USE) in message bip2623.

3. Broker MQ01BRK stops. Message flow MyFlowA in execution group MyGroupA in
broker MQ02BRK2 is now able to get messages from the shared queue
INQueue.QSG.
A sequence of SDSF console messages is logged, of which the following two are
relevant:

BIP2091I MQ02BRK MyGroupA 17 THE BROKER HAS
RECONNECTED TO WEBSPHERE BUSINESS INTEGRATION
SUCCESSFULLY : ImbCommonInputNode(785)

BIP9142I MQ01BRK 0 THE COMPONENT HAS STOPPED. :
ImbControlService(594)

MQ01BRK

Queue Sharing Group

MQ02BRK

MQ01 MQ02

LPAR 1 LPAR 2

MyFlowA MyFlowA

InQueue.QSG

InQueue.QSG

Coupling Facility

InQueue.QSG

input input

connect connect

1548 WebSphere Message Broker Version 7.0.0.8

The preceding sequence of events also occurs should broker MQ01BRK fail, rather
than stop through a request from the operator, or if a new broker configuration is
deployed to MQ01BRK that deletes or modifies message flow MyFlowA.

This arrangement can also be used where the requirement is to migrate message
processing between brokers running in different z/OS system images that are
attached to the same Coupling Facility.
Related concepts:
“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
Overview of message serialization on z/OS
Some messaging transactions depend on the exact sequence of messages from a
queue, and for that sequence to be maintained in the event of a failure of the
queue manager. In these instances you must serialize the access to those messages.

“Serialization of input between separate execution groups running on the same
broker on z/OS”
This example demonstrates that only one MQInput node at a time is allowed to take
messages from a shared queue when the same serialization token is used by
message flows running in separate execution groups on the same broker.
“Serialization of input in an execution group on z/OS” on page 1551
To allow concurrent processing within a message flow, while still serializing
messages between message flows in separate execution groups, the scope of the
serialization token is restricted within a single execution group.

Serialization of input between separate execution groups running on the same
broker on z/OS:

This example demonstrates that only one MQInput node at a time is allowed to take
messages from a shared queue when the same serialization token is used by
message flows running in separate execution groups on the same broker.

An identical message flow MyFlowA is deployed to two execution groups called
MYGroupA and MYGroupB on broker MQ01BRK.

In this case it is not a requirement that the queue manager participates in a queue
sharing group. The input queue INQueue is defined as local with disposition QMGR.

As in “Serialization of input between separate brokers on z/OS” on page 1547:
v Note that the message flows do not have to be identical; the significant point is

that an identical serialization token is used in both flows.
v The simple message flow in this example consists of an MQInput node connected

to an MQOutput node. The MQInput node in both message flows gets messages
from the shared queue INQueue.QSG; the node attribute Serialization Token is
configured as MyToken123ABC in both MQInput nodes.

v The message flow property additional Instances takes the default value of zero
in both message flows, which ensures that input is serialized within the flow.

Chapter 9. Developing message flow applications 1549

A typical sequence of events for this example follows:
1. Broker MQ01BRK starts and the first message flow to begin is MyFlowA in

execution group MyGroupA. The MQInput node MyInputNode connects to queue
manager MQ01 using the serialization token MyToken123ABC. The MQInput node
successfully opens shared queue INQUeue and gets input messages.

2. The second execution group MyGroupB starts and message flow MyFlowA in
execution group MyGroupB begins. The MQInput node MyInputNode now attempts
to connect to queue manager MQ01 using serialization token MyToken123ABC. The
following SDSF console message is logged:
BIP2656I MQ01BRK MyGroupB 11 UNABLE TO OPEN QUEUE
’INQueue’ ON WEBSPHERE BUSINESS INTEGRATION QUEUE
MANAGER ’MQ01’: BECAUSE SERIALIZATION TOKEN
MyToken123ABC is already in use. NO USER ACTION REQUIRED

Message flow MyFlowA in execution group MyGroupB is unable to process input
because the serialization token it has passed is already in use within the queue
manager (by the MQInput node in message flow MyFlowA in execution group
MyGroupA). This is indicated by the reason code 2271 (MQRC_CONN_TAG_IN_USE) in
message bip2623.

3. The first execution group is deleted or canceled.
If the first execution group is canceled by the operator, ends with an abend, or
is deleted during a redeployment of the broker configuration, the input node in
the second execution group is now able to get input messages from queue
INQueue.
A sequence of SDSF console messages is logged, of which the following one is
relevant:

BIP2091I MQ01BRK MyGroupB 11 THE BROKER HAS
RECONNECTED TO WEBSPHERE BUSINESS INTEGRATION
SUCCESSFULLY : ImbCommonInputNode(785)

Message flow MyFlowA in execution group MyGroupB is now able to recover
processing of messages from the shared queue INQueue.QSG.

Note that, although serialization of input can be achieved in a similar manner by
configuring the input queue for exclusive input, this does not ensure message
integrity during a recovery situation. This can be achieved only through the use of
the serialization token as described in this example.
Related concepts:

MQ01BRK

MyGroupA MyGroupB

MQ01

MyFlowA MyFlowB

InQueue.QSG

inputinput
connect connect

1550 WebSphere Message Broker Version 7.0.0.8

“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
Overview of message serialization on z/OS
Some messaging transactions depend on the exact sequence of messages from a
queue, and for that sequence to be maintained in the event of a failure of the
queue manager. In these instances you must serialize the access to those messages.

“Serialization of input between separate brokers on z/OS” on page 1547
“Serialization of input in an execution group on z/OS”
To allow concurrent processing within a message flow, while still serializing
messages between message flows in separate execution groups, the scope of the
serialization token is restricted within a single execution group.

Serialization of input in an execution group on z/OS:

To allow concurrent processing within a message flow, while still serializing
messages between message flows in separate execution groups, the scope of the
serialization token is restricted within a single execution group.

MQ01BRK

MyGroupA

MQ01

MyFlowA MyFlowB

InQueue.QSG

inputinput
connect connect

This example demonstrates that the serialization token is restricted within a single
execution group running on a broker::
v Two MQInput nodes in separate message flows (in this case MyFlowA and MyFlowB

) are running within the same execution group MyGroupA. Both MQInput nodes
concurrently get messages from the shared input queue even though they are
using the same serialization token.

v If serialization is required within a single message flow, the message flow
attribute additional instances must be set to zero which is the default setting.
However, if greater throughput is required and serialization of input within the
flow is not important, you can set additional instances to a value greater than
zero.

v The use of the serialization token attribute on the MQInput node does not
serialize input between message flows operating within the same execution
group. However, setting the attribute has no adverse affect on the processing
within that execution group

Chapter 9. Developing message flow applications 1551

v In this way it is possible to maximize throughput in a message flow on one
broker while still serializing input between brokers. This is useful where the
requirement is to have one or more brokers acting as an immediate standby,
should the currently active broker need to be stopped for servicing, or fail
unexpectedly.

Related concepts:
“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
Overview of message serialization on z/OS
Some messaging transactions depend on the exact sequence of messages from a
queue, and for that sequence to be maintained in the event of a failure of the
queue manager. In these instances you must serialize the access to those messages.

“Serialization of input between separate brokers on z/OS” on page 1547
“Serialization of input between separate execution groups running on the same
broker on z/OS” on page 1549
This example demonstrates that only one MQInput node at a time is allowed to take
messages from a shared queue when the same serialization token is used by
message flows running in separate execution groups on the same broker.

Serialization token - user tasks on z/OS:

Configure shared input queues and define serialization tokens for message flows.

About this task

Configure a shared input queue for message flows

The broker makes use of WebSphere MQ queue-sharing groups on z/OS.

Queue managers that can access the same set of shared queues form a group called
a queue-sharing group (QSG) and they communicate with each other by means of
a coupling facility (CF) that stores the shared queues. A shared queue is a type of
local queue whose messages can be accessed by one or more queue managers that
are in a QSG.

To further enhance the availability of messages in a QSG, WebSphere MQ detects
if another queue manager in the group disconnects from the CF in an unusual way,
and completes pending units of work for that queue manager where possible; this
is known as peer recovery.

To understand more fully the concepts of shared-queues and queue-sharing
groups, see the Concepts and Planning Guide section of the WebSphere MQ Version 7
Information Center online, and perform the following steps:
v Add a QSG to the DB2 tables
v Add a queue manager to a QSG
v Create the shared queue as a member of the QSG

Define a serialization token

1552 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Define the same value for the serialization token attribute for each MQInput node
that is required to access the shared queue.

For the situations described in the preceding text to work you must:
v Ensure that the Coupling Facility Structure is at CFLEVEL(3) or above, and that

you set RECOVER=YES.
If you do not do this, when an MQInput node attempts to get a message from
the shared queue, the action fails with the WebSphere MQ return code BIP2048
(MQRC_PERSISTENT_NOT_ALLOWED)

v Set the Backout Threshold for the shared queue to at least 2.
This value prevents input messages that are in progress being sent to the Dead
Letter Queue because, during recovery, a message is restored to the input queue
before another broker is able to get it and resume processing.

Related concepts:
“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
Overview of message serialization on z/OS
Some messaging transactions depend on the exact sequence of messages from a
queue, and for that sequence to be maintained in the event of a failure of the
queue manager. In these instances you must serialize the access to those messages.

Related information:

WebSphere MQ Version 7 Information Center online

Configuring flows to handle WebSphere MQ message groups
WebSphere MQ allows multiple messages to be treated as a group, or as segments
of one larger message. WebSphere Message Broker provides support for
WebSphere MQ message grouping and partial support for message segmenting.

You can use the MQInput and MQOutput nodes to receive and send messages that
are part of a WebSphere MQ message group. You can use the MQOutput node to
send messages that are segments of a larger message.

For guidance about configuring the MQInput and MQOutput nodes to receive and
send messages that are part of a WebSphere MQ message group, see:
v “Receiving messages in a WebSphere MQ message group” on page 1554
v “Sending messages in a WebSphere MQ message group” on page 1555
v “Sending message segments in a WebSphere MQ message” on page 1557

For more information about WebSphere MQ message groups, see the Application
Programming Guide section of the WebSphere MQ Version 7 Information Center
online.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

Chapter 9. Developing message flow applications 1553

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
Related information:

WebSphere MQ Version 7 Information Center online

Receiving messages in a WebSphere MQ message group:

You can configure the MQInput node to receive messages that are in a WebSphere
MQ message group.

About this task

The following properties on the MQInput node control the processing of messages
in a WebSphere MQ message group:
v Logical order

v Order mode

v All messages available

v Commit by message group

To ensure that your message flow receives group messages in the order that has
been assigned by the sending application, select Logical order. If you do not
select this option, messages that are sent as part of a group are not received in a
predetermined order. This property maps to the MQGMO_LOGICAL_ORDER
option of the MQGMO of the MQI. More information about the options to which
this property maps is available in the Application Programming Reference section of
the WebSphere MQ Version 7 Information Center online.

If you specify a value of By Queue Order on the Order mode property, the message
flow processes the messages in the group in the order that is defined by the queue
attributes; this order is guaranteed to be preserved when the messages are
processed. This behavior is identical to the behavior that is exhibited if the
Additional instances property is set to zero. The message flow processes the
messages on a single thread of execution, and a message is processed to
completion before the next message is retrieved from the queue. If you do not
specify this value, it is possible that multiple threads within a single message flow
are processing multiple messages, and the final message in a group, which
prompts the commit or roll back action, is not guaranteed to be processed to
completion after all other messages in the group.

To ensure that only a single instance of the message flow processes the group
messages in the order that has been assigned by the sending application, select
Logical order and specify a value of By Queue Order on the Order mode property.

If you select All messages available, message retrieval and processing is
performed only when all messages in a single group are available. This means that
messages in a group are not received until all the messages in the group are
present on the input queue. It is good practice to select this check box when your
message flow needs to process group messages. If you do not select this check box,
the message flow receives the messages as they arrive on the input queue; if a
message in the group fails to arrive on the input queue, the message flow waits for
it and cannot process any further messages until this message arrives. This
property maps to the MQGMO_ALL_MESSAGES_AVAILABLE option of the

1554 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

MQGMO of the MQI. More information about the options to which this property
maps is available in the Application Programming Reference section of the WebSphere
MQ Version 7 Information Center online.

If you select Commit by message group, message processing is committed only after
the final message of a group has been received and processed. If you leave this
check box cleared, a commit is performed after each message has been propagated
completely through the message flow. This property is relevant only if you have
selected Logical order. It is good practice to select this check box together with
the All messages available check box because this ensures that the complete
message group is retrieved and processed in the same unit of work without risk of
the message flow waiting indefinitely for messages in the group to arrive on the
input queue.

To ensure that the message flow that processes group messages does not wait for
unavailable messages:
v Avoid having multiple message flows reading from the same input queue when

group messages are being retrieved.
v Avoid deploying additional instances of a flow that retrieves group messages.
v Avoid using expired messages in message groups.
v When expired messages are to be used, ensure either that all messages have the

same expiry time or that the first message in the group is set to expire before the
rest of the group. If the first message in a group cannot be retrieved, the group
can never be started in logical order.

If a message flow waits for a group message that does not arrive within the wait
interval, a BIP2675 warning message is issued. From that point on, the message
flow always attempts to retrieve the next group message and does not process any
other input messages until the next group message is received.

Therefore, if the expected group message does not arrive, or has expired, the
message flow must be stopped manually, and any incomplete message group
cleared from the input queue.

A message flow cannot receive all the messages in a group in one operation.

If you specify a value of Yes or No on the Transaction mode property, all the
segments in a message are received in the message flow as a single message. As a
result, the message flow might receive very large messages which might lead to
storage problems in the broker. If you specify a value of Automatic on the
Transaction mode property, message segments are received as individual messages.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
Related information:

WebSphere MQ Version 7 Information Center online

Sending messages in a WebSphere MQ message group:

The MQOutput node can send multiple messages that form a WebSphere MQ
message group. Configure a Compute or JavaCompute node to set the MQMD
fields to specify message group options.

Chapter 9. Developing message flow applications 1555

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

About this task

The message flow must set the following MQMD fields:
v GroupId

v MsgSeqNumber

v MsgFlags

You can use the following example of ESQL code in a Compute node, which
shows how to set these fields:
DECLARE MSGNUM INT 0;

DECLARE MSGTOTAL INT 5;
WHILE MSGNUM < MSGTOTAL DO
SET MSGNUM = MSGNUM + 1;
CALL CopyMessageHeaders();
-- Manually set the groupId since we cant ask the queue manager to generate one.
-- the UUIDASBLOB function could be used here to generate one, but this must be done
-- outside the loop to keep the same groupId throughout!
SET OutputRoot.MQMD.GroupId = X’0001’;
SET OutputRoot.MQMD.MsgSeqNumber = MSGNUM;
SET OutputRoot.MQMD.MsgFlags = MQMF_MSG_IN_GROUP;
IF (MSGNUM = MSGTOTAL) THEN

SET OutputRoot.MQMD.MsgFlags = MQMF_LAST_MSG_IN_GROUP;
END IF;
SET OutputRoot.XML.TestCase = MSGNUM;
PROPAGATE;

END WHILE;
RETURN FALSE;

You can use the following example of Java code in a JavaCompute node, which
shows how to set these fields:
public class mq_group_java_JavaCompute extends MbJavaComputeNode {

public void evaluate(MbMessageAssembly assembly) throws MbException {
MbOutputTerminal out = getOutputTerminal("out");
int MSGTOTAL = 5;
for(int MSGNUM = 1 ; MSGNUM <= MSGTOTAL;MSGNUM++){

MbMessage newMessage = new MbMessage();
MbElement root = newMessage.getRootElement();
MbElement mqmd = root.createElementAsFirstChild("MQMD");
mqmd.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
"GroupId", new byte[]{0,1});
mqmd.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "MsgSeqNumber", MSGNUM);
if (MSGNUM == MSGTOTAL){

mqmd.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
"MsgFlags", 16); // MQMF_LAST_MSG_IN_GROUP 0x00000010

}
else{

mqmd.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
"MsgFlags", 8); // MQMF_MSG_IN_GROUP 0x00000008

}
MbElement xmlnsc = root.createElementAsLastChild("XMLNSC");
MbElement body = xmlnsc.createElementAsLastChild(MbElement.TYPE_NAME,"TestCase",null);
body.setValue(MSGNUM);
MbMessageAssembly newAssembly = new MbMessageAssembly(assembly,newMessage);
out.propagate(newAssembly);

}
}

}

If the message flow is sending multiple messages from one input message, it can
create a GroupId value, increment the MsgSeqNumber value, and set the
MsgFlags field. The examples of ESQL and Java code show how you can set these
values. However, if the message flow is sending multiple messages from more than

1556 WebSphere Message Broker Version 7.0.0.8

one input message, it must store the GroupId and MsgSeqNumber values
between flow instances, which is achieved by using shared variables.

For more information about message grouping, see the Application Programming
Guide section of the WebSphere MQ Version 7 Information Center online. For more
information about the WebSphere MQ fields that are significant in message
grouping, see the Application Programming Reference section of the WebSphere MQ
Version 7 Information Center online.
Related reference:
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
Related information:

WebSphere MQ Version 7 Information Center online

Sending message segments in a WebSphere MQ message:

The MQOutput node can send multiple message segments that form a WebSphere
MQ message. Configure a Compute node to set the MQMD fields to specify
message segment options.

About this task

You can either select Segmentation allowed on the node, or set the required fields
in the MQMD in the message flow:
v GroupId
v MsgFlags
v Offset

Use the example ESQL code in “Sending messages in a WebSphere MQ message
group” on page 1555 and change the code to set these fields.

For more information about message grouping and segmentation, see the
Application Programming Guide section of the WebSphere MQ Version 7 Information
Center online. For more information about the WebSphere MQ fields that are
significant in message grouping and segmentation, see the Application Programming
Reference section of the WebSphere MQ Version 7 Information Center online.
Related reference:
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
Related information:

WebSphere MQ Version 7 Information Center online

Enabling WebSphere MQ applications
If you want to connect WebSphere MQ applications to the broker, you must define
and secure the required resources.

About this task
v “Defining WebSphere MQ resources” on page 1558
v “Securing WebSphere MQ resources” on page 1559

Chapter 9. Developing message flow applications 1557

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

Defining WebSphere MQ resources:

An application client can run on a computer anywhere in the WebSphere MQ
network. If your applications use WebSphere MQ facilities to connect to the broker,
and to interact with it (by using the MQI and AMI), you must set up the
WebSphere MQ resources that they require.

About this task

The way that you set up applications is identical to the setup for clients for an
WebSphere MQ server. To support client connections to a broker:

Procedure

1. If the application runs on the same computer as the broker, it can establish a
local connection with the broker queue manager by using MQCONN, and you
do not have to define any WebSphere MQ resources to support it.

2. If the application runs on the same computer as another queue manager in the
WebSphere MQ network, it can establish a local connection to that queue
manager. In this scenario, you must define the appropriate resource to support
communications between the queue manager to which the client has connected
and the queue manager that hosts the broker that provides the required service.

3. If the application runs on a computer that does not support a queue manager,
it must make a client connection to a queue manager on another computer:
v The broker queue manager

You must set up the appropriate client connection and server connection
definitions to support this option.

v Another queue manager in the network
You must set up the appropriate client connection and server connection
definitions to support this option, and ensure that definitions are in place to
support communications between the queue manager to which the client has
connected, and the queue manager that hosts the broker that provides the
required service.

Results

An application can get messages only from queues that are owned by the queue
manager to which it is connected (this restriction is true for all WebSphere MQ
applications). Therefore, if an application expects to receive messages from a queue
populated by a service within a particular broker and owned by that broker queue
manager, it must connect to that broker queue manager (by using a local or
WebSphere MQ client connection).

1558 WebSphere Message Broker Version 7.0.0.8

An application that puts messages, however, can be connected to any queue
manager in the WebSphere MQ network, if the queue manager can resolve the
target destination in some way. In all cases, the queue manager to which the client
application is connected must know the location of the queue or queues to which
the application puts messages (for example, by using remote queue definitions).

When you define a WebSphere MQ queue for a node in a message flow, you must
not give it a name that starts with SYSTEM_BROKER. Names that include these
characters are reserved for queues that are defined for internal use by WebSphere
Message Broker components.

If your application is a subscriber that receives messages published by other
applications, it can specify a temporary dynamic queue as its subscriber queue. If it
does so, the broker automatically deregisters the subscription when the queue is
deleted.

For more details about applications, putting and getting messages, and the use of
WebSphere MQ clients, see the Clients and Application Programming Guide sections
of the WebSphere MQ Version 7 Information Center online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
Related information:

WebSphere MQ Version 7 Information Center online

Securing WebSphere MQ resources:

Secure the WebSphere MQ resources that your broker configuration requires.

About this task

This information does not apply to z/OS.

Brokers depend on a number of WebSphere MQ resources to operate successfully.
You must control access to these resources to ensure that the brokers can access the
resources on which they depend, and that these same resources are protected from
other users.

Chapter 9. Developing message flow applications 1559

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Some authorizations are granted on your behalf when commands are issued.
Others depend on the configuration of your broker network.
v When you issue the command mqsicreatebroker, it grants put and get authority

on your behalf to the group mqbrkrs for the following queues:
– SYSTEM.BROKER.ADAPTER.FAILED
– SYSTEM.BROKER.ADAPTER.INPROGRESS
– SYSTEM.BROKER.ADAPTER.NEW
– SYSTEM.BROKER.ADAPTER.PROCESSED
– SYSTEM.BROKER.ADAPTER.UNKNOWN
– SYSTEM.BROKER.ADMIN.QUEUE
– SYSTEM.BROKER.ADMIN.REPLYTODM
– SYSTEM.BROKER.AGGR.CONTROL
– SYSTEM.BROKER.AGGR.REPLY
– SYSTEM.BROKER.AGGR.REQUEST
– SYSTEM.BROKER.AGGR.TIMEOUT
– SYSTEM.BROKER.AGGR.UNKNOWN
– SYSTEM.BROKER.AUTH
– SYSTEM.BROKER.CONTROL.QUEUE
– SYSTEM.BROKER.DEPLOY.QUEUE
– SYSTEM.BROKER.DEPLOY.REPLY
– SYSTEM.BROKER.EDA.COLLECTIONS
– SYSTEM.BROKER.EDA.EVENTS
– SYSTEM.BROKER.EXECUTIONGROUP.QUEUE
– SYSTEM.BROKER.EXECUTIONGROUP.REPLY
– SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS
– SYSTEM.BROKER.MODEL.QUEUE
– SYSTEM.BROKER.TIMEOUT.QUEUE
– SYSTEM.BROKER.WS.ACK
– SYSTEM.BROKER.WS.INPUT
– SYSTEM.BROKER.WS.REPLY

v When you start the WebSphere Message Broker Toolkit, it connects to a broker
by using a WebSphere MQ client/server connection. For details of
WebSphere MQ channel security, see "Setting up WebSphere MQ client security"
in the Clients section of the WebSphere MQ Version 7 Information Center online.

v When you start the WebSphere Message Broker Explorer, it connects to a broker
by using a WebSphere MQ client/server connection. For details of
WebSphere MQ channel security, see "Setting up WebSphere MQ client security"
in the Clients section of the WebSphere MQ Version 7 Information Center online.

v When you create and deploy a message flow that includes nodes which
reference WebSphere MQ queues, grant get, inq, and put authority to the user
ID under which the broker is running.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:

1560 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Related information:

WebSphere MQ Version 7 Information Center online

Ensuring that messages are not lost
Messages that flow through your broker domain represent business data that you
want to safeguard. Configure the messages, your environment, or both, to ensure
that you do not lose messages.

About this task

Messages that are generated both by your applications and by runtime components
for inter-component communication are important to the operation of your brokers.
Messages used internally between components always use the WebSphere MQ
protocol. Application messages can use all supported transport protocols.

For application and internal messages traveling across WebSphere MQ, two
techniques protect against message loss:
v Message persistence

If a message is persistent, WebSphere MQ ensures that it is not lost when a
failure occurs, by copying it to disk.

v Sync point control
An application can request that a message is processed in a synchronized
unit-of-work (UOW)

For more information about how to use these options, refer to the System
Administration Guide section of the WebSphere MQ Version 7 Information Center
online.

Internal messages:
About this task

WebSphere Message Broker components use WebSphere MQ messages to
communicate events and data between broker processes and subsystems. The
components ensure that the WebSphere MQ features are used to protect against
message loss. You do not need to take any additional steps to configure
WebSphere MQ or WebSphere Message Broker to protect against loss of internal
messages.

Application messages:
About this task

If delivery of application messages is critical, you must design application
programs and the message flows that they use to ensure that messages are not lost.
The techniques used depend on the protocol used by the applications.

Chapter 9. Developing message flow applications 1561

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

WebSphere MQ Enterprise Transport
If you are using the built-in input nodes that accept messages across the
WebSphere MQ protocol, you can use the following guidelines and
recommendations:
v Using persistent messages

WebSphere MQ messaging products provide message persistence, which
defines the longevity of the message in the system and guarantees
message integrity. Nonpersistent messages are lost in the event of system
or queue manager failure. Persistent messages are always recovered if a
failure occurs.
You can control message persistence in the following ways:
– Program your applications that put messages to a queue using the

MQI or AMI to indicate that the messages are persistent.
– Define the input queue with message persistence as the default

setting.
– Configure the output node to handle persistent messages.
– Program your subscriber applications to request message persistence.
When an input node reads a message from an input queue, the default
action is to use the persistence defined in the WebSphere MQ message
header (MQMD), that has been set either by the application creating the
message, or by the default persistence of the input queue. The message
retains this persistence throughout the message flow, unless it is changed
in a subsequent message processing node.
You can override the persistence value of each message when the
message flow terminates at an output node. This node has a property
that allows you to specify the message persistence of each message
when it is put to the output queue, either as the required value, or as a
default value. If you specify the default, the message takes the
persistence value defined for the queues to which the messages are
written.
If a message passes through a Publication node, the persistence of
messages sent to subscribers is determined by the registration options of
the subscribers. If a subscriber has requested persistent message delivery,
and is authorized to do so by explicit or implicit (inherited) ACL, the
message is delivered persistently regardless of its existing persistence
property. Also, if the user has requested nonpersistent message delivery,
the message is delivered nonpersistent regardless of its existing
persistence property.
If a message flow creates a message (for example, in a Compute node),
the persistence in the MQMD of the new message is copied from the
persistence in the MQMD of the incoming message.

v Processing messages under sync point control
The default action of a message flow is to process incoming messages
under sync point in a broker-controlled transaction. This means that a
message that fails to be processed for any reason is backed out by the
broker. Because it was received under sync point, the failing message is
reinstated on the input queue and can be processed again. If the
processing fails, the error handling procedures that are in place for this
message flow (defined either by how you have configured the message
flow, or by the broker) are executed.
For full details of input node processing, see “Managing errors in the
input node” on page 2828.

1562 WebSphere Message Broker Version 7.0.0.8

WebSphere MQ Web Services Transport
If you are using the HTTPInput, HTTPRequest, SOAPInput, SOAPRequest
nodes, or a SOAPAsyncRequest and SOAPAsyncResponse node pair that
accept messages from Web services applications, no facilities are available
to protect against message loss. You can, however, provide recovery
procedures by configuring the message flow to handle its own errors.

Other transports and protocols
If you have created your own user-defined input nodes that receive
messages from another transport protocol, you must rely on the support
provided by that transport protocol, or provide your own recovery
procedures.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Managing errors in the input node” on page 2828
When you design your message flow, consider which terminals on the input node
to connect.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.
Related information:

WebSphere MQ Version 7 Information Center online

Chapter 9. Developing message flow applications 1563

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Using MQGet nodes
The MQGet node processes messages in a particular way, and you can use it in
request-response message flows.

Procedure
v “How the MQGet node processes messages”
v “A request-response scenario that uses an MQGet node” on page 1569
Related tasks:
“Processing WebSphere MQ messages” on page 1537
WebSphere Message Broker provides a number of nodes for handling messages
received from or sent to WebSphere MQ applications.
Related reference:
“MQGet node” on page 4578
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.

How the MQGet node processes messages:

The MQGet node processes each message that it receives.

This topic contains the following sections:
v “Propagating the message”
v “Constructing OutputLocalEnvironment” on page 1566
v “Constructing the Output message” on page 1567

Propagating the message

1. If an MQ Message Descriptor header (MQMD) is present in the input tree, the
MQGet node uses it. If not, the node creates a default MQMD.

2. The node also creates a default MQ Get Message Options (MQGMO) structure
based on the values that you have set for the node properties. If an MQGMO is
present in the input tree, the node uses its content to modify the default one.
When you include an MQGMO to override the default one, you must specify
all the options that you are replacing. For example, if you set the option field to
MQGMO_CONVERT, that value overrides all options that you set with the
WebSphere Message Broker Toolkit. If you do not use an overriding MQGMO,
WebSphere Message Broker uses the following values:
v If Wait interval is not zero, MQGMO_WAIT is set; otherwise,

MQGMO_NOWAIT is used.
v If Transaction mode is set to Yes, MQGMO_SYNCPOINT is used.
v If Transaction mode is set to No, MQGMO_NOSYNCPOINT is used.
v If Transaction mode is set to Automatic,

MQGMO_SYNCPOINT_IF_PERSISTENT is used.
v The only other option that is used by default in the node properties is

MQGMO_COMPLETE_MSG, which is set if Transaction mode is set to Yes or
No. This option is not set when your broker is running on z/OS.

v No other options are used by default.
3. The node makes the MQGet call to WebSphere MQ.
4. The node analyzes the completion code (CC), and propagates the message to

the appropriate terminal:

1564 WebSphere Message Broker Version 7.0.0.8

OK The node creates the output LocalEnvironment and the output message
trees using standard message-parsing techniques, then propagates the
message to the Out terminal.

Warning
The node creates the output LocalEnvironment and the output message
trees using BLOB as the message body type, then propagates the
message to the Warning terminal, if it is connected. If the Warning
terminal is not connected, no propagation occurs, and the flow ends.

Fail (no message)
The node creates the output LocalEnvironment and the output message
trees by copying the input trees, then propagates the message to the No
Message terminal, if it is connected. If the No Message terminal is not
connected, no propagation occurs. The output message that is
propagated to the No Message terminal is constructed from the input
message only, according to the values of the Generate Mode property,
and the Copy Message or Copy Local Environment properties.

Fail (other)
The node propagates the message to the Failure terminal. If the Failure
terminal is not connected, the broker throws an exception and returns
control to the closest upstream node that can process it. For more
information, see “Handling errors in message flows” on page 2823.

The following diagram shows this processing:

Chapter 9. Developing message flow applications 1565

Does MQMD
exist in input tree?

Does GMO exist
in input tree?

Use default
MQMD.

Get MQMD
bitstream from
input MQMD.

Merge in
MQGMO
overrides

Evaluate

Propagate to No Message terminal.

Propagate to Out terminal. Propagate to Warning terminal.

Propagate to Failure terminal (or throw).

Yes

Yes

No

FAIL (other)

WarningOK

FAIL (no message)

No

Create default MQGMO
using node attributes.

MQGET

CC?

Create output LocalEnvironment,
and output Message trees (as
described in the following two

flowcharts) without a result body.

Create output LocalEnvironment,
and output Message trees (as
described in the following two

flowcharts) using standard
message-parsing attributes.

Create output LocalEnvironment,
and output Message trees (as
described in the following two
flowcharts) using BLOB as the

message body type.

.

Constructing OutputLocalEnvironment

1. If the Generate Mode property on the MQGet node is set to an option that does
not include LocalEnvironment, the node copies the input local environment tree
to the output local environment tree.
If this copy is made, any updates that are made in this node to the output local
environment tree are not propagated downstream.

2. If the Copy Local Environment property is set to an option other than None, the
node copies the input local environment tree to the output local environment
tree.

1566 WebSphere Message Broker Version 7.0.0.8

3. If the output data location points to the output local environment tree, the node
applies changes in that tree by copying from the result tree.

4. The local environment tree is propagated.

The following diagram shows this processing:

Does generateMode
include LocalEnv?

(If the output data location points
to the output local environment,
then changes are inserted here
by copying from the Result tree).

Propagate the
local environment.

Copy the input
local environment

into the output.

Set the output
local environment

to be the input one.

Is copyLocalEnv
set to none?

Input Local

Environment

Yes

Yes

No

No

Constructing the Output message

1. If the Generate Mode property on the MQGet node is set to an option that does
not include Message, the node copies the input message tree to the output
message tree. Go to step 5.

2. If the Output Data Location property is set to OutputRoot, the node creates the
output message tree entirely from the result tree. Go to step 5.

3. If the Copy Message property is set to a value other than None, the node copies
the input message tree to the output message tree.

4. If the Output Data Location property points to a part of the output message
tree, the node applies changes in that tree by copying from the result tree at the
point that is defined by the Result Data Location property.

5. The message tree is propagated.

The following diagram shows this processing:

Chapter 9. Developing message flow applications 1567

Does generateMode
include message?

(If the output data location points
to a part of the output message tree,

then changes are inserted here
by copying from the Result tree).

Propagate
the message.

Copy input
message into output

message tree

Create the output
message entirely

from the result tree.

Set the output
message to be
the input one.

Is copyMessage
set to none?

Is output Data
Location set to
OutputRoot?

Yes

Yes

No

No

No

Yes

Input

Message

For an example of how this processing is implemented in a message flow, see “A
request-response scenario that uses an MQGet node” on page 1569.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“A request-response scenario that uses an MQGet node” on page 1569
Read about a scenario in which an MQGet node is used in a request-response flow,
and how the node processes the input messages to construct the output messages,
based on both the content of the local environment tree and the input parameters
that you set.

1568 WebSphere Message Broker Version 7.0.0.8

“MQGet node” on page 4578
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.

A request-response scenario that uses an MQGet node:

Read about a scenario in which an MQGet node is used in a request-response flow,
and how the node processes the input messages to construct the output messages,
based on both the content of the local environment tree and the input parameters
that you set.

A request-response flow is a specialized form of a point-to-point application. For a
general description of these applications, see “Nodes for connectivity” on page
1028. For an example of a request-response message flow, see the following
sample:
v Coordinated Request Reply

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

You can include an MQGet node anywhere in a message flow, including a flow
that implements a request-response scenario. The MQGet node receives an input
message on its input terminal from the preceding node in the message flow, issues
an MQGET call to retrieve a message from the WebSphere MQ queue that you
have configured in its properties, and builds a result message tree. Finally, it uses
the input tree and the result tree to create an output tree that is then propagated to
its Output, Warning, or Failure terminal, depending on the configuration of the
node and the result of the MQGET operation.

How the MQGet node handles the local environment:
The MQGet node examines the local environment tree that is propagated from the
preceding node, uses the content that is related to the MQGMO (MQ Get Message
Options) and the MQMD (MQ Message Descriptor header), and updates the local
environment:
v The node reads the MQGMO structure from ${inputMQParmsLocation}.MQGMO.*.
v The node copies the WebSphere MQ completion and reason codes to

${outputMQParmsLocation}.CC and ${outputMQParmsLocation}.RC.
v The node writes the complete MQGMO that is used for the MQGET call into

${outputMQParmsLocation}.MQGMO if ${inputMQParmsLocation}.MQGMO exists in the
input tree.

v The node writes the MQMD that is passed to the MQGET call (that contains the
values that are specified in the input message or are generated by the node) into
${inputMQParmsLocation}.MQMD, deleting any existing content.

Set the value to ${inputMQParmsLocation} in the MQGet node property Input MQ
Parameters Location on the Request Properties tab.

Set the value to ${outputMQParmsLocation} in the MQGet node property Output
MQ Parameters Location on the Result Properties tab.

For more information about these properties, see “MQGet node” on page 4578.

Chapter 9. Developing message flow applications 1569

In summary:

${inputMQParmsLocation}

v QueueName: Optional override for MQGet node Queue Name property
v InitialBufferSize: Optional override for MQGet node Initial Buffer Size

property
v MQGMO.*: Optional MQGET message options that are used by the

MQGet node

${outputMQParmsLocation}

v CC: MQGET call completion code
v RC: MQGET call result code
v MQGMO.*: MQGET message options that are used if present in

${inputMQParmsLocation}

v MQMD: unparsed MQ Message Descriptor for received messages1

v Browsed: Set to true if the message is browsed. Not present if the
message is removed from the queue

You can parse the MQMD (for example, by using ESQL), where
${outputMQParmsLocation} is LocalEnvironment.MQ.GET:

DECLARE ptr REFERENCE TO OutputLocalEnvironment.MyMQParms;
CREATE FIRSTCHILD OF ptr DOMAIN(’MQMD’) PARSE(InputLocalEnvironment.MQ.GET.MQMD)

How the MQMD for the MQGET call is constructed:

v A default MQMD is prepared. For further information about the MQMD, see the
Application Programming Reference section of the WebSphere MQ Version 7
Information Center online.

v If you do not supply an input MQMD, the default MQMD is used.
v If you do supply an input MQMD, the default MQMD is used after the

following modifications:
– If the property Use all input MQMD fields is set, all MQMD fields supplied

are copied into the default MQMD from the input MQMD.
– If the property Use all input MQMD fields is not set and the properties Get

by Message ID or Get by Correlation ID are selected, the respective IDs are
copied into the default MQMD from the input MQMD.

The following diagram shows how the MQGet node constructs the MQMD that is
used on the call to WebSphere MQ:

1570 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Node Start

Does the input
MQMD location

point to anything?

Copy messageID, or
CorrelID, or both, from
the input MQMD into
the default MQMD.

Use default
MQMD.

Use input
MQMD
without

modification.

Throw exception.

Send MQMD to MQGET call.

Is one of

or

set?

GetbyMessageID

GetbyCorrelationID

Is one of
or

set?

GetbyMessageID

GetbyCorrelID

Is

set

to true?

Use complete

input MQMD

No

No

No

No

Yes

Yes

Yes

Yes

How the output message tree is constructed:
The following diagram outlines how the MQGet node constructs the output
message tree, combining the input tree from the previous node with the result tree
from the MQGET call:

Chapter 9. Developing message flow applications 1571

Input Tree from
previous node

Result Tree from
MQGET call

Ouput Tree sent to
downstream nodes

In this example, the MQGet node properties are configured as shown in the
following table.

Property Action

Copy Message Copy Entire Message

Generate Mode Message

Output Data Location OutputRoot.XMLNS.A

Result Data Location ResultRoot.XMLNS.C

The MQGet node constructs the output tree according to the following sequence:
1. The whole of the input tree is copied to the output tree, including the XML

branch with child A, and A's child B.
2. From the result tree, the XML branch's child C, and C's child D, are put into the

output tree at position OutputRoot.XMLNS.A. Any previous content of A (values
and children) is lost, and replaced with C's content, including all values and
children it has, in this case child D.

3. The position in the output tree retains the name A.

The following diagram shows this behavior:

1572 WebSphere Message Broker Version 7.0.0.8

InputRoot

OutputRoot

ResultRoot

Properties

Properties

PropertiesMQMD

MQMD

MQMD

Child1

Child1

Child1

XML

XML

XML

A

A (C)

C

B

D

D

For some examples of message trees that are constructed by the MQGet node
according to the rules described above, see “MQGet node message tree examples.”
Related concepts:
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“MQGet node message tree examples”
The MQGet node generates message trees based on the input message assembly
that it receives, and the options that you have set on the node properties.
“How the MQGet node processes messages” on page 1564
The MQGet node processes each message that it receives.
“MQGet node” on page 4578
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.
Related information:

WebSphere MQ Version 7 Information Center online

MQGet node message tree examples:

The MQGet node generates message trees based on the input message assembly
that it receives, and the options that you have set on the node properties.

Chapter 9. Developing message flow applications 1573

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The message trees, shown in the following table, are generated according to the
rules described in “A request-response scenario that uses an MQGet node” on page
1569.

With a message assembly like this: The message that the MQGet node returns is:

InputRoot

MQMD
{input message MQMD}

MQRFH2
{input message MQRFH2}

XMLNS
{input message body}

InputLocalEnvironment

MQ

GET

MQGMO
MatchOptions =
MQMO_MATCH_CORREL_ID

MQMD (with no children)

Variables

MQMD
{input MQMD} (with CorrelID =
{correct Correlation ID as binary})

ResultRoot

MQMD
{result message MQMD}

MQRFH2
{result message MQRFH2}

XML {result message body}

1574 WebSphere Message Broker Version 7.0.0.8

With the following node property settings: The resulting output message assembly is:

Input MQMD Location
InputLocalEnvironment.Variables.MQMD

Copy Message
Copy Entire Message

Copy Local Environment
Copy Entire LocalEnvironment

Generate Mode
Message and LocalEnvironment

Output Data Location
InputLocalEnvironment.Variables.ReturnedMessage

OutputRoot

MQMD
{input message MQMD}

MQRFH2
{input message MQRFH2}

XMLNS
{input message body}

OutputLocalEnvironment

MQ

GET

MQGMO
{MQGMO used
for MQGET}

MQMD
{MQMD used
for MQGET}

CC = 0

RC = 0

Variables

MQMD
{input MQMD} (with
CorrelID = {correct
Correlation ID as
binary})

ReturnedMessage

MQMD
{result message
MQMD}

MQRFH2
{result message
MQRFH2}

XML {result message
body}

Chapter 9. Developing message flow applications 1575

With the following node property settings: The resulting output message assembly is:

Result Data Location
ResultRoot.XML

OutputRoot

MQMD
{input message MQMD}

MQRFH2
{input message MQRFH2}

XMLNS
{input message body}

OutputLocalEnvironment

MQ

GET

MQGMO
{MQGMO used
for MQGET}

MQMD
{MQMD used
for MQGET}

CC = 0

RC = 0

Variables

MQMD
{input MQMD} (with
CorrelID = {correct
Correlation ID as
binary})

ReturnedMessage (with any
attributes and value from
ResultRoot.XML)

{result message body}

This tree is effectively the result of doing an
assignment from ${resultDataLocation} to
${outputDataLocation}. The value of the source
element is copied, as are all children including
attributes.

1576 WebSphere Message Broker Version 7.0.0.8

With the following node property settings: The resulting output message assembly is:

Copy Local Environment
None

OutputRoot

MQMD
{input message MQMD}

MQRFH2
{input message MQRFH2}

XMLNS
{input message body}

OutputLocalEnvironment

MQ

GET

MQGMO
{MQGMO used
for MQGET}

MQMD
{MQMD used
for MQGET}

CC = 0

RC = 0

Variables

ReturnedMessage (with any
attributes and value from
ResultRoot.XML)

{result message body}

This tree has the MQMD that is used for the
MQGET call in the OutputLocalEnvironment,
because the input MQ parameters location had an
MQMD element under it. Even though the input
tree is not copied, the presence of the MQMD
element causes the MQMD that is used for the
MQGET call to be placed in the output tree.

Chapter 9. Developing message flow applications 1577

With the following node property settings: The resulting output message assembly is:

Output Data Location
<blank>

Copy Local Environment
Copy Entire Local Environment

OutputRoot

MQMD
{result message MQMD}

MQRFH2
{result message MQRFH2}

XMLNS
{result message body}

OutputLocalEnvironment

MQ

GET

MQGMO
{MQGMO used
for MQGET}

MQMD
{MQMD used
for MQGET}

CC = 0

RC = 0

Variables

MQMD
{input MQMD} (with
CorrelID = {correct
Correlation ID as
binary})

The value that you set for the Copy Message
property makes no difference to the eventual
output tree in this case.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“A request-response scenario that uses an MQGet node” on page 1569
Read about a scenario in which an MQGet node is used in a request-response flow,
and how the node processes the input messages to construct the output messages,
based on both the content of the local environment tree and the input parameters
that you set.
“How the MQGet node processes messages” on page 1564
The MQGet node processes each message that it receives.
“MQGet node” on page 4578
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.

1578 WebSphere Message Broker Version 7.0.0.8

Processing HTTP messages
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.

You can configure message flows that include the HTTP or SOAP nodes to access
the HTTP transport to work with the following resources:
v SOAP-based Web services
v Other Web services standards, such as REST or XML-RPC
v General HTTP messaging, where the payload might be XML

HTTP nodes can process non-secure (HTTP) messages and secure (HTTPS or HTTP
over SSL) messages.

For SOAP-based Web services, several advantages exist if you use the SOAP nodes
and the SOAP message domain instead of the HTTP transport nodes and XMLNSC
message domain.
v Support for WS-Addressing, WS-Security and SOAP headers.
v A common SOAP logical tree format, independent of the bitstream format.
v Runtime checking against WSDL.
v Automatic processing of SOAP with Attachments (SwA).
v Automatic processing of Message Transmission Optimization Mechanism

(MTOM).

Although the HTTP nodes can process SwA messages, you must use the MIME
message domain and design your flow to handle the attachments explicitly, and
use custom logic to extract and parse the SOAP.

For more information about using SOAP messages and nodes, see “What is
SOAP?” on page 1604

You can choose how your HTTP nodes interact with the TCP/IP network:
v You can use the broker-wide listener, which receives HTTP messages on one

port, and HTTPS messages on a second port.
This option is set as the default configuration for both existing and new brokers.

v You can use the listener that is embedded within each execution group, which
also has two ports for HTTP and HTTPS messages.

v You can use a mixture of broker and execution group listeners by keeping the
broker listener active, and configuring a subset of execution groups to use the
embedded listener.

For more information about why you might choose each option, and how to
configure them, see “HTTP listeners” on page 1589.

SOAP nodes always use the listener that is embedded in the execution group, and
only this listener; you cannot configure them to use the broker-wide listener.

The following diagram shows the use of both types of listener, configured on
default ports, for HTTP messages.

Chapter 9. Developing message flow applications 1579

HTTP Input

HTTP Input

SOAP Input

HTTP Reply

HTTP Reply

SOAP Reply

JavaCompute

JavaCompute

Compute

TCP/7800
listener

ExecGrp1

MB7BROKER

HTTP

Request

HTTP

Response

ExecGrp2

TCP/7080
listener

You must always use the correct reply node that matches your input node; you
cannot combine an HTTPReply node with a SOAPInput, or a SOAPReply node
with an HTTPInput node. The broker generates an exception when the reply is
attempted.

You can include the reply node in the same message flow, or in a different message
flow:
v If you have configured the HTTPInput node to use the execution group listener,

you must deploy the second message flow to the same execution group.
This restriction always applies to SOAPInput nodes, which use only the
execution group listener.

v If you have configured the HTTPInput node to use the broker-wide listener, you
can deploy the second message flow to any other execution group defined to the
broker.

v You must pass the correct reply identifier from the input message flow to the
reply node.

If you choose to handle HTTP messages by using the execution group listener, you
must carefully check the URL specifications in your HTTPInput and SOAPInput
nodes. If both URL specifications match an incoming message, the wrong type of
node might get the message, and processing might fail or produce unexpected
results. This situation occurs if you specify identical values for the Path suffix for
URL properties of the HTTPInput node and the SOAPInput node. It can also occur
if you use wildcards in either or both specifications, and an incoming message
matches both properties.

For more information about using the WebSphere Broker HTTP Transport, see the
following topics:
v “Working with HTTP flows” on page 1585
v “HTTP listeners” on page 1589
v “HTTP message format” on page 1582
v “HTTP headers” on page 1583

1580 WebSphere Message Broker Version 7.0.0.8

v “Web services example messages” on page 1599

For information about using HTTPS, see “Implementing SSL authentication” on
page 504.

You can also use the HTTP Proxy servlet in an external Web servlet container to
provide listener support for a larger number of concurrent HTTP sessions. For
more information about the servlet and its uses, see “HTTP proxy servlet
overview” on page 856.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
“HTTP proxy servlet overview” on page 856
The HTTP proxy servlet is a Java servlet that you can use in an external web
servlet container, such as IBM WebSphere Application Server or Apache Tomcat, to
receive HTTP requests from web services client applications, to replace the support
provided by the broker and execution group HTTP listeners.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Resolving problems when you use HTTP and SOAP nodes” on page 3407
Use the advice given here to help you to resolve common problems that can arise
when you develop Web Services message flows that contain HTTP and SOAP
nodes.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
Related information:

Chapter 9. Developing message flow applications 1581

“Web services: when to use SOAP or HTTP nodes”
HTTP and SOAP nodes can both be used to interact with Web services. Typically
you use SOAP nodes when working with SOAP-based Web services.

Web services: when to use SOAP or HTTP nodes
HTTP and SOAP nodes can both be used to interact with Web services. Typically
you use SOAP nodes when working with SOAP-based Web services.

For SOAP-based Web services, several advantages exist if you use the SOAP nodes
and the SOAP message domain instead of the HTTP transport nodes and XMLNSC
message domain.
v Support for WS-Addressing, WS-Security and SOAP headers.
v A common SOAP logical tree format, independent of the bitstream format.
v Runtime checking against WSDL.
v Automatic processing of SOAP with Attachments (SwA).
v Automatic processing of Message Transmission Optimization Mechanism

(MTOM).

Although the HTTP nodes can process SwA messages, you must use the MIME
message domain and design your flow to handle the attachments explicitly, and
use custom logic to extract and parse the SOAP.

Cases where it might be better to use HTTP nodes include:
v Message flows in which a single request node handles multiple SOAP request

and responses from more than one WSDL.
v Message flows that interact with Web services that use different standards, such

as REST or XML-RPC.
v Message flow that never use WS-Addressing, WS-Security, SwA, or MTOM.
Related concepts:
“What is a Web service?” on page 1603
A Web service is defined by the World Wide Web Consortium (W3C) as a software
system designed to support interoperable machine-to-machine interaction over a
network.
“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

HTTP message format
An HTTP message contains components that are appropriate to its type.

The bit stream containing headers and body is parsed and represented within the
message tree when an input request is received by an HTTPInput node, or when a
response from a Web service is received by the HTTPRequest node. A bit stream is
created by parsers from the appropriate parts of the message tree when a reply is
sent to the client by the HTTPReply node, or when a message is sent by the
HTTPRequest node. For further details about these actions, see the individual node
descriptions.
Related concepts:

1582 WebSphere Message Broker Version 7.0.0.8

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

HTTP headers
When an HTTPInput or HTTPRequest node receives a message, it parses the HTTP
headers to create elements in the message tree. When an HTTPReply or
HTTPRequest node sends a message, it parses the HTTP headers from the message
tree into a bit stream.

The HTTP headers in a message depend on the type of message that is processed.
There are four message types recognized in a message flow, and a parser is
associated with each of these.
1. Input. An input message is received by the HTTPInput node from a client. The

HTTP headers in the input message (data up to and including the CRLFCRLF)
are parsed by the HTTPInput parser and are included in the message tree
under the correlation name HTTPInput. The headers shown in the following
table are expected in an input message; others might also be present.

Header Content Example

Host The host name to which the client
issued the message.

localhost

Content-Length The length of the body of the input
message in decimal (that follows the
CRLFCRLF after the last header).

520

Content-Type The type of the body data. text/xml; charset=utf-8

SOAPAction "" (empty string)

The headers in the following table might also be automatically generated by the
HTTPInput node depending on the request.

Header Content Example

X-Original-
HTTP-
Command

An expanded version of the original
inbound request

POST

http://localhost:7800/Wss001/
services/Wss001 HTTP/1.1

X-Remote-Addr The IP address of the client (or proxy if
the client is connecting through a
proxy)

127.0.0.1

Chapter 9. Developing message flow applications 1583

Header Content Example

X-Remote-Host The host name or address of the client
(or proxy if the client is connecting
through a proxy)

localhost

X-Server-Name The broker's machine name localhost

X-Server-Port The broker's port 7800

X-Query-String The query string if present in the
inbound URL (optional)

a=b&x=y

X-Scheme The scheme through which the client is
connected, either http or https

http

2. Reply. A reply message is sent by the HTTPReply node to the client that sent
the corresponding input message. The headers in the reply message are created
in the message tree under the correlation name HTTPReply, which is also the
name of the parser used to parse that part of the message tree to a bit stream.
You can create your own HTTPReply header in a Compute node, or you can
configure the HTTPReply node to create it by using default values, or values
taken from the HTTPReply or HTTPResponse trees in the input message, or
both.
You can set the HTTPReply Status Code in the local environment; for more
information, see the instructions for setting the HTTP Status Code for a reply in
“Working with HTTP flows” on page 1585.
If the HTTPReply node creates a default HTTPReply header, it contains the
headers and values shown in the following table.

Header Value

Content-Length (if
present in the input
message)

The calculated length of the reply message body in decimal.

Content-Type text/xml; charset=ccsid of the message body

3. Request. A request message is sent by the HTTPRequest node. The HTTP
headers in this message must be created in the message tree under the
correlation name HTTPRequest, and are parsed by the HTTPRequest parser
when the message tree is parsed to a bit stream. You can create your own
HTTPRequest header in a Compute node, or you can configure the
HTTPRequest node to create it using default values, or values taken from the
HTTPInput or HTTPRequest trees in the input message, or both. If the
HTTPRequest node creates a default HTTPRequest header, it contains the
headers and values shown in the following table.

Header Value

Host Value set in the Default Web Service URL property.

Content-Length The calculated length of the request message body in decimal.

Content-Type text/xml; charset=ccsid of the message body

SOAPAction "" (empty string)

Content-Encoding "gzip" or "deflate" if the Use compression property is set to gzip,
zlib (deflate), or deflate.

Accept-Encoding "gzip, deflate" if the Accept compressed responses by default
property is selected.

1584 WebSphere Message Broker Version 7.0.0.8

4. Response. A response message is received by the HTTPRequest node from the
application to which the corresponding request message was sent. The HTTP
headers in the response message (data up to and including the CRLFCRLF) are
parsed by the HTTPResponse parser and are included in the message tree
under the correlation name HTTPResponse. The header shown in the following
table is expected in a response message (though not required); others might
also be present.

Header Content Example

Content-Length The length of the response message
body in decimal.

1585

“Web services example messages” on page 1599 provides example messages that
include these headers.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

Working with HTTP flows
Read this information if you are using HTTP message flows to interact with HTTP
applications, including web services and RESTful services.

About this task

You might find it useful to read this information with the “Web services scenarios”
on page 1620 section.
v Using secure connections with HTTPS

Chapter 9. Developing message flow applications 1585

v Setting the HTTP Status Code for a reply
v Using LocalEnvironment.Destination.HTTP.RequestIdentifier
v Setting the HTTPRequest node URL dynamically
v Setting Generate default HTTP headers from reply or response for the

HTTPReply node
v Setting Generate default HTTP headers from input for the HTTPRequest node

You must decide which listener you want the HTTP nodes to use:
v The broker listener (the httplistener component) has an HTTPConnector for

handling HTTP messages, and an HTTPSConnector for handling HTTPS (HTTP
over SSL) messages. Each connector has its own assigned port.
By default, all HTTPInput and HTTPReply nodes use the broker-wide listener,
which interfaces with the HTTP nodes by using a WebSphere MQ queue.

v An embedded listener is part of each execution group. The embedded listener
has an HTTPConnector and an HTTPSConnector, and each connector has its
own assigned port.
You can configure one or more execution groups so that all HTTPInput and
HTTPReply that you deploy to that execution group use the embedded listener.

For a discussion of the advantages of each listener, see “HTTP listeners” on page
1589.

You can use ProxyConnectHeaders only with HTTPS (SSL) connections; these
headers do not work with HTTP connections.

Using secure connections with HTTPS
For information about setting up HTTPS connections, see “Implementing
SSL authentication” on page 504.

Setting the HTTP Status Code for a reply
The default HTTP Status Code is 200, which indicates success. If you want
a different status code to be returned, take one of the following actions:
v Set your status code in the field Destination.HTTP.ReplyStatusCode in

the local environment tree (correlation name OutputLocalEnvironment).
This field overrides any status code that is set in an
HTTPResponseHeader header. This action is the preferred option,
because it provides the greatest flexibility.

v Set your status code in the field X-Original-HTTP-Status-Code in the
HTTPReplyHeader header.

v Set your status code in the field X-Original-HTTP-Status-Code in the
HTTPResponseHeader header. This option is useful if you include an
HTTPRequest node before the HTTPReply node in your flow, because
the HTTPResponseHeader header is created for you. In this scenario, an
HTTPResponseHeader header has been created in the logical tree,
representing the HTTP headers in the response from another Web
service. If you have selected the Generate default HTTP headers from
reply or response property on the HTTPReply node, values for the
response header are set as default values when the reply message is
created.

Using LocalEnvironment.Destination.HTTP.RequestIdentifier
When the HTTPInput node receives an input request message, it sets the
local environment field Destination.HTTP.RequestIdentifier to a unique
value that identifies the Web service client that sent the request. You can
refer to this value, and you can save it to another location if appropriate.

1586 WebSphere Message Broker Version 7.0.0.8

For example, if you design a pair of message flows that interact with an
existing WebSphere MQ application (as described in “Broker calls existing
Web service” on page 1621), you can save the identifier value in the
request flow, and restore it in the reply flow, to ensure that the correct
client receives the reply. If you use this technique, you must not change the
data, and you must retain the data as a BLOB.

The HTTPReply node extracts the identifier value from the local
environment tree and sets up the reply so that it is sent to the specific
client. However, if you are using an HTTPReply node in a flow that does
not have an HTTPInput node, and this field has been deleted or set
incorrectly, message BIP3143S is issued.

If you design a message flow that includes both an HTTPInput and an
HTTPReply node, the identifier value is set into the local environment by
the HTTPInput node, but the HTTPReply node does not use it. Therefore,
if your message flow includes both HTTP nodes and a Compute node in
the same flow, you do not have to include the local environment tree when
you specify which components of the message tree are copied from input
message to output message by the Compute node (the Compute mode
property).

Setting the HTTP request URL dynamically
You can set the property Default Web service URL on the HTTPRequest
node to determine the destination URL for a Web service request. You can
configure a Compute node before the HTTPRequest node within the
message flow to override the value set in the property. Code ESQL that
stores a URL string in LocalEnvironment.Destination.HTTP.RequestURL;
the node retrieves and uses the URL string in place of the node property
value.

Although you can also set the request URL in the special header
X-Original-HTTP-URL in the HTTPRequestHeader header section of the
request message (which overrides all other settings) in a Compute node,
use the local environment tree content for this purpose for greater
flexibility.

Setting Generate default HTTP headers from reply or response for the
HTTPReply node

If you select Generate default HTTP headers from reply or response in
the HTTPReply node properties, the node includes a minimum set of
headers in the response that is sent to the Web service client.

To set headers explicitly, create them in an HTTPReplyHeader header. For
example, a Compute node propagates a message in the XMLNSC domain
and modifies the Content-Type as follows:
CALL CopyMessageHeaders();
SET OutputRoot.HTTPReplyHeader."Content-Type" = ’text/xml’;
SET OutputRoot.XMLNSC = InputRoot.XMLNSC;

Do not use the ContentType property to set the Content-Type unless you
are working in the MIME domain. The ContentType property is intended
to set the value of Content-Type used in MIME.

The full set of HTTP headers used in the reply is built by selecting the
headers using the algorithm defined in the following steps:
1. Select one or more headers in an HTTPReplyHeader header.
2. If no Content-Type header is yet defined, create one by using a

non-empty value in the ContentType property.

Chapter 9. Developing message flow applications 1587

3. Select one or more headers in an HTTPResponseHeader header (an
HTTPResponseHeader header is propagated on return from an
HTTPRequest node).

4. If no Content-Type header is yet defined, create one with the default
value text/xml; charset=ccsid of the message body.

5. Create or overwrite the Content-Length header.

Attention: The HTTPReply node always rewrites the Content-Length
header, even if you have cleared Generate default HTTP headers from
reply or response. This action ensures that the content is correct.

If an HTTPReplyHeader header section existed in the message received by
the HTTPReply node, and the Output terminal of the HTTPReply node is
connected, the HTTPReplyHeader header section is updated with all
changed or added values.

Setting Generate default HTTP headers from input for the HTTPRequest node
If you select Generate default HTTP headers from input in the
HTTPRequest node properties, the node includes a minimum set of
headers in the request that is sent to the server.

To explicitly set headers, create them in an HTTPRequestHeader header.
For example, a Compute node propagating a message in the XMLNSC
domain can modify the Content-Type as follows:
CALL CopyMessageHeaders();
SET OutputRoot.HTTPRequestHeader."Content-Type" = ’text/xml’;
SET OutputRoot.XMLNSC = InputRoot.XMLNSC;

Do not use the ContentType property to set the Content-Type unless you
are working in the MIME domain. The ContentType property is intended
to set the value of Content-Type used in MIME.

The full set of HTTP headers used in the request is built by selecting the
headers using the algorithm defined in the following steps:
1. Set the Host header, based on either the request URL or the incoming

HTTPRequestHeader header section of the message.
2. Select one or more headers in an HTTPRequestHeader header.
3. If no Content-Type header is yet defined, create one by using a

non-empty value in the ContentType property.
4. Select one or more headers in an HTTPInputHeader header (an

HTTPInputHeader header is created automatically by an HTTPInput
node).

5. If no Content-Type header is yet defined, create one with the default
value text/xml; charset=ccsid of the message body

6. If no SOAPAction header is yet defined, create one with the default
value ’’.

7. Create or overwrite the Content-Length header.

Attention: The HTTPRequest node always rewrites the Content-Length
header, even if you have cleared Generate default HTTP headers from
input or request. This action ensures that the content is correct.

If an HTTPRequestHeader header exists in the received message, the
HTTPRequestHeader header is updated with all changed or added values.

Related concepts:

1588 WebSphere Message Broker Version 7.0.0.8

“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
“HTTP listeners”
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Checking the results of deployment” on page 3243
After you have made a deployment, check that the operation has completed
successfully.
“Resolving problems when you use HTTP and SOAP nodes” on page 3407
Use the advice given here to help you to resolve common problems that can arise
when you develop Web Services message flows that contain HTTP and SOAP
nodes.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

HTTP listeners:

You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.

Chapter 9. Developing message flow applications 1589

Your choice of listener affects message flows that handle inbound Web service
requests by using HTTPInput or HTTPReply nodes. Message flows that do not
handle inbound requests but that instigate outbound requests by using
HTTPRequest nodes are not affected.
v “Execution group (embedded) listeners”
v “Broker-wide listeners”
v “Using both broker-wide and embedded listeners” on page 1591
v “Configuring listeners” on page 1591

Execution group (embedded) listeners

Each execution group has an embedded listener. The listener is associated with an
HTTPConnector object and an HTTPSConnector object. The HTTPConnector object
controls the runtime properties that affect the handling of HTTP messages. For
example, run the following command to change the port on which the embedded
listener for execution group default on broker myBroker listens for HTTP messages:
mqsichangeproperties myBroker -e default -o HTTPConnector

-n explicitlySetPortNumber -v 8085

The HTTPSConnector object controls the runtime properties that affect the
handling of HTTPS (HTTP Secure) messages. Run the following command to
display these properties for execution group default on broker myBroker:
mqsireportproperties myBroker -e default -o HTTPSConnector -r

For further details, including more examples, see “Execution group HTTP listener
parameters (SOAP and HTTP nodes)” on page 3805.

Each connector has its own assigned port, which is allocated from a range of
numbers, as required. The default range for the HTTPConnector is 7800 - 7842; the
default range for the HTTPSConnector is 7843 - 7884. The first execution group to
start an embedded listener is allocated port 7800, the second is allocated 7801, and
so on.

If you deploy a message flow to multiple execution groups, the port number is
incremented by one for each successive deployment. Assume that no embedded
listeners have as yet been started for these execution groups. In this case, the
message flow that is deployed to the first execution group receives requests on
port 7800. The next message flow uses port 7801, and so on, up to the specified
limit of 7842. In this scenario, you typically use an intermediary router that listens
on one port, then distributes the requests across the range of ports that you are
using.

You can change these port number ranges, and you can allocate a specific port to
an execution group, by using the mqsichangeproperties command.

If you restart an execution group, the embedded listeners continue to use the same
ports as before the restart.

Broker-wide listeners

The broker-wide listener is associated with an HTTPConnector object for properties
related to handling HTTP messages, and an HTTPSConnector object for properties
related to handling HTTPS messages. For example, run the following command to
change the port on which the broker-wide listener for myBroker listens for HTTP
messages:

1590 WebSphere Message Broker Version 7.0.0.8

mqsichangeproperties myBroker -b httplistener -o HTTPConnector
-n port -v 8085

Broker-wide listener properties that apply to HTTP and HTTPS messages are
controlled by the HTTPListener object. For example, to disable the broker-wide
listener for myBroker, run the following command:
mqsichangeproperties myBroker -b httplistener -o HTTPListener

-n startListener -v false

Each connector has its own assigned port; default values are 7080 for HTTP and
7083 for HTTPS. You can change these port numbers by using the
mqsichangeproperties command.

You can configure one or more execution groups so that HTTP nodes that you
deploy to those execution groups use the embedded listener.

Using both broker-wide and embedded listeners

Because the option to use the embedded listener is at the execution group level,
you can change your configuration such that some execution groups continue to
use the broker-wide listener, while specific execution groups use the embedded
listener.

However, if you disable the broker-wide listener, the execution group listeners are
used for all HTTP nodes, even if you have not explicitly enabled support for them.
Therefore, if you set all relevant broker and execution group properties to false,
the execution group listeners handle all HTTP messages.

The HTTPRequest node communicates directly with the HTTP transport, and is
therefore unaffected by your choice.

If you change the listener and port that are processing your HTTP or HTTPS
messages, you must ensure that you also update your applications to use the
updated configuration.

Configuring listeners

When you have decided on the configuration that you want:
v If you want to use the broker-wide listener for HTTP nodes in all execution

groups, you do not have to change your configuration.
v If you are currently using the broker listener for one or more execution groups,

and want to switch to using embedded listeners, follow the instructions in
“Switching from a broker-wide listener to embedded listeners” on page 1593.

v If you are currently using the execution group listener for one or more execution
groups, and want to switch to using the broker-wise listener, follow the
instructions in “Switching from embedded listeners to a broker-wide listener” on
page 1592.

Related concepts:
“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
Related tasks:
“Processing Web service messages” on page 1601
Use WebSphere Message Broker nodes and services to connect to other Web

Chapter 9. Developing message flow applications 1591

services providers and consumers.
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Switching from a broker-wide listener to embedded listeners” on page 1593
Configure your broker and execution groups so that some or all of the HTTP
nodes use an execution group (embedded) listener.
“Switching from embedded listeners to a broker-wide listener”
Configure your broker and execution groups to use the broker-wide listener for
HTTP nodes in one or more execution groups.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Broker-wide HTTP listener parameters” on page 3809
Select the resources and properties associated with the broker-wide HTTP listener
that you want to change.
“Execution group HTTP listener parameters (SOAP and HTTP nodes)” on page
3805
Select the resources and properties associated with the HTTPInput, HTTPReply,
SOAPInput, SOAPReply, and SOAPAsyncResponse nodes that you want to change.

“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.

Switching from embedded listeners to a broker-wide listener:

Configure your broker and execution groups to use the broker-wide listener for
HTTP nodes in one or more execution groups.

About this task

You can change the configuration for execution groups so that HTTP nodes use the
broker-wide listener. HTTP nodes use the broker-wide listener by default, but you
might have configured some execution groups to use the embedded listener, and
now want to switch back to using the broker-wide listener.

The commands shown in the examples here are split across multiple lines for ease
of reading; when you enter the command, you must use a single line.

Procedure

1. Check that the broker is running.
2. If you disabled the broker-wide listener, run the mqsichangeproperties

command to restart it. For example:
mqsichangeproperties MB7BROKER -b httplistener -o HTTPListener
-n startListener -v true

1592 WebSphere Message Broker Version 7.0.0.8

3. To switch to using the broker-wide listener for a specific execution group, use
the mqsichangeproperties command to change the execution group
configuration.
v For example:

mqsichangeproperties MB7BROKER -e exgroup1 -o ExecutionGroup
-n httpNodesUseEmbeddedListener -v false

MB7BROKER is the name of your broker; exgroup1 is the name of your
execution group.
If you want to change the status for all execution groups, you can omit the
specific execution group name:
mqsichangeproperties MB7BROKER -o ExecutionGroup
-n httpNodesUseEmbeddedListener -v false

This command does not change the status of the listener for SOAP messages
processed by SOAP nodes; only messages to and from HTTP nodes are
affected.

4. Stop and restart the broker to ensure that your changes take effect.

Example

For more information about this command, and examples of changing other
properties associated with a broker or execution group, see the description of the
mqsichangeproperties command.
Related concepts:
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“Broker-wide HTTP listener parameters” on page 3809
Select the resources and properties associated with the broker-wide HTTP listener
that you want to change.

Switching from a broker-wide listener to embedded listeners:

Configure your broker and execution groups so that some or all of the HTTP
nodes use an execution group (embedded) listener.

About this task

You can change the configuration for one or more execution groups so that HTTP
nodes deployed in these execution groups use the embedded listener.

Chapter 9. Developing message flow applications 1593

Procedure

1. Check that the broker is running.
2. If you want all HTTP nodes in all execution groups to use the embedded

listener, you can change the broker configuration to disable the broker-wide
listener. Run the mqsichangeproperties command to change the broker
configuration. Do not run this command if you want to keep the broker-wide
listener active for at least one of your execution groups.
mqsichangeproperties MB7BROKER -b httplistener -o HTTPListener
-n startListener -v false

All execution groups detect this change of status, and use the embedded
listener when they are restarted, regardless of their own specific configuration.
Therefore, you can switch to using embedded listeners for all execution groups
by running this single command.
If you disable the broker-wide listener in this way, you can configure an
execution group to use the same port or ports that the broker-wide listener was
using for HTTP, HTTPS, or both. Reusing the port numbers means that you do
not have to change your client applications to send messages to a different port
number.

3. To switch to using the embedded listener for a specific execution group, use the
mqsichangeproperties command to change the execution group configuration.
v For example:

mqsichangeproperties MB7BROKER -e exgroup1 -o ExecutionGroup
-n httpNodesUseEmbeddedListener -v true

MB7BROKER is the name of your broker; exgroup1 is the name of your
execution group.

4. Stop and restart the broker to implement your changes.

Example

For more information about this command, and examples of changing other
properties associated with brokers or execution groups, see the description of the
mqsichangeproperties command.
Related concepts:
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“Broker-wide HTTP listener parameters” on page 3809
Select the resources and properties associated with the broker-wide HTTP listener

1594 WebSphere Message Broker Version 7.0.0.8

that you want to change.

Using timeouts with HTTP and SOAP nodes:

Connect the HTTP Timeout terminal of the HTTPInput or SOAPInput nodes to
further nodes to process timeouts.

Before you begin

Before you start:

v Read the message flows overview.
v Read about the options that you have for processing Web service messages, and

learn more about SOAP and HTTP.

About this task

You can configure message flows that start with an HTTPInput or SOAPInput
node by connecting the HTTP Timeout terminal to further nodes for processing
timeouts:
v On SOAPInput nodes, messages are propagated through this terminal only

when you are using an HTTP binding.
v On HTTPInput nodes, messages are propagated through this terminal only when

you have configured your execution groups such that the HTTP nodes are using
the embedded execution group listener.

If these conditions are not met when you deploy the BAR file for the message flow
that includes one of these nodes, a warning is generated, and the path of the
message flow that you have connected to the HTTP Timeout terminal is ignored.
No further warnings are generated until the next restart.

To set a static timeout value in an input node:
1. Create a message flow, or open an existing flow.
2. In the Message Flow editor, select the input node for this message flow. The

node properties are displayed in the Properties view (below the editor pane).
3. Set an appropriate time for the timeout interval in the property Maximum client

wait time. The default interval is 180 seconds.
If this time expires, and you have not connected one or more nodes to the
HTTP Timeout terminal, the listener that received the client request message
responds with a SOAP Fault message indicating that a timeout has occurred.

4. If you want to provide customized timeout processing, connect one or more
nodes to the HTTP Timeout terminal. You must include in this sequence the
reply node that matches the input node. Therefore, if your message flow starts
with an HTTPInput node, you must include an HTTPReply; if your message
flow starts with a SOAPInput node, you must include a SOAPReply node.

To set a dynamic timeout value in an input node:
v Override the timeout value set on the input node by using the Java plug-in API

to update it in a JavaCompute node using the
MbUtilities.changeIdentifierTimeout() method. The following code shows an
example of the changeIdentifierTimeout method:
MbMessage localEnv = assembly.getLocalEnvironment();
MbElement rootElem = localEnv.getRootElement();
MbElement repIdElement = rootElem.getFirstElementByPath(

Chapter 9. Developing message flow applications 1595

"/Destination/SOAP/Reply/ReplyIdentifier");
Object repId = repIdElement.getValue();
boolean success = changeIdentifierTimeout((byte[])repId, timeout);

v Override the timeout value set on the input node by using the
“CHANGEIDENTIFIERTIMEOUT function” on page 5292.

You can derive the value that you use to replace the existing value by several
means; for example:
v Create a configurable service of type UserDefined to define a timeout value, and

retrieve the appropriate property.
v Read a record from a database.
v Use a value from a field within the message body.

By propagating from the HTTP Timeout terminal you can then change the contents
of the responses that your message flow sends to the client. The processing on the
sequence of nodes that you connect to the HTTP Timeout terminal is also subject
to a further timeout, so that the client always gets a response within a known
timeout interval.

When a message is propagated from the HTTP Timeout terminal the message tree
contains the input headers of the original input message and a message body that
is the fault timeout message. The original message body along with other
information relating to the timeout can be accessed in the LocalEnvironment
message tree. For example, the following record can be found in the
LocalEnvironment:

(0x01000000:Name):HTTP = (
(0x01000000:Name):Input = (

(0x01000000:Name):Timeout = (
(0x03000000:NameValue):OriginalClientLastWaitTime = 10 (INTEGER)
(0x03000000:NameValue):OriginalClientWaitTime = 15 (INTEGER)
(0x03000000:NameValue):OriginalMessageMadeTheFlow = TRUE (BOOLEAN)
(0x03000000:NameValue):OriginalRequestIdentifier =

X’48545450000000000000000000000000c00c000000000000’ (BLOB)
(0x03000000:NameValue):OriginalInboundMessage = X’3c3e’ (BLOB)

)
)

)

For SOAPInput nodes the SOAPReply node connected on the HTTP Timeout
terminal path must send a SOAP fault response message and the reply status code
of 500 cannot be altered. For HTTPInput nodes any response message can be sent
from the HTTP Timeout terminal and the reply status code can be changed by
updating the LocalEnvironment.Destination.HTTP.ReplyStatusCode message tree
field.
Related concepts:
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.

1596 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
“Managing brokers from JavaCompute nodes” on page 997
You can use the CMP API to manage brokers and their associated resources from
JavaCompute nodes in deployed message flows.
“Working with properties of a configurable service of type UserDefined at run time
in a JavaCompute node” on page 987
Use the CMP API in a JavaCompute node to query, set, create, and delete
properties dynamically at run time in configurable services that you have defined
with type UserDefined.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Processing Web service messages” on page 1601
Use WebSphere Message Broker nodes and services to connect to other Web
services providers and consumers.
Related reference:
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“Administration API” on page 3672
Use the Administration API for WebSphere Message Broker (CMP API) Java classes
and methods to develop CMP applications.

Using compression with HTTP and SOAP nodes:

You can configure HTTP and SOAP nodes to use HTTP compression and
decompression when sending and receiving messages.

The nodes can be configured to compress request messages, accept and
decompress responses, and decompress input messages.

Background information

The HTTP transport supports the sending of compressed data. Specific HTTP
header fields are used to indicate that the data is compressed, and which
compression technique was used for the compression. When an HTTP client makes
an HTTP request, it can specify that it accepts a compressed response, and also
which types of compressed data it accepts. The three compression techniques
supported by the HTTP transport are GZIP, deflate, and compress.

The Accept-Encoding field is used in an HTTP request to indicate which encodings
are accepted in a response message to the request. This field is used to specify the
values of gzip, deflate, compress and identity, which are not case-sensitive. A
value of identity indicates that the data must not be compressed. A wildcard of *
indicates that any encoding is accepted. The Accept-Encoding field can also be
empty, indicating that no encoding is accepted.

Chapter 9. Developing message flow applications 1597

The Content-Encoding header field indicates the encoding that is applied to the
data and it can contain the tokens of gzip, deflate, and compress, but not
identity. When data is compressed for an HTTP message, the Content-Encoding
field contains the name of the compression technique that was used, enabling the
recipient to identify the compression scheme and correctly decompress the message
data.

The TE header field is used in a request header to indicate which extension
transfer encodings it will accept in the response. This is similar to the
Accept-Encoding field.

The Transfer-Encoding field is similar to the Content-Encoding field, except that it
is a property of the message and not of the entity. The Transfer-Encoding field is
primarily used to indicate that a response message is chunked. It is possible to
receive a Transfer-Encoding header that indicates other transfer encodings such as
"chunked, gzip". In this case the gzip applies to the transfer of the data, not the
actual data itself.

HTTP compression in WebSphere Message Broker

WebSphere Message Broker supports compression and decompression with the
HTTP and SOAP nodes using the Accept-Encoding and Content-Encoding fields as
follows:
v In a request node, such as an HTTPRequest or SOAPRequest node, if you select

the property to allow compressed responses, the broker sets the Accept-Encoding
field on the outbound request.

v When compressing a request, the request nodes set the Content-Encoding header
field to indicate that the data is compressed. When receiving a response, the
request nodes check the Content-Encoding field to determine if the response is
compressed. Multiple values in the header field indicate that the data has been
compressed more than once using multiple compression functions.

v When receiving a request, the input nodes check the contents of the
Content-Encoding field to determine if the contents of the message are
compressed. In response and input nodes, a Content-Encoding value of x-gzip is
treated as gzip.

v WebSphere Message Broker supports only the gzip and deflate compression
encodings; the compress encoding is not supported.

v Compression and decompression is handled only through the Accept-Encoding
and Content-Encoding header fields; the TE and Transfer-Encoding header fields
are not supported.

When compressing a request HTTP message, the node checks the
Content-Encoding field to determine if the message data is already compressed. If
the data is already compressed in the specified scheme then no further
compression is needed. However, if the existing data is already compressed in an
encoding that is not specified in the node properties, the node further compresses
the compressed bit stream using the encoding specified in the node properties. The
value of the Content-Encoding field is updated to indicate the additional encoding
applied to the data. For example, a Content-Encoding value of deflate,gzip
indicates that the message should be first decompressed using deflate and then
further decompressed using gzip.

The HTTP and SOAP nodes do not support quality values in the Accept-Encoding
field, which allow a user to specify a preferred weighting of compression types for
responses. Any quality values in the Accept-Encoding field are ignored.

1598 WebSphere Message Broker Version 7.0.0.8

Using HTTP compression with the HTTP and SOAP nodes

The request nodes can request and process compressed responses. You can
configure the request nodes to indicate that compression in responses is allowed,
and the node automatically decompresses a compressed response. The
Accepts-Encoding header is set to indicate that GZIP and deflate compression
techniques are accepted. If the Accept-Encoding header is already set, the node
does not override it.

If the request or the AsyncResponse nodes receive a GZIP or deflate compressed
response, it is decompressed and any header indication that the message is
compressed is removed. If the nodes receive an invalid compressed response or an
unrecognized compression function, an exception is raised indicating that the data
could not be decompressed.

The request nodes can also send compressed requests. You can configure the node
to specify which compression technique is used for the compressed requests that it
sends. The value of the Content-Encoding header is set to indicate the compression
that is used. You can override this value in the local environment for an individual
message. If you override the local environment with a value that is not recognized
by the node, the existing node value for Use compression is used.

The input nodes can decompress input data that is compressed using the GZIP and
deflate compression scheme. If the input node receives a message that is not
compressed validly, a fault message is returned to the client and the input message
is not propagated to the message flow. This can occur if:
v The Content-Encoding header is set to an unrecognized compression function
v The message body is not compressed correctly using the named

Content-Encoding value.
Related reference:
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

Web services example messages
Examples of complete HTTP messages show typical content in specific scenarios.

The following examples show complete HTTP messages. The first message is a
request sent by an HTTPRequest node to a Web service that provides a lookup
service:

Chapter 9. Developing message flow applications 1599

The Cookie is an example of a value that can be retrieved from the HTTPRequest
tree.

The second message is the corresponding Web service response returned to the
HTTPRequest node:

For more information about HTTP return codes, see HTTP Response codes.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
“HTTP message format” on page 1582
An HTTP message contains components that are appropriate to its type.

POST /greenpages/servlet/rpcrouter HTTP/1.0
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: 520
SOAP Action: ""
Cookie: JSESSIONID=0000B5OSLFIUDMQZFAUXKHD5ZDQ:-1

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schema.xmlsoap.org.soap/envelope/"

xmlns:xsi="http://www.w3/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:getUserByName xmlns:ns1="http://tempuri.org/imb.GreenPages"

SOAP-ENV:encodingStyle="http:/schemas.xmlsoap.org/soap/encoding/">
<nameField xsl:type="xsd:string">bloggs, joe</nameField>
</ns1:getUserByName>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HTTP/1.0 200 OK
Server: WebSphere Application Server/4.0
Content-Type: text/xml; charset=utf-8
Content-Length: 1585
Content-Language: en
Connection: close

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schema.xmlsoap.org.soap/envelope/"

xmlns:xsi="http://www.w3/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:getUserByNameResponse xmlns:ns1="http://tempuri.org/imb.GreenPages"

SOAP-ENV:encodingStyle="http:/schemas.xmlsoap.org/soap/encoding/">
<return xmlns:ns2="http://www.greenpages.com/schemas/GreenPagesRemoteInterface"

xsi:type="ns2:imb.UserRecord">
<fullName xsi:type="xsd:string">Joseph Bloggs</fullName>
<empNum xsi:type="xsd:int">65874</empNum>
<deskPhone xsi:type="xsd:string">(718)545-3623</deskPhone>
</return>
</ns1:getUserByNameResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

1600 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6

“HTTP headers” on page 1583
When an HTTPInput or HTTPRequest node receives a message, it parses the HTTP
headers to create elements in the message tree. When an HTTPReply or
HTTPRequest node sends a message, it parses the HTTP headers from the message
tree into a bit stream.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

Processing Web service messages
Use WebSphere Message Broker nodes and services to connect to other Web
services providers and consumers.

About this task

A Web service is a software system designed to support interoperable
computer-to-computer interaction over a network. It has an interface described by
an XML-based specification; specifically, the Web Service Definition Language, or
WSDL.

Web services fulfill a specific task or a set of tasks. A Web service is described
using a standard, formal XML notation, called its service description, that provides
all the details necessary to interact with the service, including message formats
(that detail the operations), transport protocols, and location.

The nature of the interface hides the implementation details of the service, so that
it can be used independently of the hardware or software platform on which it is
implemented. The interface is also independent of the programming language in
which it is written. This interface handles Web service-based applications as loosely
coupled, component-oriented, cross-technology implementations. Web services can
be used alone, or with other Web services, to carry out a complex aggregation or a
business transaction.

The following topics describe how to work with Web services:
v “WebSphere Message Broker and Web services” on page 1602
v “What is SOAP?” on page 1604
v “What is WSDL?” on page 1615
v “What is SOAP MTOM?” on page 1616
v “WS-Addressing” on page 1617
v “WebSphere Service Registry and Repository” on page 1875
v “Message flows for Web services” on page 1619
v “WS-Security” on page 765

WebSphere Message Broker supplies a Java servlet that you can use in an external
Web servlet container such as IBM WebSphere Application Server or Apache
Tomcat, to receive HTTP requests from Web services client applications. The HTTP

Chapter 9. Developing message flow applications 1601

proxy servlet is described in “HTTP proxy servlet overview” on page 856.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

WebSphere Message Broker and Web services
A WebSphere Message Broker application can participate in a Web services
environment as a service requester, as a service provider, or both.

The SOAP domain supports these formats:
v Common Web services message formats SOAP 1.1, SOAP 1.2, SOAP with

Attachments (SwA), and MTOM.
v Consistent SOAP logical tree format, which is independent of the exact message

format.
v WS-Addressing and WS-Security standards.

The following nodes are provided for use in the SOAP domain:
v “SOAPInput node” on page 4795
v “SOAPReply node” on page 4819
v “SOAPRequest node” on page 4828
v “SOAPAsyncRequest node” on page 4750
v “SOAPAsyncResponse node” on page 4777
v “SOAPEnvelope node” on page 4786
v “SOAPExtract node” on page 4790

Use the SOAP nodes and SOAP domain where possible; see “Web services: when
to use SOAP or HTTP nodes” on page 1582.

Web services support conforms to the following open standards:
v SOAP 1.1 and 1.2
v SOAP Messages with Attachments
v MTOM
v HTTP 1.1

1602 WebSphere Message Broker Version 7.0.0.8

v WSDL 1.1
v WS-Addressing (new SOAP domain only)
v WS-Security (new SOAP domain only)

WSDL is also validated against the WS-I Basic Profile Version 1.1. Conformance to
the guidelines in this specification improves interoperability with other
applications.

For more information about how a WebSphere Message Broker application can
participate in a Web services environment, see the WebSphere Message Broker web
page on developerWorks.
Related concepts:
“What is a Web service?”
A Web service is defined by the World Wide Web Consortium (W3C) as a software
system designed to support interoperable machine-to-machine interaction over a
network.
“WebSphere Message Broker compliance with Web services standards” on page
6704
WebSphere Message Broker complies with the supported Web services standards
and specifications, in that you can generate and deploy Web services that are
compliant.
“WS-I Basic Profile Version 1.1” on page 6700
WS-I Basic Profile Version 1.1 (WS-I BP 1.1) is a set of non-proprietary Web
services specifications, along with clarifications and amendments to those
specifications, which together promote interoperability between different
implementations of Web services.

What is a Web service?:

A Web service is defined by the World Wide Web Consortium (W3C) as a software
system designed to support interoperable machine-to-machine interaction over a
network.

A Web service fulfills a specific task or a set of tasks, and is described by a service
description in a standard XML notation called Web Services Description Language
(WSDL). The service description provides all of the details necessary to interact
with the service, including message formats (that detail the operations), transport
protocols, and location.

Other systems use SOAP messages to interact with the Web service, typically by
using HTTP with an XML serialization in conjunction with other Web-related
standards.

The WSDL interface hides the details of how the service is implemented, and the
service can be used independently of the hardware or software platform on which
it is implemented, and independently of the programming language in which it is
written.

Applications that are based on Web services are loosely-coupled,
component-oriented, cross-technology implementations. Web services can be used
alone, or in conjunction with other Web services to carry out a complex
aggregation or a business transaction.
Related concepts:

Chapter 9. Developing message flow applications 1603

http://www.ibm.com/developerworks/websphere/zones/businessintegration/wmb.html
http://www.ibm.com/developerworks/websphere/zones/businessintegration/wmb.html

“WebSphere Message Broker and Web services” on page 1602
A WebSphere Message Broker application can participate in a Web services
environment as a service requester, as a service provider, or both.
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.

What is SOAP?:

SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.

There are two versions of SOAP in common use: SOAP 1.1 and SOAP 1.2. Both are
supported in WebSphere Message Broker. SOAP is defined in the following
documents issued by World Wide Web Consortium (W3C):
v Simple Object Access Protocol (SOAP) 1.1 (W3C note).
v SOAP Version 1.2 Part 0: Primer (W3C recommendation).
v SOAP Version 1.2 Part 1: Messaging Framework (W3C recommendation).
v SOAP Version 1.2 Part 2: Adjuncts (W3C recommendation).

Support for SOAP in WebSphere Message Broker includes:
v SOAP parser and domain. See “SOAP parser and domain” on page 1082.
v SOAP nodes to send and receive messages in SOAP format.
v IBM supplied message definitions for SOAP 1.1 and SOAP 1.2. These message

definitions support validation, ESQL content assist, and the creation of message
maps for use with SOAP messages, in the SOAP and other XML domains. See
“IBM supplied messages that you can import” on page 6367.

v HTTP and JMS transport to send SOAP messages. See the W3C SOAP over JMS
specification: http://www.w3.org/TR/soapjms/

WSDL validation in WebSphere Message Broker refers to the WS-I Basic Profile.
For more information, see the WS-I, and in particular the WS-I Basic Profile
document:
v http://www.ws-i.org/
v http://www.ws-i.org/deliverables
Related concepts:
“WebSphere Message Broker and Web services” on page 1602
A WebSphere Message Broker application can participate in a Web services
environment as a service requester, as a service provider, or both.
“SOAP 1.1 and 1.2” on page 6696
SOAP is a lightweight, XML-based, protocol for exchange of information in a
decentralized, distributed environment.
“The structure of a SOAP message” on page 1605
A SOAP message is encoded as an XML document, consisting of an <Envelope>
element, which contains an optional <Header> element, and a mandatory <Body>
element. The <Fault> element, contained in <Body>, is used for reporting errors.
“SOAP tree overview” on page 1611
This tree format allows you to access the key parts of the SOAP message in a
convenient way.
Related reference:

1604 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/soap11/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soapjms/
http://www.ws-i.org/
http://www.ws-i.org/deliverables

“IBM supplied messages that you can import” on page 6367
You can import IBM supplied messages to create a new message definition file.

The structure of a SOAP message:

A SOAP message is encoded as an XML document, consisting of an <Envelope>
element, which contains an optional <Header> element, and a mandatory <Body>
element. The <Fault> element, contained in <Body>, is used for reporting errors.

The SOAP envelope
<Envelope> is the root element in every SOAP message, and contains two
child elements, an optional <Header> element, and a mandatory <Body>
element.

The SOAP header
<Header> is an optional subelement of the SOAP envelope, and is used to
pass application-related information that is to be processed by SOAP nodes
along the message path; see “The SOAP header” on page 1606.

The SOAP body
<Body> is a mandatory subelement of the SOAP envelope, which contains
information intended for the ultimate recipient of the message; see “The
SOAP body” on page 1608.

The SOAP fault
<Fault> is a subelement of the SOAP body, which is used for reporting
errors; see “The SOAP fault” on page 1608.

XML elements in <Header> and <Body> are defined by the applications that make
use of them, although the SOAP specification imposes some constraints on their
structure. The following diagram shows the structure of a SOAP message.

SOAP envelope

SOAP header

SOAP body

Header block

Body subelement

Header block

The following code is an example of a SOAP message that contains header blocks
(the <m:reservation> and <n:passenger> elements) and a body (containing the
<p:itinterary> element).
<?xml version=’1.0’ Encoding=’UTF-8’ ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>
<m:reservation xmlns:m="http://travelcompany.example.org/reservation"
env:role="http://www.w3.org/2003/05/soap-envelope/role/next">
<m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
<m:dateAndTime>2007-11-29T13:20:00.000-05:00</m:dateAndTime>
</m:reservation>
<n:passenger xmlns:n="http://mycompany.example.com/employees"
env:role="http://www.w3.org/2003/05/soap-envelope/role/next">
<n:name>Fred Bloggs</n:name>
</n:passenger>
</env:Header>
<env:Body>
<p:itinerary xmlns:p="http://travelcompany.example.org/reservation/travel">

Chapter 9. Developing message flow applications 1605

<p:departure>
<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:departureDate>2007-12-14</p:departureDate>
<p:departureTime>late afternoon</p:departureTime>
<p:seatPreference>aisle</p:seatPreference>

</p:departure>
<p:return>

<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2007-12-20</p:departureDate>
<p:departureTime>mid-morning</p:departureTime>
<p:seatPreference></p:seatPreference>

</p:return>
</p:itinerary>
</env:Body>
</env:Envelope>

Related concepts:
“The SOAP header”
The SOAP header (the <Header> element) is an optional sub-element of the SOAP
envelope, and is used to pass application-related information that is processed by
SOAP nodes along the message flow.
“The SOAP body” on page 1608
The SOAP body (the <Body> element) is a mandatory sub-element of the SOAP
envelope, which contains information intended for the ultimate recipient of the
message.
“The SOAP fault” on page 1608
The SOAP fault (the <Fault> element) is a sub-element of the SOAP body, which is
used for reporting errors.
“SOAP 1.1 and 1.2” on page 6696
SOAP is a lightweight, XML-based, protocol for exchange of information in a
decentralized, distributed environment.

The SOAP header:

The SOAP header (the <Header> element) is an optional sub-element of the SOAP
envelope, and is used to pass application-related information that is processed by
SOAP nodes along the message flow.

The immediate child elements of the header are called header blocks. A header block
is an application-defined XML element, and represents a logical grouping of data
which can be targeted at SOAP nodes that might be encountered in the path of a
message from a sender to an ultimate receiver.

SOAP header blocks can be processed by SOAP intermediary nodes, and by the
ultimate SOAP receiver node. However, in a real application, not every node
processes every header block. Each node is typically designed to process particular
header blocks, and each header block is processed by particular nodes.

The SOAP header enables you to add features to a SOAP message in a
decentralized manner without prior agreement between the communicating parties.
SOAP defines some attributes that can be used to indicate what can deal with a
feature and whether it is optional or mandatory. Such control information includes,
for example, passing directives or contextual information related to the processing
of the message. This control information enables a SOAP message to be extended
in an application-specific manner.

1606 WebSphere Message Broker Version 7.0.0.8

Although the header blocks are application-defined, SOAP-defined attributes on
the header blocks indicate how the header blocks must be processed by the SOAP
nodes. SOAP-defined attributes include:

encodingStyle
Indicates the rules used to encode the parts of a SOAP message. SOAP
defines a narrower set of rules for encoding data than the flexible encoding
that XML enables.

actor (SOAP 1.1) or role (SOAP 1.2)
In SOAP 1.2, the role attribute specifies whether a particular node will
operate on a message. If the role specified for the node matches the role
attribute of the header block, the node processes the header. If the roles do
not match, the node does not process the header block. In SOAP 1.1, the
actor attribute performs the same function.

Roles can be defined by the application, and are designated by a URI. For
example, http://example.com/Log might designate the role of a node
which performs logging. Header blocks that are processed by this node
specify env:role="http://example.com/Log" (where the namespace prefix
env is associated with the SOAP namespace name of http://www.w3.org/
2003/05/soap-envelope).

The SOAP 1.2 specification defines three standard roles in addition to those
which are defined by the application:

http://www.w3.org/2003/05/soap-envelope/none
None of the SOAP nodes on the message path should process the
header block directly. Header blocks with this role can be used to
carry data that is required for processing of other SOAP header
blocks.

http://www.w3.org/2003/05/soap-envelope/next
All SOAP nodes on the message path are expected to examine the
header block (provided that the header has not been removed by a
node earlier in the message path).

http://www.w3.org/2003/05/soap-envelope/ultimateReceiver
Only the ultimate receiver node is expected to examine the header
block.

mustUnderstand
This attribute is used to ensure that SOAP nodes do not ignore header
blocks which are important to the overall purpose of the application. If a
SOAP node determines, by using the role or actor attribute, that it should
process a header block, the action taken depends on the value of the
mustUnderstand attribute.
v 1 (SOAP 1.1) or true (SOAP 1.2): The node must either process the

header block in a manner consistent with its specification, or not at all
(and throw a fault).

v 0 (SOAP 1.1) or false (SOAP 1.2): The node is not obliged to process the
header block.

In effect, the mustUnderstand attribute indicates whether processing of the
header block is mandatory or optional.

relay (SOAP 1.2 only)
When a SOAP intermediary node processes a header block, the SOAP
intermediary node removes the header block from the SOAP message. By
default, the SOAP intermediary node also removes all header blocks that it

Chapter 9. Developing message flow applications 1607

ignored (because the mustUnderstand attribute had a value of false).
However, when the relay attribute is specified with a value of true, the
SOAP intermediary node retains the unprocessed header block in the
message.

Related concepts:
“The SOAP body”
The SOAP body (the <Body> element) is a mandatory sub-element of the SOAP
envelope, which contains information intended for the ultimate recipient of the
message.
“The SOAP fault”
The SOAP fault (the <Fault> element) is a sub-element of the SOAP body, which is
used for reporting errors.

The SOAP body:

The SOAP body (the <Body> element) is a mandatory sub-element of the SOAP
envelope, which contains information intended for the ultimate recipient of the
message.

The body element and its associated child elements are used to exchange
information between the initial SOAP sender and the ultimate SOAP receiver.
SOAP defines one child element for the body: the <Fault> element, which is used
for reporting errors. Other elements in the body are defined by the Web service
that uses them.
Related concepts:
“The SOAP header” on page 1606
The SOAP header (the <Header> element) is an optional sub-element of the SOAP
envelope, and is used to pass application-related information that is processed by
SOAP nodes along the message flow.
“The SOAP fault”
The SOAP fault (the <Fault> element) is a sub-element of the SOAP body, which is
used for reporting errors.

The SOAP fault:

The SOAP fault (the <Fault> element) is a sub-element of the SOAP body, which is
used for reporting errors.

If present, the SOAP fault element must appear as a body entry and must not
appear more than once in a body element. The sub-elements of the SOAP fault
element are different in SOAP 1.1 and SOAP 1.2.

SOAP 1.1

In SOAP 1.1, the SOAP fault contains the following sub-elements:

<faultcode>
The<faultcode> element is a mandatory element in the <Fault> element. It
provides information about the fault in a form that can be processed by
software. SOAP defines a small set of SOAP fault codes covering basic
SOAP faults, and this set can be extended by applications.

<faultstring>
The <faultstring> element is a mandatory element in the <Fault> element.
It provides information about the fault in a form intended for a human
reader.

1608 WebSphere Message Broker Version 7.0.0.8

<faultactor>
The <faultactor> element contains the URI of the SOAP node that
generated the fault. A SOAP node that is not the ultimate SOAP receiver
must include the <faultactor> element when it creates a fault; an ultimate
SOAP receiver is not obliged to include this element, but might do so.

<detail>
The <detail> element carries application-specific error information related
to the <Body> element. It must be present if the contents of the <Body>
element were not successfully processed. The <detail> element must not
be used to carry information about error information belonging to header
entries. Detailed error information belonging to header entries must be
carried in header entries.

SOAP 1.2

In SOAP 1.2, the SOAP fault contains the following sub-elements:

<Code> The <Code> element is a mandatory element in the <Fault> element. It
provides information about the fault in a form that can be processed by
software. It contains a <Value> element and an optional <Subcode> element.

<Reason>
The <Reason> element is a mandatory element in the <Fault> element. It
provides information about the fault in a form intended for a human
reader. The <Reason> element contains one or more <Text> elements, each
of which contains information about the fault in a different language.

<Node> The <Node> element contains the URI of the SOAP node that generated the
fault. A SOAP node that is not the ultimate SOAP receiver must include
the <Node> element when it creates a fault; an ultimate SOAP receiver is
not obliged to include this element, but might do so.

<Role> The <Role> element contains a URI that identifies the role in which the
node was operating at the point the fault occurred.

<Detail>
The <Detail> element is an optional element, which contains
application-specific error information related to the SOAP fault codes
describing the fault. The presence of the <Detail> element has no
significance as to which parts of the faulty SOAP message were processed.

Related concepts:
“The SOAP header” on page 1606
The SOAP header (the <Header> element) is an optional sub-element of the SOAP
envelope, and is used to pass application-related information that is processed by
SOAP nodes along the message flow.
“The SOAP body” on page 1608
The SOAP body (the <Body> element) is a mandatory sub-element of the SOAP
envelope, which contains information intended for the ultimate recipient of the
message.

SOAP nodes:

The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.

Chapter 9. Developing message flow applications 1609

SOAP nodes

v The SOAPInput and SOAPReply nodes are used in a message flow which
implements a Web service. These SOAP nodes are used to construct a message
flow that implements a Web service provider. The SOAPInput node listens for
incoming Web service requests, and the SOAPReply sends responses back to the
client; see “SOAPInput node” on page 4795 and “SOAPReply node” on page
4819.

v A client can send an HTTP GET request to the endpoint exposed by the flow,
suffixed with a query string ?wsdl, and receive a response with the WSDL
definition used to configure the flow. For a full description, see “Using WSDL to
configure message flows” on page 1664.

v The SOAPRequest node is used in a message flow to call a Web service provider
synchronously. Calling a Web service synchronously means that the node sends
a Web service request and waits, blocking the message flow, for the associated
Web service response to be received before the message flow continues; see
“SOAPRequest node” on page 4828.

v The SOAPAsyncRequest and SOAPAsyncResponse nodes are used to construct a
message flow (or pair of flows) which calls a Web service asynchronously.
Calling a Web service asynchronously means that the SOAPAsyncRequest node
sends a Web service request, but the request does not block the message flow by
waiting for the associated Web service response to be received because the Web
service response is received at the SOAPAsyncResponse node, which is in a
separate flow. The Node Correlator identifies the logical pairing of the responses
against the original requests. Multiple requests can, therefore, be handled in
parallel; see “SOAPAsyncRequest node” on page 4750 and
“SOAPAsyncResponse node” on page 4777.

v You can work on the payload of the SOAP body using the SOAPExtract and
SOAPEnvelope nodes. The SOAPExtract node can interoperate with the SOAP
domain. The SOAP nodes do not require the SOAPEnvelope node, because they
can directly handle non-SOAP messages, but the SOAPEnvelope node is still
required for the HTTP nodes. See “SOAPExtract node” on page 4790 and
“SOAPEnvelope node” on page 4786.

v You can change the Operation mode of the SOAP nodes so that they act in
gateway mode. In gateway mode, a WSDL is not required to configure the nodes
since they handle generic request/response and one-way SOAP messages that
are not tied to a specific WSDL. For more details, see “Gateway operation mode
for SOAP nodes” on page 1645.

The W3C SOAP specification refers to "SOAP nodes" meaning a unit of application
logic (see Web Services Glossary). Typically, references to "SOAP nodes" in the
WebSphere Message Broker Information Center are referring to WebSphere
Message Broker SOAP nodes.

If you choose to handle HTTP messages by using the execution group listener, you
must carefully check the URL specifications in your HTTPInput and SOAPInput
nodes. If both URL specifications match an incoming message, the wrong type of
node might get the message, and processing might fail or produce unexpected
results. This situation occurs if you specify identical values for the Path suffix for
URL properties of the HTTPInput node and the SOAPInput node. It can also occur
if you use wildcards in either or both specifications, and an incoming message
matches both properties.
Related concepts:

1610 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/ws-gloss/#soapnode

“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“The SOAP body” on page 1608
The SOAP body (the <Body> element) is a mandatory sub-element of the SOAP
envelope, which contains information intended for the ultimate recipient of the
message.
“Using WSDL to configure message flows” on page 1664
You can use WSDL to configure message flows.
Related reference:
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“SOAPAsyncResponse node” on page 4777
Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest
node to construct a pair of message flows that call a Web service asynchronously.
Related information:
“Web services: when to use SOAP or HTTP nodes” on page 1582
HTTP and SOAP nodes can both be used to interact with Web services. Typically
you use SOAP nodes when working with SOAP-based Web services.

SOAP tree overview:

This tree format allows you to access the key parts of the SOAP message in a
convenient way.

This is a diagrammatic representation of the SOAP domain tree:

Chapter 9. Developing message flow applications 1611

The SOAP tree contains the following elements:

SOAP.Header
Contains the SOAP header blocks (children of Envelope.Header)

SOAP.Body
Contains the SOAP payload (children of Envelope.Body)

The content of the Body subtree depends on the WSDL style.

SOAP.Attachment
Contains attachments for an SwA message in their non encoded format.

Note that attachments for an MTOM message are represented inline as part of
the SOAP content in a base 64 representation.

SOAP.Context
Contains the following information:
v Input; populated by the SOAPInput node:

– operation - the WSDL operation name. In Gateway mode, the
operation is assumed to be the name of the element that is the first

ID0 ID1

as ID0as ID0

IDN

Root

Properties

Context

port

portType

operation

fred
(subtree)

bill
(subtree)

harry
(payload subtree)service

fileName

operationType= ='REQUEST_RESPONSE' 'ONE_WAY'

SOAP_Verson='1.1' '1.2'

prefix=uri
Namespace

XmlDeclaration

MIME_Headers BLOB

XMLNSC

BLOB(=X'...')

Content-Type=

Content-Transfer-Encoding=

Content-Id=

user can re-parse
as required - e.g.

Header Body Attachment

Set=myMS Type Format ContentType=top-level C-T

Transport headers SOAP

1612 WebSphere Message Broker Version 7.0.0.8

child of the SOAP Body element, if present, otherwise it is the
constant name 'ComIbmBrokerGenericGatewayOperation'.

– portType - the WSDL port type name. In Gateway mode, this item is
empty.

– port - the WSDL port name (if known). In Gateway mode, this item is
empty.

– service - the WSDL service name (if known). In Gateway mode, the
service has the constant name
'ComIbmBrokerGenericGatewayService'.

– fileName - the original WSDL file name. In Gateway mode, this item
is empty.

– operationType - one of 'REQUEST_RESPONSE', 'ONE_WAY',
'SOLICIT_RESPONSE', 'NOTIFICATION'. In Gateway mode, without
WSDL, this field contains 'GATEWAY'. This means
'REQUEST_RESPONSE' or 'GATEWAY_ONE_WAY', which means that
the node has detected the operation type to be one-way.

– SOAP_Version - one of '1.1' or '1.2'.
– Namespace - Contains nameValue child elements; the name is the

Namespace prefix, and the value is the Namespace URI as it appears
in the bit stream.

– XmlDeclaration - represents the standard XML declaration.
v Output; the following fields can be placed in SOAP.Context to provide

override information when SOAPRequest or SOAPAsyncRequest nodes
serialize a SOAP message:
– SOAP_Version - one of '1.1' or '1.2'
– Namespace - Contains nameValue child elements that define the

namespace prefix (the name) to be used for a specified namespace URI
(the value).
An output message uses the namespace prefixes defined here to
qualify any elements in the corresponding namespaces.
If the SOAP.Context was originally created at an input node, it might
already contain all the namespace prefix definitions that you need.
If SOAP.Context does not exist, or the outgoing message uses
additional namespaces, the SOAP parser generates any required
namespace prefixes automatically.
Alternatively, you can specify your own namespace prefix; the specific
name of a namespace prefix does not usually affect the meaning of a
message, with one important exception. If the message content
contains a qualified name, the message must contain a matching
namespace prefix definition.
For example, if the output message is a SOAP Fault containing a
<faultcode> element with the value soapenv:Server, a namespace
prefix (which is case sensitive) for soapenv must be defined in the
logical tree:

-- Build SOAP Fault message. Note that as well as defining the correct
-- namespace for the Fault element, it is also necessary to bind the
-- namespace prefix used in the faultcode element (this is set up under
-- SOAP.Context.Namespace)

-- Send back a new user defined SOAP 1.2 fault message
DECLARE soapenv NAMESPACE ’http://www.w3.org/2003/05/soap-envelope’;
DECLARE xml NAMESPACE ’http://www.w3.org/XML/1998/namespace’;
DECLARE myNS NAMESPACE ’http://myNS’;

SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:soapenv = soapenv;
SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:myNS = myNS;

Chapter 9. Developing message flow applications 1613

SET OutputRoot.SOAP.Body.soapenv:Fault.soapenv:Code.soapenv:Value = ’soapenv:Receiver’;
SET OutputRoot.SOAP.Body.soapenv:Fault.soapenv:Code.soapenv:Subcode.soapenv:Value = ’my:subcode value’;
SET OutputRoot.SOAP.Body.soapenv:Fault.soapenv:Reason.soapenv:Text = ’my Reason string’;
SET OutputRoot.SOAP.Body.soapenv:Fault.soapenv:Reason.soapenv:Text.(SOAP.Attribute)xml:lang = ’en’;
SET OutputRoot.SOAP.Body.soapenv:Fault.soapenv:Node = ’my Node string’;
SET OutputRoot.SOAP.Body.soapenv:Fault.soapenv:Role = ’my Role string’;
SET OutputRoot.SOAP.Body.soapenv:Fault.soapenv:Detail.my:Text = ’my detail string’;

-- Send back a new user defined SOAP 1.1 fault message
DECLARE soapenv NAMESPACE ’http://schemas.xmlsoap.org/soap/envelope/’;
SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:soapenv = soapenv;

SET OutputRoot.SOAP.Body.soapenv:Fault.faultcode = ’soapenv:Receiver’;
SET OutputRoot.SOAP.Body.soapenv:Fault.faultstring = ’my fault string’;
SET OutputRoot.SOAP.Body.soapenv:Fault.faultactor = ’my fault actor’;
SET OutputRoot.SOAP.Body.soapenv:Fault.detail.Text = ’my detail string’;

Only Namespace, SOAP_Version, and XmlDeclaration influence the bit stream
generated for a SOAP tree; the other fields are for information only.
Related concepts:
“The structure of a SOAP message” on page 1605
A SOAP message is encoded as an XML document, consisting of an <Envelope>
element, which contains an optional <Header> element, and a mandatory <Body>
element. The <Fault> element, contained in <Body>, is used for reporting errors.
“The SOAP body” on page 1608
The SOAP body (the <Body> element) is a mandatory sub-element of the SOAP
envelope, which contains information intended for the ultimate recipient of the
message.
“The SOAP header” on page 1606
The SOAP header (the <Header> element) is an optional sub-element of the SOAP
envelope, and is used to pass application-related information that is processed by
SOAP nodes along the message flow.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
Related reference:
“XMLNSC: Namespace declarations” on page 2554
The XMLNSC parser provides full support for namespaces.
“IBM supplied messages that you can import” on page 6367
You can import IBM supplied messages to create a new message definition file.

Web services: when to use SOAP or HTTP nodes:

HTTP and SOAP nodes can both be used to interact with Web services. Typically
you use SOAP nodes when working with SOAP-based Web services.

For SOAP-based Web services, several advantages exist if you use the SOAP nodes
and the SOAP message domain instead of the HTTP transport nodes and XMLNSC
message domain.
v Support for WS-Addressing, WS-Security and SOAP headers.
v A common SOAP logical tree format, independent of the bitstream format.
v Runtime checking against WSDL.
v Automatic processing of SOAP with Attachments (SwA).

1614 WebSphere Message Broker Version 7.0.0.8

v Automatic processing of Message Transmission Optimization Mechanism
(MTOM).

Although the HTTP nodes can process SwA messages, you must use the MIME
message domain and design your flow to handle the attachments explicitly, and
use custom logic to extract and parse the SOAP.

Cases where it might be better to use HTTP nodes include:
v Message flows in which a single request node handles multiple SOAP request

and responses from more than one WSDL.
v Message flows that interact with Web services that use different standards, such

as REST or XML-RPC.
v Message flow that never use WS-Addressing, WS-Security, SwA, or MTOM.
Related concepts:
“What is a Web service?” on page 1603
A Web service is defined by the World Wide Web Consortium (W3C) as a software
system designed to support interoperable machine-to-machine interaction over a
network.
“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

What is WSDL?:

WSDL is an XML notation for describing a web service. A WSDL definition tells a
client how to compose a web service request and describes the interface that is
provided by the web service provider.

WebSphere Message Broker supports WSDL 1.1, as defined in the following
document issued by the World Wide Web Consortium (W3C): Web Services
Description Language (WSDL) 1.1. WebSphere Message Broker support for WSDL
also adheres to the Web Services Interoperability Organization (WS-I) Basic profile
1.1; see Web Services Interoperability Organization (WS-I).

A WSDL definition is divided into separate sections that specify the logical
interface and the physical details of a web service. The physical details include
both endpoint information, such as HTTP port number, and binding information,
which specifies how the SOAP payload is represented and which transport is used.

Support for WSDL in WebSphere Message Broker includes:
v Import of WSDL to create message definitions in a message set; see “Importing

from WSDL” on page 2946.
v Generation of WSDL from a message set; see “WSDL generation” on page 6340.
v WSDL editor with text and graphical design views.
v Use of WSDL to configure nodes in the SOAP domain; for example, you can

drag WSDL onto a node, and a client can request the WSDL that was used to
configure a SOAPInput node. For more details, see “Using WSDL to configure
message flows” on page 1664

v Use WSDL to create a skeleton message flow by dragging WSDL onto the
message flow editor canvas. For more details, see “Using WSDL to configure
message flows” on page 1664.

Chapter 9. Developing message flow applications 1615

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.ws-i.org

When you import or generate WSDL, the WSDL is validated against the WS-I Basic
Profile. You must fix validation errors before the message set can be deployed.
Validation warnings do not prevent deployment, but can indicate potential
interoperability problems. The validated WSDL becomes an integral part of the
message set.

The WSDL editor supports a graphical design view so that you can navigate from
the WSDL to its associated message definitions. The message set contains all the
message definitions required by message flows that are working with the Web
service described by the WSDL. At development time, the message definitions
support ESQL Content Assist and the creation of mappings. At run time, the
deployed message set supports schema validation in the SOAP, XMLNSC, and
MRM domains. In the SOAP domain, runtime checks are also made against the
WSDL itself, and WSDL information is included in the SOAP logical tree.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“WSDL validation” on page 1661
The WS-I Validator can be used to check your WSDL definitions against the Basic
Profile.
“WSDL Version 1.1” on page 6699
Web Services Description Language (WSDL) is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.

What is SOAP MTOM?:

SOAP Message Transmission Optimization Mechanism (MTOM) is the use of
MIME to optimize the bitstream transmission of SOAP messages that contain
significantly large base64Binary elements.

The MTOM message format allows bitstream compression of binary data. Data that
would otherwise have to be encoded in the SOAP message is instead transmitted
as raw binary data in a separate MIME part. A large chunk of binary data takes up
less space than its encoded representation, so MTOM can reduce transmission time,
although it can increase processor usage. Candidate elements to be transmitted in
this way are defined as base64Binary in the WSDL (XML Schema).

An MTOM message is identified by a Content-Type with a type of
application/xop+xml.

The SOAP domain handles inbound MTOM messages automatically, and MTOM
parts are reincorporated automatically into the SOAP Body.

The use of outbound MTOM messages can be configured on the SOAPReply,
SOAPRequest, and SOAPAsyncRequest nodes; for details, see “Using SOAP
MTOM with the SOAPReply, SOAPRequest, and SOAPAsyncRequest nodes” on
page 1678.

For details of the external specification published by the World Wide Web
Consortium (W3C), see “SOAP MTOM” on page 6697.
Related concepts:

1616 WebSphere Message Broker Version 7.0.0.8

“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
Related tasks:
“Processing Web service messages” on page 1601
Use WebSphere Message Broker nodes and services to connect to other Web
services providers and consumers.
Related reference:
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

WS-Addressing:

Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.

Start here to find out how WebSphere Message Broker supports WS-Addressing.

The WS-Addressing specification introduces two primary concepts: endpoint
references, and message addressing properties. This topic contains an overview of
each concept. For further details, select the following links to access the
WS-Addressing specifications:
v W3C WS-Addressing specifications
v W3C submission WS-Addressing specification

Endpoint references (EPRs)

EPRs provide a standard mechanism to encapsulate information about specific
endpoints. EPRs can be propagated to other parties and then used to target the
Web service endpoint that they represent. The following table summarizes the
information model for EPRs.

Abstract Property name Property type Multiplicity Description

[address] xs:anyURI 1..1 The absolute URI that specifies the address of
the endpoint.

[reference parameters]* xs:any 0..unbounded Namespace qualified element information
items that are required to interact with the
endpoint.

[metadata] xs:any 0..unbounded Description of the behavior, policies and
capabilities of the endpoint.

The following prefix and corresponding namespace is used in the previous table.

Chapter 9. Developing message flow applications 1617

http://www.w3.org/2002/ws/addr/
http://www.w3.org/Submission/ws-addressing/

Prefix Namespace

xs http://www.w3.org/2001/XMLSchema

The following XML fragment illustrates an endpoint reference. This element
references the endpoint at the URI http://example.com/fabrikam/acct, has
metadata specifying the interface to which the endpoint reference refers, and has
application-defined reference parameters of the http://example.com/fabrikam
namespace.
<wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
xmlns:fabrikam="http://example.com/fabrikam"
xmlns:wsdli="http://www.w3.org/2005/08/wsdl-instance"
wsdli:wsdlLocation="http://example.com/fabrikam
http://example.com/fabrikam/fabrikam.wsdl">

<wsa:Address>http://example.com/fabrikam/acct</wsa:Address>
<wsa:Metadata>

<wsaw:InterfaceName>fabrikam:Inventory</wsaw:InterfaceName>
</wsa:Metadata>
<wsa:ReferenceParameters>

<fabrikam:CustomerKey>123456789</fabrikam:CustomerKey>
<fabrikam:ShoppingCart>ABCDEFG</fabrikam:ShoppingCart>

</wsa:ReferenceParameters>
</wsa:EndpointReference>

Message addressing properties (MAPs)

MAPs are a set of well defined WS-Addressing properties that can be represented
as elements in SOAP headers. MAPs can provide either a standard way of
conveying information, such as the endpoint to which message replies should be
directed, or information about the relationship that the message has with other
messages. The MAPs that are defined by the WS-Addressing specification are
summarized in the following table.

Abstract WS-Addressing
MAP name MAP content type Multiplicity Description

[action] xs:anyURI 1..1 An absolute URI that uniquely identifies the
semantics of the message. This proprety
corresponds to the [address] property of the
endpoint reference to which the message is
addressed. This value is required.

[destination] xs:anyURI 1..1 The absolute URI that specifies the address of
the intended receiver of this message. This
value is optional because, if not present, it
defaults to the anonymous URI that is defined
in the specification, indicating that the
address is defined by the underpinning
protocol.

[reference parameters]* xs:any 0..unbounded Correspond to the [reference parameters]
property of the endpoint reference to which
the message is addressed. This value is
optional.

[source endpoint] EndpointReference 0..1 A reference to the endpoint from which the
message originated. This value is optional.

[reply endpoint] EndpointReference 0..1 An endpoint reference for the intended
receiver of replies to this message. This value
is optional.

1618 WebSphere Message Broker Version 7.0.0.8

Abstract WS-Addressing
MAP name MAP content type Multiplicity Description

[fault endpoint] EndpointReference 0..1 An endpoint reference for the intended
receiver of faults relating to this message. This
value is optional.

[relationship]* xs:anyURI plus
optional attribute
of type xs:anyURI

0..unbounded A pair of values that indicate how this
message relates to another message. The
content of this element conveys the [message
id] of the related message. An optional
attribute conveys the relationship type. This
value is optional.

[message id] xs:anyURI An absolute URI that uniquely identifies the
message. This value is optional.

The abstract names in the previous tables are used to refer to the MAPs
throughout this documentation.

The following example of a SOAP message contains WS-Addressing MAPs:
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:fabrikam="http://example.com/fabrikam">

<S:Header>
...

<wsa:To>http://example.com/fabrikam/acct</wsa:To>
<wsa:ReplyTo>

<wsa:Address> http://example.com/fabrikam/acct</wsa:address>
</wsa:ReplyTo>

<wsa:Action>...</wsa:Action>
<fabrikam:CustomerKey wsa:IsReferenceParameter=’true’>123456789
</fabrikam:CustomerKey>
<fabrikam:ShoppingCart wsa:IsReferenceParameter=’true’>ABCDEFG
</fabrikam:ShoppingCart>
...

</S:Header>
<S:Body>

...
</S:Body>

</S:Envelope>

Related concepts:
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
Related tasks:
“Processing Web service messages” on page 1601
Use WebSphere Message Broker nodes and services to connect to other Web
services providers and consumers.

Message flows for Web services
Message flows that need to work with Web services can use either the SOAP
domain or one of the XML domains.

The following topic describes fundamental scenarios. Any use of WS-Addressing or
WS-Security requires use of the SOAP domain, but otherwise these scenarios apply
to both types of message flow.
v “Web services scenarios” on page 1620

The following topics describe both types of flow.

Chapter 9. Developing message flow applications 1619

v “SOAP domain message flows” on page 1635
v “XML domain message flows” on page 1643

The following topics describe web services tasks.
v “Working with WS-Addressing” on page 1650
v “Working with WSDL” on page 1661
v “Using timeouts with HTTP and SOAP nodes” on page 1595
v “Using SOAP MTOM with the SOAPReply, SOAPRequest, and

SOAPAsyncRequest nodes” on page 1678
Related concepts:
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.

Web services scenarios:

These common Web services scenarios are organized according to the role that is
played by the broker.

A key consideration is whether a WSDL description for the Web service already
exists.

In scenario A, the WSDL description exists and is imported and used by the
message flow.

In scenario B, the WSDL description is generated in an existing message set. The
WSDL is used by the message flow and might also be exported for use by an
external client.

These scenarios are generic and can be implemented by using the SOAP domain,
or an appropriate non-SOAP domain (XMLNSC, MRM, MIME) and basic transport
nodes. If you need to use WS-Addressing or WS-Security for a particular
implementation, use the SOAP domain.

Scenario A: You want the broker to invoke an existing Web service:
See “Broker calls existing Web service” on page 1621

Scenario B: You want the broker to expose a Web service to a non-Web service
client: See “Broker implements non-Web-service interface to new Web service” on

page 1634

1620 WebSphere Message Broker Version 7.0.0.8

Broker calls existing Web service:

In this scenario, the broker calls an existing Web service implementation. The
WSDL for the Web service already exists, and is imported to create a message set.

A message flow based on this message set sends a Web service request and
receives the response, for example by using a SOAPRequest node.

WSDL
Web

Service

Message Set

deploy

import

Message Broker

Key to symbols:

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

Possible uses

v You want to call a Web service to do some processing as part of your message
flow.

v You have an existing Web service and you want to provide a different interface
to it. This could be an alternative Web services interface or a WebSphere MQ
interface.

v You have an existing Web service and you want to change its implementation in
some way without changing its interface; that is, the broker acts as an
intermediary to the Web service. For instance a message flow could be used to
enable auditing, or to transparently propagate the Web service response to
another application.

Chapter 9. Developing message flow applications 1621

Design steps

1. Import WSDL to create a message set containing definitions for the SOAP
messages described by the WSDL.

2. Create a message flow to invoke the Web service. If the SOAP domain is used,
the message flow uses a SOAPRequest node, SOAPAsyncRequest node, or a
SOAPAsyncResponse node. The nodes are configured by using the WSDL
imported in Step 1. If required, you can create a skeleton flow from scratch by
dropping the WSDL onto a blank message flow editor canvas. If you use the
SOAP domain, you must create the message flow by using transport nodes,
and an XML or MIME domain. For example, if the WSDL binding specifies
HTTP transport, and the request message is SOAP, you can use an
HTTPRequest node with the XMLNSC domain. You can then configure the
node manually with the endpoint information for the Web service.

3. Build a broker archive file for deployment. The broker archive file contains
your message flow and the message set that contains the imported WSDL. The
SOAP domain always requires the WSDL to be deployed, because messages are
verified against it at run time; also WSDL information is included in the logical
tree. The message set includes XML Schema definitions that can be used for
message validation in the SOAP, XMLNSC, or MRM domains.

At run time

Your message flow creates an appropriately formatted Web service request, invokes
the Web service, and parses the Web service response. If you use the SOAP
domain, your message flow uses the SOAP logical tree model. If you do not use
the SOAP domain, your message flow uses the logical tree for your selected
domain; for example, you use the MIME domain if your Web service messages use
SOAP with Attachments.

Example 1

Web service intermediary
In this example a client application uses a Web service called Account,
which is made available by another organization. The client is widely
distributed in your company. The client uses an operation called
getBalance, but the Account service is being modified to change the
definition of the getBalance operation. You can construct message flows to
provide an interface to the Account service, instead of modifying the client.
The message flows can call the Account service to do the work, and the
new Web service delegates to the original Web service. The client can now
continue to use the Account service, by using the new message flows.

In the examples of typical message flow patterns shown here, the
intermediate request node calls the Account service:
v Using SOAPInput, SOAPRequest, and SOAPReply nodes:

SOAPInput Compute1 SOAPRequest Compute2 SOAPReply

v Using SOAPInput, SOAPAsyncRequest, SOAPAsyncResponse, and
SOAPReply nodes:

1622 WebSphere Message Broker Version 7.0.0.8

v Using HTTPInput, HTTPRequest, and HTTPReply nodes:

HTTPInput Compute1 HTTPRequest Compute2 HTTPReply

In the message flows in the example, Compute1 modifies the original
getBalance message as required by the modified Account service, while
Compute2 restores the response message to the original format. If you
have imported or generated WSDL, you have a message model for the
getBalance operation. If you have a message model defined for the
getBalance operation, you can use Mapping nodes instead of Compute
nodes.

HTTP details

If you use HTTP transport nodes, as shown in the example, you can
configure the HTTPRequest node to generate HTTP headers from the
headers that are received by the HTTPInput node. This configuration
enables cookies and other application-specific headers to be passed
through the message flow. The HTTPReply node can be used task to
extract headers from the Web service response, to return to the originating
client. To create this configuration, select Generate default HTTP headers
from on both the HTTPRequest and HTTPReply nodes. Typically, you do
not need the original request message to generate the reply to the client,
and can select Replace input message with Web service response on the
HTTPRequest node. If you do want to preserve data from the input
request, you can store this in the LocalEnvironment in Compute1, and
retrieve it in Compute2 for inclusion in the reply.

Example 2

Using a Web service
In this example, a WebSphere MQ message flow implements a process for
the Human Resource department of your company. As part of this
processing, the message flow calls a Web service to retrieve employee ID
numbers. Employee ID numbers are maintained in the company's
employee directory, which is accessed through a Web service.

In the examples of typical message flow patterns shown here the
intermediate request node retrieves the employee ID:
v Using MQInput, SOAPRequest and MQOutput nodes:

Chapter 9. Developing message flow applications 1623

MQInput Compute1 SOAPRequest Compute2 MQOutput

v Using MQInput, SOAPAsyncRequest, SOAPAsyncResponse, and
MQOutput nodes:

MQInput

SOAPAsyncResponse

Compute1

Compute2

SOAPAsyncRequest

MQOutput

v Using MQInput, HTTPRequest, and MQOutput nodes:

MQInput Compute1 HTTPRequest Compute2 MQOutput

In the message flows in the example, Compute1 prepares the Web service
request message and Compute2 processes the response. For example, by
incorporating the employee ID in another message. If you have a message
model defined, you can use Mapping nodes instead of Compute nodes in
these examples.

HTTP details

If you use HTTP transport nodes, as shown in the example, you typically
clear the Replace input message with Web service response in the
HTTPRequest node properties. The response from the corporate directory
server is placed in a temporary location in the message tree. The
temporary location is specified in the Response message location in tree
property in the same node. In Compute2, you can code ESQL to retrieve
the result, and update the final message.

MQInput Compute1 HTTPRequest

HTTP Connection

Compute2 MQOutput

Corporate Directory Server

1624 WebSphere Message Broker Version 7.0.0.8

Using the SOAP domain for these scenarios is preferred. For more information
about choosing a domain for Web services, see “WebSphere Message Broker and
Web services” on page 1602.
Related concepts:
“XML domain message flows” on page 1643
If you are not using the SOAP domain, your message flow must take account of
the bitstream format of the Web service messages with which you are working. A
different logical tree format is used by each domain.
“Broker implements new Web service interface”
In this scenario, the broker implements a new Web service interface. The WSDL for
the Web service is generated from a message set and made available to clients. A
message flow based on this WSDL and message set receives a request and then
builds a response message by using data obtained from an existing
non-Web-service application.
“Broker implements existing Web service interface” on page 1630
In this scenario, the broker implements an existing Web service interface. The
WSDL for the Web service already exists, and is imported to create a message set.
A message flow based on this message set receives a request, then builds a
response message by using data obtained from an existing non-Web-service
application.
“Broker implements non-Web-service interface to new Web service” on page 1634
In this Web service scenario, the broker provides compatibility with earlier versions
for existing non-Web-service clients to call a new Web services implementation
provided by a SOAP toolkit.

Broker implements new Web service interface:

In this scenario, the broker implements a new Web service interface. The WSDL for
the Web service is generated from a message set and made available to clients. A
message flow based on this WSDL and message set receives a request and then
builds a response message by using data obtained from an existing
non-Web-service application.

The following diagram shows a message set being created from an interface
definition (for example, a header file) of an existing application that is not
currently accessible as a Web service. A WSDL file is generated from the message
set and exported for use by a Web service client. A message flow that uses the
message set and WSDL is created to call the application. The message flow and
message set are deployed to a broker, providing a Web service interface to the
original application.

Chapter 9. Developing message flow applications 1625

Existing
non-Web-service

interface

Existing
non-Web-service

application

Message set

deploy

generate

import

WSDL

Web service
client Broker

Key to symbols:

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

This scenario is sometimes referred to as a Web service facade. The design of the
Web service interface typically involves some regrouping, restriction, or
enhancement of the existing interface, and is not constrained by an existing WSDL
definition.

Possible uses

v The broker provides a Web services interface to an existing application,
optionally providing other mix-in capabilities such as auditing the requests
made.

v Over time the implementation can be changed without affecting the interface
presented to the Web services client.

Design steps

1. Create a message set for the business messages, possibly by importing an
existing interface definition such as a C header file or COBOL copybook.

2. Generate a WSDL definition from the message set.
3. Use a SOAP toolkit such as Rational Application Developer to create a suitable

Web services client based on the WSDL.
4. Develop a message flow to implement the Web service.

1626 WebSphere Message Broker Version 7.0.0.8

At run time

Your message flow receives a Web service request, converts it into a form expected
by the existing application and invokes the existing application. The response from
the existing application is converted into a valid Web service response.

Example 1

In this example, an existing message flow is modified to provide a Web service. If
the existing message flow models its data in a message set, a WSDL definition can
be generated from that message set and made available to clients.

Most message flows that currently use WebSphere MQ for input or output can be
adapted to support Web services as a replacement or additional protocol.

The following are typical message flow patterns. In each case the input and reply
nodes replace or complement the original MQInput and MQOutput nodes. The
main part of the flow is understood to do some useful processing.
v Using SOAPInput and SOAPReply nodes:

v Using HTTPInput and HTTPReply nodes:

HTTPInput Compute1 HTTPReply

If you use the SOAP domain, the logical tree shape will be different from the
original domain and you will need to take account of this in the message flow. If
you use the HTTP nodes with the original domain, the logical tree shape does not
change. For information about choosing the domain, see “WebSphere Message
Broker and Web services” on page 1602.

HTTP details
If you use the HTTP nodes, you can configure the HTTPReply node to
generate a set of default HTTP headers for the reply message sent to the
client. Generating a set of default HTTP headers reduces the modifications
that you must make to convert the message flow from one that processes
WebSphere MQ messages to a flow that processes HTTP messages.

Example 2

In this example, a message flow is created to provide asynchronous access to a
WebSphere MQ application.

The following are typical message flow patterns. In each case the flow receives the
Web service request and build the response by using data returned from the
application over WebSphere MQ.

Chapter 9. Developing message flow applications 1627

v Using two message flows with SOAPInput and SOAPReply nodes:

SOAPInput

MQInput

Compute1

Compute2

MQOutput

SOAPReply

v Using two message flows with HTTPInput and HTTPReply nodes:

HTTPInput

MQInput

Compute1

Compute2

MQOutput

HTTPReply

In each case, the first message flow receives inbound requests from a Web service
client. The Compute1 node transforms the request and an MQOutput node sends
the modified request to the existing application.

In the second message flow, an MQInput node receives the response from the
application. The Compute2 node then transforms the message and propagates it to
a reply node that responds to the original Web service client.

The Compute1 node must also save some correlation information to be retrieved
by the Compute2 node, ensuring that the replies from the WebSphere MQ
application are returned to the client that sent the original request.

HTTP details

Using HTTPInput and MQOutput nodes as the outbound message and
MQInput and HTTPReply nodes as the response message:

1628 WebSphere Message Broker Version 7.0.0.8

HTTPInput

MQInput

Compute1

Compute2

MQOutput

HTTPReply

Existing
WebSphere MQ

Application

One way to preserve the correlation information is for the Compute1 node
to encode the correlation identifier in the outbound message.
(Alternatively, the identifier can be stored in a database). The SOAPInput
and HTTPInput nodes place the identifier as a field in the local
environment tree and the Compute1 node can read and store this value.
The location of the identifier differs between the SOAPInput and
HTTPInput nodes, as described in the following sections.

SOAP nodes

The Compute2 node reads the SOAP reply identifier from the message and
sets LocalEnvironment.Destination.SOAP.Reply.ReplyIdentifier by using
this value. The SOAPReply node uses the reply identifier to ensure that the
message reaches the correct HTTP client. In the ESQL module for the
Compute1 node, include a code statement like the following statement:
SET OutputRoot.XMLNS.A.MessageID =
CAST(InputLocalEnvironment.Destination.SOAP.Reply.ReplyIdentifier AS CHARACTER);

In the ESQL module for the Compute2 node, include a code statement like
the following statement:
SET OutputLocalEnvironment.Destination.SOAP.Reply.ReplyIdentifier =
CAST(InputRoot.XMLNS.A.MessageID AS BLOB);

HTTP nodes

The Compute2 node reads the HTTP request identifier from the message
and sets LocalEnvironment.Destination.HTTP.RequestIdentifier by using
this value. The HTTPReply node uses the request identifier to ensure that
the message reaches the correct HTTP client. In the ESQL module for the
Compute1 node, include a code statement like the following statement:
SET OutputRoot.XMLNS.A.MessageID =
CAST(InputLocalEnvironment.Destination.HTTP.RequestIdentifier AS CHARACTER);

In the ESQL module for the Compute2 node, include a code statement like
the following statement:
SET OutputLocalEnvironment.Destination.HTTP.RequestIdentifier =
CAST(InputRoot.XMLNS.A.MessageID AS BLOB);

Related concepts:
“XML domain message flows” on page 1643
If you are not using the SOAP domain, your message flow must take account of
the bitstream format of the Web service messages with which you are working. A
different logical tree format is used by each domain.
“Broker calls existing Web service” on page 1621
In this scenario, the broker calls an existing Web service implementation. The

Chapter 9. Developing message flow applications 1629

WSDL for the Web service already exists, and is imported to create a message set.
“Broker implements existing Web service interface”
In this scenario, the broker implements an existing Web service interface. The
WSDL for the Web service already exists, and is imported to create a message set.
A message flow based on this message set receives a request, then builds a
response message by using data obtained from an existing non-Web-service
application.
“Broker implements non-Web-service interface to new Web service” on page 1634
In this Web service scenario, the broker provides compatibility with earlier versions
for existing non-Web-service clients to call a new Web services implementation
provided by a SOAP toolkit.

Broker implements existing Web service interface:

In this scenario, the broker implements an existing Web service interface. The
WSDL for the Web service already exists, and is imported to create a message set.
A message flow based on this message set receives a request, then builds a
response message by using data obtained from an existing non-Web-service
application.

Message Set

deploy

importimport

WSDL

(Existing)
Web Service

Client
Message Broker

Existing
non-web-service

Interface

Existing
non-web-service

Application

Key to symbols:

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

1630 WebSphere Message Broker Version 7.0.0.8

Possible uses

v The broker provides a Web service implementation with a different quality of
service from existing implementations.

v The broker provides a migration strategy for the existing implementation.

Design steps

1. Import WSDL to create a message set containing definitions for the SOAP
messages described by the WSDL.

2. Adapt the message set for the required existing interface, possibly by importing
an existing interface definition such as a C header file or COBOL copybook.

3. Develop a message flow to implement the Web service.

At run time

Your message flow receives a Web service request, converts it into a form expected
by the existing application and invokes the existing application. The response from
the existing application is converted into a valid Web service response.

Example 1

In this example, an existing HTTP Web service client provides information on a
particular subject (stock prices or exchange rates, for example). You want to replace
this service with an inhouse database lookup solution, but want to make no
changes to the clients because these are widely deployed.

Typical message flow patterns are shown in the following examples. In each case
the intermediate request node retrieves the information from the database:
1. Using SOAPInput and SOAPReply nodes:

2. Using HTTPInput and HTTPReply nodes:

HTTPInput Compute1 HTTPReply

In the flows above, the input node receives the Web service request. Compute1
then retrieves the required information from the database and generates the
required Web service response by using this data. The response is returned to the
client by the reply node. In the examples you can use Mapping nodes instead of
Compute nodes.

Example 2

In this example, an existing application is exposed as a Web service, but there is a
constraint on the interface with the Web service, because a widely distributed

Chapter 9. Developing message flow applications 1631

client already uses a similar service that is defined by an existing WSDL definition.
The broker offers the same interface to the client, this might be because the original
service offers a different quality of service or is to be discontinued.

Typical message flow patterns are shown in the following examples. In each case
the message flows receive the Web service request and build the response by using
data returned from the application over WebSphere MQ.
1. Using SOAPInput, SOAPReply and MQGet nodes:

SOAPInput Compute1 MQOutput MQGet Compute2 SOAPReply

2. Using HTTPInput, HTTPReply and MQGet nodes:

HTTPInput Compute1 MQOutput MQGet Compute2 HTTPReply

3. Using two message flows with SOAPInput, SOAPReply nodes:

SOAPInput

MQInput

Compute1

Compute2

MQOutput

SOAPReply

4. Using two message flows with HTTPInput and HTTPReply nodes:

HTTPInput

MQInput

Compute1

Compute2

MQOutput

HTTPReply

The steps to develop the message flow are:
1. Create a message model for the existing application interface, for example, by

importing a C header file for the application.
2. Import an existing WSDL definition for the client.

1632 WebSphere Message Broker Version 7.0.0.8

3. Create a flow by using the message set to implement the Web service interface
and mediate with the existing application.

Message flows 1 and 2 show a synchronous call to the application by using
MQOutput and MQGet nodes. You can set a timeout in the MQGet node, to allow
for failure of the remote application. The request-reply translation is handled in a
single transaction enabling simple rollback and recovery. However, each incoming
request has to be fully processed and responded to before moving onto the next
request. This behavior might affect performance if the application cannot respond
quickly. The message flows shown in examples 3 and 4, show an asynchronous
equivalent. In each case the first flow stops after sending the message to the
application, and becomes available to handle further requests. However, this
scenario requires a correlation context to be saved in the request flow, and restored
in the reply flow. You can store the correlation context on a queue, then use an
MQGet node in the reply flow to retrieve it. This flow design enables the requests
to be dispatched to the application promptly, and replies to be returned in the
order that they are received. In the examples you can use Mapping nodes instead
of Compute nodes.

The use of the SOAP domain for these scenarios is preferred. For more information
about choosing a domain for Web services, see “WebSphere Message Broker and
Web services” on page 1602.

For more information about the asynchronous request-reply scenario, see “A
request-response scenario that uses an MQGet node” on page 1569.

The asynchronous request-reply scenario is also detailed in the following sample
which can be adapted for Web service usage:
v Coordinated Request Reply

Another Web services scenario is described in the sample:
v Web services using HTTP nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“XML domain message flows” on page 1643
If you are not using the SOAP domain, your message flow must take account of
the bitstream format of the Web service messages with which you are working. A
different logical tree format is used by each domain.
“Broker calls existing Web service” on page 1621
In this scenario, the broker calls an existing Web service implementation. The
WSDL for the Web service already exists, and is imported to create a message set.
“Broker implements new Web service interface” on page 1625
In this scenario, the broker implements a new Web service interface. The WSDL for
the Web service is generated from a message set and made available to clients. A
message flow based on this WSDL and message set receives a request and then
builds a response message by using data obtained from an existing
non-Web-service application.
“Broker implements non-Web-service interface to new Web service” on page 1634
In this Web service scenario, the broker provides compatibility with earlier versions
for existing non-Web-service clients to call a new Web services implementation
provided by a SOAP toolkit.

Chapter 9. Developing message flow applications 1633

Broker implements non-Web-service interface to new Web service:

In this Web service scenario, the broker provides compatibility with earlier versions
for existing non-Web-service clients to call a new Web services implementation
provided by a SOAP toolkit.

Message set

deploy

import

generate

generate
WSDL

Web service
Broker

Existing
non-Web-service

interface

Existing
non-Web-service

client

The diagram shows a message set being created from an interface definition (for
example, a header file) that is used by an existing client application. A WSDL file is
generated from the message set and is used to create a new Web service
implementation. A message flow that uses the message set is created to call the
new Web service. The message flow and message set are deployed to a broker,
providing the original application interface to the new Web service
implementation.

Key to symbols:

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

Possible uses

You want to migrate an application to a Web service implementation, for example
an EJB implementation hosted by an application server to offer better scalability.

However, a significant number of your users have existing clients that cannot be
immediately replaced. Existing clients can use the broker to use the new Web
service implementation.

1634 WebSphere Message Broker Version 7.0.0.8

Design steps

1. Create a message set for the business messages, for example, by importing an
existing interface definition such as a C header file or COBOL copybook.

2. Generate a WSDL definition from the message set.
3. Use a SOAP toolkit or application server to create a suitable Web services

implementation based on the WSDL.
4. Develop a message flow to mediate between the original existing client and the

new Web service.

At run time

Your message flow receives a request from the existing client, converts it into a
Web services request and invokes the Web service. The response from the Web
service is converted into a form understood by the existing client.
Related concepts:
“XML domain message flows” on page 1643
If you are not using the SOAP domain, your message flow must take account of
the bitstream format of the Web service messages with which you are working. A
different logical tree format is used by each domain.
“Broker calls existing Web service” on page 1621
In this scenario, the broker calls an existing Web service implementation. The
WSDL for the Web service already exists, and is imported to create a message set.
“Broker implements new Web service interface” on page 1625
In this scenario, the broker implements a new Web service interface. The WSDL for
the Web service is generated from a message set and made available to clients. A
message flow based on this WSDL and message set receives a request and then
builds a response message by using data obtained from an existing
non-Web-service application.
“Broker implements existing Web service interface” on page 1630
In this scenario, the broker implements an existing Web service interface. The
WSDL for the Web service already exists, and is imported to create a message set.
A message flow based on this message set receives a request, then builds a
response message by using data obtained from an existing non-Web-service
application.

SOAP domain message flows:

SOAP domain message flows typically use SOAP nodes, WSDL, and a common
logical tree format that is independent of the exact format of the Web service
message.

The following nodes are provided for use in the SOAP domain:
v “SOAPInput node” on page 4795
v “SOAPReply node” on page 4819
v “SOAPRequest node” on page 4828
v “SOAPAsyncRequest node” on page 4750
v “SOAPAsyncResponse node” on page 4777

The following nodes can also be used to simplify SOAP payload processing in a
message flow; these nodes are not specific to the SOAP domain.
v “SOAPEnvelope node” on page 4786
v “SOAPExtract node” on page 4790

Chapter 9. Developing message flow applications 1635

The SOAP nodes are used together in the following basic patterns:
v As a Web service provider, for example:

v As a Web service consumer, for example:

Input SOAPRequest Output

Or:

v As a Web service facade, for example, by combining the provider and consumer
scenarios:

SOAPInput SOAPRequest SOAPReply

You can use the SOAPExtract node in conjunction with these patterns to extract the
SOAP payload. If you are working with the HTTP nodes, you can use the
SOAPEnvelope node to rebuild a SOAP envelope.

The main SOAP domain nodes are typically configured by WSDL, and in this
mode, a prerequisite for a SOAP domain message flow is a message set containing
deployable WSDL. To create a message set containing deployable WSDL, either
import existing WSDL or generate WSDL from an existing message set. For more
information about creating a new message definition from WSDL, see “Importing
from WSDL” on page 2946. For more information about generating WSDL from an
existing message set, see “WSDL generation” on page 6340.

Alternatively you can create a new message set and skeleton message flow in one
step using the procedure described in “Creating an application based on WSDL or
XSD files” on page 1413.

The WSDL then appears in the workbench under Deployable WSDL below the
message set, although if you have selected Hide Categories on the message set,
the category heading itself is not shown.

Deployable WSDL can then be used to configure SOAP nodes. You can do this by
dragging the WSDL resource onto the node or by selecting the required WSDL
resource from the node properties.

1636 WebSphere Message Broker Version 7.0.0.8

Alternatively a new skeleton message flow can be created by dragging and
dropping the WSDL on to a blank canvas in the Message Flow editor.

The WSDL is deployed with your completed message flow, enabling the broker to
raise exceptions if a Web service message does not correspond to the specified
WSDL description.

You can change the operation mode of the SOAP domain nodes so that they act in
gateway mode. In gateway mode, a WSDL is not required to configure the nodes
because they handle generic request/response and one-way SOAP messages that
are not tied to a specific WSDL. For more details, see “Gateway operation mode
for SOAP nodes” on page 1645.

A client can send an HTTP GET request to the endpoint exposed by a SOAPInput
node, suffixed with a query string ?wsdl, and receive a response with the WSDL
definition used to configure the flow; see “Using WSDL to configure message
flows” on page 1664.

The SOAP domain uses a common logical tree format that is independent of the
exact format of the Web service message. For details of the SOAP tree format, see
“SOAP tree overview” on page 1611. Useful WSDL information is included in the
logical tree under SOAP.Context.
Related concepts:
“XML domain message flows” on page 1643
If you are not using the SOAP domain, your message flow must take account of
the bitstream format of the Web service messages with which you are working. A
different logical tree format is used by each domain.
“Web services scenarios” on page 1620
These common Web services scenarios are organized according to the role that is
played by the broker.
Related tasks:
“Example usage of WS-Addressing”
Set up a sample message flow by using WS-Addressing, and test the flow.

Example usage of WS-Addressing:

Set up a sample message flow by using WS-Addressing, and test the flow.

About this task

Complete the steps in the following set of topics.
1. Build the main message flow that includes SOAP nodes, a Filter node, and a

Mapping node by following the instructions in “Building the main message
flow” on page 1638.

2. Build a logging message flow, so that you can send a reply to an address
different from the originating client, by following the instructions in “Building
the logger message flow” on page 1640.

3. Deploy the message flows by following the instructions in “Deploying the
message flows” on page 1641.

4. Test the message flows, by using a tool that uses HTTP. This task illustrates
that the contents of the SOAP message determine where the replies are routed.
Follow the instructions in “Testing the message flows” on page 1642.

Related concepts:

Chapter 9. Developing message flow applications 1637

“How to use WS-Addressing” on page 1650
An overview of how you use WS-Addressing with WebSphere Message Broker.
“Message flows for Web services” on page 1619
Message flows that need to work with Web services can use either the SOAP
domain or one of the XML domains.
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Building the main message flow:

You can construct a sample main message flow to use with WS-Addressing.

About this task

These steps are the first in a set of instructions on setting up your system to use
WS-Addressing with WebSphere Message Broker; they explain how to set up a
message flow to use this feature. This topic describes how to construct a sample
main message flow when using WS-Addressing.

Procedure

1. Switch to the Broker Application Development perspective.
2. Create message flow and message set projects using the Start from WSDL

and/or XSD files wizard. See “Creating an application based on WSDL or
XSD files” on page 1413 for instructions.

3. Select the Web Services folder on the message flow palette to display the
contents, and drag a SOAPInput node onto the canvas.

4. Add a SOAPExtract node to the message flow to remove the SOAP envelope
from the incoming message, followed by a SOAPReply node. Wire the Out
terminal of the SOAPInput node to the In terminal of the SOAPExtract node,
and wire the Out terminal of the SOAPExtract node to the In terminal of the
SOAPReply node.

5. Select the WSDL file that you need under Deployable WSDL from the Active
Working Set, and drag it onto the SOAPInput node. The SOAPInput node is
configured with the WSDL.

6. Select the Construction folder on the message flow palette to display the
contents.

7. Select a Trace node and move the mouse to the right of the SOAPExtract
node.
a. Click the left mouse button to add the node to the message flow. The

name is selected automatically.
b. Press Enter to accept the default name.

1638 WebSphere Message Broker Version 7.0.0.8

c. Wire the submitPORequest terminal of the SOAPExtract node to the In
terminal of the Trace node.

8. Select the Trace node to display the properties.
a. Use the menu to set Destination to File
b. Set the File path that you require.
c. Enter the Pattern that you require.

9. Expand the Routing folder on the palette and select Filter.
10. Add the Filter node to the right of the Trace node.

a. Type the name for the node that you require and press Enter.
b. Wire the Out terminal of the Trace node to the In terminal of the Filter

node.
11. Select the Filter node to display the properties.

a. Enter the Data source name that you require.
b. Change the name of Filter expression to the name that you selected for the

Filter node.
c. Clear the Throw exception on database error check box.

12. Double-click the Filter node to open the ESQL editor. Create or change the
ESQL for the node; for more information, see “Creating ESQL for a node” on
page 2394 and “Modifying ESQL for a node” on page 2398.

13. Expand the Transformation folder on the palette and select a Mapping node.
14. Add the Mapping node to the right of the Filter node.

a. Type the name for the node that you require and press Enter.
b. Wire the True terminal of the Filter node to the In terminal of the Mapping

node.
c. Wire the Out terminal of the Mapping node to the In terminal of the Reply

node.
15. Select the Mapping node to display the properties, and change the name of

Mapping routine to the name that you selected for the Mapping node.
16. Double-click the Mapping node to open the mapping editor.

a. Select submitPORequest as the map source.
b. Select SOAP_Domain_msg as the map target.
c. Click OK

d. Click OK on the tip that is displayed to open the mapping editor.
17. Select Properties in both the source and target pane, right-click, and click

Map by Name.
a. Map the source properties to the target properties using drag-and-drop

mapping. The Map by Name dialog box appears.
b. Click OK to perform the mapping.

18. Expand SOAP_Domain_Msg, then Body and message items in the target
pane.

19. Right-click Wildcard Message in the target pane, and click Create new
Submap.
a. Expand Wildcard.
b. Scroll down and click submitPOResponse.
c. Click OK to create the submap.

20. Use drag-and-drop mapping to select the items that you need in the Source
pane.

Chapter 9. Developing message flow applications 1639

21. Select the first item that you need in the Target pane, right-click, and Enter
Expression. Enter the value that you require in the expression editor and
press Enter to complete the mapping.
Repeat the above steps for all the items that you require in the Target pane,
and save the submap and map by pressing Ctrl+S.

22. Expand the Construction folder on the message flow editor and select a
Throw node.

23. Add the Throw node above the Mapping node
a. Type the name for the node that you require and press Enter.
b. Wire the False and Unknown terminals of the Filter node to the In

terminal of the Throw node.
24. Select the Throw node and, in the Node Properties pane, enter the text that

you require in Message text.
25. Select the SOAPInput node to display the Node Properties.

a. Select the WS Extensions tab.
b. Select Use WS-Addressing .

26. Save the message flow.
Related concepts:
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Building the logger message flow:

This is the second of a set of instructions on setting up your system to use
WS-Addressing with WebSphere Message Broker, and illustrates the use of a reply
being sent to an address other than the originating client.

About this task

This topic describes the construction of a sample logger message flow when using
WS-Addressing. This flow echoes back the input while creating a trace entry in a
file to indicate that the flow has been invoked.

Procedure

1. Switch to the Broker Application Development perspective.
2. Select the message flow name that you used in “Building the main message

flow” on page 1638
3. Press the right mouse button and select New->MessageFlow.

a. Enter the name that you require for this message flow; for example,
Logger.

b. Press Finish to create the flow.
4. Select the HTTP folder on the message flow palette to display the contents.
5. Select an HTTPInput node and move the mouse to the left side of the canvas.

1640 WebSphere Message Broker Version 7.0.0.8

a. Click the left mouse button to add the node to the message flow and enter
the name Logger.

b. Press Enter to finish.
6. Select the HTTPReply node from the palette and move the mouse to the right

of the HTTPInput node, leaving room for a node in between.
a. Click the left mouse button to add the node to the message flow and enter

the name that you require; for example, Logger.
b. Press Enter to finish.

7. Select the Construction folder on the message flow palette to display the
contents.

8. Select a Trace node and move the mouse to the right of the HTTPInput node.
a. Click the left mouse button to add the node to the message flow and enter

the name that you require; for example Trace.
b. Press Enter.
c. Wire the out terminal of the HTTPInput node to the In terminal of the

Trace node.
d. Wire the out terminal of the Trace node to the In terminal of the

HTTPReply node.
9. Select the HTTPInput node to display the properties. In the Basic tab:

a. Enter the Data source name that you require.
b. Change the name of the input node Logger as the Path suffix for URL.

10. Select the Input Message Parsing tab and select XMLNSC as the Message
domain.

11. Select the Trace node to display the properties.
a. Set Destination to File
b. Set the File path that you require.
c. Enter the Pattern that you require.

12. Save the message flow.
Related concepts:
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Deploying the message flows:

This is the third of a set of instructions on setting up your system to use
WS-Addressing with WebSphere Message Broker, and illustrates the deployment of
the message flows.

About this task

This topic describes the deployment of the message flows that you have already
constructed.

Chapter 9. Developing message flow applications 1641

Procedure

1. Select the LocalProject project under Broker Archives in the navigator pane.
a. Press the right mouse button.
b. Select New > Message Broker Archive.
c. Use the drop-down menu to change the Project to LocalProject.
d. Enter the name you selected for the main message flow described in

“Building the main message flow” on page 1638 in Name.
e. Press Finish to open the Broker Archive Editor.

2. In the Broker Archive Editor, complete the following steps.
a. In the Filter working set list box select the working set name that you used

for the main message flow.
b. In Message Flows select the message flow names that you used for the

main message flow and logger message flow.
c. In Message Sets select the message set name that you used for the main

message set.
d. Press Build broker archive and confirm that the build operation was

successful.
e. Save the updated broker archive file.

3. To deploy the message flows to the default execution groups, right-click the
broker archive (BAR) file that you have just built, then click Deploy File.

4. Select the default execution group and click OK to start the deployment.
Ensure that you receive a successful response message, and press OK to
dismiss the information dialog.

5. Use the Deployment Log to confirm that the deploy operation was successful:
Related concepts:
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
Related tasks:
“Example usage of WS-Addressing” on page 1637
Set up a sample message flow by using WS-Addressing, and test the flow.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Testing the message flows:

This is the fourth of a set of instructions about how to set up your system to use
WS-Addressing with WebSphere Message Broker; these instructions illustrate how
to test the message flows.

About this task

This topic describes how to test the message flows that you have already
constructed. In this scenario, you use a tool that uses HTTP protocol rather than
WebSphere MQ protocol. You can use any tool that has the facilities that are
described in the following procedure.

1642 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Start the tool and select http://localhost:nnnn/, where nnnn is the address of
the port that you are using.

2. Set the URL to the host, port, and selection for the deployed flow. The
SOAPInput nodes listen on a different port from the HTTP nodes, and the
listener is built into the execution group rather than using a different process.

3. The SOAPInput node expects a SOAPAction entry in the HTTP headers,
therefore you must add one.
a. Click Add New Header.
b. Enter the Value part of the header. The value must match the SOAPAction

attribute of the SOAP:operation element in your code.
c. Select New Header in the Name pane.
d. Change the name from New Header to SOAPAction and click Enter.

4. Select Load File and go to the directory that contains the XML file you want to
use.

5. Select the file and click Open. Note the following conditions:
v If the message does not include any WS-Addressing entries, the ReplyTo and

FaultTo locations default to anonymous. This means that the results are
returned on the original client connection.

v If the message includes a WS-Addressing header (ReplyTo) with a value of
anonymous, the reply is returned to the original client by using the original
TCP/IP connection.

v If the message includes a WS-Addressing header with a value of FaultTo
explicitly included, the reply is returned to that address rather than the
default of using the location that was specified in the ReplyTo header.

6. Click Send to test the flow. The result appears in the right pane.
Related concepts:
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
Related tasks:
“Example usage of WS-Addressing” on page 1637
Set up a sample message flow by using WS-Addressing, and test the flow.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

XML domain message flows:

If you are not using the SOAP domain, your message flow must take account of
the bitstream format of the Web service messages with which you are working. A
different logical tree format is used by each domain.

If the messages are SOAP, you can use either the XMLNSC domain or the MRM
XML domain. Both domains offer validation. The XMLNSC domain is more
efficient, while the MRM XML domain can be useful if you have specific message
transformation requirements (for example, if your message flow also uses binary
data formats).

Chapter 9. Developing message flow applications 1643

If the messages use MIME (for example, SOAP with Attachments or MTOM), you
can use the MIME domain. In this case, your message flow typically needs to
identify at least the MIME part that corresponds to the SOAP payload, then
explicitly parse this part by using the XMLNSC or MRM domain.

In the SOAP domain, WSDL is used to configure your nodes automatically with
the appropriate endpoint information. If you are not using the SOAP domain,
select and configure the transport nodes manually. Typical WSDL bindings are:
v SOAP/HTTP; in which case, implement a flow by using HTTP nodes. Use the

HTTPInput and HTTPReply nodes if a flow implements a Web service, or use
the HTTPRequest node if a flow calls a Web service.

v SOAP/JMS; where you implement a flow by using JMS or MQ nodes.

You can configure message flows that receive input messages from clients by using
one transport, and interact with a Web service or legacy application by using
another.

You can propagate a message to more than one location. For example, the Web
service response to be returned to a client by an HTTPReply node might first be
sent to an auditing application by using an MQOutput node, after making any
required adjustments to the message headers.

Nodes are used together in the following basic patterns, by using HTTP nodes as
example transports:
v As a Web service provider, for example:

HTTPInput HTTPReply

v As a Web service consumer, for example:

Input HTTPRequest Output

v As a Web service facade, for example:

HTTPInput HTTPRequest HTTPReply

If required, you can use the SOAPExtract and SOAPEnvelope nodes in conjunction
with these patterns to respectively extract the SOAP payload and rebuild a SOAP
Envelope.

To enable your message flow to validate messages, deploy an appropriate message
set with the flow. An appropriate message set is created either by importing
existing WSDL or by generating WSDL from an existing message set. For details

1644 WebSphere Message Broker Version 7.0.0.8

about importing existing WSDL, see “Importing from WSDL” on page 2946. For
details about generating WSDL from an existing message set, see “WSDL
generation” on page 6340.

You can also create a new message set and flow based on existing WSDL or XSD
files; for details, see “Creating an application based on WSDL or XSD files” on
page 1413.

The generated message set contains message definitions for the relevant SOAP
Envelope version and for the XML payload data defined by the WSDL. In the
XMLNSC or MRM XML domains, messages can be validated against the message
set; for details, see “Validating messages” on page 1478.
Related concepts:
“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
“Generate WSDL” on page 1274
A Web Services Description Language (WSDL) document specifies the interface to a
web service, and enables a web service client to start it. A WSDL document that is
generated from a message model defines web service requests and responses in
terms of the messages that you have defined in that message model.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Gateway operation mode for SOAP nodes:

The SOAPInput, SOAPRequest, and SOAPAsyncRequest nodes have two operation
modes: WSDL mode, and Gateway mode.

If the node is configured to be in WSDL mode, which is the default, the web
service operations performed by the node are specified by a WSDL that configures
the node. In Gateway mode, SOAP nodes in a message flow handle generic SOAP
request messages in the following scenarios.

Provider scenario
In a provider scenario, WebSphere Message Broker receives generic
SOAP/HTTP or SOAP/JMS requests by using a SOAPInput node, and
sends a reply to the originating client by using a SOAPReply node. A
single SOAPInput node can receive any SOAP request message, and is not
configured with a WSDL.

Consumer scenario
In a consumer scenario, WebSphere Message Broker can route a SOAP
request to any external web service provider by using the SOAPRequest

Chapter 9. Developing message flow applications 1645

node or a pair of SOAPAsyncRequest and SOAPAsyncResponse nodes.
Endpoint information can be specified in the local environment, which is
used dynamically at run time to send the outbound request message.

Façade scenario
In a façade scenario, WebSphere Message Broker can receive SOAP
requests from multiple different clients, and route them to any one of
multiple back end web service providers, or existing systems. Endpoint
information for the back-end web service provider can be specified
dynamically at run time by setting values in the local environment.

The SOAP nodes act and are configured differently in the two different operation
modes.
v If you configure a node in Gateway mode, some node properties are disabled

because they are not applicable in Gateway mode.
– The WSDL-specific properties are disabled when the node is switched to

Gateway mode. The values are not cleared, and can be used if the node is
switched back to WSDL mode.

– The Response Message Parsing properties on the SOAPRequest node are
disabled in Gateway mode.

– Validation of the operation according to the WSDL does not take place
because no WSDL exists against which to validate in Gateway mode. If a
SOAPAsyncRequest and SOAPAsyncResponse node pair is used in Gateway
mode, the validation properties on the SOAPAsyncResponse node are
disabled at run time, regardless of the validation settings in the BAR file.

– No message set is associated with the node, and no schema is used.
Therefore, no message validation takes place in Gateway mode. You can
configure the flow downstream to enable validation.

– Outbound MTOM is not supported in Gateway mode because validation
cannot take place. However, you can enable validation, and therefore enable
MTOM, by setting the Message Set in the local environment. For example:
SET OutputRoot.Properties.MessageSet = ’myMessageSet’;

You might need to also enable validation on the Compute node or the
SOAPReply node.

– In the User-defined SOAP headers table on the SOAPInput node, all
operations are set to *. The WSDL-defined SOAP headers table is cleared.

v Transport properties must be configured. The transport-specific properties are
mandatory depending on the Transport property; for example, the JMS
transport properties are mandatory if the selected transport is JMS.

v A SOAPInput node can only be configured to receive messages of a single
specified transport, for example, HTTP. Use separate input nodes to send or
receive messages with different transports.

v A SOAPRequest node can only be configured to send messages of a single
specified transport, for example, JMS. However, you can change the transport for
any message using the local environment.

v A SOAPAsyncRequest node can only be configured to send and receive
messages over a single transport, for example, JMS, and this transport is always
used for the paired SOAPAsyncResponse node to receive the response message.
However, you can change the outbound request transport for any message by
using the local environment. For example, if a SOAPAsyncRequest node is
configured to use JMS transport, its paired SOAPAsyncResponse node always
expects to receive responses over JMS, and this cannot be changed. At run time,
the SOAPAsyncRequest node also then assumes JMS as the default transport.

1646 WebSphere Message Broker Version 7.0.0.8

However, you can instruct it to instead send the request over HTTP by using the
local environment. This request includes the WSA:ReplyTo JMS address for the
SOAPAsyncResponse node.

v If a SOAPInput node receives a one-way SOAP request, the node attempts to
detect that it is a one-way message. However, the node cannot detect all cases,
and therefore it is sometimes necessary to instruct the SOAPReply node that it is
a one-way message, by using the local environment. For example:
SET OutputLocalEnvironment.Destination.SOAP.Reply.Gateway.OneWay = True;

For more information, see “One-way messages in Gateway mode” on page 1648.
v If you use the SOAPAsyncRequest node in Gateway mode, you must set the

WS-Addressing Action property in the local environment in the message flow
before the SOAPAsyncRequest node. Set this property by using
OutputLocalEnvironment.Destination.SOAP.Request.WSA.Action.

v If you use the SOAPRequest node in Gateway mode and the remote service
provider expects a SOAPAction, set the SOAPAction in the flow. In Gateway
mode the SOAPAction from a WSDL is not available to the node. For example,
to set the SOAPAction using ESQL:
SET OutputRoot.HTTPRequestHeader.SOAPAction = ’mySoapAction’;

By default the SOAPRequest node sends an empty SOAPAction of "".
v If you use the SOAPRequest node in Gateway mode and are using

WS-Addressing, you must set the WS-Addressing Action property in the local
environment in the message flow before the SOAPRequest node. Set this
property by using
OutputLocalEnvironment.Destination.SOAP.Request.WSA.Action.

v In Gateway mode, you can add inbound "must understand" headers to the
SOAPInput node or to the SOAPRequest and SOAPAsyncRequest nodes by
specifying the details on the node property. However, if you will be adding
services dynamically, where all the "must understand" headers cannot be known
in advance, you can add these headers with a wildcard (*) for name, namespace,
operation, or any combination of the three. This removes the need to redeploy
your message flow when new services are added. However, consider that if you
add a wildcard for the name, namespace, and also operation, this means that all
headers with a "must understand" flag are allowed into the flow.

v If you use the SOAPReply node as part of a façade message flow, with the
SOAPInput node set to Gateway mode, and the SOAPRequest node acting in
WSDL mode, disable validation on the SOAPReply node or add an explicit
Message Set in the Properties folder as documented above. If you do not disable
validation or reference a Message Set in the Properties folder, parsing errors
occur when the message is serialized.

v In Gateway mode, the SOAP nodes send SOAP 1.1 messages by default,
although they also accept inbound SOAP 1.2 messages. To send an outbound
SOAP 1.2 message, set the SOAP.Context field to indicate that SOAP 1.2 is
required. For example, to set this field using ESQL:
SET OutputRoot.SOAP.Context.SOAP_Version = ’1.2’;

The outbound message then uses a SOAP 1.2 SOAP Envelope. You can also set
the namespace prefix used by the SOAP Envelope. For example, by using ESQL:
DECLARE soapenc NAMESPACE ’http://www.w3.org/2003/05/soap-envelope’;
SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:soap12 = soapenc;
SET OutputRoot.SOAP.Context.SOAP_Version = ’1.2’;

In this example, soap12 is the prefix used in the outbound message.

Chapter 9. Developing message flow applications 1647

Related concepts:
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.
“One-way messages in Gateway mode”
When you configure a SOAP node using WSDL, the WSDL specifies whether a
given node operation is one-way or not. However, configuring a node in Gateway
mode without WSDL means that this WSDL information is not available.
Therefore, SOAP nodes configured as Gateways automatically attempt to detect
one-way Operations based on the message content.
Related reference:
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“Local environment overrides for the SOAPRequest node” on page 4850
You can dynamically override values in the local environment in the same way as
setting values in other elements of a message.

One-way messages in Gateway mode:

When you configure a SOAP node using WSDL, the WSDL specifies whether a
given node operation is one-way or not. However, configuring a node in Gateway
mode without WSDL means that this WSDL information is not available.
Therefore, SOAP nodes configured as Gateways automatically attempt to detect
one-way Operations based on the message content.

SOAPInput node one-way Operation detection

The SOAPInput node detects one-way messages in different ways depending on
the transport used, and whether or not WS-Addressing is configured on the node.
v If the node uses HTTP transport and has WS-Addressing configured, the

operation is determined to be one-way if the inbound message uses the special
WSA:None address for the WSA:ReplyTo and WSA:FaultTo addresses.

v If the node uses HTTP transport and does not have WS-Addressing configured,
no auto detection of one-way messages takes place.

v If the node uses JMS transport and has WS-Addressing configured, the operation
is determined to be one-way if either of the following conditions are true:
– The inbound message uses the special WSA:None address (http://

www.w3.org/2005/08/addressing/none) for the WSA:ReplyTo and
WSA:FaultTo addresses.

– There is no JMS ReplyTo destination specified in the inbound message, and
the inbound message uses the special WSA:Anonymous address
(http://www.w3.org/2005/08/addressing/anonymous or
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous) for
the WSA:ReplyTo and WSA:FaultTo addresses.

1648 WebSphere Message Broker Version 7.0.0.8

v If the node uses JMS transport and does not have WS-Addressing configured,
the operation is determined to be one-way if there is no JMS ReplyTo destination
specified in the inbound message.

In Gateway mode, the SOAP.Context.operationType field is set to GATEWAY if the
Operation is determined to be request-response, or GATEWAY_ONE_WAY if the
Operation is determined to be one-way. If the operation is determined to be
one-way, no reply is necessary or allowed. However, if the Operation is not
determined to be one-way, the flow is configured with the assumption that the
flow sends a reply. Therefore, if the Operation is one-way, you must specify that
the Operation is one-way in order to allow the flow to free up resources, and, if
HTTP is being used, to send an HTTP 202 acknowledgment back to the originating
client. Do this by setting the following field in the local environment before wiring
the message to a SOAPReply node:
SET OutputLocalEnvironment.Destination.SOAP.Reply.Gateway.OneWay = ’true’;

This setting instructs the SOAPReply node to complete the Message Exchange
Pattern before sending an HTTP 202 acknowledgment, if required, and freeing up
its resources.

One approach for using this setting would be in a Gateway flow like this:

In this flow, the Compute node determines if the message is one-way. If the
message is one-way, the Compute node sets the local environment one-way setting,
and sends a message to the SOAPReply node to complete the Message Exchange
Pattern. If the flow is a Gateway flow and the one-way local environment option is
set, any message received by the SOAPReply node causes it to ignore the message
content and complete the Message Exchange Pattern. The flow can then continue
through the other terminal of the Compute node.

It is not an error to send a message to the SOAPReply node with the one-way local
environment option set if the message has been automatically determined to be a
one-way message.

SOAPRequest node one-way Operation detection

In Gateway mode, the SOAPRequest node automatically detects whether a
message is one-way only if WSA is used and the WSA:ReplyTo and WSA:FaultTo
addresses are set to the special WSA:None address. To manually instruct the node
that the message is one-way, set the following option in the local environment:
SET OutputLocalEnvironment.Destination.SOAP.Request.Gateway.OneWay = ’true’;

For the SOAPRequest node, specifying that a message is one-way indicates to the
node that a response is not expected, except for an HTTP 202 acknowledgment if
HTTP transport is used. If JMS transport is used, it also allows the message to be

Chapter 9. Developing message flow applications 1649

sent under the control of any existing transaction, if the Transaction mode is to Yes
or Automatic.
Related concepts:
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.
“Gateway operation mode for SOAP nodes” on page 1645
The SOAPInput, SOAPRequest, and SOAPAsyncRequest nodes have two operation
modes: WSDL mode, and Gateway mode.
Related reference:
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.

Working with WS-Addressing:

Use the following tasks to help you work with WS-Addressing.
v “How to use WS-Addressing”
v “WS-Addressing with the SOAPInput node” on page 1651
v “WS-Addressing with the SOAPReply node” on page 1653
v “WS-Addressing with the SOAPRequest node” on page 1653
v “WS-Addressing with the SOAPAsyncRequest and SOAPAsyncResponse nodes”

on page 1655
v “WS-Addressing information in the local environment” on page 1656
Related concepts:
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
Related tasks:
“Processing Web service messages” on page 1601
Use WebSphere Message Broker nodes and services to connect to other Web
services providers and consumers.

How to use WS-Addressing:

An overview of how you use WS-Addressing with WebSphere Message Broker.

Sending a message to an endpoint reference (EPR)

When sending a message to an endpoint reference, the following processes take
place:
v The [destination] Message Addressing Property (MAP) is completed from the

[address] property in the EPR.
v [reference parameters] are copied to top level SOAP headers from the

[reference parameters] property of the EPR.
v The [action] property is required, but is not populated from the EPR.

1650 WebSphere Message Broker Version 7.0.0.8

In this context, action is an absolute Internationalized Resource Identifier (IRI)
that uniquely identifies the semantics implied by this message, and it must be
the same as the HTTP SOAPAction if a non-empty SOAPAction is specified.

v The [message id] property must be specified if this message is part of a
request-response Message Exchange Pattern (MEP); the message id is generated
by default.

When replying with a non-fault message, the following processes take place:
v The EPR to reply to is selected from the [reply endpoint] MAP.

– If this property contains the special address none, no reply is sent.
– If this property contains the special address anonymous, the reply is sent on

the return channel of the transport on which the request was received. This is
the default value in the absence of any other supplied EPR.

– Otherwise, the reply is sent to the [address] property in the Reply EPR,
v The [message id] property of the inbound message request is placed into the

[relationship] property of the response, along with the predefined relationship
of the reply part of the Universal Resource Identifier (URI) - which indicates that
this message is a reply.
For further information on the URI see Web Services Addressing URI
Specification.

v A new [message id] property is specified for the reply, and this is generated by
default.

Related concepts:
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
Related tasks:
“Processing Web service messages” on page 1601
Use WebSphere Message Broker nodes and services to connect to other Web
services providers and consumers.

WS-Addressing with the SOAPInput node:

Various options are available when you use WS-Addressing with the SOAPInput
node.

The SOAPInput node has a property for processing WS-Addressing information
present in the incoming message called Use WS-Addressing.

If you select this property, the WS-Addressing information is processed and the
process itself is called engaging WS-Addressing. The default is that WS-Addressing
is not engaged.

You can also specify this property in the WSDL, and this property is configurable
from the WSDL, automatically by the WebSphere Message Broker Toolkit, when
the WSDL is dropped onto the node. The behavior of the node when
WS-Addressing is engaged or not engaged is as follows:

Addressing not engaged
No WS-Addressing processing is performed. If a message is received that
contains any WS-Addressing headers they are ignored, and no
WS-Addressing processing of any kind is performed, unless they are
marked as MustUnderstand.

Chapter 9. Developing message flow applications 1651

http://www.w3.org/2005/08/addressing/reply
http://www.w3.org/2005/08/addressing/reply

The inbound WS-Addressing headers in this case are visible in the message
when it leaves the SOAPInput node under the Header folder of the SOAP
parser in the message tree.

A fault is returned to the client if WS-Addressing headers exist in the
incoming message, and they meet both of the following criteria:
v Marked as MustUnderstand
v Targeted at the role the SOAPInput node is operating in

Engaging WS-Addressing is how you instruct the node to 'understand' the
WS-Addressing headers. In this case the WS-Addressing headers remain in
the SOAP Header section of the SOAP parser, and no other SOAP node
acts upon them. In all cases, they are treated as a SOAP header with no
special meaning assigned to the WS-Addressing headers.

Addressing engaged:
WS-Addressing processing is performed as stated in the WS-Addressing
specification. This processing means that messages that contain either
submission addressing headers or final addressing headers are accepted.

A fault is returned if both submission addressing headers and final headers
are present, and either of the following conditions is met:
v Neither is marked with a role.
v They are both marked with same role and the SOAPInput node is acting

in that role.

Assuming that the WS-Addressing headers are valid and the Place
WS-Addressing Headers into LocalEnvironment check box is selected on
the SOAPInput node, all headers (including detectable inbound reference
parameters) are removed from the inbound message tree and are placed
into the local environment tree under the SOAP.Input.WSA folder. Moving
the WS-Addressing headers to the local environment indicates that they
have been processed by the broker. The headers are removed from the
message tree because they have been processed on input; otherwise they
would not be valid if the message tree was sent out without further
changes. They are stored in the local environment to allow you to inspect
them.

Only reference parameters from the final specification are detectable
because they have an attribute called IsReferenceParameter that allows
them to be detected. Submission reference parameter headers do not have
this attribute, therefore they are not detectable, and they are not moved
into the local environment tree from the message tree.

You can change WS-Addressing reply headers before the SOAPReply node
is reached. For more information about changing WS-Addressing
information in the local environment, see “WS-Addressing information in
the local environment” on page 1656.

Related concepts:
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
Related tasks:
“Example usage of WS-Addressing” on page 1637
Set up a sample message flow by using WS-Addressing, and test the flow.

1652 WebSphere Message Broker Version 7.0.0.8

Related reference:
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.

WS-Addressing with the SOAPReply node:

Various options are available when you use WS-Addressing with the SOAPReply
node.

The SOAPReply node uses WS-Addressing if WS-Addressing is engaged on the
SOAPInput node that is referenced by the reply identifier of the message entering
the reply node.

The SOAPReply node uses addressing information in the
Destination.SOAP.Reply.WSA folder of the local environment to determine where to
send the reply and with what Message Addressing Properties (MAPs).

If the Destination.SOAP.Reply.WSA does not exist, or is completely empty when
inspected by the SOAPReply node, the node uses the default addressing headers
that were part of the incoming message. Therefore, you do not have to propagate
the local environment in the default case, and addressing still works as expected.

In the case where folders exist beneath the Reply.WSA folder, these folders are used
to update the output message. Therefore, you can change, add, or remove parts of
the default reply information generated by the input node, because any changes
that you made to the tree are reflected in the outgoing message by the SOAPReply
node. For details about WS-Addressing information in the local environment, see
“WS-Addressing information in the local environment” on page 1656.

If WS-Addressing is not engaged, this node does not perform any WS-Addressing
processing.
Related concepts:
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
Related tasks:
“Example usage of WS-Addressing” on page 1637
Set up a sample message flow by using WS-Addressing, and test the flow.
Related reference:
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.

WS-Addressing with the SOAPRequest node:

Various options are available when you use WS-Addressing with the SOAPRequest
node.

Chapter 9. Developing message flow applications 1653

The SOAPRequest node has a property called Use WS-Addressing, for processing
WS-Addressing information that is present in the incoming message.

If you select this property, the WS-Addressing information is processed and the
process itself is called engaging WS-Addressing. The default is that WS-Addressing
is not engaged.

You can also specify this property in the WSDL and this is configurable from the
WSDL, automatically by the WebSphere Message Broker Toolkit, when the WSDL
is dragged onto the node. The behavior of the node when WS-Addressing is
engaged or not is as follows:

Addressing not engaged
The node does not add any WS-Addressing headers to the outgoing
message, and does not process any WS-Addressing headers that might be
present in the response message that is received by the node.

Addressing engaged:
The node first looks at the Destination.SOAP.Request.WSA folder in the
local environment. If this folder is empty, the node automatically generates
all required WS-Addressing Message Addressing Properties (MAPs) in the
outgoing message, by using the following default values:
v Action, from the WSDL configuration file. If this is not explicitly

specified, this defaults to the value that is defined in the WSDL Binding
specification.

v To, from the Web Service URL node property.
v ReplyTo, by using the special Anonymous address (assuming that the

Operation being used is not a one-way message exchange program, in
which case a ReplyTo by using the special None address is specified).

v MessageID, a unique UUID is used.

If the Destination.SOAP.Request.WSA folder in the LocalEnvironment is not
empty, any user supplied MAPs override the default ones that were listed
previously, on a property by property basis.

After the response to the request is received and if the Place
WS-Addressing Headers into LocalEnvironment check box is selected on
the SOAPRequest node, the SOAPRequest node removes all
WS-Addressing headers from the response message and places them in the
SOAP.Response.WSA folder. This folder allows you to query the headers in a
similar manner to the way the SOAPInput node deals with the Input
WS-Addressing headers.

Related concepts:
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
“WS-Addressing information in the local environment” on page 1656
WS-Addressing header information can be placed in the local environment tree
where it is visible to a message flow. WS-Addressing header information is only
processed by the SOAP nodes.
Related tasks:
“Example usage of WS-Addressing” on page 1637
Set up a sample message flow by using WS-Addressing, and test the flow.

1654 WebSphere Message Broker Version 7.0.0.8

Related reference:
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.

WS-Addressing with the SOAPAsyncRequest and SOAPAsyncResponse nodes:

The remote Web service must understand WS-Addressing to be able to work with
SOAPAsyncRequest and SOAPAsyncResponse nodes.

The SOAPAsyncRequest and SOAPAsyncResponse nodes require WS-Addressing;
therefore, the remote Web service must understand WS-Addressing to process the
WS-Addressing headers that are sent from the SOAPAsyncRequest node, and to
allow the response to be sent back to the corresponding SOAPAsyncResponse
node, which is specified in the address property of the ReplyTo Message
Addressing Property (MAP).

SOAPAsyncRequest node

The SOAPAsyncRequest node has a property called Use WS-Addressing that is
read-only and has a default value of true, indicating that WS-Addressing is
mandatory for this node. This property has the effect of permanently engaging
WS-Addressing for this node and cannot be changed by the node, or by the WSDL
that is used to configure this node.

The node first looks at the Destination.SOAP.Request.WSA folder in the local
environment. If this folder is empty, the node automatically generates all required
WS-Addressing MAPs in the outgoing message, using the following default values:
v Action, from the WSDL configuration file. If this value is not specified explicitly,

the default value is defined by the WSDL Binding specification.
v To, from the Web Service URL node property.
v ReplyTo, the address of the corresponding SOAPAsyncResponse node.
v MessageID, a unique UUID is used.

If the Destination.SOAP.Request.WSA folder in the local environment is not empty,
any user-supplied MAPs override the default ones listed previously on a property
by property basis.

However, because of the nature of the SOAP asynchronous node pair, you cannot
specify the address property of the ReplyTo Message Exchange Program (MEP),
and this property is ignored if specified.

When the main MAPs are generated, the node looks in several places to obtain
various pieces of context information to send in a <wmb:context> element under
the ReferenceParameters section of the ReplyTo endpoint reference. If these
locations exist and are not empty, the following additional information is added to
the <wmb:context>:
v Destination.SOAP.Request.UserContext

This information is added under a subfolder called UserContext.
v Destination.SOAP.Reply.ReplyIdentifier

This information is added under a subfolder called ReplyID.

Use the user context to specify an arbitrary amount of data that will be sent with
the message from the SOAPAsyncRequest node to the SOAPAsyncResponse node.

Chapter 9. Developing message flow applications 1655

By using the user context, you can pass state from one node to the other. Ensure
that the amount of data that you send is small because this data is placed in the
message.

Use the reply identifier to automatically correlate a SOAPInput node in the flow
that contains the SOAPAsyncRequest node, with a SOAPReply node in the flow
that contains the SOAPAsyncResponse node.

SOAPAsyncResponse node

After the response to the request is received, the SOAPAsyncResponse node can
remove all WS-Addressing headers from the response message and places them in
the SOAP.Response.WSA folder so that you can query the headers, if you select the
node property Place WS-Addressing headers in local environment.

If the response message contains a user context that was specified by the
SOAPAsyncRequest node, the user context is placed in the
SOAP.Response.UserContext folder in the local environment.

If the response message contains a reply identifier that was specified by the
SOAPAsyncRequest node, the reply identifier is placed in the
Destination.SOAP.Reply.ReplyIdentifier folder in the local environment.
Related concepts:
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
“WS-Addressing information in the local environment”
WS-Addressing header information can be placed in the local environment tree
where it is visible to a message flow. WS-Addressing header information is only
processed by the SOAP nodes.
Related tasks:
“Example usage of WS-Addressing” on page 1637
Set up a sample message flow by using WS-Addressing, and test the flow.
Related reference:
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“SOAPAsyncResponse node” on page 4777
Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest
node to construct a pair of message flows that call a Web service asynchronously.

WS-Addressing information in the local environment:

WS-Addressing header information can be placed in the local environment tree
where it is visible to a message flow. WS-Addressing header information is only
processed by the SOAP nodes.

1656 WebSphere Message Broker Version 7.0.0.8

Inbound messages

Inbound information is placed in the local environment by the SOAP node only if
addressing is engaged on the node and you select the Place WS-Addressing
Headers into LocalEnvironment property on the SOAPInput, SOAPAsyncResponse,
or SOAPRequest nodes.

The following table describes the node specific WS-Addressing information in the
local environment tree.

Node Populates local environment property

SOAPInput LocalEnvironment.SOAP.Input.WSA.type

SOAPAsyncResponse LocalEnvironment.SOAP.Response.WSA.type

SOAPRequest LocalEnvironment.SOAP.Request.WSA.type

Where type is the structure of the subsection of the local environment
WS-Addressing XML schema. For details about how type maps to the
WS-Addressing properties defined by the WS-Addressing specification, see the
“Local environment property type” on page 1658 section of this topic.

The local environment information for inbound messages is for your information
only. If you engage addressing on the node, and select the Place WS-Addressing
Headers into LocalEnvironment property on the node, WS-Addressing information
is available for you to look at and use in your flow. The WS-Addressing properties
are placed in the local environment after processing by the node. Note that the
WS-Addressing folder and all its children are owned by an XMLNSC parser,
therefore you can copy elements directly into any other tree that is owned by an
XMLNSC parser. However, be aware that if you copy this folder (or any of its
children) to a tree that is not owned by an XMLNSC parser, information in the tree
is discarded unless you create an XMLNSC parser in the target tree first. This
behavior can occur if you, for example, copy from the InputLocalEnvironment tree
to the OutputLocalEnvironment tree.

Outbound messages

You can place outbound WS-Addressing header information in the local
environment; however, this practice is necessary only to override the defaults that
are generated by the node automatically . Outbound addressing headers are
created only if WS-Addressing is enabled on the node.

The following table describes the node specific WS-Addressing information in the
local environment tree that can be used to override the defaults for outbound
messages.

Node Populates local environment property

SOAPReply LocalEnvironment.Destination.SOAP.Reply.WSA.type

SOAPRequest LocalEnvironment.Destination.SOAP.Request.WSA.type

SOAPAsyncRequest LocalEnvironment.Destination.SOAP.Request.WSA.type

Where type is the structure of the subsection of the local environment
WS-Addressing XML schema. For details about how the type maps to the
WS-Addressing properties defined by the WS-Addressing specification, see the
“Local environment property type” on page 1658 section of this topic.

Chapter 9. Developing message flow applications 1657

You can modify local environment information for outbound messages. The
SOAPReply, SOAPRequest, and SOAPAsyncRequest nodes generate default local
environment settings that you can override. One exception to this table is that any
attempt to override the WS-Addressing ReplyTo address on the
SOAPAsyncRequest node is ignored.

For example, the following code shows how to set WS-Addressing information in
the local environment for the SOAPRequest node. The WS-Addressing
ReplyTo.Address and FaultTo.Address values should be entered as a single string,
without line breaks.

SET OutputRoot = InputRoot;
SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.To.Address = ’jms:jndi:INPUTQ’;
SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.ReplyTo.Address = ’jms:jndi:RESPONSEQ?jndiConnectionFactoryName=QCF&
jndiInitialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory&
jndiURL=file://C:/SOAPJNDIBindings’;
SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.From.Address = ’jms:jndi:INPUTQ’;
SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.FaultTo.Address = ’jms:jndi:RESPONSEQ?jndiConnectionFactoryName=QCF&
jndiInitialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory&
jndiURL=file://C:/SOAPJNDIBindings’;
SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.Action = ’http://WMB_BankImport/NewOperation’;
SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.MessageID = ’test:my:msg:ID:1234578’;

Local environment property type

The local environment property type in the preceding tables corresponds to the
WS-Addressing part of the local environment XML schema. The following table
shows the corresponding message addressing properties (MAPs) of the
WS-Addressing local environment schema for all nodes.

Element Corresponds to abstract WS-Addressing MAP name

To [destination endpoint]

From [source endpoint]

ReplyTo [reply endpoint]

FaultTo [fault endpoint]

Action [action]

MessageId [message id]

RelatesTo [relationship]

ReferenceParameters [reference parameters]

Version This element does not correspond to a MAP, but it is used to identify the version of
WS-Addressing. The two main versions of WS-Addressing are Submission and Final.
The default version that is used by all nodes is Final. Therefore, for outbound
messages, set this element only if you want the version to be Submission. For incoming
messages, this element is populated automatically with the version of the
WS-Addressing headers that the inbound message used.

For more details about the message addressing properties defined by the
WS-Addressing specification, see “WS-Addressing” on page 1617.

For outbound WS-Addressing, you can set an additional local environment
property.

Element Description

AddMustUnderstandAttribute This element places the SOAP mustUnderstand attribute on each
WS-Addressing header before the message is sent.

1658 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“WS-Addressing” on page 1617
Web Services Addressing (WS-Addressing) is a World Wide Web Consortium
(W3C) specification that aids interoperability between Web services by defining a
standard way to address Web services and provide addressing information in
messages.
Related reference:
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“SOAPAsyncResponse node” on page 4777
Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest
node to construct a pair of message flows that call a Web service asynchronously.
“Example use of WS-Addressing information in the local environment”
This example shows the setting of reference parameters in the local environment
along with the corresponding messages as they appear on the wire.

Example use of WS-Addressing information in the local environment:

This example shows the setting of reference parameters in the local environment
along with the corresponding messages as they appear on the wire.

In this example the Web service exposes a simple ping operation.

ESQL to add reference parameters

The following ESQL example shows how to specify addressing headers in the local
environment.

DECLARE Example_ns NAMESPACE ’http://ibm.namespace’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.ReplyTo.ReferenceParameters.Parameter1 = ’Message Broker’;
SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.ReplyTo.ReferenceParameters.Example_ns:Parameter2.
(SOAP.NamespaceDecl)xmlns:Example_ns = ’http://ibm.namespace’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.ReplyTo.ReferenceParameters.Example_ns:Parameter2 = ’Ping’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.FaultTo.ReferenceParameters.Parameter1 = ’Ping’;
SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.FaultTo.ReferenceParameters.Example_ns:Parameter2.
(SOAP.NamespaceDecl)xmlns:Example_ns = ’http://ibm.namespace’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.FaultTo.ReferenceParameters.gns:Parameter2 = ’FAULT’;

Request message

The following example is of an outgoing SOAP envelope in a message from a
SOAPRequest node with ReplyTo and FaultTo reference parameters generated after
using the above ESQL. It also shows the other message addressing properties

Chapter 9. Developing message flow applications 1659

(MAPs) that are not set in the local environment, but are generated automatically
by the node as a result of engaging WS-Addressing.

<NS1:Envelope xmlns:NS1="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa="http://www.w3.org/2005/08/addressing">
<NS1:Header>

<wsa:To>http://localhost:7801/Service</wsa:To>
<wsa:ReplyTo>

<wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>
<wsa:ReferenceParameters>

<Example_ns:Parameter2 xmlns:Example_ns="http://ibm.namespace">Ping</Example_ns:Parameter2>
<Parameter1>Message Broker</Parameter1>

</wsa:ReferenceParameters>
</wsa:ReplyTo>
<wsa:FaultTo>

<wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>
<wsa:ReferenceParameters>

<Example_ns:Parameter2 xmlns:Example_ns="http://ibm.namespace">FAULT</Example_ns:Parameter2>
<Parameter1>Ping</Parameter1>

</wsa:ReferenceParameters>
</wsa:FaultTo>
<wsa:MessageID>urn:uuid:020C911C16EB130A8F1204119836321</wsa:MessageID>
<wsa:Action>http://ibm.com/Service/Ping</wsa:Action>

</NS1:Header>
<NS1:Body>

<NS2:Ping xmlns:NS2="http://ibm.com"></NS2:Ping>
</NS1:Body>

</NS1:Envelope>

In the above example, reference parameters are set for the ReplyTo and FaultTo
endpoint references (EPRs). If this message is sent to a SOAPInput node with
WS-Addressing engaged, these ReferenceParameters are placed in the local
environment of the flow that contains the SOAPInput node for use by the flow if
the Place WS-Addressing Headers into LocalEnvironment property is selected.
This option changes only what is placed in the local environment; it does not
change the contents of the response message.

Response message

The following SOAP envelope is a response to the outgoing preceding message, as
sent by a SOAPReply node. This example shows the MAP processing that happens
automatically by the SOAPReply node. In this example, the FaultTo reference
parameters are not present because the reply is not a SOAP fault. This response
also shows where the reference parameters that belonged to the ReplyTo EPR
appear in the response message.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http://www.w3.org/2005/08/
addressing">
<soapenv:Header>

<wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>
<Example_ns:Parameter2 wsa:IsReferenceParameter="true" xmlns:Example_ns="http://ibm.namespace">Ping</Example_ns:

Parameter2>
<Parameter1 wsa:IsReferenceParameter="true">Message Broker</Parameter1>
<wsa:ReplyTo>

<wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>
</wsa:ReplyTo>
<wsa:Action>http://ibm.com/Service/PingResponse</wsa:Action>
<wsa:RelatesTo RelationshipType="http://www.w3.org/2005/08/addressing/reply">urn:uuid:020C911C16EB130A8F1204119836321

</wsa:RelatesTo>
</soapenv:Header>
<soapenv:Body>

<NS1:PingResponse xmlns:NS1="http://ibm.com">
<NS1:PingResult>Ping</NS1:PingResult>

</NS1:PingResponse>
</soapenv:Body>

</soapenv:Envelope>

1660 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“WS-Addressing information in the local environment” on page 1656
WS-Addressing header information can be placed in the local environment tree
where it is visible to a message flow. WS-Addressing header information is only
processed by the SOAP nodes.

Working with WSDL:

Use the following tasks to help you work with WSDL.
v “WSDL validation”
v “Using WSDL to configure message flows” on page 1664
v “WSDL URI formats for JMS” on page 1668
v “WSDL styles” on page 1670
v “Working with rpc-encoded SOAP messages” on page 1671
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“WSDL validation”
The WS-I Validator can be used to check your WSDL definitions against the Basic
Profile.
“WSDL Version 1.1” on page 6699
Web Services Description Language (WSDL) is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.

WSDL validation:

The WS-I Validator can be used to check your WSDL definitions against the Basic
Profile.

For more information about the WS-I Basic Profile refer to the WS-I, and in
particular the WS-I Basic Profile document:
v Web Services Interoperability Organization (WS-I)
v WS-I deliverables index

You can use the WS-I Validator to check your WSDL definitions against the Basic
Profile; see “WS-I Basic Profile Version 1.1” on page 6700.

You can run the validator in either of the following ways:
v Manually against a specific .wsdl resource in the workbench.

This option enables you to investigate and fix WS-I compliance problems; all
validation issues are displayed as task list errors and warnings.

v Automatically, when WSDL is imported or generated.
WSDL can be imported using the WSDL Quick Start wizard, the WSDL Importer
wizard, or the mqsicreatemsgdefsfromwsdl command.
WSDL can be generated from a message set by using the WSDL Generator
wizard.

You can control the behavior of the validator using Preferences > Web services >
Profile Compliance and Validation. The significant settings are:
v WS-I AP compliance level (WS-I Attachments Profile 1.0)

Chapter 9. Developing message flow applications 1661

http://www.ws-i.org
http://www.ws-i.org/deliverables

v WS-I SSBP compliance level (WS-I Simple SOAP Binding Profile 1.0)

You can select one of the following values:

Suggest
Run the validator with errors treated as unrecoverable, but warnings only
notified. This is the default setting.

Require
Run the validator with errors and warnings treated as unrecoverable.

Ignore Do no run the validator.

The AP selection applies automatically to the SSBP field, therefore Ignore is not
explicitly selectable unless the AP selection is set to Ignore.

The following terms refer to the three broad categories of WSDL definition:
v document-literal means the combination style="document" and use="literal"
v rpc-literal means the combination style="rpc" and use="literal"
v rpc-encoded means the combination style="rpc" and use="encoded"

The following are typical validation problems using the preceding terminology:

Your WSDL is rpc-encoded
WSDL with use="encoded" is not WS-I compliant and can lead to
operational problems because products of different vendors can make
different assumptions about the expected SOAP payload.

WS-I: (BP2406) The use attribute of a soapbind:body, soapbind:fault,
soapbind:header, and soapbind:headerfault does not have the value of
"literal".

Your WSDL is document-literal, but one or more WSDL part definitions refer to
XML Schema types.

In document-literal WSDL, the SOAP body payload is the XML Schema
element that is referred to by the appropriate WSDL part.

If a type is specified instead of an element, the SOAP payload is
potentially ambiguous (the payload name is not defined) and
interoperability problems are likely.

WS-I: (BP2012) A document-literal binding contains soapbind:body
elements that refer to message part elements that do not have the element
attribute.

Your WSDL is rpc-literal or rpc-encoded, but one or more WSDL part definitions
refer to XML Schema elements.

In rpc-style WSDL, the SOAP body payload is the WSDL operation name,
and its children are the WSDL parts that are specified for that operation.

If an element is specified instead of a type, the SOAP message payload is
potentially ambiguous (the payload name might be the WSDL part name
or the XML Schema element name), and interoperability problems are
likely.

WS-I: (BP2013) An rpc-literal binding contains soapbind:body elements that
refer to message part elements that do not have the type attribute.

1662 WebSphere Message Broker Version 7.0.0.8

Your WSDL includes SOAP header, headerfault or fault definitions that refer to
XML Schema types.

In rpc-style WSDL, the SOAP body is correctly defined through XML
Schema types as described above.

SOAP headers and faults, however, do not correspond to an rpc function
call in the same way as the body.

In particular, there is no concept of 'parameters' to a header or fault, and a
header or fault must always be defined in terms of XML Schema elements
to avoid potential ambiguity. Effectively, header and fault definitions in
WSDL are always document-literal.

WS-I: (BP2113) The soapbind:header, soapbind:headerfault, or
soapbind:fault elements refer to wsd:part elements that are not defined
using only the "element" attribute.

Your WSDL is rpc-literal or rpc-encoded, but no namespace was specified for an
operation.

In rpc-style WSDL, the SOAP message payload is the WSDL operation
name, qualified by a namespace that is specified as part of the WSDL
binding.

If no namespace is specified then the SOAP message payload is potentially
ambiguous (the payload name might be in no namespace, or might default
to use a different namespace, such as the target namespace of the WSDL
definition) and interoperability problems are likely.

WS-I: (BP2020) An rpc-literal binding contains soapbind:body elements that
either do not have a namespace attribute, or have a namespace attribute
value that is not an absolute URI.

Your WSDL includes a SOAP/JMS binding.
If your WSDL uses a SOAP/JMS transport URI it is not WS-I compliant.
An error is shown if strict WS-I validation is enabled. To disable strict WS-I
validation, click Window > Preferences > Broker Development > Message
Sets > Validation and select the WS-I BP 1.1: Allow SOAP/JMS as
transport URI. By default strict WS-I validation is disabled.

Web service interoperability is improved if you implement the following actions:
v Use document-style WSDL whenever possible.
v Use literal encoding, if rpc-style WSDL is necessary.
v Ensure that the WSDL operation definitions are qualified by a valid namespace

attribute, if rpc-encoded WSDL must be used.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Importing WSDL files to create message definitions” on page 1267
Import WSDL files by using the New Message Definition File From WSDL file
wizard, the Start from WSDL and/or XSD files Quick Start wizard, or the
mqsicreatemsgdefsfromwsdl command.

Chapter 9. Developing message flow applications 1663

“WSDL Version 1.1” on page 6699
Web Services Description Language (WSDL) is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Importing WSDL definitions from the command line” on page 2948
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“What is WSDL?” on page 1615
WSDL is an XML notation for describing a web service. A WSDL definition tells a
client how to compose a web service request and describes the interface that is
provided by the web service provider.
“mqsicreatemsgdefsfromwsdl command” on page 3712
Use the mqsicreatemsgdefsfromwsdl command to import a single WSDL definition.

“Importing from WSDL: generated objects and restrictions” on page 6355
Several objects are generated when you import from WSDL but restrictions might
apply.

Using WSDL to configure message flows:

You can use WSDL to configure message flows.

Message flows that work with Web services typically use the SOAP nodes. For
details about the SOAP nodes, see “WebSphere Message Broker and Web services”
on page 1602.

In WSDL mode, the SOAP nodes are configured by using a WSDL file that was
previously imported or generated in a message set, and is displayed under
Deployable WSDL in the workbench. You can drag the WSDL file onto a SOAP
node, or specify it by using the WSDL file name property on the node.

You can change the operation mode of the SOAP nodes so that they act in gateway
mode. In gateway mode, a WSDL is not required to configure the nodes because
they handle generic request/response and one-way SOAP messages that are not
tied to a specific WSDL. For more details, see “Gateway operation mode for SOAP
nodes” on page 1645.

When you drag a WSDL file onto a SOAP node, the node properties are configured
from the properties in the WSDL address URI. The transport properties on the
SOAP node are populated according to the first binding imported from the WSDL
file. Therefore, if the first imported binding describes a JMS transport, the JMS
Transport properties are populated; if the first imported binding describes an

1664 WebSphere Message Broker Version 7.0.0.8

HTTP transport, the HTTP Transport properties are populated. If you select
another imported binding, the transport properties are populated accordingly. The
portType appears differently depending on the transport selected.

The WSDL address element URI can exist in two different formats, W3C format, or
IBM (deprecated) format. The format of the WSDL URI affects the names of the
WSDL properties that the parser looks for to populate the SOAP node properties.
For example, the JNDI context parameters table is not populated when you
import an IBM-style WSDL because it does not support these properties in the
WSDL address URI. The table is populated only if JNDI context parameters are
present in a W3C-style WSDL. For details, see “WSDL URI formats for JMS” on
page 1668.

If you supply a service definition, endpoint properties are set automatically, but
you can also set or override these properties manually.

Optionally, WSDL definitions can be split into multiple files. The typical
arrangement is that a top-level service definition file imports a binding file, the
binding file imports an interface file, and this interface file imports or includes
schema definition files.

A WSDL portType (the logical WSDL interface) is not sufficient on its own to
configure a SOAP node; a specific binding is required so that the SOAP payload is
well-defined at run time.

A binding defines a use, which can be document (the default) or rpc. If the use is
document, the SOAP payload is described by an XML Schema element in the
WSDL. If the use is rpc, the SOAP payload is the WSDL operation name in a
specified namespace.

To create your own message flow, configure the nodes as described. However, you
can create a new skeleton message flow by dragging a WSDL definition onto a
blank canvas in the Message Flow editor, and selecting a specific WSDL binding.
You can also choose the type of flow (service provider or consumer) and the
operations to be handled by the flow. The key nodes and properties in the
generated message flow are configured, but you must complete the configuration
and add any other nodes that you require before deploying the flow. For details
about configuring a new Web service by using the wizard, see “Configure New
Web Service Usage wizard” on page 6392.

Configuring the SOAP nodes

The following nodes are configured explicitly by WSDL:
v “SOAPInput node” on page 4795
v “SOAPRequest node” on page 4828
v “SOAPAsyncRequest node” on page 4750

The following nodes are configured implicitly by WSDL, because they inherit the
WSDL configuration of the node with which they are paired:
v “SOAPReply node” on page 4819
v “SOAPAsyncResponse node” on page 4777

A SOAPReply node is always used with a SOAPInput node. For details of Web
service scenarios, see “Web services scenarios” on page 1620.

Chapter 9. Developing message flow applications 1665

A SOAPAsyncResponse node is always used with a SOAPAsyncRequest node,
associated by the Unique Identifier property. For SOAP node usage patterns, see
“Web services scenarios” on page 1620.
Related concepts:
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.
“Importing WSDL files to create message definitions” on page 1267
Import WSDL files by using the New Message Definition File From WSDL file
wizard, the Start from WSDL and/or XSD files Quick Start wizard, or the
mqsicreatemsgdefsfromwsdl command.
“Relationship of WSDL to Message Model” on page 1269
If a broker is to communicate with an existing Web service, it typically needs to
send and receive SOAP messages. To take this approach, use the MRM domain.
You must ensure that the broker message model and the WSDL definition used by
the Web service describe the same messages. In general, you can achieve this result
by importing the WSDL for the existing Web service by using the broker tooling.
Currently only WSDL version 1.1 is supported.
Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
“Migrating a flow supporting ?wsdl queries” on page 220
If you want WSDL and XML Schema information to be made available for existing
SOAPInput-SOAPReply flows that implement web services, you must explicitly set
the SOAPInput node property Enable support for ?wsdl and redeploy the flow.
“Creating an application by using the Configure New Web Service Usage wizard”
on page 1417
Use these instructions to generate a message flow by using the Configure New
Web Service Usage wizard.
Related reference:
“Configure New Web Service Usage wizard” on page 6392
This provides additional reference information in relation to the Configure New
Web Service Usage wizard.
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Querying WSDL with ?wsdl:

You can interrogate web services using ?wsdl.

A web service client can send an HTTP GET request with a ?wsdl query string to a
WebSphere Message Broker web service, and receive a representation of the WSDL
that was used to configure the input node that provides the endpoint for the
service. You can do this only for input nodes that use HTTP and not JMS transport.
The protocol of the HTTP GET request must match the protocol of the flow;
therefore if the flow uses SSL, the HTTP GET request must begin https://.

1666 WebSphere Message Broker Version 7.0.0.8

The client starts by sending a simple ?wsdl query and retrieves the complete
WSDL definition by following a chain of referenced imports or includes. For
example, if the web service endpoint is http://localhost:7800/test1, the initial
client request is:
GET http://localhost:7800/test1?wsdl

This request returns the top-level WSDL service definition, which might include
imports for further sections of the WSDL definition. For example, if the returned
WSDL has a line:
<wsdl:import ... location="http://localhost:7800/test1?wsdl=wsdl0"/>

then the client sends a corresponding request to retrieve that section of the WSDL:
GET http://localhost:7800/test1?wsdl=wsdl0

One or more WSDL sections can also have imports for XML Schema data, for
example:
<xsd:import ... schemaLocation="http://localhost:7800/test1?xsd=xsd0"/>

The client again sends a corresponding request to retrieve that data:
GET http://localhost:7800/test1?xsd=xsd0

Only semantically correct references can be followed:
v <wsdl:import> elements that are immediate children of wsdl:definition

elements
v <xsd:import> and <xsd:include> elements that are immediate children of

xsd:schema elements

where wsdl is a shorthand (namespace prefix) for http://schemas.xmlsoap.org/
wsdl/, and xsd is a shorthand for http://www.w3.org/2001/XMLSchema. A request
made to a URI from an element which superficially looks like an <import> or
<include>, for example, an element in a comment, results in a SOAP Fault being
returned. Only the simple ?wsdl query string, and subsequent queries that exactly
match those queries specified in semantically valid imports and includes, result in
data being returned.

The WSDL definition returned is logically equivalent to the deployable WSDL in
the toolkit, with inline schemas externalized. It might not be physically identical to
the original imported WSDL definition. Although a SOAPInput is configured with
a specific WSDL binding, the WSDL returned also includes other bindings that are
not used by the flow if these were part of the original WSDL definition that was
imported.
Related concepts:
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.
“Importing WSDL files to create message definitions” on page 1267
Import WSDL files by using the New Message Definition File From WSDL file
wizard, the Start from WSDL and/or XSD files Quick Start wizard, or the
mqsicreatemsgdefsfromwsdl command.

Chapter 9. Developing message flow applications 1667

“Relationship of WSDL to Message Model” on page 1269
If a broker is to communicate with an existing Web service, it typically needs to
send and receive SOAP messages. To take this approach, use the MRM domain.
You must ensure that the broker message model and the WSDL definition used by
the Web service describe the same messages. In general, you can achieve this result
by importing the WSDL for the existing Web service by using the broker tooling.
Currently only WSDL version 1.1 is supported.
Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
“Migrating a flow supporting ?wsdl queries” on page 220
If you want WSDL and XML Schema information to be made available for existing
SOAPInput-SOAPReply flows that implement web services, you must explicitly set
the SOAPInput node property Enable support for ?wsdl and redeploy the flow.
“Creating an application by using the Configure New Web Service Usage wizard”
on page 1417
Use these instructions to generate a message flow by using the Configure New
Web Service Usage wizard.
Related reference:
“Configure New Web Service Usage wizard” on page 6392
This provides additional reference information in relation to the Configure New
Web Service Usage wizard.
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

WSDL URI formats for JMS:

You must use WSDL to configure SOAP nodes. When using WSDL with a JMS
transport, different URI formats can exist in the address element in the WSDL,
which affect how properties are parsed and applied to the configured nodes.

Two different URI formats can exist in the WSDL address element. Several node
properties are initially set from properties in the imported WSDL, which is parsed
according to which type of URI is found in the WSDL element. The first type is the
W3C SOAP JMS specification format. For example:
<soap:address location="jms:jndi:REPLYTOQ2?jndiConnectionFactoryName=QCF&
jndiInitialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory&
jndiURL=file:/C:/mqsi6/webservices/SOAP/JMS/JNDI&
targetService=SOAPJMSGenMessageSetSOAP_JMS_Service&
timeToLive=30000"
/>

The second URI format for the address element is a proprietary IBM format which
is currently deprecated. For example:
<soap:address location="jms:/queue?destination=jms/RequestQ&
connectionFactory=jms/WMBQCF&
targetService=SOAPJMSGenMessageSetSOAP_JMS_Service&
initialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory&
jndiProviderURL=file:/C:/mqsi6/webservices/SOAP/JMS/JNDI"
/>

There are several differences between these URI formats. WebSphere Message
Broker accepts both URI formats. Different WSDL properties are used to set the
SOAP node properties depending on which URI format is used in the WSDL
address element.

1668 WebSphere Message Broker Version 7.0.0.8

The following table shows how WSDL properties are parsed into SOAPInput node
properties. The columns headed "W3C names in URI" and "W3C allowed values"
indicate the property names that the parser looks for when a W3C-style URI is
found, and the allowed values for those properties. The columns headed "IBM
names in URI" and "IBM allowed values" indicate the property names that the
parser looks for when an IBM-style URI is found in the WSDL, and the allowed
values for those properties. Where more than one property name is shown in a
table cell, the node property is set to the value of the first of those property names
found in the WSDL address element. Any properties found in the WSDL address
element that are not parsed into node properties are discarded.

SOAPInput node
property name

W3C SOAP/JMS
specification
names

W3C names in
URI

W3C allowed
values

IBM names in
URI

IBM allowed
values

Source soapjms:destinationNamejms-dest (in URI) <string> destination <string>

Connection
factory name

soapjms:jndiConnectionFactoryNamejndiConnectionFactoryName<string> connectionFactory<string>

Initial context
factory

soapjms:jndiInitialContextFactoryjndiInitialContextFactory<string> initialContextFactory<string>

JNDI URL
bindings location

soapjms:jndiURL jndiURL <URL> jndiProviderURL <URL>

JNDI parameters soapjms:jndiContextParameterjndi-name=value <string for name
and value>

N/A <string>

Delivery mode soapjms:deliveryModedeliveryMode NON_PERSISTENT

PERSISTENT1

deliveryMode

persistence

<int 1 | 2>

Message priority soapjms:priority priority <int 0-9> priority

Priority

<int 0-9>

Target service soapjms:targetServicetargetService <string> targetService <string>

Notes:

1. WebSphere Message Broker accepts the values 1 and 2 when parsing a
W3C-style URI for compatibility reasons, but the W3C specification allows only
the string values NON_PERSISTENT and PERSISTENT for this property.

The following table shows how WSDL properties are parsed into SOAPRequest
andSOAPAsyncRequest node properties. The columns headed "W3C names in URI"
and "W3C allowed values" indicate the property names that the parser looks for
when a W3C-style URI is found, and the allowed values for those properties. The
columns headed "IBM names in URI" and "IBM allowed values" indicate the
property names that the parser looks for when an IBM-style URI is found in the
WSDL, and the allowed values for those properties. Where more than one property
name is shown in a table cell, the node property is set to the value of the first of
those property names found in the WSDL address element. Any properties found
in the WSDL address element that are not parsed into node properties are
populated in the User Parameters table.

SOAPRequest or
SOAPAsyncRequest
node property
name

W3C SOAP/JMS
specification
names

W3C names in
URI

W3C allowed
values

IBM names in
URI

IBM allowed
values

Destination soapjms:destinationNamejms-dest (in URI) <string> destination <string>

Chapter 9. Developing message flow applications 1669

SOAPRequest or
SOAPAsyncRequest
node property
name

W3C SOAP/JMS
specification
names

W3C names in
URI

W3C allowed
values

IBM names in
URI

IBM allowed
values

Connection
factory name

soapjms:jndiConnectionFactoryNamejndiConnectionFactoryName<string> connectionFactory<string>

Initial context
factory

soapjms:jndiInitialContextFactoryjndiInitialContextFactory<string> initialContextFactory<string>

JNDI URL
bindings location

soapjms:jndiURL jndiURL <URL> jndiProviderURL <URL>

JNDI parameters soapjms:jndiContextParameterjndi-name=value <string for name
and value>

N/A <string>

Delivery mode soapjms:deliveryModedeliveryMode NON_PERSISTENT

PERSISTENT1

deliveryMode

persistence

<int 1 | 2>

Message
expiration

soapjms:timeToLivetimeToLive <int> timeToLive <int>

Message priority soapjms:priority priority <int 0-9> priority

Priority

<int 0-9>

Reply to
destination

soapjms:replyToNamereplyToName <string> replyToName

replyTo

replyToDestination

replyDestination

<string>

Target service soapjms:targetServicetargetService <string> targetService <string>

User parameters UserProperties <any other
property name>

<string> <any other
property name>

<string>

Notes:

1. WebSphere Message Broker accepts the values 1 and 2 when parsing a
W3C-style URI for compatibility reasons, but the W3C specification allows only
the string values NON_PERSISTENT and PERSISTENT for this property.

Related concepts:
“Using WSDL to configure message flows” on page 1664
You can use WSDL to configure message flows.
Related reference:
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.

WSDL styles:

The SOAP nodes are configured using a specific WSDL binding that has a style of
either document (the default) or rpc. All operations defined in a specific WSDL
binding are usually defined with the same use, which can be either literal (the
default) or encoded.

1670 WebSphere Message Broker Version 7.0.0.8

The following terms are used to describe the three general types of WSDL
bindings:
1. document-literal (style="document", use="literal")

2. rpc-literal (style="rpc", use="literal")

3. rpc-encoded (style="rpc", use="encoded")

The shape of the runtime SOAP message defined by the WSDL depends on the
binding type, as shown in the following table:

WSDL binding type Description

document-literal The SOAP payload is described by XML schema. The
wrapped document-literal convention constructs the
XML schema so that the first child of the SOAP Body
matches the operation name.

rpc-literal The SOAP payload is described by the WSDL (operation
and part name) and then by XML schema.

rpc-encoded The SOAP payload has the same general shape as
rpc-literal, but can carry SOAP encoding annotations
designed to give the receiver additional information
about the message that is sent. The annotations are
slightly different between SOAP 1.1 and SOAP 1.2.

All three WSDL styles are supported by WebSphere Message Broker. The best style
for a new service is document-literal, and it is also the least likely to cause
interoperability problems. You can use the wrapped document-literal convention
to explicitly associate the SOAP payload with the operation.

Both document-literal and rpc-literal are WS-I compliant. The rpc-encoded style
is not WS-I compliant and can cause interoperability problems if the web service
client and server use different technologies. Some common issues encountered with
WSDL styles are described in “WSDL validation” on page 1661.

It is simple to create and parse SOAP messages described by document-literal or
rpc-literal WSDL, because the payload is standard XML described by the
message set created from the WSDL.

For more information, see “Working with rpc-encoded SOAP messages.”
Related reference:
“What is WSDL?” on page 1615
WSDL is an XML notation for describing a web service. A WSDL definition tells a
client how to compose a web service request and describes the interface that is
provided by the web service provider.

Working with rpc-encoded SOAP messages:

The SOAP nodes are configured using a specific WSDL binding that has a style of
either document (the default) or rpc. All the operations defined within a particular
WSDL binding are usually defined with the same use, which can be either literal
(the default) or encoded.

SOAP messages that are rpc-encoded can carry SOAP encoding annotations that
are designed to give the receiver additional information about the message being
sent. The following four types of annotations are common:
1. xsi:type

Chapter 9. Developing message flow applications 1671

2. encodingStyle
3. Arrays
4. Multi-reference

Arrays and multi-reference elements can cause interoperability problems, and
require specific intervention by the message flow developer, as follows:
v If the message flow builds outbound messages incorporating SOAP arrays, use

ESQL to add any required attributes, as follows:
– arrayType for SOAP 1.1
– arraySize and itemType for SOAP 1.2

v If the message flow receives messages using SOAP arrays, disable validation.
v If the message flow receives messages using multi-reference encoding, disable

validation and, if necessary, navigate the resulting logical tree using the href (or
ref) and id attributes.

xsi:type

An xsi:type attribute can be added to an element to specify its type. For example:
<data xsi:type="xsd:string">text</data>

where the namespace prefix xsi is defined as follows:
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

For a web service built from WSDL and XML schema, the type information is
already available and the xsi:type is redundant.

Generally, when building an outbound message, you do not add xsi:type
information. The following ESQL example shows how to add xsi:type information
if it is required:
DECLARE xsd NAMESPACE ’http://www.w3.org/2001/XMLSchema’;
DECLARE xsi NAMESPACE ’http://www.w3.org/2001/XMLSchema-instance’;

SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:xsd = xsd;
SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:xsi = xsi;

SET OutputRoot.SOAP.Body.rpc:op1.part1.data.(SOAP.Attribute)xsi:type = ’xsd:string’;

When parsing an inbound message, any xsi:type information is added to the
logical tree in the same way as other attributes, as follows:
(0x03000000:PCDataField):data = ’text’ (CHARACTER)
(

(0x03000100:Attribute)http://www.w3.org/2001/XMLSchema-instance:type = ’xsd:string’ (CHARACTER)
)

encodingStyle

An encodingStyle attribute can be added to an element to specify the SOAP
encoding style used. For example:
<tns:op1 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

where the namespace prefix soapenv is defined as the namespace of your SOAP
Envelope, as follows:
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" (SOAP 1.1)
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope" (SOAP 1.2)

1672 WebSphere Message Broker Version 7.0.0.8

The value itself is a list of URIs, but the values in common use are as follows:
"http://schemas.xmlsoap.org/soap/encoding/" (SOAP 1.1)
"http://www.w3.org/2003/05/soap-encoding" (SOAP 1.2)

In SOAP 1.1, the encodingStyle attribute can be added to any element. In SOAP
1.2 the encodingStyle attribute can be added only to children of Body, Header and
Detail.

Generally, you build an outbound message, you do not add the encodingStyle
attribute. The following ESQL example shows how to add encodingStyle
information, if it is required:
DECLARE soapenv NAMESPACE ’http://schemas.xmlsoap.org/soap/envelope/’;
DECLARE soapenc NAMESPACE ’http://schemas.xmlsoap.org/soap/encoding/’;

SET OutputRoot.SOAP.Body.tns:op1.(SOAP.Attribute)soapenv:encodingStyle = soapenc;

When parsing an inbound message, any encodingStyle attributes are added to the
logical tree in the same way as other attributes, as follows:
(0x03000100:Attribute)http://schemas.xmlsoap.org/soap/envelope/:encodingStyle =

’http://schemas.xmlsoap.org/soap/encoding/’ (CHARACTER)

Arrays

A SOAP array is an element containing a sequence of child elements of the same
type. In the following XML schema example, there is a type called data with two
elements: a simple string and an array. In the schema, the field called array has an
unspecified number of children of type string. The name of those child elements is
not specified.
<xsd:complexType name="ArrayOfString">

<xsd:complexContent mixed="false">
<xsd:restriction base="soapenc:Array">

<xsd:attribute wsdl:arrayType="xsd:string[]" ref="soapenc:arrayType"/>
</xsd:restriction>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="data">
<xsd:sequence>

<xsd:element name="simple" type="xsd:string"/>
<xsd:element name="array" type="tns:ArrayOfString"/>

</xsd:sequence>
</xsd:complexType>

The namespaces used in the example are from WSDL 1.1 and SOAP 1.1, as follows:
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

The following example is part of a valid instance document matching the schema:
<array soapenc:arrayType="xsd:string[]">

<item>item1</item>
<item>item2</item>

</array>

When you build an outbound message, you must add the appropriate attributes.
For example, the following ESQL shows how to add the arrayType attribute:
DECLARE xsd NAMESPACE ’http://www.w3.org/2001/XMLSchema’;
DECLARE soapenc NAMESPACE ’http://schemas.xmlsoap.org/soap/encoding/’;

Chapter 9. Developing message flow applications 1673

SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:xsd = xsd;

SET OutputRoot.SOAP.Body.rpc:op1.p1.array.(SOAP.Attribute)soapenc:arrayType = ’xsd:string[]’;

The attributes used by SOAP 1.1 and SOAP 1.2 are different. SOAP 1.1 uses the
arrayType attribute. The size of the array can be specified, but is not required.
SOAP 1.2 uses two separate attributes. The equivalent SOAP 1.2 attributes for the
previous example are soapenc:itemType="xsd:string" and soapenc:arraySize="2",
where the namespace prefixes are defined as follows:
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc=" http://www.w3.org/2003/05/soap-encoding"

You must disable validation if your message flow receives SOAP encoded
messages containing SOAP arrays. The instance document cannot be validated
against the schema when parsing an inbound message, because the name of the
array items is not defined by the schema.

Multi-reference

The following example shows a SOAP 1.1 request message for a WSDL
rpc-encoded operation called op1:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<soapenv:Body xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:rpc="http://example/rpc">
<rpc:op1>

<p1>
<simple>text</simple>
<array soapenc:arrayType="xsd:string[]">
<Item>item1</Item>
<Item>item2</Item>

</array>
</p1>

</rpc:op1>
</soapenv:Body>

</soapenv:Envelope>

A SOAP implementation can reorganize this logical message to use multi-reference
elements, as follows:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<soapenv:Body xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:rpc="http://example/rpc">
<rpc:op1>

<p1 href="#id1"/>
</rpc:op1>
<rpc:data id="id1">

<simple>text</simple>
<array href="#id2"/>

</rpc:data>
<soapenc:Array id="id2" soapenc:arrayType="xsd:string[]">

<Item>Array Element 0</Item>
<Item>Array Element 1</Item>

</soapenc:Array>
</soapenv:Body>

</soapenv:Envelope>

The message is logically equivalent to the first example, but the children of
elements p1 and array have been split out into separate sibling elements and then
referenced using the href attribute.

1674 WebSphere Message Broker Version 7.0.0.8

The introduced elements, such as <data>:
v Can be referenced from more than one location, which allows the message to

state that such elements are identical, as opposed to separate items which have
the same value. The message size could be reduced if a shared element is large
and referenced many times.

v Can directly or indirectly reference themselves, which allows the message to
represent a graph that contains circular references.

Neither of these considerations applies to the previous example.

Generally, when you build an outbound message, you do not encode
multi-reference elements unless the message represents a graph. Otherwise, the
multi-reference encoding is optional. The following ESQL example shows how to
encode multi-reference elements:
-- ESQL namespace prefixes
DECLARE soapenc NAMESPACE ’http://schemas.xmlsoap.org/soap/encoding/’;
DECLARE xsd NAMESPACE ’http://www.w3.org/2001/XMLSchema’;
DECLARE rpc NAMESPACE ’http://example/rpc’;

-- define XML namespace prefixes
SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:soapenc = soapenc;
SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:xsd = xsd;
SET OutputRoot.SOAP.Context.Namespace.(SOAP.NamespaceDecl)xmlns:rpc = rpc;

-- build request message
SET OutputRoot.SOAP.Body.rpc:op1.p1.(SOAP.Attribute)href = ’#id1’;

SET OutputRoot.SOAP.Body.rpc:data.(SOAP.Attribute)id = ’id1’;
SET OutputRoot.SOAP.Body.rpc:data.simple = ’text’;
SET OutputRoot.SOAP.Body.rpc:data.array.(SOAP.Attribute)href = ’#id2’;

SET OutputRoot.SOAP.Body.soapenc:Array.(SOAP.Attribute)id = ’id2’;
SET OutputRoot.SOAP.Body.soapenc:Array.(SOAP.Attribute)soapenc:arrayType = ’xsd:string[]’;
SET OutputRoot.SOAP.Body.soapenc:Array.Item[1] = ’item1’;
SET OutputRoot.SOAP.Body.soapenc:Array.Item[2] = ’item2’;

When parsing an inbound message, multi-reference elements do not match the
XML schema from the web service WSDL. If validation is enabled on a SOAP
node, then an exception is thrown. If you use multi-reference encoding, then you
must disable validation.

When you have a logical tree built from the message, you can propagate this tree
to another SOAP node for output. For example, with a façade flow as shown in the
following diagram, if the SOAPRequest node receives a response using
multi-reference encoding, you can propagate the logical tree for the response to the
SOAPReply node, and a SOAP message with multi-reference encoding is returned
to the original client.

The original client must also understand the multi-reference encoding.

Chapter 9. Developing message flow applications 1675

To manipulate the logical tree for a multi-reference encoded message, navigate the
href and id attributes in ESQL. These attributes are slightly different in SOAP 1.1
and SOAP 1.2, as follows:
v In SOAP 1.1, the referencing element has an attribute href="#id" and the item

referenced id="id".
v In SOAP 1.2, the referencing element has an attribute ref="id" and the item

referenced id="id".
Related concepts:
“WSDL styles” on page 1670
The SOAP nodes are configured using a specific WSDL binding that has a style of
either document (the default) or rpc. All operations defined in a specific WSDL
binding are usually defined with the same use, which can be either literal (the
default) or encoded.

Using timeouts with HTTP and SOAP nodes:

Connect the HTTP Timeout terminal of the HTTPInput or SOAPInput nodes to
further nodes to process timeouts.

Before you begin

Before you start:

v Read the message flows overview.
v Read about the options that you have for processing Web service messages, and

learn more about SOAP and HTTP.

About this task

You can configure message flows that start with an HTTPInput or SOAPInput
node by connecting the HTTP Timeout terminal to further nodes for processing
timeouts:
v On SOAPInput nodes, messages are propagated through this terminal only

when you are using an HTTP binding.
v On HTTPInput nodes, messages are propagated through this terminal only when

you have configured your execution groups such that the HTTP nodes are using
the embedded execution group listener.

If these conditions are not met when you deploy the BAR file for the message flow
that includes one of these nodes, a warning is generated, and the path of the
message flow that you have connected to the HTTP Timeout terminal is ignored.
No further warnings are generated until the next restart.

To set a static timeout value in an input node:
1. Create a message flow, or open an existing flow.
2. In the Message Flow editor, select the input node for this message flow. The

node properties are displayed in the Properties view (below the editor pane).
3. Set an appropriate time for the timeout interval in the property Maximum client

wait time. The default interval is 180 seconds.
If this time expires, and you have not connected one or more nodes to the
HTTP Timeout terminal, the listener that received the client request message
responds with a SOAP Fault message indicating that a timeout has occurred.

4. If you want to provide customized timeout processing, connect one or more
nodes to the HTTP Timeout terminal. You must include in this sequence the

1676 WebSphere Message Broker Version 7.0.0.8

reply node that matches the input node. Therefore, if your message flow starts
with an HTTPInput node, you must include an HTTPReply; if your message
flow starts with a SOAPInput node, you must include a SOAPReply node.

To set a dynamic timeout value in an input node:
v Override the timeout value set on the input node by using the Java plug-in API

to update it in a JavaCompute node using the
MbUtilities.changeIdentifierTimeout() method. The following code shows an
example of the changeIdentifierTimeout method:
MbMessage localEnv = assembly.getLocalEnvironment();
MbElement rootElem = localEnv.getRootElement();
MbElement repIdElement = rootElem.getFirstElementByPath(

"/Destination/SOAP/Reply/ReplyIdentifier");
Object repId = repIdElement.getValue();
boolean success = changeIdentifierTimeout((byte[])repId, timeout);

v Override the timeout value set on the input node by using the
“CHANGEIDENTIFIERTIMEOUT function” on page 5292.

You can derive the value that you use to replace the existing value by several
means; for example:
v Create a configurable service of type UserDefined to define a timeout value, and

retrieve the appropriate property.
v Read a record from a database.
v Use a value from a field within the message body.

By propagating from the HTTP Timeout terminal you can then change the contents
of the responses that your message flow sends to the client. The processing on the
sequence of nodes that you connect to the HTTP Timeout terminal is also subject
to a further timeout, so that the client always gets a response within a known
timeout interval.

When a message is propagated from the HTTP Timeout terminal the message tree
contains the input headers of the original input message and a message body that
is the fault timeout message. The original message body along with other
information relating to the timeout can be accessed in the LocalEnvironment
message tree. For example, the following record can be found in the
LocalEnvironment:

(0x01000000:Name):HTTP = (
(0x01000000:Name):Input = (

(0x01000000:Name):Timeout = (
(0x03000000:NameValue):OriginalClientLastWaitTime = 10 (INTEGER)
(0x03000000:NameValue):OriginalClientWaitTime = 15 (INTEGER)
(0x03000000:NameValue):OriginalMessageMadeTheFlow = TRUE (BOOLEAN)
(0x03000000:NameValue):OriginalRequestIdentifier =

X’48545450000000000000000000000000c00c000000000000’ (BLOB)
(0x03000000:NameValue):OriginalInboundMessage = X’3c3e’ (BLOB)

)
)

)

For SOAPInput nodes the SOAPReply node connected on the HTTP Timeout
terminal path must send a SOAP fault response message and the reply status code
of 500 cannot be altered. For HTTPInput nodes any response message can be sent
from the HTTP Timeout terminal and the reply status code can be changed by
updating the LocalEnvironment.Destination.HTTP.ReplyStatusCode message tree
field.
Related concepts:

Chapter 9. Developing message flow applications 1677

“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
“Managing brokers from JavaCompute nodes” on page 997
You can use the CMP API to manage brokers and their associated resources from
JavaCompute nodes in deployed message flows.
“Working with properties of a configurable service of type UserDefined at run time
in a JavaCompute node” on page 987
Use the CMP API in a JavaCompute node to query, set, create, and delete
properties dynamically at run time in configurable services that you have defined
with type UserDefined.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Processing Web service messages” on page 1601
Use WebSphere Message Broker nodes and services to connect to other Web
services providers and consumers.
Related reference:
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“Administration API” on page 3672
Use the Administration API for WebSphere Message Broker (CMP API) Java classes
and methods to develop CMP applications.

Using SOAP MTOM with the SOAPReply, SOAPRequest, and
SOAPAsyncRequest nodes:

The use of outbound MTOM messages can be configured on the SOAPReply,
SOAPRequest, and SOAPAsyncRequest nodes.

The nodes have a property called Allow MTOM, which defines whether MTOM can
be used.

An MTOM output message is written if all of the following criteria are met:
v The Allow MTOM property is selected on the WS Extensions tab.
v Validation is enabled. The Validate property on the SOAPRequest and

SOAPAsyncRequest nodes controls validation of the anticipated response

1678 WebSphere Message Broker Version 7.0.0.8

message and not validation of the outgoing request. MTOM output is therefore
suppressed unless you set Validate to Content and value on a preceding input
node or transformation node.

v No child elements exist below SOAP.Attachment in the logical tree. If child
elements are present, SOAP with Attachments (SwA) is used.

v Elements exist in the output message that are identified as base64Binary in the
associated XML Schema and whose length does not fall below a default
threshold size of 1000 bytes.

You can use the local environment setting MTOMThreshold to override the MTOM
element size threshold. The MTOM element size threshold is set to a default value
of 1000 bytes.

The Allow MTOM node property and the MTOMThreshold setting can both be
overridden in the local environment.

The overrides that apply at a SOAPReply node are:
v LocalEnvironment.Destination.SOAP.Reply.AllowMTOM, which can have a value

of true or false
v LocalEnvironment.Destination.SOAP.Reply.MTOMThreshold, which is an integer

value in bytes

The equivalent overrides for a SOAPRequest or SOAPAsyncRequest node are:
v LocalEnvironment.Destination.SOAP.Request.AllowMTOM, which can have a

value of true or false
v LocalEnvironment.Destination.SOAP.Request.MTOMThreshold, which is an integer

value in bytes
Related concepts:
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.

Processing JMS messages
JMS is the standard J2EE messaging API for building enterprise messaging
applications. WebSphere Message Broker provides built-in input and output nodes
for its supported protocols.

The JMS specification offers an abstract, provider-independent messaging interface,
so that you can write messaging applications to this common API regardless of the
underlying messaging implementation.

JMS offers two common ways of messaging on which to build messaging
applications: point-to-point and publish/subscribe (pub/sub). JMS applications
send messages to JMS destinations, which can be queues (in the point-to-point
domain) or topics (in the pub/sub domain).

JMS is defined in the following documents from Sun Microsystems:
v JMS specifications from Sun Microsystems

JMS can be used as a transport for SOAP as described in the following document
issued by the World Wide Web Consortium (W3C):

Chapter 9. Developing message flow applications 1679

http://java.sun.com/products/jms/docs.html

v SOAP over Java Message Service 1.0 (W3C recommendation)
Related concepts:
“SOAP over JMS” on page 6698
SOAP over Java Message Service 1.0 is a specification that describes how SOAP
can bind to a messaging system that supports the Java Message Service (JMS).
Related tasks:
“Working with JMS” on page 1709
Learn about the concepts and tasks involved in configuring message flows to
support JMS messages.
Related reference:
“WebSphere Broker JMS Transport” on page 1681
The WebSphere Broker JMS Transport is a service that connects applications that
send and receive messages that conform to the Java Message Service (JMS)
standard.
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

Java Message Service (JMS) API
WebSphere Message Broker supports the Java Message Service (JMS) application
programming interface (API).

The JMS is an application programming interface that provides Java language
functions for handling messages. Developed by messaging vendors, including IBM,
in partnership with Sun Microsystems, Inc., the JMS API provides a common
interface to access different enterprise messaging systems, including
WebSphere MQ. This interface is appropriate for point-to-point and
publish/subscribe applications.

Messaging clients in JMS are called JMS clients, and the messaging system is called
the JMS provider. A JMS application is a business system that comprises JMS clients
and at least one JMS provider. Client applications that use the JMS interface are
written in the Java programming language, and are therefore restricted to the
levels of JVM that are supported on the operating system in the business
environment.

If you have existing end-user applications that are written to these interfaces, they
can typically run unchanged in a broker environment. You must create the message
flows to interact with these applications from the supported protocols by using the
appropriate input and output nodes. WebSphere Message Broker provides built-in
input and output nodes for its supported protocols, and other nodes that support
transformation to and from JMS message formats. You can also create your own
user-defined nodes to support additional protocols.

You can also create end-user applications to interact with the broker.
Related concepts:

1680 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/soapjms/

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Configuring resources for processing JMS messages” on page 1714
A number of nodes are provided in WebSphere Message Broker for processing and
routing JMS messages. Follow the links in this topic to find out how to configure
the JMS nodes and broker resources for processing JMS messages.
Related reference:
“WebSphere Broker JMS Transport”
The WebSphere Broker JMS Transport is a service that connects applications that
send and receive messages that conform to the Java Message Service (JMS)
standard.
“Troubleshooting JMS nodes” on page 1730
Review possible problems with nodes using JMS transport.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“JMSMQTransform node” on page 4547
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.
“MQJMSTransform node” on page 4610
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.
“JMSHeader node” on page 4529
Use the JMSHeader node to modify contents of the JMS Header_Values and
Application properties so that you can control the node's output without
programming.

WebSphere Broker JMS Transport
The WebSphere Broker JMS Transport is a service that connects applications that
send and receive messages that conform to the Java Message Service (JMS)
standard.

You can use the WebSphere Broker JMS Transport to support the following
operations:
v Receive a JMS message as input.
v Create a JMS message for output.
v Work with message flows that do not expect JMS messages.

All JMS messages must conform to the Java Message Service Specification, version
1.1.

To use the WebSphere Broker JMS Transport, you must deploy a message flow that
contains at least one of the built-in JMS nodes, which support the exchange of JMS
messages. You can create message flows to receive messages from JMS
destinations, and send messages to JMS destinations. These destinations are
accessible through a connection to a JMS provider. In sending and receiving
messages, the JMS nodes behave like JMS clients.

Chapter 9. Developing message flow applications 1681

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

You can also use two transformation nodes, the JMSMQTransform node and the
MQJMSTransform node, with the JMSInput and JMSOutput nodes so that they can
interact with nodes that expect a propagated message to contain an MQMD (and
MQRFH2) header.
v The JMSMQTransform node takes the output of the JMSInput node, and

produces a message that can be handled by an MQOutput node.
v The MQJMSTransform node transforms a message with an MQMD (and optional

MQRFH2) header into a message that is expected by the JMSOutput node.

If you want to change or add content to the headers in JMS messages, you can
include a JMSHeader node in the message flow to modify fields without
programming.

You can configure the JMS nodes to work with the WebSphere MQ JMS provider,
WebSphere Application Server Version 6.0, the IBM Service Integration Bus, and all
JMS providers that conform to the Java Message Service Specification, version 1.1.
WebSphere Message Broker supports Java 6 (also known as Java 1.6).

Refer to the following topics for further information about JMS messages and JMS
providers:
v “Simplified JMS message representation” on page 1683
v “JMS message transformation” on page 1684
v “JMS message structure” on page 1688
v “JMS message selector” on page 1703
v “JMS Transactionality” on page 1705
v “JMS message domain properties” on page 1707
v “JMS properties for application communication models” on page 1708
Related concepts:
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.
“Simplified JMS message representation” on page 1683
The JMSInput node receives an input message as a Java object, and not as a bit
stream wire format (as is the case with an MQInput node). The message does not
populate an MQMD and RFH2 header, but instead populates a new message tree
that represents a JMS message in a more native way.
“JMS message transformation” on page 1684
The JMSInput and JMSOutput nodes expect JMS messages, and therefore expect a
native JMS message tree representation.
“Connection to different JMS providers” on page 1709
The JMSInput and JMSOutput nodes are compatible with all JMS providers that
conform to the Java Message Service Specification, version 1.1.
Related tasks:
“Configuring resources for processing JMS messages” on page 1714
A number of nodes are provided in WebSphere Message Broker for processing and
routing JMS messages. Follow the links in this topic to find out how to configure
the JMS nodes and broker resources for processing JMS messages.
Related reference:

1682 WebSphere Message Broker Version 7.0.0.8

http://java.sun.com/products/jms/docs.html

“Troubleshooting JMS nodes” on page 1730
Review possible problems with nodes using JMS transport.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“JMSMQTransform node” on page 4547
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.
“MQJMSTransform node” on page 4610
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.
“JMSHeader node” on page 4529
Use the JMSHeader node to modify contents of the JMS Header_Values and
Application properties so that you can control the node's output without
programming.

Simplified JMS message representation:

The JMSInput node receives an input message as a Java object, and not as a bit
stream wire format (as is the case with an MQInput node). The message does not
populate an MQMD and RFH2 header, but instead populates a new message tree
that represents a JMS message in a more native way.

To represent a JMS message in a message tree, a new canonical form has been
created. This message tree allows for representation of JMS message header data,
and message properties. The JMS message tree is in a format that is recognizable to
Java programmers.

Chapter 9. Developing message flow applications 1683

Root

Properties

Message
_MetaData

JMS Transport

Transport_Folders

Application
_Properties

Provider
_Properties

Standard
_Properties

Header
_Values

JMSDestination
JMSDeliveryMode
JMSExpiration
JMSPriority
JMSTimeStamp
JMSMessageID
JMSCorrelationID
JMSReplyTo
JMSType
JMSRedelivered

Variable by
Application

Variable by
JMS Provider
All begin with
JMS_<Vendor Name>

JMSXUserID
JMSXAppID
JMSXDeliveryCount
JMSXGroupID
JMSXGroupSeq

Payload
Type

One of:

BLOB
XML
XMLNS
XMLNSC
MRM
jms.map
jms.stream
MIME
IDOC

Body
(last child of root)

For details about the structure and content of the JMS message tree, see
“Representation of messages in the JMS Transport” on page 1691.
Related concepts:
“JMS message transformation”
The JMSInput and JMSOutput nodes expect JMS messages, and therefore expect a
native JMS message tree representation.
Related reference:
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JNDI administered objects” on page 1702
JNDI (Java Naming and Directory Interface) is a standard Java extension that
provides a uniform API for accessing various directory and naming services.
“JMS message for output” on page 1700
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

JMS message transformation:

The JMSInput and JMSOutput nodes expect JMS messages, and therefore expect a
native JMS message tree representation.

1684 WebSphere Message Broker Version 7.0.0.8

You can use the following nodes to transform messages between a WebSphere MQ
JMS message tree and a JMS message tree:
v JMSMQTransform node
v MQJMSTransform node

These nodes do not have any configurable properties. The JMSMQTransform node
transforms a native JMS message tree to a WebSphere MQ JMS message tree, and
the MQJMSTransform node performs the transformation in the opposite direction.

The following diagram provides an overview of the mapping scheme that is used:

JMS Message
Tree

MQMD / RFH2
Message Tree

Header
MQMD

Properties Data

Data Buffer

RFH2

User Data

Map

Copy

This mapping diagram uses the same scheme as the WebSphere MQ JMS provider
to convert between a JMS message and an MQMD or MQRFH2 message.

When transforming between a WebSphere MQ message tree and a native JMS
message tree, the transformation nodes copy elements from different parts of a
message tree:
v The following fields are copied from the JMS message to the MQMD, if they

exist in the incoming JMS message:

JMS field MQMD field

JMSMessageID MsgId

JMSCorrelationID CorrelId

JMSPriority Priority

JMSDeliveryMode Persistence

JMSQApplid PutApplName

JMSUser UserIdentifier

JMSXDeliveryCount BackoutCount - 1

JMSTimeStamp PutDate, PutTime

v The following fields are copied from the JMS message to the MQRFH2 JMS
folder:

JMS field MQRFH2 JMS field

JMSDestination Dst

Chapter 9. Developing message flow applications 1685

JMS field MQRFH2 JMS field

JMSDeliveryMode Dlv

JMSExpiration Exp

JMSPriority Pri

JMSTimestamp Tms

JMSCorrelationID Cid

JMSReplyTo Rto

v The following fields are copied from the MQMD to the JMS message:

MQMD field JMS field

Expiry JMSExpiration

Persistence JMSDeliveryMode

Priority JMSPriority

MsgId JMSMessageID

CorrelId JMSCorrelationID

BackoutCount = 0 JMSRedelivered = false

BackoutCount > 0 JMSRedelivered = true

GroupId JMSGroupid

MsgSeqNumber JMSGroupseq

UserIdentifier JMSUser

PutApplName JMSApplid

PutDate, PutTime JMSTimeStamp

v The following fields are copied from the MQRFH2 JMS folder to the JMS
message:

MQRFH2 JMS field JMS field

Dst JMSDestination

Dlv JMSDeliveryMode

Pri JMSPriority

Cid JMSCorrelationID

Rto JMSReplyTo

Example message flow scenario: JMSInput node to MQOutput node

JMSInput JMSMQTransform MQOutput

1. A JMSInput node is configured to subscribe to topic ABC.
2. An application that is connected to the JMS server publishes on topic ABC.
3. A publication is received at the JMSInput node.
4. The node extracts data from the JMS message.

1686 WebSphere Message Broker Version 7.0.0.8

5. The JMS message is passed to the JMSMQTransform node where the message is
converted to a WebSphere MQ message.

6. The MQOutput node receives the WebSphere MQ message, and publishes the
message on a WebSphere MQ queue.

The final destination is a WebSphere MQ queue, therefore the message must pass
through a JMSMQTransform node to convert the message tree to a WebSphere MQ
JMS format before it reaches the MQOutput node.

Example message flow scenario: MQInput node to JMSOutput node

MQInput MQJMSTransform JMSOutput

1. An MQInput node receives a message from a WebSphere MQ queue.
2. The MQInput node creates a WebSphere MQ message.
3. The MQ message is passed to the MQJMSTransform node where the message

tree is converted to a JMS format.
4. The JMSOutput node receives the JMS message and publishes the JMS message

on topic XYZ.

Additional examples

These examples show some of the solutions that you can achieve when you use the
JMS Transport. Other solutions are possible; for example, the message can be
passed to a Compute node or a JavaCompute node and the contents can be
modified as required.

Look at the following sample for examples of the JMS nodes being used in
message flows:
v JMS Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.
Related reference:
“JMS message selector” on page 1703
A message selector allows a JMS consumer to be more selective about the messages
that it receives from a particular topic or queue.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.

Chapter 9. Developing message flow applications 1687

“JMS message as input” on page 1693
The JMS message is a Java object, and therefore you cannot parse the message as a
bit stream. When the message is received, the header data, property data, and
payload data are extracted by using the JMS API.
“JMS message for output” on page 1700
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.

JMS message structure:

JMS messages have a defined structure that includes headers and payloads.

The following figure depicts the JMS message structure:

Header

Properties

Payload

JMSDestination
JMSDeliveryMode
JMSMessageID
JMSTimestamp
JMSExpiration
JMSRedelivered
JMSPriority
JMSReplyTo
JMSCorrelationID
JMSType

Header

A header must be present in every JMS message, and it is assigned automatically.
Most of the values in the header are set by the JMS provider when the message is
put to a JMS destination. Some values can be declared by the JMS client when it
creates a JMS session, or when it creates the message consumer or producer; for
example, JMSDeliveryMode, JMSExpiration, JMSReplyTo, and JMSCorrelationID are
created when the JMS client creates a JMS session or creates the message consumer
or producer.

The data elements of each header comprise name-value pairs and they can be any
of the Java following types: Boolean, byte, short, char, long, int, float, double,
string, or byte[].

Properties

The properties are optional, and can be divided into the following subsections:

1688 WebSphere Message Broker Version 7.0.0.8

Application related
properties

JMS provider related
properties

Standard properties

v Application-related properties

A Java application can assign application-related properties, which are set before
the message is delivered. The property names of the application are meaningful
only to the sending and receiving applications.

v Provider-related properties

Every JMS provider can define proprietary properties that can be set either by
the client or automatically by the provider. Provider-related properties are
prefixed with JMS_ followed by the vendor name and the specific property
name. For example, the WebSphere MQ JMS client sets the provider property to
be JMS_IBM_MsgType.

v Standard properties

These properties are set by the JMS provider when a message is sent. The JMS
provider vendor can choose to not support any standard properties, to support
some standard properties, or to support all standard properties. Standard
property names start with JMSX; for example: JMSXUserid or
JMSXDeliveryCount.

The properties are handled as name-value pairs, and they can be any of the
following Java types: Boolean, byte, short, char, long, int, float, double, string, or
byte[].

Payload

The payload type defines the JMS message. It can be one of the six JMS message
types that are described in “JMS message types” on page 1690.

JMS does not define a wire format. The Java Message Service Specification, version
1.1 describes the physical representation of how a message is structured.
Related reference:
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.
“Representation of messages in the JMS Transport” on page 1691
Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.
“JMS message as input” on page 1693
The JMS message is a Java object, and therefore you cannot parse the message as a
bit stream. When the message is received, the header data, property data, and
payload data are extracted by using the JMS API.

Chapter 9. Developing message flow applications 1689

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

“JMS message for output” on page 1700
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.
“JNDI administered objects” on page 1702
JNDI (Java Naming and Directory Interface) is a standard Java extension that
provides a uniform API for accessing various directory and naming services.

JMS message types:

JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.

JMS specifies only the interface and does not specify the implementation. This
approach allows for vendor-specific implementation and transportation of
messages while using a common interface.

The following table describes the six message types:

Message type Description

Message The base class. This message type is used for event notification, and does
not have a payload.

BytesMessage The payload is stored as an array of bytes. This message type is useful for
exchanging data in a format that is native to the application, and when
JMS is used as a transport between two systems, where the JMS client
does not know the message payload type. Use this message type to
transmit XML messages to ensure that the message is transmitted
efficiently, and is not subject to unnecessary data conversion.

TextMessage Data is stored as a string. This message type is useful for exchanging
simple text messages.

StreamMessage A Stream message is a sequence of primitive Java types. The message
object tracks the order and the types of these primitives within the stream.
Formal conversion rules apply; for example, an exception is thrown if a
JMS application tries to read a double value as a short value. Refer to the
Java Message Service Specification, version 1.1 for a full list of the
conversion rules.

21ABCDEFGH32.345 is an example of a StreamMessage payload. It consists
of the following three fields:

v An Integer, 21

v A String, ABCDEFGH

v A Float, 32.345

If the data structure is unknown, the generic method readObject() can be
used to return the next object in the stream. If the structure of the data is
known, the JMS client can be specific about the type of object being
accessed.

1690 WebSphere Message Broker Version 7.0.0.8

http://java.sun.com/products/jms/docs.html

Message type Description

MapMessage The payload of a MapMessage is stored as a set of name-value pairs. The
name is defined as a string and the value is typed. The MapMessage is
useful for delivering keyed data that can change from one message to the
next.

NumberOfCopies:5 is an example of a MapMessage payload, where
NumberOfCopies is the key and 5 is the value.

Data can be accessed by using getMapNames(), which returns a Java
Enumeration object. It is possible to iterate through the MapMessage by
using hasMoreElements() to retrieve the mapped name-value pairs.

ObjectMessage The Object message carries a serializable Java Object as its payload. It is
useful for exchanging Java objects.

Related reference:
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“Representation of messages in the JMS Transport”
Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.
“JMS message as input” on page 1693
The JMS message is a Java object, and therefore you cannot parse the message as a
bit stream. When the message is received, the header data, property data, and
payload data are extracted by using the JMS API.
“JMS message for output” on page 1700
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.
“JNDI administered objects” on page 1702
JNDI (Java Naming and Directory Interface) is a standard Java extension that
provides a uniform API for accessing various directory and naming services.

Representation of messages in the JMS Transport:

Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.

The following figure depicts the JMS message tree that is propagated from the
JMSInput node and can be propagated to the JMSOutput and JMSReply nodes. The
JMSOutput and JMSReply nodes populate details of the JMS message that is sent
to the LocalEnvironment WrittenDestination folder, as described in “JMSOutput
node” on page 4549.

Chapter 9. Developing message flow applications 1691

Root

Properties

Message
_MetaData

JMS Transport

Transport_Folders

Application
_Properties

Provider
_Properties

Standard
_Properties

Header
_Values

JMSDestination
JMSDeliveryMode
JMSExpiration
JMSPriority
JMSTimeStamp
JMSMessageID
JMSCorrelationID
JMSReplyTo
JMSType
JMSRedelivered

Variable by
Application

Variable by
JMS Provider
All begin with
JMS_<Vendor Name>

JMSXUserID
JMSXAppID
JMSXDeliveryCount
JMSXGroupID
JMSXGroupSeq

Payload
Type

One of:

BLOB
XML
XMLNS
XMLNSC
MRM
jms.map
jms.stream
MIME
IDOC
JSON

Body
(last child of root)

JMSTransport

v Header_Values subfolder:
This subfolder is mandatory and is always created.

v Properties subfolders:
JMS message properties are optional; if they are present in the message, they are
stored in the appropriate properties subfolder.

v Message_MetaData subfolder:
This subfolder is included to preserve the payload type of the JMS message. The
folder is used by the JMSOutput node when it creates a JMS message. The
payload type can be one of the values shown in the following table.

Message type Payload values

Base JMS message with no payload jms_none

TextMessage jms_text

BytesMessage jms_bytes

MapMessage jms_map

StreamMessage jms_stream

ObjectMessage jms_object

Body

The message payload is stored in the body folder, which is the last child of Root.
The payload is transferred by using one of the following message domain parsers:
v XML
v XMLNS
v XMLNSC

1692 WebSphere Message Broker Version 7.0.0.8

v BLOB
v JMSMap
v JMSStream
v MRM
v MIME
v IDOC
v JSON
Related concepts:
“Simplified JMS message representation” on page 1683
The JMSInput node receives an input message as a Java object, and not as a bit
stream wire format (as is the case with an MQInput node). The message does not
populate an MQMD and RFH2 header, but instead populates a new message tree
that represents a JMS message in a more native way.
Related reference:
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JMS input message header and property data” on page 1694
The JMSInput node obtains header and property data from JMS messages.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

JMS message as input:

The JMS message is a Java object, and therefore you cannot parse the message as a
bit stream. When the message is received, the header data, property data, and
payload data are extracted by using the JMS API.

For information on the header, properties, and payload of JMS messages, refer to
“JMS message structure” on page 1688.

The following topics describe how the different parts of the JMS message are
obtained, and how the message is parsed:
v “JMS input message header and property data” on page 1694
v “JMS Message payload” on page 1696
v “JMS message payload and appropriate parser” on page 1698
Related concepts:
“JMS message transformation” on page 1684
The JMSInput and JMSOutput nodes expect JMS messages, and therefore expect a
native JMS message tree representation.
Related reference:

Chapter 9. Developing message flow applications 1693

“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.
“Representation of messages in the JMS Transport” on page 1691
Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.
“JNDI administered objects” on page 1702
JNDI (Java Naming and Directory Interface) is a standard Java extension that
provides a uniform API for accessing various directory and naming services.
“JMS message for output” on page 1700
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

JMS input message header and property data:

The JMSInput node obtains header and property data from JMS messages.

Header data

The JMSInput node extracts header data from messages by using JMS API
methods. Header data is stored as name-value pairs in the Header_Values folder.
The API methods return the value; for example, to get the value for the header
field JMSTimestamp, the JMSInput node uses the getJMSTimestamp() method. A
similar method is provided for each of the following fixed header fields:
v JMSDestination
v JMSDeliveryMode
v JMSExpiration
v JMSPriority
v JMSTimeStamp
v JMSMessageID
v JMSCorrelationID
v JMSReplyTo
v JMSType
v JMSRedelivered

Property data

In a similar way to how the header data is obtained, the JMSInput node extracts
property data from messages by using JMS API methods. Property data is stored
as name-value pairs in the properties folders. The API method returns a value for
every property name with which it is supplied.

XML representation of header and property data

The JMSInput node uses the header and property data to create an XML
representation of the JMSTransport folders. The node passes the XML data to the
JMSTransport parser as a byte array. The byte array is then used to populate or to
refresh the elements in the message tree.

1694 WebSphere Message Broker Version 7.0.0.8

Preservation of Java type

A scheme is not required to preserve knowledge of the Java type because the
header value Java types are fixed and known. The JMS message properties are
optional, therefore a scheme is required to preserve the Java type of the property
values. The scheme used is that which is implemented by the WebSphere MQ JMS
client and the Real-timeInput node.

Java type information is represented as a metadata in the form of a keyword
dt=’DataType’ where Datatype is a string. The Java type is passed in the XML as
part of the element name <ElementName dt=’DataType’>Value</ElementName>.
Datatype can be any of the following values:

Datatype value Definition

String Any sequence of characters, excluding < and &

Boolean The character 0 or 1, where 1 is equal to "true"

bin.hex Hexadecimal digits representing octets

I1 A number, expressed by using the digits 0..9, with optional sign (no
fractions or exponent).

The value must lie in the range -128 to 127 inclusive.

I2 A number, expressed by using the digits 0..9, with optional sign (no
fractions or exponent).

The value must lie in the range -32768 to 32767 inclusive.

I4 A number, expressed by using the digits 0..9, with optional sign (no
fractions or exponent).

The value must lie in the range -2147483648 to 2147483647 inclusive.

I8 A number, expressed by using the digits 0..9, with optional sign (no
fractions or exponent).

The value must lie in the range -9223372036854775808 to
92233720368547750807 inclusive.

int A number, expressed by using the digits 0..9, with optional sign (no
fractions or exponent).

The value must lie in the same range as the datatype valueI8.

This number can be used in place of one of the I* types if the sender
does not want to associate a particular precision with the property.

R4 A floating point number, expressed by using the digits 0..9, optional
sign, optional fractional digits, optional exponent.

Magnitude <= 3.40282347E+38, and>= 1.175E-37

R8 A floating point number, expressed by using the digits 0..9, optional
sign, optional fractional digits, optional exponent.

Magnitude <= 1.7976931348623E+308, and>= 2.225E-307

Related reference:
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where

Chapter 9. Developing message flow applications 1695

the payload is the body of a message that holds the content.
“Representation of messages in the JMS Transport” on page 1691
Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.
“JMS Message payload”
How payload is extracted from the JMS message for each of the JMS Message
types.
“JMS message payload and appropriate parser” on page 1698
Configure the JMSInput node properties to specify the message domain that will
be used to parse the JMS message payload.
“JMS message for output” on page 1700
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.
“Real-timeInput node” on page 4646
The Real-timeInput node, available in earlier versions of WebSphere Message
Broker, is not supported in WebSphere Message Broker Version 7.0. See for
information about migrating your message flows from WebSphere Message Broker
to WebSphere Message Broker Version 7.0.

JMS Message payload:

How payload is extracted from the JMS message for each of the JMS Message
types.

The payload for some of the JMS message types can be extracted as a whole from
the message object by using the JMS API. The payload is passed as a bit stream to
a broker parser. This is true for the following message types:
v BytesMessage
v TextMessage
v ObjectMessage

Additional processing is required to deal with the ObjectMessage payload
because the JMS ObjectMessage payload is a serialized Java Object.
The JMSInput node obtains the payload by calling getObject() on the message.
getObject() returns a de-serialized object of the original class. This class
definition must be made available to the JMSInput node, and you should ensure
that it is accessible through the broker's Java class path. (The class path is
defined in the mqsiprofile batch file, which is in the broker's executable
directory; for example, on Windows, this is mqsiprofile.cmd in the
install_dir/bin directory.) The JMSInput node invokes the BLOB parser, which
creates the message body by using a bit stream that is created from the object.
The Java Object can be subsequently re-serialized in a JavaCompute node or a
user-defined extension, and is updated by using its method calls.

The payload for MapMessage and StreamMessage can be extracted only as
individual elements and must be reformatted by the JMSInput node before it can
be used to create the message body.
v MapMessage payload

The JMSMap domain is a synonym for the broker XML parser, which expects a
stream of XML data. MapMessage payload data however, is extracted as sets of
name-value pairs from the message object. The JMS API is used to obtain the
name-value pairs.

1696 WebSphere Message Broker Version 7.0.0.8

The JMSInput node appends each name-value pair to a bit stream as an XML
element and value, and preserves the type of the value by using the dt=
attribute.
The following example shows the XML that is generated by the JMSInput node
for the MapMessage payload:
<map>

<Item_8_of_10_Char dt=’char’>A</Item_8_of_10_Char>
<Item_5_of_10_Double dt=’r8’>999999.0</Item_5_of_10_Double>
<Item_10_of_10_String>Last Map Item</Item_10_of_10_String>
<Item_9_of_10_Boolean dt=’boolean’>0</Item_9_of_10_Boolean>
<Item_2_of_10_Integrer dt=’i4’>999</Item_2_of_10_Integrer>
<Item_3_of_10_Short dt=’i2’>9999</Item_3_of_10_Short>
<Item_7_of_10_Byte dt=’i1’>9</Item_7_of_10_Byte>
<Item_6_of_10_Float dt=’r4’>2.24</Item_6_of_10_Float>
<Item_1_of_10_String>P2P Map Msg Number:1</Item_1_of_10_String>
<Item_4_of_10_Long dt=’i8’>99999</Item_4_of_10_Long>

</map>

In this example, the message contains 10 fields. The field names have been
generated by a JMS Client application, and take the form item_n_of_x_t, where:
– n is the sequence number in which the item was added to the message,
– x is the total number of items in the map,
– t is the type of the value.

The map data is not returned from the JMS API the order in which it was
received.

v StreamMessage payload

The StreamMessage payload data is a sequence of fields, where each field has a
specific type. The fields do not have associated names and so a default element
name elt is used to generate the XML elements. Similar to the MapMessage, the
JMS API allows for fields only to be retrieved individually. The JMSInput node
extracts fields from the JMS message and appends each to a bit stream in XML
format.
The following is an example of the XML that is generated by the JMSInput node
for the StreamMessage payload:
<stream>

<elt>P2P Stream Message Number :7</elt>
<elt dt=’i4’>999</elt>
<elt dt=’i2’>9999</elt>
<elt dt=’i8’>99999</elt>
<elt dt=’r8’>999999.0</elt>
<elt dt=’r4’>2.24</elt>
<elt dt=’i1’>9</elt>
<elt dt=’char’>A</elt>
<elt dt=’boolean’>0</elt>
<elt>Last Stream Item</elt>

</stream>

In this example, 10 typed values are added to the StreamMessage by a JMS
client application.

Related concepts:
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.
Related reference:
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.

Chapter 9. Developing message flow applications 1697

“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.
“Representation of messages in the JMS Transport” on page 1691
Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.
“JMS input message header and property data” on page 1694
The JMSInput node obtains header and property data from JMS messages.
“JMS message payload and appropriate parser”
Configure the JMSInput node properties to specify the message domain that will
be used to parse the JMS message payload.
“JMS message for output” on page 1700
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.

JMS message payload and appropriate parser:

Configure the JMSInput node properties to specify the message domain that will
be used to parse the JMS message payload.

When the JMSInput node creates a message tree from the JMS message payload,
the appropriate message domain for that payload must be used. Therefore, the
JMSInput node must know the type of JMS message that it expects to receive. The
JMSInput node extracts the payload from the JMS message using the appropriate
JMS API, then passes the payload data to the parser for the domain. The parser
creates the body portion of the message tree.

The message domain is derived according to the following criteria and in the
following order of precedence:
1. “The Message domain property is set to a specific domain”
2. “The Message domain property is left blank (default) and the JMSType header

field from the JMS input message is used to indicate the domain” on page 1699
3. “ The Message Domain property is left blank (default) and the JMSType header

field from the JMS input message is also left blank” on page 1699

The Message domain property is set to a specific domain

In this case, the node expects to receive only the allowed JMS message types for
that domain, as shown by the following table:

Message domain

Valid JMS message types

BytesMessage TextMessage MapMessage StreamMessage ObjectMessage

BLOB v v v

XMLNS v

XMLNSC v

MRM v v

JMSMap v

JMSStream v

MIME v v

1698 WebSphere Message Broker Version 7.0.0.8

Message domain

Valid JMS message types

BytesMessage TextMessage MapMessage StreamMessage ObjectMessage

IDOC v v

XML v

v If the JMSInput node receives a JMS message type that is not valid for the
message domain that is configured in the JMSInput node, the node issues a
warning and backs out the message either to the source JMS provider
destination, or to the backout destination.

v If you specify the MRM domain, you must also specify the Message set, Message
type and Message format node properties.

v If you specify the IDOC domain, you must also specify the Message set and
Message format node properties.

v If you specify the XMLNSC domain, and you want to validate input messages,
you must also specify the Message set node property.

The Message domain property is left blank (default) and the JMSType header
field from the JMS input message is used to indicate the domain

The JMSType header field must be set according to the URI format shown in the
following table. The domain in the mcd: string can be uppercase or lowercase.

JMSType Message domain

mcd://BLOB BLOB

mcd://MRM/[set]/[type]/[?format=fmt] MRM

mcd://XMLNS XMLNS

mcd://XMLNSC/[set] XMLNSC

mcd://IDOC/[set]/[?format=fmt] IDOC

mcd://MIME MIME

mcd://XML XML

v If the JMSInput node receives a JMS message type that is not valid for the
message domain configured in the JMSType header, the node issues a warning
and backs out the message either to the source JMS provider destination, or to
the backout destination.

v If the JMSType field does not conform to this URI format, the message is
handled in the BLOB domain.

v For details of the [type] syntax, refer to “Specifying namespaces in the Message
Type property” on page 1208.

v If the XMLNSC domain is specified, use [set] only if you want to validate
input messages.

The Message Domain property is left blank (default) and the JMSType header
field from the JMS input message is also left blank

The message domain is set according to the JMS message Java class as follows:

JMS message type Message domain

TextMessage XML

BytesMessage BLOB

Chapter 9. Developing message flow applications 1699

JMS message type Message domain

MapMessage JMSMap

StreamMessage JMSStream

ObjectMessage BLOB

Related concepts:
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
Related reference:
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.
“Representation of messages in the JMS Transport” on page 1691
Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.
“JMS input message header and property data” on page 1694
The JMSInput node obtains header and property data from JMS messages.
“JMS Message payload” on page 1696
How payload is extracted from the JMS message for each of the JMS Message
types.
“JMS message for output”
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.

JMS message for output:

When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.

The node extracts the Message_MetaData and obtains the payload type information
to identify which JMS message type to create for output. If the Message_MetaData
folder is not present, the output node creates a BytesMessage by default.

Header data

The JMSOutput node extracts the JMS header data from the XML string, and uses
this data to populate the values for the JMS header fields in the message.

1700 WebSphere Message Broker Version 7.0.0.8

Property data

The JMSOutput node extracts the property values from the XML string. The XML
elements contain type information that identifies which Java Object type to create
for each property value.

Message payload

The message payload is obtained from the JMS message as a bit stream. For
TextMessage and BytesMessage payloads, the bit stream can be passed to the JMS
API directly to create the appropriate payload.

For MapMessage and StreamMessage payloads, the individual elements must be
extracted from the XML bit stream. The output node calls the appropriate JMS API
method to create the map or stream fields in the message.

For an ObjectMessage payload, the JMSOutput node reserializes the bit stream
payload by using the object class. The object class must be available in the Java
class path for the broker. The class path is defined in the mqsiprofile batch file,
which is in the directory that contains the executable files for the broker; for
example, on Windows, the file is mqsiprofile.cmd in the install_dir/bin
directory.

Sending JMS messages

The JMSOutput node generates and supports:

Sending a datagram message
A message with sufficient information to reach its destination, but without
an expectation of there being a response as defined in the node attributes.

Sending a Reply message
The message is treated as a reply as defined by the JMSReplyTo property
value.

Sending a Request message
The JMSOutput node sends a message to a defined JMS destination with
the expectation of a response from the recipient.

See “Using the Message Destination Mode” on page 4551 for more information
about how you perform these tasks.

Message publication

The message is published to the JMS destination that has been specified as a
property of the JMSOutput node. However, if the JMSReplyTo header field is set in
the JMS message, the JMSOutput node treats the message as a reply to a previous
request, and publishes the message to the JMS destination of the previous request.
Related reference:
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.

Chapter 9. Developing message flow applications 1701

“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“Representation of messages in the JMS Transport” on page 1691
Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.
“JMS message as input” on page 1693
The JMS message is a Java object, and therefore you cannot parse the message as a
bit stream. When the message is received, the header data, property data, and
payload data are extracted by using the JMS API.
“JNDI administered objects”
JNDI (Java Naming and Directory Interface) is a standard Java extension that
provides a uniform API for accessing various directory and naming services.

JNDI administered objects:

JNDI (Java Naming and Directory Interface) is a standard Java extension that
provides a uniform API for accessing various directory and naming services.

JMS clients use JNDI to browse a naming service to obtain references to
administered objects. Administered objects are JMS connection factory and JMS
destination objects, where JMS destination objects are topics and queues.
Administered objects are created and configured by a system administrator.

To create and configure JNDI administered objects, refer to the JMS provider
documentation. If you are using the WebSphere MQ JMS provider, see the sample
JMSAdmin definitions file that is included with WebSphere MQ and refer to the
Using Java section in the WebSphere MQ Version 7 Information Center online.

Location of JNDI administered objects

JNDI administered objects are stored in the bindings. This storage can be either file
system based or based on LDAP (Lightweight Directory Access Protocol). LDAP is
a software protocol that enables everyone to locate organizations, individuals, and
other resources; for example, locating files and devices in a network, either on the
public Internet or on a corporate intranet.

LDAP is part of X.500, which is a standard for directory services in a network.

Naming service

A naming service associates names with distributed objects so that the
administered objects are located by using names and not complex network
addresses. JNDI provides an abstraction that hides the specifics of the naming
service, which makes client applications more portable.

A JMS client specifies a JNDI InitialContext to obtain a JNDI connection to the JMS
messaging server. The InitialContext is the starting point in any JNDI lookup and
acts like the root of a file system. The JMS directory service that is being used
determines the properties that are used to create an InitialContext.
Related reference:
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where

1702 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

the payload is the body of a message that holds the content.
“Representation of messages in the JMS Transport” on page 1691
Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.
“JMS message as input” on page 1693
The JMS message is a Java object, and therefore you cannot parse the message as a
bit stream. When the message is received, the header data, property data, and
payload data are extracted by using the JMS API.
“JMS message for output” on page 1700
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.
Related information:

WebSphere MQ Version 7 Information Center online

JMS message selector:

A message selector allows a JMS consumer to be more selective about the messages
that it receives from a particular topic or queue.

A message selector uses message properties and headers as criteria in conditional
expressions. These expressions use Boolean logic to declare which messages are
delivered to a client, such as the JMSInput node.

The following table demonstrates the construction of a message selector. It
comprises an identifier, such as the JMSPriority header, or an application controlled
property myProperty1. The selector string must specify an operator followed by a
literal.

Element Valid values

Identifiers v Property or header field reference (such as JMSPriority, myProperty1)

v The following values are not possible: NULL, TRUE, FALSE, NOT,
AND, OR, BETWEEN, LIKE, IN, IS

Operators AND, OR, LIKE, BETWEEN, =, <>, <,>, <=, >=, IS NULL, IS NOT
NULL

Literals v The two Boolean literals, TRUE and FALSE

v Exact number literals that have no decimal point; for example, +25,
-399, 40

v Approximate number literals. These literals can use scientific notation
or decimal; for example, -21.4E4, 5E2, +34.4928

The JMSInput node provides a free format string PropertySelector, to specify
selectors that filter or include application properties. The node also has properties
for specific header properties, where the identifier is implicit and is generated by
the node. For the header selectors, the operator and literal part of the string must
be specified.

If more than one selector is specified the node generates a composite selector
string, where the individual selector strings are concatenated with the AND operator,
and each selector string part is wrapped with parentheses.

The following are examples for each of the selector properties:

Chapter 9. Developing message flow applications 1703

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Selector
property Description

PropertySelector OrderValue> 100.00

This string is used directly as shown.

TimeStamp BETWEEN 1057576423231 AND 10575788993265

Messages that are put between these two Java times only (where Java
time is milliseconds since 01 Jan 1970) is delivered to the JMSInput
node. In this case, the string generated is prefixed with the identifier
JMSTimestamp.

Delivery Mode PERSISTENT

This setting means that only messages marked by the sender as being
PERSISTENT should be delivered to the JMSInput node. In this case, the
string that is generated is prefixed with the identifier JMSDeliveryMode.

Priority >= 5 AND <= 8

This setting means that only messages marked by the sender as having
a priority 5, 6, 7, or 8 are delivered to the JMSInput node. In this case,
the string generated is prefixed with the identifier JMSPriority.

Message ID > WMBRK123456

This setting returns messages with a Message ID that is greater than the
value specified. In this case, the string generated is prefixed with the
identifier JMSMessageID.

Redelivered FALSE

This setting means that messages that have not been redelivered are
received by the node. In this case, the string generated is prefixed with
the identifier JMSRedelivered.

Correlation ID = WMBRKABCDEFG

This setting returns messages whose Correlation ID is equal to the value
WMBRKBABCDEFG. In this case, the string generated is prefixed with the
identifier JMSCorrelationID.

Related concepts:
“JMS Transactionality” on page 1705
JMS destinations that supply messages to an input node, or receive messages from
an output node, can be sync-point coordinated as part of a message flow global
transaction.
Related reference:
“JMS properties for application communication models” on page 1708
JMS clients can operate with both publish/subscribe and point-to-point messages.
The publish/subscribe and point-to-point application communication models use
virtual channels called destinations. In the publish/subscribe model, the
destinations are topics. For the point-to-point model, the destinations are known as
queues.
“JMS message domain properties” on page 1707
The JMSInput node can receive message payloads that correspond to all of the JMS
message types that are specified in the JMS Specification, version 1.1.

1704 WebSphere Message Broker Version 7.0.0.8

JMS Transactionality:

JMS destinations that supply messages to an input node, or receive messages from
an output node, can be sync-point coordinated as part of a message flow global
transaction.

Transactions involving the sync-point coordinator

JMS
Queue

Topic

consumes
messages

start / end / commit or rollback
transactions

xa/open calls
for prepare/commit

or rollback

produces
messages

MSG MSG

JMSINPUT
NODE

JMSOUTPUT
NODE

WBI MESSAGE FLOW

JMS SESSION JMS SESSION

JMS PROVIDER

JMS Server

S
Y

N
C

P
O

IN
T

C
O

O
R

D
IN

A
T

O
R

In this diagram, messages are consumed from a queue by a JMSInput node, and
are produced to a JMS queue by a JMSOutput node. The nodes are connected to,
and are in session with, a JMS provider. Any message flow input node can inform
the external sync-point coordinator when a message flow transaction starts and
ends, and whether any resources that have been affected by the flow should be
committed or rolled back.

The sync-point coordinator sends XA/Open compliant requests to all participating
resource managers to inform them to prepare. Any changes are either committed
or rolled back. Resource managers, for example, WebSphere MQ, DB2 and any XA
compliant JMS provider can participate in a global transaction.

The external sync-point coordinator is WebSphere MQ on operating systems other
than z/OS, and RRS (Resource Recovery Services) on z/OS.

On z/OS, the only JMS provider that is supported is the IBM WebSphere MQ Java
Client, and the only transport mode supported for that client is BIND mode.

Chapter 9. Developing message flow applications 1705

Nodes that use JMS transport, such as the JMS and SOAP nodes, can participate in
a global transaction only if the JMS provider to which they connect supports the
XA/Open interface through the JMS XAResource Class. An example JMS provider
is the WebSphere MQ Java Client.

You can specify a generic connection factory (recoverXAQCF) for recovery of XA
coordinated transactions.

In-doubt transactions

In-doubt transactions can occur when a resource manager does not reply to a call
from the sync-point manager, where the call is to commit or to rollback resources.
During start up of the broker's WebSphere MQ queue manager, an initial recovery
step is taken to ensure that any in-doubt transactions are resolved before the
broker message flows start to process new input. A JMS provider that participates
in broker global transactions is included in this recovery step.

On operating systems other than z/OS, WebSphere MQ requires an administration
task to be carried out before deployment. This task registers a broker component,
which is a shared library, with the queue manager by referring the shared library
to a switch file.

When the broker's WebSphere MQ queue manager starts up, it loads the switch
file. The switch file forwards XA/Open transaction calls from the sync-point
coordinator to the JMS Provider. This ensures that the JMS resources that
participate in the transaction can be coordinated in synchronization with other
resource managers that are involved in the same transaction.

Additional configuration is required to enable global transaction support for the
nodes using JMS transport; see “Configuring JMS and SOAP nodes to support
global transactions” on page 1716.
Related tasks:
“Configuring JMS and SOAP nodes to support global transactions” on page 1716
To include nodes that use JMS transport, such as the JMS and SOAP nodes, in
globally coordinated transactions, you must complete additional configuration.
Related reference:
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JNDI administered objects” on page 1702
JNDI (Java Naming and Directory Interface) is a standard Java extension that
provides a uniform API for accessing various directory and naming services.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

1706 WebSphere Message Broker Version 7.0.0.8

“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

JMS message domain properties:

The JMSInput node can receive message payloads that correspond to all of the JMS
message types that are specified in the JMS Specification, version 1.1.

The JMS Specification is defined in Java Message Service Specification, version 1.1.
For more information, see “JMS message types” on page 1690.

Set the JMSInput node properties to specify how the message payload is to be
parsed. For more information, see “JMSInput node” on page 4532 and “JMS
message payload and appropriate parser” on page 1698.

The JMSOutput node has no message domain properties.
Related concepts:
“JMS Transactionality” on page 1705
JMS destinations that supply messages to an input node, or receive messages from
an output node, can be sync-point coordinated as part of a message flow global
transaction.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
Related reference:
“JMS properties for application communication models” on page 1708
JMS clients can operate with both publish/subscribe and point-to-point messages.
The publish/subscribe and point-to-point application communication models use
virtual channels called destinations. In the publish/subscribe model, the
destinations are topics. For the point-to-point model, the destinations are known as
queues.
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where
the payload is the body of a message that holds the content.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMS message selector” on page 1703
A message selector allows a JMS consumer to be more selective about the messages
that it receives from a particular topic or queue.
“JMS message payload and appropriate parser” on page 1698
Configure the JMSInput node properties to specify the message domain that will
be used to parse the JMS message payload.

Chapter 9. Developing message flow applications 1707

http://java.sun.com/products/jms/docs.html

JMS properties for application communication models:

JMS clients can operate with both publish/subscribe and point-to-point messages.
The publish/subscribe and point-to-point application communication models use
virtual channels called destinations. In the publish/subscribe model, the
destinations are topics. For the point-to-point model, the destinations are known as
queues.

The following application communication model properties can be configured for
JMSInput and JMSOutput nodes:

Property Description

Connection Factory
Name

A string name that is passed to JNDI to look up the administered connection factory
object. The connection factory object is used to create a connection to the JMS destination.

v For a client operating as a publish/subscribe client, the connection factory name is for
a TopicConnectionFactory.

v For a client operating as a point-to-point client, the connection factory name is for a
QueueConnectionFactory.

Subscription Topic The string name that is passed to JNDI to look up the JMS topic destination. The topic is
used to create a JMS session when the node is being used to process publish/subscribe
messages.

Durable Subscription ID This is a JMSInput node property only. It is a string identifier that is specified if the node
is to subscribe to a durable subscription topic.

A durable subscription is one that outlasts the client's connection to a message server.
When a durable subscriber is disconnected from the server, the server stores messages
that are published. Therefore, when the durable subscriber reconnects, the message server
sends all the unexpired messages.

Durable subscriptions cannot be unsubscribed from a message flow. A separate
administration task unsubscribes a previously registered durable subscription. Some JMS
providers supply an administration tool to perform this action.

Source Queue The string name that is passed to JNDI to look up the JMS queue destination. The queue
is used to create a JMS session when the node is being used to process point-to-point
messages.

The Subscription Topic and Source Queue properties are mutually exclusive
because they configure the node to work with either the publish/subscribe
message model or the point-to-point message model.

A Durable subscription ID is not valid without a Subscriber Topic property.
Related concepts:
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.
Related reference:
“JMS message domain properties” on page 1707
The JMSInput node can receive message payloads that correspond to all of the JMS
message types that are specified in the JMS Specification, version 1.1.
“JMS message selector” on page 1703
A message selector allows a JMS consumer to be more selective about the messages
that it receives from a particular topic or queue.

1708 WebSphere Message Broker Version 7.0.0.8

Working with JMS
Learn about the concepts and tasks involved in configuring message flows to
support JMS messages.

Before you begin

Before you start: Read the following topics for an overview of the concepts related
to processing JMS messages
v “WebSphere Broker JMS Transport” on page 1681
v “Java Message Service (JMS) API” on page 1680
v “JMS Transactionality” on page 1705
v “JMS message selector” on page 1703
v “JMS properties for application communication models” on page 1708
v “JMS message domain properties” on page 1707

About this task

The following areas are included:
v “Configuring resources for processing JMS messages” on page 1714
v “Troubleshooting JMS nodes” on page 1730

Connection to different JMS providers:

The JMSInput and JMSOutput nodes are compatible with all JMS providers that
conform to the Java Message Service Specification, version 1.1.

If you want these nodes to participate in coordinated transactions, the JMS
provider must support the XAResource interface, as defined in the Java Message
Service Specification, version 1.1.

JBoss exception handling

If you use JBoss from a JMSInput node, set the jmsAsyncExceptionHandling
property to true on the JMSProviders configurable service so that the broker can
detect a failure in the JMS connection. This property is set to true by default on the
provided JBoss configurable service definition.
Related concepts:
“JMS message transformation” on page 1684
The JMSInput and JMSOutput nodes expect JMS messages, and therefore expect a
native JMS message tree representation.
Related tasks:
“Configuring JMS nodes to communicate with WebSphere Application Server
service integration bus” on page 1710
You can configure a stand-alone JMS client and JMS nodes to communicate with
service integration bus (SIBus) in WebSphere Application Server Version 6 and
Version 7.
“Configuring JMS nodes to communicate with Oracle AQ” on page 1712
You can configure the JMS nodes to communicate with Oracle AQ (Oracle 11g and
above). This communication requires an LDAP 3 compliant server to hold
definitions for JNDI lookup by the JMS nodes.
Related reference:
“JMS message types” on page 1690
JMS defines six message interface types; a base message type and five subtypes.
The message types are defined according to the type of the message payload, where

Chapter 9. Developing message flow applications 1709

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

the payload is the body of a message that holds the content.
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“JNDI administered objects” on page 1702
JNDI (Java Naming and Directory Interface) is a standard Java extension that
provides a uniform API for accessing various directory and naming services.
“JMS message for output” on page 1700
When the JMSOutput node receives a JMS message, it calls the JMSTransport
parser to return an XML bit stream containing the JMSTransport section of the
message, so that it can be examined and processed.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

Configuring JMS nodes to communicate with WebSphere Application Server
service integration bus:

You can configure a stand-alone JMS client and JMS nodes to communicate with
service integration bus (SIBus) in WebSphere Application Server Version 6 and
Version 7.

About this task

Procedure

1. Complete the following steps in WebSphere Application Server. For more
information, see the WebSphere Application Server documentation.
a. Create a messaging bus.
b. Add a bus member.
c. Restart the WebSphere Application Server server.
d. Create a queue destination on the bus.
e. Create a JMS queue on the default messaging provider.
f. Create a Queue Connection Factory (QCF) on the default messaging

provider.
Ensure that the messaging provider URL is specified in the QCF definition,
particularly if the JMS client and messaging bus are on different computers.
The provider endpoint URL must have the following format:
bus_member_host_name:7276:BootstrapBasicMessaging

where 7276 is the default SIB endpoint address. Do not use 127.0.0.1 or
localhost for the bus member host name.

2. Test the WebSphere Application Server configuration by using a stand-alone
JMS client and completing the following steps.
a. Put the following two JAR files in your class path:

com.ibm.ws.sib.client.thin.jms_7.0.0.jar and
com.ibm.ws.ejb.thinclient_7.0.0.jar.
Copy these JAR files from the WebSphere Application Server Version 7
installation directory under the runtimes subdirectory. If you are using a
non-IBM JRE, you also need the com.ibm.ws.orb_7.0.0.jar file.

b. Ensure that the provider URL is set to iiop://
WAS_server_host_name:boot_strap_port.

c. Ensure that you specify the correct boot strap port.

1710 WebSphere Message Broker Version 7.0.0.8

d. Ensure that the Queue Connection Factory and JMS Queue properties are
set to the values defined in the WebSphere Application Server configuration.

e. Compile the JMS client code.
f. Run the JMS client with the following IBM ORB debug parameters turned

on.
java -Dcom.ibm.CORBA.Debug=true -Dcom.ibm.CORBA.CommTrace=true -Dcom.ibm.CORBA.D ebug.Output=client.logJMS_Client_Class

This command produces CORBA debug output in the client.log file in the
same directory.

3. Complete the following steps in WebSphere Message Broker.
a. Stop the broker.
b. Create a directory (for example, c:\WebSphere_WAS_Client) and copy the

following two JAR files from WebSphere Application Server Version 7 Thin
Client for JMS.
v com.ibm.ws.sib.client.thin.jms_7.0.0.jar

v com.ibm.ws.ejb.thinclient_7.0.0.jar

Alternatively, you can copy these files from the WebSphere Application
Server installation directory WAS home/runtimes.

c. Configure the JMS service in WebSphere Message Broker by using the
mqsichangeproperties command. The JMS provider WebSphere_WAS_Client
exists; therefore you can change the client JAR file path for that provider.
mqsichangeproperties broker_name -c JMSProviders -o WebSphere_WAS_Client -n jarsURL -v WAS_thin_client_JAR_file_path

d. Configure the JMSInput node as shown in the following example. For more
information about these properties, see “JMSInput node” on page 4532.
v Specify the name of the JMS provider; for example, Client for WebSphere

Application Server.
v Specify the initial context factory; for example,

com.ibm.websphere.naming.WsnInitialContextFactory.
v Specify the location of the JNDI bindings in the format

iiop://WAS_server_host_name:WAS_server_boot_strap_port.
v Set the connection factory name to QCF.

e. Ensure that the JMS connection has been established before the message
flow starts by using the Windows Event Viewer.

Related concepts:
“Connection to different JMS providers” on page 1709
The JMSInput and JMSOutput nodes are compatible with all JMS providers that
conform to the Java Message Service Specification, version 1.1.
Related tasks:
“Configuring the broker to enable a JMS provider's proprietary API” on page 748
Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java class
to interface with that proprietary API.
“Working with JMS” on page 1709
Learn about the concepts and tasks involved in configuring message flows to
support JMS messages.
Related reference:
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

Chapter 9. Developing message flow applications 1711

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

Configuring JMS nodes to communicate with Oracle AQ:

You can configure the JMS nodes to communicate with Oracle AQ (Oracle 11g and
above). This communication requires an LDAP 3 compliant server to hold
definitions for JNDI lookup by the JMS nodes.

About this task

Procedure

1. Complete the following steps in Oracle AQ, referring to Oracle documentation
for the specific details of each step.
a. You must install the Oracle Internet Directory Server (OID) to host the JNDI

administered objects for Oracle AQ.
v You can configure Oracle AQ to register JMS connection factories and

destinations (queues and topics) automatically with the OID server when
these JMS connection factories and destinations are created in the Oracle
database.

b. Create the database tables to hold the JMS queues and topics.
c. Create the JMS queues and topics and associate them with the tables created

in step 1b.
2. Add definitions for the JMS connections to the LDAP server to permit the

broker JMS nodes to complete JND lookup and connect to the Oracle AQ
server.
a. Register JMS connection factories with the OID LDAP server by using the

administrative tools provided by Oracle.
b. The following diagram describes the shape of the directory tree for JNDI

administered objects for Oracle AQ.

1712 WebSphere Message Broker Version 7.0.0.8

3. Copy the Oracle AQ JMS client JAR files to a local directory that is accessible
by the broker.
v The aqapi.jar file is found on the Oracle AQ server in directory

oracle_install_path/rdbms/jlib.
v The ojdbc5.jar file is found on the Oracle AQ server in directory

oracle_install_path/jdbc/lib.
v The orai18n.jar found on the Oracle AQ server in directory

oracle_install_path/jlib.
4. Modify the JMSProviders configurable service for Oracle AQ; for example:

mqsichangeproperties MyBroker –c JMSProviders –o Oracle_AQ
-n jarsURL,

InitialContextFactory,
jndiBindingsLocation

-v location of the Oracle Jars,
com.sun.jndi.ldap.LdapCtxFactory,
ldap://LDAP_server_address:LDAP_listener_port

5. Configure the properties on the JMS Connection tab of the JMS node (input,
output, or reply node) as shown in the following example. For more
information about these properties, see “JMSInput node” on page 4532.
v Set the JMS provider name property to Oracle_AQ.
v Set the Initial context factory property; for example:

com.sun.jndi.ldap.LdapCtxFactory

For all nodes that refer to the JMSProviders configurable service, if this
property is set on the configurable service, it overrides the property that is
set on the node.

v Set the Location JNDI bindings property; for example:
ldap://LDAP_server_address:LDAP_listener_port

For all nodes that refer to the JMSProviders configurable service, if this
property is set on the configurable service, it overrides the property that is
set on the node.

v Set the Connection factory name property. This name must be the fully
qualified path in the LDAP directory; for example:
cn=QCF,cn=oracledbconnections,cn=ORCL,cn=OracleContext,
ou=MyDept,o=MyCompany

Where
– cn=QCF is the JMS connection factory name.
– cn=oracledbconnections is the branch for JMS connection factory

definitions.
– cn=ORCL is the Oracle AQ database name.
– cn=OracleContext is the root of the Oracle RDBMS schema.
– ou=MyDept, o=MyCompany is the installation-specific LDAP

administrative context.
6. On the Basic tab, configure the JMS destinations (queue or topic) properties.
v Set the Source queue property on the JMSInput node. This queue must be the

fully qualified path in the LDAP directory; for example:
cn=JMS.Queue,cn=oracleDBQueues,cn=ORCL,cn=OracleContext,
ou=MyDept,o=MyCompany

Where
– cn=JMS.Queue is the JMS queue.
– cn=oracleDBQueues is the branch for JMS queues and topic definitions.
– cn=ORCL is the Oracle AQ database name.

Chapter 9. Developing message flow applications 1713

– cn=OracleContext, is the root of the Oracle RDBMS schema.
– ou=MyDept, o=MyCompany is the installation-specific LDAP

administrative context.
7. Before the message flow starts, ensure that the JMS connection has been

established by using the Windows Event Viewer.
Related concepts:
“Connection to different JMS providers” on page 1709
The JMSInput and JMSOutput nodes are compatible with all JMS providers that
conform to the Java Message Service Specification, version 1.1.
Related tasks:
“Configuring the broker to enable a JMS provider's proprietary API” on page 748
Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java class
to interface with that proprietary API.
“Working with JMS” on page 1709
Learn about the concepts and tasks involved in configuring message flows to
support JMS messages.
Related reference:
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

Configuring resources for processing JMS messages:

A number of nodes are provided in WebSphere Message Broker for processing and
routing JMS messages. Follow the links in this topic to find out how to configure
the JMS nodes and broker resources for processing JMS messages.

About this task

WebSphere Message Broker provides the following nodes for working with JMS
messages:

JMSInput node
Use a JMSInput node if the messages are received from a JMS application.

JMSOutput node
Use a JMSOutput node if the messages are sent to a JMS destination.

JMSReply node
The JMSReply node has a similar function to the JMSOutput node, but the
JMSReply node sends JMS messages only to the reply destination that is
supplied in the JMSReplyTo header field of the JMS message tree. Use the
JMSReply node to treat a JMS message that is produced from a message
flow as a reply to a JMS input message, and when you have no other
routing requirements.

JMSMQTransform node
Use the JMSMQTransform node to transform a message with a JMS

1714 WebSphere Message Broker Version 7.0.0.8

message tree into a message that has a tree structure that is compatible
with the format of messages that are produced by the WebSphere MQ JMS
provider.

The JMSMQTransform node can be used to send messages to existing
message flows and to interoperate with WebSphere MQ JMS and
WebSphere MQ Publish/Subscribe.

MQJMSTransform node
Use the MQJMSTransform node to receive messages that have a
WebSphere MQ JMS provider message tree format, and transform them
into a format that is compatible with messages that are to be sent to JMS
destinations.

You can use the MQJMSTransform node to send messages to existing
message flows and to interoperate with WebSphere MQ JMS and
WebSphere MQ Publish/Subscribe.

JMSHeader node
Use a JMSHeader node to change JMS Header_Values properties, or add,
modify, or delete JMS Application properties without programming.

SOAPInput node
Use a SOAPInput node for SOAP messages received from a JMS
application.

SOAPReply node
The SOAPReply node sends SOAP messages using JMS transport only to
the reply destination specified in the received message. Use the
SOAPReply node to treat a JMS message that is produced from a message
flow as a reply to a JMS input message.

SOAPRequest node
Use a SOAPRequest node to send a SOAP request to a remote Web service.
This node is a synchronous request and response node, and blocks after
sending the request until the response is received.

SOAPAsyncRequest and SOAPAsyncResponse nodes
Use a SOAPAsyncRequest node with a SOAPAsyncResponse node to
construct a pair of message flows that call a Web service asynchronously.

To use JMS nodes in your message flows, there are additional configuration steps
in the broker environment that you might need to complete. See the following
topics for information about additional configuration tasks that you might need to
complete:
v “Configuring JMS and SOAP nodes to support global transactions” on page 1716
v “Windows systems: modifying the queue manager authorization” on page 1723
v “Securing JMS connections and JNDI lookups” on page 1725
v “Configuring the broker to enable a JMS provider's proprietary API” on page

748
v “Processing bytes messages with JMS nodes” on page 1729
Related tasks:
“Working with JMS” on page 1709
Learn about the concepts and tasks involved in configuring message flows to
support JMS messages.
“Configuring resources for processing JMS messages” on page 1714
A number of nodes are provided in WebSphere Message Broker for processing and
routing JMS messages. Follow the links in this topic to find out how to configure
the JMS nodes and broker resources for processing JMS messages.

Chapter 9. Developing message flow applications 1715

Related reference:
“JMSHeader node” on page 4529
Use the JMSHeader node to modify contents of the JMS Header_Values and
Application properties so that you can control the node's output without
programming.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSMQTransform node” on page 4547
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“JMSReply node” on page 4562
Use the JMSReply node to send messages to JMS destinations.
“MQJMSTransform node” on page 4610
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“SOAPAsyncResponse node” on page 4777
Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest
node to construct a pair of message flows that call a Web service asynchronously.
“Using LocalEnvironment variables with JMSOutput and JMSReply nodes” on
page 4242
The LocalEnvironment data elements related to the processing of JMS Messages in
the JMSOutput and JMSReply nodes.

Configuring JMS and SOAP nodes to support global transactions:

To include nodes that use JMS transport, such as the JMS and SOAP nodes, in
globally coordinated transactions, you must complete additional configuration.

About this task

If you require transaction coordination, choose a JMS provider that conforms to the
Java Message Service Specification, version 1.1 and that supports the JMS
XAResource API through the JMS session.

1716 WebSphere Message Broker Version 7.0.0.8

http://java.sun.com/products/jms/docs.html

If the message designer has specified a non-XA-compliant provider, the
non-transactional mode only is supported. In this case, you must set the
Transaction mode property to None for all JMS and SOAP nodes that use JMS
transport.

To configure the nodes:

Procedure

1. Switch to the Broker Application Development perspective.
2. Set the message flow property Coordinated Transaction to yes in the BAR file

properties.
3. For each node that uses JMS transport that is required in the global transaction,

set the Transaction mode property to Global in the message flow editor.
4. Create a Queue Connection Factory and use either the default name,

recoverXAQCF, or supply your own name. See the JMSInput or JMSOutput
node for further details about creating JNDI administered objects.

5. On distributed systems, you must set up a stanza for each JMS provider that
you want to use, before deployment.
The following table shows the JMS provider switch files that are provided on
each operating system.

Platform 32-bit file 64-bit file

AIX libJMSSwitch.so

HP-Itanium libJMSSwitch.so

Linux on POWER libJMSSwitch.so

Linux on IBM z Systems libJMSSwitch.so

Linux on x86 libJMSSwitch.so

Linux on x86-64 libJMSSwitch.so

Solaris on SPARC libJMSSwitch.so

Solaris
on x86-64

libJMSSwitch.so

Windows on x86 JMSSwitch.dll

Windows on x86-64 JMSSwitch32.dll JMSSwitch.dll

Select the appropriate link for details of this task on the operating system, or
systems, that your enterprise uses:

v Linux UNIX Linux and UNIX systems

v Windows Windows systems
On Windows only, you must also modify the queue manager authorization,
as described in “Windows systems: modifying the queue manager
authorization” on page 1723.

For further information, see the following topics:
v “Configuring for coordinated transactions” on page 4535 in the JMSInput

node topic
v “Configuring for coordinated transactions” on page 4553 in the JMSOutput

node topic

z/OS

On z/OS, the only JMS provider that is supported is the IBM

WebSphere MQ Java Client, and the only transport mode supported for that
client is BIND mode; no further configuration steps are required.

Chapter 9. Developing message flow applications 1717

What to do next

The JMS provider might supply additional JAR files that are required for
transactional support; for more informaiton, see the documentation that is supplied
with the JMS provider. For example, on distributed systems, the WebSphere MQ
JMS provider supplies an extra JAR file, com.ibm.mqetclient.jar.

You must add any additional JAR files to the broker shared_classes directory:

v Linux UNIX On Linux and UNIX: var/mqsi/shared-classes.

v Windows On Windows, %ALLUSERSPROFILE%\Application Data\IBM\MQSI\shared-
classes, where %ALLUSERSPROFILE% is the environment variable that defines the
system working directory. The default directory depends on the operating
system:
– On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\Application Data\IBM\MQSI\shared-classes

– On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\MQSI\
shared-classes

The value can vary for different computers.

For more information, see the section about making the JMS provider client
available to the JMS nodes in “JMSInput node” on page 4532.

Optional: To secure the JMS connection factory, the JNDI bindings, or both, see
“Securing JMS connections and JNDI lookups” on page 1725.
Related concepts:
“JMS Transactionality” on page 1705
JMS destinations that supply messages to an input node, or receive messages from
an output node, can be sync-point coordinated as part of a message flow global
transaction.
Related tasks:
“Linux and UNIX systems: configuring the queue manager to coordinate JMS
resources” on page 1719
Define a stanza in the broker's queue manager qm.ini file for each new JMS
provider, where the JMS provider can be specified by a JMS node included in a
message flow that is running on the broker.
“Windows systems: configuring the queue manager to coordinate JMS resources”
on page 1721
Use WebSphere MQ Explorer to configure the XA resource managers for the queue
manager.
“Windows systems: modifying the queue manager authorization” on page 1723
Authorize the broker and queue manager to access shared resources that are
associated with the JMS provider.
“Securing JMS connections and JNDI lookups” on page 1725
If you want additional security for JMS connectivity and the JMS nodes or SOAP
nodes using JMS transport, two configuration options are supported.
Related reference:
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.

1718 WebSphere Message Broker Version 7.0.0.8

“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

Linux and UNIX systems: configuring the queue manager to coordinate JMS resources:

Define a stanza in the broker's queue manager qm.ini file for each new JMS
provider, where the JMS provider can be specified by a JMS node included in a
message flow that is running on the broker.

About this task

The parameters that are defined in XAOpenString are comma delimited and
positional. Represent missing optional parameters by a comma if you include other
parameters later in the string.

The following stanza entry is an example that you can add when using WebSphere
MQ Java as the JMS provider:
XAResourceManager:

Name=WBIWMQJMS
SwitchFile=/install_dir/lib/JMSSwitch.so
XAOpenString=<Initial Context Factory>,

<location of JNDI bindings>’
<LDAP Principal>,
<LDAP Credentials>,
<Recovery Connection Factory Name>,
<JMS Principal>,
<JMS Credentials>
ThreadOfControl=THREAD

where:

install_dir
Is the location of the WebSphere Message Broker installation. This value is
mandatory where the LDAP parameters are omitted, but a user-defined
Queue Connection Factory is specified for recovery.

<Initial Context Factory>
Is the Initial Context Factory identifier for the JMS provider; this value is
required.

<Location of JNDI bindings>
Is either the file path to the bindings file, or the LDAP directory location of
the JNDI administered objects that can be used to create an initial context
factory for the JMS connection. When supplying the file path to the
bindings file, do not include the file name. See the JMSInput or JMSOutput
node for further details on creating the JNDI administered objects; this
value is required.

<LDAP Principal>
Is an optional parameter used to specify the principal (user ID) that might
be required when an LDAP database is used to hold the JNDI
administered objects.

Chapter 9. Developing message flow applications 1719

<LDAP Credentials>
Is an optional parameter used to specify the Credentials (password) that
might be required if a password protected LDAP database is used to hold
the JNDI administered objects.

<Recovery Connection Factory Name>
Is an optional parameter used to specify the name of a Queue Connection
Factory object in the JNDI administered objects for recovery purposes,
when the non default name is required.

<JMS Principal>
Is an optional parameter for the user ID required to connect to a JMS
provider, using a secure JMS Connection Factory.

<JMS Credentials>
Is an optional parameter for the password required to connect to the same
JMS provider in conjunction with the JMS principal.

Switch files are installed in the install_dir /lib directory. To simplify the
contents of the qm.ini file, create a symbolic link to the switch file for the queue
manager to retrieve from /var/mqm/exits (for 32-bit brokers) or /var/mqm/exits64
(for 64-bit brokers). For example:
ln -s install_dir/lib/libJMSSwitch.so /var/mqm/exits/JMSSwitch

ln -s install_dir/lib/libJMSSwitch.so /var/mqm/exits64/JMSSwitch

If you create a link for both 32-bit and 64-bit switch files on a single computer,
ensure that you specify the same name in /exits and in /exits64, as shown in the
example.

The values for the Initial Context factory and Location of JNDI bindings in the
stanza must match the values that you specified in the JMS or SOAP nodes in the
message flows.

All LDAP parameters must match the values that you specified on the
mqsicreatebroker or mqsichangebroker command.

The Recovery Factory Name must match a Queue Connection Factory name that is
created in the JNDI administered objects. If you do not specify a name, a default
factory called recoverXAQCF is used. In either case, this value must refer to a JNDI
administered object that has already been created.

The JMS Principal and JMS Credentials must be configured together.

The following example shows the format of a stanza in the qm.ini file that
describes a JMS provider for global transactions:
XAResourceManager:

Name=XAJMS_PROVIDER1
SwitchFile=/opt/var/mqsi/lib/JMSSwitch.so
XAOpenString= com.sun.jndi.fscontext.RefFSContextFactory,

/Bindings/JMSProvider1_Bindings_Directory,
,
,
,
myJMSuser1,
passwd
ThreadOfControl=THREAD

where:

1720 WebSphere Message Broker Version 7.0.0.8

XAJMS_PROVIDER1
Is the user-defined name for the resource manager

/opt/var/mqsi
Is the <Installation Path>

com.sun.jndi.fscontext.RefFSContextFactory
Is the <Initial Context Factory>

/Bindings/JMSProvider1_Bindings_Directory
Is the location of the bindings

myJMSuser1
Is the <JMS Principal>

passwd
Is the password used in <JMS Credentials>

In this example, the optional fields <LDAP Principal>, <LDAP Credentials>, and
<Recovery Connection Factory Name> are not required, therefore the positional
comma delimiters only are configured in the XAOpenString stanza.
Related tasks:
“Configuring JMS and SOAP nodes to support global transactions” on page 1716
To include nodes that use JMS transport, such as the JMS and SOAP nodes, in
globally coordinated transactions, you must complete additional configuration.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

Windows systems: configuring the queue manager to coordinate JMS resources:

Use WebSphere MQ Explorer to configure the XA resource managers for the queue
manager.

About this task

Complete the following steps:

Chapter 9. Developing message flow applications 1721

Procedure

1. Open WebSphere MQ Explorer.
2. Select the queue manager for your broker and click Properties.
3. Select XA resource managers in the left pane and click Add.
4. Complete the fields to define a new resource manager:
v Name: Enter the name of the resource manager; for example, WBIWMQJMS.
v SwitchFile: On Windows on x86, enter the full path of the switch file; for

example, install_dir\bin\JMSSwitch.dll. On Windows on x86-64, enter
JMSSwitch.

v XAOpenString: Enter the following values, which are comma delimited and
positional. Represent missing optional parameters by a comma if you include
other parameters later in the string.

Initial Context Factory
The Initial Context Factory identifier for the JMS provider; this value
is required.

Location of JNDI bindings
Either the file path to the bindings file, or the LDAP directory
location of the JNDI administered objects that can be used to create
an initial context factory for the JMS connection. If you supply the
file path to the bindings file, do not include the file name. See the
JMSInput or JMSOutput node for further details about creating the
JNDI administered objects; this value is required.

LDAP Principal
Optional: The principal (user ID) that might be required when an
LDAP database is used to hold the JNDI administered objects.

LDAP Credentials
Optional: The credentials (password) that might be required if a
password protected LDAP database is used to hold the JNDI
administered objects.

Recovery Connection Factory Name
Optional: The name of a Queue Connection Factory object in the
JNDI administered objects for recovery purposes, when the non
default name is required.

JMS Principal
The user ID that is required to connect to a JMS provider, using a
secure JMS Connection Factory.

JMS Credentials
The password that is required to connect to the same JMS provider
in conjunction with the JMS principal.

The values for the Initial Context factory and Location of JNDI bindings in
the stanza must match the values that you specified in the JMS or SOAP
nodes in the message flows.
All LDAP parameters must match the values that you specified on the
mqsicreatebroker or mqsichangebroker command.
The Recovery Factory Name must match a Queue Connection Factory name
that is created in the JNDI administered objects. If you do not specify a
name, a default factory called recoverXAQCF is used. In either case, this value
must refer to a JNDI administered object that has already been created.
The JMS Principal and JMS Credentials must be configured together.

1722 WebSphere Message Broker Version 7.0.0.8

v XACloseString: Leave this field blank.
v ThreadOfControl: Set the value Thread.

5. Click OK to complete the XA resource manager definition.
6. Click OK to close the queue manager properties dialog.
7. Click File > Exit to close WebSphere MQ Explorer.
8. On Windows on x86, copy the switch file (for example, JMSSwitch.dll) to the

\exits subdirectory in the WebSphere MQ installation directory. On Windows
on x86-64, copy the switch file JMSSwitch32.dll to the \exits subdirectory in
the WebSphere MQ installation directory, and rename it to JMSSwitch.dll.
Copy the switch file JMSSwitch.dll to the \exits64 subdirectory in the
WebSphere MQ installation directory.

What to do next

Next: modify the queue manager authorization.
Related tasks:
“Configuring JMS and SOAP nodes to support global transactions” on page 1716
To include nodes that use JMS transport, such as the JMS and SOAP nodes, in
globally coordinated transactions, you must complete additional configuration.
“Windows systems: modifying the queue manager authorization”
Authorize the broker and queue manager to access shared resources that are
associated with the JMS provider.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

Windows systems: modifying the queue manager authorization:

Authorize the broker and queue manager to access shared resources that are
associated with the JMS provider.

Before you begin

Before you start:

Chapter 9. Developing message flow applications 1723

Set up the JMSProviders configurable service; for more information, see “Making
the JMS provider client available to the JMS nodes” on page 4534 (in the JMSInput
node topic) or “Making the JMS provider client available to the JMS nodes” on
page 4550 (in the JMSOutput node topic).

About this task

Complete the following steps on the Windows system on which the broker is
running:

Procedure

1. If you defined the broker queue manager when you created the broker by
running the mqsicreatebroker command, the two components share the same
administrative ID, defined as the broker service ID, and you do not have to
take any further action.

2. If you specified an existing queue manager when you created the broker, check
that its administrative ID is the same ID as that used for the service ID of the
broker. If the ID is not the same, change the queue manager ID to be the same
as the broker service ID:
a. Click Start > Run and enter dcomcnfg. The Component Services window

opens.
b. In the left pane, under Console Root, expand Component Services >

Computers > My Computer and click DCOM Config.
c. In the right pane, under DCOM Config, right-click the WebSphere MQ

service labelled IBM MQSeries Services, and click Properties.
d. Click the Identity tab.
e. Select This user and enter the user ID and password for the broker service

ID to associate that ID with the queue manager.
f. Click OK to confirm the change.

Related tasks:
“Configuring JMS and SOAP nodes to support global transactions” on page 1716
To include nodes that use JMS transport, such as the JMS and SOAP nodes, in
globally coordinated transactions, you must complete additional configuration.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.

1724 WebSphere Message Broker Version 7.0.0.8

“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

Securing JMS connections and JNDI lookups:

If you want additional security for JMS connectivity and the JMS nodes or SOAP
nodes using JMS transport, two configuration options are supported.

About this task

When you include JMS nodes in your message flow, you can optionally secure JMS
connection resources. You can secure one, both, or neither of these options,
depending on the level of security and access that you want to enforce.

Procedure

1. To secure a JMS connection:
a. Specify the Connection Factory Name property on the node. You must set

this property for every node using JMS transport.
b. Use the mqsisetdbparms command to authorize the user ID and password

for the specified connection factory. For example:
mqsisetdbparms MyBroker1 -n jms::tcf1 -u myuserid -p secret

where tcf1 is the name of the connection factory that matches the node
property that you set.

2. To secure JNDI bindings lookups:
a. Specify the Initial Context Factory property on the node. You must set this

property for every node using JMS transport.
b. Use the mqsisetdbparms command to authorize the user ID and password

for the specified context factory. For example:
mqsisetdbparms MyBroker1 -n jndi::com.sun.jndi.fscontext.RefFSContextFactory

-u myuserid -p secret

where com.sun.jndi.fscontext.RefFSContextFactory is the name of the
initial context factory that you set.

Related concepts:
“JMS Transactionality” on page 1705
JMS destinations that supply messages to an input node, or receive messages from
an output node, can be sync-point coordinated as part of a message flow global
transaction.
Related tasks:
“Configuring JMS and SOAP nodes to support global transactions” on page 1716
To include nodes that use JMS transport, such as the JMS and SOAP nodes, in
globally coordinated transactions, you must complete additional configuration.
“Configuring the broker to enable a JMS provider's proprietary API” on page 748
Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java class
to interface with that proprietary API.
Related reference:
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

Chapter 9. Developing message flow applications 1725

“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“JMSReply node” on page 4562
Use the JMSReply node to send messages to JMS destinations.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Configuring the broker to enable a JMS provider's proprietary API:

Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java class
to interface with that proprietary API.

About this task

For example, BEA WebLogic uses a component called a Client Interposed Transaction
Manager to allow a JMS client to obtain a reference to the XAResource that is
associated with a user transaction.

If the WebSphere Message Broker JMS nodes use BEA WebLogic as the JMS
provider, and the nodes must participate in a globally coordinated message flow,
you must modify the configurable services properties that are associated with that
vendor. The following table shows the properties that have been added to the
configurable service for BEA WebLogic.

JMS provider Property Purpose Default value

BEA_WebLogic proprietaryAPIHandler The name of the IBM supplied Java
class to interface with a JMS
provider's proprietary API.

com.ibm.broker.apihandler.
BEAWebLogicAPIHandler

proprietaryAPIAttr1 The Initial Context Factory class name
for the vendor

weblogic.jndi.
WLInitialContextFactory

proprietaryAPIAttr2 The URL of the WebLogic bindings URL JNDI bindings

proprietaryAPIAttr3 The DNS name of the JMS server Server name

In the list of JMS provider configurable services, the name of the IBM supplied
Java class is set to the default value for the proprietaryAPIHandler property.
Typically, you do not need to change this value, unless you are instructed to do so
by an IBM Service team representative.

Procedure

v Use the mqsichangeproperties command to modify values of the properties for
this JMS provider.
The following example shows how to change the values of the properties
proprietaryAPIAttr2 and proprietaryAPIAttr3 for the JMS provider

1726 WebSphere Message Broker Version 7.0.0.8

configurable service definition called BEA_Weblogic, where these properties
represent the URL of the WebLogic bindings and the DNS Server name of the
BEA WebLogic JMS Server:
mqsichangeproperties MB7BROKER -c JMSProviders -o BEA_Weblogic
-n proprietaryAPIAttr2,proprietaryAPIAttr3 -v t3://9.20.94.16:7001,BEAServerName

v Use the mqsireportproperties command to display the properties for a JMS
provider.
The following example shows how to display the properties for all the broker's
JMS provider resources (the default JMS provider resources and those
configurable services that are defined with the mqsicreateconfigurableservice
command):
mqsireportproperties MB7BROKER -c JMSProviders -o BEA_WebLogic –r

The result of this command has the following format:
ReportableEntityName=’’
JMSProviders

BEA_Weblogic=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
proprietaryAPIAttr1=’weblogic.jndi.WLInitialContextFactory’
proprietaryAPIAttr2=’t3://9.20.94.16:7001’
proprietaryAPIAttr3=’BEAServerName’
proprietaryAPIAttr4=’default_none’
proprietaryAPIAttr5=’default_none’
proprietaryAPIHandler=’com.ibm.broker.apihandler.BEAWebLogicAPIHandler’

The default location for the JMS provider JAR files is the broker's shared-classes
directory. You can specify an alternative location for the JAR files by using the
mqsichangeproperties command, as shown in the following example:
mqsichangeproperties MB7BROKER -c JMSProviders -o BEA_WebLogic -n jarsURL
-v /var/mqsi/WebLogic

On Windows, the file location cannot be a mapped network drive on a remote
Windows computer; the directory must be local or on a Storage Area Network
(SAN) disk.

v Use the mqsicreateconfigurableservice command to add a JMS provider.
The following example shows how to add a JMS provider called BEAV91 for
broker MB7BROKER, specifying the name of an IBM supplied Java class called
com.ibm.broker.apihandler.BEAWebLogicAPIHandler to handle vendor-specific
API calls:
mqsicreateconfigurableservice MB7BROKER -c JMSProviders -o BEAV91
-n proprietaryAPIHandler,proprietaryAPIAttr1,proprietaryAPIAttr2,proprietaryAPIAttr3
–v com.ibm.broker.apihandler.BEAWebLogicAPIHandler,weblogic.jndi.WLInitialContextFactory,
t3://9.20.94.16:7001,BEAServerName

v If you have defined a user-defined JMS provider configurable service, set the
value for the proprietaryAPIHandler property manually.

Related concepts:
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Chapter 9. Developing message flow applications 1727

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

Enabling batch acknowledgment for JMS messages:

Configure JMS message flows to send a batch acknowledgment for receipt of
non-transactional JMS messages.

About this task

You can configure message flows that use the JMS transport to send an
acknowledgment to the JMS server of all non-transactional JMS messages that have
not previously been acknowledged. You might want to enable batch
acknowledgment if there is high network latency and want to send an
acknowledgment of received messages only after a threshold has been reached.

JMS flows send acknowledgment responses in accordance with the acknowledge
setting on the JMS Session created by the broker. The default setting is
AUTO_ACKNOWLEDGE, which causes JMS flows to send an acknowledgment response
after receiving each non-transactional message. You can change this setting to use
CLIENT_ACKNOWLEDGE instead by setting the properties clientAckBatchSize and
clientAckBatchTime on the JMSProviders configurable service. If
CLIENT_ACKNOWLEDGE is used, the broker calls the acknowledge() method only after
a set time interval has passed, or a set number of messages are received.
Related tasks:
“Configuring the JMSInput node for batch message processing” on page 751
Configure JMS message flows to send a batch acknowledgment for receipt of
non-transactional JMS messages.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

1728 WebSphere Message Broker Version 7.0.0.8

“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

Processing bytes messages with JMS nodes:

The default behavior of WebSphere Message Broker when processing bytes
messages can affect clients that are designed to use the readUTF() and writeUTF()
methods. Construct an equivalent UTF bit stream by using a Compute node.

About this task

By default, WebSphere Message Broker processes bytes messages by using the
readBytes() and writeBytes() JMS methods. By using these methods, the payload is
written or read as a raw byte array. For the input message, the behavior is based
on the serialization of the message tree; for the output message, the resulting bit
stream is passed to the user-specified parser to construct a logical tree.

This behavior can affect clients that are designed to use the readUTF() and
writeUTF() methods. A UTF string contains encoded length information as well as
the raw bit stream. To construct an equivalent UTF bit stream that can be read by
the readUTF() method, complete the following steps.

Procedure

1. Add a Compute node immediately before a JMSOutput node.
2. Double-click the Compute node to open the corresponding ESQL file.
3. Use the ESQL shown in the following example to construct an equivalent UTF

bit stream from an XMLNSC input message. This bit stream can be understood
by a client that uses the readUTF() message.
CALL CopyMessageHeaders();

DECLARE byteData BLOB ASBITSTREAM (InputRoot.XMLNSC ccsid
InputProperties.CodedCharSetId);
DECLARE stringData CHARACTER CAST(byteData AS CHARACTER ccsid
InputProperties.CodedCharSetId);
DECLARE dataLen INTEGER LENGTH (byteData);

DECLARE blobLen BLOB CAST(dataLen AS BLOB ENCODING
InputProperties.Encoding);
DECLARE str2byteBlobLen CHARACTER SUBSTRING (CAST(blobLen AS
CHARACTER) FROM 15 FOR 4);

SET OutputRoot.BLOB.BLOB = CAST(str2byteBlobLen as BLOB) ||
byteData ;

Related tasks:
“Configuring resources for processing JMS messages” on page 1714
A number of nodes are provided in WebSphere Message Broker for processing and
routing JMS messages. Follow the links in this topic to find out how to configure
the JMS nodes and broker resources for processing JMS messages.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.

Chapter 9. Developing message flow applications 1729

“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Troubleshooting JMS nodes:

Review possible problems with nodes using JMS transport.

The following errors might occur:
v “Managing badly formed messages”
v “Diagnosing problems when using globally coordinated transactions”
v “Problems with JNDI Administered Objects” on page 1731

In all cases of error, if the underlying cause is a JMS exception that has been
thrown by the JMS provider, the broker BIP event message includes the text
message from the JMS exception to help diagnosis.

Managing badly formed messages:
If a message cannot be processed by the JMS input node, or has been rolled back
as part of a global transaction, the message is backed out to the source destination.
The message is then delivered again to the input node.

To prevent badly formed messages from interrupting the processing of valid
messages, the node properties can be configured as described in the following
table.

Property Description

Backout
destination

This property specifies a JMS destination to which backed out
messages are routed if the JMS message property JMSX_DeliveryCount,
which is set by the JMS provider, exceeds the backout threshold.

The JMS destination must be applicable to the message model being
used by the node; for example, if a subscription topic has been
configured on the node, the JMS destination must also be a topic.

Backout
threshold

This property specifies the integer value that controls a message that is
sent to the backout destination. A threshold value of 3 indicates that if
the input node receives a message where the value of the
JMSX_DeliveryCount property exceeds 3, the message is sent to the
backout destination and is removed from the source destination. See
“Configuring the backout threshold property” on page 4544.

Diagnosing problems when using globally coordinated transactions:
This problem is not applicable to z/OS.

In addition to the broker service trace, another trace log is provided to diagnose
problems that could occur when a node using JMS transport participates in a
global message flow transaction. That is, at least one JMS node in the message flow
has the Transaction Mode property set to Global.

To capture the trace log, complete the following steps:

1730 WebSphere Message Broker Version 7.0.0.8

1. Define an environment variable called XAJMS_TRACEFILE that is available to
the broker queue manager.

2. Set the value of the environment variable. This value must be a character string
that represents the location and file name of the trace log. For example, on
Windows, the variable can be configured as shown in the following example:
XAJMS_TRACEFILE = c:\JMSSwitchLog

3. When the broker queue manager starts, it performs a recovery step to resolve
any previous broker transactions that the JMS provider considers to be in
doubt. This queue manager process writes to two trace logs during this stage.
The two trace logs are:
v XAJMS_TRACEFILE valuePID.txt, where PID is the process ID of the queue

manager start process. This file is produced from the broker JMSSwitch
library; for more information, see “JMS Transactionality” on page 1705.
The previous example produces a file called JMSSwitchLog2596.txt, where
the queue manager start up process ID is 2596.

v XAJMS_TRACEFILEXARecoveryTrace.txt, which is produced by the recovery
component of the broker that connects to the JMS provider.

4. After the broker queue manager has completed recovery, the broker starts and
creates a file called XAJMS_TRACEFILE valuePID.txt, where PID is the process ID
of the queue manager start process. This file is produced from the broker
JMSSwitch library; for more information, see “JMS Transactionality” on page
1705.

Neither of these trace files require extra formatting.

Problems with JNDI Administered Objects:
Description of problem: The JMS node is unable to obtain the Initial Context
Factory or a JNDI administered object, such as the Connection Factory or JMS
destination, and message BIP4640 is issued.

Corrective action

1. Verify that the JNDI bindings have been built correctly, and can be reached at
the location specified in the node.

2. Check that the values specified in the node for the Connection Factory Name
and Source Queue or Destination Queue properties exist in the JNDI bindings.

3. Ensure that the correct keyword is used to match the location of the bindings:
v file:// when the administered objects have been created in a .bindings file
v ldap:// when the administered objects exist in an LDAP directory
v iiop:// when CORBA is used to access the administered objects

4. When the bindings are file based, do not specify the .bindings file name in the
node property.

5. Ensure that the Initial Context Factory Class name is set correctly, as specified
in the documentation for the JMS provider.

6. Ensure that the Initial Context Factory Class name does not include a file path.
7. Ensure that a JMS destination (Topic or Source Queue or Destination Queue)

specified in the node property exists in the JNDI administered objects.
8. Ensure that the JMS Provider jarsURL property has been set correctly by using

the mqsichangeproperties command. To verify the value, use the following
command:
mqsireportproperties MB7BROKER -c JMSProviders -o JMSProvider –r

Chapter 9. Developing message flow applications 1731

The JMS nodes continue to attempt to obtain the JNDI administered objects.
Correct any problems and rebuild the bindings. The JMS node should
automatically detect the changes and attempt to start.
v If the problem is resolved by rebuilding the bindings, the JMS node detects the

changes automatically and attempts to start.
v If the problem is resolved by updating the node properties, you must redeploy

the flow before it can connect successfully.
v If the problem is resolved by updating the properties of the JMSProviders

configurable service, you must restart the execution group for the changes to
take effect.

Description of problem: A JMS node is unable to connect for a JMS provider and
issues message BIP4648.

Corrective action:
1. Verify that the JMS provider server is running. If it is offline, start the server.
2. Verify that the JMS provider server is available from the broker environment.
3. Ensure that the JMS provider Java .jar files have been placed into the broker

shared-classes directory on distributed systems, or that on z/OS, that these
.jar files have been defined to the broker CLASSPATH and any native libraries
defined in the broker LIBPATH.

The JMS nodes continue to attempt to connect to the JMS provider. Correct any
problems and the JMS node should automatically detect the changes and attempt
to connect to the provider.

Description of problem: A JMS node is unable to obtain a JMS destination and
issues message BIP4642.

Corrective action

1. Investigate the cause of the problem described by the JMS exception message
that might be included in the BIP event message.

2. Check that the name of the JMS destination that is defined in the relevant node
property (Topic, Source Queue or Destination Queue) has been defined
correctly in the JNDI administered objects.

3. Verify that the underlying system resource that is used by the JMS provider for
the JMS destination has been configured correctly

Description of problem: A JMS input node does not attempt to reconnect to a JMS
provider following a connection failure, or a restart of the JMS provider.

Corrective action: If the JMS provider is implemented by using a model that
pushes on the JMS client, rather than a traditional polling model, the JMS provider
might not throw an exception when calling receive() on a broker connection. To
resolve this problem, set the jmsAsyncExceptionHandling property of the
JMSProviders configurable service to true for this JMS provider.
Related concepts:
“JMS Transactionality” on page 1705
JMS destinations that supply messages to an input node, or receive messages from
an output node, can be sync-point coordinated as part of a message flow global
transaction.
Related tasks:

1732 WebSphere Message Broker Version 7.0.0.8

“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
Related reference:
“JMS properties for application communication models” on page 1708
JMS clients can operate with both publish/subscribe and point-to-point messages.
The publish/subscribe and point-to-point application communication models use
virtual channels called destinations. In the publish/subscribe model, the
destinations are topics. For the point-to-point model, the destinations are known as
queues.
“JMS message domain properties” on page 1707
The JMSInput node can receive message payloads that correspond to all of the JMS
message types that are specified in the JMS Specification, version 1.1.
“JMS message selector” on page 1703
A message selector allows a JMS consumer to be more selective about the messages
that it receives from a particular topic or queue.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.

Processing TCP/IP messages
You can use WebSphere Message Broker to connect to applications that use raw
TCP/IP sockets for transferring data.

About this task

If you have existing applications that use raw TCP/IP sockets for transferring data,
you can use the WebSphere Message Broker TCP/IP nodes to connect to the
applications, without needing to enable them for WebSphere MQ.

WebSphere Message Broker implements access to the TCP/IP input and output
streams through the following nodes:
v “TCPIPClientInput node” on page 4854
v “TCPIPClientOutput node” on page 4867
v “TCPIPClientReceive node” on page 4877
v “TCPIPServerInput node” on page 4890
v “TCPIPServerOutput node” on page 4903
v “TCPIPServerReceive node” on page 4913

For information about how to use the TCP/IP support, see “Working with
TCP/IP” on page 1750.

Chapter 9. Developing message flow applications 1733

The following topics contain information that you need to understand before you
can use TCP/IP in a WebSphere Message Broker application:
v “WebSphere Broker TCP/IP Transport” on page 1735
v “TCP/IP nodes” on page 1738
v “Connection management” on page 1742
v “Configuring TCP/IP client nodes to use SSL” on page 551
v “Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Connection management” on page 1742
TCP/IP connections are requested by the client connection manager and accepted
by the server connection manager.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

1734 WebSphere Message Broker Version 7.0.0.8

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

WebSphere Broker TCP/IP Transport
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.

TCP/IP sockets provide a simple way of connecting computer programs together,
and this type of interface is commonly added to existing stand-alone applications.
TCP/IP provides a mechanism for transferring data between two applications,
which can be running on different computers. The transfer of data is bidirectional;
provided that the TCP/IP connection is maintained and no data is lost, the
sequence of the data is kept. A significant advantage of using TCP/IP directly is
that it is quick and simple to configure, which makes it a useful mechanism for
processes that do not require message persistence (for example, monitoring).

However, the use of TCP/IP sockets for transferring information between
programs does have some limitations:
v It is non-transactional
v It is not persistent (the data is written to an in-memory buffer between the

sender and receiver)
v It has no built-in security
v It provides no standard way of signaling the start and end of a message

For these reasons, it can be preferable to use a transport mechanism like
WebSphere MQ, which has none of these limitations. However, if you have existing
applications that use raw TCP/IP sockets for transferring data, you can use the
WebSphere Message Broker TCPIP nodes to connect to the applications without
needing to enable them for WebSphere MQ, so that you can develop a WebSphere
Message Broker solution quickly.

A TCP/IP connection between two applications has a client end and a server end,
which means that one application acts as a server and the other as a client. The
terms client and server refer only to the mechanism used to establish a connection;
they do not refer to the pattern of data exchange. When the connection has been
established, both client and server can perform the same operations and can both
send and receive data. The following diagram illustrates the locations of client and
server applications:

Chapter 9. Developing message flow applications 1735

Process Process

Computer Computer

Client App 1 Server App

Hostname A1 Hostname B

Port P1

1. The server application listens on a local port (on the computer that is running
the application) for requests for connections to be made by a client application.

2. The client application requests a connection from the server port, which the
server then accepts.

3. When the server accepts the request, a port is created on the client computer
and is connected to the server port.

4. A socket is created on both ends of the connection, and the details of the
connection are encapsulated by the socket.

5. The server port remains available to listen for further connection requests:

Process Process

Computer Computer

Client App 1 Server App

Hostname A1 Hostname B

Port P2
Port P1

Port P1*

Bidirectional
connection

The server can accept more connections from other client applications. These
connections can be in the same process, in a different process on the same
computer, or on a different computer:

1736 WebSphere Message Broker Version 7.0.0.8

Process Process

Process

Computer Computer

Computer

Process

Client App 1 Server App

Client App 3

Hostname A1 Hostname B

Hostname A2

Client App 2

Port P2
Port P1

Port P1*
Port P1 **
Port P1 ***
Port P1 ****

Port P4

Port P5

Port P3

Only one server application can exist, but any number of different client processes
can connect to the server application. Any of these applications (client or server)
can be multithreaded, which enables them to use multiple connections.

When the connection has been established, two data streams exist: one for inbound
data and another for outbound data:

Process Process

Client App 1 Server App

Port P2

Output

Input

Port P1*

Input

Output

The client and server ends of the connection are identical and both can perform the
same operations. The only difference between them is that the output stream of the
client is the input stream of the server, and the input stream of the client is the
output stream of the server.

The two streams of data are independent and can be accessed simultaneously from
both ends. The client does not need to send data before the server.

The example illustrated in the previous diagram can be simplified in the following
way, showing that the client and server have access to a socket that has an input
stream and an output stream:

Chapter 9. Developing message flow applications 1737

Process

Socket

Port P2

Output

Input

Related concepts:
“TCP/IP nodes”
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Connection management” on page 1742
TCP/IP connections are requested by the client connection manager and accepted
by the server connection manager.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
Related tasks:
“Processing TCP/IP messages” on page 1733
You can use WebSphere Message Broker to connect to applications that use raw
TCP/IP sockets for transferring data.
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

TCP/IP nodes
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.

Two sets of TCP/IP nodes exist: TCPIPServer nodes and TCPIPClient nodes. Both
sets have identical function in terms of accessing the data streams; however, one
set uses client connections and the other set uses server connections. As a result,

1738 WebSphere Message Broker Version 7.0.0.8

the nodes establish the connections in different ways but they use the streams in
the same way when the connections have been established.

The main difference between the properties of the nodes is that the TCPIPServer
nodes do not allow the host name to be changed (because it must always be
localhost). All TCPIPServer nodes that use the same port must be in the same
execution group because the port is tied to the running process. TCPIPClient nodes
on the same port can be used in different execution groups, but client connections
cannot be shared because the client connections are tied to a particular execution
group, which maps to a process. Within the two sets of nodes (TCPIPClient and
TCPIPServer), are three types of node:
v TCPIPServerInput and TCPIPClientInput
v TCPIPServerReceive and TCPIPClientReceive
v TCPIPServerOutput and TCPIPClientOutput

The input and receive nodes access the input stream to retrieve data, and the
output nodes access the output stream to send data. No single node can access
both streams at the same time. To access both streams simultaneously, you must
connect multiple nodes in a message flow.

Input nodes

The input node allows access to a connection's input stream. The node is triggered
by the arrival of data in the stream and starts processing the message flow. The
input node controls thread and transaction management. The TCP/IP nodes are
not transactional in the way that they interact with TCP/IP, but other nodes in the
same flow can be transactional (for example, WebSphere MQ nodes). The input
node does not create a thread for every connection being used, but waits for two
requirements to be met:
v A connection is available that still has an open input stream
v Data is available on the input stream (at least 1 byte)

For example, 1,000 TCP/IP connections can be handled by one input node that has
only one additional instance. This situation is possible because the node does not
poll the connections, but is triggered when the specified conditions are met.

Process

Socket

TCPIP Input Node

Triggered by data on
connection

Message Tree Out

Input

Port P2

Receive nodes

The receive node is triggered to read data from a connection when a message
arrives on its In terminal. It waits for data to arrive, then sends it to the Out

Chapter 9. Developing message flow applications 1739

terminal. You can configure the receive node to use a particular connection (by
specifying a connection's ID) or to use any available connection. If the node is
configured to use any available connection, it receives data from the first
connection that has data available.

Process

Socket

TCPIP Receive Node

Message Tree In

Message Tree Out

Input

Port P2

Output nodes

The output node sends data to a connection. It is triggered by a message arriving
on its In terminal, then it sends the data contained in the message to the stream.
The same message that is received in the node is sent to the Out terminal.

Process

Socket

Message Tree In

TCPIP Output Node

Message Tree Out

Output

Port P2

Combining nodes

The six client and server nodes can be combined to provide more complex
operations. For example, an output node followed by a receive node enables a
synchronous request of data:

1740 WebSphere Message Broker Version 7.0.0.8

Process

Process

Socket

Socket

Message Tree In

TCPIP Output Node

TCPIP Receive Node

Message Tree Out

Message Tree Out

Output

Input

If the message flows used are single threaded and only one connection ever exists,
the sequence of nodes requires no further configuration. Two additional
mechanisms are included to enable multithreading and multiple connections:
v A connection ID to ensure that the same connection is used by multiple nodes
v The ability to reserve connections so that they can be accessed only when the ID

is specified

One connection in multiple nodes

Every connection has a unique identifier assigned to it when it is created.
Whenever a node uses a connection, the ID that is used is written to the local
environment. Any nodes that use it later in the flow can access the same
connection by specifying the ID; the receive and output nodes find the ID by
searching in a specified location in the local environment. By default, the location
in which a node writes its connection details is different from the location in which
the next node looks to see if there is an ID to use. The nodes can be configured to
use the ID that was sent by a previous node. For example, the combination of the
output and receive nodes shown in “Combining nodes” on page 1740 can be
configured so that the receive node uses the WrittenDestination data from the
preceding output node.

The use of the ID enables a series of nodes to access the same connection, but does
not prevent two message flow threads accessing the same connection. When a
connection is used for the first time, it can be reserved so that no other nodes can
access it unless they know the ID. For example, the combination of the output and
receive nodes shown in “Combining nodes” on page 1740 reserves the connection
so that no other threads can access it before the receive node uses it. By default,
the receive node then releases the connection when it has finished.

The ability to reserve connections (and access them by specifying the correct ID)
enables you to build up complex interactions with TCP/IP connections that span
whole flows and even multiple message flows. As a result, the TCP/IP interactions
can be used with other asynchronous transport mechanisms like WebSphere MQ.

Chapter 9. Developing message flow applications 1741

Reserved connections must be released at some time, otherwise they remain
unavailable indefinitely. For more information about reserved and available
connections, see “Connection management.”

Correlating replies across flows

You can use the TCP/IP nodes in asynchronous patterns, in which data is sent out
through a TCP/IP output node and received back through a TCP/IP input node.
The spanning of two message flows causes any state in the first flow to be lost and
therefore inaccessible from the second flow. The TCP/IP nodes enable you to store
some reply details on a connection, and these details are then available for the
input node to use when a new event arrives on the same connection. By default,
this data is taken from the local environment, but you can configure the nodes to
take the data from any location, including the Correlid field and message IDs in
WebSphere MQ headers.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“Connection management”
TCP/IP connections are requested by the client connection manager and accepted
by the server connection manager.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

Connection management
TCP/IP connections are requested by the client connection manager and accepted
by the server connection manager.

1742 WebSphere Message Broker Version 7.0.0.8

The execution group process contains the connection manager, which makes the
connections. Only one execution group can have server nodes using a specific port
at any one time; deployment to a second execution group causes a deployment
error. Client nodes can be deployed to different execution groups, but each
execution group has its own pool of connections, and therefore its own minimum
and maximum number of connections.

TCPIP nodes do not directly create or manage any TCP/IP connections, but
acquire them from the connection manager's internal pool. For example, two
output nodes using the same connection details share the same connection
manager. The TCPIP nodes can define the connection details to be used by
specifying one of the following values:
v Host name and port
v Name of a configurable service.

If a host name and port are specified, the node uses these values when requesting
connections. If a configurable service is specified, the node obtains the values for
the port and host name from the values defined in the configurable service. The
connection manager supports other configurable parameters in addition to the host
name and port, and you can define all of these values when you are using a
configurable service. When the host name and port are specified on the node, the
connection manager obtains the rest of the required values from the default
configurable service. However, if a configurable service is defined that is using the
host name and port number, the values from that configurable service are used.

The connection manager is created when the first node that requires connections
from it is deployed. The connection manager is deleted when the last remaining
node using it has been removed from the execution group (which means that the
connection manager is no longer being used by any deployed nodes). For example,
this process can occur when existing flows are redeployed, because redeployment
involves deleting all existing nodes before creating them again.

Server connections

The server connection manager starts listening for server connections when it
starts, and it keeps accepting connections until the maximum number of
connections (as specified in the configurable service) is reached. Any attempts to
make connections after this point are refused. TCP/IP servers do not create
connections; they accept connection requests only from other applications. As a
result, you cannot force the creation of connections within a message flow.

Client connections

The client connection manager starts and keeps making client connections until the
minimum number of connections (as defined in the configurable service) is
reached. By default, the minimum number of connections is zero, which means
that no connections are made. Whenever the number of connections drops below
the minimum value, the connection manager starts creating more client
connections. The client output and receive nodes initiate the creation of new client
connections whenever none are available for them to use, unless the maximum
number (as defined in the configurable service) has been reached.

Reserving and releasing connections

Each connection has an input stream and an output stream, both of which have
two main states within the connection manager: available and reserved.

Chapter 9. Developing message flow applications 1743

When a node requests a connection for input or output, without specifying the ID
of a particular connection, it is given any available connection on the required
stream. If no connections are available, and if the node is a client node, a new
connection is made, but only if the maximum number of connections has not yet
been reached. Any connection in the available state can be used by only one node
at a time, but when a node has finished using it, any other node (from any flow or
thread) can access it.

You can restrict access to a stream on a connection by reserving the connection.
When a connection is in the reserved state, no other node can access the stream
without specifying the ID of the connection. For example, an input node can
request an available connection, and, when it has finished reading the data, put the
stream into the reserved state. While the stream is in the reserved state, no input
node (including the node that put the stream into the reserved state) can access it
because input nodes can access only available streams. The only nodes that can
access the stream must have the connection ID, which is written to the outgoing
local environment when the data is passed down the message flow. As a result,
receive nodes can read more data on the same connection, but only if the receive
node is configured to use the ID from the local environment of the input node.

When a connection is reserved, ownership of the connection is given to a current
thread of processing. This processing can span separate message flows, if required.

The reserve mechanism provides the following options:
v Leave unchanged
v Reserve
v Release
v Reserve and release at the end of the flow

For all nodes, the stream is left available (not reserved) by default. For many types
of processing you can leave this default unchanged; for example, when you are
moving data from an input stream to a file. The main purpose of reserving a
stream is to connect a series of nodes to give complex processing on a stream in an
ordered, controlled, synchronous sequence.

You can use the Reserve and release at end of flow option to reserve a
connection and to ensure that the connection's stream is released when one
iteration of the message flow has finished processing (including any error
conditions that might occur).

If you require the processing to span multiple message flows (for example, for
asynchronous request and reply), you must reserve a stream without releasing it at
the end of the message flow. See the following sample for an example:
v TCPIP Client Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

A disadvantage of reserving a stream between message flows is the potential for a
stream never to be released. To avoid this problem, set an expiry time on the
connection so that it is closed after a specified period of inactivity.

1744 WebSphere Message Broker Version 7.0.0.8

Another benefit of reserving an input stream is that the connection cannot be
closed until it is either released or expired (even if an end application closes its
end of the connection), which is useful when the end of the stream is being used to
delimit messages in the stream.

File descriptors

If your WebSphere Message Broker application is running on Sun Solaris 10 on
SPARC, you might need to increase the number of file descriptors. The following
error in the syslog indicates that additional file descriptors are required:
Failed to create a client connection using hostname: ’’, port: ’’. Reason: ’Invalid argument’

You can also try the following two methods to resolve the error:
v Change the MQSIJVERBOSE environment variable, for example:

export MQSIJVERBOSE=-Djava.nio.channels.spi.SelectorProvider=sun.nio.ch.PollSelectorProvider

v Change the limit of maximum file handles to value instead of RLIM64_INFINITY

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

Chapter 9. Developing message flow applications 1745

Scenarios for WebSphere Message Broker and TCP/IP
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
v “Scenarios: TCP/IP”
v “Scenarios: Message Broker using TCP/IP” on page 1749
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP”
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.

Scenarios: TCP/IP:

Two scenarios illustrate how TCP/IP might be used as part of a business solution.
v “Expense submission”
v “Price-change notification” on page 1747.

Expense submission: Scenario:

A company has an expense-submission system based on a central
expense-processing application, which receives completed expense forms from end
users. The users complete the forms by using a local application, which stores the
form until it is completed. When it has been completed, the form is transferred to
the central system where it is processed. Any further notifications are sent to the
user by email.

How TCP/IP is used:

One client application exists for each end user, and one central application
processes all the expense forms. Each client application connects to a TCP/IP
server port on the server application and sends the expense form in a
fixed-field-size structure similar to a COBOL structure. The flow of processing is:
1. The user enters information into the form in the client expense application.

1746 WebSphere Message Broker Version 7.0.0.8

Process Process

Computer Computer

Client Expense
Application

Expense
processing

server

Hostname A1 Hostname B

Port P1

2. The user submits the completed form and the client application connects to the
server.

Process Process

Computer Computer

Client Expense
Application

Expense
processing

server

Hostname A1 Hostname B

Port P1

3. The client application sends the data to the server and receives an
acknowledgment.

Process Process

Computer Computer

Client Expense
Application

Expense
processing

server

Hostname A1 Hostname B

Port P1

Send Ack

Send data

4. The connection is closed by the client.

Process Process

Computer Computer

Client Expense
Application

Expense
processing

server

Hostname A1 Hostname B

Port P1

Price-change notification: Scenario:

Chapter 9. Developing message flow applications 1747

A company has a central server, which stores the catalog price of everything that
the company sells. This information is required by all Point of Sale (PoS) terminals
in all the stores, and each PoS terminal must be notified when any price changes.
The PoS terminals connect to the central server and wait for any process changes.
The server sends any process changes to all connected client applications.

How TCP/IP is used:

1. When the PoS application starts, it connects to the central server.

Process Process

Computer Computer

PoS

Application
Central price

store server

Hostname A1 Hostname B

Port P1

2. Whenever the server has a new price, it publishes it to all the connected clients.

Process Process

Computer Computer

PoS

Application
Central price

store server

Hostname A1 Hostname B

Port P1Send data

3. The PoS stays connected until it shuts down.

See “Scenarios: Message Broker using TCP/IP” on page 1749 for an example of
how these scenarios can be modified to use WebSphere Message Broker.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable

1748 WebSphere Message Broker Version 7.0.0.8

services to perform various tasks.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

Scenarios: Message Broker using TCP/IP:

WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.

The scenarios in the “Scenarios: TCP/IP” on page 1746 topic show how systems
can be created to use TCP/IP as a transport mechanism. The following sections
show how WebSphere Message Broker can be added to those systems to generate a
more flexible architecture for communication between components:
v “Expense submission” illustrates TCP/IP to TCP/IP routing
v “Price-change notification” on page 1750 illustrates routing and transformation

to other formats

Expense submission: The expense submission scenario shown in the “Scenarios:
TCP/IP” on page 1746 topic requires a direct connection from the client
applications to the end server. With that model it is difficult to add new consumers
of the expense submission information, and it is also difficult to change the end
application that processes them. However, by adding WebSphere Message Broker
as an intermediary router, the two systems can be separated without any changes
to their interfaces, as shown in the following diagram:

Process Execution Group Process

Computer Computer Computer

Client
Expense

Application

Message
flow

Expense
processing server

Hostname A1 Hostname broker Hostname B

Port P2 Port P1

Chapter 9. Developing message flow applications 1749

Price-change notification: The price-change notification scenario shown in the
“Scenarios: TCP/IP” on page 1746 topic can be modified to use a message broker
for routing and transformation. It could also allow support for other protocols like
WebSphere MQ, which would allow new applications to be written to different
interfaces without the need for changing the current client or server applications:

Process

Process

Execution Group Process

Computer

Computer

Computer Computer

Old PoS

New PoS

Message
flow

Central price
store

Hostname A1

Hostname A2

Hostname broker Hostname B

Port P2 Port P1

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
Related tasks:
“Working with TCP/IP”
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.

Working with TCP/IP
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.

About this task
v “Transferring XML data from a TCP/IP server socket to a WebSphere MQ

queue” on page 1752
v “Transferring binary (CWF) data from a TCP/IP server socket to a flat file” on

page 1754

1750 WebSphere Message Broker Version 7.0.0.8

v “Receiving data on a TCP/IP server socket and sending data back to the same
connection” on page 1756

v “Sending XML data from a WebSphere MQ queue to a TCP/IP client socket” on
page 1757

v “Sending CWF data from a flat file to a TCP/IP client socket” on page 1759
v “Sending data to a TCP/IP client connection and receiving data back on the

same connection (synchronous)” on page 1760
v “Establishing a client session over a TCP/IP connection” on page 1765
v “Broadcasting data to all currently available connections” on page 1767
v “Configuring a server socket so that connections expire after a specified time”

on page 1768
v “Configuring a client socket to make 100 connections at deployment or startup

time” on page 1769
v “Configuring a server socket to receive XML data ending in a null character” on

page 1771
v “Configuring a server socket to receive XML data and discover the end of a

record (by using the message model)” on page 1772
v “Configuring a server output node to close all connections” on page 1774
v “Configuring a client socket to store reply correlation details” on page 1775
v “Writing close connection details to a file” on page 1777
v “Configuring a client node to dynamically call a port” on page 1779
v “Configuring a server receive node to wait for data on a specified port” on page

1781
v “Sending and receiving data through a TCP/IP client connection, delimiting the

record by closing the output stream (asynchronous)” on page 1782
v “Sending and receiving data on the same TCP/IP client connection, closing

input and output streams (synchronous)” on page 1784.
v “Configuring TCP/IP client nodes to use SSL” on page 551
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.

Chapter 9. Developing message flow applications 1751

“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Transferring XML data from a TCP/IP server socket to a WebSphere MQ queue:

Transfer XML data from a TCP/IP server socket to a WebSphere MQ queue, by
creating a message flow with TCPIPServerInput and MQOutput nodes.

About this task

Scenario: A client application opens a TCP/IP socket and sends an XML
document. The end of the document is signalled by the closure of the client
connection.

Instructions: The following steps describe how to write a message flow that can
receive the XML document and write it to a WebSphere MQ queue:

Procedure

1. Create a message flow called TCPIP_Task1 with a TCPIPServerInput node and
an MQOutput node. For more information about how to do this, see “Creating
a message flow” on page 1431.

2. Connect the Out terminal of the TCPIPServerInput node to the In terminal of
the MQOutput node.

1752 WebSphere Message Broker Version 7.0.0.8

MQOutputTCPIPServerInput

3. Set the following properties of the TCPIPServerInput node:
a. On the Basic tab, set the Connection details property to 14141.
b. On the Input Message Parsing tab, set the Message domain property to

XMLNSC.
4. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK1.OUT1.
5. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

Chapter 9. Developing message flow applications 1753

“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Transferring binary (CWF) data from a TCP/IP server socket to a flat file:

Transfer binary Custom Wire Format (CWF) data from a TCP/IP server socket to a
flat file, by the use of a message set and a message flow with TCPIPServerInput
and FileOutput nodes.

About this task

Scenario: A client application opens a TCP/IP socket and sends a binary (CWF)
document. The end of the document is signaled by the closure of the client
connection.

Instructions: The following steps describe how to write a message flow that can
receive the binary document and write it to a flat file. Each message is written to a
separate file, the name of which is based on the ID of the connection.

Procedure

1. Create a message set called Task2_MsgSet. For more information, see “Creating
a message set” on page 2842.

2. Create a message flow called TCPIP_Task2 with a TCPIPServerInput node and
a FileOutput node. For more information, see “Creating a message flow” on
page 1431.

3. Connect the Out terminal of the TCPIPServerInput node to the In terminal of
the FileOutput node.

4. Set the following properties of the TCPIPServerInput node:
a. On the Basic tab, set the Connection details property to 14142.
b. On the Input Message Parsing tab, set the following properties:
v Set the Message domain property to MRM.
v Set the Message set property to Task2_MsgSet.
v Set the Message type property to Task2_MsgType.
v Set the Message format property to Binary1.

5. Set the following properties of the FileOutput node:
a. On the Basic tab, set the following properties:
v Set the Directory property to c:\temp\task2.
v Set the File name or pattern property to Task2.out.

b. On the Request tab, set the Request file name property location property
to $LocalEnvironment/TCPIP/Input/ConnectionDetails/Id.

6. Save the message flow.

1754 WebSphere Message Broker Version 7.0.0.8

7. Create a project reference between the message flow project and the message
set project:
a. Right-click the message flow project, and click Properties.
b. Click Project References.
c. Select the message set project that contains your message set

(Task2_MsgSet).
d. Click OK.

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

Chapter 9. Developing message flow applications 1755

“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

Receiving data on a TCP/IP server socket and sending data back to the same
connection:

Receive data on a TCP/IP server socket, then send the data to the same
connection, by the use of a message flow with TCPIPServerInput and
TCPIPServerOutput nodes.

About this task

Scenario: A client application opens a TCP/IP socket and sends an undefined
document (of any format or size). The end of the document is signalled by the
client closing the output stream (but not the connection), and waiting for the same
data to be sent back.

Instructions: The following steps describe how to write a message flow that can
receive the data and echo it back to the same connection:

Procedure

1. Create a message flow called TCPIP_Task3 with a TCPIPServerInput node and
a TCPIPServerOutput node. For more information, see “Creating a message
flow” on page 1431.

2. Connect the Out terminal of the TCPIPServerInput node to the In terminal of
the TCPIPServerOutput node.

3. Set the following properties of the TCPIPServerInput node:
a. On the Basic tab, set the Connection details property to 14143.
b. On the Advanced tab, set the Input stream modification property to

Reserve input stream and release at end of flow.
4. Set the following properties of the TCPIPServerOutput node:

a. On the Basic tab, set the Connection details property to 14143.
b. On the Request tab, set the ID location property to LocalEnvironment/

TCPIP/Input/ConnectionDetails/Id.
c. On the Advanced tab, set the Close connection property to After data has

been sent.
5. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.

1756 WebSphere Message Broker Version 7.0.0.8

“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

Sending XML data from a WebSphere MQ queue to a TCP/IP client socket:

Send XML data from a WebSphere MQ queue to a TCP/IP client socket, by the use
of a message flow with MQInput and TCPIPClientOutput nodes.

About this task

Scenario: A server application listens on a TCP/IP socket and waits for a TCP/IP
client to connect and send data. The end of the document is signalled by the client
closing the connection.

Instructions: The following steps describe how to write a message flow that can
take a message from a WebSphere MQ queue, make the client connection, and
send the data to the server application:

Procedure

1. Create a message flow called TCPIP_Task4 with an MQInput node and a
TCPIPClientOutput node. For more information, see “Creating a message flow”
on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
TCPIPClientOutput node.

Chapter 9. Developing message flow applications 1757

MQInput TCPIPClientOutput

3. Set the following properties of the MQInput node:
a. On the Basic tab, set the Queue name property to TCPIP.TASK4.IN1.
b. On the Input message parsing tab, set the Message domain property to

XMLNSC.
4. Set the following properties of the TCPIPClientOutput node:

a. On the Basic tab, set the Connection details property to 14144.
b. On the Advanced tab, set the Close connection property to After data has

been sent.
5. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.

1758 WebSphere Message Broker Version 7.0.0.8

“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

Sending CWF data from a flat file to a TCP/IP client socket:

Send Custom Wire Format (CWF) data from a flat file to a TCP/IP client socket, by
the use of a message flow with FileInput and TCPIPClientOutput nodes.

About this task

Scenario: An application writes 100–byte binary records into a flat file.

Instructions: The following steps describe how to open a new client TCP/IP
connection and send the binary data with a binary termination character x'00FF'.
When the whole file is finished, the client connection is closed:

Procedure

1. Create a message flow called TCPIP_Task5 with a FileInput node and a
TCPIPClientOutput node. For more information, see “Creating a message flow”
on page 1431.

2. Connect the Out terminal of the FileInput node to the In terminal of the
TCPIPClientOutput node.

3. Connect the End of Data terminal of the FileInput node to the Close terminal of
the TCPIPClientOutput node.

4. Set the following properties of the FileInput node:
a. On the Basic tab, set the Input directory property to c:\temp\task5.
b. On the Records and elements tab, set the following properties:
v Set the Record detection property to Fixed length.
v Set the Length property to 100.

5. Set the following properties of the TCPIPClientOutput node:
a. On the Basic tab, set the Connection details property to 14145.
b. On the Advanced tab, set the Close connection property to After data has

been sent.
c. On the Records and elements tab, set the following properties:
v Set the Record definition property to Record is delimited data.
v Set the Delimiter property to Custom delimiter (Hexadecimal).
v Set the Custom delimiter property to 00FF.

6. Save the message flow.
Related concepts:

Chapter 9. Developing message flow applications 1759

“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.

Sending data to a TCP/IP client connection and receiving data back on the same
connection (synchronous):

Send fixed-size data to a TCP/IP client connection and receive fixed-size data back
on the same connection (synchronously), by the use of a message flow with
MQInput, TCPIPClientOutput, TCPIPClientReceive, and MQOutput nodes.

About this task

Scenario: An application sends synchronous data between TCP/IP client
connections.

1760 WebSphere Message Broker Version 7.0.0.8

Instructions: The following steps describe how to create a message flow that sends
data out from a client connection and waits on the same connection for a reply to
be returned. The request is synchronous in the same flow, because the
TCPIPClientReceive node waits for data to be returned.

Procedure

1. Create a message flow called TCPIP_Task6 with an MQInput node, a
TCPIPClientOutput node, a TCPIPClientReceive node, and an MQOutput node.
For more information, see “Creating a message flow” on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
TCPIPClientOutput node.

3. Connect the Out terminal of the TCPIPClientOutput node to the In terminal of
the TCPIPClientReceive node.

4. Connect the Out terminal of the TCPIPClientReceive node to the In terminal of
the MQOutput node.

MQInput MQOutputTCPIPClientOutput TCPIPClientReceive

5. On the MQInput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK6.IN1.

6. Set the following properties of the TCPIPClientOutput node:
a. On the Basic tab, set the Connection details property to 14146.
b. On the Records and elements tab, set the following properties:
v Set the Record detection property to Fixed length.
v Set the Length property to 100.

7. Set the following properties of the TCPIPClientReceive node:
a. On the Basic tab, set the Connection details property to 14146.
b. On the Advanced tab, set the following properties:
v Set the Output stream modification property to Reserve output stream

and release at end of flow.
v Set the Input stream modification property to Reserve input stream

and release at end of flow.
c. On the Request tab, set the ID location property to $LocalEnvironment/

WrittenDestination/TCPIP/Output/ConnectionDetails[1]/Id.
d. On the Records and elements tab, set the following properties:
v Set the Record detection property to Fixed length.
v Set the Length property to 100.

8. On the MQOutput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK6.OUT1.

9. Save the message flow.

What to do next

See the following sample for more information:
v TCPIP Client Nodes

Chapter 9. Developing message flow applications 1761

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

1762 WebSphere Message Broker Version 7.0.0.8

Sending data to a TCP/IP client connection and receiving data back on the same
connection (asynchronous):

Send fixed-size data to a TCP/IP client connection and receive fixed-size data back
on the same connection (asynchronously), by the use of a message flow with
MQInput, TCPIPClientOutput, TCPIPClientInput, and MQOutput nodes.

About this task

Scenario: An application sends asynchronous data between TCP/IP client
connections.

Instructions: The following steps describe how to create a message flow to send
data through a client connection and wait on the same connection for a reply to be
returned. The request is performed asynchronously in two different flows (the
TCPIPClientInput does not wait for data to be returned on this connection, but
instead monitors all available connections).

Procedure

1. Create a message flow called TCPIP_Task7 with an MQInput node, a
TCPIPClientOutput node, a TCPIPClientInput node, and an MQOutput node.
For more information, see “Creating a message flow” on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
TCPIPClientOutput node.

3. Connect the Out terminal of the TCPIPClientInput node to the In terminal of
the MQOutput node.

MQInput MQOutputTCPIPClientOutput TCPIPClientInput

4. On the MQInput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK7.IN1.

5. Set the following properties of the TCPIPClientOutput node:
a. On the Basic tab, set the Connection details property to 14147.
b. On the Advanced tab, set the Output stream modification property to

Reserve output stream.
c. On the Records and elements tab, set the following properties:
v Set the Record definition property to Fixed length.
v Set the Length property to 100.

6. Set the following properties of the TCPIPClientInput node:
a. On the Basic tab, set the Connection details property to 14147.
b. On the Advanced tab, set the Output stream modification property to

Release output stream and reset Reply ID.
c. On the Records and elements tab, set the following properties:
v Set the Record detection property to Fixed length.
v Set the Length property to 100.

7. On the MQOutput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK7.OUT1.

8. Save the message flow.

Chapter 9. Developing message flow applications 1763

What to do next

See the following sample for more information:
v TCPIP Client Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

1764 WebSphere Message Broker Version 7.0.0.8

“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Establishing a client session over a TCP/IP connection:

Configure a TCPIPClientInput node to open a session over an existing TCP/IP
connection, before any data is sent or received.

About this task

You can use the Open terminal of the TCPIPClientInput node to enable processing
to start when a connection is opened, rather than when data first arrives. If the
Open terminal is connected, an empty message is sent to the Open terminal when
a connection is created. This message has the local environment set to the
connection details.

The connection associated with the message is reserved from the general
connection pool until propagation to the Open terminal has finished. However, the
connection can be accessed using the connectionId specified in the local
environment. Each connection that is created is sent to the Open terminal,
including any connections that are created mid-flow by a TCPIPClientReceive node
or TCPIPClientOutput node.

If the Open terminal is not attached, open events are automatically made available
in the connection pool.

The following steps show how to configure a message flow that contains a
TCPIPClientInput node, with the Open terminal configured to start processing
when a TCP/IP connection is created.

Procedure

1. Create a message flow containing a TCPIPClientInput node, a Compute node,
and a TCPIPClientOutput node. For information about how to do this, see
“Creating a message flow” on page 1431.

2. Connect the Open terminal of the TCPIPClientInput node to the In terminal of
the Compute node.

3. Connect the Out terminal of the TCPIPClientInput node to the In terminal of
the TCPIPClientOutput node.

4. On the TCPIPClientInput node, set the Connection details property (on the
Basic tab) to 14143.

5. On the Compute node, set the ESQL property (on the Basic tab) to:
CREATE COMPUTE MODULE test_Compute1
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
-- CALL CopyMessageHeaders();
CALL CopyEntireMessage();
RETURN TRUE;
END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER;
SET J = CARDINALITY(InputRoot.*[]);
WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];

Chapter 9. Developing message flow applications 1765

SET I = I + 1;
END WHILE;
END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;
END;

END MODULE;

6. Set the following properties of the TCPIPClientOutput node:
a. On the Basic tab, set the Connection details property to 14143.
b. On the Request tab, set the ID location property to LocalEnvironment/

TCPIP/Input/ConnectionDetails/Id.
7. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

1766 WebSphere Message Broker Version 7.0.0.8

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

Broadcasting data to all currently available connections:

Broadcast data to all current connections, by the use of a message flow with
MQInput and TCPIPServerOutput nodes.

About this task

Scenario: Several applications connect into the message flow and wait to be sent
data.

Instructions: The following steps describe how to send data to all the connected
client applications:

Procedure

1. Create a message flow called TCPIP_Task8 with an MQInput node and a
TCPIPServerOutput node. For more information, see “Creating a message flow”
on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
TCPIPServerOutput node.

MQInput TCPIPServerOutput

3. On the MQInput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK8.IN1.

4. Set the following properties of the TCPIPServerOutput node:
a. On the Basic tab, set the Connection details property to 14148.
b. On the Advanced tab, set the Send to: property (in the Broadcast options

group) to All available connections.
5. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:

Chapter 9. Developing message flow applications 1767

“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

Configuring a server socket so that connections expire after a specified time:

Configure a TCP/IP server socket so that connections expire after a specified time,
by the use of the mqsicreateconfigurableservice command.

About this task

Scenario: The TCPIPServer configurable service called Task9 is configured to run
on port 14149. The connections expire when they have not been used for 5
seconds.

Instructions: Use the mqsicreateconfigurableservice command to set up
connections that expire when they have not been used for a specified length of
time. The TCP/IP node can specify either the port to be used or the name of the
configurable service. For example:
mqsicreateconfigurableservice BRK6 -c TCPIPServer -o Task9
-n Port,ExpireConnectionSec -v 14149,5

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.

1768 WebSphere Message Broker Version 7.0.0.8

“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Configuring a client socket to make 100 connections at deployment or startup
time:

Configure a TCP/IP client socket to make 100 connections at deployment or
startup time, by using the mqsicreateconfigurableservice command.

Chapter 9. Developing message flow applications 1769

About this task

Use the mqsicreateconfigurableservice command to set up the client broker to
establish 100 connections when it is created. By default, the client connections are
not made until they are required by one of the TCP/IP nodes. For example:
mqsicreateconfigurableservice MB7BROKER -c TCPIPClient -o Task10
-n Port,MinimumConnections -v 14150,100

In this example, the TCPIPClient configurable service called Task10 is configured
to run on port 14150, and 100 connections are created.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.

1770 WebSphere Message Broker Version 7.0.0.8

“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Configuring a server socket to receive XML data ending in a null character:

Configure a server TCP/IP socket to receive XML data ending in a null character,
by the use of a message flow with TCPIPServerInput and MQOutput nodes.

About this task

Scenario: A client application sends XML data that is delimited by a null character
(hex code ‘00').

Instructions: The following steps describe how to break up the record based on the
null character, then parse the data.

Procedure

1. Create a message flow called TCPIP_Task11 with a TCPIPServerInput node and
an MQOutput node. For more information, see “Creating a message flow” on
page 1431.

2. Connect the Out terminal of the TCPIPServerInput node to the In terminal of
the MQOutput node.

MQOutputTCPIPServerInput

3. Set the following properties of the TCPIPServerInput node:
a. On the Basic tab, set the Connection details property to 14151.
b. On the Input Message Parsing tab, set the Message domain property to

XMLNSC.
c. On the Records and elements tab, set the following properties:
v Set the Record detection property to Delimited.
v Set the Delimiter property to Custom delimiter.
v Set the Custom delimiter property to 00.

4. On the MQOutput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK11.IN1.

5. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between

Chapter 9. Developing message flow applications 1771

components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring a server socket to receive XML data and discover the end of a
record (by using the message model):

Configure a server socket to receive XML data and use the message model to
determine the end of a record, by the use of a message flow with
TCPIPServerInput and MQOutput nodes.

About this task

Scenario: A client application sends an XML document with no clear indication of
the end of the record.

Instructions: The following steps show how to break up the record by the use of
the XML parser to signal when the whole XML document as been received. The
parser uses the end XML tag to signal the end of the message.

Procedure

1. Create a message flow called TCPIP_Task12 with a TCPIPServerInput node and
an MQOutput node. For more information, see “Creating a message flow” on
page 1431.

2. Connect the Out terminal of the TCPIPServerInput node to the In terminal of
the MQOutput node.

1772 WebSphere Message Broker Version 7.0.0.8

MQOutputTCPIPServerInput

3. Set the following properties of the TCPIPServerInput node:
a. On the Basic tab, set the Connection details property to 14151.
b. On the Input Message Parsing tab, set the Message domain property to

XMLNSC.
c. On the Records and elements tab, set the Record detection property to

Parsed record sequence.
4. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK12.IN1.
5. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.

Chapter 9. Developing message flow applications 1773

“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Configuring a server output node to close all connections:

Configure a server output node to close all connections on a specified port.

About this task

Scenario: A server output node is configured to close all connections on a specified
port.

Instructions: The following steps show how to create a message flow that closes all
TCP/IP connections on port 14153:

Procedure

1. Create a message flow called TCPIP_Task13 with an MQInput node and a
TCPIPServerOutput node. For more information, see “Creating a message flow”
on page 1431.

2. Connect the Out terminal of the MQInput node to the Close terminal of the
TCPIPServerOutput node.

MQInput TCPIPServerOutput

3. On the MQInput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK13.IN1.

4. Set the following properties of the TCPIPServerOutput node:
a. On the Basic tab, set the Connection details property to 14153.
b. On the Advanced tab, set the Send to: property (in the Broadcast options

group) to All available connections.
5. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.

1774 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

Configuring a client socket to store reply correlation details:

Configure a client TCP/IP socket to store reply correlation details, by the use of a
message flow with MQInput and TCPIPClientOutput nodes.

About this task

Scenario: A client TCP/IP socket is configured to store response returned on the
input stream.

Instructions: The following steps show how to set the Reply ID on a connection,
which can be used when a response is returned on the input stream:

Procedure

1. Create a message flow called TCPIP_Task14 with an MQInput node and a
TCPIPClientOutput node. For more information, see “Creating a message flow”
on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
TCPIPClientOutput node.

Chapter 9. Developing message flow applications 1775

MQInput TCPIPClientOutput

3. On the MQInput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK14.IN1.

4. Set the following properties of the TCPIPClientOutput node:
a. On the Basic tab, set the Connection details property to 14154.
b. On the Request tab, set the Reply ID location property to

$Root/MQMD/MsgId.
5. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

1776 WebSphere Message Broker Version 7.0.0.8

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

Writing close connection details to a file:

Configure a message flow to write details of a connection closure to a file, by the
use of TCPIPServerInput, Compute, and FileOutput or FTEOutput nodes.

About this task

Scenario: A message flow writes close connection details to a file. The scenario
uses the FileOutput node; the steps shown also apply to the FTEOutput node.

Instructions The following steps show how to configure a message flow to write
details of the closure of any connection to a file:

Procedure

1. Create a message flow called TCPIP_Task15 with a TCPIPServerInput node, a
Compute node, and a FileOutput node. For more information, see “Creating a
message flow” on page 1431.

2. Connect the Close terminal of the TCPIPServerInput node to the In terminal of
the Compute node.

3. Connect the Out terminal of the Compute node to the In terminal of the
FileOutput node.

4. On the TCPIPServerInput node, set the Connection details property (on the
Basic tab) to 14155.

5. On the Compute node, set the ESQL property (on the Basic tab) to:
BROKER SCHEMA Tasks

CREATE COMPUTE MODULE TCPIP_Task15_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
-- CALL CopyMessageHeaders();
-- CALL CopyEntireMessage();
Set OutputRoot.XMLNSC.CloseEvent = InputLocalEnvironment.TCPIP;
RETURN TRUE;
END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER;
SET J = CARDINALITY(InputRoot.*[]);
WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;
END WHILE;
END;

Chapter 9. Developing message flow applications 1777

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;
END;

END MODULE;

6. Set the following properties of the FileOutput node.
a. On the Basic tab, set the following properties:
v Set the Directory property to c:\temp\Task15.
v Set the File name or pattern property to CloseEvents.txt.

b. On the Records and elements tab, set the Record definition property to
Record is unmodified data.

7. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

1778 WebSphere Message Broker Version 7.0.0.8

“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

Configuring a client node to dynamically call a port:

Configure a client node to dynamically use a port and hostname that are set in the
local environment, by the use of a message flow with MQInput, Compute, and
TCPIPClientOutput nodes.

About this task

Scenario: A client node dynamically calls a port.

Instructions: The following steps show how to override the connection details
specified on a client output node to dynamically use a port and hostname that are
set in the local environment:

Procedure

1. Create a message flow called TCPIP_Task16 with an MQInput node, a Compute
node, and a TCPIPClientOutput node. For more information, see “Creating a
message flow” on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
Compute node.

3. Connect the Out terminal of the Compute node to the In terminal of the
TCPIPClientOutput node.

MQInput Compute TCPIPClientOutput

4. On the MQInput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK16.IN1 .

5. On the Compute node, set the ESQL property (on the Basic tab) to:
BROKER SCHEMA Tasks
CREATE COMPUTE MODULE TCPIP_Task16_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
-- CALL CopyMessageHeaders();
CALL CopyEntireMessage();
set InputLocalEnvironment.Destination.TCPIP.Output.Hostname = ’localhost’;
set InputLocalEnvironment.Destination.TCPIP.Output.Port = 14156;
RETURN TRUE;
END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER;
SET J = CARDINALITY(InputRoot.*[]);
WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;

Chapter 9. Developing message flow applications 1779

END WHILE;
END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;
END;

END MODULE;

6. On the TCPIPClientOutput node, set the Connection details property (on the
Basic tab) to 9999.

7. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

1780 WebSphere Message Broker Version 7.0.0.8

“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

Configuring a server receive node to wait for data on a specified port:

Configure a TCPIPServerReceive node to block the message flow and wait for data
to arrive on any connection.

About this task

Scenario: A server receive node is configured to wait for data on a specified port.

Instructions: The following steps show how to configure a TCPIPServerReceive
node to wait for data on port 14157:

Procedure

1. Create a message flow called TCPIP_Task17 with an MQInput node and a
TCPIPServerReceive node. For more information, see “Creating a message
flow” on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
TCPIPServerReceive node.

MQInput TCPIPServerReceive

3. On the MQInput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK17.IN1.

4. On the TCPIPServerReceive node, set the Connection details property (on the
Basic tab) to 14157.

5. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.

Chapter 9. Developing message flow applications 1781

Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

Sending and receiving data through a TCP/IP client connection, delimiting the
record by closing the output stream (asynchronous):

Send data through a TCP/IP client connection and receive data back on the same
connection (asynchronously), by the use of a message flow with MQInput,
TCPIPClientOutput, TCPIPClientInput, and MQOutput nodes.

About this task

Scenario: An application sends asynchronous data between TCP/IP client
connections.

Instructions: The following steps describe how to create a message flow to send
data through a client connection and wait on the same connection for a reply to be
returned. The request is performed asynchronously in two different flows; the
TCPIPClientInput node does not wait for data to be returned on this connection,
but monitors all available connections. The outgoing record is delimited by closing
the output stream, and the reply message is delimited by the remote server closing
the input stream. The connection is then completely closed by the node.

Procedure

1. Create a message flow called TCPIP_Task18 with an MQInput node, a
TCPIPClientOutput, a TCPIPClientInput node, and an MQOutput node. For
more information, see “Creating a message flow” on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
TCPIPClientOutput node.

3. Connect the Out terminal of the TCPIPClientInput node to the In terminal of
the MQOutput node.

1782 WebSphere Message Broker Version 7.0.0.8

MQInput MQOutputTCPIPClientOutput TCPIPClientInput

4. On the MQInput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK18.IN1.

5. Set the following properties of the TCPIPClientOutput node:
a. On the Basic tab, set the Connection details property to 14158.
b. On the Advanced tab, select Close output stream after a record has been

sent.
c. On the Records and elements tab, set the Record definition property to

Record is unmodified data.
6. Set the following properties of the TCPIPClientInput node:

a. On the Basic tab, set the Connection details property to 14158.
b. On the Advanced tab, set the Close connection property to After data has

been received.
c. On the Records and elements tab, set the Record detection property to End

of stream.
7. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK18.OUT1.
8. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.

Chapter 9. Developing message flow applications 1783

“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Sending and receiving data on the same TCP/IP client connection, closing input
and output streams (synchronous):

Send data through a TCP/IP client connection and wait on the same connection for
a reply to be returned, by the use of a message flow with MQInput,
TCPIPClientOutput, TCPIPClientReceive, and MQOutput nodes.

About this task

Scenario: An application sends synchronous data on the same TCP/IP client
connection.

Instructions: The following steps describe how to create a message flow that sends
out data through a client connection and waits on the same connection for a reply
to be returned. The request is synchronous within the same flow, as a result of the
TCPIPClientReceive node waiting for data to be returned. The outgoing message is
delimited by closing the output stream, and the reply data is delimited by the
remote application closing the input stream.

Procedure

1. Create a message flow called TCPIP_Task19 with an MQInput node, a
TCPIPClientOutput node, a TCPIPClientReceive node, and an MQOutput node.
For more information, see “Creating a message flow” on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
TCPIPClientOutput node.

3. Connect the Out terminal of the TCPIPClientOutput node to the In terminal of
the TCPIPClientReceive node.

4. Connect the Out terminal of the TCPIPClientReceive node to the In terminal of
the MQOutput node.

1784 WebSphere Message Broker Version 7.0.0.8

MQInput MQOutputTCPIPClientOutput TCPIPClientReceive

5. On the MQInput node, set the Queue name property (on the Basic tab) to
TCPIP.TASK19.IN1.

6. Set the following properties of the TCPIPClientOutput node:
a. On the Basic tab, set the Connection details property to 14159.
b. On the Advanced tab, set the following properties:
v Select Close output stream after a record has been sent.
v Set the Input stream modification property to Reserve input stream

and release at end of flow. It is important to reserve the input stream
so that it is not closed before the receive node processes the return data.

c. On the Records and elements tab, set the Record definition property to
Record is Unmodified Data.

7. Set the following properties of the TCPIPClientReceive node:
a. On the Basic tab, set the Connection details property to 14159.
b. On the Advanced tab, set the Close connection property to After data has

been received.
c. On the Request tab, set the ID location property to $LocalEnvironment/

WrittenDestination/TCPIP/Output/ConnectionDetails[1]/Id.
d. On the Records and elements tab, set the Record detection property to

Connection closed.
8. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK19.OUT1.
9. Save the message flow.
Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios: TCP/IP” on page 1746
Two scenarios illustrate how TCP/IP might be used as part of a business solution.
“Scenarios: Message Broker using TCP/IP” on page 1749
WebSphere Message Broker can be added to systems that use TCP/IP for
transport, to generate a more flexible architecture for communication between
components.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:

Chapter 9. Developing message flow applications 1785

“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Processing email messages
You can configure the EmailOutput node to deliver an email from a message flow
to an email server that supports Simple Mail Transfer Protocol (SMTP). You can
also configure the EmailInput node to retrieve an email from an email server that
supports Post Office Protocol 3 (POP3) or Internet Message Access Protocol
(IMAP).

About this task

The topics in the following sections describe how the EmailOutput and the
EmailInput nodes work, and how to use them to send and receive email messages.
v “Sending emails” on page 1787
v “Receiving emails” on page 1799

Sending emails

You can use the EmailOutput node to send email messages, with or without
attachments, to one or more recipients. The EmailOutput node delivers an email
message from your message flow to an email server that supports Simple Mail
Transfer Protocol (SMTP), which you specify.

The following topics describe how the EmailOutput node works and how to use it
to send email messages.
v “Sending emails” on page 1787
v “Sending an email” on page 1789
v “Sending an email with an attachment” on page 1790

1786 WebSphere Message Broker Version 7.0.0.8

v “Producing dynamic email messages” on page 1791
v “Sending a MIME message” on page 1795
v “Changing connection information for the EmailOutput node” on page 1798

Receiving emails

You can use the EmailInput node to receive email messages, with or without
attachments, from one or more recipients. The EmailInput node retrieves an email
message from an email server that you specify, which supports Post Office Protocol
3 (POP3) or Internet Message Access Protocol (IMAP).

The following topics describe how the EmailInput node works, and how to use it
to receive email messages.
v “Receiving emails” on page 1799
v “Receiving an email” on page 1801
v “Processing responses from an EmailInput node” on page 1804
v “Changing connection information for the EmailInput node” on page 1805
Related tasks:
“Resolving problems when you use Email nodes” on page 3398
Advice for dealing with common problems that can arise when you develop
message flows that contain Email nodes.
Related reference:
“EmailOutput node” on page 4400
Use the EmailOutput node to send email messages to one or more recipients.
“EmailInput node” on page 4394
Use the EmailInput node to retrieve an email, with or without attachments, from
an email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).

Sending emails
You can configure WebSphere Message Broker to send an email, with or without
attachments, to a static or dynamic list of recipients.

About this task

You can configure the EmailOutput node to send an email, with or without a
single attachment, with a static subject and static text, to a static list of recipients.
You can also construct a message flow that can produce an email where the SMTP
server, list of recipients, subject, text, and multiple attachments are all determined
at run time.

You can use the SMTP Server and Port property of the EmailOutput node to
specify the host name of the SMTP server that the broker uses to send emails, or to
specify an alias that refers to a configurable service that is defined on the broker.
To enable the configurable service, use the mqsicreateconfigurableservice and
mqsichangeproperties commands, as shown in the following example:
mqsicreateconfigurableservice BROKER -c SMTP -o MYSERVER
mqsichangeproperties BROKER -c SMTP -o MYSERVER -n serverName -v smtp.hursley.ibm.com:25

If the value of the SMTP Server and Port property is set to the defined alias (in this
case, MYSERVER), any values that are overridden by the administrator

Chapter 9. Developing message flow applications 1787

(smtp.hursley.ibm.com:25 set on the command line as the server name) are used in
preference to any statically defined value or override value in the local
environment.

The order of preference for value selection is:
1. The value that is specified in the configurable service if an alias exists with the

name that was supplied in the SMTP Server and Port property.
2. The server name that is specified in the local environment.
3. The value of the SMTP Server and Port property that is specified on the node.

Any alias can be removed by using the mqsideleteconfigurableservice command,
so that the node reverts to resolving the host name from the value that is set in the
local environment or on the node. While most configurable service properties are
set by the mqsichangeproperties command, security identities (user IDs and
passwords) are typically set by using the mqsisetdbparms command and are
referenced in a separate SecurityIdentity property, for example:
mqsisetdbparms BROKER -n smtp::MyIdentity -u userName -p password
mqsichangeproperties BROKER -c SMTP -o MYSERVER -n securityIdentity -v MyIdentity

The topics in this section describe the different ways in which you can use the
EmailOutput node to send email messages.

Procedure
v To send an email with a static subject and static text to a static list of recipients,

see “Sending an email” on page 1789.
v To send an email with an attachment, see “Sending an email with an

attachment” on page 1790.
v To send an email where the SMTP server, list of recipients, subject, text, and

multiple attachments are all determined at run time, see “Producing dynamic
email messages” on page 1791.

v To send an email that is constructed from a MIME message, see “Sending a
MIME message” on page 1795.

v To configure the SMTP server, port number, and security identity for the
EmailOutput node as a broker external resource, see “Changing connection
information for the EmailOutput node” on page 1798.

Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related tasks:
“Resolving problems when you use Email nodes” on page 3398
Advice for dealing with common problems that can arise when you develop
message flows that contain Email nodes.
Related reference:
“EmailOutput node” on page 4400
Use the EmailOutput node to send email messages to one or more recipients.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a

1788 WebSphere Message Broker Version 7.0.0.8

broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Sending an email:

You can send an email with a static subject and static text to a static list of
recipients.

About this task

Use the WebSphere Message Broker Toolkit to configure the properties on the
EmailOutput node so that you can send an email with a statically defined subject
and text, and no attachments, to a statically defined list of recipients. The same
email is sent to the same recipients. This method is useful when you want to test
the EmailOutput node, or when notification alone is sufficient.

Procedure

1. Switch to the Broker Application Development perspective.
2. Add an EmailOutput node to your message flow.
3. Edit the following properties of the EmailOutput node.

a. On the Basic tab, add the SMTP Server and Port information (for example,
smtp.server.com:25).

b. On the Email tab, add the email addresses of recipients by using the To
Addresses, Cc Addresses, and Bcc Addresses properties.

c. On the Email tab, add the email address of the sender by using the From
Address and Reply-To Address properties.

d. On the Email tab, provide a subject for the email by using the Subject of
email property.

e. On the Email tab, provide the text of the email by using Email message
text property.

4. Save the changes.
5. Add the message flow to the BAR file and deploy.

Results

When a message is passed into the deployed EmailOutput node, an email is sent
to the defined set of recipients, containing the subject and text specified on the
node.
Related tasks:
“Sending an email with an attachment” on page 1790
You can send an email with a fixed subject and fixed text, and an attachment, to a
static list of recipients.

Chapter 9. Developing message flow applications 1789

“Producing dynamic email messages” on page 1791
You can produce an email where the SMTP server, list of recipients, subject, text,
and multiple attachments are all determined at run time.
“Sending a MIME message” on page 1795
You can send an email that is constructed from a MIME message.
“Changing connection information for the EmailOutput node” on page 1798
You can configure the SMTP server, port number, and security identity for the
EmailOutput node as a broker external resource.

Sending an email with an attachment:

You can send an email with a fixed subject and fixed text, and an attachment, to a
static list of recipients.

About this task

You can configure an EmailOutput node to send an email with a single attachment.
To send an email with multiple attachments, see “Producing dynamic email
messages” on page 1791.

Use the WebSphere Message Broker Toolkit to configure the properties on the
EmailOutput node so that you can send an email with a statically defined subject
and text, and an attachment, to a statically defined list of recipients. This method
causes the email message to be constructed as a MIME message. The subject, text,
and list of recipients remains static, but the content of the attachment is sought
dynamically from the message that is passed to the EmailOutput node at run time.
The location of the attachment in the message is defined statically.

Procedure

1. Switch to the Broker Application Development perspective.
2. Add an EmailOutput node to your message flow.
3. Edit the following properties of the EmailOutput node.

a. On the Basic tab, add the SMTP Server and Port information (for example,
smtp.server.com:25).

b. On the Email tab, add the email addresses of recipients by using the To
Addresses, Cc Addresses, and Bcc Addresses properties.

c. On the Email tab, add the email address of the sender by using the From
Address and Reply-To Address properties.

d. On the Email tab, provide a subject for the email by using the Subject of
email property.

e. On the Email tab, provide the text of the email by using Email message
text property.

f. On the Attachment tab, set the Attachment Content property by using either
an ESQL or XPath expression, referring to an element in the message tree;
for example, Body.BLOB.

g. On the Attachment tab, set the Attachment Content Name property with the
name of the attachment as it appears in the email.

h. On the Attachment tab, set the Attachment Content Type, Attachment
Content Encoding, and Multipart Content Type properties to determine the
type of attachment that is sent in the MIME message.

4. Save the changes.
5. Add the message flow to the BAR file and deploy.

1790 WebSphere Message Broker Version 7.0.0.8

Results

When a message is passed into the deployed EmailOutput node, an email is sent
to the defined set of recipients, containing the subject, text, and attachment
specified on the node.
Related tasks:
“Sending an email” on page 1789
You can send an email with a static subject and static text to a static list of
recipients.
“Producing dynamic email messages”
You can produce an email where the SMTP server, list of recipients, subject, text,
and multiple attachments are all determined at run time.
“Sending a MIME message” on page 1795
You can send an email that is constructed from a MIME message.
“Changing connection information for the EmailOutput node” on page 1798
You can configure the SMTP server, port number, and security identity for the
EmailOutput node as a broker external resource.

Producing dynamic email messages:

You can produce an email where the SMTP server, list of recipients, subject, text,
and multiple attachments are all determined at run time.

About this task

You can create a message flow that produces an email with multiple attachments.
To configure an EmailOutput node to send an email with a single attachment,
static subject, and static text to a static list of recipients, see “Sending an email with
an attachment” on page 1790.

The node properties that you set when sending an email can be optional, and can
be overridden at run time by values that you specify in the local environment,
email output header (EmailOutputHeader), or the body of the message. To use this
method, previous nodes in the message flow must construct these overrides.
Where a text value is not specified in the node properties for the main body of the
email, the body of the message that is passed to the EmailOutput node is used.

The following examples show how to set up the recipient, sender, subject, SMTP
server, and message body information in ESQL (with a Compute node) and Java
(with a JavaCompute node).

Using a Compute node:
About this task

MQInput Compute EmailOutput

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
CALL CopyMessageHeaders();

-- Add recipient information to the EmailOutputHeader

Chapter 9. Developing message flow applications 1791

SET OutputRoot.EmailOutputHeader.To = ’<recipient email address>’;
SET OutputRoot.EmailOutputHeader.Cc = ’<recipient email address>’;
SET OutputRoot.EmailOutputHeader.Bcc = ’<recipient email address>’;

-- Add sender information to EmailOutputHeader
SET OutputRoot.EmailOutputHeader.From = ’<sender email address>’;
SET OutputRoot.EmailOutputHeader."Reply-To" = ’<reply email address>’;

-- Add subject to EmailOutputHeader
SET OutputRoot.EmailOutputHeader.Subject = ’Replaced by ESQL compute node.’;

-- Add SMTP server information to the LocalEnvironment
SET OutputLocalEnvironment.Destination.Email.SMTPServer =’<smtp.server:port>’;

-- Create a new message body, which will be sent as the main text of the email.
SET OutputRoot.BLOB.BLOB = CAST(’This is the new text for the body of the email.’ AS BLOB CCSID 1208);

RETURN TRUE;
END;

To write white space characters (such as newline (NL), carriage return (CR), and
line feed (LF) characters) in the text string that is produced as the email body, you
can add the following lines of code.
DECLARE crlf CHAR CAST(X'0D0A' AS CHAR CCSID 1208);
DECLARE myEmailBodyTxt CHAR;
SET myEmailBodyTxt [equals char] ’this is the first line’ || crlf ||

’this is the second line’ || crlf ||
’this is the third line’;

SET OutputRoot.BLOB.BLOB = CAST(myEmailBodyTxt AS BLOB CCSID 1208);

Using a JavaCompute node:
About this task

MQInput JavaCompute EmailOutput

public void evaluate(MbMessageAssembly assembly) throws MbException {
MbOutputTerminal out = getOutputTerminal("out");

// Create a new assembly to propagate out of this node, as we want to update it
MbMessage outMessage = new MbMessage();
copyMessageHeaders(assembly.getMessage(), outMessage);
MbMessage outLocalEnv = new MbMessage(assembly.getLocalEnvironment());
MbMessage outExceptionList = new MbMessage(assembly.getExceptionList());
MbMessageAssembly outAssembly = new MbMessageAssembly(assembly, outLocalEnv, outExceptionList, outMessage);
MbElement localEnv = outAssembly.getLocalEnvironment().getRootElement();

// Create the EmailOutputHeader parser. This is where we add recipient, sender and subject information.
MbElement root = outMessage.getRootElement();
MbElement SMTPOutput = root.createElementAsLastChild("EmailOutputHeader");

// Add recipient information to EmailOutputHeader
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "To", "<recipient email address");
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Cc", "<recipient email address");
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Bcc", "<recipient email address");

// Add sender information to EmailOutputHeader
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "From", "<sender email address>");
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Reply-To", "<reply email address>");

1792 WebSphere Message Broker Version 7.0.0.8

// Add subject information to EmailOutputHeader
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Subject", "Replaced by Java compute node.");

// Create Destination.Email. This is where we add SMTP server information
MbElement Destination = localEnv.createElementAsLastChild(MbElement.TYPE_NAME, "Destination", null);
MbElement destinationEmail = Destination.createElementAsLastChild(MbElement.TYPE_NAME, "Email", null);
destinationEmail.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "SMTPServer", "<smtp.server:port>");

// Set last child of root (message body)
MbElement BLOB = root.createElementAsLastChild(MbBLOB.PARSER_NAME);
String text = "This is the new text for the body of the email";
BLOB.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "BLOB", text.getBytes());

outMessage.finalizeMessage(MbMessage.FINALIZE_VALIDATE);

out.propagate(outAssembly); }

Using the local environment:
About this task

Use the local environment to specify overrides to the SMTP server connection
information and attachments.

Local environment Description

Destination.Email.SMTPServer The Server:Port of the SMTP server. Port is optional; if you do
not specify it, the default value is 25.

Destination.Email.SecurityIdentity The security identity for authentication with the SMTP server,
which can be the name of the userid and password pair that is
defined using the mqsisetdbparms command, or it can reference
an external resource that has a securityIdentity attribute that
references a userid and password that are defined using the
mqsisetdbparms command. In both cases, the value is appended
after the string “smtp::”. For example, if you use the
mqsisetdbparms command to create a userid and password of
smtp::myUseridPassword, the securityIdentity that is specified on
the node, or indirectly in an external resource, is
myUseridPassword.

Destination.Email.BodyContentType Identifies that the body of the email message contains HTML
rather than plain text. You can set this property to text/plain,
text/html, or text/xml; text/plain is the default value.

Destination.Email.MultiPartContentType The type of multipart, including related, mixed, and alternative.
You can set any value here.

Destination.Email.Attachment.Content Either the actual attachment (BLOB/text), or an XPath or ESQL
expression that references an element; for example, an element
in the message tree or LocalEnvironment. The value of the
referenced element is taken as the content of the attachment.

v If the element is a BLOB, it is an attachment.

v If the element is text, check to see if it can be resolved to
another element in the message tree or LocalEnvironment. If
it can be resolved, use that element. If it cannot be resolved,
add this element as the attachment.

Destination.Email.Attachment.ContentType The type of attachment (also known as Internet Media Type),
including text/plain, text/html, and text/xml. You can set any
value here.

Destination.Email.Attachment.ContentName The name of the attachment.

Chapter 9. Developing message flow applications 1793

Local environment Description

Destination.Email.Attachment.ContentEncoding The encoding of the attachment: 7bit, base64, or
quoted-printable.

v 7bit is the default value that is used for ASCII text.

v Base64 is used for non ASCII, whether non English or binary
data. This format can be difficult to read.

v Quoted-printable is an alternative to Base64, and is
appropriate when most of the data is ASCII with some
non-ASCII parts. This format is more readable; it provides a
more compact encoding because the ASCII parts are not
encoded.

Using the email output header:
About this task

Use the email output header to specify overrides to the SMTP server connection
information and attachments. The EmailOutputHeader is a child of Root. Values
that you specify in this header override equivalent properties that you set on the
EmailOutput node. Use the SMTP output header to specify any of the email
attributes, such as its recipients.

Location Description

Root.EmailOutputHeader.To A comma-separated list of email addresses.

Root.EmailOutputHeader.Cc A comma-separated list of email addresses.

Root.EmailOutputHeader.Bcc A comma-separated list of email addresses.

Root.EmailOutputHeader.From A comma-separated list of email addresses.

Root.EmailOutputHeader.Reply-To A comma-separated list of email addresses.

Root.EmailOutputHeader.Subject The subject of the email.

Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Sending an email” on page 1789
You can send an email with a static subject and static text to a static list of
recipients.
“Sending an email with an attachment” on page 1790
You can send an email with a fixed subject and fixed text, and an attachment, to a
static list of recipients.
“Sending a MIME message” on page 1795
You can send an email that is constructed from a MIME message.
“Changing connection information for the EmailOutput node” on page 1798
You can configure the SMTP server, port number, and security identity for the
EmailOutput node as a broker external resource.
Related reference:
“EmailOutput node” on page 4400
Use the EmailOutput node to send email messages to one or more recipients.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

1794 WebSphere Message Broker Version 7.0.0.8

“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Sending a MIME message:

You can send an email that is constructed from a MIME message.

About this task

You can pass a MIME message to the EmailOutput node, which uses the MIME
parser to write the MIME message to a bit stream. This message is then sent to the
list of recipients in the EmailOutputHeader. Local environment overrides are not
considered when a MIME message is passed. You do not need to configure the
EmailOutput node in the following examples.

The following examples show how to set up the recipient, sender, subject, SMTP
server, and message body information in ESQL (with a Compute node) and Java
(with a JavaCompute node).

Using a Compute node:
About this task

MQInput Compute EmailOutput

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

CALL CopyMessageHeaders();

-- Add recipient information to the EmailOutputHeader
SET OutputRoot.EmailOutputHeader.To = ’<recipient email address>’;
SET OutputRoot.EmailOutputHeader.Cc = ’<recipient email address>’;
SET OutputRoot.EmailOutputHeader.Bcc = ’<recipient email address>’;

-- Add sender information to EmailOutputHeader
SET OutputRoot.EmailOutputHeader.From = ’<sender email address>’;
SET OutputRoot.EmailOutputHeader."Reply-To" = ’<reply email address>’;

-- Add subject to EmailOutputHeader
SET OutputRoot.EmailOutputHeader.Subject = ’Dynamic MIME message in ESQL.’;

-- Add SMTP server information to the LocalEnvironment
SET OutputLocalEnvironment.Destination.Email.SMTPServer =’<smtp.server:port>’;

-- Create a new MIME message body, which will be sent as the main text of the email,
-- including an attachment.
CREATE FIELD OutputRoot.MIME TYPE Name;
DECLARE M REFERENCE TO OutputRoot.MIME;

-- Create the Content-Type child of MIME explicitly to ensure the correct order. If we set
-- the ContentType property instead, the field could appear as the last child of MIME.
CREATE FIELD M."Content-Type" TYPE NameValue VALUE ’multipart/related; boundary=myBoundary’;
CREATE FIELD M."Content-ID" TYPE NameValue VALUE ’new MIME document’;

CREATE LASTCHILD OF M TYPE Name NAME ’Parts’;
CREATE LASTCHILD OF M.Parts TYPE Name NAME ’Part’;
DECLARE P1 REFERENCE TO M.Parts.Part;

Chapter 9. Developing message flow applications 1795

-- First part:
-- Create the body of the email.
-- The body of the email has the text ’This is the main body of the email.’.
CREATE FIELD P1."Content-Type" TYPE NameValue VALUE ’text/plain; charset=us-ascii’;
CREATE FIELD P1."Content-Transfer-Encoding" TYPE NameValue VALUE ’8bit’;
CREATE LASTCHILD OF P1 TYPE Name NAME ’Data’;
CREATE LASTCHILD OF P1.Data DOMAIN(’BLOB’) PARSE(CAST(’This is the main body of the email.’

AS BLOB CCSID 1208));

CREATE LASTCHILD OF M.Parts TYPE Name NAME ’Part’;
DECLARE P2 REFERENCE TO M.Parts.Part[2];

-- Second part:
-- Create the attachment of an email.
-- The attachment is called ’attachment.txt’ and contains the text ’This is an attachment.’.
CREATE FIELD P2."Content-Type" TYPE NameValue VALUE ’text/plain; charset=us-ascii; name=attachment.txt’;
CREATE FIELD P2."Content-Transfer-Encoding" TYPE NameValue VALUE ’8bit’;
CREATE LASTCHILD OF P2 TYPE Name NAME ’Data’;
CREATE LASTCHILD OF P2.Data DOMAIN(’BLOB’) PARSE(CAST(’This is an attachment.’ AS BLOB CCSID 1208));

RETURN TRUE;
END;

Using a JavaCompute node:
About this task

MQInput JavaCompute EmailOutput

public void evaluate(MbMessageAssembly assembly) throws MbException {
MbOutputTerminal out = getOutputTerminal("out");
MbOutputTerminal fail = getOutputTerminal("fail");

// Create a new assembly to propagate out of this node, as we want to
// update it
MbMessage outMessage = new MbMessage();
copyMessageHeaders(assembly.getMessage(), outMessage);
MbMessage outLocalEnv = new MbMessage(assembly.getLocalEnvironment());
MbMessage outExceptionList = new MbMessage(assembly.getExceptionList());
MbMessageAssembly outAssembly = new MbMessageAssembly(assembly, outLocalEnv, outExceptionList, outMessage);
MbElement localEnv = outAssembly.getLocalEnvironment().getRootElement();

// Create the EmailOutputHeader parser. This is where we add recipient,
// sender and subject information.
MbElement root = outMessage.getRootElement();
MbElement SMTPOutput = root.createElementAsLastChild("EmailOutputHeader");

// Add recipient information to EmailOutputHeader
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "To", "<recipient email address>");
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Cc", "<recipient email address>");
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Bcc", "<recipient email address>");

// Add sender information to EmailOutputHeader
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "From", "<sender email address>");
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Reply-To", "<reply email address>");

// Add subject information to EmailOutputHeader
SMTPOutput.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Subject", "Dynamic MIME message in Java.");

// Create Destination.Email. This is where we add SMTP server information.

1796 WebSphere Message Broker Version 7.0.0.8

MbElement Destination = localEnv.createElementAsLastChild(MbElement.TYPE_NAME, "Destination", null);
MbElement destinationEmail = Destination.createElementAsLastChild(MbElement.TYPE_NAME, "Email", null);
destinationEmail.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "SMTPServer", "<smtp.server:port>");

// Set last child of root (message body) as MIME.
MbElement MIME = root.createElementAsLastChild("MIME");

// Create the Content-Type child of MIME explicitly to ensure the correct order.
MIME.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Content-Type", "multipart/related;

boundary=myBoundary");
MIME.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Content-ID", "new MIME document");
MbElement parts = MIME.createElementAsLastChild(MbElement.TYPE_NAME, "Parts", null);
MbElement part, data, blob;
String text;

// First part:
// Create the body of the email.
// The body of the email has the text ’This is the main body of the email.’.
part = parts.createElementAsLastChild(MbElement.TYPE_NAME, "Part", null);
part.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Content-Type", "text/plain; charset=us-ascii");
part.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Content-Transfer-Encoding", "8bit");
data = part.createElementAsLastChild(MbElement.TYPE_NAME, "Data", null);
blob = data.createElementAsLastChild("BLOB");
text = "This is the main body of the email.";
try {
blob.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "BLOB", text.getBytes("UTF8"));
} catch (UnsupportedEncodingException e) {
fail.propagate(outAssembly);
}

// Second part:
// Create the attachment of an email.
// The attachment is called ’attachment.txt’ and contains the text ’This is an attachment.’.
part = parts.createElementAsLastChild(MbElement.TYPE_NAME, "Part", null);
part.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Content-Type", "text/plain; charset=us-ascii;

name=attachment.txt");
part.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Content-Transfer-Encoding", "8bit");
data = part.createElementAsLastChild(MbElement.TYPE_NAME, "Data", null);
blob = data.createElementAsLastChild("BLOB");
text = "This is an attachment.";
try {
blob.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "BLOB", text.getBytes("UTF8"));
} catch (UnsupportedEncodingException e) {
fail.propagate(outAssembly);
}

outMessage.finalizeMessage(MbMessage.FINALIZE_VALIDATE);
out.propagate(outAssembly);

}

Related tasks:
“Sending an email” on page 1789
You can send an email with a static subject and static text to a static list of
recipients.
“Sending an email with an attachment” on page 1790
You can send an email with a fixed subject and fixed text, and an attachment, to a
static list of recipients.
“Producing dynamic email messages” on page 1791
You can produce an email where the SMTP server, list of recipients, subject, text,
and multiple attachments are all determined at run time.
“Changing connection information for the EmailOutput node” on page 1798
You can configure the SMTP server, port number, and security identity for the
EmailOutput node as a broker external resource.

Chapter 9. Developing message flow applications 1797

Changing connection information for the EmailOutput node:

You can configure the SMTP server, port number, and security identity for the
EmailOutput node as a broker external resource.

About this task

Use an alias that is specified in the SMTP Server and Port property on the
EmailOutput node. The security identity references a user ID and password pair
that is defined on the broker by using the mqsisetdbparms command.

Procedure

1. Use the WebSphere Message Broker Explorer; see “Using the WebSphere
Message Broker Explorer to work with configurable services” on page 644 for
more information, or the mqsicreateconfigurableservice command to create
an SMTP broker external resource for the alias that is specified on the node.

2. Then use the mqsichangeproperties command to create an SMTPServer
property with the value in the form of server:port. The port value is optional; if
you do not specify it, the default value is 25. You can also use the
mqsichangeproperties command to create an SMTPSecurityIdentity property
with a value that is the name of a security identity that can be resolved at run
time to a user ID and password for authentication with the SMTP server.
For example:

mqsicreateconfigurableservice MY_BROKER –c SMTP –o SMTP_MyAlias

followed by:
mqsichangeproperties MY_BROKER –c SMTP –o SMTP_MyAlias –n serverName –v smtp.hursley.ibm.com:25

These commands override the SMTP server and port values that are specified
on any nodes that also specify an alias of SMTP_MyAlias. If the local
environment contains any overrides, they take preference over the broker
external resource properties. See the following example:

mqsichangeproperties MY_BROKER –c SMTP –o SMTP_MyAlias –n securityIdentity –v mySecurityIdentity

You must also use the mqsisetdbparms command to define the security identity
at the broker run time.

Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Sending an email” on page 1789
You can send an email with a static subject and static text to a static list of
recipients.
“Sending an email with an attachment” on page 1790
You can send an email with a fixed subject and fixed text, and an attachment, to a
static list of recipients.
“Producing dynamic email messages” on page 1791
You can produce an email where the SMTP server, list of recipients, subject, text,
and multiple attachments are all determined at run time.

1798 WebSphere Message Broker Version 7.0.0.8

“Sending a MIME message” on page 1795
You can send an email that is constructed from a MIME message.
Related reference:
“EmailOutput node” on page 4400
Use the EmailOutput node to send email messages to one or more recipients.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Receiving emails
You can configure the EmailInput node to receive an email, with or without an
attachment, from an email server that supports Post Office Protocol 3 (POP3) or
Internet Message Access Protocol (IMAP).

About this task

You can use the Email server property on the EmailInput node to specify the
protocol, host name, and port of the email server that the broker uses to receive
emails. Alternatively, you can specify a configurable service name that refers to an
EmailServer configurable service that is defined on the broker. To enable the
configurable service, use the mqsicreateconfigurableservice and
mqsichangeproperties commands, as shown in the following examples:
mqsicreateconfigurableservice MB7BROKER -c EmailServer -o
myEmailConfigurableServiceName

mqsichangeproperties MB7BROKER -c EmailServer -o myEmailConfigurableServiceName
-n serverName -v pop3://myemailserver.com:12345

If the value of the Email server EmailInput node property is set to the defined
configurable service name, any values set by the administrator on the command
line are used in preference to any statically defined value.

The following list details the order of preference for value selection:
1. The email server URL value that is specified in the EmailServer configurable

service serverName property, if a configurable service exists that matches the
name that is supplied in the Email server EmailInput node property.

2. The email server URL value of the Email server property that is specified
directly on the EmailInput node.

A configurable service can be removed by using the
mqsideleteconfigurableservice command, so that the EmailInput node reverts to
resolving the email server URL from the value that is set on the node. For more
information about creating, changing, reporting, and deleting configurable services,
see “Changing connection information for the EmailInput node” on page 1805.

While most configurable service properties are set by using the
mqsichangeproperties command, security identity support, such as an email server
user ID and password pair, is typically set by using the mqsisetdbparms command.
Security identity support can be configured by setting the Security identity
EmailInput node property or EmailServer configurable service securityIdentity

Chapter 9. Developing message flow applications 1799

property to reference a security identity object. However, the security identity
object must first be created by using the mqsisetdbparms command, for example:
mqsisetdbparms MB7BROKER -n email::mySecurityIdentity -u myUserID -p myPassword
mqsichangeproperties MB7BROKER -c EmailServer -o myEmailConfigurableServiceName -n
securityIdentity -v mySecurityIdentity

For more information about email server security identity support, see
“mqsisetdbparms command” on page 3954.

The topics in this section describe the different ways in which you can use the
EmailInput node to receive email messages.

Procedure
v To receive an email, see “Receiving an email” on page 1801.
v To configure the email server URL and security identity for the EmailInput node

as a broker external resource, see “Changing connection information for the
EmailInput node” on page 1805.

Related tasks:
“Changing connection information for the EmailInput node” on page 1805
You can create a configurable service that the EmailInput node or message flow
refers to at run time for email server connection information, instead of defining
the connection properties on the node or the message flow. The advantage being
that you can change the host name and security identity values without needing to
redeploy your message flow.
“Resolving problems when you use Email nodes” on page 3398
Advice for dealing with common problems that can arise when you develop
message flows that contain Email nodes.
Related reference:
“EmailInput node” on page 4394
Use the EmailInput node to retrieve an email, with or without attachments, from
an email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

1800 WebSphere Message Broker Version 7.0.0.8

Receiving an email:

You can receive an email, with or without attachments, from an email server that
supports Post Office Protocol 3 (POP3) or Internet Message Access Protocol
(IMAP).

Before you begin

Before you start:

This topic assumes that you have already created a message flow. For more
information, see “Creating a message flow” on page 1431.

About this task

Use the WebSphere Message Broker Toolkit to configure the properties on the
EmailInput node so that you can receive an email, with or without attachments.

Procedure

1. Add an EmailInput node to your message flow.
2. Edit the following EmailInput node properties:

a. On the Basic tab, add the email server URL, or the EmailServer
configurable service name as the Email server property value, as described
in “EmailInput node” on page 4394. For example, pop3://
myemailserver.com:12345 or imap://myemailserver.com:56789.

b. On the Security tab, add the security identity object name of the email
server user ID and password pair as the Security identity property value.
For more information about email server security identity support, see
“mqsisetdbparms command” on page 3954.

c. Configure the following properties on the Retry tab:
v Retry mechanism: The Retry mechanism property defines how the

EmailInput node handles a message flow failure. Valid values are
Failure, Short Retry, or Short and Long Retry. The default value for this
property is Short and long retry, which indicates that the email is
retried until the short retry threshold is met, then long retry takes place,
meaning that the email is never deleted from the email server, but also
that the email is infinitely retried. Emails are deleted from the email
server if the email message fails and this property value is not set to
Short and Long Retry.

v Retry threshold: The Retry threshold property is the number of times to
try the message flow transaction again when the Retry mechanism
property value is set to Short Retry. The default value for this property
is 0.

v Short retry interval (in seconds): The Short retry interval is the
interval, in seconds, between each retry if the Retry threshold property
value is not set to zero. The default value for this property is 0. If the
email is retried until the short retry threshold is met and the email fails,
the email is routed to the failure terminal, and the email is deleted from
the email server.

v Long retry interval (in seconds): The Long retry interval is the
interval, in seconds, between each retry, if the Retry mechanism property
value is Short and Long Retry, and the short retry threshold has been
exhausted. The default value for this property is 300 seconds.

Chapter 9. Developing message flow applications 1801

v Action on failing email: The Action on failing email property
determines the action that the EmailInput node takes with the input data
source after all attempts to process the email contents fail. The Action on
failing email property is a read only property that is set to a default value
of Delete Email, which is used with the Retry mechanism property. If the
Retry mechanism property is set to Short and Long Retry, the message
flow continues to try to retrieve the email from the email server, meaning
that the email is never deleted. If the Retry mechanism property is not set
to Short and Long Retry, the Action on failing email property value
Delete Email is used, and the email is deleted from the email server.

3. Save the changes.
4. Add the message flow to the BAR file and deploy.

When a message is passed into the deployed EmailInput node, an email is
received from the email server and the body of the email message, and any
attachments, are propagated in the Multipurpose Internet Mail Extensions
(MIME) domain. All other information relating to the email is stored in the
Root.EmailInputHeader MIME logical tree. For a complete list of the email
elements that are propagated in the MIME logical tree when you use an
EmailInput node, see “EmailInput node” on page 4394.
When an email containing an attachment is received, the EmailInput node
places different parts of the email body in the MIME domain, so that they are
associated with the MIME parser. The MIME tree location that the EmailInput
node builds to house the information is the same location that the EmailOutput
node expects email data to be in when sending an email. The attachment is
stored in the MIME logical tree in directory Root.MIME.Parts.Part.Data. Where
Content-Type describes the type of data that is in the attachment.

Root

Properties

MIME-Version

Domain

Content-Type

ContentType

Transport headers

Content-Description

MIME

Parts

Optional epiloguePartPart PartOptional preamble

Content-Type Content-Transfer-Encoding Content-ID Data

BLOB

Viewing the Root.Properties.ContentType value in the MIME domain allows
you to write logic to parse the attachment. For more information about the
MIME logical tree, see “MIME parser and domain” on page 1117.

1802 WebSphere Message Broker Version 7.0.0.8

Results

Received emails are deleted from an email server that supports POP3 or IMAP
only when the emails have been successfully propagated after being processed by
the EmailInput node Failure, Out, or Catch terminals, and the message flow has
successfully executed. This does not form part of a globally coordinated
transaction.

Emails are deleted from the email server under the following circumstances:
v The Failure terminal is not connected.
v An exception occurs in the Failure terminal.
v The email message fails and the Retry mechanism property value is not set to

Short and Long Retry.
v The Retry threshold is not set to 0 and the Short retry interval property

value has been exhausted.

For more information about processing responses from an EmailInput node, and
for information about rollback handling, see “Processing responses from an
EmailInput node” on page 1804.
Related concepts:
“MIME parser and domain” on page 1117
Use the MIME domain if your messages use the MIME standard for multipart
messages.
“Manipulating messages in the MIME domain” on page 2612
A MIME message does not need to be received over a particular transport. For
example, a message can be received over HTTP by using an HTTPInput node, or
over WebSphere MQ by using an MQInput node. The MIME parser is used to
process a message if the message domain is set to MIME in the input node
properties, or if you are using WebSphere MQ, and the MQRFH2 header has a
message domain of MIME.
Related tasks:
“Processing responses from an EmailInput node” on page 1804
The EmailInput node can return different response messages that indicate the
success or failure of receiving an email, with or without attachments, from an
email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).
“Changing connection information for the EmailInput node” on page 1805
You can create a configurable service that the EmailInput node or message flow
refers to at run time for email server connection information, instead of defining
the connection properties on the node or the message flow. The advantage being
that you can change the host name and security identity values without needing to
redeploy your message flow.
“Resolving problems when you use Email nodes” on page 3398
Advice for dealing with common problems that can arise when you develop
message flows that contain Email nodes.
Related reference:
“EmailInput node” on page 4394
Use the EmailInput node to retrieve an email, with or without attachments, from
an email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).

Chapter 9. Developing message flow applications 1803

Processing responses from an EmailInput node:

The EmailInput node can return different response messages that indicate the
success or failure of receiving an email, with or without attachments, from an
email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).

Before you begin

Before you start:

Ensure that you have developed a message flow with an EmailInput node, as
described in “Receiving an email” on page 1801.

About this task

The EmailInput node has three output terminals:
v Failure: The output terminal to which the message is routed if an EmailInput

node failure is detected when a message is propagated, or an EmailInput node
fails to access the email server. Connect the Failure terminal of this node to
another node in the message flow to process errors.

v Out: The output terminal to which the message is routed if it has been
propagated successfully. Connect the Out terminal of this node to another node
in the message flow to process the message further, or send the message to an
additional destination.

v Catch: The output terminal to which a message is routed if an exception is
thrown downstream and caught by this node. Exceptions are caught only if this
terminal is attached.

Procedure

v Processing successful returns

When an EmailInput node successfully receives an email, the resulting message
is propagated to the Out terminal.

v Processing downstream message flow exceptions

If a message flow exception occurs downstream of the Failure terminal in the
message flow, a message is routed to the Catch terminal. If you do not have the
Retry mechanism property value set to Short and Long Retry on the EmailInput
node Retry tab, the current transaction is rolled back.

v Handling failures in the node

Any other failures are propagated to the Failure terminal. Possible failures
include:
– A problem retrieving an email message. For example, an inability to

communicate with the target email server because of a connection or
authentication error. If this occurs, the connection is re attempted when the
polling interval expires. Each connection failure occurrence causes an
appropriate message in user trace.

– A problem parsing an email.
– An internal EmailInput node exception or error is detected before the

message is propagated to the Out terminal. For example, a malformed email
is received, causing the EmailInput to propagate the message and an
exception list to the Failure terminal.

– The Retry mechanism property value is set to Failure, causing an immediate
message to be sent to the Failure terminal.

1804 WebSphere Message Broker Version 7.0.0.8

– The Retry threshold is not set to 0 and the Short retry interval property
value has been exhausted, causing a message to be routed to the failure
terminal, and the email being deleted from the email server.

If the failure terminal is not connected, or an exception occurs down the Failure
terminal, or the email message fails and you have not set the Retry mechanism
property value to Short and Long Retry, the email is deleted from the email
server.

Results

You can use the EmailServer configurable service to change connection details for
the EmailInput node. See “Changing connection information for the EmailInput
node” for details about creating, changing, reporting, and deleting an EmailServer
configurable service.
Related tasks:
“Receiving emails” on page 1799
You can configure the EmailInput node to receive an email, with or without an
attachment, from an email server that supports Post Office Protocol 3 (POP3) or
Internet Message Access Protocol (IMAP).
“Receiving an email” on page 1801
You can receive an email, with or without attachments, from an email server that
supports Post Office Protocol 3 (POP3) or Internet Message Access Protocol
(IMAP).
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
“Resolving problems when you use Email nodes” on page 3398
Advice for dealing with common problems that can arise when you develop
message flows that contain Email nodes.
Related reference:
“EmailInput node” on page 4394
Use the EmailInput node to retrieve an email, with or without attachments, from
an email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).

Changing connection information for the EmailInput node:

You can create a configurable service that the EmailInput node or message flow
refers to at run time for email server connection information, instead of defining
the connection properties on the node or the message flow. The advantage being
that you can change the host name and security identity values without needing to
redeploy your message flow.

Before you begin

Before you start:

v Read “Configurable services” on page 1296 to find out more about configurable
services.

v Read “Receiving emails” on page 1799 for background information.

Chapter 9. Developing message flow applications 1805

About this task

Use the EmailServer configurable service to change the email server connection
information for the EmailInput node. The properties of the EmailServer
configurable service are described in “Configurable services properties” on page
3766.

Creating, changing, reporting, and deleting configurable services

Procedure

1. To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates an EmailServer configurable service for the email server
that is running at pop3://test.email.server.ibm.com port 12345. The security
identity is identified by mySecurityIdentityObjectName in this example:
mqsicreateconfigurableservice MB7BROKER -c EmailServer -o
myEmailConfigurableServiceName -n serverName,securityIdentity -v
pop3://test.email.server.ibm.com:12345,mySecurityIdentityObjectName

2. To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example.
You must stop and start the execution group for the change of property value
to take effect. This example changes the EmailInput node that is configured to
use the myEmailConfigurableServiceName configurable service. After you run this
command, the EmailInput node connects to the production system
(pop3://production.email.server.ibm.com:12345) instead of the test system
(pop3://test.email.server.ibm.com:12345).
mqsichangeproperties MB7BROKER -c EmailServer -o myEmailConfigurableServiceName

-n serverName -v pop3://production.email.server.ibm.com:12345

3. To display all EmailServer configurable services, use the WebSphere Message
Broker Explorer, or the mqsireportproperties command, as shown in the
following example:
mqsireportproperties MB7BROKER -c EmailServer -o AllReportableEntityNames -r

4. You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:
mqsideleteconfigurableservice MB7BROKER -c EmailServer -o
myEmailConfigurableServiceName

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Receiving an email” on page 1801
You can receive an email, with or without attachments, from an email server that
supports Post Office Protocol 3 (POP3) or Internet Message Access Protocol
(IMAP).
Related reference:

1806 WebSphere Message Broker Version 7.0.0.8

“EmailInput node” on page 4394
Use the EmailInput node to retrieve an email, with or without attachments, from
an email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).

Working with files
You can use the FileInput, FileRead, and FTEInput nodes in your message flows to
process data from files. You can use the FileOutput node and FTEOutput node to
send data from a message flow into a file.

About this task

Using files is one of the most common methods of storing data. You can create
message flows to process data in files, accepting data in files as input message
data, and producing output message data for file-based destinations. The following
file nodes are provided:
v FileInput node. Use this node to receive messages from files in the file system of

the broker or, by using FTP or SFTP, in a remote file system. The node generates
output message data that any of the output nodes can use, which means that
messages can be generated for clients using any of the supported transport
protocols to connect to the broker. For more information, see “Using a local file
as input for your message flow” on page 1834.

v FTEInput node. Use this node to start a message flow when files are received
over a WebSphere MQ File Transfer Edition network. For more information, see
“Receiving a file by WebSphere MQ File Transfer Edition” on page 1845.

v CDInput node. Use this node to start a message flow when files are received
over a IBM Sterling Connect:Direct network. For more information, see
“Receiving a file using IBM Sterling Connect:Direct” on page 1847.

v FileRead node. Use this node to read data from a file in the middle of a message
flow. For more information, see “Routing or enriching a message based on the
contents of a file” on page 1837.

v FileOutput node. Use this node to write messages to a file in the file system of
the broker or, by using FTP or SFTP, in a remote file system. The node can create
new files and replace existing files. For more information, see “Writing a file to
your local file system” on page 1853.

v FTEOutput node. Use this node to send a file to a remote destination by using a
WebSphere MQ File Transfer Edition network. For more information, see
“Sending a file by WebSphere MQ File Transfer Edition” on page 1859.

The FileInput and FTEInput nodes start the message flow when a new file arrives,
whereas the FileRead node must be connected to another node to start the message
flow transaction. The FileRead node also provides keyed access to identify a
record, unlike the FileInput node, which processes all records in order.

By using these five nodes, you can also process large files without the complete
message being held in memory, and you can simplify the processing of files that
have large numbers of repeating entries.

If you want to work with files, read these topics:
v “WebSphere Broker File Transport” on page 1808
v “How the broker processes files” on page 1814
v “How multiple file nodes share access to files in the same directory” on page

1818
v “Using local environment variables with file nodes” on page 1820

Chapter 9. Developing message flow applications 1807

v “File name patterns” on page 1830
v “Archiving” on page 1833
v “Reading files” on page 1834
v “Writing a file” on page 1852
v “Transferring files securely by using SFTP” on page 1864
v “Managed file transfers using WebSphere MQ File Transfer Edition” on page

1869
v “FileInput node” on page 4415
v “FTEInput node” on page 4461
v “FileRead node” on page 4444
v “FileOutput node” on page 4430
v “FTEOutput node” on page 4466
v “CDInput node” on page 4305

WebSphere Broker File Transport
WebSphere Broker File Transport is a service that connects applications to data
maintained in files.

You can use the WebSphere Broker File Transport to support the following
operations.
v Read messages from files in the broker file system.
v Read messages from files in a remote file system.
v Write messages to a file in the broker file system.
v Write messages to a file in a remote file system.
v Process large files without having to hold the complete message in memory.
v Simplify the processing of files that have large numbers of repeating entries.

These operations are implemented by the following built-in nodes:
v FileInput
v FileOutput
v FileRead
v FTEInput
v FTEOutput
v CDInput
v CDOutput

To use the WebSphere Broker File Transport, you must deploy a message flow that
contains one of these nodes.

The FileInput node can read one or more messages from a file in a specified input
directory or on a remote FTP or SFTP server, and propagate each message as a
separate flow transaction. The part of a file that generates one message flow
transaction is called a record. A file can be a single record, or a series of records.
The node can handle messages in the following message domains:
v MRM
v XMLNSC
v DataObject
v XMLNS
v JMSMap
v JMSStream

1808 WebSphere Message Broker Version 7.0.0.8

v MIME
v BLOB
v XML
v IDOC

The FileOutput node writes one or more messages from message flow transactions
to a file in the broker file system. Each message, as it is written to a file, is
converted to a sequence of bytes called a record. Records are accumulated until a
process is triggered that completes the file and places it either in the specified
output directory or a remote FTP or SFTP server directory.

The FTEOutput node processes messages in the same way as the FileOutput node.
When the file is complete, the node sends it to the remote agent.

The CDOutput node processes messages in the same way as the FileOutput node.
When the file is complete, the node sends it to the IBM Sterling Connect:Direct
network.

The following topics contain more information about processing files:
v “Working with files” on page 1807
v “Reading files” on page 1834
v “Writing a file” on page 1852
v “Transferring files securely by using SFTP” on page 1864
v “Managed file transfers using WebSphere MQ File Transfer Edition” on page

1869
v “Initiating a managed file transfer using IBM Sterling Connect:Direct” on page

1873
Related concepts:
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.
Related tasks:
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“FileRead node” on page 4444
Use the FileRead node to read one record, or the entire contents of a file, from
within a message flow.
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.

Chapter 9. Developing message flow applications 1809

“CDInput node” on page 4305
Use the CDInput node to preview files when using IBM Sterling Connect:Direct in
conjunction with WebSphere Message Broker.
“CDOutput node” on page 4312
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.

IBM Sterling Connect:Direct overview and concepts
An overview of IBM Sterling Connect:Direct and its terminology when used with
WebSphere Message Broker.

IBM Sterling Connect:Direct is a managed file transfer product that transfers files
between, and within, enterprises.

IBM Sterling Connect:Direct, in conjunction with WebSphere Message Broker uses
the following terminology:

Connect:Direct server

An application that runs on a machine requiring IBM Sterling
Connect:Direct functionality. Files are transferred between two
Connect:Direct servers.
v The primary Connect:Direct server, also referred to as the PNODE.
v The secondary Connect:Direct server, also referred to as the SNODE, that

receives the transferred file and places the file on the local file system.

Connect:Direct-S

Connect:Direct server which transfers files to other Connect:Direct servers.

Connect:Direct-R

Connect:Direct application that connects to a Connect:Direct server and
requests that server does some form of processing. WebSphere Message
Broker acts as a Connect:Direct-R to request transfers or receive
information about transfers.

WebSphere Message Broker CDInput node

Use the WebSphere Message Broker CDInput node to receive messages that
have been transferred to a given Connect:Direct server.

If two or more input nodes are deployed to listen on the same
Connect:Direct server, only one receives the file and which one that is
cannot be determined. There is some distribution between the nodes, and
this is equivalent to having two or more MQInput nodes listening on the
same queue.

CDInput nodes can be used in different flows, and in different execution
groups, against the same Connect:Direct server.

You can configure the CDInput node to process only a subset of files
transferred to the server, based on the directory name and the file name.
This allows for multiple CDInput nodes within the same execution group
to receive specific files, depending on the filters used.

See “IBM Sterling Connect:Direct concepts” on page 1811 for further
information on the CDInput node, CDOutput node, and Connect:Direct
server.

WebSphere Message Broker CDOutput node

1810 WebSphere Message Broker Version 7.0.0.8

Use the WebSphere Message Broker CDOutput node to serialize the
message tree to a file and then transfer it to a secondary Connect:Direct
server using a primary Connect:Direct server. A directory under the work
path within the execution group is used as the staging area, until the file is
ready to be transferred. Once the file is transferred, it is deleted from the
staging area.

Initparm

The definition of the startup parameters for the primary Connect:Direct
server (PNODE) and secondary Connect:Direct server (SNODE).

Netmap

The definition of a connection between the primary and secondary
Connect:Direct servers.

Processname

The name given to a process that is run in IBM Sterling Connect:Direct.
More than one process can be given the same name, and each process is
identified uniquely using the process number.

Note that WebSphere Message Broker nodes work purely as clients connecting to
the external Connect:Direct server, using the IBM Sterling Connect:Direct Java
Application Interface.

By default, WebSphere Message Broker attempts to connect to a local
Connect:Direct server, on the default port:
v When sending a file using CDOutput nodes, or
v To be notified of files to process using CDInput nodes.

To enable the CDOutput and CDInput nodes to connect to the local Connect:Direct
server, you must set up a username and password using the “mqsisetdbparms
command” on page 3954.

IBM Sterling Connect:Direct concepts

The CDInput node receives messages that have been transferred to a given
Connect:Direct server.

The node receives both the contents of the file and meta data provided by IBM
Sterling Connect:Direct on the transfer. One or more CDInput nodes can be used to
receive transfers, either in the same flow, different flows, or different execution
groups; for any given transfer only one CDInput node receives a message.

You can also specify which transfer a CDInput node can receive, using filters based
on directory and file name of the transfer. Once the transfer has been processed
there are a set of options of what to do with the transferred file; for further details
see “CDInput node” on page 4305.

A simple flow that takes all transferred files from a Connect:Direct server and
writes them to a WebSphere MQ queue could contain a CDInput node and an
MQOutput node.

Once the CDInput node has been notified of a file to be processed, it processes the
file in the same way that a normal FileInput node does. The CDInput node is

Chapter 9. Developing message flow applications 1811

notified by the Connect:Direct server manager when a transfer occurs. The
notification message is persistently stored on WebSphere MQ and survives broker
and queue manager restarts.

The Connect:Direct server manager is defined and runs using a configurable
service called CDServer. This configurable service is used for administering the
access, and processing files using IBM Sterling Connect:Direct.

For more details on the CDServer configurable service, see “CDServer configurable
service properties” on page 3798

Two WebSphere MQ queues are used to store transfer details from the
Connect:Direct server:
v SYSTEM.BROKER.CD.STATS
v SYSTEM.BROKER.CD.TRANSFERS

For each successful transfer to the Connect:Direct server, a message is placed on
the TRANSFERS queue, which is used to trigger the CDInput node to process the
file.

The STATS queue contains internal data used by WebSphere Message Broker to
record which transfers have been processed by WebSphere Message Broker.

Clearing both sets of these queues causes all transfers that have occurred up to the
current time to be ignored; there is no need, for example, for a restart.

The input node does not poll for transfers, but is triggered instead when they
arrive. However, the Connect:Direct server manager does need to poll for events to
notify the CDInput node about a transfer. The Connect:Direct server manager has a
polling interval of one second.

The CDInput and CDOutput nodes go through the Connect:Direct server manager
to both send and receive transfers from a given server, the name of which is set on
the node. The Connect:Direct server manager properties are defined using a
CDServer configurable service.

The Connect:Direct server manager organizes:
v Monitoring the Connect:Direct server for transfers which need to be processed

by the CDInput nodes.
v Sending commands created by the CDOutput node to the Connect:Direct server

to perform transfers.

In both cases, the Connect:Direct server manager can be used to configure the
directory structure to a shared file system, used to both send and receive files from
the Connect:Direct server.

The high-level structure of the directory might be different on the two different
machines and you can define properties on the Connect:Direct server manager to
give the correct mapping.

See “Advanced configuration properties when using IBM Sterling Connect:Direct
nodes” on page 727 for further information.

The Default configurable service connects to the Connect:Direct server on the local
host using the default port. You can modify the default configurable service to a
more complex configuration with the CD server on different ports, or a different

1812 WebSphere Message Broker Version 7.0.0.8

machine, or change the node to use a completely different configurable service
which is set up to use a different port and hostname.

As well as defining connections details, you can also configure other key
properties, such as the location of staging directories and mapping between
directories on different machines.

See “Advanced configuration properties when using IBM Sterling Connect:Direct
nodes” on page 727 for further information.

The Connect:Direct server manager is started and stopped by the CDInput and
CDOutput nodes as required and is not an artifact that is deployed or seen in the
deployment view; all of its function is defined by the properties in the configurable
service. If transfers happen while WebSphere Message Broker is stopped (or IBM
Sterling Connect:Direct flows are stopped) they are not missed and are processed
as soon as the flows restart. All transfers are persistent and survive both broker
and queue manager restarts.

The configurable service security identity must have adequate permission for the
Connect:Direct server manager within the execution group to detect all transfers
that are sent to the Connect:Direct server. For example: On UNIX systems, the
user's stanza within the userfile.cfg in Connect:Direct must have
:cmd.selstats=A:\. This property can either be set explicitly, or inherited from the
higher-level property :admin.auth=y:\. If this permission is not present, then the
CDInput nodes do not detect or process files that were transferred by other users.
For more information about the security identifier, see "securityIdentifier" in
“CDServer configurable service properties” on page 3798.

The broker makes a number of API connections to the local Connect:Direct server
to process inbound transfers, and to request outbound transfers.

The broker creates one API connection per configurable service per execution
group. This creation enables CDOutput nodes to process files sent to the local
Connect:Direct server. If there are multiple configurable services that relate to the
same Connect:Direct server, then multiple API connections are established.

In addition to these connections, each message flow instance that uses a CDOutput
node also creates an API connection to submit transfer requests to the
Connect:Direct server. Where there are multiple flows that contain CDOutput
nodes, or where these flows have extra defined instances, the broker creates
multiple API connections. If the number of API connections that are required
exceeds the maximum that is configured in the Connect:Direct server, then the
connection fails causing a BIP7951E exception, containing the following
information: "Error: Logon failed! Attempted to exceed maximum API
connections". Avoid this error by increasing the maximum client connections for
the Connect:Direct server. The maximum number of connections that are accepted
by a Connect:Direct server on UNIX is controlled by the api.max.connects
parameter. For more information about this parameter, and the equivalent settings
on other operating systems, see the IBM Sterling Connect:Direct product
documentation: http://www.ibm.com/support/knowledgecenter/SS4PJT_5.2.0/
cd_52_welcome.html.
Related tasks:

Chapter 9. Developing message flow applications 1813

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SS4PJT_5.2.0/cd_52_welcome.html
http://www.ibm.com/support/knowledgecenter/SS4PJT_5.2.0/cd_52_welcome.html

“Initiating a managed file transfer using IBM Sterling Connect:Direct” on page
1873
Use a CDOutput node to send a file from a specified directory on your primary
Connect:Direct server (PNODE) to a filename and directory on a secondary
Connect:Direct server (SNODE).
“Receiving a file using IBM Sterling Connect:Direct” on page 1847
Use the CDInput node to receive files from an IBM Sterling Connect:Direct
network.
Related reference:
“CDInput node” on page 4305
Use the CDInput node to preview files when using IBM Sterling Connect:Direct in
conjunction with WebSphere Message Broker.
“CDOutput node” on page 4312
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“CDServer configurable service properties” on page 3798
Select the objects and properties that you want to change for the CDServer
configurable service.

How the broker processes files
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.

WebSphere Message Broker can read messages from files and write messages to
files in the local file system, or on a network file system that is local to the broker.
The following lists the nodes that provide this capability, and the required access
permissions for the directories and files they operate on:
v FileInput node: read and write permissions on the input directory and input

files.
v FileOutput node: read and write permissions on the output directory.
v FileRead node: read permissions on the input directory and input files. Note: if a

Finish File action is used (to move, rename or delete the file), write permissions
on the input directory and input files is also required.

The FileInput, FileOutput, and FileRead nodes inherit the permissions assigned to
the broker's user ID and group. See your operating system documentation for
details on how to set permissions and the impact on file access.

You can use the FTEInput and FTEOutput nodes to receive or send files to a
destination on a WebSphere MQ File Transfer Edition network.

You can use the CDInput and CDOutput nodes to receive or send files to a
destination on an IBM Sterling Connect:Direct network.

A file, or a record within a file, is analogous to a message in a queue. The directory
that contains the file is analogous to a message queue.

How the broker reads a file at the start of a flow

The FileInput node processes messages that are read from files. The FileInput node
searches a specified input directory (in the file system attached to the broker) for
files that match specified criteria. Optionally, files from a remote FTP or SFTP

1814 WebSphere Message Broker Version 7.0.0.8

server can be moved to the local directory whenever the directory is to be scanned.
You can find the file that you require by specifying an explicit file name or a file
name pattern that includes wildcard characters. If the file is locked, it is ignored
during the directory scan.

The FileInput node creates an mqsitransitin subdirectory in the input directory.
The mqsitransitin subdirectory holds and locks the input files while they are
being processed. The broker reads the file and propagates a message, or messages,
by using the contents of the file.

If an execution group that processes files in this input directory is removed, check
the mqsitransitin subdirectory for partially processed or unprocessed files. Move
any such files back into the input directory and remove the execution group UUID
prefix from the file names, so that they can be processed by a different execution
group. For more information about the mqsitransitin subdirectory, see “How
multiple file nodes share access to files in the same directory” on page 1818.

In the FileInput node, you can specify how the records are derived from the file.
The contents of a file can be interpreted as:
v A single record (whole file)
v Separate records, each of a fixed length (fixed-length records)
v Separate records each delimited by a specified delimiter (delimited records)
v Separate records that are recognized by a parser that you specify (parser record

sequence)

After the file has been successfully processed, it is either deleted from the file
system or moved to an archive subdirectory of the specified (local) directory.

When the last record of the file has been processed successfully, if the End of Data
terminal of the FileInput node is connected in the message flow, an End of Data
message is propagated to the End of Data terminal. The End of Data message
consists of an empty BLOB message and a LocalEnvironment.File structure, and it
allows explicit end-of-flow processing to be performed in another part of the
message flow.

The message (or messages) propagated from the file can be used as input to any
message flow and output node. You can create a message flow that receives
messages from files and generates messages for clients that use any of the
supported transports to connect to the broker.

Whenever a message is propagated from a file, the FileInput node stores
information about the file in the LocalEnvironment.File message tree. This
information includes the offset of the record of the message in the file that is being
processed, and the record number in that file. In addition, when a wildcard is used
in a file name pattern, the characters matched in the file name are placed in the
WildcardMatch element of the local environment tree.

If a file is backed out, or a file is left in the mqsitransitin subdirectory because
processing failed, remove the execution group UUID prefix from the file name and
move it back into the input directory. Processing is automatically retried, beginning
at the first record in the file.

The FTEInput node receives files from the WebSphere MQ File Transfer Edition
network. The broker reads the file and propagates a message, or messages, by
using the contents of the file. After an FTEInput node has processed a file, the file

Chapter 9. Developing message flow applications 1815

is deleted. For details of information that the FTEInput node provides in the local
environment, see “Using local environment variables with file nodes” on page
1820.

The CDInput node receives files from the IBM Sterling Connect:Direct network.
The broker reads the file and propagates a message, or messages, by using the
contents of the file. After a CDInput node has processed a file, the file is deleted.
For details of information that the CDInput node provides in the local
environment, see “Using local environment variables with file nodes” on page
1820.

The FileRead node can read a whole file, or a single, nominated record. A common
use of the FileRead node is to route or enrich messages based on the contents of
the file. When developing the message flow you can specify the name and location
of the file to be read. You can override these values at run time based on the
contents of a message. TheFileRead node reads a file in the middle of a message
flow.

The FileRead node complements the existing FileInput and FileOutput nodes.

How the broker reads a file from the middle of a flow

The FileRead node locks files when they are being read and does not move files to
a subdirectory to read them. Files can be read completely or separated into records,
in the same way as the FileInput node. After the file has been processed by the
FileRead node, it can be deleted, archived, or left unchanged.

How the broker writes a file

The FileOutput, CDOutput, and FTEOutput nodes write messages to files in the
file system of the broker. When a message is received on the In terminal of the
node, it creates and writes a file as a series of one or more records. One record is
written to a file for every message received. The name of the file is specified either
by a file name pattern in the node or an explicit file name that is either specified in
the node or derived from the message.

You can specify how the records are accumulated in files:
v A single record (whole file). The file that is created consists of one record.
v Concatenated records (unmodified records). The records are not padded to any

required length, and they are not separated by a delimiter.
v Uniform length records (fixed-length records). Records that are shorter than the

specified length are padded to the required length.
v Separate records (delimited records). Records are either terminated or separated

by a specified delimiter.

The message flow informs the output node that there are no more records to write
by sending a message to its Finish File terminal. The file is then delivered to the
appropriate destination:
v FileOutput node: The file is then moved to the specified output directory.

Optionally, the file can be moved to a directory on a remote FTP or SFTP server.
The server is identified by the Remote server and port property on the node.
Alternatively, you can override the node property by setting a value in the local
environment (see “Local environment overrides for the FileOutput node” on
page 4443).

1816 WebSphere Message Broker Version 7.0.0.8

v FTEOutput node: The file is sent to the destination agent on the WebSphere MQ
File Transfer Edition network.

v CDOutput node: The file is sent to the IBM Sterling Connect:Direct network.

If the output node produces a single record from the file (whole file), the file is
moved immediately to the output directory without requiring a message to be
propagated to the Finish File terminal. In this case, any message sent to the Finish
File terminal of the node has no effect on any file, but the message is still
propagated to a message flow attached to the End of Data terminal.
Related tasks:
“Reading files” on page 1834
Use the FileInput, CDInput, FTEInput, and FileRead nodes to read files.
“Writing a file” on page 1852
Use the FileOutput, CDOutput, and FTEOutput nodes to write files.
Related reference:
“CDInput node” on page 4305
Use the CDInput node to preview files when using IBM Sterling Connect:Direct in
conjunction with WebSphere Message Broker.
“CDOutput node” on page 4312
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.

Recognizing file records as messages to be parsed:

Use the FileInput, FTEInput and FileRead nodes to segment your input file into
messages that are to be parsed.

The node segments your input file into messages that are to be parsed by one of
the following parsers:
v MRM Custom Wire Format (CWF)
v MRM Tagged Delimited String Format (TDS)
v XMLNSC

The Message domain property of the node specifies the parser to use; MRM or
XMLNSC. Specify Parsed Record Sequence for the Record detection property so
that the node splits the file into messages to be parsed by either the MRM parser
or XMLNSC parser.

The MRM parser

If you select an MRM parser, ensure that the message model has a defined
message boundary and does not rely on the parse being stopped when it reaches
the end of the bit stream. If the final element has a maxOccurs value of -1, the
parser continues to read bytes until the end of the bit stream or until it encounters
bytes that cause a parsing exception. In either case, the parser is unable to identify
the end of one message and the start of the next. If you use Data Element Separation

Chapter 9. Developing message flow applications 1817

= Use Data Pattern, ensure that the pattern recognizes a specified number of
bytes. Be aware, therefore, that a pattern of * identifies all available characters and
so would read an entire input file.

If you use delimited separations with message group indicators and terminators,
ensure that the combination of group indicator and terminator does not match a
record delimiter. For example, a message might start with a left brace ({) and end
with a right brace (}). If there is a delimiter of }{ within the message, the delimiter
matches the boundary between multiple messages; as a result, a delimiter within
the current message might be identified as a message boundary. This might cause
bytes in a subsequent message to be included in the current message causing
parser exceptions or unexpected content in the parse tree.

The XMLNSC parser

If you select the XMLNSC parser, the end of the root tag marks the end of the
message. XML comments, XML processing instructions, and white space that
appear after the end of the XML message are discarded. The start of the next XML
message is marked either by the next XML root tag or the next XML prolog.
Related concepts:
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
Related tasks:
“Reading files” on page 1834
Use the FileInput, CDInput, FTEInput, and FileRead nodes to read files.
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.

How multiple file nodes share access to files in the same
directory
WebSphere Message Broker controls access to files so that only one file node at a
time can read or write to a file.

When a message flow uses the FileInput or FileOutput node, additional instances
(threads) might be associated with the message flow, or file nodes in other message
flows in the same or different execution groups might refer to files in the same
directory. WebSphere Message Broker controls the way in which multiple processes

1818 WebSphere Message Broker Version 7.0.0.8

read from and write to files by moving the files to the mqsitransitin directory
during processing, and locking them while they are being processed. The
mqsitransitin directory is a subdirectory of the input directory specified in the
FileInput node.

The broker locks the files that are being read by the FileInput node or written by
the FileOutput node, to prevent other execution groups from reading or changing
the files while they are being processed. The broker unlocks the file:
v When a FileInput node finishes processing the input file.
v When a FileOutput node finishes writing the file and moves it from the transit

directory to the output directory.

Note: The FTEInput node does not use a transit directory. Each execution group
has its own WebSphere MQ File Transfer Edition agent, and a node processes only
files sent to the agent for which the node is deployed. The execution group ensures
that only one node in the execution group processes each file.

Reading a file

When the FileInput node reads a file, it first moves the file into the mqsitransitin
directory, where it is held during processing. A prefix (containing the UUID of the
execution group) is added to the file name to indicate which execution group is
processing the file. While the file is in this directory, no other execution groups can
access the file. The broker maintains a lock subdirectory in the mqsitransitin
directory, to ensure that files in the input directory are accessed by only one
execution group at a time.

If multiple message flows or instances within an execution group are reading from
the same input directory, only one instance of one message flow is allocated to
reading it. Each record in the file is serially processed by this instance. Other
instances of the message flow, or other message flows, can simultaneously process
other files, the names of which match the pattern specified in the File name or
pattern property of the node.

While a file is being processed, the file system is used to lock the file. As a result,
other programs (including other execution groups) are prevented from reading,
writing, or deleting the file while it is being processed by the file nodes.

While a FileInput node is reading a file, the file remains in the mqsitransitin
directory until it has been fully processed (or until an unrecoverable error occurs).
If the file is to be retained, it is held in a subdirectory of the mqsitransitin
directory.

When the file has been processed, it is moved from the mqsitransitin directory
back to the input directory. However, if the execution group stops unexpectedly
while the file is in the mqsitransitin directory, you can manually restore the input
file to the input directory by removing the execution group UUID prefix from the
file name, and then moving it to the input directory. The input file is then
processed by the next FileInput node that scans the directory.

If you use an NFS server, and have File nodes in different execution groups that
access the same directory on the NFS server, ensure that you are using NFS version
4 to correctly support file locking.

Chapter 9. Developing message flow applications 1819

Writing a file

Files that are created and written by a FileOutput node are put in the output
directory when they are finished. While records are being added to a file, it is kept
in the mqsitransit subdirectory.

Each record is written by a single message flow instance. All message flow
instances that are configured to write records to a specific file can append records
to that file. Because instances can run in any order, records that they write might
be interleaved, which means that the sequence of records might be altered. If you
require the sequence of records in the output file to be maintained, ensure that
only one FileOutput node instance uses the file. To ensure that only one FileOutput
node instance uses the file, configure the message flow that contains the node to
use the additional instances pool with zero instances, and ensure that other
message flows do not write to the same file.

While a file is being processed, the file system is used to lock the file. As a result,
other programs (including other execution groups) are prevented from reading,
writing, or deleting the file while it is being processed by the file nodes. This lock
is retained for a short period after a FileOutput node writes to the file without
finishing it, leaving it in the transit directory. If message flows that are in the same
execution group use the same output file and run sufficiently quickly, the broker
does not relinquish the lock before the file is finished. However, if the message
flows have longer intervals between them, the broker relinquishes the lock and
another process or execution group can acquire a lock on the file. To prevent this
situation, ensure that output directories are not shared between execution groups.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.

Using local environment variables with file nodes
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.

These fields are available in the following message tree structures:
v LocalEnvironment.File
v LocalEnvironment.File.Read
v LocalEnvironment.WrittenDestination.File
v LocalEnvironment.Destination.File
v LocalEnvironment.Destination.File.Remote
v LocalEnvironment.Wildcard.WildcardMatch
v LocalEnvironment.FTE
v LocalEnvironment.WrittenDestination.FTE

1820 WebSphere Message Broker Version 7.0.0.8

v LocalEnvironment.Destination.FTE
v LocalEnvironment.CD
v LocalEnvironment.CD.Transfer
v LocalEnvironment.Destination.CD
v LocalEnvironment.WrittenDestination.CD

LocalEnvironment.File fields

When you use the FileInput node, it stores information that you can access in the
LocalEnvironment.File message tree. The fields in this structure are described in
the following table.

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of the input directory in the form used by
the file system of the broker. For example, on Windows systems, this
starts with the drive letter prefix (such as C:).

Name CHARACTER File name and extension.

LastModified TIMESTAMP Date and time the file was last modified.

TimeStamp CHARACTER Date and time the input node started processing the file in the
Coordinated Universal Time (UTC) zone, as a character string. This
data is the string used to create archive and backout file names if a
timestamp is included.

The following elements contain data about the current record:

Offset INTEGER Start of the record within the file. The first record starts at offset 0. If
this element is part of the End of Data message tree, this value is the
length of the input file.

Record INTEGER Number of the record within the file. The first record is record
number 1. If this element is part of the End of Data message tree,
this value is the number of records.

Delimiter CHARACTER The characters used to separate this record from the preceding
record, if Delimited is specified in Record detection. The first
record has a null delimiter. If this element is part of the End of Data
message tree, this value is the delimiter that follows the last record,
if any.

IsEmpty BOOLEAN Whether the record propagated by the message flow is empty. It is
set to TRUE if the current record is empty. If this element is part of
the End of Data message tree, this value is always set to TRUE.

This structure is propagated with each message written to the Out terminal of the
FileInput node and with the empty message written to the End of data terminal.

LocalEnvironment.File.Read fields

When the FileRead node propagates a message, it stores valid information about it
in the LocalEnvironment.File.Read message tree. If the input file is empty, an
empty message is propagated. The following table lists the
LocalEnvironment.File.Read message tree structure.

Chapter 9. Developing message flow applications 1821

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of the input directory in the form used by
the file system of the broker. For example, on Windows systems, this
starts with the drive letter prefix (such as C:).

Alternatively this path relates to the file nodes root directory, which
can be overridden with the same environment variable as used for
the FileInput and FileOutput nodes.

Name CHARACTER File name and extension.

LastModified TIMESTAMP Date and time the file was last modified.

TimeStamp CHARACTER Date and time the FileRead node started processing the file as a
character string, in the Coordinated Universal Time (UTC) zone.

The following elements contain data about the current record:

Offset INTEGER The offset in the file the record starts at. The first byte in the file is
offset 0.

NextRecordOffset INTEGER The offset in the file that the next record starts at, relative to the
start of the file, and is 1 byte after the end of the current record. If
the end of the file is reached, then the value is not given in the local
environment.

EndOfFile BOOLEAN The FileRead node sets this element to TRUE when it has read the
last record of the input file. It is therefore always TRUE when the
detection property is Record is Whole File.

RecordNumber INTEGER The number of the record in the file relative to the offset the read
node starts reading from. The value is always 1 unless the filter
expression is being used, in which case it reflects the number of the
record that was selected.

NoMatchReason STRING The reason why a message is sent to the "No match" terminal. Null
if the message is sent to the Out terminal. Possible reasons:

v NoFile – the file does not exist.

v NoData – the file exists but has no records.

v NoRecord – the file exists and contains records but none match
the filter expression.

Delimiter CHARACTER The characters used to separate this record from the preceding
record, if Delimited is specified in Record detection. The first
record has a null delimiter. If this element is part of the End of Data
message tree, this value is the delimiter that follows the last record,
if any.

IsEmpty BOOLEAN Whether the record propagated by the message flow is empty. It is
set to TRUE if the current record is empty.

Archive/Directory STRING The name of the directory where the file was archived.

Archive/Name STRING The name of the file where the file was archived.

This structure is propagated with each message written to the Out terminal of the
FileRead node and with the empty message written to the End of data terminal.

LocalEnvironment.WrittenDestination.File fields

When you use the FileOutput node, it stores information that you can access in the
LocalEnvironment.WrittenDestination.File message tree. The fields in this structure
are described in the following table.

1822 WebSphere Message Broker Version 7.0.0.8

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of the output directory in the form used by
the file system of the broker. For example, on Windows systems, this
starts with the drive letter prefix (such as C:).

Name CHARACTER File name of the output file.

Action CHARACTER Possible values are:

v Replace if an output file of the same name is replaced.

v Create if a new output file is created.

v Append if this value is associated with a record that is appended to
an output file.

v Finish if a Finish File message is received and no file is found to
finish (for example, if Record is Whole File is specified and a
message is sent to the Finish File terminal).

v Transmit if the file was transferred by FTP or SFTP and the file
was not retained.

Timestamp CHARACTER The date and time, in character string form, when the node started
to process this file. This value prefixes the names of files that are
archived if you specify Time Stamp, Archive and Replace Existing
File in the Output file action property on the Basic tab.

LocalEnvironment.Destination.File fields

When you use the FileOutput and FileRead nodes, you can override the directory
and name properties with elements in the message tree. The default location for
these overrides is LocalEnvironment.Destination.File, although you can change this
location by using the properties on the Request directory property location and
Request file name property location on the FileOutput node. When you use the
FileRead node, you can also override the length and offset properties. The fields of
this structure are described in the following table.

Element Name Element Data Type Description

Directory CHARACTER This property specifies the absolute or relative directory path of the
output directory in the form that is used by the file system of the
broker. For example, on Windows systems, this path starts with the
drive letter prefix (such as C:) and use a backslash (\) as the
directory delimiter. On UNIX systems, the path includes a slash (/)
as the directory delimiter.

Name CHARACTER This property specifies the file name of the output file. The
FileOutput node does not perform wildcard replacement on the
value of the element. For example, if its value is Input*.txt, the
FileOutput node tries to write to a file with an asterisk (*) in its
name. It might or might not succeed, depending on whether an
asterisk is a valid character for files in the file system to which it is
writing.

Length INTEGER This property specifies the length of the record to read from the file.
The value is only used if the record detection option fixed length is
being used.

Offset INTEGER This property specifies the offset in the file to start searching for a
record. Offset 0 means start from the beginning and is the default
value if no override is given.

Chapter 9. Developing message flow applications 1823

Element Name Element Data Type Description

Archive/Directory STRING The directory where the file is archived to when using one of the file
disposition archive options. By default the file is archived to
'mqsiarchive' under the file input directory. Any path is not relative
to the input directory but relative to the
MQSI_FILENODES_ROOT_DIRECTORY.

Archive/Name STRING The pattern to use to create an archive file name. Only one star is
allowed in the file name and the star is replaced with the first star
replace in the file pattern name. If Archive with Time Stamp is
specified, then a time stamp is appended to the archive name.

LocalEnvironment.Destination.File.Remote fields

When you use the FileOutput node with the Remote Transfer property selected,
you can override the directory name with an element in the local environment tree.
The fields of this structure are described in the following table.

Element Name Element Data Type Description

Remote.ServerDirectoryCHARACTER This property specifies the absolute or relative directory path of the
output directory on the remote server. The property has no effect if
SFTP or FTP is not enabled on the FileOutput node. Format the path
according to the path syntax that is accepted by the FTP server,
typically by using UNIX-style slash (/) directory delimiters.

Remote.Server CHARACTER This property specifies the name of an FtpServer configurable
service, a server name, or a server name and port (using the syntax
serverName:port) to use to connect to when connecting to an FTP or
SFTP server from the FileOutput node. The property has no effect if
SFTP or FTP is not enabled on the FileOutput node.

LocalEnvironment.Wildcard.WildcardMatch field

On the FileInput, CDInput, and FTEInput nodes, you can specify a file name
pattern that contains wildcard characters. The input nodes copy the characters in
the file name matched by wildcards, together with any intermediate characters, to
LocalEnvironment.Wildcard.WildcardMatch.

Element Name Element Data Type Description

WildcardMatch CHARACTER The character string in the file name matched by wildcards in the file
name pattern.

On the FileOutput, CDOutput, and FTEOutput nodes, you can use a wildcard
character in the file name pattern. If you include the single wildcard character, '*',
in the file name pattern, the node uses the value that is stored in
LocalEnvironment.Wildcard.WildcardMatch. This is useful if you have a message
flow where the input and output nodes are working with the same file; you can
preserve the name of the input file on the output nodes. You can also use standard
methods for manipulating the value of the WildcardMatch element to whatever
you want; you must not use a FileInput or FTEInput node.

See “File name patterns” on page 1830 for more information.

1824 WebSphere Message Broker Version 7.0.0.8

LocalEnvironment.FTE fields

When you use the FTEInput node, it stores information that you can access in the
LocalEnvironment.FTE and LocalEnvironment.FTE.Transfer message trees. The
LocalEnvironment.FTE message tree stores information relating to the current
record and is populated by the broker. The fields in this structure are described in
the following table:

Element Name Element Data Type Description

TimeStamp CHARACTER Date and time the input node started processing the file in the
Coordinated Universal Time (UTC) zone, as a character string. This
data is the string used to create archive and backout file names if a
timestamp is included.

Offset INTEGER Start of the record within the file. The first record starts at offset 0
bytes. When Offset is part of the End of Data message tree, this
value is the length of the input file.

Record INTEGER Number of the record within the file. The first record is record
number 1. When Record is part of the End of Data message tree, this
value is the number of records.

Delimiter CHARACTER The characters used to separate this record from the preceding
record, if Delimited is specified in Record detection. The first
record has a null delimiter. When Delimiter is part of the End of
Data message tree, this value is the delimiter that follows the last
record, if any.

IsEmpty BOOLEAN Whether the record propagated by the message flow is empty.
IsEmpty is set to TRUE if the current record is empty. When
IsEmpty is part of the End of Data message tree, this value is always
set to TRUE.

The LocalEnvironment.FTE.Transfer message tree contains information received
from WebSphere MQ File Transfer Edition regarding the transfer or file; see
WebSphere File Transfer Edition Information Center for more details. The fields in
this structure are described in the following table.

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of the input directory.

JobName CHARACTER The name for the transfer.

Name CHARACTER File name and extension (per file).

LastModified TIMESTAMP Date and time the file was last modified (per file).

SourceAgent CHARACTER The name of the agent sending the file.

DestinationAgent CHARACTER The name of the agent to send the file to.

OriginatingHost CHARACTER The name of the host from which the transfer was submitted.

TransferId CHARACTER The unique name of the transfer.

MQMDUser CHARACTER The WebSphere MQ user ID in the MQMD of the transfer request
message.

OriginatingUser CHARACTER The user ID of the user that submitted the transfer request.

TransferMode CHARACTER The mode of the transfer. Valid values are Binary or Text.

TransferStatus CHARACTER The status of the transfer of the file.

FileSize INTEGER The size of the file being transferred.

ChecksumMethod CHARACTER The only allowed value is MD5.

Chapter 9. Developing message flow applications 1825

http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/index.jsp

Element Name Element Data Type Description

Checksum CHARACTER If the ChecksumMethod element is set to MD5, this element is the
actual checksum in hex string format.

DestinationAgentQmgr CHARACTER The name of the queue manager of the destination agent to send the
file to.

SourceAgentQmgr CHARACTER The name of the queue manager of the source agent that sent the
file.

OverallTransferStatus CHARACTER The overall status of the transfer.

TotalTransfers INTEGER The total number of files successfully transferred.

TransferNumber INTEGER The number of the current file in the transfer.

These structures are propagated with each message written to the Out terminal of
the FTEInput node and with the empty message written to the End of data
terminal.

LocalEnvironment.WrittenDestination.FTE fields

When you use the FTEOutput node, it stores information that you can access in the
LocalEnvironment.WrittenDestination.FTE message tree. The fields in this structure
are described in the following table.

Element Name Element Data Type Description

DestinationAgent CHARACTER The name of the agent to send the file to.

DestinationQmgr CHARACTER The name of the destination queue manager.

JobName CHARACTER The name for the transfer.

Directory CHARACTER Absolute directory path of the output directory in the form used by
the file system of the broker. For example, on Windows systems, this
starts with the drive letter prefix (such as C:).

Name CHARACTER File name of the output file.

Overwrite BOOLEAN Specifies whether files on the destination system can be overwritten
when the destination agent moves files of the same name there. If
the destination agent fails to overwrite the file, the transfer fails and
the transfer logs report the failure. The FTEOutput node does not
throw or log any errors.

TransferId CHARACTER The unique name of the transfer initiated by the FTEOutput node.

LocalEnvironment.Destination.FTE fields

When you use the FTEOutput node, you can override its Destination agent,
Destination queue manager, Job name, Destination file directory, Destination file
name, and Overwrite files on destination system properties with elements in the
message tree. You can also call a program on the destination agent before starting
the transfer, or when the transfer is finished. The default location for these
overrides is LocalEnvironment.Destination.FTE. The fields of this structure are
described in the following table.

Element Name Element Data Type Description

DestinationAgent CHARACTER The name of the agent to send the file to.

DestinationQmgr CHARACTER The name of the destination queue manager.

JobName CHARACTER The name for the transfer.

1826 WebSphere Message Broker Version 7.0.0.8

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of the output directory in the form used by
the file system of the broker. For example, on Windows systems, this
starts with the drive letter prefix (such as C:).

Name CHARACTER File name of the output file.

Overwrite BOOLEAN Specifies whether files on the destination system can be overwritten
when the destination agent moves files of the same name there. If
the destination agent fails to overwrite the file, the transfer fails and
the transfer logs report the failure. The FTEOutput node does not
throw or log any errors.

PreDestinationCall.NameCHARACTER Call a program on the destination agent before starting the transfer.
This element supplies the name of an Ant script to run. You cannot
call other programs that are not Ant scripts, or pass parameters to
the calls. The Ant script can access all the metadata defined for the
transfer, including user metadata added using the local environment
override LocalEnvironment.Destination.FTE.UserDefined. See
WebSphere File Transfer Edition Information Center for more details
of how to use the PreDestinationCall function.

PostDestinationCall.NameCHARACTER Call a program on the destination agent after completing the transfer.
This element supplies the name of an Ant script to run. You cannot
call other programs that are not Ant scripts, or pass parameters to
the calls. The Ant script can access all the metadata defined for the
transfer, including user metadata added using the local environment
override LocalEnvironment.Destination.FTE.UserDefined. See
WebSphere File Transfer Edition Information Center for more details
of how to use the PostDestinationCall function.

LocalEnvironment.CD fields

When you use the CDInput node, it stores information that you can access in the
LocalEnvironment.CD and LocalEnvironment.CD.Transfer message trees. The
LocalEnvironment.CD message tree stores information relating to the current
record and is populated by the broker. The fields in this structure are described in
the following table:

Element Name Element Data Type Description

Transfer Folder Contains meta data from the IBM Sterling Connect:Direct transfer.

Timestamp CHAR Timestamp of the file.

Offset INTEGER Start of the record within the file. The first record starts at offset 0
bytes. When Offset is part of the End of Data message tree, this
value is the length of the input file.

Record INTEGER Number of the record within the file. The first record is record
number 1. When Record is part of the End of Data message tree, this
value is the number of records.

Delimiter CHARACTER The characters used to separate this record from the preceding
record, if Delimited is specified in Record detection. The first
record has a null delimiter. When Delimiter is part of the End of
Data message tree, this value is the delimiter that follows the last
record, if any.

IsEmpty BOOLEAN Whether the record propagated by the message flow is empty.
IsEmpty is set to TRUE if the current record is empty. When
IsEmpty is part of the End of Data message tree, this value is always
set to TRUE.

Chapter 9. Developing message flow applications 1827

http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/index.jsp

These structures are propagated with each message written to the Out terminal of
the CDInput node and with the empty message written to the End of data
terminal.

LocalEnvironment.CD.Transfer

The LocalEnvironment.CD.Transfer message tree contains information received
from IBM Sterling Connect:Direct regarding the transfer or file. The fields in this
structure are described in the following table.

Element Name Element Data Type Description

ProcessName CHARACTER The process name of the script transferring the file.

StepName CHARACTER The step name causing the transfer to take place.

ProcessNumber INTEGER The number of the process running the process script.

Submitter CHAR The user ID submitting the process script.

Accounting CHAR The secondary node (SNODE) accounting details for the process
script.

SourcePath CHAR The source path of the file on the primary node (PNODE) machine.

DestinationPath CHAR The destination path of the file on the secondary node (SNODE)
machine

Directory CHARACTER The directory which the file is copied to.

Name CHARACTER The name of the file copied to.

PrimaryNodeName CHARACTER The name of the primary node from which the file was copied.

SecondaryNodeName CHARACTER The name of the secondary node.

LocalEnvironment.Destination.CD fields

When you use the CDOutput node, you can override various destination system
properties with elements in the message tree. The default location for these
overrides is LocalEnvironment.Destination.CD. The fields of this structure are
described in the following table

Element Name Element Data Type Description

SNODE CHARACTER The name of the secondary Connect:Direct server (SNODE) to send
the file to.

ProcessName CHARACTER The process name that the script uses to run.

Accounting CHARACTER Accounting data shown when the script is running on both the
primary Connect:Direct server (PNODE) and secondary
Connect:Direct server (SNODE).

Directory CHARACTER Absolute directory path of the output directory in the form used by
the file system of the broker. For example, on Windows systems, this
starts with the drive letter prefix (such as C:).

Name CHARACTER File name of the output file.

Copy.From CHARACTER The final part of the path name is the IBM Sterling Connect:Direct
process script property you want to change.

This is either a direct <option name> on the FROM clause, or a value
in the <SYSOPTS> option.

You must take care to ensure that the created script is valid, because
any existing value created by the node is overridden.

1828 WebSphere Message Broker Version 7.0.0.8

Element Name Element Data Type Description

Copy.To CHARACTER The final part of the path name is the IBM Sterling Connect:Direct
process script property you want to change.

This is either a direct <option name> on the TO clause, or a value in
the <SYSOPTS> option.

You must take care to ensure that the created script is valid, because
any existing value created by the node is overridden.

LocalEnvironment.WrittenDestination.CD fields

When you use the CDOutput node, it stores information that you can access in the
LocalEnvironment.WrittenDestination.CD message tree. The fields in this structure
are described in the following table.

Element Name Element Data Type Description

ProcessName CHARACTER The name of the process sending the file.

ProcessNumber CHARACTER The number of the process sending the file.

Directory CHARACTER Absolute directory path of the output directory in the form used by
the file system of the broker. For example, on Windows systems, this
starts with the drive letter prefix (such as C:).

Name CHARACTER File name of the output file.

PrimaryNodeName CHARACTER The name of the primary Connect:Direct server (PNODE)

PrimaryNodeOS CHARACTER The operating system of the primary Connect:Direct server

SecondaryNodeName CHARACTER The name of the secondary Connect:Direct server (SNODE)

SecondaryNodeOS CHARACTER The operating system of the secondary Connect:Direct server (this
might not be the same as the WebSphere Message Broker operating
system)

Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“File name patterns” on page 1830
You can specify a file name pattern, using wildcard characters, to identify a file to
be read by the FileInput and FTEInput nodes. You can also specify a file name
pattern, using a single wildcard character, to name the file to be created by the
FileOutput and FTEOutput nodes.
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related tasks:
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.

Chapter 9. Developing message flow applications 1829

“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“FileRead node” on page 4444
Use the FileRead node to read one record, or the entire contents of a file, from
within a message flow.
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.
“CDInput node” on page 4305
Use the CDInput node to preview files when using IBM Sterling Connect:Direct in
conjunction with WebSphere Message Broker.
“CDOutput node” on page 4312
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.

File name patterns
You can specify a file name pattern, using wildcard characters, to identify a file to
be read by the FileInput and FTEInput nodes. You can also specify a file name
pattern, using a single wildcard character, to name the file to be created by the
FileOutput and FTEOutput nodes.

Using file name patterns with the FileInput and FTEInput nodes

The input nodes read files from a specified directory and propagate messages
based on the contents of these files. Only files with names that match a pattern
(the input pattern), as specified in the FileInput node's File name or pattern
property or the FTEInput node's File name filter property, are read.

The match might be with a file name or a character sequence (a pattern). A pattern
is a sequence containing at least one of the following wildcard characters:

Wildcard
character Description Example

* Any sequence of zero or
more characters

*.xml matches all file names with an xml
extension

? Any single character f??????.csv matches all file names
consisting of the letter f followed by six
characters, then the sequence .csv.

The default pattern is *, which matches all file names.

You cannot specify file names that contain the following characters: the asterisk
('*'), the question mark ('?'), or file name separator characters ('/' and' \').

For example:
v If you want the FileInput node to process all files that have a certain extension,

such as xml, set its File name or pattern property to *.xml and the node will
process all files in the directory that have this extension.

If you deploy the flow to a Windows server, file names match the pattern
irrespective of case. However, if you deploy the flow to a Linux, UNIX, or z/OS
server, file names must match the pattern character string and its case.

1830 WebSphere Message Broker Version 7.0.0.8

Pattern matching

The FileInput and FTEInput nodes set the
LocalEnvironment.Wildcard.WildcardMatch element to the string matched by
wildcards in the file name. The following are some examples of pattern matching
with the value in this element, where the value in the FileInput node's File name
or pattern property is File????.from*.xml:
v If the FileInput node finds a file with the file name File1234.fromHQ.xml, there

is a match. The value in the LocalEnvironment.Wildcard.WildcardMatch element
is set to 1234.fromHQ and the node processes the file.

v If the file name is File123.fromHQ.xml, there is no match because there are
insufficient characters between the File and .from elements of the file name.
The FileInput node ignores this file.

v If the file name is File2345.from.xml, there is a match. The value in the
LocalEnvironment.Wildcard.WildcardMatch element is set to 2345.from and the
node processes the file. In this example, the * in the character string in the File
name or pattern property matches a string of zero characters. If you require the
character string between the from and .xml elements of the file name to always
have at least one character, you specify the File name or pattern property with
a value of File????.from?*.xml.

Using file name patterns with the FileOutput and FTEOutput nodes

The node writes messages to files that it creates or replaces in the broker's file
system. Only patterns containing a single wildcard character (the asterisk, '*') are
allowed in this property. The file name to be used is determined in the following
way:
v If the file name property contains no wildcard, the value of this property is the

name of the file created. This value must be a valid file name on the file system
that hosts the broker to which the message flow is deployed.

v If the file name property contains a single wildcard, the value of the element
LocalEnvironment.Wildcard.WildcardMatch in the current message replaces the
wildcard character, and the resulting value is the name of the file created. This
value must be a valid file name on the file system that hosts the broker to which
the message flow is deployed. If the WildcardMatch value is not found, the
wildcard character is replaced by the empty string.

You cannot specify file names that contain the following characters: the asterisk
('*'), the question mark ('?'), file name separator characters ('/' and' \'). The name
of the file can be overridden by values in the current message.

If the File name or pattern property on the FileOutput node is empty, the name
must be overridden by the current message. Wildcard substitution occurs only if
this property is not overridden in this way.

File names are passed to the file system to which the broker has access, and have
to respect the conventions of these file systems. For example, file names on
Windows systems are not case-sensitive; on UNIX systems, file names that differ
by case are considered distinct.

Example: If the FileInput node has *.out in the File name or pattern property,
and the incoming file is myfile, the name of the outgoing file is myfile.out.

Chapter 9. Developing message flow applications 1831

FTP and SFTP considerations

You can use the FileInput node to transfer files from a remote FTP or SFTP server
and process them. Only files with names that match the file name pattern specified
in the node are read. If your broker is on an operating system that respects case
sensitivity (such as UNIX), you might specify a pattern that includes a combination
of uppercase and lowercase characters. If you then use this pattern to process files
that are in a directory on a remote FTP or SFTP server, and this server is running
on an operating system that does not respect case sensitivity (such as Windows),
file name matching might fail with the result that no files are processed. This
failure occurs because the file names on the remote server are not in mixed case. If
your broker is on an operating system that does not respect case sensitivity, any
pattern that you specify might be matched by more than one file on a remote FTP
or SFTP server that is running on an operating system on which case sensitivity is
significant. Each of these files is then processed sequentially.

You can use the FileOutput node to write files to a remote FTP or SFTP server.
Only files with names that match the pattern specified in the node are written. If
your broker is running on an operating system that respects case sensitivity (such
as UNIX), you might specify a pattern that includes a combination of uppercase
and lowercase characters. However, if you then use this pattern to write files to a
directory on a remote FTP or SFTP server running on an operating system that
does not respect case sensitivity (such as Windows), the file name is written in
uppercase rather than in the way that it was specified in your pattern.

If the name of a file on a remote FTP server contains one or more characters that
are not valid on the operating system on which the broker where you specified the
file name pattern is running, the file is not transferred from the FTP server for
processing by the FileInput node.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
Related tasks:
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Reading files” on page 1834
Use the FileInput, CDInput, FTEInput, and FileRead nodes to read files.
“Writing a file” on page 1852
Use the FileOutput, CDOutput, and FTEOutput nodes to write files.
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.

1832 WebSphere Message Broker Version 7.0.0.8

“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.

Archiving
Files that are successfully processed by the FileInput node or FileOutput node can
optionally be moved to the mqsiarchive subdirectory of the input or output
directory.

The input directory of the FileInput node has a subdirectory called mqsiarchive.
The output directory of the FileOutput node also has a subdirectory called
mqsiarchive. Archiving is not enabled for the FTEOutput and FTEInput nodes.

FileInput node

Files that are processed successfully by the FileInput node are moved to the
mqsiarchive subdirectory if the FileInput node's Action on successful processing
property is set to Move to Archive Subdirectory or Add Timestamp and Move to
Archive Subdirectory.

Select the Replace duplicate archive files check box to overwrite existing files
in the mqsiarchive subdirectory. If you do not set this option, and a file with the
same name already exists in the archive subdirectory, the node stops processing
files. Every time that the node returns from its polling wait period, it issues a pair
of messages, BIP3331 and a more specific one describing the problem. To avoid
writing too many messages, duplicate messages are suppressed for increasing
periods of time, until eventually they are issued only about once every hour. In
this circumstance, the system administrator must stop the flow, correct the
problem, then restart the flow.

Clear the Replace duplicate archive files check box only if you are sure either
that the input files have unique names, or that some other process will remove a
file from the archive directory before the FileInput node processes another of the
same name. If you cannot ensure this, either specify Add Timestamp and Move to
Archive Subdirectory in the Action on successful processing property so that
archived files have unique names, or select the Replace duplicate archive files
check box

FileOutput node

Files that are processed successfully by the FileOutput node are moved to the
mqsiarchive subdirectory if the Output file action property of the FileOutput
node is set to Archive and Replace Existing File or Time Stamp, Archive and
Replace Existing File.

Select the Replace duplicate archive files check box to overwrite existing files
in the mqsiarchive subdirectory. If you do not set this option, and a file with the
same name already exists in the archive subdirectory, the node generates an
exception when it tries to move the successfully processed file and the file remains
in the transit subdirectory.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related tasks:

Chapter 9. Developing message flow applications 1833

“Reading files”
Use the FileInput, CDInput, FTEInput, and FileRead nodes to read files.
“Writing a file” on page 1852
Use the FileOutput, CDOutput, and FTEOutput nodes to write files.
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

Reading files
Use the FileInput, CDInput, FTEInput, and FileRead nodes to read files.

About this task

This section contains the following topics:
v “Using a local file as input for your message flow”
v “Routing or enriching a message based on the contents of a file” on page 1837
v “Reading a file on a remote FTP or SFTP directory” on page 1842
v “Receiving a file by WebSphere MQ File Transfer Edition” on page 1845
v “Controlling how files are separated into records” on page 1848
v “Receiving a file using IBM Sterling Connect:Direct” on page 1847
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related tasks:
“Working with files” on page 1807
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileRead node” on page 4444
Use the FileRead node to read one record, or the entire contents of a file, from
within a message flow.
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.
“CDInput node” on page 4305
Use the CDInput node to preview files when using IBM Sterling Connect:Direct in
conjunction with WebSphere Message Broker.

Using a local file as input for your message flow:

Learn how to use the FileInput node to read a file on your local file system and
then propagate messages that are based on the contents of that file.

Before you begin

This example shows how one combination of values in the Record detection,
Delimiter, and Delimiter type properties can be used to extract messages from a
file. The example describes the FileInput node of a message flow and assumes that

1834 WebSphere Message Broker Version 7.0.0.8

the rest of the flow has already been developed. It is also assumed that a Windows
system is being used. To complete this example task, you must first have added a
FileInput node to a message flow. You also need the following resources:
v An input file. To follow this example scenario, create an input file called

test_input1.xml with the following content:
<Message>test1</Message>
<Message>testtwo</Message>
<Message>testthree</Message>

Each line ends with a line terminator; on a Windows system, this comprises
carriage return and line feed characters (X'0D0A'). Put this file into directory
C:\FileInput\TestDir.

v A message set. This example uses a message set called xml1 which uses the
XMLNSC parser. Message set xml1 models messages of the following form:
<Message>...</Message>

Complete the following steps:

Procedure

1. Set the required node properties on the FileInput node. The following table
summarizes the FileInput node properties that you should set, which tab they
appear on and the value that you should set in order to follow this example:

Tab Property Value

Basic Input directory C:\FileInput\TestDir

File name or pattern test_input1.xml

Action on successful
processing

Move to Archive
Subdirectory

Replace duplicate archive
files

Selected

Input Message Parsing Message domain XMLNSC

Message set xml1

Polling Polling interval 3

Retry Action on failing file Add Time Stamp and Move to
Backout Subdirectory

Records and Elements Record detection Delimited

Delimiter DOS or UNIX Line End

Delimiter type Postfix

FTP FTP Not selected

2. Deploy the message flow to the broker. See Chapter 11, “Packaging and
deploying,” on page 3209.

Results

The following actions occur when you perform these steps:
1. The file is processed. In accordance with the values set in the properties on the

Records and Elements tab, the FileInput node detects records that are
separated by DOS or UNIX end-of-line characters and creates a message for
each one that it finds. It propagates three messages to the flow attached to the
Out terminal:

Chapter 9. Developing message flow applications 1835

v Message 1:
<Message>test1</Message>

v Message 2:
<Message>testtwo</Message>

v Message 3:
<Message>testthree</Message>

2. If a flow is attached to the End of Data terminal, the End of Data message is
propagated after the last record in the file has been processed.

3. When processing is complete, the file test_input1.xml is moved to the
mqsiarchive subdirectory, C:\FileInput\TestDir\mqsiarchive\test_input1.xml.
If a file called test_input1.xml already exists in the mqsiarchive subdirectory,
it is overwritten.

4. If the message flow fails, retry processing is attempted according to the values
set in the properties of the FileInput node. In this example task, a time stamp is
added to the file name and the file is moved to the mqsibackout directory. Here
is an example of the path to such a file: C:\FileInput\TestDir\mqsibackout\
20070928_150234_171021_test_input1.xml.

What to do next

To see the effects of specifying other combinations of values in the Record
detection, Delimiter, and Delimiter type properties of the FileInput node, see
“Controlling how files are separated into records” on page 1848.

The following samples also show how to use this node:
v Batch Processing
v WildcardMatch

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related tasks:
“Reading a file on a remote FTP or SFTP directory” on page 1842
Use a FileInput node to read a file in a directory on a remote FTP or SFTP server
and then propagate messages that are based on the contents of that file.
“Writing a file to your local file system” on page 1853
Use a FileOutput node to write a file to a specified directory on your local file
system.
Related reference:
“Recognizing file records as messages to be parsed” on page 1817
Use the FileInput, FTEInput and FileRead nodes to segment your input file into
messages that are to be parsed.
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“Controlling how files are separated into records” on page 1848
Set the Record detection and other properties on node Records and Elements tabs

1836 WebSphere Message Broker Version 7.0.0.8

to read files in different formats.

Routing or enriching a message based on the contents of a file:

The FileRead node can route or enrich messages based on the contents of the file.

When developing the message flow you can specify the name and location of the
file to be read. You can override these values at run time based on the contents of
a message.

The node complements the existing FileInput and FileOutput nodes. The FileRead
node reads a file in the middle of a message flow.

Using the node to route messages

A message is routed by using the contents of a file colocated with WebSphere
Message Broker or on a network file system. The message from the source system
is routed to a target system by using an external routing file. No response is
expected.

The basic flow of events is as follows:
v WebSphere Message Broker receives a message through an input node.
v The WebSphere Message Broker message flow interrogates the contents of a

message to identify routing key information.
v If the file consists of more than one record, you need to determine:

– Where the first record starts. Unless you specify an offset byte, the node starts
reading the file at the first byte.

– How each record ends (fixed-sized, delimited, or parsed.)
– Which record to propagate. You can use any combination of information from

the input message and the file in deciding this. All records from the specified
start point are read until a record is found that matches the record selection
expression, this record is then propagated. Examples include:

The third record, as identified by the local environment field
$OutputLocalEnvironment/File/Read/RecordNumber=3. In this example, the
first record is fully read and the expression evaluates to false. The second
record is then fully read and the expression evaluates to false. When the
third record is fully read, the expression evaluates to true and the record is
propagated. No further records are read.
A key field in the input message matches a key field in the file
$InputRoot/XMLNSC/FromMQInputMessage/Record1 = $ResultRoot/XMLNSC/
FromFile/Record5. In this example, records are read from the file until the
value of the Record5 element of the record matches the value of the
Record1 element of the incoming message. The location of the record in
the file determines how many records the node must read before
successfully matching the record selection expression.

v Within the message flow you can implement a local cache of records to reduce
the performance cost of reading multiple static records. For an example of how
to implement a local cache, see the following sample:
– Message Routing

v You can choose to take information from the file, and copy it to the outgoing
message. The copy can be a subset of the data, and can be copied to any location
in the message or the local environment.

v A target application receives the routed message.

Chapter 9. Developing message flow applications 1837

For information about how to process messages based on the contents of an XML
or CSV file, see the following sample:
v Message Routing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“FileRead node” on page 4444
Use the FileRead node to read one record, or the entire contents of a file, from
within a message flow.
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

Combining a WebSphere MQ message with an XML file using the contents of the message
to identify which file to use:

Combine an incoming message with the contents of an XML file, using fields in the
message to determine which file to use.

Before you begin

Before you start: Put a file on the file system that is local to the broker, for the
FileRead node to read. Here is an example of the file contents:
<Data>Purchase details</Data>

In this example, the contents of the data in the data tag are inserted into the
incoming message. Any valid XML structures can be added to this section.

Make a note of the path to the file. For example: c:\temp\FileRead\task3.xml or
/tmp/FileRead/task3.

Create the following queues on the broker queue manager:
v FILEREAD.TASK3.IN1
v FILEREAD.TASK3.OUT1

Detailed information about configuring the node is given on the property panels
for the node, in the WebSphere Message Broker Toolkit.

Procedure

1. Create a message flow that contains an MQInput node, a FileRead node, and
an MQOutput node.

2. Wire the terminals as follows:
a. Wire the Out terminal of the MQInput node to the In terminal of the

FileRead node.

1838 WebSphere Message Broker Version 7.0.0.8

b. Wire the Out terminal of the FileRead to the In terminal of the MQOutput
node.

3. Configure the MQInput node:
a. On the Basic panel, set the Queue name to FILEREAD.TASK3.IN1
b. On the Input Message Parsing panel set the domain to XMLNSC.

4. Configure the FileRead node.
a. On the Basic panel, set the directory and file name to refer to the XML file.

For example: c:\temp\FileRead and task3.xml or /tmp/FileRead and task3.
b. Configure the Result panel:

1) Set the Result data location to $ResultRoot/XMLNSC/Data
2) Set the Output data location to $InputRoot/XMLNSC/Data

c. Configure the Input Message Parsing panel:
1) Set the Domain to XMLNSC

5. Configure the MQOutput node:
a. On the Basic panel, set the Queue name to FILEREAD.TASK3.OUT1

6. Deploy the message set and message flow.
7. Change the Directory and Name fields to the correct location of the file, and

then put the following XML message onto queue FILEREAD.TASK2.IN1:
<Invoice>

<Directory>c:\temp\FileRead</Directory>
<Name>task2.xml</Name>
<Data/>

</Invoice>

Results

The broker routes the message to the queue FILEREAD.TASK3.OUT1 and inserts
data from the file into the Data field of the output message:
<Invoice>

<Directory>c:\temp\FileRead</Directory>
<Name>task2.xml</Name>
<Data>Purchase details</Data>

</Invoice>

Related concepts:
“Routing or enriching a message based on the contents of a file” on page 1837
The FileRead node can route or enrich messages based on the contents of the file.
Related reference:
“FileRead node” on page 4444
Use the FileRead node to read one record, or the entire contents of a file, from
within a message flow.

Record selection expressions:

The record selection expression is used to select a record from a file to propagate
to the rest of the flow.

Each record in turn is compared to the expression, and the first one to evaluate to
true is propagated to the Out terminal. You can set the expression to any valid
XPath expression that returns a Boolean value. The expression is not used when
Whole File is selected as the Record Detection option.

Chapter 9. Developing message flow applications 1839

Correlation names used in the expression

You can use any of the following correlation names in the expression:

InputRoot and InputLocalEnvironment
The Input names refer to the incoming message that enters the node
through the In terminal

ResultRoot
The ResultRoot name refers to the message created by using the current
record in the file.

OutputRoot
The OutputRoot name refers to the message that is propagated if the
expression evaluates to true. This action is identical to ResultRoot, unless
the Output data location or Result data location have been changed to
copy the Result message found in the file to a different location in the
outgoing message.

OutputLocalEnvironment
The OutputLocalEnvironment contains the normal local environment which
is propagated down the Out terminal and contains useful information like
the number of the record and its offset.

Any combination of data in these correlation names can be used, along with any
valid XPath expression, to determine whether to propagate the record.

Examples

Expression is:
$InputRoot/XMLNSC/Invoice/AccountNumber=$ResultRoot/XMLNSC/Data/Key

In this example, each record is a valid XML document. The FileRead node reads
each record from the file. In the incoming message the FileRead node compares the
field /Data/Key to the field /Invoice/AccountNumber. If the record matches, it is
propagated to the Out terminal.

Expression is:
$OutputLocalEnvironment/File/Read/RecordNumber=5

The FileRead node reads each record from the file and compares the record
number to 5. The record is propagated when it reaches the fifth record.

Building an outgoing message by using an incoming message combined with a
record from a file

The FileRead node reads a record from a file and combines it with the message
coming in to the node. By default, it replaces the message with the contents of the
record read from the file. However, by using properties on the Result panel, you
can choose how to combine the incoming message and file record contents. The
node has three logical trees:

Input The Input message assembly contains all the data in the incoming message
and is the basis for the propagated record.

Result The Result message assembly contains the record read from the file.

1840 WebSphere Message Broker Version 7.0.0.8

Output
The Output message assembly is the actual object propagated from the
node.

By default, the Output message assembly is constructed by copying the Input
message assembly to the Output message assembly. The data part of the Output
message assembly is then replaced by the contents of the Result message assembly
and the OutputLocalEnvironment is updated with details of what happened in the
node.

The following Result panel properties can be used to modify this behavior:

Result data location
Specifies which part of the read record is copied to the Output message. By
default, the Result data location copies everything from ResultRoot but it
can be changed to copy only part of the record. For example:
ResultRoot.XMLNSC.Invoice.Name just copies the name field from the
selected record to the output message.

Output data location
Specifies where the record is copied to in the outgoing message. By
default, the Output data location copies everything to OutputRoot. The
location specified can be in the data part of the message (under
ResultRoot) or in any other Output tree like OutputLocalEnvironment. For
example: To copy the resulting record to a field in the message body
OutputRoot.XMLNSC.Invoice.Data or to copy the result to local
environment OutputRoot.Variables.Invoice.data.

Copy local environment
Causes the local environment to be copied from the
InputLocalEnvironment. If the Copy local environment option is not
selected, the InputLocalEnvironment is used directly without copying. This
option allows nodes before the FileRead node to see changes to the Local
environment.

For example, the following options copy the name field from a record to the
output going message. The rest of the Output message is based on the input
message:
Result data location= ResultRoot.XMLNSC.Invoice.Name
Output data location= OutputRoot.XMLNSC.Invoice.Name

The following options copy the message body from a record to the output going
local environment. The Output message is the same as the input message:
Result data location= ResultRoot.XMLNSC.Invoice
Output data location= OutputLocalEnvironment.Variables.Invoice

Related concepts:
“Routing or enriching a message based on the contents of a file” on page 1837
The FileRead node can route or enrich messages based on the contents of the file.
Related tasks:
“Combining a WebSphere MQ message with an XML file using the contents of the
message to identify which file to use” on page 1838
Combine an incoming message with the contents of an XML file, using fields in the
message to determine which file to use.
Related reference:
“FileRead node” on page 4444
Use the FileRead node to read one record, or the entire contents of a file, from

Chapter 9. Developing message flow applications 1841

within a message flow.

Reading a file on a remote FTP or SFTP directory:

Use a FileInput node to read a file in a directory on a remote FTP or SFTP server
and then propagate messages that are based on the contents of that file.

Before you begin

Before you start:

This example is an extension of the example described in “Using a local file as
input for your message flow” on page 1834 and it describes how to use a FileInput
node in a message flow. The instructions assume that you are using a Windows
operating system and that you have created a message flow containing a FileInput
node. You also require the following resources:
v An FTP or SFTP server. Ensure that an FTP or SFTP server exists, with the

following settings:

Server ftpserver.hursley.abc.com

Port 21 (for FTP) or 22 (for SFTP)

Working directory
/ftpfileinput

Userid
myuserid

Password
mypassword

These values are for the purposes of this example only. If you use other values,
record them so that you can set the appropriate values during the task.

v A security identity. Use the mqsisetdbparms command to define a security
identity called myidentity for your user and password details.
If you want to connect to an FTP server, the security identity must have an
ftp:: prefix, to enable the file nodes to find the identity definition. For example,
use the following command for a broker called MyBroker:

mqsisetdbparms MyBroker -n ftp::myidentity -u myuserid -p mypassword

If you want to connect to an SFTP server, the security identity must have an
sftp:: prefix, as shown in the following example:

mqsisetdbparms MyBroker -n sftp::myidentity -u myuserid -p mypassword

You can also configure a connection to an SFTP server to use public key
authentication, by specifying an SSH identity file and pass phrase, instead of a
password. For example:

mqsisetdbparms MyBroker -n sftp::myidentity -u myuserid -i identity_file -r passphrase

For more information about configuring connections to an SFTP server, see
“Transferring files securely by using SFTP” on page 1864.

v An input file. To follow this example scenario, create an input file called
test_input1.xml with the following content:
<Message>test1</Message>
<Message>testtwo</Message>
<Message>testthree</Message>

1842 WebSphere Message Broker Version 7.0.0.8

Each line ends with a line terminator that is suitable for the system on which the
FTP or SFTP server is found. Do not put this file in the input directory but,
instead, put it in the FTP or SFTP server directory /ftpfileinput.

v A message set. This example uses a message set called xml1, which uses the
XMLNSC parser. Message set xml1 models messages of the following form:
<Message>...</Message>

About this task

Complete the following steps:

Procedure

1. Set the required node properties on the FileInput node. The following table
summarizes the FileInput node properties that you must set, the tab on which
they are displayed, whether they are mandatory, and the required values.

Tab Property Value

Basic Input directory C:\FileInput\TestDir

If the input directory does not exist, no files are
processed, even if you are processing files over
FTP or SFTP.

File name or pattern test_input1.xml

Action on successful processing Move to Archive Subdirectory

Replace duplicate archive files Selected

Input Message
Parsing

Message domain XMLNSC

Message set xml1

Polling Polling interval 3

Retry Action on failing file Add Time Stamp and Move to Backout
Subdirectory

Records and
Elements

Record detection Delimited

Delimiter DOS or UNIX Line End

Delimiter type Postfix

FTP Remote transfer Selected

Transfer protocol FTP or SFTP

Remote server and port ftpserver.hursley.abc.com

Security identity myidentity

Server directory /ftpfileinput

Transfer mode ASCII (for FTP only)

Scan delay 45

If you used other values for your FTP or SFTP server resource, enter those
values. The settings used here are identical to those used in the example in
“Using a local file as input for your message flow” on page 1834, except that
the Remote transfer property has been selected and there are now properties
on the FTP tab. If you clear the Remote transfer property, the node operates as
it does in the example in “Using a local file as input for your message flow” on
page 1834; the properties on the FTP tab remain set but are ignored.

2. Deploy the message flow to the broker. See Chapter 11, “Packaging and
deploying,” on page 3209.

Chapter 9. Developing message flow applications 1843

Results

The following actions occur when you perform these steps:
1. The file test_input1.xml is transferred from the FTP or SFTP server directory

(/ftpfileinput) to the local directory (C:\FileInput\TestDir). The file is
deleted from the FTP or SFTP server directory.

2. The FileInput node detects records that end with a DOS or UNIX line end and
creates a message for each one that it finds, as defined by the properties on the
Records and elements tab. The node propagates three messages to the message
flow that is attached to the Out terminal:
v Message 1:

<Message>test1</Message>
v Message 2:

<Message>testtwo</Message>
v Message 3:

<Message>testthree</Message>

3. If a node is attached to the End of Data terminal, the End of Data message is
propagated after the last record in the file has been processed.

4. When processing is complete, the file test_input1.xml is moved to the
mqsiarchive subdirectory C:\FileInput\TestDir\mqsiarchive. If a file called
test_input1.xml exists in the mqsiarchive subdirectory, it is overwritten.

5. If the message flow fails, retry processing is attempted according to the values
set in the properties of the FileInput node. In this example task, a time stamp is
added to the file name and the file is moved to the mqsibackout directory. Here
is an example of the path to such a file: C:\FileInput\TestDir\mqsibackout\
20070928_150234_171021_test_input1.xml.
If an error occurs on the FTP side, stating that access is denied, a 0–byte file is
created and moved to the mqsibackout directory. A 0–byte file is created in the
mqsibackout directory for every FTP attempt that fails.

Because the Remote transfer property is selected, the FTP scan delay of 45 seconds
overrides the polling interval of 3 seconds.

What to do next

For more information, see “Controlling how files are separated into records” on
page 1848, which shows the effects of specifying other combinations of values in
the Record detection, Delimiter, and Delimiter type properties of the FileInput
node.

The following samples also show how to use this node:
v Batch Processing
v WildcardMatch

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.

1844 WebSphere Message Broker Version 7.0.0.8

“Transferring files securely by using SFTP” on page 1864
You can transfer files securely by using the Secure File Transfer Protocol (SFTP),
which enables file transfer by using the Secure Shell (SSH) protocol.
Related tasks:
“Using a local file as input for your message flow” on page 1834
Learn how to use the FileInput node to read a file on your local file system and
then propagate messages that are based on the contents of that file.
“Writing a file to a remote FTP or SFTP server” on page 1855
Use a FileOutput node to write a file to a directory on a remote FTP or SFTP
server.
Related reference:
“Recognizing file records as messages to be parsed” on page 1817
Use the FileInput, FTEInput and FileRead nodes to segment your input file into
messages that are to be parsed.
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“Controlling how files are separated into records” on page 1848
Set the Record detection and other properties on node Records and Elements tabs
to read files in different formats.
“FtpServer configurable service properties” on page 3794
Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Receiving a file by WebSphere MQ File Transfer Edition:

Use the FTEInput node to receive files from an existing WebSphere MQ File
Transfer Edition network.

Before you begin

Before you start:

1. Read about WebSphere MQ File Transfer Edition.
2. Prepare the environment.

About this task

Complete the following steps to create an FTEInput node message flow using the
default settings. The task includes some optional steps for additional configuration,
but detailed information about configuring the FTEInput node is given on the
property panels for the node, in the WebSphere Message Broker Toolkit.

Procedure

1. Drag an FTEInput node onto a message flow and wire its Out terminal to an
output node of your choice.

2. Optional: To process only a defined subset of files sent to an agent, configure
the Basic panel. This action allows multiple FTEInput nodes in the same
execution group to receive specific files, depending on the directory or file
filters specified.
You can also specify whether, after processing, the file should be left in its
directory, renamed, or deleted.

Chapter 9. Developing message flow applications 1845

3. To change how the node handles a message flow failure, configure the Retry
panel.

4. Optional: To change how records are identified in the input file, configure the
Record detection property on the Records and Elements panel. For example,
you might want to specify that a record is fixed length, and set the record
length.
a. If you set the Record detection property to anything other than Whole File,

drag an additional output node to the flow, such as the MQOutput node.
Wire the End of Data terminal on the FTEInput node to the In terminal of
the MQOutput node, as shown in the following figure:

The node connected to the End of Data terminal receives an empty message
when the last record in the file is read.

5. Optional: To process the file based on details of the transfer, place a node such
as the Route node after the FTEInput node. Details of the transfer are stored in
the local environment, at LocalEnvironment.FTE.

6. Add the flow to a broker archive (BAR) file and deploy the BAR file.
7. Optional: Change the coordination queue manager; see “Preparing the

environment for WebSphere MQ File Transfer Edition nodes” on page 740. The
queue manager for the broker is the default coordination queue manager. The
default might be adequate for testing; for production, consider changing it. A
warning is written to the log if the coordination queue manager is not changed
from the default.

Related concepts:
“Managed file transfers using WebSphere MQ File Transfer Edition” on page 1869
Transfer files, with file transfer metadata, in a timely and reliable manner.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Sending a file by WebSphere MQ File Transfer Edition” on page 1859
Send files to an existing WebSphere MQ File Transfer Edition network.
“Preparing the environment for WebSphere MQ File Transfer Edition nodes” on
page 740
Prepare the file system and queue managers, and determine the name of the
broker agent.
Related reference:

1846 WebSphere Message Broker Version 7.0.0.8

“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.

Receiving a file using IBM Sterling Connect:Direct:

Use the CDInput node to receive files from an IBM Sterling Connect:Direct
network.

Before you begin

Before you start:

1. Read “IBM Sterling Connect:Direct overview and concepts” on page 1810.

About this task

MultipleCDInput nodes can be deployed to the same execution group, or to
different execution groups in the same broker. Multiple CDInput nodes can read
files transferred to the same directory without contention. Each file is processed
only once, even if the nodes are deployed to separate execution groups, or
different brokers.

On z/OS, when the CDInput node receives notification of the arrival of a dataset
that it should process, the node copies that dataset into Unix System Services
temporarily, before processing.

Complete the following steps to create a CDInput node message flow using the
default settings. The task includes some optional steps for additional configuration,
but detailed information about configuring the CDInput node is given on the
property panels for the node, in the WebSphere Message Broker Toolkit. The
default settings assume that you have a Connect:Direct server running on the same
machine as the broker, and that you are using the default ports.

Procedure

1. Drag a CDInput node onto a message flow and wire its Out terminal to an
output node of your choice.

2. Optional: To process only a defined subset of files, configure the Basic panel.
This action allows multiple CDInput nodes in the same execution group to
receive specific files, depending on the directory or file filters specified.
You can also specify whether, after processing, the file is left in its directory,
renamed, or deleted.

3. To change how the node handles a message flow failure, configure the Retry
panel.

4. Optional: To change how records are identified in the input file, configure the
Record detection property on the Records and Elements panel. For example,
you might want to specify that a record is fixed length, and set the record
length.
a. If you set the Record detection property to anything other than Whole File,

drag an additional output node to the flow, such as the MQOutput node.
Wire the End of Data terminal on the CDInput node to the In terminal of

Chapter 9. Developing message flow applications 1847

the MQOutput node. The node connected to the End of Data terminal
receives an empty message when the last record in the file is read.

5. Optional: To process the file based on details of the transfer, place a node such
as the Route node after the CDInput node. Details of the transfer are stored in
the local environment, at LocalEnvironment.CD.

6. Setup the username and password that is required for the CDInput node to
connect to the primary Connect:Direct server using the “mqsisetdbparms
command” on page 3954.

7. Add the flow to a broker archive (BAR) file and deploy the BAR file.
For information on how to use configurable services with IBM Sterling
Connect:Direct, see “Advanced configuration properties when using IBM
Sterling Connect:Direct nodes” on page 727.

8. Use IBM Sterling Connect:Direct to send a file to the local Connect:Direct
server. The CDInput node processes this file.

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“IBM Sterling Connect:Direct overview and concepts” on page 1810
An overview of IBM Sterling Connect:Direct and its terminology when used with
WebSphere Message Broker.
Related tasks:
“Initiating a managed file transfer using IBM Sterling Connect:Direct” on page
1873
Use a CDOutput node to send a file from a specified directory on your primary
Connect:Direct server (PNODE) to a filename and directory on a secondary
Connect:Direct server (SNODE).
“Advanced configuration properties when using IBM Sterling Connect:Direct
nodes” on page 727
CDInput and CDOutput nodes can get connection details and staging directories in
conjunction with a configurable service. To pick up new values when a
configurable service is created or modified, you must reload the broker or
execution group, by using the mqsistop and mqsistart commands, or the
mqsireload command.
Related reference:
“CDInput node” on page 4305
Use the CDInput node to preview files when using IBM Sterling Connect:Direct in
conjunction with WebSphere Message Broker.
“CDOutput node” on page 4312
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.

Controlling how files are separated into records:

Set the Record detection and other properties on node Records and Elements tabs
to read files in different formats.

The following examples are based on the examples described in “Using a local file
as input for your message flow” on page 1834 and “Reading a file on a remote FTP

1848 WebSphere Message Broker Version 7.0.0.8

or SFTP directory” on page 1842. In each case, the input file to use, the property
settings, and the expected results are described.

The examples, which describe using the FileInput node, can be applied to the
FTEInput node, with the following provisos:
v The FTEInput node has no Basic tab.
v FTP and SFTP are not used to transmit files to an FTEInput node.

The examples can also be applied to the FileRead node, with the following
provisos:
v The FileRead node propagates only one record from the file and, by default, this

record is the first record in the file. The FileRead node can be configured to
propagate a specific record. For more information see “Routing or enriching a
message based on the contents of a file” on page 1837.

v FTP and SFTP are not used to transmit files to an FileRead node.

Example 1. Records are separated by a DOS or UNIX line end

This example is identical to the one described in “Using a local file as input for
your message flow” on page 1834 or “Reading a file on a remote FTP or SFTP
directory” on page 1842. Create an input file called test_input1.xml with the
following content:
<Message>test1</Message>
<Message>testtwo</Message>
<Message>testthree</Message>

Each line ends with a line terminator.

The properties to set are:

Tab Property Value

Records and Elements Record detection Delimited

Delimiter DOS or UNIX Line End

Delimiter type Postfix

The FileInput node detects records that end with a DOS or UNIX line end and
creates a message for each one that it finds.

The result is the propagation of three messages, as follows:
v Message 1:

<Message>test1</Message>

v Message 2:
<Message>testtwo</Message>

v Message 3:
<Message>testthree</Message>

The DOS or UNIX line end is not part of any propagated message.

Example 2. Records are separated by a custom delimiter

Create an input file called test_input2.xml with the following content:
<Message>test01</Message>,<Message>test001</Message>,<Message>test0001</Message>

Chapter 9. Developing message flow applications 1849

There must be no line terminator at the end of this file data; the XMLNSC parser
ignores the line terminator if it is present.

In addition to the property settings described in “Using a local file as input for
your message flow” on page 1834 or “Reading a file on a remote FTP or SFTP
directory” on page 1842, set these properties:

Tab Property Value

Basic File name or pattern test_input2.xml

Records and Elements Record detection Delimited

Delimiter Custom Delimiter

Custom delimiter 2C

Delimiter type Infix

The hexadecimal X'2C' represents a comma in ASCII. On other systems, you must
use a different hexadecimal code.

The FileInput node detects the comma character and uses it to separate records.
Because the value of the Delimiter type property is Infix, a comma is not
required at the end of the file.

The result is the propagation of three messages, as follows:
v Message 1:

<Message>test01</Message>

v Message 2:
<Message>test001</Message>

v Message 3:
<Message>test0001</Message>

The comma character is not part of any propagated message. There are no commas
in the bodies of the message in this example; if the message bodies did contain
commas, the records would be split at those points resulting in incorrectly formed
messages being propagated to the rest of the flow.

Example 3. Records are separated by a fixed number of bytes

Create an input file called test_input3.xml with the following content:
<Message>123456789</Message><Message>abcdefghi</Message><Message>rstuvwxyz</Message>

There must be no line terminator at the end of this file.

In addition to the property settings described in “Using a local file as input for
your message flow” on page 1834 or “Reading a file on a remote FTP or SFTP
directory” on page 1842, set these properties:

Tab Property Value

Basic File name or pattern test_input3.xml

Records and Elements Record detection Fixed Length

Length 28

The FileInput node splits the input file into records each 28 bytes long.

1850 WebSphere Message Broker Version 7.0.0.8

The result is the propagation of three messages, as follows:
v Message 1:

<Message>123456789</Message>

v Message 2:
<Message>abcdefghi</Message>

v Message 3:
<Message>rstuvwxyz</Message>

Each message is 28 bytes long. If the file contains trailing bytes, for example a
carriage return-line feed pair, a further message containing these bytes is
propagated; the trailing bytes might or might not be recognized by the message
domain, message set, and message type assigned to parse the message.

Example 4. Records are whole files

Create an input file called test_input4.xml with the following content:
<Message>Text string of a length decided by you, even including line
terminators, as long as it only contains this tag at the end.</Message>

There must be no line terminator at the end of this file; if there is one, it has no
effect.

In addition to the property settings described in “Using a local file as input for
your message flow” on page 1834 or “Reading a file on a remote FTP or SFTP
directory” on page 1842, set these properties:

Tab Property Value

Basic File name or pattern test_input4.xml

Records and Elements Record detection Whole File

The FileInput node does not split the file; it propagates all of the content of the file
as a single record to be parsed by the message domain, message set, and message
type as specified on the node. In this example, you are using the XMLNSC parser
and message set xml1, so the message is recognized.

The result is the propagation of one message, as follows:
v Message 1:

<Message>Text string of a length decided by you, even including line terminators, as long as
it only contains this tag at the end.</Message>

Trailing bytes (for example, line terminators) are included.

Example 5. Records are recognized as separate messages by the parser specified
in the Message domain property

Create an input file called test_input5.xml with the following content:
<Message>Text string of a length decided by you </Message><Message>and another</Message>
<Message>and another on a new line</Message>

Line terminators at the end of this file, or at the end of lines, are acceptable.

In addition to the property settings described in “Using a local file as input for
your message flow” on page 1834 or “Reading a file on a remote FTP or SFTP
directory” on page 1842, set these properties:

Chapter 9. Developing message flow applications 1851

Table 13.

Tab Property Value

Basic File name or pattern test_input5.xml

Records and Elements Record detection Parsed Record Sequence

The FileInput node defers to the parser to determine the record boundaries. In this
example, message set xml1 in domain XMLNSC must recognize the complete
<Message> XML format. XMLNSC absorbs trailing white space (for example, line
terminators).

The result is the propagation of three messages, as follows:
v Message 1:

<Message>Text string of a length decided by you </Message>

v Message 2:
<Message>and another</Message>

v Message 3:
<Message>and another on a new line</Message>

Trailing white space (for example, line terminators) are included in the messages.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related tasks:
“Using a local file as input for your message flow” on page 1834
Learn how to use the FileInput node to read a file on your local file system and
then propagate messages that are based on the contents of that file.
“Reading a file on a remote FTP or SFTP directory” on page 1842
Use a FileInput node to read a file in a directory on a remote FTP or SFTP server
and then propagate messages that are based on the contents of that file.
Related reference:
“Recognizing file records as messages to be parsed” on page 1817
Use the FileInput, FTEInput and FileRead nodes to segment your input file into
messages that are to be parsed.
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.

Writing a file
Use the FileOutput, CDOutput, and FTEOutput nodes to write files.

About this task

This section contains the following topics:
v “Writing a file to your local file system” on page 1853
v “Writing a file to a remote FTP or SFTP server” on page 1855
v “Sending a file by WebSphere MQ File Transfer Edition” on page 1859

1852 WebSphere Message Broker Version 7.0.0.8

v “Setting the Record definition property for the FileOutput and FTEOutput
nodes” on page 1861

v “Initiating a managed file transfer using IBM Sterling Connect:Direct” on page
1873

Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related reference:
“CDOutput node” on page 4312
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

Writing a file to your local file system:

Use a FileOutput node to write a file to a specified directory on your local file
system.

Before you begin

This example shows you how one combination of values in the Record definition,
Delimiter, and Delimiter type properties result in the creation of a file from
multiple messages. The example describes the FileOutput node of a message flow
and assumes that the rest of the flow has been developed. It is also assumed that a
Windows system is being used. To complete this example task, you must first have
added a FileOutput node to a message flow. You must also ensure that the
following messages are produced by the flow preceding the FileOutput node:
v Three input messages, which are sent, in this order, to the In terminal of the

FileOutput node:
– Message 1:

<Message>test1</Message>

– Message 2:
<Message>testtwo</Message>

– Message 3:
<Message>testthree</Message>

These messages can be produced, for example, by the XMLNSC domain with a
message set which recognizes XML with the following form:
<Message>...</Message>

v A final message, which is sent to the Finish File terminal of the FileOutput node
after the first three messages have been sent:
<thiscanbe>anything</thiscanbe>

Complete the following steps:

Procedure

1. Set the required node properties on the FileOutput node. The following table
summarizes the FileOutput node properties that you must set, on which tab
they appear, and the value that you must set in order to follow this example:

Chapter 9. Developing message flow applications 1853

Tab Property Value

Basic Directory C:\FileOutput\TestDir

File name or pattern test_output1.xml

Output file action Time Stamp, Archive and
Replace Existing File (or
Create if File does not
Exist)

Replace duplicate archive
files

Selected

Records and Elements Record definition Record is Delimited Data

Delimiter Broker System Line End

Delimiter type Postfix

FTP FTP Cleared

2. Deploy the message flow to the broker. See Chapter 11, “Packaging and
deploying,” on page 3209.

3. Send the first three messages to the In terminal of the FileOutput node.
4. Send the final message to the Finish File terminal of the FileOutput node.

Results

The following actions occur when you perform these steps:
1. The file is processed. In accordance with the values set in the properties of the

FileOutput node, the node generates one record per message with a local file
system line terminator after each one. The file contains the following data, each
line terminated by a carriage return (X'0D') and line feed (X'0A') pair of
characters (on a Windows system):
<Message>test1</Message>
<Message>testtwo</Message>
<Message>testthree</Message>

2. Records are accumulated in file test_output1.xml in the C:\FileOutput\
TestDir\mqsitransit directory. When the final message is sent to the Finish
File terminal, the file is moved to the output directory, C:\FileOutput\TestDir
directory.

3. If a file of the same name exists in the output directory, the existing file is
renamed and moved to the mqsiarchive directory. For example, the following
file might be created:

C:\FileOutput\TestDir\mqsiarchive\20081124_155346_312030_test_output1.xml

If a file of this name exists in this archive directory, it is overwritten in
accordance with the Replace duplicate archive files property selected on the
FileOutput node.

What to do next

See “Setting the Record definition property for the FileOutput and FTEOutput
nodes” on page 1861 to see the results of running this task with different values set
in the Record definition, Delimiter, and Delimiter type properties of the
FileOutput node.

1854 WebSphere Message Broker Version 7.0.0.8

The following samples also show how to use this node:
v File Output
v Batch Processing
v WildcardMatch

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“IBM Sterling Connect:Direct overview and concepts” on page 1810
An overview of IBM Sterling Connect:Direct and its terminology when used with
WebSphere Message Broker.
Related tasks:
“Using a local file as input for your message flow” on page 1834
Learn how to use the FileInput node to read a file on your local file system and
then propagate messages that are based on the contents of that file.
“Writing a file to a remote FTP or SFTP server”
Use a FileOutput node to write a file to a directory on a remote FTP or SFTP
server.
Related reference:
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“Setting the Record definition property for the FileOutput and FTEOutput nodes”
on page 1861
Set the properties on theRecords and Elements tab of the node to write files in
different formats.
“CDOutput node” on page 4312
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.

Writing a file to a remote FTP or SFTP server:

Use a FileOutput node to write a file to a directory on a remote FTP or SFTP
server.

Before you begin

This example shows you how one combination of values in the Record definition,
Delimiter, and Delimiter type properties result in the creation of a file from
multiple messages. The example is an extension of the example described in
“Writing a file to your local file system” on page 1853, and describes the use of a
FileOutput node in a message flow.

These instructions assume that you are using a Windows system, and that you
have already created a message flow containing a FileOutput node. You also
require the following resources:
v An FTP or SFTP server. Ensure that an FTP or SFTP server exists with the

following settings, so that you can follow this example scenario:

Chapter 9. Developing message flow applications 1855

Server ftpserver.hursley.abc.com

Port 21 (for FTP) or 22 (for SFTP)

Working directory
/ftpfileoutput

User ID
myuserid

Password
mypassword

These values are for the purposes of this example only. If you use other values,
record them so that you can set the appropriate values when you follow the
instructions in this task.

v A security identity. Use the mqsisetdbparms command to define a security
identity called myidentity for your user and password details.
If you want to connect to an FTP server, the security identity must have an
ftp:: prefix, to enable the file nodes to find the identity definition. For example,
use the following command for a broker called MyBroker:

mqsisetdbparms MyBroker -n ftp::myidentity -u myuserid -p mypassword

If you want to connect to an SFTP server, the security identity must have an
sftp:: prefix, as shown in the following example:

mqsisetdbparms MyBroker -n sftp::myidentity -u myuserid -p mypassword

You can also configure a connection to an SFTP server to use Public Key
authentication, by specifying an SSH identity file and pass phrase, instead of a
password. For example:

mqsisetdbparms MyBroker -n sftp::myidentity -u myuserid -i identity_file -r passphrase

For more information about configuring connections to an SFTP server, see
“Transferring files securely by using SFTP” on page 1864.

v The following messages, which must be produced by the message flow
preceding the FileOutput node:
– Three input messages. These messages are sent, in this order, to the In

terminal of the FileOutput node:
- Message 1:

<Message>test1</Message>

- Message 2:
<Message>testtwo</Message>

- Message 3:
<Message>testthree</Message>

These messages can be produced, for example, by the XMLNSC domain with
a message set that recognizes XML, in the following form:
<Message>...</Message>

– A final message sent to the Finish File terminal of the FileOutput node after
the first three messages have been sent:
<thiscanbe>anything</thiscanbe>

Complete the following steps:

1856 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Set the required node properties on the FileOutput node. The following table
summarizes the FileOutput node properties that you must set, the tabs on
which they are displayed, and the values that are used in this example:

Tab Property Value

Basic Directory C:\FileOutput\TestDir

File name or pattern test_output1.xml

Output file action Time Stamp, Archive and
Replace Existing File (or
Create if File does not
Exist)

Replace duplicate archive
files

Selected

Records and Elements Record definition Record is Delimited Data

Delimiter Broker System Line End

Delimiter type Postfix

FTP Remote transfer Selected

Transfer protocol FTP or SFTP

Remote server and port ftpserver.hursley.abc.com

Security identity myidentity

Server directory /ftpfileoutput

Transfer mode ASCII (for FTP only)

Retain local file after
transfer

Selected

If you used other values for your FTP or SFTP server resource, use those
values. The settings used here are identical to those settings used in the
example in “Writing a file to your local file system” on page 1853 except that
the Remote transfer property has been selected and there are now properties
on the FTP tab. If you clear the Remote transfer property, the node operates as
it does in the example in “Writing a file to your local file system” on page 1853;
the properties on the FTP tab remain set but are ignored.
You can override the Remote server and port property on the node by setting
a value in the local environment. For more information, see “Local environment
overrides for the FileOutput node” on page 4443.

2. Deploy the message flow to the broker. See Chapter 11, “Packaging and
deploying,” on page 3209.

3. Send the first three messages to the In terminal of the FileOutput node.
4. Send the final message to the Finish File terminal of the FileOutput node.

Results

The following actions occur when you perform these steps:
1. The file is processed. The FileOutput node generates one record per message

with a local file system line terminator after each one. The file contains the
following data, with each line terminated by a carriage return (X'0D') and line
feed (X'0A') pair of characters (on a Windows system):

Chapter 9. Developing message flow applications 1857

<Message>test1</Message>
<Message>testtwo</Message>
<Message>testthree</Message>

2. Records are accumulated in file test_output1.xml in the C:\FileOutput\
TestDir\mqsitransit directory. When the final message is sent to the Finish
File terminal, the file is moved to the remote FTP or SFTP server directory
(because the Remote transfer property is selected). As a result, the file
/ftpfileoutput/test_output1.xml is created.

3. If a file with the same name exists in the remote FTP or SFTP server directory,
the existing file is overwritten.
If the remote FTP server is not running on a Windows system and the Transfer
mode property is set to ASCII, the character encoding and line terminator
characters might be modified after transfer. For example, on a z/OS FTP server,
the ASCII text is typically converted to EBCDIC, and the line terminator
character pairs are replaced by EBCDIC new line characters (X'15'). Other FTP
servers might treat ASCII transfers differently. If you are using SFTP, the
Transfer mode property is ignored and files are sent as Binary files.

4. Because the Retain local file after transfer property is selected, the local
file is not deleted but is moved from the mqsitransit subdirectory to the
output directory, C:\FileOutput\TestDir. If a file with the same name exists in
the output directory, the existing file is renamed and moved to the mqsiarchive
directory. For example, the following file might be created:

C:\FileOutput\TestDir\mqsiarchive\20081124_155346_312030_test_output1.xml

However, if a file with this name exists in this archive directory, it is
overwritten according to the value of the Replace duplicate archive files
property set on the FileOutput node.

What to do next

For more information, see “Setting the Record definition property for the
FileOutput and FTEOutput nodes” on page 1861, which shows the results of
running this task with different values set in the Record definition, Delimiter,
and Delimiter type properties of the FileOutput node.

The following samples also show how to use this node:
v File Output
v Batch Processing
v WildcardMatch

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“Transferring files securely by using SFTP” on page 1864
You can transfer files securely by using the Secure File Transfer Protocol (SFTP),
which enables file transfer by using the Secure Shell (SSH) protocol.
Related tasks:

1858 WebSphere Message Broker Version 7.0.0.8

“Reading a file on a remote FTP or SFTP directory” on page 1842
Use a FileInput node to read a file in a directory on a remote FTP or SFTP server
and then propagate messages that are based on the contents of that file.
“Writing a file to your local file system” on page 1853
Use a FileOutput node to write a file to a specified directory on your local file
system.
Related reference:
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“Setting the Record definition property for the FileOutput and FTEOutput nodes”
on page 1861
Set the properties on theRecords and Elements tab of the node to write files in
different formats.
“FtpServer configurable service properties” on page 3794
Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Sending a file by WebSphere MQ File Transfer Edition:

Send files to an existing WebSphere MQ File Transfer Edition network.

Before you begin

Before you start:

1. Read about WebSphere MQ File Transfer Edition.
2. Get the following information from your WebSphere MQ File Transfer Edition

administrator:
v The name of the remote WebSphere MQ File Transfer Edition agent to which

the file is to be sent.
v The name of the destination queue manager.
v The name of the output file.

3. Create a message flow that contains an input node.

About this task

Detailed information about configuring the FTEOutput node is given on the
property panels for the node, in the WebSphere Message Broker Toolkit.

Procedure

1. Drag an FTEOutput node onto the message flow, and wire its In terminal to the
input node.

2. On the Basic panel, set values for the Destination agent and Destination file
name properties. Configuring just these two properties is enough if you want to
send all the input message tree as a single record in the output file.

3. Optional: On the Basic panel, set a value for the Destination queue manager
property. The default destination queue manager is the queue manager for the
broker.

4. Optional: To specify a location in the input message tree for the data to be sent,
configure the Data location property on the "Request properties" panel.

Chapter 9. Developing message flow applications 1859

5. Optional: To change how records are placed in the output file, configure the
Record definition property on the "Record definition" panel. For example, you
might want to specify that a record is fixed length, and set the record length.
a. If you set the Record definition property to anything other than Record is

Whole File, drag a node such as the MQOutput node to the flow, and wire
its Out terminal to the Finish File terminal on the FTEOutput node, as
shown in the following figure:

The node connected to the Finish File terminal must have logic to determine
the last record in the file.

6. Optional: To set properties for the transfer dynamically, place a node such as
the Compute node or Mapping node before the FTEOutput node. You can
override the following properties:
v Destination agent

v Destination file directory

v Destination file name

v Destination queue manager

v Job name

v Overwrite files on destination

Configure the node to write the overrides to the
LocalEnvironment.Destination.FTE subtree.

7. Add the flow to a broker archive (BAR) file and deploy the BAR file.
8. Optional: Change the coordination queue manager; see “Preparing the

environment for WebSphere MQ File Transfer Edition nodes” on page 740. The
queue manager for the broker is the default coordination queue manager. The
default might be adequate for testing; for production, consider changing it. A
warning is written to the log if the coordination queue manager is not changed
from the default.

Related concepts:
“Managed file transfers using WebSphere MQ File Transfer Edition” on page 1869
Transfer files, with file transfer metadata, in a timely and reliable manner.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Preparing the environment for WebSphere MQ File Transfer Edition nodes” on
page 740
Prepare the file system and queue managers, and determine the name of the
broker agent.
Related reference:

1860 WebSphere Message Broker Version 7.0.0.8

“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.

Setting the Record definition property for the FileOutput and FTEOutput
nodes:

Set the properties on theRecords and Elements tab of the node to write files in
different formats.

The following examples are based on those described in “Writing a file to your
local file system” on page 1853 and “Writing a file to a remote FTP or SFTP server”
on page 1855. The FTEOutput does not archive, and files are transferred using
WebSphere MQ File Transfer Edition, rather than FTP or SFTP. In all examples, it is
assumed that the same messages are sent to the FileOutput node; three to the In
terminal and one to the Finish File terminal:
v Three input messages which are sent, in this order, to the In terminal of the

FileOutput node:
– Message 1:

<Message>test1</Message>

– Message 2:
<Message>testtwo</Message>

– Message 3:
<Message>testthree</Message>

These messages can be produced, for example, by the XMLNSC domain with a
message set which recognizes XML with the following form:
<Message>...</Message>

v A final message which is sent to the Finish File terminal of the FileOutput node
after the first three messages have been sent. It does not matter what this
message contains.

The following examples describe the contents of the file or files produced; the
disposition of the files created is as in the “Writing a file to your local file system”
on page 1853 and “Writing a file to a remote FTP or SFTP server” on page 1855
topics.

Example 1. Records written are separated by a DOS or UNIX line end

This example is identical to the one described in “Writing a file to your local file
system” on page 1853 or “Writing a file to a remote FTP or SFTP server” on page
1855. Specify the node's properties as described in “Writing a file to your local file
system” on page 1853 or “Writing a file to a remote FTP or SFTP server” on page
1855.

These properties result in one file being written. The file contains three records
each terminated by a local system line terminator. On a Windows system, this is a
carriage return (X'0D') line feed (X'0A') pair of characters; on UNIX systems it is
X'0A'.
<Message>test1</Message>
<Message>testtwo</Message>
<Message>testthree</Message>

Chapter 9. Developing message flow applications 1861

Example 2. Records written are separated by a custom delimiter

In addition to the property settings described in “Writing a file to your local file
system” on page 1853 or “Writing a file to a remote FTP or SFTP server” on page
1855, set these properties on the Records and Elements tab:

Property Value

Record definition Record is Delimited Data

Delimiter Custom Delimiter

Custom delimiter 0D0A

Delimiter type Postfix

The hexadecimal X'0D0A' represents a carriage return character followed by a line
feed character. On a Windows system, this results in a file identical to the one
created in Example 1. On other systems, the result might differ from the result in
Example 1; Example 1 uses local system line end characters, whereas Example 2
always puts the X'0D0A' sequence at the end of each line.

Example 3. Records written are padded to a fixed length

In addition to the property settings described in “Writing a file to your local file
system” on page 1853 or “Writing a file to a remote FTP or SFTP server” on page
1855, set these properties on the Records and Elements tab:

Property Value

Record definition Record is Fixed Length Data

Length (bytes) 30

Padding bytes (hexadecimal) 2A

The hexadecimal character X'2A' represents an asterisk character in ASCII.

The length of each incoming message is 24 bytes, 26 bytes, and 28 bytes
respectively. The required fixed length of each record is 30 bytes. Each record is
therefore padded by an extra 6 bytes, 4 bytes, and 2 bytes respectively, using the
hexadecimal character X'2A'.

One file is written. It contains a single line:
<Message>test1</Message>******<Message>testtwo</Message>****<Message>testthree</Message>**

Example 4. Records written are not separated by delimiters or padding

In addition to the property settings described in “Writing a file to your local file
system” on page 1853 or “Writing a file to a remote FTP or SFTP server” on page
1855, set this property on the Records and Elements tab:

Property Value

Record definition Record is Unmodified Data

The records are concatenated with no padding or delimiters.

One file is written with the following content:
<Message>test1</Message><Message>testtwo</Message><Message>testthree</Message>

1862 WebSphere Message Broker Version 7.0.0.8

There are no trailing bytes or line terminators.

Example 5. Records are written as whole files

In addition to the property settings described in “Writing a file to your local file
system” on page 1853 or “Writing a file to a remote FTP or SFTP server” on page
1855, set this property on the Records and Elements tab:

Property Value

Record definition Record is Whole File

Three files are created, each containing one record:
v File 1:

<Message>test1</Message>

v File 2:
<Message>testtwo</Message>

v File 3:
<Message>testthree</Message>

Each of these files is created with the same name, one by one, in the mqsitransit
directory. If you are following the example in “Writing a file to a remote FTP or
SFTP server” on page 1855, each file is transferred to the remote FTP server.
However, because each file overwrites the previous one, only the third file remains
when the task is complete.

After optional transfer, if a copy is retained, each file is moved to the output
directory, C:\FileOutput\TestDir. In accordance with the properties on the
FileOutput node as described in “Writing a file to your local file system” on page
1853 or “Writing a file to a remote FTP or SFTP server” on page 1855, the second
file moved displaces the first file from the output directory which is moved to the
mqsiarchive subdirectory with a time stamp added to the file name. When the
third file is moved to the output directory, it displaces the second file, causing it to
be moved to the mqsiarchive subdirectory and renamed. The final result is files
similar to these:
C:\FileOutput\TestDir\mqsiarchive\20071101_165346_312030_test_output1.xml
C:\FileOutput\TestDir\mqsiarchive\20071101_165347_312030_test_output1.xml
C:\FileOutput\TestDir\test_output1.xml

being File 1, File 2, and File 3 respectively. If FTP processing was enabled, File 3
would also be in the remote FTP server directory and called test_output1.xml.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related tasks:
“Writing a file to your local file system” on page 1853
Use a FileOutput node to write a file to a specified directory on your local file
system.
“Writing a file to a remote FTP or SFTP server” on page 1855
Use a FileOutput node to write a file to a directory on a remote FTP or SFTP
server.
Related reference:

Chapter 9. Developing message flow applications 1863

“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

Transferring files securely by using SFTP
You can transfer files securely by using the Secure File Transfer Protocol (SFTP),
which enables file transfer by using the Secure Shell (SSH) protocol.

Use the properties on the FTP tab of the FileInput and FileOutput nodes to
configure the secure transfer of files.

You can also use the FtpServer configurable service to configure other SFTP
properties, including the cipher to be used for SFTP communication, compression
level, and strict known host checking.

See the following topics for more information about configuring secure file
transfer:
v “Configuring SFTP file transfer”
v “Known host checking” on page 1866
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related tasks:
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Reading a file on a remote FTP or SFTP directory” on page 1842
Use a FileInput node to read a file in a directory on a remote FTP or SFTP server
and then propagate messages that are based on the contents of that file.
“Writing a file to a remote FTP or SFTP server” on page 1855
Use a FileOutput node to write a file to a directory on a remote FTP or SFTP
server.
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

Configuring SFTP file transfer:

Use an FtpServer configurable service to specify the Secure File Transfer Protocol
(SFTP) settings for a message flow, and to override the SFTP settings that are
specified on the FileInput and FileOutput nodes.

About this task

The settings that you specify by using an FtpServer configurable service are read
and validated when the message flow starts, and are used to configure any SFTP
connections that are made for the node. The configurable service can override any
or all of the remote transfer properties on the FTP tab of the FileInput and
FileOutput nodes. For more information about the settings that you can specify
with an FtpServer configurable service, see “FtpServer configurable service
properties” on page 3794.

1864 WebSphere Message Broker Version 7.0.0.8

You can configure strict host key checking and specify your own known hosts file,
or you can turn off strict host key checking and use the known hosts files that are
created and managed by the broker.

Multiple configurable services can specify the same host and port, even with
different known hosts files. FTP defaults to port 21 and SFTP defaults to port 22,
which is the SSH default port. If you set the port and specify an FTP connection to
an SFTP server (or specify an SFTP connection to an FTP server) a connection error
occurs and a message is added to the event log.

You can use the FtpServer configurable service to configure the following SFTP
settings:
v Cipher used for SSH/SFTP communication
v Compression level
v Strict known host checking
v Protocol (FTP/SFTP) for nodes to use for remote file transfer
v Location of a known hosts file when strict known host checking is set to Yes

Procedure

1. Use the WebSphere Message Broker Explorer; see “Using the WebSphere
Message Broker Explorer to work with configurable services” on page 644 for
more information, or the mqsicreateconfigurableservice command to create
an FtpServer configurable service with the required parameter values. For more
information about creating the FtpServer configurable service, see “FtpServer
configurable service properties” on page 3794.

2. In the FileInput and FileOutput nodes, specify the name of the FtpServer
configurable service in the Remote server and port property on the FTP tab.
Use the WebSphere Message Broker Explorer, or the mqsichangeproperties and
mqsireportproperties commands to change or view the properties of the
configurable service.

Related concepts:
“Transferring files securely by using SFTP” on page 1864
You can transfer files securely by using the Secure File Transfer Protocol (SFTP),
which enables file transfer by using the Secure Shell (SSH) protocol.
“Known host checking” on page 1866
Use known host checking to control which hosts the broker can connect to, and to
verify the identity of those hosts.
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Reading a file on a remote FTP or SFTP directory” on page 1842
Use a FileInput node to read a file in a directory on a remote FTP or SFTP server
and then propagate messages that are based on the contents of that file.
“Writing a file to a remote FTP or SFTP server” on page 1855
Use a FileOutput node to write a file to a directory on a remote FTP or SFTP
server.

Chapter 9. Developing message flow applications 1865

Related reference:
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“Setting the Record definition property for the FileOutput and FTEOutput nodes”
on page 1861
Set the properties on theRecords and Elements tab of the node to write files in
different formats.
“FtpServer configurable service properties” on page 3794
Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Known host checking:

Use known host checking to control which hosts the broker can connect to, and to
verify the identity of those hosts.

Known host checking enables the broker to protect the messages in the message
flow from unauthorized attempts to intercept the data (sometimes known as
man-in-the-middle attacks). Known hosts files contain the SSH keys of the hosts to
which the broker can connect. On z/OS systems, known hosts files and SSH
identity files are stored in EBCDIC format, and on other operating systems they
are stored in ASCII format.

Before it connects to a host to receive or transfer a file (using the FileInput or
FileOutput nodes), the broker checks the host key against the keys that are stored
in the known hosts file. If the host key does not match an existing entry for the
host in the known hosts file, the connection fails. If the host is new (and has no
entry in the known hosts file), the result depends on whether strict known host
checking is turned on or off.

You can specify whether strict known host checking is turned on or off by setting
the strictHostKeyChecking parameter of either the mqsicreateconfigurableservice
command or the FtpServer configurable service. For more information about the
settings that you can specify with an FtpServer configurable service, see “FtpServer
configurable service properties” on page 3794.

Strict known host checking

When strict known host checking is turned on (by setting the
strictHostKeyChecking parameter to Yes), the broker connects only to known hosts
with valid SSH host keys that are stored in the known hosts file. If you use strict
known host checking, you must create your own known hosts file, in OpenSSH
format, containing the SSH keys of your trusted hosts. You specify the location of

1866 WebSphere Message Broker Version 7.0.0.8

your known hosts file using the knownHostsFile parameter of the
mqsicreateconfigurableservice command. When the broker attempts to make a
connection to a host, it checks the host key against the contents of the known hosts
file. If the key is not in the known hosts file, the connection fails and a BIP3371
error occurs.

You can have multiple known hosts files and specify a different one for each node
or configurable service. The known hosts files that you provide for strict known
host checking are not modified by the broker.

Non-strict known host checking

When strict known host checking is turned off (by setting the
strictHostKeyChecking parameter to No) the broker connects only to known hosts
with valid keys or to new hosts to which it has not connected before. If the broker
attempts to connect to a new host (to which it has not connected previously), the
broker makes the connection, accepts the host's SSH key, and stores it in the
known hosts file. When the broker tries to connect to the same host on subsequent
occasions, the host key is checked against the key stored in the known hosts file,
and, if the key matches, the connection is made. However, if the host key is
different from the one stored in the known hosts file, the connection attempt fails
and a BIP3371 error occurs.

When strict known host checking is turned off, the known hosts file is managed by
the broker. One broker-managed known hosts file exists for each execution group.

BIP3371 error message

The BIP3371 error message might indicate that there has been an unauthorized
attempt to intercept a message. However, the connection failure (and resulting
BIP3371 error message) might be caused by a change to the host's SSH key at some
time following its first connection to the broker. For example, if the SSH server is
reinstalled, it is assigned a new key, which is not found in the known hosts file
and is therefore not accepted by the broker. As a result, the connection fails and
the BIP3371 error message is shown.

If you know that the SSH host key has changed (as a result of a recent SSH server
reinstallation, for example), you can solve the connection failure by modifying the
known hosts file:
1. Stop the message flow.
2. Edit the known hosts file:
v If you have strict known host checking turned on, correct the entry for the

host in the known hosts file that you specified in the knownHostsFile
parameter of the mqsicreateconfigurableservice command.

v If you have strict known host checking turned off, remove the host's entry
from the broker-managed known hosts file. The known hosts file is in the
\components\BROKERNAME-NAME\EG-UID\config\known_hosts subdirectory of
the directory in which WebSphere Message Broker is installed. For example,
on Windows the default directory is C:\Documents and Settings\All
Users\Application Data\IBM\MQSI\components\BROKERNAME-NAME\EG-UID\
config\known_hosts. On UNIX systems the default directory is
/var/mqsi/components/BROKERNAME-NAME/EG-UID/config/known_hosts.
When the broker attempts to reconnect, it adds the new host key to the
known hosts file.

Chapter 9. Developing message flow applications 1867

3. Restart the message flow.
Related concepts:
“Transferring files securely by using SFTP” on page 1864
You can transfer files securely by using the Secure File Transfer Protocol (SFTP),
which enables file transfer by using the Secure Shell (SSH) protocol.
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
Related tasks:
“Configuring SFTP file transfer” on page 1864
Use an FtpServer configurable service to specify the Secure File Transfer Protocol
(SFTP) settings for a message flow, and to override the SFTP settings that are
specified on the FileInput and FileOutput nodes.
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Reading a file on a remote FTP or SFTP directory” on page 1842
Use a FileInput node to read a file in a directory on a remote FTP or SFTP server
and then propagate messages that are based on the contents of that file.
“Writing a file to a remote FTP or SFTP server” on page 1855
Use a FileOutput node to write a file to a directory on a remote FTP or SFTP
server.
Related reference:
“FtpServer configurable service properties” on page 3794
Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

1868 WebSphere Message Broker Version 7.0.0.8

Managed file transfers using WebSphere MQ File Transfer
Edition
Transfer files, with file transfer metadata, in a timely and reliable manner.

v Transfer metadata is supported, providing more flexible file processing.
v Transfers are timely.
v The audit trail is complete between the broker and the remote agent.
v Resource statistics are available.

About WebSphere MQ File Transfer Edition

WebSphere MQ File Transfer Edition V7.0 delivers a reliable managed file transfer
solution for moving files between IT systems without the need for programming.
Files that are larger than the maximum individual WebSphere MQ message size
can be moved. A log of file movements demonstrates that business data in files is
transferred with integrity from source file system to destination file system.

Using the WebSphere MQ File Transfer Edition nodes offers seamless integration
with your existing WebSphere MQ File Transfer Edition network. The following
diagram shows a typical WebSphere MQ File Transfer Edition network:

Chapter 9. Developing message flow applications 1869

The main components and concepts of WebSphere MQ File Transfer Edition are:

agent A process that forms the end point of a transfer (source or destination). An
agent is a WebSphere MQ application, and is connected to one queue
manager. Many agents can be connected to the same queue manager.
Operational commands can be sent to an agent (for example, to request a
transfer) by putting an XML message on a particular queue on the agent's
queue manager.

coordination queue manager
One queue manager in the topology takes on the responsibility of the
coordination queue manager. All agents register with the coordination
queue manager and also send audit information about each transfer. The
coordination queue manger is responsible for publishing that audit
information to external monitoring applications.

transfer
A transfer is a movement of one or more files from one agent to another.
The transfer goes direct from one agent's queue manager to the other
agent's queue manager, not via the coordination queue manager. The
transfer takes place even if the coordination queue manager is not running.

transfer log
The WebSphere MQ Explorer plug-in tool includes a Transfer Log view
that subscribes to the coordination queue manager for the audit
information. The view displays information about every transfer that
occurs in a given topology.

1870 WebSphere Message Broker Version 7.0.0.8

How WebSphere Message Broker fits in

agent

An agent runs in each execution group that has deployed flows containing
WebSphere MQ File Transfer Edition nodes. The agent is responsible for
receiving and initiating all WebSphere MQ File Transfer Edition transfers.
The agent name is derived from Broker.ExecutionGroup; the name is not
configurable. See “Preparing the environment for WebSphere MQ File
Transfer Edition nodes” on page 740 for restrictions on agent names.

You do not need to start or stop this agent; if a flow containing WebSphere
MQ File Transfer Edition nodes is deployed, the agent is running. The
agent is stopped only when the execution group is stopped. The broker
queue manager is used as the queue manager for the agent.

coordination queue manager

The broker queue manager is the default coordination queue manager. You
can specify a different coordination queue manager by using the
WebSphere Message Broker Explorer, or the mqsichangeproperties
command. You must configure your coordination queue manager as a
coordination queue manager. See the WebSphere File Transfer Edition
Information Center for details.

transfer

Multiple FTEOutput nodes can be deployed to the same execution group,
or to different execution groups in the same broker. FTEOutput nodes can

Chapter 9. Developing message flow applications 1871

http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqfte/v7r0/index.jsp

send one file per transfer. Each file can have multiple records. Each record
can have multiple elements. Transfers from the FTEOutput are
non-blocking; an error occurs if another transfer is outstanding with the
same file name.

Multiple FTEInput nodes can be deployed to the same execution group, or
to different execution groups in the same broker. Multiple FTEInput nodes
can read files transferred to the same directory without contention. Each
file is processed only once, even if the nodes are deployed to separate
execution groups, or different brokers.

When sending a file, you can dynamically set the following properties:
v Destination agent

v Destination file directory

v Destination file name

v Destination queue manager

v Job name

v Overwrite files on destination

Put a node such as the Compute node or Mapping node before the
FTEOutput node.

When receiving files, you can apply filters. If an execution group has more
than one FTEInput node, each node receives only the appropriate files. You
can also determine what happens after the file has been processed (the file
is left in its existing destination directory, left with a timestamp added, or
deleted). See the Basic tab on the node for details.

You can combine the FTEInput and FTEOutput nodes to create a request
and reply flow. See the sample for details.

Using elements in the local environment, you can call a program on the
destination agent before starting the transfer, or when the transfer is
finished. See “LocalEnvironment.Destination.FTE fields” on page 1826 for
details.

Overview of using WebSphere MQ File Transfer Edition nodes

You do not need to configure the WebSphere MQ File Transfer Edition code that
runs in the broker. Operational tools in WebSphere Message Broker Explorer are
provided to create transfers. The following nodes are provided:

FTEOutput
FTEInput

Take the following steps to use the nodes to send or receive data across an existing
WebSphere MQ File Transfer Edition network:
1. Create a flow that includes one of the WebSphere MQ File Transfer Edition

nodes.
2. Configure the node.
3. For production purposes, change the coordination queue manager from the

broker queue manager; see “Preparing the environment for WebSphere MQ File
Transfer Edition nodes” on page 740.

4. Deploy the flow.

1872 WebSphere Message Broker Version 7.0.0.8

Monitoring the license usage of WebSphere MQ File Transfer Edition in
WebSphere Message Broker

A message is written to the system log for every execution group that has a
WebSphere MQ File Transfer Edition node deployed.
Related tasks:
“Sending a file by WebSphere MQ File Transfer Edition” on page 1859
Send files to an existing WebSphere MQ File Transfer Edition network.
“Receiving a file by WebSphere MQ File Transfer Edition” on page 1845
Use the FTEInput node to receive files from an existing WebSphere MQ File
Transfer Edition network.
“Preparing the environment for WebSphere MQ File Transfer Edition nodes” on
page 740
Prepare the file system and queue managers, and determine the name of the
broker agent.
Related reference:
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.

Initiating a managed file transfer using IBM Sterling
Connect:Direct
Use a CDOutput node to send a file from a specified directory on your primary
Connect:Direct server (PNODE) to a filename and directory on a secondary
Connect:Direct server (SNODE).

Before you begin

This topic describes use of the CDOutput node in a message flow and assumes
that the rest of the flow has been developed, for example, an MQInput to a
CDOutput node.

Multiple CDOutput nodes can be deployed to the same execution group, or to
different execution groups in the same broker. CDOutput nodes can send one file
per transfer. Each file can have multiple records; each record can have multiple
elements. Transfers from the CDOutput node are non-blocking.

Complete the following steps:

Procedure
1. Set the required node properties on the CDOutput node.

If you set the Destination file name only, and leave all the other options at
their default values, the file is transferred:
v From the primary Connect:Direct server (PNODE) back to itself
v Into the default transfer directory using the default process name.

Additionally, the file is created if it does not exist, or replaced if it already
exists.

Chapter 9. Developing message flow applications 1873

The following table summarizes the CDOutput node properties that you can
set, on which tab they appear, and a value that you can select:

Tab Property Value

Basic Process name You can use any name you
want for the process. Note,
however, that the name must
be a maximum of eight
characters and cannot
contain any spaces.

SNODE The secondary
Connect:Direct server to
which the file is being
transferred.

Destination file directory TestDir on secondary
Connect:Direct server
(SNODE).

Destination file name Filename on secondary
Connect:Direct server
(SNODE).

Disposition RPL

Transfer mode Text mode

2. Setup the username and password that is required for the CDOutput node to
connect to the primary Connect:Direct server using the “mqsisetdbparms
command” on page 3954.

3. Deploy the message flow to the broker. See Chapter 11, “Packaging and
deploying,” on page 3209.

4. Send the file to the In terminal of the CDOutput node.

Results

The following actions occur when you perform these steps:
1. The file is constructed in accordance with the values set in the properties of the

CDOutput node.
2. The file is staged in the local file system and then a command is sent to the

Connect:Direct server to cause the transfer to occur.
3. If a file of the same name exists in the selected directory on the secondary

Connect:Direct server, the processing of the existing file is determined by the
value of the Disposition property; in this example, the file is replaced.
Once the transfer has completed the local, staged file is deleted.

Note, that when sending a file, you can dynamically set the following properties:
v Secondary Connect:Direct server (SNODE)

v Process name

v Accounting data

v Destination file directory

v Destination file name

v Copy from options

v Copy to options

You have complete control of the Copy statements.

1874 WebSphere Message Broker Version 7.0.0.8

For example:
LocalEnvironment.Destination.CD.Copy.To.Option.PERMISS = ’777’

causes IBM Sterling Connect:Direct to set the permissions on the destination file to
777 (or RWX RWX RWX) if the destination file is on a UNIX operating system, or
within Unix System Services on z/OS.

However, if you enter an incorrect format, a syntax error is detected when the
process script is submitted and this causes an error to be thrown in the node.

For example:
LocalEnvironment.Destination.CD.Copy.To.Option.PERMISS = ’7xddd’

causes a syntax error because ’7xddd’ is not of the format nnn. When an error
occurs the process script is available in the exception thrown and the user trace.

Tip: To help you with problem determination, you can view the script generated
by the CDOutput node by turning on user trace.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“IBM Sterling Connect:Direct overview and concepts” on page 1810
An overview of IBM Sterling Connect:Direct and its terminology when used with
WebSphere Message Broker.
Related tasks:
“Receiving a file using IBM Sterling Connect:Direct” on page 1847
Use the CDInput node to receive files from an IBM Sterling Connect:Direct
network.
“Advanced configuration properties when using IBM Sterling Connect:Direct
nodes” on page 727
CDInput and CDOutput nodes can get connection details and staging directories in
conjunction with a configurable service. To pick up new values when a
configurable service is created or modified, you must reload the broker or
execution group, by using the mqsistop and mqsistart commands, or the
mqsireload command.
“Using a local file as input for your message flow” on page 1834
Learn how to use the FileInput node to read a file on your local file system and
then propagate messages that are based on the contents of that file.
Related reference:
“CDOutput node” on page 4312
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.
“CDInput node” on page 4305
Use the CDInput node to preview files when using IBM Sterling Connect:Direct in
conjunction with WebSphere Message Broker.

WebSphere Service Registry and Repository
The WebSphere Service Registry and Repository (WSRR) is a central repository of
entities. A wide range of entities can be stored and retrieved, including
user-defined concepts and definitions related specifically to Web services, such as
WSDL services, service interfaces, and associated policies.

Chapter 9. Developing message flow applications 1875

You can configure a message flow to dynamically retrieve resources from WSRR at
run time, and to use and expose those resources in the message flow. You can
therefore defer the decision about which resources you want to use until run time,
rather than deciding at deployment time.

WSRR has specific support for many of the document types associated with Web
services, including generic XML documents, WSDL, and SCDL. For example, when
you load a WSDL document into WSRR it also identifies and stores its individual
logical components, such as the service and port type.

Use the WSRR nodes (the RegistryLookup and EndpointLookup nodes) to create
message flows that retrieve data dynamically from WSRR. Data is retrieved
according to search criteria defined by node properties, possibly supplemented or
overridden by local environment definitions. The retrieved data is placed in the
local environment tree, which makes the data available to subsequent nodes. The
input message received by the node is propagated to the output terminal
unchanged.

Use the RegistryLookup node to submit generic queries to WSRR. Entities returned
by the query are stored in the ServiceRegistry output tree in the local environment.
You can also specify that details of the relationships between the returned entities
and other entities that they reference are represented in the ServiceRegistry output
tree.

Use the EndpointLookup node to submit queries for Web service endpoints. This
node is tailored to retrieve WSDL port definitions that implement a specified
WSDL portType. The details of service endpoints that match the specified criteria
are placed in the ServiceRegistry output tree in the local environment. If the node
is configured to return a single matching service endpoint, the Web service URL
destination used by the SOAP and HTTP request nodes is also overridden in the
local environment. If the node is configured to return all matching service
endpoints, the local environment is not set up automatically for the SOAP and
HTTP request nodes. In this case the local environment tree might contain data for
multiple service endpoints, and the message flow interprets and uses this
information.

Set the configuration parameters for the WSRR nodes to specify how WebSphere
Message Broker interfaces with your WSRR server.
v Use the connectionTimeout parameter to set a system-wide connection timeout

for queries that are issued by the EndpointLookup and RegistryLookup nodes. If
a query result is not returned from the WSRR server before the connection
timeout period expires, the configured error handling is invoked.

v Use the needCache parameter to enable the WebSphere Message Broker WSRR
cache. The cache is used to store results from queries that are issued by the
EndpointLookup and RegistryLookup nodes.

v If the WebSphere Message Broker WSRR cache is enabled, use the timeout
parameter to set a system-wide cache timeout. The cache timeout controls how
long results from queries that are stored in the cache are used before the query
is reissued.

If your WebSphere Message Broker application is running on Sun Solaris 10 on
SPARC, you might need to increase the number of file descriptors. If there are not
enough file descriptors, you might fail to get a response to a WSRR query within
the configured timeout period. In addition, the service trace might contain one or

1876 WebSphere Message Broker Version 7.0.0.8

more java.lang.SecurityExceptions related to
com.ibm.ws.tcp.channel.impl.ChannelSelector, and an abend file might be
produced.

For information about the specific levels of WSRR that are supported with
WebSphere Message Broker, see WebSphere Message Broker Requirements.

The topics in this section provide further information about working with WSRR:
v “Configuration parameters for the WebSphere Service Registry and Repository

nodes”
v “Displaying the configuration parameters for the WebSphere Service Registry

and Repository nodes” on page 1879
v “Changing the configuration parameters for the WebSphere Service Registry and

Repository nodes” on page 1881
v “Accessing a secure WSRR repository” on page 1884
v “Caching artifacts from the WebSphere Service Registry and Repository” on page

1888
– “Setting up cache notification” on page 1890

v “Dynamically defining the search criteria” on page 1891
v “EndpointLookup node” on page 4407
v “EndpointLookup node output” on page 1894
v “RegistryLookup node” on page 4646
v “RegistryLookup node output” on page 1897
Related information:

WebSphere Service Registry and Repository Library web page

Configuration parameters for the WebSphere Service Registry
and Repository nodes
These parameters affect the broker configuration when interfacing with WebSphere
Service Registry and Repository (WSRR).

The following table describes the parameters used by the mqsichangeproperties
command to configure the DefaultWSRR object of the Service Registries
configurable service.

Configuration Setting Name Default value Description

endpointAddress For all versions of WSRR:

http://hostname:9080/WSRRCoreSDO/
services/WSRRCoreSDOPort

Endpoint of the WSRR server. Where
hostname:port is host address and port of
your WSRR server. To connect to a
secure WSRR, specify https:// instead
of http://. For more information, see
“Accessing a secure WSRR repository”
on page 1884.

For information about the specific levels
of WSRR that are supported with
WebSphere Message Broker, see
WebSphere Message Broker
Requirements.

timeoutConnection 180 The WSRR connection timeout period in
seconds. The default value is 180
seconds. Set a value that is sufficiently
long for complex queries to complete.

Chapter 9. Developing message flow applications 1877

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www-01.ibm.com/software/integration/wsrr/library/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

For more information about WSRR endpoint addresses, see WSRR Web service
interface URLs.

The following table describes the parameters for Cache that are configured by
using the mqsichangeproperties command.

Configuration Setting
Name Default value Description

needCache True Enable WebSphere Message Broker WSRR cache.

timeout 100000000 The timeout value for the cache. The cache expiry time in
milliseconds. (The default value of 100000000 milliseconds is
approximately 27.8 hours).

predefinedCacheQueries None A list of semicolon-separated WSRR XPath query expressions
with which to initialize the WebSphere Message Broker WSRR
cache at startup. These WSRR XPath query expressions are
defined by the WSRR SOAP interface query expression language,
and can include an optional depth specifier extension.

The following table describes the parameters for Cache Notification that are
configured by using the mqsichangeproperties command.

Configuration Setting Name Default value Description

enableCacheNotification False Enable WebSphere Message Broker
WSRR Cache Notification.

refreshQueriesAfterNotification True When a notification is received from
WSRR, if
refreshQueriesAfterNotification is
set to True, the cache is updated with
the new version of the object
immediately; if False, the cache is
updated on the next request.

connectionFactoryName jms/SRConnectionFactory The name of the WSRR WebSphere
Application Server JMS provider JMS
connection factory for Cache
Notification.

initialContextFactory com.ibm.websphere.naming.
WsnInitialContextFactory

The name of the WSRR WebSphere
Application Server JMS provider JMS
context factory for Cache
Notification.

locationJNDIBinding iiop://hostname:2809/ The URL to the WebSphere
Application Server JMS provider
JNDI bindings, where hostname is
variable.

subscriptionTopic jms/SuccessTopic The topic name used to receive
WebSphere Application Server JMS
provider Cache Notification.

For information about accessing a secure WSRR server, see “Accessing a secure
WSRR repository” on page 1884.
Related concepts:

1878 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/sr/v7r0/index.jsp?topic=/com.ibm.sr.doc/rwsr_api_urls.html
http://publib.boulder.ibm.com/infocenter/sr/v7r0/index.jsp?topic=/com.ibm.sr.doc/rwsr_api_urls.html

“WebSphere Service Registry and Repository” on page 1875
The WebSphere Service Registry and Repository (WSRR) is a central repository of
entities. A wide range of entities can be stored and retrieved, including
user-defined concepts and definitions related specifically to Web services, such as
WSDL services, service interfaces, and associated policies.
Related tasks:
“Displaying the configuration parameters for the WebSphere Service Registry and
Repository nodes”
Use the mqsireportproperties command to display all of the configuration
parameters of the default WebSphere Service Registry and Repository (WSRR)
profile, DefaultWSRR.
“Changing the configuration parameters for the WebSphere Service Registry and
Repository nodes” on page 1881
Use the mqsichangeproperties command to change the configuration parameters of
the DefaultWSRR configurable service.
“Accessing a secure WSRR repository” on page 1884
To access a secure WebSphere Service Registry and Repository (WSRR) repository,
set the configuration parameters by using the mqsichangeproperties command.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

Displaying the configuration parameters for the WebSphere
Service Registry and Repository nodes
Use the mqsireportproperties command to display all of the configuration
parameters of the default WebSphere Service Registry and Repository (WSRR)
profile, DefaultWSRR.

About this task

The DefaultWSRR is a Service Registries configurable service that is supplied for
each broker, see “Configurable services properties” on page 3766.

For information about the specific levels of WSRR that are supported with
WebSphere Message Broker, see WebSphere Message Broker Requirements.

Chapter 9. Developing message flow applications 1879

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

To display the configuration parameters of the default WSRR profile DefaultWSRR,
complete the following steps:

Procedure
1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.
2. Enter the following command (where MB7BROKER is the name of your

broker):
mqsireportproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR -r

where:

-c specifies the configurable service (in this case, ServiceRegistries)
-o specifies the name of the object (in this case, DefaultWSRR)
-r specifies that all property values of the object are displayed, including
the child values if appropriate.

Results

The command produces a response similar to this:
ReportableEntityName=’’
ServiceRegistries

DefaultWSRR=’’
connectionFactoryName = ’jms/SRConnectionFactory’
connectionTimeout = ’120’
endpointAddress = ’http://fill.in.your.host.here:9080/WSRRCoreSDO/services/WSRRCoreSDOPort’
initialContextFactory = ’com.ibm.websphere.naming.WsnInitialContextFactory’
locationJNDIBinding = ’iiop://localhost:2809/’
needCache = ’true’
predefinedCacheQueries = ’’
refreshQueriesAfterNotification = ’true’
subscriptionTopic = ’jms/SuccessTopic’
timeout = ’10000000’

Related concepts:
“WebSphere Service Registry and Repository” on page 1875
The WebSphere Service Registry and Repository (WSRR) is a central repository of
entities. A wide range of entities can be stored and retrieved, including
user-defined concepts and definitions related specifically to Web services, such as
WSDL services, service interfaces, and associated policies.
Related tasks:
“Changing the configuration parameters for the WebSphere Service Registry and
Repository nodes” on page 1881
Use the mqsichangeproperties command to change the configuration parameters of
the DefaultWSRR configurable service.
Related reference:
“Configuration parameters for the WebSphere Service Registry and Repository
nodes” on page 1877
These parameters affect the broker configuration when interfacing with WebSphere
Service Registry and Repository (WSRR).
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.

1880 WebSphere Message Broker Version 7.0.0.8

“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

Changing the configuration parameters for the WebSphere
Service Registry and Repository nodes
Use the mqsichangeproperties command to change the configuration parameters of
the DefaultWSRR configurable service.

About this task

DefaultWSRR is a configurable service object that is supplied for each broker, it
defines the WebSphere Service Registry and Repository (WSRR) configuration
parameters. DefaultWSRR has a configurable service type of ServiceRegistries.

For details about configuration parameters that affect WSRR use, see
“Configuration parameters for the WebSphere Service Registry and Repository
nodes” on page 1877.

To update the configuration parameters of the DefaultWSRR configurable service
perform the following steps:

Procedure
1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.
2. Enter the following command (which applies to all versions of WSRR) to

change the endpointAddress value and point to your WebSphere Service
Registry and Repository server:
mqsichangeproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR
-n endpointAddress
-v http://localhost:9080/WSRR6_1/services/WSRRCoreSDOPort

where:

-c specifies the configurable service type
(in this case, ServiceRegistries)
-o specifies the name of the configurable service object
(in this case, DefaultWSRR)
-n specifies the names of the properties to be changed
(in this case, endpointAddress)
-v specifies the values of properties defined by the -n parameter
(in this case,
http://localhost:9080/WSRR6_1/services/WSRRCoreSDOPort)

Chapter 9. Developing message flow applications 1881

For information about the specific levels of WSRR that are supported with
WebSphere Message Broker, see WebSphere Message Broker Requirements.

3. (Optional) Enter the following command to change the cache timeout value:
mqsichangeproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR
-n timeout -v 3600000

where:

-c specifies the configurable service type
(in this case, ServiceRegistries)
-o specifies the name of the configurable service object
(in this case, DefaultWSRR)
-n specifies the names of the properties to be changed
(in this case, timeout)
-v specifies the values of properties defined by the -n parameter
(in this case, 3600000 milliseconds to provide WSRR cache expiry timeout
of 1 hour)

4. (Optional) Enter the following command to change the connectionTimeout
value:
mqsichangeproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR
-n connectionTimeout -v 240

where:

-c specifies the configurable service type
(in this case, ServiceRegistries)
-o specifies the name of the configurable service object
(in this case, DefaultWSRR)
-n specifies the names of the properties to be changed
(in this case, connectionTimeout)
-v specifies the values of properties defined by the -n parameter
(in this case, 240 seconds to provide connection timeout for WSRR queries
of 4 minutes)

5. (Optional) Enter the following command to preload the cache at broker startup
with the results of specific queries:
mqsichangeproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR
-n predefinedCacheQueries
-v "//*[@name='ConceptA1']"

where:

-c specifies the configurable service type
(in this case, ServiceRegistries)
-o specifies the name of the configurable service object
(in this case, DefaultWSRR)
-n specifies the names of the properties to be changed
(in this case, predefinedCacheQueries)
-v specifies the values of properties defined by the -n parameter
(in this case a simple full depth WSRR XPath query on the entity ConceptA1,
"//*[@name='ConceptA1']").
Note that single quotation marks in the WSRR query must be replaced by
')

Multiple queries can be specified by delimiting them with ';'
For example, to perform a full depth query on the entities named ConceptA1
and ConceptB2 use:

1882 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

-v "//*[@name='ConceptA1'];//*[@name='ConceptB2']"

When a specific value for the Depth Policy property is used on a RegistryLookup node
the same depth must be specified in the predefinedCacheQueries property
by using an optional extension to the query expression of the form depth=n.
For the Depth Policy value of MatchOnly use depth=0.
For the Depth Policy value of MatchPlusImmediate use depth=1.
For the Depth Policy values of MatchPlusAll or MatchShowReluse depth=-1,
which is the default value.

For example, the following query retrieves an XSD MsgDef.xsd with no related entities,
the entity ConceptA1 and its immediately related entities,
and the entity ServiceA2 and all entities related to it:
-v "//*[@name='MsgDef.xsd']{depth=0};
//*[@name='ConceptA1']{depth=1};
//*[@name='ServiceA2']"

Individual queries can use the full power of the WSRR query language:
-v "/WSRR/WSDLService/ports[binding/portType
[@name='DemoCustomer'
and @namespace='http://demo.sr.eis.ibm.com']]"

Use the Broker User Trace to obtain the WSRR XPath query string that is issued when a
RegistryLookup or EndpointLookup node is invoked.
Alternatively, use parameter -p instead of -v to specify a file from which the
mqsichangeproperties command reads the property values:
mqsichangeproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR
-n endpointAddress
-p config.xml

The following conditions apply when you use the -p parameter:
v The parameter is used to specify the location and name of a file from which

the command reads the property values.
v The parameter can be used to set only a single property. Therefore, the -n

parameter must specify only a single property name, not a comma-separated
list of property names.

v White space characters (including line feed, carriage return, and end of file
characters) are preserved when read from a file that is specified by using the
-p parameter

See “Configurable services properties” on page 3766 for further detail.
6. Restart the broker, by using the mqsistop command to stop the broker, followed

by the mqsistart command to start it.
Related concepts:
“WebSphere Service Registry and Repository” on page 1875
The WebSphere Service Registry and Repository (WSRR) is a central repository of
entities. A wide range of entities can be stored and retrieved, including
user-defined concepts and definitions related specifically to Web services, such as
WSDL services, service interfaces, and associated policies.
Related tasks:
“Displaying the configuration parameters for the WebSphere Service Registry and
Repository nodes” on page 1879
Use the mqsireportproperties command to display all of the configuration
parameters of the default WebSphere Service Registry and Repository (WSRR)
profile, DefaultWSRR.

Chapter 9. Developing message flow applications 1883

Related reference:
“Configuration parameters for the WebSphere Service Registry and Repository
nodes” on page 1877
These parameters affect the broker configuration when interfacing with WebSphere
Service Registry and Repository (WSRR).
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

Accessing a secure WSRR repository
To access a secure WebSphere Service Registry and Repository (WSRR) repository,
set the configuration parameters by using the mqsichangeproperties command.

About this task

You must connect over HTTPS, not HTTP, which is specified in the
endpointAddress configuration parameter of the default WSRR profile,
DefaultWSRR.

For more information about the endpointAddress configuration parameter, see
“Configuration parameters for the WebSphere Service Registry and Repository
nodes” on page 1877.

To access a secure WebSphere Service Registry and Repository, enter the following
sequence of commands:

Procedure
1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.
2. Use the ServiceRegistries configurable service to configure the broker to use

HTTPS to communicate with the WSRR server. You can view the current
configuration parameters for the ServiceRegistries configurable service by
using the following command:
mqsireportproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR -r

1884 WebSphere Message Broker Version 7.0.0.8

where:

-c specifies the configurable service (in this case, ServiceRegistries)
-o specifies the name of the object (in this case, DefaultWSRR)
-r specifies that all property values of the object are displayed, including the
child values, if appropriate.
To change the endpointAddress configuration parameter to specify HTTPS and
the secure port for the DefaultWSRR of the ServiceRegistries configurable
service, use the following command. The endpointAddress applies to the
version of WSRR (for more information, see “Configuration parameters for the
WebSphere Service Registry and Repository nodes” on page 1877).
mqsichangeproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR
-n endpointAddress
-v https://localhost:9443/WSRR6_1/services/WSRRCoreSDOPort

where:

-c specifies the configurable service (in this case, ServiceRegistries)
-o specifies the name of the object (in this case, DefaultWSRR)
-n specifies the names of the properties to be changed
(in this case, endpointAddress)
-v specifies the values of properties defined by the -n parameter
(in this case, https://localhost:9443/WSRR6_1/services/WSRRCoreSDOPort)
For information about the specific levels of WSRR that are supported with
WebSphere Message Broker, see WebSphere Message Broker Requirements.

3. Configure the broker keystore to contain your WSRR server certificate keys;
for a discussion of digital certificates, see “Digital certificates” on page 356.
Obtain these certificate keys from the installation of the WebSphere
Application Server that hosts your WSRR server. The broker uses a single
keystore, therefore, if your broker also implements WS-Security, HTTPS, or
SSL-secured WebSphere MQ, you might need to merge the provided keys into
an existing keystore file. The broker keystore is configured by using the
mqsichangeproperties command to change configuration parameters for the
broker. Display the current configuration parameters of the broker by using
the following command:
mqsireportproperties MB7BROKER -o BrokerRegistry -r

where:

-o specifies the name of the object (in this case, BrokerRegistry)
-r specifies that all property values of the object are displayed, including the
child values, if appropriate.
To change the brokerKeystoreFile configuration parameters for the broker,
use the following command:
mqsichangeproperties MB7BROKER -o BrokerRegistry
-n brokerKeystoreFile -v C:\WSRR\SSL\ClientKeyFile.jks

where:

-o specifies the name of the object (in this case, BrokerRegistry)
-n specifies the names of the properties to be changed (in this case, brokerKeystoreFile)
-v specifies the values of properties defined by the -n parameter
(in this case, C:\WSRR\SSL\ClientKeyFile.jks)

4. Configure the broker truststore to contain signer certificates for your WSRR
server. As described previously for the keystore, the broker uses a single

Chapter 9. Developing message flow applications 1885

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

truststore, therefore certificates might need to be merged into an existing
truststore file. The broker truststore is configured by using the
mqsichangeproperties command. To change the brokerTruststoreFile
configuration parameters for the broker, use the following command:
mqsichangeproperties MB7BROKER -o BrokerRegistry
-n brokerTruststoreFile -v C:\WSRR\SSL\ClientTrustFile.jks

where:

-o specifies the name of the object
(in this case, BrokerRegistry)
-n specifies the names of the properties to be changed
(in this case, brokerTruststoreFile)
-v specifies the values of properties defined by the -n parameter
(in this case, C:\WSRR\SSL\ClientTrustFile.jks)

5. Stop the broker by using the mqsistop command. You must stop the broker to
complete the following step.

6. Set the WebSphere Application Server user name and password by using the
following command:
mqsisetdbparms MB7BROKER -n DefaultWSRR::WSRR -u wasuser -p waspass

where:

-n specifies the name of the data source
(in this case, DefaultWSRR::WSRR)
-u specifies the user ID to be associated with this data source (in this case, wasuser)
-p specifies the password to be associated with this data source (in this case, waspass)

7. Set the brokerKeystore user name and password by using the following
command:
mqsisetdbparms MB7BROKER -n brokerKeystore::password -u dummy -p WebAS

where:

-n specifies the name of the data source (in this case, brokerKeystore::password)
-u specifies the user ID to be associated with this data source (in this case, dummy)
-p specifies the password to be associated with this data source (in this case, WebAS)

8. Set the brokerTrustStore user name and password by using the following
command:
mqsisetdbparms MB7BROKER -n brokerTruststore::password -u dummy
-p WebAS

where:

-n specifies the name of the data source (in this case, brokerTruststore::password)
-u specifies the user ID to be associated with this data source (in this case, dummy)
-p specifies the password to be associated with this data source (in this case, WebAS)

9. To use cache notification with your secure WSRR server, you must specify a
valid user ID and password for the broker to use when connecting to the
WSRR JMS cache notification topic. To set the user ID and password that the
broker will use to make the JMS cache notification connection, use the
following command:
mqsisetdbparms MB7BROKER -n jms::DefaultWSRR@jms/SRConnectionFactory
-u userid -p password

1886 WebSphere Message Broker Version 7.0.0.8

where:

-n specifies the name of the data source
(in this case, jms::DefaultWSRR@jms/SRConnectionFactory)
-u specifies the user ID to be associated with this data source
(in this case, userid)
-p specifies the password to be associated with this data source
(in this case, password)

Note: When using WebSphere Application Server Version 8.0, the default IIOP
secure setting must be set to SSL-supported to enable the JMS cache
notification. For more information about setting IIOP security, go to the
WebSphere Application Server, Network Deployment (Distributed platforms
and Windows), Version 8.0 information center, and read the topic "Common
Secure Interoperability Version 2 transport inbound settings"; see WebSphere
Application Server information center, Version 8.0.

10. Restart the broker by using the mqsistart command.
Related concepts:
“WebSphere Service Registry and Repository” on page 1875
The WebSphere Service Registry and Repository (WSRR) is a central repository of
entities. A wide range of entities can be stored and retrieved, including
user-defined concepts and definitions related specifically to Web services, such as
WSDL services, service interfaces, and associated policies.
Related tasks:
“Displaying the configuration parameters for the WebSphere Service Registry and
Repository nodes” on page 1879
Use the mqsireportproperties command to display all of the configuration
parameters of the default WebSphere Service Registry and Repository (WSRR)
profile, DefaultWSRR.
“Changing the configuration parameters for the WebSphere Service Registry and
Repository nodes” on page 1881
Use the mqsichangeproperties command to change the configuration parameters of
the DefaultWSRR configurable service.
Related reference:
“Configuration parameters for the WebSphere Service Registry and Repository
nodes” on page 1877
These parameters affect the broker configuration when interfacing with WebSphere
Service Registry and Repository (WSRR).
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Chapter 9. Developing message flow applications 1887

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp

“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

Caching artifacts from the WebSphere Service Registry and
Repository
WebSphere Message Broker saves the data it retrieves from the WebSphere Service
Registry and Repository (WSRR) in a local cache.

The WSRR nodes, EndpointLookup and RegistryLookup, can retrieve data that
was stored in the Broker WSRR cache by a previous query, improving performance
and message throughput. The first occurrence of each query is always sent to
WSRR. By default, this activity occurs when a WSRR node first issues a specific
query, although it is possible to pre-populate the cache, when the broker starts, by
using the queries described here.

Configuring the WSRR Cache

The cache is configured individually for each broker by using the WebSphere
Message Broker Explorer or the mqsichangeproperties command; for details, see
“Configurable services properties” on page 3766.

You can configure the cache in the following ways:
v Disabling the cache

Disable the cache by setting the needCache parameter to false. By default, the
cache is enabled, but the WSRR nodes can operate without the cache. If the
cache is disabled, every query that is issued by the node is sent to WSRR,
ensuring that the results of the query always reflect the current contents of the
registry. This activity can affect performance.

v Preloading the cache

Preload the cache by setting the predefinedCacheQueries parameter. By default,
no items are preloaded in the cache and the first occurrence of every query is
sent to WSRR. You can specify predefined queries that are executed when the
broker starts, or when a message flow containing WSRR flows is first deployed,
populating the cache for use by subsequent WSRR nodes. By specifying
predefined queries, performance might be affected at startup, rather than on the
first occurrence of a query at run time. The predefinedCacheQueries parameter
is a list of WSRR XPath query expressions separated by semicolons, each with
an optional depth specification. The user trace shows the WSRR XPath query
expression generated by a WSRR node.

v Changing the cache expiry timeout value

Change the cache expiry timeout value by setting the timeout parameter. The
cached results of a query are discarded after the specified time has elapsed. The

1888 WebSphere Message Broker Version 7.0.0.8

next occurrence of the query is sent to WSRR and the new result is entered in
the cache. If the contents of the registry are likely to change frequently, you can
specify a shorter expiry timeout value so that changes are picked up quicker.
This activity affects performance as more queries are sent to WSRR.

v Enabling cache notification

Enable cache notification by setting the enableCacheNotification parameter to
true and by setting the initialContextFactory and locationJNDIBinding
properties appropriately for your WSRR server. By default, cache notification is
disabled. Cache notification is a more flexible method than expiry timeout for
refreshing cached data because it allows individual WSRR entities to be
refreshed at the time they are modified in WSRR.
If cache notification is enabled, the cache subscribes to events occurring in
WSRR and is notified when an object is updated or deleted in WSRR. The object
is discarded from the cache. If the refreshQueriesAfterNotification parameter
is set to true, the cache is updated with the new version of the object
immediately. If the refreshQueriesAfterNotification parameter is set to false,
the cache is updated the next time a relevant query is issued by a WSRR node.

Related tasks:
“Setting up cache notification” on page 1890
Use the mqsichangeproperties command to enable cache notification, so that the
cache is notified of events occurring in WebSphere Service Registry and Repository
(WSRR).
Related reference:
“Configuration parameters for the WebSphere Service Registry and Repository
nodes” on page 1877
These parameters affect the broker configuration when interfacing with WebSphere
Service Registry and Repository (WSRR).
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not

Chapter 9. Developing message flow applications 1889

modified.

Setting up cache notification:

Use the mqsichangeproperties command to enable cache notification, so that the
cache is notified of events occurring in WebSphere Service Registry and Repository
(WSRR).

About this task

WSRR publishes notification events by using WebSphere Application Server. Cache
notification allows the cache to subscribe to these events.

To enable cache notification complete the following steps to change the relevant
properties on the configurable service DefaultWSRR, and to add a user ID and
password if you are connecting to a secure WebSphere Application Server:

Procedure

1. Ensure that the broker is running. If it is not, use the mqsistart command to
start it.

2. Issue the mqsichangeproperties command to change the
enableCacheNotification property to true. For example:
mqsichangeproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR
-n enableCacheNotification -v true

where:

-c specifies the configurable service (in this case, ServiceRegistries)
-o specifies the name of the object (in this case, DefaultWSRR)
-n specifies the names of the properties to be changed
(in this case, enableCacheNotification)
-v specifies the values of properties defined by the -n parameter
(in this case, true)

3. Issue the mqsichangeproperties command to change the locationJNDIBinding
property to the value that you require for your WSRR server. For example:
mqsichangeproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR
-n locationJNDIBinding -v iiop://localhost:2809/

where:

-c specifies the configurable service (in this case, ServiceRegistries)
-o specifies the name of the object (in this case, DefaultWSRR)
-n specifies the names of the properties to be changed
(in this case, locationJNDIBinding)
-v specifies the values of properties defined by the -n parameter
(in this case, iiop://localhost:2809/)

4. If you are connecting to a secure WebSphere Application Server you must use a
user ID and password. To set the user ID and password follow these steps:
a. Stop the broker by using the mqsistop command.
b. Issue the mqsisetdbparms command to set up your user ID and password.

For example:
mqsisetdbparms MB7BROKER -n jms::DefaultWSRR@jms/SRConnectionFactory
-u userid -p password

where:

1890 WebSphere Message Broker Version 7.0.0.8

-n specifies the name of the data source
(in this case, jms::DefaultWSRR@jms/SRConnectionFactory)
-u specifies the user ID to be associated with this data source
(in this case, userid)
-p specifies the password to be associated with this data source
(in this case, password)

c. Restart the broker by using the mqsistart command.
Related concepts:
“WebSphere Service Registry and Repository” on page 1875
The WebSphere Service Registry and Repository (WSRR) is a central repository of
entities. A wide range of entities can be stored and retrieved, including
user-defined concepts and definitions related specifically to Web services, such as
WSDL services, service interfaces, and associated policies.
Related tasks:
“Accessing a secure WSRR repository” on page 1884
To access a secure WebSphere Service Registry and Repository (WSRR) repository,
set the configuration parameters by using the mqsichangeproperties command.
“Displaying the configuration parameters for the WebSphere Service Registry and
Repository nodes” on page 1879
Use the mqsireportproperties command to display all of the configuration
parameters of the default WebSphere Service Registry and Repository (WSRR)
profile, DefaultWSRR.
Related reference:
“Configuration parameters for the WebSphere Service Registry and Repository
nodes” on page 1877
These parameters affect the broker configuration when interfacing with WebSphere
Service Registry and Repository (WSRR).
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

Dynamically defining the search criteria
You can use the RegistryLookup and EndpointLookup nodes to issue WebSphere
Service Registry and Repository (WSRR) queries specified in the local environment.

The RegistryLookup and EndpointLookup nodes issue WSRR queries at run time
and save the resulting data in the local environment. You can specify the queries at
design time by using node properties to define the search criteria. Both nodes
require at least one query property to be defined before you can deploy the
message flow. However, you can specify the search criteria at run time in the local
environment, either supplementing or overriding the node properties.

The following table defines the local environment overrides for WSRR queries.
These fields must be set in

Chapter 9. Developing message flow applications 1891

OutputLocalEnvironment.ServiceRegistryLookupProperties by a preceding
transformation node, such as a Compute node.

Setting Description

Name This setting overrides the Name property on the node; for example, with an ESQL Compute
node:

SET OutputLocalEnvironment.ServiceRegistryLookupProperties.Name =
’DemoCustomer’;

This setting relates to the PortType Name property on the EndpointLookup node. Therefore,
to set the PortType Name property, use the Name setting in the local environment.

Namespace This setting overrides the Namespace property on the node; for example:

SET OutputLocalEnvironment.ServiceRegistryLookupProperties.Namespace =
’http://mb.sr.eis.ibm.com’;

This setting relates to the PortType Namespace property on the EndpointLookup node.
Therefore, to set the PortType Namespace property, use the Namespace setting in the local
environment.

Version This setting overrides the Version property on the node; for example:

SET OutputLocalEnvironment.ServiceRegistryLookupProperties.Version =
’1.0’;

This setting relates to the PortType Version property on the EndpointLookup node.
Therefore, to set the PortType Version property, use the Version setting in the local
environment.

MatchPolicy This setting overrides the Match Policy property on the node; for example:

SET OutputLocalEnvironment.ServiceRegistryLookupProperties.MatchPolicy =
’One’;

Valid values are One and All.

DepthPolicy This setting overrides the Depth Policy property on the RegistryLookup node; for example:

SET OutputLocalEnvironment.ServiceRegistryLookupProperties.DepthPolicy =
’MatchOnly’;

Valid values are:
v MatchOnly for Return matched only (Depth = 0)
v MatchShowRel for Return matched showing immediate relationships (For compatibility

only)
v MatchPlusImmediate for Return matched plus immediate related entities (Depth = 1)
v MatchPlusAll for Return matched plus all related entities (Depth = -1)

The MatchShowRel property provides compatibility with versions of WebSphere Message
Broker before Version 6.1.0.4, by using the output format that was used in those previous
versions. This option is deprecated, and should not be used if you are creating a new
message flow. Consider migrating existing message flows to use one of the other options.

1892 WebSphere Message Broker Version 7.0.0.8

Setting Description

UserProperties This setting overrides the User Properties property on the node. You can specify more than
one user-defined property in the local environment; for example:

SET OutputLocalEnvironment.ServiceRegistryLookupProperties.UserProperties.property1
= ’value1’;
SET OutputLocalEnvironment.ServiceRegistryLookupProperties.UserProperties.property2
= ’value2’;

You can remove a user-defined property from the local environment by setting its value to
NULL; for example:

SET OutputLocalEnvironment.ServiceRegistryLookupProperties.UserProperties.property1
= NULL;

You can use the node properties editor at design time to specify ESQL paths or XPath
expressions to read the value for a user property at run time from a field in the message
tree. However, the override values that you set in the local environment are the string values
that are used in the query.

Classification This setting overrides the Classification property on the node; for example:

SET OutputLocalEnvironment.ServiceRegistryLookupProperties.Classification =
’http://www.ibm.com/xmlns/prod/serviceregistry/6/0/governance/
DefaultLifecycle#InitialState0’;

You can specify more than one classification in the local environment. For example:

SET OutputLocalEnvironment.ServiceRegistryLookupProperties.Classification[1] =
’http://www.ibm.com/xmlns/prod/serviceregistry/6/0/governance/
DefaultLifecycle#InitialState0’;
SET OutputLocalEnvironment.ServiceRegistryLookupProperties.Classification[2] =
’http://www.ibm.com.policy/GovernancePolicyDomain’;

Related concepts:
“EndpointLookup node output” on page 1894
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).
“RegistryLookup node output” on page 1897
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.
“Caching artifacts from the WebSphere Service Registry and Repository” on page
1888
WebSphere Message Broker saves the data it retrieves from the WebSphere Service
Registry and Repository (WSRR) in a local cache.
Related tasks:
“Displaying the configuration parameters for the WebSphere Service Registry and
Repository nodes” on page 1879
Use the mqsireportproperties command to display all of the configuration
parameters of the default WebSphere Service Registry and Repository (WSRR)
profile, DefaultWSRR.
“Accessing a secure WSRR repository” on page 1884
To access a secure WebSphere Service Registry and Repository (WSRR) repository,
set the configuration parameters by using the mqsichangeproperties command.
“Changing the configuration parameters for the WebSphere Service Registry and
Repository nodes” on page 1881
Use the mqsichangeproperties command to change the configuration parameters of
the DefaultWSRR configurable service.

Chapter 9. Developing message flow applications 1893

“Populating Destination in the local environment tree” on page 2467
Use the Destination subtree to set up the target destinations that are used by
output nodes, the HTTPRequest node, the SOAPRequest node, the
SOAPAsyncRequest node, and the RouteToLabel node. The following examples
show how you can create and use an ESQL procedure to perform the task of
setting up values for each of these uses.
Related reference:
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.
“Configuration parameters for the WebSphere Service Registry and Repository
nodes” on page 1877
These parameters affect the broker configuration when interfacing with WebSphere
Service Registry and Repository (WSRR).

EndpointLookup node output
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).

The input message is not changed by the EndpointLookup node. Instead, the local
environment is updated to contain details of the endpoints retrieved by the query
specified by the node and any local environment overrides.

You can configure the EndpointLookup node to dynamically set the service
endpoint address for services that will be invoked by a subsequent SOAP or HTTP
request node. The EndpointLookup node sets the destination URL in the local
environment overrides for those nodes. See the following sample for an example of
how to do this:
v WebSphere Service Registry and Repository Connectivity

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

EndpointLookup node output if the Match Policy property is set to One

If the Match Policy property of the node is set to One, theEndpointLookup node
inserts the endpoint URL retrieved by the query into the local environment in an
ITService entry in the local environment under ServiceRegistry, and sets the
destination overrides for the SOAP and HTTP request nodes that can be connected
directly to its output terminal. The following locations are updated:
v LocalEnvironment.Destination.SOAP.Request.Transport.HTTP.WebServiceURL

v LocalEnvironment.Destination.HTTP.RequestURL

1894 WebSphere Message Broker Version 7.0.0.8

These settings override the Web service URL property of the SOAPRequest,
SOAPAsyncRequest, and HTTPRequest nodes, allowing a dynamic call to a Web
service provider.

The following example shows typical output from the EndpointLookup node when
the Match Policy is set to One. (Other entries might exist in the local environment
depending on previous processing in the flow.)
<LocalEnvironment>

<Destination>
<SOAP>

<Request>
<Transport>

<HTTP>
<WebServiceURL>http://localhost:9081/DemoCustomerWeb/
services/DemoCustomer</WebServiceURL>

</HTTP>
</Transport>

</Request>
</SOAP>
<HTTP>

<RequestURL>http://localhost:9081/DemoCustomerWeb/
services/DemoCustomer

</RequestURL>
</HTTP>
</Destination>
<ServiceRegistry>
<ITService>

<Endpoint>
<Address>http://localhost:9081/DemoCustomerWeb/

services/DemoCustomer</Address>
<PortType>

<name>DemoCustomer</name>
<namespace>http://demo.sr.eis.ibm.com</namespace>
<version>1.0</version>

</PortType>
<Property>

<name>policy</name>
<value>RM</value>

</Property>
<Property>

<name>country</name>
<value>China</value>

</Property>
<Classification>http://eis.ibm.com/ServiceRegistry/

GenericObjecttypes#Routing</Classification>
</Endpoint>

</ITService>
</ServiceRegistry>

</LocalEnvironment>

EndpointLookup node output if the Match Policy property is set to All

If the Match Policy is set to All the EndpointLookup node writes an ITService
entry in the local environment location ServiceRegistry for each endpoint retrieved
by the query.

The following example shows typical output from the EndpointLookup node when
the Match Policy is set to All. (Other entries might exist in the local environment
depending on previous processing in the flow.)
<LocalEnvironment>

<ServiceRegistry>
<ITService>

<Endpoint>

Chapter 9. Developing message flow applications 1895

<Address>http://localhost:9081/DemoCustomerWeb/
services/DemoCustomer</Address>

<PortType>
<name>DemoCustomer</name>
<namespace>http://demo.sr.eis.ibm.com</namespace>
<version>1.0</version>

</PortType>
<Property>

<name>policy</name>
<value>RM</value>

</Property>
<Property>

<name>country</name>
<value>China</value>

</Property>
<Classification>http://eis.ibm.com/ServiceRegistry/

GenericObjecttypes#Routing</Classification>
</Endpoint>

</ITService>
<ITService>

<Endpoint>
<Address>http://localhost:9081/DemoCustomerWeb/

services/DemoCustomer2</Address>
<PortType>

<name>DemoCustomer2</name>
<namespace>http://demo.sr.eis.ibm.com</namespace>
<version>1.0</version>

</PortType>
</Endpoint>

</ITService>
</ServiceRegistry>

</LocalEnvironment>

Related concepts:
“RegistryLookup node output” on page 1897
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.
“Dynamically defining the search criteria” on page 1891
You can use the RegistryLookup and EndpointLookup nodes to issue WebSphere
Service Registry and Repository (WSRR) queries specified in the local environment.

“Caching artifacts from the WebSphere Service Registry and Repository” on page
1888
WebSphere Message Broker saves the data it retrieves from the WebSphere Service
Registry and Repository (WSRR) in a local cache.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Populating Destination in the local environment tree” on page 2467
Use the Destination subtree to set up the target destinations that are used by
output nodes, the HTTPRequest node, the SOAPRequest node, the
SOAPAsyncRequest node, and the RouteToLabel node. The following examples
show how you can create and use an ESQL procedure to perform the task of
setting up values for each of these uses.
Related reference:

1896 WebSphere Message Broker Version 7.0.0.8

“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

RegistryLookup node output
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

This topic contains the following sections:
v “Setting the Depth Policy property”
v “Local environment output tree” on page 1898
v “Migrating a message flow that uses the MatchShowRel option” on page 1900
v “Examples” on page 1900

Setting the Depth Policy property

The Depth Policy property on the RegistryLookup node specifies how much data
is returned for each matched entity. The following table shows the valid values.

Depth Policy property value
Local environment override
value Data returned

Return matched only (Depth
= 0)

MatchOnly Just the matched entities

Return matched showing
immediate relationships
(For compatibility only)

MatchShowRel The matched entities and
additional references

Return matched plus
immediate related entities
(Depth = 1)

MatchPlusImmediate The matched entities and the
immediate related child
entities

Return matched plus all
related entities (Depth =
-1)

MatchPlusAll The matched entities and all
the related child entities

Use MatchShowRel for compatibility with versions of WebSphere Message Broker
before Version 6.1.0.4. The local environment output for MatchShowRel is shown in
Example 1 and follows the format that was used in those previous versions.
However, the MatchShowRel option is deprecated, and provided only for
compatibility with previous versions. Do not use MatchShowRel if you are creating a
new message flow, and consider migrating existing message flows to use one of
the other options.

Chapter 9. Developing message flow applications 1897

Use the MatchOnly option to retrieve just the individual entities matched by the
search criteria. This option is efficient, however the local environment output does
not contain any information about entities related to the matched entities.

Use the MatchPlusImmediate option to retrieve the entities matched by the search
criteria, and the related child entities. This option offers a useful compromise,
allowing you to access the immediate relations of the matched entities, while still
restricting the total amount of data retrieved.

Use one of the MatchOnly or MatchPlusImmediate options when migrating a
message flow that uses the deprecated MatchShowRel option. If your original
message flow used the relationship information in the matched entities, use the
MatchPlusImmediate option. See “Migrating a message flow that uses the
MatchShowRel option” on page 1900.

Use the MatchPlusAll option to retrieve the entities matched by the search criteria,
and all the related child entities. Use this option only if your message flow needs
access to more than the immediate relations of the matched entities, because it
retrieves considerably more data than the MatchPlusImmediate option, see “Local
environment output tree.”

Local environment output tree

The local environment output tree has a different format when the deprecated
MatchShowRel option of the Depth Policy property is used. The following table
describes the differences in the local environment output tree format.

MatchOnly, MatchPlusImmediate, and
MatchPlusAll options MatchShowRel option

The ServiceRegistry folder element is owned
by the XMLNSC compiler.

No owning parser on the ServiceRegistry
folder element, and each Entity element is
owned by the XMLNS parser

The ServiceRegistry tree does not use
unnecessary namespaces.

Namespaces are attached to all UserDefined
folder elements, meaning that the path
specified must declare and use the relevant
namespace to access fields within these
folders.

The ServiceRegistry tree is optimized
through use of the XMLNSC parser.

The output tree contains a number of XML
declaration, pcdata, and white space
elements that have no business significance.

In WSRR, binary data is represented as a
GenericDocument with a content attribute.
The content attribute is represented in the
local environment as XMLNSC type
Attribute+base64Binary, (0x03000160). You
can access the unencoded binary data
directly as Entity.content. However,
because of the special XMLNSC element
type, the data is automatically base64
encoded if the tree is serialized.

Binary content is represented as a base64
encoded character string in the content
attribute. The message flow must invoke a
Java method to decode the value if the
original binary data is required.

1898 WebSphere Message Broker Version 7.0.0.8

MatchOnly, MatchPlusImmediate, and
MatchPlusAll options MatchShowRel option

The retrieved entities are not modified to
add any user properties.

The matched Entities appear in the local
environment with a user property called
WSRREncoding. This property has no specific
significance to message flow processing. If
there is a user property called WSRREncoding
defined for the entity, the defined value is
used, otherwise the WSRREncoding property is
added with value="DEFAULT".

The MatchPlusImmediate and MatchPlusAll options result in a graph of entities
being returned when WSRR executes the query. Each entity in the graph can refer
to other entities. There are two types of relationship that cannot be expressed
directly in a hierarchical tree:
v Cyclic references - a graph can contain an entity from which you can follow

relationships that arrive back at the same entity.
v Multiple references - a graph can contain an entity that is referenced by multiple

entities.

The representation of these relationships in the local environment output tree is
described in the following text.

The WSRR graph is represented in the local environment output tree as follows:
v The matched entities that are returned in the WSRR graph are represented as

Entity elements as the first children of the LocalEnvironment.ServiceRegistry.
The properties of the matched entities are represented as child elements.

v A matched entity can contain references to other entities. If MatchPlusImmediate
is set, these references are represented as Entity child elements of the matched
entity. If MatchPlusAll is set, the same rule is applied recursively to these
children.

v Cyclic references - if an entity references another entity that is one of its
ancestors in the WSRR graph, the referenced entity is represented as an
EntityRef element. An EntityRef element does not represent the target entity
directly, but provides information to identify it. This prevents the possibility of
entering cyclic loops when navigating the tree.
The following diagram shows references from entity D1 in the graph to entities
C1 and A that are ancestral; therefore, Entity D1 in the message tree contains
EntityRef elements for A and C1.

"C1"

AA

B2
B2

"A"

B1
B1

D1D1

C1C1

Chapter 9. Developing message flow applications 1899

v Multiple references - if an entity in the WSRR SDO graph is referenced by more
than one other entity, it is represented as a separate Entity element in the
message tree each time it is referenced. The Entity element is cloned, along with
any entities that it refers to.
The following diagram shows that entity X1 in the graph is referenced by
entities Y1 and Y2, so Entity X1 and Entity W1 that it references are modeled
twice in the message tree.

Z

Y1 Y2

W1 W1

Y2Y1

X1 X1

Z

X1

W1

Migrating a message flow that uses the MatchShowRel option

When you migrate an existing message flow that uses the deprecated MatchShowRel
option of the Depth Policy property, the local environment output tree will have a
different format. The table shown earlier describes the differences in the local
environment output tree formats, and indicates what you must modify in the
message flow to access the data in the updated format; see “Local environment
output tree” on page 1898.

Examples

The following examples show typical output from the RegistryLookup node:
v Example 1 shows the full RegistryLookup node output in two cases for a query

that returns two versions of a concept entity. In both cases the Match Policy
property is set to All. In the first case the Depth Policy property is set to Return
matched plus immediate related entities (Depth = 1) , and in the second
case the Depth Policy property is set to Return matched only, showing
immediate relationships (For compatibility only). This example also shows
example ESQL to read elements of the output. See “RegistryLookup node
output: example 1” on page 1901

v Example 2 shows the structure of RegistryLookup node output for all possible
values of the Depth Policy property for a query on a concept entity that has a
number of user relationships to other concept entities. See “RegistryLookup
node output: example 2” on page 1906

v Example 3 shows the structure of RegistryLookup node output for a query on an
entity having metadata relationships and user-defined relationships, using a
Depth Policy property value of Return matched plus all related entities
(Depth = -1) . See “RegistryLookup node output: example 3” on page 1909.

Related concepts:
“EndpointLookup node output” on page 1894
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).

1900 WebSphere Message Broker Version 7.0.0.8

“Dynamically defining the search criteria” on page 1891
You can use the RegistryLookup and EndpointLookup nodes to issue WebSphere
Service Registry and Repository (WSRR) queries specified in the local environment.

“Caching artifacts from the WebSphere Service Registry and Repository” on page
1888
WebSphere Message Broker saves the data it retrieves from the WebSphere Service
Registry and Repository (WSRR) in a local cache.
Related reference:
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

RegistryLookup node output: example 1:

Example showing the full RegistryLookup node output in two cases for a query
that returns two versions of a concept entity. In both cases the Match Policy
property is set to All. In the first case the Depth Policy property is set to Return
matched plus immediate related entities (Depth = 1) , and in the second case
the Depth Policy property is set to Return matched only, showing immediate
relationships (For compatibility only). This example also shows example ESQL
to read elements of the output.

This example shows the ServiceRegistry message tree that is stored in the
LocalEnvironment when an entity called ConceptA1 is retrieved from WebSphere
Service Registry and Repository (WSRR). ConceptA1 is defined in WSRR with 2
versions: 1.0 which is deprecated, and 2.0 which is classified as initial state.
Additional properties and relationships have been added to the 2.0 version. The
following diagram shows the relationships between the elements in the message
tree.

A

B2B1

C1

The following message trees show the different values of the Depth Policy
property.
v Depth Policy property set to Return matched plus immediate related entities

(Depth = 1)

The following ESQL was used to create a serialization of the output of the
ServiceRegistry node:
SET OutputRoot.XMLNSC.Result.ServiceRegistry =

InputLocalEnvironment.ServiceRegistry;

Chapter 9. Developing message flow applications 1901

The ServiceRegistry folder element is owned by the XMLNSC parser so you can
invoke a like parser tree copy to OutputRoot.XMLNSC. The following XML,
which has been formatted, is produced when writing this output root tree.
<ServiceRegistry>

<Entity
bsrURI="33a9ad33-d4a4-442e.b3a6.37e62137a605"
name="ConceptA1"
namespace="http://www.examples.com/ConceptA1"
version="2.0"
description="A version 2 of the existing one"
owner="UNAUTHENTICATED"
lastModified="1230116323343"
creationTimestamp="1227176757406"
lastModifiedBy="UNAUTHENTICATED"
primaryType="">
<classificationURIs>
http://www.ibm.com/xmlns/prod/serviceregistry/6/0/governance/

DefaultLifecycle#InitialState0
</classificationURIs>
<classificationURIs>
http://www.ibm.com.policy/GovernancePolicyDomain

</classificationURIs>
<userDefinedProperties name="property1" value="value1 for v1" />
<userDefinedProperties name="property2" value="value1 for v2" />
<userDefinedProperties name="property3" value="value1 for v3" />
<userDefinedRelationships name="ContainsChildren">
<targetEntities>

<Entity
bsrURI="8203cb82-8827-4757.99e1.36de6036e1af"
name="ConceptB1"
namespace="http://www.examples.com/ConceptB1"
version="2.0"
description="Next revision of this concept"
owner="UNAUTHENTICATED"
lastModified="1227191748250"
creationTimestamp="1227177460156"
lastModifiedBy="UNAUTHENTICATED"
primaryType="" />

<Entity
bsrURI="a0d2bba0-f395-45bc.929e.04d143049eb5"
name="ConceptB2"
namespace="http://www.examples.com/ConceptB2" version="1.0"
description="Testing"
owner="UNAUTHENTICATED"
lastModified="1227191700812"
creationTimestamp="1227177334515"
lastModifiedBy="UNAUTHENTICATED"
primaryType="" />

</targetEntities>
</userDefinedRelationships>
<userDefinedRelationships name="ReferTo">
<targetEntities>

<Entity
bsrURI="81e45381-a9be-4ea4.9519.53657953196d"
name="ConceptC1"
namespace="http://www.examples.com/ConceptC1"
version="1.0"
description="Test stuff C1"
owner="UNAUTHENTICATED"
lastModified="1227874855140"
creationTimestamp="1227177519609"
lastModifiedBy="UNAUTHENTICATED" primaryType="" />

</targetEntities>
</userDefinedRelationships>

</Entity>
<Entity

1902 WebSphere Message Broker Version 7.0.0.8

bsrURI="b68952b6-8d68-4840.8e5e.a3716da35e2e"
name="ConceptA1"
namespace="http://www.examples.com/ConceptA1"
version="1.0"
description="The original concept"
owner="UNAUTHENTICATED"
lastModified="1229030287593"
creationTimestamp="1227173773250"
lastModifiedBy="UNAUTHENTICATED"
primaryType="">
<classificationURIs>
http://www.ibm.com/xmlns/prod/serviceregistry/6/0/governance/

DefaultLifecycle#Deprecate
</classificationURIs>
<userDefinedProperties name="property1" value="value1" />
<userDefinedProperties name="property2" value="value2" />
<userDefinedRelationships name="ContainsChildren">
<targetEntities>

<Entity
bsrURI="7d5fd37d-e90a-4ab0.89eb.d25b81d2ebec"
name="ConceptB1"
namespace="http://www.examples.com/ConceptB1" version="1.0"
description="" owner="UNAUTHENTICATED"
lastModified="1227874785062"
creationTimestamp="1227177401265"
lastModifiedBy="UNAUTHENTICATED"
primaryType="" />

<Entity
bsrURI="a0d2bba0-f395-45bc.929e.04d143049eb5"
name="ConceptB2"
namespace="http://www.examples.com/ConceptB2" version="1.0"
description="Testing" owner="UNAUTHENTICATED"
lastModified="1227191700812"
creationTimestamp="1227177334515"
lastModifiedBy="UNAUTHENTICATED"
primaryType="" />

</targetEntities>
</userDefinedRelationships>

</Entity>
</ServiceRegistry>

The following ESQL shows how to retrieve the values from the ServiceRegistry
message tree in the LocalEnvironment when the Depth Policy property is set to
Return matched plus immediate related entities (Depth = 1).
DECLARE c1 CHARACTER;

-- Following sets c1 to “ConceptA1” by indexing the first entity
SET c1 = InputLocalEnvironment.ServiceRegistry.Entity[1].name;
-- Following sets c1 to “2.0” by indexing the first entity
SET c1 = InputLocalEnvironment.ServiceRegistry.Entity[1].version;
-- Following sets c1 to “property1” by indexing the first
-- userDefinedProperties within the first entity
SET c1 = InputLocalEnvironment.ServiceRegistry.Entity[1].

userDefinedProperties[1].name;
-- Following sets c1 to “value1 for v2” by indexing the first
-- userDefinedProperties within the first entity
SET c1 = InputLocalEnvironment.ServiceRegistry.Entity[1].

userDefinedProperties[1].value;

v Depth Policy property set to Return matched showing immediate relationships
(For compatibility only)

The following ESQL was used to create a serialization of the output of the
ServiceRegistry node:
DECLARE I INTEGER 1;
DECLARE J INTEGER;
SET J = CARDINALITY(InputLocalEnvironment.ServiceRegistry.Entity[]);

Chapter 9. Developing message flow applications 1903

WHILE I < J DO
SET OutputRoot.XMLNS.ServiceRegistry.Entity[I] =

InputLocalEnvironment.ServiceRegistry.Entity[I];
SET I = I + 1;

END WHILE;

The ServiceRegistry folder does not have an owning parser so you must
navigate to the ""elements and initiate a like-parser-copy to the XMLNS owned
output root tree. The following XML is produced when writing this output root
tree.
<ServiceRegistry>

<Entity
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sdo="http://www.ibm.com/xmlns/prod/serviceregistry/6/0/sdo"
xsi:type="sdo:GenericObject"
bsrURI="33a9ad33-d4a4-442e.b3a6.37e62137a605"
name="ConceptA1"
namespace="http://www.examples.com/ConceptA1"
version="2.0"
description="A version 2 of the existing one"
owner="UNAUTHENTICATED"
lastModified="1229439847694"
creationTimestamp="1227176757406"
lastModifiedBy="UNAUTHENTICATED"
primaryType="">
<sdo:classificationURIs>
http://www.ibm.com/xmlns/prod/serviceregistry/6/0/governance/

DefaultLifecycle#InitialState0
</sdo:classificationURIs>
<sdo:classificationURIs>
http://www.ibm.com.policy/GovernancePolicyDomain

</sdo:classificationURIs>
<sdo:userDefinedRelationships
name="ContainsChildren"
targets="8203cb82-8827-4757.99e1.36de6036e1af

a0d2bba0-f395-45bc.929e.04d143049eb5" />
<sdo:userDefinedRelationships
name="ReferTo"
targets="81e45381-a9be-4ea4.9519.53657953196d" />

<sdo:userDefinedProperties name="property1" value="value1 for v2" />
<sdo:userDefinedProperties name="property2" value="value2 for v2" />
<sdo:userDefinedProperties name="property3" value="value3 for v2" />
<sdo:userDefinedProperties name="WSRRencoding" value="DEFAULT" />

</Entity>
<Entity>

<NS1:type
xmlns:NS1="http://www.w3.org/2001/XMLSchema-instance">
sdo:GenericObject

</NS1:type>
<bsrURI>b68952b6-8d68-4840.8e5e.a3716da35e2e</bsrURI>
<name>ConceptA1</name>
<namespace>http://www.examples.com/ConceptA1</namespace>
<version>1.0</version>
<description>The original concept</description>
<owner>UNAUTHENTICATED</owner>
<lastModified>1229030287593</lastModified>
<creationTimestamp>1227173773250</creationTimestamp>
<lastModifiedBy>UNAUTHENTICATED</lastModifiedBy>
<primaryType></primaryType>
<NS2:classificationURIs
xmlns:NS2="http://www.ibm.com/xmlns/prod/serviceregistry/6/0/sdo">
http://www.ibm.com/xmlns/prod/serviceregistry/6/0/governance/

DefaultLifecycle#Deprecate
</NS2:classificationURIs>
<NS3:userDefinedRelationships
xmlns:NS3="http://www.ibm.com/xmlns/prod/serviceregistry/6/0/sdo">

1904 WebSphere Message Broker Version 7.0.0.8

</NS3:userDefinedRelationships>
<NS4:userDefinedProperties
xmlns:NS4="http://www.ibm.com/xmlns/prod/serviceregistry/6/0/sdo">

</NS4:userDefinedProperties>
<NS5:userDefinedProperties
xmlns:NS5="http://www.ibm.com/xmlns/prod/serviceregistry/6/0/sdo">

</NS5:userDefinedProperties>
<NS6:userDefinedProperties
xmlns:NS6="http://www.ibm.com/xmlns/prod/serviceregistry/6/0/sdo">

</NS6:userDefinedProperties>
</Entity>

</ServiceRegistry>

The following ESQL shows how to retrieve the values from the ServiceRegistry
message tree in the LocalEnvironment when the Depth Policy property is set to
Return matched showing immediate relationships (For compatibility only).
Note that in this case it is necessary to use the namespace qualifier.
DECLARE ns1 NAMESPACE ’http://www.ibm.com/xmlns/prod/serviceregistry/6/0/sdo’;
DECLARE c1 CHARACTER;

-- Following sets c1 to “ConceptA1” by indexing the first entity
SET c1 = InputLocalEnvironment.ServiceRegistry.Entity[1].name;
-- Following sets c1 to “2.0” by indexing the first entity
SET c1 = InputLocalEnvironment.ServiceRegistry.Entity[1].version;
-- Following sets c1 to “property1” by indexing the first
-- userDefinedProperties within the first entity
SET c1 = InputLocalEnvironment.ServiceRegistry.Entity[1].ns1:
userDefinedProperties[1].name;
-- Following sets c1 to “value1 for v2” by indexing the first
-- userDefinedProperties within the first entity
SET c1 = InputLocalEnvironment.ServiceRegistry.Entity[1].ns1:
userDefinedProperties[1].value;

Related concepts:
“RegistryLookup node output: example 2” on page 1906
Example showing the structure of RegistryLookup node output for all possible
values of the Depth Policy property for a query on a concept entity that has a
number of user relationships to other concept entities.
“RegistryLookup node output: example 3” on page 1909
Example showing the structure of RegistryLookup node output for a query on an
entity having metadata relationships and user-defined relationships, using a Depth
Policy property value of Return matched plus all related entities (Depth =
-1) .
“EndpointLookup node output” on page 1894
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).
“Dynamically defining the search criteria” on page 1891
You can use the RegistryLookup and EndpointLookup nodes to issue WebSphere
Service Registry and Repository (WSRR) queries specified in the local environment.

“Caching artifacts from the WebSphere Service Registry and Repository” on page
1888
WebSphere Message Broker saves the data it retrieves from the WebSphere Service
Registry and Repository (WSRR) in a local cache.
Related reference:
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP

Chapter 9. Developing message flow applications 1905

request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

RegistryLookup node output: example 2:

Example showing the structure of RegistryLookup node output for all possible
values of the Depth Policy property for a query on a concept entity that has a
number of user relationships to other concept entities.

This example shows the ServiceRegistry message trees that are stored in the
LocalEnvironment when the Concepts shown in the following WebSphere Service
Registry and Repository graph are retrieved. The graph has been annotated with
the relationship names to clarify the elements in the message tree.

ContainsChildren ContainsChildren

ContainsChildren

ContainsChildren

ReferTo

ReferTo

UsedIn

The following ServiceRegistry message trees have some elements replaced by ...
to emphasis the structure of the tree. Likewise, the bsrURIs have been truncated.

The following shows the message trees for each possible value of the Depth Policy
property:
v Return matched only (Depth = 0)

ServiceRegistry
Entity

type = sdo:GenericObject
bsrURI = a2e62137a605
name = ConceptA2
...

1906 WebSphere Message Broker Version 7.0.0.8

v Return matched showing immediate relationships (For compatibility only).
The entities contain elements showing the details of relationships, but only
provide a list of the bsrURIs for the related child entities.
This value of the Depth Policy property is deprecated, so you should use of the
other options. The output tree structure produced when using this value is not
compatible with those from the other values for the Depth Policy property. In
particular, note the namespace qualifications.
ServiceRegistry

Entity
type = sdo:GenericObject
bsrURI = a2e62137a605
name = ConceptA2
...
ns1:userDefinedRelationships
name = ContainsChildren
targets = b2f73637f6e8 b3de6036e1af

ns1:userDefinedRelationships
name = ReferTo
targets = zac084d6b804

v Return matched plus immediate related entities (Depth = 1). The entities
contain elements showing the details of relationships, and the details of the
related child entities.
ServiceRegistry

Entity
type = GenericObject
bsrURI = a2e62137a605
name = ConceptA2
...
userDefinedRelationships
name = ContainsChildren
targetEntities

Entity
bsrURI = b2f73637f6e8
name = ConceptB2
...

Entity
bsrURI = b3de6036e1af
name = ConceptB3
...
userDefinedRelationships
name = ContainsChildren
targets = c26e43ac45a

userDefinedRelationships
name = ReferTo
targets = zac084d6b804

userDefinedRelationships
name = ReferTo
targetEntities

Entity
bsrURI = zac084d6b804
name = ConceptZa
...

v Return matched plus all related entities (Depth = -1). The entities contain
elements showing the details of relationships, and the details of the all related
child entities. ConceptD1 uses an EntityRef element to refer to its ancestor
ConceptC2. ConceptZa appears twice in the tree as it is referenced by both
ConceptA2 and ConceptB3.
ServiceRegistry

Entity
type = sdo:GenericObject
bsrURI = a2e62137a605
name = ConceptA2

Chapter 9. Developing message flow applications 1907

...
userDefinedRelationships
name = ContainsChildren
targetEntities

Entity
bsrURI = b2f73637f6e8
name = ConceptB2
...

Entity
bsrURI = b3de6036e1af
name = ConceptB3
...
userDefinedRelationships
name = ContainsChildren
targetEntities

Entity
bsrURI = c26e43ac45a
name = ConceptC2
...
userDefinedRelationships

name = ContainsChildren
targetEntities
Entity
bsrURI = d16e43ac763
name = ConceptD1
...
userDefinedRelationships

name = UsedIn
targetEntities

EntityRef
bsrURI = c26e43ac45a
name = ConceptC2

userDefinedRelationships
name = ReferTo
targetEntities

Entity
bsrURI = zac084d6b804
name = ConceptZa
...

userDefinedRelationships
name = ReferTo
targetEntities

Entity
bsrURI = zac084d6b804
name = ConceptZa
...

Related concepts:
“RegistryLookup node output: example 1” on page 1901
Example showing the full RegistryLookup node output in two cases for a query
that returns two versions of a concept entity. In both cases the Match Policy
property is set to All. In the first case the Depth Policy property is set to Return
matched plus immediate related entities (Depth = 1) , and in the second case
the Depth Policy property is set to Return matched only, showing immediate
relationships (For compatibility only). This example also shows example ESQL
to read elements of the output.
“RegistryLookup node output: example 3” on page 1909
Example showing the structure of RegistryLookup node output for a query on an
entity having metadata relationships and user-defined relationships, using a Depth
Policy property value of Return matched plus all related entities (Depth =
-1) .
“EndpointLookup node output” on page 1894
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).

1908 WebSphere Message Broker Version 7.0.0.8

“Dynamically defining the search criteria” on page 1891
You can use the RegistryLookup and EndpointLookup nodes to issue WebSphere
Service Registry and Repository (WSRR) queries specified in the local environment.

“Caching artifacts from the WebSphere Service Registry and Repository” on page
1888
WebSphere Message Broker saves the data it retrieves from the WebSphere Service
Registry and Repository (WSRR) in a local cache.
Related reference:
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

RegistryLookup node output: example 3:

Example showing the structure of RegistryLookup node output for a query on an
entity having metadata relationships and user-defined relationships, using a Depth
Policy property value of Return matched plus all related entities (Depth =
-1) .

This example shows the ServiceRegistry message tree that is stored in the
LocalEnvironment when the relationships shown in the following WebSphere
Service Registry and Repository graph are retrieved using a Depth Policy value of
Return matched plus all related entities (Depth = -1). The graph has been
annotated with the relationship names to clarify the elements in the message tree.

Chapter 9. Developing message flow applications 1909

definedBy

modeledAs

importedWSDLs

importedWSDLs importedWSDLs

importedWSDLs

SOAPAddress

isService

ports

binding

The following ServiceRegistry message tree has some elements replaced by ... to
emphasis the structure of the tree.
ServiceRegistry

Entity
name = ServiceConcept1
...
userDefinedRelationships

name = modeledAs
targetEntities
Entity

name = service1.wsdl
...
userDefinedRelationships
name = definedBy
targetEntities
EntityRef

bsrURI = c26e43ac45a
name = ServiceConcept1

metaRelationships
name = importedWSDLs
targetEntities
Entity

name = binding1.wsdl
...

Entity
name = binding2.wsdl
...

userDefinedRelationships
name = isService
targetEntities
Entity

name = service1
...
metaRelationships

1910 WebSphere Message Broker Version 7.0.0.8

name = ports
targetEntities
Entity

name = portb1
...
metaRelationships

name = binding
targetEntities

Entity
name = binding1
...

metaRelationships
name = SOAPAddress
targetEntities

Entity
name = portb1_SOAPAddress
...

Related concepts:
“RegistryLookup node output: example 1” on page 1901
Example showing the full RegistryLookup node output in two cases for a query
that returns two versions of a concept entity. In both cases the Match Policy
property is set to All. In the first case the Depth Policy property is set to Return
matched plus immediate related entities (Depth = 1) , and in the second case
the Depth Policy property is set to Return matched only, showing immediate
relationships (For compatibility only). This example also shows example ESQL
to read elements of the output.
“RegistryLookup node output: example 2” on page 1906
Example showing the structure of RegistryLookup node output for all possible
values of the Depth Policy property for a query on a concept entity that has a
number of user relationships to other concept entities.
“EndpointLookup node output” on page 1894
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).
“Dynamically defining the search criteria” on page 1891
You can use the RegistryLookup and EndpointLookup nodes to issue WebSphere
Service Registry and Repository (WSRR) queries specified in the local environment.

“Caching artifacts from the WebSphere Service Registry and Repository” on page
1888
WebSphere Message Broker saves the data it retrieves from the WebSphere Service
Registry and Repository (WSRR) in a local cache.
Related reference:
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

Chapter 9. Developing message flow applications 1911

Connecting to Enterprise Information Systems
Use WebSphere Adapters to communicate with Enterprise Information Systems
(EIS) such as SAP, Siebel, PeopleSoft, and JD Edwards.

About this task

This section contains the following concept information:
v “WebSphere Broker Adapters Transport” on page 1913
v “WebSphere Adapters nodes” on page 1914
v “Overview of WebSphere Adapter for SAP Software” on page 1917
v “Overview of WebSphere Adapter for Siebel Business Applications” on page

2002
v “Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
v “Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023

This section contains the following tasks:
v “Developing message flows that use WebSphere Adapters” on page 2033
v “Preparing your system to use WebSphere Adapters nodes” on page 2034
v “Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
v “Connecting to an EIS by using the Adapter Connection wizard” on page 2037
v “Configuring EIS connections to expire after a specified time” on page 726
v “Configuring WebSphere Adapters nodes for secondary adapters” on page 2040
v “Calling new services from a WebSphere Adapters request node without

changing existing deployed resources” on page 2042
v “Handling new event types from a Websphere Adapters input node without

changing existing deployed resources” on page 2044
v “Interacting with an SAP application” on page 2046
v “Interacting with a Siebel application” on page 2066
v “Interacting with a PeopleSoft application” on page 2080
v “Interacting with a JD Edwards application” on page 2088
Related reference:
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPReply node” on page 4682
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote
function call (RFC) destination.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.
“JDEdwardsRequest node” on page 4524
Use the JDEdwardsRequest node to interact with a JD Edwards EnterpriseOne
server.
“JDEdwardsInput node” on page 4519
Use the JDEdwardsInput node to interact with a JD Edwards EnterpriseOne server.

1912 WebSphere Message Broker Version 7.0.0.8

“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

WebSphere Broker Adapters Transport
WebSphere Broker Adapters Transport is a service that connects applications to
Enterprise Information Systems (such as SAP Software, PeopleSoft Enterprise, and
Siebel Business Application systems).

You can use the WebSphere Broker Adapters Transport to support the following
operations:
v Accept input from an SAP, Siebel, or PeopleSoft application.
v Send requests to an SAP, Siebel, JD Edwards, or PeopleSoft application.
v Send a reply to an SAP synchronous callout.
v Route IDocs to separate message flows.

These operations are implement by the following built-in nodes:
v SAPInput node
v SAPRequest node
v SAPReply node
v SiebelInput node
v SiebelRequest node
v PeopleSoftInput node
v PeopleSoftRequest node
v JDEdwardsRequest node

Use the input nodes to accept input from an EIS, along with a matching reply
node if the EIS needs a response. Use the request nodes to send requests to an EIS.

To use the WebSphere Broker Adapters Transport, you must deploy a message flow
that contains one or more WebSphere Adapters nodes.

The following topics contain more information about working with WebSphere
Adapters:
v “Connecting to Enterprise Information Systems” on page 1912
v “WebSphere Adapters nodes” on page 1914
v “Developing message flows that use WebSphere Adapters” on page 2033
Related concepts:
“Nodes for connectivity” on page 1028
WebSphere Message Broker supports direct connections from applications, and can
send direct requests to other application endpoints. WebSphere Message Broker can
also connect to various subsystems including WebSphere MQ, files, and databases,
to read and write existing application data.
Related reference:
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.

Chapter 9. Developing message flow applications 1913

“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“SAPReply node” on page 4682
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote
function call (RFC) destination.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.
“JDEdwardsRequest node” on page 4524
Use the JDEdwardsRequest node to interact with a JD Edwards EnterpriseOne
server.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

WebSphere Adapters nodes
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.

The following terms are associated with WebSphere Adapters:

EIS Enterprise information system. This term is used to describe the
applications that form an enterprise's existing system for handling
company-wide information. An enterprise information system offers a
well-defined set of services that are exposed as local or remote interfaces or
both. Enterprise Resource Planning (ERP) and Customer Relationship
Management (CRM) are typical enterprise information systems.

EMD Enterprise Metadata Discovery. A specification that you can use to examine
an EIS and get details of business object data structures and APIs. An EMD
stores definitions as XML schemas by default, and builds components that
can access the EIS. In WebSphere Message Broker you use the Adapter
Connection wizard to examine an EIS.

Business object
In a development or production environment, a set of XML schema
attributes that represents a business entity (such as an invoice) and the
definition of actions that can be performed on those attributes (such as the
create and update operations).

The WebSphere Adapters support two modes of communication:
v Inbound: An event is generated on the EIS and the adapter responds to the

event by sending a message to the message broker. The WebSphere Adapters
input nodes support inbound communication. When the EIS sends an event to
the adapter, a message is propagated from the WebSphere Adapters input node.
For example, use an SAPInput node to accept input from an SAP application.

v Outbound: The message broker uses the adapter to send a request to the EIS.
The WebSphere Adapters request nodes support outbound communication.

1914 WebSphere Message Broker Version 7.0.0.8

When a message is propagated to the WebSphere Adapters request node, the
adapter sends a request to the EIS. For example, use an SAPRequest node to
send requests to an SAP application.

The WebSphere Adapters nodes need an adapter component to access the EIS. The
input nodes need an inbound adapter component, which allows the EIS to invoke
the message flow when an event occurs. The request nodes need an outbound
adapter component, which is used by the message flow to invoke a service in the
EIS.

The WebSphere Adapters nodes also need a message set to ensure that the
WebSphere Message Broker messages that are propagated to and from the nodes
reflect the logical structure of the data in the EIS.

SAP, Siebel, JD Edwards, and PeopleSoft adapters are supported by the following
message flow nodes in WebSphere Message Broker:
v SAPInput node
v SAPRequest node
v SAPReply node
v SiebelInput node
v SiebelRequest node
v PeopleSoftInput node
v PeopleSoftRequest node
v JDEdwardsRequest node
v JDEdwardsInput node

The TwineballInput and TwineballRequest nodes are sample nodes with their own
sample EIS. You can use the Twineball nodes to see how adapters nodes work. You
cannot use the Twineball nodes to connect to the external SAP, Siebel, and
PeopleSoft EIS systems.

You can configure the Websphere Adapters nodes by using properties on the
nodes, or by using a configurable service. For example, you can use a configurable
service to specify the connection details for the EIS. For more information, see
“Configurable services properties” on page 3766.

To effectively maintain the pool of connections to the EIS, you can set a connection
timeout value on a configurable service. For more information, see “Configuring
EIS connections to expire after a specified time” on page 726.

The SAPRequest node can also use an identity that is present on an input message,
and propagate it to SAP, by using the Propagate property on the security profile
that is defined on the node. For more information, see “Identity and security token
propagation” on page 426.

The mode in which your broker is working can affect the number of execution
groups and message flows that you can deploy, and the type of node that you can
use. For example, in Remote Adapter Deployment mode, only adapter-related
features are enabled, and the types of node that you can use, and the number of
execution groups that you can create, are limited. For more information about the
available modes of operation, see “Operation modes” on page 48.

For more information about support for adapters on different operating systems,
see WebSphere Message Broker Requirements.

The following topics provide an overview of the WebSphere Adapters:

Chapter 9. Developing message flow applications 1915

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

v “Overview of WebSphere Adapter for SAP Software” on page 1917
v “Overview of WebSphere Adapter for Siebel Business Applications” on page

2002
v “Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
v “Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“SAPReply node” on page 4682
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote
function call (RFC) destination.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.
“JDEdwardsRequest node” on page 4524
Use the JDEdwardsRequest node to interact with a JD Edwards EnterpriseOne
server.
“JDEdwardsInput node” on page 4519
Use the JDEdwardsInput node to interact with a JD Edwards EnterpriseOne server.

“TwineballInput node” on page 4951
Use the TwineballInput node to discover how the WebSphere Adapters nodes

1916 WebSphere Message Broker Version 7.0.0.8

work.
“TwineballRequest node” on page 4955
Use the TwineballRequest node to discover out how WebSphere Adapters nodes
work.

Overview of WebSphere Adapter for SAP Software:

With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.

By using the adapter, an application component (the program or piece of code that
performs a specific business function) can send requests to the SAP server (for
example, to query a customer record in an SAP table or to update an order
document) or receive events from the server (for example, to be notified that a
customer record has been updated). The adapter creates a standard interface to the
applications and data on the SAP server so that the developer of the application
component does not have to understand the lower-level details (the
implementation of the application or the data structures) on the SAP server.

WebSphere Adapter for SAP Software complies with the Java Connector
Architecture (JCA) 1.5, which standardizes the way in which application
components, application servers, and Enterprise Information Systems (EIS), such as
an SAP server, interact with each other.

The adapter, which you generate with the Adapter Connection wizard, uses a
standard interface and standard data objects. The adapter takes the standard data
object sent by the application component and calls the SAP function. The adapter
then returns a standard data object to the application component. The application
component does not have to deal directly with the SAP function; it is the SAP
adapter that calls the function and returns the results.

For example, the application component that requested the list of customers sends
a standard business object with the range of customer IDs to the SAP adapter. The
application component receives, in return, the results (the list of customers) in the
form of a standard business object. The adapter completes all the interactions
directly with the SAP function.

Similarly, the message flow might want to know about a change to the data on the
SAP server (for example, a change to a particular customer). You can generate an
adapter component that listens for such events on the SAP server and notifies
message flows with the update. In this case, the interaction begins at the SAP
server.

For more information, see “Technical overview of Adapter for SAP Software” on
page 1918.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System

Chapter 9. Developing message flow applications 1917

(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Technical overview of Adapter for SAP Software:

WebSphere Adapter for SAP Software provides multiple ways to interact with
applications and data on SAP servers. Outbound processing (from an application
to the adapter to the SAP server) and inbound processing (from the SAP server to
the adapter to an application) are supported.

WebSphere Adapter for SAP Software connects to SAP systems running on SAP
Web application servers. The adapter supports Advanced Event Processing (AEP)
and Application Link Enabling (ALE) for inbound processing, and the Business
Application Programming Interface (BAPI), AEP, ALE, and Query Interface for SAP
Systems (QISS) for outbound processing. You set up the adapter to perform
outbound and inbound processing by using the Adapter Connection wizard to
generate business objects based on the services it discovers on the SAP server.

For outbound processing, the adapter client invokes the adapter operation to
create, update, or delete data on the SAP server or to retrieve data from the SAP
server.

1918 WebSphere Message Broker Version 7.0.0.8

For inbound processing, an event that occurs on the SAP server is sent from the
SAP server to the adapter. The ALE inbound and BAPI inbound interfaces start
event listeners that detect the events. Conversely, the Advanced event processing
interface polls the SAP server for events. The adapter then delivers the event to an
endpoint, which is an application or other consumer of the event from the SAP
server.

You configure the adapter to perform outbound and inbound processing by using
the Adapter Connection wizard to create a message set project that includes the
interface to the SAP application as well as business objects based on the functions
or tables that it discovers on the SAP server.

Overview of the outbound processing interfaces

WebSphere Adapter for SAP Software provides multiple interfaces to the SAP
server for outbound processing.
v Through its BAPI interfaces, the adapter issues remote function calls (RFCs) to

RFC-enabled functions, such as a Business Application Programming Interface
(BAPI) function. These remote function calls create, update, or retrieve data on
an SAP server.
– The BAPI interface works with individual BAPIs (simple BAPIs). For

example, you might want to check to see whether specific customer
information exists in an SAP database.

– The BAPI work unit interface works with ordered sets of BAPIs. For example,
you might want to update an employee record. To do so, you use three
BAPIs:
1. To lock the record (to prevent any other changes to the record)
2. To update the record
3. To have the record approved

– The BAPI result set interface uses two BAPIs to select multiple rows of data
from an SAP database.

BAPI calls are useful when you need to perform data retrieval or manipulation
and a BAPI or RFC function that performs the task already exists.
Simple BAPIs can be sent through the synchronous RFC, asynchronous
transactional RFC, or asynchronous queued RFC protocol.
– With synchronous RFC, both the adapter and the SAP server must be

available when the call is made from the adapter to the SAP server. The
adapter sends a request to the SAP server and waits for a response.

– With asynchronous transactional RFC, a transaction ID is associated with the
call from the adapter to the SAP server. The adapter does not wait for a
response from the SAP server. Only the transaction ID is returned to the
message flow.

– With asynchronous queued RFC, the call from the adapter is delivered to a
predefined queue on the SAP server. As with asynchronous RFC, a
transaction ID is associated with the call, and the adapter does not wait for a
response from the SAP server.
This interface is useful when the event sequence must be preserved.

v The Query interface for SAP Software retrieves data from specific SAP
application tables. It can return the data or check for the existence of the data.
You can use this type of interaction with SAP if you need to retrieve data from
an SAP table without using an RFC function or a BAPI.

Chapter 9. Developing message flow applications 1919

v With the Application Link Enabling (ALE) interface, you exchange data using
SAP Intermediate Data structures (IDocs). For outbound processing, you send an
IDoc or a packet of IDocs to the SAP server.
The ALE interface, which is particularly useful for batch processing of IDocs,
provides asynchronous exchange. You can use the queued transactional (qRFC)
protocol to send the IDocs to a queue on the SAP server. The qRFC protocol
ensures the order in which the IDocs are received. It is often used for system
replications or system-to-system transfers.

v With the ALE pass-through IDoc interface, the adapter sends the IDoc to the
SAP server with no conversion of the IDoc. The message tree contains a BLOB
field that represents the IDoc.

v With the Advanced event processing interface, you send data to the SAP server.
The data is then processed by an ABAP handler on the SAP server.

Overview of the inbound processing interfaces

WebSphere Adapter for SAP Software provides the following interfaces to the SAP
server for inbound processing.
v Through its BAPI inbound interface, the adapter listens for events and receives

notifications of RFC-enabled function calls from the SAP server.
– With synchronous RFC, both the adapter and the SAP server must be

available when the call is made from the SAP server to the adapter. The
adapter sends the request to a predefined application and returns the
response to the SAP server.

– With asynchronous transactional RFC, the event is delivered to the adapter
even if the adapter is not available when the call is made. The SAP server
stores the event on a list of functions to be invoked and continues to attempt
to deliver it until the adapter is available.
You also use asynchronous transaction RFC if you want to deliver the
functions from a predefined queue on the SAP server. Delivering the files
from a queue ensures the order in which the functions are sent.
If you select assured once-only delivery, the adapter uses a data source to
persist the event data received from the SAP server. Event recovery is
provided to track and recover events in case a problem occurs when the
adapter attempts to deliver the event to the endpoint.

v With the ALE inbound processing interface, the adapter listens for events and
receives one or more IDocs from the SAP server. As with ALE outbound
processing, ALE inbound processing provides asynchronous exchange.
You can use the qRFC interface to receive the IDocs from a queue on the SAP
server, which ensures the order in which the IDocs are received.
If you select assured once-only delivery, the adapter uses a data source to persist
the event data, and event recovery is provided to track and recover events in
case a problem occurs when the adapter attempts to deliver the event to the
endpoint.

v With the ALE pass-through IDoc interface, the SAP server sends the IDoc
through the adapter to the endpoint with no conversion of the IDoc. The
message tree contains a BLOB field that represents the IDoc.

v The Advanced event processing interface polls the SAP server for events. It
discovers events waiting to be processed. It then processes the events and sends
them to the endpoint. For more information, see “The Advanced event
processing interface” on page 1987.

1920 WebSphere Message Broker Version 7.0.0.8

How the adapter interacts with the SAP server

The adapter uses the SAP Java Connector (SAP JCo) API to communicate with SAP
applications. An application sends a request to the adapter, which uses the SAP
JCo API to convert the request into a BAPI function call. The SAP system processes
the request and sends the results to the adapter. The adapter sends the results in a
response message to the calling application.

For more information, see the following topics.
v “The Adapter Connection wizard (SAP)” on page 1922
v “The BAPI interfaces” on page 1923
v “The ALE interfaces” on page 1959
v “Query interface for SAP Software” on page 1982
v “The Advanced event processing interface” on page 1987
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.

Chapter 9. Developing message flow applications 1921

“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

The Adapter Connection wizard (SAP):

The Adapter Connection wizard is a tool that you use to create services. The
Adapter Connection wizard establishes a connection to the SAP server, discovers
services (based on search criteria that you provide), and generates business objects,
interfaces, and import or export files, based on the services that are discovered.

By using WebSphere Message Broker, you establish a connection to the SAP server
to browse the metadata repository on the SAP server. The SAP metadata
repository, which is a database of the SAP data, provides a consistent and reliable
means of access to that data.

You specify connection information (such as the user name and password needed
to access the server), and you specify the interface that you want to use (for
example, BAPI). The service metadata that is associated with that interface is
displayed. You can then provide search criteria and select the information (for
example, you can list all BAPIs that relate to "CUSTOMER" by using the search
filter with "BAPI_CUSTOMER*", then select one or more BAPIs).

The result of running the Adapter Connection wizard is an adapter connection
project and a message set project that contain the interfaces and business objects as
well as the adapter.

The Adapter Connection wizard also produces an import file (for outbound
processing) or an export file (for inbound processing).
v The import file contains the managed connection factory property settings that

you provide in the wizard.
v The export file contains the activation specification property settings you

provide in the wizard.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

1922 WebSphere Message Broker Version 7.0.0.8

“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

The BAPI interfaces:

The WebSphere Adapter for SAP Software supports outbound processing for
simple BAPIs, BAPI units of work, and BAPI result sets. In outbound processing,
message flows call BAPIs and other RFC-enabled functions on the SAP server. The
adapter supports inbound processing for simple BAPIs only. In inbound
processing, the SAP server sends an RFC-enabled function (such as a BAPI
function) through the adapter to an endpoint.

For example, you want to build a service that creates a new customer on the SAP
server. You run the Adapter Connection wizard to discover the
BAPI_CUSTOMER_CREATEFROMDATA function, and the wizard generates the
business-object definition for BAPI_CUSTOMER_CREATEFROMDATA, as well as
other Service Component Architecture (SCA) service resources. During BAPI
outbound processing, the adapter receives the service request and converts the
data into a BAPI invocation.

BAPI interface (simple BAPIs)

A simple BAPI performs a single operation, such as retrieving a list of customers.
The adapter supports simple BAPI calls by representing each with a single
business object schema.

Simple BAPIs can be used for outbound or inbound processing. You can specify
synchronous RFC processing or asynchronous transactional RFC (tRFC) processing
when you configure a module for a simple BAPI. In addition, for outbound
processing, you can specify asynchronous queued RFC (qRFC) processing, in
which BAPIs are delivered to a predefined queue on the SAP server.

Chapter 9. Developing message flow applications 1923

v In synchronous RFC processing, the SAP server and the adapter must be
available during processing.
– In outbound processing, the message flow sends a request, then waits for a

response from the SAP server.
– In inbound processing, the SAP server sends a request through the adapter to

an endpoint and waits for a response from the adapter.
v In asynchronous tRFC outbound processing, the adapter associates a transaction

ID with the function call to the SAP server. The adapter does not wait for a
response from the SAP server. If the delivery is unsuccessful, the message flow
can use the SAP transaction ID (TID) to make the request again. The TID is a
field in your message.

v In asynchronous tRFC inbound processing, the adapter does not have to be
available when the SAP server runs the function call. The function call is placed
on a list of functions to be invoked, and the call is attempted until it is
successful.
To send function calls from a user-defined outbound queue on the SAP server,
you also specify asynchronous tRFC inbound processing.

v In asynchronous qRFC outbound processing, the process is similar to
asynchronous tRFC outbound processing. A TID is associated with the function
call, and the adapter does not wait for a response from the SAP server. In
addition, the BAPIs are delivered to a predefined queue on the SAP server. By
sending BAPIs to the predefined queue, you can ensure the order in which they
are delivered.

BAPI work unit interface

A BAPI work unit consists of a set of BAPIs that are processed in sequence to
complete a task. For example, to update an employee record in the SAP system,
the record needs to be locked before being updated. This task is accomplished by
calling three BAPIs, in sequence, in the same work unit. The following three BAPIs
illustrate the kind of sequence that forms such a unit of work:
v BAPI_ADDRESSEMP_REQUEST
v BAPI_ADDRESSEMP_CHANGE
v BAPI_ADDRESSEMP_APPROVE

The first BAPI locks the employee record, the second updates the record, and the
third approves the update. The advantage of using a BAPI unit of work is that the
message flow can request the employee record change with a single call, even
though the work unit consists of three separate functions. In addition, if SAP
requires that the BAPIs be processed in a specific sequence for the business flow to
complete correctly, the work unit supports this sequence.

BAPI result set interface

BAPI result sets use the GetList and GetDetail functions to retrieve an array of
data from the SAP server. The information that is returned from the GetList
function is used as input to the GetDetail function.

For example, if you want to retrieve information on a set of customers, you use
BAPI_CUSTOMER_GETLIST, which acts as the query BAPI, and
BAPI_CUSTOMER_GETDETAIL, which acts as the result BAPI. The BAPIs perform
the following steps:
1. The BAPI_CUSTOMER_GETLIST call returns a list of keys (for example,

CustomerNumber).

1924 WebSphere Message Broker Version 7.0.0.8

2. Each key is mapped dynamically to the business object for
BAPI_CUSTOMER_GETDETAIL.

3. BAPI_CUSTOMER_GETDETAIL is processed multiple times, so that an array of
customer information is returned.

You use the Adapter Connection wizard to discover the
BAPI_CUSTOMER_GETLIST and BAPI_CUSTOMER_GETDETAIL functions and
build the key relationship between the two BAPIs. The wizard then generates
business object definitions for these BAPIs as well as other SCA service resources.
At run time, the client sets the values in the BAPI_CUSTOMER_GETLIST business
object, and the adapter returns the corresponding set of customer detail records
from the SAP server.

For more information, see the following topics.
v “Outbound processing for the BAPI interface” on page 1926
v “Business objects for the BAPI interface” on page 1952
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:

Chapter 9. Developing message flow applications 1925

“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Outbound processing for the BAPI interface:

In BAPI outbound processing, a message flow sends a request to the SAP server.
For BAPI units of work and BAPI result sets, processing is handled synchronously
(the message flow waits for a response from the SAP server). For simple BAPIs,
you can request that processing be handled synchronously or asynchronously (the
message flow does not wait for a response from the SAP server).

For BAPI units of work and BAPI result sets, the processing is handled as
described in “Synchronous RFC.” For simple BAPIs, you make a selection, during
configuration, about the type of remote RFC call you want to make.

Synchronous RFC

If you select Synchronous RFC (the default) during configuration for a simple
BAPI, or if you are using BAPI units of work or BAPI result sets, the following
processing steps occur:
1. The adapter receives a request from a message flow in the form of a BAPI

business object.
2. The adapter converts the BAPI business object to an SAP JCo function call.
3. The adapter uses the Remote Function Call (RFC) interface to process the BAPI

or RFC function call in the SAP application.
4. After passing the data to the SAP server, the adapter handles the response from

SAP and converts it back into the business object format required by the
message flow.

5. The adapter then sends the response back to the message flow.

Asynchronous transactional RFC

If you select Asynchronous transactional RFC during configuration, the following
processing steps occur:
1. The adapter receives a request from a message flow in the form of a BAPI

business object.
2. The adapter checks the business object to see whether the SAP transaction ID

attribute has a value assigned. (The SAP transaction ID (TID) is a field in your
message.)
v If the SAP transaction ID attribute has a value, the adapter uses that value

during processing.
v If the attribute does not have a value, the adapter makes a call to the SAP

server and gets a transaction ID from the SAP server.
3. The adapter converts the BAPI business object to an SAP JCo function call.
4. The adapter uses the transactional Remote Function Call (tRFC) protocol to

make the call to the SAP server.

1926 WebSphere Message Broker Version 7.0.0.8

The adapter does not wait for a response from the SAP server.
5. After the function data is passed to the SAP application, control returns to the

adapter.
v If the call to the SAP server fails, the SAP server throws an ABAPException.
v If the call to the SAP server succeeds but contains invalid data, no exception

is returned to the adapter. For example, if the adapter sends a request that
contains an invalid customer number, the adapter does not respond with an
exception indicating that no such customer exists.

6. The request node builds a message tree that contains the transaction ID as one
of the fields.

Asynchronous queued RFC

If you select Asynchronous queued RFC during configuration, the following
processing steps occur:
1. The adapter receives a request from a message flow in the form of a BAPI

business object.
2. The adapter checks the business object to see whether the SAP transaction ID

attribute has a value assigned. (The SAP transaction ID (TID) is a field in your
message.)
v If the SAP transaction ID attribute has a value, the adapter uses that value

during processing.
v If the attribute does not have a value, the adapter makes a call to the SAP

server and gets a transaction ID from the SAP server.
3. The adapter converts the BAPI business object to an SAP JCo function call.
4. The adapter uses the tRFC protocol to make the call to the specified queue on

the SAP server.
The adapter does not wait for a response from the SAP server.

5. After the function data is passed to the SAP application, control returns to the
adapter.
v If the call to the SAP server fails, the SAP server throws an ABAPException.
v If the call to the SAP server succeeds but contains invalid data, no exception

is returned to the adapter. For example, if the adapter sends a request that
contains an invalid customer number, the adapter does not respond with an
exception indicating that no such customer exists.

6. The request node builds a message tree that contains the transaction ID as one
of the fields.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“SAP BAPI transaction commit” on page 1928
When the SAP adapter is used with the BAPI interface, you must consider certain
factors when you design transactional flows.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).

Chapter 9. Developing message flow applications 1927

“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

SAP BAPI transaction commit:

When the SAP adapter is used with the BAPI interface, you must consider certain
factors when you design transactional flows.

You can configure message flows to be transactional so that updates to resources
such as databases can be coordinated; changes are committed or rolled back
together within the same transaction. This transactional coordination can be
extended to external system updates, such as SAP databases, when you use the
BAPI interface with SAPRequest nodes.

The SAP adapter can control whether it waits for SAP to commit the updates
synchronously, or issues a commit and returns while the SAP commit happens
asynchronously. You can determine this behavior by using the Use wait parameter
before calling BAPI commit parameter on the Configure Objects pane of the
Adapter Connection wizard. The adapter relies on the transactionality setting of
the message flow to determine whether to issue the commit call.

BAPIs with implicit commit

In earlier releases of SAP, some BAPIs were coded with a commit. From SAP
Release 4.0A onwards, it is more effective for BAPIs to issue a separate

1928 WebSphere Message Broker Version 7.0.0.8

BAPI_TRANSACTION_COMMIT to force the update, instead of doing commit
work. By using this method, BAPI calls can be made before the work is committed
as a batched unit of work. To find out if a BAPI is coded with a commit, see the
documentation for the BAPI.

Message flow transactionality

When the Transaction mode property on the SAPRequest node is set to Yes, the
adapter is instructed to issue the SAP commit on completion of the message flow
in line with other database commits. You can set the Use wait parameter before
calling BAPI commit parameter in the Adapter Connection wizard that determines
whether the commit is synchronous or asynchronous.

If the Transaction mode property on the SAPRequest node is set to No, the adapter
does not issue an SAP commit and the parameter that you set on the Adapter
Connection wizard has no relevance. However, the commit can still be issued as
part of a BAPI work unit COMMIT verb (to which the property on the wizard
does apply) or a call to the BAPI_TRANSACTION_COMMIT (to which the
property on the wizard does not apply).

The following rules apply when you set the Transaction mode property on the
SAPRequest node.
v Set Transaction mode to No if the following conditions apply:

– The BAPIs already have commits
– A BAPI_TRANSACTION_COMMIT is called by an SAPRequest node
– A BAPI work unit includes a BAPI_TRANSACTION_COMMIT or the

COMMIT verb is added on the Configure Objects pane of the Adapter
Connection wizard

If the BAPIs are coded with commits and you set Transaction mode to Yes, the
BAPI is called as part of the same transaction as those from other SAPRequest
nodes in the same flow and using the same adapter. Therefore, any BAPIs that
were called previously in this message flow are committed.

v Set Transaction mode to Yes if the following conditions apply:
– The BAPI needs to be committed (that is, the BAPI is not coded with a

commit)
– The BAPI work unit needs to be committed and does not include a

BAPI_TRANSACTION_COMMIT or the COMMIT verb
If you set Transaction mode to No, the BAPI is not committed now or at the end
of the message flow; it is not guaranteed ever to be committed.

The following scenarios illustrate the visibility of the updates made to an SAP
system, and show how to use the adapter to avoid uncertainty when data is being
committed by an external system.
v Scenario 1: Business partner and relationship processing in a single flow
v Scenario 2: Order create and query application processing with two flows
Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:

Chapter 9. Developing message flow applications 1929

“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Scenario 1: Business partner and relationship processing in a single flow:

You must set the Transaction mode property appropriately on an SAPRequest node
when you are processing in a single message flow.

This scenario is one of two examples that illustrate the concepts that are described
in “SAP BAPI transaction commit” on page 1928; see also “Scenario 2: Order create
and query application processing with two flows” on page 1933.

In this scenario, a message flow is used to create a business partner, and a new
relationship with an existing partner by using two BAPI calls:
BAPI_BUPA_CREATE_FROM_DATA
BAPI_BUPR_RELATIONSHIP_CREATE

The message flow consists of two SAPRequest nodes with the Transaction mode
property set to Yes on both nodes to allow commit or rollback in case of
exceptions. When the Transaction mode property is set to Yes, the message flow's
final commit takes place at the end of the flow when the adapter requests SAP to
commit the order.

1930 WebSphere Message Broker Version 7.0.0.8

SAPRequest:
Create BUPA

Existing business partner New business partner

SAPRequest:
Create Relationship

Map Input:
BUPA Fields

Map Input:
Relationship Fields

MQInput

MQOutput

4

5

32

1

SAP Server

Broker

Create Update

ADAPTER

Unit of Work

1. An application triggers the transactional flow that creates the business partner.
2. The SAPRequest node submits a BUPA creation and returns the business

partner number. The commit happens when the message flow completes
because the node participates in a message flow level transaction.

3. The second SAPRequest node attempts to create a relationship between an
existing business partner and the new business partner; however, SAP has not
yet committed the creation of the new business partner to the database.
If the same adapter is used for both BAPIs, the adapter ensures a single
connection to SAP because both nodes have to participate in the same logical
work unit. The single connection means that the BUPA creation is visible to the
relationship update call (3 in the diagram), even though the flow
transactionality has yet to initiate the commit.
If the Transaction mode property were set to Yes on the create BUPA call, but
No on the create relationship call, the adapter would need to use two different
connections to SAP; that is, the transactional properties of the connections

Chapter 9. Developing message flow applications 1931

would be different. The create relationship call would therefore fail because the
new business partner would not be visible until the message flow and the
transactional commit have completed.

4. The MQOutput node puts an MQ message on the output queue pending
transactional commit.

5. The message flow completes and the broker begins to commit all the resources
involved in that flow, including SAP (5 in the diagram). The updates are
committed in SAP.

This scenario illustrates the ability of the broker to use its transactional control of
the message flow to provide the necessary information to the SAPRequest nodes to
carry out related processing, even though the external SAP system is committing
the work asynchronously.
Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“SAP BAPI transaction commit” on page 1928
When the SAP adapter is used with the BAPI interface, you must consider certain
factors when you design transactional flows.
“Scenario 2: Order create and query application processing with two flows” on
page 1933
You must set the Transaction mode property appropriately on an SAPRequest node
when you are processing by using separate message flows.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:

1932 WebSphere Message Broker Version 7.0.0.8

Managed connection factory properties (SAP)
The adapter uses the managed connection factory properties at run time to create
an outbound connection instance with the SAP server.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Scenario 2: Order create and query application processing with two flows:

You must set the Transaction mode property appropriately on an SAPRequest node
when you are processing by using separate message flows.

This scenario is one of two examples that illustrate the concepts that are described
in “SAP BAPI transaction commit” on page 1928; see also “Scenario 1: Business
partner and relationship processing in a single flow” on page 1930.

In this scenario, two message flows are used to issue a sales order create and a
subsequent sales order check by using two BAPI calls:
BAPI_SALESORDER_CREATEFROMDAT2
BAPI_SALESORDER_GETSTATUS

For example, a user queries an order after a purchase has been made by using a
Web-based application. The result of the query is closely linked to the
asynchronous or synchronous behavior of the order creation steps carried out by
the external SAP server.

In the following asynchronous example (the default behavior), the query might fail
and the user receives a negative acknowledgment for the order that has been
created.

Chapter 9. Developing message flow applications 1933

SAPRequest:
Create Order

SAPRequest:
Get Status

[Race]

MQReply:
Return Order Number

MQReply:
Return Order Status

MQInput 1

MQInput 1

B2

B1

A1

C1

A3

A2

A4

C2

C
L

IE
N

T

Broker SAP

LUW

LUW

LUW = Logical unit of work

Create

Retrieve

BAPI Create Order message flow
A1. An application triggers the transactional message flow

that creates a sales order.
A2. The SAPRequest node submits an order creation and

returns the order registration number. The commit
happens when the message flow completes because the
node participates in a message flow level transaction.

A3. The MQReply node puts an MQ message on the output
queue pending transactional commit.

A4. The message flow completes and the broker begins to
commit all the resources involved in that flow, including
SAP and the MQReply node call. The order number is
available to the user application.

The following two processes occur simultaneously, and
effectively race each other to complete.
SAP Commits
processing
asynchronously

BAPI Get Order Status
message flow

1934 WebSphere Message Broker Version 7.0.0.8

BAPI Create Order message flow
B1. The SAP commit

begins.
C1. A request for an order

status query is made.
B2. The SAP commit

completes.
C2. The SAPRequest node

requests the order.

Because of the asynchronous commit, two outcomes are possible when the order is
queried:
v The order is not found because SAP has not completed the order commit.
v The order is found but only if SAP has committed the order before the query is

made.

You can avoid this uncertainty by configuring the adapter to perform the commit
synchronously; set the Use wait parameter before calling BAPI commit parameter
on the adapter connection wizard to True, and set the Transaction mode property
on the SAPRequest node to Yes.

In the following synchronous example, the query is successful and the user
receives a positive acknowledgment for the order that has been created.

7

SAPRequest:
Create Order

SAPRequest:
Get Status

MQInput 1

MQInput 1

9

1

2

4

C
L

IE
N

T

Broker SAP

LUW = Logical unit of work

8

MQReply:
Return Order Number

MQReply:
Return Order Status

6

5

10

LUW

Create

Retrieve

3

Chapter 9. Developing message flow applications 1935

BAPI Create Order message flow
1. An application triggers the transactional message flow that creates the sales order.
2. The SAPRequest node submits an order creation and returns the order registration

number. The commit happens when the message flow completes because the node
participates in the a message flow level transaction.

3. The MQReply node puts an MQ message on the output queue pending transactional
commit.

4. The message flow completes and the broker begins to commit all the resources
involved in that flow, including SAP.

SAP Commits processing synchronously
5. The SAP commit begins.
6. The SAP commit completes.
7. The adapter hands control back to the broker.
8. The MQReply node call is committed, therefore the order number is available to the

user application.
BAPI Get Order Status message flow
9. A request for an order status query is made.
10. The SAPRequest node requests the order.

SAP has completed the order commit; therefore, the order query is successful.
Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“SAP BAPI transaction commit” on page 1928
When the SAP adapter is used with the BAPI interface, you must consider certain
factors when you design transactional flows.
“Scenario 1: Business partner and relationship processing in a single flow” on page
1930
You must set the Transaction mode property appropriately on an SAPRequest node
when you are processing in a single message flow.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).

1936 WebSphere Message Broker Version 7.0.0.8

“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
Managed connection factory properties (SAP)
The adapter uses the managed connection factory properties at run time to create
an outbound connection instance with the SAP server.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Inbound processing for the BAPI interface:

The adapter supports inbound processing (from the SAP server to the adapter) for
simple BAPIs.

A client application on the SAP server invokes a function through the adapter to
an end point.

For more information, see the following topics:
v “Synchronous and asynchronous RFC” on page 1938
v “Event recovery for the BAPI interface” on page 1941
v “Passing parameters and reporting errors” on page 1942
v “BAPI inbound scenarios” on page 1943
v “SAP adapter scalability and performance” on page 1949
Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the

Chapter 9. Developing message flow applications 1937

WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Tuning the SAP adapter for scalability and performance” on page 3278
You can configure the number of listeners on the adapter and the number of
additional instances on the message flow to prevent delays when processing
synchronous calls from SAP.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“SAPReply node” on page 4682
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote
function call (RFC) destination.

Synchronous and asynchronous RFC:

For BAPI inbound and outbound processing, you can specify that the processing
be handled synchronously (in which both the message flow and the adapter must
be available during processing) or asynchronously (in which the adapter does not
have to be available when the message flow makes the function call). In
synchronous processing, the message flow waits for a response from the adapter.
In asynchronous processing, the SAP application does not wait for a response and
the adapter does not have to be available when the SAP application makes the
function call.

For diagrams that illustrate synchronous and asynchronous RFC, see “BAPI
inbound scenarios” on page 1943.

The BAPI interface has two sets of activation specification properties (one for
synchronous RFC and one for asynchronous RFC), which you use to set up
inbound processing. You specify values for the properties with the Adapter
Connection wizard.

The sequence of processing actions that result from an inbound request differ,
depending on the selection you make during configuration from the SAP Remote
Function Call (RFC) type list.

Synchronous RFC

If you select Synchronous RFC (the default) during configuration, the following
processing steps occur:
1. The adapter starts event listeners, which listen for an RFC-enabled function

event (which you specified with the RFCProgramID property) on the SAP
server.

1938 WebSphere Message Broker Version 7.0.0.8

2. The RFC-enabled function event is pushed to the adapter by way of the event
listeners.

3. The adapter resolves the operation and business object name using the received
RFC-enabled function name.

4. The adapter sends the business object to an endpoint in a synchronous manner.
5. The adapter receives the response business object from the endpoint.
6. The adapter maps the response business object to an RFC-enabled function and

returns it to the SAP server.

The adapter does not listen for events until the endpoint is active and available.

Asynchronous transactional RFC

If you select Asynchronous Transactional/Queued RFC during configuration, the
following processing steps occur:
1. A client on the SAP server invokes an RFC-enabled function call on the

adapter.

Note: To send the RFC-enabled functions from a queue on the SAP server, the
client program on the SAP server delivers the events to a user-defined
outbound queue.
A transaction ID is associated with the call.
The calling program on the SAP server does not wait to see whether the call to
the adapter was successful, and no data is returned to the calling program.

2. The RFC-function call is placed on a list of functions to be delivered.
You can see the event list by entering transaction code SM58 on the SAP server

3. The RFC-function call is invoked on the adapter. If the adapter is not available,
the call remains in the list on the SAP server, and the call is repeated at regular
intervals until it can be processed by the adapter.
When the SAP server successfully delivers the call event, it removes the
function from the list.

4. If you selected Ensure once-only event delivery, the adapter sets the
transaction ID in the event persistent table.
This is to ensure the event is not processed more than once.

5. The adapter resolves the operation and business object name using the received
RFC-enabled function name.

6. The adapter sends the business object to an endpoint.
If you are sending functions from a user-defined queue on the SAP server, the
functions are delivered in the order in which they exist on the queue. You can
see the contents of the queue by entering transaction code SMQ1 on the SAP
server.

7. If the delivery is successful, and if you selected Ensure once-only event
delivery, the adapter removes the transaction ID from the event persistent
table.
If a failure occurs when the adapter attempts to deliver the business object, the
transaction ID remains in the event table. When another event is received from
the SAP server, the following processing occurs:
a. The adapter checks the transaction ID.
b. If the event matches an ID in the table, the adapter processes the failed

event once; it does not send the event with the duplicate ID, thereby
ensuring that the event is processed only once.

Related concepts:

Chapter 9. Developing message flow applications 1939

“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“Passing parameters and reporting errors” on page 1942
The BAPI interface is defined by its input parameters (IMPORT), output
parameters (EXPORT), and tables.
“BAPI inbound scenarios” on page 1943
In SAP, you can call functions in other applications or SAP systems that are
registered with SAP as remote function call (RFC) servers. In WebSphere Message
Broker, you can register the SAP adapter with SAP as an RFC server so that it
accepts synchronous and asynchronous calls from SAP.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“SAPReply node” on page 4682
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote

1940 WebSphere Message Broker Version 7.0.0.8

function call (RFC) destination.

Event recovery for the BAPI interface:

You can configure the adapter for BAPI inbound processing so that it supports
event recovery in case a failure occurs while the event is being delivered from the
adapter to the endpoint. When event recovery is specified, the adapter persists the
event state in an event recovery table that resides on a data source.

Event recovery is not the default; you must specify it by enabling once-only
delivery of events during adapter configuration.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“Passing parameters and reporting errors” on page 1942
The BAPI interface is defined by its input parameters (IMPORT), output
parameters (EXPORT), and tables.
“BAPI inbound scenarios” on page 1943
In SAP, you can call functions in other applications or SAP systems that are
registered with SAP as remote function call (RFC) servers. In WebSphere Message
Broker, you can register the SAP adapter with SAP as an RFC server so that it
accepts synchronous and asynchronous calls from SAP.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection

Chapter 9. Developing message flow applications 1941

wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“SAPReply node” on page 4682
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote
function call (RFC) destination.

Passing parameters and reporting errors:

The BAPI interface is defined by its input parameters (IMPORT), output
parameters (EXPORT), and tables.

After the Adapter Connection wizard has discovered the BAPI interface, the
wizard creates a message set that contains an element and a type for the definition
of that interface. Each of the import or export parameters has a corresponding
field, which has an associated type that can be simple or complex. Tables are
represented in the message type definition as repeating complex structures
(maxOccurs = -1).

BAPIs are also defined by the messages (error, warning, or success) that they can
return. These messages are typically returned in an export parameter (for example,
BAPIRETURN). Most BAPIs have this parameter in common, although the type of
the parameter can vary. For example, its type can be:
v BAPIRETURN
v BAPIRET1
v BAPIRET2

These structures are similar, except for a few fields that have been added in later
versions.

To send an error back to the calling SAP program, use the BAPIReturn structure
that was specified as one of the export parameters when the BAPI was defined.
Messages are returned in the Return export parameter. You can use the transaction
code SE91 for message maintenance.

For more information, see Return Parameters (Error Handling) in the BAPI
Programming Guide Reference on the SAP Help Portal.

As well as the application level errors, which can be reported by the Return export
parameter, system or communication failures also exist, which indicate to SAP that
the function could not be called or did not complete.
Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.

1942 WebSphere Message Broker Version 7.0.0.8

http://help.sap.com/

“BAPI inbound scenarios”
In SAP, you can call functions in other applications or SAP systems that are
registered with SAP as remote function call (RFC) servers. In WebSphere Message
Broker, you can register the SAP adapter with SAP as an RFC server so that it
accepts synchronous and asynchronous calls from SAP.
“SAP adapter scalability and performance” on page 1949
You can improve performance by configuring the number of listeners on the
adapter and the number of additional instances on the message flow to prevent
delays when processing synchronous calls from SAP.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Tuning the SAP adapter for scalability and performance” on page 3278
You can configure the number of listeners on the adapter and the number of
additional instances on the message flow to prevent delays when processing
synchronous calls from SAP.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“SAPReply node” on page 4682
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote
function call (RFC) destination.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

BAPI inbound scenarios:

In SAP, you can call functions in other applications or SAP systems that are
registered with SAP as remote function call (RFC) servers. In WebSphere Message

Chapter 9. Developing message flow applications 1943

Broker, you can register the SAP adapter with SAP as an RFC server so that it
accepts synchronous and asynchronous calls from SAP.

Integrating SAP with a system with a synchronous interface:
In SAP, a BAPI interface is a function call. If a system is connected to SAP as an
RFC server, you can use the BAPI interface to define the interface where a program
running in SAP can call an external system. The external system is identified in
SAP by its RFCDestination value, which is bound to a program ID in SAP
administration. The program ID is specified by the external system when it first
connects to SAP.

By using the WebSphere Adapter for SAP, a message flow can connect to SAP as
an RFC Server by configuring the adapter with the relevant program ID and
deploying the message flow to the broker. After deployment, the message flow can
receive synchronous function calls by using the BAPI interface.

The reply identifier

The BAPI import parameters are received by the adapter and propagated from an
SAPInput node as a message tree structure. The BAPI export parameters are
propagated to an SAPReply node as a message tree structure. The adapter then
sends back the export parameters to the calling SAP program. In this case, the
SAPReply node is typically in the same flow as the SAPInput node. The SAPInput
node provides a unique ID (the reply identifier) for each BAPI call. The reply
identifier is propagated to the SAPReply node (in the local environment) to
indicate to which BAPI call it is replying.

If no reply identifier exists in the local environment, the SAPReply node
automatically uses the reply identifier from the SAPInput node that triggered the
current execution of the message flow. If the flow is triggered by anything but an
SAPInput node, or if a break occurs in the flow, an error is issued. An unhandled
exception in the message flow causes a system failure in SAP.

Even if the BAPI does not expect any output parameters, the (empty) message
must be propagated to the SAPReply node.

You can process two concurrent callouts from SAP by configuring the message
flow with an additional instance.

Scenario 1

The following diagram represents a message flow where WebSphere Message
Broker provides a link between SAP and a target application (in this case, DB2)
The SAP program requires reply data, therefore it blocks further processing until
the call completes.

1944 WebSphere Message Broker Version 7.0.0.8

SAP

Import

Export

SAPReply

SAPInput Database

Message Broker Target
application

(DB2)CALL FUNCTION
'ZBAPI_WMB_SYNC_INBOUND_XSTRI'

destination A_RFCDEST

1 2
3

4

5

6

1. The SAP program makes a BAPI call to WebSphere Message Broker.
2. WebSphere Message Broker converts the call to an SQL call.
3. WebSphere Message Broker passes the call on to DB2.
4. DB2 processes the SQL and returns the result to WebSphere Message Broker.
5. WebSphere Message Broker converts the SQL result to a BAPI reply and sends

the reply to SAP.
6. The SAP program processes the next line of code.

Scenario 2

The following diagram also represents a message flow where the SAP program
requires reply data, but in this scenario, calls between WebSphere Message Broker
and the target application (in this case, WebSphere MQ) are asynchronous. The
SAP system blocks further processing until the call completes. When you use the
SAPReply node in a different flow from the SAPInput node, deploy the SAPReply
node in the same execution group as the SAPInput node.

Import

Queue

SAPReply

SAPInput MQOutput

MQInput

Message Broker Target application
(WebSphere MQ)1 2

3

4

56

SAP

CALL FUNCTION
'ZBAPI_WMB_SYNC_INBOUND_XSTRI'

destination A_RFCDEST

6
Export

1. The SAP program makes a BAPI call to WebSphere Message Broker.
2. WebSphere Message Broker converts the import parameters into a message

format that is understood by the target application.
3. WebSphere Message Broker puts that message on a request queue.
4. The target application gets the request message from the queue, processes it,

and puts a reply message on the reply-to queue.
5. WebSphere Message Broker gets the reply message from the queue.
6. WebSphere Message Broker converts the reply message to BAPI export

parameters and sends the reply to SAP.

Scenario 3

Chapter 9. Developing message flow applications 1945

The following diagram represents an asynchronous call from SAP to WebSphere
Message Broker, and an asynchronous call from WebSphere Message Broker to a
target application. This scenario shows how you can combine the inbound
processing that is described in this topic with outbound processing to achieve the
same result as in scenarios 1 and 2. For more information about outbound
processing, see “Outbound processing for the BAPI interface” on page 1926.

SAP

Import

Import

(No
export)

SAPRequest

SAPInput MQOutput

MQInput

Message Broker Target
application

CALL FUNCTION
'ZBAPI_WMB_SYNC_INBOUND_XSTRI'

in background task
destination A_RFCDEST

1 2
3

4

567

1. The SAP program makes a BAPI call to WebSphere Message Broker, stores
relevant information in a database table, and continues to process the next line
of code.

2. WebSphere Message Broker converts the import parameters into a message
format that is understood by the target application.

3. WebSphere Message Broker puts that message on a request queue.
4. The target application gets the request message from the queue and processes

it.
5. WebSphere Message Broker gets the reply message from the queue.
6. The SAPRequest node sends the message to the SAP program, requesting an

update in SAP.
7. The SAP program refers to the information that is stored in the database table

and makes the requested update.

Errors and warnings

v If an SAPReply node is deployed but no SAPInput node is deployed to that
execution group, a warning is written to syslog or the Windows Event Viewer.

v If the SAPReply node is provided with a reply identifier that does not
correspond to any BAPI call in this execution group, an error is issued.

v If the same reply identifier is sent to two SAPReply nodes, the second node
receives an error message.

v If an SAP program tries to call a BAPI that is using the RFCDestination value of
the broker, but that BAPI was not discovered for that adapter, an error is written
to syslog or the Windows Event Viewer, and a failure message is sent back to
the calling SAP program.

Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“Passing parameters and reporting errors” on page 1942
The BAPI interface is defined by its input parameters (IMPORT), output

1946 WebSphere Message Broker Version 7.0.0.8

parameters (EXPORT), and tables.
“SAP adapter scalability and performance” on page 1949
You can improve performance by configuring the number of listeners on the
adapter and the number of additional instances on the message flow to prevent
delays when processing synchronous calls from SAP.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Tuning the SAP adapter for scalability and performance” on page 3278
You can configure the number of listeners on the adapter and the number of
additional instances on the message flow to prevent delays when processing
synchronous calls from SAP.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“SAPReply node” on page 4682
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote
function call (RFC) destination.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

SAP high availability:

You can configure WebSphere Message Broker to withstand software or hardware
failures when working with SAP, so that WebSphere Message Broker is available
for as much of the time as possible.

In WebSphere Message Broker , the tRFC protocol between SAP and WebSphere
Message Broker (acting as the RFC server) ensures that IDocs and tRFC BAPI calls
are delivered exactly once. This behavior is possible because each delivery has an

Chapter 9. Developing message flow applications 1947

associated transaction ID (TID). WebSphere Message Broker monitors the progress
of a delivery until SAP confirms a successful delivery. If the connection is lost or
WebSphere Message Broker fails before that confirmation is issued, SAP attempts
to redeliver the message. By keeping a persistent record (in the TID store or
transaction log), the broker can ensure integrity and avoid a duplicate delivery.

MATMAS05 Transform

Transaction
Log

Broker

SAP
ProgID

ToFrontEnd

Queue
manager

When two .inadapter components, with the same RFC program ID, are deployed
to two brokers, two connections to the same RFC server are visible to SAP. If the
connection is lost to one of the brokers, SAP might attempt to redeliver to the
other broker. The brokers have separate TID stores, therefore, the second broker
accepts the redelivery, even though the first broker might have processed some (or
all) of the IDocs in the packet.

MATMAS05

MATMAS05

Transform

Transform

Queue
manager 2

Queue
manager 1

Broker 2

SAP
ProgID

Broker 1

SYSTEM.BROKER.ADAPTER...

SYSTEM.BROKER.ADAPTER...

ToFrontEnd

ToFrontEnd

In WebSphere Message Broker Version 7.0, you can move the TID store to a remote
queue manager that can be shared between two brokers. To avoid a single point of
failure, make this third queue manager a WebSphere MQ high availability,
multi-instance queue manager. For instructions, see “Setting up SAP for high
availability” on page 2057.

1948 WebSphere Message Broker Version 7.0.0.8

MATMAS05

MATMAS05

Transform

Transform

Queue
manager 2

Queue
manager 3

Queue
manager 1

Broker 2

SAP
ProgID

Broker 1

ToFrontEnd

Client connections

ToFrontEnd

Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Setting up SAP for high availability” on page 2057
You can configure WebSphere Message Broker to withstand software or hardware
failures when working with SAP by moving the transaction ID (TID) store to a
remote queue manager that can be shared between two brokers. To avoid a single
point of failure, make this queue manager a WebSphere MQ high availability,
multi-instance queue manager.
“Defining WebSphere MQ resources” on page 1558
An application client can run on a computer anywhere in the WebSphere MQ
network. If your applications use WebSphere MQ facilities to connect to the broker,
and to interact with it (by using the MQI and AMI), you must set up the
WebSphere MQ resources that they require.
“Using WebSphere MQ cluster queues for input and output” on page 1544
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
Related reference:
“WebSphere MQ resources for the broker” on page 585
Each broker depends on a number of WebSphere MQ resources: some are required,
others are optional, and depend on your environment and requirements. Some of
these resources are created for you, but others you must define for yourself.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.

SAP adapter scalability and performance:

You can improve performance by configuring the number of listeners on the
adapter and the number of additional instances on the message flow to prevent
delays when processing synchronous calls from SAP.

Chapter 9. Developing message flow applications 1949

The SAP inbound adapter receives synchronous calls from SAP. The adapter has a
property called Number of listeners, which controls the maximum number of
concurrent calls by configuring the adapter to have a particular number of threads
listening to the SAP program ID. The listeners send the input parameters of these
calls to the SAPInput node for processing, and the output parameters are sent to
the SAPReply node.

When the listener receives a call from SAP, it blocks processing until a message
flow instance that contains the SAPInput node is available. When a message flow
instance has become available, and has started to process the import parameters,
the listener again blocks processing until a message that contains the export
parameters is propagated to an SAPReply node.

The amount of time that elapses between the SAPInput node sending the message
and the SAPReply node receiving the reply message can be affected by the
additional instances property on the message flow. To avoid delays in processing,
tune the maximum number of listeners and the number of additional instances for
the message flow that contains the SAPInput and SAPReply nodes. You can
configure the number of additional instances at message flow level or on the
SAPInput node itself.

Restrictions

The number of listeners is limited by the SAP configuration. In SAP transaction
SMQS, you can view and change the maximum connections property for each RFC
destination. Configuring a number of listeners greater than the maximum number
of connections has no effect.

For each additional instance of the message flow, extra resources are used by each
node in the flow, depending on the types of node in the flow.

Scenarios

The following diagram illustrates a basic scenario, where the number of listeners is
equal to the number of additional instances of the message flow; in this case, the
scenario has been configured with three listeners and three message flow instances.

SAP Listeners

SAPReply

SAPInput Database

Message Broker Target application
(DB2)

1

6

5

2 3

4

1. SAP makes three calls, each of which is received by a listener.
2. Each of the listeners sends the input parameters of each call to the SAPInput

node in one of three instances of the message flow.
3. Each message flow instance sends its message to the target application.

1950 WebSphere Message Broker Version 7.0.0.8

4. The target application processes the messages and returns replies to the
message flow instances.

5. The SAPReply node in each message flow instance sends the reply message to
the listener that received the original call.

6. Each listener returns the reply message to the appropriate SAP program.

The SAPReply node can be in the same message flow as the SAPInput node, as
illustrated in the previous example. However, in the following scenario, the
SAPReply node is in a different flow from the SAPInput node. The SAPReply node
must be deployed in the same execution group as the SAPInput node.
1. SAP makes three calls, each of which is received by a different listener.
2. Each of the listeners sends the input parameters of each call to a message flow

that contains an SAPInput node.
3. The message flow puts the message onto a queue for the target application.
4. The target application gets the messages from the queue and processes them.
5. The target application puts the messages onto a queue.
6. A second message flow that contains an SAPReply node gets the messages

from the queue and processes them.
7. The SAPReply node sends the reply messages to the appropriate listeners.
8. Each listener returns a reply message to the appropriate SAP program.

In this scenario, the message flow has low latency compared to the time taken by
the entire scenario. Therefore, you can limit the resources that are used by the
message flow containing the SAPInput node by configuring fewer additional
instances for this message flow. One instance of the message flow, as in the
example, can service many listeners because the message flow propagates the
import parameters quickly for processing.

The following scenarios are also possible.
v A single message flow contains an SAPReply node but it is used to reply to

several SAPInput nodes. After the message has been propagated to the
SAPReply node, the listener sends the reply back to SAP and is therefore ready
to receive another call from SAP. However, the current instance of the message
flow is still busy processing the nodes downstream from the SAPReply node. In
this case, increase the number of instances on the message flow that contains the
SAPReply node.

v After propagating to the SAPReply node, other nodes in the message flow
perform extra processing. In this case, increase the number of instances on the
message flow that contains the SAPReply node, even when it is the same flow
that contains the SAPInput node.
This scenario might have an undesirable effect on the integrity of your data. If
an exception occurs after the SAPReply node, resources that are updated by the
message flow (for example, database tables or WebSphere MQ queues) might be
rolled back. However, the reply has been sent back to SAP already and cannot
be rolled back. If this behavior is not appropriate, you can improve data
integrity by ensuring that the SAPReply node is the final node in the message
flow.

For information about how to tune the SAP adapter, see “Tuning the SAP adapter
for scalability and performance” on page 3278.
Related concepts:

Chapter 9. Developing message flow applications 1951

“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Tuning the SAP adapter for scalability and performance” on page 3278
You can configure the number of listeners on the adapter and the number of
additional instances on the message flow to prevent delays when processing
synchronous calls from SAP.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Starting to collect message flow accounting and statistics data” on page 3288
You can start collecting message flow accounting and statistics data for an active
broker at any time. You can specify what type of statistics you want to collect, and
where to send the data.
Related reference:
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.

Business objects for the BAPI interface:

A business object is a structure that consists of data, the action to be performed on
the data, and additional instructions for processing the data.

For outbound processing, the broker uses business objects to send data to SAP or
obtain data (through the adapter) from SAP. The broker sends a business object to
the adapter, and the adapter converts the data in the business object to a format
that is compatible with an SAP API call. The adapter then runs the SAP API with
this data.

For inbound processing, the SAP server sends a BAPI function call through the
adapter to an endpoint. The adapter converts the BAPI function call into a business
object.

The adapter uses the BAPI metadata that is generated by the Adapter Connection
wizard to construct a business-object definition. This metadata contains
BAPI-related information such as the operation of the business object, import
parameters, export parameters, table parameters, transaction information, and
dependent or grouped BAPIs.

1952 WebSphere Message Broker Version 7.0.0.8

The BAPI business-object definition that is generated by the Adapter Connection
wizard is modeled on the BAPI function interface in SAP. The business-object
definition represents a BAPI function, such as a BAPI_CUSTOMER_GETLIST
function call.

If you change the BAPI interface, you must run the Adapter Connection wizard
again to rebuild the business object definition.

How business-object definitions are created

You create business-object definitions by using the Adapter Connection wizard.
The wizard connects to the application, discovers data structures in the application,
and generates business-object definitions to represent them. It also generates other
resources that are needed by the adapter, such as the interface information that
indicates the input and output parameters.

Business object structure

The structure of a BAPI business object depends on the interface type (simple
BAPI, BAPI work unit, or BAPI result set).

For more information, see the following topics.
v “Business object structure for a simple BAPI” on page 1954
v “Business object structure for a nested BAPI” on page 1955
v “Business object structure for a BAPI work unit” on page 1956
v “Business object structure for a BAPI result set” on page 1958
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.

Chapter 9. Developing message flow applications 1953

“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Business object structure for a simple BAPI:

A business object for a simple BAPI call reflects a BAPI method or function call in
SAP. Each business object property maps to a BAPI parameter. The metadata of
each business-object property indicates the corresponding BAPI parameter. The
operation metadata determines the correct BAPI to call.

For a simple BAPI that performs Create, Update, Retrieve, and Delete operations,
each operation is represented by a business object, with the business objects being
grouped together in a wrapper.

The business object wrapper can be associated with multiple operations, but for a
simple BAPI, each business object is associated with only one operation. For
example, while a wrapper business object can contain BAPIs for Create and Delete
operations, BAPI_CUSTOMER_CREATE is associated with the Create operation,
not the Delete operation.

The BAPI business objects are children of the business object wrapper, and,
depending on the operation to be performed, only one child object in this wrapper
needs to be populated at run time in order to process the simple BAPI call. Only
one BAPI, the one that is associated with the operation to be performed, is called
at a time.

If you select Asynchronous Transactional RFC (for outbound or inbound
processing) or Asynchronous Queued RFC (for outbound processing) , the BAPI
wrapper business object also contains a transaction ID. The transaction ID is used
to resend the BAPI call if the receiving system is not available at the time of the
initial call.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.

1954 WebSphere Message Broker Version 7.0.0.8

“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Business object structure for a nested BAPI:

A nested BAPI business object contains structure parameters that can contain one
or more other structures as components.

A BAPI business object can contain both simple parameters and structure
parameters. A business object that contains structure parameters can in turn
contain other structures, such as simple parameters and a business object.
Related concepts:

Chapter 9. Developing message flow applications 1955

“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Business object structure for a BAPI work unit:

A business object that represents a BAPI work unit (also known as a BAPI
transaction) is a wrapper object that contains multiple child BAPI objects. Each
child BAPI object in the wrapper object represents a simple BAPI.

The adapter supports a BAPI work unit by using a top-level wrapper business
object that consists of multiple child BAPIs, each one representing a simple BAPI

1956 WebSphere Message Broker Version 7.0.0.8

in the sequence. The BAPI wrapper object represents the complete work unit, while
the child BAPI objects contained in the BAPI wrapper object represent the
individual operations that make up the work unit.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Chapter 9. Developing message flow applications 1957

Business object structure for a BAPI result set:

The top-level business object for a result set is a wrapper that contains a GetDetail
business object. The GetDetail business object contains the results of a query for
SAP data. The GetDetail business object also contains, as a child object, the query
business object. The query business object represents a GetList BAPI. These two
BAPIs work together to retrieve information from the SAP server.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

1958 WebSphere Message Broker Version 7.0.0.8

The ALE interfaces:

The SAP Application Link Enabling (ALE) interface and ALE pass-through IDoc
interface enable business process integration and asynchronous data
communication between two or more SAP systems or between SAP and external
systems. The data is exchanged in the form of Intermediate Documents (IDocs).

The adapter supports outbound and inbound processing by enabling the exchange
of data in the form of business objects.
v For inbound processing, SAP pushes the data in IDocs to the SAP adapter. The

adapter converts the IDocs to business objects and delivers them to the
endpoint.

v For outbound processing, the SAP adapter converts the business object to an
IDoc and delivers it to SAP.

To use the ALE interface or ALE pass-through IDoc interface for inbound
processing, make sure that your SAP server is properly configured (for example,
you must set up a partner profile and register an SAP RCF program ID to listen
for events).

Application systems are loosely coupled in an ALE integrated system, and the data
is exchanged asynchronously.

IDocs

Intermediate Documents (IDocs) are containers for exchanging data in a predefined
(structured ASCII) format across system boundaries. The IDoc type indicates the
SAP format that is to be used to transfer the data. An IDoc type can transfer
several message types (the logical messages that correspond to different business
processes). IDocs can be used for outbound and inbound processing. The SAP
adapter supports the basic and extension type of IDocs.

For example, if an application developer wants to be notified when a sales order is
created on the SAP server, the developer runs the Adapter Connection wizard to
discover the ORDERS05 IDoc on the SAP server. The wizard then generates the
business object definition for ORDERS05. The wizard also generates other
resources, such as an EIS export component and Service Component Architecture
(SCA) interfaces.

IDocs are exchanged for inbound and outbound events, and IDocs can be
exchanged either as individual documents or in packets.

The processing of IDoc data depends on whether you are using the ALE interface
or the ALE pass-through IDoc interface.
v ALE interface

For outbound processing, the adapter uses the IDoc business object to populate
the appropriate RFC-enabled function call made to the SAP server.
For inbound processing, IDocs can be sent from the SAP server as parsed or
unparsed documents
– For parsed documents, the adapter parses the IDoc and creates a business

object that reflects the internal structure of the IDoc.
– For unparsed IDocs, the adapter processes the IDoc but does not convert the

data portion of the IDoc.
v ALE pass-through IDoc interface

Chapter 9. Developing message flow applications 1959

For both outbound and inbound processing, the adapter does no conversion of
the IDoc, which is useful when the client wants to perform the IDoc parsing.

Transactional RFC processing

The adapter uses transactional RFC (tRFC) to assure delivery and to ensure that
each IDoc is exchanged only once with SAP. The tRFC component stores the called
RFC function in the database of the SAP system with a unique transaction
identifier (TID). The TID is a field in your message.

The message flow must determine how to store the SAP transaction ID and how to
relate the SAP transaction ID to the data being sent to the adapter. When the
events are successful, the message flow should not resubmit the event associated
with this TID again to prevent the processing of duplicate events.
v If the message flow does not send an SAP transaction ID with the business

object, the adapter returns one after running the transaction.
v If the message flow has an SAP transaction ID, it must populate the SAP

transaction ID property in the business object with that value before running the
transaction.

The SAP transaction ID can be used for cross-referencing with a global unique ID
that is created for an outbound event. You can create the global unique ID for
managing integration scenarios.

Queued RFC processing

The adapter uses qRFC (queued transactional RFC) to ensure that IDocs are
delivered in sequence to a queue on the SAP server or are received in sequence
from the SAP server. Additional threads can increase the throughput of a message
flow but you should consider the potential effect on message order. To maintain
message order, ensure that your message flow is single threaded.

For more information about ALE interfaces, see the following topics:
v “Outbound processing for the ALE interface” on page 1961
v “Inbound processing for the ALE interface” on page 1963
v “Pass-through support for IDocs, and MQSeries link for R/3 link migration” on

page 1973
v “ALE business objects” on page 1978
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere

1960 WebSphere Message Broker Version 7.0.0.8

Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Outbound processing for the ALE interface:

The adapter supports outbound processing (from the adapter to the SAP server)
for the ALE interface and the ALE pass-through IDoc interface. ALE uses IDocs for
data exchange, and the adapter uses business objects to represent the IDocs.

The following list describes the sequence of processing actions that result from an
outbound request that uses the ALE interface and ALE pass-through IDoc
interface.

The message flow that makes the request uses the interface information that was
generated by the Adapter Connection wizard.
1. The adapter receives a request, which includes an IDoc business object, from a

message flow.
For pass-through IDocs, the Message tree contains a BLOB field that represents
the IDoc. No separate IDoc business object exists for pass-through IDocs.

2. The adapter uses the IDoc business object to populate the appropriate
RFC-enabled function call used by the ALE interface.

3. The adapter establishes an RFC connection to the ALE interface and passes the
IDoc data to the SAP system. If you are using the qRFC protocol, the adapter
passes the IDoc data in the order specified in the wrapper business object to
the specified queue on the SAP server.

Chapter 9. Developing message flow applications 1961

4. After passing the data to SAP, the adapter performs one of the following steps:
v If the call is not managed by a local transaction that uses the broker's Local

Transaction Manager, the adapter releases the connection to SAP and does
not return any data to the caller. When no exceptions are raised, the
outbound transaction is considered successful. You can verify whether the
data is incorporated into the SAP application by inspecting the IDocs that
have been generated in SAP.

v If the call is managed by a local transaction that uses the broker's Local
Transaction Manager, the adapter returns the transaction ID.
The adapter uses the tRFC protocol to support J2C local transactions.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.

1962 WebSphere Message Broker Version 7.0.0.8

“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Inbound processing for the ALE interface:

The adapter supports inbound processing (from the SAP server to the adapter) for
the ALE interface and the ALE pass-through IDoc interface.

When you are configuring a module for the ALE interface or the ALE pass-through
interface, you indicate whether the IDocs are sent as a packet and, for the ALE
interface, you can specify whether they are sent parsed or unparsed. You make
these selections in the Adapter Connection wizard. When you use the ALE
pass-through IDoc interface, the Message tree contains a BLOB field that represents
the IDoc. No separate IDoc business object exists for pass-through IDocs.

The following list describes the sequence of processing actions that result from an
inbound request using the ALE interface.
1. The adapter starts event listeners to the SAP server.
2. Whenever an event occurs in SAP, the event is sent to the adapter through the

event listeners.
3. The adapter converts the event into a business object before sending it to the

endpoint.

The adapter uses the event recovery mechanism to track and recover events in case
of abrupt termination. The event recovery mechanism uses a data source for
persisting the event state.

The following table provides an overview of the differences between the ALE
interface and the ALE pass-through IDoc interface for inbound processing.

Interface When to use SplitIDoc = true SplitIDoc = false Parsed IDoc = true

ALE inbound This interface
converts the raw
incoming IDocs to
business objects,
which are readily
consumable by the
client at the endpoint.

On receiving the IDoc
packet from SAP, the
adapter converts the
IDocs to business
objects, one by one,
before sending each
one to the endpoint.

On receiving the IDoc
packet from SAP, the
adapter converts the
IDocs in the packet as
one business object
before sending it to
the endpoint.

The incoming IDoc is
only partially parsed
(the control record of
the IDoc is parsed
but the data record is
not). The client at the
endpoint is
responsible for
parsing the data
record.

ALE pass-through
IDoc

This interface wraps
the raw incoming
IDoc in a business
object before
delivering it to the
client at the endpoint.
The client is
responsible for
parsing the raw IDoc.

On receiving the IDoc
packet from SAP, the
adapter wraps each
raw IDoc in a
business object before
sending the objects,
one by one, to the
endpoint.

On receiving the IDoc
packet from SAP, the
adapter wraps the
raw IDoc packet in a
business object before
sending it to the
endpoint.

This attribute is not
applicable to the ALE
pass- through IDoc
interface. (Neither the
control record nor the
data record of the
IDoc is parsed.)

For more information, see the following topics.
v “Event error handling” on page 1965

Chapter 9. Developing message flow applications 1963

v “Event recovery for the ALE interface” on page 1966
v “Event processing for parsed IDoc packets” on page 1967
v “Event processing for unparsed IDocs” on page 1969
v “IDoc status updates” on page 1971
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

1964 WebSphere Message Broker Version 7.0.0.8

Event error handling:

WebSphere Adapter for SAP Software provides error handling for inbound ALE
events by logging the errors and attempting to restart the event listener.

When the adapter detects an error condition, it performs the following actions:
1. The adapter logs the error information in the syslog (on Linux and UNIX

systems), Windows Event Viewer, or user trace log.
2. The adapter attempts to restart the existing event listeners.

The adapter uses the activation specification values for RetryLimit and
RetryInterval.
v If the SAP application is not active, the adapter attempts to restart the

listeners for the number of times configured in the RetryLimit property.
v The adapter waits for the time specified in the RetryInterval parameter

before attempting to restart the event listeners.
3. If the attempt to restart the event listeners fails, the adapter performs the

following actions:
v The adapter logs the error condition in the syslog (on Linux and UNIX

systems), Windows Event Viewer, or user trace log.
v The adapter cleans up the existing ALE event listeners.
v The adapter starts new event listeners.
The adapter uses the values of the RetryLimit and RetryInterval properties
when starting the new event listeners.

4. If all the retry attempts fail, the adapter logs the relevant message and CEI
events and stops trying to recover the ALE event listener.
You must restart the adapter or Service Component Architecture (SCA)
application in this case.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system

Chapter 9. Developing message flow applications 1965

administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Event recovery for the ALE interface:

You can configure the adapter for ALE inbound processing so that it supports
event recovery in case of abrupt termination.

When event recovery is specified, the adapter persists the event state in an event
recovery table that resides on a data source. Event recovery is not the default
behavior; you must specify it by enabling once-only delivery of events during
adapter configuration.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

1966 WebSphere Message Broker Version 7.0.0.8

“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Event processing for parsed IDoc packets:

An inbound event can contain a single IDoc or multiple IDocs, with each IDoc
corresponding to a single business object. The multiple IDocs are sent by the SAP
server to the adapter in the form of an IDoc packet. You can specify, during
adapter configuration, whether the packet can be split into individual IDocs or
whether it must be sent as one object (non-split).

Event processing begins when the SAP server sends a transaction ID to the
adapter. The following sequence occurs.
1. The adapter checks the status of the event and takes one of the following

actions:
v If this is a new event, the adapter stores an EVNTID (which corresponds to

the transaction ID) along with a status of 0 (Created) in the event recovery
table.

v If the event status is -1 (Rollback), the adapter updates the status to 0
(Created).

v If the event status is 1 (Executed), the adapter returns an indication of
success to the SAP system.

2. The SAP system sends the IDoc to the adapter.
3. The adapter converts the IDoc to a business object and sends it to the endpoint.

For single IDocs and non-split IDoc packets, the adapter can deliver objects to
endpoints that support transactions as well as to endpoints that do not support
transactions.

Chapter 9. Developing message flow applications 1967

v For endpoints that support transactions, the adapter delivers the object as
part of a unique XA transaction. When the endpoint processes the event and
the transaction is committed, the status of the event is updated to 1
(Executed).
The endpoint must be configured to support XA transactions.

v For endpoints that do not support transactions, the adapter delivers the
object to the endpoint and updates the status of the event to 1 (Executed).
The adapter delivers the business object without the quality of service (QOS)
that guarantees once-only delivery.

4. For split packets only, the adapter performs the following tasks:
a. The adapter updates the BQTOTAL column (or table field) in the event

recovery table to the number of IDocs in the packet. This number is used
for audit and recovery purposes.

b. The adapter sends the business objects to the message endpoint, one after
the other, and updates the BQPROC property to the sequence number of the
IDoc it is working on. The adapter delivers the objects to the appropriate
endpoint as part of a unique XA transaction (a two-phase commit
transaction) controlled by the application server.

c. When the endpoint receives the event and the transaction is committed, the
adapter increments the number in the BQPROC property.
The message endpoint must be configured to support XA transactions.If the
adapter encounters an error while processing a split IDoc packet, it can
behave in one of two ways, depending on the IgnoreIDocPacketErrors
configuration property:
v If the IgnoreIDocPacketErrors property is set to false, the adapter stops

processing any additional IDocs in the packet and reports errors to the
SAP system.

v If the IgnoreIDocPacketErrors property is set to true, the adapter logs an
error and continues processing the rest of the IDocs in the packet. The
status of the transaction is marked 3 (InProgress). In this case, the adapter
log shows the IDoc numbers that failed, and you must resubmit those
individual IDocs separately. You must also manually maintain these
records in the event recovery table.

This property is not used for single IDocs and for non-split IDoc packets.
d. The SAP system sends a COMMIT call to the adapter.
e. After the adapter delivers all the business objects in the IDoc packet to the

message endpoint, it updates the event status to 1 (Executed).
f. In case of abrupt interruptions during IDoc packet processing, the adapter

resumes processing the IDocs from the current sequence number. The
adapter continues updating the BQPROC property, even if
IgnoreIDocPacketErrors is set to true. The adapter continues the processing
in case you terminate the adapter manually while the adapter is processing
an IDoc packet.

5. If an exception occurs either while the adapter is processing the event or if the
endpoint generates an exception, the event status is updated to -1 (Rollback).

6. If no exception occurs, the SAP server sends a CONFIRM call to the adapter.
7. The adapter deletes the records with a 1 (Executed) status and logs a common

event infrastructure (CEI) event that can be used for tracking and auditing
purposes.

Related concepts:

1968 WebSphere Message Broker Version 7.0.0.8

“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Event processing for unparsed IDocs:

Unparsed IDocs are passed through, with no conversion of the data (that is, the
adapter does not parse the data part of the IDoc). The direct exchange of IDocs in
the adapter enables high-performance, asynchronous interaction with SAP, because
the parsing and serializing of the IDoc occurs outside the adapter. The consumer of
the IDoc parses the IDoc.

Chapter 9. Developing message flow applications 1969

The adapter processes the data based on whether the packet IDoc is split or
non-split and whether the data needs to be parsed.
v The adapter can process packet IDocs as a packet or as individual IDocs. When

an IDoc is received by the adapter from SAP as a packet IDoc, it is either split
and processed as individual IDocs, or it is processed as a packet. The value of
the SplitIDocPacket metadata at the business-object level determines how the
IDoc is processed.
For split IDocs, the wrapper contains only a single, unparsed IDoc object.

v The Type metadata specifies whether the data should be parsed. For unparsed
IDocs, this value is UNPARSEDIDOC; for parsed IDocs, the value is IDOC. This value
is set by the Adapter Connection wizard.

Unparsed data format

In the fixed-width format of an unparsed IDoc, the segment data of the IDoc is set
in the IDocData field of the business object. It is a byte array of fixed-length data.

The entire segment length might not be used. The adapter pads spaces to the fields
that have data; the rest of the fields are ignored, and an end of segment is set. The
end of segment is denoted by a null value.

The following figure shows a segment with fields demarcated by the ‘|' symbol for
reference.

When the adapter processes this segment into unparsed data, it takes into account
only those fields that have data in them. It maintains the field width for each
segment field. When it finds the last field with data, it appends a null value to
mark the end of segment.

The next segment data processed as unparsed data would be appended after the
null value.

Limitations

The unparsed event feature introduces certain limitations on the enterprise
application for a particular IDoc type.
v The enterprise application supports either parsed or unparsed business-object

format for an IDoc type or message type.
v For an IDoc type, if you select unparsed business-object format for inbound, you

cannot have inbound and outbound interfaces in the same EAR file, because
outbound is based on parsed business objects.

v The DummyKey feature is not supported for unparsed IDocs.

Figure 2. Example of a segment before processing

Figure 3. Example of a segment after processing

1970 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

IDoc status updates:

To monitor IDoc processing, you can configure the adapter to update the IDoc
status.

Chapter 9. Developing message flow applications 1971

When the adapter configuration property UpdateStatus is set to true (indicating
that an audit trail is required for all message types), the adapter updates the IDoc
status of ALE business objects that are retrieved from the SAP server. After the
event is sent to the message endpoint, the adapter updates the status of the IDoc in
SAP to indicate whether the processing succeeded or failed. Monitoring of IDocs
applies only to inbound processing (when the IDoc is sent from the SAP server to
the adapter).

The adapter updates a status IDoc (ALEAUD) and sends it to the SAP server.

An IDoc that is not successfully sent to the endpoint is considered a failure, and
the IDoc status is updated by the adapter. Similarly, an IDoc that reaches the
endpoint is considered successfully processed, and the status of the IDoc is
updated.

The status codes and their associated text are configurable properties of the
adapter, as specified in the activation specification properties and shown in the
following list:
v SuccessCode
v FailureCode
v SuccessText
v FailureText

Perform the following tasks to ensure that the adapter updates the standard SAP
status code after it retrieves an IDoc:
v Set the UpdateStatus configuration property to true and set values for the

SuccessCode and FailureCode configuration properties.
v Configure the inbound parameters of the partner profile of the logical system in

SAP to receive the ALEAUD message type. Set the following properties to the
specified values:

Table 14. Inbound properties of the logical system partner profile

SAP property Value

Basic Type ALEAUD01

Logical Message Type ALEAUD

Function module IDOC_INPUT_ALEAUD

Process Code AUD1

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).

1972 WebSphere Message Broker Version 7.0.0.8

“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Pass-through support for IDocs, and MQSeries link for R/3 link migration:

Both the inbound and outbound SAP adapters support a pass-through mode for
IDocs.

In this mode, the bit stream for the IDoc is provided without any form of parsing.
The bit stream can then be used directly in a message flow, and parsed by other
parsers, or sent unchanged over transports.

Use the Adapter Connection wizard to select pass-through support: on the
Configure settings for adapter pane, select ALE pass-through IDoc as the interface
type.

A business object is created that contains one field, which is the bit stream of the
IDoc. You can transform this business object in a Compute node to an MQSeries
link for R/3 format message, as shown in the following example.
DECLARE ns NAMESPACE
’http://www.ibm.com/xmlns/prod/websphere/j2ca/sap/sapmatmas05’;

CREATE COMPUTE MODULE test4_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

Chapter 9. Developing message flow applications 1973

CALL CopyMessageHeaders();
-- CALL CopyEntireMessage();
set OutputRoot.MQSAPH.SystemNumber = ’00’;
set OutputRoot.BLOB.BLOB =

InputRoot.DataObject.ns:SapMatmas05.IDocStreamData;
RETURN TRUE;
END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER;
SET J = CARDINALITY(InputRoot.*[]);
WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;
END WHILE;
END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;
END;
END MODULE;

You can also create a request business object from an MQSeries link for R/3
message, as shown in the following example.
CREATE COMPUTE MODULE test4_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
set

OutputRoot.DataObject.ns:SapMatmas05.IDocStreamData =
InputRoot.BLOB.BLOB;

RETURN TRUE;
END;
END MODULE;

The name of the SapMatmas05 element depends on selections that you make when
you run the Adapter Connection wizard.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

1974 WebSphere Message Broker Version 7.0.0.8

“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

ALE pass-through IDoc business object structure:

During ALE processing, the adapter exchanges business objects with the SAP
application.

The message tree contains a BLOB field that represents the IDoc. The BLOB field is
modelled as a HexBinary type in the XSD file. The message tree contains the
stream data (the BLOB field), which is the entire data of the IDoc. The transaction
ID, iDoc type, and queue name fields contain information about that data and how
it has been transferred.

The transaction ID (SAPTransactionID) is used to ensure once-only delivery of
business objects, and the queue name (qRFCQueueName) specifies the name of the
queue on the SAP server to which the IDocs should be delivered. If you are not
using transaction IDs or queues, these properties are blank.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:

Chapter 9. Developing message flow applications 1975

“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Generic IDoc routing:

By using the SAPInput node in passthrough mode, WebSphere Message Broker can
receive any IDoc and route it according to IDoc type.

The message set for a generic IDoc in ALE passthrough mode contains four fields.
Three of these fields are control information:
v The transaction ID
v The queue name (if qRFC is used)
v The name of the IDoc type

The fourth field is a hexBinary field that contains the entire IDoc in a raw,
unparsed format. You can use the DataObject parser to parse this raw format to a
full logical structure of a specific IDoc if you provide a message set that contains
the definition for that IDoc type. To parse raw IDocs, you must use an MQInput
node with the Message domain property set to DataObject, and the Message format
property set to SAP ALE IDoc.

1976 WebSphere Message Broker Version 7.0.0.8

When passthrough mode is not used, the message set contains a fully parsed IDoc
structure. These structures are specific to each IDoc, therefore the message set must
have a type defined for every IDoc that could be received by the .inadapter
component. This message set is determined by the RFC Program ID that is
configured on the adapter and the ALE or RFC configuration on the SAP side. This
behavior can affect how message models are managed.

Whenever you need to develop message flows in isolation, where each flow is to
handle a different type of IDoc, the ALE parsed mode is not appropriate because
all flows have a common denominator (the message set), which needs to be
changed whenever a new IDoc type is added.

By using the generic passthrough mode, you can create a routing message flow
that uses the IDoc type field of the generic IDoc model to separate WebSphere MQ
queues, for example. You can create message flows that deal with each different
IDoc type. If the set of discovered IDocs is extended, you can create a message
flow and a message set (which contains just the new IDoc), then deploy them,
without the need to change existing message flows or message sets.

By using this method, you can also use a single RFC program ID to receive all
IDoc types, while still allowing individual IDoc processing.

For instructions about how to route generic IDocs, see “Routing IDocs to separate
message flows” on page 2055.

For more information about the pattern that is used in the task, see Data
distribution SAP to WebSphere MQ: one-way (for IDoc). You can view patterns in
the information center by using the links only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit, or when you
use the online information center.
Related concepts:
“The ALE interfaces” on page 1959
The SAP Application Link Enabling (ALE) interface and ALE pass-through IDoc
interface enable business process integration and asynchronous data
communication between two or more SAP systems or between SAP and external
systems. The data is exchanged in the form of Intermediate Documents (IDocs).
“Inbound processing for the ALE interface” on page 1963
The adapter supports inbound processing (from the SAP server to the adapter) for
the ALE interface and the ALE pass-through IDoc interface.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Routing IDocs to separate message flows” on page 2055
You can use a pattern to process IDocs of various kinds with a single RFC program
ID without having to redeploy or rediscover existing message sets and adapters,
even when adding new types of IDoc.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.

Chapter 9. Developing message flow applications 1977

“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
Related reference:
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

ALE business objects:

A business object is a structure that consists of data, the action to be performed on
the data, and additional instructions for processing the data. The adapter client
uses business objects to send data to SAP or to obtain data (through the adapter)
from SAP.

The adapter uses the IDoc metadata that is generated by the Adapter Connection
wizard to construct a business-object definition. This metadata contains
ALE-related information such as segment information, field names, and an
indication of whether the business object handles a single IDoc or an IDoc packet.

The Message tree contains a BLOB field that represents the IDoc.

How business-object definitions are created

You create business-object definitions by using the Adapter Connection wizard.
The wizard connects to the application, discovers data structures in the application,
and generates business-object definitions to represent them. It also generates other
resources that are needed by the adapter, such as the interface information that
indicates the input and output parameters.

For more information, see the following topics.
v “ALE business object structure” on page 1979
v “Transaction ID support” on page 1981
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.

1978 WebSphere Message Broker Version 7.0.0.8

“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

ALE business object structure:

During ALE processing, the adapter exchanges business objects with the SAP
application. The business object represents an individual IDoc or an IDoc packet.
This business object is a top-level wrapper object that contains one or more IDoc
child objects, each one corresponding to a single IDoc. The same business object
format is used for inbound and outbound processing.

Wrapper business object

The wrapper business object contains a transaction ID, a queue name, and one or
more IDoc business objects. The transaction ID (SAPTransactionID) is used to
ensure once-only delivery of business objects, and the queue name
(qRFCQueueName) specifies the name of the queue on the SAP server to which
the IDocs should be delivered. If you are not using transaction IDs or queues,
these properties are blank.

For individual IDocs, the wrapper business object contains only one instance of an
IDoc business object. For IDoc packets, the wrapper business object contains
multiple instances of an IDoc business object.

IDoc business object

The IDoc business object contains the following objects:

Chapter 9. Developing message flow applications 1979

v The control record business object contains the metadata required by the adapter
to process the business object.

v The data record business object contains the business object data to be processed
by the SAP application and the metadata required for the adapter to convert it
to an IDoc structure for the RFC call.

Dummy keys are not used in WebSphere Message Broker.

Unparsed IDocs

For an unparsed IDoc, in which the data part of the IDoc is not parsed by the
adapter, the IDoc business object contains a dummy key, a control record, and the
IDoc data. The IDoc data is of hexBinary type and represents the whole data
record containing segments in binary content.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

1980 WebSphere Message Broker Version 7.0.0.8

“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Transaction ID support:

An SAP transaction ID (TID) is contained in the ALE wrapper business object and
is therefore available as a field in the message tree. You can use transaction ID
support to ensure once-only delivery of ALE objects.

The most common reason for using transaction ID support is to ensure once and
only once delivery of data. The SAP transaction ID property is always generated
by the Adapter Connection wizard.

The message flow must determine how to store the SAP transaction ID and how to
relate the SAP transaction ID to the data being sent to the adapter. When the
events are successful, the message flow should not resubmit the event associated
with this TID again to prevent the processing of duplicate events.
v If the message flow does not send an SAP transaction ID with the business

object, the adapter returns one after executing the transaction.
v If the message flow has an SAP transaction ID, it needs to populate the SAP

transaction ID property with that value before executing the transaction.

The SAP transaction ID can be used for cross-referencing with a global unique ID
that is created for an outbound event. The global unique ID is something you can
create for managing integration scenarios.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

Chapter 9. Developing message flow applications 1981

“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Query interface for SAP Software:

The Query interface for SAP Software (QISS) provides you with the means to
retrieve data from application tables on an SAP server or to query SAP application
tables for the existence of data. The adapter can perform hierarchical data retrieval
from the SAP application tables.

Query interface for SAP Software supports outbound interactions for read
operations (RetrieveAll and Exists) only. You can use this interface in local
transactions to look up records before write operations (Create, Update, or Delete).
For example, you can use the interface as part of a local transaction to do an
existence check on a customer before creating a sales order. You can also use the
interface in non-transaction scenarios.

Query interface for SAP Software supports data retrieval from SAP application
tables, including hierarchical data retrieval from multiple tables. The interface
supports static as well as dynamic specification of where clauses for the queries.

The Adapter Connection wizard finds the application data tables in SAP, interprets
the hierarchical relationship between tables, and constructs a representation of the
tables and their relationship in the form of a business object. The wizard also
builds a default where clause for the query.

You can control the depth of the data retrieval, as well as the amount of
information, by using the maxRow and rowsSkip properties.

Query interface for SAP software (QISS) supports hierarchical data retrieval from
the SAP application tables. By using this interface, the adapter can determine the

1982 WebSphere Message Broker Version 7.0.0.8

existence of data in SAP application tables, or retrieve all the data in SAP
application tables. For example, to check if customer Bob exists in SAP system, the
Adapter Connection wizard can be run to discover the SAP application table
KNA1. The wizard then generates the business object for KNA1 along with other
SCA service artifacts. At run time, the SAPRequest node passes the KNA1 business
object to the adapter to call the QISS interface, the adapter retrieves the table data
from SAP, and returns the result to the node.

For more information, see the following topics.
v “Outbound processing for the query interface for SAP Software” on page 1984
v “Business objects for the query interface for SAP Software” on page 1985
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.

Chapter 9. Developing message flow applications 1983

“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Outbound processing for the query interface for SAP Software:

You use the Query interface for SAP Software for outbound processing only.

The message flow that makes the request uses the interface information that was
generated by the Adapter Connection wizard.

The following list describes the sequence of processing actions that result from an
outbound request that uses the query interface for SAP Software.
1. The adapter receives a request, which includes a table object, from a message

flow.
The query business object can be in a container business object, or it can be
received as a table business object.

2. The adapter determines, from the table object sent with the query, the name of
the table to examine.

3. The adapter determines the columns to retrieve or examine.
4. The adapter determines the rows to retrieve or examine.
5. The adapter responds.
v For a RetreiveAll operation, the adapter returns a result set in the form of a

container of query business objects, which represent the data for each row
retrieved from the table. If the query is received as a table business object
(not inside a container), the rows are returned one at a time, as they are
retrieved.

v For the Exists operation, the adapter returns an indication of whether the
data exists in the SAP table.

v If no data exists, the adapter generates an exception.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

1984 WebSphere Message Broker Version 7.0.0.8

“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Business objects for the query interface for SAP Software:

A business object is a structure that consists of data, the action to be performed on
the data, and additional instructions, if any, for processing the data. The input to
the Query interface for SAP Software is a table business object. The table business
object represents the columns in a table on the SAP server. The adapter uses the
table business object to obtain data from tables on the SAP server.

How data is represented in business objects

The adapter uses metadata that is generated by the Adapter Connection wizard to
construct a business-object definition.

The data in the business object represents the columns of the associated table in
SAP.

How business objects are created

You create business-object definitions by using the Adapter Connection wizard.
The wizard connects to the application, discovers data structures in the application,
and generates business-object definitions to represent them. It also generates other
resources that are needed by the adapter, such as the interface information that
indicates the input and output parameters.

Chapter 9. Developing message flow applications 1985

Business object structure

The table business object can be part of a container.

The table business object contains columns selected from the specified SAP table.

In addition to column information, the table business object also contains a query
business object as the last parameter.

The properties of the query business object are sapWhereClause, sapRowsSkip, and
sapMaxRows:
v The sapWhereClause property retrieves information from SAP tables. The

default value is populated by the Adapter Connection wizard. The space
character is used as the delimiter to parse the sapWhereClause.

v The sapMaxRows property is the maximum number of rows to be returned. The
default value is 100.

v The sapRowsSkip property is the number of rows to skip before retrieving data.
The default value is 0.

The tables can be modeled as hierarchical business objects. You specify the
parent-child relationship of the tables in the Adapter Connection wizard.

Tables are linked by a foreign key to form parent-child relationships. The child
table business object has a foreign key that references a property in the parent
query business object.

In the KNA1 business object, notice the reference to SapAdrc, a child business
object. The SapAdrc table object has a column named AddressNumber. This
column has an associated property (ForeignKey) that contains a reference to the
parent business object.

The return from the Query interface for SAP Software call for a RetrieveAll
operation is a container of table objects.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

1986 WebSphere Message Broker Version 7.0.0.8

“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

The Advanced event processing interface:

The Advanced event processing interface of the WebSphere Adapter for SAP
Software is used for both inbound and outbound processing.

For inbound processing, it polls for events in SAP, converts them into business
objects, and sends the event data as business objects to WebSphere Message Broker.

For outbound processing, the adapter processes events sent from an application to
retrieve data from or update data in the SAP server.

For more information, see the following topics.
v “Outbound processing for the AEP interface” on page 1988
v “Inbound processing for the AEP interface” on page 1995
v “Business objects for the Advanced Event Processing (AEP) interface” on page

2001
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:

Chapter 9. Developing message flow applications 1987

“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Outbound processing for the AEP interface:

During outbound processing, business object data is converted into an ABAP
handler function, which is called on the SAP server. When the data is returned by
the ABAP handler function, the data is converted to a business object, and the
business object is returned as a response.

The following list describes the sequence of processing actions that result from an
outbound request that uses the Advanced event processing interface.
1. The adapter receives the Advanced event processing record, which contains

business data along with the metadata.
2. The Advanced event processing interface of the adapter uses the metadata of

the business object to obtain the type of IDoc specified and to reformat the
business object data into the structure of that IDoc.

3. After it reformats the data, the adapter passes the business object data to an
object-specific ABAP handler (based on the operation), which handles the
integration with an SAP native API.

1988 WebSphere Message Broker Version 7.0.0.8

4. After the object-specific ABAP handler finishes processing the business object
data, it returns the response data in IDoc format to the adapter, which converts
it to the business object.

5. The adapter returns the results to the caller.

For more information, see the following topics.
v “ABAP handler overview” on page 1990
v “ABAP handler creation” on page 1992
v “Call Transaction Recorder wizard” on page 1994
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.

Chapter 9. Developing message flow applications 1989

“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

ABAP handler overview:

An ABAP handler is a function module that gets data into and out of the SAP
application database. For each business object definition that you develop, you
must support it by developing a custom ABAP handler.

ABAP handlers are in the SAP application as ABAP function modules. ABAP
handlers are responsible for adding business-object data into the SAP application
database (for Create, Update, and Delete operations) or for using the
business-object data as the keys to retrieving data from the SAP application
database (for the Retrieve operation).

You must develop operation-specific ABAP handlers for each hierarchical business
object that must be supported. If you change the business object definition, you
must also change the ABAP handler.

An ABAP handler can use any of the SAP native APIs for handling the data. The
following list contains some of the native APIs.
v Call Transaction

Call Transaction is the SAP-provided mechanism for entering data into an SAP
system. Call Transaction guarantees that the data adheres to the SAP data model
by using the same screens an online user sees in a transaction. This process is
commonly referred to as screen scraping.

v Batch data communication (BDC)
Batch Data Communication (BDC) is an instruction set that SAP can follow to
process a transaction without user intervention. The instructions specify the
sequence in which the screens in a transaction are processed and which fields
are populated with data on which screens. All of the elements of an SAP
transaction that are exposed to an online user have identifications that can be
used in a BDC.

v ABAP SQL
ABAP SQL is the SAP proprietary version of SQL. It is database-independent
and platform-independent, so that whatever SQL code you write, you can run it
on any database and platform combination that SAP supports. ABAP SQL is
similar in syntax to other versions of SQL and supports all of the basic database
table commands such as update, insert, modify, select, and delete. For a
complete description of ABAP SQL, see your SAP documentation.
By using ABAP SQL, an ABAP handler can modify SAP database tables with
business-object data for create, update, and delete operations. It can also use the
business-object data in the where clause of an ABAP select statement as the
keys.
Do not use ABAP SQL to modify SAP tables, because it might corrupt the
integrity of the database. Use ABAP SQL only to retrieve data.

v ABAP Function Modules and Subroutines
From the ABAP handler, you can call ABAP function modules or subroutines
that implement the required function.

The adapter provides the following tools to help in the development process:

1990 WebSphere Message Broker Version 7.0.0.8

v The adapter includes the Call Transaction Recorder wizard to assist you in
developing the ABAP handlers that use call transactions or BDC sessions.

v The Adapter Connection wizard generates the required business objects and
other resources for Advanced event processing. The business objects are based
on IDocs, which can be custom or standard.

v The adapter provides samples that you can refer to for an understanding of the
Advanced event processing implementation.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.

Chapter 9. Developing message flow applications 1991

“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

ABAP handler creation:

For each IDoc object definition that you develop, you must support it by
developing a custom ABAP handler.

You can use either standard IDocs or custom IDocs for the Advanced event
processing interface. After defining the custom IDoc for an integration scenario,
create an ABAP handler (function module) for each operation of the business object
that must be supported.

Each function should have the following interface to ensure that adapter can call it:
*" IMPORTING
*" VALUE(OBJECT_KEY_IN) LIKE /CWLD/LOG_HEADER-OBJ_KEY OPTIONAL
*" VALUE(INPUT_METHOD) LIKE BDWFAP_PAR-INPUTMETHD OPTIONAL
*" VALUE(LOG_NUMBER) LIKE /CWLD/LOG_HEADER-LOG_NR OPTIONAL
*" EXPORTING
*" VALUE(OBJECT_KEY_OUT) LIKE /CWLD/LOG_HEADER-OBJ_KEY
*" VALUE(RETURN_CODE) LIKE /CWLD/RFCRC_STRU-RFCRC
*" VALUE(RETURN_TEXT) LIKE /CWLD/LOG_HEADER-OBJ_KEY
*" TABLES
*" IDOC_DATA STRUCTURE EDID4
*" LOG_INFO STRUCTURE /CWLD/EVENT_INFO

The following table provides information about the parameters:

Table 15. Interface parameters

Parameter Description

OBJECT_KEY_IN Should be no value.

INPUT_METHOD Indicates whether the IDoc should be processed in a
dialog (that is, through Call Transaction).

Possible values are:

" " - Background (no dialog)

"A" - Show all screens

"E" - Start the dialog on the screen where the error
occurred

“N” Default

LOG_NUMBER Log Number.

OBJECT_KEY_OUT Customer ID returned from the calling transaction.

RETURN_CODE 0 - Successful.

1 - Failed to retrieve.

2 - Failed to create, update, or delete.

RETURN_TEXT Message describing the return code.

IDOC_DATA Table containing one entry for each IDoc data segment.

The following fields are relevant to the inbound
function module:

Docnum - The IDoc number.

Segnam - The segment name.

Sdata - The segment data.

1992 WebSphere Message Broker Version 7.0.0.8

Table 15. Interface parameters (continued)

Parameter Description

LOG_INFO Table containing details regarding events processed
with either a success or error message.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Chapter 9. Developing message flow applications 1993

Call Transaction Recorder wizard:

The adapter provides the Call Transaction Recorder wizard to assist you in
developing the ABAP handlers that use call transactions or BDC sessions.

The Call Transaction Recorder wizard enables you to generate sample code for call
transactions to facilitate development. It generates sample code stubs for each
screen that is modified during the recording phase.

To access this wizard, enter the /CWLD/HOME transaction in the SAP GUI.

The following example is sample code that is generated by the wizard. You can
adopt this code in the ABAP Handler.
* Customer master: request screen chnge/displ cent.
perform dynpro_new using ’SAPMF02D’ ’0101’ .

* Customer account number
perform dynpro_set using ’RF02D-KUNNR’ ’1’ .

* Function Command
perform dynpro_set using ’BDC_OKCODE’ ’/00’ .

* Function Command
perform dynpro_set using ’BDC_OKCODE’ ’/00’ .

* Customer master: General data, CAM address, communication
perform dynpro_new using ’SAPMF02D’ ’0111’ .

* Title
perform dynpro_set using ’SZA1_D0100-TITLE_MEDI’ ’Mr.’ .

* Function Command
perform dynpro_set using ’BDC_OKCODE’ ’=UPDA’ .

* Call Transaction
Call Transaction ’XD02’ using bdcdata

mode input_mode
update ’S’
messages into bdc_messages.

The wizard does not generate the required business object. You use the Adapter
Connection wizard to generate the business object.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere

1994 WebSphere Message Broker Version 7.0.0.8

Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Inbound processing for the AEP interface:

The adapter uses the Advanced event processing interface to poll for events on the
SAP server, to process the events, and to send them to an endpoint.

The following list describes the sequence of processing actions that result from an
inbound request that uses the Advanced event processing interface.
1. A triggered event enters the event table with an initial status of prequeued.
2. When the adapter polls for events, the status of the event changes from

prequeued to queued if there are no database locks for the combination of the
user who created the event and the event key.

3. After the event is retrieved from the event table, the status of the event is
updated to InProgress.
If locks exist, the status of the event is set to locked and the event is requeued
into the queue. Every event with a prequeued or locked status is updated with
every poll. You can configure the polling frequency by using the Poll Frequency
property.

4. After preprocessing all prequeued events, the adapter selects the events.
The property Poll Quantity determines the maximum number of events
returned for a single poll call.

5. For each event, the adapter uses the remote function specified for the Retrieve
operation to retrieve the data and send it to the endpoint.

Chapter 9. Developing message flow applications 1995

If the AssuredOnceDelivery property is set to true, an XID value is set for each
event in the event store. After each event is picked up for processing, the XID
value for that event is updated in the event table.
If, before the event is delivered to the endpoint, the SAP connection is lost or
the application is stopped, and the event is consequently not processed
completely, the XID column ensures that the event is reprocessed and sent to
the endpoint. After the SAP connection is reestablished or the adapter starts up
again, it first checks for events in the event table that have a value in the XID
column. It then processes these events first and then polls the other events
during the poll cycles.

6. After each event is processed, it is updated or archived in the SAP application.
When the event is processed successfully, it is archived and then deleted from
the event table.
The adapter can also filter the events to be processed by business object type.
The filter is set in the Event Filter Type property. This property has a
comma-delimited list of business object types, and only the types specified in
the property are picked for processing. If no value is specified for the property,
no filter is applied and all the events are picked up for processing.

For more information, see the following topics.
v “Event detection” on page 1997
v “Event triggers” on page 1999
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).

1996 WebSphere Message Broker Version 7.0.0.8

“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Event detection:

Event detection refers to the collection of processes that notify the adapter of SAP
application object events. Notification includes, but is not limited to, the type of
the event (object and operation) and the data key required for the external system
to retrieve the associated data.

Event detection is the process of identifying that an event was generated in the
SAP application. Typically, adapters use database triggers to detect an event.
However, because the SAP application is tightly integrated with the SAP database,
SAP allows very limited access for direct modifications to its database. Therefore,
the event-detection mechanisms are implemented in the application transaction
layer above the database.

Adapter-supported event detection mechanisms

The four event-detection mechanisms that are supported by the adapter are
described in the following list:
v Custom Triggers, which are implemented for a business process (normally a

single SAP transaction) by inserting event detection code at an appropriate point
in the SAP transaction

v Batch programs, which involve developing an ABAP program containing the
criteria for detecting an event

v Business workflows, which use the object-oriented event detection capabilities of
SAP

v Change pointers, a variation of business workflows, which use the concept of
change documents to detect changes for a business process

All these event-detection mechanisms support real-time triggering and retrieval of
objects. In addition, custom triggers and batch programs provide the ability to
delay the retrieval of events. An event whose retrieval is delayed is called a future
event.

Each event detection mechanism has advantages and disadvantages that need to be
considered when designing and developing a business object trigger. Keep in mind
that these are only a few examples of event detection mechanisms. There are many
different ways to detect events.

Chapter 9. Developing message flow applications 1997

After you determine the business process to support (for example, sales quotes or
sales orders) and determine the preferred event-detection mechanism, implement
the mechanism for your business process.

When implementing an event detection mechanism, it is a good idea to support all
of the functions for a business process in one mechanism. This limits the effect in
the SAP application and makes event detection easier to manage.

Event table

Events that are detected are stored in an SAP application table. This event table is
delivered as part of the ABAP component. The event table structure is as follows.

Table 16. Event table fields

Name Type Description

event_id NUMBER Unique event ID that is a primary key for the
table.

object_name STRING Business object name.

object_key STRING Delimited string that contains the keys for the
business object.

object_function STRING Operation corresponding to the event (Delete,
Create, or Update).

event_priority NUMBER Any positive integer to denote the priority of
the event.

event_time DATE Date and time when the event was generated.

event_status NUMBER Event processing status. Possible values are:

0 - Ready for poll

1 - Event delivered

2 - Event prequeued

3 - Event in progress

4 - Event locked

-1 - Event failed

Xid STRING Unique XID (transaction ID) value for
assured-once delivery.

event_user STRING User who created the event.

event_comment STRING Description of the event.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).

1998 WebSphere Message Broker Version 7.0.0.8

“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Event triggers:

After an event is identified by one of the event-detection mechanisms, it is
triggered by one of the adapter-delivered event triggers. Event triggers can cause
events to be processed immediately or in the future.

The function modules that trigger events are described in the following list.
v /CWLD/ADD_TO_QUEUE

This function module triggers events to the current event table for immediate
processing.

v /CWLD/ADD_TO_QUEUE_IN_FUTURE
This function module triggers events to the future event table to be processed at
a later time.

Both functions are for real-time triggering.

Current event table

If the event will be triggered in real-time, /CWLD/ADD_TO_QUEUE_AEP
commits the event to the current event table (/CWLD/EVT_CUR_AEP).

Chapter 9. Developing message flow applications 1999

Specifically, it adds a row of data for the object name, verb, and key that represents
the event.

Future event table

If an event needs to be processed at a future date, the processing that is described
in the following list occurs.
1. A custom ABAP handler calls /CWLD/ADD_TO_QUEUE_IN_FUTURE_AEP

with the event.
2. The /CWLD/ADD_TO_QUEUE_IN_FUTURE_AEP module commits the event

to the future event table (/CWLD/EVT_FUT_AEP). Specifically, it adds a row
of data for the object name, verb, and key that represents the event. In addition,
it adds a Date row

3. The adapter-delivered batch program /CWLD/
SUBMIT_FUTURE_EVENTS_AEP reads the future event table.

4. If scheduled to do so, the batch program retrieves events from the future event
table.

5. After it retrieves an event, the batch program calls /CWLD/
ADD_TO_QUEUE_AEP.

6. The /CWLD/ADD_TO_QUEUE_AEP module triggers the event to the current
event table.

/CWLD/ADD_TO_QUEUE_IN_FUTURE_AEP uses the system date as the current
date when it populates the Date row of the future event table.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the

2000 WebSphere Message Broker Version 7.0.0.8

WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Business objects for the Advanced Event Processing (AEP) interface:

During advanced event processing, the adapter exchanges business objects with the
SAP application.

How data is represented in business objects

Advanced event processing business objects are based on custom IDocs, standard
IDocs, or extension IDocs available in the SAP system.

How business-object definitions are created

You create business-object definitions by using the Adapter Connection wizard.
The wizard connects to the application, discovers data structures in the application,
and generates business-object definitions to represent them. It also generates other
resources that are needed by the adapter, such as the interface information that
indicates the input and output parameters.

For custom interfaces that you want to support, you must first define the custom
IDoc in the SAP system. You can then use the Adapter Connection wizard to
discover this custom IDoc and build the required resources, including the
business-object definition.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System

Chapter 9. Developing message flow applications 2001

(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Overview of WebSphere Adapter for Siebel Business Applications:

With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.

Use the WebSphere Adapter for Siebel Business Applications to create integrated
processes that exchange information with a Siebel application. With the adapter, an
application can send requests to the Siebel Business Applications server or receive
notifications of changes from the server.

The adapter creates a standard interface to the applications and data on the Siebel
Business Applications server, so that the application developer does not need to
understand the lower-level details (the implementation of the application or the
data structures) on the Siebel Business Applications server. An application, for
example, can send a request to the Siebel Business Applications server, to query or
update an Account record, represented by a Siebel business component instance. It
can also receive events from the server; for example, to be notified that a customer
record has been updated. This behavior provides you with improved business
workflow and processes to help manage your customer relations.

2002 WebSphere Message Broker Version 7.0.0.8

WebSphere Adapter for Siebel Business Applications complies with the Java
Connector Architecture (JCA). JCA standardizes the way application components,
application servers, and Siebel applications, such as Siebel Business Applications
server, interact with each other.

The adapter configuration, which you generate with the Adapter Connection
wizard, uses a standard interface and standard data objects. The adapter takes the
standard data object sent by the application component and calls the Siebel
Business Applications function. The adapter then returns a standard data object to
the application component. The application component does not have to deal
directly with the Siebel Business Applications function; it is the Siebel Business
Applications adapter that calls the function and returns the results.

For example, the application component that needs the list of customers sends a
standard business object with the range of customer IDs to Adapter for Siebel
Business Applications. In return, the application component receives the results
(the list of customers) in the form of a standard business object. The application
component does not need to know how the function worked or how the data was
structured. The adapter completes all the interactions with the Siebel Business
Applications function.

Similarly, the message flow might want to know about a change to the data on the
Siebel Business Applications server (for example, a change to a particular
customer). You can generate an adapter component that polls for such events on
the Siebel Business Applications server and notifies message flows of the update.
In this case, the interaction begins at the Siebel Business Applications server.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Chapter 9. Developing message flow applications 2003

“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Technical overview of the Adapter for Siebel Business Applications:

WebSphere Adapter for Siebel Business Applications supports the exchange of
information between your existing applications and Siebel Business Applications.
The adapter supports Siebel entities, including business objects, business
components, and business services. This enables you to create business processes
that exchange data.

The adapter supports outbound processing (requests for data or services from an
application to the Siebel application) and inbound processing (event notification
from a Siebel application server to an application).

With Adapter for Siebel Business Applications, you can use existing or
newly-created applications that run in a supported runtime environment to send
requests for data and services to Siebel Business Applications.

You can also add event-generation triggers to Siebel business objects to have
notifications of events, such as the creation, update, and deletion of a record, sent
to one or more of your applications.

For more information, see the following topics.
v “Outbound processing for Siebel Business Applications” on page 2005
v “Inbound processing for Siebel Business Applications” on page 2006
v “Business objects for Siebel Business Applications” on page 2011
v “Adapter Connection wizard (Siebel)” on page 2012
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection

2004 WebSphere Message Broker Version 7.0.0.8

wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Outbound processing for Siebel Business Applications:

WebSphere Adapter for Siebel Business Applications supports synchronous
outbound processing. This means that when the component sends a request in the
form of a WebSphere business object hierarchy to the adapter, the adapter
processes the request and returns a WebSphere business object hierarchy that
represents the result of the operation.

When the adapter receives a WebSphere business object hierarchy, the adapter
processes it as follows:
1. The adapter extracts metadata from the WebSphere business object hierarchy.
2. It identifies the appropriate Siebel objects to access (for example, Siebel

business objects and business components, or Siebel business services,
integrations objects, and integration components) depending on the objects
against which the artifacts were generated.

3. The adapter extracts the outbound operation to perform from the WebSphere
business object hierarchy.

4. After accessing the required Siebel objects, the adapter retrieves, updates,
deletes, or creates a Siebel business component hierarchy or performs the
corresponding business service method on the integration component hierarchy.

5. If there are updates (Create, Update, Delete), the adapter populates that Siebel
object (business or integration component hierarchy) with data from the
hierarchy of WebSphere business objects.

Supported Outbound Operations

WebSphere Adapter for Siebel Business Applications supports the outbound
operations shown in the following table.

Table 17. Supported outbound operations

Operation Description

Create Creates the business component.

Delete Deletes the business component and its children.

Exists Checks for the existence of incoming business objects.
The output business object, "ExistsResult" will be
returned with the boolean value populated.

Retrieve Specifies the value of the business component.

RetrieveAll Retrieves multiple instances of the same business
component and populates it as the container object.

Chapter 9. Developing message flow applications 2005

Table 17. Supported outbound operations (continued)

Operation Description

Update Updates the Siebel application with the incoming
business object.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Inbound processing for Siebel Business Applications:

WebSphere Adapter for Siebel Business Applications supports asynchronous
inbound processing, which means that the adapter polls the Siebel Business
Applications at specified intervals for events. When the adapter detects an event, it
converts the event data into a business object and sends it to the component.

2006 WebSphere Message Broker Version 7.0.0.8

Before inbound processing can occur, a Siebel event business component must be
created in the Siebel application (IBM2 for Siebel version 7.x and IBM_EVENT for
Siebel version 8) and its name specified against the corresponding property in the
adapter activation specification.

When the adapter detects an event for Siebel event business components or
integration components, it processes the event by retrieving the updated data for
the Siebel event business component or integration component and converting it
into a business object. The adapter then sends the business object to the event
business component. For example, if an event business component (an account) is
updated, an event trigger adds an event record to the event business component.
The adapter polls the event business component, retrieves the event record, and
processes it.

When the adapter finds an event for a Siebel event business component, it
processes the event in the following way:
1. The adapter retrieves the event information from the Siebel event business

component.
2. The adapter retrieves the corresponding event business component instance

hierarchy.
3. The adapter populates the associated WebSphere business object or business

graph (if it was generated) with the values that it retrieves from the event
business component.

4. The adapter sends a notification to each registered application.

If an inbound event in the event table fails or is invalid, the event status is
updated to -1, which indicates an error in processing the event, and a resource
exception message is issued that explains the reason for the error.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection

Chapter 9. Developing message flow applications 2007

wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Event store for Siebel Business Applications:

The event store is a persistent cache where event records are saved until the
polling adapter can process them. To keep track of inbound events as they make
their way through the system, the adapter uses an event store.

The creation, update, or deletion of an event record in the Siebel business
application is an 'event'. Each time a business object is created, updated, or deleted,
the adapter updates the status of the event in an event store.

For example, if you have a customer component and a new customer has just been
added to it, this signals an update. If the adapter is configured to receive the
events about the new update, there are triggers attached to the Siebel end and
connected to the customer component. The triggers add a record to the event
business component. The record contains information about the new customer,
such as the customer ID. This information is stored in the object key. The object
key is the unique identifier that provides the key name and value of the event
business component that was updated (for example, Id=1-20RT). The object name is
the WebSphere business-object name that represents the customer component (for
example, Account). The adapter retrieves this event and the new customer
information that relates to it. It then processes the event and delivers it to the
export component.

During inbound processing, the adapter polls the event business components from
the event store at regular intervals. Each time it polls, a number of events are
processed by the adapter. Events are processed in ascending order of priority and
ascending order of the event time stamp. In each poll cycle, new events are picked
up. The adapter retrieves the value set in the object key field for the event and
loads the business object that corresponds to it. The business object is created from
the retrieved information and is delivered to the export components.

If you set the activation specification property AssuredOnceDelivery to true, a
transaction ID (XID) value is set for each event in the event store. After the event is
retrieved for processing, the XID value for it is updated in the event store and
displayed in the XID column in the event business component. The event is then
delivered to its corresponding export component, and the status is updated to
show that the event has been successfully delivered. If the application is stopped
or the event is not processed completely, the XID column is filled with a value.
This ensures that the event is reprocessed and sent to the export component. After
the connection is reestablished or the adapter starts again, the adapter checks for
events in the event store that have a value in the XID column. The adapter
processes these events first, then polls the other events during the poll cycles.

2008 WebSphere Message Broker Version 7.0.0.8

The adapter can either process all events or process events filtered by
business-object type. You set the filter through the activation specification property,
EventTypeFilter. This property contains a comma-delimited list of business-object
types. Only the types specified in the property are processed. If the
EventTypeFilter property is not set, all of the events are processed. If the
FilterFutureEvents property is set to true, the adapter filters events based on the
time stamp. The adapter compares the system time in each poll cycle to the time
stamp on each event. If an event is set to occur in the future, it is not processed
until that time.

After an event is successfully posted and delivered to the export component, the
entry is deleted from the event store. Failed events (posting and delivery to the
export component is unsuccessful), remain in the event store and are marked -1.
This prevents duplicate processing.

Event store structure for Siebel business objects and business components

The IBM2 event business component stores information about the event. The
information stored is used by the resource adapter during event subscription to
build the corresponding business object and send it to the registered export
components. The information that is stored, and the structure of the event store
used by the adapter, are shown in the following table.

Table 18. Event store structure for IBM2 Siebel event business objects and business components

Field Description Example

Description Any comment associated with the
event.

Account Create Event

Event ID The ID of the event row. Automatically generated unique ID
in Siebel (for example: 1-XYZ)

Event timestamp The time stamp for the event. The
format is in mm/dd/yyyy hh:mm:ss

02/24/2007 11:37:56

Event type The type of event. Create, Update, or Delete

Object key A unique identifier of the
business-object row for which the
event was created. It is a name-value
pair consisting of the name of the
property (key name) and value.

ID=1-20RT

Object name The name of the business object for
which the event was detected.

IOAccountPRMANIICAccount

Priority The event priority. 1

Status The event status. This is initially set
to the value for a new event and
updated by the adapter as it
processes the event. The status can
have one of the following values:

v 0: Identifies a new event.

v 1: Identifies an event that has been
delivered to an export component.

v -1: An error occurred while
processing the event.

This column cannot contain a null
value.

0

Chapter 9. Developing message flow applications 2009

Table 18. Event store structure for IBM2 Siebel event business objects and business components (continued)

Field Description Example

XID The transaction ID. This is to ensure
assured once-only delivery.

None

Event store structure for Siebel business services

The event is retrieved from the IBM2 event business component and the
information is used to retrieve the event business component.

Table 19. Event store structure for IBM2 Siebel business services

Field Description Example

Description Any comment associated with the
event.

Account PRM ANI Event

Event ID The ID of the event row. Automatically generated unique ID
in Siebel (for example: 1-XYZ)

Event timestamp The time stamp for the event. The
format is in mm/dd/yyyy hh:mm:ss

02/24/2007 11:37:56

Event type The type of event. Create, Update, or Delete

Object key A unique identifier of the
business-object row for which the
event was created. It is a name value
pair consisting of the name of the
property (key name) and value.

Name=TestName;Location=BGM,
where 'Name' and 'Location' are the
keys in the integration component.
'TestName' and 'BGM' are the values
specified, and ; is the event key
delimiter.

Object name The name of the business object for
which the event was detected.

IOAccountPRMANIICAccount

Priority The event priority. 1

Status The event status. This is initially set
to the value for a new event and
updated by the adapter as it
processes the event. The status can
have one of the following values:

v 0: Identifies a new event.

v 1: Identifies an event that has been
delivered to an export component.

v -1: An error occurred while
processing the event.

This column cannot contain a null
value.

0

XID The transaction ID. This is to ensure
'assured once delivery'.

None

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without

2010 WebSphere Message Broker Version 7.0.0.8

special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Business objects for Siebel Business Applications:

To send data or obtain data from Siebel Business Applications, the adapter uses
business objects. A business object is a structure that consists of data, the action to
be performed on the data, and additional instructions, if any, for processing the
data. The data can represent either a business entity, such as an invoice or an
employee record, or unstructured text.

How business objects are created

You create business objects by using the Adapter Connection wizard, which
connects to the application, discovers data structures in the application, and
generates business objects to represent them. It also generates other resources that
are needed by the adapter.

The Siebel business objects are created with long names by default. To generate
business objects with shorter names, select Generate business objects with shorter
names on the Configure Objects screen of the Adapter Connection wizard. For
more information, see “Naming conventions for business objects representing
Siebel business services” on page 4095.

Chapter 9. Developing message flow applications 2011

Business object structure

The adapter supports business objects that are hierarchically structured. The
top-level business object must have a one-to-one correspondence with the Siebel
business component, and collections that occur in the top-level object are children
of it. Information about the processed object is stored in the application-specific
information for the object and each of its attributes.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Adapter Connection wizard (Siebel):

The Adapter Connection wizard is a tool that you use to configure your adapter.
The wizard establishes a connection to the Siebel server, discovers business objects
and services (based on search criteria you provide), and generates business objects
based on the services discovered.

2012 WebSphere Message Broker Version 7.0.0.8

By using the Adapter Connection wizard, you establish a connection to the Siebel
server to browse the metadata repository on the Siebel server. You also specify
connection information, such as the Connection URL, user name, and password
needed to access the server.

The result of running the wizard is a message set project that contains the Siebel
business objects and services along with the adapter.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Overview of WebSphere Adapter for PeopleSoft Enterprise:

With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.

Chapter 9. Developing message flow applications 2013

With the adapter, a message flow can send a request, for example to a PeopleSoft
Enterprise database to query a record in an HR table, or it can receive events from
the server, such as notification that an employee record has been updated.

WebSphere Adapter for PeopleSoft Enterprise complies with the Java Connector
Architecture (JCA), which standardizes the way application components,
application servers, and enterprise information systems, such as a PeopleSoft
Enterprise server, interact with each other.

The adapter component, which you generate with the Adapter Connection wizard
uses a standard interface and standard data objects. The adapter component takes
the standard data object sent by the message flow and calls the PeopleSoft
function. It then returns a standard data object to the message flow. The message
flow does not have to deal directly with the PeopleSoft function; it is the adapter
component that calls the function and returns the results.

For example, the message flow that requested the list of employees sends a
standard business object with the range of skill codes to the PeopleSoft adapter
component. The message flow receives, in return, the results (the list of employees)
in the form of a standard business object. The adapter component completes all the
interactions directly with the PeopleSoft function.

Similarly, the message flow might need to be notified about a change to the data
on the PeopleSoft Enterprise server (for example, a change to the skills set of a
particular employee). You can generate an adapter component that listens for such
events on the PeopleSoft Enterprise server and notifies message flows with the
update. In this case, the interaction begins at the PeopleSoft Enterprise server.

For more information, see “Technical overview of the WebSphere Adapter for
PeopleSoft Enterprise” on page 2015.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.

2014 WebSphere Message Broker Version 7.0.0.8

“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Technical overview of the WebSphere Adapter for PeopleSoft Enterprise:

The adapter supports the exchange of business data between the PeopleSoft
Enterprise server and WebSphere Message Broker. It does so by connecting to two
layers of PeopleTools application programming interface classes that reveal the
underlying business data for integration.

The Adapter for PeopleSoft Enterprise establishes bidirectional connectivity with
the PeopleSoft Enterprise server by connecting to two PeopleTools application
programming interfaces as follows:
1. The adapter accesses the primary API layer to create a session instance and to

connect to the application server through the Jolt port.
2. The adapter then accesses the PeopleSoft Component Interface API, which

reveals underlying business objects, logic, and functions.

In PeopleSoft, a component is a set of pages grouped together for a business
purpose (such as an employee profile), and a component interface is an API that
provides synchronous access to a component from an external application. After
the adapter connects to the component interface, the following entities are exposed
to the adapter and available for integration:
v All business objects in the component interface definition
v PeopleCode methods associated with the underlying components
v Records, except searches and menu-specific processing options

For more information, see the following topics.
v “Outbound processing for PeopleSoft Enterprise” on page 2016
v “Inbound processing for PeopleSoft Enterprise” on page 2018
v “Business objects for PeopleSoft Enterprise” on page 2021
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the

Chapter 9. Developing message flow applications 2015

PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Outbound processing for PeopleSoft Enterprise:

The Adapter for PeopleSoft Enterprise supports synchronous outbound request
processing. Synchronous outbound processing means that when the message flow
sends a request in the form of a business object to the adapter, the adapter
processes the request and returns a business object representing the result of the
operation to the message flow.

When the adapter receives a WebSphere business object hierarchy, adapter
processes it as follows:
1. The adapter extracts metadata from the WebSphere business object hierarchy

that identifies the appropriate PeopleSoft component interface to access.
2. The adapter extracts the outbound operation to perform from the WebSphere

business object hierarchy.
3. After the adapter accesses the component interface, it sets the keys from values

specified in the business objects. If key values are not generated, for example
with a create operation, the PeopleSoft application generates key fields.

4. After it retrieves the PeopleSoft objects, the adapter instantiates an existing
component interface to delete, retrieve, update, or create a component interface.

2016 WebSphere Message Broker Version 7.0.0.8

5. If there are updates (Create, Update), the adapter populates the component
interface with data from the WebSphere business object hierarchy. If there are
Deletes, the adapter populates the component interface only with
StatusColumnName and value information.

For Create and Update operations, the adapter processes attributes in the order
defined in the business object. For example, if there is a complex attribute between
two simple attributes, the adapter processes the simple attribute at the first
position, the complex attribute followed by the simple attribute. After the changes
are made, the component interface is saved to commit the data to the PeopleSoft
database.

Supported outbound operations

WebSphere Adapter for PeopleSoft Enterprise supports the following outbound
operations:

Table 20. Supported outbound operations

Operation Description

Create Creates the business object.

Delete Deletes the business object and its children. Because the adapter supports only logical
deletes, objects are marked as deleted but not removed.

Exists Checks for the existence of incoming business objects.

Retrieve Retrieves the PeopleSoft component, and maps component data onto the business object
hierarchy.

RetrieveAll Retrieves multiple instances of the PeopleSoft component, and maps component data onto
the business object hierarchy.

Update Updates the corresponding PeopleSoft component with the incoming business object.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.

Chapter 9. Developing message flow applications 2017

“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Inbound processing for PeopleSoft Enterprise:

The WebSphere Adapter for PeopleSoft Enterprise supports inbound event
processing.

Inbound event processing means that the adapter polls the PeopleSoft Enterprise
server at specified intervals for events. When the adapter detects an event, it
converts the event data into a business object and sends it to the message flow.

To use inbound event processing, you must create a custom event project in
PeopleSoft, as described in “Creating a custom event project in PeopleTools” on
page 2083.

For more information, see “Event store for PeopleSoft Enterprise” on page 2019.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.

2018 WebSphere Message Broker Version 7.0.0.8

“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Event store for PeopleSoft Enterprise:

The event store is a table that holds events that represent data changes until the
polling adapter can process them. The adapter uses the event store to keep track of
event entities.

To use inbound processing, you must use PeopleTools Application Designer to
create a custom project for event notification. The custom project uses two
PeopleCode functions that determine the way future events are processed, and the
custom project creates the event store the adapter needs for inbound processing.
Each time a business object is created, updated, or deleted, the PeopleCode
function used in the project and then added to the component interface inserts a
new record in the event store, with the appropriate object name, keys, and status
value.

With inbound processing, the adapter polls the event entities from the event store
at configured poll intervals. In each poll call, a configured number of events are
processed by the adapter. The order of event processing is based on the ascending
order of priority and the ascending order of the event time stamp. The events with
the status, Ready for poll (0), are picked up for polling in each poll cycle. The
adapter uses the object name and object key to retrieve the corresponding business
object.

If you set the activation specification property AssuredOnceDelivery to true, an
XID (transaction ID) value is set for each event in the event store, and it is used to
ensure that an event is delivered only once to the target application. After an event
is obtained for processing, the XID value for that event is updated in the event
store. The event is then delivered to its corresponding export component, and its
status is updated to show that event delivery has been completed. If the
application is stopped before the event can be delivered to the export component

Chapter 9. Developing message flow applications 2019

or if delivery has failed, the event might not be processed completely. In this case,
the XID value represents in-progress status, and the XID column ensures that the
event is reprocessed and sent to the export component. Once the database
connection is re-established or the adapter starts again, the adapter checks for
events in the event table that have a value in the XID column of Ready for Poll (0).
The adapter processes these events first, and then polls the other events during the
poll cycles.

The adapter uses special processing for events that have status code (99), which
indicates that they will occur in the future. During a poll cycle, when the adapter
retrieves events with a future status, the adapter compares the system time with
the time stamp on each event. If the event time is earlier than or equal to the
system time, the adapter processes the event and changes the event status to
Ready for Poll (0).

If you want to the adapter to process future status events in the present time, use
the function IBM_PUBLISH_EVENT instead of IBM_FUTURE_PUBLISH_EVENT. Doing so
means that the event is identified as Ready to Poll (0) instead of Future (99).

As events are retrieved and processed from the event store, the status of the event
changes to reflect the cycle, as shown in the following table:

Table 21. Event status values

Status short name Description Event table value

Error processing event An error occurred during
event processing.

-1

Ready for poll The event has not yet been
picked up by the adapter.
The event is ready to be
picked up.

0

Success The event has been delivered
to the event manager.

1

Deleted The event has been
processed successfully and is
removed from the event
store.

4

Future Events These events should be
processed at a future date.

99

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System

2020 WebSphere Message Broker Version 7.0.0.8

(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Business objects for PeopleSoft Enterprise:

To send data or obtain data from PeopleSoft Enterprise, the adapter uses business
objects. A business object is a structure that consists of data, the action to be
performed on the data, and additional instructions, if any, for processing the data.
The data can represent either a business entity, such as an invoice or an employee
record, or unstructured text.

How business objects are created

You create business objects by using the Adapter Connection wizard. The wizard
connects to the application, discovers data structures in the application, and
generates business objects to represent them. It also generates other resources that
are needed by the adapter.

Business object structure

The adapter supports business objects that are hierarchically structured. The
top-level business object must have a one-to-one correspondence with the
PeopleSoft component interface, and collections that occur in the top-level object
are children of it. Information about the processed object is stored in the
application-specific information for the object and each of its attributes.

The following table describes the attributes that form a business object.

Chapter 9. Developing message flow applications 2021

Attribute
property Description

Name Indicates the name of the business object attribute.

Type Indicates the type of the Business Object attribute. The adapter uses
character mapping between PeopleSoft component property types and the
generated business object attribute types. PeopleSoft component property
types map to generated attribute types in the following manner:

CHAR maps to attribute type String
NUMBER maps to attribute type BigDecimal
LONG maps to attribute type Long
SIGN maps to attribute type BigDecimal
DATE maps to attribute type Date
TIME maps to attribute type Time
DTTM maps to attribute type DateTime

Key Child business objects have their own keys that have the primary key
application-specific information. They also inherit keys from their parent
business object.

Cardinality Single cardinality for simple attributes; multiple cardinality for container
attributes.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.

2022 WebSphere Message Broker Version 7.0.0.8

Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Overview of WebSphere Adapter for JD Edwards EnterpriseOne:

With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.

The adapter provides a standard interface that eliminates the need for the
component to understand the lower-level implementation details or data structures
of the application. By using the adapter, a component (the program or piece of
code that performs a specific business function) can send requests to the JD
Edwards EnterpriseOne server (for example, to query a customer record in a table
or to update an order document).

WebSphere Adapter for JD Edwards EnterpriseOne complies with the Java 2
Platform, Enterprise Edition (J2EE) Connector Architecture (JCA). JCA standardizes
the way in which application components, application servers, and Enterprise
Information Systems (EIS), such as a JD Edwards EnterpriseOne server, interact
with each other. WebSphere Adapter for JD Edwards EnterpriseOne makes it
possible for JCA-compliant application servers to connect to and interact with the
JD Edwards EnterpriseOne server. Clients running on the JCA-compliant server
can then communicate with the JD Edwards EnterpriseOne server in a standard
way (by using business objects or JavaBeans).

Suppose a medium-sized retail company uses JD Edwards EnterpriseOne to
coordinate most of its business operations. JD Edwards EnterpriseOne includes a
business function that can return a real-time list of inventory items for its 100
stores located across the United States. An application component might be able to
use this business function as part of an overall business process. For example, an
employee of a retail company can access the real-time list of available inventory
items, therefore providing correct, real-time information to a customer.

For more information, see “Technical overview of the WebSphere Adapter for JD
Edwards EnterpriseOne” on page 2024.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Technical overview of the WebSphere Adapter for JD Edwards EnterpriseOne” on
page 2024
The IBM WebSphere Adapter for JD Edwards EnterpriseOne provides a way for
applications to interact with data on JD Edwards EnterpriseOne applications.
Related tasks:

Chapter 9. Developing message flow applications 2023

“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Technical overview of the WebSphere Adapter for JD Edwards EnterpriseOne:

The IBM WebSphere Adapter for JD Edwards EnterpriseOne provides a way for
applications to interact with data on JD Edwards EnterpriseOne applications.

The adapter processes requests using one of two types of business objects: business
functions and XML Lists. A business function is a business object container that
can contain one or many business objects that can be processed as a single
transaction. An XML List is a single business object that can query a table and
return multiple records.

You create business objects by using the Adapter Connection wizard. The business
objects that are generated by the Adapter Connection wizard have predefined
business object definitions.

For more information, see the following topics:
v “Outbound processing (JD Edwards)” on page 2025
v “Inbound processing for JD Edwards EnterpriseOne” on page 2027
v “Business objects for JD Edwards EnterpriseOne” on page 2031
v “The Adapter Connection wizard (JD Edwards)” on page 2032
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.

2024 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Outbound processing (JD Edwards):

The WebSphere Adapter for JD Edwards EnterpriseOne supports synchronous
outbound request processing. When the adapter receives a request from the
module, in the form of a business object, the adapter processes the request and
returns the result, when applicable, in a business object.

The adapter processes requests by using one of two types of business object:
business functions and XML Lists. A business function is a business object
container that can contain one or many business objects, which can be processed as
a single transaction. An XML List is a single business object that can query a table
and return multiple records. The component sends a request in the form of a
WebSphere business object hierarchy to the adapter, the adapter processes the
request, and returns a WebSphere business object hierarchy that represents the
result of the operation.

When the adapter receives a WebSphere business object hierarchy, the adapter
processes it in the following way.
1. The adapter extracts metadata from the WebSphere business object hierarchy.
2. The adapter identifies the appropriate JD Edwards EnterpriseOne objects to

access (for example, JD Edwards EnterpriseOne business objects and business
components, or JD Edwards EnterpriseOne business function, or JD Edwards
EnterpriseOne XML List) depending on the objects against which the artifacts
were generated.

3. The adapter extracts the outbound operation to complete from the WebSphere
business object hierarchy.

Chapter 9. Developing message flow applications 2025

4. After accessing the required JD Edwards EnterpriseOne objects, the adapter
retrieves the data for XML List, or completes the corresponding business
function method.

5. If updates are involved (Create, Update, Delete), the adapter populates that JD
Edwards EnterpriseOne object (business function or XML List hierarchy) with
data from the hierarchy of WebSphere business objects.

Supported outbound operations

When the adapter receives a request, it processes the request by using the JD
Edwards EnterpriseOne Dynamic Java connector to call either a business function
or an XML List.

Business functions support the following types of operation:
v Create
v Delete
v Execute
v Retrieve
v Update

XML Lists support the retrieveAll operation

Operations Description

Create Creates the business object.

Delete Deletes the business object and its children. The adapter supports only
logical deletes, therefore objects are marked as deleted but not removed.

Exists Checks for the existence of incoming business objects.

Retrieve Retrieves the JD Edwards EnterpriseOne component, and maps component
data onto the business object.

RetrieveAll Retrieves multiple instances of the JD Edwards EnterpriseOne component,
and maps component data onto the business object.

Update Updates the corresponding JD Edwards EnterpriseOne component with
the incoming business object.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.

2026 WebSphere Message Broker Version 7.0.0.8

“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Inbound processing for JD Edwards EnterpriseOne:

The WebSphere Adapter for JD Edwards EnterpriseOne supports asynchronous
inbound processing. The adapter polls the JD Edwards EnterpriseOne server at
specified intervals for events. When the adapter receives an event, it converts the
event data into a business object and sends the business object to the component.

The WebSphere Adapter for JD Edwards EnterpriseOne supports real-time events.
A real-time event is a business transaction that provides information from the JD
Edwards EnterpriseOne server that can be used to interoperate with a third-party
system. Real-time events can be generated wherever business functions run, such
as HTML, WIN32, and enterprise servers. Real-time events are useful for
producing notifications in real time. The adapter supports both single and
container real-time events.

When the adapter gets a real-time event from the JD Edwards EnterpriseOne
transaction server by calling the JD Edwards EnterpriseOne Dynamic Java
Connector API, it parses the content of this real-time event and converts it into a
business object. The adapter then sends the business object to the event endpoints.
For example, if a company is updated, the JD Edwards EnterpriseOne server
captures this change immediately, and one real-time event is generated by the JD
Edwards EnterpriseOne transaction server. The adapter then communicates with
the JD Edwards EnterpriseOne transaction server, retrieves this real-time event,
and processes it. After converting it into a business object, the adapter delivers this
business object to the event endpoint.

WebSphere Adapter for JD Edwards EnterpriseOne processes events in the
following way.
1. The adapter calls the JD Edwards EnterpriseOne Dynamic Java Connector API

to get a real-time event.
2. The adapter parses the content of this real-time event.
3. The adapter populates the associated business object with the values that it

retrieves from the payload of this real-time event.
4. The adapter sends the generated business object to each registered application.

Before inbound processing can occur, the JD Edwards EnterpriseOne server must
be configured to support real-time events.

Chapter 9. Developing message flow applications 2027

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Event persistence (JD Edwards):

The WebSphere Adapter for JD Edwards EnterpriseOne supports event persistence
for inbound processing in case of abrupt termination. Event persistence (or
assured-once delivery) is a way to make sure that events are delivered once, and
only once, to the endpoint in the case of a failure.

During event processing, the adapter persists the event state in an event store
located on the data source. You must set up this data source before you can create
the event store. To use the recovery feature, set the AssuredOnceDelivery property
in the activation specification to True. This recovery feature is set to True by
default.

When a failed event occurs, the adapter tries to deliver the event once more only.
If the event fails again, its status is marked as FAILED and the event remains in
the event store until it is either deleted manually or has its status changed. If the
adapter fails or stops before the event is marked as FAILED, when it recovers, the

2028 WebSphere Message Broker Version 7.0.0.8

adapter retrieves the event from the event store with the stored data and attempts
to redeliver the event, marking its status as FAILED only after the default retry
limit of one has been exceeded again.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Event store (JD Edwards):

The event store is a persistent cache where event records are saved until the
polling adapter can process them. The adapter uses event stores to record inbound
events as they make their way through the system.

Each time a real-time event is received, the adapter updates the status of the event
in an event store. The status of each event is continually updated by the adapter
for recovery purposes until the events are delivered to the endpoint. If the adapter
detects that no event store exists for the inbound module in WebSphere Message
Broker, it creates one automatically when the application is deployed to the run
time. Each event store that is created by the adapter is associated with a specific
inbound module. The adapter does not support multiple adapter modules pointing
to the same event store.

Chapter 9. Developing message flow applications 2029

When the adapter polls the JD Edwards EnterpriseOne transaction server and
receives a real-time event, it creates an entry in the event store for each event that
matches the search criteria specified in the activation specification properties. The
adapter records the status of each new entry as NEW.

If a real-time event is successfully delivered, the corresponding event store entries
are deleted. For failed events, the entries remain in the event store.

Assured once delivery

The JD Edwards EnterpriseOne transaction server provides guaranteed event
delivery quality of service. All the real-time events to which the adapter subscribes
are delivered to the adapter without any loss. The JD Edwards EnterpriseOne
transaction server can send duplicate real-time events to the adapter, therefore the
adapter provides assured once event delivery; each event is delivered once and
only once. To enable assured once delivery, you must set the AssuredOnceDelivery
activation specification property to True.

When you set the AssuredOnceDelivery activation specification property to True,
the AutoAcknowledge activation specification property is set to False automatically.
You can also set assured once delivery by using the JDEdwardsConnection
configurable service; for more information, see “Configurable services properties”
on page 3766.

When a real-time event is obtained, it is processed in the following way.
1. The event is delivered to its corresponding endpoint.
2. The event entry is deleted from the event store.
3. An acknowledgment is issued to the JD Edwards EnterpriseOne transaction

server.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.

2030 WebSphere Message Broker Version 7.0.0.8

“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Business objects for JD Edwards EnterpriseOne:

A business object is a structure that consists of data, the action to be performed on
the data, and additional instructions, if any, for processing the data. The data can
represent either a business entity, such as an invoice or an employee record, or
unstructured text. The adapter uses business objects to send data to or obtain data
from the JD Edwards EnterpriseOne server.

How the adapter uses business objects

The WebSphere Adapter for JD Edwards EnterpriseOne uses the JD Edwards
EnterpriseOne Dynamic Java Connector APIs to communicate with the JD Edwards
EnterpriseOne server. The adapter exchanges information with JD Edwards
EnterpriseOne through business functions, XML List calls, and the real-time event
mechanism.

How business objects are created

You create business objects by using the Adapter Connection wizard, which
connects to the application, discovers data structures in the application, and
generates business objects to represent them. It also generates other resources
needed by the adapter.

Business object structure

The adapter supports processing of hierarchical business objects. A container
business object representing a JD Edwards EnterpriseOne operation is a wrapper
object that contains single or multiple child business function objects, also called
simple business function objects. Each business function object represents a specific
function call in the JD Edwards EnterpriseOne application.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System

Chapter 9. Developing message flow applications 2031

(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

The Adapter Connection wizard (JD Edwards):

The Adapter Connection wizard is a tool that you use to create services. The
Adapter Connection wizard establishes a connection to the JD Edwards
EnterpriseOne server, discovers services (based on search criteria that you provide),
and generates business objects, interfaces, and import or export files, based on the
services that are discovered.

See the WebSphere Adapter for JD Edwards EnterpriseOne Information Center for
further information.

By using WebSphere Message Broker, you establish a connection to the JD Edwards
EnterpriseOne server to browse the metadata repository on the JD Edwards
EnterpriseOne server.

You specify connection information (such as the user name and password needed
to access the server), and you specify the method of operation that you want to
use for an outbound or inbound request:
v For an outbound request, you specify either a business function or an XML List.
v For an inbound request, you specify real-time events.

You can then provide search criteria and select the information (for example, by
using the search filter with libraries for business functions, or by selecting tables
for XML Lists).

The result of running the Adapter Connection wizard is an adapter connection
project and a message set project that contain the interfaces and business objects as
well as the adapter.

The Adapter Connection wizard also produces an import file (for outbound
processing) or an export file (for inbound processing).
v The import file contains the managed connection factory property settings that

you provide in the wizard.

2032 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp?topic=/com.ibm.wsadapters.jca.jde.doc/doc/stbp_jde_welcome.html

v The export file contains the activation specification property settings you
provide in the wizard.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters”
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Developing message flows that use WebSphere Adapters
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.

About this task
v “Preparing your system to use WebSphere Adapters nodes” on page 2034
v “Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
v “Connecting to an EIS by using the Adapter Connection wizard” on page 2037
v “Configuring EIS connections to expire after a specified time” on page 726
v “Configuring WebSphere Adapters nodes for secondary adapters” on page 2040
v “Calling new services from a WebSphere Adapters request node without

changing existing deployed resources” on page 2042
v “Handling new event types from a Websphere Adapters input node without

changing existing deployed resources” on page 2044
v “Interacting with an SAP application” on page 2046

Chapter 9. Developing message flow applications 2033

v “Interacting with a Siebel application” on page 2066
v “Interacting with a PeopleSoft application” on page 2080
v “Interacting with a JD Edwards application” on page 2088
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Tuning the SAP adapter for scalability and performance” on page 3278
You can configure the number of listeners on the adapter and the number of
additional instances on the message flow to prevent delays when processing
synchronous calls from SAP.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

WebSphere Adapters technotes
WebSphere Adapters Library web page

Preparing your system to use WebSphere Adapters nodes:

Before you can connect to an Enterprise Information System (EIS), you must
prepare your system by adding external software dependencies and configuring
the EIS to work with the WebSphere Adapter.

Before you begin

Before you start:
v For general background information, read “WebSphere Adapters nodes” on page

1914
v Check for the latest information about WebSphere Adapters at WebSphere

Adapters technotes.
v Check for the latest information about support for adapters on different

operating systems at WebSphere Message Broker Requirements.
v Check the mode of your broker, because it can affect the number of execution

groups and message flows that you can deploy, and the types of node that you
can use. For more information, see “Restrictions that apply in each operation
mode” on page 3657 and “Checking the operation mode of your broker” on
page 657.

v Enable the WebSphere Adapters nodes in the broker runtime environment; see
“Preparing the environment for WebSphere Adapters nodes” on page 717.

2034 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8
http://www-01.ibm.com/software/integration/wbiadapters/library/
http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8
http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

v If you want to use the IBM Tivoli License Manager (ITLM), perform the steps in
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036.

v To see how the WebSphere Adapters work, look at the following samples:
– Twineball Example EIS Adapter
– SAP Connectivity
You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

About this task

Perform the following steps, in the order shown, to prepare your system to use
WebSphere Adapter nodes.

Procedure

v SAP

1. Follow the instructions in “Adding external software dependencies for SAP”
on page 2048.

2. Follow the instructions in “Configuring the SAP server to work with the
adapter” on page 2050.

v Siebel

1. Follow the instructions in “Adding external software dependencies for
Siebel” on page 2068.

2. Follow the instructions in “Creating the event store manually” on page 2072.
v PeopleSoft

1. Follow the instructions in “Adding external software dependencies for
PeopleSoft” on page 2081.

2. Follow the instructions in “Creating a custom event project in PeopleTools”
on page 2083.

v JD Edwards

1. Follow the instructions in “Adding external software dependencies for JD
Edwards EnterpriseOne” on page 2090.

What to do next

After you have prepared your system, connect to an EIS by following the
instructions in “Connecting to an EIS by using the Adapter Connection wizard” on
page 2037.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).

Chapter 9. Developing message flow applications 2035

“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

WebSphere Adapters technotes

Activating IBM Tivoli License Manager for WebSphere Adapters:

If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.

About this task

ITLM enables you to monitor the usage of IBM (and other) software products. For
more information, see the IBM Tivoli License Manager Information Center or the
IBM Tivoli License Manager website.

The following steps describe how to activate the ITLM file for each of the adapters.

Procedure

1. Locate the ITLM directory for the adapter.
v For SAP: install_dir/itlm/SAP
v For Siebel: install_dir/itlm/Siebel
v For PeopleSoft: install_dir/itlm/PeopleSoft

2. Remove the inactive file extension from the file in the ITLM directory so that it
ends with .sys2.

Results

After you have performed these steps, when you run ITLM, the adapter is visible.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and

2036 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itlm.doc/toc.xml
http://www.ibm.com/software/tivoli/products/license-mgr

PeopleSoft.
Related tasks:
“Installing Tivoli License Manager” on page 301
IBM Tivoli License Manager (ITLM) enables you to monitor the use of IBM (and
other) software products. WebSphere Message Broker includes support for ITLM
Version 2.1.
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
Related reference:
“Directory structures after installation” on page 3633
When you install WebSphere Message Broker components, the installation program
creates a structure of subdirectories under the directory that you specified as the
installation directory. The exact structure depends on the platform on which you
have installed WebSphere Message Broker, and the components that you have
installed. If you install the WebSphere Message Broker Toolkit, other directories
might be created for IBM Installation Manager, the Shared Resources Directory, and
the package group in which you install the toolkit.

Connecting to an EIS by using the Adapter Connection wizard:

Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).

Before you begin

Before you start:

v Complete the preparatory tasks listed in “Developing message flows that use
WebSphere Adapters” on page 2033.

v Before you run the Adapter Connection wizard, gather the information that you
need from the system administrator. You need information to connect to the EIS,
and information to discover objects. For a list of the information that you might
need to gather for each EIS, see the appropriate topic:
– “Interacting with an SAP application” on page 2046
– “Interacting with a Siebel application” on page 2066
– “Interacting with a PeopleSoft application” on page 2080
– “Interacting with a JD Edwards application” on page 2088

About this task

A message flow that uses one of the WebSphere Adapters requires the following
resources:
v One or more message flows that contain one or more WebSphere Adapters

nodes
v A message set that contains the XML Schema Definitions (XSD) for each business

object in the Enterprise Information System (EIS)
v An adapter component file for the WebSphere Adapter that is being used

The Adapter Connection wizard creates these resources automatically.

Chapter 9. Developing message flow applications 2037

You can take an adapter component that was created by using the Adapter
Connection wizard, and update it with newly discovered objects from the EIS by
running the Adapter Connection - Iterative Discovery wizard. This facility is
known as iterative discovery. You can either add the new objects without modifying
existing objects, or replace existing objects. For more information, see “Enhancing
existing adapters with newly discovered objects” on page 2063.

The following steps describe how to connect to an EIS.

Procedure

1. Click File > New > Adapter Connection. The Adapter Connection wizard
opens.

2. Follow the instructions in the wizard. To see a description of each field within
the wizard, hold the mouse pointer over the field.
Ensure that inbound and outbound SAP IDocs have different names if they are
stored in the same message set. For more information, see “An error is issued
when you use the message set that is generated by the Adapter Connection
wizard” on page 3431.
When you have completed the steps in the wizard, the specified message set
project contains a message set with a message type for each business object that
is to be used, and the specified message flow project references the message set
project.
When the Adapter Connection wizard completes, the WebSphere Message
Broker Toolkit displays a message that prompts you to drag the adapter
component onto the message flow canvas.

3. Ensure that a message flow is open in the Message Flow editor so that the
message flow canvas is available.

4. In the Broker Development view, expand the folders beneath the message set
until you see the adapter component, which has a suffix of inadapter or
outadapter.

5. Drag the adapter component onto the message flow canvas. The component
appears as a message flow node.

6. Configure the node, as described in .
7. When you have developed and saved your message flow, deploy it by

following the instructions in “Deploying a message flow that uses WebSphere
Adapters” on page 3240.

What to do next

Using configurable services for WebSphere Adapters nodes

WebSphere Adapters nodes can get connection details from either the adapter
component or a configurable service. By using configurable services, you can
change the connection details for adapters without the need to redeploy the
adapters. For more details about creating, changing, reporting, and deleting the
configurable services for each EIS, see the appropriate topic:
v “Changing connection details for SAP adapters” on page 719
v “Changing connection details for Siebel adapters” on page 720
v “Changing connection details for PeopleSoft adapters” on page 722
v “Changing connection details for JD Edwards adapters” on page 724
Related concepts:

2038 WebSphere Message Broker Version 7.0.0.8

“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Enhancing existing adapters with newly discovered objects” on page 2063
In WebSphere Message Broker Version 7.0, you can take an adapter component that
was created by using the Adapter Connection wizard, and update it with newly
discovered objects from the Enterprise Information System (EIS). This facility is
known as iterative discovery. You can either add the new objects without modifying
existing objects, or replace existing objects.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Resolving problems when developing message flows with WebSphere Adapters
nodes” on page 3428
Advice for dealing with common problems that can arise when you develop
message flows that contain WebSphere Adapters nodes.
Related reference:
“SAP options for rediscovery” on page 4090
In WebSphere Message Broker Version 7.0, you can add newly discovered objects
into an existing adapter component without modifying any existing objects. This
facility is known as iterative discovery. You can rediscover certain objects for an
inbound or outbound adapter.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Configuring EIS connections to expire after a specified time:

You can configure connections to SAP, Siebel, and PeopleSoft to expire after a
specified time by using a configurable service.

About this task

You can use the connectionIdleTimeout property on a configurable service to
control the number of connections to SAP, Siebel and PeopleSoft by closing
connections that have not been used for a specified time.

Procedure

Use the mqsicreateconfigurableservice command to set up connections that
expire when they have not been used for a specified length of time.
In the following example, the SAPConnection configurable service is configured to
close connections when they have not been used for 120 seconds.
mqsicreateconfigurableservice MB7BROKER -c SAPConnection -o mySAPAdapter.outadapter
-n connectionIdleTimeout -v 120

Chapter 9. Developing message flow applications 2039

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Configuring WebSphere Adapters nodes for secondary adapters:

You can deploy the resources that are required to support new methods in an
Enterprise Information System (EIS), without affecting any resources that are
already deployed, by using primary and secondary adapters and message sets. You
must configure the WebSphere Adapters nodes in your message flows to use the
secondary adapters.

Before you begin

Before you start:

v Read the concept topic, “WebSphere Adapters deployment” on page 3219.
v Complete the steps in “Preparing your system to use WebSphere Adapters

nodes” on page 2034.

About this task

The primary adapter for a WebSphere Adapters node contains its connection
information and part of its interface; the secondary adapters contain the rest of the
interface. The primary message set contains message model metadata for the parts
of the interfaces that are supported by the node; the secondary message sets define
the rest of the model.

2040 WebSphere Message Broker Version 7.0.0.8

Complete the following steps to configure a message flow so that it can be
extended by secondary adapters and message sets.

Procedure

1. To create a primary adapter and message set, run the Adapter Connection
wizard by following the instructions in “Connecting to an EIS by using the
Adapter Connection wizard” on page 2037.

2. When the wizard has finished, create a message flow that contains one or more
WebSphere Adapters nodes.

3. In the Broker Development view, expand the folders beneath the message set
until you see the adapter component, which has a suffix of .inadapter or
.outadapter.

4. Drag the adapter component onto the WebSphere Adapters node in your
message flow.

5. On the Basic properties tab of the WebSphere Adapters node, set the Secondary
adapter mode to All adapters in execution group.

6. Save the message flow.

What to do next

Next:

Add the message flow, adapter, and message set to a BAR file, then deploy the
BAR file to the execution group. For more information, see “Deploying a message
flow that uses WebSphere Adapters” on page 3240.

You have created a message flow that you can enhance in the future when you
need to call new services or handle new event types in an EIS. For instructions
about how to enhance your message flow, see the following topics:
v “Calling new services from a WebSphere Adapters request node without

changing existing deployed resources” on page 2042
v “Handling new event types from a Websphere Adapters input node without

changing existing deployed resources” on page 2044
Related concepts:
“WebSphere Adapters deployment” on page 3219
When you have run the Adapter Connection wizard and created a message flow,
you must deploy the resources that are generated by adding them to a broker
archive (BAR) file.
Related tasks:
“Preparing your system to use WebSphere Adapters nodes” on page 2034
Before you can connect to an Enterprise Information System (EIS), you must
prepare your system by adding external software dependencies and configuring
the EIS to work with the WebSphere Adapter.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Calling new services from a WebSphere Adapters request node without changing
existing deployed resources” on page 2042
If your message flow acts as a gateway to an Enterprise Information System (EIS),
you can use it to call new services that did not exist when you developed the flow.
Therefore, if a new service is provided by the EIS, you do not have to modify and
retest the message flow.

Chapter 9. Developing message flow applications 2041

“Handling new event types from a Websphere Adapters input node without
changing existing deployed resources” on page 2044
You can create an event handler to an Enterprise Information System (EIS) to
handle new event types that did not exist when you first developed your message
flow. Therefore, if a new event is provided by the EIS, you do not have to modify
and retest the message flow.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Connecting to Enterprise Information Systems” on page 1912
Use WebSphere Adapters to communicate with Enterprise Information Systems
(EIS) such as SAP, Siebel, PeopleSoft, and JD Edwards.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Calling new services from a WebSphere Adapters request node without
changing existing deployed resources:

If your message flow acts as a gateway to an Enterprise Information System (EIS),
you can use it to call new services that did not exist when you developed the flow.
Therefore, if a new service is provided by the EIS, you do not have to modify and
retest the message flow.

Before you begin

Before you start:

v Read the concept topic “WebSphere Adapters deployment” on page 3219.
v Ensure that you have created and deployed a message flow that is configured to

use secondary adapters, as described in “Configuring WebSphere Adapters
nodes for secondary adapters” on page 2040.

About this task

To use iterative deployment, you can configure an SAPRequest, SiebelRequest,
PeopleSoftRequest, or JDEdwardsRequest node to look for a specified operation in
all relevant .outadapter components that are deployed to the execution group.

Procedure

1. Run the Adapter Connection wizard to create an .outadapter component and a
message set for the new EIS services.
You do not need to rediscover existing services. For more information about
running the Adapter Connection wizard, see “Connecting to an EIS by using
the Adapter Connection wizard” on page 2037.

2. Ensure that method names are unique across all primary and secondary
adapters that are used by the request node. If they are not unique, edit them by
clicking Edit Operations on the Service Generation and Deployment
Configuration panel of the Adapter Connection wizard.
The method names correspond to the Service Operation names, which are
configured by the Adapter Connection wizard. In most cases, the names are
based on the name of the service that is being discovered (for example, the
BAPI name in SAP, or the business object and operation name in Siebel).
However, in some cases, you must edit them to avoid a clash.

2042 WebSphere Message Broker Version 7.0.0.8

You can set the method name dynamically in the message flow by setting the
local environment field $LocalEnvironment/Adapter/MethodName.

3. Avoid duplicate method names by using user trace in the following way.
a. Start user trace by following the instructions in “Starting user trace” on

page 3197.
b. Stop and restart the message flow.
c. Read user trace by using the mqsireadlog command. Message BIP3432

identifies which methods are already defined by currently deployed
adapters.

Alternatively, you can identify the methods that are defined by the adapter by
looking at the Default method property of the request node. If you have a
.outadapter component in your workspace, you can drop it onto a message
flow to create a request node for the .outadapter component. The request node
has that adapter set as its primary adapter, and the list of methods that are
defined by that adapter are visible in the Default method property of the
request node.

4. Ensure that the message set that is created does not contain any types that
share the same name and namespace of existing message sets. You can change
the namespaces of the types on the Adapter Connection wizard by using the
Business Object Namespace control.
Use different namespaces for different message sets. The use of different
namespaces is important when working with BAPIs because the BAPI return
field typically has the same name for all BAPIs, and its type definition can
change depending on the age of the BAPI.

Related concepts:
“WebSphere Adapters deployment” on page 3219
When you have run the Adapter Connection wizard and created a message flow,
you must deploy the resources that are generated by adding them to a broker
archive (BAR) file.
Related tasks:
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Configuring WebSphere Adapters nodes for secondary adapters” on page 2040
You can deploy the resources that are required to support new methods in an
Enterprise Information System (EIS), without affecting any resources that are
already deployed, by using primary and secondary adapters and message sets. You
must configure the WebSphere Adapters nodes in your message flows to use the
secondary adapters.
“Handling new event types from a Websphere Adapters input node without
changing existing deployed resources” on page 2044
You can create an event handler to an Enterprise Information System (EIS) to
handle new event types that did not exist when you first developed your message
flow. Therefore, if a new event is provided by the EIS, you do not have to modify
and retest the message flow.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Stopping a message flow using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 952
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer

Chapter 9. Developing message flow applications 2043

to stop a message flow.
“Starting a message flow by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 951
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to start a message flow.
“Connecting to Enterprise Information Systems” on page 1912
Use WebSphere Adapters to communicate with Enterprise Information Systems
(EIS) such as SAP, Siebel, PeopleSoft, and JD Edwards.
Related reference:
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Handling new event types from a Websphere Adapters input node without
changing existing deployed resources:

You can create an event handler to an Enterprise Information System (EIS) to
handle new event types that did not exist when you first developed your message
flow. Therefore, if a new event is provided by the EIS, you do not have to modify
and retest the message flow.

Before you begin

Before you start:

v Read the concept topic “WebSphere Adapters deployment” on page 3219.
v Ensure that you have created and deployed a message flow that is configured to

use secondary adapters, as described in “Configuring WebSphere Adapters
nodes for secondary adapters” on page 2040.

About this task

To implement an event handler that you can enhance iteratively with new event
types (that is, deploy new event types to the event handler), configure an
SAPInput node to use secondary adapters. The set of secondary adapters can be
extended at operational time without affecting any existing adapters.

Procedure

1. Run the Adapter Connection wizard to create a new .inadapter component
and a new message set for the new EIS events.
You do not need to rediscover existing events. For more information about
running the Adapter Connection wizard, see “Connecting to an EIS by using
the Adapter Connection wizard” on page 2037.

2. Ensure that the method names are unique.
The method names correspond to the Service Operation names. Therefore,
when you are choosing or editing the Service Operation names, make sure that
they do not clash with those names defined in other adapters that are being
used by that node.

3. Avoid duplicate method names by using user trace in the following way.
a. Start user trace by following the instructions in “Starting user trace” on

page 3197.

2044 WebSphere Message Broker Version 7.0.0.8

b. Stop and restart the message flow.
c. Read user trace by using the mqsireadlog command. Message BIP3432

identifies which methods are already defined by currently deployed
adapters.

4. Ensure that the message set that is created does not contain any types that
share the same name and namespace of existing message sets. You can change
the namespaces of the types on the Adapter Connection wizard by using the
Business Object Namespace control.
Use different namespaces for different message sets. The use of different
namespaces is important when working with BAPIs because the BAPI return
field typically has the same name for all BAPIs, and its type definition can
change depending on the age of the BAPI.

Related concepts:
“WebSphere Adapters deployment” on page 3219
When you have run the Adapter Connection wizard and created a message flow,
you must deploy the resources that are generated by adding them to a broker
archive (BAR) file.
Related tasks:
“Preparing your system to use WebSphere Adapters nodes” on page 2034
Before you can connect to an Enterprise Information System (EIS), you must
prepare your system by adding external software dependencies and configuring
the EIS to work with the WebSphere Adapter.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Configuring WebSphere Adapters nodes for secondary adapters” on page 2040
You can deploy the resources that are required to support new methods in an
Enterprise Information System (EIS), without affecting any resources that are
already deployed, by using primary and secondary adapters and message sets. You
must configure the WebSphere Adapters nodes in your message flows to use the
secondary adapters.
“Calling new services from a WebSphere Adapters request node without changing
existing deployed resources” on page 2042
If your message flow acts as a gateway to an Enterprise Information System (EIS),
you can use it to call new services that did not exist when you developed the flow.
Therefore, if a new service is provided by the EIS, you do not have to modify and
retest the message flow.
“Resolving problems that occur during deployment of message flows” on page
3440
Use the advice given here to help you to resolve problems that can arise during
deployment of message flows or message sets.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Connecting to Enterprise Information Systems” on page 1912
Use WebSphere Adapters to communicate with Enterprise Information Systems
(EIS) such as SAP, Siebel, PeopleSoft, and JD Edwards.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Chapter 9. Developing message flow applications 2045

Interacting with an SAP application:

To interact with an SAP application, obtain external software dependencies, run the
Adapter Connection wizard, develop a message flow, then deploy the relevant
resources.

About this task

To connect to an SAP application, the SAP adapter requires certain files and
libraries. You must store these files so that they are accessible to the Adapter
Connection wizard. The wizard creates various resources, such as an adapter
component and message flow. After you have completed the wizard, you can
develop a message flow to define the interaction with the SAP application, then
deploy the relevant resources.

Procedure

1. To obtain software dependencies, follow the instructions in “Adding external
software dependencies for SAP” on page 2048.

2. Optional: If you are using Application Link Enabling (ALE) processing,
register a Remote Function Call (RFC) destination on the SAP server and
configure the SAP server, as described in “Configuring the SAP server to work
with the adapter” on page 2050.

3. Optional: To set up SAP for high availability, see “Setting up SAP for high
availability” on page 2057.

4. Before you run the Adapter Connection wizard, gather the following
information from your SAP administrator:
v SAP system user name
v SAP system password
v SAP host name or IP address
v SAP Client ID (for example, 001)
v SAP system number (for example, 00)
v Language code (for example, EN)

You might also need to gather some specific information from your SAP
administrator about the items that you are discovering. For example, if you
are discovering IDocs, you need the appropriate information to complete the
following fields:
v IDoc name
v Version
v SAP outbound
v Verbs (create, update, delete)
v Partner number
v Message type
For more information, see “SAP connection properties for the Adapter
Connection wizard” on page 4044.

5. To connect to SAP by using the Adapter Connection wizard, and create a
message flow, follow the instructions in “Connecting to an EIS by using the
Adapter Connection wizard” on page 2037.

6. Develop your message flow to define the interaction with the SAP application.
For example, to route IDocs to separate messages, follow the instructions in
“Routing IDocs to separate message flows” on page 2055.

2046 WebSphere Message Broker Version 7.0.0.8

7. Optional: To propagate security credentials to an SAP request, see
“Propagating security credentials to an SAP request” on page 2065.

8. Deploy the appropriate resources, as described in “Deploying a message flow
that uses WebSphere Adapters” on page 3240.

9. Optional: To change connection details for SAP adapters, see “Changing
connection details for SAP adapters” on page 719.

10. Optional: To enhance existing adapters with newly discovered objects, see
“Enhancing existing adapters with newly discovered objects” on page 2063.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.

Chapter 9. Developing message flow applications 2047

“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Adding external software dependencies for SAP:

Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

Before you begin

Before you start:

Ensure that you have the relevant prerequisite files for your SAP system. (For
information about the versions of files that WebSphere Message Broker supports,
see WebSphere Message Broker Requirements.)
v sapjco3.jar

v Windows On Windows:
– sapjco3.dll

v z/OS Linux UNIX On z/OS, Linux, and UNIX:
– libsapjco3.so

Download these files for your operating system from the external SAP Web site,
SAP Service Marketplace, and save them to a directory, such as C:\SAP_LIB. (On
Windows, the directory cannot be a mapped network drive on a remote Windows
computer; the directory must be local or on a Storage Area Network (SAN) disk.)
You must have an SAPNet account to be able to access this Web site.

v Windows On Windows, download the .dll files that come with the SAP JCo
download.

v z/OS Linux UNIX On z/OS, Linux, and UNIX, download the .so
and .o files that come with the SAP JCo download.

About this task

Locating the SAP support files in the runtime environment

To add the SAP prerequisite files to the runtime environment, take the following
steps.

Procedure

v Windows Linux UNIX On Windows, Linux and UNIX:
1. Ensure that the broker has started.
2. Either open the Command Console, or open a Windows command prompt

and enter mqsiprofile to initialize the environment.
3. Enter the following command to display the locations of the prerequisite JAR

files and native libraries:
mqsireportproperties MB7BROKER -c EISProviders -o AllReportableEntityNames -r

The following example shows what typically is displayed when you run this
command:
ReportableEntityName=’’
EISProviders
JDEdwards=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’

2048 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://service.sap.com/connectors

PeopleSoft=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
SAP=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
Siebel=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
siebelPropertiesURL=’’
Twineball=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’

4. Set the location of the SAP prerequisite files using the following command:
mqsichangeproperties MB7BROKER -c EISProviders -o SAP -n jarsURL -v C:\SAP_LIB
mqsichangeproperties MB7BROKER -c EISProviders -o SAP -n nativeLibs -v C:\SAP_LIB

5. To check that the values have been set correctly, run the following command:
mqsireportproperties MB7BROKER -c EISProviders -o SAP -r

The following example shows what is displayed by the
mqsireportproperties command.
ReportableEntityName=’ ’
EISProviders
SAP=’ ’
jarsURL=’C:\SAP_LIB’
nativeLibs=’C:\SAP_LIB’

BIP8071I: Successful command completion.

6. Restart the broker.

v z/OS On z/OS: Run the mqsireportproperties command by customizing
and submitting the BIPCHPR utility. For more information about this utility, see
“Contents of the broker PDSE” on page 3991.

About this task

Locating the SAP support files through the WebSphere Message Broker Toolkit

To add the SAP prerequisite files through the WebSphere Message Broker Toolkit,
take the following steps.

Procedure

v Windows On Windows: When you run the Adapter Connection wizard, you are
prompted to specify the paths to the required libraries.

v Linux On Linux: Append the directory that contains the SAP libraries to the
LD_LIBRARY_PATH environment variable:
LD_LIBRARY_PATH=DIRECTORY_CONTAINING_SAP_LIBRARIES:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH

You must set this variable either for the whole system, or in the same shell or
environment from which the WebSphere Message Broker Toolkit is launched.

What to do next

Next: configure the SAP system to work with the adapter
Related concepts:

Chapter 9. Developing message flow applications 2049

“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Configuring the SAP server to work with the adapter”
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Configuring the SAP server to work with the adapter:

Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.

2050 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Add the required external software dependencies for SAP.

About this task

Complete the following steps on the SAP server by using the SAP graphical user
interface.

Procedure

1. Register an RFC program ID:
a. Open transaction SM59 (Display and Maintain RFC Destinations).
b. Click Create.
c. Type a name for the RFC destination.
d. In the Connection Type field, select T.
e. In the Activation Type field, select Registered Server Program.
f. Type a Program ID.

You use this program ID when you configure the adapter. This value
indicates to the SAP gateway which RFC-enabled functions the program ID
listens for.

g. Enter a description in Description 1, such as RFC for Test Sample.
h. Enter a description in Description 2, such as your name.
i. Click MDMP & Unicode, and set the RFC destination to Unicode or

non-Unicode, depending on the communication type of the target system.
To avoid errors when you use multiple language settings, set the RFC
destination to Unicode.

j. Save your entry.
2. Set up a receiver port:

a. Open transaction WE21 (Ports in IDoc processing).
b. Select Transactional RFC, click Ports, and click the Create icon.
c. Type a name for the port and click OK.
d. Type the name of the destination that you created in the previous task (or

select it from the list).
e. Save your entry.

3. Specify a logical system:
a. Open transaction BD54 (Change View Logical Systems).
b. Click New Entries.
c. Type a name for the logical system and click the Save icon.
d. If you see the Prompts for Workbench request, click the New Request icon.

Then enter a short description and click Save.
e. Click the Continue icon.

4. Configure a distribution model:
a. Open transaction BD64 (Maintenance of Distribution Model).
b. Click Distribution Model > Switch processing model.
c. Click Create model view.
d. Type a name for the model view and click the Continue icon.

Chapter 9. Developing message flow applications 2051

e. Select the distribution model that you created and click Add message type.
f. For outbound processing, type the logical system name that you created in

the previous task as Sender, and type the logical name of the SAP server as
Receiver, then select a message type (for example, MATMAS) and click the
Continue icon.

g. Select the distribution model again and click Add message type.
h. For inbound processing, type the logical name of the SAP server as Sender,

and the logical system name that you created in the previous task as
Receiver, then select a message type (for example, MATMAS) and click the
Continue icon.

i. Save your entry.
5. Set up a partner profile:

a. Open transaction WE20 (Partner Profiles).
b. Click the Create icon.
c. Type the name of the logical system that you created in the earlier task and,

for Partner Type, select LS.
d. For Post Processing: permitted agent, type US and your user ID.
e. Click the Save icon.
f. In the Outbound parameters section, click the Create outbound parameter

icon.
g. In the Outbound parameters window, type a message type (for example,

MATMAS05), select the receiver port that you created in the earlier task, and
select Transfer IDoc immed.

h. Click the Save icon.
i. Press F3 to return to the Partner Profiles view.
j. In the Inbound parameters section, click the Create inbound parameter icon.
k. In the Inbound parameters window, type a message type (for example,

MATMAS), and a process code (for example, MATM).
l. Click the Save icon.
m. Press F3 to return to the Partner Profiles view.
n. In the Inbound parameters section, click the Create inbound parameter

icon.
o. In the Inbound parameters window, type the following values: ALEAUD for

Message Type, and AUD1 for Process Code.
p. Click the Save icon.
q. Press F3 to return to the Partner Profiles view.
r. Click the Save icon.

What to do next

Next: connect to an EIS using the Adapter Connection wizard.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special

2052 WebSphere Message Broker Version 7.0.0.8

coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Changing connection details for SAP adapters:

SAP nodes can get SAP connection details from either the adapter component or a
configurable service. By using configurable services, you can change the connection
details for adapters without the need to redeploy the adapters. To pick up new
values when a configurable service is created or modified, you must reload the
broker or execution group to which the adapter was deployed, by using the
mqsistop and mqsistart commands, or the mqsireload command.

Before you begin

Before you start:

v Read “WebSphere Adapters nodes” on page 1914 and “Configurable services” on
page 1296 for background information.

About this task

Use the SAPConnection configurable service to change connection details for an
SAP adapter. The SAP node reads all connection properties from the adapter
component that it is configured to use. If a configurable service exists that has the
same name as the node's adapter component, the node uses the values that are

Chapter 9. Developing message flow applications 2053

defined in that configurable service to override the corresponding properties from
the adapter. If any properties on the configurable service are set to an empty
string, the values that are configured in the .inadapter or .outadapter file are
used. The properties of the SAP configurable services are described in
“Configurable services properties” on page 3766.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates an SAPConnection configurable service for the SAP adapter
mySAPAdapter.outadapter that connects to the SAP host test.sap.ibm.com, and
uses client 001 for the connections into that server:
mqsicreateconfigurableservice MB7BROKER -c SAPConnection
-o mySAPAdapter.outadapter -n applicationServerHost,client
-v test.sap.ibm.com,001

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This
example changes the connections that are used by the adapter
mySAPAdapter.outadapter. After you run this command, all adapters connect to
the production system (production.sap.ibm.com) instead of the test system
(test.sap.ibm.com):
mqsichangeproperties MB7BROKER -c SAPConnection -o mySAPAdapter.outadapter
-n applicationServerHost -v production.sap.ibm.com

To pick up the updated values in the configurable service, restart the execution
group and message flow.

v To display all SAPConnection configurable services, use the WebSphere Message
Broker Explorer, or the mqsireportproperties command, as shown in the
following example:
mqsireportproperties MB7BROKER -c SAPConnection -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:
mqsideleteconfigurableservice MB7BROKER -c SAPConnection
-o mySAPAdapter.outadapter

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.

2054 WebSphere Message Broker Version 7.0.0.8

“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Routing IDocs to separate message flows:

You can use a pattern to process IDocs of various kinds with a single RFC program
ID without having to redeploy or rediscover existing message sets and adapters,
even when adding new types of IDoc.

Before you begin

Before you start:

Read the concept topic about “Generic IDoc routing” on page 1976.

About this task

You can create a routing message flow that contains an SAPInput node. You can
use this flow to route the IDocs, based on their type, to separate message flows
that deal with each different IDoc type. If the set of discovered IDocs is extended,
you can create a message flow and message set, then deploy them, without the
need to change existing message flows or message sets.

For more information about the pattern that is used in this task, see Data
distribution SAP to WebSphere MQ: one-way (for IDoc). You can view patterns in
the information center by using the links only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit, or when you
use the online information center.

Chapter 9. Developing message flow applications 2055

The following instructions describe how to use a pattern to create the resources
that you need.

Procedure

1. Open the Patterns Explorer by following the instructions in “Choosing a
pattern” on page 1313.

2. Expand the Application Integration category, and the SAP category, then click
MQ one-way (IDoc) to open the pattern. The pattern specification describes the
pattern and how to use it.

3. Click Create New Instance.
4. Enter a name and provide the required configuration parameters for the pattern

instance, then click Generate.
When the pattern has been generated, the Broker Development view lists the
resources that have been generated:
v A Java project
v A routing message flow:

v A message set
v An .inadapter component

5. Add these resources to a BAR file then deploy the BAR file.
6. Use the mqsisetdbparms command to set your user name and password for the

SAP system. For more information about how to use this command, see
“mqsisetdbparms command” on page 3954.

7. The pattern also creates a configurable service called
idocpassthrough.inadapter.configurableservice. Deploy the configurable
service by dragging it onto the broker in WebSphere Message Broker Explorer.

Results

Result: The SAP adapter is connected by using the program ID that is specified in
the configurable service. The message flow receives an IDoc from SAP and writes
it to WebSphere MQ. The ESQL code in the Compute node specifies that the queue
name to which the message is written is the same as the IDoc type. You can create
separate message flows to process the different types of IDoc.

What to do next

Next: The SAPInput node can route the IDocs according to their type, but it does
not parse the binary data BLOB messages that they contain. You can create a
message flow that contains an MQInput node, which uses an adapter message set
in the DataObject domain to parse the binary data BLOB message into a structured
record that WebSphere Message Broker can manipulate. To use the DataObject
parser to parse IDocs, you must set the Message domain property of the MQInput
node to DataObject, and set the Message format property to SAP ALE IDoc. To
create the message set, run the Adapter Connection wizard.
Related concepts:

2056 WebSphere Message Broker Version 7.0.0.8

“Generic IDoc routing” on page 1976
By using the SAPInput node in passthrough mode, WebSphere Message Broker can
receive any IDoc and route it according to IDoc type.
“The ALE interfaces” on page 1959
The SAP Application Link Enabling (ALE) interface and ALE pass-through IDoc
interface enable business process integration and asynchronous data
communication between two or more SAP systems or between SAP and external
systems. The data is exchanged in the form of Intermediate Documents (IDocs).
“Inbound processing for the ALE interface” on page 1963
The adapter supports inbound processing (from the SAP server to the adapter) for
the ALE interface and the ALE pass-through IDoc interface.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
Related tasks:
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Deploying a broker archive file” on page 3235
After you have created and populated a broker archive (BAR) file, deploy the file
to an execution group on a broker, so that the file contents can be used in the
broker.
Related reference:
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Setting up SAP for high availability:

You can configure WebSphere Message Broker to withstand software or hardware
failures when working with SAP by moving the transaction ID (TID) store to a
remote queue manager that can be shared between two brokers. To avoid a single
point of failure, make this queue manager a WebSphere MQ high availability,
multi-instance queue manager.

Before you begin

Before you start:

Read the concept topic about “SAP high availability” on page 1947.

Chapter 9. Developing message flow applications 2057

About this task

The following topics describe how to set up a WebSphere MQ shared queue on
distributed systems or z/OS.

Procedure

v “Setting up a shared queue on distributed systems for the SAP adapter event
store”

v “Setting up a shared queue on z/OS for the SAP adapter event store” on page
2061

Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Defining WebSphere MQ resources” on page 1558
An application client can run on a computer anywhere in the WebSphere MQ
network. If your applications use WebSphere MQ facilities to connect to the broker,
and to interact with it (by using the MQI and AMI), you must set up the
WebSphere MQ resources that they require.
“Using WebSphere MQ cluster queues for input and output” on page 1544
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
Related reference:
“WebSphere MQ resources for the broker” on page 585
Each broker depends on a number of WebSphere MQ resources: some are required,
others are optional, and depend on your environment and requirements. Some of
these resources are created for you, but others you must define for yourself.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.

Setting up a shared queue on distributed systems for the SAP adapter event store:

To achieve high availability when processing SAP messages on distributed systems,
you can set up a shared queue for the SAP adapter event store.

About this task

On distributed systems, you can configure the broker to use a remote queue
manager to persist the transaction ID (TID) store for SAP transactional RFC (tRFC)
data. By using this configuration, two adapters that are deployed to two brokers
can share the same TID, and can therefore operate as a single RFC server. This
configuration is essential if the adapters have been configured with the same RFC
Program ID.

Before the broker can use a remote queue manager as the TID store, you must
complete some administration tasks on that queue manager. You must first create
the queue for the broker to use as the TID store. Then you must define two

2058 WebSphere Message Broker Version 7.0.0.8

channels for the broker to use to connect to that queue manager: define the server
channel on the queue manager, and define a client channel in a file, which you
must make available to the broker.

You can use the Run WebSphere MQ Commands (runmqsc) command or
WebSphere MQ Explorer to create this client channel definition file on any queue
manager. After you have created the file, you must move it from the queue
manager to a file system that is accessible to the broker.

To set up a shared queue for the SAP adapter event store, complete the following
steps.

Procedure

1. Create the queue SYSTEM.BROKER.ADAPTER.PROCESSED.
You can create the queue either by using WebSphere MQ Explorer or by
running the following command in WebSphere MQ runmqsc:
DEFINE QLOCAL(’SYSTEM.BROKER.ADAPTER.PROCESSED’)

2. Create the server channel.
a. On the computer that hosts the shared queue manager, create a server

channel by running the WebSphere MQ runmqsc command and entering the
following parameters, where WSADAPTERS.SAP is an example of the
channel name.
DEFINE CHANNEL (’WSADAPTERS.SAP’) CHLTYPE (SVRCONN) TRPTYPE(TCP)

b. After you have created the channel, start it by using the following
command in runmqsc:
START CHANNEL (’WSADAPTERS.SAP’)

3. Create the client definition file.
On any queue manager, create a client definition file by running the runmqsc
command and entering the following parameters, where the following criteria
apply:
v WSADAPTERS.SAP is an example of the channel name.
v myhost.ibm.com is an example of the host name of the computer where the

queue manager is running. This queue manager is the one on which you
created the queue in step 1 and the server channel in step 2. This name is
used by the broker to connect to the queue manager, therefore do not use
localhost.

v 1414 is an example of the port number where the listener is running on that
queue manager.

v QMGR is an example of the queue manager name.
v You can use any name for the server and client channels, but they must

match.
v Set the CONNAME parameter to the host name or IP address of the

computer that hosts the shared queue manager, and the port number of the
MQ Listener that is running on that computer. 1414 is the default listener
port.

DEFINE CHANNEL (’WSADAPTERS.SAP’) CHLTYPE (CLNTCONN) CONNAME('myhost.ibm.com(1414)’) TRPTYPE(TCP) QMNAME(QMGR)

If the queue manager is running in multi-instance mode, define two channels,
one for each instance of the queue manager

4. Move the client definition file to a file system that is accessible by the broker.

Chapter 9. Developing message flow applications 2059

v Linux UNIX On Linux and UNIX, you can find this file at
/var/mqm/qmgrs/QMGR_NAME/@ipcc/AMQCLCHL.TAB.

v Windows On Windows, you can find this file at C:\Program
Files\IBM\WebSphere MQ\Qmgrs\QMGR_NAME\@ipcc\AMQCLCHL.TAB.

5. Configure the broker.
a. Create an SAPConnection configurable service for the .inadapter

component by using the mqsicreateconfigurableservice command.
b. Set the sharedTidStoreClientDefinitionFile parameter of the configurable

service to the path of the file that you created in step 3 and moved in step
4.

c. Set the sharedTidStoreQueueManger parameter to the name of the queue
manager for which you created the queue in step 1 and the server channel
in step 2.
For more information about these parameters, see “SAPConnection
configurable service” on page 3784.

6. Verify the setup.
After you have completed these steps, you can verify that the broker is using
the queue on the remote queue manager by inspecting user trace. If the setup is
successful, message BIP3470 is issued, specifying which queue manager the
broker is using as the TID store.

Related concepts:
“SAP high availability” on page 1947
You can configure WebSphere Message Broker to withstand software or hardware
failures when working with SAP, so that WebSphere Message Broker is available
for as much of the time as possible.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Setting up a shared queue on z/OS for the SAP adapter event store” on page
2061
To achieve high availability when processing SAP messages on z/OS, you can set
up a shared queue for the SAP adapter event store.
“Defining WebSphere MQ resources” on page 1558
An application client can run on a computer anywhere in the WebSphere MQ
network. If your applications use WebSphere MQ facilities to connect to the broker,
and to interact with it (by using the MQI and AMI), you must set up the
WebSphere MQ resources that they require.
“Using WebSphere MQ cluster queues for input and output” on page 1544
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

2060 WebSphere Message Broker Version 7.0.0.8

“WebSphere MQ resources for the broker” on page 585
Each broker depends on a number of WebSphere MQ resources: some are required,
others are optional, and depend on your environment and requirements. Some of
these resources are created for you, but others you must define for yourself.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.

Setting up a shared queue on z/OS for the SAP adapter event store:

To achieve high availability when processing SAP messages on z/OS, you can set
up a shared queue for the SAP adapter event store.

Before you begin

Before you start:

Ensure that the queue-sharing group name that you are planning to use does not
exist in SYS1.PARMLIB(IEFSSNxX). If the name does exist, choose a different name
for the new group.

About this task

You can find the data set members, which are referred to in the following steps, as
samples in the thlqual.SCSQPROC library, unless stated otherwise. The library is
supplied with WebSphere MQ for z/OS.

Procedure

1. Review your DB2 data-sharing requirements. The queue-sharing group is
backed by a DB2 data sharing group. Add entries to DB2 for WebSphere MQ
by completing the following steps.
a. Customize the CSQ4INSS data set member with the structure names and

ensure that it is included in the CSQINP2 DD concatenation for one queue
manager in the queue-sharing group.

b. To amend the QSGDATA system parameter, amend and rerun the
CSQ4ZPRM sample in the format (Qsgname,Dsgname,Db2name,Db2servers).

c. Copy, customize, and run the following sample JCLs. These jobs need to be
run only once for each DB2 subsystem or data-sharing group.
1) Customize and run sample JCL CSQ45CSG to create the storage group

that is to be used for the WebSphere MQ database, table spaces, and
tables.

2) Customize and run sample JCL CSQ45CDB to create the database to be
used by all queue managers that connect to this DB2 data-sharing
group.

3) Customize and run sample JCL CSQ45CTS to create the table spaces to
contain the queue manager and channel initiator tables that are used for
queue-sharing groups (created in step i).

4) Customize and run sample JCL CSQ45CTB to create the twelve DB2
tables and associated indexes. Do not change any of the row names or
attributes.

5) Customize and run sample JCL CSQ45BPL to bind the DB2 plans for the
queue manager, utilities, and channel initiator.

6) Customize and run sample JCL CSQ45GEX to grant execute authority to
the respective plans for the user IDs that will be used by the queue

Chapter 9. Developing message flow applications 2061

manager, utilities, and channel initiator. The user IDs for the queue
manager and channel initiator are the user IDs under which their started
task procedures run. The user IDs for the utilities are the user IDs under
which the batch jobs can be submitted. For more information about the
names of the appropriate plans, see the WebSphere MQ Version 7
Information Center online.

2. Create a queue-sharing group by completing the following steps.
a. Define the Coupling Facility structures that are used by the queue managers

in the queue-sharing group.
Define the administration and application structures in the Coupling Facility
Resource Management (CFRM) policy data set for the z/OS Sysplex that
will host the queue sharing group, as shown in the following example,
where MQPU is the queue-sharing name.
STRUCTURE NAME(MQPUCSQ_ADMIN)
SIZE(20000)
INITSIZE(10000)
PREFLIST(PUCF01)

STRUCTURE NAME(MQPUAPPLICATION1)
SIZE(20000)
INITSIZE(10000)
PREFLIST(PUCF01)

For more information about setting up the Coupling Facility, see the
WebSphere MQ Version 7 Information Center online.

b. Define each of the queue-sharing groups to DB2 by using the ADD QSG
function of the queue-sharing group utility (CSQ5PQSG). Sample
CSQ45AQS is provided in the SCSQPROC library. Run the sample once for
each queue-sharing group.

c. Define each of the queue managers to DB2 by using the ADD QMGR
function of the queue-sharing group utility CSQ5PQSG. Sample CSQ45AQM
is provided in the SCSQPROC library. Run the sample for every member of
a queue-sharing group.

d. To activate the changes that you have made, stop and start all the queue
managers in the group.

3. Define the SAP event store queue in the queue sharing group.
Typically, creating an event store queue is the most effective method. If you are
migrating from a previous broker, ensure that any outstanding SAP requests
have been resolved before you move to the new topology.
a. To create a shared queue, run the following command on one of the queue

managers only:
DEFINE QL(SYSTEM.BROKER.ADAPTER.SHARED)
LIKE(SYSTEM.BROKER.ADAPTER.PROCESSED) CFSTRUCT(NEW) QSGDISP(SHARED) SHARE DEFSOPT(SHARED)

b. To allow other queue managers that have been added to the group to use
the shared queue, delete their locally defined queues by running the
following command on each of those queues:
DELETE QLOCAL(SYSTEM.BROKER.ADAPTER.PROCESSED) QSGDISP(QMGR)

4. Configure the broker.
a. Create an SAPConnection configurable service for the .inadapter

component by using the mqsicreateconfigurableservice command.
b. Set the sharedTidStoreQueueManger parameter to the name of the queue

manager of the broker.

2062 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

For more information about this parameter, see “SAPConnection
configurable service” on page 3784.

5. Verify the setup.
After you have completed these steps, you can verify that the broker is using
the queue as a shared TID store by inspecting user trace. If the setup is
successful, message BIP3470 is issued, specifying which queue manager the
broker is using as the TID store.

Results

WebSphere Message Broker first attempts to open the
SYSTEM.BROKER.ADAPTER.SHARED queue. If that queue is unavailable,
WebSphere Message Broker opens the SYSTEM.BROKER.ADAPTER.PROCESSED
queue instead. The availability of the SYSTEM.BROKER.ADAPTER.SHARED
queue indicates that you are operating in a z/OS high availability environment.
Related concepts:
“SAP high availability” on page 1947
You can configure WebSphere Message Broker to withstand software or hardware
failures when working with SAP, so that WebSphere Message Broker is available
for as much of the time as possible.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Setting up a shared queue on distributed systems for the SAP adapter event
store” on page 2058
To achieve high availability when processing SAP messages on distributed systems,
you can set up a shared queue for the SAP adapter event store.
“Defining WebSphere MQ resources” on page 1558
An application client can run on a computer anywhere in the WebSphere MQ
network. If your applications use WebSphere MQ facilities to connect to the broker,
and to interact with it (by using the MQI and AMI), you must set up the
WebSphere MQ resources that they require.
“Using WebSphere MQ cluster queues for input and output” on page 1544
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
Related reference:
“WebSphere MQ resources for the broker” on page 585
Each broker depends on a number of WebSphere MQ resources: some are required,
others are optional, and depend on your environment and requirements. Some of
these resources are created for you, but others you must define for yourself.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.

Enhancing existing adapters with newly discovered objects:

In WebSphere Message Broker Version 7.0, you can take an adapter component that
was created by using the Adapter Connection wizard, and update it with newly
discovered objects from the Enterprise Information System (EIS). This facility is

Chapter 9. Developing message flow applications 2063

known as iterative discovery. You can either add the new objects without modifying
existing objects, or replace existing objects.

Before you begin

Before you start:

The following instructions assume that you have already run the Adapter
Connection wizard to discover a set of objects, as described in “Connecting to an
EIS by using the Adapter Connection wizard” on page 2037. You can run iterative
discovery only on projects that were created in WebSphere Message Broker Version
7.0 or later versions.

About this task

Procedure

1. From the Broker Development view, expand the appropriate message set
project folders until you see the .inadapter or .outadapter component.

2. Right-click the adapter component, then click Iterative discovery.
The Adapter Connection - Iterative Discovery wizard opens. The fields in the
wizard are populated with the values that you specified when you ran it
previously. You can modify these values if anything has changed, such as a
password.

3. On the Find and Discover Services page, the objects that you previously
discovered and selected for import are shown in the Objects to be imported
pane. You can discover and select new objects to import from the Objects
discovered by query pane.

4. On the final page of the Adapter Connection - Iterative Discovery wizard,
choose from the following options.
v To add only the new objects that you discovered, select Add XSDs for new

objects and replace .wsdl, .import/.export. When you click Finish, the
following results occur:
– XSD files for the additional objects are added to the adapter component.

These files are shown in the New files pane.
– Updated .wsdl and .import or .export files replace the files already in the

adapter component.
– The XSD files that are being added to the adapter component are also

imported into the message set that is associated with the adapter
component.

If you have discovered objects by using the SAP Wrapper or SAP Work Unit
options, the XSD files that correspond to the SAP wrapper objects are
replaced in the adapter component. These XSD files are also imported into
the message set, replacing any files that have the same name. This behavior
is because the wrapper objects contain references to the new objects.

v To replace all existing objects with the objects that you have discovered,
select Replace the contents of .in/.outAdapter with the newly discovered
files. When you click Finish, the following results occur:
– The contents of the .inadapter or .outadapter file in the adapter

component are replaced.
– All discovered XSD files are imported into the message set, replacing any

files that have the same name.
Note:

2064 WebSphere Message Broker Version 7.0.0.8

Select the Replace the contents of .in/.outAdapter with the newly discovered
files option if you have changed any of the configuration options during
rediscovery, or if the interfaces or data structure of objects that you are
discovering have changed since the previous discovery.
If you have discovered objects by using the BAPI result set option, the Add
XSDs for new objects and replace .wsdl, .import/.export option is not
available and you see the message: Incremental discovery is not applicable
for the selected option.
For options that are used in rediscovering SAP objects, and the corresponding
restrictions, see “SAP options for rediscovery” on page 4090.

5. Click Finish.
Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“WebSphere Adapters deployment” on page 3219
When you have run the Adapter Connection wizard and created a message flow,
you must deploy the resources that are generated by adding them to a broker
archive (BAR) file.
Related tasks:
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Calling new services from a WebSphere Adapters request node without changing
existing deployed resources” on page 2042
If your message flow acts as a gateway to an Enterprise Information System (EIS),
you can use it to call new services that did not exist when you developed the flow.
Therefore, if a new service is provided by the EIS, you do not have to modify and
retest the message flow.
“Handling new event types from a Websphere Adapters input node without
changing existing deployed resources” on page 2044
You can create an event handler to an Enterprise Information System (EIS) to
handle new event types that did not exist when you first developed your message
flow. Therefore, if a new event is provided by the EIS, you do not have to modify
and retest the message flow.
Related reference:
“SAP options for rediscovery” on page 4090
In WebSphere Message Broker Version 7.0, you can add newly discovered objects
into an existing adapter component without modifying any existing objects. This
facility is known as iterative discovery. You can rediscover certain objects for an
inbound or outbound adapter.
“Configuration properties for the WebSphere Adapter for SAP Software” on page
4043
The WebSphere Adapter for SAP Software has several categories of configuration
properties, which you set with the Adapter Connection wizard when you generate
or create objects and services.

Propagating security credentials to an SAP request:

The SAPRequest node can use an identity that is present in the Properties folder of
the message tree structure for the security credentials in a request, by using the
Propagate property on the security profile that is defined on the node.

Chapter 9. Developing message flow applications 2065

About this task

If an SAPRequest node is configured with a security profile, it extracts security
tokens from the input message at run time, and propagates an identity to SAP.

Procedure

To propagate an identity to be used for the SAP request security credentials,
complete the following steps.
1. Ensure that an appropriate security profile exists for the SAPRequest node, or

create a security profile, by following the instructions in “Creating a security
profile” on page 433.

2. Use the Broker Archive editor to select a security profile for the SAPRequest
node that has identity propagation enabled. For detailed instructions, see
“Configuring for identity propagation” on page 492.

Related concepts:
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
Related reference:
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Interacting with a Siebel application:

To interact with a Siebel application, obtain external software dependencies, run
the Adapter Connection wizard, develop a message flow, then deploy the relevant
resources.

About this task

To connect to a Siebel application, the Siebel adapter requires certain files and
libraries. You must store these files so that they are accessible to the Adapter
Connection wizard. The wizard creates various resources, such as an adapter
component and message flow. After you have completed the wizard, you can
develop a message flow to define the interaction with the Siebel application, then
deploy the relevant resources.

2066 WebSphere Message Broker Version 7.0.0.8

Procedure

1. To obtain software dependencies, follow the instructions in “Adding external
software dependencies for Siebel” on page 2068.

2. To configure the Siebel application to work with the adapter, create an event
table and a Siebel business object, as described in “Configuring the Siebel
application to work with the adapter” on page 2070.

3. Optional: To connect to a Siebel server in a clustered environment, see
“Connecting to a clustered Siebel environment” on page 2078.

4. Optional: To connect to different versions of Siebel, see “Connecting to different
versions of Siebel” on page 2077.

5. Before you run the Adapter Connection wizard, gather the following
information from your Siebel administrator:
v Siebel user name
v Siebel password
v Siebel host name or IP address
v Language code

For more information, see “Siebel connection properties for the Adapter
Connection wizard” on page 4099.

6. To connect to Siebel by using the Adapter Connection wizard, and create a
message flow, follow the instructions in “Connecting to an EIS by using the
Adapter Connection wizard” on page 2037.

7. Develop your message flow to define the interaction with the Siebel
application.

8. Deploy the appropriate resources, as described in “Deploying a message flow
that uses WebSphere Adapters” on page 3240.

9. Optional: To change connection details for Siebel adapters, see “Changing
connection details for Siebel adapters” on page 720.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).

Chapter 9. Developing message flow applications 2067

“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Adding external software dependencies for Siebel:

Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

Before you begin

Before you start:

Ensure that you have the relevant prerequisite files for your Siebel system.
v Siebel Business Applications Versions 7.5 and earlier

– SiebelJI_language code.jar (for example, SiebelJI_enu.jar)
– SiebelJI_Common.jar

v Siebel Business Applications Versions 7.7x, 7.8x, and 8.0
– Siebel.jar
– SiebelJI_language code.jar (for example, SiebelJI_enu.jar)

Download these files from the Siebel application, and save them to a directory,
such as C:\Siebel_LIB. (On Windows, the directory cannot be a mapped network
drive on a remote Windows computer; the directory must be local or on a Storage
Area Network (SAN) disk.)

The sample resources that you need to set up the Siebel system so that it can
communicate with the broker are in the following directory: install_dir\
ResourceAdapters\Siebel_7.0.0\samples.

About this task

Locating the Siebel support files in the runtime environment on Windows

To add the Siebel prerequisite files to the runtime environment, take the following
steps.

Procedure

1. Ensure that the broker has started.
2. Either open the Command Console, or open a Windows command prompt and

enter mqsiprofile to initialize the environment.

2068 WebSphere Message Broker Version 7.0.0.8

3. Enter the following command to display the locations of the prerequisite JAR
files and native libraries:
mqsireportproperties MB7BROKER -c AllTypes -o AllReportableEntityNames -r

The following example shows what typically is displayed when you run this
command:
ReportableEntityName=’’
EISProviders
JDEdwards=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
PeopleSoft=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
SAP=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
Siebel=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
siebelPropertiesURL=’’
Twineball=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’

4. Set the location of the Siebel prerequisite files by using the
mqsichangeproperties command; for example:

mqsichangeproperties MB7BROKER -c EISProviders -o Siebel -n jarsURL -v C:\Siebel_LIB
mqsichangeproperties MB7BROKER -c EISProviders -o Siebel -n nativeLibs -v C:\Siebel_LIB

5. Optional: To connect to a server in a clustered environment, complete the
following steps.
a. If you do not already have a siebel.properties file, create one with a

siebel.conmgr.virtualhosts property that lists the Siebel servers in the
cluster. The siebel.conmgr.virtualhosts property is the only property in
the siebel.properties file that WebSphere Message Broker supports. The
server names are represented by a comma separated list in the format
hostname:port.

b. Set the location of the siebel.properties file by using the
mqsichangeproperties command; for example:

mqsichangeproperties MB7BROKER -c EISProviders -o Siebel -n siebelPropertiesURL
-v C:\siebel.properties

Information message BIP3427 indicates if a siebel.properties file is being
used, and error message BIP3428 indicates if a problem occurs when
attempting to access the siebel.properties file.

6. Optional: To connect to different versions of Siebel, follow the instructions in
“Connecting to different versions of Siebel” on page 2077.

7. To check that the values have been set correctly, run the following command:
mqsireportproperties MB7BROKER -c EISProviders -o Siebel -r

The following example shows what is displayed by the mqsireportproperties
command.
ReportableEntityName=’ ’
EISProviders
Siebel=’ ’
jarsURL=’C:\Siebel_LIB’

Chapter 9. Developing message flow applications 2069

nativeLibs=’C:\Siebel_LIB’
siebelPropertiesURL=’’

BIP8071I: Successful command completion.

8. Restart the broker.

What to do next

Next: configure the Siebel application to work with the adapter.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Configuring the Siebel application to work with the adapter:

To configure the Siebel application, create an event table and a Siebel business
object.

2070 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

1. Add the required external software dependencies for Siebel.
2. Before you configure the Siebel application to work with WebSphere Adapter

for Siebel Business Applications, you must create a user name and password so
that the Adapter Connection wizard can connect to Siebel Business Applications
to perform outbound operations, and retrieve Siebel business objects and
services.
You perform this task on the Siebel server, therefore ensure that you are
familiar with the Siebel tools that are required to complete it. For information
about using Siebel tools, refer to the Siebel tools documentation.
To open Siebel Sales Enterprise on your local database, you must have
administrative privileges.

About this task

To configure the Siebel application, you must create an event table and a Siebel
business object. WebSphere Message Broker contains resources that help you to
create the event components and triggers. This topic describes how to use those
resources. You can also create the event table and Siebel business object manually;
for more information, see “Creating the event store manually” on page 2072.

Procedure

1. Locate the scripts folder at install_dir/WMBT700/ResourceAdapters/
Siebel_7.0.0.3_IF08/scripts.
The scripts folder contains two folders: Siebel7.x.x and Siebel8.0. Each version
has an Event_pkg folder, which contains a .sif file and a number of .js
scripts. You use the .sif file to create the event components; it can add
business objects, views, and all other Siebel objects to the Siebel repository. The
.js scripts help you to create Siebel triggers.

2. To use the .sif file:
a. Open Siebel tools and click Tools > Import.
b. Import the .sif file.
c. Merge the differences between the .sif file and the Siebel repository.
d. Recompile the repository into a Siebel repository file (.srf file).

3. Use the .js scripts to create Siebel triggers. The provided samples show how to
create entries in the inbound table when new Account objects are created.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Creating the event store manually” on page 2072
To configure the Siebel application, create an event table and a Siebel business
object.

Chapter 9. Developing message flow applications 2071

“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Creating the event store manually:

To configure the Siebel application, create an event table and a Siebel business
object.

About this task

“Configuring the Siebel application to work with the adapter” on page 2070
describes how to use the samples that are supplied with WebSphere Message
Broker to configure the Siebel application. This topic describes how to create the
event store manually.

The following steps describe how to create the event store to be used for inbound
operations in the Siebel application. You can substitute all references to Siebel Sales
Enterprise with the name of the Siebel application that you are using.

Procedure

1. Create a project called IBM, and lock the project with Siebel tools.
2. Using the object wizard, create an event table called CX_IBM_EVENT in

which to store the events.
a. In the event table, create the columns that are shown in the following

table.

Column Name Type Length Data Type Required Nullable Status

DESCRIPTION Data (public) 255 Varchar No Yes Active

2072 WebSphere Message Broker Version 7.0.0.8

Column Name Type Length Data Type Required Nullable Status

EVENT_ID Data (public) 30 Varchar Yes No Active

EVENT_TYPE Data (public) 20 Varchar Yes No Active

OBJECT_KEY Data (public) 255 Varchar Yes No Active

OBJECT_NAME Data (public) 255 Varchar Yes No Active

PRIORITY Data (public) 10 Varchar No Yes Active

STATUS Data (public) 20 Varchar Yes No Active

XID Data (public) 255 Varchar Yes No Active

b. Create a new business component called IBM Event.
c. Create a new time stamp called Field Event, and map it to the CREATED

column from CX_IBM_EVENT. Make the Type of this field
DTYPE_UTCDATETIME.

d. Create a new business object called IBM Event.
e. Associate the IBM event business component to the IBM Event business

object.
f. Create an applet called IBM Event List Applet, and base it on the IBM

Event business component that you have created.
g. Create a view called IBM Event List View, and base it on the IBM Event

business object that you have created.
h. Create a screen called IBM Event Screen, and associate it with the IBM

Event List View in the Siebel tools.
3. Create a page tab.

a. Click Start Application > Siebel Sales Enterprise.
b. Right-click the Page tab, and click New Record.
c. Specify IBM Event as the screen name, and IBM Event for the Text - String

Override field.
d. Leave the Inactive field blank.

4. Create a new business object called Schema Version for your IBM project and
associate it with the Schema Version business component.
a. Apply the physical schema for the new tables to your local database by

querying for the new table, CX_IBM_EVENT_Q and selecting the current
query to create a physical schema. Leave the table space and index space
blank.

b. Click Activate to activate the new schema.
5. Add or modify the Siebel VB or e-scripts for the business component that

corresponds to the business objects that are used at your site. Siebel scripts
trigger event notification for business objects. Samples are located in the
Samples folder in your adapter installation.

6. Create a new Siebel repository file by compiling the updated and locked
projects on your local database. The new repository file has an extension of
.srf.

7. Create and populate a new responsibility.
a. Open Siebel Sales Enterprise on your local database.
b. Create a new responsibility called IBM Responsibility for IBM Event List

View.
c. Add the employees or teams who are responsible for reviewing events to

the newly created IBM Responsibility.

Chapter 9. Developing message flow applications 2073

d. Create a user name called IBMCONN (or another user name to be used by
the adapter later). Add the user name to the newly created IBM
Responsibility and also to the Administrative Responsibility.

8. Test the application in your local environment to ensure that you can see the
IBM Event List View. An event is generated in the view after you create a
record in the supported object. As part of the test, create a new Account
business component instance in Siebel. Confirm that a new Account event is
shown in the IBM Event List View (assuming that you have added the e-script
trigger to the Account business component). If a new Account event is not
displayed in the view, check for an error and fix it. For more information on
the errors that might be generated, check either the Siebel support site or
Siebel documentation.

9. When the test that you perform in Step 8 is successful, add your new and
updated projects to your development server.

10. Activate the new table in the development server.
11. Compile a new Siebel repository (.srf) file on the server.
12. Back up the original repository file on the server.
13. Stop the Siebel server and replace the original repository file with the newly

created one.
14. Restart the Siebel server.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Configuring the Siebel application to work with the adapter” on page 2070
To configure the Siebel application, create an event table and a Siebel business
object.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:

2074 WebSphere Message Broker Version 7.0.0.8

“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Changing connection details for Siebel adapters:

Siebel nodes can get Siebel connection details from either the adapter component
or a configurable service. By using configurable services, you can change the
connection details for adapters without the need to redeploy the adapters. To pick
up new values when a configurable service is created or modified, you must
reload the broker or execution group to which the adapter was deployed, by using
the mqsistop and mqsistart commands, or the mqsireload command.

Before you begin

Before you start:

v Read “WebSphere Adapters nodes” on page 1914 and “Configurable services” on
page 1296 for background information.

About this task

Use the SiebelConnection configurable service to change connection details for a
Siebel adapter. The Siebel node reads all connection properties from the adapter
component that it is configured to use. If a configurable service exists that has the
same name as the adapter component of the node, the node uses the values that
are defined in that configurable service to override the corresponding properties
from the adapter. If a configurable service is being used, all properties that are
exposed by the configurable service are taken from the configurable service. The
only properties that are taken from the adapter are those that you cannot set on
the configurable service. The properties of the Siebel configurable service are
described in “Configurable services properties” on page 3766.

You can also connect to different versions of Siebel by creating a custom
EISProviders configurable service and setting the location of the appropriate library
files. For more information, see “Connecting to different versions of Siebel” on
page 2077.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates a SiebelConnection configurable service for the Siebel
instance that is running on my.siebel.qa.com:

mqsicreateconfigurableservice MB7BROKER -c SiebelConnection -o mySiebelAdapter.outadapter
-n connectString -v "siebel://my.siebel.qa.com/SBA_80/SSEObjMgr_enu"

Chapter 9. Developing message flow applications 2075

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This
example changes the connections that are used by the adapter
mySiebelAdapter.outadapter. After you run this command, all adapters connect to
the production system (my.siebel.production.com) instead of the test system
(my.siebel.qa.com):

mqsichangeproperties MB7BROKER -c SiebelConnection -o mySiebelAdapter.outadapter -n connectString
-v "siebel://my.siebel.production.com/SBA_80/SSEObjMgr_enu"

To pick up the updated values in the configurable service, restart the execution
group and message flow.

v To display all SiebelConnection configurable services, use the WebSphere
Message Broker Explorer, or the mqsireportproperties command, as shown in
the following example:

mqsireportproperties MB7BROKER -c SiebelConnection -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:

mqsideleteconfigurableservice MB7BROKER -c SiebelConnection -o mySiebelAdapter.outadapter

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

2076 WebSphere Message Broker Version 7.0.0.8

“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Connecting to different versions of Siebel:

You can access multiple versions of Siebel from a single broker by using different
versions of the client libraries.

About this task

You can connect to different versions of Siebel by creating a custom EISProviders
configurable service and setting the location of the appropriate library files. You
can then configure an execution group so that all Siebel nodes use this custom
configurable service. Therefore, you can connect to different versions of a Siebel
server from two different execution groups in the same broker.

You can complete this task by using the command line, the WebSphere Message
Broker Explorer, or the Administration API for WebSphere Message Broker (CMP
API). For more information about using the WebSphere Message Broker Explorer,
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644. For more information about using the CMP API, see
“Developing applications that use the Administration API” on page 956. This topic
describes how to connect to different versions of Siebel by using the command
line.

Procedure

1. For each version of Siebel to which you want to connect, create a custom
EISProviders configurable service by using the mqsicreateconfigurableservice
command, as shown in the following example.

mqsicreateconfigurableservice MB7BROKER -c EISProviders -o EISProvidersName -n jarsURL -v "c:\siebelclient\"

The -o parameter specifies the name of the EIS provider, and the -n and -v
parameters are used to specify the file location of the EIS provider JAR files.

2. Configure your execution group to use the custom EISProviders configurable
service by using the mqsichangeproperties command, as shown in the
following example.

mqsichangeproperties MB7BROKER –e ExecutionGroupLabel –o ComIbmSiebelManager –n EISProviders –v EISProvidersName

3. Restart the execution group by using the mqsistartmsgflow command, or in the
WebSphere Message Broker Toolkit by right-clicking the execution group and
clicking Start.

4. Deploy message flows to the appropriate execution group.
Related concepts:
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.

Chapter 9. Developing message flow applications 2077

“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Interacting with a Siebel application” on page 2066
To interact with a Siebel application, obtain external software dependencies, run
the Adapter Connection wizard, develop a message flow, then deploy the relevant
resources.
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.

Connecting to a clustered Siebel environment:

To connect to a Siebel server in a clustered environment, use a siebel.properties
file.

Before you begin

Before you start:

Ensure the external software dependencies for Siebel have been set up, as
described in “Adding external software dependencies for Siebel” on page 2068.

About this task

To connect to a Siebel server in a clustered environment, use the
siebel.conmgr.virtualhosts property in the siebel.properties file to list the
Siebel servers in the cluster.

2078 WebSphere Message Broker Version 7.0.0.8

The siebel.conmgr.virtualhosts property is used to list groups of servers with
the same function. An incoming call attempts to connect to each server in a group
in turn.

The only property in the siebel.properties file that WebSphere Message Broker
supports is siebel.conmgr.virtualhosts. Information message BIP3427 indicates if
a siebel.properties file is being used, and error message BIP3428 indicates if a
problem occurs when attempting to access the siebel.properties file.

When the list of servers has been set up in the siebel.properties file, you specify
the location of the file by using a configurable service, as described in the
following steps.

Procedure

1. If you do not already have a siebel.properties file, create one with a
siebel.conmgr.virtualhosts property that lists the Siebel servers in the cluster.
Servers are listed by using a comma separated list in the format hostname:port.

2. Set the location of the siebel.properties file by using the
mqsichangeproperties command; for example:

mqsichangeproperties MYBROKER -c EISProviders -o Siebel -n siebelPropertiesURL
-v C:\siebel.properties

Related concepts:
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Adding external software dependencies for Siebel” on page 2068
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.

Chapter 9. Developing message flow applications 2079

“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Interacting with a PeopleSoft application:

To interact with a PeopleSoft application, obtain external software dependencies,
run the Adapter Connection wizard, develop a message flow, then deploy the
relevant resources.

About this task

To connect to a PeopleSoft application, the PeopleSoft adapter requires certain files
and libraries. You must store these files so that they are accessible to the Adapter
Connection wizard. The wizard creates various resources, such as an adapter
component and message flow. After you have completed the wizard, you can
develop a message flow to define the interaction with the PeopleSoft application,
then deploy the relevant resources.

Procedure

1. To obtain software dependencies, follow the instructions in “Adding external
software dependencies for PeopleSoft” on page 2081.

2. To configure the PeopleSoft application to work with the adapter, create a
custom event project, as described in “Creating a custom event project in
PeopleTools” on page 2083.

3. Before you run the Adapter Connection wizard, gather the following
information from your PeopleSoft administrator:
v PeopleSoft user name
v PeopleSoft password
v PeopleSoft host name or IP address
v Port number (for example, 9000)
v Language code (for example, ENG)

For more information, see “PeopleSoft connection properties for the Adapter
Connection wizard” on page 4132.

4. To connect to PeopleSoft by using the Adapter Connection wizard, and create a
message flow, follow the instructions in “Connecting to an EIS by using the
Adapter Connection wizard” on page 2037.

5. Develop your message flow to define the interaction with the PeopleSoft
application.

6. Deploy the appropriate resources, as described in “Deploying a message flow
that uses WebSphere Adapters” on page 3240.

7. Optional: To change connection details for PeopleSoft adapters, see “Changing
connection details for PeopleSoft adapters” on page 722.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the

2080 WebSphere Message Broker Version 7.0.0.8

PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Adding external software dependencies for PeopleSoft:

Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

Before you begin

Before you start:

Ensure that you have the relevant prerequisite files for your PeopleSoft system.
v psjoa.jar

v A JAR file that contains the component interface API classes

Save both support files to a directory such as C:\PeopleSoft_LIB. (On Windows,
the directory cannot be a mapped network drive on a remote Windows computer;
the directory must be local or on a Storage Area Network (SAN) disk.) You can
find the psjoa.jar file in the following location on the PeopleSoft Application
Server: peopleTools_installation_directory\web\PSJOA\psjoa.jar. Use
PeopleTools to generate the component interface JAR file for your business objects.

Chapter 9. Developing message flow applications 2081

The sample resources that you need to set up the PeopleSoft system so that it can
communicate with the broker are in install_dir\ResourceAdapters\
PeopleSoft_7.0.0\samples.

About this task

Locating the PeopleSoft support files in the run time on Windows

To add the PeopleSoft prerequisite files to the run time, complete the following
steps.

Procedure

1. Ensure that the broker has started.
2. Either open the Command Console, or open a Windows command prompt and

enter mqsiprofile to initialize the environment.
3. Enter the following command to display the locations of the prerequisite JAR

files and native libraries:
mqsireportproperties MB7BROKER -c AllTypes -o AllReportableEntityNames -r

The following example shows what typically is displayed when you run this
command:
ReportableEntityName=’’
EISProviders
JDEdwards=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
PeopleSoft=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
SAP=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
Siebel=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
siebelPropertiesURL=’’
Twineball=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’

4. Set the location of the PeopleSoft prerequisite files by using the following
command:

mqsichangeproperties MB7BROKER -c EISProviders -o PeopleSoft -n jarsURL -v C:\PeopleSoft_LIB

5. To check that the values have been set correctly, run the following command:
mqsireportproperties MB7BROKER -c EISProviders -o PeopleSoft -r

The following example shows what is displayed by the mqsireportproperties
command.
ReportableEntityName=’ ’
EISProviders
PeopleSoft=’ ’
jarsURL=’C:\PeopleSoft_LIB’

BIP8071I: Successful command completion.

6. Restart the broker.

2082 WebSphere Message Broker Version 7.0.0.8

What to do next

Next: create a custom event project in PeopleTools.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Creating a custom event project in PeopleTools:

The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.

Chapter 9. Developing message flow applications 2083

Before you begin

Before you start:

Add the required external software dependencies for PeopleSoft.

About this task

If your environment requires inbound event support, you must use a custom event
project in PeopleSoft. A sample event project, IBM_EVENT_V600, is provided with
the adapter. You can modify and use and the sample project, or you can create
your own project by using PeopleTools. If you create your own project, make sure
that you complete the following steps.

Procedure

1. Use PeopleTools Application Designer to create and name a new project.
2. Create the fields for the new project as described in the following table:

Field name Field description

IBM_EVENT_ID A numeric value that is retrieved from
IBM_FETCH_ID record. This value is a
unique ID for the event.

IBM_OBJECT_NAME The name of the corresponding business
graph.

IBM_OBJECT_KEYS The get key property names in the
Component Interface, followed by the key
values in name-value pairs. This information
is used for the component's retrieval from
the EIS.

IBM_EVENT_STATUS If the event is ready to be polled, the status
is set to 0 and the IBMPublishEvent function
is called.

IBM_OBJECT_VERB The verb that is set on the business object
graph that contains the retrieved business
object.

IBM_EVENT_DTTM The date on which the event is created. For
a future dated event, this is the effective
date.

IBM_NEXT_EVENT_ID The field that has the latest event ID under
the record IBM_FETCH_ ID. This field is
incremented for each event that is added to
the IBM_EVENT_TBL, and it populates the
IBM_EVENT_ID field in that table.

IBM_XID The transaction ID that is needed to provide
assured event delivery.

3. Create a record named IBM_EVENT_TBL and add to it all the fields that you
have just created, except IBM_NEXT_EVENT_ID.

4. Create a record named IBM_FETCH_ID and add to it only the
IBM_NEXT_EVENT_ID field.

5. Open the IBM_FETCH_ID record, select the IBM_NEXT_EVENT_ID field,
view the PeopleCode, and select fieldformula.

6. Copy the PeopleCode for a custom event project from “PeopleCode for a
custom event project” on page 4125 to the project that you are creating.

2084 WebSphere Message Broker Version 7.0.0.8

7. Create a page under your project that contains the fields of the
IBM_EVENT_TBL record at level 0. The page can have any name.

8. Create a component under your project that contains the page that you have
just created. The component can have any name.

9. Create a Component Interface against this component and give it any name.
Confirm that you want to default the properties that are based on the
underlying component definition.

10. Build the entire project, selecting all create options.
11. Test and confirm that the Component Interface works, by using the

Component Interface tester.
12. Generate the Java APIs for the Component Interface, then add the generated

classes to the adapter classpath. For complete information about building a
PeopleTools project and testing the PeopleSoft Component Interface, refer to
PeopleSoft documentation.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.

Chapter 9. Developing message flow applications 2085

“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Changing connection details for PeopleSoft adapters:

PeopleSoft nodes can get PeopleSoft connection details from either the adapter
component or a configurable service. By using configurable services, you can
change the connection details for adapters without the need to redeploy the
adapters. To pick up new values when a configurable service is created or
modified, you must reload the broker or execution group to which the adapter was
deployed, by using the mqsistop and mqsistart commands, or the mqsireload
command.

Before you begin

Before you start:

v Read “WebSphere Adapters nodes” on page 1914 and “Configurable services” on
page 1296 for background information.

About this task

Use the PeopleSoftConnection configurable service to change connection details for
a PeopleSoft adapter. The PeopleSoft node reads all connection properties from the
adapter component that it is configured to use. If a configurable service exists that
has the same name as the node's adapter component, the node uses the values that
are defined in that configurable service to override the corresponding properties
from the adapter. If a configurable service is being used, all properties that are
exposed by the configurable service are taken from the configurable service. The
only properties that are taken from the adapter are those that you cannot set on
the configurable service. The properties of the PeopleSoft configurable service are
described in “Configurable services properties” on page 3766.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates a PeopleSoftConnection configurable service for the
PeopleSoft instance that is running on my.peoplesoft.qa.com:

mqsicreateconfigurableservice MB7BROKER -c PeopleSoftConnection -o myPeopleSoftAdapter.outadapter
-n hostName,port -v "my.peoplesoft.qa.com",9000

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This
example changes the connections that are used by the adapter
myPeopleSoftAdapter.outadapter. After you run this command, all adapters connect
to the production system (my.peoplesoft.production.com) instead of the test
system (my.peoplesoft.qa.com):

mqsichangeproperties MB7BROKER -c PeopleSoftConnection -o myPeopleSoftAdapter.outadapter -n hostName
-v "my.peoplesoft.production.com"

2086 WebSphere Message Broker Version 7.0.0.8

To pick up the updated values in the configurable service, restart the execution
group and message flow.

v To display all PeopleSoftConnection configurable services, use the WebSphere
Message Broker Explorer, or the mqsireportproperties command, as shown in
the following example:

mqsireportproperties MB7BROKER -c PeopleSoftConnection -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:

mqsideleteconfigurableservice MB7BROKER -c PeopleSoftConnection -o myPeopleSoftAdapter.outadapter

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Chapter 9. Developing message flow applications 2087

Interacting with a JD Edwards application:

To interact with a JD Edwards application, obtain external software dependencies,
run the Adapter Connection wizard, develop a message flow, then deploy the
relevant resources.

Before you begin

Before you start:

Gather the following information from your JD Edwards administrator; you will
need this information when you run the Adapter Connection wizard.
v JD Edwards EnterpriseOne environment name
v JD Edwards user name
v JD Edwards password
v The role that is associated with the user name

To find objects in the JD Edwards system, you use the Adapter Connection wizard
to run a query to discover business functions or XML lists. Ask your JD Edwards
administrator about the available business function libraries or XML list tables. To
complete the wizard, you need to know the table type and the attributes to specify
in the query. For more information, see JD Edwards connection properties for the
Adapter Connection wizard.

You need the following information to complete the system connection information
in the Adapter Connection wizard. You can find this information in the jdbj.ini
file that is included with the external JD Edwards resource files.
[JDBj-BOOTSTRAP SESSION]
user=user
password=***
environment=JDEenv
role=*ALL

Connecting to a DB2 database

If you are connecting to a DB2 database, the JDBC driver file that is required for
DB2 can be found in the JDBC driver files table (see “Adding external software
dependencies for JD Edwards EnterpriseOne” on page 2090). The jdbj.ini file
contains the following example entries, which have been configured by the JD
Edwards administrator:
[JDBj-BOOTSTRAP DATA SOURCE]

databaseType=W

[JDBj-JDBC DRIVERS]

UDB=COM.ibm.db2.jdbc.app.DB2Driver

Connecting to an Oracle database

If you are Connecting to an Oracle database, the JDBC driver files that are required
for Oracle can be found in the JDBC driver files table (see “Adding external
software dependencies for JD Edwards EnterpriseOne” on page 2090). The
jdbj.ini file contains the following example entries, which have been configured
by the JD Edwards administrator:

2088 WebSphere Message Broker Version 7.0.0.8

[JDBj-JDBC DRIVERS]
ORACLE=oracle.jdbc.driver.OracleDriver

[JDBj-ORACLE]
tns=tnsnames.ora

About this task

To connect to a JD Edwards application, the JD Edwards adapter requires certain
files and libraries. You must store these files so that they are accessible to the
Adapter Connection wizard. The wizard creates various resources, such as an
adapter component and message flow. After you have completed the wizard, you
can develop a message flow to define the interaction with the JD Edwards
application, then deploy the relevant resources.

Procedure

1. To obtain software dependencies, follow the instructions in “Adding external
software dependencies for JD Edwards EnterpriseOne” on page 2090.

2. To connect to JD Edwards by using the Adapter Connection wizard, and create
a message flow, follow the instructions in “Connecting to an EIS by using the
Adapter Connection wizard” on page 2037.

3. Develop your message flow to define the interaction with the JD Edwards
application.

4. Deploy the appropriate resources, as described in “Deploying a message flow
that uses WebSphere Adapters” on page 3240.

5. Optional: To change connection details for JD Edwards adapters, see “Changing
connection details for JD Edwards adapters” on page 724.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.

Chapter 9. Developing message flow applications 2089

“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.
“JDEdwardsRequest node” on page 4524
Use the JDEdwardsRequest node to interact with a JD Edwards EnterpriseOne
server.

Adding external software dependencies for JD Edwards EnterpriseOne:

Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

Before you begin

Before you start:

Obtain the relevant prerequisite files for your JD Edwards EnterpriseOne system
from your JD Edwards EnterpriseOne administrator. The necessary files are listed
in the following table. The software dependencies differ, depending on which
version of JD Edwards EnterpriseOne Tools you use.

JD Edwards
EnterpriseOne Tools,
version 8.9 (SP1, SP2),
8.93

JD Edwards
EnterpriseOne Tools,
version 8.94

JD Edwards EnterpriseOne
Tools, version 8.95, 8.96

JD Edwards EnterpriseOne
Tools, version 8.97, 8.98

JDBC driver files

(For more information,
see the following table.)

JDBC driver files

(For more information,
see the following table.)

JDBC driver files

(For more information, see the
following table.)

JDBC driver files

(For more information, see the
following table.)

connector.jar Common_Jar.jar ApplicationAPIs_JAR.jar ApplicationAPIs_JAR.jar

database.jar Connector.jar ApplicationLogic_JAR.jar ApplicationLogic_JAR.jar

jdeinterop.ini database.jar Base_JAR.jar Base_JAR.jar

jdeLog.properties EventProcessor_EJB.jar BizLogicContainer_JAR.jar BizLogicContainer_JAR.jar

kernel.jar jdeutil.jar BizLogicContainerClient_JAR.jar BizLogicContainerClient_JAR.jar

log4j.jar jdbj.ini bootstrap.jar BusinessLogicServices_JAR.jar

owra.jar jdeinterop.ini castor.jar castor.jar

xalan.jar jdelog.properties Connector.jar commons-httpclient-3.0.jar

xerces.jar kernel.jar ecutils.jar commons-logging.jar

log4j.jar EventProcessor_JAR.jar Connector.jar

xalan.jar EventProcessor_EJB.jar EventProcessor_EJB.jar

xerces.jar jdbj.ini EventProcessor_JAR.jar

JdbjBase_JAR.jar Generator_JAR.jar

JdbjInterfaces_JAR.jar jdbj.ini

jdeinterop.ini JdbjBase_JAR.jar

jdelog.properties JdbjInterfaces_JAR.jar

JdeNet_JAR.jar jdeinterop.ini

2090 WebSphere Message Broker Version 7.0.0.8

JD Edwards
EnterpriseOne Tools,
version 8.9 (SP1, SP2),
8.93

JD Edwards
EnterpriseOne Tools,
version 8.94

JD Edwards EnterpriseOne
Tools, version 8.95, 8.96

JD Edwards EnterpriseOne
Tools, version 8.97, 8.98

lmproxy.jar jdelog.properties

log4j.jar JdeNet_JAR.jar

messagingClient.jar jmxremote.jar

naming.jar jmxremote_optional.jar

PMApi_JAR.jar jmxri.jar

Spec_JAR.jar log4j.jar

System_JAR.jar ManagementAgent_JAR.jar

urlprotocols.jar Metadata.jar

xalan.jar MetadataInterface.jar

xerces.jar PMApi_JAR.jar

Spec_JAR.jar

System_JAR.jar

SystemInterfaces_JAR.jar

xalan.jar

xerces.jar

xmlparserv2.jar

JDBC driver files

Database JDBC driver files Implementation class

Oracle tsnames.ora
classes12.zip

oracle.jdbc.driver.OracleDriver

SQLServer sqljdbc.jar com.ibm.microsoft.sqlserver.jdbc.SQLServerDriver

AS/400 jt400.jar com.ibm.as400.access.AS400JDBCDriver

DB2 Type-2 (JDK 1.4/1.5) db2java.zip com.ibm.db2.jdbc.app.DB2Driver

DB2 Type-4 (JDK 1.4/1.5) db2jcc.jar
db2jcc_license_cu.jar

com.ibm.db2.jcc.DB2Driver

DB2 Type-4 (JDK 1.6) db2jcc4.jar com.ibm.db2.jcc.DB2Driver

Copy the external dependency files to a temporary location. For example, copy
them to C:\temp\JDE_dependencies\.

Tip: The Adapter Connection wizard can browse the JDBC driver files more easily
if they are stored in their own folder. For example, if you are using an Oracle
database server, you put the tnsnames.ora and classes12.zip files in the following
location: C:\temp\JDE_dependencies\.

About this task

Locating the JD Edwards support files in the runtime environment on Windows

To add the JD Edwards prerequisite files to the runtime environment, complete the
following steps.

Chapter 9. Developing message flow applications 2091

Procedure

1. Ensure that the broker has started.
2. Either open the Command Console, or open a Windows command prompt and

enter mqsiprofile to initialize the environment.
3. Enter the following command to display the locations of the prerequisite JAR

files:
mqsireportproperties MB7BROKER -c AllTypes -o AllReportableEntityNames -r

The following example shows what typically is displayed when you run this
command:
ReportableEntityName=’’
EISProviders
JDEdwards=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
PeopleSoft=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
SAP=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
Siebel=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
Twineball=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’

4. Set the location of the JD Edwards prerequisite files by using the following
command:

mqsichangeproperties MB7BROKER -c EISProviders -o JDEdwards -n jarsURL
-v C:\temp\JDE_dependencies\
mqsichangeproperties MB7BROKER -c EISProviders -o JDEdwards -n nativeLibs
-v C:\temp\JDE_dependencies\

5. To check that the values have been set correctly, run the following command:
mqsireportproperties MB7BROKER -c EISProviders -o JDEdwards -r

The following example shows what is displayed by the mqsireportproperties
command.
ReportableEntityName=’ ’
EISProviders
JDEdwards=’ ’
jarsURL=’C:\temp\JDE_dependencies’
nativeLibs=’default_Path’

BIP8071I: Successful command completion.

6. Restart the broker.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:

2092 WebSphere Message Broker Version 7.0.0.8

“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Activating IBM Tivoli License Manager for WebSphere Adapters” on page 2036
If you want to use IBM Tivoli License Manager (ITLM), you must activate it for
each of the WebSphere Adapters.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.
“JDEdwardsRequest node” on page 4524
Use the JDEdwardsRequest node to interact with a JD Edwards EnterpriseOne
server.

Changing connection details for JD Edwards adapters:

JD Edwards nodes can get JD Edwards EnterpriseOne connection details from
either the adapter component or a configurable service. By using configurable
services, you can change the connection details for adapters without the need to
redeploy the adapters. To pick up new values when a configurable service is
created or modified, you must reload the broker or execution group to which the
adapter was deployed, by using the mqsistop and mqsistart commands, or the
mqsireload command.

Before you begin

Before you start:

v Read “WebSphere Adapters nodes” on page 1914 and “Configurable services” on
page 1296 for background information.

About this task

Use the JDEdwardsConnection configurable service to change connection details
for a JD Edwards adapter. The JD Edwards node reads all connection properties
from the adapter component that it is configured to use. If a configurable service
exists that has the same name as the nodes adapter component, the node uses the
values that are defined in that configurable service to override the corresponding
properties from the adapter. If a configurable service is being used, all properties
that are exposed by the configurable service are taken from the configurable
service. The only properties that are taken from the adapter are the ones that you

Chapter 9. Developing message flow applications 2093

cannot set on the configurable service. The properties of the JD Edwards
configurable service are described in “Configurable services properties” on page
3766.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates a JDEdwardsConnection configurable service to connect to
the DV7333 development Environment for a user with the Role of administrator.

mqsicreateconfigurableservice MYBROKER -c JDEdwardsConnection -o myJdedwardsAdapter.outadapter
-n Environment,Role -v "dv7333,administrator"

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This
example changes the connection that is used by the adapter
myJdedwardsAdapter.outadapter to connect to the PD7333 production Environment.
After you run this command, all adapters connect to the production
Environment (PD7333) instead of the development system (DV7333).

mqsichangeproperties MYBROKER -c JDEdwardsConnection -o myJdedwardsAdapter.outadapter -n Environment,Role
-v PD7333,administrator

To pick up the updated values in the configurable service, restart the execution
group and message flow.

v To display all JDEdwardsConnection configurable services, use the WebSphere
Message Broker Explorer, or the mqsireportproperties command, as shown in
the following example:

mqsireportproperties MYBROKER -c JDEdwardsConnection -o AllReportableEntityNames -r

v You can delete a configurable service that has been created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:

mqsideleteconfigurableservice MYBROKER -c JDEdwardsConnection -o myJdedwardsAdapter.outadapter

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.

2094 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“JDEdwardsRequest node” on page 4524
Use the JDEdwardsRequest node to interact with a JD Edwards EnterpriseOne
server.

Working with WebSphere Process Server
WebSphere Process Server is a business integration server that uses Service
Component Architecture (SCA) to present all business transactions in a
service-oriented way in its runtime environment. WebSphere Message Broker can
accept requests from WebSphere Process Server, and can also call service
components on WebSphere Process Server.

About this task

The topics in this section describe what SCA is, and how you can configure your
message flows to use SCA to interoperate with WebSphere Process Server.
v “Working with Service Component Architecture (SCA)”
v “Service Component Architecture (SCA) overview” on page 2096
v “Interoperability with WebSphere Process Server” on page 2097
v “SCA nodes” on page 2101
v “Using Broker SCA definitions to configure message flows” on page 2102
v “Developing SCA applications for non-XML data” on page 2103
v “Message flows for Service Component Architecture (SCA)” on page 2105

Working with Service Component Architecture (SCA)
Start here to find out how you can use SCA to allow interoperability with
WebSphere Process Server Version 6.2.

SCA is a specification that describes a model for building applications and systems
using a service-oriented architecture (SOA).

WebSphere Message Broker provides built-in message flow nodes that allow
interoperability with WebSphere Process Server. These nodes support inbound and
outbound scenarios with WebSphere Process Server. In an inbound scenario, a
service component in WebSphere Process Server can send a request to WebSphere

Chapter 9. Developing message flow applications 2095

Message Broker. In an outbound scenario, a message flow in WebSphere Message
Broker can send a synchronous or asynchronous request to WebSphere Process
Server.

The nodes are configured by a Broker SCA definition. You can create a Broker SCA
definition in two ways:
v From an SCA import or SCA export component that is defined in WebSphere

Integration Developer Version 6.2 and imported into WebSphere Message Broker.
v From a WebSphere Message Broker message set.

The SCA nodes cannot be used without a Broker SCA definition to configure them.

If you want to call services available on WebSphere Message Broker, you must
either:
v Import an SCA import component from WebSphere Integration Developer and

create a message flow that uses an SCAInput node, or
v Generate an inbound Broker SCA definition and export the .insca file to

WebSphere Integration Developer

If you want to call a service in WebSphere Process Server, you must either:
v Import an SCA export component from WebSphere Integration Developer and

configure a message flow using the Broker SCA definition that is created, or
v Generate an outbound Broker SCA definition and export the .outsca file to

WebSphere Integration Developer

When designing message flows with SCA, you must select a suitable transport
(also called a binding). The SCA nodes support these transports:
v WebSphere MQ Enterprise transport
v WebSphere Broker HTTP transport with SOAP

Important: The SCA nodes do not support the SCA binding in WebSphere
Integration Developer, which is used only for SCA invocations between modules
running within WebSphere Process Server.

The following topics describe how to work with SCA:
v “Service Component Architecture (SCA) overview”
v “Message flows for Service Component Architecture (SCA)” on page 2105

Service Component Architecture (SCA) overview
Service Component Architecture (SCA) is a specification that describes a model for
building applications and systems using a service-oriented architecture (SOA).

SCA simplifies the creation and integration of business applications that are built
using an SOA by separating business logic from its implementation so that you can
focus on assembling an integrated application without knowing details of its
implementation.

SCA divides the steps of building a service-oriented application into two major
parts:
v The implementation of components that provide services and use other services.
v The assembly of these service components to build the business application.

Service components can be assembled graphically using WebSphere Integration
Developer, and the implementation can be added later.

2096 WebSphere Message Broker Version 7.0.0.8

For more information about SCA, see SCA.

WebSphere Process Server is a business integration server that supports solutions
that are based on SOA; see “Interoperability with WebSphere Process Server.”
Related concepts:
“Interoperability with WebSphere Process Server”
WebSphere Process Server is a business integration server that supports solutions
based on service-oriented architecture (SOA). It uses Service Component
Architecture (SCA) to present all business transactions in a service-oriented way in
its runtime environment. WebSphere Message Broker can accept requests from
WebSphere Process Server, and can also call service components on WebSphere
Process Server.
“SCA nodes” on page 2101
SCA nodes support interoperability between WebSphere Message Broker and
WebSphere Process Server.
“Using Broker SCA definitions to configure message flows” on page 2102
Use Broker SCA definitions to create and configure SCA nodes in a message flow.
“Message flows for Service Component Architecture (SCA)” on page 2105
Use the SCA nodes to develop message flows so that WebSphere Message Broker
can interoperate with WebSphere Process Server. These nodes support scenarios in
which service components that run on WebSphere Process Server either are called
from WebSphere Message Broker or call a WebSphere Message Broker message
flow.
“Working with Service Component Architecture (SCA)” on page 2095
Start here to find out how you can use SCA to allow interoperability with
WebSphere Process Server Version 6.2.
“Service Component Architecture (SCA) overview” on page 2096
Service Component Architecture (SCA) is a specification that describes a model for
building applications and systems using a service-oriented architecture (SOA).

Interoperability with WebSphere Process Server
WebSphere Process Server is a business integration server that supports solutions
based on service-oriented architecture (SOA). It uses Service Component
Architecture (SCA) to present all business transactions in a service-oriented way in
its runtime environment. WebSphere Message Broker can accept requests from
WebSphere Process Server, and can also call service components on WebSphere
Process Server.

WebSphere Process Server provides components that can use, or be used by, the
services in WebSphere Message Broker. This interoperability is based on SCA, and
the SCA nodes provide the facilities that permit operation between the two
products.

WebSphere Integration Developer is the development environment for WebSphere
Process Server. It is the tool for building and deploying SOA-based integration
solutions on WebSphere Process Server.

When designing a solution, the Integration Developer can choose either of the
following approaches:

“Starting from WebSphere Integration Developer” on page 2099
Design the applications in WebSphere Integration Developer, export your
project as a Project Interchange (PI) file, then import it into WebSphere

Chapter 9. Developing message flow applications 2097

http://www.ibm.com/developerworks/webservices/library/ws-soa-scadev1

Message Broker. For more details, see “Importing and exporting resources
in a Project Interchange file” on page 1452.

“Starting from WebSphere Message Broker” on page 2100
Design the applications in WebSphere Message Broker, export the Broker
SCA definitions, then import them into WebSphere Integration Developer.

Differences in WSDL definition files

When you compare messages on the wire from WebSphere Message Broker and
WebSphere Integration Developer, the root element might be different. WSDL
generated by WebSphere Message Broker creates messages whose root element is
the element name of the message. In most cases, this element name is the same as
the message definition name that is used to generate the WSDL. However in
WebSphere Integration Developer, messages are wrapped with an additional
element whose name is the same as the name of the operation; consequently, the
root element has the name of the operation.
Related tasks:
“Exporting an SCA Import or Export from a Broker SCA definition” on page 2945
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to export SCA import or SCA export components. You must export
an SCA import or SCA export if the Broker SCA definition is to be used by
WebSphere Integration Developer.
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
“Importing SCA import or SCA export components” on page 2943
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to import SCA import or SCA export components from WebSphere
Integration Developer. You must import an SCA import or SCA export into the
workspace to provide a broker SCA definition for use in configuring the SCA
nodes.
“Developing SCA applications for non-XML data” on page 2103
The SCA nodes allow non-XML data to be sent and received from WebSphere
Process Server by using the WebSphere MQ binding. For example, create a
message model from a COBOL copybook, and use that message model to parse
messages received from WebSphere Process Server.
Related reference:
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SCAReply node” on page 4726
Use the SCAReply node to send a message from the broker to the originating client
in response to a message received by a SCAInput node.
“SCAAsyncRequest node” on page 4690
Use the SCAAsyncRequest node with the SCAAsyncResponse node to construct a
pair of message flows that invoke a WebSphere Process Server service component
asynchronously.
“SCAAsyncResponse node” on page 4698
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.

2098 WebSphere Message Broker Version 7.0.0.8

Starting from WebSphere Integration Developer:

You can design SOA applications in WebSphere Integration Developer (IBM
Integration Designer) that need to call services in WebSphere Message Broker, or be
called by services in WebSphere Message Broker
v If you are developing a service on WebSphere Integration Developer and you

want WebSphere Message Broker to be able to send requests to it, you create an
export component in your WebSphere Integration Developer application.

v If you want to call a WebSphere Message Broker service from your WebSphere
Integration Developer application, you create an import component in your
application.

After you have created your WebSphere Integration Developer application, you
export a PI file, which you can then import into WebSphere Message Broker.

Use the New Message Definition File wizard or the Start from SCA Import or
Export Quick Start wizard to import WebSphere Integration Developer export and
import components. See “Importing SCA import or SCA export components” on
page 2943. Ensure that the import or export components that you import from
WebSphere Integration Developer use SOAP 1.1 bindings; a validation error occurs
if you attempt to import SCA import components or SCA export components that
have been generated with SOAP 1.2 bindings.

Importing the PI file creates the message definition file and the Broker SCA
definition files.

If you import a WebSphere Integration Developer import component and create a
Broker SCA definition from it, you create a Broker SCA definition with a file
extension of .insca. The Broker SCA definition contains:
v binding information (in a file with an extension of .import)
v WSDL and XSD files that describe the message format

Broker SCA definitions that are created from imported WebSphere Integration
Developer import components provide values for properties on the SCAInput node
which can then receive requests from WebSphere Process Server.

If you import a WebSphere Integration Developer export component and create a
Broker SCA definition from it, you create a Broker SCA definition with a file
extension of .outsca. This file contains:
v binding information (in a file with an extension of .export)
v WSDL and XSD files that describe the message format

Broker SCA definitions that are created from imported WebSphere Integration
Developer export components provide values for properties on the SCARequest
node, or the SCAAsyncRequest and SCARequest nodes, which can then send
requests to WebSphere Process Server.
Related concepts:
“Interoperability with WebSphere Process Server” on page 2097
WebSphere Process Server is a business integration server that supports solutions
based on service-oriented architecture (SOA). It uses Service Component
Architecture (SCA) to present all business transactions in a service-oriented way in
its runtime environment. WebSphere Message Broker can accept requests from
WebSphere Process Server, and can also call service components on WebSphere
Process Server.

Chapter 9. Developing message flow applications 2099

“Starting from WebSphere Message Broker”
You can design SOA applications in WebSphere Message Broker that need to call
services in WebSphere Process Server or be called by services in WebSphere
Process Server.

Starting from WebSphere Message Broker:

You can design SOA applications in WebSphere Message Broker that need to call
services in WebSphere Process Server or be called by services in WebSphere
Process Server.
v If you are developing a service on WebSphere Message Broker and you want a

WebSphere Integration Developer application to be able to send requests to it,
you generate an .insca Broker SCA Definition file. You use the Broker SCA
Definition file to create an SCAInput node, which can receive requests from
WebSphere Process Server. You also export this file from WebSphere Message
Broker to the file system or workspace. You can import the exported artifacts
into WebSphere Integration Developer. Importing the file into WebSphere
Integration Developer creates an Import component in your WebSphere
Integration Developer application; to access a service provided by WebSphere
Message Broker, connect this Import component in the assembly diagram.

v If you are developing a service on WebSphere Message Broker and you want to
access a service on WebSphere Process Server, you generate an .outsca Broker
SCA Definition file. You use the Broker SCA Definition file to create either:
– A pair of SCAAsyncRequest and SCAAsyncResponse nodes, for asynchronous

operations.
– A SCARequest node, for operations that are synchronous or one-way.

The SCAAsyncRequest or SCARequest node sends requests to WebSphere
Process Server. You also export this file from WebSphere Message Broker to the
file system or workspace. You can import the exported artifacts into WebSphere
Integration Developer. Importing the artifacts into WebSphere Integration
Developer creates an Export component in your WebSphere Integration
Developer application; to receive requests from a broker application, connect this
Export component in the assembly diagram.

Use the Generate Broker SCA Definition wizard to generate Broker SCA
definitions; see “Generating a Broker SCA definition from a message set” on page
2967.

Use the Export an SCA Import or Export from a Broker SCA definition wizard to
export a Broker SCA definition after you have generated it; see “Exporting an SCA
Import or Export from a Broker SCA definition” on page 2945.
Related concepts:
“Interoperability with WebSphere Process Server” on page 2097
WebSphere Process Server is a business integration server that supports solutions
based on service-oriented architecture (SOA). It uses Service Component
Architecture (SCA) to present all business transactions in a service-oriented way in
its runtime environment. WebSphere Message Broker can accept requests from
WebSphere Process Server, and can also call service components on WebSphere
Process Server.
“Starting from WebSphere Integration Developer” on page 2099
You can design SOA applications in WebSphere Integration Developer (IBM
Integration Designer) that need to call services in WebSphere Message Broker, or be
called by services in WebSphere Message Broker

2100 WebSphere Message Broker Version 7.0.0.8

SCA nodes
SCA nodes support interoperability between WebSphere Message Broker and
WebSphere Process Server.
v The SCAInput and SCAReply nodes are analogous to the SOAPInput and

SOAPReply nodes, and are used in a message flow that provides an SCA
endpoint. These SCA nodes are used to construct a message flow which
implements SCA.
The SCAInput node listens for SCA inbound requests (from WebSphere Process
Server to WebSphere Message Broker).
The SCAReply node sends a reply back to the client that originated the SCA
request. See “SCAInput node” on page 4707 and “SCAReply node” on page
4726.

v The SCAAsyncRequest and SCAAsyncResponse nodes are used to construct a
pair of message flows that call a WebSphere Process Server service component
asynchronously.
The SCAAsyncRequest node sends an SCA outbound request to a service
component that runs in WebSphere Process Server.
The SCAAsyncResponse node receives the response from a business process that
is running in WebSphere Process Server and to which the previous asynchronous
request was made. The SCAAsyncResponse node can be in the same message
flow or in a separate message flow.
Calling a WebSphere Process Server service component asynchronously means
that the SCAAsyncRequest node sends a request but does not wait for the
associated response to be received, although it might wait for an
acknowledgment of the request.
The nodes are used as a pair, and correlate responses and requests. See
“SCAAsyncRequest node” on page 4690 and “SCAAsyncResponse node” on
page 4698.

v The SCARequest node is used to send a request to WebSphere Process Server.
The node is configured using a Broker SCA Definition (.outsca) file; depending
on the contents of the .outsca file, requests are either:
– Two-way, synchronous; the node sends the request, then blocks until it

receives a response, or the timeout period is exceeded.
– One-way; the node sends a request only.

Related concepts:
“Service Component Architecture (SCA) overview” on page 2096
Service Component Architecture (SCA) is a specification that describes a model for
building applications and systems using a service-oriented architecture (SOA).
“Interoperability with WebSphere Process Server” on page 2097
WebSphere Process Server is a business integration server that supports solutions
based on service-oriented architecture (SOA). It uses Service Component
Architecture (SCA) to present all business transactions in a service-oriented way in
its runtime environment. WebSphere Message Broker can accept requests from
WebSphere Process Server, and can also call service components on WebSphere
Process Server.
“Message flows for Service Component Architecture (SCA)” on page 2105
Use the SCA nodes to develop message flows so that WebSphere Message Broker
can interoperate with WebSphere Process Server. These nodes support scenarios in
which service components that run on WebSphere Process Server either are called
from WebSphere Message Broker or call a WebSphere Message Broker message
flow.
Related reference:

Chapter 9. Developing message flow applications 2101

“SCAAsyncRequest node” on page 4690
Use the SCAAsyncRequest node with the SCAAsyncResponse node to construct a
pair of message flows that invoke a WebSphere Process Server service component
asynchronously.
“SCAAsyncResponse node” on page 4698
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SCARequest node” on page 4719
Use the SCARequest node to send a request to WebSphere Process Server. The
node is a synchronous request and response node, and blocks after sending the
request until the response is received. The node can also send one-way requests.
“SCAReply node” on page 4726
Use the SCAReply node to send a message from the broker to the originating client
in response to a message received by a SCAInput node.

Using Broker SCA definitions to configure message flows
Use Broker SCA definitions to create and configure SCA nodes in a message flow.

A Broker SCA definition is a broker artifact that has a .insca or .outsca extension.
The artifact contains the following information:

Binding type and interface information which is present in SCA import or SCA
export components
WSDL that defines the interface
XSD files that describe the message format

The Broker SCA definition files appear in a folder, named Broker SCA Definitions,
in the message set project.

A .insca file contains an SCA Import component, and is used to configure
SCAInput and SCAReply nodes.

A .outsca file contains an SCA Export component, and is used to configure
SCAAsyncRequest, SCAAsyncResponse, and SCARequest nodes.

To create and configure SCA nodes, drag Broker SCA definitions, which are
generated from SCA import or export files, into the message flow editor. This
action automatically creates the appropriate nodes, and completes many of the
configurable properties of the nodes. The nodes cannot be used if there is no
Broker SCA definition with which to configure the nodes.

For Web Services binding, the data defines the service and the port name for the
service within the WSDL that is invoked. It also defines an SCA endpoint address,
extracted from the WSDL.

For MQ binding, the data defines the WebSphere MQ connection properties, the
message binding format, the replyTo destination, and transaction and security
information.
Related concepts:
“Working with Service Component Architecture (SCA)” on page 2095
Start here to find out how you can use SCA to allow interoperability with
WebSphere Process Server Version 6.2.

2102 WebSphere Message Broker Version 7.0.0.8

“Service Component Architecture (SCA) overview” on page 2096
Service Component Architecture (SCA) is a specification that describes a model for
building applications and systems using a service-oriented architecture (SOA).
“Interoperability with WebSphere Process Server” on page 2097
WebSphere Process Server is a business integration server that supports solutions
based on service-oriented architecture (SOA). It uses Service Component
Architecture (SCA) to present all business transactions in a service-oriented way in
its runtime environment. WebSphere Message Broker can accept requests from
WebSphere Process Server, and can also call service components on WebSphere
Process Server.
“SCA nodes” on page 2101
SCA nodes support interoperability between WebSphere Message Broker and
WebSphere Process Server.
“Message flows for Service Component Architecture (SCA)” on page 2105
Use the SCA nodes to develop message flows so that WebSphere Message Broker
can interoperate with WebSphere Process Server. These nodes support scenarios in
which service components that run on WebSphere Process Server either are called
from WebSphere Message Broker or call a WebSphere Message Broker message
flow.
“SCA inbound message flows” on page 2105
SCA inbound message flows are message flows that can be called by a service
component running on WebSphere Process Server. By using SCAInput and
SCAReply nodes in your message flow, you can process messages from WebSphere
Process Server.
“SCA outbound message flows” on page 2107
SCA outbound message flows are message flows that call a service component on
WebSphere Process Server. By using an SCARequest node, or a pair of
SCAAsyncRequest and SCAAsyncResponse nodes, you can call a service
component in WebSphere Process Server.

Developing SCA applications for non-XML data
The SCA nodes allow non-XML data to be sent and received from WebSphere
Process Server by using the WebSphere MQ binding. For example, create a
message model from a COBOL copybook, and use that message model to parse
messages received from WebSphere Process Server.

About this task

Both WebSphere Message Broker and WebSphere Integration Developer use XML
schema to describe the logical format of the message to be parsed. Extra
information in the form of XML schema annotations is used to describe any
physical formats that you define for the messages. The physical format describes
the precise appearance of the message bit stream during transmission.

In WebSphere Message Broker, using the MRM domain, you can model different
physical representations using specific physical formats. These physical formats
include Custom Wire Format (CWF) and Tagged Delimited String Format (TDS). Using
the CWF physical format, you can model a message directly from a COBOL
copybook.

“Interoperability with WebSphere Process Server” on page 2097 describes how the
schema describing the logical format can be exchanged between WebSphere
Message Broker and WebSphere Integration Developer. But the XML schema
annotations that describe the physical format is not exchanged in those steps. This
topic shows how to model the same message in both WebSphere Message Broker

Chapter 9. Developing message flow applications 2103

and WebSphere Integration Developer. You create applications in WebSphere
Message Broker and WebSphere Process Server that use a message model derived
from a COBOL copybook. You can use a similar method for other message models
derived from other non-XML data structures such as C Header files.

Starting from WebSphere Integration Developer:
Procedure

1. Import the COBOL copybook into your WebSphere Integration Developer
module. See Creating a business object from a source file in the WebSphere
Integration Developer Information Center.

2. Add the SCA Import or SCA Export to the assembly diagram that has an
interface containing operations using message data types that were created
from the COBOL copybook.

3. Export the Project Interchange (PI) file from WebSphere Integration Developer.
4. Import the PI file into WebSphere Message Broker using the Importer wizard.
5. Create the Inbound or Outbound SCA message flow from the SCA Definition

file that the importer created.
6. Create a second message set and import the same COBOL copybook that was

used to import into WebSphere Integration Developer.
7. Update the project references for your message flow project so that it also

references the second message set.
8. In the message flow, select the Input message parsing tab in the SCAInput

node, or Response message parsing tab in the SCARequest or
SCAAsyncRequest node. Change the message domain from BLOB to MRM.
Select the second message set that you created in the message set property.
Select the relevant message type and message format.

9. Continue developing the rest of the application in WebSphere Message Broker.

Starting from WebSphere Message Broker:
Procedure

1. Create a message set from the COBOL copybook.
2. Generate the Broker SCA definition.
3. Export the SCA component.
4. In WebSphere Integration Developer, import the SCA import or export

component and WSDL that have been exported from WebSphere Message
Broker. Do not select the XSD files. See Importing WSDL files in WebSphere
Integration Developer Information Center.

5. In WebSphere Integration Developer, select the import or export component
and select the binding tab. For the input data format and output data format,
click Select and step through the Data Format Transformation wizard; the
information required by this wizard is not exported from WebSphere Message
Broker.

6. In WebSphere Integration Developer, create the data types in the same module
by importing the COBOL copybook. See Creating a business object from a source
file in WebSphere Integration Developer Information Center.

7. Update the operations in the interface used by the SCA Import or Export so
that they use the data types that you created.

8. Continue developing the rest of the application in WebSphere Integration
Developer.

Related tasks:

2104 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx

“Importing SCA import or SCA export components” on page 2943
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to import SCA import or SCA export components from WebSphere
Integration Developer. You must import an SCA import or SCA export into the
workspace to provide a broker SCA definition for use in configuring the SCA
nodes.
“Importing from COBOL copybooks” on page 2937
This topic describes how to create a new message definition from a COBOL data
structure using the New Message Definition File wizard in the WebSphere Message
Broker Toolkit.
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
“Exporting an SCA Import or Export from a Broker SCA definition” on page 2945
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to export SCA import or SCA export components. You must export
an SCA import or SCA export if the Broker SCA definition is to be used by
WebSphere Integration Developer.

Message flows for Service Component Architecture (SCA)
Use the SCA nodes to develop message flows so that WebSphere Message Broker
can interoperate with WebSphere Process Server. These nodes support scenarios in
which service components that run on WebSphere Process Server either are called
from WebSphere Message Broker or call a WebSphere Message Broker message
flow.

Message flows that are called by service components in WebSphere Process Server
are SCA inbound message flows. Message flows that call service components in
WebSphere Process Server are SCA outbound message flows.

Inbound flows use either a SCAInput node, or a pairing of the SCAInput node and
SCAReply node to process messages from WebSphere Process Server.

Outbound flows use either a SCARequest node, or a pairing of the
SCAAsyncRequest node and SCAAsyncResponse node, to call a service component
in WebSphere Process Server.
Related concepts:
“SCA inbound message flows”
SCA inbound message flows are message flows that can be called by a service
component running on WebSphere Process Server. By using SCAInput and
SCAReply nodes in your message flow, you can process messages from WebSphere
Process Server.
“SCA outbound message flows” on page 2107
SCA outbound message flows are message flows that call a service component on
WebSphere Process Server. By using an SCARequest node, or a pair of
SCAAsyncRequest and SCAAsyncResponse nodes, you can call a service
component in WebSphere Process Server.

SCA inbound message flows:

SCA inbound message flows are message flows that can be called by a service
component running on WebSphere Process Server. By using SCAInput and
SCAReply nodes in your message flow, you can process messages from WebSphere
Process Server.

Chapter 9. Developing message flow applications 2105

When you want WebSphere Process Server to call services that are provided by
WebSphere Message Broker, the SCAInput node acts as an SCA endpoint for the
WebSphere Process Server service component. It accepts requests from WebSphere
Process Server. The SCAReply node sends replies back to WebSphere Process
Server.

Values for many of the properties of the SCAInput node that relate to the
WebSphere Process Server binding are provided in the Broker SCA definition. You
can generate this in two ways:
v From a message set.
v From an SCA import component imported from WebSphere Integration

Developer.

You can put an instance of the SCAInput node into a message flow in either of the
following ways:
v Drag a Broker SCA definition with an extension of .insca from a message set

onto the message flow editor canvas. If the .insca file contains only one-way
operations, dragging a .insca file onto the canvas creates a SCAInput node.
Otherwise, a pair of SCAInput and SCAReply nodes is created. If you use this
method, many of the values for the properties of the node or nodes are supplied
by the Broker SCA definition.

v Drag an instance of the node from the node palette onto the canvas. You then
configure the node by dragging a Broker SCA definition with an extension of
.insca onto the node.

The values for properties that relate to the binding supported by the specific SCA
component are automatically supplied to the node from the Broker SCA definition;
you do not have to manually provide them.
Related concepts:
“Using Broker SCA definitions to configure message flows” on page 2102
Use Broker SCA definitions to create and configure SCA nodes in a message flow.
“SCA outbound message flows” on page 2107
SCA outbound message flows are message flows that call a service component on
WebSphere Process Server. By using an SCARequest node, or a pair of
SCAAsyncRequest and SCAAsyncResponse nodes, you can call a service
component in WebSphere Process Server.
“Message flows for Service Component Architecture (SCA)” on page 2105
Use the SCA nodes to develop message flows so that WebSphere Message Broker
can interoperate with WebSphere Process Server. These nodes support scenarios in
which service components that run on WebSphere Process Server either are called
from WebSphere Message Broker or call a WebSphere Message Broker message
flow.
Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
“Importing SCA import or SCA export components” on page 2943
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to import SCA import or SCA export components from WebSphere
Integration Developer. You must import an SCA import or SCA export into the
workspace to provide a broker SCA definition for use in configuring the SCA
nodes.
Related reference:

2106 WebSphere Message Broker Version 7.0.0.8

“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SCAReply node” on page 4726
Use the SCAReply node to send a message from the broker to the originating client
in response to a message received by a SCAInput node.
“SCAAsyncRequest node” on page 4690
Use the SCAAsyncRequest node with the SCAAsyncResponse node to construct a
pair of message flows that invoke a WebSphere Process Server service component
asynchronously.
“SCAAsyncResponse node” on page 4698
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.
“SCARequest node” on page 4719
Use the SCARequest node to send a request to WebSphere Process Server. The
node is a synchronous request and response node, and blocks after sending the
request until the response is received. The node can also send one-way requests.

SCA outbound message flows:

SCA outbound message flows are message flows that call a service component on
WebSphere Process Server. By using an SCARequest node, or a pair of
SCAAsyncRequest and SCAAsyncResponse nodes, you can call a service
component in WebSphere Process Server.

Many of the properties of the SCAAsyncRequest and SCAAsyncResponse nodes
are provided in the Broker SCA definition. You can generate this in two ways:
v From a message set.
v From an SCA export component imported from WebSphere Integration

Developer.

The Broker SCA definition contains specific data that relates to the binding
supported by the specific SCA component.

You create the appropriate nodes by dragging an outbound Broker SCA definition
(.outsca file) onto the message flow editor from a message set project.
v If the .outsca file contains either a single request-response operation, or more

than one operation (one-way or request-response), you are prompted to select
the operation. If the chosen operation is request-response, you can also choose
whether to invoke the service synchronously or asynchronously. Synchronous
invocation is the default value, and creates a SCARequest node. Choosing the
asynchronous option creates a pair of SCAAsyncRequest and
SCAAsyncResponse nodes.

v If the chosen operation is one-way, synchronous invocation is the only option,
and a SCARequest node is created.

Synchronous requests:

Use a SCARequest node when:
v WebSphere Message Broker needs to synchronously invoke a request-response

operation.
v WebSphere Message Broker needs to invoke a one-way operation in an

application running on WebSphere Process Server.

Chapter 9. Developing message flow applications 2107

If the request is request-response, the node sends the request, then blocks until it
receives a response, or the timeout period is exceeded. If the timeout period is
exceeded, the message received on the input terminal of the SCARequest is
propagated to the Failure terminal.

If the request is one-way, the node sends a request only. The message received on
the input terminal of the SCARequest node is propagated to the Out terminal.

Asynchronous requests: When WebSphere Message Broker needs to make an
asynchronous call to a service component that is provided by WebSphere Process
Server, use a message flow, or flows, that contains a pair of SCAAsyncRequest and
SCAAsyncResponse nodes. The SCAAsyncRequest node sends a request to a
service component running on WebSphere Process Server. The SCAAsyncResponse
node receives the response from WebSphere Process Server to a previously made
asynchronous request from an SCAAsyncRequest node. Responses are correlated
against the original requests.

The SCAAsyncRequest node requests sends a request to a service component
running on WebSphere Process Server. The SCAAsyncResponse node receives the
response from WebSphere Process Server to a previously made asynchronous
request from an SCAAsyncRequest node. Responses are correlated against the
original requests.

The SCAAsyncResponse node can be in the same message flow as the
SCAAsyncRequest node which makes the request, or it can be in a separate
message flow; it must, however, be in the same execution group as the
SCAAsyncRequest node.
Related concepts:
“Using Broker SCA definitions to configure message flows” on page 2102
Use Broker SCA definitions to create and configure SCA nodes in a message flow.
“Message flows for Service Component Architecture (SCA)” on page 2105
Use the SCA nodes to develop message flows so that WebSphere Message Broker
can interoperate with WebSphere Process Server. These nodes support scenarios in
which service components that run on WebSphere Process Server either are called
from WebSphere Message Broker or call a WebSphere Message Broker message
flow.
“SCA inbound message flows” on page 2105
SCA inbound message flows are message flows that can be called by a service
component running on WebSphere Process Server. By using SCAInput and
SCAReply nodes in your message flow, you can process messages from WebSphere
Process Server.
Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
“Importing SCA import or SCA export components” on page 2943
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to import SCA import or SCA export components from WebSphere
Integration Developer. You must import an SCA import or SCA export into the
workspace to provide a broker SCA definition for use in configuring the SCA
nodes.
Related reference:

2108 WebSphere Message Broker Version 7.0.0.8

“SCAAsyncRequest node” on page 4690
Use the SCAAsyncRequest node with the SCAAsyncResponse node to construct a
pair of message flows that invoke a WebSphere Process Server service component
asynchronously.
“SCAAsyncResponse node” on page 4698
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.

Working with databases
Create and configure databases to use with your message flow applications.

About this task
v “Databases overview”
v “Accessing databases from message flows” on page 2112
v “Accessing databases from ESQL” on page 2115
v “Extended database support” on page 2117
v “Event-based database integration” on page 2118
v “Configuring a DatabaseInput node” on page 2120
Related concepts:
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Databases overview
Brokers can access user databases to manipulate your business data. If you have
user databases, you must configure them before you can access them from your
message flow.

WebSphere Message Broker supports the databases that are listed in “Supported
databases” on page 3591 for user databases. If you configure your message flows
to access user databases, you cannot access some of the data types that are
supported by these databases. The supported data types are defined in “Data types
of values from external databases” on page 5288.

User databases

User databases are the databases in which you store the business data that is
processed by message flow applications. Additional local and remote database
managers might also be supported for your computer. For more information, see
“Supported databases” on page 3591 and “Database locations” on page 3595.

You must set up connections to the user databases so that the broker can access the
databases on behalf of its deployed message flows. Both ODBC and JDBC

Chapter 9. Developing message flow applications 2109

connections are supported; some restrictions apply on some platforms, as described
in the topics in this section. ODBC drivers are supplied and installed with
WebSphere Message Broker. JDBC drivers are not supplied by WebSphere Message
Broker; you must obtain these files from your database vendor. Supported drivers
are listed in “Supported databases” on page 3591.

You can use the mqsicvp command as an ODBC test tool; see “Enabling ODBC
connections to the databases” on page 668 for further information.

For information about connections to user databases, see “User database
connections.”
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“User database connections”
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Creating the user databases” on page 661
If your message flows create, update, retrieve, or delete application and business
data in one or more user databases, create the databases before you deploy the
message flows to a broker.
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Data types of values from external databases” on page 5288
How database data types are implicitly cast to ESQL data types.

User database connections:

User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.

ODBC connections to databases are managed internally by the broker, and
therefore any configurable connection pooling options that are available on the
ODBC driver should not be used.

The broker requires a database connection for each data source name (DSN) that is
referenced in the message flow, even if different DSNs resolve to the same physical
database.

2110 WebSphere Message Broker Version 7.0.0.8

The number of connections to a user database that a broker requires depends on
the actions of the message flows that access the database. For each message flow
thread, a broker that accesses a user database makes one connection for each data
source name (DSN). If a different node on the same thread uses the same DSN, the
same connection is used, unless a different transaction mode is used, in which case
another connection is required. For further information about transactions, see
“Database connections for coordinated message flows” on page 4235.

When you start a broker, and while it is running, it opens connections to
WebSphere MQ queues and to databases. The broker makes the connections when
it needs to use them, and they remain open until one of the following events
occurs:

The message flow has been idle for 1 minute
The message flow is stopped
The broker is stopped

If the message flow contains a DatabaseInput node, at least one database
connection remains open while the message flow is running.

Database connections from message flows that are not globally coordinated are
released when a flow has no work. For example, a connection is released if the
message flow input queue has no messages, and the database has not been
accessed for 1 minute.

Linux

UNIX

Windows

On Linux, UNIX, and Windows systems, to avoid

breaking global coordination, database connections are released only for message
flows that are not globally coordinated.

z/OS

On z/OS, database connections for globally coordinated message flows

are also released if the database has not been accessed for 1 minute.

To change the default time of 1 minute after which a database connection for an
idle message flow is released, use the following command:
mqsichangeproperties myBroker -e myExecutionGroup -o ComIbmDatabaseConnectionManager -n maxConnectionAge -v newValue

or the following command, to change the default time for all execution groups:
mqsichangeproperties myBroker -o ComIbmDatabaseConnectionManager -n maxConnectionAge -v newValue

where maxConnectionAge is specified in seconds. If maxConnectionAge is set to
option -1, database connections are never released until the execution group or
broker is stopped.

If you are using DB2 for your database, the default action is to limit the number of
concurrent connections to a database to the value of the maxappls configuration
parameter. The default for maxappls is 40. If you believe that the connections that
the broker might require exceeds the value for maxappls, increase this parameter
and the associated maxagents parameter to new values based on your calculations.

For z/OS, the number of connections does not change when you use ODBC CAF
(Call Attachment Facility) connections or RRSAF (Recoverable Resource Services
Attachment Facility). For more information on the number of connections required,
see You do not know how many database connections a broker requires.

Chapter 9. Developing message flow applications 2111

If you are using another database, check the database documentation for
information about connections and the limits or restrictions that might apply.

When a message flow is idle, the execution group periodically releases database
connections. Therefore, connections held by the broker reflect its current use of
these resources. This situation allows the broker to respond when a database
quiesces, if the database manager supports quiescing. Not all databases support the
quiesce function, and not all databases quiesce in the same way. Check your
database documentation for information about database quiescing.
Related tasks:
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Accessing databases from message flows”
Create and configure message flows to access user databases.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Support for Unicode and DBCS data in databases” on page 3668
You can manipulate Unicode Standard version 3.0 data, in suitably configured
databases, using ESQL, in nodes that access databases by ODBC. The broker does
not support DBCS-only columns in tables that are defined in databases.
“Database connections for coordinated message flows” on page 4235
When you configure a message flow to access a database, the broker establishes a
connection to that database based on the ODBC DSN.
“Listing database connections that the broker holds” on page 1002
The broker does not provide an interface that you can use to list the connections
that it has to a database. You must use the facilities of the database suppliers to list
connections.
“Quiescing a database” on page 1002
The broker and database exhibit specific behaviors when you quiesce the database.

“WebSphere MQ connections” on page 4222
The number of WebSphere MQ connections a broker requires to its queue manager
depends on the actions of the message flows that access the WebSphere MQ
resource.

Accessing databases from message flows
Create and configure message flows to access user databases.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a message flow” on page 1431
v “Working with databases” on page 2109

2112 WebSphere Message Broker Version 7.0.0.8

Read the following concept topic:
v “Message flow nodes” on page 1024

Check which databases are supported on which platform, and if any restrictions
apply:
v “Supported databases” on page 3591

About this task

You can access a database from a message flow in two ways:
v You can design a message flow that responds to events generated by the

database.
v After a flow has already started, you can access the database to read or update

information in it. Information from the database can be used to enhance or
influence the operation of the message flow.

You can access a database from a message flow by using the following nodes:
v Compute
v Database
v DatabaseInput
v DatabaseRetrieve
v DatabaseRoute
v DataDelete
v DataInsert
v DataUpdate
v Filter
v JavaCompute
v Mapping
v Warehouse

For more details about these nodes, and how to configure them in message flows,
see “Built-in nodes” on page 4293.

If you want the actions that the message flow takes against the database to be
coordinated with other actions, configure the message flow to support global
coordination of transactions. For information about how to complete this task, see
“Configuring transactionality for message flows” on page 1290.

To access a database from a message flow:

Procedure
1. Identify the database that you want to access. You can access an existing

database, or create a new database for this purpose. See “Data sources on
z/OS” on page 4014 for more information about what to call a z/OS user
database.
Create the database you want, or ask your database administrator to create it
for you. If you are using DB2 or Oracle databases, some of the samples
programs include basic instructions for creating databases, which you can use
as a guide. For information about which samples include databases, see
“Creating the user databases” on page 661.

2. Define a connection to the data source name (DSN) to enable a connection to
the database, if one does not exist:

Chapter 9. Developing message flow applications 2113

v Define a JDBC connection if you want to interact with a database directly
from a Java application. You can code Java in both a JavaCompute node and
in a Java user-defined node.
For more information, see “Enabling JDBC connections to the databases” on
page 683.

v Define an ODBC connection if you want to interact with a database in a
node that supports ESQL, including a JavaCompute node in which you use
the MbSQLStatement interface.
For more information, see “Enabling ODBC connections to the databases” on
page 668.

3. Authorize the broker to access the database.
Access to a user database from within a message flow is controlled by user ID
and password.

v Linux UNIX Windows Use the mqsisetdbparms command to specify a
user ID and password for a specific database, or to set up a default user ID
and password.

v z/OS Use the BIPSDBP JCL in the customization data set <hlq>.SBIPPROC
to customize the mqsisetdbparms command to specify a user ID and
password for a specific database, or to set up a default user ID and
password.

What to do next

The following samples access databases from message flows:
v Message Routing
v Data Warehouse
v Error Handler
v Airline Reservations

Message Routing and Data Warehouse use Compute nodes to access the database.
Error Handler uses Database nodes to access the database, and Airline
Reservations uses both Compute and Database nodes.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Interaction with databases using ESQL” on page 2487
Use ESQL statements and functions to read from, write to, and modify databases
from your message flows.
“Interacting with databases by using the JavaCompute node” on page 2661
Access databases from Java code included in the JavaCompute node.

2114 WebSphere Message Broker Version 7.0.0.8

“Extending the capability of a Java message processing or output node” on page
3069
Within a message processing or output node, you can add extended functions to
your Java node.
“Adding database definitions to the WebSphere Message Broker Toolkit” on page
2278
Use the New Database Definition File wizard to add database definitions to the
WebSphere Message Broker Toolkit.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Support for Unicode and DBCS data in databases” on page 3668
You can manipulate Unicode Standard version 3.0 data, in suitably configured
databases, using ESQL, in nodes that access databases by ODBC. The broker does
not support DBCS-only columns in tables that are defined in databases.
“Data sources on z/OS” on page 4014

Accessing databases from ESQL
Configure your broker and your database to support connections from message
flows.

Before you begin

Before you start:

v Create the broker.

You must configure both your broker and your databases to support read, write,
and update operations in your message flows.

About this task
v Set the Data Source property of each node to the name (that is, the ODBC DSN)

of the database that you want to access.
v Configure the broker to be able to connect to the database:

– Create ODBC data source connections on the system on which the broker is
running.

– Define a user ID and password to be used by the broker to connect to the
database:

Chapter 9. Developing message flow applications 2115

- If you have used the mqsisetdbparms command, or submitted the JCL
member BIPSDBP in the customization data set <hlq>.SBIPPROC on z/OS, to
set a user ID and password for a particular database, the broker uses these
values to connect to the database.

- If you have not set up a specific user ID and password for this database,
the broker users the default ID and password set by using the
mqsisetdbparms command, or the JCL file BIPSDBP.

- If you have not set up a default user ID and password:
v On Windows, the service user ID and password are used to connect to

the database.
v On z/OS, the broker started task ID is used. The schema used is the one

defined for a specific DSN or a default DSN set up by using the
mqsisetdbparms command. If neither exist, the value of CURRENTSQLID in
the BIPDSNAO file is used. If CURRENTSQLID is not set, the schema defaults
to the started task user ID for the broker.

v On other platforms, connection to the database fails.
v Set up the authorization for the user ID to access the database by using the

administration facilities provided by the database vendor. If you do not do so,
the broker generates an error when the message flow runs.

v All databases accessed from the same node must have the same ODBC functions
as the database specified on the Data Source property on that node. This
requirement is always satisfied if the databases are of the same type (for
example, DB2 or Oracle), at the same release level (for example, release 9.1), and
on the same platform. Other database combinations might have the same ODBC
functions. If a node tries to access a database that does not have the same ODBC
functions as the database specified on the Data Source property on that node,
the broker generates an error message.
You can use the mqsicvp command as an ODBC test tool. This test tool can be
run against two databases simultaneously, and tells you whether those two
datasources are eligible to be used together in the same node.
The test tool is also useful in displaying any limitations there might be in your
datasource, prior to constructing your ESQL; see “Enabling ODBC connections
to the databases” on page 668 for further information.

v With a single SELECT FROM clause, you can access only tables that exist in a single
database.

v If you access database columns that have names composed of only numeric
characters, you must enclose the names in double quotation marks; for example,
"0001". Because of this restriction, you cannot use a SELECT * statement, which
returns the names without quotation marks; the names are therefore invalid and
the broker raises an exception.

For details of the ESQL statements and functions that you can use to access
databases, see “Interaction with databases using ESQL” on page 2487.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“User database connections” on page 2110
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.
Related tasks:

2116 WebSphere Message Broker Version 7.0.0.8

“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Support for Unicode and DBCS data in databases” on page 3668
You can manipulate Unicode Standard version 3.0 data, in suitably configured
databases, using ESQL, in nodes that access databases by ODBC. The broker does
not support DBCS-only columns in tables that are defined in databases.

Extended database support
Use WebSphere Message Broker ODBC Database Extender (IE02) to allow
WebSphere Message Broker to support two ODBC database driver managers in the
same process space.

Database supported:

solidDB
solidDB is an in-memory database product from IBM. solidDB V6.5 is
supported; for more information see IBM solidDB product family.

See “Supported databases” on page 3591 for a full list of supported operating
systems on which the WebSphere Message Broker supports solidDB.
Related tasks:
“Connecting to a database from Linux and UNIX systems using the WebSphere
Message Broker ODBC Database Extender (IE02)” on page 682
WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager and this topic describes how you set up and configure the broker
to use it.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

Chapter 9. Developing message flow applications 2117

http://www-01.ibm.com/software/data/soliddb/

“Sample WebSphere Message Broker ODBC Database Extender (IE02) configuration
files” on page 3596
How you use WebSphere Message Broker ODBC Database Extender (IE02) to load
the correct data source driver.
“mqsicvp command” on page 3857
Use the mqsicvp command to perform verification tests on a broker, or to verify
ODBC connections.

Event-based database integration
Use a DatabaseInput node to respond to events in a database. For example, the
broker can keep an external system synchronized with a database by sending
updates to the target system whenever data is changed in the database.

The database must record the fact that data has changed in an event store, which is
typically a database table. The event store is not the same as the application data.
The following diagram shows the interaction between the database, event store,
and the broker.

1. A database application changes a database table.
2. The database management system (DBMS) records the change in the event

store.
3. The broker polls the event store after the interval specified in the Polling

interval configuration setting.
4. WebSphere Message Broker retrieves the new or changed data, and updates the

event store, so that the data is processed only once.
5. WebSphere Message Broker processes the data, and ultimately presents it to the

target application, for example SAP, web services, or CICS Transaction Server
for z/OS. The data can be presented in a different logical and physical format,
if required.

Implementing: Implementing this scenario involves the following steps:
1. Configuring the database to record events.
2. Determining the format in which the target system must receive the data from

these new events.
3. Configuring the broker to detect these events by using the DatabaseInput node.

To configure the DatabaseInput node, see “Configuring a DatabaseInput node”
on page 2120.

4. Configuring the rest of the message flow to present the data to your target
system in the correct format.

The DatabaseInput node: The following diagram shows how the DatabaseInput
node works.

2118 WebSphere Message Broker Version 7.0.0.8

When the process starts, ReadEvents checks the event store for new events, which
are then used by BuildMessage to build the message. This message is propagated
to the message flow and then EndEvent updates the event store to ensure that the
event cannot be processed again. When all events have been processed, the broker
calls ReadEvents to retrieve any events that have been added since the previous
check. If the event store is empty, the broker waits until the polling interval has
expired, and then calls ReadEvents again. To avoid contention, the check of the
event store is single-threaded.

For each event that is read by ReadEvents, BuildMessage builds the message that
is propagated to the message flow. Building the message typically uses the event
data to look up data in the application table. The data from the application table is
then used to construct the message. When BuildMessage ends, the message is
automatically propagated to the message flow. When the message is propagated,
the broker starts any downstream nodes that are required to process the message.

After the message has been propagated to the message flow, EndEvent updates the
event store to ensure that the event that has just been processed cannot be
processed again.

The detailed operation of ReadEvents, BuildMessage, and EndEvent are controlled
by ESQL code. The DatabaseInput node contains an ESQL module with sample

Chapter 9. Developing message flow applications 2119

code and comments, which you must modify to suit your requirements. For
information about modifying the ESQL, see “Configuring a DatabaseInput node.”

Transactions and Scaling: The processes that are completed by the DatabaseInput
node are split across separate transactions. A new transaction is started when
ReadEvents starts. When ReadEvents ends, this transaction is committed and new
events are marked for processing. By committing this transaction, any locks put on
the database by ESQL code that is run from ReadEvents are released. Then, for
each event received by BuildMessage, a new transaction is started. This new
transaction is committed after EndEvent finishes.

To scale a DatabaseInput node for many events, change the Additional instances
property on the Instances tab from its default value of 0 to the number of
instances that you require. If you are using additional instances, the database must
be configured so that multiple applications can read different rows from the
application table at the same time. ReadEvents always runs in single-threaded
mode to avoid database contention, even if you use additional instances. To
improve performance, ReadEvents can read multiple events each time it runs, and
these events can be processed at the same time by multiple instances of
BuildMessage. The event store must have a primary key, which ReadEvents uses to
identify events that are currently being processed. You do not have to write the
ESQL in ReadEvents to filter out events that are currently being processed by the
message flow.
Related concepts:
“Event tables” on page 2126
An event table stores information about changes to application tables.
“Databases overview” on page 2109
Brokers can access user databases to manipulate your business data. If you have
user databases, you must configure them before you can access them from your
message flow.
Related tasks:
“Responding to database updates” on page 2123
Implement a message flow that responds to database updates, and presents the
data to another application.
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Configuring a DatabaseInput node”
Create and configure message flows that respond to events in a database.
Related reference:
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“New message definition file wizard: Create a new message definition file from a
database definition” on page 6365
You can create a new message definition from a database definition file (.dbm) by
using the New Message Definition File wizard in the WebSphere Message Broker
Toolkit.

Configuring a DatabaseInput node:

Create and configure message flows that respond to events in a database.

2120 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Read the following topics:
v “Event-based database integration” on page 2118
v “Responding to database updates” on page 2123

Check which databases are supported on which platform, and if any restrictions
apply:
v “Supported databases” on page 3591

Ensure that your database is configured to record events (uses an event table), and
that you know how to query those events. For information about event tables and
triggers, see the DatabaseInput Node sample. You can view information about
samples only when you use the information center that is integrated with the
WebSphere Message Broker Toolkit or the online information center. You can run
samples only when you use the information center that is integrated with the
WebSphere Message Broker Toolkit.

z/OS

If you use DB2 on z/OS, your user ID (or your user group) requires

permission to perform a SELECT on SYSIBM.SYSJAROBJECTS.

Complete the following tasks:
v Add a database definition to the toolkit

About this task

When you drag a DatabaseInput node onto the canvas, WebSphere Message Broker
creates an ESQL module that contains boilerplate text. To configure the
DatabaseInput node, modify the statements in that module to suit your
requirements.

When you double-click the node to modify the ESQL code, the editor displays the
Database Event Design tab for the module. Complete the mandatory fields and
then click Generate query. To view or modify the code, click the Source tab. Code
that has been generated is clearly marked by color-coded --@!{ and --@!}
comments. Any changes that you make within these comments are lost if you
regenerate the code.

Procedure

1. In the WebSphere Message Broker Toolkit, drag a DatabaseInput node onto the
canvas, and double-click the node. The Database Event Design tab is displayed.
Ensure that the correct module is selected.

2. Complete the Event Table section.
a. Optional: Complete the Database schema property. Leave it blank to use the

default runtime schema.
b. Complete the Table property. This property represents the database table

used as your event store.
c. Complete the Primary key property. This property represents the primary

key of the database table used as the event store.
d. Complete the Foreign key to application table property. This property

represents the column in the event table that references the row in the

Chapter 9. Developing message flow applications 2121

application table containing the changed data to be processed by the
DatabaseInput node. This is typically the primary key of the application
table.

e. Optional: Complete the Status column property. This property represents
the name of a column, if you update a column in the event table to indicate
that the event has been processed. Leave blank if you delete events from the
event table after processing.

f. Optional: Complete the New event status value property. This property
represents the value written to the status column when the event is first
added. Enclose character values in single quotation marks, for example 'Y'.
Enter numbers without quotation marks. For a null value, enter NULL.
Check the trigger setting in your database for appropriate values.

g. Optional: Complete the Processed event status value property. This
property represents the value written to the status column after the event
has been processed. Enclose character values in single quotation marks, for
example 'Y'. Enter numbers without quotation marks. For a null value, enter
NULL. Check the trigger setting in your database for appropriate values.

3. Complete the Application Table section.
a. Complete the Table property. This property represents the table that

includes the changed data to be processed by the DatabaseInput node.
b. Complete the Primary key property. This property represents the primary

key of the database table used as the application table.
c. Complete the Output message element property. This property represents

the output message that will be propagated to the flow.
4. Click Generate query.
5. Optional: Click the Source tab to view the code, or add customized code.
6. On the Basic tab of the DatabaseInput node, specify the data source. This data

source is the ODBC data source name of the database that contains the tables
that you refer to in the ESQL module. See “Enabling ODBC connections to the
databases” on page 668.

7. On the Basic tab, ensure that the ESQL module property refers to the correct
module.

8. Optionally, change values on the other tabs of the node.
9. Configure the rest of the flow to use the message from this node.

What to do next

Configure your target system to receive the message.

Changing the default color of auto-generated text:
Procedure

1. Click Window > Preferences.
2. In the tree on the left, navigate to Broker Development > ESQL > ESQL

Editor.
3. On the Colors tab, select Auto-generated, and select the color.
Related concepts:
“Event tables” on page 2126
An event table stores information about changes to application tables.
Related tasks:
“Responding to database updates” on page 2123
Implement a message flow that responds to database updates, and presents the

2122 WebSphere Message Broker Version 7.0.0.8

data to another application.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Interaction with databases using ESQL” on page 2487
Use ESQL statements and functions to read from, write to, and modify databases
from your message flows.
“Selecting data from database columns” on page 2491
You can configure a Compute, Filter, or Database node to select data from database
columns and include it in an output message.
“Accessing multiple database tables” on page 2496
You can refer to multiple tables that you have created in the same database. Use
the FROM clause on the SELECT statement to join the data from the two tables.
“Creating a message definition file from an existing resource” on page 2867
You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML schema form.
“Adding database definitions to the WebSphere Message Broker Toolkit” on page
2278
Use the New Database Definition File wizard to add database definitions to the
WebSphere Message Broker Toolkit.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.

Responding to database updates:

Implement a message flow that responds to database updates, and presents the
data to another application.

Before you begin

Before you start:

v Create an event table (a database table that serves as a transient store for event
data).

v Create a trigger on the application data table. The trigger inserts a row into the
event store whenever the application data is changed.

v Configure the broker runtime to connect to the database; see “Enabling ODBC
connections to the databases” on page 668.

For information about event tables and triggers, see the DatabaseInput Node
sample. You can view information about samples only when you use the
information center that is integrated with the WebSphere Message Broker Toolkit
or the online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker Toolkit.

Chapter 9. Developing message flow applications 2123

z/OS If you use DB2 on z/OS, your user ID (or your user group) requires
permission to perform a SELECT on SYSIBM.SYSJAROBJECTS.

You do not need experience of ESQL to complete this task.

About this task

Scenario: A retail company uses a relational database to manage its stock
inventory. Since a recent acquisition, a new set of applications based on XML and
WebSphere MQ are added to the environment. The applications notify interested
parties of any changes to the stock levels. The applications have a predefined XSD
schema model that describes the input message.

WebSphere Message Broker is used to respond to database updates, and to notify
the WebSphere MQ application of these changes.
1. A DatabaseInput node retrieves the data.
2. A transformation node, such as a Compute node or a Mapping node,

transforms the data to the target format.
3. An output or request node, such as an MQOutput node, sends the transformed

message to the target system.

You will complete the following actions:
1. “Discover the database model”
2. “Create a new message model for the database input” on page 2125
3. “Create the message flow” on page 2125
4. “Test the flow” on page 2126

Discover the database model:

Create a .dbm file that you will use to create the message model. You create a data
design project, and use a wizard to give WebSphere Message Broker details of your
database event store and data table.

Procedure

1. Click File > New > DataBase Definition.
2. Click New to create a new data design project, or select an existing data design

project from the drop down list.
3. Select the appropriate database type and version, and then click Next.
4. Select an existing JDBC connection, or create a connection to your database. If

you create a connection, test the connection.
5. Select the database schema that you will use to create the message definition.

2124 WebSphere Message Broker Version 7.0.0.8

6. Select the database elements that you need for the model. You require Tables
and Triggers. The data model is created, and you can see details of the
database tables that are described in the chosen schema.

Create a new message model for the database input:

Create a new message schema model file from the discovered data definition if you
require a model of the data structure that the database input will present. You
need a model if you want to graphically map this input. The model also enables
content assistance auto-completion of paths in the ESQL editor if you are
transforming the data in ESQL.

Procedure

1. Click File > New > Message model

2. In the Other section, select Database record, and then click Next.
3. Select Create an XML schema file from a database definition, and then click

Next.
4. Navigate to and select the Database definition .dbm file that you created during

discovery, and then click Next.
5. Ensure that the database tables that will be used are selected.
6. Click Next and then Finish.

Results

The New Message model wizard creates an XML schema message model file in
your selected location.

Create the message flow:

Create and configure a flow that consists of a DatabaseInput node, a Mapping
node, and an MQOutput node.

You will use the schema file that describes the input message to create a message
definition file.

Procedure

1. Create a message flow project that references both the data design project, and
the message set project, that you created earlier.

2. Create a message flow, and drag a DatabaseInput node onto the canvas.
3. Configure the node as follows:

a. Set the Data source to the ODBC connection that you created earlier.
b. Follow the instructions in “Configuring a DatabaseInput node” on page

2120 to configure the ESQL procedures to provide details of the event store
and application data.

4. To enable graphical mapping from the database data to the output message
format, in addition to Creating the new message model for the database input
as above, you also require a message model for the target message. This can be
a DFDL or XML schema message model as appropriate to your scenario.

5. Drag a Mapping node onto the flow, and configure it.
a. Set the map source to the message that you defined in “Create a new

message model for the database input.”
b. Set the map target to the TARGET message that you just defined.

Chapter 9. Developing message flow applications 2125

You can use other methods to transform the message; see “Transforming and
enriching messages” on page 2227.

6. Drag an MQOutput node onto the canvas, and set the queue manager name
and queue name.

Test the flow:

Use the debugger to test the flow.

Procedure

1. Start the debugger, and then add breakpoints to the flow.
2. Deploy the flow.
3. Change the data source, for example by adding a new row. You can change

data from within the WebSphere Message Broker Toolkit. Under Data Source
Explorer, right-click the table and choose Data > Edit.

4. Use the debugger, and WebSphere Message Broker Explorer, to check that the
flow is working correctly.

Related concepts:
“Event-based database integration” on page 2118
Use a DatabaseInput node to respond to events in a database. For example, the
broker can keep an external system synchronized with a database by sending
updates to the target system whenever data is changed in the database.
“Event tables”
An event table stores information about changes to application tables.
Related tasks:
“Starting the flow debugger” on page 3160
To start the flow debugger, you must attach it to an execution group. When the
flow debugger is started, you can introduce test messages to your message flow.

Event tables:

An event table stores information about changes to application tables.

The event table is a database table created by the user, generally within the same
schema as the application table for which it stores events. The event table describes
the type of change made to an application table, and also contains an identifier for
the changed row.

To populate an event table, one or more triggers must be created. A trigger is a
database construct that can run an SQL script when a predefined action occurs. For
example, a trigger can insert a row in the event table when an update in the
application table occurs.

For examples of triggers and event tables, see the DatabaseInput Node sample. You
can view information about samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The following table shows some typical columns in an event table, and the reasons
for including them.

2126 WebSphere Message Broker Version 7.0.0.8

Column name Column function Example value

EVENT_ID Required. The primary key, which identifies the
event being processed.

1

OBJECT_KEY Required. The identifying element of the changed
row in the application table, typically the element
of the row in the primary key column.

cust1

OBJECT_VERB Optional. The change performed, typically one of
CREATE, UPDATE, or DELETE. This event is
used to distinguish a DELETE event, where the
application table contains no row to retrieve when
the message for the flow is built.

CREATE

OBJECT_NAME Optional. The name of the application table that
has changed. This column is required if the
DatabaseInput node is being used to support
updates to more than one application table.

customer

EVENT_PRIORITY Optional. The priority of the event. For example,
you can ensure that high value transactions are
computed first.

1

EVENT_TIME Optional. The time at which the operation was
performed. Generally used for logging or
performance monitoring of the flow.

2010-10-
19T17:10:00

EVENT_STATUS Optional. Used to determine if the event has
already been processed. Required if the events are
not to be deleted or archived after processing.

0

EVENT_COMMENTOptional. Free-form field, for example, it can be
used to store the outcome of the message
processing if the event was not deleted after
processing.

Processed with
exceptions

The column names are examples only. You can use other names. If you have a
high-throughput application table, a single row might be changed multiple times
between retrieving events from the event table. In this case, only the details of the
latest change are picked up by the flow. If a record of intermediate changes is
required, include more details in the event table. Also ensure that your event table
has enough information about events generated by DELETE operations. Here,
because the row in the application table no longer exists, all information required
to successfully process the event must be present in the event table.

For example, if a new customer with primary key cust1 is created in the
application table, a row is added to the event table:

EVENT_ID OBJECT_KEY OBJECT_VERB

1 cust1 Create

The DatabaseInput node responds to the change, and processes the new row in a
message flow.

Processing options on completion

When the message flow has processed an event, the flow can handle the event in
the following ways:

Chapter 9. Developing message flow applications 2127

v Delete the event. Use this option if you do not want to store the event for future
reference.

v Update the status column. Use this option if you want to keep a record of
processed events. Your event table must have a status column.

v Archive the event to a separate event table. Use this option if you want to keep
a record of events while keeping the event table to a minimal size.

Related concepts:
“Event-based database integration” on page 2118
Use a DatabaseInput node to respond to events in a database. For example, the
broker can keep an external system synchronized with a database by sending
updates to the target system whenever data is changed in the database.
Related tasks:
“Configuring a DatabaseInput node” on page 2120
Create and configure message flows that respond to events in a database.
“Responding to database updates” on page 2123
Implement a message flow that responds to database updates, and presents the
data to another application.
Related reference:
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.

Working with IMS
You can use the IMSRequest node to connect to IMS, a message-based transaction
manager and hierarchical-database manager for z/OS.

About this task

This section contains the following concept information:
v “IBM Information Management System (IMS)” on page 2129
v “IMS nodes” on page 2130
v “IMS transactions and programs” on page 2132
v “Response models” on page 2133
v “IMS message structure” on page 2135
v “IMS connections” on page 2137

This section contains the following tasks:
v “Preparing the environment for IMS nodes” on page 731
v “Securing the connection to IMS by using SSL” on page 549
v “Propagating security credentials to IMS” on page 2144
v “Changing connection information for the IMSRequest node” on page 732
Related tasks:
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

2128 WebSphere Message Broker Version 7.0.0.8

IBM Information Management System (IMS)
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.

IMS includes two components:

IMS Database Manager (IMS DB)
A database management system for defining database structure, organizing
business data, performing queries against the data, and performing
database transactions.

IMS Transaction Manager (IMS TM)
A message-based transaction manager for processing input and output
messages. IMS TM manages message queuing, security, scheduling,
formatting, logging, and recovery.

In addition to these components, IMS Connect manages communications for IMS,
connecting one or more clients with one or more IMS systems. IMS Connect also
handles workload balancing, and supports the IBM supplied client, the IMS TM
resource adapter.

The following diagram shows the layers of communication between WebSphere
Message Broker and IMS.

WebSphere
Message
Broker

IMS
Connect

MFS

TM
Resource
Adapter

WebSphere
MQ

MQ-IMS
Bridge
(XCF)

OTMA IMS TM

DB

IMS DB
or other

TCP/IP

Queue

receive

= Transactions

= scheduler

= Database Manager

send

Applications might
or might not
connect to a

database

MFS outputs the
data to a green screen

Application

Application

Application

You can also use the following methods to connect to an IMS system:
v The WebSphere MQ-IMS bridge

Chapter 9. Developing message flow applications 2129

The WebSphere MQ-IMS bridge is a component of WebSphere MQ for
z/OS. You can use it to access applications on your IMS system from
WebSphere MQ applications. For more information about the WebSphere
MQ-IMS bridge, see WebSphere MQ Version 7 Information Center online.

v The IMS SOAP Gateway

The IMS SOAP Gateway is a Web service solution that integrates IMS assets in a
Service-Oriented Architecture (SOA) environment. For more information, see
IMS SOAP Gateway web page.

For more details about how IMS works with WebSphere Message Broker, see “IMS
nodes.”

For further information about IMS and its components, see the IBM Information
Management Software Library web page, which contains links to the IMS
information center and associated IBM Redbooks publications.
Related concepts:
“IMS nodes”
WebSphere Message Broker message flows use IMS nodes to call programs that are
running in IMS.
Related tasks:
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

IBM Information Management Software Library web page

IMS nodes:

WebSphere Message Broker message flows use IMS nodes to call programs that are
running in IMS.

The IMS node sends a bit stream to IMS, which schedules one of its programs to
process the message. The program generates a message, which IMS sends back to
the IMS node, as illustrated in the following diagram.

WebSphere
Message
Broker

Request

Response

IMS Program

101101001010...

0011010100100...

The bit stream contains the routing information that IMS needs so that it can
schedule a program to receive that bit stream. The structure of the bit stream varies

2130 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www-01.ibm.com/software/data/ims/soap/
http://www.ibm.com/software/data/ims/library/
http://www.ibm.com/software/data/ims/library/
http://www.ibm.com/software/data/ims/library/

depending on whether it is a request or response bit stream. The structure of the
different bit streams are described in the following sections.

Request bit stream

The structure of the request bit stream is illustrated by the following diagram.

byte

L L Z Z T R A N C O D E D A T A ...

0 1 2 3 4 5 6 7 8 9 A B C D E F ...

v LLZZ is a four-byte field. The first two bytes indicate the length of the bit
stream, and the other two bytes are reserved for use by IMS.

v The transaction code can contain up to eight characters. If the code contains less
than eight characters, the transaction code must be delimited by a space. When
the transaction code is less than eight bytes, IMS reads only the transaction code
and one space. The response segments do not need to have the transaction
name, but an IMS program can add it.

v The rest of the bit stream comprises the data that the IMS program needs.

IMS reads the first twelve bytes of the bit stream, but it passes the entire bit stream
to the IMS program.

Response bit stream

The structure of the response bit stream is illustrated by the following diagram.

byte

L L Z Z D A T A

0 1 2 3 4 5 6 7 8 9 A B C D E F ...

Commands

You can also use bit streams to run commands. The structure of the response bit
stream is illustrated by the following diagram.

byte

L L Z Z / D I S T R A N A L L

0 1 2 3 4 5 6 7 8 9 A B C D E F ...

The first character after LLZZ is the slash (/) character, which is followed by the
command verb and any arguments. For commands, the response bit stream has the
same format as the response bit stream for transactions: LLZZ is followed by the
response data.

For more information about IMS concepts, see the following topics:
v “IMS transactions and programs” on page 2132
v “Response models” on page 2133
v “IMS message structure” on page 2135
v “IMS connections” on page 2137
Related concepts:

Chapter 9. Developing message flow applications 2131

“IBM Information Management System (IMS)” on page 2129
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.
Related tasks:
“Preparing the environment for IMS nodes” on page 731
Before you can use the IMS nodes, you must set up the broker runtime
environment so that you can access the IMS system.
“Changing connection information for the IMSRequest node” on page 732
You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

IBM Information Management Software Library web page

IMS transactions and programs:

The IMS system administrator defines the transactions. For each transaction that is
defined, a program name is specified. When you invoke a transaction by using an
IMS node, the IMS Control Region determines which program is configured for
that transaction, and queues the data for retrieval by that program.

WebSphere
Message
Broker

IMS Control
Region

IMS Program 1

LL

LL

ZZ

ZZ

TRAN1

DATA...

DATA... ...

GU

SysGen

TRAN1

PGM=PROG1

TRAN2

PGM=PROG2

...

ISRT

...

After the program has prepared the response data for the IMS node in the message
flow, it inserts that data onto another queue. This output queue is tied to the
socket to which WebSphere Message Broker is connected. Therefore, multiple
concurrent message flows that are calling the same transaction each have a
separate queue to receive the responses.

2132 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/data/ims/library/

The IMS program gets messages by issuing a GU (GetUnique) call and it produces
messages by issuing an ISRT (Insert) call. These calls are known as DL/1 calls.
DL/1 is the programming interface to IMS. Other common DL/1 calls are PURG
(purge) and GN (GetNext).
Related concepts:
“IMS nodes” on page 2130
WebSphere Message Broker message flows use IMS nodes to call programs that are
running in IMS.
“Response models”
The synchronous request and response model is associated with IMS.
“IMS message structure” on page 2135
Each message that is sent to and from IMS can consist of one or more segments.
IMS messages often contain multiple segments.
“IMS connections” on page 2137
Open Transaction Manager Access (OTMA) is used to provide access to IMS from
WebSphere Message Broker.
“IBM Information Management System (IMS)” on page 2129
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.
Related tasks:
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

IBM Information Management Software Library web page

Response models:

The synchronous request and response model is associated with IMS.

Synchronous request and response
In the synchronous request and response model, the entire transmission is
returned to the IMS node synchronously.

After the IMS program has prepared the response data for the WebSphere
Message Broker message flow, it inserts that data onto a queue. WebSphere
Message Broker uses Open Transaction Manager Access (OTMA) to
communicate with the IMS program. OTMA helps to correlate the input to
the IMS program with the output from the IMS program by using a
transaction pipe (TPIPE). Therefore, multiple concurrent message flows that
are calling the same transaction each receive the relevant response.

Chapter 9. Developing message flow applications 2133

http://www.ibm.com/software/data/ims/library/

WebSphere
Message
Broker

OTMA IMS Control
Region

IMS Program 1

LL

LL

ZZ

ZZ

TRAN1

DATA...

DATA... ...

GU

SysGen

TRAN1

PGM=PROG1

TRAN2

PGM=PROG2

...

ISRT

...

TPIPE

The TPIPE is created automatically. It is not necessary for the name of the
TPIPE to be known to WebSphere Message Broker because it uses a mode
of operation known as sharable persistent sockets, whereby a TPIPE is created
automatically for every TCP/IP connection.

The output of a transaction can contain multiple messages. The IMS
program inserts then purges each message, as shown in the following
diagram. (For multi-segment output, the IMS program inserts multiple
messages without purging them.) If the IMS program inserts multiple
messages in a single sync point, OTMA correlates all of those messages to
the input message and returns them all to the message flow as a single
transmission.

WebSphere
Message
Broker

IMSConnect OTMA IMS Control
Region

IMS Program 1

LL

LL

LL

LL LL LL

LL

ZZ

ZZ

ZZ

ZZ ZZ ZZ

ZZ

TRAN1

MSG1

MSG2

MSG1 MSG2 MSG3

MSG3

DATA...

...

GU

...

ISRT

PURG

...

ISRT

PURG

...

ISRT

PURG

TPIPE

Related concepts:
“IMS nodes” on page 2130
WebSphere Message Broker message flows use IMS nodes to call programs that are
running in IMS.
“IMS transactions and programs” on page 2132
The IMS system administrator defines the transactions. For each transaction that is
defined, a program name is specified. When you invoke a transaction by using an
IMS node, the IMS Control Region determines which program is configured for
that transaction, and queues the data for retrieval by that program.
“IMS message structure” on page 2135
Each message that is sent to and from IMS can consist of one or more segments.
IMS messages often contain multiple segments.
“IMS connections” on page 2137
Open Transaction Manager Access (OTMA) is used to provide access to IMS from
WebSphere Message Broker.

2134 WebSphere Message Broker Version 7.0.0.8

“IBM Information Management System (IMS)” on page 2129
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.
Related tasks:
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

IBM Information Management Software Library web page

IMS message structure:

Each message that is sent to and from IMS can consist of one or more segments.
IMS messages often contain multiple segments.

The bit stream that flows between WebSphere Message Broker and the IMS
program (also known as the transmission) can contain multiple segments. Each
segment begins with the LLZZ and Transaction code fields that are described in
“IMS nodes” on page 2130. The transmission can contain multiple messages, each
one containing multiple segments. The IMS program gets the segments one at a
time and typically inserts the output data onto the queue one segment at a time.
The IMS program purges the end of a message before it sends the first segment of
the next message.

For input messages, each segment includes the LLZZ field. Only the first segment
contains the transaction code (Trancode) field. For output messages, each segment
includes the LLZZ field. The IMS program gets the segments one at a time. It
makes a GetUnique (GU) call to read the first segment of the next message, and a
GetNext (GN) call to read the next segment of the current message. The IMS
program typically inserts the output data to the queue one segment at a time, and
purges the end of a message before it sends the first segment of the next message,
as shown in the following diagram.

WebSphere
Message
Broker

IMSConnect OTMA IMS Control
Region

IMS Program 1

LL LL

LL LL LL

ZZ ZZ

ZZ ZZ ZZ

TRAN1TRAN1

SEG1 SEG2 SEG3

SEG2SEG1

...

GU

...

GN

...

ISRT

...

ISRT

...

ISRT

TPIPE

A COBOL IMS program typically includes a copybook with the data structure
definition of each segment. The program logic indicates the order in which the

Chapter 9. Developing message flow applications 2135

http://www.ibm.com/software/data/ims/library/

segments are retrieved and emitted by the program. The WebSphere Message
Broker application has two ways to implement this information:
v Model the entire message in MRM.
v Model each segment in MRM but configure the message flow to reflect the

application logic in determining the order of these segments.

An IMS transaction's response can have various structures:
v An MRM-CWF structure, such as a message definition that is derived from a

COBOL copybook
v An MRM-TDS structure when the output is 3270–based, such as a list of

name=value strings
v Another structure, such as XML output from a Java program that is running in

an IMS Java Processing Region (JPR)

If the message definition is derived from a COBOL copybook, a message is a
sequence of segments, each of which has a model built by importing its copybook.
If the output is 3270-based, each segment is a line of output with an MRM-TDS
model built by understanding the IMS transaction program's output.

IMS presents program output as one or more messages (typically, one output
message per input message), each of which comprises one or more segments. The
IMSRequest node presents the message as a single BLOB. You can parse the
message into segments and use Filter or Compute nodes to test the shape of the
response to determine how to re-parse the segments with ResetContentDescriptor
nodes.

You must set the LL and ZZ values on output. The LL value is the entire length of
the segment, including the four-byte LLZZ prefix. Therefore, the message flow
typically requires an ESQL expression to calculate the LL value. The LLZZ field
must use a big-endian encoding 785.
Related concepts:
“IBM Information Management System (IMS)” on page 2129
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.
“IMS nodes” on page 2130
WebSphere Message Broker message flows use IMS nodes to call programs that are
running in IMS.
“IMS transactions and programs” on page 2132
The IMS system administrator defines the transactions. For each transaction that is
defined, a program name is specified. When you invoke a transaction by using an
IMS node, the IMS Control Region determines which program is configured for
that transaction, and queues the data for retrieval by that program.
“Response models” on page 2133
The synchronous request and response model is associated with IMS.
“IMS connections” on page 2137
Open Transaction Manager Access (OTMA) is used to provide access to IMS from
WebSphere Message Broker.
Related tasks:
“Preparing the environment for IMS nodes” on page 731
Before you can use the IMS nodes, you must set up the broker runtime
environment so that you can access the IMS system.

2136 WebSphere Message Broker Version 7.0.0.8

“Changing connection information for the IMSRequest node” on page 732
You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

IBM Information Management Software Library web page

IMS connections:

Open Transaction Manager Access (OTMA) is used to provide access to IMS from
WebSphere Message Broker.

WebSphere
Message
Broker

IMS
Connect

IMS TM
Resource
Adapter

OTMA IMS Control
Region

IMS Program 1

SAF

X
C
F

SysGen

TRAN1
PGM=PROG1

TRAN2
PGM=PROG2

TCPIP Connection
Hostname

Port number

Cross Coupling
facility

DataStoreName

SAF Security
UserName
Password

TPIPE

OTMA uses the z/OS Cross Coupling Facility (XCF) to provide access to IMS from
an OTMA client. To access a service through XCF, you must specify a data store
name on the IMS node.

IMS Connect is an OTMA client that exposes a TCP/IP interface. WebSphere
Message Broker uses the IMS TM Resource Adapter, which connects to IMS
through IMS Connect. To connect to IMS Connect, you must specify a host name
and port number. If the IMS system is configured to authenticate users by using a
System Authorization Facility (SAF) product, such as RACF, you must specify a
user ID and password. You can use the mqsisetdbparms command to set a user ID
and password for an IMSConnect configurable service. For detailed information
about how to configure IMS Connect for security, see the IMS Connect Security
Support topic in the IBM Information Management Software for z/OS Solutions
Information Center.

Chapter 9. Developing message flow applications 2137

http://www.ibm.com/software/data/ims/library/
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp

The IMSRequest node can use an identity that is present on an input message, and
propagate it to IMS, by using the Propagate property on the security profile that is
defined for the node. For more information, see “Propagating security credentials
to IMS” on page 2144.

Some restrictions exist for the OTMA environment that affect the range of IMS
applications with which WebSphere Message Broker can interact. For example,
OTMA cannot update the IMS main storage database (MSDB) because it has read
only access to the database. For detailed information about the restrictions for the
OTMA environment, see the OTMA restrictions topic in the IBM Information
Management Software for z/OS Solutions Information Center.

Using configurable services for IMS nodes

You can configure IMS nodes to get connection details from a configurable service.
For details about creating, changing, reporting, and deleting the configurable
services, see “Changing connection information for the IMSRequest node” on page
732.

You can also use the IMSConnect configurable service to configure the IMSRequest
node to use Secure Sockets Layer (SSL) protocol. For more information, see
“Securing the connection to IMS by using SSL” on page 549.
Related concepts:
“IBM Information Management System (IMS)” on page 2129
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.
“IMS nodes” on page 2130
WebSphere Message Broker message flows use IMS nodes to call programs that are
running in IMS.
“IMS transactions and programs” on page 2132
The IMS system administrator defines the transactions. For each transaction that is
defined, a program name is specified. When you invoke a transaction by using an
IMS node, the IMS Control Region determines which program is configured for
that transaction, and queues the data for retrieval by that program.
“Response models” on page 2133
The synchronous request and response model is associated with IMS.
“IMS message structure” on page 2135
Each message that is sent to and from IMS can consist of one or more segments.
IMS messages often contain multiple segments.
Related tasks:
“Changing connection information for the IMSRequest node” on page 732
You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.
“Securing the connection to IMS by using SSL” on page 549
Configure the IMSRequest node to communicate with IMS over the Secure Sockets
Layer (SSL) protocol by creating a keystore file, and configuring the broker to use
SSL.
“Preparing the environment for IMS nodes” on page 731
Before you can use the IMS nodes, you must set up the broker runtime

2138 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp

environment so that you can access the IMS system.
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

IBM Information Management Software Library web page

Changing connection information for the IMSRequest node:

You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.

Before you begin

Before you start:

v Read “Configurable services” on page 1296 to find out more about configurable
services.

v Read “IBM Information Management System (IMS)” on page 2129 for
background information.

About this task

Use the IMSConnect configurable service to change the connection information for
the IMSRequest node. Two configurable services can connect to the same instance
of IMS Connect. The properties of the IMSConnect configurable service are
described in “Configurable services properties” on page 3766.

You can use the IMSConnect configurable service to configure the IMSRequest
node to use Secure Sockets Layer (SSL) protocol. For more information, see
“Securing the connection to IMS by using SSL” on page 549.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates an IMSConnect configurable service for the IMS instance
IMSA that is running on test.ims.ibm.com port 9999:
mqsicreateconfigurableservice MB7BROKER -c IMSConnect -o myIMSConnectService
-n Hostname,PortNumber,DataStoreName -v test.ims.ibm.com,9999,IMSA

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. This

Chapter 9. Developing message flow applications 2139

http://www.ibm.com/software/data/ims/library/

example changes all the nodes that are configured to use the
myIMSConnectService configurable service. After you run this command, the
IMSRequest node connects to the production system (production.ims.ibm.com)
instead of the test system (test.ims.ibm.com). The command also changes to
coded character set identifier (CCSID) to 37.
mqsichangeproperties MB7BROKER -c IMSConnect -o myIMSConnectService -n Hostname,CodedCharSetID
-v production.ims.ibm.com,37

See “Securing the connection to IMS by using SSL” on page 549 for information
about how to turn on SSL support in the broker by setting the UseSSL and
SSLEncryptionType IMSConnect configurable service properties.

v To display all IMSConnect configurable services, use the WebSphere Message
Broker Explorer, or the mqsireportproperties command, as shown in the
following example:
mqsireportproperties MB7BROKER -c IMSConnect -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:
mqsideleteconfigurableservice MB7BROKER -c IMSConnect -o myIMSconnectService

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Securing the connection to IMS by using SSL” on page 549
Configure the IMSRequest node to communicate with IMS over the Secure Sockets
Layer (SSL) protocol by creating a keystore file, and configuring the broker to use
SSL.
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

2140 WebSphere Message Broker Version 7.0.0.8

“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

Preparing the environment for IMS nodes
Before you can use the IMS nodes, you must set up the broker runtime
environment so that you can access the IMS system.

Before you begin

Before you start:

Read “IBM Information Management System (IMS)” on page 2129.

About this task

Complete the following steps to ensure that WebSphere Message Broker can
connect to the IMS system.

Procedure
1. Ensure that IMS Connect is installed and started on the IMS system.
2. If you do not want to configure IMS connection properties directly on the

IMSRequest node, define a configurable service for each IMS system to which
you want to connect.
For example, to create an IMSConnect configurable service for the IMS instance
IMSA that is running on test.ims.ibm.com, port 9999, run the
mqsicreateconfigurableservice command as shown:
mqsicreateconfigurableservice MB7BROKER -c IMSConnect -o myIMSConnectService
-n Hostname,PortNumber,DataStoreName -v test.ims.ibm.com,9999,IMSA

For details about how to create, change, and report configurable services, see
“Changing connection information for the IMSRequest node” on page 732. You
can use the IMSConnect configurable service to configure the IMSRequest node
to use Secure Sockets Layer (SSL) protocol. For more information, see “Securing
the connection to IMS by using SSL” on page 549.

3. Use the mqsisetdbparms command to set security details in the broker store.
For example, to associate a user ID and password pair with an IMS Connect
connection, run the mqsisetdbparms command as shown:
mqsisetdbparms MB7BROKER -n ims::mySecurityIdentity -u myuserid -p mypassword

Related concepts:

Chapter 9. Developing message flow applications 2141

“IBM Information Management System (IMS)” on page 2129
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.
Related tasks:
“Changing connection information for the IMSRequest node” on page 732
You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.
“Securing the connection to IMS by using SSL” on page 549
Configure the IMSRequest node to communicate with IMS over the Secure Sockets
Layer (SSL) protocol by creating a keystore file, and configuring the broker to use
SSL.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Securing the connection to IMS by using SSL
Configure the IMSRequest node to communicate with IMS over the Secure Sockets
Layer (SSL) protocol by creating a keystore file, and configuring the broker to use
SSL.

Before you begin

Before you start:

Set up a public key infrastructure (PKI) at broker level by following the
instructions in “Setting up a public key infrastructure” on page 504.

About this task

To configure the IMSRequest node to use SSL, complete the following steps.

2142 WebSphere Message Broker Version 7.0.0.8

Procedure
1. Turn on SSL support in the broker by setting the UseSSL and SSLEncryptionType

properties on the IMSConnect configurable service, as shown in the following
example.
This example changes the IMSRequest node that is configured to use the
myIMSConnectService configurable service. After you run this command, the
IMSRequest node connects to IMS over SSL.
mqsichangeproperties MB7BROKER -c IMSConnect -o myIMSConnectService -n
UseSSL,SSLEncryptionType -v True,Weak

2. Optional: Develop a message flow that contains a IMSRequest node.
3. Test your configuration.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“IMS connections” on page 2137
Open Transaction Manager Access (OTMA) is used to provide access to IMS from
WebSphere Message Broker.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Changing connection information for the IMSRequest node” on page 732
You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

Chapter 9. Developing message flow applications 2143

Propagating security credentials to IMS
The IMSRequest node can use an identity that is present in the Properties folder of
the message tree structure for the security credentials in a request, by using the
Propagate property on the security profile that is defined for the node.

About this task

If an IMSRequest node is configured with a security profile, it extracts security
tokens from the input message at run time, and propagates an identity to IMS.

Procedure

To propagate an identity to be used for the IMS request security credentials,
complete the following steps.
1. Ensure that an appropriate security profile exists for the IMSRequest node, or

create a security profile, by following the instructions in “Creating a security
profile” on page 433.

2. Use the Broker Archive editor to select a security profile for the IMSRequest
node that has identity propagation enabled. For detailed instructions, see
“Configuring for identity propagation” on page 492.

Related concepts:
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“IMS nodes” on page 2130
WebSphere Message Broker message flows use IMS nodes to call programs that are
running in IMS.
Related tasks:
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

Working with CORBA
Use CORBA nodes to connect to CORBA Internet Inter-Orb Protocol (IIOP)
applications.

About this task

This section contains the following concept information:
v “Common Object Request Broker Architecture (CORBA)” on page 2145
v “CORBA nodes” on page 2147
v “CORBA support” on page 2149
v “IDL data types” on page 2150
v “CORBA naming service” on page 2154
v “CORBA operation parameters” on page 2156

2144 WebSphere Message Broker Version 7.0.0.8

This section contains the following tasks:
v “Connecting to an external CORBA application” on page 2159
v “Developing a message flow with a CORBARequest node” on page 2161
v “Building a message for the CORBARequest node” on page 2164
v “Processing responses from a CORBARequest node” on page 2167
v “Defining where the CORBARequest node gets the object reference” on page 734
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

Common Object Request Broker Architecture (CORBA)
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.

CORBA is a standard for distributing objects across networks so that operations on
those objects can be called remotely. CORBA is not associated with a particular
programming language, and any language with a CORBA binding can be used to
call and implement CORBA objects. Objects are described in a syntax called
Interface Definition Language (IDL).

CORBA includes four components:

Object Request Broker (ORB)
The Object Request Broker (ORB) handles the communication, marshaling,
and unmarshaling of parameters so that the parameter handling is
transparent for a CORBA server and client applications.

CORBA server
The CORBA server creates CORBA objects and initializes them with an
ORB. The server places references to the CORBA objects inside a naming
service so that clients can access them.

Naming service
The naming service holds references to CORBA objects.

CORBARequest node
The CORBARequest node acts as a CORBA client.

The following diagram shows the layers of communication between WebSphere
Message Broker and CORBA.

Chapter 9. Developing message flow applications 2145

WebSphere Message Broker

CORBA
server

IIOP

IIOP IIOP

CORBARequest
node

IDL

Output
node

Input
node

Naming service
IOR: hello

1

2 3

The diagram illustrates the following steps.
1. CORBA server applications create CORBA objects and put object references in a

naming service so that clients can call them.
2. At deployment time, the node contacts a naming service to get an object

reference.
3. When a message arrives, the node uses the object reference to call an operation

on an object in the CORBA server.

For more details about how CORBA works with WebSphere Message Broker, see
“CORBA nodes” on page 2147.
Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.

2146 WebSphere Message Broker Version 7.0.0.8

“CORBA naming service” on page 2154
A CORBA naming service holds CORBA object references.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Building a message for the CORBARequest node” on page 2164
You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.
“Processing responses from a CORBARequest node” on page 2167
Configure the CORBARequest node to define the location to which responses are
sent.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

CORBA nodes:

Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.

CORBA is a standard for distributing objects across networks so that operations on
those objects can be called remotely. CORBA objects are described in Interface
Definition Language (IDL) files, and these IDL files are used to configure the
CORBA message flow nodes. The IDL file is stored in a message set project, in a
folder called CORBA IDLs.

An IDL importer imports the IDL file into the message set project and creates the
message definition file (.mxsd) in the message set. This message definition file is
used for mid-flow validation, ESQL content assist, and the Mapping node.

For each IDL file, a single message definition is created. In the message definition,
two messages are created for each operation in the IDL file: one message for the
request, and one for the response. The request has a child element for each in and
inout parameter; the response has a child element for each inout and out
parameter, and a child element named “_return” for the return type of the
operation.

The name of these elements is based on the interface name and operation name;
for example, for the operation sayHello in the Interface Hello, the request element is

Chapter 9. Developing message flow applications 2147

called Hello.sayHello, and the response element is called Hello.sayHelloResponse. If
the interface is contained in a module, the request and response element names are
qualified with the names of the modules. For example, if the operation sayHello in
the Interface Hello is contained in ModuleB, which in turn is contained in ModuleA,
the response element would be called ModuleA.ModuleB.Hello.sayHelloResponse.

When you add a message flow that contains CORBA nodes to a BAR file, all the
IDL files that are used by the nodes are added to the BAR file automatically.

The main scenario for connecting WebSphere Message Broker with CORBA
applications is described in the following section.

WebSphere Message Broker calls a CORBA server

By using a message flow that includes a CORBARequest node, you can give
existing CORBA applications a new external interface; for example, a SOAP
interface. The message flow uses the IDL file to configure which operation is called
on which interface.

After you have deployed the BAR file, you can start the message flow. A CORBA
request is sent by using values from the message tree in the DataObject domain as
input parameters. If a response is received, the return type and output parameters
are propagated to the Out terminal of the CORBARequest node. You can use the
data that is returned from the CORBA application to verify the result from the
CORBARequest node.
Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.
“CORBA naming service” on page 2154
A CORBA naming service holds CORBA object references.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.

2148 WebSphere Message Broker Version 7.0.0.8

“Building a message for the CORBARequest node” on page 2164
You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.
“Processing responses from a CORBARequest node” on page 2167
Configure the CORBARequest node to define the location to which responses are
sent.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

CORBA support:

The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.

WebSphere Message Broker supports the CORBA 2.3.1 specification and uses the
Java 6 JRE ORB, and is therefore compatible with any CORBA vendor that is
compatible with the JRE ORB.

WebSphere Message Broker currently supports the following CORBA types and
operations.
v All primitive types, except bounded strings
v Two-way operations with in, inout, and out parameters
v User-defined exceptions
v Enums
v Modules
v Sequences (sequences must have associated typedefs; anonymous sequences are

not supported)
v Structs
v Typedefs
v Comments
v The following preprocessing tokens:

– #ifndef
– #endif
– #define
– #include

Other preprocessing tokens are ignored.

When you import an IDL file, supported and unsupported operations are listed.
You can import and deploy IDL files that contain unsupported types and
operations, but if you try to call one of these unsupported operations, you see an
error message.

You cannot import an IDL file that is not valid. During the importing process, if
you select an IDL file that is not valid, you see an error message and cannot
complete the wizard.

Chapter 9. Developing message flow applications 2149

Abstract interfaces and interfaces that contain inheritance are not supported. IDL
pragma directives are not supported, but you can include the following pragmas in
your IDL file (these pragmas are ignored):
v cpponly
v ID
v init
v localonly
v localonly abstract
v Prefix
v version
Related concepts:
“IDL data types”
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“CORBA operation parameters” on page 2156
CORBA operations can have parameters that can be modified by the server.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

IDL data types:

When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.

Primitive IDL types

The following table shows the mapping between IDL types, XML schema simple
types, and ESQL types.

IDL XML schema ESQL

boolean xsd:boolean BOOLEAN

char <xsd:simpleType name="char">
<xsd:restriction base="xsd:string">

<xsd:length value="1" fixed="true/>
</xsd:restriction>

</simpleType>

CHARACTER

2150 WebSphere Message Broker Version 7.0.0.8

IDL XML schema ESQL

wchar <xsd:simpleType name= “wchar”>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>

CHARACTER

double xsd:double FLOAT

float xsd:float FLOAT

octet xsd:unsignedByte INTEGER

long xsd:int INTEGER

Long long xsd:long INTEGER

short xsd:short INTEGER

string xsd:string CHARACTER

wstring xsd:string CHARACTER

Unsigned short xsd:unsignedShort INTEGER

Unsigned long xsd:unsignedInt INTEGER

Unsigned long long xsd:unsignedLong DECIMAL

Complex IDL types

WebSphere Message Broker supports the following complex IDL types:
v Enums
v Typedefs
v Sequences
v Structures

Each complex type is supported in the following places:
v Return types for operations
v In parameters
v Inout parameters
v Out parameters
v Inside exceptions
v Inside structures
v Inside sequences
v Inside typedefs

The following examples show the mapping between IDL types, XML schema, and
XML.

Enums
IDL Enums are mapped to enumerations in XML schema. Enums inside
the tree are of type string.

Here is an example IDL file:
enum myEnum {A, B, C};
interface example {
void myoperation(in myEnum input1);
};

Here is an example XML schema:

Chapter 9. Developing message flow applications 2151

<xsd:simpleType name=”myEnum”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”A”/>
<xsd:enumeration value=”B”/>
<xsd:enumeration value=”C”/>
</xsd:restriction>
</xsd:simpleType>

Here is an XML example:
<example.myoperation>
<input1>A</input1>
</example.myoperation>

Sequences and typedefs
IDL typedefs are mapped to XML schema type restrictions. IDL sequences
are mapped to XML schema sequence complex types. Sequences can be
used only within typedefs.

Here is an example IDL file:
Typedef long myLong;
typedef sequence<long> longSeq;
interface example {
void myoperation(in longSeq input1, inout myLong input2);
};

Here is an example XML schema:
<xsd:complexType name="longSeq">
<xsd:sequence>
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded" type="xsd:int"/>
</xsd:sequence>
</xsd.complexType>

A sequence can be bounded with the syntax sequence<long, 10>, which
puts a bound in the XSD file.

Here is an XML example:
<example.myoperation>
<input1>
<item>10</item>
<item>11</item>
<item>12</item>
</input1>
</example.myoperation>

Structures
IDL structures are mapped to XML schema complexType definitions.

Here is an example IDL file:
struct myStruct {
char c;
string str;
octet o;
short s;
unsigned long long ull;
float f;
double d;
};
interface example {
void myoperation(in myStruct input1);
};

Here is an example XML schema:

2152 WebSphere Message Broker Version 7.0.0.8

<xsd:complexType name="myStruct">
<xsd:sequence>
<xsd:element name="c" type="xsd:string" maxOccurs="1" minOccurs="1"/>
<xsd:element name="str" type="xsd:string" nillable="true" maxOccurs="1" minOccurs="1"/>
<xsd:element name="o" type="xsd:byte" maxOccurs="1" minOccurs="1"/>
<xsd:element name="s" type="xsd:short" maxOccurs="1" minOccurs="1"/>
<xsd:element name="ull" type="xsd:unsignedLong" maxOccurs="1" minOccurs="1"/>
<xsd:element name="f" type="xsd:float" maxOccurs="1" minOccurs="1"/>
<xsd:element name="d" type="xsd:double" maxOccurs="1" minOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

Here is an XML example:
<example.myoperation>
<input1>
<c>c</c>
<str>hello</str>
<o>12</o>
<s>10</s>
<ull>110</ull>
<f>12.0</f>
<d>12.1</d>
</input1>
</example.myoperation>

Modules

In CORBA, modules provide scope. If an interface is contained in a module in the
IDL file, the interface name is qualified with the module name in the following
format:

ModuleName.InterfaceName.OperationName

The following example shows a module in an IDL file.
Module one {
Interface OneAInterface {
};
};

The fully qualified name of the interface called OneAInterface is
one.OneAInterface. In an IDL file, modules can be nested in other modules. In this
case, the fully qualified name of the interface can include more than one module
name, starting from the root module; for example:

ModuleNameA.ModuleNameB.InterfaceName.OperationName

An IDL file can contain more than one operation with the same name provided
that the operations are in different modules.
Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML

Chapter 9. Developing message flow applications 2153

schema and ESQL types correspond to the types in the IDL file.
“CORBA naming service”
A CORBA naming service holds CORBA object references.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Building a message for the CORBARequest node” on page 2164
You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.
“Processing responses from a CORBARequest node” on page 2167
Configure the CORBARequest node to define the location to which responses are
sent.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

CORBA naming service:

A CORBA naming service holds CORBA object references.

A CORBA server puts references to CORBA objects inside a naming service so that
clients can query the naming service and obtain the object reference, then call
operations on the CORBA objects. Typically, a client queries the naming service
once, then caches the object reference.

A CORBARequest node is a CORBA client; therefore, when it is deployed, the node
contacts a naming service to obtain an object reference. If the object reference is not
in the naming service at deployment time, or the naming service that is configured
on the node is unavailable, the CORBARequest node issues a warning, and
attempts to contact the naming service to get the object reference when it receives a
message. If an object reference cannot be acquired from the naming service when
the node receives a message, an error is issued. You can specify the location of an
object reference by using the properties on the CORBARequest node, or by using
the CORBA configurable service. For more information, see “CORBARequest node”
on page 4349 and “Defining where the CORBARequest node gets the object
reference” on page 734.

2154 WebSphere Message Broker Version 7.0.0.8

Identifying an object reference in a naming service

Each object in a naming service has a unique name. You must use this name when
you configure the Object reference name property on the CORBARequest node.

Naming services are typically arranged in a hierarchy so that names can be given
context or scope. The initial naming context is at the top of the hierarchy. Object
references can be added to the initial naming context, and additional contexts can
exist below it. The number of levels in the hierarchy is unlimited.

Object references and contexts can be assigned a kind to facilitate grouping. The
kind is appended to the context in the format context.kind. If you are using
WebSphere Message Broker to access an external CORBA application, you need to
know the location of the naming service and the name of the object reference in
the naming service. The following example shows how to determine the exact
string representation of the name.

Initial Naming
Context

Asia.region America.region Europe.region

England.country
Stock

Exchange.
object

Calculator

Market.
object

Bank.
object

Mail.
object

Factory

In the diagram, contexts are represented by squares, and object references are
represented by circles.
v An object called Factory is directly attached to the initial naming context.
v Three contexts, with kind region, are also attached to the initial naming context.
v These three contexts each have one or more object references attached to them.
v The Europe context has an England context attached to it, of kind country, which

has an object attached to it (Calculator).

The name that you specify when you configure the Object reference name
property on the CORBARequest node reflects the position of the object in the
hierarchy. The following table shows how to refer to the specific objects in the
diagram.

Object Object reference name

Factory Factory

Bank Asia.region/Bank.object

Mail Asia.region/Mail.object

StockExchange America.region/StrockExchange.object

Market Europe.region/Market.object

Chapter 9. Developing message flow applications 2155

Object Object reference name

Calculator Europe.region/England.country/Calculator

All objects in the naming service can be connected directly to the initial naming
context; in which case, their names would be in the same format as the Factory
object in this example.
Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.
“CORBA naming service” on page 2154
A CORBA naming service holds CORBA object references.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Building a message for the CORBARequest node” on page 2164
You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.
“Processing responses from a CORBARequest node” on page 2167
Configure the CORBARequest node to define the location to which responses are
sent.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

CORBA operation parameters:

CORBA operations can have parameters that can be modified by the server.

2156 WebSphere Message Broker Version 7.0.0.8

CORBA operations can have in, out, and inout parameters. In and inout
parameters dictate the appearance of the tree under the DataObject domain when
going into a CORBARequest node. The return type, inout and out parameters
dictate the appearance of the tree when leaving a CORBARequest node.

The inbound message is contained in the element interfaceName.operationName and
needs an element for every in or inout parameter. If the interface is contained in a
module, the name is qualified with the name of the module. If the module is
nested in other modules, all module names are stated; for example:
moduleNameA.moduleNameB.interfaceName.operationName. Out parameters are not
required because the client does not send a value for out parameters. These
elements must be in the same order as the parameters in the IDL file.

The output message from the CORBARequest node is contained in the element
interfaceName.operationNameResponse. If the interface is contained in a module, the
name is qualified with the module name. The outbound message has an element
for the return type, named _return, and an element for every inout and out
parameter.

Here is an example of an IDL file:
interface exampleInterface {
string outsideModuleOperation(in string one, out string two, inout string three);

};

The input message might look like the following example:
<exampleInterface.outsideModuleOperation>
<one>something</one>
<three>something</three>
</exampleInterface.outsideModuleOperation>

The output message might look like the following example:
<exampleInterface.outsideModuleOperationResponse>
<_return>something</_return>
<two>something</two>
<three>something</three>
</exampleInterface.outsideModuleOperationResponse>

The input message requires all in and inout parameters, therefore one and three
are specified. The output has the following elements:
v A _return element (because the operation has a return type of string)
v An element called two (because two is an out parameter)
v An element called three (because three is an inout parameter)

User-defined exceptions

Exceptions are propagated to the Error terminal under the DataObject domain; the
structure of the message depends on the exception.

The following example shows how a user-defined exception is defined in an IDL
file.
exception BadRecord {

string why;
};

Chapter 9. Developing message flow applications 2157

interface SomeInterface {
long bar(in float pi) raises (BadRecord);

};

The operation bar can issue the exception BadRecord. If this exception is issued, the
following message is propagated to the Error terminal.
<BadRecord>
<why>Reason text</why>
</BadRecord>

Edge cases

Two identified edge cases exist for reading a tree and producing a tree:
v No input parameters exist.
v A void function has no inout or out parameters

The following sample IDL file illustrates two examples.
interface exampleInterface {
string exampleOne();
void exampleTwo(in string one);
};

v Example 1 - no input parameters exist

Input message: The input message is irrelevant because the CORBARequest
node does not look at the body of the message.
Output message:
<exampleInterface.exampleOneResponse>
<_return>something</_return>

</exampleInterface.exampleOneResponse>

v Example 2 - A void function has no inout or out parameters

Input message:
<exampleInterface.exampleTwo>
<one>something</one>

</exampleInterface.exampleTwo>

Output message:
<exampleInterface.exampleTwoResponse>
</exampleInterface.exampleTwoResponse>

Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.
“CORBA naming service” on page 2154
A CORBA naming service holds CORBA object references.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.

2158 WebSphere Message Broker Version 7.0.0.8

“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application”
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Developing a message flow with a CORBARequest node” on page 2161
To connect to an external CORBA application, create a message flow that contains
a CORBARequest node.
“Building a message for the CORBARequest node” on page 2164
You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.
“Processing responses from a CORBARequest node” on page 2167
Configure the CORBARequest node to define the location to which responses are
sent.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

Connecting to an external CORBA application
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.

Before you begin

Before you start:

An IDL file is used to configure the CORBARequest node. Ensure that you have a
valid IDL file that contains elements that are supported by WebSphere Message
Broker. The CORBA IDL file must contain at least one interface that has one
operation. For more information, see “CORBA support” on page 2149.

About this task

To connect to an external CORBA application, complete the following steps.

Procedure
1. Create a message flow project and a message set project.
2. Import an IDL file into the WebSphere Message Broker Toolkit, as described in

“Importing an IDL file” on page 2952.
3. Develop a message flow that contains a CORBARequest node, as described in

“Developing a message flow with a CORBARequest node” on page 2161.

Chapter 9. Developing message flow applications 2159

4. Build a message to send to the CORBARequest node, as described in “Building
a message for the CORBARequest node” on page 2164.

5. Process the response from the CORBARequest node, as described in
“Processing responses from a CORBARequest node” on page 2167.

What to do next

After you have deployed a message flow that contains a CORBARequest node, you
can change the location of the object reference by using a configurable service. For
more information, see “Defining where the CORBARequest node gets the object
reference” on page 734.
Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.
“CORBA naming service” on page 2154
A CORBA naming service holds CORBA object references.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Building a message for the CORBARequest node” on page 2164
You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.
“Processing responses from a CORBARequest node” on page 2167
Configure the CORBARequest node to define the location to which responses are
sent.
“Creating a message flow project” on page 1425
A message flow project is a container for message flows; you must create a project
before you can create a message flow.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

2160 WebSphere Message Broker Version 7.0.0.8

Developing a message flow with a CORBARequest node:

To connect to an external CORBA application, create a message flow that contains
a CORBARequest node.

Before you begin

Before you start:

Ensure that you have created a message flow project and message set project, and
that you have imported an IDL file, as described in “Connecting to an external
CORBA application” on page 2159.

About this task

You can create and configure a message flow manually, or you can create a
message flow by dragging an imported IDL file onto the canvas.

Creating a message flow from an imported IDL file:
Procedure

1. Drag an IDL file from the CORBA IDLs folder in the Broker Development view to
an empty canvas. (If you have imported an IDL file that contains includes, drag
the top-level IDL file onto the canvas.)
A CORBARequest node is created. The IDL file, Interface name, and
Operation name properties are set according to the IDL file.

2. If the IDL file contains more than one interface or operation, select an interface
and operation from the dialog box.

3. Configure the following properties on the CORBARequest node:
v Naming service: Specify the host name and port of the naming service.

The format of this value is host:port, where port is optional; for example,
localhost:2809. You can obtain this value from the administrator of the
CORBA application that you are calling.

v Object reference name: Specify the name of the object reference in the
naming service.
You can obtain this value from the CORBA server that you are calling. For
more information about how to specify the object reference name, see
“CORBA naming service” on page 2154.

4. Add to the message flow other nodes that build the incoming and outgoing
messages.
You can use an XML message for the CORBARequest node, or you can build a
message by using a Compute, JavaCompute, or PHPCompute node. If the
incoming message has a message model, you can use a Mapping node to build
the message that is sent to the CORBARequest node.
If the message that the CORBARequest node produces has a message model,
you can use a Mapping node to build the outgoing message.

5. Build a message for the CORBARequest node by using the examples in
“Building a message for the CORBARequest node” on page 2164.

6. Save the message flow.
7. Deploy the message flow. (If you have used an IDL file that contains includes,

ensure that all the IDL files are deployed with the message flow.)

Chapter 9. Developing message flow applications 2161

What to do next

You can also drag an IDL file onto an existing CORBARequest node. The existing
IDL file, Interface name, and Operation name properties are replaced with values
from the new IDL file, and the Naming service and Object reference name
properties are cleared. If the IDL file contains more than one interface or operation,
the Interface name property is set to the first interface in the IDL file, and the
Operation name property is set to the first operation in that interface.

Creating a message flow manually:
Procedure

1. Create a message flow.
2. Add a CORBARequest node to the message flow.
3. Configure the following properties on the CORBARequest node:
v Naming service: Specify the host name and port of the naming service.

The format of this value is host:port, where port is optional; for example,
localhost:2809. You can obtain this value from the administrator of the
CORBA application that you are calling.
You can also use a configurable service to specify a naming service; for more
information, see “Defining where the CORBARequest node gets the object
reference” on page 734.

v Object reference name: Specify the name of the object reference in the
naming service.
You can obtain this value from the CORBA server that you are calling. For
more information about how to specify the object reference name, see
“CORBA naming service” on page 2154.
You can also use a configurable service to specify an object reference name;
for more information, see “Defining where the CORBARequest node gets the
object reference” on page 734.

v IDL file: Click Browse and select the IDL file from the message set project.
If you have imported an IDL file that contains includes, select the top-level
IDL file.

v Interface name: Specify the name of the interface in the IDL file that the
node calls.

v Operation name: Specify the name of the operation from the interface that
you select in the IDL file.
You can override this property in the local environment by specifying a value
in the following location:
$LocalEnvironment/Destination/CORBA/Request/OperationName

4. Add to the message flow other nodes that build the incoming and outgoing
messages.
You can use an XML message for the CORBARequest node, or you can build a
message by using a Compute, JavaCompute, or PHPCompute node. If the
incoming message has a message model, you can use a Mapping node to build
the message that is sent to the CORBARequest node.
If the message that the CORBARequest node produces has a message model,
you can use a Mapping node to build the outgoing message.

5. Build a message for the CORBARequest node by using the examples in
“Building a message for the CORBARequest node” on page 2164.

6. Save the message flow.

2162 WebSphere Message Broker Version 7.0.0.8

7. Deploy the message flow. (If you have used an IDL file that contains includes,
ensure that all the IDL files are deployed with the message flow.)

What to do next

Next: After you have deployed the message flow, learn how calls are processed by
the CORBARequest node; see “Processing responses from a CORBARequest node”
on page 2167.
Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.
“CORBA naming service” on page 2154
A CORBA naming service holds CORBA object references.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Building a message for the CORBARequest node” on page 2164
You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.
“Processing responses from a CORBARequest node” on page 2167
Configure the CORBARequest node to define the location to which responses are
sent.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

Chapter 9. Developing message flow applications 2163

Building a message for the CORBARequest node:

You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.

Before you begin

Before you start:

Ensure that you have created and configured a message flow with a
CORBARequest node, as described in “Developing a message flow with a
CORBARequest node” on page 2161.

About this task

The CORBARequest node requires an input message. The node can use an XML
message from another node, or you can build a message by using a Compute,
JavaCompute, or PHPCompute node. If the incoming message has a message
model, you can use a Mapping node to build the message to send to the
CORBARequest node. The incoming message tree must be in the DataObject
domain, and the elements in the tree must match the IDL interface that you are
calling. The physical representation of a message in the DataObject domain is
XML; therefore, your application constructs message bodies like the following
examples.

You can specify the location in the incoming message tree from which data is
retrieved to form the request that is sent by the CORBARequest node. Specify this
location by using the Data location property on the Request tab. The default value
is $Body.

Procedure

1. Find out what data needs to be in the body of the message to send to the
CORBARequest node.

2. Specify the top-level element (interface.operationName) for the message that
you need to send to the CORBARequest node.

3. Specify a child for each in and inout parameter. You do not have to pass in a
value for out parameters.

Example

The following examples show the XML and ESQL that could be received by a
message flow.

A mixture of in inout and out parameters

Here is an example IDL file:
interface

ExampleOne {
enum completion{YES, NO, MAYBE};
typedef sequence<string> stringlist;
struct stringobject {string member;};

string exampleOneOperation(in string inparamA, inout string inoutparamA, out string outparamA);
completion exampleOneOperationB(in stringlist inparamB, inout stringobject inoutparamB, out completion outparamB);
}

2164 WebSphere Message Broker Version 7.0.0.8

This IDL file contains an interface with two operations, which have an in
parameter, an inout parameter, and an out parameter.

For the first operation, exampleOneOperationA, you must pass in the parameters
inparamA and inoutparamA under the top-level type
ExampleOne.exampleOneOperationA. You do not need to pass in the outparamA
parameter.

Here is an XML example:
<ExampleOne.exampleOneOperationA>
<inparamA>your value</inparamA>
<inoutparamA>your value</inoutparamA>
</ExampleOne.exampleOneOperationA>

Here is an ESQL example:
SET
OutputRoot.DataObject."ExampleOne.exampleOneOperationA".inparamA = ’yourvalue’;

SET
OutputRoot.DataObject."ExampleOne.exampleOneOperationA".inoutparamA = ’yourvalue’;

For the second operation, exampleOneOperationB, you must pass in the parameters
inparamB and inoutparamB under the top-level type
ExampleOne.exampleOneOperationB. You do not need to pass in the outparamB
parameter.

Here is an XML example:
<ExampleOne.exampleOneOperationB>
<inparamB><item>your value</item></inparamB>
<inoutparamB><member>your value</member></inoutparamB>
</ExampleOne.exampleOneOperationB>

Here is an ESQL example:
SET
OutputRoot.DataObject."ExampleOne.exampleOneOperationB".inparamB.item = ’your value’;

SET
OutputRoot.DataObject."ExampleOne.exampleOneOperationB".inoutparamB.member = ’your value’

In and inout parameters only

Here is an example IDL file:
interface

ExampleTwo {
enum completion{YES, NO, MAYBE};
typedef sequence<string> stringlist;
struct stringobject {string member;};

string exampleTwoOperationA(in string inparamA, inout string inoutparamA);
completion exampleTwoOperationB(in stringlist inparamB, inout stringobject inoutparamB);

}

This IDL file contains two operations with an in and inout parameter only. The
removal of the out parameter and the existence of only in and inout parameters
does not change the parameters that you need to pass in.

Chapter 9. Developing message flow applications 2165

To call the first operation, exampleTwoOperationA, pass in inparamA and inoutparamA
under the top-level type ExampleTwo.exampleTwoOperationA.

Here is an XML example:
<ExampleTwo.exampleTwoOperationA>
<inparamA>your value</inparamA>
<inoutparamA>your value</inoutparamA>
</ExampleTwo.exampleTwoOperationA>

Here is an ESQL example:
SET
OutputRoot.DataObject."ExampleTwo.exampleTwoOperationA".inparamA = ’yourvalue’;

SET
OutputRoot.DataObject."ExampleTwo.exampleTwoOperationA".inoutparamA = ’yourvalue’;

To call the second operation, exampleTwoOperationB, pass in inparamB and
inoutparamB under the top-level type ExampleTwo.exampleTwoOperationB.

Here is an XML example:
<ExampleTwo.exampleTwoOperationB>
<inparamB><item>your value</item></inparamB>
<inoutparamB><member>your value</member></inoutparamB>
</ExampleTwo.exampleTwoOperationB>

Here is an ESQL example:
SET
OutputRoot.DataObject."ExampleTwo.exampleTwoOperationB".inparamB.item = ’your value’;

SET
OutputRoot.DataObject."ExampleTwo.exampleTwoOperationB".inoutparamB.member = ’your value’;

No parameters or out parameters only

If the operation contains no parameters, or out parameters only, you do not need
to put anything in the body of the message. The CORBARequest node does not
look at the incoming message.

What to do next

Next: Process the responses from the CORBARequest, as described in “Processing
responses from a CORBARequest node” on page 2167.
Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.
“CORBA naming service” on page 2154
A CORBA naming service holds CORBA object references.

2166 WebSphere Message Broker Version 7.0.0.8

“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Developing a message flow with a CORBARequest node” on page 2161
To connect to an external CORBA application, create a message flow that contains
a CORBARequest node.
“Processing responses from a CORBARequest node”
Configure the CORBARequest node to define the location to which responses are
sent.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

Processing responses from a CORBARequest node:

Configure the CORBARequest node to define the location to which responses are
sent.

Before you begin

Before you start:

Complete the tasks that are described in the following topics:
v “Developing a message flow with a CORBARequest node” on page 2161
v “Building a message for the CORBARequest node” on page 2164

About this task

The CORBARequest node has three output terminals:
v Out: For a successful invocation of the operation.
v Error: If a CORBA system exception or user-defined exception is issued.
v Failure: If a failure occurs in the node; for example, if the node cannot

communicate with the naming service or it receives an incorrect message.

You can select the location to which to send the response by configuring the
Output data location property on the Result tab. This property specifies the
message tree location to which the CORBARequest node puts output. The output
is put under the DataObject domain.

Chapter 9. Developing message flow applications 2167

Procedure

v Processing successful calls

When a call is successful, the resulting message is propagated to the Out
terminal. Inside the tree is a top-level element named
InterfaceName.OperationNameResponse. Under this type is the return type of the
operation (named _return) and every inout or out parameter. In parameters are
not propagated because they do not change.
A mixture of in inout and out parameters

Here is an example IDL file:
interface

ExampleOne {
string exampleOneOperation(in string inparam, out string outparam, inout string inoutparam);

}

You receive the parameters outparam and inoutparam under the top-level element
ExampleOne.exampleOneOperationResponse.
Here is an XML example:
<ExampleOne.exampleOneOperationResponse>
<_return>The operation return value</_return>
<outparam>value from corba app</outparam>
</inoutparam>your value changed by the corba app<inoutparam>

</ExampleOne.exampleOneOperationResponse>

Out and inout parameters

Here is an example IDL file:
interface

ExampleTwo {
string exampleTwoOperation(out string outparam, inout string inoutparam);

}

The removal of the in parameter makes no difference to the message that is
propagated from a CORBARequest node because in parameters are not
propagated.
Here is an XML example:
<ExampleTwo.exampleTwoOperationResponse>
<_return>The operation return value</_return>
<outparam>value from corba app</outparam>
</inoutparam>your value changed by the corba app<inoutparam>

</ExampleTwo.exampleTwoOperationResponse>

In parameters only or no parameters

If the operation contains no parameters, or in parameters only, you receive the
_return value under the top-level element.
Here is an example IDL file:
interface

ExampleThree {
string exampleThreeOperation(in string inparam);

}

Here is an XML example:

2168 WebSphere Message Broker Version 7.0.0.8

<ExampleThree.exampleThreeOperationResponse>
<_return>The operation return value</_return>

</ExampleThree.exampleThreeOperationResponse>

No return type (void) and no inout or out parameters

If the operation that you are calling has no return type (void) and no inout or
out parameters, no values are returned from the CORBA application to put in
the tree. In this case, only the top-level element is created.
Here is an example IDL file:
interface

ExampleFour {
void exampleFourOperation(in string inparam);

}

Here is an XML example:
<ExampleFour.exampleFourOperationResponse>
</ExampleFour.exampleFourOperationResponse>

v Processing user-defined exceptions and CORBA system exceptions

When a CORBA user-defined exception or a CORBA system exception occurs, a
message is propagated to the Error terminal. CORBA system exceptions have a
standard shape and look like this:
In the IDL file:
exception SystemException { // descriptive of error

unsigned long; // more detail about error
CompletionStatus; // yes, no, maybe

}

In the tree:
<SystemException>
<minor>10</minor>
<completed>maybe</completed>

</SystemException>

The top-level element is the name of the CORBA system exception that is issued.
The structure of a user-defined exception is based on the IDL for the exception.
Here is an example:
In the IDL file:

exception BadRecord {
string why;

};

In the message:
<BadRecord>
<why>reason text</why>

</BadRecord>

As you can see from this example, the structure of the message is based on the
exception, and is not qualified by the operation that was being called.

v Handling failures in the node

Any failures are propagated to the Failure terminal. Possible failures include:
– Inability to communicate with the CORBA server
– Inability to communicate with the CORBA naming service
– Invalid body (including the wrong top-level element or missing parameters)

Chapter 9. Developing message flow applications 2169

Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.
“CORBA naming service” on page 2154
A CORBA naming service holds CORBA object references.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Developing a message flow with a CORBARequest node” on page 2161
To connect to an external CORBA application, create a message flow that contains
a CORBARequest node.
“Building a message for the CORBARequest node” on page 2164
You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

Defining where the CORBARequest node gets the object reference:

You can specify an object reference name either on the CORBARequest node or by
using a configurable service.

Before you begin

Before you start:

v Read “Common Object Request Broker Architecture (CORBA)” on page 2145 and
“Configurable services” on page 1296 for background information.

2170 WebSphere Message Broker Version 7.0.0.8

About this task

By using configurable services, you can specify the location from which the
CORBARequest node gets the object reference without the need to redeploy the
message flow. You can also use the configurable service to specify this location for
multiple CORBARequest nodes. To pick up new values when a configurable
service is created or modified, you must reload the broker or execution group to
which the message flow was deployed, by using the mqsistop and mqsistart
commands, or the mqsireload command.

The properties of the CORBA configurable services are described in “Configurable
services properties” on page 3766.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer (as
described in “Using the WebSphere Message Broker Explorer to work with
configurable services” on page 644) or the mqsicreateconfigurableservice
command shown in the following example.
This example creates a CORBA configurable service called "myCORBAService"
that connects to the CORBA host on the local host on port 2809, and looks for
the object reference called "Europe.region/Market.object". (For more information
about how to specify the object reference, see “CORBA naming service” on page
2154.)
mqsicreateconfigurableservice MB7BROKER -c CORBA -o myCORBAService
-n namingService,objectReferenceName -v localhost:2809,Europe.region/Market.object

To pick up the new values in the configurable service, restart the execution
group and message flow.

v To change a configurable service, use the WebSphere Message Broker Explorer or
the mqsichangeproperties command shown in the following example.
This example changes the location of the object reference.
mqsichangeproperties MB7BROKER -c CORBA -o myCORBAService -n namingService,objectReferenceName -v production.corba.ibm.com:2809,Europe.region/Market.object

To pick up the updated values in the configurable service, restart the execution
group and message flow.

v To display all CORBA configurable services, use the WebSphere Message Broker
Explorer or the mqsireportproperties command shown in the following
example.
mqsireportproperties MB7BROKER -c CORBA -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer or the mqsideleteconfigurableservice
command shown in the following example.
mqsideleteconfigurableservice MB7BROKER -c CORBA -o myCORBAService

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.

Chapter 9. Developing message flow applications 2171

“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Working with CORBA” on page 2144
Use CORBA nodes to connect to CORBA Internet Inter-Orb Protocol (IIOP)
applications.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

Working with CICS Transaction Server for z/OS
Use the CICSRequest node to connect to CICS Transaction Server for z/OS
applications.

About this task

This section contains the following concept information:
v “CICS Transaction Server for z/OS overview” on page 2173
v “CICS Transaction Server for z/OS connectivity” on page 2174
v “CICS Transaction Server for z/OS two-tier connectivity” on page 2177
v “CICS Transaction Server for z/OS three-tier connectivity” on page 2181
v “COMMAREA or channel data structures” on page 2183
v “CICS Transaction Server for z/OS mirror transactions” on page 2189
v “Local environment overrides for the CICSRequest node” on page 2191

This section contains the following tasks:
v “Connecting to a CICS Transaction Server for z/OS application” on page 2192
v “Defining a CICS Transaction Server for z/OS data structure” on page 2193
v “Preparing the environment for the CICSRequest node” on page 736

2172 WebSphere Message Broker Version 7.0.0.8

v “Securing the connection to CICS Transaction Server for z/OS by using SSL” on
page 547

v “Developing a message flow with a CICSRequest node” on page 2199
v “Building a message for the CICSRequest node” on page 2202
v “Processing responses from a CICSRequest node” on page 2204
v “Changing connection information for the CICSRequest node” on page 738
v “Propagating security credentials to CICS Transaction Server for z/OS” on page

2208
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

CICS Transaction Server for z/OS overview
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.

By using the CICS support that is provided in WebSphere Message Broker you can
deploy CICS applications into a service-oriented architecture (SOA). This support
keeps your business logic intact and requires little or no change to CICS and CICS
applications.

The following diagram shows the layers of communication between WebSphere
Message Broker and CICS.

CICS Request

IPIC
TCPIPService

CICS Transaction
Gateway

TCPIP or SSL direct
IPIC Connection

TCPIP or
SSL

HTTP

WMQ

TCPIP

CICS Transaction
Server for z/OS Web
Services Pipeline

Customer
Business
Application

MQ-CICS
Bridge

SOAP Request

WebSphere Message Broker CICS Transaction Server
for z/OS

MQ CICS Bridge

Input

Input

Input

Output

Output

Output

CICS Request

SOAP Request

MQ Output MQ Input

You can use the following methods to connect to CICS:
v CICSRequest node support

WebSphere Message Broker includes a CICSRequest node that supports
connectivity to CICS by using the IP InterCommunications (IPIC) protocol,
which is available in CICS Transaction Server for z/OS Version 3.2 and later.
Support includes the following connection methods:
– A direct connection to CICS (two-tier).
– A connection to CICS through CICS Transaction Gateway for Multiplatforms

(three-tier).

Chapter 9. Developing message flow applications 2173

- CICS Transaction Gateway for Multiplatforms

CICS Transaction Gateway for Multiplatforms is a high-performing, secure,
and scalable solution that provides workload management and
high-availability options for access to CICS. By using standards-based
interfaces, CICS Transaction Gateway for Multiplatforms delivers access to
new and existing CICS applications.

The CICSRequest node is non-transactional. For further information about the
CICSRequest node, see “CICSRequest node” on page 4321.

v CICS web services support

You can use the web services support in WebSphere Message Broker to connect
to CICS applications. For further information about web Services, see
“Processing Web service messages” on page 1601.

v CICS-WebSphere MQ Integration

CICS has several components that support integration with WebSphere MQ.
These components are:
– The CICS-WebSphere MQ adapter, also known as the CICS-MQ attach

(including the CKTI trigger monitor or task initiator). The term CICS-MQ
adapter is used to refer to the CICS-WebSphere MQ adapter.

– The CICS-WebSphere MQ bridge, also known as the CICS 3270 and DPL
bridges. The term CICS-MQ bridge is used to refer to the CICS-WebSphere
MQ bridge.

For further information about how to use the CICSRequest node to connect
WebSphere Message Broker to CICS applications, see “CICS Transaction Server for
z/OS connectivity.”

For further information about CICS, see the CICS Library web page, which
contains links to the CICS Information Center and associated IBM Redbooks
publications.
Related concepts:
“CICS Transaction Server for z/OS connectivity”
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

CICS Library web page

CICS Transaction Server for z/OS connectivity:

Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.

The CICSRequest node that is available in WebSphere Message Broker provides
connectivity to CICS applications by using IP InterCommunications (IPIC) protocol.
IPIC is part of a CICS multi-version initiative to provide communications support
over TCP/IP as an alternative to that provided over intersystem communication
(ISC) and multiregion operation (MRO).

IPIC supports Distributed Program Link (DPL) requests over TCP/IP. The
CICSRequest node communicates with CICS by sending Distributed Program Link

2174 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/htp/cics/library/index.html
http://www.ibm.com/software/htp/cics/library/index.html

(DPL) requests over TCP/IP-based IPIC. IPIC provides a multiplexed single socket
connection to CICS Transaction Server for z/OS Version 3.2 and later.

WebSphere Message Broker message flows can use the CICSRequest node to call
programs that are running externally in a targeted CICS region. The CICSRequest
node can be used by a message flow deployed to any broker platform. The
CICSRequest node is non-transactional.

The CICSRequest node supports the following capabilities:
v Commareas.
v Channels and containers.
v Mirror transactions.
v A direct connection to CICS (two-tier).
v A connection to CICS through CICS Transaction Gateway for Multiplatforms

(three-tier).
v Local environment overrides for some properties.
v Request timeout.
v A broker APPLID (client APPLID and qualifier) that can identify the application

that is connecting to CICS, therefore identifying that WebSphere Message Broker
is connected.

v CICSConnection configurable services.
v Secure Sockets Layer (SSL) protocol connection to CICS.
v Security identity.
v User name, or user name and password identity propagation.
v Resource statistics.

You can specify either a COMMAREA data structure or a channel data structure on
the CICSRequest node to use as input for linking to CICS programs. The data
structure that is specified as input returns the same data structure as output.
Channels are an alternative for COMMAREAs, providing relief from the
COMMAREA maximum size of 32766 bytes, and allowing greater flexibility in
input/output data structures. For more information about using a COMMAREA or
channel data structure, see “COMMAREA or channel data structures” on page
2183.

CICS channels hold a number of structures called containers. In WebSphere
Message Broker, a CICS channel is represented as a message collection structure. A
message collection can hold child messages, each treated as a container by the
CICSRequest node. For information about using ESQL to create a message
collection, see “Creating a message collection by using ESQL” on page 2758.

If a single container is required for input only, a message collection does not need
to be constructed. Instead a regular message can be used, provided the
16-character maximum alphanumeric channel name and the single 16-character
maximum alphanumeric container name are specified in the local environment. For
more information about using single message mode, see “COMMAREA or channel
data structures” on page 2183.

Because it is not possible to know how many containers are in the response, a
message collection is always produced as output. However, the CICSRequest node
Result data location property can be used to reduce the result tree down to a

Chapter 9. Developing message flow applications 2175

single message folder, or down to a single field or subtree for output. For
information about the Result data location property, see “CICSRequest node” on
page 4321.

You can add name-value attributes to a message collection to create CICS
containers. Name-value attributes in the message collection, apart from
CollectionName, can be used in lieu of full message-folders for simple data. For
example, a name-value string attribute can be set in the message collection and
used directly by the CICSRequest node without needing to create a message set for
the element. For more information about attributes, see “COMMAREA or channel
data structures” on page 2183.

Name-value attributes can be produced from containers on output, as well as
accepted for input. For information about creating an attribute instead of a
message folder from a container, see “CICSRequest node” on page 4321.

You can specify a mirror transaction name on the CICSRequest node for CICS tasks
and programs to run under. This grouping greatly assists stat collection,
accounting, and aids decision making about task priority. For more information
about mirror transactions, see “CICS Transaction Server for z/OS mirror
transactions” on page 2189.

The CICSRequest node support in WebSphere Message Broker provides direct
communication with CICS (two-tier connection) by sending Distributed Program
Link (DPL) requests over TCP/IP-based IPIC, or communication with CICS
through CICS Transaction Gateway for Multiplatforms (three-tier connection). For
more information about the two-tier and three-tier connection models, see “CICS
Transaction Server for z/OS overview” on page 2173 for a high-level overview, or
“CICS Transaction Server for z/OS two-tier connectivity” on page 2177 and “CICS
Transaction Server for z/OS three-tier connectivity” on page 2181 for detailed
conceptual information.

For information about configuring the CICSRequest node to get connection details
from a CICSConnection configurable service, see “Changing connection
information for the CICSRequest node” on page 738.

You can configure the CICSRequest node or a CICSConnection configurable service
to use SSL protocol. For more information, see “Securing the connection to CICS
Transaction Server for z/OS by using SSL” on page 547.

You can use the mqsisetdbparms command to set a user ID and password for the
CICSRequest node or CICSConnection configurable service. For detailed
information about how to configure CICS security identity support, see
“mqsisetdbparms command” on page 3954.

The CICSRequest node can use an identity that is present on an input message,
and propagate it to CICS, by using the Propagate property on the security profile
that is defined for the node. For more information, see “Propagating security
credentials to CICS Transaction Server for z/OS” on page 2208 and “Identity and
security token propagation” on page 426.

You can use the CICSRequest node to connect to a CICS application by using a
synchronous style of message flow. For details about how to use this node in a
message flow, see “CICSRequest node” on page 4321.
Related concepts:

2176 WebSphere Message Broker Version 7.0.0.8

“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.
“COMMAREA or channel data structures” on page 2183
CICS Transaction Server for z/OS programs can be linked to by using either a
COMMAREA data structure or a channel data structure as input, which return the
same data structure as output. The CICSRequest node supports interaction with
CICS through COMMAREA or channel data structures.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
“Securing the connection to CICS Transaction Server for z/OS by using SSL” on
page 547
Configure the CICSRequest node to communicate with CICS Transaction Server for
z/OS over the Secure Sockets Layer (SSL) protocol by updating a CICSConnection
configurable service or the CICSRequest node to use SSL.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

CICS Transaction Server for z/OS two-tier connectivity:

The CICSRequest node support in WebSphere Message Broker provides direct
communication with CICS Transaction Server for z/OS (two-tier connection) by
sending Distributed Program Link (DPL) requests over TCP/IP-based IP
InterCommunications (IPIC) protocol.

The CICSRequest node also supports communication with CICS through CICS
Transaction Gateway for Multiplatforms (three-tier connection). For more
information about three-tier connections, see “CICS Transaction Server for z/OS
three-tier connectivity” on page 2181.

A direct two-tier connection from WebSphere Message Broker to CICS can be made
by using the CICSConnection configurable service or by setting the properties
directly on the CICSRequest node.

CICSConnection configurable service connections:

Chapter 9. Developing message flow applications 2177

A CICS connection from WebSphere Message Broker is made to a listening
TCPIPSERVICE resource in CICS. When that connection is established, the active
connection between WebSphere Message Broker and CICS is represented by an
IPCONN resource.

Each CICSConnection configurable service results in a separate connection to CICS,
so for every configurable service that is being used, there is an IPCONN resource
in CICS. The properties of the IPCONN resource determine the properties of the
link between WebSphere Message Broker and CICS.

The IPCONN resource that represents a WebSphere Message Broker to CICS
connection can be created in two different ways; autoinstall or pre-defined.

Autoinstall:
Autoinstalling a connection means that when WebSphere Message Broker
connects, the resource is created, and when WebSphere Message Broker
disconnects, the resource is discarded. In this setup, the IPCONN is created
from a template IPCONN that is named by a user-replaceable-module
(URM), which is named in the TCPIPSERVICE resource. Properties of the
IPCONN are based on that template resource.

Pre-defined:
Alternatively, the IPCONN can be pre-defined by using standard CICS
resource definition mechanisms, such as CICS Explorer, CEDA, or
CICSPlex® Systems Manager (CICSPLEX SM). If the IPCONN definition is
created in advance, it is matched to the incoming connection by using the
IPCONN APPLID and Network ID properties, which correlate to the
clientApplid and clientQualifier properties that can be set on a
CICSConnection configurable service.

The advantage of pre-specifying the IPCONN is that you can tightly
control the properties of incoming connections, including the security
properties and the number of simultaneous requests. However the
following rules apply:
v Do not configure different execution groups to use the same

CICSConnection clientApplid and clientQualifier combination to
connect to the same CICS region. An IPCONN is tied to WebSphere
Message Broker through the CICSConnection configurable service
properties clientApplid and clientQualifier. If this is attempted, only
the first configurable service successfully connects.

v Do not specify a host name and port when defining the IPCONN
resource in CICS. These fields are used for connections between CICS
regions only, they must not be set for WebSphere Message Broker
connections.

The following diagram shows how WebSphere Message Broker can directly
connect to CICS by using a CICSConnection configurable service.

2178 WebSphere Message Broker Version 7.0.0.8

Execution Group A

Execution Group B

WebSphere Message Broker

CICS

msgflow

msgflow

msgflow

msgflow

CS=CICSA

100 conversations
allowed on this link

CS=CICSA

CS=CICSA

CS=CICSA

CONF. SERVICE "CICSA"
clientApplid: BROK_CSA
clientQualifier: EXGRP_A
cicsServer=tcp://mycicsregion.com:12345
securityIdentity: CICS_ID

Applid: BROK_CSA
NetID: EXGRP_A
receiveCount=100

IPCONN

TCPIPSERVICE, port 12345

The two-tier direct CICS connection model is based on the following rules:
v Each configurable service name results in a separate connection to CICS.
v The CICSConnection configurable service must only be used from one

execution group, because any further execution groups attempting to use
the same configurable service thereafter fail to connect.

v The clientApplid and clientQualifier properties in the configurable
service are used to find the IPCONN resource in CICS. A chosen
clientApplid and clientQualifier combination must be unique to the
CICS region. Only one IPCONN resource can exist with that
combination.

v More than one message flow instance can use the CICS connection,
however each request that goes through a CICSRequest node uses a
conversation on the connection for the duration of the request.

When defining an IPCONN resource in CICS, consider the following
properties:
v CICS APPLID and Network ID

The CICS APPLID and Network ID properties must match the
CICSConnection configurable service clientApplid and clientQualifier
properties.

v CICS host name and Port number

The CICS host name and port properties must be used for connections
between CICS regions only, they must not be set for WebSphere Message
Broker connections.

Chapter 9. Developing message flow applications 2179

v CICS TCPIPSERVICE

IPCONNs are owned by a parent TCPIPSERVICE resource in CICS.
v CICS Receivecount

The CICS Receivecount property controls the number of simultaneous
requests that can be performed over the connection. The number of
simultaneous requests defaults to 100 for autoinstalled connections.

v CICS Sendcount

The Sendcount property must be set to 0 because the Sendcount
property is used for CICS connections only, and must not be used for
WebSphere Message Broker connections.

v CICS LINKAUTH

The CICS LINKAUTH property controls how the link security is
managed. To use a resource in CICS, two security checks are performed;
the "flowed" user, which checks the security credentials that are sent
from WebSphere Message Broker, and the "link" user, which must also
have permission for the resource. Both user IDs must have permission to
use the resource before the request is granted. The link user ID is given
low privileges, which means that even if the flowed user has many
permissions, the link user ID can be used to cap the privilege of the
connection. If LINKAUTH is set to SECUSER, the SECURITYNAME
field is used to specify the link user ID. If set to CERTUSER, the link
user is determined from an SSL client certificate that is mapped by
RACF.

v CICS USERAUTH

The CICS USERAUTH property determines how the flowed user
security is configured. If USERAUTH is set to "LOCAL" or
"DEFAULTUSER", no user ID or password is to be sent to CICS on a
request. This means that all requests use the CICS region ID. If
USERAUTH is set to "IDENTIFY", user IDs are flowed without a
password. If USERAUTH is set to "VERIFY", user IDs and passwords are
required.

Each CICSRequest node in a message flow acts as a request on one of the
connections to CICS. Which connection is used is determined by the
configurable service that is used.

For more information about configuring the CICSRequest node to get
connection details from a CICSConnection configurable service, see
“Changing connection information for the CICSRequest node” on page 738.

You can configure the CICSRequest node or a CICSConnection
configurable service to use SSL protocol. For more information, see
“Securing the connection to CICS Transaction Server for z/OS by using
SSL” on page 547.

CICSRequest node connections:

If a CICSConnection configurable service is not specified on the
CICSRequest node, and a host name is used directly in the CICS server
property, the request shares a connection with other resources that have
specified the same CICS server URL. The first CICSRequest node to be
used opens the connection to CICS, regardless of whether a URL or a
configurable service is specified in the CICS server property.

Related concepts:

2180 WebSphere Message Broker Version 7.0.0.8

“CICS Transaction Server for z/OS three-tier connectivity”
The CICSRequest node support in WebSphere Message Broker can provide
communication with CICS Transaction Server for z/OS through CICS Transaction
Gateway for Multiplatforms (three-tier connection).
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
“Securing the connection to CICS Transaction Server for z/OS by using SSL” on
page 547
Configure the CICSRequest node to communicate with CICS Transaction Server for
z/OS over the Secure Sockets Layer (SSL) protocol by updating a CICSConnection
configurable service or the CICSRequest node to use SSL.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

CICS Transaction Server for z/OS three-tier connectivity:

The CICSRequest node support in WebSphere Message Broker can provide
communication with CICS Transaction Server for z/OS through CICS Transaction
Gateway for Multiplatforms (three-tier connection).

The CICSRequest node also supports direct communication with CICS (two-tier
connection) by sending Distributed Program Link (DPL) requests over
TCP/IP-based IP InterCommunications (IPIC) protocol. For more information
about two-tier connections, see “CICS Transaction Server for z/OS two-tier
connectivity” on page 2177.

A three-tier connection from WebSphere Message Broker to CICS through CICS
Transaction Gateway for Multiplatforms can be made by configuring the
cicsServer and gatewayURL CICSConnection configurable service properties.

The following diagram shows how WebSphere Message Broker can make a
connection to CICS through CICS Transaction Gateway for Multiplatforms by
using the CICSConnection configurable service.

Chapter 9. Developing message flow applications 2181

WebSphere Message Broker

CICS

msgflow

msgflow

CONF.SERVICE "CICSA"
clientApplid: BROK_CSA
clientQualifier: EXGRP_A
cicsServer= MYCICS
securityIdentity: CICS_ID
gatewayURL=tcp://mygateway.com:2006

CICS Transaction Gateway

CICS TG's APPLID:CTGAPPL
CICS TG's Qualifier:CTGQUAL

These lines represent many connections between
broker and CICS TG, and may be used in combination
with port-spraying/sharing technologies to achieve
high-availability or workload management goals.

TCP(Port 2006)
Server. "MYCICS"
Protocol: IPIC

sessions: 100

host: mycics.com
port: 12345

SSL(Port 8050)

msgflow

msgflow

CS=CICSA

CS=CICSA

CS=CICSA

CS=CICSA

Execution Group A

TCPIPSERVICE,port 12345

IPCONN

Applid: CTGAPPL
NetID: CTGQUAL
receiveCount=100

100 conversations
allowed on this link

Execution Group B

For more information about configuring the cicsServer and gatewayURL
CICSConnection configurable service properties to make a three-tier connection,
see “Configurable services properties” on page 3766.

The three-tier connection to CICS through CICS Transaction Gateway for
Multiplatforms connection model is based on the following rules:
v The number of connections that can be made to CICS Transaction Gateway for

Multiplatforms is determined by the maximum number of simultaneous CICS
requests in progress. Ensure that the Connection Manager and Worker Thread
resources in your CICS Transaction Gateway for Multiplatforms deployment
have sufficient capacity to handle the number of required WebSphere Message
Broker connections.

v The clientApplid and clientQualifier properties in the CICSConnection
configurable service can be used to identify the broker connection within CICS
Transaction Gateway for Multiplatforms. In addition, any CICS tasks that are
started through the configurable service each contain point of origin information,
including the specified client APPLID and qualifier, which you can find in the
CICS task association data.

v Unlike two-tier connections, there is no restriction about sharing client APPLIDs
between execution groups because the connection is made to CICS Transaction
Gateway for Multiplatforms, and not to CICS directly.

For more information about configuring the CICSRequest node to get connection
details from a CICSConnection configurable service, see “Changing connection
information for the CICSRequest node” on page 738.
Related concepts:
“CICS Transaction Server for z/OS two-tier connectivity” on page 2177
The CICSRequest node support in WebSphere Message Broker provides direct
communication with CICS Transaction Server for z/OS (two-tier connection) by
sending Distributed Program Link (DPL) requests over TCP/IP-based IP
InterCommunications (IPIC) protocol.

2182 WebSphere Message Broker Version 7.0.0.8

“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
“Securing the connection to CICS Transaction Server for z/OS by using SSL” on
page 547
Configure the CICSRequest node to communicate with CICS Transaction Server for
z/OS over the Secure Sockets Layer (SSL) protocol by updating a CICSConnection
configurable service or the CICSRequest node to use SSL.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

COMMAREA or channel data structures:

CICS Transaction Server for z/OS programs can be linked to by using either a
COMMAREA data structure or a channel data structure as input, which return the
same data structure as output. The CICSRequest node supports interaction with
CICS through COMMAREA or channel data structures.

Channels are a modern alternative for COMMAREAs, providing relief from the
COMMAREA maximum size of 32766 bytes, and allowing greater flexibility in
input/output data structures.
v “COMMAREAs”
v “Channels” on page 2184

COMMAREAs: If using a COMMAREA as the input data structure for
communicating with CICS, the CICSRequest node takes a portion of the Input
Body, as defined in the CICSRequest node Request properties, and sends it to CICS
as the COMMAREA.

The returning COMMAREA is then put into the Output tree and replaces the
existing Body at the location that is defined in the CICSRequest node Result
properties. The COMMAREA can then be configured for parsing by using the
CICSRequest node Response Message Parsing properties.

When defining a COMMAREA data structure as input, you must ensure that the
CICSRequest node Commarea length property value is large enough to contain the
input request data, or the output response data, but that it does not exceed the
maximum value of 32767 bytes. If the Commarea length value is not large enough
to be used for the response data, or the request data, a memory leak occurs in
CICS. The size of the COMMAREA cannot be changed by the CICS program. If the

Chapter 9. Developing message flow applications 2183

serialized request data is larger than the Commarea length, the data is truncated to
the Commarea length. You can obtain the Commarea length value from the CICS
administrator or developer.

The default value for the CICSRequest node data structure basic property is
Commarea.

For more information about using a COMMAREA data structure as input, see
“Defining a CICS Transaction Server for z/OS data structure” on page 2193,
“Developing a message flow with a CICSRequest node” on page 2199, and
“Building a message for the CICSRequest node” on page 2202.

Channels: CICS channels hold a number of structures called containers. Containers
hold the business information that is accessed by the target CICS program. Each
container can hold up to 2 GB of data, and channels can have as many containers
within them as required, which provides flexibility in terms of the size and layout
of data. Each container has a 16-character maximum alphanumeric container name,
which is unique within the channel, and is used as the mechanism to retrieve the
contents of the container from the channel.

There are two types of container; character or binary. The type of container can
affect the data conversion between WebSphere Message Broker and CICS, however
the container type does not have any impact on the format of the information that
can be put into the container.

Character containers
Character containers are more likely to be individual strings or discrete
data items, but can also be mapped structures, however it is important to
remember that data conversion is applied to the data in the container.
When a character container is constructed, the source coded character set
ID (CCSID) information about the container is sent to CICS as metadata.
The CICS program uses the GET CONTAINER application programming
interface (API) call to convert the metadata to the default CCSID of the
region, unless another CCSID is provided. The CICS program then places
the container back into the channel, and the data is converted ready for the
WebSphere Message Broker application to retrieve and use.

Binary containers
Binary containers can be mapped by using a COBOL copybook structure or
they might be discrete values. Data conversion is not applied to the data in
a binary container, therefore the data in a binary container is sent to CICS
and retrieved from CICS in original form only.

Unlike COMMAREA structures, the size of the response channel does not need to
resemble the request, whereas COMMAREAs must allow for the size of the
response in the request.

Channels and containers in CICS

In the following example diagram, the CICS channel has two containers;
CustomerName and Order.

2184 WebSphere Message Broker Version 7.0.0.8

Channel Name:

CustomerName

Order

...

Apples

CHAR 'Joe Bloggs'

BIN 100 0.39

MyChannel

CustomerName is a character (CHAR) container that contains a single character
string; Joe Bloggs. Because CustomerName is a character container, data conversion
can be applied to the data in the container. Order is a binary (BIN) container that
might be created by using a COBOL copybook structure or C header file, which
you can then import to populate your message set with message definitions. The
following example copybook describes the binary layout of the data that the CICS
program expects to receive:
01 ORDER_STRUCTURE.

03 QTY COMP-1.
03 ITEM PIC X(10).
03 PRICE PIC S9(9).

The target CICS program can retrieve both of these containers from the channel by
providing the name of the container when using the GET CONTAINER API. When the
data is provided to the CICS program, the program processes the data however it
chooses. For example, the program can place other containers into the channel to
provide a response to the called container by using the PUT CONTAINER API.

Channels and containers in WebSphere Message Broker

In WebSphere Message Broker, a CICS channel is represented as a message
collection structure. A message collection can hold child messages, each treated as
a container by the CICSRequest node. A message collection structure is used as
both input and output to the CICSRequest node when using a channel data
structure. For more information about message collections, see “Message
collections” on page 2755, and for information about creating a message collection,
see “Creating a message collection by using ESQL” on page 2758.

The message collection name is used to name the channel. The name of the child
message in the message collection is used as the name of the container in the
channel, and must be unique. If the child message name in the message collection
is not unique, the request is rejected in CICS.

The following table shows the channel and container to message collection and
child message mapping:

CICS WebSphere Message Broker

Channel name Message collection name

Container name (must be unique to the parent channel) Child message name (must be unique to the message
collection)

Name-value attributes

WebSphere Message Broker supports adding name-value attributes to a message
collection to create a container. A message collection can have zero or more

Chapter 9. Developing message flow applications 2185

attributes. The name of an attribute must be unique within a message collection. A
standard attribute for the message collection is an attribute called CollectionName.

You can add name-value attributes to a message collection to create CICS
containers. Name-value attributes in the message collection, apart from
CollectionName, can be used in lieu of full message-folders for simple data. For
example, a name-value string attribute can be set in the message collection and
used directly by the CICSRequest node without needing to create a message set for
the element.

Name-value attributes can be produced from containers on output, as well as
accepted for input. For information about creating an attribute instead of a
message folder from a container, see “CICSRequest node” on page 4321.

In the following example diagram, the CICS channel is represented by a message
collection named Collection. Collection holds two containers that are represented
by child messages named CustomerName and Order. CollectionName and
CustomerName are both name-value attributes, however the CollectionName attribute
is not treated as a container by the CICSRequest node, and is therefore not sent to
CICS.

Root

Properties

Properties

qty = 100

MQMD

item = Apples

MRM

price = 0.39

CustomerName
= 'Joe Bloggs'

CollectionName
= MyChannel

Collection

Order

If the CustomerName attribute is to be treated as a character container by the
CICSRequest node, the LocalEnvironment must reflect this.

LocalEnvironment

Each child message in a message collection is treated as having a default type of
binary, which determines whether the data is converted to the CCSID in the CICS
region. However, you can dynamically override this value to character, on a per
message basis, in the local environment. For example, you can set the following
value under LocalEnvironment.Destination.CICS.RequestChannel.Containers:
SET OutputLocalEnvironment.Destination.CICS.RequestChannel.Containers.<myContainerName> = CHARACTER;

2186 WebSphere Message Broker Version 7.0.0.8

When a message collection is emitted from the CICSRequest node following the
request, the LocalEnvironment contains the returned type information for the
containers. For example, when the response channel comes back from CICS, the
LocalEnvironment shows the types of the containers that have come back in the
following location:
LocalEnvironment.CICS.ResponseChannel.Containers.<myContainerName> =
CHARACTER

The channel name, which has a 16-character alphanumeric limit, can be overridden
as follows:
SET OutputLocalEnvironment.Destination.CICS.RequestChannel.ChannelName = <myNewChannelName>;

If a single container is required for input only, a message collection does not need
to be constructed. Instead a regular message can be used, however, you must set
the 16-character maximum alphanumeric ChannelName in the LocalEnvironment.
The 16-character maximum alphanumeric SingleMessageContainerName that needs
to be created must also be provided in the following location:
SET OutputLocalEnvironment.Destination.CICS.RequestChannel.SingleMessageContainerName = <mySingleMessageContainerName>;

Because a message collection allows each container in the channel to be modeled
as a separate message, each message has its own structure and parsing options. For
example, one container might be XML and another might be based on a copybook,
which can be represented by using XMLNSC and MRM messages within a
message collection.

Each child message in the message collection contains message domain, set, type,
format, CCSID, and encoding information in the Properties folder that is
associated with the child message, which is serialized into a byte stream and sent
to CICS. Each child message folder within the message collection that is being sent
to CICS is serialized at the level of the last child of the message property domain.
Not all CICS containers require a message set to represent them.

In the previous example, the Order container can be represented as MRM, and a
message set can be created from the copybook ORDER_STRUCTURE to represent
it. The returning channel is converted into a message collection, where every child
message in the message collection represents a container from the channel. Child
messages in the message collection are mapped to a list of message domain, set,
type, format, CCSID, and encoding information by using the child message name,
however CCSID, and encoding information are ignored for character messages. If a
mapping cannot be found in the message, a default mapping can be provided.

Because it is not possible to know how many containers are in the response, a
message collection is always produced as output.

You can use the CICSRequest node Response Message Parsing properties to map a
returning container to a message domain, set, type, format, CCSID, and encoding
information. In particular, the Result data location property can be used to
reduce the result tree down to a single message folder, or down to a single field or
subtree for output. For information about the Result data location property, see
“CICSRequest node” on page 4321.

The following details must be specified for the message to arrive at the
CICSRequest node input terminal and be processed into a series of containers, and
for those containers in the response channel to be placed back in the message as it
leaves the node:

Chapter 9. Developing message flow applications 2187

v The channel must be given a 16 character maximum alphanumeric name.
Because the channel is represented by a message collection in WebSphere
Message Broker, you can create the channel name by setting the message
collection name. Message collection names are set by using the CollectionName
attribute. For more information about creating a message collection and setting
the message collection name, see “Creating a message collection by using ESQL”
on page 2758.

v The following details must be specified for each container in the channel:
– A 16 character maximum alphanumeric name.

Because a container is represented by a child message in WebSphere Message
Broker, you can create a container name by setting the child message name.
For more information about creating a message collection and setting the
child message name, see “Creating a message collection by using ESQL” on
page 2758.

– A container type; for example, binary or character.
– A directory to use to place the response data into.

A sample is provided that demonstrates how to call a channel-based CICS program
by creating and populating a message collection for the CICSRequest node, and
how to process the collection after the call. For more information, see CICS
Transaction Server for z/OS Channel Connectivity.
Related concepts:
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Creating a message collection by using ESQL” on page 2758
A message collection can be constructed by using ESQL. Using a message
collection is useful if messages must be grouped together for parsing, or if the
message collection must be constructed to represent a particular data structure,
such as a CICS Transaction Server for z/OS channel data structure.

2188 WebSphere Message Broker Version 7.0.0.8

“Setting the collection name” on page 2774
You can set a default name, or use a correlation string, for the name of your
message collections, by using the Collection name property on the Collector node.

Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

CICS Transaction Server for z/OS mirror transactions:

You can use a mirror transaction to group CICS Transaction Server for z/OS tasks
and programs together. This grouping greatly assists stat collection, accounting,
and aids decision making about task priority.

You can specify a mirror transaction name on the CICSRequest node for CICS tasks
and programs to run under. For example, if each department in a business has a
different mirror transaction name, work can be tracked back to the correct source,
and decisions about task priority and quality of service (QoS) can be made in
CICS. Potentially, different security privileges might be available depending on the
transaction name chosen. Or the transaction name might be used as a way of
indicating the origin of the task. Alternatively, a mirror transaction can be used to
denote whether code page translation of the commarea data is required.

There are two ways that a mirror transaction can be specified:

Specifying a mirror transaction name that corresponds with a defined
TRANSACTION resource in CICS:

You can specify a mirror transaction name by configuring the Mirror
transaction ID property on the CICSRequest node Basic tab, however the
Mirror transaction ID property value that you specify must correspond to
a defined TRANSACTION resource in CICS. For example, if you have a
defined TRANSACTION resource of ATRN in CICS, and you want tasks and
programs to run under that transaction, you must configure ATRN as the
Mirror transaction ID property value.

When the message flow containing the configured CICSRequest node is
deployed, any CICS programs that are started thereafter appear in CICS as
running under the specified mirror transaction.

Specifying a weaker form of mirror transaction that does not require a
TRANSACTION resource to be defined in CICS:

You can use a weaker form of mirror transaction that does not change the
TRANSACTION resource, but instead sets a variable called EIBTRNID,
which is available to the called program. You can configure the EIBTRNID
variable to tell the program what TRANSACTION resource it is running
under, without the TRANSACTION resource being defined in CICS.

For example, you can specify this weaker form of mirror transaction by
configuring the Mirror transaction ID property with the name of the
required TRANSACTION resource; for example ATRN, and by selecting the
Set EIBTRNID only property on the CICSRequest node Basic tab.

When the message flow containing the configured CICSRequest node is
deployed, any CICS programs that are started thereafter appear in CICS as
running under the specified mirror transaction.

Chapter 9. Developing message flow applications 2189

If the value of the CICSRequest node Mirror transaction ID property is not set,
the mirror transaction name defaults to CPMI if called by a distributed platform, or
CSMI if called by a z/OS system.

The following table describes the mirror transaction handling that is applied
depending on the configuration of the Mirror transaction ID and Set EIBTRNID
only CICSRequest node properties. Where ATRN is an example of a user-defined
transaction name:

Mirror transaction ID
property value

Set EIBTRNID only
property value

Task and programs run
under defined
TRANSACTION
resource: EIBTRNID is:

Blank Cleared CPMI if called by a
distributed platform, or
CSMI if called by a z/OS
system

CPMI if called by a
distributed platform, or
CSMI if called by a z/OS
system

ATRN Cleared ATRN ATRN

ATRN Selected CPMI if called by a
distributed platform, or
CSMI if called by a z/OS
system

ATRN

If you are considering whether to use a mirror transaction as a way of finding the
point of origin of your data, using the CICS task association data might be a better
alternative. All tasks that are initiated in CICS over IP InterCommunications (IPIC)
protocol contain origin information, including source Internet Protocol (IP) and
APPLID information.

The CICS mirror transaction properties can be changed by configuring the
properties directly on the CICSRequest node, by using the mqsiapplybaroverride
command, or by dynamically overriding these property values with elements in
the message tree, on a per message basis, in the local environment. For more
information about dynamically overriding CICSRequest node values, see “Local
environment overrides for the CICSRequest node” on page 2191 and for
information about the mqsiapplybaroverride command, see “Configurable
properties” on page 3687.
Related concepts:
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.

2190 WebSphere Message Broker Version 7.0.0.8

Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.
“Configurable properties” on page 3687
Some properties of message flow nodes are configurable and can be changed by
using the mqsiapplybaroverride command. The following table maps the message
flow node properties to the corresponding properties of the mqsiapplybaroverride
command.

Local environment overrides for the CICSRequest node:

When you use the CICSRequest node in a message flow, you can override some of
its properties with elements in the message tree.

You can dynamically override values, on a per message basis, in the local
environment. You can override the CICS Transaction Server for z/OS program that
you are calling, the COMMAREA length, mirror transactions, and the processing of
the response message.

You can set the following values under LocalEnvironment.Destination.CICS.

Setting Description

CICSProgramName Overrides the Program name property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.CICSProgramName = ’progx’;

You can override the location of this value by using a property on the CICSRequest node.

CICSCommareaLen Overrides the Commarea length property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.CICSCommareaLen = 100;

mirrorTran Overrides the Mirror transaction ID property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.mirrorTran = ’ATRN’;

eibtrnidOnly Overrides the Set EIBTRNID only property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.eibtrnidOnly = ’TRUE’;

Valid values are TRUE, FALSE, YES, or NO. Where TRUE or YES represents a selected check box for
the Set EIBTRNID only property in the WebSphere Message Broker Toolkit. Where FALSE or NO
represents a cleared check box in the WebSphere Message Broker Toolkit.

You can set the following values under
LocalEnvironment.Destination.CICS.Response.

Setting Description

messageDomain Overrides the Message domain property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.Response.messageDomain = ’MRM’;

messageSet Overrides the Message set property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.Response.messageSet = ’{com.test}:MyMessageSet’;

messageType Overrides the Message type property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.Response.messageType = ’messageA’;

messageFormat Overrides the Message format property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.Response.messageFormat = ’XML1’;

Chapter 9. Developing message flow applications 2191

Setting Description

messageCCSID Overrides the Message coded character set ID property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.Response.messageCCSID = 500;

messageEncoding Overrides the Message encoding property on the node; for example:

SET OutputLocalEnvironment.Destination.CICS.Response.messageEncoding = 785;

You can also set LocalEnvironment values for CICS channels and containers. For
more information, see “COMMAREA or channel data structures” on page 2183.
Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.
Related tasks:
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
“Connecting to a CICS Transaction Server for z/OS application”
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

Connecting to a CICS Transaction Server for z/OS application
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.

About this task

To connect to a CICS application, complete the following steps.

Procedure
1. Create a message flow project and a message set project. See “Creating a

message flow project” on page 1425 and “Working with a message set project”
on page 2838 for more information.

2. Define the COMMAREA data structure as a message set, as described in
“Defining a CICS Transaction Server for z/OS data structure” on page 2193.

3. Configure IP InterCommunications (IPIC) protocol on CICS, as described in
“Preparing the environment for the CICSRequest node” on page 736.

4. Optional: Configure the CICSRequest node to communicate with CICS
Transaction Server for z/OS over the Secure Sockets Layer (SSL) protocol, as
described in “Securing the connection to CICS Transaction Server for z/OS by
using SSL” on page 547.

2192 WebSphere Message Broker Version 7.0.0.8

5. Develop a message flow that contains a CICSRequest node, as described in
“Developing a message flow with a CICSRequest node” on page 2199.

6. Build a message to send to the CICSRequest node, as described in “Building a
message for the CICSRequest node” on page 2202.

7. Process the response from the CICSRequest node, as described in “Processing
responses from a CICSRequest node” on page 2204.

What to do next

You can change the connection details for the CICSRequest node by using the
CICSConnection configurable service, as described in “Changing connection
information for the CICSRequest node” on page 738.

The CICSRequest node can also use an identity that is present on an input
message, and propagate it to CICS, by using the Propagate property on the
security profile that is defined for the node. For more information, see
“Propagating security credentials to CICS Transaction Server for z/OS” on page
2208
Related concepts:
“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
Related tasks:
“Creating a message flow project” on page 1425
A message flow project is a container for message flows; you must create a project
before you can create a message flow.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

Defining a CICS Transaction Server for z/OS data structure:

Mapped data structures, such as COBOL copybooks or C structures, can be used to
define an MRM message definition for a CICS Transaction Server for z/OS
COMMAREA or a channel container.

Before you begin

Before you start:

v Create a message flow project and a message set project. See “Creating a
message flow project” on page 1425 and “Working with a message set project”
on page 2838 for more information.

v Optional: If you are using a COMMAREA data structure, read the COMMAREA
concept information that is defined in the CICS Transaction Server for z/OS
Version 4.1 Information Center online.

Chapter 9. Developing message flow applications 2193

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

v Read the COMMAREA and channel concept information that is defined in
“COMMAREA or channel data structures” on page 2183.

v Create a message definition file by using the New Message Definition File
wizard in the WebSphere Message Broker Toolkit.
– If you are using a C header file, see “Importing from C” on page 2934.
– If you are using a COBOL data structure, see “Importing from COBOL

copybooks” on page 2937.
– For information about other data structures, see “Working with data

structures” on page 2930.

About this task

After you have created the message definition, complete the following steps.

Procedure

1. Select the Data structure property value on the Basic tab of the CICSRequest
node in accordance with the targeted CICS program. For example, if the target
program is channel-based, select Channel as the data structure.

2. Ensure that the properties on the Response Message Parsing tab of the
CICSRequest node specify the output COMMAREA or container structure.

3. Check that the upstream nodes are configured to provide the correct input
structure.

4. Optional: If you are using a COMMAREA data structure, ensure that the
CICSRequest node Commarea length property is large enough to hold the
serialized input or output structures to avoid a memory leak in the CICS
application.

What to do next

Next: If you are using a channel data structure, create a message collection to
represent the channel data structure, as described in “Creating a message collection
by using ESQL” on page 2758.
Related concepts:
“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
“COMMAREA or channel data structures” on page 2183
CICS Transaction Server for z/OS programs can be linked to by using either a
COMMAREA data structure or a channel data structure as input, which return the
same data structure as output. The CICSRequest node supports interaction with
CICS through COMMAREA or channel data structures.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.

2194 WebSphere Message Broker Version 7.0.0.8

“Preparing the environment for the CICSRequest node” on page 736
Before you can use the CICSRequest node, you must configure IP
InterCommunications (IPIC) protocol on the target CICS Transaction Server for
z/OS.
“Developing a message flow with a CICSRequest node” on page 2199
To connect to a CICS Transaction Server for z/OS application, create a message
flow that contains a CICSRequest node.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

Preparing the environment for the CICSRequest node:

Before you can use the CICSRequest node, you must configure IP
InterCommunications (IPIC) protocol on the target CICS Transaction Server for
z/OS.

Before you begin

Before you start:

Read “CICS Transaction Server for z/OS connectivity” on page 2174 for
background information.

About this task

The CICSRequest node can send IPIC requests over TCP/IP to CICS Transaction
Server for z/OS Version 3.2 and later. Complete the following steps on CICS to
perform this configuration:

Procedure

1. Set the System Initialization (SIT) parameter TCPIP=YES.
2. Define the TCP/IP address and host name for CICS. By default, they are

defined in the PROFILE.TCPIP and TCPIP.DATA data sets.
3. Add a TCP/IP listener to CICS by using the following CEDA command to define

a TCPIPSERVICE resource in a group:
CEDA DEF TCPIPSERVICE(service-name) GROUP(group-name)

Ensure that the group in which you define the service is in the GRPLIST
system initialization parameter, so that the listener starts when CICS is started.
Key fields are explained as follows:

POrtnumber:
The port on which the TCP/IP service listens.

PROtocol:
The protocol of the service is IPIC.

TRansaction:
The transaction that CICS runs to handle incoming IPIC requests. Set
the field to CISS, which is the default.

Backlog:
The Backlog field is the number of TCP/IP connection requests are sent
to CICS, which are placed in a TCP/IP queue to be assigned an
IPCONN connection to CICS. The default value is 1. Do not use a value

Chapter 9. Developing message flow applications 2195

of 0; a value of 0 indicates that no TCP/IP connection requests are to
be assigned an IPCONN connection to CICS, which disables incoming
connection requests.

Ipaddress:
The IP address, in dotted decimal form, on which the TCPIPSERVICE
resource listens. For configurations with more than one IP stack, specify
ANY to make the TCPIPSERVICE resource listen on all addresses.

SOcketclose:
Whether CICS waits before closing the socket after issuing a receive for
incoming data on that socket. To ensure that the connection from the
CICSRequest node always remains open, set SOcketclose to NO for
IPIC connections.

SSl: Whether the CICS TCP/IP service is to use Secure Sockets Layer (SSL)
protocol for encryption and authentication. Valid values are NO, YES,
or CLIENTAUTH. Where:
v NO indicates that SSL is not to be used.
v YES indicates that the personal certificate of the CICS region must be

trusted by WebSphere Message Broker.
v CLIENTAUTH indicates that the personal certificate of the CICS

region must be trusted by WebSphere Message Broker, and the
WebSphere Message Broker personal certificate must be trusted by
CICS.
The CICSRequest node does not support a separate truststore, so the
keystore file must provide both personal and signer certificates. For
more information, see “Securing the connection to CICS Transaction
Server for z/OS by using SSL” on page 547.

4. Use the following command to install the TCPIPSERVICE definition:
CEDA INS TCPIPSERVICE(service-name) GROUP(group-name)

Related concepts:
“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.
Related tasks:
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

2196 WebSphere Message Broker Version 7.0.0.8

“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Securing the connection to CICS Transaction Server for z/OS by using SSL:

Configure the CICSRequest node to communicate with CICS Transaction Server for
z/OS over the Secure Sockets Layer (SSL) protocol by updating a CICSConnection
configurable service or the CICSRequest node to use SSL.

Before you begin

Before you start:

Ensure that you have completed the following tasks:
1. The CICSRequest node does not support a separate truststore, so the keystore

file must provide both personal and signer certificates. If client-authentication
(CLIENTAUTH) is enabled in the TCPIPSERVICE in CICS, the broker keystore
file must also contain a personal certificate that is trusted by CICS. To set up a
public key infrastructure (PKI) at broker or execution group level, follow the
instructions in “Setting up a public key infrastructure” on page 504.

2. Create a message flow project and message set project, as described in
“Creating a message flow project” on page 1425 and “Working with a message
set project” on page 2838.

3. Define the COMMAREA data structure as a message set, as described in
“Defining a CICS Transaction Server for z/OS data structure” on page 2193.

4. Configure IP InterCommunications (IPIC) protocol on CICS, as described in
“Preparing the environment for the CICSRequest node” on page 736.

About this task

To configure the CICSRequest node to use SSL, complete the following steps:

Procedure

1. For client-authenticated (CLIENTAUTH) SSL connections, CICS expects the SSL
client certificate to be mapped to a RACF user ID. Therefore the SSL client
certificate must be mapped to a RACF user ID before attempting to establish
the SSL connection to CICS. If the client certificate is not mapped to a RACF
user ID, the broker might display a ECI_ERR_NO_CICS response. You can map a
client certificate to a RACF user ID by using the RACF command RACDCERT,
which stores the client certificate in the RACF database and associates a user ID
with it, or by using RACF certificate name filtering. Client certificates can be
mapped one-to-one with a user ID, or a mapping from one to the other can be
provided to allow a many-to-one mapping. You can achieve this mapping by
using one of the following methods:
v Associating a client certificate with a RACF user ID

Chapter 9. Developing message flow applications 2197

a. Copy the certificate that you want to process into an MVS sequential file.
The file must have variable length, blocked records (RECFM=VB), and be
accessible from TSO.

b. Run the RACDCERT command in TSO by using the following syntax:
RACDCERT ADD(’datasetname’) TRUST [ID(userid)]

Where:
– datasetname is the name of the data set containing the client certificate.
– userid is the user ID to be associated with the certificate. This

parameter is optional. If omitted, the certificate is associated with the
user issuing the RACDCERT command.

When you issue the RACDCERT command, RACF creates a profile in the
DIGTCERT class. This profile associates the certificate with the user ID.
You can then use the profile to translate a certificate to a user ID without
giving a password. For full details of RACF commands, see z/OS
Security Server RACF Command Language Reference.

v RACF certificate name filtering

With certificate name filtering, client certificates are not stored in the RACF
database. The association between one or more certificates and a RACF user
ID is achieved by defining a filter rule that matches the distinguished name
of the certificate owner or issuer (CA). A sample filter rule might look like
the following example:
RACDCERT ID(DEPT3USR) MAP SDNFILTER
(OU=DEPT1.OU=DEPT2.O=IBM.L=LOC.SP=NY.C=US)

This sample filter rule would associate user ID DEPT3USR with all
certificates when the distinguished name of the certificate owner contains the
organizational unit DEPT1 and DEPT2, the organization IBM, the locality
LOC, the state/province NY, and the country US.

2. Turn on SSL support in the broker by setting the cicsServer property on the
CICSConnection configurable service, as shown in the following example. This
example changes the CICSRequest node that is configured to use the
myCICSConnection configurable service for the CICS instance that is running at
mycicsregion.com port 56789. After you run this command, the CICSRequest
node connects to CICS over SSL.
mqsichangeproperties MB7BROKER -c CICSConnection -o myCICSConnection -n
cicsServer -v ssl://mycicsregion.com:56789

Alternatively you can configure the CICS server property directly on the
CICSRequest node.

What to do next

Next: When you have configured the broker or the CICSRequest node to use SSL,
develop a message flow that contains a CICSRequest node by following the steps
in “Developing a message flow with a CICSRequest node” on page 2199.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.

2198 WebSphere Message Broker Version 7.0.0.8

“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Implementing SSL authentication” on page 504
Use SSL authentication to enhance security in your broker environment.
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

Developing a message flow with a CICSRequest node:

To connect to a CICS Transaction Server for z/OS application, create a message
flow that contains a CICSRequest node.

Before you begin

Before you start:

Ensure that you have completed the following tasks:
1. Create a message flow project and message set project, as described in

“Creating a message flow project” on page 1425 and “Working with a message
set project” on page 2838.

2. Define the COMMAREA or channel data structure, as described in “Defining a
CICS Transaction Server for z/OS data structure” on page 2193.

3. Optional: If you are using a channel data structure, create a message collection
to represent the channel data structure, as described in “Creating a message
collection by using ESQL” on page 2758.

Chapter 9. Developing message flow applications 2199

4. Configure IP InterCommunications (IPIC) protocol on CICS, as described in
“Preparing the environment for the CICSRequest node” on page 736.

5. Optional: Configure the CICSRequest node to communicate with CICS
Transaction Server for z/OS over the Secure Sockets Layer (SSL) protocol, as
described in “Securing the connection to CICS Transaction Server for z/OS by
using SSL” on page 547.

About this task

Complete the following steps to develop a message flow with a CICSRequest node.

Procedure

1. Create a message flow.
2. Add a CICSRequest node to the message flow.
3. Configure the following properties on the CICSRequest node.
v CICS server: The CICS server property can be defined either as a

configurable service name, for example myCICSConnection, or as a URL.
You can either connect to CICS by using the two-tier connection model; for
example, by making a direct connection from WebSphere Message Broker to
CICS, or by using the three-tier connection model; for example, by
connecting to CICS through CICS Transaction Gateway for Multiplatforms.
For more information about the two-tier and three-tier connection models,
see “CICS Transaction Server for z/OS overview” on page 2173 for a
high-level overview, or “CICS Transaction Server for z/OS two-tier
connectivity” on page 2177 and “CICS Transaction Server for z/OS three-tier
connectivity” on page 2181 for detailed conceptual information.

Using the two-tier connection model:
If you are making a direct two-tier connection from WebSphere
Message Broker to CICS, you can define the CICS server property
either as a configurable service name, for example myCICSConnection,
or as a URL.

For more information about defining this property as a configurable
service, see “Changing connection information for the CICSRequest
node” on page 738.

To define a URL, specify the protocol and the CICS host name and
port number. The format of this value is protocol://hostname:port.
Where:
– protocol can be tcp or ssl.
– hostname is the TCP/IP address of the CICS host.
– port is the port number of the TCPIPSERVICE listener in CICS that

is listening for IPIC requests over TCP/IP or SSL.

For example: tcp://mycicsregion.com:12345 or ssl://
mycicsregion.com:56789. You can obtain the hostname and port values
from the IPIC TCPIPSERVICE definition in the target CICS region.

Using the three-tier connection model:
If you are making a three-tier connection to CICS through CICS
Transaction Gateway for Multiplatforms, the CICS server
CICSRequest node property must be defined as a configurable
service name, for example myCICSConnection.

2200 WebSphere Message Broker Version 7.0.0.8

For more information about defining this property as a configurable
service, see “Changing connection information for the CICSRequest
node” on page 738.

To make a three-tier connection to CICS through CICS Transaction
Gateway for Multiplatforms, you must configure the cicsServer and
gatewayURL CICSConnection configurable service properties. For
more information about configuring the cicsServer and gatewayURL
CICSConnection configurable service properties to make a three-tier
connection, see “Configurable services properties” on page 3766.

v Program name: Specify the name of the program that you want to run in the
target CICS region.
You can override this property in the local environment by specifying a value
in the following location:
$LocalEnvironment/Destination/CICS/CICSProgramName

v Data structure: Specify whether to use a COMMAREA or a channel data
structure. The default for this property is Commarea. The decision depends on
the targeted CICS program, for example; whether the target program is
channel-based or not.

v Commarea length:
This property is not configurable if a value of Channel is selected for the Data
structure property.
The Commarea length property is the size, in bytes, of the COMMAREA that
is used by the CICS program. The byte size value is sent to CICS, and before
the program is started, an area of memory is created to match that number.
For example, if you send a Commarea length value of 100, 100 bytes are
allocated. The program accesses this area as the DFHCOMMAREA.
Ensure that the Commarea length property value is large enough to contain
the input request data, or the output response data, but that it does not
exceed the maximum value of 32767 bytes. If the Commarea length value is
not large enough to be used for the response data, or the request data, a
memory leak occurs in CICS.
The size of the COMMAREA cannot be changed by the CICS program.
If the serialized request data is larger than the Commarea length, the data is
truncated to the Commarea length.
You can obtain the Commarea length value from the CICS administrator or
developer.
You can override this property in the local environment by specifying a value
in the following location:
$LocalEnvironment/Destination/CICS/CICSCommareaLen

4. Save the message flow.
5. Deploy the message flow.

What to do next

Next: When you have created and configured the message flow, build a message
by following the steps in “Building a message for the CICSRequest node” on page
2202.
Related concepts:
“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the

Chapter 9. Developing message flow applications 2201

transaction-processing needs of both large and small enterprises.
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
“Building a message for the CICSRequest node”
Create a message definition from a data structure and build a message by using
another message flow node.
“Processing responses from a CICSRequest node” on page 2204
The CICSRequest node can return different response messages that indicate the
success or failure of the request sent to CICS Transaction Server for z/OS.
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

Building a message for the CICSRequest node:

Create a message definition from a data structure and build a message by using
another message flow node.

About this task

You can specify the location in the incoming message tree from which data is
retrieved to form the request that is sent by the CICSRequest node. Specify this
location by using the Data location Request property on the CICSRequest node.

Procedure

1. Find out what data needs to be in the body of the message to send to the
CICSRequest node. The message body data must match the input structure that
is required for your commarea, as defined in a message set definition based on
the language structure. For example; COBOL or C copybook.

2. Ensure that the Commarea length Basic property value that is configured in the
CICSRequest node is large enough to contain the input request data, or the
output response data, but that it does not exceed the maximum value of 32767
bytes. If the Commarea length value is not large enough to be used for the
response data, or the request data, a memory leak occurs in CICS. The size of
the commarea cannot be changed by the CICS program. If the serialized request
data is larger than the Commarea length, the data is truncated to the Commarea
length. You can obtain the Commarea length value from the CICS administrator
or developer.

2202 WebSphere Message Broker Version 7.0.0.8

Example

View the following sample to see how to use the CICSRequest node:
v CICS Transaction Server for z/OS Connectivity

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The following example shows a message that has been modeled in the MRM
domain, which can be received by a CICSRequest node and sent to CICS.

COBOL copybook

This example shows the structure of the data that CICS is expecting. The copybook
describes the binary layout of the data that the CICS program expects to receive.
01 DFHAXCS-REQUEST.

10 AXCS-COMMAND PIC S9(9) COMP.
10 AXCS-FILE PIC X(8).
10 AXCS-RIFLD PIC X(6) VALUE SPACES.
10 AXCS-DATA.

15 AXCS-STAT PIC X(1) VALUE SPACES.
15 AXCS-RECID PIC X(6) VALUE SPACES.
15 AXCS-NAME PIC X(20) VALUE SPACES.
15 AXCS-ADDRESS PIC X(20) VALUE SPACES.
15 AXCS-PHONE PIC X(8) VALUE SPACES.
15 AXCS-DATE PIC X(8) VALUE SPACES.
15 AXCS-AMOUNT PIC X(8) VALUE SPACES.
15 AXCS-COMMENT PIC X(9) VALUE SPACES.

The example copybook can be used to create a binary structure that requires 98
bytes of COMMAREA or memory space, as shown in the following example:

Table 22.

Name Type and Size

AXCS-COMMAND 4 byte integer (fullword)

AXCS-FILE 8 byte character string

AXCS-RIFLD 6 byte character string

AXCS-STAT 1 byte character string

AXCS-RECID 6 byte character string

AXCS-NAME 20 byte character string

AXCS-ADDRESS 20 byte character string

AXCS-PHONE 8 byte character string

AXCS-DATE 8 byte character string

AXCS-AMOUNT 8 byte character string

AXCS-COMMENT 9 byte character string

Total 98 bytes

The COBOL copybook structure must be imported as a message definition, see
“Importing from COBOL copybooks” on page 2937 for further information, and a
message containing such a structure must be passed to the CICSRequest node. A
second copybook might be required to map the returning COMMAREA.

Chapter 9. Developing message flow applications 2203

What to do next

Next: Process the responses from the CICSRequest, as described in “Processing
responses from a CICSRequest node.”
Related concepts:
“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
“Working with data structures” on page 2930
You can create a message definition file in a message set by importing from XML
Schema, XML DTD, SCA import or export components, IBM supplied messages,
WSDL definitions, IDL files, C header files, and COBOL copybooks. This topic area
describes how to import from these data structures using the command line or the
WebSphere Message Broker Toolkit.
“Processing responses from a CICSRequest node”
The CICSRequest node can return different response messages that indicate the
success or failure of the request sent to CICS Transaction Server for z/OS.
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

Processing responses from a CICSRequest node:

The CICSRequest node can return different response messages that indicate the
success or failure of the request sent to CICS Transaction Server for z/OS.

Before you begin

Before you start:

Ensure that you have built a message for the CICSRequest node, as described in
“Building a message for the CICSRequest node” on page 2202.

2204 WebSphere Message Broker Version 7.0.0.8

About this task

The CICSRequest node has four output terminals:
v Out: The output terminal from which the message tree is propagated, including

the data returned from CICS.
v Failure: The output terminal to which a message is routed if a CICSRequest

node exception is detected, or a CICSRequest node to CICS connection failure
occurs.

v Error: The output terminal to which a message is propagated if a CICS error
(abend) occurs.

v Timeout: The output terminal to which the message is propagated if a
per-request timeout occurs when an individual request is sent to CICS, but the
request takes too long.

You can select the location to which to send the response by configuring the
Output data location Result property on the CICSRequest node. This property
specifies the location in the message tree to which the CICSRequest node places
the output.

Procedure

v Processing successful calls

When a CICSRequest node successfully calls a CICS application, the resulting
message is propagated to the Out terminal.

v Processing CICS abends

An abend in CICS causes a message to be propagated from the Error terminal.
The input message is propagated with a CICS\AbendCode field in the
LocalEnvironment. If the Error terminal is not connected, the abend is lost.

v Processing request timeouts

If a CICSRequest node is configured with a Request timeout Basic property, and
a particular message takes longer than the specified time in seconds to be
processed, the request fails and the message is propagated from the Timeout
terminal. The output message contains the input message body and a timeout
exception in the ExceptionList. If the Timeout terminal is not connected and a
timeout occurs, the request timeout exception is routed to the Failure terminal. If
the Failure terminal is not connected, the broker throws an exception and
returns control to the closest upstream node that can process it. The default
behavior is that the message is returned to the input node.

v Handling failures in the node

Any other failures are propagated to the Failure terminal. Possible failures
include:
– An inability to communicate with the target CICS region.
– An internal CICSRequest node exception is detected.
– An invalid message body. For example, a parsing error or input message is

creating a structure that is larger than the Commarea length Basic property
that is configured in the CICSRequest node. A similar situation for the
returning COMMAREA cannot be detected. For example, if the returning data
is larger than the value that is defined in the Commarea length property, a
memory leak occurs in CICS. Therefore the Commarea length Basic property
must be correctly configured.

Chapter 9. Developing message flow applications 2205

Results

You can use the CICSConnection configurable service to change connection details
for the CICSRequest node. See “Changing connection information for the
CICSRequest node” on page 738 for details about creating, changing, reporting,
and deleting the CICSConnection configurable service.
Related concepts:
“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

Changing connection information for the CICSRequest node:

You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.

Before you begin

Before you start:

v Read “Configurable services” on page 1296 to find out more about configurable
services.

v Read “CICS Transaction Server for z/OS overview” on page 2173 for
background information.

About this task

Use the CICSConnection configurable service to change the CICS Transaction
Server for z/OS connection information for the CICSRequest node. The advantage
being that you can change the host name, performance, and security identity
values without needing to redeploy your message flow. The properties of the
CICSConnection configurable service are described in “Configurable services
properties” on page 3766.

2206 WebSphere Message Broker Version 7.0.0.8

You can use the CICSConnection configurable service to configure the CICSRequest
node to use Secure Sockets Layer (SSL) protocol. For more information, see
“Securing the connection to CICS Transaction Server for z/OS by using SSL” on
page 547.

Creating, changing, reporting, and deleting configurable services

Procedure

v To create a configurable service, use the WebSphere Message Broker Explorer;
see “Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644 for more information, or the
mqsicreateconfigurableservice command, as shown in the following example.
This example creates a CICSConnection configurable service for the CICS
instance that is running at test.cics.ibm.com port 12345. The broker is
identified by APPLID BRKApp and qualifier BRKQual. The connection timeout is
10 seconds, the request timeout is 5 seconds, and the security identity is
identified by mySecurityIdentity in this example:
mqsicreateconfigurableservice MB7BROKER -c CICSConnection -o myCICSConnectionService
-n cicsServer,clientApplid,clientQualifier,connectionTimeoutSecs,requestTimeoutSecs,
securityIdentity
-v tcp://test.cics.ibm.com:12345,BRKApp,BRKQual,10,5,mySecurityIdentity

v To change a configurable service, use the WebSphere Message Broker Explorer,
or the mqsichangeproperties command, as shown in the following example. You
must stop and start the execution group for the change of property value to take
effect. This example changes the CICSRequest node that is configured to use the
myCICSConnectionService configurable service. After you run this command, the
CICSRequest node connects to the production system (tcp://
production.cics.ibm.com:12345) instead of the test system (tcp://
test.cics.ibm.com:12345).
mqsichangeproperties MB7BROKER -c CICSConnection -o myCICSConnectionService

-n cicsServer -v tcp://production.cics.ibm.com:12345

See “Securing the connection to CICS Transaction Server for z/OS by using SSL”
on page 547 for information about how to turn on SSL support in the broker by
setting the cicsServer CICSConnection configurable service property.

v To display all CICSConnection configurable services, use the WebSphere
Message Broker Explorer, or the mqsireportproperties command, as shown in
the following example:
mqsireportproperties MB7BROKER -c CICSConnection -o AllReportableEntityNames -r

v You can delete a configurable service that you have created by using the
WebSphere Message Broker Explorer, or the mqsideleteconfigurableservice
command, as shown in the following example:
mqsideleteconfigurableservice MB7BROKER -c CICSConnection -o myCICSConnectionService

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

Related concepts:
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.

Chapter 9. Developing message flow applications 2207

“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Propagating security credentials to CICS Transaction Server for z/OS:

The CICSRequest node can use an identity that is present in the Properties folder
of the message tree structure for the security credentials in a request, by using the
Propagate property on the security profile that is defined on the node.

About this task

If a CICSRequest node is configured with a security profile, it extracts security
tokens from the input message at run time, and propagates an identity to CICS.

Procedure

To propagate an identity to be used for the CICS request security credentials,
complete the following steps.
1. Ensure that an appropriate security profile exists for the CICSRequest node, or

create a security profile, by following the instructions in “Creating a security
profile” on page 433.

2. Use the Broker Archive editor to select a security profile for the CICSRequest
node that has identity propagation enabled. For detailed instructions, see
“Configuring for identity propagation” on page 492.

Related concepts:
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.

2208 WebSphere Message Broker Version 7.0.0.8

“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
Related tasks:
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.
Related reference:
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

Routing messages
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.

About this task
v “Using nodes for decision making”
v “Routing using publish/subscribe applications” on page 2215

Some nodes use fields in your messages to make routing decisions. You might
need to define a model of your messages to enable access to the fields in the
message for these nodes. For information about how to develop a message model,
and why you might want to develop a message model, see “Constructing message
models” on page 2838.
Related tasks:
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Processing events” on page 2717
Using event driven message processing you can control the flow of messages
through your message flows.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Using nodes for decision making
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.

Before you begin

Before you start:

Read the concept topic about message flow nodes.

Chapter 9. Developing message flow applications 2209

About this task

These nodes let you decide how messages are processed by specifying the route
that each message takes through the message flow based on dynamic values such
as message structure and content.

For more information, see the following topics:
v “Testing the message structure (Validate node)” on page 2211
v “Controlling the order of processing in a message flow” on page 2212
v “Using the destination list to route messages (RouteToLabel and Label nodes)”

on page 2214

You can use one of the following nodes to determine the path taken by a message
through the message flow based on its content:
v “Route node” on page 4669
v Filter node (ESQL)
v JavaCompute node
v PHPCompute node

Use the DatabaseRoute node to route messages using information from a database.
For more information, see “DatabaseRoute node” on page 4373.
Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“DatabaseRoute node” on page 4373
Use the DatabaseRoute node to route messages using information from a database
in conjunction with XPath expressions.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“FlowOrder node” on page 4458
Use the FlowOrder node to control the order in which a message is processed by a
message flow.
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
“Label node” on page 4569
Use the Label node to process a message that is propagated by a RouteToLabel
node to dynamically determine the route that the message takes through the

2210 WebSphere Message Broker Version 7.0.0.8

message flow.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“ResetContentDescriptor node” on page 4663
Use the ResetContentDescriptor node to request that the message is reparsed by a
different parser.
“Route node” on page 4669
Use the Route node to direct messages that meet certain criteria down different
paths of a message flow.
“RouteToLabel node” on page 4673
Use the RouteToLabel node in combination with one or more Label nodes to
dynamically determine the route that a message takes through the message flow,
based on its content.
“Validate node” on page 4959
Use the Validate node to check that the message that arrives on its input terminal
is as expected. You can use this node to check that the message has the expected
message template properties, and to check that the content of the message is
correct by selecting message validation.

Testing the message structure (Validate node)
Use the Validate node to test the characteristics of the message structure.

About this task

If you set the Validate node properties appropriately, you can request that one or
all of the message domain, message set, and message type are compared to a
specific value. If the message matches those values for which you have requested
the check, it is routed through the match terminal and is processed by the
sequence of nodes that you have connected to that terminal.

If the message does not match any one of those values for which you have
requested the check, it is routed through the failure terminal and is processed by
the sequence of nodes that you have connected to that terminal.

For example, you might design a message flow that provides additional processing
for all messages that are in the MRM domain. You can include a Validate node that
tests just that characteristic of the message, and passes it to a sequence of nodes
that provide the specialized processing. If the message is not in the MRM domain,
the extra nodes are bypassed, and the failure terminal is wired up directly to the
node that follows the sequence required for MRM messages only.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.
“Controlling the order of processing in a message flow” on page 2212
Use the FlowOrder node to control the order of processing in a message flow.
“Testing the message content (Filter node)” on page 2213
You can use the Filter node to determine the path taken by a message through the

Chapter 9. Developing message flow applications 2211

message flow based on its content.
“Using the destination list to route messages (RouteToLabel and Label nodes)” on
page 2214
You can determine the path that a message takes through the message flow by
using the RouteToLabel and Label nodes.
Related reference:
“Validate node” on page 4959
Use the Validate node to check that the message that arrives on its input terminal
is as expected. You can use this node to check that the message has the expected
message template properties, and to check that the content of the message is
correct by selecting message validation.

Controlling the order of processing in a message flow
Use the FlowOrder node to control the order of processing in a message flow.

About this task

When you connect message flow nodes together, the broker determines the way in
which the different connections are processed. This includes the order in which
they are processed. If you have connected more than one node or sequence of
nodes to a single output terminal, you cannot predict whether one sequence is
processed before another for a message.

If the order of processing is important in your message flow, use the FlowOrder
node to force a prescribed order of processing of the messages that are propagated
by this node.

The FlowOrder node has two output terminals that you can connect to control the
order in which subsequent nodes process the message. The output terminals,
named First and Second, are always processed in that order.

When you connect a node or sequence of nodes to the First terminal, the input
message is passed to the next node, and all processing defined by all subsequent
nodes in this sequence is completed before control returns to the FlowOrder node.

The input message is then propagated to the next node in the sequence of nodes
connected to the Second terminal.

The message passed to both sequences of nodes, from the First terminal and the
Second terminal, is identical. It is always the message that the FlowOrder node
receives as input. The message that the FlowOrder node propagates to the Second
terminal is in no way affected by the processing of the message that has been
performed by the sequence of nodes connected to the First terminal.

The FlowOrder node provides no other processing on the input message; it is used
only for imposing order on subsequent processing.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.

2212 WebSphere Message Broker Version 7.0.0.8

“Testing the message structure (Validate node)” on page 2211
Use the Validate node to test the characteristics of the message structure.
“Testing the message content (Filter node)”
You can use the Filter node to determine the path taken by a message through the
message flow based on its content.
“Using the destination list to route messages (RouteToLabel and Label nodes)” on
page 2214
You can determine the path that a message takes through the message flow by
using the RouteToLabel and Label nodes.
Related reference:
“FlowOrder node” on page 4458
Use the FlowOrder node to control the order in which a message is processed by a
message flow.

Testing the message content (Filter node)
You can use the Filter node to determine the path taken by a message through the
message flow based on its content.

About this task

You can customize the Filter node by using ESQL statements to determine if the
message content meets some condition. The condition tested must yield a Boolean
result, that is it must be true or false (or unknown). You can create the test to
reference information from a database, if applicable.

You can connect nodes following the Filter node to the corresponding terminals of
the Filter node, and process the message according to its content.

Look at the following samples to see how to use the Filter node:
v Airline Reservations
v Error Handler

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.
“Testing the message structure (Validate node)” on page 2211
Use the Validate node to test the characteristics of the message structure.
“Controlling the order of processing in a message flow” on page 2212
Use the FlowOrder node to control the order of processing in a message flow.
“Using the destination list to route messages (RouteToLabel and Label nodes)” on
page 2214
You can determine the path that a message takes through the message flow by
using the RouteToLabel and Label nodes.
Related reference:

Chapter 9. Developing message flow applications 2213

“Filter node” on page 4452
Use the Filter node to route a message according to message content.

Using the destination list to route messages (RouteToLabel and
Label nodes)
You can determine the path that a message takes through the message flow by
using the RouteToLabel and Label nodes.

About this task

These nodes provide a more flexible way to process messages than the Filter node,
which depends on the Boolean result of an ESQL expression for its logic.

When you use RouteToLabel and Label nodes, you must include a Compute node
that determines, by using some combination of message content, database content,
and ESQL logic, how messages are to be processed next. Configure the Compute
node to create a destination list (in the DestinationList folder in the local
environment subtree) that contains the destination for each message, specified as
the LabelName of a Label node. The Compute node passes the message to the
RouteToLabel node, which reads the destination list and propagates the message to
either the first or last item on the destination list, according to the value that is
specified for the RouteToLabel node's Mode property. Although there is no limit to
the number of destinations that the Compute node writes in the destination list,
the RouteToLabel node propagates the message only to a single label node. This
use of the destination list is in contrast to its use to define the final recipients of
the output messages. For more information about the procedure for creating a
destination list, see “Creating destination lists” on page 1477.

If you intend to derive destination values from the message itself, or from a
database, you might also need to cast values from one type to another. For more
information about the local environment, see “Local environment tree structure” on
page 1056. For more information about casting, see “Supported casts” on page
5273.

Look at the following sample to see how to use these nodes:
v Airline Reservations

The XML_PassengerQuery message flow in the previous sample demonstrates how
you can use the destination list in the local environment to route messages based
on the information in the message itself.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a

2214 WebSphere Message Broker Version 7.0.0.8

message takes through the message flow.
“Testing the message structure (Validate node)” on page 2211
Use the Validate node to test the characteristics of the message structure.
“Controlling the order of processing in a message flow” on page 2212
Use the FlowOrder node to control the order of processing in a message flow.
“Testing the message content (Filter node)” on page 2213
You can use the Filter node to determine the path taken by a message through the
message flow based on its content.
Related reference:
“Label node” on page 4569
Use the Label node to process a message that is propagated by a RouteToLabel
node to dynamically determine the route that the message takes through the
message flow.
“RouteToLabel node” on page 4673
Use the RouteToLabel node in combination with one or more Label nodes to
dynamically determine the route that a message takes through the message flow,
based on its content.
“ResetContentDescriptor node” on page 4663
Use the ResetContentDescriptor node to request that the message is reparsed by a
different parser.

Routing using publish/subscribe applications
You can route your messages to applications using the publish/subscribe method
of messaging.

There are two situations where you can use publish/subscribe in WebSphere
Message Broker. These situations are where you want to:
v Provide additional transformation or routing function, or both, at publication

time.
v Filter messages based on the content of the body of the message.

Developing publish/subscribe applications

For background information about the publish/subscribe method of messaging, see
the following topics:
v “Publish/Subscribe”
v “Publishers” on page 2218
v “Publications” on page 2219
v “Subscribers” on page 2220
v “Filters” on page 2221
v “Subscription points” on page 2222

Publish/Subscribe in WebSphere Message Broker Version 7.0

In WebSphere Message Broker Version 7.0, publish/subscribe uses the function
available in WebSphere MQ Version 7.0.

Publish/Subscribe
Publish/subscribe is a style of messaging application in which the providers of
information (publishers) are decoupled from the consumers of that information
(subscribers).

Chapter 9. Developing message flow applications 2215

In a publish/subscribe system, a publisher does not need to know who uses the
information (publication) that it provides, and a subscriber does not need to know
who provides the information that it receives as the result of a subscription.

Compare this with a point-to-point style of messaging application, in which the
application that sends messages needs to know the destinations of the messages
that it sends.

Queue managers make sure that messages arrive at the correct destinations, and
are transformed to the format required at each destination.

A typical publish/subscribe system has more than one publisher and more than
one subscriber, and often more than one queue manager. An application can be
both a publisher and a subscriber.

The publisher generates a message that it wants to publish and defines the topic of
the message.

A subscriber registers a request for a publication by specifying one of the following
items:
v The topic, or topics, of the published messages that it is interested in.
v The subscription point from which it wants to receive publications.
v The content filter that should be applied to the published message.
v The name of the queue (known as the subscriber queue) on which publications

that match the criteria selected are placed. This queue can be a cluster queue, so
that publications can be distributed to clustered subscribers.

Related concepts:
“Publishers” on page 2218
A publisher is an application that makes information about a specified topic
available to a queue manager in a publish/subscribe system.
“Publications” on page 2219
A publication is a piece of information about a specified topic that is available to a
queue manager in a publish/subscribe system.
“Subscription points” on page 2222
A subscription point is the name that a subscriber uses to request publications from
a particular set of Publication nodes. It is the property of a Publication node that
differentiates that Publication node from other Publication nodes in the same
message flow.
“Subscribers” on page 2220
A subscriber is an application that requests information about a specified topic from
a publish/subscribe queue manager.
“Filters” on page 2221
A filter is an expression, which might include wildcard characters, that is applied
to the content of a publication message to determine whether it matches a
subscription.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Routing using publish/subscribe applications” on page 2215
You can route your messages to applications using the publish/subscribe method
of messaging.
Related reference:

2216 WebSphere Message Broker Version 7.0.0.8

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“Publication node” on page 4643
Use the Publication node to filter output messages from a message flow and
transmit them to subscribers who have registered an interest in a particular set of
topics.
“Publish/subscribe” on page 6395
Use the reference information in this section to help you develop
publish/subscribe applications.

Changes to nodes in WebSphere Message Broker Version 7.0:

There are changes to the nodes provided in this version of the product. These
changes include removal of the SCADA and RealTime nodes.

The Publication node has two additional terminals, Out and No Match; see
“Publication node” on page 4643 for further information.

WebSphere MQ Telemetry Transport is supported from WebSphere MQ; see the
WebSphere MQ Telemetry Transport documentation for further information.

WebSphere MQ Real-time Transport and WebSphere MQ Telemetry Transport are
no longer supported. As a result of this change, the following nodes have been
removed:

Real-timeInput node
Flows containing Real-timeInput nodes that have been migrated to
WebSphere Message Broker Version 7.0 will not start until these nodes
have been removed from the flow and the flow has been redeployed.

Real-timeOptimizedFlow node
Flows containing Real-timeOptimizedFlow nodes that have been migrated
to WebSphere Message Broker Version 7.0 will not start until these nodes
have been removed from the flow and the flow has been redeployed.

If your message flows contain only a Real-timeOptimizedFlow node, no
WebSphere Message Broker flow is required after you have migrated to
WebSphere Message Broker Version 7.0.

SCADAInput node
Flows containing SCADAInput nodes that have been migrated to
WebSphere Message Broker Version 7.0 will not start until these nodes
have been removed from the flow and the flow has been redeployed.

SCADAOutput node
Flows containing SCADAOutput nodes that have been migrated to
WebSphere Message Broker Version 7.0 will fail if processing reaches the
node and you receive a BIP warning message.

MQeInput
The MQeInput node has been removed. This node was deprecated in an
earlier version of the product.

MQeOutput
The MQeOutput node has been removed. This node was deprecated in an
earlier version of the product.

Chapter 9. Developing message flow applications 2217

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqtat.doc/tt00000_.htm

Contact your account representative for more information about support for
WebSphere MQ Real-time Transport and WebSphere MQ Telemetry Transport.

Additionally, although the MQOptimizedFlow node still works, this node is
redundant.
Related reference:
“Publication node” on page 4643
Use the Publication node to filter output messages from a message flow and
transmit them to subscribers who have registered an interest in a particular set of
topics.
“Real-timeInput node” on page 4646
The Real-timeInput node, available in earlier versions of WebSphere Message
Broker, is not supported in WebSphere Message Broker Version 7.0. See for
information about migrating your message flows from WebSphere Message Broker
to WebSphere Message Broker Version 7.0.
“Real-timeOptimizedFlow node” on page 4646
The Real-timeOptimizedFlow node, available in earlier versions of WebSphere
Message Broker, is not supported in WebSphere Message Broker Version 7.0. See
for information about migrating your message flows from WebSphere Message
Broker to WebSphere Message Broker Version 7.0.
“SCADAInput node” on page 4706
The SCADAInput node, available in earlier versions of WebSphere Message Broker,
is not supported in WebSphere Message Broker Version 7.0. See for information
about migrating your message flows from WebSphere Message Broker to
WebSphere Message Broker Version 7.0.
“SCADAOutput node” on page 4706
The SCADAOutput node, available in earlier versions of WebSphere Message
Broker, is not supported in WebSphere Message Broker Version 7.0. See for
information about migrating your message flows from WebSphere Message Broker
to WebSphere Message Broker Version 7.0.

Publishers:

A publisher is an application that makes information about a specified topic
available to a queue manager in a publish/subscribe system.

In a publish/subscribe system, an application, known as the publisher, can send a
message to a message queue or port that is associated with an input node in a
message flow that contains a Publication node.

Another application, known as the subscriber, can send a subscription request to
the queue manager, which then sends relevant publication messages to the
message queue or port of the subscriber.

A published message can be requested by more than one subscriber, and a
subscriber can request messages, on the same or different topics, from more than
one publisher.
Related concepts:
“Publications” on page 2219
A publication is a piece of information about a specified topic that is available to a
queue manager in a publish/subscribe system.
“Subscribers” on page 2220
A subscriber is an application that requests information about a specified topic from
a publish/subscribe queue manager.

2218 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Publish message” on page 6405
“Real-timeInput node” on page 4646
The Real-timeInput node, available in earlier versions of WebSphere Message
Broker, is not supported in WebSphere Message Broker Version 7.0. See for
information about migrating your message flows from WebSphere Message Broker
to WebSphere Message Broker Version 7.0.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“Publication node” on page 4643
Use the Publication node to filter output messages from a message flow and
transmit them to subscribers who have registered an interest in a particular set of
topics.
“SCADAInput node” on page 4706
The SCADAInput node, available in earlier versions of WebSphere Message Broker,
is not supported in WebSphere Message Broker Version 7.0. See for information
about migrating your message flows from WebSphere Message Broker to
WebSphere Message Broker Version 7.0.

Publications:

A publication is a piece of information about a specified topic that is available to a
queue manager in a publish/subscribe system.

Typically, a queue manager distributes a publication that it receives to all
applications that are connected to it and that have registered a subscription for the
publication. The queue manager also distributes the publication to all other queue
managers connected to it, either directly or through a network of queue managers
that have subscribers for the publication.

Local publications: Publishers can restrict access to their publications to only those
subscribers that are registered to the same queue manager as the publisher. This
publication is known as a local publication. Local publications are not forwarded to
other queue managers.

Global publications: A publication whose distribution is not restricted to only those
subscribers that are registered to the same queue manager as the publisher is
known as global publication. A global publication is forwarded to all queue
managers, connected either directly or through a network of queue managers, that
have one or more subscribers for the publication.

Retained publications: Typically, a queue manager discards a publication after it has
been sent. However, a publisher can specify (in the case of the Publish message, by
specifying the RetainPub option) that it wants the queue manager to keep a copy of
the publication, which is then called a retained publication.

If a retained publication has been published, new subscribers to that publication
receive the publication without having to wait for it to be published again.

For example, a subscriber that registers a subscription for a stock price receives the
latest published stock price immediately, and does not have to wait for the stock
price to be republished.

Chapter 9. Developing message flow applications 2219

A queue manager retains only one publication for each combination of topic and
subscription point.

State and event information: Information being published can be categorized either
as state information or as event information.

State information is information about the current state of something. The current
price of stock or the current score in a soccer match are both examples of state
information.

Event information is information about an individual event that occurs. A change
in the price of stock or the scoring of a particular goal in a soccer match are both
examples of event information.

When an event occurs, the current state information is no longer required and is
superseded by new state information.

If a publication contains state information, it is often published as a retained
publication. A new subscriber typically wants the current information immediately;
the subscriber does not want to wait for an event that causes the information to be
republished.
Related concepts:
“Subscription points” on page 2222
A subscription point is the name that a subscriber uses to request publications from
a particular set of Publication nodes. It is the property of a Publication node that
differentiates that Publication node from other Publication nodes in the same
message flow.
Related reference:
“Publication node” on page 4643
Use the Publication node to filter output messages from a message flow and
transmit them to subscribers who have registered an interest in a particular set of
topics.
“Publish message” on page 6405

Subscribers:

A subscriber is an application that requests information about a specified topic from
a publish/subscribe queue manager.

The subscribing application might be a WebSphere MQ or WebSphere Message
Broker application.

The subscriber sends a subscription request to a queue manager, specifying which
publications it wants to receive. The request defines the topic, the filter, and the
subscription point of each publication.

Messages that are published by a publisher can be received by more than one
subscriber, and a subscriber can receive messages, on the same or different topics,
from more than one publisher.
Related concepts:
“Publish/Subscribe” on page 2215
Publish/subscribe is a style of messaging application in which the providers of
information (publishers) are decoupled from the consumers of that information
(subscribers).

2220 WebSphere Message Broker Version 7.0.0.8

“Publishers” on page 2218
A publisher is an application that makes information about a specified topic
available to a queue manager in a publish/subscribe system.
“Publications” on page 2219
A publication is a piece of information about a specified topic that is available to a
queue manager in a publish/subscribe system.
“Filters”
A filter is an expression, which might include wildcard characters, that is applied
to the content of a publication message to determine whether it matches a
subscription.
“Subscription points” on page 2222
A subscription point is the name that a subscriber uses to request publications from
a particular set of Publication nodes. It is the property of a Publication node that
differentiates that Publication node from other Publication nodes in the same
message flow.

Filters:

A filter is an expression, which might include wildcard characters, that is applied
to the content of a publication message to determine whether it matches a
subscription.

When you register a subscription, in addition to specifying a topic and
subscription point, you can specify a filter to select publications according to their
contents. WebSphere Message Broker must know how to parse the contents of the
message correctly, which can be achieved in a number of ways:
v The message is a self-defining XML message.
v The message template is defined in the MQRFH2 header.

If the message has an MQRFH header, the message set and type are taken from
that header. Otherwise, the message is assumed to be as defined in the
properties (domain, set, type, and format) of the input node.

The filter itself is entered as an ESQL expression; for example:
Body.Name LIKE ’Smit%’

This example means that the contents of a field called Name in the body of a
publication message are extracted and compared with the string given in the
expression. If the string in the message starts with the characters "Smit", the
expression evaluates to TRUE and the publication is sent to the subscriber.

If you want to select publications using filters only, without specifying a topic, you
can register a subscription with the required filter and a topic of "#" (all topics).
You then receive publications on only those topics for which you have access
authority.

This subscription results in all publications from all connected brokers being sent
to the broker that is local to the subscriber. Therefore, for performance reasons, if
you have set up a network of brokers, you are advised to not use this technique.
Related concepts:
“Content based filtering using ESQL” on page 2223
WebSphere MQ supports message selection based on Root.MQMD and message
properties; WebSphere Message Broker Version 7.0 provides extra options.
Related reference:

Chapter 9. Developing message flow applications 2221

“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Subscription points:

A subscription point is the name that a subscriber uses to request publications from
a particular set of Publication nodes. It is the property of a Publication node that
differentiates that Publication node from other Publication nodes in the same
message flow.

A subscriber that registers a subscription without specifying a subscription point
receives publications from any unnamed Publication node in the message flow, if
there is a match with the topic and filter specified by the subscriber.

This behavior applies to all message flows running in all brokers connected in the
same network, unless the local has been specified when registering the
subscription.

Using subscription points: If you have more than one Publication node in a
message flow, you can differentiate between them by specifying subscription
points. Choose values that indicate the type of message that is routed to each
Publication node.

Example: Consider an application that publishes stock prices. The prices that are
available from the first Publication node in the message flow are in dollars. This
Publication node uses the default subscription point.

You can define a second path through the message flow that takes the price in
dollars, and converts this using a defined conversion value, to produce the same
message but with the stock price in pounds. These messages are published at a
second Publication node that has its subscription point property set to "Pounds".

You might have another message flow, in the same broker or a connected broker,
that publishes stock prices in pounds on the same topic. Make sure that it uses the
"Pounds" subscription point, and that all other message flows that publish their
stock prices in dollars use the default subscription point.

Subscribers specifying the relevant topic (for example, "stock") can then choose
whether to receive the information in dollars or in pounds, by using the default
subscription point or the "Pounds" subscription point when they subscribe.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Publishers” on page 2218
A publisher is an application that makes information about a specified topic
available to a queue manager in a publish/subscribe system.
“Publications” on page 2219
A publication is a piece of information about a specified topic that is available to a
queue manager in a publish/subscribe system.
“Subscribers” on page 2220
A subscriber is an application that requests information about a specified topic from
a publish/subscribe queue manager.

2222 WebSphere Message Broker Version 7.0.0.8

“Filters” on page 2221
A filter is an expression, which might include wildcard characters, that is applied
to the content of a publication message to determine whether it matches a
subscription.
Related reference:
“Publication node” on page 4643
Use the Publication node to filter output messages from a message flow and
transmit them to subscribers who have registered an interest in a particular set of
topics.
“MQRFH2 structure” on page 6397
“Publish message” on page 6405

Content based filtering using ESQL
WebSphere MQ supports message selection based on Root.MQMD and message
properties; WebSphere Message Broker Version 7.0 provides extra options.

Content based filters in WebSphere Message Broker Version 7.0 extend
WebSphere MQ message selectors to allow the use of ESQL expressions to filter on
the entire message.

You can use the following:

Correlation names
In content based filters, the message can be accessed using the Root, Body,
and Properties correlation names.

Any other correlation name is interpreted as a WebSphere MQ message
property, apart from the following list of excluded reserved names:
v Database

v DestinationList

v Environment

v LocalEnvironment

v ExceptionList

v LocalEnvironment

Any other top level identifier is assumed to be a WebSphere MQ message
property, and is accepted.

Trees The content based filtering engine does not update the message tree. It
accesses the message tree as read-only. Any statements that attempt to
modify the tree are rejected.

By supporting ESQL, content based filtering in WebSphere Message Broker
Version 7.0 supports fully-qualified Namespaces, as documented in “ESQL
reference” on page 5019.

ESQL expressions
Content based filtering accepts any ESQL expression, with the exclusion of
database access, that returns a Boolean value.

Related concepts:
“Content based filtering” on page 6409
Content based filtering allows a subscriber to filter messages based on their
content.
Related tasks:

Chapter 9. Developing message flow applications 2223

“Enabling content-based filtering with publish/subscribe”
It is possible to subscribe to messages, based on a selection of message payload
content, in WebSphere Message Broker Version 7.0. You must enable content based
filtering explicitly.
“Setting content-based filtering options using the WebSphere Message Broker
Explorer” on page 2226
You can configure content based filtering using the WebSphere Message Broker
Explorer.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Enabling content-based filtering with publish/subscribe:

It is possible to subscribe to messages, based on a selection of message payload
content, in WebSphere Message Broker Version 7.0. You must enable content based
filtering explicitly.

Before you begin

Before you start

v Read about Selectors on WebSphere MQ.
v Read the following overview of how WebSphere MQ selects content of

messages.
When an application publishes on a topic string, where one or more subscribers
have a selection string selecting on the content of the message, WebSphere MQ
requests that the extended message selection provider parse the publication and
inform WebSphere MQ whether the publication matches the selection criteria
specified by each subscriber with a content filter.
If the extended message selection provider determines that the publication
matches the subscriber's selection string, the message continues to be delivered
to the subscriber.
If the extended message selection provider determines that the publication does
not match, the message is not delivered to the subscriber. This might cause the
WebSphere MQ MQPUT or MQPUT1 call to fail with reason code
MQRC_PUBLICATION_FAILURE. If the extended message selection provider is
unable to parse the publication, reason code MQRC_CONTENT_ERROR is
returned and the MQPUT or MQPUT1 call fails.
If the extended message selection provider is unavailable or is unable to
determine whether the subscriber should receive the publication, reason code
MQRC_SELECTION_NOT_AVAILABLE is returned and theWebSphere MQ
MQPUT or MQPUT1 call fails.
When a subscription is being created with a content filter and the extended
message selection provider is not available, the WebSphere MQ MQSUB call
fails with reason code MQRC_SELECTION_NOT_AVAILABLE. If a subscription
with a content filter is being resumed and the extended message selection
provider is not available, the WebSphere MQ MQSUB call returns a warning of
MQRC_SELECTION_NOT_AVAILABLE, but the subscription is allowed to be
resumed.

v z/OS For z/OS systems, verify that the message broker started task ID has
UPDATE access permission to profile <MQ_QMNAME>.BATCH of class MQCONN.

2224 WebSphere Message Broker Version 7.0.0.8

v Linux UNIX Windows On Linux, UNIX and Windows systems, grant
authorization for the system to the queue manager: setmqaut -t <qmgr> +system
-p <brokerUserId>

About this task

WebSphere Message Broker extends the message selection support provided by
WebSphere MQ. WebSphere Message Broker does this by allowing ESQL
statements rather than SQL92 statements, and filtering based on message content.
See “Content based filtering using ESQL” on page 2223 for details of the scope and
exclusions of supported ESQL.

The main external differences in the current implementation of content-based
filtering are:
v Content based filtering is no longer limited to WebSphere MQ MQRFH2

subscribers. WebSphere Message Broker Version 7.0 provides content filtering
services for the following WebSphere MQ subscribers:

MQRFH2
MQSUB

If you are performing content filtering based on the NameValueData field, within
an MQRFH2 header, on z/OS, the data can be present either in the first or
second MQRFH2 header. For example, the filter:
Root.MQRFH2.mcd.Msd=’XML’

might not work as you expect on z/OS. Use the following syntax to search all
MQRFH2 headers:
FOR ANY Root.MQRFH2[] AS I (I.mcd.Msd=’XML’)

v WebSphere MQ message properties are supported as part of the filter
expression.

v If the publication does not contain an mcd folder, the payload is assumed to be
XMLNSC.

Read the following steps to see how to enable content-based filtering on
WebSphere Message Broker Version 7.0.

Procedure

1. Set the cbfEnabled property of the ContentBasedFiltering object for the
execution group in which you want content-based filtering to run.
You set the cbfEnabled property from the command line using either the:
v mqsichangeproperties command; see “Content based filtering component

parameter values” on page 3805 for more information, or
v WebSphere Message Broker Explorer; see “Setting content-based filtering

options using the WebSphere Message Broker Explorer” on page 2226 for
more information.

Note that you must explicitly enable the cbfEnabled property for content based
filtering to work; the default setting is for content based filtering to be off.

2. Restart the execution group for the change to take effect.
If you enable content based filtering in multiple execution groups on z/OS,
content based filtering is active in only one execution group at any time.
Subsequent execution groups for which content based filtering is enabled,

Chapter 9. Developing message flow applications 2225

propagate the following messages to the syslog on start up (for each content
based filtering thread) and then every 30 minutes, as they fail to connect to the
queue manager:
BIP2111E MQ04BRK jheg1 15 MESSAGE BROKER INTERNAL ERROR: DIAGNOSTIC INFORMATION
’Error occurred in Content Based Filtering Thread’. : ImbCbfWorker(909)

BIP2624E MQ04BRK jheg1 14 UNABLE TO CONNECT TO QUEUE MANAGER ’MQ04’: MQCC=2;
MQRC=2002; MESSAGE FLOW NODE ’ContentBasedFiltering’. : ImbCbfWorker(214)

If you stop the execution group that is currently providing content based
filtering services, another execution group for which content based filtering is
enabled connects to the queue manager and provides content based filtering
services.
Both the evaluationThreads and validationThreads properties default to one if
content-based filtering is enabled.
Evaluation threads are used to validate content filters against a given
publication at publication time. A network with a high number of publications
might require the evaluationThreads property to be increased (up to a
maximum of 32) to handle the workload at publication time.
Validation threads are used to validate syntax of content filters at subscription
time. A publish/subscribe network with a high number of subscribers,
especially if dynamic subscribers, might require the validationThreads
property to be increased (up to a maximum of 32) to handle the high
throughput of subscription requests.
It is possible to enable this function in multiple execution groups, but you must
ensure that any message sets required to parse any published message (and
referenced in the mcd folder of that message) are deployed to all the execution
groups that have been enabled for content-based filtering.
Any errors encountered parsing the message within the evaluation thread cause
WebSphere MQ to return MQRC_CONTENT_ERROR to the publishing
application. The parsing error appears as well in the event log as a WebSphere
Message Broker exception.
Example of a subscription <psc> folder processing ESQL and message
properties in the filter:
<psc>
<Command>RegSub</Command><Topic>topic</Topic>

<Filter>
SUBSTRING(Root.XMLNSC.Name.FirstName FROM 1 FOR 1) = 'J’ and usr.flag = 'yes’
</Filter>

</psc>

Related concepts:
“Content based filtering using ESQL” on page 2223
WebSphere MQ supports message selection based on Root.MQMD and message
properties; WebSphere Message Broker Version 7.0 provides extra options.
Related reference:
“Content based filtering component parameter values” on page 3805
Select the objects and properties associated with the content based filtering
component that you want to change.

Setting content-based filtering options using the WebSphere Message Broker
Explorer:

You can configure content based filtering using the WebSphere Message Broker
Explorer.

2226 WebSphere Message Broker Version 7.0.0.8

About this task

To configure content based filtering:

Procedure

1. Open the WebSphere Message Broker Explorer.
2. Right-click the execution group to select the Properties dialog.
3. Select the ContentBasedFiltering tab.
4. Select Enabled from the drop down list to enable content based filtering.
5. Select the number of Validation (Subscription) Threads and Evaluation

(Publication) Threads you require. Valid values for each of these options is a
number in the range 1 - 32.
Entering any other value causes an error to appear in the Properties dialog.
If you have not enabled content based filtering, the fields controlling the thread
values are grayed out.

6. Restart the execution group for the changes to take effect.

Results

You have configured content based filtering.
Related concepts:
“Content based filtering using ESQL” on page 2223
WebSphere MQ supports message selection based on Root.MQMD and message
properties; WebSphere Message Broker Version 7.0 provides extra options.
Related tasks:
“Enabling content-based filtering with publish/subscribe” on page 2224
It is possible to subscribe to messages, based on a selection of message payload
content, in WebSphere Message Broker Version 7.0. You must enable content based
filtering explicitly.

Transforming and enriching messages
Transform and enrich messages by using one or more of the techniques described
in this section.

About this task

Use one or more of following five options for transforming and enriching the
messages in your message flows:
v Mappings
v ESQL
v Java
v XSL style sheets
v PHP

For more information about these options, and why you might choose one in
preference to another, see “Client application programming interfaces” on page
1038. To use some of these options for transforming and enriching messages you
might need to create a model of the messages that you want to transform. For
information about how to develop a message model, and why you might want to
develop a message model, see “Constructing message models” on page 2838.

Chapter 9. Developing message flow applications 2227

For details of the tasks associated with these options, use the instructions provided
in the following sections:
v “Using message mappings”
v “Developing ESQL” on page 2370
v “Developing Java” on page 2628
v “Using XSL Transform” on page 2669
v “Using PHP” on page 2670

Using message mappings
Message mappings define the blueprint for creating a message.

About this task

The following topics provide information about mapping:

Concept topics:

v “Message mapping overview” on page 2229
v “Advanced schema structures” on page 2230

Task topics:

v “Creating message mappings” on page 2232
v “Creating a message map file in the Broker Development view” on page 2233
v “Creating a message mapping file from a Mapping node” on page 2236
v “Configuring message mappings” on page 2237
v “Mapping from source: by selection” on page 2240
v “Mapping from source: by name” on page 2241
v “Mapping a target element from source message elements” on page 2254
v “Setting the value of a target element to a constant” on page 2257
v “Setting the value of a target element to a WebSphere MQ constant” on page

2258
v “Setting the value of a target element using an expression or function” on page

2261
v “Deleting a source or target element” on page 2264
v “Configuring conditional mappings” on page 2265
v “Configuring mappings for repeating elements” on page 2266
v “Populating a message map” on page 2269
v “Configuring the LocalEnvironment” on page 2271
v “Mapping headers and folders” on page 2271
v “Adding messages or message components to the source or target” on page 2273
v “Adding a database as a source or target” on page 2274
v “Modifying databases using message mappings” on page 2277
v “Creating and calling submaps and subroutines” on page 2298
v “Transforming a SOAP request message” on page 2311
v “Editing a default-generated map manually” on page 2312
v “Message mapping tips and restrictions” on page 2314
v “Message mapping scenarios” on page 2318

Reference topics:

v “Message mappings” on page 4981

2228 WebSphere Message Broker Version 7.0.0.8

v “Message Mapping editor” on page 4981
v “Mapping node” on page 4994

Message mapping overview
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.

Input and output objects are defined by reference to message models, which
provide a definition of the message structure and type through the following
components:
v Simple elements and attributes, which define the type, range, and default values
v Complex elements, which build the structure of the message
v Repeating simple or complex elements
v Other (embedded) messages

Messages can contain protocol-specific headers, which might have to be
manipulated by WebSphere Message Broker. Dynamic setting of a message
destination (routing) within the WebSphere Message Broker might also be required.

Values for target message elements can be derived from:
v Input message elements (the input message is also known as the source

message)
v Database tables
v Constant values
v WebSphere MQ constants
v Functions supplied by the Mapping node
v User-defined functions

The logic to derive values can be simple or complex; conditional statements might
be needed, as might loops, summations, and other functions. All of the mappings
shown earlier can be achieved using a Mapping node.

You can also create a reusable form of map known as a submap. Submaps allow
you to use a set of mapping functions in multiple maps to transform a common set
of elements in the input object to the output object.

The Mapping node supports the following message domains:
MRM
XMLNSC
XMLNS
MIME
SOAP
DataObject
JMSMap
JMSStream
XML
BLOB
IDOC

The Mapping node does not support the JSON message domain, because no JSON
message modeling is supported.

Chapter 9. Developing message flow applications 2229

Related concepts:
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Advanced schema structures:

You can use several advanced schema structures in mappings.

This section contains information about the following subjects:
v “Substitution groups”
v “Wildcards”
v “Derived types”
v “List types” on page 2231
v “Union types” on page 2231

Substitution groups: A substitution group is an XML Schema feature that provides
a means of substituting one element for another in an XML message. The element
that can be substituted is called the head element, and the substitution group is the
list of elements that can be used in its place.

The head element and any mapped substitutions are shown by default in the
Source and Target panes of the Message Mapping editor. The mapped substitutions
are listed beneath the head element. You can show and hide the substituting
elements displayed in the Source and Target panes by selecting Show Substituting
Elements. You create mappings to or from members of substitution groups in the
same way as you would map other elements.

An abstract head element of a substitution group is not displayed and when
substitution is blocked, the substitution group folder is not displayed.

Wildcards: A mapping that you perform to or from a wildcard results in a submap
call. Specify the wildcard replacement when you choose the parameter of a
submap call.

A wildcard element or attribute can be instantiated only with another element or
attribute. The Message Mapping editor allows only a global element or attribute as
a wildcard replacement.

Derived types: For an element of a given type, the base type and the mapped
derived types are shown by default in the Source and Target panes of the Message

2230 WebSphere Message Broker Version 7.0.0.8

Mapping editor. All attributes and elements of the base and derived types are
listed under each type respectively. You can show and hide the derived types
displayed in the Source and Target panes by selecting Show Derived Types.

You create mappings to or from a derived type and its contents in the same way
that you would map any type or type content. When you map a derived type
element, the Message Mapping editor generates ESQL code with the appropriate
xsi:type attribute.

List types: A list type is a way of rendering a repeating simple value. The notation
is more compact than the notation for a repeating element and provides a way to
have multi-valued attributes.

You map list type attributes or elements in the same way that you would map any
other simple type attribute or element. Mapping between two list type elements is
the same as mapping between any two simple type elements.

To transform between a list type and a non-list type, such as a repeating element,
write an ESQL function, then package the function as a map. The Message
Mapping editor automatically selects this submap as the default transformation for
the list type.

Union types: A union type is the same as a union of two or more other simple
types and it allows a value to conform to any one of several different simple types.

Use the Message Mapping editor to create mappings to or from union type
attributes or elements in the same way as you would map atomic simple type
attributes or elements, as shown in the following diagram:
<xsd:simpleType name="zipUnion">
<xsd:union memberTypes="USState listOfMyIntType"/>
</xsd:simpleType>
<xsd:element name=zip type=zipUnion/>

Related concepts:
“Substitution groups in the message model” on page 1199
Substitution groups are an XML Schema feature that provides a way of substituting
one element for another in an XML message.
“Message model objects: Wildcard attributes” on page 1187
For XML messages, a wildcard attribute enables unmodeled attributes to be present
in a message.
“Message model objects: simple types” on page 1180
A simple type is an abstract definition of an item of data such as a number, a string,
or a date.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
Related tasks:
“Creating a new submap for a wildcard source” on page 2300
You can map a wildcard value in the source to a wildcard value in the target.
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.

Chapter 9. Developing message flow applications 2231

Related reference:
“Local element logical properties” on page 5442
The logical properties of a local element include properties that specify the number
of occurrences and value of the local element.
“Wildcard element properties” on page 6064
Different types of properties are available for a wildcard element.
“Wildcard attribute properties” on page 6060
Different types of properties are available for a wildcard attribute.

Creating message mappings
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.

The topics in this section describe how to create message mappings. Most actions
can be achieved either by using the menu bar, or by right-clicking and choosing an
action from a drop-down menu. For consistency, the following topics describe the
menu bar method:
v “Creating a message map file in the Broker Development view” on page 2233
v “Creating a message mapping file from a Mapping node” on page 2236
v “Configuring message mappings” on page 2237
v “Mapping from source: by selection” on page 2240
v “Mapping from source: by name” on page 2241
v “Mapping a target element from source message elements” on page 2254
v “Setting the value of a target element to a constant” on page 2257
v “Setting the value of a target element to a WebSphere MQ constant” on page

2258
v “Setting the value of a target element using an expression or function” on page

2261
v “Creating a BLOB output message using a message map” on page 2262
v “Mapping from a BLOB message to an output message” on page 2263
v “Deleting a source or target element” on page 2264
v “Configuring conditional mappings” on page 2265
v “Configuring mappings for repeating elements” on page 2266
v “Populating a message map” on page 2269
v “Configuring the LocalEnvironment” on page 2271
v “Mapping headers and folders” on page 2271
v “Adding messages or message components to the source or target” on page 2273
v “Adding a database as a source or target” on page 2274
v “Modifying databases using message mappings” on page 2277
v “Creating and calling submaps and subroutines” on page 2298
v “Transforming a SOAP request message” on page 2311
v “Editing a default-generated map manually” on page 2312
Related concepts:
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Message mapping tips and restrictions” on page 2314
Information to help you use message mapping.
Related tasks:

2232 WebSphere Message Broker Version 7.0.0.8

“Message mapping scenarios” on page 2318
“Debugging mappings” on page 3185
When message flow processing has paused at a breakpoint that you have set in
source code within a node that contains mappings, you can view the mapping
routines and modify user-defined variables in the Flow Debugger.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

For a basic introduction to mapping, see the IBM Redbooks publication
WebSphere Message Broker Basics.

Creating a message map file in the Broker Development view:
Before you begin

You can create a message map file for use in your message flows in the Broker
Development view. If you want to add a database to your message map file, you
must have created a database definition for the database.

About this task

To create a message map (.msgmap) file in the Broker Development view:

Procedure

1. From the Broker Application Development perspective, click File > New >
Message Map.
Alternatively, in the Broker Development view, right-click the message flow
project that you want to create the message map in and click New > Message
Map.
The New Message Map wizard opens.

2. Specify the Project, Name and Schema for the message map. The project list is
filtered to show only projects in the active working set. Click Next.

3. Follow the on-screen instructions to complete the New Message Map wizard:
a. On the Select map kind and its source and target pane, select the type of

map you want to create.
v If you select the option Message map called by a message flow node, a

message map is created that can be accessed from a node. Properties are
associated with any source or target messages, and you can select to
include message headers and the LocalEnvironment with the message
body.

v If you select the option Submap called by another map, a message map
is created that can be referenced from another message map. This is
known as a submap and can contain components of a message body such
as global elements, global attributes, and global types. A submap does not
contain Properties, message headers, or the LocalEnvironment.

b. Expand the Messages, Message Components, and Data Sources folders and
their children, to display all the available options. Select the Messages,
Message Components, Database Selects, Stored Procedures, and User
Defined Functions that you want to use for your map from Select Map
Sources. The stored procedure list, if any, shows the stored procedure
signature, such as the procedure name, its parameter mode
(IN/OUT/INOUT), parameter name, and the data type.

Chapter 9. Developing message flow applications 2233

http://www.redbooks.ibm.com/abstracts/sg247137.html

c. Expand the Messages and Data Targets folders and their children, to display
all the available options. Select the Messages, Table Inserts, Table Updates
and Table Deletes that you want to use as targets for your map from Select
Map Targets.

The information contained inside a square bracket is the data source name,
schema name, and the database project which contains the database definition.
Messages, data sources and data targets are filtered to show only resources
from the active working set. If you cannot find the Messages, Message
Components, Data Sources or Data Targets that you expect, clear the Apply
working set filtering to artifact selection(s) on the page check box.

4. Select Finish to create the new message map. The “Message Mapping editor”
on page 4981 opens with the selected sources and targets.

What to do next

After you have created a message map file, configure the message mappings. You
must also configure the Mapping routine property on your mapping node to
match the name of your new mapping file.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Editing a default-generated map manually” on page 2312
A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“DataDelete node” on page 4382
Use the DataDelete node to interact with a database in the specified ODBC data
source.

Analyzing the impact of changes to message maps:

Use impact analysis to analyze the effect of renaming or moving message maps.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message flow project” on page 1425
v “Creating a message map file in the Broker Development view” on page 2233
v “Enabling and disabling indexing” on page 1454

2234 WebSphere Message Broker Version 7.0.0.8

About this task

This information covers the following tasks:
v “Renaming message maps”
v “Moving a message map”

Renaming message maps:
Procedure

1. In the Broker Development view, right-click the object that you want to rename,
then click Impact Analysis > Rename.

2. In the Impact Analysis - Rename Artifact window, type the new name of the
object, then click Analyze Impact.
The Rename Artifact dialog box shows the results of impact analysis, listing
primary and secondary impacts.
You can view the results of impact analysis in the Impact Analysis dialog box,
or the Impact Analysis view of the WebSphere Message Broker Toolkit. For
more information about how to view information about selected resources,
mark changes as complete, copy results to an external application, and view
previous results, see “Impact Analysis view” on page 6801.

Moving a message map:
Procedure

1. In the Broker Development view, right-click the file, then click Impact Analysis
> Move.

2. In the bottom panel, select the new folder for the object, then click Analyze
Impact.
The Impact Analysis - Move Artifact dialog box shows the results of impact
analysis, listing primary and secondary impacts.
You can view the results of impact analysis in the Impact Analysis dialog box,
or the Impact Analysis view of the WebSphere Message Broker Toolkit. For
more information about how to view information about selected resources,
mark changes as complete, copy results to an external application, and view
previous results, see “Impact Analysis view” on page 6801.

:

Related concepts:
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Enabling and disabling indexing” on page 1454
Enable indexing to support impact analysis.
“Analyzing planned changes to message model objects” on page 2897
Use impact analysis to analyze the effect of renaming message model objects.
“Analyzing planned changes to ESQL objects” on page 2403
Use impact analysis to analyze the effect of renaming or moving ESQL objects, or
moving or changing the broker schema of an ESQL file.
“Analyzing planned changes to message flows” on page 1436
Use impact analysis to analyze the effect of renaming or moving message flows,
including subflows.

Chapter 9. Developing message flow applications 2235

“Analyzing planned changes to message set resources” on page 1165
Use impact analysis to analyze the effect of renaming message definition or
deployable WSDL files.
Related reference:
“Impact analysis: reference” on page 4174
Some artifacts are excluded from secondary analysis.

Creating a message mapping file from a Mapping node:

You can use a Mapping node to create a message map with messages and
databases as both sources and targets.

Before you begin

Before you create a mapping file, ensure that you complete the following tasks:
1. “Creating a message flow project” on page 1425.
2. “Creating a message flow” on page 1431.
3. Define message flow content that includes a Mapping node; for more

information, see “Defining message flow content” on page 1488.

About this task

To create a message map (.msgmap) file from a Mapping node:

Procedure

1. Open your message flow from the Broker Application Development
perspective.

2. Double-click the Mapping node, or right-click the Mapping node and click
Open Map. The New Message Map wizard opens.

3. Select the combination of Messages, Data Sources, or both, that you want to use
as sources for your map from Select map sources. Select the combination of
Messages, Data Targets, or both, that you want to use as targets for your map
from Select map targets.
If you cannot find the Messages, Data Sources or Data Targets that you expect,
clear the Apply working set filtering to artifact selection(s) on the page check
box.

4. Click OK to create the new message map. The Message Mapping editor opens
with the selected sources and targets, for more information see “Message
Mapping editor” on page 4981.

What to do next

After you have created a message map file, you can configure the message
mappings, see “Configuring message mappings” on page 2237.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Editing a default-generated map manually” on page 2312
A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.

2236 WebSphere Message Broker Version 7.0.0.8

“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
“Configuring message mappings”
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“DataDelete node” on page 4382
Use the DataDelete node to interact with a database in the specified ODBC data
source.

Configuring message mappings:

Use the Message Mapping editor to configure a message mapping.

About this task

When you have created a map, you can edit it using the Message Mapping editor.

The editor provides the ability to set values for:
v Message destination
v Message content
v Message headers

See the “Mapping node” on page 4571 topic for more information about how to set
the properties of a Mapping node.

Wizards and dialog boxes are provided for tasks such as adding mappable
elements and working with submaps. Mappings that are created with the Message
Mapping editor are validated and compiled automatically, ready to be added to a
broker archive (BAR) file, and for subsequent deployment to WebSphere Message
Broker.

Use the Message Mapping editor to perform the following tasks:

Common tasks:

v “Mapping from source: by selection” on page 2240
v “Mapping from source: by name” on page 2241
v “Mapping a target element from source message elements” on page 2254
v “Mapping a target element from database tables” on page 2288
v “Mapping a target element from database stored procedures” on page 2290
v “Mapping a target element from database user-defined functions” on page 2292
v “Setting the value of a target element to a constant” on page 2257
v “Setting the value of a target element to a WebSphere MQ constant” on page

2258
v “Setting the value of a target element to an ESQL constant” on page 2260
v “Setting the value of a target element using an expression or function” on page

2261

Chapter 9. Developing message flow applications 2237

v “Configuring conditional mappings” on page 2265
v “Configuring mappings for repeating elements” on page 2266

Message destination tasks: You might map a destination so that the destination
can be set dynamically, by setting values in LocalEnvironment.Destination. You can
also retrieve information after a message has been sent, by accessing information in
LocalEnvironment.WrittenDestination.
v “Configuring the LocalEnvironment” on page 2271
v “Mapping headers and folders” on page 2271

Message content tasks:

v “Adding messages or message components to the source or target” on page 2273
v “Adding a database as a source or target” on page 2274
v “Showing or hiding substituting elements in the Message Mapping editor”
v “Showing or hiding derived types in the Message Mapping editor” on page 2239

Message header tasks:

v “Configuring message headers” on page 2271
v “Mapping headers and folders” on page 2271
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Editing a default-generated map manually” on page 2312
A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Showing or hiding substituting elements in the Message Mapping editor:

You can use the Show Substituting Elements dialog box to show and hide
substituting elements in the Message Mapping editor.

About this task

The head element and any mapped substitutions are shown by default in the
Mapping editor. You can use the Show Substituting Elements dialog to show and
hide the substituting elements in the Mapping editor:

Procedure

1. In either the Source or the Target pane, right-click the element that you want to
show or hide the substituted elements for. If an element has substituted
elements, it is displayed as a substitutions folder in the Source or the Target
pane.

2. Click Show Substituting Elements on the pop-up menu. The Show
Substituting Elements dialog box is displayed.

2238 WebSphere Message Broker Version 7.0.0.8

3. In the Show Substituting Elements dialog box, select elements to show them in
the Message Mapping editor, or clear them to hide them in the Message
Mapping editor. You cannot hide any element that is already used in a
mapping.

4. Click OK.

Results

The elements that you have chosen to show or to hide are stored as preferences in
your workspace.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related tasks:
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
“Adding a database as a source or target” on page 2274
Add a database as a source, and database tables as targets, to message maps that
support database mappings.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Showing or hiding derived types in the Message Mapping editor:

You can use the Show Derived Types dialog box to show and hide derived types
in the Message Mapping editor.

About this task

For an element of a given type, only the base type and any mapped derived types
are shown in the Message Mapping editor. You can use the Show Derived Types
dialog to show and hide derived types:

Procedure

1. In either the Source or the Target pane, right-click the element that you want to
show or hide the derived types for. If an element has derived types it is
displayed as a specializations folder in the Source or the Target pane.

2. Click Show Derived Types on the pop-up menu. The Show Derived Types
dialog box is displayed.

3. In the Show Derived Types dialog box, select elements to show them in the
Message Mapping editor, or clear them to hide them in the Message Mapping
editor. You cannot hide any element that is already used in a mapping.

4. Click OK.

Chapter 9. Developing message flow applications 2239

Results

The elements that you have chosen to show or to hide are stored as preferences in
your workspace.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related tasks:
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
“Adding a database as a source or target” on page 2274
Add a database as a source, and database tables as targets, to message maps that
support database mappings.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Mapping from source: by selection:

You can map from source fields by using Map from Source, or by using the
drag-and-drop method.

About this task

Using Map from Source

Procedure

1. Select the source and target elements that you want to map by clicking them.
(Ctrl+click to select multiple source or target elements.)

2. Click Map > Map from Source.
There are four possible scenarios that result in mapping by selection using Map
from Source.
v If more than one mappable source element is selected, the selected sources

are mapped to the selected target.
v If more than one mappable target element is selected, the selected source is

mapped to the selected targets.
v If one mappable source and one mappable target are selected, and neither

element has any children, the selected source is mapped to the selected
target.

v If one mappable source and one mappable target are selected, where both the
elements have children and the same type definition, the selected source is
mapped to the selected target.

v If one mappable source and one mappable target are selected, and one of
them is an element with mixed content and the other does not have any
children, the mixed content is mapped with the other selected item.

2240 WebSphere Message Broker Version 7.0.0.8

What to do next

Using the drag-and-drop method

Drag the appropriate source element or elements onto the target element or
elements (Ctrl+click to select multiple source or target elements.)

When you use the drag-and-drop method to map from source, mapping by
selection is always performed. You can use the drag-and-drop method in the
following scenarios:
v More than one mappable source element is selected. In this case, the selected

sources are mapped to the selected target.
v More than one mappable target element is selected. In this case, the selected

source is mapped to the selected targets.
v One mappable source and one mappable target are selected, and neither element

has any children. In this case, the selected source is mapped to the selected
target.

v One mappable source and one mappable target are selected, and one of them is
an element with mixed content and the other does not have any children. In this
case, the selected mixed content is mapped to the other selected item.

v The selected source and target elements have the same type definition, or the
source type is derived from the target type. In this case the entire structure
below the element is copied.

In other scenarios, when a mapping by selection is not possible, the Map by Name
wizard opens to enable a Map by Name mapping to be performed instead.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related tasks:
“Mapping from source: by name”
The Map by Name wizard is used to map complex types by examining the names
of source elements and target elements to create mappings.
“Mapping a target element from source message elements” on page 2254
“Mapping a target element from database tables” on page 2288
To map a target element from a database table, set up the Mapping node to
retrieve the relevant rows from the database and populate the message target
elements with values from database.
“Mapping a target element from database stored procedures” on page 2290
Use a DB2 or Oracle database stored procedure as a source in a Mapping node.
“Mapping a target element from database user-defined functions” on page 2292
Use an Oracle database user-defined function as a source in a Mapping node.

Mapping from source: by name:

The Map by Name wizard is used to map complex types by examining the names
of source elements and target elements to create mappings.

Chapter 9. Developing message flow applications 2241

About this task

The Map by Name wizard can also be used to map database columns. The
following steps describe how to map from source using the Map by Name wizard.

Using the Map by Name wizard

Procedure

1. Click the source and target complex elements, database, schema, table, database
stored procedure, or database user-defined function that you want to map.

2. Click Map > Map by Name. The Map by Name wizard opens to allow you to
perform mapping by name.

3. Choose the appropriate option from the Select how to map from source to
target wizard:
v Map leaves of the selected nodes. This option maps the leaves of the source

element to the leaves of the target element, that match each other; this option
is selected by default.

v Map immediate children of the selected nodes. This option maps only the
immediate children of the source element to the immediate children of the
target element that match each other. This option is available only when the
selected source and target elements have immediate children that are
mappable.

4. After selecting the Map leaves of the selected nodes or Map immediate
children of the selected nodes option, specify how names are matched.
v Case sensitive. This option enables you to select whether you want to match

the case sensitivity of the name; this option is not selected by default.
v Alphanumeric characters (Letters and digits only). This option excludes

special characters (for example & and -) from the name; this option is
selected by default.

The preceding two options are independent of one another, and you can select
their values separately.

5. Specify the Mapping Criteria between the sources and targets.
If the source and target names that you are using satisfy more than one of the
following options, the order in which names are matched is:
a. Same
b. Synonym
c. Similar

Any target that is matched during an earlier step is excluded from name
matching in a later step.
v Create mappings between sources and targets with the same name. This

option matches items of the same name, and is selected by default.
Whether the two names are considered to be the same, depends on your
selections for Case sensitive and Alphanumeric characters (Letters and
digits only).
For example, if you have used the default options for Case sensitive and
Alphanumeric characters (Letters and digits only), GIVEN_NAME and
GivenName are considered to be a match.
However, if you have selected Case sensitive as well as Alphanumeric
characters (Letters and digits only), the two names are considered to be
identical only if they contain the same alphanumeric characters in the same
order, and the characters are of the same case.

2242 WebSphere Message Broker Version 7.0.0.8

See “Mapping by Same Name” on page 2245 for further information.
v Create mappings when source and target names are more similar than. This

option allows you to specify how similar two words have to be to create a
mapping between them by varying the result from zero to 100 percent. The
result is displayed and the default value is 60; see “Sample similarity values”
on page 2245 for some examples of how similar words are matched to one
another.

v Create mappings between source and target names defined as synonyms in
file. This option allows you to create mappings for word pairs that are
defined in a synonym file. A synonym file is a flat text file with file extension
.txt or .csv. See “Creating and using a synonym file” on page 2251 for
further information about how you create a synonym file from a spreadsheet
written in Microsoft Excel.
See “Format of the synonym file” on page 2247 for further information about
the synonym file itself, and “Algorithm used to match synonyms” on page
2252 for further information about the methods that are used to match
synonyms in a synonym file.

6. Click Finish to complete the process, or Next to obtain further options.

What to do next

The Map by Name wizard opens automatically when you use the drag-and-drop
method to map from source where the source and target are complex types with
different type definitions, or where the source type is not derived from the target
type.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related tasks:
“Mapping from source: by selection” on page 2240
You can map from source fields by using Map from Source, or by using the
drag-and-drop method.
“Mapping a target element from source message elements” on page 2254
“Mapping a target element from database tables” on page 2288
To map a target element from a database table, set up the Mapping node to
retrieve the relevant rows from the database and populate the message target
elements with values from database.
“Mapping a target element from database stored procedures” on page 2290
Use a DB2 or Oracle database stored procedure as a source in a Mapping node.
“Mapping a target element from database user-defined functions” on page 2292
Use an Oracle database user-defined function as a source in a Mapping node.
“Creating and using a synonym file” on page 2251
You can create a synonym file manually, or by generating a synonym file from the
information that is contained in a Microsoft Excel spreadsheet, using the following
set of instructions.
“Mapping by Same Name” on page 2245
Options are available when you select Create mappings between sources and
targets with the same name or a similar name.
Related reference:

Chapter 9. Developing message flow applications 2243

“Format of the synonym file” on page 2247
Map by Name allows you to create mappings between specific sources and targets by
putting the names of the sources and targets in a file called the synonym file.
“Algorithm used to match synonyms” on page 2252
The way in which synonyms are matched by the Map by Name function, to create
mappings between specific sources and targets, follows a particular set of rules.
“Sample similarity values” on page 2245
The following table lists words that are similar to one another, together with their
similarity value in percent.

Selecting matches:

Use the Map by Name wizard to select the mappings that you want to create.

About this task

When you have specified how you require the names to be matched on the initial
panel of the Map by Name wizard, and have selected Next, you see a panel that
displays all the matches found.

You can now select the options that you require:

Procedure

1. Select a row in the Selectable Mapping Targets column that you want to
change. Selecting a folder tree node results in the entire tree branch being
selected or not selected.

2. Click Edit to start the Select Mapping Source dialog.
3. To select a mapping target, select the appropriate tree node check box.

Conversely, to remove a mapping target, clear the appropriate tree node check
box.

4. Ensure that you have selected only the number of matches that you require.
The third column displays the number of sources selected for each mapping
target. The cell has a value greater than one when the source of a map contains
several elements of certain names under various containers, and the source
names match to the same target name.

5. Click Finish to complete the mapping process, or click Back to change the
matches that you have set up. When you click Finish, you obtain a warning
message if either, or both, of the following conditions apply:
a. More than a few sources to map to the same target.
b. Many targets for which you want to create mappings.

Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related tasks:
“Mapping from source: by selection” on page 2240
You can map from source fields by using Map from Source, or by using the
drag-and-drop method.
“Mapping a target element from source message elements” on page 2254

2244 WebSphere Message Broker Version 7.0.0.8

“Mapping a target element from database tables” on page 2288
To map a target element from a database table, set up the Mapping node to
retrieve the relevant rows from the database and populate the message target
elements with values from database.
“Mapping a target element from database stored procedures” on page 2290
Use a DB2 or Oracle database stored procedure as a source in a Mapping node.
“Mapping a target element from database user-defined functions” on page 2292
Use an Oracle database user-defined function as a source in a Mapping node.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.

Sample similarity values:

The following table lists words that are similar to one another, together with their
similarity value in percent.

Word1 Word2 Similarity value %

catalog catalogue 85

anasthesia anaesthesia 84

recognize recognise 75

color colour 66

theater theatre 66

tire tyre 33

intro introduction 53

abbr abbreviation 42

name fullname 60

firstname fullname 40

id identification 14

NCName Non colonized name 40

USA United States of America 0

faq frequently asked questions 0

Related tasks:
“Mapping from source: by name” on page 2241
The Map by Name wizard is used to map complex types by examining the names
of source elements and target elements to create mappings.
“Selecting matches” on page 2244
Use the Map by Name wizard to select the mappings that you want to create.

Mapping by Same Name:

Options are available when you select Create mappings between sources and
targets with the same name or a similar name.

About this task

When you select Create mappings between sources and targets with the same
name, the following rules apply:

Chapter 9. Developing message flow applications 2245

1. Any target field that has a fixed value is excluded in name matching. Any
target that is already mapped, or under a container that is already mapped, is
excluded from name matching.

2. If a source and a target have the same name, it is a match, regardless of the
kind of, and XSD type of, the source and target. An element, an attribute, and a
database column can all form a match if their names are the same.

3. XML namespaces are excluded from name matching. Therefore, abc:something
and xyz:something are considered the same, as are {http://
www.abc.com}:something and {http://www.xyz.com}:something.

4. When multiple sources have the same name as one target, one mapping is
created. However, when multiple targets have the same name as one source,
multiple mappings are created, each for one source and one target.

5. When performing Map from Source for a selected source and a selected target,
the WebSphere Message Broker Toolkit might insert some for and if
statements based on the repeatability (maximum occurrences) of the selected
source and target, and their containers.
The same process occurs for Map by Name, based on the repeatability of the
selected sources and targets, and their containers.
However, there are not any for or if statements inserted on descendants of the
selected source and target.

6. When you select the Map leaves of the selected nodes option, the following
steps are taken to match names:
a. Compare the relative path and item name of the selected source or target
b. Compare the item name without relative path
For example, if you invoke the action Create mappings between sources and
targets with the same name and have a:
v Source path for partNum of $source/po:purchaseOrder/items/item/partNum,

where items is the selection that you made in the source.
v Target path for partNum of $target/po:purchaseOrder/items/item/partNum,

where po:purchaseOrder is the selection that you made in the target.
During step a) the source and target path names involved in the same-name
test are /items/item/partNum and item/partNum.
During step b) the source and target item names that are involved in
same-name test are partNum and partNum; that is, name matches are done using
short names without their paths.
Note that sources and targets matched in a previous step do not participate in a
later step.

Mapping by similar name

1. Fixed value targets and mapped targetstargets and mapped targets are
excluded in name matching; see Point 1 in the preceding section.

2. The similarity test is done using the name of an element, an attribute, or a
database column regardless of its type; see Point 2 in the preceding section.

3. The similarity test applies in the same way to case sensitivity and
alphanumeric characters as for Mapping by same name.

4. Namespace or namespace prefixes do not participate in the similarity test; see
Point 3 in the preceding section.

5. The behavior for the situation when multiple sources are similar to one target,
and when multiple targets are similar to one source, is the same as Point 4 in
the preceding section.

2246 WebSphere Message Broker Version 7.0.0.8

6. The repeatability (maximum occurrences) of containers and descendants of the
selected source and target are handled in the same way as in Point 5 in the
preceding section.

7. When you select the option Create mappings when source and target names
are more similar than, you must also select Create mappings between
sources and targets with the same name.

8. When you select Map leaves of the selected nodes, the following steps are
taken to match names.
Sources and targets matched in a previous step are ignored in later steps:
v The path names starting after the selected source and target are the same.
v The item names excluding the path are the same.
v The item names excluding the path are similar.

9. You can select the similarity threshold for two words to be considered similar.
10. You cannot use any other similarity algorithm.
Related concepts:
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Mapping from source: by name” on page 2241
The Map by Name wizard is used to map complex types by examining the names
of source elements and target elements to create mappings.
“Selecting matches” on page 2244
Use the Map by Name wizard to select the mappings that you want to create.
“Creating and using a synonym file” on page 2251
You can create a synonym file manually, or by generating a synonym file from the
information that is contained in a Microsoft Excel spreadsheet, using the following
set of instructions.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Algorithm used to match synonyms” on page 2252
The way in which synonyms are matched by the Map by Name function, to create
mappings between specific sources and targets, follows a particular set of rules.
“Format of the synonym file”
Map by Name allows you to create mappings between specific sources and targets by
putting the names of the sources and targets in a file called the synonym file.

Format of the synonym file:

Map by Name allows you to create mappings between specific sources and targets by
putting the names of the sources and targets in a file called the synonym file.

Synonyms, in the context of the synonym file, are groups of words that represent
mappings that you want to create.

Chapter 9. Developing message flow applications 2247

File type:
A synonym file can reside anywhere in your file system, only if the encoding used
in the synonym file is the same as that used by the Eclipse Toolkit system.

However, if the synonym file uses a specific encoding that is, or might be, different
from the encoding of the Eclipse Toolkit, the file must reside in a project in the
WebSphere Message Broker Toolkit.

If the synonym file is created outside the WebSphere Message Broker Toolkit, and
uses a specific encoding, save the file under a WebSphere Message Broker Toolkit
project and click Refresh to make the file visible in the navigator.

The synonym file uses Tab-separated or comma-separated files only. If you have
written your mapping requirement in any external application, for example,
Microsoft Word or Microsoft Excel, you must export the relevant data in a format
that the synonym file supports.

Item names in the file:
A synonym file contains the names of items to be mapped, without the path to the
item or the namespace of the item.

For example, if you want to map partNum to partNumber in the following XML, you
must put partNum in the synonym file, not item/partNum, items/item/partNum, or
purchaseOrder/items/item/partNum.
<po:purchaseOrder xmlns:po="http://www.ibm.com">
<items>

<item>
<partnum>100-abc</partnum>
<productName>Acme Integrator</productName>
<quantity>22</quantity>
<USPrice>100.99</USPrice>
<po:comment>Acme Integrator</po:comment>
<shipDate>2008-12-01</shipDate>

</item>
</items>
</po:purchaseOrder>

Synonyms in the file can:
v Be case sensitive or not case sensitive
v Contain the entire mapping item name
v Have non alphanumeric characters removed

Rows in the synonym file:
In the synonym file, each row represents one group of names to be mapped
between each other and each row must contain at least two names. Names within
a row are separated by commas in .csv files, and by Tab characters in .txt files.

A synonym file can contain an optional special row at the top. This top row
contains key words Source, Target, or Source_Target, separated by the same
delimiter used in the remainder of the file. The top row is used to indicate whether
the synonyms are to be used to match names in mapping the source or the target:
v If the first word in the top row is Target, the first name only, in each subsequent

row is searched in the mapping target for name matching.
v If the second word in the top row is Source, the second name only, in each

subsequent row is searched in the mapping source for name matching.

2248 WebSphere Message Broker Version 7.0.0.8

v If the third word in the top row is Source_Target, the third name only, in each
subsequent row is searched in both the mapping source and mapping target for
name matching.

The top row must not contain fewer key words than the maximum number of
names in any row in the file.

If the top row contains any word other than Source, Target, or Source_Target, the
top row is ignored and it is assumed that the top row is missing. If you omit the
optional top row, every name in the synonym file is considered to be
Source_Target; that is, any name found either in the mapping source or in the
mapping target is matched.

If a synonym file contains two rows:

car automobile

automobile vehicle

car and vehicle are not considered to be synonyms.

In order to make all three words synonyms, your synonym file can have either:
v One row with all three words -

car automobile vehicle

or
v Three rows -

car automobile

automobile vehicle

car vehicle

Special characters:
You can write synonym files manually, or export them from another application;
for example, Microsoft Excel. Item names in synonym files reflect the application
domain and do not have to match exactly the names in the XML schema or the
relational database column.

For example, a synonym file might contain the row:
summer l’été

As l’été does not conform to the XML NCName format, you could name the
element l_été. As long as all the alphanumeric characters in the synonym file
match those in the schema, you can use the file with the option Letters and digits
only, ignore non-alphanumeric characters.

Many mapping requirements are written in Microsoft Excel, and cells in a
Microsoft Excel file might contain specific characters like double quotation marks,
space, new line, comma, and so on. When such a Microsoft Excel file is saved as a
Tab-separated or comma-separated file, they contain additional double quotation
marks.

Two groups of synonyms in a synonym file are delimited either by a Line Feed
(LF) character, or Line Feed followed by a Carriage Return (LFCR). A Carriage
Return (CR) character by itself does not end a group of synonyms.

Chapter 9. Developing message flow applications 2249

Leading and trailing space characters adjacent to the delimiter (comma or Tab
character) are ignored. Blank rows, or rows that contain only space characters, are
permitted and ignored in a synonym file.

Different editors might inject different space characters into a synonym file; spaces
are not used to delimit synonyms, and spaces are ignored unless they are inside
double quotation marks.

If a synonym contains a comma, a double quotation mark, a carriage return, or a
leading or trailing space that is significant, the synonym must be enclosed in
double quotation marks. A double quotation mark within a synonym is escaped
with another double quotation mark. For example:

"comma,separated"
"double""quote"
"with<CR>
newline"
" spaces "

When the synonym file is read by the WebSphere Message Broker Toolkit, the
double quotation marks at the beginning and end of the synonym are removed
and the WebSphere Message Broker Toolkit stores the following in the synonym
table:

comma,separated
double"quote
with<CR>newline
spaces

The WebSphere Message Broker Toolkit reads a synonym file containing these
special characters correctly, and you should select the Letters and digits only,
ignore non-alphanumeric characters option when using the synonym file.
Related concepts:
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Mapping from source: by name” on page 2241
The Map by Name wizard is used to map complex types by examining the names
of source elements and target elements to create mappings.
“Selecting matches” on page 2244
Use the Map by Name wizard to select the mappings that you want to create.
“Mapping by Same Name” on page 2245
Options are available when you select Create mappings between sources and
targets with the same name or a similar name.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Creating and using a synonym file” on page 2251
You can create a synonym file manually, or by generating a synonym file from the
information that is contained in a Microsoft Excel spreadsheet, using the following
set of instructions.

2250 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Algorithm used to match synonyms” on page 2252
The way in which synonyms are matched by the Map by Name function, to create
mappings between specific sources and targets, follows a particular set of rules.

Creating and using a synonym file:

You can create a synonym file manually, or by generating a synonym file from the
information that is contained in a Microsoft Excel spreadsheet, using the following
set of instructions.

About this task

The following set of instructions describes how to create a synonym file where the
original mapping requirement is written in Microsoft Excel. If your original
requirement is written in a table in Microsoft Word you must copy and paste the
table into Microsoft Excel before you begin.

Amend the process to allow for extra facilities that your enterprise uses.

Procedure

1. Select the section of the Microsoft Excel spreadsheet that you require. For
example, if you have a Product that you want to map to a Part number, select
that section of the spreadsheet.

2. Remove all columns from the spreadsheet, except the ones containing the
source field name and the target field name.
You might have to edit some of the cells. For example, if your mapping
instruction includes the phrase based on, remove this phrase.

3. If the source or target fields contain paths, remove the paths to leave only the
short names of the item.
However, it is helpful to sort the column before removing the paths. Sorted
path names can indicate which is the best source or target to select when
invoking the action.
If all the interested sources (or targets) start with the same path prefix, you
might consider selecting the lowest source (or target) node in the tree which
has that common path prefix.

4. Remove all rows that do not have a source field name and a target field name.
For example, if you have an obsolete product that no longer has a part number
and you have put n/a in the source, remove that row.

5. Select the Save As function in Microsoft Excel to save the spreadsheet into a
format acceptable by our WebSphere Message Broker Toolkit.
You can use either a Tab delimited .txt file or a comma delimited .csv file.
A comma delimited file can be opened using Microsoft Excel and it looks like
the original Microsoft Excel file; the file can also be viewed using a text editor.

6. Create the mappings using the synonym file.
Select the options in the Map by Name wizard that match your requirements;
for example, select the default options of Map leaves of the selected nodes and
Alphanumeric characters (Letters and digits only).
When you have chosen these options, select Create mappings between source
and target names defined as synonyms in file.
If you need to map same-name sources to targets, and the synonym file does
not contain rows with those names (for example a row with car,car), select the

Chapter 9. Developing message flow applications 2251

Create mappings between sources and targets with the same name option, in
addition to Create mappings between source and target names defined as
synonyms in file.
You can select both Create mappings between sources and targets with the
same name and Create mappings when source and target names are more
similar than, in addition to Create mappings between source and target
names defined as synonyms in file, if your synonym file does not contain a
row color,colour and you want to map between them.

7. Click Finish.
8. Edit mapping expressions based on what is required.

For example, if you have the following value:
PRODUCT $SOURCE/Batch/Detail/Replace/PartNumber

edit the mapping expression to:
xs:boolean($source/Batch/Detail/Replace/PartNumber = 1)

9. Create all the mappings that the Map by Synonym process has not generated.
Use the drag-and-drop method, Map from Source, or the Enter Expression
process.

Related concepts:
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Mapping from source: by name” on page 2241
The Map by Name wizard is used to map complex types by examining the names
of source elements and target elements to create mappings.
“Selecting matches” on page 2244
Use the Map by Name wizard to select the mappings that you want to create.
“Mapping by Same Name” on page 2245
Options are available when you select Create mappings between sources and
targets with the same name or a similar name.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Format of the synonym file” on page 2247
Map by Name allows you to create mappings between specific sources and targets by
putting the names of the sources and targets in a file called the synonym file.
“Algorithm used to match synonyms”
The way in which synonyms are matched by the Map by Name function, to create
mappings between specific sources and targets, follows a particular set of rules.

Algorithm used to match synonyms:

The way in which synonyms are matched by the Map by Name function, to create
mappings between specific sources and targets, follows a particular set of rules.

2252 WebSphere Message Broker Version 7.0.0.8

1. Fixed value targets and mapped targets are excluded in name matching; see
point 1 in “Mapping by Same Name” on page 2245.

2. The synonym matching is done by using the name of an element, an attribute,
or a database column regardless of its type; see point 2 in “Mapping by Same
Name” on page 2245.

3. The synonym matching of alphanumeric characters is not case-sensitive, and
is identical to that used in “Mapping from source: by name” on page 2241.

4. Namespace or namespace prefixes do not participate in synonym matching;
see point 3 in “Mapping by Same Name” on page 2245.

5. The behavior for the situation when multiple sources are synonyms of one
target, and when multiple targets are synonyms of one source, is the same as
point 4 in “Mapping by Same Name” on page 2245.

6. The repeatability (maximum occurrences) of containers and descendants of the
selected source and target are handled in the same way as in point 5 in
“Mapping by Same Name” on page 2245.

7. If a source and a target have the same name, they are not considered a match
under the option for synonyms. If you require a mapping for same-name
sources and targets, you must also select the same name option.

8. In addition to mapping synonyms, you might want to create mappings for
some, but not all, same-name sources and targets. In this case, you have two
options:
v Clear Create mappings between sources and targets with the same name,

and include the same-name sources and targets in the synonym file
v Select Create mappings between sources and targets with the same name,

and clear the unwanted mappings on the second page of the wizard.
9. When you select Map leaves of the selected nodes together with both same

name and synonym mapping options, the following steps are taken to match
names.
Sources and targets matched in a previous step do not participate in a later
step:
v The path names starting after the selected the source and target are the

same
v The item names excluding the path are the same
v The item names excluding the path are synonyms

10. When you select Map leaves of the selected nodes, and you require
synonyms to be mapped without mapping same names, only the item names
are checked for synonyms; paths are ignored.

Related concepts:
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Mapping from source: by name” on page 2241
The Map by Name wizard is used to map complex types by examining the names
of source elements and target elements to create mappings.

Chapter 9. Developing message flow applications 2253

“Selecting matches” on page 2244
Use the Map by Name wizard to select the mappings that you want to create.
“Mapping by Same Name” on page 2245
Options are available when you select Create mappings between sources and
targets with the same name or a similar name.
“Creating and using a synonym file” on page 2251
You can create a synonym file manually, or by generating a synonym file from the
information that is contained in a Microsoft Excel spreadsheet, using the following
set of instructions.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Format of the synonym file” on page 2247
Map by Name allows you to create mappings between specific sources and targets by
putting the names of the sources and targets in a file called the synonym file.

Mapping a target element from source message elements:
About this task

You can map the following objects:
v Simple source elements to simple target elements
v Source structures to target structures (where the source and target are of the

same type)
v Source structures to target structures (where the source and target are of a

different type)
v Simple source elements to target structures (where the target structure is a

complex type element with mixed content)
v Source structures to simple target elements (where the source structure is a

complex type element with mixed content)
v Multiple simple source elements to a simple target element

The following sections describe how to perform mapping for these particular
scenarios using the Message Mapping editor.

Mapping simple source elements to simple target elements

In the following example, the source element called Name does not contain the
same children as the target element called Name:

Source Target

Name
Title
First_name
Middle_name
Last_name

Name
Title
First_names
Last_name

To map one of the child elements, drag the element from the Source pane onto the
corresponding element in the Target pane; for example, drag the Last_name source
element onto the Last_name target element.

The mapping is represented by a line between the source element and the target
element and an entry for the mapping in Xpath format appears in the Spreadsheet
pane. A triangular icon indicates which elements in the Source and Target panes
have been mapped.

2254 WebSphere Message Broker Version 7.0.0.8

Mapping source structures to target structures (where the source and target are
of the same type)

In the following example, the source element called Name has the same structure
as the target element called Name:

Source Target

Name
Title
First_name
Middle_name
Last_name

Name
Title
First_name
Middle_name
Last_name

To map the entire source structure to the target structure, drag the parent element
(Name) from the Source pane onto the corresponding element (Name) in the Target
pane. All the child elements are mapped.

Mapping source structures to target structures (where the source and target are
of a different type)

In the following example, the source element called Name has a different structure
to the target element called DifferentName:

Source Target

Name
Title
First_name
Middle_name
Last_name

DifferentName
Title
FirstName
LastName

To map the entire source structure to the target structure, drag the parent element
(Name) from the Source pane onto the corresponding element (DifferentName) in
the Target pane. The Map By Name wizards opens. Select Map leaves and Map
items of same and similar names to map all child elements in the target. The
source element Middle_name will not be mapped, as there is no target element
with the same or a similar name.

Mapping simple source elements to target structures

In the following example, source element Name1 contains three simple elements to
be mapped: Title, FirstName, and LastName. The target element Name2 contains two
attributes, Title and GivenName, and uses mixed content to carry Surname.

Source Target

Name1
Title
FirstName
LastName

Name2 (mixed)
@Title
@GivenName

The following mappings can be created using Map from Source or drag and drop:
Title <- -> @Title
FirstName <- -> @GivenName
LastName <- -> Name2

If the following source XML document is used:

Chapter 9. Developing message flow applications 2255

<Name1>
<Title>Mr.</Title>
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Name1>

the following target XML document will be produced from the mappings:
<Name2 GivenName=”John” Title=”Mr.”>Doe</Name2>

Mapping source structures to simple target elements

In the following example, the source element Name1 contains two attributes, Title
and GivenName, and uses mixed content to carry Surname. The target element
Name2 contains three simple elements to be mapped to.

Source Target

Name1 (mixed)
@Title
@GivenName

Name2
Title
FirstName
LastName

The following mappings can be created using Map from Source or drag and drop:
@Title <- -> Title
@GivenName <- -> FirstName
Name1 <- -> LastName

If the following source XML document is used:
<Name1 GivenName=”John” Titile=”Mr.”>Doe</Name1>

the following target XML document will be produced from the mappings:
<Name2>
<Title>Mr.</Title>
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Name2>

Mapping multiple source elements to a simple target element

In the following example, you want to concatenate the First_name and Middle_name
source elements to form a single target element called First_names:

Source Target

Name
Title
First_name
Middle_name
Last_name

Name
Title
First_names
Last_name

To map multiple source elements to a simple target element, Ctrl+click the
appropriate source elements (First_name and Middle_name) and the target element
(First_names), then click Map > Map from Source. A concatenate function appears
in the Spreadsheet pane; you can edit this function to define how the concatenated
target element looks, for example, by adding a white space between the two source
elements.

2256 WebSphere Message Broker Version 7.0.0.8

Results

To customize the target element (for example, to make the target value equal to the
source value plus one), see “Setting the value of a target element using an
expression or function” on page 2261. You cannot map a simple element if one of
its ancestors also has a mapping. For example, you cannot map Properties from
source to target, then map Properties/MessageFormat.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related tasks:
“Mapping from source: by selection” on page 2240
You can map from source fields by using Map from Source, or by using the
drag-and-drop method.
“Mapping from source: by name” on page 2241
The Map by Name wizard is used to map complex types by examining the names
of source elements and target elements to create mappings.
“Setting the value of a target element using an expression or function” on page
2261
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Setting the value of a target element to a constant:

Use the Message Mapping editor to set the value of a target element to a constant.

About this task

Procedure

1. In the Target pane, right-click the target element or attribute and click Enter
Expression. If the target element or attribute has a default value, this value is
added to the Edit pane.

2. Enter the required constant in the Edit pane and click Enter. When entering the
constant, observe the following rules:
v Enclose string element values in single quotation marks.
v Enter numeric element values without quotation marks.
v For boolean element values enter 0 for false or 1 for true, without quotation

marks. Alternatively, you can enter the fn:false() function for false, or the
fn:true() function for true.

Chapter 9. Developing message flow applications 2257

The Spreadsheet pane is updated with the value that you have defined.

Results

You cannot set a value for a simple element if one of its ancestors also has a
mapping. For example, you cannot map Properties from source to target, then set a
value for Properties/MessageFormat.

Example

You can also set a target element to a WebSphere MQ constant or an ESQL
constant.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Mapping node functions” on page 4997
You can configure your message mappings to use a variety of predefined and
user-defined functions.
Related tasks:
“Setting the value of a target element using an expression or function” on page
2261
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Setting the value of a target element to a WebSphere MQ constant”
There are two ways to set the value of a target element to a WebSphere MQ
constant, depending on whether the target element has an entry in the Map Script
column of the Message Mapping editor Spreadsheet pane.
“Setting the value of a target element to an ESQL constant” on page 2260
There are two ways to set the value of a target element to an ESQL constant,
depending on whether the target element has an entry in the Map Script column of
the Message Mapping editor Spreadsheet pane.
Related reference:
“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Setting the value of a target element to a WebSphere MQ constant:

There are two ways to set the value of a target element to a WebSphere MQ
constant, depending on whether the target element has an entry in the Map Script
column of the Message Mapping editor Spreadsheet pane.

2258 WebSphere Message Broker Version 7.0.0.8

About this task

Procedure

v If the target element has an entry in the Map Script column:
1. In the Spreadsheet pane, select the target element.
2. Enter $mq: followed by the WebSphere MQ constant in the Edit pane.
3. Press Enter.

The Spreadsheet pane is updated with the expression for a WebSphere MQ
constant.

v If the target element does not have an entry in the Map Script column:
1. In the Target pane, right-click the target element and click Enter Expression.
2. Enter $mq: followed by the WebSphere MQ constant in the Edit pane.
3. Press Enter.

The Spreadsheet pane is updated with the expression for a WebSphere MQ
constant.

Example

The following examples demonstrate how to enter a WebSphere MQ constant in
the Edit pane:
$mq:MQ_MSG_HEADER_LENGTH

$mq:MQMD_CURRENT_VERSION

When the map is saved a warning message is displayed if the expression entered
for the WebSphere MQ constant is incorrect, for example, if the constant is not
recognized. This is an example of the warning message: The target
"$target/purchaseOrder/comment" is not referencing a valid variable.

Content Assist (Edit > Content Assist) provides a list of the WebSphere MQ
constants available.
1. Select $mq: (MQ constants)
2. Select Edit > Content Assist again to display a list of the available constants.

WebSphere MQ constants that can be used as values for target elements, grouped
by the parameter or field to which they relate, can be found in the WebSphere MQ
Constants book.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Mapping node functions” on page 4997
You can configure your message mappings to use a variety of predefined and
user-defined functions.
“Mapping node syntax” on page 4995
Related tasks:
“Setting the value of a target element to a constant” on page 2257
Use the Message Mapping editor to set the value of a target element to a constant.

“Setting the value of a target element using an expression or function” on page
2261
Related reference:

Chapter 9. Developing message flow applications 2259

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Setting the value of a target element to an ESQL constant:

There are two ways to set the value of a target element to an ESQL constant,
depending on whether the target element has an entry in the Map Script column of
the Message Mapping editor Spreadsheet pane.

About this task

Procedure

v If the target element has an entry in the Map Script column:
1. In the Spreadsheet pane, select the target element.
2. Enter $esql: followed by the ESQL constant in the Edit pane.
3. Press Enter.

The Spreadsheet pane is updated with the expression for a WebSphere MQ
constant.

v If the target element does not have an entry in the Map Script column:
1. In the Target pane, right-click the target element and click Enter Expression.
2. Enter $esql: followed by the ESQL constant in the Edit pane.
3. Press Enter.

The Spreadsheet pane is updated with the expression for a WebSphere MQ
constant.

Example

The following examples demonstrate how to enter an ESQL constant in the Edit
pane:
$esql:ValidateLocalError

$esql:ParseComplete

When the map is saved a warning message is displayed if the expression entered
for the ESQL constant is incorrect, for example, if the constant is not recognized.
This is an example of the warning message: The target "$target/purchaseOrder/
comment" is not referencing a valid variable.

Content Assist (Edit > Content Assist) provides a list of the WebSphere MQ
constants available.
1. Select $esql: (ESQL Constants)
2. Select Edit > Content Assist again to display a list of the available constants.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.

2260 WebSphere Message Broker Version 7.0.0.8

“Mapping node functions” on page 4997
You can configure your message mappings to use a variety of predefined and
user-defined functions.
“Mapping node syntax” on page 4995
Related tasks:
“Setting the value of a target element to a constant” on page 2257
Use the Message Mapping editor to set the value of a target element to a constant.

“Setting the value of a target element using an expression or function”
Related reference:
“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“ESQL constants” on page 5302
Use these constants to make or parse a bit stream.

Setting the value of a target element using an expression or function:
About this task

There are two ways to set the value of a target element to an expression,
depending on whether the target element has an entry in the Map Script column of
the Message Mapping editor Spreadsheet pane:

Procedure

v If the target element has an entry in the Map Script column:
1. In the Spreadsheet pane, select the target element.
2. Enter the required expression in the Edit pane.
3. Press Enter.

The Spreadsheet pane is updated with the value or expression.
v If the target element does not have an entry in the Map Script column:

1. In the Target pane, right-click the target element and click Enter Expression.
If the target element has a default value, this value is added to the Edit pane.

2. Enter the required expression in the Edit pane.
3. Press Enter.

The Spreadsheet pane is updated with the value or expression.

Example

The following examples demonstrate techniques for entering mapping expressions
in the Edit pane.
v If the target element is derived from a source element, drag the source element

or elements onto the Edit pane; for example:
$source/Properties/MessageSet

Chapter 9. Developing message flow applications 2261

v Use arithmetic expressions, such as:
$source/Properties/Priority + 1

v Use mapping, Xpath or ESQL function names. Content Assist (Edit > Content
Assist) provides a list of available functions. For example:
esql:upper($source/Properties/ReplyIdentifier)

v You can perform casting in the Edit pane; for example:
xs:string($source/Properties/CodedCharSetId)

You cannot enter an expression for a simple element if one of its ancestors also has
a mapping. For example, you cannot map Properties from source to target, then set
a value of Properties/MessageFormat.
Related concepts:
“Mapping node functions” on page 4997
You can configure your message mappings to use a variety of predefined and
user-defined functions.
“Mapping node syntax” on page 4995
Related tasks:
“Setting the value of a target element to a constant” on page 2257
Use the Message Mapping editor to set the value of a target element to a constant.

“Setting the value of a target element to a WebSphere MQ constant” on page 2258
There are two ways to set the value of a target element to a WebSphere MQ
constant, depending on whether the target element has an entry in the Map Script
column of the Message Mapping editor Spreadsheet pane.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Creating a BLOB output message using a message map:

Use the Message Mapping editor to create a bit stream from a message source, and
create it as a BLOB output message.

Before you begin

Before you start:

Create a mapping that includes a BLOB message as a target; see “Creating a
message mapping file from a Mapping node” on page 2236.

About this task

Take the following steps:

Procedure

1. Right-click the BLOB message that you want to map in the Target pane, and
select Enter Expression from the menu.

2. In the Edit pane, type esql:asbitstream().
3. Drag the source field to the Edit pane, placing it between the parentheses, for

example:
esql:asbitstream($source/po:purchaseOrder)

2262 WebSphere Message Broker Version 7.0.0.8

Alternatively, you can use content assist to select the esql:asbitstream
function. In the Edit pane press Ctrl+Space to display a list of available
functions and associated parameters. The asbitstream function is an ESQL
Field function. The function can take other parameters; see “ESQL mapping
functions” on page 4998.
When you move the cursor out of the Edit pane, or press Enter, the mapping is
displayed between the fields in the Source and Target panes.

Related tasks:
“Storing a BLOB message in a database table using a message map” on page 2297
Use the Message Mapping editor to create a bit stream from a BLOB message, and
store it in a database table.
“Mapping from a BLOB message to an output message”
Use the Message Mapping editor to parse a BLOB message.
“Mapping from a BLOB field in a database table to an output message” on page
2298
Use the Message Mapping editor to parse a bit stream from a field in a database
table into a folder in a target message.
Related reference:
“ESQL mapping functions” on page 4998
Some predefined ESQL functions are available for use with message maps.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.

Mapping from a BLOB message to an output message:

Use the Message Mapping editor to parse a BLOB message.

Before you begin

Before you start:

Create a mapping; see “Creating a message mapping file from a Mapping node”
on page 2236.

About this task

Take the following steps:

Procedure

1. Right-click the element in the target pane, and select Enter Expression from the
menu.

2. In the Edit pane, type msgmap:element-from-bitstream().
3. Drag the BLOB to the Edit pane, placing it between the parentheses, for

example:
msgmap:element-from-bitstream($source/BLOB)

Alternatively, you can use content assist to select the msgmap:element-from-
bitstream function. In the Edit pane press Ctrl+Space to display a list of
available functions and associated parameters. The function can take other
parameters; see “Predefined mapping functions” on page 5007. When you
move the cursor out of the Edit pane, or press Enter, the mapping is displayed
between the fields in the Source and Target panes.

Related tasks:

Chapter 9. Developing message flow applications 2263

“Creating a message mapping file from a Mapping node” on page 2236
You can use a Mapping node to create a message map with messages and
databases as both sources and targets.
“Storing a BLOB message in a database table using a message map” on page 2297
Use the Message Mapping editor to create a bit stream from a BLOB message, and
store it in a database table.
“Creating a BLOB output message using a message map” on page 2262
Use the Message Mapping editor to create a bit stream from a message source, and
create it as a BLOB output message.
“Mapping from a BLOB field in a database table to an output message” on page
2298
Use the Message Mapping editor to parse a bit stream from a field in a database
table into a folder in a target message.
Related reference:
“Predefined mapping functions” on page 5007
Some predefined mapping functions are provided for use with message maps.

Deleting a source or target element:
About this task

The following steps describe how to delete source and target elements using the
“Message Mapping editor” on page 4981:

Procedure

v To delete a source path, modify the expression so that it no longer uses the
source value to compute the target.
If this is the last use of the source path, the line linking the source and target is
removed. If the expression no longer has any value, the target becomes
unmapped.

v To delete a target from the Edit pane, click the target and click Delete.
The target structure is preserved if possible.
– If you delete a "for" row, clicking Delete removes the single row.
– If you have an if, an elseif, or an else statement, clicking Delete:

1. On an elseif statement deletes the elseif statement and the contents of
the statement.

2. On an else statement deletes the else statement and the contents of the
statement.

3. On an if statement with a subsequent elseif statement, deletes the if
statement and the contents of the statement, and causes the subsequent
elseif statement to become an if statement.

4. On an if statement with only a subsequent else statement, deletes
everything except the contents of the else statement.

5. On an if statement with no subsequent statements, deletes everything
except the contents of the if statement.

v To delete a database source, click the SELECT statement then remove all
references to the source manually. Alternatively, delete the SELECT source in the
Source pane then remove all references to the source manually.

v To delete a database target, delete the INSERT, UPDATE or DELETE statement.
Alternatively, update or delete the statement in the Target pane.

Related concepts:

2264 WebSphere Message Broker Version 7.0.0.8

“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Configuring conditional mappings:

How to set the value of a target element conditionally in a Mapping node.

Procedure

1. In the Spreadsheet pane of the Message Mapping editor, select the target
element and click Map > If.
One row is added to the Spreadsheet pane, above the target element:
v In ths row, Map Script is set to "if".

Its value is an expression that is evaluated to see whether it is true. If true,
the target element is set to the value specified in its "Value" column. Initially,
its "Value" column is set to ‘fn:true()’, which means that the condition is
always met, and the target element is always set to the "Value" column.

2. Change the expression in the if row’s "Value" column by selecting the cell, or
the if row, in the Spreadsheet pane, and setting the value in the Edit pane.
Amend the expression in the Edit pane to specify the correct condition
statement by performing the following steps:
a. Select any database columns that are pertinent to the condition statement,

and drag them from the Source pane into the Edit pane.
b. Select any source message elements with values that are pertinent to the

condition statement, and drag them from the Source pane into the Edit
pane.

c. Open Content Assist by clicking Edit > Content Assist and select the
functions to be applied to the condition.

3. Add further condition statements by selecting the if row in the Spreadsheet
pane, and clicking Map > Else If.
Two rows are added to Spreadsheet pane, below the target element:
v In the first row, Map Script is set to elseif. Process this as described in Step

2.
v In the second row, Map Script is set to the target element. Its Value cell is

initially blank. Set this value as described in “Setting the value of a target
element to a constant” on page 2257, and “Setting the value of a target
element using an expression or function” on page 2261.

4. To set the value of a target element when the if statement is not true, select the
if statement for the target element in the Spreadsheet pane, and click Map >
Else.
Two rows are added to Spreadsheet pane, below the target element:
v In the first row, Map Script is set to else. You cannot enter anything in the

Value column of this row.

Chapter 9. Developing message flow applications 2265

v In the second row, Map Script is set to the target element; its value is initially
blank. Set this value as described in “Setting the value of a target element to
a constant” on page 2257, and “Setting the value of a target element using an
expression or function” on page 2261.

Related tasks:
“Setting the value of a target element to a constant” on page 2257
Use the Message Mapping editor to set the value of a target element to a constant.

“Setting the value of a target element using an expression or function” on page
2261
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Configuring mappings for repeating elements:
About this task

To configure the Mapping node to process repeating elements, use the ‘For’ option
in the Message Mapping editor Spreadsheet pane. The following combinations of
repeating elements are possible:

Procedure

v repeating source and non-repeating target
v non-repeating source and repeating target
v repeating source and repeating target

Results

By default, if the source is a database, it is processed as a repeating source.
Related tasks:
“Configuring a repeating source and a non-repeating target”
To map a repeating source element to a non-repeating target element, drag
elements between the Message Mapping editor Source and Target panes.
“Configuring a non-repeating source and a repeating target” on page 2268
To map a non-repeating source element to a repeating target element, drag
elements between the Message Mapping editor Source and Target panes.
“Configuring a repeating source and a repeating target” on page 2269
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Configuring a repeating source and a non-repeating target:

To map a repeating source element to a non-repeating target element, drag
elements between the Message Mapping editor Source and Target panes.

About this task

The following items appear in the Spreadsheet pane:
v A "for" row with Value set to the repeating source element.
v An "if" row with Value set to msgmap:occurrence($source/...) = 1.
v A row with Map Script set to the target field and Value set to the source field.

2266 WebSphere Message Broker Version 7.0.0.8

The first occurrence of the source field is mapped to the target field. The "for"' row
specifies that a loop is to be iterated for the specified repeating element. The if row
restricts the logic to a single occurrence of the repeating element. See “Configuring
conditional mappings” on page 2265 for more information on conditional logic in a
mapping node.

Procedure

1. To map an occurrence other than the first, change the expression in the if row
to msgmap:occurrence($source/...) = n, where n is the occurrence that you
want to map.
If the repeating source field is within one or more repeating structures, a
hierarchy of for and if rows is placed in the Spreadsheet pane, one for each
level of repetition.

2. If the source field contains a numeric data type, mapping all occurrences of a
repeating source field to a non-repeating target results in the sum of all the
source elements. Perform this mapping by selecting the source element and
target element and clicking Map > Accumulate.
This action sets the following value in the Spreadsheet pane for the target
element:
fn:sum($source/...)

The result of the accumulate action is a numeric value. If your target has a
different data type, you must cast the result to the appropriate type for the
selected target. For example, if your target is xs:string type, you must alter the
results of the accumulate action from fn:sum($source/x/y/z) to
xs:string(fn:sum($source/x/y/z)), in order to cast the result to the correct
data type for your target.
You cannot map different occurrences of a repeating source element to different
non-repeating target elements.

Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related tasks:
“Configuring conditional mappings” on page 2265
How to set the value of a target element conditionally in a Mapping node.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Chapter 9. Developing message flow applications 2267

Configuring a non-repeating source and a repeating target:

To map a non-repeating source element to a repeating target element, drag
elements between the Message Mapping editor Source and Target panes.

About this task

The first occurrence of the target element is set to the value of the source element.

To map to an occurrence other than the first, complete the following steps:

Procedure

1. If the target element is not shown in the Spreadsheet pane, right-click its lowest
ancestor row, then click Insert Children. Repeat this action until the target
element is shown.

2. Right-click the target element and click Insert Sibling After or Insert Sibling
Before to select the location to insert the repeating target elements. The Insert
Sibling After or Insert Sibling Before options are not enabled if there is
nothing valid to be inserted at the selected location. Selecting either of these
opens the Insert Sibling Statement wizard.

3. Select the element to insert from the list of valid items.
4. Enter the number of instances to be added and click OK. The number of

instances to be added must be less than or equal to the maximum occurrence
specified for the selected element.

Results

The specified number of instances of the repeating target element are added to the
Spreadsheet pane. The inserted statements do not have a mapping expression and
any children are not displayed. Right-click each element, then click Insert Children
to display any child elements.

What to do next

By repeating the Insert Sibling After and Insert Sibling Before action, it is
possible to insert more repeating elements in the target than the maximum
occurrence specifies. Verify that the number of repeating elements is valid, and
delete any unwanted entries.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.

2268 WebSphere Message Broker Version 7.0.0.8

“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Configuring a repeating source and a repeating target:
About this task

To map a repeating source element to a repeating target element drag elements
between the Message Mapping editor Source and Target panes. The following
items appear in the Spreadsheet pane:

Procedure

v A ‘for’ row with Value set to the repeating source element.
v A row with Map Script set to the target field and Value set to the source field.

Results

All occurrences of the source element are mapped to the respective occurrences of
the target element. You can map repeating source structures to repeating target
structures if the source and target are of the same complex type.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Populating a message map:

Use the Insert Children wizard to add elements from the Target pane to the
Spreadsheet pane. The Insert Children wizard creates child structures for the
selected parent structure.

About this task

When you add a message target to a message map, $target in the Spreadsheet pane
is populated by default with Properties and the message body root. The Properties
fields MessageSet, MessageType and MessageFormat, are added together with their
default values, unless the selected message is in the BLOB domain. Other message
elements and their children can be added to the Spreadsheet pane without creating

Chapter 9. Developing message flow applications 2269

mappings by using the Insert Children wizard. The following steps show how to
populate the Spreadsheet pane with other message elements using the Insert
Children wizard:

Using the Insert Children wizard

Procedure

1. Right-click a parent element in the Spreadsheet pane and click Insert Children.
The Insert Children wizard is displayed.

2. Select the items you want to create mappings for. Items required in the target
message are selected by default. The selected items are added to the
Spreadsheet pane.

3. Repeat Insert Children to add further child elements to the Spreadsheet pane.

Results

If any target elements are missing warning messages are displayed in the Message
Mapping Editor. These warning messages indicate the name and expected position
of the missing elements. You can used the Insert Children wizard to add the
missing elements.

What to do next

You can also use the Insert Children wizard to add target elements to the
Spreadsheet pane when there are existing mappings. Any existing mappings are
not altered by the wizard.

If the target map is a submap the Spreadsheet pane is populated by default with
the selected element or attribute root. You can use the Insert Children wizard in
the submap to add any child elements to the Spreadsheet pane in the same way.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related tasks:
“Mapping from source: by selection” on page 2240
You can map from source fields by using Map from Source, or by using the
drag-and-drop method.
“Mapping from source: by name” on page 2241
The Map by Name wizard is used to map complex types by examining the names
of source elements and target elements to create mappings.
“Mapping a target element from source message elements” on page 2254
“Mapping a target element from database tables” on page 2288
To map a target element from a database table, set up the Mapping node to
retrieve the relevant rows from the database and populate the message target
elements with values from database.
“Mapping a target element from database stored procedures” on page 2290
Use a DB2 or Oracle database stored procedure as a source in a Mapping node.
“Mapping a target element from database user-defined functions” on page 2292
Use an Oracle database user-defined function as a source in a Mapping node.

2270 WebSphere Message Broker Version 7.0.0.8

Configuring the LocalEnvironment:
About this task

You can set values in the LocalEnvironment in the same way as setting values in
other elements of a message. Add the LocalEnvironment to your message map
using the Add or Remove Headers and Folders dialog as described in “Mapping
headers and folders.” If you set any values in the target LocalEnvironment, set the
mapping mode property for the Mapping node to a value that contains
LocalEnvironment. To do this, select the mapping node in your message flow and
click Properties > Basic > Mapping Mode.

You cannot map Local Environment objects that are not listed.
Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Configuring message headers:

You can set values for headers in the same way as setting values in other elements
of a message.

About this task

Add the appropriate headers to your message map using the Add or Remove
Headers and Folders dialog box as described in “Mapping headers and folders.” If
you set any values in the target LocalEnvironment, set the Mapping mode
property for the Mapping node to a value that contains LocalEnvironment. To do
this, select the mapping node in your message flow and click Properties > Basic >
Mapping Mode.

You cannot map headers that are not listed.
Related tasks:
“Mapping headers and folders”
Include message headers and folders for source and target messages in a message
map.

Mapping headers and folders:

Include message headers and folders for source and target messages in a message
map.

Chapter 9. Developing message flow applications 2271

Before you begin

Before mapping headers and folders, ensure that you do the following tasks:
1. Create a message flow project
2. Create a message flow
3. Define message flow content
4. Create a message map file from the navigator or create a message map from a

node.

About this task

The following types of message headers and folders can be included for source
and target messages in a message map (note that a submap does not include
message headers):
v LocalEnvironment
v Properties
v MQ Headers
v HTTP Headers
v JMS Transport Header
v Email Headers

If you choose not to map message headers or the LocalEnvironment explicitly in
your message map, the output message is produced with the same message
headers as the input message. When you Populate the message map, the Properties
folder for the source and target are displayed in the message map, with
MessageSet and MessageType initially set based on the target message.

MessageFormat is set to the default wire format of the message set if the parser
domain is MRM. The other properties are blank initially, and the message headers
are copied from the input message.

Alternatively, if you choose to map any message headers or the LocalEnvironment
in your message map, no message headers are copied from the input message. You
must add mappings for these headers to ensure that the target message contains
appropriate headers to make a valid output message.

If your target message contains an MQRFH2 header, you must select from either
the MQRFH2 or MQRFH2C parser in the Add or Remove Headers and Folders
dialog. For more information about the MQRFH2 and MQRFH2C parsers, see “The
MQRFH2 and MQRFH2C parsers” on page 4253.

To add message headers or other folders to a message map:

Procedure

1. Right-click your message map in the Broker Development view and select
Open or right-click your mapping node and select Open Map to open the
Message Mapping editor.

2. Right-click $source in the Source pane and select Add or Remove Headers and
Folders to add message headers or other folders to the source message. The
Add or Remove Headers and Folders dialog box opens.

3. Ensure that Selected headers and other folders is selected. If No folders (map
body element only) is selected your map is a submap, and cannot have

2272 WebSphere Message Broker Version 7.0.0.8

headers associated with it. You can change the submap to a message map by
selecting Selected headers and other folders.

4. Select the headers that you want to map from the list. If you want to map MQ
Headers or HTTP Headers, you must select individual headers by expanding
the list. If you are using MQ Headers you must include the MQMD, and so this
is automatically selected for you.

5. Click OK to add the selected message headers or folders to the message map.
6. Right-click $target in the Target pane and select Add or Remove Headers and

Folders to add message headers or other folders to the output message.
7. Repeat steps 3 to 5 to add the headers and folders that you require to the target

message.
8. Configure the message header and folder mappings in the same way as other

mappings.

What to do next

You can use Add or Remove Headers and Folders to remove message headers or
the LocalEnvironment folder. Right-click on either the $source or the $target to
open the Select Message Headers dialog box. Clear the headers or other folders to
remove them from the message map. Removing a message header or other folder
from the message map removes any associated mappings that you have created.
You can remove the Properties folder from the message map, but all built-in
parsers require some values in the Properties folder for the output message.

You can map multiple instances of a header by right-clicking on the header in the
Message Mapping editor Spreadsheet pane and selecting Insert Sibling Before or
Insert Sibling After. Select the header from the Insert Sibling Statement dialog.
Related concepts:
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Creating a message map file in the Broker Development view” on page 2233
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
“Configuring the LocalEnvironment” on page 2271
Related reference:
“Headers and Mapping node” on page 5018
This topic lists the headers that can be manipulated by the Mapping node.

Adding messages or message components to the source or target:
About this task

You can add additional messages or message components as sources or targets in
your message map. To add a message or message component to a source or target:

Procedure

1. From the Message Mapping editor, click Map > Add Sources and Targets

The Add Map Sources and Targets wizard opens.

Chapter 9. Developing message flow applications 2273

Alternatively, right-click in the Source pane and click Add Sources or
right-click in the Target pane and click Add Targets.

2. Select messages or message components from the message sets that are in your
WebSphere Message Broker Toolkit workspace.
If you cannot find the messages or message components that you expect, clear
the Apply working set filtering to artifact selection(s) on the page check box.
If one does not already exist, a project reference is created from your message
flow project to the message set project that contains the selected messages or
message components.

Results

You can also add sources and targets by dragging the resources from the Broker
Development view in the Broker Application Development perspective onto the
source or target pane of your message map. Select resources under Messages or
Elements and Attributes or Types from your Message Definitions and drag them
onto the source or target pane. If you add a message to the message map,
Properties are also added. If you add an element, attribute or type to the to the
message map a global element for a submap is created. Your message map must
use messages, global elements or global types, but not a combination of more than
one type.

What to do next

A Mapping node can have only one source message, but can have several target
messages. Therefore, you cannot add a source message if one already exists.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related tasks:
“Adding a database as a source or target”
Add a database as a source, and database tables as targets, to message maps that
support database mappings.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Adding a database as a source or target:

Add a database as a source, and database tables as targets, to message maps that
support database mappings.

Before you begin

You must create a database definition for your database before you can add it, or
the associated tables, to a message map.

2274 WebSphere Message Broker Version 7.0.0.8

About this task

You can add database sources and targets in a number of different ways:

Procedure

v In an existing message map, click Select Data Source to add a database as a
source.
1. In the Spreadsheet pane, select the location to add a database table source to

your mapping. For example, select $target.
2. Click Map > Select Data Source. Alternatively, right-click in the Spreadsheet

pane and click Select Data Source. The Select Database As Mapping Source
wizard opens.

3. Select your database from the list. If you cannot find the Data Sources or
Data Targets that you expect, clear Apply working set filtering to artifact
selection(s) on the page to view additional options.

4. When you select a database source during map file creation, the database
source is placed in the map script as a sibling (as opposed to a container) of
the one or more message targets in the map. When you create a mapping
from an item in the database source, the mapper moves the database source
in the map script structure to the lowest container of all mappings that use
the database source. You can move the database source in the map script by
using drag-and-drop or copy-paste actions.

v You can specify the databases and database tables that you want to use in the
New Message Map wizard when you create a message map.
1. Create a message map file by using File > New > Message Map, or by

right-clicking your mapping node and selecting Open Map.
2. From Select map sources, select the Database Sources for your message map.
3. From Select map targets, select the database tables to use as targets in your

message map. If you are not creating a message map from a DataDelete,
DataInsert, or DataUpdate node, expand the relevant database operation and
select from the list of tables. You can select from the following database
operations:
– Table Inserts

– Table Updates

– Table Deletes

If you cannot find the Data Sources or Data Targets that you expect, clear
Apply working set filtering to artifact selection(s) on the page to view
additional options.

4. When you select a database source during map file creation, the database
source is placed in the map script as a sibling (as opposed to a container) of
the one or more message targets in the map. When you create a mapping
from an item in the database source, the mapper moves the database source
in the map script structure to the lowest container of all mappings that use
the database source. You can move the database source in the map script by
using drag-and-drop or copy-paste actions.

v In an existing message map, click Add Sources and Targets to add a database as
a source and database tables as a target.
1. From the Message Mapping editor, click Map > Add Sources and Targets.

Alternatively, right-click in the Source pane and click Add Sources, or
right-click in the Target pane and click Add Targets.

2. From Select map sources, select the Database Sources for your message map.

Chapter 9. Developing message flow applications 2275

3. From Data Targets, in Select map targets, select the database tables to use as
targets in your message map. If you are not creating a message map from a
DataDelete, DataInsert, or DataUpdate node, expand the relevant database
operation, and select from the list of tables. You can select from the following
database operations:
– Table Inserts

– Table Updates

– Table Deletes

If you cannot find the Data Sources or Data Targets that you expect, clear
Apply working set filtering to artifact selection(s) on the page to view
additional options.
You can map to an element within a View, the name of which is annotated
with (read-only view).
You cannot select View in the Add Maps dialog for Insert, Update, or
Delete, because View is read only.

4. When you add a database source using the Add Sources action, the database
source is placed in the map script as a sibling (as opposed to a container) of
the one or more message targets in the map. When you create a mapping
from an item in the database source, the mapper moves the database source
in the map script structure to the lowest container of all mappings that use
the database source. You can move the database source in the map script by
using drag-and-drop or copy-paste actions.

Results

When you have added the database as a source:
v The Source pane contains a $db:select entry.
v The Spreadsheet pane contains a $db:select entry.

When you have added the database table as a target:
v The Target pane and Spreadsheet pane contain one of the following entries:

– a $db:insert entry
– a $db:update entry
– a $db:delete entry
You can change the database operation on a selected table by using the Change
Database Operation dialog.

What to do next

You cannot add a database as a source or a target to an Extract node.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Creating a message map file in the Broker Development view” on page 2233
“Mapping a target element from database tables” on page 2288
To map a target element from a database table, set up the Mapping node to
retrieve the relevant rows from the database and populate the message target
elements with values from database.
“Mapping a target element from database stored procedures” on page 2290
Use a DB2 or Oracle database stored procedure as a source in a Mapping node.

2276 WebSphere Message Broker Version 7.0.0.8

“Mapping a target element from database user-defined functions” on page 2292
Use an Oracle database user-defined function as a source in a Mapping node.
“Change database operation of a message map” on page 2286
If you have created a message map that performs a database operation such as
data insert, data update or data delete on a database table you might want to
change the database operation that the map performs.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.

Modifying databases using message mappings:

Create message mappings to read, update, and write to databases.

About this task

Select one or more of the following topics to work with databases by using
message mappings:

Procedure

v “Adding database definitions to the WebSphere Message Broker Toolkit” on
page 2278

v “Importing large databases to the WebSphere Message Broker Toolkit” on page
2280

v “Creating a message map file from a DataInsert node” on page 2282
v “Creating a message map file from a DataUpdate node” on page 2283
v “Creating a message map file from a DataDelete node” on page 2284
v “Change database operation of a message map” on page 2286
v “Mapping from a message and database” on page 2287
v “Mapping a target element from database tables” on page 2288
v “Mapping a target element from database stored procedures” on page 2290
v “Mapping a target element from database user-defined functions” on page 2292
v “Deleting data from a database with a mapping node” on page 2294
v “Creating a database to database mapping” on page 2295
v “Adding a database as a source or target” on page 2274
Related concepts:
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Creating a message map file in the Broker Development view” on page 2233
“Creating a message mapping file from a Mapping node” on page 2236
You can use a Mapping node to create a message map with messages and

Chapter 9. Developing message flow applications 2277

databases as both sources and targets.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.

Adding database definitions to the WebSphere Message Broker Toolkit:

Use the New Database Definition File wizard to add database definitions to the
WebSphere Message Broker Toolkit.

About this task

You must have a database definition defined in the WebSphere Message Broker
Toolkit to create database mappings. You can also use database definitions in other
nodes, such as the Compute node, to validate references to database sources and
tables. Database definitions are stored in a data design project. You must associate
the data design project with all message flow projects that you want to use the
database definitions with.

Complete the following steps to add a database definition to the WebSphere
Message Broker Toolkit:

Procedure

1. Click File > New > Database Definition. The New Database Definition File
wizard is displayed.

2. Select an existing data design project, or click New to create a new data
design project.

3. Select the database type and version that you want to connect to from the
Database and Version list. Ensure that you select a database from the list that
is supported by WebSphere Message Broker; you can use this wizard in a
shell-share environment with other Rational products that support other
databases or versions.
For a list of databases supported by the broker, see “Supported databases” on
page 3591.

4. Click Next.
5. Either select to create a new database connection or select a connection to use

from the list of existing connections. If you select to use an existing
connection, the existing database definition is overwritten.

6. Click Next.
7. If you selected to create a new connection:

a. Optional: You can enter a custom value for the Connection Name if you
clear Use default naming convention.

b. Enter values for the Connection to the database, for example, Database
name, Host name and Port number.

c. Enter values for the User ID and Password to connect to the database.
Click Test Connection to verify the settings you have selected for your
database. The default Port number for a DB2 database is 50000. If the
connection fails, enter other values such as 50001, 50002 and so on, for the
Port number, and test the connection again.

d. Click Next. An error is generated if any of the connection details are
wrong. If you specify a Database that already has a database definition in
the data design project, click Yes in the Confirm file overwrite window to
overwrite the existing database definition.

8. Alternatively, if you selected to use an existing connection:

2278 WebSphere Message Broker Version 7.0.0.8

a. Click Yes in the Confirm file overwrite window to overwrite the existing
database definition.

b. Enter values for the User ID and Password to connect to the database, and
click Next.

9. Select one or more database schemas from the list and click Next.
10. Select the elements that you require on the Database Elements page. You can

select any option, in addition to Tables, on the Database Elements page.
a. Select Views to see all the database views in the Data Project Explorer
b. Select Routines to add stored procedures and user defined functions to the

database definition file.
If you select other additional options, the database definition files that you
create contain more information than the Compute, Database, or Mapping
nodes require.

11. Click Finish.
12. Add the data design project as a reference to the message flow project:

a. Right-click the message flow project, and click Properties.
b. Click Project References, and select the data design project from the list to

add as a referenced project.
c. Click OK.

Results

A new database definition file is added to your data design project. The database
definition file name has the following format:<database>.dbm. Database definition
files are associated with the Data Project Explorer view and the Data Source
Explorer view. Tools are available in these views for working with your databases.

What to do next

Database definition files in the WebSphere Message Broker Toolkit are not
automatically updated. If you make a change to your database, you must re-create
the database definition files.
Related concepts:
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
Related tasks:
“Modifying databases using message mappings” on page 2277
Create message mappings to read, update, and write to databases.
“Creating a message map file from a DataInsert node” on page 2282
“Creating a message map file from a DataUpdate node” on page 2283
“Creating a message map file from a DataDelete node” on page 2284
“Adding a database as a source or target” on page 2274
Add a database as a source, and database tables as targets, to message maps that
support database mappings.

Chapter 9. Developing message flow applications 2279

Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Importing large databases to the WebSphere Message Broker Toolkit:

Use the Data Source Explorer view of the WebSphere Message Broker Toolkit to
select which options you require when you import large databases.

About this task

You must have a database definition defined in the WebSphere Message Broker
Toolkit to create database mappings. The following steps tell you how to import
specific element definitions into your database definition.

Complete the following steps to import specific database definitions to the
WebSphere Message Broker Toolkit:

Procedure

1. Open the Data perspective of the WebSphere Message Broker Toolkit.
2. In the Data Source Explorer view select Connections, and right-click to start

the New Connection wizard.
3. To create a connection:

a. Optional: You can enter a custom value for the Connection Name if you
clear Use default naming convention.

b. Enter values for the Connection to the database, for example, Database
name, Host name, and Port number.

c. Enter values for the user ID and password to connect to the database.
Click Test Connection to verify that the settings you have selected for
your database. The default Port number for a DB2 database is 50000. If the
connection fails, enter other values such as 50001, 50002, and so on, for the
Port number, and test the connection again.

d. Click Next. An error is generated if any of the connection details are
wrong.

4. On the Filter panel, enable the filter and select the schemas that you require.
5. Click Finish to complete the creation of a database connection.
6. In the Data Source Explorer view, expand the folders of the new Database

Connection to locate the database elements for which you need definitions.
7. Select the folder that contains the elements you require, right-click, and select

Filter.
8. On the Filter panel, enable filtering and select the elements that you require.
9. Click Finish. The Data Source Explorer view now shows only the elements

that you selected.
10. Switch to the Broker Application Development perspective.

2280 WebSphere Message Broker Version 7.0.0.8

11. Click File > New > Database Definition. The New Database Definition File
wizard is displayed.

12. Select an existing data design project, or click New to create a data design
project.

13. Select the database type and version that you want to connect to from the
Database and Version list. Ensure that you select a database from the list that
is supported by WebSphere Message Broker; you can use this wizard in a
shell-share environment with other Rational products that support other
databases or versions.
For a list of databases supported by the broker, see “Supported databases” on
page 3591.

14. Click Next.
15. On the Select Connection panel, select Use an existing connection. This

connection is the one that you created in steps 1 on page 2280 to 9 on page
2280 earlier.

16. Click Next.
17. Enter values for the user ID and password to connect to the database, and

click Next.
18. Select one or more database schemas from the list and click Next.
19. Select the elements that you require on the Database Elements page. You can

select any option, in addition to Tables, on the Database Elements page.
a. Select Views to see all the database views in the Data Project Explorer
b. Select Routines to add stored procedures and user-defined functions to the

database definition file.
20. Click Finish.
21. Add the data design project as a reference to the message flow project:

a. Right-click the message flow project, and click Properties.
b. Click Project References, and select the data design project you created,

from the list, to add as a referenced project.
c. Click OK.

22. Carry out the following procedure, to ensure that only the elements you
selected appear in a map:
a. Drag a Mapping node node onto a flow editor.
b. Double-click the Mapping node node to bring up the map creation dialog.
c. Follow the prompts to create the map, selecting the data source that

references your new database definition as either a source or target.

What to do next

Database definition files in the WebSphere Message Broker Toolkit are not
automatically updated. If you change your database, you must re-create the
database definition files.
Related concepts:
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.

Chapter 9. Developing message flow applications 2281

“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
Related tasks:
“Modifying databases using message mappings” on page 2277
Create message mappings to read, update, and write to databases.
“Creating a message map file from a DataInsert node”
“Creating a message map file from a DataUpdate node” on page 2283
“Creating a message map file from a DataDelete node” on page 2284
“Adding a database as a source or target” on page 2274
Add a database as a source, and database tables as targets, to message maps that
support database mappings.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Creating a message map file from a DataInsert node:

You can use a DataInsert node to create mappings to insert new data into a
database from a message, another database or both.

Before you begin

Before creating a message map file, ensure you do the following:
1. Create a message flow project
2. Create a message flow
3. Define message flow content that includes a DataInsert node
4. Create a database definition

About this task

To create a message map (.msgmap) file from a DataInsert node:

Procedure

1. From the Broker Application Development perspective, open your message
flow, right-click your DataInsert node, and click Open Map. The New Message
Map for Data Insert Node wizard opens.

2. Select the combination of Messages, Data Sources or both that you want to use
as sources for your map from Select map sources.
If you cannot find the Messages or Data Sources that you expect, clear the
Apply working set filtering to artifact selection(s) on the page check box.

2282 WebSphere Message Broker Version 7.0.0.8

3. From the Select map targets pane, select the tables under Table Inserts into
which you want to insert new data. The tables that you select are added to the
new message map as targets.

4. Select OK to create the new message map. The “Message Mapping editor” on
page 4981 opens with the selected sources and targets.

What to do next

After you have created a message map file, you can now configure the message
mappings.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Editing a default-generated map manually” on page 2312
A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“DataInsert node” on page 4386
Use the DataInsert node to interact with a database in the specified ODBC data
source.

Creating a message map file from a DataUpdate node:

You can use a DataUpdate node to create mappings to update existing data in a
database from a message, another database or both.

Before you begin

Before creating a message map file, ensure you do the following:
1. Create a message flow project
2. Create a message flow
3. Define message flow content that includes a DataUpdate node
4. Create a database definition

About this task

To create a message map (.msgmap) file from a DataUpdate node:

Chapter 9. Developing message flow applications 2283

Procedure

1. From the Broker Application Development perspective, open your message
flow, right-click your DataUpdate node, and click Open Map. The New
Message Map for Data Update Node wizard opens.

2. Select the combination of Messages, Data Sources or both that you want to use
as sources for your map from Select map sources.
If you cannot find the Messages or Data Sources that you expect, select the
Show all resources in workspace check box.

3. From the Select map targets pane, select the tables under Table Updates in
which you want to update data. The tables that you select are added to the
new message map as targets.

4. Select OK to create the new message map. The “Message Mapping editor” on
page 4981 opens with the selected sources and targets.

What to do next

After you have created a message map file, you can now configure the message
mappings.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Editing a default-generated map manually” on page 2312
A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“DataUpdate node” on page 4390
Use the DataUpdate node to interact with a database in the specified ODBC data
source.

Creating a message map file from a DataDelete node:

You can use a DataDelete node to create mappings to delete data from a database
based on information from an input message, another database or both.

Before you begin

Before creating a message map file, ensure you do the following:
1. Create a message flow project
2. Create a message flow
3. Define message flow content that includes a DataDelete node

2284 WebSphere Message Broker Version 7.0.0.8

4. Create a database definition

About this task

To create a message map (.msgmap) file from a DataDelete node:

Procedure

1. From the Broker Application Development perspective, open your message
flow, right-click your DataDelete node, and click Open Map. The New Message
Map for Data Delete Node wizard opens.

2. Select the combination of Messages, Data Sources or both that you want to use
as sources for your map from Select map sources.
If you cannot find the Messages or Data Sources that you expect, clear the
Apply working set filtering to artifact selection(s) on the page check box.

3. From the Select map targets pane, select the tables under Table Deletes from
which you want to delete data. The tables that you select are added to the new
message map as targets.

4. Select OK to create the new message map. The “Message Mapping editor” on
page 4981 opens with the selected sources and targets.

What to do next

After you have created a message map file, you can now configure the message
mappings.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Editing a default-generated map manually” on page 2312
A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.
“Deleting data from a database with a mapping node” on page 2294
You can use a DataDelete or Mapping node to delete data from a database, based
on information from an input message, another database or both.
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“DataDelete node” on page 4382
Use the DataDelete node to interact with a database in the specified ODBC data
source.

Chapter 9. Developing message flow applications 2285

Change database operation of a message map:

If you have created a message map that performs a database operation such as
data insert, data update or data delete on a database table you might want to
change the database operation that the map performs.

About this task

You might also have created a database mapping by dragging a table from the
Broker Development view onto a message map and want to change the default
insert operation to another database operation.

To change the database operation of a database table in your message map:

Procedure

1. From the Broker Application Development perspective, open your message
map.

2. Right-click on the target database table in the target pane and click Change
Database Operation. The Select Database Operation dialog is displayed.

3. Select the database operation you want to perform on the selected table:
v Insert
v Update
v Delete

4. Click OK to change the database operation on the selected table.

What to do next

If you change the database operation of your message map to or from data delete
you must re-create any mappings to your target database columns.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Editing a default-generated map manually” on page 2312
A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“DataDelete node” on page 4382
Use the DataDelete node to interact with a database in the specified ODBC data
source.

2286 WebSphere Message Broker Version 7.0.0.8

Mapping from a message and database:

You can create a message map that uses both a message and a database as a
source.

Before you begin

Before creating a message map file, ensure you complete the following steps:
1. Create a message flow project
2. Create a message flow
3. Define message flow content
4. Create database definitions

About this task

The following instructions describe how to specify a message and a database as the
data source.

Procedure

1. Right-click a node that supports mapping, such as the Mapping node, and click
Open Map.

2. Follow the on-screen instructions to complete the New Message Map wizard:
a. Select the combination of Messages and Data Sources that you want to use

as sources for your message map from Select map sources.
b. Select the combination of Messages, Data Targets or both that you want to

use as targets for your map from Select map targets.
3. Perform mapping as usual from the source message.
4. Follow the guidance in “Mapping a target element from database tables” on

page 2288 to create the mappings from a source database to the target message
or database table.

5. Follow the guidance in “Mapping a target element from database stored
procedures” on page 2290 to create the mappings from a database stored
procedure to the target message or database table.

6. Follow the guidance in “Mapping a target element from database user-defined
functions” on page 2292 to create the mappings from a database user-defined
function to the target message or database table.

Related tasks:
“Creating a message map file in the Broker Development view” on page 2233
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
“Populating a message map” on page 2269
Use the Insert Children wizard to add elements from the Target pane to the
Spreadsheet pane. The Insert Children wizard creates child structures for the
selected parent structure.
“Mapping a target element from source message elements” on page 2254
“Mapping a target element from database tables” on page 2288
To map a target element from a database table, set up the Mapping node to
retrieve the relevant rows from the database and populate the message target
elements with values from database.
“Mapping a target element from database stored procedures” on page 2290
Use a DB2 or Oracle database stored procedure as a source in a Mapping node.

Chapter 9. Developing message flow applications 2287

“Mapping a target element from database user-defined functions” on page 2292
Use an Oracle database user-defined function as a source in a Mapping node.
“Creating a database to database mapping” on page 2295
You can create a message map that uses a database as both the source and target.
The contents of the source database can be used to interact with the same or a
different database table. The message map can also include a message as a source,
but a message is not required. You can, for example, use a timer node to schedule
regular updates to a database.

Mapping a target element from database tables:

To map a target element from a database table, set up the Mapping node to
retrieve the relevant rows from the database and populate the message target
elements with values from database.

About this task

You can add a database as a source for a mapping in several ways, as described in
“Adding a database as a source or target” on page 2274. After you have added a
database to the mapping, the Spreadsheet pane contains a $db:select entry in the
Map Script column. By default, its value is fn:true(), which means that all rows are
retrieved from the database table. In database SQL, you can restrict the number of
rows by adding a WHERE clause to a database call. In the Mapping node, the
equivalent method of restricting the number of selected rows is to use a $db:select
expression.

Complete the following steps to restrict the number of rows that are selected in a
Mapping node:

Procedure

1. In the Spreadsheet pane, click the $db:select row. fn:true() is entered in the Edit
pane.

2. Edit the expression in the Edit pane to specify the correct condition for the
database call. To help you achieve this condition, you can:
a. Select all database columns that are relevant to the rows that are retrieved,

and drag them from the Source pane to the Edit pane. These database
column names are used in an SQL WHERE clause.

b. Select all source message elements with values that are relevant to the rows
that are retrieved, and drag them from the Source pane into the Edit pane.
These values can be matched against the selected database columns.

c. Click Edit > Content Assist to open Content Assist.
d. From Content Assist, select the functions to apply to message elements in

the database call.

Results

The following example of a $db:select entry shows a database column that is
matched against a constant or a field from an input message:
$db:select_1.BROKER50.JDOE.RESOLVEASSESSOR.ASSESSORTYPE = ’WBI’ or $db:select_1.BROKER50.JDOE.
RESOLVEASSESSOR.ASSESSORTYPE = $source/tns:msg_tagIA81CONF/AssessorType

A $db:select entry retrieves all qualifying rows, therefore more than one row might
be retrieved. By default, the selection is treated as repeating, which is indicated by
the ‘for' row below $db:select in the Spreadsheet pane.

2288 WebSphere Message Broker Version 7.0.0.8

After you have configured the $db:select, populate the target message from the
database by dragging the database column from the Source Pane to the message
element in the Target pane. The mapping is indicated by a line between the
database column in the Source pane and the element in the Target pane. An entry
for this map in XPath format also appears in the Spreadsheet pane. Triangular
icons are displayed in the Source and Target panes next to objects that have been
mapped.

You can map to an element within a View, the name of which is annotated with
(read-only view).

What to do next

Using database selects

By default, a $db:select entry is accompanied by a 'for' row that iterates over the
select result set. Ensure that your 'for' row is in the correct position for your
mapping. The behavior of the map is determined by the position of the 'for' row in
the Spreadsheet pane. For example, if the results of the $db:select statement
matched five rows in the database, and the 'for' row is the parent of the $target
entry in the Spreadsheet pane, five complete messages are generated by the
mapping node. If the 'for' row is positioned within the message body, one message
is generated with five repeating elements in the message body.

A mapping can contain multiple 'for' rows, associated with a $db:select entry, that
perform a single database select and iterate over the results multiple times. For
example, multiple 'for' rows can be used in conditional mappings, where an
individual 'for' row is used with a 'condition' or an 'else'.

A 'for' row is not always required and can be deleted in the following
circumstances:
v If the database select returns only one row.
v If you use an aggregate XPath function on the select results.

For example: fn:sum or fn:count.

All $db:select expressions must be within the scope of the $db:select entry in the
Spreadsheet pane, meaning that each one must be a descendant of the select
statement. If a $db:select expression is out of scope, the Message Mapping editor
moves the $db:select entry to a position where the $db:select expression is in
scope. Ensure that the position of the $db:select entry is correct for your message
mapping.

Database table join

Database table join is supported for tables within the same database. For example,
consider the following two tables where PRODUCT_ID and PART_NUMBER
match.
Table Column Row 1 Row 2 Row 3 Row 4
ORDER PRODUCT_ID 456 456 345 123

QUANTITY 100 200 300 400

PRODUCT PART_NUMBER 123 456 789 012
PART_NAME pen pencil paperclip glue
PRICE 0.25 0.15 0.02 0.99

A $db:select expression with the following syntax joins the tables:

Chapter 9. Developing message flow applications 2289

$db:select.MY_DB.SCHEMA1.ORDER.PRODUCT_ID=$db:select.MY_DB.SCHEMA2.PRODUCRT.PART_NUMBER

The $db:select expression in the example generates the following result set.
Row 1 Row 2 Row 3

PRODUCT_ID 456 456 123
QUANTITY 100 200 400
PART_NUMBER 456 456 123
PART_NAME pencil pencil pen
PRICE 0.15 0.15 0.25

You can then use the 'for' row to iterate through the results set in the same way as
results from a single table.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related tasks:
“Mapping a target element from database stored procedures”
Use a DB2 or Oracle database stored procedure as a source in a Mapping node.
“Mapping a target element from database user-defined functions” on page 2292
Use an Oracle database user-defined function as a source in a Mapping node.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Mapping a target element from database stored procedures:

Use a DB2 or Oracle database stored procedure as a source in a Mapping node.

Before you begin

Before you start:

You must include the database stored procedure in your database definition. See
“Adding database definitions to the WebSphere Message Broker Toolkit” on page
2278. Only DB2 and Oracle databases are supported for this task.

2290 WebSphere Message Broker Version 7.0.0.8

About this task

To map a target element from a database stored procedure, set up the Mapping
node to:
v run the stored procedure to retrieve the relevant rows from the database
v populate the message target elements with values from the database

Complete these steps to map a target element from a stored procedure:

Procedure

1. Add a stored procedure as a source for the mapping, as described in “Adding a
database as a source or target” on page 2274. After you have added a stored
procedure to the mapping, the Source pane and the Spreadsheet pane contain
$db:proc entries. These $db:proc entries contain details of the parameters used
by the stored procedure. For each parameter it shows its name, its mode (either
IN, INOUT, or OUT), and its data type.
The $db:proc entry in the Spreadsheet pane also contains a 'for' row. By default,
the position of the 'for' row in the $db:proc entry indicates that when there is
more than one record in the result set, the output message body contains
repeating elements. If you want a separate message to be output for each
record in a result set, move the $target element in the Spreadsheet pane below
the 'for' row.
If you are using a DB2 stored procedure which specifies a maximum number of
result sets, the Source pane also includes a list of result sets. If you are using an
Oracle stored procedure which specifies ref cursor parameters of mode INOUT
or OUT, the Mapping node treats them as named result sets rather than
parameters. The Mapping node does not support ref cursor parameters of
mode IN.

2. If your stored procedure has parameters of mode IN or INOUT provide values
for each of them:
a. Type an expression in the Value field next to the parameter in the

Spreadsheet pane.
b. Select the parameter in the Spreadsheet pane, drag an element from the

source message to the Edit pane, and press Enter.
3. If your stored procedure sets a return value, right-click on the $db:proc entry in

the Source pane and select Toggle Add/Remove Stored Procedure Return
Value. An element called ReturnValue of type INTEGER is added to the Source
pane.
DB2 on distributed systems returns SQLCODE if the stored procedure does not
set a return value.
DB2 on z/OS and Oracle stored procedures do not set a return value.

4. For each result set that your stored procedure returns, define the columns it
contains:
a. Right-click on the result set entry in the Source pane and select Add or

Remove Result Set Columns. The Add or Remove Result Set Columns
window opens.

b. (Optional) Select an item from the Restore previous settings from list. The
Result set columns list is replaced.

c. (Optional) Select columns in the Available database table columns list, and
add them to the Result set columns list.

Chapter 9. Developing message flow applications 2291

d. (Optional) Type a column name in the New column field, and add it to the
Result set columns list. Use this method to add calculated columns that are
named in the stored procedure.

e. (Optional) Change the name in the Save current settings to field that is
used to save the columns shown in the Result set columns when you click
Finish. The settings are saved in the \.metadata directory. You can retrieve
these settings in another message map, as described in step 4a. If you do
not change the default name the settings are automatically retrieved when
the stored procedure is used in another message map.

Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related tasks:
“Mapping a target element from database tables” on page 2288
To map a target element from a database table, set up the Mapping node to
retrieve the relevant rows from the database and populate the message target
elements with values from database.
“Mapping a target element from database user-defined functions”
Use an Oracle database user-defined function as a source in a Mapping node.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Mapping a target element from database user-defined functions:

Use an Oracle database user-defined function as a source in a Mapping node.

Before you begin

Before you start:

You must include the database user-defined function in your database definition.
See “Adding database definitions to the WebSphere Message Broker Toolkit” on
page 2278. Only Oracle databases are supported for this task.

2292 WebSphere Message Broker Version 7.0.0.8

About this task

To map a target element from a database user-defined function, set up the
Mapping node to:
v run the user-defined function to retrieve the relevant rows from the database
v populate the message target elements with values from the database

Complete these steps to map a target element from a user-defined function:

Procedure

1. Add a user-defined function as a source for the mapping, as described in
“Adding a database as a source or target” on page 2274. After you have added
a user-defined function to the mapping, the Source pane and the Spreadsheet
pane contain $db:func entries. These $db:func entries contain details of the
parameters used by the user-defined function. For each parameter it shows its
name, its mode (either IN, INOUT, or OUT), and its data type.
The $db:func entry in the Spreadsheet pane also contains a 'for' row. By default,
the position of the 'for' row in the $db:func entry indicates that when there is
more than one record in the result set, the output message body contains
repeating elements. If you want a separate message to be written for each
record in a result set, move the $target element in the Spreadsheet pane below
the 'for' row.
If you are using an Oracle user-defined function which specifies ref cursor
parameters of mode INOUT or OUT, the Mapping node treats them as named
result sets rather than parameters. The Mapping node does not support ref
cursor parameters of mode IN.
If you are using an Oracle user-defined function which returns a value of ref
cursor data type, the Mapping node treats it as a named result set.

2. If your user-defined function has parameters of mode IN or INOUT provide
values for each of them:
a. Type an expression in the Value field next to the parameter in the

Spreadsheet pane.
b. Select the parameter in the Spreadsheet pane, drag an element from the

source message to the Edit pane, and press Enter.
3. For each result set that your user-defined function returns, define the columns

it contains:
a. Right-click on the result set entry in the Source pane and select Add or

Remove Result Set Columns. The Add or Remove Result Set Columns
window opens.

b. (Optional) Select an item from the Restore previous settings from list. The
Result set columns list is replaced.

c. (Optional) Select columns in the Available database table columns list, and
add them to the Result set columns list.

d. (Optional) Type a column name in the New column field, and add it to the
Result set columns list. Use this method to add calculated columns that are
named in the user-defined function.

e. (Optional) Change the name in the Save current settings to field that is
used to save the columns shown in the Result set columns when you click
Finish. The settings are saved in the\.metadata directory. You can retrieve
these settings in another message map, as described in step 3a. If you do
not change the default name the settings are automatically retrieved when
the user-defined function is used in another message map.

Chapter 9. Developing message flow applications 2293

Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Creating message mappings” on page 2232
You can create message mappings either in the Broker Development view of the
Toolkit, or from a Mapping node.
Related tasks:
“Mapping a target element from database tables” on page 2288
To map a target element from a database table, set up the Mapping node to
retrieve the relevant rows from the database and populate the message target
elements with values from database.
“Mapping a target element from database stored procedures” on page 2290
Use a DB2 or Oracle database stored procedure as a source in a Mapping node.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Deleting data from a database with a mapping node:

You can use a DataDelete or Mapping node to delete data from a database, based
on information from an input message, another database or both.

Before you begin

You must do the following before you can delete data from a database using a
mapping node:
1. Create a message flow project
2. Create a message flow
3. Define message flow content that includes a DataDelete or a Mapping node
4. Create a message map file from a DataDelete node or Create a message map

file from a Mapping node

About this task

You cannot create mappings to delete data from a database by dragging from the
source to the target. Instead, you select rows to delete based on the content of the
source. You can use an expression to match the content of the source to the target
field, for example, use the following instructions to delete all rows in the database
that match the content of a field from the input message:

2294 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Right-click your DataDelete or Mapping node, and click Open Map. The
“Message Mapping editor” on page 4981 opens with your selected sources and
targets.

2. Select $db:delete in the Spreadsheet pane.
3. Drag the appropriate source element from the message in the Source pane to

the Edit pane. For example, $source/shipTo/accNum.
4. Drag the appropriate target database field from the Target pane to the Edit

pane. For example, $db:delete.SAMPLE.MYSCHEMA.CUSTOMER.CONTACT_ID.
5. Change the expression in the Edit pane to set the target field to be equal to the

source element. For example, $source/shipTo/accNum =
$db:delete.SAMPLE.MYSCHEMA.CUSTOMER.CONTACT_ID.

What to do next

You can use conditional mappings such as If statements to create more complex
mappings that define which data to delete from a database. You can also use
conditional statements in a Mapping node to perform different database operations
depending on the content of the input message. For example, you can add a Table
Inserts target, a Table Updates target and a Table Deletes target to a message map,
then use conditional statements to define which of the operations to perform.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
“Configuring conditional mappings” on page 2265
How to set the value of a target element conditionally in a Mapping node.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“DataDelete node” on page 4382
Use the DataDelete node to interact with a database in the specified ODBC data
source.

Creating a database to database mapping:

You can create a message map that uses a database as both the source and target.
The contents of the source database can be used to interact with the same or a
different database table. The message map can also include a message as a source,
but a message is not required. You can, for example, use a timer node to schedule
regular updates to a database.

Before you begin

Before creating a message map file with a database to database mapping, ensure
you do the following:
1. Create a message flow project

Chapter 9. Developing message flow applications 2295

2. Create a message flow
3. Define message flow content
4. Create database definitions

About this task

To create a database to database mapping:

Procedure

1. Right-click a node that supports database mapping in your flow, such as the
Mapping node, and click Open Map. The New Message Map wizard opens for
your node.

2. Select the Data Sources and any Messages that you want to use as sources for
your map from Select map sources.
If you cannot find the Messages or Data Sources that you expect, clear the
Apply working set filtering to artifact selection(s) on the page check box.

3. From Select map targets expand the database operation that you want to
perform. You can select from the following database operations:
v Table Inserts
v Table Updates
v Table Deletes

4. Select the database tables that you want to map.
You can create a message map that performs a combination of database inserts,
updates or deletes by selecting database tables from different database
operations. For example, if you want to create a conditional mapping that
updates data in a database if it already exists, but inserts the data if it does not
already exist in the database, you can select the same database table under
Table Inserts and Table Updates.

5. Select OK to create the new message map. The “Message Mapping editor” on
page 4981 opens with the selected sources and targets.

What to do next

After you have created a message map file, you can now configure the message
mappings.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Creating a message map file in the Broker Development view” on page 2233
“Change database operation of a message map” on page 2286
If you have created a message map that performs a database operation such as
data insert, data update or data delete on a database table you might want to
change the database operation that the map performs.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them

2296 WebSphere Message Broker Version 7.0.0.8

with various types of information.

Storing a BLOB message in a database table using a message map:

Use the Message Mapping editor to create a bit stream from a BLOB message, and
store it in a database table.

Before you begin

Before you start:

Create a mapping; see “Creating a message mapping file from a Mapping node”
on page 2236.

About this task

Take the following steps:

Procedure

1. In the Target pane, right-click the column that will store the bitstream, and
select Enter Expression from the menu.

2. In the Edit pane, type esql:asbitstream(). You can use content assist;
asbitstream is a Field function.

3. Drag the source field, for example $source/po:purchaseOrder, to the Edit pane,
placing it between the parentheses. The entry in the Edit pane looks like this:
esql:asbitstream($source/po:purchaseOrder, ’purchaseOrder’,
’PurchaseOrder’, ’XML1’, 0, 0, $esql:FolderBitStream)

Alternatively, you can use content assist to select the esql:asbitstream
function. In the Edit pane press Ctrl+Space to display a list of available
functions and associated parameters. The asbitstream function is an ESQL
Field function. The function can take other parameters; see “ESQL mapping
functions” on page 4998.
When you move the cursor out of the Edit pane, or press Enter, the mapping is
displayed between the fields in the Source and Target panes.

Related tasks:
“Creating a message mapping file from a Mapping node” on page 2236
You can use a Mapping node to create a message map with messages and
databases as both sources and targets.
“Creating a BLOB output message using a message map” on page 2262
Use the Message Mapping editor to create a bit stream from a message source, and
create it as a BLOB output message.
“Mapping from a BLOB message to an output message” on page 2263
Use the Message Mapping editor to parse a BLOB message.
“Mapping from a BLOB field in a database table to an output message” on page
2298
Use the Message Mapping editor to parse a bit stream from a field in a database
table into a folder in a target message.
Related reference:
“ESQL mapping functions” on page 4998
Some predefined ESQL functions are available for use with message maps.

Chapter 9. Developing message flow applications 2297

Mapping from a BLOB field in a database table to an output message:

Use the Message Mapping editor to parse a bit stream from a field in a database
table into a folder in a target message.

Before you begin

Before you start:

Create a mapping; see “Creating a message mapping file from a Mapping node”
on page 2236.

About this task

Take the following steps:

Procedure

1. Right-click the element in the target pane, and select Enter Expression from the
menu.

2. In the Edit pane, type msgmap:element-from-bitstream().
3. Drag the field from the database table to the Edit pane, placing it between the

parentheses, for example:
msgmap:element-from-bitstream($db:select.RESERVDB.USER.XMLFLIGHTTB.FLIGHTDATE)

Alternatively, you can use content assist to select the msgmap:element-from-
bitstream function. In the Edit pane press Ctrl+Space to display a list of
available functions and associated parameters. The function can take other
parameters; see “Predefined mapping functions” on page 5007. For example:
msgmap:element-from-bitstream($db:select.RESERVDB.USER.XMLFLIGHTTB.FLIGHTDATE,
’ReserveMessageSet’, ’FlightMessage’, ’XML1’, 0, 0, $esql:FolderBitStream)

When you move the cursor out of the Edit pane, or press Enter, the mapping is
displayed between the fields in the Source and Target panes.

Related tasks:
“Creating a message mapping file from a Mapping node” on page 2236
You can use a Mapping node to create a message map with messages and
databases as both sources and targets.
“Storing a BLOB message in a database table using a message map” on page 2297
Use the Message Mapping editor to create a bit stream from a BLOB message, and
store it in a database table.
“Creating a BLOB output message using a message map” on page 2262
Use the Message Mapping editor to create a bit stream from a message source, and
create it as a BLOB output message.
“Mapping from a BLOB message to an output message” on page 2263
Use the Message Mapping editor to parse a BLOB message.
Related reference:
“Predefined mapping functions” on page 5007
Some predefined mapping functions are provided for use with message maps.

Creating and calling submaps and subroutines:

Use submaps, ESQL subroutines, or both, to map source elements to target
elements.

2298 WebSphere Message Broker Version 7.0.0.8

About this task

The following topics describe how to work with submaps and ESQL subroutines:

Procedure

v “Creating a new submap”
v “Creating a new submap for a wildcard source” on page 2300
v “Creating a submap to modify a database” on page 2301
v “Converting a message map to a submap” on page 2302
v “Converting an inline mapping to a submap” on page 2304
v “Calling a submap” on page 2305
v “Calling a map from ESQL” on page 2306
v “Calling an ESQL routine” on page 2308
v “Creating and calling your own user-defined ESQL routine” on page 2308
Related concepts:
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.

Creating a new submap:
About this task

This topic describes how to create a new submap. There are three ways to create a
new submap:

Procedure

v Using File > New > Message Map

1. From the Broker Application Development perspective, click File > New >
Message Map. The New Message Map wizard opens.

2. Specify the project name and the name for the new submap.
3. Specify that the new map is a submap by selecting the option: Submap

called by another map.
4. Select the combination of Message Components or Data Sources that you

want to use as sources for your map from Select map sources and select the
combination of Message Components or Data Targets that you want to use as
targets for your map from Select map targets.
If you cannot find the Message Components, Data Sources or Data Targets
that you expect, clear the Apply working set filtering to artifact selection(s)
on the page check box.

5. Click Finish.

The new submap opens in the Message Mapping editor.
v Using Create new submap

1. From the Broker Application Development perspective, open the message
map for the required node.

2. In the Source pane, expand the tree and select the source.
3. In the Target pane, expand the tree and select the target.
4. Right-click either the source or target, then click Create New Submap.

Chapter 9. Developing message flow applications 2299

The new submap opens in the Message Mapping editor. If the original map file
was called simple_mapping.msgmap, the new submap is called
simple_mapping_submap0.msgmap.

v Using Convert to submap

1. From the Broker Application Development perspective, open the message
map.

2. Select one of the following types of submap to create a new submap from an
inline mapping:
– Element statement that maps a global element or an element of global

type
– Attribute statement that maps either a global attribute or an attribute of a

global type
– Database insert statement
– Database update statement
– Database delete statement

3. Right-click the mapping statement that you want to convert to a submap or
database submap in the Script pane, and click Convert to submap. A new
submap is created and a statement is added to the original message map to
call the new submap.

The new submap opens in the Message Mapping editor. If the original map file
was called simple_mapping.msgmap, the new submap is called
simple_mapping_submap0.msgmap.

Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Creating a message map file in the Broker Development view” on page 2233
“Creating a new submap for a wildcard source”
You can map a wildcard value in the source to a wildcard value in the target.
“Converting a message map to a submap” on page 2302
“Calling a submap” on page 2305
“Calling a map from ESQL” on page 2306
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.

Creating a new submap for a wildcard source:

You can map a wildcard value in the source to a wildcard value in the target.

About this task

You might expect a wildcard in a Mapping node for example, when you are using
a SOAP message (where the Body element contains a wildcard). This type of
wildcard represents the payload of the message, where the payload is a message
that is defined elsewhere in the message set. The submap can involve from 0 to n
source wildcards and 0 or 1 target wildcards.

The “Message Mapping editor” on page 4981 shows three kinds of wildcard, all of
which allow you to create a submap:

2300 WebSphere Message Broker Version 7.0.0.8

Mapper construct Message model construct
Choose concrete item for
submap

Wildcard element Wildcard element Global element

Wildcard attribute Wildcard attribute Global attribute

Message with Wildcard
Message child

Group with Composition of
Message and Content
Validation of Open or Open
Defined

Message

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the message map for the required node.
3. In the Source pane, expand the tree and select the source wildcard.
4. In the Target pane, expand the tree and select the target wildcard.
5. Right-click either the source or the target wildcard, and click Create new

submap. The Wildcard Specification wizard opens.
6. From the Wildcard Specification wizard, select the concrete item that will

replace the source wildcard, according to the values shown in the table at the
beginning of this topic.

7. Click Next.
8. From the Wildcard Specification wizard, select the concrete item that will

replace the target wildcard, according to the values shown in the table at the
beginning of this topic.

9. Click Finish.
10. Click OK. The submap opens in the Message Mapping editor.
11. From the submap, map the source message elements to the target message

elements as required.
12. Click OK.
Related concepts:
“Mapping node” on page 4994
The Mapping node has one or more mappings that are stored in message map files
(with a .msgmap file extension). These files are configured using the Message
Mapping editor.
Related tasks:
“Creating a new submap” on page 2299
“Calling a submap” on page 2305
“Calling a map from ESQL” on page 2306
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.

Creating a submap to modify a database:
About this task

Use the Create New Database Submap wizard to create a submap to modify a
database.

You must have an existing message map from which to call the submap. The
following steps describe how to create a submap to modify a database:

Chapter 9. Developing message flow applications 2301

Procedure

1. In the Broker Application Development perspective, open the calling message
map.

2. In the Source pane, right-click the message component containing the fields to
be used to modify the database and click Create New Database Submap. The
source can be a wildcard, an element, or an attribute. The Create New Database
Submap wizard opens.

3. If the selected source is a wildcard, select a message or message component for
the source wildcard from Select a defined item to replace the source wildcard
pane. If you cannot find the message components that you expect, clear the
Apply working set filtering to artifact selection(s) on the page check box.

4. From Select database submap targets expand the database operation that you
want to perform. You can select from the following database operations:
v Table Inserts

v Table Updates

v Table Deletes

5. Select the database tables that you want to map. If you cannot find the Data
Targets that you expect, select the Show all resources in workspace check box.

6. Click OK. A new submap is created with the selected message or message
component in the Source pane, and the database table in the Target pane. In the
calling message map $db:call is added to the Target pane.

What to do next

After you have created the submap file, configure the message mappings for the
database table.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Mapping node” on page 4994
The Mapping node has one or more mappings that are stored in message map files
(with a .msgmap file extension). These files are configured using the Message
Mapping editor.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related tasks:
“Creating a new submap” on page 2299
“Calling a map from ESQL” on page 2306
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
Related reference:
“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Converting a message map to a submap:

2302 WebSphere Message Broker Version 7.0.0.8

About this task

You can convert between a message map and a submap in order to change the
usage of the map. You might convert a message map to a submap because you
want to reuse the same mappings for multiple nodes. Use the following
instructions to convert a message map to a submap for each message in the
message map.

Procedure

1. From the Broker Application Development perspective right-click your message
map and click Open.

2. Right-click $source in the Source pane and select Add or Remove Headers and
Folders. The Add or Remove Headers and Folders dialog opens.

3. Select No folders (map body element only). Any previously selected headers
or folders are cleared.

4. Click OK to remove the headers and folders.
5. Repeat steps 2 to 4 to select to map body element only from your target

message under $target in the Target pane.
6. Delete target map statements for existing mappings to properties, message

headers or other folders such as LocalEnvironment. These mappings are
flagged with warning messages after the headers are removed.

7. Remove the reference to the new submap from any mapping nodes. If a
reference to the submap exists in the Mapping Routine property of a mapping
node an error message is displayed on the message flow.

8. Save the submap, and check for any broken references as indicated by errors or
warnings in the Problems view.

Results

The submap is now ready to be used. See calling a submap for more information.

Example

To convert a submap to a message map, click Add or Remove Headers and
Folders for the source and target messages, and select to map Selected headers.
You must ensure that no other maps call the changed map, check for errors in the
Problems view to indicate this problem. See mapping headers and folders for more
information about mapping headers, Properties and the LocalEnvironment.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Editing a default-generated map manually” on page 2312
A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:

Chapter 9. Developing message flow applications 2303

“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“DataDelete node” on page 4382
Use the DataDelete node to interact with a database in the specified ODBC data
source.

Converting an inline mapping to a submap:

To change the usage of a map, you can convert between inline mappings in a
message map and a submap.

About this task

You might convert parts of an existing message map to a submap because you
want to reuse the same mappings for multiple nodes. You can convert inline
mappings to submaps from messages or databases. You must select one of the
following types of statement to create a submap or a database submap:
v Element statement that maps a global element or an element of global type
v Attribute statement that maps either a global attribute or an attribute of a global

type
v Database insert statement
v Database update statement
v Database delete statement

The target that is added to the new submap is the global element, attribute, type,
or database insert, update, or delete that you select. The source that is added to the
new submap is the appropriate global element or type from the source from the
selected mappings that are included in the submap. If mappings included in the
selected statement do not reference any source, only a target is added to the
submap. If the source contains a database select that is not referenced by any other
part of the original message map, a database select is added as a source to the
submap, and removed from the original message map. However, if the source
contains a database select that is referenced by any other part of the original
message map, the original message map retains the select, and the submap
performs a separate select. If you do not want to perform two database select
operations, do not use a database submap under these conditions.

Use the following instructions to convert inline mappings in a message map to a
submap or database submap:

Procedure

1. From the Broker Application Development perspective right-click your message
map and click Open.

2. Right-click the mapping statement that you want to convert to a submap or
database submap in the Script pane, and click Convert to submap. A new
submap is created and a statement is added to the original message map to call
the new submap.

2304 WebSphere Message Broker Version 7.0.0.8

Results

The submap is now ready to be used.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Editing a default-generated map manually” on page 2312
A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Calling a submap:
About this task

Use the Call Existing Submap wizard to call a submap. The submap must already
be in the workspace.

If a submap does not exist, use the Create New Submap menu option to create a
submap that you can call. This action creates the new submap in the same folder
as the calling map. It also allocates a default map operation name to the new
submap. If the source or target in the calling map is a wildcard, a wizard allows
you to choose a replacement element.

You can also map from a wildcard to a wildcard.

The following steps describe how to call a submap:

Procedure

1. In the Broker Application Development perspective, open the calling map.
2. In the Source and Target panes, select one or more sources and one target. Any

of the sources or the target can be a wildcard, an element, or an attribute.
3. Click Map > Call Existing Submap. The Call Existing Submap wizard opens.
4. Complete the wizard, following the on-screen instructions.

Results

The call to the submap takes the following format:

Chapter 9. Developing message flow applications 2305

►►
BrokerSchemaName

SubmapName
SourceParameterList

►◄

BrokerSchemaName:

▼

.

Identifier

SourceParameterList:

▼

,

MappableReferenceExpression

Only source parameters appear in the call and only message parameters appear in
the list.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Mapping node” on page 4994
The Mapping node has one or more mappings that are stored in message map files
(with a .msgmap file extension). These files are configured using the Message
Mapping editor.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related tasks:
“Creating a new submap” on page 2299
“Calling a map from ESQL”
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
Related reference:
“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Calling a map from ESQL:

You can use the Message Mapping editor to perform mappings to a certain level of
complexity. To create even more complex mappings, use ESQL. ESQL is
particularly suitable for interacting with databases.

Before you begin

If a map does not already exist, create one.

2306 WebSphere Message Broker Version 7.0.0.8

About this task

The following steps describe how to call a map (which can be a submap) from
ESQL. Calling a map from ESQL uses different parameters to when you call a
submap from another map due to this extra level of complexity (when calling a
map from ESQL, the two local environment parameters are added at the end of the
CALL statement).

Procedure

1. Right-click a node that supports ESQL and click Open ESQL. The ESQL file
opens for that node.

2. Add a CALL statement to call a map. Alternatively, press Ctrl+Space to access
ESQL content assist, which provides a drop-down list that includes the map
name and expected parameters.
The following syntax diagram demonstrates the CALL statement:

►► CALL mapName
BrokerSchemaName ParameterList

►◄

BrokerSchemaName:

▼

.

Identifier

ParameterList:

▼

,

source path ,
target path

InputLocalEnvironment ►

►
OutputLocalEnvironment

Results

Notes:

1. Only source parameters appear in the call and only message parameters appear
in the list.

2. If the map builds a message target, include the target path and
OutputLocalEnvironment parameters. If the map does not build a message
target (for example, if the map interacts with a database), these two parameters
do not appear.

Related tasks:
“Calling a submap” on page 2305
“Creating a new submap” on page 2299

Chapter 9. Developing message flow applications 2307

“Creating a new submap for a wildcard source” on page 2300
You can map a wildcard value in the source to a wildcard value in the target.
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.

Calling an ESQL routine:
About this task

To call an existing ESQL routine from a mapping, select the routine from the Call
Existing ESQL Routine wizard. The ESQL routine must already exist in the
workspace.

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the required mapping.
3. In the Source pane, select the required source.
4. In the Target pane, select the required target.
5. Right-click either the Source or Target pane and click Call ESQL Routine. The

Call ESQL routine wizard opens.
6. Select the routine where the parameters and return types match the source and

target selection.
7. Click OK.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Creating and calling your own user-defined ESQL routine:

For complex mappings, you can create user-defined ESQL functions that can be
called from the Message Mapping editor.

2308 WebSphere Message Broker Version 7.0.0.8

About this task

This topic describes how to create a user-defined ESQL function, and how to use it
in an existing message map.

Procedure

1. Create a new ESQL file, or open an existing ESQL file.
2. Enter your ESQL function in the ESQL file. Ensure that you do not enter the

ESQL in any existing modules.
3. Save the ESQL file.
4. Right-click your Mapping node node, and click Open Map to open your

message map in the Message Mapping editor.
5. Select the target that you want to generate using your ESQL function from the

appropriate target message or target database table.
6. In the Edit pane, enter the expression to call the ESQL function and any

parameters to pass to the function. For example:
esql:concatValues($source/Pager/Text, ’ Powered by IBM.’)

Where concatValues is the name of the user-defined ESQL function and the
following parameters:
v $source/Pager/Text is a field in the source message
v ’ Powered by IBM.’ is text

The following code is the ESQL used for the user-defined ESQL function in the
preceding example:
CREATE FUNCTION concatValues(IN val INTEGER, IN str CHAR) RETURNS CHAR
BEGIN
return str || ’ plus int val ’ || CAST(val AS CHAR);
END;

You can also use Edit > Content Assist to select user-defined ESQL functions.
The user-defined ESQL functions are located at the end of the list of ESQL
functions.

7. Save the message map file by clicking File > Save.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Chapter 9. Developing message flow applications 2309

“CREATE FUNCTION statement” on page 5091
The CREATE FUNCTION statement defines a callable function or procedure.

Calling a Java method:

To call an existing Java method from a mapping node, select the method from the
Call Existing Java Method wizard, or enter an XPath expression in the Edit pane.

Before you begin

See “Message mapping tips and restrictions” on page 2314 for information about
the types of methods that are available through the wizard, and through content
assist.

Using the wizard:
About this task

To use the Call Existing Java Method wizard, take the following steps:

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the required message map.
3. If the method requires input parameters, select one or more fields in the Source

pane. Your choice determines which methods are subsequently displayed in the
wizard. If you select no source fields, the wizard shows only methods that take
no parameter. If you select two fields, the wizard displays only methods that
take two parameters, and so on.

4. In the Target pane, select the required target field to be mapped to the return
value of the Java method. The target field must be a simple, non-wildcard type.

5. Right-click either the Source or Target pane and click Call Java Method. The
Call Existing Java Method wizard opens.

6. Select the method, then click OK.

Entering an XPath expression:
About this task

You can enter the expression directly, without using content assist. Enter a function
call expression, with the following syntax:
java:package_name.class_name.method_name (parameters)

You can omit the package name if there is no package, or if you are using a default
package.

To use content assist, take the following steps:

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the required message map.
3. In the Edit pane, click Edit > Content Assist.
4. Select java: (Java Methods), then click Edit > Content Assist. All qualifying

Java methods are displayed.
5. Select the method.

2310 WebSphere Message Broker Version 7.0.0.8

6. If the method requires input parameters, drag the appropriate source fields to
the method's parameter area. The number of source fields included must match
the number of input parameters that the method takes.

Example

This is an example of a method that takes one input parameter:
java:mypackage1.MyClass1.myMethod1($source/po:purchaseOrder/po:comment)

Separate parameters by a comma:
java:mypackage1.MyClass1.myMethod1($source/po:purchaseOrder/name,

$source/po:purchaseOrder/phone)

Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Creating and calling submaps and subroutines” on page 2298
Use submaps, ESQL subroutines, or both, to map source elements to target
elements.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Transforming a SOAP request message:
About this task

SOAP is an XML-based language defined by the W3C for sending data between
applications. A SOAP message comprises an envelope containing:
v An optional header (containing one or more header blocks)
v A mandatory body.

For common envelope message formats, such as SOAP, where both the envelope
and the messages that can appear within that envelope have to be modeled, use
the Message Mapping editor to select from available messages at points in the
model that are defined with Composition="message" and Content
validation="open" or "open defined".

Define the mappings by selecting from the allowed constituent messages. For
example, in the case of SOAP, the outer level message is called Envelope and has
one mandatory child element called Body, which is modeled with
Composition="message". If the permitted content of Body is modeled by separate
messages Msg1 ... MsgN, define mappings for each separate message
(Envelope.Body.Msg1 to Envelope.Body.MsgN).

Chapter 9. Developing message flow applications 2311

For complex type elements with type composition message, the Message Mapping
editor follows these rules:

Content
validation Messages offered

Closed Messages available in any message sets in the workspace

Open defined Any message defined within the current message set

Open The Message Mapping editor does not support open or open defined
content when the type composition is NOT message

Mapping an embedded message

When you are working with type composition message, with content open or
open-defined (and no children defined), map the embedded message using a
submap:

Procedure

1. In the main map, expand the levels (both source and target) of Envelope and
Body until you find the wildcard message, and select this on both the source
and target sides.

2. Right-click either the source or target and click Create New Submap.
3. From the dialog box, select a source (for example reqmess) and a target (for

example rspmess).
4. With the submap open in the Message Mapping editor, make the appropriate

mappings between the source (reqmess) and target (rspmess).
Related concepts:
“Message model objects: Wildcard attributes” on page 1187
For XML messages, a wildcard attribute enables unmodeled attributes to be present
in a message.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Creating a new submap for a wildcard source” on page 2300
You can map a wildcard value in the source to a wildcard value in the target.
Related reference:
“Wildcard element properties” on page 6064
Different types of properties are available for a wildcard element.
“Wildcard attribute properties” on page 6060
Different types of properties are available for a wildcard attribute.

Editing a default-generated map manually:

A map that is generated by the Message Mapping editor might not do everything
that you want; you can change maps manually to enhance its operation.

About this task

You can edit the structure directly by inserting, moving, copying, pasting, and
deleting rows. The pop-up menu provides a list of available editing actions with
their keyboard equivalents. Here are some specific operations that you might want
to perform:

2312 WebSphere Message Broker Version 7.0.0.8

Procedure

v “Creating message headers”
v “Creating conditional mappings”

Creating message headers:
About this task

When you create a map from a Mapping node, or if you select the option Message
map called by a message flow node from the New Message Map wizard, the map
that is created allows additional elements including WebSphere MQ, HTTP, and
JMS headers to be mapped.

If you use a Mapping node for a database to message mapping without specifying
a source message, the Message Mapping editor cannot generate an output header
for the map file that is created. To ensure that an output header is created, perform
one of the following steps:

Procedure

v When you create the message map, add message headers to the target message
and ensure that all mandatory fields in the header are set.

v Add an additional source message to the map. The source message must be the
same message as the intended target message. You do not need to create any
mappings from the source message because the headers from the source
message are automatically copied to the output message tree.

Creating conditional mappings:
About this task

When a mapping involves one of the following items:
v Schema choice group
v Derived type element
v Substitution group member
v Wildcard character
v Repeating element

the default mapping that is generated by the Message Mapping editor might be
placed under an if statement. If the if statement is not what you had expected,
edit the statements; here are the changes that you can make:

Procedure

v Move statements in or out of an if/elseif/else block.
v Reorder if and elseif statements.
v Create new elseif statements.
v Create new if statements.

What to do next

See the “Configuring conditional mappings” on page 2265 topic for more
information about conditional mappings.

:

Related concepts:

Chapter 9. Developing message flow applications 2313

“Message mapping tips and restrictions”
Information to help you use message mapping.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
Related tasks:
“Creating a message map file in the Broker Development view” on page 2233
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
“Configuring conditional mappings” on page 2265
How to set the value of a target element conditionally in a Mapping node.
“Accessing the MQRFH2 header” on page 2456
Code ESQL statements to access the fields of the MQRFH2 header.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Message mapping tips and restrictions:

Information to help you use message mapping.

These tips assume that you have created a Mapping node within the message flow,
opened the Message Mapping editor, and selected both a source and a target
message:
v “Mapping a message when the source is a list and the target is a list from

source, but with a new entry at the top of the list”
v “Changing the target message domain” on page 2315
v “Overriding the database schema name” on page 2315
v “Mapping batch messages” on page 2316
v “Mapping restrictions” on page 2316
v “Requirements for calling a Java method” on page 2316

Mapping a message when the source is a list and the target is a list from source,
but with a new entry at the top of the list

1. Expand the target to display the element for which you want to create a new
first instance. This might be a structure or a simple element.

2. Right-click the element and click If. An if line appears and wraps around the
element.

3. Right-click the if line and click Else If. There are now two entries in the
spreadsheet for your element.

4. Set the first of these entries to values of your choice.
5. Right-click the second entry and click For. A for line appears in the

spreadsheet.
6. Set the second entry to the value or values mapped from the source.
7. Set the for entry to the looping condition.
8. Click For, then drag the source field that represents the loop condition to the

Expression editor.

2314 WebSphere Message Broker Version 7.0.0.8

Changing the target message domain

When you first create a mapping, you nominate a message set for the target
message. The parser that is associated with the output message is determined by
the Message Domain property of the message set. For example, when a message
set is first created, the default message domain is MRM. Therefore, the Mapping
node generates ESQL with the following format:
SET OutputRoot.MRM.Fielda...

If you change the runtime parser to XMLNSC, for example, the Mapping node
generates ESQL with the following format:
SET OutputRoot.XMLNSC.MessageA.FieldA...

The parser of the source message is determined by the contents of the MQRFH2
header or by the properties of the input node. The Mapping node generates a
target message with a parser that matches the message domain of the message set.
The Mapping node supports the following message domains:

MRM
XMLNSC
XMLNS
MIME
SOAP
DataObject
JMSMap
JMSStream
XML
BLOB
IDOC

To change the message domain property of your message set:
1. Open the message set file messageset.mset.
2. Change the Message Domain property to a supported domain.
3. Save your message set, and save any message flows and message maps that

reference your message set, if they have not already been saved. Saving these
files generates updated ESQL for mapping the changed message set.
If you have made no updates to your flows or message maps after changing
the message domain of your message set, you must clean the related message
flow projects so that updated ESQL code can be generated:
a. Select a project and click Project > Clean Project.
b. Select Clean all projects or Clean selected projects.
c. Click OK.

4. Deploy the changed message set.
5. Deploy the message flow that contains the mappings, and test your ESQL in a

Compute node and in other nodes to ensure that the message flow still
functions as expected.

Overriding the database schema name

To change the database schema name that is generated in ESQL, use the Override
Database Schema wizard in the Specify Runtime Schema dialog box. The default
name is the schema name of the database definitions that are imported into the

Chapter 9. Developing message flow applications 2315

WebSphere Message Broker Toolkit. Use the Specify Runtime Schema dialog box to
change the value.

Mapping batch messages

You can configure a message mapping that sorts, orders, and splits the components
of a multipart message into a series of batch messages. These components can be
messages or objects, and they can have different formats; in this case, each
component is converted and the message is reassembled before being forwarded.
1. Use a “RouteToLabel node” on page 4673 in the message flow to receive

multipart messages as input.
The RouteToLabel node is the next node in sequence after the “Mapping node”
on page 4571, and causes the flow to jump automatically to the specified label.
You can specify a single RouteToLabel value in a splitting map for all maps
that output a message assembly. You can also use conditions to set the
RouteToLabel value, depending on the values in the source message.

2. Use the “Message Mapping editor” on page 4981 to build maps that transform
and propagate batch messages using a single node, without having to define an
intermediate data structure.

Multipart messages can also contain repeating embedded messages, where each
repeated instance of a message is propagated separately. Embedded messages must
be from the same message set as the parent message.

Mapping restrictions

Unless stated explicitly, you can achieve the required functionality by calling an
ESQL function or procedure. The following restrictions apply:
v Exceptions cannot be thrown directly in Mapping nodes.
v Self-defined elements cannot be manipulated in Mapping nodes (support for

wildcard symbols is limited if the wildcard symbols represent embedded
messages).

v The Environment tree cannot be manipulated in the Mapping node.
v User variables cannot be defined or set.
v CASE expressions cannot be emulated; you must use IF ... ELSE.
v Trees cannot be copied from input to output in order to modify elements within

the copied tree. For example, the following ESQL cannot be modeled in a
Mapping node:
SET OutputRoot.MQMD = InputRoot.MQMD; SET OutputRoot.MQMD.ReplyToQ = ’NEW.QUEUE’;

You must set each field in the structure individually if you intend to modify one
or more sibling fields.

Requirements for calling a Java method

All of the following conditions must be satisfied for the method to be shown in the
Call Existing Java Method wizard, or in content assist:
v The method must be public static, in a Java project.
v The method must be in a Java project accessible from the project map.
v If the method is inside a JAR file, the JAR file must be in the Java build path. To

add a JAR file to the build path:
1. Right-click the project folder for the project on which you are working, and

click Properties.

2316 WebSphere Message Broker Version 7.0.0.8

2. Click Java Build Path in the left pane.
3. Click the Libraries tab.
4. Complete one of the following steps:

– To add an internal dependency, click Add JARs, select the JAR file that
you want to add, then click OK.

– To add an external dependency, click Add External JARs, select the JAR
file that you want to add, then click Open. Copy the JAR file to the
shared-classes directory required. For more details of the shared-classes
directories available and the effects of each, see “Java shared classloader”
on page 2637. If you do not copy the JAR file to a valid shared-classes
directory, ClassNotFoundException exceptions are generated at run time.

v The default scope of the search is all methods in .java source files in the
workspace, excluding application libraries and application JAR files in the Java
build path, and all the JRE system libraries. To change the scope, change the
preferences in the Toolkit:
1. Click Window > Preferences.
2. Expand the Broker Development node, then click Message Map Editor.
3. Select and clear the check boxes as appropriate.

v The method must have a return value.
v Return values and Java parameters must be one of the following data types:

Data types Equivalent XML schema type for mapping Comments

java.lang.Long byte, unsignedShort, long, unsignedByte,
short, int, unsignedInt

java.lang.Double float, double

java.math.BigDecimal nonNegativeInteger, negativeInteger, integer,
nonPositiveInteger, positiveInteger,
unsignedLong, decimal

java.lang.String NCName, Name, IDREF, normalizedString,
string, anyURI, NOTATION, token,
NMTOKEN, language, ID, ENTITIES,
QName, ENTITY

byte[] base64Binary, hexBinary

com.ibm.broker.plugin.MbDate date, gYear, gMonth, gDay, gYearMonth,
gMonthDay

com.ibm.broker.plugin.MbTime time

com.ibm.broker.plugin.MbTimestamp dateTime

java.lang.Boolean boolean

com.ibm.broker.plugin.MbElement A complex type Valid only for input
parameters, not return
values.

v The method must not have a throws clause.
v The number of source fields selected must match the number of input

parameters that the method takes.
v If you are using a working set, only the methods in the current working set are

displayed. Clear the check box Apply working set filtering to artifact
selection(s) on the page to display all the methods in the workspace. If you are

Chapter 9. Developing message flow applications 2317

not using a working set, all the methods in the entire workspace are displayed.
Content assist shows all methods in the workspace, whether you are using a
working set or not.

When you create the BAR file you must select the Java project or JAR file that
contains the method that you are calling.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“RouteToLabel node” on page 4673
Use the RouteToLabel node in combination with one or more Label nodes to
dynamically determine the route that a message takes through the message flow,
based on its content.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Message mapping scenarios
About this task

This section contains some message mapping scenarios that demonstrate how to
make the most of the message mapping functions:

Procedure
v “Scenario A: Mapping an airline message” on page 2319
v “Scenario B: Simple message enrichment” on page 2330
v “Scenario C: Using a broker as auditor” on page 2338
v “Scenario D: Complex message enrichment” on page 2345
v “Scenario E: Resolving a choice with alternative message data” on page 2368
v “Scenario F: Updating the value of a message element” on page 2369
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.

2318 WebSphere Message Broker Version 7.0.0.8

Scenario A: Mapping an airline message:

This scenario demonstrates how to create, configure, and deploy a new message
mapping.

About this task

The message flow that is used in this example reads an XML input message (an
airline message), then uses a Mapping node to achieve the following
transformations:
v Convert the input message from XML to COBOL
v Modify an element in the input message from the results that are obtained by a

database lookup
v Concatenate two elements in the input message to form a single element in the

output message

Follow these steps to complete this scenario:

Procedure

1. “Example names and values”
2. “Connect to the database and obtain the definition files” on page 2321
3. “Create the message flow” on page 2323
4. “Create the mapping file” on page 2324
5. “Configure the mapping file” on page 2325
6. “Deployment of the mapping” on page 2329

What to do next

Next: Go to “Example names and values.”
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Example names and values:

View the resources that are created for the airline message scenario.

About this task

The following table describes the names and definitions of the resources that are
created.

Chapter 9. Developing message flow applications 2319

Resource Name Definition

Alias name AIRLINEDBALIAS The same as connection name and
database name in this case

Broker archive
(BAR) file name

AIRLINE Contains the message flow and message
set projects, and the mapping file, and is
deployed to the default execution group
for the run time

COBOL
copybook

AirlineRequest.cbl Controls the structure of the COBOL
output message

Connection
name

AIRLINECONN The same as alias name and connection
name in this case

Database AIRLINEDB Contains the table XREF and is the same
as the connection name and the alias
name in this case

Database table
(table tree)

XREF Contains lookup information (in this case
the two-code airline city code
abbreviations STATE=Illinois,
ABBREV=IL)

Default project AIRLINE_MFP The default message flow project. You
copy the database definitions to this
project.

Default queue
manager

WBRK6_DEFAULT_QUEUE_MANAGER The default queue manager that controls
the message queue

ESQL select
operation

$db:select.AIRLINEDB.AIRLINE_SCHEMTREE.
XREF.ABBERV

The ESQL select operation that performs
a qualified database select operation

Input (XML)
message

c:\airline\data\AirlineRequest.xml The input message (in this case an XML
message)

Input message
source fields

FirstName,LastName The source elements in the input
message that are concatenated

Input queue
name property

AIRLINE_Mapping_IN The input queue

Mapping node
rename

XML_TO_COBOL The name of the node in the message
flow that performs the mapping (the
node was renamed from its default
name)

Message
mapping file
name

AIRLINE.msgmap The file that contains the mapping
configuration used by the Mapping node

Message Set
property

AIRLINE_MSP2 The message set project name

Message Type
property

msg_AIRLINEREQUEST The message type

Message Format Binary1 The custom wire format (CWF) for
COBOL output message

Message flow
name

AIRLINE_Mapping The name of the message flow

Message flow
project

AIRLINE_MFP The name of the message flow project

Message set
projects

AIRLINE_MSP1,AIRLINE_MSP2 The names of the message set projects

2320 WebSphere Message Broker Version 7.0.0.8

Resource Name Definition

Msg Domain
node property

MRM The message domain node property

Msg Set Name
node property

AIRLINE_MSP1 The message set name node property

Msg Type
property

AirlineRequest The message type property

Msg Format
node property

XML1 The input message format

Output message
target field

NAME The result of concatenating FirstName
and LastName in the input message.
NAME is the element that is created in
the output message.

Output queue
name property

AIRLINE_Mapping_OUT The output queue name

Resource folder airline\resources The folder where the mapping resources
are stored

Schema tree AIRLINE_SCHEMTREE The name of the schema tree

Source ABBREV The source

Source tree $source/AirlineRequest The source tree

Source message AirlineRequest The source message

Target STATE The target

Target message AIRLINEREQUEST The target message

Target tree $target/AIRLINEREQUEST The target tree

XPath
concatenation
function

fn:concat(fn:concat($source/
AirlineRequest/Purchase/
Customer/FirstName,’ ’),
$source/AirlineRequest/
Purchase/Customer/LastName)

The W3C XPath 1.0 Specification
function that concatenates FirstName and
LastName

What to do next

Now go to “Connect to the database and obtain the definition files.”
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Message mapping scenarios” on page 2318
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Connect to the database and obtain the definition files:

Demonstrate how to define a database connection to enable a message flow to
access a database table. You must define the database to the WebSphere Message
Broker Toolkit.

Chapter 9. Developing message flow applications 2321

http://www.w3.org/TR/xpath

Before you begin

Before you start:

Create a message flow project.

About this task

The Database Definition wizard uses the JDBC interface to communicate with the
database server; therefore, you must ensure that the database client JAR file on
your local or WebSphere Message Broker Toolkit host is at a compatible level to
allow communication with the database server. If necessary, consult your database
vendor for further advice.

Procedure

1. Switch to the Broker Application Development perspective.
2. Select the message flow project that you want to create the database definition

files in, and click File > New > Database Definition. The New Database
Definition File wizard opens.

3. Select an existing data design project, or click New to create a new data
design project.

4. Select the database type and version that you want to connect to from the
Database and Version list. Ensure that you select a database from the list that
is supported by WebSphere Message Broker; you can use this wizard in a
shell-share environment with other Rational products that support other
databases or versions.
For a list of databases supported by the broker, see “Supported databases” on
page 3591.

5. Click Next.
6. Select To create a new database connection, and click Next.
7. Clear Use default naming convention, and enter a connection name; for

example, AIRLINEDBALIAS.
8. Enter values for the Connection to the database; for example, Database name,

Host name, and Port number.
9. Enter values for the User ID and Password to connect to the database. Click

Test Connection to verify the settings that you have selected for your
database. The default Port number for a DB2 database is 50000. If the
connection fails, enter other values such as 50001, 50002 and so on, for the
Port number, and test the connection again.

10. Click Next.
11. Select one or more database schemas from the list, and click Next.
12. Click Finish.
13. Add the data design project as a reference to the message flow project:

a. Right-click the message flow project, and click Properties.
b. Click Project References, and select the data design project from the list to

add as a referenced project.
c. Click OK.

Results

The database definition is added to a new Data design project. You have now
defined the database to the mapping tools.

2322 WebSphere Message Broker Version 7.0.0.8

What to do next

Now go to “Create the message flow.”
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

Create the message flow:
Before you begin

Before you start:

1. Create a message flow project.
2. “Connect to the database and obtain the definition files” on page 2321.
3. Create a message flow by adding an MQInput node, and renaming the node

(for example, to AIRLINE_Mapping_IN).
4. Set the queue name property (for example, to AIRLINE_Mapping_IN).
5. Add an MQOutput node to the message flow, and rename the node (for

example, to AIRLINE_Mapping_OUT).

About this task

This topic demonstrates how to specify a message flow project, add a Mapping
node, wire the nodes, and set the node properties.

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the message flow (for example, AIRLINE_Mapping) within the message

flow project (for example, AIRLINE_MFP). This message flow forms the
starting point for the mapping task.

3. Open the palette of nodes and add a Mapping node to the message flow. You
might need to scroll down to find the Mapping node.

4. Rename the Mapping node (for example, to XML_TO_COBOL) by
right-clicking the node and clicking Rename.

5. Wire the node terminals (for example, AIRLINE_Mapping_IN>
XML_TO_COBOL> AIRLINE_Mapping_OUT).

6. Modify the properties of the MQInput node (for example,
AIRLINE_Mapping_IN) by right-clicking the node and clicking Properties.

7. Click OK.
8. Modify the properties of the Mapping node (for example, XML_TO_COBOL).
9. Set the data source as the database name (for example, AIRLINEDBALIAS)

10. Click OK.

Results

You have now created the required message flow, wired the nodes, and set the
node properties.

Chapter 9. Developing message flow applications 2323

What to do next

Now go to “Create the mapping file.”
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Create the mapping file:
Before you begin

Before you start:

Follow the instructions in these topics:
1. “Connect to the database and obtain the definition files” on page 2321
2. “Create the message flow” on page 2323

About this task

This topic demonstrates how to create a new mapping file, specify how it will be
used, and specify the source and target mappable elements.

Procedure

1. Switch to the Broker Application Development perspective.
2. From the message flow, right-click the mapping node (for example

XML_TO_COBOL) and click Open Map. The New Message Map wizard opens.
3. Select the combination of Messages, Data Sources or both that you want to use

as sources for your map from Select map sources (for example, AirlineRequest)
from the first message set project (for example, AIRLINE_MSP1). If you cannot
find the Messages, Data Sources or Data Targets that you expect, clear the
Apply working set filtering to artifact selection(s) on the page check box.

4. Select the combination of Messages, Data Targets or both that you want to use
as targets for your map from Select map targets (for example,
AIRLINEREQUEST) from the second message set project (for example,
AIRLINE_MSP2).

5. Click Finish.

Results

You have now created the mapping file, defined its usage, and specified the source
and target mappable elements.

What to do next

Now go to “Configure the mapping file” on page 2325.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

2324 WebSphere Message Broker Version 7.0.0.8

Configure the mapping file:
Before you begin

Before you start:

Follow the instructions in these topics:
1. “Connect to the database and obtain the definition files” on page 2321
2. “Create the message flow” on page 2323
3. “Create the mapping file” on page 2324

About this task

This set of topics demonstrates how to configure the mapping file by:

Procedure

1. Specifying a data source
2. Mapping the message properties
3. Writing an XPath function that concatenates the elements in the input message
4. Specifying an ESQL select command

What to do next

Now go to “Specify the data source.”
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Specify the data source:
Before you begin

Before you start:

Follow the instructions in these topics:
1. “Connect to the database and obtain the definition files” on page 2321
2. “Create the message flow” on page 2323
3. “Create the mapping file” on page 2324

About this task

This topic demonstrates how to specify the database to use as the source for the
mapping.

Procedure

1. From the Message Mapping editor Spreadsheet pane, select an item. The item
that you select determines the scope of the $db:select entry that is created by
the action. For example, you can select $target, an element, an attribute, a For
condition, or another $db:select entry. The Select database as mapping source
dialog box opens.

2. Right-click and click Select data source.

Chapter 9. Developing message flow applications 2325

3. From the Select Database as mapping source page, select a database (for
example, AIRLINEDB) and click Finish. The Message Mapping editor adds the
sources of the database table (for example, the XREF table) to the tree in the
Message Mapping editor Source pane.

Results

You have now added the data source to the Message Mapping editor Source pane.

What to do next

Now go to “Map the message properties.”
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Map the message properties:

This topic demonstrates how to map the message set, message type and message
format properties.

Before you begin

Before you map the message properties, ensure you do the following:
1. “Connect to the database and obtain the definition files” on page 2321
2. “Create the message flow” on page 2323
3. “Create the mapping file” on page 2324
4. “Specify the data source” on page 2325

About this task

To map the message properties:

Procedure

1. From the Message Mapping editor Spreadsheet pane, expand the entries by
clicking + to reveal the message properties.

2. Right-click $target and click Insert Children.
3. Right-click Properties and click Insert Children. The MessageSet, MessageType

and MessageFormat properties contain default values for the target message.
4. To change the format of the output message, change the MessageFormat

property to the appropriate value. You must use quotation marks around the
value of MessageFormat, because the values are string literals and without
quotation marks, the values will be interpreted as XPath locations.

5. From the Message Mapping editor Source pane, expand the properties for the
$source tree, and for each remaining property, map the source element to its
corresponding target element by dragging from source to target. Alternatively,
select Properties in both the source and the target panes and use Map by Name
to map all of the properties.

6. Save the map by clicking File > Save.

Results

You have now mapped message set, message type and message format properties.

2326 WebSphere Message Broker Version 7.0.0.8

What to do next

Now go to “Add the XPath concatenate function.”
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Add the XPath concatenate function:
Before you begin

Before you start:

Follow the instructions in these topics:
1. “Connect to the database and obtain the definition files” on page 2321
2. “Create the message flow” on page 2323
3. “Create the mapping file” on page 2324
4. “Specify the data source” on page 2325
5. “Map the message properties” on page 2326

About this task

This topic demonstrates how to write an XPath function that concatenates the
FirstName and LastName from the input message, and adds a white space
separator in the target NAME element. When you add the XPath expression and
save the map, link lines are automatically generated between the source and target
to indicate that these elements are mapped.

Procedure

1. From the Message Mapping editor Source pane, select the first source to
concatenate (for example, FirstName), Ctrl+click to select the second source to
concatenate (for example, LastName), and drag both elements onto the target
(for example, NAME) in the Target pane.

2. From the Message Mapping editor Spreadsheet pane, select the target (for
example, NAME).

3. From the Edit pane, enter the XPath function (for example,
fn:concat($source/AirlineRequest/Purchase/Customer/FirstName, ’ ’,
$source/AirlineRequest/Purchase/Customer/LastName)

4. Save the map by clicking File > Save.

Results

You have now added an XPath function that concatenates the two source elements
in the input message into a single target element in the output message.

What to do next

Now go to “Add the database Select operation.”
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Add the database Select operation:

Chapter 9. Developing message flow applications 2327

Before you begin

Before you start:

Follow the instructions in these topics:
1. “Connect to the database and obtain the definition files” on page 2321
2. “Create the message flow” on page 2323
3. “Create the mapping file” on page 2324
4. “Specify the data source” on page 2325
5. “Map the message properties” on page 2326
6. “Add the XPath concatenate function” on page 2327

About this task

This topic provides instructions on how to add a database select operation that
makes a qualified selection from a data source. In the spreadsheet pane the
$db:select statement has the default value fn:true(), which returns all entries in
the table. You must therefore replace this value with one that qualifies the
selection, for example:
$db:select.LAB13STA.ARGOSTR.XREF.STATE=$source/AirlineRequest/Purchase/Customer/State

The XPath in this example selects only the records from the database where the
value in the STATE column for each record matches the value of the State field
from the input message. In the spreadsheet pane the $db:select statement is
associated with a For entry which is used to iterate over the mappings for the
target message. For each row in the database matching the $db:select statement a
separate target message is created with the mappings beneath $target.

The following steps describe how to create message mappings to generate a target
message based on records in a database matching the contents of an input
message:

Procedure

1. In the spreadsheet pane replace the existing value fn:true() with the value to
match in the database (for example a field in the input message as shown in
the preceding example).

2. Create mappings from the database fields in the Source pane to include in the
target message, by dragging them from the source pane onto the target
elements. A $db:select statement is added to the value column in the
spreadsheet pane (for example,
$db:select.AIRLINEDB.AIRLINE_SCHEMTREE.XREF.ABBREV).

3. Create any mappings you require from the source message to the target
message.

4. Save the mapping by clicking File > Save.
5. Save the message flow.
6. Check for any errors in the Problems view.

Results

You have now made a qualified selection from the database.

2328 WebSphere Message Broker Version 7.0.0.8

What to do next

Now go to “Deployment of the mapping.”
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Deployment of the mapping:

How to map to the run time, creating a broker archive (BAR) file for deployment
in the default execution group.

Before you begin

Before you start:

Follow the instructions in these topics:
1. “Connect to the database and obtain the definition files” on page 2321
2. “Create the message flow” on page 2323
3. “Create the mapping file” on page 2324
4. “Configure the mapping file” on page 2325

About this task

Create a broker archive (BAR) file, which contains the message flow, message set
projects and the mapping file, for deployment to the run time and the default
execution group.

Procedure

1. From the Broker Application Development perspective, right-click the project
under the Broker Archives heading.

2. Click New > Message Broker Archive.
3. Name the BAR file (for example, AIRLINE).
4. Click Add to. The Add to broker archive page is displayed.
5. Select the message flow project and message set projects that are used by this

flow (for example, AIRLINE_MFP,AIRLINE_MSP1, AIRLINE_MSP2) and click
OK. The projects are added to the BAR file. A status indicator and message
panel show when the process has completed.

6. Check to ensure that the required projects have been included in the BAR file.
7. Save the BAR file by clicking File > Save.
8. For deployment of the BAR file, right-click the BAR file and click Deploy File.

The Deploy a BAR file page is displayed.
9. Select the default execution group, and click OK. A message in the Broker

Administration message dialog box indicates successful deployment, and the
deployed message flow project and message set projects are displayed in the
Navigator view. A message in the Deployment log also indicates successful
deployment.

Results

You have completed this scenario.
Related reference:

Chapter 9. Developing message flow applications 2329

“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Scenario B: Simple message enrichment:

This scenario demonstrates simple message enrichment. Use the WebSphere
Message Broker Toolkit to create message flows and message sets, and to create
and deploy broker archive (BAR) files.

The scenario also involves creating a broker, and inputting instance messages that
can contain MQRFH2 headers.

This scenario uses repeating instances and requires the following mapping
functions:
v MRM in, MRM out (non-namespace)
v Map a simple and complex element source - target
v Map the same element source - target
v Map a different element source - target
v Map an attribute source - target
v Map a one-sided element (edit mapping)
v Map a one-sided attribute (edit mapping)
v Perform arithmetic on numeric field mapping
v Map a repeating simple element - single instance
v Map all instances of a repeating simple element
v No MQRFH2 header

The names and values used for message flows, message sets, elements and
attributes, and the expressions and code samples are for illustrative purposes only.

Follow these steps to complete this scenario:
1. “Develop a message flow and message model for simple and complex element

mapping” on page 2331
2. “Develop a message flow and message model for a target-only element” on

page 2333
3. “Develop a message flow and message model for dealing with repeating

elements” on page 2334
4. “Develop a message flow and message model for a simple message without an

MQRFH2 header” on page 2336
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

2330 WebSphere Message Broker Version 7.0.0.8

Develop a message flow and message model for simple and complex element mapping:
About this task

This is the first stage of the scenario to perform simple message enrichment. This
topic demonstrates how to develop a message flow and message model for simple
and complex element mapping, where there is the same source and target, a
different source and target, or an attribute source and target. This task also
involves changing field values and creating an instance document.

Procedure

1. From the Broker Application Development perspective, create the following
resources:
a. a message set project (for more details, see “Creating a message set” on

page 2842).
b. a message set called MAPPING3_SIMPLE_messages. Ensure that the

message set is namespace enabled with XML wire format.
c. a message definition file (no target namespace) called SIMPLE.

2. Create a message called addev1 that has the following structure:
addev1

ssat (xsd:string) local attribute
ssel (xsd:string) local element
dsel1 (xsd:string) local element
atel local complex element

latt (xsd:string) attribute
cel1 local complex element

intel (xsd:int) local element
strel (xsd:string) local element

dsel2 (xsd:string) global element
cel2 (cel2ct) global complex type

intel (xsd:int) local element
fltel (xsd:float) local element

3. Create a message flow project called MAPPING3_SIMPLE_flows.
4. Create a message flow called addev1 that contains the following mapping:

MQInput -> Mapping -> MQOutput.
5. Open the map in the Message Mapping editor and select message addev1 as

both source and target
6. Expand all levels of both messages and wire the elements as shown:

ssat --- ssat
ssel --- ssel
dsel1 -- dsel2
latt ---- latt
cel1 --- cel1
dsel2 -- dsel1
(cel2)

intel ---- fltel
fltel ---- intel

7. In the Spreadsheet pane, set the following expression:
dsel1 | esql:upper($source/addev1/dsel2)
@latt | esql:upper($source/addev1/atel/@latt)
(cel2)

intel | $source/addev1/cel2/fltel + 10
fltel | $source/addev1/cel2/intel div 10

8. Create an instance document with the appropriate RFH2 header and the
following data:
<addev1 ssatt="hello">
<ssel>this</ssel>
<dsel1>first</dsel1>

Chapter 9. Developing message flow applications 2331

<atel latt="attrib"/>
<cel1>
<intel>2</intel>
<strel>lcomp</strel>
</cel1>
<dsel2>second</dsel2>
<cel2>
<intel>252</intel>
<fltel>3.89E+1</fltel>
</cel2>
</addev1>

Results

You have created the following resources:
v message set MAPPING3_SIMPLE_messages, which you have populated with

message addev1
v message flow addev1 in project MAPPING3_SIMPLE_flows, which contains the

mapping addev1_Mapping.msgmap
v a file that contains an instance message

What to do next

Now deploy the message set and message flow.

Deploy the message set and message flow:
About this task

This is the second stage of the scenario to perform simple message enrichment.
This topic demonstrates how to deploy the message set and message flow and run
the data through the broker.

Procedure

1. Create a broker archive (BAR) file called addev1.
2. Add the message set MAPPING3_SIMPLE_messages and the message flow

addev1 to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance document on the input queue.

Results

The output message looks like this:
<addev1 ssat="hello">
<ssel>this</ssel>
<dsel1>SECOND</dsel1>
<atel latt="ATTRIB"/>
<cel1>
<intel>2</intel>
<strel>lcomp</strel>
</cel1>
<dsel2>first</dsel2>
<cel2>
<intel>48</intel>
<fltel>2.5E+1</fltel>
</cel2>
</addev1>

2332 WebSphere Message Broker Version 7.0.0.8

What to do next

Now go to “Develop a message flow and message model for a target-only
element.”

Develop a message flow and message model for a target-only element:
Before you begin

Before you start

Perform the steps in the following topic:
1. “Develop a message flow and message model for simple and complex element

mapping” on page 2331

About this task

This is the third stage of the scenario to perform simple message enrichment. This
topic demonstrates how to develop a message flow and message model for a
target-only element. It also involves attributing a mapping and creating an instance
document.

Procedure

1. Create a message called addev2, which has the following structure:
addev2

matt (xsd:string) local attribute
ssel (xsd:string) local element
csel local complex element

elatt (xsd:string) local attribute

2. Create a second message called trigger, which has the following structure:
trigger

start (xsd:string) local element

3. Create a message flow called addev2, which contains the following mapping:
MQInput -> Mapping -> MQOutput.

4. Open the map and select trigger as the source and addev2 as the target.
5. In the Spreadsheet pane, expand the target message fully and set the target

fields as shown:
matt | ’first attribute’
ssel | ’string element’
elatt | ’second attribute’

6. Expand the Properties folder in the Spreadsheet pane and set the following
value:
MessageType | ’addev2’

7. Create an instance document with the appropriate RFH2 header and the
following data:
<trigger>
<start>yes</start>
</trigger>

Results

You have created the following resources:
v two messages called addev2 and trigger
v a message flow called addev2, which contains the mapping

addev2_Mapping.msgmap

Chapter 9. Developing message flow applications 2333

v a file that contains an instance message

What to do next

Now deploy the message set and message flow.

Deploy the message set and message flow:
About this task

This is the fourth stage of the scenario to perform simple message enrichment. This
topic demonstrates how to deploy the message set and message flow and run the
data through the broker.

Procedure

1. Create a broker archive (BAR) file called addev2.
2. Add the message set MAPPING3_SIMPLE_messages and the message flow

addev2 to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance document on the input queue.

Results

The output message looks like this:
<addev2 matt="first attribute">
<ssel>string element</ssel>
<csel elatt="second attribute"></csel>
</addev2>

What to do next

Now go to “Develop a message flow and message model for dealing with
repeating elements.”

Develop a message flow and message model for dealing with repeating elements:
Before you begin

Before you start

Perform the steps in the following topics:
1. “Develop a message flow and message model for simple and complex element

mapping” on page 2331
2. “Develop a message flow and message model for a target-only element” on

page 2333

About this task

This is the fifth stage of the scenario to perform simple message enrichment. This
topic demonstrates how to develop a message flow and message model for dealing
with repeating elements, a single instance and all instances.

Procedure

1. Create a message called addev3, which has the following structure:

2334 WebSphere Message Broker Version 7.0.0.8

addev3
frepstr (xsd:string) local element, minOcc=3, maxOcc=3
vrepstr (xsd:string) local element, minOcc=1, maxOcc=4
urepstr (xsd:string) local element, minOcc=1, maxOcc=-1

2. Create a message flow called addev3, which contains the following mapping:
MQInput -> Mapping -> MQOutput.

3. Open the map and select addev3 as both source and target
4. In the upper pane, map each source to the corresponding target, as illustrated

in this example:
frepstr --- frepstr
vrepstr --- vrepstr
urepstr --- urepstr

5. In the Spreadsheet pane, expand fully the target addev3.
6. Highlight and delete the For item above the vrepstr entry.
7. Create an instance message with the appropriate RFH2 header and the

following data:
<addev3>
<frepstr>this</frepstr>
<frepstr>that</frepstr>
<frepstr>other</frepstr>
<vrepstr>only one</vrepstr>
<vrepstr>extra</vrepstr>
<urepstr>first</urepstr>
<urepstr>second</urepstr>
<urepstr>third</urepstr>
<urepstr>fourth</urepstr>
<urepstr>fifth</urepstr>
</addev3>

Results

You have created the following resources:
v a message called addev3
v a message flow called addev3, which contains the mapping

addev3_Mapping.msgmap
v a file that contains an instance message

What to do next

Now deploy the message set and message flow.

Deploy the message set and message flow:
About this task

This is the sixth stage of the scenario to perform simple message enrichment. This
topic demonstrates how to deploy the message set and message flow and run the
data through the broker.

Procedure

1. Create a broker archive (BAR) file called addev3.
2. Add the message set MAPPING3_SIMPLE_messages and the message flow

addev3 to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance document on the input queue.

Chapter 9. Developing message flow applications 2335

Results

The output message looks like this:
<addev3>
<frepstr>this</frepstr>
<frepstr>that</frepstr>
<frepstr>other</frepstr>
<vrepstr>only one</vrepstr>
<urepstr>first</urepstr>
<urepstr>second</urepstr>
<urepstr>third</urepstr>
<urepstr>fourth</urepstr>
<urepstr>fifth</urepstr>
</addev3>

What to do next

Now go to “Develop a message flow and message model for a simple message
without an MQRFH2 header.”

Develop a message flow and message model for a simple message without an MQRFH2
header:
Before you begin

Before you start

You must complete the following tasks:
1. “Develop a message flow and message model for simple and complex element

mapping” on page 2331
2. “Develop a message flow and message model for a target-only element” on

page 2333
3. “Develop a message flow and message model for dealing with repeating

elements” on page 2334

About this task

This is the seventh stage of the scenario to perform simple message enrichment.
This topic demonstrates how to develop a message flow and message model for a
simple message without an MQRFH2 header.

Procedure

1. Create a message set called MAPPING3_SIMPLE_xml. A message set project is
also automatically created; this message set project has the same name as the
message set that you created.

2. On the message set parameters page, set the Message Domain property to XML.
3. Create a message definition file called SIMPLE.
4. Create a message called addev4 that has the following structure:

addev4
str1 (xsd:string) local element
cel local complex element

int1 (xsd:int) local element
bool1 (xsd:boolean) local element

5. Create a message flow called addev4 that contains the following connected
nodes: MQInput -> Mapping -> MQOutput.

6. Select the Input Message Parsing properties tab of the MQInput node, and set
the Message Domain property to XML.

2336 WebSphere Message Broker Version 7.0.0.8

7. Open the map and select addev4 as both source and target.
8. Map the inputs to the corresponding outputs, as shown in this example:

str1 --- str1
int1 --- int1
bool1 --- bool1

9. Create an instance message that has no MQRFH2 header, but contains the
following data:
<addev4>
<str1>this</str1>
<cel>
<int1>452</int1>
<bool1>0</bool1>
</cel>
</addev4>

Results

You have created the following resources:
v A message set called MAPPING3_SIMPLE_xml that contains the message

addev4
v A message flow called addev4 that contains the mapping

addev4_Mapping.msgmap
v A file that contains an instance message

What to do next

Now deploy the message set and message flow.

Deploy the message set and message flow:
About this task

This is the final stage of the scenario to perform simple message enrichment. This
section describes how to deploy the message set and message flow, and how to the
run the data through the broker.

Procedure

1. Create a broker archive (BAR) file called addev4.
2. Add the message flow called addev4 to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance document on the input queue.

Results

The output message has the following content:
<addev4>
<str1>this</str1>
<cel>
<int1>452</int1>
<bool1>0</bool1>
</cel>
</addev4>

You have completed the scenario.
Related concepts:

Chapter 9. Developing message flow applications 2337

“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
Related tasks:
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

Scenario C: Using a broker as auditor:

This scenario demonstrates how to use a broker as an auditor. Use the WebSphere
Message Broker Toolkit to create message flows and message sets, and to create
and deploy broker archive (BAR) files.

It also involves creating a broker, and sending instance messages that can contain
MQRFH2 headers.

The scenario uses database updates that have been defined by using mappings.
The broker receives a confirmation for a provisional booking, the message flow
inserts a row into a database table representing the confirmation, updates a counter
in another table representing the key of the confirmation, and deletes the
provisional booking from a third table.

This scenario uses the DataDelete, DataInsert and DataUpdate nodes in the
message flow, and requires the following mapping functions:
v Mapping in DataInsert node
v Combine input data into single insert
v Mapping in DataUpdate node
v Mapping in DataDelete node
v BAR file to override data source

The names and values used for message flows, message sets, elements and
attributes, and the expressions and code samples are for illustrative purposes only.

Follow these steps to complete this scenario:
1. “Develop a message flow” on page 2339
2. “Deploy the message set and message flow” on page 2341
3. “Override the data source of one of the nodes” on page 2343
4. “Create a BAR file, edit the configuration, and deploy” on page 2344
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.

2338 WebSphere Message Broker Version 7.0.0.8

“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“DataDelete node” on page 4382
Use the DataDelete node to interact with a database in the specified ODBC data
source.
“DataInsert node” on page 4386
Use the DataInsert node to interact with a database in the specified ODBC data
source.
“DataUpdate node” on page 4390
Use the DataUpdate node to interact with a database in the specified ODBC data
source.

Develop a message flow:

Create a message flow to use in mapping scenario C, which shows how to use
your broker as an auditor.

About this task

This step is the first task in creating “Scenario C: Using a broker as auditor” on
page 2338. Develop a message flow to map several fields of input data into a
single insert record for a database. See also how to update another table, delete a
third table, and develop corresponding message models and instance messages.

Procedure

1. Create a database called MAPDB, and a table called CONFIRMATION, which
contains the following columns:
RESID INTEGER

2. Populate the CONFIRMATION table with the value shown:
9052

3. Create another table called RESERVATION, which contains the following
columns:
RESID INTEGER
NAME VARCHAR(20)
PARTY INTEGER
PAYMENT DECIMAL(8,2)

4. Populate the RESERVATION table with the values shown:
8214,’ARCHIBALD’,2,0.0
2618,’HENRY’, 4, 120.0
9052,’THAW’, 3, 85.0

5. Create another table called PROVISIONAL, which contains the following
columns:
RESID INTEGER

6. Populate the PROVISIONAL table with the values shown:
8214 2618

7. Create a Windows ODBC Data Source Name for the database, then create a
definition for the database in the workbench by clicking File > New >
Database Definition File. For information about how to complete this step,

Chapter 9. Developing message flow applications 2339

including how to choose a supported database and version, follow the
instructions provided in “Adding database definitions to the WebSphere
Message Broker Toolkit” on page 2278.

8. Create a message set project and a message set called
MAPPING3_AUDIT_messages (ensuring that the message set is namespace
enabled, with XML wire format) and create a message definition file called
AUDIT.

9. Create a message called addev1, which has the structure:
addev1

id (xsd:int) local element
status (xsd:string) local element
name (xsd:string) local element
size (xsd:int) local element
payment (xsd:decimal) local element

10. Create a message flow project called MAPPING3_AUDIT_flows.
11. Create a message flow called addev1, which contains the following structure:

MQInput ->DataInsert -> DataUpdate -> DataDelete -> MQOutput.
12. For the DataDelete node, set the Data Source property to MAPDB.
13. Open the mapping for the DataInsert node and select

MAPPING3_AUDIT_messages addev1 as the source, and
MAPDB.SCHEMA.CONFIRMATION as the target.

14. Wire the source to the target as shown:
addev1 MAPDB

id -------------- RESID

15. For the DataUpdate node, set the Data Source property to MAPDB.
16. Open the mapping for the DataUpdate node and select

MAPPING3_AUDIT_messages addev1 as the source, and
MAPDB.SCHEMA.RESERVATION as the target.

17. Wire the source to the target as shown:
addev1 MAPDB

id -------------- RESID
name ---------- NAME
size ------------ PARTY
payment ------- PAYMENT

18. In the Message Mapping editor Spreadsheet pane, select $db:update and
change fn:true() to $db:update.MAPDB.MQSI.RESERVATION.RESID =
$source/addev1/id and $source/addev1/status = 'CONFIRM'.

19. For the DataDelete node, set the Data Source property to MAPDB.
20. Open the mapping for the DataDelete node and select

MAPPING3_AUDIT_messages addev1 as the source, and
MAPDB.SCHEMA.PROVISIONAL as the target.

21. In the Message Mapping editor Spreadsheet pane, select $db:delete and
change fn:false() to $db:delete.MAPDB.MQSI.PROVISIONAL.RESID =
$source/addev1/id.

22. Create the following instance message with appropriate MQRFH2 headers:
<addev1>
<id>8214</id>
<status>CONFIRM</status>
<name>ARCHIBALD</name>
<size>2</size>
<payment>1038.0</payment>
</addev1>

2340 WebSphere Message Broker Version 7.0.0.8

Results

You have created the following resources:
v A message set called MAPPING3_AUDIT_messages, which is populated with

the message addev1
v A message flow called addev1 in project MAPPING3_AUDIT_flows, which

contains the mapping files addev1_DataInsert.msgmap,
addev1_DataUpdate.msgmap, and addev1_DataDelete.msgmap

v The database MAPDB with populated tables CONFIRMATION, RESERVATION,
and PROVISIONAL

v A file that contains an instance message for test.

What to do next

Next: Continue with the next step, “Deploy the message set and message flow.”
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Adding database definitions to the WebSphere Message Broker Toolkit” on page
2278
Use the New Database Definition File wizard to add database definitions to the
WebSphere Message Broker Toolkit.
“Message mapping scenarios” on page 2318
Related reference:
“Scenario C: Using a broker as auditor” on page 2338
This scenario demonstrates how to use a broker as an auditor. Use the WebSphere
Message Broker Toolkit to create message flows and message sets, and to create
and deploy broker archive (BAR) files.
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Deploy the message set and message flow:

Deploy the message flow that you have created to support mapping scenario C,
which shows how to use your broker as an auditor.

Before you begin

Before you start

Perform the first step for this scenario, described in “Develop a message flow” on
page 2339.

Chapter 9. Developing message flow applications 2341

About this task

This step is the second task in creating “Scenario C: Using a broker as auditor” on
page 2338. Deploy the message set and message flow, and run the instance
messages through the broker.

Procedure

1. Create a BAR file called addev1.
2. Add the message set MAPPING3_AUDIT_messages, and the message flow

addev1, to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance document on the input queue.

Results

The output messages are the same as the input messages. The database table has
the following content:
CONFIRMATION
RESID

9052
8214

RESERVATION
RESID NAME PARTY PAYMENT
----------- -------------------- ----------- ----------

8214 ARCHIBALD 2 1038.00
2618 HENRY 4 120.00
9052 THAW 3 85.00

PROVISIONAL
RESID

2618

What to do next

Next: Continue with the next step, “Override the data source of one of the nodes”
on page 2343.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Message mapping scenarios” on page 2318
Related reference:
“Scenario C: Using a broker as auditor” on page 2338
This scenario demonstrates how to use a broker as an auditor. Use the WebSphere
Message Broker Toolkit to create message flows and message sets, and to create
and deploy broker archive (BAR) files.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

2342 WebSphere Message Broker Version 7.0.0.8

Override the data source of one of the nodes:

Override the data source property for a node in the message flow that you have
created to support mapping scenario C, which shows how to use your broker as an
auditor.

Before you begin

Before you start

Complete the first two steps for this scenario:
1. “Develop a message flow” on page 2339
2. “Deploy the message set and message flow” on page 2341

About this task

This step is the third task in creating “Scenario C: Using a broker as auditor” on
page 2338. Override the data source of one of the nodes by changing the
configuration of its broker archive (BAR) file.

Procedure

1. Create a database called ALTDB, and a table called CONFIRMATION, which
contains the following columns:
RESID INTEGER

2. Create a Windows ODBC Data Source Name for the database, then register the
database in the WebSphere Message Broker Toolkit by clicking File > New >
Database Definition File. For information about how to complete this step,
including how to choose a supported database and version, follow the
instructions provided in “Adding database definitions to the WebSphere
Message Broker Toolkit” on page 2278.

Results

You have created a database called ALTDB with a table called CONFIRMATION.

What to do next

Next: Continue with the next step, “Create a BAR file, edit the configuration, and
deploy” on page 2344.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Adding database definitions to the WebSphere Message Broker Toolkit” on page
2278
Use the New Database Definition File wizard to add database definitions to the
WebSphere Message Broker Toolkit.
“Message mapping scenarios” on page 2318
Related reference:
“Scenario C: Using a broker as auditor” on page 2338
This scenario demonstrates how to use a broker as an auditor. Use the WebSphere
Message Broker Toolkit to create message flows and message sets, and to create
and deploy broker archive (BAR) files.

Chapter 9. Developing message flow applications 2343

“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Create a BAR file, edit the configuration, and deploy:

Create a broker archive file and deploy the message flow for mapping scenario C,
which shows how to use your broker as an auditor.

Before you begin

Before you start

Perform the first three steps for this scenario:
1. “Develop a message flow” on page 2339
2. “Deploy the message set and message flow” on page 2341
3. “Override the data source of one of the nodes” on page 2343

About this task

This step is the fourth and last task in creating “Scenario C: Using a broker as
auditor” on page 2338. Learn how to create a broker archive (BAR) file, edit the
configuration, and deploy.

Procedure

1. Add the message flow addev1 to the BAR file again.
2. Select the Manage and Configure tab of the BAR file editor.
3. Expand the message flow, and click the DataInsert icon.
4. In the Properties view, change the Data Source field from MAPDB to ALTDB,

and save the BAR file.
5. Deploy the BAR file to the broker.
6. Put the instance document on the input queue.

Results

The output message is the same as the input. In the ALTDB database, the table has
the following content:
CONFIRMATION
RESID

8214

What to do next

Next: You have now completed scenario C. If you want more information about
how to use maps, return to “Message mapping scenarios” on page 2318, and
explore another scenario.
Related concepts:

2344 WebSphere Message Broker Version 7.0.0.8

“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Message mapping scenarios” on page 2318
Related reference:
“Scenario C: Using a broker as auditor” on page 2338
This scenario demonstrates how to use a broker as an auditor. Use the WebSphere
Message Broker Toolkit to create message flows and message sets, and to create
and deploy broker archive (BAR) files.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Scenario D: Complex message enrichment:

This scenario demonstrates complex message enrichment and uses complex
message manipulation. Use the WebSphere Message Broker Toolkit to create
message flows and message sets, and to create and deploy broker archive (BAR)
files.

The scenario also involves creating a broker, and putting instance messages that
can contain MQRFH2 headers to input queues.

This scenario requires the following mapping functions:
v MRM in, MRM out (namespace)
v Other nodes required to complete message
v Conditional mapping
v CASE mapping (both syntax formats)
v If/condition
v Combining multiple source fields into a single target field (inter namespace)
v Nested repeating complex and simple elements
v Target data derived from database
v String, numeric, datetime functions
v User-defined ESQL procedures and functions
v User-defined Java routines

The names and values used for message flows, message sets, elements, and
attributes, and the expressions and code samples, are for illustrative purposes only.

Follow these steps to complete this scenario:
1. “Develop a message flow that contains other nodes” on page 2346
2. “Develop a message flow to map target fields from multiple other fields” on

page 2349
3. “Develop a message flow and message model for mapping a complex nested,

repeating message” on page 2352
4. “Develop a message flow for populating a target from a database” on page

2358
5. “Develop a message flow using a user-defined ESQL function” on page 2361
6. “Develop a message flow using a user-defined Java procedure” on page 2364
Related tasks:

Chapter 9. Developing message flow applications 2345

“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Develop a message flow that contains other nodes:

Create a message flow to use in mapping scenario D, which describes complex
message enrichment.

About this task

This step is the first task in creating “Scenario D: Complex message enrichment”
on page 2345. Learn how to complete the following procedures:
v Develop a message flow that contains other nodes (for example, a Filter node)
v Create mappings that use conditions
v Develop corresponding message models, which use all main data types, and

instance messages

Procedure

1. Switch to the Broker Application Development perspective
2. Create the following resources:
v A message set project and a message set called

MAPPING3_COMPLEX_messages, ensuring that the message set is
namespace enabled with XML wire format

v A message definition file called COMPLEX, which has a target namespace
www.complex.net, with prefix comp

3. Create messages addev1, addev1s and addev1n with the following structures:
addev1

bool (xsd:boolean) local element
bin (xsd:hexBinary) local element
dat (xsd:dateTime) local element
dec (xsd:decimal) local element
dur (xsd:duration) local element
flt (xsd:float) local element
int (xsd:int) local element
str (xsd:string) local element

addev1s
bin (xsd:hexBinary) local element
dat (xsd:dateTime) local element
dur (xsd:duration) local element
str (xsd:string) local element

addev1n
dec (xsd:decimal) local element
flt (xsd:float) local element
int (xsd:int) local element

4. Create a message flow project called MAPPING3_COMPLEX_flows.
5. Create a message flow called addev1 which contains the following structure:

2346 WebSphere Message Broker Version 7.0.0.8

MQInput -> Filter -> Mapping -> Compute
\ \ --> RCD -> MQOutput
\-> Mapping1-----------/

6. In the Filter node, set the following ESQL:
IF Body.bool THEN

RETURN TRUE;
ELSE

RETURN FALSE;
END IF;

7. In the Mapping node that is connected to the Filter node true terminal
(Mapping1), open the map and select addev1 as source and addev1s as target.

8. Wire the source to target as shown:
bin --- bin
dat --- dat
dur --- dur
str --- str

9. In the Message Mapping editor Spreadsheet pane, expand Properties and set
the following values:
MessageType | ’addev1s’

10. Right-click the target dat and click If.
11. Replace the condition fn:true() with $source/comp:addev1/str = ’dat’.
12. Set the value for dat to $source/comp:addev1/dat + xs:duration("P3M").
13. Right-click the condition and click Else.
14. Right-click the target dur and click If.
15. Replace the condition fn:true() with $source/comp:addev1/str = ’dur’.
16. Set the value for dur to $source/comp:addev1/dur + xs:duration("P1Y").
17. Right-click the condition and click Else.
18. Open the map for the node that is connected to the false terminal (Mapping)

of the Filter node and select addev1 as source and addev1n as target.
19. Wire the source to target as shown:

dec --- dec
flt --- flt
int --- int

20. In the Message Mapping editor Spreadsheet pane, expand Properties and set
the following values:
MessageType | ’addev1n’

21. Set the ESQL in the Compute node to:
CALL CopyMessageHeaders();

SET OutputRoot.MRM.dec = InputBody.dec * 10;
SET OutputRoot.MRM.flt = InputBody.flt * 10;
SET OutputRoot.MRM.int = InputBody.int * 10;

22. In the ResetContentDescriptor node, set the Message Domain to XMLNS and
select Reset Message Domain.

23. Create three instance messages with the appropriate MQRFH2 headers:
<comp:addev1 xmlns:comp="http://www.complex.net">
<bool>1</bool>
<bin><![CDATA[010203]]></bin>
<dat>2005-05-06T00:00:00+00:00</dat>
<dec>19.34</dec>
<dur>P2Y4M</dur>
<flt>3.245E+2</flt>
<int>2104</int>
<str>dat</str>
</comp:addev1>

Chapter 9. Developing message flow applications 2347

<comp:addev1 xmlns:comp="http://www.complex.net">
<bool>1</bool>
<bin><![CDATA[010203]]></bin>
<dat>2005-05-06T00:00:00+00:00</dat>
<dec>19.34</dec>
<dur>P2Y4M</dur>
<flt>3.245E+2</flt>
<int>2104</int>
<str>dur</str>
</comp:addev1>

<comp:addev1 xmlns:comp="http://www.complex.net">
<bool>0</bool>
<bin><![CDATA[010203]]></bin>
<dat>2005-05-06T00:00:00+00:00</dat>
<dec>19.34</dec>
<dur>P2Y4M</dur>
<flt>3.245E+2</flt>
<int>2104</int>
<str>dat</str>
</comp:addev1>

Results

You have created the following resources:
v A message set called MAPPING3_COMPLEX_messages, which is populated

with the messages addev1, addev1s and addev1n
v A message flow called addev1 in the project MAPPING3_COMPLEX_flows,

which contains the mapping files addev1_Mapping.msgmap and
addev1._Mapping1.msgmap

v Files that contain instance messages for test

What to do next

Now deploy the message set and message flow.

Deploy the message set and message flow:
About this task

This step is the second task in creating “Scenario D: Complex message enrichment”
on page 2345. Deploy the message set and message flow and run the instance
messages through the broker.

Procedure

1. Create a BAR file called addev1.
2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev1 to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance documents on the input queue.

Results

The output messages have the following content:
<comp:addev1s xmlns:comp="http://www.complex.net">
<bin><![CDATA[010203]]></bin>
<dat>2005-08-06T00:00:00-01:00</dat>
<dur>P2Y4M</dur>
<str>dat</str>
</comp:addev1s>

2348 WebSphere Message Broker Version 7.0.0.8

What to do next

Next: Continue with the next step, “Develop a message flow to map target fields
from multiple other fields.”
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Message mapping scenarios” on page 2318
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Scenario D: Complex message enrichment” on page 2345
This scenario demonstrates complex message enrichment and uses complex
message manipulation. Use the WebSphere Message Broker Toolkit to create
message flows and message sets, and to create and deploy broker archive (BAR)
files.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Develop a message flow to map target fields from multiple other fields:

Develop a message flow to map target fields from multiple other fields, and
develop corresponding message models and instance documents to use in mapping
scenario D, which describes complex message enrichment.

Before you begin

Before you start

Perform the first two tasks for this scenario, described in step “Develop a message
flow that contains other nodes” on page 2346.

About this task

This step is the third task in creating “Scenario D: Complex message enrichment”
on page 2345.

Procedure

1. In the COMPLEX message definition, in namespace www.complex.net, create
a message called addev2, which has the following structure:
addev2

firstname (xsd:string) local element
lastname (xsd:string) local element
branch (xsd:string) local element
accountno (xsd:string) local element
balance (xsd:decimal) local element
transvalue local complex element, base type xsd:decimal

transdir (xsd:string) local attribute

2. In the message set MAPPING3_COMPLEX_messages, create a new message
definition file called COMP2, which has the target namespace
www.comp2.net, with prefix c2.

Chapter 9. Developing message flow applications 2349

3. In the COMP2 message definition, create a message called addev2out, which
has the structure:
addev2out

accountdetails (xsd:string) local element
transvalue (xsd:decimal) local element
balance (xsd:decimal) local element

4. Create a message flow called addev2, which contains the following structure:
MQInput -> Mapping -> MQOutput.

5. Open the map for the Mapping node, and select addev2 as the source and
addev2out as the target.

6. Wire the source to target as shown:
accountno --- accountdetails
balance --- balance
transvalue --- transvalue

7. In the Message Mapping editor Spreadsheet pane, expand Properties and set
the following values:
MessageType | ’addev2out’

8. Set the accountdetails target to fn:concat($source/comp:addev2/accountno,
$source/comp:addev2/branch, $source/comp:addev2/lastname,
$source/comp:addev2/firstname).

9. Right-click the target transvalue and click If.
10. Change the value of the if statement from fn:true() to $source/comp:addev2/

transvalue/@transdir = ’DEBIT’.
11. Select transvalue and set its value to $source/comp:addev2/transvalue * (-1).
12. Right-click the if statement and click Else.
13. Right-click the target balance and click If.
14. Change the value of the if statement from fn:true() to $source/comp:addev2/

transvalue/@transdir = ’DEBIT’.
15. Select balance and set its value to $source/comp:addev2/balance -

$source/comp:addev2/transvalue.
16. Right-click the if statement and click Else If.
17. Change the value of the elseif statement from fn:true() to

$source/comp:addev2/transvalue/@transdir = ’CREDIT’.
18. Select balance following the second condition statement and set its Value to

$source/comp:addev2/balance + $source/comp:addev2/transvalue.
19. Create two instance messages with the appropriate MQRFH2 headers:

<comp:addev2 xmlns:comp="http://www.complex.net">
<firstname>Brian</firstname>
<lastname>Benn</lastname>
<branch>52-84-02</branch>
<accountno>567432876543</accountno>
<balance>1543.56</balance>
<transvalue transdir="DEBIT">25.28</transvalue>
</comp:addev2>

<comp:addev2 xmlns:comp="http://www.complex.net">
<firstname>Brian</firstname>
<lastname>Benn</lastname>
<branch>52-84-02</branch>
<accountno>567432876543</accountno>
<balance>1543.56</balance>
<transvalue transdir="CREDIT">25.28</transvalue>
</comp:addev2>

2350 WebSphere Message Broker Version 7.0.0.8

Results

You have created the following resources:
v A message called addev2 in the message definition called COMPLEX
v A message called addev2out in the message definition called COMP2
v A message flow called addev2, which contains the mapping file

addev2_Mapping.msgmap

v Files that contain instance messages for test

What to do next

Now deploy the message set and message flow

Deploy the message set and message flow:
About this task

This step is the fourth task in creating “Scenario D: Complex message enrichment”
on page 2345. Deploy the message set and message flow and run the instance
messages through the broker.

Procedure

1. Create a BAR file called addev2.
2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev2 to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance documents on the input queue.

Results

The output messages have the following content:
<c2:addev2out xmlns:c2="http://www.comp2.net" xmlns:comp="http://www.complex.net">
<accountdetails>567432876543 52-84-02 Benn Brian</accountdetails>
<transvalue>-25.28</transvalue>
<balance>1518.28</balance>
</c2:addev2out>

What to do next

Next: Continue with the next step, “Develop a message flow and message model
for mapping a complex nested, repeating message” on page 2352.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Message mapping scenarios” on page 2318
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Scenario D: Complex message enrichment” on page 2345
This scenario demonstrates complex message enrichment and uses complex
message manipulation. Use the WebSphere Message Broker Toolkit to create
message flows and message sets, and to create and deploy broker archive (BAR)
files.

Chapter 9. Developing message flow applications 2351

“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Develop a message flow and message model for mapping a complex nested, repeating
message:

Develop a message flow and message model for mapping a complex nested,
repeating message, and develop corresponding instance documents, to use in
mapping scenario D, which describes complex message enrichment.

Before you begin

Before you start

Perform the previous tasks for this scenario, described in the following steps:
1. “Develop a message flow that contains other nodes” on page 2346
2. “Develop a message flow to map target fields from multiple other fields” on

page 2349

About this task

This step is the fifth task in creating “Scenario D: Complex message enrichment”
on page 2345.

Procedure

1. In the COMPLEX message definition, in namespace www.complex.net, create
a message called addev3, which has the following structure:

addev3
choice

sstr (xsd:string) local element
intrep (xsd:int) local element, minOcc=2, maxOcc=6
dur (xsd:duration) local element

choice
comp1 local complex element

dat1 (xsd:date) local element
sval (xsd:string) local element

comp2 local complex element
bool1 (xsd:boolean) local element
dat2 (xsd:date) local element

comprep local complex element, minOcc=1, maxOcc=4
int1 (xsd:int) local element
dec1 (xsd:decimal) local element

binel (xsd:hexBinary) local element
lelem local complex element, base type xsd:string

latt (xsd:int) local attribute
lcomp local complex element

head (xsd:string) local element
incomp local complex element

count (xsd:int) local element
comp:gcompel global complex element, minOcc=0, maxOcc=-1

fstr (xsd:string) local element
multel local complex element

in1 (xsd:boolean) local element
in2 (xsd:string) local element
in3 (xsd:float) local element

footer (xsd:string) local element
repstr (xsd:string) local element, minOcc=1, maxOcc=-1

2. Create a message flow called addev3, which contains the following structure:
MQInput -> Mapping -> MQOutput.

2352 WebSphere Message Broker Version 7.0.0.8

3. Open the map for the Mapping node, and select addev3 as the source and
target.

4. Map each source element to its corresponding target element:
sstr --- sstr
intrep --- intrep
dur --- dur
dat1 --- dat1
sval --- sval
bool1 --- bool1
dat2 --- dat2
int1 --- int1
dec1 --- dec1
binel --- binel
lelem --- lelem
latt --- latt
head --- head
count --- count
fstr --- fstr
multel --- multel
footer --- footer
repstr --- repstr

5. In the Message Mapping editor Spreadsheet pane, for the if statement,
change fn:true() to fn:exists($source/comp:addev3/sstr).

6. For the elseif statement, change fn:true() to fn:exists($source/comp:addev3/
intrep).

7. For the second elseif statement, change fn:true() to fn:exists($source/
comp:addev3/dur).

8. For the first complex choice if statement, change fn:true() to
fn:exists($source/comp:addev3/comp1).

9. For the second complex choice elseif statement, change fn:true() to
fn:exists($source/comp:addev3/comp2).

10. For the third complex choice elseif statement, change fn:true() to
fn:exists($source/comp:addev3/comprep).

11. Create the following instance messages, with appropriate MQRFH2 headers:
<comp:addev3 xmlns:comp="http://www.complex.net">
<sstr>first</sstr>
<comp1>
<dat1>2005-06-24</dat1>
<sval>date value</sval>
</comp1>
<binel><![CDATA[3132333435]]></binel>
<lelem latt="24">twenty four</lelem>
<lcomp>
<head>nesting start</head>
<incomp>
<count>3</count>
<comp:gcompel>
<fstr>first</fstr>
<multel>
<in1>1</in1>
<in2>C</in2>
<in3>2.45E+1</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>second</fstr>
<multel>
<in1>1</in1>
<in2>D</in2>
<in3>7.625E+3</in3>
</multel>

Chapter 9. Developing message flow applications 2353

</comp:gcompel>
<comp:gcompel>
<fstr>third</fstr>
<multel>
<in1>0</in1>
<in2>C</in2>
<in3>4.9E+0</in3>
</multel>
</comp:gcompel>
</incomp>
<footer>nesting end</footer>
</lcomp>
<repstr>abc</repstr>
<repstr>def</repstr>
<repstr>ghi</repstr>
<repstr>jkl</repstr>
<repstr>mno</repstr>
</comp:addev3>

<comp:addev3 xmlns:comp="http://www.complex.net">
<intrep>45</intrep>
<intrep>12</intrep>
<intrep>920</intrep>
<comp2>
<bool1>1</bool1>
<dat2>2005-06-24</dat2>
</comp2>
<binel><![CDATA[3132333435]]></binel>
<lelem latt="24">twenty four</lelem>
<lcomp>
<head>nesting start</head>
<incomp>
<count>5</count>
<comp:gcompel>
<fstr>first</fstr>
<multel>
<in1>1</in1>
<in2>C</in2>
<in3>2.45E+1</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>second</fstr>
<multel>
<in1>1</in1>
<in2>D</in2>
<in3>7.625E+3</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>third</fstr>
<multel>
<in1>0</in1>
<in2>C</in2>
<in3>4.9E+0</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>fourth</fstr>
<multel>
<in1>1</in1>
<in2>F</in2>
<in3>2.98E+1</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>fifth</fstr>
<multel>

2354 WebSphere Message Broker Version 7.0.0.8

<in1>0</in1>
<in2>D</in2>
<in3>8.57E-2</in3>
</multel>
</comp:gcompel>
</incomp>
<footer>nesting end</footer>
</lcomp>
<repstr>abc</repstr>
</comp:addev3>

<comp:addev3 xmlns:comp="http://www.complex.net">
<dur>P2Y2M</dur>
<comp3>
<int1>6</int1>
<dec1>2821.54</dec1>
</comp3>
<comp3>
<int1>41</int1>
<dec1>0.02</dec1>
</comp3>
<binel><![CDATA[3132333435]]></binel>
<lelem latt="24">twenty four</lelem>
<lcomp>
<head>nesting start</head>
<incomp>
<count>0</count>
</incomp>
<footer>nesting end</footer>
</lcomp>
<repstr>abc</repstr>
<repstr>def</repstr>
<repstr>ghi</repstr>
<repstr>jkl</repstr>
<repstr>mno</repstr>
<repstr>pqr</repstr>
<repstr>stu</repstr>
<repstr>vwx</repstr>
</comp:addev3>

Results

You have created the following resources:
v A message called addev3 in the message definition COMPLEX
v A message flow called addev3, which contains the mapping file

addev3_Mapping.msgmap

v Files that contain instance messages for test

What to do next

Now deploy the message set and message flow.

Deploy the message set and message flow:
About this task

This step is the sixth task in creating “Scenario D: Complex message enrichment”
on page 2345. Learn how to deploy the message set and message flow and run the
instance messages through the broker.

Procedure

1. Create a BAR file called addev3.

Chapter 9. Developing message flow applications 2355

2. Add the message set MAPPING3_COMPLEX_messages and the message flow
addev3 to the BAR file.

3. Deploy the BAR file to the broker.
4. Put the instance documents on the input queue.

Results

The output messages look like this:
<comp:addev3 xmlns:comp="http://www.complex.net">
<sstr>first</sstr>
<comp1>
<dat1>2005-06-24</dat1>
<sval>date value</sval>
</comp1>
<binel><![CDATA[3132333435]]></binel>
<lelem latt="24">twenty four</lelem>
<lcomp>
<head>nesting start</head>
<incomp>
<count>3</count>
<comp:gcompel>
<fstr>first</fstr>
<multel>
<in1>1</in1>
<in2>C</in2>
<in3>2.45E+1</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>second</fstr>
<multel>
<in1>1</in1>
<in2>D</in2>
<in3>7.625E+3</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>third</fstr>
<multel>
<in1>0</in1>
<in2>C</in2>
<in3>4.9E+0</in3>
</multel>
</comp:gcompel>
</incomp>
<footer>nesting end</footer>
</lcomp>
<repstr>abc</repstr>
<repstr>def</repstr>
<repstr>ghi</repstr>
<repstr>jkl</repstr>
<repstr>mno</repstr>
</comp:addev3>

<comp:addev3 xmlns:comp="http://www.complex.net">
<intrep>45</intrep>
<intrep>12</intrep>
<intrep>920</intrep>
<comp2>
<bool1>1</bool1>
<dat2>2005-06-24</dat2>
</comp2>
<binel><![CDATA[3132333435]]></binel>
<lelem latt="24">twenty four</lelem>
<lcomp>

2356 WebSphere Message Broker Version 7.0.0.8

<head>nesting start</head>
<incomp>
<count>5</count>
<comp:gcompel>
<fstr>first</fstr>
<multel>
<in1>1</in1>
<in2>C</in2>
<in3>2.45E+1</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>second</fstr>
<multel>
<in1>1</in1>
<in2>D</in2>
<in3>7.625E+3</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>third</fstr>
<multel>
<in1>0</in1>
<in2>C</in2>
<in3>4.9E+0</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>fourth</fstr>
<multel>
<in1>1</in1>
<in2>F</in2>
<in3>2.98E+1</in3>
</multel>
</comp:gcompel>
<comp:gcompel>
<fstr>fifth</fstr>
<multel>
<in1>0</in1>
<in2>D</in2>
<in3>8.57E-2</in3>
</multel>
</comp:gcompel>
</incomp>
<footer>nesting end</footer>
</lcomp>
<repstr>abc</repstr>
</comp:addev3>

<comp:addev3 xmlns:comp="http://www.complex.net">
<dur>P2Y2M</dur>
<comp3>
<int1>6</int1>
<dec1>2821.54</dec1>
</comp3>
<comp3>
<int1>41</int1>
<dec1>0.02</dec1>
</comp3>
<binel><![CDATA[3132333435]]></binel>
<lelem latt="24">twenty four</lelem>
<lcomp>
<head>nesting start</head>
<incomp>
<count>0</count>
</incomp>
<footer>nesting end</footer>
</lcomp>

Chapter 9. Developing message flow applications 2357

<repstr>abc</repstr>
<repstr>def</repstr>
<repstr>ghi</repstr>
<repstr>jkl</repstr>
<repstr>mno</repstr>
<repstr>pqr</repstr>
<repstr>stu</repstr>
<repstr>vwx</repstr>
</comp:addev3>

What to do next

Next: Continue with the next step, “Develop a message flow for populating a
target from a database.”
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Message mapping scenarios” on page 2318
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Scenario D: Complex message enrichment” on page 2345
This scenario demonstrates complex message enrichment and uses complex
message manipulation. Use the WebSphere Message Broker Toolkit to create
message flows and message sets, and to create and deploy broker archive (BAR)
files.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Develop a message flow for populating a target from a database:

Develop a message flow that updates a message from a database for mapping
scenario D, complex message enrichment.

Before you begin

Before you start

Perform the previous tasks for this scenario, described in the following steps:
1. “Develop a message flow that contains other nodes” on page 2346
2. “Develop a message flow to map target fields from multiple other fields” on

page 2349
3. “Develop a message flow and message model for mapping a complex nested,

repeating message” on page 2352

About this task

This step is the seventh task in creating “Scenario D: Complex message
enrichment” on page 2345. Develop a message flow for populating a target from a
database, and create a corresponding message model and instance documents.

2358 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Create a database called MAPDB and create a table called TRANSACTION,
which has the following columns:
ACCOUNT VARCHAR(12)
TDATE DATE
VALUE DECIMAL(8,2)

2. Populate the database with the values shown:
’12345678901’, ’2005-04-25’, -14.25
’12345678901’, ’2005-04-25’, 100.00
’12345678901’,’2005-05-15’, 2891.30
’12345678901’,’2005-06-11’, -215.28

3. Create a Windows ODBC Data Source Name for the database.
4. Add a definition for the database to the workbench by clicking File > New >

Database Definition File. For information about how to complete this step,
including how to choose a supported database and version, follow the
instructions provided in “Adding database definitions to the WebSphere
Message Broker Toolkit” on page 2278.

5. In the COMPLEX message definition, in namespace www.complex.net, create
a message called addev4in, which has the following structure:
addev4in

account (xsd:string) local element
tdate (xsd:date) local element

6. In the COMP2 message definition, in namespace www.comp2.net, create a
message called addev4out, which has the following structure:
addev4out

account (xsd:string) local element
tdate (xsd:date) local element
value (xsd:decimal) local element, minOcc=0, maxOcc=-1

7. Create a message flow called addev4, which contains the following structure:
MQInput -> Mapping -> MQOutput.

8. Open the map for the Mapping node, and select addev4in as the source and
addev4out as the target.

9. Map the input to outputs as shown:
account --- account
tdate --- tdate

10. In the Message Mapping editor Spreadsheet pane, right-click the target value,
and click Select Data Source.

11. Select MAPDB, and click Finish.
12. In the top pane, expand the MAPDB tree and wire the values as shown:

VALUE --- value

13. In the Spreadsheet pane, select the target $db:select and change fn:true() to:
$db:select.MAPDB.SCHEMA.TRANSACTION.ACCOUNT=$source/comp:addev4in/
account and $db:select.MAPDB.SCHEMA.TRANSACTION.TDATE=$source/
comp:addev4in/tdate

14. Expand the Properties tree and set the following values:
MessageType | ’addev4out’

15. Set the data source property for the Mapping node to MAPDB.
16. Create the following instance messages with appropriate MQRFH2 headers:

<comp:addev4in xmlns:comp="http://www.complex.net">
<account>12345678901</account>
<tdate>2005-05-15</tdate>
</comp:addev4in>

Chapter 9. Developing message flow applications 2359

<comp:addev4in xmlns:comp="http://www.complex.net">
<account>12345678901</account>
<tdate>2005-04-25</tdate>
</comp:addev4in>

Results

You have created the following resources:
v A message called addev4in in a message definition called COMPLEX
v A message called addev4out in a message definition called COMP
v A message flow called addev4, which contains the mapping file

addev4_Mapping.msgmap

v Files that contain instance messages

What to do next

Now deploy the message set and message flow.

Deploy the message set and message flow:
About this task

This step is the eighth task in creating “Scenario D: Complex message enrichment”
on page 2345. Deploy the message set and message flow and run the instance
messages through the broker.

Procedure

1. Create a BAR file called addev4.
2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev4 to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance documents on the input queue.

Results

The output messages have the following content:
<c2:addev4out xmlns:c2="http://www.comp2.net" xmlns:comp="http://www.complex.net" >
<account>12345678901</account>
<tdate>2005-05-15</tdate>
<value>2891.3</value>
</c2:addev4out>

What to do next

Next: Continue with the next step, “Develop a message flow using a user-defined
ESQL function” on page 2361.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Adding database definitions to the WebSphere Message Broker Toolkit” on page
2278
Use the New Database Definition File wizard to add database definitions to the
WebSphere Message Broker Toolkit.
“Message mapping scenarios” on page 2318

2360 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Scenario D: Complex message enrichment” on page 2345
This scenario demonstrates complex message enrichment and uses complex
message manipulation. Use the WebSphere Message Broker Toolkit to create
message flows and message sets, and to create and deploy broker archive (BAR)
files.
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Develop a message flow using a user-defined ESQL function:

Develop a message flow that calls an ESQL function for mapping scenario D,
complex message enrichment.

Before you begin

Before you start

Perform the previous tasks for this scenario, described in the following steps:
1. “Develop a message flow that contains other nodes” on page 2346
2. “Develop a message flow to map target fields from multiple other fields” on

page 2349
3. “Develop a message flow and message model for mapping a complex nested,

repeating message” on page 2352
4. “Develop a message flow for populating a target from a database” on page

2358

About this task

This step is the ninth task in creating “Scenario D: Complex message enrichment”
on page 2345. Develop a message flow that uses a user-defined ESQL function, and
create corresponding message models and instance documents.

Procedure

1. In the COMPLEX message definition, in namespace www.complex.net, create
messages called addev5in and addev5out, which have the following structures:
addev5in

value1 (xsd:decimal) local element
operator (xsd:string) local element
value2 (xsd:decimal) local element
rate (xsd:decimal) local element

addev5out
grossvalue (xsd:decimal) local element
netvalue (xsd:decimal) local element

2. Create a message flow called addev5, which contains the following structure:
MQInput -> Mapping -> MQOutput.

Chapter 9. Developing message flow applications 2361

3. Open the map for the Mapping node, and select addev5in as the source and
addev5out as the target.

4. In the MAPPING3_COMPLEX_flows project, create an ESQL file called addev5,
and code the following functions:
CREATE FUNCTION calcGrossvalue(IN value1 DECIMAL, IN operator CHAR,
IN value2 DECIMAL) RETURNS DECIMAL

BEGIN
DECLARE outval DECIMAL;
CASE operator
WHEN ’PLUS’ THEN

SET outval = value1 + value2;
WHEN ’MINUS’ THEN

SET outval = value1 - value2;
WHEN ’MULTIPLY’ THEN

SET outval = value1 * value2;
WHEN ’DIVIDE’ THEN

SET outval = value1 / value2;
ELSE

THROW USER EXCEPTION MESSAGE 2949 VALUES(’Invalid Operator’, operator);
SET outval = -999999;

END CASE;
RETURN outval;

END;

CREATE FUNCTION calcNetvalue(IN value1 DECIMAL, IN operator CHAR, IN value2 DECIMAL,
IN rate DECIMAL) RETURNS DECIMAL

BEGIN
DECLARE grossvalue DECIMAL;
SET grossvalue=calcGrossvalue(value1, operator, value2);
RETURN (grossvalue * rate);

END;

5. In the Message Mapping editor Spreadsheet pane, expand the message and
select grossvalue.

6. In the Expression pane, enter the expression:
esql:calcGrossvalue($source/comp:addev5in/value1,
$source/comp:addev5in/operator,
$source/comp:addev5in/value2)

7. Select the target netvalue, and in the Expression pane, enter the following
expression:
esql:calcNetvalue($source/comp:addev5in/value1,
$source/comp:addev5in/operator,
$source/comp:addev5in/value2,
$source/comp:addev5in/rate)

8. Expand the Properties tree and set the following values:
MessageType | ’addev5out’

9. Create the following instance messages, with appropriate MQRFH2 headers:
<comp:addev5in xmlns:comp="http://www.complex.net">
<value1>125.32</value1>
<operator>PLUS</operator>
<value2>25.86</value2>
<rate>0.60</rate>
</comp:addev5in>

<comp:addev5in xmlns:comp="http://www.complex.net">
<value1>118.00</value1>
<operator>MINUS</operator>
<value2>245.01</value2>
<rate>0.30</rate>
</comp:addev5in>

2362 WebSphere Message Broker Version 7.0.0.8

<comp:addev5in xmlns:comp="http://www.complex.net">
<value1>254.02</value1>
<operator>MULTIPLY</operator>
<value2>3.21</value2>
<rate>0.75</rate>
</comp:addev5in>

<comp:addev5in xmlns:comp="http://www.complex.net">
<value1>1456.33</value1>
<operator>DIVIDE</operator>
<value2>18.58</value2>
<rate>0.92</rate>
</comp:addev5in>

<comp:addev5in xmlns:comp="http://www.complex.net">
<value1>254.02</value1>
<operator>MOD</operator>
<value2>3.21</value2>
<rate>0.75</rate>
</comp:addev5in>

Results

You have created the following resources:
v Messages called addev5in and addev5out in a message definition called

COMPLEX
v A message flow called addev5, which contains the mapping file

addev5_Mapping.msgmap and ESQL file addev5.esql
v Files that contain instance messages

What to do next

Now deploy the message set and message flow.

Deploy the message set and message flow:
About this task

This step is the tenth task in creating “Scenario D: Complex message enrichment”
on page 2345. Deploy the message set and message flow, and run the instance
messages through the broker.

Procedure

1. Create a BAR file called addev5.
2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev5 to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance documents on the input queue.

Results

The output messages have the following content:
<comp:addev5out xmlns:comp="http://www.complex.net">
<grossvalue>151.18</grossvalue>
<netvalue>90.708</netvalue>
</comp:addev5out>

<comp:addev5out xmlns:comp="http://www.complex.net">
<grossvalue>-127.01</grossvalue>
<netvalue>-38.103</netvalue>
</comp:addev5out>

Chapter 9. Developing message flow applications 2363

<comp:addev5out xmlns:comp="http://www.complex.net">
<grossvalue>815.4042</grossvalue>
<netvalue>611.55315</netvalue>
</comp:addev5out>

<comp:addev5out xmlns:comp="http://www.complex.net">
<grossvalue>78.38159311087190527448869752421959</grossvalue>
<netvalue>72.11106566200215285252960172228202</netvalue>
</comp:addev5out>

If you do not see any message output, look for an entry in the Deployment Log
with content similar to the following entry:
BIP2949 (BRK.default) A user generated ESQL exception has been thrown. The additional
information provided with this exception is: ’’Invalid Operator’’ ’’MOD’’
’addev5.Mapping.ComIbmCompute’ ’%5’ ’%6’ ’%7’ ’%8’ ’%9’ ’%10’ ’%11’

This exception was thrown by a THROW EXCEPTION statement, and shows the
normal behavior of the THROW statement; this exception is user-generated, so the
user action is determined by the message flow and the type of exception that is
thrown.

What to do next

Next: Continue with the next step, “Develop a message flow using a user-defined
Java procedure.”
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Message mapping scenarios” on page 2318
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Scenario D: Complex message enrichment” on page 2345
This scenario demonstrates complex message enrichment and uses complex
message manipulation. Use the WebSphere Message Broker Toolkit to create
message flows and message sets, and to create and deploy broker archive (BAR)
files.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Develop a message flow using a user-defined Java procedure:

Develop a message flow that calls a Java procedure for mapping scenario D,
complex message enrichment.

Before you begin

Before you start

Perform the previous tasks for this scenario, described in the following steps:
1. “Develop a message flow that contains other nodes” on page 2346
2. “Develop a message flow to map target fields from multiple other fields” on

page 2349

2364 WebSphere Message Broker Version 7.0.0.8

3. “Develop a message flow and message model for mapping a complex nested,
repeating message” on page 2352

4. “Develop a message flow for populating a target from a database” on page
2358

5. “Develop a message flow using a user-defined ESQL function” on page 2361

About this task

This step is the eleventh task in creating “Scenario D: Complex message
enrichment” on page 2345. Develop a message flow using a user-defined Java
procedure, and create corresponding message models and instance documents.

Procedure

1. In the COMPLEX message definition, in namespace www.complex.net, create
messages called addev6in and addev6out, which have the following
structures:
addev6in

hexdata (xsd:hexBinary) local element

addev6out
decval (xsd:decimal) local element
fltval (xsd:float) local element
intval (xsd:int) local element

2. Create a message flow called addev6, which contains the following structure:
MQInput -> Mapping -> MQOutput.

3. Open the map for the Mapping node, and select addev6in as the source and
addev6out as the target.

4. In the MAPPING3_COMPLEX_flows project, create an ESQL file called addev6
and put these functions in it:
CREATE PROCEDURE decFromBinary(IN hexval BLOB)
RETURNS DECIMAL
LANGUAGE JAVA
EXTERNAL NAME "addev6.decFromBinary";

CREATE PROCEDURE fltFromBinary(IN hexval BLOB)
RETURNS DECIMAL
LANGUAGE JAVA
EXTERNAL NAME "addev6.fltFromBinary";

CREATE PROCEDURE intFromBinary(IN hexval BLOB)
RETURNS DECIMAL
LANGUAGE JAVA
EXTERNAL NAME "addev6.intFromBinary";

5. Create a Java source file called addev6.java, which has the following contents:
import java.lang.*;
import java.math.*;

public class addev6 {
//
// Return decimal element from binary string
//
public static BigDecimal decFromBinary(byte[] hexval) {
// Look for element named decval
String search = "decval";
String snval = findElement(hexval ,search);
// Convert the value to decimal type
BigDecimal numval = new BigDecimal(snval);
return numval;
}
//
// Return float element from binary string

Chapter 9. Developing message flow applications 2365

//
public static Double fltFromBinary(byte[] hexval) {
// Look for element named fltval
String search = "fltval";
String snval = findElement(hexval ,search);
// Convert the value to float type
Double numval = new Double(snval);
return numval;
}
//
// Return integer element from binary string
//
public static Long intFromBinary(byte[] hexval) {
// Look for element named intval
String search = "intval";
String snval = findElement(hexval ,search);
// Convert the value to integer type
Long numval = new Long(snval);
return numval;
}
//
// Locate the named element and its value in the binary data
//
private static String findElement(byte[] hexval, String search) {
// Convert bytes to string
String hexstr = new String(hexval);
// Fixed length label/value pairs (length=14)
int nvals = hexstr.length() / 14;
String numval = "";
String[] label = new String[nvals];
String[] value = new String[nvals];
// Loop over number of label/value pairs
for (int i=0; i < nvals; i ++) {

// get start position
int st = i * 14;
// label is length 6
int endl = st + 6;
// value is length 8
int endv = endl + 8;
// extract label and value from string
label[i] = hexstr.substring(st, endl);
value[i] = hexstr.substring((endl+1), endv);
// Check whether the current pair has the label requested
if (label[i].compareTo(search) == 0) {
// trim padding from the value
numval = value[i].trim();
}

}
return numval;
}

}

6. Compile the Java code, and add the location of the class file to the system
classpath. You might have to restart Windows if you edit the CLASSPATH.

7. In the Message Mapping editor Spreadsheet pane, expand the target message
and set the target decval to the value esql:decFromBinary($source/
comp:addev6in/bval).

8. Set the target fltval to esql:fltFromBinary($source/comp:addev6in/bval).
9. Set the target intval to esql:intFromBinary($source/comp:addev6in/bval).

10. Expand the Properties target and set the values shown:
MessageType | ’addev6out

11. Create the following instance message, with appropriate MQRFH2 headers:

2366 WebSphere Message Broker Version 7.0.0.8

<comp:addev6in xmlns:comp="http://www.complex.net">
<bval>
<![CDATA[64656376616c20202031342e3238666c7476616c
2020312e34452b32696e7476616c2020202020313230]]>
</bval>
</comp:addev6in>

Results

You have created the following resources:
v Messages called addev6in and addev6out in a message definition called

COMPLEX
v A message flow called addev6, which contains the mapping file

addev6_Mapping.msgmap and ESQL file addev6.esql
v A Java source file called addev6.java and a compiled class file called

addev6.class in a place where the system CLASSPATH can find it
v Files that contain instance messages

What to do next

Now deploy the message set and message flow.

Deploy the message set and message flow:
About this task

This step is the final task in creating “Scenario D: Complex message enrichment”
on page 2345. Deploy the message set and message flow, and run the instance
message through the broker.

Procedure

1. Create a BAR file called addev6.
2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev6 to the BAR file.
3. Deploy the BAR file to the broker.
4. Put the instance documents on the input queue.

Results

The output message has the following content:
<comp:addev6out xmlns:comp="http://www.complex.net">
<decval>14.28</decval>
<fltval>1.4E+2</fltval>
<intval>120</intval>
</comp:addev6out>

What to do next

Next: You have now completed scenario D. If you want more information about
how to use maps, return to “Message mapping scenarios” on page 2318, and
explore another scenario.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:

Chapter 9. Developing message flow applications 2367

“Message mapping scenarios” on page 2318
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Scenario D: Complex message enrichment” on page 2345
This scenario demonstrates complex message enrichment and uses complex
message manipulation. Use the WebSphere Message Broker Toolkit to create
message flows and message sets, and to create and deploy broker archive (BAR)
files.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Scenario E: Resolving a choice with alternative message data:

This scenario demonstrates how to resolve a choice with alternative message data.

Before you begin

Before you start:

1. Create the appropriate message model, either by using the tooling or by
importing the message structure files (for example, C header or XML Schema
Definition files).

2. Create a message flow that has the following structure:
MQInput > Mapping > MQOutput

About this task

The following message model is used in this example:
chsmess (message)
head (xsd:string)
choice (group)
str1 (xsd:string)
int1 (xsd:int)
dur1 (xsd:duration)
footer (xsd:string)

Procedure

1. Right-click the Mapping node and click Open Map.
2. Accept the default project and name, and click Next.
3. Accept the default usage and click Next.
4. Clear Based on records in a database and click Next.
5. Select chsmess as the source message and the target message, and click OK.
6. In the Connection pane, open the source and target trees by clicking the

addition (+) icons.
7. Open the chsmess tree in the Source and Target panes in the same way.
8. In both Source and Target panes, click the addition (+) icon next to the choice

group.
9. Click head in the Message Mapping editor Source pane and drag it onto head

in the Target pane. A line joins them.
10. Repeat Step 10 for each corresponding element (str1, int1, dur1, and footer.)
11. In the Map Script | Value table, open the tree by clicking the $target + box.

2368 WebSphere Message Broker Version 7.0.0.8

12. Open the chsmess tree. A set of if-elseif elements appears.
13. Open each if or elseif element. One if or elseif statement exists for each choice;

each if or elseif statement has the condition 1=1.
14. Click the first function (for example, for str1) and change it in the Edit pane

so that it has the content $source/chsmess/head=’str1. If the input element
head has a value str1, the assignment str1 <- $source/chsmess/str1 takes
place.

15. Click the second function (for example, for int1) and change it in the
Expression editor so that it has the content $source/chsmess/head=’int1’. If
the input element head has a value int1, the assignment int1 <-
$source/chsmess/int1 takes place.

16. Click the third function (for example, for dur1) and change it in the
Expression editor so that it has the content $source/chsmess/head=’dur1’. If
the input element head has a value dur1, the assignment dur1 <-
$source/chsmess/dur1 takes place.

17. Save the mapping by clicking File > Save.

Results

You have completed this scenario. The message model contains a choice that has
been resolved by using other data in the instance message.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Scenario F: Updating the value of a message element:

This scenario demonstrates how to update the value of a message element.

Before you begin

Before you start:

1. Create the appropriate message model, either by using the WebSphere Message
Broker Toolkit, or by importing the message structure files (for example, C
header or XML Schema Definition files).

2. Create a message flow that has the following structure:
MQInput > Mapping > MQOutput

About this task

The message model used in this example has the following structure:
simple (message)

int (xsd:int)
str (xsd:str)

Chapter 9. Developing message flow applications 2369

Procedure

1. Right-click the Mapping node and click Open Map.
2. Select simple as the source message and the target message and click OK.
3. In the connection pane, open the source and target trees by clicking the

addition (+) icons.
4. Open the simple trees on both sides in the same way.
5. Select int in the Message Mapping editor Source pane, and drag it onto int in

the Target pane. A line joins them.
6. Select str in the Message Mapping editor Source pane and drag it onto str in

the Target pane. A line joins them.
7. In the Map Script | Value table, open the tree by clicking the $target + box
8. Open the simple tree in the same way; both int and str have values (for

example, int $source/simple/int and str $source/simple/str).
9. Select the value for int. The value appears in the Expression Editing pane.

10. Edit the value so that it has the content $source/simple/int + 1 and press
Enter. The value in the table is updated (the input value is incremented).

11. Select the value for str and edit it so that it has the content
esql:upper($source/simple/str), and press Enter. The value in the table is
updated (the input value to is changed to uppercase).

12. Save the mapping by clicking File > Save.

Results

You have completed this scenario. The input and output messages have the same
structure and format, but the element values have been modified.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.
Related reference:
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Developing ESQL
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.

About this task

You must create, for each node, an ESQL module in which you code the ESQL
statements and functions to tailor the behavior of the node. You can access
message content, or database content, or both, to achieve the results that you
require. ESQL modules are maintained in ESQL files, managed through the Broker
Application Development perspective.

This section provides the following information:

2370 WebSphere Message Broker Version 7.0.0.8

v “ESQL overview”
v “Managing ESQL files” on page 2390
v “Writing ESQL” on page 2413

You can use the ESQL debugger, which is part of the flow debugger, to debug the
code that you write. The debugger steps through ESQL code statement by
statement, so that you can view and check the results of every line of code that is
run.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Debugging ESQL” on page 3182
When message flow processing has paused at a breakpoint that you have set in
source code within a node that contains ESQL code, you can examine and modify
the ESQL variables in the Flow Debugger.
“Accessing broker properties from ESQL” on page 2625
You can access broker properties, at run time, from the ESQL modules in your
message flow nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

ESQL overview
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.

This section contains introductory information about ESQL.
v For descriptions of ESQL user tasks, see “Writing ESQL” on page 2413.
v For reference information about ESQL, see “ESQL reference” on page 5019.

Read the following information before you proceed:
v An overview of message flows in “Message flows overview” on page 1022.
v An overview of message trees in “The message tree” on page 1041, and the

topics within this container, paying special attention to “Logical tree structure”
on page 1042.

ESQL is based on Structured Query Language (SQL) which is in common usage
with relational databases such as DB2. ESQL extends the constructs of the SQL
language to provide support for you to work with message and database content
to define the behavior of nodes in a message flow.

Chapter 9. Developing message flow applications 2371

The ESQL code that you create to customize nodes within a message flow is
defined in an ESQL file, typically named <message_flow_name>.esql, which is
associated with the message flow project. You can use ESQL in the following
built-in nodes:
v “Compute node” on page 4340
v “Database node” on page 4354
v “DatabaseInput node” on page 4360
v “Filter node” on page 4452

You can also use ESQL to create functions and procedures that you can use in the
following built-in nodes:
v “DataDelete node” on page 4382
v “DataInsert node” on page 4386
v “DataUpdate node” on page 4390
v “Extract node” on page 4412
v “Mapping node” on page 4571
v “Warehouse node” on page 4963

To use ESQL correctly and efficiently in your message flows, you must also
understand the following concepts:
v Data types
v Variables
v Field references
v Operators
v Statements
v Functions
v Procedures
v Modules

Use the ESQL debugger, which is part of the flow debugger, to debug the code that
you write. The debugger steps through ESQL code statement by statement, so that
you can view and check the results of every line of code that is run.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“The message tree” on page 1041
A message tree is a structure that is created, either by one or more parsers when
an input message bit stream is received by a message flow, or by the action of a
message flow node.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.

2372 WebSphere Message Broker Version 7.0.0.8

“Debugging ESQL” on page 3182
When message flow processing has paused at a breakpoint that you have set in
source code within a node that contains ESQL code, you can examine and modify
the ESQL variables in the Flow Debugger.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

ESQL data types:

A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.

Within a broker, the fields of a message contain data that has a definite data type.
It is also possible to use intermediate variables to help process a message. You
must declare all such variables with a data type before use. A variable's data type
is fixed; If you try to assign values of a different type you get either an implicit
cast or an exception. Message fields do not have a fixed data type, and you can
assign values of a different type. The field adopts the new value and type.

It is not always possible to predict the data type that results from evaluating an
expression. This is because expressions are compiled without reference to any kind
of message schema, and so some type errors are not caught until run time.

ESQL defines the following categories of data. Each category contains one or more
data types.
v Boolean
v Datetime
v Null
v Numeric
v Reference
v String
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.

Chapter 9. Developing message flow applications 2373

“Representation of ESQL datetime data types” on page 5030
When your application sends a message to a broker, the way in which the message
data is interpreted depends on the content of the message itself and the
configuration of the message flow. If your application sends a message to be
interpreted either by the generic XML parser, or the MRM parser, that is tailored
by an XML physical format, the application can include date or time data that is
represented by any of the XML Schema primitive datetime data types.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Data types for elements in an MRM message” on page 6254
A parser is supplied for the body of a message in the MRM domain; it associates
each field with a specific data type.
“Data types of values from external databases” on page 5288
How database data types are implicitly cast to ESQL data types.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CAST function” on page 5245
“Supported casts” on page 5273

ESQL variables:

An ESQL variable is a data field that is used to help process a message.

You must declare a variable and state its type before you can use it. The data type
of a variable is fixed; if you code ESQL that assigns a value of a different type,
either an implicit cast to the data type of the target is implemented or an exception
is raised (if the implicit cast is not supported).

To define a variable and give it a name, use the DECLARE statement.

The names of ESQL variables are case-sensitive; therefore, make sure that you use
the correct case in all places. The simplest way to guarantee that you are using the
correct case is always to define variables using uppercase names.

The WebSphere Message Broker Toolkit marks variables that have not been
defined. Remove all these warnings before deploying a message flow.

You can assign an initial value to the variable on the DECLARE statement. If an
initial value is not specified, scalar variables are initialized with the special value
NULL, and ROW variables are initialized to an empty state. Then, you can change
the value of a variable by using the SET statement.

ESQL Variables declared at Module level 'belong' to a single node. However,
variables declared at the Schema level are also given to each node that references
that schema. So although variables at schema level are only declared once, each
ESQL node has its own copy, which is not shared with any other node (unless the
variable is marked SHARED).

2374 WebSphere Message Broker Version 7.0.0.8

Three types of built-in node can contain ESQL code and therefore support the use
of ESQL variables:
v “Compute node” on page 4340
v “Database node” on page 4354
v “DatabaseInput node” on page 4360
v “Filter node” on page 4452

Scope, lifetime, and sharing characteristics of variables

The scope, lifetime, and sharing characteristics of variables describe how
widespread and for how long a particular ESQL variable is available:

Scope Is a measure of the range over which a variable is visible. In the broker
environment, the scope of variables is typically limited to the individual
node.

Lifetime
Is a measure of the time for which a variable retains its value. In the
broker environment, the lifetime of variables varies but is typically
restricted to the life of a thread within a node.

Sharing characteristics
Indicate whether each thread has its own copy of a variable or whether
one variable is shared between many threads. In the broker environment,
variables are typically not shared.

Types of variable

External
External variables (defined with the EXTERNAL keyword) are also known
as user-defined properties, see “User-defined properties in ESQL” on page
2376. They exist for the entire lifetime of a message flow and are visible to
all messages passing through the flow. You can define external variables
only at the module and schema level. You can modify the initial values of
external variables (optionally set by the DECLARE statement) at design
time, by using the Message Flow editor, or at deployment time, by using
the Broker Archive editor. You can query and set the values of user-defined
properties at run time by using the Administration API for WebSphere
Message Broker (also known as the CMP API). For more information, see
“Setting message flow user-defined properties at run time in a CMP
application” on page 985.

Normal
Normal variables have a lifetime of just one message passing through a
node. They are visible to that message only. To define normal variables,
omit both the EXTERNAL and SHARED keywords.

Shared
Shared variables can be used to implement an in-memory cache in the
message flow, see “Optimizing message flow response times” on page
3264. Shared variables have a long lifetime and are visible to multiple
messages passing through a flow, see “Long-lived variables” on page 2378.
Shared variables exist for the lifetime of the execution group process, the
lifetime of the flow or node, or the lifetime of the node SQL that declares
the variable (whichever is the shortest). Shared variables are initialized
when the first message passes through the flow or node after each broker
startup.

Chapter 9. Developing message flow applications 2375

See also the ATOMIC option of the “BEGIN ... END statement” on page
5070. The BEGIN ATOMIC construct is useful when a number of changes
must be made to a shared variable and it is important to prevent other
instances seeing the intermediate states of the data.

Related concepts:
“User-defined properties in ESQL”
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
“Long-lived variables” on page 2378
You can use appropriate long-lived ESQL data types to cache data in memory.
Related tasks:
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“BEGIN ... END statement” on page 5070
The BEGIN ... END statement gives the statements defined within the BEGIN and
END keywords the status of a single statement.

User-defined properties in ESQL:

Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.

2376 WebSphere Message Broker Version 7.0.0.8

Before you can use a user-defined property, you must define the property in the
Message Flow editor when you construct a message flow that uses it. When you
define a UDP in the Message Flow editor, you must define a value and the
property type. The value can be a default value, which varies according to the type
of the UDP. The value that is assigned to the UDP in the Message Flow editor
takes precedence over a value that you have assigned to the UDP in your ESQL
program.

You can also define a UDP for a subflow. A UDP has global scope and is not
specific to a particular subflow. If you reuse a subflow in a message flow, and
those subflows have identical UDPs, you cannot set the UDPs to different values.

Before you deploy the message flow that uses the UDP, you can change the value
of the UDP in the Broker Archive editor. If you try to deploy a message flow that
contains a UDP that has had no value assigned to it, a deployment failure occurs.
For more information, see “Configuring a message flow at deployment time with
user-defined properties” on page 2626.

You can use UDPs to set configuration data, and use them like typical properties.
No external calls to user-written plug-ins or parsing of environment trees are
involved, and parsing costs of reading data out of trees are removed. The value of
the UDP is finalized in the variable at deployment time.

You can declare UDPs only in modules or schemas. You can query, discover, and
set UDPs at run time, to dynamically change the behavior of a message flow. For
more information, see “User-defined properties” on page 1147.

You can access UDPs from the following built-in nodes that use ESQL:
v Compute
v Database
v DatabaseInput
v Filter

For a description of how to access a UDP from a JavaCompute node, see
“Accessing message flow user-defined properties from a JavaCompute node” on
page 2659.
Related concepts:
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
“ESQL variables” on page 2374
An ESQL variable is a data field that is used to help process a message.
Related tasks:
“Configuring a message flow at deployment time with user-defined properties” on
page 2626
Use user-defined properties (UDPs) to configure message flows at deployment and
run time, without modifying program code. You can give a UDP an initial value
when you declare it in your program, or when you use the Message Flow editor to
create or modify a message flow.
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data

Chapter 9. Developing message flow applications 2377

type of character.
“Accessing message flow user-defined properties from a JavaCompute node” on
page 2659
Customize a JavaCompute node to access properties that you have associated with
the message flow in which the node is included.
Related reference:
“ESQL variables” on page 5048
ESQL variables can be described as external variables, normal variables, or shared
variables; their use is defined in the DECLARE statement.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.

Long-lived variables:

You can use appropriate long-lived ESQL data types to cache data in memory.

Sometimes data has to be stored beyond the lifetime of a single message passing
through a flow. One way to store this data is to store the data in a database. Using
a database is good for long-term persistence and transactionality, but access
(particularly write access) is slow.

Alternatively, you can use appropriate long-lived ESQL data types to provide an
in-memory cache of the data for a certain period of time. Using long-lived ESQL
data types makes access faster than from a database, although this speed is at the
expense of shorter persistence and no transactionality.

You create long-lifetime variables by using the SHARED keyword on the
DECLARE statement. For further information, see “DECLARE statement” on page
5117.

The following sample demonstrates how to define shared variables using the
DECLARE statement. The sample demonstrates how to store routing information
in a database table and use shared variables to store the database table in memory
in the message flow to improve performance.
v Message Routing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Long-lived data types have an extended lifetime beyond that of a single message
passing through a node. Long-lived data types are shared between threads and
exist for the life of a message flow (the time between configuration changes to a
message flow), as described in the following tables.

2378 WebSphere Message Broker Version 7.0.0.8

Table 23. Short lifetime variables

Scope Life Shared

Schema & Module Node Thread within node Not at all

Routine Local Node Thread within
routine

Not at all

Block Local Node Thread within block Not at all

Table 24. Long lifetime variables

Scope Life Shared

Node Shared Node Life of node All threads of flow

Flow Shared Flow Life of flow All threads of flow

Features of long-lived ESQL data types include:
v The ability to handle large amounts of long-lifetime data.
v The joining of data to messages fast.
v On multiple processor machines, multiple threads can access the same data

simultaneously.
v Subsequent messages can access the data left by a previous message.
v Long lifetime read-write data can be shared between threads, because there is no

long-term association between threads and messages.
v In contrast to data stored in database tables in the environment, this type of data

is stored privately; that is, within the broker.
v ROW variables can be used to create a modifiable copy of the input message;

see “ESQL ROW data type” on page 5038.
v It is possible to create shared constants.

A typical use of these data types might be in a flow in which data tables are
'read-only' as far as the flow is concerned. Although the table data is not actually
static, the flow does not change it, and thousands of messages pass through the
flow before there is any change to the table data.

Examples include:
v A table which contains a day's credit card transactions. The table is created each

day and that day's messages are run against it. Then the flow is stopped, the
table updated and the next day's messages run. These flows might perform
better if they cache the table data rather than read it from a database for each
message.

v The accumulation and integration of data from multiple messages.
Related concepts:
“ESQL variables” on page 2374
An ESQL variable is a data field that is used to help process a message.
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
Related reference:
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable

Chapter 9. Developing message flow applications 2379

and, optionally, its initial value.
“ESQL ROW data type” on page 5038
The ROW data type holds a tree structure. A row in a database is a particular type
of tree structure, but the ROW data type is not restricted to holding data from
database rows.

Broker properties:

For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.

Broker properties are divided into four categories:
v Properties that relate to a specific node
v Properties that relate to nodes in general
v Properties that relate to a message flow
v Properties that relate to the execution group

For a description of the broker, flow, and node properties that are accessible from
ESQL and Java, see “Broker properties that are accessible from ESQL and Java” on
page 5302.

Broker properties have the following characteristics.
v They are grouped by broker, execution group, flow, and node.
v They are case-sensitive. Their names always start with an uppercase letter.
v They return NULL if they do not contain a value.

All nodes for which user programs can edit ESQL support access to broker
properties. These nodes are:
v Compute nodes
v Database nodes
v DatabaseInput nodes
v Filter nodes
v All derivatives of these nodes

User-defined properties can be queried, discovered, and set at run time to
dynamically change the behavior of a message flow. You can use the
Administration API for WebSphere Message Broker(CMP API) to manipulate these
properties, which can be used by a systems monitoring tool to perform automated
actions in response to situations that it detects in the monitored systems. For more
information, see “User-defined properties” on page 1147.

A complex property is a property to which you can assign multiple values. Complex
properties are displayed in a table in the Properties view, where you can add, edit,
and delete values, and change the order of the values in the table. You cannot
promote complex properties; therefore, they are not shown in the Promote
properties dialog box. Nor can you configure complex properties; therefore, they
are not supported in the Broker Archive editor. For an example of a complex
property, see the Query elements property of the DatabaseRoute node.

For more information about editing the properties of a node, see “Configuring a
message flow node” on page 1503.
Related concepts:

2380 WebSphere Message Broker Version 7.0.0.8

“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
Related tasks:
“Accessing broker properties from ESQL” on page 2625
You can access broker properties, at run time, from the ESQL modules in your
message flow nodes.
“Accessing broker properties from the JavaCompute node” on page 2658
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your Java programs. It can be useful, during
the run time of your code, to have real-time access to details of a specific node,
flow, or broker.
Related reference:
“Broker properties that are accessible from ESQL and Java” on page 5302
You can access broker, message flow, and node properties from ESQL and Java.
“DatabaseRoute node” on page 4373
Use the DatabaseRoute node to route messages using information from a database
in conjunction with XPath expressions.

ESQL field references:

An ESQL field reference is a sequence of period-separated values that identify a
specific field (which might be a structure) within a message tree or a database
table.

The path from the root of the information to the specific field is traced using the
parent-child relationships.

A field reference is used in an ESQL statement to identify the field that is to be
referenced, updated, or created within the message or database table. For example,
you might use the following identifier as a message field reference:

You can use an ESQL variable of type REFERENCE to set up a dynamic pointer to
contain a field reference. This might be useful in creating a fixed reference to a
commonly-referenced point within a message; for example the start of a particular
structure that contains repeating fields.

A field reference can also specify element types, XML namespace identifications,
indexes and a type constraint; see “ESQL field reference overview” on page 5049
for further details.

The first name in a field reference is sometimes known as a Correlation name.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Body.Invoice.Payment

Chapter 9. Developing message flow applications 2381

“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL field reference overview” on page 5049
You can use ESQL field references to form paths to message body elements.

ESQL operators:

An ESQL operator is a character or symbol that you can use in expressions to
specify relationships between fields or values.

ESQL supports the following groups of operators:
v Comparison operators, to compare one value to another value (for example, "less

than"). Refer to “ESQL simple comparison operators” on page 5057 and “ESQL
complex comparison operators” on page 5058 for details of the supported
operators and their use.

v Logical operators, to perform logical operations on one or two terms (for
example, AND). Refer to “ESQL logical operators” on page 5062 for details of
the supported operators and their use.

v Numeric operators, to indicate operations on numeric data (for example, +).
Refer to “ESQL numeric operators” on page 5064 for details of the supported
operators and their use.

There are some restrictions on the application of some operators to data types; not
all lead to a meaningful operation. These are documented where they apply to
each operator.

Operators that return a Boolean value (TRUE or FALSE), for example the "greater
than" operator, are also known as predicates.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:

2382 WebSphere Message Broker Version 7.0.0.8

Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ESQL operators” on page 5056
A list of the various groups of operators that ESQL supports.

ESQL statements:

An ESQL statement is an instruction that represents a step in a sequence of actions
or a set of declarations.

ESQL provides a large number of different statements that perform different types
of operation. All ESQL statements start with a keyword that identifies the type of
statement and end with a semicolon. An ESQL program consists of a number of
statements that are processed in the order they are written.

As an example, consider the following ESQL program:

This program consists of two statements. The first starts with the keyword
DECLARE and ends at the first semicolon. The second statement starts with the
keyword SET and ends at the second semicolon. These two statements are written
on separate lines and it is conventional (but not required) that they be so. You will
notice that the language keywords are written in capital letters. This is also the
convention but is not required; mixed case and lowercase are acceptable.

The first statement declares a variable called x of type INTEGER, that is, it reserves
a space in the computer's memory large enough to hold an integer value and
allows this space to be subsequently referred to in the program by the name x. The
second statement sets the value of the variable x to 42. A number appearing in an
ESQL program without decimal point and not within quotation marks is known as
an integer literal.

ESQL has a number of data types and each has its own way of writing literal
values. These are described in “ESQL data types” on page 2373.

For a full description of all the ESQL statements, see “ESQL statements” on page
5067.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

DECLARE x INTEGER;
SET x = 42;

Chapter 9. Developing message flow applications 2383

“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

ESQL nested statements:

An ESQL nested statement is a statement that is contained within another
statement.

Consider the following ESQL program fragment:

In this example, you can see a single IF statement containing the optional ELSE
clause. Both the IF and ELSE portions contain three nested statements. Those
within the IF clause are processed if the operator > (greater than) returns the value
TRUE (that is, if Size has a value greater than 100.00); otherwise, those within the
ELSE clause are processed.

Many statements can have expressions nested within them, but only a few can
have statements nested within them. The key difference between an expression and
a statement is that an expression calculates a value to be used, whereas a statement
performs an action (usually changing the state of the program) but does not
produce a value.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

IF Size> 100.00 THEN
SET X = 0;
SET Y = 0;
SET REVERSE = FALSE;

ELSE
SET X = 639;
SET Y = 479;
SET REVERSE = TRUE;

END IF;

2384 WebSphere Message Broker Version 7.0.0.8

“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

ESQL functions:

A function is an ESQL construct that calculates a value from a number of given
input values.

A function usually has input parameters and can, but does not usually have,
output parameters. It returns a value calculated by the algorithm described by its
statement. This statement is usually a compound statement, such as BEGIN... END,
because this allows an unlimited number of nested statements to be used to
implement the algorithm.

ESQL provides a number of predefined, or “built-in”, functions which you can use
freely within expressions. You can also use the CREATE FUNCTION statement to
define your own functions.

When you define a function, you must give it a unique name. The name is
handled in a non-case sensitive way (that is, use of the name with any combination
of uppercase and lowercase letters matches the declaration). This is in contrast to
the names that you declare for schemas, constants, variables, and labels, which are
handled in a case sensitive way, and which you must specify exactly as you
declared them.

Consider the following ESQL program fragment:

In this example, the function SQRT (square root) is given the value inside the
brackets (itself the result of an expression, a divide operation) and its result is used
in a further expression, a multiply operation. Its return value is assigned to the
variable Diameter. See “Calling ESQL functions” on page 5168 for information
about all the built-in ESQL functions.

In addition, an ESQL expression can refer to a function in another broker schema
(that is, a function defined by a CREATE FUNCTION statement in an ESQL file in
the same or in a different dependent project). To resolve the name of the called
function, you must do one of the following:

SET Diameter = SQRT(Area / 3.142) * 2;

Chapter 9. Developing message flow applications 2385

v Specify the fully-qualified name (<SchemaName>.<FunctionName>) of the called
function.

v Include a PATH statement to make all functions from the named schema visible.
Note that this technique only works if the schemas do not contain
identically-named functions. The PATH statement must be coded in the same
ESQL file, but not within any MODULE.

Note that you cannot define a function within an EVAL statement or an EVAL
function.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“Calling ESQL functions” on page 5168
Most ESQL functions belong to a schema called SQL and this is particularly useful
if you have functions with the same name.
“CREATE FUNCTION statement” on page 5091
The CREATE FUNCTION statement defines a callable function or procedure.
“CREATE MODULE statement” on page 5101
The CREATE MODULE statement creates a module, which is a named container
associated with a node.
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.

ESQL procedures:

An ESQL procedure is a subroutine that has no return value. It can accept input
parameters from, and return output parameters to, the caller.

Procedures are very similar to functions. The main difference between them is that,
unlike functions, procedures have no return value. Thus they cannot form part of
an expression and are invoked by using the CALL statement. Procedures
commonly have output parameters

You can implement a procedure in ESQL (an internal procedure) or as a database
stored procedure (an external procedure). The ESQL procedure must be a single

2386 WebSphere Message Broker Version 7.0.0.8

ESQL statement, although that statement can be a compound statement such as
BEGIN END. You cannot define a procedure within an EVAL statement or an
EVAL function.

When you define a procedure, give it a name. The name is handled in a non-case
sensitive way (that is, use of the name with any combination of uppercase and
lowercase letters matches the declaration). That is in contrast to the names that you
declare for schemas, constants, variables, and labels, which are handled in a case
sensitive way, and which you must specify exactly as you declared them.

An ESQL expression can include a reference to a procedure in another broker
schema (defined in an ESQL file in the same or a different dependent project). If
you want to use this technique, either fully qualify the procedure, or include a
PATH statement that sets the qualifier. The PATH statement must be coded in the
same ESQL file, but not within a MODULE.

An external database procedure is indicated by the keyword EXTERNAL and the
external procedure name. This procedure must be defined in the database and in
the broker, and the name specified with the EXTERNAL keyword and the name of
the stored database procedure must be the same, although parameter names do not
have to match. The ESQL procedure name can be different from the external name
it defines.

Overloaded procedures are not supported to any database. (An overloaded
procedure is one that has the same name as another procedure in the same
database schema which has a different number of parameters, or parameters with
different types.) If the broker detects that a procedure has been overloaded, it
raises an exception.

Dynamic schema name resolution for stored procedures is supported; when you
define the procedure you must specify a wildcard for the schema that is resolved
before invocation of the procedure by ESQL. This is explained further in “Invoking
stored procedures” on page 2503.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Invoking stored procedures” on page 2503
To invoke a procedure that is stored in a database, use the ESQL CALL statement.
The stored procedure must be defined by a CREATE PROCEDURE statement that
has a Language clause of DATABASE and an EXTERNAL NAME clause that
identifies the name of the procedure in the database and, optionally, the database
schema to which it belongs.
Related reference:

Chapter 9. Developing message flow applications 2387

“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CREATE FUNCTION statement” on page 5091
The CREATE FUNCTION statement defines a callable function or procedure.
“CREATE MODULE statement” on page 5101
The CREATE MODULE statement creates a module, which is a named container
associated with a node.
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.

ESQL modules:

A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.

A module must begin with the CREATE node_type MODULE statement and end with
an END MODULE statement. The node_type must be one of COMPUTE, DATABASE,
DATABASEEVENT, or FILTER. For DatabaseInput nodes, the required node_type is
DATABASEEVENT. For Compute, Database, and Filter nodes the required
node_type is the same as the node. For example, you must use the COMPUTE
node_type in ESQL modules for Compute nodes. For Compute, Database and Filter
nodes, the entry point of the ESQL code is the function named MAIN, which has
MODULE scope. ESQL modules for DatabaseInput nodes do not contain the
MAIN function, but contain three procedures named READEVENTS,
BUILDMESSAGE, and ENDEVENT. For more information about these three
procedures, see “Configuring a DatabaseInput node” on page 2120.

Each module is identified by a name which follows CREATE node_type MODULE. The
name might be created for you with a default value, which you can modify, or you
can create it yourself. The name is handled in a non-case-sensitive way (that is, use
of the name with any combination of uppercase and lowercase letters matches the
declaration). This is in contrast to the names that you declare for schemas,
constants, variables, and labels, which are handled in a case-sensitive way, and
which you must specify exactly as you declared them.

You must create the code for a module in an ESQL file which has a suffix of .esql.
You must create this file in the same broker schema as the node that references it.
There must be one module of the correct type for each corresponding node, and it
is specific to that node and cannot be used by any other node.

When you create an ESQL file (or complete a task that creates one), you indicate
the message flow project and broker schema with which the file is associated and
specify a name for the file.

Within the ESQL file, the name of each module is determined by the value of the
corresponding property of the message flow node. For example, the property ESQL
Module for the Compute node specifies the name of the module in the ESQL file for
that node. The default value for this property is the name of the node. You can

2388 WebSphere Message Broker Version 7.0.0.8

specify a different name, but you must ensure that the value of the property and
the name of the module that provides the required function are the same.

For Compute, Database, and Filter nodes, the module must contain the function
MAIN, which is the entry point for the module. This function is included
automatically if the module is created for you. Within MAIN, you can code ESQL
to configure the behavior of the node. If you include ESQL within the module that
declares variables, constants, functions, and procedures, these are of local scope
only and can be used within this single module.

For DatabaseInput nodes, the module must contain the three procedures
READEVENTS, BUILDMESSAGE, and ENDEVENT. These procedures are included
automatically, together with comments to describe the procedure, if the module is
created for you. Within the three procedures, you can code ESQL to configure the
behavior of the node, see “Configuring a DatabaseInput node” on page 2120. If
you include ESQL within the module that declares variables, constants, functions,
and procedures, these are of local scope only and can be used within this single
module.

If you want to reuse ESQL constants, functions, or procedures, you must declare
them at broker schema level. You can then refer to these constants, functions or
procedures from any resource within that broker schema, in the same or another
project. If you want to use this technique, either fully qualify the procedure, or
include a PATH statement that sets the qualifier. The PATH statement must be
coded in the same ESQL file, but not within any MODULE.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CREATE FUNCTION statement” on page 5091
The CREATE FUNCTION statement defines a callable function or procedure.
“CREATE MODULE statement” on page 5101
The CREATE MODULE statement creates a module, which is a named container
associated with a node.
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.

Chapter 9. Developing message flow applications 2389

“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

Managing ESQL files
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.

About this task

The ESQL code for a node is contained in a module that is associated with the
node. Each module must be created in an ESQL file (file extension .esql) . You can
change the name of the module in the ESQL file from its default value of
MessageFlow_NodeName, where MessageFlow is the name of the message flow and
NodeName is the name of the node. The name of the module in the ESQL file must
match the name specified for the module in the ESQL Module property of the
corresponding node.

The following topics describe how to manage ESQL files.
v “Creating an ESQL file” on page 2391
v “Opening an existing ESQL file” on page 2393
v “Creating ESQL for a node” on page 2394
v
v “Modifying ESQL for a node” on page 2398
v “Saving an ESQL file” on page 2399
v “Copying an ESQL file” on page 2401
v “Renaming an ESQL file” on page 2405
v “Moving an ESQL file” on page 2406
v “Changing ESQL preferences” on page 2408
v “Deleting ESQL for a node” on page 2411
v “Deleting an ESQL file” on page 2412
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

2390 WebSphere Message Broker Version 7.0.0.8

“ESQL editor” on page 6798
The ESQL editor is the default editor provided by the Broker Application
Development perspective for editing ESQL (.esql) files.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Creating an ESQL file:

When you include a node in your message flow that requires ESQL to customize
its function (the Compute, Database, DatabaseInput, and Filter nodes), you must
code the ESQL statements that provide the customization in an ESQL module in an
ESQL file. You can use the same ESQL file for more than one module.

Before you begin

Before you start:

For background information, see “ESQL overview” on page 2371.

To complete this task, you must have created a message flow project to contain
your ESQL file.

About this task

ESQL files are stored in a file system or in a shared repository. If you are using a
file system, you can use the local file system or a shared drive. If you store files in
a repository, you can use any of the available repositories that are supported by
Eclipse, for example CVS.

To create an ESQL file, complete the following steps.

Procedure

1. Click File > New > Message Flow ESQL File.
You can also press Ctrl+N. A dialog box opens, in which you can select the
wizard to create a new object. Click Message Brokers; a list of objects that you
can create for WebSphere Message Broker is shown. Click Message Flow ESQL
File, then click Next. The New Message Flow ESQL File wizard opens.

2. Enter the name of the message flow project in which to create the ESQL file.
You must enter the name of an existing message flow project. The dialog box
opens with the current project name entered in the project name field. You can
accept this value or change it to specify a different project. You can also click
Browse to view a list of valid projects (projects that are defined and shown in
the Navigator view), and select the appropriate value from that list. The list is
filtered to only show projects in the active working set.
If you type in the name of a project that does not exist, the error message The
specified project does not exist is shown in the dialog box and you cannot
continue until you specify a valid project name.

3. If you want the ESQL file to be defined in a specific broker schema, enter the
name of the broker schema in the appropriate entry field, or click Browse to

Chapter 9. Developing message flow applications 2391

select the broker schema from the list of valid broker schema for this project. (If
the default broker schema is the only one that is defined in this project, Browse
is disabled.)

4. Enter a name for the new ESQL file. If you enter a name that is already in use
for an ESQL file in this project, the error message The resource <name>.esql
already exists is shown and you must specify a different name.
When creating ESQL files, the overall file path length must not exceed 256
characters, due to a Windows file system limitation. If you try to add a
message flow to a broker archive file with ESQL or mapping files with a path
length that exceeds 256 characters, the compiled message flow is not generated
and cannot be deployed. Therefore, make sure that the names of your ESQL
files, mapping files, projects, and broker schema are as short as possible.

5. Click Finish.

Results

The ESQL file opens in the editor, where you can edit the file, then save it.

An ESQL file can also be created automatically for you. You can right-click a
Compute, Database, DatabaseInput, or Filter node, then click Open ESQL. If the
module identified by the appropriate property does not already exist in the broker
schema, a module is created automatically. This module is created in the file
<message_flow_name>.esql in the same broker schema in the same project as the
<message_flow_name>.msgflow file. If that ESQL file does not already exist, that is
also created for you.

The contents of a single ESQL file do not have any specific relationship with
message flows and nodes. It is your decision which modules are created in which
files (unless the specified module, identified by the appropriate property, is created
by default in the file <message_flow_name>.esql as described above). Monitor the
size and complexity of the ESQL in each file, and split the file if it becomes
difficult to view or manage.

If you create reusable subroutines (at broker schema level) in an ESQL file, you
might want to refer to these routines from ESQL modules in another project. To
refer to the routines, specify that the project that runs the subroutines depends on
the project in which the ESQL file containing them is defined. You can specify this
behavior when you create the second project, or you can update project
dependencies by selecting the project, clicking Properties, and updating the
dependencies in the Project Reference page of the Properties dialog box.
Related concepts:
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“Development repository” on page 45
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

2392 WebSphere Message Broker Version 7.0.0.8

“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Opening an existing ESQL file:

You can add to and modify ESQL code that you have created in an ESQL file.

Before you begin

Before you start:

To complete this task, you must have created an ESQL file, as described in
“Creating an ESQL file” on page 2391.

About this task

To open an existing ESQL file, complete the following steps.

Procedure

1. In the Broker Development view, double-click the ESQL file that you want to
open. The file is opened in the editor view.

2. Edit the contents of file to make your changes. The file can contain modules
that relate to specific nodes in a message flow, PATH statements, and
declarations at broker schema level, such as reusable constants and procedures.
You can select the content that you want to work with by selecting its name in
the Outline view. The code for the selected resource is highlighted.

3. Save and close the ESQL file.

Results

You can also open an ESQL file when you have a message flow open in the editor
view by right-clicking an appropriate node (a Compute, Database, DatabaseInput,
or Filter node), then clicking Open ESQL. In this case, the ESQL file that contains

Chapter 9. Developing message flow applications 2393

this module is opened, and the module for the selected node is highlighted in the
editor view.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Creating ESQL for a node:

Create ESQL code to customize the behavior of a Compute, Database,
DatabaseInput, or Filter node in an ESQL file.

Before you begin

Before you start:

This topic assumes that you have created an ESQL file. For more information, see
“Creating an ESQL file” on page 2391.

About this task

In the ESQL file, create a module that is associated with a node in your message
flow. A module can be associated with only one node of a particular type
(Compute, Database, DatabaseInput, or Filter). Within the module, you can create
and use functions and procedures in addition to the supplied statements and
functions. You can also create local constants and variables.

If you have created constants, functions, or procedures at the broker schema level,
you can also refer to these in the module. You can define routines at a level at
which many different modules can use them, which can save you development
time and maintenance effort.

2394 WebSphere Message Broker Version 7.0.0.8

To create ESQL for a node, complete the following steps.

Procedure

1. In the Broker Development view, double-click the message flow that includes
the node for which you want to create ESQL. The message flow opens in the
editor view.

2. Right-click a Compute, Database, DatabaseInput, or Filter node, then click
Open ESQL. The default ESQL file for this message flow,
message_flow_name.esql, opens in the editor view. If the file does not already
exist, it is created, containing a skeleton module for this node at the end. The
exact content depends on the type of node.
If you have already created the file, it is opened in the editor view and a new
module is created and highlighted.
The following module is created for a Compute node:
CREATE COMPUTE MODULE module_name

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- CALL CopyMessageHeaders();
-- CALL CopyEntireMessage();
RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);
WHILE I < J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;

END WHILE;
END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;

END;
END MODULE;

The module name is determined by the value that you have set for the
corresponding node property. The default name is message_flow_name_node_type.
The main function contains calls to two procedures (described in the following
list) that are declared in the Compute node module following the function
Main. These calls are commented out. To include the function that they
provide, uncomment the lines and place them at the appropriate point in the
ESQL that you create for Main.

CopyMessageHeaders
This procedure loops through the headers contained in the input
message and copies each one to the output message.

CopyEntireMessage
This procedure copies the entire contents of the input message,
including the headers, to the output message.

If you create an ESQL module for a Database node, the following module is
created:

CREATE DATABASE MODULE module_name
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

RETURN TRUE;
END;

END MODULE;

Chapter 9. Developing message flow applications 2395

For a DatabaseInput node, the module that is created contains three
procedures, ReadEvents, BuildMessage, and EndEvent. Each of these
procedures contains boilerplate text, which describes how the procedure works.
For more information about configuring DatabaseInput nodes, see “Configuring
a DatabaseInput node” on page 2120. For a DatabaseInput node, the following
first line of the module is created:

For a Filter node, the module is identical to the module created for the
Database node, except for the first line, which reads:

3. Add ESQL to this file to customize the behavior of the node.
For Compute, Database, or Filter nodes, start by adding ESQL statements in the
Main function, (after the BEGIN statement, and before RETURN TRUE). For
DatabaseInput nodes, add ESQL statements in the ReadEvents, BuildMessage,
and EndEvent procedures. You can add DECLARE statements in the module
that are not within the Main function. To add a new line into the file, press
Enter.
To help you to code valid ESQL, the editor shows a list of valid statements and
functions at the point of the cursor. To start this assistance, click Edit > Content
Assist. On some systems, you can use the key combination Ctrl+Space. Scroll
through the list to find and highlight the statement or function that you want,
and press Enter. The appropriate code is inserted into your module.
Content assistance is provided in the following areas:
v Applicable keywords, based on language syntax.
v Blocks of code that go together, such as BEGIN END;.
v Constants that you have defined, identifiers, labels, functions, and

procedures that can be used, where the routines can be in any projects, even
if the current project does not reference them.

v Database schema and table names after the database correlation name, table
column names in INSERT, UPDATE, DELETE, and SELECT statements, and,
in most cases, the WHERE clauses of those statements.

v Elements of message field reference: runtime domain (parser) names, format
of type expression, namespace identifiers, namespace-qualified element and
attribute names, and format of index expression.

v Content in the Properties folder under the output message.
v For the DECLARE NAMESPACE statement, target namespaces of message

sets and schema names.
Content assistance works only if the ESQL can be parsed correctly. Errors such
as END missing after BEGIN, and other unterminated block statements, cause
parser failures and no content assistance is provided. Try content assistance in
other areas around the statement where it does not work to narrow down the
point of error. Alternatively, save the ESQL file; saving the file causes
validation, and all syntax errors are written to the Problems view. Refer to the
errors reported to understand and correct the ESQL syntax. If you use content
assistance to generate most statements (such as block statements), these
statements are correctly entered and there is less opportunity for error.

4. When you have finished working with this module, save and close the ESQL
file.

CREATE DATABASEEVENT MODULE module_name

CREATE FILTER MODULE module_name

2396 WebSphere Message Broker Version 7.0.0.8

Results

You can also open the ESQL file directly and create the module in that file by
using the editor:
1. Open the ESQL file in which you want to create the module.
2. In the editor view, position your cursor on a new line and use content

assistance to select the appropriate module skeleton for this type of node, for
example CREATE COMPUTE MODULE END MODULE;. You can also type in this text,
but you must ensure that what you type is consistent with the required
skeleton, shown earlier. Use content assistance to give you additional help by
inserting only valid ESQL, and by inserting matching end statements (for
example, END MODULE;) where they are required.

3. Complete the coding of the module as appropriate.

Whichever method you use to open the ESQL file, be aware that the editor
provides functions to help you to code ESQL. This section refers to content
assistance; other functions are available. For information about these functions, see
“ESQL editor” on page 6798.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Modifying ESQL for a node” on page 2398
To change the customization of a node that requires ESQL (Compute, Database,
DatabaseInput, or Filter node), modify the ESQL statements in the module that you
created for that node.
“Changing ESQL editor settings” on page 2409
When you open an ESQL file in the editor view, you can tailor the editor
appearance by changing editor settings.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ESQL editor” on page 6798
The ESQL editor is the default editor provided by the Broker Application
Development perspective for editing ESQL (.esql) files.

Chapter 9. Developing message flow applications 2397

Modifying ESQL for a node:

To change the customization of a node that requires ESQL (Compute, Database,
DatabaseInput, or Filter node), modify the ESQL statements in the module that you
created for that node.

Before you begin

Before you start:

This topic assumes that you have created ESQL code for a file. For more
information, see “Creating ESQL for a node” on page 2394.

About this task

To modify ESQL code, complete the following steps.

Procedure

1. In the Broker Development view, select the message flow that you want to
work with and double-click it. The message flow is opened in the editor view.

2. Right-click the node that corresponds to the ESQL module that you want to
modify and click Open ESQL. The ESQL file is opened in the editor view. The
module for this node is highlighted.

3. Make the required changes in the module by entering new statements,
changing existing statements by over-typing, or deleting statements by using
the Delete or backspace keys. You can use Content Assist, available from the
Edit menu or, on some systems, by pressing Ctrl+Space). To get Content Assist
to work with message references, you must set up a project reference from the
project containing the ESQL to the project containing the message set. For
information about setting up a project reference, see “Project references” on
page 44.

4. You can change the name of the module with which you are working by
over-typing the current name with the new one. In this case, you must also
change the node property ESQL Module to reflect the new name, to ensure that
the correct ESQL code is deployed with the node.

5. When you have finished working with this module, save and close the ESQL
file.

Results

You can also open the ESQL file directly by double-clicking it in the Broker
Development view. You can select the module with which you want to work from
the Outline view.

The editor provides functions that you can use to help you modify your ESQL
code. These functions are described in “ESQL editor” on page 6798.

You can also modify the ESQL source by clicking Source > Format. This option
formats all selected lines of code (unless only partially selected, when they are
ignored), or, if no lines are selected, formats the entire file (correcting alignments
and indentation).

Adding comments to ESQL:

2398 WebSphere Message Broker Version 7.0.0.8

About this task

You can add and remove comments in your ESQL code.

Procedure

v To change an existing line of code into a comment line, click Source >
Comment.

v To change a comment line to a code line, click Source > Uncomment.
v To create a new comment line, press Enter to create a new line, then either type

the comment identifier -- or click Source > Comment. You can enter any text
after the identifier; everything that you type is ignored by the ESQL editor.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Creating ESQL for a node” on page 2394
Create ESQL code to customize the behavior of a Compute, Database,
DatabaseInput, or Filter node in an ESQL file.
“Saving an ESQL file”
When you edit an ESQL file, you can save it to preserve the additions and
modifications that you have made, and to force the editor to validate the content of
the file.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ESQL editor” on page 6798
The ESQL editor is the default editor provided by the Broker Application
Development perspective for editing ESQL (.esql) files.

Saving an ESQL file:

When you edit an ESQL file, you can save it to preserve the additions and
modifications that you have made, and to force the editor to validate the content of
the file.

Chapter 9. Developing message flow applications 2399

Before you begin

Before you start:

This task assumes that you have created or opened an ESQL file. For more
information, see “Creating an ESQL file” on page 2391 or “Opening an existing
ESQL file” on page 2393.

About this task

To save an ESQL file, complete the following steps.

Procedure

1. Change the contents of the ESQL file.
2. Save the file by clicking File > Save or File > Save All.

When you save the file, the validator is called by the editor to check that the
ESQL obeys all grammar and syntax rules (specified by the syntax diagrams
and explanations in “ESQL reference” on page 5019).
You can request additional validation when you set ESQL preferences:
a. Click Window > Preferences. The Preferences dialog box is displayed.
b. Expand Broker Development and ESQL, then click Validation.
c. Select the level of validation that you require for each category of error:

1) Unresolved identifiers
2) Message references do not match message definitions
3) Database references do not match database schema
4) Use of deprecated keywords
The default level is warning; you can change this value to error or ignore.
Validating message definitions can affect response times in the editor,
particularly if you have complicated ESQL that makes many references to a
complex message definition. You might choose to delay this validation. Call
validation when you have finished developing the message flow and are
about to deploy it, to avoid runtime errors. For each error found, the editor
writes the code line number and the reason for the error; errors are created
as entries in the Problems view.

3. If you double-click the error, the editor positions your cursor on the line in

which it found that error. The line is also highlighted by the error icon .
The editor might also find potential error situations, which it highlights as

warnings (with the warning icon); the editor also writes these warnings to
the Problems view. For example, you might have included a BROKER SCHEMA
statement that references an invalid schema (namespace).
Check your code, and make the corrections required by that statement or
function.

Save As:
About this task

You can save a copy of this ESQL file by using File > Save As.

Procedure

1. Click File > Save As.

2400 WebSphere Message Broker Version 7.0.0.8

2. Specify the message flow project in which you want to save a copy of the ESQL
file. The project name defaults to the current project. You can accept this name,
or choose another name from the valid options that are displayed in the File
Save dialog box.

3. Specify the name for the new copy of the ESQL file. To save this ESQL file in
the same project, either rename it, or confirm that you want to overwrite the
current copy (that is, copy the file to itself).
To save this ESQL file in another project, the project must exist. You can save
the file with the same or another name in another project.

4. Click OK. The message flow is saved and the message flow editor validates its
contents. The editor provides a report of all errors that it finds in the Problems
view.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Copying an ESQL file:

You can copy an ESQL file as a starting point for a new ESQL file that has similar
function.

Before you begin

Before you start:

This topic assumes that you have created an ESQL file. For more information, see
“Creating an ESQL file” on page 2391.

Chapter 9. Developing message flow applications 2401

About this task

To copy an ESQL file, complete the following steps.

Procedure

1. In the Broker Development view, right-click the ESQL file that you want to
copy, and click Copy.
Alternatively, you can select the ESQL file and click Edit > Copy.

2. Right-click the broker schema in the message flow project to which you want to
copy the ESQL file and click Paste. You can copy the ESQL file to the same
broker schema within the same message flow project, or to a different broker
schema within the same message flow project, or to a broker schema in a
different message flow project.
When you copy an ESQL file, the associated files (message flow, and mapping
if present) are not automatically copied to the same target message flow project.
If you want these files copied as well, you must do this explicitly following this
procedure.
If you want to use this ESQL file with another message flow, ensure that the
modules within the ESQL file match the nodes that you have in the message
flow, and that the node properties are set correctly.

Results

You can also copy an ESQL file by using File > Save As; for more information, see
“Saving an ESQL file” on page 2399.
Related concepts:
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Creating ESQL for a node” on page 2394
Create ESQL code to customize the behavior of a Compute, Database,
DatabaseInput, or Filter node in an ESQL file.
“Saving an ESQL file” on page 2399
When you edit an ESQL file, you can save it to preserve the additions and
modifications that you have made, and to force the editor to validate the content of
the file.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your

2402 WebSphere Message Broker Version 7.0.0.8

message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Analyzing planned changes to ESQL objects:

Use impact analysis to analyze the effect of renaming or moving ESQL objects, or
moving or changing the broker schema of an ESQL file.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message flow project” on page 1425
v “Creating an ESQL file” on page 2391
v “Enabling and disabling indexing” on page 1454

About this task

This information covers the following tasks:
v “Renaming ESQL objects”
v “Moving ESQL objects” on page 2404
v “Moving an ESQL file” on page 2404

If a node in the message flow contains either an ESQL path expression, or an
XPath expression, it might not be possible to unambiguously determine which
structure in the message set the expression refers to. Ambiguity occurs when
multiple constructs have the same name, and the parent of the construct cannot be
determined. For example, consider a message definition that has the following
constructs:

Global element declaration with name G1
Global element declaration with name G2
Global element declaration with name G3
G2 contains an element reference to global element G1
G3 contains a local element declaration with name G1

An ESQL path is in the MRM domain as follows:
InputRoot.MRM.ns1:G1

The construct G1 cannot be unambiguously determined. It can refer to G2/G1 or
G3/G1. In this case, impact analysis reports both G2/G1 and G3/G1 as potential
impacts. The list of secondary impacts might contain references to elements that
are not in fact affected by the primary change.

Renaming ESQL objects:
About this task

You can rename the following objects:
v ESQL modules

Chapter 9. Developing message flow applications 2403

v Schema-scope ESQL routines
v Schema-scope ESQL constants

Procedure

1. In the Broker Development view, right-click the object that you want to rename,
then click Impact Analysis > Rename.

2. In the Impact Analysis - Rename Artifact window, type the new name of the
object, then click Analyze Impact.
The Rename Artifact dialog box shows the results of impact analysis, listing
primary and secondary impacts.
You can view the results of impact analysis in the Impact Analysis dialog box,
or the Impact Analysis view of the WebSphere Message Broker Toolkit. For
more information about how to view information about selected resources,
mark changes as complete, copy results to an external application, and view
previous results, see “Impact Analysis view” on page 6801.

Moving ESQL objects:
About this task

You can move the following objects to a different file:
v ESQL modules
v Schema-scope ESQL constants
v Schema-scope ESQL routines

Procedure

1. Right-click the object that you want to move, then click Impact Analysis >
Move. The Impact Analysis - Move Artifact window is displayed.

2. In the bottom panel, under 'Choose the new container for the selected items',
select the new ESQL file for the object, then click Analyze Impact.
The Impact Analysis - Move Artifact dialog box shows the results of impact
analysis, listing primary and secondary impacts.
You can view the results of impact analysis in the Impact Analysis dialog box,
or the Impact Analysis view of the WebSphere Message Broker Toolkit. For
more information about how to view information about selected resources,
mark changes as complete, copy results to an external application, and view
previous results, see “Impact Analysis view” on page 6801.

Moving an ESQL file:
Procedure

1. In the Broker Development view, right-click the file, then click Impact Analysis
> Move.

2. In the bottom panel, select the new broker schema for the object, then click
Analyze Impact.
The Impact Analysis - Move Artifact dialog box shows the results of impact
analysis, listing primary and secondary impacts.
You can view the results of impact analysis in the Impact Analysis dialog box,
or the Impact Analysis view of the WebSphere Message Broker Toolkit. For
more information about how to view information about selected resources,
mark changes as complete, copy results to an external application, and view
previous results, see “Impact Analysis view” on page 6801.

Related concepts:

2404 WebSphere Message Broker Version 7.0.0.8

“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Enabling and disabling indexing” on page 1454
Enable indexing to support impact analysis.
“Analyzing planned changes to message model objects” on page 2897
Use impact analysis to analyze the effect of renaming message model objects.
“Analyzing the impact of changes to message maps” on page 2234
Use impact analysis to analyze the effect of renaming or moving message maps.
“Analyzing planned changes to message flows” on page 1436
Use impact analysis to analyze the effect of renaming or moving message flows,
including subflows.
“Analyzing planned changes to message set resources” on page 1165
Use impact analysis to analyze the effect of renaming message definition or
deployable WSDL files.
Related reference:
“Impact analysis: reference” on page 4174
Some artifacts are excluded from secondary analysis.
“Impact Analysis view” on page 6801
The Impact Analysis view shows information about selected resources, which
changes have been marked as complete, and previous results. You can also use this
view to copy results to the clipboard.

Renaming an ESQL file:

You might want to rename an ESQL file if you have renamed the message flow
with which it is associated.

Before you begin

Before you start:

This task assumes that you have created an ESQL file, as described in “Creating an
ESQL file” on page 2391.

To find out which other objects are likely to be affected by the change, see
“Analyzing planned changes to ESQL objects” on page 2403.

About this task

To rename an ESQL file, complete the following steps.

Procedure

1. In the Broker Development view, right-click the ESQL file that you want to
rename and click Rename. Alternatively, you can select the ESQL file, then click
File > Rename.
The Rename Resource dialog box opens.

2. Enter the new name for the ESQL file, then click OK.
The ESQL file is renamed.

Related concepts:

Chapter 9. Developing message flow applications 2405

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Moving an ESQL file:

If you move a message flow from one broker schema to another, or from one
project to another, you might want to move all ESQL files that are associated with
that message flow.

Before you begin

Before you start

To complete this task, you must have completed the following task:
v “Creating an ESQL file” on page 2391

About this task

To move an ESQL file:

Procedure

1. Move the ESQL file in one of the following ways:
v Drag the ESQL file that you want to move from its current location to a

broker schema within the same or another message flow project.
If the target location that you have chosen is not valid (for example, if an
ESQL file of this name exists in the broker schema), the invalid icon is
displayed and the move is not completed. If you have created an empty
broker schema for this purpose, it might not be visible in the Broker

2406 WebSphere Message Broker Version 7.0.0.8

Development view if category mode is selected. To see an empty schema in

the Broker Development view, click Hide Categories .
v Right-click the ESQL file and click Move, or click File > Move. The Move

dialog is displayed.
Select the project and the broker schema from the list of valid targets that is
shown in the dialog.
Click OK to complete the move, or Cancel to cancel the request.
If you click OK, the ESQL file is moved to its new location.

2. Check the Problems view for errors (indicated by the error icon) or

warnings (indicated by the warning icon) generated by the move.
The errors in the Problems view include those errors caused by broken
references. When the move is completed, all references to this ESQL file are
checked. If you have moved the file within the same named broker schema
within the same message flow project, all references are still valid. If you have
moved the file to another broker schema in the same or another message flow
project, the references are broken. If you have moved the file to the same
named broker schema in another message flow project, the references might be
broken if the project references are not set correctly to recognize external
references in this file. These errors occur because resources are linked by a fully
qualified name.

3. Double-click each error or warning to open the message flow that has the error
in the editor view, and highlight the node in error. You can now correct the
error.

Results

When you move an ESQL file, its associated files (for example, the message flow
file) are not automatically moved to the same target broker schema. You must
move these files yourself.
Related concepts:
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.

Chapter 9. Developing message flow applications 2407

Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Changing ESQL preferences:

You can modify the way in which ESQL is displayed in the editor and validated by
the editor:

Procedure

v “Changing ESQL editor settings” on page 2409
v “Changing ESQL validation settings” on page 2410
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“ESQL editor” on page 6798
The ESQL editor is the default editor provided by the Broker Application
Development perspective for editing ESQL (.esql) files.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

2408 WebSphere Message Broker Version 7.0.0.8

Changing ESQL editor settings:

When you open an ESQL file in the editor view, you can tailor the editor
appearance by changing editor settings.

Procedure

1. To change ESQL editor settings:

a. Click Window > Preferences. The Preferences dialog box opens.
b. Expand the item for ESQL on the left and click ESQL Editor.
c. Update the settings available for tab width and colors:
v Click the General tab to change the displayed tab width within the ESQL

editor.
v Click the Colors tab to change the color of the editor view background,

and of the entities displayed in the editor view. These include comments
and keywords in your ESQL code.

d. When you have completed your changes, click either Apply (to apply your
changes and leave the Preferences dialog box open), or OK (to apply your
changes and close the dialog box). Alternatively, to close the dialog box and
discard your changes, click Cancel.

e. To return the ESQL editor settings to the initial values, click Restore
Defaults. All values are reset to the original settings.
If you change the editor settings when you have an editor session active,
the changes are implemented immediately. If you do not have an editor
session open, you see the changes when you next edit an ESQL file.

2. To change font settings for the ESQL editor:

a. Click Window > Preferences. The Preferences dialog box opens.
b. Expand the item for Workbench on the left of the Preferences dialog box,

and click Colors and Fonts.
c. On the Colors and Fonts tab, expand Basic.
d. Select a font or text color option and click Change. The Font dialog box

opens.
e. When you have completed your changes, click either Apply (to apply your

changes and leave the Preferences dialog box open) or OK (to apply your
changes and close the dialog box). Alternatively, to close the dialog box and
discard your changes, click Cancel.

f. To return the ESQL editor settings to the initial values, click Restore
Defaults.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a

Chapter 9. Developing message flow applications 2409

specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“ESQL editor” on page 6798
The ESQL editor is the default editor provided by the Broker Application
Development perspective for editing ESQL (.esql) files.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Changing ESQL validation settings:

You can specify the level of validation that the ESQL editor performs when you
save a .esql file. If the validation you have requested results in warnings, you can
deploy a BAR file containing this message flow. However, if errors are reported,
you cannot deploy the BAR file.

About this task

To change ESQL validation settings:

Procedure

1. Switch to the Broker Application Development perspective.
2. Click Window > Preferences. The Preferences dialog is displayed.
3. Expand the item for ESQL on the left and click Validation.
4. Update the settings for what is validated, and for what warnings or errors are

reported. See “ESQL editor” on page 6798 for details of the settings and their
values.

5. When you have completed your changes, click Apply to close the Preferences
dialog, apply your changes and leave the Preferences dialog open. Click OK to
apply your changes and close the dialog. Click Cancel to close the dialog and
discard your changes.

6. If you want to return your ESQL editor preferences to the initial values, click
Restore Defaults. All values are reset to the original settings.

Results

If you make changes to the validation settings, the changes are implemented
immediately for currently open edit sessions and for subsequent edit sessions.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.

2410 WebSphere Message Broker Version 7.0.0.8

“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“ESQL editor” on page 6798
The ESQL editor is the default editor provided by the Broker Application
Development perspective for editing ESQL (.esql) files.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Deleting ESQL for a node:

If you delete a node from a message flow, you can delete the ESQL module that
you created to customize its function.

Before you begin

Before you start

This topic assumes that you have created ESQL code for a node. For more
information, see “Creating ESQL for a node” on page 2394.

About this task

To delete ESQL code, complete the following steps.

Procedure

1. Open the message flow with which you want to work by double-clicking it in
the Broker Development view. The message flow is opened in the editor view.

2. Right-click the node for which you want to delete the ESQL module, then click
Open ESQL. The ESQL file is opened in the editor view, with the module for
this node highlighted.

3. Press the Delete or backspace key to delete the whole module.
4. When you have finished working with this module, save and close the ESQL

file. Saving the file also validates the ESQL; for more details, see “Saving an
ESQL file” on page 2399.

Related concepts:

Chapter 9. Developing message flow applications 2411

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Deleting an ESQL file:

If you delete a message flow, or if you have deleted all the ESQL code in an ESQL
file, you can delete the ESQL file.

Before you begin

Before you start:

This task assumes that you have created an ESQL file. For more information, see
“Creating an ESQL file” on page 2391.

About this task

To delete an ESQL file, complete the following steps.

Procedure

1. In the Broker Development view, right-click the ESQL file that you want to
delete, and click Delete.
You can also select the file in the Broker Development view, and click Edit >
Delete. A dialog box is displayed that asks you to confirm the deletion.

2. Click Yes to delete the file, or No to cancel the delete request.
If you maintain resources in a shared repository, a copy is retained in that
repository. You can follow the instructions provided by the repository supplier
to retrieve the file if required.

2412 WebSphere Message Broker Version 7.0.0.8

If you are using the local file system or a shared file system to store your
resources, no copy of the file is retained. Be careful to select the correct file
when you complete this task.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Broker schemas” on page 1036
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources defined within it. The resources include message flows and
other optional resources such as ESQL files, Java files, and mapping files.
“ESQL modules” on page 2388
A module is a sequence of declarations that define variables and their initialization,
and a sequence of subroutine (function and procedure) declarations that define a
specific behavior for a message flow node.
“Development repository” on page 45
Use a development repository to benefit from features such as version control and
access control of files, which make it easier for teams to work on shared resources.

Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Writing ESQL
How you can use ESQL to customize nodes.

About this task

When you create a message flow, you include input nodes that receive the
messages and, optionally, output nodes that send out new or updated messages. If
required by the processing that must be performed on the message, you can
include other nodes after the input node that complete the actions that your
applications need.

Some of the built-in nodes enable you to customize the processing that they
provide. The Compute, Database, DatabaseInput, and Filter nodes require you to
provide a minimum level of ESQL, and you can provide much more than the
minimum to control precisely the behavior of each node. This set of topics
discusses ESQL and the ways in which you can use it to customize these nodes.

The DataDelete, DataInsert, DataUpdate, Extract, Mapping, and Warehouse nodes
provide a mapping interface with which you can customize their function. The

Chapter 9. Developing message flow applications 2413

ways in which you can use the mapping functions associated with these nodes are
described in developing message mappings, see “Using message mappings” on
page 2228.

ESQL provides a rich and flexible syntax for statements and functions that enable
you to check and manipulate message and database content. You can:
v Read the contents of the input message
v Modify message content with data from databases
v Modify database content with data from messages
v Construct new output messages created from all, part, or none of the input

message (in the Compute node only)

The following topics provide more information about these and other tasks that
you can perform with ESQL. Unless otherwise stated, these guidelines apply to
messages in all message domains except the BLOB domain, for which you can
implement a limited set of actions.
v “Tailoring ESQL code for different node types” on page 2416
v “Manipulating message body content” on page 2418
v “Manipulating other parts of the message tree” on page 2452
v “Transforming from one data type to another” on page 2473
v “Adding keywords to ESQL files” on page 2486
v “Interaction with databases using ESQL” on page 2487
v “Coding ESQL to handle errors” on page 2506
v “Accessing broker properties from ESQL” on page 2625
v “Configuring a message flow at deployment time with user-defined properties”

on page 2626

The following topics provide additional information specific to the parser that you
have specified for the input message:
v “Manipulating messages in the MRM domain” on page 2581
v “Manipulating messages in the XML domain” on page 2581
v “Manipulating messages in the XMLNS domain” on page 2563
v “Manipulating messages in the XMLNSC domain” on page 2546
v “Manipulating messages in the JMS domains” on page 2609
v “Manipulating messages in the IDOC domain” on page 2610
v “Manipulating messages in the MIME domain” on page 2612
v “Manipulating messages in the BLOB domain” on page 2615
v “Manipulating messages in the JSON domain” on page 2617

ESQL examples:
About this task

Most of the examples included in the topics listed previously show
parser-independent ESQL. If examples include a reference to MRM, they assume
that you have modeled the message in the MRM and that you have set the names
of the MRM objects to be identical to the names of the corresponding tags or
attributes in the XML source message. Some examples are also shown for the XML
domain. Unless stated otherwise, the principals illustrated are the same for all
message domains. For domain-specific information, use the appropriate link in the
previous list.

Most of the topics that include example ESQL use the ESQL sample message,
Invoice, as the input message to the logic. This message is provided in XML source
format (with tags and attributes), see “Example message” on page 5311. The
example message is shown in the following diagram.

2414 WebSphere Message Broker Version 7.0.0.8

The topics specific to the MRM domain use the message that is created in the
following sample:
v Video Rental

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

A few other input messages are used to show ESQL that provides function on
messages with a structure or content that is not included in the Invoice or Video
samples. Where this occurs, the input message is included in the topic that refers
to it.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.

Payment

Purchases

InvoiceDate TillNumber

CashierInvoiceTimeInvoiceNo

DirectMail

StoreRecord Error

Customer

Address Address

Address PostCode

FirstName Title PhoneHome Billing

LastName DOB PhoneWork

CardType CardName Expires

ValidCardNo

Invoice

Item Item Item

Title PublishDate QuantityAuthor

Publisher UnitPriceISBN

Chapter 9. Developing message flow applications 2415

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“Example message” on page 5311

Tailoring ESQL code for different node types:

When you code ESQL to configure Compute, Database, DatabaseInput, and Filter
node behavior, be aware of the limitations of each type of node.

About this task

Compute node
You can configure the Compute node to do any of the following
operations:
v Update data in a database.
v Insert data into a database.
v Delete data from a database.
v Update the environment tree.
v Update the local environment tree.
v Create one or more output messages, with none, some, or all the content

of the input message, and propagate these new messages to the next
node in the message flow.
To propagate the input LocalEnvironment to the output
LocalEnvironment, remember to set the Compute node property Compute
mode to an appropriate value. The Environment is always propagated in
the output message.

2416 WebSphere Message Broker Version 7.0.0.8

Database node
You can configure the Database node to do any of the following
operations:
v Update data in a database.
v Insert data into a database.
v Delete data from a database.
v Update the environment tree.
v Update the local environment tree.
v Propagate the input message to the next node in the message flow.

DatabaseInput node
You can configure the DatabaseInput node to do any of the following
operations:
v Respond to updates that are made to the data in a database.
v Create one or more output messages, with none, some, or of all the

content retrieved from a database, and propagate these new messages to
the next node in the message flow.

Filter node
You can configure the Filter node to do any of the following operations:
v Update data in a database.
v Insert data into a database.
v Delete data from a database.
v Update the environment tree.
v Update the local environment tree.
v Propagate the input message to the next node in the message flow (the

terminal through which the message is propagated depends on the
result of the filter expression).

View the remaining tasks in this section to find the details of how you can perform
these operations.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

Chapter 9. Developing message flow applications 2417

“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Manipulating message body content:

The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.

About this task

The following topics describe how you can refer to, modify, and create message
body data. The information provided here is domain independent.
v “Referencing field types” on page 2419
v “Accessing elements in the message body” on page 2420
v “Accessing known multiple occurrences of an element” on page 2425
v “Accessing unknown multiple occurrences of an element” on page 2427
v “Using anonymous field references” on page 2430
v “Creating dynamic field references” on page 2431
v “Creating new fields” on page 2434
v “Generating multiple output messages” on page 2437
v “Using numeric operators with datetime values” on page 2439
v “Calculating a time interval” on page 2441
v “Selecting a subfield from a larger field” on page 2442
v “Copying repeating fields” on page 2444
v “Manipulating repeating fields in a message tree” on page 2450
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:

2418 WebSphere Message Broker Version 7.0.0.8

“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Referencing field types:

Some message parsers have complex models in which it is not enough to identify a
field by its name and an array subscript. In these cases, you associate an optional
field type with an element of data in the tree format.

About this task

Each element within the parsed tree can be one of three types:

Name element
A name element has a string, which is the name of the element, associated
with it. An example of a name element is XMLElement, described in “XML
element” on page 4267.

Value element
A value element has a value associated with it. An example of a value
element is XMLContent, described in “XML content” on page 4267.

Name-value element
A name-value element is an optimization of the case where a name
element contains only a value element and nothing else. The element
contains both a name and a value. An example of a name-value element is
XMLAttribute, described in “XML attribute” on page 4264.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 9. Developing message flow applications 2419

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Accessing elements in the message body:

When you want to access the contents of a message, for reading or writing, use the
structure and arrangement of the elements in the tree that is created by the parser
from the input bit stream.

About this task

Follow the relevant parent and child relationships from the top of the tree
downwards, until you reach the required element.
v If you are referring to the input message tree to interrogate its content in a

Compute node, use correlation name InputBody followed by the path to the
element to which you are referring. InputBody is equivalent to InputRoot
followed by the parser name (for example, InputRoot.MRM), which you can use if
you prefer.

2420 WebSphere Message Broker Version 7.0.0.8

v If you are referring to the output message tree to set or modify its content in the
Compute node, use correlation name OutputRoot followed by the parser name
(for example, OutputRoot.MRM).

v If you are referring to the input message to interrogate its contents in a Database
or Filter node, use correlation name Body to refer to the start of the message.
Body is equivalent to Root followed by the parser name (for example,
Root.XMLNS), which you can use if you prefer. You cannot use the Body
correlation name in a DatabaseInput node.
You must use these different correlation names because there is only one
message to which to refer in a Database or Filter node; you cannot create an
output message in these nodes. Use a Compute node to create an output
message.

When you construct field references, the names that you use must be valid ESQL
identifiers that conform to ESQL rules. If you enclose an item in double quotation
marks, ESQL interprets it as an identifier. If you enclose an item in single quotation
marks, ESQL interprets it as a character literal. You must enclose all strings
(character strings, byte strings, or binary (bit) strings) in quotation marks, as
shown in the following examples. To include a single or double quotation mark
within a string, include two consecutive single or double quotation marks.

Important: For a full description of field reference syntax, see “ESQL field
reference overview” on page 5049.
For more information about ESQL data types, see “ESQL data types in message
flows” on page 5020.

Assume that you have created a message flow that handles the message Invoice,
shown in the figure in “Writing ESQL” on page 2413. If, for example, you want to
interrogate the element CardType from within a Compute node, use the following
statement:
IF InputBody.Invoice.Payment.CardType=’Visa’ THEN

DO;
-- more ESQL --

END IF;

If you want to make the same test in a Database or Filter node (where the
reference is to the single input message), code:
IF Body.Invoice.Payment.CardType=’Visa’ THEN

DO;
-- more ESQL --

END IF;

If you want to copy an element from an input XML message to an output message
in the Compute node without changing it, use the following ESQL:
SET OutputRoot.XMLNS.Invoice.Customer.FirstName =

InputBody.Invoice.Customer.FirstName;

If you want to copy an element from an input XML message to an output message
and update it, for example by folding to uppercase or by calculating a new value,
code:
SET OutputRoot.XMLNS.Invoice.Customer.FirstName =

UPPER(InputBody.Invoice.Customer.FirstName);
SET OutputRoot.XMLNS.Invoice.InvoiceNo = InputBody.Invoice.InvoiceNo + 1000;

If you want to set a STRING element to a constant value, code:
SET OutputRoot.XMLNS.Invoice.Customer.Title = ’Mr’;

Chapter 9. Developing message flow applications 2421

You can also use the equivalent statement:
SET OutputRoot.XMLNS.Invoice.Customer.Title VALUE = ’Mr’;

If you want to update an INTEGER or DECIMAL, for example the element
TillNumber, with the value 26, use the following assignment (valid in the Compute
node only):

The integer data type stores numbers using the 64-bit twos complement form,
allowing numbers in the range -9223372036854775808 to 9223372036854775807. You
can specify hexadecimal notation for integers as well as normal integer literal
format. The hexadecimal letters A to F can be written in uppercase or lowercase, as
can the X after the initial zero, which is required. The following example produces
the same result as the example shown earlier:

The following examples show SET statements for element types that do not appear
in the “Example message” on page 5311.

To set a FLOAT element to a non-integer value, code:

To set a BINARY element to a constant value, code:

For BINARY values, you must use an initial character X (uppercase or lowercase)
and enclose the hexadecimal characters (also uppercase or lowercase) in single
quotation marks, as shown.

To set a BOOLEAN element to a constant value (the value 1 equates to true, 0
equates to false), code:

or

You can use the SELECT statement to filter records from an input message without
reformatting the records, and without any knowledge of the complete format of
each record. Consider the following example:

This code writes all records from the input message to the output message if the
WHERE condition (LastName = Smith) is met. All records that do not meet the

SET OutputRoot.MRM.Invoice.TillNumber=26;

SET OutputRoot.MRM.Invoice.TillNumber= 0x1A;

SET OutputRoot.MRM.FloatElement1 = 1.2345e2;

SET OutputRoot.MRM.BinaryElement1 = X’F1F1’;

SET OutputRoot.MRM.BooleanElement1 = true;

SET OutputRoot.MRM.BooleanElement1 = 1;

-- Declare local variable
DECLARE CurrentCustomer CHAR ’Smith’;

-- Loop through the input message
SET OutputRoot.XMLNS.Invoice[] =

(SELECT I FROM InputRoot.XMLNS.Invoice[] AS I
WHERE I.Customer.LastName = CurrentCustomer

);

2422 WebSphere Message Broker Version 7.0.0.8

condition are not copied from input message to output message. I is used as an
alias for the correlation name InputRoot.XMLNS.Invoice[].

The declared variable CurrentCustomer is initialized on the DECLARE statement:
this option is the most efficient way of declaring a variable for which the initial
value is known.

You can use this alias technique with other SELECT constructs. For example, if you
want to select all the records of the input message, and create an additional record:

You could also include an AS clause to place records in a subfolder in the message
tree:

If you are querying or setting elements that contain, or might contain, null values,
be aware of the following considerations:

Querying null values
When you compare an element to the ESQL keyword NULL, this tests
whether the element is present in the logical tree that has been created
from the input message by the parser.

For example, you can check whether an invoice number is included in the
current invoice message with the following statement:

You can also use an ESQL reference, as shown in the following example:

For more information about declaring and using references, see “Creating
dynamic field references” on page 2431. For a description of the
LASTMOVE and FIELDVALUE functions, see “LASTMOVE function” on
page 5237 and “FIELDTYPE function” on page 5231.

-- Loop through the input message
SET OutputRoot.XMLNS.Invoice[] =

(SELECT I, ’Customer’ || I.Customer.LastName AS ExtraField
FROM InputRoot.XMLNS.Invoice[] AS I

);

-- Loop through the input message
SET OutputRoot.XMLNS.Invoice[] =

(SELECT I AS Order
FROM InputRoot.XMLNS.Invoice[] AS I

);

IF InputRoot.XMLNS.Invoice.InvoiceNo IS NULL THEN
DO;

-- more ESQL --
END IF;

DECLARE cursor REFERENCE TO InputRoot.MRM.InvoiceNo;

IF LASTMOVE(cursor) = FALSE THEN
SET OutputRoot.MRM.Analysis = ’InvoiceNo does not exist in logical tree’;

ELSEIF FIELDVALUE(cursor) IS NULL THEN
SET OutputRoot.MRM.Analysis =

’InvoiceNo does exist in logical tree but is defined as an MRM NULL value’;
ELSE

SET OutputRoot.MRM.Analysis = ’InvoiceNo does exist and has a value’;
END IF;

Chapter 9. Developing message flow applications 2423

If the message is in the MRM domain, there are additional considerations
for querying null elements that depend on the physical format. For further
details, see “Querying null values in a message in the MRM domain” on
page 2597.

Setting null values
You can use two statements to set null values:
1. If you set the element to NULL by using the following statement, the

element is deleted from the message tree:

If the message is in the MRM domain, there are additional
considerations for null values that depend on the physical format. For
further details, see “Setting null values in a message in the MRM
domain” on page 2599.
This technique is called implicit null processing.

2. If you set the value of this element to NULL as follows:

the element is not deleted from the message tree. Instead, a special
value of NULL is assigned to the element.

If the message is in the MRM domain, the content of the output bit
stream depends on the settings of the physical format null handling
properties. For further details, see “Setting null values in a message in
the MRM domain” on page 2599.
This technique is called explicit null processing.

If you set an MRM complex element or an XML, XMLNS, or JMS parent
element to NULL without using the VALUE keyword, that element and all
its children are deleted from the logical tree.

Related concepts:
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Accessing elements in a message in the MRM domain” on page 2584
You can use ESQL to manipulate the logical tree that represents a message in the
message flow. This topic describes how to access data for elements in a message in
the MRM domain.
Related reference:

SET OutputRoot.XMLNS.Invoice.Customer.Title = NULL;

SET OutputRoot.XMLNS.Invoice.Customer.Title VALUE = NULL;

SET OutputRoot.XMLNS.Invoice.Customer.Title = NULL;

2424 WebSphere Message Broker Version 7.0.0.8

“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“IF statement” on page 5134
The IF statement executes one set of statements based on the result of evaluating
condition expressions.
“FIELDVALUE function” on page 5234
“LASTMOVE function” on page 5237
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“ESQL field reference overview” on page 5049
You can use ESQL field references to form paths to message body elements.
“ESQL reserved keywords” on page 5307
The keywords listed are reserved in uppercase, lowercase, or mixed case.
“Example message” on page 5311

Accessing known multiple occurrences of an element:

When you refer to or create the content of messages, it is very likely that the data
contains repeating fields. If you know how many instances there are of a repeating
field, and you want to access a specific instance of such a field, you can use an
array index as part of a field reference.

About this task

For example, you might want to filter on the first line of an address, to expedite
the delivery of an order. Three instances of the element Billling.Address are always
present in the sample message. To test the first line, write an expression such as:

The array index [1] indicates that it is the first instance of the repeating field that
you are interested in (array indices start at 1). An array index such as this can be

IF Body.Invoice.Customer.Billing.Address[1] = ’Patent Office’ THEN
DO;

-- more ESQL --
END IF;

Chapter 9. Developing message flow applications 2425

used at any point in a field reference, so you could, for example, filter on the
following test:

You can refer to the last instance of a repeating field using the special [<] array
index, and to instances relative to the last (for example, the second to last) as
follows:
v Field[<] indicates the last element.
v Field[<1] indicates the last element.
v Field[<2] indicates the last but one element (the penultimate element).

You can also use the array index [>] to represent the first element, and elements
relative to the first element in a similar way.
v Field[>] indicates the first element. This is equivalent to Field[1].

The following examples refer to the “Example message” on page 5311 using these
indexes:

You can also use these special indexes for elements that repeat an unknown
number of times.

Deleting repeating fields:
About this task

If you pass a message with several repeats of an element through a message flow
and you want to delete some of the repeats, be aware that the numbering of the
repeats is reordered after each delete. For example, if you have a message with five
repeats of a particular element, and in the message flow you have the following
ESQL:

You might expect elements one and four to be deleted. However, because repeating
elements are stored on a stack, when you delete one, the one above it takes its
place. This means that, in the above example, elements one and five are deleted. To
avoid this problem, delete in reverse order, that is, delete element four first, then
delete element one.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

IF Body.Invoice."Item"[1].Quantity> 2 THEN
DO;

-- more ESQL --
END IF;

IF Body.Invoice.Customer.Billing.Address[<] = ’Hampshire’ THEN
DO;

-- more ESQL --
END IF;
IF Body.Invoice.Customer.Billing.Address[<2] = ’Southampton’ THEN

DO;
-- more ESQL --

END IF;

SET OutputRoot.MRM.e_PersonName[1] = NULL;
SET OutputRoot.MRM.e_PersonName[4] = NULL;

2426 WebSphere Message Broker Version 7.0.0.8

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Accessing unknown multiple occurrences of an element”
To access repeating fields in a message, you must use a construct that can iterate
over all instances of a repeating field.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“IF statement” on page 5134
The IF statement executes one set of statements based on the result of evaluating
condition expressions.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“Example message” on page 5311

Accessing unknown multiple occurrences of an element:

To access repeating fields in a message, you must use a construct that can iterate
over all instances of a repeating field.

Chapter 9. Developing message flow applications 2427

About this task

You are likely to deal with messages that contain repeating fields with an
unknown number of repeats (such as the Item field in “Example message” on page
5311).

To write a filter that takes into account all instances of the Item field, you need to
use a construct that can iterate over all instances of a repeating field. The
quantified predicate allows you to execute a predicate against all instances of a
repeating field, and collate the results.

For example, you might want to verify that none of the items that are being
ordered has a quantity greater than 50. To do this you could write:

With the quantified predicate, the first thing to note is the brackets [] on the end of
the field reference after FOR ALL. These tell you that you are iterating over all
instances of the Item field.

In some cases, this syntax appears unnecessary because you can get that
information from the context, but it is done for consistency with other pieces of
syntax.

The AS clause associates the name I with the current instance of the repeating
field. This is similar to the concept of iterator classes used in some object oriented
languages such as C++. The expression in parentheses is a predicate that is
evaluated for each instance of the Item field.

A description of this example is:

Procedure

Iterate over all instances of the field Item inside Body.Invoice. For each iteration:
1. Bind the name I to the current instance of Item.
2. Evaluate the predicate I.Quantity <= 50. If the predicate:
v Evaluates to TRUE for all instances of Item, return TRUE.
v Is FALSE for any instance of Item, return FALSE.
v For a mixture of TRUE and UNKNOWN, return UNKNOWN.

Results

The above is a description of how the predicate is evaluated if you use the ALL
keyword. An alternative is to specify SOME, or ANY, which are equivalent. In this
case the quantified predicate returns TRUE if the sub-predicate returns TRUE for
any instance of the repeating field. Only if the sub-predicate returns FALSE for all
instances of the repeating field does the quantified predicate return FALSE. If a
mixture of FALSE and UNKNOWN values are returned from the sub-predicate, an
overall value of UNKNOWN is returned.

In the following filter expression:

FOR ALL Body.Invoice.Purchases."Item"[]
AS I (I.Quantity <= 50)

2428 WebSphere Message Broker Version 7.0.0.8

the sub-predicate evaluates to TRUE. However this next expression returns FALSE:

because the C Primer is not included on this invoice. If some of the items in the
invoice do not include a book title field, the sub-predicate returns UNKNOWN,
and the quantified predicate returns the value UNKNOWN.

To deal with the possibility of null values appearing, write this filter with an
explicit check on the existence of the field, as follows:

The predicate IS NOT NULL ensures that, if an Item field does not contain a Book,
a FALSE value is returned from the sub-predicate.

You can also manipulate arbitrary repeats of fields within a message by using a
SELECT expression, as described in “Referencing columns in a database” on page
2489.

You can refer to the first and last instances of a repeating field using the [>] and
[<] array indexes, and to instances relative to the first and last, even if you do not
know how many instances there are. These indexes are described in “Accessing
known multiple occurrences of an element” on page 2425.

Alternatively, you can use the CARDINALITY function to determine how many
instances of a repeating field there are. For example:

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Accessing known multiple occurrences of an element” on page 2425
When you refer to or create the content of messages, it is very likely that the data
contains repeating fields. If you know how many instances there are of a repeating
field, and you want to access a specific instance of such a field, you can use an
array index as part of a field reference.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you

FOR ANY Body.Invoice.Purchases."Item"[]
AS I (I.Title = ’The XML Companion’)

FOR ANY Body.Invoice.Purchases."Item"[]
AS I (I.Title = ’C Primer’)

FOR ANY Body.Invoice.Purchases."Item"[]
AS I (I.Book IS NOT NULL AND I.Book.Title = ’C Primer’)

DECLARE I INTEGER CARDINALITY(Body.Invoice.Purchases."Item"[])

Chapter 9. Developing message flow applications 2429

must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CARDINALITY function” on page 5238
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“FOR function” on page 5235
The FOR field function evaluates an expression and assigns a resulting value of
TRUE, FALSE, or UNKNOWN.
“Example message” on page 5311

Using anonymous field references:

You can refer to the array of all children of a particular element by using a path
element of *.

About this task

For example:

is a path that identifies the array of all children of InputRoot. This is often used in
conjunction with an array subscript to refer to a particular child of an entity by
position, rather than by name. For example:

InputRoot.*[<]
Refers to the last child of the root of the input message, that is, the body of
the message.

InputRoot.*[1]
Refers to the first child of the root of the input message, the message
properties.

InputRoot.*[]

2430 WebSphere Message Broker Version 7.0.0.8

You might want to find out the name of an element that has been identified with a
path of this kind. To do this, use the FIELDNAME function, which is described in
“FIELDNAME function” on page 5229.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Creating dynamic field references:

You can use a variable of type REFERENCE as a dynamic reference to navigate a
message tree. This acts in a similar way to a message cursor or a variable pointer.

About this task

It is generally simpler and more efficient to use reference variables in preference to
array indexes when you access repeating structures. Reference variables are

Chapter 9. Developing message flow applications 2431

accepted everywhere that field references are accepted, and come with a set of
statements and functions to allow detailed manipulation of message trees.

You must declare a dynamic reference before you can use it. A dynamic reference
is declared and initialized in a single statement.

All examples in this topic use the “Example message” on page 5311 as their input
message. The following example shows how to create and use a reference.

The example works if the message tree was created with typed fields, based on a
message model for the “Example message” on page 5311. If this is not the case,
you can modify the ESQL to work without a model, for example:
SET myref = CAST (myref AS INTEGER) + 1;

This example declares a dynamic reference, myref, which points to the first item in
the array within Purchases. The value in the first item is incremented by one, and
the pointer (dynamic reference) is moved to the next item. Once again the item
value is incremented by one. This process continues until the pointer moves
outside the scope of the message array (all the items in this array have been
processed) and the LASTMOVE function returns FALSE.

The following examples show further examples.

In the second example, ref2 is set to point to InputBody because the specified field
does not exist.

With the exception of the MOVE statement, which changes the position of the
dynamic reference, you can use a dynamic reference anywhere that you can use a
static reference. The value of the dynamic reference in any expression or statement
is the value of the field or variable to which it currently points. For example, using
the message in “Example message” on page 5311, the value of
Invoice.Customer.FirstName is Andrew. If the dynamic reference myref is set to
point at the Customer field as follows:

you can then extend this dynamic reference to address children of that field:

-- Declare the dynamic reference
DECLARE myref REFERENCE TO OutputRoot.XMLNS.Invoice.Purchases.Item[1];

-- Continue processing for each item in the array
WHILE LASTMOVE(myref)=TRUE
DO
-- Add 1 to each item in the array

SET myref = myref + 1;
-- Move the dynamic reference to the next item in the array

MOVE myref NEXTSIBLING;
END WHILE;

DECLARE ref1 REFERENCE TO InputBody.Invoice.Purchases.Item[1];

DECLARE ref2 REFERENCE TO
InputBody.Invoice.Purchases.NonExistentField;

DECLARE scalar1 CHARACTER;
DECLARE ref3 REFERENCE TO scalar1;

DECLARE myref REFERENCE TO Invoice.Customer;

2432 WebSphere Message Broker Version 7.0.0.8

This changes the address in the example to Oaklands Hursley Village Hampshire
SO213JR.

The position of a dynamic reference remains fixed even if a tree is modified. To
illustrate this point the steps that follow use the message in “Example message” on
page 5311 as their input message and create a modified version of this message as
an output message:

Procedure

1. Copy the input message to the output message.
2. To modify the output message, first declare a dynamic reference ref1 that

points at the first item, The XML Companion.

The dynamic reference is now equivalent to the static reference
OutputRoot.XMLNS.Invoice.Purchases.Item[1].

3. Use a create statement to insert a new first item for this purchase.

The dynamic reference is now equivalent to the static reference
OutputRoot.XMLNS.Invoice.Purchases.Item[2].

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

SET myref.Billing.Address[1] = ’Oaklands’;

DECLARE ref1 REFERENCE TO
OutputRoot.XMLNS.Invoice.Purchases.Item[1];

CREATE PREVIOUSSIBLING OF ref1 VALUES ’Item’;

Chapter 9. Developing message flow applications 2433

“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“IF statement” on page 5134
The IF statement executes one set of statements based on the result of evaluating
condition expressions.
“LASTMOVE function” on page 5237
“MOVE statement” on page 5145
The MOVE statement changes the field to which the Target reference variable
points.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.
“Example message” on page 5311

Creating new fields:

You can use a Compute node to create a new output message by adding new
fields to an existing input message.

About this task

This topic provides example ESQL code for a Compute node that creates a new
output message based on the input message, to which are added a number of
additional fields.

The input message received by the Compute node within the message flow is an
XML message, and has the following content:

<TestCase description="This is my TestCase">
<Identifier>ES03B305_T1</Identifier>
<Sport>Football</Sport>
<Date>01/02/2000</Date>
<Type>LEAGUE</Type>

</TestCase>

The Compute node is configured and an ESQL module is created that includes the
following ESQL. The following code copies the headers from the input message to
the new output message, then creates the entire content of the output message
body.

2434 WebSphere Message Broker Version 7.0.0.8

-- copy headers
DECLARE i INTEGER 1;
DECLARE numHeaders INTEGER CARDINALITY(InputRoot.*[]);

WHILE i < numHeaders DO
SET OutputRoot.*[i] = InputRoot.*[i];
SET i = i + 1;

END WHILE;

CREATE FIELD OutputRoot.XMLNS.TestCase.description TYPE NameValue VALUE ’This is my TestCase’;
CREATE FIRSTCHILD OF OutputRoot.XMLNS.TestCase Domain(’XMLNS’) NAME ’Identifier’

VALUE InputRoot.XMLNS.TestCase.Identifier;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase Domain(’XMLNS’) NAME ’Sport’

VALUE InputRoot.XMLNS.TestCase.Sport;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase Domain(’XMLNS’) NAME ’Date’

VALUE InputRoot.XMLNS.TestCase.Date;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase Domain(’XMLNS’) NAME ’Type’

VALUE InputRoot.XMLNS.TestCase.Type;
CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Number TYPE NameValue

VALUE ’Premiership’;
CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[1].Number TYPE NameValue VALUE ’1’;
CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[1].Home TYPE Name;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[1].Home NAME ’Team’

VALUE ’Liverpool’ ;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[1].Home NAME ’Score’

VALUE ’4’;
CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[1].Away TYPE Name;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[1].Away NAME ’Team’

VALUE ’Everton’;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[1].Away NAME ’Score’

VALUE ’0’;

CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[2].Number TYPE NameValue VALUE ’2’;
CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[2].Home TYPE Name;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[2].Home NAME ’Team’

VALUE ’Manchester United’;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[2].Home NAME ’Score’

VALUE ’2’;
CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[2].Away TYPE Name;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[2].Away NAME ’Team’

VALUE ’Arsenal’;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[2].Away NAME ’Score’

VALUE ’3’;

CREATE FIELD OutputRoot.XMLNS.TestCase.Division[2].Number TYPE NameValue
VALUE ’2’;

CREATE FIELD OutputRoot.XMLNS.TestCase.Division[2].Result[1].Number TYPE NameValue
VALUE ’1’;

CREATE FIELD OutputRoot.XMLNS.TestCase.Division[2].Result[1].Home TYPE Name;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[2].Result[1].Home NAME ’Team’

VALUE ’Port Vale’;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[2].Result[1].Home NAME ’Score’

VALUE ’9’ ;
CREATE FIELD OutputRoot.XMLNS.TestCase.Division[2].Result[1].Away TYPE Name;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[2].Result[1].Away NAME ’Team’

VALUE ’Brentford’;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[2].Result[1].Away NAME ’Score’

VALUE ’5’;

The output message that results from the ESQL shown above has the following
structure and content:

<TestCase description="This is my TestCase">
<Identifier>ES03B305_T1</Identifier>
<Sport>Football</Sport>
<Date>01/02/2000</Date>
<Type>LEAGUE</Type>

Chapter 9. Developing message flow applications 2435

<Division Number="Premiership">
<Result Number="1">

<Home>
<Team>Liverpool</Team>
<Score>4</Score>

</Home>
<Away>

<Team>Everton</Team>
<Score>0</Score>

</Away>
</Result>
<Result Number="2">

<Home>
<Team>Manchester United</Team>
<Score>2</Score>

</Home>
<Away>

<Team>Arsenal</Team>
<Score>3</Score>

</Away>
</Result>

</Division>
<Division Number="2">

<Result Number="1">
<Home>

<Team>Port Vale</Team>
<Score>9</Score>

</Home>
<Away>

<Team>Brentford</Team>
<Score>5</Score>

</Away>
</Result>

</Division>
</TestCase>

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.

2436 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“CREATE statement” on page 5082
The CREATE statement creates a new message field.

Generating multiple output messages:

You can use the PROPAGATE statement to generate multiple output messages in
the Compute node. The output messages that you generate can have the same or
different content. You can also direct output messages to any of the four alternate
output terminals of the Compute node, or to a Label node.

About this task

For example, to create three copies of the input message received by the Compute
node, and send one to the standard Out terminal of the Compute node, one to the
first alternate Out1 terminal of the Compute node, and one to the Label node
ThirdCopy, code the following ESQL:

In the above example, the content of OutputRoot is reset before each PROPAGATE,
because by default the node clears the output message buffer and reclaims the
memory when the PROPAGATE statement completes. An alternative method is to
instruct the node not to clear the output message on the first two PROPAGATE
statements, so that the message is available for routing to the next destination. The
code to achieve this result is:

If you do not initialize the output buffer, an empty message is generated, and the
message flow detects an error and throws an exception.

SET OutputRoot = InputRoot;
PROPAGATE;
SET OutputRoot = InputRoot;
PROPAGATE TO TERMINAL ’out1’;
SET OutputRoot = InputRoot;
PROPAGATE TO LABEL ’ThirdCopy’;

SET OutputRoot = InputRoot;
PROPAGATE DELETE NONE;
PROPAGATE TO TERMINAL ’out1’ DELETE NONE;
PROPAGATE TO LABEL ’ThirdCopy’;

Chapter 9. Developing message flow applications 2437

Also ensure that you copy all required message headers to the output message
buffer for each output message that you propagate.

If you want to modify the output message content before propagating each
message, code the appropriate ESQL to make the changes that you want before
you code the PROPAGATE statement.

If you set up the contents of the last output message that you want to generate,
and propagate it as the final action of the Compute node, you do not have to
include the final PROPAGATE statement. The default action of the Compute node
is to propagate the contents of the output buffer when it terminates. This is
implemented by the RETURN TRUE statement, included as the final statement in
the module skeleton.

For example, to generate three copies of the input message, and not perform any
further action, include this code immediately before the RETURN TRUE statement:

Alternatively, you can modify the default behavior of the node by changing
RETURN TRUE to RETURN FALSE:

Three output messages are generated by the three PROPAGATE statements. The
final RETURN FALSE statement causes the node to terminate but not propagate a
final output message. Note that the final PROPAGATE statement does not include
the DELETE NONE clause, because the node must release the memory at this
stage.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

SET OutputRoot = InputRoot;
PROPAGATE DELETE NONE;
PROPAGATE DELETE NONE;

SET OutputRoot = InputRoot;
PROPAGATE DELETE NONE;
PROPAGATE DELETE NONE;
PROPAGATE;
RETURN FALSE;

2438 WebSphere Message Broker Version 7.0.0.8

“Accessing the Properties tree” on page 2460
The Properties tree has its own correlation name, Properties, and you must use this
in all ESQL statements that refer to or set the content of this tree.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“PROPAGATE statement” on page 5150
The PROPAGATE statement propagates a message to the downstream nodes.
“RETURN statement” on page 5155
The RETURN statement ends processing. What happens next depends on the
programming context in which the RETURN statement is issued.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Using numeric operators with datetime values:

The following examples show the ESQL that you can code to manipulate datetime
values with numeric operators.

About this task

Adding an interval to a datetime value
The simplest operation that you can perform is to add an interval to, or
subtract an interval from, a datetime value. For example, you could write
the following expressions:

Adding or subtracting two intervals
You can combine two interval values by using addition or subtraction. The
two interval values must be of compatible types. It is not valid to add a
year-month interval to a day-second interval as shown in the following
example:

DATE ’2000-03-29’ + INTERVAL ’1’ MONTH
TIMESTAMP ’1999-12-31 23:59:59’ + INTERVAL ’1’ SECOND

The following example shows how to calculate a retirement date by adding the retirement
age to the birth date.

DECLARE retAge CHARACTER ’65’;
DECLARE birthDate DATE DATE ’1953-06-01’;

SET OutputRoot.XML.Test.retirementDate = birthDate + CAST(retAge AS INTERVAL YEAR);

The repetition of the word DATE in the above example is intentional. The first occurrence of
DATE specifies the data type of the declared variable, birthDate. The second occurrence
initializes the same variable with the constant character string that is enclosed in single
quotation marks as a DATE.

Chapter 9. Developing message flow applications 2439

The interval qualifier of the resultant interval is sufficient to encompass all
the fields that are present in the two operand intervals. For example:

results in an interval with qualifier DAY TO SECOND, because both day
and second fields are present in at least one of the operand values.

Subtracting two datetime values
You can subtract two datetime values to return an interval. You must
include an interval qualifier in the expression to indicate what precision
the result should be returned in. For example:

returns the number of days since the 4th July 1776, whereas:

returns the age of the day in minutes and seconds.

Scaling intervals
You can multiply or divide an interval value by an integer factor:

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL operators” on page 2382
An ESQL operator is a character or symbol that you can use in expressions to
specify relationships between fields or values.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Calculating a time interval” on page 2441
You can use ESQL to calculate the time interval between two events, and to set a
timer to be triggered after a specified interval.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

INTERVAL ’1-06’ YEAR TO MONTH + INTERVAL ’20’ DAY

INTERVAL ’2 01’ DAY TO HOUR + INTERVAL ’123:59’ MINUTE TO SECOND

(CURRENT_DATE - DATE ’1776-07-04’) DAY

(CURRENT_TIME - TIME ’00:00:00’) MINUTE TO SECOND

INTERVAL ’2:30’ MINUTE TO SECOND / 4

2440 WebSphere Message Broker Version 7.0.0.8

“ESQL INTERVAL data type” on page 5027
The INTERVAL data type holds an interval of time.
“ESQL simple comparison operators” on page 5057
The simple comparison operators >, <, >=, <=, =, and <>.
“ESQL logical operators” on page 5062
The logical operators AND, OR and NOT.
“ESQL numeric operators” on page 5064
The numeric operators +, −, *, /, and {.
“Rules for ESQL operator precedence” on page 5066
How ESQL calculates expressions involving more than one operator.
“CAST function” on page 5245

Calculating a time interval:

You can use ESQL to calculate the time interval between two events, and to set a
timer to be triggered after a specified interval.

About this task

This ESQL example calculates the time interval between an input WebSphere MQ
message being put on the input queue, and the time that it is processed in the
current Compute node.

(When you make a call to a CURRENT_ datetime function, the value that is
returned is identical to the value returned to another call in the same node. This
ensures that you can use the function consistently within a single node.)
CALL CopyMessageHeaders();
Declare PutTime INTERVAL;

SET PutTime = (CURRENT_GMTTIME - InputRoot.MQMD.PutTime) MINUTE TO SECOND;

SET OutputRoot.XMLNS.Test.PutTime = PutTime;

The output message has the format (although actual values vary):
<Test>
<PutTime>INTERVAL '1:21.862' MINUTE TO SECOND</PutTime>
</Test>

Example

The following code snippet sets a timer, to be triggered after a specified interval
from the start of processing, in order to check that processing has completed. If
processing has not completed within the elapsed time, the firing of the timer
might, for example, trigger some recovery processing.

The StartTime field of the timeout request message is set to the current time plus
the allowed delay period, which is defined by a user-defined property on the flow.
(The user-defined property has been set to a string of the form "HH:MM:SS" by the
administrator.)
DECLARE StartDelyIntervalStr EXTERNAL CHARACTER ’01:15:05’;

CREATE PROCEDURE ValidateTimeoutRequest() BEGIN

-- Set the timeout period
DECLARE timeoutStartTimeRef REFERENCE TO

OutputRoot.XMLNSC.Envelope.Header.TimeoutRequest.StartTime;
IF LASTMOVE(timeoutStartTimeRef)

Chapter 9. Developing message flow applications 2441

THEN
-- Already set
ELSE
-- Set it from the UDP StartDelyIntervalStr
DECLARE startAtTime TIME CURRENT_TIME

+ CAST(StartDelyIntervalStr AS INTERVAL HOUR TO SECOND);

-- Convert "TIME ’hh.mm.ss.fff’" to hh.mm.ss format
-- needed in StartTime field

DECLARE startAtTimeStr CHAR;
SET startAtTimeStr = startAtTime;
SET startAtTimeStr = SUBSTRING(startAtTimeStr FROM 7 FOR 8);
SET OutputRoot.XMLNSC.Envelope.Header.TimeoutRequest.StartTime

= startAtTimeStr;
END IF;
END;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Using numeric operators with datetime values” on page 2439
The following examples show the ESQL that you can code to manipulate datetime
values with numeric operators.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ESQL INTERVAL data type” on page 5027
The INTERVAL data type holds an interval of time.
“ESQL numeric operators” on page 5064
The numeric operators +, −, *, /, and {.
“Rules for ESQL operator precedence” on page 5066
How ESQL calculates expressions involving more than one operator.
“CAST function” on page 5245

Selecting a subfield from a larger field:

You might have a message flow that processes a message containing delimited
subfields. You can code ESQL to extract a subfield from the surrounding content if
you know the delimiters of the subfield.

2442 WebSphere Message Broker Version 7.0.0.8

About this task

If you create a function that performs this task, or a similar one, you can invoke it
both from ESQL modules (for Compute, Database, DatabaseInput, and Filter
nodes) and from mapping files (used by DataDelete, DataInsert, DataUpdate,
Extract, Mapping, and Warehouse nodes).

The following function example extracts a particular subfield of a message that is
delimited by a specific character.
CREATE FUNCTION SelectSubField

(SourceString CHAR, Delimiter CHAR, TargetStringPosition INT)
d RETURNS CHAR
-- This function returns a substring at parameter position TargetStringPosition within the
-- passed parameter SourceString. An example of use might be:
-- SelectSubField(MySourceField,’ ’,2) which will select the second subfield from the
-- field MySourceField delimited by a blank. If MySourceField has the value
-- "First Second Third" the function will return the value "Second"

BEGIN
DECLARE DelimiterPosition INT;
DECLARE CurrentFieldPosition INT 1;
DECLARE StartNewString INT 1;
DECLARE WorkingSource CHAR SourceString;
SET DelimiterPosition = POSITION(Delimiter IN SourceString);
WHILE CurrentFieldPosition < TargetStringPosition

DO
IF DelimiterPosition = 0 THEN
-- DelimiterPosition will be 0 if the delimiter is not found

-- exit the loop
SET CurrentFieldPosition = TargetStringPosition;
ELSE
SET StartNewString = DelimiterPosition + 1;
SET WorkingSource = SUBSTRING(WorkingSource FROM StartNewString);
SET DelimiterPosition = POSITION(Delimiter IN WorkingSource);
SET CurrentFieldPosition = CurrentFieldPosition + 1;
END IF;

END WHILE;
IF DelimiterPosition> 0 THEN

-- Remove anything following the delimiter from the string
SET WorkingSource = SUBSTRING(WorkingSource FROM 1 FOR DelimiterPosition);
SET WorkingSource = TRIM(TRAILING Delimiter FROM WorkingSource);

END IF;
RETURN WorkingSource;

END;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

Chapter 9. Developing message flow applications 2443

“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“POSITION function” on page 5212
POSITION is a string manipulation function that manipulates all data types (BIT,
BLOB, and CHARACTER), and returns the position of one string within another.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“SUBSTRING function” on page 5218
SUBSTRING is a string manipulation function that manipulates all string data
types (BIT, BLOB, and CHARACTER), and extracts characters from a string to
create another string.
“TRIM function” on page 5221
TRIM is a string manipulation function that manipulates all string data types (BIT,
BLOB, and CHARACTER), and removes trailing and leading singletons from a
string.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.

Copying repeating fields:

You can configure a node with ESQL to copy repeating fields in several ways.

About this task

Consider an input XML message that contains a repeating structure:
...
<Field_top>
<field1></field1>
<field1></field1>
<field1></field1>
<field1></field1>
<field1></field1>

</Field_top>
.....

You cannot copy this whole structure field with the following statement:
SET OutputRoot.XMLNS.Output_top.Outfield1 = InputRoot.XMLNS.Field_top.field1;

That statement copies only the first repeat, and therefore produces the same result
as this statement:
SET OutputRoot.XMLNS.Output_top.Outfield1[1] = InputRoot.XMLNS.Field_top.field1[1];

2444 WebSphere Message Broker Version 7.0.0.8

You can copy the fields within a loop, controlling the iterations with the
CARDINALITY of the input field:
SET I = 1;
SET J = CARDINALITY(InputRoot.XMLNS.Field_top.field1[]);
WHILE I <= J DO
SET OutputRoot.XMLNS.Output_top.Outfield1[I] = InputRoot.XMLNS.Field_top.field1[I];
SET I = I + 1;
END WHILE;

This might be appropriate if you want to modify each field in the output message
as you copy it from the input field (for example, add a number to it, or fold its
contents to uppercase), or after it has been copied. If the output message already
contained more Field1 fields than existed in the input message, the surplus fields
would not be modified by the loop and would remain in the output message.

The following single statement copies the iterations of the input fields to the
output fields, and deletes any surplus fields in the output message.
SET OutputRoot.XMLNS.Output_top.Outfield1.[] = InputRoot.XMLNS.Field_top.field1[];

The following example shows how you can rename the elements when you copy
them into the output tree. This statement does not copy across the source element
name, therefore each field1 element becomes a Target element.
SET OutputRoot.XMLNS.Output_top.Outfield1.Target[] =

(SELECT I FROM InputRoot.XMLNS.Field_top.field1[] AS I);

The next example shows a different way to do the same operation; it produces the
same end result.
SET OutputRoot.XMLNS.Output_top.Outfield2.Target[]

= InputRoot.XMLNS.Field_top.field1[];

The following example copies across the source element name. Each field1
element is retained as a field1 element under the Target element.
SET OutputRoot.XMLNS.Output_top.Outfield3.Target.[]

= InputRoot.XMLNS.Field_top.field1[];

This example is an alternative way to achieve the same result, with field1
elements created under the Target element.
SET OutputRoot.XMLNS.Output_top.Outfield4.Target.*[]

= InputRoot.XMLNS.Field_top.field1[];

These examples show that there are several ways in which you can code ESQL to
copy repeating fields from source to target. Select the most appropriate method to
achieve the results that you require.

The principals shown here apply equally to all areas of the message tree to which
you can write data, not just the output message tree.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:

Chapter 9. Developing message flow applications 2445

“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.
“CARDINALITY function” on page 5238

A note about copying fields:

When you copy an input message element to an output element, the value and type
of the output element is set to that of the input element. Therefore, if, for example,
you have an input XML document with an attribute, and you want to set a Field
element (rather than an attribute) in your output message to the value of the input
attribute, you must include a TYPE clause cast to change the element-type from
attribute to Field.

About this task

For example, given the following input:
<Field01 Attrib01=’Attrib01_Value’>Field01_Value</Field01>

To create an output, such as in the following example:
<MyField_A MyAttrib_A=’Attrib01_Value’ MyAttrib_B=’Field01_Value’ >

<MyField_B>Field01_Value</MyField_BC>
<MyField_C>Attrib01_Value</MyField_C>
</MyField_A’>

You would use the following ESQL:
-- Create output attribute from input attribute
SET OutputRoot.XMLNSC.MyField_A.MyAttrib_A = InputRoot.XMLNSC.Field01.Attrib01;
-- Create output field from input field

2446 WebSphere Message Broker Version 7.0.0.8

SET OutputRoot.XMLNSC.MyField_A.MyField_B = InputRoot.XMLNSC.Field01;

-- Create output attribute from input field value, noting we have to
-- "cast" back to an attribute element
SET OutputRoot.XMLNSC.MyField_A.(XMLNSC.Attribute)MyAttrib_B =

InputRoot.XMLNSC.Field01;

-- Create output field from input attribute value, noting we have to
-- "cast" back to a field element
SET OutputRoot.XMLNSC.MyField_A.(XMLNSC.Field)MyField_C =

InputRoot.XMLNSC.Field01.Attrib01;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.
“CARDINALITY function” on page 5238

Chapter 9. Developing message flow applications 2447

Working with elements of type list:

The XML Schema specification allows an element, or attribute, to contain a list of
values that are based on a simple type, with the individual values separated by
white space.

About this task

In the message tree, an xsd:list element is represented as a name node, with an
anonymous child node for each list item. Repeating lists can be handled without
any loss of information.

Consider the following XML input message:
<message1>
<listE1>one two three</listE1>

</message1>

This XML element produces the following message tree:
MRM
listEl (Name)
"one" (Value)
"two" (Value)
"three" (Value)

Individual list items can be accessed as ElementName.*[n].

For example, use the following ESQL to access the third item of listE1:
SET X = FIELDVALUE (InputBody.message1.listE1.*[3]);

An attribute can also be of type xsd:list.

Consider the following XML input message:
<message1>
<Element listAttr="one two three"/>
</message1>

This XML element produces the following message tree:
MRM
Element (Name)
listAttr (Name)
"one" (Value)
"two" (Value)
"three" (Value)

As before, individual list items can be accessed as AttrName.*[n].

For example, use the following ESQL to access the third item of listAttr:
SET X = FIELDVALUE (InputBody.message1.Element.listAttr.*[3]);

A list element can occur more than once.

Consider the following XML message:
<message1>
<listE1>one two three/listE1>
<listE1>four five six/listE1>
</message1>

2448 WebSphere Message Broker Version 7.0.0.8

The message tree for this XML message is:
MRM
listE1 (Name)
"one" (Value)
"two" (Value)
"three" (Value)
listE1 (Name)
"four" (Value)
"five" (Value)
"six" (Value)

Code the following ESQL to access the first item in the second occurrence of the
list:
SET X = FIELDVALUE (InputBody.message1.listE1[2].*[1]);

Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Accessing elements in the message body” on page 2420
When you want to access the contents of a message, for reading or writing, use the
structure and arrangement of the elements in the tree that is created by the parser
from the input bit stream.
“Mapping between a list and a repeating element”
This task shows how to map between a list and a repeating element.
Related reference:
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Mapping between a list and a repeating element:

This task shows how to map between a list and a repeating element.

About this task

Consider the form of the following XML input message:
<MRM>

<inner>abcde fghij 12345</inner>
</MRM>

where the element inner is of type xsd:list, and therefore has three associated
string values, rather than a single value.

To copy the three values into an output message, where each value is associated
with an instance of repeating elements as shown here:

<MRM>
<str1>abcde</str1>
<str1>fghij</str1>
<str1>12345</str1>

</MRM>

you might expect that the following ESQL syntax works:
DECLARE D INTEGER;
SET D = CARDINALITY(InputBody.str1.*[]);
DECLARE M INTEGER 1;

Chapter 9. Developing message flow applications 2449

WHILE M <= D DO
SET OutputRoot.MRM.str1[M] = InputBody.inner.*[M];
SET M = M + 1;

END WHILE;

However, the statement:
SET OutputRoot.MRM.str1[M] = InputBody.inner.*[M];

requests a tree copy from input to output. Because the output element does not yet
exist, the statement creates it, and its value and type are set from the input.

Therefore, to create the output message with the required format, given an input
element which is of type xsd:list, use the “FIELDVALUE function” on page 5234
to explicitly retrieve only the value of the input element:
SET OutputRoot.MRM.str1[M] = FIELDVALUE(InputBody.inner.*[M]);

Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Accessing elements in the message body” on page 2420
When you want to access the contents of a message, for reading or writing, use the
structure and arrangement of the elements in the tree that is created by the parser
from the input bit stream.
Related reference:
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“FIELDVALUE function” on page 5234

Manipulating repeating fields in a message tree:

This topic describes the use of the SELECT function, and other column functions,
to manipulate repeating fields in a message tree.

About this task

Suppose that you want to perform a special action on invoices that have a total
order value greater than a certain amount. To calculate the total order value of an
Invoice field, you must multiply the Price fields by the Quantity fields in all the
Items in the message, and total the result. You can do this using a SELECT
expression as follows:

The example assumes that you need to use CAST expressions to cast the string
values of the fields Price and Quantity into the correct data types. The cast of the
Price field into a decimal produces a decimal value with the natural scale and
precision, that is, whatever scale and precision is necessary to represent the
number. These CASTs would not be necessary if the data were already in an
appropriate data type.

The SELECT expression works in a similar way to the quantified predicate, and in
much the same way that a SELECT works in standard database SQL. The FROM

(
SELECT SUM(CAST(I.Price AS DECIMAL) * CAST(I.Quantity AS INTEGER))
FROM Body.Invoice.Purchases."Item"[] AS I

)

2450 WebSphere Message Broker Version 7.0.0.8

clause specifies what is being iterated, in this case, all Item fields in Invoice, and
establishes that the current instance of Item can be referred to using I. This form of
SELECT involves a column function, in this case the SUM function, so the SELECT
is evaluated by adding together the results of evaluating the expression inside the
SUM function for each Item field in the Invoice. As with standard SQL, NULL
values are ignored by column functions, with the exception of the COUNT column
function explained later in this section, and a NULL value is returned by the
column function only if there are no non-NULL values to combine.

The other column functions that are provided are MAX, MIN, and COUNT. The
COUNT function has two forms that work in different ways with regard to
NULLs. In the first form you use it much like the SUM function above, for
example:

This expression returns the number of Item fields for which the Quantity field is
non-NULL. That is, the COUNT function counts non-NULL values, in the same
way that the SUM function adds non-NULL values. The alternative way of using
the COUNT function is as follows:

Using COUNT(*) counts the total number of Item fields, regardless of whether any
of the fields is NULL. The above example is in fact equivalent to using the
CARDINALITY function, as in the following:

In all the examples of SELECT given here, just as in standard SQL, you could use a
WHERE clause to provide filtering on the fields.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

SELECT COUNT(I.Quantity)
FROM Body.Invoice.Purchases."Item"[] AS I

SELECT COUNT(*)
FROM Body.Invoice.Purchases."Item"[] AS I

CARDINALITY(Body.Invoice.Purchases."Item"[])

Chapter 9. Developing message flow applications 2451

“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CARDINALITY function” on page 5238
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“Example message” on page 5311

Manipulating other parts of the message tree:

You can access message tree headers, the properties tree, the local environment
tree, the environment tree and the exception list tree.

About this task

The following topics describe how you can access parts of the message tree other
than the message body data. These parts of the logical tree are independent of the
domain in which the message exists, and all these topics apply to messages in the
BLOB domain in addition to all other supported domains.
v “Accessing headers” on page 2453
v “Accessing the Properties tree” on page 2460
v “Accessing the local environment tree” on page 2463
v “Accessing the environment tree” on page 2469
v “Accessing the ExceptionList tree using ESQL” on page 2471
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined

2452 WebSphere Message Broker Version 7.0.0.8

structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DatabaseInput node” on page 4360
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Accessing headers:

If the input message received by an input node includes message headers that are
recognized by the input node, the node invokes the correct parser for each header.
You can access these headers using ESQL.

About this task

Parsers are supplied for most WebSphere MQ headers. The following topics
provide some guidance for accessing the information in the MQMD, MQRFH2, and
MQPCF headers, which you can follow as general guidance for accessing other
headers also present in your messages.

Every header has its own correlation name, for example, MQMD, and you must
use this name in all ESQL statements that refer to or set the content of this tree:
v “Accessing the MQMD header” on page 2455
v “Accessing the MQRFH2 header” on page 2456
v “Accessing the MQCFH header” on page 2458

For further details of the contents of these and other WebSphere MQ headers for
which WebSphere Message Broker provides a parser, see “Element definitions for
message parsers” on page 4237.

Accessing transport headers:

Chapter 9. Developing message flow applications 2453

About this task

You can manipulate WebSphere MQ, HTTP, and JMS transport headers and their
properties without writing Compute nodes:
v Use the MQHeader node to add, modify, or delete MQ Message Descriptor

(MQMD) and MQ Dead Letter Header (MQDLH) headers.
v Use the HTTPHeader node to add, modify, or delete HTTP headers such as

HTTPRequest and HTTPReply.
v Use the JMSHeader node to modify contents of the JMS Header_Values and

Application properties so that you can control the node's output without
programming.

:

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“Element definitions for message parsers” on page 4237
“MQHeader node” on page 4590
Use the MQHeader node to add, modify, or delete MQ Message Descriptor
(MQMD) and MQ Dead Letter Header (MQDLH) headers.
“HTTPHeader node” on page 4470
Use the HTTPHeader node to add, modify, or delete HTTP headers such as
HTTPInput, HTTPResponse, HTTPRequest and HTTPReply.
“JMSHeader node” on page 4529
Use the JMSHeader node to modify contents of the JMS Header_Values and
Application properties so that you can control the node's output without

2454 WebSphere Message Broker Version 7.0.0.8

programming.

Accessing the MQMD header:

Code ESQL statements to access the fields of the MQMD header.

About this task

WebSphere MQ and WebSphere MQ Everyplace messages include an MQMD
header.

You can refer to the fields within the MQMD, and you can update them in a
Compute node.

For example, you might want to copy the message identifier MSGID in the MQMD
to another field in your output message. To do that, code:

If you send a message to an EBCDIC system from a distributed system, you might
need to convert the message to a compatible CodedCharSetId and Encoding. To do
this conversion, code the following ESQL in the Compute node:

The MQMD properties of CodedCharSetId and Encoding define the code page and
encoding of the section of the message that follows (typically this is either the
MQRFH2 header or the message body itself).

Differences exist in the way the Properties folder and the MQMD folder are treated
with respect to which folder takes precedence for the same fields. For more
information, see “Properties versus MQMD folder behavior for various transports”
on page 1050.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“How the message tree is populated” on page 1047
The message tree is initially populated by the input node of the message flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,

SET OutputRoot.MRM.Identifier = InputRoot.MQMD.MsgId;

SET OutputRoot.MQMD.CodedCharSetId = 500;
SET OutputRoot.MQMD.Encoding = 785;

Chapter 9. Developing message flow applications 2455

DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“The MQMD parser” on page 4249
The elements of the MQMD parser are listed in this topic.

Accessing the MQRFH2 header:

Code ESQL statements to access the fields of the MQRFH2 header.

About this task

When you construct an MQRFH2 header in a Compute node, it includes two types
of fields:
v Fields in the MQRFH2 header structure; for example, Format and

NameValueCCSID.
v Fields in the MQRFH2 NameValue buffer; for example, mcd and psc.

To differentiate between these two field types, insert a value in front of the
referenced field in the MQRFH2 field to identify its type; a value for the
NameValue buffer is not required because this is the default. The value that you
specify for the header structure is (MQRFH2.Field).

For example:
v To create or change an MQRFH2 Format field, specify the following ESQL:

v To create or change the psc folder with a topic:

v To add an MQRFH2 header to an outgoing message that is to be used to make a
subscription request:

SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = ’MQSTR ’;

SET OutputRoot.MQRFH2.psc.Topic = ’department’;

2456 WebSphere Message Broker Version 7.0.0.8

Variable J is initialized to the value of the cardinality of the existing headers in
the message. Using a variable is more efficient than calculating the cardinality on
each iteration of the loop, which happens if you code the following WHILE
statement:

The MQRFH2 header can be parsed using either the MQRFH2 parser or the
MQRFH2C compact parser. To consume less memory, use the MQRFH2C compact
parser by selecting the Use MQRFH2C compact parser for MQRFH2 Header check box
on the input node of the message flow. This results in paths that contain
MQRFH2C instead of MQRFH2; for example: SET OutputRoot.MQRFH2C.psc.Topic
= ’department’;

Target MQRFH2 fields are created only if the headers are copied, and the
MQRFH2C parser option is not selected on the MQInput node. In all other
circumstances, an MQRFH2C field is created on output.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;

SET OutputRoot.MQRFH2.(MQRFH2.Field)Version = 2;
SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = ’MQSTR’;
SET OutputRoot.MQRFH2.(MQRFH2.Field)NameValueCCSID = 1208;
SET OutputRoot.MQRFH2.psc.Command = ’RegSub’;
SET OutputRoot.MQRFH2.psc.Topic = "InputRoot"."MRM"."topel";
SET OutputRoot.MQRFH2.psc.QMgrName = ’DebugQM’;
SET OutputRoot.MQRFH2.psc.QName = ’PUBOUT’;
SET OutputRoot.MQRFH2.psc.RegOpt = ’PersAsPub’;

WHILE I < CARDINALITY(InputRoot.*[]) DO

Chapter 9. Developing message flow applications 2457

“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CARDINALITY function” on page 5238
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.
“MQRFH2 header” on page 6397
The MQRFH2 header is used to pass messages to and from a message broker that
belongs to WebSphere Message Broker.
“The MQRFH2 and MQRFH2C parsers” on page 4253
The MQRFH2 header can be parsed using either the MQRFH2 parser or the
MQRFH2C compact parser.

Accessing the MQCFH header:

Code ESQL statements to access the fields of the MQCFH header (root name
MQPCF).

About this task

Messages that are of PCF format (MQPCF, MQADMIN, and MQEVENT) include
the MQCFH header. You can process the contents of the MQCFH header, accessing
parameters, parameter lists, strings, and groups.

The ParameterCount field is hidden from view to keep the value synchronized with
the true number of parameters. As a result, you cannot directly view, access, or
edit the ParameterCount field and this applies when you are using:
v ESQL
v The Mapping Node
v Trace, or debugging code.

You can implement your own ParameterCount field with a specific value, but this
value will be overwritten by the actual number of parameters on the flow exit.
v To access or to construct parameters in the header, use the following syntax:

SET OutputRoot.MQPCF.Parameter[nn] =
Integer parameter ID

If you access a 64-bit parameter, use the following syntax to differentiate from
32-bit parameters:
SET OutputRoot.MQPCF.Parameter64[nn] =
Integer parameter ID

For example:
SET OutputRoot.MQPCF.Parameter[1] =
MQCACF_AUTH_PROFILE_NAME;

v For parameter lists, use the following syntax:

2458 WebSphere Message Broker Version 7.0.0.8

SET OutputRoot.MQPCF.ParameterList64[nn] =
Integer parameter ID

SET OutputRoot.MQPCF.ParameterList64[nn].*[xx] =
Integer parameter values

For example:
SET OutputRoot.MQPCF.ParameterList[1] =
MQIACF_AUTH_ADD_AUTHS;

SET OutputRoot.MQPCF.ParameterList[1].*[1] =
MQAUTH_SET;

SET OutputRoot.MQPCF.ParameterList[1].*[2] =
MQAUTH_SET_ALL_CONTEXT;

v A byte string is a byte array data type, and is supported with this syntax:
SET OutputRoot.MQPCF.Parameter[nn] =
Integer parameter ID

SET OutputRoot.MQPCF.Parameter[nn].* =
Integer, String or ByteArray Parameter value

v A group is implemented as a folder containing more PCF, and requires the
following syntax:
SET OutputRoot.MQPCF.Group[xx] =
Group Parameter ID

For example:
SET OutputRoot.MQPCF.Group[1] =
MQGACF_Q_ACCOUNTING_DATA;

SET OutputRoot.MQPCF.Group[1].Parameter[1] =
MQCA_CREATION_DATE;

SET OutputRoot.MQPCF.Group[1].Parameter[1].* =
’2007-02-05’;

You can also use nested groups; for example;
SET OutputRoot.MQPCF.Group[1].Group[1] =
MQGACF_Q_ACCOUNTING_DATA;

SET OutputRoot.MQPCF.Group[1].Group[1].Parameter[1] =
MQCA_CREATION_DATE;

SET OutputRoot.MQPCF.Group[1].Group[1].Parameter[1].* =
’2007-02-05’;

v A filter is almost identical to a parameter, but it also includes an operator.
Therefore the syntax is a tree with named values:
SET OutputRoot.MQPCF.Filter[xx] =
Integer parameter ID

SET OutputRoot.MQPCF.Filter[xx].Operator =
Integer Filter name

SET OutputRoot.MQPCF.Filter[xx].Value =
Byte, Integer or String Filter Value

v The following is sample code that can be used as an example to create an
MQPCF message in a Compute node:
CREATE NEXTSIBLING OF OutputRoot.Properties DOMAIN ’MQMD’;
CREATE NEXTSIBLING OF OutputRoot.MQMD DOMAIN ’MQADMIN’
NAME ’MQPCF’;
CREATE FIELD OutputRoot.MQPCF;
SET OutputRoot.MQMD.MsgType = MQMT_REQUEST;
SET OutputRoot.MQMD.ReplyToQ = ’REPLYQ’;
DECLARE refRequest REFERENCE TO OutputRoot.MQPCF;
SET refRequest.Type = 16; --MQCFT_COMMAND_XR z/OS
SET refRequest.StrucLength = MQCFH_STRUC_LENGTH;
SET refRequest.Version = 3; -- required for z/OS
SET refRequest.Command = MQCMD_INQUIRE_Q;
SET refRequest.MsgSeqNumber = 1;
SET refRequest.Control = MQCFC_LAST;
/* First parameter: Queue Name. */

Chapter 9. Developing message flow applications 2459

SET refRequest.Parameter[1] = MQCA_Q_NAME;
SET refRequest.Parameter[1].* = ’QUEUENAME.*’;
SET refRequest.ParameterList[1] = MQIACF_Q_ATTRS;
SET refRequest.ParameterList[1].* = MQIACF_ALL;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“The MQCFH parser” on page 4245
The elements of the MQCFH parser are listed in this topic.

Accessing the Properties tree:

The Properties tree has its own correlation name, Properties, and you must use this
in all ESQL statements that refer to or set the content of this tree.

About this task

The fields in the Properties tree contain values that define the characteristics of the
message. For example, the Properties tree contains message template information
for model-driven parsers, fields for the encoding and CCSID in which message
data is encoded, and fields that hold the security identity of the message. For a full
list of fields in this tree, see “Data types for elements in the Properties subtree” on
page 4239.

You can interrogate and update these fields using the appropriate ESQL
statements. If you create a new output message in the Compute node, you must
set values for the message properties.

Setting output message properties:
About this task

If you use the Compute node to generate a new output message, you must set its
properties in the Properties tree. The output message properties do not have to be
the same as the input message properties.

2460 WebSphere Message Broker Version 7.0.0.8

For example, to set the output message properties for an output MRM message, set
the following properties:

Property Value

MessageSet Message set identifier

MessageType Message name¹

MessageFormat Physical format name²

Notes:

1. For details of the syntax of Message type, see “Specifying namespaces in the
Message Type property” on page 1208.

2. The name that you specify for the physical format must match the name that
you have defined for it. The default physical format names are Binary1, XML1,
and Text1.

This ESQL procedure sets message properties to values passed in by the calling
statement. You might find that you have to perform this task frequently, and you
can use a procedure such as this in many different nodes and message flows. If
you prefer, you can code ESQL that sets specific values.

To set the output message domain, you can code ESQL statements that refer to the
required domain in the second qualifier of the SET statement, the parser field. For
example, the ESQL statement sets the domain to MRM:

This ESQL statement sets the domain to XMLNS:

Do not specify more than one domain in the ESQL for any single message.
However, if you use PROPAGATE statements to generate several output messages,
you can set a different domain for each message.

For information about the full list of elements in the Properties tree, see “Data
types for elements in the Properties subtree” on page 4239.

Differences exist in the way the Properties folder and the MQMD folder are treated
with respect to which folder takes precedence for the same fields. For more
information, see “Properties versus MQMD folder behavior for various transports”
on page 1050.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

CREATE PROCEDURE setMessageProperties(IN OutputRoot REFERENCE, IN setName char,
IN typeName char, IN formatName char) BEGIN

/**
* A procedure that sets the message properties
**/
set OutputRoot.Properties.MessageSet = setName;
set OutputRoot.Properties.MessageType = typeName;
set OutputRoot.Properties.MessageFormat = formatName;

END;

SET OutputRoot.MRM.Field1 = ’field1 data’;

SET OutputRoot.XMLNS.Field1 = ’field1 data’;

Chapter 9. Developing message flow applications 2461

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“How the message tree is populated” on page 1047
The message tree is initially populated by the input node of the message flow.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Accessing the MQMD header” on page 2455
Code ESQL statements to access the fields of the MQMD header.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“Data types for elements in the Properties subtree” on page 4239
A parser is supplied for the Properties subtree; it associates each field with a
specific data type.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

2462 WebSphere Message Broker Version 7.0.0.8

Accessing the local environment tree:

The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.

About this task

The local environment tree is used by the broker, and you can refer to and modify
this information. You can also extend the tree to contain information that you
create yourself. You can create subtrees of this tree that you can use as a
scratchpad or working area.

The message flow sets up information in two subtrees, Destination and
WrittenDestination, below the LocalEnvironment root. You can refer to the content
of both of these subtrees, and you can write to the Destination tree to influence the
way in which the message flow processes your message. However, if you write to
the Destination tree, follow the defined structure to ensure that the tree remains
valid.

The WrittenDestination subtree contains the addresses to which the message has
been written. Its name is fixed and it is created by the message flow when a
message is propagated through the Out terminal of a request, output, or reply
node. The subtree includes transport-specific information (for example, if the
output message has been put to a WebSphere MQ queue, it includes the queue
manager and queue names). You can use one of the following methods to obtain
information about the details of a message after it has been sent by the nodes:
v Connect a Compute node to the Out terminal.
v Configure a user exit to process an output message callback event, as described

in “Exploiting user exits” on page 2985.

The topic for each node that supports WrittenDestination information contains
details about the data that it contains.

If you want the local environment tree to be included in the output message that is
propagated by the Compute node, you must set the Compute node property
Compute mode to a value that includes the local environment (for example, All). If
you do not, the local environment tree is not copied to the output message.

The information that you insert into DestinationData or Defaults depends on the
characteristic of the corresponding node property:
v If a node property is represented by a check box (for example, New Message ID),

set the Defaults or DestinationData element to Yes (equivalent to selecting the
check box) or No (equivalent to clearing the check box).

v If a node property is represented by a drop-down list (for example, Transaction
Mode), set the Defaults or DestinationData element to the appropriate character
string (for example Automatic).

v If a node property is represented by a text entry field (for example, Queue
Manager Name), set the Defaults or DestinationData element to the character
string that you would enter in this field.

If necessary, configure the sending node to indicate where the destination
information is. For example, for the output node MQOutput, set Destination Mode:

Chapter 9. Developing message flow applications 2463

v If you set Destination Mode to Queue Name, the output message is sent to the
queue identified in the output node properties Queue Name and Queue Manager
Name. Destination is not referenced by the node.

v If you set Destination Mode to Destination List, the node extracts the
destination information from the Destination subtree. If you use this value you
can send a single message to multiple destinations, if you configure Destination
and a single output node correctly. The node checks the node properties only if
a value is not available in Destination (as described above).

v If you set Destination Mode to Reply To Queue, the message is sent to the
reply-to queue identified in the MQMD in this message (field ReplyToQ).
Destination is not referenced by the node.

To find more information about ESQL procedures that perform typical updates to
the local environment, see “Populating Destination in the local environment tree”
on page 2467. Review the ESQL statements in these procedures to see how to
modify the local environment. You can use these procedures unchanged, or modify
them for your own requirements.

To find more information about how to extend the contents of this tree for your
own purposes, see “Using scratchpad areas in the local environment” on page
2465.

For another example of how you can use the local environment to modify the
behavior of a message flow, refer to the XML_PassengerQuery message flow in the
following sample program:
v Airline Reservations

The Compute node in this message flow writes a list of destinations in the
RouterList subtree of Destination that are used as labels by a later RouteToLabel
node that propagates the message to the corresponding Label node. You can view
information about samples only when you use the information center that is
integrated with the WebSphere Message Broker Toolkit or the online information
center. You can run samples only when you use the information center that is
integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow

2464 WebSphere Message Broker Version 7.0.0.8

nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“RouteToLabel node” on page 4673
Use the RouteToLabel node in combination with one or more Label nodes to
dynamically determine the route that a message takes through the message flow,
based on its content.
“Data types for elements in the MQ DestinationData subtree” on page 4240
The DestinationData subtree is part of the Destination subtree in the local
environment. Local environment trees are created by input nodes when they
receive a message and, optionally, by Compute nodes. When created, the trees are
empty but you can create data in them by using ESQL statements coded in any of
the SQL nodes.

Using scratchpad areas in the local environment:

The local environment tree includes a subtree called variables. This subtree is
always created, but is never populated by the message flow. Use this area for your
own purposes; for example, to pass information from one node to another. You can
create other subtrees of the local environment tree.

About this task

The advantage of creating your own data in a scratchpad in the local environment
is that this data can be propagated as part of the logical tree to subsequent nodes
in the message flow. If you create a new output message in a Compute node, you
can also include all or part of the local environment tree from the input message in
the new output message.

To ensure that the information in the local environment is propagated further
down the flow, the Compute mode property of the Compute node must be set to
include the local environment as part of the output tree (for example, specify
LocalEnvironment and Message). For further details about the Compute mode
property, see “Setting the mode” on page 4344.

However, any data updates or additions that you make in one node are not
retained if the message moves backwards through the message flow (for example,
if an exception is thrown). If you create your own data, and want that data to be
preserved throughout the message flow, you must use the environment tree.

You can set values in the variables subtree in a Compute node and those values
can be used later by another node (Compute, Database, or Filter) for some purpose
that you determine when you configure the message flow.

Chapter 9. Developing message flow applications 2465

The local environment is not in scope in a Compute node, therefore you must use
InputLocalEnvironment and OutputLocalEnvironment instead. For example, you
might use the scratchpad in the local environment to propagate the destination of
an output message to subsequent nodes in a message flow. Your first Compute
node determines that the output messages from this message flow must go to
WebSphere MQ queues. Include the following ESQL to insert this information into
the local environment by setting the value of OutputLocation in the
OutputLocalEnvironment:

SET OutputLocalEnvironment.Variables.OutputLocation = ’MQ’;

Your second Compute node can access this information from its input message. In
the ESQL in this node, use the correlation name InputLocalEnvironment to identify
the local environment tree in the input message that contains this data. The
following ESQL sets queueManagerName and queueName based on the content of
OutputLocation in the local environment, by using InputLocalEnvironment:

IF InputLocalEnvironment.Variables.OutputLocation = ’MQ’ THEN
SET OutputLocalEnvironment.Destination.MQ.DestinationData.queueManagerName = ’myQManagerName’;
SET OutputLocalEnvironment.Destination.MQ.DestinationData.queueName = ’myQueueName’;

END IF;

In the example, queueManagerName and queueName are set for the Destination
subtree in the output message. You must set the Compute mode of the second
Compute node to include the local environment tree in the output message.
Configure the MQOutput node to use the destination list that you have created in
the local environment tree by setting the Destination Mode property to
Destination List.

For information about the full list of elements in the DestinationData subtree, see
“Data types for elements in the MQ DestinationData subtree” on page 4240.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.

2466 WebSphere Message Broker Version 7.0.0.8

“Data types for elements in the MQ DestinationData subtree” on page 4240
The DestinationData subtree is part of the Destination subtree in the local
environment. Local environment trees are created by input nodes when they
receive a message and, optionally, by Compute nodes. When created, the trees are
empty but you can create data in them by using ESQL statements coded in any of
the SQL nodes.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Populating Destination in the local environment tree:

Use the Destination subtree to set up the target destinations that are used by
output nodes, the HTTPRequest node, the SOAPRequest node, the
SOAPAsyncRequest node, and the RouteToLabel node. The following examples
show how you can create and use an ESQL procedure to perform the task of
setting up values for each of these uses.

About this task

Copy and use these procedures as shown, or you can modify or extend them to
perform similar tasks.

If you are creating this ESQL code for a Compute node, you must configure the
node by setting the Compute Mode property so that it has access to the local
environment tree in the output message. You must select one of the three values
LocalEnvironment, LocalEnvironment And Message, or All.

Adding a queue name for the MQOutput node with the Destination Mode
property set to Destination List

CREATE PROCEDURE addToMQDestinationList(IN LocalEnvironment REFERENCE, IN newQueue char) BEGIN
/***
* A procedure that adds a queue name to the MQ destination list in the local environment.
* This list is used by an MQOutput node that has its mode set to Destination list.
*
* IN LocalEnvironment: the LocalEnvironment to be modified.
* IN queue: the queue to be added to the list
*
***/

DECLARE I INTEGER CARDINALITY(LocalEnvironment.Destination.MQ.DestinationData[]);
IF I = 0 THEN
SET OutputLocalEnvironment.Destination.MQ.DestinationData[1].queueName = newQueue;
ELSE
SET OutputLocalEnvironment.Destination.MQ.DestinationData[I+1].queueName = newQueue;
END IF;
END;

For full details of these elements, see “Data types for elements in the MQ
DestinationData subtree” on page 4240.

Changing the default URL for a SOAPRequest node or a SOAPAsyncRequest
node request

CREATE PROCEDURE overrideDefaultSOAPRequestURL(IN LocalEnvironment REFERENCE, IN newUrl char) BEGIN
/***
* A procedure that changes the URL to which the SOAPRequest node or
* SOAPAsyncRequest node sends the request.

Chapter 9. Developing message flow applications 2467

*
* IN LocalEnvironment: the LocalEnvironment to be modified.
* IN queue: the URL to which to send the request.
*
***/

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.WebServiceURL = newUrl;
END;

Changing the default URL for an HTTPRequest node request
CREATE PROCEDURE overrideDefaultHTTPRequestURL(IN LocalEnvironment REFERENCE, IN newUrl char) BEGIN

/***
* A procedure that changes the URL to which the HTTPRequest node sends the request.
*
* IN LocalEnvironment: the LocalEnvironment to be modified.
* IN queue: the URL to which to send the request.
*
***/
SET OutputLocalEnvironment.Destination.HTTP.RequestURL = newUrl;

END;

Adding a label for the RouteToLabel node
CREATE PROCEDURE addToRouteToLabelList(IN LocalEnvironment REFERENCE, IN newLabel char) BEGIN

/***
* A procedure that adds a label name to the RouteToLabel list in the local environment.
* This list is used by a RoteToLabel node.
*
* IN LocalEnvironment: the LocalEnvironment to be modified.
* IN label: the label to be added to the list
*
***/

IF LocalEnvironment.Destination.RouterList.DestinationData is null THEN
SET OutputLocalEnvironment.Destination.RouterList.DestinationData."label" = newLabel;

ELSE
CREATE LASTCHILD OF LocalEnvironment.Destination.RouterList.DestinationData
NAME ’label’ VALUE newLabel;

END IF;
END;

Setting up JMS destination lists
You can configure a JMSOutput node to send to multiple JMS Queues, or
to publish to multiple JMS Topics by using a destination list that is created
in the local environment tree by a transformation node. The following
example shows how to set up JMS destination lists in the local
environment tree:

CREATE PROCEDURE CreateJMSDestinationList() BEGIN
SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[1] = ’jndi://TestDestQueue1’;
SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[2] = ’jndi://TestDestQueue2’;
SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[3] = ’jndi://TestDestQueue3’;

END;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

2468 WebSphere Message Broker Version 7.0.0.8

“Data types for elements in the MQ DestinationData subtree” on page 4240
The DestinationData subtree is part of the Destination subtree in the local
environment. Local environment trees are created by input nodes when they
receive a message and, optionally, by Compute nodes. When created, the trees are
empty but you can create data in them by using ESQL statements coded in any of
the SQL nodes.
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Accessing the environment tree:

The environment tree has its own correlation name, Environment, and you must
use this name in all ESQL statements that refer to, or set, the content of this tree.

About this task

The environment tree is always created when the logical tree is created for an
input message. However, the message flow neither populates it, nor uses its
contents. You can use this tree for your own purposes, for example, to pass
information from one node to another. You can use the whole tree as a scratchpad
or working area.

The advantage of creating your own data in environment is that this data is
propagated as part of the logical tree to subsequent nodes in the message flow. If
you create a new output message in a Compute node, the environment tree is also
copied from the input message to the new output message. (In contrast to the local
environment tree, which is only included in the output message if you explicitly
request that it is).

Only one environment tree is present for the duration of the message flow. Any
data updates, or additions, that you make in one node are retained, and all of the
nodes in the message flow have access to the latest copy of this tree. Even if the
message flows back through the message flow (for example, if an exception is
thrown, or if the message is processed through the second terminal of the
FlowOrder node), the latest state is retained. (In contrast to the local environment
tree, which reverts to its previous state if the message flows back through the
message flow.)

You can use this tree for any purpose you choose. For example, you can use the
following ESQL statements to create fields in the tree:

This information is now available to all nodes to which a message is propagated,
regardless of their relative position in the message flow.

For another example of how you can use environment to store information used by
other nodes in the message flow, look at the Reservation message flow in the
following sample:

SET Environment.Variables =
ROW(’granary’ AS bread, ’reisling’ AS wine, ’stilton’ AS cheese);

SET Environment.Variables.Colors[] =
LIST{’yellow’, ’green’, ’blue’, ’red’, ’black’};

SET Environment.Variables.Country[] = LIST{ROW(’UK’ AS name, ’pound’ AS currency),
ROW(’USA’ AS name, ’dollar’ AS currency)};

Chapter 9. Developing message flow applications 2469

v Airline Reservations

The Compute node in this message flow writes information to the subtree
Environment.Variables that it has extracted from a database according to the value
of a field in the input message.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Environment tree structure” on page 1055
The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ROW constructor function” on page 5267
“LIST constructor function” on page 5269
“ROW and LIST combined” on page 5270

2470 WebSphere Message Broker Version 7.0.0.8

“ROW and LIST comparisons” on page 5271
You can compare ROWs and LISTs against other ROWs and LISTs.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Accessing the ExceptionList tree using ESQL:

The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.

About this task

This tree is created with the logical tree when an input message is parsed. It is
initially empty, and is only populated if an exception occurs during message flow
processing. It is possible that more than one exception can occur; if more than one
exception occurs, the ExceptionList tree contains a subtree for each exception.

You can access the ExceptionList tree in Compute, Database, and Filter nodes, and
you can update it in a Compute node. You must use the appropriate correlation
name; ExceptionList for a Database or Filter node, and InputExceptionList for a
Compute node.

You might want to access this tree in a node in an error handling procedure. For
example, you might want to route the message to a different path based on the
type of exception, for example one that you have explicitly generated using an
ESQL THROW statement, or one that the broker has generated.

The following ESQL shows how you can access the ExceptionList and process each
child that it contains:

The following example shows an extract of ESQL that has been coded for a
Compute node to loop through the exception list to the last (nested) exception
description and extract the error number. This error relates to the original cause of
the problem and normally provides the most precise information. Subsequent
action taken by the message flow can be decided by the error number retrieved in
this way.

-- Declare a reference for the ExceptionList
-- (in a Compute node use InputExceptionList)
DECLARE start REFERENCE TO ExceptionList.*[1];

-- Loop through the exception list children
WHILE start.Number IS NOT NULL DO

-- more ESQL

-- Move start to the last child of the field to which it currently points
MOVE start LASTCHILD;

END WHILE;

Chapter 9. Developing message flow applications 2471

For more information about the use of ExceptionList, look at the subflow in the
following sample which includes ESQL that interrogates the ExceptionList
structure and takes specific action according to its content:
v Error Handler

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

For information on accessing the ExceptionList tree using Java, see “Accessing the
ExceptionList tree using Java” on page 2656
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

CREATE PROCEDURE getLastExceptionDetail(IN InputTree reference,OUT messageNumber integer,
OUT messageText char)

/**
* A procedure that will get the details of the last exception from a message
* IN InputTree: The incoming exception list
* IN messageNumber: The last message numberr.
* IN messageText: The last message text.
***/
BEGIN

-- Create a reference to the first child of the exception list
declare ptrException reference to InputTree.*[1];
-- keep looping while the moves to the child of exception list work

WHILE lastmove(ptrException) DO
-- store the current values for the error number and text
IF ptrException.Number is not null THEN

SET messageNumber = ptrException.Number;
SET messageText = ptrException.Text;

END IF;
-- now move to the last child which should be the next exceptionlist

move ptrException lastchild;
END WHILE;

END;

2472 WebSphere Message Broker Version 7.0.0.8

“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Accessing the ExceptionList tree using Java” on page 2656
The ExceptionList tree is created with the logical tree when an input message is
parsed.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Exception list structure” on page 4224
An exception list contains information about exceptions, such as error numbers, the
name of the node that generated the exception, and the reason for the exception.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“EVAL statement” on page 5131
The EVAL statement takes a character value, interprets it as an SQL statement, and
processes that statement.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.

Transforming from one data type to another:

Code ESQL functions and statements to transform messages and data types in
many ways.

About this task

The following topics provide guidance:
v “Casting data from message fields” on page 2474
v “Converting code page and message encoding” on page 2476
v “Converting EBCDIC NL to ASCII CR LF” on page 2480
v “Changing message format” on page 2484
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 9. Developing message flow applications 2473

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Casting data from message fields:

You can use the CAST function to transform the data type of one value to match
the data type of the other. For example, you can use the CAST function when you
process generic XML messages. All fields in an XML message have character
values, so if you want to perform arithmetic calculations or datetime comparisons,
for example, you must convert the string value of the field into a value of the
appropriate type using CAST.

About this task

When you compare an element with another element, variable or constant, ensure
that the value with which you are comparing the element is consistent (for
example, character with character). If the values are not consistent, the broker
generates a runtime error if it cannot provide an implicit casting to resolve the
inconsistency. For details of what implicit casts are supported, see “Implicit casts”
on page 5282.

In the “Example message” on page 5311, the field InvoiceDate contains the date of
the invoice. If you want to refer to or manipulate this field, you must CAST it to

2474 WebSphere Message Broker Version 7.0.0.8

the correct format first. For example, to refer to this field in a test:

This converts the string value of the InvoiceDate field into a date value, and
compares it to the current date.

Another example is casting from integer to character:

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

IF CAST(Body.Invoice.InvoiceDate AS DATE) = CURRENT_DATE THEN

DECLARE I INTEGER 1;
DECLARE C CHARACTER;

-- The following statement generates an error
SET C = I;

-- The following statement is valid
SET C = CAST(I AS CHARACTER);

Chapter 9. Developing message flow applications 2475

“CAST function” on page 5245
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“IF statement” on page 5134
The IF statement executes one set of statements based on the result of evaluating
condition expressions.
“Implicit CASTs for comparisons” on page 5282
The standard SQL comparison operators>, <,>=, <=, =, <> are supported for
comparing two values in ESQL.
“Implicit CASTs for arithmetic operations” on page 5285
“Implicit CASTs for assignment” on page 5287
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“Example message” on page 5311

Converting code page and message encoding:

You can use ESQL within a Compute node to convert data for code page and
message encoding.

About this task

If your message flow is processing WebSphere MQ messages, you can use
WebSphere MQ facilities (including get and put options and WebSphere MQ data
conversion exits) to provide these conversions. If you are not processing
WebSphere MQ messages, or you choose not to use WebSphere MQ facilities, you
can use WebSphere Message Broker facilities by coding the appropriate ESQL in a
Compute node in your message flow.

The contents of the MQMD, the MQRFH2, and the message body of a message in
the MRM domain that has been modeled with a CWF physical format can be
subject to code page and encoding conversion. The contents of a message body of
a message in the XML, XMLNS, and JMS domains, and those messages in the
MRM domain that have been modeled with an XML or TDS physical format, are
treated as strings. Only code page conversion applies; no encoding conversion is
required.

For messages in the MRM domain modeled with a CWF physical format, you can
set the MQMD CCSID and Encoding fields of the output message, plus the CCSID
and Encoding of any additional headers, to the required target value.

For messages in the MRM domain modeled with an XML or TDS physical format,
you can set the MQMD CCSID field of the output message, plus the CCSID of any
additional headers. XML and TDS data is handled as strings and is therefore
subject to CCSID conversion only.

An example WebSphere MQ message has an MQMD header, an MQRFH2 header,
and a message body. To convert this message to a mainframe CodedCharSetId and
Encoding, code the following ESQL in the Compute node:

2476 WebSphere Message Broker Version 7.0.0.8

The following example illustrates what you must do to modify a CWF message so
that it can be passed from WebSphere Message Broker to IMS on z/OS.

Procedure

1. You have defined the input message in XML and are using an MQRFH2
header. Remove the header before passing the message to IMS.

2. The message passed to IMS must have MQIIH header, and must be in the
z/OS code page. This message is modeled in the MRM and has the name
IMS1. Define the PIC X fields in this message as logical type string for
conversions between EBCDIC and ASCII to take place. If the fields are binary
logical type, no data conversion occurs; binary data is ignored when a CWF
message is parsed by the MRM parser.

3. The message received from IMS is also defined in the MRM and has the name
IMS2. Define the PIC X fields in this message as logical type string for
conversions between EBCDIC and ASCII to take place. If the fields are binary
logical type, no data conversion occurs; binary data is ignored when a CWF
message is parsed by the MRM parser.

4. Convert the reply message to the Windows code page. The MQIIH header is
retained on this message.

5. You have created a message flow that contains the following nodes: :
a. The outbound flow, MQInput1 --> Compute1 --> MQOutput1.
b. The inbound flow, MQInput2 --> Compute2 --> MQOutput2.

6. Code ESQL in Compute1 (outbound) node as follows, specifying the relevant
MessageSet ID. This code shows the use of the default CWF physical layer
name. You must use the name that matches your model definitions. If you
specify an incorrect value, the broker fails with message BIP5431.

SET OutputRoot.MQMD.CodedCharSetId = 500;
SET OutputRoot.MQMD.Encoding = 785;
SET OutputRoot.MQRFH2.CodedCharSetId = 500;
SET OutputRoot.MQRFH2.Encoding = 785;

Chapter 9. Developing message flow applications 2477

The use of a variable, J, that is initialized to the value of the cardinality of the
existing headers in the message, is more efficient than calculating the
cardinality on each iteration of the loop, which happens if you code the
following WHILE statement:

7. Create ESQL in Compute2 (inbound) node as follows, specifying the relevant
MessageSet ID. This code shows the use of the default CWF physical layer
name. You must use the name that matches your model definition. If you
specify an incorrect value, the broker fails with message BIP5431.

-- Loop to copy message headers
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J - 1 DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;

SET OutputRoot.MQMD.CodedCharSetId = 500;
SET OutputRoot.MQMD.Encoding = 785;
SET OutputRoot.MQMD.Format = ’MQIMS ’;
SET OutputRoot.MQIIH.Version = 1;
SET OutputRoot.MQIIH.StrucLength = 84;
SET OutputRoot.MQIIH.Encoding = 785;
SET OutputRoot.MQIIH.CodedCharSetId = 500;
SET OutputRoot.MQIIH.Format = ’MQIMSVS ’;
SET OutputRoot.MQIIH.Flags = 0;
SET OutputRoot.MQIIH.LTermOverride = ’ ’;
SET OutputRoot.MQIIH.MFSMapName = ’ ’;
SET OutputRoot.MQIIH.ReplyToFormat = ’MQIMSVS ’;
SET OutputRoot.MQIIH.Authenticator = ’ ’;
SET OutputRoot.MQIIH.TranInstanceId = X’00000000000000000000000000000000’;
SET OutputRoot.MQIIH.TranState = ’ ’;
SET OutputRoot.MQIIH.CommitMode = ’0’;
SET OutputRoot.MQIIH.SecurityScope = ’C’;
SET OutputRoot.MQIIH.Reserved = ’ ’;
SET OutputRoot.MRM.e_elen08 = 30;
SET OutputRoot.MRM.e_elen09 = 0;
SET OutputRoot.MRM.e_string08 = InputBody.e_string01;
SET OutputRoot.MRM.e_binary02 = X’31323334353637383940’;
SET OutputRoot.Properties.MessageSet = ’DHCJOEG072001’;
SET OutputRoot.Properties.MessageType = ’IMS1’;
SET OutputRoot.Properties.MessageFormat = ’Binary1’;

WHILE I < CARDINALITY(InputRoot.*[]) DO

2478 WebSphere Message Broker Version 7.0.0.8

Results

You do not have to set any specific values for the MQInput1 node properties,
because the message and message set are identified in the MQRFH2 header, and
no conversion is required.

You must set values for message domain, set, type, and format in the MQInput
node for the inbound message flow (MQInput2). You do not need to set conversion
parameters.

One specific situation in which you might need to convert data in one code page
to another is when messages contain newline characters and are passed between
EBCDIC and ASCII systems. The required conversion for this situation is described
in “Converting EBCDIC NL to ASCII CR LF” on page 2480.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,

-- Loop to copy message headers
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;

SET OutputRoot.MQMD.CodedCharSetId = 437;
SET OutputRoot.MQMD.Encoding = 546;
SET OutputRoot.MQMD.Format = ’MQIMS ’;
SET OutputRoot.MQIIH.CodedCharSetId = 437;
SET OutputRoot.MQIIH.Encoding = 546;
SET OutputRoot.MQIIH.Format = ’ ’;
SET OutputRoot.MRM = InputBody;
SET OutputRoot.Properties.MessageSet = ’DHCJOEG072001’;
SET OutputRoot.Properties.MessageType = ’IMS2’;
SET OutputRoot.Properties.MessageFormat = ’Binary1’;

Chapter 9. Developing message flow applications 2479

DatabaseInput, and Filter nodes.
Related reference:
“Multicultural support” on page 3628
Multicultural support is available for a selection of languages on both distributed
systems and z/OS.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CARDINALITY function” on page 5238
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.

Converting EBCDIC NL to ASCII CR LF:

You might want to change newline (NL) characters in a text message to carriage
return (CR) and line feed (LF) character pairs. This example shows one way in
which you can convert these characters.

About this task

This conversion might be useful if messages from an EBCDIC platform (for
example, using CCSID 1047) are sent to an ASCII platform (for example, using
CCSID 437). Problems can arise because the EBCDIC NL character hex '15' is
converted to the undefined ASCII character hex '7F'. The ASCII code page has no
corresponding code point for the NL character.

In this example, a message flow is created that interprets the input message as a
message in the BLOB domain. This message is passed into a
ResetContentDescriptor node to reset the data to a message in the MRM domain.
The message is called msg_nl (a set of repeating string elements delimited by
EBCDIC NL characters). A Compute node is then used to create an output based
on another message in the MRM domain called msg_crlf (a set of repeating string
elements delimited by CR LF pairs). The message domain is then changed back to
BLOB in another ResetContentDescriptor node. This message flow is shown in the
following diagram.

2480 WebSphere Message Broker Version 7.0.0.8

MQInput

ResetContentDescriptor ResetContentDescriptor1

Compute MQOutput1

The following instructions show how to create the messages and configure the
message flow.

Procedure

1. Create the message models for the messages in the MRM domain:
a. Create a message set project called myProj.
b. Create a message set called myMessageSet with a TDS physical format (the

default name is Text1).
c. Create an element string1 of type xsd:string.
d. Create a complex type called t_msg_nl and specify the following complex

type properties:
v Composition = Ordered Set
v Content Validation = Closed
v Data Element Separation = All Elements Delimited
v Delimiter = <U+0085> (hex '0085' is the UTF-16 representation of an NL

character)
v Repeat = Yes
v Min Occurs = 1
v Max Occurs = 50 (the text of the message is assumed to consist of no more

than 50 lines)
e. Add Element string1, and set the following property:
v Repeating Element Delimiter = <U+0085>

f. Create a Message msg_nl, and set its associated complex type to t_msg_nl
g. Create a complex type called t_msg_crlf, and specify the following complex

type properties:
v Composition = Ordered Set
v Content Validation = Closed
v Data Element Separation = All Elements Delimited
v Delimiter = <CR><LF> (<CR> and <LF> are the mnemonics for the CR

and LF characters)
v Repeat = Yes
v Min Occurs = 1
v Max Occurs = 50

h. Add Element string1, and set the following property:
v Repeating Element Delimiter = <CR><LF>

i. Create a Message msg_crlf, and set complex type to t_msg_crlf.
2. Configure the message flow shown in the previous figure:

a. Start with the MQInput node:
v Set Message Domain = BLOB
v Set Queue Name = <Your input message queue name>

Chapter 9. Developing message flow applications 2481

b. Add the ResetContentDescriptor node, connected to the Out terminal of the
MQInput node:
v Set Message Domain = MRM
v Select Reset Message Domain
v Set Message Set = <Your Message Set ID> (this field has a maximum of

13 characters)
v Select Reset Message Set
v Set Message Type = msg_nl
v Select Reset Message Type
v Set Message Format = Text1
v Select Reset Message Format

c. Add the Compute node, connected to the Out terminal of the
ResetContentDescriptor node:
v Enter a name for the ESQL Module for this node, or accept the default

(<message flow name>_Compute).
v Right-click the Compute node, and select Open ESQL. Add the following

ESQL code in the module:

The use of a variable, J, initialized to the value of the cardinality of the
existing headers in the message, is more efficient than calculating the
cardinality on each iteration of the loop, which happens if you code the
following WHILE statement:

d. Add the ResetContentDescriptor1 node, connected to the Out terminal of
the Compute node:
v Set Message Domain = BLOB
v Select Reset Message Domain.

e. Finally, add the MQOutput node, connected to the Out terminal of the
ResetContentDescriptor1 node. Configure its properties to direct the output
message to the required queue or queues.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

-- Declare local working variables
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

-- Loop to copy all message headers from input to output message
WHILE I < J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;

-- Set new output message type which uses CRLF delimiter
SET OutputRoot.Properties.MessageType = ’t_msg_crlf’;

-- Loop to copy each instance of string1 child within message body
SET I = 1;
SET J = CARDINALITY("InputBody"."string1"[]);
WHILE I <= J DO

SET "OutputRoot"."MRM"."string1"[I] = "InputBody"."string1"[I];
SET I=I+1;

END WHILE;

WHILE I < CARDINALITY(InputRoot.*[]) DO

2482 WebSphere Message Broker Version 7.0.0.8

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Multicultural support” on page 3628
Multicultural support is available for a selection of languages on both distributed
systems and z/OS.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“ResetContentDescriptor node” on page 4663
Use the ResetContentDescriptor node to request that the message is reparsed by a
different parser.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.
“TDS Mnemonics” on page 5391
The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both.

Chapter 9. Developing message flow applications 2483

Changing message format:

Use the Compute node to copy part of an input message to an output message.
The results of such a copy depend on the type of input and output parsers
involved.

Like parsers:
About this task

Where both the source and target messages have the same folder structure at root
level, a like-parser-copy is performed. For example:

This statement copies all the children in the MQMD folder of the input message to
the MQMD folder of the output message.

Another example of a tree structure that supports a like-parser-copy is:

To transform an input message in the MRM domain to an output message also in
the MRM domain, you can use either the Compute or the Mapping node. The
Mapping node can interpret the action that is required because it knows the format
of both messages. Content Assist in the ESQL module for the Compute node can
also use the message definitions for those messages. If the messages are not in the
same namespace, you must use the Compute node.

To use Content Assist with message references, you must set up a project reference
from the project containing the ESQL to the project containing the message set. For
information about setting up a project reference, see “Project references” on page
44.

If both input and output messages are not in the MRM domain, you must use the
Compute node and specify the structure of the messages yourself.

Unlike parsers:
About this task

Where the source and target messages have different folder structures at root level,
you cannot make an exact copy of the message source. Instead, the
unlike-parser-copy views the source message as a set of nested folders terminated by
a leaf name-value pair. For example, copying the following message from XML to
MRM:

produces a name element Name3, and a name-value element called Name31 with
the value Value31. The second XML pcdata (Value32) cannot be represented and is
discarded.

The unlike-parser-copy scans the source tree, and copies folders, also known as
name elements, and leaf name-value pairs. Everything else, including elements
flagged as special by the source parser, is not copied.

An example of a tree structure that results in an unlike-parser-copy is:

SET OutputRoot.MQMD = InputRoot.MQMD;

SET OutputRoot.XMLNS.Data.Account = InputRoot.XMLNS.Customer.Bank.Data;

<Name3><Name31>Value31</Name31>Value32</Name3>

2484 WebSphere Message Broker Version 7.0.0.8

If the algorithm used to make an unlike-parser-copy does not suit your tree
structure, youmust further qualify the source field to restrict the amount of the tree
that is copied.

Be careful when you copy information from input messages to output messages in
different domains. You might code ESQL that creates a message structure or
content that is not consistent with the rules of the parser that processes the output
message. This action can result in an output message not being created, or being
created with unexpected content. If you believe that the output message generated
by a particular message flow does not contain the correct content, or have the
expected form, check the ESQL that creates the output message, and look for
potential mismatches of structure, field types, field names, and field values.

When copying trees between unlike parsers, you must set the message format of
the target parser. For example, if a message set has been defined with XMLNS and
CWF formats, the following commands are required to copy an input XMLNS
stream to the MRM parser and set the latter to be generated in CWF format:
-- Copy message to the output, moving from XMLNS to MRM domains
SET OutputRoot.MRM = InputRoot.XMLNS.rootElement;

-- Set the CWF format for output by the MRM domain
SET OutputRoot.Properties.MessageType = ’<MessageTypeName>’;
SET OutputRoot.Properties.MessageSet = ’<MessageSetName>’;
SET OutputRoot.Properties.MessageFormat = ’CWF’;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
Related tasks:

SET OutputRoot.MRM.Account = InputRoot.XMLNS.Data.Account;

Chapter 9. Developing message flow applications 2485

“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Adding keywords to ESQL files:

You can add keywords to ESQL files to contain information that you want to
associate with a message flow.

Use one or more of the following methods:

Comment fields

Add the keyword as a comment in the ESQL file:
-- $MQSI compiled by = John MQSI$

Static strings

Include the keyword as part of a static string in the ESQL file:
SET target = ’$MQSI_target = production only MQSI$’

Variable string

Include the keyword value as a variable string in the ESQL file:
$MQSI_VERSION=$id$MQSI$

In this example, when the message flow source is extracted from the file
repository, the repository's plug-in has been configured to substitute the
identifier id with the actual version number. The identifier value that is
required depends on the capability and configuration of the repository, and
is not part of WebSphere Message Broker.

Restrictions within keywords

Do not use the following characters within keywords, because they cause
unpredictable behavior:
^ $. | \ < > ? + * = & [] ()

You can use these characters in the values that are associated with keywords; for
example:

2486 WebSphere Message Broker Version 7.0.0.8

v $MQSI RCSVER=$id$ MQSI$ is acceptable
v $MQSI $name=Fred MQSI$ is not acceptable
Related concepts:
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related reference:
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.

Interaction with databases using ESQL:

Use ESQL statements and functions to read from, write to, and modify databases
from your message flows.

About this task

ESQL has a number of statements and functions for accessing databases:
v The “CALL statement” on page 5077 invokes a stored procedure.
v The “DELETE FROM statement” on page 5127 removes rows from a database

table.
v The “INSERT statement” on page 5135 adds a row to a database table.
v The “PASSTHRU function” on page 5297 can be used to make complex

selections.
v The “PASSTHRU statement” on page 5147 can be used to invoke administrative

operations (for example, creating a table).
v The “SELECT function” on page 5260 retrieves data from a table.
v The “UPDATE statement” on page 5163 changes one or more values stored in

zero or more rows.

You can access user databases from Compute, Database, DatabaseInput, and Filter
nodes. The same ESQL functions and procedures are supported in all these nodes.

You can use the data in the databases to update or create messages, or use the data
in the message to update or create data in the databases.

Select Throw exception on database error and Treat warnings as errors, and set
Transaction to Automatic on each node that access a database, to provide
maximum flexibility.

For information about configuring the broker and the database to support access
from message flows, see “Accessing databases from ESQL” on page 2115.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 9. Developing message flow applications 2487

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
“Accessing multiple database tables” on page 2496
You can refer to multiple tables that you have created in the same database. Use
the FROM clause on the SELECT statement to join the data from the two tables.
“Referencing columns in a database” on page 2489
“Selecting data from database columns” on page 2491
You can configure a Compute, Filter, or Database node to select data from database
columns and include it in an output message.
“Changing database content” on page 2498
You can use Compute, Database, and Filter nodes to change the contents of a
database by updating, inserting, or deleting data.
“Checking returns to SELECT” on page 2500
If a SELECT function returns no data, or no further data, this result is handled as a
normal situation and no error code is set in SQLCODE, regardless of the setting of
the Throw Exception On Database Error and Treat Warnings As Errors properties
on the current node.
“Committing database updates” on page 2501
When you create a message flow that interacts with databases, you can choose
whether the updates that you make are committed when the current node has
completed processing, or when the current invocation of the message flow has
terminated.
“Invoking stored procedures” on page 2503
To invoke a procedure that is stored in a database, use the ESQL CALL statement.
The stored procedure must be defined by a CREATE PROCEDURE statement that
has a Language clause of DATABASE and an EXTERNAL NAME clause that
identifies the name of the procedure in the database and, optionally, the database
schema to which it belongs.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

2488 WebSphere Message Broker Version 7.0.0.8

“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“Data types of values from external databases” on page 5288
How database data types are implicitly cast to ESQL data types.

Referencing columns in a database:
About this task

While the standard SQL SELECT syntax is supported for queries to an external
database, there are a number of points to be borne in mind. You must prefix the
name of the table with the keyword Database to indicate that the SELECT is to be
targeted at the external database, rather than at a repeating structure in the
message.

The basic form of database SELECT is:

If necessary, you can specify a schema name:

where SCHEMA is the name of the schema in which the table TABLE1 is defined.
Include the schema if the user ID under which you are running does not match the
schema. For example, if your userID is USER1, the expression Database.TABLE1 is
equivalent to Database.USER1.TABLE1. However, if the schema associated with the
table in the database is db2admin, you must specify Database.db2admin.TABLE1.
If you do not include the schema, and this does not match your current user ID,
the broker generates a runtime error when a message is processed by the message
flow.

If, as in the two previous examples, a data source is not specified, TABLE1 must be
a table in the default database specified by the node’s data source property. To
access data in a database other than the default specified on the node’s data
source property, you must specify the data source explicitly. For example:

Qualify references to column names with either the table name or the correlation
name defined for the table by the FROM clause. So, where you could normally
execute a query such as:

SELECT ...
FROM Database.TABLE1
WHERE ...

SELECT ...
FROM Database.SCHEMA.TABLE1
WHERE ...

SELECT ...
FROM Database.DataSource.SCHEMA.TABLE1
WHERE ...

Chapter 9. Developing message flow applications 2489

you must write one of the following two forms:

This is necessary in order to distinguish references to database columns from any
references to fields in a message that might also appear in the SELECT:

You can use the AS clause to rename the columns returned. For example:

The standard select all SQL option is supported in the SELECT clause. If you use
this option, you must qualify the column names with either the table name or the
correlation name defined for the table. For example:

When you use ESQL procedure and function names within a database query, the
positioning of these within the call affects how these names are processed. If it is
determined that the procedure or function affects the results returned by the query,
it is not processed as ESQL and is passed as part of the database call.

This applies when attempting to use a function or procedure name with the
column identifiers within the SELECT statement.

For example, if you use a CAST statement on a column identifier specified in the
Select clause, this is used during the database query to determine the data type of
the data being returned for that column. An ESQL CAST is not performed to that
ESQL data type, and the data returned is affected by the database interaction's
interpretation of that data type.

If you use a function or procedure on a column identifier specified in the WHERE
clause, this is passed directly to the database manager for processing.

The examples in the subsequent topics illustrate how the results sets of external
database queries are represented in WebSphere Message Broker. The results of
database queries are assigned to fields in a message using a Compute node.

A column function is a function that takes the values of a single column in all the
selected rows of a table or message and returns a single scalar result.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.

SELECT column1, column2 FROM table1

SELECT T.column1, T.column2 FROM Database.table1 AS T

SELECT table1.column1, table1.column2 FROM Database.table1

SELECT T.column1, T.column2 FROM Database.table1
AS T WHERE T.column3 = Body.Field2

SELECT T.column1 AS price, T.column2 AS item
FROM Database.table1 AS T WHERE...

SELECT T.* FROM Database.Table1 AS T

2490 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CARDINALITY function” on page 5238
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“Example message” on page 5311

Selecting data from database columns:

You can configure a Compute, Filter, or Database node to select data from database
columns and include it in an output message.

About this task

The following example assumes that you have a database table called USERTABLE
with two char(6) data type columns (or equivalent), called Column1 and Column2.
The table contains two rows:

Column1 Column2

Row 1 value1 value2

Row 2 value3 value4

Configure the Compute, Filter, or Database node to identify the database in which
you have defined the table. For example, if you are using the default database
(specified on the data source property of the node), right-click the node, select

Chapter 9. Developing message flow applications 2491

Open ESQL, and code the following ESQL statements in the module for this node:

This ESQL produces the following output message:

To trigger the SELECT, send a trigger message with an XML body that is of the
following form:

The exact structure of the XML is not important, but the enclosing tag must be
<Test> to match the reference in the ESQL. If the enclosing tag is not <Test>, the
ESQL statements result in top-level enclosing tags being formed, which is not valid
XML.

If you want to create an output message that includes all the columns of all the
rows that meet a particular condition, use the SELECT statement with a WHERE
clause:

The message fields are created in the same order as the columns occur in the table.

If you are familiar with SQL in a database environment, you might expect to code
SELECT *. This syntax is not accepted by the broker, because you must start all
references to columns with a correlation name to avoid ambiguities with declared

SET OutputRoot = InputRoot;
DELETE FIELD OutputRoot.*[<];
SET OutputRoot.XML.Test.Result[] =

(SELECT T.Column1, T.Column2 FROM Database.USERTABLE AS T);

<Test>
<Result>

<Column1>value1</Column1>
<Column2>value2</Column2>

</Result>
<Result>

<Column1>value3</Column1>
<Column2>value4</Column2>

</Result>
</Test>

Figure 4. Output message

<Test>
<Result>

<Column1></Column1>
<Column2></Column2>

</Result>
<Result>

<Column1></Column1>
<Column2></Column2>

</Result>
</Test>

-- Declare and initialize a variable to hold the
-- test vaue (in this case the surname Smith)
DECLARE CurrentCustomer STRING ’Smith’;

-- Loop through table records to extract matching information
SET OutputRoot.XML.Invoice[] =

(SELECT R FROM Database.USERTABLE AS R
WHERE R.Customer.LastName = CurrentCustomer

);

2492 WebSphere Message Broker Version 7.0.0.8

variables. Also, if you code SELECT I.*, this syntax is accepted by the broker, but
the * is interpreted as the first child element, not all elements, as you might expect
from other database SQL.

The assignment of the result set of a database into a parser-owned message tree
requires the result set to exactly match the message definition. Because the generic
XML parser is self-defining, the example creates a new subtree off the Invoice
folder, and the parser can parse the new elements in the subtree. If the structure of
the result set exactly matches the message definition, the result set can be assigned
directly into the OutputRoot message body tree.

If the structure of the result set does not exactly match the MRM message
definition, you must first assign the result set into a ROW data type, or an
Environment tree that does not have a parser associated with it.

The required data can then be assigned to OutputRoot to build a message tree that
conforms to the message definition.

Selecting data from a table in a case-sensitive database system:
About this task

If the database system is case sensitive, you must use an alternative approach. This
approach is also necessary if you want to change the name of the generated field
to something different:

This example produces the output message as shown in Figure 4 on page 2492.
Ensure that references to the database columns (in this example, T.Column1 and
T.Column2) are specified in the correct case to match the database definitions
exactly. If you do not match the database definitions exactly (for example if you
specify T.COLUMN1), the broker generates a runtime error. Column1 and Column2
are used in the SELECT statement to match the columns that you have defined in
the database, although you can use any values here; the values do not have to
match.

Selecting bitstream data from a database:
About this task

These samples show how to retrieve XML bitstream data from a database, and
include it in an output message. See “INSERT statement” on page 5135 for
examples that show how you can insert bitstream data into a database.

Example

In the following example, bitstream data is held in a database column with a BLOB
data type. The database table used in the example (TABLE1) is the one created in
the “INSERT statement” on page 5135 examples, and the table contains the
following columns:
v MSGDATA

v MSGCCSID

v MSGENCODING

SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =

(SELECT T.Column1 AS Column1, T.Column2 AS Column2
FROM Database.USERTABLE AS T);

Chapter 9. Developing message flow applications 2493

If the bit stream from the database does not need to be interrogated or
manipulated by the message flow, the output message can be constructed in the
BLOB domain without any alteration.

In the following example, the message data, along with the MQMD header, is held
in a database column with a BLOB data type. To re-create the message tree,
including the MQMD header, from the bit stream, you can use a CREATE
statement with a PARSE clause and DOMAIN(’MQMD’). The output message can then
be modified by the message flow:
SET Environment.Variables.DBResult = THE(SELECT T.* FROM Database.TABLE1 AS T);
DECLARE resultRef REFERENCE TO Environment.Variables.DBResult;

IF LASTMOVE(resultRef) THEN

DECLARE outMsg BLOB resultRef.MSGDATA ;
DECLARE outCCSID INT resultRef.MSGCCSID;
DECLARE outEncoding INT resultRef.MSGENCODING;
DECLARE outMsgPriority INT resultRef.MSGPRIORITY;
DECLARE outMsgSeqNum INT resultRef.MSGSEQNUMBER;

SET OutputRoot.Properties.CodedCharSetId = outCCSID;
SET OutputRoot.Properties.Encoding = outEncoding ;

CREATE LASTCHILD OF OutputRoot DOMAIN(’MQMD’) PARSE(outMsg, outEncoding, outCCSID);

SET OutputRoot.MQMD.Version = MQMD_VERSION_2;

SET OutputRoot.MQMD.Priority = outMsgPriority;
SET OutputRoot.MQMD.MsgSeqNumber = outMsgSeqNum;

DECLARE HDRL INT ;
SET HDRL = LENGTH(BITSTREAM(OutputRoot.MQMD));
CREATE FIELD OutputRoot."BLOB"."BLOB";
DECLARE MSGB BLOB;
SET MSGB = SUBSTRING(outMsg FROM HDRL +1);
SET OutputRoot."BLOB"."BLOB" = MSGB;

END IF;

If you want to interrogate or manipulate a bit stream extracted from a database,
you must re-create the original message tree. To re-create the XML message tree
from the bit stream, you can use a CREATE statement with a PARSE clause. The
output message can then be modified by the message flow.

For example, you might create a database table by using the following statement:
INSERT INTO Database.TABLE1(MSGDATA, MSGENCODING, MSGCCSID)

VALUES (msgBitStream, inEncoding, inCCSID);

The following code snippet shows how to re-create the message tree in the XMLNS
domain by using the data read from the table:
CALL CopyMessageHeaders();

SET Environment.Variables.DBResult = THE(SELECT T.* FROM Database.TABLE1 AS T);
DECLARE resultRef REFERENCE TO Environment.Variables.DBResult;
IF LASTMOVE(resultRef) THEN
DECLARE outCCSID INT resultRef.MSGCCSID;
DECLARE outEncoding INT resultRef.MSGENCODING;
DECLARE outMsg BLOB resultRef.MSGDATA;
SET OutputRoot.Properties.CodedCharSetId = outCCSID;
SET OutputRoot.Properties.Encoding = outEncoding;
CREATE LASTCHILD OF OutputRoot DOMAIN(’XMLNS’) PARSE(outMsg, outEncoding, outCCSID);

2494 WebSphere Message Broker Version 7.0.0.8

-- Now modify the message tree fields
SET OutputRoot.XMLNS.A.B = 4;
SET OutputRoot.XMLNS.A.E = 5;

END IF;

In the following example, the data is held in a database column with a character
data type, such as CHAR or VARCHAR. A cast is used to convert the data
extracted from the database into BLOB format. If the bitstream data from the
database does not need to be interrogated or manipulated by the message flow, the
output message can be constructed in the BLOB domain, without any alteration.
CALL CopyMessageHeaders();

SET Environment.Variables.DBResult = THE(SELECT T.* FROM Database.TABLE1 AS T);
DECLARE resultRef REFERENCE TO Environment.Variables.DBResult;
IF LASTMOVE(resultRef) THEN
DECLARE outCCSID INT resultRef.MSGCCSID;
DECLARE outMsg BLOB CAST(resultRef.MSGDATA AS BLOB CCSID outCCSID);
SET OutputRoot.Properties.CodedCharSetId = outCCSID;
SET OutputRoot.Properties.Encoding = resultRef.MSGENCODING;
SET OutputRoot.BLOB.BLOB = outMsg;

END IF;

In the following example, the data is held in a database column with a character
data type, such as CHAR or VARCHAR. A cast is used to convert the data
extracted from the database into BLOB format. To manipulate or interrogate this
data within the message flow, you must re-create the original message tree. In this
example, a CREATE statement with a PARSE clause is used to re-create the XML
message tree in the XMLNS domain.
CALL CopyMessageHeaders();

SET Environment.Variables.DBResult = THE(SELECT T.* FROM Database.TABLE1 AS T);
DECLARE resultRef REFERENCE TO Environment.Variables.DBResult;
IF LASTMOVE(resultRef) THEN
DECLARE outCCSID INT resultRef.MSGCCSID;
DECLARE outEncoding INT resultRef.MSGENCODING;
DECLARE outMsg BLOB CAST(resultRef.MSGDATA AS BLOB CCSID outCCSID);
SET OutputRoot.Properties.CodedCharSetId = outCCSID;
SET OutputRoot.Properties.Encoding = outEncoding;
CREATE LASTCHILD OF OutputRoot DOMAIN(’XMLNS’) PARSE(outMsg, outEncoding, outCCSID);
-- Now modify the message tree fields
SET OutputRoot.XMLNS.A.B = 4;
SET OutputRoot.XMLNS.A.E = 5;

END IF;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.

Chapter 9. Developing message flow applications 2495

“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“DELETE statement” on page 5129
The DELETE statement detaches and destroys a portion of a message tree,
allowing its memory to be reused. This statement is particularly useful when
handling very large messages.
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“Data types of values from external databases” on page 5288
How database data types are implicitly cast to ESQL data types.

Accessing multiple database tables:

You can refer to multiple tables that you have created in the same database. Use
the FROM clause on the SELECT statement to join the data from the two tables.

About this task

The following example assumes that you have two database tables called
USERTABLE1 and USERTABLE2. Both tables have two char(6) data type columns
(or equivalent).

USERTABLE1 contains two rows:

Column1 Column2

Row 1 value1 value2

Row 2 value3 value4

USERTABLE2 contains two rows:

2496 WebSphere Message Broker Version 7.0.0.8

Column3 Column4

Row 1 value5 value6

Row 2 value7 value8

All tables referenced by a single SELECT function must be in the same database.
The database can be either the default (specified on the Data Source property of
the node) or another database (specified on the FROM clause of the SELECT
function).

Configure the Compute, Database, or Filter node that you are using to identify the
database in which you have defined the tables. For example, if you are using the
default database, right-click the node, select Open ESQL, and code the following
ESQL statements in the module for this node:

This code results in the following output message content:

This example shows how to access data from two database tables. You can code
more complex FROM clauses to access multiple database tables (although all the
tables must be in the same database). You can also refer to one or more message
trees, and can use SELECT to join tables with tables, messages with messages, or
tables with messages. “Joining data from messages and database tables” on page
2531 provides an example of how to merge message data with data in a database
table.

If you specify an ESQL function or procedure on the column identifier in the
WHERE clause, it is processed as part of the database query and not as ESQL.

Consider the following example:

This code attempts to return the rows where the value of Column2 converted to
uppercase is VALUE2. However, only the database manager can determine the value
of T.Column2 for any given row, therefore it cannot be processed by ESQL before
the database query is issued, because the WHERE clause determines the rows that
are returned to the message flow.

SET OutputRoot.XML.Test.Result[] =
(SELECT A.Column1 AS FirstColumn,

A.Column2 AS SecondColumn,
B.Column3 AS ThirdColumn,
B.Column4 AS FourthColumn

FROM Database.USERTABLE1 AS A,
Database.USERTABLE2 AS B

WHERE A.Column1 = ’value1’ AND
B.Column4 = ’value8’

);

<Test>
<Result>

<FirstColumn>value1</FirstColumn>
<SecondColumn>value2</SecondColumn>
<ThirdColumn>value7</ThirdColumn>
<FourthColumn>value8</FourthColumn>

</Result>
</Test>

SET OutputRoot.XML.Test.Result =
THE(SELECT ITEM T.Column1 FROM Database.USERTABLE1 AS T
WHERE UPPER(T.Column2) = ’VALUE2’);

Chapter 9. Developing message flow applications 2497

Therefore, the UPPER is passed to the database manager to be included as part of
its processing. However, if the database manager cannot process the token within
the SELECT statement, an error is returned.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Joining data from messages and database tables” on page 2531
You can use SELECT functions that interact with both message data and databases.

Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Changing database content:

You can use Compute, Database, and Filter nodes to change the contents of a
database by updating, inserting, or deleting data.

2498 WebSphere Message Broker Version 7.0.0.8

About this task

The following ESQL code includes statements that show all three operations. This
code is appropriate for a Database and Filter node; if you create this code for a
Compute node, use the correlation name InputRoot in place of Root.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

IF Root.XMLNS.TestCase.Action = ’INSERT’ THEN
INSERT INTO Database.STOCK (STOCK_ID, STOCK_DESC, STOCK_QTY_HELD,
BROKER_BUY_PRICE, BROKER_SELL_PRICE, STOCK_HIGH_PRICE, STOCK_HIGH_DATE,
STOCK_HIGH_TIME) VALUES
(CAST(Root.XMLNS.TestCase.stock_id AS INTEGER),
Root.XMLNS.TestCase.stock_desc,
CAST(Root.XMLNS.TestCase.stock_qty_held AS DECIMAL),
CAST(Root.XMLNS.TestCase.broker_buy_price AS DECIMAL),
CAST(Root.XMLNS.TestCase.broker_sell_price AS DECIMAL),
Root.XMLNS.TestCase.stock_high_price,
CURRENT_DATE,
CURRENT_TIME);

ELSEIF Root.XMLNS.TestCase.Action = ’DELETE’ THEN

DELETE FROM Database.STOCK WHERE STOCK.STOCK_ID =
CAST(Root.XMLNS.TestCase.stock_id AS INTEGER);

ELSEIF Root.XMLNS.TestCase.Action = ’UPDATE’ THEN

UPDATE Database.STOCK as A SET STOCK_DESC = Root.XMLNS.TestCase.stock_desc
WHERE A.STOCK_ID = CAST(Root.XMLNS.TestCase.stock_id AS INTEGER);

END IF;

Chapter 9. Developing message flow applications 2499

“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Checking returns to SELECT:

If a SELECT function returns no data, or no further data, this result is handled as a
normal situation and no error code is set in SQLCODE, regardless of the setting of
the Throw Exception On Database Error and Treat Warnings As Errors properties
on the current node.

About this task

To recognize that a SELECT function has returned no data, include ESQL that
checks what has been returned. You can use various methods:
1. EXISTS

This ESQL returns a Boolean value that indicates if a SELECT function returned
one or more values (TRUE), or none (FALSE).
IF EXISTS(SELECT T.MYCOL FROM Database.MYTABLE) THEN
...

2. CARDINALITY
If you expect an array in response to a SELECT, you can use CARDINALITY to
calculate how many entries have been received.
SET OutputRoot.XMLNS.Testcase.Results[] = (

SELECT T.MYCOL FROM Database.MYTABLE)
......
IF CARDINALITY (OutputRoot.XMLNS.Testcase.Results[])> 0 THEN
........

3. IS NULL
If you have used either THE or ITEM keywords in your SELECT function, a
scalar value is returned. If no rows have been returned, the value set is NULL.
However, it is possible that the value NULL is contained within the column,
and you might want to distinguish between these two cases.
Distinguish between cases by including COALESCE in the SELECT function,
for example:
SET OutputRoot.XMLNS.Testcase.Results VALUE = THE (

SELECT ITEM COALESCE(T.MYCOL, ’WAS NULL’)
FROM Database.MYTABLE);

If this example returns the character string WAS NULL, it indicates that the
column contained NULL, and not that no rows were returned.

In previous releases, an SQLCODE of 100 was set in most cases if no data, or no
further data, was returned. An exception was raised by the broker if you chose to
handle database errors in the message flow.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

2500 WebSphere Message Broker Version 7.0.0.8

“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“ESQL simple comparison operators” on page 5057
The simple comparison operators >, <, >=, <=, =, and <>.
“CARDINALITY function” on page 5238

Committing database updates:

When you create a message flow that interacts with databases, you can choose
whether the updates that you make are committed when the current node has
completed processing, or when the current invocation of the message flow has
terminated.

Chapter 9. Developing message flow applications 2501

About this task

The information in this topic does not apply to the DatabaseInput node. For more
information about the DatabaseInput node, see “Event-based database integration”
on page 2118.

For each node, select the appropriate option for the Transaction property to
specify when its database updates are to be committed:
v Choose Automatic (the default) if you want updates made in this node to be

committed or rolled back as part of the whole message flow. The actions that
you define in the ESQL module are performed on the message and it continues
through the message flow. If the message flow completes successfully, the
updates are committed. If the message flow fails, the message and the database
updates are rolled back.

v Choose Commit if you want to commit the action of the node on the database,
irrespective of the success or failure of the message flow as a whole. The
database update is committed when the node processing is successfully
completed, that is, after all ESQL has been processed, even if the message flow
itself detects an error in a subsequent node that causes the message to be rolled
back.

The value that you choose is implemented for the database tables that you have
updated. You cannot select a different value for each table.

If you have set Transaction to Commit, the behavior of the message flow and the
commitment of database updates can be affected by the use of the PROPAGATE
statement in the node's ESQL.

If you choose to include a PROPAGATE statement that generates one or more
output messages from the node, the processing of the PROPAGATE statement is
not considered complete until the entire path that the output message takes has
completed. This path might include several other nodes, including one or more
output nodes. Only then does the node that issues the PROPAGATE statement
receive control back and its ESQL terminate. At that point, a database commit is
performed, if appropriate.

If one of the nodes on the propagated path detects an error and throws an
exception, the processing of the node in which you have coded the PROPAGATE
statement never completes. If the error processing results in a rollback, the message
flow and the database update in this node are rolled back. This behavior is
consistent with the stated operation of the Commit option, but might not be the
behavior that you expect.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

2502 WebSphere Message Broker Version 7.0.0.8

“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“PROPAGATE statement” on page 5150
The PROPAGATE statement propagates a message to the downstream nodes.

Invoking stored procedures:

To invoke a procedure that is stored in a database, use the ESQL CALL statement.
The stored procedure must be defined by a CREATE PROCEDURE statement that
has a Language clause of DATABASE and an EXTERNAL NAME clause that
identifies the name of the procedure in the database and, optionally, the database
schema to which it belongs.

About this task

When you invoke a stored procedure with the CALL statement, the broker ensures
that the ESQL definition and the database definition match:
v The external name of the procedure must match a procedure in the database.
v The number of parameters must be the same.
v The type of each parameter must be the same.
v The direction of each parameter (IN, OUT, INOUT) must be the same.

The following restrictions apply to the use of stored procedures:
v Overloaded procedures are not supported. (An overloaded procedure is one that

has the same name as another procedure in the same database schema with a
different number of parameters, or parameters with different types.) If the
broker detects that a procedure has been overloaded, it raises an exception.

v In an Oracle stored procedure declaration, you are not permitted to constrain
CHAR and VARCHAR2 parameters with a length, and NUMBER parameters
with a precision or scale, or both. Use %TYPE when you declare CHAR,
VARCHAR and NUMBER parameters to provide constraints on a formal
parameter.

You can also invoke a database stored procedure or a database user-defined
function from a Mapping node. See “Mapping a target element from database
stored procedures” on page 2290 or “Mapping a target element from database
user-defined functions” on page 2292.

Chapter 9. Developing message flow applications 2503

Creating a stored procedure in ESQL:
About this task

When you define an ESQL procedure that corresponds to a database stored
procedure, you can specify either a qualified name (where the qualifier is a
database schema) or an unqualified name.

To create a stored procedure:

Procedure

1. Code a statement similar to this example to create an unqualified procedure:
CREATE PROCEDURE myProc1(IN p1 CHAR) LANGUAGE DATABASE EXTERNAL NAME "myProc";

The EXTERNAL NAME that you specify must match the definition you have
created in the database, but you can specify any name you choose for the
corresponding ESQL procedure.

2. Code a statement similar to this example to create a qualified procedure:
CREATE PROCEDURE myProc2(IN p1 CHAR) LANGUAGE DATABASE EXTERNAL NAME "Schema1.myProc";

3. Code a statement similar to this example to create a qualified procedure in an
Oracle package:
CREATE PROCEDURE myProc3(IN p1 CHAR) LANGUAGE DATABASE EXTERNAL

NAME "mySchema.myPackage.myProc";

Results

For examples of stored procedure definitions in the database, see the “CREATE
PROCEDURE statement” on page 5103.

Calling a stored procedure:
Procedure

1. Code a statement similar to this example to invoke an unqualified procedure:
CALL myProc1(’HelloWorld’);

Because it is not defined explicitly as belonging to any schema, the myProc1
procedure must exist in the default schema (the name of which is the user
name used to connect to the data source) or the command fails.

2. The following example calls the myProc procedure in schema Schema1.
CALL myProc2(’HelloWorld’);

3. Code a statement similar to this example to invoke an unqualified procedure
with a dynamic schema:
DECLARE Schema2 char ’mySchema2’;
CALL myProc1(’HelloWorld’) IN Database.{’Schema2’};

This statement calls the myProc1 procedure in database Schema2, overriding the
default “username” schema.

Calling a stored procedure that returns two result sets:
About this task

To call a stored procedure that takes one input parameter and returns one output
parameter and two result sets:

Procedure

1. Define the procedure with a CREATE PROCEDURE statement that specifies
one input parameter, one output parameter, and two result sets:

2504 WebSphere Message Broker Version 7.0.0.8

CREATE PROCEDURE myProc1 (IN P1 INT, OUT P2 INT)
LANGUAGE DATABASE
DYNAMIC RESULT SETS 2
EXTERNAL NAME "myschema.myproc1";

2. To invoke the myProc1 procedure using a field reference, code:
/* using a field reference */
CALL myProc1(InVar1, OutVar2, Environment.ResultSet1[],

OutputRoot.XMLNS.Test.ResultSet2[]);

3. To invoke the myProc1 procedure using a reference variable, code:
/* using a reference variable*/
DECLARE cursor REFERENCE TO OutputRoot.XMLNS.Test;

CALL myProc1(InVar1, cursor.OutVar2, cursor.ResultSet1[],
cursor.ResultSet2[]);

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL procedures” on page 2386
An ESQL procedure is a subroutine that has no return value. It can accept input
parameters from, and return output parameters to, the caller.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CALL statement” on page 5077
The CALL statement calls (invokes) a routine.
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.

Chapter 9. Developing message flow applications 2505

Coding ESQL to handle errors:

When you process messages in a message flow, errors can have a number of
different causes and the message flow designer must decide how to handle those
errors.

Introduction

When you process messages in message flows, errors can have the following
causes:
v External causes; for example, the incoming message is syntactically invalid, a

database used by the flow has been shut down, or the power supply to the
machine on which the broker is running fails.

v Internal causes; for example, an attempt to insert a row into a database table
fails because of a constraint check, or a character string that is read from a
database cannot be converted to a number because it contains alphabetic
characters.
Internal errors can be caused by programs storing invalid data in the database,
or by a flaw in the logic of a flow.

The message flow designer must decide how to handle errors.

Using default error-handling

The simplest strategy for handling ESQL errors is to do nothing, and use the
broker's default behavior. The default behavior is to cut short the processing of the
failing message, and to proceed to the next message. Input and output nodes
provide options to control exactly what happens when processing is cut short.

If the input and output nodes are set to transactional mode, the broker restores the
state before the message is processed:
1. The input message that has apparently been taken from the input queue is put

back.
2. Any output messages that the flow has apparently written to output queues are

discarded.

If the input and output nodes are not set to transactional mode:
1. The input message that was taken from the input queue is not put back.
2. Any output messages that the flow has written to output queues remain on the

output queues.

Each of these strategies has its advantages. The transactional model preserves the
consistency of data, while the non-transactional model maximizes the continuity of
message processing. In the transactional model, the failing input message is put
back onto the input queue, and the broker attempts to process it again. The most
likely outcome of this scenario is that the message continues to fail until the retry
limit is reached, at which point the message is placed on a dead letter queue. The
reason for the failure to process the message is logged to the system event log
(Windows) or syslog (UNIX). Therefore, the failing message holds up the
processing of subsequent valid messages, and is left unprocessed by the broker.

Most databases operate transactionally so that all changes that are made to
database tables are committed if the processing of the message succeeds, or rolled
back if it fails, therefore maintaining the integrity of data. An exception to this
situation is if the broker itself, or a database, fails (for example, the power to the

2506 WebSphere Message Broker Version 7.0.0.8

computers on which they are running is interrupted). In these cases, changes might
be committed in some databases, but not in others, or the database changes might
be committed but the input and output messages are not committed. If these
possibilities concern you, make the flow coordinated and configure the databases
that are involved.

Using customized error handling: The following list contains some general tips for
creating customized error handlers.
v If you require something better than default error handling, the first step is to

use a handler; see “DECLARE HANDLER statement” on page 5124. Create one
handler per node to intercept all possible exceptions (or all those that you can
predict).

v Having intercepted an error, the error handler can use whatever logic is
appropriate to handle it. Alternatively, it can use a THROW statement or node to
create an exception, which could be handled higher in the flow logic, or even
reach the input node, causing the transaction to be rolled back; see “Throwing
an exception” on page 2511.

v If a node generates an exception that is not caught by the handler, the flow is
diverted to the Failure terminal, if one is connected, or handled by default
error-handling if no Failure terminal is connected.
Use Failure terminals to catch unhandled errors. Attach a simple logic flow to
the Failure terminal. This logic flow could consist of a database or Compute
node that writes a log record to a database (possibly including the message's bit
stream), or writes a record to the event log. The flow could also contain an
output node that writes the message to a special queue.
The full exception tree is passed to any node that is connected to a Failure
terminal; see “Exception list tree structure” on page 1066.

v Your error handlers are responsible for logging each error in an appropriate
place, such as the system event log.

For a detailed description of the options that you can use to process errors in a
message flow, see “Handling errors in message flows” on page 2823. For examples
of what you can do, see “Throwing an exception” on page 2511 and “Capturing
database state” on page 2512.

Writing code to detect errors

The following sections assume that the broker detects the error. It is possible,
however, for the logic of the flow to detect an error. For example, when coding the
flow logic, you could use the following elements:
v IF statements that are inserted specifically to detect situations that should not

occur
v The ELSE clause of a case expression or statement to trap routes through the

code that should not be possible

As an example of a flow logic-detected error, consider a field that has a range of
possible integer values that indicate the type of message. It would not be good
practice to leave to chance what would happen if a message were to arrive in
which the field's value did not correspond to any known type of message. One
way this situation could occur is if the system is upgraded to support extra types
of message, but one part of the system is not upgraded.

Chapter 9. Developing message flow applications 2507

Using your own logic to handle input messages that are not valid

Input messages that are syntactically invalid (and input messages that appear to be
not valid because of erroneous message format information) are difficult to deal
with, because the broker cannot determine the contents of the message. Typically,
the best way to deal with these messages is to configure the input node to fully
parse and validate the message. However, this configuration applies only to
predefined messages; that is, MRM or IDoc.

If the input node is configured in this way, the following results are guaranteed if
the input message cannot be parsed successfully:
v The input message never emerges from the node's normal output terminal (it

goes to the Failure terminal).
v The input message never enters the main part of the message flow.
v The input message never causes any database updates.
v No messages are written to any output queues.

To deal with a failing message, connect a simple logic flow to the Failure terminal.
The only disadvantage to this strategy is that if the normal flow does not require
access to all of the message's fields, the forcing of complete parsing of the message
affects performance.

Using your own logic to handle database errors

Database errors fall into three categories:
v The database is not working (for example, it is off line).
v The database is working but refuses your request (for example, a lock contention

occurs).
v The database is working but it cannot do what you request (for example, read

from a non-existent table).

If you require something better than default error handling, the first step is to use
a handler (see “DECLARE HANDLER statement” on page 5124) to intercept the
exception. The handler can determine the nature of the failure from the SQL state
that is returned by the database.

A database is not working
If a database is not working at all, and is essential to the processing of
messages, there is typically not much that you can do. The handler, having
determined the cause, might complete one or more of the following actions:
v Use the RESIGNAL statement to re-throw the original error, therefore

allowing the default error handler to take over
v Use a different database
v Write the message to a special output queue

Be careful if you use an approach similar to this technique; the handler
absorbs the exception, therefore all changes to other databases, or writes to
queues, are committed.

A database refuses your request
The situation when a lock contention occurs is similar to the “Database not
working” case because the database will have backed out all the database
changes that you have made for the current message, not just the failing
request. Therefore, unless you are sure that this was the only update, default
error-handling is typically the best strategy, except possibly logging the error
or passing the message to a special queue.

2508 WebSphere Message Broker Version 7.0.0.8

Impossible requests
An impossible request occurs when the database is working, but cannot
complete the requested action. This type of error covers a wide variety of
problems.

If, as discussed in the previous example, the database does not have a table of
the name that the flow expects, default error-handling is typically the best
strategy, except possibly logging the error or passing the message to a special
queue.
Many other errors might be handled successfully, however. For example, an
attempt to insert a row might fail because there is already such a row and the
new row would be a duplicate. Or an attempt to update a row might fail
because there is no such row (that is, the update action updated zero rows). In
these cases, the handler can incorporate whatever logic you think appropriate.
It might insert the missing row, or use the existing one (possibly making sure
the values in it are suitable).
If you want an update of zero rows to be reported as an error, you must set
the Treat warnings as errors property on the node to true, which is not the
default setting.

Using your own logic to handle errors in output nodes

Errors that occur in MQOutput nodes report the nature of the error in the SQL
state and give additional information in the SQL native error variable. Therefore, if
something better than default error handling is required, the first step is to use a
handler (see “DECLARE HANDLER statement” on page 5124) to intercept the
exception. Such a handler typically surrounds only a single PROPAGATE
statement.

Using your own logic to handle other errors

Besides those errors covered above, a variety of other errors can occur. For
example, an arithmetic calculation might overflow, a cast might fail because of the
unsuitability of the data, or an access to a message field might fail because of a
type constraint. The broker offers two programming strategies for dealing with
these types of error.
v The error causes an exception that is either handled or left to roll back the

transaction.
v The failure is recorded as a special value that is tested for later.

In the absence of a type constraint, an attempt to access a non-existent message
field results in the value null. Null values propagate through expressions, making
the result null. Therefore, if an expression, however complex, does not return a
null value, you know that all the values that it needed to calculate its result were
not null.

Cast expressions can have a default clause. If there is a default clause, casts fail
quietly; instead of throwing an exception, they simply return the default value. The
default value could be an innocuous number (for example, zero for an integer), or
a value that is clearly invalid in the context (for example, -1 for a customer
number). Null might be particularly suitable because it is a value that is different
from all others, and it will propagate through expressions without any possibility
of the error condition being masked.

Chapter 9. Developing message flow applications 2509

Handling errors in other nodes

Exceptions that occur in other nodes (that is, downstream of a PROPAGATE
statement) might be caught by handlers in the normal way. Handling such errors
intelligently, however, poses a problem: another node was involved in the original
error, therefore another node, and not necessarily the originator of the exception, is
likely to be involved in handling the error.

To help in these situations, the Database and Compute nodes have four terminals
called Out1, Out2, Out3, and Out4. In addition, the syntax of the PROPAGATE
statement includes target expression, message source, and control clauses to give
more control over these terminals.
Related concepts:
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Capturing database state” on page 2512
If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.
“Accessing the ExceptionList tree using ESQL” on page 2471
The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“DECLARE HANDLER statement” on page 5124
The DECLARE HANDLER statement creates an error handler for handling
exceptions.
“PROPAGATE statement” on page 5150
The PROPAGATE statement propagates a message to the downstream nodes.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

2510 WebSphere Message Broker Version 7.0.0.8

“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Throwing an exception:

If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.

About this task

v Use the ESQL THROW EXCEPTION statement.
Include the THROW statement anywhere in the ESQL module for a Compute,
Database, or Filter node. Use the options on the statement to code your own
data to be inserted into the exception.

v Include a THROW node in your message flow.
Set the node properties to identify the source and content of the exception.

By using either statement options or node properties, you can specify a message
identifier and values that are inserted into the message text to give additional
information and identification to users who interpret the exception. You can specify
any message in any catalog that is available to the broker. See “Using error logging
from a user-defined extension” on page 3137 for more information.

The situations in which you might want to throw an exception are determined by
the behavior of the message flow; decide when you design the message flow
where this action might be appropriate. For example, you might want to examine
the content of the input message to ensure that it meets criteria that cannot be
detected by the input node (which might check that a particular message format is
received).

The following example uses the “Example message” on page 5311 to show how
you can use the ESQL THROW statement. To check that the invoice number is
within a particular range, throw an exception for any invoice message received
that does not fall in the valid range.

Related concepts:

--Check for invoice number lower than permitted range
IF Body.Invoice.InvoiceNo < 100000 THEN

THROW USER EXCEPTION CATALOG ’MyCatalog’ MESSAGE 1234 VALUES
(’Invoice number too low’, Body.Invoice.InvoiceNo);

-- Check for invoice number higher than permitted range
ELSEIF Body.Invoice.InvoiceNo > 500000 THEN

THROW USER EXCEPTION CATALOG ’MyCatalog’ MESSAGE 1235 VALUES
(’Invoice number too high’, Body.Invoice.InvoiceNo);

ELSE DO
-- invoice number is within permitted range
-- complete normal processing

ENDIF;

Chapter 9. Developing message flow applications 2511

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“THROW statement” on page 5161
Use the THROW statement to generate a user exception.

Capturing database state:

If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.

2512 WebSphere Message Broker Version 7.0.0.8

About this task

Letting the broker throw an exception during node processing is the default action;
ESQL processing in the current node is abandoned. The exception is then
propagated backwards through the message flow until an enclosing catch node, or
the input node for this message flow, is reached. If the exception reaches the input
node, an active transaction is rolled back.

Using ESQL statements to process the exception within the node itself requires an
understanding of database return codes and a logical course of action to take when
an error occurs. To enable this inline database error processing, you must clear the
Filter, Database, or Compute node's Throw Exception On Database Error property.
If you clear this property, the node sets the database state indicators SQLCODE,
SQLSTATE, SQLNATIVEERROR, and SQLERRORTEXT, with appropriate
information from the database manager instead of throwing an exception.

The indicators contain information only when an error (not a warning) occurs,
unless you have selected the Treat Warnings As Errors property. If a database
operation is successful, or returns success with information, the indicators contain
their default success values.

You can use the values contained in these indicators in ESQL statements to make
decisions about the action to take. You can access these indicators with the
SQLCODE, SQLSTATE, SQLNATIVEERROR, and SQLERRORTEXT functions.

If you are attempting inline error processing, check the state indicators after each
database statement is executed to ensure that you catch and assess all errors. When
processing the indicators, if you meet an error that you cannot handle inline, you
can raise a new exception either to deal with it upstream in a catch node, or to let
it through to the input node so that the transaction is rolled back, for which you
can use the ESQL THROW statement.

You might want to check for the special case in which a SELECT returns no data.
This situation is not considered an error and SQLCODE is not set, therefore you
must test explicitly for it; see “Checking returns to SELECT” on page 2500.

Using ESQL to access database state indicators

The following ESQL example shows how to use the four database state functions,
and how to include the error information that is returned in an exception:
DECLARE SQLState1 CHARACTER;
DECLARE SQLErrorText1 CHARACTER;
DECLARE SQLCode1 INTEGER;
DECLARE SQLNativeError1 INTEGER;

-- Make a database insert to a table that does not exist --
INSERT INTO Database.DB2ADMIN.NONEXISTENTTABLE (KEY,QMGR,QNAME)

VALUES (45,’REG356’,’my TESTING 2’);

--Retrieve the database return codes --
SET SQLState1 = SQLSTATE;
SET SQLCode1 = SQLCODE;
SET SQLErrorText1 = SQLERRORTEXT;
SET SQLNativeError1 = SQLNATIVEERROR;

--Use the THROW statement to back out the database and issue a user exception--
THROW USER EXCEPTION MESSAGE 2950 VALUES
(’The SQL State’ , SQLState1 , SQLCode1 , SQLNativeError1 ,
SQLErrorText1);

Chapter 9. Developing message flow applications 2513

You do not have to throw an exception when you detect a database error; you
might prefer to save the error information returned in the local environment tree,
and include a Filter node in your message flow that routes the message to error or
success subflows according to the values saved.

The following sample program provides another example of ESQL that uses these
database functions:
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Coding ESQL to handle errors” on page 2506
When you process messages in a message flow, errors can have a number of
different causes and the message flow designer must decide how to handle those
errors.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Checking returns to SELECT” on page 2500
If a SELECT function returns no data, or no further data, this result is handled as a
normal situation and no error code is set in SQLCODE, regardless of the setting of
the Throw Exception On Database Error and Treat Warnings As Errors properties

2514 WebSphere Message Broker Version 7.0.0.8

on the current node.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ESQL database state functions” on page 5168
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“DECLARE HANDLER statement” on page 5124
The DECLARE HANDLER statement creates an error handler for handling
exceptions.
“INSERT statement” on page 5135
The INSERT statement inserts a row into a database table.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“THROW statement” on page 5161
Use the THROW statement to generate a user exception.

Using the SELECT function:

The SELECT function is a convenient and powerful tool for accessing fields and
transforming data in a message tree.

About this task

The following topics show by example how to use the SELECT function to
transform a variety of messages. The examples are based on an XML input
message that has been parsed in the XMLNS domain. However, the techniques
shown in these topics can be applied to any message tree.
v “Transforming a simple message” on page 2516
v “Transforming a complex message” on page 2520
v “Returning a scalar value in a message” on page 2523
v “Joining data in a message” on page 2526
v “Translating data in a message” on page 2528
v “Joining data from messages and database tables” on page 2531
Related concepts:
“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
Related reference:
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.

Chapter 9. Developing message flow applications 2515

Transforming a simple message:

When you code the ESQL for a Compute node, use the SELECT function to
transform simple messages.

About this task

This topic provides examples of simple message transformation. Review the
examples and modify them for your own use. They are all based on the “Example
message” on page 5311 as input.

Example

Consider the following ESQL:

When this ESQL code processes the Invoice message, it produces the following
output message:

Three Output fields are present, one for each Item field, because SELECT creates
an item in its result list for each item described by its FROM list. Within each
Output field, a Field is created for each field named in the SELECT clause. These
fields are in the order in which they are specified within the SELECT clause, not in
the order in which they appear in the incoming message.

The R that is introduced by the final AS keyword is known as a correlation name.
It is a local variable that represents in turn each of the fields addressed by the
FROM clause. The name chosen has no significance. In summary, this simple
transform does two things:
1. It discards unwanted fields.
2. It guarantees the order of the fields.

You can perform the same transform with a procedural algorithm:

SET OutputRoot.XMLNS.Data.Output[] =
(SELECT R.Quantity, R.Author FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R
);

<Data>
<Output>

<Quantity>2</Quantity>
<Author>Neil Bradley</Author>

</Output>
<Output>

<Quantity>1</Quantity>
<Author>Don Chamberlin</Author>

</Output>
<Output>

<Quantity>1</Quantity>
<Author>Philip Heller, Simon Roberts</Author>

</Output>
</Data>

2516 WebSphere Message Broker Version 7.0.0.8

These examples show that the SELECT version of the transform is much more
concise. It also executes faster.

The following example shows a more advanced transformation:

In this transform, an AS clause is associated with each item in the SELECT clause.
This clause gives each field in the result an explicit name rather than a field name
that is inherited from the input. These names can be paths (that is, a dot-separated
list of names), as shown in the example. The structure of the output message
structure can be different from the input message. Using the same Invoice message,
the result is:

The expressions in the SELECT clause can be of any complexity and there are no
special restrictions. They can include operators, functions, and literals, and they
can refer to variables or fields that are not related to the correlation name. The
following example shows more complex expressions:

Using the same Invoice message, the result in this case is:

DECLARE i INTEGER 1;
DECLARE count INTEGER CARDINALITY(InputRoot.XMLNS.Invoice.Purchases.Item[]);

WHILE (i <= count)
SET OutputRoot.XMLNS.Data.Output[i].Quantity = InputRoot.XMLNS.Invoice.Purchases.Item[i].Quantity;
SET OutputRoot.XMLNS.Data.Output[i].Author = InputRoot.XMLNS.Invoice.Purchases.Item[i].Author;
SET i = i+1;

END WHILE;

SET OutputRoot.XMLNS.Data.Output[] =
(SELECT R.Quantity AS Book.Quantity,

R.Author AS Book.Author
FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R

);

<Data>
<Output>

<Book>
<Quantity>2</Quantity>
<Author>Neil Bradley</Author>

</Book>
</Output>
<Output>

<Book>
<Quantity>1</Quantity>
<Author>Don Chamberlin</Author>

</Book>
</Output>
<Output>

<Book>
<Quantity>1</Quantity>
<Author>Philip Heller, Simon Roberts</Author>

</Book>
</Output>

</Data>

SET OutputRoot.XMLNS.Data.Output[] =
(SELECT ’Start’ AS Header,

’Number of books:’ || R.Quantity AS Book.Quantity,
R.Author || ’:Name and Surname’ AS Book.Author,
’End’ AS Trailer
FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R

);

Chapter 9. Developing message flow applications 2517

As shown above, the AS clauses of the SELECT clause contain a path that
describes the full name of the field that is to be created in the result. These paths
can also specify (as is normal for paths) the type of field that is to be created. The
following example transform specifies the field types. In this case, XML tagged
data is transformed to XML attributes:

Using the same Invoice message, the result is:

Finally, you can use a WHERE clause to eliminate some of the results. In the
following example a WHERE clause is used to remove results in which a specific
criterion is met. An entire result is either included or excluded:

<Data>
<Output>
<Header>Start</Header>
<Book>
<Quantity>Number of books:2</Quantity>
<Author>Neil Bradley:Name and Surname</Author>
</Book>
<Trailer>End</Trailer>

</Output>
<Output>
<Header>Start</Header>
<Book>
<Quantity>Number of books:1</Quantity>
<Author>Don Chamberlin:Name and Surname</Author>
</Book>
<Trailer>End</Trailer>

</Output>
<Output>
<Header>Start</Header>
<Book>
<Quantity>Number of books:1</Quantity>
<Author>Philip Heller, Simon Roberts:Name and Surname</Author>
</Book>
<Trailer>End</Trailer>

</Output>
</Data>

SET OutputRoot.XMLNS.Data.Output[] =
(SELECT R.Quantity.* AS Book.(XML.Attribute)Quantity,

R.Author.* AS Book.(XML.Attribute)Author
FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R

);

<Data>
<Output>
<Book Quantity="2" Author="Neil Bradley"/>

</Output>
<Output>
<Book Quantity="1" Author="Don Chamberlin"/>

</Output>
<Output>
<Book Quantity="1" Author="Philip Heller, Simon Roberts"/>

</Output>
</Data>

SET OutputRoot.XMLNS.Data.Output[] =
(SELECT R.Quantity AS Book.Quantity,

R.Author AS Book.Author
FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R
WHERE R.Quantity = 2

);

2518 WebSphere Message Broker Version 7.0.0.8

Using the same input message, the result is:

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CARDINALITY function” on page 5238
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.

<Data>
<Output>
<Book>
<Quantity>2</Quantity>
<Author>Neil Bradley</Author>
</Book>

</Output>
</Data>

Chapter 9. Developing message flow applications 2519

“SET statement” on page 5159
The SET statement assigns a value to a variable.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.
“Example message” on page 5311

Transforming a complex message:

When you code the ESQL for a Compute node, use the SELECT function for
complex message transformation.

About this task

This topic provides examples of complex message transformation. Review the
examples and modify them for your own use. They are all based on the “Example
message” on page 5311 as input.

Example

In this example, Invoice contains a variable number of Items. The transform is
shown in the following example:

The output message that is generated is:

SET OutputRoot.XMLNS.Data.Statement[] =
(SELECT I.Customer.Title AS Customer.Title,

I.Customer.FirstName || ’ ’ || I.Customer.LastName AS Customer.Name,
COALESCE(I.Customer.PhoneHome,’’) AS Customer.Phone,
(SELECT II.Title AS Desc,

CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,
II.Quantity AS Qty

FROM I.Purchases.Item[] AS II
WHERE II.UnitPrice> 0.0) AS Purchases.Article[],

(SELECT SUM(CAST(II.UnitPrice AS FLOAT) *
CAST(II.Quantity AS FLOAT) *
1.6)

FROM I.Purchases.Item[] AS II) AS Amount,
’Dollars’ AS Amount.(XML.Attribute)Currency

FROM InputRoot.XMLNS.Invoice[] AS I
WHERE I.Customer.LastName <> ’Brown’

);

2520 WebSphere Message Broker Version 7.0.0.8

This transform has nested SELECT clauses. The outer statement operates on the list
of Invoices. The inner statement operates on the list of Items. The AS clause that is
associated with the inner SELECT clause expects an array:

This statement tells the outer SELECT clause to expect a variable number of Items
in each result. Each SELECT clause has its own correlation name: I for the outer
SELECT clause and II for the inner one. Each SELECT clause typically uses its own
correlation name, but the FROM clause in the inner SELECT clause refers to the
correlation name of the outer SELECT clause:

This statement tells the inner SELECT clause to work with the current Invoice's
Items. Both SELECT clauses contain WHERE clauses. The outer one uses one
criterion to discard certain Customers, and the inner one uses a different criterion
to discard certain Items. The example also shows the use of COALESCE to prevent
missing input fields from causing the corresponding output field to be missing.
Finally, it also uses the column function SUM to add together the value of all Items
in each Invoice. Column functions are discussed in “Referencing columns in a
database” on page 2489.

<Data>
<Statement>
<Customer>
<Title>Mr</Title>
<Name>Andrew Smith</Name>
<Phone>01962818000</Phone>
</Customer>
<Purchases>
<Article>
<Desc Category="Computer" Form="Paperback" Edition="2">The XML Companion</Desc>
<Cost>4.472E+1</Cost>
<Qty>2</Qty>

</Article>
<Article>
<Desc Category="Computer" Form="Paperback" Edition="2">

A Complete Guide to DB2 Universal Database</Desc>
<Cost>6.872E+1</Cost>
<Qty>1</Qty>

</Article>
<Article>
<Desc Category="Computer" Form="Hardcover" Edition="0">JAVA 2 Developers Handbook</Desc>
<Cost>9.5984E+1</Cost>
<Qty>1</Qty>

</Article>
</Purchases>
<Amount Currency="Dollars">2.54144E+2</Amount>
</Statement>

</Data>

(SELECT II.Title AS Desc,
CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,
II.Quantity AS Qty

FROM I.Purchases.Item[] AS II
WHERE II.UnitPrice> 0.0)

-- Note the use of [] in the next expression
AS Purchases.Article[],

(SELECT II.Title AS Desc,
CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,
II.Quantity AS Qty

-- Note the use of I.Purchases.Item in the next expression
FROM I.Purchases.Item[] AS II
WHERE II.UnitPrice> 0.0) AS Purchases.Article[],

Chapter 9. Developing message flow applications 2521

When the fields Desc are created, the whole of the input Title field is copied: the
XML attributes and the field value. If you do not want these attributes in the
output message, use the FIELDVALUE function to discard them; for example, code
the following ESQL:

That code generates the following output message:

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.

SET OutputRoot.XMLNS.Data.Statement[] =
(SELECT I.Customer.Title AS Customer.Title,

I.Customer.FirstName || ’ ’ || I.Customer.LastName AS Customer.Name,
COALESCE(I.Customer.PhoneHome,’’) AS Customer.Phone,
(SELECT FIELDVALUE(II.Title) AS Desc,

CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,
II.Quantity AS Qty

FROM I.Purchases.Item[] AS II
WHERE II.UnitPrice> 0.0) AS Purchases.Article[],

(SELECT SUM(CAST(II.UnitPrice AS FLOAT) *
CAST(II.Quantity AS FLOAT) *
1.6)

FROM I.Purchases.Item[] AS II) AS Amount,
’Dollars’ AS Amount.(XML.Attribute)Currency

FROM InputRoot.XMLNS.Invoice[] AS I
WHERE I.Customer.LastName <> ’Brown’
);

<Data>
<Statement>
<Customer>
<Title>Mr</Title>
<Name>Andrew Smith</Name>
<Phone>01962818000</Phone>
</Customer>
<Purchases>
<Article>
<Desc>The XML Companion</Desc>
<Cost>4.472E+1</Cost>
<Qty>2</Qty>

</Article>
<Article>
<Desc>A Complete Guide to DB2 Universal Database</Desc>
<Cost>6.872E+1</Cost>
<Qty>1</Qty>

</Article>
<Article>
<Desc>JAVA 2 Developers Handbook</Desc>
<Cost>9.5984E+1</Cost>
<Qty>1</Qty>

</Article>
</Purchases>
<Amount Currency="Dollars">2.54144E+2</Amount>

</Statement>
</Data>

2522 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Working with large XML messages” on page 2543
The tree representation of an XML message is typically bigger than the input bit
stream. Manipulating a large message tree can require much storage but you can
code ESQL statements that help to reduce the storage load on the broker.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CAST function” on page 5245
“COALESCE function” on page 5294
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“Example message” on page 5311

Returning a scalar value in a message:

Use a SELECT statement to return a scalar value by including both the THE and
ITEM keywords.

About this task

For example:

1 + THE(SELECT ITEM T.a FROM Body.Test.A[] AS T WHERE T.b = ’123’)

Chapter 9. Developing message flow applications 2523

Use of the ITEM keyword:
About this task

The following example shows the use of the ITEM keyword to select one item and
create a single value.

When the Invoice message is received as input, the ESQL shown generates the
following output message:

When the ITEM keyword is specified, the output message includes a list of scalar
values. Compare this message to the one that is produced if the ITEM keyword is
omitted, in which a list of fields (name-value pairs) is generated:

Effects of the THE keyword:
About this task

The THE keyword converts a list containing one item to the item itself.

The two previous examples both specified a list as the source of the SELECT in the
FROM clause (the field reference has [] at the end to indicate an array), so typically
the SELECT function generates a list of results. Because of this behavior, you must
specify a list as the target of the assignment (thus the "Result[]" as the target of the
assignment). However, you often know that the WHERE clause that you specify as
part of the SELECT returns TRUE for only one item in the list. In this case use the
THE keyword.

The following example shows the effect of using the THE keyword:

The THE keyword means that the target of the assignment becomes
OutputRoot.XMLNS.Test.Result (the "[]" is not permitted). Its use generates the

SET OutputRoot.MQMD = InputRoot.MQMD;

SET OutputRoot.XMLNS.Test.Result[] =
(SELECT ITEM T.UnitPrice FROM InputBody.Invoice.Purchases.Item[] AS T);

<Test>
<Result>27.95</Result>
<Result>42.95</Result>
<Result>59.99</Result>

</Test>

<Test>
<Result>

<UnitPrice>27.95</UnitPrice>
</Result>
<Result>

<UnitPrice>42.95</UnitPrice>
</Result>
<Result>

<UnitPrice>59.99</UnitPrice>
</Result>

</Test>

SET OutputRoot.MQMD = InputRoot.MQMD;

SET OutputRoot.XMLNS.Test.Result =
THE (SELECT T.Publisher, T.Author FROM InputBody.Invoice.Purchases.Item[]

AS T WHERE T.UnitPrice = 42.95);

2524 WebSphere Message Broker Version 7.0.0.8

following output message:

Selecting from a list of scalars:
About this task

Consider the following sample input message:

If you code the following ESQL statements to process this message:

the following output message is generated:

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,

<Test>
<Result>

<Publisher>Morgan Kaufmann Publishers</Publisher>
<Author>Don Chamberlin</Author>

</Result>
</Test>

<Test>
<A>1
<A>2
<A>3
<A>4
<A>5

</Test>

SET OutputRoot.XMLNS.Test.A[] =
(SELECT ITEM A from InputBody.Test.A[]
WHERE CAST(A AS INTEGER) BETWEEN 2 AND 4);

<A>2
<A>3
<A>4

Chapter 9. Developing message flow applications 2525

DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“Example message” on page 5311

Joining data in a message:

The FROM clause of a SELECT function is not restricted to having one item.
Specifying multiple items in the FROM clause produces the typical Cartesian
product joining effect, in which the result includes an item for all combinations of
items in the two lists.

About this task

Using the FROM clause in this way produces the same joining effect as standard
SQL.

The Invoice message includes a set of customer details, payment details, and
details of the purchases that the customer makes. Code the following ESQL to
process the input “Example message” on page 5311:

The following output message is generated:

SET OutputRoot.XMLNS.Items.Item[] =
(SELECT D.LastName, D.Billing,

P.UnitPrice, P.Quantity
FROM InputBody.Invoice.Customer[] AS D,

InputBody.Invoice.Purchases.Item[] AS P);

2526 WebSphere Message Broker Version 7.0.0.8

Three results are produced, giving the number of descriptions in the first list (one)
multiplied by the number of prices in the second (three). The results systematically
work through all the combinations of the two lists. You can see this by looking at
the LastName and UnitPrice fields selected from each result:

You can join data that occurs in a list and a non-list, or in two non-lists, and so on.
For example:

The location of the [] in each case is significant. Any number of items can be
specified in the FROM clause, not just one or two. If any of the items specify [] to
indicate a list of items, the SELECT function returns a list of results (the list might
contain only one item, but the SELECT function can return a list of items).

The target of the assignment must specify a list (so must end in []), or you must
use the “THE function” on page 5242 if you know that the WHERE clause
guarantees that only one combination is matched.
Related concepts:

<Items>
<Item>
<LastName>Smith</LastName>
<Billing>
<Address>14 High Street</Address>
<Address>Hursley Village</Address>
<Address>Hampshire</Address>
<PostCode>SO213JR</PostCode>
</Billing>
<UnitPrice>27.95</UnitPrice>
<Quantity>2</Quantity>

</Item>
<Item>
<LastName>Smith</LastName>
<Billing>
<Address>14 High Street</Address>
<Address>Hursley Village</Address>
<Address>Hampshire</Address>
<PostCode>SO213JR</PostCode>
</Billing>
<UnitPrice>42.95</UnitPrice>
<Quantity>1</Quantity>

</Item>
<Item>
<LastName>Smith</LastName>
<Billing>
<Address>14 High Street</Address>
<Address>Hursley Village</Address>
<Address>Hampshire</Address>
<PostCode>SO213JR</PostCode>
</Billing>
<UnitPrice>59.99</UnitPrice>
<Quantity>1</Quantity>

</Item>
</Items>

LastName Smith UnitPrice 27.95
LastName Smith UnitPrice 42.95
LastName Smith UnitPrice 59.99

OutputRoot.XMLNS.Test.Result1[] =
(SELECT ... FROM InputBody.Test.A[], InputBody.Test.b);

OutputRoot.XMLNS.Test.Result1 =
(SELECT ... FROM InputBody.Test.A, InputBody.Test.b);

Chapter 9. Developing message flow applications 2527

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“THE function” on page 5242
The THE function returns the first element of a list.
“Example message” on page 5311

Translating data in a message:

You can translate data from one form to another.

2528 WebSphere Message Broker Version 7.0.0.8

About this task

A typical example of the requirement to translate data is if the items are known in
one message by names, and in another message by numbers. For example:

Consider the following input message:

This message has two sections; the first section is a list of items in which each item
has a catalog number and a type; the second section is a table for translating
between descriptive type names and numeric type codes. Include a Compute node
with the following transform:

The following output message is generated:

Type Name Type Code

Confectionary 2000
Newspapers 3000
Hardware 4000

<Data>
<Items>

<Item>
<Cat>1000</Cat>
<Description>Milk Chocolate Bar</Description>
<Type>Confectionary</Type>

</Item>
<Item>

<Cat>1001</Cat>
<Description>Daily Newspaper</Description>
<Type>NewsPapers</Type>

</Item>
<Item>

<Cat>1002</Cat>
<Description>Kitchen Sink</Description>
<Type>Hardware</Type>

</Item>
</Items>
<TranslateTable>

<Translate>
<Name>Confectionary</Name>
<Number>2000</Number>

</Translate>
<Translate>

<Name>NewsPapers</Name>
<Number>3000</Number>

</Translate>
<Translate>

<Name>Hardware</Name>
<Number>4000</Number>

</Translate>
</TranslateTable>

</Data>

SET OutputRoot.XMLNS.Result.Items.Item[] =
(SELECT M.Cat, M.Description, T.Number As Type

FROM
InputRoot.XMLNS.Data.Items.Item[] As M,
InputRoot.XMLNS.Data.TranslateTable.Translate[] As T

WHERE M.Type = T.Name
);

Chapter 9. Developing message flow applications 2529

In the result, each type name has been converted to its corresponding code. In this
example, both the data and the translate table were in the same message tree,
although this is not a requirement. For example, the translate table could be coded
in a database, or might have been set up in LocalEnvironment by a previous
Compute node.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.

<Result>
<Items>

<Item>
<Cat>1000</Cat>
<Description>Milk Chocolate Bar</Description>
<Type>2000</Type>

</Item>
<Item>

<Cat>1001</Cat>
<Description>Daily Newspaper</Description>
<Type>3000</Type>

</Item>
<Item>

<Cat>1002</Cat>
<Description>Kitchen Sink</Description>
<Type>4000</Type>

</Item>
</Items>

</Result>

2530 WebSphere Message Broker Version 7.0.0.8

“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Joining data from messages and database tables:

You can use SELECT functions that interact with both message data and databases.

About this task

You can also nest a SELECT function that interacts with one type of data within a
SELECT clause that interacts with the other type.

Consider the following input message, which contains invoice information for two
customers:

Consider the following database tables, Prices and Addresses, and their contents:

<Data>
<Invoice>

<CustomerNumber>1234</CustomerNumber>
<Item>

<PartNumber>1</PartNumber>
<Quantity>9876</Quantity>

</Item>
<Item>

<PartNumber>2</PartNumber>
<Quantity>8765</Quantity>

</Item>
</Invoice>

<Invoice>
<CustomerNumber>2345</CustomerNumber>
<Item>

<PartNumber>2</PartNumber>
<Quantity>7654</Quantity>

</Item>
<Item>

<PartNumber>1</PartNumber>
<Quantity>6543</Quantity>
</Item>

</Invoice>
</Data>

Chapter 9. Developing message flow applications 2531

If you code the following ESQL transform:

the following output message is generated. The input message is augmented with
the price and address information from the database table:

PARTNO PRICE
----------- ------------------------

1 +2.50000E+001
2 +6.50000E+00

PARTNO STREET CITY COUNTRY
------ ------------------- -------------- -------
1234 22 Railway Cuttings East Cheam England
2345 The Warren Watership Down England

-- Create a valid output message
SET OutputRoot.MQMD = InputRoot.MQMD;

-- Select suitable invoices
SET OutputRoot.XMLNS.Data.Statement[] =

(SELECT I.CustomerNumber AS Customer.Number,
A.Street AS Customer.Street,
A.City AS Customer.Town,
A.Country AS Customer.Country,

-- Select suitable items
(SELECT II.PartNumber AS PartNumber,

II.Quantity AS Quantity,
PI.Price AS Price

FROM Database.db2admin.Prices AS PI,
I.Item[] AS II

WHERE II.PartNumber = PI.PartNo) AS Purchases.Item[]

FROM Database.db2admin.Addresses AS A,
InputRoot.XMLNS.Data.Invoice[] AS I

WHERE I.CustomerNumber = A.PartNo
);

2532 WebSphere Message Broker Version 7.0.0.8

You can nest the database SELECT clause within the message SELECT clause. In
most cases, the code is not as efficient as the previous example, but you might find
that it is better if the messages are small and the database tables are large.

<Data>
<Statement>

<Customer>
<Number>1234</Number>
<Street>22 Railway Cuttings</Street>
<Town>East Cheam</Town>
<Country>England</Country>

</Customer>
<Purchases>

<Item>
<PartNumber>1</PartNumber>
<Quantity>9876</Quantity>
<Price>2.5E+1</Price>

</Item>
<Item>

<PartNumber>2</PartNumber>
<Quantity>8765</Quantity>
<Price>6.5E+1</Price>

</Item>
</Purchases>

</Statement>
<Statement>

<Customer>
<Number>2345</Number>
<Street>The Warren</Street>
<Town>Watership Down</Town>
<Country>England</Country>

</Customer>
<Purchases>

<Item>
<PartNumber>1</PartNumber>
<Quantity>6543</Quantity>
<Price>2.5E+1</Price></Item>

<Item>
<PartNumber>2</PartNumber>
<Quantity>7654</Quantity>
<Price>6.5E+1</Price>

</Item>
</Purchases>

</Statement>
</Data>

Chapter 9. Developing message flow applications 2533

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

-- Create a valid output message
SET OutputRoot.MQMD = InputRoot.MQMD;

-- Select suitable invoices
SET OutputRoot.XMLNS.Data.Statement[] =

(SELECT I.CustomerNumber AS Customer.Number,

-- Look up the address
THE (SELECT

A.Street,
A.City AS Town,
A.Country

FROM Database.db2admin.Addresses AS A
WHERE A.PartNo = I.CustomerNumber

) AS Customer,

-- Select suitable items
(SELECT

II.PartNumber AS PartNumber,
II.Quantity AS Quantity,

-- Look up the price
THE (SELECT ITEM P.Price

FROM Database.db2admin.Prices AS P
WHERE P.PartNo = II.PartNumber

) AS Price

FROM I.Item[] AS II) AS Purchases.Item[]

FROM InputRoot.XMLNS.Data.Invoice[] AS I
);

2534 WebSphere Message Broker Version 7.0.0.8

“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SELECT function” on page 5260
The SELECT function combines, filters, and transforms complex message and
database data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Manipulating messages in the XML domains:

You can manipulate messages in the XML, XMLNS, and XMLNSC domains.

About this task

The following topics contain instructions about manipulating messages in the
XMLNSC, XMLNS, and XML domains.
v “Working with XML messages”
v “Manipulating messages in the XMLNSC domain” on page 2546
v “Manipulating messages in the XMLNS domain” on page 2563
v “Manipulating messages in the XML domain” on page 2581

For information about dealing with MRM XML messages, see “Manipulating
messages in the MRM domain” on page 2581.
Related concepts:
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
“XML parser” on page 1110
The XML domain is very similar to the XMLNS domain, but the XML domain has
no support for XML namespaces or opaque parsing.

Working with XML messages:

The following topics provide information about typical tasks for processing XML
messages.

Chapter 9. Developing message flow applications 2535

About this task

Some of this information is available publicly in Web pages and online tutorials. If
you are new to XML, you will find it useful to also read about the XML standard.
v “Constructing an XML message tree”
v “Working with namespaces” on page 2537
v “Working with binary data” on page 2538
v “XMLNSC: Working with CData” on page 2539
v “XMLNSC: Working with XML messages and bit streams” on page 2541
v “Working with large XML messages” on page 2543

For details about XML Schema, see XML Schema Part 0: Primer on the World Wide
Web Consortium (W3C) Web site.

Constructing an XML message tree:

When constructing an XML message tree, consider the order of fields in the tree.

About this task

Order of fields in the message tree

When you create an XML output message in a Compute node, the order of your
lines of ESQL code is important, because the message elements are created in the
order that you code them.

Consider the following XML message:
<Order>

<ItemNo>1</ItemNo>
<Quantity>2</Quantity>

</Order>

If you want to add a DocType Declaration to this, insert the DocType Declaration
before you copy the input message to the output message.

For example:
SET OutputRoot.XMLNS.(XML.XmlDecl) = ’’;
SET OutputRoot.XMLNS.(XML.XmlDecl).(XML.Version) = ’1.0’;
SET OutputRoot.XMLNS.(XML.DocTypeDecl)Order =’’;
SET OutputRoot.XMLNS.(XML.DocTypeDecl).(XML.SystemId) = ’NewDtdName.dtd’;
SET OutputRoot = InputRoot;

-- more ESQL --

If you put the last statement to copy the input message before the XML-specific
statements, the following XML is generated for the output message.
<Order>

<ItemNo>1</ItemNo>
<Quantity>2</Quantity>

</Order>
<?xml version="1.0"?>

This is not well-formed XML and causes an error when it is written from the
message tree to a bit stream in the output node.

Setting the field type

2536 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

If you copy a message tree from input to output without changing the domain,
most of the syntax elements will be created by the parser (XMLNSC or XMLNS)
and their field types will be correct. However, if you construct your message tree
from a database query, or from another parser's message tree, you must ensure that
you identify each syntax element correctly by using its field type. You can find full
details of the field type constants used by XMLNSC and XMLNS in the following
topics:
v “XMLNSC: Using field types” on page 1094
v “XML constructs” on page 4257

Working with namespaces:

The following example shows how to use ESQL to work with namespaces.

About this task

Namespace constants are declared at the start of the main module so that you can
use prefixes in the ESQL statements instead of the full URIs of the namespaces.
The namespace constants affect only the ESQL; they do not control the prefixes
that are generated in the output message. The prefixes in the generated output
message are controlled by namespace declarations in the message tree. You can
include namespace declarations in the tree using the XML.NamespaceDecl field
type. These elements are then used to generate namespace declarations in the
output message.

When the output message is generated, if the parser encounters a namespace for
which it has no corresponding namespace declaration, a prefix is automatically
generated using prefixes of the form NSn where n is a positive integer.
CREATE COMPUTE MODULE xmlns_doc_flow_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
CALL CopyMessageHeaders();
-- Declaration of namespace constants --
These are only used by ESQL

DECLARE sp1 NAMESPACE ’http://www.ibm.com/space1’;
DECLARE sp2 NAMESPACE ’http://www.ibm.com/space2’;
DECLARE sp3 NAMESPACE ’http://www.ibm.com/space3’;

-- Namespace declaration for prefix ’space1’
SET OutputRoot.XMLNS.message.(XML.NamespaceDecl)xmlns:space1 = ’http://www.ibm.com/space1’;
SET OutputRoot.XMLNS.message.sp1:data1 = ’Hello!’;

-- Default namespace declaration (empty prefix)
SET OutputRoot.XMLNS.message.sp2:data2.(XML.NamespaceDecl)xmlns = ’http://www.ibm.com/space2’;
SET OutputRoot.XMLNS.message.sp2:data2.sp2:subData1 = ’Hola!’;
SET OutputRoot.XMLNS.message.sp2:data2.sp2:subData2 = ’Guten Tag!’;
SET OutputRoot.XMLNS.message.sp3:data3 = ’Bonjour!’;
RETURN TRUE;
END;

CREATE PROCEDURE CopyMessageHeaders()
BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);
WHILE I < J DO SET OutputRoot.*[I] = InputRoot.*[I];

SET I = I + 1;
END WHILE;
END;
END MODULE;

Chapter 9. Developing message flow applications 2537

When this ESQL is processed, the following output message is generated:
<message xmlns:space1="http://www.ibm.com/space1">
<space1:data1>Hello!</space1:data1>
<data2 xmlns="http://www.ibm.com/space2">
<subData1>Hola!</subData1>
<subData2>Guten Tag!</subData2>
</data2>
<NS1:data3 xmlns="http://www.ibm.com/space3>Bonjour!</NS1:data3>
</message>

Working with binary data:

If you need to include binary data or non-valid characters in your XML
documents, the safest method is to encode the data as a binary string.

About this task

Binary encodings for XML

There are two methods of encoding binary data in an XML document.
hexBinary: <nonXMLChars>0001020304050607080B0C0E0F</nonXMLChars>

base64Binary: <nonXMLChars>AAECAwQFBgcICwwODw==</nonXMLChars>

The base64Binary encoding makes better use of the available XML characters, and
on average a base64-encoded binary field is 2/3 the size of its hexBinary
equivalent. Base64Binary is widely used by the MIME format and by various
XML-based standards.

You might prefer to use the simpler hexBinary encoding if you are sending data to
applications that cannot decode base64 data, and if the increase in message size is
not important.

Parsing binary data

The most straightforward way to parse any binary data is to use the XMLNSC
parser with a message set:
1. Locate or construct an XML Schema that describes your input XML.
2. Import the XML Schema to create a message definition file.
3. In your message flow, set the node properties as follows:
v On the Default page, set Message Domain to XMLNSC and Message Set to the

name of your message set.
v On the Validation page, set Validation to Content and Value.
v In the XMLNSC properties, select the check box option Build tree using

XML Schema types.

The XMLNSC parser automatically decodes your hexBinary or base64Binary data,
being guided by the simple type of the element or attribute that contains the
binary data. The message tree will contain the decoded BLOB value.

If you are using the XMLNS domain, you must parse the binary data as a string. It
appears in the message tree as a CHARACTER value. If the data is encoded as
hexBinary, you can use the ESQL CAST function to convert it to a BLOB value. If
the data is encoded as base64Binary, the easiest approach is to use the function
BASE64DECODE. For more information, see “BASE64DECODE function” on page
5290.

2538 WebSphere Message Broker Version 7.0.0.8

Generating binary data

You can generate binary data in your output XML in either hexBinary or
base64Binary encoding.

For hexBinary, use the ESQL CAST statement to convert your BLOB data to a
hexBinary string.

For base64Binary, you have two options:
v Call the function BASE64ENCODE. For more information, see “BASE64ENCODE

function” on page 5291.
v Use the XMLNSC parser, and modify the type field on the syntax element, as

shown in this example:
-- ESQL code to generate base64-encoded binary data
DECLARE myBLOB BLOB;
-- Populate myBLOB with your binary data
CREATE LASTCHILD OF OutputRoot.XMLNSC.message

TYPE BITOR(XMLNSC.Attribute, XMLNSC.base64Binary)
NAME myBase64Element
VALUE myBLOB;

Note that setting the field type to XMLNSC.base64Binary does not change the
logical value in the message tree. In your message flow, it is still a BLOB, and if
you ask for its string representation, it is reported as a hexBinary string.
However, when the message tree is converted to a bit stream (in an output
node, or by a call to ASBITSTREAM) the base64 conversion is performed
automatically, and the output XML contains the correct base64 string.

XMLNSC: Working with CData:

A CData section can be used to embed an XML document within another XML
document.

About this task

What is a CData section?

An XML element can contain text content:
<element>text content</element>

However, some characters cannot appear in that content. In particular, '<' and '&'
both have special meaning to an XML parser. If they are included in the text
content of an element, they change the meaning of the XML document.

For example, this is a badly formed XML document:
<element><text><content></element>

There are two ways to make the XML well-formed:
1. Use character entities:

<element><text><content></element>

2. Use a CData section:
<element><![CDATA[<text><content>]]></element>

What can you use a CData section for?

Chapter 9. Developing message flow applications 2539

In a CData section, you can include XML markup in the value of an element.
However, non-valid XML characters cannot be included. Binary data also cannot be
included in a CData section.

The most common use for CData is to embed one XML document within another.
For example:
<outer>

<embedXML>
<![CDATA[<innerMsg></innerMsg>]]>

</embedXML>
</outer>

You can even embed a badly-formed XML document in this way, because the XML
parser does not attempt to parse the content of a CData section.
<outer>

<embedXML>
<![CDATA[<badXML></wrongClosingTag>]]>

</embedXML>
</outer>

The following items are not valid within a CData section:
v Non-valid XML characters (see http://www.w3.org/TR/2006/REC-xml-

20060816/#charsets)
v The text string ']]>' (because this terminates the CData section)

Because of these restrictions, do not use a CData section to include arbitrary text in
your XML document, and do not try to use a CData section to hold binary data (
unless it is encoded as hexBinary or base64Binary).

How do you add a CData section to an output XML message?

Consider the following input message :
<TestCase>

<Folder>
<Field1>Value1</Field1>
<Field2>Value2</Field2>
<Field3>Value3</Field3>

</Folder>
</TestCase>

The following ESQL shows how to serialize a whole message:
DECLARE wholeMsgBlob BLOB
ASBITSTREAM(InputRoot.XMLNSC,

InputRoot.Properties.Encoding,
InputRoot.Properties.CodedCharSetId);

DECLARE wholeMsgChar CHAR
CAST(wholeMsgBlob AS CHAR CCSID InputRoot.Properties.CodedCharSetId);

SET OutputRoot.XMLNSC.Output.(XMLNSC.CDataField)Field1 = wholeMsgChar;

This example serializes the InputRoot.XMLNSC.TestCase.Folder portion of the
message tree.

If the output message tree were examined before an MQOutput node, this would
show :
(0x01000010):XML = (

(0x01000000):Output = (
(0x01000000):Field1 = (

(0x02000001): = ’<TestCase><Folder><Field1>Value1</Field1><Field2>Value2</Field2>
<Field3>Value3</Field3></Folder><Folder2><Field1>Value1</Field1>

2540 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/2006/REC-xml-20060816/#charsets
http://www.w3.org/TR/2006/REC-xml-20060816/#charsets

<Field2>Value2</Field2><Field3>Value3</Field3><Folder2></TestCase>’
)
)

)

As can be seen, each CData section contains a single scalar value that is the
character representation of the portion of the XML message that is required.

This tree produces the following XML output message :
<Output>
<Field1><![CDATA[<TestCase><Folder><Field1>Value 1</Field1>

<Field2>Value 2</Field2>
<Field3>Value 3</Field3></Folder>

<Folder2><Field1>Value 1</Field1>
<Field2>Value 2</Field2>
<Field3>Value 3</Field3></Folder2>

</TestCase>]]</Field1>
</Output>

XMLNSC: Working with XML messages and bit streams:

Use the ASBITSTREAM function and the CREATE statement to manage XML
message content.

About this task

The ASBITSTREAM function

If you code the ASBITSTREAM function with the parser mode option set to
RootBitStream to parse a message tree to a bit stream, the result is an XML
document that is built from the children of the target element in the normal way.
This algorithm is identical to that used to generate the normal output bit stream.
Because the target element is not included in the output bit stream, you must
ensure that the children of the element follow the constraints for an XML
document.

One constraint is that there must be only one body element in the message. You
can use a well-formed bit stream obtained in this way to re-create the original tree
using a CREATE statement with a PARSE clause.

If you code the ASBITSTREAM function with the parser mode option set to
FolderBitStream to parse a message tree to a bit stream, the generated bit stream is
an XML document built from the target element and its children. Any
DocTypeDecl or XmlDecl elements are ignored, and the target element itself is
included in the generated bit stream.

The advantage of this mode is that the target element becomes the body element of
the document, and that body element can have multiple elements nested within it.
Use this mode to obtain a bit stream description of arbitrary sub-trees owned by
an XML parser. You can use bit streams obtained in this way to re-create the
original tree using a CREATE statement with a PARSE clause, and a mode of
FolderBitStream.

For further information about the ASBITSTREAM function, and some examples of
its use, see “ASBITSTREAM function” on page 5224.

The CREATE statement with a PARSE clause

Chapter 9. Developing message flow applications 2541

If you code a CREATE statement with a PARSE clause with the parser mode
option set to RootBitStream to parse a bit stream to a message tree, the expected
bit stream is a normal XML document. A field in the tree is created for each field
in the document. This algorithm is identical to that used when parsing a bit stream
from an input node. In particular, an element named 'XML', 'XMLNS', or
'XMLNSC' is created as the root element of the tree, and all the content in the
message is created as children of that root.

If you code a CREATE statement with a PARSE clause with the parser mode
option set to FolderBitStream to parse a bit stream to a message tree, the expected
bit stream is a normal XML document. Any content outside the body element
(such as an XML declaration or doctype) is discarded. The first element created
during the parse corresponds to the body of the XML document, and from there
the parse proceeds as normal.

For further information about the CREATE statement, and examples of its use, see
“CREATE statement” on page 5082.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

2542 WebSphere Message Broker Version 7.0.0.8

“CREATE statement” on page 5082
The CREATE statement creates a new message field.
“ASBITSTREAM function” on page 5224
The ASBITSTREAM field function generates a bit stream for the subtree of a given
field according to the rules of the parser that owns the field.

Working with large XML messages:

The tree representation of an XML message is typically bigger than the input bit
stream. Manipulating a large message tree can require much storage but you can
code ESQL statements that help to reduce the storage load on the broker.

About this task

When an input bit stream is parsed and a logical tree is created, the tree
representation of an XML message is typically bigger, and in some cases much
bigger, than the corresponding bit stream.

The reasons for this expansion include the following factors:
v The addition of the pointers that link the objects together
v Translation of character data into Unicode, which can double the size
v The inclusion of field names that might have been implicit in the bit stream
v The presence of control data that is associated with operation of the broker

Manipulating a large message tree can require much storage. If you design a
message flow that handles large messages that are made up of repeating structures,
you can code ESQL statements that help to reduce the storage load on the broker.
These statements support both random and sequential access to the message, but
assume that you do not need access to the whole message at one time.

These ESQL statements cause the broker to perform limited parsing of the
message, and to keep in storage at one time, only that part of the message tree that
reflects a single record. If your processing requires you to retain information from
record to record (for example, to calculate a total price from a repeating structure
of items in an order), you can either declare, initialize, and maintain ESQL
variables, or you can save values in another part of the message tree; for example,
in the local environment.

This technique reduces the memory that is used by the broker to the memory that
is needed to hold the full input and output bit streams, plus the memory that is
needed for the message trees of just one record. This technique also provides
memory savings when even a few repeats are encountered in the message. The
broker uses partial parsing and the ability to parse specified parts of the message
tree, to and from the corresponding part of the bit stream.

To use these techniques in your Compute node, take any of the following steps.
v Copy the body of the input message as a bit stream to a special folder in the

output message. This action creates a modifiable copy of the input message that
is not parsed and therefore uses a minimum amount of memory.

v Avoid any inspection of the input message, which avoids the need to parse the
message.

v Use a loop and a reference variable to step through the message one record at a
time. For each record, use the following processes:
– Use normal transforms to build a corresponding output subtree in a second

special folder.

Chapter 9. Developing message flow applications 2543

– Use the ASBITSTREAM function to generate a bit stream for the output
subtree. The generated bit stream is stored in a BitStream element that is
placed in the position in the output subtree that corresponds to its required
position in the final bit stream.

– Use the DELETE statement to delete both the current input and output record
message trees when you have completed their manipulation.

– When you have completed the processing of all records, detach the special
folders so that they do not appear in the output bit stream.

You can vary these techniques to suit the processing that is required for your
messages.

The following ESQL code provides an example of one implementation, and is a
modification of the ESQL example in “Transforming a complex message” on page
2520. It uses a single SET statement with nested SELECT functions to transform a
message that contains nested, repeating structures.

-- Copy the MQMD header
SET OutputRoot.MQMD = InputRoot.MQMD;

-- Create a special folder in the output message to hold the input tree
-- Note : SourceMessageTree is the root element of an XML parser

CREATE LASTCHILD OF OutputRoot.XMLNS.Data DOMAIN ’XMLNS’ NAME ’SourceMessageTree’;

-- Copy the input message to a special folder in the output message
-- Note : This is a root to root copy which will therefore not build trees

SET OutputRoot.XMLNS.Data.SourceMessageTree = InputRoot.XMLNS;

-- Create a special folder in the output message to hold the output tree
CREATE FIELD OutputRoot.XMLNS.Data.TargetMessageTree;

-- Prepare to loop through the purchased items
DECLARE sourceCursor REFERENCE TO OutputRoot.XMLNS.Data.SourceMessageTree.Invoice;
DECLARE targetCursor REFERENCE TO OutputRoot.XMLNS.Data.TargetMessageTree;
DECLARE resultCursor REFERENCE TO OutputRoot.XMLNS.Data;
DECLARE grandTotal FLOAT 0.0e0;

-- Create a block so that it’s easy to abandon processing
ProcessInvoice: BEGIN
-- If there are no Invoices in the input message, there is nothing to do

IF NOT LASTMOVE(sourceCursor) THEN
LEAVE ProcessInvoice;

END IF;

-- Loop through the invoices in the source tree
InvoiceLoop : LOOP

-- Inspect the current invoice and create a matching Statement
SET targetCursor.Statement = THE (SELECT ’Monthly’ AS (XML.Attribute)Type,

’Full’ AS (0x03000000)Style[1],
I.Customer.FirstName AS Customer.Name,
I.Customer.LastName AS Customer.Surname, I.Customer.Title AS Customer.Title,
(SELECT

FIELDVALUE(II.Title) AS Title,
CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,
II.Quantity AS Qty

FROM I.Purchases.Item[] AS II
WHERE II.UnitPrice> 0.0) AS Purchases.Article[],
(SELECT

SUM(CAST(II.UnitPrice AS FLOAT) *
CAST(II.Quantity AS FLOAT) *
1.6)

FROM I.Purchases.Item[] AS II) AS Amount,
’Dollars’ AS Amount.(XML.Attribute)Currency

FROM sourceCursor AS I
WHERE I.Customer.LastName <> ’White’);

2544 WebSphere Message Broker Version 7.0.0.8

-- Turn the current Statement into a bit stream
DECLARE StatementBitStream BLOB
ASBITSTREAM(targetCursor.Statement OPTIONS FolderBitStream);
-- If the SELECT produced a result
-- (that is, it was not filtered out by the WHERE clause),
-- process the Statement
IF StatementBitStream IS NOT NULL THEN
-- create a field to hold the bit stream in the result tree

CREATE LASTCHILD OF resultCursor
Type XML.BitStream
NAME ’StatementBitStream’
VALUE StatementBitStream;

-- Add the current Statement’s Amount to the grand total
-- Note that the cast is necessary because of the behavior
-- of the XML syntax element

SET grandTotal = grandTotal
+ CAST(targetCursor.Statement.Amount AS FLOAT);

END IF;

-- Delete the real Statement tree leaving only the bit stream version
DELETE FIELD targetCursor.Statement;

-- Step onto the next Invoice,
-- removing the previous invoice and any
-- text elements that might have been
-- interspersed with the Invoices

REPEAT
MOVE sourceCursor NEXTSIBLING;
DELETE PREVIOUSSIBLING OF sourceCursor;
UNTIL (FIELDNAME(sourceCursor) = ’Invoice’)
OR (LASTMOVE(sourceCursor) = FALSE)

END REPEAT;

-- If there are no more invoices to process, abandon the loop
IF NOT LASTMOVE(sourceCursor) THEN
LEAVE InvoiceLoop;

END IF;

END LOOP InvoiceLoop;
END ProcessInvoice;

-- Remove the temporary source and target folders
DELETE FIELD OutputRoot.XMLNS.Data.SourceMessageTree;
DELETE FIELD OutputRoot.XMLNS.Data.TargetMessageTree;

-- Finally add the grand total
SET resultCursor.GrandTotal = grandTotal;

This ESQL code produces the following output message:
<Data>
<Statement Type="Monthly" Style="Full">
<Customer>
<Name>Andrew</Name>
<Surname>Smith</Surname>
<Title>Mr</Title>
</Customer>
<Purchases>
<Article>
<Title>The XML Companion</Title>
<Cost>4.472E+1</Cost>
<Qty>2</Qty>
</Article>
<Article>

Chapter 9. Developing message flow applications 2545

<Title>A Complete Guide to DB2 Universal Database</Title>
<Cost>6.872E+1</Cost>
<Qty>1</Qty>
</Article>
<Article>
<Title>JAVA 2 Developers Handbook</Title>
<Cost>9.5984E+1</Cost>
<Qty>1</Qty>
</Article>
</Purchases>
<Amount Currency="Dollars">2.54144E+2</Amount>
</Statement>
<GrandTotal>2.54144E+2</GrandTotal>
</Data>

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Transforming a complex message” on page 2520
When you code the ESQL for a Compute node, use the SELECT function for
complex message transformation.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“DELETE statement” on page 5129
The DELETE statement detaches and destroys a portion of a message tree,
allowing its memory to be reused. This statement is particularly useful when
handling very large messages.
“ASBITSTREAM function” on page 5224
The ASBITSTREAM field function generates a bit stream for the subtree of a given
field according to the rules of the parser that owns the field.

Manipulating messages in the XMLNSC domain:

If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.

2546 WebSphere Message Broker Version 7.0.0.8

About this task

The topics in this section provide information about how to write ESQL for
processing messages that belong to the XMLNSC domain, and that are parsed by
the XMLNSC parser. For background information, see “XMLNSC parser” on page
1090.

The following topics provide detailed information about the structure of the
message tree that the XMLNSC parser builds, and the field types that it uses.
v “XMLNSC: The XML declaration” on page 2548
v “XMLNSC: The inline DTD” on page 2549
v “XMLNSC: The message body” on page 2549
v “XMLNSC: XML Schema support” on page 2559

If you are migrating from XML, XMLNS, or MRM XML, see “Migrating to
XMLNSC” on page 2562.

For further information about processing XML messages, see “Working with XML
messages” on page 2535.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Manipulating messages in the XML domain” on page 2581
The XML parser is like the XMLNS parser, but the XML parser has no support for
namespaces or opaque parsing.
“Working with XML messages” on page 2535
The following topics provide information about typical tasks for processing XML
messages.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

Chapter 9. Developing message flow applications 2547

“SET statement” on page 5159
The SET statement assigns a value to a variable.

XMLNSC: The XML declaration:

The XML declaration is represented in the message tree by a syntax element with
field type XMLNSC.XMLDeclaration.

If an XML declaration is created by the XMLNSC parser, its name is
‘XmlDeclaration'. However, when a message tree is being produced, the name is
not important: the XMLNSC parser recognizes this syntax element by its field type
only. The following example shows a typical declaration:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>........</s1>

The XML Declaration has three optional attributes; Version, Standalone, and
Encoding. The XMLNSC parser does not define special field types for these
attributes. Instead, they are identified by their name, and by their position as a
child of the XML Declaration element.

ESQL example code to create an XML declaration

To construct the XML declaration that is shown in the previous example, code the
following ESQL statements:
CREATE FIRSTCHILD OF OutputRoot.XMLNSC TYPE XMLNSC.XmlDeclaration NAME ’XmlDeclaration’;
SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.(XMLNSC.Attribute)Version = ’1.0’;
SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.(XMLNSC.Attribute)Encoding = ’UTF-8’;
SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.(XMLNSC.Attribute)StandAlone = ’yes’;

The first line is optional; if it is omitted, the XMLNSC.XMLDeclaration element is
automatically created when it is referenced by the second line.

Java example code to create an XML declaration

To construct the XML declaration that is shown in the previous example, write the
following Java code:
//Create the XML domain root node
MBElement xmlRoot =
root.createElementAsLastChild(MbXMLNSC.PARSER_NAME);
//Create the XML declaration parent node
MbElement xmlDecl =
xmlRoot.createElementAsFirstChild(MbXMLNSC.XML_DECLARATION);

xmlDecl.setName("XmlDeclaration");

MbElement version =
xmlDecl.CreateElementAsFirstChild(MbXMLNSC.ATTRIBUTE, "Version", "1.0");
MbElement encoding =
xmlDecl.CreateElementAsFirstChild(MbXMLNSC.ATTRIBUTE, "Encoding", "utf-8");
MbElement standalone =
xmlDecl.CreateElementAsFirstChild(MbXMLNSC.ATTRIBUTE, "Standalone", "yes");

Note: In both the ESQL example and the Java example, 'Version', 'StandAlone', and
'Encoding' can all be written in lowercase.

2548 WebSphere Message Broker Version 7.0.0.8

XMLNSC: The inline DTD:

When you parse an XML document that has an inline DTD, the XMLNSC parser
does not put the DTD information into the message tree. However, by using ESQL
code, you can add XML entity definitions to the message tree, and these definitions
are used when the message tree is produced by the XMLNSC parser.

ESQL example code for entity definition and entity reference

This example assumes that InputRoot.XMLNSC has been created from the
following XML message:
<BookInfo dtn="BookInfo" edn="author" edv="A.N.Other"/>

The following output message is generated:
<!DOCTYPE BookInfo [<!ENTITY author "A.N.Other">]>
<BookInfo><entref>&author;</entref></BookInfo>

The ESQL to create the output message is:
DECLARE cursor REFERENCE TO InputRoot.XMLNSC.BookInfo;
DECLARE docTypeName CHARACTER cursor.dtn;
DECLARE authorRef CHARACTER ’author’;
-- Create <!DOCTYPE BOOKInfo ...
SET OutputRoot.XMLNSC.(XMLNSC.DocumentType)* NAME = docTypeName;
-- Create <!ENTITY author "A.N.Other" > ...
SET OutputRoot.XMLNSC.(XMLNSC.DocumentType){docTypeName}.(XMLNSC.EntityDefinition) {authorRef} =
cursor.edv;
-- Create the entity reference
SET OutputRoot.XMLNSC.(XMLNSC.Folder){docTypeName}.(XMLNSC.EntityReference)entref = authorRef;

Related concepts:
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“XMLNSC DTD support” on page 1103
The input XML message might contain an inline DTD.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.

XMLNSC: The message body:

The XMLNSC parser builds a message tree from the body of an XML document.

The following topics describe how the XMLNSC parser builds a message tree from
the body of an XML document:
v “XMLNSC: Using field types” on page 1094
v “XMLNSC: Attributes and elements” on page 2552
v “XMLNSC: Namespace declarations” on page 2554
v “XMLNSC: Element values and mixed content” on page 2556
v “XMLNSC: Comments and Processing Instructions” on page 2558

Chapter 9. Developing message flow applications 2549

Related tasks:
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.

XMLNSC: Using field types:

The XMLNSC parser sets the field type on every syntax element that it creates.

The field type indicates the type of XML construct that the element represents. The
XMLNSC parser uses the field type when writing a message tree. The field type
can be set by using ESQL or Java to control the output XML. The field types that
are used by the XMLNSC parser must be referenced by using constants with
names that are prefixed by 'XMLNSC.'

Tip: Field type constants that have the prefix 'XML.' are for use with the XMLNS
and XML parsers only, and are not valid with the XMLNSC or MRM parsers.

Field types for creating syntax elements

Use the following field type constants to create syntax elements in the message
tree. The XMLNSC parser uses these values when creating a message tree from an
input message.

XML construct XMLNSC Field Type constant Value

Simple Element XMLNSC.Field
XMLNSC.CDataField

0x03000000
0x03000001

Attribute XMLNSC.SingleAttribute
XMLNSC.Attribute

0x03000101
0x03000100

Mixed content XMLNSC.Value
XMLNSC.CDataValue

0x02000000
0x02000001

Namespace Declaration XMLNSC.SingleNamespaceDecl
XMLNSC.NamespaceDecl

0x03000102
0x03000103

Complex element XMLNSC.Folder 0x01000000

Inline DTD XMLNSC.DocumentType 0x01000300

XML declaration XMLNSC.XmlDeclaration 0x01000400

Entity reference XMLNSC.EntityReference 0x02000100

Entity definition XMLNSC.SingleEntityDefinition
XMLNSC.EntityDefinition

0x03000301
0x03000300

Comment XMLNSC.Comment 0x03000400

Processing Instruction XMLNSC.ProcessingInstruction 0x03000401

Field types for path expressions (generic field types)

Use the following field type constants when querying the message tree by using a
path expression; for example:
SET str = FIELDVALUE(InputRoot.e1.(XMLNSC.Attribute)attr1)

It is good practice to specify field types when querying a message tree built by the
XMLNSC parser. This makes your ESQL code more specific and more readable,
and it avoids incorrect results in some cases. However, care is required when
choosing which field type constant to use. When you use the XMLNSC parser, use

2550 WebSphere Message Broker Version 7.0.0.8

a generic field type constant when querying the message tree. This allows your
path expression to tolerate variations in the input XML.

The generic field type constants are listed in the following table:

XML construct XMLNSC Field Type constant Purpose

Tag XMLNSC.Element Matches any tag, whether it contains
child tags (XMLNSC.Folder) or a
value (XMLNSC.Field)

Element XMLNSC.Field Matches a tag which contains normal
text, CData, or a mixture of both.
Does not match tags which contain
child tags.

Attribute XMLNSC.Attribute Matches single-quoted and
double-quoted attributes

Mixed content XMLNSC.Value Matches normal text, CData, or a
mixture of both

XML Declaration XMLNSC.NamespaceDecl Matches single- and double-quoted
declarations

If you write
InputRoot.e1.(XMLNSC.DoubleAttribute)attrName

your path expression does not match a single-quoted attribute. If you use the
generic field type constant XMLNSC.Attribute, your message flow works with
either single-quoted or double-quoted attributes.

Note that you should always use the field type constants and not their numeric
values.

Field types for controlling output format

The following field types are provided for XML Schema and base64 support. Do
not use these field type constants in path expressions; use them in conjunction
with XMLNSC.Attribute and XMLNSC.Field to indicate the required output format
for DATE and BLOB values. See “XMLNSC: XML Schema support” on page 2559
for further information.

XMLNSC Field Type constant Purpose Value

XMLNSC.gYear The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gYear format.

0x00000010

XMLNSC.gYearMonth The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gYearMonth format.

0x00000040

XMLNSC.gMonth The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gMonth format.

0x00000020

XMLNSC.gMonthDay The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gMonthDay format.

0x00000050

Chapter 9. Developing message flow applications 2551

XMLNSC Field Type constant Purpose Value

XMLNSC.gDay The value must be a DATE. If the field type
includes this value, the DATE value is produced by
using the XML Schema gDay format.

0x00000030

XMLNSC.base64Binary The value must be a BLOB. The value is produced
with base64 encoding.

0x00000060

XMLNSC.List The element must be XMLNSC.Attribute or
XMLNSC.Field. If the field type includes this value,
the values of all child elements in the message tree
are produced as a space-separated list.

0x00000070

Field types for direct output

Use the following field types to produce pre-constructed segments of an XML
document. Character escaping is not done; therefore, take extra care not to
construct a badly-formed output document. Use these constants only after carefully
exploring alternative solutions.

XMLNSC Field Type constant Purpose Value

XMLNSC.Bitstream The value of this syntax element must be a
BLOB. The value is written directly to the
output bit stream. For more information about
its usage, see “Working with large XML
messages” on page 2543.

0x03000200

XMLNSC.AsisElementContent The value of this syntax element must be
CHARACTER. The value is written directly to
the output bit stream. No character
substitutions are performed. Use this element
with care.

0x03000600

Related concepts:
“XMLNSC: The message body” on page 2549
The XMLNSC parser builds a message tree from the body of an XML document.
“XMLNSC: Element values and mixed content” on page 2556
The XMLNSC parser is a compact parser; therefore, an element with single content
is parsed as a single syntax element. When an element has both child elements and
some text, the text is called mixed content.
“XMLNSC: Comments and Processing Instructions” on page 2558
The XMLNSC parser discards comments and processing instructions because both
comments and processing instructions are auxiliary information with no business
meaning.
Related reference:
“XMLNSC: Attributes and elements”
The XMLNSC parser uses field types to represent attributes and elements.
“XMLNSC: Namespace declarations” on page 2554
The XMLNSC parser provides full support for namespaces.

XMLNSC: Attributes and elements:

The XMLNSC parser uses field types to represent attributes and elements.

Use the following field type constants when creating your own syntax elements in
the message tree.

2552 WebSphere Message Broker Version 7.0.0.8

Table 25. Specific field type constants

XML Construct
XMLNSC Field Type
constant Value

Complex element XMLNSC.Folder 0x01000000

Simple element XMLNSC.Field
XMLNSC.CDataField

0x02000000
0x02000001

Attribute XMLNSC.SingleAttribute
XMLNSC.Attribute

0x03000100
0x03000101

When accessing elements and attributes in the message tree, use generic field type
constants which match all of the alternative values. Because there is only one type
of Folder element, it is safe to use XMLNSC.Folder when querying the message
tree.

Table 26. Generic field type constants

XML Construct
XMLNSC Field Type
constant Purpose

Element XMLNSC.Field Matches elements that
contain normal text, CData,
or a mixture of both

Attribute XMLNSC.Attribute Matches both single-quoted
and double-quoted attributes

ESQL code examples

The following examples use this XML message:
<root id="12345">

<id>ABCDE</id>
</root>

Note that the message contains an attribute and an element with the same name.

Example 1 : Query the value of an XML element
SET value = FIELDVALUE(InputRoot.XMLNSC.root.(XMLNSC.Field)id)

The result is that value is set to 'ABCDE'.

Example 2 : Query the value of an XML attribute
SET value = FIELDVALUE(InputRoot.XMLNSC.root.(XMLNSC.Attribute)id)

The result is that value is set to '12345'.

Example 3 : Create the example message by using ESQL
CREATE LASTCHILD OF OutputRoot.XMLNSC Type XMLNSC.Folder Name ’root’;
-- Note : XMLNSC.Attribute could be used here as well.
SET OuputRoot.XMLNSC.root.(XMLNSC.Attribute)id = ’12345’;
SET OuputRoot.XMLNSC.root.(XMLNSC.Field)id = ’ABCDE’;

The first line is optional because the element 'root' is created automatically by the
following line if it does not already exist.
Related concepts:
“XMLNSC: The message body” on page 2549
The XMLNSC parser builds a message tree from the body of an XML document.

Chapter 9. Developing message flow applications 2553

“XMLNSC: Element values and mixed content” on page 2556
The XMLNSC parser is a compact parser; therefore, an element with single content
is parsed as a single syntax element. When an element has both child elements and
some text, the text is called mixed content.
“XMLNSC: Comments and Processing Instructions” on page 2558
The XMLNSC parser discards comments and processing instructions because both
comments and processing instructions are auxiliary information with no business
meaning.
Related reference:
“XMLNSC: Using field types” on page 1094
The XMLNSC parser sets the field type on every syntax element that it creates.
“XMLNSC: Namespace declarations”
The XMLNSC parser provides full support for namespaces.

XMLNSC: Namespace declarations:

The XMLNSC parser provides full support for namespaces.

The XMLNSC parser sets the correct namespace on every syntax element that it
creates while parsing a message, and stores namespace declarations in the message
tree. The parser uses the namespace declarations to select the appropriate prefixes
when outputting the message tree.

The XMLNSC parser uses the following field types to represent namespace
declarations. Use the field type constants that are listed in this table when you
create namespace declarations in the message tree.

Table 27. Specific field type constants

XML construct
XMLNSC field type
constant Value

Namespace declaration XMLNSC.SingleNamespaceDecl
XMLNSC.DoubleNamespaceDecl

0x03000102
0x03000103

When accessing elements and attributes in the message tree, do not use the
constants that are listed in the previous table; instead, use the generic field type
constant that matches both of the values in the table above.

Table 28. Generic field type constants

XML construct
XMLNSC field type
constant Purpose

Namespace declaration XMLNSC.NamespaceDecl Matches namespace
declarations in both single
and double quotation marks

ESQL code examples

Example 1: Declaring a non-empty prefix
DECLARE space1 NAMESPACE ’namespace1’;
SET OutputRoot.XMLNSC.space1:root.(XMLNSC.NamespaceDecl)xmlns:ns1 = space1;
SET OutputRoot.XMLNSC.space1:root.space1:example = ’ABCDE’;

This creates the following XML message:

2554 WebSphere Message Broker Version 7.0.0.8

<ns1:root xmlns:ns1="namespace1">
<ns1:example>ABCDE</ns1:example>

</ns1:root>

Note that the NAMESPACE constant space1 is just a local variable in the ESQL; it
does not affect the namespace prefix ns1 that is defined by the NameSpaceDecl
element and appears in the output message.

However, as shown here, space1 can be used to initialize the NameSpaceDecl for
ns1. This avoids the need to duplicate the namespace URI ('namespace1' in this
example), which in practice is typically a much longer string.

Example 2: Declaring an empty prefix
DECLARE space1 NAMESPACE ’namespace1’;
SET OutputRoot.XMLNSC.space1:root.(XMLNSC.NamespaceDecl)xmlns = space1;
SET OutputRoot.XMLNSC.space1:root.space1:example = ’ABCDE’;

This creates the following XML message:
<root xmlns="namespace1">

<example>ABCDE</example>
</root>

Note that the syntax elements root and example must have a non-empty
namespace. The default namespace declaration means that any child element
without a prefix is in the namespace namespace1.

Example 3: Example of incorrect usage
DECLARE space1 NAMESPACE ’namespace1’;
SET OutputRoot.XMLNSC.root.(XMLNSC.NamespaceDecl)xmlns = space1;
SET OutputRoot.XMLNSC.root.example = ’ABCDE’;

This example causes the XMLNSC parser to issue the message BIP5014 when it
attempts to create the message tree. The elements root and example are both within
the scope of the default namespace declaration; therefore, in ESQL, these elements
must be qualified by a namespace prefix bound to that namespace.

Example 4: Adding a namespace declaration with a prefix
SET OutputRoot.(XMLNSC.DoubleNamespaceDecl)xmlns:ns2 = space1;

This example of a SET statement creates a namespace declaration with the name
ns2 in the namespace xmlns.
CREATE LASTCHILD OF OutputRoot IDENTITY (XMLNSC.DoubleNamespaceDecl)xmlns:ns2 VALUE space1;

CREATE LASTCHILD OF OutputRoot TYPE XMLNSC.DoubleNamespaceDecl NAMESPACE ’xmlns’ NAME ’ns2’ VALUE space1;

These examples of a CREATE statement also create a namespace declaration with
the name ns2 in the namespace xmlns.

However, be aware that the following example of a CREATE statement creates a
namespace declaration with the name xmlns:ns2 in the default namespace:
CREATE LASTCHILD OF OutputRoot TYPE XMLNSC.DoubleNamespaceDecl NAME ’xmlns:ns2’ VALUE space1;

Related concepts:
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“XMLNSC: The message body” on page 2549
The XMLNSC parser builds a message tree from the body of an XML document.

Chapter 9. Developing message flow applications 2555

“XMLNSC: Element values and mixed content”
The XMLNSC parser is a compact parser; therefore, an element with single content
is parsed as a single syntax element. When an element has both child elements and
some text, the text is called mixed content.
“XMLNSC: Comments and Processing Instructions” on page 2558
The XMLNSC parser discards comments and processing instructions because both
comments and processing instructions are auxiliary information with no business
meaning.
Related reference:
“XMLNSC: Using field types” on page 1094
The XMLNSC parser sets the field type on every syntax element that it creates.
“XMLNSC: Attributes and elements” on page 2552
The XMLNSC parser uses field types to represent attributes and elements.

XMLNSC: Element values and mixed content:

The XMLNSC parser is a compact parser; therefore, an element with single content
is parsed as a single syntax element. When an element has both child elements and
some text, the text is called mixed content.

Element with simple content

The following XML fragment with a single content is parsed as a single syntax
element:
<simpleElement>simpleValue</simpleElement>

XMLNSC.PCDataField

"simpleElement"
Name

Value

Field type

"simpleValue"

The value of this element can be queried with this ESQL:
SET val = FIELDVALUE(InputRoot.XMLNSC.(XMLNSC.Field)simpleElement);

To generate an element with simple content in the output:
SET OutputRoot.XMLNSC.(PCDataField)simpleElement VALUE = ’simpleValue’;

Note that XMLNSC.Field is used when querying the message tree, but
XMLNSC.PCDataField is specified when constructing the output message.
XMLNSC.PCDataField can be used to query the message tree; however, that would
not work if the input message used a CData section, as shown in the following
example:
<simpleElement><![CDATA[simpleValue]]></simpleElement>

Element with mixed content

If an element has child elements, it is typically a 'folder', and does not have a
value. When an element has both child elements and some text, the text is called
'mixed content'.
<element>mixed1<child>simpleValue</child>mixed2</element>

2556 WebSphere Message Broker Version 7.0.0.8

By default, mixed content is discarded because it is typically just formatting white
space and has no business meaning. Mixed content can be preserved if you select
the Retain mixed content check box on the Parser Options page of the node
properties.

If mixed content is being preserved, the XMLNSC parser creates a Value child
element for each distinct item of mixed content.

The mixed content can be queried with this ESQL:
SET mixed1 = FIELDVALUE(InputRoot.XMLNSC.(element).*[1];

The ESQL to construct the above XML fragment is:
CREATE ref REFERENCE TO OutputRoot.XMLNSC.element;
CREATE FIRSTCHILD OF ref TYPE XMLNSC.PCDataValue VALUE ’mixed1’;
CREATE LASTCHILD OF ref NAME ’child’ TYPE XMLNSC.PCDataField VALUE ’simpleValue’;
CREATE LASTSTCHILD OF ref TYPE XMLNSC.PCDataValue VALUE ’mixed2’;

The following ESQL enables the Retain mixed content option:
DECLARE X BLOB;
-- assume that X contains an XML document
CREATE LASTCHILD OF OutputRoot

PARSE(X OPTIONS XMLNSC.MixedContentRetainAll);

Element containing a CData section

A CData section is an XML notation that allows XML markup characters to be
included in the content of an element.

The following two XML fragments are identical in their meaning:
<simpleElement>simpleValue</simpleElement>

<simpleElement><![CDATA[simpleValue]]></simpleElement>

If the CData section is the only text content, the XMLNSC parser remembers that
the input document contained a CData section by setting the field type to
XMLNSC.CDataField instead of XMLNSC.PCDataField.

Chapter 9. Developing message flow applications 2557

If the CData section is not the only text content, it is created as a child value
element, with other child value elements representing the remaining text content.
The following is an example of this:
<simpleElement><![CDATA[CDataValue]]>normalText</simpleElement>

XMLNSC.CDataValue XMLNSC.PCDataField

XMLNSC.CDataField

"" ""

"simpleElement"

"CDataValue" normalText

""

See “XMLNSC: Working with CData” on page 2539 for more information about the
correct use of CData in XML documents.
Related concepts:
“XMLNSC: The message body” on page 2549
The XMLNSC parser builds a message tree from the body of an XML document.
“XMLNSC: Comments and Processing Instructions”
The XMLNSC parser discards comments and processing instructions because both
comments and processing instructions are auxiliary information with no business
meaning.
Related reference:
“XMLNSC: Using field types” on page 1094
The XMLNSC parser sets the field type on every syntax element that it creates.
“XMLNSC: Attributes and elements” on page 2552
The XMLNSC parser uses field types to represent attributes and elements.
“XMLNSC: Namespace declarations” on page 2554
The XMLNSC parser provides full support for namespaces.

XMLNSC: Comments and Processing Instructions:

The XMLNSC parser discards comments and processing instructions because both
comments and processing instructions are auxiliary information with no business
meaning.

Comments

Comments can be preserved if you select the Retain comments check box on the
Parser Options page of the node properties.

If Retain comments is selected, each comment in the input document is represented
by a single syntax element with field type XMLNSC.Comment. The Retain
comments option can also be accessed by using the following ESQL:
DECLARE X BLOB;
-- assume that X contains an XML document
CREATE LASTCHILD OF OutputRoot.XMLNSC

2558 WebSphere Message Broker Version 7.0.0.8

PARSE(X DOMAIN XMLNSC
NAME preserveComments
OPTIONS XMLNSC.CommentsRetainAll);

-- do it again, this time discarding comments
CREATE LASTCHILD OF OutputRoot.XMLNSC

PARSE(X DOMAIN XMLNSC
NAME discardComments
OPTIONS XMLNSC.CommentsRetainNone);

Processing Instructions

Processing instructions can be preserved if you select the Retain processing
instructions check box on the Parser Options page of the node properties.

If Retain processing instructions is selected, each processing instruction the input
document is represented by a single syntax element with field type
XMLNSC.ProcessingInstruction. The Retain processing instructions option can also be
accessed by using the following ESQL:
DECLARE X BLOB;
-- assume that X contains an XML document
CREATE LASTCHILD OF OutputRoot.XMLNSC

PARSE(X DOMAIN XMLNSC
NAME preserveProcessingInstructions
OPTIONS XMLNSC.ProcessingInstructionsRetainAll);

-- do it again, this time discarding processing instructions
CREATE LASTCHILD OF OutputRoot.XMLNSC

PARSE(X DOMAIN XMLNSC
NAME discardProcessingInstructions
OPTIONS XMLNSC.ProcessingInstructionsRetainNone);

Related concepts:
“XMLNSC: The message body” on page 2549
The XMLNSC parser builds a message tree from the body of an XML document.
“XMLNSC: Element values and mixed content” on page 2556
The XMLNSC parser is a compact parser; therefore, an element with single content
is parsed as a single syntax element. When an element has both child elements and
some text, the text is called mixed content.
Related reference:
“XMLNSC: Using field types” on page 1094
The XMLNSC parser sets the field type on every syntax element that it creates.
“XMLNSC: Attributes and elements” on page 2552
The XMLNSC parser uses field types to represent attributes and elements.
“XMLNSC: Namespace declarations” on page 2554
The XMLNSC parser provides full support for namespaces.

XMLNSC: XML Schema support:

Use the XMLNSC parser to parse and validate by using an XML Schema.

For information about how to configure the XMLNSC parser to use an XML
Schema, see “XMLNSC parser” on page 1090.

The following topics describe how the XMLNSC parser uses the field type to hold
information about XML Schema simple types. This behavior enables the parser to
write dates and binary elements in the same form in which they were parsed, and

Chapter 9. Developing message flow applications 2559

according to the XML Schema specification. It also allows the message flow
developer to write dates, lists, and binary data in the correct XML Schema format.
v “XMLNSC: base64 support”
v “XMLNSC: XML Schema date formatting”
v “XMLNSC: XML List type support” on page 2561
Related concepts:
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
Related tasks:
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.

XMLNSC: base64 support:

The XMLNSC parser can produce binary data in base64-encoded format.

If Validation is set to Content and Value, and Build tree using schema types is
enabled, the XMLSNC parser automatically decodes base64 data and creates a
BLOB value in the message tree. When producing a message tree, the XMLNSC
parser will 'base64-encode' a BLOB if the field type includes the constant
XMLNSC.base64Binary.

ESQL code example to output base64 data
DECLARE Base64Data BLOB ’0102030405060708090A0B0C0D0E0F’;
-- Add in the base64Binary field type
DECLARE base64FieldType INTEGER XMLNSC.Field + XMLNSC.base64Binary;
CREATE LASTCHILD OF OutputRoot DOMAIN ’XMLNSC’ NAME ’XMLNSC’;
CREATE LASTCHILD OF OutputRoot.XMLNSC TYPE base64FieldType NAME ’myBinaryData’ VALUE Base64Data;

Result : <myBinaryData>AQIDBAUGBwgJCgsMDQ4P</myBinaryData>

Note that this example does not depend on validation. The XMLNSC parser can
produce base64 binary data even if Validation is set to None.
Related concepts:
“XMLNSC: XML Schema support” on page 2559
Use the XMLNSC parser to parse and validate by using an XML Schema.
“XMLNSC: XML Schema date formatting”
The XMLNSC parser can parse and write all of the XML Schema simple types.
“XMLNSC: XML List type support” on page 2561
The XMLNSC parser can automatically parse a space-separated list of values into
individual syntax elements in the message tree if you select certain options.

XMLNSC: XML Schema date formatting:

The XMLNSC parser can parse and write all of the XML Schema simple types.

The rarely used types gYear, gYearMonth, gMonth, gMonthDay, and gDay do not
map directly to a message broker data type. For these simple types, the XMLNSC
parser adds one of the following constant values to the field type. This behavior
allows the parser to produce the data for output in the same format as it was
received.

2560 WebSphere Message Broker Version 7.0.0.8

Field types for controlling date format

The following field types are provided for XML Schema date format support. Do
not use these field type constants in path expressions. Use them in conjunction
with constants XMLNSC.Attribute and XMLNSC.Field to indicate the required
output format for DATE values.

XMLNSC Field Type
constant Purpose Value

XMLNSC.gYear Value must be a DATE. If the
field type includes this value,
the DATE value is written by
using the XML Schema gYear
format.

0x00000010

XMLNSC.gYearMonth Value must be a DATE. If the
field type includes this value,
the DATE value is written by
using the XML Schema
gYearMonth format.

0x00000040

XMLNSC.gMonth Value must be a DATE. If the
field type includes this value,
the DATE value is written by
using the XML Schema
gMonth format.

0x00000020

XMLNSC.gMonthDay Value must be a DATE. If the
field type includes this value,
the DATE value is written by
using the XML Schema
gMonthDay format.

0x00000050

XMLNSC.gDay Value must be a DATE. If the
field type includes this value,
the DATE value is written by
using the XML Schema gDay
format.

0x00000030

ESQL code example
DECLARE gYear DATE '2007-01-01’;
-- Add in the gYear field type
DECLARE gYearFieldType INTEGER XMLNSC.Field + XMLNSC.gYear;
CREATE LASTCHILD OF OutputRoot DOMAIN 'XMLNSC’ NAME 'XMLNSC’;
CREATE LASTCHILD OF OutputRoot.XMLNSC TYPE gYearFieldType NAME 'gYear’ VALUE gYear;

Result : <gYear>2007</gYear>

XMLNSC: XML List type support:

The XMLNSC parser can automatically parse a space-separated list of values into
individual syntax elements in the message tree if you select certain options.

An element or an attribute can have multiple values separated by spaces, as shown
in the following examples:
<listElement>one two three</listElement>

<element listAttribute="1 2 3"><childEL1/></element>

If your XML schema specifies a list type for an element or an attribute, and
Validation is set to Content and Value, and Build tree using schema types is

Chapter 9. Developing message flow applications 2561

enabled, the XMLNSC parser automatically parses the space-separated list of
values into individual syntax elements in the message tree. The resulting message
tree looks like this:
and for an attribute with a list value it looks like this:

ESQL code examples

Access the individual values in a list
SET val = InputRoot.XMLNSC.listElement.*[1];

Result : val = 'one'
SET val = InputRoot.XMLNSC.element.(XMLNSC.Attribute)listAttr.*[3];

Result : val='3'

Create a list element in the message tree
CREATE LASTCHILD OF OutputRoot.XMLNSC

Name ’listElement’
Type XMLNSC.List;

DECLARE listEl REFERENCE TO OutputRoot.XMLNSC.listElement;
DECLARE listValType INTEGER XMLNSC.PCDataValue;
CREATE LASTCHILD OF listEl TYPE listValType VALUE ’one’;
CREATE LASTCHILD OF listEl TYPE listValType VALUE ’two’;
CREATE LASTCHILD OF listEl TYPE listValType VALUE ’three’;

Related concepts:
“XMLNSC: XML Schema support” on page 2559
Use the XMLNSC parser to parse and validate by using an XML Schema.
“XMLNSC: base64 support” on page 2560
The XMLNSC parser can produce binary data in base64-encoded format.
“XMLNSC: XML Schema date formatting” on page 2560
The XMLNSC parser can parse and write all of the XML Schema simple types.

Migrating to XMLNSC:

The XMLNSC parser offers the best combination of features and performance for
most applications.

one two

listElement

three

element

1 2

listAttr childEL1

3

2562 WebSphere Message Broker Version 7.0.0.8

Reasons to migrate

If your message flow uses the XMLNS or XML domain, you might want to migrate
a message flow to XMLNSC to take advantage of the XML schema validation. If
your message flow uses the MRM domain, you might want to migrate to XMLNSC
to obtain standards-compliant validation, and a large reduction in processor usage.

Migrating from the XMLNS or XML domain

The XMLNSC parser differs from the XMLNS parser in the following ways:
v The XMLNSC parser builds a compact message tree.
v It uses different field type constants.
v It discards inline DTDs

In most cases, the compact message tree has no effect on ESQL paths or XPath
expressions. Typically, a simple message tree query produces the same results in
XMLNSC as in the XMLNS or XML domain. Changing the correlation name from
XMLNS to XMLNSC is often sufficient, but care must be taken with the following
items:
v Empty elements and null values.

The XMLNSC parser does not always handle empty elements and null values in
the same way as XML and XMLNS.

v Complex XPath expressions that navigate to the value of an element, then to its
parent in a single query.
These expressions might produce different results in the XMLNSC domain.

The field type constants that are used by the XMLNSC parser are different from
those constants used by XMLNS or XML. Every occurrence of XML.Attribute,
XML.XmlDecl, for example, must be changed to use the equivalent XMLNSC field
type constant.

The discarding of inline DTDs only affects message flows that process the DTD.

Migrating from MRM XML

The XMLNSC parser differs from the MRM XML parser in the following ways:
v The XMLNSC parser uses field types to identify the XML constructs in the

message tree. The MRM parser distinguishes attributes from elements by
matching the message tree against the message definition.

v When writing a message tree, the XMLNSC parser selects namespace prefixes
by detecting and using xmlns attributes in the message tree. The MRM XML
parser uses a table in the message set properties.

v The MRM parser does not include the root tag of the XML document in the
message tree.

Migrating a message flow from MRM to XMLNSC typically requires extensive
changes to your message flow. However, the migration usually delivers a large
reduction in processor usage, and allows much more accurate control of the output
XML.

Manipulating messages in the XMLNS domain:

When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.

Chapter 9. Developing message flow applications 2563

About this task

The topics in this section provide information about how to write ESQL for
processing messages that belong to the XMLNS domain, and that are parsed by the
XMLNS parser. Most of the information in these topics also applies to the XML
domain, unless it refers to features that are not supported in the XML domain.

Refer to “XMLNS parser” on page 1104 for background information.

The following topics provided detailed information about the structure of the
message tree that the XMLNS parser builds, and the field types that it uses.
v “XMLNS: The XML declaration” on page 2565
v “XMLNS: The DTD” on page 2568
v “XMLNS: The XML message body” on page 2569

You can find more information about processing XML messages in “Working with
XML messages” on page 2535.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Manipulating messages in the XML domain” on page 2581
The XML parser is like the XMLNS parser, but the XML parser has no support for
namespaces or opaque parsing.
“Working with XML messages” on page 2535
The following topics provide information about typical tasks for processing XML
messages.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

2564 WebSphere Message Broker Version 7.0.0.8

XMLNS: The XML declaration:

The beginning of an XML message can contain an XML declaration.

The following is an example of a declaration:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>........</s1>

The XML Declaration is represented by the following types of syntax element:
v “XML.XMLDecl”
v “XML.version” on page 2566
v “XML.standalone” on page 2567

“XMLNS: XML declaration example” on page 2568 includes another example of an
XML declaration and the tree structure that it forms.
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
Related tasks:
“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
Related reference:
“XMLNS: XML declaration example” on page 2568
The XMLNS parser creates a tree that represents an XML declaration.

XML.XMLDecl:

The XML Declaration is represented in the message tree by a syntax element with
field type 'XML.XMLDecl'.

If the XML declaration is created by the XMLNS parser its name is ‘XMLDecl'.
However, when a message tree is being written, the name is not important; only
the field type is used by the parser.

The following shows an example of a declaration:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>........</s1>

Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML

Chapter 9. Developing message flow applications 2565

message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
Related tasks:
“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

XML.version:

The XML version attribute in the XML declaration is represented in the message
tree by a syntax element with field type ‘XML.version'.

The value of the XML version attribute is the value of the version attribute. It is
always a child of an XML.XmlDecl syntaxelement. In the following example, the
version element contains the string value 1.0:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>........</s1>

Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
Related tasks:
“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

XML.encoding:

The encoding attribute is represented by a syntax element with field type
‘XML.encoding', and is always a child of an XML.XmlDecl syntax element.

In the following example, the encoding attribute has a value of UTF-8.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>........</s1>

2566 WebSphere Message Broker Version 7.0.0.8

You cannot specify WebSphere MQ encodings in this element.

In your ESQL, (XML,"Encoding") must include quotation marks, because Encoding
is a reserved word.
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
Related tasks:
“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

XML.standalone:

The XML standalone element defines the existence of an externally-defined DTD.
In the message tree it is represented by a syntax element with field type
XML.standalone.

The value of the XML standalone element is the value of the standalone attribute
in the XML declaration. It is always a child of an XML.XmlDecl syntax element.
The only valid values for the standalone element are yes and no. The following is
an example of this:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>........</s1>

A value of no indicates that this XML document is not standalone, and depends on
an externally-defined DTD. A value of yes indicates that the XML document is
self-contained. However, because the current release of WebSphere Message Broker
does not resolve externally-defined DTDs, the setting of standalone is irrelevant,
and is ignored.
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
Related tasks:

Chapter 9. Developing message flow applications 2567

“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

XMLNS: XML declaration example:

The XMLNS parser creates a tree that represents an XML declaration.

The following example shows an XML declaration in an XML document:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

The following figure shows the tree structure that the XMLNS parser creates for
this declaration:

Standalone
value="yes"

Encoding
value="UTF-8"

Version
value="1.0"

XmlDecl

Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
Related tasks:
“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

XMLNS: The DTD:

The document type declaration (DTD) of an XML message is represented by a
syntax element with field type XML.DocTypeDecl, and its children. These comprise
the DOCTYPE construct.

Only internal (inline) DTD subsets are represented in the syntax element tree. An
inline DTD is a DTD that is declared within the XML document itself. It can be a
complete DTD definition, or it can extend the definition in an external DTD.

2568 WebSphere Message Broker Version 7.0.0.8

External DTD subsets (identified by the SystemID or PublicId elements described
later in this section) can be referenced in the message, but those referenced are not
resolved by the broker.

The following field type constants can be used to reference the various parts of a
DTD in the message tree:
v “XML DocTypeDecl” on page 4272
v “XML NotationDecl” on page 4275
v “XML entities” on page 4275
v “XML ElementDef” on page 4281
v “XML AttributeList” on page 4281
v “XML AttributeDef” on page 4282
v “XML DocTypePI” on page 4286
v “XML WhiteSpace and DocTypeWhiteSpace” on page 4287
v “XML DocTypeComment” on page 4286

“XML DTD example” on page 4288 shows an example of an XML DTD.

See “XML document type declaration” on page 4271 for more information about
handling an inline DTD.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML declaration” on page 2565
The beginning of an XML message can contain an XML declaration.
“XMLNS: The XML message body”
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

XMLNS: The XML message body:

Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

The XMLNS parser assigns a field type to every syntax element that it creates. The
value of the field type indicates the XML construct that it represents. In the
following topics, each field type is discussed, with a series of example XML
fragments.

The following common element types are discussed:
v “XML.element” on page 2573
v “XML.Attribute” on page 2573

Chapter 9. Developing message flow applications 2569

“XML message body example” on page 2581 provides an example of an XML
message body and the tree structure that is created from it using the syntax
elements types that are listed above.

More complex XML messages might use some of the following syntax element
types:
v “XML.CDataSection” on page 2575
v “XML.EntityReferenceStart and XML.EntityReferenceEnd” on page 2577
v “XML.comment” on page 2578
v “XML.ProcessingInstruction” on page 2578
v “XML.AsisElementContent” on page 2579
v “XML.BitStream” on page 2580
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Manipulating messages in the XML domain” on page 2581
The XML parser is like the XMLNS parser, but the XML parser has no support for
namespaces or opaque parsing.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
Related reference:
“XMLNS: The XML declaration” on page 2565
The beginning of an XML message can contain an XML declaration.
“XMLNS: The DTD” on page 2568
The document type declaration (DTD) of an XML message is represented by a
syntax element with field type XML.DocTypeDecl, and its children. These comprise
the DOCTYPE construct.

Accessing attributes and elements:

The XMLNS parser sets the field type on every message tree element that it
creates.

The field type indicates the type of XML construct that the element represents. The
field types used by the XMLNS parser can be referenced using constants with
names prefixed with ‘XML.' Field type constants with prefix ‘XML.' are for use
with the XMLNS and XML parsers only; they do not work with the XMLNSC or
MRM parsers.

XMLNS Field Type constant

Tag XML.Element

Attribute XML.Attribute
XML.Attr

2570 WebSphere Message Broker Version 7.0.0.8

By using the field type in this way, the XMLNS parser can distinguish between an
element and an attribute that have the same name.

Example XML
<parent id="12345">

<id>ABCDE</id>
</parent>

Example ESQL
SET value = FIELDVALUE(InputRoot.XMLNS.parent.(XML.Element)id)
Result : value is ’ABCDE’

SET value = FIELDVALUE(InputRoot.XMLNS.parent.(XML.Attr)id)
Result : value is ’12345’

Example using SELECT to access multiple attributes

In the “Example message” on page 5311, the element Title within each Item
element has three attributes: Category, Form, and Edition. For example, the first
Title element contains:
<Title Category="Computer" Form="Paperback" Edition="2">The XML Companion</Title>

The element InputRoot.XML.Invoice.Purchases.Item[1].Title has four children in
the logical tree: Category, Form, Edition, and the element value, which is “The
XML Companion”.

If you want to access the attributes for this element, you can code the following
ESQL. This extract of code retrieves the attributes from the input message and
creates them as elements in the output message. It does not process the value of
the element itself in this example.
-- Set the cursor to the first XML.Attribute of the Title.
-- Note the * after (XML.Attribute) meaning any name, because the name might not be known
DECLARE cursor REFERENCE TO InputRoot.XMLNS.Invoice.Purchases.Item[1].Title.(XML.Attribute)*;
WHILE LASTMOVE(cursor) DO
-- Create a field with the same name as the XML.Attribute
-- and set its value to the value of the XML.Attribute

SET OutputRoot.XML.Data.Attributes.{FIELDNAME(cursor)} = FIELDVALUE(cursor);
-- Move to the next sibling of the same TYPE to avoid the Title value
-- which is not an XML.Attribute

MOVE cursor NEXTSIBLING REPEAT TYPE;
END WHILE;

When this ESQL is processed by the Compute node, the following output message
is generated:
<Data>

<Attributes>
<Category>Computer</Category>
<Form>Paperback</Form>
<Edition>2</Edition>

</Attributes>
</Data>

You can also use a SELECT statement:
SET OutputRoot.XMLNS.Data.Attributes[] =

(SELECT FIELDVALUE(I.Title) AS title,
FIELDVALUE(I.Title.(XML.Attribute)Category) AS category,
FIELDVALUE(I.Title.(XML.Attribute)Form) AS form,
FIELDVALUE(I.Title.(XML.Attribute)Edition) AS edition

FROM InputRoot.XML.Invoice.Purchases.Item[] AS I);

Chapter 9. Developing message flow applications 2571

This statement generates the following output message:
<Data>

<Attributes>
<title>The XML Companion</title>
<category>Computer</category>
<form>Paperback</form>
<edition>2</edition>

</Attributes>
<Attributes>
<title>A Complete Guide to DB2 Universal Database</title>
<category>Computer</category>
<form>Paperback</form>
<edition>2</edition>

</Attributes>
<Attributes>
<title>JAVA 2 Developers Handbook</title>
<category>Computer</category>
<form>Hardcover</form>
<edition>0</edition>

</Attributes>
</Data>

You can qualify the SELECT with a WHERE statement to narrow down the results
to obtain the same output message as the one that is generated by the WHILE
statement. This second example shows that you can create the same results with
less, and less complex, ESQL.
SET OutputRoot.XMLNS.Data.Attributes[] =

(SELECT FIELDVALUE(I.Title.(XML.Attribute)Category) AS category,
FIELDVALUE(I.Title.(XML.Attribute)Form) AS form,
FIELDVALUE(I.Title.(XML.Attribute)Edition) AS edition

FROM InputRoot.XML.Invoice.Purchases.Item[] AS I)
WHERE I.Title = ’The XML Companion’);

This statement generates the following output message:
<Data>

<Attributes>
<Category>Computer</Category>
<Form>Paperback</Form>
<Edition>2</Edition>

</Attributes>
</Data>

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow

2572 WebSphere Message Broker Version 7.0.0.8

nodes and connecting them to form flows.
“Manipulating messages in the XMLNS domain” on page 2563
When you write ESQL for processing messages in the XMLNS domain, it is helpful
to understand the structure of the message tree that the XMLNS parser builds.
“Working with XML messages” on page 2535
The following topics provide information about typical tasks for processing XML
messages.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

XML.element:

This syntax element represents an XML element (a tag).

The name of the syntax element corresponds to the name of the XML element in
the message. This element can have many children in the message tree, including
attributes, elements, and content.

XML.tag is supported as an alternative to XML.element for compatibility with
earlier versions of WebSphere Message Broker. Use XML.element in any new
message flows that you create.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML.Attribute”
The XMLNS parser uses this field type for syntax elements that represent an XML
attribute.
“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

XML.Attribute:

The XMLNS parser uses this field type for syntax elements that represent an XML
attribute.

Chapter 9. Developing message flow applications 2573

Parsing

The name and value of the syntax element correspond to the name and value of
the XML attribute that is represented. Attribute elements have no children and
must always be children of an element.

Writing

When the XMLNS parser generates a bit stream from a message tree, occurrences
of ampersand (&), less than (<), greater than (>), double quotation mark ("), and
apostrophe ('), within the attribute value, are replaced by the predefined XML
entities &, <, >, ", and '.

The XML.attr field type constant is also supported for compatibility with earlier
versions of WebSphere Message Broker.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML.element” on page 2573
This syntax element represents an XML element (a tag).
“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

XML.content:

The XMLNS parser uses this syntax element to represent character data (including
an XML attribute).

The name and value of the syntax element correspond to the name and value of
the XML attribute that is represented. Attribute elements have no children and
must always be children of an element.

Writing

When the XMLNS parser generates a bit stream from a message tree, occurrences
of ampersand (&), less than (<), greater than (>), double quotation mark ("), and
apostrophe ('), within the attribute value, are replaced by the predefined XML
entities &, <, >, ", and '.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML.element” on page 2573
This syntax element represents an XML element (a tag).

2574 WebSphere Message Broker Version 7.0.0.8

“XML.Attribute” on page 2573
The XMLNS parser uses this field type for syntax elements that represent an XML
attribute.
“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

XML.CDataSection:

CData sections in the XML message are represented by a syntax element with field
type XML.CdataSection.

The content of the CDataSection element is the value of the CDataSection element
without the <![CDATA[that marks its beginning, and the]]> that marks its end.

For example, the following CData section:
<![CDATA[<greeting>Hello, world!</greeting>]]>

is represented by a CDataSection element with a string value of:
"<greeting>Hello, world!</greeting>"

Unlike Content, occurrences of <,>, &, ", and ’ are not translated to their XML
character entities (<, >, and &) when the CDataSection is produced.

When to use XML.CDataSection

A CData section is often used to embed one XML message within another. By
using a CData section, you ensure that the XML reserved characters (<, >, and &)
are not replaced with XML character entities.

XML.AsisElementContent also allows the production of unmodified character data,
but XML.CDataSection is typically a better choice because it protects the outer
message from errors in the embedded message.

Parsing the contents of a CDataSection

A common requirement is to parse the contents of a CData section to create a
message tree, which you can achieve by using the ESQL statement CREATE with
the PARSE clause; see “XMLNSC: Working with XML messages and bit streams”
on page 2541.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML.element” on page 2573
This syntax element represents an XML element (a tag).

Chapter 9. Developing message flow applications 2575

“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

XML.NamespaceDecl:

A namespace declaration is represented by a syntax element with field type
XML.NamespaceDecl.

Namespace declarations take one of two forms in the message tree:
v Declaration using a namespace prefix

<ns1:e1 xmlns:ns1="namespace1"/>

In the message tree, the syntax element for this namespace declaration is shown
in the following table:

Namespace http://www.w3.org/2000/xmlns/

Name ns1

Value namespace1

v Declaration of a default namespace

A default namespace declaration is an xmlns attribute that defines an empty
prefix
<e1 xmlns="namespace1"/>

In the message tree, the syntax element for this namespace declaration is shown
in the following table:

Namespace “”

Name xmlns

Value namespace1

Note that, in both cases, element ‘e1' is in namespace ‘namespace1'.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML.element” on page 2573
This syntax element represents an XML element (a tag).
“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:

2576 WebSphere Message Broker Version 7.0.0.8

“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

XML.EntityReferenceStart and XML.EntityReferenceEnd:

When an entity reference is encountered in the XML message, both the expanded
form and the original entity name are stored in the syntax element tree. The name
of the entity is stored as the value of the EntityReferenceStart and
EntityReferenceEnd syntax elements, and any syntax elements between contain the
entity expansion.

The following examples show the XML entity references in an XML document, and
in tree structure form.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE example [<!ENTITY entityName "eValue">]>
<example>Test: &entityName;</example>

Element
-name="example"

Content
-value="Test:"

Content
-value="eValue"

EntityReferenceStart
-value="entityName"

EntityReferenceEnd
-value="entityName"

The XML declaration and the document type declaration are not shown here. Refer
to “XMLNS: The XML declaration” on page 2565 and “XMLNS: The DTD” on page
2568 for details of those sections of the syntax element tree.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML.element” on page 2573
This syntax element represents an XML element (a tag).
“XML.Attribute” on page 2573
The XMLNS parser uses this field type for syntax elements that represent an XML
attribute.
“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.
“XMLNS: The XML declaration” on page 2565
The beginning of an XML message can contain an XML declaration.
“XMLNS: The DTD” on page 2568
The document type declaration (DTD) of an XML message is represented by a
syntax element with field type XML.DocTypeDecl, and its children. These comprise
the DOCTYPE construct.

Chapter 9. Developing message flow applications 2577

XML.comment:

An XML.comment that is encountered outside the document type declaration is
represented by a syntax element with field type XML.comment. The value of the
element is the comment text from the XML message.

If the value of the element contains the character sequence -->, the sequence is
replaced with the text -->. This ensures that the contents of the comment
cannot prematurely terminate the comment. Occurrences of the following
characters are not translated to their escape sequences:
< > & " ’

The following is an example of the XML comment in an XML document:
<example><!-- This is a comment --></example>

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.
“XMLNS: The DTD” on page 2568
The document type declaration (DTD) of an XML message is represented by a
syntax element with field type XML.DocTypeDecl, and its children. These comprise
the DOCTYPE construct.

XML.ProcessingInstruction:

A processing instruction that is encountered outside the document type declaration
is represented by a syntax element with field type XML.ProcessingInstruction.

This is a name-value element; the name of the syntax element is the processing
instruction target name, and the value of the syntax element is the character data
of the processing instruction. The value of the syntax element must not be empty.
The name cannot be XML in either uppercase or lowercase.

If the value of the element contains the character sequence ?>, the sequence is
replaced with the text ?>. This ensures that the content of the processing
instruction cannot prematurely terminate the processing instruction. Occurrences of
the following characters are not translated to their escape sequences:
< > & " ’

The following shows an example of the XML processing instruction in an XML
document:
<example><?target This is a PI.?></example>

Related concepts:

2578 WebSphere Message Broker Version 7.0.0.8

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

XML.AsisElementContent:

Use the special field type XML.AsisElementContent to precisely control generated
XML.

XML.AsisElementContent is a special field type. Use the field type in a message
flow to precisely control the XML that is generated in an output message, without
the safeguards of the Element, Attribute, and Content syntax elements. The
XMLNS parser never creates elements with this field type.

Try to avoid using AsisElementContent; there is typically a safer alternative
approach. If you do use AsisElementContent, it is your responsibility to ensure that
the output message is well-formed XML.

You might choose to use AsisElementContent if, for example, you want to suppress
the usual behavior in which occurrences of ampersand (&), less than (<), greater
than (>), double quotation mark ("), and apostrophe (') are replaced by the
predefined XML entities &, <, >, ", and '.

The following example illustrates the use of AsisElementContent. The statement:
Set OutputRoot.XMLNS.(XML.Element)Message.(XML.Content) = ’<rawMarkup>’;

generates the following XML in an output message:
<Message><rawMarkup></Message>

However, the statement:
Set OutputRoot.XMLNS.(XML.Element)Message.(XML.AsisElementContent) = ’<rawMarkup>’;

generates the following XML in an output message:
<Message><rawMarkup></Message>

This shows that the value of an AsisElementContent syntax element is not
modified before it is written to the output message.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:

Chapter 9. Developing message flow applications 2579

Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

XML.BitStream:

BitStream is a specialized element designed to aid the processing of very large
messages.

XML.Bitstream is a special field type. When writing an XML message, the value of
the BitStream element is written directly into the message, and the name is not
important. The BitStream element might be the only element in the message tree.

The value of the element must be of type BLOB; any other data type generates an
error when writing the element. Ensure that the content of the element is
appropriate for use in the output message; pay special attention to the CCSID and
the encoding of the XML text in the BLOB.

Use of the BitStream element is similar to the use of the AsisElementContent
element, except that the AsisElementContent type converts its value into a string,
whereas the BitStream element uses its BLOB value directly. This is a specialized
element designed to aid the processing of very large messages.

The following ESQL excerpts demonstrate some typical use of this element. First,
declare the element:
DECLARE StatementBitStream BLOB

Initialize the contents of StatementBitStream from an appropriate source, such as
an input message. If the source field is not of type BLOB, use the CAST statement
to convert the contents to BLOB. Then create the new field in the output message;
for example:
CREATE LASTCHILD OF resultCursor
Type XML.BitStream
NAME ’StatementBitStream’
VALUE StatementBitstream;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XML message body example” on page 2581
The XMLNS parser creates a message tree that represents an XML document.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

2580 WebSphere Message Broker Version 7.0.0.8

XML message body example:

The XMLNS parser creates a message tree that represents an XML document.

The following example shows the message tree that the XMLNS parser creates for
the following snippet from a simple XML document:
<Person age="32" height="172cm">
<Name>Cormac Keogh</Name>
</Person>

Element
-name="person"

Content
-value="\n"

Content
-value="\n"

Element
-name="Name"

Content
-value="Cormac Keogh"

Attribute
-name="age"
-value="32"

Attribute
-name="height"
-value="172cm"

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XMLNS: The XML message body” on page 2569
Every XML message must have a body. The body consists of a hierarchy of XML
elements and other XML constructs that represent the message data.

Manipulating messages in the XML domain:

The XML parser is like the XMLNS parser, but the XML parser has no support for
namespaces or opaque parsing.

About this task

For information about how to work with the XML parser, see “Manipulating
messages in the XMLNS domain” on page 2563.

Manipulating messages in the MRM domain:

How to use messages that have been modeled in the MRM domain, and that are
parsed by the MRM parser.

About this task

The following topics show you how to deal with messages that have been modeled
in the MRM domain, and that are parsed by the MRM parser. The physical formats
associated with the message models do not affect this information unless

Chapter 9. Developing message flow applications 2581

specifically stated. Use this information in conjunction with the information about
manipulating message body content; see “Manipulating message body content” on
page 2418.
v “Accessing elements in a message in the MRM domain” on page 2584
v “Accessing multiple occurrences of an element in a message in the MRM

domain” on page 2585
v “Accessing attributes in a message in the MRM domain” on page 2587
v “Accessing elements within groups in a message in the MRM domain” on page

2589
v “Accessing mixed content in a message in the MRM domain” on page 2592
v “Accessing embedded messages in the MRM domain” on page 2594
v “Accessing the content of a message in the MRM domain with namespace

support enabled” on page 2596
v “Querying null values in a message in the MRM domain” on page 2597
v “Setting null values in a message in the MRM domain” on page 2599
v “Working with MRM messages and bit streams” on page 2601
v “Handling large MRM messages” on page 2605

The structure of the "Customer" message is shown in the following sample:
v Video Rental

The message is used in the samples in the topics listed previously to show ESQL
that manipulates the objects that can be defined in a message model.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The message includes a variety of structures that demonstrate how you can classify
metadata to the MRM. Within an MRM message set, you can define the following
objects: messages, types, groups, elements, and attributes. Folder icons that
represent each of these types of objects are displayed for each message definition
file in the Broker Application Development perspective.

Each message definition file can contribute to a namespace; in this sample, each
namespace is completely defined by a single message definition file. You can
combine several message definition files to form a complete message dictionary,
which you can then deploy to a broker.

The video sample has three message definition files:

Customer

IdGroupAddress ID

FirstName LastNameTitle DrivingLicenceNoPassportNo CreditCardNo

VideoTitle DueDate Cost

Name Borrowed Magazine

HouseNo Street Town

2582 WebSphere Message Broker Version 7.0.0.8

Customer.mxsd
Resides in the no target namespace

Address.mxsd
Resides in the namespace http://www.ibm.com/AddressDetails

Borrowed.mxsd
Resides in the namespace http://www.ibm.com/BorrowedDetails

Look at the video rental message structure sample for detailed information about
the objects that are defined in this message model:
v Video Rental

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Chapter 9. Developing message flow applications 2583

Accessing elements in a message in the MRM domain:

You can use ESQL to manipulate the logical tree that represents a message in the
message flow. This topic describes how to access data for elements in a message in
the MRM domain.

About this task

You can populate an element with data with the SET statement:
SET OutputRoot.MRM.Name = UPPER(InputRoot.MRM.Name);

The field reference on the left hand side of the expression refers to the element
called Name within the MRM message domain. This statement takes the input
value for the Name field, converts it to uppercase, and assigns the result to the
same element in the output message.

The Name element is defined in the noTarget namespace. No namespace prefix is
specified in front of the Name part of the field reference in the example above. If
you have defined an MRM element in a namespace other than the noTarget
namespace, you must also specify a namespace prefix in the statement. For
example:

DECLARE brw NAMESPACE ’http://www.ibm.com/Borrowed’;

SET OutputRoot.MRM.brw:Borrowed.VideoTitle = ’MRM Greatest Hits’;

For more information about using namespaces with messages in the MRM domain,
see “Accessing the content of a message in the MRM domain with namespace
support enabled” on page 2596.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that

2584 WebSphere Message Broker Version 7.0.0.8

are involved in working with message models.
“Accessing the content of a message in the MRM domain with namespace support
enabled” on page 2596
Use namespaces where appropriate for messages that are parsed by the MRM
parser.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Accessing multiple occurrences of an element in a message in the MRM domain:

You can use specific ESQL code to set the value of one occurrence of an element
that has multiple occurrences in a message. You can also use arrow notation to
indicate the direction of search when searching for multiple occurrences of an
element.

About this task

You can access MRM domain elements following the general guidance given in
“Accessing known multiple occurrences of an element” on page 2425 and
“Accessing unknown multiple occurrences of an element” on page 2427. Further
information specific to MRM domain messages is provided in this topic.

Consider the following statements:

The above SET statements operate on two occurrences of the element Borrowed.
Each statement sets the value of the child VideoTitle. The array index indicates
which occurrence of the repeating element you are interested in.

When you define child elements of a complex type (which has its Composition
property set to Sequence) in a message set, you can add the same element to the
complex type more than once. These instances do not have to be contiguous, but
you must use the same method (array notation) to refer to them in ESQL.

For example, if you create a complex type with a Composition of Sequence that
contains the following elements:
v StringElement1
v IntegerElement1
v StringElement1

DECLARE brw NAMESPACE ’http://www.ibm.com/Borrowed’;

SET OutputRoot.MRM.brw:Borrowed[1].VideoTitle = ’MRM Greatest Hits Volume 1’;
SET OutputRoot.MRM.brw:Borrowed[2].VideoTitle = ’MRM Greatest Hits Volume 2’;

Chapter 9. Developing message flow applications 2585

use the following ESQL to set the value of StringElement1:

You can also use the arrow notation (the greater than (>) and less than (<)
symbols) to indicate the direction of search and the index to be specified:

Refer to “Accessing known multiple occurrences of an element” on page 2425 and
“Accessing unknown multiple occurrences of an element” on page 2427 for
additional detail.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.

SET OutputRoot.MRM.StringElement1[1] =
’This is the first occurrence of StringElement1’;

SET OutputRoot.MRM.StringElement1[2] =
’This is the second occurrence of StringElement1’;

SET OutputRoot.MRM.StringElement1[>] =
’This is the first occurrence of StringElement1’;

SET OutputRoot.MRM.StringElement1[<2] =
’This is the last but one occurrence of

StringElement1’;
SET OutputRoot.MRM.StringElement1[<1] =

’This is the last occurrence of StringElement1’;

2586 WebSphere Message Broker Version 7.0.0.8

“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Accessing attributes in a message in the MRM domain:

When an MRM message is parsed into a logical tree, attributes and the data that
they contain are created as name-value pairs in the same way that MRM elements
are. The ESQL that you code to interrogate and update the data held in attributes
refers to the attributes in a similar manner.

About this task

Consider the Video Rental sample MRM message. The attribute LastName is
defined as a child of the Name element in the Customer message. Here is an
example input XML message:

When the input message is parsed, values are stored in the logical tree as shown in
the following section of user trace:

<Customer xmlns:addr="http://www.ibm.com/AddressDetails"

xmlns:brw="http://www.ibm.com/BorrowedDetails">
<Name LastName="Bloggs">

<Title>Mr</Title>
<FirstName>Fred</FirstName>

</Name>
<addr:Address>

<HouseNo>13</HouseNo>
<Street>Oak Street</Street>
<Town>Southampton</Town>

</addr:Address>
<ID>P</ID>

<PassportNo>J123456TT</PassportNo>
<brw:Borrowed>

<VideoTitle>Fast Cars</VideoTitle>
<DueDate>2003-05-23T01:00:00</DueDate>
<Cost>3.50</Cost>

</brw:Borrowed>
<brw:Borrowed>

<VideoTitle>Cut To The Chase</VideoTitle>
<DueDate>2003-05-23T01:00:00</DueDate>
<Cost>3.00</Cost>

</brw:Borrowed>
<Magazine>0</Magazine>

</Customer>

Chapter 9. Developing message flow applications 2587

The following ESQL changes the value of the LastName attribute in the output
message:

Be aware of the ordering of attributes when you code ESQL. When attributes are
parsed, the logical tree inserts the corresponding name-value before the MRM
element's child elements. In the previous example, the child elements Title and
FirstName appear in the logical message tree after the attribute LastName. In the
Broker Application Development perspective, the Outline view displays attributes
after the elements. When you code ESQL to construct output messages, you must
define name-value pairs for attributes before any child elements.

The following sample shows the structure of the Customer message:
v Video Rental

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:

(0x0100001B):MRM = (
(0x01000013):Name = (

(0x0300000B):LastName = ’Bloggs’
(0x0300000B):Title = ’Mr’
(0x0300000B):FirstName = ’Fred’

)
(0x01000013)http://www.ibm.com/AddressDetails:Address = (

(0x0300000B):HouseNo = 13
(0x0300000B):Street = ’Oak Street’
(0x0300000B):Town = ’Southampton’

)
(0x0300000B):ID = ’P’
(0x0300000B):PassportNo = ’J123456TT’
(0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

(0x0300000B):VideoTitle = ’Fast Cars’
(0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’
(0x0300000B):Cost = 3.50

)
(0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

(0x0300000B):VideoTitle = ’Cut To The Chase ’
(0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’
(0x0300000B):Cost = 3.00

)
(0x0300000B):Magazine = FALSE

SET OutputRoot.MRM.Name.LastName = ’Smith’;

2588 WebSphere Message Broker Version 7.0.0.8

“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Accessing elements within groups in a message in the MRM domain:

When an input message is parsed, structures that you have defined as groups in
your message set are not represented in the logical tree, but its children are. If you
want to refer to or update values for elements that are children of a groups, do not
include the group in the ESQL statement. Groups do not have tags that appear in
instance messages, and do not appear in user trace of the logical message tree.

About this task

Consider the following Video message:

Chapter 9. Developing message flow applications 2589

When the input message is parsed, values are stored in the logical tree as shown in
the following section of user trace:

Immediately following the element named ID, the MRM message definition uses a
group which has a Composition of Choice. The group is defined with three
children: PassportNo, DrivingLicenceNo, and CreditCardNo. The choice
composition dictates that instance documents must use only one of these three
possible alternatives. The example shown above uses the PassportNo element.

When you refer to this element in ESQL statements, you do not specify the group
to which the element belongs. For example:

<Customer xmlns:addr="http://www.ibm.com/AddressDetails"
xmlns:brw="http://www.ibm.com/BorrowedDetails">

<Name LastName="Bloggs">
<Title>Mr</Title>
<FirstName>Fred</FirstName>

</Name>
<addr:Address>

<HouseNo>13</HouseNo>
<Street>Oak Street</Street>
<Town>Southampton</Town>

</addr:Address>
<ID>P</ID>

<PassportNo>J123456TT</PassportNo>
<brw:Borrowed>

<VideoTitle>Fast Cars</VideoTitle>
<DueDate>2003-05-23T01:00:00</DueDate>
<Cost>3.50</Cost>

</brw:Borrowed>
<brw:Borrowed>

<VideoTitle>Cut To The Chase</VideoTitle>
<DueDate>2003-05-23T01:00:00</DueDate>
<Cost>3.00</Cost>

</brw:Borrowed>
<Magazine>0</Magazine>

</Customer>

(0x0100001B):MRM = (
(0x01000013):Name = (

(0x0300000B):LastName = ’Bloggs’
(0x0300000B):Title = ’Mr’
(0x0300000B):FirstName = ’Fred’

)
(0x01000013)http://www.ibm.com/AddressDetails:Address = (

(0x0300000B):HouseNo = 13
(0x0300000B):Street = ’Oak Street’
(0x0300000B):Town = ’Southampton’

)
(0x0300000B):ID = ’P’
(0x0300000B):PassportNo = ’J123456TT’
(0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

(0x0300000B):VideoTitle = ’Fast Cars’
(0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’
(0x0300000B):Cost = 3.50

)
(0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

(0x0300000B):VideoTitle = ’Cut To The Chase ’
(0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’
(0x0300000B):Cost = 3.00

)
(0x0300000B):Magazine = FALSE

2590 WebSphere Message Broker Version 7.0.0.8

If you define messages within message sets that include XML and TDS physical
formats, you can determine from the message data which option of a choice has
been taken, because the tags in the message represent one of the choice's options.
However, if your messages have CWF physical format, or are non-tagged TDS
messages, it is not clear from the message data, and the application programs
processing the message must determine which option of the choice has been
selected. This is known as unresolved choice handling. For further information, see
the description of the value of Choice in “Complex type logical properties” on
page 5419.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

SET OutputRoot.MRM.PassportNo = ’J999999TT’;

Chapter 9. Developing message flow applications 2591

Accessing mixed content in a message in the MRM domain:

When you define a complex type in a message model, you can optionally specify
its content to be mixed. This setting, in support of mixed content in XML Schema,
allows you to manipulate data that is included between elements in the message.

About this task

Consider the following example:

The strings abc, ghi, and mno do not represent the value of a particular element
(unlike def, for example, which is the value of element Elem1). The presence of
these strings means that you must model Mess1 with mixed content. You can
model this XML message in the MRM using the following objects:

Message
The message Name property is set to Mess1 to match the XML tag.

The Type property is set to tMess1.

Type The complex type Name property is set to tMess1.

The Composition property is set to OrderedSet.

The complex type has mixed content.

The complex type contains the following objects:

Element
The Name property is set to Elem1 to match the XML tag.

The Type property is set to simple type xsd:string.

Element
The Name property is set to Elem2 to match the XML tag.

The Type property is set to simple type xsd:string.

Element
The Name property is set to Elem3 to match the XML tag.

The Type property is set to simple type xsd:string.

If you code the following ESQL:

the mixed content is successfully mapped to the following output message:

<MRM>
<Mess1>

abc
<Elem1>def</Elem1>
ghi
<Elem2>jkl</Elem2>
mno
<Elem3>pqr</Elem3>

</Mess1>
</MRM>

SET OutputRoot.MRM.*[1] = InputBody.Elem3;
SET OutputRoot.MRM.Elem1 = InputBody.*[5];
SET OutputRoot.MRM.*[3] = InputBody.Elem2;
SET OutputRoot.MRM.Elem2 = InputBody.*[3];
SET OutputRoot.MRM.*[5] = InputBody.Elem1;
SET OutputRoot.MRM.Elem3 = InputBody*[1];

2592 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“IF statement” on page 5134
The IF statement executes one set of statements based on the result of evaluating
condition expressions.

<MRM>
<Mess1>

pqr
<Elem1>mno</Elem1>
jkl
<Elem2>ghi</Elem2>
def
<Elem3>abc</Elem3>

</Mess1>
</MRM>

Chapter 9. Developing message flow applications 2593

“SET statement” on page 5159
The SET statement assigns a value to a variable.

Accessing embedded messages in the MRM domain:

If you have defined a multipart message, you have at least one message embedded
within another. Within the overall complex type that represents the outer messages,
you can model the inner message in two ways.

About this task

You can model the inner message in the following ways:
v An element (named E_outer1 in the following example) with its Type property

set to a complex type that has been defined with its Composition property set to
Message

v A complex type with its Composition property set to Message (named
t_Embedded in the following example)

The ESQL that you need to write to manipulate the inner message varies
depending on which of the above models you have used. For example, assume
that you have defined:
v An outer message M_outer that has its Type property set to t_Outer.
v An inner message M_inner1 that has its Type set to t_Inner1
v An inner message M_inner2 that has its Type set to t_Inner2
v Type t_Outer that has its first child element named E_outer1 and its second

child defined as a complex type named t_Embedded
v Type t_Embedded that has its Composition property set to Message
v Type t_Inner1 that has its first child element named E_inner11
v Type t_Inner2 that has its first child element named E_inner21
v Type t_outer1 that has its Composition property set to Message
v Element E_outer1 that has its Type property set to t_outer1

If you want to set the value of E_inner11, code the following ESQL:

If you want to set the value of E_inner21, code the following ESQL:

If you copy message headers from the input message to the output message, and
your input message type contains a path, only the outermost name in the path is
copied to the output message type.

When you configure a message flow to handle embedded messages, you can
specify the path of a message type in either an MQRFH2 header (if one is present
in the input message) or in the input node Message Type property in place of a
name (for example, for the message modeled above, the path could be specified as
M_Outer/M_Inner1/M_Inner2 instead of just M_Outer).

If you have specified that the input message has a physical format of either CWF
or XML, any message type prefix is concatenated in front of the message type from
the MQRFH2 or input node, giving a final path to use (for more information refer
to “Multipart messages” on page 1191). The MRM uses the first item in the path as

SET OutputRoot.MRM.E_outer1.M_inner1.E_inner11 = ’FRED’;

SET OutputRoot.MRM.M_inner2.E_inner21 = ’FRED’;

2594 WebSphere Message Broker Version 7.0.0.8

the outermost message type, then progressively works inwards when it finds a
complex type with its Composition property set to Message.

If you have specified that the input message has a physical format of TDS, a
different process that uses message keys is implemented. This is described in
“MRM TDS format: Multipart messages” on page 1241.

For more information about path concatenations, see “Message set properties” on
page 5371.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“MRM TDS format: Multipart messages” on page 1241
The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.

Chapter 9. Developing message flow applications 2595

“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Accessing the content of a message in the MRM domain with namespace support enabled:

Use namespaces where appropriate for messages that are parsed by the MRM
parser.

About this task

When you want to access elements of a message and namespaces are enabled, you
must include the namespace when you code the ESQL reference to the element. If
you do not do so, the broker searches the no target namespace. If the element is
not found in the no target namespace, the broker searches all other known
namespaces in the message dictionary (that is, within the deployed message set).
For performance and integrity reasons, specify namespaces wherever they apply.

The most efficient way to refer to elements when namespaces are enabled is to
define a namespace constant, and use this in the appropriate ESQL statements.
This technique makes your ESQL code much easier to read and maintain.

Define a constant using the DECLARE NAMESPACE statement:

ns01 is interpreted correctly as a namespace because of the way that it is declared.

You can also use a CHARACTER variable to declare a namespace:

If you use this method, you must surround the declared variable with braces to
ensure that it is interpreted as a namespace.

If you are concerned that a CHARACTER variable might get changed, you can use
a CONSTANT CHARACTER declaration:

You can declare a namespace, constant, and variable within a schema, module, or
function.

DECLARE ns01 NAMESPACE ’http://www.ns01.com’
.
.
SET OutputRoot.MRM.ns01:Element1 = InputBody.ns01:Element1;

DECLARE ns02 CHARACTER ’http://www.ns02.com’
.
.
SET OutputRoot.MRM.{ns02}:Element2 = InputBody.{ns02}:Element2;

DECLARE ns03 CONSTANT CHARACTER ’http://www.ns03.com’
.
.
SET OutputRoot.MRM.{ns03}:Element3 = InputBody.{ns03}:Element3;

2596 WebSphere Message Broker Version 7.0.0.8

The following sample provides further examples of the use of namespaces:
v Video Rental

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Querying null values in a message in the MRM domain:

You can use an ESQL statement to compare an element to NULL.

About this task

If you want to compare an element to NULL, code the statement:

Chapter 9. Developing message flow applications 2597

If nulls are permitted for this element, this statement tests whether the element
exists in the input message, or whether it exists and contains the MRM-supplied
null value. The behavior of this test depends on the physical format:
v For an XML element, if the XML tag or attribute is not in the bit stream, this test

returns TRUE.
v For an XML element, if the XML tag or attribute is in the bit stream and contains

the MRM null value, this test returns TRUE.
v For an XML element, if the XML tag or attribute is in the bit stream and does

not contain the MRM null value, this test returns FALSE.
v For a delimited TDS element, if the element has no value between the previous

delimiter and its delimiter, this test returns TRUE.
v For a delimited TDS element, if the element has a value between the previous

delimiter and its delimiter that is the same as the MRM-defined null value for
this element, this test returns TRUE.

v For a delimited TDS element, if the element has a value between the previous
delimiter and its delimiter that is not the MRM-defined null value, this test
returns FALSE.

v For a CWF or fixed length TDS element, if the element's value is the same as the
MRM-defined null value for this element, this test returns TRUE.

v For a CWF or fixed length TDS element, if the element's value is not the same as
the MRM-defined null value, this test returns FALSE.

If you want to determine if the field is missing, rather than present but with null
value, you can use the ESQL CARDINALITY function.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“MRM Custom wire format: NULL handling” on page 1216
CWF supports the handling of explicit NULL values within messages, if the logical
nillable property of the element is set.
“MRM XML physical format: NULL handling” on page 1249
The purpose of null handling is to specify how messages deal with null values;
that is, the absence of a meaningful value for an element.
“MRM TDS format: NULL handling” on page 1240
NULL handling dictates the way in which the MRM parser for TDS messages
handles elements that have been set to Null.
Related tasks:

IF InputRoot.MRM.Elem2.Child1 IS NULL THEN
DO:
-- more ESQL --

END IF;

2598 WebSphere Message Broker Version 7.0.0.8

“Setting null values in a message in the MRM domain”
You can use implicit or explicit null processing to set the value of an element to
NULL in an output message.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“CAST function” on page 5245
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CARDINALITY function” on page 5238
“IF statement” on page 5134
The IF statement executes one set of statements based on the result of evaluating
condition expressions.

Setting null values in a message in the MRM domain:

You can use implicit or explicit null processing to set the value of an element to
NULL in an output message.

About this task

To set a value of an element in an output message, you normally code an ESQL
statement similar to the following:

or its equivalent statement:

SET OutputRoot.MRM.Elem2.Child1 = ’xyz’;

SET OutputRoot.MRM.Elem2.Child1 VALUE = ’xyz’;

Chapter 9. Developing message flow applications 2599

If you set the element to a non-null value, these two statements give identical
results. However, if you want to set the value to null, these two statements do not
give the same result:

Procedure

1. If you set the element to NULL using the following statement, the element is
deleted from the message tree:

The content of the output bit stream depends on the physical format:
v For an XML element, neither the XML tag or attribute nor its value are

included in the output bit stream.
v For a Delimited TDS element, neither the tag (if appropriate) nor its value

are included in the output bit stream. The absence of the element is typically
conveyed by two adjacent delimiters.

v For a CWF or Fixed Length TDS element, the content of the output bit
stream depends on whether you have set the Default Value property for the
element. If you have set this property, the default value is included in the bit
stream. If you have not set the property, an exception is raised.

This is called implicit null processing.
2. If you set the value of this element to NULL as follows:

the element is not deleted from the message tree. Instead, a special value of
NULL is assigned to the element. The content of the output bit stream depends
on the settings of the physical format null-handling properties.
This is called explicit null processing.

Results

Setting a complex element to NULL deletes that element and all its children.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“MRM Custom wire format: NULL handling” on page 1216
CWF supports the handling of explicit NULL values within messages, if the logical
nillable property of the element is set.
“MRM XML physical format: NULL handling” on page 1249
The purpose of null handling is to specify how messages deal with null values;
that is, the absence of a meaningful value for an element.
“MRM TDS format: NULL handling” on page 1240
NULL handling dictates the way in which the MRM parser for TDS messages

SET OutputRoot.MRM.Elem2.Child1 = NULL;

SET OutputRoot.MRM.Elem2.Child1 VALUE = NULL;

2600 WebSphere Message Broker Version 7.0.0.8

handles elements that have been set to Null.
Related tasks:
“Querying null values in a message in the MRM domain” on page 2597
You can use an ESQL statement to compare an element to NULL.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Working with MRM messages and bit streams:

When you use the ASBITSTREAM function or the CREATE FIELD statement with
a PARSE clause you must consider various restrictions.

About this task

The ASBITSTREAM function

If you code the ASBITSTREAM function with the parser mode option set to
RootBitStream, to parse a message tree to a bit stream, the result is an MRM
document in the format specified by the message format that is built from the
children of the target element in the normal way.

The target element must be a predefined message defined within the message set,
or can be a self-defined message if you are using an XML physical format. This
algorithm is identical to that used to generate the normal output bit stream. A
well-formed bit stream obtained in this way can be used to re-create the original
tree by using a CREATE statement with a PARSE clause.

Chapter 9. Developing message flow applications 2601

If you code the ASBITSTREAM function with the parser mode option set to
FolderBitStream, to parse a message tree to a bit stream, the generated bit stream is
an MRM element built from the target element and its children. Unlike
RootBitStream mode the target element does not have to represent a message; it can
represent a predefined element within a message or self-defined element within a
message.

So that the MRM parser can correctly parse the message, the path from the
message to the target element within the message must be specified in the Message
Type. The format of the path is the same as that used by message paths except that
the message type prefix is not used.

For example, suppose the following message structure is used:

To serialize the subtree representing element elem12 and its children, specify the
message path ’message/elem1/elem12’ in the Message Type.

If an element in the path is qualified by a namespace, specify the namespace URI
between {} characters in the message path. For example if element elem1 is
qualified by namespace ’http://www.ibm.com/temp’, specify the message path as
’message/{http://www.ibm.com/temp}elem1/elem12’

This mode can be used to obtain a bit stream description of arbitrary sub-trees
owned by an MRM parser. When in this mode, with a physical format of XML, the
XML bit stream generated is not enclosed by the 'Root Tag Name' specified for the
Message in the Message Set. No XML declaration is created, even if not suppressed
in the message set properties.

Bit streams obtained in this way can be used to re-create the original tree by using
a CREATE statement with a PARSE clause (by using a mode of FolderBitStream).

The CREATE statement with a PARSE clause

If you code a CREATE statement with a PARSE clause, with the parser mode
option set to RootBitStream, to parse a bit stream to a message tree, the expected bit
stream is a normal MRM document. A field in the tree is created for each field in
the document. This algorithm is identical to that used when parsing a bit stream
from an input node

If you code a CREATE statement with a PARSE clause, with the parser mode
option set to FolderBitStream, to parse a bit stream to a message tree, the expected
bit stream is a document in the format specified by the Message Format, which is
either specified directly or inherited. Unlike RootBitStream mode the root of the
document does not have to represent an MRM message; it can represent a
predefined element within a message or self-defined element within a message.

So that the MRM parser can correctly parse the message the path from the message
to the target element within the message must be specified in the Message Type. The
format of the message path is the same as that used for the ASBITSTREAM
function described above.

Message
elem1

elem11
elem12

2602 WebSphere Message Broker Version 7.0.0.8

Example of using the ASBITSTREAM function and CREATE statement with a
PARSE clause in FolderBitStream mode

The following ESQL uses the message definition described above. The ESQL
serializes part of the input tree by using the ASBITSTREAM function, then uses the
CREATE statement with a PARSE clause to re-create the subtree in the output tree.
The Input message and corresponding Output message are shown below the
ESQL.
CREATE COMPUTE MODULE DocSampleFlow_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
CALL CopyMessageHeaders();

-- Set the options to be used by ASBITSTREAM and CREATE ... PARSE
-- to be FolderBitStream and enable validation
DECLARE parseOptions INTEGER BITOR(FolderBitStream, ValidateContent,

ValidateValue, ValidateLocalError);

-- Serialise the elem12 element and its children from the input bitstream
-- into a variable

DECLARE subBitStream BLOB
ASBITSTREAM(InputRoot.MRM.elem1.elem12
OPTIONS parseOptions
SET ’DocSample’
TYPE ’message/elem1/elem12’
FORMAT ’XML1’);

-- Set the value of the first element in the output tree
SET OutputRoot.MRM.elem1.elem11 = ’val11’;

-- Parse the serialized sub-tree into the output tree
IF subBitStream IS NOT NULL THEN

CREATE LASTCHILD OF OutputRoot.MRM.elem1
PARSE (subBitStream

OPTIONS parseOptions
SET ’DocSample’
TYPE ’message/elem1/elem12’
FORMAT ’XML1’);

END IF;

-- Convert the children of elem12 in the output tree to uppercase
SET OutputRoot.MRM.elem1.elem12.elem121 =
UCASE(OutputRoot.MRM.elem1.elem12.elem121);

SET OutputRoot.MRM.elem1.elem12.elem122 =
UCASE(OutputRoot.MRM.elem1.elem12.elem122);

-- Set the value of the last element in the output tree
SET OutputRoot.MRM.elem1.elem13 = ’val13’;

RETURN TRUE;
END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);
WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;
END WHILE;
END;

END MODULE;

Input message :

Chapter 9. Developing message flow applications 2603

<message>
<elem1>

<elem11>value11</elem11>
<elem12>

<elem121>value121</elem121>
<elem122>value122</elem122>

</elem12>
<elem13>value13</elem13>

</elem1>
</message>

Output message :
<message>

<elem1>
<elem11>val11</elem11>
<elem12>

<elem121>VALUE121</elem121>
<elem122>VALUE122</elem122>

</elem12>
<elem13>val13</elem13>

</elem1
</message

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Accessing embedded messages in the MRM domain” on page 2594
If you have defined a multipart message, you have at least one message embedded
within another. Within the overall complex type that represents the outer messages,
you can model the inner message in two ways.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

2604 WebSphere Message Broker Version 7.0.0.8

“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ASBITSTREAM function” on page 5224
The ASBITSTREAM field function generates a bit stream for the subtree of a given
field according to the rules of the parser that owns the field.
“CREATE statement” on page 5082
The CREATE statement creates a new message field.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Handling large MRM messages:

When an input bit stream is parsed, and a logical tree created, the tree
representation of an MRM message is typically larger, and in some cases much
larger, than the corresponding bit stream.

About this task

The reasons for this large size include:
v The addition of the pointers that link the objects together
v Translation of character data into Unicode that can double the original size
v The inclusion of field names that can be contained implicitly within the bit

stream
v The presence of control data that is associated with the broker's operation

Manipulation of a large message tree can, therefore, demand a great deal of
storage. If you design a message flow that handles large messages made up of
repeating structures, you can code specific ESQL statements that help to reduce the
storage load on the broker. These statements support both random and sequential
access to the message, but assume that you do not need access to the whole
message at one time.

These ESQL statements cause the broker to perform limited parsing of the
message, and to keep only that part of the message tree that reflects a single record
in storage at a time. If your processing requires you to retain information from
record to record (for example, to calculate a total price from a repeating structure
of items in an order), you can either declare, initialize, and maintain ESQL
variables, or you can save values in another part of the message tree, for example
LocalEnvironment.

This technique reduces the memory used by the broker to that needed to hold the
full input and output bit streams, plus that required for one record's trees. It
provides memory savings when even a small number of repeats is encountered in
the message. The broker makes use of partial parsing, and the ability to parse
specified parts of the message tree, to and from the corresponding part of the bit
stream.

To use these techniques in your Compute node apply these general techniques:
v Copy the body of the input message as a bit stream to a special folder in the

output message. This creates a modifiable copy of the input message that is not
parsed and which therefore uses a minimum amount of memory.

Chapter 9. Developing message flow applications 2605

v Avoid any inspection of the input message; this avoids the need to parse the
message.

v Use a loop and a reference variable to step through the message one record at a
time. For each record:
– Use normal transforms to build a corresponding output subtree in a second

special folder.
– Use the ASBITSTREAM function to generate a bit stream for the output

subtree that is stored in a BitStream element, placed in the position in the tree,
that corresponds to its required position in the final bit stream.

– Use the DELETE statement to delete both the current input and the output
record message trees when you complete their manipulation.

– When you complete the processing of all records, detach the special folders so
that they do not appear in the output bit stream.

You can vary these techniques to suit the processing that is required for your
messages. The following ESQL provides an example of one implementation.

The ESQL is dependant on a message set called LargeMessageExanple that has been
created to define messages for both the Invoice input format and the Statement
output format. A message called AllInvoices has been created that contains a
global element called Invoice that can repeat one or more times, and a message
called Data that contains a global element called Statement that can repeat one or
more times.

The definitions of the elements and attributes have been given the correct data
types, therefore, the CAST statements used by the ESQL in the XML example are
no longer required. An XML physical format with name XML1 has been created in
the message set which allows an XML message corresponding to these messages to
be parsed by the MRM.

When the Statement tree is serialized using the ASBITSTREAM function the
Message Set, Message Type, and Message Format are specified as parameters. The
Message Type parameter contains the path from the message to the element being
serialized which, in this case, is Data/Statement because the Statement element is a
direct child of the Data message.

The input message to the flow is the same Invoice example message used in other
parts of the documentation except that it is contained between the tags:

<AllInvoices> </AllInvoices>

Example
CREATE COMPUTE MODULE LargeMessageExampleFlow_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
CALL CopyMessageHeaders();
-- Create a special folder in the output message to hold the input tree
-- Note : SourceMessageTree is the root element of an MRM parser
CREATE LASTCHILD OF OutputRoot.MRM DOMAIN ’MRM’ NAME ’SourceMessageTree’;

-- Copy the input message to a special folder in the output message
-- Note : This is a root to root copy which will therefore not build trees
SET OutputRoot.MRM.SourceMessageTree = InputRoot.MRM;

-- Create a special folder in the output message to hold the output tree
CREATE FIELD OutputRoot.MRM.TargetMessageTree;

-- Prepare to loop through the purchased items

2606 WebSphere Message Broker Version 7.0.0.8

DECLARE sourceCursor REFERENCE TO OutputRoot.MRM.SourceMessageTree.Invoice;
DECLARE targetCursor REFERENCE TO OutputRoot.MRM.TargetMessageTree;
DECLARE resultCursor REFERENCE TO OutputRoot.MRM;
DECLARE grandTotal FLOAT 0.0e0;

-- Create a block so that it’s easy to abandon processing
ProcessInvoice: BEGIN
-- If there are no Invoices in the input message, there is nothing to do
IF NOT LASTMOVE(sourceCursor) THEN

LEAVE ProcessInvoice;
END IF;

-- Loop through the invoices in the source tree
InvoiceLoop : LOOP

-- Inspect the current invoice and create a matching Statement
SET targetCursor.Statement =

THE (
SELECT

’Monthly’ AS Type,
’Full’ AS Style,
I.Customer.FirstName AS Customer.Name,
I.Customer.LastName AS Customer.Surname,
I.Customer.Title AS Customer.Title,
(SELECT

FIELDVALUE(II.Title) AS Title,
II.UnitPrice * 1.6 AS Cost,
II.Quantity AS Qty

FROM I.Purchases.Item[] AS II
WHERE II.UnitPrice> 0.0) AS Purchases.Article[],
(SELECT

SUM(II.UnitPrice *
II.Quantity *

1.6)
FROM I.Purchases.Item[] AS II) AS Amount,
’Dollars’ AS Amount.Currency

FROM sourceCursor AS I
WHERE I.Customer.LastName <> ’White’

);

-- Turn the current Statement into a bit stream
-- The SET parameter is set to the name of the message set
-- containing the MRM definition
-- The TYPE parameter contains the path from the from the message
-- to element being serialized
-- The FORMAT parameter contains the name of the physical format
-- name defined in the message
DECLARE StatementBitStream BLOB

ASBITSTREAM(targetCursor.Statement
OPTIONS FolderBitStream
SET ’LargeMessageExample’
TYPE ’Data/Statement’
FORMAT ’XML1’);

-- If the SELECT produced a result (that is, it was not filtered
-- out by the WHERE clause), process the Statement
IF StatementBitStream IS NOT NULL THEN

-- create a field to hold the bit stream in the result tree
-- The Type of the element is set to MRM.BitStream to indicate
-- to the MRM Parser that this is a bitstream
CREATE LASTCHILD OF resultCursor

Type MRM.BitStream
NAME ’Statement’
VALUE StatementBitStream;

-- Add the current Statement’s Amount to the grand total
SET grandTotal = grandTotal + targetCursor.Statement.Amount;

END IF;

Chapter 9. Developing message flow applications 2607

-- Delete the real Statement tree leaving only the bit stream version
DELETE FIELD targetCursor.Statement;

-- Step onto the next Invoice, removing the previous invoice and any
-- text elements that might have been interspersed with the Invoices
REPEAT

MOVE sourceCursor NEXTSIBLING;
DELETE PREVIOUSSIBLING OF sourceCursor;

UNTIL (FIELDNAME(sourceCursor) = ’Invoice’)
OR (LASTMOVE(sourceCursor) = FALSE)

END REPEAT;

-- If there are no more invoices to process, abandon the loop
IF NOT LASTMOVE(sourceCursor) THEN

LEAVE InvoiceLoop;
END IF;

END LOOP InvoiceLoop;
END ProcessInvoice;

-- Remove the temporary source and target folders
DELETE FIELD OutputRoot.MRM.SourceMessageTree;
DELETE FIELD OutputRoot.MRM.TargetMessageTree;

-- Finally add the grand total
SET resultCursor.GrandTotal = grandTotal;

-- Set the output MessageType property to be ’Data’
SET OutputRoot.Properties.MessageType = ’Data’;

RETURN TRUE;
END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);
WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;
END WHILE;
END;

END MODULE;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.

2608 WebSphere Message Broker Version 7.0.0.8

“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ASBITSTREAM function” on page 5224
The ASBITSTREAM field function generates a bit stream for the subtree of a given
field according to the rules of the parser that owns the field.
“CREATE statement” on page 5082
The CREATE statement creates a new message field.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

Manipulating messages in the JMS domains:

This topic provides information specific to dealing with messages that belong to
the JMSMap and JMSStream domains. These messages are parsed by the generic
XML parser.

About this task

Messages that belong to the JMS domains are processed by the XML parser, so you
can follow the guidance provided for XML messages in “Manipulating messages in
the XML domain” on page 2581, in conjunction with the information in
“Manipulating message body content” on page 2418.

The JMSMap and JMSStream domains support MapMessage and StreamMessage
messages. Other kinds of JMS message are supported by other domains. For
further information about using JMS messages with WebSphere Message Broker,
see “WebSphere Broker JMS Transport” on page 1681.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message

Chapter 9. Developing message flow applications 2609

flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Manipulating messages in the XML domain” on page 2581
The XML parser is like the XMLNS parser, but the XML parser has no support for
namespaces or opaque parsing.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

Manipulating messages in the IDOC domain:

Use ESQL from a Compute node to copy the incoming IDoc to the outgoing IDoc,
and manipulate the message.

About this task

A valid IDoc message flows out of SAP and is sent to the MQSeries link for R/3.

When this IDoc has been committed successfully to the outbound WebSphere MQ
queue, the input node of the message flow reads it from that queue and generates
the syntax element tree.

The Compute node manipulates this syntax element tree and, when it has finished,
passes the output message to subsequent nodes in the message flow. When the
message reaches the output node, the IDOC parser is called to rebuild the bit
stream from the tree.

The message flow must create an output message in a similar format to the input
message.

See “Field names of the IDOC parser structures” on page 6333 for the field names
in the DC (Control Structure) and DD (Data Structure) that are recognized by the
IDOC parser

2610 WebSphere Message Broker Version 7.0.0.8

Procedure

Use the following ESQL example from a Compute node:

Results

The first line of the code copies the incoming IDoc to the outgoing IDoc.

The second line sets the tabname of the first DC.

The third line uses the second DD segment, which in this example is of type
E2MAKTM001, and sets the maktx field.

Accessing fields of the IDoc using ESQL:
About this task

Use the ESQL editor Content Assist to complete the SAP-defined fields of the IDoc.

After the sdatatag tag in an ESQL statement, the next tag is MRM, which you must
enter manually, followed by the field name that is to be manipulated. Specify the
name of the field within the message segment here, not the name of the message
segment.

For example, the following code sets the segment name of the IDoc:
SET OutputRoot.IDOC.DD[I].segnam = ’E2MAKTM001’;

The following example sets the msgfn field within the E2MAKTM001 segment:
SET OutputRoot.IDOC.DD[I].sdatatag.MRM.msgfn = ’006’;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“IDOC parser and domain” on page 1126
The IDOC domain can be used to process messages that are sent to the broker by
SAP R3 clients across the WebSphere MQ link for R3. Such messages are known as
SAP ALE IDocs.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.

SET OutputRoot = InputRoot;
SET OutputRoot.IDOC.DC[1].tabnam = ’EDI_DC40 ’;
SET OutputRoot.IDOC.DD[2].sdatatag.MRM.maktx = ’Buzzing all day’;

Chapter 9. Developing message flow applications 2611

“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“SET statement” on page 5159
The SET statement assigns a value to a variable.
“Field names of the IDOC parser structures” on page 6333
The field names of the Control Structure (DC) and the Data Structure (DD) that are
used by the IDOC parser.

Manipulating messages in the MIME domain:

A MIME message does not need to be received over a particular transport. For
example, a message can be received over HTTP by using an HTTPInput node, or
over WebSphere MQ by using an MQInput node. The MIME parser is used to
process a message if the message domain is set to MIME in the input node
properties, or if you are using WebSphere MQ, and the MQRFH2 header has a
message domain of MIME.

This topic explains how to deal with messages that belong to the MIME domain,
and are parsed by the MIME parser. Use this information in conjunction with the
information in “Manipulating message body content” on page 2418.

You can manipulate the logical tree using ESQL before passing the message on to
other nodes in the message flow. A message flow can also create a MIME domain
tree using ESQL. When a MIME domain message reaches an output node, the
MIME parser is called to rebuild the bit stream from the logical tree.

The following examples show how to manipulate MIME messages:
v “Creating a new MIME tree”
v “Modifying an existing MIME tree” on page 2613
v “Managing Content-Type” on page 2614

Creating a new MIME tree

A message flow often receives, modifies, and returns a MIME message. In this
case, you can work with the valid MIME tree that is created when the input
message is parsed. If a message flow receives input from another domain, such as
XMLNS, and returns a MIME message, you must create a valid MIME tree. Use
the following ESQL example in a Compute node to create the top-level structure
for a single-part MIME tree:
CREATE FIELD OutputRoot.MIME TYPE Name;
DECLARE M REFERENCE TO OutputRoot.MIME;
CREATE LASTCHILD OF M TYPE Name NAME ’Data’;

2612 WebSphere Message Broker Version 7.0.0.8

The message flow must also ensure that the MIME Content-Type is set correctly, as
explained in “Managing Content-Type” on page 2614. The flow must then add the
message data into the MIME tree. The following ESQL examples show how you
can do this. In each case, a Data element is created with the domain BLOB.
v A bit stream from another part of the tree is used. This example shows how a bit

stream could be created from an XML message that is received by the message
flow. The flow then invokes the BLOB parser to store the data under the Data
element.
DECLARE partData BLOB ASBITSTREAM(InputRoot.XMLNS);
CREATE LASTCHILD OF M.Data DOMAIN(’BLOB’) PARSE(partData);

v Instead of parsing the bit stream, create the new structure, then attach the data
to it, as shown in this ESQL example:
DECLARE partData BLOB ASBITSTREAM(InputRoot.XMLNS);
CREATE LASTCHILD OF M.Data DOMAIN(’BLOB’) NAME ’BLOB’;
CREATE LASTCHILD OF M.Data.BLOB NAME ’BLOB’ VALUE partData;

Both of these approaches create the same tree structure. The first approach is better
because explicit knowledge of the tree structure that the BLOB parser requires is
not built into the flow.

More commonly, the Compute node must build a tree for a multipart MIME
document. The following ESQL example shows how you can do this, including
setting the top-level Content-Type property.

Modifying an existing MIME tree

This ESQL example adds a new MIME part to an existing multipart MIME
message. If the message is not multipart, it is not modified.

DECLARE part1Data BLOB ASBITSTREAM(InputRoot.XMLNS, InputProperties.Encoding, InputProperties.CodedCharSetId);

SET OutputRoot.Properties.ContentType = ’multipart/related; boundary=myBoundary’;

CREATE FIELD OutputRoot.MIME TYPE Name;
DECLARE M REFERENCE TO OutputRoot.MIME;
CREATE LASTCHILD OF M TYPE Name NAME ’Parts’;
CREATE LASTCHILD OF M.Parts TYPE Name NAME ’Part’;
DECLARE P1 REFERENCE TO M.Parts.Part[1];
CREATE FIELD P1."Content-Type" TYPE NameValue VALUE ’text/plain’;
CREATE FIELD P1."Content-Id" TYPE NameValue VALUE ’part one’;
CREATE LASTCHILD OF P1 TYPE Name NAME ’Data’;
CREATE LASTCHILD OF P1.Data DOMAIN(’BLOB’) PARSE(part1Data);

CREATE LASTCHILD OF M.Parts TYPE Name NAME ’Part’;
DECLARE P2 REFERENCE TO M.Parts.Part[2];
CREATE FIELD P2."Content-Type" TYPE NameValue VALUE ’text/plain’;
CREATE FIELD P2."Content-Id" TYPE NameValue VALUE ’part two’;
CREATE LASTCHILD OF P2 TYPE Name NAME ’Data’;
CREATE LASTCHILD OF P2.Data DOMAIN(’BLOB’) PARSE(part2Data);

Chapter 9. Developing message flow applications 2613

If you receive a MIME message, for example; through an EmailInput node, and
you know the format of your message, you might want to reparse the message.
For example:
CREATE LASTCHILD OF OutputRoot.XMLNSC.emailData DOMAIN(’XMLNSC’)
PARSE(InputRoot.MIME.Data.BLOB.BLOB,InputProperties.Encoding,
InputProperties.CodedCharSetId);

Managing Content-Type

When you create a new MIME message tree, or when you modify the value of the
MIME boundary string, make sure that the MIME Content-Type header is set
correctly by setting the ContentType value in the broker Properties subtree. The
following example shows how to set the ContentType value for a MIME part with
simple content:
SET OutputRoot.Properties.ContentType = ’text/plain’;

Do not set the Content-Type value directly in the MIME tree or HTTP trees
because the value is ignored or used inconsistently.

When you receive a MIME message, you can filter or route the message content
based on the content-Type. The following example shows an XPath query that can
be used in a Route node to filter the content based on whether the message
contains an attachment or not:
starts-with($Root/MIME/Content-Type,"multipart")

Related concepts:
“MIME parser and domain” on page 1117
Use the MIME domain if your messages use the MIME standard for multipart
messages.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:

SET OutputRoot = InputRoot;

-- Check to see if the MIME message is multipart or not.
IF LOWER(InputProperties.ContentType) LIKE ’multipart/%’
THEN

CREATE LASTCHILD OF OutputRoot.MIME.Parts NAME ’Part’;

DECLARE P REFERENCE TO OutputRoot.MIME.Parts.[<];
CREATE FIELD P."Content-Type" TYPE NameValue VALUE ’text/xml’;
CREATE FIELD P."Content-ID" TYPE NameValue VALUE ’new part’;
CREATE LASTCHILD OF P TYPE Name NAME ’Data’;

-- This is an artificial way of creating some BLOB data.
DECLARE newBlob BLOB ’4f6e652074776f2074687265650d0a’;
CREATE LASTCHILD OF P.Data DOMAIN(’BLOB’) PARSE(newBlob);

END IF;

2614 WebSphere Message Broker Version 7.0.0.8

“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
Related reference:
“MIME standard header fields” on page 6323
Check this quick reference to the common MIME headers.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

Manipulating messages in the BLOB domain:

How to deal with messages that belong to the BLOB domain, and that are parsed
by the BLOB parser.

About this task

You cannot manipulate the contents of a BLOB message, because it has no
predefined structure. However, you can refer to its contents using its known
position within the bit stream, and process the message with a minimum of
knowledge about its contents.

The BLOB message body parser does not create a tree structure in the same way
that other message body parsers do. It has a root element BLOB, that has a child
element, also called BLOB, that contains the data.

You can refer to message content using substrings if you know the location of a
particular piece of information within the BLOB data. For example, the following
expression identifies the tenth byte of the message body:

The following expression references 10 bytes of the message data starting at offset
10:

You can use the Mapping node to map to and from a predefined BLOB message,
and to map to and from items of BLOB data.

Simple example to write a string in the output message:

InputBody.BLOB.BLOB[10]

SUBSTRING(InputBody.BLOB.BLOB from 10 for 10)

Chapter 9. Developing message flow applications 2615

About this task

The following simple example allows you to write some character data in your
ESQL (for example, if you have read some character fields from a database) out as
a BLOB:
CALL CopyMessageHeaders();
-- CALL CopyEntireMessage();
DECLARE mystring CHARACTER;
SET mystring=’hello’;
SET OutputRoot.BLOB.BLOB=CAST (mystring AS BLOB CCSID 1208);

Related concepts:
“BLOB parser and domain” on page 1124
The BLOB message domain includes all the messages with content that cannot be
interpreted and subdivided into smaller sections of information.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.
“Creating a BLOB output message using a message map” on page 2262
Use the Message Mapping editor to create a bit stream from a message source, and
create it as a BLOB output message.
“Storing a BLOB message in a database table using a message map” on page 2297
Use the Message Mapping editor to create a bit stream from a BLOB message, and
store it in a database table.
“Mapping from a BLOB message to an output message” on page 2263
Use the Message Mapping editor to parse a BLOB message.
“Mapping from a BLOB field in a database table to an output message” on page
2298
Use the Message Mapping editor to parse a bit stream from a field in a database
table into a folder in a target message.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“CARDINALITY function” on page 5238
“CASE function” on page 5243
CASE is a complex function that has two forms; the simple-when form and the
searched-when form. In either form CASE returns a result, the value of which
controls the path of subsequent processing.
“CAST function” on page 5245
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“SET statement” on page 5159
The SET statement assigns a value to a variable.

2616 WebSphere Message Broker Version 7.0.0.8

“SUBSTRING function” on page 5218
SUBSTRING is a string manipulation function that manipulates all string data
types (BIT, BLOB, and CHARACTER), and extracts characters from a string to
create another string.
“WHILE statement” on page 5167
The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.

Manipulating messages in the JSON domain:

You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.

Use this information in conjunction with the information in “Manipulating
message body content” on page 2418.

The following sample is provided, which demonstrates the use of JSON in an
HTTP REST service:
v RESTful Web Service Using JSON

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The examples in the following topics show how to manipulate JSON messages:
v “Creating a JSON message” on page 2618
v “Modifying a JSON message” on page 2621
Related concepts:
“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.

Chapter 9. Developing message flow applications 2617

“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.

Creating a JSON message:

You can create JSON message data containing JSON objects, JSON arrays, or both,
by creating elements in the logical message tree, under the Data element that is
owned by the JSON parser root.

A JSON message can have either an anonymous object or an anonymous array as
the root of the data. When creating a JSON array in the logical message tree, the
JSON array name is placed in a tree element that has its type set to the JSON
parser element type JSON.Array.

The items in the JSON array are placed in the logical tree as NameValue elements,
as children of the JSON.Array element, with the required value. The names of these
array item elements are not used by the JSON serializer, because JSON array items
are anonymous. However, for consistency with the name used by the JSON parser,
use the name Item when you define the array item elements.

Creating a JSON object message

The following example shows how to create a JSON message that is formatted
with an object at the root level, with the form:

{ --- }

This example shows how to create a simple JSON object message with one
name-value pair:
{"Message":"Hello World"}

The following ESQL code can be used to create the message:
SET OutputRoot.JSON.Data.Message = ’Hello World’;

The following Java code can also be used:
MbElement outRoot = outMessage.getRootElement();
MbElement outJsonRoot = outRoot.createElementAsLastChild(MbJSON.PARSER_NAME);
MbElement outJsonData = outJsonRoot.createElementAsLastChild(MbElement.TYPE_NAME, MbJSON.DATA_ELEMENT_NAME, null);
MbElement outJsonTest = outJsonData.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "Message", "Hello World");

The following PHP code can also be used:
$output_message->{MB_JSON_PARSER_NAME}->{MB_JSON_DATA_ELEMENT_NAME}->Message = ’Hello World’;

The broker message tree produced from this example is:
Message: ([’json’ : 0xc552990]

(0x01000000:Object):Data = (
(0x03000000:NameValue):Message = ’Hello World’ (CHARACTER)

)

2618 WebSphere Message Broker Version 7.0.0.8

Creating a JSON array message

The following example shows how to create a message that is formatted with an
array at the root level, with the form:
[---]

This example shows how to create a JSON array message:
["valueA","valueB"]

The following ESQL code can also be used to create the array:
CREATE FIELD OutputRoot.JSON.Data IDENTITY (JSON.Array)Data;
CREATE LASTCHILD OF OutputRoot.JSON.Data TYPE NameValue NAME ’Item’ VALUE ’valueA’;
CREATE LASTCHILD OF OutputRoot.JSON.Data TYPE NameValue NAME ’Item’ VALUE ’valueB’;

The following Java code can also be used:
MbElement outJsonRoot =

outRoot.createElementAsLastChild("JSON");
MbElement outJsonData =

outJsonRoot.createElementAsLastChild(MbJson.Array, "Data", null);
outJsonData.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,

"Item", "valueA");
outJsonData.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,

"Item", "valueB");

The following PHP code can also be used:
$output_assembly->JSON->Data[] = array("valueA","valueB");

For more information about PHP arrays, see “Using PHP arrays with JSON” on
page 2685.

The message is created in the broker logical message tree with the form:
Message: ([’json’ : 0xc552990]

(0x01001000:Array):Data = (
(0x03000000:NameValue):Item = ’valueA’ (CHARACTER)
(0x03000000:NameValue):Item = ’valueB’ (CHARACTER)

)

Creating a JSON object array message

The following example shows how to create a message that is formatted with an
array of objects at the root level, with the form:
[{--},{--},...]

This example shows how to create the JSON object array message:
[{"Nam1":"val1","Num1":1},{"Nam2":"val2","Num2":"}]

The following ESQL code can also be used to create the array:
CREATE FIELD OutputRoot.JSON.Data IDENTITY(JSON.Array)Data;
SET OutputRoot.JSON.Data.Item[1].Nam1 = ’val1’;
SET OutputRoot.JSON.Data.Item[1].Nam1 = 1;
SET OutputRoot.JSON.Data.Item[2].Nam2 = ’val2’;
SET OutputRoot.JSON.Data.Item[2].Nam2 = 2;

The following Java code can also be used:
MbElement jsonData = outMessage.getRootElement().createElementAsLastChild(MbJSON.PARSER_NAME);
MbElement jsonRootArray = jsonData.createElementAsLastChild(MbJSON.DATA_ELEMENT_NAME,null);

MbElement jsonFirstArrayItem = jsonRootArray.createElementAsLastChild(MbElement.TYPE_NAME, MbJSON.ARRAY_ITEM_NAME, null);

Chapter 9. Developing message flow applications 2619

jsonFirstArrayItem.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "nam1", "val1");
jsonFirstArrayItem.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "num1", new Integer(1));

MbElement jsonSecondArrayItem = jsonRootArray.createElementAsLastChild(MbElement.TYPE_NAME, MbJSON.ARRAY_ITEM_NAME, null);
jsonSecondArrayItem.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "nam2", "val2");
jsonSecondArrayItem.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "num2", new Integer(2));

The message is created in the broker logical message tree with the form:
Message: ([’json’ : 0xc673900]

(0x01001000:Array):Data = (
(0x01000000:Object):Item = (

(0x03000000:NameValue):nam1 = ’val1’ (CHARACTER)
(0x03000000:NameValue):num1 = 1 (INTEGER)

)(0x01000000:Object):Item = (
(0x03000000:NameValue):nam2 = ’val2’ (CHARACTER)
(0x03000000:NameValue):num2 = 2 (INTEGER)

)
)

)

Related concepts:
“Using PHP arrays with JSON” on page 2685
PHP arrays are associative maps, in which the key can be an integer or a string.
“Modifying a JSON message” on page 2621
You can modify JSON objects and JSON arrays.
“Manipulating messages in the JSON domain” on page 2617
You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.
“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

2620 WebSphere Message Broker Version 7.0.0.8

“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.

Modifying a JSON message:

You can modify JSON objects and JSON arrays.

JSON data streams are parsed into the logical message tree and placed under the
Data element that is owned by the JSON parser root. The JSON data objects and
arrays can be accessed and modified from each supported language as follows:
v ESQL as OutputRoot.JSON.Data.path to required object or array
v Java as /JSON/Data/path to required object or array
v PHP as output_assembly->JSON->Data->path to required object or array

The following example shows a possible JSON message:
{

"name" : "John Doe",
"age" : -1,
"known" : false,
"address" : { "street" : null,

"city" : "unknown" },
"belongings" : ["this", "that", "the other"]

}

The JSON parser parses the input JSON bit stream, to produce the following
broker logical message tree:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01000000:Object):Data = (
(0x03000000:NameValue): name = ’John Doe’ (CHARACTER)
(0x03000000:NameValue): age = -1 (INTEGER)
(0x03000000:NameValue): known = FALSE (BOOLEAN)
(0x01000000:Object): address = (
(0x03000000:NameValue): street = NULL (UNKNOWN)
(0x03000000:NameValue): city = ’unknown’ (CHARACTER)

)
(0x01001000:Array): belongings = (
(0x03000000:NameValue): Item = ’this’ (CHARACTER)
(0x03000000:NameValue): Item = ’that’ (CHARACTER)
(0x03000000:NameValue): Item = ’the other’ (CHARACTER)

)
)

)

This message tree can be modified through ESQL as:
SET OutputRoot.JSON.Data.age = InputRoot.JSON.Data.age + 22; -- Set age to 21
SET OutputRoot.JSON.Data.belongings.Item[4] = ’an other’;
SET OutputRoot.JSON.Data.belongings.Item[5] = ’and another’;

The message tree can be modified through PHP as:
$output_assembly->JSON->Data->address->age = $input_assembly->JSON->Data->address->age + 22; // Set age to 21
$output_assembly->JSON->Data->belongings[2] = ’an other’;
$output_assembly->JSON->Data->belongings[3] = ’and another’;

For more information about PHP arrays, including multidimensional arrays, see
“Using PHP arrays with JSON” on page 2685.

The message tree can be modified through Java as:

Chapter 9. Developing message flow applications 2621

MbElement ageEl = message.getRootElement().getLastChild().getFirstElementByPath("/JSON/Data/age");
int age = ((Integer)ageEl.getValue()).intValue();
ageEl.setValue(age + 22); // Set age to 21
inMessage.getRootElement().getLastChild().getFirstElementByPath("/JSON/Data/belongings/Item[3]").setValue(an other’);

JSON with a multidimensional array

The following example shows JSON input containing a multidimensional array:
{

"customer" : "Joe",
"orders" : [["thing1", 1, 10.1],

["thing2", 2, 20.2]]
}

The following broker message tree is produced:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01000000:Object):Data = (
(0x03000000:NameValue):customer = ’Joe’ (CHARACTER)
(0x01001000:Array):orders = (
(0x01001000:Array):Item = (

(0x03000000:NameValue):Item = ’thing1’ (CHARACTER)
(0x03000000:NameValue):Item = 1 (INTEGER)
(0x03000000:NameValue):Item = 1.01E+1 (FLOAT)

)
(0x01001000:Array):Item = (

(0x03000000:NameValue):Item = ’thing2’ (CHARACTER)
(0x03000000:NameValue):Item = 2 (INTEGER)
(0x03000000:NameValue):Item = 2.02E+1 (FLOAT)

)
)

)
)

This message tree is accessed through ESQL in the following way (you can use
either the name Item or an asterisk (*) as a wildcard):
InputRoot.JSON.Data.orders.Item[1].Item[1] -- ’thing1’
InputRoot.JSON.Data.orders.*[2].*[3] –- 2.02E+1

The message tree is accessed through PHP as:
$output_assembly->JSON->Data.orders[0][0] // “thing1”
$output_assembly->JSON->Data.orders[1][2] // 2.02E+1

The message tree is accessed through Java in the following way (you can use either
the name Item, which the JSON parser gives to array items, or an asterisk (*) as a
wildcard):
inMessage.getRootElement().getFirstElementByPath("/JSON/Data/orders/Item[1]/Item[1]"); // ’thing1’
inMessage.getRootElement().getFirstElementByPath("/JSON/Data/orders/*[2]/*[3]"); // ’2.02’

Related concepts:
“Manipulating messages in the JSON domain” on page 2617
You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.
“Creating a JSON message” on page 2618
You can create JSON message data containing JSON objects, JSON arrays, or both,
by creating elements in the logical message tree, under the Data element that is
owned by the JSON parser root.
“Using PHP arrays with JSON” on page 2685
PHP arrays are associative maps, in which the key can be an integer or a string.

2622 WebSphere Message Broker Version 7.0.0.8

“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Managing ESQL files” on page 2390
In a message flow project, manage ESQL files that contain the ESQL code that you
provide to modify or customize the behavior of Compute, Database,
DatabaseInput, and Filter nodes.

Using the CALL statement to call a user-written routine:

The ESQL CALL statement calls routines that have been created and implemented
in different ways.

About this task

A routine is a user-defined function or procedure that has been defined by one of
the following statements:
v CREATE FUNCTION
v CREATE PROCEDURE

You can use the CALL statement to call a routine that has been implemented in
any of the following ways:
v ESQL
v Java
v As a stored procedure in a database
v As a built-in (broker-provided) function

You can use CALL to call built-in (broker-provided) functions and user-defined
SQL functions, but typically you would use their names directly in expressions .

For details of the syntax and parameters of the CALL statement, see “CALL
statement” on page 5077. For an example of the use of CALL, see the examples in

Chapter 9. Developing message flow applications 2623

“CREATE PROCEDURE statement” on page 5103.

Calling an ESQL routine:
About this task

A routine is called as an ESQL method if the routine's definition specifies a
LANGUAGE clause of ESQL or if the routine is a built-in function. An exact
one-to-one matching of the data types and directions of each parameter, between
the definition and the CALL, is required. An ESQL routine is allowed to return any
ESQL data type, excluding List and Row.

Calling a Java routine:
About this task

A routine is called as a Java method if the routine's definition specifies a
LANGUAGE clause of JAVA. An exact one-to-one matching of the data types and
directions of each parameter, between the definition and the CALL, is required. If
the Java method has a void return type, the INTO clause cannot be used because
no value exists to return.

A Java routine can return any data type in the “ESQL-to-Java data-type mapping
table” on page 5043, excluding List and Row.

Calling a database stored procedure:
About this task

A routine is called as a database stored procedure if the routine's definition has a
LANGUAGE clause of DATABASE.

When a call is made to a database stored procedure, the broker searches for a
definition (created by a CREATE PROCEDURE statement) that matches the
procedure's local name. The broker then uses the following sequence to resolve the
name by which the procedure is known in the database and the database schema
to which it belongs:
1. If the CALL statement specifies an IN clause, the name of the data source, the

database schema, or both, is taken from the IN clause.
2. If the name of the data source is not provided by an IN clause on the CALL

statement, it is taken from the DATASOURCE attribute of the node.
3. If the database schema is not provided by an IN clause on the CALL statement,

but is specified on the EXTERNAL NAME clause of the CREATE PROCEDURE
statement, it is taken from the EXTERNAL NAME clause.

4. If no database schema is specified on the EXTERNAL NAME clause of the
CREATE PROCEDURE statement, the database's user name is used as the
schema name. If a matching procedure is found, the routine is called.

The chief use of the CALL statement's IN clause is that it allows the data source,
the database schema, or both, to be chosen dynamically at run time. (The
EXTERNAL SCHEMA clause also allows the database schema which contains the
stored procedure to be chosen dynamically, but it is not as flexible as the IN clause
and is retained only for compatibility with earlier versions. Its use in new
applications is deprecated.)

If the called routine has any DYNAMIC RESULT SETS specified in its definition,
the number of expressions in the CALL statement's ParameterList must match the
number of parameters to the routine, plus the number of DYNAMIC RESULT

2624 WebSphere Message Broker Version 7.0.0.8

SETS. For example, if the routine has three parameters and two DYNAMIC
RESULT SETS, the CALL statement must pass five parameters to the called routine.
The parameters passed for the two DYNAMIC RESULT SETS must be list
parameters; that is, they must be field references qualified with array brackets [];
for example, Environment.ResultSet1[].

A database stored procedure is allowed to return any ESQL data type, excluding
Interval, List, and Row.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Invoking stored procedures” on page 2503
To invoke a procedure that is stored in a database, use the ESQL CALL statement.
The stored procedure must be defined by a CREATE PROCEDURE statement that
has a Language clause of DATABASE and an EXTERNAL NAME clause that
identifies the name of the procedure in the database and, optionally, the database
schema to which it belongs.
Related reference:
“CALL statement” on page 5077
The CALL statement calls (invokes) a routine.
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.
“ESQL-to-Java data-type mapping table” on page 5043
Table summarizing the mappings from ESQL to Java.

Accessing broker properties from ESQL:

You can access broker properties, at run time, from the ESQL modules in your
message flow nodes.

About this task

You can use broker properties on the right side of regular SET statements. For
example:
DECLARE mybroker CHARACTER;
SET mybroker = BrokerName;

where BrokerName is the broker property that contains the name of the broker on
which the message flow is running. However, you cannot use broker properties on
the left side of SET statements. This restriction exists because, at run time, broker
properties are constants: they cannot be modified, therefore their values cannot be
changed by SET statements. If a program tries to change the value of a broker
property, the error message Cannot assign to a symbolic constant is issued.

Broker properties:
v Are grouped by broker, execution group, flow, and node.
v Are case sensitive. Their names always start with an uppercase letter.

Chapter 9. Developing message flow applications 2625

v Return NULL if they do not contain a value.

If your ESQL code already contains a variable with the same name as one of the
broker properties, your variable takes precedence; that is, your variable masks the
broker property. To access the broker property, use the form
SQL.<broker_property_name>. For example: SQL.BrokerName.

“Broker properties that are accessible from ESQL and Java” on page 5302 shows
the broker, flow, and node properties that are accessible from ESQL and indicates
which properties are also accessible from Java.
Related concepts:
“Broker properties” on page 1144
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.
Related tasks:
“Accessing broker properties from the JavaCompute node” on page 2658
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your Java programs. It can be useful, during
the run time of your code, to have real-time access to details of a specific node,
flow, or broker.
Related reference:
“Broker properties that are accessible from ESQL and Java” on page 5302
You can access broker, message flow, and node properties from ESQL and Java.

Configuring a message flow at deployment time with user-defined properties:

Use user-defined properties (UDPs) to configure message flows at deployment and
run time, without modifying program code. You can give a UDP an initial value
when you declare it in your program, or when you use the Message Flow editor to
create or modify a message flow.

Before you begin

Before you start:

For an overview of user-defined properties, see “User-defined properties” on page
1147.

For an example of how to code a UDP statement, see “DECLARE statement” on
page 5117.

About this task

In ESQL, you can define UDPs at the module or schema level. After a UDP has
been defined in the Message Flow editor, you can modify the value before you
deploy it.

To configure UDPs, complete the following steps.

2626 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Open the broker archive (BAR) file. The contents of the BAR file are shown in
the Manage page of the Broker Archive editor. On this page, you can expand a
flow to show the individual nodes that it contains.

2. Click the message flow in which you are interested (not the .cmf compiled
message flow file). The UDPs that are defined in that flow are displayed with
their values in the Properties view.

3. If the value of the UDP is unsuitable for your current environment or task,
change it to an appropriate value. The value of the UDP is set at the flow level,
and is the same for all eligible nodes that are contained in the flow. If a
subflow includes a UDP that has the same name as a UDP in the main flow,
the value of the UDP in the subflow is not changed.

4. Save your BAR file.

Results

Next:

Deploy the message flow by following the instructions in “Deploying a broker
archive file” on page 3235.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.
“Deploying a broker archive file” on page 3235
After you have created and populated a broker archive (BAR) file, deploy the file
to an execution group on a broker, so that the file contents can be used in the
broker.
Related reference:
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable

Chapter 9. Developing message flow applications 2627

and, optionally, its initial value.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.

Developing Java
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.

About this task

To tailor the behavior of each node, create a Java class file that provides the
processing that you want. You manage Java files through the Java perspective.

You can add any valid Java code to a JavaCompute node, making full use of the
Java user-defined node API to process an incoming message. You can use the Java
editing facilities of the Eclipse platform to develop your Java code. These facilities
include:
v Code completion
v Integrated Javadoc documentation
v Automatic compilation

The Java user-defined node API includes some extra methods that simplify tasks
that involve message routing and transformation. These tasks include accessing
named elements in a message tree, setting their values, and creating elements,
without the need to navigate the tree explicitly.

Use the Debug perspective to debug a message flow that contains a JavaCompute
node. When control passes to a JavaCompute node during debugging, the
perspective opens the Java debugger, and you can step through the Java class code
for the node.

This section provides the following information on developing Java:
v “Managing Java Files” on page 2629
v “Writing Java” on page 2638
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:

2628 WebSphere Message Broker Version 7.0.0.8

Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
Related information:
Java user-defined extensions API

Managing Java Files
The Java code that you provide to modify or customize the behavior of a
JavaCompute node is stored in a Java project. WebSphere Message Broker uses the
Eclipse Java perspective for developing and administering Java files.

About this task

This section contains topics that describe how to manage these files:
v “Creating Java code for a JavaCompute node”
v “Opening an existing Java file” on page 2631
v “Saving a Java file” on page 2632
v “Adding Java code dependencies” on page 2633
v “Deploying JavaCompute node code” on page 2635
Related tasks:
“Accessing broker properties from the JavaCompute node” on page 2658
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your Java programs. It can be useful, during
the run time of your code, to have real-time access to details of a specific node,
flow, or broker.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Creating Java code for a JavaCompute node:

Use these instructions to associate Java code with your JavaCompute node.

Before you begin

Before you start

To complete this task, you must have already created a JavaCompute node in your
message flow.

Chapter 9. Developing message flow applications 2629

About this task

To associate Java code with a JavaCompute node, use one of the following
methods:

Procedure

v Use the New Java Compute Node Class wizard to create template code. This is a
preferred method.
1. Right-click the node and click Open Java.
2. Navigate the New Java Compute Node Class wizard until you reach the Java

Compute Node Class Template page. On the Java Compute Node Class
Template page, choose one of the following options:
– For a filter node template code, select Filtering message class.
– To change an incoming message, select Modifying message class.
– To create a new message, select Creating message class.

3. Click Finish.

You have created template code for your JavaCompute node.
v Associate a JavaCompute node with an existing Java class that the wizard has

previously generated; this is the safest way in which you can share the same
Java code between multiple nodes. To associate a JavaCompute nodes with an
existing Java class, perform the following steps:
1. Right-click the JavaCompute node and click Properties.
2. Enter the name of the Java class in the Java Class field.
3. Click OK.

You have associated your JavaCompute node with an existing Java class.
v Create a Java project from scratch. Before you add one or more classes to the

project, you must perform the following steps:
1. Open the .project file in the text editor, and ensure that the following

builders and natures are set:
<buildSpec>

<buildCommand>
<name>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>com.ibm.etools.mft.java.builder.javabuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>com.ibm.etools.mft.jcn.jcnbuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>com.ibm.etools.mft.bar.barbuilder</name>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.jdt.core.javanature</nature>
<nature>com.ibm.etools.mft.bar.barnature</nature>
<nature>com.ibm.etools.mft.jcn.jcnnature</nature>
</natures>

2630 WebSphere Message Broker Version 7.0.0.8

2. Add the following plug-ins to the build path of the Java project:
a. Open the properties of the Java project.
b. Select Java Build Path and open the Libraries tab.
c. Click Add Variable.
d. Select the variable JCN_HOME and click OK.
e. Double-click the variable you added to open the Edit Variable Entry

dialog.
f. Click Extension and select javacompute.jar.
g. Repeat the previous four steps to add the variable JCN_HOME/

jplugin2.jar.
3. Create the appropriate Java class and ensure that it extends from

com.ibm.broker.javacompute.MbJavaComputeNode.

You have created your Java project.

What to do next

You can now perform the following tasks:
v “Opening an existing Java file”
v “Saving a Java file” on page 2632
v “Adding Java code dependencies” on page 2633
Related tasks:
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
“Managing Java Files” on page 2629
The Java code that you provide to modify or customize the behavior of a
JavaCompute node is stored in a Java project. WebSphere Message Broker uses the
Eclipse Java perspective for developing and administering Java files.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Opening an existing Java file:

You can add to and modify Java code that you have created in a Java project.

Before you begin

Before you start

Before you start this task, complete the following tasks:
v Add a “JavaCompute node” on page 4514 to your message flow.
v “Creating Java code for a JavaCompute node” on page 2629

Chapter 9. Developing message flow applications 2631

About this task

To open an existing Java file:

Procedure

1. Switch to the Java perspective.
2. In the Package Explorer view, double-click the Java file that you want to open.

The file is opened in the editor view.
3. Work with the contents of the file to make your changes.

Results

You can also open a Java file when you have a message flow open in the editor
view. Right-click the JavaCompute node, then select Open Java.

What to do next

Next:

You can now perform the following tasks:
v “Saving a Java file”
v “Adding Java code dependencies” on page 2633
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Managing Java Files” on page 2629
The Java code that you provide to modify or customize the behavior of a
JavaCompute node is stored in a Java project. WebSphere Message Broker uses the
Eclipse Java perspective for developing and administering Java files.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Saving a Java file:

When you edit your Java files, save them to preserve the additions and
modifications that you have made.

2632 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start

To complete this task, you must have completed the following tasks:
v Add a “JavaCompute node” on page 4514 to your message flow.
v “Creating Java code for a JavaCompute node” on page 2629

About this task

To save a Java file:

Procedure

1. Switch to the Java perspective.
2. Create a new Java file or open an existing Java file.
3. Make the changes to the contents of the Java file.
4. When you have finished working, click File > Save or File > Save All to save

the file and retain all your changes.

What to do next

Next:

You can now perform the following task:
v “Adding Java code dependencies”
Related tasks:
“Managing Java Files” on page 2629
The Java code that you provide to modify or customize the behavior of a
JavaCompute node is stored in a Java project. WebSphere Message Broker uses the
Eclipse Java perspective for developing and administering Java files.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Adding Java code dependencies:

When you write Java code for a JavaCompute node, you can include references to
other Java projects and JAR files.

Before you begin

Before you start

To complete this task, you must have completed the following tasks:
v Add a “JavaCompute node” on page 4514 to your message flow.
v Create Java code for a JavaCompute node.

Chapter 9. Developing message flow applications 2633

About this task

The Java code in a JavaCompute node might contain references to other Java
projects in the Eclipse workspace (internal dependencies), or to external JAR files,
for example the JavaMail API (external dependencies), or a set of JAXB Java object
classes (internal or external). If other JAR files are referenced, you must add the
files to the project class path.

Procedure

1. Right-click the project folder for the project on which you are working, and
click Properties.

2. Click Java Build Path in the left pane.
3. Click the Libraries tab.
4. Complete one of the following steps:
v To add an internal dependency, click Add JARs, select the JAR file that you

want to add, then click OK.
v To add an external dependency, click Add External JARs, select the JAR file

that you want to add, then click Open. Copy the JAR file to the
shared-classes directory required. For more details of the shared-classes
directories available and the effects of each, see “Java shared classloader” on
page 2637. If you do not copy the JAR file to a valid shared-classes
directory, ClassNotFoundException exceptions are generated at run time.

Results

You have now added a code dependency.
Related tasks:
“Managing Java Files” on page 2629
The Java code that you provide to modify or customize the behavior of a
JavaCompute node is stored in a Java project. WebSphere Message Broker uses the
Eclipse Java perspective for developing and administering Java files.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
“Changing the location of the work path” on page 1011
The work path directory is the location where a component stores internal data,
such as installation logs, component details, and trace output. The shared-classes
directory is also located in the work path directory and is used for deployed Java
code. If the work path directory does not have enough capacity, redirect the
directory to another file system that has enough capacity.
“Java shared classloader” on page 2637
Loads all the JAR files located within the shared-classes directories. The precedence
order of loading is dictated by the directories the JAR files are located in.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

2634 WebSphere Message Broker Version 7.0.0.8

Deploying JavaCompute node code:

The WebSphere Message Broker Toolkit handles the deploying of JavaCompute
node code automatically. When you create a BAR file and add the message flow,
the WebSphere Message Broker Toolkit packages the compiled Java code and its
dependencies into the BAR file.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

JavaCompute node classloading:

Details the default Java classloader options and the precedence order of each type.

The JavaCompute node loads and runs a Java class defined as the Java class
property on the node. Normally, this class is deployed, along with any other
required classes, in a Java archive (JAR) file contained in the broker archive (BAR)
file that is used to deploy the flow containing the JavaCompute node.

Any Java classes deployed in this way are loaded by an execution group-wide
classloader. Whenever a new or changed JAR file is deployed, the execution
group-wide classloader is deleted and recreated with all the currently deployed
JAR files. At the same time all JavaCompute nodes refresh the Java classes being
used within them, as well as recreating all the Java static variables. It is possible to
modify this behavior by using the JavaClassLoader configurable service
property on the node, which allows alternative classloaders to be used. For more
details, see “JavaCompute node classloading using a configurable service” on page
2636.

The execution group-wide classloader first searches all the deployed JAR files for a
required class. If a required class cannot be found, it defers to the shared
classloader. The shared classloader looks in a set of directories on the broker
machine and loads any JAR files found. It can be used to install any required JAR
files that do not need to be repeatedly deployed, such as client libraries that the
JavaCompute nodes need to use. For more details, see “Java shared classloader” on
page 2637.

If the required class cannot be found in any of the deployed JAR files, or in the
JAR files installed in the shared classes directories, a classloader containing all of
the broker supplied classes is checked (for example: this classloader contains the
jplugin2.jar), followed by the classpath, and then finally the Java virtual machine
(JVM) system classloader.

Two key points must be considered when deciding which of the above
mechanisms are used to load a class:
v Isolation between different applications (for example: adding classes to the

classpath makes them available to every part of WebSphere Message Broker and
can cause conflicts). JavaClassLoader configurable service can also be used to
isolate JavaCompute nodes in the same execution group.

v Delegation from one classloader to another can only occur in one direction. If a
class is resolved in the shared classloader, then it cannot directly create classes in
the execution group-wide classloader.

Related concepts:
“JavaCompute node classloading using a configurable service” on page 2636
Details alternative configurable Java classloader options and the precedence order

Chapter 9. Developing message flow applications 2635

of each type.
Related tasks:
“Creating Java code for a JavaCompute node” on page 2629
Use these instructions to associate Java code with your JavaCompute node.
“Deploying JavaCompute node code” on page 2635
The WebSphere Message Broker Toolkit handles the deploying of JavaCompute
node code automatically. When you create a BAR file and add the message flow,
the WebSphere Message Broker Toolkit packages the compiled Java code and its
dependencies into the BAR file.
“Java shared classloader” on page 2637
Loads all the JAR files located within the shared-classes directories. The precedence
order of loading is dictated by the directories the JAR files are located in.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
Related information:
Java user-defined extensions API

JavaCompute node classloading using a configurable service:

Details alternative configurable Java classloader options and the precedence order
of each type.

The JavaCompute node loads and runs a Java class defined as the Java class
property on the node. Normally, this class is deployed, along with any other
required classes, in a Java archive (JAR) file contained in the broker archive (BAR)
file that is used to deploy the flow containing the JavaCompute node.

Any Java classes deployed in this way are loaded by an execution group-wide
classloader. It is possible to override this behavior by using the JavaClassLoader
configurable service property on the node.

The classloader defined by the JavaClassLoader configurable service has a list of
JAR files, defined by the includedDeployedJars property, which it will own and
use. Whenever these JAR files are deployed, the configurable service classloader
receives the JAR files and uses them for resolving classes. The JAR files are no
longer available to the execution group classloader, and any node using that
classloader will not have access to any classes contained in those JAR files.

The configurable service classloader first searches all the deployed JAR files it has
received for a required class. If a required class cannot be found, it defers to the
shared classloader. The shared classloader looks in a set of directories on the
broker machine and loads any JAR files found. It can be used to install any
required JAR files that do not need to be repeatedly deployed, such as client
libraries that the JavaCompute nodes need to use. For more details, see “Java
shared classloader” on page 2637. This mechanism can be overridden by setting
the sharedJarPath property on the configurable service in order to use a specified
directory to find installed JAR files, rather than the shared classes directories.

If the required class cannot be found in any of the deployed JAR files, or in the
JAR files installed in the shared classes directories, a classloader containing all of
the broker supplied classes is checked (for example: this classloader contains the
jplugin2.jar), followed by the classpath, and then finally the Java virtual machine
(JVM) system classloader.

2636 WebSphere Message Broker Version 7.0.0.8

For information about how to create a JavaClassLoader configurable service, see
“mqsicreateconfigurableservice command” on page 3849. Properties of the
JavaClassLoader configurable service are defined in “JavaClassLoader
configurable service” on page 3777.
Related tasks:
“Creating Java code for a JavaCompute node” on page 2629
Use these instructions to associate Java code with your JavaCompute node.
“Deploying JavaCompute node code” on page 2635
The WebSphere Message Broker Toolkit handles the deploying of JavaCompute
node code automatically. When you create a BAR file and add the message flow,
the WebSphere Message Broker Toolkit packages the compiled Java code and its
dependencies into the BAR file.
“Java shared classloader”
Loads all the JAR files located within the shared-classes directories. The precedence
order of loading is dictated by the directories the JAR files are located in.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
Related information:
“JavaClassLoader configurable service” on page 3777
Java user-defined extensions API

Java shared classloader:

Loads all the JAR files located within the shared-classes directories. The precedence
order of loading is dictated by the directories the JAR files are located in.

Before you begin

Before you start

Determine the broker workpath to use by running the mqsireportbroker command
as follows:
mqsireportbroker <my_broker_name>

See the “mqsireportbroker command” on page 3919 for an example output from
the command. On z/OS the workpath is usually referred to as the component
directory.

About this task

JAR files are loaded in the following precedence order:

Procedure

1. JAR files placed in the execution group shared-classes directory allow only a
single defined execution group to access them. Files placed in here are loaded
first. No other execution groups can use them.
Add the JAR files to the following directory:
v For Windows

Chapter 9. Developing message flow applications 2637

workpath\config\<my_broker_name>\<my_eg_label>\shared-classes

v For Linux, UNIX, and z/OS
workpath/config/<my_broker_name>/<my_eg_label>/shared-classes

Ensure that the broker name, and any execution groups created, contain only
characters that are valid on your file system. You may also need to create the
required directory structure.
All files placed into the execution group shared-classes directory that have a
.jar extension, are loaded and made available in the broker Java environment
for that execution group. JAR files in this directory take precedence over JAR
files in the top level shared-classes directory.

Note: The execution group shared-classes directory is not automatically
removed when the execution group is deleted. Manually delete the directory if
no longer required.

2. JAR files placed in the top level shared-classes directory are made available to
all brokers and all execution groups. Files placed in here are loaded after any
files placed in the execution group shared-classes directory.
Add the JAR files to the following directory:
v For Windows

workpath\shared-classes

v For Linux, UNIX and z/OS
workpath/shared-classes

Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
“mqsireportbroker command” on page 3919
Use the mqsireportbroker command to display broker registry entries.

Writing Java
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.

About this task

You can customize the processing that some of the built-in nodes provide. In a
JavaCompute node, you can provide Java code that controls precisely the behavior
of the node. This set of topics discusses how you can use Java to customize the
JavaCompute node.

You can use a JavaCompute node to check and manipulate message content. The
node can read the contents of the input message, then construct new output
messages that are created from all, part, or none of the input message.

Use the Debug perspective to debug a message flow that contains a JavaCompute
node. When control passes to a JavaCompute node during debugging, the
perspective opens the Java debugger, allowing you to step through the Java class
code for the node.

This section provides more information about writing Java:
v Manipulating message body data

2638 WebSphere Message Broker Version 7.0.0.8

v Manipulating other parts of the message tree
v Accessing broker properties
v Accessing user-defined properties
v “Adding keywords to JAR files” on page 2660
v Interacting with databases
v “Calling an Enterprise Java Bean” on page 2666
v Handling exceptions
v Logging errors
Related concepts:
“Debug perspective” on page 6789
Related tasks:
“Managing Java Files” on page 2629
The Java code that you provide to modify or customize the behavior of a
JavaCompute node is stored in a Java project. WebSphere Message Broker uses the
Eclipse Java perspective for developing and administering Java files.
“Accessing transport headers” on page 2453
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
Related information:
Java user-defined extensions API

Manipulating message body data by using a JavaCompute node:

You can manipulate message body data by using a JavaCompute node.

About this task

The message body is always the last child of root, and its parser name identifies it,
for example XML or MRM.

The following topics describe how to refer to, modify, and create message body
data. The information provided here is domain independent:
v “Accessing elements in a message tree from a JavaCompute node” on page 2640
v “Transforming a message by using a JavaCompute node” on page 2642
v “Creating a simple filter by using a JavaCompute node” on page 2647
v “Propagating a message to the JavaCompute node Out and Alternate terminals”

on page 2648
v “Extracting information from a message by using XPath 1.0 and a JavaCompute

node” on page 2648
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined

Chapter 9. Developing message flow applications 2639

structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Accessing elements in a message tree from a JavaCompute node:

Access the contents of a message, for reading or writing, using the structure and
arrangement of the elements in the tree that the parser creates from the input bit
stream.

About this task

Follow the relevant parent and child relationships from the top of the tree
downwards until you reach the required element.

The message tree is passed to a JavaCompute node as an argument of the evaluate
method. The argument is an MbMessageAssembly object. MbMessageAssembly
contains four message objects:
v Message
v Local Environment
v Global Environment
v Exception List

These objects are read-only, except for Global Environment. If you try to write to
the read-only objects, an MbReadOnlyException is issued.

This topic contains the following information about accessing elements in a
message tree:
v “Traversing the element tree”
v “Accessing information about an element” on page 2642

Traversing the element tree:
About this task

The following table shows the Java methods that you can use to access element
trees, and the equivalent ESQL field type constant for each point in the tree.

Java accessor from MbMessageAssembly ESQL field type constant

getMessage().getRootElement() InputRoot

getMessage().getRootElement().getLastChild() InputBody

getLocalEnvironment().getRootElement() InputLocalEnvironment

getGlobalEnvironment().getRootElement() Environment

getExceptionList().getRootElement() InputExceptionList

2640 WebSphere Message Broker Version 7.0.0.8

Use the following methods to traverse a message tree from an element of type
MbElement:

getParent()
returns the parent of the current element

getPreviousSibling()
returns the previous sibling of the current element

getNextSibling()
returns the next sibling of the current element

getFirstChild()
returns the first child of the current element

getLastChild()
returns the last child of the current element

The following example shows a simple XML message and the logical tree that
would be created from the message. The message has been sent using WebSphere
MQ. The logical tree diagram also shows the methods to call in order to navigate
around the tree.
<document>

<chapter title=’Introduction’>
Some text

</chapter>
</document>

N: Root
V:

N: MQMD
V:

N: Properties
V:

N: XML
V:

N: document
V:

N: chapter
V:

N: title
V: Introduction

N: - Name
V: - Value

Key:

N:
V: Some text.

(1)

(2)

(3)

(4)

(5)

getFirstChild()
getLastChild()
getNextSibling()
getPreviousSibling()
getParent()

(1)

(3)

(4)

(3)

(3)

(4)

(4)

(5) (5)

(1)

(1)

(1) (5)

(5)

(5)

(5)

(5) (2)

(2)

(2)

(2)

The tree used in this diagram is the one that is created by parsing the previous
XML example.
v From the Root part of the tree, calling getFirstChild() navigates to Properties.

Also from Root, calling getLastChild() returns XML.
v From Properties, calling getParent() returns Root, and calling getNextSibling()

returns MQMD.

Chapter 9. Developing message flow applications 2641

v From MQMD, calling getPreviousSibling() returns Properties, calling
getParent() returns Root, and calling getNextSibling() returns XML.

v From XML, calling getPreviousSibling() returns MQMD, calling getParent()
returns Root, calling getFirstChild() returns document, and calling
getLastChild() also returns document.

v From document, calling getParent() returns XML, calling getFirstChild()
returns chapter, and calling getLastChild() also returns chapter.

v From chapter, calling getParent() returns document, calling getFirstChild()
returns title, and calling getLastChild() returns the child that contains the
message data "Some text.".

The following Java code accesses the chapter element in the logical tree for an
XML message that does not contain white spaces. The XML parser retains white
space in the parsed tree, but the XMLNS and XMLNSC parsers do not.
MbElement root = assembly.getMessage().getRootElement();
MbElement chapter = root.getLastChild().getFirstChild().getFirstChild();

Accessing information about an element:
About this task

Use the following methods to return information about the referenced element:

getName()
returns the element name as a java.lang.String

getValue()
returns the element value

getType()
returns the generic type, which is one of the following types:
v NAME: an element of this type has a name, but no value.
v VALUE: an element of this type has a value, but no name.
v NAME/VALUE: an element of this type has both a value and a name.

getSpecificType()
returns the parser-specific type of the element

getNamespace()
returns the namespace URI of this element

Related tasks:
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
Related information:
Java user-defined extensions API

Transforming a message by using a JavaCompute node:

You can transform a message by using the JavaCompute node.

2642 WebSphere Message Broker Version 7.0.0.8

The following topics describe how to transform messages by using the
JavaCompute node:
v “Creating a new message by using a JavaCompute node”
v “Copying a message by using a JavaCompute node” on page 2644
v “Setting, copying, and moving message elements by using a JavaCompute node”

on page 2644
v “Creating new elements by using a JavaCompute node” on page 2646

Creating a new message by using a JavaCompute node:

Many message transformation scenarios require a new outgoing message to be
built. The Create Message Class template in the JavaCompute node wizard generates
template code for this.

About this task

In the template code, the default constructor of MbMessage is called to create a
blank message, as shown in the following Java code:
MbMessage outMessage = new MbMessage();

The headers can be copied from the incoming message by using the supplied
utility method, copyMessageHeaders(), as shown in this Java code:
copyMessageHeaders(inMessage, outMessage);

The new message body can now be created. First, add the top level parser element.
For XML, this is:
MbElement outRoot = outMessage.getRootElement();
MbElement outBody = outRoot.createElementAsLastChild(MbXMLNSC.PARSER_NAME);

The remainder of the message can then be built up by using the createElement
methods and the extended syntax of the broker XPath implementation.

When you want to create a BLOB message, that is handled as a single byte string
by using the BLOB parser domain. The message data is added as a byte array to
the single element named "BLOB" under the parser level element, described as
follows:

String myMsg = "The Message Data";
MbElement outRoot = outMessage.getRootElement();
// Create the Broker Blob Parser element
MbElement outParser = outRoot.createElementAsLastChild(MbBLOB.PARSER_NAME);
// Create the BLOB element in the Blob parser domain with the required text
MbElement outBody = outParser.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "BLOB", myMsg.getBytes());

You can use the following code to create a BLOB message in a JavaCompute node:
MbElement outMsgRootEl = outMessage.getRootElement();

String parserName = MbBLOB.PARSER_NAME;
String messageType = "";
String messageSet = "";
String messageFormat = "";
int encoding = 0;
int ccsid = 0;
int options = 0;
outMsgRootEl.createElementAsLastChildFromBitstream(responseBodyXmlData,
parserName, messageType, messageSet, messageFormat, encoding, ccsid,
options);

Chapter 9. Developing message flow applications 2643

To add a JSON message in a JavaCompute node, see “Creating a JSON message”
on page 2618.
Related tasks:
“Accessing elements in a message tree from a JavaCompute node” on page 2640
Access the contents of a message, for reading or writing, using the structure and
arrangement of the elements in the tree that the parser creates from the input bit
stream.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Copying a message by using a JavaCompute node:

You can copy a message by using a JavaCompute node.

About this task

The incoming message and message assembly are read-only. To modify a message,
a copy of the incoming message must be made. The Modifying Message Class
template in the JavaCompute node wizard generates this copy. The following copy
constructors are called:
MbMessage outMessage = new MbMessage(inAssembly.getMessage());
MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly, outMessage);

The new outAssembly object is propagated to the next node.
Related tasks:
“Accessing elements in a message tree from a JavaCompute node” on page 2640
Access the contents of a message, for reading or writing, using the structure and
arrangement of the elements in the tree that the parser creates from the input bit
stream.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Setting, copying, and moving message elements by using a JavaCompute node:

Transform elements in the message as it passes through a JavaCompute node in
the message flow.

Before you begin

Before you start:

The incoming message and message assembly are read-only. Therefore, to modify a
message, you must make a copy of it first. For more information, see “Copying a
message by using a JavaCompute node.”

About this task

v “Setting information about an element” on page 2645
v “Moving and copying elements” on page 2645

The Java API reference information provides details about each of the methods
used in the following sections:

2644 WebSphere Message Broker Version 7.0.0.8

Setting information about an element:
About this task

Use these methods to set information about the referenced element:

setName()
Sets the name of the element

setValue()
Sets the value of the element

setSpecificType()
Sets the parser-specific type of the element

setNamespace()
Sets the namespace URI of the element

Moving and copying elements:
About this task

Use a JavaCompute node to copy or detach an element from a message tree by
using the following methods:

detach()
The element is detached from its parent and siblings, but any child
elements are left attached

copy() A copy of the element and its attached children is created

Use one of four methods to attach an element or subtree that you have copied on
to another tree:

addAsFirstChild(element)
Adds an unattached element as the first child of element

addAsLastChild(element)
Adds an unattached element as the last child of element

addBefore(element)
Adds an unattached element as the previous sibling of element

addAfter(element)
Adds an unattached element as the next sibling of element

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

Chapter 9. Developing message flow applications 2645

Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
Related information:
Java user-defined extensions API

Creating new elements by using a JavaCompute node:

You can use a JavaCompute node to create new elements.

About this task

Use the following methods in a JavaCompute node to create new elements in a
message tree:
v createElementAsFirstChild()
v createElementAsLastChild()
v createElementBefore()
v createElementAfter()

The method returns a reference to the newly-created element. Each method has
three overloaded forms:

createElement...(int type)
Creates a blank element of the specified type. Valid generic types are:
v MbElement.TYPE_NAME. This type of element has only a name, for

example an XML element.
v MbElement.TYPE_VALUE. This type of element has only a value, for

example XML text that is not contained in an XML element.
v MbElement.TYPE_NAME_VALUE. This type of element has both a name

and a value, for example an XML attribute.

Specific type values can also be assigned. The meaning of this type
information is dependent on the parser. Element name and value
information must be assigned by using the setName() and setValue()
methods.

createElement...(int type, String name, Object value)
Method for setting the name and value of the element at creation time.

createElement...(String parserName)
A special form of createElement...() that is only used to create top-level
parser elements.

This example Java code adds a new chapter element to the XML example given in
“Accessing elements in a message tree from a JavaCompute node” on page 2640:
MbElement root = outMessage.getRootElement();
MbElement document = root.getLastChild().getFirstChild();
MbElement chapter2 = document.createElementAsLastChild(MbElement.TYPE_NAME,"Chapter",null);

// add title attribute
MbElement title2 = chapter2.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE,
"title", "Message Flows");

This produces the following XML output:

2646 WebSphere Message Broker Version 7.0.0.8

<document>
<chapter title="Introduction">
Some text.
</chapter>
<chapter title="Message Flows"/>
</document>

Related tasks:
“Accessing elements in a message tree from a JavaCompute node” on page 2640
Access the contents of a message, for reading or writing, using the structure and
arrangement of the elements in the tree that the parser creates from the input bit
stream.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Creating a simple filter by using a JavaCompute node:

The JavaCompute node has two output terminals: Out and Alternate. To use the
JavaCompute node as a filter node, propagate a message to either the Out or
Alternate terminal based on the message content.

Before you begin

Before you start

To complete this task, you must have added a “JavaCompute node” on page 4514
to your message flow.

About this task

Use the JavaCompute node creation wizard to generate template code for a filter
node:

Procedure

Select the Filtering Message Class template in the JavaCompute node creation
wizard to create a filter node.
The following template code is produced. It passes the input message to the Out
terminal without doing any processing on the message.
public class jcn2 extends MbJavaComputeNode {

public void evaluate(MbMessageAssembly assembly) throws MbException {
MbOutputTerminal out = getOutputTerminal("out");
MbOutputTerminal alt = getOutputTerminal("alternate");

MbMessage message = assembly.getMessage();

// --
// Add user code below

// End of user code
// --

// The following should only be changed
// if not propagating message to the ’out’ terminal

out.propagate(assembly);
}

}

Chapter 9. Developing message flow applications 2647

The template produces a partial implementation of a method called evaluate(). The
broker calls evaluate() once for each message that passes through the node. The
parameter that is passed to evaluate() is the message assembly. The message
assembly encapsulates the message that is passed on from the previous node in the
message flow.
Add custom code to the template, and propagate messages to both the Out and
Alternate terminals to create a message filter.
Related tasks:
“Propagating a message to the JavaCompute node Out and Alternate terminals”
The JavaCompute node has two output terminals, Out and Alternate. Therefore,
you can use the node both as a filter node and as a message transformation node.
After you have processed the message, propagate the message to an output
terminal by using a propagate() method.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Propagating a message to the JavaCompute node Out and Alternate terminals:

The JavaCompute node has two output terminals, Out and Alternate. Therefore,
you can use the node both as a filter node and as a message transformation node.
After you have processed the message, propagate the message to an output
terminal by using a propagate() method.

About this task

To propagate the message assembly to the Out terminal use the following method:
out.propagate(assembly);

To propagate the message assembly to the Alternate terminal, use the following
method:
alt.propagate(assembly);

To propagate the same MbMessage object multiple times, call the finalizeMessage()
method on the MBMessage object, so that any changes made to the message are
reflected in the bit stream that is generated downstream of the JavaCompute node;
for example:
MbMessage outMessage = new MbMessage(inMessage);
MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly, outMessage);
...
newMsg.finalizeMessage(MbMessage.FINALIZE_NONE);
out.propagate(outAssembly);
...
newMsg.finalizeMessage(MbMessage.FINALIZE_NONE);
out.propagate(outAssembly);

Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Extracting information from a message by using XPath 1.0 and a JavaCompute node:

XPath is a query language designed for use with XML documents, but you can use
it with any tree structure to query contents.

2648 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker uses XPath to select elements from the logical message
tree regardless of the format of the bit stream. The terminology used in this topic is
based on the terminology used in the W3C definition of XPath 1.0. For more
information about XPath, see “Using XPath” on page 1506; and for more
information about the W3C definition of the XPath 1.0 standard, see W3C XPath
1.0 Specification. For examples of XPath use, see the MbXPath topic in the “Java
user-defined node API” on page 5312 documentation.

This topic contains the following information:
v “Using the evaluateXPath method to extract message information”
v “XPath variable binding”
v “XPath namespace support” on page 2650
v “Updating a message by using XPath extensions” on page 2650

Using the evaluateXPath method to extract message information

The evaluateXPath() method is included in the Java user-defined node API. It
supports XPath 1.0, with the following exceptions:
v Namespace axis and namespace node type. The namespace axis returns the

actual XML namespace declaration nodes for a particular element. You can
therefore manipulate XML prefix or URI declarations within an XPath
expression. This axis returns an empty node set for bit streams that are not XML.

v If you use the id() function, it throws an MbRecoverableException.

The evaluateXPath() method can be called on a MbMessage object (for absolute
paths), or on a MbElement object (for relative paths). The XPath expression is
passed to the method as a string parameter. A second form of this method is
provided that takes an MbXPath object. This object encapsulates an XPath
expression along with variable bindings and namespace mappings, if these are
required.

The evaluateXPath() method returns an object of one of these four types,
depending on the expression return type:
v java.lang.Boolean, representing the XPath Boolean type
v java.lang.Double, representing the XPath number type
v java.lang.String, representing the XPath string type
v java.util.List, representing the XPath node set. The List interface represents an

ordered sequence of objects, in this case MbElements. It allows direct access to
the elements, or the ability to get an Iterator or an MbElement array.

XPath variable binding

XPath 1.0 supports the ability to refer to variables that have been assigned before
the expression that contains them is evaluated. The MbXPath class has three
methods for assigning and removing these variable bindings from user Java code.
The value must be one of the four XPath 1.0 supported types:
v Boolean
v node set
v number
v string

Chapter 9. Developing message flow applications 2649

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

XPath namespace support

For XML messages, namespaces are referred to by using a mapping from an
abbreviated namespace prefix to the full namespace URI, as shown in the
following XML example:
<ns1:aaa xmlns:ns1=’http://mydomain.com/namespace1’

xmlns:ns2=’http://mydomain.com/namespace2’>
<ns2:aaa>
<ns1:bbb/>

</ns2:aaa>
</ns1:aaa>

The namespace prefix is convenient for representing the namespace, but is
meaningful only within the document that defines that mapping. The namespace
URI defines the global meaning. Also, the concept of a namespace prefix is not
meaningful for documents that are generated in a message flow, because a
namespace URI can be assigned to a syntax element without an XMLNS mapping
having been defined.

For this reason, the XMLNSC and MRM parsers expose only the namespace URI to
the broker and to user code (ESQL or user-defined code). By using ESQL, you can
set up your own mappings to create abbreviations to these potentially long URIs.
These mappings are not related in any way to the prefixes that are defined in the
XML document (although they can be the same name).

By using the XPath processor you can map namespace abbreviations on to URIs
that are expanded at evaluation time. The MbXPath class contains methods to
assign and remove these namespace mappings. For example:

MbXPath xp = new MbXPath("/aaa/other:aaa/bbb");
xp.addNamespacePrefix("other", "http://mydomain.com/namespace2");
xp.setDefaultNamespace("http://mydomain.com/namespace2");
List nodeset = (List)message.evaluateXPath(xp);

Updating a message by using XPath extensions

The XPath implementation in WebSphere Message Broker provides the following
extra functions for modifying the message tree:

set-local-name(object)
Sets the local part of the expanded name of the context node to the value
specified in the argument. object can be any valid expression, and is
converted to a string as if a call to the string function is used.

set-namespace-uri(object)
Sets the namespace URI part of the expanded name of the context node to
the value specified in the argument. object can be any valid expression, and
is converted to a string as if a call to the string function is used.

set-value(object)
This function sets the string value of the context node to the value
specified in the argument. object can be any valid expression, and is
converted to a string as if a call to the string function is used.

To allow for syntax element trees to be built as well as modified, the following axis
is available in addition to the 13 that are defined in the XPath 1.0 specification:

select-or-create::name or ?name
?name is equivalent to select-or-create::name. If name is @name, an attribute

2650 WebSphere Message Broker Version 7.0.0.8

is created or selected. This selects child nodes matching the specified name,
or creates new nodes according to the following rules:
v ?name selects children called name if they exist. If a child called name

does not exist, ?name creates it as the last child, then selects it.
v ?$name creates name as the last child, then selects it.
v ?^name creates name as the first child, then selects it.
v ?>name creates name as the next sibling, then selects it.
v ?<name creates name as the previous sibling, then selects it.

Related tasks:
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
Related reference:
“ESQL-to-XPath mapping table” on page 5046
A table that summarizes the mappings from ESQL to XPath.
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
Related information:
Java user-defined extensions API

Manipulating other parts of the message tree by using a JavaCompute node:

You can access parts of the message tree other than the message body data. These
parts of the logical tree are independent of the domain in which the message
exists, and all these topics apply to messages in all supported domains, including
the BLOB domain. You can access all parts of the message tree by using a
JavaCompute node.

About this task

Elements of the message tree can be accessed in the same way as the message
body data, by using a JavaCompute node.
v “Accessing headers by using a JavaCompute node” on page 2652
v “Updating the local environment with the JavaCompute node” on page 2655
v “Updating the Global Environment with the JavaCompute node” on page 2656
Related concepts:
“Logical tree structure” on page 1042
The logical tree structure is the internal (broker) representation of a message. It is
also known as the message assembly.
“Environment tree structure” on page 1055
The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.

Chapter 9. Developing message flow applications 2651

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

Accessing headers by using a JavaCompute node:

You can access headers by using a JavaCompute node.

About this task

If an input node receives an input message that includes message headers that the
input node recognizes, the node starts the correct parser for each header. Parsers
are supplied for most WebSphere MQ headers. The following topics provide
guidance for accessing the information in the MQMD and MQRFH2 headers that
you can follow when accessing other headers that are present in your messages.
v “Copying message headers by using a JavaCompute node”
v “Accessing the MQMD header by using a JavaCompute node” on page 2653
v “Accessing the MQRFH2 header by using a JavaCompute node” on page 2654

For further details of the contents of these and other WebSphere MQ headers for
which WebSphere Message Broker provides a parser, see “Element definitions for
message parsers” on page 4237.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Element definitions for message parsers” on page 4237

Copying message headers by using a JavaCompute node:

You can copy message headers by using a JavaCompute node.

2652 WebSphere Message Broker Version 7.0.0.8

The Modifying Message Class template in the JavaCompute node wizard generates
the following code to copy message headers using a JavaCompute node:
public void copyMessageHeaders(MbMessage inMessage, MbMessage outMessage) throws MbException
{
MbElement outRoot = outMessage.getRootElement();
MbElement header = inMessage.getRootElement().getFirstChild();

while(header != null && header.getNextSibling() != null)
{
outRoot.addAsLastChild(header.copy());
header = header.getNextSibling();
}
}

Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Accessing the MQMD header by using a JavaCompute node:

WebSphere MQ and WebSphere MQ Everyplace messages include an MQMD
header. You can use a JavaCompute node to refer to the fields in the MQMD, and
to update them.

About this task

The following Java code shows how to add an MQMD header to your message:
public void addMqmd(MbMessage msg) throws MbException
{
MbElement root = msg.getRootElement();

// create a top level ’parser’ element with parser class name
MbElement mqmd = root.createElementAsFirstChild("MQHMD");

// specify next parser in chain
mqmd.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE,
"Format",
"XMLNS");

}

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

Chapter 9. Developing message flow applications 2653

Accessing the MQRFH2 header by using a JavaCompute node:

You can use a JavaCompute node to add an MQRFH2 header to an outgoing
message.

About this task

When you construct MQRFH2 headers in a JavaCompute node, two types of field
exist:
v Fields in the MQRFH2 header structure (for example, Format and

NameValueCCSID)
v Fields in the MQRFH2 NameValue buffer (for example mcd and psc)

The following code adds an MQRFH2 header to an outgoing message that is to be
used to make a subscription request:
public void addRfh2(MbMessage msg) throws MbException
{
MbElement root = msg.getRootElement();
MbElement body = root.getLastChild();

// insert new header before the message body
MbElement rfh2 = body.createElementBefore("MQHRF2");

rfh2.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "Version", new Integer(2));
rfh2.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "Format", "MQSTR");
rfh2.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "NameValueCCSID", new Integer(1208));

MbElement psc = rfh2.createElementAsFirstChild(MbElement.TYPE_NAME, "psc", null);
psc.createElementAsFirstChild(MbElement.TYPE_NAME, "Command", "RegSub");
psc.createElementAsFirstChild(MbElement.TYPE_NAME, "Topic", "department");
psc.createElementAsFirstChild(MbElement.TYPE_NAME, "QMgrName", "QM1");
psc.createElementAsFirstChild(MbElement.TYPE_NAME, "QName", "PUBOUT");
psc.createElementAsFirstChild(MbElement.TYPE_NAME, "RegOpt", "PersAsPub");

MbXPath xp = new MbXPath("/MQMD/Format" + "[set-value(uMQHRF2u)]", root);
root.evaluateXPath(xp);
}

In this example, the MQHRF2 parameter is the parser class name, which is different
from the parser element name (MQRFH2). For a list of the parsers, root element
names, and class names for different headers, see “Available parsers” on page
6689.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow

2654 WebSphere Message Broker Version 7.0.0.8

nodes and connecting them to form flows.
Related reference:
“MQRFH2 header” on page 6397
The MQRFH2 header is used to pass messages to and from a message broker that
belongs to WebSphere Message Broker.

Updating the local environment with the JavaCompute node:

The local environment tree is part of the logical message tree in which you can
store information while the message flow processes the message.

About this task

The following information shows how to update the local environment:

Procedure

1. Make a new copy of the local environment to update it. Use the full version of
the copy constructor to create a new MbMessageAssembly object, as shown in
the following example:
MbMessage env = assembly.getLocalEnvironment();
MbMessage newEnv = new MbMessage(env);

newEnv.getRootElement().createElementAsFirstChild(
MbElement.TYPE_NAME_VALUE,
"Status",
"Success");

MbMessageAssembly outAssembly = new MbMessageAssembly(
assembly,
newEnv,
assembly.getExceptionList(),
assembly.getMessage());

getOutputTerminal("out").propagate(outAssembly);

2. Edit the copy to update the local environment.
Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.

Chapter 9. Developing message flow applications 2655

“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related information:
Java user-defined extensions API

Updating the Global Environment with the JavaCompute node:

The Global Environment tree is always created when the logical tree is created for
an input message. However, the message flow neither populates it nor uses its
contents. You can use this tree for your own purposes, for example to pass
information from one node to another. You can use the whole tree as a scratchpad
or working area.

About this task

The Global Environment can be altered across the message flow, therefore do not
make a copy of it to alter. The following Java code shows how to alter the Global
Environment:
MbMessage env = assembly.getGlobalEnvironment();
env.getRootElement().createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "Status", "Success");

getOutputTerminal("out").propagate(assembly);

Related concepts:
“Environment tree structure” on page 1055
The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

Accessing the ExceptionList tree using Java:

The ExceptionList tree is created with the logical tree when an input message is
parsed.

About this task

The tree is initially empty, and is only populated if an exception occurs during
message flow processing. It is possible that more than one exception can occur; if
more than one exception occurs, the ExceptionList tree contains a subtree for each
exception.

2656 WebSphere Message Broker Version 7.0.0.8

You can access the ExceptionList tree in JavaCompute nodes from the
MbMessageAssembly parameter of your evaluate() method.

You can access the ExceptionList tree in a node in an error handling procedure. For
example, you might want to route the message to a different path based on the
type of exception.

You can use the querying capabilities within XPath to carry out this task. The
descendant axis (//) of XPath gives you the ability to search for an element by
name regardless of its depth in the tree. For example:

//ParserException

returns all elements in the tree named ParserException.

If you are specifically interested in a particular message, you can use a predicate
(see predicates for further information) to narrow down the result set. For example:

//ParserException[Number=5016]

returns only the exception that contains Number=5016.

If you only want to extract the text message associated with this exception, the
following XPath expression returns this as a java.lang.String:

string(//ParserException[Number=5016]/Text)

The following Java code extracts this text from your code:
String text =
(String)inAssembly.getExceptionList().evaluateXPath("string(//ParserException[Number=5016]/Text)");

For information on accessing the ExceptionList tree using ESQL, see “Accessing the
ExceptionList tree using ESQL” on page 2471
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Accessing the ExceptionList tree using ESQL” on page 2471
The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.

Chapter 9. Developing message flow applications 2657

http://www.w3.org/TR/xpath#predicates

Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
“Exception list structure” on page 4224
An exception list contains information about exceptions, such as error numbers, the
name of the node that generated the exception, and the reason for the exception.

Accessing broker properties from the JavaCompute node:

For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your Java programs. It can be useful, during
the run time of your code, to have real-time access to details of a specific node,
flow, or broker.

About this task

Broker properties are divided into four categories:
v Properties that relate to a specific node
v Properties that relate to nodes in general
v Properties that relate to a message flow
v Properties that relate to the execution group

“Broker properties that are accessible from ESQL and Java” on page 5302 includes
a table that shows the groups of properties that are accessible from Java. The table
also indicates if the properties are accessible from ESQL.

Broker properties have the following characteristics.
v They are grouped by broker, execution group, flow, and node.
v They are case sensitive. Their names always start with an uppercase letter.
v They return NULL if they do not contain a value.

To access broker properties in a JavaCompute node, call methods on the following
classes:
v MbBroker
v MbExecutionGroup
v MbMessageFlow
v MbNode

For example:
String brokerName = getBroker().getName();

Related concepts:
“Broker properties” on page 1144
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
Related tasks:

2658 WebSphere Message Broker Version 7.0.0.8

“Accessing broker properties from ESQL” on page 2625
You can access broker properties, at run time, from the ESQL modules in your
message flow nodes.
“Managing Java Files” on page 2629
The Java code that you provide to modify or customize the behavior of a
JavaCompute node is stored in a Java project. WebSphere Message Broker uses the
Eclipse Java perspective for developing and administering Java files.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Related reference:
“Broker properties that are accessible from ESQL and Java” on page 5302
You can access broker, message flow, and node properties from ESQL and Java.

Accessing message flow user-defined properties from a JavaCompute node:

Customize a JavaCompute node to access properties that you have associated with
the message flow in which the node is included.

About this task

To access these properties from a JavaCompute node, use the
getUserDefinedAttribute(name) method, where name is the name of the property
that you are accessing. The type of the object that is returned depends on the type
of the property that you are accessing. The object has one of a set of types:
v MbDate
v MbTime
v MbTimestamp
v Boolean
v byte[]
v String
v Integer 32-bit values
v Long 64-bit values
v Double
v BigDecimal
v BitSet

You cannot access user-defined properties in the constructor. To access them at
initialization time, implement the following method, and use it to access the
user-defined properties.
public void onInitialize() throws MbException
{

// access the user-defined properties here
}

You can use the Administration API for WebSphere Message Broker (also known as
the CMP API) to change the value of user-defined properties. Use the
getUserDefinedPropertyNames(), getUserDefinedProperty(), and
setUserDefinedProperty() methods to query, discover, and set user-defined
properties, as described in “Setting message flow user-defined properties at run
time in a CMP application” on page 985.
Related concepts:

Chapter 9. Developing message flow applications 2659

“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Adding keywords to JAR files:

If a BAR file contains JAR files, you can associate keywords with the JAR files.

Before you begin

Before you start:

Read about keywords in “Message flow version and keywords” on page 1445.

About this task

To add keywords to a JAR file:

Procedure

1. Add a file called META-INF/keywords.txt to the root of the JAR file.
2. Add your keywords to the META-INF/keywords.txt file, because this file is

parsed for keywords when it is deployed. Keywords have this format:
$MQSI keyword = value MQSI$

Example

For example, a deployed BAR file contains compute.jar, and compute.jar contains
the file META-INF/keywords.txt with the following contents:
META-INF/keywords.txt
$MQSI modified date = 3 Nov MQSI$
$MQSI author = john MQSI$

This content means that the keywords “modified date” and “author” are associated
with the deployed file compute.jar in Administration API (also known as the CMP
API) applications, including the WebSphere Message Broker Toolkit.

2660 WebSphere Message Broker Version 7.0.0.8

What to do next

You have now added keywords to your JAR file.

Next:

When you have added keywords to your JAR file, you can display them in the
BAR file editor; for more information, see “Version and keyword information for
deployable objects” on page 1443.
Related concepts:
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related reference:
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.

Interacting with databases by using the JavaCompute node:

Access databases from Java code included in the JavaCompute node.

About this task

Choose from the following options for database interaction:
v Broker JDBCProvider for type 4 connections
v MbSQLStatement
v JDBC API in an unmanaged environment
v SQLJ

If you use JDBCProvider for type 4 connections or MbSQLStatement, the databases
that you access can participate in globally coordinated transactions. In all other
cases, database access cannot be globally coordinated.

Broker JDBCProvider for type 4 connections:
About this task

You can establish JDBC type 4 connections to interact with databases from your
JavaCompute nodes. The broker supports type 4 drivers, but does not supply
them. You must obtain these drivers from your database vendor; for information
about supported drivers, see “Supported databases” on page 3591.

Use the broker JDBCProvider for type 4 connections to benefit from the following
advantages:
v Use broker configuration facilities to define the connection, and to provide

optional security, in preference to coding these actions.
v Configure the broker and the databases to coordinate access and updates with

other resources that you access from your message flows, except when the
broker is running on z/OS.

Chapter 9. Developing message flow applications 2661

v Use the broker Java API getJDBCType4Connection to initiate the connection,
then perform SQL operations by using the standard JDBC APIs. The broker
manages the connections, thread affinity, connection pooling, and lifecycle. If a
connection is idle for approximately 1 minute, or if the message flow completes,
the broker closes the connection.

If the broker is running on a distributed system, you can configure the databases
and the connections to be coordinated with other resource activity. Global
coordination on distributed systems is provided by WebSphere MQ, and can
include interactions with local or remote databases, including remote databases
that are defined on z/OS systems. If you establish a JDBC type 4 connection to a
database from a broker that is running on z/OS, coordination is not provided. For
information about setting up connections and coordination, see “Enabling JDBC
connections to the databases” on page 683.

Before you can include this function in the code that you write for the node, you
must configure the required environment. Decide whether your database requires
security of access, and whether you want the database updates to participate in
globally coordinated transactions. For the required and optional tasks, see
“Enabling JDBC connections to the databases” on page 683.

When you have configured the JDBCProvider, you can establish a JDBC type 4
connection to the database by using the getJDBCType4Connection call on the
MbNode interface. The following code provides an example of its use:

public class MyJavaCompute extends MbJavaComputeNode {
public void evaluate(MbMessageAssembly inAssembly) throws MbException {

MbOutputTerminal out = getOutputTerminal("out");
MbMessage inMessage = inAssembly.getMessage();

// create new message
MbMessage outMessage = new MbMessage(inMessage);
MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly,outMessage);

try {
// Obtain a java.sql.Connection using a JDBC Type4 datasource - in this example for a
// JDBC broker configurable service called "MyDB2"

Connection conn = getJDBCType4Connection("MyDB2",
JDBC_TransactionType.MB_TRANSACTION_AUTO);

// Example of using the Connection to create a java.sql.Statement
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet srs0 = stmt.executeQuery("SELECT NAME, CITY FROM MySchema.MyTable");

stmt.executeUpdate("UPDATE MySchema.MyTable SET CITY = \"Springfield\" WHERE Name = \"Bart\"");
.
// Perform other database updates
.

} catch (SQLException sqx){
sqx.printStackTrace();

} finally {
// Clear the outMessage
outMessage.clearMessage();

}
}

}

In this example:

2662 WebSphere Message Broker Version 7.0.0.8

v MyDB2 is the name of the JDBCProvider configurable service. Use the name of
the service that you have created to connect to your database.

v MySchema is the name of the database schema (not the name of the database).
v MB_TRANSACTION_AUTO defines the level of transaction coordination that is

required by the node. Only this value is supported, and indicates that the
coordination in the node is inherited from the coordination configured at
message flow level.

To indicate a failure (and roll back a transaction), issue an exception from the
JavaCompute node and the broker will handle the rollback.

The primary use of the getJDBCType4Connection call is in the evaluate() method
of a JavaCompute node, where it is used to obtain a JDBC connection that is
managed by the broker.

WebSphere Message Broker manages JDBC connections in the following ways:
v Non-pooled connections:

– WebSphere Message Broker creates a JDBC connection on demand for each
message flow instance that requires one.

– Each JDBC connection is associated with the message flow instance for which
it was created. This association is maintained until the connection is closed.

– Each JDBC connection that is idle for 60 seconds is closed, and is no longer
associated with a message flow instance.

– After a JDBC connection that was associated with a message flow instance is
closed, if the same message flow instance requires a JDBC connection,
WebSphere Message Broker creates a new JDBC connection on demand.

v Pooled connections:
– When a message flow instance requires a JDBC connection, WebSphere

Message Broker assigns an unused connection from the pool.
– If all pooled JDBC connections are being used, and the maximum pool size

has not been reached, WebSphere Message Broker creates a new pooled JDBC
connection. The maximum pool size is specified in the maxConnectionPoolSize
property of the “JDBCProviders configurable service” on page 3778.

– Each pooled JDBC connection remains associated with a message flow
instance only for the processing of one input message.

– When a message flow instance completes the processing of an input message,
the association with a JDBC connection is removed, and the JDBC connection
is returned to the pool.

– Each pooled JDBC connection that is idle for 15 minutes is closed, and is
removed from the pool.

– Pooled JDBC connections are not applicable to the DatabaseRetrieve and
DatabaseRoute nodes.

When using the getJDBCType4Connection call, your code must comply with the
following restrictions:
v Do not include code that makes explicit transaction calls such as COMMIT or

ROLLBACK. This restriction includes explicit transaction calls in a database
stored procedure.

v Do not close a connection, or cache a connection in the JavaCompute node.

A secondary use of the getJDBCType4Connection call is in the onitialize()
method of a JavaCompute node. The onitialize() method is called once, either

Chapter 9. Developing message flow applications 2663

during deployment or on broker startup, before the message flow starts processing
input. You can use the getJDBCType4Connection call in the onitialize() method
to complete work with a database before the message flow starts; for example:
v To create an in-memory cache of read-only data that is retrieved from a

database, to reduce the need to query the database in the message flow
v To prime a database with data before the message flow starts

When using the getJDBCType4Connection in the onitialize() method, ensure that
any exceptions that might occur in this processing are handled. Any unhanded
exception causes the deployment or startup of the message flow to fail. For more
information, see “JavaCompute node” on page 4514.

MbSQLStatement:
About this task

The MbSQLStatement class provides full transactional database access by using
ESQL and ODBC. The broker resource manager coordinates database access when
using MbSQLStatement. Global coordination is provided by WebSphere MQ on
distributed systems, and by RRS on z/OS. For information about how to set up the
ODBC resources that are required, see “Enabling ODBC connections to the
databases” on page 668.

Create instances of the MbSQLStatement class by using the createSQLStatement()
method of MbNode, passing to the method the ODBC data source, a broker EQSL
statement, and, optionally, the transaction mode.
v Calling select() on this object returns the results of the query.
v Calling execute() on this object runs a query where no results are returned, such

as updating a table.

The following Java code shows how to access a database by using
MbSQLStatement:
MbMessage newMsg = new MbMessage(assembly.getMessage());
MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

String table = "dbTable";

MbSQLStatement state = createSQLStatement("dbName",
"SET OutputRoot.XMLNS.integer[] = PASSTHRU(’SELECT * FROM " + table + "’);");

state.setThrowExceptionOnDatabaseError(false);
state.setTreatWarningsAsErrors(true);
state.select(assembly, newAssembly);

int sqlCode = state.getSQLCode();
if(sqlCode != 0)
{
// Do error handling here
}

getOutputTerminal("out").propagate(assembly);

JDBC API in an unmanaged environment:
About this task

You can access standard Java APIs in the code that you write for your
JavaCompute nodes, including JDBC calls. You can therefore use JDBC APIs to
connect to a database, write to or read from the database, and disconnect from the
database. On operating systems other than z/OS, the broker supports your JDBC

2664 WebSphere Message Broker Version 7.0.0.8

connection code calling both type 2 and type 4 JDBC drivers in this environment,
but does not supply them. You must obtain these drivers from your database
vendor. On z/OS, type 2 drivers are not supported.

If you choose this method to access databases, the broker does not support
managing the transactions; your code must manage the local commit and rollback
of database changes. Your code must also manage the connection lifecycle,
connection thread affinity, and connection pooling. You must also monitor the
access to databases when you use this technique to ensure that these connections
do not cause interference with connections made by the broker. In particular, be
aware that type 2 drivers bridge to an ODBC connection that might be in use in
message flows that access databases from ESQL.

SQLJ:
About this task

SQLJ is a Java extension that you can use to embed static SQL statements within
Java code. Create SQLJ files by using the WebSphere Message Broker Toolkit. The
broker resource manager does not coordinate database access when using SQLJ.

Procedure

1. Enable SQLJ capability in the WebSphere Message Broker Toolkit:
a. Select Window > Preferences.
b. Expand General.
c. Select Capabilities.
d. Select Data.
e. Click OK.

2. Create an SQLJ file within a Java project:
a. Right-click the Java project in which you want to create the file.
b. Select New > Other.
c. Expand Data.
d. Expand SQLJ Applications.
e. Select SQLJ File.
f. Click Next.
g. Follow the directions given by the New SQLJ File wizard to generate the

SQLJ file.

Results

You can now reference the class in this SQLJ file from a JavaCompute node class in
this project or in another referenced project.
Related concepts:
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
Related tasks:
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.

Chapter 9. Developing message flow applications 2665

“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
Related information:
Java user-defined extensions API

Calling an Enterprise Java Bean:

You can call an Enterprise Java Bean (EJB) from a JavaCompute node.

Before you begin

Before you start:
v Ensure that all required Java classes are in WebSphere Message Broker

shared-classes directories, or are referenced in the CLASSPATH environment
variable. You can use the wildcard character (*) at the end of a directory path
specifier to load all JARs in that directory path.

v Ensure that the user JAR files that are needed for EJB access are referenced in
CLASSPATH. For more information, see the documentation for the application
server that is hosting the EJB.

v If you are using a version of WebSphere Message Broker before Version 6.0 Fix
Pack 3, you must set the context loader by including the following statement in
the node's Java code before the InitialContext is set:
Thread currentThread().setContextClassLoader(this.getClass().getClassLoader());

Example

The following example shows how to call an EJB from a JavaCompute node:
public class CallAckNoAckEJB_JavaCompute extends MbJavaComputeNode {

public void evaluate(MbMessageAssembly inAssembly) throws MbException {
MbOutputTerminal out = getOutputTerminal("out");
MbOutputTerminal alt = getOutputTerminal("alternate");

MbMessage inMessage = inAssembly.getMessage();

// create new message
MbMessage outMessage = new MbMessage(inMessage);
MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly,outMessage);

try {
// --
// Add user code below

2666 WebSphere Message Broker Version 7.0.0.8

String response = null;
String responseMessage = null;

Properties properties = new Properties();
properties.put(Context.PROVIDER_URL, "iiop://localhost:2809");
properties.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.websphere.naming.

WsnInitialContextFactory");

try {

Context initialContext = new InitialContext(properties);
Object obj = initialContext.lookup("ejb/com/acme/ejbs/AckNoAckHome");
AckNoAckHome ejbHome = (AckNoAckHome)javax.rmi.PortableRemoteObject.

narrow(obj,AckNoAckHome.class);

AckNoAck ackNoAck = ejbHome.create();
responseMessage = ackNoAck.getAck();
response = "Ack";

} catch(Exception e) {
responseMessage = e.getMessage();
response = "NoAck";

}

MbElement cursor = outMessage.getRootElement().getFirstElementByPath("/XML/AckNoAck");
cursor.createElementAsLastChild(MbElement.TYPE_NAME,"Response",null);
cursor.getLastChild().createElementAsLastChild(MbElement.TYPE_NAME,response,null);
cursor.getLastChild().getLastChild().createElementAsLastChild(MbElement.TYPE_VALUE,null,

responseMessage);

// End of user code
// --

// The following should only be changed
// if not propagating message to the ’out’ terminal
out.propagate(outAssembly);

} finally {
// clear the outMessage
outMessage.clearMessage();

}
}

}

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“User-defined node class loading” on page 3120
Details the Java classes packaging options and loading order precedence for
user-defined nodes.
“JavaCompute node classloading” on page 2635
Details the default Java classloader options and the precedence order of each type.
Related tasks:
“Creating Java code for a JavaCompute node” on page 2629
Use these instructions to associate Java code with your JavaCompute node.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.

Chapter 9. Developing message flow applications 2667

Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

JavaCompute node exception handling:

The evaluate() method throws an MbException.

If your code throws other classes of checked exceptions, they must be caught and
rethrown as MbException. Typically, you use the MbUserException class.
MbUserException is a subclass of MbException, and has a public constructor.
WebSphere Message Broker utility functions can throw other subclasses of
MbException that have private constructors.

For information about what happens after the evaluate() method is processed, see
“Default error handling” on page 1280.

About this task

Exceptions can occur during message flow processing (during the evaluate()
method) and during the onInitialize() method. If you have implemented the
onInitialize() method, and you detect an unrecoverable error in the node
configuration, an exception of class MBException is issued and the flow fails to
initialize. Either your flow fails to deploy, and error message BIP4157 is issued, or
the flow does not start and does not appear in the list of running flows.

Do not run code in an onInitialize() method that depends on another external
resource that might not be there because the broker will not retry calls to that
method. If you need to initialize an external connection, for example, initialize it
during the first call to the evaluate() method. If the initialization does not work,
you can throw an exception that will be handled like any other flow exception.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Logging errors with the JavaCompute node:

The MbService class contains a number of static methods for writing to the
Administration log or syslog. Define message catalogs by using Java resource
bundles to store the message text.

About this task

Three levels of severity are supported:
v Information
v Warning
v Error

The following sample demonstrates the use of resource bundles and logging:
v JavaCompute Node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

2668 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
Related information:
Java user-defined extensions API

Using XSL Transform
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet.

About this task

Use the XSLTransform node to transform an input XML message into another
format using XSLT style sheets and to set the message domain, message set,
message type, and message format for the generated message. It is imperative that
the data can be parsed into a XML message. The style sheet, using the rules that
are defined within it, can perform the following actions:
v Sort the data
v Select data elements to include or exclude based on some criteria
v Transform the data into another format

The Xalan-Java transformation engine (Apache Xalan-java XSLT processor) is used
as the underlying transformation engine. For more information about XML
Transformations, the W3C specification of the syntax, and semantics of the XSL
Transformations language for transforming XML documents into other XML
documents, see W3C XSL Transformations.

You can deploy style sheets and XML files to broker execution groups, to help with
style sheet and XML file maintenance.

You can specify the location of the style sheet to apply to this transformation in
three ways:
v Use the content of the XML data within the message itself to transform the

message according to a style sheet that the message itself defines.
v Set a value in the LocalEnvironment folder. You must set this value in a node

that precedes the XSLTransform node (for example, a Compute node). You can
therefore use various inputs to determine which style sheet to use for this
message, such as the content of the message data, or a value in a database.

v Use node properties to ensure that the transformation that is defined by this
single style sheet is applied to every message that is processed by this node.

An XSLT (Extensible Stylesheet Language for Transformations) compiler is used for
the transformation if the style sheet is not embedded within the message, and the
node cache level (node property Stylesheet Cache Level) is greater than zero. If the
XSLT is cached, the performance is improved because the XSLT is not parsed every
time it is used.

Chapter 9. Developing message flow applications 2669

http://xml.apache.org/xalan-j
http://www.w3.org/TR/xslt

If the prologue of the input message body contains an XML encoding declaration,
the XSLTransform node ignores the encoding, and always uses the CodedCharSetId
in the message property folder to decode the message.

The XSLT capability that is provided by the XSLTransform node requires XML
processing APIs that are included in Xalan-Java and Xerces JAR files. The
XSLTransform node provides Xalan-Java and Xerces JAR files that work correctly
with the node. The Java JRE also includes Xalan-Java and Xerces JAR files, but you
might experience unpredictable results when these Java XML processing methods
are invoked by using an external Java method from a style sheet. Therefore, the
calling of Java methods from a style sheet that directly or indirectly reference Java
JRE XML processing methods is unsupported.

To find out more about the XSLTransform node and how to configure it, refer to
the following topics:
v “XSLTransform node” on page 4968
v “Adding keywords to XSL style sheets” on page 4975
v “Using local environment variables to set properties” on page 4976
v “Deployed and non-deployed style sheets” on page 4978

Using PHP
You can use the PHP scripting language for message routing and transformation.

About this task

Support for the PHP scripting language is available on all operating systems on
which WebSphere Message Broker is supported.

When you use the PHPCompute node, you can customize it to determine the exact
processing that it provides. To tailor the behavior of each node, create a PHP file
that provides the processing that you require. You can edit your PHP files by using
a text editor such as the default Eclipse text editor.

The PHP API simplifies tasks that involve message routing and transformation
tasks. These tasks include accessing named elements in a message tree, setting
their values, and creating elements, without the need to navigate the message tree
explicitly.

This section provides the following information about developing PHP:
v “PHP overview” on page 2671
v “Creating PHP code for a PHPCompute node” on page 2672
v “Using PHP arrays with XML” on page 2682
v “Using PHP arrays with JSON” on page 2685
v “Deploying code in a PHPCompute node” on page 2691
v “Calling Java from PHP” on page 2716
v “Creating and transforming messages using a PHPCompute node” on page 2701
v “Accessing elements in the message tree from a PHPCompute node” on page

2692
v “XML support” on page 2708
v “Routing a message using a PHPCompute node” on page 2709
v “Accessing other parts of the message tree using the PHPCompute node” on

page 2710

2670 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

PHP overview
WebSphere Message Broker provides support for the PHP scripting language.

WebSphere Message Broker provides a PHPCompute node, which is a
programmable node that supports message transformation and routing by using
the PHP scripting language. For example:
$output_assembly->XMLNSC->doc->item =
$input_assembly->MRM->structure->field;

This PHP code generates the following XML code:
<doc>

<item>
... deep copy of field element from input tree

</item>
</doc>

The PHPCompute node builds on this syntax to produce a powerful syntax for
accessing WebSphere Message Broker trees.

Standard output and standard error messages from the PHP engine are written to
the console log for the broker. For information about reading the console log, see
“Standard system logs” on page 6866.

z/OS

On z/OS, all PHP scripts must be encoded in UTF-8 format. All string

literals in PHP scripts, and all character data that is passed to scripts from the
message assembly, are in UTF-8 encoding. Typically, scripts that interact with the
message assembly in PHP work in the same way on z/OS as they do on other
operating systems. If a script uses byte streams in PHP (such as file access), the
Multibyte String functions can be used to detect the code page and convert
character data as required.

UTF-8 might not be the default code page of the broker, which means that any
function that requires the broker to have a UTF-8 default code page might need to

Chapter 9. Developing message flow applications 2671

be modified. For example, the asBitstream and addElementFromBitstream methods
on the MbsElement object use the default code page of the broker as their default
code page, rather than the code page of PHP.

The PHPCompute node provides support for Simple Network Management
Protocol (SNMP). The Management Information Base (MIB) files are installed
during the installation of WebSphere Message Broker, and their location is
specified by the MIBDIRS environment variable.

For information about the PHP functions supported by WebSphere Message Broker,
see “PHP extensions” on page 5324.

For more information about the PHP scripting language, see the PHP: Hypertext
Preprocessor web site.
Related concepts:
“XML support” on page 2708
The PHP capability in WebSphere Message Broker provides support for XML.
Related tasks:
“Creating PHP code for a PHPCompute node”
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

Creating PHP code for a PHPCompute node
Use these instructions to create your PHP code and associate it with your
PHPCompute node.

About this task

To create your PHP code and associate it with a PHPCompute node, follow these
steps:

Procedure
1. Ensure that your PHP code is in a PHP script file, with an extension of .php:
v If the required PHP code exists, import the PHP script file into the

workspace (see “Importing file systems into the WebSphere Message Broker
Toolkit” on page 2931). Alternatively, ensure that the PHP script file is stored
in the file system, so that the PHPCompute node can point to it directly.

v If the required PHP code does not exist, create it by following the
instructions in “Writing PHP code” on page 2673.

2. Associate the PHP code with a PHPCompute node in your message flow.
Follow the instructions in “Associating PHP code with a PHPCompute node”
on page 2675.

Related concepts:

2672 WebSphere Message Broker Version 7.0.0.8

http://www.php.net
http://www.php.net

“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Importing file systems into the WebSphere Message Broker Toolkit” on page 2931
You can import file systems into the WebSphere Message Broker Toolkit by using
the Import wizard, by dragging, or by copying.
“Writing PHP code”
Use these instructions to create your PHP code.
“Associating PHP code with a PHPCompute node” on page 2675
Use these instructions to associate your PHP code with a PHPCompute node.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

Writing PHP code:

Use these instructions to create your PHP code.

About this task

Procedure

1. In the Broker Application Development perspective, click File > New > Other.
The Select a wizard pane is displayed.

2. Select File from the list of resources, then click Next.
3. Select the required parent folder from the list, then type the name of your new

PHP script file in the File Name field. Ensure that the file you specify has an
extension of .php (for example, Hello.php). The Eclipse text editor opens, with
an empty pane in which you can type your PHP code.

4. Type your PHP code into your new PHP script file, by using the Eclipse text
editor. The PHP script must be contained within the <?php and ?> tags:
<?php

// Body of the script

?>

You can create a PHP script with or without a class and evaluate method. The
option you choose affects both the content of the script and the setting of the
PHPCompute node's Invoke evaluate method property:
v Create a script including a class and evaluate method:

The Invoke evaluate method property of the PHPCompute node is selected
by default, therefore a class and evaluate method are expected in the PHP
script.
The PHP code must contain a class with the same name as the PHP file
(Hello, for example), and this class must contain a function called evaluate,
with parameters for the input and output message assemblies:

Chapter 9. Developing message flow applications 2673

<?php

class Hello {

/**
* An example of MessageBrokerSimpleTransform
* @MessageBrokerSimpleTransform
*/
function evaluate($output_assembly, $input_assembly) {
// transformation code here
// $output_assembly ->XMLNSC->... = $input_assembly->XMLNSC->...
}

}

?>

For more information about the @MessageBrokerSimpleTransform annotation
shown in this example, see “Using annotations” on page 2676.

v Create a script without a class and evaluate method:
The global variable $assembly makes the incoming message assembly
available to the script. The incoming message and message assembly are read
only. As a result, for message transformation, you must make a new copy of
the message and the assembly containing the new message:
<?php

$output_message = new MbsMessage();

// transformation code here
// $output_message->XMLNSC->... = $assembly->XMLNSC->...

$output_assembly = new MbsMessageAssembly($assembly, $output_message);
$output_assembly->propagate("out");

?>

The Invoke evaluate method property of the PHPCompute node is selected
by default, therefore a class and evaluate method are expected in the PHP
script. If you use a PHP script without a class and evaluate method,
remember to clear the Invoke evaluate method property of the PHPCompute
node.
You must explicitly propagate the message assembly to one of the output
terminals before the end of the script.

What to do next

When you have created your PHP code, associate it with the PHPCompute node
by following the instructions in “Associating PHP code with a PHPCompute node”
on page 2675.

For information about the PHP scripting language, see the PHP: Hypertext
Preprocessor Web site.
Related concepts:
“Using annotations” on page 2676
Annotations alter the behavior of the evaluate method when using the PHP class
structure, and remove the need to repeat commonly used code (for transforming
message trees) in each PHP script.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.

2674 WebSphere Message Broker Version 7.0.0.8

http://www.php.net
http://www.php.net

“Associating PHP code with a PHPCompute node”
Use these instructions to associate your PHP code with a PHPCompute node.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Associating PHP code with a PHPCompute node:

Use these instructions to associate your PHP code with a PHPCompute node.

About this task

Procedure

1. Create a message flow containing a PHPCompute node. For example, create a
message flow containing an MQInput node, a PHPCompute node, and an
MQOutput node. For information, see “Creating a message flow” on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
PHPCompute node.

3. Connect the Out terminal of the PHPCompute node to the In terminal of the
MQOutput node.

MQInput PHPCompute MQOutput

4. On the MQInput node, set the Queue name property (on the Basic tab) to
InQueue.

5. On the PHPCompute node, set the PHP script property (on the Basic tab) to
Hello.php. You can either type the name of the PHP file into the field, or select
Browse to navigate to the PHP files stored in your workspace. If you select
Browse, the PHP files in the current message flow project are displayed,
together with PHP files in any referenced projects. To add project references,
right-click the message flow project, select Properties, then select the Project
references category.

6. Set the following properties of the MQOutput node:
a. On the Basic tab, set the Queue name property to OutputQueue
b. On the Validation tab, set the Validate property to Inherit.

7. Save the message flow.

Results

You can display the PHP script file associated with the PHPCompute node by
double-clicking the node in the message flow. The file Hello.php is opened in the
Eclipse text editor.

Chapter 9. Developing message flow applications 2675

Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Writing PHP code” on page 2673
Use these instructions to create your PHP code.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

Using annotations:

Annotations alter the behavior of the evaluate method when using the PHP class
structure, and remove the need to repeat commonly used code (for transforming
message trees) in each PHP script.

When you use the PHP class structure with WebSphere Message Broker, the class
must have the same name as the PHP file and it must implement a method called
evaluate. The PHPCompute node instantiates the class and calls the evaluate
method. For more information about developing PHP code, see “Creating PHP
code for a PHPCompute node” on page 2672.

The following annotations are supported by the broker:
v “@MessageBrokerSimpleTransform” on page 2677
v “@MessageBrokerCopyTransform” on page 2678
v “@MessageBrokerRouter” on page 2679
v “@MessageBrokerLocalEnvironmentTransform” on page 2680

You can specify multiple annotations for an evaluate method. If the
MessageBrokerCopyTransform and MessageBrokerSimpleTransform annotations are
specified together, the MessageBrokerCopyTransform annotation takes precedence.
The input assembly is available with both the MessageBrokerSimpleTransform and
MessageBrokerCopyTransform annotations.

If no annotations are specified, the first argument to the evaluate method is a
read-only assembly. Annotation names are case-sensitive, and annotations that are
not recognized are ignored.

When you use an annotation, the output assembly is passed to the evaluate
method as the first parameter, and the input assembly is passed as the second
parameter. The second parameter is optional and is passed in if you have specified
it in your evaluate method declaration.
Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:

2676 WebSphere Message Broker Version 7.0.0.8

“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

@MessageBrokerSimpleTransform:

Use the @MessageBrokerSimpleTransform annotation to alter the behavior of the
evaluate method in a PHP class.

The @MessageBrokerSimpleTransform annotation causes two parameters to be
passed to the evaluate method. The first parameter is a reference to the output
assembly, and the second parameter is a reference to the input assembly. The
second parameter is optional.

If the MessageBrokerSimpleTransform and MessageBrokerCopyTransform
annotations are specified together, the MessageBrokerCopyTransform annotation
takes precedence.

The following example copies the subtree under element aaa into the output tree
under element bbb:
<?php

class SimpleTransform {

/**

* An example of MessageBrokerSimpleTransform
* @MessageBrokerSimpleTransform

*/

function evaluate($output_assembly, $input_assembly) {

$output_assembly->XMLNSC->bbb = $input_assembly->XMLNSC->aaa;
}

}

?>

Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Using annotations” on page 2676
Annotations alter the behavior of the evaluate method when using the PHP class
structure, and remove the need to repeat commonly used code (for transforming
message trees) in each PHP script.

Chapter 9. Developing message flow applications 2677

“@MessageBrokerCopyTransform”
Use the @MessageBrokerCopyTransform annotation to alter the behavior of the
evaluate method in a PHP class.
“@MessageBrokerRouter” on page 2679
Use the @MessageBrokerRouter annotation to alter the behavior of the evaluate
method in a PHP class.
“@MessageBrokerLocalEnvironmentTransform” on page 2680
Use the @MessageBrokerLocalEnvironmentTransform annotation to alter the
behavior of the evaluate method in a PHP class.
Related tasks:
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

@MessageBrokerCopyTransform:

Use the @MessageBrokerCopyTransform annotation to alter the behavior of the
evaluate method in a PHP class.

The @MessageBrokerCopyTransform annotation causes one parameter to be passed
to the evaluate method. This parameter is a reference to the output assembly with
the contents of the input assembly already copied into it. The input assembly is
available with the @MessageBrokerCopyTransform. If you declare a second
parameter (which is optional) the input assembly is passed to it.

If the @MessageBrokerCopy Transform and @MessageBrokerSimpleTransform
annotations are specified together, the @MessageBrokerCopyTransform annotation
takes precedence.

The following example modifies the original XML message by adding an element
called Greeting with the value Hello World:
<?php

class CopyTest {

/**

* An example of MessageBrokerCopyTransform

*

* @MessageBrokerCopyTransform

*/

function evaluate($assembly) {
$assembly->XMLNSC->doc->Greeting = “Hello World”;

}

2678 WebSphere Message Broker Version 7.0.0.8

}

?>

Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Using annotations” on page 2676
Annotations alter the behavior of the evaluate method when using the PHP class
structure, and remove the need to repeat commonly used code (for transforming
message trees) in each PHP script.
“@MessageBrokerSimpleTransform” on page 2677
Use the @MessageBrokerSimpleTransform annotation to alter the behavior of the
evaluate method in a PHP class.
“@MessageBrokerRouter”
Use the @MessageBrokerRouter annotation to alter the behavior of the evaluate
method in a PHP class.
“@MessageBrokerLocalEnvironmentTransform” on page 2680
Use the @MessageBrokerLocalEnvironmentTransform annotation to alter the
behavior of the evaluate method in a PHP class.
Related tasks:
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

@MessageBrokerRouter:

Use the @MessageBrokerRouter annotation to alter the behavior of the evaluate
method in a PHP class.

The @MessageBrokerRouter annotation causes the return value of the evaluate
method to be used to specify the terminal through which the message is to be
propagated. The terminal can be either the Out terminal (defined on the node) or a
dynamic terminal that you have created. You can add output terminals
dynamically to your node instance in the Message Flow editor. The string that is
returned from the evaluate method must match either the name of the dynamic
terminal that you have defined or the Out terminal. If no return value is specified,
the output assembly is not propagated to the next node after the evaluate method
returns.

The following example routes the message to the Out terminal if the value of the
threshold element is greater than 10; otherwise the message is routed to the other
terminal:
<?php
class RouteTest {

Chapter 9. Developing message flow applications 2679

/**
* Basic routing of a message.
*
* @MessageBrokerRouter
*/

function evaluate($assembly) {
// Simple filter
if ($assembly->XMLNSC->doc->threshold->getValue() > 10) {

return ’out’;
} else {
return ’other’;
}
}
}
?>

For information about dynamic terminals, see “Using dynamic terminals” on page
1518.
Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Using annotations” on page 2676
Annotations alter the behavior of the evaluate method when using the PHP class
structure, and remove the need to repeat commonly used code (for transforming
message trees) in each PHP script.
“@MessageBrokerCopyTransform” on page 2678
Use the @MessageBrokerCopyTransform annotation to alter the behavior of the
evaluate method in a PHP class.
“@MessageBrokerSimpleTransform” on page 2677
Use the @MessageBrokerSimpleTransform annotation to alter the behavior of the
evaluate method in a PHP class.
“@MessageBrokerLocalEnvironmentTransform”
Use the @MessageBrokerLocalEnvironmentTransform annotation to alter the
behavior of the evaluate method in a PHP class.
Related tasks:
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

@MessageBrokerLocalEnvironmentTransform:

Use the @MessageBrokerLocalEnvironmentTransform annotation to alter the
behavior of the evaluate method in a PHP class.

The @MessageBrokerLocalEnvironmentTransform is similar to the
@MessageBrokerSimpleTransform annotation but creates a copy of the local
environment tree in the output assembly.

2680 WebSphere Message Broker Version 7.0.0.8

If the @MessageBrokerLocalEnvironmentTransform is used, nodes downstream of
the PHPCompute node see changes to the local environment. If the
@MessageBrokerLocalEnvironmentTransform is not used, the node can still modify
the local environment, and all nodes in the flow (including upstream nodes) can
see the changes.

The following example populates two new folders in the local environment tree,
and copies the Wildcard subtree from the local environment into the output
message:
<?php

class LocalEnvironmentTest {

/**

* Test local environment messages.

*

* @MessageBrokerSimpleTransform

* @MessageBrokerLocalEnvironmentTransform

*/

function evaluate($output_assembly, $input_assembly) {

$output_assembly[MB_LOCAL_ENVIRONMENT]->Folder1 = ’some string’;

$output_assembly[MB_LOCAL_ENVIRONMENT]->Folder2->SubFolder =
’another string’;

$output_assembly->XMLNSC->Message->InputLocalEnvironment =
$input_assembly[MB_LOCAL_ENVIRONMENT]->Wildcard;

}

}

?>

Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Using annotations” on page 2676
Annotations alter the behavior of the evaluate method when using the PHP class
structure, and remove the need to repeat commonly used code (for transforming
message trees) in each PHP script.
“@MessageBrokerCopyTransform” on page 2678
Use the @MessageBrokerCopyTransform annotation to alter the behavior of the
evaluate method in a PHP class.
“@MessageBrokerRouter” on page 2679
Use the @MessageBrokerRouter annotation to alter the behavior of the evaluate
method in a PHP class.
“@MessageBrokerSimpleTransform” on page 2677
Use the @MessageBrokerSimpleTransform annotation to alter the behavior of the

Chapter 9. Developing message flow applications 2681

evaluate method in a PHP class.
Related tasks:
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Using PHP arrays with XML
PHP arrays are associative arrays (maps) but you can treat them as lists by adding
values without keys.

PHP supports the following syntax for building arrays:
$array[] = "aaa";
$array[] = "bbb";

PHP allows an object to function as an array, and you can use this capability to
create repeating elements in a tree. For example:
$output_root->XMLNSC->a->b->c[] = $input_root->XMLNSC->a->b;
$output_root->XMLNSC->a->b->c[] = $input_root->XMLNSC->a->c;

The code shown above creates the following elements:
<a>

<c>
... // contents of $input_root->XMLNSC->a->b
</c>
<c>
... // contents of $input_root->XMLNSC->a->c
</c>

You can use the array operator in the path, as shown in the following example:
$output_root->XMLNSC->a->b[]->c = $input_root->XMLNSC->a->b;
$output_root->XMLNSC->a->b[]->c = $input_root->XMLNSC->a->c;

to create the following elements:
<a>

<c>
... // contents of $input_root->XMLNSC->a->b
</c>

<c>
... // contents of $input_root->XMLNSC->a->c
</c>

The following example uses no array operators:
$output_root->XMLNSC->a->b->c = $input_root->XMLNSC->a->b;
$output_root->XMLNSC->a->b->c = $input_root->XMLNSC->a->c;

2682 WebSphere Message Broker Version 7.0.0.8

The example above produces the following XML code:
<a>

<c>
... // contents of $input_root->XMLNSC->a->c (overwriting previous)
</c>

You can also iterate a set of repeating elements by using a foreach loop, as shown in
the following example:
foreach ($input_root->XMLNSC->doc->item as $item) {

$output_root->XMLNSC->msg->bit[] = $this->transformItem($item);
}

This example builds an output message with a repeating bit element, one for each
item element in the input message. The content of each bit element is determined
by the transformItem function, which refers to the item element as its parameter. The
following sample shows an example of this syntax being used for message
transformation:
v PHPCompute Node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

You can assign standard PHP arrays into an element tree as a way of building
subtrees by using a very compact syntax. The following example shows how to
build a repeating element from an array of values:
$output_root->XMLNSC->doc->item[] = array(’aaa’, ’bbb’, ’ccc’);

This code builds a tree with three item elements:
<doc>
<item>aaa</item>
<item>bbb</item>
<item>ccc</item>
</doc>

Although the PHP array looks like a list, it is an associative array with the keys 0,
1, and 2. The following example shows how to assign key/value pairs into the
element tree:
$output_root->XMLNSC->doc->item = array(’book’ => ’PHP’,

’fruit’ => ’apple’,
’dog’ => ’Spaniel’);

Without the [] operator on the item element, the keys in the array are used to
name the child elements:
<doc>
<item>
<book>PHP</book>
<fruit>apple</fruit>
<dog>Spaniel</dog>
</item>
</doc>

You can also nest arrays to represent more complex structures. For example:

Chapter 9. Developing message flow applications 2683

output_root->XMLNSC->doc->items =
array(’book’ => array(’title’ => ’PHP’,

’author’ => ’A N Other’),
’fruit’ => ’apple’,
’dog’ => array(’breed’ => ’Spaniel’,

’ears’ => ’long’));

The preceding example produces the following XML code:
<doc>
<items>
<book>
<title>PHP</title>
<author>A N Other</author>
</book>
<fruit>apple</fruit>
<dog>
<breed>Spaniel</breed>
<ears>long</ears>
</dog>
</items>
</doc>

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“MbsElement arrays”
When an array of MbsElement objects is assigned to an element tree, the array acts
as an associative array.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Writing PHP code” on page 2673
Use these instructions to create your PHP code.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

MbsElement arrays:

When an array of MbsElement objects is assigned to an element tree, the array acts
as an associative array.

For example:
$output_assembly->XMLNSC->doc->folder = $input_assembly->xpath("//item");

This example generates the following result:
<doc>
<folder>
<item>
... deep copy of 1st item element
</item>
<item>
... deep copy of 2nd item element
</item>
<item>

2684 WebSphere Message Broker Version 7.0.0.8

... deep copy of 3rd item element
</item>
</folder>
</doc>

The name of each element on the right side (in this example, item) becomes the
name of the child element in the target tree. However, if the [] operator is used on
the left side, item is replaced with folder, as shown in the following example:
$output_assembly->XMLNSC->doc->folder[] = $input_assembly->xpath("//item");

The example shown above generates the following result:
<doc>
<folder>
... deep copy of 1st item element
</folder>
<folder>
... deep copy of 2nd item element
</folder>
<folder>
... deep copy of 3rd item element
</folder>
</doc>

Related concepts:
“Using PHP arrays with XML” on page 2682
PHP arrays are associative arrays (maps) but you can treat them as lists by adding
values without keys.
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“MbsElement” on page 5313
The MbsElement class represents a single parsed element in a message (or other
logical tree).

Using PHP arrays with JSON
PHP arrays are associative maps, in which the key can be an integer or a string.

Integer keys can be allocated automatically in ascending sequential order, to work
in the same way as a traditional integer indexed array. PHP supports an empty
index operator ([]), which can be used on the left side of an assignment to add an
item to the array, using an integer index with the value of the highest current
index plus 1.

Chapter 9. Developing message flow applications 2685

PHP associative arrays are modeled as JSON object structures, because JSON
arrays are anonymous.

Values in a JSON logical tree can be set using any of the PHP native types,
including arrays. The type of array determines the resulting JSON logical tree
shape:
v A JSON array is produced by assigning a contiguous integer-indexed PHP array

into a JSON domain tree path. A PHP array variable is contiguous
integer-indexed if it contains only integer keys that are sequenced from 0 to n-1
(where n is the total number of items in the array). The tree elements have their
type set automatically to JSON.Array, which produces a JSON array format in
the bit stream when the tree is serialized.

v A JSON object is produced by assigning an associative PHP array into a JSON
domain tree path. A PHP array is associative if it contains one or more string
keys, or if it has integer keys that are not contiguously sequenced from 0 to n-1.

When a multidimensional PHP array variable is assigned to a JSON domain tree
path, these rules are applied to each dimension of the array variable, so that an
appropriate JSON array or object is formed in the message tree to model each
dimension of the PHP array.

When you create a JSON message tree in PHP using individual value assignments,
you can create JSON array items by appending the target path with the PHP array
append operator ([]) in the assignment. You can use the [] operator on a path in
the following ways:
v To create a JSON array and add the first item into it
v To append an item to the end of an existing JSON array

If you try to create an array item using a target path with the [] operator, and the
path resolves to an existing JSON object element in the tree, an exception is
thrown.

The PHPCompute node supports the PHP constant MB_JSON_ARRAY, which you can
use in the MbElement setType() method to change an existing JSON object
element into a JSON array. This method is typically used when elements have been
created by copying from a tree owned by another parser domain.

To access or change an existing value of a JSON array item in a tree, you can use
an array index ([index]) to select the required item. JSON array items cannot be
created in the JSON tree by using the [index] form; attempts to do so result in an
exception being thrown.

You can also access non-array elements in the JSON domain tree, as if the tree
were an associative array, by using an index key name. For example, to select an
element called street, which is a child of an element called address, use the
following path construct:
->address[’street’]

The following examples demonstrate how you can use PHP arrays with JSON:
v “Creating a JSON array message from individual PHP variables” on page 2687
v “Creating a JSON array message from a PHP indexed array” on page 2687
v “Creating a JSON object message from a PHP associative array” on page 2688
v “Creating a JSON message from a PHP integer index multidimensional array”

on page 2688

2686 WebSphere Message Broker Version 7.0.0.8

v “Creating a JSON message from a PHP mixed associative and integer indexed
multidimensional array” on page 2688

v “Updating a JSON array in the logical tree” on page 2689
v “Copying an XML domain message subtree with repeating elements to a JSON

domain tree and converting it to a JSON array using PHP” on page 2689
v “Working with a JSON object with a repeating name” on page 2690

Creating a JSON array message from individual PHP variables

You can create a JSON array and append items to it by using a target path with an
array append index operator ([]):

$strVar = "this";
$boolVar = true;
$output_assembly->JSON->Data[] = $strVar;
$output_assembly->JSON->Data[] = $boolVar;

You must use the array append index operator ([]) to append to an array; you
cannot use the [index] form.

The following broker message tree is produced:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01001000:Array): Data = (
(0x03000000:NameValue): Item = ’this’ (CHARACTER)
(0x03000000:NameValue): Item = TRUE (BOOLEAN)

)
)

This message tree is serialized to the following JSON bit stream:
["this",true]

You can extend this example to build a multidimensional JSON array:
$output_assembly->JSON->Data[][] = ’00’;
$data = $output_assembly->JSON->Data;
$data[0][] = ’01’;
$data[][] = ’10’;
$data[1][] = ’11’;

The resulting message tree is serialized to the following JSON bit stream:
[["00","01"],["10","11"]]

Creating a JSON array message from a PHP indexed array

You can create a PHP array with contiguous integer keys, and assign it to the
message tree element that you want to form the JSON array:

$arr = array("this", "that");
$output_assembly->JSON->Data = $arr;

The following broker message tree is produced:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01001000:Array): Data = (
(0x03000000:NameValue): 0 = ’this’ (CHARACTER)
(0x03000000:NameValue): 1 = ’that’ (CHARACTER)

)
)

This message tree is serialized to the following JSON bit stream:
["this", "that"]

Chapter 9. Developing message flow applications 2687

Creating a JSON object message from a PHP associative array

This example shows how to create a PHP array with named keys, and assign it to
the message tree element that you want to form the JSON object:

$arr = array(’first’ => "1st", ’second’ => "2nd");
$output_assembly->JSON->Data = $arr;

The following broker message tree is produced:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01000000:Object): Data = (
(0x03000000:NameValue): first = ’1st’ (CHARACTER)
(0x03000000:NameValue): second = ’2nd’ (CHARACTER)

)
)

You can access the array elements using the key name in the array index:
$var1 = $output_assembly->JSON->Data[’second’]; // 2nd
$var2 = $output_assembly->JSON->Data[’none’]; // null

This is serialized to the following JSON bit stream:
{"first":"1st","second":"2nd"}

Creating a JSON message from a PHP integer index multidimensional
array

You can assign the array to the element that is to hold the data. The top level and
the nested level of the PHP array are integer indexed arrays, so both are created as
JSON arrays, resulting in a multidimensional JSON array:
$arr = array(array("a1","a2"),array("b1","b2"));
$output_assembly->JSON->Data = $arr;

The following broker message tree is produced:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01001000:Array): Data = (
(0x01001000:Array): 1 = (

(0x03000000:NameValue): 1 = ’a1’ (CHARACTER)
(0x03000000:NameValue): 2 = ’a2’ (CHARACTER)

)
(0x01001000:Array): 2 = (

(0x03000000:NameValue): 1 = ’b1’ (CHARACTER)
(0x03000000:NameValue): 2 = ’b2’ (CHARACTER)

)
)

)

This message tree is serialized to the following JSON bit stream:
[["a1","a2"],["b1","b2"]]

Creating a JSON message from a PHP mixed associative and integer
indexed multidimensional array

You can assign the array to the element that is to hold the data. The top level of
the PHP array is associative, with string key names, and so becomes a JSON object.
The nested level of the PHP array is using integer indexed arrays, and is created as
a JSON array.
$arr = array("top1" => array("a1","a2"), "top2" => array("b1","b2"));
$output_assembly->JSON->Data = $arr;

2688 WebSphere Message Broker Version 7.0.0.8

The following broker message tree is produced from the example shown above:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01000000:Object): Data = (
(0x01001000:Array):top1 = (

(0x03000000:NameValue): 1 = ’a1’ (CHARACTER)
(0x03000000:NameValue): 2 = ’a2’ (CHARACTER)

)
(0x01001000:Array):top2 = (

(0x03000000:NameValue): 1 = ’b1’ (CHARACTER)
(0x03000000:NameValue): 2 = ’b2’ (CHARACTER)

)
)

)

This message tree is serialized to the following JSON bit stream:
{"top1":["a1","a2"],"top2":["b1","b2"]}

Updating a JSON array in the logical tree
[["a1","a2"],["b1","b2"]]

The following broker message tree is produced from the JSON input shown above:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01001000:Array): Data = (
(0x01001000:Array): Item = (

(0x03000000:NameValue): Item = ’a1’ (CHARACTER)
(0x03000000:NameValue): Item = ’a2’ (CHARACTER)

)
(0x01001000:Array): Item = (

(0x03000000:NameValue): Item = ’b1’ (CHARACTER)
(0x03000000:NameValue): Item = ’b2’ (CHARACTER)

)
)

)

You can update this message with PHP, using [index] on the element that is
holding the array to access existing elements, and the [] form to create additional
elements:
output_assembly->JSON->Data[0][0] = "A1";
output_assembly->JSON->Data[1][1] = "B2";
output_assembly->JSON->Data[1][] = "New3";

This example produces the following JSON output:
[["A1","a2"],["b1","B2","new3"]]

Copying an XML domain message subtree with repeating elements to
a JSON domain tree and converting it to a JSON array using PHP

You can use the PHP constant MB_JSON_ARRAY to explicitly test and set the
Array type of a message tree element. For example, you can use
MB_JSON_ARRAY if you are copying message tree data from an XML domain to a
JSON domain, or from a JSON domain to an XML domain. The following XML
input contains repeating elements:
<doc>

<cats>
<cat>thing1</cat>
<cat>thing2</cat>

</cats>
</doc>

The following broker message tree is produced by the XMLNSC parser:

Chapter 9. Developing message flow applications 2689

(0x01000000:Folder):XMLNSC = ([’xmlnsc’ : 0xhhhhhh]
(0x01001000:Folder): doc = (
(0x01001000:Folder): cats = (

(0x03000000:NameValue): cat = ’thing1’ (CHARACTER)
(0x03000000:NameValue): cat = ’thing2’ (CHARACTER)

)
)

)

The message flow can convert this broker message tree into a JSON message, to be
serialized in the following way:
{"cats":["thing1","thing2"]}

You can transform the message using PHP, as shown in the following example:
$output_assembly->JSON->Data = $input_assembly->XMLNSC->doc;
$output_assembly->JSON->Data->cats->setType(MB_JSON_ARRAY);

This transformation produces the following message tree, which serializes to JSON
format:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01000000:Obejct):Data = (
(0x01001000:Array): cats = (

(0x03000000:NameValue): cat = ’thing1’ (CHARACTER)
(0x03000000:NameValue): cat = ’thing2’ (CHARACTER)

)
)

)

Working with a JSON object with a repeating name

The JSON specification states that JSON objects should not have duplicate names.
However, it is possible for a message to contain this format; for example, in the
following JSON message the name cat is repeated:
{"cat":"thing1","cat":"thing2" }

The JSON parser produces the following broker message tree from the JSON input
shown above:
(Message):JSON = ([’json’ : 0xhhhhhh]

(0x01001000:Object): Data = (
(0x03000000:NameValue): cat = ’thing1’ (CHARACTER)
(0x03000000:NameValue): cat = ’thing2’ (CHARACTER)

)
)

This is an invalid PHP data structure because it has a duplicate key, which cannot
exist in an associative array. As a result, this form of JSON data cannot be
accessed, created, or modified from a PHPCompute node. To process this type of
JSON data, the message flow must use either ESQL or Java.
Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“MbsElement arrays” on page 2684
When an array of MbsElement objects is assigned to an element tree, the array acts
as an associative array.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.

2690 WebSphere Message Broker Version 7.0.0.8

“Writing PHP code” on page 2673
Use these instructions to create your PHP code.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

Deploying code in a PHPCompute node
The WebSphere Message Broker Toolkit deploys the PHPCompute node code
automatically.

About this task

When you create a broker archive (BAR) file and add the message flow, the
WebSphere Message Broker Toolkit packages the PHP code and its dependencies
into the BAR file.

PHP files referenced by a PHPCompute node are added to the BAR file
automatically when it is built, but you can also add additional PHP files to the
BAR file by using the Broker Archive editor:

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.

Chapter 9. Developing message flow applications 2691

Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.

Accessing elements in the message tree from a PHPCompute
node
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.

You can extract information from a message by using the PHPCompute node path
syntax, or by using the MbsElement API methods. XPath 1.0 is supported as a
means of accessing parts of the message.

Follow the relevant parent and child relationships from the top of the tree
downwards until you reach the required element.

The following topics provide more information about accessing, extracting, and
updating information in the message tree:
v “Traversing the element tree” on page 2693
v “Using SPL iterators with PHP” on page 2695
v “Accessing information about an element” on page 2701
Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Using SPL iterators with PHP” on page 2695
The PHPCompute node provides support for the Standard PHP Library (SPL)
syntax, which provides iterators that can be used in PHP code.
“Accessing information about an element” on page 2701
Use PHP methods to return information about an element.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Traversing the element tree” on page 2693
Use PHP methods to access element trees.
“Accessing other parts of the message tree using the PHPCompute node” on page
2710
You can use the PHPCompute node to access headers, broker properties,
user-defined properties, the local environment, and the global environment.
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

2692 WebSphere Message Broker Version 7.0.0.8

“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

Traversing the element tree:

Use PHP methods to access element trees.

About this task

Use the following statements to traverse a message tree from an element:

getParent()
Returns the parent of the current element.

getPreviousSibling()
Returns the previous sibling of the current element.

getNextSibling()
Returns the next sibling of the current element.

getChild()
Returns the first child of the current element, whose name is given by the
first parameter. The nth occurrence of that child element can be returned by
specifying the second optional parameter.

getChildren()
Returns all the child elements of the current element as an array of
MbsElements. If the namespace parameter is specified, the array contains
only the child elements with that namespace URI.

getFirstChild()
Returns the first child of the current element.

getLastChild()
Returns the last child of the current element.

The following example shows a simple XML message and the logical tree that is
created from the message. The message has been sent by using WebSphere MQ.
The logical tree diagram also shows the methods to call to navigate around the
tree:
<document>

<chapter title=’Introduction’>
Some text

</chapter>
</document>

Chapter 9. Developing message flow applications 2693

N: Root
V:

N: MQMD
V:

N: Properties
V:

N: XML
V:

N: document
V:

N: chapter
V:

N: title
V: Introduction

N: - Name
V: - Value

Key:

N:
V: Some text.

(1)

(2)

(3)

(4)

(5)

getFirstChild()
getLastChild()
getNextSibling()
getPreviousSibling()
getParent()

(1)

(3)

(4)

(3)

(3)

(4)

(4)

(5) (5)

(1)

(1)

(1) (5)

(5)

(5)

(5)

(5) (2)

(2)

(2)

(2)

The tree used in this diagram is the one that is created by parsing the XML
example given in this topic.
v From the Root part of the tree, calling getFirstChild() navigates to Properties.

Also from Root, calling getLastChild() returns XML.
v From Properties, calling getParent() returns Root, and calling getNextSibling()

returns MQMD.
v From MQMD, calling getPreviousSibling() returns Properties, calling

getParent() returns Root, and calling getNextSibling() returns XML.
v From XML, calling getPreviousSibling() returns MQMD, calling getParent()

returns Root, calling getFirstChild() returns document, and calling
getLastChild() also returns document.

v From document, calling getParent() returns XML, calling getFirstChild()
returns chapter, and calling getLastChild() also returns chapter.

v From chapter, calling getParent() returns document, calling getFirstChild()
returns title, and calling getLastChild() returns the child that contains the
message data "Some text.".

The following example shows how to use the MbsElement methods to navigate to
the chapter element:
$chapter = $input_assembly->getLastChild()->getFirstChild()->getFirstChild();

The following example shows how to navigate to the chapter element by using the
path syntax:
$chapter = $input_assembly->XML->document->chapter;

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing information about an element” on page 2701
Use PHP methods to return information about an element.

2694 WebSphere Message Broker Version 7.0.0.8

“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Accessing other parts of the message tree using the PHPCompute node” on page
2710
You can use the PHPCompute node to access headers, broker properties,
user-defined properties, the local environment, and the global environment.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“MbsElement” on page 5313
The MbsElement class represents a single parsed element in a message (or other
logical tree).

Using SPL iterators with PHP:

The PHPCompute node provides support for the Standard PHP Library (SPL)
syntax, which provides iterators that can be used in PHP code.

SPL iterators are classes that allow you to traverse a collection of data, processing
each element of the collection in a specific way. A collection might be a simple
serial list of elements, or a complex tree structure.

An SPL iterator, called MbsElementIterator, enables you to iterate over WebSphere
Message Broker messages, and provides support for filtering and recursion.

For more information about the MbsElementIterator class, see
“MbsElementIterator” on page 5316.

The following topics provide more information about iterating over elements in the
message tree:
v “Iterating over elements” on page 2696
v “Recursive iterators” on page 2697
v “Iterating with a filter” on page 2698
Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing information about an element” on page 2701
Use PHP methods to return information about an element.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Traversing the element tree” on page 2693
Use PHP methods to access element trees.

Chapter 9. Developing message flow applications 2695

“Accessing other parts of the message tree using the PHPCompute node” on page
2710
You can use the PHPCompute node to access headers, broker properties,
user-defined properties, the local environment, and the global environment.
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
Related reference:
“MbsElementIterator” on page 5316
The MbsElementIterator implements the SPL RecursiveIterator.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

Iterating over elements:

Use the MbsElementIterator class to provide sequential iteration over elements in
the message tree.

You can use an MbsElementIterator in a foreach() statement to iterate over the
children of an MbsElement. The foreach() statement automatically calls methods
on the iterator object to step through all the elements.

The following example shows how you can use MbsElementIterator to iterate over
elements:
$it = new MbsElementIterator($input_assembly->XMLNSC->getFirstChild());

echo "\nIterating using an MbsElementIterator in a foreach loop\n";
foreach($it as $key=>$value)
{

echo $key.’=’.$value."\n";
}

For more information about the MbsElementIterator class, see
“MbsElementIterator” on page 5316.
Related concepts:
“Recursive iterators” on page 2697
You can use a RecursiveIteratorIterator to iterate over a whole message tree, by
using it to wrap around an MbsElementIterator.
“Iterating with a filter” on page 2698
Use a FilterIterator to filter elements in the message tree.
“Using SPL iterators with PHP” on page 2695
The PHPCompute node provides support for the Standard PHP Library (SPL)
syntax, which provides iterators that can be used in PHP code.
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing information about an element” on page 2701
Use PHP methods to return information about an element.
Related tasks:

2696 WebSphere Message Broker Version 7.0.0.8

“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Traversing the element tree” on page 2693
Use PHP methods to access element trees.
“Accessing other parts of the message tree using the PHPCompute node” on page
2710
You can use the PHPCompute node to access headers, broker properties,
user-defined properties, the local environment, and the global environment.
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
Related reference:
“MbsElementIterator” on page 5316
The MbsElementIterator implements the SPL RecursiveIterator.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

Recursive iterators:

You can use a RecursiveIteratorIterator to iterate over a whole message tree, by
using it to wrap around an MbsElementIterator.

The following example creates an MbsElementIterator and wraps it in a
RecursiveIteratorIterator:
$it = new MbsElementIterator($input_assembly->XMLNSC->getFirstChild());
$rii = new RecursiveIteratorIterator($it, RecursiveIteratorIterator::CHILD_FIRST);

foreach($rii as $key=>$value)
{

echo $key.’=’.$value."\n";
}

For more information about the MbsElementIterator class, see
“MbsElementIterator” on page 5316.
Related concepts:
“Iterating over elements” on page 2696
Use the MbsElementIterator class to provide sequential iteration over elements in
the message tree.
“Iterating with a filter” on page 2698
Use a FilterIterator to filter elements in the message tree.
“Using SPL iterators with PHP” on page 2695
The PHPCompute node provides support for the Standard PHP Library (SPL)
syntax, which provides iterators that can be used in PHP code.
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing information about an element” on page 2701
Use PHP methods to return information about an element.

Chapter 9. Developing message flow applications 2697

Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Traversing the element tree” on page 2693
Use PHP methods to access element trees.
“Accessing other parts of the message tree using the PHPCompute node” on page
2710
You can use the PHPCompute node to access headers, broker properties,
user-defined properties, the local environment, and the global environment.
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
Related reference:
“MbsElementIterator” on page 5316
The MbsElementIterator implements the SPL RecursiveIterator.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

Iterating with a filter:

Use a FilterIterator to filter elements in the message tree.

The following example shows how to use a FilterIterator to iterate over a message
tree, extracting only the Toughened Steel components:
class ToughenedSteelPartsIterator extends FilterIterator
{

public function __construct(Iterator $it)
{
parent::__construct($it);

}

function accept()
{
/*** only check components ***/
if (!strcmp($this->key(),"component"))
{

/*** Return true for Toughened Steel ***/
if (!strcmp($this->current()->material,"Toughened Steel"))
{
return true;

}
}
return false;

}
}

class PhpComputeNode_Iterator_Filter
{

/**
* @MessageBrokerSimpleTransform
*/
function evaluate($output_assembly, $input_assembly)

2698 WebSphere Message Broker Version 7.0.0.8

{
ob_start();
echo "\nIterating over parts which have a material name of Toughened Steel\n";

$it = new MbsElementIterator($input_assembly->XMLNSC->getFirstChild());
$rii = new ToughenedSteelPartsIterator(new RecursiveIteratorIterator($it, RecursiveIteratorIterator::CHILD_FIRST));

foreach($rii as $key=>$value)
{

echo $key.’ = ’.$value->name." ".$value->price." ".$value->material."\n";
}

$output_assembly->XMLNSC->results->contents = ob_get_contents();
ob_end_clean();

}
}

The following message is used as input to the FilterIterator shown above:
<machine>
<assembly name="Engine Block Top End">
<assembly name="Cylinder Head">
<assembly name="Tappet Assembly">

<component name="Tappet" price="3.50" material="Toughened Steel"/>
<component name="Coil String" price="1.50" material="Spring Steel"/>
<component name="Circlip" price="1.50" material="Spring Steel"/>
<component name="Circlip" price="1.50" material="Spring Steel"/>
<component name="Seat" price="3.50" material="Toughened Steel"/>

</assembly>
<assembly name="Cam Shaft">

<component name="Shaft" price="3.50" material="Mild Steel"/>
<component name="Cam" price="1.50" material="Toughened Steel" />
<component name="Cam" price="1.50" material="Toughened Steel" />
<component name="Cam" price="1.50" material="Toughened Steel" />
<component name="Cam" price="1.50" material="Toughened Steel" />
<component name="Bearing" price="1.00" material="Toughened Steel" />
<component name="Bearing" price="1.00" material="Toughened Steel" />
<component name="Cam Chain Sprocket" price="4.20" material="Toughened Steel" />
<component name="Cam Chain" price="4.20" material="Toughened Steel" />
<component name="Tensioner" price="0.50" material="Plastic" />

</assembly>
<component name="Head" price="12.40" material="Alloy" />
<component name="Plug" price="3.00" material="Bakelite/Steel" />
</assembly>
<assembly name="Cylinder Block">
<component name="Cylinder" price="20.00" material="Alloy" />
<component name="Sleeve" price="10.00" material="Toughened Steel" />
</assembly>
<assembly name="Carburetor">
<assembly name="Piston Assembly"/>
<component name="Piston" price="20.00" material="Toughened Steel" />
<component name="Ring" price="10.00" material="Spring Steel" />
<component name="Ring" price="10.00" material="Spring Steel" />
<component name="Con Rod" price="10.00" material="Toughened Steel" />
</assembly>
</assembly>
</machine>

The resulting output shows only the parts whose material is Toughened Steel:
<results><contents>
Iterating Over parts which have a material name of Toughened Steel
component = Tappet 3.50 Toughened Steel
component = Seat 3.50 Toughened Steel
component = Cam 1.50 Toughened Steel
component = Cam 1.50 Toughened Steel
component = Cam 1.50 Toughened Steel
component = Cam 1.50 Toughened Steel

Chapter 9. Developing message flow applications 2699

component = Bearing 1.00 Toughened Steel
component = Bearing 1.00 Toughened Steel
component = Cam Chain Sprocket 4.20 Toughened Steel
component = Cam Chain 4.20 Toughened Steel
component = Sleeve 10.00 Toughened Steel
component = Piston 20.00 Toughened Steel
component = Con Rod 10.00 Toughened Steel
</contents></results>

For more information about the MbsElementIterator class, see
“MbsElementIterator” on page 5316.
Related concepts:
“Iterating over elements” on page 2696
Use the MbsElementIterator class to provide sequential iteration over elements in
the message tree.
“Recursive iterators” on page 2697
You can use a RecursiveIteratorIterator to iterate over a whole message tree, by
using it to wrap around an MbsElementIterator.
“Using SPL iterators with PHP” on page 2695
The PHPCompute node provides support for the Standard PHP Library (SPL)
syntax, which provides iterators that can be used in PHP code.
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing information about an element” on page 2701
Use PHP methods to return information about an element.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Traversing the element tree” on page 2693
Use PHP methods to access element trees.
“Accessing other parts of the message tree using the PHPCompute node” on page
2710
You can use the PHPCompute node to access headers, broker properties,
user-defined properties, the local environment, and the global environment.
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“MbsElementIterator” on page 5316
The MbsElementIterator implements the SPL RecursiveIterator.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

2700 WebSphere Message Broker Version 7.0.0.8

Accessing information about an element:

Use PHP methods to return information about an element.

Use the following methods to return information about the referenced element:

getName()
Returns the name of the current element

getValue()
Returns the value of the current element

getType()
Returns the specific type of the current element. For a full list of type
values, see:
v “PHP constants for type values” on page 5343

getNamespace()
Returns the namespace URI of the current element

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Traversing the element tree” on page 2693
Use PHP methods to access element trees.
“Accessing other parts of the message tree using the PHPCompute node” on page
2710
You can use the PHPCompute node to access headers, broker properties,
user-defined properties, the local environment, and the global environment.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP constants for type values” on page 5343
You can use type values to create syntax elements in your message tree.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“MbsElement” on page 5313
The MbsElement class represents a single parsed element in a message (or other
logical tree).

Creating and transforming messages using a PHPCompute node
You can use the PHPCompute node to create and copy messages, and to create
and manipulate message elements.

Chapter 9. Developing message flow applications 2701

About this task

These topics describe how to transform messages by using a PHPCompute node:
v “Creating a new message using a PHPCompute node”
v “Copying a message using a PHPCompute node” on page 2703
v “Setting and moving message elements using a PHPCompute node” on page

2704
v “Creating new elements using a PHPCompute node” on page 2706
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Creating a new message using a PHPCompute node:

Create a new output message by using the PHPCompute node.

About this task

When you use a PHPCompute node to create a new output message, the code
required depends on whether the annotated evaluate method is defined in the PHP
script.

If you use the @MessageBrokerSimpleTransform annotation, the new output
message and message assembly objects are created automatically. For example:
<?php

class MyNode {

/**
* @MessageBrokerSimpleTransform
*/
function evaluate($output_assembly, $input_assembly) {
// $output_assembly refers to the new message
}
}

?>

2702 WebSphere Message Broker Version 7.0.0.8

If you use a plain script without an annotated evaluate method, you must create
the output message and message assembly objects explicitly:
<?php

// the output message must be created explicitly
$output_message = new MbsMessage();

// a new output message assembly must be created to hold this new message
$output_assembly = new MbsMessageAssembly($assembly, $output_message);

?>

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating and transforming messages using a PHPCompute node” on page 2701
You can use the PHPCompute node to create and copy messages, and to create
and manipulate message elements.
“Creating a new message using a PHPCompute node” on page 2702
Create a new output message by using the PHPCompute node.
“Copying a message using a PHPCompute node”
Copy an existing message using the PHPCompute node.
“Creating new elements using a PHPCompute node” on page 2706
Use the PHPCompute node to create new elements in a message tree.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Copying a message using a PHPCompute node:

Copy an existing message using the PHPCompute node.

About this task

When you use a PHPCompute node to copy an existing message, the code
required depends on whether or not the annotated evaluate method is defined in
the PHP script.

If you use the @MessageBrokerCopyTransform annotation, the new output
message and message assembly objects are created automatically. For example:
<?php

class MyNode {

/**

Chapter 9. Developing message flow applications 2703

* @MessageBrokerCopyTransform
*/
function evaluate($output_assembly, $input_assembly) {
// $output_assembly refers to the new message
}
}

?>

If you use a plain script without an annotated evaluate method, you must create
the output message and message assembly objects explicitly:
<?php

// create a copy of the input message
$output_message = new MbsMessage($assembly[MB_MESSAGE]);

// a new output message assembly must be created to hold this new message
$output_assembly = new MbsMessageAssembly($assembly, $output_message);

?>

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating and transforming messages using a PHPCompute node” on page 2701
You can use the PHPCompute node to create and copy messages, and to create
and manipulate message elements.
“Creating a new message using a PHPCompute node” on page 2702
Create a new output message by using the PHPCompute node.
“Setting and moving message elements using a PHPCompute node”
You can transform elements in the message as it passes through a PHPCompute
node in the message flow.
“Creating new elements using a PHPCompute node” on page 2706
Use the PHPCompute node to create new elements in a message tree.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Setting and moving message elements using a PHPCompute node:

You can transform elements in the message as it passes through a PHPCompute
node in the message flow.

2704 WebSphere Message Broker Version 7.0.0.8

About this task

The following sections show the methods that you can use to modify, move, and
remove elements:
v “Setting information about an element”
v “Moving elements”
v “Removing elements”

The “PHP API” on page 5313 reference information provides details about each of
the methods used in the following sections.

Setting information about an element:
About this task

Use these methods to set information about the referenced element:

setName()
Sets the name of the current element

setValue()
Sets the value of the current element

setType()
Sets the specific type of the current element. For a full list of type values,
see:
v “PHP constants for type values” on page 5343

setNamespace()
Sets the namespace URI of the current element

You can also set the value of an element by using the assignment operator. For
example, $element = ’text’; is equivalent to $element.setValue(’text’);.

Moving elements:
About this task

Use a PHPCompute node to copy or detach an element from a message tree by
using the following methods:

detach()
Detaches the current element from the tree

detachAllChildren()
Detaches all children of the current element from the tree

Use one of the following methods to attach an element or subtree that you have
copied on to another tree:

addElement(element)
Adds an element as the last child (by default) of the current element

addAttribute(attribute)
Adds an attribute to the current element

Removing elements:
About this task

Use these methods to remove elements from the message tree:

Chapter 9. Developing message flow applications 2705

detach()
Detaches the current element from the tree

detachAllChildren()
Detaches all children of the current element from the tree

You can also remove elements from the message tree by using the PHP unset()
function. For example:
unset($output_assembly->XMLNSC->doc->folder->item);
$output_assembly->XMLNSC->doc->folder->item->detach();

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating and transforming messages using a PHPCompute node” on page 2701
You can use the PHPCompute node to create and copy messages, and to create
and manipulate message elements.
“Creating a new message using a PHPCompute node” on page 2702
Create a new output message by using the PHPCompute node.
“Copying a message using a PHPCompute node” on page 2703
Copy an existing message using the PHPCompute node.
“Creating new elements using a PHPCompute node”
Use the PHPCompute node to create new elements in a message tree.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP constants for type values” on page 5343
You can use type values to create syntax elements in your message tree.

Creating new elements using a PHPCompute node:

Use the PHPCompute node to create new elements in a message tree.

About this task

You can create new elements in a message tree in several ways:
v By using the MbsElement addElement method. By default this creates an

element as the last child of the current element. This method has the following
parameters:
– name

– value

– namespace

2706 WebSphere Message Broker Version 7.0.0.8

– type (optional)
– position (optional)

The type parameter is the parser-specific type of the new node, which defaults
to the XML element type for XML parsers. For a full list of values for the type
parameter, see:
– “PHP constants for type values” on page 5343
The position parameter can have one of the following values:
– MB_FIRST_CHILD
– MB_LAST_CHILD
– MB_NEXT_SIBLING
– MB_PREVIOUS_SIBLING

v By using the path syntax. Elements on the left side of an assignment expression
are created (if they do not exist already) when they are referenced in a path. For
example, the following code navigates the elements in the XMLNSC tree,
creating them if necessary:
$output_assembly->XMLNSC->doc->folder->item = ’book’;

v By using an MbsElement constructor. To create a PHP function that creates and
returns a subtree (part of a message), you can instantiate an element, build extra
elements (using either of the previous two methods described), and return the
result. You can then assign the result into the output message. For example:
$output_assembly->XMLNSC->doc->part = create_subtree();

function create_subtree() {
$element = new MbsElement();
$element->folder->item = ’some value’;
return $element;

}

You can also use the MbsElement addElementFromBitstream method to create
an element tree from a string containing an unparsed bit stream. Use this
method to defer until run time the decision about which parser to use.

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating and transforming messages using a PHPCompute node” on page 2701
You can use the PHPCompute node to create and copy messages, and to create
and manipulate message elements.
“Creating a new message using a PHPCompute node” on page 2702
Create a new output message by using the PHPCompute node.
“Copying a message using a PHPCompute node” on page 2703
Copy an existing message using the PHPCompute node.
“Setting and moving message elements using a PHPCompute node” on page 2704
You can transform elements in the message as it passes through a PHPCompute
node in the message flow.
Related reference:

Chapter 9. Developing message flow applications 2707

“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP constants for type values” on page 5343
You can use type values to create syntax elements in your message tree.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

XML support
The PHP capability in WebSphere Message Broker provides support for XML.

XML namespaces

The path navigation syntax in the PHPCompute node is not namespace aware. As
a result, the expression shown in the following example navigates through the
catalogue and entry elements regardless of the namespace URI of the elements:
$ref->catalogue->entry

If you generate an output message that requires namespace elements, set the
namespace URI after you create the path:
$table->entry = $ref->catalogue->entry;
$table->entry->setNamespace(’http://www.ibm.com/namespaceURI’);

Alternatively, you can create the entry element by using the addElement API
method:
$value = $ref->catalogue->entry;
$table->addElement(’entry’, $value, ’http://www.ibm.com/namespaceURI’);

XML attributes

XML attributes are stored in the element tree as MbsElements with a type value
that identifies them as attributes. The path syntax supports addressing an attribute
of an element, by using the array operator with the attribute name as the key;
therefore, attributes function as map arrays on the element. For example, the
following code returns the name attribute of the folder element:
$attr = $input->XMLNSC->doc->folder[’name’]

You can create attributes in a similar way; for example:
$output->XMLNSC->doc->folder[’name’] = ’PHP’;

This example generates the following XML code:
<doc>
<folder name=’PHP’/>
</doc>

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using

2708 WebSphere Message Broker Version 7.0.0.8

the PHP scripting language.

Routing a message using a PHPCompute node
Route a message by using the PHPCompute node as a filter node.

Before you begin

Before you start:

Add a “PHPCompute node” on page 4639 to your message flow.

About this task

By default, the output message assembly is propagated to the Out terminal after
the evaluate method in the PHP script has been processed. However, the
PHPCompute node also has dynamic output terminals, so that you can use it as a
filter node by propagating a message to the appropriate terminal, based on the
message content.

You can use the @MessageBrokerRouter annotation in your PHP code to route the
message to a terminal specified by the string return value of the evaluate method.
If no string is returned, the message is not propagated.

The following example shows the @MessageBrokerRouter annotation in a PHP
script file:
/**

* @MessageBrokerRouter
*/
function evaluate($message) {
if ($message->XMLNSC->doc->threshold->getValue() > 10) {

return ’out’;
} else {

return ’other’;
}

}

For more information about using the @MessageBrokerRouter annotation for
message routing, see “@MessageBrokerRouter” on page 2679.

Alternatively, you can propagate a message directly to a Label node. When you use
this method, you do not need to use a RouteToLabel node, and you do not need to
propagate messages to output terminals.

MQInput MQOutput

stdout

Publication

PHPCompute Label1

Label2

Label3

Chapter 9. Developing message flow applications 2709

The following example shows the PHP code associated with the PHPCompute
node in the message flow shown above. The PHP code specifies that the message
is to be routed to the node called Label2:
...
$output->routeToLabel(’Label2’);

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“@MessageBrokerRouter” on page 2679
Use the @MessageBrokerRouter annotation to alter the behavior of the evaluate
method in a PHP class.
“Using annotations” on page 2676
Annotations alter the behavior of the evaluate method when using the PHP class
structure, and remove the need to repeat commonly used code (for transforming
message trees) in each PHP script.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“Label node” on page 4569
Use the Label node to process a message that is propagated by a RouteToLabel
node to dynamically determine the route that the message takes through the
message flow.

Accessing other parts of the message tree using the
PHPCompute node
You can use the PHPCompute node to access headers, broker properties,
user-defined properties, the local environment, and the global environment.

About this task

The message tree is passed to a PHPCompute node as an argument of the evaluate
method. The argument is an MbsMessageAssembly object. The message assembly
contains four message objects:
v Parsed message
v LocalEnvironment
v GlobalEnvironment
v ExceptionList

The following constants are provided for accessing the different trees:
v MB_MESSAGE (default)
v MB_LOCAL_ENVIRONMENT
v MB_GLOBAL_ENVIRONMENT
v MB_EXCEPTION_LIST

2710 WebSphere Message Broker Version 7.0.0.8

The following topics describe how to access parts of the message tree:
v “Accessing headers with a PHPCompute node”
v “Updating the local environment with the PHPCompute node” on page 2713
v “Updating the global environment with the PHPCompute node” on page 2714
v “Accessing broker properties from the PHPCompute node” on page 2715
v “Accessing user-defined properties from a PHPCompute node” on page 2716
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Traversing the element tree” on page 2693
Use PHP methods to access element trees.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Accessing headers with a PHPCompute node:

Access MQMD and MQRFH2 headers by using a PHPCompute node.

About this task

If an input node receives an input message that includes message headers that the
input node recognizes, the node invokes the correct parser for each header. Parsers
are supplied for most WebSphere MQ headers. This topic provides guidance for
accessing the information in the MQMD and MQRFH2 headers that you can follow
when accessing other headers that are present in your messages.

For more information about the contents of these and other WebSphere MQ
headers for which WebSphere Message Broker provides a parser, see “Element
definitions for message parsers” on page 4237.

Chapter 9. Developing message flow applications 2711

Accessing the MQMD header:
About this task

WebSphere MQ messages include an MQMD header. You can use a PHPCompute
node to refer to the fields within the MQMD, and to update them.

The following PHP code shows how to add an MQMD header to your message:
$output_assembly->MQMD->Version = 2;

Accessing the MQRFH2 header:
About this task

The following PHP code adds an MQRFH2 header to an outgoing message that is
to be used to make a subscription request:
$output_assembly->MQRFH2->psc->Topic = ’department/sales’;

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“The MQMD parser” on page 4249
The elements of the MQMD parser are listed in this topic.
“MQRFH2 header” on page 6397
The MQRFH2 header is used to pass messages to and from a message broker that
belongs to WebSphere Message Broker.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“Element definitions for message parsers” on page 4237

2712 WebSphere Message Broker Version 7.0.0.8

Updating the local environment with the PHPCompute node:

The local environment tree is part of the logical message tree in which you can
store information while the message flow processes the message.

About this task

Follow these steps to update the local environment:

Procedure

1. Make a copy of the local environment to update.
2. Use the following PHP code to alter the copy of the local environment:

<?php

class LocalEnv {

/**
* @MessageBrokerLocalEnvironmentTransform
*/
function evaluate($output_assembly, $input_assembly) {

$output_assembly [MB_LOCAL_ENVIRONMENT] = $input_assembly->XMLNSC->Message;
$output_assembly [MB_LOCAL_ENVIRONMENT]->Folder1 = ’some data’;
$output_assembly [MB_LOCAL_ENVIRONMENT]->Folder2->SubFolder = ’more data’;
}

}

?>

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Chapter 9. Developing message flow applications 2713

Updating the global environment with the PHPCompute node:

Use PHP code associated with a PHPCompute to modify the global environment.

About this task

The Global Environment tree is always created when the logical tree is created for
an input message. You can use this tree for your own purposes, for example to
pass information from one node to another. You can use the whole tree as a
scratchpad or working area.

The global environment can be altered across the message flow. The following PHP
code shows how to alter the global environment:
<?php
class GlobalEnv {

/**
* */
function evaluate($output_assembly, $input_assembly) {

$output_assembly [MB_GLOBAL_ENVIRONMENT] = $input_assembly->XMLNSC->Message;
$output_assembly [MB_GLOBAL_ENVIRONMENT]->Folder1 = ’some data’;
$output_assembly [MB_GLOBAL_ENVIRONMENT]->Folder2->SubFolder = ’more data’;
}

}

?>

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Environment tree structure” on page 1055
The environment tree is a part of the logical message tree in which you can store
information while the message passes through the message flow.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

2714 WebSphere Message Broker Version 7.0.0.8

Accessing broker properties from the PHPCompute node:

For each broker, WebSphere Message Broker maintains a set of properties, and you
can access some of these properties from the PHP code associated with a
PHPCompute node. You can have real-time access to details of a specific node,
flow, or broker.

About this task

Four categories of broker property exist, which relate to:
v A specific node
v Nodes in general
v A message flow
v An execution group

Broker properties:
v Are grouped by broker, execution group, flow, and node
v Are case sensitive. Their names always start with an uppercase letter
v Return NULL if they do not contain a value

The use of the MB_* array indexes in the $_ENV array is deprecated. Use the
$_MB array instead:

Broker property PHP variable

Work Path $_MB['WORK_PATH']

Broker Name (label) $_MB['BROKER_NAME']

Execution Group Name (label) $_MB['EXECUTION_GROUP_NAME']

Node Name (label) $_MB['NODE_NAME']

Message Flow Name (label) $_MB['MESSAGE_FLOW_NAME']

Script Name $_MB['SCRIPT_NAME']

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“Broker properties” on page 1144
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Chapter 9. Developing message flow applications 2715

Accessing user-defined properties from a PHPCompute node:

Customize a PHPCompute node to access properties that you have associated with
the message flow in which the node is included.

About this task

To access these properties from a PHPCompute node, use the
mb_get_user_defined_property(name) method, where name is the name of the
property that you are accessing. This method returns a PHP datatype equivalent to
the ESQL broker type in the property definition.

For more information about the ESQL to PHP mappings, see “PHP data types” on
page 5323.

You can use the Administration API for WebSphere Message Broker (also known as
the CMP API) to change the value of user-defined properties. Use the
getUserDefinedPropertyNames(), getUserDefinedProperty(), and
setUserDefinedProperty() methods to query, discover, and set user-defined
properties, as described in “Setting message flow user-defined properties at run
time in a CMP application” on page 985.
Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.
Related reference:
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Calling Java from PHP
The IBM sMash Runtime for PHP provides access to Java classes and functionality
from PHP. This Java Bridge can instantiate Java classes and call their methods.

You can manipulate values in an MRM or XMLNSC tree with xsd types that do
not map directly to PHP types:

2716 WebSphere Message Broker Version 7.0.0.8

v xsd:decimal type java.math.BigDecimal
v xsd:dateTime com.ibm.broker.plugin.MbTimestamp

For example:
/**
* @MessageBrokerSimpleTransform
*/
function evaluate ($output, $input) {
$number = $input->XMLNSC-doc->number->getValue();
$signature = new JavaSignature (JAVA_STRING);
$decimal = new Java("java.math.BigDecimal", $signature, "654.321");
$sum = $number->add($decimal);
$output->XMLNSC->doc->number = $sum;

$timestamp = $input->XMLNSC->doc->date->getValue();
$now = new Java("java.util.Date");
$timestamp->setTime($now);
$output->XMLNSC->doc->date = $timestamp;
}

Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

Processing events
Using event driven message processing you can control the flow of messages
through your message flows.

About this task
v “Using aggregation”
v “Using message collections” on page 2755
v Using message sequences
v “Configuring timeout flows” on page 2809
Related tasks:
“Connecting client applications” on page 1537
Connect your client applications to the broker by using one or more of the
supported protocols from other resources and software servers in your network.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Using aggregation
Use aggregation to generate multiple requests from a single input message, and
coordinate the multiple responses to provide a single consolidated response to that
input message.

Chapter 9. Developing message flow applications 2717

About this task

Learn what aggregation is, and the advantages it can provide in your message
flows. Configure your message flows to support message aggregation.
v “Message flow aggregation”
v “Configuring aggregation flows” on page 2721
Related concepts:
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Routing messages” on page 2209
Route messages through your message flow or the broker by using one or more of
the techniques described in this section.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Message flow aggregation
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.

The initial request that is received by the message flow, representing a collection of
related request items, is split into the appropriate number of individual requests to
satisfy the subtasks of the initial request. This process is known as fan-out, and it is
provided by a message flow that includes aggregation nodes.

Replies from the subtasks are combined and merged into a single reply, which is
returned to the original requester (or another target application) to indicate
completion of the processing. This process is known as fan-in, and it is also
provided by a message flow that includes aggregation nodes.

A message aggregation is initiated by a message flow that contains the
AggregateControl node followed by an AggregateRequest node. The responses are
aggregated back together using a flow that contains the AggregateReply node. The
aggregation nodes work correctly only for transports that use a request/reply
model; for example, WebSphere MQ Enterprise Transport.

WebSphere Message Broker provides three message flow nodes that support
aggregation:
v The AggregateControl node
v The AggregateRequest node
v The AggregateReply node

When you include these nodes in your message flows, the multiple fan-out
requests are issued in sequence from one thread in the execution group process.

If you use WebSphere MQ Enterprise Transport, the responses that are received by
the fan-in flow must be valid reply messages that contain the reply identifier. You
must set the reply identifier to the value of the message in the request message's
message descriptor (MQMD), then store the reply identifier in the correlation

2718 WebSphere Message Broker Version 7.0.0.8

identifier field (CorrelId) of the MQMD. If the CorrelId is set to MQCI_NONE, the
AggregateReply node issues an error because the reply message is not valid, and
cannot be matched to a request message.

You can also use these aggregation nodes to issue requests to applications outside
the broker environment. Messages can be sent asynchronously to external
applications or services; the responses are retrieved from those applications, and
the responses are combined to provide a single response to the original request
message.

These nodes can help to improve response time because slow requests can be
performed in parallel, and they do not need to follow each other sequentially. If
the subtasks can be processed independently, and they do not need to be handled
as part of a single unit of work, they can be processed by separate message flows.

You can design and configure a message flow that provides a similar function
without using the aggregation nodes, by issuing the subtask requests to another
application (for example, using the HTTPRequest node), and recording the results
of each request in the local environment. After each subtask has completed, merge
the results from the LocalEnvironment in a Compute node, and create the
combined response message for propagating to the target application. However, all
the subtasks are performed sequentially, and they do not provide the performance
benefits of parallel operation that you can achieve if you use the aggregation
nodes.

Examples of aggregation flows that use the aggregation nodes are provided in the
following samples:
v Aggregation
v Airline Reservations

The Aggregation sample demonstrates a simple four-way aggregation, and the
Airline Reservations sample simulates requests that are related to an airline
reservation service, and illustrates the techniques that are associated with
aggregation flows.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The aggregation nodes store state for aggregations on WebSphere MQ queues. By
default, the following storage queues are used:
v SYSTEM.BROKER.AGGR.CONTROL
v SYSTEM.BROKER.AGGR.REPLY
v SYSTEM.BROKER.AGGR.REQUEST
v SYSTEM.BROKER.AGGR.UNKNOWN
v SYSTEM.BROKER.AGGR.TIMEOUT

However, you can create alternative storage queues and use an aggregation
configurable service to specify which queues are to be used by the node. For more
information, see “Configuring the storage of events for aggregation nodes” on page
753.

By default, the timeout on the AggregateControl node is set to 0. If you do not
specify a timeout (or if you leave it set to 0), aggregation requests that WebSphere

Chapter 9. Developing message flow applications 2719

MQ stores are never deleted unless all reply messages are returned. This situation
might lead to a gradual build up of messages on the internal queues. Set the
timeout to a value greater than zero to ensure that requests are removed and that
queues do not fill up with redundant requests. It is good practice to set the
timeout value to a large value, for example, 86400 seconds (24 hours), so that the
queues clear old aggregation messages even if timeouts are not required or
expected.

You can set the timeout either by setting the Timeout property on the
AggregateControl node, or by using an Aggregation configurable service and
specifying the timeoutSeconds property. For more information, see “Setting timeout
values for aggregation” on page 2736.

The aggregation nodes use WebSphere MQ message expiry to manage timeout of
messages. For message expiry to work, the aggregation nodes must browse the
message queues. The aggregation nodes browse the queues automatically to ensure
that expired messages are processed.

z/OS

On z/OS, you can configure WebSphere MQ to run a scavenger process

that browses the queues instead of the aggregation nodes. To enable the scavenger,
set the broker's queue manager property EXPRYINT to a value of 5 seconds. If you
do not set EXPRYINT, or set it to a value higher than 10 seconds, the aggregation
nodes revert to browsing the aggregation queues automatically.
Related concepts:
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Configuring the storage of events for aggregation nodes” on page 753
You can use an Aggregation configurable service to control the storage of events
for AggregateControl and AggregateReply nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.

2720 WebSphere Message Broker Version 7.0.0.8

“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

Airline Reservations

Configuring aggregation flows
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.

Before you begin

Before you start:

Read the following concept topic:
v “Message flow aggregation” on page 2718

About this task

By default, the messages are put onto a set of default storage queues (beginning
SYSTEM.BROKER.AGGR) for processing, but you can use an Aggregation
configurable service to specify alternative queues. You can also use the
Aggregation configurable service to set a timeout for the aggregation.

For an overview of using aggregation in message flows, see “Message flow
aggregation” on page 2718.

To configure aggregation flows see the following topics:
v “Creating the aggregation fan-out flow” on page 2722
v “Creating the aggregation fan-in flow” on page 2728
v “Associating fan-out and fan-in aggregation flows” on page 2733
v “Setting timeout values for aggregation” on page 2736
v “Processing timed out aggregation messages” on page 2739
v “Using multiple AggregateControl nodes” on page 2741
v “Correlating input request and output response aggregation messages” on page

2744
v “Using control messages in aggregation flows” on page 2745
v “Handling exceptions in aggregation flows” on page 2749
v “Configuring the storage of events for aggregation nodes” on page 753

The following sample demonstrates the use of aggregation message flows:
Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 9. Developing message flow applications 2721

“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

Creating the aggregation fan-out flow:

The aggregation fan-out flow receives the initial input message and restructures it
to present a number of requests to a number of target applications.

Before you begin

Before you start:

v For background information, see “Message flow aggregation” on page 2718.
v Create a message flow project, as described in “Creating a message flow project”

on page 1425.

About this task

You can include the fan-out and fan-in flow in the same message flow. However,
you might prefer to create two separate flows. For more information about the
benefits of configuring separate message flows, see “Associating fan-out and fan-in
aggregation flows” on page 2733.

To review an example of a fan-out flow that is supplied with WebSphere Message
Broker, see the following sample:
v Airline Reservations

2722 WebSphere Message Broker Version 7.0.0.8

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

To create the fan-out flow:

Procedure

1. Create a message flow to provide the fan-out processing. For more information,
see “Creating a message flow” on page 1431.

2. Add the following nodes to the message flow, then configure and connect them
as described.

Input node
The input node receives an input message from which multiple request
messages are generated. This node can be any one of the built-in nodes,
or a user-defined input node.
a. Select the input node to open the Properties view. The node

properties are displayed.
b. Specify the source of input messages for this node. For example,

specify the name of a WebSphere MQ queue in the Queue name
property. The MQInput node retrieves messages from this queue.

c. Optional: set values for any other properties that you want to
configure for this node. For example, to ensure that aggregate
request messages are put under sync point, set the Transaction
mode property to Yes. This option avoids the situation where the
AggregateReply node receives response messages before it has
received the control message that informs it of the aggregation
instance. Putting the fan-out flow under transactional control
ensures that the fan-out flow completes before any response
messages get to the AggregateReply.

d. Connect the input node's Out terminal to the In terminal of an
AggregateControl node. This option represents the simplest
configuration; if appropriate, you can include other nodes between
the input node and the AggregateControl node. For example, store
the request for audit purposes (in a DatabaseWarehouse node), or
add a unique identifier to the message (in a Compute node).

e. Optional: if your fan-out and fan-in flows are combined in one
message flow, modify the Order mode property on the Advanced tab.
Select the By Queue Order option and ensure that the Logical Order
property is also selected. These options force the input node to be
single threaded to maintain the logical order of the messages that
arrive on the queue. Any additional instance threads that you make
available are then shared among only the fan-in input nodes to
improve the performance of aggregation. If your fan-in and fan-out
flows are in separate message flows this step is not required
because you can make additional threads available specifically to
the fan-in flow.

AggregateControl node
The AggregateControl node updates the local environment that is
associated with the input message with information required by the
AggregateRequest node. The AggregateControl node creates the
LocalEnvironment.ComIbmAggregateControlNode folder. This folder and

Chapter 9. Developing message flow applications 2723

the fields in it are for internal use by WebSphere Message Broker and
you should not rely on their existence or values when developing your
message flows.
a. Select the AggregateControl node to open the Properties view. The

node properties are displayed.
b. Set the Aggregate name property of the AggregateControl node to

identify this particular aggregation. It is used later to associate this
AggregateControl node with a specific AggregateReply node. The
Aggregate name that you specify must be contextually unique in a
broker.

c. Optional: set the Timeout property to specify how long the broker
waits for replies to arrive before taking action (described in “Setting
timeout values for aggregation” on page 2736). If a timeout is not
set on the AggregateControl node then aggregate requests stored
internally will not be removed unless all aggregate reply messages
return. This situation might lead to a gradual build-up of messages
on the internal queues. To avoid this situation, set the timeout to a
value other than zero (zero means that a timeout never occurs) so
that when the timeout is reached the requests are removed and the
queues do not fill up with redundant requests. Even if timeouts are
not required or expected, it is good practice to set the timeout value
to a large value; for example, 86400 seconds (24 hours) so that the
queues occasionally get cleared of old aggregations.

d. Connect the Out terminal of the AggregateControl node to the In
terminal of one or more Compute nodes that provide the analysis
and breakdown of the request in the input message that is
propagated on this terminal.

Attention: The Control terminal of the AggregateControl node was
deprecated at Version 6.0 and by default any connections from this
terminal to the AggregateReply node (either direct or indirect) are
ignored. This configuration maximizes the efficiency of aggregation
flows and does not damage the reliability of aggregations. This
configuration is the optimum configuration.

However, if you do want a control message to be sent from the
AggregateControl node to the AggregateReply node, you must connect
the Control terminal to the corresponding AggregateReply node on the
fan-in flow (either directly or indirectly, as described in “Associating
fan-out and fan-in aggregation flows” on page 2733). If you connect it
indirectly to the AggregateReply node, for example through an
MQOutput node, you must include a Compute node to add the
appropriate headers to the message to ensure that it can be safely
transmitted.

In addition, for the Control terminal and connections from it to be
recognized, you must enable the environment variable
MQSI_AGGR_COMPAT_MODE. However, choosing this option has
implications regarding the performance and behavior of message
aggregations. For a full description of these implications and the
environment variable, see “Using control messages in aggregation
flows” on page 2745.

2724 WebSphere Message Broker Version 7.0.0.8

Compute node
The Compute node extracts information from the input message and
constructs a new output message.

If the target applications that handle the subtask requests can extract
the information that they require from the single input message, you do
not need to include a Compute node to split the message. You can pass
the whole input message to all target applications.

If your target applications expect to receive an individual request, not
the whole input message, you must include a Compute node to
generate each individual subtask output message from the input
message. Configure each Compute node in the following way, copying
the appropriate subset of the input message to each output message:
a. Select the Compute node to open the Properties view. The node

properties are displayed.
b. Select a value for the Basic property Compute mode. This property

specifies which sections of the message tree are modified by the
node. The AggregateControl node inserts elements into the local
environment tree in the input message that the AggregateRequest
node reads when the message reaches it. Ensure that the local
environment is copied from the input message to the output
message in the Compute node. This configuration happens
automatically unless you specify a value that includes local
environment (one of All, LocalEnvironment, LocalEnvironment and
Message, or Exception and LocalEnvironment).
If you specify one of these values, the broker assumes that you are
customizing the Compute node with ESQL that writes to local
environment, and that you are copying any elements in that tree
that are required in the output message.
To modify the local environment, add the following statement to
copy the required aggregate information from input message to
output message:

c. Optional: set values for any other properties that you want to
configure for this node.

d. Connect the Out terminal of each Compute node to the In terminal
of the output node that represents the destination of the output
request message that you have created from the input message in
this node.

Output node
Include an output node for each output message that you generate in
your fan-out flow. Configure each node, as described later in this
section, with the appropriate modifications for each destination.

The output node must be an output node that supports the
request/reply model, such as an MQOutput node, or a mixture of these
nodes (depending on the requirements of the target applications).
a. Select the output node to open the Properties view. The node

properties are displayed.
b. Specify the destination for the output messages for this node. For

example, specify the name of a WebSphere MQ queue in the Queue
name property to which the MQOutput node sends messages. The

SET OutputLocalEnvironment.ComIbmAggregateControlNode =
InputLocalEnvironment.ComIbmAggregateControlNode;

Chapter 9. Developing message flow applications 2725

target application must process its request, and send the response to
the reply destination indicated in its input message (for example the
WebSphere MQ ReplyToQueue).

c. Click Request in the left view and set values for these properties to
specify that replies are sent to the input queue of the fan-in flow.

d. Optional: set values for any other properties that you want to
configure for this node.

e. Connect the Out terminal of the output node to the In terminal of
an AggregateRequest node. When the message is propagated
through the output node's Out terminal, the built-in output node
updates the WrittenDestination folder in the associated local
environment with additional information required by the
AggregateRequest node.
The information written by the built-in nodes is queue name, queue
manager name, message ID, and correlation ID (from the MQMD),
and message reply identifier (set to the same value as message ID).

AggregateRequest node
Include an AggregateRequest node for each output message that you
generate in your fan-out flow.
a. Select the AggregateRequest node to open the Properties view. The

node properties are displayed.
b. Set the Basic property Folder name to a value that identifies the type

of request that has been sent out. This value is used by the
AggregateReply node to match up with the reply message when it
is received in the fan-in flow. The folder name that you specify for
each request that the fan-out flow generates must be unique.

The AggregateRequest node writes a record in WebSphere MQ for each
message that it processes. This record enables the AggregateReply node
to identify which request each response is associated with. If your
output nodes are non-transactional, the response message might arrive
at the fan-in flow before this database update is committed. For details
on how you can use timeouts to avoid this situation, see “Setting
timeout values for aggregation” on page 2736.

CAUTION:
Although the use of timeouts can help to avoid this situation
described previously, configure your fan-out flow to be transactional.
Therefore, response messages cannot get to the fan-in flow before the
corresponding AggregateRequest nodes have committed their
database updates.

3. To save the message flow and validate its configuration, press Ctrl-S or click
File > Save.

What to do next

To collect the aggregation responses initiated by your fan-out flow, create a fan-in
flow, as described in “Creating the aggregation fan-in flow” on page 2728.
Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.

2726 WebSphere Message Broker Version 7.0.0.8

“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Creating the aggregation fan-in flow” on page 2728
The aggregation fan-in flow receives the responses to the request messages that are
sent out by the fan-out flow, and constructs a combined response message
containing all the responses received.
“Using control messages in aggregation flows” on page 2745
The default behavior is that connections between AggregateControl and
AggregateReply nodes for sending control messages are ignored. This
configuration optimizes performance and removes the possibility that response
messages will be received by the AggregateReply node before the control message.

“Associating fan-out and fan-in aggregation flows” on page 2733
Associate the fan-out message flow processing with its corresponding fan-in
message flow processing by setting the Aggregate Name property of the
AggregateControl and AggregateReply nodes in your aggregation flow to the same
value.
“Setting timeout values for aggregation” on page 2736
You can use two properties of the aggregation nodes to set timeout values for
aggregated message processing.
“Using multiple AggregateControl nodes” on page 2741
You might find it useful to design a fan-out flow with multiple AggregateControl
nodes, all with the same value set for the property Aggregate Name, but with
different values for the Timeout property. You can reuse an aggregate name in only
this situation.
“Handling exceptions in aggregation flows” on page 2749
When you use aggregation flows, exceptions might occur.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

Chapter 9. Developing message flow applications 2727

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Creating the aggregation fan-in flow:

The aggregation fan-in flow receives the responses to the request messages that are
sent out by the fan-out flow, and constructs a combined response message
containing all the responses received.

Before you begin

Before you start:

v Read an overview of aggregation in “Message flow aggregation” on page 2718.
v Create a message flow project, as described in “Creating a message flow project”

on page 1425.

About this task

You can include the fan-out and fan-in flow within the same message flow.
However, you might prefer to create two separate flows. For more information
about the benefits of configuring separate message flows, see “Associating fan-out
and fan-in aggregation flows” on page 2733. Do not deploy multiple copies of the
same fan-in flow either to the same or to different execution groups.

If you do not configure the fan-out flow to be transactional, the timeout values that
you have specified might result in the combined response message being generated
before the fan-in flow has received all the replies. For more information, see
“Creating the aggregation fan-out flow” on page 2722.

To review an example of a fan-in flow see the following sample:
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

To create the fan-in flow:

Procedure

1. Create a message flow to provide the fan-in processing.
2. Add the following nodes in the editor view and configure and connect them as

described:

Input node
The input node receives the responses to the multiple request messages
that are generated from the fan-out flow.

This node must be an input node that supports the request/reply
model, such as an MQInput node, or a mixture of these nodes

2728 WebSphere Message Broker Version 7.0.0.8

(depending on the requirements of the applications that send these
responses). The response that is received by each input node must be
sent across the same protocol as the request to which it corresponds.
For example, if you include an MQOutput node in the fan-out flow, the
response to that request must be received by an MQInput node in this
fan-in flow.
a. Select the input node to open the Properties view. The node

properties are displayed.
b. Specify the source of input messages for this node; for example,

specify the name of a WebSphere MQ queue in the Basic property
Queue name from which the MQInput node retrieves messages.

c. Optional: specify values for any other properties that you want to
configure for this node.

d. Connect the Out terminal of the input node to the In terminal of an
AggregateReply node.
Connect the terminals in this way to create the simplest
configuration; if appropriate, you can include other nodes between
the input node and the AggregateReply node; for example, you
might want to store the replies for audit purposes (in a Warehouse
node).

Include just one input node that receives all the aggregation response
messages at the beginnings of the fan-in flow as described previously. If
you include multiple input nodes, threads that are started by a specific
reply input node might complete the aggregation and execution of the
message flow while other threads are sending their response messages
to the AggregateReply node and becoming eligible to timeout. Use a
single input node to enable sequential processing of replies for each
aggregation. Specify additional instances to provide greater processing
throughput in this single node, see “Configurable message flow
properties” on page 4020.

AggregateReply node
The AggregateReply node receives the inbound responses from the
input node through its In terminal. The AggregateReply node stores
each reply message for subsequent processing.

When all the replies for a particular group of aggregation requests have
been collected, the AggregateReply node creates an aggregated reply
message, and propagates it through the Out terminal.
a. Select the AggregateReply node to open the Properties view. The

node properties are displayed.
b. Set the Aggregate name property of the AggregateReply node to

identify this aggregation. Set this value to be the same value that
you set for the Aggregate name property in the corresponding
AggregateControl node in the fan-out flow.

c. Optional: to retain an unrecognized message before propagating it
to the Unknown terminal, set a value for the Unknown message
timeout property. If you are using separate fan-out and fan-in flows,
set this value to a non-zero number if the control message might be
delayed.

d. Optional: to explicitly handle unrecognized messages, connect the
Unknown terminal to another node, or sequence of nodes. If you do
not connect this terminal to another node in the message flow,
messages propagated through this terminal are discarded.

Chapter 9. Developing message flow applications 2729

e. Optional: if you have specified a timeout value for this aggregation
in the AggregateControl node, and you want to explicitly handle
timeouts that expire before all replies are received, connect the
Timeout terminal to another node, or sequence of nodes. Partially
complete aggregated replies are sent to the Timeout terminal if the
timer expires. If you do not connect this terminal to another node in
the message flow, messages propagated through this terminal are
discarded.

f. Optional: specify values for any other properties that you want to
configure for this node.

g. Connect the Out terminal of the AggregateReply node to the In
terminal of a Compute node.

Attention: The Control terminal of the AggregateReply node was
deprecated at Version 6.0, and by default any connections to this
terminal (either direct or indirect) are ignored. This change maximizes
the efficiency of aggregation flows and does not damage the reliability
of aggregations. This configuration provides the optimum content.

However, if you want the AggregateReply node to receive, on its
Control terminal, the control message that was sent by the
corresponding AggregateControl node on the fan-out flow, you must
make the necessary connections as described in “Creating the
aggregation fan-out flow” on page 2722. Keep the path from the
AggregateReply node to the output node as direct as possible to
maximize the performance of aggregations. Do not modify the content
of this control message.

In addition, for the Control terminal and connections to it to be
recognized, you must enable the environment variable
MQSI_AGGR_COMPAT_MODE. If you choose this option, the
performance and behavior of message aggregations might be affected;
for a full description of these implications and the environment
variable, see “Using control messages in aggregation flows” on page
2745.

Aggregated messages which are sent from the AggregateReply node
output terminals (Out and Timeout) are not validated. Validation of
data must be done before messages are sent to the AggregateReply
node, because it ignores validation options when reconstructing the
stored messages.

Compute node
The Compute node receives the message that contains the combined
responses. Typically, the format of this combined message is not valid
for output, because the aggregated reply message has an unusual
structure and cannot be parsed into the bit stream required by some
nodes, for example the MQOutput node. The Out and Timeout
terminals always propagate an aggregated reply message, which always
requires further processing before it can be propagated to an
MQOutput node. Therefore you must include a Compute node and
configure this node to create a valid output message.
a. Select the Compute node to open the Properties view. The node

properties are displayed.

2730 WebSphere Message Broker Version 7.0.0.8

b. Specify in the Basic property ESQL module the name of the ESQL
module that customizes the function of this node.

c. Right-click the node and click Open ESQL to open the ESQL file
that contains the module for this node. The module is highlighted in
the ESQL editor view.

d. Code the ESQL to create a single output message from the
aggregated replies in the input message.
The aggregated reply message is propagated through the Out
terminal. Information about how you can access its contents is
provided in “Accessing the combined message contents.”

e. Optional: specify values for any other properties that you want to
configure for this node.

f. Connect the Out terminal of the Compute node to the In terminal of
the output node that represents the destination of the single
response message.

Output node
Include an output node for your fan-in flow. This node can be any of
the built-in nodes, or a user-defined output node.
a. Select the output node to open the Properties view. The node

properties are displayed.
b. Specify the destination for the output message for this node; for

example, specify in the Basic property Queue name the name of a
WebSphere MQ queue to which the MQOutput node sends
messages.

c. Optional: specify values for any other properties that you want to
configure for this node.

3. To save the message flow and validate its configuration, press Ctrl-S or click
File > Save.

Accessing the combined message contents:
About this task

The AggregateReply node creates a folder in the combined message tree below
Root, called ComIbmAggregateReplyBody. Below this folder, the node creates a
number of subfolders using the names that you set in the AggregateRequest nodes.
These subfolders are populated with the associated reply messages.

For example, the request messages might have folder names:
v TAXI
v HOTEL

The resulting aggregated reply message created by the AggregateReply node might
have a structure like the following example:

Chapter 9. Developing message flow applications 2731

Use ESQL within a Compute node to access the reply from the taxi company using
the following correlation name:

The folder name does not have to be unique. If you have multiple requests with
the folder name TAXI, you can access the separate replies using the array subscript
notation, for example:
InputRoot.ComIbmAggregateReplyBody.TAXI[1].xyz
InputRoot.ComIbmAggregateReplyBody.TAXI[2].xyz

Related concepts:
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Creating the aggregation fan-out flow” on page 2722
The aggregation fan-out flow receives the initial input message and restructures it
to present a number of requests to a number of target applications.

ComIbmAggregateReplyBody ???

message body content message body content

TAXI HOTEL

Root

Properties

Properties Headers
(Optional)

XML Properties Headers
(Optional)

XML

InputRoot.ComIbmAggregateReplyBody.TAXI.xyz

2732 WebSphere Message Broker Version 7.0.0.8

“Using control messages in aggregation flows” on page 2745
The default behavior is that connections between AggregateControl and
AggregateReply nodes for sending control messages are ignored. This
configuration optimizes performance and removes the possibility that response
messages will be received by the AggregateReply node before the control message.

“Associating fan-out and fan-in aggregation flows”
Associate the fan-out message flow processing with its corresponding fan-in
message flow processing by setting the Aggregate Name property of the
AggregateControl and AggregateReply nodes in your aggregation flow to the same
value.
“Setting timeout values for aggregation” on page 2736
You can use two properties of the aggregation nodes to set timeout values for
aggregated message processing.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Associating fan-out and fan-in aggregation flows:

Associate the fan-out message flow processing with its corresponding fan-in
message flow processing by setting the Aggregate Name property of the
AggregateControl and AggregateReply nodes in your aggregation flow to the same
value.

Before you begin

If you did not configure this property when you created your fan-in and fan-out
flows, you must complete this task.

Before you start:

You must have completed the following tasks:
v “Creating the aggregation fan-out flow” on page 2722
v “Creating the aggregation fan-in flow” on page 2728

Chapter 9. Developing message flow applications 2733

About this task

The Aggregate Name must be contextually unique within a broker. You can have
only one AggregateControl node and one AggregateReply node with a particular
Aggregate Name, although you can have more than one AggregateControl node
with the same Aggregate Name, see “Using multiple AggregateControl nodes” on
page 2741. Do not deploy a fan-in flow to multiple execution groups on the same
broker; results are unpredictable.

You can either create the fan-out and fan-in flows in the same message flow, or in
two different message flows. In either case, the two parts of the aggregation are
associated when you set the Aggregate Name property.

How you configure your aggregation flow depends on a number of factors:
v The design of your message flow.
v The hardware on which the broker is running.
v The timeout values that you choose, see “Setting timeout values for aggregation”

on page 2736.
v How you expect to maintain the message flows.

You can include the fan-out and fan-in flow within the same message flow.
However, you might prefer to create two separate flows. The advantages of
creating separate fan-out and fan-in flows are:
v You can modify the two flows independently.
v You can start and stop the two flows independently.
v You can deploy the two flows to separate execution groups to take advantage of

multiprocessor systems, or to provide data segregation for security or integrity
purposes.

v You can allocate different numbers of additional threads to the two flows, as
appropriate, to maintain a suitable processing ratio.

The following sample shows the use of two flows for aggregation:
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

To associate the fan-out flow with the fan-in flow:

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the message flow that contains your fan-out flow.
3. Select the AggregateControl node to open the Properties view. The node

properties are displayed.
4. Set the Aggregate Name property of the AggregateControl node to identify this

aggregation. The Aggregate Name that you specify must be contextually unique
within a broker.

5. If you have separate fan-out and fan-in flows:

2734 WebSphere Message Broker Version 7.0.0.8

a. Press Ctrl-S or click File > Save name on the taskbar menu (where name is
the name of this message flow) to save the message flow and validate its
configuration.

b. Open the message flow that contains your fan-in flow.
6. Select the AggregateControl node to open the Properties view. The node

properties are displayed.
7. Set the Aggregate Name property of the AggregateReply node to the same value

that you set for the Aggregate Name property in the corresponding
AggregateControl node in the fan-out flow.

8. Press Ctrl-S or click File > Save name to save the message flow and validate its
configuration.

What to do next

In WebSphere Message Broker, fan-out and fan-in flows were also associated by
sending control messages from the AggregateControl node to the AggregateReply
node. This facility is no longer available. For optimum performance, do not
connect the AggregateControl and AggregateReply node. However, if you do want
to use control messages in your aggregations, and you want to connect these two
nodes, see “Using control messages in aggregation flows” on page 2745.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Creating the aggregation fan-out flow” on page 2722
The aggregation fan-out flow receives the initial input message and restructures it
to present a number of requests to a number of target applications.
“Setting timeout values for aggregation” on page 2736
You can use two properties of the aggregation nodes to set timeout values for
aggregated message processing.
“Using multiple AggregateControl nodes” on page 2741
You might find it useful to design a fan-out flow with multiple AggregateControl
nodes, all with the same value set for the property Aggregate Name, but with
different values for the Timeout property. You can reuse an aggregate name in only
this situation.
“Handling exceptions in aggregation flows” on page 2749
When you use aggregation flows, exceptions might occur.
“Using control messages in aggregation flows” on page 2745
The default behavior is that connections between AggregateControl and
AggregateReply nodes for sending control messages are ignored. This
configuration optimizes performance and removes the possibility that response
messages will be received by the AggregateReply node before the control message.

Chapter 9. Developing message flow applications 2735

Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

Setting timeout values for aggregation:

You can use two properties of the aggregation nodes to set timeout values for
aggregated message processing.

Before you begin

Before you start:

To complete this task, you must have completed the following tasks:
v “Creating the aggregation fan-out flow” on page 2722
v “Creating the aggregation fan-in flow” on page 2728

About this task

Two situations might require the use of timeouts:
v The need to receive an aggregated reply message within a specified time. For

this situation, you set the Timeout property of the AggregateControl node.
v The need to wait before propagating an unrecognized message to the Unknown

terminal. For this situation, you set the Unknown Message Timeout property on
the AggregateReply node.

The following sections describe each situation in more detail.

To receive an aggregated reply message within a specified time:
About this task

In some situations you might need to receive an aggregated reply message within
a specified time. Some reply messages might be slow to return, or might never
arrive. For these situations, complete the following steps.
1. Open the fan-out message flow.
2. Set the Timeout property of the AggregateControl node to specify how long (in

seconds) the broker must wait for replies. By default, this property is set to 0
(zero), which means that there is no timeout and the broker waits indefinitely.

By default, timeout polling occurs every 5 seconds. Therefore, if you set the
Timeout property to a value that is not a multiple of 5, an extra delay occurs. For
example, if you set the Timeout property to 7 seconds, you see a delay of 3 seconds
until timeout polling next occurs. You can change the default timeout polling
interval by using the environment variable MQSI_AGGR_WAIT_TIMEOUT. Valid
values are between 1000 and 5000 milliseconds. To change the default polling

2736 WebSphere Message Broker Version 7.0.0.8

interval, stop the broker, then restart the broker in an environment where you have
set the MQSI_AGGR_WAIT_TIMEOUT environment variable.

You can also use an Aggregation configurable service to specify the timeout
interval. You can create an Aggregation configurable service with the same name
as the Aggregate name property of the AggregateControl node, and specify the
timeout value in the timeoutSeconds property of the configurable service.
Alternatively, you can create an Aggregation configurable service with the same
name as the execution group. Values from Aggregation configurable services are
taken in the following order:
1. If an Aggregation configurable service exists with the same name as the

aggregation (defined in the Aggregate name property), that configurable service
is used.

2. If no configurable service exists with the same name as aggregation, but a
configurable service exists with the same name as the execution group, that
configurable service is used.

If an Aggregation configurable service exists with the same name as an execution
group, it can be used for every aggregation in the execution group. However, if a
configurable service exists with the same name as an aggregation in the execution
group, it is used for that specific aggregation. In each case, the value of the
timeoutSeconds property of the configurable service overrides the Timeout property
of the AggregateControl node.

Alternatively, you can use the Timeout location property of the AggregateControl
node to specify the location of a timeout value in the incoming message. Any
timeout value specified in this way overrides the values specified by the
AggregateControl node and the Aggregation configurable service.

The timeout is determined by values in the message, the configurable service, or
the node, in the following order:
1. If a timeout value is specified in the incoming message (in the location

specified by the Timeout location property of the AggregateControl node) this
value is used.

2. If no location is specified by the Timeout location property, or if the location in
the message is empty or does not exist, the value specified by the
timeoutSeconds property of the Aggregation configurable service is used (if one
exists).

3. If no Aggregation configurable service has been defined, or if the
timeoutSeconds property of the configurable service is not set, the value set in
the Timeout property of the AggregateControl node is used.

For more information about the Aggregation configurable service, see
“Configurable services properties” on page 3766.

If the timeout interval passes without all the replies arriving, the replies that have
arrived are turned into an aggregated reply message by the corresponding
AggregateReply node, and propagated to its Timeout terminal. You can process
this partial response message in the same way as a complete aggregated reply
message. If you prefer, you can provide special processing for incomplete
aggregated replies.

To wait before propagating an unrecognized message to the Unknown terminal:

Chapter 9. Developing message flow applications 2737

About this task

When a message arrives at the In terminal of an AggregateReply node, it is
examined to see if it is an expected reply message. If it is not recognized, the
message is propagated to the Unknown terminal. You might want the broker to
wait for a specified period of time before propagating the message for the
following reasons:
v The reply message might arrive before the work completed by the

AggregateRequest node has been transactionally committed. This situation can
be avoided by configuring the Transaction mode property of the input node, as
described in “Creating the aggregation fan-out flow” on page 2722.

v The reply message might arrive before the control message. This situation can be
avoided by leaving the Control terminal of the AggregateControl node
unconnected. For further information about the implications of connecting the
Control terminal, see “Using control messages in aggregation flows” on page
2745.

These situations are most likely to happen if you send the request messages out of
syncpoint, and might result in valid replies being sent to the Unknown terminal.
To reduce the likelihood of this event, complete the following steps.
1. Open the fan-in message flow.
2. Set the Unknown Message Timeout property of the AggregateReply node.

When you set this property, a message that cannot be recognized immediately
as a valid reply is held persistently in the broker for the number of seconds
that you specify for this property.

If the unknown timeout interval expires, and the message is recognized, it is
processed. The node also checks to see if this previously unknown message is the
last reply needed to make an aggregation complete. If it is, the aggregated reply
message is constructed and propagated.

If the unknown timeout interval expires and the message is still not recognized,
the message is propagated to the Unknown terminal.
Related concepts:
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Creating the aggregation fan-out flow” on page 2722
The aggregation fan-out flow receives the initial input message and restructures it
to present a number of requests to a number of target applications.
“Creating the aggregation fan-in flow” on page 2728
The aggregation fan-in flow receives the responses to the request messages that are
sent out by the fan-out flow, and constructs a combined response message
containing all the responses received.

2738 WebSphere Message Broker Version 7.0.0.8

“Associating fan-out and fan-in aggregation flows” on page 2733
Associate the fan-out message flow processing with its corresponding fan-in
message flow processing by setting the Aggregate Name property of the
AggregateControl and AggregateReply nodes in your aggregation flow to the same
value.
“Avoiding thread starvation on fan-in flows” on page 2748
Follow this guidance to avoid thread starvation on fan-in flows if the Control
terminal of the AggregateControl node in your fan-out flow is connected to output
control messages to a queue.
“Processing timed out aggregation messages”
Assign additional processing threads to enable processing of timed out aggregation
messages in the AggregateReply node.
“Using multiple AggregateControl nodes” on page 2741
You might find it useful to design a fan-out flow with multiple AggregateControl
nodes, all with the same value set for the property Aggregate Name, but with
different values for the Timeout property. You can reuse an aggregate name in only
this situation.
“Handling exceptions in aggregation flows” on page 2749
When you use aggregation flows, exceptions might occur.
“Using control messages in aggregation flows” on page 2745
The default behavior is that connections between AggregateControl and
AggregateReply nodes for sending control messages are ignored. This
configuration optimizes performance and removes the possibility that response
messages will be received by the AggregateReply node before the control message.

“Configuring the storage of events for aggregation nodes” on page 753
You can use an Aggregation configurable service to control the storage of events
for AggregateControl and AggregateReply nodes.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Processing timed out aggregation messages:

Assign additional processing threads to enable processing of timed out aggregation
messages in the AggregateReply node.

Before you begin

Before you start:

To complete this task, the following conditions must be met:

Chapter 9. Developing message flow applications 2739

v The AggregateReply node must be using an Aggregation configurable service.
v The associated Aggregation configurable service must have a queue prefix set

that is unique across all Aggregation configurable services.
v The set of aggregation queues referred to by the associated Aggregation

configurable service must only be used by a single execution group on a single
broker.

About this task

By default the AggregateReply node uses a single thread to process timed out
aggregation messages. In scenarios where a high volume of messages are expected
to timeout, a backlog of messages can accumulate on the
SYSTEM.BROKER.AGGR.QueuePrefix.TIMEOUT queue. Follow this task to assign
additional processing threads for timeout processing in the AggregateReply node.

You can configure the number of threads that are used to process timeout
messages by setting the timeoutThreads property of the associated Aggregation
configurable service. For example, use the following command:
mqsichangeproperties MYBROKER -c Aggregation -o myAggregationService -n timeoutThreads -v 10

This command sets the timeout threads of an aggregation to 10 for all nodes that
are configured to use the myAggregationService configurable service.
Related concepts:
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Creating the aggregation fan-out flow” on page 2722
The aggregation fan-out flow receives the initial input message and restructures it
to present a number of requests to a number of target applications.
“Creating the aggregation fan-in flow” on page 2728
The aggregation fan-in flow receives the responses to the request messages that are
sent out by the fan-out flow, and constructs a combined response message
containing all the responses received.
“Associating fan-out and fan-in aggregation flows” on page 2733
Associate the fan-out message flow processing with its corresponding fan-in
message flow processing by setting the Aggregate Name property of the
AggregateControl and AggregateReply nodes in your aggregation flow to the same
value.
“Avoiding thread starvation on fan-in flows” on page 2748
Follow this guidance to avoid thread starvation on fan-in flows if the Control
terminal of the AggregateControl node in your fan-out flow is connected to output
control messages to a queue.
“Using multiple AggregateControl nodes” on page 2741
You might find it useful to design a fan-out flow with multiple AggregateControl
nodes, all with the same value set for the property Aggregate Name, but with
different values for the Timeout property. You can reuse an aggregate name in only
this situation.

2740 WebSphere Message Broker Version 7.0.0.8

“Handling exceptions in aggregation flows” on page 2749
When you use aggregation flows, exceptions might occur.
“Using control messages in aggregation flows” on page 2745
The default behavior is that connections between AggregateControl and
AggregateReply nodes for sending control messages are ignored. This
configuration optimizes performance and removes the possibility that response
messages will be received by the AggregateReply node before the control message.

“Configuring the storage of events for aggregation nodes” on page 753
You can use an Aggregation configurable service to control the storage of events
for AggregateControl and AggregateReply nodes.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Using multiple AggregateControl nodes:

You might find it useful to design a fan-out flow with multiple AggregateControl
nodes, all with the same value set for the property Aggregate Name, but with
different values for the Timeout property. You can reuse an aggregate name in only
this situation.

Before you begin

Before you start:

For background information, see “Message flow aggregation” on page 2718.

To complete this task, you must have created a message flow project by following
the instructions in “Creating a message flow project” on page 1425.

About this task

You might want to use multiple AggregateControl nodes if, for example, you have
created an aggregation flow that books a business trip, and you might have some
requests that need a reply within two days. However, other, more urgent requests,
need a reply within two hours.

To configure an aggregation flow that uses multiple AggregateControl nodes,
complete the following steps.

Procedure

1. Create or open the fan-out message flow.

Chapter 9. Developing message flow applications 2741

2. Configure the required number of AggregateControl nodes. Set the Basic
property Aggregate Name of each node to the same value. For example, include
two nodes and enter the name JOURNEY as the Aggregate Name for both.

3. Set the value for the Timeout property in each node to a different value. For
example, set the Timeout in one node to two hours; set the Timeout in the
second node to two days.

4. Configure a Filter node to receive incoming requests, check their content, and
route them to the correct AggregateControl node.

5. Connect the nodes together to achieve the required result. For example, if you
have configured the Filter node to test for requests with a priority field set to
urgent, connect the true terminal to the AggregateControl node with the short
timeout. Connect the false terminal to the AggregateControl node with the
longer timeout. Connect the out terminals of the AggregateControl nodes to the
following nodes in the fan-out flow.
You must connect the two AggregateControl nodes in parallel, not in sequence.
This means that you must connect both to the Filter node (one to the true
terminal, one to the false), and both to the downstream nodes that handle the
requests for the fan-out. Each input message must pass through only one of the
AggregateControl nodes. If you connect the nodes such that a single message is
processed by more than one AggregateControl node, duplicate records are
created in the database by the AggregateRequest node and subsequent
processing results are unpredictable.

Results

The following diagram shows an example fan-out message flow that uses this
technique.

MQInput Urgent?

AggCtl2day

AggCtl2hour

Request1

Request2

AddHeader

MQOutput

MQOutput1

MQOutput2

Related concepts:
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and

2742 WebSphere Message Broker Version 7.0.0.8

AggregateReply nodes.
“Creating the aggregation fan-out flow” on page 2722
The aggregation fan-out flow receives the initial input message and restructures it
to present a number of requests to a number of target applications.
“Creating the aggregation fan-in flow” on page 2728
The aggregation fan-in flow receives the responses to the request messages that are
sent out by the fan-out flow, and constructs a combined response message
containing all the responses received.
“Associating fan-out and fan-in aggregation flows” on page 2733
Associate the fan-out message flow processing with its corresponding fan-in
message flow processing by setting the Aggregate Name property of the
AggregateControl and AggregateReply nodes in your aggregation flow to the same
value.
“Using control messages in aggregation flows” on page 2745
The default behavior is that connections between AggregateControl and
AggregateReply nodes for sending control messages are ignored. This
configuration optimizes performance and removes the possibility that response
messages will be received by the AggregateReply node before the control message.

“Avoiding thread starvation on fan-in flows” on page 2748
Follow this guidance to avoid thread starvation on fan-in flows if the Control
terminal of the AggregateControl node in your fan-out flow is connected to output
control messages to a queue.
“Processing timed out aggregation messages” on page 2739
Assign additional processing threads to enable processing of timed out aggregation
messages in the AggregateReply node.
“Setting timeout values for aggregation” on page 2736
You can use two properties of the aggregation nodes to set timeout values for
aggregated message processing.
“Handling exceptions in aggregation flows” on page 2749
When you use aggregation flows, exceptions might occur.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

Chapter 9. Developing message flow applications 2743

Correlating input request and output response aggregation messages:

If you want to correlate initial request messages with their combined response
messages, you can do so using the ReplyIdentifier in the Properties folder of the
response message.

Before you begin

Before you start:

To complete this task, you must have completed the following tasks:
v “Creating the aggregation fan-out flow” on page 2722
v “Creating the aggregation fan-in flow” on page 2728

About this task

In some cases you might want to correlate aggregation request messages with the
combined response message produced by your fan-in flow, there are two ways of
doing this:
v Store some correlation information in one of the requests sent out as part of the

aggregation.
v Send the original request message directly back to the AggregateReply node as

one of the aggregation requests. To do this, the CorrelId must be set to the
MsgId, and the MQOutput node must have its MessageContext set to 'Pass all'.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.

2744 WebSphere Message Broker Version 7.0.0.8

“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

Using control messages in aggregation flows:

The default behavior is that connections between AggregateControl and
AggregateReply nodes for sending control messages are ignored. This
configuration optimizes performance and removes the possibility that response
messages will be received by the AggregateReply node before the control message.

Before you begin

Before you start:

To complete this task, you must have completed the following tasks:
v “Creating the aggregation fan-out flow” on page 2722
v “Creating the aggregation fan-in flow” on page 2728

About this task

Control messages are not required to make aggregations work correctly. However,
you can send control messages in your aggregation flows if you want. To send
control messages in a message flow, see “Configuring message flows to send
control messages” and “Configuring a broker environment to send control
messages” on page 2746.

For a working example of aggregation (without the use of control messages), see
the following sample:
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring message flows to send control messages:
About this task

To configure message flows to send control messages from an AggregateControl
node to an AggregateReply node:

Procedure

1. If you have created the fan-out and fan-in flows in a single message flow:
a. Open the aggregation message flow.
b. Connect the Control terminal of the AggregateControl node to the Control

terminal of the AggregateReply node to make the association.
This connection is referred to as a direct connection between the two
aggregation nodes.

2. If you have created separate fan-out and fan-in message flows:

Chapter 9. Developing message flow applications 2745

a. Open the fan-out message flow.
b. Configure the AggregateControl node, see “Creating the aggregation fan-out

flow” on page 2722.
c. At this stage, you can configure a Compute node that creates a valid output

message that contains the control message. For example, to pass the control
message to an MQOutput node, configure the Compute node to add an
MQMD to the message and complete the required fields in that header. For
example, you can code the following ESQL:

d. Configure an output node that represents the intermediate destination for
the control message. For example, to send the control message to an
intermediate WebSphere MQ queue, include an MQOutput node and
identify the target queue in the Basic properties Queue Manager Name and
Queue Name.

e. Connect the Control terminal of the AggregateControl node to the In
terminal of the Compute node, and connect the Out terminal of the
Compute node to the In terminal of the output node that represents the
intermediate destination for the control message.

f. Open the fan-in message flow.
g. Configure one input node to receive the reply messages, see “Creating the

aggregation fan-in flow” on page 2728. This input node also receives the
control information from the AggregateControl node. For example, set the
Basic property Queue Name of the MQInput node to receive the response and
control message from an intermediate WebSphere MQ queue.

h. Add a Filter node to your fan-in flow after the input node and before the
AggregateReply node, see “Avoiding thread starvation on fan-in flows” on
page 2748.

i. Connect the Out terminal of the input node to the In terminal of the Filter
node.

j. Connect the Out terminals of the Filter node to the Control terminal and in
terminal of the AggregateReply node.

This connection is referred to as an indirect connection between the two
aggregation nodes.

Configuring a broker environment to send control messages:
About this task

By default, in WebSphere Message Broker Version 7.0, all connections from the
Control terminal of the AggregateRequest node to the AggregateReply node are
ignored. For these connections to be active, create the
MQSI_AGGR_COMPAT_MODE environment variable in the broker environment.
By default, the environment variable does not exist. The existence of the
environment variable means that connections from the AggregateControl node are
active, regardless of the value to which the environment variable is set.

When the MQSI_AGGR_COMPAT_MODE environment variable has not been
created, the default behavior for aggregation fan-out flows is used. If the Control
terminal of the AggregateControl node is connected, either directly or indirectly, to
the In terminal of the AggregateReply node, this connection is ignored and no
control message is sent.

SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
SET OutputRoot.MQMD.Format = MQFMT_STRING;

2746 WebSphere Message Broker Version 7.0.0.8

If the MQSI_AGGR_COMPAT_MODE environment variable is created, the default
behavior for aggregation fan-out flows is not used, allowing you to send control
messages from the AggregateControl node to the AggregateReply node. If the
Control terminal of the AggregateControl node is connected, either directly or
indirectly, to the In terminal of the AggregateReply node, see “Creating the
aggregation fan-out flow” on page 2722, this connection is recognized and a
control message is sent. Be aware that this configuration is not the optimal
configuration and might affect performance.

To create the MQSI_AGGR_COMPAT_MODE variable to support connections
between AggregateControl and AggregateReply nodes to be recognized:

v Windows On Windows:
1. Open System Properties by clicking Start > Control Panel > System.
2. Click the Advanced tab.
3. Click Environment Variables.
4. In the System variables pane, click New.
5. Under Variable name type MQSI_AGGR_COMPAT_MODE.
6. (Optional) You can type in the Variable value or leave it blank.
7. For the environment variable to take effect, restart the computer.

v Linux UNIX z/OS On Linux, UNIX and z/OS:
1. Edit the profile of the broker userid and include the following code:

export MQSI_AGGR_COMPAT_MODE=

2. Reload the profile.
3. Restart the broker.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Creating the aggregation fan-out flow” on page 2722
The aggregation fan-out flow receives the initial input message and restructures it
to present a number of requests to a number of target applications.
“Associating fan-out and fan-in aggregation flows” on page 2733
Associate the fan-out message flow processing with its corresponding fan-in
message flow processing by setting the Aggregate Name property of the
AggregateControl and AggregateReply nodes in your aggregation flow to the same
value.
“Setting timeout values for aggregation” on page 2736
You can use two properties of the aggregation nodes to set timeout values for
aggregated message processing.

Chapter 9. Developing message flow applications 2747

“Using multiple AggregateControl nodes” on page 2741
You might find it useful to design a fan-out flow with multiple AggregateControl
nodes, all with the same value set for the property Aggregate Name, but with
different values for the Timeout property. You can reuse an aggregate name in only
this situation.
“Handling exceptions in aggregation flows” on page 2749
When you use aggregation flows, exceptions might occur.
“Avoiding thread starvation on fan-in flows”
Follow this guidance to avoid thread starvation on fan-in flows if the Control
terminal of the AggregateControl node in your fan-out flow is connected to output
control messages to a queue.
“Processing timed out aggregation messages” on page 2739
Assign additional processing threads to enable processing of timed out aggregation
messages in the AggregateReply node.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

Avoiding thread starvation on fan-in flows:

Follow this guidance to avoid thread starvation on fan-in flows if the Control
terminal of the AggregateControl node in your fan-out flow is connected to output
control messages to a queue.

About this task

By not connecting the Control terminal, you can overcome the issues that are
discussed here. For further information about connecting the Control terminal of
the AggregateControl node, see “Using control messages in aggregation flows” on
page 2745.

The Aggregate Reply node has two input terminals: In and Control. The use of the
Control terminal is optional. If you use both of these terminals, the MQInput nodes
that supply the two terminals must not use threads from the message flow
additional instance pool. If the nodes do use these threads, they compete for
resources, and the Control terminal's MQInput node typically takes all available
threads because it is activated before the In terminal.

Configure each MQInput node to use additional instances that are defined on the
node, not at the message flow level.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

2748 WebSphere Message Broker Version 7.0.0.8

“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Creating the aggregation fan-in flow” on page 2728
The aggregation fan-in flow receives the responses to the request messages that are
sent out by the fan-out flow, and constructs a combined response message
containing all the responses received.
“Creating the aggregation fan-out flow” on page 2722
The aggregation fan-out flow receives the initial input message and restructures it
to present a number of requests to a number of target applications.
“Associating fan-out and fan-in aggregation flows” on page 2733
Associate the fan-out message flow processing with its corresponding fan-in
message flow processing by setting the Aggregate Name property of the
AggregateControl and AggregateReply nodes in your aggregation flow to the same
value.
“Setting timeout values for aggregation” on page 2736
You can use two properties of the aggregation nodes to set timeout values for
aggregated message processing.
“Processing timed out aggregation messages” on page 2739
Assign additional processing threads to enable processing of timed out aggregation
messages in the AggregateReply node.
“Using multiple AggregateControl nodes” on page 2741
You might find it useful to design a fan-out flow with multiple AggregateControl
nodes, all with the same value set for the property Aggregate Name, but with
different values for the Timeout property. You can reuse an aggregate name in only
this situation.
“Handling exceptions in aggregation flows”
When you use aggregation flows, exceptions might occur.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

Handling exceptions in aggregation flows:

When you use aggregation flows, exceptions might occur.

Chapter 9. Developing message flow applications 2749

Before you begin

Before you start:

Complete the following tasks:
v “Creating the aggregation fan-out flow” on page 2722
v “Creating the aggregation fan-in flow” on page 2728

Dealing with exceptions:
About this task

If an error is detected downstream of an AggregateReply node, the broker issues
an exception. Another node in the message flow might also issue an exception
using the ESQL THROW statement. In either case, when an exception occurs, it is
caught in one of two places:
v The input node on which the replies arrive
v The AggregateReply node

The following table lists events and describes what happens to an exception that
occurs downstream of the AggregateReply node.

Event Message
propagated

Output
terminal

Exception caught
at

An expected reply arrives at the input
node and is passed to the In terminal
of the AggregateReply node. The reply
is the last one that is needed to make
an aggregation complete.

An aggregated
reply message that
contains all the
replies

Out Input node

An unexpected reply arrives at the
input node and is passed to the
AggregateReply node. The reply is not
recognized as a valid reply, and the
Unknown Message Timeout property is
set to 0.

Message received Unknown Input node

A timeout occurs because all the
replies for an aggregation have not yet
arrived.

An aggregated
reply message that
contains all the
replies that have
been received

Timeout AggregateReply
node

An unknown timeout occurs because a
retained message is not identified as a
valid reply.

Retained message Unknown AggregateReply
node

An aggregation is discovered to be
complete at some time other than
when the last reply arrived.

An aggregated
reply message that
contains all the
replies

Out AggregateReply
node

To handle errors that occur in aggregation flows, you must catch these exceptions
at all instances of each of these nodes in the message flow.

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the message flow with which you want to work.

2750 WebSphere Message Broker Version 7.0.0.8

3. To handle these exceptions yourself, connect the Catch terminal of each input
and AggregateReply node to a sequence of nodes that handles the error that
has occurred.
For a unified approach to error handling, connect the Catch terminals of all
these nodes to a single sequence of nodes, or create a subflow that handles
errors in a single consistent manner, and connect that subflow to each Catch
terminal.

4. If you want the broker to handle these exceptions using default error handling,
do not connect the Catch terminals of these nodes.

Results

If you connect the Catch terminal of the AggregateReply node, and want to send
the message that is propagated through this terminal to a destination from which it
can be retrieved for later processing, include a Compute node in the catch flow to
provide any transport-specific processing. For example, you must add an MQMD
header if you want to put the message to a WebSphere MQ queue from an
MQOutput node.

The following ESQL example shows you how to add an MQMD header and pass
on the replies that are received by the AggregateReply node:
-- Add MQMD
SET OutputRoot.MQMD.Version = 2;
.
-- Include consolidated replies in the output message
SET OutputRoot.XMLNS.Data.Parsed = InputRoot.ComIbmAggregateReplyBody;
.

To propagate the information about the exception in the output message, set the
Compute mode property of the Compute node to a value that includes Exception.
Related concepts:
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Creating the aggregation fan-out flow” on page 2722
The aggregation fan-out flow receives the initial input message and restructures it
to present a number of requests to a number of target applications.
“Creating the aggregation fan-in flow” on page 2728
The aggregation fan-in flow receives the responses to the request messages that are
sent out by the fan-out flow, and constructs a combined response message
containing all the responses received.
“Associating fan-out and fan-in aggregation flows” on page 2733
Associate the fan-out message flow processing with its corresponding fan-in
message flow processing by setting the Aggregate Name property of the
AggregateControl and AggregateReply nodes in your aggregation flow to the same
value.

Chapter 9. Developing message flow applications 2751

“Setting timeout values for aggregation” on page 2736
You can use two properties of the aggregation nodes to set timeout values for
aggregated message processing.
“Using multiple AggregateControl nodes” on page 2741
You might find it useful to design a fan-out flow with multiple AggregateControl
nodes, all with the same value set for the property Aggregate Name, but with
different values for the Timeout property. You can reuse an aggregate name in only
this situation.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

Exceptions when dealing with unknown and timeout messages:

When timeout messages or unknown messages from unknown timeout processing
are produced from an AggregateReply node, they originate from an internal queue
and not from an MQInput node. This behavior affects how the error handling
should be performed.

If a message that is sent down the timeout thread causes an exception, the message
rolls back to the AggregateReply node and is sent to the Catch terminal. If this
terminal is unattached or an exception occurs while processing the message, the
timeout is rolled back onto the internal queue and is reprocessed. Potentially, this
behavior can lead to an infinite loop, which can be stopped by deploying a version
of the message flow that fixes the problem.

To avoid this infinite loop, take the following actions.
v Connect the Catch terminal to a set of nodes that handle errors.
v Ensure that the error-handling nodes cannot throw an exception by ensuring

that they perform very simple operations; for example, converting the message
to a BLOB, then writing it to a queue, or adding extra TryCatch nodes.

The failure terminal of the AggregateReply node is not used currently and
messages are not passed to this terminal.

Configuring the storage of events for aggregation nodes:

You can use an Aggregation configurable service to control the storage of events
for AggregateControl and AggregateReply nodes.

About this task

By default, the storage queues used by all aggregation nodes are:
v SYSTEM.BROKER.AGGR.CONTROL
v SYSTEM.BROKER.AGGR.REPLY
v SYSTEM.BROKER.AGGR.REQUEST

2752 WebSphere Message Broker Version 7.0.0.8

v SYSTEM.BROKER.AGGR.UNKNOWN
v SYSTEM.BROKER.AGGR.TIMEOUT

However, you can control the queues that are used by different aggregation nodes
by creating alternative queues containing a QueuePrefix, and using an Aggregation
configurable service to specify the names of those queues for storing events.

Follow these steps to specify the queues that are used to store event states, and to
set the expiry time of an aggregation:

Procedure

1. Create the storage queues to be used by the aggregation nodes. The following
queues are required:
v SYSTEM.BROKER.AGGR.QueuePrefix.CONTROL
v SYSTEM.BROKER.AGGR.QueuePrefix.REPLY
v SYSTEM.BROKER.AGGR.QueuePrefix.REQUEST
v SYSTEM.BROKER.AGGR.QueuePrefix.UNKNOWN
v SYSTEM.BROKER.AGGR.QueuePrefix.TIMEOUT
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queues, WebSphere Message Broker creates the
set of queues when the node is deployed; these queues are based on the default
queues. If the queues cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create an Aggregation
configurable service. You can create a configurable service to be used with
either a specific aggregation or with all aggregations in an execution group.
a. If the configurable service is to be used with a specific aggregation, ensure

that the name of the configurable service is the same as the name that you
specify in the Aggregate name property on the AggregateControl and
AggregateReply nodes. If the configurable service is to be used with all
aggregations in an execution group, create the configurable service with the
same name as the execution group.

b. Set the Queue prefix property to the required value.
c. Optional: Set the Timeout property to control the expiry time of an

aggregation.

For example, create a configurable service called myAggregation, which specifies
queues prefixed with SYSTEM.BROKER.AGGR.SET1 and a timeout of 60
seconds:
mqsicreateconfigurableservice MYBROKER -c Aggregation -o myAggregation
-n queuePrefix,timeoutSeconds -v SET1,60

You can use the mqsideleteconfigurableservice command to delete the
Aggregation configurable service. However, the storage queues are not deleted
automatically when the configurable service is deleted, so you must delete
them separately.For more information, see “Configurable services properties”
on page 3766

3. In the AggregateControl and AggregateReply nodes:
a. Ensure that the name of the Aggregation configurable service is the same as

the name specified in the Aggregate name property on the Basic tab; for
example, myAggregation. If no Aggregation configurable service exists with

Chapter 9. Developing message flow applications 2753

the same name as the Aggregate name property, and if a configurable service
exists with the same name as the execution group, that configurable service
is used instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a

2754 WebSphere Message Broker Version 7.0.0.8

broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Using message collections
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.

About this task

The topics in this section describe how message collection works, and how you can
configure your message flow to process message collections.
v “Message collections”
v “Creating a message collection by using ESQL” on page 2758
v “Creating a message collection by using Java” on page 2760
v “Creating a flow that uses message collections” on page 2764
v “Configuring the Collector node” on page 2767
v “Using control messages with the Collector node” on page 2779
v “Configuring the storage of events for Collector nodes” on page 755

Message collections
A message collection is a single message that contains multiple messages derived
from one or more sources.

You can use a Collector node to group together messages from one or more
sources into a message collection, so that they can be processed together by
downstream nodes. You can also manually build a message collection using a
Compute node.

Structure of a message collection

A message collection tree contains sub-trees that hold the content of the individual
messages received by the Collector node. The message assembly that is propagated
from the Collector node to other nodes in your message flow contains the
following four components:
v Message (including transport headers)
v Local environment
v Global environment
v Exception list

The following figure shows an example of the message tree structure of a message
collection.

Chapter 9. Developing message flow applications 2755

attribute
<name> / <value>

Root

Properties

Properties Properties

Collection

MRMMQMD XMLNSC

<folder name> <folder name>

Collection attributes (name/value pairs)

Example messages owned by collection

The message collection in this example contains two messages, one received from
WebSphere MQ, and one from a file input source.

A message collection has a Properties header and a single folder element named
Collection. A message collection can also have zero or more attributes that are
name/value pairs; the name of an attribute must be unique within a message
collection. These are shown as <name> / <value> in the figure. A standard attribute
for the message collection is an attribute called CollectionName. If you use a
Collector node to generate a message collection, the value for the collection name
is generated based on the values you configure in the node. The collection name
attribute is not compulsory.

Within the Collection folder in the message collection tree structure are folders,
shown as <folder name> in the diagram. These folders contain the message tree of
each message added to the message collection. Each of these folders has a name,
but this name does not have to be unique within the message collection. The value
for the <folder name> is derived from the source of the input message.

Nested message collections are not permitted. You cannot therefore use a message
collection as a source message for another message collection. For example, If you
attempt to pass a message collection to a input terminal on a Collector node, an
error is generated.

The LocalEnvironment, Environment and ExceptionList trees are not included in
the structure, but are instead carried separately as a part of the message assembly.
There is no concept of a LocalEnvironment associated with each message in a
message collection.

2756 WebSphere Message Broker Version 7.0.0.8

Generating a message collection using a Collector node

You can use the Collector node to make multiple synchronous or asynchronous
requests in parallel. The results of these requests can be joined together
downstream if required. This is different from the behavior of the aggregation
nodes where there is a fixed pattern of request/response and where reply
messages are grouped by request id. In contrast, the collector node does not need
an initial fan-out stage and can group together unrelated input messages by
correlating their content. You can configure dynamic input terminals on a Collector
node to receive messages from different sources. You can also configure properties
on the Collector node, known as event handlers, to determine how messages are
added to a message collection, and when a message collection is complete.

Processing a message collection

A message collection is supported by the following nodes only:
v Compute
v JavaCompute

Errors are generated by other nodes if they receive a message collection.

You can use ESQL or XPath expressions to access the content of messages in a
message collection by referencing the folder names preceded by
InputRoot.Collection. To access the contents of a message in a message collection
using ESQL you can use code similar to the following ESQL:
InputRoot.Collection.folder1.XMLNSC

In XPath, the root element is the body of the message. The root element for a
message collection is the Collection element. Therefore, to access the contents of a
message in a message collection using XPath, you must use an expression similar
to the following XPath:
/folder1/XMLNSC

Examples of XPath expressions that you can use to access the message collection
are:
v /*: returns a list of all the messages in the message collection.
v /@*: returns a list of all the attributes of the message collection.
v /@Name: returns the value of the attribute Name.

You might not be able to determine the order of the messages within a message
collection. If you generate a message collection using the Collector node, the
messages are arranged in the same order as the messages arrived at the node.
Related concepts:
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

Chapter 9. Developing message flow applications 2757

“Creating a message collection by using ESQL”
A message collection can be constructed by using ESQL. Using a message
collection is useful if messages must be grouped together for parsing, or if the
message collection must be constructed to represent a particular data structure,
such as a CICS Transaction Server for z/OS channel data structure.
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Creating a message collection by using ESQL
A message collection can be constructed by using ESQL. Using a message
collection is useful if messages must be grouped together for parsing, or if the
message collection must be constructed to represent a particular data structure,
such as a CICS Transaction Server for z/OS channel data structure.

Before you begin

Before you start:

v Create a message flow project and a message set project, as described in
“Creating a message flow project” on page 1425 and “Working with a message
set project” on page 2838.

v For background information, read “Message collections” on page 2755.

About this task

A message collection is a message that consists of a Properties header and a single
domain element named Collection. The Collection folder contains a number of
child messages, each of which can contain a Properties folder, a number of
headers (such as MQMD), and a body. A message collection can also have zero or
more attributes that are name/value pairs. The name of an attribute must be
unique within a message collection. A standard attribute for the message collection
is an attribute called CollectionName.

The following figure shows an example of a message collection structure.

2758 WebSphere Message Broker Version 7.0.0.8

attribute
<name> / <value>

Root

Properties

Properties Properties

Collection

MRMMQMD XMLNSC

<folder name> <folder name>

Collection attributes (name/value pairs)

Example messages owned by collection

You can create a message collection by using ESQL to group messages together for
parsing, or create a message collection that must be constructed to represent a
particular data structure, such as a CICS channel data structure.

To configure a message collection by using ESQL, complete the following steps:

Procedure
1. Create a Properties folder for the collection by using the following ESQL

statement:
CREATE FIRSTCHILD of OutputRoot domain ’Properties’ NAME ’Properties’;

2. Create the Collection domain element by using the following statement:
CREATE LASTCHILD OF OutputRoot DOMAIN ’Collection’;

As with message folders, the domain element is always the last child of the
message.

3. Use the following statement to set an attribute in the collection called
CollectionName:
SET OutputRoot.Collection.CollectionName = ’myCollectionName’;

4. The following ESQL shows an example procedure to create a message within
the collection:
SET OutputRoot.Collection.foldername.Properties.MessageSet = set;
SET OutputRoot.Collection.foldername.Properties.MessageType = type;
SET OutputRoot.Collection.foldername.Properties.MessageFormat = format;
SET OutputRoot.Collection.foldername.Properties.Encoding = encoding;
SET OutputRoot.Collection.foldername.Properties.CodedCharSetId = ccsid;

SET OutputRoot.Collection.foldername.domain.content=some data;

Related concepts:

Chapter 9. Developing message flow applications 2759

“Message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources.
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

Creating a message collection by using Java
A message collection can be constructed by using Java and the
MbMessageCollection class. Using a message collection is useful if messages must
be grouped together for parsing, or if the message collection must be constructed
to represent a particular data structure, such as a CICS Transaction Server for z/OS
channel data structure.

Before you begin

Before you start:

v Create a message flow project and a message set project. For more information,
see “Creating a message flow project” on page 1425 and “Working with a
message set project” on page 2838.

v For background information, read “Message collections” on page 2755.

About this task

A message collection is a message that consists of a Properties header and a single
domain element named Collection. The Collection folder contains a number of
child messages, each of which can contain a Properties folder, a number of
headers (such as MQMD), and a body. A message collection can also have zero or
more attributes that are name/value pairs. The name of an attribute must be
unique within a message collection. A standard attribute for the message collection
is an attribute called CollectionName.

The following figure shows an example of a message collection structure.

2760 WebSphere Message Broker Version 7.0.0.8

attribute
<name> / <value>

Root

Properties

Properties Properties

Collection

MRMMQMD XMLNSC

<folder name> <folder name>

Collection attributes (name/value pairs)

Example messages owned by collection

You can create a message collection by using Java, and the MbMessageCollection
class, to group messages together for parsing, or create a message collection that
must be constructed to represent a particular data structure, such as a CICS
channel data structure.

To configure a message collection by using Java, complete the following steps:

Procedure
1. Create a new message by using the following example:

// create new message
MbMessageCollection outMessage = new MbMessageCollection();
MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly,
outMessage);

2. Create a Properties folder for the collection by using the following example:
// create top level Properties folder and data
MbElement omroot = outMessage.getRootElement();
MbElement properties = omroot.createElementAsFirstChild("Properties");
MbElement property1 = properties.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "myProperty1", "propertyData1");

MbElement property2 = properties.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "myProperty2", "propertyData2");

3. Create the name value pairs by using the following example:
// create collection attributes (name/value pairs)
MbElement cn = outMessage.createNameValue("CollectionName", "myCollectionName");
MbElement nv1 = outMessage.createNameValue("NAME1", "Value1");
MbElement nv2 = outMessage.createNameValue("NAME2", 12345);

As with message folders, the domain element is always the last child of the
message property.

Chapter 9. Developing message flow applications 2761

4. The following example shows the procedure to create a message within the
collection. Steps one, two, and three are repeated.
public void evaluate(MbMessageAssembly inAssembly) throws MbException {
MbOutputTerminal out = getOutputTerminal("out");

// create new message
MbMessageCollection outMessage = new MbMessageCollection();
MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly,
outMessage);

// create top level Properties folder and data
MbElement omroot = outMessage.getRootElement();
MbElement properties = omroot.createElementAsFirstChild("Properties");
MbElement property1 = properties.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "myProperty1", "propertyData1");
MbElement property2 = properties.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "myProperty2", "propertyData2");

// create collection attributes (name/value pairs)
MbElement cn = outMessage.createNameValue("CollectionName", "myCollectionName");
MbElement nv1 = outMessage.createNameValue("NAME1", "Value1");
MbElement nv2 = outMessage.createNameValue("NAME2", 12345);

// create folder 1
MbElement folder1 = outMessage.createFolder("folder1");

// create properties for folder 1
MbElement folder1properties = folder1.createElementAsFirstChild("Properties");
MbElement folder1property1 = folder1properties.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "myFolder1Property1", "folder1propertyData1");
MbElement folder1property2 = folder1properties.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "myFolder1Property2", "folder1propertyData2");

// create body of folder 1
MbElement mrm = folder1.createElementAsLastChild("MRM");

// create message domain element of folder 1
MbElement msg = mrm.createElementAsLastChild(MbElement.TYPE_NAME,
"msg", null);

// create data within the message body for folder 1
MbElement data = msg.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "data", "myData");

// create folder 2
MbElement folder2 = outMessage.createFolder("Folder2");

// create properties for folder 2
MbElement folder2properties = folder2.createElementAsFirstChild("Properties");
MbElement folder2property1 = folder2properties.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "myFolder2Property1", "folder2propertyData1");
MbElement folder2property2 = folder2properties.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "myFolder2Property2", "folder2propertyData2");

// create body of folder 2
MbElement xmlnsc = folder2.createElementAsLastChild("XMLNSC");

// create message domain element of folder 2
MbElement msg2 = xmlnsc.createElementAsLastChild(
MbElement.TYPE_NAME, "msg2", null);

// create data within the message body for folder 2
MbElement data2 = msg2.createElementAsLastChild(
MbElement.TYPE_NAME_VALUE, "myData2", "myXMLData");

try {

2762 WebSphere Message Broker Version 7.0.0.8

out.propagate(outAssembly);
} finally {
// clear the outMessage even if there’s an exception
outMessage.clearMessage();
}

}

Results

The following example output from a Trace node shows the message structure
built by this Java code:
TraceOutput: Root ([’MQROOT’ : 0xee3a90]
(0x01000000:Name):Properties = ([’MQPROPERTYPARSER’ : 0xae4370]
(0x03000000:NameValue):myProperty1 = ’propertyData1’ (CHARACTER)
(0x03000000:NameValue):myProperty2 = ’propertyData2’ (CHARACTER)
)
(0x01000000:Name):Collection = ([’COLLECTION’ : 0x58d0b08]
(0x03000000:NameValue):CollectionName = ’myCollectionName’ (CHARACTER)
(0x03000000:NameValue):NAME1 = ’Value1’ (CHARACTER)
(0x03000000:NameValue):NAME2 = 12345 (INTEGER)
(0x01000000:Name):Folder1 = ([’COLLECTIONFOLDER’ : 0xee42e8]
(0x01000000:Name):Properties = ([’MQPROPERTYPARSER’ : 0xae39e8]
(0x03000000:NameValue):myFolder1Property1 = ’folder1propertyData1’ (CHARACTER)
(0x03000000:NameValue):myFolder1Property2 = ’folder1propertyData2’ (CHARACTER)
)
(0x01000021:Name+):MRM = ([’mrm’ : 0xdce588]
(0x01000000:Name):msg = (
(0x03000000:NameValue):data = ’myData’ (CHARACTER)

)
)
)
(0x01000000:Name):Folder2 = ([’COLLECTIONFOLDER’ : 0xee3d58]
(0x01000000:Name):Properties = ([’MQPROPERTYPARSER’ : 0xae4cf8]
(0x03000000:NameValue):myFolder2Property1 = ’folder2propertyData1’ (CHARACTER)
(0x03000000:NameValue):myFolder2Property2 = ’folder2propertyData2’ (CHARACTER)
)
(0x01000000:Folder):XMLNSC = ([’xmlnsc’ : 0xee2188]
(0x01000000:Folder):msg2 = (
(0x03000000:PCDataField):myData2 = ’myXMLData’ (CHARACTER)

)
)
)
)
)

Related concepts:
“Message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources.
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.
Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.

Chapter 9. Developing message flow applications 2763

“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

Creating a flow that uses message collections
Use a Collector node in your message flow to group messages from one or more
sources into a message collection. You can add dynamic input terminals to your
Collector node for each message source that you want to configure for your
message flow.

Before you begin

Before you start:

Complete the following tasks.
v For background information, read “Message collections” on page 2755.
v Create a message flow project, as described in “Creating a message flow project”

on page 1425.

About this task

You can also use a Compute node to create a message collection by using ESQL,
which is useful if messages must be grouped together for parsing, or if the
message collection must be constructed to represent a particular data structure,
such as a CICS Transaction Server for z/OS channel data structure. For more
information about using ESQL to create a message collection, see “Creating a
message collection by using ESQL” on page 2758.

Look at the following sample to see how to use the Collector node for message
collection:
v Collector Node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

To create a message flow to generate and process message collections:

Procedure
1. Create a new message flow.
2. Add the input nodes in the editor view. The input nodes receive the messages

from which message collections are generated. You can use any of the built-in
nodes, or user-defined input nodes. Configure and connect them as described.
a. Add an input node for each source of input messages for your message

flow, for example an MQInput node and a JMSInput node.
b. Select each input node in turn to display its properties in the Properties

view.
c. Specify the source of input messages for each node. For example, specify the

name of a WebSphere MQ queue in the Basic property Queue Name from
which the MQInput node retrieves messages.

d. Optional: Specify values for any other properties that you want to configure
for each node.

2764 WebSphere Message Broker Version 7.0.0.8

3. Add the Collector node in the editor view. The Collector node receives
messages from input nodes or other nodes in the message flow. You must add
a dynamic input terminal to the Collector node for each input message source
before you can connect the input nodes or any upstream nodes to the Collector
node. Configure and connect them as described.
a. Add a Collector node to your message flow.
b. Right-click the Collector node and click Add Input Terminal to add a new

dynamic input terminal to the Collector node. Add a new input terminal for
each input source that you plan to add to your message flow; for more
information about adding dynamic input see “Adding an input terminal to
a Collector node for each input source” on page 2768.

c. Connect the out terminal of each input node to a different dynamic input
terminal of the Collector node. This represents the simplest configuration; if
appropriate, you can include other nodes between the input node and the
Collector node. For example, you might want to store the request for audit
purposes (in a Warehouse node), or add a unique identifier to the message
(in a Compute node).

4. Add processing nodes to your message flow. You can process message
collections from a Collector node using the following nodes only:
v Compute
v JavaCompute
You must connect either a Compute node or a JavaCompute node to the
Collector node in your message flow. Use these nodes to process the message
collection and propagate other messages. You can use ESQL or XPATH to
access the contents of the individual messages in the message collection for
processing. To process a message collection:
a. Add a Compute node or a JavaCompute node to your message flow.
b. Code your ESQL or Java to create single output messages from the message

collection.
c. Optional: Specify values for any other properties that you want to configure

for this processing node.
d. Connect the out terminal of the processing node to the in terminal of an

output node or other processing node.
e. Optional: Add other nodes to your message flow for further processing.

5. Include one or more output nodes for your message flow. These can be any of
the built-in nodes, or a user-defined output node. An output node cannot
process a message collection, therefore ensure that you connect the output node
to a processing node that propagates single output messages. To configure an
output node:
a. Select each output node in turn to display its properties in the Properties

view.
b. Specify the destination properties for each node. For example, specify the

name of a WebSphere MQ queue in the Basic property Queue Name to which
the MQOutput node sends messages.

c. Optional: Specify values for any other properties that you want to configure
for each node.

6. Include processing for handling errors and expired message collections:
a. Optional: Add processing nodes to your message flow to handle expired

message collections. Connect these nodes to the Expire terminal of the
Collector node.

Chapter 9. Developing message flow applications 2765

b. Optional: Add processing or error handling nodes to handle any exceptions
in your message flow. Connect these nodes to the Catch terminal of the
Collector node

If an error is detected downstream of the Collector node, the broker throws an
exception. The message collection is propagated to the Collector node's Catch
terminal. Connect the Catch terminal to a sequence of nodes that handles the
errors, to avoid losing any data, and ensure that no further exceptions can be
generated during error processing. The node connected to the Catch terminal
must be either a Compute node or a JavaCompute node to handle the message
collection.

7. Press Ctrl-S or click File > Save name on the taskbar menu (where name is the
name of this message flow) to save the message flow and validate its
configuration.

Results

If you want to control when complete message collections are propagated, you
must also add additional nodes to your message flow. For more information, see
“Using control messages with the Collector node” on page 2779.

What to do next

Next: Configure the Collector node.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources.
Related tasks:
“Creating a message collection by using ESQL” on page 2758
A message collection can be constructed by using ESQL. Using a message
collection is useful if messages must be grouped together for parsing, or if the
message collection must be constructed to represent a particular data structure,
such as a CICS Transaction Server for z/OS channel data structure.
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Configuring the Collector node” on page 2767
You can configure the Collector node to determine how messages are added to
message collections. You can also use properties on the Collector node to control
when message collections are propagated.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

2766 WebSphere Message Broker Version 7.0.0.8

Configuring the Collector node
You can configure the Collector node to determine how messages are added to
message collections. You can also use properties on the Collector node to control
when message collections are propagated.

Before you begin

Before you start:

This topic assumes that you have already created a message flow that contains a
Collector node. For more information, see “Creating a flow that uses message
collections” on page 2764.

About this task

Use the following topics to configure the Collector node:
v “Adding an input terminal to a Collector node for each input source” on page

2768
v “Setting event handler properties” on page 2769
v “Setting the collection expiry” on page 2772
v “Setting the collection name” on page 2774
v “Setting the event coordination property” on page 2775
v “Setting the persistence mode property” on page 2776
v “Setting the configurable service property” on page 2778
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Chapter 9. Developing message flow applications 2767

Adding an input terminal to a Collector node for each input source:

Add new dynamic input terminals to the Collector node for all of the sources of
messages for your message collections.

Before you begin

Before you start:

This task assumes that you have already created a message flow that contains a
Collector node. For more information, see “Creating a flow that uses message
collections” on page 2764.

About this task

To add a dynamic input terminal to the Collector node for each message source,
complete the following steps.

Procedure

1. Right-click the Collector node and select Add Input Terminal.
2. In the dialog box that is displayed, enter a name of your choice for the

terminal, and click OK. The name that you give to the input terminal is used as
the folder name in the message collection.

3. Repeat steps 1 and 2 to add further input terminals.

What to do next

Next:

When you have created all the required input terminals on the Collector node, you
can set the event handler properties. For more information see, “Setting event
handler properties” on page 2769.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:

2768 WebSphere Message Broker Version 7.0.0.8

“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Setting event handler properties:

You can configure event handler properties for each dynamic input terminal on a
Collector node. These event handler properties determine how the messages
received by each terminal are added to message collections.

Before you begin

Before you start:

To complete this task, you must have completed the following tasks:
v “Creating a flow that uses message collections” on page 2764
v “Adding an input terminal to a Collector node for each input source” on page

2768

About this task

You can use one or more of the event handler properties to control the way that
messages are added to message collections for each input terminal that you added
to the Collector node. Incomplete message collections are stored on a
WebSphere MQ queue. The message collections are stored in the order that they
are generated by the Collector node (first in, first out). Each message collection has
an event handler instance for each of the input terminals. The event handler
determines whether an incoming message on that terminal is added to a message
collection. The event handler instance maintains information about the state of the
collection, the number of messages received, the timer, and the correlation string.
When a new message is received on an input terminal, it is offered to the event
handler for each message collection waiting on the queue in turn. When the
message is accepted by one of the event handlers, it is added to the message
collection. The accepted message is not offered to any other message collections. If
all the event handlers reject the message, it is added to a new message collection,
which is added to the end of the queue.

The first message accepted into a collection determines the correlation string for
that message collection, if it is configured. Subsequent messages offered to that
message collection are only accepted if their correlation string matches that of the
collection. The first message accepted by each event handler starts the timeout
timer, if it is configured. Each message accepted by each event handler increments
the quantity count. An event handler becomes satisfied when the number of
messages accepted equals the configured quantity, or when the timeout value is
reached. When an event handler is satisfied, the event handler does not accept any
more messages. A message collection is complete only when all of the message
collection's event handlers are satisfied. The message collection is then ready for
propagation.

You can configure the event handler properties by using the Collection Definition
table, on the Basic tab of the Properties view.

To configure the event handler properties on the Collector node:

Chapter 9. Developing message flow applications 2769

Procedure

1. Open the message flow with the Collector node.
2. Right-click the Collector node and select Properties.
3. Click the Basic tab.
4. Use the following instructions to configure the event handler properties that

you want to set for each input terminal:
v If you want to add a set number of messages to each message collection

from one or more of the terminals, you must enter a value for Quantity in
the Collection Definition table. This value is used to specify the number of
messages that each configured input terminal accepts to complete a
collection. For example, if you have set Quantity to wait for 2 messages on
three of the input terminals, the message collection is not complete until 2
messages have been received on each of the three input terminals. The
complete message collection contains 6 messages, 2 from each of the three
terminals. As soon as more than 2 messages are received on one of the input
terminals, the next message is added to a new message collection.
a. In the Collection Definition table, click the row for the selected input

terminal within the Quantity column.
b. Enter a value for the number of input messages that you want to add to

a message collection. If you select Zero or choose not to set this property,
there is no limit to the number of messages accepted. In this case the
value set on the Timeout property must be greater than zero. If you
accept the default value of 1; only one message from the selected terminal
is added to a collection.

You must enter a value for Quantity if Timeout is not set.
v If you want to collect messages for a set amount of time before the message

collection is propagated you must enter a value for Timeout. This value is
used to specify the maximum time in seconds for which the selected input
terminal accepts messages before completing a message collection. The
timeout interval starts when the first message has arrived at the selected
terminal. Any subsequent messages are added to the same message
collection. When the timeout interval ends, no more messages are added to
the message collection from this terminal. When the conditions on all the
terminals are satisfied, the message collection is ready for propagation. When
the next message reaches the selected input terminal, a new message
collection is created and the timeout interval starts again. If a timeout is set
on multiple input terminals, each terminal collects messages for the
configured amount of time. During the timeout messages from all of the
terminals are added to the same message collection.
a. In the Collection Definition table, click the row for the selected input

terminal within the Timeout column.
b. Enter a value for the length of time in seconds that you want to wait to

add messages to a message collection. For example, to wait for messages
to add to a message collection for an hour, enter a value of 3600. If you
accept the default value Zero, timeout is not enabled and there is no limit
on the time to wait for messages. In this case the value set on the
Quantity property must be greater than zero.

You must enter a value for Timeout if Quantity is not set.
v If you want to add messages to different message collections based on the

content of the message you must enter an XPath value for the Correlation
path. This value is used to specify the path in the incoming message from
which to extract the correlation string. The correlation string is the value that
is extracted by the correlation path. If a correlation pattern is specified, the

2770 WebSphere Message Broker Version 7.0.0.8

correlation string is matched against the correlation pattern. Messages are
only accepted into a message collection with the same correlation string. If
you specify an asterisk (*) in the name of the message collection, it is
replaced by the correlation string.
a. In the Collection Definition table, click the row for the selected input

terminal within the Correlation path column.
b. Either select a predefined correlation path from the list, or enter your

own correlation path using XPath. The correlation path must begin with a
correlation name, which can be followed by zero or more path fields. For
example, in the following message the correlation string is xxx in the
name field:
<library>
<name>xxx</name>
<more>
...
</more>
</library>

In this example, the correlation path using XPath is $Body/library/name.
The variables $Root, $LocalEnvironment, and $Environment are available
to allow the path to start at the roots of the message, local environment,
environment trees, and message body.

If the correlation path evaluates to an empty string the unmatched message
is added to a default unnamed message collection.
If you define a value for Correlation path, you can optionally configure a
Correlation pattern.

v If you want to match a substring of the message content from the
Correlation path, you can define a pattern to match in the message by using
Correlation pattern. The Correlation pattern contains a single wildcard
character and optional text. The correlation string, used for the name of the
message collection, is the part of the substring that matches the wildcard. For
example, if the correlation path contains the filename part1.dat in a file
header, and the correlation pattern is specified as *.dat, the correlation string
is part1.
If this property is set, only messages that have the same correlation string are
added to the same message collection. The first message added to a message
collection determines the correlation string that must be matched by all other
messages in that message collection.
a. In the Collection Definition table, click the row for the selected input

terminal within the Correlation pattern column.
b. Enter a value for the correlation pattern. The Correlation pattern must

contain a single wildcard character: *. This wildcard character can
optionally be surrounded by other text.

If the correlation pattern fails to match the wildcard to a substring, the
unmatched message is added to a default unnamed message collection.

5. Repeat step 4 on page 2770 for each of the input terminals that you added to
your Collector node. You can configure different event handlers for different
input sources.

What to do next

Note: Ensure that you set the event handler properties across different terminals
carefully to match the expected delivery of messages to the terminals on the
Collector node.

Chapter 9. Developing message flow applications 2771

You can now configure the collection expiry, see “Setting the collection expiry.”
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Using control messages with the Collector node” on page 2779
You can send control messages to the Collector node in order to control how
complete message collections are propagated to other nodes in your message flow.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Setting the collection expiry:

The collection expiry is a property on the Collector node to set a maximum
timeout for adding messages to a message collection.

Before you begin

Before you start:

This topic assumes that you have already created a message flow that contains a
Collector node. For more information, see “Creating a flow that uses message
collections” on page 2764.

About this task

When messages are added to a message collection, the incomplete message
collection is stored on a queue. If the message collection's event handlers are not
satisfied, the incomplete message collection is stored on the queue indefinitely, and
not propagated for further processing. If a Collector node has 2 input terminals,

2772 WebSphere Message Broker Version 7.0.0.8

and one of the terminals stops receiving messages, for example if the source
application is not running, there is the potential for the queue of incomplete
message collections to grow indefinitely. To ensure that these incomplete message
collections are released after an appropriate amount of time, configure the
Collection Expiry property. You can configure this timeout, as a value in seconds,
in the Collection Expiry property on the Collector node. The collection expiry
timeout starts when the first message is accepted into a message collection. The
collection expiry overrides any individual event handler timers. When the
collection expiry timeout has passed for a message collection, the incomplete
message collection is propagated to the Expire terminal. Connect appropriate
processing nodes to the Expire terminal, to handle any expired message collections
in your message flow.

To configure a collection expiry:

Procedure

1. Open the message flow with the Collector node.
2. Right-click the Collector node and select Properties.
3. Click the Basic tab.
4. In Collection Expiry, enter a time in seconds for the collection expiry timeout.

What to do next

Next: Configure the collection name.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Using control messages with the Collector node” on page 2779
You can send control messages to the Collector node in order to control how
complete message collections are propagated to other nodes in your message flow.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Chapter 9. Developing message flow applications 2773

Setting the collection name:

You can set a default name, or use a correlation string, for the name of your
message collections, by using the Collection name property on the Collector node.

Before you begin

Before you start:

This task assumes that you have already created a message flow that contains a
Collector node. For more information, see “Creating a flow that uses message
collections” on page 2764.

About this task

Each message collection that is produced by the Collector node has a name. The
collection name is the value that is associated with the CollectionName attribute in
the message collection tree structure. Each message collection has only one name.

You can either use Collection name to set a default name to be used for each
message collection, or you can use the event handler properties to create a
correlation string to use for the message collection name. You can use the
correlation string to generate a unique name for the message collection, based on
the content of the input messages. To use the correlation string for the collection
name, you must enter the wildcard symbol *. If you leave Collection name blank,
or if it is set to * and the value of the correlation string is empty, the
CollectionName attribute of the message collection is set to an empty value.

Any * characters in the collection name are replaced with the correlation string.
The correlation string for each message collection is also copied into the local
environment message that is associated with the propagated message collection.
The location of the correlation string in the local environment is
Wildcard/WildcardMatch.

To configure the message collection name:

Procedure

1. Open the message flow that contains the Collector node.
2. Right-click the Collector node and select Properties.
3. Click the Basic tab.
4. For the Collection name property, enter a name for the message collections that

are generated by the Collector node. If you have set a value for Correlation
path on your input terminals, you can use the * for the Collection name
property to substitute the correlation string into the collection name value.
Leave the collection name blank if you want to set your message collection
name to an empty value.

What to do next

Next: “Setting the event coordination property” on page 2775.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

2774 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Using control messages with the Collector node” on page 2779
You can send control messages to the Collector node in order to control how
complete message collections are propagated to other nodes in your message flow.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Setting the event coordination property:

Use the Event coordination property for controlling how message collections are
propagated from the Collector node.

Before you begin

Before you start:

This topic assumes that you have already created a message flow that contains a
Collector node. For more information, see “Creating a flow that uses message
collections” on page 2764.

About this task

In addition to the dynamic input terminals that you can add to the Collector node,
there is a static input terminal called Control. The purpose of this terminal is to
allow an external resource to trigger the output from the collector node. Details are
controlled through the Event coordination property settings.

Incomplete message collections that have exceeded the value for the Collection
expiry timeout are immediately propagated to the Expire terminal, regardless of
how you configure the Event coordination property.

To configure Event coordination:

Procedure

1. Open the message flow that contains the Collector node.
2. Right-click the Collector node and select Properties.
3. Click the Advanced tab.

Chapter 9. Developing message flow applications 2775

4. Set the Event coordination property on the Collector node. Select from the
following options:
v If you select Disabled, messages to the Control terminal are ignored and

message collections are propagated when they are complete.
v If you select All complete collections, complete message collections are

held on a queue. When a message is received on the Control terminal, all
message collections on the queue are propagated to the Out terminal.

v If you select First complete collection, complete message collections are
held on a queue. When a message is received on the Control terminal, the
first message collection on the queue is propagated to the Out terminal. If
the queue is empty when a message arrives on the Control terminal, the next
message collection that is completed is propagated to the Out terminal.

Results

You have completed configuration of the Collector node.

What to do next

Next: if you have configured your Collector node to use control messages, see
“Using control messages with the Collector node” on page 2779.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Using control messages with the Collector node” on page 2779
You can send control messages to the Collector node in order to control how
complete message collections are propagated to other nodes in your message flow.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Setting the persistence mode property:

Use the Persistence Mode property to control whether incomplete message
collections are stored persistently on the queues of a Collector node.

2776 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

This topic assumes that you have already created a message flow that contains a
Collector node. For more information, see “Creating a flow that uses message
collections” on page 2764.

About this task

The storage of incoming messages and the Collector node state is handled
internally by using WebSphere MQ queues. By default, incomplete message
collections are stored non-persistently, which means that incomplete message
collections persist if you restart your broker, but not if you restart your queue
manager.

You can use the Persistence Mode property on the Collector node to store
incomplete message collections on a queue persistently. If you set the Persistence
Mode property to Persistent, incomplete message collections are not lost if you
restart your queue manager. However, if you do set the property to Persistent,
the overall performance of the Collector node might be affected.

To configure the Persistence Mode:

Procedure

1. Open the message flow that contains the Collector node.
2. Right-click the Collector node and select Properties.
3. Click the Advanced tab.
4. Set the Persistence Mode property on the Collector node to one of the

following values.
v If you select Non Persistent, messages and collection state are stored by the

broker queue manager as non-persistent messages.
v If you select Persistent, messages and collection state are stored by the

broker queue manager as persistent messages.

Results

You have completed configuration of the Collector node.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Using control messages with the Collector node” on page 2779
You can send control messages to the Collector node in order to control how
complete message collections are propagated to other nodes in your message flow.

Chapter 9. Developing message flow applications 2777

“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Setting the configurable service property:

Use the Configurable service property on the Collector node to specify a
Collector configurable service that sets the values of properties at run time.

Before you begin

Before you start:

This task assumes that you have already created a message flow that contains a
Collector node. For more information, see “Creating a flow that uses message
collections” on page 2764.

About this task

You can use the Configurable service property on the Collector node to specify
the name of a Collector configurable service to be used by the node. The Collector
configurable service has the following properties:

queuePrefix
The identifier used to specify the names of queues in which events and
collections are stored.

collectionExpirySeconds
The expiry time (in seconds) of a collection. This property overrides the value
specified by the Collection expiry property on the Collector node.

To configure the Configurable service property, complete the following steps.

Procedure

1. Open the message flow that contains the Collector node.
2. Right-click the Collector node and select Properties.
3. Click the Advanced tab.
4. Specify the name of the Collector configurable service in the Configurable

service field.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

2778 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Using control messages with the Collector node”
You can send control messages to the Collector node in order to control how
complete message collections are propagated to other nodes in your message flow.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Configuring the storage of events for Collector nodes” on page 755
You can use a Collector configurable service to control the storage of events for
Collector nodes.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Using control messages with the Collector node
You can send control messages to the Collector node in order to control how
complete message collections are propagated to other nodes in your message flow.

Before you begin

Before you start:

This task assumes that you have already created a message flow that contains a
Collector node. For more information, see “Creating a flow that uses message
collections” on page 2764.

About this task

You can control when complete message collections are propagated to other nodes
for processing, using messages sent to the Control terminal. The exact behavior
depends on the settings that you have chosen for the Event coordination property
on the Collector node. If you want to use control messages to propagate completed
messages collections you must set the Event coordination property to one of the
following:
v All complete collections

v First complete collection

Chapter 9. Developing message flow applications 2779

In these cases, the complete message collections are held on a queue until a control
message is received. If you set Event coordination to All complete collections,
all the message collections held on the queue are propagated to the Out terminal.
If you set Event coordination to First complete collection, only the first
message collection on the queue is propagated to the Out terminal. If there are no
complete message collections on the queue, the next message collection to complete
is immediately propagated to the Out terminal.

Incomplete message collections that have exceeded the value for Collection
expiry are immediately propagated to the Expire terminal regardless of the setting
of Event coordination.

If you want to propagate any complete message collections after a set amount of
time for further processing, connect a TimeoutNotification node to the Control
terminal of the Collector node. You can use the TimeoutNotification node to send a
control message to propagate the message collections to ensure that messages are
processing within a reasonable time, or to schedule processing tasks.

For more information about driving a message flow using the TimeoutNotification
node, see “Automatically generating messages to drive a flow” on page 2817.

Alternatively, you can propagate complete message collections using a message
from another application or message flow by connecting an input node to the
Control terminal of the Collector node.

You can send any message to the Control terminal of the Collector node. The
message received on the Control terminal is not examined by the broker and is
discarded on receipt.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources.
Related tasks:
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:

2780 WebSphere Message Broker Version 7.0.0.8

“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Configuring the storage of events for Collector nodes
You can use a Collector configurable service to control the storage of events for
Collector nodes.

About this task

By default, the storage queues used by all Collector nodes are:
v SYSTEM.BROKER.EDA.EVENTS
v SYSTEM.BROKER.EDA.COLLECTIONS

These queues are also used by the Resequence node.

However, you can control the queues that are used by different Collector nodes by
creating alternative queues that contain a QueuePrefix variable, and by using a
Collector configurable service to specify the names of those queues for storing
events.

Follow these steps to specify the queues that are used to store event states, and to
set the expiry for the collection:

Procedure
1. Create the storage queues to be used by the Collector node. The following

queues are required:
v SYSTEM.BROKER.EDA.QueuePrefix.EVENTS
v SYSTEM.BROKER.EDA.QueuePrefix.COLLECTIONS
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queues, WebSphere Message Broker creates the
set of queues when the node is deployed; these queues are based on the default
queues. If the queues cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create a Collector
configurable service. You can create a configurable service to be used with
either a specific collection or with all collections in an execution group.
a. If you are creating a configurable service to be used with a specific

collection, ensure that the name of the configurable service is the same as
the name that you specify in the Configurable service property on the
Collector node. If you are creating a configurable service to be used with all
collections in the execution group, ensure that the configurable service has
the same name as the execution group.

b. Set the Queue prefix property to the required value.
c. Optional: Set the Collection expiry property.

For example, create a Collector configurable service called myCollectorService,
which uses queues prefixed with SYSTEM.BROKER.EDA.SET1, and with a
collection expiry of 60 seconds:
mqsicreateconfigurableservice MYBROKER -c Collector -o myCollectorService
-n queuePrefix,collectionExpirySeconds -v SET1,60

Chapter 9. Developing message flow applications 2781

You can use the mqsideleteconfigurableservice command to delete the
Collector configurable service. However, the storage queues are not deleted
automatically when the configurable service is deleted, so you must delete
them separately.
For more information, see “Configurable services properties” on page 3766

3. In the Collector node:
a. If the configurable service is to be used for a specific collection, specify the

name of the configurable service in the Configurable service property on
the Advanced tab; for example, myCollectorService. If you do not set the
Configurable service property, and if a configurable service exists with the
same name as the execution group, that configurable service is used instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

2782 WebSphere Message Broker Version 7.0.0.8

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Using message sequences
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.

Before you begin

Before you start:

Read the following concept topics, which contain information that you need to
understand before you can use message sequences:
v “Message sequencing” on page 2784
v “Sequence groups” on page 2786
v “Starting a message sequence” on page 2787
v “Ending a message sequence” on page 2790
v “Duplicate message processing” on page 2793

About this task

WebSphere Message Broker enables you to configure the sequence of messages in a
message flow by using the following nodes:
v “Sequence node” on page 4736
v “Resequence node” on page 4651

The following topics describe the tasks involved in configuring message sequences:
v “Adding sequence numbers to messages” on page 2794
v “Reordering messages in a message flow” on page 2797
v “Maintaining the sequential order of messages” on page 2799
v “Handling missing messages” on page 2806
v “Configuring the storage of events for Resequence nodes” on page 758

These topics provide examples of how to use a Resequence node, and show how
the node processes messages in a message flow:
v “Message sequencing scenario 1” on page 2800
v “Message sequencing scenario 2” on page 2803
Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 9. Developing message flow applications 2783

Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.

Message sequencing
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.

WebSphere Message Broker provides support for adding sequence numbers to
messages, and for reordering messages in the message flow based on their
sequence number. Messages can arrive in any order and you can use the Sequence
and Resequence nodes to reorder the messages into the required sequence.

In some applications, the ability to process messages in a specific order is
important for maintaining the integrity of the workflow. For example, a series of
debits and credits against a bank account must be processed in the order in which
they took place, and patient records that are received, processed, and forwarded
must be sent on in the order in which they arrived.

Messages arriving in the message flow might or might not contain sequence
numbers. If messages without sequence numbers are received from an input
source, you can preserve the order in which the messages are received by using a
Sequence node to generate a monotonically increasing sequence number for each
message in the sequence group. When each message arrives at the Sequence node,
the sequence number is incremented and stored with the message in a location
specified on the node. The current sequence numbers for each active sequence
group are stored on the following WebSphere MQ queues:
v SYSTEM.BROKER.SEQ.GROUP
v SYSTEM.BROKER.SEQ.NUMBER

For more information, see “Sequence node” on page 4736.

When the input messages contain sequence numbers, whether they were added by
the Sequence node or already defined in an integer field in the message, you can
use a Resequence node to change the order of the messages in the message flow.

When messages arrive at the Resequence node, they are held in a storage queue
until all previous messages in the sequence have been propagated and committed.
When each message becomes the next one in the sequence, it is taken off the queue
and propagated down the Out terminal. This sequence of events ensures that
messages are kept in the correct order even when message processing fails.

By default, the storage queues used by the Resequence node are:
v SYSTEM.BROKER.EDA.COLLECTIONS
v SYSTEM.BROKER.EDA.EVENTS

2784 WebSphere Message Broker Version 7.0.0.8

However, you can use a Resequence configurable service to specify alternative
queues to be used by the Resequence node. For more information about using the
Resequence configurable service, see “Configuring the storage of events for
Resequence nodes” on page 758.

You can configure the Resequence node to time out if a message in the sequence
fails to arrive in a specified period of time, and you can specify how subsequent
messages are processed if a message is missing. For example, you can configure
the node so that:
v The message sequence must always be maintained
v Gaps are allowed in the message sequence but all other messages must remain

in sequence
v Occasional out-of-sequence messages are allowed

For information about how to configure the Resequence node for these scenarios,
see “Handling missing messages” on page 2806.

You can divide messages into sequence groups, which can be processed
independently, allowing multiple sequences to be processed at the same time. For
more information about sequence groups and duplicate message processing, see
“Sequence groups” on page 2786.

For more information about the way in which the beginning and end of sequences
are controlled, see “Starting a message sequence” on page 2787.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
“Adding sequence numbers to messages” on page 2794
You can add sequence numbers to messages entering a message flow by using the
Sequence node.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.
“Configuring the storage of events for Resequence nodes” on page 758
You can use a Resequence configurable service to control the storage of events for
Resequence nodes.
“Handling missing messages” on page 2806
You can configure the Resequence node to control how missing messages in a
sequence are processed.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you

Chapter 9. Developing message flow applications 2785

configure in the node.

Sequence groups
Use sequence groups to control the way in which messages are grouped together
for processing by Sequence and Resequence nodes.

By default, all messages arriving at the Sequence and Resequence nodes are
ordered as part of a single sequence group. However, you can divide messages
into multiple sequence groups, based on a sequence group identifier in the
message, and order each sequence group independently. For example, you might
have a message flow that receives, processes, and forwards patient records. It is
important that the order of records is maintained for each individual patient, but
ordering between patients is not necessary. In this case, the sequence group
identifier would be the name or ID of the patient.

The group to which a message belongs is determined by the group identifier that
is specified in the message. You can use the Path to sequence group identifier
property on the Sequence and Resequence nodes to specify the location of the
sequence group identifier in the message.

Messages that have the same group identifier are considered part of the same
sequence group. If no sequence group is specified, a single default sequence group
is used for all messages. However, if the Path to sequence group identifier
property specifies a location in the message that does not exist, an error occurs.

Each sequence group can be associated with only one Sequence node. Multiple
nodes can have a sequence group with the same name, but each of those sequence
groups is associated with only one node and is separate from other groups with
the same name on different nodes. For example, SequenceNode1 might have a
sequence group called GroupA, and SequenceNode2 might also have a sequence
group called GroupA, but they are separate groups.

Although you can reuse sequence groups when they have been closed, there is a
risk that two occurrences of the same sequence group could overlap, with
unpredictable results.

For example, if you have a sequence group including the numbers 1-10 and the
group is used twice in close succession, it is possible for the second occurrence of
sequence number 1 to arrive before sequence number 10 of the first occurrence. If
this happens, a duplicate message exception occurs. For this reason, it is advisable
to use a group name for only one set of sequence numbers, rather than reusing it
in a Resequence node. If you do decide to reuse a sequence group, ensure that you
reuse it only when you can be certain that the preceding use has been finished for
a significant amount of time.

Even if all the numbers have been received by the first occurrence of the group, it
can be difficult to know for certain exactly when the group is closed because it
closes only when the final message has completely finished processing; this
includes any processing that is required downstream of the node. Any message
from the second occurrence fails as a duplicate unless all processing is complete.
When a sequence group has started overlapping, it is very difficult to recover all
the messages (in both uses of the group) in the correct order, although no messages
are lost).
Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving

2786 WebSphere Message Broker Version 7.0.0.8

application in a particular order.
“Starting a message sequence”
The start of a message sequence is determined by the Start of sequence
definition property on the Resequence and Sequence nodes.
“Duplicate message processing” on page 2793
Each sequence number within a sequence group must be unique.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
“Adding sequence numbers to messages” on page 2794
You can add sequence numbers to messages entering a message flow by using the
Sequence node.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.
“Configuring the storage of events for Resequence nodes” on page 758
You can use a Resequence configurable service to control the storage of events for
Resequence nodes.
“Handling missing messages” on page 2806
You can configure the Resequence node to control how missing messages in a
sequence are processed.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Starting a message sequence
The start of a message sequence is determined by the Start of sequence
definition property on the Resequence and Sequence nodes.

Using a Resequence node

When you use the Resequence node to reorder messages in a message flow, you
use the Start of sequence definition property on the Resequence node to define
how the reordered message sequence will start. You can specify the starting
sequence number in one of the following ways:

As a literal number
Select Literal to specify a literal sequence number, which can be any
positive or negative numeric value in the range -9223372036854775807 to
9223372036854775807. When a message with the specified sequence
number arrives, it is identified as the first message in the sequence and the
messages are propagated.

Chapter 9. Developing message flow applications 2787

Using the smallest number received
Select Automatic and specify the length of time (in seconds) during which
the node collects messages, before it identifies the message that contains
the smallest sequence number. When the smallest number has been
determined, that sequence number becomes the first in the message
sequence.

For example, assume that you have a Resequence node with the following
properties:
v Path to sequence number property with a value of /doc/seq
v Path to sequence group identifier property with a value of /doc/grp
v Start of sequence definition property set to Automatic with a value of

5. This value means that, for any new group, the Resequence node
collects messages for 5 seconds before determining the starting sequence
number.

v End of sequence definition property set to Automatic with a value of
60. This value means that, for any new group, the Resequence node
waits for 60 seconds before determining the ending sequence number.

The following messages are received by the Resequence node:
<doc><grp>a<grp><seq>5</seq></doc>
<doc><grp>a<grp><seq>4</seq></doc>
<doc><grp>a<grp><seq>3</seq></doc>
<doc><grp>a<grp><seq>2</seq></doc>
<doc><grp>b<grp><seq>0</seq></doc>
<doc><grp>b<grp><seq>2</seq></doc>

At this point, the automatic period for the start of sequence expires (5
seconds), then the following messages are received:
<doc><grp>a<grp><seq>6</seq></doc>
<doc><grp>b<grp><seq>3</seq></doc>

For group a, the following messages are propagated to the Out terminal
after 5 seconds:
<doc><grp>a<grp><seq>2</seq></doc>
<doc><grp>a<grp><seq>3</seq></doc>
<doc><grp>a<grp><seq>4</seq></doc>
<doc><grp>a<grp><seq>5</seq></doc>
<doc><grp>a<grp><seq>6</seq></doc>

For group b, the following message is propagated to the Out terminal after
5 seconds:
<doc><grp>b<grp><seq>0</seq></doc>

No more messages are received before a missing message timeout occurs,
at which point the following messages are propagated to the Expire
terminal:
<doc><grp>b<grp><seq>2</seq></doc>
<doc><grp>b<grp><seq>3</seq></doc>

Using predicate set on the Resequence node
Select Predicate and specify an XPath expression to calculate whether the
message is the first in the sequence. The predicate evaluates to either True
or False, and messages continue to be collected while the expression
evaluates to False. When the expression of a message is evaluated to True,
it indicates that the message is the first in the sequence.

For example, you might specify the following XPath expression:
/Employee/EmpStartSeq="10"

2788 WebSphere Message Broker Version 7.0.0.8

When the input message field EmpStartSeq contains the value 10, the start
of sequence predicate is evaluated to True, and the message is identified as
the first in the sequence:
<Employee>
<EmpStartSeq>10</EmpStartSeq>
</Employee>

Typically, the XPath expression evaluates to a Boolean; however, if other
data types are returned, the predicate is determined in the following way:

Table 29.

Returned data type True False

Boolean True False

Numeric Any non-zero value 0 or 0.0

String Any string matching true
(case-insensitive)

Any string not matching
true (case insensitive)

NodeSet Never Always

When a message evaluates the expression to True (and is therefore
identified as the start of the sequence), the node checks that the message
has the smallest sequence number collected up to that point. If messages
are found with lower sequence numbers, an exception is thrown.

When the first message that evaluates to true has been processed
successfully, the XPath expressions of subsequent messages are not
checked. If a message arrives with a lower sequence number than the
message that was identified as the start of the sequence, an exception is
thrown.

Using a Sequence node

When you use the Sequence node to add sequence numbers to messages in the
message flow, you use the Start of sequence definition property to specify a
literal number that is to be used as the starting sequence number. The value can be
any positive or negative integer in the range -9223372036854775807 to
9223372036854775807.

The Sequence node allocates a monotonically increasing sequence number for each
input message that arrives at the node, starting with the sequence number that you
define in the Start of sequence definition property. However, this value can be
overridden by the value of the StartOfSequenceNumber field in the LocalEnvironment
of the incoming message. For example:
InputLocalEnvironment.Sequence.StartOfSequenceNumber = 10.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
“Adding sequence numbers to messages” on page 2794
You can add sequence numbers to messages entering a message flow by using the
Sequence node.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.

Chapter 9. Developing message flow applications 2789

“Configuring the storage of events for Resequence nodes” on page 758
You can use a Resequence configurable service to control the storage of events for
Resequence nodes.
“Handling missing messages” on page 2806
You can configure the Resequence node to control how missing messages in a
sequence are processed.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Ending a message sequence
The end of a message sequence is determined by the End of sequence definition
property on the Resequence and Sequence nodes.

Using a Resequence node

When you use the Resequence node to reorder messages in a message flow, you
use the End of sequence definition property on the Resequence node to define
how the reordered message sequence will end. You can specify the end sequence
number in the Resequence node in one of the following ways:

As a literal number
Select Literal to specify a literal sequence number as the end of the
sequence. This value can be any positive or negative numeric value in the
range -9223372036854775807 to 9223372036854775807. When a message
with the specified sequence number arrives, the sequence group is closed.
If there are any messages missing from the sequence, the sequence group
remains open for the period of time specified by the Missing message
timeout property.

For example, assume that you have a Resequence node with the following
properties:
v Path to sequence number property with a value of /doc/seq
v Path to sequence group identifier property with a value of /doc/grp
v Start of sequence definition property set to Literal with a value of 0.
v End of sequence definition property set to Literal with a value of 6.

This value means that the group will be closed when a message with the
sequence number 6 is received and when all earlier messages in the
sequence have been received (or the missing message timeout expires).

The following messages are received by the Resequence node:
<doc><grp>a<grp><seq>6</seq></doc>
<doc><grp>a<grp><seq>5</seq></doc>
<doc><grp>a<grp><seq>4</seq></doc>

2790 WebSphere Message Broker Version 7.0.0.8

<doc><grp>a<grp><seq>3</seq></doc>
<doc><grp>a<grp><seq>2</seq></doc>
<doc><grp>a<grp><seq>1</seq></doc>
<doc><grp>a<grp><seq>0</seq></doc>

The following messages are propagated to the Out terminal:
<doc><grp>a<grp><seq>0</seq></doc>
<doc><grp>a<grp><seq>1</seq></doc>
<doc><grp>a<grp><seq>2</seq></doc>
<doc><grp>a<grp><seq>3</seq></doc>
<doc><grp>a<grp><seq>4</seq></doc>
<doc><grp>a<grp><seq>5</seq></doc>
<doc><grp>a<grp><seq>6</seq></doc>

When the sequence group has closed, any further messages arriving at the
node for that sequence group are processed as part of a new instance of
the group.

By an automatic timeout
Select Automatic and specify the length of time (in seconds) during which
the node waits for new messages to arrive onto an empty queue. Each time
the queue of messages waiting to be propagated is empty, the Resequence
node starts a timer, which expires after the specified number of seconds. If
no new messages arrive within the specified time, the sequence group is
closed, and any new messages that arrive subsequently are treated as part
of a new group. If new messages arrive at the node within the specified
time limit, the timer is reset.

Using predicate set on the Resequence node
Select Predicate and specify an XPath expression to calculate whether the
message is the last in the sequence. The predicate evaluates to either True
or False, and messages continue to be collected while the expression
evaluates to False. When the expression of a message is evaluated to True,
it indicates that the message is the last in the sequence and the sequence
group is closed. However, if earlier messages are missing from the
sequence group, the sequence group remains open for the period of time
specified by the Missing message timeout property.

When the sequence group has closed, any further messages arriving at the
node for that sequence group are processed as part of a new instance of
the group.

Typically, the XPath expression evaluates to a Boolean; however, if other
data types are returned, the predicate is determined in the following way:

Table 30.

Returned data type True False

Boolean True False

Numeric Any non-zero value 0 or 0.0

String Any string matching true
(case-insensitive)

Any string not matching
true (case insensitive)

NodeSet Never Always

When a message evaluates the expression to True (and is therefore
identified as the last message in the sequence), the node checks that the
message has the highest sequence number collected up to that point. If
messages are found with higher sequence numbers, an exception is
thrown.

Chapter 9. Developing message flow applications 2791

Using a Sequence node

When you use the Sequence node to add sequence numbers to messages, you use
the End of sequence definition property to define how the message sequence will
end. The Sequence node allocates a monotonically increasing sequence number for
each input message that arrives at the node, ending with the sequence number that
you define in the End of sequence definition property.

You can specify the end sequence number in the Sequence node in one of the
following ways:

As a literal number
Select Literal and specify a positive or negative numeric value as the end
of sequence number (for example, 15). The value must be in the range
-9223372036854775807 to 9223372036854775807. The monotonically
increasing sequence ends when it reaches the end of sequence number
specified by this property.

Using predicate set on the Sequence node
Select Predicate to specify that the sequence ends when the XPath
expression evaluates to True. For more information, see the table above.

By an automatic timeout
Select Automatic and specify the length of time (in seconds) during which
the node waits for new messages after a message for the sequence group
has been propagated. If a new message arrives, the timer is canceled and
reset when the message is propagated. If no new messages arrive within
the specified time, the sequence group is closed, and any new messages
that arrive subsequently are treated as part of a new group.

Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
“Adding sequence numbers to messages” on page 2794
You can add sequence numbers to messages entering a message flow by using the
Sequence node.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.
“Configuring the storage of events for Resequence nodes” on page 758
You can use a Resequence configurable service to control the storage of events for
Resequence nodes.
“Handling missing messages” on page 2806
You can configure the Resequence node to control how missing messages in a
sequence are processed.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.

2792 WebSphere Message Broker Version 7.0.0.8

“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Duplicate message processing
Each sequence number within a sequence group must be unique.

If a Resequence node receives a message containing a sequence number that has
already been processed in the current sequence group, an exception is thrown
(BIP4821) and the duplicate message is propagated to the Failure terminal. An
exception occurs only if the duplicate message arrives after the first message with
that sequence number has arrived and before the sequence group closes.

For example, assume that you have a Resequence node with the following
properties:
v Path to sequence number property with a value of /doc/seq
v Path to sequence group identifier property with a value of /doc/grp
v Start of sequence definition property set to Literal with a value of 1
v End of sequence definition property set to Literal with a value of 3

The following messages arrive at the Resequence node:
<doc><grp>a<grp><seq>1</seq></doc>
<doc><grp>a<grp><seq>2</seq></doc>
<doc><grp>a<grp><seq>2</seq>/doc>
<doc><grp>a<grp><seq>3</seq></doc>
<doc><grp>a<grp><seq>2</seq></doc>
<doc><grp>a<grp><seq>1</seq></doc>
<doc><grp>a<grp><seq>3</seq></doc>

The following messages are propagated to the Out terminal:
<doc><grp>a<grp><seq>1</seq></doc>
<doc><grp>a<grp><seq>2</seq></doc>
<doc><grp>a<grp><seq>3</seq></doc>
<doc><grp>a<grp><seq>1</seq></doc>
<doc><grp>a<grp><seq>2</seq>/doc>
<doc><grp>a<grp><seq>3</seq></doc>

The second occurrence of the input message with sequence number 2 causes an
exception to be thrown and is propagated to the Failure terminal:
<doc><grp>a<grp><seq>2</seq>/doc>

Related concepts:
“Sequence groups” on page 2786
Use sequence groups to control the way in which messages are grouped together
for processing by Sequence and Resequence nodes.
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Starting a message sequence” on page 2787
The start of a message sequence is determined by the Start of sequence
definition property on the Resequence and Sequence nodes.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.

Chapter 9. Developing message flow applications 2793

“Adding sequence numbers to messages”
You can add sequence numbers to messages entering a message flow by using the
Sequence node.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.
“Configuring the storage of events for Resequence nodes” on page 758
You can use a Resequence configurable service to control the storage of events for
Resequence nodes.
“Handling missing messages” on page 2806
You can configure the Resequence node to control how missing messages in a
sequence are processed.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Adding sequence numbers to messages
You can add sequence numbers to messages entering a message flow by using the
Sequence node.

Before you begin

Before you start:

Read the concept topic about “Message sequencing” on page 2784.

About this task

The Sequence node allocates a monotonically increasing sequence number for each
input message that arrives at the node. As each message arrives at the Sequence
node, the sequence number is incremented and stored with the message in the
location specified by the Path to store sequence number property. The allocation
of sequence numbers continues until the sequence ends, as specified by the End of
sequence definition property.

You can divide input messages into independent sequence groups, based on an
identifier defined in the message. Each group has a separate group identifier, and
the sequence of messages within each group is managed independently.

The Sequence node allocates a sequence number to each message in the sequence
group, and the next sequence number in the group is not allocated until the
current message in the group has finished processing (either by being committed
or rolled back). This ensures that sequencing is maintained for the group when
there are multiple threads in the message flow.

2794 WebSphere Message Broker Version 7.0.0.8

If you need to save the message with the newly assigned sequence number (for
example, if you need to save the message to WebSphere MQ for processing by
another flow), and if there is no convenient place in the message to save the
sequence number, you can add an MQRFH2 header to the message before the
Sequence node, and set the sequence number in a field in the usr folder.

Multiple sequence groups can be managed independently, in parallel, and
sequence group state is preserved when the broker is restarted.

The following steps show how to create a message flow that adds a sequence
number to each message in a sequence group.

Procedure
1. Create a message flow containing an MQInput node, a Sequence node, and an

MQOutput node.
2. Connect the Out terminal of the MQInput node to the In terminal of the

Sequence node.
3. Connect the Out terminal of the Sequence node to the In terminal of the

MQOutput node.

MQInput Sequence MQOutput

4. On the MQInput node, specify the source of input messages for the node by
setting the Queue name property (on the Basic tab) to the name of a WebSphere
MQ queue, from which the MQInput node retrieves messages. For example:
SEQ.TASK1.IN1.

5. Set the following properties of the Sequence node:
a. On the Basic tab, set the following properties:
v Set the Path to store sequence number property to the location in the

message where the sequence number is to be set. For example,
$OutputBody/doc/seq. The sequence number is also set in the local
environment, with the LocalEnvironment.Sequence.Number variable.

v Set the Path to sequence group identifier property to the location of
the sequence group identifier in the message. For example,
$InputBody/doc/grp. The sequence group identifier is also copied to the
local environment, with the LocalEnvironment.Sequence.Group variable.

v Set the Start of sequence definition property to Literal with the
required starting value; for example, 0.
Although the starting sequence number must be specified by a literal
number, the value can be overridden in the local environment by the
LocalEnvironment.Sequence.StartOfSequenceNumber variable.
The start of sequence message is indicated in the local environment by
the LocalEnvironment.Sequence.Start variable, which takes a Boolean value.

v Set the End of sequence definition property to one of the following
values:
– Automatic with the required timeout value; for example, 60. This value

specifies that the sequence group is closed automatically when the
message queue in the node has been empty for 60 seconds.

Chapter 9. Developing message flow applications 2795

– Literal with the required end value; for example, 100. This value
specifies that the sequence group is closed when the message with the
sequence number 100 is processed.

– Predicate with the required XPATH expression; for example,
$InputBody/doc/endFlag. This value specifies that the sequence group
is closed when the $InputBody/doc/endFlag predicate evaluates to True
($InputBody/doc/endFlag=True).

The end of sequence message is indicated in the local environment by the
LocalEnvironment.Sequence.End variable, which takes a Boolean value.

b. On the Advanced tab, set the Persistence mode property to Non-persistent.
Select Persistent if you want the sequence to be preserved if the queue
manager is restarted.

6. On the MQOutput node, set the Queue name property (on the Basic tab) to the
name of a WebSphere MQ queue to which the MQOutput node sends
messages. For example: SEQ.TASK1.OUT1.

7. Save your message flow.
Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.
“Maintaining the sequential order of messages” on page 2799
You can maintain the order in which messages enter a message flow by using the
Sequence and Resequence nodes.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

2796 WebSphere Message Broker Version 7.0.0.8

Reordering messages in a message flow
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.

Before you begin

Before you start:

Read the concept topic about “Message sequencing” on page 2784.

Ensure that each message contains a monotonically increasing sequence number.

About this task

The sequence number might have been added to the message by the Sequence
node or it might be another integer field in the message.

When the Resequence node receives an input message, it propagates the message
only if it is the next one in the sequence. If the message is not next in the
sequence, the Resequence node stores it until further messages arrive that allow
the node to correct the sequence, at which point the node propagates the stored
message. If a message fails to arrive, preventing the Resequence node from
completing the sequence, the remaining messages are processed according to the
way in which the Resequence node has been configured. For more information
about this configuration, see “Handling missing messages” on page 2806.

A transaction break occurs at the Resequence node. When a message is delivered
to the Resequence node, control is returned to the previous node in the message
flow. All messages that are propagated from the Resequence node are propagated
in a new transaction, even if the sequence is complete. For more information, see
“Resequence node” on page 4651.

The message sequence is preserved when the broker is restarted. If the Persistent
option is selected on the Advanced tab of the Resequence node, the sequence is
also preserved when the queue manager is restarted.

The following steps show how to create a message flow that enables you to
re-establish the sequential order of the messages in a sequence group:

Procedure
1. Switch to the Broker Application Development perspective.
2. Create a message flow containing an MQInput node, a Resequence node, and

an MQOutput node.
3. Connect the Out terminal of the MQInput node to the In terminal of the

Resequence node.
4. Connect the Out terminal of the Resequence node to the In terminal of the

MQOutput node.

Chapter 9. Developing message flow applications 2797

5. On the MQInput node, specify the source of input messages for the node by
setting the Queue name property (on the Basic tab) to the name of a WebSphere
MQ queue, from which the MQInput node retrieves messages. For example:
RESEQ.TASK1.IN1.

6. Set the following properties of the Resequence node:
a. On the Basic tab, set the following properties:
v Set the Path to sequence number property to the location of the sequence

number in the message. For example, $InputBody/doc/seq. The sequence
number is also set in the local environment, with the
LocalEnvironment.Sequence.Number variable.

v Set the Path to sequence group identifier property to the location of
the sequence group identifier in the message. For example,
$InputBody/doc/grp. The sequence group identifier is also copied to the
local environment, with the LocalEnvironment.Sequence.Group variable.

v Set the Start of sequence definition property to the first sequence
number in the group. For example, select Literal with a value of 0.

v Set the End of sequence definition property to Automatic with the
required timeout value; for example, 60. This value specifies that the
sequence group is closed automatically when the message queue in the
node has been empty for 60 seconds. The end of sequence message is
indicated in the local environment by the LocalEnvironment.Sequence.End
variable, which takes a Boolean value.

v Set the Missing message timeout property to 10. This value specifies that
the Resequence node will wait for a missing message for 10 seconds
before propagating subsequent messages in the sequence group to the
Expire terminal. When the subsequent message is propagated, the
sequence numbers of any missing (timed-out) messages are copied to the
local environment, as LocalEnvironment.Sequence.Missing variables.

7. On the MQOutput node, set the Queue name property (on the Basic tab) to the
name of a WebSphere MQ queue to which the MQOutput node sends
messages. For example: SEQ.TASK1.OUT1.

8. Save your message flow.
Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.

2798 WebSphere Message Broker Version 7.0.0.8

Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.

Maintaining the sequential order of messages
You can maintain the order in which messages enter a message flow by using the
Sequence and Resequence nodes.

Before you begin

Before you start:

Read the concept topic about “Message sequencing” on page 2784.

About this task

When messages have been processed in a message flow, they might be propagated
in a different order to the order in which they arrived at the input node, so the
original message sequence can be altered. You can use the Sequence and
Resequence nodes to rearrange the messages into sequential order based on a
sequence number in the message, restoring the original sequence in which they
entered the input node.

If the messages contain sequence numbers, you can use the Resequence node to
re-establish the order in which they arrived at the input node. If the messages do
not contain sequence numbers, you can use a Sequence node to apply sequence
numbers to the messages, before reordering them into sequential order using the
Resequence node.

Procedure
v If the messages contain sequence numbers, rearrange the messages into

sequential order by creating a message flow containing a Resequence node. See
“Reordering messages in a message flow” on page 2797.

v If the messages do not contain sequence numbers, establish the sequential order
of the messages by completing the following steps:
1. Create a message flow containing a Sequence node, which you can use to

apply sequence numbers to the messages. See “Adding sequence numbers to
messages” on page 2794.

Chapter 9. Developing message flow applications 2799

2. Create a message flow containing a Resequence node, which you can use to
re-establish the sequential order of the messages. See “Reordering messages
in a message flow” on page 2797.

Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Adding sequence numbers to messages” on page 2794
You can add sequence numbers to messages entering a message flow by using the
Sequence node.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.

Message sequencing scenario 1
Change the sequence of messages received from WebSphere MQ, so that they are
propagated in the correct order using a sequence number defined in an XML
message.

Before you begin

Before you start:

Read the concept topic about “Message sequencing” on page 2784.

About this task

In this example task, the sequence is defined as starting at sequence number 0
(which is the default) and finishing at sequence number 8. The message flow is
configured so that messages can arrive out of order but cannot be propagated out
of order, even if one of the sequence numbers never arrives.

The following steps show how to write a message flow that can receive the XML
document from WebSphere MQ, reorder the messages based on a sequence number
in an XML message (in this example the path $Root/XMLNSC/Doc/SeqNo is used) and
write it to a WebSphere MQ queue:

2800 WebSphere Message Broker Version 7.0.0.8

Procedure
1. Create a message flow called Resequence_Task1, containing an MQInput node,

a Resequence node, and an MQOutput node. For more information about how
to do this, see “Creating a message flow” on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
Resequence node.

3. Connect the Out terminal of the Resequence node to the In terminal of the
MQOutput node.

4. Set the following properties of the MQInput node:
a. On the Basic tab, set the Queue name property to RESEQUENCE_TASK1_IN1
b. On the Input Message Parsing tab, set the Message domain property to

XMLNSC.
5. On the Resequence node, set the following properties on the Basic tab:

a. Set the Path to sequence number property to $Root/XMLNSC/Doc/SeqNo
b. Set the End of sequence definition property to Literal with a value of 8.

6. On the MQOutput node, set the Queue name property (on the Basic tab) to
RESEQUENCE_TASK1_OUT1.

7. Save the message flow.

Results

Message processing in the message flow:

This section describes the way in which the Resequence node processes the
messages that enter the message flow.
1. The following messages arrive on the WebSphere MQ queue

RESEQUENCE_TASK1_IN1:
<Doc><SeqNo>0</SeqNo></Doc>,<Doc><SeqNo>1</SeqNo></Doc>,<Doc><SeqNo>2</SeqNo></Doc>,
<Doc><SeqNo>3</SeqNo></Doc>,<Doc><SeqNo>4</SeqNo></Doc>,<Doc><SeqNo>5</SeqNo></Doc>,
<Doc><SeqNo>6</SeqNo></Doc>,<Doc><SeqNo>7</SeqNo></Doc>,<Doc><SeqNo>8</SeqNo></Doc>,

2. The Resequence node first receives the message with sequence number 0. The
Resequence node creates a new sequence group to manage the reordering
process; the new sequence group is a default group because no sequence group
has been defined in the message. The message (with sequence number 0) is the
first one in the sequence, so it is propagated to the Out terminal.

3. The Resequence node then receives the rest of the messages up to and
including sequence number 8, and propagates them in the order in which they
arrived. Each message is stored before it is propagated, and a different
transaction is used for propagating the messages downstream from the
Resequence node.

4. When the message containing sequence number 8 is processed, the sequence
group is closed. Any new message in the same group that arrives later causes a
new group to be created.

5. The next messages arrive on the RESEQUENCE_TASK1_IN1 queue:

Chapter 9. Developing message flow applications 2801

<Doc><SeqNo>8</SeqNo></Doc>,<Doc><SeqNo>7</SeqNo></Doc>,<Doc><SeqNo>6</SeqNo></Doc>,
<Doc><SeqNo>5</SeqNo></Doc>,<Doc><SeqNo>4</SeqNo></Doc>,<Doc><SeqNo>3</SeqNo></Doc>,
<Doc><SeqNo>2</SeqNo></Doc>,<Doc><SeqNo>1</SeqNo></Doc>,<Doc><SeqNo>0</SeqNo></Doc>,

6. The Resequence node first receives the message containing sequence number 8.
At this point, the Resequence node creates a new (default) sequence group. The
message is the last one in the sequence so it is not propagated but is stored
internally.

7. The Resequence node then receives the rest of the messages up to and
including sequence number 0. All the messages are stored and none are
propagated until the first number in the sequence is received (in this case,
sequence number 0).

8. When the message with sequence number 0 is received, it is propagated down
the message flow, followed by each of the other messages, in order, until the
final message (sequence number 8) is propagated. At this point, the sequence
group is closed again.

Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Sequence groups” on page 2786
Use sequence groups to control the way in which messages are grouped together
for processing by Sequence and Resequence nodes.
“Starting a message sequence” on page 2787
The start of a message sequence is determined by the Start of sequence
definition property on the Resequence and Sequence nodes.
“Ending a message sequence” on page 2790
The end of a message sequence is determined by the End of sequence definition
property on the Resequence and Sequence nodes.
Related tasks:
“Message sequencing scenario 2” on page 2803
Change the sequence of messages received from WebSphere MQ, so that they are
propagated in the correct order using a sequence number defined in an XML
message.
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.
“Maintaining the sequential order of messages” on page 2799
You can maintain the order in which messages enter a message flow by using the
Sequence and Resequence nodes.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.

2802 WebSphere Message Broker Version 7.0.0.8

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Message sequencing scenario 2
Change the sequence of messages received from WebSphere MQ, so that they are
propagated in the correct order using a sequence number defined in an XML
message.

Before you begin

Before you start:

Read the concept topic about “Message sequencing” on page 2784.

About this task

In this example task, the sequence is defined as starting at sequence number 0
(which is the default) and finishing when it has received no new messages in the
group for 60 seconds. The message flow is configured so that messages can arrive
out of order but the Resequence node attempts to propagate them in the correct
order. If a required message in the sequence fails to arrive for 10 seconds, the
Resequence node skips the missing message and propagates the next message in
the sequence, even though it is now out of order.

The following steps show how to write a message flow that can receive the XML
document from WebSphere MQ, reorder the messages based on a sequence number
in an XML message (in this example the path $Root/XMLNSC/Doc/SeqNo is used) and
write it to a WebSphere MQ queue:

Procedure
1. Create a message flow called Resequence_Task2, containing an MQInput node,

a Resequence node, and an MQOutput node. For more information about how
to do this, see “Creating a message flow” on page 1431.

2. Connect the Out terminal of the MQInput node to the In terminal of the
Resequence node.

3. Connect the Out, Missing, and Expire terminals of the Resequence node to the
In terminal of the MQOutput node.

4. Set the following properties of the MQInput node:
a. On the Basic tab, set the Queue name property to RESEQUENCE_TASK2_IN1
b. On the Input Message Parsing tab, set the Message domain property to

XMLNSC.
5. On the Resequence node, set the following properties on the Basic tab:

Chapter 9. Developing message flow applications 2803

a. Set the Path to sequence number property to $Root/XMLNSC/Doc/SeqNo
b. Set the Missing message timeout property to 10
c. Set the End of sequence definition property to Automatic with a value of

60.
6. On the MQOutput node, set the Queue name property (on the Basic tab) to

RESEQUENCE_TASK2_OUT1.
7. Save the message flow.

Results

Message processing in the message flow:

This section describes the way in which the Resequence node processes the
messages that enter the message flow:
1. The following messages arrive on the WebSphere MQ queue

RESEQUENCE_TASK2_IN1:
<Doc><SeqNo>0</SeqNo></Doc>,<Doc><SeqNo>1</SeqNo></Doc>,<Doc><SeqNo>2</SeqNo></Doc>,
<Doc><SeqNo>3</SeqNo></Doc>,<Doc><SeqNo>4</SeqNo></Doc>,<Doc><SeqNo>5</SeqNo></Doc>,
<Doc><SeqNo>6</SeqNo></Doc>,<Doc><SeqNo>7</SeqNo></Doc>,<Doc><SeqNo>8</SeqNo></Doc>,

2. The Resequence node first receives the message with sequence number 0. The
Resequence node creates a new sequence group to manage the reordering
process; the new sequence group is a default group because no sequence
group has been defined in the message. The message (with sequence number
0) is the first one in the sequence, so it is propagated to the Out terminal.

3. The Resequence node then receives the rest of the messages up to and
including sequence number 8, and propagates them in the order in which they
arrived. Each message is stored before it is propagated, and a different
transaction is used for propagating the messages downstream from the
Resequence node.

4. Sixty seconds elapse and the sequence group is closed.
5. The next messages arrive on the WebSphere MQ queue

RESEQUENCE_TASK2_IN1:
<Doc><SeqNo>0</SeqNo></Doc>,<Doc><SeqNo>3</SeqNo></Doc>,<Doc><SeqNo>2</SeqNo></Doc>,
<Doc><SeqNo>4</SeqNo></Doc>,<Doc><SeqNo>6</SeqNo></Doc>,<Doc><SeqNo>7</SeqNo></Doc>,

6. The Resequence node first receives the message containing sequence number
0. At this point, the Resequence node creates a new (default) sequence group
and propagates the message with sequence number 0 to the Out terminal.

7. The next message contains sequence number 3, which is out of sequence. The
Missing message timeout property is set on the Resequence node with a value
of 10 seconds, and the timer starts.

8. Sequence number 2 arrives, which is still not the next required message but it
is lower than the lowest message currently stored, so the missing message
timer is reset.

9. The Resequence node then receives the rest of the messages, all of which have
a higher sequence number than 2, so they are stored but not propagated. The
missing message timer is not reset this time because each number is later in
the sequence than number 2.

10. Sequence number 1 fails to arrive during the specified period, and after 10
seconds the timeout period expires.

11. The Resequence node propagates all the messages that are stored, starting
with the lowest sequence number (in this case, 2) followed by all other

2804 WebSphere Message Broker Version 7.0.0.8

messages up to the next missing number in the sequence (in this case,
messages with sequence numbers 3 and 4). Messages 2, 3, and 4 are
propagated to the Expire terminal.

12. The Resequence node is moved to an unordered state for this sequence group,
and will not propagate any messages in this group to the Out terminal. The
Resequence node remains in the unordered state for this sequence group until
the group expires and is closed.

13. When another 10 seconds has passed, the missing message timer expires again
and messages 6 and 7 are propagated to the Expire terminal. At this point
there are no more missing messages so the missing message timer is not
restarted.

14. The group expiry timer is started and the group is closed after 60 seconds
have passed. The group expiry timer is never started when a missing message
timer is running.

Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Sequence groups” on page 2786
Use sequence groups to control the way in which messages are grouped together
for processing by Sequence and Resequence nodes.
“Starting a message sequence” on page 2787
The start of a message sequence is determined by the Start of sequence
definition property on the Resequence and Sequence nodes.
“Ending a message sequence” on page 2790
The end of a message sequence is determined by the End of sequence definition
property on the Resequence and Sequence nodes.
Related tasks:
“Message sequencing scenario 1” on page 2800
Change the sequence of messages received from WebSphere MQ, so that they are
propagated in the correct order using a sequence number defined in an XML
message.
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.
“Maintaining the sequential order of messages” on page 2799
You can maintain the order in which messages enter a message flow by using the
Sequence and Resequence nodes.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI

Chapter 9. Developing message flow applications 2805

application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Handling missing messages
You can configure the Resequence node to control how missing messages in a
sequence are processed.

About this task

You can configure the Resequence node to time out if a message in the sequence
fails to arrive in a specified period of time, and you can specify how subsequent
messages are processed if a message is missing.

You can use the Missing message timeout property of the Resequence node to
specify how long (in seconds) the node waits for the next message in the sequence
before it moves on to the next message. Messages that arrive within the specified
time limit are propagated in sequential order to the Out terminal. When the
specified time limit has been exceeded, the messages are propagated in sequential
order to the Expire terminal. Subsequent messages in the sequence group are also
routed to the Expire terminal. If the missing message eventually arrives, it is
propagated to the Missing terminal.

You can configure the Resequence node for any of the following scenarios:
v The message sequence must always be maintained

If a message goes missing, you can route all subsequent messages to a holding
queue after a specified timeout period. To configure the Resequence node in this
way, wire the Out terminal to the main-line flow and wire the Expire and
Missing terminals to separate branches for re-queueing.

v Missing messages are allowed in the message sequence but all other
messages must remain in sequence

If a message goes missing, you can pass over it and continue processing the rest
of the sequence. If the missing message eventually arrives, you can either
discard it or process it separately from the main-line processing. To configure the
Resequence node in this way, wire the Out and Expire terminals to the main-line
flow and leave the Missing terminal unwired (to discard the message) or wire it
to a separate branch of the message flow.

v Occasional out-of-sequence messages are allowed

You want the message flow to process the messages in sequential order, but you
are prepared to tolerate occasional messages out of order. To configure the
Resequence node in this way, wire the Out, Expire, and Missing terminals to the
main-line message flow.

Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:

2806 WebSphere Message Broker Version 7.0.0.8

“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Adding sequence numbers to messages” on page 2794
You can add sequence numbers to messages entering a message flow by using the
Sequence node.
“Reordering messages in a message flow” on page 2797
When messages entering a message flow contain sequence numbers and a group
ID, you can use the Resequence node to re-establish the sequential order of the
messages before propagating them through the message flow.
“Configuring the storage of events for Resequence nodes” on page 758
You can use a Resequence configurable service to control the storage of events for
Resequence nodes.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.

Configuring the storage of events for Resequence nodes
You can use a Resequence configurable service to control the storage of events for
Resequence nodes.

About this task

By default, the storage queues used by all Resequence nodes are:
v SYSTEM.BROKER.EDA.EVENTS
v SYSTEM.BROKER.EDA.COLLECTIONS

These queues are also used by the Collector node.

However, you can control the queues that are used by different Resequence nodes
by creating alternative queues that contain a QueuePrefix variable, and by using a
Resequence configurable service to specify the names of those queues for storing
events.

Follow these steps to specify the queues that are used to store event states, and to
set the timeout and the start and end of the sequence:

Procedure
1. Create the storage queues to be used by the Resequence node. The following

queues are required:
v SYSTEM.BROKER.EDA.QueuePrefix.EVENTS
v SYSTEM.BROKER.EDA.QueuePrefix.COLLECTIONS
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.

Chapter 9. Developing message flow applications 2807

If you do not create the storage queues, WebSphere Message Broker creates the
set of queues when the node is deployed; these queues are based on the default
queues. If the queues cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create a Resequence
configurable service. You can create a configurable service to be used with
either a specific sequence or with all sequences in an execution group.
a. If you are creating a configurable service to be used with a specific

sequence, ensure that the name of the configurable service is the same as
the name that you specify in the Configurable service property on the
Resequence node. If you are creating a configurable service to be used with
all sequences in the execution group, ensure that the configurable service
has the same name as the execution group.

b. Set the Queue prefix property to the required value.
c. Optional: Set the Missing message timeout, Start of sequence, and End of

sequence properties.

For example, create a Resequence configurable service called
myResequenceService, which uses queues prefixed with
SYSTEM.BROKER.EDA.SET1, with a missing message timeout of 60 seconds,
and which waits five seconds before determining the start and end numbers in
a sequence:
mqsicreateconfigurableservice MYBROKER -c Resequence -o myResequenceService
-n queuePrefix,missingMessageTimeoutSeconds,startSequenceSeconds,endSequenceSeconds -v SET1,60,5,5

You can use the mqsideleteconfigurableservice command to delete the
Resequence configurable service. However, the storage queues are not deleted
automatically when the configurable service is deleted, so you must delete
them separately.For more information, see “Configurable services properties”
on page 3766

3. In the Resequence node:
a. If the configurable service is to be used for a specific sequence, specify the

name of the configurable service on the Advanced tab; for example,
myResequenceService. If you do not set the Configurable service property,
and if a configurable service exists with the same name as the execution
group, that configurable service is used instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:

2808 WebSphere Message Broker Version 7.0.0.8

“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Configuring timeout flows
Use the TimeoutControl and TimeoutNotification nodes in message flows to
process timeout requests or to generate timeout notifications at specified intervals.

The following topics show how these nodes can be used in a message flow:
v “Sending timeout request messages” on page 2810
v “Sending a message after a timed interval” on page 2813
v “Sending a message multiple times after a specified start time” on page 2815
v “Automatically generating messages to drive a flow” on page 2817
v “Configuring the storage of events for timeout nodes” on page 760
Related concepts:
“Considering performance for timeout flows” on page 2822
When you design timeout flows, the decisions that you make can affect the
performance of your brokers and applications.
Related reference:
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout

Chapter 9. Developing message flow applications 2809

request.
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.

Sending timeout request messages
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.

Elements and format

The following example shows the elements and format of a timeout request
message, showing the well known names and permissible values.
<TimeoutRequest>

<Action>SET | CANCEL</Action>
<Identifier>String (any alphanumeric string)</Identifier>
<StartDate>String (TODAY | yyyy-mm-dd)</StartDate>
<StartTime>String (NOW | hh:mm:ss)</StartTime>
<Interval>Integer (seconds)</Interval>
<Count>Integer (greater than 0 or -1)</Count>
<IgnoreMissed>TRUE | FALSE</IgnoreMissed>
<AllowOverwrite>TRUE | FALSE</AllowOverwrite>

</TimeoutRequest>

Message fields

The following table describes the fields in the message. The column headed M
indicates whether the property is mandatory, and the column headed C indicates
whether the property is configurable.

Property M C Default Description

Action Yes No None Set this element to either SET or CANCEL. An error is generated if you
omit this element or set it to a different value. If you set it to CANCEL,
the only other element that is required is the Identifier, which must
match the Identifier of the TimeoutRequest that is to be canceled.

Identifier Yes No None Enter an alphanumeric string. An error is generated if you omit this
element.

StartDate No No TODAY Set this element to TODAY or to a date specified in yyyy-mm-dd
format. The default value is TODAY.

StartTime No No NOW Set this element to NOW or to a time in the future specified in
hh:mm:ss format. The default value is NOW. StartTime is assumed to
be the broker's local time.

The start time can be calculated by adding an interval to the current
time. If a delay occurs between the node that calculates the start time
and the TimeoutControl node, the start time in the message will have
passed by the time it reaches the TimeoutControl node. If the start time
is more than approximately five minutes in the past, a warning is
issued and the TimeoutControl node rejects the timeout request. If the
start time is less than five minutes in the past, the node processes the
request as if it were immediate. Therefore, ensure that the start time in
the timeout request message is now or a time in the future.

Interval No Yes 0 Set this element to an integer that specifies the number of seconds
between propagations of the message. The default value is 0.

Count No Yes 1 Set this element to an integer value that is either greater than 0 or is -1
(which specifies a timeout request that never expires). The default
value is 1.

2810 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

IgnoreMissed Yes No TRUE Set this element to TRUE or FALSE to control whether timeouts that
occur while either the broker or the timeout notification flow is
stopped, are processed the next time that the broker or timeout
notification flow is started. The default value is TRUE, which means
that missed timeouts are ignored by the TimeoutNotification node
when the broker or message flow is started. If this value is set to
FALSE, the missed timeouts are all processed immediately by the
TimeoutNotification node when the flow is started.

You must set the Request Persistence property of the TimeoutControl
node to Yes or Automatic (with the originating request message being
persistent) for the stored timeouts to persist beyond the restart of the
broker or the timeout notification flow.

AllowOverwrite N N TRUE Set this element to TRUE or FALSE, to specify whether subsequent
timeout requests with a matching Identifier can overwrite this
timeout request. The default value is TRUE.

How the TimeoutControl node uses these values

Set the Request Location on the TimeoutControl node to
InputRoot.XML.TimeoutRequest to read these properties. If you want to obtain
properties from a different part of your message, specify the appropriate
correlation name for the parent element for the properties. The correlation name
for the parent element can be in the local environment.

For details of how the TimeoutControl uses these values, see “TimeoutControl
node” on page 4932
Related concepts:
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
Related tasks:
“Working with the predefined schema definition of an XML timeout request
message” on page 2812
A predefined schema definition of an XML timeout request message is provided in
the WebSphere Message Broker Toolkit.
“Configuring the storage of events for timeout nodes” on page 760
You can use a Timer configurable service to control the storage of events for
TimeoutNotification and TimeoutControl nodes.
Related reference:
“Sending a message after a timed interval” on page 2813
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow after a timed interval.
“Sending a message multiple times after a specified start time” on page 2815
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow multiple times after a specified start time.
“Automatically generating messages to drive a flow” on page 2817
Using the TimeoutNotification node to automatically send a message into a
message flow.
“Example XML timeout request message” on page 2812
The format used here is XML, but you can use any format that is supported by an

Chapter 9. Developing message flow applications 2811

installed parser.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.

Working with the predefined schema definition of an XML timeout request
message:

A predefined schema definition of an XML timeout request message is provided in
the WebSphere Message Broker Toolkit.

About this task

Take the following steps to review the definition or to define it in a message set.
1. Create or select a message set project that contains the message set.
2. Create a new message definition file (File > New > Message Definition File

From...).
3. Select IBM supplied message and click Next.
4. Expand the tree for Message Brokers IBM supplied Message Definitions.
5. Select Message Broker Timeout Request and click Finish.
Related concepts:
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
Related reference:
“Example XML timeout request message”
The format used here is XML, but you can use any format that is supported by an
installed parser.

Example XML timeout request message:

The format used here is XML, but you can use any format that is supported by an
installed parser.
<TimeoutRequest>

<Action>SET</Action>
<Identifier>TenTimes</Identifier>
<StartDate>TODAY</StartDate>
<StartTime>NOW</StartTime>
<Interval>10</Interval>
<Count>10</Count>
<IgnoreMissed>TRUE</IgnoreMissed>
<AllowOverwrite>TRUE</AllowOverwrite>

</TimeoutRequest>

For another example of a timeout request message, and for details of how to use
the timeout nodes to add timeouts to message flows, see the timeout processing
sample:
v Timeout Processing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online

2812 WebSphere Message Broker Version 7.0.0.8

information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
Related tasks:
“Working with the predefined schema definition of an XML timeout request
message” on page 2812
A predefined schema definition of an XML timeout request message is provided in
the WebSphere Message Broker Toolkit.

Sending a message after a timed interval
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow after a timed interval.

Aim

Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow 60 seconds after the message is received.

Description of the flow

The diagram shows the path of a message that contains a timeout request through
a TimeoutControl node. A TimeoutNotification node with an identifier matching
the TimeoutControl node then processes the timeout request. The diagram also
shows the message that the TimeoutNotification node produces after processing
the timeout request.

The message comes into the TimeoutControl node with the following values set in
the timeout request section of the message:

Chapter 9. Developing message flow applications 2813

Action set to SET
Start Time set to current time + 60
Count set to 1

The TimeoutControl node validates the timeout request; default values are
assumed for properties that are not explicitly defined. The original message is then
sent on to the next node in the message flow. If the request is valid, the
TimeoutNotification node with the same Unique identifier as the TimeoutControl
node propagates a copy of the message to the message flow 60 seconds after the
message was received.

Timeout request messages are stored for processing on a queue used by the
TimeoutNotification node. By default this queue is the
SYSTEM.BROKER.TIMEOUT.QUEUE. However, you can use a Timer configurable
service to specify an alternative timeout queue, which provides greater control
over the storage of messages. For information about using an alternative timeout
queue, see “Configuring the storage of events for timeout nodes” on page 760.

If a delay occurs between the node that calculates the start time and the
TimeoutControl node, the start time in the message will have passed by the time it
reaches the TimeoutControl node. If the start time is more than approximately five
minutes in the past, a warning is issued and the TimeoutControl node rejects the
timeout request. If the start time is less than five minutes in the past, the node
processes the request as if it were immediate. Therefore, ensure that the start time
in the timeout request message is a time in the future.

Look at the following sample for further details on constructing this type of
message flow.
v Timeout Processing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
“Handling timeout notification errors” on page 2833
The TimeoutNotification node takes various actions when it handles errors with
transactional messages, depending on whether the Failure and Catch terminals are
connected.
“Considering performance for timeout flows” on page 2822
When you design timeout flows, the decisions that you make can affect the
performance of your brokers and applications.
Related tasks:
“Configuring the storage of events for timeout nodes” on page 760
You can use a Timer configurable service to control the storage of events for
TimeoutNotification and TimeoutControl nodes.
Related reference:
“Sending a message multiple times after a specified start time” on page 2815
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow multiple times after a specified start time.

2814 WebSphere Message Broker Version 7.0.0.8

“Automatically generating messages to drive a flow” on page 2817
Using the TimeoutNotification node to automatically send a message into a
message flow.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.

Sending a message multiple times after a specified start time
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow multiple times after a specified start time.

Aim

Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow at 17:00 hours, then send the message again every 5 minutes until
the message has been sent 10 times.

Chapter 9. Developing message flow applications 2815

Description of the flow

The diagram shows the path of a message that contains a timeout request through
a TimeoutControl node. A TimeoutNotification node with an identifier matching
the TimeoutControl node then processes the timeout request. The diagram also
shows the message that he TimeoutNotification node produces after processing the
timeout request.

The message comes into the TimeoutControl node with the following values set in
the timeout request section of the message:

Action set to SET
Start Time set to 17:00
Interval set to 300
Count set to 10

The TimeoutControl node validates the timeout request; default values are
assumed for properties that are not explicitly defined. The original message is then

2816 WebSphere Message Broker Version 7.0.0.8

sent on to the next node in the message flow. If the request is valid, the
TimeoutNotification node with the same Unique identifier as the TimeoutControl
node propagates a copy of the message to the message flow at 17:00. The message
is sent again after an interval of 300 seconds, at 17:05. and every 300 seconds until
the message has been sent 10 times, as the Count value in the timeout request
specifies.

Look at the following sample for further details on constructing this type of
message flow.
v Timeout Processing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
“Handling timeout notification errors” on page 2833
The TimeoutNotification node takes various actions when it handles errors with
transactional messages, depending on whether the Failure and Catch terminals are
connected.
“Considering performance for timeout flows” on page 2822
When you design timeout flows, the decisions that you make can affect the
performance of your brokers and applications.
Related tasks:
“Configuring the storage of events for timeout nodes” on page 760
You can use a Timer configurable service to control the storage of events for
TimeoutNotification and TimeoutControl nodes.
Related reference:
“Sending a message after a timed interval” on page 2813
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow after a timed interval.
“Automatically generating messages to drive a flow”
Using the TimeoutNotification node to automatically send a message into a
message flow.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.

Automatically generating messages to drive a flow
Using the TimeoutNotification node to automatically send a message into a
message flow.

Aim

Use the TimeoutNotification node to automatically send a message into a message
flow every 10 minutes.

Chapter 9. Developing message flow applications 2817

Description of the flow

The diagram shows a TimeoutNotification node automatically generating messages
and propagating them every 10 minutes. To get the TimeoutNotification node to
automatically generate messages, set the Operation Mode property of the node to
automatic and specify a value for the Timeout Interval property. In this example
the TimeoutNotification node has the following properties:

Operation Mode set to automatic
Timeout Interval set to 600

You can also use a Timer configurable service to control the timeout interval. A
value set by the Timeout interval property of the Timer configurable service
overrides the value specified on the TimeoutNotification node. For more
information about the Timer configurable service, see “Configurable services
properties” on page 3766.

When the broker has started, the TimeoutNotification node sends a message every
10 minutes (600 seconds). This message contains only a properties folder and a
LocalEnvironment folder. A Compute node can then process this message to create
a more meaningful message.

2818 WebSphere Message Broker Version 7.0.0.8

In the above example, the relevant property is IgnoreMissed, and for an automatic
timeout this is implicitly set to TRUE. This means that if one of the period events
is missed the event will not be resent, but instead the broker will trigger the event
on the next scheduled timeout. If you want to be notified when events are missed,
set a controlled timeout instead. For details of the properties you can set for a
controlled timeout, see “Sending timeout request messages” on page 2810.

Look at the following sample for further details on constructing this type of
message flow.
v Timeout Processing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
“Handling timeout notification errors” on page 2833
The TimeoutNotification node takes various actions when it handles errors with
transactional messages, depending on whether the Failure and Catch terminals are
connected.
“Considering performance for timeout flows” on page 2822
When you design timeout flows, the decisions that you make can affect the
performance of your brokers and applications.
Related tasks:
“Configuring the storage of events for timeout nodes” on page 760
You can use a Timer configurable service to control the storage of events for
TimeoutNotification and TimeoutControl nodes.
Related reference:
“Sending a message after a timed interval” on page 2813
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow after a timed interval.
“Sending a message multiple times after a specified start time” on page 2815
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow multiple times after a specified start time.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Configuring the storage of events for timeout nodes
You can use a Timer configurable service to control the storage of events for
TimeoutNotification and TimeoutControl nodes.

Chapter 9. Developing message flow applications 2819

About this task

By default, the storage queue used by all timeout nodes is the
SYSTEM.BROKER.TIMEOUT.QUEUE.

However, you can control the queues that are used by different timeout nodes by
creating alternative queues that contain a QueuePrefix variable, and by using a
Timer configurable service to specify the names of those queues for storing events.

Follow these steps to specify the queue that is used to store event states:

Procedure
1. Create the storage queue to be used by the timeout nodes. The following queue

is required:
v SYSTEM.BROKER.TIMEOUT.QueuePrefix.QUEUE
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queue, WebSphere Message Broker creates the
queue when the node is deployed; this queue is based on the default queue. If
the queue cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create a Timer
configurable service. You can create a configurable service to be used with
either specific timeout requests or with all timeout requests in an execution
group.
a. If the configurable service is to be used with specific timeout requests,

create the configurable service with the same name as the Unique
identifier property on the TimeoutNotification and TimeoutControl nodes.
If the configurable service is to be used with all timeout requests in an
execution group, create the configurable service with the same name as the
execution group.

b. Set the Queue prefix property to the required value.

For example, create a Timer configurable service that uses a queue prefixed
with SYSTEM.BROKER.TIMEOUT.SET1:
mqsicreateconfigurableservice MB7BROKER -c Timer -o myTimer
-n queuePrefix -v SET1

You can use the mqsideleteconfigurableservice command to delete the Timer
configurable service. However, the storage queue is not deleted automatically
when the configurable service is deleted, so you must delete it separately.For
more information, see “Configurable services properties” on page 3766.

3. In the TimeoutNotification and TimeoutControl nodes:
a. Ensure that the name of the Timer configurable service is the same as the

name specified in the Unique Identifier property on the Basic tab; for
example, myTimer. If there is no Timer configurable service with the same
name as the Unique Identifier, and if there is a configurable service with
the same name as the execution group, that configurable service is used
instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with

2820 WebSphere Message Broker Version 7.0.0.8

configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
“Configuring timeout flows” on page 2809
Use the TimeoutControl and TimeoutNotification nodes in message flows to
process timeout requests or to generate timeout notifications at specified intervals.
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

Chapter 9. Developing message flow applications 2821

“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Considering performance for timeout flows
When you design timeout flows, the decisions that you make can affect the
performance of your brokers and applications.

You can use the timeout nodes TimeoutControl and TimeoutNotification in your
message flows to control the way in which your message flows operate:
v Set the Operation Mode property of the TimeoutNotification node to Automatic.

This setting causes a flow to be invoked at the interval that you specify in the
Timeout Value property. If the downstream processing is intensive, and the flow
is still busy when the next timeout occurs, the flow is not started for that
timeout instance. The flow is notified to start again only if it is free when a
particular timeout occurs.
The value of the Additional Instances property of the message flow is ignored
downstream of a TimeoutNotification node, and you cannot use this property to
change the behavior of the flow.

v Use two associated flows to perform user-defined timeout processing. Set a
timeout with a TimeoutControl node, and notify the flow using a
TimeoutNotification node (which behaves like an input node to start a new
message flow thread). If the downstream processing from the
TimeoutNotification node is significant, requests that are set up in the
TimeoutControl node can build up. You can specify that the timeout messages
are generated only when the flow that starts with the TimeoutNotification node
becomes free again.
You cannot increase the Additional Instances property of the message flow if it
starts with a TimeoutNotification node, therefore you cannot apply more threads
to increase the capacity of the flow.

Although you can use a TimeoutNotification node to cause nodes in a message
flow to poll for the next item of work, this approach forces a delay between each
transaction, and typically does not provide an efficient solution. If you want to
periodically check a resource for the next piece of work, and process it
immediately, consider one or more of the following alternative solutions:
v Use a built-in input node.
v Write your own input node by using the user-defined node API (in Java or C).
v Consider purchasing an IBM or vendor-provided adapter which polls the

subsystem you want, and triggers the flow.

A message flow that uses these options can process more work overall than it can
if you implement a timeout solution, and incurs lower CPU cost, although your
initial development costs might be slightly higher.
Related concepts:
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
Related tasks:

2822 WebSphere Message Broker Version 7.0.0.8

“Optimizing message flow throughput” on page 587
Each message flow that you design must provide a complete set of processing for
messages received from a certain source. This design might result in very complex
message flows that include large numbers of nodes that can cause a performance
overhead, and might create potential bottlenecks. You can increase the number of
message flows that process your messages to provide the opportunity for parallel
processing and therefore improved throughput.
“Using more than one input node” on page 1473
You can include more than one input node in a single message flow.
“Configuring the storage of events for timeout nodes” on page 760
You can use a Timer configurable service to control the storage of events for
TimeoutNotification and TimeoutControl nodes.
Related reference:
“Sending a message after a timed interval” on page 2813
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow after a timed interval.
“Sending a message multiple times after a specified start time” on page 2815
Use TimeoutControl and TimeoutNotification nodes to send a message into a
message flow multiple times after a specified start time.
“Automatically generating messages to drive a flow” on page 2817
Using the TimeoutNotification node to automatically send a message into a
message flow.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.

Handling errors in message flows
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

About this task

For example, you might design a message flow that expects certain errors that you
want to process in a particular way. Or perhaps your flow updates a database, and
must roll back those updates if other processing does not complete successfully.

The options that you can use to do this are quite complex in some cases. The
options that are provided for MQInput and TimeoutNotification nodes are
extensive because these nodes deal with persistent messages and transactions. The
MQInput node is also affected by configuration options for WebSphere MQ.

Because you can decide to handle different errors in different ways, there are no
fixed procedures to describe. This section provides information about the principles
of error handling, and the options that are available, and you must decide what
combination of choices that you need in each situation based on the details that are
provided in this section.

There are two general approaches to handling errors in a message flow:
v Failure checking

Chapter 9. Developing message flow applications 2823

Wire the Failure terminal of a node to explicitly check for any errors that occur
within that node. If errors occur, an exception list is propagated to the Failure
terminal. The inflight message remains the same as it was before the node was
invoked.
You can introduce more specialized error checking in nodes that can be
customized by using ESQL. For example, you can create exit handlers within
these nodes. For more information about using ESQL to create exit handlers, see
“DECLARE HANDLER statement” on page 5124.

v Catching exceptions
If you do not wire a Failure terminal, a failure in the node is converted into an
exception which is thrown from the node. Any changes that were made to the
inflight message before the exception was thrown are reversed. The exception
might cause the current transaction to be rolled back which means that any
updates to transactional resources are reversed.
You can prevent the transaction from being rolled back, and control the extent to
which message changes are reversed, by including a TryCatch node in your
message flow. If an exception is thrown beyond the Try terminal of the TryCatch
node, then an exception list is propagated to the node’s Catch terminal. The
inflight message reverts to the state it was in before it reached the TryCatch
node.
Other nodes apart from the TryCatch node have a Catch terminal. These nodes
are typically at the start of a transaction, where an uncaught exception would
cause a rollback. In these nodes, the Catch terminal behaves as though a
TryCatch node was wired directly to the Out terminal. Use the Catch terminal to
handle any exceptions that are thrown beyond the node in the message flow.
Wire the Failure terminal to handle errors within the node itself.

You can choose one or more of these options in your message flows:
v Connect the Failure terminal of the node to a sequence of nodes that processes

the node's internal exception (the fail flow).
v Connect the Catch terminal of the node to a sequence of nodes that processes

exceptions that are generated beyond it (the catch flow).
v Insert one or more TryCatch nodes at specific points in the message flow to

catch and process exceptions that are generated by the flow connected to the Try
terminal.

v Include a Throw node, or code an ESQL THROW statement, to generate an
exception.

v Ensure that all the messages received by an MQInput node are processed in a
transaction, or are not processed in a transaction.

v Ensure that all the messages received by an MQInput node are persistent, or are
not persistent.

If you include user-defined nodes in your message flow, you must see the
information provided with the node to understand how you might handle errors
with these nodes. The descriptions in this section cover only the built-in nodes.

When you design your error handling approach, consider the following factors:
v Most of the built-in nodes have Failure terminals. The exceptions are the

AggregateControl, AggregateRequest, Input, Label, Output, Passthrough,
Publication, Trace, and TryCatch nodes.
When an exception is detected in a node, the message and the exception
information are propagated to the node's Failure terminal. If the node does not
have a Failure terminal, or it is not connected, the broker throws an exception

2824 WebSphere Message Broker Version 7.0.0.8

and returns control to the closest upstream node that can process it. This node
might be a TryCatch node, an AggregateReply node, or the input node.
If an MQInput node detects an internal error, its behavior is slightly different; if
the Failure terminal is not connected, it attempts to put the message to the input
queue's backout requeue queue, or (if that is not defined) to the dead letter
queue of the broker's queue manager.
For more information, see “Handling MQInput errors” on page 2829.

v Many built-in nodes have Catch terminals. These nodes are typically at the start
of a transaction. For example:
– Input nodes: FileInput, HTTPInput, JMSInput, MQInput, PeopleSoftInput,

SAPInput, SCAInput, SiebelInput, SOAPInput, TCPIPClientInput,
TCPIPServerInput, TwineballInput

– Output and response nodes: SCAAsyncResponse, SOAPAsyncResponse
– Routing nodes: AggregateReply, Collector, Resequence
– Construction nodes: TryCatch
– Timer nodes: TimeoutNotification
A message is propagated to a Catch terminal only if it has first been propagated
beyond the node (for example, to the nodes connected to the Out terminal).

v When a message is propagated to the Failure or Catch terminal, the node creates
and populates a new exception list tree with an exception that represents the
error that has occurred. The exception list is propagated as part of the message
tree. When a message is propagated to the Failure terminal because of a problem
that occurred in the Out or Catch flows (for example, repeated parsing errors
that caused the backout threshold to be met), the original parsing errors are not
in the exception list; the exception list contains the exception that indicates that
the backout threshold has been met.

v The MQInput and TimeoutNotification nodes have additional processing for
transactional messages (other input nodes do not handle transactional messages).
For more information, see “Handling MQInput errors” on page 2829 and
“Handling timeout notification errors” on page 2833.

v If you include a Trace node that specifies $Root or $Body, the complete message
is parsed. This might generate parser errors that are not otherwise detected.

The general principles of error handling are:
v If you connect the Catch terminal of the input node, you are indicating that the

flow handles all the exceptions that are generated anywhere in the out flow. The
broker performs no rollback, and takes no action, unless there is an exception on
the catch flow. If you want any rollback action after an exception has been raised
and caught, you must provide this in the catch flow.

v If you do not connect the Catch terminal of the input node, you can connect the
Failure terminal and provide a fail flow to handle exceptions generated by the
node. The fail flow is started immediately when an exception occurs in the node.
The fail flow is also started if an exception is generated beyond the MQInput
node (in either out or catch flows), the message is transactional, and the
reinstatement of the message on the input queue causes the backout count to
reach the backout threshold.
The HTTPInput node does not propagate the message to the Failure terminal if
an exception is generated beyond the node and you have not connected the
Catch terminal.

Chapter 9. Developing message flow applications 2825

v If a node propagates a message to a catch flow, and another exception occurs
that returns control to the same node again, the node handles the message as
though the Catch terminal is not connected.

v If you do not connect either the Failure or Catch terminals of the input node, the
broker provides default processing (which varies with the type of input node).

v If you need a more comprehensive error and recovery approach, include one or
more TryCatch nodes to provide more localized areas of error handling.

v If you have a common procedure for handling particular errors, you might find
it appropriate to create a subflow that includes the sequence of nodes required.
Include this subflow wherever you need that action to be taken.

For more information, see “Connecting failure terminals” on page 2827, “Managing
errors in the input node” on page 2828, and “Catching exceptions in a TryCatch
node” on page 2835.

If your message flows include database updates, the way in which you configure
the nodes that interact with those databases can also affect the way that errors are
handled:
v You can specify whether updates are committed or rolled back. You can set the

node property Transaction to specify whether database updates are committed
or rolled back with the message flow (option Automatic), or are committed or
rolled back when the node itself terminates (option Commit). You must ensure
that the combination of these property settings and the message flow error
processing give the correct result.

v You can specify how database errors are handled. You can set the properties
Treat warnings as errors and Throw exception on database error to change
the default behavior of database error handling.

For more information about coordinated database updates, see “Configuring
transactionality for message flows” on page 1290.

Message flows for aggregation involve additional factors that are not discussed in
this topic. For information about message flows for aggregation, see “Handling
exceptions in aggregation flows” on page 2749.

The following sample demonstrates how to use an error handling routine to trap
information about errors and to store that information in a database. The error
handling routine is a subflow that you can add, unchanged, to your message
flows. The sample also demonstrates how to configure message flows to control
transactionality; in particular, the use of globally coordinated transactions to ensure
overall data integrity.
v Error Handler

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:

2826 WebSphere Message Broker Version 7.0.0.8

“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Handling exceptions in aggregation flows” on page 2749
When you use aggregation flows, exceptions might occur.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.

Connecting failure terminals
When a node that has a failure terminal detects an internal error, it propagates the
message to that terminal. If it does not have a failure terminal, or if you have not
connected the failure terminal, the broker generates an exception.

About this task

The nodes sometimes generate errors that you can predict, and it is in these cases
that you might want to consider connecting the failure terminal to a sequence of
nodes that can take sensible actions in response to the expected errors.

Examples of expected errors are:
v Temporary errors when the input node retrieves the message.
v Validation errors detected by an MQInput, Compute, or Mapping node.
v Messages with an internal or format error that cannot be recognized or

processed by the input node.
v Acceptable errors when a node accesses a database, and you choose not to

configure the node to handle those errors.
v ESQL errors during message flow development (some ESQL errors cannot be

detected by the editor, but are recognized only by the broker; these cause an
exception if you have not connected the failure terminal. You can remove the fail
flow when you have completely tested the runtime ESQL code).

You can also connect the failure terminal if you do not want WebSphere MQ to try
a message again or put it to a backout or dead letter queue.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.

Chapter 9. Developing message flow applications 2827

“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.

Managing errors in the input node
When you design your message flow, consider which terminals on the input node
to connect.

About this task
v If the node detects an internal error before the message is propagated to the Out

terminal, the node always propagates the message and an exception list to the
Failure terminal if the node has a Failure terminal and if you have connected a
fail flow. If the Failure terminal is not connected or an exception occurs
downstream of the failure terminal, the transaction is rolled back.

v If you connect the Catch terminal (if the node has one), this indicates that you
want to handle all exceptions that are generated in the out flow. If you do not
connect the Catch terminal, or the node does not have a Catch terminal, or an
exception occurs downstream of the Catch terminal the current transaction is
rolled back.

v Any internal exceptions that occur in the node after the message has been
propagated to the Out terminal cause a rollback of the transaction. This situation
is rare but could happen for some input nodes.

Refer to the documentation for each input node to determine the effect of rolling
back the transaction and also for the retry capabilities provided by some input
nodes.
Related concepts:
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can

2828 WebSphere Message Broker Version 7.0.0.8

create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Handling exceptions in aggregation flows” on page 2749
When you use aggregation flows, exceptions might occur.
Related reference:
“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.

Handling MQInput errors
The MQInput node takes certain actions when handling errors with persistent and
transactional messages. The node attempts retry processing when a transactional
message is rolled back to the input queue. Non-transactional messages are not
rolled back to the input queue when an exception occurs.

About this task

Errors encountered with non-transactional messages are handled as described in
“Managing errors in the input node” on page 2828.
v The MQInput node detects an internal error in the following situations:

– An exception occurs when the associated message parser is initialized. If the
Parse timing property is set to Immediate or Complete, the parser parses the
input message after initialization. This parsing can cause a parsing or
validation error, which is treated as an internal error.

– A warning is received on an MQGET call.
– The backout threshold is reached when the message is rolled back to the

input queue.
v If the MQInput node detects an internal error, one of the following actions occur:

– If you have not connected the Failure terminal, the MQInput node attempts to
put the message to the input queue's backout requeue queue, or (if that is not
defined) to the dead letter queue of the broker's queue manager. If the put
attempt fails, the message is rolled back to the input queue. The MQInput
node writes the original error and the MQPUT error to the local error log.
The MQInput node now invokes the retry logic, described in “Handling retry
processing” on page 2830.

– If you have connected the Failure terminal, you are responsible for handling
the error in the flow connected to the Failure terminal. The broker creates a
new exception list to represent the error and this is propagated to the Failure
terminal as part of the message tree, but neither the MQInput node nor the
broker provide any further failure processing.

v If the MQInput node has successfully propagated the message to the out
terminal and an exception is thrown in the out flow, the message is returned to
the MQInput node:
– If you have not connected the Catch terminal, the message is rolled back to

the input queue. The MQInput node writes the error to the local error log and
invokes the retry logic, described in “Handling retry processing” on page
2830.

Chapter 9. Developing message flow applications 2829

– If you have connected the Catch terminal, you are responsible for handling
the error in the flow connected to the Catch terminal. The broker creates a
new exception list to represent the error and this list is propagated to the
Catch terminal as part of the message tree, but neither the MQInput node nor
the broker provide any further failure processing.

v If the MQInput node has already propagated the message to the Catch terminal
and an exception is thrown in the flow connected to the Catch terminal, the
message is returned to the MQInput node:
– The MQInput node writes the error to the local error log.
– The message is rolled back to the input queue.

v If the MQInput node has already propagated the message to the Failure terminal
and an exception is thrown in the flow connected to the Failure terminal, the
message is returned to the MQInput node and rolled back to the input queue.
The MQInput node writes the error to the local error log and invokes the retry
logic, described in “Handling retry processing.” The message is not propagated
to the Catch terminal, even if that is connected.

This action is summarized in the following table.

Error event Failure terminal
connected

Failure terminal
not connected

Catch terminal
connected

Catch terminal
not connected

Node detects
internal error

Flow connected
to the Failure
terminal handles
the error

Message put to
alternative
queue; node
retries if the put
fails

Not applicable Not applicable

Node propagates
message to out
terminal,
exception occurs
in out flow

Not applicable Not applicable Flow connected
to the Catch
terminal handles
the error

Node retries

Node propagates
message to
Catch terminal,
exception occurs
in flow
connected to the
Catch terminal

Error logged,
message rolled
back

Error logged,
message rolled
back

Not applicable Not applicable

Node propagates
message to
Failure terminal,
exception occurs
in flow
connected to the
Failure terminal

Not applicable Not applicable Node retries Node retries

Handling retry processing:
About this task

The node attempts retry processing when a message is rolled back to the input
queue. The node checks whether the message has been backed out before, and if it
has, whether the backout count has reached (equalled) the backout threshold. The
backout count for each message is maintained by WebSphere MQ in the MQMD.

2830 WebSphere Message Broker Version 7.0.0.8

You specify (or allow to default to zero(0)) the backout threshold attribute
BOTHRESH when you create the queue. If you accept the default value of 0, the
node increases this value to one (1). The node also sets the value to 1 if it cannot
detect the current value. If the backout threshold is set to 1, the message is
processed once but it is not retried through the Out terminal of the MQInput node.
To retry the message at least once, set the backout threshold to 2.
1. If the node has propagated a message to the Out terminal many times

following repeated failed attempts in the output flow, and the number of retries
has reached the backout threshold limit, the node attempts to propagate the
message through the Failure terminal if that is connected. If you have not
connected the Failure terminal, the node attempts to put the message to
another queue. When a message is propagated through the Failure terminal, the
exception list does not contain the exceptions that occurred in the flows
connected to the Out or Catch terminals; the exception list contains new
exceptions that cover the reason that the message has gone through the Failure
terminal (for example, the backout threshold was reached).
If a failure occurs beyond the Failure terminal, further retries are made until
the backout count field in the MQMD reaches twice the backout threshold set
for the input queue. When this limit is reached, the node attempts to put the
message to another queue.

2. If the backout threshold has not been reached, the node gets the message from
the queue again. If this fails, this is handled as an internal error (described
above). If it succeeds, the node propagates the message to the out flow.

3. If the backout threshold has been reached:
v If you have connected the Failure terminal, the node propagates the message

to that terminal. You must handle the error on the flow connected to the
Failure terminal.

v If you have not connected the Failure terminal, the node attempts to put the
message on an available queue, in order of preference:
a. The message is put on the input queue's backout requeue name (queue

attribute BOQNAME), if one is defined.
b. If the backout queue is not defined, or it cannot be identified by the

node, the message is put on the dead letter queue (DLQ), if one is
defined. (If the broker's queue manager has been defined by the
mqsicreatebroker command, a DLQ with a default name of
SYSTEM.DEAD.LETTER.QUEUE has been defined and is enabled for this
queue manager.) The MQDLH PutApplName property is set to
WebSphereMQIntegrator and appended with the broker major version
number, for example: WebSphereMQIntegrator9

c. If the message cannot be put on either of these queues because there is an
MQPUT error (including queue does not exist), or because they cannot be
identified by the node, it cannot be handled safely without risk of loss.
The message cannot be discarded, therefore the message flow continues
to attempt to backout the message. It records the error situation by
writing errors to the local error log. A second indication of this error is
the continual incrementing of the BackoutCount of the message in the
input queue.
If this situation has occurred because neither queue exists, you can define
one of the backout queues mentioned above. If the condition preventing
the message from being processed has cleared, you can temporarily
increase the value of the BOTHRESH attribute. This forces the message
through normal processing.

Chapter 9. Developing message flow applications 2831

|
|
|

4. If twice the backout threshold has been reached or exceeded, the node attempts
to put the message on an available queue, in order of preference, as defined in
the previous step.

Handling transactions, event monitoring, and backout processing:
About this task

When the MQInput node performs retry processing, it can backout the transaction
by putting the message to the backout requeue queue or the dead letter queue. The
backout count is checked when the message is received from the input queue. If
the backout threshold is exceeded, the message is backed out immediately with no
further processing performed on the message. The backout operation occurs in a
separate transaction from previous processing failures, and the message is not
parsed or validated during the backout transaction. The backout transaction
generates its own set of monitoring events. Therefore, information that is obtained
through message parsing, such as the exceptionList, might not be available.

Handling message group errors:
About this task

WebSphere MQ supports message groups. You can specify that a message belongs
to a group and its processing is then completed with reference to the other
messages in the group (that is, either all messages are committed or all messages
are rolled back). When you send grouped messages to a broker, this condition is
upheld if you have configured the message flow correctly, and errors do not occur
during group message processing.

To configure the message flow to handle grouped messages correctly, follow the
actions described in the “MQInput node” on page 4594. However, correct
processing of the message group cannot be guaranteed if an error occurs while one
of the messages is being processed.

If you have configured the MQInput node as described, under normal
circumstances all messages in the group are processed in a single unit of work
which is committed when the last message in the group has been successfully
processed. However, if an error occurs before the last message in the group is
processed, the unit of work that includes the messages up to and including the
message that generates the error is subject to the error handling defined by the
rules documented here, which might result in the unit of work being backed out.

However, any of the remaining messages in the group might be successfully read
and processed by the message flow, and therefore are handled and committed in a
new unit of work. A commit is issued when the last message is encountered and
processed. Therefore if an error occurs in a group, but not on the first or last
message, it is possible that part of the group is backed out and another part
committed.

If your message processing requirements demand that this situation is handled in a
particular way, you must provide additional error handling to handle errors in
message groups. For example, you could record the failure of the message group in
a database, and include a check on the database when you retrieve each message,
forcing a rollback if the current group has already encountered an error. This
would ensure that the whole group of messages is backed out and not processed
unless all are successful.
Related concepts:

2832 WebSphere Message Broker Version 7.0.0.8

“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Managing errors in the input node” on page 2828
When you design your message flow, consider which terminals on the input node
to connect.
“Catching exceptions in a TryCatch node” on page 2835
You can design a message flow to catch exceptions before they are returned to the
input node. You can include one or more TryCatch nodes in a flow to provide a
single point of failure for a sequence of nodes. With this technique, you can
provide specific error processing and recovery.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.

Handling timeout notification errors
The TimeoutNotification node takes various actions when it handles errors with
transactional messages, depending on whether the Failure and Catch terminals are
connected.

Errors that are encountered with non-transactional messages are handled as
described in “Managing errors in the input node” on page 2828.
v If the TimeoutNotification node detects an internal error, one of the following

actions occur:
– If you have not connected the Failure terminal:

1. The TimeoutNotification node writes the error to the local error log.
2. The TimeoutNotification node repeatedly tries to process the request until

the problem has been resolved.
– If you have connected the Failure terminal, you are responsible for handling

the error in the flow connected to the Failure terminal. The broker creates an
exception list to represent the error, which is propagated to the Failure

Chapter 9. Developing message flow applications 2833

terminal as part of the message tree. The TimeoutNotification node and the
broker do not provide further failure processing. The message is written to
the Failure terminal as part of the same transaction, and if the failure flow
handles the error successfully the transaction is committed.

v If the TimeoutNotification node has successfully propagated the message to the
Out terminal and an exception is thrown in the flow connected to the Out
terminal, the message is returned to the TimeoutNotification node. The
TimeoutNotification node writes the error to the local error log and does one of
the following:
– If you have not connected the Catch terminal, the TimeoutNotification node

tries to process the message again until the problem is resolved.
– If you have connected the Catch terminal, you are responsible for handling

the error in the flow connected to the Catch terminal. The broker creates an
exception list to represent the error, which is propagated to the Catch terminal
as part of the message tree. The TimeoutNotification node and the broker do
not provide further failure processing. The message is written to the Catch
terminal as part of the same transaction, and if the flow connected to the
Catch terminal handles the error successfully the transaction is committed.

v If the TimeoutNotification node has already propagated the message to the
Catch terminal and an exception is thrown in the flow connected to the Catch
terminal, the message is returned to the TimeoutNotification node. The
TimeoutNotification node writes the error to the local error log and tries to
process the message again.

v If the TimeoutNotification node has already propagated the message to the
Failure terminal and an exception is thrown in the flow connected to the Failure
terminal, the message is returned to the TimeoutNotification node. The
TimeoutNotification node writes the error to the local error log, and tries to
process the message again. The message is not propagated to the Catch terminal,
even if that is connected.

This action is summarized in the following table.

Error event Failure terminal
connected

Failure terminal
not connected

Catch terminal
connected

Catch terminal
not connected

The node detects
an internal error.

The flow that is
connected to the
Failure terminal
handles the
error.

The error is
logged and the
node retries the
operation.

Not applicable Not applicable

The node
propagates a
message to the
Out terminal
and an exception
occurs in the
output flow.

Not applicable Not applicable The flow that is
connected to the
Catch terminal
handles the
error.

The error is
logged and the
node retries the
operation.

The node
propagates a
message to the
Catch terminal
and an exception
occurs in the
flow that is
connected to the
Catch terminal.

The error is
logged and the
node retries the
operation.

The error is
logged and the
node retries the
operation.

Not applicable Not applicable

2834 WebSphere Message Broker Version 7.0.0.8

Error event Failure terminal
connected

Failure terminal
not connected

Catch terminal
connected

Catch terminal
not connected

The node
propagates a
message to the
Failure terminal
and an exception
occurs in the
flow that is
connected to the
Failure terminal.

Not applicable Not applicable The error is
logged and the
node retries the
operation.

The error is
logged and the
node retries the
operation.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Managing errors in the input node” on page 2828
When you design your message flow, consider which terminals on the input node
to connect.
“Catching exceptions in a TryCatch node”
You can design a message flow to catch exceptions before they are returned to the
input node. You can include one or more TryCatch nodes in a flow to provide a
single point of failure for a sequence of nodes. With this technique, you can
provide specific error processing and recovery.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.

Catching exceptions in a TryCatch node
You can design a message flow to catch exceptions before they are returned to the
input node. You can include one or more TryCatch nodes in a flow to provide a
single point of failure for a sequence of nodes. With this technique, you can
provide specific error processing and recovery.

Chapter 9. Developing message flow applications 2835

About this task

A TryCatch node does not process a message in any way, it represents only a
decision point in a message flow. When the TryCatch node receives a message, it
propagates it to the Try terminal. The broker passes control to the sequence of
nodes that are connected to that terminal (the try flow).

If an exception is thrown in the try flow, the broker returns control to the TryCatch
node. The node writes the current contents of the exception list tree to the local
error log, then writes the information for the current exception to the exception list
tree, overwriting the information that is stored there.

The node propagates the message to the sequence of nodes that are connected to
the Catch terminal (the catch flow). The content of the message tree that is
propagated is identical to the content that was propagated to the Try terminal,
which is the content of the tree when the TryCatch node first received it. The node
enhances the message tree with the new exception information that it wrote to the
exception list tree. Any modifications or additions that the nodes in the try flow
made to the message tree are not present in the message tree that is propagated to
the catch flow.

However, if the try flow completes processing that involves updates to external
databases, these updates are not lost. The updates persist while the message is
processed by the catch flow, and the decision about whether the updates are
committed or rolled back is made on the configuration of your message flow and
the individual nodes that interact with the databases. If the updates are committed
because of the configuration that you set, you must include logic in your catch
flow that rolls back the changes that were made.

To review the options for configuration, see “Configuring transactionality for
message flows” on page 1290.

If an exception is thrown in the catch flow of the TryCatch node (for example, if
you include a Throw node, or code an ESQL THROW statement, or if the broker
generates the exception), then the broker returns control to the next catch point in
the message flow, such as another TryCatch node.

The following example shows how you can configure the flow to catch exceptions
in the input node. The MQInput node's Catch terminal is connected to a Trace
node to record the error.

MQInput Compute

Trace

MQOutput

In the following example, the message flow has two separate processing flows
connected to the Filter node's True and False terminals. Here a TryCatch node is
included on each of the two routes that the message can take. The Catch terminal
of both TryCatch nodes is connected to a common error processing subflow.

2836 WebSphere Message Broker Version 7.0.0.8

Error1

Error2

TryCatch

TryCatch1

Compute

Compute1

MQOutput

MQOutput1

MQInput Filter

If the input node in your message flow does not have a Catch terminal, and you
want to process errors in the flow, you must include a TryCatch node.
Related concepts:
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling exceptions in aggregation flows” on page 2749
When you use aggregation flows, exceptions might occur.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.

Chapter 9. Developing message flow applications 2837

Constructing message models
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

About this task

If you are unfamiliar with message models, read the topics that describe the
concepts, starting with “Message modeling” on page 1154. These topics explain
when you might want to model messages, and describe the message modeling
objects that you can use, such as message sets and message definition files.

The WebSphere Message Broker message model is based on XML Schema. For
more information about XML Schema, see XML Schema Part 0: Primer.

The following tasks are provided for developing message models:
v “Working with a message set project”
v “Working with a message set” on page 2840
v “Working with a message definition file” on page 2863
v “Working with MRM message model objects” on page 2870
v “Creating a multipart message” on page 2919
v “Linking from one message definition file to another” on page 2921
v “Working with a message category file” on page 2923
v “Working with data structures” on page 2930
v “Generating documentation from message sets and message flows” on page 2962
v “Generating XML Schemas” on page 2963
v “Generating a Broker SCA definition from a message set” on page 2967
v “Generating a WSDL definition from a message set” on page 2968

Tip: The WebSphere Message Broker Toolkit provides a set of toolbar icons that
invoke wizards that you can use to create many of the resources that are associated
with message models; for example, a new message set. Hold the mouse pointer
over a toolbar icon to see its function.

The WebSphere Message Broker Toolkit lets you open resource files with other
editors. However, use only the WebSphere Message Broker Toolkit to edit resource
files that are associated with message models because this editor correctly validates
all changes that you make to these files.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Why model messages?” on page 1158
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.

Working with a message set project
Creating and deleting a message set.

2838 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/

About this task

Before you begin to develop your message model, you must create a message set.
A message set project is automatically created when you create a message set.

This topic area describes the tasks that are involved in working with a message set.
v “Creating a message set” on page 2842
v “Deleting a message set project”
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.

Deleting a message set project
Delete a message set project and, optionally, the contents of the associated project
directory.

Before you begin

Before you start:

You must have completed the following task:
v “Creating a message set” on page 2842

Tip: Close all open windows within the WebSphere Message Broker Toolkit that
relate to the message set project or associated files that you want to delete. If you
do not do this, errors might occur when you try to process objects that no longer
exist your workspace.

About this task

This task topic describes how to delete a message set project and, optionally, the
contents of the associated project directory.

To delete a message set project:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message set project that you

want to delete, then click Delete on the pop-up menu. The Confirm Project
Delete window opens.

3. Choose whether to delete or retain the contents of the project directory. By
default, project directory contents are not deleted. To delete the contents of the
project directory, click Also delete contents; all files and directories that are
associated with the project are deleted.

4. Click Yes to delete the message set project. Alternatively, click No or press Esc
to cancel the deletion.

Results
Related concepts:

Chapter 9. Developing message flow applications 2839

“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
Related tasks:
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.

Working with a message set
Complete a variety of tasks that are involved in working with a message set.

About this task
v “Configuring message set preferences”
v “Opening an existing message set” on page 2841
v “Creating a message set” on page 2842
v “Configuring logical properties: Message sets” on page 2846
v “Working with physical formats” on page 2847
v “Configuring documentation properties: Message sets” on page 2860
v “Deleting a message set” on page 2862
v “Applying a Quick Fix to a task list error” on page 2862
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Generating documentation from message sets and message flows” on page 2962
You can generate documentation from your message sets, message flows, message
definition files, message maps, Java files, ESQL files, and deployable WSDL files.

Configuring message set preferences
This task topic explains how to make changes to preferences that relate to message
set processing. These preferences are for message set editors, message set model
validation, and importing XML Schema.

About this task

To configure message set preferences:

Procedure
1. Open the Preferences window by clicking Window > Preferences.
2. In the left hand pane, expand Broker Development > Message Sets by clicking

+. This displays the following options:
v Editors
v Validation
v XML Schema Importer

2840 WebSphere Message Broker Version 7.0.0.8

3. View or make any necessary changes to the preferences for message set
processing. These preferences are shown in the right hand area of the window.

4. When you have finished, click Apply. Alternatively, click Restore Defaults to
return to the default settings for the displayed fields.

5. Close the Preferences window by clicking OK.

Results
Related reference:
“Message set preferences” on page 5366
Preferences for message sets.
“Message Set Editor and Message Definition Editor preferences” on page 5367
While looking at a large message set that contains a number of message definition
files that have different namespaces, or multiple message definition files that have
the same namespace, you might want to view the information in alternative ways
to make it easier for you to visualize the structure of the message set. If you
double-click the global construct, you open the message definition file in which the
global construct is defined.
“Validation of the message model” on page 5369
You can customize some of the warning messages that are generated by message
set validation. Use the Message Set Validation Preference page to do this.
“XML Schema Importer” on page 5370
Preferences for the message set XML Schema Importer.

Opening an existing message set
Open an existing message set in the Message Set editor so that you can view or
edit its contents.

Before you begin

Before you start:

Create a message set by following the instructions in “Creating a message set” on
page 2842.

Tip: Although you can open resource files with other editors you are advised to
only use the WebSphere Message Broker Toolkit Message Set editor to work with
message set files because this editor correctly validates changes made to the
messageSet.mset files when they are saved. Other editors might not do this.

About this task

To open a message set so that you can view or edit its contents:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the messageSet.mset file of the

message set that you are opening then click Open on the pop-up menu. This
opens the Message Set editor for the selected file.

Results

You can now view or edit the file as required.
Related concepts:

Chapter 9. Developing message flow applications 2841

“The message model” on page 1160
The message model consists of the following components.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Deleting a message set” on page 2862
If you want to delete a message set from your message model, you must delete the
message set project that contains the message set.
“Generating documentation from message sets and message flows” on page 2962
You can generate documentation from your message sets, message flows, message
definition files, message maps, Java files, ESQL files, and deployable WSDL files.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“Custom Wire Format message set properties” on page 5375
The tables define the properties that you can set for a Custom Wire Format
message set.
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.
“MRM XML: In-line DTDs and the DOCTYPE text property” on page 5407
You can include in-line DTDs in your messages, and you can specify additional
information by setting the property DOCTYPE Text. The parser takes certain actions
when constructing an output message.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“TDS Mnemonics” on page 5391
The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both.
“Default TDS message set properties” on page 5394
The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Creating a message set
Use the New Message Set wizard to create a message set.

About this task

The New Message Set wizard also creates a new message set project.

2842 WebSphere Message Broker Version 7.0.0.8

Note: You can also use a Quick Start wizard to create a message set, a message set
project, and other resource files that you need to create a new application.

The New Message Set wizard allows you to select what kinds of message format
you want to model in your message set. The message domain and the physical
format created is inferred from the selection that you make. Note, however, that
you can change the inferred domain using the message set editor.

The options are:
v XML documents (general)
v Web services (SOAP)
v Binary data (for example, C or COBOL structures)
v Text data (for example, CSV, SWIFT, or HL7)
v MIME documents other than Web services
v Data for WebSphere Adapters
v Database records

The default value is XML documents (general).

Below the list of message formats there are check boxes corresponding to each of
the message formats. The check box corresponding to the message format that you
selected is not available, but you can select any of the other check boxes to add
other message formats to your message set.

If you later select a different default message domain, the checked state for the
domain that you originally selected as the default does not change, but the check
box is enabled.

As you can now select more than one message domain you can, for example, use
the default value of XML documents (general) together with Binary data (for
example, C or COBOL structures) and Text data (for example, CSV, SWIFT or
HL7). This results in the selection of the XMLNSC and MRM domains (to handle
non-XML documents) within the same message set if you require this functionality.

The mapping between the selection, the domain, and the wire format created is
described in the following table:

Selection Inferred message domain Physical format created

XML documents (general) XMLNSC XML

Web services (SOAP) SOAP and XMLNSC XML

Binary data (for example, C
or COBOL structures)

MRM CWF

Text data (for example, CSV,
SWIFT, or HL7)

MRM TDS

MIME documents other than
Web services

MIME None

Data for WebSphere
Adapters

DataObject None

Data for CORBA DataObject None

Database records DataObject None

Chapter 9. Developing message flow applications 2843

Depending on your selection, an appropriate IBM supplied message will be
imported into the message set.

Note: The XML physical format is created only in case the user switches to MRM
XML.

If you click Finish on the second page of the New Message Set wizard, the
message set that is created has the following default property values:

Property Default value

Message Domain XML documents (general)

Physical Format XML Wire Format (XML1)

Namespace support Enabled

To create a new message set:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the New Message Set wizard. To do this, right-click anywhere in the

Broker Development view, then click New > Message Set.
3. In the Message set name field, type the name for the message set that you are

creating. The name that you type is also displayed in the Message set project
name field.

4. Optional: You can choose a different message set project name; to do this, type
this name into the Message set project name field.

5. Optional: You can specify a directory in which you want to store the project
contents. If you do not specify a directory, the default workspace is used. To
specify a directory, first clear the Use default check box, then either type into
the Directory field the location of the directory, or click Browse to see a list of
the folders that you can choose from for the location of the directory.

6. Optional: If you want to create a new message set whose definition is based on
existing message set, click Message Set in the Copy message set contents from
another message set pane and choose from the list of message set definitions
that are shown; then click Finish. The new message set (and the message set
project that contains it) is created immediately and the New Message Set
wizard automatically closes.

7. Optional: If you want to create a message set whose definition is not based on
an existing message set, click Next. You are presented with the next pane which
allows you to choose the type of message data that you want to process.
a. Expand the list shown under Select the type of message data that you will

be working with most often and choose a value from the list shown. The
value that you choose determines the default message domain of the
message set. If you choose XML Documents (general), the default message
domain XMLNSC is used.

b. Optional: You can now select additional types of message data. Under
Select any other types of message data that you will be working with
there are check boxes for each of the following message data types:
v XML documents (general)
v Web services SOAP
v Binary data (for example, C or COBOL structures)
v Text data (for example, CSV, SWIFT or HL7)

2844 WebSphere Message Broker Version 7.0.0.8

v MIME documents other than Web services
v Data for WebSphere Adapters

Note: These check boxes correspond to the list of data types from which
you chose the data type that you will be working with most often, but the
check box that corresponds to the data type that you chose from that list is
not available.
By default, all these check boxes are cleared. You can select any, or all of
these check boxes, to add the corresponding data types to your message set.
If you select the check box for text data, either for the type of message data
that you will be working with most often or as another type of message
data that you will be working with, you can additionally choose from the
displayed list of text messaging standards. This list is the same as that given
in the description of the Messaging Standard property in “TDS Format
message set properties” on page 5381.

c. Click Next. A new panel is displayed that summarizes some information
about the message set that you have created. Specifically, it lists:

Supported message domains
Physical formats to be created
IBM supplied messages to be imported

8. Click Finish on this page to create the message set, and the message set project
that contains it. The New Message Set wizard closes.

Results

After the New Message Set wizard finishes, the message set editor is opened.

What to do next

You can now create some message definitions in the new message set. You can
either create new message definitions from scratch, or create them based on
existing artifacts such as WSDL, XSD, DTD, C, COBOL files, or EIS metadata. Use
the Message Definition File wizard and the Message Definition File From wizard to
help you with this.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Quick Start wizards overview” on page 1409
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to
containers for the resources that you need when you develop a message flow.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.

Chapter 9. Developing message flow applications 2845

“Deleting a message set project” on page 2839
Delete a message set project and, optionally, the contents of the associated project
directory.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Deleting a message set” on page 2862
If you want to delete a message set from your message model, you must delete the
message set project that contains the message set.
“Generating documentation from message sets and message flows” on page 2962
You can generate documentation from your message sets, message flows, message
definition files, message maps, Java files, ESQL files, and deployable WSDL files.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“Custom Wire Format message set properties” on page 5375
The tables define the properties that you can set for a Custom Wire Format
message set.
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“TDS Mnemonics” on page 5391
The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both.

Configuring logical properties: Message sets
Configure the logical properties of a message set using the Message Set editor.

Before you begin

Before you start:

You must have completed the following task:
v “Creating a message set” on page 2842

If the messageSet.mset file for the appropriate message set is not already open in
the Message Set editor, you must first open it as described in “Opening an existing
message set” on page 2841.

About this task

This task topic describes how to configure the logical properties of a message set
using the Message Set editor.

To configure the logical properties of a message set:

2846 WebSphere Message Broker Version 7.0.0.8

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, click Message Set. This

displays the logical properties of the selected message set in the Details view.
3. Configure to your requirements the logical properties that are shown in the

Details view.

Note: Property fields that are disabled cannot be altered. For example, the
Message Set ID field is disabled because the message set ID is generated
automatically when the message set is created; the Message Set ID must not
then be altered.

4. Save your changes by clicking File> Save or by pressing Ctrl+S. Alternatively
click File> Save All or press Ctrl+Shift+S.

Results
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Message domains and parsers” on page 1159
WebSphere Message Broker supplies a range of parsers to parse and write message
formats.
“Message set version and keywords” on page 1169
When you develop a message set, you can define the version of the message set,
and other key information that you want to be associated with it.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Deleting a message set” on page 2862
If you want to delete a message set from your message model, you must delete the
message set project that contains the message set.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Working with physical formats
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.

Chapter 9. Developing message flow applications 2847

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841

About this task

This topic area covers the following tasks that relate to working with the physical
properties of a message set:
v “Adding a Custom Wire Format (CWF)”
v “Configuring Custom Wire Format (CWF) properties: Message sets” on page

2849
v “Adding a TDS physical format” on page 2851
v “Configuring TDS properties: Message sets” on page 2852
v “Adding an XML wire format” on page 2853
v “Configuring XML Wire Format properties: Message sets” on page 2855
v “Renaming a physical format” on page 2856
v “Applying default physical format settings: Message sets” on page 2857
v “Removing a physical format” on page 2858
v “Observing 2007 U.S. changes to daylight saving time” on page 2859
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.

Adding a Custom Wire Format (CWF):

You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841

About this task

To add a CWF physical format layer to a message set:

2848 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, open the Add Custom

Wire Format window by right-clicking Custom Wire Formats, then clicking
Add Custom Wire Format.

3. On the Add Custom Wire Format window, specify the name that you want to
use for the new CWF physical format. The default name is 'Binary1'.

Tip: Physical format names must be unique across a message set. You are
recommended to start the name of your new CWF physical format with 'CWF'
or 'Binary', because this clearly identifies the type of the physical format that
you are adding in relation to any of the other types.

4. Click OK to add the physical format layer to the message set. Alternatively, if
you decide to cancel the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property
values. You can configure the message set properties according to your
requirements, using the appropriate editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
Related tasks:
“Configuring Custom Wire Format (CWF) properties: Message sets”
Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.
“Renaming a physical format” on page 2856
Rename a physical format using the Message Set editor.
“Applying default physical format settings: Message sets” on page 2857
Apply the default settings to a physical format layer that has previously been
added to a message set.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Custom Wire Format message set properties” on page 5375
The tables define the properties that you can set for a Custom Wire Format
message set.

Configuring Custom Wire Format (CWF) properties: Message sets:

Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.

Chapter 9. Developing message flow applications 2849

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841
v “Adding a Custom Wire Format (CWF)” on page 2848

About this task

To configure the CWF properties of a message set:

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, the Custom Wire Formats node of the Properties

Hierarchy shows the name of each of the CWF physical formats that have been
added to the message set. If the physical format names are not in view, expand
Custom Wire Formats by clicking +.

3. Click the chosen CWF physical format so that the properties of this format
appear in the Details view of the Message Set editor.

4. Configure the CWF properties shown in the Details view according to your
requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Alternatively click File> Save All or press Ctrl+Shift+S.

Results

Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
Related tasks:
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
“Renaming a physical format” on page 2856
Rename a physical format using the Message Set editor.
“Applying default physical format settings: Message sets” on page 2857
Apply the default settings to a physical format layer that has previously been
added to a message set.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
“Configuring documentation properties: Message sets” on page 2860
Document a message set in the WebSphere Message Broker Toolkit.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application

2850 WebSphere Message Broker Version 7.0.0.8

Development perspective for editing message set (messageSet.mset) files.
“Custom Wire Format message set properties” on page 5375
The tables define the properties that you can set for a Custom Wire Format
message set.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a TDS physical format:

Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841

About this task

This task topic describes how to add a Tagged/Delimited String (TDS) physical
format layer to a message set using the Message Set editor.

To add a TDS physical format layer to a message set:

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, open the Add

Tagged/Delimited String Format window by right-clicking Tagged/Delimited
String Formats then clicking Add Tagged/Delimited String Format on the
pop-up menu.

3. In the Add Tagged/Delimited String Format window, specify the name that
you want to use for the new TDS format. The default name is 'Text1'.

Tip: Physical format names must be unique across a message set. You are
recommended to start the name of your new TDS physical format with 'TDS' or
'Text', because this clearly identifies the type of the physical format that you are
adding in relation to any of the other types.

4. Click OK to add the physical format to the message set. Alternatively, if you
decide to cancel the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property
values. You can configure the message set properties according to your
requirements, using the Message Set editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).

Chapter 9. Developing message flow applications 2851

“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
Related tasks:
“Configuring TDS properties: Message sets”
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
“Renaming a physical format” on page 2856
Rename a physical format using the Message Set editor.
“Applying default physical format settings: Message sets” on page 2857
Apply the default settings to a physical format layer that has previously been
added to a message set.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“TDS Mnemonics” on page 5391
The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both.
“Default TDS message set properties” on page 5394
The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.

Configuring TDS properties: Message sets:

Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841
v “Adding a TDS physical format” on page 2851

About this task

To configure the TDS physical format properties of a message set, do the following:

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, the Tagged/Delimited String Formats node of the

Properties Hierarchy shows the name of each of the TDS physical formats that
have been added to the message set. If the physical format names are not in
view, expand Tagged/Delimited String Formats by clicking +.

2852 WebSphere Message Broker Version 7.0.0.8

3. Click the chosen TDS physical format so that the properties of this format
appear in the Details view of the Message Set editor.

4. Configure the TDS properties shown in the Details view according to your
requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Alternatively click File> Save All or press Ctrl+Shift+S.

Results

Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
Related tasks:
“Adding a TDS physical format” on page 2851
Add a Tagged/Delimited String (TDS) physical format layer to a message set using
the Message Set editor.
“Renaming a physical format” on page 2856
Rename a physical format using the Message Set editor.
“Applying default physical format settings: Message sets” on page 2857
Apply the default settings to a physical format layer that has previously been
added to a message set.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
“Configuring documentation properties: Message sets” on page 2860
Document a message set in the WebSphere Message Broker Toolkit.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“TDS Mnemonics” on page 5391
The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both.
“Default TDS message set properties” on page 5394
The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.

Adding an XML wire format:

You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

Chapter 9. Developing message flow applications 2853

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841

About this task

This task topic describes how to add an XML wire format physical format layer to
a message set using the Message Set editor.

To add an XML physical format layer to a message set:

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, open the Add XML Wire

Format window by right-clicking XML Wire Formats, then clicking Add XML
Wire Format on the pop-up menu.

3. On the Add XML Wire Format window, specify the name that you want to use
for the new XML wire format. The default name is 'XML1'.

Tip: Physical format names must be unique across a message set. You are
recommended to start the name of your new XML physical format with 'XML',
because this clearly identifies the type of the physical format that you are
adding in relation to any of the other types.

4. Click OK to add the physical format layer. Alternatively, if you decide to cancel
the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property
values. You can configure the message set properties according to your
requirements, using the appropriate editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
Related tasks:
“Configuring XML Wire Format properties: Message sets” on page 2855
Configure the XML Wire Format properties of a message set using the Message Set
editor.
“Renaming a physical format” on page 2856
Rename a physical format using the Message Set editor.
“Applying default physical format settings: Message sets” on page 2857
Apply the default settings to a physical format layer that has previously been
added to a message set.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.

2854 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.
“MRM XML: In-line DTDs and the DOCTYPE text property” on page 5407
You can include in-line DTDs in your messages, and you can specify additional
information by setting the property DOCTYPE Text. The parser takes certain actions
when constructing an output message.

Configuring XML Wire Format properties: Message sets:

Configure the XML Wire Format properties of a message set using the Message Set
editor.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841
v “Adding an XML wire format” on page 2853

About this task

To configure the XML wire format properties of a message set:

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, the XML Wire Formats node of the Properties

Hierarchy shows the name of each of the XML physical formats that have been
added to the message set. If the physical format names are not in view, expand
XML Wire Formats by clicking +.

3. Click the chosen XML physical format so that the properties of this format
appear in the Details view of the Message Set editor.

4. Configure the XML wire format properties shown in the Details view according
to your requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Alternatively click File> Save All or press Ctrl+Shift+S.

Results

Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
Related tasks:

Chapter 9. Developing message flow applications 2855

“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Renaming a physical format”
Rename a physical format using the Message Set editor.
“Applying default physical format settings: Message sets” on page 2857
Apply the default settings to a physical format layer that has previously been
added to a message set.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
“Configuring documentation properties: Message sets” on page 2860
Document a message set in the WebSphere Message Broker Toolkit.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.
“MRM XML: In-line DTDs and the DOCTYPE text property” on page 5407
You can include in-line DTDs in your messages, and you can specify additional
information by setting the property DOCTYPE Text. The parser takes certain actions
when constructing an output message.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Renaming a physical format:

Rename a physical format using the Message Set editor.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841

This task assumes that you have added one or more physical formats to the
message set that you are working with. For further information see “Adding a
Custom Wire Format (CWF)” on page 2848 or “Adding an XML wire format” on
page 2853 or “Adding a TDS physical format” on page 2851.

About this task

This task topic describes how to rename a physical format using the Message Set
editor.

To rename a physical format previously added to the message model:

2856 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Close all message definition (.mxsd) files that are currently open in the Message
Definition editor, otherwise you will not be able to rename the physical format.

2. Switch to the Broker Application Development perspective.
3. In the Message Set editor, the Properties Hierarchy shows the name of each of

the physical formats that have been added to the message set. If the physical
format names are not in view, expand XML Wire Formats, Custom Wire
Formats, or Tagged/Delimited String Formats by clicking +.

4. Right-click the physical format that you want to rename then click Rename on
the pop-up menu to open the “Rename wire format” window.

5. In the “Rename wire format” window, type the new name for the physical
format. The renaming operation modifies all of the message definition files in
the message set and saves the amended message set file.

6. Click Finish to rename the physical format and save the message set file.

Results

Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Removing a physical format” on page 2858
You can remove a physical format layer from your message set.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.

Applying default physical format settings: Message sets:

Apply the default settings to a physical format layer that has previously been
added to a message set.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841

The tasks in this topic area assume that you have added one or more physical
formats to the relevant message set. For further information see “Adding a Custom

Chapter 9. Developing message flow applications 2857

Wire Format (CWF)” on page 2848 or “Adding an XML wire format” on page 2853
or “Adding a TDS physical format” on page 2851.

About this task

To apply the default settings to a physical format that has previously been added
to a message set:

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, right-click the physical

format to which you want to apply the default settings then click Apply
default physical format settings on the pop-up menu.

Results

The default settings are applied to the physical format that you have selected. No
warning appears beforehand.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Removing a physical format”
You can remove a physical format layer from your message set.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.

Removing a physical format:

You can remove a physical format layer from your message set.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841

The tasks in this topic area assume that you have added one or more physical
formats to a message set. For further information see “Adding a Custom Wire

2858 WebSphere Message Broker Version 7.0.0.8

Format (CWF)” on page 2848 or “Adding an XML wire format” on page 2853 or
“Adding a TDS physical format” on page 2851.

About this task

To remove a physical format layer from your message set:

Procedure

1. Close any message definition files that are currently open in the Message
Definition editor, otherwise you will not be able to remove the physical format.

2. Switch to the Broker Application Development perspective.
3. In the Message Set editor, the Properties Hierarchy shows the name of each of

the physical formats that have been added to the message set. If the physical
format names are not in view, expand XML Wire Formats, Custom Wire
Formats, or Tagged/Delimited Wire Formats, by clicking +.

4. Right-click the physical format that you want to remove, then click Delete on
the pop-up menu.

Tip: If you decide to proceed with deleting the physical format, all of the
message definition files under the current message set are modified and the
amended message set file is saved.

5. Click Finish to remove the physical format, or click Cancel to return to the
Broker Application Development perspective without making any changes.
Pressing Esc also returns you to the Broker Application Development
perspective without making any changes.

Results

Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.

Observing 2007 U.S. changes to daylight saving time
Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842

Chapter 9. Developing message flow applications 2859

v “Opening an existing message set” on page 2841

This task assumes that you have added and configured one or more physical
formats to existing message sets. For further information see: “Working with
physical formats” on page 2847.

About this task

This task describes how to ensure that the message sets observe daylight saving
time (DST) in line with the 2007 U.S. changes.

If your message sets use a named time zone that is not changing DST in line with
the 2007 U.S. changes, you do not need to do anything.

If you are using a GMT-04:00, GMT-05:00, GMT-06:00, GMT-07:00, or GMT-08:00
named time zone with DST, that must observe DST in line with the 2007 U.S.
changes, do the following steps on every computer on which the broker is running:
1. Set the environment variable MQSI_USE_NEW_US_DST to an initial value: Y,

for example.
2. Restart the broker to use the changed DST.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Custom Wire Format message set properties” on page 5375
The tables define the properties that you can set for a Custom Wire Format
message set.
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.

Configuring documentation properties: Message sets
Document a message set in the WebSphere Message Broker Toolkit.

2860 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Complete the following tasks:
v “Creating a message set” on page 2842
v “Opening an existing message set” on page 2841

About this task

To configure the documentation for a message set:

Procedure
1. In the Message Set editor Properties Hierarchy, click Message set. The

documentation text field appears in the Details view, with all the other logical
properties of the message set.

2. Configure the documentation properties shown in the Details view to your
requirements.
You can use the Documentation property to set user-defined keywords and their
value. These keywords are propagated to the broker when you deploy the
message set in a BAR file. These keywords are used to give additional
information about the message set when you display deployed message set
properties in the WebSphere Message Broker Toolkit. See “Message set version
and keywords” on page 1169 for more information.

3. Save your changes by clicking File > Save, or by pressing Ctrl+S. Alternatively,
click File > Save All, or press Ctrl+Shift+S.

Results
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message set version and keywords” on page 1169
When you develop a message set, you can define the version of the message set,
and other key information that you want to be associated with it.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Generating documentation from message sets and message flows” on page 2962
You can generate documentation from your message sets, message flows, message
definition files, message maps, Java files, ESQL files, and deployable WSDL files.
Related reference:
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.

Chapter 9. Developing message flow applications 2861

Deleting a message set
If you want to delete a message set from your message model, you must delete the
message set project that contains the message set.

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message set project folder that

contains the message set that you want to delete and click Delete on the
pop-up menu. This opens the Confirm Project Delete window, which asks
whether you want to delete the message set project that you have specified.

3. Click Also delete contents to delete the contents of the message set project,
or click Do not delete contents to cancel the deletion of the message set
project. Pressing the Esc key on your keyboard also cancels the deletion of the
message set project.

Results

Important: When you delete a message set project, the action cannot be undone
after you have confirmed the deletion. All folders and associated files for the
message set project are deleted.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.

Applying a Quick Fix to a task list error
During the creation, migration and manipulation of message models, warnings or
errors might occur; these are listed in the Problems view of the Broker Application
Development perspective. Some of these warnings or errors can be cleared by
applying a Quick Fix.

About this task

The types of warnings or errors that can be cleared using a Quick Fix are those
where the construct has a broken link, where the construct has a facet that is not
legal, or where the construct has been imported, and where a warning or error has
occurred, but has been kept to ensure the integrity of structure that is being
imported. This allows you to fix the problem in the most appropriate way.

To apply a Quick Fix:

Procedure
1. Switch to the Broker Application Development perspective.
2. Ensure that the Problems view is visible in the Broker Application

Development perspective of the WebSphere Message Broker Toolkit. If the
Problems view is not visible, from the WebSphere Message Broker Toolkit
menu, click Window > Show View > Problems.

3. In the Problems view, right-click the task list warning or error that you want to
apply the Quick Fix to, then click Quick Fix. Note that Quick Fix might not be
available for the problem that you are trying to fix.

2862 WebSphere Message Broker Version 7.0.0.8

4. Step through the windows that are displayed, making the selections that are
required to ensure that the fix is applied in the appropriate way.

Results

When the Quick Fix has successfully been applied to the task list warning or error,
it is removed from the Problems view.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model integrity” on page 1210
When you create your message model, it is important that it is internally
consistent.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Message model task list errors that have a quick fix” on page 6336
You can apply a quick fix to some message modeling task list warnings or errors to
correct them.

Working with a message definition file
Create, open, and delete a message definition file.

Before you begin

Before you start:

You must have completed the following task:
v “Creating a message set” on page 2842

About this task

This topic area describes the tasks that are involved in working with a message
definition file:
v “Opening an existing message definition file” on page 2864
v “Creating a message definition file” on page 2865
v “Deleting a message definition file” on page 2869
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“XML Schema restrictions in message sets” on page 1172
Some XML Schema 1.0 features are not supported when message models are
contained in message sets.

Chapter 9. Developing message flow applications 2863

“XML Schema extensions in message sets” on page 1173
WebSphere Message Broker provides some additional facilities that are not
specified in the XML Schema 1.0 specification. When using a message set, further
extensions are provided.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

Opening an existing message definition file
This task topic describes how to open an existing message definition file in the
Message Definition editor; you can then view and edit the contents of the file.

About this task

To open an existing message definition file:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message definition file (file

extension *.mxsd) that you want to open, and select Open. This opens the
Message Definition editor for the message definition file that you have
specified.

Tip: The Eclipse framework lets you open resource files with other editors.
However, you are advised to use only the WebSphere Message Broker Toolkit
Message Definition editor to work with message definition files, because this
editor correctly validates any changes that are made to the message definition
files. Other editors might not do this.

3. View or edit the data in the file as required.

Results
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“XML Schema restrictions in message sets” on page 1172
Some XML Schema 1.0 features are not supported when message models are
contained in message sets.
“XML Schema extensions in message sets” on page 1173
WebSphere Message Broker provides some additional facilities that are not
specified in the XML Schema 1.0 specification. When using a message set, further
extensions are provided.
Related tasks:
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

2864 WebSphere Message Broker Version 7.0.0.8

“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.
“Message definition file properties” on page 5409
The properties of a message definition file.

Creating a message definition file
Creating an empty message definition file to contain your message model objects.

Before you begin

Before you start:

You must have completed the following task:
v “Creating a message set” on page 2842

About this task

You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML Schema form.

You can create the message definition file in one of the following ways:
v Create the message definition file from scratch, see “Creating a message

definition file from scratch” on page 2866.
v Base your message definition file on an existing resource (for example, an XML

Schema file, an IBM supplied message, an XML DTD file, a C header file, a
COBOL file, or a WSDL file), see “Creating a message definition file from an
existing resource” on page 2867.

v Copy a message definition file from one message set to another.
If you do copy a message definition file from one message set to another, you
must check that the source and target message sets have identical physical
formats, and that namespaces are enabled.
If the source and target namespaces do not have identical formats, the physical
format of the message definition file might be replaced by the default
information applied to the target message set.

Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

Chapter 9. Developing message flow applications 2865

“Working with data structures” on page 2930
You can create a message definition file in a message set by importing from XML
Schema, XML DTD, SCA import or export components, IBM supplied messages,
WSDL definitions, IDL files, C header files, and COBOL copybooks. This topic area
describes how to import from these data structures using the command line or the
WebSphere Message Broker Toolkit.
“Importing file systems into the WebSphere Message Broker Toolkit” on page 2931
You can import file systems into the WebSphere Message Broker Toolkit by using
the Import wizard, by dragging, or by copying.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message definition file properties” on page 5409
The properties of a message definition file.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“New message definition file wizard: Create a new message definition file from
scratch” on page 6361
Create a new message definition file by using the New message definition file
wizard.

Creating a message definition file from scratch:

Create an empty message definition file to contain message model objects.

Before you begin

Before you start:

You must have completed the following task:
v “Creating a message set” on page 2842

About this task

You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML Schema form.

To create an empty message definition file from scratch:

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard.

To do this, right-click the message set project in the Broker Development view
that you are adding the message definition file to, and click New> Message
Definition File on the pop-up menu. The Message Definition File panel of the
wizard is displayed. The target message set list is filtered to only show artifacts
in the active working set.

3. Click the message set, type a name into the File name field, and click Next.
4. Step through the remainder of the wizard, completing the details as required.

2866 WebSphere Message Broker Version 7.0.0.8

Results

The new empty message definition file, with the name that you have specified and
a file extension of *.mxsd, opens in the Message Definition editor; you can use the
editor to create your own message definitions. If you have chosen to use a target
namespace, a directory structure that is based on the URI that you have supplied is
created. The new message definition file is placed within this directory structure,
which appears in the Broker Development view.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Working with data structures” on page 2930
You can create a message definition file in a message set by importing from XML
Schema, XML DTD, SCA import or export components, IBM supplied messages,
WSDL definitions, IDL files, C header files, and COBOL copybooks. This topic area
describes how to import from these data structures using the command line or the
WebSphere Message Broker Toolkit.
“Importing file systems into the WebSphere Message Broker Toolkit” on page 2931
You can import file systems into the WebSphere Message Broker Toolkit by using
the Import wizard, by dragging, or by copying.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message definition file properties” on page 5409
The properties of a message definition file.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“New message definition file wizard: Create a new message definition file from
scratch” on page 6361
Create a new message definition file by using the New message definition file
wizard.

Creating a message definition file from an existing resource:

You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML schema form.

Chapter 9. Developing message flow applications 2867

Before you begin

You must have completed the following task:
v “Creating a message set” on page 2842

About this task

To create a new message definition file that is based on an existing resource:

Procedure

1. Switch to the Broker Application Development perspective.
2. Open the appropriate New Message Definition File From wizard.

Right-click the message set project in the Broker Development view that you
are adding the message definition file to, and click New> Message Definition
File From. A submenu shows the list of resources from which you can choose.

3. Choose the resource on which to base your new message definition. Click one
of the following resources:
v C Header File

v COBOL File

v CORBA IDL File

v Database Definition File

v IBM Supplied Message

v SCA Import or Export

v WSDL File

v XML DTD File

v XML Schema File

The first panel of the corresponding wizard is displayed.
4. Step through the remainder of the wizard supplying the details as required. For

more information about using the New Message Definition File wizards, see
“New message definition file wizards” on page 6360.

Results

The new message definition file, with the name that you have specified and a file
extension of .mxsd, opens in the Message Definition editor. You can use the editor
to create your own message definitions. If you have chosen to use a target
namespace, a directory structure that is based on the URI that you have supplied is
created. The new message definition file is placed within this directory structure,
which is shown in the Broker Development view.
Related concepts:
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.

2868 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Working with data structures” on page 2930
You can create a message definition file in a message set by importing from XML
Schema, XML DTD, SCA import or export components, IBM supplied messages,
WSDL definitions, IDL files, C header files, and COBOL copybooks. This topic area
describes how to import from these data structures using the command line or the
WebSphere Message Broker Toolkit.
“Importing file systems into the WebSphere Message Broker Toolkit” on page 2931
You can import file systems into the WebSphere Message Broker Toolkit by using
the Import wizard, by dragging, or by copying.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message definition file properties” on page 5409
The properties of a message definition file.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“New message definition file wizard: Create a new message definition file from
scratch” on page 6361
Create a new message definition file by using the New message definition file
wizard.

Deleting a message definition file
You can delete a message definition file from your message model.

Before you begin

Before you start:

Before you delete a message definition file, you can list resources that refer to that
file and would therefore be affected by the deletion; for more information, see
“Showing resource references” on page 1447.

About this task

To delete a message definition file from your message model:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message definition file (file

extension *.mxsd) that you want to delete, then click Delete. Alternatively,
select the message definition file that you want to delete in the Broker
Development view, then, from the menu bar, click Edit > Delete, or press the
Delete key.

3. In the Confirm Resource Delete window, click Yes to delete the message
definition file. Click No, or press the Esc key, to cancel the deletion of the
message definition file.

Chapter 9. Developing message flow applications 2869

Results

Important: All files and objects that are associated with the message definition file
are deleted. This action cannot be undone.
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
Related reference:
“Message definition file properties” on page 5409
The properties of a message definition file.

Working with MRM message model objects
Add, configure, and delete objects.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865

About this task

This topic area describes the tasks that are involved in working with message
model objects:
v “Adding MRM message model objects”
v “Configuring MRM message model objects” on page 2896
v “Deleting objects” on page 2919
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
Related reference:
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Adding MRM message model objects
Various tasks are involved in adding message model objects to a message
definition file.

2870 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865

Before starting any of the tasks in this topic area, you must first open the message
definition file to which you want to add message model objects in the Message
Definition editor. See “Opening an existing message definition file” on page 2864
for further details.

About this task

This topic area describes the tasks that are involved in adding message model
objects to a message definition file:
v “Adding a message” on page 2872
v “Adding a message from a global element” on page 2873
v “Adding a global element” on page 2876
v “Adding a local element” on page 2877
v “Adding an element reference” on page 2878
v “Adding a wildcard element” on page 2880
v “Adding a global attribute” on page 2881
v “Adding a local attribute” on page 2882
v “Adding an attribute reference” on page 2884
v “Adding a wildcard attribute” on page 2885
v “Adding a simple type” on page 2886
v “Adding a complex type” on page 2889
v “Adding a simple type to an element or attribute” on page 2904
v “Adding a complex type to an element” on page 2905
v “Adding a global group” on page 2890
v “Adding an attribute group” on page 2892
v “Adding a group reference” on page 2894
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model object identification” on page 1191
Objects in a message model (elements, attributes, types, groups) are identified by
their name only.
Related tasks:
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
Related reference:

Chapter 9. Developing message flow applications 2871

“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Adding a message:

Add a message to a message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

About this task

To add a message to your message definition file:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message on the
pop-up menu. A simple message is immediately added to your message model
and is assigned a default name.

4. Either type a new name for the message or press Enter to accept the default.

Tip: When you add a message to your message model, an associated complex
type and global element with the same name as the message are also created.
The global element and the message cannot have different names and changing
the name of one changes the names of both. The complex type can be renamed.

Results

You can now configure the properties of the message to your exact requirements.
For further information about configuring message model objects see “Configuring
MRM message model objects” on page 2896.
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects: messages” on page 1175
A message describes the structure and content of a set of data that is passed from
one application to another.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The

2872 WebSphere Message Broker Version 7.0.0.8

contained message is sometimes referred to as an embedded message.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Message logical properties” on page 5449
This section describes the logical properties of a message.
“Message CWF properties” on page 5473
There are no properties to show.
“Message XML properties” on page 5495
The following tables describe the XML properties of a message.
“Message TDS properties” on page 5531
Message TDS properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a message from a global element:

Add a message from a global element to a message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding a global element” on page 2876 (This must be a global element of

complex type)

About this task

To add a message from a global element to your message model:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

Chapter 9. Developing message flow applications 2873

3. In the Outline view, right-click Messages then click Add Message From Global
Element on the pop-up menu to open the Add Message From Global Element
window. This window lists all the global elements of a complex type that are
not already associated with a message.

4. In the Select a global element of complex type that is not already used for a
message list, click the global element that you want to use to create your
message.

5. Click OK. This immediately adds a message with the same name as the
selected global element to your message model.

Results

You can now configure the properties of the message to your exact requirements.
For further information on configuring message model objects see “Configuring
MRM message model objects” on page 2896.
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects: messages” on page 1175
A message describes the structure and content of a set of data that is passed from
one application to another.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Message model objects: elements” on page 1176
An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Message logical properties” on page 5449
This section describes the logical properties of a message.
“Message CWF properties” on page 5473
There are no properties to show.
“Message XML properties” on page 5495
The following tables describe the XML properties of a message.
“Message TDS properties” on page 5531
Message TDS properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

2874 WebSphere Message Broker Version 7.0.0.8

Adding a message from a global type:

Add a message from a global type to your message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding a global element” on page 2876 (This must be a global element of

complex type)

About this task

To add a message from a global type to your message model:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message From Global
Type on the pop-up menu to open the Add Message From Global Type
window. This window lists all the global complex types that are not already
associated with a message.

4. In the Select a global complex type list, click the global complex type that you
want to use to create your message.

5. Click OK. This immediately adds a message with the same name as the
selected global complex type to your message model.

Results

You can now configure the properties of the message to your exact requirements.
For further information on configuring message model objects see “Configuring
MRM message model objects” on page 2896.
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects: messages” on page 1175
A message describes the structure and content of a set of data that is passed from
one application to another.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Message model objects: types” on page 1177
Types describe the data content of elements.
Related tasks:

Chapter 9. Developing message flow applications 2875

“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Message logical properties” on page 5449
This section describes the logical properties of a message.
“Message CWF properties” on page 5473
There are no properties to show.
“Message XML properties” on page 5495
The following tables describe the XML properties of a message.
“Message TDS properties” on page 5531
Message TDS properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a global element:

Add a global element to a message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

About this task

To add a global element to your message model:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click Elements and Attributes then click Add Global
Element on the pop-up menu. This adds a global element of type string to
your message model, and assigns a default name.

4. Either type a new name for the global element or press Enter to accept the
default.

2876 WebSphere Message Broker Version 7.0.0.8

Results

You can now configure the global element to your requirements. For further
information on configuring message model objects see “Configuring MRM message
model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: elements” on page 1176
An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Global element logical properties” on page 5430
The logical properties of a global element.
“Global element CWF properties” on page 5463
There are no CWF properties to show for a global element.
“Global element XML properties” on page 5486
The properties, and their permissible values, vary according to the type of object.
“Global element TDS properties” on page 5513
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a local element:

Add a local element to a message, type, group, or complex element.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

This task assumes that you have previously added the relevant message, type,
group, or complex element to your message model.

About this task

To add a local element to a message, type, group, or complex element:

Chapter 9. Developing message flow applications 2877

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group, or
complex element) to which you are adding a local element then click Add
Local Element on the pop-up menu. A local element of type string is added to
the message model and is assigned a default name.

4. Either type a new name for the local element or press Enter to accept the
default.

Results

You can now configure the local element to your exact requirements. For further
information about configuring message model objects see “Configuring MRM
message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: elements” on page 1176
An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Local element logical properties” on page 5442
The logical properties of a local element include properties that specify the number
of occurrences and value of the local element.
“Local element CWF properties” on page 5469
The properties, and their permissible values, vary according to the object type.
“Local element XML properties” on page 5492
The properties, and their permissible values, vary according to the object type.
“Local element TDS properties” on page 5524
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding an element reference:

Add an element reference to a message, type, group, or complex element.

2878 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

This task assumes that you have previously added the relevant message, type,
global group, or complex element to your message model.

About this task

To add an element reference to a message, type, global group, or complex element:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group, or
complex element) to which you are adding the element reference, then click
Add Element Reference on the pop-up menu. This adds a default element
reference to the message model object that points to an existing global element.
This existing global element might be in the current message definition file or
in a message definition file defined under Includes or Imports for the current
message definition file. For further information about Imports and Includes, see
“Linking from one message definition file to another” on page 2921.

Results

You can now configure the element reference to your exact requirements. For
further information about configuring message model objects see “Configuring
MRM message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: elements” on page 1176
An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 9. Developing message flow applications 2879

“Element reference logical properties” on page 5423
The logical properties of an element reference include properties that specify the
number of occurrences of the element reference.
“Element reference CWF properties” on page 5460
The properties, and permissible values, vary according to the type of object.
“Element reference XML properties” on page 5481
The properties, and their permissible values, vary according to the type of object.
“Element reference TDS properties” on page 5509
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a wildcard element:

Add a wildcard element to a message, type, group, or complex element in a
message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

You can add a wildcard element to a message, type, group or complex element.
This task assumes that you have previously added the relevant message, type,
group or complex element to your message model.

About this task

To add a wildcard element to a message, type, group or complex element:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click the message model object (message, complex
type, group or complex element) to which you are adding the wildcard element
then click Add Wildcard Element on the pop-up menu. A wildcard element is
added and appears in the Outline view.

Results

You can now configure the wildcard element to your exact requirements. For
further information on configuring message model objects see “Configuring MRM
message model objects” on page 2896.
Related concepts:

2880 WebSphere Message Broker Version 7.0.0.8

“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: elements” on page 1176
An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Wildcard element logical properties” on page 5453
The logical properties of a wildcard element include properties that specify the
number of occurrences of the wildcard element.
“Wildcard element CWF properties” on page 5475
There are no properties to show.
“Wildcard element XML properties” on page 5500
There are no properties to show.
“Wildcard element TDS properties” on page 5534
There are no properties to show.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a global attribute:

Add a global attribute to your message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

About this task

To add a global attribute to your message model:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

Chapter 9. Developing message flow applications 2881

3. In the Outline view, right-click Elements and attributes then click Add Global
Attribute on the pop-up menu. A global attribute of type string is immediately
added and is assigned a default name.

4. Either type a new name for the global attribute or press Enter to accept the
default.

Results

You can now configure the global attribute to your requirements. For more
information on configuring message model objects see “Configuring MRM message
model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: attributes” on page 1185
An attribute describes an XML attribute. They are used only when the data is XML.

Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Global attribute logical properties” on page 5425
The logical properties of a global attribute.
“Global attribute CWF properties” on page 5462
There are no properties to show.
“Global attribute XML properties” on page 5483
The properties, and their permissible values, vary according to the object type.
“Global attribute TDS properties” on page 5511
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a local attribute:

Add a local attribute to a message, complex type, or complex element.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

2882 WebSphere Message Broker Version 7.0.0.8

You can add a local attribute to a message, complex type, or complex element. This
task assumes that you have previously added the relevant message, complex type,
or complex element to your message model.

About this task

To add a local attribute to a message, complex type or complex element:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, complex
element, or attribute group) to which you are adding the local attribute then
click Add Local Attribute on the pop-up menu. A local attribute of type string
is immediately added to the message model object and is assigned a default
name.

4. Either type a new name for the local attribute or press Enter to accept the
default.

Results

You can now configure the local attribute to your requirements. For further
information about configuring message model objects see “Configuring MRM
message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: attributes” on page 1185
An attribute describes an XML attribute. They are used only when the data is XML.

Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Local attribute logical properties” on page 5438
The logical properties of a local attribute.
“Local attribute CWF properties” on page 5467
The properties, and their permissible values, vary according to the object type.
“Local attribute XML properties” on page 5490
The properties, and their permissible values, vary according to the object type.
“Local attribute TDS properties” on page 5522
The properties, and their permissible values, vary according to the object type.

Chapter 9. Developing message flow applications 2883

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding an attribute reference:

Add an attribute reference to a message, complex type, or complex element.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

You can add an attribute reference to a message, complex type, or complex
element. This task assumes that you have previously added the relevant message,
complex type, or complex element to your message model.

About this task

To add an attribute reference to a message, complex type or complex element:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click the message model object (message, complex
type, complex element, or attribute group) to which you are adding the
attribute reference then click Add Attribute Reference on the pop-up menu.
This action adds a default attribute reference to the message model object that
points to an existing global attribute.

Results

You can now configure the attribute reference to your exact requirements. For
further information about configuring message model objects see “Configuring
MRM message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: attributes” on page 1185
An attribute describes an XML attribute. They are used only when the data is XML.

Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects

2884 WebSphere Message Broker Version 7.0.0.8

“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Attribute reference logical properties” on page 5418
The logical properties of an attribute reference.
“Attribute reference CWF properties” on page 5457
The properties, and their permissible values, vary according to the object type.
“Attribute reference XML properties” on page 5478
The properties, and their permissible values, vary according to the object type.
“Attribute reference TDS properties” on page 5503
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Attribute reference properties” on page 5541
Different types of properties are available for an attribute reference.

Adding a wildcard attribute:

Add a wildcard attribute to a message, complex type, or complex element.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

You can add a wildcard attribute to a message, complex type, or complex element.
This task assumes that you have previously added the relevant message, complex
type, or complex element to your message model.

About this task

To add a wildcard attribute to a message, complex type or complex element:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, complex
element, or attribute group) to which you are adding the wildcard attribute
then click Add Wildcard Attribute on the pop-up menu. A wildcard attribute
of type string is immediately added to the message model object and is
assigned a default name.

Chapter 9. Developing message flow applications 2885

4. Either type a new name for the wildcard attribute or press Enter to accept the
default.

Results

You can now configure the wildcard attribute to your requirements. For further
information about configuring message model objects see “Configuring MRM
message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: attributes” on page 1185
An attribute describes an XML attribute. They are used only when the data is XML.

Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Wildcard attribute logical properties” on page 5453
The logical properties of a wildcard attribute.
“Wildcard attribute CWF properties” on page 5475
There are no properties to show.
“Wildcard attribute XML properties” on page 5499
There are no properties to show.
“Wildcard attribute TDS properties” on page 5534
There are no properties to show.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a simple type:

Add a simple type to your message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

About this task

To add a simple type to your message model:

2886 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click Types then click either Add Simple Type
Restriction, Add Simple Type List, or Add Simple Type Union on the pop-up
menu.
v For a restriction, a simple type of base type string is added, and assigned a

default name.
v For a list, a simple type of item type string is added, and assigned a default

name.
v For a union, a simple type with a single member type of string is added, and

assigned a default name.
4. Either type a new name for the simple type or press Enter to accept the default.

Results

You can now configure the simple type to your exact requirements.

If the simple type is a restriction:
v You can change the base type using the editor Properties view.
v You can set the value constraints associated with the simple type. See “Setting

value constraints” on page 2907.
v You can replace the base type with a new local simple type. In the Outline view

right-click simple type and click one of:
– Add Simple Type Restriction. This option replaces the base type with a new

simple type restriction, with a base type of string. You can configure the
restriction as described in 'If the simple type is a restriction'. The result is that
the original simple type becomes a restriction of a restriction.

– Add Simple Type List. This option replaces the base type with a new simple
type list, with an item type of string. You can configure the list as described
in 'If the simple type is a list'. The result is that the original simple type
becomes a restriction of a list. It appears as a list in the editor, because a
restriction of a list is itself a list, but you can also set certain value constraints.

If the simple type is a list:
v You can change the item type using the editor Properties view.
v You can replace the item type with a new local simple type. In the Outline view

right-click the simple type and click one of:
– Add Simple Type Restriction. This option replaces the item type with a new

simple type restriction, with a base type of string. You can configure the
restriction as described in 'If the simple type is a restriction'. The result is that
the original simple type becomes a list of a restriction.

– Add Simple Type Union. This option replaces the item type with a new
simple type union, with a single member type of string. You can configure the
union as described in 'If the simple type is a union'. The result is that the
original simple type becomes a list of a union.

If the simple type is a union:

Chapter 9. Developing message flow applications 2887

v If the member type of string is not required, in the Outline view right-click the
string and click Delete.

v You can add further members to the union. In the Outline view right-click the
simple type and click one of:
– Add Union Member Type. This option adds a union member that is an

existing simple type. Use the type selection dialog to select the simple type
required.

– Add Local Member Type Restriction. This option adds a union member that
is a new simple type restriction, with a base type of string. You can configure
the restriction as described in 'If the simple type is a restriction' referred to
earlier.

– Add Local Member Type List. This option adds a union member that is a
new simple type list, with an item type of string. You can configure the list as
described in 'If the simple type is a list' referred to earlier.

– Add Local Member Type Union. This option adds a union member that is a
new simple type union, with a single member type of string. You can
configure the new union as described in 'If the simple type is a union'.

v New members are added to the end of the union. To change the order of a
member, in the Outline view select the member and drag it to the required
position in the union. All union members that are existing simple types must
occur ahead of all members that are local restrictions, lists, and unions, so
reordering is subject to this rule.

For further information about configuring message model objects see “Configuring
MRM message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: types” on page 1177
Types describe the data content of elements.
“Message model objects: simple types” on page 1180
A simple type is an abstract definition of an item of data such as a number, a string,
or a date.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Simple type logical properties” on page 5450
The logical properties of a simple type.
“Simple type CWF properties” on page 5474
There are no properties to show.
“Simple type XML properties” on page 5498
There are no properties to show.
“Simple type TDS properties” on page 5532
There are no properties to show.

2888 WebSphere Message Broker Version 7.0.0.8

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a complex type:

Add a complex type to your message model.

Before you begin

Before you start:

You must already have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

About this task

To add a complex type to your message model:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click Types then click Add Complex Type on the
pop-up menu. A complex type is added and is assigned a default name.

4. Either type a new name for the complex type or press Enter to accept the
default.

Results

You can now configure the complex type to your requirements. For further
information on configuring message model objects see “Configuring MRM message
model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: types” on page 1177
Types describe the data content of elements.
“Message model objects: complex types” on page 1178
A complex type describes the structure of one or more complex elements.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:

Chapter 9. Developing message flow applications 2889

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Complex type logical properties” on page 5419
The logical properties of a complex type include properties that describe content
and substitution settings.
“Complex type CWF properties” on page 5459
There are no properties to show.
“Complex type XML properties” on page 5480
There are no properties to show.
“Complex type TDS properties” on page 5505
The TDS properties of a complex type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a global group:

Add a global group to your message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

About this task

To add a global group to your message model:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click Groups then click Add Group on the pop-up
menu. A global group is added to your message model and is assigned a
default name.

4. Either type a new name for the global group or press Enter to accept the
default.

Results

You can now configure the global group to your requirements. For further
information about configuring the properties of message model objects see
“Configuring MRM message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere

2890 WebSphere Message Broker Version 7.0.0.8

Message Broker extension to XML Schema.
“Message model objects: groups” on page 1183
A group is a list of elements that defines how those elements appear in a message.
Groups define the composition and content validation of a complex type.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Global group logical properties” on page 5433
The logical properties of a global group.
“Global group CWF properties” on page 5464
There are no properties to show.
“Global group XML properties” on page 5488
There are no properties to show.
“Global group TDS properties” on page 5516
The TDS properties of a global group.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a local group:

Add a local group to a message, type, global group, or complex element.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

You can add a local group to a message, complex type, group, or complex element.
This task assumes that you have previously added the relevant message, complex
type, group, or complex element to your message model.

About this task

To add a local group to a message, complex type, group, or complex element:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

Chapter 9. Developing message flow applications 2891

3. In the Outline view, right-click the object (message, complex type, group, or
complex element) to which you are adding the local group then click Add
Local Group on the pop-up menu. A local group is immediately added to the
message model with type composition set to sequence by default.

Results

You can now configure the local group to your requirements. For further
information about configuring message model objects, see “Configuring MRM
message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: groups” on page 1183
A group is a list of elements that defines how those elements appear in a message.
Groups define the composition and content validation of a complex type.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Local group logical properties” on page 5446
The logical properties of a local group include properties that specify the number
of occurrences of the local group.
“Local group CWF properties” on page 5471
The CWF properties of a local group are described in the following tables.
“Local group XML properties” on page 5494
There are no properties to show.
“Local group TDS properties” on page 5526
TDS properties of a local group.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding an attribute group:

Add an attribute group to your message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

2892 WebSphere Message Broker Version 7.0.0.8

About this task

To add an attribute group to your message model:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click Groups then click Add Attribute Group on the
pop-up menu. A global attribute group is added to your message model and is
assigned a default name.

4. Either type a new name for the attribute group or press Enter to accept the
default.

Results

You can now configure the attribute group to your requirements. For further
information about configuring the properties of message model objects see
“Configuring MRM message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: groups” on page 1183
A group is a list of elements that defines how those elements appear in a message.
Groups define the composition and content validation of a complex type.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Global attribute group logical properties” on page 5429
The logical properties of an attribute group.
“Global attribute group CWF properties” on page 5463
There are no properties to show.
“Global attribute group XML properties” on page 5485
There are no properties to show.
“Global attribute group TDS properties” on page 5513
The TDS properties of a global attribute group.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Global attribute group properties” on page 5741
Different types of properties are available for a global attribute group.

Chapter 9. Developing message flow applications 2893

Adding a group reference:

You can add a group reference to a message, type, global group, or complex
element.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

You can add a group reference to a message, complex type, group, or complex
element. This task assumes that you have previously added the relevant message,
complex type, group, or complex element to your message model.

About this task

To add a group reference to a message, complex type, group or complex element:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group, or
complex element) to which you want to add a group reference then click Add
Group Reference on the pop-up menu. A group reference is immediately
added to your message model.

Results

You can now configure the group reference to your requirements. For further
information on configuring the properties of message model objects see
“Configuring MRM message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: groups” on page 1183
A group is a list of elements that defines how those elements appear in a message.
Groups define the composition and content validation of a complex type.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:

2894 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Group reference CWF properties” on page 5465
The CWF properties of a group reference.
“Group reference XML properties” on page 5488
The XML properties of a group reference.
“Group reference TDS properties” on page 5520
The following tables describe the TDS properties of a group reference.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding an attribute group:

Add an attribute group reference to a message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

About this task

To add an attribute group to your message model:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click Groups then click Add Attribute Group on the
pop-up menu. An attribute group is added to your message model and is
assigned a default name.

4. Either type a new name for the attribute group reference or press Enter to
accept the default.

Results

You can now configure the attribute group to your requirements using the Message
Definition editor. For further information on configuring the properties of message
model objects see “Configuring MRM message model objects” on page 2896.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: groups” on page 1183
A group is a list of elements that defines how those elements appear in a message.

Chapter 9. Developing message flow applications 2895

Groups define the composition and content validation of a complex type.
Related tasks:
“Configuring MRM message model objects”
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Attribute group reference logical properties” on page 5417
The logical properties of an attribute group reference.
“Attribute group reference CWF properties” on page 5456
There are no properties to show.
“Attribute group reference XML properties” on page 5477
The XML properties of an attribute group reference.
“Attribute group reference TDS properties” on page 5502
There are no properties to show.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Attribute group reference properties” on page 5537
Different types of properties are available for an attribute group reference.

Configuring MRM message model objects
Various tasks are involved in configuring MRM message model objects

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

Before starting any of the tasks in this topic area, you must first open the message
definition file for which you want to configure message model objects in the
Message Definition editor. See “Opening an existing message definition file” on
page 2864 for further details.

About this task

This topic area describes the tasks that are involved in configuring message model
objects:
v “Analyzing planned changes to message model objects” on page 2897
v “Renaming objects” on page 2898
v “Reordering objects” on page 2900
v “Copying objects” on page 2901
v “Pasting objects” on page 2901
v “Changing the type of an element or attribute” on page 2903

2896 WebSphere Message Broker Version 7.0.0.8

v “Setting value constraints” on page 2907
v “Configuring logical properties: Message model objects” on page 2909
v “Configuring documentation properties: Message model objects” on page 2910
v “Configuring physical properties” on page 2912

– “Configuring Custom Wire Format (CWF) properties: Message model objects”
on page 2913

– “Configuring XML Wire Format properties: Message model objects” on page
2916

– “Configuring TDS properties: Message model objects” on page 2914
– “Applying default physical format settings: Message model objects” on page

2917
v “Deleting objects” on page 2919
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Analyzing planned changes to message model objects:

Use impact analysis to analyze the effect of renaming message model objects.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)
v “Enabling and disabling indexing” on page 1454

About this task

This information covers the following task:
v “Renaming message model objects”

Renaming message model objects:
About this task

You can analyze the effect of renaming the following objects:
v Complex and simple types
v Model Groups
v Elements
v Attributes

Chapter 9. Developing message flow applications 2897

v Attribute Groups

Procedure

1. In the Broker Development view, right-click the object that you want to rename,
then click Impact Analysis > Rename.

2. In the Impact Analysis - Rename Artifact window, type the new name of the
object, then click Analyze Impact.
The Rename Artifact dialog box shows the results of impact analysis, listing
primary and secondary impacts.
You can view the results of impact analysis in the Impact Analysis dialog box,
or the Impact Analysis view of the WebSphere Message Broker Toolkit. For
more information about how to view information about selected resources,
mark changes as complete, copy results to an external application, and view
previous results, see “Impact Analysis view” on page 6801.

:

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Enabling and disabling indexing” on page 1454
Enable indexing to support impact analysis.
“Analyzing planned changes to ESQL objects” on page 2403
Use impact analysis to analyze the effect of renaming or moving ESQL objects, or
moving or changing the broker schema of an ESQL file.
“Analyzing the impact of changes to message maps” on page 2234
Use impact analysis to analyze the effect of renaming or moving message maps.
“Analyzing planned changes to message flows” on page 1436
Use impact analysis to analyze the effect of renaming or moving message flows,
including subflows.
“Analyzing planned changes to message set resources” on page 1165
Use impact analysis to analyze the effect of renaming message definition or
deployable WSDL files.
Related reference:
“Impact analysis: reference” on page 4174
Some artifacts are excluded from secondary analysis.
“Impact Analysis view” on page 6801
The Impact Analysis view shows information about selected resources, which
changes have been marked as complete, and previous results. You can also use this
view to copy results to the clipboard.

Renaming objects:

You can rename message model objects in the WebSphere Message Broker Toolkit.

2898 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

Also read “Analyzing planned changes to message model objects” on page 2897
for information on the effects of the intended changes.

About this task

Objects in the WebSphere Message Broker Toolkit such as files, messages and
elements can have different physical representations. Eclipse handles renaming
differently depending on the object.

Tip: Not all objects can be renamed. For example, you cannot rename wildcards,
local groups, or local types, because they do not have a name.

If an object can be renamed the usual way to do it is as follows:

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Outline view, right-click the object that you want to rename then click

Rename on the pop-up menu. Alternatively, right-click the object in the
Message Definition editor Overview tab then click Rename on the pop-up
menu. In both cases, depending on the object, either a renaming dialog opens
or you will now be able to edit the name of the object directly.

3. Type the new name for the object.
4. If the renaming dialog is open, either press Enter or click OK.

Results

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Deleting objects” on page 2919
Delete an object from your message model.
“Renaming a physical format” on page 2856
Rename a physical format using the Message Set editor.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 9. Developing message flow applications 2899

Reordering objects:

Reorder message model objects within a message definition file.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

About this task

To reorder objects within a message definition file:

Procedure

1. Switch to the Broker Application Development perspective.
2. Click the object that you want to move. For example, you could select a local

element within a message in either the Outline view or Properties Hierarchy.
3. Use the mouse to drag the object to its new location.

Tip: As you drag the object and the mouse cursor passes between objects, a
black line appears, showing where the current focus is. If you try to drag the
object to a location that it cannot be moved to (including objects that are
highlighted as the cursor passes over them), the object remains in its original
position when you release it.

Results

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Copying objects” on page 2901
You can copy an object in a message definition file, such as a message for a local
element object, or types for a complex type object.
“Deleting objects” on page 2919
Delete an object from your message model.
“Pasting objects” on page 2901
Paste objects that you have previously copied within the same message definition
file
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

2900 WebSphere Message Broker Version 7.0.0.8

Copying objects:

You can copy an object in a message definition file, such as a message for a local
element object, or types for a complex type object.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

About this task

To copy an object:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective. If the Outline view is not visible, from the WebSphere Message
Broker Toolkit menu, click Window > Show View > Outline.

3. In the Outline view, right-click the message model object that you want to copy,
then click Copy. Alternatively, right-click the object in the Message Definition
editor Overview tab, then click Copy.

Results

The object is now copied.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Pasting objects”
Paste objects that you have previously copied within the same message definition
file
“Reordering objects” on page 2900
Reorder message model objects within a message definition file.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Pasting objects:

Paste objects that you have previously copied within the same message definition
file

Chapter 9. Developing message flow applications 2901

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)
v “Copying objects” on page 2901

About this task

You can paste objects that you have previously copied within the same message
definition file.

You can only copy and paste an object within the same message definition. You
cannot copy an object and paste it into another message definition, either within
the same message set or in a different message set.

To paste an object in the message definition from which you copied it:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, right-click the location where you are going to paste the
object then click Paste on the pop-up menu. Alternatively, right-click the object
in the Message Definition editor Overview tab then click Paste on the pop-up
menu. The object appears in the new location with a default name which you
can change if you want to.

4. Either type a new name for the object or press Enter to accept the default.

What to do next

Note: When you copy and paste objects within the message set, where physical
properties exist for that object, these settings are not pasted, but are set to
default values.

Tip: If you cannot select Paste from either menu, you might be trying to paste to a
location that is not valid. For example, you cannot paste a complex type into a
local element.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Copying objects” on page 2901
You can copy an object in a message definition file, such as a message for a local

2902 WebSphere Message Broker Version 7.0.0.8

element object, or types for a complex type object.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Changing the type of an element or attribute:

You can change the type to a local element, global element, local attribute, or
global attribute.

Before you begin

Before you start:

You must already completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

About this task

You can change the type of an element or attribute in your message model to
another existing type, or you can create a new simple type or a new complex type.

To change the type of an element or attribute to an existing type:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View > Outline.

3. In the Outline view, click the element for which you want to change the type.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the lower-left corner of the editor area.
5. In the Properties Hierarchy click Logical Properties > Global Element (or

Logical Properties > Local Element, Logical Properties > Global Attribute, or
Logical Properties > Local Attribute). If necessary, expand Logical Properties
by clicking +.

6. In the Details view, in the Type property, click the new type that you require.

Tip: If the type you require is not displayed, you can find it by clicking
(More...) in the list. This displays the Type Selection window with additional
options. If you know which type you require, specify the first letter in the text
box at the top of the Type Selection window. Matching types are then
displayed, making the selection process easier.

7. When you have selected the type that you require, click OK.

Results

The change to the type is applied wherever the element or attribute occurs.

Chapter 9. Developing message flow applications 2903

The task above explains how to switch to an existing type. If you want to create a
new simple type or a new complex type, select (New Simple Type Restriction),
(New Simple Type List), (New Simple Type Union), or (New Complex Type) in
the Type list (see step 6 above). For information on how to create a new simple
type or a new complex type see “Adding a simple type to an element or attribute”
or “Adding a complex type to an element” on page 2905.
Related concepts:
“Message model objects: elements” on page 1176
An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.
Related tasks:
“Adding a simple type to an element or attribute”
You can add a simple type to a local element, global element, local attribute, or
global attribute.
“Adding a complex type to an element” on page 2905
You can add a complex type to a local element, global element, local attribute, or
global attribute.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Adding a simple type to an element or attribute:

You can add a simple type to a local element, global element, local attribute, or
global attribute.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

This task assumes that you have previously added the relevant element or attribute
to your message model.

About this task

To add a new simple type:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, click the element to which you want to add a new simple
type.

4. In the Message Definition editor, click the Properties tab.

2904 WebSphere Message Broker Version 7.0.0.8

5. In the Properties Hierarchy, click Logical Properties > Global Element (or
Logical Properties > Local ElementLogical Properties > Global Attribute, or
Logical Properties > Local Attribute).

6. In the Details view, in the Type property, select (New Simple Type
Restriction), (New Simple Type List), or (New Simple Type Union) to open
the relevant New Simple Type window to create a simple type of the type that
you specify.

7. In the New Simple Type window, in the Base Type list, click the type that you
want to use.

8. Optional: If you want to add the new simple type as a global simple type,
select the Create as Global Simple Type check box and specify the name for
your new simple type in the Name field.

9. Click OK. A simple type is immediately added to your message model.

Results

Any changes that you make are reflected throughout where the element to which
you have added a new simple type occurs.
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: types” on page 1177
Types describe the data content of elements.
“Message model objects: simple types” on page 1180
A simple type is an abstract definition of an item of data such as a number, a string,
or a date.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Simple type logical properties” on page 5450
The logical properties of a simple type.
“Simple type CWF properties” on page 5474
There are no properties to show.
“Simple type XML properties” on page 5498
There are no properties to show.
“Simple type TDS properties” on page 5532
There are no properties to show.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Adding a complex type to an element:

You can add a complex type to a local element, global element, local attribute, or
global attribute.

Chapter 9. Developing message flow applications 2905

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

This task assumes that you have previously added the relevant element or attribute
to your message model.

About this task

When you add a complex type to an element or attribute, you can either create a
new complex type or derive a new complex type from an existing base type.

To add a new complex type:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is
not visible, from the WebSphere Message Broker Toolkit menu, click Window
> Show View> Outline.

3. In the Outline view, click the element to which you want to add a new
complex type.

4. In the Message Definition editor, click the Properties tab.
5. In the Properties Hierarchy, click Logical Properties > Global Element (or

Logical Properties > Local ElementLogical Properties > Global Attribute, or
Logical Properties > Local Attribute).

6. In the Details view, in the Type list, click (New Complex Type) to display the
New Complex Type window.

7. If you want to create a new local complex type, click Create a Local Complex
Type, in the Composition list, click the option that you require.

8. If you want to derive a new local complex type from an existing base type:
a. Click Derive a new Local Complex Type from existing base type.
b. In the Base Type list, click the base type that you want to use. Depending

on the base type you select, the Composition and Derived By lists might
become active.

c. If the Composition and Derived By lists are active, click the options that
you require in both lists.

9. If you want to add the new complex type as a global complex type, select the
Create as Global Complex Type check box, and specify a name for your new
complex type in the Name field.

10. Click OK to close the New Complex Type window and add the new complex
type to your message model.

Results

Any changes that you make are reflected throughout where the element to which
you are adding the complex type occurs.

2906 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: types” on page 1177
Types describe the data content of elements.
“Message model objects: complex types” on page 1178
A complex type describes the structure of one or more complex elements.
Related tasks:
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Complex type logical properties” on page 5419
The logical properties of a complex type include properties that describe content
and substitution settings.
“Complex type CWF properties” on page 5459
There are no properties to show.
“Complex type XML properties” on page 5480
There are no properties to show.
“Complex type TDS properties” on page 5505
The TDS properties of a complex type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Setting value constraints:

You can set the value constraints associated with a simple type.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding a simple type” on page 2886 or “Adding a simple type to an element

or attribute” on page 2904 (You must have added one or more global or local
simple types to your message model)

About this task

Value constraints are usually associated with a simple type; they refine a simple
type by defining limits on the values which the simple type can represent. To set
the value constraints associated with a simple type:

Chapter 9. Developing message flow applications 2907

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Outline view, click the simple type you are updating. If the Outline view

is not visible, from the WebSphere Message Broker Toolkit menu, click Window
> Show View > Outline.

3. Display the Properties tab of the Message Definition Editor by clicking
Properties in the lower-left corner of the editor area. The Properties Hierarchy
displays the following nodes:
v Logical Properties
v Physical Properties
v Documentation

4. In the Properties Hierarchy under Logical Properties click Value Constraints.
This displays the current value constraints settings for the selected simple type
in the Details pane.

Tip: If Value Constraints is not in view, expand Logical Properties by clicking
+.

5. Set the value constraints for the selected simple type by making the appropriate
changes to the information shown in the Details pane.

Results

Setting an enumeration:
About this task

An enumeration restricts which values can be set for the value constraint. For
example, "ABC" and "123". Use this section to create a list of fixed values that the
associated type must match.

To set an enumeration:

Procedure

1. Click Add to the right of the Enumerations field. This adds an enumeration
that has a default enumeration (for example enumeration1).

2. Type the data that you want to set for this value constraint.
3. Press Enter on your keyboard.
4. Repeat the above steps for each enumeration that you are adding.

Setting a pattern:
About this task

Set a pattern to indicate that the value constraint defines a string used as a regular
expression that must be matched by the data in the associated type. The regular
expression syntax supported is XML Schema regular expressions.

See “Regular expression syntax” on page 6304 for a list of supported regular
expression syntax elements.

To set a pattern:

Procedure

1. Select Add to the right of the Patterns field. This adds a pattern that has a
default pattern (for example pattern1) and is in update mode.

2908 WebSphere Message Broker Version 7.0.0.8

2. Type the data that you want to set for this value constraint.
3. Press Enter on your keyboard.
4. Repeat the above steps for each pattern that you are adding.
Related concepts:
“Message model objects: simple type value constraints” on page 1188
Value constraints, also known as facets in XML Schema, refine a simple type by
defining limits on the values that it can represent.
Related tasks:
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Simple type logical value constraints” on page 5450
The properties, and their permissible values, vary according to the object type.

Configuring logical properties: Message model objects:

You can configure the logical properties of an object that has previously been
added to the message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

About this task

To configure the logical properties of an object that is part of the message model:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit and is displaying the
following information:
v The name of the message definition file
v Messages
v Types
v Groups
v Elements and Attributes
If the Outline view is not visible, from the WebSphere Message Broker Toolkit
menu, click Window > Show View > Outline. If the information listed above is
not displayed, ensure that the message definition file is open in the Message
Definition editor. Message definition files have an .mxsd file extension.

Chapter 9. Developing message flow applications 2909

3. In the Outline view, select the message model object for which you want to
configure the logical properties:
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes as appropriate by
clicking +.

b. Click the object that you want to select within the expanded node.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the lower-left corner of the editor area. The Properties Hierarchy
displays the following nodes:
v Logical Properties
v Physical Properties
v Documentation
The type (for example, Local Element or Global Element) of the message model
object that you selected in the Outline view is displayed under each of these
nodes.
If the items under Logical Properties are not in view, expand Logical
Properties by clicking +.

5. Display the logical properties of the selected object in the Details view of the
Message Definition editor, by clicking the appropriate item under Logical
Properties.

6. Configure the logical properties of the selected item to your requirements by
making the appropriate changes to the information shown in the Details view.

7. Save your changes by clicking File > Save message_definition_file.mxsd or by
pressing Ctrl+S. Alternatively click FileSave All or press Ctrl+Shift+S.

Results

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Configuring documentation properties: Message model objects:

You can configure the documentation properties of an object that has previously
been added to the message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

2910 WebSphere Message Broker Version 7.0.0.8

v “Adding MRM message model objects” on page 2870 (You must have added one
or more objects to your message model)

About this task

To configure the documentation properties of an object contained within a message
definition file:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit and is displaying the
following information:
v The name of the message definition file
v Messages
v Types
v Groups
v Elements and Attributes
If the Outline view is not visible, from the WebSphere Message Broker Toolkit
menu, click Window > Show View > Outline. If the information listed above is
not displayed, ensure that the message definition file is open in the Message
Definition editor. Message definition files have an .mxsd file extension.

3. In the Outline view, select the message model object for which you want to
configure the documentation properties by taking the following steps:
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes as appropriate by
clicking +.

b. Click the object you want to select within the expanded node.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the lower-left corner of the editor area. The Properties Hierarchy
displays the following nodes:
v Logical Properties
v Physical Properties
v Documentation
The type (for example, Local Element or Global Element) of the message model
object that you selected in the Outline view is displayed under each of these
nodes.

Tip: If the items under Documentation are not in view, expand
Documentation by clicking +.

5. Display the logical properties of the selected object in the Details view by
clicking the appropriate item under Documentation.

6. Configure the documentation properties of the selected item to your
requirements by typing text into the Documentation field. Right-clicking in the
field allows you to select options for undoing changes you have made, cutting
or copying text from the field, pasting text into the field, deleting highlighted
text or selecting all text in the field.

7. Save your changes by clicking File > Save message_definition_file.mxsd from
the menu or pressing Ctrl+S. Alternatively, from the menu, click File > Save
All or press Ctrl+Shift+S.

Chapter 9. Developing message flow applications 2911

Results

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Configuring physical properties:

Working with the physical properties of message model objects.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

The tasks in this topic area assume that you have added one or more physical
formats to a message set. For further information see “Adding a Custom Wire
Format (CWF)” on page 2848 or “Adding an XML wire format” on page 2853 or
“Adding a TDS physical format” on page 2851.

About this task

When you have added objects to your message model it is likely that you will
want to configure the physical properties of these objects. The following tasks
relate to configuring the physical properties of message model objects:
v “Configuring Custom Wire Format (CWF) properties: Message model objects” on

page 2913
v “Configuring XML Wire Format properties: Message model objects” on page

2916
v “Configuring TDS properties: Message model objects” on page 2914
v “Applying default physical format settings: Message model objects” on page

2917
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related reference:

2912 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.

Configuring Custom Wire Format (CWF) properties: Message model objects:

You can configure the Custom Wire Format (CWF) properties of a message model
object by using the Message Definition editor

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding a Custom Wire Format (CWF)” on page 2848
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

About this task

To configure the CWF properties of a message model object:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit and is displaying the
following information:
v The name of the message definition file
v Messages
v Types
v Groups
v Elements and Attributes
If the Outline view is not visible, from the WebSphere Message Broker Toolkit
menu, click Window > Show View > Outline. If the above hierarchy is not
displayed, ensure that the message definition file is open in the Message
Definition editor. Message definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the CWF
properties by doing the following.
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes by clicking +.
b. Click the object you that want to select within the expanded node.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area. In the Message Definition
editor, in the Properties Hierarchy, the name of each of the physical formats
that have been added to the message set appears under Physical Properties.
The object type (for example, Local Element or Global Element) of the message
model object that you selected in the Outline view is displayed under each
physical format shown.

Chapter 9. Developing message flow applications 2913

Tip: If the physical formats are not in view in the Properties Hierarchy, expand
Physical Properties by clicking +. By default the CWF physical format is called
Binary1 but could have a user defined name instead.

5. Under Physical Properties, click the object type for the message model object
that you have chosen to configure under the CWF physical format. The CWF
properties of your selected message model object appear in the Details view.

6. Configure the CWF properties of the selected object to your requirements by
making the appropriate changes to the information shown in the Details view.

Note: It is not possible to configure disabled fields.
7. Save your changes by clicking File > Save message_definition_file.mxsd or

pressing Ctrl+S. Alternatively click FileSave All or press Ctrl+Shift+S.

Results

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Configuring Custom Wire Format (CWF) properties: Message sets” on page 2849
Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Configuring TDS properties: Message model objects:

You can configure the Tagged/Delimited String (TDS) properties of a message
model object.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding a TDS physical format” on page 2851
v “Adding MRM message model objects” on page 2870 (Adding one or more

objects to your message model)

About this task

To configure the TDS properties of a message model object:

2914 WebSphere Message Broker Version 7.0.0.8

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit and is displaying the
following information:
v The name of the message definition file
v Messages
v Types
v Groups
v Elements and Attributes
If the Outline view is not visible, from the WebSphere Message Broker Toolkit
menu, click Window > Show View > Outline. If the above hierarchy is not
displayed, ensure that the message definition file is open in the Message
Definition editor. Message definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the TDS
properties by taking the following steps:
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes by clicking +.
b. Click the object that you want to select within the expanded node.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area. In the Message Definition
editor, in the Properties Hierarchy, the name of each of the physical formats
that have been added to the message set appears under Physical Properties.
The object type (for example, Local Element or Global Element) of the message
model object that you selected in the Outline view is displayed under each
physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand
Physical Properties by clicking +. By default the TDS physical format is called
Text1 but could have a user defined name instead.

5. Select the Properties tab located in the lower-left corner of the Message
Definition editor.

6. Under Physical Properties, under the TDS physical format, click the object type
for the message model object that you have chosen to configure. The TDS
physical format properties of your selected message model object appear in the
Details view.

7. Configure the TDS physical format properties of the selected object to your
requirements by making the appropriate changes to the information shown in
the Details view.

Note: It is not possible to configure disabled fields.
8. Save your changes by selecting File > Save message_definition_file.mxsd from

the menu or press Ctrl+S. Alternatively, from the menu, select File > Save All,
or press Ctrl+Shift+S.

Results

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.

Chapter 9. Developing message flow applications 2915

“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Configuring TDS properties: Message sets” on page 2852
Configure the Tagged/Delimited String (TDS) format properties of a message set
using the Message Set editor.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Configuring XML Wire Format properties: Message model objects:

You can configure the XML Wire Format properties of a message model object.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding an XML wire format” on page 2853
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

About this task

To configure the XML Wire Format properties of a message model object:

Procedure

1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit and is displaying the
following information:
v The name of the message definition file
v Messages
v Types
v Groups
v Elements and Attributes
If the Outline view is not visible, from the WebSphere Message Broker Toolkit
menu, click Window > Show View > Outline. If the above hierarchy is not
displayed, ensure that the message definition file is open in the Message
Definition Editor. Message definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the XML
Wire Format properties by taking the following steps:
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes by clicking +.
b. Click the object that you want to select within the expanded node.

2916 WebSphere Message Broker Version 7.0.0.8

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area. In the Message Definition
editor, in the Properties Hierarchy, the name of each of the physical formats
that have been added to the message set appears under Physical Properties.
The object type (for example, Local Element or Global Element) of the message
model object that you selected in the Outline view is displayed under each
physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand
Physical Properties by clicking +. By default the XML Wire Format is called
XML1 but could have a user defined name instead.

5. Under Physical Properties, under the XML Wire Format, click the object type
for the message model object that you have chosen to configure. The XML Wire
Format properties of your selected message model object appear in the Details
view of the Message Definition editor.

6. Configure the XML Wire Format properties of the selected object to your
requirements by making the appropriate changes to the information shown in
the Details view.

Note: It is not possible to configure disabled fields.
7. Save your changes by clicking File > Save message_definition_file.mxsd or

pressing Ctrl+S. Alternatively select File > Save All from the menu or press
Ctrl+Shift+S.

Results

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Configuring XML Wire Format properties: Message sets” on page 2855
Configure the XML Wire Format properties of a message set using the Message Set
editor.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Applying default physical format settings: Message model objects:

You can apply the default physical format settings to a message model object that
is contained in a message definition file.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842

Chapter 9. Developing message flow applications 2917

v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

This task assumes that you have added one or more physical formats to the
relevant message set. For further information see “Adding a Custom Wire Format
(CWF)” on page 2848 or “Adding an XML wire format” on page 2853 or “Adding
a TDS physical format” on page 2851.

About this task

To apply the default physical format setting to a message model object previously
added to a message definition file:

Procedure

1. Switch to the Broker Application Development perspective.
2. In the Outline view, click the object to which you want to apply default

physical format settings.
3. Click the Properties tab located in the lower-left corner of the Message

Definition editor.
4. Check that the Message Definition editor Properties Hierarchy displays the

following information:
v Logical Properties
v Physical Properties (For each of the physical formats that have been added to

the message set, the name of the physical format appears under Physical
Properties. Under each physical format the type of message model object
that you selected is displayed as a child.)

v Documentation
Ensure that Physical Properties in the Properties Hierarchy is fully expanded
by clicking +.

5. Right-click on the message model object type underneath the physical format to
which you want to apply the default settings then click Apply default physical
format settings. The default physical format settings for the message model
object that you selected are applied without warning.

6. Save your changes by clicking File > Save message_definition_file.mxsd from
the menu or pressing Ctrl+S. Alternatively, from the menu, click File > Save
All, or press Ctrl+Shift+S.

Results

Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

2918 WebSphere Message Broker Version 7.0.0.8

Deleting objects
Delete an object from your message model.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864
v “Adding MRM message model objects” on page 2870 (You must have added one

or more objects to your message model)

About this task

To remove objects contained within a message definition file:

Procedure
1. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

2. In the Outline view, right-click the object that you want to remove then click
Delete on the pop-up menu. Alternatively right-click the object in the Message
Definition editor Overview tab, and then click Delete.
The type of object and the relationship that it has with other objects determines
whether the object is now deleted without a confirmation window appearing,
or whether a confirmation window opens with a list of all the objects that will
be deleted along with the one that you have selected.

3. If a confirmation window opens, click OK to delete the objects.

Tip: You can undo a deletion by selecting Edit> Undo, provided that you have
not saved the changes that you have made.

Results
Related concepts:
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Creating a multipart message
A multipart message occurs when you embed a message in another message.

Chapter 9. Developing message flow applications 2919

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

About this task

To create a multipart (embedded) message:

Procedure
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View > Outline.

3. In the Outline view, add one of the following objects to your message model:
v A complex type (for further information on completing this task see “Adding

a complex type” on page 2889)
v A global group (for further information on completing this task see “Adding

a global group” on page 2890)
v A local group (for further information on completing this task see “Adding a

local group” on page 2891)

Tip: You can also use a local ANONYMOUS complex type when creating a
multipart message. For further information see “Adding a complex type to an
element” on page 2905.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the lower-left corner of the editor area.

5. In the Properties Hierarchy, under Logical properties, click one of the following
items, depending on which of these you added in step 3:
v Complex Type

v Global Group

v Local Group

6. In the Details view, make the following changes to the displayed logical
properties:
a. In the Composition drop-down list, click message.
b. In the Content validation drop-down list, click Open, Closed or Open

Defined, depending on your requirements. Note that if the embedded
message is defined in a different message set, you must click Open. For
further information about using these three options, see “MRM content
validation” on page 5422.

Results

Note: There are a number of different ways for the parser to identify an embedded
message within a message bit stream. For further information on identifying a
message within another message refer to the following concept topics.

2920 WebSphere Message Broker Version 7.0.0.8

Related Concepts

“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure.
The contained message is sometimes referred to as an embedded message.
Related Tasks

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Accessing embedded messages in the MRM domain” on page 2594
If you have defined a multipart message, you have at least one message
embedded within another. Within the overall complex type that represents the
outer messages, you can model the inner message in two ways.
Related References

“Complex type logical properties” on page 5419
The logical properties of a complex type include properties that describe
content and substitution settings.
“Global group logical properties” on page 5433
The logical properties of a global group.

Linking from one message definition file to another
Add an 'include', or an 'import' to the file that you want to reference.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Creating a message definition file” on page 2865
v “Opening an existing message definition file” on page 2864

About this task

There are two ways to link one message definition file to another: either you can
add an 'include', or you can add an 'import', for the file that you want to reference.

To check whether a message definition file currently includes or imports other files:
1. Open the message definition file in the Message Definition editor.
2. In the Outline view, in the displayed hierarchy, select the .mxsd file.
3. In the Properties Hierarchy, expand Imports or Includes as appropriate to

display a list of the other files that the currently selected file includes or
imports.

Include
About this task

Use the include option if you want to link to a message definition file with the
same namespace, or if you want to link to a message definition file with no target
namespace from a message definition file with a target namespace (chameleon

Chapter 9. Developing message flow applications 2921

behavior). You must also add an include rather than an import if you want to link
a message definition file with no target namespace to another message definition
file that also has no target namespace.

Note: A message definition file can only reference objects in another message
definition file if this other file has been included directly, so you might have a
problem if you try to use the include option to include message definition files that
are themselves included within other message definition files. For information
about ways of resolving this situation, see “Resolving problems when developing
message models” on page 3459.

This task assumes that you have opened an existing message definition file.

To add an include to a message definition file:

Procedure
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View> Outline.

3. In the Outline view, click the message definition (.mxsd) file name.
4. Display the Properties tab of the Message Definition Editor by clicking

Properties in the lower-left corner of the editor area.
5. In the Properties Hierarchy, right-click Includes then click Add Include on the

pop-up menu. The “Select Message Definition file to include” window opens.
6. In the Message Sets pane, select the message definition file that you want to

include. If the message definition files within your project are not visible in this
pane, expand the project hierarchy by clicking +.

7. Click Finish. The message definition file that you selected in step 4 is included
within the message definition file that you opened before beginning this task.

Import
About this task

You use the import option if you want to link a message definition file to another
message definition file in a different namespace. You cannot add an import from
the same namespace. This restriction includes linking from a message definition
file with no target namespace to another message definition file with no target
namespace.

To add an import to a message definition file:

Procedure
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the WebSphere Message Broker Toolkit. If the Outline view is not
visible, from the WebSphere Message Broker Toolkit menu, click Window >
Show View > Outline.

3. In the Outline view, click the message definition (.mxsd) file name.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the lower-left corner of the editor area.

2922 WebSphere Message Broker Version 7.0.0.8

5. In the Properties Hierarchy, right-click Imports then click Add Import. The
“Select Message Definition file to import” window opens.

6. In the Message Sets pane, select the message definition file that you want to
import from the workspace. If the message definition files within your project
are not visible in this pane, expand the project hierarchy by clicking +.

7. Click Finish. The message definition file that you selected in step 4 is imported
into the schema of the message definition file that you opened before beginning
this task.

Related concepts:
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
Related tasks:
“Generating documentation from message sets and message flows” on page 2962
You can generate documentation from your message sets, message flows, message
definition files, message maps, Java files, ESQL files, and deployable WSDL files.
Related reference:
“Message definition file properties” on page 5409
The properties of a message definition file.
“Message definition file includes properties” on page 5410
The location of each message definition file that has been included in this message
definition file is displayed.
“Message definition file imports properties” on page 5411
The file imports properties of a message definition.
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.

Working with a message category file
This topic area lists the tasks that are involved when working with a message
category file.

About this task
v “Creating a message category file” on page 2924
v “Opening an existing message category file” on page 2925
v “Adding a message to a message category” on page 2926
v “Deleting a message from a message category” on page 2928
v “Viewing or configuring message category file properties” on page 2928
v “Deleting a message category file” on page 2930
Related concepts:
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.

Chapter 9. Developing message flow applications 2923

“Deleting objects” on page 2919
Delete an object from your message model.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
Related reference:
“Message category properties” on page 5413
A message category provides a way of grouping your messages.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Creating a message category file
Create a message category file to add categories that you can use to group
different message sets.

Before you begin

Before you start:

Complete the following task:
v “Creating a message set” on page 2842

About this task

To create a message category file, complete the following steps.

Procedure
1. Right-click in the Broker Development view, then select New > Message

Category File to open the New Message Category File wizard.

Tip: To preselect the message set when the wizard opens, either right-click the
message set to which you are adding the message category file, or select the
message set, before you open the wizard.

2. In the first pane, select the Category Kind for the type of category that you are
creating.
v other. This value indicates that this message category represents a generic

grouping of messages. The Category Usage field is disabled.
v wsdl. This value indicates that this message category represents a WSDL

operation. The specified category name is used as the WSDL operation name.
3. Optional: If you set Category Kind to wsdl, specify the WSDL operation type

by selecting one of the following values for the Category Usage field, then click
Next.
v wsdl:request-response
v wsdl:solicit-response
v wsdl:one-way
v wsdl:notification

4. Select a folder under the target message set for the new message category file
to be saved. The message set folder view is filtered to show only resources in
the active working set.

5. In the File name field, type a name for the new message category file, then
click Next. The file is automatically given the file extension of .category.

6. Select all messages that you want to add to the new category. Use Shift-click to
select a range of messages, and Ctrl-click to select or clear individual messages.

2924 WebSphere Message Broker Version 7.0.0.8

You cannot complete the creation of the category file without adding one or
more messages, and setting the Role Type and Role Usage values of each
message correctly.

7. Click Finish.

Results

The message category file is created in the message set folder that you selected.
The new message category file opens in the Message Category editor, so that you
can view and edit it as required.
Related concepts:
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Deleting objects” on page 2919
Delete an object from your message model.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
Related reference:
“Message Category editor” on page 6802
The Message Category editor is the default editor provided by the Broker
Application Development perspective for working with message category
(.category) files in a message set.
“Message category properties” on page 5413
A message category provides a way of grouping your messages.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Opening an existing message category file
This describes how to open an existing message category file in the Message
Category editor so that you can view or edit it.

Before you begin

Before you start:

To complete this task, you must have completed the following task:
v “Creating a message category file” on page 2924

About this task

To open an existing message category file:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message category file (with a

file extension of .category) that you want to open, then click Open on the
pop-up menu. This opens the message category file that you have selected in
the Message Category editor.

Chapter 9. Developing message flow applications 2925

3. View and edit the message category file as required.

Results

Tip: The Eclipse framework lets you open resource files with other editors. You are
advised to only use the WebSphere Message Broker Toolkit Message Category
editor to work with the message category files because this editor correctly
validates changes made to the files. Other editors might not do this.
Related concepts:
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Deleting objects” on page 2919
Delete an object from your message model.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
Related reference:
“Message Category editor” on page 6802
The Message Category editor is the default editor provided by the Broker
Application Development perspective for working with message category
(.category) files in a message set.
“Message category properties” on page 5413
A message category provides a way of grouping your messages.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Adding a message to a message category
You can add a message to a message category file by using the Message Category
editor.

Before you begin

Before you start:

You must have completed the following tasks:
v “Adding MRM message model objects” on page 2870 (to create at least one

message)
v “Creating a message category file” on page 2924
v “Opening an existing message category file” on page 2925

About this task

To add a message to a message category file:

Procedure
1. Open the Message Category editor.
2. In the Properties Hierarchy, open the Add Messages window by right-clicking

Message Category, then clicking Add Messages. The Add Messages window

2926 WebSphere Message Broker Version 7.0.0.8

lists all the messages that are available for adding to the message category file.
All messages that are in the message set but have not already been added to
the category are displayed.

3. Select the message or messages that you would like to add. Use Shift-click to
select a range of messages and Ctrl-click to select or clear individual messages.

4. Click OK. The selected message or messages are added to the message category
and now appear in the Properties Hierarchy.

Tip: Until you save the message category file, you can undo all additions that
you make. To undo a change, right-click Message Category in the Properties
Hierarchy, then click Undo. If you have added multiple messages, this action
removes all the messages that you have added. If you want to remove a single
message, right-click this message, then click Undo. To redo an addition after
undoing it, use the Redo option.

5. Save and validate the additions that you have made to the message category
file by clicking File > Save, or by pressing Ctrl+S.

Results

When you have saved the message category file after adding a message, you can
no longer undo the addition of this message by using the Undo option. To remove
a message after saving your changes, delete the message from the message
category file.

When you have added a message to a message category file, you can configure its
properties, according to your requirements, in the Message Category editor Details
view.
Related concepts:
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Deleting objects” on page 2919
Delete an object from your message model.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
“Viewing or configuring message category file properties” on page 2928
This topic describes how to view or configure the properties of a message category
file and associated messages using the Message Category editor.
“Deleting a message from a message category” on page 2928
Delete a message from a message category file.
Related reference:
“Message Category editor” on page 6802
The Message Category editor is the default editor provided by the Broker
Application Development perspective for working with message category
(.category) files in a message set.
“Message category properties” on page 5413
A message category provides a way of grouping your messages.

Chapter 9. Developing message flow applications 2927

“Message model object properties” on page 5416
Access property information by property kind, or by object.

Deleting a message from a message category
Delete a message from a message category file.

Before you begin

Before you start:

To complete this task, you must have completed the following tasks:
v “Creating a message category file” on page 2924
v “Opening an existing message category file” on page 2925
v “Adding a message to a message category” on page 2926

About this task

To delete a message from a message category file:

Procedure

In the Message Category editor, in the Properties Hierarchy, right-click the message
that you want to delete, then click Delete on the pop-up menu.

Tip: The message is deleted from the message category file immediately, without a
warning appearing first.

Results
Related concepts:
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Deleting objects” on page 2919
Delete an object from your message model.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
Related reference:
“Message Category editor” on page 6802
The Message Category editor is the default editor provided by the Broker
Application Development perspective for working with message category
(.category) files in a message set.
“Message category properties” on page 5413
A message category provides a way of grouping your messages.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Viewing or configuring message category file properties
This topic describes how to view or configure the properties of a message category
file and associated messages using the Message Category editor.

2928 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

To complete this task, you must have completed the following tasks:
v “Creating a message category file” on page 2924
v “Opening an existing message category file” on page 2925
v “Adding a message to a message category” on page 2926 (You must have added

one or more messages to your message category file)

About this task

To configure the properties of a message category file:

Procedure
1. Switch to the Message Category editor in the Broker Application Development

perspective.
2. To view or configure the properties of a message category, click Message

Category in the Properties Hierarchy. From the Details section of the Message
Category editor you can now view the properties of the message category and
make any changes to the properties that are necessary.

3. To view or configure the properties of a message in the message category file,
click the name of the message in the Properties Hierarchy. From the Details
section of the Message Category editor you can now view the properties of the
message and make any changes to the properties that are necessary.

4. If you have changed any of the properties in the message category or messages,
you can save those changes by selecting File > Save from the menu.

What to do next

Note: Note that some combinations of Message Category Usage, Role Type and
Role Usage are not valid for WSDL and will result in task list errors being
generated.
Related concepts:
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Deleting objects” on page 2919
Delete an object from your message model.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
Related reference:
“Message Category editor” on page 6802
The Message Category editor is the default editor provided by the Broker
Application Development perspective for working with message category
(.category) files in a message set.
“Message category properties” on page 5413
A message category provides a way of grouping your messages.

Chapter 9. Developing message flow applications 2929

“Message category member properties” on page 5414
This describes the properties that are associated with a message category member.

Deleting a message category file
You can delete a message category file from your message model.

Before you begin

Before you start:

To complete this task, you must have completed the following task:
v “Creating a message category file” on page 2924

About this task

To delete a message category file:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message category file

(*.category file extension) that you want to delete, then click Delete.
Alternatively select the message category file in the Broker Development view,
then either click Edit > Delete, or press the Delete key.

3. On the Confirm Resource Delete window, click Yes to delete the message
category file. Alternatively, to cancel the message category file deletion, either
click No or press the Esc key.

Results

Tip: After you have deleted a message category file, the action cannot be undone.
Related concepts:
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Adding MRM message model objects” on page 2870
Various tasks are involved in adding message model objects to a message
definition file.
“Deleting objects” on page 2919
Delete an object from your message model.
“Configuring MRM message model objects” on page 2896
Various tasks are involved in configuring MRM message model objects
Related reference:
“Message category properties” on page 5413
A message category provides a way of grouping your messages.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Working with data structures
You can create a message definition file in a message set by importing from XML
Schema, XML DTD, SCA import or export components, IBM supplied messages,

2930 WebSphere Message Broker Version 7.0.0.8

WSDL definitions, IDL files, C header files, and COBOL copybooks. This topic area
describes how to import from these data structures using the command line or the
WebSphere Message Broker Toolkit.

About this task

Before you attempt to create a message definition from a data structure, by using
the WebSphere Message Broker Toolkit, you are advised to read “Importing file
systems into the WebSphere Message Broker Toolkit.”

The following tasks topics relate to importing by using the WebSphere Message
Broker Toolkit:
v “Importing from C” on page 2934
v “Importing from COBOL copybooks” on page 2937
v “Importing from IBM supplied messages” on page 2942
v “Importing SCA import or SCA export components” on page 2943
v “Generating a Broker SCA definition from a message set” on page 2967
v “Exporting an SCA Import or Export from a Broker SCA definition” on page

2945
v “Importing from WSDL” on page 2946
v “Importing an IDL file” on page 2952
v “Importing from XML DTD” on page 2954
v “Importing from XML Schema” on page 2957

The following tasks relate to importing by using the command line:
v “Importing from the command line” on page 2936 for C header files, COBOL

Copybooks, XML DTDs and XML Schemas.
v “Importing WSDL definitions from the command line” on page 2948
Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Importing file systems into the WebSphere Message Broker
Toolkit
You can import file systems into the WebSphere Message Broker Toolkit by using
the Import wizard, by dragging, or by copying.

Chapter 9. Developing message flow applications 2931

About this task

Use one of the following options to import files for use by your selected message
set project:
v “Using the Import wizard”
v “Dragging and dropping” on page 2933
v “Copying and pasting” on page 2933

You can then select the imported file in the New Message Definition File wizard to
create a message definition that is based on the contents of this file.

Using the Import wizard:
About this task

Use the Import wizard to import all the files, or a selection of files, from the
specified source.

To import files using the Import wizard:

Procedure

1. In the Broker Development view, click the project folder into which you are
going to import the files.

2. Open the Import wizard by clicking File > Import.
3. On the Select page of the Import wizard, click either File System or Archive

file, depending on the type of resource that you are importing.
4. Click Next.
5. On the File System page, in the Directory field, specify the import source.

Either type the source name in the field, or click Browse and select the parent
directory, or compressed file that contains the file or files that you want to
import. Then click OK (directory) or Open (compressed file).

Tip: Directories from which you recently imported files are shown in the list
in the Directory field.

6. Using the left and right panes that are displayed under the Directory field,
specify the folders or files, or both, that you want to import. Consider the
following points when you are making your selections:
v To import the entire contents of a folder, select the check box for this folder

in the left pane. To view secondary folders within a folder, expand the
folder by clicking the plus sign (+).

v To import a specific file or files within a folder, use the right pane to select
the individual files that you want to import. If you select a file or files in
the right pane, the check box for the folder that contains these files is
disabled in the left pane to indicate that only some of the files in the folder
will be imported.

v To restrict the type of files that you are importing, click Filter Types, then,
on the Select Types window, select the check boxes for the file types that
you want to include, and click OK. If you want to include files with
extensions that are not shown in the list, type these extensions in the Other
Extensions field.

v To select all the folders and files that are shown on the File System page,
click Select All.

v To clear all the folders and files that are currently selected on the File
System page, click Deselect All.

2932 WebSphere Message Broker Version 7.0.0.8

The Select the destination for imported resources field is already set to the
name of the project folder that you selected in step 2.

7. Optional: To change the destination project or folder, click Browse to open the
Folder Selection window. Select an alternative project folder by clicking the
folder, then clicking OK.

8. Optional: To overwrite existing resources and not have a warning displayed,
select the Overwrite existing resources without warning check box. This
check box applies to both compressed files and file systems.

9. File system import only: Select one of the following options, depending on the
folder structure that you want to create:
v Create complete folder structure

v Create selected folders only

10. Click Finish.

Results

The files that you selected are imported and are shown in the Broker Development
view under the project folder that you selected.

Dragging and dropping:
About this task

You can use the drag-and-drop method to import files from your file system into
the WebSphere Message Broker Toolkit. Drag the resources that you are importing
to the exact location in the Broker Development view where you want the
resources to be. Do not drag them onto a blank area in the Broker Development
view.

To import files by dragging:

Procedure

1. In your file system, locate the file or folder that you want to import into the
WebSphere Message Broker Toolkit.

2. Drag the file or folder to a specific location in the Broker Development view.
When you are dragging resources into the Broker Development view, the
project or folder into which you are trying to drop the resource is selected.

3. Ensure that the file or folder is copied into the WebSphere Message Broker
Toolkit.

Results

Copying and pasting:
About this task

You can use the copy and paste function of your operating system as a method of
importing a file system into the WebSphere Message Broker Toolkit.

To import files by copying and pasting:

Procedure

1. Locate the file or directory that you want to import into the WebSphere
Message Broker Toolkit.

Chapter 9. Developing message flow applications 2933

2. Using the copy and paste function in the operating system, copy the file or
directory to your system clipboard.

3. Select the destination for the file or directory in the Broker Development view.
4. From the WebSphere Message Broker Toolkit menu, click Edit > Paste.

Results

The files or directories are copied into the WebSphere Message Broker Toolkit, and
placed into the location that you selected.
Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Importing from C
Create a message definition file from a C header file for use in the MRM and
IDOC domains.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a message set” on page 2842
v “Importing file systems into the WebSphere Message Broker Toolkit” on page

2931

Be aware of the following points:
v The wizard can import C header files with .h, .c and .css extensions. If your

source file has a different extension you must rename it before attempting to
import it.

v If the message set to which you are adding the new message definition file does
not have an Custom Wire Format (CWF) layer only the logical information
appears in the model. You can add the physical layer to the message set before
or after importing a C header file, but you should add the physical layer before
importing it to ensure that it is populated with settings from the C header file.

v You can import a C header file from the command line using
mqsicreatemsgdefs.

2934 WebSphere Message Broker Version 7.0.0.8

About this task

The following steps cover both creating a completely new message definition file
and overwriting the contents of an existing file.

To create a message definition file from a C header file:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File > New >

Message Definition File from the WebSphere Message Broker Toolkit menu.
Alternatively, you can open the wizard by right-clicking a C header file
previously imported into the WebSphere Message Broker Toolkit and clicking
New > Message Definition File on the menu.

3. In the displayed list of options, click C header file then click Next.
4. Step through the remainder of the wizard completing the details as required.

Results

When you have completed importing the C header file using the wizard:
v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project
containing the message definition that you have attempted to create. The report
has a .c.report.txt file extension, prefixed with the name that you specified for
the new message definition file.

v Review the messages shown in the WebSphere Message Broker Toolkit task list
to check whether any new warnings or errors have appeared.

Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“Importing from C (MRM): supported features” on page 6347
The C importer uses default values when mapping C data types to message model
elements.

Chapter 9. Developing message flow applications 2935

“New message definition file wizard: Create a new message definition file from a
C header file” on page 6362
You can create a new message definition file from a C header file.

Importing from the command line:

This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you begin

Before you start:

Before you attempt this task, you should read the following information:
v “mqsicreatemsgdefs command” on page 3702

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mqsicreatemsgdefs command:
1. Using the WebSphere Message Broker Toolkit, create a message set in your

workspace that is to be used as a base message set.
2. To this base message set, add the physical formats that you want to be created

in your new message set.

About this task

To import C, COBOL copybooks, XML DTD or XML Schema using the command
line:

Procedure

1. Close the WebSphere Message Broker Toolkit. This must not be running when
you use the command line importer.

2. Invoke the mqsicreatemsgdefs command from a command prompt specifying
the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:
v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.
v The message set level action.
v The name of the file or files that have been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).

2936 WebSphere Message Broker Version 7.0.0.8

v The number of files imported.
4. Start the WebSphere Message Broker Toolkit and switch to the Broker

Application Development perspective. The message definition file that was
created when you invoked mqsicreatemsgdefs is visible in the project that you
specified.

Results

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.
Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
Related reference:
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Importing from COBOL copybooks
This topic describes how to create a new message definition from a COBOL data
structure using the New Message Definition File wizard in the WebSphere Message
Broker Toolkit.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a message set” on page 2842
v “Importing file systems into the WebSphere Message Broker Toolkit” on page

2931

Chapter 9. Developing message flow applications 2937

Be aware of the following points:
v The wizard can import COBOL files with .cbl, .ccp, .cob and .cpy extensions.

If your source file has a different extension, you must rename it before
attempting to import it.

v If the message set to which you are adding the new message definition file does
not have a Custom Wire Format (CWF) layer, or a Tagged/Delimited String
(TDS) format layer, only the logical information appears in the model.
You can add the physical layer to the message set before or after importing a
COBOL data structure but ensure that you add the physical layer before you
import the data structure to ensure that it is populated with settings from the
COBOL copybook.

v You can import a COBOL data structure from the command line using
mqsicreatemsgdefs.

v The copybook must not contain field names that are COBOL reserved keywords.

About this task

The following steps cover creating a new message definition file and overwriting
the contents of an existing file.

To create a message definition file from a COBOL data structure:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File > New >

Message Definition File from the WebSphere Message Broker Toolkit menu.
Alternatively, you can open the wizard by right-clicking a C header file
previously imported into the WebSphere Message Broker Toolkit and clicking
New > Message Definition File on the menu.

3. Click COBOL file, then click Next.
4. Step through the remainder of the wizard supplying the details as required.

For more information, see “New message definition file wizard: Create a new
message definition file from a COBOL file” on page 6363.

Results

When you have completed importing the COBOL file using the wizard:
v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project
containing the message definition that you have attempted to create. The report
has a .cobol.report.txt file extension, prefixed with the name that you
specified for the new message definition file.

v Review the messages shown in the WebSphere Message Broker Toolkit task list
to check whether any new warnings or errors have appeared.

Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.

2938 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.
“Adding a Custom Wire Format (CWF)” on page 2848
You can add a Custom Wire Format (CWF) physical format layer to a message set
by using the Message Set editor.
“Developing SCA applications for non-XML data” on page 2103
The SCA nodes allow non-XML data to be sent and received from WebSphere
Process Server by using the WebSphere MQ binding. For example, create a
message model from a COBOL copybook, and use that message model to parse
messages received from WebSphere Process Server.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“Importing from COBOL: supported features” on page 6350
The COBOL importer uses a set of default values and behaviors when mapping
COBOL data types to message model elements.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“New message definition file wizard: Create a new message definition file from a
COBOL file” on page 6363
You can create a new message definition file from a COBOL file.

Importing from the command line:

This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you begin

Before you start:

Before you attempt this task, you should read the following information:
v “mqsicreatemsgdefs command” on page 3702

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mqsicreatemsgdefs command:
1. Using the WebSphere Message Broker Toolkit, create a message set in your

workspace that is to be used as a base message set.

Chapter 9. Developing message flow applications 2939

2. To this base message set, add the physical formats that you want to be created
in your new message set.

About this task

To import C, COBOL copybooks, XML DTD or XML Schema using the command
line:

Procedure

1. Close the WebSphere Message Broker Toolkit. This must not be running when
you use the command line importer.

2. Invoke the mqsicreatemsgdefs command from a command prompt specifying
the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:
v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.
v The message set level action.
v The name of the file or files that have been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
v The number of files imported.

4. Start the WebSphere Message Broker Toolkit and switch to the Broker
Application Development perspective. The message definition file that was
created when you invoked mqsicreatemsgdefs is visible in the project that you
specified.

Results

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.
Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.

2940 WebSphere Message Broker Version 7.0.0.8

“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
Related reference:
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Creating a message definition from a database definition
You can create a new message definition from a database definition file (.dbm) by
using the New Message Definition File wizard in the WebSphere Message Broker
Toolkit.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Adding database definitions to the WebSphere Message Broker Toolkit” on

page 2278

About this task

The following steps cover both creating a completely new message definition and
overwriting the contents of an existing definition.

To create a message definition from a database definition:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File> New>

Message Definition File from the WebSphere Message Broker Toolkit menu.

Tip: You can create a message definition by right-clicking a .dbm file.
3. In the displayed list of options, click Database Definition File to select it, then

click Next.
4. Step through the remainder of the wizard completing the details as required.

The final page of the wizard reports any errors, for example:
v Unknown user-defined data types.
v The database name, schema name, or table name contain characters. The

non-NCName characters are replaced by an underscore.

Results

When you have completed creating the database definitions using the wizard:

Chapter 9. Developing message flow applications 2941

v Carefully check for any errors in the report that is created when the file is
imported. You can find this report in the log directory within the project
containing the message definition that you have attempted to create. The report
has a .dbm.report.txt file extension, prefixed with the name that you specified
for the new message definition file.

v Review the messages shown in the WebSphere Message Broker Toolkit task list
to check whether any new warnings or errors have appeared.

Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“New message definition file wizard: Create a new message definition file from a
database definition” on page 6365
You can create a new message definition from a database definition file (.dbm) by
using the New Message Definition File wizard in the WebSphere Message Broker
Toolkit.

Importing from IBM supplied messages
You can create a new message definition file from an IBM supplied message.

Before you begin

Before you start:

You must have completed the following task:
v “Creating a message set” on page 2842

About this task

The following steps describe how to create a new message definition file, and how
to overwrite the contents of an existing file.

To create a message definition from an IBM supplied message:

Procedure
1. Switch to the Broker Application Development perspective.

2942 WebSphere Message Broker Version 7.0.0.8

2. Open the New Message Definition File wizard by clicking File > New >
Message Definition File From on the WebSphere Message Broker Toolkit
menu.

3. In the displayed list of options, select IBM supplied message and click Next.
4. Complete the fields of the panel that is displayed by the wizard. See “New

message definition file wizard: IBM supplied message” on page 6366.

Results

When you have finished the import of the IBM supplied message:
v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project that
contains the message definition that you have created. The report has a
.xsd.report.txt file extension, prefixed with the name that you specified for the
new message definition file.

v Review the messages shown in the WebSphere Message Broker Toolkit task list
to check whether any new warnings or errors are displayed.

Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“Message set preferences” on page 5366
Preferences for message sets.
“New message definition file wizard: IBM supplied message” on page 6366
You can create a new message definition file from an IBM supplied message.
“IBM supplied messages that you can import” on page 6367
You can import IBM supplied messages to create a new message definition file.

Importing SCA import or SCA export components
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to import SCA import or SCA export components from WebSphere
Integration Developer. You must import an SCA import or SCA export into the
workspace to provide a broker SCA definition for use in configuring the SCA
nodes.

Chapter 9. Developing message flow applications 2943

Before you begin

Before you start:

There are two methods for importing from SCA import or export:
v Create a message set and use the New Message Definition File wizard. This

method is described in this topic.
v Use the Start from SCA Import or Export Quick Start wizard. See “Creating an

application based on SCA import or export files” on page 1422.

If you choose the first of these options, before you start you must have completed
the following tasks:
v “Creating a message set” on page 2842
v “Importing file systems into the WebSphere Message Broker Toolkit” on page

2931

About this task

Ensure that the SCA import or SCA export components that you import from
WebSphere Integration Developer use SOAP 1.1 bindings; a validation error occurs
if you attempt to import SCA Import or SCA Export components that have been
generated with SOAP 1.2 bindings.

The following steps are required to create a new message definition file, or to
overwrite the contents of an existing file.

To create a message definition from an SCA import or SCA export:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File From wizard by clicking File > New >

Message Definition File From ... on the WebSphere Message Broker Toolkit
menu.

3. In the displayed list of options, select SCA Import or Export and click Next.
Alternatively, open the wizard by right-clicking a file with extension .zip that
was previously imported into the WebSphere Message Broker Toolkit and
clicking New> Message Definition File From ... on the menu.

4. Step through the remainder of the wizard supplying the details as required.
You must choose whether the SCA import or SCA export that you want to
import is in the current workspace in the WebSphere Message Broker Toolkit or
is outside the workspace.
Check boxes provide options to:
v Copy the source file (or files) into the 'importFiles' directory of the message

set project. By default, this check box is cleared.
v Add appropriate supported domains if they do not exist. Selecting this check

box adds the XMLNSC domain for all binding types; the SOAP domain is
also added for Web service bindings.

v Create an appropriate physical format if one does not exist. By default, this
check box is selected.

Note:

2944 WebSphere Message Broker Version 7.0.0.8

v The panels and options that are available in the wizard are dependent on the
settings that you select.

v Some fields in the wizard might not be available perhaps because the field
has a mandatory setting, or because the field has only one possible value, or
because the field is not being used as a result of other settings that have been
made.

Related tasks:
“Developing SCA applications for non-XML data” on page 2103
The SCA nodes allow non-XML data to be sent and received from WebSphere
Process Server by using the WebSphere MQ binding. For example, create a
message model from a COBOL copybook, and use that message model to parse
messages received from WebSphere Process Server.
Related reference:
“New message definition file wizard: Create a new message definition file from an
SCA Import or Export” on page 6369
You can create a new message definition file from an SCA import or export.

Exporting an SCA Import or Export from a Broker SCA definition
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to export SCA import or SCA export components. You must export
an SCA import or SCA export if the Broker SCA definition is to be used by
WebSphere Integration Developer.

Before you begin

You must have completed the following task:
v “Generating a Broker SCA definition from a message set” on page 2967

About this task

The following steps are required to export an SCA Import or Export from a Broker
SCA definition:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the folder that contains the SCA

definition from which you want to export an SCA import or SCA export and
select Export to start the Export wizard.

3. In the displayed list of options, select Message Sets > SCA Import or Export
from Broker SCA Definition and click Next. This action starts the SCA Import
or Export from Broker SCA Definition wizard.

4. Step through the remainder of the wizard and provide the details as required.
Check boxes provide options to:
v Overwrite existing files without warning. By default, this check box is

cleared.
v Apply working set filtering to artifact selections on this page. By default, this

check box is selected.

Note:

v The panels and options that are available in the wizard are dependent on the
settings that you select.

Chapter 9. Developing message flow applications 2945

v Some fields in the wizard might not be available. This might be because the
field has a mandatory setting, or because the field has only one possible
value, or because the field is not being used as a result of other settings that
have been made.

Results

The wizard creates a folder on the file system that contains the individual files
from the broker SCA definition (.import or .export, .wsdl and .xsd files).

What to do next

In WebSphere Integration Developer, import the SCA import or export component
and WSDL that have been exported from WebSphere Message Broker. Do not select
the XSD files. See Importing WSDL files in the WebSphere Integration Developer
Information Center.
Related tasks:
“Developing SCA applications for non-XML data” on page 2103
The SCA nodes allow non-XML data to be sent and received from WebSphere
Process Server by using the WebSphere MQ binding. For example, create a
message model from a COBOL copybook, and use that message model to parse
messages received from WebSphere Process Server.
Related reference:
“Export SCA Import or Export from Broker SCA Definition wizard” on page 6380
The Export SCA Import or Export from Broker SCA Definition wizard exports an
SCA import or export from a Broker SCA definition in a message set.

Importing from WSDL
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.

Before you begin

There are two methods for importing from WSDL:
v Create a message set and use the New Message Definition File wizard. This

method is described here.
v Use the Start from WSDL and/or XSD files Quick Start wizard. See “Creating an

application based on WSDL or XSD files” on page 1413.

If you choose the first of these options, before you start you must have completed
the following tasks:
v “Creating a message set” on page 2842
v “Importing file systems into the WebSphere Message Broker Toolkit” on page

2931

About this task

The following steps are required to create a completely new message definition
file, or to overwrite the contents of an existing file.

To create a message definition from a WSDL file (or files):

Procedure
1. Switch to the Broker Application Development perspective.

2946 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx

2. Open the New Message Definition File From wizard by clicking File > New >
Message Definition File From on the WebSphere Message Broker Toolkit
menu.

3. In the displayed list of options, selectWSDL file and click Next. Alternatively,
open the wizard by right-clicking a .wsdl file that was previously imported
into the WebSphere Message Broker Toolkit and clicking New > Message
Definition File From on the menu.

4. Step through the remainder of the wizard completing the details as required.
You must choose whether the WSDL file, or files, that you want to import are
in the current workspace in the WebSphere Message Broker Toolkit or are
outside the workspace.
Check boxes provide options to:
v Copy the source file (or files) into a directory of the message set project. By

default, this check box is cleared.
v Add the SOAP and XMLNSC domains to your message set so that you can

use the SOAP nodes. By default, this check box is selected.

Note:

v The panels and options available in the wizard are dependant on the settings
that you select.

v Some fields in the wizard might not be available. This might be because the
field has a mandatory setting, or because the field has only one possible
value, or because the field is not being used as a result of other settings that
have been made.

Results

When you have finished importing the WSDL file (or files) using the wizard:
v Check carefully for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project that
contains the message definition that you have tried to create. The report has a
<wsdl-file-name>.wsdl.report.txt file descriptor, where <wsdl-file-name> is
the name of the WSDL definition that you are importing.

v Review the messages that are shown in the WebSphere Message Broker Toolkit
task list to check whether any new warnings or errors have appeared.

Note: Any required SOAP Envelope and SOAP encoding message definitions are
automatically added to your message set during the import. If required, you can
also import these manually using the New Message Definition File wizard by
selecting the new option IBM supplied message.
Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
“Importing WSDL files to create message definitions” on page 1267
Import WSDL files by using the New Message Definition File From WSDL file
wizard, the Start from WSDL and/or XSD files Quick Start wizard, or the
mqsicreatemsgdefsfromwsdl command.

Chapter 9. Developing message flow applications 2947

“Importing XML Schema into message sets with namespaces disabled” on page
1259
You can import an XML Schema file with a target namespace even if the message
set does not have namespaces enabled.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.
“Configuring message set preferences” on page 2840
This task topic explains how to make changes to preferences that relate to message
set processing. These preferences are for message set editors, message set model
validation, and importing XML Schema.
“Creating an application based on WSDL or XSD files” on page 1413
You can use existing WSDL or XSD files as the basis for your solution.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“Message set preferences” on page 5366
Preferences for message sets.
“New message definition file wizard: Create a new message definition file from a
WSDL file” on page 6370
You can create a new message definition file from a WSDL file.

Importing WSDL definitions from the command line:

WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.

Before you begin

Before you start:

Before you attempt this task, read the following information:
v “mqsicreatemsgdefsfromwsdl command” on page 3712.

The WSDL command line importer allows you to create a new namespace enabled
message set into which the message definition files will be placed. It also allows
you to add message definition files to an existing message set that is namespace
enabled.

If you are adding new message definition files to an existing message set, the
message set must have an XML physical format layer. To improve Web services
interoperability, avoid unnecessary customization of the XML physical format layer
for messages that participate in Web services processes.

2948 WebSphere Message Broker Version 7.0.0.8

When you create a new message set from the command line, only the logical
information is created by default. If you require physical formats in the message
set you have two options:
v Create a new message set based on an existing message set. The physical format

information from the base message set is also created in the new message set.
v Use the WebSphere Message Broker Toolkit to create or open the message set

and directly add the physical formats to the message set prior to importing the
WSDL definitions into it.

Before starting the import, the mqsicreatemsgdefsfromwsdl command copies the
WSDL files that it needs into the workspace. These are the top level WSDL file and
any further files that might be imported by it. The files are copied under the
specified message set in a folder called importFiles and are not removed after the
import finishes. This allows you to update them, or run validation on them, in the
WebSphere Message Broker Toolkit at a later time.

About this task

To import WSDL definitions using the command line:

Procedure

1. Close the WebSphere Message Broker Toolkit. The WebSphere Message Broker
Toolkit must not be running when you use the command line importer.

2. Invoke the mqsicreatemsgdefsfromwsdl command from a command prompt;
you must specify the message set project name, the path name of the directory
where the top level WSDL file is located, the name of that file, the location of
the workspace, and any other optional parameters that you require. If you want
to add physical formats to the new message set that the
mqsicreatemsgdefsfromwsdl command creates, specify the base message set that
contains these physical formats as the -base parameter on the import command
line.

3. When the command has completed, check the log file. The name of the log file
is the name that you specified in the command, and it has the file extension
*.wsdl.report.txt. This report is created when you invoke the
mqsicreatemsgdefsfromwsdl command and, by default, it is written to the
directory from which you invoked the command. The report provides you with
the following information:
v Details of the parameters that were used when mqsicreatemsgdefsfromwsdl

was invoked.
v The name of the file that has been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
4. Start the WebSphere Message Broker Toolkit and switch to the Broker

Application Development perspective. The message definition file that was
created by the mqsicreatemsgdefsfromwsdl command is visible in the project
that you specified.

Results

If an error occurs during the import of a WSDL definition, carefully check any
errors that are reported. By default, all errors are written both to the screen and to
the file described above. To gather additional information about the import, specify
the -v (Verbose) command line parameter. This parameter displays more detailed
information as the import proceeds.

Chapter 9. Developing message flow applications 2949

Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
Related reference:
“mqsicreatemsgdefsfromwsdl command” on page 3712
Use the mqsicreatemsgdefsfromwsdl command to import a single WSDL definition.

“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Accepting self-signed certificates when importing WSDL:

You can import WSDLs that reference schemas on self-signed secure HTTPS
servers, by adding security certificates to the Java Virtual Machine JVM.

About this task

The following procedure enables you to add certificates from the SSL server to
each instance of your JVM.

If you are using Windows Vista or Windows 7, you must enter the commands
from a console that has administration privileges.

Procedure

1. Obtain the certificate from the server (it is a .cer file) and copy it into your
filesystem. somewhere.
This example uses D:\mb.cer

2. Open a command prompt and navigate to your Java runtime environment
(JRE) bin directory that is located in your WebSphere Message Broker install
directory, for example, C:\Program Files\IBM\WMBT700\jdk\jre\bin.

3. Type in keytool -printcert -file D:\mb.cer
4. You obtain some output, and the important parameter to check is the CN=

value.
The value should be the same as the server name from which the WSDL is
requesting files.

5. Input the certificate into a new keystore file.
a. This procedure assumes that you can store your keystore file in

D:\mb.keystore

2950 WebSphere Message Broker Version 7.0.0.8

Note, that the alias must be the same name as the server and the name can
be anything you require.
For example, the name can be of the form <userID>.<servername>.ibm.com
or subdomain.messagebroker.com
The example within this topic uses the form
<userID>.<servername>.ibm.com

b. Type in:
keytool -import -alias <userID>.<servername>.ibm.com -file
D:\mb.cer -keystore D:\mb.keystore

c. Import the certificate into a keystore file.
You are either asked for a password, or you need to create a password
when the system requests one. This is the password used in Step 7, and the
example within this topic uses the word broker.

d. Select Yes to trust the certificate.
6. Add the keystore as an argument when you start WebSphere Message Broker.

You must do this so that you can use the certificates you have just added to the
keystore.
a. Go back three directories to: C:\Program Files\IBM\WMBT700.

7. Type in:
mb -vmargs -Djavax.net.ssl.trustStore=d:\\mb.keystore
-Djavax.net.ssl.trustStorePassword=broker

8. Validate and import the WSDL

Results

You obtain a console output that is of the following format:
C:\Program
Files\IBM\WMBT700\jdk\jre\bin>keytool -printcert -file d:\
mb.cerOwner: EMAILADDRESS=jdoe@xx.ibm.com, CN=<userID>.
<servername>.ibm.com, OU=Message Broker Toolkit, O=IBM,
ST=<anystate>, C=<anycountry>Issuer: EMAILADDRESS=
jdoe@xx.ibm.com, CN=<userID>.<servername>.ibm.com,
OU=Message Broker Toolkit, O=IBM, ST=<anystate>, C=<anycountry>
Serial number: e1cabb1486f2bc7f
Valid from: 9/27/10 12:33 PM until: 9/27/11 12:33 PM
Certificate fingerprints:

MD5: ED:9B:BD:1C:C7:B5:8D:6E:F3:21:B7:92:26:25:52:9B
SHA1: 5C:DE:70:CF:A5:64:96:16:C3:ED:4E:2C:A2:6E:EA:D3:A5:4B:69:BC

C:\Program
Files\IBM\WMBT700\jdk\jre\bin>keytool -import -alias <userID>
.<servername>.ibm.com -file d:\mb.cer -keystore d:\mb.keystore
Enter keystore password:
Re-enter new password:
Owner: EMAILADDRESS=jdoe@xx.ibm.com, CN=<userID>.<servername>.ibm.com,
OU=Message Broker Toolkit, O=IBM, ST=<anystate>, C=<anycountry>
Issuer: EMAILADDRESS=jdoe@xx.ibm.com, CN=<userID>.<servername>.ibm.com,
OU=Message Broker Toolkit, O=IBM, ST=<anystate>, C=<anycountry>
Serial number: e1cabb1486f2bc7f
Valid from: 9/27/10 12:33 PM until: 9/27/11 12:33 PM
Certificate fingerprints:

MD5: ED:9B:BD:1C:C7:B5:8D:6E:F3:21:B7:92:26:25:52:9B
SHA1: 5C:DE:70:CF:A5:64:96:16:C3:ED:4E:2C:A2:6E:EA:D3:A5:4B:69:BC

Trust this certificate? [no]: yes
Certificate was added to keystore

C:\Program
Files\IBM\WMBT700\jdk\jre\bin>cd ..

Chapter 9. Developing message flow applications 2951

C:\Program
Files\IBM\WMBT700\jdk\jre>cd ..

C:\Program
Files\IBM\WMBT700\jdk>cd ..

C:\Program
Files\IBM\WMBT700>mb -vmargs -Djavax.net.ssl.trustStore=d:\\mb.keysto
re -Djavax.net.ssl.trustStorePassword=broker

C:\Program
Files\IBM\WMBT700>

If an error occurs during the import of a WSDL definition, carefully check any
errors that are reported. By default, all errors are written both to the screen and to
the file that has the format *.wsdl.report.txt.
Related tasks:
“Importing WSDL definitions from the command line” on page 2948
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Importing an IDL file
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.

Before you begin

Before you start:

Complete the following tasks:
v “Creating a message set” on page 2842
v “Importing file systems into the WebSphere Message Broker Toolkit” on page

2931
v Ensure that you have a valid IDL file. If you select an IDL file that is not valid,

you see an error message and you cannot complete the wizard. When you
import an IDL file, supported and unsupported operations are listed. You can
import an IDL file that contains operations with types that are not supported by
WebSphere Message Broker, but if you try to call an unsupported operation, you
see an error message. The CORBA IDL file must contain at least one interface
that has one operation. For more information about the IDL operations that are
supported, see “CORBA support” on page 2149.

v For more information about how IDL types correspond to XML schema types,
see “IDL data types” on page 2150.

2952 WebSphere Message Broker Version 7.0.0.8

About this task

The following steps describe how to use an IDL file to create a message definition
file or overwrite the contents of an existing file.

Procedure
1. Right-click the message set, then click New > Message Definition File From >

CORBA IDL File to open the New Message Definition File From wizard.
2. Complete the wizard by following the on-screen instructions.

a. Select an IDL file either from the list of files in your workspace, or by using
Browse to search outside your workspace. If you have imported an IDL file
that contains includes, select the top-level IDL file.

b. Ensure that the check box to add the DataObject domain to the message set
is selected. By default, this check box is selected.

c. Optional: You can provide a target namespace.
d. By default, the message definition file name is the same as the name of the

IDL file. You can change the name of the message definition file.
e. If the IDL or message definition file exists, click Next. To rename or

overwrite the existing files, select them.
3. Click Finish.
4. After you have imported the IDL file, check for errors.
v Check for errors in the report that is created when the file is imported. You

can find this report in the log directory of the project that contains the new
message definition. The report is named <idl-file-name>.idl.report.txt,
where <idl-file-name> is the name of the IDL file that you are importing.

v Check for errors in the WebSphere Message Broker Toolkit task list.

Results

When you have finished importing the IDL file, the message definition opens. A
read-only copy of the IDL file is stored in the CORBA IDLs folder.

For each IDL file, a single message definition is created. (If you have imported an
IDL file that contains includes, all the elements and types in the IDL files are
generated into a single message definition.) In the message definition, two
messages are created for each operation in the IDL file (one message for the
request, and one for the response), and a message is created for each user-defined
exception. The request has a child element for each in and inout parameter; the
response has a child element for each inout and out parameter, and a child element
named “_return” for the return type of the operation.

The name of these elements is based on the interface name and operation name;
for example, for the operation sayHello in the Interface Hello, the request element is
called Hello.sayHello, and the response element is called Hello.sayHelloResponse. If
the interface is contained in a module, the request and response element names are
qualified with the names of the modules. For example, if the operation sayHello in
the Interface Hello is contained in ModuleB, which in turn is contained in ModuleA,
the response element would be called ModuleA.ModuleB.Hello.sayHelloResponse.

Another message definition is created with a message for each CORBA system
exception.

Chapter 9. Developing message flow applications 2953

What to do next

Next: Develop a message flow, as described in “Developing a message flow with a
CORBARequest node” on page 2161.
Related concepts:
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).
“New message definition file wizard: Create a new message definition file from a
CORBA IDL file” on page 6364
You can create a new message definition file from a CORBA IDL file.

Importing from XML DTD
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Importing file systems into the WebSphere Message Broker Toolkit” on page

2931

Before you begin this task, you should be aware of the following points:
v If the message set to which you are adding the new message definition file does

not have an XML wire format (XML) layer only the logical information appears

2954 WebSphere Message Broker Version 7.0.0.8

in the model. You can add the physical layer to the message set before or after
importing from a XML DTD, but you should add the physical layer before
importing it to ensure that it is populated with settings from the XML DTD.

v It is also possible to import an XML DTD from the command line using
mqsicreatemsgdefs.

v The file extension must be .dtd in lowercase.

About this task

The following steps cover both creating a completely new message definition file
and overwriting the contents of an existing file.

To create a message definition from an XML DTD:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File> New>

Message Definition File from the WebSphere Message Broker Toolkit menu.
3. In the displayed list of options, click XML DTD file to select it then click Next.
4. Step through the remainder of the wizard completing the details as required.

Results

When you have completed importing the XML DTD using the wizard:
v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project
containing the message definition that you have attempted to create. The report
has a .dtd.report.txt file extension, prefixed with the name that you specified
for the new message definition file.

v Review the messages shown in the WebSphere Message Broker Toolkit task list
to check whether any new warnings or errors have appeared.

The message definition file is created from the XML DTD and is opened in the
Message Definition editor so that you can check the imported information and
make any required changes. While you are checking the newly created message
definition file, review any messages that appear in the WebSphere Message Broker
Toolkit task list to see whether you need to make any corrections to resolve errors
or warnings relating to the new file.
Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a

Chapter 9. Developing message flow applications 2955

message set with message definitions.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“New message definition file wizard: Create a new message definition file from an
XML DTD file” on page 6371
You can create a new message definition file from an XML DTD file.

Importing from the command line:

This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you begin

Before you start:

Before you attempt this task, you should read the following information:
v “mqsicreatemsgdefs command” on page 3702

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mqsicreatemsgdefs command:
1. Using the WebSphere Message Broker Toolkit, create a message set in your

workspace that is to be used as a base message set.
2. To this base message set, add the physical formats that you want to be created

in your new message set.

About this task

To import C, COBOL copybooks, XML DTD or XML Schema using the command
line:

Procedure

1. Close the WebSphere Message Broker Toolkit. This must not be running when
you use the command line importer.

2. Invoke the mqsicreatemsgdefs command from a command prompt specifying
the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by

2956 WebSphere Message Broker Version 7.0.0.8

default is written to the directory from which you invoked the command. The
report provides you with the following information:
v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.
v The message set level action.
v The name of the file or files that have been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
v The number of files imported.

4. Start the WebSphere Message Broker Toolkit and switch to the Broker
Application Development perspective. The message definition file that was
created when you invoked mqsicreatemsgdefs is visible in the project that you
specified.

Results

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.
Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
Related reference:
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Importing from XML Schema
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema

Chapter 9. Developing message flow applications 2957

Before you begin

Before you start you must have completed the following tasks:
v “Creating a message set” on page 2842
v “Importing file systems into the WebSphere Message Broker Toolkit” on page

2931

Before you begin this task, you should be aware of the following points:
v If you are importing a collection of related XML Schema files, you are advised to

use the mqsicreatemsgdefs command. This imports all the XML Schema files in
a single operation, and automatically adjusts the import and include paths.

v If the message set to which you are adding the new message definition file does
have an XML wire format layer, but no namespace support, the imported schema
is modified to remove namespaces. For this reason, you should enable
namespace support before importing a schema.

v If the message set to which you are adding the new message definition file does
not have an XML wire format layer, but does have namespace support, only the
logical information appears in the model. For this reason, you should add the
physical layer to the message set before importing the schema. This ensures that
the message set is populated with the settings and values from the schema. The
XML Schema is not modified to remove namespaces.

v If the message set to which you are adding the new message definition file does
not have an XML wire format layer, and does not have namespace support, only
the logical information appears in the model and the imported schema is
modified to remove namespaces.

v If you are working with a message set that does not have namespace support,
you must specify the preferences that apply when you import a schema into the
message set. These preferences allow you to specify how the importer treats
certain individual schema constructs. You can either reject the schema if any
occurrences of the construct are encountered or modify occurrences of the
construct. If you choose modify, the importer modifies all occurrences of the
construct.

v The extension to the XML Schema file must be .xsd in lowercase.

About this task

The following steps create a completely new message definition file or overwrite
the contents of an existing file.

To create a message definition from an XML Schema file:

Procedure
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File> New>

Message Definition File on the WebSphere Message Broker Toolkit menu.
Alternatively, you can open the wizard by right-clicking an *.xsd file that was
previously imported into the WebSphere Message Broker Toolkit and clicking
New> Message Definition File on the menu.

3. In the displayed list of options, click XML Schema file to select it, and then
click Next.

4. Step through the remainder of the wizard, competing the details as required.
The processing time for importing the XML Schema varies according to the size

2958 WebSphere Message Broker Version 7.0.0.8

and complexity of that schema. In a large and complex schema, it can take
some time to import the file, generate the log file and display any task list
warnings or errors.

Results

When you have finished importing the XML Schema using the wizard:
v Carefully check the log file for any warnings or errors in the report that is

created when the file is imported. These warnings and error messages give
information about whether the schema failed to import or needed to be modified
to enable it to be successfully imported. You can find this report in the log
directory structure within the project that contains the message definition that
you have tried to create. The report has a .xsd.report.txt file extension,
prefixed with the name that you specified for the new message definition file.

v Review the messages that are shown in the WebSphere Message Broker Toolkit
task list to check whether any new warnings or error messages have appeared.
Although you might have imported a perfectly valid schema, the task list will
display warnings or error messages for any errors that exist in the message
definition file. The following situations are examples where messages appear:
– If the XML Schema that you are importing contains xsd:key, xsd:keyref and

xsd:unique constructs, warning messages appear in the task list to tell you
that these constructs are unsupported and will be ignored by the broker. If
you prefer to delete these constructs, open the message definition file in the
Message Definition editor, and delete the constructs as described in “Deleting
objects” on page 2919. Deleting the constructs also removes the warning
messages from the task list. If you decide not to delete the constructs, they
remain in the message model but are not be deployed to the broker, or used
for any other purpose. The warning messages remain in the task list, but you
can use the message model normally.

– If the XML Schema that you are importing contains xsd:redefine constructs,
error messages appear in the task list to tell you that this construct is
unsupported. If you right-click the error messages and select Quick Fix, you
can choose to convert the xsd:redefine constructs into xsd:include constructs.
This also removes the error messages.

– If the XML Schema that you are importing contains xsd:attribute constructs
that contain both a fixed value and a default value, error messages appear in
the task list to tell you that this construct is unsupported. However, the
schema is still imported and the fixed value is used, not the default value.
The error messages can be ignored.

– If you are importing a collection of related XML Schema files and the
Message Definition Editor cannot resolve the links between two of the
imported files, messages appear in the task list to say that referenced types or
other objects cannot be found. If this occurs, refer to “Resolving problems
when developing message models” on page 3459 for more information.

Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.

Chapter 9. Developing message flow applications 2959

“Importing XML Schema into message sets with namespaces disabled” on page
1259
You can import an XML Schema file with a target namespace even if the message
set does not have namespaces enabled.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“XML Schema restrictions in message sets” on page 1172
Some XML Schema 1.0 features are not supported when message models are
contained in message sets.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
“Importing from the command line” on page 2936
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.
“Configuring message set preferences” on page 2840
This task topic explains how to make changes to preferences that relate to message
set processing. These preferences are for message set editors, message set model
validation, and importing XML Schema.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Deleting objects” on page 2919
Delete an object from your message model.
Related reference:
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.
“Message set preferences” on page 5366
Preferences for message sets.
“XML Schema Importer” on page 5370
Preferences for the message set XML Schema Importer.
“XSD options file for the mqsicreatemsgdefs command” on page 3709
Specify the options for the mqsicreatemsgdefs command when you import an XML
Schema file.

Importing from the command line:

This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

2960 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Before you attempt this task, you should read the following information:
v “mqsicreatemsgdefs command” on page 3702

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mqsicreatemsgdefs command:
1. Using the WebSphere Message Broker Toolkit, create a message set in your

workspace that is to be used as a base message set.
2. To this base message set, add the physical formats that you want to be created

in your new message set.

About this task

To import C, COBOL copybooks, XML DTD or XML Schema using the command
line:

Procedure

1. Close the WebSphere Message Broker Toolkit. This must not be running when
you use the command line importer.

2. Invoke the mqsicreatemsgdefs command from a command prompt specifying
the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:
v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.
v The message set level action.
v The name of the file or files that have been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
v The number of files imported.

4. Start the WebSphere Message Broker Toolkit and switch to the Broker
Application Development perspective. The message definition file that was
created when you invoked mqsicreatemsgdefs is visible in the project that you
specified.

Chapter 9. Developing message flow applications 2961

Results

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.
Related concepts:
“Ways to create message definitions” on page 1253
When you have created a message set, you must populate the message set with
message definitions.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
Related reference:
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Generating documentation from message sets and message
flows

You can generate documentation from your message sets, message flows, message
definition files, message maps, Java files, ESQL files, and deployable WSDL files.

About this task

To generate documentation that describes your message sets, message flows,
message definition files, message maps, Java files, ESQL files, and deployable
WSDL files, complete the following steps.

Bidirectional text is not fully supported in generated documentation. For example,
if you enter text in the WebSphere Message Broker Toolkit that has a right-to-left
orientation, the text is displayed in the generated documentation with a
left-to-right orientation.

Procedure
1. Switch to the Broker Application Development perspective.

2962 WebSphere Message Broker Version 7.0.0.8

2. In the pop-up menu of the Broker Development view, right-click a message set
project, a message set, a message flow, a message definition file, a Java file, an
ESQL file, or a deployable WSDL file, and select the action Generate
Documentation. The Documentation Generation wizard opens.

3. Provide the information that is requested to describe the documentation report
that you want, and click Next to move to the next panel of the wizard.

4. Step through the wizard, clicking Next to move to a new panel, and clicking
Finish when you have described all the information that you want your report
to document.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Generate model representations” on page 1270
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Working with a message category file” on page 2923
This topic area lists the tasks that are involved when working with a message
category file.

Generating XML Schemas
You can generate either a single XML Schema from a message definition file, or
multiple XML Schemas from a message set.

About this task

To generate a single XML Schema from a message definition file, see “Generating
an XML Schema” on page 2965.

To generate multiple XML Schemas (one from each message definition file in a
message set) see “Generating multiple XML Schemas.”

Generating multiple XML Schemas
You can generate an XML Schema for each message definition file in a message set.

Before you begin

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Working with a message definition file” on page 2863
v “Working with MRM message model objects” on page 2870

Note: WebSphere Message Broker uses XML Schema 1.0 to describe the logical
structure of messages.

Chapter 9. Developing message flow applications 2963

Tip: You should replace any deprecated constructs before you generate XML
Schema representations of your models.

About this task

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message set folder from which

you want to generate XML Schemas, and click Generate> XML Schemas.
3. The Generate XML Schemas window is displayed, and you must put into the

Zip file name field the name of the compressed file (*.zip file extension) that
you want to contain the generated XML Schemas.

4. Select a destination folder for this compressed file. You can choose a location
either inside or outside the workspace:
v Click Create in a workspace directory and select the required destination

folder from the expanded workspace directory. The contents of the folder
that you select are overwritten.
If you want to create a new folder:
a. Click the desired location.
b. Click Create New Folder.
c. Click OK

v Click Export to an external directory and click Browse to expand the
directory. Select a folder from the expanded directory. The contents of the
folder that you select are overwritten.
If you want to create a new folder:
a. Click the desired location.
b. Click Make New Folder and type the name of the new folder into the

directory tree.
c. Click OK

5. Optional: Choose from the list given in the XML Wire Format field an XML
wire format that you want to use to generate the XML Schemas.

Tip: You must have previously added one or more XML Wire Format layers to
the message set if you want to use an XML physical format when you generate
XML Schemas. For further information see “Adding an XML wire format” on
page 2853.

6. If you do not want strict generation of an XML Schema, clear the Strict
generation check box at the bottom of the Generate XML Schemas page. By
default, this check box is selected.

Tip: For further information on strict and lax generation of an XML Schema,
see “Generate XML schema” on page 1272.

7. Click Finish. The compressed file that contains your generated XML Schemas is
created.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Generate model representations” on page 1270
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.

2964 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Working with a message category file” on page 2923
This topic area lists the tasks that are involved when working with a message
category file.
Related reference:
“WSDL generation” on page 6340
Files and other objects are created by the WSDL Generator.

Generating an XML Schema
You can generate an XML schema from a message definition file.

Before you begin

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 2842
v “Working with a message definition file” on page 2863
v “Working with MRM message model objects” on page 2870

Note: WebSphere Message Broker uses XML Schema 1.0 to describe the logical
structure of messages.

Tip: You should replace any deprecated constructs before generating XML Schema
representations of your models.

About this task

This task topic describes how to generate an XML Schema from a message
definition file:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message definition file (*.msxd

file extension) from which you want to generate an XML Schema, then click
Generate > XML Schema on the menu.

3. The Generate XML Schema window is displayed, and the message definition
file that you selected is highlighted. The message definition file list is filtered to
only show artifacts in the active working set. If this is not the message
definition file from which you want to generate an XML Schema, select the
correct message definition file.

4. Optional: From the drop down list at the bottom of the Generate XML Schema
window, select the XML Wire Format that you want to use to generate the XML
Schema.

Chapter 9. Developing message flow applications 2965

Tip: You must have previously added one or more XML Wire Format layers to
a message set if you want to use an XML physical format when you generate
XML Schema. For further information see “Adding an XML wire format” on
page 2853.

5. If you do not want strict generation of an XML Schema, clear the Strict
generation check box at the bottom of the Generate XML Schema page. By
default, this check box is selected.

Tip: For further information on strict and lax generation of XML Schema, see
“Generate XML schema” on page 1272.

6. Click Next to move to the next page of the wizard.
7. Select a destination folder for the XML Schema. You can choose a location

either inside or outside the workspace:
v Click Create in a workspace directory and select the required destination

folder from the expanded workspace directory. The contents of the folder
that you select are overwritten.
If you want to create a new folder:
a. Click the desired location.
b. Click Create New Folder.
c. Click OK

v Click Export to an external directory and click Browse to expand the
directory. Select a folder from the expanded directory. The contents of the
folder that you select are overwritten.
If you want to create a new folder:
a. Click the desired location.
b. Click Make New Folder and type the name of the new folder into the

directory tree.
c. Click OK

8. Click Finish. Your XML Schema is generated.
9. Use the Broker Development view to locate the destination folder that you

specified for the generated XML Schema. This folder contains a file with exactly
the same name as your message definition file with the file extension *.xsd.
This is the generated XML Schema. To view this file, right-click it, then click
Open on the menu. This opens the schema editor.

Tip: The Design, Source or Graph tabs located in lower-left corner of the
schema editor provide you with different views of generated XML Schema.

Results
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Generate model representations” on page 1270
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.

2966 WebSphere Message Broker Version 7.0.0.8

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Working with a message category file” on page 2923
This topic area lists the tasks that are involved when working with a message
category file.
Related reference:
“WSDL generation” on page 6340
Files and other objects are created by the WSDL Generator.

Generating a Broker SCA definition from a message set
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.

Before you begin

Before you start: You must have created a message set that contains message
definitions. The wizard gives an error if the set of message definitions is empty.

About this task

To generate a Broker SCA definition:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the folder that contains the

message set file from which you want to generate a Broker SCA definition, and
select Generate > Broker SCA definition. This action starts the Generate
Broker SCA Definition wizard.

3. Step through the wizard providing the details as required. Some of the panels
and options are subject to settings that you make within the wizard and might
not always be shown. Also, some fields in the wizard might be grayed out.
This happens when a field has a mandatory setting, or when the field is not
used because of settings that have already been made in other fields.
By default, the wizard creates the Broker SCA definition in the message set
project.

Results

On completion of the Generate Broker SCA Definition wizard, you have generated
either a .insca or a .outsca Broker SCA definition that is stored in the SCA
category under the message set project.

A .insca Broker SCA definition is a compressed file that contains an SCA import
and all the XSDs and WSDLs that are referenced directly or indirectly by the SCA
import and a .outsca Broker SCA definition is a compressed file that contains an
SCA export and all the XSDs and WSDLs that are referenced directly or indirectly
by the SCA export.

Specifically, the Broker SCA definition contains:
v A WSDL interface that contains one or more operations.
v XSDs that correspond to the messages that are used in the operations defined in

the interface.

Chapter 9. Developing message flow applications 2967

v If you have selected a Web services binding, the WSDL contains service and
binding information that defines the endpoint.

v If you have not selected a Web services binding, the SCA Import or Export must
contain binding information for another binding that is supported by WebSphere
Message Broker.

Related tasks:
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
“Developing SCA applications for non-XML data” on page 2103
The SCA nodes allow non-XML data to be sent and received from WebSphere
Process Server by using the WebSphere MQ binding. For example, create a
message model from a COBOL copybook, and use that message model to parse
messages received from WebSphere Process Server.
“Exporting an SCA Import or Export from a Broker SCA definition” on page 2945
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to export SCA import or SCA export components. You must export
an SCA import or SCA export if the Broker SCA definition is to be used by
WebSphere Integration Developer.
Related reference:
“Broker SCA definition generation” on page 6340
The Broker SCA Definition wizard creates a Broker SCA definition that includes
objects that define the binding, interface, and message format information to
permit interoperation between WebSphere Message Broker and WebSphere Process
Server.
“Generate Broker SCA Definition wizard” on page 6372
The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

Generating a WSDL definition from a message set
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.

Before you begin

Before you start you must already have completed the following tasks:
v “Creating a message set” on page 2842

Replace any deprecated constructs before generating WSDL representations of your
message models.

About this task

To generate a WSDL definition:

Procedure
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the folder that contains the

message set file from which you want to generate a Web service definition, and
select Generate > WSDL Definition. This starts the Generate WSDL wizard.

3. Step through the wizard completing the details as required. Some of the panels
and options are subject to settings that you make within the wizard and might
not always be shown. Also, some fields in the wizard might be greyed out. This

2968 WebSphere Message Broker Version 7.0.0.8

happens when a field has a mandatory setting, or when the field is not used
because of settings that have already been made in other fields.
By default, the wizard creates the WSDL in the message set project. If you are
going to use the WSDL to configure a SOAP node, create the WSDL in the
message set, not the message set project.

Results

On completion of the Generate WSDL wizard, you have generated a WSDL
definition. The file extension for WSDL files is .wsdl, and the file extension for any
imported schema files in multi-file mode (where the WSDL definition is split over
a number of files) is .xsd.

This following is an example of the WSDL that is generated for a JMS binding:
<wsdl:service name=’HTTP’>

<wsdl:port binding=’tns:JMSSoapBinding’ name=’HTTP’>
<wsdlsoap:address

location=’jms:/queue?destination=jms/MyQueue&
connectionFactory=jms/MyCF&
priority=5&
targetService=GetQuote’/>

</wsdl:port>
</wsdl:service>

Note: The various parts of the location string are broken over separate lines for
clarity, but are generated as a continuous string without additional white space.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Generate model representations” on page 1270
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Working with a message category file” on page 2923
This topic area lists the tasks that are involved when working with a message
category file.
Related reference:
“WSDL generation” on page 6340
Files and other objects are created by the WSDL Generator.
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Chapter 9. Developing message flow applications 2969

Developing user-defined extensions
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.

You can create and implement the following types of user-defined extension:
v User-defined nodes
v User-defined parsers
v User-defined exits

The user-defined nodes, parsers, and exits that you create can be used with the
nodes and parsers that are supplied with the product, and with nodes and parsers
that are supplied by independent software vendors.

For information about each type of user-defined extension that you can create, see
the relevant topics listed under the related links. These topics help you to
understand how your user-defined extension interacts with other components of
WebSphere Message Broker, such as message flows and their associated execution
groups. A good understanding of the broker architecture helps you to plan and
construct user-defined extensions more effectively.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“Which type of user-defined extension to use” on page 2988
The types of user-defined extension that you can write include user-defined nodes,
user-defined parsers, user-defined exits, and using a subflow as a user-defined
node.
Related tasks:
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Implementing user-defined extensions” on page 3019
Create the resources for your user-defined extension. You can write user-defined
nodes in C or Java, or you can use a subflow to create a node. You can write
user-defined parsers and exits only in C.
“Packaging and distributing user-defined extensions” on page 3117
When you have created and tested a user-defined extension, you can package and
distribute it.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

2970 WebSphere Message Broker Version 7.0.0.8

User-defined extensions overview
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.

You can create the following types of user-defined extension:
v Input nodes
v Message processing nodes
v Output nodes
v Parsers
v User exits

The user-defined nodes and parsers that you create can be used with the nodes
and parsers supplied with the product, and with nodes and parsers that are
supplied by other vendors. You can configure a user-defined node to use a
user-defined parser.

You can write user-defined exits and parsers only in the C programming language.
You can write user-defined nodes in the C or the Java programming languages, or
you can use a subflow as a user-defined node. You must compile user-defined
nodes and parsers that are written in C into a loadable implementation library
(LIL), and user exits that are written in C into a loadable exit library (LEL): that is,
a shared library on Linux and UNIX systems, or a dynamic link library (DLL) on
Windows systems. You must package user-defined nodes that are written in Java
as a JAR file. You must import any user-defined nodes that you create into the
WebSphere Message Broker Toolkit before you can use them.

The samples on the start screen of the WebSphere Message Broker Toolkit has
examples of user-defined nodes and parsers. Look at the following sample for an
example of how a node is created and used.
v User-defined Extension

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

To achieve platform independence, use the ANSI standard C or Java programming
languages, and avoid platform-specific code in your user-defined extension.

The related links help you to understand how your user-defined extensions
interact with other components of WebSphere Message Broker, such as message
flows and execution groups. A good understanding of the broker architecture helps
you to plan and construct user-defined extensions more effectively.
Related concepts:
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“Why use a user exit?” on page 2984
Use a user exit to intercept the progress of messages through message flows
without having to redesign the message flow.
“Which type of user-defined extension to use” on page 2988
The types of user-defined extension that you can write include user-defined nodes,
user-defined parsers, user-defined exits, and using a subflow as a user-defined

Chapter 9. Developing message flow applications 2971

node.
“Which language to use to implement a user-defined extension” on page 3016
You can use Java or C to implement a user-defined extension.
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“Node and parser factory behavior” on page 2982
The node factory and the parser factory assume roles in declaring a node to the
broker or defining a parser.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
Related information:
Java user-defined extensions API

Why use a user-defined extension?
Use a user-defined node or parser when the built-in resources do not provide the
required functions.

Before you start to create your user-defined extension, be clear about its purpose.
Most tasks can be performed by using the functions already provided with
WebSphere Message Broker, but you might need a user-defined extension for your
particular task.

To write user-defined extensions you need to be a skilled programmer, with some
knowledge of WebSphere Message Broker and its architecture, therefore make sure
that you have the skills and knowledge required. You also need the time to test
and debug your user-defined node or parser, and a safe environment in which to
do this.

Also note that the maintenance and servicing of your own user-defined extensions
is your responsibility. You should ensure that there will be someone available who
can perform future updates or fixes.

A user-defined extension might be appropriate in the following situations:
v When you cannot manipulate the supplied nodes or parsers to perform the

function you require. For example, you might want to connect to another
software component in your message flow outside of WebSphere MQ. If there is
no supplied node for doing this, you must create your own.

v When you can improve performance, ease of use, or reliability by using your
own user-defined extensions in place of the supplied nodes or parsers.

v If the available choices are not appropriate for your requirement. You can create
user-defined extensions to handle internal, customer-specific, or generic
commercial messages formats.

Consider the following design factors when you are planning or writing a
user-defined node or parser. You should be familiar with the concepts covered in
the following topics before designing a user-defined extension.
v “Errors and exception handling” on page 2973

2972 WebSphere Message Broker Version 7.0.0.8

v “Storage management in user-defined nodes” on page 2976
v “String handling in user-defined nodes” on page 2977
v “Threading considerations for user-defined extensions” on page 2978
v “ODBC restrictions for user-defined nodes” on page 2979
v “User-defined extensions in the runtime environment” on page 2980
v “Node and parser factory behavior” on page 2982
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Which type of user-defined extension to use” on page 2988
The types of user-defined extension that you can write include user-defined nodes,
user-defined parsers, user-defined exits, and using a subflow as a user-defined
node.
“Which language to use to implement a user-defined extension” on page 3016
You can use Java or C to implement a user-defined extension.
Related tasks:
“Implementing user-defined extensions” on page 3019
Create the resources for your user-defined extension. You can write user-defined
nodes in C or Java, or you can use a subflow to create a node. You can write
user-defined parsers and exits only in C.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Errors and exception handling:

Correct handling of errors and exceptions is important for correct broker operation.
You must consider how and when your user-defined extension must handle errors
and exceptions.

The errors and exception handling here describes factors that you must consider
when you develop user-defined extensions for WebSphere Message Broker in the C
programming language. If you are developing user-defined extensions using the
Java programming language, you can use standard Java error and exception
handling methods. If, for example, WebSphere Message Broker throws an
exception internally, a Java exception of class MbException is made available.

The broker generates C++ exceptions to handle error conditions. These exceptions
are caught in the relevant software layers in the broker, and are handled
accordingly. However, programs written in C cannot catch C++ exceptions, and all
exceptions thrown, by default, bypass all C user-defined extension code and are
caught in a higher layer of the broker.

Utility functions, by convention, typically use the return value to pass back
requested data; for example, the address or handle of a broker object. The return
value sometimes indicates that a failure has occurred. For example, if the address
or handle of a broker object could not be retrieved, zero (CCI_NULL_ADDR) is
returned. Additionally, the reason for an error condition is stored in the return
code output parameter, which is, by convention, part of the function prototype of
all utility functions. If the utility function completed successfully and returnCode

Chapter 9. Developing message flow applications 2973

was not null, returnCode contains CCI_SUCCESS. Otherwise, it contains one of the
return codes described here. You can test the value of returnCode to determine
whether a utility function was successful.

If the call to a utility function causes the broker to generate an exception, the error
is visible to the user-defined extension only if it specified a value for the
returnCode parameter to that utility function. If a null value was specified for
returnCode, and an exception occurs:
v The user-defined extension is not be aware of that exception
v The utility function does not return to the user-defined extension
v Execution control passes to higher layers in the broker stack to process the

exception

Therefore, a user-defined extension cannot perform its own error recovery. If,
however, the returnCode parameter is specified, and an exception occurs, a return
code of CCI_EXCEPTION is returned. In this case, cciGetLastExceptionData or
cciGetLastExceptionDataW (the difference being that cciGetLastExceptionDataW
returns a CCI_EXCEPTION_WIDE_ST which can contain Unicode trace text) can
be used to obtain diagnostic information on the type of exception that occurred.
The data is returned in the CCI_EXCEPTION_ST or CCI_EXCEPTION_WIDE_ST
structure.

If there are no resources to be released, do not set the returnCode argument in
your user-defined extension. Not setting this argument allows exceptions to bypass
your user-defined extensions. These exceptions can then be handled higher up the
WebSphere Message Broker stack, by the broker.

Message inserts can be returned in the CCI_STRING_ST members of the
CCI_EXCEPTION_ST structure. The CCI_STRING_ST allows the user-defined
extension to provide a buffer to receive all required inserts. The broker copies the
data into this buffer, and returns the number of bytes output and the actual length
of the data. If the buffer is not large enough, no data is copied and the
"dataLength" member can be used to increase the size of the buffer, if required.

The user-defined extension can set a non-null value for returnCode and provide its
own error recovery, if required. The utility function calls return to the user-defined
extension and pass their status through returnCode. All exceptions that occur in a
utility function must be passed back to the broker for additional error recovery to
be performed; that is, when CCI_EXCEPTION is returned in returnCode. You do
this by calling cciRethrowLastException, after the user-defined extension has
completed its own error processing. Calling cciRethrowLastException causes the C
interface to re-throw the last exception so that it can be handled by other layers in
the broker. In the same way as the C exit call, cciRethrowLastException does not
return in this case.

If an exception occurs and is caught by a user-defined extension, the extension
must not call utility functions except cciGetLastExceptionData,
cciGetLastExceptionDataW, or cciRethrowLastException. An attempt to call other
utility functions results in unpredictable behavior that can compromise the
integrity of the broker.

If a user-defined extension encounters a serious error, cciThrowException or
cciThrowExceptionW can be used to generate an exception that is processed by the
broker in the correct manner. The generation of such an exception causes the

2974 WebSphere Message Broker Version 7.0.0.8

supplied information to be written to the system log (syslog or Eventviewer) if the
exception is not handled. The information is also written to trace (if trace is active).

Types of exception and broker behavior: The broker generates a set of exceptions that
can be passed to a user-defined extension. These exceptions can also be generated
by a user-defined extension when an error condition is encountered. The exception
classes are:

Fatal Fatal exceptions are generated when a condition occurs that prevents the
broker process from continuing execution safely, or where it is broker
policy to terminate the process. Examples of fatal exceptions are a failure
to acquire a critical system resource, or an internally-caught severe
software error. The broker process terminates following the throwing of a
fatal exception.

Recoverable
These exceptions are generated for errors which, although not terminal in
nature, mean that the processing of the current message flow has to be
ended. Examples of recoverable exceptions are invalid data in the content
of a message, or a failure to write a message to an output node. When a
recoverable exception is thrown, the processing of the current message is
canceled on that thread, but the thread recommences execution at its input
node.

Configuration
Configuration exceptions are generated when a configuration request fails.
This can be because of an error in the format of the configuration request,
or an error in the data. When a configuration exception is thrown, the
request is rejected and an error response message is returned.

Parser These exceptions are generated by message parsers for errors that prevent
the parsing of the message content or creating a bit stream. A parser
exception is treated as a recoverable exception by the broker.

Conversion
These exceptions are generated by the broker character conversion
functions if invalid data is found when trying to convert to another data
type. A conversion exception is treated as a recoverable exception by the
broker.

User These exceptions are generated when a Throw node throws a user-defined
exception.

Database
These exceptions are generated when a database management system
reports an error during broker operation. A database exception is treated as
a recoverable exception by the broker.

Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.

Chapter 9. Developing message flow applications 2975

Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
Related reference:
“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.
“cciLog” on page 6651
Use cciLog to write an error, warning, or informational event.
“cciRethrowLastException” on page 6659
This function re-throws the last exception that has been generated on the current
thread. It is used to pass the exception back to the broker for further handling. The
function, like a C exit call, does not return to the caller.
“cciThrowException” on page 6666
Use this function to throw an exception. The exception is thrown by the broker
interface, and includes the specified arguments as exception data.
“cciGetLastExceptionDataW” on page 6649
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_WIDE_ST output structure. The user-defined extension uses this
function to determine whether any recovery is required when a utility function
returns an error code.
“cciLogW” on page 6653
cciLogW logs an error, warning, or informational event. The event is logged by the
broker interface and uses the specified arguments as log data.
“cciThrowExceptionW” on page 6668
The cciThrowExceptionW exception is thrown by the broker interface and uses the
specified arguments as exception data.

Storage management in user-defined nodes:

Consider issues that relate to storage management when you develop user-defined
extensions in the C programming language.

If you are developing user-defined extensions using the Java programming
language, you can use standard Java string handling methods.

All memory that is allocated by a user-defined extension must be released by the
user-defined extension. The construction of a node at run time causes the
cniCreateNodeContext function to be invoked, which allows the user-defined
extension to allocate node instance specific data areas to store a context. The
address of the context is returned to the broker, and is passed back from the broker
when an internal method causes a user-defined extension function to be invoked;
thus, the C user-defined extension can locate and use the correct context for the
function processing.

The broker passes addresses of C++ objects to the user-defined extension, which
are used as handles to be passed back on subsequent function calls. Your C

2976 WebSphere Message Broker Version 7.0.0.8

user-defined extension must not manipulate or use these pointers in any way, for
example, by trying to release storage using the free function. Such actions cause
unpredictable behavior in the broker.

The cniCreateNodeContext implementation function is invoked whenever the
underlying node object has been constructed internally. It is called when a broker
is defined with a message flow that uses a user-defined node. This activity is not
necessarily the same as creating (or reusing) a thread to execute a message flow
instance that contains the node. The cniCreateNodeContext function is called only
once, during the configuration of the message flow, regardless of how many
threads are executing the message flow.

Similar considerations apply to user-defined parsers, and the corresponding
implementation function cpiCreateContext.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
Related reference:
“cpiCreateContext” on page 6553
This function creates a user-defined extension context associated with a parser
object. It is called by the broker when an instance of a parser object is constructed
or allocated. This action occurs when a message flow causes the message data to
be parsed; the broker constructs or allocates a parser object to acquire the
appropriate section of the message data.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.

String handling in user-defined nodes:

Consider issues that relate to string handling when you develop user-defined
extensions in the C programming language.

If you are developing user-defined extensions using the Java programming
language, you can use standard Java string handling methods.

To enable a broker to handle messages in all languages at the same time, text
processing within the broker is done in UCS-2 Unicode. UCS-2 Unicode character
strings are also used across the Java and C language user-defined extension APIs
to pass and return character data. Attributes are received in XML configuration
messages as character strings, regardless of data type. If the true data type of an
attribute is not a string, the cniSetAttribute function must perform the necessary
verification and conversion before storing the attribute value. Similarly, when an
attribute value is retrieved using cniGetAttribute2, conversion must be performed
to a UCS-2 Unicode character string before returning the result.

Chapter 9. Developing message flow applications 2977

CciChar defines a 16-bit character with UCS-2 Unicode representation. A CciChar*
is a string of such characters terminated with a CciChar of 0. By default, a CciChar
is represented by type wchar_t. However, some platforms do not have a convenient
way of representing UCS-2 constants in source code, typically because of 4-byte
wchar_t or EBCDIC representation. For example, a source-code constant such as
L"ABC" expands to 12 bytes on Solaris.

For this reason, WebSphere Message Broker provides the utility functions
cciMbsToUcs and cciUcsToMbs. Use these functions, where appropriate, to ensure
portability of your user-defined nodes.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
Related reference:
“cniSetAttribute” on page 6511
This function sets the value of an attribute on a specific node instance. It is called
by the broker when a configuration request is received that attempts to set the
value of a node attribute, or during initialization of the node.
“cniGetAttribute2” on page 6484
Use this function to get the value of an attribute on a specific node instance. It is
called by the broker after all the attributes that the user deploys are set.
“cciMbsToUcs” on page 6655
Use this function to convert multibyte string data to Universal Character Set (UCS).

“cciUcsToMbs” on page 6672
Use this function to convert Universal Character Set (UCS) data to multibyte string
data. This function is, typically, used only for formatting diagnostic messages.
Normal processing is best done in UCS-2, which can represent all characters from
all languages.

Threading considerations for user-defined extensions:

Message processing nodes and parsers must work in a multi-instance,
multithreaded environment. Many node objects or parser objects are available, each
with several syntax elements, and many threads can be executing methods on
these objects.

An instance of a message flow processing node is shared and used by all the
threads that service the message flow in which the node is defined. Parsers are
invoked on the same thread as the nodes, therefore, if the flow is using multiple
threads, the parsers are as well.

A user-defined extension must use this model. If a user-defined node requires
global data or resources, you must protect the global data or resources by using
semaphores to serialize access across threads. However, such serialization can
result in performance bottlenecks. Avoid using global data and resources to create
a more scalable solution.

2978 WebSphere Message Broker Version 7.0.0.8

The functions implemented by user-defined extensions must be reentrant, and any
functions that they invoke must also be reentrant. All user-defined extension utility
functions are fully reentrant.

Although a user-defined extension can create additional threads if required, all C
utility functions and Java methods must be invoked on the same thread that called
the cniEvaluate function in C or the evaluate method in Java, as appropriate for
the language in which the node is written. If the same thread is not used, your
code might compromise the integrity of the broker and cause unpredictable
behavior. Any additional threads must not call the user-defined extension API. The
API must only be used from the main thread that is invoked by the Broker.

For information about the cniEvaluate function see “cniEvaluate” on page 6475.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“Execution and threading models in a message flow” on page 1279
The execution model is the system used to start message flows which process
messages through a series of nodes.
“User-defined extensions execution model” on page 2981
The execution model is the system used to start message flows through a series of
nodes.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Extending the capability of a C input node” on page 3034
When you have created a user-defined node, you can extend its capability.
“Creating an input node in Java” on page 3055
An input node is used to receive a message into a message flow, typically from a
source that is not supported by the built-in input nodes.
Related reference:
“cniDispatchThread” on page 6456
Use this function to dispatch a new message flow thread to call another thread
instance to run the user-defined message flow input node.
Related information:
Java user-defined extensions API

ODBC restrictions for user-defined nodes:

The ODBC environment cannot be accessed using the Java or C language
user-defined extension API.

Database access must be performed using the supplied processing nodes, or by
using the following implementation functions supplied for that purpose:
v “cniSqlCreateStatement” on page 6527
v “cniSqlExecute” on page 6531
v “cniSqlSelect” on page 6535
v “cniSqlDeleteStatement” on page 6530

Chapter 9. Developing message flow applications 2979

Java Database Connectivity

Types 2 and 4 JDBC drivers are supported, but are not provided with the broker.
Related concepts:
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“Errors and exception handling” on page 2973
Correct handling of errors and exceptions is important for correct broker operation.
You must consider how and when your user-defined extension must handle errors
and exceptions.
“Storage management in user-defined nodes” on page 2976
Consider issues that relate to storage management when you develop user-defined
extensions in the C programming language.
“String handling in user-defined nodes” on page 2977
Consider issues that relate to string handling when you develop user-defined
extensions in the C programming language.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
Related information:
Java user-defined extensions API

User-defined extensions in the runtime environment:

Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.

Ensure that you are familiar with the following runtime components and concepts:
v “The broker environment” on page 46
v “Execution groups” on page 53
v “User-defined extensions execution model” on page 2981

Also make sure that you understand the following concepts:
v “Message flows overview” on page 1022

When you have gained an understanding of the runtime environment, read the
following topics to help you understand how your user-defined extension interacts
with the runtime components.
v “C user-defined input node life cycle” on page 2991
v “Java user-defined input node life cycle” on page 2993
v “C user-defined message processing nodes life cycle” on page 2997
v “Java user-defined message processing nodes life cycle” on page 3000
v “User-defined output node life cycle” on page 3007
v “User-defined parser life cycle” on page 3011
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.

2980 WebSphere Message Broker Version 7.0.0.8

“User-defined extensions execution model”
The execution model is the system used to start message flows through a series of
nodes.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.

User-defined extensions execution model:

The execution model is the system used to start message flows through a series of
nodes.

When an execution group is initialized, the appropriate loadable implementation
library (LIL) files and Plug-in Archive (PAR) files are made available to the
runtime environment. The execution group runtime process starts, and creates a
dedicated configuration thread. You are responsible for ensuring that a
user-defined node is thread-safe. If a node updates a variable across multiple
threads, appropriate locking must be in place. Do not compromise this threading
model in your implementation of user-defined nodes. Consider the following
points:
v An input message sent to a message flow is processed only by the thread that

received it.
v A single instance of a user-defined extension might be invoked on several

threads concurrently.
v The message flow execution environment is conceptually like procedural

programming. Nodes that you insert into a message flow are like subroutines
called using a function call interface. However, rather than a call-return interface,
in which parameters are passed in the form of input message data, the execution
model is referred to as a propagation-and-return model.

As an example, consider a message flow in which you use both user-defined nodes
and parsers. You use a user-defined node to process messages, and a user-defined
parser to parse messages; both the node and parser contain implementation
functions. The broker calls the implementation functions, or callback functions,
when certain events occur:
v When an input message is received by the message flow and is propagated to

the user-defined node:
– For C nodes, the broker calls the cniEvaluate function for the user-defined

node. See “cniEvaluate” on page 6475.
– For Java nodes, the broker calls the evaluate method that is implemented by

the user-defined node.
v If the user-defined node wants to query the message to decide what to do with

it, the node calls a C utility function or a Java method, as appropriate for the
language in which the node is written.

The broker invokes the user-defined parser on one of its implementation functions,
for example cpiParseFirstChild. This function instructs the parser to build the parse
tree. The parser builds the tree by invoking utility functions that create elements in
the parse tree, for example cpiCreateElement. The parser can be called many times
by the broker.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.

Chapter 9. Developing message flow applications 2981

“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Execution and threading models in a message flow” on page 1279
The execution model is the system used to start message flows which process
messages through a series of nodes.
“Threading considerations for user-defined extensions” on page 2978
Message processing nodes and parsers must work in a multi-instance,
multithreaded environment. Many node objects or parser objects are available, each
with several syntax elements, and many threads can be executing methods on
these objects.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.
Related information:
Java user-defined extensions API

Node and parser factory behavior:

The node factory and the parser factory assume roles in declaring a node to the
broker or defining a parser.

Each loadable implementation library (LIL) has one node factory, or one parser
factory, or has both. A node factory can identify many nodes, and a parser factory
can identify many parsers.

When the broker loads the LIL, it calls the following functions:
v bipGetMessageflowNodeFactory

After the operating system has loaded and initialized the LIL, the broker calls
initialization function bipGetMessageflowNodeFactory. The
bipGetMessageflowNodeFactory function calls the utility function
cniCreateNodeFactory, which passes back a factory name (or group name) for all
the nodes that your LIL supports.

v bipgetparserfactory

After the operating system has loaded and initialized the LIL, the broker calls
initialization function bipgetparserfactory. The bipgetparserfactory function
defines the name of the factory that the user-defined parser supports, and the
classes of objects, or shared object, that the factory supports. The initialization

2982 WebSphere Message Broker Version 7.0.0.8

function bipgetparserfactory calls the utility function cpiCreateParserFactory,
which passes back a factory name (or group name) for all the parsers that your
LIL supports.

Before the node factory is returned, the broker calls the following functions:
1. cniCreateNodeFactory

This function creates a single instance of the node factory in the broker.
2. cndDefineNodeClass

This function defines the name of a node class that a node factory supports,
and identifies the nodes that the node factory can create.

Before the parser factory is returned, the broker calls the following functions:
1. cpiCreateParserFactory

This function creates a single instance of the named parser factory in the
message broker.

2. cpiDefineParserClass

This function defines the name of a parser class that a parser factory supports,
and identifies the parsers that the factory can create.

See the following topics for information on these functions:
v “cniCreateNodeFactory” on page 6449
v “cpiCreateParserFactory” on page 6555
v “cniDefineNodeClass” on page 6451
v “cpiDefineParserClass” on page 6557
Related concepts:
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“Planning user-defined input nodes” on page 2995
Before you develop a user-defined input node, plan and design its content and
purpose.
“Planning user-defined message processing nodes” on page 3002
Plan how to write your message processing node or output node, and how to
navigate the message within the node.
“Planning user-defined output nodes” on page 3008
A user-defined output node generates an output bit stream from a message tree.
“Planning user-defined parsers” on page 3013
Read about the concepts that you should consider before you develop a
user-defined parser.
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“C user-defined input node life cycle” on page 2991
A user-defined input node that is written in the C programming language
progresses through several stages during its lifetime.
“Java user-defined input node life cycle” on page 2993
A user-defined input node that is written in the Java programming language
progresses through several stages during its lifetime.

Chapter 9. Developing message flow applications 2983

“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating an input node in Java” on page 3055
An input node is used to receive a message into a message flow, typically from a
source that is not supported by the built-in input nodes.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.

Why use a user exit?
Use a user exit to intercept the progress of messages through message flows
without having to redesign the message flow.

User exits provide a mechanism to apply actions (such as monitoring, message
tracking, and auditing) operationally to deployed message flows at run time.

You can use user exits to call (by using callbacks) your custom C code, which is
provided in a loadable exit library (LEL), at key points in message transactions in
deployed message flows. These user exits can use utility functions from the
user-defined extensions APIs to extract details of the broker, execution group,
message flow, node, and message assembly. In addition, the user exits can use
utility functions from the user-defined extensions APIs to modify parts of the
message assembly.

To write user exits, you must be a skilled programmer with an understanding of
WebSphere Message Broker and its architecture. Testing and debugging user exits
can be time-consuming, and must be done in a safe environment. You must also
maintain and service your own user exit.

Consider the following design factors when you plan and write a user exit:
v The effect on performance

2984 WebSphere Message Broker Version 7.0.0.8

User exit callbacks are run inline with the current message transaction; that is,
progress of the transaction is blocked until the return from the callback is
received. Updating the message in a user exit callback can affect performance,
particularly if the input message would not otherwise be changed in the
message flow.

v Message parse timing
On-demand parsing, referred to as partial parsing, is used to parse a message bit
stream only as far as is necessary to satisfy the current reference in the message
assembly. A user exit can navigate the message at each of its callback points,
which can mean that the parse timing of the message flow is changed when you
enable the user exit.

v Error handling
To ensure that the error handling that is provided by the designer of a message
flow that is being intercepted by a user exit continues to operate as designed,
you must program the user exit in the following way:
– All internal errors must be handled within the user exit, and the normal

return from the callback must enable the message flow transaction to
complete as normal.

– All exception condition that is encountered when the user exit calls utility
functions in the user-defined extensions APIs must be returned to the flow for
normal error processing. This behavior is achieved by calling
cciRethrowLastException() to cut short the callback processing.

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Exploiting user exits”
Your message flows can benefit from user exits.
“Implementing a user-defined exit” on page 3113
You can develop and deploy a user-defined exit.
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Exploiting user exits:

Your message flows can benefit from user exits.

Before you begin

Before you start:

v Read “User exits” on page 3015.
v Read “Why use a user exit?” on page 2984

Chapter 9. Developing message flow applications 2985

About this task

The following diagram illustrates how a user exit works. The numbered events are
described after the diagram. The MQInput node is used as an example, but the
function applies to all input nodes, including user-defined input nodes. Similarly,
the Compute and MQOutput nodes could be replaced by any equivalent nodes.

1. (cciInputMessageCallback) The message is dequeued from the input source
(read into the flow).
Built-in nodes and user-defined nodes differ slightly in the way in which user
exits are called. For built-in input nodes, the user exit is called as soon as
possible after the data has been read from the external source. For user-defined
input nodes, the user exit is called just before the node propagates the message.

2. (cciPropagatedMessageCallback) The message is propagated to the node for
processing.

3. (cciOutputMessageCallback). A request message is sent to the output node's
transport, and transport-specific destination information is written to
WrittenDestination in the LocalEnvironment (for example, this information
includes the queueName and msgId for an MQ message). The call is made
when a node successfully puts a message to a transport, from either an output
or a request node. The outputMessageEvent is called by built-in nodes only.
The topic for each node that supports WrittenDestination information contains
details about the data that it contains.

4. (cciNodeCompletionCallback) Node processing completes.
5. (cciTransactionEventCallback) The user exit is called after the transaction has

completed, so that user exit processing is not part of that transaction. The user
exit is invoked even if no transactional processing is completed by the flow.
Where the message flow property Commit Count is greater than one,
many-to-one ratios exist between events 1 and 5. This ratio also exists for some
scenarios that are specific to the particular input node; for example, when an
MQInput node is configured with the Commit by Message Group property
selected.

You can write a user exit to track any number of these events. For each of these
events, the following data is available to the user exit. All access is read-only,
unless stated otherwise:
v The message is dequeued:

– Bit stream
– Input node

Transaction Manager

MQInput

Commit/Rollback

Compute MQOutput

1

5

2

4

2

4

3

2986 WebSphere Message Broker Version 7.0.0.8

– Environment tree (read and write)
v The message is propagated to the node:

– Message tree (body element read and write)
– LocalEnvironment tree (read and write)
– Exception list
– Environment tree (read and write)
– Source node
– Target node

v A message is sent to a transport:
– Message tree (body element read and write)
– LocalEnvironment tree (read and write)
– Exception list
– Environment tree (read and write)
– Output or request node

v Node processing completes:
– Message tree (body element read and write)
– LocalEnvironment tree (read and write)
– Exception list
– Environment tree (read and write)
– Node
– Upstream node
– Exception (if any)

v The end of the transaction:
– Input node
– Exception (if any)
– Environment tree (read and write)

You can register multiple user exits, and, if they are registered, they are invoked in
a defined order (see “mqsichangeflowuserexits command” on page 3751). Any
changes that are made to the message assembly (the message and environment) by
a user exit are visible to subsequent user exits.

When the user exit is invoked, it can query the following information:
v Message flow information:

– Message flow name
– Broker name
– Broker's queue manager name
– Execution group name
– Message flow's commit count property
– Message flow's commit interval property
– Message flow's coordinated transaction property

v Node information:
– Node name
– Node type
– Terminal name
– Node properties

The user exit can also perform the following tasks:
v Navigate and read the message assembly (Message, LocalEnvironment,

ExceptionList, Environment)
v Navigate and write the Message body, LocalEnvironment, and Environment tree

You can register the user exits on a dynamic basis, without needing to redeploy the
configuration.

Chapter 9. Developing message flow applications 2987

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
“Why use a user exit?” on page 2984
Use a user exit to intercept the progress of messages through message flows
without having to redesign the message flow.
Related tasks:
“Implementing a user-defined exit” on page 3113
You can develop and deploy a user-defined exit.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:
“mqsichangeflowuserexits command” on page 3751
Use the mqsichangeflowuserexits command to set the list of active or inactive user
exits. A list of active and a list of inactive user exits is maintained for each
execution group and message flow. The effective state of user exits for a given flow
is decided when the flow starts.
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Which type of user-defined extension to use
The types of user-defined extension that you can write include user-defined nodes,
user-defined parsers, user-defined exits, and using a subflow as a user-defined
node.

The following topics describe the different types of user-defined extension in more
detail:
v “User-defined nodes” on page 2989
v “User-defined parsers” on page 3010
v “User exits” on page 3015
v “Using a subflow as a user-defined node” on page 3008
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“Which language to use to implement a user-defined extension” on page 3016
You can use Java or C to implement a user-defined extension.
Related tasks:
“Implementing user-defined extensions” on page 3019
Create the resources for your user-defined extension. You can write user-defined
nodes in C or Java, or you can use a subflow to create a node. You can write
user-defined parsers and exits only in C.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.

2988 WebSphere Message Broker Version 7.0.0.8

Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

User-defined nodes:

User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.

The most common uses for a user-defined node are:
v Calling an external system for which WebSphere Message Broker does not

provide nodes
v Calling already defined program libraries that perform a transformation or

calculation that is required in the design of a message flow
v Packaging a subflow

Before you consider constructing a user-defined node, make sure that no built-in
node is available to perform the required actions. For example, you might have
considered creating a user-defined node to perform the following tasks, but you
can use a JavaCompute node instead:
v Allowing programming languages other than ESQL to be used for coding

message flow functions
v Performance advantages in performing some actions in compiled code
v Complex functions that are not available in ESQL, such as the large number of

classes provided in JS2E

The following topics describe the different types of user-defined node in more
detail:
v “User-defined input nodes” on page 2990
v “User-defined message processing nodes” on page 2996
v “User-defined output nodes” on page 3006
v “Using a subflow as a user-defined node” on page 3008
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“Which language to use to implement a user-defined extension” on page 3016
You can use Java or C to implement a user-defined extension.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:

Chapter 9. Developing message flow applications 2989

“Implementing user-defined extensions” on page 3019
Create the resources for your user-defined extension. You can write user-defined
nodes in C or Java, or you can use a subflow to create a node. You can write
user-defined parsers and exits only in C.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

User-defined input nodes:

A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.

You create user-defined input nodes by using the C or Java programming
language, or from a subflow, to provide message input to a message flow from a
message queue when you want your broker to accept messages from a transport
protocol other than WebSphere MQ.

You can use a user-defined input node to receive data from an external data source
and to allow that data to be processed in a broker. In this way, you can
complement the primitive input node types provided by WebSphere Message
Broker.

You cannot use a user-defined input node to provide the In terminal to a message
subflow. If you want to provide the In terminal to a subflow, you must use the
supplied Input node.

Before writing a user-defined node, make sure that you are familiar with the
concepts that are introduced in “Why use a user-defined extension?” on page 2972
and “User-defined extensions in the runtime environment” on page 2980.
Related concepts:
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“Planning user-defined input nodes” on page 2995
Before you develop a user-defined input node, plan and design its content and
purpose.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the

2990 WebSphere Message Broker Version 7.0.0.8

required functions.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.

C user-defined input node life cycle:

A user-defined input node that is written in the C programming language
progresses through several stages during its lifetime.

The stages of the life cycle are:
v Registration
v Instantiation
v Processing
v Destruction

Registration: During the registration phase, the broker discovers which resources
are available and which LILs can provide them. In this instance, the resources
available are nodes. The phase starts when an execution group starts. The LILs are
loaded on the startup of an execution group, and the broker queries them to find
out what resources they can provide.

A CciFactory structure is created during the registration phase, when the
user-defined node calls cniCreateNodeFactory.

The following APIs are called by the broker during this stage:
v biGetMessageflowNodeFactory
v bipGetParserFactory

The following API is called by the user-defined node during this stage:
v cniCreateNodeFactory

Instantiation: An instance of a user-defined input node is created when the
mqsistart command starts or restarts the execution group process, or when a
message flow that is associated with the node is deployed.

The following APIs are called during this phase:
v cniCreateNodeContext. This API allocates memory for the instantiation of the

user-defined node to hold the values for configured attributes. This API is called
once for each message flow that is using the user-defined Input node.

v cniCreateInputTerminal. This API is invoked within the cniCreateNodeContext
API, and is used to tell the broker what input terminals, if any, your
user-defined input node has.
Your user-defined input node only has input terminals if it is also acting as a
message processing node. If this is the case, it is typically better to use a
separate user-defined message processing node to perform the message
processing, rather than combine both operations in one, more complex, node.

v cniCreateOutputTerminal. This API is invoked within the cniCreateNodeContext
API, and is used to tell the broker what output terminals your user-defined
input node has.

v cniSetAttribute. This API is called by the broker to establish the values for the
configured attributes of the user-defined node.

Chapter 9. Developing message flow applications 2991

During this phase, a CciTerminal structure is created when cniCreateTerminal is
called.

Processing: The processing phase begins when the cniRun function is called by the
broker. The broker uses the cniRun function to determine how to process a
message, including determining the domain in which a message is defined, and
invoking the relevant parser for that domain.

A thread is demanded from the message flow's thread pool, and is started in the
run method of the input node. The thread connects to the broker's queue manager,
and retains this connection for its lifetime. When a thread has been allocated, the
node enters a message processing loop while it waits to receive a message. It
remains in the loop until a message is received. If the message flow is configured
to use multiple threads, thread dispatching is activated.

The message data can now be propagated downstream.

The following APIs are called by the broker during this phase:
v cniRun. This function is called by the broker to determine how to process the

input message.
v cniSetInputBuffer. This function provides an input buffer, or tells the broker

where the input buffer is, and associates it with a message object.

Destruction: A user-defined input node is destroyed when the message flow is
redeployed, or when the mqsistop command is used to stop the execution group
process. You can destroy the node by implementing the cniDeleteNodeContext
function.

When a user-defined input node is destroyed in one of these ways, you should free
any memory used by the node, and release any held resources, such as sockets.

The following APIs are called by the broker during this phase:
v cniDeleteNodeContext. This function is called by the broker to destroy the

instance of the input node.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.

2992 WebSphere Message Broker Version 7.0.0.8

Java user-defined input node life cycle:

A user-defined input node that is written in the Java programming language
progresses through several stages during its lifetime.

The stages of the life cycle are:
v Registration
v Instantiation
v Processing
v Destruction

Registration: During the registration phase a user-defined input node written in
Java makes itself known to the broker. The node is registered with the broker
through the static getNodeName method. Whenever a broker starts, it loads all the
relevant Java classes. The static method getNodeName is called at this point, and
the broker registers the input node with the node name specified in the
getNodeName method. If you do not specify a node name, the broker
automatically creates a name for the node based on the package in which it is
contained.

Using a static method here means that the method can be called by the broker
before the node itself is instantiated.

Instantiation: A Java user-defined input node is instantiated when a broker
deploys a message flow containing the user-defined input node. When the node is
instantiated, the broker calls the constructor of the input node's class.

When a node is instantiated, any terminals that you have specified are created. A
message processing node can have any number of input and output terminals
associated with it. You must include the createInputTerminal and
createOutputTerminal methods in your node constructor to declare these terminals.

To handle exceptions that are passed back to your input node, use
createOutputTerminal to create a catch terminal for your input node. When the
input node catches an error, the catch terminal processes it in the same way as an
MQInput node would. You can allow most exceptions, such as exceptions that are
caused by deployment problems, to pass back to the broker, and the broker will
warn the user of any possible configuration errors.

As a minimum, your constructor class needs only to create these output terminals
on your input node. However, if you need to initialize attribute values, such as
defining the parser that will initially parse a message passed from the input node,
you should also include that code at this point in your input node.

Processing: Message processing for an input node begins when the broker calls the
run method. The run method creates the input message, and should contain the
processing function for the input node.

The run method is defined in MbInputNodeInterface, which is the interface used
in a user-defined node that defines it as an input node. You must include a run
method in your node. If you do not include a run method in your user-defined
input node, the node source code will not compile.

When a message flow containing a user-defined input node is deployed
successfully, the broker calls the node's run implementation method, and continues
to call this method while it waits for messages to process.

Chapter 9. Developing message flow applications 2993

When a message flow starts, a single thread is dispatched by the broker, and is
called into the input node's run method. If the dispatchThread() method is called,
further threads can also be created in the same run method. These new threads
immediately call into the input node's run method, and can be treated the same as
the original thread. The number of new threads that can be created is defined by
the additionalInstances property. Make sure that threads are dispatched after a
message has been created, and before it is propagated, to ensure that only one
thread at a time is waiting for a new message.

The user-defined input node can choose a different threading model and is
responsible for implementing the chosen model. If the input node supports the
additionalInstances property, and dispatchThread() is called, the code must be fully
re-entrant, and any functions that are invoked by the node should also be
re-entrant. If the input node forces single threading, that is, it does not call
dispatchThread(), the node documentation must state that setting the
additionalInstances property has no effect on the input node.

For more information on the threading model for user-defined input nodes, see
“Threading considerations for user-defined extensions” on page 2978.

Destruction: A Java user-defined input node is destroyed when the node is deleted
or the broker is shut down. You do not need to include anything in your code that
specifies the node should be physically deleted, because this can be handled by the
garbage collector.

However, if you want notification that a node is about to be deleted, you can use
the onDelete method. You might want to do this if there are resources that you
want to delete, other than those that will be garbage collected. For example, if you
have opened a socket, this will not be properly closed when the node is
automatically deleted. You can include this instruction in your onDelete method to
ensure that the socket is closed properly.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Threading considerations for user-defined extensions” on page 2978
Message processing nodes and parsers must work in a multi-instance,
multithreaded environment. Many node objects or parser objects are available, each
with several syntax elements, and many threads can be executing methods on
these objects.
Related tasks:
“Creating an input node in Java” on page 3055
An input node is used to receive a message into a message flow, typically from a
source that is not supported by the built-in input nodes.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
Related information:
Java user-defined extensions API

2994 WebSphere Message Broker Version 7.0.0.8

Planning user-defined input nodes:

Before you develop a user-defined input node, plan and design its content and
purpose.

Analysis: Before you develop a user-defined input node, ask yourself the following
questions:
v Do you need to create a custom input node?

You must include at least one input node in a message flow. Which one you
choose depends on the source of the input messages:
– If the messages arrive at the broker on a WebSphere MQ queue, use the

MQInput node.
– If SOAP messages are received over HTTP, use the SOAPInput node.
– If other messages are received over HTTP, use the HTTPInput node.
– If the messages are received from a JMS source, use the JMSInput node.
– If the messages are received from an EIS, use the PeopleSoftInput, SAPInput,

or SiebelInput node.
– If the messages are retrieved from files, use the FileInput node.
– If the message source is any other, you must use a user-defined input node.

For information about using more than one input node in a message flow, see
“Using more than one input node” on page 1473.

v To successfully input the data concerned, does the input node have to interface
with vendor software? If so, does the API that enables access to this software
break your threading model?

v Do you need a new user-defined parser to interpret the body (payload) of the
message generated by this input node, or can it be parsed by a standard built-in
parser?

v Do you need the user-defined input node to operate the message flow instance
in which it resides under transactional control as a globally-coordinated
transaction?

v Do you need the new user-defined input node to offer configuration options?
v Do you need messages propagated by this input node to be processed by the

following primitives?
– All primitive output nodes
– ResetContentDescriptor nodes

Design considerations: Before developing and implementing your input node,
decide on the following factors:
v Which message parser will initially parse the input message.
v Whether to override the default message parser attribute values for this input

node.
v Which threading model is appropriate for the input node.
v What kind of message processing and transaction support will the node support.
v Which configuration attributes required by the input node should be

externalized for alteration by the message flow designer.
v What optional node APIs will the user-defined node provide.
v How you will handle general development issues:

– “Threading considerations for user-defined extensions” on page 2978
– “Storage management in user-defined nodes” on page 2976

Chapter 9. Developing message flow applications 2995

– “String handling in user-defined nodes” on page 2977
– “Errors and exception handling” on page 2973
– Expected message formats for primitive nodes that expect specific header

folders.

When you design nodes to be used as extensions to WebSphere Event Broker, the
following restrictions apply:
v User-defined input nodes can support only XML, BLOB, and the WebSphere MQ

parsers, because the MRM parser is not shipped with WebSphere Event Broker
and user-defined parsers are not supported.

v User-defined nodes must not allow users to evaluate user ESQL code, because
the use of ESQL in WebSphere Event Broker is not supported. For example,
nodes that expose the input to MbSQLStatement as a node attribute are effectively
emulating a Compute node.

Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating an input node in Java” on page 3055
An input node is used to receive a message into a message flow, typically from a
source that is not supported by the built-in input nodes.
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
Related information:
Java user-defined extensions API

User-defined message processing nodes:

A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.

You might consider the use of a user-defined message processing node in the
following situations:
v Your messages need transformations that the built-in nodes do not provide. For

example, you might need a currency converter node.
v You want to reuse a subflow.
v You want to hide a message flow implementation by packaging it in a

user-defined node.

Combine your user-defined nodes with the built-in nodes to create message flows
that meet your exact business requirements.
Related concepts:

2996 WebSphere Message Broker Version 7.0.0.8

“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
“C user-defined message processing nodes life cycle”
A user-defined message processing node for the C programming language goes
through various stages.
“Java user-defined message processing nodes life cycle” on page 3000
During the lifecycle of the user-defined nodes that you create in Java, objects are
created and destroyed, and different methods and classes called.
“Planning user-defined message processing nodes” on page 3002
Plan how to write your message processing node or output node, and how to
navigate the message within the node.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
“Creating a user-defined node from a subflow” on page 3076
Create user-defined nodes either from scratch, or by using an existing subflow.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
Related information:
Java user-defined extensions API

C user-defined message processing nodes life cycle:

A user-defined message processing node for the C programming language goes
through various stages.

This topic covers the objects that are created and destroyed, and the
implementation functions and classes that are called in the following stages:
v Registration
v Instantiation
v Processing
v Destruction

The information in this topic applies to both output nodes and message processing
nodes. Both of these node types can be considered together, because although a
message processing node is typically used to process a message, and an output
node is used to provide an output in the form of a bit stream, you can use either
type of node to perform either of these functions.

Registration: A user-defined message processing node is registered with the broker
when the LIL that contains the node has been loaded and initialized by the
operating system.

Chapter 9. Developing message flow applications 2997

The broker calls bipGetMessageflowNodeFactory to establish the function of the LIL,
and how the LIL should be called.

The bipGetMessageflowNodeFactory function in turn calls the
cniCreateNodeFactory function, which returns a factory or group name for all of
the nodes that are supported by your LIL.

The LIL should then call the utility function cniDefineNodeClass to pass both the
name of each node and a virtual function table of the function pointers of the
implementation functions.

Instantiation: During the instantiation phase, an instance of a user-defined message
processing node is created. The phase starts when the broker creates a message
flow and calls the cniCreateNodeContext function for each instantiation of the
user-defined node in that message flow. The cniCreateNodeContext function is that
which is specified in the iFpCreateNodeContext field of the CNI_VFT struct passed
to cniDefineNodeClass for that node type. This function should allocate the
resources required for that node, including memory such that the instantiation of
the user-defined node can hold the values for the configured attributes.

The broker will create a node instance and call cniCreateNodeContext on the
following occasions:
v Message flow is created:

– Broker is being started (user has run mqsistart). Any message flows
previously deployed are re-created when the broker starts.

– Execution group is being reloaded (user has run mqsireload). Any message
flows that have been deployed previously are re-created when the execution
group reloads.

– A severe error has occurred within the execution group which results in the
execution group being restarted.

v Message flow is redeployed. When a message flow is changed and redeployed,
the broker processes redeploy by deleting all nodes in the flow and then
re-creating them with the new configuration.

Note: A message flow is not created when starting an execution group. Stopping
an execution group simply stops all flows and does not delete the flow or bring
the process down. Restarting an execution group, starts the message flows but
does not re-create the message flows.

Within cniCreateContext, the user-defined extension calls the two functions
cniCreateInputTerminal and cniCreateOutputTerminal in order to establish what
input and output terminals the message processing node has.

Processing: During the processing phase of the life cycle of a user-defined message
processing node, the message is transformed in some way, when some processing
operation takes place on the input message.

When the broker retrieves a message from the queue and that message arrives at
the input terminal of your user-defined node, the broker calls the implementation
function cniEvaluate. This function is used to decide what to do with the message.

You can use a range of node utility functions in your user-defined message
processing node to perform a range of message processing functions, such as
accessing the message data, accessing ESQL, transforming a message object, and

2998 WebSphere Message Broker Version 7.0.0.8

propagating a message. You should include the node utility functions you are
going to use to process the message within the cniEvaluate function.

This interface does not automatically generate a properties subtree for a message. It
is not a requirement for a message to have a properties subtree, although you
might find it useful to create one to provide a consistent message tree structure
regardless of input node. If you want a properties subtree to be created in a
message, and you are also using a user-defined input node, you must do this
yourself

Destruction: When a user-defined message processing node has processed a
message, you should ensure that it is destroyed, to release any system resources
that it used, and to release any data areas specific to the node instance, such as
context, that were acquired when the message was constructed or processed.

An instance of a user-defined message processing node is destroyed when the
broker calls the cniDeleteNodeContext function.

The broker calls cniDeleteNodeContext when the instance of the node is deleted.
The following events can cause a node to be deleted:
v Controlled termination of the execution group process:

– Broker is being stopped (user has run mqsistop)
– Execution group is being reloaded (user has run mqsireload)
– A severe error has occurred within the execution group, which results in the

execution group being restarted.

Note: This does NOT include stopping an execution group. Stopping an
execution group simply stops all flows, and does not delete the flow or bring the
process down.

v Message flow is deleted.
v Message flow is redeployed. When a message flow is changed and redeployed,

the broker processes redeploy by deleting all nodes in the flow and then
re-creating them with the new configuration.

Related concepts:
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“Planning user-defined message processing nodes” on page 3002
Plan how to write your message processing node or output node, and how to
navigate the message within the node.
“Java user-defined message processing nodes life cycle” on page 3000
During the lifecycle of the user-defined nodes that you create in Java, objects are
created and destroyed, and different methods and classes called.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.

Chapter 9. Developing message flow applications 2999

Related reference:
“cniCreateInputTerminal” on page 6444
Use this function to create an input terminal on an instance of a node object and
return the address of the terminal object that was created.
“cniCreateNodeFactory” on page 6449
Use this function to create a node factory in the broker. A single instance of the
named message flow node factory is created.
“cniDeleteNodeContext” on page 6454
This function deletes any context for an instance of a user-defined node object. It is
called by the broker whenever an instance of a node object is destroyed, when a
message flow is deleted, or when a configuration is redeployed.
“cniDefineNodeClass” on page 6451
Use this function to define a node class, as specified by the name parameter, which
is supported by the node factory specified as thefactoryObject parameter.
“cniEvaluate” on page 6475
This function performs node processing. The broker calls this function when a
message is received on one of the input terminals of an instance of a node object.

Java user-defined message processing nodes life cycle:

During the lifecycle of the user-defined nodes that you create in Java, objects are
created and destroyed, and different methods and classes called.

Every node goes through the following stages:
v Registration
v Instantiation
v Processing
v Destruction

The information here applies to both output nodes and message processing nodes.
Both of these node types can be considered together, because although a message
processing node is typically used to process a message, and an output node is used
to provide an output, in the form of a bit stream, from a message, you can use
both types of node to perform either of these functions.

Registration: The registration phase occurs when a user-defined message
processing node that is written in Java contacts the broker, or registers with the
broker.

Whenever a broker starts, it loads all relevant LIL files and Java classes. To ensure
that a message processing node is registered with the broker, you must provide the
broker with a class that implements the MbNodeInterface interface and is
contained in the classpath used by the broker.

Instantiation: A Java user-defined message processing node is instantiated when a
broker deploys a message flow that contains the user-defined message processing
node. When the node is instantiated, the constructor of the message processing
node class is called.

When a node is instantiated, all terminals that you have specified are created. A
message processing node can have an unlimited number of input and output
terminals associated with it. You must include the createInputTerminal and
createOutputTerminal methods in your node constructor to declare these terminals.

3000 WebSphere Message Broker Version 7.0.0.8

Output terminals include out, failure, and catch terminals. Use the
createOutputTerminal class within the node class constructor in order to create as
many output terminals as you require.

As a minimum, you must create only these output terminals by using your
constructor class. However, if you need to initialize attribute values, you must also
include that code at this point in your message processing node.

If you want to handle exceptions that are passed back to your message processing
node, it is good practice to do this by creating a failure terminal for your
user-defined message processing node, by using the createOutputTerminal method.
It is sensible to use the failure terminal for this process because that is the terminal
to which errors are propagated.

Make sure that all exceptions that are caught by the message processing node are
dealt with properly. If you do not include a failure terminal, the message
processing node does not attempt to handle the exception. If your message flow
does not contain a method of exception handling, all exceptions thrown are passed
back to the input node, where the input node deals with the exceptions.

If you do catch exceptions, make sure that you rethrow all exceptions that the
message processing node cannot deal with. This action causes the exception to be
passed back to the input node for handling; for example, when you want to
rollback a transaction.

Processing: During the processing phase of the life cycle of a user-defined message
processing node, the message processing node takes the logical hierarchy of the
message and processes it in some way.

Destruction: A Java user-defined message processing node is destroyed when the
node is deleted, or the broker is shut down. You do not have to include anything
in your code to specify that the node is physically deleted, because this process can
be handled by the garbage collector.

However, if you want notification that a node is about to be deleted, you can use
the onDelete method. You might want to receive notification if the node has
resources that you want to delete, other than those that will be garbage collected.
For example, if you have opened a socket, it is not properly closed when the node
is automatically deleted. You can include this instruction in your onDelete method
to ensure that the socket is closed properly.
Related concepts:
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“Planning user-defined message processing nodes” on page 3002
Plan how to write your message processing node or output node, and how to
navigate the message within the node.
“C user-defined message processing nodes life cycle” on page 2997
A user-defined message processing node for the C programming language goes
through various stages.
Related tasks:

Chapter 9. Developing message flow applications 3001

“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
Related reference:
“cniCreateInputTerminal” on page 6444
Use this function to create an input terminal on an instance of a node object and
return the address of the terminal object that was created.
“cniCreateNodeFactory” on page 6449
Use this function to create a node factory in the broker. A single instance of the
named message flow node factory is created.
“cniDeleteNodeContext” on page 6454
This function deletes any context for an instance of a user-defined node object. It is
called by the broker whenever an instance of a node object is destroyed, when a
message flow is deleted, or when a configuration is redeployed.
“cniDefineNodeClass” on page 6451
Use this function to define a node class, as specified by the name parameter, which
is supported by the node factory specified as thefactoryObject parameter.
“cniEvaluate” on page 6475
This function performs node processing. The broker calls this function when a
message is received on one of the input terminals of an instance of a node object.

Planning user-defined message processing nodes:

Plan how to write your message processing node or output node, and how to
navigate the message within the node.

Design factors: Before developing and implementing your message processing
node, consider the following points:
v Which parser will parse messages.
v Whether to override the default message parser attribute values for this message

processing node.
v What is the appropriate threading model for the message processing node.
v How to implement the end of message processing and transaction support that

the node must support.
v What configuration properties required by the message processing node must be

externalized for alteration by the message flow designer.
v What optional node APIs will the user-defined node provide.
v General development issues:

– “Threading considerations for user-defined extensions” on page 2978
– “Storage management in user-defined nodes” on page 2976
– “String handling in user-defined nodes” on page 2977
– “Errors and exception handling” on page 2973
– Expected message formats for built-in nodes that expect specific header

folders, see “Element definitions for message parsers” on page 4237

Syntax element navigation: The broker provides functions that your node can call to
traverse the tree representation of the message, as well as functions and methods
that support navigation from the current element to other elements:

3002 WebSphere Message Broker Version 7.0.0.8

v Parent
v First child
v Last child
v Previous (or left) sibling
v Next (or right) sibling

These relationships are shown in the following diagram.

Other functions and methods support the manipulation of the elements
themselves, with functions and methods to create elements, to set or query their
values, to insert new elements into the tree, and to remove elements from the tree.
See “C node utility functions” on page 6419 and “C parser utility functions” on
page 6539, or the Javadoc information for more details.

The following diagram describes a simple syntax element tree that shows a full
range of interconnections between the elements.

The element A is the root element of the tree. It has no parent because it is the
root. It has a first child of element B. Because A has no other children, element B is
also the last child of A.

Chapter 9. Developing message flow applications 3003

Element B has three children: elements C, D, and E. Element C is the first child of
B; element E is the last child of B.

Element C has two siblings: elements D and E. The next sibling of element C is
element D. The next sibling of element D is element E. The previous sibling of
element E is element D. The previous sibling of element D is element C.

The following diagram shows the first generation of syntax elements of a typical
WebSphere MQ message received by a broker. (Not all messages have an MQRFH2
header.)

These elements at the first generation are often referred to as folders, in which
syntax elements that represent message headers and message content data are
stored. In this example, the first child of root is the Properties folder. The next
sibling of Properties is the folder for the MQMD header. The next sibling is the
folder for the MQRFH2 header. The last folder represents the message content,
which (in this example) is an XML message.

The previous figure includes an MQMD and an MQRFH2 header. All messages
that are received by a processing node that handles WebSphere MQ include an
MQMD header; a number of other headers can also be included.

Navigating an XML message: Consider the following XML message:
<Business>
<Product type=’messaging’></Product>
<Company>

<Title>IBM</Title>
<Location>Hursley</Location>
<Department>WebSphere MQ</Department>

</Company>
</Business>

In this example, the elements are of the following types:

Name element
Business, Product, Company, Title, Location, Department

Value element
IBM, Hursley, WebSphere MQ

Name-value element
type='messaging'

Use supplied node utility functions and methods (or the similar parser utility
functions) to navigate through a message. Using the XML message shown, you
must call cniRootElement first, with the message received by the node as input to
this function. In Java, you must call getRootElement on the incoming MbMessage

3004 WebSphere Message Broker Version 7.0.0.8

object. This call returns an MbElement that represents the root of the element. Do
not modify this root element in the user-defined node.

The figure of the first generation of the syntax elements of a typical message that is
received by the broker, shows that the last child of the root element is the folder
containing the XML parse tree. Navigate to this folder by calling cniLastChild
(with the output of the previous call as input to this function) in a C node, or by
calling the method getLastChild on the root element, in a Java node.

Only one element (<Business>) is at the top level of the message, therefore call
cniFirstChild (in C) or getFirstChild (in Java) to move to this point in the tree. Use
cniElementType or getType to get its type (which is name), followed by
cniElementName or getName to return the name itself (Business).

The element <Business> has two children, <Product> and <Company>. Use
cniFirstChild or getFirstChild followed by cniNextSibling or getNextSibling to
navigate to each child in turn.

The element <Product> has an attribute (type=’messaging’), which is a child
element. Use cniFirstChild or getFirstChild to navigate to this element, and
cniElementType or getType to return its type (which is name-value). Use
cniElementName or getName to get the name. To get the value, call
cniElementValueType to return the type, followed by the appropriate function in
the cniElementValue group, in this example it is cniElementCharacterValue. In Java
use the method getValue, which returns a Java object representing the element
value.

The element <Company> has three children, each one having a child that is a value
element (IBM, Hursley, and WebSphere MQ). Use the functions already described to
navigate to them and access their values.

Other functions are available to copy the element tree (or part of it). The copy can
then be modified by adding or removing elements, and changing their names and
values, to create an output message. See “C node utility functions” on page 6419
and “C parser utility functions” on page 6539, or the Java user-defined node API,
for more information.
Related concepts:
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“C user-defined message processing nodes life cycle” on page 2997
A user-defined message processing node for the C programming language goes
through various stages.
“Java user-defined message processing nodes life cycle” on page 3000
During the lifecycle of the user-defined nodes that you create in Java, objects are
created and destroyed, and different methods and classes called.
“Planning user-defined output nodes” on page 3008
A user-defined output node generates an output bit stream from a message tree.

Chapter 9. Developing message flow applications 3005

Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
Related information:
Java user-defined extensions API

User-defined output nodes:

A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.

If you want your message flow to send messages by using a protocol that is not
supported by WebSphere Message Broker, you can create your own output node.

WebSphere Message Broker provides the following output nodes:
v MQOutput - delivers an output message from a message flow to a WebSphere

MQ queue
v MQReply - sends a response to the originator of the input message.
v SCADAOutput - sends a message to a client connecting using the MQIsdp

protocol
v Publication - filters output messages from a message flow and transmit them to

subscribers who have registered an interest in a particular set of topics.
v JMSOutput - sends a message to a JMS destination
v EmailOutput - sends an email message to one or more recipients
v FileOutput - writes a message to a file

If the target application expects to receive message in any other way, you must use
a user-defined output node.

User-defined output nodes can be considered together with user-defined message
processing nodes. Conceptually, these two kinds of user-defined nodes are the
same. Although a message processing node is typically used to process a message,
and an output node is used to provide an output, in the form of a bit stream, from
a message, you construct output nodes and message processing nodes in a similar
way, and you can use either type of node to perform either function.

You can also create a user-defined output node from a subflow, see “Using a
subflow as a user-defined node” on page 3008

For more information about user-defined output nodes, read the topics that cover
user-defined message processing nodes, see “User-defined message processing
nodes” on page 2996.
Related concepts:

3006 WebSphere Message Broker Version 7.0.0.8

“User-defined output node life cycle”
The life cycle of a user-defined output node follows the same pattern as the life
cycle of user-defined message processing nodes.
“Planning user-defined output nodes” on page 3008
A user-defined output node generates an output bit stream from a message tree.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

User-defined output node life cycle:

The life cycle of a user-defined output node follows the same pattern as the life
cycle of user-defined message processing nodes.

The following topics describe the life cycle of user-defined message processing
nodes; read the topic that corresponds to your type of output node:
v “C user-defined message processing nodes life cycle” on page 2997
v “Java user-defined message processing nodes life cycle” on page 3000

Although a message processing node is typically used to process a message, and
an output node is used to provide an output in the form of a bit stream, you can
use both types of node to perform either of these functions.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“C user-defined message processing nodes life cycle” on page 2997
A user-defined message processing node for the C programming language goes
through various stages.
“Java user-defined message processing nodes life cycle” on page 3000
During the lifecycle of the user-defined nodes that you create in Java, objects are
created and destroyed, and different methods and classes called.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
Related reference:

Chapter 9. Developing message flow applications 3007

“Output node” on page 4626
Use the Output node as an out terminal for an embedded message flow (a
subflow).
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Planning user-defined output nodes:

A user-defined output node generates an output bit stream from a message tree.

Optionally, you can connect the node to another node and propagate the message
tree for further processing. User-defined output nodes and message processing
nodes are, therefore, structured in the same way. All relevant information for
output nodes is included in “Planning user-defined message processing nodes” on
page 3002.
Related concepts:
“Planning user-defined message processing nodes” on page 3002
Plan how to write your message processing node or output node, and how to
navigate the message within the node.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
Related reference:
“Output node” on page 4626
Use the Output node as an out terminal for an embedded message flow (a
subflow).
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
Related information:
Java user-defined extensions API

Using a subflow as a user-defined node:

You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.

The project that contains user-defined nodes can be exported as a plug-in that is
installed in the development environment of the user. The nodes that are packaged
in the plug-in are displayed in the palette in the Message Flow editor, and can be
used in a message flow in the same way as a built-in node.

Packaging a subflow as a user-defined node provides all the benefits of a subflow,
such as reusability and maintainability, as well as the following benefits:
v The user-defined node can be distributed to other developers as a plug-in.

3008 WebSphere Message Broker Version 7.0.0.8

v The user-defined node hides the implementation details of the subflow from
developers who reuse the subflow.

v The user-defined node prevents developers who reuse the subflow from
modifying it.

v The subflow is displayed in the palette in the Message Flow editor.

Limitations

v All the flow resources (Maps, ESQL, XSL, or other external resources), except
Java code and message sets, that are referenced in the subflow, must be located
in the user-defined node project.

v A user-defined node can reference another user-defined node in the same or
different user-defined node project, but it must not reference anything from a
regular message flow project.

v The user-defined node project can have references to other projects, such as
message set and Java projects.

v If the user-defined node references a message set, you must deploy the message
set to the runtime separately. You can copy the message set to your workspace
and deploy it through the broker archive (BAR) file.

v A subflow implementation of a user-defined node can contain other subflows,
but all the subflows must be contained in the user-defined node project.

v Promoted properties from the nodes within the subflow are supported.
Configurable promoted properties from nodes in the subflow are displayed as
configurable node properties in the Broker Archive editor.

v User-defined properties (UDP) on the subflow are supported. If you create
multiple instances of user-defined nodes in your flow, each type of user-defined
property that you define must have the same value in each instance.

v You can use the same subflow more than once to construct a flow of your own.
v You can use the following node types that have named correlators to create a

user-defined node, but you must not use more than one instance of the
user-defined node within a flow, an execution group, or a broker. For example,
you cannot use asynchronous request and asynchronous response nodes,
aggregate nodes, TimeoutControl and TimeoutNotification pairs of nodes, or
label nodes.
If you do use one of these node types, the resultant message flow is invalid. If
you deploy flows that contain asynchronous request, asynchronous response, or
label nodes, you receive an error message. However, you do not receive an error
message if you deploy flows that contain TimeoutControl, TimeoutNotification,
or aggregate nodes.

v Resources in the plug-in space are visible to all projects in the workspace. Keep
user-defined nodes and their associated flows, maps, ESQL, and other similar
resources, in appropriately named broker schemas. Do not put such resources in
a default schema, or schemas with special names, for example, mqsi.

Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
Related tasks:
“Creating a user-defined node from a subflow” on page 3076
Create user-defined nodes either from scratch, or by using an existing subflow.
“Choosing the location of a user-defined node in the palette” on page 3092
Use the Palette editor to edit palette-specific information for user-defined nodes,

Chapter 9. Developing message flow applications 3009

add and delete separators, and rearrange user-defined nodes in the palette.
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
“Installing a user-defined node” on page 1496
Develop message flows that use a user-defined node.

User-defined parsers:

A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation

Create a user-defined parser when the WebSphere Message Broker parsers are not
sufficient to parse user-defined messages.

Do not use user-defined parsers to provide connectivity or transformation
functions. In most cases, the MRM or other IBM supplied parsers are capable of
passing most standard type of format. You can also parse a message and construct
a message tree in a user-defined node without the need to write a parser. For
example, a user-defined node that reads emails from a POP3 server can parse the
email and construct a message tree without the need to write a user-defined parser.

If the parser is going to be used only in a user-defined node, you do not need to
use a user-defined parser. However, consider a user-defined parser if the parser
will be called from other message flow nodes.
Related concepts:
“User-defined parser life cycle” on page 3011
Various stages exist in the life of a user-defined message flow parser.
“Planning user-defined parsers” on page 3013
Read about the concepts that you should consider before you develop a
user-defined parser.
“Specific types used by parsers” on page 3015
Specific types are used when a parser needs additional information that is
associated with some or all the elements in a tree in order to generate the bit
stream.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.

3010 WebSphere Message Broker Version 7.0.0.8

User-defined parser life cycle:

Various stages exist in the life of a user-defined message flow parser.

These stages are involved:
v Registration
v Instantiation
v Processing
v Destruction

This topic describes the interactions that take place between WebSphere Message
Broker components when you run a user-defined parser. It explains each stage in
terms of the events that start each stage, and the events that occur during and after
each stage, and the APIs that are called. Understanding the concepts here help you
to design and develop your parser more effectively.

Registration: The first phase in the user-defined parser's life cycle is the
registration phase. The purpose of the registration phase is to register the
user-defined parser with the broker. This phase starts when the execution group
starts.

Instantiation: The parser is created during the instantiation phase of the parser life
cycle. When an input message is received, or an output message is built in a
Compute node, the relevant parser is identified, and parser requirements are taken
from the message header, such as the MQMD. The broker starts and loads the
Loadable Implementation Library (LIL) and the parser factory. Before the
cpiCreateContext function is called, the broker creates a name element as the
effective root element for the parser. However, this element is not named. The
parser should name this element in the cpiSetElementName function. The
execution group process creates an instance of the parser, and the broker makes a
call to cpiCreateContext to allow the parser object to acquire the appropriate
section of the message.

The broker then makes a call to cpiParseBuffer. cpiParseBuffer performs any
necessary initialization, and returns the length of the message content that the
parser is taking ownership of. The parser assesses how much of the message data
to parse, and claims the appropriate number of bytes.

Whenever an instance of a user-defined parser object is created, the context
creation implementation function cpiCreateContext is also invoked by the broker.
This call allows the parser to allocate instance data associated with the parser. A
cpiDeleteContext function to delete the context of the parser object is also required.

Processing: During the processing phase, the parser manipulates, alters, and
references elements within the message object. The message flow processing phase
begins when any message processing activity occurs, such as navigation, that
requires access to an element within a message that does not exist in the broker's
internal model representation of the message concerned.

During the message flow processing phase, the parser is invoked in response to
attempts to navigate into the message tree. The parser examines the buffer that
was allocated when cpiParseBuffer was called, and creates any necessary message
elements.

The parser can then navigate through the message elements, using any or all of the
following parser implementation functions:

Chapter 9. Developing message flow applications 3011

v cpiParseFirstChild
v cpiParseLastChild
v cpiParsePreviousSibling
v cpiParseNextSibling

These functions are invoked when any form of navigation is made (such as a filter
expression that specifies a message field) into the part of the syntax element tree
that logically represents the data for a message format supported by a user-defined
parser. This navigation occurs when an operation within the broker requires a
syntax element tree to be built or extended.

Consider the following points when deciding how best to navigate the syntax
element tree:
v A Syntax element has five pointers to its parents, siblings, and first and last

children, so that a finite set of navigations is available.
v The same internal classes are used to perform all of these navigations.
v The parser does not control the navigation. The ESQL or a user-defined node

makes the decision about the direction in which to navigate, and the order in
which the navigational parser implementation functions are invoked. The
user-defined parser has no control over the direction and order, and needs to
respond correctly to the chosen navigation scheme; for example, parsing right to
left, as well as left to right.

v When writing a user-defined parser, place the parser code in a parseNextItem
function. This function should build the syntax element tree one element at a
time, setting names, values and complete flags appropriately. How you
implement this function depends on the nature of the bit stream to be parsed.
The supplied sample parser demonstrates this behavior.

When the parser has finished parsing the relevant parts of the syntax element tree,
it calls cpiWriteBuffer. This function appends its portion of the syntax element tree
to the bit stream in the message buffer that is associated with the parser object,
and creates the output message.

Destruction: The Destruction phase is the final phase in the user-defined parser life
cycle. When the parser has written its portion of the syntax element tree to the bit
stream and created the output message, the system resources that were created by
the broker for the parser to use need to be released.

The destruction phase begins when the mqsistop command is used to stop the
execution process.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to

3012 WebSphere Message Broker Version 7.0.0.8

extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Planning user-defined parsers:

Read about the concepts that you should consider before you develop a
user-defined parser.

When you have considered the information provided here, and are ready to
develop your own parser, use the instructions in “Implementing a user-defined
parser” on page 3099 to construct your parser.

Analysis: Before you start to create your own parser, be clear about its purpose.
You can perform most tasks using the functions that are provided with WebSphere
Message Broker, so you might not need to create a user-defined parser for your
particular task.

Before you construct and implement a user-defined parser, consider the following
questions:
v Do you need to create a user-defined parser?

If the available parsers in WebSphere Message Broker are not appropriate for
your needs, define your own parser to parse internal, customer-specific, or
generic commercial message formats.

v Does WebSphere Message Broker already provide a parser for the domain or
message header?
See “Parsers” on page 1072 for details of message domains for which the
supplied parsers can accept input messages, and message headers with which
the supplied parsers can work.

v Does the syntax of the in-house or commercial message dictate a format that can
be parsed?

v To parse the message successfully, does the parser need to interact with vendor
software? If so, does the API that enables access to this software break your
threading model?

v Do you need to process multi-part, multi-format messages?
WebSphere Message Broker does not support multi-part, multi-format messages.
A multi-part MRM message must consist of messages that are all in the same
format.

v What type of parsing strategy will provide best performance?
WebSphere Message Broker supports partial parsing, which allows your parser
to parse only relevant fields in a message. Using partial parsing can save system
resources.

Chapter 9. Developing message flow applications 3013

Partial and full parsing: WebSphere Message Broker supports partial parsing. If an
individual message contains hundreds or even thousands of individual fields, the
parsing operation requires considerable memory and processor resources to
complete. An individual message flow might reference only a few of these fields,
or none at all, so it is inefficient to parse every input message completely. For this
reason, WebSphere Message Broker allows parsing of messages on an as-needed
basis. (This ability does not prevent a parser from processing the entire message in
one step, and some parsers are written to process the entire message in this way.)

Each syntax element in a logical message has two bits that indicate whether all the
elements on either side of an element are complete, and whether its children are
complete. Parsing is typically completed in a bottom-to-top, left-to-right manner.
When a parser has parsed the siblings of a particular element that precede the
given element and the first child, it sets the first completion bit to one. Similarly,
when the pointer to the next sibling of an element is complete, as well as its last
child pointer, the other completion bit is set to one.

In partial parsing, the broker waits until a part of the message is referenced, and
invokes the parser to parse that part of the message. Message processing nodes
refer to fields within a message using hierarchical names. The name begins at the
root of the message and proceeds down the message tree until the particular
element is located. If an element is encountered without its completion bits set,
and further navigation from this element is required, the appropriate parser entry
point is called to parse the necessary part of the message. The relevant part of the
message is parsed, appropriate elements are added to the logical message tree, and
the element in question is marked as complete.

If you do not need to parse the full bit stream, you can use partial parsing. During
partial parsing, a parser is called recursively until the requested element is
returned, or until the message tree has been marked as complete, and the
requested element is known not to exist.

Whether you choose to perform a full or partial parse depends on how the
message will be processed. If most field elements within the message are likely to
be accessed during processing, performing a full parse of the message when an
attempt is made to access it is typically more efficient, particularly for smaller
messages.

However, if most field elements within the message are not likely to be accessed
during processing, performing a partial parse of the message when an attempt is
made to access a specific field is typically more efficient, particularly when the
message size grows.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.

3014 WebSphere Message Broker Version 7.0.0.8

Specific types used by parsers:

Specific types are used when a parser needs additional information that is
associated with some or all the elements in a tree in order to generate the bit
stream.

For the XML parser, the specific type information is used to mark special elements
such as components, processing instructions, and CDATA sections. The methods
getSpecificType and setSpecificType are used by user-defined nodes to query this
information and to generate message trees that use these special types.

Developers of user-defined parsers can generate their own specific type values to
control special handling characteristics in their parser code using the existing C
user-defined parser interface. The getSpecificType and setSpecificType methods
enable Java user-defined nodes to fully use this parser capability.
Related tasks:
“Getting and setting the specific type of an Mb element” on page 3073
Two methods are provided for handling the specific type of an Mb syntax element.

“Creating a user-defined extension in Java” on page 3054
You must complete a series of tasks to create user-defined nodes that use the Java
language.
“Creating a user-defined extension in C” on page 3026
You must complete a series of tasks to create user-defined extensions that use the
C language.

User exits:

A user exit is user-provided custom software, written in C, to track data passing
through message flows.

User-provided functions can be invoked at specific points during the life cycle of a
message while it passes through the message flow, and can invoke utility functions
to query information about the point in the flow, and the contents of the message
assembly. The utility function can also modify certain parts of the message
assembly. For more information about using user exits, see “Why use a user exit?”
on page 2984.

The user exits can be invoked when one or more of the following events occur:
v The end of a unit-of-work (UOW) or transaction (COMMIT or ROLLBACK).
v A message passes between two nodes.
v A message is successfully enqueued or sent to a transport in an output, reply, or

request node.
v A message is dequeued or received in an input, response, or TimeoutNotification

node.

MQInput Compute MQOutput

In the basic message flow shown here, you can track messages at three levels:
v Transaction level
v Node level

Chapter 9. Developing message flow applications 3015

v Input or output level

At the transaction level, you can track the following events:
v Messages being read into the flow
v Completion of the transaction

At the node level, you can track the following events:
v A message passing from one node to another
v Completion of processing for one node

At the message input or output level, you can track the following events:
v Messages being read into the flow
v Messages being written from the flow

Therefore, you can track five different types of event, which occur in the following
sequence:
1. A message is dequeued from the input source (read into the flow).
2. A message is propagated to the node for processing.
3. A request message is sent to the output node's transport, and transport-specific

destination information is written to "WrittenDestination" in the
LocalEnvironment.

4. Node processing is completed.
5. The transaction ends.
Related concepts:
“Why use a user exit?” on page 2984
Use a user exit to intercept the progress of messages through message flows
without having to redesign the message flow.
Related tasks:
“Exploiting user exits” on page 2985
Your message flows can benefit from user exits.
“Implementing a user-defined exit” on page 3113
You can develop and deploy a user-defined exit.
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Which language to use to implement a user-defined extension
You can use Java or C to implement a user-defined extension.

You can use C to implement all types of user-defined extension, but you can use
Java to implement only user-defined nodes.

If you can, use Java for user-defined nodes, and use C for everything else.

You must compile user-defined nodes, parsers, and exits that are written in C into
a loadable implementation library (LIL): that is, a shared library on Linux and
UNIX systems, or a dynamic link library (DLL) on Windows systems. You must
package user-defined nodes that are written in Java as a JAR file.

3016 WebSphere Message Broker Version 7.0.0.8

To achieve platform independence, use the ANSI standard C or Java programming
languages, and avoid platform-specific code in your user-defined extension.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“Which type of user-defined extension to use” on page 2988
The types of user-defined extension that you can write include user-defined nodes,
user-defined parsers, user-defined exits, and using a subflow as a user-defined
node.
Related tasks:
“Implementing user-defined extensions” on page 3019
Create the resources for your user-defined extension. You can write user-defined
nodes in C or Java, or you can use a subflow to create a node. You can write
user-defined parsers and exits only in C.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.
“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Implementing the supplied user-defined extension samples
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.

About this task

You can see sample code for user-defined extensions in the following ways:
v By using the sample that is supplied in the WebSphere Message Broker Toolkit.

To use the sample, see User-defined Extension.
You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the
online information center. You can run samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit.

v By using sample code that is installed with WebSphere Message Broker. To use
the sample code, read the following information in this topic.

The sample code consists of a sample parser, and the following sample nodes:

Node Description

Switch A node, implemented in both C and Java versions, that propagates an
input message to one of several output terminals depending on the
message content.

Chapter 9. Developing message flow applications 3017

Node Description

Transform A node, implemented in both C and Java versions, that performs a
simple message transformation.

Each sample node consists of the source files and some files that you can use to
test each node. For the sample parser there are only source files. See “Sample node
files” on page 6412 and “Sample parser files” on page 6414 for details of the
sample files and where to find them.

To implement the supplied samples from the sample code that is installed with
WebSphere Message Broker:
1. Compile the samples. For information about how to compile a Java node, see

“Compiling a Java user-defined node” on page 3074. For information about
how to compile a C node or parser, see “Compiling a C user-defined extension”
on page 3047.

2. Install the user-defined extension in a broker domain. For instructions on
completing this step, see “Installing user-defined extension runtime files on a
broker” on page 3125.

3. Copy and extract the SampleNodesProject.zip file by competing the following
steps:
a. From a computer that has WebSphere Message Broker installed, copy the

SampleNodesProject.zip file to a computer with WebSphere Message Broker
Toolkit installed. The .zip file is in the sample subdirectory. For example, on
Windows, the SampleNodesProject.zip is in the install_dir\sample\
extensions\nodes\com.ibm.samples.nodes directory, where install_dir is the
home directory of your WebSphere Message Broker installation.

b. On the computer that has WebSphere Message Broker Toolkit installed,
extract the SampleNodesProject.zip file, and copy the extracted files to a
directory from which the WebSphere Message Broker Toolkit can access
them. For more information about where to copy the files, see “Installing a
user-defined extension to current and past versions of WebSphere Message
Broker” on page 3128.

4. Open the WebSphere Message Broker Toolkit and switch to the Broker
Application Development perspective. The category called "Sample nodes" is
now visible in the palette, and the sample nodes are shown below it.
Documentation about the sample nodes is also visible in the help system under
"Samples".

5. Include the sample nodes in a message flow (see “Adding a message flow
node” on page 1494).

6. Deploy the message flow; see Chapter 11, “Packaging and deploying,” on page
3209.

7. For the Switch and Transform nodes, you can put a message to the input queue
of the message flow and observe the results, as follows:
a. Make sure that the message flow that contains the sample node is deployed

successfully; see “Checking the results of deployment” on page 3243.
b. Use the Enqueue message function to put the sample input messages

(provided in .xml files) to the input queue named on the input node of the
message flow; see “Debug: putting a test message on an input queue” on
page 3162.

You can also use a Trace node or the Flow debugger to see what is happening
in your message flow.

3018 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
Chapter 10, “Testing and debugging message flow applications,” on page 3143
Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.
“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.
“Installing a user-defined extension to current and past versions of WebSphere
Message Broker” on page 3128
Install user-defined extensions that you have developed yourself, or have acquired
from an independent software vendor, with the minimum of user intervention.
“Checking the results of deployment” on page 3243
After you have made a deployment, check that the operation has completed
successfully.
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
Related reference:
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Implementing user-defined extensions
Create the resources for your user-defined extension. You can write user-defined
nodes in C or Java, or you can use a subflow to create a node. You can write
user-defined parsers and exits only in C.

Before you begin

Before you start:

Read the following topics:
v “User-defined extensions overview” on page 2971
v “Which type of user-defined extension to use” on page 2988

Chapter 9. Developing message flow applications 3019

About this task

To create a user-defined extension, follow the instructions in the appropriate topic:
v “Implementing a user-defined node” on page 3022
v “Implementing a user-defined parser” on page 3099
v “Implementing a user-defined exit” on page 3113

For user-defined nodes only, you must create a WebSphere Message Broker Toolkit
Eclipse plug-in. For user-defined nodes created in Java and C, you must also create
the run time .lil or .jar file. The WebSphere Message Broker Toolkit plug-in adds
the user-defined node to the node palette in the Message Flow editor, so that you
can include the new node in message flows. This additional task is described in
“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079. This step is not required for
user-defined parsers or exits.

The following table shows the tasks required for creating the different types of
user-defined extension.

Action Topics to view

To use one of the Java
sample nodes

1. “Compiling a Java user-defined node” on page 3074

2. “Installing user-defined extension runtime files on a
broker” on page 3125

3. “Creating the user interface representation of a
user-defined node in the WebSphere Message Broker
Toolkit” on page 3079

4. “Testing a user-defined node” on page 3094

To use one of the C sample
nodes

1. “Compiling a C user-defined extension” on page 3047

2. “Installing user-defined extension runtime files on a
broker” on page 3125

3. “Creating the user interface representation of a
user-defined node in the WebSphere Message Broker
Toolkit” on page 3079

4. “Testing a user-defined node” on page 3094

To use the sample parser 1. “Compiling a C user-defined extension” on page 3047

2. “Installing user-defined extension runtime files on a
broker” on page 3125

To create your own Java
node by using the
WebSphere Message Broker
Toolkit

1. “Creating an input node in Java” on page 3055 or
“Creating a message processing or output node in Java”
on page 3062

2. “Using error logging from a user-defined extension” on
page 3137

3. “Compiling a Java user-defined node” on page 3074

4. “Testing a user-defined node” on page 3094

5. “Packaging and distributing a user-defined node project”
on page 3121

6. “Installing a user-defined extension to current and past
versions of WebSphere Message Broker” on page 3128

3020 WebSphere Message Broker Version 7.0.0.8

Action Topics to view

To create your own C node 1. “Creating an input node in C” on page 3027 or “Creating
a message processing or output node in C” on page 3036

2. “Using error logging from a user-defined extension” on
page 3137

3. “Compiling a C user-defined extension” on page 3047

4. “Installing user-defined extension runtime files on a
broker” on page 3125

5. “Creating the user interface representation of a
user-defined node in the WebSphere Message Broker
Toolkit” on page 3079

6. “Testing a user-defined node” on page 3094

7. “Packaging and distributing a user-defined node project”
on page 3121

8. “Installing a user-defined extension to current and past
versions of WebSphere Message Broker” on page 3128

To create your own node
from a subflow from scratch

1. “Creating a user-defined node from a subflow from
scratch” on page 3076

2. “Creating the user interface representation of a
user-defined node in the WebSphere Message Broker
Toolkit” on page 3079

3. “Testing a subflow user-defined node project” on page
3097

4. “Packaging and distributing a user-defined node project”
on page 3121

5. “Installing a user-defined node” on page 1496

To create your own node
from an existing subflow

1. “Creating a user-defined node from an existing subflow”
on page 3078

2. “Testing a subflow user-defined node project” on page
3097

3. “Packaging and distributing a user-defined node project”
on page 3121

4. “Installing a user-defined node” on page 1496

To create your own parser 1. “Implementing a user-defined parser” on page 3099

2. “Using error logging from a user-defined extension” on
page 3137

3. “Compiling a C user-defined extension” on page 3047

4. “Installing user-defined extension runtime files on a
broker” on page 3125

To create a user exit 1. “Developing a user exit” on page 3114

2. “Compiling a C user-defined extension” on page 3047

3. “Deploying a user exit” on page 3116

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Which type of user-defined extension to use” on page 2988
The types of user-defined extension that you can write include user-defined nodes,
user-defined parsers, user-defined exits, and using a subflow as a user-defined

Chapter 9. Developing message flow applications 3021

node.
Related tasks:
“Implementing a user-defined node”
You can implement a user-defined node to extend the function of WebSphere
Message Broker.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Implementing a user-defined exit” on page 3113
You can develop and deploy a user-defined exit.
“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079
When you are developing a user-defined node in Java or C only, you must create
the user interface representation of the node in the WebSphere Message Broker
Toolkit.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Implementing a user-defined node
You can implement a user-defined node to extend the function of WebSphere
Message Broker.

Before you begin

Before you start:

Read the following topics:
v “User-defined extensions overview” on page 2971
v “Why use a user-defined extension?” on page 2972
v “User-defined nodes” on page 2989
v “Which type of user-defined extension to use” on page 2988

About this task

Consider the following restrictions and factors when developing user-defined
nodes:
v Interfacing a C user-defined node to Java and providing a JNI wrapper is not

supported. This restriction exists because the broker internally initializes a JVM,
which is unavailable through the user-defined extension interface. The JVM
initializes with various parameters that are specific to the requirements of the
broker. Because only one JVM exists in a process, whoever initializes it first
specifies these parameters. If a user-defined node uses Java, and the broker is
initialized first, these parameters might not be suitable for the user-defined
node. If the user-defined node creates the JVM before the broker starts, the
broker might not function correctly.

v User-defined input nodes can support only XML, BLOB, and the WebSphere MQ
parsers.

v Avoid using functions that are specific to an operating system. If you code in
this way, your user-defined extensions can work on various operating systems
without requiring changes to the source code.

3022 WebSphere Message Broker Version 7.0.0.8

v Always put a user-defined node into a non-default schema because a
user-defined node in a broker schema is known to other message flows by its
schema qualified name. For example, if a user-defined node is named
ErrorHandler and it is in broker schema com.ibm.mb.toolkit, it is referenced as
com.ibm.mb.toolkit.ErrorHandler. If a second provider also has an error
handler named ErrorHandler and it is in broker schema com.xxx.product, it is
referenced as com.xxx.product.ErrorHandler. A user-defined node in a default
schema is addressed by its name only. Therefore, if two different providers
develop two unrelated error handlers and both are named ErrorHandler and
both are placed in a default schema, when both user-defined nodes are in the
plug-in space for a third user, the reference to ErrorHandler is ambiguous.

v If you want to use a subflow to create a user-defined node, read the limitations
section in the following topic: “Using a subflow as a user-defined node” on page
3008.

To implement a user-defined node, complete the following tasks in the specified
order:

Procedure
1. “Designing a user-defined node” on page 3024
2. “Creating a user-defined node” on page 3025
3. “Packaging and distributing user-defined extensions” on page 3117
4. “Testing a user-defined node” on page 3094
5. “Packaging and distributing a user-defined node project” on page 3121
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Which type of user-defined extension to use” on page 2988
The types of user-defined extension that you can write include user-defined nodes,
user-defined parsers, user-defined exits, and using a subflow as a user-defined
node.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Implementing a user-defined exit” on page 3113
You can develop and deploy a user-defined exit.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Chapter 9. Developing message flow applications 3023

Designing a user-defined node:

Decide what type of node you need to implement the functions that are required
by your application.

Before you begin

Before you start:

Read “Deciding which nodes to use” on page 1457 to understand the different
types of node. You might need more than one node to implement all the functions
that you require.

About this task

The functions that you require might not be satisfied by a template that already
exists for several reasons:
v The functions that you require do not relate to interacting with external systems.

Most of the node design pattern concentrates on communication with external
systems, which is the most likely requirement for a user-defined node.

v The functions that are required are not well suited to the WebSphere Message
Broker architecture, so you should implement them in an end application, or an
application server.

v The functions require complex control and state information, which you should
not implement as a plug-in.

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Which type of user-defined extension to use” on page 2988
The types of user-defined extension that you can write include user-defined nodes,
user-defined parsers, user-defined exits, and using a subflow as a user-defined
node.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Implementing a user-defined exit” on page 3113
You can develop and deploy a user-defined exit.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

3024 WebSphere Message Broker Version 7.0.0.8

Creating a user-defined node:

You can write user-defined nodes in C, Java, or from a subflow.

Before you begin

Before you start:

Read “Designing a user-defined node” on page 3024.

About this task

When you have created a user-defined node, you can test it, as described in
“Testing a user-defined node” on page 3094. If you want to test or use user-defined
nodes or parsers on multiple computers, follow the instructions given in
“Packaging and distributing user-defined extensions” on page 3117.

Decide whether you want to create a user-defined node in C, Java, or from a
subflow, then follow the instructions in the appropriate topic.
v “Creating a user-defined extension in C” on page 3026
v “Creating a user-defined extension in Java” on page 3054
v “Creating a user-defined node from a subflow” on page 3076
v “Creating the user interface representation of a user-defined node in the

WebSphere Message Broker Toolkit” on page 3079

The following table shows the tasks that are involved in creating the different
types of user-defined node. For more information about using user-defined nodes,
see the following sample: User-defined Extension.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Objective Tasks to complete

To create your own Java
node by using the
WebSphere Message Broker
Toolkit

1. “Creating an input node in Java” on page 3055 or
“Creating a message processing or output node in Java”
on page 3062

2. “Using error logging from a user-defined extension” on
page 3137

3. “Compiling a Java user-defined node” on page 3074

4. “Testing a user-defined node” on page 3094

5. “Packaging and distributing a user-defined node project”
on page 3121

6. “Installing a user-defined extension to current and past
versions of WebSphere Message Broker” on page 3128

Chapter 9. Developing message flow applications 3025

Objective Tasks to complete

To create your own C node: 1. “Creating an input node in C” on page 3027 or “Creating
a message processing or output node in C” on page 3036

2. “Using error logging from a user-defined extension” on
page 3137

3. “Compiling a C user-defined extension” on page 3047

4. “Installing user-defined extension runtime files on a
broker” on page 3125

5. “Creating the user interface representation of a
user-defined node in the WebSphere Message Broker
Toolkit” on page 3079

6. “Testing a user-defined node” on page 3094

7. “Packaging and distributing a user-defined node project”
on page 3121

8. “Installing a user-defined extension to current and past
versions of WebSphere Message Broker” on page 3128

To create your own node
from a subflow

1. “Creating a user-defined node from a subflow” on page
3076

2. “Creating the user interface representation of a
user-defined node in the WebSphere Message Broker
Toolkit” on page 3079

3. “Testing a subflow user-defined node project” on page
3097

4. “Packaging and distributing a user-defined node project”
on page 3121

5. “Installing a user-defined node” on page 1496

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Designing a user-defined node” on page 3024
Decide what type of node you need to implement the functions that are required
by your application.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
“Packaging and distributing user-defined extensions” on page 3117
When you have created and tested a user-defined extension, you can package and
distribute it.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Creating a user-defined extension in C:

You must complete a series of tasks to create user-defined extensions that use the
C language.

3026 WebSphere Message Broker Version 7.0.0.8

About this task

You can write user-defined nodes and user-defined parsers in C.

Complete the appropriate tasks from the following list:
v “Creating an input node in C”
v “Creating a message processing or output node in C” on page 3036
v “Implementing a user-defined parser” on page 3099
v “Compiling a C user-defined extension” on page 3047

What to do next

When you have completed this set of tasks, continue with the following tasks:
v If you have compiled a user-defined node, “Creating the user interface

representation of a user-defined node in the WebSphere Message Broker Toolkit”
on page 3079

v “Testing a user-defined node” on page 3094
v “Packaging and distributing user-defined extensions” on page 3117
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Creating an input node in C:

Create a user-defined input node in C to receive messages into a message flow.

Before you begin

Before you start

Read the following topics:
v “Why use a user-defined extension?” on page 2972
v “User-defined input nodes” on page 2990

About this task

A loadable implementation library, or LIL, is the implementation module for a C
node. A LIL is implemented as a shared or dynamic link library (DLL), but has the
file extension .lil not .dll.

The implementation functions that you write for the node are listed in “C node
implementation functions” on page 6417. You can call utility functions,
implemented in the runtime broker, to help with the node operation; these
functions are listed in “C node utility functions” on page 6419.

WebSphere Message Broker provides the source for two sample user-defined nodes
called SwitchNode and TransformNode. You can use these nodes in their current
state, or you can modify them.

Chapter 9. Developing message flow applications 3027

To create an input node in C:
1. “Declaring and defining the node”
2. “Creating an instance of the node” on page 3029
3. “Setting attributes” on page 3030
4. “Implementing the node functionality” on page 3031
5. “Overriding the default message parser attributes (optional)” on page 3031
6. “Deleting an instance of the node” on page 3032

Declaring and defining the node:
About this task

To declare and define a user-defined node to the broker, include an initialization
function, bipGetMessageflowNodeFactory, in your LIL. The following steps outline
how the broker calls your initialization function, and how your initialization
function declares and defines the user-defined node:

Procedure

1. The initialization function, bipGetMessageflowNodeFactory, is called by the
broker after the operating system has loaded and initialized the LIL. The broker
calls this function to understand what your LIL can do and how the broker can
call the LIL. For example:
CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix
bipGetMessageflowNodeFactory()

2. The bipGetMessageflowNodeFactory function must call the utility function
cniCreateNodeFactory. This function passes back a unique factory name (or
group name) for all the nodes that your LIL supports. Every factory name (or
group name) that is passed back must be unique throughout all the LILs in a
single runtime broker.

3. The LIL must call the utility function cniDefineNodeClass to pass the unique
name of each node, and a virtual function table of the addresses of the
implementation functions.
For example, the following code declares and defines a single node called
InputxNode:
{
CciFactory* factoryObject;
int rc = 0;
CciChar factoryName[] = L"MyNodeFactory";
CCI_EXCEPTION_ST exception_st;

/* Create the Node Factory for this node */
factoryObject = cniCreateNodeFactory(0, factoryName);
if (factoryObject == CCI_NULL_ADDR) {

/* Any local error handling can go here */
}
else {
/* Define the nodes supported by this factory */
static CNI_VFT vftable = {CNI_VFT_DEFAULT};

/* Setup function table with pointers to node implementation functions */
vftable.iFpCreateNodeContext = _createNodeContext;
vftable.iFpDeleteNodeContext = _deleteNodeContext;
vftable.iFpGetAttributeName2 = _getAttributeName2;
vftable.iFpSetAttribute = _setAttribute;
vftable.iFpGetAttribute2 = _getAttribute2;
vftable.iFpRun = _run;

3028 WebSphere Message Broker Version 7.0.0.8

cniDefineNodeClass(0, factoryObject, L"InputxNode", &vftable);
}

/* Return address of this factory object to the broker */
return(factoryObject);

}

A user-defined node identifies itself as providing the features of an input node
by implementing the cniRun implementation function.
User-defined nodes have to implement either a cniRun or a cniEvaluate
implementation function. If they do not, the broker does not load the
user-defined node, and the cniDefineNodeClass utility function fails, returning
CCI_MISSING_IMPL_FUNCTION.
For example:
int cniRun(

CciContext* context,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message

){
...
/* Get data from external source */
return CCI_SUCCESS_CONTINUE;

}

Use the return value periodically to return control to the broker.
When a message flow that contains a user-defined input node is deployed
successfully, the cniRun function of the node is called repeatedly to enable the
node to retrieve messages and propagate them to the rest of the message flow.
For the minimum code required to compile a C user-defined node, see the “C
skeleton code” on page 6683.

Creating an instance of the node:
About this task

To instantiate your node:

Procedure

1. When the broker has received the table of function pointers, it calls the function
cniCreateNodeContext for each instantiation of the user-defined node. For
example, if three message flows are using your user-defined node, your
cniCreateNodeContext function is called for each of them. This function must
allocate memory for that instantiation of the user-defined node to hold the
values for the configured attributes. For example:
a. Call the cniCreateNodeContext function:

CciContext* _createNodeContext(
CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject

){
static char* functionName = (char *)"_createNodeContext()";
NODE_CONTEXT_ST* p;
CciChar buffer[256];

b. Allocate a pointer to the local context and clear the context area:
p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

if (p) {
memset(p, 0, sizeof(NODE_CONTEXT_ST));

c. Save the node object pointer in the context:

Chapter 9. Developing message flow applications 3029

p->nodeObject = nodeObject;

d. Save the node name:
CciCharNCpy((CciChar*)&p->nodeName, nodeName, MAX_NODE_NAME_LEN);

e. Return the node context:
return (CciContext*) p;

2. An input node has a number of output terminals associated with it, but
typically does not have any input terminals. Use the utility function
cniCreateOutputTerminal to add output terminals to an input node when the
node is instantiated. These functions must be invoked within the
cniCreateNodeContext implementation function. For example, to define an
input node with three output terminals:

{
const CciChar* ucsOut = CciString("out", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsOut);
free((void *)ucsOut) ;

}
{

const CciChar* ucsFailure = CciString("failure", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsFailure);
free((void *)ucsFailure) ;

}
{

const CciChar* ucsCatch = CciString("catch", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsCatch);
free((void *)ucsCatch) ; }

For the minimum code required to compile a C user-defined node, see “C
skeleton code” on page 6683.

Setting attributes:
About this task

Attributes are set whenever you start the broker, or when you redeploy the
message flow with new values.

Following the creation of output terminals, the broker calls the cniSetAttribute
function to pass the values for the configured attributes of the user-defined node.
For example:

{
const CciChar* ucsAttr = CciString("nodeTraceSetting", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_INTEGER);
_setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constZero);
free((void *)ucsAttr) ;

}
{

const CciChar* ucsAttr = CciString("nodeTraceOutfile", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_STRING);
_setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constSwitchTraceLocation);
free((void *)ucsAttr) ;

}

The number of configuration attributes that a node can have is unlimited.
However, a user-defined node must not implement an attribute that is already
implemented as a base configuration attribute. The base attributes are:
v label
v userTraceLevel
v traceLevel
v userTraceFilter

3030 WebSphere Message Broker Version 7.0.0.8

v traceFilter

Implementing the node functionality:
About this task

When the broker knows that it has an input node, it calls the cniRun function of
this node at regular intervals. The cniRun function must then decide what course
of action it must take. If data is available for processing, the cniRun function can
propagate the message. If no data is available for processing, the cniRun function
must return with CCI_TIMEOUT so that the broker can continue configuration
changes.

For example, to configure the node to call cniDispatchThread and process the
message, or return with CCI_TIMEOUT:
If (anything to do)
CniDispatchThread;

/* do the work */

If (work done O.K.)
Return CCI_SUCCESS_CONTINUE;
Else
Return CCI_FAILURE_CONTINUE;

Else
Return CCI_TIMEOUT;

Overriding the default message parser attributes (optional):
About this task

An input node implementation typically determines what message parser initially
parses an input message. For example, the MQInput node dictates that an MQMD
parser is required to parse the MQMD header. A user-defined input node can
select an appropriate header or message parser, and the mode in which the parsing
is controlled, by using or overriding the following attributes that are included as
default:

rootParserClassName
Defines the name of the root parser that parses message formats that are
supported by the user-defined input node. It defaults to GenericRoot, a
supplied root parser that causes the broker to allocate and chain parsers
together. It is unlikely that a node would need to modify this attribute
value.

firstParserClassName
Defines the name of the first parser, in what might be a chain of parsers
that are responsible for parsing the bit stream. It defaults to XML.

messageDomainProperty
An optional attribute that defines the name of the message parser that is
required to parse the input message. The supported values are the same as
the values that are supported by the MQInput node. (See “MQInput node”
on page 4594 for more information.)

messageSetProperty
An optional attribute that defines the message set identifier, or the message
set name, in the Message Set field, only if the MRM parser was specified
by the messageDomainProperty attribute.

Chapter 9. Developing message flow applications 3031

messageTypeProperty
An optional attribute that defines the identifier of the message in the
MessageType field, only if the MRM parser was specified by the
messageDomainProperty attribute.

messageFormatProperty
An optional attribute that defines the format of the message in the Message
Format field, only if the MRM parser was specified by the
messageDomainProperty attribute.

If you have written a user-defined input node that always begins with data of a
known structure, you can ensure that a specific parser handles the start of the data.
For example, the MQInput node reads data only from WebSphere MQ queues,
therefore this data always has an MQMD at the beginning, and the MQInput node
sets firstParserClassName to MQHMD. If your user-defined node always handles
data that begins with a structure that can be parsed by a specific parser, for
example "MYPARSER", set firstParserClassName to MYPARSER in the following
way::
1. Declare the implementation functions:

CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix bipGetMessageflowNodeFactory()
{
....
CciFactory* factoryObject;
....
factoryObject = cniCreateNodeFactory(0, (unsigned short *)constPluginNodeFactory);
...
vftable.iFpCreateNodeContext = _createNodeContext;
vftable.iFpSetAttribute = _setAttribute;
vftable.iFpGetAttribute = _getAttribute;
...
cniDefineNodeClass(&rc, factoryObject, (CciChar*)constSwitchNode, &vftable);
...
return(factoryObject);

}

2. Set the attribute in the cniCreateNodeContext implementation function:
CciContext* _createNodeContext(

CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject

){
NODE_CONTEXT_ST* p;
...

/* Allocate a pointer to the local context */
p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));
/* Create attributes and set default values */
{

const CciChar* ucsAttrName = CciString("firstParserClassName", BIP_DEF_COMP_CCSID);
const CciChar* ucsAttrValue = CciString("MYPARSER", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttrName, CNI_TYPE_INTEGER);
/*see sample BipSampPluginNode.c for implementation of insAttrTblEntry*/

_setAttribute(p, (CciChar*)ucsAttrName, (CciChar*)ucsAttrValue);
free((void *)ucsAttrName) ;
free((void *)ucsAttrValue) ;

}

In the code example above, the insAttrTblEntry method is called. This method
is declared in the SwitchNode and TransformNode sample user-defined nodes.

Deleting an instance of the node:

3032 WebSphere Message Broker Version 7.0.0.8

About this task

Nodes are destroyed when a message flow is redeployed, or when the execution
group process is stopped (using the mqsistop command). When a node is
destroyed, you must call the cniDeleteNodeContext function to free all used
memory and release all held resources. For example:
void _deleteNodeContext(

CciContext* context
){

static char* functionName = (char *)"_deleteNodeContext()";

return;
}

Related concepts:
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:
“Extending the capability of a C input node” on page 3034
When you have created a user-defined node, you can extend its capability.
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.
Related reference:
“C skeleton code” on page 6683
Use the skeleton code that is supplied as guidance for your C user-defined node.
The code has the minimum content that is required to compile a user-defined node
successfully.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“Element definitions for message parsers” on page 4237
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
“cniCreateNodeFactory” on page 6449
Use this function to create a node factory in the broker. A single instance of the
named message flow node factory is created.
“cniDefineNodeClass” on page 6451
Use this function to define a node class, as specified by the name parameter, which
is supported by the node factory specified as thefactoryObject parameter.

Chapter 9. Developing message flow applications 3033

Extending the capability of a C input node:

When you have created a user-defined node, you can extend its capability.

Before you begin

Before you start

Read “Creating an input node in C” on page 3027.

About this task

After you have created a user-defined node, the following options are available:
1. “Receiving external data into a buffer”
2. “Controlling threading and transactions”
3. “Propagating the message” on page 3035

Receiving external data into a buffer:
About this task

An input node can receive data from any type of external source, such as a file
system or FTP connection, provided that the output from the node is in the correct
format. For connections to queues or databases, use the built-in nodes and the API
calls supplied, principally because the built-in nodes are already set up for error
handling. Do not use the MQGET or MQPUT calls for direct access to WebSphere
MQ queues.

You must provide an input buffer (or bit stream) to contain input data, and
associate it with a message object. In the C API, the buffer is attached to the
CciMessage object that represents the input message by using the cniSetInputBuffer
utility function. For example:
{

static char* functionName = (char *)"_Input_run()";
void* buffer;
CciTerminal* terminalObject;
int buflen = 4096;
int rc = CCI_SUCCESS;
int rcDispatch = CCI_SUCCESS;

buffer = readFromDevice(&buflen);
cniSetInputBuffer(&rc, message, buffer, buflen);

}
/*propagate etc*/

Controlling threading and transactions:
About this task

An input node must perform appropriate end-of-message processing when a
message has been propagated through a message flow. Specifically, the input node
needs to cause any transactions to be committed or rolled back, and return threads
to the thread pool.

Each message flow thread is allocated from a pool of threads that is maintained for
each message flow, and starts execution in the cniRun function. You determine the
behavior of a thread using the cniDispatchThread utility function, together with
the appropriate return value.

3034 WebSphere Message Broker Version 7.0.0.8

From the cniRun function, you can call the cniDispatchThread utility function to
cause another thread to start executing the cniRun function. The most appropriate
time to execute another thread is directly after you have established that data
could be available for the function to process on the new thread.

The term transaction is used generically to describe either a globally coordinated
transaction, or a broker-controlled transaction. Globally coordinated transactions
are coordinated by either WebSphere MQ as an XA-compliant Transaction
Manager, or Resource Recovery Service (RRS) on z/OS. WebSphere Message
Broker controls transactions by committing (or rolling back) any database
resources, and then committing any WebSphere MQ units of work. However, if a
user-defined node is used, the broker cannot automatically commit any resource
updates. The user-defined node uses return values to indicate whether a
transaction has been successful, and to control whether transactions are committed
or rolled-back. The broker infrastructure catches any unhandled exceptions, and
rolls back the transaction.

The following table describes each of the supported return values, the effect that
each one has on any transactions, and what the broker does with the current
thread.

Return value Affect on transaction Broker action on the thread

CCI_SUCCESS_CONTINUE Committed Calls the same thread again
in the cniRun function.

CCI_SUCCESS_RETURN Committed Returns the thread to the
thread pool.

CCI_FAILURE_CONTINUE Rolled back Calls the same thread again
in the cniRun function.

CCI_FAILURE_RETURN Rolled back Returns the thread to the
thread pool.

CCI_TIMEOUT Not applicable. The function
periodically times out while
it is waiting for an input
message.

Calls the same thread again
in the cniRun function.

The following code is an example of using the SUCCESS_RETURN return code
with the cniDispatchThread function:
{

...
cniDispatchThread(&rcDispatch, ((NODE_CONTEXT_ST *)context)->nodeObject);
...
if (rcDispatch == CCI_NO_THREADS_AVAILABLE) return CCI_SUCCESS_CONTINUE;
else return CCI_SUCCESS_RETURN;

}

Propagating the message:
About this task

Before you propagate a message, decide what message flow data you want to
propagate, and which terminal is to receive the data.

The terminalObject is derived from a list that the user-defined node maintains.

For example, to propagate the message to the output terminal, use the
cniPropagate function:

Chapter 9. Developing message flow applications 3035

if (terminalObject) {
if (cniIsTerminalAttached(&rc, terminalObject)) {

if (rc == CCI_SUCCESS) {
cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, message);

}
}

In the above example, the cniIsTerminalAttached function is used to test whether
the message can be propagated to the specified terminal. If you do not use the
cniIsTerminalAttached function, and the terminal is not attached to another node
by a connector, the message is not propagated and no warning message is
returned. Use the cniIsTerminalAttached function to prevent this error occurring.
Related concepts:
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
“cniSetInputBuffer” on page 6520
Use this function to supply a buffer. It is used only by input nodes. The address is
specified by the source parameter as an input bit stream of the input message to
the broker.

Creating a message processing or output node in C:

A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.

Before you begin

Before you start

Read the following topics:

3036 WebSphere Message Broker Version 7.0.0.8

v “Why use a user-defined extension?” on page 2972
v “User-defined message processing nodes” on page 2996
v “User-defined output nodes” on page 3006

About this task

When you code a message processing node or an output node, the nodes provide
essentially the same services. You can perform message processing in an output
node, and you can send a message to a bit stream by using a message processing
node. For simplicity, this topic refers mainly to the node as a message processing
node but it does also contain information about the functions of both types of
node.

A loadable implementation library (LIL), is the implementation module for a C
node. A LIL is implemented as a shared or dynamic link library (DLL), but has the
file extension .lil not .dll.

For more information about the C node implementation functions that you write
for the node, see “C node implementation functions” on page 6417. You can call C
node utility functions, implemented in the runtime broker, to help with the node
operation; see “C node utility functions” on page 6419.

WebSphere Message Broker provides the source for two sample user-defined nodes
called SwitchNode and TransformNode. You can use these nodes in their current
state, or you can modify them. In addition, you can view the following sample
which demonstrates the use of user-defined nodes, including a message processing
node written in C.
v User-defined Extension

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

To create either type of node complete the following tasks:
1. “Declaring and defining your node”
2. “Creating an instance of the node” on page 3039
3. “Setting attributes” on page 3041
4. “Implementing the node functionality” on page 3041
5. “Deleting an instance of the node” on page 3042

Declaring and defining your node:
About this task

To declare and define a user-defined node to the broker, include an initialization
function, bipGetMessageflowNodeFactory, in your LIL. The following steps take
place on the configuration thread and outline how the broker calls your
initialization function and how your initialization function declares and defines the
user-defined node:

Chapter 9. Developing message flow applications 3037

Procedure

1. The broker calls the initialization function bipGetMessageflowNodeFactory after
the operating system has loaded and initialized the LIL. The broker calls this
function to understand what your LIL can do and how the broker can call the
LIL. For example:
CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix
bipGetMessageflowNodeFactory()

2. The bipGetMessageflowNodeFactory function must call the utility function
cniCreateNodeFactory. This function passes back a factory name (or group
name) for all the nodes that your LIL supports. The factory name (or group
name) must be unique throughout all the LILs in a single runtime broker.

3. The LIL must call the utility function cniDefineNodeClass to pass the unique
name of each node and a virtual function table of the addresses of the
implementation functions.
For example, the following code declares and defines a single node called
MessageProcessingxNode:
{
CciFactory* factoryObject;
int rc = 0;
CciChar factoryName[] = L"MyNodeFactory";
CCI_EXCEPTION_ST exception_st;

/* Create the Node Factory for this node */
factoryObject = cniCreateNodeFactory(0, factoryName);
if (factoryObject == CCI_NULL_ADDR) {
/* Any local error handling can go here */
}
else {
/* Define the nodes supported by this factory */
static CNI_VFT vftable = {CNI_VFT_DEFAULT};

/* Setup function table with pointers to node implementation functions */
vftable.iFpCreateNodeContext = _createNodeContext;
vftable.iFpDeleteNodeContext = _deleteNodeContext;
vftable.iFpGetAttributeName2 = _getAttributeName2;
vftable.iFpSetAttribute = _setAttribute;
vftable.iFpGetAttribute2 = _getAttribute2;
vftable.iFpEvaluate = _evaluate;

cniDefineNodeClass(0, factoryObject, L"MessageProcessingxNode", &vftable);

}

/* Return address of this factory object to the broker */
return(factoryObject);

}

A user-defined node identifies itself as a message processing or output node by
implementing the cniEvaluate function. User-defined nodes must implement
either a cniEvaluate or a cniRun implementation function, otherwise the broker
does not load the user-defined node, and the cniDefineNodeClass utility
function fails, returning CCI_MISSING_IMPL_FUNCTION.
When a message flow containing a user-defined message processing node is
deployed successfully, the node's cniEvaluate function is called for each
message propagated to the node.
Message flow data is received at the input terminal of the node, that is, the
message, Environment, LocalEnvironment, and ExceptionList.
For example:

3038 WebSphere Message Broker Version 7.0.0.8

void cniEvaluate(
CciContext* context,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message

){
...

}

For the minimum code required to compile a C user-defined node, see “C
skeleton code” on page 6683.

Creating an instance of the node:
About this task

To instantiate your node:

Procedure

1. When the broker has received the table of function pointers, it calls the function
cniCreateNodeContext for each instantiation of the user-defined node. For
example, if three message flows are using your user-defined node, your
cniCreateNodeContext function is called for each of them. This function
allocates memory for that instantiation of the user-defined node to hold the
values for the configured attributes. For example:
a. The user function cniCreateNodeContext is called:

CciContext* _Switch_createNodeContext(
CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject

){
static char* functionName = (char *)"_Switch_createNodeContext()";
NODE_CONTEXT_ST* p;
CciChar buffer[256];

b. Allocate a pointer to the local context and clear the context area:
p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

if (p) {
memset(p, 0, sizeof(NODE_CONTEXT_ST));

c. Save the node object pointer in the context:
p->nodeObject = nodeObject;

d. Save the node name:
CciCharNCpy((CciChar*)&p->nodeName, nodeName, MAX_NODE_NAME_LEN);

e. Return the node context:
return (CciContext*) p;

2. The broker calls the appropriate utility functions to find out about the node's
input terminals and output terminals. A node has a number of input terminals
and output terminals associated with it. Within the user function
cniCreateNodeContext, calls must be made to cniCreateInputTerminal and
cniCreateOutputTerminal to define the user node's terminals. These functions
must be started within the cniCreateNodeContext implementation function. For
example, to define a node with one input terminal and two output terminals:

{
const CciChar* ucsIn = CciString("in", BIP_DEF_COMP_CCSID) ;
insInputTerminalListEntry(p, (CciChar*)ucsIn);
free((void *)ucsIn) ;

}
{

Chapter 9. Developing message flow applications 3039

const CciChar* ucsOut = CciString("out", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsOut);
free((void *)ucsOut) ;

}
{

const CciChar* ucsFailure = CciString("failure", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsFailure);
free((void *)ucsFailure) ;

}

The previous code starts the insInputTerminalListEntry and
insOutputTerminalListEntry functions. You can find these functions in the
sample code Common.c; see “Sample node files” on page 6412. These functions
define the terminals to the broker and store handles to the terminals. Handles
are stored in the structure referenced by the value returned in CciContext*. The
node can then access the terminal handles from within the other
implementation functions (for example CciEvaluate) because CciContext is
passed to those implementation functions.
The following code shows the definition of insInputTerminalListEntry:

TERMINAL_LIST_ENTRY *insInputTerminalListEntry(
NODE_CONTEXT_ST* context,
CciChar* terminalName

){
static char* functionName = (char *)"insInputTerminalListEntry()";
TERMINAL_LIST_ENTRY* entry;
int rc;

entry = (TERMINAL_LIST_ENTRY *)malloc(sizeof(TERMINAL_LIST_ENTRY));
if (entry) {

/* This entry is the current end of the list */
entry->next = 0;

/* Store the terminal name */
CciCharCpy(entry->name, terminalName);

/* Create terminal and save its handle */
entry->handle = cniCreateInputTerminal(&rc, context->nodeObject, (CciChar*)terminalName);

/* Link an existing previous element to this one */
if (context->inputTerminalListPrevious) context->inputTerminalListPrevious->next = entry;
else if ((context->inputTerminalListHead) == 0) context->inputTerminalListHead = entry;

/* Save the pointer to the previous element */
context->inputTerminalListPrevious = entry;

}
else {

/* Error: Unable to allocate memory */
}

return(entry);
}

The following example shows the code for insOutputTerminalListEntry:
TERMINAL_LIST_ENTRY *insOutputTerminalListEntry(

NODE_CONTEXT_ST* context,
CciChar* terminalName

){
static char* functionName = (char *)"insOutputTerminalListEntry()";
TERMINAL_LIST_ENTRY* entry;
int rc;

entry = (TERMINAL_LIST_ENTRY *)malloc(sizeof(TERMINAL_LIST_ENTRY));
if (entry) {

3040 WebSphere Message Broker Version 7.0.0.8

/* This entry is the current end of the list */
entry->next = 0;

/* Store the terminal name */
CciCharCpy(entry->name, terminalName);

/* Create terminal and save its handle */
entry->handle = cniCreateOutputTerminal(&rc, context->nodeObject, (CciChar*)terminalName);

/* Link an existing previous element to this one */
if (context->outputTerminalListPrevious) context->outputTerminalListPrevious->next = entry;
else if ((context->outputTerminalListHead) == 0) context->outputTerminalListHead = entry;

/* Save the pointer to the previous element */
context->outputTerminalListPrevious = entry;

}
else {

/* Error: Unable to allocate memory */
}

return(entry);
}

For the minimum code required to compile a C user-defined node, see “C
skeleton code” on page 6683.

Setting attributes:
About this task

Attributes are set whenever you start the broker, or when you redeploy a message
flow with new values. Attributes are set by the broker calling user code on the
configuration thread. Your code needs to store these attributes in its node context
area, for later use when processing messages.

Following the creation of input and output terminals, the broker calls the
cniSetAttribute function to pass the values for the configured attributes for this
instantiation of the user-defined node. For example:

{
const CciChar* ucsAttr = CciString("nodeTraceSetting", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_INTEGER);
_setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constZero);
free((void *)ucsAttr) ;

}
{

const CciChar* ucsAttr = CciString("nodeTraceOutfile", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_STRING);
_setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constSwitchTraceLocation);
free((void *)ucsAttr) ;

}

The number of configuration attributes that a node can have is unlimited.
However, a node must not implement an attribute that is already implemented as
a base configuration attribute. The following list shows base attributes:
v label
v userTraceLevel
v traceLevel
v userTraceFilter
v traceFilter

Implementing the node functionality:

Chapter 9. Developing message flow applications 3041

About this task

When the broker retrieves a message from the queue, and that message arrives at
the input terminal of your user-defined message processing or output node, the
broker calls the implementation function cniEvaluate. This function is called on the
message processing thread and it must decide what to do with the message. This
function might be called on multiple threads, especially if additional instances are
used.

Deleting an instance of the node:
About this task

If a node is deleted, the broker calls the cniDeleteNodeContext function. This
function is started on the same thread as cniCreateNodeContext. Use this function
to release resources used by your user-defined node. For example:
void _deleteNodeContext(

CciContext* context
){

static char* functionName = (char *)"_deleteNodeContext()";
free ((void*) context);
return;

}

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:
“Extending the capability of a C message processing or output node” on page 3043
When you have created a user-defined message processing or output node in C,
you can extend its capability.
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
“cniCreateNodeFactory” on page 6449
Use this function to create a node factory in the broker. A single instance of the

3042 WebSphere Message Broker Version 7.0.0.8

named message flow node factory is created.
“cniDefineNodeClass” on page 6451
Use this function to define a node class, as specified by the name parameter, which
is supported by the node factory specified as thefactoryObject parameter.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniDeleteNodeContext” on page 6454
This function deletes any context for an instance of a user-defined node object. It is
called by the broker whenever an instance of a node object is destroyed, when a
message flow is deleted, or when a configuration is redeployed.
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“C skeleton code” on page 6683
Use the skeleton code that is supplied as guidance for your C user-defined node.
The code has the minimum content that is required to compile a user-defined node
successfully.
“Sample node files” on page 6412
Several sample node files are provided on all platforms.

Extending the capability of a C message processing or output node:

When you have created a user-defined message processing or output node in C,
you can extend its capability.

Before you begin

Before you start

Read the topic “Creating a message processing or output node in C” on page 3036.

About this task

After you have created a user-defined node, the following options are available:
1. “Accessing message data”
2. “Transforming a message object” on page 3044
3. “Accessing ESQL” on page 3045
4. “Propagating a message” on page 3045
5. “Writing to an output device” on page 3046

Accessing message data:

Chapter 9. Developing message flow applications 3043

About this task

In many cases, the user-defined node must access the contents of the message that
is received on its input terminal. The message is represented as a tree of syntax
elements. Groups of utility functions are provided for message management,
message buffer access, syntax element navigation, and syntax element access. (See
“C node utility functions” on page 6419 for details of the utility functions.)

The types of query that you are likely to want to perform include:
v Obtaining the root element of the required message object
v Accessing the bit stream representation of an element tree
v Navigating or querying the tree by asking for child or sibling elements by name
v Getting the type of the element
v Getting the value of the element

For example, to query the name and type of the first child of body:
void cniEvaluate(...
){

...
/* Navigate to the target element */

rootElement = cniRootElement(&rc, message);
bodyElement = cniLastChild(&rc, rootElement);
bodyFirstChild = cniFirstChild(&rc, bodyElement);

/* Query the name and value of the target element */
cniElementName(&rc, bodyFirstChild, (CciChar*)&elementname, sizeof(elementName));
bytes = cniElementCharacterValue(
&rc, bodyfirstChild, (CciChar*)&eValue, sizeof(eValue));
...

}

To access the bit stream representation of an element tree you can use the
cniElementAsBitstream function. Using this function, you can obtain the bit stream
representation of any element in a message. See “cniElementAsBitstream” on page
6458 for details of how to use this function, and sample code.

Transforming a message object:
About this task

The received input message is read-only, therefore before a message can be
transformed, you must write it to a new output message using the
cniCreateMessage function. You can copy elements from the input message, or you
can create new elements and attach them to the message. New elements are
typically in a parser's domain.

For example:
1. To write the incoming message to a new message:

{
...
context = cniGetMessageContext(&rc, message));
outMsg = cniCreateMessage(&rc, context));
...

}

2. To make a copy of the new message:
cniCopyElementTree(&rc, sourceElement, targetElement);

3. To modify the value of a target element:

3044 WebSphere Message Broker Version 7.0.0.8

cniSetElementIntegerValue(&rc, targetElement, L"newValue", 8);

4. After finalizing and propagating the message, you must delete the output
message using the cniDeleteMessage function:
cniDeleteMessage(&rc, outMsg);

As part of the transformation, you might want to create a new message body. To
create a new message body, use one of the following functions, which assign a
parser to a message tree folder:
cniCreateElementAsFirstChildUsingParser
cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When creating a message body, do not use the following functions because they do
not associate an owning parser with the folder:
cniCreateElementAsFirstChild
cniCreateElementAsLastChild
cniCreateElementAfter
cniCreateElementBefore

Accessing ESQL:
About this task

Nodes can invoke ESQL expressions using Compute node ESQL syntax. You can
create and modify the components of the message using ESQL expressions, and
you can refer to elements of both the input message and data from an external
database using the cniSqlCreateStatement, cniSqlSelect, cniSqlDeleteStatement, and
cniSqlExecute functions.

For example, to populate the Result element from the contents of a column in a
database table:
{

...
sqlExpr = cniSqlCreateStatement(&rc,
(NODE_CONTEXT_ST *)context->nodeObject,
L"DB", CCI_SQL_TRANSACTION_AUTO,
L"SET OutputRoot.XMLNS.Result[] = (SELECT T.C1 AS Col1 FROM Database.TABLE AS T;");
...
cniSqlSelect(&rc, sqlExpr, localEnvironment, exceptionList, message, outMsg);
cniSqlDeleteStatement(&rc, sqlExpr);
...

}

For more information about ESQL, see “ESQL overview” on page 2371.

If your user-defined node primarily uses ESQL, consider using a “Compute node”
on page 4340.

Propagating a message:
About this task

Before you propagate a message, decide what message flow data you want to
propagate, and which terminal is to receive the data.
1. If the message has changed, finalize the message before you propagate it using

the cniFinalize function. For example:
cniFinalize(&rc, outMsg, CCI_FINALIZE_NONE);

Chapter 9. Developing message flow applications 3045

2. The terminalObject is derived from a list that the user-defined node maintains
itself. To propagate the message to the output terminal, use the cniPropagate
function:

if (terminalObject) {
if (cniIsTerminalAttached(&rc, terminalObject)) {

if (rc == CCI_SUCCESS) {
cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, outMsg);

}
}

In the above example, the cniIsTerminalAttached function is used to test
whether the message can be propagated to the specified terminal. If you do not
use the cniIsTerminalAttached function and the terminal is not attached to
another node by a connector, the message is not propagated and no warning
message is returned. Use the cniIsTerminalAttached function to prevent this
error occurring.

3. If you created a new output message using cniCreateMessage, after
propagating the message, delete the output message using the
cniDeleteMessage function:
cniDeleteMessage(&rc, outMsg);

Writing to an output device:
About this task

A transformed message must be serialized to a bit stream; a message can be
serialized only once.

The bit stream can then be accessed and written to an output device. Write the
message to a bit stream using the cniWriteBuffer function. For example:
{

...
cniWriteBuffer(&rc, message);
writeToDevice(cniBufferPointer(&rc, message), cniBufferSize(&rc, message));
...

}

In this example, the method writeToDevice is a user-written method which writes
a bit stream to an output device.

Do not write a user-defined output node to write messages to WebSphere MQ
queues; use the supplied MQOutput node in this scenario. The broker internally
maintains a WebSphere MQ connection and open queue handles on a
thread-by-thread basis, and these are cached to optimize performance. In addition,
the broker handles recovery scenarios when certain WebSphere MQ events occur;
this recovery would be adversely affected if WebSphere MQ MQI calls are used in
a user-defined output node.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input

3046 WebSphere Message Broker Version 7.0.0.8

node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Compiling a C user-defined extension”
Compile user-defined extensions in C for all supported operating systems.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.

Compiling a C user-defined extension:

Compile user-defined extensions in C for all supported operating systems.

Before you begin

Before you start:

If you create your own user-defined nodes, parsers, and user exits in C, compile
them on the operating system on which the target broker is running. Samples are
provided for both nodes and parsers, and are described in “Sample node files” on
page 6412 and “Sample parser files” on page 6414. Use the instructions here to
compile the samples. If you want to create your own extensions, see the following
topics:
v “Creating a user-defined extension in C” on page 3026
v “Implementing a user-defined parser” on page 3099
v “Implementing a user-defined exit” on page 3113

About this task

These instructions use the file names of the supplied samples. If you are compiling
your own user-defined extensions, substitute your own file names.

When you compile a user-defined extension that is written in C, you need a
compatible compiler. For details of supported compilers, see “Optional software
support” on page 3603.

Header files:
About this task

The following header files define the C interfaces:

BipCni.h
Message processing nodes

Chapter 9. Developing message flow applications 3047

BipCpi.h
Message parsers

BipCci.h
Interfaces common to both nodes and parsers

BipCos.h
Platform-specific definitions

Compiling:
About this task

Compile the source for your user-defined extension on each of the supported
operating systems to create the executable file that the broker calls to implement
your user-defined extension. On Linux, UNIX, and z/OS systems, this file is a
loadable implementation library (LIL) file; on Windows systems, it is a dynamic
load library (DLL) file.

The libraries that you build to contain user-defined nodes or parsers must have the
extension .lil on all operating systems so that the broker can load them. Libraries
that contain user exits must have the extension .lel on all operating systems. The
examples in this topic show libraries with the extension .lil

Refer to the documentation for the compiler that you are using for full details of
available compile and link options that might be required for your programs.

Navigate to the directory where your user-defined extension source code is located,
and follow the instructions for your operating system:
v AIX
v HP-Itanium
v Linux
v Solaris
v Windows
v z/OS

Compiling on AIX:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

The following instructions are for compiling an extension for a 64-bit execution
group; 32-bit execution groups are not supported.
xlc_r -q64 \

-I. \
-I/install_dir/include/plugin \
-c SwitchNode.c \
-o SwitchNode.o

xlc_r -q64 \
-I. \
-I/install_dir/include/plugin \
-c TransformNode.c \
-o TransformNode.o

xlc_r -q64 \
-I. \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o BipSampPluginUtil.o

3048 WebSphere Message Broker Version 7.0.0.8

xlc_r -q64 \
-I. \
-I/install_dir/include/plugin \
-c Common.c \
-o Common.o

xlc_r -q64 \
-I. \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o NodeFactory.o

xlc_r -q64 \
-qmkshrobj \
-bM:SRE \
-bexpall \
-bnoentry \
-o SwitchNode.lil SwitchNode.o \

BipSampPluginUtil.o Common.o NodeFactory.o \
-L /install_dir/lib \
-l imbdfplg

chmod a+r SwitchNode.lil

Compiling on HP-Itanium:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

The following instructions are for compiling an extension for a 64-bit execution
group; 32-bit execution groups are not supported.
cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o output_dir/BipSampPluginUtil.o

cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c Common.c \
-o output_dir/Common.o

cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o output_dir/NodeFactory.o

cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c SwitchNode.c \
-o output_dir/SwitchNode.o

cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \

Chapter 9. Developing message flow applications 3049

-c TransformNode.c \
-o output_dir/TransformNode.o

ld -b \
-o output_dir/SwitchNode.lil \
output_dir/BipSampPluginUtil.o \
output_dir/Common.o \
output_dir/NodeFactory.o \
output_dir/SwitchNode.o \
output_dir/TransformNode.o \
-L install_dir/lib \
-L install_dir/xml4c/lib \
-L install_dir/merant/lib \
-L install_dir/jre16/lib/IA64N\
-L install_dir/jre16/lib/IA64N/server \
-l imbdfplg

chmod a+r output_dir/SwitchNode.lil

Compiling on Linux:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

When you compile programs on Linux on POWER, replace the option -fpic with
-fPIC if you want to use dynamic linking and avoid any limit on the size of the
global offset table.

The following instructions are for compiling an extension for a 64-bit execution
group on Linux on x86-64, Linux on POWER, and Linux on IBM z Systems. 32-bit
execution groups are not supported on those platforms. To compile the extension
for a 32-bit execution group on Linux on x86, replace -m64 with -m32 in the
compile and link examples.
g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
TransformNode.c

g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
SwitchNode.c

g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
BipSampPluginUtil.c

g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
Common.c

g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \

3050 WebSphere Message Broker Version 7.0.0.8

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
NodeFactory.c

g++ -m64 -O2 -o samples.lil \
TransformNode.o \
SwitchNode.o \
BipSampPluginUtil.o \
Common.o NodeFactory.o \
-shared -lc -lnsl -ldl \
-L/install_dir/lib -limbdfplg

These commands create the file samples.lil that provides TransformNode and
SwitchNode objects.

Compiling on Solaris:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

The following instructions are for compiling an extension for a 64-bit execution
group on Solaris on SPARC; 32-bit execution groups are not supported. To compile
the extension for a default 64-bit execution group on Solaris on x86-64, replace
-xarch=v9 with -xarch=amd64 in the compile examples; 32-bit execution groups are
not supported.
cc -xarch=v9 -mt \

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c SwitchNode.c \
-o output_dir/SwitchNode.o

cc -xarch=v9 -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c TransformNode.c \
-o output_dir/TransformNode.o

cc -xarch=v9 -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o output_dir/BipSampPluginUtil.o

cc -xarch=v9 -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o output_dir/NodeFactory.o

cc -xarch=v9 -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c Common.c \
-o output_dir/Common.o

cc -xarch=v9 -xcode=pic32 -mt -G \

Chapter 9. Developing message flow applications 3051

-o output_dir/SwitchNode.lil \
output_dir/SwitchNode.o \
output_dir/BipSampPluginUtil.o \
output_dir/NodeFactory.o \
output_dir/Common.o \

-L /install_dir/lib \
-l imbdfplg

chmod a+r output_dir/SwitchNode.lil

Compiling on Windows:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

Ensure that you include a space between SwitchNode.c and BipSampPluginUtil.c,
and also between -link and /DLL.

Enter the command as a single line of input; in the following example the lines are
split to improve readability.
cl /VERBOSE /LD /MD /Zi /EHsc /I.

/Iinstall_dir\include\plugin
SwitchNode.c BipSampPluginUtil.c Common.c
NodeFactory.c TransformNode.c
-link /DLL install_dir\lib\imbdfplg.lib
/OUT:SwitchNode.lil

If you have correctly set the LIB environment variable, you do not have to specify
the full paths to the LIB files.

Compiling on z/OS:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

Force your link to use prelinker or linker by setting the _CC_STEPS variable to -1:
export _CC_STEPS=-1

Alternatively, add these two lines to your makefile to export it:
_CC_STEPS=-1
.EXPORT : _CC_STEPS

To create optimized builds, use -2 in place of -g in the following commands:
cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./SwitchNode.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./SwitchNode.o ./SwitchNode.c

cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./TransformNode.lst\) \
-I. -I${install_dir}/include \

3052 WebSphere Message Broker Version 7.0.0.8

-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./SwitchNode.o ./TransformNode.c

cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./BipSampPluginUtil.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./BipSampPluginUtil.o ./BipSampPluginUtil.c

cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./Common.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./Common.o ./Common.c

cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./NodeFactory.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./NodeFactory.o ./NodeFactory.c

cc \
-Wl,DLL,LP64 -g -Wl,p,map -Wl,LIST=ALL,MAP,XREF,REUS=RENT \
-Wl,xplink \
-o ./SwitchNode.lil ./SwitchNode.o ./BipSampPluginUtil.o \
./Common.o ./NodeFactory.o \
${install_dir}/lib/libimbdfplg.x

Run the following command to set the file permissions of the user-defined
extension to group read and to be executable:
chmod a+rx {output_dir}/SwitchNode.lil

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Creating a user-defined extension in C” on page 3026
You must complete a series of tasks to create user-defined extensions that use the
C language.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Implementing a user-defined exit” on page 3113
You can develop and deploy a user-defined exit.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.

Chapter 9. Developing message flow applications 3053

“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079
When you are developing a user-defined node in Java or C only, you must create
the user interface representation of the node in the WebSphere Message Broker
Toolkit.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
“Support for 32-bit and 64-bit platforms” on page 3589
WebSphere Message Broker operates in 32-bit mode or 64-bit mode, on supported
operating systems.
“Optional software support” on page 3603
The products listed here are not required, but might be useful. Except where
stated, these products are not supplied with WebSphere Message Broker.

Creating a user-defined extension in Java:

You must complete a series of tasks to create user-defined nodes that use the Java
language.

About this task

Complete the appropriate tasks from the following list:
v “Creating an input node in Java” on page 3055
v “Creating a message processing or output node in Java” on page 3062
v “Compiling a Java user-defined node” on page 3074
v “Packaging a Java user-defined node” on page 3118

You can write only user-defined nodes in Java: you must write user-defined
parsers in C.

What to do next

When you have completed this set of tasks, continue with the following tasks:
v “Creating the user interface representation of a user-defined node in the

WebSphere Message Broker Toolkit” on page 3079
v “Testing a user-defined node” on page 3094
v “Packaging and distributing user-defined extensions” on page 3117
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

3054 WebSphere Message Broker Version 7.0.0.8

Restrictions when creating Java nodes:

In Java user-defined nodes and the JavaCompute node, calling the System.exit(...)
method is not supported. Calling this method results in a SecurityException.
Related concepts:
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:
“Creating an input node in Java”
An input node is used to receive a message into a message flow, typically from a
source that is not supported by the built-in input nodes.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
Related reference:
“Exception list structure” on page 4224
An exception list contains information about exceptions, such as error numbers, the
name of the node that generated the exception, and the reason for the exception.
Related information:
Java user-defined extensions API

Creating an input node in Java:

An input node is used to receive a message into a message flow, typically from a
source that is not supported by the built-in input nodes.

Before you begin

Before you start

Read the following topics:
v “Why use a user-defined extension?” on page 2972
v “User-defined input nodes” on page 2990

About this task

To create an input node in the Java language:
1. “Creating a Java project” on page 3056
2. “Declaring the input node class” on page 3056
3. “Defining the node constructor” on page 3057
4. “Receiving external data into a buffer” on page 3057

Chapter 9. Developing message flow applications 3055

5. “Propagating the message” on page 3058
6. “Controlling threading and transactionality” on page 3058
7. “Declaring the node name” on page 3059
8. “Declaring attributes” on page 3060
9. “Implementing the node functionality” on page 3060

10. “Overriding default message parser attributes (optional)” on page 3060
11. “Deleting an instance of the node” on page 3061

A Java user-defined node is distributed as a .jar file.

Creating a Java project:
About this task

Before you can create Java nodes in the WebSphere Message Broker Toolkit, you
must create a Java project:

Procedure

1. Click File > New > Project, select Java Project then click Next.
2. Give the project a name, then click Next.
3. On the Java Settings pane, select the Libraries tab, and click Add External

JARs.
4. Select install_dir\classes\jplugin2.jar, where install_dir is the home

directory of your WebSphere Message Broker installation.
5. Follow the prompts on the other tabs to define any other build settings.
6. Click Finish.

What to do next

You can now develop the source for your Java node in this project.

Declaring the input node class:
About this task

Every class that implements MbInputNodeInterface and is contained in the broker
LIL path is registered with the broker as an input node. When you implement
MbInputNodeInterface, you must also implement a run method for this class. The
run method represents the start of the message flow, contains the data that
formulates the message, and propagates it down the flow. The broker calls the run
method when threads become available in accordance with your specified
threading model.

The class name must end with the word "Node". For example, if the name is
BasicInput in the WebSphere Message Broker Toolkit, the class name must be
BasicInputNode.

For example, to declare the input node class:
package com.ibm.jplugins;

import com.ibm.broker.plugin.*;

public class BasicInputNode extends MbInputNode implements MbInputNodeInterface
{
...

3056 WebSphere Message Broker Version 7.0.0.8

Follow these steps to complete this action in the WebSphere Message Broker
Toolkit:

Procedure

1. Click File > New > Class.
2. Set the package and class name fields to appropriate values.
3. Delete the text in the Superclass text field and click the Browse button.
4. Select MbInputNode.
5. Click the Add button next to Interfaces text field, and select

MbInputNodeInterface.
6. Click Finish.

Defining the node constructor:
About this task

When the node is instantiated, the constructor of the node class is called. This class
is where you create the terminals of the node, and initialize the default values for
the attributes.

An input node has a number of output terminals associated with it, but does not
typically have any input terminals. Use the createOutputTerminal method to add
output terminals to a node when the node is instantiated. For example, to create a
node with three output terminals:
public BasicInputNode() throws MbException
{
createOutputTerminal ("out");
createOutputTerminal ("failure");
createOutputTerminal ("catch");
setAttribute ("firstParserClassName","myParser");
attributeVariable = "none";
}

Receiving external data into a buffer:
About this task

An input node can receive data from any type of external source, such as a file
system, a queue, or a database, in the same way as all other Java programs, if the
output from the node is in the correct format.

Provide an input buffer (or bit stream) to contain input data, and associate it with
a message object. Create a message from a byte array by using the createMessage
method of the MbInputNode class, and then generate a valid message assembly from
this message. For example, to read the input data from a file:

Procedure

1. Create an input stream to read from the file:
FileInputStream inputStream = new FileInputStream("myfile.msg");

2. Create a byte array the size of the input file:
byte[] buffer = new byte[inputStream.available()];

3. Read from the file into the byte array:
inputStream.read(buffer);

4. Close the input stream:
inputStream.close();

5. Create a message to put on the queue:

Chapter 9. Developing message flow applications 3057

MbMessage msg = createMessage(buffer);

6. Create a message assembly to hold this message:
msg.finalizeMessage(MbMessage.FINALIZE_VALIDATE);
MbMessageAssembly newAssembly =

new MbMessageAssembly(assembly, msg);

Propagating the message:
About this task

After creating a message assembly, you can propagate it to one of the output
terminals that are defined on the node.

For example, to propagate the message assembly to the terminal named out:
MbOutputTerminal out = getOutputTerminal("out");
out.propagate(newAssembly);

To delete the message:
msg.clearMessage();

To clear the memory that is allocated for the message tree, call the clearMessage()
function within the finally block of try/catch.

Controlling threading and transactionality:
About this task

The broker infrastructure handles transaction issues such as controlling the commit
of a WebSphere MQ or database unit of work when message processing has
completed. However, resources modified from within a user-defined node are not
necessarily under the transactional control of the broker.

Each message flow thread is allocated from a pool of threads maintained for each
message flow, and starts in the run method.

The user-defined node uses return values to indicate whether a transaction is
successful, to control whether transactions are committed or rolled back, and to
control when the thread is returned to the pool. The broker infrastructure catches
all unhandled exceptions, and rolls back the transaction.

You determine the behavior of transactions and threads by using the appropriate
return value:

MbInputNode.SUCCESS_CONTINUE
The transaction is committed and the broker calls the run method again by
using the same thread.

MbInputNode.SUCCESS_RETURN
The transaction is committed and the thread is returned to the thread pool,
assuming that it is not the only thread for this message flow.

MbInputNode.FAILURE_CONTINUE
The transaction is rolled back and the broker calls the run method again by
using the same thread.

MbInputNode.FAILURE_RETURN
The transaction is rolled back and the thread is returned to the thread pool,
assuming that it is not the only thread for this message flow.

3058 WebSphere Message Broker Version 7.0.0.8

MbInputNode.TIMEOUT
The run method must not block indefinitely while waiting for input data to
arrive. While the flow is blocked by user code, you cannot shut down or
reconfigure the broker. The run method must yield control to the broker
periodically by returning from the run method. If input data is not
received after a certain period (for example, 5 seconds), the method must
return with the TIMEOUT return code. Assuming that the broker does not
need to reconfigure or shut down, the run method of the input node gets
called again immediately.

To create multithreaded message flows, you call the dispatchThread method after a
message is created, but before the message is propagated to an output terminal.
This action ensures that only one thread is waiting for data while other threads are
processing the message. New threads are obtained from the thread pool up to the
maximum limit specified by the Additional Instances property of the message
flow. For example:

public int run(MbMessageAssembly assembly) throws MbException
{

byte[] data = getDataWithTimeout(); // user supplied method
// returns null if timeout

if(data == null)
return TIMEOUT;

MbMessage msg = createMessage(data);
msg.finalizeMessage(MbMessage.FINALIZE_VALIDATE);
MbMessageAssembly newAssembly =

new MbMessageAssembly(assembly, msg);

dispatchThread();

getOutputTerminal("out").propagate(newAssembly);

return SUCCESS_RETURN;
}

Declaring the node name:
About this task

You must declare the name of the node for use and identification by the
WebSphere Message Broker Toolkit. All node names must end with the characters
"Node". Declare the name by using the following method:
public static String getNodeName()
{

return "BasicInputNode";
}

If this method is not declared, the Java API framework creates a default node
name by using the following rules:
v The class name is appended to the package name.
v The periods are removed, and the first letter of each part of the package and

class name is capitalized.

For example, by default, the following class is assigned the node name
"ComIbmPluginsamplesBasicInputNode":
package com.ibm.pluginsamples;
public class BasicInputNode extends MbInputNode implements MbInputNodeInterface
{

...

Chapter 9. Developing message flow applications 3059

Declaring attributes:
About this task

Declare node attributes by using the same method that you use for Java bean
properties. You are responsible for writing get and set methods for the attributes;
the API framework infers the attribute names by using the Java bean introspection
rules. For example, if you declare the following two methods:
private String attributeVariable;

public String getFirstAttribute()
{

return attributeVariable;
}

public void setFirstAttribute(String value)
{

attributeVariable = value;
}

The broker infers that this node has an attribute called firstAttribute. This name is
derived from the names of the get or set methods, not from the variable names of
any internal class members. Attributes can be exposed only as strings, so convert
numeric types to and from strings in the get or set methods. For example, the
following method defines an attribute called timeInSeconds:
int seconds;

public String getTimeInSeconds()
{

return Integer.toString(seconds);
}

public void setTimeInSeconds(String value)
{

seconds = Integer.parseInt(value);
}

Implementing the node functionality:
About this task

As already described, the run method is called by the broker to create the input
message. This method must provide all the processing function for the input node.

Overriding default message parser attributes (optional):
About this task

An input node implementation normally determines which message parser initially
parses an input message. For example, the built-in MQInput node dictates that an
MQMD parser is required to parse the MQMD header. A user-defined input node
can select an appropriate header or message parser, and the mode in which the
parsing is controlled, by using the following default attributes that are included,
which you can override:

rootParserClassName
Defines the name of the root parser that parses message formats supported
by the user-defined input node. It defaults to GenericRoot, a supplied root
parser that causes the broker to allocate and chain parsers together. It is
unlikely that a node would have to modify this attribute value.

3060 WebSphere Message Broker Version 7.0.0.8

firstParserClassName
Defines the name of the first parser, in what might be a chain of parsers
that are responsible for parsing the bit stream. It defaults to XML.

messageDomainProperty
An optional attribute that defines the name of the message parser required
to parse the input message. The supported values are the same as the
values that are supported by the MQInput node.

messageSetProperty
An optional attribute that defines the message set identifier, or the message
set name, in the Message Set field, only if the MRM parser was specified
by the messageDomainProperty attribute.

messageTypeProperty
An optional attribute that defines the identifier of the message in the
MessageType field, only if the MRM parser was specified by the
messageDomainProperty attribute.

messageFormatProperty
An optional attribute that defines the format of the message in the Message
Format field, only if the MRM parser was specified by the
messageDomainProperty attribute.

Deleting an instance of the node:
About this task

An instance of the node is deleted when either:
v You shut down the broker.
v You remove the node or the message flow that contains the node, and redeploy

the configuration.

When the node is deleted, it can perform cleanup operations, such as closing
sockets, if it implements the optional onDelete method. This method, if present, is
called by the broker just before the node is deleted.

Implement the onDelete method as follows:
public void onDelete()
{

// perform node cleanup if necessary
}

Related concepts:
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:

Chapter 9. Developing message flow applications 3061

“Restrictions when creating Java nodes” on page 3055
In Java user-defined nodes and the JavaCompute node, calling the System.exit(...)
method is not supported. Calling this method results in a SecurityException.
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“Exception list structure” on page 4224
An exception list contains information about exceptions, such as error numbers, the
name of the node that generated the exception, and the reason for the exception.
Related information:
Java user-defined extensions API

Creating a message processing or output node in Java:

A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.

Before you begin

Before you start

Read the following topics:
v “Why use a user-defined extension?” on page 2972
v “User-defined message processing nodes” on page 2996
v “User-defined output nodes” on page 3006
v “Restrictions when creating Java nodes” on page 3055

About this task

WebSphere Message Broker provides the source for two sample user-defined nodes
called SwitchNode and TransformNode. You can use these nodes in their current
state, or you can modify them.

When you code a message processing node or an output node, the two types
provide essentially the same functions. You can perform message processing within
an output node, and likewise you can propagate an output message to a bit stream
from a message processing node. For simplicity, this topic refers mainly to the
node as a message processing node, but it does discuss the functionality of both
types of node.

Complete the following steps:
1. “Creating a new Java project” on page 3063
2. “Declaring the message processing node class” on page 3063
3. “Defining the node constructor” on page 3064

3062 WebSphere Message Broker Version 7.0.0.8

4. “Accessing message data” on page 3064
5. “Transforming a message object” on page 3064
6. “Propagating the message” on page 3066
7. “Declaring the node name” on page 3066
8. “Declaring attributes” on page 3067
9. “Implementing the node functionality” on page 3067

10. “Deleting an instance of the node” on page 3068

A Java user-defined node is distributed as a .jar file.

Creating a new Java project:
About this task

Before you can create Java nodes in the WebSphere Message Broker Toolkit, you
must create a new Java project:
1. Click File > New > Project. Select Java and click Next.
2. In the Project name field, enter a project a name, then click Next.
3. On the Java Settings pane, select the Libraries tab, and click Add External

JARs.
4. Select install_dir\classes\jplugin2.jar.
5. Follow the prompts on the other tabs to define any other build settings.
6. Click Finish.

You can now develop the source for your Java node within this project.

Declaring the message processing node class:
About this task

Any class that implements MbNodeInterface, and is contained in the broker's LIL
path, is registered with the broker as a message processing node. When you
implement MbNodeInterface, you must also implement an evaluate method for
this class. The evaluate method is called by the broker for each message that passes
through the flow.

The class name must end with the word "Node". For example, if you have
assigned the name as Basic in the WebSphere Message Broker Toolkit, the class
name must be BasicNode.

For example, to declare the message processing node class:
package com.ibm.jplugins;

import com.ibm.broker.plugin.*;

public class BasicNode extends MbNode implements MbNodeInterface

Declare the class in the WebSphere Message Broker Toolkit:
1. Click File > New > Class.
2. Set the package and class name fields to appropriate values.
3. Delete the text in the Superclass text field and click Browse.
4. Select MbNode and click OK.
5. Click the Add button next to Interfaces text field, and select MbNodeInterface.
6. Click Finish.

Chapter 9. Developing message flow applications 3063

Defining the node constructor:
About this task

When the node is instantiated, the constructor of the user's node class is called.
Create the terminals of the node, and initialize any default values for attributes in
this constructor.

A message processing node has a number of input terminals and output terminals
that are associated with it. Use the methods createInputTerminal and
createOutputTerminal to add terminals to a node when the node is instantiated.

For example, to create a node with one input terminal and two output terminals:
public MyNode() throws MbException
{

// create terminals here
createInputTerminal ("in");
createOutputTerminal ("out");
createOutputTerminal ("failure");

}

Accessing message data:
About this task

In many cases, the user-defined node needs to access the contents of the message
received on its input terminal. The message is represented as a tree of syntax
elements. Use the supplied utility function to evaluate methods for message
management, message buffer access, syntax element navigation, and syntax
element access.

The MbElement class provides the interface to the syntax elements.

For example:

Procedure

1. To navigate to the relevant syntax element in the XML message:
MbElement rootElement = assembly.getMessage().getRootElement();
MbElement switchElement =
rootElement.getLastChild().getFirstChild().getFirstChild();

2. To select the terminal indicated by the value of this element:
String terminalName;
String elementValue = (String)switchElement.getValue();
if(elementValue.equals("add"))

terminalName = "add";
else if(elementValue.equals("change"))

terminalName = "change";
else if(elementValue.equals("delete"))

terminalName = "delete";
else if(elementValue.equals("hold"))

terminalName = "hold";
else

terminalName = "failure";

MbOutputTerminal out = getOutputTerminal(terminalName);

Results

Transforming a message object:

3064 WebSphere Message Broker Version 7.0.0.8

About this task

The received input message is read-only, so before you can transform a message,
you must write it to a new output message. You can copy elements from the input
message, or you can create new elements in the output message.

The MbMessage class provides the copy constructors, and the methods to get the
root element of the message. The MbElement class provides the interface to the
syntax elements.

For example, if you have an incoming message assembly with embedded
messages, you could have the following code in the evaluate method of your
user-defined node:
1. To create a new copy of the message assembly and its embedded messages:

MbMessage newMsg = new MbMessage(assembly.getMessage());
MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

2. To navigate to the relevant syntax element in the XML message:
MbElement rootElement = newAssembly.getMessage().getRootElement();
MbElement switchElement =
rootElement.getFirstElementByPath("/XML/data/action");

3. To change the value of an existing element:
String elementValue = (String)switchElement.getValue();
if(elementValue.equals("add"))

switchElement.setValue("change");
else if(elementValue.equals("change"))

switchElement.setValue("delete");
else if(elementValue.equals("delete"))

switchElement.setValue("hold");
else

switchElement.setValue("failure");

4. To add a new tag as a child of the switch tag:
MbElement tag = switchElement.createElementAsLastChild(MbElement.TYPE_NAME,

"PreviousValue",
elementValue);

5. To add an attribute to this new tag:
tag.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE,

"NewValue",
switchElement.getValue());

MbOutputTerminal out = getOutputTerminal("out");

As part of the transformation, you might need to create a new message body. To
create a new message body, use one of the following methods, which specifically
assigns a parser to a message tree folder:
createElementAfter(String)
createElementAsFirstChild(String)
createElementAsLastChild(String)
createElementBefore(String)
createElementAsLastChildFromBitstream(byte[], String, String, String, String, int, int, int)

Do not use the following methods, which do not associate an owning parser with
the folder:
createElementAfter(int)
createElementAfter(int, String, Object)
createElementAsFirstChild(int)
createElementAsFirstChild(int, String, Object)

Chapter 9. Developing message flow applications 3065

createElementAsLastChild(int)
createElementAsLastChild(int, String, Object)
createElementBefore(int)
createElementBefore(int, String, Object)

Propagating the message:
About this task

Before you propagate a message, decide what message flow data you want to
propagate, and whether to propagate to a node terminal, or to a Label node.

For example:
1. To propagate the message to the output terminal "out":

MbOutputTerminal out = getOutputTerminal("out");
out.propagate(newAssembly);

2. To propagate the message to a Label node:
MbRoute label1 = getRoute ("label1");
Label1.propagate(newAssembly);

Call the clearMessage() function within the finally block of try/catch to clear the
memory that is allocated for the message tree.

To propagate the same MbMessage object multiple times, call the finalizeMessage()
method on the MBMessage object, so that any changes made to the message are
reflected in the bit stream that is generated downstream of the Java node; for
example:
MbMessage newMsg = new MbMessage(assembly.getMessage());
MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);
...
newMsg.finalizeMessage(MbMessage.FINALIZE_NONE);
out.propagate(newAssembly;
...
newMsg.finalizeMessage(MbMessage.FINALIZE_NONE);
out.propagate(newAssembly);

Declaring the node name:
About this task

The name of the node must be the same as the one that is used in the WebSphere
Message Broker Toolkit. All node names must end with "Node". Declare the name
using the following method:
public static String getNodeName()
{

return "BasicNode";
}

If this method is not declared, the Java API framework creates a default node
name using the following rules:
v The class name is appended to the package name.
v The dots are removed, and the first letter of each part of the package and class

name are capitalized.

For example, by default, the following class is assigned the node name
"ComIbmPluginsamplesBasicNode":
package com.ibm.pluginsamples;
public class BasicNode extends MbNode implements MbNodeInterface
{

...

3066 WebSphere Message Broker Version 7.0.0.8

Declaring attributes:
About this task

Declare node attributes in the same way as Java Bean properties. You must write
getter and setter methods for the attributes. The API framework infers the attribute
names using the Java Bean introspection rules. For example, if you declare the
following two methods:
private String attributeVariable;

public String getFirstAttribute()
{

return attributeVariable;
}

public void setFirstAttribute(String value)
{

attributeVariable = value;
}

the broker infers that this node has an attribute called firstAttribute. This name is
derived from the names of the get or set methods, not from any internal class
member variable names. Attributes can only be exposed as strings, therefore, you
must convert any numeric types to and from strings in the get or set methods. For
example, the following method defines an attribute called timeInSeconds:
int seconds;

public String getTimeInSeconds()
{

return Integer.toString(seconds);
}

public void setTimeInSeconds(String value)
{

seconds = Integer.parseInt(value);
}

Implementing the node functionality:
About this task

The evaluate method, defined in MbNodeInterface, is called by the broker to
process the message. All the processing function for the node is included in this
method.

The evaluate method has two parameters that are passed in by the broker:
1. The MbMessageAssembly, which contains the following objects that are

accessed using the appropriate methods:
v The incoming message
v The LocalEnvironment
v The global Environment
v The ExceptionList

2. The input terminal on which the message has arrived.

For example, the following code extract shows how you might write the evaluate
method:

Chapter 9. Developing message flow applications 3067

public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException
{
// add message processing code here

getOutputTerminal("out").propagate(assembly);
}

The message flow data, which consists of the message, Environment,
LocalEnvironment, and ExceptionList, is received at the input terminal of the node.

Deleting an instance of the node:
About this task

An instance of the node is deleted when either:
v You shut down the broker.
v You remove the node or the message flow that contains the node, and redeploy

the configuration.

If you want the node to perform any cleanup operations, for example closing
sockets, include an implementation of the onDelete method:
public void onDelete()
{

// perform node cleanup if necessary
}

This method is called by the broker immediately before it deletes the node.
Related concepts:
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:
“Extending the capability of a Java message processing or output node” on page
3069
Within a message processing or output node, you can add extended functions to
your Java node.
“Restrictions when creating Java nodes” on page 3055
In Java user-defined nodes and the JavaCompute node, calling the System.exit(...)
method is not supported. Calling this method results in a SecurityException.

3068 WebSphere Message Broker Version 7.0.0.8

“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
Related reference:
“Exception list structure” on page 4224
An exception list contains information about exceptions, such as error numbers, the
name of the node that generated the exception, and the reason for the exception.
“Label node” on page 4569
Use the Label node to process a message that is propagated by a RouteToLabel
node to dynamically determine the route that the message takes through the
message flow.
Related information:
Java user-defined extensions API

Extending the capability of a Java message processing or output node:

Within a message processing or output node, you can add extended functions to
your Java node.

Before you begin

Before you start

Read “Creating a message processing or output node in Java” on page 3062.

About this task

You can add one or more of the following functions:
v “Accessing ESQL”
v “Interacting with databases” on page 3070
v “Handling exceptions” on page 3070
v “Writing to an output device” on page 3072

Accessing ESQL:
About this task

Nodes can invoke ESQL expressions using Compute node ESQL syntax. You can
create and modify the components of the message using ESQL expressions, and
you can refer to elements of both the input message and data from an external
database.

The following procedure demonstrates how to use ESQL to control transactions
from the evaluate method in your user-defined node:
1. Set the name of the ODBC data source to use. For example:

String dataSourceName = "myDataSource";

2. Set the ESQL statement to run:
String statement =

"SET OutputRoot.XMLNS.data =
(SELECT Field2 FROM Database.Table1 WHERE Field1 = 1);";

Or, if you want to run a statement that returns no result:

Chapter 9. Developing message flow applications 3069

String statement = "PASSTHRU(
’INSERT INTO Database.Table1 VALUES(

InputRoot.XMLNS.DataField1,
InputRoot.XMLNS.DataField2)’);";

3. Select the transaction you want from the following types:

MbSQLStatement.SQL_TRANSACTION_COMMIT
Immediately commit the transaction after the ESQL statement has
completed.

MbSQLStatement.SQL_TRANSACTION_AUTO
Commit the transaction when the message flow has completed.
(Rollbacks are performed if necessary.)

For example:
int transactionType = MbSQLStatement.SQL_TRANSACTION_AUTO;

4. Get the ESQL statement. For example:
MbSQLStatement sql =

createSQLStatement(dataSourceName, statement, transactionType);

You can use the method createSQLStatement(data source, statement to default
the transaction type to MbSQLStatement.SQL_TRANSACTION_AUTO).

5. Create the new message assembly to be propagated:
MbMessageAssembly newAssembly =

new MbMessageAssembly(assembly, assembly.getMessage());

6. Run the ESQL statement:
sql.select(assembly, newAssembly);

Or, if you want to run an ESQL statement that returns no result:
sql.execute(assembly);

Interacting with databases:
About this task

You can interact with databases from the Java code in your message processing
node. The support that is provided is identical to the support for Java code that
you write for the JavaCompute node; for details of the available options, and the
advantages and restrictions that apply, see “Interacting with databases by using the
JavaCompute node” on page 2661.

Handling exceptions:
About this task

Use the MbException class to catch and access exceptions. The MbException class
returns an array of exception objects that represent the children of an exception in
the broker exception list. Each element returned specifies its exception type. An
empty array is returned if an exception has no children. The following code sample
shows an example of how you might use the MbException class in the evaluate
method of your user-defined node.

public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException
{

try
{

// plug-in functionality

}
catch(MbException ex)

3070 WebSphere Message Broker Version 7.0.0.8

{
traverse(ex, 0);

throw ex; // if re-throwing, it must be the original exception that was caught
}

}

void traverse(MbException ex, int level)
{

if(ex != null)
{

// Do whatever action here
System.out.println("Level: " + level);
System.out.println(ex.toString());
System.out.println("traceText: " + ex.getTraceText());

// traverse the hierarchy
MbException e[] = ex.getNestedExceptions();
int size = e.length;
for(int i = 0; i < size; i++)

{
traverse(e[i], level + 1);

}
}

}

You can develop a user-defined message-processing or output node in such a way
that it can access all current exceptions. For example, to catch database exceptions
you can use the MbSQLStatement class. This class sets the value of the
'throwExceptionOnDatabaseError' attribute, which determines broker behavior
when it encounters a database error. When it is set to true, if an exception is
thrown it can be caught and handled by the evaluate method in your user-defined
extension.

The following code sample shows an example of how to use the MbSQLStatement
class.

public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException
{

MbMessage newMsg = new MbMessage(assembly.getMessage());
MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

String table =
assembly.getMessage().getRootElement().getLastChild().getFirstChild().getName();

MbSQLStatement state = createSQLStatement("dbName",
"SET OutputRoot.XMLNS.integer[] = PASSTHRU(’SELECT * FROM " + table + "’);");

state.setThrowExceptionOnDatabaseError(false);
state.setTreatWarningsAsErrors(true);

state.select(assembly, newAssembly);

int sqlCode = state.getSQLCode();
if(sqlCode != 0)

{
// Do error handling here

System.out.println("sqlCode = " + sqlCode);
System.out.println("sqlNativeError = " + state.getSQLNativeError());
System.out.println("sqlState = " + state.getSQLState());
System.out.println("sqlErrorText = " + state.getSQLErrorText());

}

getOutputTerminal("out").propagate(newAssembly);
}

Chapter 9. Developing message flow applications 3071

Writing to an output device:
About this task

To write to an output device, the logical (hierarchical) message must be converted
back into a bit stream in your evaluate method. Use the getBuffer method in
MbMessage to perform this task:
public void evaluate(MbMessageAssembly assembly, MbInputTerminal in)

throws MbException
{

MbMessage msg = assembly.getMessage();
byte[] bitstream = msg.getBuffer();

// write the bitstream out somewhere
writeBitstream(bitstream); // user method

}

Typically, for an output node the message is not propagated to any output
terminal, therefore you can just return at this point.

You must use the supplied MQOutput node when writing to WebSphere MQ
queues, because the broker internally maintains a WebSphere MQ connection and
the open queue handles on a thread-by-thread basis. These handles are cached to
optimize performance. In addition, the broker handles exception scenarios when
certain WebSphere MQ events occur, and this recovery is adversely affected if
WebSphere MQ MQI calls are used in a user-defined output node.
Related concepts:
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.

3072 WebSphere Message Broker Version 7.0.0.8

“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
“Interacting with databases by using the JavaCompute node” on page 2661
Access databases from Java code included in the JavaCompute node.
Related reference:
“Exception list structure” on page 4224
An exception list contains information about exceptions, such as error numbers, the
name of the node that generated the exception, and the reason for the exception.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
Related information:
Java user-defined extensions API

Getting and setting the specific type of an Mb element:

Two methods are provided for handling the specific type of an Mb syntax element.

About this task

The following methods are available:
v getSpecificType
v setSpecificType

Use these methods to access or set the specific type of an XML element. For
example, to update the current value:

Procedure

1. Call getSpecificType on the syntax element.
The getSpecificType method does not take any parameters, but returns the
specific type of the element as an int value.

2. Call setSpecificType on the syntax element.
The setSpecificType method takes one parameter of the type int, which is the
specific type that you want the Mb element to be. This method has no return
value.

Results

Specific type values for the XML and MRM parsers are listed in “XML, MRM, and
XMLNSC parser constants” on page 6691.
Related concepts:

Chapter 9. Developing message flow applications 3073

“Specific types used by parsers” on page 3015
Specific types are used when a parser needs additional information that is
associated with some or all the elements in a tree in order to generate the bit
stream.
Related reference:
“XML, MRM, and XMLNSC parser constants” on page 6691
The names of the XML and MRM parser constants, together with their
corresponding values, and a link to the XMLNSC constants.

Compiling a Java user-defined node:

When you have created the code for your Java user-defined node, you must
compile it for your operating system.

Before you begin

Before you start

You must have a user-defined node written in Java. This node can be one of the
provided sample nodes that are described in “Sample node files” on page 6412, or
a node that you have created yourself by using the instructions in either “Creating
a message processing or output node in Java” on page 3062 or “Creating an input
node in Java” on page 3055.

About this task

You can compile a Java user-defined node either from the command line, or from
within the project in the WebSphere Message Broker Toolkit. Both options are
described later in this section.

When you compile a Java user-defined node from the command line, you must
have a compatible IBM Software Developer Kit for Java on the current operating
system. For details of supported Java versions, see “Additional software
requirements” on page 3598.

Compiling a Java user-defined node from the WebSphere Message Broker Toolkit:
About this task

Use the following procedure to compile your Java user-defined node from the
WebSphere Message Broker Toolkit:

Procedure

1. In the Package Explorer, select the /src directory inside your node project, and
click File > Export.

2. From the list displayed, select JAR file. Click Next. The resources that are
available for you to export as a JAR file are listed.

3. Verify that Export generated class files and resources is selected.
4. Specify a name and location for your JAR file. Place the file inside the root

directory of your node project, and give the file the same name as the name of
the project (with a .jar extension). You can use the default values for the rest
of the options. Click Finish.

3074 WebSphere Message Broker Version 7.0.0.8

Results

The .jar file that you have created is displayed in your node project, and is ready
for you to install on one or more brokers (see “Installing user-defined extension
runtime files on a broker” on page 3125), or to package for distribution (see
“Packaging and distributing a user-defined node project” on page 3121).

Compiling a Java user-defined node from the command line:
About this task

Use the following procedure to compile your Java user-defined node from the
command line:

Procedure

1. Add the location of jplugin2.jar to the CLASSPATH for your current
platform:

Windows

install_dir\classes\jplugin2.jar

Linux install_dir/classes/jplugin2.jar

UNIX install_dir/classes/jplugin2.jar

z/OS install_dir/classes/jplugin2.jar

2. Put your Java user-defined node class into the following directory:

Windows

install_dir\sample\extensions\nodes

Linux install_dir/sample/extensions/nodes

UNIX install_dir/sample/extensions/nodes

z/OS install_dir/sample/extensions/nodes

3. Change to the directory that now contains your user-defined node class.
4. Compile the .java file by using the javac command; for example:

javac nodename.java

5. Package the resulting .class file into a .par file. See “Packaging a Java
user-defined node” on page 3118.

Results

The .par file that you have created is ready for you to install on one or more
brokers (see “Installing user-defined extension runtime files on a broker” on page
3125), or to package for distribution (see “Packaging and distributing a
user-defined node project” on page 3121).
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend

Chapter 9. Developing message flow applications 3075

the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“User-defined node class loading” on page 3120
Details the Java classes packaging options and loading order precedence for
user-defined nodes.
Related tasks:
“Installing user-defined extension runtime files on a broker” on page 3125
Install the compiled runtime files for your user-defined extension on the broker on
which you want to test its function.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
“Packaging a Java user-defined node” on page 3118
How to package a Java user-defined node.
Related information:
Java user-defined extensions API

Creating a user-defined node from a subflow:

Create user-defined nodes either from scratch, or by using an existing subflow.

About this task

Complete the appropriate tasks from the following list:
v “Creating a user-defined node from a subflow from scratch”
v “Creating a user-defined node from an existing subflow” on page 3078
v “Choosing the location of a user-defined node in the palette” on page 3092
Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.

Creating a user-defined node from a subflow from scratch:

Create a user-defined node that packages a subflow by creating a user-defined
node project, then creating the user-defined node.

3076 WebSphere Message Broker Version 7.0.0.8

About this task

After you have created a user-defined node, you can edit its properties in the
Palette editor.
You can define as many user-defined nodes as you want in the same
user-defined node project.

To create any type of user-defined node, use the following steps:

Procedure

1. Create a user-defined node project:
a. To open the New User-defined Node Project wizard, click File > New >

New User-defined Node Project, then click Next.
b. Either choose an existing category, or create a category by clicking Create a

new category. Your user-defined nodes are displayed in the palette in the
Message Flow editor under the category you specify for the project. You can
have only one category in each user-defined node project.

c. Enter the details for the remainder of the fields as required, then click
Finish.

A user-defined node project is created.
2. Create a user-defined node:

a. To open the New User-defined Node wizard, click File > New >
User-defined Node.

b. Select the user-defined node project that you created previously.
c. Select the schema location that you want to host the user-defined node. Use

a fully qualified schema. Do not use a default or mqsi schema.
d. Enter the details for the remainder of the fields as required.
e. Select Implemented as a subflow. The Message Flow editor opens.
f. Click Finish.

3. Decide on the location of your user-defined node in the palette. See “Choosing
the location of a user-defined node in the palette” on page 3092.

What to do next

You can now define the reusable logic and the terminals and properties of the
user-defined node.
Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.

Chapter 9. Developing message flow applications 3077

“Creating a user-defined node from an existing subflow”
Create a user-defined node by converting the project for an existing subflow into a
user-defined node project, and then creating the user-defined node.
“Installing a user-defined node” on page 1496
Develop message flows that use a user-defined node.
“Choosing the location of a user-defined node in the palette” on page 3092
Use the Palette editor to edit palette-specific information for user-defined nodes,
add and delete separators, and rearrange user-defined nodes in the palette.

Creating a user-defined node from an existing subflow:

Create a user-defined node by converting the project for an existing subflow into a
user-defined node project, and then creating the user-defined node.

About this task

To create a user-defined node from an existing subflow, use the following steps:

Procedure

1. To convert existing subflows into user-defined nodes, you must convert the
project for the subflow into a user-defined node project:
a. Right-click the existing project, click Convert to User-defined Node Project.

The Convert to User-defined Node Project wizard is displayed.
b. Choose a category from the following options. Your user-defined nodes are

displayed in the palette in the Message Flow editor under the category you
specify for the project.
v To use an existing category, select a category from the list provided.
v To create a new category, select Create a new category, enter a name for

the category for the nodes that you want to create in the new project.
c. Enter the details for the remainder of the fields as required.
d. Click Finish.

2. Select the subflow that you want to convert to a user-defined node:
a. Right-click the subflow to display the menu.
b. Click Convert to User-defined Node. The Convert to User-defined Node

wizard opens.
c. Enter the details for the remainder of the fields as required.
d. Click Finish.

3. Decide on the location of your user-defined node in the palette. See “Choosing
the location of a user-defined node in the palette” on page 3092.

Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.

3078 WebSphere Message Broker Version 7.0.0.8

“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
“Creating a user-defined node from a subflow from scratch” on page 3076
Create a user-defined node that packages a subflow by creating a user-defined
node project, then creating the user-defined node.
“Installing a user-defined node” on page 1496
Develop message flows that use a user-defined node.
“Choosing the location of a user-defined node in the palette” on page 3092
Use the Palette editor to edit palette-specific information for user-defined nodes,
add and delete separators, and rearrange user-defined nodes in the palette.

Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit:

When you are developing a user-defined node in Java or C only, you must create
the user interface representation of the node in the WebSphere Message Broker
Toolkit.

Before you begin

Before you start:
v Perform the steps in “Creating a user-defined node” on page 3025.

About this task

The following topics describe the steps that you must complete:
1. “Creating a user-defined node project” on page 3080
2. “Creating a user-defined node in the WebSphere Message Broker Toolkit” on

page 3081

What to do next

When you have created the WebSphere Message Broker Toolkit representation, test
your user-defined node, see “Testing a user-defined node” on page 3094.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
Related reference:

Chapter 9. Developing message flow applications 3079

“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Creating a user-defined node project:

When you create user-defined nodes, you must first create a user-defined node
project to contain the nodes and their supporting files.

About this task

To create a new project for your user-defined node, complete the following steps:

Procedure

1. Click File > New > User-defined Node Project. Click Next to start the
User-defined Node Project wizard. The New User-defined Node Project
window opens.

2. Either select an existing category, or select Create a new category and specify
the name of a new category for the nodes that you are creating. Your
user-defined nodes are displayed in the palette in the Message Flow editor
under the category you specify for the project.

3. Specify a name for your project.
4. Specify a name for your plug-in identifier. To be consistent with the supplied

nodes, and to avoid conflict with the names of node projects that are supplied
by other independent software vendors, use your Internet domain name for
your organization as part of the name and plug-in identifier. For example, the
name and plug-in identifier must be of the form com.xyz.nodegroup, where
com.xyz is the company Internet domain name.
You can save any number of nodes in a single project.

5. Accept all default values and click Finish.
6. If warnings are displayed in the Problems view, that are associated with the

newly created project, perform the following steps:
a. Click Window > Preferences.
b. Expand Plug-In Development and click Target Platform.
c. Click Add required Plug-ins to select all loaded plug-ins and click OK.
d. Select your user-defined node project in the Package Explorer view, and

click Project > Clean. A dialog box opens in which you can select either of
the following options:
v Clean all projects.
v Clean projects selected below. If you choose this option, select the

projects that you want to clean.

Results

A project folder that contains all the supporting files that are required for your
user-defined node is displayed in the Package Explorer view. The project is stored
in the default workspace directory.

What to do next

Next:

3080 WebSphere Message Broker Version 7.0.0.8

Create the user-defined node plug-ins, see “Creating a user-defined node in the
WebSphere Message Broker Toolkit.”
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“Message flow node palette” on page 1027
The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.
Related tasks:
“Creating a user-defined node in the WebSphere Message Broker Toolkit”
Create the representation of a user-defined node created in Java and C only, in the
WebSphere Message Broker Toolkit.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Creating a user-defined node in the WebSphere Message Broker Toolkit:

Create the representation of a user-defined node created in Java and C only, in the
WebSphere Message Broker Toolkit.

Before you begin

Before you start:

Complete the following task: “Creating a user-defined node project” on page 3080.

About this task

To create the visual representation of your user-defined node in the WebSphere
Message Broker Toolkit, complete the following tasks:
1. “Creating the user-defined node plug-in files” on page 3082

Chapter 9. Developing message flow applications 3081

2. “Defining the node properties” on page 3083
3. Optional: “Adding help to the node” on page 3088
4. Optional: “Creating node icons” on page 3090
5. Optional: “Adding a property editor or compiler” on page 3091

When you have created the representation of the node, you cannot move it to
another folder.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Creating a user-defined node project” on page 3080
When you create user-defined nodes, you must first create a user-defined node
project to contain the nodes and their supporting files.
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Creating the user-defined node plug-in files:

Create the files that contain the message processing logic, for user-defined nodes
created in Java and C only.

Before you begin

Before you start:

Complete the task following task: “Creating a user-defined node project” on page
3080.

3082 WebSphere Message Broker Version 7.0.0.8

About this task

Procedure

1. Launch the wizard by clicking File > New > User-defined Node. The New
User-defined Node window opens.

2. Select the parent folder for the node from the list of names that are displayed.
This folder is the project that you created to contain this node.

3. Specify a schema for this node. You must not use the default schema or any
other common schema, such as mqsi.

4. Specify a name for the node. The name must be the name of the node,
excluding the Node at the end. For example, if you have created a node called
BasicNode, the node name must be Basic.

5. Click Finish. A .msgnode file for the new node is created and is added to the
project in the Broker Development view. The .msgnode file is opened in the
Message Node editor.

What to do next

Next:

When you have completed this task, define the node properties, see “Defining the
node properties.”
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a user-defined node project” on page 3080
When you create user-defined nodes, you must first create a user-defined node
project to contain the nodes and their supporting files.
“Defining the node properties”
Define the properties for a user-defined node created in Java or C only, and add
input and output terminals so that you can connect it to other nodes in a message
flow.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Defining the node properties:

Define the properties for a user-defined node created in Java or C only, and add
input and output terminals so that you can connect it to other nodes in a message
flow.

Chapter 9. Developing message flow applications 3083

Before you begin

Before you start:

Complete the following tasks:
1. “Creating a user-defined node project” on page 3080
2. “Creating the user-defined node plug-in files” on page 3082

About this task

When you complete the task described in “Creating the user-defined node plug-in
files” on page 3082, a .msgnode file is created for the new node, and is opened in
the Message Node editor of the Broker Application Development perspective. You
can now add terminals and properties to the node.

Adding terminals to the node:
Procedure

1. If the Terminals page is not already displayed, click the Terminals tab at the
bottom of the Message Node editor.

2. Click Add to the right of the In Terminals or Out Terminals fields to add an
input or output terminal.
You must define at least one input terminal, but output terminals are optional.

3. To rename a terminal, click the terminal name so that it is highlighted and
shows a flashing cursor after the name, and enter a new name.

4. If your node supports dynamic input or output terminals, select the
appropriate check box.
Dynamic terminals are terminals that you can add to certain nodes after you
have added them to a message flow in the Message Flow editor. For more
information, see “Message flow node terminals” on page 1034.

Defining properties for the node:
Procedure

1. Click the Properties tab at the bottom of the Message Node editor.
On the Properties page, you can set the properties for the node, for example, a
database name, a host server name, or a password. The properties that you set
here must match the properties that you specified in the user-defined node
itself by using the get and set methods.

2. If the node is an input node, click the node name in the hierarchy to highlight
it, and select Input node. Select Use broker default values if you want the
node to initialize with the default values for the broker.

3. By default, all properties are grouped under the Basic group. You can add new
groups in which to place properties. When your custom node is selected in the
WebSphere Message Broker Toolkit, each group of properties is rendered as a
separate tab in the Properties view. To create additional groups of properties,

click Add Property Group .
4. To add a simple property, click the name of a property group in the hierarchy

to highlight it, and click Add Simple Property

3084 WebSphere Message Broker Version 7.0.0.8

The new property is added to the hierarchy as a child of the property group.
Its name is highlighted so that you can change it. A number of fields are
displayed in the Details section, where you can configure the property.
a. Select the correct attribute type: one of the built-in types, or a type to match

the list of values that the property can have.
b. Enter any default values, which are shown in the Properties view when the

node is included in a message flow.
c. Optional: If you want to use a custom property compiler, in the Custom

Compiler Class field specify the class you want to use for your custom
compiler. The class must implement the IPropertyCompiler interface. For
more information, see “Adding a property editor or compiler” on page
3091.

d. Optional: If you want to use a custom property editor, in the Custom Editor
Class field specify the class you want to use for your custom editor. The
class must implement the IPropertyEditor interface. For more information,
see “Adding a property editor or compiler” on page 3091.

e. Specify the system property for each attribute that you define:

Hidden
The property is not displayed in the Properties view or the Promote
Property dialog box.

Read only
The property is displayed, but cannot be changed.

Mandatory
A value is required. The field cannot be left blank. Boolean and
enum properties are always mandatory.

Configurable
The property can be configured at deployment time

5. To add a table property, select the name of a property group in the Properties

view and click Add Table Property .
In addition to simple properties, a node can also have complex properties. A
table property represents a repeating property of a complex type. The new
property is added to the hierarchy as a child of the property group. A number
of fields are displayed in the Details section where you can configure the table
property.

6. To add a column to an existing table, select the name of the table property in

the hierarchy, and click Add Simple Property .
For example, the following figure shows the Property Hierarchy of the
usernode, where Filter and Route columns have been added.

Chapter 9. Developing message flow applications 3085

A number of fields are displayed in the Details section where you can configure
the properties of the column. Define table columns, where each column is
assigned to a type.
a. Select the correct attribute type in the Type field: one of the built-in types,

or enumeration.
b. Enter the default value, in the Default Value field. This value is shown in

the Properties view when the node is included in a message flow.
c. Specify a qualified class name in the Custom Compiler Class field for a

property compiler. To create a custom compiler, use the IPropertyCompiler
interface. For more information about custom property editors and property
compilers, see “Adding a property editor or compiler” on page 3091.

d. Specify a qualified class name in the Custom Editor Class field to generate
a custom property editor. The property editor specified in this field
implements the IColumnPropertyEditor interface responsible for cell editing
behavior. Leaving the Custom Editor Class field blank means that a
property editor matching-column type is used. Specify your own
IColumnPropertyEditor only if you need custom cell editing behavior.

e. Specify the following attributes for each column that you define:

Hidden
Use a hidden column when you want to store, for each row,
metadata that is not being displayed.

Read only
The column is displayed, but cannot be changed.

Mandatory
A value is required. The field cannot be left blank. Boolean and
enum properties are always mandatory.

Leave the Custom Editor Class field of the Details section of a table
property blank, unless you want to overwrite the behavior of the entire
table. For example, if the table becomes disabled in response to a change in
another property editor.
The following figure shows how the Table properties are rendered as a table
in the Properties view, where you can add, edit, and delete values, and
change the order of the values in the table.

3086 WebSphere Message Broker Version 7.0.0.8

7. Optional: Drag the properties in the properties hierarchy to change the order in
which they are listed on the properties page.

8. Close the nodename.msgnode file.
9. Optional: You can customize the text that is displayed in the node properties

view for each property. To set the text, open the nodename.properties file and
edit the line:
Property.propertyName = your descriptive text

What to do next

Next:

The following tasks are optional:
v “Adding help to the node” on page 3088
v “Creating node icons” on page 3090
v “Adding a property editor or compiler” on page 3091

You can now test your node, see “Testing a user-defined node” on page 3094.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“Message flow node terminals” on page 1034
A terminal is the point at which one node in a message flow is connected to
another node.
“Broker properties” on page 1144
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.
Related tasks:

Chapter 9. Developing message flow applications 3087

“Creating a user-defined node project” on page 3080
When you create user-defined nodes, you must first create a user-defined node
project to contain the nodes and their supporting files.
“Creating the user-defined node plug-in files” on page 3082
Create the files that contain the message processing logic, for user-defined nodes
created in Java and C only.
“Promoting a property” on page 1298
You can promote a node property to the message flow level to simplify the
maintenance of the message flow and its nodes, and to provide common values for
multiple nodes in the flow by converging promoted properties.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
Related information:
Property editor API

Adding help to the node:

Add help information by adding an HTML file to the node that you have created.

Before you begin

Before you start:

Complete the following tasks:
1. “Creating a user-defined node project” on page 3080
2. “Creating the user-defined node plug-in files” on page 3082
3. “Defining the node properties” on page 3083

About this task

Add help information for the node that you have created to explain why and
when to use the node, and how it must be configured:
v Topic information that is displayed in the information center
v Context-sensitive help that is displayed when you press F1
v Hover help that is displayed when you hold the mouse pointer over the node

All three forms of help are optional; you can create any one or more of the three
resources described in the following section.

Procedure

1. Create a help.html file in the project to contain the online help that explains
what the node does and how you can use it. If you have several files, create a
separate doc subdirectory in the plug-in project, and store the online help files
in that directory.
You can make the online help for the node look like it is integrated with the
product-supplied information center, under the leaf node called "User-defined
nodes", which you can find at Reference > Message flow development >
User-defined extensions > User-defined nodes. To make the online help for
your node show at that point, complete the following steps:

3088 WebSphere Message Broker Version 7.0.0.8

a. Modify the plugin.xml file to include the following extension point to the
information center:
<extension point="org.eclipse.help.toc">
<toc file="toc.xml"/>
</extension>

b. Create a toc.xml file in your user-defined node project, and modify the
link_to attribute to link to the "UDNodes" anchor that is already defined in
the information center contents views:
<toc label="My Plugin Node" topic="my_node.htm"
link_to="../com.ibm.etools.mft.doc/toc.xml#UDNodes">
<topic label="Mytopic 1" href="topic1.htm">
</toc>

Your help topic is now displayed in the contents view under Reference >
Message flow development > User-defined extensions > User-defined
nodes.
The sample nodes that are provided with the product demonstrate this
option.
For further explanation of extension points and how to use them, see the
PDE guide at Eclipse documentation.

2. Add context sensitive (F1) help to the node. Context-sensitive help is displayed
when you click a node in the Broker Application Development perspective and
press F1.
When a node is created, a HelpContexts.xml file is created. This file assigns a
context identifier based on the name of the node. Modify the HelpContexts.xml
file for your node by changing the text in the description field. The name of the
HelpContexts.xml file must be unique within the project, but can contain
multiple context entries; for example, if you have several nodes within a single
project, each node can have its context-sensitive help in the file.
Context-sensitive help is limited in length. A useful way of providing more
help to the user is to link from the F1 help to an HTML file that contains
further information; for example, to the online help for the node, described
previously. Use the following code for the link:
<topic href"../plug-in directory/html file" label="Link title">

3. Add hover help (known as ToolTip help on Windows) to the node. When you
create a user-defined node, a palette.properties file is created. Modify this file
to contain the hover help for your node, which shows the node name when the
palette is not wide enough to display it all.

What to do next

You can add another optional feature, a node icon or a property editor or compiler,
or you can test your node, see “Creating node icons” on page 3090, “Adding a
property editor or compiler” on page 3091, and “Testing a user-defined node” on
page 3094.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new

Chapter 9. Developing message flow applications 3089

http://www.eclipse.org/documentation

message flow output node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Creating node icons:

Create the icons that are displayed in the WebSphere Message Broker Toolkit when
your user-defined node is present.

Before you begin

Before you start:

You must complete the following tasks:
1. “Creating a user-defined node project” on page 3080
2. “Creating the user-defined node plug-in files” on page 3082
3. “Defining the node properties” on page 3083

About this task

You can choose the icon when you create your user-defined node, or you can use
the Palette editor to change the icon, see “Choosing the location of a user-defined
node in the palette” on page 3092.

What to do next

You can add help, a property editor or compiler, or you can test your node, see
“Adding help to the node” on page 3088 or “Adding a property editor or
compiler” on page 3091, and “Testing a user-defined node” on page 3094.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.

3090 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Choosing the location of a user-defined node in the palette” on page 3092
Use the Palette editor to edit palette-specific information for user-defined nodes,
add and delete separators, and rearrange user-defined nodes in the palette.
“Creating a user-defined node project” on page 3080
When you create user-defined nodes, you must first create a user-defined node
project to contain the nodes and their supporting files.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Adding a property editor or compiler:

Create a property editor by using the IPropertyEditor interface to control how the
properties of your user-defined node created in Java or C only, are displayed in the
WebSphere Message Broker Toolkit. Create a custom compiler by using the
IPropertyCompiler interface; for example, to encrypt a value before sending it to
the server.

Before you begin

Before you start:

You must complete the following tasks:
1. “Creating a user-defined node project” on page 3080
2. “Creating the user-defined node plug-in files” on page 3082
3. “Defining the node properties” on page 3083

About this task

The IPropertyEditor interface is used as the basis for all the node property editors
in the WebSphere Message Broker Toolkit. You can customize the property editor
to contain different kinds of controls, such as text fields and lists. See the
IPropertyEditor and IPropertyCompiler interfaces in the Property editor API.

Creating a Java class:
About this task

To create a Java class for your property editor or compiler, complete the following
steps.

Procedure

1. Switch to the Java perspective.
2. Right-click your user-defined node project and click New > Class. If Class is

not shown, click Other, select Class and click Next.
3. Type a name for your class in the Name field.
4. Complete the following steps, according to whether you are creating a property

editor or a property compiler:
v If you are creating a property editor:
a. Delete any text in the Superclass text field, and click Browse.
b. In the Choose a type field, type AbstractPropertyEditor and click OK.

AbstractPropertyEditor implements the IPropertyEditor interface.

Chapter 9. Developing message flow applications 3091

v If you are creating a property compiler:
a. Click Add next to the Interfaces field.
b. In the Choose interfaces field, type IPropertyCompiler and click OK.

5. Click Finish.

Testing your property editor or compiler:
About this task

To test your property editor, see “Testing a user-defined node” on page 3094.

To test your property compiler, deploy to a broker the flow that contains your
user-defined node.

A custom property editor can use Rational Application Developer or Eclipse APIs.
When you migrate to a new version of WebSphere Message Broker, your custom
property editor might not work if the Rational Application Developer or Eclipse
APIs change. Update your property editor code to comply with the changed API.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a user-defined node project” on page 3080
When you create user-defined nodes, you must first create a user-defined node
project to contain the nodes and their supporting files.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
Related information:
Property editor API

Choosing the location of a user-defined node in the palette:

Use the Palette editor to edit palette-specific information for user-defined nodes,
add and delete separators, and rearrange user-defined nodes in the palette.

About this task

v If you change the details for a user-defined node in the Palette editor, save the
changes before you add or remove another user-defined node or the changed
details will be lost.

v Do not confuse the Palette editor and Customize functions:

Palette editor
The Palette editor is started from the Navigator when you select a
user-defined node project or the user-defined node virtual folder. The

3092 WebSphere Message Broker Version 7.0.0.8

Palette editor is used to set the category, node names, and icons that you
want to export so that the user can see the modified node.

Customize action
The Customize action is started from the palette in the Message Flow
editor when you select a node. The Customize action is used to change
the way that the nodes are displayed in the workspace of the current
user.

Procedure

1. To open the Palette editor use one of the following options:
v In the Broker Development view, under the user-defined node project, select

User Defined Nodes, click Edit and Arrange Palette.
v In the Broker Development view, in the user-defined node project, right-click

palette.xmi. Click Open With and select Palette Editor.
2. To edit palette-specific information:

a. In the left side of the Palette editor under the Category folder, click the
user-defined node that you want to edit. The details about the user-defined
node are displayed in the right side of the Palette editor.

b. You can change the details in the Display Name, Tooltip on palette, and
Node Icons fields, but you cannot change the Node Implementation
section.

c. You can change the category by selecting the Category folder on the left
side of the Palette editor, and on the right side either choose an existing
category, or rename your own category.

3. To group the user-defined nodes you can add or delete a separator:
v To add a separator in a user-defined node:

a. In the left side of the Palette editor, right-click the node.
b. Select Add Separator Below. A separator is added below the node in the

left side of the Palette editor.
v To delete a separator:

a. In the left side of the Palette editor, right-click Separator.
b. Click Delete Separator.

4. To rearrange your user-defined nodes, in the left side of the Palette editor either
drag the node to its new position, or right-click the node and select Move Up
or Move Down.

Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.

Chapter 9. Developing message flow applications 3093

“Creating a user-defined node from a subflow from scratch” on page 3076
Create a user-defined node that packages a subflow by creating a user-defined
node project, then creating the user-defined node.
“Creating a user-defined node from an existing subflow” on page 3078
Create a user-defined node by converting the project for an existing subflow into a
user-defined node project, and then creating the user-defined node.
“Using the node palette” on page 1489
The node palette contains all the built-in nodes, which are organized into
categories.

Testing a user-defined node:

When you have created and installed the required resources, you can test your
user-defined node.

Before you begin

Before you start

Complete the following tasks:
v “Creating a user-defined extension in C” on page 3026 or “Creating a

user-defined extension in Java” on page 3054
v “Creating the user interface representation of a user-defined node in the

WebSphere Message Broker Toolkit” on page 3079
v “Installing user-defined extension runtime files on a broker” on page 3125

This topic is for user-defined nodes created in Java and C only.

For user-defined nodes created from a subflow, see “Testing a subflow user-defined
node project” on page 3097.

Procedure

Use the following steps to test your user-defined node:
1. To test these projects and resources you must launch a second WebSphere

Message Broker Toolkit by using the following steps:
a. Right-click the user-defined node project. The menu opens.
b. Click Run in New Workbench.
v If the project contains errors, you receive an error message that gives you

the option to continue, or to cancel the action.
v If the project is error-free, the Workspace Launcher window opens.

1) You can choose to use a new or an existing workspace. To choose an
existing workspace, click Browse. The second workspace opens.

2) You can now test by using the user-defined nodes in all error-free
user-defined node projects in your first workbench.

2. Open the Message Flow editor in the second instance of the WebSphere
Message Broker Toolkit. Your new nodes are displayed in the node palette.

3. Create a message flow that includes your node. See “Adding a message flow
node” on page 1494.

4. Deploy the message flow to a broker. See “Deploying resources” on page 3234.

3094 WebSphere Message Broker Version 7.0.0.8

5. Send a test message through the flow and look for the results that you expect
(for example, a message put to a target queue). You might have to write an
application to send the test message to the message flow.

6. Use the diagnostic tools that are provided to determine whether your node
works, or if not, what went wrong:
a. For a description of some common problems and their solutions. See

“Resolving problems with user-defined extensions” on page 3511.
b. Check the Administration log. See “Administration Log view” on page 6840.
c. Write entries to the Administration log from your node. See “Using error

logging from a user-defined extension” on page 3137.
d. Switch on user trace at debug level. See “Using trace” on page 3533.

The following debug messages are generated by a user trace to help you to
understand the execution of your user-defined nodes and parsers:
v BIP2233 and BIP2234: A pair of messages traced before and after a

user-defined extension implementation function is started. These
messages report the input parameters and the returned value.
In these messages, an "implementation function" can be interpreted as
either a C implementation function or a Java implementation method.

v BIP3904: A message traced before starting the Java evaluate() method of a
user-defined node.

v BIP3905: A message traced before starting the C cniEvaluate()
implementation function (iFpEvaluate member of CNI_VFT) of a
user-defined node.

v BIP4142: A debug message that is traced when starting a user-defined
node utility function, where the utility function alters the state of a syntax
element. All utility functions that start with cniSetElement*, where *
represents all nodes with that stem, are included.

v BIP4144 and BIP4145: A pair of messages traced by certain
implementation functions that, when started by a user-defined extension,
can modify the internal state of an object in the broker. Possible broker
objects include syntax element, node, and parser.
In these messages, an "implementation function" can be interpreted as
either a C implementation function or a Java implementation method.

v BIP4146: A debug message that is traced when starting a user-defined
parser utility function, where the utility function alters the state of a
syntax element. All utility functions that start with cpiSetElement*, where
* represents all nodes with that stem, are included.

v BIP4147: An error message that is traced when a user-defined extension
passes an invalid input object to a user-defined extension utility API
function.

v BIP4148: An error message that is traced when a user-defined extension
damages an object in a broker.

v BIP4149: An error message that is traced when a user-defined extension
passes an invalid input data pointer to a user-defined extension utility
API function.

v BIP4150: An error message that is traced when a user-defined extension
passes invalid input data to a user-defined extension utility API function.

v BIP4151: A debug message that is traced when cniGetAttribute2 or
cniGetAttributeName2 sets the return code to an unexpected value.
Expected values are CCI_SUCCESS, CCI_ATTRIBUTE_UNKNOWN, and
CCI_BUFFER_TOO_SMALL. Any other value is an unexpected value.

Chapter 9. Developing message flow applications 3095

v BIP4152: A debug message that is traced in the following situations:
1) cniGetAttribute2 or cniGetAttributeName2 sets the return code to

CCI_BUFFER_TOO_SMALL.
2) cniGetAttribute2 or cniGetAttributeName2 is called again with the

correct size buffer, however the return code is set to
CCI_BUFFER_TOO_SMALL.

e. Add a Trace node to your message flow, and check the output that is
generated.

f. Use the flow debugger to debug the flow that contains your node. See
Chapter 10, “Testing and debugging message flow applications,” on page
3143.

What to do next

When your node behavior is complete and correct, add the new node into your
normal palette of nodes in the Message Flow editor, see “Packaging and
distributing a user-defined node project” on page 3121. Until you complete this
task, the new nodes are available only in your test WebSphere Message Broker
Toolkit session on your local system.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
Chapter 10, “Testing and debugging message flow applications,” on page 3143
Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.
“Resolving problems with user-defined extensions” on page 3511
Advice for dealing with some common problems that can arise when you work
with user-defined extensions
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.
Related reference:

3096 WebSphere Message Broker Version 7.0.0.8

“Administration Log view” on page 6840
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.
Related information:
Java user-defined extensions API

Testing a subflow user-defined node project:

Test how the user-defined node is displayed, and how it behaves in your
environment.

About this task

You can test how the user-defined node is displayed, and how it behaves in your
environment by simulating the node. The user-defined node is displayed in the
palette in the Message Flow editor, and any change to the plug-in during the
simulation is effective immediately; you are not required to restart the simulation.
v To start the simulation of a user-defined node:

1. Right-click the user-defined node project, click Start Simulation. This action
adds all the user-defined nodes that are in the project to the palette in the
Message Flow editor under the category that you defined for the project.

2. You can drag these nodes from the palette onto the Message Flow editor
canvas in the same way as the built-in nodes.

v To stop the simulation of a user-defined node:
1. Right-click the user-defined node project, click Stop Simulation.
2. If any message flows are using the user-defined node, an error is generated

because the node is no longer available, and the following message is
displayed:
User-defined nodes that are contributed by the user-defined node
project Varname will be removed from the Message Flow editor palette.
If a copy of these nodes is not available from the plug-in space,
any message flows that use these nodes might get unresolved node
errors.

v If you are using custom editors, compilers, or Java code, these resources cannot
be tested in simulation mode. To test and debug these projects and resources
you must launch a second WebSphere Message Broker Toolkit by using the
following steps:
1. Right-click the user-defined node project. The menu opens.
2. Click Run in New Workbench.

Chapter 9. Developing message flow applications 3097

– If the project contains errors, you receive an error message that gives you
the option to continue, or to cancel the action.

– If the project is error-free, the Workspace Launcher window opens.
a. You can choose to use a new or an existing workspace. To choose an

existing workspace, click Browse. The second workspace opens.
b. You can now test and debug by using the user-defined nodes in all

error-free user-defined node projects in your first workbench.
v In previous versions of the WebSphere Message Broker Toolkit, you were able to

use launch configurations to test custom editors, compilers, or Java code.
However, launch configurations are not supported with user-defined nodes that
are created from a subflow. To test custom editors, compilers, and Java code
with user-defined nodes that are created from a subflow, right-click the
user-defined node project and click Run in New Workbench.

Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Debugging the message flow in simulation mode”
Compile, deploy, test, and debug the message flow that includes your user-defined
node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
“Creating a user-defined node from a subflow” on page 3076
Create user-defined nodes either from scratch, or by using an existing subflow.

Debugging the message flow in simulation mode:

Compile, deploy, test, and debug the message flow that includes your user-defined
node.

About this task

You can compile, deploy, test, and debug the message flow that includes your
user-defined node in the same way that you test any regular subflow. However,
you must set a breakpoint so that the debugger stops at that point, see “Working
with breakpoints in the flow debugger” on page 3166.

You can debug the message flow only if the following constraints are met:
v The user-defined node project must be in the workspace.
v The user-defined node project must be in the simulation mode.
v The subflow cannot be debugged after it has been exported as a plug-in, unless

the source code is in your workspace.
Related concepts:
“Managing message flow resources” on page 1424
Manage your message flows and associated resources in the WebSphere Message
Broker Toolkit.

3098 WebSphere Message Broker Version 7.0.0.8

“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
“Creating a user-defined node from a subflow” on page 3076
Create user-defined nodes either from scratch, or by using an existing subflow.

Implementing a user-defined parser
Create a user-defined parser to interpret messages with a different format and
structure.

Before you begin

Before you start

Read the following topics:
v “Why use a user-defined extension?” on page 2972
v “User-defined parsers” on page 3010

About this task

A loadable implementation library, or a LIL, is the implementation module for a C
parser (or node). A LIL is a Linux or UNIX shared object or Windows dynamic link
library (DLL), that does not have the file extension .dll but .lil.

Chapter 9. Developing message flow applications 3099

The implementation functions that you must write are listed in “C parser
implementation functions” on page 6538. The utility functions that are provided by
WebSphere Message Broker to help you are listed in “C parser utility functions” on
page 6539.

WebSphere Message Broker provides the source for a sample user-defined parser
called BipSampPluginParser.c. This example is a simple pseudo-XML parser that
you can use in its current state, or you can modify.

The task of writing a parser varies considerably according to the complexity of the
bit stream to be parsed. Only the basic steps are described here:
1. “Declaring and defining the parser”
2. “Creating an instance of the parser” on page 3101
3. “Deleting an instance of the parser” on page 3102

Declaring and defining the parser:
About this task

To declare and define a user-defined parser to the broker, you must include an
initialization function, bipGetParserFactory, in your LIL. The following steps
outline how the broker calls your initialization function and how your initialization
function declares and defines the user-defined parser:

The following procedure shows you how to declare and define your parser to the
broker:

Procedure

1. The initialization function, bipGetParserFactory, is called by the broker after the
LIL has been loaded and initialized by the operating system. The broker calls
this function to understand what your LIL is able to do, and how it must be
called. For example:
CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix
bipGetParserFactory()

2. The bipGetParserFactory function calls the utility function
cpiCreateParserFactory. This function passes back a unique factory name (or
group name) for all the parsers that your LIL supports. Every factory name (or
group name) passed back must be unique throughout all the LILs in the broker.

3. The LIL calls the utility function cpiDefineParserClass to pass the unique name
of each parser, and a virtual function table of the addresses of the
implementation functions.
For example, the following code declares and defines a single parser called
InputxParser:
{
CciFactory* factoryObject;
int rc = 0;
CciChar factoryName[] = L"MyParserFactory";
CCI_EXCEPTION_ST exception_st;

/* Create the Parser Factory for this parser */
factoryObject = cpiCreateParserFactory(0, factoryName);
if (factoryObject == CCI_NULL_ADDR) {

/* Any local error handling can go here */
}
else {
/* Define the parsers supported by this factory */

3100 WebSphere Message Broker Version 7.0.0.8

static CNI_VFT vftable = {CNI_VFT_DEFAULT};

/* Setup function table with pointers to parser implementation functions */
vftable.iFpCreateContext = cpiCreateContext;
vftable.iFpParseBufferEncoded = cpiParseBufferEncoded;
vftable.iFpParseFirstChild = cpiParseFirstChild;
vftable.iFpParseLastChild = cpiParseLastChild;
vftable.iFpParsePreviousSibling = cpiParsePreviousSibling;
vftable.iFpParseNextSibling = cpiParseNextSibling;
vftable.iFpWriteBufferEncoded = cpiWriteBufferEncoded;
vftable.iFpDeleteContext = cpiDeleteContext;
vftable.iFpSetElementValue = cpiSetElementValue;
vftable.iFpElementValue = cpiElementValue;
vftable.iFpNextParserClassName = cpiNextParserClassName;
vftable.iFpSetNextParserClassName = cpiSetNextParserClassName;
vftable.iFpNextParserEncoding = cpiNextParserEncoding;
vftable.iFpNextParserCodedCharSetId = cpiNextParserCodedCharSetId;

cpiDefineParserClass(0, factoryObject, L"InputxParser", &vftable);
}

/* Return address of this factory object to the broker */
return(factoryObject);

}

The initialization function must create a parser factory by starting
cpiCreateParserFactory. The parser classes supported by the factory are defined
by calling cpiDefineParserClass. The address of the factory object (returned by
cpiCreateParserFactory) must be returned to the broker as the return value
from the initialization function.
For example:
a. Create the parser factory using the cpiCreateParserFactory function:

factoryObject = cpiCreateParserFactory(&rc, constParserFactory);

b. Define the classes of message supported by the factory using the
cpiDefineParserClass function:
if (factoryObject) {

cpiDefineParserClass(&rc, factoryObject, constPXML, &vftable);
}

else {
/* Error: Unable to create parser factory */

}

c. Return the address of this factory object to the broker:
return(factoryObject);

}

Creating an instance of the parser:
About this task

When the broker has received the table of function pointers, it calls the function
cpiCreateContext for each instantiation of the user-defined parser. If you have three
message flows that use your user-defined parser, your cpiCreateContext function is
called for each of them. This function allocates memory for that instantiation of the
user-defined parser to hold the values for the configured attributes. For example:

Procedure

1. Call the cpiCreateContext function:
CciContext* _createContext(

CciFactory* factoryObject,
CciChar* parserName,
CciNode* parserObject

Chapter 9. Developing message flow applications 3101

){
static char* functionName = (char *)"_createContext()";
PARSER_CONTEXT_ST* p;
CciChar buffer[256];

2. Allocate a pointer to the local context and clear the context area:
p = (PARSER_CONTEXT_ST *)malloc(sizeof(PARSER_CONTEXT_ST));

if (p) {
memset(p, 0, sizeof(PARSER_CONTEXT_ST));

3. Save the parser object pointer in the context:
p->parserObject = parserObject;

4. Save the parser name:
CciCharNCpy((CciChar*)&p->parserName, parserName, MAX_NODE_NAME_LEN);

5. Return the parser context:
return (CciContext*) p;

Deleting an instance of the parser:
About this task

Parsers are destroyed when a message flow is deleted or redeployed, or when the
execution group process is stopped (using the mqsistop command). When a parser
is destroyed, it must free any used memory and release any held resources using
the cpiDeleteContext function. For example:
void cpiDeleteContext(

CciParser* parser,
CciContext* context

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc = 0;

return;
}

Related concepts:
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
Related tasks:
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.

3102 WebSphere Message Broker Version 7.0.0.8

Related reference:
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.

Extending the capability of a C user-defined parser:

When you have created a C parser, you can extend its capability.

Before you begin

Before you start

Ensure that you have read and understood the following topic:
v “Implementing a user-defined parser” on page 3099

About this task

You can extend the capability of a C parser in the following ways:
v “Implementing the parser functionality”
v “Implementing input functions”
v “Implementing parse functions” on page 3104
v “Implementing output functions” on page 3105
v “Implementing a message header parser” on page 3105

Implementing the parser functionality:
About this task

A parser needs to implement the following types of implementation function:
1. Input functions
2. Parse functions
3. Output functions

Implementing input functions:
About this task

Your parser must implement one, and only one, of the following input functions:
v “cpiParseBuffer” on page 6580
v “cpiParseBufferEncoded” on page 6582
v “cpiParseBufferFormatted” on page 6583

The broker invokes the input function when your user-defined parser is required to
parse an input message. The parser must tell the broker how much of the input
bitstream buffer that it claims to own. In the case of a fixed-size header, the parser
claims the size of the header. If the parser is intended to handle the whole
message, it claims the remainder of the buffer.

For example:
1. The broker invokes the cpiParseBufferEncoded input function:

int cpiParseBufferEncoded(
CciParser* parser,
CciContext* context,
int encoding,

Chapter 9. Developing message flow applications 3103

int ccsid
){

PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

2. Get a pointer to the message buffer and set the offset using the cpiBufferPointer
utility function:

pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

3. Save the format of the buffer:
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

4. Save the size of the buffer using the cpiBufferSize utility function:
pc->iSize = cpiBufferSize(&rc, parser);

5. Prime the first byte in the stream using the cpiBufferByte utility function:
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

6. Set the current element to the root element using the cpiRootElement utility
function:

pc->iCurrentElement = cpiRootElement(&rc, parser);

7. Reset the flag to ensure parsing is reset correctly:
pc->iInTag = 0;

8. Claim ownership of the remainder of the buffer:
return(pc->iSize);

}

Implementing parse functions:
About this task

General parse functions (for example, cpiParseFirstChild) are those invoked by
the broker when the syntax element tree needs to be created in order to evaluate
an ESQL or Java expression. For example, a Filter node uses an ESQL field
reference in an ESQL expression. This field reference must be resolved in order to
evaluate the expression. Your parser's general parse function is called, perhaps
repeatedly, until the requested element is either created, or is known by the parser
not to exist.

For example:
void cpiParseFirstChild(

CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

if ((!cpiElementCompleteNext(&rc, element)) &&
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}
}
return;

}

3104 WebSphere Message Broker Version 7.0.0.8

Implementing output functions:
About this task

Your parser must implement one, and only one, of the following output functions:
v “cpiWriteBuffer” on page 6610
v “cpiWriteBufferEncoded” on page 6612
v “cpiWriteBufferFormatted” on page 6613

The broker invokes the output function when your user-defined parser is required
to serialize a syntax element tree to an output bit stream. For example, a Compute
node might have created a tree in the domain of your user-defined parser. When a
node, such as an MQOutput node, needs to serialize this tree, the parser is
responsible for appending the output bitstream buffer with data that represents the
tree that has been built.

For example:
int cpiWriteBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int initialSize = 0;
int rc = 0;
const void* a;
CciByte b;

initialSize = cpiBufferSize(&rc, parser);
a = cpiBufferPointer(&rc, parser);
b = cpiBufferByte(&rc, parser, 0);

cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

return cpiBufferSize(0, parser) - initialSize;
}

Implementing a message header parser:
About this task

Typically, the incoming message data is of a single message format, therefore one
parser is responsible for parsing the entire contents of the message. The class name
of the parser that is needed is defined in the Format field in the MQMD or the
MQRFH2 header of the input message.

However, the message might consist of multiple formats, for example where there
is a header in one format followed by data in another format. In this case, the first
parser has to identify the class name of the parser that is responsible for the next
format in the chain, and so on. In a user-defined parser, the implementation
function cpiNextParserClassName is invoked by the broker when it navigates
down a chain of parser classes for a message that is composed of multiple message
formats.

If your user-defined parser supports parsing a message format that is part of a
multiple message format, the user-defined parser must implement the
cpiNextParserClassName function.

For example:

Chapter 9. Developing message flow applications 3105

1. Call the cpiNextParserClassName function:
void cpiNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* buffer,
int size

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc = 0;

2. Copy the name of the next parser class to the broker:
CciCharNCpy(buffer, pc->iNextParserClassName, size);

return;
}

Related concepts:
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Implementing the supplied user-defined extension samples” on page 3017
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.
Related reference:
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.

Compiling a C user-defined extension:

Compile user-defined extensions in C for all supported operating systems.

Before you begin

Before you start:

If you create your own user-defined nodes, parsers, and user exits in C, compile
them on the operating system on which the target broker is running. Samples are

3106 WebSphere Message Broker Version 7.0.0.8

provided for both nodes and parsers, and are described in “Sample node files” on
page 6412 and “Sample parser files” on page 6414. Use the instructions here to
compile the samples. If you want to create your own extensions, see the following
topics:
v “Creating a user-defined extension in C” on page 3026
v “Implementing a user-defined parser” on page 3099
v “Implementing a user-defined exit” on page 3113

About this task

These instructions use the file names of the supplied samples. If you are compiling
your own user-defined extensions, substitute your own file names.

When you compile a user-defined extension that is written in C, you need a
compatible compiler. For details of supported compilers, see “Optional software
support” on page 3603.

Header files:
About this task

The following header files define the C interfaces:

BipCni.h
Message processing nodes

BipCpi.h
Message parsers

BipCci.h
Interfaces common to both nodes and parsers

BipCos.h
Platform-specific definitions

Compiling:
About this task

Compile the source for your user-defined extension on each of the supported
operating systems to create the executable file that the broker calls to implement
your user-defined extension. On Linux, UNIX, and z/OS systems, this file is a
loadable implementation library (LIL) file; on Windows systems, it is a dynamic
load library (DLL) file.

The libraries that you build to contain user-defined nodes or parsers must have the
extension .lil on all operating systems so that the broker can load them. Libraries
that contain user exits must have the extension .lel on all operating systems. The
examples in this topic show libraries with the extension .lil

Refer to the documentation for the compiler that you are using for full details of
available compile and link options that might be required for your programs.

Navigate to the directory where your user-defined extension source code is located,
and follow the instructions for your operating system:
v AIX
v HP-Itanium
v Linux
v Solaris

Chapter 9. Developing message flow applications 3107

v Windows
v z/OS

Compiling on AIX:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

The following instructions are for compiling an extension for a 64-bit execution
group; 32-bit execution groups are not supported.
xlc_r -q64 \

-I. \
-I/install_dir/include/plugin \
-c SwitchNode.c \
-o SwitchNode.o

xlc_r -q64 \
-I. \
-I/install_dir/include/plugin \
-c TransformNode.c \
-o TransformNode.o

xlc_r -q64 \
-I. \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o BipSampPluginUtil.o

xlc_r -q64 \
-I. \
-I/install_dir/include/plugin \
-c Common.c \
-o Common.o

xlc_r -q64 \
-I. \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o NodeFactory.o

xlc_r -q64 \
-qmkshrobj \
-bM:SRE \
-bexpall \
-bnoentry \
-o SwitchNode.lil SwitchNode.o \

BipSampPluginUtil.o Common.o NodeFactory.o \
-L /install_dir/lib \
-l imbdfplg

chmod a+r SwitchNode.lil

Compiling on HP-Itanium:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

The following instructions are for compiling an extension for a 64-bit execution
group; 32-bit execution groups are not supported.

3108 WebSphere Message Broker Version 7.0.0.8

cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o output_dir/BipSampPluginUtil.o

cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c Common.c \
-o output_dir/Common.o

cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o output_dir/NodeFactory.o

cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c SwitchNode.c \
-o output_dir/SwitchNode.o

cc +z +e +DD64 -D_HPUX_SOURCE -DTHREADS -D_REENTRANT -Ae \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c TransformNode.c \
-o output_dir/TransformNode.o

ld -b \
-o output_dir/SwitchNode.lil \
output_dir/BipSampPluginUtil.o \
output_dir/Common.o \
output_dir/NodeFactory.o \
output_dir/SwitchNode.o \
output_dir/TransformNode.o \
-L install_dir/lib \
-L install_dir/xml4c/lib \
-L install_dir/merant/lib \
-L install_dir/jre16/lib/IA64N\
-L install_dir/jre16/lib/IA64N/server \
-l imbdfplg

chmod a+r output_dir/SwitchNode.lil

Compiling on Linux:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

When you compile programs on Linux on POWER, replace the option -fpic with
-fPIC if you want to use dynamic linking and avoid any limit on the size of the
global offset table.

The following instructions are for compiling an extension for a 64-bit execution
group on Linux on x86-64, Linux on POWER, and Linux on IBM z Systems. 32-bit

Chapter 9. Developing message flow applications 3109

execution groups are not supported on those platforms. To compile the extension
for a 32-bit execution group on Linux on x86, replace -m64 with -m32 in the
compile and link examples.
g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
TransformNode.c

g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
SwitchNode.c

g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
BipSampPluginUtil.c

g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
Common.c

g++ -c -O2 -m64 -Wall -Wno-format-y2k -fpic \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-D_LINUX -D_THREADS -D_POSIX_PTHREAD_SEMANTICS -D_REENTRANT \
NodeFactory.c

g++ -m64 -O2 -o samples.lil \
TransformNode.o \
SwitchNode.o \
BipSampPluginUtil.o \
Common.o NodeFactory.o \
-shared -lc -lnsl -ldl \
-L/install_dir/lib -limbdfplg

These commands create the file samples.lil that provides TransformNode and
SwitchNode objects.

Compiling on Solaris:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

The following instructions are for compiling an extension for a 64-bit execution
group on Solaris on SPARC; 32-bit execution groups are not supported. To compile
the extension for a default 64-bit execution group on Solaris on x86-64, replace
-xarch=v9 with -xarch=amd64 in the compile examples; 32-bit execution groups are
not supported.
cc -xarch=v9 -mt \

-I. \
-I/install_dir/include \

3110 WebSphere Message Broker Version 7.0.0.8

-I/install_dir/include/plugin \
-c SwitchNode.c \
-o output_dir/SwitchNode.o

cc -xarch=v9 -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c TransformNode.c \
-o output_dir/TransformNode.o

cc -xarch=v9 -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o output_dir/BipSampPluginUtil.o

cc -xarch=v9 -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o output_dir/NodeFactory.o

cc -xarch=v9 -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c Common.c \
-o output_dir/Common.o

cc -xarch=v9 -xcode=pic32 -mt -G \
-o output_dir/SwitchNode.lil \

output_dir/SwitchNode.o \
output_dir/BipSampPluginUtil.o \
output_dir/NodeFactory.o \
output_dir/Common.o \

-L /install_dir/lib \
-l imbdfplg

chmod a+r output_dir/SwitchNode.lil

Compiling on Windows:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

Ensure that you include a space between SwitchNode.c and BipSampPluginUtil.c,
and also between -link and /DLL.

Enter the command as a single line of input; in the following example the lines are
split to improve readability.
cl /VERBOSE /LD /MD /Zi /EHsc /I.

/Iinstall_dir\include\plugin
SwitchNode.c BipSampPluginUtil.c Common.c
NodeFactory.c TransformNode.c
-link /DLL install_dir\lib\imbdfplg.lib
/OUT:SwitchNode.lil

If you have correctly set the LIB environment variable, you do not have to specify
the full paths to the LIB files.

Chapter 9. Developing message flow applications 3111

Compiling on z/OS:
About this task

When you compile a user-defined extension that is written in C, use a supported
compiler.

Force your link to use prelinker or linker by setting the _CC_STEPS variable to -1:
export _CC_STEPS=-1

Alternatively, add these two lines to your makefile to export it:
_CC_STEPS=-1
.EXPORT : _CC_STEPS

To create optimized builds, use -2 in place of -g in the following commands:
cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./SwitchNode.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./SwitchNode.o ./SwitchNode.c

cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./TransformNode.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./SwitchNode.o ./TransformNode.c

cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./BipSampPluginUtil.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./BipSampPluginUtil.o ./BipSampPluginUtil.c

cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./Common.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./Common.o ./Common.c

cc -c \
-Wc,LP64 -g -W0,langlvl\(extended\),EXPORTALL,float\ieee\) \
-Wc,xplink \
-W0,LIST\(./NodeFactory.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./NodeFactory.o ./NodeFactory.c

3112 WebSphere Message Broker Version 7.0.0.8

cc \
-Wl,DLL,LP64 -g -Wl,p,map -Wl,LIST=ALL,MAP,XREF,REUS=RENT \
-Wl,xplink \
-o ./SwitchNode.lil ./SwitchNode.o ./BipSampPluginUtil.o \
./Common.o ./NodeFactory.o \
${install_dir}/lib/libimbdfplg.x

Run the following command to set the file permissions of the user-defined
extension to group read and to be executable:
chmod a+rx {output_dir}/SwitchNode.lil

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Creating a user-defined extension in C” on page 3026
You must complete a series of tasks to create user-defined extensions that use the
C language.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Implementing a user-defined exit”
You can develop and deploy a user-defined exit.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079
When you are developing a user-defined node in Java or C only, you must create
the user interface representation of the node in the WebSphere Message Broker
Toolkit.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
“Support for 32-bit and 64-bit platforms” on page 3589
WebSphere Message Broker operates in 32-bit mode or 64-bit mode, on supported
operating systems.
“Optional software support” on page 3603
The products listed here are not required, but might be useful. Except where
stated, these products are not supplied with WebSphere Message Broker.

Implementing a user-defined exit
You can develop and deploy a user-defined exit.

Chapter 9. Developing message flow applications 3113

Before you begin

Before you start:

v Read “User exits” on page 3015.

About this task

The following topics describe the steps required to develop and deploy a
user-defined exit.

Procedure
1. “Developing a user exit”
2. “Deploying a user exit” on page 3116
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
Related tasks:
“Developing a user exit”
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Developing a user exit:

Develop a user exit by declaring it, implementing its behavior, then compiling it.

About this task

To develop a user exit, follow these steps.

Procedure

1. Declare the user exit.
Declare a user exit by using the bipInitializeUserExits function to specify the
following properties:
a. Name (used to register and control the active state of the exit)
b. User context storage
c. A function to be invoked (for one or more Event Types)

2. Implement the user exit behavior.

3114 WebSphere Message Broker Version 7.0.0.8

When the user exit is declared, a set of functions is registered, and these
functions are invoked when specific events occur. The behavior of the user exit
is provided by implementing these functions. The following table lists the
events and their associated functions:

Event Function

A message is dequeued from the input source cciInputMessageCallback

A message is propagated to the node for processing cciPropagatedMessageCallback

A request message is sent to the output node's transport,
and transport-specific destination information is written
to "WrittenDestination" in the LocalEnvironment

cciOutputMessageCallback

The node completes processing cciNodeCompletionCallback

The transaction ends cciTransactionEventCallback

3. Your user exit code must implement the cleanup function.
The user exit library must implement the bipTerminateUserExits function. This
function is invoked as the ExecutionGroup's process is ending, and your user
exit must clear up any resources allocated during the bipInitializeUserExits
function.

4. Compile.
Use your existing process for your environment to compile your user exit. The
supported C compilers are shown in “Optional software support” on page
3603. See “Compiling a C user-defined extension” on page 3047 for more
details.

5. Link the compiled code to a library with the extension .lel that exports the
bipInitializeUserExits and bipTerminateUserExits functions.

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
“Exploiting user exits” on page 2985
Your message flows can benefit from user exits.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsireportflowuserexits command” on page 3933
Use the mqsireportflowuserexits command to report the list of active and inactive
user exits for the specified broker, execution group, or message flow.
“mqsichangeflowuserexits command” on page 3751
Use the mqsichangeflowuserexits command to set the list of active or inactive user
exits. A list of active and a list of inactive user exits is maintained for each
execution group and message flow. The effective state of user exits for a given flow
is decided when the flow starts.

Chapter 9. Developing message flow applications 3115

Deploying a user exit:

Deploy your user exit to the broker.

Before you begin

Before you start:

v Write and compile the user exit code. See “Developing a user exit” on page 3114.
v Ensure that the exit:

1. Is in a library that has the extension .lel
2. Exports the functions bipInitializeUserExits and bipTerminateUserExits

About this task

You can set the state of the user exit dynamically to active, or inactive, on a
per-message flow basis without restarting the broker.

To deploy the user exit:

Procedure

1. Install the user exit code on a broker.
The library containing the user exit code must be installed on a file system that
can be accessed by the broker. For example, the file must have read and
execute authority for the user ID under which the broker runs. The broker
looks in the following places for libraries that contain user exits:
v The broker property UserExitPath defines a list of directories separated by

colons (semicolons on Windows). Use the –x flag on the mqsicreatebroker or
mqsichangebroker command to set this property for execution groups for
each broker.

v Alternatively, you can append the directory containing the directory that
holds the extension files to the environment variable
MQSI_USER_EXIT_PATH associated with the environment in which the
broker is running.

If both are set, the environment variable takes precedence. All the directories in
the environment variable are searched in the order in which they appear in the
variable, then all the directories in the broker property are searched in the order
in which they appear in the property.

2. Load the user exit library into the broker's processes.
When the user exit library has been installed on the broker, you must load it in
one of the following ways:
v Stop and restart the broker.
v Run the mqsireload command to restart the execution group processes.

3. Activate the user exit.
User exits can be active or inactive, and are inactive by default. You can change
the state of a user exit dynamically by using the mqsichangeflowuserexits
command on a per-flow basis, without having to restart the broker. You can
also change the default state for a set of user exits to active on a per-broker
basis by using the mqsichangebroker command; in this case, you do have to
restart the broker.
To set the default user exit state for a broker:
a. Stop the broker.

3116 WebSphere Message Broker Version 7.0.0.8

b. Set the activeUserExits property of the broker by using the
mqsichangebroker command.

c. Start the broker and check the system log to ensure that all execution
groups start without error. If any invalid user exit names are specified (that
is, the user exit is not provided by any library loaded by the execution
group), a BIP2314 message is written to the system log and all flows in the
execution groups fail to start unless you take one of the following actions:
v Provide a library in the user exit path that implements the exit; then run

the mqsireload command, or restart the broker, to load an exit from the
library.

v Run the mqsichangeflowuserexits command to remove the exit from both
the active and inactive lists.

You can also override the default user exit state for a broker. You can use the
mqsichangeflowuserexits command to activate, or deactivate, user exits on a
per-execution group or per-message flow basis, with the order of precedence
being message flow then execution group. When multiple exits are active for a
flow, the broker starts them in the order that is defined by the
mqsichangeflowuserexits command.

Results

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Exploiting user exits” on page 2985
Your message flows can benefit from user exits.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsireportflowuserexits command” on page 3933
Use the mqsireportflowuserexits command to report the list of active and inactive
user exits for the specified broker, execution group, or message flow.
“mqsichangeflowuserexits command” on page 3751
Use the mqsichangeflowuserexits command to set the list of active or inactive user
exits. A list of active and a list of inactive user exits is maintained for each
execution group and message flow. The effective state of user exits for a given flow
is decided when the flow starts.
“mqsireload command” on page 3909
Use the mqsireload command to request the broker to stop and restart execution
groups.

Packaging and distributing user-defined extensions
When you have created and tested a user-defined extension, you can package and
distribute it.

Chapter 9. Developing message flow applications 3117

Before you begin

Before you start:

Complete the following tasks:
v “Implementing user-defined extensions” on page 3019
v “Testing a user-defined node” on page 3094

About this task

When you have created and tested your user-defined extension, you can distribute
these resources to other computers.

For user-defined extensions created in Java or C:
1. Package and install the user-defined extensions. To package and install the

resources that make up the workbench representation of your user-defined
node, see “Packaging and distributing a user-defined node project” on page
3121.

2. Copy the files generated by the compilation step to all the computers on which
you have created brokers that might need these resources. See “Installing
user-defined extension runtime files on a broker” on page 3125. For a more
automated approach, see “Installing a user-defined extension to current and
past versions of WebSphere Message Broker” on page 3128.

For user-defined nodes created from subflows:
v Package and install the user-defined nodes implemented as a subflow, see

“Packaging and distributing a user-defined node project” on page 3121.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Installing a user-defined node” on page 1496
Develop message flows that use a user-defined node.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Packaging a Java user-defined node:

How to package a Java user-defined node.

Before you begin

Before you start

You must have a user-defined node written in Java. This node can be one of the
provided sample nodes that are described in “Sample node files” on page 6412, or
a node that you have created yourself by using the instructions in either “Creating
a message processing or output node in Java” on page 3062 or “Creating an input
node in Java” on page 3055.

3118 WebSphere Message Broker Version 7.0.0.8

About this task

You can package a user-defined node in two ways:
v PAR

A Plug-in Archive (PAR) is the deployment unit for Java user-defined nodes. The
PAR contains the user-defined node classes and, if required as dependencies, can
contain JAR files. A PAR file is a compressed file with a .par file extension. The
directory structure in the .par file has the following format:
– /classes

The user-defined node classes are stored in this location.
– /lib

JAR files that are required by the user-defined node are stored in this
location. This directory is optional because it might not be necessary to
include JAR files.

The following procedure describes how to package an example user-defined
node, parexamplenode. In this example, the PAR is to be contained in
par.example.parexamplenode.class with a JAR file dependency dependency.jar.
1. Create the directory structure; for example:

– /classes/par/example/parexamplenode.class

– /lib/dep.jar

2. Issue a file compression command to create the PAR; for example:
jar cvf parexample.par classes lib

The PAR must be placed in the LIL path that is specified in “Installing
user-defined extension runtime files on a broker” on page 3125.

v JAR

User-defined nodes can be packaged by using a simple JAR. For example, if
your node is defined in example/jarexamplenode.class, create the JAR by using
the jar cvf jarexample.jar example command.
The preferred way to package a Java user-defined node is to use a PAR file,
because all dependencies can be packaged with the node, and each node is
loaded in a separate class loader. For information about loading classes, see
“User-defined node class loading” on page 3120.
The JAR must be placed in the LIL path that is specified in “Installing
user-defined extension runtime files on a broker” on page 3125.

Deployment dependencies:
About this task

If a user-defined node requires an external package, the package can be deployed
in one of following ways:
v The external packages can be added to the /lib directory in the deployed PAR.
v For external packages that are shared between several node types, the packages

can be added to one of the following locations:
– One of the shared-classes directories. For more details of these directories,

see “Java shared classloader” on page 2637.
– The CLASSPATH environment variable, where all user-defined nodes that are in

the broker installation can access the packages
Related concepts:
“User-defined node class loading” on page 3120
Details the Java classes packaging options and loading order precedence for

Chapter 9. Developing message flow applications 3119

user-defined nodes.
Related tasks:
“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
“Java shared classloader” on page 2637
Loads all the JAR files located within the shared-classes directories. The precedence
order of loading is dictated by the directories the JAR files are located in.

User-defined node class loading:

Details the Java classes packaging options and loading order precedence for
user-defined nodes.

Java user-defined node classes can be packaged and loaded in two ways:
v Plug-in Archive (PAR) file; a broker defined format - Each PAR file is given it's

own class loader which isolates any classes it loads from any other part of the
WebSphere Message Broker, including nodes in other PAR files.

v Standard Java archive (JAR) file - All JAR files containing plug-in nodes are
loaded into the same classloader and can access classes in JAR files containing
other user-defined nodes.

For both packaging mechanisms, if the classloader cannot find a required class
within the package it defers to the shared class loader to find the required class.
The shared classloader looks in a set of directories on the broker machine and
loads any JAR files found. It can be used to install any required JAR files that do
not need to be repeatedly deployed, such as client libraries that the Java compute
nodes need to use. For more details, see “Java shared classloader” on page 2637.

If the required class cannot be found in any of the deployed JAR files, or in the
JAR files installed in the shared classes directories, a classloader containing all of
the broker supplied classes is checked (for example: this classloader contains the
jplugin2.jar), followed by the classpath, and then finally the Java virtual machine
(JVM) system classloader.

Two key points must be considered when deciding which of the above
mechanisms are used to load a class:
v Isolation between different applications (for example: adding classes to the

classpath makes them available to every part of WebSphere Message Broker and
can cause conflicts).

v Delegation from one classloader to another can only occur in one direction. If a
class is resolved in the shared classloader, then it cannot directly create classes in
the PAR classloader.

User-defined nodes class loading search paths:
User-defined nodes package in a PAR file

The broker uses the following search path to find user-defined node classes:
1. /classes to locate classes in the deployed PAR file.
2. /lib to locate any JAR files in the deployed PAR file.
3. workpath/config/<my_broker_name>/<my_eg_label>/shared-classes to locate

any JAR files in the execution group shared-classes directory.

3120 WebSphere Message Broker Version 7.0.0.8

4. workpath/shared-classes/ to locate any JAR files in the top level
shared-classes directory.

5. CLASSPATH environment variable.

User-defined nodes package in a JAR file

The broker uses the following search path to find user-defined node classes:
1. The deployed JAR file.
2. workpath/config/<my_broker_name>/<my_eg_label>/shared-classes to locate

any JAR files in the execution group shared-classes directory.
3. workpath/shared-classes/ to locate any JAR files in the top level

shared-classes directory.
Related tasks:
“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
“Packaging a Java user-defined node” on page 3118
How to package a Java user-defined node.
“Java shared classloader” on page 2637
Loads all the JAR files located within the shared-classes directories. The precedence
order of loading is dictated by the directories the JAR files are located in.

Packaging and distributing a user-defined node project:

Export the user-defined node project to make it available for other users.

About this task

To export the user-defined node project, you can package the user-defined node
project as plug-in JAR files or as an update site:
v “Packaging as plug-in JAR files” on page 3122
v “Packaging as an update site” on page 3122

What to do next

You can now install the plug-in on all the computers on which your WebSphere
Message Broker Toolkit users might want to use them, following the instructions in
“Installing a user-defined node” on page 1496.
Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Debugging the message flow in simulation mode” on page 3098
Compile, deploy, test, and debug the message flow that includes your user-defined
node.
“Creating a user-defined node from a subflow” on page 3076
Create user-defined nodes either from scratch, or by using an existing subflow.

Chapter 9. Developing message flow applications 3121

“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.
“Message sets packaged with a user-defined node” on page 1497
Adding message sets to an update site.

Packaging as plug-in JAR files:

Export the user-defined node project as plug-in JAR files to make it available for
other users.

About this task

If you use this option, the user-defined node user must copy the user-defined node
plug-ins into the plug-ins folder in the WebSphere Message Broker Toolkit.
However, the user-defined node user can write a script to automate the copying
process, so that the user-defined nodes are deployed automatically.

To package your user-defined node projects so that they are available in the
environment of the user, complete the following tasks:

Procedure

1. Right-click the project that you want to package, select Package. The Package
and Distribute User-Defined Nodes wizard opens.

2. Select Plug-in jars. Click Next.
3. Select the plug-ins and fragments that you want to use. Projects upon which

the subflow user-defined node depends, such as message set projects, are
automatically included and are not shown in the list.

4. Navigate through the wizard, completing the fields as required. Click Finish.
Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
Related tasks:
“Packaging as an update site”
Create an installation site for Web page distribution of the user-defined node
projects that includes or references other projects or plug-ins. You can either create
a new update site, or use an existing one.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
“Message sets packaged with a user-defined node” on page 1497
Adding message sets to an update site.
“Installing a user-defined node” on page 1496
Develop message flows that use a user-defined node.

Packaging as an update site:

Create an installation site for Web page distribution of the user-defined node
projects that includes or references other projects or plug-ins. You can either create
a new update site, or use an existing one.

3122 WebSphere Message Broker Version 7.0.0.8

About this task

To package your user-defined node projects so that they are available in the
environment of the user, complete the following tasks:

Procedure

1. Right-click the project that you want to package, select Package. The Package
and Distribute User-Defined Nodes wizard opens.

2. Select Installation package. You can either create a new installation site or use
an existing installation site in the workspace.
v To create a new installation site:

a. Select Create a new package, and in the Create a new package field,
enter a name for the package. If a project with that name exists in the
workspace, you are asked if you want to delete the project so that you
can continue with packaging.

b. Click Next.
c. Optional: Select any projects and plug-ins that you want to include in

your package:
1) The top section shows the user-defined node projects that are

available in your workspace. Select the projects that you want to
include in your package.

2) The bottom section shows all the Eclipse plug-ins that the selected
user-defined node projects require. WebSphere Message Broker Toolkit
built-in plug-ins that have a plug-in identifier that starts with
com.ibm.etools.mft are not shown. The Eclipse plug-ins that are
required are a combination of the following plug-ins:
– All Eclipse plug-ins that are listed as the dependency plug-ins in

the plug-in manifest for the user-defined node project
– All Eclipse plug-ins that contributed user-defined nodes that are

being used by one of your selected user-defined node projects
3) Click Next.

d. Optional: Further customize your user-defined node package by adding
in any detailed information that you want to include. Click Next.

e. Click Finish. When you click Finish, the selected user-defined node
project and its dependent user-defined node projects in the workspace are
packaged into an Eclipse feature, and an Eclipse Update Site is built. The
Eclipse feature and Eclipse update site project use the name that you
have given to the package appended with .feature or .site. Any space
in the package name is replaced by a dot (.).

f. The Distribution window opens. To save the instructions to the clipboard,
click Save the instruction above to clip board.

g. To select a destination for your user-defined node package, in the “Web
distribution” section, click Copy project Your project name. . The “Copy
package” window opens. Select the location, click OK.

v To use an existing installation site you must have already created an
installation site.
a. Select Update user-defined nodes in an existing package, select an

installation site from the list. Click Finish. When you click Finish, the
selected user-defined node project and its dependent user-defined node
projects in the workspace are packaged into an Eclipse feature, and an
Eclipse Update Site is built. The Eclipse feature and Eclipse update site

Chapter 9. Developing message flow applications 3123

project use the name that you have given to the package appended with
.feature or .site. Any space in the package name is replaced by a dot
(.).

b. The Distribution window opens. To save the instructions to the clipboard,
click Save the instruction above to clip board.

c. To select a destination for your user-defined node package, in the “Web
distribution” section, click Copy project Your project name. . The “Copy
package” window opens. Select the location, click OK.

Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
Related tasks:
“Packaging as plug-in JAR files” on page 3122
Export the user-defined node project as plug-in JAR files to make it available for
other users.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
“Message sets packaged with a user-defined node” on page 1497
Adding message sets to an update site.

Installing from an update site:

If you have packaged your user-defined nodes into an update site, use the
software update mechanism to install the user-defined nodes.

About this task

To install your user-defined nodes from an update site, use the following steps:

Procedure

1. Click Help > Software Updates. The Software Updates and Add-ons window
opens.

2. Click the Available Software tab. A list of available sites is displayed. If the
update site that you want to use is not listed, click Add Site. The Add Site
window opens. Select the location that you want to use, click OK.

3. In the Available Software tab, select the site that you want to use, click Install.
Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
Related tasks:
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
“Updating and uninstalling from an update site”
You can update, uninstall, or revert the configuration of any user-defined node
plug-ins that have been previously installed from an update site.

Updating and uninstalling from an update site:

You can update, uninstall, or revert the configuration of any user-defined node
plug-ins that have been previously installed from an update site.

3124 WebSphere Message Broker Version 7.0.0.8

About this task

To update, uninstall, or revert the configuration of any user-defined node plug-ins,
complete the following steps:

Procedure

1. Click Help > Software Updates. The Software Updates and Add-ons window
opens.

2. Click the Installed Software tab.
3. Select the previously installed user-defined node plug-in.
4. Click Update, Uninstall, or Revert Configuration depending on the action you

want to perform.
Related concepts:
“User-defined nodes” on page 2989
User-defined nodes are the main mechanism for extending the functions of
WebSphere Message Broker.
“Using a subflow as a user-defined node” on page 3008
You can develop a user-defined node that packages a subflow from scratch, in the
same way that you can create any other user-defined node that has its
implementation based on Java, or base it on an existing subflow.
Related tasks:
“Debugging the message flow in simulation mode” on page 3098
Compile, deploy, test, and debug the message flow that includes your user-defined
node.
“Creating a user-defined node from a subflow” on page 3076
Create user-defined nodes either from scratch, or by using an existing subflow.
“Testing a subflow user-defined node project” on page 3097
Test how the user-defined node is displayed, and how it behaves in your
environment.
“Installing from an update site” on page 3124
If you have packaged your user-defined nodes into an update site, use the
software update mechanism to install the user-defined nodes.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.

Installing user-defined extension runtime files on a broker:

Install the compiled runtime files for your user-defined extension on the broker on
which you want to test its function.

Before you begin

Before you start

v Create and compile your user-defined extension using the procedure described
in “Compiling a Java user-defined node” on page 3074 or “Compiling a C
user-defined extension” on page 3047.
– The files that have been created for extension created in C depend on the

underlying broker operating system:

Windows

A dynamic link library (DLL), named with a file type of .lil.

Linux

A shared object, again with a file type of .lil.

UNIX

A shared object, again with a file type of .lil.

Chapter 9. Developing message flow applications 3125

z/OS A shared object, with a file type of .lil.
– For Java nodes, a Java Archive file (JAR), with a file type of .jar (on all

operating systems).
v If you have created a user-defined node, you must also complete the task

“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079.

About this task

This task instructs you to stop and restart brokers. This action is required in all but
the two circumstances described in step 4 later in this section, although if you do
stop and restart the broker, you can ensure that anyone with an interest in a
particular execution group is made aware that recent changes have been made.

This task is applicable to user-defined nodes written in Java or C only.

To install runtime files on the broker:

Procedure

1. Stop the broker on which you want to install your compiled or packaged
user-defined extension file (files with extension .lil, .jar, .par, .pdb, or .lel)

2. Create a directory if you do not already have one for this purpose. Add the
directory to the LILPATH by using the mqsichangebroker command.
CAUTION:
Do not put the .lil, .jar, .par, .pdb, or .lel files in the WebSphere Message
Broker installation directory, because they might be overwritten by the
broker.

3. Put your user-defined file in the directory, and make sure that the broker has
access to it. For example, on Linux or UNIX, use the chmod 755* command on
the file.

4. Stop and restart the broker to implement the change and to ensure that the
existence of the new file is detected. A broker restart is not necessary in the
following circumstances:
v If you have created an execution group in the WebSphere Message Broker

Toolkit, and nothing is yet deployed to it, you can add the .lil, .pdb, .jar,
.par, or .lel file to your selected directory.

v If something has already been deployed to the execution group that you
want to use, add the .lil, .pdb, .jar, .par, or .lel file to your selected
directory, and issue the mqsireload command to restart the group. You
cannot overwrite an existing file on the Windows system when the broker is
running, because of the file lock that is put in place by the operating system.

Use these two approaches with care, because any execution group that is
connected to the same broker also detects the new .lil, .pdb, .jar, .par, or
.lel files when that execution group restarts, or when something is first
deployed to that execution group.

5. Repeat the previous steps for every broker that needs the user-defined
extension file and user-defined node plug-in file. If all of your brokers are on
the same operating system type, you can build the user-defined extension file
once and distribute it to each of your systems.
If you have a cluster, for example, that includes one AIX, one Solaris, and one
Windows broker, you must build the user-defined extension files separately on
each operating system type.

3126 WebSphere Message Broker Version 7.0.0.8

Windows

On Windows, the .pdb file provides symbolic information that is

used when stack diagnostic information is displayed in the event of access
violations or other software malfunctions.

6. For C user-defined extensions, store the .pdb file in the same directory as the
.lil file to which it corresponds.

7. Use either the mqsichangebroker command or the mqsicreatebroker command,
as appropriate, to specify to the broker the directory that contains the
user-defined extension file.
When you have installed a user-defined extension, it is referred to by its
schema and name, just like a message flow.

Results

The broker loads the user-defined extension files during initialization. After
loading the files, the broker calls the registration functions in the user-defined
extension and records what nodes or parsers the user-defined extension supports.

A C user-defined extension implements a node or parser factory that can support
multiple nodes or parser types. For more information, see “Node and parser
factory behavior” on page 2982. Java users are not required to write a node factory.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“User-defined extensions in the runtime environment” on page 2980
Before you design and implement user-defined extensions, familiarize yourself
with the core components. Ensure that you also understand the basic WebSphere
Message Broker runtime architecture.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsireload command” on page 3909
Use the mqsireload command to request the broker to stop and restart execution
groups.

Chapter 9. Developing message flow applications 3127

Installing a user-defined extension to current and past versions of WebSphere
Message Broker:

Install user-defined extensions that you have developed yourself, or have acquired
from an independent software vendor, with the minimum of user intervention.

Before you begin

Before you start

Complete the following tasks:
1. “Compiling a Java user-defined node” on page 3074, “Compiling a C

user-defined extension” on page 3047, or “Creating a user-defined node from a
subflow” on page 3076

2. “Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079

3. “Testing a user-defined node” on page 3094
4. “Packaging and distributing a user-defined node project” on page 3121

About this task

You must install user-defined extensions on all appropriate WebSphere Message
Broker computers, and, if the extension is a user-defined node, on the WebSphere
Message Broker Toolkit computers (user-defined parsers have no WebSphere
Message Broker Toolkit component). Components can be installed separately, or as
part of one process. The components can be on different systems, therefore check
that the installations are completed on all affected systems.

If an extension writes messages to user trace, you must update the environment
variable MQSI_CONSOLE_NLSPATH (Windows systems), or NLSPATH (all other
systems), so that the mqsiformatlog command can find the message catalog.

The WebSphere Message Broker Toolkit installation:
Before you begin

Before installing a user-defined node, check the version of the WebSphere Message
Broker Toolkit to which you are installing, because a specific version of the
WebSphere Message Broker Toolkit might be a prerequisite of the user-defined
extension, or it might require specific files to run.

To determine the version, see “Detecting installed versions of WebSphere Message
Broker” on page 3132.

Procedure

1. Copy your files to a directory that the WebSphere Message Broker Toolkit can
access, so that you can view your user-defined node in the WebSphere Message
Broker Toolkit session. Choose one of the following options:
v Add your new plug-in JAR file directly into the dropins directory where the

WebSphere Message Broker Toolkit is installed. For example, on Windows
32-bit, add the file to C:\Program Files\IBM\WMBT700\dropins.
If you choose this option, you might find it difficult to manage your plug-ins
files safely if you later remove or replace them. Also, your system
administrator might want to control security and access on computers that

3128 WebSphere Message Broker Version 7.0.0.8

are used by more than one user, and might not set permissions for users to
write to the primary installation directories.

v Create Eclipse link files to the directories in which you maintain your plug-in
files.
For details about how to create link files, see the developerWorks article
about using Eclipse features (the section entitled "Using link files to manage
an Eclipse install").

a. Linux On Linux: Delete any existing .eclipse directory in your home
directory, and restart the WebSphere Message Broker Toolkit. For
example, remove the following directory, where userid is your user
identification: /home/userid/.eclipse

b. Create a directory called eclipse in a suitable location in your file
system; the directory structure that contains the eclipse directory is not
significant.

c. Within the eclipse directory, create directories named features and
plugins.

d. Windows On Windows: Under C:\Program Files\IBM\WMBT700 create a
new links folder, and create a file called name.link, where name is a name
that you have chosen. Type the following text path=C:/path/to/your/dir/
into the name.link file, where path/to/your/dir/ is the path to your
directory.
Example: If you put your plug-ins into C:\Temp\MyPlugins\eclipse\
plugins\, the content of the link file is path=C:/Temp/MyPlugins.

2. Restart your WebSphere Message Broker Toolkit session for the changes to take
effect.

Broker installations:
About this task

You might be required to detect the versions of WebSphere Message Broker that
are installed, to ensure that the correct LIL file is loaded by the correct level of the
broker. See “Detecting installed versions of WebSphere Message Broker” on page
3132.

To add .jar or .lil files to broker installations on WebSphere Message Broker
Version 6.0 and later, see “Installing user-defined extension runtime files on a
broker” on page 3125.

Installing a user-defined extension for single broker:
About this task

Version 7.0 and Version 8.0

v To make an extension accessible from only one broker on the system,
modify the UserLilPath setting for the broker by specifying the -l
parameter on the mqsicreatebroker or mqsichangebroker command.

Version 6.1 and earlier

v To make a 32-bit extension accessible from only one broker on the
system, modify the UserLilPath setting for the broker by specifying the
-l parameter on the mqsicreatebroker or mqsichangebroker command.

v To make a 64-bit extension accessible from only one broker on the
system, modify the UserLilPath64 setting for the broker by specifying the
-r parameter on the mqsicreatebroker or mqsichangebroker command.

Chapter 9. Developing message flow applications 3129

http://www.ibm.com/developerworks/opensource/library/os-ecfeat/

For more information, see “mqsicreatebroker command” on page 3831 and
“mqsichangebroker command” on page 3723.

Installing a user-defined extension for multiple brokers:
About this task

Version 7.0 and Version 8.0

v To affect all brokers on a system, you modify the system LILPATH.
Append the directory containing the directory that holds the extension
files to the environment variable MQSI_LILPATH. MQSI_LILPATH64 is
not valid at this version.

Version 6.1 and earlier

v To affect all brokers on a system, you modify the system LILPATH.
Append the directory containing the directory that holds the extension
files to the environment variable MQSI_LILPATH (for 32-bit extensions)
or MQSI_LILPATH64 (for 64-bit extensions).

Make this change by creating a custom environment script in the working
directory:

v Linux UNIX On Linux and UNIX systems: /var/mqsi/common/profiles

v Windows On Windows: %ALLUSERSPROFILE%\Application Data\IBM\MQSI\common\
profiles where %ALLUSERSPROFILE% is the environment variable that defines the
system working directory. The default directory depends on the operating
system:
– On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\Application Data\IBM\MQSI\common\profiles

– On Windows 7, Windows Vista and Windows Server 2008:
C:\ProgramData\IBM\MQSI\common\profiles

The actual value might be different on your computer.

You can give the environment script any name, but the file extension must be .cmd
on Windows and .sh on all other platforms. The script can perform all the
operations of a shell script, but you must limit the scope to only appending the
following variables:

MQSI_LILPATH
Defines the directories to search for plug-ins

CLASSPATH
Defines the locations that Java searches for additional classes

MQSI_CONSOLE_NLSPATH
On Windows: Defines the location of message catalogs (DLL files)

NLSPATH
On Linux and UNIX: Defines the location of message catalogs (CAT files)

PATH
Defines the location of executable files. On Windows: This variable also defines
the location of dependent libraries.

LIBPATH / SHLIB_PATH / LD_LIBRARY_PATH
On UNIX and Linux: Defines the location of dependent libraries.

Example scripts:

3130 WebSphere Message Broker Version 7.0.0.8

About this task

Windows On Windows: This example shows the environment profile for
MyExtension, which is installed in C:\Program Files\MyExtensions on Windows
32-bit, or in C:\Program Files(x86)\MyExtensions on Windows 64-bit.

The script is called MyExtension.cmd and is stored in the working directory. The
default location is %ALLUSERSPROFILE%\Application Data\IBM\MQSI\common\
profiles where the default setting for the environment variable%ALLUSERSPROFILE%
depends on the operating system:
v On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\.
v On Windows Vista and Windows Server 2008: C:\ProgramData\.

The actual value might be different on your computer.

The Windows script contains the following content:
REM Added by MyExtension install, do not modify
set MQSI_LILPATH=%MQSI_LILPATH%;"C:\Program Files\MyExtension\bin"

Linux UNIX On Linux and UNIX: This example shows the environment
profile for MyExtension, which is installed in /opt/MyExtension. The script is
called MyExtension.sh and is stored in the working directory /var/mqsi/common/
profiles/.

The Linux script contains the following content:
#!/bin/ksh
Added by MyExtension install, do not modify
export MQSI_LILPATH=/opt/MyExtension/lil${MQSI_LILPATH:+":"${MQSI_LILPATH}}

You can test the following variables in the profile script, for example if you want
to ensure that a user-defined extension runs only on a specific version of the
broker:

MQSI_FILEPATH
The full path to the installed file for WebSphere Message Broker

MQSI_WORKPATH
The full path to the configuration data for WebSphere Message Broker

MQSI_VERSION
WebSphere Message Broker version, in the form
version.release.modification.fix

MQSI_VERSION_V
The value of WebSphere Message Broker major version

MQSI_VERSION_R
The value of WebSphere Message Broker release

MQSI_VERSION_M
The value of WebSphere Message Broker modification number

MQSI_VERSION_F
The value of WebSphere Message Broker fix level

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input

Chapter 9. Developing message flow applications 3131

node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079
When you are developing a user-defined node in Java or C only, you must create
the user interface representation of the node in the WebSphere Message Broker
Toolkit.
“Detecting installed versions of WebSphere Message Broker”
A user-defined extension can detect which version of WebSphere Message Broker is
installed.
“Installing user-defined extension runtime files on a broker” on page 3125
Install the compiled runtime files for your user-defined extension on the broker on
which you want to test its function.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Detecting installed versions of WebSphere Message Broker:

A user-defined extension can detect which version of WebSphere Message Broker is
installed.

About this task

Use the conditions described here to test for particular version or versions. If
expected conditions are not met, a component might not have installed correctly, or
might have become corrupted. Check the status of the installed component and the
local logs to identify and resolve any errors.

Detecting installed versions on Windows:
About this task

Use the following instructions in your installer scripts on Windows to test for the
following versions. To detect each version, look for the registry key given for each
version. In the examples shown, x can be any integer.

3132 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker Version 6.0 toolkit
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\
WMBT60\DisplayVersion = 6.x.x.x

WebSphere Message Broker (and later) toolkit

Check for the presence of the files \IBM\Installation Manager\
installed.xml and \IBM\Installation Manager\installRegistry.xml in
the working directory.

The default working directory is %ALLUSERSPROFILE%\Application
Data\IBM\MQSI where %ALLUSERSPROFILE% is the environment variable that
defines the system working directory. The default directory depends on the
operating system:
v On Windows XP and Windows Server 2003: C:\Documents and

Settings\All Users\Application Data\IBM\MQSI

v On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\MQSI

The actual value might be different on your computer; use
%ALLUSERSPROFILE% to ensure that you access the correct location.

WebSphere Message Broker Version 6.0 (and later) runtime components
Open the file install.properties in the working directory.

The default working directory is %ALLUSERSPROFILE%\Application
Data\IBM\MQSI where %ALLUSERSPROFILE% is the environment variable that
defines the system working directory. The default directory depends on the
operating system:
v On Windows XP and Windows Server 2003: C:\Documents and

Settings\All Users\Application Data\IBM\MQSI

v On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\MQSI

The actual value might be different on your computer; use
%ALLUSERSPROFILE% to ensure that you access the correct location.

Each line in the file is of the following format:
PATH_TO_INSTALLATION = VERSION_OF_INSTALLATION

For example, if you have installed Version 7.0 GA level in the default
installation location, the line contains the following text:
C\:\\ Program\ Files\\IBM\\MQSI=7.0.0.0

The backslash character \ is interpreted as an escape character. It is
inserted before each non-alphabetic and non-numeric character in the
string to preserve the character. A colon, a space, and several backslash
characters are escaped in this example.

Parse each line of the file to detect all the installed versions and the
directory paths for the runtime components, and ignore all duplicates and
non-existent directories.

Detecting installed versions on Linux and UNIX systems:
About this task

Linux and UNIX systems do not have a common packaging method: you must
check which files are present in the file system. Look for the following files for
each version of WebSphere Message Broker that you want to detect.

WebSphere Message Broker Version 6.0 toolkit

Chapter 9. Developing message flow applications 3133

To detect Version 6 and later toolkits, look for the existence of
/etc/IBM/WebSphereMessageBrokersToolkit/products/com.ibm.wbmt.

To determine the version, use the following code example. Shell-script
notation is used in this code: ’-e’ means if file exists.
if [-e /etc/IBM/WebSphereMessageBrokersToolkit/products/com.ibm.webt]

Event Broker installed
if [-e `grep location /etc/IBM/WebSphereMessageBrokersToolkit/products/

com.ibm.webt | sed ’s/location=//’`/webt_prod/version.txt`]
it is FP1 or greater
get version from version.txt

else
#version is 6.0

fi
fi

if [-e /etc/IBM/WebSphereMessageBrokersToolkit/products/com.ibm.wmbt]
Message Broker installed
if [-e `grep location /etc/IBM/WebSphereMessageBrokersToolkit/products/
com.ibm.wmbt | sed ’s/location=//’`/wmbt_prod/version.txt`]
#It is FP1 or greater
get version from version.txt

else
#version is 6.0

fi
fi

WebSphere Message Broker (and later) toolkit

Check for the presence of the files /var/ibm/InstallationManager/
installed.xml and /var/ibm/InstallationManager/installRegistry.xml.

WebSphere Message Broker Version 6.0 (and later) runtime components

To detect Version 6.0 and later runtime components, look for the file
/var/mqsi/install.properties. Each line in this file contains an
installation path and V.R.M.F version information.

:

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079
When you are developing a user-defined node in Java or C only, you must create
the user interface representation of the node in the WebSphere Message Broker
Toolkit.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.

3134 WebSphere Message Broker Version 7.0.0.8

“Installing a user-defined extension to current and past versions of WebSphere
Message Broker” on page 3128
Install user-defined extensions that you have developed yourself, or have acquired
from an independent software vendor, with the minimum of user intervention.

Updating a user-defined extension:

On all systems, you can change a user-defined extension file.

About this task

You must stop and restart the broker for your changes to show, However, you are
not required to stop and restart the broker in the following two scenarios:
v If you have created an execution group in the WebSphere Message Broker

Toolkit, but have not yet deployed to it, you can add the .lil, .pdb, and .jar
files to your chosen directory.

v If an object has already been deployed to the execution group that you want to
use, add the .lil, .pdb, and .jar files to your chosen directory and use the
mqsireload command to restart the group. You cannot overwrite an existing file
on the Windows system when the broker is running because a file lock is put in
place by the operating system.

These two scenarios must be used with caution, because any execution group that
is connected to the same broker also detects the new .lil, .pdb, and .jar files
when that execution group is restarted, or when an object is first deployed to it. If
you restart the broker, you must ensure that anyone with an interest in a particular
execution group is made aware that recent changes have been made to the broker.

These two scenarios assume that you have used either the mqsichangebroker
command or the mqsicreatebroker command to notify the broker of the directory
in which the user-defined extension files have been placed.

Procedure

To change a user-defined extension file:
1. Stop the broker by using the mqsistop command.
2. Update or overwrite the .lil or .jar file.
3. Restart the broker by using the mqsistart command.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079
When you are developing a user-defined node in Java or C only, you must create
the user interface representation of the node in the WebSphere Message Broker
Toolkit.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your

Chapter 9. Developing message flow applications 3135

user-defined node.
“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
Related reference:
“mqsireload command” on page 3909
Use the mqsireload command to request the broker to stop and restart execution
groups.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Uninstalling a user-defined extension from the broker:

Remove a user-defined extension file from the broker.

About this task

1. Stop the broker by using the mqsistop command.
2. Delete the .lil or .jar file from the directory you created when installing the

user-defined extension. See “Installing user-defined extension runtime files on a
broker” on page 3125.

3. Restart the broker by using the mqsistart command.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Installing user-defined extension runtime files on a broker” on page 3125
Install the compiled runtime files for your user-defined extension on the broker on
which you want to test its function.
“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079
When you are developing a user-defined node in Java or C only, you must create
the user interface representation of the node in the WebSphere Message Broker
Toolkit.
“Testing a user-defined node” on page 3094
When you have created and installed the required resources, you can test your
user-defined node.

3136 WebSphere Message Broker Version 7.0.0.8

“Packaging and distributing a user-defined node project” on page 3121
Export the user-defined node project to make it available for other users.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Using error logging from a user-defined extension:

Program user-defined extensions to write entries in the local error log.

About this task

In most circumstances, user-defined extensions should use exceptions to report
errors. However, you can provide information about significant events, error or
otherwise, for problem determination and operational purposes. The details that
you supply are included in predefined message text that is extracted from a
message source or catalog.
v In C code, use the utility function CciLog or CciLogW to report events. Two of

the arguments that you pass to this function, messageSource and messageNumber,
define the event source (catalog) and the integer representation of a message
within that source, respectively.
You can also write trace information, using CciUserTrace, CciUserTraceW,
CciUserDebugTrace, and CciUserDebugTraceW when tracing and debugging is
active.

v In Java code, use the class MbService, which provides static methods to log
information to the event log. To log messages to the event log, package your
messages into a standard Java resource bundle. You can use one of the three
logging methods, passing in the resource bundle name and the message key. The
message is fully resolved, and is then inserted as a single insert into the
appropriate broker message as shown:
– logInformation(...) - BIP4360 Java user-defined node information: user

message

– logWarning(...) - BIP4361 Java user-defined node warning: user message

– logError(...) - BIP4362 Java user-defined node error: user message

You can write messages that are defined in the product message catalog (BIPmsgs),
to which you can add your own text as an argument. If you prefer, you can create
your own message catalog, so that you can create more complex messages, or
share a message catalog with other applications. If you want to create your own
message catalog, see “Creating message catalogs” on page 3138.

v Windows On Windows systems, messages are written to the Windows event log.

v Linux UNIX z/OS On Linux, UNIX, and z/OS systems, messages
are written to the SYSLOG facility.

The description here covers exceptions that are raised during normal message flow
processing. You must also provide for exceptions that are raised when you deploy
and configure a message flow. Messages that result from these configuration
exceptions are reported back to the WebSphere Message Broker Toolkit for display
to the WebSphere Message Broker Toolkit user. Create an appropriately-named Java
properties file to contain your messages, then copy the file to each computer on
which you are running the WebSphere Message Broker Toolkit, so that your
messages can be displayed.

Chapter 9. Developing message flow applications 3137

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Creating message catalogs”
Create your own message catalogs to write tailored entries to the local error log.

Creating message catalogs:

Create your own message catalogs to write tailored entries to the local error log.

About this task

In some error and other situations, you might choose to write information to the
error log so that you can track what is happening in a message flow. You can use
the Throw and Trace built-in nodes to generate entries in the log, or you can create
your own nodes and user exits, and write entries in the log from your user-defined
extensions.

You can write either or both of the following sets of messages:
v A fixed set of messages that are provided in the product message catalog. This

set provides a range of numbers for Throw nodes (BIP3001 to BIP3001), and a
second range for Trace nodes (BIP3051 to BIP3001). A third range (BIP2951 to
BIP2999) is provided for the ESQL statements LOG and THROW.
When you use these messages, you can also provide additional text that is
displayed in the message text.

v Your own messages, created in your own message catalog. You can use this
additional catalog to define specialized message content, and you can include
variables or inserts that are determined by the code that generates the message.
You can also share your own message catalog with other applications that are
not associated with WebSphere Message Broker.

When you throw an exception from ESQL by using a THROW statement, the ESQL
code adds an extra leading insert that contains the name of the current component.
The rest of the inserts that are provided by the ESQL script follow this leading
insert. Therefore, you must consider this insert when you are writing your own
message catalog.

3138 WebSphere Message Broker Version 7.0.0.8

The instructions in this topic describe how to create message catalogs for C
programs. If you want to create a Java resource bundle, refer to the documentation
for the Java 2 Platform, Standard Edition.

Read the section appropriate to your broker operating system:
v “Building and installing a Windows message source”
v “Creating an XPG/4 catalog for Linux, UNIX, and z/OS” on page 3140

Building and installing a Windows message source:
About this task

On Windows, you must create your additional message catalog as a DLL file. The
DLL file contains definitions of your event messages, which the event viewer can
display in a readable format, based on the event message written by your
application. When you compile a message catalog, a header file is created that
defines symbolic values for each event message number you have created. You
must include the header file in your application.

To create an event source for the Windows Event Log Service:

Procedure

1. Create a message compiler input (.mc) file with the source for your event
messages. Refer to the Microsoft Developer Network Web site, and search on
.mc file for details on the format of this input file.

2. Compile the message file to create a resource compiler input file:
mc -v -w -s -h c:\mymessages -r c:\mymessages mymsg.mc

where c:\mymessages is the location of the output files and mymsg.mc is the
name of the input file.
The message compiler produces an output header (.h) file that contains
symbolic #defines that map to each message number that is coded in the input
.mc file. Include this header file when you compile a user-defined extension
source file that uses a utility function (for example, CciLog) to write an event
message that you have defined. The messageNumber argument to utility function
must use the appropriate value that is hash-defined in the output header file.

3. Compile the output file (.rc) from the message compiler to create a resource
file (.res):
RC /v output_file.rc

4. Create a resource DLL file from the .res file:
LINK /DLL /NOENTRY resource_file.res

5. Append the location of the resource DLL file to the
MQSI_CONSOLE_NLSPATH environment variable, for example:
set MQSI_CONSOLE_NLSPATH=%MQSI_CONSOLE_NSPATH%;c:\messages

You can do this by creating a custom environment script in your working
directory. The default location is %ALLUSERSPROFILE%\Application
Data\IBM\MQSI\common\profiles where %ALLUSERSPROFILE% is the environment
variable that defines the system working directory. The default directory
depends on the operating system:
v On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\Application Data\IBM\MQSI\common\profiles

v On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\MQSI\
common\profiles

Chapter 9. Developing message flow applications 3139

http://msdn.microsoft.com

The actual value might be different on your computer.
6. Install the event source into the Windows Event Log Service:

a. Start the Windows Registry Editor:
regedit

b. Create a new registry subkey for your user-defined extension under the
existing structure:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\Application

Right-click Application and select New > Key. The new key is created
immediately under the Application key (not under the WebSphere Message
Broker key). You must give the key the name that you specify for the
messageSource on a utility function in your user-defined extension (for
example, CciLog) or as the property of the built-in node that you have
included in your message flow.
Create the following values for this entry:

EventMessageFile
Set the value of this string to contain the fully qualified path for the
DLL file that you have created to contain your messages. This entry
represents the message catalog.

TypesSupported
Set the DWORD value to "7".

Creating an XPG/4 catalog for Linux, UNIX, and z/OS:
About this task

On Linux, UNIX, and z/OS systems, messages are written to the SYSLOG facility.
If you want to use your own message catalog, you must create an XPG/4 message
catalog.

The process for creating a message catalog (a .cat file) depends on the operating
system on which you are creating it. The commands that you use are typically
gencat (create or modify a message catalog) and dspcat (to display all or part of a
message catalog). The gencat command merges text files that contain your message
text, to create or modify a formatted catalog. The text files typically have a file
extension of .msg.

You must append the location of the message catalog to the NLSPATH
environment variable. You can use %L and %N to represent the locale and the
catalog name, for example:
export NLSPATH=${NLSPATH}:${MY_INST_PATH}/messages/%L/%N:${MY_INST_PATH}/messages/En_US/%N

In this example, the English version is hardcoded later in the search path, ensuring
that messages are displayed even in locales for which no .cat file exists.

The messages that you define in the .msg files can include variables that are
substituted at run time. Such variables must be of the format {number}, where
{number} is the message insert number, surrounded by braces. The first message
insert is numbered 0. For example:
1234 "MSG1234E: \
Syntax Error. \n
The value ’{0}’ is not valid for property ’{1}’.\n
Correct it and then reissue the command.\n"

3140 WebSphere Message Broker Version 7.0.0.8

If you create a message catalog on one operating system, you cannot port it to
another operating system because the catalogs are binary-encoded. However, you
can use the same .msg files as input to the gencat command on another system.

See the relevant information in the documentation for your operating system. For
example:

v AIX For AIX, see the Commands Reference in the information center.

v z/OS For z/OS, see the UNIX System Services Command Reference in the
z/OS V1R8.0 LibraryCenter.

You must also check the information about additional supported locales, if you
want to use messages in locales other than US English.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Using error logging from a user-defined extension” on page 3137
Program user-defined extensions to write entries in the local error log.
Related information:

z/OS V1R8.0 LibraryCenter

pSeries and AIX Information Center

Chapter 9. Developing message flow applications 3141

http://publibz.boulder.ibm.com/libraryserver/zosv1r8/
http://publibz.boulder.ibm.com/libraryserver/zosv1r8/
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/doc/base/commandsreference.htm

3142 WebSphere Message Broker Version 7.0.0.8

Chapter 10. Testing and debugging message flow applications

Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.

Before you begin

Before you start:

To use the flow debugger effectively, you must have a basic understanding of
message flows and their representation in the WebSphere Message Broker Toolkit.
See “Message flows overview” on page 1022.

About this task

The Test Client and the flow debugger are provided as part of the WebSphere
Message Broker Toolkit.
v “Testing message flows by using the Test Client” on page 3144

Use the Test Client to monitor the output nodes in the message flow, and
provide information about the path that a test message takes through a message
flow.

v “Flow debugger overview” on page 3158
Learn about the function provided by the flow debugger, and why you might
want to use it.

v “Debugging a message flow” on page 3157
Start the flow debugger and set options to test and debug the message flow.

v “Debugging by using trace” on page 3194
Use trace in various ways to debug messages flows.

Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Debug perspective” on page 6789
Related tasks:
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

3143

Testing message flows by using the Test Client
You can test message flows in a safe environment before they are used on a
production system by using the Test Client.

You can use the Test Client to send test messages to message flows that use
WebSphere MQ, JMS, SOAP, or HTTP input nodes. The Test Client monitors the
output nodes in the message flow, and can provide information about the path that
a test message takes through a message flow. The Test Client can also provide
information about errors that are generated by the message flow.

You can complete the following tasks by using the Test Client:
v “Testing a message flow” on page 3146
v “Configuring the test settings” on page 3148
v “Creating and editing a test message” on page 3152
v “Using the Test Client in trace and debug mode” on page 3155
Related concepts:
“Test Client overview”
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related reference:
“Test Client” on page 6708
Use the Test Client to test message flow applications.
“Enqueue” on page 6712
Enqueue is the term that is used to describe the process of putting a message on to
a WebSphere MQ queue.
“Dequeue” on page 6712
Dequeue is the term that is used to describe the process of removing a message
from a WebSphere MQ queue.

Test Client overview
Use the Test Client to test message flows in a safe environment before they are
used in a production system.

You can use the Test Client to send test messages to message flows that use any of
the following input nodes:
v WebSphere MQ
v JMS
v HTTP
v SOAP
v SCA

Configuring the input message

You can use the Test Client to change the content of test messages that are sent to a
message flow, to help you determine if the message flow is working as expected.

WebSphere MQ queues
If your message flow uses WebSphere MQ queues, the Test Client clears
the queues before your test messages are sent to the message flow.

XML messages
If the input node in the message flow that you select expects an XML

3144 WebSphere Message Broker Version 7.0.0.8

message from an associated message set, the message structure is
provided, and it can be edited to produce the appropriate test message.
Alternatively, you can create a new test message, or import an existing
message from your file system.

WebSphere MQ and JMS messages
If the message format is WebSphere MQ or JMS, you can also configure an
appropriate header for the test message.

Monitoring a flow with the Test Client

The Test Client monitors output nodes in the message flow so that you can see
which nodes output messages are received on. When an error message is produced
as the message passes along the flow, or when a message is received on an output
node, a test event is recorded in the Test Client.

You can view the content of the output message, and view error messages. The
details of the test configuration and the test events can be saved as a .mbtest file.
You can use this file to repeat the test or to review the results later.

Deploying message flows when you use the Test Client

If you change your message flow, you can use the same test configuration to test
the changes. The default behavior of the Test Client is to deploy the message flow
that you want to test automatically to an execution group, whenever a change is
made to the message flow. You can therefore change a message flow, and quickly
test the result using the Test Client, without the need to manually deploy your
message flows.

The first time that you send a test message to an input node, you configure the
execution group to deploy the message flow by using the Deployment location
wizard. You can configure the deployment options to override the default behavior
of the Test Client to deploy the message flow manually, or to deploy the message
flow every time that you pass a test message to the message flow.

Stopping the Test Client

The default behavior of the Test Client is to stop the test when the first output
message is received. You can configure the Test Client to wait for multiple output
messages to be received. In this case, you stop the test manually. Stopping the test
disconnects the monitors that are running, but does not stop the message flow.

Synchronous tests
A synchronous test, such as when the message flow is invoked from an
HTTPInput node, is stopped automatically when a reply message is
received.

Asynchronous tests
You can stop an asynchronous test, such as when the message flow is
invoked from an MQInput node, manually depending on the monitor
setting in the configuration panel.

All test events are stopped when the Test Client is closed, and all test monitors
removed.

Chapter 10. Testing and debugging message flow applications 3145

Using The flow debugger with the Test Client

You can run the Test Client using the trace and debug mode to view more
information about the path that the message takes through the message flow. A test
event is produced when the message passes from one node to the next node in the
message flow. The structure of the message is recorded as it leaves each node in
the message flow. The flow debugger is launched in the trace and debug mode so
that the test message stops at breakpoints that are configured in the message flow.
Related tasks:
“Testing a message flow”
You can test your message flows using the Test Client.
“Configuring the test settings” on page 3148
You can configure the settings in the Test Client to control how your tests are run.
“Creating and editing a test message” on page 3152
To use the Test Client, you must create or edit a test message to send to your
message flow.
“Using the Test Client in trace and debug mode” on page 3155
You can run the Test Client in trace and debug mode to trace the path of a test
message through a message flow.
“Debug: putting a test message on an input queue” on page 3162
You can put a message on an input queue to test a message flow that you are
debugging.
“Debug: getting a test message from an output queue” on page 3164
You can get a message from an output queue to test a message flow that you are
debugging.
Related reference:
“Test Client” on page 6708
Use the Test Client to test message flow applications.

Testing a message flow
You can test your message flows using the Test Client.

Before you begin

Before you start:

You must have a broker running. If you do not have an existing broker, create one
using the Default Configuration wizard; see “Creating a default configuration” on
page 564.

About this task

To test a message flow, complete the following tasks:

Procedure
1. “Opening the Test Client editor” on page 3147
2. “Configuring the test settings” on page 3148
3. “Creating and editing a test message” on page 3152
4. “Selecting the deployment location for the message flow” on page 3154.

3146 WebSphere Message Broker Version 7.0.0.8

Results

The test message is put to the selected input node. The Test Client monitors the
output nodes in the message flow and events are generated as the message passes
through the message flow. You might need to stop the test manually, depending on
the nodes in the message flow and the settings that you have configured in the
Test Client.

What to do next

Next:

To test the message flow again, right-click Invoke Message Flow in the Message
Flow Test Events pane and click Invoke to start a new test; or click Duplicate or
Re-run to re-run the test using the same message.
Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related tasks:
“Using the Test Client in trace and debug mode” on page 3155
You can run the Test Client in trace and debug mode to trace the path of a test
message through a message flow.
Related reference:
“Test Client Events tab” on page 6709
You can use the Events tab in the Test Client to edit the properties and content of
your test messages. You also view test events in the Events tab when you run the
test.

Opening the Test Client editor
You can open the Test Client editor by using a menu, by right-clicking a message
flow, or by right-clicking an input node.

Before you begin

Before you start:

Before you open your message flow in the Test Client, ensure that the flow
contains no errors. Errors are shown in the Problems view; for more details, see
“Problems view” on page 6787.

About this task

To begin testing your message flow with the Test Client editor, complete the
following steps.

Procedure

Open the Test Client editor by using one of the following methods:
v In the Broker Development pane, right-click the message flow that you want to

test and click Test Message Flow.
v Open the message flow that you want to test, right-click the input node, and

click Test.

Chapter 10. Testing and debugging message flow applications 3147

v Open the message flow that you want to test and click Flow > Test. (This menu
option is disabled if there are no input nodes that can be tested.)

Results

The Test Client editor is opened with settings from the message flow.

What to do next

Next:

You can now configure the Test Client settings. For more details, see “Configuring
the test settings.”
Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
“Configuring the test settings”
You can configure the settings in the Test Client to control how your tests are run.
“Creating and editing a test message” on page 3152
To use the Test Client, you must create or edit a test message to send to your
message flow.
“Selecting the deployment location for the message flow” on page 3154
You can specify the execution group to which to deploy a message flow by using
the Deployment Location wizard within the Test Client.

Configuring the test settings
You can configure the settings in the Test Client to control how your tests are run.

Before you begin

Before you start:

You must complete the following tasks before you can configure test settings:
v “Creating a message flow” on page 1431
v “Opening the Test Client editor” on page 3147

About this task

Use the following topics to help you to configure the settings on the Test Client:
v “Testing a message flow that has WebSphere MQ nodes” on page 3149
v “Testing a message flow that uses JMS nodes” on page 3150
v “Test Client Configuration tab” on page 6713

You can modify settings that relate to all your test configurations using the Test
Client preferences; see “Test Client preferences” on page 6716.
Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.

3148 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
“Creating and editing a test message” on page 3152
To use the Test Client, you must create or edit a test message to send to your
message flow.
“Selecting the deployment location for the message flow” on page 3154
You can specify the execution group to which to deploy a message flow by using
the Deployment Location wizard within the Test Client.
Related reference:
“Test Client Events tab” on page 6709
You can use the Events tab in the Test Client to edit the properties and content of
your test messages. You also view test events in the Events tab when you run the
test.

Testing a message flow that has WebSphere MQ nodes:

You can configure settings in the Test Client for testing message flows that have
WebSphere MQ nodes.

Before you begin

Before you start:

Open the Test Client by following the instructions in “Opening the Test Client
editor” on page 3147.

About this task

To test a message flow that uses WebSphere MQ nodes, complete the following
steps.

Procedure

1. Right-click a message flow and click Test Message Flow. The Test Client opens
with the settings from the selected message flow.

2. Click the Configuration tab to display the Test Client configuration settings.
3. Click MQ Settings and select the appropriate options for your test.
4. Click MQ Message Header "Default Header" to view the settings for the

message header that is used for the test message. You can edit the options for
the default header, or you can create a new header to edit by completing the
following steps.
a. Click MQ Message Headers.
b. Click Add and enter a unique name for the header.
c. Optional: Select Include RFH V2 Header to define an MQRFH2 header; for

further information, see “Test Client Configuration tab” on page 6713.
d. Edit the header settings.
e. Click the Events tab, and select the appropriate header for your message

from the Header list.
5. You can use the Test Client to create WebSphere MQ queues that are used in

nodes in your message flow. To configure the Test Client to create the queues,
complete the following steps.
a. Click Window > Preferences.

Chapter 10. Testing and debugging message flow applications 3149

b. Expand Broker Development and click Message Broker Test Client.
c. Ensure that Create queues of input and output nodes of message flows

when host name is localhost is selected and click OK.
6. Optional: Save the Test Client configuration in a .mbtest file by completing the

following steps.
a. Click File > Save. The Save Execution Trace wizard opens.
b. Enter a name for the file, and select a project in which to save the file.
c. Click Finish to save the file.

7. Create a test message to test your message flow by following the instructions in
“Creating and editing a test message” on page 3152.

Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
“Configuring the test settings” on page 3148
You can configure the settings in the Test Client to control how your tests are run.
Related reference:
“Test Client Configuration tab” on page 6713
Configure your test environment in the Configuration tab in the Test Client.

Testing a message flow that uses JMS nodes:

You can configure settings in the Test Client for testing message flows that uses
JMS nodes.

Before you begin

Before you start:

Open the Test Client by following the instructions in “Opening the Test Client
editor” on page 3147.

About this task

To test a message flow that uses JMS nodes, complete the following steps.

Procedure

1. Right-click a message flow and click Test Message Flow. The Test Client opens
with the settings from the selected message flow.

2. Click the Configuration tab to display the Test Client configuration settings.
3. Click JMS Settings and select the appropriate options for your test. You can

add references to the client JAR files used to create the JMS connection.
To add a reference to these JAR files into your test configurations, complete the
following steps.
a. Click Configure preference settings. The Test Client preferences are

displayed.
b. Click Add and locate the JAR files in your file system.
c. Click OK to add the reference to the JAR files.

3150 WebSphere Message Broker Version 7.0.0.8

d. Ensure that Use preference settings is selected on the Configuration tab.
4. To create a JMS header, click JMS Message Headers, then complete the

following steps.
a. Click Add and enter a unique name for the header.
b. Edit the header settings.
c. Click the Events tab and select the appropriate header for your message

from the Header list.
5. Optional: Save the Test Client configuration in a .mbtest file by completing the

following steps.
a. Click File > Save. The Save Execution Trace wizard opens.
b. Enter a name for the file, and select a project in which to save the file.
c. Click Finish to save the file.

6. Create a test message to test your message flow by following the instructions in
“Creating and editing a test message” on page 3152.

Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
“Configuring the test settings” on page 3148
You can configure the settings in the Test Client to control how your tests are run.
Related reference:
“Test Client Configuration tab” on page 6713
Configure your test environment in the Configuration tab in the Test Client.
“JMS events in the Test Client” on page 6717
Use the information in this topic to help you to understand JMS events in the Test
Client.

Testing a message flow that has SCAInput nodes:

You can configure settings in the Test Client for testing message flows that have
SCAInput nodes that use the MQ Binding type.

Before you begin

Before you start:

Open the Test Client by following the instructions in “Opening the Test Client
editor” on page 3147.

About this task

To test a message flow that uses SCAInput nodes:

Procedure

1. Right-click a message flow and click Test Message Flow. The Test Client opens
with the settings from the selected message flow. If the Binding type is Web
services, skip to step 7 on page 3152, otherwise continue with step2 on page
3152

Chapter 10. Testing and debugging message flow applications 3151

2. Click the Configuration tab to display the Test Client configuration settings.
3. Click MQ Settings and select the appropriate options for your test.
4. Click MQ Message Header "Default Header" to view the settings for the

message header that is used for the test message. You can edit the options for
the default header, or you can create a new header to edit by completing the
following steps.
a. Click MQ Message Headers.
b. Click Add and enter a unique name for the header.
c. Edit the header settings. If you expect a response, specify the Reply to

queue name and Reply to queue manager name.
d. Click the Events tab and select the appropriate header for your message

from the Header list.
5. You can use the Test Client to create WebSphere MQ queues that are used in

nodes in your message flow. To configure the Test Client to create the queues,
complete the following steps.
a. Click Window > Preferences.
b. Expand Broker Development and click Message Broker Test Client.
c. Ensure that Create queues of input and output nodes of message flows

when host name is localhost is selected and click OK.
6. Optional: Save the Test Client configuration in a .mbtest file by completing the

following steps.
a. Click File > Save. The Save Execution Trace wizard opens.
b. Enter a name for the file, and select a project in which to save the file.
c. Click Finish to save the file.

7. Create a test message to test your message flow by following the instructions in
“Creating and editing a test message.”

Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
“Configuring the test settings” on page 3148
You can configure the settings in the Test Client to control how your tests are run.
Related reference:
“Test Client Configuration tab” on page 6713
Configure your test environment in the Configuration tab in the Test Client.

Creating and editing a test message
To use the Test Client, you must create or edit a test message to send to your
message flow.

Before you begin

Before you start:

Complete these tasks before you edit your test message:
1. “Opening the Test Client editor” on page 3147
2. “Configuring the test settings” on page 3148

3152 WebSphere Message Broker Version 7.0.0.8

About this task

A number of editors are available in the Test Client for creating a test message. The
most appropriate editor to use depends upon the type of test message you want to
send to your message flow.
v If the input node that you want to send the message to for the test expects an

XML message, and the message flow is associated with a message definition, the
Edit as XML structure editor is available.

v If you want to send an XML message, but do not have a message definition
defined, or you want to create a test message that is not in XML format, you can
use the Edit as text editor.

v If you want to use an existing test message from a workspace resource or file
system file, you can use the Import from external file editor.

v Alternatively you can import an existing test message into the Edit as text
editor, or take the generated source from the Edit as XML structure editor and
paste it into the Edit as text editor.

The Test Client provides limited support for the generation of XSD and WSDL test
messages. If the Test Client cannot generate the test message automatically, you can
create the test message by using either the Edit as text or Import from external file
method described in this topic.

Select from the following options to create and edit a test message:

Procedure
v Edit as XML structure:

1. In the Events tab of the Test Client, select Edit as XML structure from the
Body list.

2. Edit the entries in the Value column for each field to change the content of
the test message.

3. Right-click the fields in the Edit as XML structure editor to see additional
options for defining the content of the test message. These options include
adding message parts and elements, for example if your message has
repeating fields.

4. You can save your file with the updated test message by clicking File > Save.
5. To view and copy the generated test message, click Show Generated Source.

v Edit as text:
1. In the Events tab of the Test Client, select Edit as text from the Body list.
2. Enter the text content for your test message. You can copy content into the

editor from another source by right-clicking in the editor and selecting Paste,
or import content from an existing test message by clicking Import Source.

3. You can save your file with the updated test message by clicking File > Save.
v Import from external file:

1. In the Events tab of the Test Client:
– If the input node expects an XML message, select Import from external

file from the Body list.
– If the input node does not expect an XML message, select Import from

external file (Binary and Text) from the Body list.
2. Select from the following options to locate the file containing your test

message:
– Workspace resource

Chapter 10. Testing and debugging message flow applications 3153

a. Click Workspace. You can then locate your existing test message from
your workspace.

b. Click OK to use the selected resource.
c. Click Edit to open the default editor associated with the resource.

– File system file
a. Click File system. You can then locate your existing test message from

your file system.
b. Click Open to use the selected file.

3. You can save your file with the updated test message file details by clicking
File > Save.

What to do next

Next:

Ensure that you have selected the correct input node to send the test message to in
your message flow. Click Send Message to send your test message to the selected
input node. If this is the first time you have sent a message using this Test Client
file, the Deployment Location wizard opens. See “Selecting the deployment
location for the message flow.”
Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
Related reference:
“Test Client Events tab” on page 6709
You can use the Events tab in the Test Client to edit the properties and content of
your test messages. You also view test events in the Events tab when you run the
test.

Selecting the deployment location for the message flow
You can specify the execution group to which to deploy a message flow by using
the Deployment Location wizard within the Test Client.

Before you begin

Before you start:

Before you can test your message flow, you must have configured a broker. The
broker must be running. If you do not have an existing broker, you can create one
using the Deployment Location wizard within the Test Client by selecting New
local broker. Alternatively select Add remote broker to import a connection to a
remote broker.

About this task

When you first send a test message to a message flow using the Test Client, the
Deployment Location wizard is opened. You can use the wizard to select an
execution group to which to deploy the message flow.

3154 WebSphere Message Broker Version 7.0.0.8

Procedure
1. In the Test Client, click Send Message, to open the Deployment Location

wizard.
2. If your broker is not connected, click Connect.
3. From the list in the wizard, select the execution group to which to deploy your

message flow. You can also create a new execution group from the Deployment
Location wizard by selecting a broker, and clicking New Exec Group.

4. Select Trace and debug to display information about each node that the
message passes through in the message flow and to run the flow debugger. You
can select an option for the trace to Stop at the beginning of the flow during
debugging. For more information see Using the Test Client in trace and debug
mode.

5. Click Next.
6. Modify the test settings as required.
7. Click Finish to save the settings and deploy the message flow.

What to do next

Next:

You can change the deployment location settings from the Configuration tab.
1. Click Configuration in the Test Client.
2. Click Deployment to display the deployment settings.
3. Click Change to open the Deployment Location wizard.
Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
“Using the Test Client in trace and debug mode”
You can run the Test Client in trace and debug mode to trace the path of a test
message through a message flow.
“Creating a broker for a development environment” on page 569
Create a broker by using the WebSphere Message Broker Toolkit on Linux on x86
or Windows.
“Importing broker definitions into the WebSphere Message Broker Explorer” on
page 906
Import broker connection details that have been created by another user into your
session of the WebSphere Message Broker Explorer or WebSphere Message Broker
Toolkit, to use the broker.
Related reference:
“Deployment Location wizard” on page 6716
Use the Deployment Location wizard to set the execution group to which the test
message flow is deployed. You can also use the wizard to create a broker, a
connection to a remote broker, and a new execution group.

Using the Test Client in trace and debug mode
You can run the Test Client in trace and debug mode to trace the path of a test
message through a message flow.

Chapter 10. Testing and debugging message flow applications 3155

Before you begin

Before you start:

Before you can test your message flow, you must have configured a broker. The
broker must be running. You must also have created an execution group to which
to deploy your message flows.

About this task

You can use the trace and debug mode to complete the following actions:
v Stop the test message at breakpoints in the message flow by using the flow

debugger.
v Trace the message nodes and terminals that the test message passes through.
v See the test message change as it passes through the message flow.
v View a message node, where an exception occurs, and the associated exception

message and trace details.

Note: If the message flow does not contain an MQOutput, HTTPReply,
JMSOutput, or SOAPReply node, the Test Client stops the test after the test
message is sent to the broker. Therefore, you might not see trace events when the
flow is run.

All output from the trace and debug mode is written to the “Message flow test
events” section on the Message flow Test Events tab.

To use the Test Client in trace and debug mode, complete the following steps:

Procedure
1. Configure the flow debug port for the execution group in the WebSphere

Message Broker Toolkit:
a. In the Brokers view, right-click the execution group with which you want to

work.
b. Click Launch Debugger.
c. To set the Flow Debug Port, click Configure, and enter a number for the

port.
d. Click OK.

The debugger is now enabled on the selected execution group. Click Terminate
Debugger to stop the debugger.

2. In the Test Client, click Send Message to open the Deployment Location
wizard.

3. If your broker is not connected, click Connect. From the list in the wizard,
select the execution group to which you want to deploy your message flow.

4. Click Trace and debug.
5. Optional: If you want the test message to stop at a breakpoint after the input

node, click Stop at the beginning of the flow during debug.
6. Click Next and modify the test settings as required.
7. Click Finish to save the settings and deploy the message flow.

What to do next

Next:

3156 WebSphere Message Broker Version 7.0.0.8

You can modify the deployment location settings from run mode to trace and
debug mode by using the Deployment Location wizard:
1. Click Configuration in the Test Client.
2. Click Deployment to display the deployment settings.
3. Click Change to open the Deployment Location wizard.
Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
Related reference:
“Deployment Location wizard” on page 6716
Use the Deployment Location wizard to set the execution group to which the test
message flow is deployed. You can also use the wizard to create a broker, a
connection to a remote broker, and a new execution group.

Debugging a message flow
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.

Before you begin

Before you start

If you are new to debugging, see: “Flow debugger overview” on page 3158.

Deploy your message flow to an execution group in a broker and make sure that
the broker is running. See: “Deploying resources” on page 3234.

About this task

To debug a message flow, perform the following tasks. You might want to vary the
tasks you perfom and repeat certain tasks, depending on your particular
debugging requirements.

Procedure
1. Start the flow debugger.

Set the required preferences, then start debugging by attaching the flow
debugger to an execution group. You can then send test messages along the
flow. See: “Starting the flow debugger” on page 3160.

2. Work with breakpoints.
Add and manipulate breakpoints in your message flow. See: “Working with
breakpoints in the flow debugger” on page 3166.

3. Follow the progress of a test message.
Use breakpoints to pause the progress of a test message so that you can
observe its behavior. See: “Stepping through message flow instances in the
debugger” on page 3172.

4. View message data.

Chapter 10. Testing and debugging message flow applications 3157

View (and change) data in messages, ESQL code, Java code or mappings as
debugging progresses. See: “Debugging data” on page 3180.

5. Manage message flows.
During a debugging session, there are various administrative tasks you might
need to do. When you have finished debugging, detach the debugger from the
execution group. See: “Managing flows and flow instances during debugging”
on page 3187.

Related concepts:
“Flow debugger overview”
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Debug perspective” on page 6789
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Flow debugger overview
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.

Use the Debug perspective in the WebSphere Message Broker Toolkit to use the
flow debugger. For an introduction to the Debug perspective and the views it
presents, see “Debug perspective” on page 6789.

You can set breakpoints in a message flow, then step through the flow. While you
are stepping through, you can examine and change the message variables and the
variables used by ESQL code, Java code, and mappings. You can debug a wide
variety of error conditions in flows, including the following:
v Nodes that are wired incorrectly (for example, outputs that are connected to the

wrong inputs)
v Incorrect conditional branching in transition conditions
v Unintended infinite loops in flow

From a single WebSphere Message Broker Toolkit, you can attach the debugger to
one or more execution groups, and debug multiple flows in different execution
groups (and therefore multiple messages) at the same time. However, an execution
group can be debugged by only one user at a time. Therefore, if you attach your
debugger to an execution group, another user cannot attach a debugger to that
same execution group until you have ended your debugging session.

When you debug message flows, use a broker that is not being used in a
production environment. Debugging might degrade the performance of all

3158 WebSphere Message Broker Version 7.0.0.8

message flows in the same execution group and those in other execution groups
that share the same broker because they might be affected by potential resource
contention.

Debugging code and mappings in message flow nodes

You can use the flow debugger to examine the behavior of code and mappings in
message flow nodes.

After you have deployed a message flow, you can set a breakpoint just before one
of the nodes listed in this section so that, when the flow pauses at the breakpoint,
you can step through the code or mappings line by line. This allows you to
examine the logic, and check the actions taken and their results. You can set
additional breakpoints and you can also examine and change variables.

The following nodes can contain ESQL code modules:
v Compute node
v Filter node
v Database node

The following nodes can contain Java code modules:
v User-defined nodes
v JavaCompute node

The following nodes can contain mappings:
v Mapping node
v DataInsert node
v DataUpdate node
v DataDelete node
v Extract node
v Warehouse node

Restrictions

The following restrictions apply when you debug a message flow:
v You must use the same version of the broker and the WebSphere Message

Broker Toolkit; for example, you cannot use the WebSphere Message Broker
Toolkit Version 6.1 to debug a message flow that you have deployed to a broker
at an earlier version.

v You should not debug message flows over the Internet, because there might be
security issues.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Debug perspective” on page 6789
Related tasks:
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:

Chapter 10. Testing and debugging message flow applications 3159

“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Starting the flow debugger
To start the flow debugger, you must attach it to an execution group. When the
flow debugger is started, you can introduce test messages to your message flow.

About this task

Complete the following tasks to start the debugger:

Procedure
1. “Attaching the flow debugger to an execution group for debugging”
2. Optional: “Debug: putting a test message on an input queue” on page 3162
3. Optional: “Debug: getting a test message from an output queue” on page 3164
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Attaching the flow debugger to an execution group for
debugging
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.

Before you begin

Before you start:

v If authorisation permissions are required, see: “Authorizing users for broker
administration” on page 371

v Create a message flow. See: Chapter 9, “Developing message flow applications,”
on page 1019

v Deploy your message flow to a broker execution group. See: “Deploying
resources” on page 3234

v Start the broker. See: “Starting and stopping a broker” on page 921

About this task

From a single WebSphere Message Broker Toolkit, you can attach the flow
debugger to multiple execution groups that are running on the same or on
different host computers, and debug their flows (and therefore multiple messages)
simultaneously.

3160 WebSphere Message Broker Version 7.0.0.8

An execution group can be debugged by only one user at a time. If you attach
your debugger to an execution group, another user cannot attach a debugger to
that same execution group until you have ended your debugging session.

To attach the debugger to an execution group:

Procedure
1. Set a Flow Debug port number. To configure the broker JVM with a debug

port number, use one of the following methods:
v In the Brokers view in the WebSphere Message Broker Toolkit, right-click

the execution group with which you want to work, and click Launch
Debugger. Click Configure, and enter a port number. Click OK to enable
debugging on the selected port, and attach the debugger to the selected
execution group.

v In the WebSphere Message Broker Explorer, right-click the execution group
with which you want to work, and click Properties. Enter a port number in
the Flow Debug Port field on the Extended page, and click OK to modify
the Flow Debug port number. You must right-click the execution group and
click Flow Debug Port > Enable. to enable debugging on the selected port.

v Set the Java debug port by running the mqsichangeproperties command (all
on one line) in the Command Console:
mqsichangeproperties broker_name -e execution_group_name
-o ComIbmJVMManager -n jvmDebugPort -v port_number

For example:
mqsichangeproperties TEST -e default
-o ComIbmJVMManager -n jvmDebugPort -v 3920

When this command has completed, restart the broker. See: “Starting and
stopping a broker” on page 921.

The Java JIT (just-in-time) compiler is disabled if the jvmDebugPort parameter
is set to an integer greater than zero. If you are not debugging a message flow,
reset the jvmDebugPort parameter to zero to maximize performance.

2. If you used the mqsichangeproperties command or the WebSphere Message
Broker Explorer to configure the Flow Debug Port, you must use the Brokers
view in the WebSphere Message Broker Toolkit to attach the flow debugger to
the execution group. Right-click the execution group with which you want to
work, and click Launch Debugger, and click OK to attach the debugger to the
selected execution group.

3. Open the message flow that you want to debug in the Message Flow editor by
double-clicking its name in the Broker Development view.

4. Add a breakpoint to a connection that leads out of the input node to ensure
that the message flow does not run to completion before you can begin to
debug it.

The breakpoint appears as . For information about adding a breakpoint,
see “Working with breakpoints in the flow debugger” on page 3166.

5. Switch to the Debug perspective.
6. Right-click the Message Broker Launch Configuration in the Debug view, and

click Edit Source Lookup. You can use Edit Source Lookup Path to tell the
debugger where to look for your source files for message flows, and related
resources such as ESQL, message maps and Java during debugging.

Chapter 10. Testing and debugging message flow applications 3161

7. Click Add, and select the type of source to add to the lookup path. The
lookup path can be an Eclipse project name, an external folder, or a
compressed (.zip) file. You can specify multiple locations, but the debugger
always looks first in the message flow project that you specify in the Edit
Source Lookup Path dialog.

8. Select the resources to include in the lookup path, and click OK.
9. Click Add to include more resources in the lookup path, click Up, or Down to

modify the order of the resources.
10. Click OK to exit the Edit Source Lookup Path dialog, and save your changes.
11. When the next message comes into your flow and arrives at breakpoint you

added after the input node, the flow pauses, the breakpoint icon is

highlighted: , and you can start debugging.
12. In the Debug view, double-click the message flow that you want to debug.

The message flow opens in the Message Flow editor. You can now add more
breakpoints, start stepping over the flow, and so on.

What to do next

Next:

Continue with one of the following tasks:
v Optional: “Debug: putting a test message on an input queue” and “Debug:

getting a test message from an output queue” on page 3164. These tasks involve
putting messages to, and taking messages from, WebSphere MQ queues and are
therefore useful only if your message flow includes MQInput and MQOutput
nodes.

v “Working with breakpoints in the flow debugger” on page 3166.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
“Debug: ending a session” on page 3191
Finish debugging by detaching the flow debugger from the execution group to
which your message flows are deployed.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: putting a test message on an input queue
You can put a message on an input queue to test a message flow that you are
debugging.

3162 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start

Complete the steps described in “Attaching the flow debugger to an execution
group for debugging” on page 3160.

About this task

If your message flow includes MQInput and MQOutput nodes, you can test the
flow by putting a message on the input queue of your first MQInput node.

You can use the command line interfaces or WebSphere MQ Explorer to put a
message to a queue.

You can also use the Test Client as a repeatable alternative. To use the Test Client,
complete the steps described in the following sections:
v “Using enqueue in the Test Client”
v “Adding data to your message”
v “Optional: Using a file of sample data” on page 3164

If the message is processed by the message flow and is put on an output queue,
you can retrieve it from that queue. See: “Debug: getting a test message from an
output queue” on page 3164.

Using enqueue in the Test Client:
About this task

To configure an enqueue event in the Test Client so that you can use it to send a
test message:

Procedure

1. Switch to the Broker Application Development perspective.
2. Click File > New > Other. The New dialog opens.
3. Select Message Broker Test Client in the Message Brokers category and click

Next. The wizard opens and displays its first panel.
4. Select the project in which you want to create the Test Client file.
5. Enter a name for the Test Client file and click Finish. The Test Client editor

opens.
6. On the toolbar at the upper right of the Test Client editor, under Message Flow

Test Events, click the Put a message onto a queue icon .
7. Under Detailed Properties, enter the names of the queue manager and the

queue for the input node for this flow. Queue manager names are
case-sensitive; check that you enter the name correctly.
If you are putting a message onto an input queue that is on a remote computer,
ensure that the queue manager of the associated broker has a server-connection
channel called SYSTEM.BKR.CONFIG.

8. If you are putting a message onto a remote queue, enter values to identify the
host and port of the computer that is hosting the queue.

9. Click File > Save to save the file.

Adding data to your message:

Chapter 10. Testing and debugging message flow applications 3163

About this task

If you want to add just a small amount of test data in your test message, type the
data into the Source section of the Message pane:

Procedure

1. Open your Test Client file.
2. Type your test data directly into the Source section of the Message pane.
3. Put the test message by clicking Send Message.

Optional: Using a file of sample data:
About this task

If you want your test message to contain a larger quantity of sample data (for
example some structured XML), you can import a file containing that data into the
Test Client:

Procedure

1. In the Events tab of your Test Client file, click Import Source.
2. Select the file you want to use as the content for the test message, and click

Open. The contents of the selected file is added to the Source pane.
3. Click File > Save when you have finished.
4. Put the test message by clicking the Send Message button.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Debug: getting a test message from an output queue”
You can get a message from an output queue to test a message flow that you are
debugging.
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.
Related information:

WebSphere MQ Version 7 Information Center online

Debug: getting a test message from an output queue
You can get a message from an output queue to test a message flow that you are
debugging.

Before you begin

Before you start

Completed the following tasks:

3164 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v Chapter 9, “Developing message flow applications,” on page 1019
v Chapter 11, “Packaging and deploying,” on page 3209
v “Attaching the flow debugger to an execution group for debugging” on page

3160
v “Debug: putting a test message on an input queue” on page 3162

About this task

If your message flow includes MQInput and MQOutput nodes, you can test the
flow by putting a message on the input queue of your first MQInput node and
retrieving it from an MQOutput node.

You can use the command line interfaces or WebSphere MQ Explorer to get a
message from an output queue.

You can also use the Test Client as a repeatable alternative. To use the Test Client,
complete the following steps:

Procedure
1. Switch to the Broker Application Development perspective.
2. Click File > New > Other. The New dialog opens.
3. Select Message Broker Test Client in the Message Brokers category and click

Next. The wizard opens and displays its first panel.
4. Select the project in which you want to create the Test Client file.
5. Enter a name for the Test Client file and click Finish. The Test Client editor

opens.
6. On the toolbar at the upper right of the Test Client editor, under Message

Flow Test Events, click the Get a message from a Queue icon .
7. Under Detailed Properties, enter the name of the queue manager and output

node queue.
8. Click Get Message to read a message from the queue.

Results

When a message is available on an output queue, you can see it in the Test Client
editor.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Debug: putting a test message on an input queue” on page 3162
You can put a message on an input queue to test a message flow that you are
debugging.
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
Related reference:
“Flow debugger shortcuts” on page 6719

Chapter 10. Testing and debugging message flow applications 3165

“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Working with breakpoints in the flow debugger
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.

About this task

Use the following tasks to manage breakpoints:
v “Adding breakpoints in the flow debugger”
v “Restricting breakpoints in the flow debugger to specific flow instances” on page

3168
v “Enabling and disabling breakpoints in the flow debugger” on page 3169
v “Removing breakpoints in the flow debugger” on page 3170

What to do next

Next:

After you have set one or more breakpoints in the message flow, continue your
debugging session by stepping through the message flow, pausing at each active
breakpoint. See: “Stepping through message flow instances in the debugger” on
page 3172.

You can also examine message data, code, and mappings at appropriate points.
See: “Debugging data” on page 3180.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Attaching the flow debugger to an execution group for debugging” on page 3160
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Adding breakpoints in the flow debugger
Add breakpoints to connections in your message flow to control where flow
processing will pause.

Before you begin

Before you start:

Attach the flow debugger to the execution group where your flow is deployed.
See: “Attaching the flow debugger to an execution group for debugging” on page
3160.

3166 WebSphere Message Broker Version 7.0.0.8

About this task

You can add breakpoints to the connections of a message flow that is open in the
Message Flow editor. Each breakpoint that you add to a flow is also automatically
added to all other instances of the flow and you do not need to restart any of the
instances.

Every breakpoint is automatically enabled when you add it to a connection and the

connection is flagged with the enabled breakpoint symbol .

Manually set a breakpoint after the collector node or any other multithreaded
node. When you use the Debug perspective on the node, you see that the thread
has been ended.

To add breakpoints to the connections of a message flow:

Procedure
1. Switch to the Debug perspective.
2. Add breakpoints to the appropriate connections. Use any of the following

methods:

Option Method

Add breakpoints individually to selected
connections.

1. In the Message Flow editor, right-click
the connection where you want to set the
breakpoint.

2. Click Add Breakpoint.

Add breakpoints simultaneously to all
connections entering a selected node.

1. In the Message Flow editor, right-click
the node before which you want to set
breakpoints.

2. Click Add Breakpoints Before Node.

Add breakpoints simultaneously to all
connections leaving a selected node.

1. In the Message Flow editor, right-click
the node after which you want to set
breakpoints.

2. Click Add Breakpoints After Node.

What to do next

Next:

After you have set one or more breakpoints in the message flow, step through the
flow, pausing at each active breakpoint. See: “Stepping through message flow
instances in the debugger” on page 3172.

You can also examine message data, code, and mappings at appropriate points.
See: “Debugging data” on page 3180.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:

Chapter 10. Testing and debugging message flow applications 3167

“Restricting breakpoints in the flow debugger to specific flow instances”
Breakpoints can be applied to particular flow instances, instead of all instances,
which is the default behavior.
“Enabling and disabling breakpoints in the flow debugger” on page 3169
You can disable breakpoints that are currently enabled, and vice versa.
“Removing breakpoints in the flow debugger” on page 3170
Remove breakpoints that are no longer required from connections in your message
flow.
“Stepping through message flow instances in the debugger” on page 3172
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.
“Debugging data” on page 3180
You can view (and change) data in messages, ESQL code, Java code or mappings
as debugging progresses.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Restricting breakpoints in the flow debugger to specific flow
instances
Breakpoints can be applied to particular flow instances, instead of all instances,
which is the default behavior.

Before you begin

Before you start:

Add one or more breakpoints to your message flow. See: “Adding breakpoints in
the flow debugger” on page 3166.

About this task

When you add a breakpoint to a message flow in the Message Flow editor, the
breakpoint automatically applies to all instances of the flow. However, you can
restrict a breakpoint to one or more instances of a flow. This enables you to work
more easily with just those instances that you are currently interested in, rather
than with all instances.

To restrict a breakpoint to one or more flow instances:

Procedure
1. Switch to the Debug perspective.
2. In the Breakpoints view, right-click the breakpoint that you want to restrict,

then click Properties to open the Flow Breakpoints Properties window.
3. In the Restrict to Selected Flow Instance(s) list box, select those instances to

which you want to restrict the breakpoint.
v You must have at least one instance active; if not, the Restrict to Selected

Flow Instance(s) list box is empty.
v If any instance is currently paused at the breakpoint, all check boxes in the

Restrict to Selected Flow Instance(s) list box are disabled and you cannot
select them.

3168 WebSphere Message Broker Version 7.0.0.8

4. Click OK.

What to do next

Next:

Now you can add additional breakpoints (if needed), step through the flow
instance, and work with data:
v “Adding breakpoints in the flow debugger” on page 3166
v “Stepping through message flow instances in the debugger” on page 3172
v “Debugging data” on page 3180
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Adding breakpoints in the flow debugger” on page 3166
Add breakpoints to connections in your message flow to control where flow
processing will pause.
“Stepping through message flow instances in the debugger” on page 3172
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.
“Debugging data” on page 3180
You can view (and change) data in messages, ESQL code, Java code or mappings
as debugging progresses.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Enabling and disabling breakpoints in the flow debugger
You can disable breakpoints that are currently enabled, and vice versa.

Before you begin

Before you start:

Add one or more breakpoints to your message flow. See: “Adding breakpoints in
the flow debugger” on page 3166.

About this task

Message flow processing pauses only at breakpoints that are enabled. By
controlling which breakpoints are enabled and which are disabled, you can, for
example, allow processing to continue to the part of a flow that you are interested
in without having to continually add and remove breakpoints.

The following symbols identify breakpoints:

Enabled breakpoint

Disabled breakpoint

Chapter 10. Testing and debugging message flow applications 3169

If you disable all the breakpoints in a message flow, you cannot perform any other
debugging tasks until you add a new breakpoint, or enable an existing breakpoint.

To change the state of breakpoints:

Procedure
1. Switch to the Debug perspective.
2. In the Breakpoints view, select one or more breakpoints that you want to enable

or disable.
3. Right-click the selected breakpoints and click Enable or Disable.
4. Optional: to change the state of a single breakpoint, right-click the breakpoint

and click Properties. Select or clear the Enabled check box as required, then
click OK.

Results

The state of breakpoints is changed in all instances of the message flow where they
are set.

What to do next

Next:

If you have finished debugging, continue with: “Debug: ending a session” on page
3191.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Enabling and disabling breakpoints in the flow debugger” on page 3169
You can disable breakpoints that are currently enabled, and vice versa.
“Removing breakpoints in the flow debugger”
Remove breakpoints that are no longer required from connections in your message
flow.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Removing breakpoints in the flow debugger
Remove breakpoints that are no longer required from connections in your message
flow.

Before you begin

Before you start:

Add one or more breakpoints to your message flow. See: “Adding breakpoints in
the flow debugger” on page 3166.

3170 WebSphere Message Broker Version 7.0.0.8

About this task

The following symbols identify breakpoints:

Enabled breakpoint

Disabled breakpoint

If you remove a breakpoint from a message flow, it is automatically removed from
all instances of the message flow where it is set.

If you remove all the breakpoints that you have added to your message flow, you
cannot perform any other debugging tasks until you add a new breakpoint.

To remove breakpoints:

Procedure
1. Switch to the Debug perspective.
2. Remove the breakpoints. Use one of the following methods, depending on how

many breakpoints you want to remove:

Option Method

Remove individual breakpoints. 1. In the Message Flow editor, right-click
the breakpoint that you want to remove,
then click Remove Breakpoint.

Remove several breakpoints
simultaneously.

1. Click the Flow Breakpoints tab to show
the Breakpoints view.

2. Select one or more breakpoints that you
want to remove.

3. Click the Remove Selected Breakpoints

icon

on the toolbar, or right-click

the selected breakpoints, then click
Remove.

Remove all breakpoints simultaneously. 1. Click the Breakpoints tab to show the
Breakpoints view.

2. Click the Remove All Breakpoints icon

on the toolbar, or right-click any

breakpoint, then click

Remove All.

What to do next

Next:

If you have finished debugging, continue with: “Debug: ending a session” on page
3191.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:

Chapter 10. Testing and debugging message flow applications 3171

“Enabling and disabling breakpoints in the flow debugger” on page 3169
You can disable breakpoints that are currently enabled, and vice versa.
“Stepping through message flow instances in the debugger”
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.
“Debugging data” on page 3180
You can view (and change) data in messages, ESQL code, Java code or mappings
as debugging progresses.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Stepping through message flow instances in the debugger
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.

Before you begin

Before you start:

Add one or more breakpoints to your message flow. See: “Adding breakpoints in
the flow debugger” on page 3166.

About this task

The message flow debugger pauses flow processing at the first breakpoint it
encounters. You can then continue with one or more of the following tasks, as
appropriate:
v “Debug: resuming message flow processing” on page 3173
v “Debug: running to completion” on page 3174
v “Debug: stepping over nodes” on page 3175
v “Debug: stepping into subflows” on page 3176
v “Debug: stepping out of subflows” on page 3177
v “Debug: stepping through source code” on page 3178

What to do next

Next:

As you step through the message flow you can look at the processing data. When
you have finished, end your debugging session:
v “Debugging data” on page 3180
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:

3172 WebSphere Message Broker Version 7.0.0.8

“Debugging data” on page 3180
You can view (and change) data in messages, ESQL code, Java code or mappings
as debugging progresses.
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
“Managing flows and flow instances during debugging” on page 3187
During a debugging session, there are various administrative tasks that you might
need to do, which include detaching the debugger from the execution group when
you have finished.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: resuming message flow processing
Each time message flow processing pauses at an active breakpoint, you can
investigate the state of the flow, then resume processing.

Before you begin

Before you start:

Add one or more breakpoints to your message flow. See: “Adding breakpoints in
the flow debugger” on page 3166.

About this task

When message flow processing has paused at a breakpoint, you can resume
processing:

Procedure
1. Switch to the Debug perspective.
2. In the Debug view, take one of the following steps:

v On the toolbar click Resume Flow Execution .

v Right-click the flow stack frame, then click Resume .

Results

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

What to do next

Next:

If you have completed debugging this message flow, you can remove the
breakpoints, or end the debugging session:
v “Removing breakpoints in the flow debugger” on page 3170

Chapter 10. Testing and debugging message flow applications 3173

v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debug: running to completion”
When message flow processing pauses at an active breakpoint, you can let it
continue to the end of the flow, ignoring other breakpoints.
“Debug: stopping a message flow instance” on page 3188
While debugging, a message flow cannot be redeployed until it has been stopped.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: running to completion
When message flow processing pauses at an active breakpoint, you can let it
continue to the end of the flow, ignoring other breakpoints.

Before you begin

Before you start:

Add one or more breakpoints to your message flow. See: “Adding breakpoints in
the flow debugger” on page 3166.

About this task

When message flow processing has paused at a breakpoint, you can restart
processing so that the message flow runs to completion.

If you want the flow to continue processing, but you want to pause at the next
enabled breakpoint instead of running to completion, see: “Debug: resuming
message flow processing” on page 3173.

Procedure
1. Switch to the Debug perspective.
2. In the Debug view:

v either, click Run to completion on the toolbar.

v or, right-click the flow stack frame, then click Run to completion .

Results

The flow instance ignores all breakpoints and processing continues to the end. The
flow instance is automatically removed from the Debug view.

What to do next

Next:

3174 WebSphere Message Broker Version 7.0.0.8

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:
v “Removing breakpoints in the flow debugger” on page 3170
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debug: resuming message flow processing” on page 3173
Each time message flow processing pauses at an active breakpoint, you can
investigate the state of the flow, then resume processing.
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
“Debug: ending a session” on page 3191
Finish debugging by detaching the flow debugger from the execution group to
which your message flows are deployed.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: stepping over nodes
When message flow processing pauses at an active breakpoint, you can step over
the node and continue processing until the next active breakpoint, ignoring
breakpoints that might have been set in code within the node.

Before you begin

Before you start:

Add one or more breakpoints to your message flow. See: “Adding breakpoints in
the flow debugger” on page 3166.

About this task

To step over the next node and continue message flow processing:

Procedure
1. Switch to the Debug perspective.
2. In the Debug view:

v either, click Step Over Node on the toolbar.

v or, right-click the flow stack frame, then click Step Over Node .

Results

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint

Chapter 10. Testing and debugging message flow applications 3175

at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

What to do next

Next:

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:
v “Removing breakpoints in the flow debugger” on page 3170
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debug: resuming message flow processing” on page 3173
Each time message flow processing pauses at an active breakpoint, you can
investigate the state of the flow, then resume processing.
“Debug: running to completion” on page 3174
When message flow processing pauses at an active breakpoint, you can let it
continue to the end of the flow, ignoring other breakpoints.
“Debug: stepping into subflows”
When message flow processing pauses at a breakpoint, you can step into the
subflow that follows.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: stepping into subflows
When message flow processing pauses at a breakpoint, you can step into the
subflow that follows.

Before you begin

Before you start:

Add one or more breakpoints to your message flow. See: “Adding breakpoints in
the flow debugger” on page 3166.

About this task

To step into a subflow:

Procedure
1. Switch to the Debug perspective.
2. In the Debug view:

v either, click Step Into Subflow on the toolbar.

v or, right-click the flow stack frame, then click Step Into Subflow .

3176 WebSphere Message Broker Version 7.0.0.8

Results

The subflow opens in the Message Flow editor and displaces the parent message
flow. Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

What to do next

Next:

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:
v “Removing breakpoints in the flow debugger” on page 3170
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debug: running to completion” on page 3174
When message flow processing pauses at an active breakpoint, you can let it
continue to the end of the flow, ignoring other breakpoints.
“Debug: stepping out of subflows”
When message flow processing has paused at a breakpoint in a subflow, you can
step out of the subflow.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: stepping out of subflows
When message flow processing has paused at a breakpoint in a subflow, you can
step out of the subflow.

Before you begin

Before you start

Complet the following tasks:
v “Adding breakpoints in the flow debugger” on page 3166
v “Debug: stepping into subflows” on page 3176

About this task

To step out of a subflow:

Procedure
1. Switch to the Debug perspective.
2. In the Debug view:

Chapter 10. Testing and debugging message flow applications 3177

v either, click Step Out of Subflow on the toolbar.

v or, right-click the flow stack frame, then click Step Out of Subflow .

Results

The debugger continues processing until it reaches the connection from the output
terminal of the subflow, where it pauses. The parent flow opens in the Message
Flow editor, displacing the subflow.

What to do next

Next:

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:
v “Removing breakpoints in the flow debugger” on page 3170
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debug: stepping into subflows” on page 3176
When message flow processing pauses at a breakpoint, you can step into the
subflow that follows.
“Debug: running to completion” on page 3174
When message flow processing pauses at an active breakpoint, you can let it
continue to the end of the flow, ignoring other breakpoints.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: stepping through source code
When message flow processing has paused at a breakpoint on entry to a node that
contains ESQL code, Java code, or mappings, you can step through the code.

Before you begin

Before you start:

Add one or more breakpoints to your message flow. See “Adding breakpoints in
the flow debugger” on page 3166.

About this task

The nodes that can contain ESQL code, Java code, or mappings are listed in: “Flow
debugger overview” on page 3158. Add breakpoints as appropriate:
v ESQL code: add a breakpoint in the ESQL code.
v Java code: add a breakpoint in the Java code.

3178 WebSphere Message Broker Version 7.0.0.8

v Mappings: add a breakpoint to a map using the Map Script panel. Note that
mapping routines are implemented in ESQL; you might choose to step through
the ESQL code rather than the mappings.

To step through your source code:

Procedure
1. Switch to the Debug perspective.
2. Step into the source code. In the Debug view:

v either, click Step into Source Code on the toolbar.

v or, right-click the flow stack frame, then click Step Into .
3. When message flow processing has paused at a breakpoint within ESQL code,

Java code, or mappings, you can step through the source code, line by line.
Repeat this step as often as necessary. In the Debug view:

v either, click Step Over on the toolbar.

v or, right-click the flow stack frame, then click Step Over .

A single line of source code runs and the flow pauses at the next line of code.
What you can do depends on what type of code is contained within the node.
See:
v “Debugging ESQL” on page 3182
v “Debugging Java” on page 3183
v “Debugging mappings” on page 3185
If the debugger is paused before the last line of code when you step over, the
last line of code runs and message flow processing continues until the next
breakpoint in the logical processing of the current message. If there is no
further enabled breakpoint at which the flow instance can pause, processing
runs to completion and the flow instance is removed from the Debug view.

4. If you have finished looking at the code or mappings before the last breakpoint,
you can continue processing the message flow. In the Debug view:

v either, click Step Return on the toolbar.

v or, right-click the flow stack frame, then click Step Return .

The source code runs to completion from the current breakpoint and message
flow processing continues until the next breakpoint that is set in the logical
processing of the current message. If there is no further enabled breakpoint at
which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

What to do next

Next:

If you have completed debugging this message flow, you can remove the
breakpoints or end the debugging session:
v “Removing breakpoints in the flow debugger” on page 3170
v “Debug: ending a session” on page 3191
Related concepts:

Chapter 10. Testing and debugging message flow applications 3179

“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debug: running to completion” on page 3174
When message flow processing pauses at an active breakpoint, you can let it
continue to the end of the flow, ignoring other breakpoints.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debugging data
You can view (and change) data in messages, ESQL code, Java code or mappings
as debugging progresses.

About this task

When you have added one or more breakpoints to a deployed message flow, the
debugger stops the message flow processing at each breakpoint. Depending on the
context of the breakpoint, you can do one of the following tasks:
v “Debugging messages” on page 3181
v “Debugging ESQL” on page 3182
v “Debugging Java” on page 3183
v “Debugging mappings” on page 3185

Results

When you have finished debugging a message flow, you can remove the
breakpoints, or end the debugging session:
v “Removing breakpoints in the flow debugger” on page 3170
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
“Stepping through message flow instances in the debugger” on page 3172
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

3180 WebSphere Message Broker Version 7.0.0.8

Debugging messages
When message flow processing has paused at a breakpoint in your message flow,
you can examine and modify the message content.

Before you begin

Before you start

Add one or more breakpoints to your message flow. See: “Adding breakpoints in
the flow debugger” on page 3166.

About this task

To examine and modify message data:

Procedure
1. Switch to the Debug perspective.
2. View the messages in the Variables view.

The Breakpoints view and the Variables view share the same pane. Click the
tab at the bottom to select the view that you want.

3. To alter a message, right-click it and select an option from the menu. You
cannot alter the content of exceptions within a message.

Results

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

What to do next

Next:

If you have finished debugging this message flow, you can remove the
breakpoints, or end the debugging session:
v “Removing breakpoints in the flow debugger” on page 3170
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
“Stepping through message flow instances in the debugger” on page 3172
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.
Related reference:

Chapter 10. Testing and debugging message flow applications 3181

“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debugging ESQL
When message flow processing has paused at a breakpoint that you have set in
source code within a node that contains ESQL code, you can examine and modify
the ESQL variables in the Flow Debugger.

Before you begin

Before you start

Complete the following tasks:
v “Adding breakpoints in the flow debugger” on page 3166
v “Debug: stepping through source code” on page 3178

About this task

You can browse ESQL variables in the Variables view in the Debug Perspective,
and change their associated data values. You can also set breakpoints on lines in
the ESQL code. See the following sections for further details:
v “Using breakpoints on ESQL code lines”
v “Working with ESQL variables”

Using breakpoints on ESQL code lines:
Procedure

1. Switch to the Debug perspective.
2. Open the ESQL editor.
3. Right-click a line where you want to set a breakpoint.

You cannot set a breakpoint on a comment line or a blank line.
4. Select from the menu to create, delete, or restrict the breakpoint, in a similar

way to normal debugger breakpoints, as described in “Working with
breakpoints in the flow debugger” on page 3166.

Working with ESQL variables:
Procedure

1. Switch to the Debug perspective.

2. Open the Variables view. Variables are shown in a tree, using the symbol .
3. To work with a variable, right-click it and select an option from the pop-up

menu.
You cannot update message trees, or REFERENCE variables.
For example, if you have declared the following ESQL variables, you can
change their values in the debugger:
DECLARE myInt INT 0;
DECLARE myFloat FLOAT 0.0e-1;
DECLARE myDecimal DECIMAL 0.1;
DECLARE myInterval INTERVAL DAY TO MONTH;

3182 WebSphere Message Broker Version 7.0.0.8

Results

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

What to do next

Next:

If you have finished debugging this message flow, you can remove the
breakpoints, or end the debugging session:
v “Removing breakpoints in the flow debugger” on page 3170
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
“Debug: stepping through source code” on page 3178
When message flow processing has paused at a breakpoint on entry to a node that
contains ESQL code, Java code, or mappings, you can step through the code.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debugging Java
When message flow processing has paused at a breakpoint that you have set in
source code within a node that contains Java code, you can examine and modify
the Java variables in the Flow Debugger.

About this task

If you notice that performance has degraded after following these steps, see
“Resolving problems with performance” on page 3504.

Procedure
1. To open the Command Console, click Start > Programs > IBM WebSphere

Message Broker 7.0 > Command Console.
2. Start the broker by running the mqsistart command in the Command

Console.
3. Set the Java debug port by running the mqsichangeproperties command (all

on one line) in the Command Console:
mqsichangeproperties broker_name -e execution_group_name
-o ComIbmJVMManager -n jvmDebugPort -v port_number

Chapter 10. Testing and debugging message flow applications 3183

For example:
mqsichangeproperties TEST -e default
-o ComIbmJVMManager -n jvmDebugPort -v 3920

4. Stop and restart the broker by running the mqsistop and mqsistart
commands.

5. Open the message flow that you want to debug in the Message Flow editor by
double-clicking its name in the Broker Development view.

6. Add a breakpoint where the Java method is called, by following the
instructions in “Adding breakpoints in the flow debugger” on page 3166.

7. To step directly into the Java code during the debugging process, add a
breakpoint in the Java code.

8. Deploy the broker archive (BAR) file that includes the JAR file that contains
the Java code, by following the instructions in “Deploying a broker archive
file” on page 3235.

9. Click Run > Debug to open the Debug wizard.
10. Right-click Message Broker Debug in the list of elements on the left and click

New.
11. Set the Java Debug Port with the same value that you specified for the -v

parameter on the mqsichangeproperties command, and click Apply to save
your changes.

12. Click the Source tab, specify the source file location, and click Apply to save
your changes.

13. Click Debug to start the debug process.

Working with Java variables:
About this task

When message flow processing has paused at a breakpoint in the source code
within a node that contains Java code (a user-defined node or a JavaCompute
node), you can browse Java variables in the Variables view on the Debug
perspective, and change their associated data values.

Procedure

1. Switch to the Debug perspective.
2. Click the Variables tab to open the Variables view if it is not already open.

Variables are shown in a tree, using the symbol .
3. To work with a variable, right-click it and select an option from the menu.

Results

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

What to do next

Next:

When you have completed debugging the message flow, you can remove the
breakpoints or end the debugging session:
v “Removing breakpoints in the flow debugger” on page 3170

3184 WebSphere Message Broker Version 7.0.0.8

v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Adding breakpoints in the flow debugger” on page 3166
Add breakpoints to connections in your message flow to control where flow
processing will pause.
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
“Debug: stepping through source code” on page 3178
When message flow processing has paused at a breakpoint on entry to a node that
contains ESQL code, Java code, or mappings, you can step through the code.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.

Debugging mappings
When message flow processing has paused at a breakpoint that you have set in
source code within a node that contains mappings, you can view the mapping
routines and modify user-defined variables in the Flow Debugger.

Before you begin

Before you start

To complete this task, you must have completed the following tasks:
v “Adding breakpoints in the flow debugger” on page 3166
v “Debug: stepping through source code” on page 3178

About this task

Mapping routines are implemented in ESQL. If you step into the code, you can
either step through the ESQL code, or step through the mappings.

Procedure
1. Switch to the Debug perspective.
2. In the Debug view, take one of the following steps:

v Click Step into Source Code on the toolbar.

Chapter 10. Testing and debugging message flow applications 3185

v Right-click the flow stack frame, then click Step into .

The Message Mapping editor opens with the mapping routine highlighted in
both the Mapping editor and the Outline view.

3. To use breakpoints on mapping lines:
a. In the Message Mapping Editor, select the line for the mapping command

that you want to use, right-click the space beside it and select from the
menu to add or disable a breakpoint. (Alternatively, double-click the same
space to add or remove a breakpoint.)

b. Select from the menu to create, delete, or restrict the breakpoint, in a similar
way to normal debugger breakpoints, as described in: “Working with
breakpoints in the flow debugger” on page 3166.

You cannot set a breakpoint on a comment line or a blank line.
4. Check the mapping routines by stepping through the mappings.

In the Debug view, the stack frame shows the list of mapping commands and
the current command. The Variables view shows your user-defined mapping
variables and the current message. You can change the values of user-defined
variables.

Results

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

What to do next

Next:

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:
v “Removing breakpoints in the flow debugger” on page 3170
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
“Debug: stepping through source code” on page 3178
When message flow processing has paused at a breakpoint on entry to a node that
contains ESQL code, Java code, or mappings, you can step through the code.
Related reference:
“Flow debugger shortcuts” on page 6719

3186 WebSphere Message Broker Version 7.0.0.8

“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Managing flows and flow instances during debugging
During a debugging session, there are various administrative tasks that you might
need to do, which include detaching the debugger from the execution group when
you have finished.

About this task

When you have started a session for message flow debugging, you might want to
complete one or more of the following associated tasks:
v “Debug: querying a broker to find deployed flows”
v “Debug: stopping a message flow instance” on page 3188
v “Debug: redeploying a message flow” on page 3189
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Working with breakpoints in the flow debugger” on page 3166
When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.
“Stepping through message flow instances in the debugger” on page 3172
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.
“Debugging data” on page 3180
You can view (and change) data in messages, ESQL code, Java code or mappings
as debugging progresses.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: querying a broker to find deployed flows
You can find the message flow that you want to work with in the Flow Debugger
by refreshing the list of available flows.

About this task

During an active debugging session, you can query an execution group on a
broker to find out what flows are currently deployed to it. The displayed list of
message flows that are available in that execution group is updated. The updated
list might include message flows that were not previously deployed, or that were
not accessible because the flow was already being accessed by another developer.

To query an execution group for deployed flows:

Chapter 10. Testing and debugging message flow applications 3187

Procedure
1. Switch to the Debug perspective.
2. In the Debug view, select the execution group that you want to query, then:

v either, click Refresh Selected Flow Engine to Get More Flow Types on
the toolbar.

v or, right-click the execution group, then click Refresh .

Results

The Debug view is refreshed with the names of the flows that are currently
deployed to the execution group and are available.

What to do next

Next:

You can continue your debugging session and debug one of the listed message
flows, or end your debugging session:
v “Working with breakpoints in the flow debugger” on page 3166
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Managing flows and flow instances during debugging” on page 3187
During a debugging session, there are various administrative tasks that you might
need to do, which include detaching the debugger from the execution group when
you have finished.
“Stepping through message flow instances in the debugger” on page 3172
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: stopping a message flow instance
While debugging, a message flow cannot be redeployed until it has been stopped.

About this task

While you are debugging, you might need to stop a message flow instance. For
example, you might want to correct an error in your flow or source code. To do
this, you must stop the flow and then redeploy it. See “Debug: redeploying a
message flow” on page 3189.

To stop message flow processing, run it to completion:

3188 WebSphere Message Broker Version 7.0.0.8

Procedure
1. Switch to the Debug perspective.
2. In the Debug view:

v either, click Run to completion on the toolbar.

v or, right-click the flow stack frame, then click Run to completion .

Results

The flow instance ignores all breakpoints and processing continues to the end. The
flow instance is automatically removed from the Debug view.

What to do next

Next:

After stopping a flow instance, you can start to debug another message flow, or
end your debugging session:
v “Attaching the flow debugger to an execution group for debugging” on page

3160
v “Debug: ending a session” on page 3191
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debug: running to completion” on page 3174
When message flow processing pauses at an active breakpoint, you can let it
continue to the end of the flow, ignoring other breakpoints.
“Stepping through message flow instances in the debugger” on page 3172
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: redeploying a message flow
If you want to change your message flow while you are debugging it, you must
redeploy it to the execution group, then reattach the flow debugger.

Before you begin

Before you start

Stop the message flow before you redeploy it. See: “Debug: stopping a message
flow instance” on page 3188

Chapter 10. Testing and debugging message flow applications 3189

About this task

During your debugging session, you might find a problem in a message flow that
you want to correct or see a behavior that you want to change. You can alter the
flow to resolve the situation and redeploy the flow to the broker:

Procedure
1. Switch to the Debug perspective.
2. Detach the debugger from the execution group by clicking Detach from the

Selected Flow Engines on the toolbar.
3. Switch to the Broker Application Development perspective.
4. Edit the flow in the Message Flow editor and save your changes.
5. Double-click the broker archive (BAR) file that contains your flow. Remove the

flow, then add your edited version and save your changes.
See “Adding files to a broker archive” on page 3223.

6. Deploy your BAR file.
Drag your BAR file from the Broker Development view to the execution group
in the Brokers view. Check the Administration log to make sure that the
deployment was successful.
See: “Deploying a broker archive file” on page 3235.

7. Switch to the Debug perspective.
8. Reattach the debugger to the execution group.

Click the down-arrow on the Debug icon

on the toolbar, and select Debug
to invoke the Debug (Create, manage, and run configurations) wizard, and
attach the flow engine again, following the instructions in “Attaching the flow
debugger to an execution group for debugging” on page 3160.

Results

The modified message flow is now deployed to the broker, and the debugging
session is ready for you to debug the new flow logic.

What to do next

Next: Continue to use these tasks to debug your message flow:
v “Working with breakpoints in the flow debugger” on page 3166
v “Stepping through message flow instances in the debugger” on page 3172
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
“Attaching the flow debugger to an execution group for debugging” on page 3160
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.

3190 WebSphere Message Broker Version 7.0.0.8

“Debug: ending a session”
Finish debugging by detaching the flow debugger from the execution group to
which your message flows are deployed.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Debug: ending a session
Finish debugging by detaching the flow debugger from the execution group to
which your message flows are deployed.

About this task

When you have finished debugging a flow, detach the flow debugger from the
execution group. Other developers are then able to attach the debugger to the
execution group. Detaching the flow debugger also restores the performance of
your workbench environment, which might have been reduced by having the
debugger attached.

To detach the flow debugger from an execution group:

Procedure
1. Switch to the Debug perspective.
2. In the Debug view, select the name of the execution group from which you

want to detach the flow debugger, then take one of the following steps:

v On the toolbar, click Detach from the Selected Flow Engines .

v Right-click the execution group, then click

Detach).

Results

All existing flow instances are automatically run to completion and the flow
debugger is detached from the execution group. Your debugging session is now
finished. You can start a new debugging session at any time.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Attaching the flow debugger to an execution group for debugging” on page 3160
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.
“Stepping through message flow instances in the debugger” on page 3172
After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.
Related reference:
“Flow debugger shortcuts” on page 6719
“Flow debugger icons and symbols” on page 6720
The Debug perspective uses various debugger icons and symbols.

Chapter 10. Testing and debugging message flow applications 3191

Debugging message flows that contain WebSphere Adapters
nodes

You can use various methods to monitor message flows that include WebSphere
Adapters nodes.

About this task

Before you use any of the methods listed in this section, ensure that the
appropriate JAR files and shared libraries are available to the WebSphere Adapters
nodes. For more information, see “Preparing the environment for WebSphere
Adapters nodes” on page 717.

Also, check for the latest information about WebSphere Adapters; see WebSphere
Adapters technotes.
v User and service trace: You can use user and service trace to trace a message

flow that contains WebSphere Adapters nodes. For more information, see “Using
trace” on page 3533.

v Flow debugger: Use the flow debugger in the normal way to debug a message
flow that contains WebSphere Adapters nodes. For more information, see
“Debugging a message flow” on page 3157.

v Adapter event table: The WebSphere Adapters nodes use an event table to
communicate the outcome of operations asynchronously to a calling application.
For more information, see “Creating a custom event project in PeopleTools” on
page 2083.

Handling exceptions that are raised by a WebSphere Adapters request node

The WebSphere Adapters request nodes raise exceptions that indicate the following
Enterprise Information System (EIS) failures.

Message
number Exception type Explanation

BIP3511 RecordNotFound The requested record could not be found in the
EIS.

BIP3512 DuplicateRecord An attempt was made to create a record that
already exists in the EIS.

BIP3513 MultipleMatchingRecords A retrieve request matched more than one
record. To retrieve multiple records, perform a
retrieveall operation.

BIP3515 MatchesExceededLimit A retrieveall exception returned more entries
than the maximum allowed number.

BIP3516 MissingData The message tree that was sent to the adapter
request node does not have all the required
fields set.

If an exception occurs that does not fit into the categories in the table, the node
raises a general BIP3450 message that describes the problem.

You can use these exceptions to perform special processing when you do not want
the exceptions to be treated as errors. For example:
v If a create operation fails because the record already exists, you could modify

the request to an update.

3192 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8
http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8

v If a retrieve operation fails because the request matches more than one record,
you could try a retrieveall operation instead.

v If a retrieve operation fails because the record could not be found, an empty
record could be returned.

To handle these exceptions, you can connect a message routing node, Compute
node, or JavaCompute node to the Failure terminal of the WebSphere Adapters
request node, and route the exception to other processing nodes based on the
exception message number.

XSD Schema Validation problem

When you configure an SAP adapter in the WebSphere Message Broker Toolkit,
you might see the following warning, referring to an unresolvable IBM XML
schema:
CTDX1101W : XSD: The location ’’ has not been resolved
example1.xsd /EAI_ESB_LIB line 2
example2.xsd /EAI_ESB_LIB line 2
XSD Schema Validation Problem

This warning is caused by the following namespace reference in an <xsd:import>
element:
<xsd:import namespace="http://www.ibm.com/xmlns/prod/websphere/j2ca/sap/metadata"/>

No types or elements from this namespace are referenced in the logical structure of
the XSD. An XML schema that references this namespace is in the referenced
connector project, and is pointed to from the XML catalog. The XML catalog entry
is populated when the SAP connector project is brought into the workspace.

This warning is benign and can be safely ignored, because it does not affect the
structural content of your schema definition.

Tuning the SAP adapter for scalability and performance

You can monitor the performance of a message flow that contains SAP nodes by
using user trace, and accounting and statistics data, then use that information to
tune your flow by configuring an appropriate number of listeners and additional
instances for the message flow. For more information, see “Tuning the SAP adapter
for scalability and performance” on page 3278.
Related concepts:
“SAP adapter scalability and performance” on page 1949
You can improve performance by configuring the number of listeners on the
adapter and the number of additional instances on the message flow to prevent
delays when processing synchronous calls from SAP.
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.

Chapter 10. Testing and debugging message flow applications 3193

“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
Related reference:
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.

WebSphere Adapters technotes

Debugging by using trace
You can use trace in several ways to analyze message flow behavior.

About this task

Enabling user trace shows the history of processing that is carried out in a
particular message flow, but it shows only those parts of the messages that were
accessed. You can use Trace nodes to write out your own debugging information at
specific points in the message flow, including the full message tree at that point,
provided that you have coded the flow to include it.

You can use both of these methods to review behavior only after a message has
been processed.

Procedure
v “Debugging with user trace” on page 3195
v “Debugging by adding Trace nodes to a message flow” on page 3205
Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Testing message flows by using the Test Client” on page 3144
You can test message flows in a safe environment before they are used on a

3194 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8

production system by using the Test Client.
Related tasks:
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
Chapter 10, “Testing and debugging message flow applications,” on page 3143
Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
Related reference:
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“Message flow debugger” on page 6718
The flow debugger is a visual interface that supports the debugging of message
flow applications in the WebSphere Message Broker Toolkit.
“Test Client” on page 6708
Use the Test Client to test message flow applications.

Debugging with user trace
Message flow nodes write messages to user trace when they are processing work.
You can use these messages offline to review the activity in a message flow and
show information such as which nodes were invoked, what code they ran, and
through which terminals the messages was sent.

Before you begin

Before you start:

Before you start to trace a broker, or any of its execution groups or messages flows,
the broker must be running, and you must have deployed the message flows by
using the WebSphere Message Broker Toolkit.

About this task

If part of the message is parsed by the nodes, user trace shows the fields that are
being navigated.

If an error occurs while a message is being processed, the exception is written to
user trace. If the error is not caught in the message flow, it is also be written to the
system log. Each entry in user trace is prefixed by "BIP". You can search for BIP
messages in the information center. For information about the location of user trace
log files on different operating systems, see “User trace” on page 6873.

When you start user tracing, you cause additional processing for every activity in
the component that you are tracing. Large quantities of data are generated by the
components. Expect to see some effect on performance while trace is active. You
can limit this additional processing by being selective about what you trace, and
by restricting the time during which trace is active.

Chapter 10. Testing and debugging message flow applications 3195

Procedure
v Trace is inactive by default. Turn it on by following the instructions in “Starting

user trace” on page 3197.
v If you need to check what tracing options are currently active for your brokers,

use the mqsireporttrace command, as described in “Checking user trace
options” on page 3199.

v To change user trace options, use the mqsichangetrace command, as described in
“Changing user trace options” on page 3201.

v To retrieve user trace, use the mqsireadlog command, as described in
“Retrieving user trace” on page 3204.

v To format the information that is generated by the mqsireadlog command, use
the mqsiformatlog command, as described in “Formatting trace” on page 3543.

v For information about how to interpret the contents of user trace, see
“Interpreting trace” on page 3546.

v To stop user trace, use the mqsichangetrace command, as described in “Stopping
user trace” on page 3202.

v To clear old information from trace files, use the mqsichangetrace command, as
described in “Clearing old information from trace files” on page 3548.

v Alternatively, you can include a Trace node in your message flows when you
design them. Use a Trace node when you want to specify an alternative location
for the trace contents. For more details, see “Debugging by adding Trace nodes
to a message flow” on page 3205.

Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Testing message flows by using the Test Client” on page 3144
You can test message flows in a safe environment before they are used on a
production system by using the Test Client.
Related tasks:
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Debugging by adding Trace nodes to a message flow” on page 3205
By adding a Trace node to a message flow, you can write debugging messages to a
file, to user trace, or to the system log, and review those messages after the
message flow has processed some data.
Chapter 10, “Testing and debugging message flow applications,” on page 3143
Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.

3196 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“Message flow debugger” on page 6718
The flow debugger is a visual interface that supports the debugging of message
flow applications in the WebSphere Message Broker Toolkit.
“Test Client” on page 6708
Use the Test Client to test message flow applications.

Starting user trace
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.

Before you begin

Before you start:

Before you start to trace a broker, or one of its execution groups or message flows,
the broker must be running, and you must have deployed the message flows by
using the WebSphere Message Broker Explorer. Follow the instructions in the
Chapter 11, “Packaging and deploying,” on page 3209 topic.

About this task

To start a user trace:

Procedure
1. Start WebSphere Message Broker user trace facilities by using the

mqsichangetrace command, or, for execution groups and assigned message
flows, from the WebSphere Message Broker Explorer. You can select only one
broker on each invocation of the command, but you can activate concurrent
traces for more than one broker, by invoking the command more than once.

2. Specify an individual execution group or message flow within the specified
broker to limit the scope of a trace. The events that are recorded when you
select the message flow option include:
v Sending a message from one Message Processing node to the next
v Evaluating expressions in a Compute or Filter node

3. Start your trace. You can start trace at two levels:

normal This tracks events that affect objects that you create and delete, such as
nodes.

debug This tracks the beginning and end of a process, as well as monitoring
objects that are affected by that process.

Example: starting user trace for the default execution group:
About this task

To start normal level user tracing for the default execution group on a broker that
you have created with the name MB7BROKER, on distributed systems, enter the
command
mqsichangetrace MB7BROKER -u -e default -l normal

Chapter 10. Testing and debugging message flow applications 3197

where:

-u specifies user trace
-e specifies the execution group (in this case, the default execution group)
-l specifies the level of trace (in this case, normal)

z/OS

On z/OS, enter the command

F MQP1BRK,ct u=yes, e=’default’, l=normal

Example: starting user trace on all the message flows in the default execution
group from the WebSphere Message Broker Explorer:
About this task

To start normal level user tracing on all the message flows in the default execution
group from the WebSphere Message Broker Explorer:

Procedure

1. In the Navigator view, expand the Brokers folder and right-click the execution
group with which you want to work.

2. Click User Trace All Flows > Normal

Example: starting user trace for a message flow from the WebSphere Message
Broker Explorer:
About this task

To start normal level user tracing for one of your message flows from the
WebSphere Message Broker Explorer:

Procedure

1. In the Navigator view, expand the Brokers folder and right-click the message
flow with which you want to work.

2. Click User Trace > Normal

Results

An alert saying Message Flow is tracing at level 'normal' is displayed in the
Alert Viewer.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.

3198 WebSphere Message Broker Version 7.0.0.8

Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Starting service trace” on page 3534
Service trace is used to get detailed information about your environment for use by
your IBM Support Center.
“Stopping user trace” on page 3202
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Stop user trace facilities by using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Resolving problems with user-defined extensions” on page 3511
Advice for dealing with some common problems that can arise when you work
with user-defined extensions
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.

Checking user trace options
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers, execution groups
and message flows.

About this task

If you use the mqsireporttrace command, you must specify the component for
which the check is required, for example, the execution group or message flow.
The command responds with the current trace status for the component that you
have specified.

Example: checking user trace options for a message flow using the WebSphere
Message Broker Explorer:
About this task

Follow these steps to check the user trace options for one of your message flows
from the WebSphere Message Broker Explorer:

Procedure

1. In the Navigator view, expand the Brokers folder and right-click the message
flow with which you want to work.

2. Click User to view user trace settings for your message flow.
3. Click Trace nodes to see if trace nodes are disabled or enabled for your

message flow.
4. Click Service to view service trace settings for your message flow.

Chapter 10. Testing and debugging message flow applications 3199

Example: checking user trace options for a broker:
About this task

To check what options are currently set for the broker MB7BROKER and its execution
group test, on distributed systems, enter the command
mqsireporttrace MB7BROKER -u -e test

where:

-u specifies user trace
-e specifies the execution group (in this case, test)

z/OS

On z/OS, enter the command

F MQP1BRK,reporttrace u=yes, e=’test’

Results

If you have started tracing by following the example in “Starting user trace” on
page 3197, the response to the mqsireporttrace command is:
BIP8098I: Trace level: normal, mode: safe, size: 1024 KB
BIP8071I: Successful command completion

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Changing user trace options” on page 3201
Use the mqsichangetrace command to change the trace options that you have set.
You can also use the WebSphere Message Broker Explorer to change the trace
options for execution groups and assigned message flows.
“Checking service trace options” on page 3537
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers.
Related reference:

3200 WebSphere Message Broker Version 7.0.0.8

“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

Changing user trace options
Use the mqsichangetrace command to change the trace options that you have set.
You can also use the WebSphere Message Broker Explorer to change the trace
options for execution groups and assigned message flows.

Procedure

Example: changing user trace from normal to debug:
About this task

To change from a normal level of user trace to a debug level on the default
execution group of a broker called MB7BROKER, on distributed systems, enter the
command
mqsichangetrace MB7BROKER -u -e default -l debug

where:

-u specifies user trace
-e specifies the execution group (in this case, the default execution group)
-l specifies the level of trace (in this case, changing it to debug)

z/OS

On z/OS, enter the command

F MQP1BRK,ct u=yes, e=’default’, l=debug

Example: changing user trace from normal to debug from the WebSphere
Message Broker Explorer:
About this task

To change from a normal level of user trace to a debug level for one of your
message flows from the WebSphere Message Broker Explorer:

Procedure

1. In the Navigator view, expand the Brokers folder and right-click the message
flow with which you want to work.

2. Click User trace > Debug.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.

Chapter 10. Testing and debugging message flow applications 3201

“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Checking user trace options” on page 3199
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers, execution groups
and message flows.
“Changing service trace options” on page 3538
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
change the service trace options that you have set.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.

Stopping user trace
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Stop user trace facilities by using the
mqsichangetrace command or the WebSphere Message Broker Explorer.

About this task

Use the mqsichangetrace command with a trace level of none to stop an active
trace. This action stops the trace activity for the component that you specify on the
command. It does not affect active traces on other components. For example, if you
stop tracing on the execution group test, an active trace on another execution
group continues.

You can also stop an active trace for execution groups or assigned message flows
by using the WebSphere Message Broker Explorer. If you redeploy a component
from the WebSphere Message Broker Explorer, trace for that component is returned
to its default setting of none.

3202 WebSphere Message Broker Version 7.0.0.8

Example: stopping user trace on the default execution group:
About this task

To stop the trace started by the command shown in “Starting user trace” on page
3197, on distributed systems, enter the following command:
mqsichangetrace MB7BROKER -u -e default -l none

where:

-u specifies user trace
-e specifies the execution group (in this case, the default execution group)
-l specifies the level of trace (in this case, none)

z/OS

On z/OS, enter the following command:

F MQP1BRK,ct u=yes, e=’default’, l=none

Example: stopping user trace on a message flow from the WebSphere Message
Broker Explorer:
About this task

You can stop user trace on individual message flows, or select an execution group
and stop user trace on all the message flows in the execution group.

To stop trace for one of your message flows from the WebSphere Message Broker
Explorer:

Procedure

1. In the Navigator view, expand the Brokers folder and right-click the message
flow with which you want to work.

2. Click User trace > None.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.

Chapter 10. Testing and debugging message flow applications 3203

“Stopping service trace” on page 3540
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
stop an active service trace.
“Clearing old information from trace files” on page 3548
If the component that you are tracing has stopped, you can delete its trace files
from the log subdirectory of the WebSphere Message Broker home directory.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.

Retrieving user trace
Use the mqsireadlog command to access the trace information that is recorded by
the user trace facilities.

Procedure

This command retrieves the trace details according to parameters that you specify
on the command, and writes the requested records to a file, or to the command
line window, in XML format.

Example: retrieving user trace information in XML format:
Procedure

To retrieve information for the user trace activated with the mqsichangetrace
command and write it to an output file, on distributed systems, enter the
command
mqsireadlog MB7BROKER -u -e default -o trace.xml
where:

-u specifies user trace
-e specifies the execution group (in this case, the default execution group)
-o specifies the output file (in this case, trace.xml)

Results

This sends a log request to the broker to retrieve the user trace log, and stores the
responses in the trace.xml file. You can view this file using a plain text editor.
Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:

3204 WebSphere Message Broker Version 7.0.0.8

Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Retrieving service trace” on page 3542
Use the mqsireadlog command to access the trace information recorded by the
service trace facilities.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.

Debugging by adding Trace nodes to a message flow
By adding a Trace node to a message flow, you can write debugging messages to a
file, to user trace, or to the system log, and review those messages after the
message flow has processed some data.

About this task

You must add a Trace node when the message flow is designed. “Viewing the
logical message tree in trace output” on page 1481 explains how to view the
structure of the logical message tree at any point in the message flow, and contains
an example of the message content. You can turn the Trace node off when a
message flow is promoted to production to improve performance, but you can turn
the node on when required. Performance can be affected when Trace nodes are
active. The extent to which performance is affected depends on the destination that
you choose for the debugging messages; for example, writing to user trace is
typically faster than writing to a file or to the system log.

The debug messages can include writing part or all of the logical message tree, but
they can also include hard-coded strings to identify a particular point in the
message flow (such as PRINTF in a C program). If you write the entire message tree
in a Trace node, the behavior of the message flow might be changed. Typically,
only the parts of the message that are referenced are parsed, rather than the entire
message.

Chapter 10. Testing and debugging message flow applications 3205

Procedure
v Add a Trace node to your message flow, then set the following properties on the

node (as described in detail in “Trace node” on page 4942):
– Set the destination of the trace record that is written by the node to User

Trace, Local Error Log, or File.
– If you choose File, set the file path of the file to which to write records.
– Use the Pattern property to create an ESQL pattern that specifies the data to

be included in the trace record.
– Specify the message catalog from which the error text for the error number of

the exception is extracted.
– Specify the error number of the message that is written.
–

v After you have added a Trace node to your message flow, you can turn it on or
off, as described in “Switching Trace nodes on and off” on page 3555.

v To view the structure of the logical message tree at any point in the message
flow, include a Trace node and write some or all of the message (including
headers and all four message trees) to the trace output destination. The
following topics describes how to view that output: “Viewing the logical
message tree in trace output” on page 1481

v If you write debugging messages to user trace, the following topic describes
how to retrieve user trace: “Retrieving user trace” on page 3204

Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Testing message flows by using the Test Client” on page 3144
You can test message flows in a safe environment before they are used on a
production system by using the Test Client.
Related tasks:
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Debugging with user trace” on page 3195
Message flow nodes write messages to user trace when they are processing work.
You can use these messages offline to review the activity in a message flow and
show information such as which nodes were invoked, what code they ran, and
through which terminals the messages was sent.
Chapter 10, “Testing and debugging message flow applications,” on page 3143
Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.

3206 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“Message flow debugger” on page 6718
The flow debugger is a visual interface that supports the debugging of message
flow applications in the WebSphere Message Broker Toolkit.
“Test Client” on page 6708
Use the Test Client to test message flow applications.

Chapter 10. Testing and debugging message flow applications 3207

3208 WebSphere Message Broker Version 7.0.0.8

Chapter 11. Packaging and deploying

Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

About this task

Read the overview section to learn about the different ways in which you can
deploy resources, and the resources and properties associated with deployment:
v “Packaging and deployment overview” on page 3210

– “Deployment methods” on page 3211
– “Message flow application deployment” on page 3213

The tasks in this section assume that you have already set up your broker, and
connected to it. For information about how to complete those tasks, and other
related actions, see “Managing brokers” on page 900.

Refer to the following topics for information about how to package and deploy a
message flow application:
v “Packaging resources” on page 3221

– “Creating a broker archive” on page 3222
– “Adding files to a broker archive” on page 3223
– “Refreshing the contents of a broker archive” on page 3233

v “Deploying resources” on page 3234
– “Deploying a broker archive file” on page 3235
– “Deploying a message flow that uses WebSphere Adapters” on page 3240
– “Importing a broker archive file to the WebSphere Message Broker Explorer”

on page 3242

Further topics describe other deployment tasks:
v “Checking the results of deployment” on page 3243
v “Renaming objects that are deployed to execution groups” on page 3246
v “Removing a deployed object from an execution group” on page 3246
Related concepts:
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
Related tasks:
“Managing brokers” on page 900
Work with your existing brokers to manage their connections and their active
status by using the WebSphere Message Broker Toolkit or WebSphere Message
Broker Explorer. You can use the Administration API (also known as the CMP API)
to complete some of these actions.

3209

“Deploying resources to a broker from a CMP application” on page 982
Deploy BAR files to the brokers in your broker network from a CMP application.
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.

Packaging and deployment overview
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.

When you create application resources such as message flows in the WebSphere
Message Broker Toolkit, you must distribute them to the brokers on which you
want them to run. Data for message flows and associated resources is packaged in
a broker archive (BAR) file before being sent to the broker.

You can package and deploy message flows and associated resources in one step
by using the WebSphere Message Broker Toolkit. You can use this approach when
you are developing your flows to make changes and quickly see the results. When
you want to deploy to a production environment, you can separate the packaging
and deployment steps by first packaging your resources into a BAR file and then
deploying that file at a later time. You can create BAR files in the following ways:
v By using the WebSphere Message Broker Toolkit
v By using the mqsicreatebar command

For more information about packaging resources, see “Packaging resources” on
page 3221.

After you create a BAR file, you can customize the file for deployment to different
brokers; for example, to specify queue names or data source names. For more
information about customizing your BAR file, see “Configurable properties of a
broker archive” on page 3217.

After creating a BAR file and customizing it, you can deploy the BAR file in the
following ways:
v From the WebSphere Message Broker Toolkit
v From the WebSphere Message Broker Explorer
v By using the mqsideploy command
v By using functions defined by the Administration API (also known as the CMP

API)

Depending on your work patterns, you might use all these methods at different
times. These options are described in “Deployment methods” on page 3211.

After you read these overview topics, find detailed instructions for the tasks that
you want to complete in subsequent topics in this section.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such

3210 WebSphere Message Broker Version 7.0.0.8

as message flows, and deploy them to execution groups on brokers.
“Packaging resources” on page 3221
Package message flow applications by adding required resources, optionally with
their source files, to a broker archive (BAR) file.
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Checking the results of deployment” on page 3243
After you have made a deployment, check that the operation has completed
successfully.
“Deploying resources to a broker from a CMP application” on page 982
Deploy BAR files to the brokers in your broker network from a CMP application.
Related reference:
“WebSphere Message Broker Toolkit” on page 6783
The WebSphere Message Broker Toolkit provides your application development
environment on Windows and Linux on x86.
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.

Deployment methods
Choose the appropriate method of deployment to suit the way in which you are
working. You can use the WebSphere Message Broker Toolkit, the WebSphere
Message Broker Explorer, the mqsideploy command, or functions described by the
Administration API for WebSphere Message Broker (also known as the CMP API).

Using the WebSphere Message Broker Toolkit
The Brokers view of the WebSphere Message Broker Toolkit displays all the
brokers on the local machine that you have defined, and any remote
brokers to which you have defined connections. If you expand a broker, all
the execution groups in that broker are displayed, as well as deployed
message flows and their associated resources. You can drag a message flow
or a broker archive (BAR) file from the Broker Development view onto an
execution group to deploy it. Alternatively, you can right-click an execution
group to select a message flow or BAR file to deploy to the selected
execution group.

You would typically use the WebSphere Message Broker Toolkit if your
primary role is as an application developer, or if you are new to
WebSphere Message Broker.

Using the WebSphere Message Broker Explorer
The Navigator view of the WebSphere Message Broker Explorer displays
all the brokers on the local machine that you have defined, and any remote
brokers to which you have defined connections. If you expand a broker, all
the execution groups in that broker are displayed, as well as deployed
message flows and their associated resources. You can import BAR files
into the WebSphere Message Broker Explorer. The BAR files are displayed
in the Broker Archive Files folder in the WebSphere Message Broker
Explorer. You can drag a BAR file from the Broker Archive Files folder
onto an execution group to deploy the contents of the broker archive.
Alternatively, you can right-click an execution group or BAR file and click
Deploy File to deploy resources to an execution group. You can also drag
BAR files from your file system directly onto an execution group to deploy
the contents of the broker archive.

Chapter 11. Packaging and deploying 3211

You would typically use the WebSphere Message Broker Explorer if your
primary role is as a WebSphere Message Broker administrator.

Using the mqsideploy command
You can deploy from the command line by using the mqsideploy
command. On the command line, specify the connection details and
parameters that are specific to the deployment.

You would typically use the mqsideploy command in a script when you are
more familiar with WebSphere Message Broker.

Using the CMP API
You can control deployment from a Java program by using functions
described by the CMP API. You can also interrogate the responses from the
broker and take appropriate action.

Java applications can also use the CMP API to control other objects, such
as brokers and execution groups. Therefore, you can use the CMP API to
create and manipulate all your brokers and associated resources
programmatically.

Deployment results
Whichever deployment method you use, configuration changes are
attempted immediately.
v If you are using the WebSphere Message Broker Toolkit, the Deployment

Log view is updated to show the results when your deployment
completes. If the deployment fails, the reason for the failure is displayed
in this view.

v If you are using the WebSphere Message Broker Explorer, you can see
the deployment status for all users connected to the broker. The
Administration Queue shows all deployments that are currently being
processed by the broker, and the Administration Log shows all recent
configuration requests and changes made to the broker.

v If you use the mqsideploy command, the command completes when the
broker has processed the deployment request, or when the wait time,
defined by the -w parameter, has expired, whichever occurs first. The
results of the deployment are displayed as output from the command.

v If you are using the CMP API, you can view the results of the
deployment in the following ways:
– Review the DeployResult object that is returned from the deployment

methods.
– Access the LogProxy object that represents the administration log.
– Access the AdminQueueProxy object that represents the

administration queue.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

3212 WebSphere Message Broker Version 7.0.0.8

“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.
“Deploying resources to a broker from a CMP application” on page 982
Deploy BAR files to the brokers in your broker network from a CMP application.
Related reference:
“WebSphere Message Broker Toolkit” on page 6783
The WebSphere Message Broker Toolkit provides your application development
environment on Windows and Linux on x86.
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.

Message flow application deployment
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.

When you add files to the broker archive, they are automatically compiled as part
of the process. JAR files that are required by JavaCompute nodes in message flows
are added automatically from your Java project.

The BAR file is a compressed file that is sent to the broker, where its contents are
extracted and distributed to execution groups.

The mode in which your broker is working can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See “Restrictions that apply in each operation mode” on page 3657.

The following diagram shows the flow of events when you deploy a message flow
application.

Chapter 11. Packaging and deploying 3213

execution
group

broker

message flow
project

message
flows, esql,
mappings

compiled
message flows

(.cmf)

can depend
on

can depend
on

broker archive
file (.bar)

other files
(.xml, .xsl, .jar)

compiled
message dictionary

(.dictionary)

deploy

message set
containing message

definitions

compile compile

package

message set
project

The diagram illustrates the following sequence of events.
1. You create a broker archive.
2. You add files to the broker archive.
3. You deploy the BAR file by sending it to the broker, from where its contents

are distributed to the execution groups.

You can deploy a BAR file in two ways:
v “Incremental BAR file deployment” on page 3215. Deployed files are added to

the execution group. Files that exist in the execution group are replaced by the
new version.

v “Complete BAR file deployment” on page 3215. Files that are already deployed
to the execution group are removed before the entire contents of the BAR file are
deployed. Therefore, nothing is left in the execution group from previous
deployments.

3214 WebSphere Message Broker Version 7.0.0.8

Incremental BAR file deployment
If you run an incremental deployment of a BAR file, the broker extracts the
contents of the BAR file and sends the contents to the specified execution group.
The following conditions are applied when a file is deployed to the BAR file.
v If a file in the BAR file has the same name as an object that is already deployed

to the execution group, the version that is already deployed is replaced by the
version in the BAR file.

v If a file in the BAR file is of zero length, and a file of that name has already been
deployed to the execution group, the deployed file is removed from the
execution group.

Use incremental BAR file deployment to deploy message flows, message sets, or
other deployable objects incrementally to an execution group.

To completely clear the contents of the execution group before the BAR file is
deployed, use complete BAR file deployment instead.

Complete BAR file deployment
If you run a complete deployment of a BAR file, the broker extracts the deployable
content of the BAR file and sends the contents to the specified execution group,
first removing any existing deployed contents of the execution group.

Use a complete BAR file deployment to deploy message flows, message sets, or
other deployable objects to an execution group.

To merge the existing contents of the execution group with the contents of the BAR
file, use incremental BAR file deployment instead.
Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
Related tasks:
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Deploying resources to a broker from a CMP application” on page 982
Deploy BAR files to the brokers in your broker network from a CMP application.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Chapter 11. Packaging and deploying 3215

Broker archive
The unit of deployment to the broker is the broker archive or BAR file.

The BAR file is a compressed file that can contain a number of different files:
v A .cmf file for each message flow. This file is a compiled version of the message

flow. You can have any number of these files within your BAR file.
v A .dictionary file for each message set dictionary. You can have any number of

these files within your BAR file.
v One or more XSD compressed files (.xsdzip), if XML schema and WSDL are

defined within a message set.
v A broker.xml file. This file is called the broker deployment descriptor. You can have

only one of these files within your BAR file. This file, in XML format, is
contained in the META-INF folder of the compressed file and can be modified by
using a text editor or shell script.

v One or more XML files (.xml), style sheets (.xsl), and XSLT files (.xlst), if
required by nodes in the message flows you have added to this BAR file. The
XSLTransform node is one that might require these files.

v One or more JAR files, if required by JavaCompute nodes in the message flows
you have added to this BAR file.

v One or more inbound or outbound adapter files (.inadapter or .outadapter), if
required by WebSphere Adapter nodes (for example, the SiebelInput node) in the
message flows you have added to this BAR file.

v One or more PHP script files (.php), if required by PHPCompute nodes in the
message flows you have added to this BAR file.

v Other files that you might want to associate with this BAR file. For example,
you might want to include Java source files, .msgflow files, or .wsdl files for
future reference. BAR files can contain all files types.

Related concepts:
“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
Related tasks:
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Creating a broker archive” on page 3222
Create a separate broker archive (BAR) file for each configuration that you want to
deploy to execution groups on your brokers.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.
“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

3216 WebSphere Message Broker Version 7.0.0.8

Configurable properties of a broker archive
System objects that are defined in message flows can have properties that you can
update in the broker archive (BAR) file before deployment.

An administrator can use configurable properties to update target-dependent
properties, such as queue names, queue manager names, and database connections.

By changing configurable properties, you can customize a BAR file for a new
broker (for example, a test system) without needing to edit and rebuild the
message flows or the resources that they work with, such as message mappings,
ESQL code, and Java code. Properties that you define are contained in the
deployment descriptor, META-INF/broker.xml The deployment descriptor is parsed
when the BAR file is deployed.

Edit the configurable properties by using either the Broker Archive editor or the
mqsiapplybaroverride command. In the Broker Archive editor, click a resource on
the Manage tab to see its properties in the Properties view.

Use the supplied editor and command to ensure that the BAR file contents are
correct after the changes are applied. You can also edit the XML-format
deployment descriptor manually by using an external text editor or shell script; in
this case, you must ensure that you have not invalidated the XML content.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.
“mqsiapplybaroverride command” on page 3684
Use the mqsiapplybaroverride command to replace configurable values in the
broker archive (BAR) deployment descriptor with new values that you specify in a
properties file.

Version and keyword information for deployable objects
Use the Broker Archive editor to view the version and keyword information of
deployable objects.

You can display properties of deployed objects, and can modify associated
comments:
v “Object version in the Broker Archive editor” on page 1443
v “Version, deployment time, and keywords of deployed objects” on page 1443
v “Path and Comment columns” on page 1444

Object version in the Broker Archive editor

The Version column on the Manage page of the Broker Archive editor displays the
version tag for the following objects that have a defined version.

Chapter 11. Packaging and deploying 3217

v .dictionary files
v .cmf files
v Embedded JAR files with a version defined in a META-INF/keywords.txt file

You cannot edit the Version column.

You can use the mqsireadbar command to list the keywords that are defined for
each deployable file within a deployable archive file. For more information, see
“mqsireadbar command” on page 3697.

Version, deployment time, and keywords of deployed objects

In the WebSphere Message Broker Explorer, the Properties QuickView displays the
following properties for all deployed objects:
v Version
v Deployment time
v All defined keywords

For example, you deploy a message flow with the following literal strings:
v $MQSI_VERSION=v1.0 MQSI$

v $MQSI Author=fred MQSI$

v $MQSI Subflow 1 Version=v1.3.2 MQSI$

The Properties view displays these properties:

Property Description

Deployment Time Date and time of deployment

Modification Time Date and time of modification.
Note: This property has no concept of time
zone, therefore it is only meaningful if you
know in which time zone it was last
modified.

Version v1.0

Author fred

Subflow 1 Version v1.3.2

If the keyword information is not available, a message is displayed in the
Properties view to indicate the reason; for example, if keyword resolution has not
been enabled at deployment time, the Properties view displays the message
Deployed with keyword search disabled.

Path and Comment columns

If you add source files, the Path column on the Manage tab is populated
automatically.

To add a comment, double-click the Comment column and type the text that you
require.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

3218 WebSphere Message Broker Version 7.0.0.8

“Adding keywords to ESQL files” on page 2486
You can add keywords to ESQL files to contain information that you want to
associate with a message flow.
“Keywords in subflows” on page 1447
You can embed keywords in each subflow that you use in a message flow.
Related tasks:
“Adding keywords to JAR files” on page 2660
If a BAR file contains JAR files, you can associate keywords with the JAR files.
Related reference:
“Description properties for a message flow” on page 4016
The description properties for a message flow include the Version, Short
Description and Long Description. To view and edit the properties of a message
flow click Flow > Properties.
“mqsireadbar command” on page 3697
Use the mqsireadbar command to read a deployable BAR file and identify its
defined keywords.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Adding keywords to XSL style sheets” on page 4975
Embedded keywords in an XSL style sheet; their location is not restricted. You can
also add a keyword as an XML comment.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.

WebSphere Adapters deployment
When you have run the Adapter Connection wizard and created a message flow,
you must deploy the resources that are generated by adding them to a broker
archive (BAR) file.

To build a WebSphere Message Broker application that integrates with an
Enterprise Information System (EIS), such as SAP, Siebel, JD Edwards, or
PeopleSoft, you need the following resources:
v A message flow that contains at least one WebSphere Adapters node
v A message set (created by the Adapter Connection wizard) that describes the

logical model of the data, as defined by the EIS
v An adapter, which includes two sets of information that are used by the

WebSphere Adapters node in the message flow:
– Connection information
– Interface information

The interface information contains a list of methods. For outbound adapters,
methods define the operations or services that can be run on the EIS by the
WebSphere Adapters request node. For inbound adapters, the method defines
callout functions or events from the EIS that cause the WebSphere Adapters
input node to propagate a message through the message flow.
For each method, the information consists of the name of the method, and the
name and namespaces of the message types that are used for input and
output. To run the method successfully, the message types must be defined in
the message set.

Chapter 11. Packaging and deploying 3219

Iterative deployment

The message flow can be coded with knowledge of the logical model of the data
that is exchanged with the EIS (for example, where Mapping nodes are used to
transform the data), but it can also act as a gateway to the EIS, where no
transformation of data takes place. When the flow acts as a gateway, you need to
be able to run new operations or respond to new events in the EIS without
changing or reloading the resources that are already deployed.

You do not need to stop the message flow when you deploy the secondary
adapter. During deployment of the secondary adapter, the primary adapter
provides connection information, and the secondary adapter supplies additional
interface information.

You can use iterative deployment to deploy the resources that are required to
support the new methods, without affecting any resources that are already
deployed. Iterative deployment is possible by using primary and secondary
adapters and message sets.
v The primary adapter for a WebSphere Adapters node contains its connection

information and part of its interface; the secondary adapters contain the rest of
the interface.

v The primary message set contains message model metadata for the parts of the
interfaces that are supported by the node; the secondary message sets define the
rest of the model.

You do not need to stop the message flow when you deploy the secondary
message set and adapter. During deployment of the secondary adapter, the
primary adapter provides connection information, and the secondary adapter
supplies additional interface information.
Related tasks:
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Configuring WebSphere Adapters nodes for secondary adapters” on page 2040
You can deploy the resources that are required to support new methods in an
Enterprise Information System (EIS), without affecting any resources that are
already deployed, by using primary and secondary adapters and message sets. You
must configure the WebSphere Adapters nodes in your message flows to use the
secondary adapters.
“Calling new services from a WebSphere Adapters request node without changing
existing deployed resources” on page 2042
If your message flow acts as a gateway to an Enterprise Information System (EIS),
you can use it to call new services that did not exist when you developed the flow.
Therefore, if a new service is provided by the EIS, you do not have to modify and
retest the message flow.
“Handling new event types from a Websphere Adapters input node without
changing existing deployed resources” on page 2044
You can create an event handler to an Enterprise Information System (EIS) to
handle new event types that did not exist when you first developed your message
flow. Therefore, if a new event is provided by the EIS, you do not have to modify
and retest the message flow.
“Resolving problems that occur during deployment of message flows” on page
3440
Use the advice given here to help you to resolve problems that can arise during

3220 WebSphere Message Broker Version 7.0.0.8

deployment of message flows or message sets.
“Enhancing existing adapters with newly discovered objects” on page 2063
In WebSphere Message Broker Version 7.0, you can take an adapter component that
was created by using the Adapter Connection wizard, and update it with newly
discovered objects from the Enterprise Information System (EIS). This facility is
known as iterative discovery. You can either add the new objects without modifying
existing objects, or replace existing objects.
“Connecting to Enterprise Information Systems” on page 1912
Use WebSphere Adapters to communicate with Enterprise Information Systems
(EIS) such as SAP, Siebel, PeopleSoft, and JD Edwards.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Packaging resources
Package message flow applications by adding required resources, optionally with
their source files, to a broker archive (BAR) file.

Before you begin

Before you start:

Develop and test the message flow applications that you want to package; see
Chapter 9, “Developing message flow applications,” on page 1019 and Chapter 10,
“Testing and debugging message flow applications,” on page 3143.

About this task

Before you can deploy your message flow applications to a broker, you must
package them into BAR files. If you want to deploy a single message flow, the
packaging step can be completed automatically when you deploy the flow; see
“Deploying resources” on page 3234.

In most cases, you are working with one or more message flows, one or more
message sets, and other objects that you want to deploy with the message flows. In
these cases, you can deploy these resources together by packaging them in a BAR
file yourself, and deploying just that file. For instructions about how to package
resources into a BAR file, see the following topics:
1. “Creating a broker archive” on page 3222
2. “Adding files to a broker archive” on page 3223
3. “Refreshing the contents of a broker archive” on page 3233

You can edit configurable properties for the BAR file in the BAR file editor, or by
using the mqsiapplybaroverride command. For more details, see “Editing
configurable properties” on page 3227.

What to do next

Next:

Deploy your BAR files to a broker; see “Deploying resources” on page 3234.
Related concepts:

Chapter 11. Packaging and deploying 3221

“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

Creating a broker archive
Create a separate broker archive (BAR) file for each configuration that you want to
deploy to execution groups on your brokers.

About this task

You can create a BAR file in two ways:
v “Using the WebSphere Message Broker Toolkit”
v “Using the mqsicreatebar command”

Using the WebSphere Message Broker Toolkit
About this task

Follow these steps to create a BAR file by using the WebSphere Message Broker
Toolkit:

Procedure
1. Click File > New > Message Broker Archive.
2. Enter a name for the BAR file that you are creating.
3. Click Finish.

Results

A file with a .bar extension is created and is displayed in the Broker Application
Development perspective Navigator view, under the Broker Archives folder. The
Content editor for the BAR file opens.

What to do next

Next:

Add files to the BAR file and deploy the BAR file by following the instructions in
the following topics:
1. “Adding files to a broker archive” on page 3223
2. “Deploying a broker archive file” on page 3235

Using the mqsicreatebar command
About this task

Follow these steps to create a BAR file by using the mqsicreatebar command:

Procedure
1. Open a command window that is configured for your environment.
2. Enter the command, typed on a single line. For example:

mqsicreatebar -b barName -o filePath -p projectNames -cleanBuild

3222 WebSphere Message Broker Version 7.0.0.8

You must specify the -b (BAR file name) and -o (path for included files)
parameters. The -p (project names) parameter is optional. For further details,
see the “mqsicreatebar command” on page 3699.
If you have changed resources in the BAR file by using external tools, add the
-cleanBuild parameter to refresh all the projects and run a clean build.
A file with a .bar extension is created.

What to do next

Next:

Add files to the BAR file and deploy the BAR file by following the instructions in
the following topics:
1. “Adding files to a broker archive”
2. “Deploying a broker archive file” on page 3235
Related concepts:
“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
Related tasks:
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
Related reference:
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“mqsicreatebar command” on page 3699
Use the mqsicreatebar command to create deployable broker archive (BAR) files
containing message flows and dictionaries.

Adding files to a broker archive
To deploy files to an execution group, include them in a broker archive (BAR) file.

Before you begin

Before you start:

Create a BAR file for each configuration that you want to deploy. For more details,
see “Creating a broker archive” on page 3222.

Chapter 11. Packaging and deploying 3223

About this task

You can add any deployable resources from your workspace to a BAR file. If you
select Include source files, the source and project files for all message flows,
message sets, or other deployable resources in the broker archive are included. For
more information about the files that you can include in a broker archive, see
“Broker archive” on page 3216.

Subflows are not displayed in the BAR file as separate items, and are added
automatically. To include these subflows, you have to add only the parent flow.

You can add Flow, ESQL, Java JAR, PHP, MAP, XML, XSLT files and Message Sets
manually by following these steps. However, JAR files or .NET assemblies (DLL
files) that are required by JavaCompute nodes in message flows are added
automatically from your Java project when you add the message flow. XML and
XSL files are also added automatically if they are required by the flow.

You do not have to redeploy JAR files unless you have updated them. If one or
more JAR files in your BAR file are present on the computer where the broker is
running, you can safely remove them from your BAR file before you deploy again.
JAR files available to the broker include JAR files that you have deployed and JAR
files that exist in the shared-classes directories or the classes subdirectory of the
installation directory. For example, the files com.ibm.mq.jar,
ConfigManagerProxy.jar, jplugin2.jar, and javacompute.jar are always visible to
the broker, and do not have to be deployed separately.

You cannot read deployed files back from broker execution groups. Therefore, keep
a copy of the deployed BAR file, or of the individual files in it.

To add files to a BAR file by using the WebSphere Message Broker Toolkit,
complete the following steps.

Procedure
1. Open the BAR file by double-clicking it. The contents of the BAR file are shown

in the Broker Archive editor. (If the BAR file is new, this view is empty.)
2. On the Prepare page of the Broker Archive editor, select deployable workspace

resources to add to the BAR file.
3. Optional: To include source files, select Include source files.
4. Optional: To remove existing content from the BAR file before building the new

BAR file, select Remove contents of Broker Archive before building.
5. Optional: If you are adding a message flow to a broker archive for a second

time, and have used the Manage page to change flow parameters, select
Override configurable property values to reset configuration settings. If this
control is cleared, existing settings are left in place when a flow is replaced.

6. Click Build broker archive.

Results

The Manage page lists the files that are now in your BAR file.

You can choose not to display your source files by selecting Built resources or
Configurable properties from the list in the Filter by menu.

3224 WebSphere Message Broker Version 7.0.0.8

What to do next

Next:

If you use configurable properties, see “Editing configurable properties” on page
3227.

If you want to have multiple instances of a flow with different values for the
configurable properties, see “Adding multiple instances of a message flow to a
broker archive” on page 3229.

To make further changes to your BAR file, see “Editing a broker archive file
manually.”

When your BAR file is complete, deploy it by following the instructions in
“Deploying a broker archive file” on page 3235.
Related concepts:
“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
Related tasks:
“Creating a broker archive” on page 3222
Create a separate broker archive (BAR) file for each configuration that you want to
deploy to execution groups on your brokers.
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.

Editing a broker archive file manually
Edit resources that you want to change, in an editor of your choice, by exporting a
broker archive (BAR) file from the WebSphere Message Broker Toolkit.

Before you begin

Before you start:

If you have not already created a BAR file, create one by following the instructions
in “Creating a broker archive” on page 3222.

Chapter 11. Packaging and deploying 3225

About this task

To edit a BAR file manually by using the WebSphere Message Broker Toolkit,
complete the following steps.

Procedure
1. Export the BAR file.

a. From the WebSphere Message Broker Toolkit, click File > Export. The
Export wizard opens.

b. Select the export destination, such as your local file system, and click Next.
c. Select the BAR file that you want to export.
d. Specify the location to which you are exporting the resources, then click

Finish.
The BAR file appears at the destination that you have specified.

2. Extract files from the BAR file.
3. Edit the properties that you want to change in an editor of your choice.
4. Save the file.
5. Import the BAR file back into the WebSphere Message Broker Toolkit for

deployment.
a. From the WebSphere Message Broker Toolkit, click File > Import. The

Import wizard opens.
b. Select the location type of the BAR file, such as the local file system, and

click Next.
c. Specify the location of the BAR file; for example, the directory name.
d. Select the BAR file to import.
e. Select the project into which you want to import the BAR file.
f. Click Finish.

What to do next

Next:

Deploy the BAR file by following the instructions in “Deploying a broker archive
file” on page 3235.
Related concepts:
“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
Related tasks:
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
Related reference:

3226 WebSphere Message Broker Version 7.0.0.8

“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.

Editing configurable properties
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.

Before you begin

Before you start:

This topic assumes that you have created a BAR file and added resources to it. For
more information, see “Creating a broker archive” on page 3222 and “Adding files
to a broker archive” on page 3223.

About this task

You can edit configurable properties in three ways:
v “Using the WebSphere Message Broker Toolkit”
v “Using the WebSphere Message Broker Explorer”
v “Using the mqsiapplybaroverride command” on page 3228

Using the WebSphere Message Broker Toolkit:
About this task

To edit properties by using the WebSphere Message Broker Toolkit, complete the
following steps.

Procedure

1. Open the BAR file. The resources in your broker archive are listed on the
Manage page.

2. Optional: You can view the properties that can be configured for your message
flows by selecting Build resources that are configurable from the Filter by list.

3. Expand a message flow to display the nodes that you can configure, then click
the node that you want to configure. The values that you can configure for the
node are displayed in the Properties view.

4. Select the value that you want to edit in the Properties view, and enter the new
value.
Repeat these steps for all the properties that you want to configure in your
flow.

5. Save your BAR file.

What to do next

Next:

Deploy the BAR file by following the instructions in “Deploying a broker archive
file” on page 3235.

Using the WebSphere Message Broker Explorer:
Before you begin

Before you start:

Chapter 11. Packaging and deploying 3227

To edit the configurable properties in the WebSphere Message Broker Explorer, you
must import a BAR file. To import a BAR file into the WebSphere Message Broker
Explorer, see “Importing a broker archive file to the WebSphere Message Broker
Explorer” on page 3242.

About this task

To edit properties by using the WebSphere Message Broker Explorercomplete the
following steps.

Procedure

1. Open the BAR file. The resources in your broker archive are listed on the
Manage page.

2. Optional: You can view the properties that can be configured for your message
flows by selecting Build resources that are configurable from the Filter by list.

3. Expand a message flow to display the nodes that you can configure, then click
the node that you want to configure. The values that you can configure for the
node are displayed in the Properties view.

4. Select the value that you want to edit in the Properties view, and enter the new
value.
Repeat these steps for all the properties that you want to configure in your
flow.

5. Close the BAR file. When you close the BAR file you are prompted to save the
file. Click Yes to save the changes you made to the BAR file.

What to do next

Next:

Deploy the BAR file by following the instructions in “Deploying a broker archive
file” on page 3235.

Using the mqsiapplybaroverride command:
About this task

To edit properties by using the mqsiapplybaroverride command, complete the
following steps.

Procedure

1. Open a command window that is configured for your environment.
2. Create a text file with a .properties file extension.
3. Enter the command, typed on a single line, specifying the location of your

broker archive deployment descriptor (broker.xml) and the file that contains
the properties to be changed. For examples of how to use the command, see
“mqsiapplybaroverride command” on page 3684.
A file with a .bar extension is created.

What to do next

Next:

Deploy the BAR file by following the instructions in “Deploying a broker archive
file” on page 3235.

3228 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
“Configurable properties of a broker archive” on page 3217
System objects that are defined in message flows can have properties that you can
update in the broker archive (BAR) file before deployment.
Related tasks:
“Creating a broker archive” on page 3222
Create a separate broker archive (BAR) file for each configuration that you want to
deploy to execution groups on your brokers.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Deploying a broker archive file” on page 3235
After you have created and populated a broker archive (BAR) file, deploy the file
to an execution group on a broker, so that the file contents can be used in the
broker.
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
Related reference:
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“mqsiapplybaroverride command” on page 3684
Use the mqsiapplybaroverride command to replace configurable values in the
broker archive (BAR) deployment descriptor with new values that you specify in a
properties file.

Adding multiple instances of a message flow to a broker archive
Add more than one instance of a message flow to a broker archive and use
configurable properties to customize each instance.

About this task

You can deploy multiple instances of the same message flow with different values
for configurable properties. By using the same flow with different configurable
property values, you can reuse a flow but customize each instance to your
requirements. For example, you could use one flow with a particular value for an
output queue, then add a second instance of the same flow and use a configurable
property to set a different value for the output queue.

If you want to create multiple instances of a message flow to improve
performance, see “Optimizing message flow throughput” on page 587.

Chapter 11. Packaging and deploying 3229

Procedure

To deploy multiple instances of a message flow with different values for the
configurable properties, complete the following steps:
1. In the Broker Development view, create a copy of the message flow of which

you want to deploy multiple instances; see “Copying a message flow by using
copy” on page 1435.

2. Add the original message flow and the copy of the message flow to your BAR
file; see “Adding files to a broker archive” on page 3223.

3. Open the BAR file. The resources in your broker archive are listed on the
Manage page.

4. On the Manage page, you can now edit the configurable properties for both
message flows. For more information, see “Editing configurable properties” on
page 3227.

Results

Tip: The names that are assigned in the BAR file are also used on the command
line; for example, if you run the mqsilist command on the execution group, or if
you run the mqsichangetrace command for a message flow.

What to do next

Next:

Deploy the BAR file by following the instructions in “Deploying a broker archive
file” on page 3235. Both message flows are deployed to the execution group and
use the values for the configurable properties that you set in the BAR file.
Related concepts:
“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
Related tasks:
“Copying a message flow by using copy” on page 1435
You might find it useful to copy a message flow as a starting point for a new
message flow that has similar function. For example, you might want to replace or
remove one or two nodes to process messages in a different way.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.

3230 WebSphere Message Broker Version 7.0.0.8

“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
Related reference:
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.

Configuring a message flow at deployment time with
user-defined properties
Use user-defined properties (UDPs) to configure message flows at deployment and
run time, without modifying program code. You can give a UDP an initial value
when you declare it in your program, or when you use the Message Flow editor to
create or modify a message flow.

Before you begin

Before you start:

For an overview of user-defined properties, see “User-defined properties” on page
1147.

For an example of how to code a UDP statement, see “DECLARE statement” on
page 5117.

About this task

In ESQL, you can define UDPs at the module or schema level. After a UDP has
been defined in the Message Flow editor, you can modify the value before you
deploy it.

To configure UDPs, complete the following steps.

Procedure
1. Open the broker archive (BAR) file. The contents of the BAR file are shown in

the Manage page of the Broker Archive editor. On this page, you can expand a
flow to show the individual nodes that it contains.

2. Click the message flow in which you are interested (not the .cmf compiled
message flow file). The UDPs that are defined in that flow are displayed with
their values in the Properties view.

3. If the value of the UDP is unsuitable for your current environment or task,
change it to an appropriate value. The value of the UDP is set at the flow level,
and is the same for all eligible nodes that are contained in the flow. If a
subflow includes a UDP that has the same name as a UDP in the main flow,
the value of the UDP in the subflow is not changed.

4. Save your BAR file.

Chapter 11. Packaging and deploying 3231

Results

Next:

Deploy the message flow by following the instructions in “Deploying a broker
archive file” on page 3235.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.
“Deploying a broker archive file” on page 3235
After you have created and populated a broker archive (BAR) file, deploy the file
to an execution group on a broker, so that the file contents can be used in the
broker.
Related reference:
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.

3232 WebSphere Message Broker Version 7.0.0.8

Refreshing the contents of a broker archive
Refresh the contents of a broker archive (BAR) file by rebuilding it in the Broker
Archive editor. Alternatively, remove resources from your broker archive and,
having made the required changes, add them back again.

Before you begin

Before you start:

This topic assumes that you have created a BAR file and added files to it. For more
information, see “Creating a broker archive” on page 3222 and “Adding files to a
broker archive” on page 3223.

About this task

You are likely to change resources that you have already added to your BAR file.
BAR files that need to be refreshed are shown with an "out-of-sync" icon

in the

Broker Development view. (When any changes are made to deployable files in the
workspace that have previously been built in the broker archive, the BAR file is
considered to be inconsistent. The BAR file is also inconsistent if any changes are
made to the project to which the files belong.)

To refresh the contents of a BAR file before you deploy it, complete the following
steps.

Procedure
1. Open the BAR file. The contents of the BAR file are shown on the Manage

page of the Broker Archive editor.
2. To refresh all the resources in the BAR file on the Manage page, click Rebuild

existing broker arcive entries .
A dialog box opens, showing progress. When the operation is complete, click
Details to see information about what was refreshed, what was not, and why.
If the refresh process is successful, you see the same information that is placed
in the user log by each of the resource compilers.
Alternatively, you can refresh the archive contents by right-clicking a BAR file
in the Broker Development view and selecting Build Broker Archive. The
broker archive is rebuilt in the background.
You can view the user and service logs on the User Log and Service Log pages
of the Broker Archive editor. Clear the contents of logs by clicking Remove (

).
3. Optional: To view details about the build of an individual deployable resource

on the Manage page, right-click the deployable resource and click Details.
The Properties view opens and the Details tab is displayed. The Details tab
shows the following details about the deployable resource:
v The workspace resource, with references to the linked workspace resources

(for example, .msgflow .mset, .xml, and .xslt files).
v The status of the last compilation, which shows the user log entry for the last

compilation. You can copy text, but you cannot modify it.

What to do next

Next:

Chapter 11. Packaging and deploying 3233

Deploy the BAR file by following the instructions in “Deploying a broker archive
file” on page 3235.
Related concepts:
“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
Related tasks:
“Deploying resources”
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
Related reference:
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.

Deploying resources
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.

Before you begin

Before you start:

Complete the following steps:
v Create and start a broker. You must also start a WebSphere MQ listener for the

associated queue manager.
v In the WebSphere Message Broker Toolkit, you must connect to a broker, and

create an execution group.
v Create a BAR file that contains the resources that you want to deploy; see

“Packaging resources” on page 3221.

About this task

The mode in which your broker is working can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See “Restrictions that apply in each operation mode” on page 3657.

If you are working with a single message flow, and want to deploy and test it
quickly, you can deploy just that flow. Drag the message flow onto the execution
group to which you want to deploy it. A BAR file is generated automatically, and

3234 WebSphere Message Broker Version 7.0.0.8

deployed to the broker. You can then run and test the message flow, change the
flow, and deploy it again with a minimum of steps involved.

In most cases, you are working with one or more message flows, one or more
message sets, and other objects that you want to deploy with the message flows. In
these cases, you can deploy these resources together by packaging them in a BAR
file yourself, and deploying just that file. For instructions about how to deploy a
BAR file, see “Deploying a broker archive file.”

If you are deploying a message flow that uses WebSphere Adapters, see
“Deploying a message flow that uses WebSphere Adapters” on page 3240. To
deploy by using the WebSphere Message Broker Explorer, see “Importing a broker
archive file to the WebSphere Message Broker Explorer” on page 3242.

If your message flows include user-defined nodes, you must also distribute the
compiled C or Java code for each node to every broker that uses those message
flows. For more details, see “Developing user-defined extensions” on page 2970.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Creating an execution group” on page 936
Create execution groups by using WebSphere Message Broker Toolkit, the
WebSphere Message Broker Explorer, or the command line.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

Deploying a broker archive file
After you have created and populated a broker archive (BAR) file, deploy the file
to an execution group on a broker, so that the file contents can be used in the
broker.

Before you begin

Before you start:

This topic assumes that you have created a BAR file. For more information, see
“Creating a broker archive” on page 3222.

Chapter 11. Packaging and deploying 3235

About this task

Choose one of the following methods to deploy a BAR file:
v “Using the WebSphere Message Broker Toolkit”
v “Using the WebSphere Message Broker Explorer” on page 3237
v “Using the mqsideploy command” on page 3238
v “Using the CMP API” on page 3238

If you change a BAR file, and want to propagate those changes to one or more
brokers, you can redeploy the updated BAR file by following the instructions in
“Redeploying a BAR file” on page 3239.

The mode in which your broker is working can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See “Restrictions that apply in each operation mode” on page 3657.

Using the WebSphere Message Broker Toolkit
About this task

To deploy a BAR file by using the WebSphere Message Broker Toolkit, complete
the following steps. You can deploy to only one execution group at a time.

Procedure
1. Optional: Typically, an incremental BAR file deployment is performed. To

perform a complete BAR file deployment, right-click the target execution group
in the Brokers view and click Delete > All Flows and Resources. Wait for the
operation to complete before continuing.
Do not click Delete > All Flows and Resources if you want to refresh one or
more of the child processes with the contents of the BAR file. For an
explanation of the difference between a complete and an incremental BAR file
deployment, see “Message flow application deployment” on page 3213.

2. Deploy a BAR file or message flow to an execution group by using one of the
following methods:
v Drag a message flow or BAR file onto your target execution group, shown in

the Brokers view.
v Right-click the BAR file, and click Deploy. The Deploy dialog box opens,

listing the execution groups to which the WebSphere Message Broker Toolkit
is connected.
Select an execution group, and click OK.

v Right-click the execution group, and click Deploy. The Resources dialog box
opens. You can choose to deploy resources from the workspace, or BAR files
from the file system.
– Specify the type of resource to deploy by selecting the appropriate radio

button. The available resources for that category are listed.
– Select the resource that you want to deploy.
– Click OK.

3. If you have not saved the BAR file since you last edited it, you are asked
whether you want to save the file before deploying. If you click Cancel, the
BAR file is not saved and deployment does not take place.

3236 WebSphere Message Broker Version 7.0.0.8

Results

The BAR file is transferred to the broker, which deploys the file contents (for
example, message flows and message sets) to the execution group. In the Brokers
view, the deployed resources are added to the appropriate execution group.

Using the WebSphere Message Broker Explorer
Before you begin

Before you start:

Import a BAR file into the WebSphere Message Broker Explorer by following the
instructions in “Importing a broker archive file to the WebSphere Message Broker
Explorer” on page 3242.

About this task

To deploy a BAR file by using the WebSphere Message Broker Explorer, complete
the following steps.

Procedure
1. Expand the Broker Resources folder and select the folder that contains your

BAR files.
2. Optional: Typically, an incremental BAR file deployment is performed. To

perform a complete BAR file deployment, right-click the target execution group
in the Brokers view and click Delete > All Flows and Resources. Wait for the
operation to complete before continuing.
Do not Delete > All Flows and Resources if you want to refresh one or more
of the child processes with the contents of the BAR file. For an explanation of
the difference between a complete and an incremental BAR file deployment, see
“Message flow application deployment” on page 3213.

3. Deploy the BAR file to an execution group by using one of the following
methods:
v Drag the file onto your target execution group in the Navigator view. You

can drag a BAR file from either your WebSphere Message Broker Explorer
workspace, or from your file system.

v Right-click the BAR file and click Deploy file. A dialog box opens, listing the
execution groups to which the WebSphere Message Broker Explorer is
connected.
Select an execution group, then click OK.

If you use the Deploy file method, you can select (and deploy to) multiple
execution groups at a time.

4. If you have not saved the BAR file since you last edited it, you are asked
whether you want to save the file before deploying. If you click Cancel, the
BAR file is not saved and deployment does not take place.

Results

The BAR file is transferred to the broker, which deploys the file contents (for
example, message flows and message sets) to the execution group. Expand the
broker in the Navigator view to see the assigned message flows and message sets
added to the appropriate execution group.

Chapter 11. Packaging and deploying 3237

Using the mqsideploy command
About this task

To deploy a BAR file by using the mqsideploy command, complete the following
steps.

Procedure
1. Open a command window that is configured for your environment.
2. Enter the appropriate command for your operating system and configuration,

by using the following examples as a guide.

On distributed systems:
mqsideploy -i ipAddress -p port -q qmgr -e egroup -a barfile

The command performs an incremental deployment. Add the –m
parameter to perform a complete BAR file deployment.

The -i (IP address), -p (port), and -q (queue manager) parameters
represent the connection details for the queue manager that is
associated with the broker. If you have created the broker on the
computer on which you run this command, you can specify the broker
name instead.

You must also specify the -e (execution group name), and -a (BAR file
name) parameters.

On z/OS:
/f MQ01BRK,dp e=egroup a=barfile

The command performs an incremental deployment. Add the m=yes
parameter to perform a complete BAR file deployment.

In the example, MQ01BRK is the name of the broker. You must also
specify the names of the execution group and the BAR file (the e= and
a= parameters).

Results

The command reports when responses are received from the broker. If the
command completes successfully, it returns 0 (zero).

Using the CMP API
About this task

To deploy by using the CMP API, use the deploy method of the
ExecutionGroupProxy class.

The following code shows how an application can perform an incremental
deployment:
import com.ibm.broker.config.proxy.*;
public class DeployBAR {

public static void main(String[] args) {
BrokerConnectionParameters bcp =

new MQBrokerConnectionParameters("localhost", 2414, "MB7QMGR");
try {

BrokerProxy b = BrokerProxy.getInstance(bcp);
ExecutionGroupProxy eg = b.getExecutionGroupByName("default");
DeployResult dr = eg.deploy("MyBAR.bar", true, 30000);
System.out.println("Result = "+dr.getCompletionCode());

3238 WebSphere Message Broker Version 7.0.0.8

} catch (Exception e) {
e.printStackTrace();

}
}

}

By default, the deploy method performs an incremental deployment. To perform a
complete deployment, use a variant of the method that includes a false value for
the Boolean isIncremental parameter. For example, e.deploy("deploy.bar",false,0).
Set this parameter to true to request an incremental deployment.

Redeploying a BAR file
About this task

You might change a BAR file and want to propagate those changes to one or more
brokers. If so, you can redeploy the updated BAR file to one or more execution
groups by using one of the deployment methods described previously. You do not
have to stop the message flows that you deployed previously; all resources in the
execution group or groups that are in the redeployed BAR file are replaced and
new resources are applied.

If your updates to the BAR file include the deletion of resources, a redeployment
does not result in their deletion from the broker. For example, assume that your
BAR file contains message flows F1, F2, and F3. Update the file by removing F2
and adding message flow F4. If you redeploy the BAR file, all four flows are
available in the execution group when the redeployment has completed. F1 and F3
are replaced by the contents of the redeployed BAR file.

To clear previously deployed resources from the execution group before you
redeploy (for example, if you are deleting resources), use one of the methods
described previously.
v To use the WebSphere Message Broker Toolkit, follow the instructions for a

complete deployment, making sure that you select Delete > All Flows and
Resources before deploying.

v To use the WebSphere Message Broker Explorer, follow the instructions for a
complete deployment, making sure that you select Delete All Flows and
Resources before deploying.

v To use the mqsideploy command, follow the instructions, making sure that you
add the –m parameter to perform a complete BAR file deployment.

v To use the CMP API, follow the instructions for a complete deployment.

If your message flows are not transactional, stop the message flows before you
redeploy to be sure that all the applications complete cleanly and are in a known
and consistent state. You can stop individual message flows, execution groups, or
brokers.

If your message flows are transactional, the processing logic that handles
commitment or rollback ensures that resource integrity and consistency are
maintained.

What to do next

Next:

Check the results of the redeployment by following the instructions in “Checking
the results of deployment” on page 3243.

Chapter 11. Packaging and deploying 3239

Related concepts:
“Message flow application deployment” on page 3213
Package all the resources in your message flow into a broker archive (BAR) file for
deployment.
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Checking the results of deployment” on page 3243
After you have made a deployment, check that the operation has completed
successfully.
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
Related reference:
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Deploying a message flow that uses WebSphere Adapters
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.

Before you begin

Before you start:

v Read “WebSphere Adapters nodes” on page 1914.
v Complete the steps in “Preparing the environment for WebSphere Adapters

nodes” on page 717
v Complete the steps in “Connecting to an EIS by using the Adapter Connection

wizard” on page 2037.

About this task

To deploy the message flow successfully, you must deploy the WebSphere
Adapters component, either on its own or in the same BAR file as your message
flow. If the WebSphere Adapters component is not available, deployment of the
message flow fails. The following list includes the file extensions of the resources
that you deploy:
v .msgflow (the message flow)
v .inadapter (the inbound WebSphere Adapters component)

3240 WebSphere Message Broker Version 7.0.0.8

v .outadapter (the outbound WebSphere Adapters component)
v .xsdzip (the message set)
v .libzip (the library)

The mode in which your broker is working can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See “Restrictions that apply in each operation mode” on page 3657.

Procedure
1. For details of the steps that you must complete before you can deploy a

message flow, see “Deploying resources” on page 3234.
2. Add the message flow to the BAR file. (For a description of how to add files to

a BAR file, see “Adding files to a broker archive” on page 3223.) When you
add a message flow that contains one or more WebSphere Adapters nodes to a
BAR file, a dialog box opens so that you can identify the following resources:
v One or more WebSphere Adapters components to be used by the WebSphere

Adapters nodes
v One or more message sets that contain an XSD for the business objects that

are used by the WebSphere Adapters nodes
3. When you have added the message flow, WebSphere Adapters components,

and message set, deploy the BAR file.
Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“SAP adapter scalability and performance” on page 1949
You can improve performance by configuring the number of listeners on the
adapter and the number of additional instances on the message flow to prevent
delays when processing synchronous calls from SAP.
Related tasks:
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Tuning the SAP adapter for scalability and performance” on page 3278
You can configure the number of listeners on the adapter and the number of
additional instances on the message flow to prevent delays when processing

Chapter 11. Packaging and deploying 3241

synchronous calls from SAP.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Importing a broker archive file to the WebSphere Message
Broker Explorer

Before you can deploy broker resources to your brokers by using the WebSphere
Message Broker Explorer, you must first import a broker archive file into a Broker
Archive Folder.

Before you begin

You must have a broker archive file created and available before you can import it
into the WebSphere Message Broker Explorer.

About this task

To import a broker archive file:

Procedure
1. Open the WebSphere Message Broker Explorer.
2. You can import a broker archive file into an existing Broker Archive Folder, or

create a new one. To create a new Broker Archive Folder:
a. Right-click Broker Archive Files, and click New > Broker Archive Folder.

The Broker Archive Folder wizard is displayed.
b. Enter a Broker Archive Folder name, and click Finish.

A new Broker Archive Folder is created with the name you specified in the
Broker Archive Folder wizard.

3. Right-click your Broker Archive Folder, and select Import Broker Resources.
The Import wizard is displayed.

4. Click Browse next to the From directory field to select the directory containing
your broker archive.

5. Select the broker archive files that you want to import.
6. Click Browse next to the Info folder field to select your Broker Archive Folder.
7. Click Finish. The selected broker archive files are imported into the selected

Broker Archive Folder.

Results

You can now deploy your broker archive to your broker. A copy of the imported
broker archive file is created, and placed in the WebSphere Message Broker
Explorer workspace. If you change the broker archive file outside of the
WebSphere Message Broker Explorer the changes are not made to the imported
broker archive file. The default location on Windows for the WebSphere Message
Broker Explorer workspace is C:\Documents and Settings\<userid>\Application
Data\IBM\MQ Explorer\<server project>\. Any subsequent changes you make to
the broker archive file within the WebSphere Message Broker Explorer are made to
the version in the WebSphere Message Broker Explorer workspace.
Related tasks:

3242 WebSphere Message Broker Version 7.0.0.8

“Creating a broker using the WebSphere Message Broker Explorer” on page 618
On Linux on x86 or Windows, you can create brokers by using the WebSphere
Message Broker Explorer.
“Starting a local broker using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer” on page 925
You can start your local brokers by using the WebSphere Message Broker Toolkit or
the WebSphere Message Broker Explorer.
“Connecting to a local broker using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 901
To administer a broker by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must be connected to the broker.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Checking the results of deployment
After you have made a deployment, check that the operation has completed
successfully.

About this task

You can check the results of a deployment in the following ways:
v “Using the WebSphere Message Broker Toolkit”
v “Using the WebSphere Message Broker Explorer” on page 3244
v Using the mqsideploy command
v Using the CMP API

Also, check the system log on the target system where the broker was deployed to
make sure that the broker has not reported any errors.

Using the WebSphere Message Broker Toolkit
About this task

Follow these steps to check a deployment using the WebSphere Message Broker
Toolkit:

Procedure
1. In the Broker Application Development perspective, open the Deployment Log

view:
a. Click Window > Show View > Other.
b. In the Show View window expand Broker Runtime, and click Deployment

Log.
2. View the messages relating to each deployment in the Deployment Log view.

Chapter 11. Packaging and deploying 3243

Results

The Deployment Log is only updated after a deployment has been completely
processed by the broker. If a deployment fails, the reasons for the failure are
shown here.

Using the WebSphere Message Broker Explorer
About this task

Follow these steps to check a deployment using the WebSphere Message Broker
Explorer:

Procedure
1. Select the broker with which you want to work in the Navigator view.
2. View the messages in the Administration Log view.

Results

The Administration Log shows all recent configuration change attempts made to
the broker and, where possible, the user that requested it.

Using the mqsideploy command
About this task

If you use the mqsideploy command to deploy, the command displays the results
of the deployment. It also returns a numeric completion code value to indicate the
outcome. If the deployment completes successfully, the command returns 0. For
details of other values that you might see returned, see “mqsideploy command” on
page 3872.

Using the CMP API
About this task

Code your application to test the results of the deploy actions that it takes. You can
use code like the following snippet:
DeployResult dr = eg.deploy("MyBAR.bar", true, 30000);
System.out.println("Overall result = "+dr.getCompletionCode());

// Display log messages
Enumeration logEntries = dr.getLogEntries();
while (logEntries.hasMoreElements()) {

LogEntry le = (LogEntry)logEntries.nextElement();
System.out.println("General message: " + le.getDetail());

}

The deploy method blocks other processes until the broker has responded to the
deployment request. When the method returns, the DeployResult object represents
the outcome of the deployment at the time when the method returned; the object is
not updated by the CMP API.

If the deployment message could not be sent to the broker, a
ConfigManagerProxyLoggedException exception is thrown at the time of the
deployment. If the broker receives the deployment message, log messages for the
overall deployment are displayed, followed by completion codes specific to each

3244 WebSphere Message Broker Version 7.0.0.8

broker that is affected by the deployment. The completion code, shown in the
following table, is one of the static instances from the CompletionCodeType class.

Completion code Description

pending The deployment is held in a batch and is not sent until you call
BrokerProxy.sendUpdates().

submitted The deploy message was sent to the broker, but no response was received before the
timeout period expired.

success The broker has successfully completed the deployment.

failure The broker has generated one or more errors during deployment. You can call the
getLogEntries() method of the DeployResult class to get more information about the
deployment failure. This method returns an enumeration of available LogEntry
objects.

Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Viewing Administration log information” on page 1007
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.
“Administration API (CMP) trace” on page 3554
Enable or disable service trace for the Administration API for WebSphere Message
Broker (also known as the CMP API).
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
“Resolving problems when using publish/subscribe” on page 3501
Use the advice given here to help you to resolve common problems that can occur
when you run publish/subscribe applications.
“Resolving problems when developing Administration API applications” on page
3510
Use the advice given here to help you to resolve problems that can arise when
developing Administration API for WebSphere Message Broker (also known as the
CMP API) applications.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.

Chapter 11. Packaging and deploying 3245

Related information:
Administration API for WebSphere Message Broker (CMP API)

Renaming objects that are deployed to execution groups
You cannot rename an object while it is still deployed to an execution group. You
must change it in the broker archive, then redeploy the broker archive (BAR) file.

About this task

To rename a deployed object, complete the following steps.

Procedure
1. Remove the object from the execution group. For more details, see “Removing a

deployed object from an execution group.”
2. Rename the object.
3. Refresh the contents of the broker archive. For more details, see “Refreshing the

contents of a broker archive” on page 3233.
4. Redploy the BAR file. For more details, see “Deploying a broker archive file”

on page 3235.
Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Removing a deployed object from an execution group”
You might want to remove deployed objects from an execution group if, for
example, you want to rename them.
“Refreshing the contents of a broker archive” on page 3233
Refresh the contents of a broker archive (BAR) file by rebuilding it in the Broker
Archive editor. Alternatively, remove resources from your broker archive and,
having made the required changes, add them back again.
“Deploying a broker archive file” on page 3235
After you have created and populated a broker archive (BAR) file, deploy the file
to an execution group on a broker, so that the file contents can be used in the
broker.
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.

Removing a deployed object from an execution group
You might want to remove deployed objects from an execution group if, for
example, you want to rename them.

3246 WebSphere Message Broker Version 7.0.0.8

Before you begin

Before you start:

Stop all message flows in the execution group. For more details, see “Stopping an
execution group using the WebSphere Message Broker Toolkit or WebSphere
Message Broker Explorer” on page 944.

About this task

You can remove deployed objects from an execution group in the following ways:
v “Using the WebSphere Message Broker Explorer”
v “Using the mqsideploy command”
v “Using the CMP API” on page 3248

Using the WebSphere Message Broker Toolkit
About this task

To remove an object from an execution group by using the WebSphere Message
Broker Toolkit, complete the following steps.

Procedure
1. In the Brokers view, right-click the object that you want to remove.
2. Click Delete, then OK to confirm.

Results

The request is sent to the broker, and a synchronous response is sent back.

Using the WebSphere Message Broker Explorer
About this task

To remove an object from an execution group by using the WebSphere Message
Broker Explorer, complete the following steps.

Procedure
1. In the Navigator view, expand the broker and execution group with which you

want to work.
2. Right-click the object that you want to remove.
3. Click Delete, then OK to confirm.

Results

The request is sent to the broker, and a synchronous response is sent back.

Using the mqsideploy command
About this task

To remove an object from an execution group by using the mqsideploy command,
complete the following steps.

Chapter 11. Packaging and deploying 3247

Procedure
1. Open a command window that is configured for your environment.
2. Enter the appropriate command for your operating system and configuration,

using the following examples as a guide.

On distributed systems:
mqsideploy -i ipAddress -p port -q qmgr –e egroup

–d file1.cmf:file2.cmf:file3.dictionary:file4.xml

The -i (IP address), -p (port), and -q (queue manager) parameters
represent the connection details for the queue manager associated with
the broker. If you have created the broker on the computer on which
you run this command, you can specify the broker name instead.

On z/OS:
/f MQ01BRK1,dp e=egroup d=file1.cmf:file2.cmf:file3.dictionary:file4.xml

where MQ01BRK1 is the name of the broker.
The -d parameter (d= on z/OS) is a colon-separated list of files that you want
to remove from the named execution group. When you run the command, the
deployed objects (file1.cmf, file2.cmf, file3.dictionary, file4.xml) are
removed from the specified execution group.
Optionally, specify the -m parameter (m= on z/OS) to clear the contents of the
execution group. This option tells the execution group to completely clear all
existing data before the new BAR file is deployed.

Results

The command reports when responses are received from the broker. If the
command completes successfully, it returns zero (0).

Using the CMP API
About this task

To remove deployed objects from an execution group, get a handle to the relevant
ExecutionGroupProxy object, then run the deleteDeployedObjectsByName method.
Use the following code as an example.
import com.ibm.broker.config.proxy.*;

public class DeleteDeployedObjects {
public static void main(String[] args) {
BrokerConnectionParameters bcp =

new MQBrokerConnectionParameters
("localhost", 1414, "QM1");

try {
BrokerProxy b =

BrokerProxy.getInstance(bcp);
ExecutionGroupProxy e =

b.getExecutionGroupByName("default");
e.deleteDeployedObjectsByName(

new String[] { "file1.cmf",
"file2.cmf",
"file3.dictionary",
"file4.xml" }, 0);

}
catch (ConfigManagerProxyException e) {

3248 WebSphere Message Broker Version 7.0.0.8

e.printStackTrace();
}

}
}

What to do next

Next:

If you have removed one or more message flows, you can now remove the
resource files that are associated with those message flows; for example, JAR files.
Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“Execution groups” on page 53
An execution group is a named grouping of message flows that have been
assigned to a broker. The broker enforces a degree of isolation between message
flows in distinct execution groups by ensuring that they run in separate address
spaces, or as unique processes.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Deploying resources to a broker from a CMP application” on page 982
Deploy BAR files to the brokers in your broker network from a CMP application.
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
“Resolving problems when developing Administration API applications” on page
3510
Use the advice given here to help you to resolve problems that can arise when
developing Administration API for WebSphere Message Broker (also known as the
CMP API) applications.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.

Chapter 11. Packaging and deploying 3249

3250 WebSphere Message Broker Version 7.0.0.8

Chapter 12. Performance and monitoring

You can change various aspects of your broker configuration to tune brokers and
message flows, and monitor message flows and publish/subscribe applications.

About this task

Performance

The way in which you configure your broker environment can affect the
performance of your applications. For more information about these
options, see “Performance.”

Monitoring

You can configure your broker or message flows to generate data and
statistics that you can use to assess behavior and performance. For more
information about these options, see “Business-level monitoring” on page
3319.

Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Performance
You can change various aspects of your broker configuration to tune brokers and
message flows.

About this task

The way in which you configure your broker environment can affect the
performance of your applications. Review the information in “Considering
performance in the broker environment” on page 586, and decide what actions you
can take to change performance characteristics.

The following sections provide further information about how you can collect
statistics and monitor performance:
v “Tuning the broker” on page 3254
v Tuning message flow performance
v “Tuning the SAP adapter for scalability and performance” on page 3278
v “Monitoring message flow performance” on page 3279
v “Monitoring resource performance” on page 3305

3251

v “Subscribing to statistics reports” on page 3317
Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Related reference:
“Performance and monitoring” on page 6723
Use the reference information in this section to accomplish the performance and
monitoring tasks that address your business needs.

Considering performance in the broker environment
When you design your broker environment, and the resources associated with the
brokers, decisions that you make can affect the performance of your brokers and
applications.

About this task

Message flows
A message flow includes an input node that receives a message from an
application over a particular protocol; for example, WebSphere MQ. The
message must be parsed by the input node, although some parsers support
partial parsing which might reduce processing, because only the parts of
the message that are referenced are parsed. Other processing in a message
flow that might affect performance are the amount, efficiency, and
complexity of ESQL, access to databases, and how many message tree
copies are made.

You must consider how you split your business logic; how much work
should the application do, and how much should the message flow do?
Every interaction between an application and a message flow involves I/O
and message parsing, and therefore adds to processing time. Design your
message flows, and design or restructure you applications, to minimize
these interactions.

For more information about these factors, see “Optimizing message flow
response times” on page 3264.

Messages and message models
The type, format, and size of the messages that are processed can have a
significant effect on the performance of a message flow. For example, if
you process persistent messages, they have to be stored for safekeeping.

You might need to process messages with a well-defined structure; if so,
you can create MRM models for your messages. If you do not plan to
interrogate the structure, you can work with undefined messages, such as
BLOB messages.

3252 WebSphere Message Broker Version 7.0.0.8

If you are working in XML, be aware that it can be verbose, and therefore
produce large messages, but XML message content is easier to understand
than other formats, such as CWF. Field size and order might be important;
these factors can be included in your MRM model.

For more information about these factors, see “Optimizing message flow
response times” on page 3264 and Performance considerations for regular
expressions in TDS messages.

Broker configuration
You can create and configure one or more brokers, on one or more
computers, and for each broker you can create multiple execution groups,
and multiple message flows. Your configuration decisions can influence
message flow performance, and how efficiently messages can be processed.

For more information about these factors, see “Tuning the broker” on page
3254, “Optimizing message flow throughput” on page 587.

All these factors are examined in more detail in the Designing for Performance
SupportPac (IP04).

For a description of common performance scenarios, review “Resolving problems
with performance” on page 3504.

For further articles about WebSphere Message Broker and performance, review
these sources:
v The Business Integration Zone on developerWorks. This site has a search facility;

enter "performance" and review the links that are returned.
v The developerWorks article on message flow performance.
v The developerWorks article on monitoring resource use.
Related tasks:
“Optimizing message flow throughput” on page 587
Each message flow that you design must provide a complete set of processing for
messages received from a certain source. This design might result in very complex
message flows that include large numbers of nodes that can cause a performance
overhead, and might create potential bottlenecks. You can increase the number of
message flows that process your messages to provide the opportunity for parallel
processing and therefore improved throughput.
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
“Setting configuration timeout values” on page 3258
Change timeout values that affect configuration tasks in the broker.
“Tuning the broker” on page 3254
You can complete several tasks that enable you to tune different aspects of the
broker performance.
“Resolving problems with performance” on page 3504
Use the advice given here to help you to resolve common problems with
performance.
Related reference:
“Performance considerations when using regular expressions” on page 6309
Take care when specifying regular expressions: some forms of regular expression
can involve a large amount of work to find the best match, which might degrade
performance.

Chapter 12. Performance and monitoring 3253

http://www.ibm.com/support/docview.wss?uid=swg24006518
http://www.ibm.com/support/docview.wss?uid=swg24006518
http://www.ibm.com/developerworks/websphere/zones/businessintegration/
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0407_dunn/0407_dunn.html

Tuning the broker
You can complete several tasks that enable you to tune different aspects of the
broker performance.

Before you begin

Before you start:

Ensure that the following requirements are met:
v Your user ID has the correct authorizations to perform the task. Refer to

“Security requirements for administrative tasks” on page 3644.

About this task

Select the tasks that are relevant to your enterprise:

Procedure
v “Setting the JVM heap size”
v “Increasing the stack size on Windows, Linux, and UNIX systems” on page 3255
v “Increasing the stack size on z/OS” on page 3256
v “Tuning the HEAP settings on z/OS” on page 3257
v “Setting configuration timeout values” on page 3258
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Configuring brokers” on page 610
Create and configure the brokers that you want on the operating system of your
choice.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.

Setting the JVM heap size
When you start an execution group, it creates a Java virtual machine (JVM) for
executing a Java user-defined node.

About this task

You can pass parameters to the JVM to set the minimum and maximum heap sizes;
the default maximum heap size is 256 MB. To give more capacity to a message
flow that is going to process large messages, reduce the minimum JVM heap size
to allow the main memory heap to occupy more address space.

Increase the maximum heap size only if you use Java intensively with, for
example, user-defined nodes.

Use caution when you set the maximum heap size, because the Java Runtime
Environment takes the values for its initial, maximum, and current heap sizes to
calculate how frequently it drives garbage collection. A large maximum heap size

3254 WebSphere Message Broker Version 7.0.0.8

drives garbage collection less frequently. If garbage collection is driven less
frequently, the heap size associated with the execution group continues to grow.

Use the information on JVM parameter values on the mqsichangeproperties
command to set the heap size that you require.
Related concepts:
“JVM heap sizing” on page 3269
The Java virtual machine (JVM) heap is an independent memory allocation that
can reduce the capacity of the main memory heap.
“Stack storage” on page 3268
Depending on the design of your message flow, you might need to increase the
stack size.
Related tasks:
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“JVM parameter values” on page 3813
Select the objects and properties associated with the Java Virtual Machine (JVM)
that you want to change.

Increasing the stack size on Windows, Linux, and UNIX systems
Increase the stack size on Windows, Linux, and UNIX systems by setting the
MQSI_THREAD_STACK_SIZE environment variable to an appropriate value.

About this task

When you restart brokers that are running on the system, they use the new value.

The value, in bytes, of MQSI_THREAD_STACK_SIZE that you set is used for every
thread that is created in a DataFlowEngine process. If the execution group has
many message flows assigned to it, and you set a large value for
MQSI_THREAD_STACK_SIZE, the DataFlowEngine process needs a large amount of
storage for the stacks.

Set this environment variable to at least 48 KB. The default values are:

Linux and UNIX
1 MB

AIX 2 MB

z/OS 50 KB

Windows
Determined by the operating system.

Related concepts:
“Stack storage” on page 3268
Depending on the design of your message flow, you might need to increase the
stack size.

Chapter 12. Performance and monitoring 3255

Related tasks:
“Increasing the stack size on z/OS”
Change the stack size on z/OS by altering or adding the Language Environment
(LE) _CEE_RUNOPTS environment variable. This can be done for all execution groups
defined to a broker, or a specific execution group.

Increasing the stack size on z/OS
Change the stack size on z/OS by altering or adding the Language Environment
(LE) _CEE_RUNOPTS environment variable. This can be done for all execution groups
defined to a broker, or a specific execution group.

Before you begin

Broker components on z/OS are compiled using the XPLINKage (extra
performance linkage), which adds optimization to the runtime code. However, if
the initial stack size is not large enough, stack extents are used. The initial stack
size is 1 MB, and 1 MB is used in each extent. Ensure that you choose a large
enough downward stack size because the performance of XPLINK can be
adversely affected when stack extents are used.

To determine suitable stack sizes, you can use the Language Environment Report
Storage tool.

To use this tool, use the RPTSTG option with the _CEE_RUNOPTS environment variable
to test a message flow. Set this option in the component profile (BIPBPROF for a
broker) during the development and test of message flows that are intended for
production; for example:
export _CEE_RUNOPTS=RPTSTG\(ON\)

You can then override the default values for the stack sizes on z/OS by altering or
adding the _CEE_RUNOPTS environment variable.

You can do this for all execution groups defined to a broker, or a specific execution
group.

About this task

To update the component profile, take the following steps:

Procedure
1. Stop the broker.
2. Make the necessary changes to the profile.
3. Submit BIPGEN to re-create the ENVFILE and any execution group specific

ENVFILEs.
4. Restart the broker.

Results

To update the stack sizes for a specific execution group in a broker, take the
following steps:
1. Stop the broker.
2. Make the necessary changes to the execution group specific profile.
3. Submit BIPGEN to re-create the broker ENVFILE and any execution group specific

ENVFILEs.

3256 WebSphere Message Broker Version 7.0.0.8

4. Restart the broker.

Example

The following example shows how you can change the default stack value of 1 MB
to 2 MB:
export _CEE_RUNOPTS=THREADSTACK64\(ON,2M,1M,128M\)

What to do next

When you use the RPTSTG option, it increases the time that an application takes to
run, so use it as an aid to the development of message flows only, and not in your
final production environment. When you have determined the correct stack sizes
needed, remove this option from the _CEE_RUNOPTS environment variable.

XPLINK stacks grow downward in virtual storage while the standard linkage
grows upward. To avoid affecting performance by switching between downward
stack space and upward stack space during run time, compile user-defined
extensions using the XPLINK option where possible. If your message flow uses
user-defined extensions that have been compiled with the standard linkage
convention, set a suitable value for the upward stack size.
Related concepts:
“Stack storage” on page 3268
Depending on the design of your message flow, you might need to increase the
stack size.
Related tasks:
“Increasing the stack size on Windows, Linux, and UNIX systems” on page 3255
Increase the stack size on Windows, Linux, and UNIX systems by setting the
MQSI_THREAD_STACK_SIZE environment variable to an appropriate value.

Tuning the HEAP settings on z/OS
HEAP controls the allocation of the initial heap, controls allocations of additional
heap increments, and specifies how that storage is managed.

About this task

WebSphere Message Broker requests an initial heap storage allocation and
subsequent heap increments, the sizes of which depend on the type of process. For
example, the DFE process requests an initial heap storage allocation of 40 Mb, with
subsequent heap increments of 5 Mb. RPTOPTS can be used to generate a report of
the runtime options in effect for each process.
v KEEP, which is the default value, specifies that storage allocated to HEAP

increments is not released when the last segment of the allocated storage is
freed.

v FREE specifies that storage allocated to HEAP increments is released when the last
segment of the allocated storage is freed.

For performance reasons, WebSphere Message Broker takes the default, KEEP. For
most message processing scenarios, when storage allocations are less than 5 Mb, it
is more efficient to reuse storage that has been freed within the heap increment.
With KEEP, the 5 Mb heap increment remains allocated, even if all of the storage
segments have been released.

Chapter 12. Performance and monitoring 3257

If storage requests frequently exceed 5 Mb, these requests are allocated directly on
the heap. When the object is freed, the allocation remains on the heap, and is
reused for subsequent storage requests whose size is less than, or equal to, the size
of the heap allocation. Over time, the heap allocation is used for different-sized
objects, and this can lead to fragmentation, which in turn can result in high storage
usage. In these circumstances, consider setting the HEAP runtime environment
variable for the Language Environment to use the FREE parameter.

To set HEAP for all execution groups in a broker, change or add the Language
Environment _CEE_RUNOPTS environment variable in the component profile
(BIPBPROF):
1. Stop the broker.
2. Make the necessary changes to the profile.
3. Submit BIPGEN to re-create the ENVFILE and any execution group specific

ENVFILEs.
4. Restart the broker.

To set HEAP for a specific execution group, change or add the Language
Environment _CEE_RUNOPTS environment variable in the execution group specific
profile (renamed BIPEPROF):
1. Stop the broker.
2. Make the necessary changes to the execution group specific profile.
3. Submit BIPGEN to re-create the broker ENVFILE and any execution group specific

ENVFILEs.
4. Restart the broker.

For example, you can change the default values of KEEP to FREE in the following
line:
_CEE_RUNOPTS=HEAP64(40M,5M,FREE,9M,32K,KEEP,4096,4096,FREE)

Setting configuration timeout values
Change timeout values that affect configuration tasks in the broker.

Before you begin

Before you start:

Read “Packaging and deployment overview” on page 3210 to understand the
conditions under which these timeout values apply.

About this task

The broker receives configuration requests from the WebSphere Message Broker
Toolkit, the WebSphere Message Broker Explorer, and CMP API applications. You
can also change its configuration by running several commands, for example,
mqsideploy.

Several factors affect the time that a broker takes to apply and respond to these
requests. These factors include the load on the computer on which the broker is
running, network delays between components, and the work that execution groups
are performing at the time the request is received. The number of message flows in
an execution group, and their complexity, and large message sets, might also affect
the time taken.

3258 WebSphere Message Broker Version 7.0.0.8

You can change the length of time that a broker can take to perform these actions
by using two parameters that you can set on the mqsicreatebroker and
mqsichangebroker commands. The combined default value for these parameters is
approximately 6 minutes (360 seconds).

During development and test of message flows and broker configurations,
experiment with the values that you set for these timeout parameters to determine
appropriate values for your resources.
v -g ConfigurationChangeTimeout

This value defines the maximum time (in seconds) that is allowed for a user
configuration request to be processed, and defaults to 5 minutes (300 seconds).
The value is affected by the system load (including processor use), and by the
load of each execution group. If the request is not completed in this time, the
broker generates warning message BIP2066, but continues to implement the
change. The broker records further diagnosis information in the system and
event logs.

v -k InternalConfigurationTimeout

This value defines the maximum time (in seconds) that is allowed for an internal
configuration change to be processed and defaults to 1 minute (60 seconds). For
example, it defines the length of time that the broker can take to start an
execution group before a response is required.
The broker starts an internal process to start an execution group and to make all
the message flows active. Part of this initialization is performed serially (one
execution group at a time), therefore if the change affects more than one
execution group, the time required increases. If an execution group exceeds this
timeout value, the broker generates a warning message BIP2080. However, the
initialization continues and the execution group is started. The broker records
further diagnosis information in the system and event logs.

The sum of the values of ConfigurationChangeTimeout and the
InternalConfigurationTimeout parameters represents the maximum length of time
that a broker can take to process a deployed configuration message before it
generates a negative response. Check that typical configurations complete
successfully within the time that you have specified, to minimize warning
messages.

Look for success messages in the Administration log in the WebSphere Message
Broker Explorer, or Deployment Log in the WebSphere Message Broker Toolkit.
When success messages are displayed the deployment has completed. If you start a
deployment and record how long it takes for the success messages to appear, you
can use this time interval as the basis for setting these timeout values.

If the broker is on a production system, increase the values for both
ConfigurationChangeTimeout and InternalConfigurationTimeout parameters to allow for
application messages that are currently being processed by message flows to be
completed before the configuration change is applied. Also consider increasing the
value if you have merged message flows into fewer execution groups that you are
using for testing.

If the broker is on a development or test system, you might want to reduce
timeout lengths (in particular, the value of the ConfigurationChangeTimeout
parameter) to improve perceived response times, and to force a response from a
broker that is not showing expected behavior. However, reducing the timeout
values decreases the probability of deploying a configuration change successfully.

Chapter 12. Performance and monitoring 3259

During broker startup, the InternalConfigurationTimeout parameter is automatically
extended based on the number of execution groups which a broker contains. At
this time, the timeout period reported in the BIP2080 warning message may not
match the value configured for the InternalConfigurationTimeout parameter.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Checking the results of deployment” on page 3243
After you have made a deployment, check that the operation has completed
successfully.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.

Message flow performance
Understand the factors that control and influence the performance of your message
flows.

About this task
v “Optimizing message flow throughput” on page 587
v “Optimizing message flow response times” on page 3264
v “System resources for message flow development” on page 3267

Optimizing message flow throughput
Each message flow that you design must provide a complete set of processing for
messages received from a certain source. This design might result in very complex
message flows that include large numbers of nodes that can cause a performance
overhead, and might create potential bottlenecks. You can increase the number of
message flows that process your messages to provide the opportunity for parallel
processing and therefore improved throughput.

3260 WebSphere Message Broker Version 7.0.0.8

About this task

The mode that your broker is working in can affect the number of message flows
that you can use; see “Restrictions that apply in each operation mode” on page
3657.

You can also consider the way in which the actions taken by the message flow are
committed, and the order in which messages are processed.

Consider the following options for optimizing message flow throughput:

Multiple threads processing messages in a single message flow
When you deploy a message flow, the broker automatically starts an
instance of the message flow for each input node that it contains. This
behavior is the default. However, if you have a message flow that handles
a very large number of messages, the input source (for example, a
WebSphere MQ queue) might become a bottleneck.

You can update the Additional Instances property of the deployed
message flow in the BAR file: the broker starts additional copies of the
message flow on separate threads, providing parallel processing. This
option is the most efficient way of handling this situation, if you are not
concerned about the order in which messages are processed.

If the message flow receives messages from a WebSphere MQ queue, you
can influence the order in which messages are processed by setting the
Order Mode property of the MQInput node:
v If you set Order Mode to By User ID, the node ensures that messages

from a specific user (identified by the UserIdentifier field in the MQMD)
are processed in guaranteed order. A second message from one user is
not processed by an instance of the message flow if a previous message
from this user is currently being processed by another instance of the
message flow.

v If you set Order Mode to By Queue Order, the node processes one
message at a time to preserve the order in which the messages are read
from the queue. Therefore, this node behaves as though you have set the
Additional Instances property of the message flow to zero.

v If you set Order Mode to User Defined, you can order messages by any
message element, by setting an XPath or ESQL expression in the Order
field location property. The node ensures that messages with the same
value in the order field message element are processed in guaranteed
order. A second message with the same value in the order field message
element is not processed by an instance of the message flow if a
previous message with the same value is currently being processed by
another instance of the message flow.
If the field is missing, an exception is raised, and the message is rolled
back. NULL and empty values are processed separately, in parallel.
If you set Order Mode to By User ID or User Defined, and the message
flow uses transformation nodes, it is advisable to set the Parse Timing
to Immediate.

For publish/subscribe applications that communicate with the broker over
any supported protocol, messages for a particular topic are published by
brokers in the same order as they are received from publishers (subject to
reordering based on message priority, if applicable). Therefore each

Chapter 12. Performance and monitoring 3261

subscriber receives messages from a particular broker, on a particular topic,
from a particular publisher, in the order that they are published by that
publisher.

However, it is possible for messages, occasionally, to be delivered out of
order. This situation can happen, for example, if a link in the network fails
and subsequent messages are routed by another link.

If you need to ensure the order in which messages are received, you can
use either the SeqNum (sequence number) or PubTime (publish time stamp)
parameter on the Publish command for each published message, to
calculate the order of publishing.

For more information about the techniques recommended for all MQI and
AMI users, see the Application Programming Reference and Application
Programming Guide sections in the WebSphere MQ Version 7 Information
Center online for programs written to the MQI, and the WebSphere MQ
Application Messaging Interface book for programs written to the AMI.

The WebSphere MQ Application Messaging Interface book is available from
the WebSphere MQ Library web page (listed under Version 5.3), or from
SupportPac MA0F on the WebSphere MQ SupportPacs web page.

See also the Publish/Subscribe User's Guide section in the WebSphere MQ
Version 7 Information Center online.

The broker does not provide message ordering for messages received
across WebSphere MQ Web Services Transport.

Multiple copies of the message flow in a broker
You can also deploy several copies of the same message flow to different
execution groups in the same broker. This option has similar effects to
increasing the number of processing threads in a single message flow,
although typically provides less noticeable gains.

This option also removes the ability to determine the order in which the
messages are processed, because, if there is more than one copy of the
message flow active in the broker, each copy can be processing a message
at the same time, from the same queue. The time taken to process a
message might vary, and multiple message flows accessing the same queue
might therefore read messages from the input source in a random order.
The order of messages produced by the message flows might not
correspond to the order of the original messages.

Ensure that the applications that receive message from these message flows
can tolerate out-of-order messages. Additionally, ensure that the input
nodes in these message flows are suitable for deployment to different
processes.

Copies of the message flow in multiple brokers
You can deploy several copies of the same message flow to different
brokers. This option requires changes to your configuration, because you
must ensure that applications that supply messages to the message flow
can put their messages to the right input queue or port. You can often
make these changes when you deploy the message flow by setting the
message flow's configurable properties.

The scope of the message flow
You might find that, in some circumstances, you can split a single message
flow into several different flows to reduce the scope of work that each
message flow performs. If you do split your message flow, be aware that it

3262 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/support/supportpacs
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

is not possible to run the separate message flows in the same unit of work,
and if transactional aspects to your message flow exist (for example, the
updating of multiple databases), this option does not provide a suitable
solution.

The following two examples show when you might want to split a
message flow:
1. In a message flow that uses a RouteToLabel node, the input queue has

become a bottleneck. You can use another copy of the message flow in
a second execution group, but this option is not appropriate if you
want all of the messages to be handled in the order in which they are
shown on the queue. You can consider splitting out each branch of the
message flow that starts with a Label node by providing an input
queue and input node for each branch. This option might be
appropriate, because when the message is routed by the RouteToLabel
node to the relevant Label node, it has some level of independence
from all other messages.
You might also need to provide another input queue and input node to
complete any common processing that the Label node branches connect
to when unique processing has been done.

2. If you have a message flow that processes very large messages that
take a considerable time to process, you might be able to:
a. Create other copies of the message flow that use a different input

queue (you can set this option up in the message flow itself, or you
can update this property when you deploy the message flow).

b. Set up WebSphere MQ queue aliases to redirect messages from
some applications to the alternative queue and message flow.

You can also create a new message flow that replicates the function of
the original message flow, but only processes large messages that are
immediately passed on to it by the original message flow, that you
modified to check the input message size and redirect the large
messages.

The frequency of commits
If a message flow receives input messages on a WebSphere MQ queue,
you can improve its throughput for some message flow scenarios by
modifying its default properties after you have added it to a BAR file.
(These options are not available if the input messages are received by other
input nodes; commits in those message flows are performed for each
message.)

The following properties control the frequency with which the message
flow commits transactions:
v Commit Count. This property represents the number of messages

processed from the input queue before an MQCMIT is issued.
v Commit Interval. This property represents the time interval that elapses

before an MQCMIT is started.
Related tasks:
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.

Chapter 12. Performance and monitoring 3263

“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.
“Publish message” on page 6405
Related information:

WebSphere MQ Version 7 Information Center online

Optimizing message flow response times
You can use different solutions to improve message flow response times.

Before you begin

Before you start:

Read the following concept topic:
v “Message flow nodes” on page 1024

About this task

When you design a message flow, the flexibility and functional capabilities of the
built-in nodes often mean that there are several ways to achieve the processing and
results that you require. You might find that different solutions deliver different
levels of performance and, if performance is an important consideration for you,
take it into account when designing your message flow

Your applications can perceive performance in either of these ways:
v The response time indicates how quickly each message is processed by the

message flow. The response time is particularly influenced by how you design
your message flows. Response time is discussed in this topic.

v The throughput indicates how many messages of particular sizes can be
processed by a message flow in a specified time. The throughput is mainly
affected by configuration and system resource factors, and is discussed in
“Optimizing message flow throughput” on page 587, with other domain
configuration information.

Several aspects influence message flow response times. However, as you create and
modify your message flow design to arrive at the best results for your specific
business requirements, also consider the eventual complexity of the message flow.
The most efficient message flows are not necessarily the easiest to understand and
maintain; experiment with the solutions available to arrive at the best balance for
your needs.

3264 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Several factors influence message flow response times:

The number of nodes that you include in the message flow
Every node increases the amount of processing required in the broker,
therefore, consider the content of the message flow carefully, including the
use of subflows.

Use as few nodes as possible in a message flow; every node that you
include in the message flow increases the amount of processing required in
the broker. The number of nodes in a single flow has an upper limit, which
is governed by system resources, particularly the stack size. For more
information about stack sizes, see “System resources for message flow
development” on page 3267.

How the message flow routes and processes messages
In some situations, you might find that the built-in nodes, and perhaps
other nodes that are available in your system, provide more than one way
of providing the same function. Choose the simplest configuration. For
example, to define some specific processing based on the value of a field in
each message, you might design a message flow that has a sequence of
Filter nodes to handle each case. If appropriate, you can group messages
through the Filter node to reduce the number of nodes through which each
message type has to pass before being processed.

For example, you might have a message flow that handles eight different
messages (Invoice, Despatch Note, and so on). You can include a Filter
node to identify each type of message and route it according to its type.
You can optimize the performance of this technique by testing for the most
frequent message types in the earliest Filter nodes. However, the eighth
message type must always pass through eight Filter nodes.

If you can group the message types (for example, if the message type is
numeric, and you can test for all types greater than four and not greater
than four), you can reduce the number of Filter nodes required. The first
Filter node tests for greater than four, and passes the message on to two
further Filter nodes (attached to the True and False terminals) that test for
less than two and less than six. An additional four Filter nodes can then
test for one or two, three or four, and so on. Although the number of Filter
nodes required is the same, the number of nodes through which each
message passes is reduced.

You might find that using a RouteToLabel node with a set of Label nodes
provides a better alternative to a sequence of Filter nodes. Each message
passes through a smaller number of nodes, improving throughput.
However, you must also consider that using a RouteToLabel node
necessitates the use of a Compute node: the increase in the amount of
processing required in the broker that is caused by the node might
outweigh the advantages. If you are dealing with a limited number of
message types, a small number of Filter nodes is more efficient.

The following sample demonstrates how you can use the RouteToLabel
and Label nodes instead of using multiple Filter nodes in the
XML_PassengerQuery message flow.
v Airline Reservations

The following sample demonstrates how you can store routing information
in a database table in an in-memory cache in the message flow.
v Message Routing

Chapter 12. Performance and monitoring 3265

You can view information about samples only when you use the
information center that is integrated with the WebSphere Message
Broker Toolkit or the online information center. You can run samples
only when you use the information center that is integrated with the
WebSphere Message Broker Toolkit.

If your message flow includes loops
Avoid loops of repeating nodes, which can be very inefficient and can
cause performance and stack problems. You might find that a Compute
node with multiple PROPAGATE statements avoids the need to loop
around a series of nodes.

The efficiency of the ESQL
Check all the ESQL code that you have created for your message flow
nodes. As you develop and test a node, you might maintain statements
that are not required when you have finalized your message processing.
You might also find that something you have coded as two statements can
be coded as one. Taking the time to review and check your ESQL code
might provide simplification and performance improvements.

If you have imported message flows from a previous release, check your
ESQL statements against the ESQL available in Version 6.1 to see if you can
use new functions or statements to improve its efficiency.

The use of persistent and transactional messages
Persistent messages are saved to disk during message flow processing. You
can avoid this situation by specifying that messages are non-persistent on
input, output, or both. If your message flow is handling only
non-persistent messages, check the configuration of the nodes and the
message flow itself; if your messages are non-persistent, transactional
support might be unnecessary. The default configuration of some nodes
enforces transactionality; if you update these properties and redeploy the
message flow, response times might improve.

Message size
A larger message takes longer to process. If you can split large messages
into smaller units of information, you might be able to improve the speed
at which they are handled by the message flow. The following sample
demonstrates how to minimize the virtual storage requirements for the
message flow to improve a message flow's performance when processing
potentially large messages.
v Large Messaging

You can view information about samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit or the online information center. You can run samples only when
you use the information center that is integrated with the WebSphere
Message Broker Toolkit.

Message format
Although WebSphere Message Broker supports multiple message formats,
and provides facilities that you can use to transform from one format to
another, this transformation increases the amount of processing required in
the broker. Make sure that you do not perform any unnecessary
conversions or transformations.

You can find more information about improving the performance of a message
flow in a developerWorks article (developerWorks article on message flow
performance).

3266 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html

Related concepts:
“System resources for message flow development”
Configure your message flows to make the best use of computer resources,
especially if you will process large messages.
Related tasks:
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Optimizing message flow throughput” on page 587
Each message flow that you design must provide a complete set of processing for
messages received from a certain source. This design might result in very complex
message flows that include large numbers of nodes that can cause a performance
overhead, and might create potential bottlenecks. You can increase the number of
message flows that process your messages to provide the opportunity for parallel
processing and therefore improved throughput.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Using more than one input node” on page 1473
You can include more than one input node in a single message flow.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

System resources for message flow development
Configure your message flows to make the best use of computer resources,
especially if you will process large messages.

As well as designing your message flow to optimize throughput, you must ensure
that particular areas of storage are efficiently used so that your system does not
suffer from capacity issues, and that processes do not end because of lack of
resources.

Consider the following storage issues when developing your message flows:
v “Stack storage” on page 3268
v “JVM heap sizing” on page 3269
v “Configuring the storage of events for aggregation nodes” on page 753
v “Configuring the storage of events for Collector nodes” on page 755
v “Configuring the storage of events for Resequence nodes” on page 758
v “Configuring the storage of events for timeout nodes” on page 760
Related tasks:

Chapter 12. Performance and monitoring 3267

“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.

Stack storage:

Depending on the design of your message flow, you might need to increase the
stack size.

When a message flow thread starts, it requires storage to perform the instructions
that are defined by the message flow nodes. This storage comes from the execution
group's heap and stack size. The default stack size that is allocated to a message
flow thread depends on the operating system that is used:

Windows

On Windows, each message flow thread is allocated 1 MB of stack space.

Linux

On Linux, each message flow thread is allocated 1 MB of stack space.

UNIX

On UNIX, each message flow thread is allocated 1 MB of stack space.

AIX

On AIX, each message flow thread is allocated 2 MB of stack space.

z/OS

On z/OS, each message flow thread is allocated 512 KB of downward

stack space and 50 KB of upward stack space.

In a message flow, a node typically uses 2 KB of the stack space. A typical message
flow can therefore include 250 nodes on z/OS, 500 nodes on UNIX systems and
500 nodes on Windows. This amount can be higher or lower depending on the
type of nodes used and the processing that they perform.

In WebSphere Message Broker, any processing that involves nested or recursive
processing can cause extensive usage of the stack. For example, in the following
situations you might need to increase the stack size:
v When a message flow is processing a message that contains a large number of

repetitions or complex nesting.
v When a message flow is executing ESQL that calls the same procedure or

function recursively, or when an operator (for example, the concatenation
operator) is used repeatedly in an ESQL statement.

You can increase the stack size to improve performance. For details, see:
v “Increasing the stack size on Windows, Linux, and UNIX systems” on page 3255
v “Increasing the stack size on z/OS” on page 3256
Related tasks:
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.

3268 WebSphere Message Broker Version 7.0.0.8

JVM heap sizing:

The Java virtual machine (JVM) heap is an independent memory allocation that
can reduce the capacity of the main memory heap.

Every execution group creates its own JVM. The execution group uses the JVM to
execute the internal administration threads that require Java. This usage is typically
minimal. The primary use of the JVM is for the message flow nodes that include
the IBM primitives, user defined extensions, and Java routines that are called from
ESQL. You cannot control how much of the JVM heap the IBM primitives use, but
you can affect usage of the JVM heap in the Java that is implemented in the
following resources:
v A Java user-defined extension node
v A JavaCompute node
v A Java routine that is called from ESQL

From WebSphere Message Broker onwards, the JVM is created with a minimum of
32 MB of space, and a maximum of 256 MB, allocated and reserved for its use. As
with any JVM, you can pass parameters in to set the minimum and maximum
heap sizes. Note that on 32-bit platforms, the JVM reserves heap space based on
the maximum heap size.

You might need to increase the maximum heap size allocated if you plan to run
large messages through the Java primitive nodes listed above.

To give more capacity to a message flow that is going to process large messages,
reduce the minimum JVM heap size to allow the main memory heap to occupy
more address space. For details of how to reduce the minimum JVM heap size, see
“Setting the JVM heap size” on page 3254.
Related concepts:
“Stack storage” on page 3268
Depending on the design of your message flow, you might need to increase the
stack size.
Related tasks:
“Setting the JVM heap size” on page 3254
When you start an execution group, it creates a Java virtual machine (JVM) for
executing a Java user-defined node.
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.

Configuring the storage of events for aggregation nodes:

You can use an Aggregation configurable service to control the storage of events
for AggregateControl and AggregateReply nodes.

About this task

By default, the storage queues used by all aggregation nodes are:
v SYSTEM.BROKER.AGGR.CONTROL

Chapter 12. Performance and monitoring 3269

v SYSTEM.BROKER.AGGR.REPLY
v SYSTEM.BROKER.AGGR.REQUEST
v SYSTEM.BROKER.AGGR.UNKNOWN
v SYSTEM.BROKER.AGGR.TIMEOUT

However, you can control the queues that are used by different aggregation nodes
by creating alternative queues containing a QueuePrefix, and using an Aggregation
configurable service to specify the names of those queues for storing events.

Follow these steps to specify the queues that are used to store event states, and to
set the expiry time of an aggregation:

Procedure

1. Create the storage queues to be used by the aggregation nodes. The following
queues are required:
v SYSTEM.BROKER.AGGR.QueuePrefix.CONTROL
v SYSTEM.BROKER.AGGR.QueuePrefix.REPLY
v SYSTEM.BROKER.AGGR.QueuePrefix.REQUEST
v SYSTEM.BROKER.AGGR.QueuePrefix.UNKNOWN
v SYSTEM.BROKER.AGGR.QueuePrefix.TIMEOUT
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queues, WebSphere Message Broker creates the
set of queues when the node is deployed; these queues are based on the default
queues. If the queues cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create an Aggregation
configurable service. You can create a configurable service to be used with
either a specific aggregation or with all aggregations in an execution group.
a. If the configurable service is to be used with a specific aggregation, ensure

that the name of the configurable service is the same as the name that you
specify in the Aggregate name property on the AggregateControl and
AggregateReply nodes. If the configurable service is to be used with all
aggregations in an execution group, create the configurable service with the
same name as the execution group.

b. Set the Queue prefix property to the required value.
c. Optional: Set the Timeout property to control the expiry time of an

aggregation.

For example, create a configurable service called myAggregation, which specifies
queues prefixed with SYSTEM.BROKER.AGGR.SET1 and a timeout of 60
seconds:
mqsicreateconfigurableservice MYBROKER -c Aggregation -o myAggregation
-n queuePrefix,timeoutSeconds -v SET1,60

You can use the mqsideleteconfigurableservice command to delete the
Aggregation configurable service. However, the storage queues are not deleted
automatically when the configurable service is deleted, so you must delete
them separately.For more information, see “Configurable services properties”
on page 3766

3. In the AggregateControl and AggregateReply nodes:

3270 WebSphere Message Broker Version 7.0.0.8

a. Ensure that the name of the Aggregation configurable service is the same as
the name specified in the Aggregate name property on the Basic tab; for
example, myAggregation. If no Aggregation configurable service exists with
the same name as the Aggregate name property, and if a configurable service
exists with the same name as the execution group, that configurable service
is used instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Chapter 12. Performance and monitoring 3271

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Configuring the storage of events for Collector nodes:

You can use a Collector configurable service to control the storage of events for
Collector nodes.

About this task

By default, the storage queues used by all Collector nodes are:
v SYSTEM.BROKER.EDA.EVENTS
v SYSTEM.BROKER.EDA.COLLECTIONS

These queues are also used by the Resequence node.

However, you can control the queues that are used by different Collector nodes by
creating alternative queues that contain a QueuePrefix variable, and by using a
Collector configurable service to specify the names of those queues for storing
events.

Follow these steps to specify the queues that are used to store event states, and to
set the expiry for the collection:

Procedure

1. Create the storage queues to be used by the Collector node. The following
queues are required:
v SYSTEM.BROKER.EDA.QueuePrefix.EVENTS
v SYSTEM.BROKER.EDA.QueuePrefix.COLLECTIONS
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queues, WebSphere Message Broker creates the
set of queues when the node is deployed; these queues are based on the default
queues. If the queues cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create a Collector
configurable service. You can create a configurable service to be used with
either a specific collection or with all collections in an execution group.
a. If you are creating a configurable service to be used with a specific

collection, ensure that the name of the configurable service is the same as
the name that you specify in the Configurable service property on the
Collector node. If you are creating a configurable service to be used with all
collections in the execution group, ensure that the configurable service has
the same name as the execution group.

b. Set the Queue prefix property to the required value.

3272 WebSphere Message Broker Version 7.0.0.8

c. Optional: Set the Collection expiry property.

For example, create a Collector configurable service called myCollectorService,
which uses queues prefixed with SYSTEM.BROKER.EDA.SET1, and with a
collection expiry of 60 seconds:
mqsicreateconfigurableservice MYBROKER -c Collector -o myCollectorService
-n queuePrefix,collectionExpirySeconds -v SET1,60

You can use the mqsideleteconfigurableservice command to delete the
Collector configurable service. However, the storage queues are not deleted
automatically when the configurable service is deleted, so you must delete
them separately.
For more information, see “Configurable services properties” on page 3766

3. In the Collector node:
a. If the configurable service is to be used for a specific collection, specify the

name of the configurable service in the Configurable service property on
the Advanced tab; for example, myCollectorService. If you do not set the
Configurable service property, and if a configurable service exists with the
same name as the execution group, that configurable service is used instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:

Chapter 12. Performance and monitoring 3273

“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Configuring the storage of events for Resequence nodes:

You can use a Resequence configurable service to control the storage of events for
Resequence nodes.

About this task

By default, the storage queues used by all Resequence nodes are:
v SYSTEM.BROKER.EDA.EVENTS
v SYSTEM.BROKER.EDA.COLLECTIONS

These queues are also used by the Collector node.

However, you can control the queues that are used by different Resequence nodes
by creating alternative queues that contain a QueuePrefix variable, and by using a
Resequence configurable service to specify the names of those queues for storing
events.

Follow these steps to specify the queues that are used to store event states, and to
set the timeout and the start and end of the sequence:

Procedure

1. Create the storage queues to be used by the Resequence node. The following
queues are required:
v SYSTEM.BROKER.EDA.QueuePrefix.EVENTS
v SYSTEM.BROKER.EDA.QueuePrefix.COLLECTIONS
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queues, WebSphere Message Broker creates the
set of queues when the node is deployed; these queues are based on the default
queues. If the queues cannot be created, the message flow is not deployed.

2. Use the mqsicreateconfigurableservice command to create a Resequence
configurable service. You can create a configurable service to be used with
either a specific sequence or with all sequences in an execution group.

3274 WebSphere Message Broker Version 7.0.0.8

a. If you are creating a configurable service to be used with a specific
sequence, ensure that the name of the configurable service is the same as
the name that you specify in the Configurable service property on the
Resequence node. If you are creating a configurable service to be used with
all sequences in the execution group, ensure that the configurable service
has the same name as the execution group.

b. Set the Queue prefix property to the required value.
c. Optional: Set the Missing message timeout, Start of sequence, and End of

sequence properties.

For example, create a Resequence configurable service called
myResequenceService, which uses queues prefixed with
SYSTEM.BROKER.EDA.SET1, with a missing message timeout of 60 seconds,
and which waits five seconds before determining the start and end numbers in
a sequence:
mqsicreateconfigurableservice MYBROKER -c Resequence -o myResequenceService
-n queuePrefix,missingMessageTimeoutSeconds,startSequenceSeconds,endSequenceSeconds -v SET1,60,5,5

You can use the mqsideleteconfigurableservice command to delete the
Resequence configurable service. However, the storage queues are not deleted
automatically when the configurable service is deleted, so you must delete
them separately.For more information, see “Configurable services properties”
on page 3766

3. In the Resequence node:
a. If the configurable service is to be used for a specific sequence, specify the

name of the configurable service on the Advanced tab; for example,
myResequenceService. If you do not set the Configurable service property,
and if a configurable service exists with the same name as the execution
group, that configurable service is used instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable

Chapter 12. Performance and monitoring 3275

services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Configuring the storage of events for timeout nodes:

You can use a Timer configurable service to control the storage of events for
TimeoutNotification and TimeoutControl nodes.

About this task

By default, the storage queue used by all timeout nodes is the
SYSTEM.BROKER.TIMEOUT.QUEUE.

However, you can control the queues that are used by different timeout nodes by
creating alternative queues that contain a QueuePrefix variable, and by using a
Timer configurable service to specify the names of those queues for storing events.

Follow these steps to specify the queue that is used to store event states:

Procedure

1. Create the storage queue to be used by the timeout nodes. The following queue
is required:
v SYSTEM.BROKER.TIMEOUT.QueuePrefix.QUEUE
The QueuePrefix variable can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight characters and
must not begin or end with a period (.). For example, SET1 and SET.1 are valid
queue prefixes, but .SET1 and SET1. are invalid.
If you do not create the storage queue, WebSphere Message Broker creates the
queue when the node is deployed; this queue is based on the default queue. If
the queue cannot be created, the message flow is not deployed.

3276 WebSphere Message Broker Version 7.0.0.8

2. Use the mqsicreateconfigurableservice command to create a Timer
configurable service. You can create a configurable service to be used with
either specific timeout requests or with all timeout requests in an execution
group.
a. If the configurable service is to be used with specific timeout requests,

create the configurable service with the same name as the Unique
identifier property on the TimeoutNotification and TimeoutControl nodes.
If the configurable service is to be used with all timeout requests in an
execution group, create the configurable service with the same name as the
execution group.

b. Set the Queue prefix property to the required value.

For example, create a Timer configurable service that uses a queue prefixed
with SYSTEM.BROKER.TIMEOUT.SET1:
mqsicreateconfigurableservice MB7BROKER -c Timer -o myTimer
-n queuePrefix -v SET1

You can use the mqsideleteconfigurableservice command to delete the Timer
configurable service. However, the storage queue is not deleted automatically
when the configurable service is deleted, so you must delete it separately.For
more information, see “Configurable services properties” on page 3766.

3. In the TimeoutNotification and TimeoutControl nodes:
a. Ensure that the name of the Timer configurable service is the same as the

name specified in the Unique Identifier property on the Basic tab; for
example, myTimer. If there is no Timer configurable service with the same
name as the Unique Identifier, and if there is a configurable service with
the same name as the execution group, that configurable service is used
instead.

b. Optional: Use the mqsichangeproperties and mqsireportproperties
commands to change or view the properties of the configurable service.
Alternatively, you can use the WebSphere Message Broker Explorer to view
or modify a configurable service. For more information about working with
configurable services, see “Using the WebSphere Message Broker Explorer
to work with configurable services” on page 644.

What to do next

The properties for the configurable service are not used by the broker until you
restart or redeploy the message flow, or restart the broker.
Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
“Configuring timeout flows” on page 2809
Use the TimeoutControl and TimeoutNotification nodes in message flows to
process timeout requests or to generate timeout notifications at specified intervals.
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
Related tasks:

Chapter 12. Performance and monitoring 3277

“Viewing configurable services” on page 647
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view the properties of configurable services defined on your broker.
“Modifying an IBM defined configurable service” on page 648
You can create a new configurable service for an external service on which the
broker relies, by modifying predefined configurable services provided by IBM. Use
the WebSphere Message Broker Explorer to view and modify existing configurable
services.
“Modifying a configurable service” on page 649
Use the WebSphere Message Broker Explorer to view and modify existing
configurable services.
“Deleting a configurable service” on page 652
Use the WebSphere Message Broker Explorer to delete custom configurable
services.
Related reference:
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Tuning the SAP adapter for scalability and performance
You can configure the number of listeners on the adapter and the number of
additional instances on the message flow to prevent delays when processing
synchronous calls from SAP.

Before you begin

Before you start:

v Ensure that you have created and saved a message flow that contains one or
more SAP nodes; for more information, see “Developing message flows that use
WebSphere Adapters” on page 2033.

v Read the concept topic “SAP adapter scalability and performance” on page 1949.

About this task

The following steps describe how to tune the SAP adapter for scalability and
performance.

3278 WebSphere Message Broker Version 7.0.0.8

Procedure
1. Deploy the BAR file, as described in “Deploying a message flow that uses

WebSphere Adapters” on page 3240.
2. Start user trace, as described in “Starting user trace” on page 3197.
3. Start to collect accounting and statistics data, as described in “Starting to collect

message flow accounting and statistics data” on page 3288.
4. Run the SAP programs at a typical load.
5. Check user trace for message BIP3461. This message tells you the highest

number of listeners that are waiting for message flow threads at any one time.
In an ideal situation, this number should be as low as possible. To reduce the
number of listeners that are waiting for message flow threads, increase the
number of instances on the SAPInput node, or the message flow that contains
it.

6. Inspect the accounting and statistics data for the message flow.
Related concepts:
“SAP adapter scalability and performance” on page 1949
You can improve performance by configuring the number of listeners on the
adapter and the number of additional instances on the message flow to prevent
delays when processing synchronous calls from SAP.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Starting to collect message flow accounting and statistics data” on page 3288
You can start collecting message flow accounting and statistics data for an active
broker at any time. You can specify what type of statistics you want to collect, and
where to send the data.
Related reference:
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.

Monitoring message flow performance
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.

Chapter 12. Performance and monitoring 3279

Before you begin

Before you start:

Read the concept topic about message flow accounting and statistics data.

About this task

The following topics describe the tasks that you can complete to control collection
of message flow accounting and statistics data by using the command line:
v “Starting to collect message flow accounting and statistics data” on page 3288
v “Stopping message flow accounting and statistics data collection” on page 3293
v “Viewing message flow accounting and statistics data collection parameters” on

page 3294
v “Modifying message flow accounting and statistics data collection parameters”

on page 3296
v “Resetting message flow accounting and statistics archive data” on page 3297

The following topics describe the tasks that you can complete to control collection
of message flow accounting and statistics data by using the WebSphere Message
Broker Explorer:
v “Starting accounting and statistics data collection in the WebSphere Message

Broker Explorer” on page 3299
v “Viewing message flow accounting and statistics data” on page 3300
v “Filtering message flow accounting and statistics data” on page 3302
v “Stopping accounting and statistics data collection in the WebSphere Message

Broker Explorer” on page 3304

The topics listed here show examples of how to issue the accounting and statistics
commands. The examples for z/OS are shown for SDSF; if you are using another
interface, you must modify the example shown according to the requirements of
that interface. For details of other z/OS options, see “Issuing commands to the
z/OS console” on page 3980.
Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.

3280 WebSphere Message Broker Version 7.0.0.8

“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.

Message flow accounting and statistics data
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.

Message flow accounting and statistics data records dynamic information about the
runtime behavior of a message flow. For example, it indicates how many messages
are processed and how large those messages are, as well as processor usage and
elapsed processing times. The broker collects the data and records it in a specified
location when one of a number of events occurs (for example, when a snapshot
interval expires or when the execution group you are recording information about
stops).

The broker takes information about statistics and accounting from the operating
system. On some operating systems, such as Windows, Linux, and UNIX, rounding
can occur because the system calls that are used to determine the processor times
are not sufficiently granular. This rounding might affect the accuracy of the data.

The following restrictions apply to data collection:
v Data relating to the size of messages is not collected for WebSphere Adapters

nodes (for example, the SAPInput node), the FileInput node, the JMSInput node,
or any user-defined input node that does not create a message tree from a bit
stream.

Collecting message flow accounting and statistics data is optional; by default it is
switched off. To use this facility, request it on a message flow or execution group
basis. The settings for accounting and statistics data collection are reset to the
defaults when an execution group is redeployed. Previous settings for message
flows in an execution group are not passed on to the new message flows deployed
to that execution group. Data collection is started and stopped dynamically when
you issue the mqsichangeflowstats command or when you click Statistics > Start
Statistics on the message flow in the WebSphere Message Broker Explorer; you do
not need to change the broker or the message flow, or redeploy the message flow,
to request statistics collection.

You can activate data collection on both your production and test systems. If you
collect the default level of statistics (message flow), the effect on broker
performance is minimal. However, collecting more data than the default message
flow statistics can generate high volumes of report data that might affect
performance slightly.

When you plan data collection, consider the following points:
v Collection options
v Accounting origin
v Output formats

You can find more information about how to use accounting and statistics data to
improve the performance of a message flow in this developerWorks article on
message flow performance.

Chapter 12. Performance and monitoring 3281

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

Message flow accounting and statistics collection options:

The options that you specify for message flow accounting and statistics collection
determine what information is collected. You can request two types of data
collection: Snapshot data and archive data.
v Snapshot data is collected for an interval of approximately 20 seconds. The exact

length of the interval depends on system loading and the level of current broker
activity. You cannot modify the length of time for which snapshot data is
collected. At the end of this interval, the recorded statistics are written to the
output destination and the interval is restarted.

v Archive data is collected for an interval that you have set for the broker on the
mqsicreatebroker or mqsichangebroker command. You can specify an interval of
between 1 and 43200 minutes, the default value is 60 minutes. At the end of this
interval, the recorded statistics are written to the output destination and the
interval is restarted.
An interval is prematurely expired and restarted when any of the following
events occur:
– The message flow is redeployed.
– The set of statistics data to be collected is modified.
– The broker is shut down.
This preserves the integrity of the data already collected when that event occurs.

z/OS

On z/OS, you can set the command parameter to 0, which means that

the interval is controlled by an external timer mechanism. This support is
provided by the Event Notification Facility (ENF), which you can use instead of
the broker command parameter if you want to coordinate the expiration of this
timer with other system events.

You can request snapshot data collection, archive data collection, or both. You can
activate snapshot data collection while archive data collection is active. The data
recorded in both reports is the same, but is collected for different intervals. If you

3282 WebSphere Message Broker Version 7.0.0.8

activate both snapshot and archive data collection, be careful not to combine
information from the two different reports, because you might count information
twice.

View statistics data as it is generated, using the Broker Statistics view in the
WebSphere Message Broker Explorer.

You can use the statistics generated for the following purposes:
v You can record the load that applications, trading partners, or other users put on

the broker. This allows you to record the relative use that different users make of
the broker, and perhaps to charge them accordingly. For example, you could
levy a nominal charge on every message that is processed by a broker, or by a
specific message flow.
Archive data provides the information that you need for a use assessment of this
kind.

v You can assess the execution of a message flow to determine why it, or a node
within it, is not performing as you expect.
Snapshot data is appropriate for performance assessment.

v You can determine the route that messages are taking through a message flow.
For example, you might find that an error path is taken more frequently than
you expect and you can use the statistics to understand when the messages are
routed to this error path.
Check the information provided by snapshot data for routing information; if this
is insufficient for your needs, use archive data.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
“Starting accounting and statistics data collection in the WebSphere Message
Broker Explorer” on page 3299
Use the WebSphere Message Broker Explorer to start collecting snapshot
accounting and statistics data for your brokers, execution groups, and message
flows. You can then view the accounting and statistics data in the Broker Statistics
and Broker Statistics Graph views.
Related reference:
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Chapter 12. Performance and monitoring 3283

Message flow accounting and statistics accounting origin:

Accounting and statistics data can be accumulated and reported with reference to
an identifier associated with a message in a message flow. This identifier is the
accounting origin, which provides a method of producing individual accounting
and statistics data for multiple accounting origins that generate input to message
flows. The accounting origin can be a fixed value, or it can be dynamically set
according to your criteria.

For example, if your broker hosts a set of message flows associated with a
particular client in a single execution group, you can set a specific value for the
accounting origin for all these flows. You can then analyze the output provided to
assess the use that the client or department makes of the broker, and charge them
accordingly.

If you want to track the behavior of a particular message flow, you can set a
unique accounting origin for this message flow, and analyze its activity over a
specified period.

To make use of the accounting origin, you must perform the following tasks:
v Activate data collection, specifying the correct parameter to request basic

support (the default is none, or no support). For details, see
“mqsichangeflowstats command” on page 3744.

v Configure each message flow for which you want a specific origin to include
ESQL statements that set the unique value that is to be associated with the data
collected. Data for message flows for which a specific value has not been set are
identified with the value Anonymous.
The ESQL statements can be coded in a Compute, Database, or Filter node.
You can configure the message flow either to set a fixed value, or to determine a
dynamic value, and can therefore create a very flexible method of recording sets
of data that are specific to particular messages or circumstances. For more
information, refer to “Setting message flow accounting and statistics accounting
origin” on page 3290.

You can complete these tasks in either order; if you configure the message flow
before starting data collection, the broker ignores the setting. If you start data
collection, specifying accounting origin support, before configuring the message
flow, all data is collected with the Accounting Origin set to Anonymous. The broker
acknowledges the origin when you redeploy the message flow. You can also
modify data collection that has already started to request accounting origin
support from the time that you issue the command. In both cases, data that has
already been collected is written out and collection is restarted.

When data has been collected, you can review information for one or more specific
origins. For example, if you select XML publication messages as your output
format, you can start an application that subscribes to the origin in which you are
interested.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:

3284 WebSphere Message Broker Version 7.0.0.8

“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
“Setting message flow accounting and statistics accounting origin” on page 3290
When you request accounting origin support for collecting message flow
accounting and statistics data on the mqsichangeflowstats command, you must
also configure your message flows to provide the correct identification values that
indicate what the data is associated with.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
Related reference:
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.

Output formats for message flow accounting and statistics data:

When you collect message flow statistics, you can choose the output destination
for the data.

Select one of the following destinations:
v User trace
v XML publication
v SMF

Statistics data is written to the specified output location in the following
circumstances:
v When the archive data interval expires.
v When the snapshot interval expires.
v When the broker shuts down. Any data that has been collected by the broker,

but has not yet been written to the specified output destination, is written
during shutdown. It might therefore represent data for an incomplete interval.

v When any part of the broker configuration is redeployed. Redeployed
configuration data might contain an updated configuration that is not consistent
with the existing record structure (for example, a message flow might include an
additional node, or an execution group might include a new message flow).
Therefore the current data, which might represent an incomplete interval, is
written to the output destination. Data collection continues for the redeployed
configuration until you change data collection parameters or stop data collection.

v When data collection parameters are modified. If you update the parameters that
you have set for data collection, all data that is collected for the message flow
(or message flows) is written to the output destination to retain data integrity.
Statistics collection is restarted according to the new parameters.

v When an error occurs that terminates data collection. You must restart data
collection yourself in this case.

Chapter 12. Performance and monitoring 3285

User trace

You can specify that the data that is collected is written to the user trace log. The
data is written even when trace is switched off. The default output destination for
accounting and statistics data is the user trace log. The data is written to one of the
following locations:

Windows Windows
If you set the work path by using the -w parameter of the
mqsicreatebroker command, the location is workpath\log.

If you have not specified the broker work path, the location is:
v On Windows:%ALLUSERSPROFILE%\Application Data\IBM\MQSI\common\

log, where %ALLUSERSPROFILE% is the environment variable that defines
the system working directory. The default directory depends on the
operating system:
– On Windows XP and Windows Server 2003: C:\Documents and

Settings\All Users\Application Data\IBM\MQSI\common\log

– On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\
MQSI\common\log

The value might be different on your computer.

Linux UNIX Linux and UNIX
/var/mqsi/common/log

z/OS z/OS
/component_filesystem/log

XML publication

You can specify that the data that is collected is published. The publication
message is created in XML format and is available to subscribers registered in the
broker network that subscribe to the correct topic.

The topic on which the data is published has the following structure:
$SYS/Broker/brokerName/StatisticsAccounting/recordType/executionGroupLabel/messageFlowLabel

The variables correspond to the following values:

brokerName
The name of the broker for which statistics are collected.

recordType
Set to SnapShot or Archive, depending on the type of data to which you
are subscribing. Alternatively, use # to register for both snapshot and
archive data if it is being produced. This value is case sensitive and must
be entered as SnapShot.

executionGroupLabel
The name of the execution group for which statistics are collected.

messageFlowLabel
The label on the message flow for which statistics are collected.

Subscribers can include filter expressions to limit the publications that they receive.
For example, they can choose to see only snapshot data, or to see data that is
collected for a single broker. Subscribers can specify wild cards (+ and #) to receive
publications that refer to multiple resources.

3286 WebSphere Message Broker Version 7.0.0.8

The following examples show the topic with which a subscriber registers to receive
different sorts of data:
v Register the following topic for the subscriber to receive data for all message

flows running on BrokerA:
$SYS/Broker/BrokerA/StatisticsAccounting/#

v Register the following topic for the subscriber to receive only archive statistics
that relate to a message flow Flow1 running on execution group Execution on
broker BrokerA:
$SYS/Broker/BrokerA/StatisticsAccounting/Archive/Execution/Flow1

v Register the following topic for the subscriber to receive both snapshot and
archive data for message flow Flow1 running on execution group Execution on
broker BrokerA

$SYS/Broker/BrokerA/StatisticsAccouting/#/Execution/Flow1

For help with registering your subscriber, see Message display, test and
performance utilities SupportPac (IH03).

SMF

On z/OS, you can specify that the data collected is written to SMF. Accounting
and statistics data uses SMF type 117 records. SMF supports the collection of data
from multiple subsystems, and you might therefore be able to synchronize the
information that is recorded from different sources.

To interpret the information that is recorded, use any utility program that
processes SMF records.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Related reference:
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

Chapter 12. Performance and monitoring 3287

http://www.ibm.com/support/docview.wss?uid=swg24000637
http://www.ibm.com/support/docview.wss?uid=swg24000637

Starting to collect message flow accounting and statistics data
You can start collecting message flow accounting and statistics data for an active
broker at any time. You can specify what type of statistics you want to collect, and
where to send the data.

Before you begin

Before you start:
v Ensure that you have created a message flow; for more information, see

“Creating a message flow” on page 1431.
v Ensure that you have deployed a broker archive (BAR) file; for more

information, see “Deploying a broker archive file” on page 3235.
v Read the concept topic, “Message flow accounting and statistics collection

options” on page 3282.

About this task

Select the granularity of the data that you want to be collected by specifying the
appropriate parameters on the mqsichangeflowstats command. You must request
statistics collection on a broker basis. If you want to collect information for more
than one broker, you must issue the corresponding number of commands.

To start collecting message flow accounting and statistics data:

Procedure
1. Identify the broker for which you want to collect statistics .
2. Decide the resource for which you want to collect statistics. You can collect

statistics for a specific execution group, or for all execution groups for the
specified broker.
v If you indicate a specific execution group, you can request that data is

recorded for a specific message flow or all message flows in that group.
v If you specify all execution groups, you must specify all message flows.

3. Decide if you want to collect thread-related statistics.
4. Decide if you want to collect node-related statistics. If you do, you can also

collect information about terminals for the nodes.
5. Decide if you want to associate data collection with a particular accounting

origin. This option is valid for snapshot and archive data, and for message
flows and execution groups. However, when active, you must set its origin
value in each message flow to which it refers. If you do not configure the
participating message flows to set the appropriate origin identifier, the data
collected for that message flow is collected with the origin set to Anonymous.
For more information, see “Setting message flow accounting and statistics
accounting origin” on page 3290.

6. Decide the target destination:
v User trace log (the default setting). The output data can be processed using

mqsireadlog and mqsiformatlog.
v XML format publication message. If you chose this target destination, register

the following topic for the subscriber:
$SYS/Broker/brokerName/StatisticsAccounting/recordType/executionGroupLabel/messageFlowLabel

Where brokerName, executionGroupLabel, and messageFlowLabel represent the
broker, execution group, and message flow on which you want to receive
data. recordType is the type of data collection on which you want to receive
publications (snapshot, archive, or the number sign (#) to receive both

3288 WebSphere Message Broker Version 7.0.0.8

snapshot and archive). The value that you specify for record type is case
sensitive; therefore, if you choose to receive snapshot data, set the record
type to SnapShot.

v z/OS SMF (on z/OS only)
7. Decide the type of data collection that you want:
v Snapshot
v Archive
You can collect snapshot and archive data at the same time, but you have to
configure them separately.

8. Issue the mqsichangeflowstats command with the appropriate parameters to
reflect the decisions that you have made.
For example, to turn on snapshot data for all message flows in the default
execution group for BrokerA, and include node data with the basic message
flow statistics, use the following command:
mqsichangeflowstats BrokerA -s -e default -j -c active -n basic

z/OS Using SDSF on z/OS, enter:
/F BrokerA,cs s=yes,e=default,j=yes,c=active,n=basic

For more examples, see “mqsichangeflowstats command” on page 3744.

Results

When the command completes successfully, data collection for the specified
resources is started:
v If you have requested snapshot data, information is collected for approximately

20 seconds, and the results are written to the specified output.
v If you have requested archive data, information is collected for the interval

defined for the broker (on the mqsicreatebroker or mqsichangebroker command,
or by the external timer facility ENF). The results are written to the specified
output, the interval is reset, and data collection starts again.

What to do next

Next:

You can now complete the following tasks:
v “Setting message flow accounting and statistics accounting origin” on page 3290
v “Stopping message flow accounting and statistics data collection” on page 3293
v “Viewing message flow accounting and statistics data collection parameters” on

page 3294
v “Modifying message flow accounting and statistics data collection parameters”

on page 3296
v “Resetting message flow accounting and statistics archive data” on page 3297
Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:

Chapter 12. Performance and monitoring 3289

“Setting message flow accounting and statistics accounting origin”
When you request accounting origin support for collecting message flow
accounting and statistics data on the mqsichangeflowstats command, you must
also configure your message flows to provide the correct identification values that
indicate what the data is associated with.
“Stopping message flow accounting and statistics data collection” on page 3293
You can stop collecting data for message flow accounting and statistics at any time.
You do not have to stop the message flow, execution group, or broker to make this
change, nor do you have to redeploy the message flow.
“Viewing message flow accounting and statistics data collection parameters” on
page 3294
You can review and check the parameters that are currently in effect for message
flow accounting and statistics data collection by using the mqsireportflowstats
command.
“Modifying message flow accounting and statistics data collection parameters” on
page 3296
You can modify the parameters that you have set for message flow accounting and
statistics data collection. For example, you can start collecting data for a new
message flow that you have deployed to an execution group for which you are
already collecting data. You can modify parameters while data collection is active;
you do not have to stop data collection and restart it.
“Resetting message flow accounting and statistics archive data” on page 3297
You can reset message flow accounting and statistics archive data to purge any
accounting and statistics data not yet reported for that collecting interval. This
removes unwanted data. You can request this at any time; you do not have to stop
data collection and restart it to perform reset. You cannot reset snapshot data.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.

Setting message flow accounting and statistics accounting origin:

When you request accounting origin support for collecting message flow
accounting and statistics data on the mqsichangeflowstats command, you must
also configure your message flows to provide the correct identification values that
indicate what the data is associated with.

Before you begin

Before you start:
v Ensure that you have created a message flow; for more information, see

“Creating a message flow” on page 1431.

3290 WebSphere Message Broker Version 7.0.0.8

v Read the concept topic, “Message flow accounting and statistics accounting
origin” on page 3284

About this task

Accounting and statistics data is associated with an accounting origin. For more
information, see “Message flow accounting and statistics data” on page 3281 and
“Message flow accounting and statistics accounting origin” on page 3284.

You can set a different value for every message flow for which data collection is
active, or the same value for a group of message flows (for example, those in a
single execution group, or associated with a particular client, department, or
application suite).

The accounting origin setting is not used until you deploy the message flow or
flows to the brokers on which they are to run. You can activate data collection, or
modify it to request accounting origin support, before or after you deploy the
message flow. You do not have to stop collecting data when you deploy a message
flow that changes accounting origin.

To configure a message flow to specify a particular accounting origin, complete the
following steps.

Procedure

1. Open the message flow with which you want to work.
2. Click Selection above the palette of nodes.
3. Right-click a Compute, Database, or Filter node in the editor view, then click

Open ESQL. The associated ESQL file is opened in the editor view, and your
cursor is positioned at the start of the correct module. You can include the
required ESQL in any of these nodes, so decide which node in each message
flow is the most appropriate for this action.
To take advantage of the accounting origin support, include one of these nodes
in each message flow for which you want a specific origin set. If you have not
configured one of these three nodes in the message flow, you must add one at
a suitable point (for example, immediately following the input node) and
connect it to other nodes in the flow.

4. Update the ESQL in the node module to set an accounting origin. The broker
uses the origin identifier that is set in the Environment tree. You must set a
value in the field with correlation name
Environment.Broker.Accounting.Origin. This field is not created automatically
in the Environment tree when the message is first received in the broker. The
field is created only when you set it in an ESQL module that is associated with
a node in the message flow.
If you do not set a value in the message flow, the default value Anonymous is
used for all output. If you set a value in more than one place in the message
flow, the value that you set immediately before the message flow terminates is
used in the output data.
The code that you must add has the following form:
SET Environment.Broker.Accounting.Origin = "value";

You can set the identifier to a fixed value (as shown previously), or you can
determine its value based on a dynamic value that is known only at run time.
The value must be character data, and can be a maximum of 32 bytes. For
example, you might set its value to the contents of a particular field in the

Chapter 12. Performance and monitoring 3291

message that is being processed (if you are coding ESQL for a Compute node,
you must use correlation name InputBody in place of Body in the following
example):
IF Body.DepartmentName <> NULL THEN

SET Environment.Broker.Accounting.Origin = Body.DepartmentName;
END IF;

5. Save the ESQL module, and check that you have not introduced any errors.
6. Save the message flow, and check again for errors.

Results

You are now ready to deploy the updated message flow; for more information, see
“Deploying resources” on page 3234. Accounting and statistics data records that
are collected after the message flow has been deployed includes the origin
identifier that you have set.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Modifying message flow accounting and statistics data collection parameters” on
page 3296
You can modify the parameters that you have set for message flow accounting and
statistics data collection. For example, you can start collecting data for a new
message flow that you have deployed to an execution group for which you are
already collecting data. You can modify parameters while data collection is active;
you do not have to stop data collection and restart it.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
Related reference:
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.

3292 WebSphere Message Broker Version 7.0.0.8

Stopping message flow accounting and statistics data collection
You can stop collecting data for message flow accounting and statistics at any time.
You do not have to stop the message flow, execution group, or broker to make this
change, nor do you have to redeploy the message flow.

Before you begin

Before you start:
v Start to collect message flow accounting and statistics data
v Read the concept topic about message flow accounting and statistics data

About this task

You can stop collecting data for message flow accounting and statistics at any time.
You do not have to stop the message flow, execution group, or broker to make this
change, nor do you have to redeploy the message flow.

You can modify the parameters that are currently in force for collecting message
flow accounting and statistics data without stopping data collection. See
“Modifying message flow accounting and statistics data collection parameters” on
page 3296 for further details.

To stop collecting data:

Procedure
1. Check the resources for which you want to stop collecting data.

You do not have to stop all active data collection. You can stop a subset of data
collection. For example, if you started collecting statistics for all message flows
in a particular execution group, you can stop doing so for a specific message
flow in that execution group. Data collection for all other message flows in that
execution group continues.

2. Issue the mqsichangeflowstats command with the appropriate parameters to
stop collecting data for some or all resources.
For example, to switch off snapshot data for all message flows in all execution
groups for BrokerA, enter:
mqsichangeflowstats BrokerA -s -g -j -c inactive

z/OS Using SDSF on z/OS, enter:
/F BrokerA,cs s=yes g=yes j=yes c=inactive

Refer to the “mqsichangeflowstats command” on page 3744 for further
examples.

Results

When the command completes successfully, data collection for the specified
resources is stopped. Any outstanding data that has been collected is written to the
output destination when you issue this command, to ensure the integrity of data
collection.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 12. Performance and monitoring 3293

“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Starting to collect message flow accounting and statistics data” on page 3288
You can start collecting message flow accounting and statistics data for an active
broker at any time. You can specify what type of statistics you want to collect, and
where to send the data.
“Modifying message flow accounting and statistics data collection parameters” on
page 3296
You can modify the parameters that you have set for message flow accounting and
statistics data collection. For example, you can start collecting data for a new
message flow that you have deployed to an execution group for which you are
already collecting data. You can modify parameters while data collection is active;
you do not have to stop data collection and restart it.
Related reference:
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.

Viewing message flow accounting and statistics data collection
parameters
You can review and check the parameters that are currently in effect for message
flow accounting and statistics data collection by using the mqsireportflowstats
command.

Before you begin

Before you start:
v Start to collect message flow accounting and statistics data
v Read the concept topic about message flow accounting and statistics data

About this task

To view message flow accounting and statistics data collection parameters:

Procedure

Issue the mqsireportflowstats command with the appropriate parameters to view
the parameters that are currently being used by the broker to control archive data
collection or snapshot data collection.
You can view the parameters in force for a broker, an execution group, or an

3294 WebSphere Message Broker Version 7.0.0.8

individual message flow.
For example, to view parameters for snapshot data for all message flows in all
execution groups for BrokerA, enter:
mqsireportflowstats BrokerA -s -g -j

z/OS Using SDSF on z/OS, enter:
/F BrokerA,rs s=yes,g=yes,j=yes

Refer to the “mqsireportflowstats command” on page 3929 for further examples.

Results

The command displays the current status, for example:
BIP8187I: Statistics Snapshot settings for flow MyFlow1 in execution
group default - On?: inactive,
ThreadDataLevel: basic, NodeDataLevel: basic,
OutputFormat: usertrace, AccountingOrigin: basic

What to do next

Next:

You can now modify the data collection parameters.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Starting to collect message flow accounting and statistics data” on page 3288
You can start collecting message flow accounting and statistics data for an active
broker at any time. You can specify what type of statistics you want to collect, and
where to send the data.
“Modifying message flow accounting and statistics data collection parameters” on
page 3296
You can modify the parameters that you have set for message flow accounting and
statistics data collection. For example, you can start collecting data for a new
message flow that you have deployed to an execution group for which you are
already collecting data. You can modify parameters while data collection is active;
you do not have to stop data collection and restart it.
Related reference:
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics

Chapter 12. Performance and monitoring 3295

about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

Modifying message flow accounting and statistics data collection
parameters
You can modify the parameters that you have set for message flow accounting and
statistics data collection. For example, you can start collecting data for a new
message flow that you have deployed to an execution group for which you are
already collecting data. You can modify parameters while data collection is active;
you do not have to stop data collection and restart it.

Before you begin

Before you start:
v Start to collect message flow accounting and statistics data
v Read the concept topic about message flow accounting and statistics data

About this task

To modify message flow accounting and statistics parameters:

Procedure
1. Decide which data collection parameters you want to change. You can modify

the parameters that are in force for a broker, an execution group, or an
individual message flow.

2. Issue the mqsichangeflowstats command with the appropriate parameters to
modify the parameters that are currently being used by the broker to control
archive data collection or snapshot data collection.
For example, to modify parameters to extend snapshot data collection to a new
message flow MFlow2 in execution group EG2 for BrokerA, enter:
mqsichangeflowstats BrokerA -s -e EG2 -f MFlow2 -c active

z/OS Using SDSF on z/OS, enter:
/F BrokerA,cs s=yes,e=EG2,f=MFlow2,c=active

If you want to specify an accounting origin for archive data for a particular
message flow in an execution group, enter:
mqsichangeflowstats BrokerA -a -e EG4 -f MFlowX -b basic

z/OS Using SDSF on z/OS, enter:
/F BrokerA,cs a=yes,e=EG4,f=MFlowX,b=basic

Refer to the “mqsichangeflowstats command” on page 3744 for further
examples.

Results

When the command completes successfully, the new parameters that you have
specified for data collection are in force. These parameters remain in force until
you stop data collection or make further modifications.
Related concepts:

3296 WebSphere Message Broker Version 7.0.0.8

“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Starting to collect message flow accounting and statistics data” on page 3288
You can start collecting message flow accounting and statistics data for an active
broker at any time. You can specify what type of statistics you want to collect, and
where to send the data.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

Resetting message flow accounting and statistics archive data
You can reset message flow accounting and statistics archive data to purge any
accounting and statistics data not yet reported for that collecting interval. This
removes unwanted data. You can request this at any time; you do not have to stop
data collection and restart it to perform reset. You cannot reset snapshot data.

Before you begin

Before you start:
v Start to collect message flow accounting and statistics data
v Read the concept topic about message flow accounting and statistics data

About this task

To reset message flow accounting and statistics archive data:

Procedure
1. Identify the broker, and optionally the execution group, for which you want to

reset archive data. You cannot reset archive data on a message flow basis.
2. Issue the mqsichangeflowstats command with the appropriate parameters to

reset archive data.
For example, to reset archive data for BrokerA, enter:
mqsichangeflowstats BrokerA -a -g -j -r

z/OS Using SDSF on z/OS, enter:

Chapter 12. Performance and monitoring 3297

/F BrokerA,cs a=yes,g=yes,j=yes,r=yes

Results

When this command completes, all accounting and statistics data accumulated so
far for this interval are purged and will not be included in the reports. Data
collection is restarted from this point. All archive data for all flows (indicated by -j
or j=yes) in all execution groups (indicated by -g or g=yes) is reset.

This command has a minimal effect on snapshot data because the accumulation
interval is much shorter than for archive data. It does not effect the settings for
archive or snapshot data collection that are currently in force. When the command
has completed, data collection resumes according to the current settings.

You can change any other options that are currently in effect when you reset
archive data, for example accounting origin settings or output type.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
“Starting to collect message flow accounting and statistics data” on page 3288
You can start collecting message flow accounting and statistics data for an active
broker at any time. You can specify what type of statistics you want to collect, and
where to send the data.
“Modifying message flow accounting and statistics data collection parameters” on
page 3296
You can modify the parameters that you have set for message flow accounting and
statistics data collection. For example, you can start collecting data for a new
message flow that you have deployed to an execution group for which you are
already collecting data. You can modify parameters while data collection is active;
you do not have to stop data collection and restart it.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flow accounting and statistics data” on page 6723
You can collect message flow accounting and statistics data in various output
formats.
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

3298 WebSphere Message Broker Version 7.0.0.8

Starting accounting and statistics data collection in the
WebSphere Message Broker Explorer
Use the WebSphere Message Broker Explorer to start collecting snapshot
accounting and statistics data for your brokers, execution groups, and message
flows. You can then view the accounting and statistics data in the Broker Statistics
and Broker Statistics Graph views.

Before you begin

Before you start:
v Ensure that you have created a message flow; for more information, see

“Creating a message flow” on page 1431.
v Ensure that you have deployed a broker archive (BAR) file; for more

information, see “Deploying a broker archive file” on page 3235.
v Read the concept topic, “Message flow accounting and statistics data” on page

3281.

About this task

Use the snapshot accounting and statistics data displayed in the Broker Statistics
and Broker Statistics Graph views to monitor the performance and resource usage
of your broker or execution group at the message flow, node, or terminal level.

You can start collecting accounting and statistics data for an active broker at any
time. You can start collecting accounting and statistics data for multiple brokers at
the same time.

To start collecting snapshot message flow accounting and statistics data by using
the WebSphere Message Broker Explorer:

Procedure
1. In the WebSphere MQ Explorer - Navigator view, expand the Brokers folder.
2. Right-click the execution group or message flow for which you want to collect

statistics.
v If you selected an execution group, click Statistics All Flows > Start

Statistics.
v If you selected a message flow click Statistics > Start Statistics.

A message is sent to the broker to start collecting accounting and statistics data
for the selected resource.

3. Click Window > Show View > Broker Statistics to open the Broker Statistics
and Broker Statistics Graph view. These two views are displayed together. If
you close one of the views, the other view is also closed.

Results

Accounting and statistics data for the selected broker, execution group, or message
flow is displayed in the Broker Statistics and Broker Statistics Graph views. It can
take up to 30 seconds for accounting and statistics data to be received from the
broker and displayed in the Broker Statistics Graph view. The message Waiting
for Data is displayed in the title bar is displayed until accounting and statistics
data is received from the selected broker, execution group, or message flow. When
data is received from the broker, it is displayed in numeric form in the Broker
Statistics view, and a visual representation of this data is shown in the Broker
Statistics Graph view. Select individual or multiple items in the Broker Statistics

Chapter 12. Performance and monitoring 3299

view to change the information displayed in the Broker Statistics Graph view.

What to do next

Next:

To examine the current data in the two views, click Pause in the Broker Statistics
Graph view to prevent the current data from being overwritten with new data.
Click Play to resume displaying more accounting and statistics data. You can
change the visual representation of the data by clicking Linear, Logarithmic, and
Stacked.

You can also select the metrics that are displayed in the graph view; for more
information, see “Filtering message flow accounting and statistics data” on page
3302.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
“Viewing message flow accounting and statistics data”
You can use the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer to view snapshot accounting and statistics
data as it is produced by the broker.
“Stopping accounting and statistics data collection in the WebSphere Message
Broker Explorer” on page 3304
Use the WebSphere Message Broker Explorer to stop collecting accounting and
statistics data for your brokers, execution groups, and message flows.
“Filtering message flow accounting and statistics data” on page 3302
You can select the metrics for the snapshot accounting and statistics data that are
displayed in the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer.
Related reference:
“Metrics for accounting and statistics data in the WebSphere Message Broker
Explorer” on page 6744
You can filter the metrics displayed for accounting and statistics data in the Broker
Statistics and Broker Statistics Graph views in the WebSphere Message Broker
Explorer.

Viewing message flow accounting and statistics data
You can use the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer to view snapshot accounting and statistics
data as it is produced by the broker.

Before you begin

Before you start:
v “Starting accounting and statistics data collection in the WebSphere Message

Broker Explorer” on page 3299
v Read the concept topic about message flow accounting and statistics data

3300 WebSphere Message Broker Version 7.0.0.8

About this task

Use the accounting and statistics data displayed in the Broker Statistics and Broker
Statistics Graph views to monitor the performance and resource usage of your
broker or execution group at the message flow, node or terminal level. The
WebSphere Message Broker Explorer displays snapshot accounting and statistics
data.

When you open the Broker Statistics and Broker Statistics Graph views, the
WebSphere Message Broker Explorer connects to all the brokers that you have in
your workspace and attempts to collect statistics data from the brokers. The
message Waiting for Data is displayed in the title bar is displayed until
accounting and statistics data are received from the selected broker, execution
group or message flow. When data is received from the broker it is displayed in
numeric form in the Broker Statistics view, and a visual representation of this data
is shown in the Broker Statistics Graph view.

To view message flow accounting and statistics data using the WebSphere Message
Broker Explorer:

Procedure
1. Click Window > Show View > Broker Statistics to open the Broker Statistics

and Broker Statistics Graph view. These two views are displayed together. If
you close one of the views, the other view is also be closed.

2. In the WebSphere MQ Explorer - Navigator view select the broker, execution
group or message flow for which you want to view accounting and statistics
data.

Results

Accounting and statistics data for the selected broker, execution group, or message
flow is displayed in the Broker Statistics and Broker Statistics Graph views. It can
take up to thirty seconds for accounting and statistics data to be received from the
broker and displayed in the Broker Statistics Graph view. Select individual or
multiple items in the Broker Statistics view to change the information displayed in
the Broker Statistics Graph view.

What to do next

If you want to examine the current data in the two views, click the Pause button in
the Broker Statistics Graph view to prevent the current data from being
overwritten with new data. Click the Play button to resume displaying new
accounting and statistics data. You can change the visual representation of the data
by clicking on the Linear, Logarithmic, and Stacked buttons.

You can also select the metrics that are displayed in the graph view, see “Filtering
message flow accounting and statistics data” on page 3302.
Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:

Chapter 12. Performance and monitoring 3301

“Starting accounting and statistics data collection in the WebSphere Message
Broker Explorer” on page 3299
Use the WebSphere Message Broker Explorer to start collecting snapshot
accounting and statistics data for your brokers, execution groups, and message
flows. You can then view the accounting and statistics data in the Broker Statistics
and Broker Statistics Graph views.
“Filtering message flow accounting and statistics data”
You can select the metrics for the snapshot accounting and statistics data that are
displayed in the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer.
“Starting to collect message flow accounting and statistics data” on page 3288
You can start collecting message flow accounting and statistics data for an active
broker at any time. You can specify what type of statistics you want to collect, and
where to send the data.
“Modifying message flow accounting and statistics data collection parameters” on
page 3296
You can modify the parameters that you have set for message flow accounting and
statistics data collection. For example, you can start collecting data for a new
message flow that you have deployed to an execution group for which you are
already collecting data. You can modify parameters while data collection is active;
you do not have to stop data collection and restart it.
Related reference:
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.

Filtering message flow accounting and statistics data
You can select the metrics for the snapshot accounting and statistics data that are
displayed in the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer.

Before you begin

Before you start:
v Read the concept topic about message flow accounting and statistics data
v “Starting accounting and statistics data collection in the WebSphere Message

Broker Explorer” on page 3299
v “Viewing message flow accounting and statistics data” on page 3300

About this task

When you open the Broker Statistics and Broker Statistics Graph views, the
WebSphere Message Broker Explorer connects to all the brokers that you have in
your workspace and attempts to collect snapshot statistics data from the brokers.
The message Waiting for Data is displayed in the title bar until accounting and
statistics data are received from the selected broker, execution group, or message
flow.

3302 WebSphere Message Broker Version 7.0.0.8

When data is received from the broker, it is displayed in numeric form in the
Broker Statistics view, and a visual representation of this data is shown in the
Broker Statistics Graph view. When accounting and data statistics data has started
to be collected and displayed for your broker, execution group, or message flow,
you can select the metrics that are displayed in the Broker Statistics and Broker
Statistics Graph views.

The metrics that you can select depend on whether you are viewing the accounting
and statistics data from a broker, an execution group, or a message flow. To view a
list of the metrics that you can filter on, see “Metrics for accounting and statistics
data in the WebSphere Message Broker Explorer” on page 6744.

To filter the message flow accounting and statistics data in the Broker Statistics and
Broker Statistics Graph views:

Procedure
1. Click Window > Show View > Broker Statistics to open the Broker Statistics

and Broker Statistics Graph view.
2. In the WebSphere MQ Explorer - Navigator view, select the broker, execution

group, or message flow for which you want to view accounting and statistics
data.

3. Click the Filter button in the Broker Statistics Graph view. The Select metrics to
graph window is displayed.

4. Select the metrics that you want to display from the list in the Broker Statistics
and Broker Statistics Graph view. Clear all the metrics that you do not want to
display in the Broker Statistics and Broker Statistics Graph view.

5. Click OK.

Results

The selected metrics are displayed in the Broker Statistics and Broker Statistics
Graph views. Data for additional metrics that you have selected are displayed the
next time the statistics data is refreshed.
Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
“Starting accounting and statistics data collection in the WebSphere Message
Broker Explorer” on page 3299
Use the WebSphere Message Broker Explorer to start collecting snapshot
accounting and statistics data for your brokers, execution groups, and message
flows. You can then view the accounting and statistics data in the Broker Statistics
and Broker Statistics Graph views.
“Viewing message flow accounting and statistics data” on page 3300
You can use the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer to view snapshot accounting and statistics
data as it is produced by the broker.
“Starting to collect message flow accounting and statistics data” on page 3288
You can start collecting message flow accounting and statistics data for an active
broker at any time. You can specify what type of statistics you want to collect, and
where to send the data.

Chapter 12. Performance and monitoring 3303

“Modifying message flow accounting and statistics data collection parameters” on
page 3296
You can modify the parameters that you have set for message flow accounting and
statistics data collection. For example, you can start collecting data for a new
message flow that you have deployed to an execution group for which you are
already collecting data. You can modify parameters while data collection is active;
you do not have to stop data collection and restart it.
Related reference:
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.

Stopping accounting and statistics data collection in the
WebSphere Message Broker Explorer
Use the WebSphere Message Broker Explorer to stop collecting accounting and
statistics data for your brokers, execution groups, and message flows.

About this task

You can stop collecting data for message flow accounting and statistics at any time.
You do not have to stop the message flow, execution group, or broker to make this
change, nor do you have to redeploy the message flow. You do not have to stop all
active data collection. You can stop a subset of data collection. For example, if you
started collecting statistics for all message flows in a particular execution group,
you can stop doing so for a specific message flow in that execution group. Data
collection for all other message flows in that execution group continues.

To stop collecting message flow accounting and statistics data:

Procedure
1. In the WebSphere MQ Explorer - Navigator view, expand the Brokers folder.
2. Right-click the execution group or message flow for which you want to stop

collecting statistics.
v If you selected an execution group, click Statistics All Flows > Stop

Statistics.
v If you selected a message flow click Statistics > Stop Statistics.

Results

A message is sent to the broker to stop collecting accounting and statistics data for
the selected resource.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.

3304 WebSphere Message Broker Version 7.0.0.8

“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
“Viewing message flow accounting and statistics data” on page 3300
You can use the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer to view snapshot accounting and statistics
data as it is produced by the broker.
“Starting accounting and statistics data collection in the WebSphere Message
Broker Explorer” on page 3299
Use the WebSphere Message Broker Explorer to start collecting snapshot
accounting and statistics data for your brokers, execution groups, and message
flows. You can then view the accounting and statistics data in the Broker Statistics
and Broker Statistics Graph views.
“Filtering message flow accounting and statistics data” on page 3302
You can select the metrics for the snapshot accounting and statistics data that are
displayed in the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer.
Related reference:
“Metrics for accounting and statistics data in the WebSphere Message Broker
Explorer” on page 6744
You can filter the metrics displayed for accounting and statistics data in the Broker
Statistics and Broker Statistics Graph views in the WebSphere Message Broker
Explorer.

Monitoring resource performance
You can collect statistics to assess the performance of certain resources used by
execution groups.

Before you begin

Before you start:

Read the concept topic about resource statistics.

About this task
v “Starting resource statistics collection” on page 3307
v “Stopping resource statistics collection” on page 3308
v “Viewing status of resource statistics collection” on page 3309
v “Starting resource statistics collection in the WebSphere Message Broker

Explorer” on page 3310
v “Stopping resource statistics collection in the WebSphere Message Broker

Explorer” on page 3312
v “Viewing resource statistics data in the WebSphere Message Broker Explorer” on

page 3313
v “Viewing the status of resource statistics collection in the WebSphere Message

Broker Explorer” on page 3317

You can also work with resource statistics from CMP applications. See “Working
with resource statistics in a CMP application” on page 998 for further details.
Related concepts:

Chapter 12. Performance and monitoring 3305

“Resource statistics”
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.

As a system administrator, you can use the resource statistics to ensure that your
systems are using the available resources in the most efficient manner. By
monitoring systems and analyzing statistical trends, you can keep system resource
usage within boundaries that you consider acceptable, and help to pre-empt
situations where system resources are overstretched and might become
unavailable. Analysis of the data returned potentially requires specialist skills and
knowledge of each resource type.

If you detect that system resources are under pressure, you can examine the
statistics collected by the broker to assess whether the cause of the concern is the
use of those resources by processes in WebSphere Message Broker.

You must activate statistics collection; by default, collection is not active. If you
activate statistics, you might experience a minor degradation in operating
performance of the broker or brokers for which you are collecting data. You can
collect data on one or more execution groups, as well as all execution groups on a
broker, so that you can limit the statistics gathering activity if appropriate.

Resource statistics complement the accounting and statistics data that you can
collect on message flows, which are also available in the WebSphere Message
Broker Explorer; for details, see “Monitoring message flow performance” on page
3279.

To start, stop, or check the status of resource statistics collection, use one or more
of the following options:
v The WebSphere Message Broker Explorer
v The mqsichangeresourcestats and mqsireportresourcestats commands
v A CMP application

To view the output that is generated by statistics collection, use one or more of the
following options:
v The WebSphere Message Broker Explorer; numeric data and graphs are

displayed for each execution group for which you have activated statistics
collection.

3306 WebSphere Message Broker Version 7.0.0.8

v An application that subscribes to a publication, in the form of an XML message,
that is published by the broker every 20 seconds. The message contains the data
collected for each execution group for which you have activated statistics
collection.
The topic for each message has the following structure:
$SYS/Broker/broker_name/ResourceStatistics/execution_group_name

You can set up subscriptions for a specific execution group on a specific broker.
For example:
$SYS/Broker/MB7BROKER/ResourceStatistics/default

You can also use wildcards in the subscriptions to broaden the scope of what is
returned. For example, to subscribe to reports for all execution groups on all
brokers, use the following values:
$SYS/Broker/+/ResourceStatistics/#

For details of all the statistics that are reported for each resource manager, and the
publication content, see “Resource statistics data” on page 6745.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
“Working with resource statistics in a CMP application” on page 998
Start, stop, and review status of resource statistics collection in your CMP
applications.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“Special characters in topics” on page 6395
A topic can contain any character in the Unicode character set, but some characters
have a special meaning.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Starting resource statistics collection
Use the mqsichangeresourcestats command to start collecting resource statistics.

Before you begin

Before you start:
v Ensure that you have created a message flow; for more information, see

“Creating a message flow” on page 1431.

Chapter 12. Performance and monitoring 3307

v Ensure that you have deployed a broker archive (BAR) file; for more
information, see “Deploying a broker archive file” on page 3235.

v Read the concept topic, “Resource statistics” on page 3306.

About this task

Use resource statistics data to monitor the performance and resource usage of your
execution groups. You can start collecting data for active execution groups at any
time.

If you prefer, you can start collecting resource statistics by using the WebSphere
Message Broker Explorer; see “Starting resource statistics collection in the
WebSphere Message Broker Explorer” on page 3310.

To start resource statistics collection:

Procedure
1. If your broker is running on Linux, UNIX, or Windows systems, set up the

correct command environment. For details of how to complete this task, see
“Setting up a command environment” on page 213.

2. Decide whether you want to collect statistics for a specific execution group, or
for all execution groups on the broker.

3. Run the mqsichangeresourcestats command with the appropriate parameters.
For example, to start collecting resource statistics for the default execution
group for BrokerA, enter the following command:
mqsichangeresourcestats BrokerA -c active -e default

For further examples, see “mqsichangeresourcestats command” on page 3819.
Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Stopping resource statistics collection”
Use the mqsichangeresourcestats command to stop collecting resource statistics.
“Viewing status of resource statistics collection” on page 3309
Use the mqsireportresourcestats command to view the status of resource statistics
collection.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.

Stopping resource statistics collection
Use the mqsichangeresourcestats command to stop collecting resource statistics.

Before you begin

Before you start:
v Read the concept topic about resource statistics.
v Start execution group resource statistics collection.

3308 WebSphere Message Broker Version 7.0.0.8

About this task

You can stop collecting data for an active execution group at any time.

If you prefer, you can stop collecting resource statistics by using the WebSphere
Message Broker Explorer; see “Stopping resource statistics collection in the
WebSphere Message Broker Explorer” on page 3312.

To stop resource statistics collection:

Procedure
1. If your broker is running on Linux, UNIX, or Windows systems, set up the

correct command environment. For details of how to complete this task, see
“Setting up a command environment” on page 213.

2. Decide whether you want to stop collection for a specific execution group, or
for all execution groups on the broker. The way in which you started collection
is not important; you can stop collection for one execution group, even if you
started it for all execution groups. You can also stop collection for all execution
groups, even if you started only one, or each one separately.

3. Run the mqsichangeresourcestats command with the appropriate parameters.
For example, to stop collecting resource statistics for the default execution
group for BrokerA, enter:
mqsichangeresourcestats BrokerA -c inactive -e default

See the “mqsichangeresourcestats command” on page 3819 for further
examples.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Starting resource statistics collection” on page 3307
Use the mqsichangeresourcestats command to start collecting resource statistics.
“Viewing status of resource statistics collection”
Use the mqsireportresourcestats command to view the status of resource statistics
collection.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.

Viewing status of resource statistics collection
Use the mqsireportresourcestats command to view the status of resource statistics
collection.

Before you begin

Before you start:
v Read the concept topic about resource statistics.

Chapter 12. Performance and monitoring 3309

About this task

The command indicates whether resource statistics collection is active or inactive
for each execution group that you have specified on the command.

If you prefer, you can view resource statistics collection status by using the
WebSphere Message Broker Explorer; see “Viewing the status of resource statistics
collection in the WebSphere Message Broker Explorer” on page 3317.

To view resource statistics collection status:

Procedure
1. If your broker is running on Linux, UNIX, or Windows systems, set up the

correct command environment. For details of how to complete this task, see
“Setting up a command environment” on page 213.

2. Decide whether you want to view status for a specific execution group, or for
all execution groups on the broker.

3. Run the mqsireportresourcestats command with the appropriate parameters.
For example, to view status for the default execution group on BrokerA, enter:
mqsireportresourcestats BrokerA -e default

See the “mqsireportresourcestats command” on page 3944 for further
examples.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Starting resource statistics collection” on page 3307
Use the mqsichangeresourcestats command to start collecting resource statistics.
“Stopping resource statistics collection” on page 3308
Use the mqsichangeresourcestats command to stop collecting resource statistics.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Starting resource statistics collection in the WebSphere Message
Broker Explorer
Use the WebSphere Message Broker Explorer to start collecting resource statistics
data for your execution groups. You can then view the data in the Broker
Resources and Broker Resources Graph views.

Before you begin

Before you start:

3310 WebSphere Message Broker Version 7.0.0.8

v Ensure that you have created a message flow; for more information, see
“Creating a message flow” on page 1431.

v Ensure that you have deployed a broker archive (BAR) file; for more
information, see “Deploying a broker archive file” on page 3235.

v Read the concept topic, “Resource statistics” on page 3306.

About this task

Use the resource statistics data to monitor the performance and resource usage in
your execution groups. You can start collecting data for active execution groups at
any time.

If you prefer, you can start resource statistics collection by using the
mqsichangeresourcestats command; for more information, see “Starting resource
statistics collection” on page 3307.

To start resource statistics collection in the WebSphere Message Broker Explorer,
complete the following steps.

Procedure
1. In the WebSphere MQ Explorer - Navigator view, expand the Brokers folder,

then expand the folder of the broker with which you are working.
2. Right-click the execution group for which you want to collect statistics. If you

want statistics for several execution groups on this broker, select more than one
by using standard operating system interfaces. For example, on Windows
systems, hold down the Ctrl key and select each execution group before you
right-click to open the menu.

3. Click Statistics > Start Resource Statistics. A message is sent to the broker to
start collecting data for the selected execution groups. The property Resource
Statistics Active is updated in the properties view of each affected execution
group to indicate that data collection is now active.
A warning message is displayed in the execution group properties window to
warn you that performance might be affected by your action.

4. To view statistics, click Window > Show View > Resource Statistics to open
the Broker Resources and Broker Resources Graph views. If you are displaying
statistics for this execution group for the first time, the views might be empty
until the first data is received. Update messages are sent every 20 seconds, and
the views refresh automatically.
The Broker Resources and Broker Resources Graph views are displayed
together. If you close one of the views, the other view is also closed.

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Stopping resource statistics collection in the WebSphere Message Broker Explorer”
on page 3312
Use the WebSphere Message Broker Explorer to stop collecting resource statistics
data for your execution groups.

Chapter 12. Performance and monitoring 3311

“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.

Stopping resource statistics collection in the WebSphere
Message Broker Explorer
Use the WebSphere Message Broker Explorer to stop collecting resource statistics
data for your execution groups.

Before you begin

Before you start:
v Read the concept topic about resource statistics.
v Start resource statistics collection

About this task

You can stop collecting data for active execution groups at any time.

If you prefer, you can stop collecting resource statistics by using the
mqsichangeresourcestats command; see “Stopping resource statistics collection”
on page 3308.

To stop collecting resource statistics in the WebSphere Message Broker Explorer:

Procedure
1. In the WebSphere MQ Explorer - Navigator view, expand the Brokers folder.
2. Right-click the broker or execution group for which you want to stop statistics

collection. If you want to stop statistics collection for several execution groups,
you can select more than one by using standard operating system interfaces; for
example, on Windows systems, hold down the Ctrl key and select each
execution group before you right-click to open the menu.

3. Click Statistics > Stop Resource Statistics. A message is sent to the broker to
stop collecting resource data for the selected execution groups. The status of
data collection is updated in the properties view for each affected execution
group.

Results

If you click Window > Show View > Resource Statistics to open the Broker
Resources and Broker Resources Graph views when statistics collection is not
active, the data that is displayed represents the last update message received by
the WebSphere Message Broker Explorer. If you have never started statistics
collection for this execution group, the views are displayed but contain no data.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.

3312 WebSphere Message Broker Version 7.0.0.8

“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Starting resource statistics collection in the WebSphere Message Broker Explorer”
on page 3310
Use the WebSphere Message Broker Explorer to start collecting resource statistics
data for your execution groups. You can then view the data in the Broker
Resources and Broker Resources Graph views.
“Viewing resource statistics data in the WebSphere Message Broker Explorer”
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.

Viewing resource statistics data in the WebSphere Message
Broker Explorer
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

Before you begin

Before you start:
v Read the concept topic, “Resource statistics” on page 3306.
v Start resource statistics collection: “Starting resource statistics collection in the

WebSphere Message Broker Explorer” on page 3310

About this task

You can also view resource statistics collection by subscribing to the topic on which
statistics are published. For further details, see “Subscribing to statistics reports” on
page 3317.

To view resource statistics in the WebSphere Message Broker Explorer, complete
the following steps.

Procedure
1. In the WebSphere MQ Explorer - Navigator view, expand the Brokers folder.
2. To open the Resource Statistics and Resource Statistics Graph views, click

Window > Show View > Resource Statistics. These two views are displayed
together. If you close one of the views, the other view is also closed.

3. Use the information in these views to review the use of resources for which
statistics are available.
The following examples demonstrate the types of question that can be
answered by collecting resource statistics. This list is not exhaustive, and does
include all resource types. For a full list of resource types, and the type of
information that is collected for each one, see “Resource statistics data” on page
6745

JVM statistics

How much memory is the JVM using?

Chapter 12. Performance and monitoring 3313

Many tools that are specific to an operating system give you
the total memory that is used by the execution group, but they
do not show you how that memory is divided between Java
processing and other processing in the execution group. By
looking at the field CommittedMemoryInMB, you can see how
much memory is currently allocated to the JVM. Then look at
the field MaxMemoryInMB to see the maximum amount of
memory that can be allocated.

How often is garbage collection done? Is it affecting the performance
of the execution group?

To see how often the JVM is doing garbage collection, check the
CumulativeNumberOfGCCollections field to see if the rate of
collections is increasing. Garbage collection is a normal process,
and is therefore expected to some degree. However, excessive
garbage collection can affect performance.

To see if current garbage collection is excessive, monitor the
CumulativeGCTimeInSeconds value. If this value is increasing by
more than 2 seconds in each 20-second statistics interval, try
increasing the JVM maximum heap size for your execution
group by using the mqsichangeproperties command. You might
also want to inspect all the Java user-defined nodes and
JavaCompute nodes that are included in your deployed
message flows, to ensure that they do not create and delete
many objects that could be reused; frequent deletions can
contribute to excessive garbage collection.

Do I need to change the minimum or maximum heap sizes?

v If the CumulativeGCTimeInSeconds value is increasing by
more than 2 seconds in each 20 second statistics interval,
increase the maximum heap size to reduce this increase.

v If the UsedMemoryInMB value is never close to the
InitialMemoryInMB value, you might have allocated more
memory for the heap than is required. Therefore, reduce the
JVM minimum heap size value for the execution group to a
value that is closer to the UsedMemoryInMB value.

Change these values gradually, and check the results to find the
optimum settings for your environment.

Parsers

Are message parsers using more memory than expected?

A message flow parses input messages and can create many
output messages. These messages may have large bit streams or
large message trees. The parsers created to perform this
message processing might consume a large amount of memory.
Use the Parsers statistics to determine if message flow parsers
are using more memory than expected. If so, consider
deploying such flows into separate execution groups or
improving ESQL or Java plugin API processing to efficiently
handle large messages or transformations.

Is message parsing or writing failing frequently for a particular
message flow?

3314 WebSphere Message Broker Version 7.0.0.8

If a message flow receives or attempts to write an invalid
message, it is likely that this will be rejected by a parser. Use
the message parsers statistics to see if a message flow is
rejecting a large amount of input or output messages compared
with successful processing.

Outbound sockets

Are the nodes reusing outbound sockets?

Creating outbound sockets can be an expensive operation, and
the number of sockets available on a computer is a finite
resource. Therefore, increasing socket reuse can enhance
performance. If the workload is continuous and consistent, the
TotalSockets value indicates an initial period of activity, which
then reduces when the execution group starts to reuse sockets.

A steady increase in the TotalSockets value over time is
expected because sockets are closed after a period of inactivity,
or when they have been used many times.

If the TotalSockets value increases significantly over time, this
trend might indicate that outbound sockets are not being
reused.

If your message flows include HTTPRequest nodes, check that
you have set the keepalive property Enable HTTP/1.1
keepalive.

Check also whether the endpoint that is called uses keepalive
sockets.

Which endpoints are most used?

The values TotalMessages indicates how busy each endpoint is.
The value in the summary record tells you how much activity
occurred across the whole execution group.

How large are sent and received messages?

The values of the SentMessageSize_* and
ReceivedMessageSize_* fields give a profile of the message
sizes flowing to and from each endpoint.

JDBC connection pools

Do I need to change the size of the connection pool?

If the statistics show that the count of callers waiting for
connections is high, and the wait time is increasing, consider
increasing the size of the pool using the MaxConnectionPoolSize
property for the JDBCProvider configurable service.

Alternatively, try reducing the number of additional instances
configured for the message flow.

TCPIPClientNodes

Are the nodes reusing outbound sockets?

Creating outbound sockets can be an expensive operation, and
the number of sockets available on a computer is a finite
resource. Therefore, increasing socket reuse can enhance
performance. If the workload is continuous and consistent, the

Chapter 12. Performance and monitoring 3315

TotalSockets value indicates an initial period of activity, which
then reduces when the execution group starts to reuse sockets.

A steady increase in the TotalSockets value over time is
expected because sockets are closed after a period of inactivity,
or when they have been used many times.

If the TotalSockets value increases significantly over time, this
trend might indicate that outbound sockets are not being
reused.

If your message flows include HTTPRequest nodes, check that
you have set the keepalive property Enable HTTP/1.1
keepalive.

Check also whether the endpoint that is called uses keepalive
sockets.

How the does the information that I see in WebSphere Message
Broker Explorer relate to my TCP/IP flows?

An entry is displayed for each configurable service, not for each
flow.

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Starting resource statistics collection in the WebSphere Message Broker Explorer”
on page 3310
Use the WebSphere Message Broker Explorer to start collecting resource statistics
data for your execution groups. You can then view the data in the Broker
Resources and Broker Resources Graph views.
“Stopping resource statistics collection in the WebSphere Message Broker Explorer”
on page 3312
Use the WebSphere Message Broker Explorer to stop collecting resource statistics
data for your execution groups.
“Setting the JVM heap size” on page 3254
When you start an execution group, it creates a Java virtual machine (JVM) for
executing a Java user-defined node.
“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

3316 WebSphere Message Broker Version 7.0.0.8

Viewing the status of resource statistics collection in the
WebSphere Message Broker Explorer
Use the WebSphere Message Broker Explorer to view the status of resource
statistics collection in the Broker Resources view.

Before you begin

Before you start:
v Read the concept topic about resource statistics.

About this task

If you prefer, you can view resource statistics collection status by using the
mqsireportresourcestats command; see “Viewing status of resource statistics
collection” on page 3309.

To view the status of resource statistics collection in the WebSphere Message
Broker Explorer:

Procedure
1. In the WebSphere MQ Explorer - Navigator view, expand the Brokers folder.
2. Click the execution group for which you want to view statistics collection

status. You can view status for only one execution group at a time.
In the WebSphere MQ Explorer - Content view, the Resource Statistics Active
field indicates whether statistics collection is active. If the field contains the
value None, statistics collection is inactive. If collection is active, the field
contains the value CICS, CORBA, FTEAgent, JVM, Parsers, Security, Sockets
or JDBC Connection Pooling.

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Starting resource statistics collection in the WebSphere Message Broker Explorer”
on page 3310
Use the WebSphere Message Broker Explorer to start collecting resource statistics
data for your execution groups. You can then view the data in the Broker
Resources and Broker Resources Graph views.
“Stopping resource statistics collection in the WebSphere Message Broker Explorer”
on page 3312
Use the WebSphere Message Broker Explorer to stop collecting resource statistics
data for your execution groups.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.

Subscribing to statistics reports
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.

Chapter 12. Performance and monitoring 3317

About this task

Message flow performance

If you enable message flow accounting and statistics collection for a broker, you
can subscribe to the messages that the broker publishes on the following topic:

$SYS/Broker/brokerName/StatisticsAccounting/recordType/executionGroupLabel/messageFlowLabel

where broker_name is the name of the broker, recordType is the type of record
(SnapShot or Archive), executionGroupLabel is the name of the execution group that
you created on that broker, and messageFlowLabel is the name of the message flow
that you deployed to the execution group.

These messages contain statistics reports and are published at a regular interval,
which you control by setting the statsInterval property of the broker. Each
publication is a JMS BytesMessage that contains the statistics report in XML
format.

Resource performance

If you enable resource statistics collection for one or more execution groups on a
broker, you can subscribe to the messages that the broker publishes at 20-second
intervals on the following topic:
$SYS/Broker/brokerName/ResourceStatistics/executionGroupLabel

For more information about how to interpret the resource statistics that are
included in the publication, see “Viewing resource statistics data in the WebSphere
Message Broker Explorer” on page 3313.

Using wildcards in subscriptions

Procedure

You can use wild cards when you subscribe to statistics reports. For example, to
receive message flow statistics reports for all brokers and all execution groups,
subscribe to the following topic:
$SYS/Broker/+/StatisticsAccounting/#

To receive execution group resource statistics reports for all brokers and all
execution groups, subscribe to the following topic:
$SYS/Broker/+/ResourceStatistics/+

For further details about how you can use wildcards, see “Special characters in
topics” on page 6395.

Results

Subscribers receive statistics reports only from those brokers that are enabled to
produce statistics.
Related tasks:
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.

3318 WebSphere Message Broker Version 7.0.0.8

“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

Related reference:
“Special characters in topics” on page 6395
A topic can contain any character in the Unicode character set, but some characters
have a special meaning.

Business-level monitoring
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.

Before you begin

Before you start:

Before starting to configure monitoring, read the following information.
1. Understand the basic concepts; see “Monitoring basics” on page 3320.
2. Decide what type of monitoring you intend to do; see “Monitoring scenarios”

on page 3323.
3. Decide whether to use monitoring properties, or a monitoring profile; see

“Deciding how to configure monitoring events for message flows” on page
3325.

About this task

An event is a message that a message flow publishes when something interesting
happens. The message contains information about the source of the event, the time
of the event, and the reason for the event. The event can include the message bit
stream, and can also include selected elements from the message body. These fields
can be used to correlate messages that belong to the same transaction, or to convey
business data to a monitoring application.

To receive monitoring events, you must take the following steps:
1. Configure event sources on the flow, either by monitoring properties or a

monitoring profile.
2. Ensure that the event sources are enabled; use the mqsireportflowmonitoring

command to report settings. Use the monitoring properties for the node, or the
mqsichangeflowmonitoring -i command to enable event sources, if appropriate.

3. Activate monitoring for the flow; use the mqsichangeflowmonitoring -c
command.

4. Subscribe to the topic for the flow:
$SYS/Broker/brokerName/Monitoring/executionGroupName/flowName

Related concepts:
“Monitoring basics” on page 3320
Message flows can be configured to emit events. The events can be read and used
by other applications for transaction monitoring, transaction auditing, and business
process monitoring.

Chapter 12. Performance and monitoring 3319

“Monitoring scenarios” on page 3323
Events can be used to support transaction monitoring, transaction auditing and
business process monitoring.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.
Related reference:
“mqsireportflowmonitoring command” on page 3924
Use the mqsireportflowmonitoring command to display the current options for
monitoring that have been set using the mqsichangeflowmonitoring command.
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

Monitoring basics
Message flows can be configured to emit events. The events can be read and used
by other applications for transaction monitoring, transaction auditing, and business
process monitoring.

Monitoring Events

A monitoring event is an XML document that conforms to the monitoring event
schema. Each event contains the following information:
v Source of the event
v Name of the event
v Sequence number and creation time
v Correlation ID for events emitted by the same transaction or unit of work

Additionally, a monitoring event can contain the following items:
v Application data extracted from the message
v Part or all of the message bit stream

See “The monitoring event” on page 6774 for more details

Event Sources

A message flow can emit two kinds of events:

Transaction events
Transaction events are emitted only from input nodes.

Terminal events
Terminal events are emitted from any terminal of any node, including
input nodes.

3320 WebSphere Message Broker Version 7.0.0.8

An individual message flow can choose to emit transaction events, terminal events,
or both kinds of event. You can configure, enable, and disable, both types of events
in either of the following ways:
v Using the monitoring properties of the message flow.
v Using a monitoring profile configurable service.

The use of a monitoring profile configurable service overrides the monitoring
properties of a message flow.

An event source address identifies an event source in a message flow.

Because terminal events can be emitted from any node in a message flow, they can
be used as an alternative to dedicated event-emitting nodes or subflows such as
that supplied in SupportPac IA9V.

Event sources emit events only if monitoring is activated for the message flow.

Terminal events

Any terminal in a message flow can be an event source. If the event source is
active, it emits an event each time a message passes through the terminal, subject
to the evaluation of the eventFilter expression; see “Event output options.”

Transaction events

Each input node in a message flow contains three events sources, in addition to
terminal events.

Event source Event source address Description

Transaction start Nodename.transaction.Start The event is emitted when the
message is read from the transport.

Transaction end Nodename.transaction.End The event is emitted when
WebSphere Message Broker has
completed all processing of the
message.

Transaction rollback Nodename.transaction.RollbackThe event is emitted instead of
transaction end if the message flow
throws an exception which is not
caught and processed within the
message flow.

Events are emitted subject to the evaluation of the eventFilter expression; see
“Event output options.”

If a message flow handles its own exceptions, a transaction end event, rather than
a transaction rollback event, is issued, because the flow has taken control of the
error and terminated normally. In this case, if you need to distinguish errors, you
can configure terminal events at appropriate nodes in the flow.

Event output options

When you configure an event source, you can define a filter to control whether the
event is emitted. You can tailor event emission to your business requirements, by

Chapter 12. Performance and monitoring 3321

filtering out events that do not match a set of rules. For example, you might decide
to emit events only for transactions above a minimum amount.
$Body/StockTrade/Details/Value > 10000

This can reduce the number of events emitted, and reduce the workload on your
monitoring application.

Events are published to a topic, where they can be read by multiple subscribers.
The topic name is of the form:
$SYS/Broker/brokerName/Monitoring/executionGroupName/flowName

The hierarchical structure allows subscribers to filter the events which they receive.
One subscriber can receive events from all message flows in the broker, while
another receives only the events from a single execution group.

You decide whether events participate in transactions when you configure a
monitoring event source. In general:
v If you want an event to be emitted only if the message flow transaction

commits, configure the event source to coordinate the events with the message
flow transaction.

v If you want an event to be emitted regardless of whether the message flow
transaction commits or rolls back, configure the event source to emit events out
of sync point. Such events are available immediately.

v If you want a group of events to be emitted together regardless of whether the
message flow transaction commits or rolls back, configure the event source to
emit events in a second, independent, unit of work.

Default monitoring configuration

If monitoring is activated for a message flow, and neither monitoring properties
nor a monitoring profile configurable service have been configured for the flow,
the default behavior is for transaction events to be emitted from each input node of
the message flow. The events contain the bit stream of the input message.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.
Related reference:
“Monitoring profile” on page 6768
To customize events after a message flow has been deployed, but without
redeploying the flow, use a monitoring profile configurable service. By using this
service, you can apply a monitoring profile to one or more message flows.
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

3322 WebSphere Message Broker Version 7.0.0.8

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“The monitoring event” on page 6774
You can configure WebSphere Message Broker to emit a monitoring event (an XML
document) when something interesting happens. Events are typically emitted to
support transaction monitoring, transaction auditing, and business process
monitoring. The event XML conforms to the monitoring event schema
WMBEvent.xsd.

Monitoring scenarios
Events can be used to support transaction monitoring, transaction auditing and
business process monitoring.

Transaction monitoring and auditing

The events published by WebSphere Message Broker can be written to a
transaction repository, creating an audit trail of the transactions that are processed
by a broker. A transaction repository can be used for monitoring, auditing and
replay of transactions. Bitstream data can be included so that failed transactions
can be resubmitted. You can perform the following tasks to set up transaction
monitoring and auditing.

Configure events for your transactions
In most cases bitstream information is not sufficient to allow querying of
the logged transactions. Key fields and other correlation data can be
extracted from the message payload and placed into the
wmb:applicationData/wmb:simpleContent or wmb:applicationData/
wmb:complexContent element of the event. The logging application or
message flow can extract these fields and log them with the message bit
stream.

Subscribe to the event topic and write events to a repository
You can create a message flow, or any WebSphere MQ application, that
subscribes to the event topic and writes events to a relational database. The
details of the database schema depend on the requirements of your
organization, for example the number of key fields and transaction IDs.

Business process monitoring

The events published by a broker can be monitored by WebSphere Business
Monitor. Important fields in the message payload can be added to the events
emitted by your message flows, allowing them to be monitored. You can use the
following items to help you use WebSphere Business Monitor to monitor your
message flows:

Message Driven bean
The events must be submitted to the CEI repository in order for
WebSphere Business Monitor to monitor them. A message driven bean is
supplied for this purpose. The message driven bean, which runs in

Chapter 12. Performance and monitoring 3323

WebSphere Application Server, subscribes to the event topic and writes
events that match its subscription to the CEI repository as Common Base
Event events.

WebSphere Business Monitor Model
WebSphere Message Broker includes an example monitor model for use
with WebSphere Business Monitor. This model demonstrates how to
monitor transaction events and terminal events, including events that
capture data from the input message and output message. Modify the
model to match your actual events and message formats.

The following sample provides a Message Driven Bean and a WebSphere Business
Monitor Model to help you use WebSphere Business Monitor to monitor events in
your message flows:
v WebSphere Business Monitor

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Monitoring basics” on page 3320
Message flows can be configured to emit events. The events can be read and used
by other applications for transaction monitoring, transaction auditing, and business
process monitoring.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
Related reference:
“Monitoring profile” on page 6768
To customize events after a message flow has been deployed, but without
redeploying the flow, use a monitoring profile configurable service. By using this
service, you can apply a monitoring profile to one or more message flows.
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your

3324 WebSphere Message Broker Version 7.0.0.8

message flows.

Deciding how to configure monitoring events for message
flows

Decide whether to use monitoring properties, or a monitoring profile configurable
service, to customize the events produced by a message flow.

If you want to customize events when you are designing the message flow, use
monitoring properties. If you want to customize events after a message flow has
been deployed, but without redeploying, use a monitoring profile. This topic gives
information about both methods.

Using monitoring properties to configure events

Using the WebSphere Message Broker Toolkit Message Flow Editor, you can
configure event sources on most nodes in a message flow. A node that supports the
configuration of event sources has a Monitoring tab on its Properties view; use this
tab to add events and to set their properties. When you deploy the message flow
in a broker archive file, the monitoring properties are included as part of the
message flow.

Key facts about monitoring properties:
v Use monitoring properties when you want to configure events at message flow

design time.
v Monitoring properties apply only to the message flow in question. You can share

monitoring properties between message flows only by creating reusable
subflows.

v Monitoring properties are deployed in a BAR file as part of the message flow.
v You use the mqsichangeflowmonitoring command to activate the message flow to

emit monitoring events.
v You can use the mqsichangeflowmonitoring command to enable or disable

individual event sources in a message flow.
v To change any other properties of an event, you alter the monitoring properties

in the flow, then redeploy the BAR file.

To configure monitoring events using monitoring properties, see this information:
“Configuring monitoring event sources using monitoring properties” on page 3327.

Tip: Use the mqsireportflowmonitoring command to report a list of the names of
the event sources for a message flow. You can then use these event source names
in a mqsichangeflowmonitoring command to enable or disable individual event
sources from the command line.

Using a monitoring profile to configure events

Using operational commands, you can create a monitoring profile configurable
service directly on the broker, and associate it with one or more message flows.

Key facts about monitoring profiles:
v Use a monitoring profile when you want to configure events for a message flow

that has already been deployed and for which no events have been configured.

Chapter 12. Performance and monitoring 3325

v Use a monitoring profile to override the monitoring properties of a message
flow that has already been deployed, as an alternative to redeploying the BAR
file. The monitoring profile completely replaces all monitoring properties.

v A single monitoring profile can be applied to many message flows, provided
that the message flows contain the same event sources.

v Monitoring profiles are created directly on the broker using the
mqsicreateconfigurableservice command and the mqsichangeproperties
command. They are not deployed in a BAR file.

v You use the mqsichangeflowmonitoring command to associate the monitoring
profile with a message flow.

v You use the mqsichangeflowmonitoring command to activate the message flow to
emit monitoring events.

v You can use the mqsichangeflowmonitoring command to enable or disable
individual event sources in a message flow.

To configure monitoring events using monitoring properties, see this information:
“Configuring monitoring event sources using a monitoring profile” on page 762

Tip: Use the mqsireportflowmonitoring command to report a list of event sources
for a message flow. You can then use the names of these event source in a
subsequent mqsichangeflowmonitoring command to enable and disable individual
event sources from the command line.

Tip: Use the mqsireportflowmonitoring command to report the monitoring profile
for a message flow. You can edit the profile, to add or change event sources, then
update it using the mqsichangeproperties command.

Tip: Use the mqsireportflowmonitoring command to create the equivalent
monitoring profile for a message flow for which monitoring properties are
configured. You can edit the profile, then use it to create a new monitoring profile
configurable service using the mqsicreateconfigurableservice and
mqsichangeproperties commands. You can then associate the new profile with the
original flow using the mqsichangeflowmonitoring command. You can use this
technique to override the monitoring properties for a message flow, without
having to edit the flow and redeploy the BAR file.
Related concepts:
“Monitoring basics” on page 3320
Message flows can be configured to emit events. The events can be read and used
by other applications for transaction monitoring, transaction auditing, and business
process monitoring.
Related tasks:
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.
Related reference:
“Monitoring profile” on page 6768
To customize events after a message flow has been deployed, but without
redeploying the flow, use a monitoring profile configurable service. By using this
service, you can apply a monitoring profile to one or more message flows.

3326 WebSphere Message Broker Version 7.0.0.8

“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.
“mqsireportflowmonitoring command” on page 3924
Use the mqsireportflowmonitoring command to display the current options for
monitoring that have been set using the mqsichangeflowmonitoring command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

Configuring monitoring event sources using monitoring
properties

In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.

Before you begin

Before you start:

Read the following topics:
v “Business-level monitoring” on page 3319
v “Monitoring basics” on page 3320

You must have a message flow that contains a node to which you want to add a
monitoring event.

You can use XPath 1.0 expressions to configure a monitoring event. Some XPath
expressions, listed in “XPath expressions that are not suitable for the export
monitoring information option” on page 6782, are not suitable for use with the
export monitoring information option (“Creating a monitor model for WebSphere
Business Monitor V7” on page 3341).

Creating events
About this task

An event source is a point in a message flow from which a monitoring event can
be emitted. Each event source has a set of properties that control the contents of
the monitoring events that it emits.

Procedure
1. Display the properties for the node.
2. Select the Monitoring tab.
3. Click Add.

The Add entry window is displayed.
4. Complete the Event Source field.

The field has a drop-down list of all events that can be defined for this node.
The event source information is used to populate the attributes of the
wmb:eventPointData/wmb:messageFlowData/wmb:node element of the event.
When you have selected the event source, the corresponding value for Event
Source Address is displayed as a read-only property.

Chapter 12. Performance and monitoring 3327

Tip: If you later decide to enable or disable events using the
mqsichangeflowmonitoring command, you must specify a value for Event
Source Address, not Event Name.

5. Complete the Event Name details; select either Literal or Data location.
Every monitoring event has a name that is placed in the wmb:eventPointData/
wmb:eventIdentity/@wmb:eventName attribute of the event. The default names
are shown in the following table:

Event source Default event name Example

Transaction start nodeLabel.TransactionStart MQInput.TransactionStart

Transaction end nodeLabel.TransactionEnd MQInput.TransactionEnd

Transaction rollback nodeLabel.TransactionRollback MQInput.TransactionRollback

Terminal nodeLabel.terminal_label.Terminal MQInput.OutTerminal

You can override the default in these ways:
v By specifying an alternative literal string.
v By specifying an XPath query; the query extracts the event name from a

field in the input message. Click Edit to use the XPath Expression Builder.
You cannot use monitoring properties to configure transaction events on the
following nodes:

“Collector node” on page 4333
“Resequence node” on page 4651

Use a monitoring profile instead; see “Configuring monitoring event sources
using a monitoring profile” on page 762.

6. Optional: Complete the Event Filter section by providing an XPath expression
to control whether the event is emitted. Take one of the following steps:
v Type in the expression (for example, $Body/StockTrade/Details/Value >

10000); or
v Click Edit to launch XPath Expression Builder.

The expression must evaluate to true or false, and can reference fields in the
message tree, or elsewhere in the message assembly. The default value is
true(), which means that the event is always produced.
Using this facility, you can tailor event emissions to your business
requirements, by filtering out events that do not match a set of rules. This can
reduce the number of events emitted, and reduce the workload on your
monitoring application.

7. Optional: Complete the Event Payload section if the event is to contain
selected data fields extracted from the message. Click Add to launch the Add
Data Location dialog box. Take one of the following steps:
v Type in the location (for example, $LocalEnvironment/File/Name); or
v Click Edit to launch XPath Expression Builder.
You can extract one or more fields from the message data and include it with
the event. The fields can be simple or complex. Simple content is contained in
the wmb:applicationData/wmb:simpleContent field of the event; complex data
is contained in the wmb:applicationData/wmb:complexContent field.
This facility is commonly used for communicating significant business data in
a business event. If the event contains the input bit stream, this facility can
also be used to extract key fields, allowing another application to provide an
audit trail or to resubmit failed messages.

3328 WebSphere Message Broker Version 7.0.0.8

8. Optional: Select the Include bitstream data in payload field if the event is to
capture message bitstream data.

Content
Select from Headers, Body, All.

Encoding
Select from base64, HexBinary and CData (the original text, without
encoding).

9. Optional: Select the Correlation tab, to complete details for event correlation.
10. Complete the Event Correlation details; for information about correlation, see

“Correlation and monitoring events” on page 6778.

a. Optional: Complete the Local transaction correlator details.

Automatic
The local correlator used by the most recent event for this
invocation of the message flow will be used. If no local correlator
exists yet, a new unique value will be generated.

Specify location of correlator
Enter a value, or click Edit to launch the XPath Expression Builder.
The local correlator will be read from the specified location in the
message tree. Ensure that the specified location contains a
correlator value unique to this invocation of the message flow.

b. Optional: Complete the Parent transaction correlator details to extract a
correlation field from the parent transaction.

Automatic
The parent correlator used by the most recent event for this
invocation of the message flow will be used. If no parent correlator
exists yet, no parent correlator will be used.

Specify location of correlator
Enter a value, or click Edit to launch the XPath Expression Builder.
The parent correlator will be read from the specified location in the
message tree. Ensure that the specified location contains a suitable
value for the parent correlator.

c. Optional: Complete the Global transaction correlator details to extract a
correlation field from a global transaction.

Automatic
The global correlator used by the most recent event for this
invocation of the message flow will be used. If no global correlator
exists yet, no global correlator will be used.

Specify location of correlator
Enter a value, or click Edit to launch the XPath Expression Builder.
The global correlator will be read from the specified location in the
message tree. Ensure that the specified location contains a suitable
value for the global correlator.

11. Optional: Choose whether the emission of monitoring events by a message
flow is coordinated with the message flow transaction, or is in an independent
unit of work, or is not in a unit of work.

Every monitoring event must contain at least one correlation attribute, and can contain up to three. If you do not
specify any correlation information, the first event source in the message flow allocates a unique identifier that all
later event sources in the same transaction will use.

Chapter 12. Performance and monitoring 3329

Click the Transaction tab and select the appropriate option for Event Unit of
Work.

Message flow
The event, and all other events with this setting, are emitted only if
the message flow commits its unit of work successfully.

If the transaction start event is specified to be included in the message
flow unit of work, but the message processing fails and this unit of
work is not published, the transaction start event will be included in
an independent unit of work. This ensures that your monitoring
application receives a pair of events (start and rollback), rather than
receiving a rollback event in isolation.

Independent
The event is emitted in a second unit of work, independent of the
main unit of work. The event, and all other events with this setting
are emitted whether or not the main unit of work commits
successfully.

An independent transaction can be started only if the main transaction
has been either committed or rolled back. If the Commit count property
of the flow is greater than one, (“Configurable message flow
properties” on page 4020), or the Commit by message group property is
set (“Receiving messages in a WebSphere MQ message group” on
page 1554), the events targeted for the independent transaction are
instead emitted out of sync point, and a message is output stating that
this has been done.

None The event is emitted out of sync point (not in any unit of work.) The
event is emitted when the message passes through the event source,
and is available for reading immediately.

Not all these options are available on all event types. The defaults and
allowed values are shown in the following table:

Event source Allowed values Default

Transaction start Message flow
Independent
None

Message flow

Transaction end Message flow
None

Message flow

Transaction rollback Independent
None

Independent

Terminal Message flow
Independent
None

Message flow

12. Click Finish.
The Events table in the Monitoring tab of the Properties view for the node is
updated with details of the event that you just added; the event is enabled.

13. Optional: Disable the event.
14. Save the message flow.

Deploying monitoring properties
Procedure
1. When you have added all events to the flow, add the message flow to the

broker archive (BAR) file and deploy the BAR file.

3330 WebSphere Message Broker Version 7.0.0.8

Monitoring is inactive for the flow; deploying the BAR file does not activate it.
2. Activate monitoring for the flow by using the mqsichangeflowmonitoring -c

command.

Updating monitoring properties
About this task

The monitoring properties for a node show all monitoring events that are defined
for that node. Edit the monitoring properties of a node to do these tasks:
v Enable or disable a monitoring event.
v Add, delete, or change the monitoring events for the node.

Procedure
1. Right-click the node and select Properties.
2. Select the Monitoring tab.

The monitoring events that you have previously defined are displayed.
3. Select or clear the Enabled check box for each event as appropriate.
v To disable an event, clear the check box.
v To enable an event, select the check box.

4. To add an event, click Add.
5. To delete an event, select the event, then click Delete.
6. To edit an event, select the event, then click Edit.

The Add Event is displayed. For a description of options on this window, see
“Creating events” on page 3327.

7. Save the message flow.
Related concepts:
“Deciding how to configure monitoring events for message flows” on page 3325
Decide whether to use monitoring properties, or a monitoring profile configurable
service, to customize the events produced by a message flow.
“Monitoring scenarios” on page 3323
Events can be used to support transaction monitoring, transaction auditing and
business process monitoring.
Related tasks:
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
“Activating monitoring” on page 3334
Use the mqsichangeflowmonitoring command to activate monitoring after you have
configured monitoring event sources.
“Creating a monitor model for WebSphere Business Monitor V6.2” on page 3339
Export monitoring information from WebSphere Message Broker to create a
monitoring model for WebSphere Business Monitor V6.2
“Creating a monitor model for WebSphere Business Monitor V7” on page 3341
Export monitoring information from WebSphere Message Broker to create a
monitoring model for WebSphere Business Monitor V7
Related reference:
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.
“Example XPath expressions for event filtering” on page 6781
Use numeric, string, or Boolean expressions when configuring an event source, to

Chapter 12. Performance and monitoring 3331

determine whether the event is emitted.
Related information:
“Correlation and monitoring events” on page 6778
A monitoring application uses correlation attributes to identify events that belong
to the same business transaction.

Configuring monitoring event sources using a monitoring
profile

You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.

Before you begin

Before you start:

Read the following topics:
v “Business-level monitoring” on page 3319
v “Monitoring basics” on page 3320

You must have a message flow that contains a node to which you want to add a
monitoring event.

You can use XPath 1.0 expressions to configure a monitoring event.

Creating a monitoring profile
About this task

First create a monitoring profile XML file. This is a file that lists the event sources
in the message flow that will emit events, and defines the properties of each event.

Procedure

Follow the guidance at “Monitoring profile” on page 6768 to create your
monitoring profile XML file.

Applying a monitoring profile
About this task

When you have created a monitoring profile XML file, follow these steps to apply
it.

Procedure
1. Use the mqsicreateconfigurableservice command to create a configurable

service for the monitoring profile. In the following command example, replace
myBroker with the name of your broker, and myMonitoringProfile with the name
of your monitoring profile.
mqsicreateconfigurableservice myBroker -c MonitoringProfiles

-o myMonitoringProfile

2. Use the mqsichangeproperties command to associate your monitoring profile
XML file with the configurable service. In the following command example,
replace myBroker with the name of your broker, myMonitoringProfile with the
name of your monitoring profile, and myMonitoringProfile.xml with the name of
the monitoring profile XML file.

3332 WebSphere Message Broker Version 7.0.0.8

mqsichangeproperties myBroker -c MonitoringProfiles -o myMonitoringProfile
-n profileProperties -p myMonitoringProfile.xml

Set the useParserNameInMonitoringPayload property to TRUE to force the
wmb:applicationData/wmb:complexContent/wmb:elementName attribute to hold
the name of the input node parser, if present. See “MonitoringProfiles
configurable service” on page 3781 for details.
mqsichangeproperties myBroker -c MonitoringProfiles -o myMonitoringProfile

-n useParserNameInMonitoringPayload -v TRUE

3. Use the mqsichangeflowmonitoring command to apply a monitoring profile
configurable service to one or more message flows.
v Apply a monitoring profile to a single message flow messageflow1 in

execution group EG1:
mqsichangeflowmonitoring myBroker -e EG1

-f messageflow1 -m myMonitoringProfile

v Apply a monitoring profile to all message flows in all execution groups:
mqsichangeflowmonitoring myBroker -g -j -m myMonitoringProfile

Monitoring for the flow is inactive; applying the monitoring profile does not
activate it.

4. Alternatively, use the broker archive editor to apply a monitoring profile
configurable service to one or more message flows, by setting message flow
property Monitoring Profile Name.
a. In the WebSphere Message Broker Toolkit, switch to the Broker Application

Development perspective.
b. In the Broker Development view, right-click the BAR file, then click Open

with > Broker Archive Editor.
c. Click the Manage and Configure tab.
d. Click the message flow on which you want to set the monitoring profile

configurable service. The properties that you can configure for the message
flow are displayed in the Properties view.

e. In the Monitoring Profile Name field, enter the name of a monitoring
profile.

f. Save the BAR file.
g. Deploy the BAR file.

Monitoring for the flow is inactive; deploying the BAR file does not activate it.
5. Activate monitoring for the flow using the mqsichangeflowmonitoring -c

command.
v Activate monitoring for a single message flow messageflow1 in execution

group EG1:
mqsichangeflowmonitoring myBroker -e EG1

-f messageflow1 -c active

v Activate monitoring for all message flows in all execution groups:
mqsichangeflowmonitoring myBroker -g -j -c active

Updating a monitoring profile
Procedure
1. Follow the guidance at “Monitoring profile” on page 6768 to update your

monitoring profile XML file.
2. Use the mqsichangeproperties command to update the configurable service to

use the new XML file. For example:
mqsichangeproperties myBroker -c MonitoringProfiles -o myMonitoringProfile

-n profileProperties -p myMonitoringProfile.xml

Chapter 12. Performance and monitoring 3333

Related concepts:
“Monitoring basics” on page 3320
Message flows can be configured to emit events. The events can be read and used
by other applications for transaction monitoring, transaction auditing, and business
process monitoring.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
“Activating monitoring”
Use the mqsichangeflowmonitoring command to activate monitoring after you have
configured monitoring event sources.
Related reference:
“Monitoring profile” on page 6768
To customize events after a message flow has been deployed, but without
redeploying the flow, use a monitoring profile configurable service. By using this
service, you can apply a monitoring profile to one or more message flows.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.
“mqsireportflowmonitoring command” on page 3924
Use the mqsireportflowmonitoring command to display the current options for
monitoring that have been set using the mqsichangeflowmonitoring command.
“Example XPath expressions for event filtering” on page 6781
Use numeric, string, or Boolean expressions when configuring an event source, to
determine whether the event is emitted.

Activating monitoring
Use the mqsichangeflowmonitoring command to activate monitoring after you have
configured monitoring event sources.

Before you begin

Before you start: You must have configured monitoring event sources by using
either monitoring properties or a monitoring profile; see these topics:

“Configuring monitoring event sources using monitoring properties” on page
3327
“Configuring monitoring event sources using a monitoring profile” on page 762

3334 WebSphere Message Broker Version 7.0.0.8

About this task

The use of a monitoring profile configurable service overrides the monitoring
properties of a message flow.

If monitoring is activated for a message flow, and neither monitoring properties
nor a monitoring profile configurable service have been configured for the flow,
the default behavior is for transaction events to be emitted from each input node of
the message flow. The events contain the bit stream of the input message.

Activating monitoring from the command line
About this task

Use the -c active parameter. You can activate monitoring for all message flows in
all execution groups, or specify the execution groups and message flows for which
monitoring is to be activated.

Procedure
v To activate monitoring for all message flows in all execution groups on Linux,

UNIX, and Windows: Linux UNIX Windows

mqsichangeflowmonitoring myBroker -c active -g -j

To activate monitoring for all message flows in all execution groups on z/OS:
z/OS

F MI10BRK,cm c=active,g=yes,j=yes

v To activate monitoring for all message flows in the default execution group on
Linux, UNIX, and Windows: Linux UNIX Windows

mqsichangeflowmonitoring myBroker -c active -e default -j

To activate monitoring for all message flows in the default execution group on
z/OS: z/OS

F MI10BRK,cm c=active,g=default,j=yes

v To activate monitoring for the myFlow message flow in the default execution
group on Linux, UNIX, and Windows: Linux UNIX Windows

mqsichangeflowmonitoring myBroker -c active -e default -f myFlow

To activate monitoring for the myFlow message flow in the default execution
group on z/OS: z/OS

F MI10BRK,cm c=active,g=default,f=myFlow

Deactivating monitoring from the command line
About this task

Use the -c inactive parameter. You can deactivate monitoring for all message
flows in all execution groups, or specify the execution groups and message flows
for which monitoring is to be activated.

Procedure
v To deactivate monitoring for all message flows in all execution groups on Linux,

UNIX, and Windows: Linux UNIX Windows

mqsichangeflowmonitoring myBroker -c inactive -g -j

Chapter 12. Performance and monitoring 3335

To deactivate monitoring for all message flows in all execution groups on z/OS:
z/OS

F MI10BRK,cm c=inactive,g=yes,j=yes

v To deactivate monitoring for all message flows in the default execution group on
Linux, UNIX, and Windows: Linux UNIX Windows

mqsichangeflowmonitoring myBroker -c inactive -e default -j

To deactivate monitoring for all message flows in the default execution group on
z/OS: z/OS

F MI10BRK,cm c=inactive,g=default,j=yes

v To deactivate monitoring for the myFlow message flow in the default execution
group on Linux, UNIX, and Windows: Linux UNIX Windows

mqsichangeflowmonitoring myBroker -c inactive -e default -f myFlow

To deactivate monitoring for the myFlow message flow in the default execution
group on z/OS: z/OS

F MI10BRK,cm c=inactive,g=default,f=myFlow

Related tasks:
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.
Related reference:
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

Enabling and disabling event sources
When events have been configured for a message flow and deployed to the broker,
you can enable and disable individual events. You can do this from the command
line, without having to redeploy the message flow, or you can do this from the
Message Flow Editor, in which case you must redeploy.

Enabling and disabling events from the command line
Before you begin

Before you start: You must have previously configured events using either
Message Flow Editor monitoring properties, or a monitoring profile configurable
service.

Procedure

Use the mqsichangeflowmonitoring to enable and disable event sources. For
example:
mqsichangeflowmonitoring WBRK_BROKER

-e default
-f myMessageFlow
-s "SOAP Input1.terminal.out,MQOutput1.terminal.in"
-i enable

3336 WebSphere Message Broker Version 7.0.0.8

mqsichangeflowmonitoring WBRK_BROKER
-e default
-f myMessageFlow
-s "SOAP Input1.terminal.catch"
-i disabled

You can enable or disable multiple events at once; the change of state takes place
immediately.
If you configured events using monitoring properties, the change persists if the
message flow is restarted, but is lost if the message flow is redeployed. To make
the change permanent, you must also update the monitoring properties.

Tip: When specifying values for the -s parameter, use the Event source address
property of the event, not the Event name property.

Tip: To find the list of configured event sources for a message flow, you can use
the mqsireportflowmonitoring command. For example:
mqsireportflowmonitoring WBRK_BROKER

–e default
–f myMessageFlow
–n

Tip: If you configured events using monitoring properties, you can see a list of the
configured event sources in the Message Flow Editor:
1. Open the message flow using the Message Flow Editor.
2. Click the canvas.
3. Select the Monitoring tab in the Properties view.

The monitoring events that you have previously defined are displayed.

Enabling and disabling events from the Message Flow Editor
Before you begin

Before you start: You must have previously configured events using the Message
Flow Editor monitoring properties.

About this task

Use the Message Flow Editor to enable and disable event sources.

Procedure
1. Open the message flow using the editor.
2. Click the canvas.
3. Select the Monitoring tab in the Properties view. The monitoring events that

you have previously defined are displayed.
4. Select or clear the Enabled check box for each event as appropriate.
v To disable an event, clear the check box.
v To enable an event, select the check box.
v To disable all events, click Uncheck All.

5. Save the message flow.
6. Rebuild and redeploy the BAR file.
Related concepts:

Chapter 12. Performance and monitoring 3337

“Monitoring basics” on page 3320
Message flows can be configured to emit events. The events can be read and used
by other applications for transaction monitoring, transaction auditing, and business
process monitoring.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
Related reference:
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.
“mqsireportflowmonitoring command” on page 3924
Use the mqsireportflowmonitoring command to display the current options for
monitoring that have been set using the mqsichangeflowmonitoring command.

Creating a monitoring model for use by WebSphere Business
Monitor

Enable WebSphere Business Monitor to monitor WebSphere Message Broker events.

Before you begin

Before you start: You must have configured monitoring for a message flow; see
“Deciding how to configure monitoring events for message flows” on page 3325.

About this task

IBM WebSphere Business Monitor is business activity monitoring software that
provides a real-time view of your business processes and operations. It contains
personalized business dashboards that calculate and display key performance
indicators (KPIs) and metrics derived from business processes, business activity
data, and business events from a wide range of information sources, including
WebSphere Message Broker message flows. This gives you immediate insight into
your business operations so that you can mitigate problems or take immediate
advantage of opportunities, resulting in cost savings and increased revenues.

The following WebSphere Business Monitor sample shows you how to generate
events from a message flow, create a corresponding monitor model, and use that
model in WebSphere Business Monitor to view KPIs from the events:
v WebSphere Business Monitor

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The steps that you take depend on the version of WebSphere Business Monitor that
you are using:

“Creating a monitor model for WebSphere Business Monitor V6.2” on page
3339
“Creating a monitor model for WebSphere Business Monitor V7” on page 3341

Related tasks:

3338 WebSphere Message Broker Version 7.0.0.8

“Generating XML Schemas” on page 2963
You can generate either a single XML Schema from a message definition file, or
multiple XML Schemas from a message set.
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.

Creating a monitor model for WebSphere Business Monitor V6.2
Export monitoring information from WebSphere Message Broker to create a
monitoring model for WebSphere Business Monitor V6.2

About this task

In WebSphere Message Broker

Procedure
1. If an event contains complex data extracted from a message, supply details of

the structure of the data to WebSphere Business Monitor:
a. Ensure that the complex data is modeled as a complex type in a message

definition file within a message set in the WebSphere Message Broker
Toolkit.

b. In the Application Development perspective, right-click the message set
folder and click Generate XML Schemas to create a .zip file of XML
schemas from the definitions in the message set.

c. Extract the file containing the XML schemas on the computer where you
will be using the Monitoring Model Editor.

2. Export the WMBEvent.xsd file from an existing message set (or create a message
set, then export it from there):
a. In the Application Development perspective, right-click the message set and

click New > Message Definition File From > IBM Supplied Message.
b. In the window that is displayed, scroll down and click Message Broker

Monitoring Event.
c. Click Finish.
d. Right-click the message set again, and click Generate > XML Schemas.
e. In the window that is displayed, click Export to an external directory, then

enter or browse to a directory.
f. Click Finish. A compressed file containing the WMBEvent.xsd file is created in

the directory that you specified.

The WMBEvent.xsd file gives WebSphere Business Monitor details of the
structure of the WebSphere Message Broker event.

What to do next

In WebSphere Business Monitor V6.2

This section outlines the steps you need to take in WebSphere Business Monitor.
See the documentation for WebSphere Business Monitor for full and up-to-date
details.
1. In the WebSphere Business Monitor development toolkit, create a Monitor

Model.
Import the WMBEvent.xsd schema and any schemas describing complex data
that were exported from WebSphere Message Broker, then create a monitor

Chapter 12. Performance and monitoring 3339

model. You see errors, because the model is currently empty. You also see a key,
which you can rename, for example to LocalTransactionID.

2. Create WebSphere Business Monitor inbound events.
A monitoring context definition is the term used by WebSphere Business Monitor
to describe all the data that should be collected about an entity (such as a
transaction or business process). Each runtime instance (referred to as a
monitoring context instance) collects information from inbound events and
stores this information in fields that represent the business measures that a
monitoring context collects: metrics, counters, and stopwatches.
You need to define an inbound event to describe each event source defined in
your message flow that contains information that you want to monitor. For
example, if your message flow has Transaction start, Transaction end and
Transaction rollback event sources, define an inbound event for each of these
event sources.
You typically define inbound events for these three event sources because they
contain information that tells WebSphere Business Monitor when the start and
end of the monitoring context instance occurs. You also define inbound events
to describe any event sources downstream in the flow that contain data that
you want to monitor, for example in the In terminal of the MQOutput
node.Creating inbound events typically involves the following actions:
a. Define event parts within the inbound event.

Event parts are XML Schema definition (XSD) types that provide
information about the structure of part of an event. For a WebSphere
Message Broker event, define event parts to describe the different parts of
the event that you want to monitor data from. For a description of the event
structure, see “The monitoring event” on page 6774.
As a minimum, define an event part for the event described by type
wmb:event. To monitor data about the source of the event (information
about the message flow name, broker name), also define an event part for
the eventPointData section described by type wmb:eventPointData. You
might also want to define event parts to describe message payload data
from the applicationData section of the event.

b. Define a correlation expression.
You typically correlate events on fields from the eventCorrelation section in
the WebSphere Message Broker event. For example, you could correlate
events using the localTransactionId field from the WebSphere Message
Broker event.
You must also define whether the event should create a monitoring context;
create this for a Transaction start event.

c. Optional: Define a filter condition.
Set a filter condition. For example you might want to filter events for a
specific broker, execution group, or message flow.

d. Optional: Define the event sequence path.
Select a field in the inbound event that can be used to set the order in
which the inbound events are processed. For example, you could use
creationTime from the WebSphere Message Broker event.

e. Complete the key.
The key uniquely identifies a monitoring context instance. You can select
any value for the key; for a WebSphere Message Broker event a typical
value is the localTransactionId field from the WebSphere Message Broker
event.

3. Define the metrics.

3340 WebSphere Message Broker Version 7.0.0.8

Having defined inbound events you can now define your metrics. Metrics hold
data from the event in a monitoring context.
You might want to define metrics that hold event source data from the
eventPointData section of the WebSphere Message Broker event, for example
broker name or message flow name. You can also define metrics that hold
event sequencing information, for example TimeStarted and TimeEnded
metrics, which hold the creationTime for Transaction start and Transaction end
or Transaction rollback events.
In addition, metrics can be defined to hold application data from the
WebSphere Message Broker event.

Creating a monitor model for WebSphere Business Monitor V7
Export monitoring information from WebSphere Message Broker to create a
monitoring model for WebSphere Business Monitor V7

Before you begin

Before you start:

For earlier versions, see “Creating a monitor model for WebSphere Business
Monitor V6.2” on page 3339.

The monitoring information needed to create a monitor model can only be
exported from WebSphere Message Broker when the following conditions are met:
v The flow is not empty.
v The flow has no error markers against it in the Problems view.

Consider these points before exporting a message flow:
v WebSphere Business Monitor must be able to identify the start and end of a

monitoring context. Always define transaction events (transaction.Start,
transaction.End, and transaction.Rollback) on message flows that are
monitored by WebSphere Business Monitor.

v The WebSphere Business Monitor toolkit does not support local elements with
anonymous types. The export monitoring information option therefore does not
generate an event part for event payload XPath queries which resolve to an
element of this type. You see a warning message in the report log
flowProjectName_batchgen_report.txt.

v The WebSphere Business Monitor toolkit does not support creating metrics of
type xs:anyType. If an XPath expression in your event payload resolves to an
element of type xs:anyType, the export monitoring information option creates an
event part of this type, but you cannot create a metric of this type in the
WebSphere Business Monitor toolkit. Create an event part with a supported
type; see Defining Event Parts in the WebSphere Business Monitor information
center.

v If you include unmodeled data, the export monitoring information option cannot
type the data. It assigns a type of string to the data.

v The option to export monitoring information does not support XPath queries
that contain wildcards.

Tip: If you want to separately identify transaction.Start and transaction.End
events that are issued following message flow error handling, create an event
source on the Failure terminal of the Input node.

Chapter 12. Performance and monitoring 3341

About this task

Use the subsequent WebSphere Message Broker procedure to create a .zip file that
contains the following monitoring information about the message flow:

All monitoring information that is defined in the message flow files.
The WMBEvent.xsd file, which is the schema for the emitted event.
All .xsd files in the message sets that are referenced by the selected flows.

In WebSphere Message Broker

Procedure
1. In the WebSphere Message Broker Toolkit, right-click the message flow or

message flow project, and click Export. The Export wizard starts.
2. Click Business Monitoring > Application monitoring information, then click

Next.
3. Select the flows from which you want to export monitoring information, and

specify a file name.
4. Optional: Specify that an existing file should be overwritten without warning.
5. Optional: If working set filtering is enabled, select the Apply working set

filtering to artifact selection(s) on this page check box.
6. Click Finish. A .zip file that contains the application monitoring information is

saved.
A report of the export is written to file flowProjectName_batchgen.report.txt
in the log directory of the message flow project.

What to do next

In WebSphere Business Monitor V7

In the WebSphere Business Monitor development toolkit, import the .zip file that
you exported from WebSphere Message Broker. The Generate Monitor Model
wizard starts. As you work through the wizard, you can select some or all of the
following templates, depending on the event sources in your message flow:
v Average Transaction Duration This template is available if you have created

transaction.Start, transaction.End, and transaction.Rollback event sources.
If you select this template, a metric and stopwatch are created for you in the
monitor model showing the Average Transaction Duration, and a key
performance indicator (KPI) is created using the data from this stopwatch.

v Number of Failed Transactions This template is available if you have created
transaction.Rollback event sources. If you select this template, metrics are
created for you in the monitor model showing the number of failed transactions
and the failed transaction time (this has a default value of 1 January 9999
01:00:00.) A measure and dimension are also created for use in creating
multidimensional reports. See Defining Dimensions in the WebSphere Business
Monitor information center.

v Message Flow Correlation This template provides information about the broker
(such as broker name, execution group name, parentTransactionID,
globalTransactionID). You can display this information in a Business Space
Dashboard with other metrics and key performance indicators. Because these
metrics are used in the correlation expression for the inbound events defined,
select this template only if the events for a specified monitoring context are from
the same execution group.

3342 WebSphere Message Broker Version 7.0.0.8

See the documentation for WebSphere Business Monitor for full and up-to-date
details.
Related reference:
“XPath expressions that are not suitable for the export monitoring information
option” on page 6782
Some XPath expressions produce a warning on the Monitoring tab.

Reporting monitoring settings
Use the mqsireportflowmonitoring command to report monitoring settings for a
flow.

About this task

The following examples show how to report monitoring options for a broker called
BROKER1, execution group default, and message flow PurchaseOrder.

Report configured events for a message flow
Procedure

Issue the following command on Linux, Unix, or Windows:
Linux UNIX Windows

mqsireportflowmonitoring BROKER1 –e default –f PurchaseOrder –n

Issue the following command on z/OS: z/OS

F MI10BRK,rm BROKER1,e=’default’,f=’PurchaseOrder,n=’yes’’

Report all possible events for a message flow
Procedure

Issue the following command on Linux, Unix, or Windows:
Linux UNIX Windows

mqsireportflowmonitoring BROKER1 –e default –f PurchaseOrder –a

Issue the following command on z/OS: z/OS

F MI10BRK,rm e=’default’,f=’PurchaseOrder,a=’yes’

Report specified events for a message flow
Procedure

Issue the following command on Linux, Unix, or Windows:
Linux UNIX Windows

mqsireportflowmonitoring BROKER1 –e default –f PurchaseOrder
-s "MQInput1.transaction.Start,MQOutput1.terminal.catch"

Issue the following command on z/OS: z/OS

F MI10BRK,rm e=’default’,f=’PurchaseOrder’,
s="MQInput1.transaction.Start,MQOutput1.terminal.catch"

Tip: When specifying values for the -s parameter, use the Event source address
property of the event, not the Event name property.

Chapter 12. Performance and monitoring 3343

Export a message flow's monitoring profile
About this task

Use the following command to export a profile to file myMonProf.xml

Procedure

Issue the following command on Linux, Unix, or Windows:
Linux UNIX Windows

mqsireportflowmonitoring BROKER1 -e default -f PurchaseOrder -x -p myMonProf.xml

Issue the following command on z/OS: z/OS

F MI10BRK,rm e=’default’,f=’PurchaseOrder’,x=’yes’,p=’myMonProf.xml’

If monitoring for a message flow is configured using monitoring properties, rather
than a monitoring profile configurable service, the command creates and returns
the equivalent monitoring profile XML file.

Tip: This is an alternative to using an XML editor to create a monitoring profile
XML file.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.
Related reference:
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

3344 WebSphere Message Broker Version 7.0.0.8

Chapter 13. Troubleshooting and support

If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.

About this task

This section contains information about the various techniques that you can use to
diagnose problems with WebSphere Message Broker.

Procedure
v “Making initial checks” on page 3347
v “Dealing with problems” on page 3363
v “Using logs” on page 3526
v “Using trace” on page 3533
v “Using dumps and abend files” on page 3558
v “Recovering after failure” on page 3574
v “Contacting your IBM Support Center” on page 3563

What to do next

You can also read the general troubleshooting guidance in the following topics:
v “Troubleshooting overview”
v “Searching knowledge bases” on page 3569
v “Getting product fixes” on page 3570
v “Contacting IBM Software Support” on page 3571
v “IBM Support Assistant Data Collector” on page 3565

If a WebSphere Message Broker component or command has returned an error, and
you want further information about a message written to the screen or the log, you
can browse for details of the message in Diagnostic messages; the lists of messages
grouped in numeric order.

For information that is specific to debugging message flow applications, see
Chapter 10, “Testing and debugging message flow applications,” on page 3143.
Related reference:
“Troubleshooting” on page 6864
Use the reference information in this section to help you diagnose errors in
WebSphere Message Broker.

Troubleshooting overview
Troubleshooting is the process of finding and eliminating the cause of a problem.
Whenever you have a problem with your IBM software, the troubleshooting
process begins as soon as you ask yourself "what happened?"

A basic troubleshooting strategy at a high level involves:
1. “Recording the symptoms of the problem” on page 3346

3345

2. “Re-creating the problem”
3. “Eliminating possible causes”

Recording the symptoms of the problem
Depending on the type of problem that you have, whether it be with your
application, your server, or your tools, you might receive a message that indicates
that something is wrong. Always record the error message that you see. As simple
as this sounds, error messages sometimes contain codes that might make more
sense as you investigate your problem further. You might also receive multiple
error messages that look similar but have subtle differences. By recording the
details of each one, you can learn more about where your problem exists.

Sources of error messages:
v Problems view
v Local error log
v Eclipse log
v User trace
v Service trace
v Error dialog boxes
v mqsiexplain command

Re-creating the problem
Think back to what steps you were doing that led to the problem. Try those steps
again to see if you can easily re-create the problem. If you have a consistently
repeatable test case, it is easier to determine what solutions are necessary.
v How did you first notice the problem?
v Did you do anything different that made you notice the problem?
v Is the process that is causing the problem a new procedure, or has it worked

successfully before?
v If this process worked before, what has changed? (The change can refer to any

type of change that is made to the system, ranging from adding new hardware
or software, to reconfiguring existing software.)

v What was the first symptom of the problem that you witnessed? Were there
other symptoms occurring around the same time?

v Does the same problem occur elsewhere? Is only one machine experiencing the
problem or are multiple machines experiencing the same problem?

v What messages are being generated that could indicate what the problem is?

You can find more information about these types of question in “Making initial
checks” on page 3347.

Eliminating possible causes
Narrow the scope of your problem by eliminating components that are not causing
the problem. By using a process of elimination, you can simplify your problem and
avoid wasting time in areas that are not responsible. Consult the information in
this product and other available resources to help you with your elimination
process.
v Has anyone else experienced this problem? See: “Searching knowledge bases” on

page 3569.
v Is there a fix you can download? See: “Getting product fixes” on page 3570.

3346 WebSphere Message Broker Version 7.0.0.8

Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks”
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Using dumps and abend files” on page 3558
A dump or an abend file might be produced when a problem occurs. Dumps and
abend files can be used by IBM to resolve the problem.
“Searching knowledge bases” on page 3569
If you have a problem with your IBM software, you want it resolved quickly. Begin
by searching the available knowledge bases to determine whether the resolution to
your problem is already documented.
“Getting product fixes” on page 3570
A product fix might be available to resolve your problem. You can determine what
fixes are available from the IBM support site.
“Contacting IBM Software Support” on page 3571
IBM Software Support provides assistance with product defects.
“Recovering after failure” on page 3574
Follow a set of procedures to recover after a serious problem.
Related reference:
“mqsiexplain command” on page 3879
Use the mqsiexplain command to display the contents of a WebSphere Message
Broker BIP message.
“Troubleshooting” on page 6864
Use the reference information in this section to help you diagnose errors in
WebSphere Message Broker.

Making initial checks
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.

About this task

This section contains a list of questions to consider. As you go through the list,
make a note of anything that might be relevant to the problem. Even if your
observations do not suggest a cause straight away, they might be useful later if
you have to carry out a systematic problem determination exercise.

Chapter 13. Troubleshooting and support 3347

Procedure
v “Has WebSphere Message Broker run successfully before?”
v “Did you log off Windows while WebSphere Message Broker components were

active?” on page 3349
v “Are the Linux and UNIX environment variables set correctly?” on page 3350
v “Are there any error messages or return codes that explain the problem?” on

page 3350
v “Can you reproduce the problem?” on page 3352
v “Has the message flow run successfully before?” on page 3353
v “Have you made any changes since the last successful run?” on page 3355
v “Is there a problem with descriptive text for a command?” on page 3356
v “Is there a problem with a database?” on page 3356
v “Is there a problem with the network?” on page 3357
v “Does the problem affect all users?” on page 3358
v “Have you recently changed a password?” on page 3359
v “Have you applied any service updates?” on page 3359
v “Do you have a component that is running slowly?” on page 3360
v “Additional checks for z/OS users” on page 3361
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
Related reference:
“Troubleshooting” on page 6864
Use the reference information in this section to help you diagnose errors in
WebSphere Message Broker.

Has WebSphere Message Broker run successfully before?
If you have successfully run a WebSphere Message Broker component, determine
whether your problem is caused by incorrect installation and setup, or a different
cause. If it has not run successfully before, work through the information to
determine what is preventing successful operation.

About this task

Complete the following steps:

Procedure
1. Check your setup

WebSphere Message Broker might not be set up correctly.

Linux

UNIX

On Linux and UNIX operating systems, check that you

have set up the command environment correctly; see “Setting up a command
environment” on page 213 for more information.

2. Verify the installation

Check “Verifying your WebSphere Message Broker installation” on page 290 for
information about how you can verify a basic configuration on your system.
This topic describes how to verify your installation on Linux on x86, Linux on
x86-64, or Windows by using either the WebSphere Message Broker Toolkit or

3348 WebSphere Message Broker Version 7.0.0.8

the WebSphere Message Broker Explorer. On Linux on x86 and Windows, you
can use the Default Configuration wizard and the Samples Preparation wizard
to help you with basic configuration and verification.
For more detailed configuration information, refer to Chapter 7, “Configuring
brokers for test and production environments,” on page 579.

Related tasks:
“Installing complementary products” on page 300
WebSphere Message Broker works with several other products to provide
complementary services.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Creating a default configuration” on page 564
Use the Default Configuration wizard to create and test a basic broker
configuration.
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.

Did you log off Windows while WebSphere Message Broker
components were active?

How to avoid problems caused by logging off while components are active.

About this task

Windows On Windows, logging off when a WebSphere Message Broker
component (a broker) is active can cause a problem.

You might see messages, including BIP2070, BIP2642, BIP1102, and BIP1103, in the
Windows Event log.

When you log off, any queue manager that supports the WebSphere Message
Broker component is stopped unless it is defined to run as a Windows service. The
component runs Windows services and remains active, but it finds that the queue
manager and queue manager objects that are associated with it are no longer
available.

Procedure

To avoid this problem, set the queue manager that is used by the broker to run as
a Windows service, so that logging off Windows from does not cause this problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the

Chapter 13. Troubleshooting and support 3349

problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.

Are the Linux and UNIX environment variables set correctly?
Use the mqsiprofile command to set a command environment.

About this task

UNIX On Linux and UNIX systems, the basic settings are made by the
mqsiprofile command, which is located in the following directory:
install_dir/bin

What to do next

See “Setting up a command environment” on page 213 for information about
setting up the command environment; see “Creating a broker on Linux and UNIX
systems” on page 615 for instructions about creating a broker on your operating
system.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Installing complementary products” on page 300
WebSphere Message Broker works with several other products to provide
complementary services.
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Related reference:
“Environment variables after installation” on page 3642
On distributed systems, ensure that your environment is set up correctly.

Are there any error messages or return codes that explain the
problem?

You can find details of error messages and return codes in several places.

Procedure
v BIP messages and reason codes

3350 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker error messages have the prefix BIP. If you receive
any messages with this prefix (for example, in the UNIX, Linux, or z/OS syslog),
you can search for them in the information center for an explanation.You can
also view the full content of a BIP message by using the mqsiexplain command.
For more information, see “mqsiexplain command” on page 3879.

Windows

In the Windows Event log, references to BIP messages are identified

by the source name "WebSphere Broker v6000", where v6000 can be replaced by
a number representing the exact service level of your installation, for example
6001.
WebSphere Message Broker messages that have a mixture of identifiers such as
BIPmsgs, BIPv700, BIPv610, BIPv500, WMQIv210, MQSIv202, and MQSIv201
indicate a mixed installation, which does not work properly.

v Other messages

For messages with a different prefix, such as AMQ or CSQ for WebSphere MQ,
or SQL for DB2, see the appropriate messages and codes documentation for a
suggested course of action to help resolve the problem.
Messages that are associated with the startup of WebSphere Message Broker, or
were issued while the system was running before the error occurred, might
indicate a system problem that prevented your application from running
successfully.
A large or complex WebSphere Message Broker broker environment might
require some additional configuration of the environment beyond what is
recommended in “Installing complementary products” on page 300. The need
for such configuration changes is typically indicated by warning or error
messages that are logged by the various components, including WebSphere MQ,
the databases, and the operating system. These messages are normally
accompanied by a suggested user response.

Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
Related reference:
Diagnostic messages
Diagnostic messages are listed in this section in numeric order, grouped according
to the component to which they relate.

Can you see all of your files and folders?
How to show all files in Windows Explorer:

About this task

If you are using Windows Explorer to view your files and you cannot see all of
your files and folders, such as the broker workpath directory, this is because

Chapter 13. Troubleshooting and support 3351

Windows Explorer, by default, hides some files and folders.

Procedure
1. Click Tools > Folder options. The Folder Options dialog box opens.
2. Click the View tab and select Show hidden files and folders.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Changing the location of the work path” on page 1011
The work path directory is the location where a component stores internal data,
such as installation logs, component details, and trace output. The shared-classes
directory is also located in the work path directory and is used for deployed Java
code. If the work path directory does not have enough capacity, redirect the
directory to another file system that has enough capacity.

Can you reproduce the problem?
If you can reproduce the problem, consider the conditions under which you can do
so.

Procedure
v Is the problem caused by a particular message flow? If so, use the debugging

facility of the WebSphere Message Broker Toolkit and user tracing to identify the
problem.

v Is the problem caused by a command? On distributed operating systems, you
issue commands at the system command line.

z/OS

On z/OS, you can issue commands from the console, the syslog, or by

submitting a batch job. You enter customization commands from an OMVS
session. Console commands that you enter from the console or syslog might be
converted to uppercase, depending on the system configuration. This conversion
can cause some commands, such as mqsichangetrace, to fail, especially if these
commands contain parameters that must be lowercase. An error message
indicating that the execution group is not available might be caused by the
execution group name being in the wrong case. The same thing can happen on
message flows.

v Does a problem command work if it is entered by another user ID?

If the command works when it is entered by another user ID, check the
environment of each user. Paths, especially shared library paths, might be
different. On Windows, UNIX systems, and Linux verify that all users have set
up their command environment correctly; refer to sample profile for more
information.

Windows

On Windows, the environment for the broker is determined by the

system settings, not by a particular user's variables. However, the user's
variables affect non-broker commands.

3352 WebSphere Message Broker Version 7.0.0.8

UNIX

On LinuxUNIX systems, only the service ID that is specified when the

broker was created can start a broker.

Windows

On Windows, any authorized user can start a broker.

Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Are the Linux and UNIX environment variables set correctly?” on page 3350
Use the mqsiprofile command to set a command environment.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Resolving problems when developing message flows” on page 3395
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.

Has the message flow run successfully before?
Sometimes a problem appears in a message flow that has previously run
successfully.

About this task

To identify the cause of the problem, answer the following questions:

Procedure
v Have you made any changes to the message flow since it last ran successfully?

If so, it is likely that the error exists somewhere in the new or modified part of
the flow. Examine the changes and see if you can find an obvious reason for the
problem.

Chapter 13. Troubleshooting and support 3353

v Have you used all the functions of the message flow before?

Did the problem occur when you used part of the message flow that had never
been invoked before? If so, it is likely that the error exists in that part. Try to
find out what the message flow was doing when it failed by using user tracing,
trace nodes, and the WebSphere Message Broker Toolkit debugger function.
If you have run a message flow successfully on many previous occasions, check
the current queue status and the files that were being processed when the error
occurred. It is possible that they contain some unusual data value that invokes a
rarely-used path in the message flow.

v Does the message flow check all return codes?

Has your system been changed, perhaps in a minor way, but your message flow
does not check the return codes it receives as a result of the change? For
example:
– Does your message flow assume that the queues that it accesses can be

shared? If a queue has been redefined as exclusive, can your message flow
deal with return codes indicating that it can no longer access that queue?

– Have any security profiles been changed? A message flow could fail because
of a security violation.

v Does the message flow expect particular message formats?

If a message with an unexpected message format has been put onto a queue (for
example, a message from a queue manager on a different operating system) it
might require data conversion or a different form of processing. Also, check
whether you have changed any of the message formats that are used.

v Does the message flow run on other WebSphere Message Broker systems?

Is there something different about the way that your system is set up that is
causing the problem? For example, have the queues been defined with the same
maximum message length or priority? Are there differences in the databases
used, or their setup?

v Are you using any user-defined extensions?

There might be translation or compilation problems with loadable
implementation library (LIL) files. Before you look at the code, examine the
output from the translator, the compiler or assembler, and the linkage editor, to
see if any errors have been reported. Fix any errors to make the user-defined
extension work.
If the documentation shows that each of these steps was completed without
error, consider the coding logic of the message flow, message set, or user-defined
extension. Do the symptoms of the problem indicate which function is failing
and, therefore, which piece of code is in error? See “User-defined extensions
overview” on page 2971 for more information.

v Can you see errors from WebSphere Message Broker or external resources,
such as databases?

Your message flow might be losing errors because of incorrect use of the failure
terminals on built-in nodes. If you use the failure terminals, make sure that you
handle errors adequately. See “Handling errors in message flows” on page 2823
for more information about failure terminals.

Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your

3354 WebSphere Message Broker Version 7.0.0.8

problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Resolving problems when developing message flows” on page 3395
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

Have you made any changes since the last successful run?
Have you changed WebSphere Message Broker, any related software, or any
hardware?

About this task

When you are considering changes that might have been made recently, think not
only about WebSphere Message Broker, but also about the other programs with
which it interfaces, the hardware, device drivers, and any new applications.

Procedure
v Have you changed your initialization procedure?

On z/OS, have you changed any data sets or library definitions? Has the
operating system been initialized with different parameters? Check for error
messages generated during initialization.

v Has the profile of the user who is running the commands on Linux or UNIX
systems been changed?

If so, this might mean that the user no longer has access to the required objects
and commands.

v Has any of the software on your system been upgraded to a later release?

Check that the upgrade completed successfully, and whether the new software is
compatible with WebSphere Message Broker (check the product readme.html
file).

v Do your message flows deal with the errors and return codes that they might
get as a result of any changes that you have made?

Chapter 13. Troubleshooting and support 3355

Check that your message flow can handle all possible error situations.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

Is there a problem with descriptive text for a command?
On Linux and UNIX systems, be careful when including special characters
(backslash (\) and double quotation mark (") characters) in descriptive text for
some commands.

About this task

If you use either of these characters in descriptive text, precede them with the
escape character backslash (\) ; that is, enter \\ or \" if you want \ or " in your
text.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
“Characters allowed in commands” on page 3680
You must adhere to a few rules when you provide names or identifiers for the
components and resources in your broker environment.

Is there a problem with a database?
If you have database problems, complete a set of initial checks to identify errors.

Procedure
v Check that the database is started.
v Check that you have correctly completed ODBC configuration:

3356 WebSphere Message Broker Version 7.0.0.8

– Linux

UNIX

On Linux and UNIX systems, check that you have

created a copy of the sample ODBC configuration file (odbc.ini), and have
modified them for your environment, and that you have not added any extra
unsupported parameters.

– Windows

On Windows systems, click Start > Control Panel > Administrative

Tools > Data Sources (ODBC) to configure the connections you require.
Detailed instructions for setting up ODBC connections on distributed systems
are provided in “Enabling ODBC connections to the databases” on page 668.

v Use the “mqsicvp command” on page 3857 to help you with ODBC database
diagnostics.

v Check that you have correctly completed JDBC configuration. Detailed
instructions for setting up JDBC connections are provided in “Enabling JDBC
connections to the databases” on page 683.

v Check the number of database connections that are in use on DB2 for AIX. If
you use local mode connections, a maximum of 10 is supported.

v If messages that indicate that imbdfdb2v6.lil failed to load, check that you have
installed a supported database. Details of database managers and versions are
given in “Supported databases” on page 3591.

Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“ODBC trace” on page 3551
You can use various methods to trace for ODBC activity, depending on the
operating system that you are using.
“Resolving problems when using databases” on page 3491
Use the advice given here to help you to resolve problems that can arise when
using databases.
“Capturing database state” on page 2512
If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“mqsicvp command” on page 3857
Use the mqsicvp command to perform verification tests on a broker, or to verify
ODBC connections.

Is there a problem with the network?
WebSphere Message Broker uses WebSphere MQ for inter-component
communication. If components are on separate queue managers, they are
connected by message channels.

Chapter 13. Troubleshooting and support 3357

About this task

There can be communication problems between any of these:

Procedure
v Brokers
v The WebSphere Message Broker Explorer
v The WebSphere Message Broker Toolkit

What to do next

If any two components are on different queue managers, make sure that the
channels between them are working. Use the WebSphere MQ display chstatus
command to see if messages are flowing.

Use the ping command to check that the remote computers are connected to the
network, or if you suspect that the problem might be with the network itself. For
example, use the command ping brokername, where brokername is a computer
name. If you get a reply, the computer is connected. If you don't get a reply, ask
your network administrator to investigate the problem. Further evidence of
network problems might be messages building up on the transmission queues.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.

Does the problem affect all users?
On distributed systems, problems can be caused by different users having different
environments.

About this task

Check whether there is a different user ID in an incoming message, or a different
user ID issuing a command (or acting as the broker's service ID).
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Securing WebSphere MQ resources” on page 1559
Secure the WebSphere MQ resources that your broker configuration requires.

3358 WebSphere Message Broker Version 7.0.0.8

Have you recently changed a password?
Check that you have updated passwords correctly.

About this task

If you have changed the operating system password for one of the following user
IDs, the broker or the deployed message flows might have access problems:
v The ID that you have specified for the broker's serviceUserId on Windows
v The ID that you have specified for access to a database

If these problems occur, complete one or more of the following steps:

Procedure
v Change the properties of the broker to reflect the password change. Use the

mqsichangebroker command to change the appropriate parameters.
v Run the mqsisetdbparms command to redefine the correct values for the user ID

and password.
v Ensure that your passwords do not contain reserved keywords. For example,

"IBM" is a reserved keyword in DB2.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Securing WebSphere MQ resources” on page 1559
Secure the WebSphere MQ resources that your broker configuration requires.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Have you applied any service updates?
Check what service updates you have applied to your software.

About this task

If you have applied an APAR or a PTF to WebSphere MQ for z/OS, or a fix pack
or interim fix has been applied to a distributed operating system, check that no
error message was produced. If the installation was successful, check with the IBM
Support Center for any known error with the service update.

Procedure
v If a service update has been applied to any other product, consider the effect

that it might have on WebSphere Message Broker.

Chapter 13. Troubleshooting and support 3359

v Ensure that you have followed any instructions in the service update that affect
your system. For example, you might need to redefine a resource, or stop and
restart a component.

v If you are not sure whether a service update has been applied to your system,
search for and view the release notes stored in the product installation directory.
These notes include the service level and details of the maintenance that you
have applied.

Related tasks:
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.

Do you have a component that is running slowly?
If a particular component, or the system in general, is running slowly, you can take
some actions to improve the performance.

About this task

Consider the following actions:

Procedure
v Check whether tracing is on. You might have started WebSphere Message Broker

user tracing or service tracing, ODBC tracing, WebSphere MQ tracing, or native
database tracing. If one or more of these traces are active, turn them off.

v Clear out all old abend files from your errors directory. If you do not clear the
directory of unwanted files, you might find that your system performance
degrades because significant space is used up.

v On Windows, use the workpath -w parameter of the mqsicreatebroker command
to create the errors directory in a hard disk partition that does not contain
WebSphere Message Broker or Windows.

v Increase your system memory.
Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:

3360 WebSphere Message Broker Version 7.0.0.8

Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Resolving problems with performance” on page 3504
Use the advice given here to help you to resolve common problems with
performance.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Additional checks for z/OS users
Problem determination for z/OS users.

About this task

On WebSphere Message Broker for z/OS, you might find that:
v The console has unexpected messages; look for an explanation by searching for

the message number in the information center, or referring to other relevant
messages and codes documentation.

v RRS is not started; issue the command D A,RRS.
v The queue manager is not available; issue the WebSphere MQ command

DISPLAY THREAD(*).
v DB2 is not working; issue the DB2 command DISPLAY THREAD.

The cause of your problem on z/OS could be in any of the following areas. Check
each of these, starting with whichever seems the most likely, based on the nature
of your problem.

Procedure
v The queue manager address space
v A queue manager in your queue-sharing group
v The channel initiator address space
v Batch or TSO address space
v The z/OS system (including ARM, RRS, or the Coupling Facility)
v The network (including APPC or TCP/IP)
v Another system, for example a queue manager on another operating system or a

WebSphere MQ client
v The external security manager product, for example RACF or ACF2
v DB2

Chapter 13. Troubleshooting and support 3361

What to do next

Understanding interactions between the runtime components

There are two runtime components: the broker and the execution group. These
components communicate with each other by exchanging command requests inside
WebSphere MQ messages to perform actions, such as deploying a message flow.

After completion of the command request, responses are sent back to the
originating component, indicating whether the request was successful.

On WebSphere Message Broker for z/OS, you see extra information messages
issued by z/OS runtime components that allow you and IBM Service personnel to
determine the interactions between the various runtime components, including the
Configuration Manager, broker and execution group.

When the broker receives command requests the broker issues a message that
identifies the command request. When this request completes, a message is issued
that indicates whether the command is successful. Each command request that the
broker receives results in at least one matching command request being sent to an
execution group, and a corresponding message being issued. Every response from
an execution group that results from these command requests result in a message
being issued. These messages can be turned on and off and are to be used by the
IBM Service team.

When an execution group receives command requests from the broker, the
execution group issues information messages that identify the command request.
For actions that are contained within a command request, an information message
is issued that identifies the action to be performed and the resource upon which
the action is to take effect. When the request completes, the execution group issues
a message that indicates that the message has been processed.

Loading IBM and user-defined nodes and parsers

When an execution group starts, it loads all available IBM and user-defined nodes
and parsers. For each library that is loaded, two messages are issued. One is issued
before the library is loaded and one is issued after the library has been loaded.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Using WebSphere MQ shared queues for input and output (z/OS)” on page 1546
On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows. You might need to serialize access to those
messages.
Related reference:
“Other sources of diagnostic information on z/OS” on page 6891
Other files that you might find useful for problem determination.

3362 WebSphere Message Broker Version 7.0.0.8

Dealing with problems
Learn how to resolve some of the typical problems that can occur.

Before you begin

Before you start:

Make initial checks, see “Making initial checks” on page 3347, and check the
following locations to see if you can rectify the problem:
v Logs, see “Using logs” on page 3526
v Trace, see “Using trace” on page 3533
v Dumps, see “Using dumps and abend files” on page 3558

About this task

This section contains the following topics:

Procedure
v “Resolving problems when running commands” on page 3364
v “Resolving problems when running samples” on page 3366
v “Resolving problems when creating resources” on page 3369
v “Resolving problems that occur when you start resources” on page 3371
v “Resolving problems that occur when migrating or importing resources” on

page 3389
v “Resolving problems when stopping resources” on page 3392
v “Resolving problems when deleting resources” on page 3394
v “Resolving problems when developing message flows” on page 3395
v “Resolving problems when deploying message flows or message sets” on page

3436
v “Resolving problems that occur when debugging message flows” on page 3453
v “Resolving problems when developing message models” on page 3459
v “Resolving problems when using messages” on page 3466
v “Resolving problems when you use the WebSphere Message Broker Toolkit” on

page 3480
v “Resolving problems when using the WebSphere Message Broker Explorer” on

page 3489
v “Resolving problems when using databases” on page 3491
v “Resolving problems when using publish/subscribe” on page 3501
v “Resolving problems with performance” on page 3504
v “Resolving problems when developing Administration API applications” on

page 3510
v “Resolving problems with user-defined extensions” on page 3511
v “Resolving problems when installing” on page 3517
v “Resolving problems when uninstalling” on page 3525
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the

Chapter 13. Troubleshooting and support 3363

problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.

Resolving problems when running commands
Use the advice given here to help you to resolve common problems that can arise
when you run commands.

Backing up or restoring the broker returns error BIP1253 or
BIP1262
Procedure
v Scenario: An error message is generated when you back up or restore a broker:

– The following message is returned when you run the mqsibackupbroker
command:
BIP1253E Failed to backup the broker ’broker_name’ (error ’error_code’)

– The following message is returned when you run the mqsirestorebroker
command:
BIP1262E Could not delete the existing configuration of broker ’broker_name’.

v Explanation: Both backup and restore commands require read/write access to
the files that contain broker configuration data. Access has failed and the
command cannot complete its operation successfully.

v Solution: Typically, you might see one of these errors if you are running the
backup or restore command against an active broker, and a conflict of access has
occurred. If your broker is active, use the mqsistop command to stop the broker,
and try the operation again.
You might also see one of these errors if the directory to which the command is
writing, or from which it is reading, is temporarily inaccessible because of
communications or authorization problems. Check that your user ID has access
to the directory that you specified in the command.

ReportEvent() error message is issued on Windows when you
attempt to run a command
Procedure
v Scenario: A ReportEvent () message is generated whenever you attempt to run

any mqsi* command, The ReportEvent () message is followed by the result of
the command itself.

v Explanation: The Windows Application Log has become full.
v Solution: Clear the Windows Application Log from the Event Viewer.

3364 WebSphere Message Broker Version 7.0.0.8

You want to run a command that uses SSL to administer a
remote broker over a secured channel.
Procedure
v Scenario: You want to run an mqsi* command using SSL to administer a remote

broker over a secured channel. Note, that you can do this only for mqsi*
commands that have the -n .broker option.

v Solution: In order to connect to a broker using SSL, you must specify the
keystore and truststore password for the connection using the
IBM_JAVA_OPTIONS environment variable. For example:
export IBM_JAVA_OPTIONS=-Djavax.net.ssl.keyStorePassword=MYKEYSTOREPASSWORD

-Djavax.net.ssl.trustStorePassword=MYTRUSTSTOREPASSWORD

In the same environment, you must then run the command using the -n option
to specify a .broker file that describes the connection you want to establish.
You can export .broker files by using the export option in the WebSphere
Message Broker Explorer. To do this, right-click on the secured broker you want
to export a .broker file for, and select Export *.broker.

A time-out error is issued when you attempt to run a command
on AIX when Stack Execution Disable (SED) is enabled
Procedure
v Scenario: You want to run an mqsi* command on AIX with Stack Execution

Disable enabled, but the command times out even if the -w option is set to 360.
v Explanation: mqsi* commands attempt to create a JVM with Java Native

Interface (JNI) calls. Because of Stack Execution Disable, the JVM creation fails.
For more information about Stack Execution Disable, see AIX Stack Execution
Disable.

v Solution: Use the sedmgr command to create exemption records from Stack
Execution Disable. For example, for mqsilist:
sedmgr c exempt /opt/mqsi/7.0/bin/mqsilist

The following commands might be affected by this issue:
– biphttplistener

– bipbroker

– bipservice

– mqsideploy

– mqsilist

– mqsimode

– mqsireloadsecurity

– mqsireportresourcestats

– mqsiwebuseradmin

Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
Related reference:

Chapter 13. Troubleshooting and support 3365

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=/com.ibm.java.aix.70.doc/user/sed.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=/com.ibm.java.aix.70.doc/user/sed.html

“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“mqsibackupbroker command” on page 3720
Use the mqsibackupbroker command to back up the current configuration of a
broker.
“mqsirestorebroker command” on page 3952
Use the mqsirestorebroker command to restore the broker configuration from a
backup file.

Resolving problems when running samples
Use the advice given here to help you to resolve common problems that can arise
when you run or remove samples.

About this task

Use the following instructions to diagnose the problem.
1. Use WebSphere MQ Explorer to determine which queue the input message is

on:
a. Start WebSphere MQ Explorer.
b. Expand the folders to display the broker queue manager, MB7QMGR.
c. Click the Queues folder in the queue manager to display its queues.
d. Check the Current depth column to identify the queue that is holding the

input message. If several messages are stored on one queue, right-click the
queue, then click Browse Messages to determine if the message that you
are interested in is on the queue.

2. Use the following table to identify the problem, and a suggested solution to
overcome it. If the sample that you are running does not use a database, ignore
the database-related problems listed in the table.

3. If the table did not help you solve the problem, return to the WebSphere
Message Broker Toolkit and check the Problems view for error messages. Use
this information to solve the problem.

4. If you created the sample yourself, you must check that all the objects in the
sample have been named and configured correctly.

Problem Reason Suggested solution

The input message stays on the IN
queue.

The broker, the queue manager, the
listener, or the message flow itself
has stopped.

Check that all the components are
running and that the listener for the
queue manager is listening on the
port for the queue manager. Start any
components that are not running.

An unidentifiable message already on
the IN queue cannot be processed by
the message flow.

In WebSphere MQ Explorer,
right-click the IN queue, then click
All tasks > Clear Messages.

The input message goes to the FAIL
queue.

The MQInput node cannot identify
which parser it must use to parse the
message.

If you are using the Enqueue facility
in the workbench or the RfhUtil tool
that is supplied in SupportPac IH03,
you must type all the necessary
message header information in the
fields in the tool. If you are using the
mqsiput.exe tool, you must add the
header information to the message
file itself.

3366 WebSphere Message Broker Version 7.0.0.8

Problem Reason Suggested solution

The input message goes to the
SYSTEM.DEAD.LETTER.QUEUE

The queue on which the input
message was supposed to be put
does not exist.

Ensure that you have created all the
queues required for the sample.

You cannot find the input message
on any queue.

You have not refreshed the display in
WebSphere MQ Explorer, or you
have refreshed only some of the
queues.

To refresh all the queues in
WebSphere MQ Explorer, right-click
the Queues folder, then click Refresh.
All the queues in the folder are
refreshed.

The input message was passed to a
terminal that was not connected to
another node, and the message was
discarded.

Ensure that all the nodes are
connected to each other as required
by the sample.

When using a DB2 database, the
input message goes to the FAIL
queue or the Event Log contains a
message saying that the database was
not found, or both.

DB2 is not running. In a DB2 Command Window, enter
the following command:

db2 start

If DB2 is already running, you
receive the following message:

The database manager is already active.

The message flow is trying to access
a database table that is not in the
default schema. The name of the
default schema is determined by, and
is the same as, the user name that is
used to access the database. If the
table is not in the default schema,
and no other schema is specified in
the ESQL for the message flow, the
message flow looks for the table in
the default schema.

In a DB2 Command Window, enter
the following commands:

DB2 "CONNECT TO database user username"
DB2 "CREATE VIEW tablename

AS SELECT * FROM tableschema.tablename"

where:

v username is the user name of the
broker

v tableschema is the schema that
contains the table that the message
flow is accessing

v tablename is the table that the
message flow is accessing

You receive the following error
messages when you try to remove a
DB2 database on Windows:

BIP9830I: Deleting the DB2
Database Your_database_name.

BIP9835E: The DB2 batch command
failed with the error code
SQLSTATE=57019. The database could
not be created/deleted. The error
code SQLSTATE=57019 was returned
from the DB2 batch command.

If you use the DB2 Control Center to
perform a query, a connection is
opened to the database. This
connection stays open until the DB2
Control Center is closed, when the
connection is ended.

Close the DB2 Control Center
application. To try to remove the
sample again, click Yes.

Chapter 13. Troubleshooting and support 3367

Problem Reason Suggested solution

You run a web services sample by
using the prebuilt Test Client scenario
and it hangs, then times out.

The problem occurs when you have a
SOAPInput node that is being called
by a SOAPRequest node.

The default port that web services
use is 7800, and the SOAPRequest
nodes are set up to use this port.
However, if this port is already in
use, for example, by another sample,
the port number is automatically
incremented by one. Therefore, the
default port must also be changed to
match.

Issue the following
mqsireportproperties command on
one line, to check which port your
provider execution group is using:

mqsireportproperties MB7BROKER
-e sampleExecutionGroup
-o HTTPConnector
-n port

where sampleExecutionGroup is the
appropriate execution group for the
sample that is being run. To verify
that the port that the SOAPRequest
node is using is the correct port to
call the provider flow, change the
port of the SOAPRequest nodes to
the port that the provider execution
group is using by completing the
following steps:

1. Open the message flow located in
the message set project.

2. (Perform this step for all of your
SOAPRequest nodes). Open the
HTTP Transport tab in the
Properties view. If the port is not
correct, change the port in the Web
service URL property to the
correct port for your web services
provider or TCP/IP Monitor.

3. Save the message flow.

4. Rebuild and redeploy the broker
archive (BAR) file.

If you have set up a TCP/IP Monitor,
you have already checked which port
the web services provider is using,
but you must still configure the
consumer to send the messages to
your TCP/IP Monitor, then rebuild
and redeploy the BAR file.

Alternatively, you can remove one of
the samples that is using the same
port, so that only one sample is
deployed at a time.

In some samples, the format of the
XML output in the Test Client might
be displayed in a different format to
the format that is shown in the
documentation.

In all cases the output data is
identical, it is the format that is
different.

You can change the format of the
output by selecting either View as
Source or View as XML Structure
from the menu in the Test Client.

Related concepts:
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:

3368 WebSphere Message Broker Version 7.0.0.8

Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.

Resolving problems when creating resources
Use the advice given here to help you to resolve common problems that can occur
when you create resources.

About this task

Look for the problem that you have encountered, and follow the guidance
provided to recover from the error.

Problems when creating a broker:

v “Message BIP8081 is issued when creating a broker”
v “You cannot create files when creating a broker on AIX”
v “The JCL BIPGEN fails when you create a component on z/OS” on page

3370
v “Your DataFlowEngine ends with an abend when you create a broker on

HP-UX using Oracle” on page 3370

Problems when creating other resources:

v “Error message BIP2624 is issued when creating an execution group” on
page 3370

v “The Default Configuration wizard fails with invalid argument
specified” on page 3371

Message BIP8081 is issued when creating a broker
Procedure
v Scenario: Message BIP8081E is displayed when you are creating a broker, the

inserted message does not format correctly, and the broker is not created.
v Explanation: This problem occurs because you are not a member of the correct

group.
v Solution: Read the explanation of message BIP8081, and ask your WebSphere

Message Broker administrator to give your user ID access to the mqbrkrs group.

You cannot create files when creating a broker on AIX
Procedure
v Scenario: When you run the mqsicreatebroker command on WebSphere

Message Broker for AIX, the following message is displayed:
BIP8135E Unable to create files. Operating System return code 1

v Explanation: The user ID that you create for WebSphere Message Broker testing
must have a primary group of mqbrkrs. The following example shows an AIX
SMIT panel listing the Change / Show Characteristics of a User:

Chapter 13. Troubleshooting and support 3369

Change / Show Characteristics of a User

Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[TOP] [Entry Fields]
* User NAME peterc
User ID [202] #
ADMINISTRATIVE USER? false +
Primary GROUP [mqbrkrs] +
Group SET [mqbrkrs,mqm,system,sys> +

The JCL BIPGEN fails when you create a component on z/OS
Procedure
v Scenario: The BIPGEN job fails when you are copying the broker profile

BIPBPROF from the PDSE to the file system.
v Explanation: The file system might lack the required space, the component

profile might not exist, or you might not have the appropriate authority.
v Solution: Make the following checks:

– The file system has sufficient space. You can check how much space is used
and how much is free in a file system using the OMVS command df -P
/pathname. 100 MB is 3 276 800 512 byte sectors.

– The profile file exists in the PDSE.
– Your user ID has the appropriate authority to write to the file system.

Your DataFlowEngine ends with an abend when you create a
broker on HP-UX using Oracle
Procedure
v Scenario: Your message flow (DataFlowEngine or DFE) ends with an abend

when you create a broker on HP-UX using Oracle.
v Explanation: This problem occurs when you have installed DB2and Oracle on

the same computer.
v Solution: Remove the DB2 LIL files that are used by WebSphere Message Broker.

For example, issue the following commands:
mv install dir/lib/imbdfdb2v6.lil install dir/lib/imbdfdb2v6.blank
mv install dir/lib/imbdfdb2.lil install dir/lib/imbdfdb2.blank

Error message BIP2624 is issued when creating an execution
group
Procedure
v Scenario: When you create an execution group, you get several BIP2624

messages (MQRC=2012 (MQRC_ENVIRONMENT_ERROR)), and no WebSphere
MQ messages are processed.

v Explanation: You have created the broker to run as a WebSphere MQ trusted
application (that is, the broker runs in the same process as the WebSphere MQ
queue manager), but the user ID that you specified does not have the required
authority.

v Solution: If you request the trusted application option on the mqsicreatebroker
command by specifying the -t parameter, perform the appropriate steps for
your operating system:

Windows Windows
Using the -i parameter on the mqsicreatebroker command, specify a
service user ID that is a member of WebSphere MQ group mqm.

3370 WebSphere Message Broker Version 7.0.0.8

Linux UNIX Linux and UNIX systems
Specify the user ID mqm on the -i parameter on the mqsicreatebroker
command.

The Default Configuration wizard fails with invalid argument
specified
Procedure
v Scenario: On a Windows system, the Default Configuration wizard fails. The

Default Configuration wizard log contains the following error message:
Invalid argument John Smith specified. Argument specified should be well formed.
Correct and reissue the command.

v Explanation: You have entered a user name that contains one or more spaces.
The Default Configuration does not support the use of user names that contain
spaces, because the space character can cause problems in communications with
other operating systems.

v Solution: Use an alternative user name that does not contain any spaces in the
Default Configuration wizard.

Resolving problems that occur when you start resources
Use the advice given here to help you to resolve common problems that can occur
when you start resources.

About this task

Procedure
v “Resolving problems when starting a broker” on page 3372

– “The broker fails to start because there is not enough space in the Java
TMPDIR directory or access permissions for the Java TMPDIR directory are
inadequate” on page 3373

– “Diagnostic message ICH408I is issued on z/OS when your broker fails to
start” on page 3374

– “Abend code 047 is issued with a diagnostic message” on page 3374
– “Error message BIP2228 is issued when you try to start a second broker on

Linux or UNIX” on page 3375
– “MQIsdp client connection is refused by the broker” on page 3375
– “Error messages BIP2604 and BIP2624 are issued when you start a broker or a

new message flow” on page 3376
– “When you start the broker through the DataFlowEngine, it cycles

continually” on page 3376
– “You have changed your logon password and cannot start your broker on

Windows” on page 3376
– “Broker on Windows platform fails to start with message BIP2818 and an

abend” on page 3376
– “The Java installation is at an incorrect level” on page 3377
– “Authorization errors are reported on z/OS” on page 3377
– “Error message BIP8875 is issued when you start a broker” on page 3378
– “Broker startup on z/OS is very slow” on page 3379

v “Resolving problems when starting other resources” on page 3380
– “Resources terminate during startup” on page 3381
– “Resources hang at startup on Windows” on page 3381

Chapter 13. Troubleshooting and support 3371

– “Error message BIP8048 is issued when you start a component” on page 3382
– “You experience problems with the default configuration” on page 3382
– “A "Not Found" error is issued when you click a link to a specific sample” on

page 3383
– “The Quick Tour is displayed as a blank window” on page 3383
– “Error message BIP0832 is issued on startup” on page 3383
– “Your execution groups restart repeatedly” on page 3383
– “You cannot tell whether startup is complete on z/OS” on page 3384
– “Abend code 0C1 is issued when you try to start the DataFlowEngine on

z/OS” on page 3385
– “Error message BIP2604 with return code MQRC_CONNTAG_IN_USE is issued

during the start of a message flow on z/OS” on page 3385
– “After creating or changing a configurable service, you restart your broker

but your message flow does not start, and message BIP2275 is issued in the
system log or Windows Event Viewer” on page 3386

– “A device allocation error is issued” on page 3387
– “Windows Vista and Windows Server 2008 fail to recognize WebSphere

Message Broker digital signatures: "Unknown Publisher"” on page 3387
– “The create command fails, and error message BIP8022 is issued” on page

3388
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Checking APF attributes of bipimain on z/OS” on page 607
This task is part of the larger task of setting up your z/OS environment.
Related reference:
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Related information:

WebSphere MQ Version 7 Information Center online

Resolving problems when starting a broker
Use the advice given here to help you to resolve common problems that can arise
when you start a broker.

About this task

When you start a broker by using the mqsistart command, the mqsicvp command
is run automatically to check that the broker environment is set up correctly (for
example, the installed level of Java is supported). On Linux and UNIX, the mqsicvp
command also verifies that the ODBC environment (if specified) is configured
correctly. For more information, see “mqsicvp command” on page 3857.

3372 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

For advice about specific problems that can occur when you start a broker, see the
following section.
v “The broker fails to start because there is not enough space in the Java TMPDIR

directory or access permissions for the Java TMPDIR directory are inadequate”
v “Diagnostic message ICH408I is issued on z/OS when your broker fails to start”

on page 3374
v “Abend code 047 is issued with a diagnostic message” on page 3374
v “Error message BIP2228 is issued when you try to start a second broker on

Linux or UNIX” on page 3375
v “MQIsdp client connection is refused by the broker” on page 3375
v “Error messages BIP2604 and BIP2624 are issued when you start a broker or a

new message flow” on page 3376
v “When you start the broker through the DataFlowEngine, it cycles continually”

on page 3376
v “You have changed your logon password and cannot start your broker on

Windows” on page 3376
v “Broker on Windows platform fails to start with message BIP2818 and an abend”

on page 3376
v “The Java installation is at an incorrect level” on page 3377
v “Authorization errors are reported on z/OS” on page 3377
v “Error message BIP8875 is issued when you start a broker” on page 3378
v “Warning messages BIP8288-BIP8297 are shown in the syslog when you start a

broker” on page 3379
v “Broker startup on z/OS is very slow” on page 3379
v “Error messages AMQ7626 and BIP8048 are displayed when you try to start a

broker” on page 3379

The broker fails to start because there is not enough space in the Java TMPDIR
directory or access permissions for the Java TMPDIR directory are inadequate:
Procedure

v Scenario: The broker fails to start and either an error message indicates that
insufficient space is available or a BIP4512 exception indicates a
java.lang.NoClassDefFoundError in the stack trace.

v Explanation: This error has two possible causes:
– The broker uses Java JAR files. When the broker starts, the Java runtime

environment extracts the JAR files into a temporary directory, Java TMPDIR.
On Linux, UNIX, and z/OS computers, the TMPDIR directory is typically
/tmp; on Windows computers, it is c:\temp. If this directory is not large
enough to hold the JAR files, the broker does not start.

– If the program is packaged as a PAR file, the user must have access to the
system temporary directory and adequate space must be available in the
temporary directory.

v Solution: Use one of the following methods to specify the location of this
temporary JAR directory:
– Use the environment variable TMPDIR.
– Set the system property java.io.tmpdir.

Allow at least 50 MB of space per execution group in this directory for
WebSphere Message Broker components. You might need more space if you

Chapter 13. Troubleshooting and support 3373

deploy large user-defined nodes or other JARs to the broker. You should ensure
that all the dependencies of the compute node class are deployed to the broker.

Diagnostic message ICH408I is issued on z/OS when your broker fails to start:
About this task

Two scenarios are described here. Choose the appropriate one.

Procedure

v Scenario 1: The following diagnostic message is written to the SDSF SYSLOG on
z/OS when your broker fails to start:
ICH408I USER(MA10USR) GROUP(TSOUSER) NAME(OTHER, A N (ANO) 484
/argo/MA10BRK/ENVFILE

- --TIMINGS (MINS.)--
----PAGING COUNTS---
-JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK SERV PG

PAGE SWAP VIO SWAPS
CL(DIRSRCH) FID(01D7D3E2E3F1F9002D08000000000003)
INSUFFICIENT AUTHORITY TO LOOKUP
ACCESS INTENT(--X) ACCESS ALLOWED(OTHER ---)

v Explanation: The started task ID, under which the broker runs, must be in a
RACF or z/OS UNIX System Services (USS) group that has rwx permissions on
the broker directory. For example, consider a broker that is created under
directory /argo/MA00BRK. It runs under started task ID MA00USR. Issuing the ls
-al command from the root directory / to find the permission bit settings on
/argo returns:
drwxrwx--- 5 BPXROOT ARGOUSR 8192 Jul 30 13:57 argo

If you issue the id MA00USR command to find the group membership of started
task ID MA00USR you see:
uid=14938(MA00USR) gid=5(TSOUSER) groups=229(ARGOUSR)

These results show that the started task ID MA00USR potentially has rwx
permissions on subdirectories to /argo, because these permissions are set for
both the user and the group that is associated with MA00USR. If the
permissions are not set correctly, you see the type of diagnostic message shown
in the scenario.

v Solution: Make sure that the started task ID, under which the broker runs, is in
a RACF or USS group that has rwx permissions on the broker directory.

v Scenario 2: The following diagnostic message is written to the SDSF SYSLOG on
z/OS when your broker fails to start:

ICH408I USER(MA10USR) GROUP(WMQIBRKS) NAME(MA10USR
CSFRNG CL(CSFSERV)
INSUFFICIENT ACCESS AUTHORITY
FROM ** (G)
ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

v Explanation: During the broker start up process, Java accesses a secure random
number generator. Consequently, the broker started task ID needs access to the
CSFRNG resource in the CSFSERV class.

v Solution: Make sure that the started task ID that the broker runs under has
access to the CSFRNG resource in the CSFSERV class.

Abend code 047 is issued with a diagnostic message:

3374 WebSphere Message Broker Version 7.0.0.8

Procedure

v Scenario: On z/OS, your broker generates abend code 047 when you try to start
it, and the following diagnostic message is written to the SDSF SYSLOG:
IEA995I SYMPTOM DUMP OUTPUT 463
SYSTEM COMPLETION CODE=047
TIME=10.53.47 SEQ=00419 CPU=0000 ASID=008E
PSW AT TIME OF ERROR 078D0000 98D09E52 ILC 2 INTC 6B
ACTIVE LOAD MODULE ADDRESS=18D08828 OFFSET=0000162A
NAME=SPECIALNAME

61819987 968995A2 A3618499 89A58599 */argoinst/driver*
F1F46D82 96858261 A4A29961 93979761 *14_boeb/usr/lpp/*
A6949889 61828995 61828997 89948189 *wmqi/bin/bipimai*
95 *n *

DATA AT PSW 18D09E4C - 58109948 0A6B5820 B8E95020
GPR 0-3 00000000 0000003C 00000000 00000000
GPR 4-7 18D10300 18D115F0 00000013 00000004
GPR 8-11 18D111CF 18D101D0 18D0BBBE 18D0ABBF
GPR 12-15 98D09BC0 18D101D0 98D09E22 00000000

END OF SYMPTOM DUMP

v Explanation: System completion code 047 means that an unauthorized program
issued a restricted Supervisor Call (SVC) instruction. The diagnostic message
also indicates that the program in error was bipimain.

v Solution: When you install WebSphere Message Broker, issue the command
extattr +a bipimain from the bin directory of the installation path to give APF
authorization to program bipimain.

Error message BIP2228 is issued when you try to start a second broker on Linux
or UNIX:
Procedure

v Scenario: Error message BIP2228, which mentions semctl in the syslog, is
displayed when you try to start a second broker on Linux or UNIX.

v Explanation: This error typically indicates a permissions problem with a
semaphore used by WebSphere Message Broker. A semaphore is created when
the first broker starts after a reboot (or after an initial installation), and only
members of the primary group of the semaphore creator can access this
semaphore. This problem is a consequence of the UNIX System V IPC primitives
that are used by WebSphere Message Broker.
The BIP2228 message is logged by any broker that is started by a user who is
not a member of the primary group of the semaphore creator. The broker tries to
access the semaphore, but fails with a permissions-related error. The broker then
terminates with the BIP2228 message.

v Solution: Avoid this problem by ensuring that all user IDs used to start
WebSphere Message Broker have the same primary group. If this action is
impractical, ensure that all user IDs are members of primary groups of all other
user IDs. Contact your IBM Support Center for further assistance.

MQIsdp client connection is refused by the broker:
Procedure

v Scenario: When a new MQIsdp client tries to connect to the broker, its
connection is refused.

v Explanation: MQIsdp Client ID fields must be unique. If a client sends a CONN
packet that contains the same Client ID as a currently connected client, the
behavior is undefined.

v Solution: Ensure that Client IDs are unique.

Chapter 13. Troubleshooting and support 3375

Error messages BIP2604 and BIP2624 are issued when you start a broker or a
new message flow:
Procedure

v Scenario: The following messages are written to the USS syslog on z/OS when
your execution group, or a newly deployed or started message flow, fails to
start:

(PMQ1BRK.default)[8]BIP2624E: Unable to connect to queue manager ’PMQ5’:
MQCC=2; MQRC=2025; message flow node ’ComIbmMQConnectionManager’

(PMQ1BRK.default)[8]BIP2604E: Node failed to open WebsphereMQ queue
’INPUT1’ owned by queue manager ’PMQ5’: completion code 2; reason code 2025

v Explanation: The WebSphere MQ return code of 2025 indicates that the
maximum number of concurrent connections has been exceeded. On z/OS, a
typical cause of this problem is the setting for IDBACK in the WebSphere MQ
CSQ6SYSP macro.

v Solution: See the z/OS System Setup Guide section of the WebSphere MQ Version
7 Information Center online for information about setting the IDBACK variable.

When you start the broker through the DataFlowEngine, it cycles continually:
Procedure

v Scenario: When you start the broker through the DataFlowEngine, it continually
cycles, starts and stops, and errors BIP2801 and BIP2110 appear in the log:

Unable to load implementation file ’/opt/IBM/DistHu b/v2/lib/libdhbNBIO.so’,
rc=The file access permissions do not allow the specified action.
Message broker internal program error.

v Explanation: The permissions on /opt/IBM have a value of 700, meaning that the
broker service user ID cannot read the disthub files.

v Solution: Set the permissions on /opt/IBM to 755, which is rwxr-xr-x.

You have changed your logon password and cannot start your broker on
Windows:
Procedure

v Scenario: You have changed your logon password on Windows, and when you
start the broker, you see the following error message:

BIP8026E: It was not possible to start the component.
The component could not be started using the service user ID that was supplied when
the component was created. Ensure that the service user ID and password are still
valid. Ensure that the service user ID has permission to access all of the products
directories, specifically the ’bin’ and ’log’ directories. Check for system
messages (on Windows this would be the application event log).

v Solution: Change properties of your broker by completing the following steps:
1. Change your broker by using the command:

mqsichangebroker brokername -i ServiceUserID -a ServicePassword

For example, to change your logon password to user1pwd for user ID user1
on the broker called WBRK_BROKER, use the following command:
mqsichangebroker WBRK_BROKER -i user1 -a user1pwd

2. Restart your broker.

Broker on Windows platform fails to start with message BIP2818 and an abend:
Procedure

v Scenario: You have more than one broker defined on a single Windows
computer, and your brokers use different service user IDs. You can start brokers
that share a common service user ID, but if you try to run a broker with a
different service user ID at the same time you see BIP2818 message in Event

3376 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Viewer saying “Failed to create semaphore”. An abend file is also created
(message BIP2110). The abend shows function CreateMutexW and err no 17.

v Explanation: On Windows computers, brokers that run on the same computer
must all use the same service user ID.

v Solution: Revise your broker configuration so that all brokers on a single
Windows computer run with the same service user ID.

The Java installation is at an incorrect level:
Procedure

v Scenario: You issue the command to start a broker, but the broker does not start
and the system log includes message BIP8892, for example:
Verification failed. The installed Java level 1.3.2 does not

meet the required Java level 1.5.

v Explanation: The command performs a check on the level of the Java product
installed on the computer to ensure that the Java product is at the required level.
The check has failed, therefore the broker is not started.

v Solution:

– On distributed systems, you must use the JVM that is supplied with the
broker; no other Java product is supported. Check that you have run
mqsiprofile, or (on Windows only) that you issued the mqsistart command
from the correct command console.
If you ran the profile command, check the settings of the environment
variables in mqsiprofile; MQSI_JREPATH, PATH, and the appropriate library
path environment variables for your operating system. Change these settings
to point to the integrated JVM, and ensure that no other Java installation is in
the path.

– On z/OS, install the correct level of Java that is reported in this message,
update the broker profile BIPBPROF and submit BIPGEN to refresh the
component ENVFILE.

Authorization errors are reported on z/OS:
Procedure

v Scenario: You issue the command to start a broker, but the component does not
start and the JOBLOG includes message BIP8903, for example:

Verification failed. The APF Authorization check failed
for file ’/usr/lpp/mqsi/bin/mqsireadlog’.

WebSphere Message Broker requires that only bipimain is APF Authorized
for successful operation. File ’/usr/lpp/mqsi/bin/mqsireadlog’
fails that requirement.

If the file indicated in the message is bipimain, use the USS command
extattr to ensure that it is APF Authorized.

If the file indicated in the message is not bipimain, use the USS
command extattr to ensure that it is not APF Authorized.

For more information, search the information center for "APF attributes".

v Explanation: When you start a broker, a series of checks is made to ensure that
the broker environment is set up correctly. One or more of the checks for the
broker identified in the message has failed, therefore the broker is not started.
The errors shown here indicate that the authorizations for some files are
incorrect and incompatible with broker operation.
The broker requires that a single file, bipimain, is APF authorized, but the
checks indicate that the authorization for file mqsireadlog is incorrect.

v Solution: The file bipimain must be APF authorized, and all other files must not
have that authorization. Make the required changes to authorization for the files
that are identified in the error messages and try the operation again.

Chapter 13. Troubleshooting and support 3377

Error message BIP8875 is issued when you start a broker:
Procedure

v Scenario: You issue the mqsistart command to start a broker, but the broker
does not start and the system log shows message BIP8875, for example:

The component verification for MB7BROKER has finished,
but one or more checks failed.

v Explanation: The command performs a series of checks to ensure that the broker
environment, WebSphere MQ queues, and Java are correct and accessible. One
or more of the checks for the broker identified in the message has failed,
therefore the broker is not started.

v Solution: Look in the system log, or in the Application log in the Event Viewer
on Windows. Additional messages have been written before this message to
indicate which checks have failed. All the checks are performed every time you
issue mqsistart, therefore all errors are included in the log. Some messages are
also returned when you run the command from the command line.
Investigate the one or more errors that have been reported and check return
codes and additional details. Look at the complete message content to check for
typical causes of the error, and follow the advice given for the messages that
you see in the log. View the complete message text in the Diagnostic Messages
reference topics.
For example, you might see one or more of the following messages:
– BIP8875W: The component verification for 'component_name' has finished, but

one or more checks failed.
– BIP8877W: The environment verification for component 'component_name' has

finished, but one or more checks failed.
– BIP8883W: The WebSphere MQ verification for component 'component_name'

has finished, but one or more checks failed.
– BIP8885E: Verification failed. Failed to connect to queue manager

'queue_manager_name'. MQRC: return_code MQCC: completion_code

– BIP8887E: Verification failed for queue 'queue_name' on queue manager
'queue_manager_name' while issuing 'operation'. MQRC: return_code MQCC:
completion_code

– BIP8888E: Verification failed. Failed to disconnect from queue manager
'queue_manager_name'. MQRC: return_code MQCC: completion_code

– BIP8892E: Verification failed. The installed Java level 'level_installed' does not
meet the required Java level 'level_supported'.

– BIP8893E: Verification failed for environment variable 'variable_name'. Unable
to access file 'file_name' with user ID 'user_ID'. Additional information for IBM
support: data1 data2.

– BIP8895E: Verification failed. Environment variable 'variable_name' is incorrect
or missing.

– BIP8896E: Verification failed. Unable to access the registry with user ID
'user_ID'. Additional information for IBM support: data1 data2

– BIP8897E: Verification failed. Environment variable 'variable_name' does not
match the component name 'component_name'.

– BIP8903E: Verification failed. The APF Authorization check failed for file
'file_name'.

– BIP8904E: Verification failed. Failed to start file 'file_name' with return code
'return_code' and errno 'error_number'.

3378 WebSphere Message Broker Version 7.0.0.8

If you cannot resolve the problems that are reported, and you receive a message
such as BIP8893 that includes additional information, include these items in the
information that you provide when you contact IBM Service.

Warning messages BIP8288-BIP8297 are shown in the syslog when you start a
broker:
Procedure

v Scenario: Warning messages BIP8288-BIP8297 are shown in the syslog when you
start a broker on Linux and UNIX systems.

v Explanation: One or more problems were detected with the ODBC environment
on Linux and UNIX systems.
When you start a broker by using the mqsistart command, the mqsicvp
command is run automatically to check that the broker environment is set up
correctly. On Linux and UNIX systems, this command also verifies that the
ODBC environment is configured correctly. If the ODBCINI environment
variable is set, the mqsicvp command writes warning messages to the syslog in
the following situation:
– If the file to which the ODBCINI environment variable points does not exist,

or the broker does not have access to read it or write to it

If the environment variable ODBCUOINI is set, the mqsicvp command writes
warning messages to the syslog in the following situations:
– If the file that is referenced by the ODBCUOINI environment variable does

not exist, or the broker does not have access to read or write to the file
– If ODBCSYSINI is not set
– If the directory that is referenced by the ODBCSYSINI environment variable

does not contain a file called odbcinst.ini, or the broker does not have access
to read or write to this file

– If the IE02_PATH environment variable is not set
v Solution: Examine the warning messages in the syslog. To view more

information, run the mqsicvp command from the command line.

Broker startup on z/OS is very slow:
Procedure

v Scenario: The broker startup on z/OS takes many minutes, with an extended
time taken in loading the imbjplug2 .lil file.

v Explanation: When WebSphere Message Broker is run in a shared file system
sysplex environment, the LPAR that the broker started in does not necessarily
own the file system mount points that the broker uses. In this scenario all file
accesses have to pass through the coupling facility, which adversely affects
performance. During startup the broker accesses and reads many files, and loads
many Java class files. All these file operations are slowed, causing longer startup
times.

v Solution: For optimal startup performance, mount the directories that the broker
accesses in the LPAR in which the broker is started. In particular, mount the
WebSphere Message Broker installation directories locally. Mounting file systems
lists the directories that WebSphere Message Broker on z/OS needs on the file
system at run time; mount them locally for optimal performance.

Error messages AMQ7626 and BIP8048 are displayed when you try to start a
broker:
Procedure

v Explanation: You see these messages when using a broker on a queue manager
that is configured for global coordination with Oracle.

Chapter 13. Troubleshooting and support 3379

v Solution: Start the queue manager manually with the -si flag before starting the
broker.

:

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Resolving problems that occur when you start resources” on page 3371
Use the advice given here to help you to resolve common problems that can occur
when you start resources.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Checking APF attributes of bipimain on z/OS” on page 607
This task is part of the larger task of setting up your z/OS environment.
Related reference:
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Diagnostic messages
Diagnostic messages are listed in this section in numeric order, grouped according
to the component to which they relate.
Related information:

WebSphere MQ Version 7 Information Center online

Resolving problems when starting other resources
Advice for dealing with some common problems that can arise when you start
resources other than a broker.

About this task
v “Resources terminate during startup” on page 3381
v “Resources hang at startup on Windows” on page 3381
v “Error message BIP8048 is issued when you start a component” on page 3382
v “You experience problems with the default configuration” on page 3382
v “A "Not Found" error is issued when you click a link to a specific sample” on

page 3383
v “The Quick Tour is displayed as a blank window” on page 3383
v “Error message BIP0832 is issued on startup” on page 3383
v “Your execution groups restart repeatedly” on page 3383
v “You cannot tell whether startup is complete on z/OS” on page 3384
v “Abend code 0C1 is issued when you try to start the DataFlowEngine on z/OS”

on page 3385
v “Error message BIP2604 with return code MQRC_CONNTAG_IN_USE is issued during

the start of a message flow on z/OS” on page 3385

3380 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v “After creating or changing a configurable service, you restart your broker but
your message flow does not start, and message BIP2275 is issued in the system
log or Windows Event Viewer” on page 3386

v “A device allocation error is issued” on page 3387
v “Windows Vista and Windows Server 2008 fail to recognize WebSphere Message

Broker digital signatures: "Unknown Publisher"” on page 3387
v “The create command fails, and error message BIP8022 is issued” on page 3388
v “Your execution group restarts repeatedly with a JVM Startup failure” on page

3388

Resources terminate during startup:
Procedure

v Windows Scenario: The following error message is displayed when you start a
broker on Windows:
ServiceName - DLL initialization failure Initialization of the
dynamic link library c:\windows\system32\user32.dll failed.
The process is terminating abnormally.

v Explanation: This error is issued by Windows when it fails to start a service
because it has insufficient storage.

v Solution: This error is an operating system problem. Information about how to
recover from this problem is available in the Microsoft Developer Network
(MSDN). You can access MSDN on the Web at http://msdn.microsoft.com.

Resources hang at startup on Windows:
Procedure

v Windows Scenario: You try to start the broker on Windows, but nothing
happens in the Event log to show that a connection has started.

v Explanation: This problem is typically caused by processes having only one
thread. To see if this is the cause, check the Windows Task Manager. If either of
the processes bipconfigmgr.exe or dataflowengine.exe has started, check the
number of threads owned by the process. If the process has only one thread, you
are likely to encounter this problem.

v Solution:

1. Shut down the broker using the mqsistop command and end the process
from within the Task Manager.

2. From the Windows Start button, click Settings > Control Panel

3. Double-click Administrative Tools

4. Double-click Services to open the Services window. From the list of available
services, locate and right-click the broker resource you are attempting to start
(the service name begins with IBM WebSphere Message Broker component).
Click Properties from the menu.

5. Make a note of the This Account setting. Contact the system administrator to
obtain the password associated with This Account, because these settings are
lost when you change values.

6. Select System Account as the Log On As option, and select Allow Service to
Interact with Desktop. These selections allow you to see any hidden dialog
messages. Click OK to accept the changes.

7. Restart the resource that is failing and report any subsequent error messages
and dialog box messages to your IBM Service Representative.

Chapter 13. Troubleshooting and support 3381

8. When your IBM Service Representative has resolved this problem for you,
make sure that you restore the This Account, Password, and Confirm
Password entries to the values that you used when you created the broker.

Error message BIP8048 is issued when you start a component:
Procedure

v Scenario: Error message BIP8048 is issued when you start a component.
v Explanation: This message indicates that WebSphere MQ is not responding as

expected when it tries to start the queue manager. This problem might be
because the strmqm executable file is not present on UNIX or Linux systems, or
the amqmdain executable file is not present on Windows, or permissions are
incorrect.

v Solution: Check that your WebSphere MQ installation is fully functional:
– On Windows, start the "IBM MQSeries" service.
– On UNIX or Linux, issue the strmqm command to start the queue manager

that is associated with this component.
If the check fails, your WebSphere MQ installation is incomplete. This error
occurs typically because you have previously installed WebSphere Application
Server, which installs an embedded WebSphere MQ component that does not
support WebSphere Message Broker.
Uninstall WebSphere Application Server, then install the full WebSphere MQ
product that is provided with WebSphere Message Broker.

You experience problems with the default configuration:
Procedure

v Scenario: You have run the Default Configuration wizard but there are problems
with the default configuration.

v Solution: Use the Default Configuration wizard to remove the default
configuration.
If the Default Configuration wizard does not remove the default configuration
completely, a wizard failure window opens with instructions on where to find
the log. Take the following steps:
1. Follow any advice that is given in the Default Configuration wizard log and

try each step again.
2. If retrying fails, restart the computer and run the Default Configuration

wizard again.
3. If the wizard still does not remove the default configuration, remove each

component manually by performing the following actions in the order
shown:
a. Issue the following commands to find out which components are

installed:
– mqsilist (lists the brokers)
– dspmq (lists WebSphere MQ components: the queue manager)

b. In the WebSphere Message Broker Toolkit, delete the connection file
LocalDomain.broker from the project LocalProject.

c. In the WebSphere Message Broker Toolkit, delete the project LocalProject.
d. Stop the default broker by issuing the command:

mqsistop MB7BROKER

e. Delete the default broker by issuing the command:
mqsideletebroker MB7BROKER -w

3382 WebSphere Message Broker Version 7.0.0.8

The -w parameter deletes all files related to this broker from the
associated work path.

f. If you need to remove the queue manager manually, issue the following
commands:
endmqlsr -w -m MB7QMGR
endmqm -i MB7QMGR
dltmqm MB7QMGR

4. If you still experience problems after removing the default configuration
manually, contact your IBM Support Center.

A "Not Found" error is issued when you click a link to a specific sample:
Procedure

v Scenario: You see a "Not Found" error when you click a link to a specific
sample, indicating that a URL is invalid.

v Explanation: You can view sample applications only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit. If you are viewing a stand-alone or online information center, you
cannot access these resources.

v Solution: If you want to access samples, ensure that you are viewing the
information center from within the WebSphere Message Broker Toolkit.

The Quick Tour is displayed as a blank window:
Procedure

v Scenario: The Quick Tour is displayed as a blank window.
v Explanation: The Quick Tour requires Adobe Flash Player (was Macromedia

Flash Player) Version 7, and is displayed as a blank window if the Adobe Flash
Player plug-in is not installed or is at the wrong level on the default browser.

v Solution: Download the Adobe Flash Player by using one of the following
methods:
– Follow the link at the bottom of the Quick Tour page.
– Select the specific Adobe Flash Player for your operating system and browser

from the Adobe Flash Player download page.

Error message BIP0832 is issued on startup:
Procedure

v Scenario: The following error message is displayed on startup:
BIP0832E: A class java.io.FileNotFoundException exception occurred which
reported the following message: [filepath] (The process cannot access the
file because it is being used by another process). Resolve the reason of
error and try again.

v Explanation: An invalid WebSphere MQ Java Client trace output file has been
specified on the Enqueue preferences screen.

v Solution:

1. Open the Enqueue preferences screen by clicking Windows > Preferences,
then clicking Enqueue on the left.

2. In the To file field, specify a valid output file (one that is not read-only or
already in use).

Your execution groups restart repeatedly:
Procedure

v Scenario: Your execution groups restart repeatedly. The system log might show
an error, such as BIP2060.

Chapter 13. Troubleshooting and support 3383

http://www.adobe.com/products/flashplayer/

v Explanation: The problem might be caused by:
– The broker environment variables incorrectly defined
– Incorrect Loadable Implementation Library directory permissions
– Incorrect database permissions
– Invalid user-written LILs

v Solution: Check:
– Environment variables as described in “Environment variables after

installation” on page 3642
– File and directory permissions as described in “Checking the permission of

the installation directory” on page 606
– Group memberships as described in “Execution groups” on page 53 and

“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937

You cannot tell whether startup is complete on z/OS:
Procedure

v Scenario: You cannot tell whether startup has completed on your z/OS system.
v Solution: To determine if startup is complete:

1. Check the messages in the system log. The following example shows a
system log entry for a startup of a broker with one execution group:
S STU3053
$HASP100 STU3053 ON STCINRDR
IEF695I START STU3053 WITH JOBNAME STU3053 IS ASSIGNED TO USER STU3
, GROUP STCGROUP
$HASP373 STU3053 STARTED
+(broker53) 0 BIP9141W: The component was started.
+(broker53) 0 BIP2001I: The WebSphere Business Integration Message Broker
service has started
process ID 33554919.
+(broker53.default) 0 BIP2201I: Execution Group started: process ’67109
442
196’; thread ’0’; additional information ’broker53’, ’76eb7f2d-e800-00
00-0080-974c271866d2’, ’default’, ’true’, ’Q4A3’, ’false’, ’ARG5D651’,
’ARGO53’, ’********’, ’false’, ’f9c27f2d-e800-0000-0080-974c271866d2’
, ’/local/argo/driver/drv3’, ’/local/argo/tgrp53/broker53’.
+(broker53.default) 0 BIP9137I: A work manager has been registered by R
443
RMS registration services, work manager name is BIP.STU30532.006710919
6.IBM.UA .

2. Display the address spaces. The following example shows the display of a
broker with one execution group:
D OMVS,U=STU3
BPXO040I 18.49.59 DISPLAY OMVS 446
OMVS 000E ACTIVE OMVS=(68,05)
USER JOBNAME ASID PID PPID STATE START CT_SECS
STU3 STU30531 0069 33554696 33554919 HR 18.49.15 2.217

LATCHWAITPID= 0 CMD=bipbroker broker53
STU3 STU30532 03FD 67109196 67109222 HR 18.49.23 19.816

LATCHWAITPID= 0 CMD=DataFlowEngine broker53 76eb7f2d-e800-00
STU3 STU3053 0036 33554768 83886483 HRI 18.49.08 .653

LATCHWAITPID= 0 CMD=bipservice Q4A3BRK AUTO
STU3 STU30532 03FD 67109222 33554696 1W 18.49.23 19.816

LATCHWAITPID= 0 CMD=bipimain DataFlowEngine broker53 76eb7f2
STU3 STU3053 0036 83886483 1 1WI 18.49.08 .653

LATCHWAITPID= 0 CMD=/local/argo/driver/drv3/bin/bipimain bip
STU3 STU30531 0069 33554919 33554768 1W 18.49.15 2.217

LATCHWAITPID= 0 CMD=bipimain bipbroker broker53

3384 WebSphere Message Broker Version 7.0.0.8

Results

The infrastructure main program bipimain is the first process in every address
space. It starts bipservice, bipbroker, or DataFlowEngine as the second process in
the same address space. For each execution group, an additional address space is
started. In this example, only one execution group is available.

Abend code 0C1 is issued when you try to start the DataFlowEngine on z/OS:
Procedure

v Scenario: The first two WebSphere Message Broker address spaces start
successfully, but the third address space (the DataFlowEngine) fails to start. The
result is an 0C1 abend.

v Explanation: The DataFlowEngine address space is generated by the admin
agent. If the region size is too small, either because an insufficient region size
was specified in the procedure, or because the region size was overridden by the
z/OS IEFUSI exit, the DataFlowEngine address space might fail to start, and
fails with an 0C1 abend.

v Solution:

1. Use the IPCS command on the dump (move the dump from the file system
to a traditional MVS data set if required):
verbx vsmdata,’noglobal,jobname(vcp0brk2)’

where vcp0brk2 is the name of the failing job.
2. Find the string ’VSM LOCAL DATA AREA AT ADDRESS ’. The field ELIM gives

the available region size and must be greater than 0C800000. If the field
SMFEL is not ffffffff, the IEFUSI exit has changed the allowable region
size. This value must also be greater than 0C80000.

3. If you have an IEFUSI exit, check that the exit does not limit the broker
address spaces. For example, a commonly used field is OUCBSUBN. This
field can be STC or OMVS for the broker, and indicates how the address
space was started.

Error message BIP2604 with return code MQRC_CONNTAG_IN_USE is issued during
the start of a message flow on z/OS:
Procedure

v Scenario: Error message BIP2604 is issued with return code
MQRC_CONNTAG_IN_USE during the start of a message flow on z/OS:
BIP2604E: Node failed to open WebSphere MQ queue [queue name]
owned by queue manager [queue manager name]

This message is output every 30 minutes.
v Explanation: On z/OS, WebSphere MQ supports serialized access to shared

resources, such as shared queues, through the use of a connection tag
(serialization token) when an application connects to a queue manager that
participates in a queue sharing group.
In this case, a message flow node fails to connect to the indicated WebSphere
Message Broker queue manager that is associated with the input queue, because
the serialization token that it passed is already in use within the queue sharing
group.
This message is for information only. It indicates that serialization is occurring
when two or more message flow input nodes try to connect to a queue manager
to get messages from a shared queue.

Chapter 13. Troubleshooting and support 3385

v Solution: Check whether another instance of the message flow, or a flow using
the same serialization token, is already running. If so, no further action is
needed. Otherwise contact your IBM Support Center.

After creating or changing a configurable service, you restart your broker but
your message flow does not start, and message BIP2275 is issued in the system
log or Windows Event Viewer:
Procedure

v Scenario: After creating or changing a configurable service, you restart your
broker but your message flow does not start, and message BIP2275 is issued in
the system log or Windows Event Viewer, indicating that an error occurred
while loading the message flow from the persistent store.

v Explanation: When you change or create the configurable service, the connection
properties are not fully validated at that point; the broker does not attempt to
use them to make a connection. For inbound adapters, the connection is made
only when the broker is restarted. Therefore, the properties that you set on the
configurable service might be invalid.

v Solution: Look at the messages following the BIP2275 message to determine if
the message flow failed to start because of invalid connection properties. For
example, in SAP you would see message BIP3414 with a reason such as:
Connect to SAP gateway failed
Connect_PM GWHOST= invalidhost.test.co, GWSERV=sapgw00, ASHOST= invalidhost.test.co,

SYSNR=00
LOCATION CPIC (TCP/IP) on local host
ERROR partner not reached (host invalidhost.test.co, service 3300)
TIME Fri Nov 28 15:27:32 2008
RELEASE 640
COMPONENT NI (network interface)
VERSION 37
RC -10
MODULE nixxi_r.cpp
LINE 8728
DETAIL NiPConnect2
SYSTEM CALL SiPeekPendConn
ERRNO 10061
ERRNO TE’

followed by a BIP3450 message with an adapter error message such as:
Connect to SAP gateway failed
Connect_PM GWHOST= invalidhost.test.co, GWSERV=sapgw00, ASHOST= invalidhost.test.co,

SYSNR=00
LOCATION CPIC (TCP/IP) on local host
ERROR partner not reached (host invalidhost.test.co, service 3300)
TIME Fri Nov 28 15:27:32 2008
RELEASE 640
COMPONENT NI (network interface)
VERSION 37
RC -10
MODULE nixxi_r.cpp
LINE 8728
DETAIL NiPConnect2
SYSTEM CALL SiPeekPendConn
ERRNO 10061
ERRNO TE

This error was detected by the adapter. The following message describes the
diagnostic information that is provided by the adapter:
Connect to SAP gateway failed
Connect_PM GWHOST= invalidhost.test.co, GWSERV=sapgw00, ASHOST= invalidhost.test.co,

SYSNR=00

3386 WebSphere Message Broker Version 7.0.0.8

LOCATION CPIC (TCP/IP) on local host
ERROR partner not reached (host invalidhost.test.co, service 3300)
TIME Fri Nov 28 15:27:32 2008
RELEASE 640
COMPONENT NI (network interface)
VERSION 37
RC -10
MODULE nixxi_r.cpp
LINE 8728
DETAIL NiPConnect2
SYSTEM CALL SiPeekPendConn
ERRNO 10061
ERRNO TE

This message suggests that the applicationServerHost and gatewayHost
properties are incorrect. When you have determined which properties are
incorrect, use the mqsichangeproperties command to correct the properties, or
use the mqsideleteconfigurableservice command to revert to the properties
that were deployed in the adapter. Restart the broker.

A device allocation error is issued:
Procedure

v Scenario: A device allocation error is issued.
v Explanation: A likely cause of this problem is that you do not have the correct

permissions set on the component file system for the started task ID.
v Solution: Check the system log; if the problem is caused by having incorrect

permissions set for the started task ID, you often see an RACF authorization
failure message, as shown in the following example.
ICH408I USER(TASKID1) GROUP(TSOUSER) NAME(FRED (FRED) 959
/argo/MA11BRK/ENVFILE
CL(DIRSRCH) FID(01D7C7E2E3F0F8000F16000000000003)
INSUFFICIENT AUTHORITY TO LOOKUP
ACCESS INTENT(--X) ACCESS ALLOWED(OTHER ---)

IEE132I START COMMAND DEVICE ALLOCATION ERROR
IEA989I SLIP TRAP ID=X33E MATCHED. JOBNAME=*UNAVAIL, ASID=00A8.
D J,BPXAS
IEE115I 11.13.04 2001.212 ACTIVITY 601

In this example, the started task ID does not have access to the file system
component. The ICH408I message shows:
– The file that the task is trying to access
– The user ID that is trying to access the file
– The permissions that the ID is expecting to have (INTENT in the message)
– The permissions that the ID actually has (ALLOWED in the message)
You can use this information to correct the permissions, then reissue, in this
example, the start broker request. This type of message is produced if the user
who is issuing the command (which might be to start the broker, or to submit
JCL to start one of the utility jobs) does not have the correct file system
permissions for the file system component. Use the ICH408I information to
rectify the problem.
Another possible reason for authorization failures is inconsistencies in the RACF
definitions for a user ID in the MVS image and the OMVS segment. Also check
with your system administrator that the RACF ID that is used on MVS has a
corresponding OMVS image created.

Windows Vista and Windows Server 2008 fail to recognize WebSphere Message
Broker digital signatures: "Unknown Publisher":

Chapter 13. Troubleshooting and support 3387

Procedure

v Scenario: User A installs WebSphere Message Broker, and can run all programs
(mqsi*.exe, bip*.exe, including the command console launcher). User B is
created and given appropriate privileges. When User B runs an executable file
such as the command console launcher, a window opens and reports that the
executable file is from an unidentified publisher.

v Explanation: The operating system has not installed the appropriate digital
certificates for User B.

v Solution: User B must manually install the certificates:
1. In Windows Explorer, navigate to the bin directory for the WebSphere

Message Broker installation; for example, on 32-bit systems, C:\Program
Files\IBM\MQSI\7.0\bin

2. Right-click any .exe file to open the Properties window.
3. Click the Digital Signatures tab.
4. Select the appropriate certificate from the list, then click Details. The Digital

Signature Details window is displayed.
5. Click View Certificate. The Certificate window is displayed.
6. Click Install Certificate and complete the steps in the wizard. (Click Next,

Next, Finish, then click OK.)
7. Close the Certificate window. You return to the Digital Signature Details.
8. Select the countersignature from the list, then click the Details button. A new

Digital Signature Details window is displayed. You can repeat the preceding
steps to install other certificates.

The create command fails, and error message BIP8022 is issued:
Procedure

v Scenario: Error message BIP8022 is displayed when you use the
mqsicreatebroker command on Windows, even if the supplied user name and
password are correct.

v Explanation: The Microsoft component "Shared File and Printer Services" is
required.

v Solution: Correct this error by installing the "Share File and Printer for Microsoft
network" service on the Windows system.

Your execution group restarts repeatedly with a JVM Startup failure:
Procedure

v Scenario: When you start the DataFlowEngine it continually starts and stops,
displaying errors BIP2116E and BIP7409S in the log:
BIP2116E: Message broker internal error: diagnostic information ’Fatal Error; exception thrown before initialisation completed’, ’JVM Startup’
BIP7409S: The broker was unable to create a JVM. The return code indicates that an unrecognized option was passed in to it.

v Explanation: When you start an execution group, it creates a Java virtual
machine (JVM) for executing Java user-defined nodes, and its creation failed due
to an incorrect JVM option.

v Solution: Correct the JVM option by completing the following steps:
1. Stop the broker.

mqsistop brokerName

2. Check the jvmSystemProperty value of the failing execution group.
mqsireportproperties brokerName -e egName -o ComIbmJVMManager -n
jvmSystemProperty -f

3. If the jvmSystemProperty has an invalid option, correct or reset its value.

3388 WebSphere Message Broker Version 7.0.0.8

mqsichangeproperties brokerName -e egName -o ComIbmJVMManager -n
jvmSystemProperty -v "" -f

4. Start the broker.
mqsistart brokerName

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Resolving problems that occur when you start resources” on page 3371
Use the advice given here to help you to resolve common problems that can occur
when you start resources.
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Checking APF attributes of bipimain on z/OS” on page 607
This task is part of the larger task of setting up your z/OS environment.
Related reference:
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.

Resolving problems that occur when migrating or importing
resources

Use the advice given here to help you to resolve common problems that can occur
when you import or migrate resources.

About this task

Migration information is regularly updated on the WebSphere Message Broker
support web page with the latest details available. Click Troubleshoot, then look
for a document with a title like "Problems and solutions when migrating".

Procedure
v “Resolving problems when migrating or importing message flows and message

sets” on page 3390
– “Message flows that refer to a migrated user-defined node have connection

errors” on page 3390
– “After migration, message flows cannot locate a user-defined node” on page

3390
– “A message flow fails with exception BIP5027” on page 3390

Chapter 13. Troubleshooting and support 3389

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

v “Resolving problems when migrating or importing other resources” on page
3391
– “The mqsimigratecomponents command fails with database error BIP2322” on

page 3391
– “The File > Import menu provides only the option to import a compressed

file inside an existing project” on page 3391
Related tasks:
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
Related reference:
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Resolving problems when migrating or importing message flows
and message sets
Use the advice given here to help you to resolve common problems that can occur
when you import or migrate message flows and message sets.

Message flows that refer to a migrated user-defined node have connection
errors:
Procedure

v Scenario: After migration, all message flows that refer to a migrated
user-defined node have errors indicating that connections cannot be made.

v Explanation: One possible cause is that the original user-defined node had space
characters as part of one or more terminal names. The spaces are wrongly
rendered as 'X20'.

v Solution: Edit the user-defined node .msgnode file, which is available in the
same project as the flows that you have migrated. Correct any terminal names
that are at fault. Ensure that the names are exactly as the broker node
implementation expects.

After migration, message flows cannot locate a user-defined node:
Procedure

v Scenario: After migration, message flows cannot locate a user-defined node.
v Explanation: One possible cause is that the flows do not have the correct

reference internally to a user-defined node.
v Solution: Select the Locate subflow menu for the node that cannot be located.

Using the Browse dialog box, locate the user-defined node (which is in the same
project as migrated flows). The message flow now links to the user-defined node
correctly and the task list entry is removed when you save the flow.

A message flow fails with exception BIP5027:
Procedure

v Scenario: You have migrated a message flow from Version 6.0 to Version 7.0.
When you deploy and run the message flow on a Version 7.0 broker, it generates
message BIP5027 and throws an exception.

v Explanation: You have set the Validate property on one or more nodes in the
message flow. In Version 6.0, the XMLNSC parser ignores the Validate property
setting, but in Version 7.0, it honors the setting. Because you set this property to
Content or Content And Value, the parser tries to validate the message against

3390 WebSphere Message Broker Version 7.0.0.8

the message set defined by the Message Set property on the node. The
validation fails, and the message flow generates an exception.

v Solution: Set the Validate property of the node to None and redeploy the
relevant BAR file.
For more information about changes in behavior after migration, see “Reviewing
technical changes in Version 7.0” on page 205.

Resolving problems when migrating or importing other
resources
Use the advice given here to help you to resolve common problems that can arise
when you import or migrate resources other than message flows.

About this task
v “The mqsimigratecomponents command fails with database error BIP2322”
v “The File > Import menu provides only the option to import a compressed file

inside an existing project”
v “COBOL compiler errors when importing a copybook” on page 3392

The mqsimigratecomponents command fails with database error BIP2322:
About this task

Procedure

v Scenario: The mqsimigratecomponents command fails with database error
BIP2322: The 'CREATE TABLE' command is not allowed within a
multi-statement transaction in the 'BROKER1' database.

v Explanation: If you are using the mqsimigratecomponents command to migrate a
broker that uses a Sybase database, you must modify the database to enable the
Data Definition Language (DDL) that the command uses.

v Solution: Take the following steps:
1. Log on to ISQL using a system administrator account.
2. Run the following series of commands:

1> use master
2> go
1> sp_dboption "BROKER1","ddl in tran",TRUE
2> go
Database option ’ddl in tran’ turned ON for database ’BROKER1’.
Run the CHECKPOINT command in the database that was changed.
(return status = 0)
1> use BROKER1
2> go
1> checkpoint
2> go

where BROKER1 is the name of the Sybase broker database.

The File > Import menu provides only the option to import a compressed file
inside an existing project:
Procedure

v Scenario: You have a compressed file that contains message set projects and
message flow projects. When you click File > Import, you have only the option
to import the compressed file inside an existing project, but you want to
re-create the message set projects and message flow projects.

Chapter 13. Troubleshooting and support 3391

v Solution: When you export and import files, do not export or import the root
directory, which is created for you because of the project file. When you export
your message flow and message set projects:
1. Click Create only selected directories.
2. Clear the project root folder.
3. Select the files and subdirectories as required. The project root folder is

selected, but is displayed as gray.

Then, when you import the compressed file:
1. Clear the root (/) folder.
2. Select the files and subfolders as required. The project root folder is selected,

but is displayed as gray.

COBOL compiler errors when importing a copybook:
Procedure

v Scenario: The report file that is generated by the import contains COBOL
compiler errors. For example, you try to import the following copybook:

01 AIRLINE-REQUEST.
....05 CUSTOMER.
........10 NAME................PIC X(45).
....05 ADDRESS.
........10 STREET.............PIC X(30).
........10 CITY.................PIC X(25).
........10 STATE...............PIC X(20).
........10 ZIP-CODE.........PIC X(5).
....05 FLIGHT-NO............PIC X(6).
....05 TRAN-DATE...........PIC X(10).
....05 COST....................PIC X(7).
....05 CC-NO..................PIC X(20).
....05 RESPONSE.
........10 STATUS.............PIC X(100).
........10 DETAILS............PIC X(100).

The report file contains errors:
Line No : 4 IGYDS1089-S "ADDRESS" was invalid. Scanning was resumed at the next area "A" item, level-number, or the start of the next clause.
Line No : 14 IGYDS1089-S "STATUS" was invalid. Scanning was resumed at the next area "A" item, level-number, or the start of the next clause.

v Explanation: The errors are caused by the copybook containing field names that
are COBOL reserved keywords.

v Solution: Change the name of the fields in question, so that they are not COBOL
reserved keywords, and retry the import.

Related tasks:
“Resolving problems when migrating or importing message flows and message
sets” on page 3390
Use the advice given here to help you to resolve common problems that can occur
when you import or migrate message flows and message sets.
Related reference:
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Resolving problems when stopping resources
Use the advice given here to help you to resolve problems when you stop
resources.

3392 WebSphere Message Broker Version 7.0.0.8

About this task

Procedure
v “You cannot stop the broker”
v “You cannot stop the broker queue manager”
v “The execution group ends abnormally”

You cannot stop the broker
Procedure
v Scenario: You run the mqsistop command to stop the broker, but the system

freezes, and does not stop any of the execution groups.
v Explanation: One possible cause is that a message flow is being debugged and it

is currently stopped at a breakpoint. WebSphere Message Broker regards this as
a message in flight situation, and refuses to stop the broker through the normal
command.

v Solution: Click Stop debugging in the Broker Application Development
perspective of the WebSphere Message Broker Toolkit. After that operation has
completed, the broker stops.
If you cannot stop the debug session, end all execution group processes that are
associated with that broker to allow the broker to stop. Your messages are
backed out. Click Stop debugging after the broker restarts.

You cannot stop the broker queue manager
Procedure
v Scenario: You are trying to use the WebSphere MQ endmqm command to stop a

broker queue manager on a distributed system, but it does not stop.
v Explanation: In certain circumstances, attempting to stop a broker queue

manager does not cause the queue manager to stop. This situation can occur if
you have configured any message flows with multiple threads (you have set the
message flow property Additional Instances to a number greater than zero).

v Solution: If you want to stop the broker's queue manager, stop the broker by
running the mqsistop command and specifying the -q parameter. (The -q
parameter is not available on z/OS.) This command runs the WebSphere MQ
endmqm command on your behalf in a controlled fashion that shuts down the
broker and the queue manager cleanly.

The execution group ends abnormally
About this task

Procedure
v Scenario: Your execution group processes end abnormally.
v Explanation: When execution group processes end abnormally, they are restarted

automatically by the bipbroker process. If an execution group process fails, it is
restarted three times during each five-minute interval. The first five-minute
interval begins when the execution group is first started. RetryInterval defaults
to 5
Remove the execution group from the broker configuration, deploy the broker
configuration, then later add the execution group, and redeploy the broker
configuration. The row is re-created and RetryInterval is set to its default value
of 5.

v Solution: To change the default value:
1. Stop the broker.

Chapter 13. Troubleshooting and support 3393

2. Change the value of the RetryInterval in the database table.
3. Restart the broker.

Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Stopping a WebSphere MQ queue manager when you stop a broker” on page 929
If you are preparing to stop a broker, you can stop the broker's WebSphere MQ
queue manager at the same time.
Related reference:
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Resolving problems when deleting resources
Use the advice given here to help you to resolve problems when you delete
resources.

About this task

You cannot delete a project from your workspace
Procedure
v Scenario: You cannot delete a project from your workspace. You get error

messages indicating that the containing directory cannot be deleted, or the
project file is missing.

v Explanation: If you attempt to delete a project, and the directory that contains
the project is in use, or you have any files that are contained within the project
that have been opened by programs other than the WebSphere Message Broker
Toolkit, some of the resources in the project are not deleted, but others,
including the project file, might be deleted.

v Solution: Before you delete a project, make sure that other applications do not
have the files open, and that you do not have an open command prompt located
in the directory. To recover from this problem, manually delete any remaining
files and directories from your workspace directory, then click Delete from the
project in the WebSphere Message Broker Toolkit.

Related tasks:
“Deleting a broker” on page 930
Delete a broker using the command line on the system where the broker
component is installed.
“Deleting a message flow project” on page 1427
A message flow project is the container in which you create and maintain all the
resources associated with one or more message flows. These resources are created
as files, and are displayed in the project in the Broker Development view. If you do
not want to retain a message flow project, you can delete it.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

3394 WebSphere Message Broker Version 7.0.0.8

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

Resolving problems when developing message flows
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.

About this task
v “Resolving appearance problems when developing message flows”
v “Resolving problems when you use CORBA nodes” on page 3396
v “Resolving problems when you use Email nodes” on page 3398
v “Resolving ESQL problems when developing message flows” on page 3400
v “Problems when developing message flows with file nodes” on page 3402
v “Resolving problems when you use HTTP and SOAP nodes” on page 3407
v “Resolving implementation problems when developing message flows” on page

3409
v “Resolving problems when you use IMS nodes” on page 3419
v “Resolving mapping and message reference problems when developing message

flows” on page 3423
v “Resolving trace problems when developing message flows” on page 3427
v “Resolving problems when developing message flows with WebSphere Adapters

nodes” on page 3428
v “Resolving other problems when developing message flows” on page 3434

Resolving appearance problems when developing message
flows
This topic contains advice for dealing with some common appearance problems
that can arise when developing message flows:

The task list does not update when you make corrections to your files:
Procedure

v Scenario: The task list does not update any modifications that you make to an
ESQL or mapping file. You have made corrections to the files, and while there
are no error flags in the file or file icon, the error remains as a task list item.

v Solution: To work around this problem, set the following environment variable:
JITC_COMPILEOPT=SKIP{org/eclipse/ui/views/tasklist/TaskListContentProvider}
{resourceChanged}

You rename a flow that contains errors, but the task list entries remain:
Procedure

v Scenario: When you rename a message flow in the WebSphere Message Broker
Toolkit for which there are error icons (red crosses) displayed on nodes and
connections, those error icons are removed when changes are made. However,
the task list entries remain.

v Solution: Refresh the Message Flow editor by closing and reopening it.

Terminals on a subflow get out of sync as changes are made:

Chapter 13. Troubleshooting and support 3395

Procedure

v Scenario: You have a message flow that contains subflow nodes. The name or
number of terminals on the subflow gets out of sync when changes are made on
the subflow itself. The same problem can happen with promoted properties.

v Solution: Refresh the Message Flow editor by closing and reopening it. Close
the Message Flow editor that contains subflows while the subflows are being
changed.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Resolving problems when developing message flows” on page 3395
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.

Resolving problems when you use CORBA nodes
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.

Before you begin

WebSphere Message Broker does not currently support all CORBA operations and
types. Ensure that you are passing in a valid IDL file that contains supported
operations and types. For a full list of what is supported, see “CORBA support” on
page 2149. To ensure that the IDL file is valid, run it through an IDL parser.

About this task
v “Error message BIP4891 is issued when you include a CORBARequest node in a

message flow”
v “A CORBA IDL file drop error is issued when you are using an IDL file that

contains includes” on page 3397
v “Error message BIP4910 is issued during deployment when you are using an

IDL file that contains includes” on page 3397

Error message BIP4891 is issued when you include a CORBARequest node in a
message flow:

3396 WebSphere Message Broker Version 7.0.0.8

Procedure

v Scenario: You have created a message flow that contains a CORBARequest node,
but error message BIP4891 is issued, indicating that the node did not receive a
valid body.

v Explanation: This error message indicates that the CORBARequest node is trying
to call an operation but cannot find the required input parameters in the
incoming tree. WebSphere Message Broker uses the DataObject parser to read
and write message from CORBA applications. If you use an input node to pass
XML into the CORBARequest node, ensure that it uses the DataObject domain.

v Solution: Ensure that the incoming message has the correct structure. If you are
using an input node to pass XML into the CORBARequest node, set the Message
domain property on the Input Message Parsing tab of the input node to
DataObject.

A CORBA IDL file drop error is issued when you are using an IDL file that
contains includes:
Procedure

v Scenario: You have dragged a CORBA IDL file onto the canvas but a CORBA
IDL file drop error is issued.

v Explanation: If you have imported an IDL file that contains includes, you must
drag the top-level IDL file onto the canvas so that the CORBARequest node has
all the relevant information. Similarly, when setting properties on the
CORBARequest node, if you have imported an IDL file that contains includes,
you must select the top-level IDL file in the IDL file property.

v Solution: Drag the top-level IDL file onto the canvas, or set the IDL file
property on the CORBARequest node to the top-level IDL file.

Error message BIP4910 is issued during deployment when you are using an IDL
file that contains includes:
Procedure

v Scenario: You are deploying a message flow that contains a CORBARequest
node, but error message BIP4910 is issued.

v Explanation: This error is issued when you have imported an IDL file that
contains includes, but not all the included IDL files have been added to the BAR
file. For example, you might have dragged only the message flow onto the
execution group. If you have imported an IDL file that contains includes, you
must ensure that all the included IDL files are added to the BAR file so that all
the relevant information is available to the message flow.

v Solution: When you deploy a message flow that contains a CORBARequest
node and an IDL file that contains includes, ensure that all included IDL files are
added to the BAR file.
If you are dragging a message flow that uses a multifile IDL file onto an
execution group in the Broker Development perspective, included IDL files are
not deployed. To deploy message flows that use multifile IDL files, you must
create a BAR file.

Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet

Chapter 13. Troubleshooting and support 3397

Inter-Orb Protocol (IIOP) applications.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
Related tasks:
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
Related reference:
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

Resolving problems when you use Email nodes
Advice for dealing with common problems that can arise when you develop
message flows that contain Email nodes.

About this task
v “A negative email size displays in the local environment”
v “A parsing error displays when you reparse an email attachment as XML” on

page 3399
v “Removing unwanted null characters from an email” on page 3399

A negative email size displays in the local environment:
Procedure

v Scenario: The EmailInput node receives an email from an email server that
supports Post Office Protocol 3 (POP3) but the size of the email, including any
attachments, might display a negative value in the Root.EmailInputHeader.Size
Multipurpose Internet Mail Extensions (MIME) logical tree.

v Explanation: The email server provider that supports POP3 uses the TOP
command to fetch the headers for the email message and the LIST command to
determine the size of the entire message. The server then subtracts the two
values to determine the size of the message body. If the server reports the size of
the entire message incorrectly, you might see a negative number in the local
environment Size field.

v Solution: You can use a Compute node to calculate the size of the email
message and the size of any attachments. The following example ESQL can be
used to calculate the size of the email content and attachments for a multipart
MIME document. In this example, the result is stored in the LocalEnvironment:
DECLARE CURSOR REFERENCE TO InputRoot.MIME.Parts;

DECLARE I INTEGER 0;

FOR SOURCE AS CURSOR.Part[] DO
SET I = I + LENGTH(SOURCE.Data.BLOB.BLOB);

END FOR;

SET OutputLocalEnvironment.Variables.EmailSize = I;

For more information about messages that belong to the MIME domain, see
“Manipulating messages in the MIME domain” on page 2612.

3398 WebSphere Message Broker Version 7.0.0.8

A parsing error displays when you reparse an email attachment as XML:
Procedure

v Scenario: Your message flow retrieves emails from an email server by using an
EmailInput node. The email contains an XML document attachment that you
want to reparse. However, when you try to reparse the attachment you receive
parsing errors from WebSphere Message Broker reporting that you have an
invalid XML character.

v Explanation: Some email servers might insert carriage return (CR) and line feed
(LF) characters at the end of an email. Typically you would want to keep these
characters, but in this scenario you must remove them so that you can reparse
your XML data.

v Solution: Use the following ESQL in a Compute node to remove the CR and LF
characters:
DECLARE NEWEMAIL BLOB TRIM(TRAILING X’0d0a’ FROM InputRoot.
MIME.Data.BLOB.BLOB);

Removing unwanted null characters from an email:
Procedure

v Scenario: Your email attachment contains unwanted null characters that you
would like to remove.

v Explanation: Your email attachment might contain null characters that you
would like to remove; for example, you intend to reparse the data in the
attachment.

v Solution: Use the following ESQL in a Compute node to remove the null
characters:
DECLARE NEWEMAIL BLOB TRIM(TRAILING X’00’ FROM InputRoot.MIME.
Data.BLOB.BLOB)

Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Processing email messages” on page 1786
You can configure the EmailOutput node to deliver an email from a message flow
to an email server that supports Simple Mail Transfer Protocol (SMTP). You can
also configure the EmailInput node to retrieve an email from an email server that
supports Post Office Protocol 3 (POP3) or Internet Message Access Protocol
(IMAP).
“Sending emails” on page 1787
You can configure WebSphere Message Broker to send an email, with or without
attachments, to a static or dynamic list of recipients.
“Receiving emails” on page 1799
You can configure the EmailInput node to receive an email, with or without an
attachment, from an email server that supports Post Office Protocol 3 (POP3) or
Internet Message Access Protocol (IMAP).
Related reference:
“EmailInput node” on page 4394
Use the EmailInput node to retrieve an email, with or without attachments, from
an email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).

Chapter 13. Troubleshooting and support 3399

Resolving ESQL problems when developing message flows
This topic contains advice for dealing with some common ESQL problems that can
arise when developing message flows:

A Routine not defined error message is issued in ESQL when you move a
routine:
Procedure

v Scenario: A Routine not defined error message is displayed in ESQL when you
move a routine from one schema to another.

v Explanation: If a routine that was referenced by code in one schema is moved to
another schema, where it is still visible, a false error is generated stating that the
routine cannot be resolved.

v Solution: Clean the project by clicking Project > Clean.

The product fails to respond when you paste ESQL statements from Adobe
Reader:
Procedure

v Scenario: When you copy and paste certain ESQL statements from Adobe
Reader into the ESQL editor, WebSphere Message Broker stops responding.

v Explanation: This problem occurs when you paste text directly from Adobe
Reader into either the ESQL editor or the Java editor.

v Solution: To work around this problem, either enter the text manually, or copy
and paste it to a text editor (such as Notepad), then perform another copy and
paste action from there.

You do not know how message flows handle the code page of ESQL files:
Procedure

v Scenario: You do not know how message flows handle the code page of ESQL
files.

v Solution: The code page of an ESQL file is the code page of the WebSphere
Message Broker Toolkit on which the file is created. You must deploy a message
flow using an ESQL file on a WebSphere Message Broker Toolkit with the same
code page setting as the ESQL file. When multiple ESQL files are involved in a
single compiled message flow (.cmf) file, all these ESQL files must be in the
same code page.
See “Editor preferences and localized settings” on page 6793 for more
information.

You do not know the naming restrictions for ESQL procedures and functions:
Procedure

v Scenario: You do not know the restrictions for choosing names for ESQL
modules or schema scope ESQL and mapping procedures and functions.

v Solution: Module and schema scope procedures and functions cannot have
names starting with IBM_WBIMB_ because IBM_ is reserved for IBM use, and
IBM_WBIMB_ is reserved for WebSphere Message Broker.

Error message BIP5431 is issued and the broker fails:
Procedure

v Scenario: Error message BIP5431 is displayed and the broker fails.
v Explanation: When setting output message properties, you have specified an

incorrect physical format name for the message format.

3400 WebSphere Message Broker Version 7.0.0.8

v Solution: The name that you specify for the physical layer must match the name
that you have defined for it. The default physical layer names are Binary1, XML1
and Text1.

You are unable to call Java from ESQL:
Procedure

v Scenario: Your Java class files are not being found.
v Explanation: When creating the class files, you have not placed them in the

correct location within the system CLASSPATH.
v Solution: See the “CREATE PROCEDURE statement” on page 5103 for further

information.

Error message BIP3203 is issued: Format expression is not a valid FORMAT
expression for converting expression to type:
Procedure

v Scenario: Your format expression contains an unrecognized character for the
conversion.

v Explanation: Your format expression for a numeric conversion was used to
convert to or from a DATE, TIME, TIMESTAMP, GMTTIME or
GMTTIMESTAMP variable. Another possible explanation is that your format
expression for a DateTime conversion was used to convert to or from an
INTEGER, DECIMAL or FLOAT variable.

v Solution: Replace the format expression with one from the applicable types. For
more information about valid data types and expressions, see the “ESQL
reference” on page 5019 topic.

Error message BIP3204 is issued: Input expression does not match FORMAT
expression. Parsing failed to match:
Procedure

v Scenario: You have used an input string that does not match the format
expression.

v Explanation: Your format expression contains data that does not match the
current element of the format expression.

v Solution: Either rewrite the format expression to match the input data, or
modify the input data to match the format expression. For more information
about valid data types and expressions, see the “ESQL reference” on page 5019
topic.

The CAST function does not provide the expected DST offset for non-GMT time
zones:
Procedure

v Scenario: You are using the CAST function to convert a string to a TIME
variable, in a broker that is running in a time zone other than GMT. The
daylight saving time (DST) offset is not correctly calculated.

v Explanation: If no time zone is associated with the time string passed to CAST,
it is converted to GMT time. If no date is supplied, the current system date is
assumed.

v Solution: Specify the correct time zone and date. See “Formatting and parsing
dateTimes as strings” on page 5253 for more information.

Error message BIP3205 is issued: The use of a FORMAT expression is not
allowed when converting:

Chapter 13. Troubleshooting and support 3401

Procedure

v Scenario: You have used a format expression when it is not applicable, for
example when converting from decimal to integer.

v Explanation: The use of format expressions is limited to casting between
datetime and string values or numeric and string values. Your format expression
cannot be applied in this case.

v Solution: Either remove the FORMAT clause, or change the parameters. For
more information about valid data types and expressions, see the “ESQL
reference” on page 5019 topic.

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Resolving problems when developing message flows” on page 3395
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Accessing the Properties tree” on page 2460
The Properties tree has its own correlation name, Properties, and you must use this
in all ESQL statements that refer to or set the content of this tree.
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.

Problems when developing message flows with file nodes
Use the advice given here to help you to resolve some common problems that can
arise when you develop message flows that contain file nodes.

About this task
v “A file node flow stops processing files and error message BIP3331 or BIP3332 is

issued” on page 3403

3402 WebSphere Message Broker Version 7.0.0.8

v “During processing of a large file, error message BIP2106 is issued or the broker
stops because of insufficient memory”

v “Missing or duplicate messages after recovery from failure in a flow attached to
a FileInput node” on page 3404

v “No file is created in the output directory after FileOutput node processing” on
page 3405

v “Output file name overrides have not been applied” on page 3406

A file node flow stops processing files and error message BIP3331 or BIP3332 is
issued:
Procedure

v Scenario: Files in the specified input directory are not being processed. Error
message BIP3331 or BIP3332 is issued.

v Explanation: The error messages explain that the FileInput node encountered an
exception and could not continue file processing. This problem can be caused
when the FileInput node cannot move files from its input directory to the
archive or backout directory because of file system permissions or another file in
the target directory preventing the file to be transferred. In this situation, the
node is unable to process input files without losing data so processing stops.
Two messages are issued; the first is either BIP3331 or BIP3332 which specifies a
second message which describes the cause of the problem in more detail.

v Solution: If the first error message issued is BIP3331, stop the flow and resolve
the problem. The FileInput node is unable to complete successful processing of
the file.
1. Stop the flow.
2. Find the error message referenced in the BIP3331. This second error message

identifies the problem and the files and directories causing it.
3. Ensure the broker has the required access to these files and directories.
4. You might need to move, delete or rename files in the archive or transit

directories.
5. Check whether the input file causing the problem has been successfully

processed (except for being moved to the archive or backout directory). If it
has been successfully processed, remove it from the input directory.

6. Restart the flow.
If the first error message issued is BIP3332, you do not need to stop the flow
because the FileInput node has detected the problem before starting file
processing. Find the error message referenced in the BIP3332 message. This
second error message identifies the problem and the files and directories causing
it.

During processing of a large file, error message BIP2106 is issued or the broker
stops because of insufficient memory:
Procedure

v Scenario: Large input files cause the broker to issue messages, or stop, because
insufficient memory is available.

v Explanation: The FileInput node can process very large files. Subsequent
processing in the flow attached to its Out terminal might require more memory
than is available to the broker.

v Solution: In most cases, the FileInput node imposes a limit of 100 MB on the
records propagated to the attached flow. If your application needs to access large
amounts of data, you might need to increase its available memory and reduce
the number of available instances. See “Resolving problems with performance”
on page 3504

Chapter 13. Troubleshooting and support 3403

on page 3500 for more information. If your application needs to process
messages larger than 100 MB, you can override the FileInput node record size
limit by taking the following actions:
– Before starting the broker, set the environment variable

MQSI_FILENODES_MAXIMUM_RECORD_LENGTH to the required limit as
an integer number of bytes, for example:
SET MQSI_FILENODES_MAXIMUM_RECORD_LENGTH=268435456

– When the broker first initializes a FileInput node, it will use the environment
variable value instead of the default value of 100 MB. Subsequent changes to
the environment variable value will not affect the broker limit until the broker
is restarted.

– If the Record detection property is set to Whole File, the limit applies to the
file size. If the Record detection property is set to Fixed Length or Delimited,
the limit applies to the record size. The FileOutput node is not affected by
changes to this limit.

–

Note: Increasing the FileInput node record size limit might require additional
broker resources, particularly memory. You must thoroughly test and evaluate
your broker's performance when processing these files. The number of factors
that are involved in handling large messages make it impossible to provide
specific broker memory requirements.

You can also reduce the memory required to process the file's contents in the
following ways:
– If you are processing a whole file as a single BLOB, split it into smaller

messages by specifying on the Records and Elements tab of the FileInput
node's properties:
- A value of Fixed Length in the Record detection property
- A large value in the Length property, for example 1000000.

– If you are writing the file's contents to a single output file, specify Record is
Unmodified Data in the FileOutput node's Record definition property; this
reassembles the records in an output file of the same size as the input file.
Wire the FileInput node's End of Data terminal to the FileOutput node's
Finish File terminal. Configure the flow to have no additional instances to
ensure that the output records arrive in sequence.

– If you are processing large records using the techniques shown in the Large
Messaging sample, ensure that you do not cause the execution group to
access the whole record. Avoid specifying a value of $Body in the Pattern
property of a Trace node.

– If you have specified a value of Parsed Record Sequence in the FileInput
node's Record definition property, the broker does not limit the size of the
record. If subsequent nodes in the message flow try to access an entire large
record, the broker might not have sufficient memory to allow this and stop.
Use the techniques in the Large Messaging sample to limit the memory
required to handle very large records.

Missing or duplicate messages after recovery from failure in a flow attached to a
FileInput node:
Procedure

v Scenario: After the failure of a message flow containing a FileInput node
processing the input file as multiple records, a subsequent restart of the flow
results in duplicate messages being processed. If the flow is not restarted, some
input records are not processed.

3404 WebSphere Message Broker Version 7.0.0.8

v Explanation: If a record produces a message which causes the flow to fail and
retry processing does not solve the problem, the node stops processing the file
and moves it to the backout directory. Records subsequent to the failing message
are not processed. The FileInput node is not transactional; it cannot roll back the
file input records. Transactional resources in the attached flow can roll back the
effects of the failing input record but not preceding records. Records before the
failing record will have been processed but records subsequent to the failing
record will not have been processed. If you restart the flow by moving the input
file from the backout directory to the input directory, messages from records
preceding the point of failure are duplicated.

v Solution: If the input messages have unique keys, modify your flow to ignore
duplicate records. If the messages do not have unique keys but each input file
has a unique name, you can modify your flow to form a unique key based on
the file name and record number. Define a database table and add a Database
node to your flow to record the key of each record that is processed. Add a
DatabaseRoute node to filter input messages so that only records without keys
already in the database are processed. See the Simplified Database Routing
sample to understand how to use the DatabaseRoute node to filter messages.
If you cannot generate unique keys for each record, split your flow into two
separate flows. In the first flow, wire the FileInput node to an MQOutput node
so that each input record is copied as a BLOB to a WebSphere MQ queue.
Ensure there are adequate WebSphere MQ resources, queue size for example, so
that the first flow does not fail. In the second flow, wire an MQInput node to the
flow previously wired to your FileInput node. Configure the MQInput and other
nodes to achieve the desired transactional behavior.

No file is created in the output directory after FileOutput node processing:
Procedure

v Scenario: A file created by the FileOutput node does not appear in the output
directory. The node is configured so that the Record definition property has a
value of Record is Unmodified Data, Record is Fixed Length Data, or Record
is Delimited Data and the flow runs one or more times.

v Explanation: The FileOutput node accumulates messages, record by record, in
an incomplete version of the output file in the transit subdirectory of the output
directory. It moves the file from the transit subdirectory to the output directory
only when it receives a message on its Finish File terminal; at this point, the file
is complete. If the node's input processing fails before a message is sent to the
Finish file terminal, the file remains in the transit directory. The file might be
completed by a subsequent flow if it uses the same file name and output
directory; if this does not happen, the file is never moved to the output directory

v Solution: If you need to ensure that incomplete files are moved to the output
directory if the input flow fails, wire the input node's Failure terminal to the
FileOutput node's Finish File terminal, in addition to all other flows that are
wired to this terminal.
If you need all output files to be available for a downstream process at a
particular time or after a particular event, wire a separate flow to the FileOutput
node's Finish File terminal to send a message at that particular time or on that
particular event. If duplicate messages which identify the same file are sent to
the Finish File terminal, the FileOutput node ignores them.
If your flows use the Request directory property location, Request file name
property location (default Directory and Name in the $LocalEnvironment/
Destination/File folder), or $LocalEnvironment/Wildcard/WildcardMatch, ensure
that messages sent to the Finish File terminal contain the correct elements and
values to identify the output file and directory.

Chapter 13. Troubleshooting and support 3405

Output file name overrides have not been applied:
Procedure

v Scenario: The message elements set in the flow to override the output file name
or directory values specified in the FileOutput node's Basic properties have not
been applied. The output file is created using the name and directory set in the
FileOutput node's Basic properties.

v Explanation: One of the following might be the cause of this problem:
– The message sent to the FileOutput node does not contain the expected

changes.
– The FileOutput node is configured to use different elements in the message

from the ones set to the new values.
– Not all messages contain the overriding values.

v Solution: Use the debugger or a Trace node inserted in front of the FileOutput
node's In terminal to check that the expected overriding values appear in the
correct message elements. If they do not, check that the Compute mode property
has been set correctly in Compute nodes that are upstream in the flow; for
example, if $LocalEnvironment/File/Name has not changed following a
Compute node, check that the Compute node has its Compute mode property set
to LocalEnvironment and Message.
If the message elements are set correctly, check that the FileOutput node's
Request directory property location and Request file name property
location properties identify the correct elements in the message.
If you have specified Record is Unmodified DataRecord is Fixed Length Data,
or Record is Delimited Data in the FileOutput node's Record definition
property, ensure that messages that go to the Finish File terminal have the same
override values as those that go to the in terminal. Unless you do this, the Finish
file terminal message and the In terminal messages will apply to different files.

Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“How multiple file nodes share access to files in the same directory” on page 1818
WebSphere Message Broker controls access to files so that only one file node at a
time can read or write to a file.
“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Reading files” on page 1834
Use the FileInput, CDInput, FTEInput, and FileRead nodes to read files.
“Writing a file” on page 1852
Use the FileOutput, CDOutput, and FTEOutput nodes to write files.
Related reference:
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.

3406 WebSphere Message Broker Version 7.0.0.8

“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

Resolving problems when you use HTTP and SOAP nodes
Use the advice given here to help you to resolve common problems that can arise
when you develop Web Services message flows that contain HTTP and SOAP
nodes.

About this task

Use the replies to the following questions to assist you in diagnosing problems
with HTTP or SOAP nodes:
v “How do I tell which listener the HTTP nodes are using?”
v “How do I collect HTTPListener trace?” on page 3408

A HandshakeException is issued when you use an HTTPRequest node to make
an HTTPS call:
Procedure

v Scenario: You are trying to make an HTTPS call to an external web service from
your WebSphere Message Broker message flow by using an HTTPRequest node.
You receive the following error:
javax.net.ssl.SSLHandshakeException:
com.ibm.jsse2.util.h: PKIX path building failed:

java.security.cert.CertPathBuilderException:
PKIXCertPathBuilderImpl could not build a valid CertPath.;

internal cause is:
java.security.cert.CertPathValidatorException:
The certificate issued by OU=Class 3 Public Primary Certification Authority,
O="VeriSign, Inc.", C=US is not trusted;

internal cause is:
java.security.cert.CertPathValidatorException: Certificate chaining error

v Explanation: The broker cannot build the entire certificate path. The keystore of
this broker must contain all the certificates in this chain of certificate authorities
(CA). For a broker to verify the digital signature on a signed certificate, the
keystore must contain the public key of the certificate authority (CA) that issued
that certificate. If this public key is itself issued on a signed certificate, the
keystore must contain the public key of the CA that issued that certificate. This
chain continues until the broker reaches a root certificate authority that issues a
self-signed certificate.

v Solution: Verify that you added all the required certificates to your keystore. If
any of the components in the certificate chain are missing from your keystore,
re-create your keystore by using keytool with the genkey option, then reimport
your application certificates.

How do I tell which listener the HTTP nodes are using?:
Procedure

v Scenario: HTTP nodes that you include in a message flow can use either the
broker-wide listener or the embedded listener that is defined to the execution
group to which the containing message flow is deployed. Both listeners can
handle both HTTP and HTTPS messages by handling the different message
types on different ports.

v Solution: Use the mqsireportproperties command to check the properties that
define what listener is in use.
1. Check whether the broker listener has been disabled:

Chapter 13. Troubleshooting and support 3407

mqsireportproperties MB7BROKER -b httplistener -o HTTPListener -n startListener

If this property is false, all HTTP nodes in all execution groups are using an
embedded listener.

2. If the broker listener is active, you must check the specific execution group.
For example, check whether the listener in EG_A is being used to process
HTTP messages for HTTP nodes:
mqsireportproperties TEST -e EG_A -o ExecutionGroup -n httpNodesUseEmbeddedListener

If this property is true, all HTTP nodes that you deploy to this execution
group are using the embedded listener.
Check all execution groups for which you want to know this information.

3. If both properties are false, all HTTP nodes that you deploy to all execution
groups are using the embedded listener. The value for the execution group
property is ignored.

Results

If you are experiencing problems with message flows that contain HTTP nodes,
and you want to collect trace information to provide to your IBM Support Center,
trace the execution group. If you are using the broker-wide listener for HTTP
nodes, also trace the HTTPListener component.

How do I collect HTTPListener trace?:
About this task

To gather information about HTTP nodes and listeners, you must start trace, run
your message flows, then retrieve and format the trace information.

Trace the execution group and the HTTPListener component:

Procedure

v Start trace for the execution group.
For example:
mqsichangetrace MB7BROKER -t -e default -l debug

v If you are using the broker-wide listener for one or more execution groups, start
trace for the HTTPListener component in one of the following two ways:
– Trace all broker components:

1. Run the mqsichangetrace command to start trace with the following
options:
mqsichangetrace component -t -b -l debug

where component is the broker name.
2. Retrieve the HTTPListener trace log by using the mqsireadlog command

with the HTTPListener qualifier for the -b parameter.
For example:
mqsireadlog brokerName -t -b httplistener -f -o listenertrace.xml

3. Format the trace log by using the mqsiformatlog command to view its
contents.

– Trace only the HTTPListener component:
1. Run the mqsichangeproperties command to start trace with the following

options:

3408 WebSphere Message Broker Version 7.0.0.8

mqsichangeproperties brokerName -b httplistener -o HTTPListener
-n traceLevel -v debug

2. Retrieve and format the HTTPListener trace log as shown in the previous
example.

What to do next

Save the trace output so that you can send it to the IBM Support Center, if
requested.

Turn trace off when you finish collecting information to avoid affecting the
performance of the broker.

:

Related concepts:
“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.

Resolving implementation problems when developing message
flows
Use the advice given here to help you to resolve some common problems that can
arise when running message flows.

About this task
v “Messages are directed to the Failure terminal of an MQInput node” on page

3410
v “Error message BIP2211 is issued on z/OS by the MQInput node” on page 3410
v “Messages enter the message flow but do not exit” on page 3410
v “Your execution group is not reading messages from the input queues” on page

3412
v “The execution group ends while processing messages” on page 3413
v “Your execution group hangs, or ends with a core dump” on page 3413
v “Your XSLTransform node is not working after deployment and errors are issued

indicating that the style sheet could not be processed” on page 3414

Chapter 13. Troubleshooting and support 3409

v “Output messages are not sent to expected destinations” on page 3414
v “You experience problems when sending a message to an HTTP node's URL” on

page 3414
v “When using secure HTTP connections, you change a DNS host's destination but

the broker is using a cached DNS host definition” on page 3415
v “The TimeoutControl node issues error message BIP4606 or BIP4607 when the

timeout request start time that it receives is in the past” on page 3416
v “You are using a TimeoutControl node with a TimeoutNotification node, with

multiple clients running concurrently, and messages appear to be being
dropped” on page 3416

v “Error message BIP5347 is issued on AIX when you run a message flow that
uses a message set” on page 3416

v “Error message BIP2130 is issued with code page value of -1 or -2” on page 3417
v “The execution group restarts before an MQGet node has retrieved all messages”

on page 3417

Messages are directed to the Failure terminal of an MQInput node:
Procedure

v Scenario: Messages that are received at a message flow are directed immediately
to the Failure terminal on the MQInput node (if it is connected), or are rolled
back.

v Explanation: When a message is received by WebSphere MQ, an error is
signalled if the following conditions are all true:
– The MQInput node requests that the message content is converted (the

Convert property is set to yes on the node).
– The message consists only of an MQMD followed by the body of the

message.
– The message format, as specified in the MQMD, is set to MQFMT_NONE.
This error causes the message to be directed to the Failure terminal.

v Solution: In general, you do not need to request WebSphere MQ to convert the
message content, because the broker processes messages in all code pages and
encodings that are supported by WebSphere MQ. Set the Convert property to no
to ensure that messages flow from the MQInput node to successive nodes in the
message flow.

Error message BIP2211 is issued on z/OS by the MQInput node:
Procedure

v Scenario: The following error message is issued by the MQInput node,
indicating an invalid attribute:

BIP2211: (Invalid configuration message containing attribute value [attribute value]
which is not valid for target attribute [target attribute name],
object [object name]; valid values are [valid values])

v Explanation: On z/OS, WebSphere MQ supports serialized access to shared
resources, such as shared queues, through the use of a connection tag
(serialization token) when an application connects to the queue manager that
participates in a queue sharing group. In this case, an invalid attribute has been
specified for the z/OS serialization token.

v Solution: Check that the value that is provided for the z/OS serialization token
conforms to the rules as described in the Application Programming Reference
section of the WebSphere MQ Version 7 Information Center online.

Messages enter the message flow but do not exit:

3410 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Procedure

v Scenario: You have sent messages into your message flow, and they have been
removed from the input queue, but nothing appears at the other end of the
message flow.

v Explanation: Several situations might cause this error to occur. Consider the
following scenarios to try to identify the situation that is causing your failure:
1. Check your message flow in the WebSphere Message Broker Toolkit.

You might have connected the MQInput node Failure terminal to a
successive node instead of the Out terminal. The Out terminal is the middle
terminal of the three. Messages directed to an unconnected Out terminal are
discarded.

2. If the Out terminal of the MQInput node is connected correctly to a
successive node, check the broker's local error log for an indication that
message processing has been ended because of problems. Additional
messages give more detailed information.
If the Failure terminal of the MQInput node has been connected (for
example, to an MQOutput node), these messages do not appear.
Connecting a node to a Failure terminal of another node indicates that you
have designed the message flow to deal with all error processing. If you
connect a Failure terminal to an MQOutput node, your message flow ignores
all errors that occur.

3. If the Out terminal of the MQInput node is connected correctly to a
successive node, and the local error log does not contain error messages, turn
user tracing on for the message flow:
a. Open the WebSphere Message Broker Explorer.
b. In the Navigator view, expand the Brokers folder.
c. Right-click the message flow, and click User TraceNormal.
This action produces a user trace entry from only the nodes that the message
visits.
On distributed systems, you can retrieve the trace entries by using the
mqsireadlog command, format them by using the mqsiformatlog command,
and view the formatted records to check the path of the message through the
message flow.

z/OS

For z/OS, edit and submit the BIPRELG job in COMPONENTPDS

to execute the mqsireadlog and mqsiformatlog commands to process traces.
4. If the user trace shows that the message is not taking the expected path

through the message flow, increase the user trace level to Debug by selecting
the message flow, right-clicking it, and clicking User Trace > Debug.
Send your message into the message flow again. Debug-level trace produces
much more detail about why the message is taking a particular route, and
you can then determine the reasons for the actions taken by the message
flow.
Do not forget to turn tracing off when you have solved the problem, because
performance might be adversely affected.

5. If the MQPUT command to the output queue that is defined on the
MQOutput node is not successful (for example, the queue is full or put is
disabled), the final destination of a message depends on:
– Whether the Failure terminal of the MQOutput node is connected.
– Whether the message is being processed transactionally (which in turn

depends on the transaction mode setting of the MQInput node, the
MQOutput node, and the input and output queues).

Chapter 13. Troubleshooting and support 3411

– Whether the message is persistent or nonpersistent. When transaction
mode is set to the default value of Automatic, message transactionality is
derived from the way that it was specified at the input node. All messages
are treated as persistent if transaction mode=yes, and as nonpersistent if
transaction mode=no.

In general, if a path is not defined for a failure (that is, neither the Catch
terminal nor the Failure terminal of the MQInput node is connected):
– Non-transactional messages are discarded.
– Transactional messages are rolled back to the input queue to be tried

again:
- If the backout count of the message is less than the backout threshold

(BOTHRESH) of the input queue, the message is tried again and sent to
the Out terminal.

- When the backout count equals or exceeds the backout threshold, one
of the following might happen:
v The message is placed on the backout queue, if one is specified

(using the BOQNAME attribute of the input queue.)
v The message is placed on the dead-letter queue, if there is no backout

queue defined or if the MQPUT to the backout queue fails.
v If the MQPUT to the dead-letter queue fails, or if there is no

dead-letter queue defined, then the message flow loops continuously
trying to put the message to the dead-letter queue.

– If a path is defined for the failure, then that path defines the destination of
the message. If both the Catch terminal and the Failure terminal are
connected, the message is propagated through the Catch terminal.

6. If your message flow uses transaction mode=yes on the MQInput node
properties, and the messages are not appearing on an output queue, check
the path of the message flow.
– If the message flow has paths that are not failures (but that do not end in

an output queue), either:
- The message flow has not failed and the message is not backed out.
- The message flow is put to an alternative destination (for example, the

Catch terminal, the dead-letter queue, or the queue's backout queue).
– Check that all possible paths reach a final output node and do not reach a

dead end. For example, check that you have:
- Connected the Unknown terminal of a Filter node to another node in

the message flow.
- Connected both the True and False terminals of a Filter node to another

node in the message flow.

Your execution group is not reading messages from the input queues:
Procedure

v Scenario: Your execution group has started, but is not reading messages from
the specified input queues.

v Explanation: A started execution group might not read messages from the input
queues of the message flows because previous errors might have left the queue
manager in an inconsistent state.

v Solution: Complete the following steps:
1. Stop the broker.
2. Stop the WebSphere MQ listener.
3. Stop the WebSphere MQ channel initiator.

3412 WebSphere Message Broker Version 7.0.0.8

4. Stop the WebSphere MQ queue manager.
5. Restart the WebSphere MQ queue manager.
6. Restart the WebSphere MQ channel initiator.
7. Restart the WebSphere MQ listener.
8. Restart the broker.

The execution group ends while processing messages:
About this task

Procedure

v Scenario: While processing a series of messages, the execution group
(DataFlowEngine) process size grows steadily without levelling off. This
situation might cause the DataFlowEngine process to end if it cannot allocate
more memory, and restart. The error message BIP2106 might be logged to
indicate the out of memory condition.
In addition, if you are using DB2 on distributed systems, you might get the
message:
SQL0954C Not enough storage is available in the application heap to process
the statement.

z/OS On z/OS, an SQLSTATE of HY014 might be returned with an SQL
code of -99999, indicating that the DataFlowEngine process has reached the DB2
z/OS process limit of 254 prepared SQL statement handles.

v Explanation: When a database call is made from within a message flow node,
the flow constructs the appropriate SQL, which is sent using ODBC to the
database manager. As part of this process, the SQL statement is prepared using
the SQLPrepare function, and a statement handle is acquired so that the SQL
statement can be executed.
For performance reasons, after the statement is prepared, the statement and
handle are saved in a cache to reduce the number of calls to the SQLPrepare
function. If the statement is already in the cache, the statement handle is
returned so that it can be re-executed with newly bound parameters.
The statement string is used to perform the cache lookup. By using hardcoded
SQL strings that differ slightly for each message, the statement is not found in
the cache, and an SQLPrepare function is always performed (and a new ODBC
cursor is opened). When using PASSTHRU statements, use parameter markers
so that the same SQL prepared statement can be used for each message
processed, with the parameters being bound at run time. This approach is more
efficient in terms of database resources and, for statements that are executed
repeatedly, it is faster.
However, it is not always possible to use parameter markers, or you might want
to dynamically build the SQL statement strings at run time. This situation
potentially leads to many unique SQL statements being cached. The cache itself
does not grow that large, because these statements themselves are generally not
big, but many small memory allocations can lead to memory fragmentation.

v Solution: If you encounter these types of situations, disable the caching of
prepared statements by setting the MQSI_EMPTY_DB_CACHE environment
variable to an arbitrary value. When this environment variable has been created,
the prepared statements for that message flow are emptied at the end of
processing for each message. This action might cause a slight performance
degradation because every SQL statement is prepared.

Your execution group hangs, or ends with a core dump:

Chapter 13. Troubleshooting and support 3413

Procedure

v Scenario: While processing a message, an execution group either hangs with
high CPU usage, or ends with a core dump. The stack trace from the core dump
or abend file is large, showing many calls on the stack. Messages written to the
system log might indicate "out of memory" or "bad allocation" conditions. The
characteristics of the message flow in this scenario often include a hard-wired
loop around some of the nodes.

v Explanation: When a message flow thread executes, it requires storage to
perform the instructions that are defined by the logic of its connected nodes.
This storage comes from the execution group's heap and stack storage. The
execution of a message flow is constrained by the stack size, the default value of
which differs depending on the operating system.

v Solution: If a message flow that is larger than the stack size is required, you can
increase the stack size limit and then restart the brokers that are running on the
system so that they use the new value. For information on setting the stack size
for your operating system, see “System resources for message flow
development” on page 3267.

Your XSLTransform node is not working after deployment and errors are issued
indicating that the style sheet could not be processed:
Procedure

v Scenario: Your XSLTransform node is not working after deploying resources,
and errors are displayed indicating that the style sheet could not be processed.

v Solution:

– If the broker cannot find the style sheet or XML files that are required,
migrate the style sheets or XML files with relative path references.

– If the contents of a style sheet or XML file are damaged and therefore no
longer usable (for example, if a file system failure occurs during a
deployment), redeploy the damaged style sheet or XML file.

Output messages are not sent to expected destinations:
Procedure

v Scenario: You have developed a message flow that creates a destination list in
the LocalEnvironment tree. The list might contain queues for the MQOutput
node, labels for a RouteToLabel node, or URLs for an HTTPRequest node.
However, the messages are not reaching these destinations, and there are no
error messages.

v Solution:

– Check that you have set Compute mode to a value that includes the
LocalEnvironment in the output message, for example All. The default setting
of Compute mode is Message, and all changes that you make to
LocalEnvironment are lost.

– Check your ESQL statements. The content and structure of LocalEnvironment
are not enforced, so the ESQL editor (and content assist) does not provide
guidance for field references, and you might have specified one or more of
these references incorrectly.
Some example procedures to help you set up destination lists are provided in
“Populating Destination in the local environment tree” on page 2467. You can
use these procedures unchanged, or modify them for your own requirements.

You experience problems when sending a message to an HTTP node's URL:

3414 WebSphere Message Broker Version 7.0.0.8

Procedure

v Scenario: Sending a message to an HTTP node's URL causes a timeout, or the
message is not sent to the correct message flow.

v Explanation: The following rules are true when URL matching is performed:
– There is one-to-one matching of HTTP requests to HTTPInput nodes. For each

HTTP request, only one message flow receives the message. This statement is
true even if two message flows are listening on the same URL. Similarly, you
cannot predict which MQInput node that is listening on a particular queue
will receive a message.

– Messages are sent to wildcard URLs only if no other URL is matched.
Therefore a URL of /* receives all messages that do not match another URL.

– Changing a URL in an HTTPInput node does not automatically remove the
entry from the HTTP listener. For example, if a URL /A is used first, then
changed to a URL of /B, the URL of /A is still used to listen on, even though
there is no message flow to process the message. This incorrect URL does get
removed after the broker has been stopped and restarted twice.

v Solution: To find out which URL the broker is currently listening on, look at the
file wsplugin6.conf in the following location:

– Linux

UNIX

On Linux and UNIX: /var/mqsi/components/

broker_name/config

– Windows

On Windows, %ALLUSERSPROFILE%\Application

Data\IBM\MQSI\components/broker_name/config where %ALLUSERSPROFILE% is
the environment variable that defines the system working directory. The
default directory depends on the operating system:
- On Windows XP and Windows Server 2003: C:\Documents and

Settings\All Users\Application Data\IBM\MQSI\components/broker_name/
config

- On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\MQSI\
components/broker_name/config

The actual value might be different on your computer.
If problems persist, empty wsplugin6.conf, restart the broker, and redeploy the
message flows.

When using secure HTTP connections, you change a DNS host's destination but
the broker is using a cached DNS host definition:
Procedure

v Scenario: You are using a broker with secure HTTP connections that use the Java
virtual machine (JVM). You have changed a DNS destination, but the broker is
using a cached DNS host definition, therefore you have to restart the broker to
use the new definition.

v Explanation: By default, Java caches the host lookup from DNS, which is not
appropriate if you want to look up the host name each time or if you want to
cache it for a limited amount of time. This situation occurs only when you use
SSL connections. (When using a secure HTTPS connection, the HTTPRequest
node uses the SSL protocol, which issues Java calls, whereas a non-SSL protocol
uses native calls.)
To avoid this situation, you can empty the cache on the JVM by setting the
networkaddress.cache.ttl property to zero. This property dictates the caching
policy for successful name lookups from the name service. The value is specified
as an integer to indicate the number of seconds for which to cache the successful
lookup. The default value of this property is -1, which indicates that the

Chapter 13. Troubleshooting and support 3415

successful DNS lookup value is cached indefinitely in the JVM. If you set this
property to 0 (zero), the successful DNS lookup is not cached.

v Solution: To pick up DNS entry changes without the need to stop and restart
the broker and JVM, disable DNS caching. Edit file $JAVA_HOME/jre/lib/
security/java.security, and set the value of the networkaddress.cache.ttl
property to 0 (zero).

The TimeoutControl node issues error message BIP4606 or BIP4607 when the
timeout request start time that it receives is in the past:
Procedure

v Scenario: When a TimeoutControl node receives a timeout request message that
contains a start time in the past, it issues error message BIP4606 or BIP4607: The
Timeout Control Node '&2' received a timeout request that did not contain
a valid timeout start date/time value.

v Explanation: The start time in the message can be calculated by adding an
interval to the current time. If a delay occurs between the node that calculates
the start time and the TimeoutControl node, the start time in the message will
have passed by the time it reaches the TimeoutControl node. If the start time is
more than approximately five minutes in the past, a warning is issued and the
TimeoutControl node rejects the timeout request. If the start time is less than five
minutes in the past, the node processes the request as if it were immediate.

v Solution: Ensure that the start time in the timeout request message is a time in
the future.

You are using a TimeoutControl node with a TimeoutNotification node, with
multiple clients running concurrently, and messages appear to be being
dropped:
Procedure

v Scenario: You are using a TimeoutControl node with a TimeoutNotification
node, with multiple clients running concurrently, and messages appear to be
being dropped. In the timeout request message, allowOverwrite is set to TRUE.

v Explanation: If multiple clients are running concurrently, and allowOverwrite is
set to TRUE in the timeout request message, messages can overwrite each other.

v Solution: Ensure that different TimeoutNotification nodes that are deployed on
the same broker do not share the same unique identifier.

Error message BIP5347 is issued on AIX when you run a message flow that uses
a message set:
About this task

Procedure

v Scenario: Error message BIP5347 (MtilmbParser2: RM has thrown an unknown
exception) is issued on AIX in either of these circumstances:
– When you are deploying a message set
– When you are running a message flow that uses a message set

v Explanation: BIP5347 is typically caused by a database exception, and it is
issued when an execution group tries to load an MRM dictionary for use by a
message flow. This process involves two steps:
1. The execution group retrieves the dictionary and wire format descriptors

from the broker data store.
2. The execution group stores the dictionary in the memory that a message flow

would use to process an MRM message.

3416 WebSphere Message Broker Version 7.0.0.8

BIP5347 is typically issued during step 1. This problem can appear to be
intermittent; if you restart the execution group, the message is sometimes
processed correctly.
BIP5347 might also be caused by the presence of a datetime value constraint in
the message set, which causes the error each time the message set is deployed.

v Solution: To identify the cause of the error, capture a service level debug trace to
confirm that the database exception is occurring.
– If the error is caused by the presence of a datetime value constraint, a

message similar to the following message appears in the service level debug
trace (the exact message depends on the datetime constraint in the message
set):
Unable to parse datetime internally, 9, 2001-12-17T09:30:47.0Z,
yyyy-MM-dd’T’HH:mm:ss.SZZZ

This error occurs because the MRM element in question has a datetime value
that is not compatible with the datetime format string, so the dictionary is
rejected. To solve this problem, ensure that the datetime value is compatible
with the datetime format string.

Error message BIP2130 is issued with code page value of -1 or -2:
Procedure

v Scenario: The following error message is issued:
BIP2130: Error converting a character string to or from codepage [code page value]

where [code page value] is either -1 or -2. You have not, however, specified a
code page of either -1 or -2 in your message tree. You have, however, used one
of the WebSphere MQ constants MQCCSI_EMBEDDED or MQCCSI_INHERIT.

v Explanation: The WebSphere MQ constants MQCCSI_EMBEDDED and
MQCCSI_INHERIT are resolved when the whole of the message tree is
serialized to produce the WebSphere MQ bit stream. This happens when the
message is put on the WebSphere MQ transport. Until that time, these values
exist in the message tree as either -1 (for MQCCSI_EMBEDDED) or -2 (for
MQCCSI_INHERIT). If one or more parts of the message tree are serialized
independently, such as with a ResetContentDescriptor node or ESQL
ASBITSTREAM function, this error occurs.

v Solution: You do not have to set MQCCSI_EMBEDDED or MQCCSI_INHERIT
in the message tree's CodedCharSetId field. You can achieve the same result by
explicitly setting the required CodedCharSetId to the previous header's
CodedCharSetId value. For example, you would need to replace:

SET OutputRoot.MQRFH2.(MQRFH2.Field)CodedCharSetId = MQCCSI_INHERIT;

with
SET OutputRoot.MQRFH2.(MQRFH2.Field)CodedCharSetId = InputRoot.MQMD.CodedCharSetId;

where the MQMD folder is the header preceding the MQRFH2 header.

The execution group restarts before an MQGet node has retrieved all messages:
Procedure

v Scenario: You have created a message flow that contains an MQGet node. Not
all of the messages are retrieved from the queue because the execution group
restarts before the node has retrieved all the messages. No abend files are
generated.

v Explanation: In WebSphere Message Broker, processing that involves nested or
recursive processing can cause extensive use of the stack. Message flow

Chapter 13. Troubleshooting and support 3417

processing occurs in a loop until the MQGet node has retrieved all the messages
from the queue. Each time that processing returns to the MQGet node, the stack
size increases.

v Solution: Use a PROPAGATE statement. The statement propagates each message
through the message flow in a loop, but each time that processing returns to the
PROPAGATE statement, the stack is cleared.
Use an ESQL variable (for example, set Environment.Complete to true) in the
environment tree to terminate the ESQL loop, stop the propagations, and wait
for the next trigger message. If you need to store content from the messages,
store it in the environment tree because other trees are deleted when message
flow processing returns to the PROPAGATE statement. For more information
about how to use this statement, see “PROPAGATE statement” on page 5150.

:

Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Resolving problems when developing message flows” on page 3395
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Accessing the Properties tree” on page 2460
The Properties tree has its own correlation name, Properties, and you must use this
in all ESQL statements that refer to or set the content of this tree.
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

3418 WebSphere Message Broker Version 7.0.0.8

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
Related information:

WebSphere MQ Version 7 Information Center online

Resolving problems when you use IMS nodes
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.

Before you begin

Before you start:
v Read about IMS in “IBM Information Management System (IMS)” on page 2129.
v Ensure that you have set up the broker runtime environment correctly, as

described in “Preparing the environment for IMS nodes” on page 731.

About this task

If you experience problems when you use IMS nodes in message flows, follow the
instructions for the following scenarios to diagnose and solve the problem.
v “How can I tell if my broker is connected to IMS Connect?”
v “How can I discover the correct settings for Hostname, Portnumber, and

DataStoreName?” on page 3420
v “What should I do when my transaction times out?” on page 3421
v “How many physical connections should I expect in IMS Connect?” on page

3421

How can I tell if my broker is connected to IMS Connect?:
Procedure

v Scenario: You need to check if your broker is connected to IMS Connect.
v Explanation: You can use SDSF on z/OS to issue a command to see which ports

have clients connected to them.
v Solution: Using SDSF, enter the following QUERY MEMBER command, where

IM0ACONN is the name of your IMS Connect job:
/F IM0ACONN,QRY MEMBER TYPE(IMSCON)

The output is in the following format:
/F IM0ACONN,QRY MEMBER TYPE(IMSCON)
HWSC0001I HWS ID=IM0ACONN RACF=Y PSWDMC=N
HWSC0001I MAXSOC=50 TIMEOUT=0
HWSC0001I RRS=N STATUS=REGISTERED
HWSC0001I VERSION=V10 IP-ADDRESS=009.017.252.024
HWSC0001I SUPER MEMBER NAME=
HWSC0001I ADAPTER=N
HWSC0001I DATASTORE=IM0A STATUS=ACTIVE
HWSC0001I GROUP=IM0AGRNM MEMBER=IM0ACONN
HWSC0001I TARGET MEMBER=IM0A
HWSC0001I DEFAULT REROUTE NAME=HWS£DEF
HWSC0001I RACF APPL NAME=
HWSC0001I OTMA ACEE AGING VALUE=2147483647

Chapter 13. Troubleshooting and support 3419

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

HWSC0001I OTMA ACK TIMEOUT VALUE=120
HWSC0001I OTMA MAX INPUT MESSAGE=5000
HWSC0001I NO ACTIVE IMSPLEX
HWSC0001I PORT=1080 STATUS=ACTIVE
HWSC0001I CLIENTID USERID TRANCODE STATUS SECOND CLNTPORT IP-ADDRESS
HWSC0001I HWSEHYMO JDOE IVTNO RECV 21 1109 009.017.137.11
HWSC0001I TOTAL CLIENTS=1 RECV=1 CONN=0 XMIT=0 OTHER=0

This example shows that one client is connected on TCP port 1109, and that the
client is connecting from the IP address 9.17.137.11.
You can run netstat on that system to find out in which process that client is
running.
Use the following IMS command to view the TPIPEs that are created for those
connections:
/DISPLAY TMEMBER IMSConnect_Name TPIPE ALL

– For transactions that have a commit mode of 1, the TPIPE name is the port
number that is used for that interaction (for example, 1080 in the previous
example).

– For transactions that have a commit mode of 0, the TPIPE name is the same
as the client ID (for example, HWSEHYMO in the previous example). The
client ID is generated automatically in the IMSRequest node.

How can I discover the correct settings for Hostname, Portnumber, and
DataStoreName?:
Procedure

v Scenario: Your broker fails to connect to IMS and you want to verify your
settings.

v Explanation: You can use SDSF on z/OS to issue a command to see members of
the XCF group to which your IMS control region belongs. One of these members
should be IMS Connect. You can then run a command against IMS Connect to
discover these properties.

v Solution: Use SDSF to enter the following command:
/xx/display OTMA

where xx is the reply ID for your IMS control region job.
For example, if you see *26 DFS996I *IMS READY* IM0A in S.log, run
the command /26/DISPLAY OTMA.
The output from that command shows the name of the IMS Connect that is in
the same XCF group as this IMS control region:

DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY TIBINPT SMEM IM0A
DFS000I DRUEXIT T/O IM0A
DFS000I IM0AGRNM IM0A
DFS000I -IM0A ACTIVE SERVER CHECK IM0A
DFS000I -IM0A N/A 0 IM0A
DFS000I -IM0ACONN ACTIVE ACCEPT TRAFFIC CHECK 05000 IM0A
DFS000I *08350/175112* IM0A

Use SDSF to enter the following QUERY MEMBER command, where IM0ACONN is
the name of your IMS Connect job that was reported by the previous command:

/F IM0ACONN,QRY MEMBER TYPE(IMSCON)

The output is in the following format:
/F IM0ACONN,QRY MEMBER TYPE(IMSCON)
HWSC0001I HWS ID=IM0ACONN RACF=Y PSWDMC=N
HWSC0001I MAXSOC=50 TIMEOUT=0
HWSC0001I RRS=N STATUS=REGISTERED

3420 WebSphere Message Broker Version 7.0.0.8

HWSC0001I VERSION=V10 IP-ADDRESS=009.017.252.024
HWSC0001I SUPER MEMBER NAME=
HWSC0001I ADAPTER=N
HWSC0001I DATASTORE=IM0A STATUS=ACTIVE
HWSC0001I GROUP=IM0AGRNM MEMBER=IM0ACONN
HWSC0001I TARGET MEMBER=IM0A
HWSC0001I DEFAULT REROUTE NAME=HWS£DEF
HWSC0001I RACF APPL NAME=
HWSC0001I OTMA ACEE AGING VALUE=2147483647
HWSC0001I OTMA ACK TIMEOUT VALUE=120
HWSC0001I OTMA MAX INPUT MESSAGE=5000
HWSC0001I NO ACTIVE IMSPLEX
HWSC0001I PORT=1080 STATUS=ACTIVE
HWSC0001I CLIENTID USERID TRANCODE STATUS SECOND CLNTPORT IP-ADDRESS
HWSC0001I HWSEHYMO JDOE IVTNO RECV 21 1109 009.017.137.11
HWSC0001I TOTAL CLIENTS=1 RECV=1 CONN=0 XMIT=0 OTHER=0

What should I do when my transaction times out?:
Procedure

v Scenario: The transaction times out and the message is sent to the Timeout
terminal, or an exception is issued.

v Explanation: Your transaction is taking longer than the values that are set for the
execution or socket timeouts, therefore the node stops waiting for a response,
and issues an exception or sends the message to the Timeout terminal.
If the transaction subsequently completes successfully, the result depends on the
commit mode that is set on the IMSRequest node:
– If the Commit mode property is set to 0: COMMIT_THEN_SEND, the unit of work is

committed and the response is discarded.
– If the Commit mode property is set to 1: SEND_THEN_COMMIT, the response is not

sent and the unit of work is rolled back.
v Solution: Increase the execution or socket timeout values to give enough time

for the transaction to complete.
– Configure the execution timeout by using the Timeout waiting for a

transaction to be executed property on the IMSRequest node.
– Configure the socket timeout on the configurable service.

How many physical connections should I expect in IMS Connect?:
Procedure

v Scenario: You need to set the values for the number of connections that are
required by clients that are connecting to IMS Connect.

v Explanation: The number of physical connections that can be opened in IMS
Connect is limited. The limit depends on the MAXSOC and MAXFEILEPROC
settings.
– The MAXSOC setting in IMS Connect determines the number of sockets that

can be opened in IMS, which is the number of ports on which IMS listens for
connections, plus the number of physical connections.

– MAXFILEPROC is a UNIX System Services (USS) setting, which must be
greater than or equal to MAXSOC, otherwise IMS reaches this limit before it
reaches its own MAXSOC limit.

If the IMS Connect process is granted superuser authority in USS, it sets
MAXFILEPROC automatically.
If the MAXSOC value is reached, IMS Connect issues warning message
HWSS0771W, and refuses new requests for connections from clients. This
behavior continues until the number of open sockets is below the limit (for
example, after some clients have disconnected).

Chapter 13. Troubleshooting and support 3421

If the MAXFILEPROC value is reached, USS issues information message
BPXI040I.

v Solution: When you set values for MAXSOC and MAXFILEPROC, consider how
many clients are likely to connect concurrently to IMS Connect, and how many
connections those clients will require.
WebSphere Message Broker acts as a client to IMS Connect, and opens
connections to IMS Connect. Therefore, find out how many connections are
required by WebSphere Message Broker by gathering the following information:
– The number of message flows with IMS nodes that are deployed
– For those message flows, the values of the Additional instances property
The maximum number of connections required for each broker is determined by
the number of threads that can be running concurrently in the IMS nodes. In the
following example, three message flows with IMS nodes exist:
– Message flow A has 0 additional instances, therefore one thread is running.
– Message flow B has 3 additional instances, therefore four threads can be

running concurrently.
– Message flow C has 4 additional instances, therefore five threads can be

running concurrently.

In this example, the maximum number of connections required by the broker is
10 (1+4+5). If you have four other similar brokers, all connecting to the same
instance of IMS Connect, which has five ports configured, you would set the
maximum number of sockets (MAXSOC) to at least 55 (the maximum number of
connections for five brokers plus the number of ports: 10x5+5).

Related concepts:
“IBM Information Management System (IMS)” on page 2129
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.
“Execution and threading models in a message flow” on page 1279
The execution model is the system used to start message flows which process
messages through a series of nodes.
Related tasks:
“Changing connection information for the IMSRequest node” on page 732
You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.
Related reference:
“IMSRequest node” on page 4504
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.

3422 WebSphere Message Broker Version 7.0.0.8

“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.

Resolving mapping and message reference problems when
developing message flows
Advice for dealing with some common mapping and message reference problems
that can arise when developing message flows:

Resources that are referenced by the mapping file cannot be resolved:
Procedure

v Scenario: You have imported some message flows into the WebSphere Message
Broker Toolkit that contain mappings. An error is issued, indicating that the
resources that are referenced by the mapping file cannot be resolved.

v Explanation: Mappings can use resources that exist in other projects. For
example, a mapping reference to a message set might exist in a different project.
If the reference cannot be resolved, it probably means that the reference to the
other project has been lost.

v Solution: To reference a project:
1. Right-click the project with the error, and click Properties.
2. Under Project References, a list of the projects in your workspace is

displayed. Select the required projects to reference the resources in these
projects.

3. Click OK.

Errors are issued when you import table schemas into the Message Mapping
editor:
Procedure

v Scenario: When you try to import and add table schemas in the Message
Mapping editor, you encounter errors like:
/flow2/schema1/SAMPLE.conxmi cannot be loaded.
The following error was reported: schema1/SAMPLE.conxmi

v Explanation: This error usually means that you have the same database files
under the same broker schema name in another project. The relative paths are
the same, so the Message Mapping editor cannot resolve this ambiguity and
does not know which table to add.

v Solution: There are two courses of action:
– If the table file already exists in the workspace, and this is what you want to

use for mapping, reuse the file by clicking the Add database table schemas
from workspace option in the Add Database Table Schemas dialog box.

– If you want a different copy of the tables, rename the broker schema.

Warnings or errors are issued for message references:
Procedure

v Scenario: Warnings or errors are issued for message references, yet you are
certain that your references are correct.

v Explanation: This is never the case with messages that are using the XML
parser. For these message references, direct validation is not performed because
the references could be used for generic XML.
There is an ESQL editor preference that allows you to choose to ignore message
reference mismatches, or to have them be reported as a warning or an error. By
default, this type of problem is reported as a warning, so that you can still
deploy the message flow.

Chapter 13. Troubleshooting and support 3423

v Solution: To use the validation feature, ensure that you have set up a project
reference from the project that contains the ESQL to the project that contains the
message set.
If you are using reference in a subroutine, take the following steps:
1. Create a reference to the tree and the parser in the module's main procedure.
2. Associate the reference to the correlation name, for example InputRoot or

Root. Alternatively, create the OutputRoot.parser node, where parser is the
name of the parser that you want to use.

3. Pass the reference as a parameter to an ESQL subroutine that identifies the
XSD type of the reference.

Results

This practice is beneficial because the passed reference supports content assistance
and validation for ESQL. The message type content properties open, or open
defined are not used in validation, and the assumption is that this property is
closed.

A $db:select out of scope error is generated when you map from a database
source:
Procedure

v Scenario: You have specified a database as the data source and when you save
the map file, there is an error saying $db:select out of scope

v Explanation: A $db:select expression must be within the scope of the $db:select
entry in the Map Script column of the Spreadsheet pane, meaning that it must
be a descendant of the select statement. If a $db:select expression is out of scope
the Message Mapping editor moves the $db:select entry to a position where the
$db:select expression is in scope. The $db:select expression can remain out of
scope if it is positioned above the $db:select entry in the Map Script column of
the Spreadsheet pane.

v Solution: Delete the out of scope $db:select expression or move the $db:select
entry in the Map Script column. You can drag the element out of the 'for' row,
and then drag the $db:select entry in the Map Script column higher in the
message, above the out of scope $db:select expression. Ensure that the out of
scope $db:select expression is now a descendant of the $db:select entry. See
“Mapping a target element from database tables” on page 2288 topic for more
information about database selects.

A $db:proc out of scope error is generated when you map from a database
stored procedure:
Procedure

v Scenario: You have specified a stored procedure as the source and when you
save the map file, there is an error saying $db:proc out of scope

v Explanation: A $db:proc expression must be within the scope of the $db:proc
entry in the Map Script column of the Spreadsheet pane, meaning that it must
be a descendant of the stored procedure statement. If a $db:proc expression is
out of scope the Message Mapping editor moves the $db:proc entry to a position
where the $db:proc expression is in scope. The $db:proc expression can remain
out of scope if it is positioned above the $db:proc entry in the Map Script
column of the Spreadsheet pane.

v Solution: Delete the out of scope $db:proc expression or move the $db:proc
entry in the Map Script column. You can drag the $db:proc entry in the Map
Script column higher in the message, above the out of scope $db:proc
expression. Ensure that the out of scope $db:proc expression is now a

3424 WebSphere Message Broker Version 7.0.0.8

descendant of the $db:proc entry. See “Mapping a target element from database
stored procedures” on page 2290 for more information about database stored
procedures.

A $db:func out of scope error is generated when you map from a database
user-defined function:
Procedure

v Scenario: You have specified a user-defined function as the source and when
you save the map file, there is an error saying $db:func out of scope

v Explanation: A $db:func expression must be within the scope of the $db:func
entry in the Map Script column of the Spreadsheet pane, meaning that it must
be a descendant of the user defined function statement. If a $db:func expression
is out of scope the Message Mapping editor moves the $db:func entry to a
position where the $db:func expression is in scope. The $db:func expression can
remain out of scope if it is positioned above the $db:func entry in the Map
Script column of the Spreadsheet pane.

v Solution: Delete the out of scope $db:func expression or move the $db:func
entry in the Map Script column. You can drag the $db:func entry in the Map
Script column higher in the message, above the out of scope $db:func
expression. Ensure that the out of scope $db:func expression is now a
descendant of the $db:func entry. See “Mapping a target element from database
user-defined functions” on page 2292 for more information about database
user-defined functions.

Target is not referencing a valid variable warning when you set the value of a
target:
Procedure

v Scenario: You have set the value for a target to a variable, such as a WebSphere
MQ constant, and when you save the map file the warning The target
"$target" is not referencing a valid variable is generated.

v Explanation: The variable that you have referenced is not recognized. For
example, you might have entered an expression of the form $mq: followed by a
WebSphere MQ constant, but the constant is not recognized. This might be
because the variable has been entered incorrectly or it is not supported.
Alternatively, you might be referencing a new variable or constant that can be
resolved only at run time. If this is the case you can ignore the warning.

v Solution: Try one of the following to solve the problem:
– Check that the variable has been entered correctly.
– If you are using WebSphere MQ constants, use Edit > Content Assist to

select from the list of available WebSphere MQ constants.

There are missing or unexpected targets in a message map:
Procedure

v Scenario: In your message map, warning messages are displayed that indicate a
target element is missing, or a target element is at an unexpected location. As a
result the output message generated by the message map might be incorrect.

v Explanation: If target elements are missing from the Spreadsheet pane when you
edit and save the message map, a warning is displayed that a target is missing.
This situation can occur if you use the Insert Children wizard and do not select
all the required elements, or if you create mappings using the drag-and-drop
method and do not create mappings for all the required fields. If target elements
in the Spreadsheet pane are in an unexpected order, a warning that the element
is unexpected at that location is displayed. This situation can occur if you drag
elements to new locations in the Spreadsheet pane.

Chapter 13. Troubleshooting and support 3425

v Solution: To solve the problem:
– Use Insert Children on the parent element to add any missing target

elements to the Spreadsheet pane.
– Drag any target elements that are in an unexpected location to the correct

location. Use the message tree in the Target pane as a guide to the expected
structure of the output message.

Error message BIP6118 is issued: The remaining bitstream is too small contain
the indicated structure.:
Procedure

v Scenario: You have used an unsupported message domain for a target message
in your message map.

v Explanation: The message domain that is associated with a target message is
determined by the Message Domain property of your message set. Mapping
nodes generate a target message that matches the message domain of the
message set. Using a message domain that is not supported by the message
mapper can result in an output message with a structure that is not valid for the
chosen parser.

v Solution: To solve the problem, change the target message domain for your
message set.

Error message BIP4680 is issued: Unsupported message domain encountered in
mapping node.:
Procedure

v Scenario: You have used an unsupported message domain for a target message
in your message map, for example BLOB.

v Explanation: The message domain that is associated with a target message is
determined by the Message Domain property of your message set. Mapping
nodes generate a target message that matches the message domain of the
message set. Using a message domain that is not supported by the message
mapper can result in an output message with a structure that is not valid for the
chosen parser.

v Solution: To solve the problem, change the target message domain for your
message set.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Resolving problems when developing message flows” on page 3395
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.

3426 WebSphere Message Broker Version 7.0.0.8

“Accessing the Properties tree” on page 2460
The Properties tree has its own correlation name, Properties, and you must use this
in all ESQL statements that refer to or set the content of this tree.
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Resolving trace problems when developing message flows
Follow this advice to deal with some common trace problems that can arise when
you develop message flows.

About this task
v “You cannot determine which node is being referenced in your trace file”
v “You cannot see any alerts when you change user trace”
v “Data that the Trace node sends to the syslog on UNIX is truncated” on page

3428

You cannot determine which node is being referenced in your trace file:
Procedure

v Scenario: You have generated a service trace file for your message flow, to trace
the path of a message. However, you cannot determine which node is being
referenced in the trace file.

v Explanation: In the trace file you might see text such as:
Video_Test#FCMComposite_1_1 ComIbmMQInputNode , Video_Test.VIDEO_XML_IN

The elements in the text have the following meanings:

Video_Test
is the name of the message flow

FCMComposite_1_1
is the internal name for the node

ComIbmMQInputNode
is the type of node

VIDEO_XML_IN
is the node label, and is the name you see in your flow

The number at the end of the internal name is incremented; for example,
FCMComposite_1_4 would be the fourth node you added to your flow. In the
example, this section of the trace is referring to the first node in the message
flow.

You cannot see any alerts when you change user trace:
Procedure

v Scenario: You cannot see any alerts for an execution group or message flow in
the Alerts viewer when you use the mqsichangetrace command to change the
user trace setting.

Chapter 13. Troubleshooting and support 3427

v Explanation: No alert is generated when an execution group runs user trace at
normal or debug level. Alerts are generated only for message flow trace. For
message flow trace, the WebSphere Message Broker Toolkit is not notified of
trace changes that are initiated by the mqsichangetrace command.

v Solution: To see the alert, refresh the message flow, or disconnect, then
reconnect to the domain.

Data that the Trace node sends to the syslog on UNIX is truncated:
Procedure

v Scenario: You are using a Trace node on UNIX and have set the Destination
property to Local Error Log. You send a message to the Trace node that consists
of multiple lines, but the message that appears in the syslog is truncated at the
end of the first line.

v Explanation: On UNIX, syslog entries are restricted in length and messages that
are sent to the syslog are truncated by the new line character.

v Solution: To record a large amount of data in a log on UNIX, set the
Destination property on the Trace node to File or User Trace instead of Local
Error Log.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Resolving problems when developing message flows” on page 3395
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.

Resolving problems when developing message flows with
WebSphere Adapters nodes
Advice for dealing with common problems that can arise when you develop
message flows that contain WebSphere Adapters nodes.

About this task

WebSphere Adapters nodes

v “Error messages BIP3414 and BIP3450 are issued when you deploy a WebSphere
Adapters input node” on page 3429

3428 WebSphere Message Broker Version 7.0.0.8

v “Error messages are issued when classes cannot be found, or when problems
occur with Java initialization”

v “The WebSphere Adapters are not visible when you run ITLM” on page 3430
v “A message flow with an SAPRequest, SiebelRequest, or PeopleSoftRequest node

has deployed successfully, but message BIP3540 is issued indicating that
connection failed” on page 3430

SAP nodes

v “You have deployed an SAP inbound adapter but do not receive expected
messages” on page 3431

v “You have imported an existing project into your workspace, but messages are
issued when you try to build SAP message sets” on page 3431

v “An error is issued when you use the message set that is generated by the
Adapter Connection wizard” on page 3431

v “When you run the SAP samples on Linux or UNIX, WebSphere Message Broker
does not connect to the SAP gateway” on page 3431

v “SAP inbound messages (ALE and BAPI) appear to be missing” on page 3432
v “When two ALE inbound modules use the same RFC program ID with SAP JCo

version 3.0.2, NullPointer exceptions are logged in the JCo trace and the Adapter
does not receive IDocs” on page 3432

Siebel nodes

v “You are using a SiebelInput node with the delivery type set to unordered, and
error message BIP3450 is issued with a NullPointer exception” on page 3432

JD Edwards nodes

v “Error message BIP3450 is issued when you include a JDEdwardsRequest node
in a message flow and try to connect to a JD Edwards EnterpriseOne server” on
page 3433

Error messages BIP3414 and BIP3450 are issued when you deploy a WebSphere
Adapters input node:
Procedure

v Scenario: When you deploy a message flow that contains a SiebelInput node,
error message BIP3414 is issued.

v Explanation: The error messages explain that the SiebelInput node could not
register with the adapter component to receive events. This problem can be
caused when the broker does not know where to find the client libraries for the
Siebel Enterprise Information Service (EIS). You might also encounter this
problem if you are using the WebSphere Adapter for Siebel on an unsupported
operating system.

v Solution: Use the mqsireportproperties and mqsichangeproperties commands
to configure the broker with the location of the Siebel client libraries, as
described in “Preparing the environment for WebSphere Adapters nodes” on
page 717.

Error messages are issued when classes cannot be found, or when problems
occur with Java initialization:
Procedure

v Scenario: You are deploying WebSphere Adapters, and error messages are issued
that indicate that classes cannot be found, or problems are occurring with Java
initialization. BIP3521 and BIP3522 error messages might also be issued.

Chapter 13. Troubleshooting and support 3429

v Explanation: The SAP, Siebel, and PeopleSoft adapters need client libraries from
the manufacturer of the Enterprise Information System (EIS). If these libraries
are missing, not installed correctly, or at an incorrect level, errors are issued.

v Solution: To solve this problem, complete the following steps.
1. On the broker that you are using to change the configurable service of the

adapter, run the mqsichangeproperties command to identify the location of
the Java and native libraries.

2. Ensure that the libraries are installed correctly, are valid for your operating
system, and have the correct permission so that the broker can access them.

3. Ensure that your operating system is supported by WebSphere Message
Broker and the EIS provider. For details about supported operating systems,
visit the WebSphere Message Broker Requirements Web site.

The WebSphere Adapters are not visible when you run ITLM:
Procedure

v Scenario: The adapter is not visible when you run the IBM Tivoli License
Manager (ITLM).

v Explanation: If you want to use ITLM with the WebSphere Adapters, you must
activate the ITLM file for each adapter.

v Solution: Follow the instructions in “Activating IBM Tivoli License Manager for
WebSphere Adapters” on page 2036.

A message flow with an SAPRequest, SiebelRequest, or PeopleSoftRequest node
has deployed successfully, but message BIP3540 is issued indicating that
connection failed:
Procedure

v Scenario: From an SAPRequest, SiebelRequest, or PeopleSoftRequest node, an
exception is thrown to indicate that the node is unable to make a connection
even though the message flow has deployed successfully. The exception contains
message BIP3540 with inserted text that indicates that connection failed. For
example, for SAP, the inserted text is:
Exception in connecting to SAP:Connect to SAP gateway failed
Connect_PM GWHOST= invalidhost.test.co, GWSERV=sapgw00, ASHOST= invalidhost.test.co,

SYSNR=00
LOCATION CPIC (TCP/IP) on local host ERROR partner not reached (host

invalidhost.test.co, service 3300) TIME Mon Dec 01 16:43:52 2008 RELEASE 640
COMPONENT NI (network interface) VERSION 37 RC -10 MODULE nixxi_r.cpp LINE 8719
DETAIL NiPConnect2 SYSTEM CALL SiPeekPendConn ERRNO 10061 ERRNO TE

For PeopleSoft, the inserted text is:
001DOWNbea.jolt.ServiceException: Invalid Session

v Explanation: The connection details are not verified when the message flow is
deployed. For request nodes, the connection is made at first use.

v Solution: If you have configured a configurable service for this adapter, review
the connection properties on that configurable service and review the text in the
BIP3540 message to determine if the connection properties are incorrect. If the
properties are incorrect, use the mqsichangeproperties command to correct them
or use the mqsideleteconfigurableservice command to revert to the properties
that are set on the adapter. Reload the execution group or stop and restart the
broker.
If no configurable service exists for this adapter, review the connection
properties on the adapter. If the properties are incorrect, correct them and
redeploy the adapter. Alternatively, use the mqsicreateconfigurableservice
command to create a new configurable service with the correct properties to
override the properties that are set on the adapter.

3430 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

You have deployed an SAP inbound adapter but do not receive expected
messages:
Procedure

v Scenario: You have deployed an SAP inbound adapter but do not receive the
IDoc messages that you expected to receive.

v Explanation: If you have not received IDoc messages from SAP, it is possible
that deployment was unsuccessful or the SAP server has not started.

v Solution: Check user trace for message BIP3484 occurring at the time of
deployment. The adapter component writes diagnostic information to this
message, in an insert that begins "CWYAP...". If this message is issued, it
explains the cause of the problem.

You have imported an existing project into your workspace, but messages are
issued when you try to build SAP message sets:
Procedure

v Scenario: You have imported an existing project into your workspace, but when
you try to build an SAP message set, you see the message set compile error
message BIP0182.

v Explanation: This error occurs when you choose the option to "Import existing
projects into your workspace" from the Import dialog box. By choosing this
option when you import, a link is created from the workspace to the existing
projects in an external location and a required file is not available to the
workspace. To copy the entire project into your workspace, use the option to
import the Project Interchange (PI) file.

v Solution: When you import an exiting SAP project into your workspace, click
File > Import, expand the Other folder, and click Project Interchange. For more
information, see “Importing and exporting resources in a Project Interchange
file” on page 1452.

An error is issued when you use the message set that is generated by the
Adapter Connection wizard:
Procedure

v Scenario: You run the Adapter Connection wizard and select an inbound SAP
IDoc. You run the wizard again, but this time you select an outbound SAP IDoc.
When you use the message set that is generated, the following error is issued:

’Selector exception caught from generateEISFunctionname’, ’commonj.connector.runtime.SelectorException:
commonj.connector.runtime.SelectorException: For the IDoc type SapYwmspgi01, operation key=YWMSPGIWMS not
found using the application-specific information {Create={MsgType=, MsgCode=, MsgFunction=}} verify appropriate
combination of MsgType, MsgCode, MsgFunction is set in SapYwmspgi01, application-specific information.

v Explanation: If you run the Adapter Connection wizard for an inbound SAP
IDoc, then you run the wizard again for an outbound SAP IDoc, the outbound
IDoc definition replaces the inbound IDoc definition. Information that is stored
in the inbound definition is used to map MsgType, MsgCode, and MsgFunction
to a method binding. The outbound definition does not contain these mappings,
so processing of the inbound IDoc fails.

v Solution: To avoid this error, ensure that inbound and outbound SAP IDocs
have different names if they are stored in the same message set.

When you run the SAP samples on Linux or UNIX, WebSphere Message Broker
does not connect to the SAP gateway:
Procedure

v Scenario: When you run the SAP samples on Linux or UNIX, the message flow
deploys successfully, but a connection is not established between WebSphere
Message Broker and the SAP system. You might see the following error message:

Chapter 13. Troubleshooting and support 3431

message: Connect to SAP gateway failed
Connect parameters: TPNAME=SAMPRFC GWHOST=sapdev10 GWSERV=sapgw00
ERROR service ’sapgw00’ unknown

v Explanation: For the SAP Java Connector (SAP JCo) to communicate across the
network, you need to configure the TCP/IP service. If you have installed a
working SAP GUI on your workstation, the TCP/IP service is configured as part
of the installation. If you have not installed an SAP GUI, you must configure the
TCP/IP service manually so that the SAP samples run successfully.

v Solution: Locate the services file in /etc/services and edit it so that it includes
the appropriate gateway service IDs and the port numbers for the TCP/IP
service in the format sapgwSID portnumber/tcp, where SID is the SAP system ID.
For example:
sapgw00 3300/tcp
sapgw01 3301/tcp
sapgw02 3302/tcp

and so on.
For more information about TCP/IP configuration, see the Network Integration
section of the SAP Service Marketplace.

SAP inbound messages (ALE and BAPI) appear to be missing:
Procedure

v Scenario: SAP inbound messages (ALE and BAPI) appear to be missing. You
might find that every other message does not reach the broker but no errors are
issued.

v Explanation: This problem is typically caused when two brokers share the same
program ID (SAP RFC Destination). For example, a developer has deployed a
message flow, but someone else has used the same broker archive (BAR) file
without having changed the program ID.

v Solution: Ensure that no other brokers are running with the same program ID.
Use SAP transaction SMGW to determine whether other brokers are connected
to the SAP system.

When two ALE inbound modules use the same RFC program ID with SAP JCo
version 3.0.2, NullPointer exceptions are logged in the JCo trace and the Adapter
does not receive IDocs:
Procedure

v Scenario: When two ALE inbound modules use the same RFC program ID with
SAP JCo version 3.0.2, NullPointer exceptions are logged in the JCo trace and
the Adapter does not receive IDocs.
The following example shows a typical exception in the JCo trace.
JCoDispatcherWorkerThread [16:44:42:140]: [JCoApi] Dispatcher.getNextListener() returns dispatch next call rfc handle(1) for null
JCoDispatcherWorkerThread [16:44:42:140]: [JCoApi] caught Throwable in DispatcherWorker.run() while trying to dispatch a request java.lang.NullPointerException
at java.util.Hashtable.get(Hashtable.java:518)
at com.sap.conn.jco.rt.DefaultServerManager$DispatcherWorker.run(DefaultServerManager.java:268)
at java.lang.Thread.run(Thread.java:735)

JCoDispatcherWorkerThread [16:44:42:140]: [JCoApi] Dispatcher.getNextListener() returns no calls

v Explanation: SAP JCo version 3.0.2 does not support the use of two ALE
inbound modules with the same RFC program ID.

v Solution: To solve this problem, download a hotfix from SAP; the SAP ticket
reference number is 584247/2009.

You are using a SiebelInput node with the delivery type set to unordered, and
error message BIP3450 is issued with a NullPointer exception:

3432 WebSphere Message Broker Version 7.0.0.8

http://service.sap.com/connectors

Procedure

v Scenario: You are using a SiebelInput node, you have set the delivery type to
unordered in the Adapter Connection wizard, and the minimum number of
connections is 1 or less. The following exception is shown in user trace:
RecoverableException BIP3450E: An adapter error occurred during the
processing of a message. The adapter error message is
java.lang.NullPointerException.

v Explanation: When using unordered events, the minimum connections
(MinimumConnections) and maximum connections (MaximumConnections)
properties must be greater than 1 for event delivery to be successful.

v Solution: Set the MinimumConnections and MaximumConnections properties on the
Adapter Connection wizard to values greater than 1. For example, set the
minimum number of connections to 2 and the maximum number of connections
to 4.

Error message BIP3450 is issued when you include a JDEdwardsRequest node in
a message flow and try to connect to a JD Edwards EnterpriseOne server:
Procedure

v Scenario: You have created a message flow that contains a JDEdwardsRequest
node, but error message BIP3450 is issued, indicating that the node is unable to
connect to the JD Edwards EnterpriseOne server.

v Explanation: This error message indicates that the JDEdwardsRequest node is
trying to connect to the JD Edwards EnterpriseOne server but is unable to do so.
This error can be caused by the following situations.
– The JD Edwards EnterpriseOne server is not running.
– The JD Edwards adapter has been configured with incorrect connection

details; for example, the name of the JD Edwards EnterpriseOne Environment
to which to connect.

– The JDBC drivers that are required to connect to the JD Edwards
EnterpriseOne server are missing from the class path. The following table lists
the required JDBC driver files for each database.

Database JDBC driver files Implementation class

Oracle tsnames.ora
classes12.zip

oracle.jdbc.driver.OracleDriver

SQLServer sqljdbc.jar com.ibm.microsoft.sqlserver.jdbc.SQLServerDriver

AS/400 jt400.jar com.ibm.as400.access.AS400JDBCDriver

DB2 Type-2 (JDK 1.4/1.5) db2java.zip com.ibm.db2.jdbc.app.DB2Driver

DB2 Type-4 (JDK 1.4/1.5) db2jcc.jar
db2jcc_license_cu.jar

com.ibm.db2.jcc.DB2Driver

DB2 Type-4 (JDK 1.6) db2jcc4.jar com.ibm.db2.jcc.DB2Driver

v Solution: Ensure that the following conditions have been met.
– The JD Edwards EnterpriseOne server is running.
– The JD Edwards adapter has been configured with the correct connection

details.
– The drivers that are required to connect to the JD Edwards EnterpriseOne

server are in the class path.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and

Chapter 13. Troubleshooting and support 3433

PeopleSoft.
Related tasks:
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Changing connection details for SAP adapters” on page 719
SAP nodes can get SAP connection details from either the adapter component or a
configurable service. By using configurable services, you can change the connection
details for adapters without the need to redeploy the adapters. To pick up new
values when a configurable service is created or modified, you must reload the
broker or execution group to which the adapter was deployed, by using the
mqsistop and mqsistart commands, or the mqsireload command.
“Changing connection details for Siebel adapters” on page 720
Siebel nodes can get Siebel connection details from either the adapter component
or a configurable service. By using configurable services, you can change the
connection details for adapters without the need to redeploy the adapters. To pick
up new values when a configurable service is created or modified, you must
reload the broker or execution group to which the adapter was deployed, by using
the mqsistop and mqsistart commands, or the mqsireload command.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.

WebSphere Message Broker Requirements

Resolving other problems when developing message flows
Use the advice given here to deal with problems that can arise when developing
message flows, and that are not covered in the specific categories listed in
"Resolving problems when developing message flows"

About this task
v “The values of your promoted properties are lost after editing” on page 3435
v “The Message Flow editor experiences problems when opening a message flow,

and opens in error mode” on page 3435
v “A message flow has subflows with the same user-defined property set to

different values, but only one value is set at run time” on page 3435
v “You want to move resources to a new broker schema that you have created but

it is not visible in the Broker Development view” on page 3435

3434 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

v “A selector exception is raised when you use WebSphere Adapters” on page
3436

The values of your promoted properties are lost after editing:
Procedure

v Scenario: You edited a message flow using the Message Flow editor, and the
values of your promoted properties are lost.

v Explanation: The values of promoted properties for nodes with more than a
single subflow definition (that is, two identically named subflows in the same
project reference path) are lost if the flow is edited and saved.

v Solution: To avoid this problem, ensure that each subflow in your project has a
different name.

The Message Flow editor experiences problems when opening a message flow,
and opens in error mode:
Procedure

v Scenario: You attempt to open an existing message flow in the Message Flow
editor and it opens in read-only error mode, displaying a list of parsing or
loading errors. The message flow is not open and a message is displayed
indicating that the message flow file is not valid.

v Explanation: The message flow file is unreadable or is corrupted, and the
Message Flow editor cannot render the model graphically.

v Solution: Contact IBM Customer Support for assistance with the corrupted file.

A message flow has subflows with the same user-defined property set to
different values, but only one value is set at run time:
Procedure

v Scenario: You have a message flow that contains identical subflows. Each
subflow has the same user-defined property (UDP), but with different values. At
run time, only one of the values is set.

v Explanation: A UDP has global scope and is not specific to a particular subflow.
If you reuse a subflow in a message flow, and those subflows have identical
UDPs, you cannot set the UDPs to different values.

v Solution: If you need to set a different value for each subflow, use a different
UDP for each subflow.

You want to move resources to a new broker schema that you have created but it
is not visible in the Broker Development view:
Procedure

v Scenario: You have created a new broker schema and you want to move a
resource to it, but the schema is not visible in the Broker Development view.

v Explanation: If category mode is selected, you cannot see the broker schema in
the Broker Development view.

v Solution: To move resources to a broker schema that you have created, take one
of the following steps.

– Click Hide Categories () on the Broker Development view toolbar. The
new broker schema appears in the Broker Development view and you can
drag resources onto it.

– Right-click a resource, click Move, then select the schema that you have
created. When you click OK, the resource is moved to the selected schema.

Chapter 13. Troubleshooting and support 3435

A selector exception is raised when you use WebSphere Adapters:
Procedure

v Scenario: You run the Adapter Connection wizard for an inbound IDOC, then
you run the wizard again for an outbound IDOC. When the message set is
generated, you see the following error message:
’Selector exception caught from generateEISFunctionname’ ,
’commonj.connector.runtime.SelectorException:
commonj.connector.runtime.SelectorException: For the IDoc type
SapYwmspgi01, operation key=YWMSPGIWMS not found using the
application-specific information {Create={MsgType=, MsgCode=, MsgFunction=}}
verify apropriate combination of MsgType,MsgCode, MsgFunction is set in
SapYwmspgi01, application-specific information.
--

v Explanation: When you run the Adapter Connection wizard for an inbound
IDOC, then you run the wizard again for an outbound IDOC, the outbound
IDOC definition replaces the inbound IDOC definition. Information that is
stored in the inbound definition is used to map MsgType, MsgCode, and
MsgFunction to a method binding. The outbound definition does not contain
these mappings, so processing of the inbound IDOC fails.

v Solution: To avoid this error, ensure that inbound and outbound IDOCs have
different names if they are stored in the same message set.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Resolving problems when developing message flows” on page 3395
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
Related reference:
“Message flows” on page 4015
Use the reference information in this section to develop your message flows and
related resources.

Resolving problems when deploying message flows or
message sets

Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.

Initial checks
Procedure
1. To debug problems when deploying, check the following logs:
v The administration log
v The local error log (the Windows Event log or the syslog)
v The WebSphere MQ logs

3436 WebSphere Message Broker Version 7.0.0.8

These logs might be on separate computers, and must be used with the
WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
output to ensure that the deployment was successful.
Use the mqsilist command to check that the deployment was successful, or
look in the Windows Event or Administration Log view.

2. Use this checklist when you have deployment problems:
v Make sure that the mode that your broker is working in is appropriate for

your requirements. See “Operation modes” on page 48.
v Make sure that the remote queue manager is running.
v Make sure that channels are running.
v Display the channel status to see if the number of system messages sent

increases.
v Check the channel from the remote end.
v Check the queue manager name.
v Determine whether the channel is a cluster channel.

Common problems
About this task

“Resolving problems that occur when preparing to deploy message flows” on
page 3438

v “An error is issued when you add a message set to a broker archive file”
on page 3438

v “You cannot drag a broker archive file to a broker” on page 3438
v “You cannot deploy a message flow that uses a user-defined message

flow” on page 3439
v “The compiled message flow file (.cmf) has not been generated” on page

3439

“Resolving problems that occur during deployment of message flows” on page
3440

v “You receive a warning message about your broker mode” on page 3440
v “The message flow deploys on the test system, but not elsewhere” on

page 3441
v “Error messages about your broker mode are issued when you create an

execution group” on page 3442
v “Error messages about your broker mode are issued when you deploy”

on page 3442
v “Error messages about your function level are issued when you deploy”

on page 3443
v “Error messages are issued when you deploy to z/OS” on page 3444
v “Expected serialization of input is not occurring for a shared queue that

serves multiple instances of a message flow on z/OS” on page 3444
v “You create a configurable service, then deploy a message flow and

inbound adapter, but the deployment fails” on page 3445
v “Error messages are issued when you deploy” on page 3447
v “You get an authority check failure when you deploy to z/OS” on page

3446

“Resolving problems that occur after deployment of message flows” on page
3451

v “Your XSLTransform node does not work after deployment” on page
3451

Chapter 13. Troubleshooting and support 3437

v “You receive exception ('MQCC_FAILED') reason '2042'
('MQRC_OBJECT_IN_USE')” on page 3451

Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Are the Linux and UNIX environment variables set correctly?” on page 3350
Use the mqsiprofile command to set a command environment.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Resolving problems that occur when preparing to deploy
message flows
Use the advice given here to help you to resolve common problems that can occur
during preparations to deploy message flows or message sets.

An error is issued when you add a message set to a broker archive file:
Procedure

v Scenario: An error is issued when you add a message set to a broker archive
(BAR) file.

v Explanation: After you create a BAR file and add a message set project to it, two
files are created in the BAR file: messageset.user.txt and
messageset.service.txt. The user.txt file contains user log information, such
as warning message BIP0177W, which states that the dictionary that you have
created is not compatible with earlier versions.

v Solution: Use the information in the user.txt file to diagnose the error. The
service.txt file contains detailed information that is used by the broker, and
can be used by the IBM Support Center to diagnose problems.

You cannot drag a broker archive file to a broker:

3438 WebSphere Message Broker Version 7.0.0.8

Procedure

v Scenario: You cannot drag a broker archive (BAR) file to a broker.
v Explanation: BAR files can be deployed only on an execution group.
v Solution: Select an execution group in the deploy dialog.

You cannot deploy a message flow that uses a user-defined message flow:
Procedure

v Scenario: You have created a message flow that contains an input node in a
user-defined node project. However, you cannot deploy a message flow that
uses this node.

v Explanation: Validation, compilation, and deployment do not recognize that a
user-defined message flow contains an input node.

v Solution: To work around the problem, add a dummy input node to the flow
that you intend to deploy.

The compiled message flow file (.cmf) has not been generated:
Procedure

v Scenario: The compiled message flow file (.cmf) has not been generated.
Therefore, it is not added to the broker archive file, and cannot be deployed.

v Explanation: When you create files that define message flow resources in the
WebSphere Message Broker Toolkit, the overall file path length of those files
must not exceed 256 characters, because of a Windows file system limitation.
If you have a message flow that includes resource files that have a path length
that exceeds 256 characters, the message flow cannot be compiled when you try
to add it to a BAR file, and therefore cannot be deployed.
You might also be affected by this restriction when you use the Adapters
Connection wizard; names discovered and returned by the EIS can be very long.
The Adapters Connection wizard attempts to write these files to the message set
on the local file system, but their path exceeds the operating system limit, and
the files appear corrupted.

v Solution: To ensure that the path length does not exceed 256 characters, use
names that are as short as possible for all resources; for example:
– The installation path
– Project names and broker schema names
– ESQL and mapping file names
– Inbound and outbound adapter files

Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such

Chapter 13. Troubleshooting and support 3439

as message flows, and deploy them to execution groups on brokers.
“Are the Linux and UNIX environment variables set correctly?” on page 3350
Use the mqsiprofile command to set a command environment.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.

Resolving problems that occur during deployment of message
flows
Use the advice given here to help you to resolve problems that can arise during
deployment of message flows or message sets.

Procedure
v “You receive a warning message about your broker mode”
v “The message flow deploys on the test system, but not elsewhere” on page 3441
v “Error messages about your broker mode are issued when you create an

execution group” on page 3442
v “Error messages about your broker mode are issued when you deploy” on page

3442
v “Error messages about your function level are issued when you deploy” on page

3443
v “Error messages are issued when you deploy to z/OS” on page 3444
v “Expected serialization of input is not occurring for a shared queue that serves

multiple instances of a message flow on z/OS” on page 3444
v “You create a configurable service, then deploy a message flow and inbound

adapter, but the deployment fails” on page 3445
v “You have created a WebSphere Adapters message flow that uses secondary

adapters, and a naming clash has occurred in the secondary adapters or message
sets” on page 3445

v “You get an authority check failure when you deploy to z/OS” on page 3446
v “Deployment fails when you have circular project dependencies” on page 3446
v “Error messages are issued when you deploy” on page 3447

You receive a warning message about your broker mode:
About this task

Message BIP1806

v Scenario: Warning message BIP1806 is displayed.
The broker ’Broker_Name’ did not reveal its mode in time;
any reported information might not be up-to-date.

v Explanation: Your broker timed out before the command completed. You can set
the timeout value on the -w parameter of the mqsimode command, or accept the
default value of 60 seconds; see “mqsimode command” on page 3899.

v Solution: Check that the broker is started: if it is not started, start it by using the
mqsistart command. If it is started, increase the timeout value and run the
command again.

Message BIP1808

v Scenario: Warning message BIP1808 is displayed.
Broker ’Broker_Name’ is not at the required software level
to change the mode.

3440 WebSphere Message Broker Version 7.0.0.8

v Explanation: Your broker is running in a previous version of the product. You
must migrate brokers that you created in a version earlier than V6.1.0.2 before
you can change the operation mode.

v Solution: Upgrade your broker to at least V6.1.0.2, and run the command again.

Message BIP1821

v Scenario: Warning message BIP1821 is displayed.
WARNING: Broker ’Broker_Name’ is in ’Mode_Name’ mode but has ’x’ execution groups,
which exceeds the allowed maximum for this mode.

v Explanation: Your broker is running in a mode that restricts the number of
execution groups that you can use; see “Restrictions that apply in each operation
mode” on page 3657.

v Solution: Contact your IBM representative to upgrade your license, or remove
the required number of execution groups; see “Deleting an execution group by
using the WebSphere Message Broker Toolkit or WebSphere Message Broker
Explorer” on page 947.

Message BIP1822

v Scenario: Warning message BIP1822 is displayed.
WARNING: Broker ’Broker_Name’ is in ’Mode_Name’ mode but has ’x’ message flows
deployed, which exceeds the allowed maximum for this mode.

v Explanation: Your broker is running in a mode that restricts the number of
message flows that you can use; see “Restrictions that apply in each operation
mode” on page 3657.

v Solution: Contact your IBM representative to upgrade your license, or delete the
required number of message flows; see “Deleting a message flow” on page 1441.

Message BIP1823

v Scenario: Warning message BIP1823 is displayed.
WARNING: Broker ’Broker_Name’ has a message flow called ’Message_Flow’ in execution
group ’Execution_Group’, which contains one or more nodes that
are not valid in this mode: Mode_Name

v Explanation: Your broker is running in a mode that restricts the types of node
that you can use in a message flow; see “Restrictions that apply in each
operation mode” on page 3657.

v Solution: Contact your IBM representative to upgrade your license, rework your
message flow to use nodes that are valid in the current mode, or remove the
message flows that contain unsupported nodes; see “Deleting a message flow”
on page 1441.

Message BIP1824

v Scenario: Warning message BIP1824 is displayed.
WARNING: The trial period for broker ’Broker_Name’ expired on ’Day_Month_Year’.

v Explanation: Your broker is running in the Trial Edition mode and your trial
period of 90 days has expired; see “Restrictions that apply in each operation
mode” on page 3657.

v Solution: Contact your IBM representative to upgrade your license.

The message flow deploys on the test system, but not elsewhere:
Procedure

v Scenario: The message flow that you have developed deploys on the test
system, but not elsewhere.

Chapter 13. Troubleshooting and support 3441

v Solution: Carry out the following checks:
– Ensure that you have verified the installation on the target system by creating

and starting a broker, and deploying a single execution group. These actions
confirm that the broker is correctly defined.

– Ensure that the broker archive (BAR) file's broker.xml file contains references
to the correct resources for the new system.

– Ensure that any referenced message sets are deployed.
– If database resources or user-defined nodes are not accessible or authorized

from the target system, the deploy fails. On distributed systems, ensure that
you have defined either ODBC or JDBC connections to your databases so that
they can be accessed from the broker. Also, set the broker environment to
allow access to the databases. On Linux or UNIX systems, you might have to
run a database profile.

– Any user-defined extensions that you are using in your message flow might
not load if they cannot be found, or are not linked correctly. Consult the
documentation for your operating system for details of tools that can help
you to check the binary files of your user-defined extension.

Error messages about your broker mode are issued when you create an execution
group:
About this task

Message BIP1825

v Scenario: Error message BIP1825 is displayed.
You attempted to create an execution group ’Execution_Group’ on broker ’Broker_Name’,
but the broker is running in ’Mode_Name’ mode which
limits the number of execution groups that can exist at any one time.
The execution group cannot be created.

v Explanation: The execution group cannot be created because the maximum
number of execution groups for the mode of the target broker has been reached,
and creating the execution group causes this limit to be exceeded; see
“Restrictions that apply in each operation mode” on page 3657. The execution
group was not created.

v Solution: Reuse an existing execution group, or delete an existing execution
group and try the command again; see “Deleting an execution group by using
the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer”
on page 947. Alternatively, contact your IBM representative to upgrade your
license.

Error messages about your broker mode are issued when you deploy:
About this task

Message BIP1826

v Scenario: Error message BIP1826 is displayed.
You attempted to deploy a broker archive (BAR) file to execution group
’Execution_Group’ on broker ’Broker_Name’,
but the broker is running in ’Mode_Name’ mode which limits the
number of message flows that can exist at any one time.
The BAR file cannot be deployed.

v Explanation: The BAR file cannot be deployed because it causes the broker to
run more message flows than are valid for the current mode of operation of the
target broker; see “Restrictions that apply in each operation mode” on page
3657. The BAR file was not deployed.

3442 WebSphere Message Broker Version 7.0.0.8

v Solution: Delete message flows from the broker and try the command again; see
“Deleting a message flow” on page 1441. Alternatively, contact your IBM
representative to upgrade your license.

Message BIP1827

v Scenario: Error message BIP1827 is displayed.
You attempted to deploy a broker archive (BAR) file to execution group
’Execution_Group’ on broker ’Broker_Name’,
but the broker is running in ’Mode_Name’ mode which has a restriction
on the types of node that can be deployed.
The BAR file cannot be deployed.
The set of node types found in the BAR file that are not
valid are: Node_Type.

v Explanation: The BAR file cannot be deployed because it contains nodes that are
not valid for the current mode of the target broker; see “Restrictions that apply
in each operation mode” on page 3657. The BAR file was not deployed.

v Solution: Rework your message flow to use nodes that are valid in the current
mode, or remove the message flows that contain unsupported nodes; see
“Deleting a message flow” on page 1441. Alternatively, contact your IBM
representative to upgrade your license.

Message BIP1828

v Scenario: Error message BIP1828 is displayed.
You attempted to deploy a broker archive (BAR) file to execution group
’Execution_Group’ on broker ’Broker_Name’,
but the trial period for the broker has expired.
The BAR file cannot be deployed.

v Explanation: The target broker is running in a trial mode that has expired; see
“Restrictions that apply in each operation mode” on page 3657. The BAR file
was not deployed.

v Solution: Contact your IBM representative to upgrade your license. If you have
already purchased a valid license for the target broker, change the broker to the
correct mode by using the mqsimode command; see “mqsimode command” on
page 3899.

Message BIP1829

v Scenario: Error message BIP1829 is displayed.
You attempted to deploy a broker archive (BAR) file to execution group
’Execution_Group’ on broker ’Broker_Name’,
but the broker is running in ’Mode_Name’ mode which
limits the number of execution groups that can exist at any one time.
The BAR file cannot be deployed.

v Explanation: The BAR file cannot be deployed because the maximum number of
execution groups for the mode of the target broker has been reached; see
“Restrictions that apply in each operation mode” on page 3657. The BAR file
was not deployed.

v Solution: Delete an existing execution group and try the command again; see
“Deleting an execution group by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 947. Alternatively, contact your
IBM representative to upgrade your license.

Error messages about your function level are issued when you deploy:

Chapter 13. Troubleshooting and support 3443

About this task

Message BIP2276

v Scenario: Error message BIP2276 is displayed.
The flow ’Message_flow’, which includes a message flow of
node type ’Node_type’, cannot be deployed because the current
fix pack function level of ’<version>.<release>.<modification>.<fix>’
does not support this node.
Use mqsichangebroker -f all’ to enable this functionality.

v Explanation: The broker received an instruction to create a message flow node
of type Node_type in message flow Message_flow. The broker cannot create nodes
of this type because the new functions have not been enabled for this broker.
Use the following command to enable this function, and all other functions:
mqsichangebroker MB7BROKER -f all

v Solution: Either change the flow to avoid using the unavailable node, or enable
the new functions by using the mqsichangebroker command; see
“mqsichangebroker command” on page 3723.

Error messages are issued when you deploy to z/OS:
Procedure

v Scenario: The following messages are written to the log when you deploy to
z/OS:
+(MQ05BRK) 0 BIP2070E: A problem was detected with WebSphere MQ while issuing
MQPUT for WebSphere MQ queue SYSTEM.BROKER.ADMIN.REPLY, WebSphere MQ queue
manager QM_01. MQCC=2, MQRC=2030.
+(MQ05BRK) 0 BIP2068E: The broker was unable to put an internal configuration
message to message queue SYSTEM.BROKER.ADMIN.REPLY.

v Explanation: The transmission queue is not large enough for the messages that
are issued by WebSphere Message Broker.

v Solution: See the WebSphere MQ documentation for details on how to increase
the size of the transmission queue.

Expected serialization of input is not occurring for a shared queue that serves
multiple instances of a message flow on z/OS:
Procedure

v Scenario: Expected serialization of input is not occurring for a shared queue that
serves multiple instances of a message flow on z/OS.

v Explanation: On z/OS, WebSphere MQ supports serialized access to shared
resources, such as shared queues, through the use of a connection tag
(serialization token) when an application connects to the queue manager that
participates in a queue sharing group.
This problem can occur for a number of reasons:
– You have assigned different serialization tokens to the input nodes of the

flows that get messages from the shared queue.
– The message flows are running in the same execution group. Serialization can

only be effected between flows that are running in different execution groups,
either on the same broker, or on different brokers whose queue managers
participate in the same queue sharing group.

– The queue managers on which the brokers are running are not participating
in a queue sharing group, or not participating in the same queue sharing
group.

v Solution: Carry out the following checks:

3444 WebSphere Message Broker Version 7.0.0.8

– Check that the same z/OS serialization token has been configured for the
MQInput nodes in each flow that use the shared queue.

– Check that the message flows are running in different execution groups.
– Check that the broker queue managers are part of the same queue sharing

group, and that no errors are reported from the queue managers in the z/OS
system log (SDSF log).

You create a configurable service, then deploy a message flow and inbound
adapter, but the deployment fails:
Procedure

v Scenario: You create a configurable service, then deploy a message flow and
inbound adapter, but the deployment fails.

v Explanation: When you create a configurable service for an adapter that has not
yet been deployed, the connection properties are not fully validated until you
deploy the adapter and the message flow that uses that adapter. Therefore, the
properties that you set on the configurable service might be invalid.

v Solution: Inspect the error message that is returned from the deployment and
determine whether the deployment failed because of invalid connection
properties on the configurable service. If so, use the mqsichangeproperties
command to correct the properties, or use the mqsideleteconfigurableservice
command to use the properties that are set on the adapter. Restart the broker
and redeploy the message flow.

You have created a WebSphere Adapters message flow that uses secondary
adapters, and a naming clash has occurred in the secondary adapters or message
sets:
Procedure

v Scenario: You have created a WebSphere Adapters message flow that uses
secondary adapters, and a naming clash has occurred. You need to know which
adapters and message sets the WebSphere Adapters node is using, and if the
method names in the adapters or the message type names in the message sets
are clashing.

v Explanation: Method names must be unique across all primary and secondary
adapters, and the message set that is created must not contain any types that
share the same name and namespace of existing message sets. Information about
secondary adapters and message sets is written to user trace at the following
stages.
– When the node is first deployed, information about the current set of

secondary adapters and message sets is reported.
– When adapters and message sets are deployed subsequently, information

about them is reported at the time of deployment.
– When the message flow, broker, or execution group is stopped then restarted,

information about the entire set of secondary adapters and message sets is
written to user trace, including those secondary adapters and message sets
that are deployed after the message flow was first deployed.

This information is reported by the following messages.
– BIP3432 and BIP3434 list the adapters and message sets that are available

when the node is deployed or when the broker, execution group, or message
flow are restarted.

– BIP3433 reports that a secondary adapter is being deployed and added to the
set.

– BIP3435 reports that a secondary message set is being deployed.
– BIP3436 identifies the message set in which each type is being defined.

Chapter 13. Troubleshooting and support 3445

– BIP3437 identifies message sets that attempt to redefine a type that is already
defined.

– BIP3438 identifies the adapter in which each method is being defined.
– BIP3439 identifies adapters that attempt to redefine a method that is already

defined.

Messages BIP3436, BIP3437, BIP3438, and BIP3439 are issued when a message is
processed to report whether definitions are used for that message.

v Solution: The following steps describe how to use user trace when working with
secondary adapters.
– When you deploy the flow for the first time

1. Start user trace.
2. Deploy your message flow, primary adapter, primary message set, and

any secondary adapters or message sets that are ready.
3. Read user trace, looking out for the messages described.
4. Optional: Reset user trace, stop and restart the message flow, then read

user trace again, looking out for the messages described.
– When you add new adapters and message sets

1. Start user trace.
2. Deploy the secondary adapters and message sets.
3. Read user trace, looking out for the messages described.
4. Optional: Reset user trace, stop and restart the message flow, then read

user trace again, looking out for the messages described.

When you have identified where the naming clash has occurred, you can ensure
that names are unique by editing them in the following ways:
– Edit method names by clicking Edit Operations on the Service Generation

and Deployment Configuration panel of the Adapter Connection wizard.
– Edit the namespaces of the types in the message set by using the Business

Object Namespace control on the Adapter Connection wizard.

You get an authority check failure when you deploy to z/OS:
Procedure

v Scenario: You deploy a BAR file to z/OS, and you get an authority check failure
like the following message:
ICH408I USER(MI09STC) GROUP(TSOUSER) NAME(WMB TASK ID) 672

MI09.SYSTEM.BROKER.AUTH.default CL(MQQUEUE)
PROFILE NOT FOUND - REQUIRED FOR AUTHORITY CHECKING
ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

v Explanation: The z/OS queue manager accesses the MQQUEUE security profile
class by default. If you have enabled broker administration security, and you
have specified the names of one or more execution groups in mixed case, the
security profiles that you set up are defined in MXQUEUE, because the
associated authority queue names are also in mixed case. MQQUEUE does not
hold the expected information.

v Solution: Change the security profile case parameter for the queue manager. You
can use the ALTER QMGR command to update the SCYCASE parameter to M,
or you can modify your start job JCL to set or change this parameter, and restart
the queue manager.

Deployment fails when you have circular project dependencies:

3446 WebSphere Message Broker Version 7.0.0.8

Procedure

v Scenario: Circular project dependencies exist in the projects that you are
deploying and deployment fails.

v Explanation: A circular project dependency occurs when two or more projects
depend on each other.
For example, File A in Project X depends on File B in Project Y, and File C in
Project Y depends on File D in Project X. For Project X to build successfully,
Project Y must be built first so that Project X can resolve the dependency on File
B. However, for Project Y to build successfully, Project X must be built first so
that Project Y can resolve the dependency on File D. The WebSphere Message
Broker Toolkit is based on the Eclipse platform, which does not support circular
project dependencies.

v Solution: To deploy successfully, avoid circular project dependencies.
For example, if Project X depends on File B in Project Y, and Project Y depends
on File D in Project X, move File B to Project Z. The projects must be built in the
order Project Z, Project X, then Project Y so that the dependencies can be
resolved.

Error messages are issued when you deploy:
About this task

Additional error messages that might be generated during a deployment are
explained in this section.

Message BIP1106 with WebSphere MQ reason code 2030

v Scenario: Error message BIP1106 is issued with reason code 2030 when you are
deploying a large message set.

v Explanation: The size of the message exceeds the maximum message length of
the transmission queue to the broker queue manager.

v Solution: Increase the maximum message length for the transmission queue
using the WebSphere MQ alter qlocal command, where the maximum message
length (maxmsgl) is in bytes:
alter ql(transmit_queue_name) maxmsgl(104857600)

For more information about this command, see the System Administration Guide
section of the WebSphere MQ Version 7 Information Center online.

Message BIP1835

v Scenario: Error message BIP1835 is displayed.
v Explanation: The message set that you are deploying produces a message set

dictionary that is larger than the internal limit of 4 MB. This problem can occur
if you have many large message definitions defined to the same message set.
The size of an exported message set is not a good indication of the size of the
message set dictionary that is generated at the time of deployment, because the
exported message set is stored as XML. XML can be verbose, but the dictionary
has a more compact internal format.

v Solution: Split the message definitions into several smaller message sets.

Message BIP2066

v Scenario: You have initiated a deployment request; for example, you have
deployed a BAR file to an execution group. Error message BIP2066 is returned
one or more times.

Chapter 13. Troubleshooting and support 3447

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v Explanation: The deployment request was not acknowledged by the execution
group before the sum of the values for the broker timeout parameters
ConfigurationChangeTimeout and InternalConfigurationTimeout expired.

v Solution: Increase these timeout values by specifying the -g and -k parameters
of the mqsicreatebroker or mqsichangebroker command. See “Setting
configuration timeout values” on page 3258 for information about factors that
affect timeout values, and how to set appropriate values.

Message BIP2080

v Scenario: The broker has started an execution group; for example, if you have
issued mqsistart for the broker, or an error has occurred and the execution
group is being recovered. Error message BIP2080 is displayed one or more times.

v Explanation: The internal configuration request was not acknowledged by the
execution group before the value of the InternalConfigurationTimeout (default
60 seconds) expired.

v Solution: Change the configuration timeout by specifying the -k parameter of
the mqsicreatebroker or mqsichangebroker command. See “Setting configuration
timeout values” on page 3258 for information about factors that affect timeout
values, and how to set appropriate values.

Message BIP2241

v Scenario: Error message BIP2241 is displayed.
v Explanation: You are attempting to deploy a message flow containing a node

that is not available on the target broker.
v Solution: Ensure that the version of the WebSphere Message Broker Toolkit in

which the message flow has been developed matches the version of the broker
to which the message flow is being deployed. If the message flow is using a
user-defined node, or a node supplied in a SupportPac, ensure that the runtime
node implementation has been correctly installed on the computer on which the
broker is running. If your message flow includes a user-defined node, see
“Installing user-defined extension runtime files on a broker” on page 3125. If
your message flow includes a node provided in a SupportPac, see the
installation information, if supplied, for the SupportPac.

Message BIP2242

v Scenario: Error message BIP2242 is displayed.
v Explanation: The deployment request (configuration change) was not accepted

before the timeout value set by the broker parameter
ConfigurationChangeTimeout expired. This configuration timeout value must be
long enough for the message flow to complete processing its current message,
then accept the deploy request; the default is 300 seconds.

v Solution: Set the configuration timeout values by specifying the -g and -k
parameters of the mqsicreatebroker or mqsichangebroker command.

Message BIP3226

v Scenario: Error message BIP3226 is displayed; for example:
(Semipersistent_Compute1.Main, 27.89) : Array index evaluated to ’0’ but must
evaluate to a positive, nonzero integer value.

The first insert in BIP3226 (in this example, Semipersistent_Compute1.Main)
identifies the node and routine in which the statement occurs. The second insert
(in this example, 27.89) identifies the approximate line and column of the index
value shown in the third insert (in this example, '0').

3448 WebSphere Message Broker Version 7.0.0.8

v Explanation: The validity of using a field reference index of zero was corrected
in WebSphere Message Broker Version 7.0. If you have statements in your ESQL
modules that include an index of zero, error BIP3226E is generated.
For example, your ESQL module might contain the following statement:
SET OutputRoot.XMLNSC.Top.A[0].B = 42;

v Solution:

You must correct all ESQL statements that use an index of zero to use an index
of 1. Statements might use a variable as well as a literal value for the index;
check for both possible situations. For example, your changed code might read:
SET OutputRoot.XMLNSC.Top.A[1].B = 42;

Message BIP7053S

v Scenario: When you deploy to a broker, error message BIP7053S is displayed.
v Explanation: This error occurs in a multi TCP/IP stack environment, and

indicates that the UNIX System Services (USS) TCP/IP environment has not
been set up correctly.
WebSphere Message Broker uses USS functions to obtain the host name for a
particular system. The following error message is displayed if the default host
name is not set up correctly in the USS environment:
BIP7053S: Broker $SYS_mqsi 0 unexpected Java exception java.lang.Error:
-2103399272!java.net.UnknownHostException :
Hostname: Hostname

The host name that is reported in the error message is the one that has been
returned to the broker as a result of the gethostname call.

v Solution: Ensure that the TCP/IP environment is configured correctly in USS.

Tagged/Delimited String (TDS) Validator error

v Scenario: You try to deploy a message set with a TDS wire format that has an
error.

v Explanation: The following extract from an error log illustrates what you might
see for a TDS Validator error. In this case, the cause of the problem is that the
element Town does not have a tag defined.
TDS Extractor Trace File
========================

Beginning Extract..

Extracting Identification Info
Extracting Project Info
Extracting Messages
Extracting Elements
Extracting Compound Types
Extracting Type Members
Extracting Type Members
Extracting Type Members
Extracting Type Members
Extracting Type Members
Beginning Indexing..

Creating Member IDs to Tags Index Table.

Beginning Validation..

Validating Project
Validating Types
ERROR: TDSValidator::ValidateTypeMemberSimpleElement:

Chapter 13. Troubleshooting and support 3449

Simple elements in a type with Data Element Separation attribute = Tagged
Delimited must have the following attribute set:
Element Level - Tag

(Element ID: Town)
(Type ID: AddressType)
Return Code: -80

Validating Messages

Trace Info
===========
EXCEPTION: TDSValidator::Validate:

TDS Validation failed.
1 errors
0 warnings

Return Code: -1

v Solution: Use the information in the error log to correct the problem.

:

Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“WebSphere Adapters deployment” on page 3219
When you have run the Adapter Connection wizard and created a message flow,
you must deploy the resources that are generated by adding them to a broker
archive (BAR) file.
Related tasks:
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Are the Linux and UNIX environment variables set correctly?” on page 3350
Use the mqsiprofile command to set a command environment.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

3450 WebSphere Message Broker Version 7.0.0.8

“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
Related information:

WebSphere MQ Version 7 Information Center online

Resolving problems that occur after deployment of message
flows
Use the advice given here to help you to resolve common problems that can arise
after deploying message flows or message sets.

You receive exception ('MQCC_FAILED') reason '2042' ('MQRC_OBJECT_IN_USE'):
Procedure

v Scenario: This exception message occurs when the following conditions are met:
1. You have a message flow containing a SOAPRequest node that is using the

JMS Transport.
2. The message flow has additional instances defined, and is running under

load.
3. You are using the WebSphere MQ JMS provider.
4. You have not specified a reply-to destination, and so are using JMS

temporary dynamic queues.
v Explanation: If you do not specify a reply-to destination, and you are using the

WebSphere MQ JMS provider in a message flow with additional instances, you
must configure JMS temporary dynamic queues before deploying your message
flow.

v Solution: Complete the steps in the topic “Configuring JMS temporary dynamic
queues for the WebSphere MQ JMS provider” on page 4848.

Your XSLTransform node does not work after deployment:
About this task

Two scenarios explain why your XSLTransform node might not work after
deployment:

Error messages are displayed indicating that the style sheets were not found

Procedure

v Scenario: Error messages are displayed indicating that the style sheets were not
found.

v Explanation: This error message is displayed if the broker cannot find the style
sheets or XML files required, or if the content of a style sheet or XML file is
damaged and therefore no longer usable. This error message can happen if a file
system failure occurs during a deployment.

v Solution: If the style sheets or XML files are damaged, redeploy the damaged
style sheets or XML files.

Chapter 13. Troubleshooting and support 3451

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

What to do next

You get unexpected transformation results

v Scenario: You get unexpected transformation results.
v Explanation: For complex message flows, incompatibility might arise among

style sheets and XML files after a deployment. The two typical reasons for this
error are:
– Only part of the cooperating style sheets or XML files are deployed and

updated (a file system failure could cause this failure).
– Multiple XSLTransform nodes that are running inside the same execution

group are supposed to use compatible style sheets, but are using different
versions to process the same incoming message.

v Solution: If only part of the cooperating style sheets or XML files are deployed
and updated, resolve all incompatibility by redeploying the compatible versions.
To avoid multiple XSLTransform nodes using different versions of the style
sheet, pause relevant message flows in the target execution group before
performing the deployment, then restart the flows.

Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Resolving problems when deploying message flows or message sets” on page
3436
Use the advice given here to help you to resolve common problems that can arise
when you deploy message flows or message sets.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
“Configuring JMS temporary dynamic queues for the WebSphere MQ JMS
provider” on page 4848
Configure JMS temporary dynamic queues for the WebSphere MQ JMS provider,
so that you can use them with SOAPRequest nodes, by using WebSphere MQ
Explorer.
“Are the Linux and UNIX environment variables set correctly?” on page 3350
Use the mqsiprofile command to set a command environment.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.

3452 WebSphere Message Broker Version 7.0.0.8

Resolving problems that occur when debugging message
flows

Advice on dealing with some of the common problems that you see when
debugging message flows.

About this task

“Resolving problems that occur when starting and stopping the debugger” on
page 3454

v “An endless "waiting for communication" progress bar is displayed
when you start the debugger” on page 3454

v “The debugger seems to stop” on page 3454
v “The session ends abnormally while debugging” on page 3454
v “An error message is displayed indicating that the debug session cannot

be launched” on page 3455
v “Errors are generated when you copy a message map into a message

flow project” on page 3455

“Resolving problems when debugging message flows” on page 3456

v “The debugger does not pause at the next breakpoint” on page 3456
v “The message does not stop executing at any breakpoint” on page 3456
v “Editing problems occur in the Message Flow editor” on page 3456
v “Editing the MQ message descriptor (MQMD) causes unexpected

behavior in the debugger” on page 3456
v “You cannot see the message content when debugging your message

flow” on page 3456
v “An exclamation mark appears above a node during debugging” on

page 3457
v “The message does not stop processing at breakpoints” on page 3457

“Resolving problems that occur after debugging:” on page 3458

v “You cannot change a message flow after debugging” on page 3458
v “You redeployed a debugged message flow but deployment hangs” on

page 3458
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Starting the flow debugger” on page 3160
To start the flow debugger, you must attach it to an execution group. When the
flow debugger is started, you can introduce test messages to your message flow.
“Attaching the flow debugger to an execution group for debugging” on page 3160
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
“Debug: redeploying a message flow” on page 3189
If you want to change your message flow while you are debugging it, you must
redeploy it to the execution group, then reattach the flow debugger.

Chapter 13. Troubleshooting and support 3453

Resolving problems that occur when starting and stopping the
debugger
Use the advice given here to help you to resolve common problems that can arise
when you debug message flows.

An endless "waiting for communication" progress bar is displayed when you
start the debugger:
Procedure

v Scenario: After you click Start Debugging, you get an endlessly cycling progress
bar entitled "waiting for communication". The "debug session started" message is
not displayed in the information pane.

v Explanation: If the message flow has nodes with ESQL statements, the flow
might not deploy even if the statements are correct syntactically. This situation
can occur, for example, because of multiple declarations or uninitialized
variables (that is, semantic problems that the syntax parser does not pick up).
Always check the WebSphere Message Broker Toolkit Administration log to
confirm that the debugged version of your message flow has deployed
successfully; it has the same name as the original message flow, with the suffix
debug.
If the message flow does not deploy properly, the debugger cannot establish
communication with the flow, and you see the endless progress bar.

v Solution: Click Cancel to clean up and return to a good state, then fix your
errors and try again. As a check, see if your flow can deploy without the
debugger.

The debugger seems to stop:
Procedure

v Scenario: You are debugging a message flow and continue after encountering a
breakpoint. However, nothing seems to happen and after about a minute, a
progress bar appears, indicating that the debugger is waiting for communication.

v Explanation: This situation can occur for the following reasons:
– The message flow might have encountered a time-intensive operation, such as

a huge database query, and you must wait for the flow to complete the
action.

– The broker ended, or some other extraordinary condition occurred, and
communication was lost. In this case, click Cancel to stop the debug session.

The session ends abnormally while debugging:
Procedure

v Scenario: After debugging a message flow, the session ends abnormally and you
still have the debug instance of the message flow (mf_debug_) deployed to the
broker's execution group. You are concerned that this is going to affect the
operation of the flow, and want to put the execution group back to its original
state.

v Explanation: The orphaned message flow should behave as the flow would have
done normally, and the Debug nodes have no effect on message processing. If
you have a small number of nodes in the message flow, corrective action makes
no noticeable difference to the flow, apart from its name. However, if you have a
large message flow (that is, more than 15 nodes or several subflows), take the
corrective action described later in this section, because the performance of
message processing might be affected.

v Solution: Redeploy the broker.

3454 WebSphere Message Broker Version 7.0.0.8

A full redeploy of the broker should replace the orphaned flow with the original
message flow. If this action has no effect, remove the orphaned flow from the
execution group, deploy, then add the flow and deploy to restore the original
state of the broker as it was before the debugging session.

An error message is displayed indicating that the debug session cannot be
launched:
Procedure

v Scenario: You try to relaunch or invoke a new debug session but when you click

the green Debug icon , an error message is displayed stating: Cannot launch
this debug session.

v Explanation: When you click Debug , it relaunches the last debug session. It
fails if you have not created a debug session previously. It also fails if the broker
and execution group that were attached previously in a debug session are no
longer running, or have been restarted; the session cannot be reattached without
re-selection of the broker and execution group process instance.

v Solution:

1. Close the error message and click the arrow immediately to the right of the
Debug icon.

2. Re-select or modify the broker and execution group information from the
previous debug launch configuration by clicking Debug in the menu and
selecting the previous debug launch configuration. See “Attaching the flow
debugger to an execution group for debugging” on page 3160 for more
information.

Errors are generated when you copy a message map into a message flow project:
Procedure

v Scenario: You are copying a message map into a message flow project and errors
have appeared in the task list.

v Explanation: The message flow project did not have the correct references set
before you copied the message mapping.

v Solution: These errors remain in the task list, even if you reset the project
references immediately after copying. Therefore, you must perform a clean build
of the message flow project.

Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Resolving problems that occur when debugging message flows” on page 3453
Advice on dealing with some of the common problems that you see when
debugging message flows.
“Starting the flow debugger” on page 3160
To start the flow debugger, you must attach it to an execution group. When the
flow debugger is started, you can introduce test messages to your message flow.
“Attaching the flow debugger to an execution group for debugging” on page 3160
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.

Chapter 13. Troubleshooting and support 3455

“Debug: redeploying a message flow” on page 3189
If you want to change your message flow while you are debugging it, you must
redeploy it to the execution group, then reattach the flow debugger.

Resolving problems when debugging message flows
This topic contains advice for dealing with some of the common problems that can
arise when debugging message flows.

The debugger does not pause at the next breakpoint:
Procedure

v Scenario: The message flow debugger does not pause at the next breakpoint in
your message flow.

v Solution: Perform the following checks:
1. Check whether your DataFlowEngine is running; if it is not, restart it.
2. Check the input queue. If your input queue has the leftover messages from

the previous time that you used the debugger, clear them before you send a
new message.

The message does not stop executing at any breakpoint:
Procedure

v Scenario: The message does not stop executing at any breakpoint after you
attach to the debugger.

v Explanation: This error could be caused by a timing problem, or if you have set
the wrong parameters for the debug session.

v Solution: Perform the following steps.
1. Check your launch configuration settings, ensuring that you have specified

the correct Flow Project, HostName and Flow Engine for the debug session.
2. Restart the debug session.

Editing problems occur in the Message Flow editor:
Procedure

v Scenario: While debugging a message flow, editing problems occur when you
are using the Message Flow editor.

v Solution: Do not attempt to edit the message while the flow debugger is
attached. To edit a message flow, detach the debugger, edit the message flow,
then redeploy the message flow.

Editing the MQ message descriptor (MQMD) causes unexpected behavior in the
debugger:
Procedure

v Scenario: You edit properties of the message MQMD descriptor in the Message
Set editor, but this causes unexpected behavior in the debugger.

v Explanation: If you edit the content of the MQMD descriptor, these fields take a
certain range of values. You need to know these ranges before editing the
properties. Unless you explicitly specify the value of these fields, they take
default values, and certain fields might not have been specified in the message.
The values in the fields that are not set explicitly in the message are default
values; do not change these unless you are aware of their importance or the
possible range of values.

You cannot see the message content when debugging your message flow:

3456 WebSphere Message Broker Version 7.0.0.8

Procedure

v Scenario: You are using the message flow debugger, and you can see the
message passing through the message flow, but you cannot see the content of
the message.

v Solution: Open the Flow Debug Message view by clicking Window > Show
View > Other > Message Flow > Flow Debug Message, then OK.

An exclamation mark appears above a node during debugging:
Procedure

v Scenario: In the Message Flow editor, an exclamation mark (!) is displayed
above a node during debugging.

v Explanation: An exception has occurred in the node during debugging.
v Solution: Look under the ExceptionList in the Variables view of the Debug

perspective to find out what error has occurred.

The message does not stop processing at breakpoints:
Procedure

v Scenario: Message processing continues when a breakpoint is encountered.
v Explanation: This error could be caused by a timing problem, or if you have set

the wrong parameters for the debug session.
v Solution: Check your launch configuration setting. Ensure you have specified

the correct Flow Project, HostName and Flow Engine for the debug session.
Restart the debug session.

You cannot see where the debugger is in the message mapping editor:
Procedure

v Scenario: The message mapping editor has opened in the toolkit, but it is
unclear where the debugger is in the map.

v Explanation: The source lookup path for the message map file is not configured
correctly.

v Solution: Check your debug launch configuration settings and ensure you have
configured the source lookup path for the message map file correctly.

When debugging a message map, the debugger does not move to the next field:
Procedure

v Scenario: You are debugging a message map, and the debugger does not move
to the next field. You have to click the Step over button multiple times.

v Explanation: The source lookup path for the message map file is not configured
correctly.

v Solution: Check your debug launch configuration settings and ensure you have
configured the source lookup path for the message map file correctly.

When debugging a message map, the debugger does not move out of the
mapping node:
Procedure

v Scenario: You are debugging a message map, and the debugger does not move
out of the message map.

v Explanation: The source lookup path for the message map file is not configured
correctly.

v Solution: Check your debug launch configuration settings and ensure you have
configured the source lookup path for the message map file correctly.

Chapter 13. Troubleshooting and support 3457

The message flow stops at a collector node:
Procedure

v Scenario: Message processing stops after selecting the Step into Source Code
icon on a Collector node.

v Explanation: The collector node is a multithreaded node and the thread is ended
by selecting Step into Source Code.

v Solution: Set a breakpoint manually after the collector node.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Resolving problems that occur when debugging message flows” on page 3453
Advice on dealing with some of the common problems that you see when
debugging message flows.
“Starting the flow debugger” on page 3160
To start the flow debugger, you must attach it to an execution group. When the
flow debugger is started, you can introduce test messages to your message flow.
“Attaching the flow debugger to an execution group for debugging” on page 3160
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
“Debug: redeploying a message flow” on page 3189
If you want to change your message flow while you are debugging it, you must
redeploy it to the execution group, then reattach the flow debugger.

Resolving problems that occur after debugging:
This topic contains advice for dealing with some of the common problems that can
arise after debugging message flows.

You cannot change a message flow after debugging:
Procedure

v Scenario: You were debugging, but now your message flow seems to be stuck.
When you put a new message in, nothing happens.

v Explanation: This might be because a message was backed out, but you have
not set the Backout requeue name property of your input queue.

v Solution: Set the Backout requeue name property to a valid queue name (such as
the name of the input queue itself) and your flow will become unstuck.

You redeployed a debugged message flow but deployment hangs:
Procedure

v Scenario: You found problems in your message flow by using the debugger. You
changed your message flow and then redeployed it, but now the deployment
hangs.

v Solution: Make sure that when you redeploy the flow to an execution group, the
execution group is not still attached to the debugger.

Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.

3458 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Resolving problems that occur when debugging message flows” on page 3453
Advice on dealing with some of the common problems that you see when
debugging message flows.
“Starting the flow debugger” on page 3160
To start the flow debugger, you must attach it to an execution group. When the
flow debugger is started, you can introduce test messages to your message flow.
“Attaching the flow debugger to an execution group for debugging” on page 3160
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
“Debug: redeploying a message flow” on page 3189
If you want to change your message flow while you are debugging it, you must
redeploy it to the execution group, then reattach the flow debugger.

Resolving problems when developing message models
This topic contains advice for dealing with some common problems that can arise
when working with message sets.

About this task

Message definition files:

v “Your message definition file does not open” on page 3460
v “A message definition file error is written to the task list” on page 3460
v “Your physical format property values have reverted to defaults” on

page 3460
v “You are unable to enter text in the Message Definition editors” on page

3460
v “Objects in your message definition file are not listed in alphabetic

order” on page 3461
v “You want to make the Properties tab the default tab in the Message

Definition editor” on page 3462
v “Error messages are written to the task list after you have imported

related XML Schema files” on page 3461
v “A group contains two different elements with the same XML name in

the same namespace” on page 3461
v “You are unable to set up a message definition file to include a message

definition file within another message definition file” on page 3462
v “Error message BIP5410 is issued because a union type cannot be

resolved” on page 3462
v “Error message BIP5395 is issued because an xsi:type attribute value

does not correspond to a valid member type of the union” on page 3463
v “Error message BIP5396 is issued because a data type does not

correspond to any of the valid data types of the union” on page 3463
v “A union type contains two or more simple types that are derived from

the same fundamental type” on page 3464
v “A list type is based on a union that also contains a list type” on page

3464
v “A union type contains an enumeration or pattern facet” on page 3464

Chapter 13. Troubleshooting and support 3459

v “Error message BIP5505 is issued because input data is not valid for the
data type” on page 3464

Other:

v “A deprecation error is issued on an imported .mrp file” on page 3465
v “User trace detects an element length error” on page 3465
v “MRM dateTime value has changed after it has been parsed” on page

3466

Your message definition file does not open
Procedure
v Scenario: You have created a complex type with a base type that causes the

types to be recursive, and now your message definition file does not open.
v Solution: Recover the last saved version of your message definition file from the

local history or from your repository.

A message definition file error is written to the task list
Procedure
v Scenario: An error is written to the task list indicating that the message

definition file has been corrupted.
v Explanation: This error message appears when the base type of the complex

type is itself, or a circular definition of two or more simple types. This type of
recursion is not supported.

v Solution: Examine your code and ensure that the type of recursion described
above does not occur.

Your physical format property values have reverted to defaults
Procedure
v Scenario: Someone has sent you a message definition file. You have added it to

a message set project, but all the physical format property values have reverted
to defaults.

v Explanation: You cannot transfer message definition files on their own in this
way because these files are not entirely independent. It is the messageSet.mset
file that lists all the physical formats that are applicable to a message set. For
example, if you have a message set A with CWF format Binary1, and a message
set B without any physical formats, a message definition file copied from A to B
does not show Binary1 as a known physical format (although the properties are
still in the message definition file).

v Solution: If possible, request the entire message set project.
Alternatively, add physical formats to the receiving message set so that they
match the originating message set. Then any dormant properties become visible.
However, make sure that the message set level physical format properties match,
or those object properties that inherit defaults from the message set level will be
incorrect.

You are unable to enter text in the Message Definition editors
Procedure
v Scenario: You are unable to enter text in the Message Definition Overview

editor, or change the text of an enumeration or pattern facet in the Message
Definition Properties editor.

v Solution: The Message Definition editors are cell editors, and to enable them
you have to double-click the cell. The first click selects the cell; the second click
puts the cell into active state, allowing you to edit it.

3460 WebSphere Message Broker Version 7.0.0.8

Objects in your message definition file are not listed in
alphabetic order
Procedure
v Scenario: The objects in your message definition file (.mxsd) are listed in the

order that you created them, but you want them to be in alphabetic order.
v Solution:

1. In the Broker Application Development perspective, double-click the message
definition file to open it in the Outline view.

2. Click az (at the top of the Outline view).

This action changes the order of objects within each of the message definition
file's folders (the Messages, Types, Groups, Elements, and Attributes folders) to
be alphabetic.

Error messages are written to the task list after you have
imported related XML Schema files
Procedure
v Scenario: When you have finished importing a collection of related XML Schema

files, you find that the WebSphere Message Broker Toolkit task list contains error
messages for the message set project, indicating that referenced types or other
objects cannot be found.

v Explanation: These errors are typically an indication that one message definition
file includes or imports another message definition file, but that the Message
Definition editor is unable to resolve the specified link.

v Solution:

– Check that a message definition file exists in the WebSphere Message Broker
Toolkit for each of the related XML Schema files that you are importing. If the
new message definition files have been created, they appear in the Broker
Development view.

– Using the Properties Hierarchy in the Message Definition editor, check that
any message definition files that include or import other message definition
files are correctly locating the target files.

One common scenario is where you have two XML Schema files X and Y, which
both exist in the same directory in the file system but where X, which includes
Y, is defined with a real target namespace, while Y is defined in the notarget
namespace. After you import the two files, X is placed into the location that is
determined by its namespace, but Y is placed into the default namespace
location used for files defined in the notarget namespace. This situation causes
the link between the two files to break, and you must modify X so that it
correctly includes Y in its new relative location.

A group contains two different elements with the same XML
name in the same namespace
Procedure
v Scenario: A warning is written to the task list because a group contains two

different elements that have the same XML element name, in the same
namespace.

v Explanation: When a message that has an XML physical format is validated, the
validation includes a test to identify any part of a message definition where the
parser might not be able to uniquely determine which element is represented by
the XML name. This test generates a warning when a group contains two
different XML elements with the same element name in the same namespace,
even in cases where the duplication is legitimate.

Chapter 13. Troubleshooting and support 3461

v Solution: Determine whether the duplication that is identified in the warning
message is in fact a problem that needs to be corrected, or whether it has arisen
because of two elements on opposite sides of a choice sharing the same XML
name, in which case the duplication is legitimate because no ambiguity can
occur.

You are unable to set up a message definition file to include a
message definition file within another message definition file
Procedure
v Scenario: You are unable to set up the include property of a message definition

file to include a second message definition file that is included within another
message definition file.

v Explanation: A message definition file can reference objects in another message
definition file only if the first file references the second file directly. For example,
if three message definition files exist, A, B and C, where A includes B and B
includes C, A can reference objects in B, and B can reference objects in C, but A
cannot reference objects in C.
You might also encounter this problem after importing XML Schema files that
have nested includes.

v Solution: You can work around this problem by including the message
definition file directly, which, in the above example, would mean including C
directly in A. Alternatively, you can define all the message set definitions that
are in C directly in B, then delete C so that A needs to include only B.

You want to make the Properties tab the default tab in the
Message Definition editor
Procedure
v Scenario: When using the Message Definition editor to edit your message

definition files, you prefer to use the Properties tab rather than the Overview
tab, but the Overview tab is always selected as the default.

v Solution: Use the WebSphere Message Broker Toolkit preferences to choose the
Properties tab as the default tab:
1. From the menu, click Windows > Preferences.
2. Expand Broker Development, then Message Set.
3. Expand Editors and select Tab Extensions.
4. In the Message Definition Editor section, select the Properties and the

Overview check boxes.
5. Click OK.

Error message BIP5410 is issued because a union type cannot
be resolved
Procedure
v Scenario: Error message BIP5410 is raised indicating that an element or attribute

is based on a union type and that the element or attribute could not be cast to
any member of the union.

v Explanation: When parsing an element or attribute that is based on a union
type, the MRM XML parser uses an xsi:type attribute, where present, to resolve
the union.
If an xsi:type attribute is not present, or an attribute is being parsed, the parser
tries each union member type in turn, attempting to cast to the associated simple
type, until the cast succeeds. The order of precedence for the attempted cast is
the order in which the member types are listed in the message model, under the
union type, in the Outline view.

3462 WebSphere Message Broker Version 7.0.0.8

If the data cannot be cast to any of the simple types within the union, the union
cannot be resolved and a parser error is reported.

v Solution: Perform the following checks:
– Check that the message contains a valid value for the element or attribute

that is identified in the error message.
– Check that the member types of the union that are identified in the error

message contain the correct list of simple types.
– If possible, use an xsi:type attribute to resolve the union explicitly.

Error message BIP5395 is issued because an xsi:type attribute
value does not correspond to a valid member type of the union
Procedure
v Scenario: Error message BIP5395 is issued, indicating that an element is based

on a union type that has an xsi:type attribute with a value that should resolve
the union explicitly to one of its modeled member types and that the xsi:type
attribute value does not correspond to a valid member type of the union.

v Explanation: When parsing or writing an element or attribute that is based on a
union type, the MRM XML parser or writer uses an xsi:type attribute, where
present, to resolve the union. The parser resolves the value of the xsi:type
attribute to a simple type in the dictionary and checks that the simple type is a
valid member type of the union.
If the xsi:type attribute identifies a type that is not a member type of the union,
it reports an error.

v Solution: Perform one of the following steps:
– Modify the message so that the xsi:type attribute identifies a valid member

type of the union.
– Check that the member types of the union identified in the error message

contain the correct list of simple types.

Error message BIP5396 is issued because a data type does not
correspond to any of the valid data types of the union
Procedure
v Scenario: Error message BIP5396 is issued, indicating that an element or

attribute is based on a union type but the data type does not correspond to any
of the valid data types in the union.

v Explanation: When writing an element or attribute that is based on a union
type, the MRM XML writer uses an xsi:type attribute, where present, to resolve
the union. If an xsi:type attribute is not present, the writer tries to match the
data type of the literal value in the tree to a simple type in the union. If the
literal value cannot be matched to any of the simple types in the union, it
reports a writing error.

v Solution: Perform one of the following steps:
– Check that the message or ESQL contains a valid value for the element or

attribute.
– Check that the union type on which the element is based contains the correct

list of simple types.
– Consider using an xsi:type attribute to resolve the union explicitly.
– Consider changing the type of the element in the tree to correspond with one

of the union member types.

Chapter 13. Troubleshooting and support 3463

A union type contains two or more simple types that are derived
from the same fundamental type
Procedure
v Scenario: A warning is issued during logical validation indicating that a union

type contains two or more simple types that are derived from the same
fundamental type.

v Explanation: The broker does not apply value constraints until the data is in the
logical tree. Therefore, it is not possible to choose between two simple types that
are derived from the same fundamental type but with different constraints. For
example, the broker cannot differentiate between a member type of integer with
a range of 1-10 and another member type of integer with a range of 11-20,
therefore it resolves the union to the first member type of integer.

v Solution: Ensure that the union type that is identified in the warning does not
contain more than one simple type that is derived from the same fundamental
type or ensure that the ordering of such member types is as desired.

A list type is based on a union that also contains a list type
Procedure
v Scenario: An error message is issued during logical validation, indicating that a

list type is based on a union type that includes a list type as one of its member
types.

v Explanation: Lists of lists are not legal. An item type of a list type cannot be a
list type itself nor can it be derived at any level from another list type.
Therefore, a list type cannot have an item type of a union type that includes a
list type as one of its member types.

v Solution: Ensure that any union type specified as an item type for a list type
does not include a list type as one of its member types.

A union type contains an enumeration or pattern facet
Procedure
v Scenario: An error message is raised during logical validation, indicating that a

union type contains an enumeration or pattern facet that is not supported
because enumeration and pattern facets must be specified directly on the
member type.

v Explanation: The broker cannot support the union type facets of pattern and
enumeration applied directly to a restriction of a union type. It can support
facets directly on the chosen member type only. The Message Definition editor
provides support for these facets to enable the import of schemas using direct
facets on a restriction of a union type but it issues a warning notifying that they
will be ignored by the broker.

v Solution: If you want to use the enumeration or pattern facets, specify them
directly on the member type and not on the union type itself.

Error message BIP5505 is issued because input data is not valid
for the data type
Procedure
v Scenario: A data conversion fails while a message is being read or written. Error

message BIP5505 is issued, indicating that the input data was not valid for the
data type.

v Solution: Perform the following checks:

3464 WebSphere Message Broker Version 7.0.0.8

– Ensure that the bit stream is correctly aligned to the model. If the incoming
message is not consistent with the model, the wrong bytes are allocated to
fields, and the data presented to a field is unlikely to contain valid data for
the logical type.

– Ensure that the correct encoding and CodedCharSetId are applied to the body
of the input message. If the wrong encoding is used, the input message bit
stream is subject to byte swapping and changes to the byte order. This change
can affect the nature of data that applies to a field and make it unusable.

– Ensure that an appropriate WebSphere MQ format is applied to the body of
the input message. For example, if MQSTR is applied to a bit stream that
contains numeric data, character conversions, rather than encodings, are used
to translate the bytes. This use can change the meaning of bytes and make
them not valid for the logical data type. If character conversions are used
with negative external decimals, consider using the EBCDIC custom option.

– If the error is on a numeric field, ensure that the input data is compatible
with the physical format settings. For example, if the field is signed, ensure
that a valid sign byte has been passed in, that it corresponds to the
orientation of the sign, and that it is included or excluded as appropriate.

– If the input message is found not to be compatible with the MRM message
definitions, check the message at the source. If it is sent over channels, check
that the conversion settings on the channels are correct.

A deprecation error is issued on an imported .mrp file
Procedure
v Scenario: You have imported an .mrp file, and get an error message indicating

that complex elements or embedded simple types are deprecated.
v Explanation: Complex elements and embedded simple types have no exact

equivalent in XML Schema. The closest equivalent to a complex type in XML
Schema is to derive a complex type from a simple type. However, such a type is
not allowed to contain elements; only attributes are allowed.

v Solution: If your complex type contains elements that cannot be modeled as
attributes, set the Mixed content flag on the complex type. If you need to parse
messages that contain mixed content, set the Mixed content flag on the parent
complex type. The anonymous data that used to be modeled by the complex
type or the embedded simple type, then appears as a self-defining node in the
parsed message tree.

User trace detects an element length error
Procedure
v Scenario: You have defined an MRM message and when you execute the

message flow, an error message is written to the user trace indicating that the
length of an element is invalid.

v Explanation: You have added an element of type string to the complex type
making up the message, but you have not defined the length of the string in the
instance of the element in its type.

v Solution:

1. Open the message definition file in the Message Definition editor.
2. In the Outline view, expand the appropriate complex type, then click the

element to display its properties in the editor area.
3. In the Properties Hierarchy, make sure that the element is selected within the

CWF physical format under Physical Properties.

Chapter 13. Troubleshooting and support 3465

4. Specify the properties that this element will have when it is part of the
complex type; for example, in the above case, make sure that the Length
Count value is set.

5. Save any changes in the Message Definition editor and redeploy the
message.

MRM dateTime value has changed after it has been parsed
Procedure
v Scenario: You have defined an MRM dateTime element but the value created in

the message tree is different from the value that you defined.
v Explanation: The parser uses lenient dateTime checking, converting out-of-band

data values to the appropriate in-band value.
v Solution: See the information about lenient dateTime checking in “DateTime as

string data” on page 6311 with particular reference to how years and fractional
seconds are represented.

Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“Message model objects: simple types” on page 1180
A simple type is an abstract definition of an item of data such as a number, a string,
or a date.
Related tasks:
“Creating a message set” on page 2842
Use the New Message Set wizard to create a message set.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Linking from one message definition file to another” on page 2921
Add an 'include', or an 'import' to the file that you want to reference.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message set projects and files” on page 6823
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.
“DateTime as string data” on page 6311
You can use a string of pattern letters to specify the dateTime format.

XML Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web
site

Resolving problems when using messages
Use the advice given here to help you to resolve common problems that can arise
when you use messages.

3466 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/

About this task

Procedure
v “A communication error is issued when you use the enqueue facility”
v “The enqueue facility is not picking up changes made to a message” on page

3468
v “You do not know which header elements affect enqueue” on page 3468
v “Enqueue message files are still listed after they have been deleted” on page

3468
v “The ESQL transform of an XML message gives unexpected results” on page

3468
v “An XML message loses carriage return characters” on page 3469
v “The broker is unable to parse an XML message” on page 3469
v “Unexpected characters are displayed when using the XSLTransform node on

z/OS” on page 3469
v “Error message BIP5004 is issued by the XMLNS parser” on page 3470
v “Error message BIP5378 is issued by the MRM parser” on page 3470
v “Error message BIP5005 is issued by the Compute node” on page 3471
v “A message is propagated to the Failure terminal of a TimeoutControl node” on

page 3471
v “Message processing fails within a TimeoutNotification node” on page 3472
v “An MRM CWF message is propagated to the Failure terminal” on page 3472
v “Problems with XML attributes” on page 3472
v “An MRM XML message exhibits unexpected behavior” on page 3473
v “The MRM parser has failed to parse a message because two attributes have the

same name” on page 3474
v “You encounter problems when messages contain EBCDIC newline characters”

on page 3474
v “The MIME parser produces a runtime error while parsing a message” on page

3475
v “Runtime errors are issued when you write a MIME message from the logical

message tree” on page 3475
v “Output message has an empty message body” on page 3475
v “Output message has an invalid message body indicated by error message

BIP5005, BIP5016, or BIP5017” on page 3477
v “Error message BIP5651 is issued when receiving a SOAP with Attachments

message from a WebSphere Application Server client” on page 3477
v “WebSphere Application Server produces an error when receiving a SOAP with

Attachments message” on page 3478
v “java_lang_StackOverflowError on AIX when processing a message flow that

contains Java nodes and uses Java 5” on page 3479
v “Problems when using code page translation on HP-UX” on page 3480

A communication error is issued when you use the enqueue
facility
Procedure
v Scenario: You use the enqueue or dequeue tools to put a message on a queue,

but an error message is issued indicating that a communication error has
occurred with the queue manager name.

Chapter 13. Troubleshooting and support 3467

v Explanation: The WebSphere MQ queue manager has not started.
v Solution: Restart the WebSphere MQ queue manager.

The enqueue facility is not picking up changes made to a
message
Procedure
v Scenario: You are using the WebSphere Message Broker Toolkit message

enqueue facility to put messages to WebSphere MQ queues. You have updated a
message and want to put the message to the queue, but your changes do not
seem to have been picked up.

v Solution:

1. Close, then reopen your enqueue file.
2. Select the message that you want to put to the queue.
3. Save and close the enqueue file.
4. Select the menu next to the Put a message to a queue icon.
5. Click Put message.
6. Click the enqueue file in the menu.
7. Click Finish.
This action puts your updated message to the queue.

You do not know which header elements affect enqueue
Procedure
v Scenario: When using the Enqueue editor, the accounting token, correlation ID,

group ID, and message ID in the message header do not seem to affect behavior.
v Explanation: These fields do not affect behavior because they are not serialized

properly.

Enqueue message files are still listed after they have been
deleted
Procedure
v Scenario: Enqueue message files are still listed in the menu after they have been

deleted.
v Explanation: Deleted enqueue files are not removed from the menu. Nothing

happens if you selecting these files.

The ESQL transform of an XML message gives unexpected
results
Procedure
v Scenario: You have created an XML message that looks like the following

content:
<?xml version ="1.0" standalone="no"?><!DOCTYPE doc
[<!ELEMENT doc (#PCDATA)*>]><doc><I1>100</I1></doc>

You apply the ESQL transform:
SET OutputRoot.XMLNS.doc.I1 = 112233;

This transform generates the XML message (after serialization):
<?xml version ="1.0" standalone="no"?><!DOCTYPE doc
[<!ELEMENT doc (#PCDATA)*>]<I1>112233<I1>><doc><I1>100</I1></doc>

The new value for I1 has been put inside the DOCTYPE, and has not replaced the
value of 100, as you expected.

3468 WebSphere Message Broker Version 7.0.0.8

v Explanation: The XML in your message contains two doc elements:
– The doctype element
– The xmlElement that represents the body of the message
The parser has found the first instance of an element called doc and has created
a child I1 with the value 112233.

v Solution: To assign a new value to the element I1 within the message body
element doc, explicitly identify the second doc element, in the following way:
SET OutputRoot.XMLNS.(XML.tag)doc.I1 = 112233;

An XML message loses carriage return characters
Procedure
v Scenario: You are parsing an input XML message that contains carriage return

or line feed characters, or you are writing an output XML message that contains
carriage return line feed characters in an XML element. However, some or all the
carriage return characters are not present in the output message.

v Explanation: This behavior is correct, as described by the XML specification, and
occurs in the XML, XMLNS, or XMLNSC domains.
In XML, the main line separator characters is a line feed character. Carriage
return characters are accepted in an XML document, but an XML parser
normalizes any carriage return line feed characters into a single-line feed
character. For more information, see the latest XML specification at Extensible
Markup Language (XML), in particular, Section 2.11 End of Line Handling.
You cannot work around this problem by embedding your data into a CDATA
section; the XML specification states that a CDATA section is intended only to
escape blocks of text that contain characters that could be interpreted as markup.
In addition, CDATA sections are not protected from the parser.
You cannot use the xml:space attribute to preserve carriage return line feed
characters; the XML specification states that normalization of carriage return and
line feed characters is done before any other processing is performed.

v Solution: XML-compliant data must not rely on the presence of carriage return
line feed characters because in XML, the line feed character is only a line feed
character and XML-compliant applications or data must be aware that the parser
normalizes any carriage return line feed characters.

The broker is unable to parse an XML message
Procedure
v Scenario: You receive a large XML file and wrap it in a SOAP envelope to be

passed to a .NET web service. The broker is unable to parse the XML message
v Explanation: The message that you receive is defined as UTF-8 but it contains

UTF-16 characters, such as £. The presence of these characters causes a problem
with the parser: the broker is unable to parse the XML message because it
contains an invalid character.

v Solution: Force the coded character set ID (CCSID) to 1208 instead of the default
437.

Unexpected characters are displayed when using the
XSLTransform node on z/OS
Procedure
v Scenario: When using the XSLTransform node on z/OS, all the uppercase Os

that are in an XML file on the incoming message are changed to underscore
characters.

Chapter 13. Troubleshooting and support 3469

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

v Explanation: The XSLTransform node input message must come in as ASCII for
the transform to work correctly. The XSLTransform node does not work with
XML or XSL data in EBCDIC code. Java assumes a conversion from EBCDIC
1047. WebSphere Message Broker then converts to EBCDIC 500, because the
CCSID is set to 500. EBCDIC 1047 and EBCDIC 500 are similar. Only uppercase
O, J, and Z are different. (J and Z are also converted incorrectly.) The conversions
leave a string that is unreadable because it is really in ASCII. However, it does
convert the O from an EBCDIC 1047 character to an EBCDIC 500 character.

v Solution: Change your program either to do a string assignment without any
conversions, or specify that the string is in ASCII ISO-8859-1 (CCSID 819).

Error message BIP5004 is issued by the XMLNS parser
Procedure
v Scenario: Error message BIP5004 is issued, indicating that the XMLNS parser

has encountered a problem with an input XML message.
v Explanation: This message is issued for a number of reasons. Some of the more

commonly occurring scenarios when this message is issued are:
– You have specified an invalid XML character in the input XML message.
– You have included binary data in your XML message that, when treated as

character data, is invalid.
– The message has arrived as part of a WebSphere MQ message and the

MQMD.CodedCharSetId does not correctly represent the XML text bit stream.
– You have used characters that are recognized as markup.

v Solution:

– Check that your sending application is sending only valid data. If, however, it
is not possible to prevent invalid characters from being included in the XML
message, represent it in BLOB domain and use the ESQL REPLACE function
to replace or remove the invalid characters. You can then assign the modified
bit stream to the required XML parser.
In accordance with XML specification, a CDATA section can be used only to
protect characters that would be interpreted as markup. It cannot be used to
protect invalid characters or binary data from the XML parser.

– If the input XML message contains binary data, ensure that the sending
application is changed to represent this data as base encoded binary encoded
data. If the application cannot be changed, represent the message in the BLOB
domain, and extract and replace the binary data before the bit stream is
assigned to the required XML parser.

– Check that the incoming XML message is being represented by the correct
MQMD.CodedCharSetId.

Error message BIP5378 is issued by the MRM parser
Procedure
v Scenario: Error message BIP5378 is issued, which reports a problem with a

missing mandatory repeating element in an MRM message.
v Explanation: This message indicates that a mandatory repeating element is not

present in the message. In previous releases, this condition was reported by
error message BIP5374 which now reports only when a mandatory repeating
element exists in the message but has the incorrect number of instances.
If you have programmed automated error checking routines, review and change
these routines if appropriate.

v Solution: Check your message definition to ensure that the element must be
mandatory, and repeating. The error message tells you the elements that occur

3470 WebSphere Message Broker Version 7.0.0.8

before and after the expected location of the missing element. If the definition is
correct, the message has not been created correctly by the sending application,
which must be amended.

Error message BIP5005 is issued by the Compute node
Procedure
v Scenario: You send a simple XML message into a simple message flow. The

message is:
<doc><I1>100</I1></doc>

The Compute node in the message flow contains the following ESQL:
SET OutputRoot.XMLNS.abc = InputBody;

You expect the following output message to be created:
<abc><doc><I1>100</I1></doc></abc>

The Compute node generates error message BIP5005 and does not implement
the ESQL.

v Explanation: You are assigning an element of one type (root) to an element of
another type (xmlElement). The parser does not do this implicit cast for you.

v Solution: You can do the cast yourself in the ESQL to achieve the result that you
want, using either of the following two casts:
SET OutputRoot.XMLNS.(XML.Element)abc = InputBody;

or:
SET OutputRoot.XMLNS.(XML.tag)abc = InputBody;

A message is propagated to the Failure terminal of a
TimeoutControl node
Procedure
v Scenario: The TimeoutControl node receives a message with invalid, corrupt, or

missing timeout information. The message is propagated to the Failure terminal
of the TimeoutControl node and an exception list is generated.

v Explanation: The following error conditions can cause propagation to the Failure
terminal:
– A timeout request has no Action or no Identifier.
– A SET request has an Identifier that matches an existing stored SET request

for this TimeoutControl node (identified by the Unique Identifier property)
and AllowOverwrite of the original request is set to FALSE.

– A CANCEL request has an Identifier that does not match an existing stored
SET request for this TimeoutControl node (identified by the Unique Identifier
property).

– A SET request has a Count of 0 or is less than -1.
– The StartDate or StartTime are not in the correct format (or one of the

understood keywords).
– The calculated timeout is in the past.
– The Interval is less than 0, or 0 with a Count of -1.

v Solution: Check for one or more of the error conditions listed here, and correct
them.

Chapter 13. Troubleshooting and support 3471

Message processing fails within a TimeoutNotification node
Procedure
v Scenario: A message is propagated to the Failure or Catch terminal of a

TimeoutNotification node.
v Explanation: If the processing of a timeout generates an error within the

TimeoutNotification node, an exception list is generated and a message is
propagated to the Failure terminal. This action is done under the same
transaction, if one is being used. If the Failure terminal is not connected,
propagation does not occur.
If an error happens downstream of the TimeoutNotification node after a
successful propagation (either to the Out or Failure terminal), the message is
propagated to the Catch terminal (all under the same transaction). If the Catch
terminal is not connected, or the propagation along the Catch flow fails, the
processing of that timeout is rolled back.

v Solution: Ensure that the Failure and Catch terminals of your
TimeoutNotification node have been connected correctly.

An MRM CWF message is propagated to the Failure terminal
Procedure
v Scenario: Your MRM CWF message is propagated to a Failure terminal, and

generates error messages BIP5285, BIP5125, and BIP5181 or messages BIP5285,
BIP5125, and BIP5288.

v Explanation: These errors report an inconsistency between the length of the
message being processed, and the length of the message that is defined in the
message model.

v Solution: Ensure that the length of the message as defined in the CWF layer is
accurate. Check and correct the definition.

Problems with XML attributes
About this task

XML tags are written where XML attributes are expected, and vice versa.

Procedure
v Explanation: The XML domains and the XML Wire Format in the MRM domain

have their own representation of XML attributes.
– XML domains rely on setting a field type of XML.Attribute in the message

tree, because they have no model to parse against.
– For the XML Wire Format in the MRM domain, the message model indicates

whether an element is an attribute or a tag, therefore the message tree does
not need to reflect whether a field is an attribute or a tag.

Therefore, if fields are copied out of the XMLNS or MRM domains, the fact that
fields are attributes is lost. This loss happens if they are copied out to each other,
or to another message tree, such as the environment tree.
This problem typically appears in the following situations:

v Scenario 1: You are writing an XML message in the MRM domain, and XML
tags are being written instead of XML attributes.

v Solution 1: Check that your message tree has the same structure and sequence
as the message model. If the message tree does not match the message model,
the field is written as self-defining, and consequently the XML Render property
is not used.

3472 WebSphere Message Broker Version 7.0.0.8

– Switch on message validation. Validation shows where the message tree and
message definition do not match.

– Alternatively, take a user debug trace of the message flow; BIP5493W
messages indicate which fields are being written as self-defining. Use this
information to ensure that the message tree matches the model. When you
have corrected any discrepancies, attributes are correctly written.

v Scenario 2: An MRM message has been copied to an XMLNS domain, and the
XML attributes are now written as tags.

v Solution 2: Take one of these actions:
– Serialize the XML message in the MRM domain, for example using the ESQL

ASBITSTREAM function, then use the ESQL CREATE PARSE clause to
reparse the message using the required XML domain.

– When copying fields between the MRM domain and XMLNS, copy attribute
fields individually, and specifically specify XML.Attribute on the target XML
field.

v Scenario 3: An XML message has been copied to another message tree, such as
Environment. When the message is copied back to the XML message tree, XML
attributes are now seen as XML tags.

v Solution 3: Serialize the XML message, for example using the ESQL
ASBITSTREAM function, then use the ESQL CREATE PARSE clause to reparse
the XML message into the required target message tree. See “CREATE
statement” on page 5082 for an example.

v Scenario 4: A portion of a non-XML message tree has been detached and
attached to an XML tree, and XML tags are now written as XML attributes.

v Solution 4: Do not detach and attach portions of message trees that are owned
by different parsers. Instead, use a tree copy.

v Scenario 5: An XML tag is copied to an XML attribute and the XML attribute is
not written in the output message.

v Solution 5: When referencing the source XML tag, use the ESQL FIELDVALUE
function to copy the specific field value to the target XML attribute field.

An MRM XML message exhibits unexpected behavior
Procedure
v Scenario: Your message flow is processing a message that you have modeled in

the MRM. The message tree has not been created as you expected, the output
XML message does not have the expected contents, or the message contents are
not being validated. No error message has been issued.

v Explanation: Two reasons might cause this problem:
– Explanation 1: The XML physical format settings for a message set contain a

property called Root Tag Name. This property defaults to MRM, in order to
remain compatible with previous releases of the product. If you have not
deleted the contents of this field, the MRM XMLNS parser expects the root
tag for all XML messages to be MRM.
Solution 1: Clear this field, or set it to the root tag used by all your XML
messages. If you provide a value in this field, the root tag does not need to be
modeled in all your message definitions.

– Explanation 2: In order to remain backwards compatible, the broker
recognizes the format XML and invokes the XMLNS parser with specific
default values. If you have created an XML physical layer for this message
with the name XML, the broker uses your definition. However, if you have
not created an XML physical layer with this name, but have specified XMLNS
as the format, either in the input node or the MQRFH2 header (when the

Chapter 13. Troubleshooting and support 3473

input bit stream is parsed to a message tree), the broker accepts the value
specified and passes default values to the parser to create the message tree.
Similarly, if you set XML in the Properties folder for the output message in
the Compute node, this value is passed to the parser when it creates the
message bit stream from the message tree, typically in the output node.
The use of these default values by the parser might result in different content,
structure, or both, for either message tree or output message. You can find
further information about the action taken by the broker in the user trace log
where the following information might be written:

XMLWorker::initializeParse file:C:\s000\src\cpi\pwf\xml\xmlworker.cpp
line:126 message:5409.BIPmsgs
No dictionary present have you specified Wire Format ’XML’ in error? ,
UserTrace BIP5409E: XML Worker: Wire Format ’XML’ specified.

Default MRM XML settings are being used because wire format
identifier ’XML’ was specified and not found.
This can be due to an incorrect setting of the wire format
identifier in a message.

Solution 2: If you have incorrectly entered the identifier of the format that
you have defined, correct your code and try again. If you do not want the
default action to be taken, define a physical layer that produces the required
results.

The MRM parser has failed to parse a message because two
attributes have the same name
Procedure
v Scenario: Two attributes in different name spaces have identical names. Error

message BIP5117 is issued.
v Explanation: The MRM parser has failed to parse the message.
v Solution: Modify the attribute names so that they are not identical. This problem

is a known limitation with the parser.

You encounter problems when messages contain EBCDIC
newline characters
Procedure
v Scenario: If your bit stream input message contains EBCDIC newline (NL)

characters, problems might arise if your message flow changes the target CCSID
to an ASCII CCSID. For example, during conversion from CCSID 1047 (EBCDIC
used for z/OS Open Edition) to CCSID 437 (US PC ASCII), an NL character is
translated from hex '15' to hex '7F', which is an undefined character. The error
occurs because no corresponding code point for the newline character exists in
the ASCII code page.

v Solution: You can overcome the problem in these cases:
– On a system where the queue manager uses an ASCII code set, make sure

that incoming messages do not contain any EBCDIC NL characters by:
- Specifying that WebSphere MQ performs the conversion at the input node
- Setting the queue manager attribute to convert NL to Line Feed (LF)

– Where the input bit stream is character data, you can use MRM
Tagged/Delimited message sets in a Compute node to replace the NL
character with the required output.

3474 WebSphere Message Broker Version 7.0.0.8

The MIME parser produces a runtime error while parsing a
message
Procedure
v Scenario: A MIME message is received by a message flow and produces a

runtime error when the message is parsed.
v Explanation: The following errors can cause the MIME parser to reject a

message:
– The MIME header is not correctly formatted.
– Either the top-level MIME header block, or a MIME header block for a nested

multipart part, does not have a valid Content-Type header.
– The top-level Content-Type has a media type of message.
– The top-level Content-Type has a media type of multipart and no boundary

definition.
– A MIME header block is not correctly terminated by a blank line.
– The constituent MIME parts are not correctly separated by boundary lines.
– A boundary parameter value occurs in the content of a MIME part.

v Solution: Check the MIME message for one or more of the error conditions
listed here, and correct them.

Runtime errors are issued when you write a MIME message from
the logical message tree
Procedure
v Scenario: You are writing a MIME logical message tree as a bit stream and the

parser generates a runtime error.
v Explanation: The following errors can cause the MIME parser to reject a logical

message tree:
– The root of the tree is not called MIME.
– The last child of MIME is not called Parts or Data.
– The Parts element has a value-only element, and this element is not the first

or last child of Parts.
– The Parts element has children that are not value-only elements or Part

children.
– The Parts element does not have any children called Part.
– The last child of a Data element is not a BLOB.

v Solution: Check the MIME logical message tree for one or more of the error
conditions listed here, and correct them.

Output message has an empty message body
Procedure
v Scenario: You have unexpectedly encountered an empty message body, or the

ASBITSTREAM function has produced a zero length BLOB.
v Explanation: This error can happen for the following reasons:

– You have created a message tree folder in a user-defined node but have not
associated it with an owning parser. An owning parser is not associated with
the message tree if you have created standard elements by using code similar
or equivalent to:
MbElement createElementAfter(int)
MbElement createElementAfter(int, String, Object)
MbElement createElementAsFirstChild(int)
MbElement createElementAsFirstChild(int, String, Object)
MbElement createElementAsLastChild(int)

Chapter 13. Troubleshooting and support 3475

MbElement createElementAsLastChild(int, String, Object)
MbElement createElementBefore(int)
MbElement createElementBefore(int, String, Object)

– You have used ESQL to create a message tree folder by using ESQL CREATE
but without setting an owning parser for it. You might have used code similar
or equivalent to:
CALL CopyMessageHeaders();

DECLARE outRef REFERENCE TO OutputRoot;
CREATE LASTCHILD OF outRef AS outRef NAME ’BLOB’;
CREATE LASTCHILD OF outRef NAME ’BLOB’ VALUE X’01’;

or the outRef reference variable was passed to an ESQL function or procedure
that contained similar CREATE statements. You have not specified an owning
parser by using the DOMAIN clause on the CREATE statement.

– An MRM message tree has been constructed, then only part of it has been
passed, by specifying a subfolder or field, to the ASBITSTREAM function
with the parser mode option set to RootBitStream. This combination is not
valid, and results in a zero length BLOB.

– You have copied a message tree, or part of a message tree, to a folder and the
owning parser association is not maintained.

v Solution: Depending on the reason for the empty message body or zero length
BLOB, ensure that:
– When you create a message tree folder in a user-defined node, associate an

owning parser with it. Use code similar or equivalent to:
createElementAfter(String parserName)

createElementAsFirstChild(String parserName)
createElementAsLastChild(String parserName)
createElementBefore(String parserName)

– When you use ESQL CREATE to create a message tree folder, use the
DOMAIN clause to associate an owning parser with the message tree, for
example:
CALL CopyMessageHeaders();

DECLARE outRef REFERENCE TO OutputRoot;
CREATE LASTCHILD OF outRef AS outRef DOMAIN ’BLOB’ NAME ’BLOB’;
CREATE LASTCHILD OF outRef NAME ’BLOB’ VALUE X’01’;

This code creates a BLOB folder that has the BLOB parser associated with it.
– When copying a message tree, or part of a message tree, ensure that the

owning parser association is maintained, by first serializing, then reparsing
the message into the appropriate message tree. An example scenario is where
you have created a field:
SET Environment.Variables.myMsg = InputRoot.XMLNS;

Now you must pass it to the ASBITSTREAM function. Unless you use ESQL
similar or equivalent to:

DECLARE xmlMsgBlob BLOB
ASBITSTREAM(InputRoot.XMLNS, InputRoot.MQMD.Encoding, InputRoot.MQMD.CodedCharSetId);

CREATE LASTCHILD OF Environment.Variables.myMsg DOMAIN(’XMLNS’)
PARSE(xmlMsgBlob,

InputRoot.MQMD.Encoding,
InputRoot.MQMD.CodedCharSetId);

the result is a zero length bit stream.

3476 WebSphere Message Broker Version 7.0.0.8

Output message has an invalid message body indicated by error
message BIP5005, BIP5016, or BIP5017
Procedure
v Scenario: You have unexpectedly encountered a multi-root message body or a

message without any root.
v Explanation: This error can occur when you have created an XML message tree

folder with multiple roots or no root at all by:
– Using a user-defined node
– Using an MQGet node
– Using ESQL

v Solution: Ensure that the final output message tree has one, and only one, XML
root node.

Error message BIP5651 is issued when receiving a SOAP with
Attachments message from a WebSphere Application Server
client
Procedure
v Scenario: When a WebSphere Application Server client sends a SOAP with

Attachments message to the broker over JMS, error message BIP5651 is issued
stating that no valid Content-Type header has been found.

v Explanation: When a WebSphere Application Server client sends a SOAP with
Attachments message to the broker over JMS, the MIME Content-Type value
appears in the MQRFH2 header and not in the MIME message body.

v Solution: To solve this problem, the Content-Type value needs to be copied from
the MQRFH2 header to the beginning of the message as a MIME header before
the message is parsed. The following ESQL adds the Content-Type value to the
beginning of the WebSphere Application Server message, then invokes the
MIME parser on the result.

create procedure parseWAS_JMS(IN InputMessage reference,IN OutputMessage reference)
/***
* convert a WAS/JMS message to the correct format for the MIME parser
***/
begin

-- get the data as a BLOB
declare body BLOB InputMessage.BLOB.BLOB;

-- get the Content-Type value from the RFH2 header. Content-Type is the only
-- header which is critical for the MIME parser, but the same approach can be
-- used for any MIME headers which have been stored under the RFH2 header.
declare contentType char InputMessage.MQRFH2.usr.contentType;

-- add the contentType to the bit stream as part of an RFC822 header block
set body = cast((’Content-Type: ’||contentType) as blob ccsid 819)||x’0d0a0d0a’||body;

-- invoke MIME parser on the modified bit stream
CREATE LASTCHILD OF OutputMessage DOMAIN(’MIME’) PARSE(body);

end;

A message flow can take in the JMS message in the BLOB domain, and call the
procedure shown here from a Compute node. The procedure can be called by
using the following ESQL from a Compute node:
CALL CopyMessageHeaders(); -- standard procedure to copy headers
CALL parseWAS_JMS(InputRoot, OutputRoot); -- parse the 'body’ as MIME

Chapter 13. Troubleshooting and support 3477

WebSphere Application Server produces an error when receiving
a SOAP with Attachments message
Procedure
v Scenario: When sending a SOAP with Attachments message to a WebSphere

Application Server client using JMS, an error is generated stating that the bit
stream contains unexpected characters.

v Solution: When the broker sends a SOAP with Attachments message to
WebSphere Application Server over JMS, the MIME Content-Type value must
appear in the MQRFH2 header and not in the body of the message. The
following procedure removes any MIME style headers from the front of the
message bit stream and adds the Content-Type value to the MQRFH2 header.
The supplied boundary value allows you to locate the start of the multipart
MIME content.
create procedure writeWAS_JMS(IN OutputTree reference,IN boundary char)
/***
* Serialise a MIME tree as normal, but then strip off any initial headers
* and save the Content-Type value in the RFH2 header as expected by WAS/JMS.
* Note: boundary - must be supplied with the leading hyphen pair
***/
begin

-- convert MIME subtree to BLOB
declare body BLOB asbitstream(OutputTree.MIME);

-- locate first occurrence of boundary and discard any data before this
declare firstBoundary integer;
set firstBoundary = position (cast(boundary as blob ccsid 819) in body);
set body = substring(body from firstBoundary);

-- save the MIME Content-Type value in the RFH2 header. Any other MIME
-- headers which need to be preserved in the RFH2 header can be handled
-- in the same way
set OutputTree.MQRFH2.usr."contentType" = OutputTree.MIME."Content-Type";

-- clear the MIME tree and create a new BLOB child for the modified body
set OutputTree.MIME = null;
CREATE LASTCHILD OF OutputTree DOMAIN(’BLOB’)PARSE(body);

end

Before calling this procedure, the message flow needs to be able to obtain the
value of the boundary. This value might be available only within a Content-type
header. The following procedure allows you to extract the Boundary value:

create procedure getBoundary(IN ct reference,OUT boundary char)
/***
* return value of the boundary parameter from a Content-Type value
**/
begin

declare boundaryStart integer;
declare boundaryEnd integer;

set boundaryStart = position(’boundary=’ in ct) + 9;
set boundaryEnd = position(’;’ in ct from boundaryStart);
if (boundaryStart <> 0) then

if (boundaryEnd <> 0) then
set boundary = substring(ct from boundaryStart for boundaryEnd-boundaryStart);

else
set boundary = substring(ct from boundaryStart);

end if;
end if;

end;

A Compute node can invoke these procedures for sending a MIME message
using the following ESQL:

3478 WebSphere Message Broker Version 7.0.0.8

SET OutputRoot = InputRoot;

declare boundary char;
CALL getBoundary(OutputRoot.Properties.ContentType, boundary);

CALL writeWAS_JMS(OutputRoot,boundary);

java_lang_StackOverflowError on AIX when processing a
message flow that contains Java nodes and uses Java 5
Procedure
v Scenario: You get an abend on AIX when processing a message flow that

contains Java nodes and uses Java 5. The abend file shows that there was an
abend which indicates a segmentation fault, but a check of the stderr file shows
a stack overflow in the JVM:
Exception in thread "Thread-15" java/lang/StackOverflowError: operating system stack overflow

at com/ibm/broker/plugin/MbOutputTerminal._propagate (Native Method)
at com/ibm/broker/plugin/MbOutputTerminal.propagate (MbOutputTerminal.java:103)
at com/ibm/xsl/mqsi/XMLTransformNode.evaluate (XMLTransformNode.java:1002)
at com/ibm/broker/plugin/MbNode.evaluate (MbNode.java:1434)
at com/ibm/broker/plugin/MbOutputTerminal._propagate (Native Method)
at com/ibm/broker/plugin/MbOutputTerminal.propagate (MbOutputTerminal.java:103)
at com/ibm/xsl/mqsi/XMLTransformNode.evaluate (XMLTransformNode.java:1002)
at com/ibm/broker/plugin/MbNode.evaluate (MbNode.java:1434)
at com/ibm/broker/plugin/MbOutputTerminal._propagate (Native Method)
at com/ibm/broker/plugin/MbOutputTerminal.propagate (MbOutputTerminal.java:103)
at com/ibm/xsl/mqsi/XMLTransformNode.evaluate (XMLTransformNode.java:1002)
at com/ibm/broker/plugin/MbNode.evaluate (MbNode.java:1434)

v Explanation:Java 5 has a parameter to adjust the stack size for Java threads. The
default operating system stack size for Java 5 is only 256 KB. In certain message
flows (for example, flows that contain Java user-defined nodes or XMLT nodes)
this size might not be sufficient, and so you see a stack overflow error in the
stderr file. Use the JVM option -Xmso to adjust the operating system stack for
Java. You can display information about the stack by using the following
command:
export MQSIJVERBOSE=-verbose:stack,sizes

This command creates in the stderr file on startup an entry that has the
folllowing content, or similar:

-Xmca32K RAM class segment increment
-Xmco128K ROM class segment increment
-Xmns0K initial new space size
-Xmnx0K maximum new space size
-Xms125000K initial memory size
-Xmos125000K initial old space size
-Xmox250000K maximum old space size
-Xmx250000K memory maximum
-Xmr16K remembered set size
-Xlp0K large page size

available large page sizes: 4K 16M
-Xmso256K OS thread stack size
-Xiss2K java thread stack initial size
-Xssi16K java thread stack increment
-Xss256K java thread stack maximum size
-Xscmx16M shared class cache size

Note: The stack size defaults to 256K.

v Solution:

1. Issue the following command to set the operating system stack size for Java
to 2 MB:
export IBM_JAVA_OPTIONS=-Xmso2m

Chapter 13. Troubleshooting and support 3479

2. Restart the broker.

Problems when using code page translation on HP-UX
Procedure
v Scenario: You experience code page translation problems on HP-UX.
v Solution: Check the WebSphere MQ queue manager attribute CodedCharSetID.

The default value for this attribute is 1051. Change this value to 819 for queue
managers that host WebSphere Message Broker components.

Related concepts:
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.
“MIME messages” on page 1120
A MIME message consists of both data and metadata. MIME metadata consists of
HTTP-style headers and MIME boundary delimiters.
“MIME tree details” on page 1123
A MIME message is represented in the broker as a logical tree. When it writes a
message, the MIME parser creates a message bit stream by using the logical
message tree.
Related tasks:
“Configuring Custom Wire Format (CWF) properties: Message sets” on page 2849
Configure the Custom Wire Format (CWF) properties of a message set using the
Message Set editor.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“MQGet node” on page 4578
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“TimeoutNotification node” on page 4936
Use the TimeoutNotification node to manage timeout-dependent message flows.
“User-defined nodes” on page 6415
You can define your own nodes to use in WebSphere Message Broker message
flows.

Resolving problems when you use the WebSphere Message
Broker Toolkit

Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.

About this task

Resolving problems that occur when connecting:

v “Your broker is not recognized by the WebSphere Message Broker
Toolkit” on page 3482

v “You cannot connect to the broker from the WebSphere Message Broker
Toolkit or command line” on page 3482

3480 WebSphere Message Broker Version 7.0.0.8

v “You cannot connect to a migrated broker” on page 3483
v “Connection to the broker is slow” on page 3483

Resolving error messages that occur when using the WebSphere Message Broker
Toolkit:

v “Errors occur while you are using the WebSphere Message Broker
Toolkit” on page 3484

v “An error is issued when you access the help system” on page 3484
v “The WebSphere Message Broker Toolkit displays an error message after

the error has been fixed” on page 3485
v “The message Unable to create part: filename.extension is issued”

on page 3485

Resolving problems relating to the appearance of the workbench:

v “A view is missing from the workbench” on page 3486
v “You cannot close a message dialog box” on page 3486
v “You want to filter entries in the Problems view” on page 3486
v “Your message flow and message set projects have changed their

appearance” on page 3486

Resolving non-specific problems when using the workbench:

v “Main menu entries missing on Linux on x86” on page 3487
v “Editors do not update automatically when the same file is open in

multiple windows” on page 3487
v “Deleting or closing a project takes a long time” on page 3487
v “You are experiencing poor performance when working with large or

complex projects” on page 3488
v “You do not know how to return to the welcome page” on page 3488

Related concepts:
“WebSphere Message Broker Toolkit perspectives” on page 34
A perspective is a group of views and editors that shows various aspects of the
resources in the WebSphere Message Broker Toolkit.
“Editors” on page 35
An editor is a component of the WebSphere Message Broker Toolkit. Editors are
typically used to edit or browse resources, which are the files, folders, and projects
that exist in the workbench.
Related tasks:
“Changing WebSphere Message Broker Toolkit preferences” on page 571
The WebSphere Message Broker Toolkit has a large number of preferences that you
can change to suit your requirements. Some of these are specific to the product
plug-ins that you have installed within the workbench, including those for
WebSphere Message Broker. Others control more general options, such as the
colors and fonts in which information is displayed.
“Viewing the Eclipse error log” on page 3532
The Eclipse error log captures internal errors that are caused by the operating
system or your code.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.

Chapter 13. Troubleshooting and support 3481

“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.

Resolving problems that occur when connecting the WebSphere
Message Broker Toolkit and a broker
Use the advice given here to help you to resolve common problems that can arise
when you connect to a broker.

Your broker is not recognized by the WebSphere Message Broker Toolkit:
Procedure

v Scenario: Your broker is not recognized by the WebSphere Message Broker
Toolkit.

v Explanation: Broker names in the workbench are case sensitive.
v Solution: When you identify a broker in the WebSphere Message Broker Toolkit,

make sure that you use the same case that was used when it was created. On
some operating systems, the name of the broker might be folded to uppercase
when it was created, even though you entered its name in lowercase.

You cannot connect to the broker from the WebSphere Message Broker Toolkit
or command line:
Procedure

v Scenario: Error messages are issued when you try to connect to the broker from
the WebSphere Message Broker Toolkit or the command line.

v Solution: The following table shows the checks to carry out when an error
message is issued in the WebSphere Message Broker Toolkit, or returned to the
command line, when you try to connect to the broker:

Error message

Actions

WebSphere
Message Broker

Toolkit Command line

BIP0914E BIP1046E with
WebSphere MQ
reason code 2059

Check that the broker queue manager and listener are running, and that the
correct port is specified for the queue manager.

(The WebSphere MQ documentation describes the WebSphere MQ return
codes.)

BIP0889E BIP1047E Check that the broker is running.

Check the system event log to ensure that the broker is available for use,
and correct all errors that are shown.

BIP0915E BIP1046E with
WebSphere MQ
reason code 2035

Check that the WebSphere Message Broker Toolkit local user ID is created
on the broker system. If it is not, create it.

Check if the WebSphere Message Broker Toolkit local user ID that is created
on the broker system is authorized to connect to the broker queue manager.

v Use the WebSphere MQ dspmqaut command to determine what
WebSphere MQ authorities the user has.

v If necessary, add the WebSphere Message Broker Toolkit local user ID to
the mqm group on the broker system.

3482 WebSphere Message Broker Version 7.0.0.8

You cannot connect to a migrated broker:
Procedure

v Scenario: You cannot connect from the WebSphere Message Broker Toolkit, the
WebSphere Message Broker Toolkit, or a WebSphere Message Broker Toolkit
application to a broker that you have migrated to Version 7.0.

v Explanation: The connection is failing because the WebSphere MQ channel does
not exist. When you migrate a broker to Version 7.0, the default server
connection channel SYSTEM.BKR.CONFIG is created if it does not exist.
However, if the broker shared a queue manager with a Configuration Manager,
this channel is deleted when you delete the Configuration Manager.

v Solution: Re-create the server connection channel SYSTEM.BKR.CONFIG on the
queue manager.

You cannot connect to a remote broker:
Procedure

v Scenario: You have correctly configured your WebSphere Message Broker Toolkit
to connect to a remote broker, but attempting to connect to the remote broker by
using the WebSphere Message Broker Toolkit results in error MQRC 2059. You
can connect to your remote broker from the same computer without error by
using the WebSphere Message Broker Explorer, or by completing the following
steps:
1. Set the following environment variable:

– On Windows: set MQSERVER=ChannelName/TCP/server-address(port)
– On Linux: export MQSERVER=ChannelName/TCP/’server-address(port)’

2. Open a WebSphere Message Broker command prompt, and enter the
following test command:
amqsputc queueName qmgrName

v Explanation: The network configuration of your WebSphere Message Broker
Toolkit installation is incorrect.

v Solution:

1. In the WebSphere Message Broker Toolkit, click Window > Preferences >
General > Network Connection. The Preferences window opens, and the
Network Connections preferences are displayed.

2. From the Active Provider list, select Direct connection to the internet. This is
the default setting. You can now connect to your remote broker by using the
WebSphere Message Broker Toolkit.

Connection to the broker is slow:
Procedure

v Scenario: Connection to the broker is slow and you cannot complete other
actions in the WebSphere Message Broker Toolkit when you request the
following operations:
– Creating a broker
– Creating an execution group
– Deploying a broker archive file, using the Deploy a BAR File wizard
– Opening the Administration log editor

v Solution: Click Cancel on the progress monitor dialog box to cancel the
in-progress connection. Connection to the broker is canceled, so that you can
perform other actions in the WebSphere Message Broker Toolkit. You can then
resubmit the canceled operation.

Related concepts:

Chapter 13. Troubleshooting and support 3483

“WebSphere Message Broker Toolkit perspectives” on page 34
A perspective is a group of views and editors that shows various aspects of the
resources in the WebSphere Message Broker Toolkit.
“Editors” on page 35
An editor is a component of the WebSphere Message Broker Toolkit. Editors are
typically used to edit or browse resources, which are the files, folders, and projects
that exist in the workbench.
Related tasks:
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
“Changing WebSphere Message Broker Toolkit preferences” on page 571
The WebSphere Message Broker Toolkit has a large number of preferences that you
can change to suit your requirements. Some of these are specific to the product
plug-ins that you have installed within the workbench, including those for
WebSphere Message Broker. Others control more general options, such as the
colors and fonts in which information is displayed.
“Viewing the Eclipse error log” on page 3532
The Eclipse error log captures internal errors that are caused by the operating
system or your code.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.

Resolving error messages that occur when using the WebSphere
Message Broker Toolkit
Use the advice given here to help you to resolve common problems that can occur
when you use the WebSphere Message Broker Toolkit.

Errors occur while you are using the WebSphere Message Broker Toolkit:
Procedure

v Scenario: An error has occurred while you are using the WebSphere Message
Broker Toolkit, and you want information to help you to diagnose the problem.

v Solution: Some errors that occur in the WebSphere Message Broker Toolkit are
logged in the .log file in your workspace\.metadata directory. You can view this
log by switching to the Plug-in Development perspective, and clicking the Error
Log tab in the lower-right pane. The log shows in which plug-in the error
occurred, and gives further information.
You can also use trace to try and determine the cause of your problem. See
“Using trace” on page 3533 for more information about tracing.

An error is issued when you access the help system:

3484 WebSphere Message Broker Version 7.0.0.8

Procedure

v Scenario: You are accessing the help system through the WebSphere Message
Broker Toolkit, and an error message is issued stating that the Web page that
you requested is not available offline.

v Explanation: This error might occur if you previously had a connection to a
Web-based version of the help system and lost it, or if you have Work Offline
selected in your Internet Explorer options.

v Solution: Click Connect to load the help system.

The WebSphere Message Broker Toolkit displays an error message after the
error has been fixed:
Procedure

v Scenario: The WebSphere Message Broker Toolkit is in an inconsistent state, or
displays an error message after the error has been fixed

v Solution: Clean the workspace:
1. From the WebSphere Message Broker Toolkit, click Project > Clean.
2. Click Clean all projects and Finish.

This action cleans the whole workspace of any internal files, which are then
re-created so that none of your data is lost.

The message Unable to create part: filename.extension is issued:
Procedure

v Scenario: You open an editor in the WebSphere Message Broker Toolkit, and an
error message is raised stating that a file cannot be created. This problem is
caused by one of following situations:

v Explanation 1: The given file is not associated with a recognized editor.
– Solution 1: Right-click the file and choose the default editor to open it, or

choose another editor if the default editor cannot open it.
v Explanation 2: The given file contains syntax errors and cannot be loaded into

the chosen editor. However, if you then try to open a valid file, you get the same
error message repeatedly.
– Solution 2: Restart the WebSphere Message Broker Toolkit; do not load the

file into an editor again until you have fixed the syntax errors.

:

Related concepts:
“WebSphere Message Broker Toolkit perspectives” on page 34
A perspective is a group of views and editors that shows various aspects of the
resources in the WebSphere Message Broker Toolkit.
“Editors” on page 35
An editor is a component of the WebSphere Message Broker Toolkit. Editors are
typically used to edit or browse resources, which are the files, folders, and projects
that exist in the workbench.
Related tasks:
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.

Chapter 13. Troubleshooting and support 3485

“Changing WebSphere Message Broker Toolkit preferences” on page 571
The WebSphere Message Broker Toolkit has a large number of preferences that you
can change to suit your requirements. Some of these are specific to the product
plug-ins that you have installed within the workbench, including those for
WebSphere Message Broker. Others control more general options, such as the
colors and fonts in which information is displayed.
“Viewing the Eclipse error log” on page 3532
The Eclipse error log captures internal errors that are caused by the operating
system or your code.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.

Resolving problems relating to the appearance of the workbench
Use the advice given here to help you to resolve common problems that relate to
the appearance of the WebSphere Message Broker Toolkit.

A view is missing from the workbench:
Procedure

v Scenario: A view you are expecting to be displayed in the workbench is not
visible, or you have closed a view.

v Explanation: The perspective has changed since it was first created, and the
default views are no longer visible.

v Solution: To restore the default views in a perspective you can reset the
perspective. Click Window > Reset perspective.

You cannot close a message dialog box:
Procedure

v Scenario: You have opened a menu, and a message dialog box tells you that
previous changes made have been processed successfully by the broker. You
cannot close the dialog.

v Solution: If you cannot close the dialog box by clicking OK, press Esc.

You want to filter entries in the Problems view:
Procedure

v Scenario: The Problems view has many entries, and it is difficult to find the
entry that you want.

v Solution: At the top of the Problems View, click the icon with the arrows
pointing to the right. This action opens a dialog box, in which you can tailor
your selections to display only a subset of the entries in the view. For example,
you can select only those entries for the project that you have selected.

Your message flow and message set projects have changed their appearance:

3486 WebSphere Message Broker Version 7.0.0.8

Procedure

v Scenario: You have created a new simple project in the WebSphere Message
Broker Toolkit and now all your message flow and message set projects look
different.

v Explanation: When you create a new simple project, the WebSphere Message
Broker Toolkit switches automatically to the Broker Application Development
perspective.

v Solution: To return to the previous view, switch to the perspective with which
you were working..

Resolving non-specific problems when using the WebSphere
Message Broker Toolkit
Use the advice given here to help you to resolve some common problems that can
occur when you use the WebSphere Message Broker Toolkit that are not dealt with
in previous categories.

Main menu entries missing on Linux on x86:
Procedure

v Scenario: The main menu on Linux on x86 no longer contains items that relate
to the WebSphere Message Broker Toolkit.

v Explanation: If you have installed the WebSphere Message Broker Toolkit in
more than one package group, and have now removed one of those installations,
a known restriction causes the main menu items to be removed when the
component is uninstalled.

v Solution: Invoke the WebSphere Message Broker Toolkit from the command line.
Navigate to the installation directory for the package group in which you have
installed the WebSphere Message Broker Toolkit, and enter the following
command:
./eclipse -product com.ibm.etools.msgbroker.tooling.ide

Editors do not update automatically when the same file is open in multiple
windows:
Procedure

v Scenario: You are working in the Broker Application Development perspective,
and are using the associated editor to work with one or more resources; for
example, you are editing a message flow in the message flow editor or an ESQL
module in the ESQL editor. You have clicked Window > New Window to create
a second Eclipse view, and have opened the same resource in the second
window. Changes that you make to the resource in the first editor window are
not reflected in the second editor window.

v Explanation: The WebSphere Message Broker Toolkit editors do not
automatically update multiple windows in which you have opened the same
resource.

v Solution: Save the contents of the resource file in the first editor window, then
close and reopen additional windows. The reopened windows reflect the
updated content.

Deleting or closing a project takes a long time:
Procedure

v Scenario: Deleting or closing a project to save memory takes a long time.

Chapter 13. Troubleshooting and support 3487

v Explanation: If a project is referenced by other projects, removing that project
requires all the other projects, and the projects that refer to them recursively, to
be built fully. This process occurs to keep the content-assist and validation
models current.

v Solution: To keep a project open in the workspace requires very little memory,
therefore you do not need to close or delete projects.

You are experiencing poor performance when working with large or complex
projects:
Procedure

v Scenario: You are experiencing poor performance in the WebSphere Message
Broker Toolkit when working with large or complex projects.

v Explanation: Frequent project changes, such as adding and removing projects, or
using Project > Clean, use large amounts of memory because of the size and
number of files and the connections between them.

v Solution: Increase your system memory.

You do not know how to return to the welcome page:
Procedure

v Scenario: You do not know how to return to the welcome page that was
displayed in the WebSphere Message Broker Toolkit when you first started using
it.

v Solution: To open the welcome page:
1. From the Help menu, select Welcome. If only one welcome page is available,

it is displayed. If more than one is available, a list is displayed.
2. Select the welcome page that you want, for example, WebSphere Message

Broker WebSphere Message Broker Toolkit.
3. Click OK.

:

Related concepts:
“WebSphere Message Broker Toolkit perspectives” on page 34
A perspective is a group of views and editors that shows various aspects of the
resources in the WebSphere Message Broker Toolkit.
“Editors” on page 35
An editor is a component of the WebSphere Message Broker Toolkit. Editors are
typically used to edit or browse resources, which are the files, folders, and projects
that exist in the workbench.
Related tasks:
“Resolving problems when you use the WebSphere Message Broker Toolkit” on
page 3480
Use the advice given here to help you to resolve common problems that might
occur you use the WebSphere Message Broker Toolkit.
“Changing WebSphere Message Broker Toolkit preferences” on page 571
The WebSphere Message Broker Toolkit has a large number of preferences that you
can change to suit your requirements. Some of these are specific to the product
plug-ins that you have installed within the workbench, including those for
WebSphere Message Broker. Others control more general options, such as the
colors and fonts in which information is displayed.
“Viewing the Eclipse error log” on page 3532
The Eclipse error log captures internal errors that are caused by the operating
system or your code.

3488 WebSphere Message Broker Version 7.0.0.8

“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.

Resolving problems when using the WebSphere Message
Broker Explorer

Work through the advice provided to help you to deal with problems that can
arise when you are using the WebSphere Message Broker Explorer.

About this task
v “Tracing problems with accounting and statistics”
v “The Brokers folder is missing”
v “You cannot open the information center on Red Hat Enterprise Linux” on page

3490
v “Accounting and statistics do not work for a remote broker” on page 3490
v “SYSTEM.DEF.SVRCONN error” on page 3490

Tracing problems with accounting and statistics
Procedure
v Scenario: When you view accounting and statistics data using the WebSphere

Message Broker Explorer you encounter a problem, and you want to collect
trace.

v Explanation: The WebSphere Message Broker Explorer uses the Java Message
Service (JMS) to retrieve the accounting and statistics data from the broker. To
trace problems with this connection, you must turn on JMS tracing in
WebSphere MQ.

v Solution: See the WebSphere MQ documentation for information about how to
turn on JMS tracing. You can find this information in the following part of the
information center: Using Java > Using WebSphere MQ classes for JMS >
Solving problems > Tracing programs.

The Brokers folder is missing
Procedure
v Scenario: You have opened the WebSphere MQ Explorer to work with brokers

and broker resources, but you cannot see the Brokers folder.
v Explanation: The WebSphere Message Broker Explorer is an extension to the

WebSphere MQ Explorer, and provides the Brokers and Broker Archive Files
folders, and related actions. You must install the WebSphere Message Broker
Explorer component on all computers on which you want to use the
WebSphere MQ Explorer to manage WebSphere Message Broker resources,
including brokers, execution groups and BAR files.

v Solution: Close your MQ Explorer session, follow the instructions to install the
WebSphere Message Broker Explorer, then start the MQ Explorer again.

Chapter 13. Troubleshooting and support 3489

You cannot open the information center on Red Hat Enterprise
Linux
Procedure
v Scenario: You are using the WebSphere Message Broker Explorer on Red Hat

Enterprise Linux Server 5.2 or Red Hat Enterprise Linux Server 5.3 but you
cannot open the information center from inside WebSphere Message Broker
Explorer.

v Solution: Set the environment variable MOZILLA_FIVE_PATH then run the
strmqcfg command. For more information, see the question about running the
SWT browser inside Eclipse at: Eclipse SWT FAQ

Accounting and statistics do not work for a remote broker
Procedure
v Scenario: You try to view broker statistics, but instead see a message box:

Could not connect to broker brokerName.
Is MQ configured for JMS?

v Explanation: Java Message Service (JMS) has not been correctly configured.
Either JMS has not been enabled for the queue manager, or you do not have
access to the channel that the broker uses for JMS activity. Check the log for
more details. Note: In WebSphere MQ Version 7.0, 7.0.1, 7.1 and 7.5 onwards
JMS is automatically configured, so the problem could be due to the security
settings on the publish/subscribe queues. Verify that WebSphere Message Broker
Explorer can communicate with the queue manager's publish/subscribe queues.
For more information on WebSphere MQ publish/subscribe security, see IBM
Education Assistant module: WebSphere MQ V7 Publish/subscribe security.

v Solution: If the log shows that JMS has not been correctly set up, take the
following steps:
1. In a WebSphere Message Broker command console, change to the

MBExplorerInstallLocation\eclipse\plugins\
com.ibm.etools.wmadmin.broker.stats_releaseNumber directory.

2. Run the following command:
runmqsc queuemanager < setup_jms.mqsc

If the log shows that you do not have permission to access the channel:
1. Check which channel is being used by viewing the Statistics panel for the

broker in WebSphere Message Broker Explorer. The channel is normally
SYSTEM.DEF.SVRCONN.

2. In a WebSphere Message Broker command console, issue the following
command to allow any user on your broker machine, who is a member of
the mqm and mqbrkrs groups, to run with the permissions of the broker user:

alter chl (SYSTEM.DEF.SVRCONN) CHLTYPE(SVRCONN) MCAUSER(brokerUser)

Note: Setting SYSTEM.DEF.SVRCONN MCAUSER(brokerUser) when the broker user is
a member of the mqm group requires security protocols, such as Transport Layer
Security (TLS), Secure Sockets Layer (SSL), channel authentication security, or a
security exit, to be set up. For more information on security, see “Security
overview” on page 351.

SYSTEM.DEF.SVRCONN error:
Procedure

v Scenario: When you try to connect to a broker to view accounting and statistical
information, an error message reports that WebSphere Message Broker Explorer
cannot connect to SYSTEM.DEF.SVRCONN.

3490 WebSphere Message Broker Version 7.0.0.8

http://www.eclipse.org/swt/faq.php#browserlinux
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wmq_v7/wmq/7.0/PubSub/PubSubSecurity/player.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wmq_v7/wmq/7.0/PubSub/PubSubSecurity/player.html

v Explanation: This error might indicate that the SHARECNV parameter on the
SVRCONN channel of the queue manager is not compatible with the current
WebSphere MQ level of JMS.

v Solution:

1. For more information about the error, turn on service trace; see “Changing
trace settings from the WebSphere Message Broker Explorer” on page 3549.

2. In WebSphere MQ Explorer, set Sharing Conversations (SHARECNV) to at
least 1.

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Installing WebSphere Message Broker Explorer” on page 280
To use WebSphere Message Broker Explorer only, without installing the complete
WebSphere Message Broker Toolkit, use the WebSphere Message Broker Explorer
installation wizard to install the WebSphere Message Broker Explorer.
“Configuring brokers in the WebSphere Message Broker Explorer” on page 635
Configure your local and remote brokers by using the WebSphere Message Broker
Explorer.
“Viewing message flow accounting and statistics data” on page 3300
You can use the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer to view snapshot accounting and statistics
data as it is produced by the broker.
Related information:

WebSphere MQ Version 7 Information Center online

Resolving problems when using databases
Use the advice given here to help you to resolve problems that can arise when
using databases.

Before you begin

Before you start:

v Read “Is there a problem with a database?” on page 3356

Procedure
v “DB2 error message SQL0443N is issued” on page 3492
v “DB2 error message SQL0805N is issued” on page 3492
v “DB2 error message SQL0998N is issued on Linux” on page 3493
v “DB2 error message SQL0998N or SQL1248N is issued” on page 3493
v “DB2 error message SQL1040N is issued” on page 3493
v “DB2 error message SQL1224N is issued when you connect to DB2” on page

3494
v “DB2 or ODBC error messages are issued on z/OS” on page 3495
v “You do not know how many database connections a broker requires” on page

3495
v “You want to use XA with DB2 databases” on page 3496

Chapter 13. Troubleshooting and support 3491

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v “XA coordination fails if the database restarts while the broker is running” on
page 3496

v “Error message BIP2322 is issued when you access DB2 on z/OS” on page 3496
v “Error message BIP2322 IM004 is issued when you connect to an Informix

database” on page 3497
v “On Oracle, a database operation fails to return any rows, even though the rows

exist” on page 3497
v “Broker commands fail when the Oracle 10g Release 2 client runs on Linux on

POWER with Red Hat Enterprise Linux Advanced Server V4.0” on page 3498
v “Error message BIP2322 Driver not capable is issued when you use an Informix

database” on page 3498
v “Database updates are not committed as expected” on page 3498
v “You want to list the database connections that the broker holds” on page 3499
v “The queue manager finds the XA resource manager is unavailable when

configured for XA with DB2 on Windows” on page 3499
v “Error messages are received when you are trying to remove a DB2 database on

Windows when you are using a sample” on page 3499
v “DB2 error message SQL7008N is issued” on page 3500
v “SQLCODE -981 is issued when you access DB2 on z/OS” on page 3500

DB2 error message SQL0443N is issued
Procedure
v Scenario: After you upgrade your DB2 server to a new fix pack level, a DB2

error message SQL0443N is issued if you invoke a DB2 Call Level Interface (CLI)
catalog function, such as SQLTables(), SQLColumns(), or SQLStatistics(). An
example of the error message is:
SQL0443N Routine "SYSIBM.SQLTABLES" (specific name "TABLES") has returned
an error SQLSTATE with diagnostic text SYSIBM:CLI:-805". SQLSTATE=38553.

v Solution: Bind the db2schema.bnd file against each database by entering the
following commands at a command prompt:
db2 terminate
db2 connect to database-name
db2 bind path\db2schema.bnd blocking all grant public sqlerror continue
db2 terminate

where database-name is the name of the database to which the utilities must be
bound, and path is the full path name of the directory where the bind files are
located. For example, the default location on Windows is C:\Program
Files\IBM\SQLLIB\bnd\(on Windows 32-bit editions) or C:\Program
Files(x86)\IBM\SQLLIB\bnd\ (on Windows 64-bit editions).
To list all the names of databases for a particular DB2 instance, run the DB2 CLI
command db2 list database directory. For further information, see the DB2
documentation.

DB2 error message SQL0805N is issued
Procedure
v Scenario: When a message flow that includes a Database node runs, SQL error

SQL0805N NULLID.SQLLF000 is issued.
v Solution: Open a DB2 Command Line Processor window and issue a bind

command to the database.

Linux

UNIX

On Linux and UNIX systems, enter the commands:

3492 WebSphere Message Broker Version 7.0.0.8

connect to db
bind ~/sqllib/bnd/@db2cli.lst grant public CLIPKG 5
connect reset

where db is the database name.

Windows

On Windows systems, enter the commands:

connect to db
bind x:\sqllib\bnd\@db2cli.lst blocking all grant public
connect reset

where x: identifies the drive onto which you installed DB2, and db is the
database name.

DB2 error message SQL0998N is issued on Linux
Procedure
v Scenario: You are trying to use a globally coordinated message flow with DB2

on Linux and error message SQL0998N is issued with Reason Code 09 and
Subcode " ".

v Solution: Check that the LD_ASSUME_KERNEL environment variable is not set. If it
is set, use the unset command to remove it from your environment and ensure
that you modify your profile scripts so that it remains unset.

DB2 error message SQL0998N or SQL1248N is issued
Procedure
v Scenario: When you try to use a globally coordinated message flow with a DB2

database, you get one of the following error messages:
– SQL0998N with Reason Code 09 and Subcode ""
– SQL1248N with a message indicating that the database is not defined with

the transaction manager
v Solution: Use the instructions in “Configuring global coordination with DB2” on

page 700 to configure the database and XAResourceManager stanza.

DB2 error message SQL1040N is issued
Procedure
v Scenario: You are using a DB2 database, and error message BIP2322 is issued

with error SQL1040N.
v Explanation: The following DB2 message indicates that the value of the DB2

database configuration parameter maxappls has been reached:
"SQL1040N The maximum number of applications is already connected to the database.
SQLSTATE=57030"

DB2 has rejected the attempt to connect.
v Solution:

1. Stop all brokers that connect to the affected database.
2. Increase the value of the maxappls configuration parameter. Also, check the

value of the associated parameter maxagents, and increase it in line with
maxappls.

3. Restart the DB2 database.
4. Restart the brokers.

Chapter 13. Troubleshooting and support 3493

DB2 error message SQL1224N is issued when you connect to
DB2
Procedure
v Scenario: DB2 error message SQL1224N is issued when you connect to a DB2

database. This error indicates that a database agent could not be started, or was
ended because of a database shutdown or force command.

v Solution: On AIX, use TCP/IP to connect to DB2 databases, to avoid the shared
memory limit of 10 connections. To set up AIX and DB2 loop-back to use a
TCP/IP connection:
1. Configure DB2 to use TCP/IP, and to start the TCP/IP listener. On the

database server machine, log in as the DB2 instance owner, typically
db2inst1, and issue the following commands:
db2set DB2COMM=tcpip
db2stop
db2start

2. If the DB2 connection port is not defined in /etc/services, edit the services
file to add the DB2 connection and interrupt ports. You must use unique
names, and port numbers that are not already defined in the services file;
for example:
db2svc1 3700/tcp # DB2 Connection Service
db2isvc1 3701/tcp # DB2 Interrupt Service

3. Update the DB2 configuration; for example:
db2 update dbm cfg using svcename db2svc1

where db2svc1 is the name of the DB2 Connection port service in
/etc/services.
Alternatively, you can specify a port number directly.

4. Stop and restart the database by using the following commands:
db2stop
db2start

5. Catalog a new TCP/IP connection node:
db2 catalog tcpip node NODENAME remote HOSTNAME server db2svc1

where:

NODENAME
is the name of the new TCP/IP connection node. You can use local
as your node name, if it is a unique identifier.

HOSTNAME
is the name of your computer.

db2svc1
is the name of the DB2 connection port service in /etc/services.

Message DB20000I is displayed when the command completes successfully.
6. Catalog the database with a new alias name; for example:

db2 catalog database DATABASE as DBALIAS at node NODENAME

where:

DATABASE
is the physical name of the database.

DBALIAS
is the database alias name that you want to use.

3494 WebSphere Message Broker Version 7.0.0.8

Specify the new alias name in all subsequent references to the local
database.

7. Stop and start DB2:
db2 terminate
db2stop
db2start

8. Log on with the user ID under which the broker is running.
9. Update the ODBC configuration file for each broker to add definitions for

the database:
a. At the top of the file, add a definition for the database alias name:

DBALIAS=IBM DB2 ODBC Driver

b. Add a new stanza for the database alias:
[DBALIAS]
Driver=INSTHOME/sqllib/lib/libdb2.a
Description=Database Alias
Database=DBALIAS

where INSTHOME is the path to your DB2 Instance directory.
10. Update your message flows to specify the alias database name, redeploy the

BAR file to the broker, and test the flows.

DB2 or ODBC error messages are issued on z/OS
Procedure
v Scenario: DB2 or ODBC messages are issued on z/OS indicating one or more of

the following errors:
– An exception was caught while issuing the database SQL connect command.
– A database error occurred with an ODBC return code of -1, an SQL state of

58004 and a native error code of -99999.
v Solution: If an ODBC message is displayed:

1. Turn ODBC application tracing on to produce the traceodbc file.
2. Locate the traceodbc file, which is written to the /output subdirectory. For

example, the full path might be /u/argo/VCP0BRK/output/traceodbc.
3. Go to the bottom of this file and search for previous instances of SQLerror.
Common DB2 problems include:
– ODBC return code -1, SQL state 58004, Native error code -99999

These codes might be returned for the following reasons:
- No SQL code. The DB2 subsystem is not started
- RRS is not started.

– SQLCODE 922.
The user ID of the started task is not authorized to use plan DSNACLI.

– ODBC return code -1, SLQ state 42503, Native error code -553
These codes might be returned if the user ID of the started task is not
authorized to use the current SQL ID. Reconfigure the broker and specify
DB2_TABLE_NAME as a valid name, or create a RACF group, and connect the
started task user ID to this group.

You do not know how many database connections a broker
requires
Procedure
v Scenario: You do not know how many database connections to set up for your

broker.

Chapter 13. Troubleshooting and support 3495

v Solution: Determine the number of database connections required by a broker
for capacity and resource planning. On DB2, the default action taken is to limit
the number of concurrent connections to a database to the value of the maxappls
configuration parameter; the default value for maxappls is 40. The associated
parameter maxagents also affects the current connections.
The connection requirements for a single broker are:
– Five are required by internal broker threads.
– One is required for each message flow thread that parses MRM messages.
– One is required for each database access node to separate ODBC data source

names for each message flow thread (that is, if the same DSN is used by a
different node, the same connection is used).

You want to use XA with DB2 databases
Procedure
v Scenario: You want to use XA with one or more DB2 databases.
v Solution: Ensure that your queue manager is configured to use

ThreadOfControl=THREAD.

– Linux

UNIX

On Linux and UNIX systems, configure this parameter in

the XAResourceManager stanza in the file qm.ini for the broker queue
manager.

– Windows

On Windows systems, configure this parameter in WebSphere MQ

Explorer.

XA coordination fails if the database restarts while the broker is
running
Procedure
v Scenario: XA global coordination fails, and you get an error like the following

example, which is from a DB2 user database:
Database error: SQL State ’40003’; Native Error Code ’-900’; Error Text ’[IBM]
[CLI Driver] SQL0900N The application state is in error. A database connection
does not exist.SQLSTATE=08003’.

v Explanation: A globally coordinated message flow cannot automatically
reconnect to a user database if the user database is restarted while the broker is
still running.

v Solution: Stop and restart the broker if the user database goes down, or is
brought down for a scheduled maintenance.

Error message BIP2322 is issued when you access DB2 on z/OS
Procedure
v Scenario: You are running a message flow in which a node attempts to access a

table on a DB2 data-sharing group. If ODBC tracing is turned on, an error
message is written to the traceodbc file:

SQLError(hEnv=0, hDbc=0, hStmt=1, pszSqlState=&302f8ecc, pfNativeError=&302f8ec8,
pszErrorMsg=&28f6a6d0, cbErrorMsgMax=1024, pcbErrorMsg=&302f8eb4)
SQLError(pszSqlState="51002", pfNativeError=-805, pszErrorMsg="{DB2 for OS/390}
{ODBC Driver}{DSN06011}
DSNT408I SQLCODE = -805, ERROR: DBRM OR PACKAGE NAME DSN610GH..DSNCLICS.16877-

BE5086005F4 NOT FOUND IN PLAN DSNACLI. REASON 02
DSNT418I SQLSTATE = 51002 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXEPM SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -350 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X’FFFFFEA2’ X’00000000’ X’00000000’ X’FFFFFFFF’

X’00000000’ X’00000000’ SQL DIAGNOSTIC INFORMATION

This error is accompanied by the following BIP2322 error message in the syslog:

3496 WebSphere Message Broker Version 7.0.0.8

BIP2322E: DATABASE ERROR: SQL STATE ’51002’; NATIVE ERROR CODE ’-805’

v Explanation: This error occurs when the DSNACLI plan has not been bound in
the correct way.

v Solution: Ensure that the DSNACLI plan is bound correctly. See “Binding a DB2
plan to use data-sharing groups on z/OS” on page 3990 for information about
how to complete this task.

Error message BIP2322 IM004 is issued when you connect to an
Informix database
Procedure
v Scenario: You are using the mqsicvp command to connect to an Informix

database, and you see the following error message.
BIP2322E: Database error: SQL State ’IM004’; Native Error Code ’0’; Error Text ’[DataDirect][ODBC lib] Driver’s SQLAllocHandle on SQL_HANDLE_ENV failed’. The error has the following diagnostic information: SQL State ’IM004’ SQL Native Error Code ’0’ SQL Error Text ’[DataDirect][ODBC lib] Driver’s SQLAllocHandle on SQL_HANDLE_ENV
failed’.

v Explanation: This error can be caused when the environment for the database
has not been initialized.

v Solution: Check the documentation for the client on your broker system for
details of the actions that you must take. For example, you might have to specify
the following environment variables:
export INFORMIXDIR=/installation_directory_of_informix_client_software
export PATH=${INFORMIXDIR}/bin:${PATH}
export INFORMIXSERVER=server_name
export INFORMIXSQLHOSTS=${INFORMIXDIR}/etc/sqlhosts
export TERMCAP=${INFORMIXDIR}/etc/termcap
export TERM=vt100
export LIBPATH=${INFORMIXDIR}/lib:${INFORMIXDIR}/lib/esql:

${INFORMIXDIR}/lib/cli:$LIBPATH

where server_name is defined in the file sqlhosts (the required value is typically
the machine name), and the location of the file sqlhosts is set up as part of the
installation process.
To configure your system to run this setup at the start of every session, add
these statements to the login profile of the user that is going to run the broker.
For more information, see “Command environment: Linux and UNIX systems”
on page 310.

On Oracle, a database operation fails to return any rows, even
though the rows exist
Procedure
v Scenario: You are using Oracle databases in your message flows, and ESQL

binds against columns that are declared as data type CHAR, and those
parameter markers are referenced in a WHERE clause. The database operation
fails to return any rows, even though the rows exist.

v Explanation: Fixed-length character strings must be padded with blank
characters on Oracle for this type of comparison to succeed.

v Solution: Define the CHAR columns as VARCHAR2 columns, or pad the ESQL
variable with blank characters to the required column length, so that the
comparison locates the required rows from the table.

Chapter 13. Troubleshooting and support 3497

Broker commands fail when the Oracle 10g Release 2 client runs
on Linux on POWER with Red Hat Enterprise Linux Advanced
Server V4.0
Procedure
v Scenario: Broker commands fail in an environment where an Oracle 10g Release

2 client runs on Linux on POWER with Red Hat Enterprise Linux Advanced
Server V4.0. Abend files might be created, with contents like the following data:
/opt/mqsi/lib/libCommonServices.so(.ImbAbendSignalHandler+0x10)[0x800017d3c0]
[0x80022b33f0]
/lib64/tls/libpthread.so.0[0x80cc2339d8]
/lib64/tls/libpthread.so.0[0x80cc230e4c]
/lib64/tls/libpthread.so.0[0x80cc22af54]
bipservice[0x10005e38]
/lib64/tls/libpthread.so.0[0x80cc22a1d8]
/lib64/tls/libc.so.6[0x80cc0dd3e4]

or
/opt/mqsi/lib/libImbCmdLib.so(._ZN15ImbCreateTables15createAllTablesEv+0x38)
[0x800014c9bc]mqsicreatebroker[0x10023324]mqsicreatebroker[0x1002c0c4]
/opt/mqsi/lib/libImbCmdLib.so(._ZN10ImbCmdBase20processCommandStringEv+0x6c)
[0x80001dcad4]mqsicreatebroker[0x1000d728]/lib64/tls/libc.so.6[0x80cc02423c]
/lib64/tls/libc.so.6[0x80cc0243c4]

v Explanation: The Oracle installation library contains copies of libgcc library
files. The Oracle user profile adds the directory containing these files to the
environment variable LD_LIBRARY_PATH. This action causes the libgcc library
files to be found before the system libraries, and leads to the failure of broker
commands and the production of abend files.

v Solution: Ensure that you add /lib64 to the environment variable
LD_LIBRARY_PATH before the Oracle library path. Before you run mqsiprofile,
include a string like:
/lib64::/usr/lib:/oracle/app/oracle/product/10.2.0/db_1/lib

which shows /lib64 preceding the Oracle library directory.

Error message BIP2322 Driver not capable is issued when you
use an Informix database
Procedure
v Scenario: When you try to access an Informix database from a node in a

message flow, the following error message is issued:
BIP2322E: Database error: SQL State ’HYC00’; Native Error Code ’-11092’;
Error Text ’[Informix][Informix ODBC Driver]Driver not capable.’.

v Explanation: The broker uses transaction statements, therefore the database must
be created, and configured to enable logging.

v Solution: Consult your database administrator to ensure that transaction logging
has been enabled on the Informix database that the broker is trying to access.
For example, create the database with a buffered log:
create database with [buffered] log;

Database updates are not committed as expected
Procedure
v Scenario: You have included a Database node, Compute node, or Filter node in

a message flow, and you have set the Transaction property to Commit. The
message flow has raised an exception and has rolled back, but the database
updates have not been committed.

3498 WebSphere Message Broker Version 7.0.0.8

v Explanation: When you set Transaction to Commit, the database updates
performed by the node are committed when the node completes successfully. If
an exception is raised before the node has completed, and causes the message
flow to be rolled back, the commit is not issued and the database updates are
also rolled back. The conditions under which this situation can occur are:
– The node itself causes an exception to be raised. The commit is never

performed.
– The ESQL contains a PROPAGATE statement. This statement does not

complete until all processing along the path taken by the propagated message
has completed, and control returns to the node. Only then can the commit be
performed. If an exception is raised along this path, control is not returned
and the database updates are rolled back as part of the message flow.

v Solution: Review the operation of the node that performs the database updates.
For example, you might be able to split the work between two nodes, with the
first updating the database, and the second propagating the output message.
Consider changing the ESQL code to process the message in a different way.

You want to list the database connections that the broker holds
Procedure
v Scenario: You want to list the database connections that the broker holds.
v Solution: The broker does not have any functionality to list the connections that

it has to a database. Use the facilities that your database supplies to list
connections. Refer to the documentation for your database to find out how to
perform this task.

The queue manager finds the XA resource manager is
unavailable when configured for XA with DB2 on Windows
Procedure
v Scenario: You have configured a queue manager for XA coordination with DB2

on your Windows computer. When you restart the queue manager, it reports
error AMQ7604 in the queue manager error log. All subsequent attempts at XA
coordination between WebSphere MQ and DB2 fail.
The error message has the following content, or similar:
23/09/2008 15:43:54 - Process(5508.1) User(MUSR_MQADMIN) Program(amqzxma0.exe)
AMQ7604: The XA resource manager ’DB2 MQBankDB database’ was not available
when called for xa_open.
The queue manager is continuing without this resource manager.

v Explanation: The user ID that runs the WebSphere MQ Services process
amqmsrvn.exe, which has a default value of MUSR_MQADMIN, is running with
an access token that does not contain group membership information for the
group DB2USERS.

v Solution: Check that the WebSphere MQ Services user ID is a member of the
group DB2USERS, stop the WebSphere MQ service (for example, by issuing the
command net stop "IBM MQSeries"), and all other processes that are running
under the same user ID, and then restart these processes. You can restart your
computer to stop and restart these processes after you have checked the user ID
status, but this action is typically not required.

Error messages are received when you are trying to remove a
DB2 database on Windows when you are using a sample
Procedure
v Scenario: You are running a sample, and you are trying to remove a DB2

database on your Windows computer, and you receive a BIP9835E error message
with the error code SQLSTATE=57019.

Chapter 13. Troubleshooting and support 3499

The error message has content like the following data:
BIP9830I: Deleting the DB2 Database <Your database name>.
BIP9835E: The DB2 batch command failed with the error code SQLSTATE=57019.
The database <Your database name> could not be created/deleted.
The error code SQLSTATE=57019 was returned from the DB2 batch command.

v Explanation: If you use the DB2 Control Center to perform a query, a connection
is opened against the database. This connection stays open until the DB2 Control
Center is closed, at which point the connection is ended.

v Solution: Close the DB2 Control Center application, and try to run the sample
again.

DB2 error message SQL7008N is issued
Procedure
v Scenario: You are using DB2 and encounter error SQL7008N when updating or

inserting into tables on iSeries.
v Explanation: SQL7008N is a common error when the tables being accessed on an

iSeries server are not being journaled.
v Solution: To correct the error, take one of the following steps:

– Journal your tables.
– Change the isolation level to No Commit. You can change the isolation level of

the database alias referenced by your ODBC data source to No Commit by
using the following DB2 command:
db2 update cli cfg for section <db_alias> using TxnIsolation 32

SQLCODE -981 is issued when you access DB2 on z/OS
Procedure
v Scenario: You are running a message flow that uses ODBC database interaction.

When a commit or rollback is attempted, DB2 reports an error with
SQLCODE=-981 and SQLSTATE=57015. An error message is seen similar to:
{DB2 FOR OS/390}{ODBC DRIVER}{DSN09015} DSNT408I SQLCODE = -981,
ERROR: THE SQL STATEMENT FAILED BECAUSE THE RRSAF
CONNECTION IS NOT IN A STATE THAT ALLOWS SQL OPERATIONS,
REASON 00C12219

v Explanation: You can choose for ODBC database operations to be committed or
rolled back irrespective of the success or failure of the message flow transaction
as a whole. This error can be seen if you attempt to use more than one
uncoordinated ODBC database connection on a single message flow thread.

v Solution: Only one uncoordinated ODBC database connection per thread is
supported. Update your message flow to perform ODBC database operations
outside of the message flow transaction on only one database. Any number of
different databases are supported as part of a coordinated message flow
transaction.

Related concepts:
“ESQL procedures” on page 2386
An ESQL procedure is a subroutine that has no return value. It can accept input
parameters from, and return output parameters to, the caller.
Related tasks:
“Database security” on page 495
You can access databases from the message flows that you deploy to your brokers,
and must therefore consider the steps you might want to take to secure that access.

“Is there a problem with a database?” on page 3356
If you have database problems, complete a set of initial checks to identify errors.

3500 WebSphere Message Broker Version 7.0.0.8

“ODBC trace” on page 3551
You can use various methods to trace for ODBC activity, depending on the
operating system that you are using.
“Invoking stored procedures” on page 2503
To invoke a procedure that is stored in a database, use the ESQL CALL statement.
The stored procedure must be defined by a CREATE PROCEDURE statement that
has a Language clause of DATABASE and an EXTERNAL NAME clause that
identifies the name of the procedure in the database and, optionally, the database
schema to which it belongs.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“Database facilities” on page 6891
The database products used by WebSphere Message Broker also record information
that might be useful if you have any problems with their access.

Resolving problems when using publish/subscribe
Use the advice given here to help you to resolve common problems that can occur
when you run publish/subscribe applications.

About this task

Procedure
v “Application responses are not received”
v “Your application is not receiving publications” on page 3502
v “Publishing a message causes a filter error” on page 3502
v “Symbols in subscription filters cause problems” on page 3503
v “The Publication node fails with MQRC 2035” on page 3503
v “There are performance problems on AIX when the JIT compiler is not loaded”

on page 3503

Application responses are not received
Procedure
v Scenario: Application responses are not received.
v Explanation: Depending on the application code, a publisher or subscriber might

request confirmation that its message was processed successfully. Responses can
make debugging client problems much easier, because a response code is given
if a problem occurs.
Typically, a response is always returned to a subscriber. However, for the
publishing side, a message might be published without the knowledge of the
originating application (for example, by using the default topic property on the
input node, or by using a Compute node to modify this property in a message
flow). The results of processing that message are still logged in user trace, which
might give clues as to what is happening.
If a response is not received, it is typically due to one of the following causes:

Chapter 13. Troubleshooting and support 3501

– The system is busy. Messages might build up on the input queue, and the
client might not be waiting long enough for its response.

– WebSphere MQ expiry is being used. There are cases where this option is
what is required, but the expiry of the input message is copied to the
response. As a result, the message might expire on the input queue, or it
might expire on the way back to the client. This situation is not an error, even
with a persistent message.

– The input message or response might have been put to the dead-letter queue,
if one is configured. Look on this queue to see if any new messages are there.
This situation is typically accompanied by error messages in the log written
by the broker that describe the problem. For example, the reply-to queue
might have been specified incorrectly in the input message, therefore the
reply message has been put to the dead-letter queue.

v Solution: If your application is not asking for responses (that is, not using
messages of type MQMT_REQUEST) consider doing so, particularly when
developing applications.

Your application is not receiving publications
Procedure
v Scenario: Your application is not receiving publications.
v Explanation: If an application has subscribed successfully (that is, has received

an OK response to a RegSub message), it receives publications that match its
subscription.
Subscribers are sent messages only if they match the topic, the subscription
point, and the filter. Because the subscription point is specified in the message
flow, not in the publication message, an incorrect message flow setting can cause
unexpected failures.
A user trace of the flow that contains the Publication node shows you whether
publications are matching anything.

v Solution: If a filter is being used, a user trace shows you whether this message
is being evaluated as expected.
The case with multiple execution groups, or multiple brokers, is more complex.
A response is sent to a subscriber after the message has been processed by the
target execution group. Other execution groups (and brokers) are updated
asynchronously. As a result, there might be a delay before publications made
elsewhere are received. If the broker is busy, there can be a delay before
messages are processed fully. In a multi-broker setup, if communications have
been suspended, subscription changes are propagated through the network of
brokers. Check the channels.
With multiple execution groups or brokers, it might be possible to fill
intermediate WebSphere MQ queues if the load is high. This situation might be
reported in the syslog (if a broker cannot put to a queue because it is full) or in
the WebSphere MQ log (if a message coming across a channel cannot be put to
the target queue because it is full). If you see messages of this type, display the
queue depths on all your queue managers to see if any are almost full.

Publishing a message causes a filter error
Procedure
v Scenario: When you publish a message, you receive an error response message

with reason text MQRCCF_FILTER_ERROR.
v Explanation: A broker returns this message to a publication when subscriptions

have been registered that specify filter expressions (for Content Based Routing)
and an error has been encountered when the broker attempts to filter the

3502 WebSphere Message Broker Version 7.0.0.8

published message. This situation can occur, for example, if a message is
published that includes unsupported data types, or if the message body is
corrupted.

Symbols in subscription filters cause problems
Procedure
v Scenario: If you specify certain symbols when you use filters in a subscription,

the filter does not work. Sometimes your subscription messages are put to the
dead-letter queue, and a number of error messages are written to the local error
log indicating MQRFH2 parsing errors.

v Explanation: The MQRFH2 header employs standard XML encoding, so that its
parser interprets some symbols in a special way.

v Solution: If you want to include these symbols in your filters, use the
appropriate escape character to ensure that they are parsed correctly:

Symbol Escape character

< <

> >

" "

' '

& &

For example, if you want to use:
<Filter>Body.e_ALERT_BODY.eqnum<6</Filter>

specify:
<Filter>Body.e_ALERT_BODY.eqnum<6</Filter>

The Publication node fails with MQRC 2035
Procedure
v Scenario: The Publication node fails with MQRC 2035.
v Explanation: WebSphere Message Broker publishes messages with the user ID in

the original message, not the broker service ID.
v Solution: You can force WebSphere Message Broker to use the broker service ID

in all circumstances by setting the environment variable
MQSI_PUBSUB_USE_BROKER_USERID to any value. If there is no MQMD
header, or if there is an MQMD header but its UserIdentifier field is blank,
WebSphere Message Broker continues to use the broker's user ID.

There are performance problems on AIX when the JIT compiler is
not loaded
Procedure
v Scenario: There are performance problems on AIX when the JIT compiler is not

loaded.
v Explanation: The environment variable LIBPATH can affect the loading of the

Java JIT (just-in-time) compiler on AIX. WebSphere Message Broker for AIX runs
correctly without the JIT compiler, but publish/subscribe performance is
adversely affected.

v Solution: Ensure that the JIT compiler runs.
The JIT compiler loads and runs correctly if LIBPATH is not set, therefore do not
set LIBPATH. You can make libraries available by linking them into
/var/wmqi/lib (for all WebSphere Message Broker for AIX processes) or

Chapter 13. Troubleshooting and support 3503

/usr/lib (for all processes on the system). AIX WebSphere Message Broker
for AIX configuration does this action for DB2 libraries.
If it is necessary to set LIBPATH, update it to include the directory
/usr/java130/bin. For example, you can use the following command to start the
broker:
LIBPATH=/usr/local/lib:/usr/java130/bin mqsistart mybroker

Related concepts:
“Publish/Subscribe” on page 2215
Publish/subscribe is a style of messaging application in which the providers of
information (publishers) are decoupled from the consumers of that information
(subscribers).
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
“Routing using publish/subscribe applications” on page 2215
You can route your messages to applications using the publish/subscribe method
of messaging.
Related tasks:
“Viewing Administration log information” on page 1007
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.
“Interpreting trace” on page 3546
Use the information in a formatted trace file to identify unexpected behavior.
Related reference:
“Publish/subscribe” on page 6395
Use the reference information in this section to help you develop
publish/subscribe applications.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“WebSphere MQ logs” on page 6869
WebSphere MQ messages are written to the local error log in the same way as
WebSphere Message Broker messages.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Resolving problems with performance
Use the advice given here to help you to resolve common problems with
performance.

3504 WebSphere Message Broker Version 7.0.0.8

About this task
v Scenario: You are experiencing problems with performance, such as:

– Poor response times in the WebSphere Message Broker Toolkit when
developing message flows

– Poor response time at deployment
– Individual messages taking a long time to process
– Poor overall performance, or performance that does not scale well

v Solution: Possible solutions are:
– Tune the broker
– Speed up WebSphere MQ persistent messaging by optimizing the I/O

(input/output)
– Speed up database access by optimizing I/O
– Increase system memory
– Use additional instances or multiple execution groups
– Optimize ESQL statements for best performance

A good source of information about performance is the set of reports in WebSphere
MQ Family Category 2 (freeware) SupportPacs, available for download from the
WebSphere MQ SupportPacs web page.

For more information, read “Do you have a component that is running slowly?” on
page 3360.

This topic contains advice for dealing with some common performance problems
that can arise:
v “The system is continuously running slower”
v “You experience configuration problems with many components” on page 3506
v “A WHILE loop in a large XML array takes a long time to process” on page 3506
v “Remote waitForMessages calls with WebSphere MQ Everyplace are slow” on

page 3507
v “Performance is reduced for stored procedures” on page 3507
v “Message flow performance is reduced when you access message trees with

many repeating records” on page 3507
v “You are experiencing poor performance in the WebSphere Message Broker

Toolkit when working with large projects” on page 3509
v “Performance is reduced when you run Web Services with small message sizes”

on page 3509
v “You are experiencing reduced Java performance, or Java performance degrades

after debugging a message flow” on page 3510

The system is continuously running slower
Procedure
v Scenario: The system is continuously running slower.
v Explanation: When a process ends abnormally, an entry is made in the local

error log, and a dump data file might be written to the errors or z/OS log
directory. This directory is unbounded, and if you do not clear it of unwanted
files, you might find that your system performance degrades due to significant
space being used by old abend files.

v Solution: Periodically clear the errors or z/OS log directory of unwanted files.

Chapter 13. Troubleshooting and support 3505

http://www.ibm.com/software/integration/support/supportpacs

On Windows, use the -w parameter of the mqsicreatebroker command to create
the errors directory in a hard disk drive partition that does not contain
WebSphere Message Broker or Windows itself.

You experience configuration problems with many components
Procedure
v Scenario: You are experiencing configuration problems with many components.
v Explanation: If you are running WebSphere Message Broker with many

configured components, the memory footprint of the broker processes
(particularly the execution groups or DataFlowEngines) might exceed their
memory limits. In particular, the user process limit might be exceeded, or the
address space limit might be reached. You might encounter problems, such as
the BIP2106E or BIP2137E error messages, when running a broker with:
– Many message flows
– Multiple databases
– Large input or output messages

v Solution: Use tools that are specific to your operating system to check the
maximum size of the failing process, then check for any user limits (if
applicable) or computer limits on process size.
1. On Windows, the maximum process size is 2 GB. Increasing user limits

beyond this value does not make any difference. If your broker processes
regularly reach this size, consider spreading your message flows across more
execution groups to reduce the size of each one below these limits.

2. On HP-UX, the number of threads per process is limited by the kernel
parameter max_thread_proc. The more flows you add to an execution group,
the more threads you use for each process. If you need many flows in an
execution group, increase the value of the max_thread_proc kernel parameter.
Try setting the kernel parameter max_thread_proc to 256, or to 512 if you are
using WebSphere Transformation Extender (WTX).

A WHILE loop in a large XML array takes a long time to process
Procedure
v Scenario: A WHILE loop in a large XML array takes a long time to process.
v Explanation: This problem arises when you use the CARDINALITY() function to

determine the size of the array in the WHILE statement. With large arrays, the
cost of determining the number of elements is proportional to the size of the
array. The CARDINALITY function is invoked each time the WHILE statement
is executed. The message has many elements, therefore takes a long time to
process when running the loop in this way.

v Solution: Unless you have a message in which the number of elements of the
array grows dynamically, determine the size of the array before entering the
WHILE loop. Use code like the following example:
DECLARE i,c INTEGER;
SET i = 1;
SET c=CARDINALITY(OutputRoot.XMLNS.MyMessage.Array[]);
WHILE i <= c DO

. . .

. . . loop processing

. . .
END WHILE;

3506 WebSphere Message Broker Version 7.0.0.8

Remote waitForMessages calls with WebSphere MQ Everyplace
are slow
Procedure
v Scenario: Remote waitForMessages calls with WebSphere MQ Everyplace are

slow.
v Explanation: A remote waitForMessages() call necessarily results in a polling

action: the client queue manager attempts to get a message repeatedly until one
is available on the remote queue or a timeout is reached.

v Solution: Define a store-and-forward queue on the broker queue manager and a
home-server queue on the client. These queues provide a level of de-coupling
that allows the arrangement to work in the event of the client queue manager
becoming unavailable. Alternatively, specify a remote queue in the WebSphere
MQ Everyplace output node, so that a local GET call is sufficient on the client
side.

Performance is reduced for stored procedures
Procedure
v Scenario: Stored procedures that do not return results sets do not perform as

well as they did when using the DataDirect version 4.1 drivers.
v Explanation: The new DataDirect version 5 Oracle drivers now use the

configuration parameter ProcedureRetResults to allow the driver to return
results sets from stored procedures. This parameter applies only to Oracle. By
default, the parameter is set to 1 and has to be 1 if you use stored procedures
that return results sets. When this parameter is set to 0, the driver does not
return results sets from stored procedures, which can result in better
performance.

v Solution: If your stored procedures do not return any results sets, set the
ProcedureRetResults parameter to 0 (zero).

Message flow performance is reduced when you access
message trees with many repeating records
Procedure
v Scenario: Message flow performance is reduced when the following conditions

are true:
– You are using ESQL processing to manipulate a large message tree.
– The message tree consists of repeating records or many fields.
– You have used explicit SET statements with field reference paths to access or

create the fields.
– You have observed a gradual slowing of message flow processing as the

ESQL processes more fields or repetitions.
v Explanation: This problem occurs when you use field references, rather than

reference variables, to access or create consecutive fields or records.
Consider the following example, in which independent SET statements use field
reference paths to manipulate the message tree. The SET statement takes a
source and target parameter, where either or both parameters are field
references:
SET OutputRoot.XMLNS.TestCase.StructureA.ParentA.field = ’1’;

The problem arises when the SET statement is used to create many more fields,
as shown in the following example:

Chapter 13. Troubleshooting and support 3507

SET OutputRoot.XMLNS.TestCase.StructureA.ParentA.field1 = ’1’;
SET OutputRoot.XMLNS.TestCase.StructureA.ParentA.field2 = ’2’;
SET OutputRoot.XMLNS.TestCase.StructureA.ParentA.field3 = ’3’;
SET OutputRoot.XMLNS.TestCase.StructureA.ParentA.field4 = ’4’;
SET OutputRoot.XMLNS.TestCase.StructureA.ParentA.field5 = ’5’;

In this example, the five fields that are created are all children of ParentA. Before
the specified field can be created or modified, the broker must navigate the
named message tree to locate the point in the message tree that is to be altered.
For example:
– To access field 1, the SET statement navigates to ParentA, then to the first

field, therefore involving two navigations.
– To access field 5, the SET statement navigates to ParentA, then traverses each

of the previous fields until it reaches field 5, therefore involving six
navigations.

Navigating over all the fields that precede the specified field causes the loss in
performance.
Now consider a scenario that accesses repeating fields in an input message tree;
for example:
DECLARE myChar CHAR;
DECLARE thisRecord INT 0;
WHILE thisRecord < 10000 DO
SET thisRecord = thisRecord + 1;
SET myChar = InputRoot.MRM.myParent.myRepeatingRecord[thisRecord];

END WHILE;

When index notation is used, as the count increases, the processing needs to
navigate over all the preceding fields to get the one it wants; that is, it has to
count over the previous records to get to the one that is represented by the
current indexed reference.
– When accessing InputRoot.MRM.myParent.myRepeatingRecord[1], one

navigation takes place to get to the first record.
– When accessing InputRoot.MRM.myParent.myRepeatingRecord[2], two

navigations take place to get to the second record.
– When accessing InputRoot.MRM.myParent.myRepeatingRecord[N], N

navigations take place to get to the N-th record.

Therefore, the total number of navigations for this WHILE loop is: 1 + 2 + 3 +
+ N, which is not linear.

v Solution: If you are accessing or creating consecutive fields or records, use
reference variables. When you use reference variables, the statement navigates to
the main parent, which maintains a pointer to the field in the message tree. The
following example shows the ESQL that can be used to reduce the number of
navigations when creating new output message tree fields:
SET OutputRoot.XMLNS.TestCase.StructureA.ParentA.field1 = ’1’;
DECLARE outRef REFERENCE TO OutputRoot.XMLNS.TestCase.StructureA.ParentA;
SET outRef.field2 = ’2’;
SET outRef.field3 = ’3’;
SET outRef.field4 = ’4’;
SET outRef.field5 = ’5’;

When referencing repeating input message tree fields, you could use the
following ESQL:

3508 WebSphere Message Broker Version 7.0.0.8

DECLARE myChar CHAR;
DECLARE inputRef REFERENCE TO InputRoot.MRM.myParent.myRepeatingRecord[1];
WHILE LASTMOVE(inputRef) DO
SET myChar = inputRef;
MOVE inputRef NEXTSIBLING NAME ’myRepeatingRecord’;

END WHILE;

For further information, see “Creating dynamic field references” on page 2431.

You are experiencing poor performance in the WebSphere
Message Broker Toolkit when working with large projects
Procedure
v Scenario: You are experiencing poor performance in the WebSphere Message

Broker Toolkit when working with large or complex projects.
v Explanation: Performance is reduced because of frequent project changes, such

as adding and removing projects, or using Project > Clean. Complete project
updates use large amounts of memory due to the size, number, and connections
between files.

v Solution: Increase your system memory.

Performance is reduced when you run Web Services with small
message sizes
Procedure
v Scenario: You see poor response times and throughput rates when you run Web

Services using HTTP, and send smaller messages sizes (typically less than 32
KB). Throughput rates can fluctuate with message size. WebSphere Message
Broker running on the AIX platform might be affected.

v Explanation: The default configuration of HTTP enables the Nagle algorithm,
which seeks to improve the efficiency of Internet Protocol networks by reducing
the number of packets sent. It works by buffering small packets together,
creating a smaller number of large packets. The HTTPRequest node uses the
platform default for the tcpnodelay setting of its sockets. You can disable the
Nagle algorithm at either the operating system level (system wide) or through
WebSphere Message Broker (affecting only the WebSphere Message Broker HTTP
sockets).

v Solution: Use the following commands to disable the Nagle algorithm:

HTTP Request node
mqsichangeproperties <BrokerName> -e <ExecutionGroupName>

-o ComIbmSocketConnectionManager -n tcpNoDelay -v true|false
mqsichangeproperties <BrokerName> -e <ExecutionGroupName>

-o ComIbmSocketConnectionManager -n tcpNoDelaySSL -v true|false

HTTP Listener / Tomcat servlet engine
mqsichangeproperties <BrokerName> -b httplistener

-o HTTPConnector -n tcpNoDelay -v true|false
mqsichangeproperties <BrokerName> -b httplistener

-o HTTPSConnector -n tcpNoDelay -v true|false

To determine the value set, take the following steps:

HTTP Request node
Use the following command:
mqsireportproperties <BrokerName> -e <ExecutionGroupName>

-o ComIbmSocketConnectionManager -r

HTTP Listener / Tomcat servlet engine
Check the WebSphere Message Broker registry.

Chapter 13. Troubleshooting and support 3509

You are experiencing reduced Java performance, or Java
performance degrades after debugging a message flow
Procedure
v Scenario: The Java code in the JavaCompute, the Java user-defined node, or the

XSLTransform node does not run as quickly as expected, or performance in these
nodes degrades after debugging a message flow. This performance degradation
might particularly affect the deployment of XML schemas. Other Java based
nodes might also experience degraded performance: for example, adapter nodes
(SAP, PeopleSoft, JD Edwards, Siebel), SOAP nodes, CORBA nodes, IMS nodes,
CICS nodes and JMS nodes.

v Explanation: The broker disables the Java JIT (just-in-time) compiler on the Java
virtual machine (JVM) that is created when the execution group is started if you
are debugging a message flow. A disabled Java JIT compiler provides a greater
choice of debugging options, however any optimizations typically performed
during JIT compilation are prevented, which might result in degraded
performance.

v Solution: If you are not debugging a message flow, set the JVM debug port to
zero using this command:
mqsichangeproperties broker_name -e execution_group_name
-o ComIbmJVMManager -n jvmDebugPort -v 0

For example:
mqsichangeproperties TEST -e default
-o ComIbmJVMManager -n jvmDebugPort -v 0

Related tasks:
Chapter 12, “Performance and monitoring,” on page 3251
You can change various aspects of your broker configuration to tune brokers and
message flows, and monitor message flows and publish/subscribe applications.
“Considering performance in the broker environment” on page 586
When you design your broker environment, and the resources associated with the
brokers, decisions that you make can affect the performance of your brokers and
applications.
“Tuning the broker” on page 3254
You can complete several tasks that enable you to tune different aspects of the
broker performance.

Resolving problems when developing Administration API
applications

Use the advice given here to help you to resolve problems that can arise when
developing Administration API for WebSphere Message Broker (also known as the
CMP API) applications.

About this task
v “Your CMP application hangs if the broker is not available”
v “You set a property of an object and query its value, but the value has not

changed” on page 3511
v “You cannot connect to a broker when using a .broker file” on page 3511

Your CMP application hangs if the broker is not available
Procedure
v Scenario: When the broker is unavailable, the CMP application hangs.

3510 WebSphere Message Broker Version 7.0.0.8

v Explanation: Communication between the CMP and the broker is asynchronous,
therefore the CMP hangs because it is waiting for a message from the broker.

v Solution: Configure the maximum amount of time that the CMP waits by using
the following method:
// Wait for a maximum of 10 seconds
BrokerProxy.setRetryCharacteristics(10000);

The value specified represents the time in milliseconds that the CMP will wait
for information before throwing the
BrokerProxyPropertyNotInitializedException exception.
If you set this timeout value too low, an exception is thrown, even if the broker
is available.

You set a property of an object and query its value, but the value
has not changed
Procedure
v Scenario: You have set a property of an object, then queried its value; the value

has not changed.
v Explanation: Methods that change properties of broker objects are not processed

immediately. If you call a property change method on a CMP object, the CMP
API sends a message that requests the specified change to the broker. The broker
processes the request asynchronously, and notifies all
AdministeredObjectListeners of the affected object when the change has been
attempted.

v Solution: Methods that change state typically return to the calling program as
soon as the request has been put to the queue manager of the broker, or,
following a call to BrokerProxy.beginUpdates(), as soon as the request has been
added to the current batch. If the property has still not been updated after the
action's response to the request has been returned to the application, consult the
response message for more details.

You cannot connect to a broker when using a .broker file
Procedure
v Scenario: You cannot connect to a broker when you use a .broker file.
v Explanation: If your CMP applications use the

MQPropertyFileBrokerConnectionParameters class, they can connect to a broker
by using a connection file that has a .broker extension. However, this file can be
parsed only if an XML parser is available.

v Solution: Ensure that a supported parser is available on the CLASSPATH. A
supported parser is shipped with WebSphere Message Broker.
Alternatively, your application can use the MQBrokerConnectionParameters class
instead of the MQPropertyFileBrokerConnectionParameters class. This class
connects to a broker by specifying the host name, queue manager name, and
queue manager port of the target broker directly. This method does not require
an XML parser.

Resolving problems with user-defined extensions
Advice for dealing with some common problems that can arise when you work
with user-defined extensions

Chapter 13. Troubleshooting and support 3511

About this task

Procedure
v “You cannot deploy one of your user-defined nodes, despite having a plug-in

LIL in the correct directory.”
v “You cannot deploy a flow with one of your user-defined nodes in it.”
v “You get problems when nodes try to use the ESQL path interface in the plug-in

API”
v “After migration your custom property editor does not work” on page 3513
v “Interpreting problems in user-defined extensions” on page 3513
v “You want to debug classloading” on page 3515
v “An error is issued when you deploy a user-defined extension on z/OS” on

page 3516
v “You cannot determine which user-defined extensions have been loaded by the

broker on startup” on page 3516
v “You are migrating a C user-defined node and cniDefineNodeClass returns

CCI_INV_IMPL_FUNCTION.” on page 3517

You cannot deploy one of your user-defined nodes, despite
having a plug-in LIL in the correct directory.
Procedure
v Scenario: You cannot deploy one of your user-defined nodes, despite having a

plug-in LIL in the correct directory.
v Explanation: You have memset() the data area to zero and have not initialized

the CNI_VFT structure with the initialization constant {CNI_VFT_DEFAULT}.
v Solution: Initialize by copying a predefined initialization structure over the

function table area, as follows:
static CNI_VFT virtualFunctionTable = {CNI_VFT_DEFAULT};

In addition, implement logging from your user-defined node so that you can see
if the plug-in API is producing error codes; the broker does not log these to its
own log, unless you take a service trace.

You cannot deploy a flow with one of your user-defined nodes in
it.
Procedure
v Scenario: You cannot deploy a flow with one of your user-defined nodes in it.
v Explanation: Your LIL file has failed to load.
v Solution: Check system log (syslog or Eventviewer) of broker startup; did you

see a BIP2308 message saying a LIL file failed to load? If there are any problems
loading a LIL file, a BIP2308 message appears in the system log.

You get problems when nodes try to use the ESQL path interface
in the plug-in API
Procedure
v Scenario: When you attempt to use the ESQL path interface in the plug-in API,

the return value is CCI_PATH_NOT_NAVIGABLE.
v Explanation: The plug-in API allows you to specify a path in the form of an

ESQL path expression and navigate to that element, returning a handle to it if it
exists. It also allows you to create elements along the path to the requested
element.

3512 WebSphere Message Broker Version 7.0.0.8

The navigate path utility function (cniSqlNavigatePath) executes the
SQLPathExpression created with the cniSqlCreateReadOnlyPathExpression or
cniSqlCreateModifiablePathExpression utility functions, as defined by the
sqlPathExpression argument.
If the path is not navigable, the return code is set to
CCI_PATH_NOT_NAVIGABLE. This might be returned when embedding a path
expression in another path expression. The input cciMessage* functions must not
be NULL; however, any of the output cciMessage* functions can be NULL. If
you embed a path expression that can be NULL inside a path expression that
cannot be NULL, CCI_PATH_NOT_NAVIGABLE is returned.

v Solution: If the return code is set to CCI_PATH_NOT_NAVIGABLE, ensure that
if a correlation name is specified in a path, the respective parameter is not
NULL.

After migration your custom property editor does not work
Procedure
v Scenario: You have migrated to a new version of WebSphere Message Broker

and your custom property editor no longer works.
v Explanation: Custom property editors can use Eclipse or RAD APIs. If any of

those APIs are changed in a new version of WebSphere Message Broker, your
property editor might not work.

v Solution: Update your property editor code to comply with the changed API.

Interpreting problems in user-defined extensions
Procedure
v Scenario: You want to debug problems in user-defined nodes and parsers.
v Solution: Start user trace at debug level. In order to see BIP4142, BIP4144,

BIP4145, and BIP4146 messages, this must be done at the execution group level.
For example, use the mqsichangetrace command without the -f parameter.
The following debug messages are available to help you to understand the
execution of your user-defined nodes and parsers:
– BIP2233 and BIP2234: a pair of messages that are traced before and after a

user-defined extension implementation function is invoked. These messages
report the input parameters and returned value. For example:
BIP2233 Invoking user-defined extension function [function name]
([function call parameters])

BIP2234 Returned from user-defined extension function [function name]
with result: [result of call]

Note: In these messages, an implementation function can be interpreted as
either a C implementation function or a Java implementation method.

– BIP2308: a message that is logged when the broker fails to load a LIL file.
BIP2308 File [name of LIL file] could not be loaded; operating system
return code [error code return from operating system]

– BIP3904: a message that is traced before invoking the Java evaluate() method
of a user-defined node. For example:
BIP3904 (for Java): Invoking the evaluate() method of node (class=[node
class name], name=[label of node in flow]) where node class name is the
name of the Java user-defined extension class.

– BIP3905: a message that is traced before invoking the C cniEvaluate
implementation function (iFpEvaluate member of CNI_VFT) of a user-defined
node. For example:

Chapter 13. Troubleshooting and support 3513

BIP3905 (for C): Invoking the cniEvaluate() implementation function of
node (class=[node class name], name=[label of node in flow]) where node
class name is the name of the user-defined extension class that is provided by
the user-defined extension while calling C cniDefineNodeClass.

– BIP4142: a debug message that is traced when invoking a user-defined node
utility function, where the utility function alters the state of a syntax element.
This includes all utility functions that start with cniSetElement*, where *
represents all nodes with that stem. For example:
BIP4142 Evaluating cniSetElement [element identifier type]. Changing
value from [value before user's change] to [value after user's
change]"

– BIP4144 and BIP4145: a pair of messages that are traced by certain
implementation functions that, when invoked by a user-defined extension,
can modify the internal state of a message broker's object. Possible message
broker objects include syntax element, node, and parser. These messages
report the input parameter provided to the invoked method and the returned
value. For example:
BIP4144 Entered function [function name] ([function call parameters])
BIP4145 Exiting function [function name] with result: [result to be
returned]

In these messages, an implementation function can be interpreted as either a C
implementation function or a Java implementation method.
The C implementation functions that invoke messages BIP4144 and BIP4145
include:

For user-defined parsers For user-defined nodes

cpiCreateParserFactory cniCreateElement*

cpiDefineParserClass cniDeleteMessage

cpiAppendToBuffer cniAdd*

cpiCreateElement cniDetach

cpiCreateAndInitializeElement cniCopyElementTree

cpiAddBefore cniFinalize

cpiAddAfter cniWriteBuffer

cpiAddAsFirstChild cniSql*

cpiAddAsLastChild cniSetInputBuffer

cpiSetNameFromBuffer cniDispatchThread

(* represents all nodes with that stem; for example, cniAdd* includes
cniAddAfter, cniAddasFirstChild, cniAddasLastChild, and cniAddBefore.)
The Java methods that invoke messages BIP4144 and BIP4145 are:

For user-defined nodes

com.ibm.broker.plugin.MbElement.CreateElement*

com.ibm.broker.plugin.MbElement.add*

com.ibm.broker.plugin.MbElement.detach

com.ibm.broker.plugin.MbElement.copyElementTree

– BIP4146: a debug message that is traced when invoking a user-defined parser
utility function, where the utility function alters the state of a syntax element.

3514 WebSphere Message Broker Version 7.0.0.8

This includes all utility functions that start with cpiSetElement*, where *
represents all nodes with that stem. For example:
BIP4146 Evaluating cpiSetElement [element identifier type]. Changing
value from [value before user's change] to [value after user's change]

For information on the C user-defined API, see the “C language user-defined
parser API” on page 6538 and the “C language user-defined node API” on
page 6416.

– BIP4147: an error message that is traced when a user-defined extension passes
an invalid input object to a user-defined extension utility API function. For
Example:
BIP4147 User-defined extension input parameter failed debug validation
check. Input parameter [parameter name] passed into function [function
name] is not a valid object.

– BIP4148: an error message that is traced when a user-defined extension
damages a broker's object. For Example:
BIP4148 User-defined extension damaged broker's object. Function
[function name] has damaged broker's object passed as parameter
[parameter name].

– BIP4149: an error message that is traced when a user-defined extension passes
an invalid input data pointer to a user-defined extension utility API function.
For Example:
BIP4149 User-defined extension input parameter failed debug validation
check. Input parameter [parameter name] passed into function [function
name] is a NULL pointer.

– BIP4150: an error message that is traced when a user-defined extension passes
invalid input data to a user-defined extension utility API function. For
example:
BIP4150 User-defined extension input parameter failed debug validation
check. Input parameter [parameter name] passed into function [function
name] does not have a valid value.

– BIP4151: a debug message that is traced when cniGetAttribute2 or
cniGetAttributeName2 sets the return code to an unexpected value. Expected
values are CCI_SUCCESS, CCI_ATTRIBUTE_UNKNOWN, and
CCI_BUFFER_TOO_SMALL. Any other value is an unexpected value. For
example:
BIP4151 An unexpected value was returned from User-defined extension
implementation function [function name].

– BIP4152: a debug message that is traced when cniGetAttribute2 or
cniGetAttributeName2 sets the return code to CCI_BUFFER_TOO_SMALL,
and then cniGetAttribute2 or cniGetAttributeName2 is called again, this time
with the correct size buffer, however the return code is still set to
CCI_BUFFER_TOO_SMALL. For example:
BIP4152 User-defined extension Implementation function [function name]
returned CCI_BUFFER_TOO_SMALL on 2nd attempt.

You want to debug classloading
Procedure
v Scenario: You want to debug classloading.
v Solution: Classes and the location from which they are loaded are written to

user trace. Use this information to check that the correct classes are being
loaded.

Chapter 13. Troubleshooting and support 3515

An error is issued when you deploy a user-defined extension on
z/OS
Procedure
v Scenario: When you deploy a user-defined extension on z/OS, Linux, or UNIX,

an error is displayed in the log of each execution group, stating that there is
insufficient authority to open the LIL file.

v Explanation: On Linux and UNIX, the user-defined extension must have group
read permission. On z/OS, the user-defined extension must have group execute
permission.

v Solution:

– On Linux and UNIX, set the file permissions of the user-defined extension to
group read by issuing the command chmod a+r.

– On z/OS, set the file permissions of the user-defined extension to group read
and execute by issuing the command chmod a+rx.

You cannot determine which user-defined extensions have been
loaded by the broker on startup
Procedure
v Scenario: You cannot determine which user-defined extensions have been loaded

by the broker on startup.
v Solution: Use the mqsireportproperties command for each type of user-defined

extension.
– For a Java user-defined extension, issue the command:

mqsireportproperties WBRK_BROKER -e default -o ComIbmJavaPluginNodeFactory -r

You see a report similar to this example:
ComIbmJavaPluginNodeFactory
uuid=’ComIbmJavaPluginNodeFactory’
userTraceLevel=’none’
traceLevel=’none’
userTraceFilter=’none’
traceFilter=’none’
NodeClassName=’ComIbmJMSClientInputNode’
NodeClassName=’ComIbmJMSClientOutputNode’
NodeClassName=’ComIbmJavaComputeNode’
NodeClassName=’ComIbmXslMqsiNode’
NodeClassName=’SearchFilterNode’

BIP8071I: Successful command completion.

The user-defined extension called SearchFilter has a NodeClassName of
SearchFilterNode.

– For a C user-defined extension (assuming that
CONST_PLUGIN_NODE_FACTORY was set to
ComIbmSamplePluginNodeFactory in the NodeFactory.h file, as in the sample
NumComputeNode), issue the command:

mqsireportproperties WBRK_BROKER -e default -o ComIbmSamplePluginNodeFactory -r

You see a report similar to this example:
ComIbmSamplePluginNodeFactory
uuid=’ComIbmSamplePluginNodeFactory’
userTraceLevel=’none’
traceLevel=’none’
userTraceFilter=’none’
traceFilter=’none’
NodeClassName=’NumComputeNode’

BIP8071I: Successful command completion.

3516 WebSphere Message Broker Version 7.0.0.8

The user-defined extension called NumCompute has a NodeClassName of
NumComputeNode.

You are migrating a C user-defined node and
cniDefineNodeClass returns CCI_INV_IMPL_FUNCTION.
Procedure
v Scenario: When you attempt to migrate a C user-defined node,

cniDefineNodeClass returns CCI_INV_IMPL_FUNCTION.
v Explanation: New fields have been added to the CNI_VFT struct.

CNI_VFT_DEFAULT has been updated to initialize these new fields in the
header file BipCci.h. If you initialize your CNI_VFT with CNI_VFT_DEFAULT,
you should not need to make any code changes. However, if you do not
initialize CNI_VFT with CNI_VFT_DEFAULT, these new fields are initialized
with random values.

v Solution: Initialize your CNI_VFT with CNI_VFT_DEFAULT.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
Related tasks:
“Installing user-defined extension runtime files on a broker” on page 3125
Install the compiled runtime files for your user-defined extension on the broker on
which you want to test its function.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Is there a problem with a database?” on page 3356
If you have database problems, complete a set of initial checks to identify errors.
“Has the message flow run successfully before?” on page 3353
Sometimes a problem appears in a message flow that has previously run
successfully.
Related reference:
“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.
“Utility function return codes and values” on page 6686
By convention, the return code output parameter of all utility functions is set to
indicate successful completion, or an error. The table lists all return codes with
their meanings.

Resolving problems when installing
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.

Chapter 13. Troubleshooting and support 3517

About this task

The following list describes typical problems when installing, with a corresponding
solution or workaround:
v Broker component:

– “Dealing with problems during installation”
– “Installation process is interrupted” on page 3519
– “java.lang.UnsatisfiedLinkError” on page 3519
– “RPM query fails” on page 3519
– “Display problems” on page 3520
– “Insufficient temporary space” on page 3520
– “Fix Pack installation fails with license agreement error” on page 3521
– “Installation fails with version error” on page 3521

v WebSphere Message Broker Toolkit:
– “Dealing with problems during installation” on page 3521

v WebSphere Message Broker Explorer:
– “Dealing with problems during installation” on page 3522

v Installation Manager:
– “Installation Manager hangs” on page 3522
– “Installation Manager does not show the WebSphere Message Broker Toolkit

components” on page 3523
– “Error restoring Installation Manager state” on page 3523

v WebSphere Message Broker Launchpad:
– “WebSphere Message Broker Launchpad return code indicates that an

installation has failed” on page 3524

Dealing with problems during installation
Before you begin

Broker component on all operating systems:

Procedure
v Scenario: You have problems during the installation of the Broker component.
v Solution: Complete the following steps:

1. If you experience problems when installing on z/OS, see the Program
Directory for WebSphere Message Broker for z/OS on the WebSphere Message
Broker Library web page.

2. Refer to the readme file readme.html for any late changes to the installation
instructions.

3. If you transferred the installation media to your local or networked
filesystem, you might see the following error:
The Install executable launcher was unable to locate its companion shared library.

Ensure that you have read and execute privileges on all installation
directories and files. Also ensure that the length of the path to the installation
media is within the limits imposed by your operating system.

4. If installation is successful, the installation wizard returns a return code of
zero. If a non-zero return code is returned, check the installation log file for

3518 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/library/index.html
http://www.ibm.com/software/integration/wbimessagebroker/library/index.html

errors and explanations. Problems associated with the installation of the
Broker component are recorded in the log file mqsi7_install.log, which is
stored in your installation directory.
If you accepted the default location during installation, this directory is as
follows. The default directory includes the version and release of the product
that you are installing in the format v.r (version.release):

Linux /opt/ibm/mqsi/v.r

UNIX /opt/IBM/mqsi/v.r

Windows 32-bit
C:\Program Files\IBM\MQSI\v.r

Windows 64-bit
C:\Program Files\IBM\MQSI\v.r for the 64-bit version of WebSphere
Message Broker

C:\Program Files (x86)\IBM\MQSI\v.r for the 32-bit version of
WebSphere Message Broker

These locations define the default value of install_dir on each platform.
5. If you are still unable to resolve the problem, contact your IBM Support

Center.

Installation process is interrupted
Before you begin

Broker component on all operating systems:

Procedure
v Scenario: You are installing the Broker component but the process is interrupted

before completion.
v Explanation: The process might be interrupted because of a problem, such as a

power failure.
v Solution: Delete the install_dir and all its contents before you restart the

program.

java.lang.UnsatisfiedLinkError
Before you begin

Broker component on Linux:

Procedure
v Scenario: You are using the Broker component graphical interface to install on

Linux but the interface does not work correctly.
v Explanation: The additional packages that are required to complete the

installation are not installed.
v Solution: You must install additional packages for the interface to work

correctly. For more information about the required additional packages, see
“Operating system requirements” on page 3590.

RPM query fails
Before you begin

Broker component on Linux:

Chapter 13. Troubleshooting and support 3519

Procedure
v Scenario: You start a Red Hat package manager (RPM) query after you have

installed the product, but nothing is returned. An information message like the
following example might have been reported in the installation log file:
(01-Jun-2005 09:02:27), mqsi.Setup,

com.ibm.wizard.platform.linux.LinuxProductServiceImpl, wrn,
The installer could not successfully add the product information
into the RPM database. Installation will continue as this is not
critical to the installation of the product.

v Explanation: It is likely that your system does not have the required RPM
support.

v Solution: Install the additional RPM build package that is described in
“Operating system requirements” on page 3590.

Display problems
Before you begin

Broker component on Linux and UNIX:

Procedure
v Scenario: You try to install the Broker component by using the graphical

interface and see one of two common errors reported.
v Explanation: Both errors typically occur if you log in remotely, or you switch

user ID.
v Solution: Address the appropriate error with the following corresponding

solution:

Can’t open display localhost:1.0
Check that the DISPLAY variable is set to the correct value. If you are
logged in locally, the typical value is :0.0 or localhost:0.0.

Connection to ":0.0" refused by server
Run the following command, where user is the user ID you are logged in
as:
xauth merge ~user/.Xauthority

If you are unable to correct these errors, contact your systems administrator for
further help.

Insufficient temporary space
Before you begin

Broker component on Linux and UNIX:

Procedure
v Scenario: You install the Broker component and the installation program tries to

unpack product files into the temporary file space of the local system. On Linux
and UNIX systems, the temporary space is typically located in /tmp.

v Explanation: If sufficient file space is not available in this directory, the
command might fail without reason and returns no comment, or reports a lack
of file space.

v Solution: Give the installation wizard a temporary file system to use, for
example; setupaix. The command-line option is -is:tempdir name of temp
directory. For example, on AIX, enter the following command:
./setupaix -is:tempdir /largetemp

3520 WebSphere Message Broker Version 7.0.0.8

Do not specify a temporary directory that is NFS-mounted from another server;
if you do so, the installation might fail because user permission checks made by
the installer sometimes report an error that security principals mqm and
mqbrkrs do not exist on the local machine.
For more information about checking how much temporary space is required,
see “Memory and disk space requirements” on page 3584.

Fix Pack installation fails with license agreement error
Before you begin

Broker component on AIX with WPAR configuration:

Procedure
v Scenario: You are installing a Fix Pack for the Broker component on an AIX

WPAR system but the installation fails with the message: "The License
Agreement could not be properly loaded."

v Explanation: Fix Pack installations check that the license agreement was
accepted by checking that the Broker component exists on the target system. On
AIX, the installer performs this check by searching the /usr/lib/objrepos/
vpd.properties file for an entry that matches this version and release of
WebSphere Message Broker. If the /usr file system is read-only, the base product
installation succeeds, but cannot update the vpd.properties file. Subsequent Fix
Pack installations cannot determine that the Broker component is installed.

v Solution: Ensure that the user ID root can write to file /usr/lib/objrepos/
vpd.properties. Reinstall the base product and check that /usr/lib/objrepos/
vpd.properties was successfully updated. Then apply a Fix Pack.

Installation fails with version error
Before you begin

Broker component on all operating systems:

Procedure
v Scenario: You are installing the WebSphere Message Broker runtime component,

but the installation fails with the message: "Installed product has newer version."
v Explanation: Files or directories left behind from previous uninstallation.
v Solution: Manually delete the residual files and directories from the installation

location.

Dealing with problems during installation
Before you begin

WebSphere Message Broker Toolkit on all operating systems:

Procedure
v Scenario: You have problems during the installation of the WebSphere Message

Broker Toolkit.
v Solution: Complete the following steps:

1. Refer to the readme file readme.html for any late changes to the installation
instructions.

2. If installation is successful, the installation wizard returns a return code of
zero. If a non-zero return code is returned, check the Installation Manager
log file for errors and explanations. Problems associated with the installation

Chapter 13. Troubleshooting and support 3521

of the WebSphere Message Broker Toolkit are recorded in the Installation
Manager log file YYYYMMDD_TIME.xml. Where YYYYMMDD_TIME is the
date and time of installation. The Installation Manager log file is stored in
the following location:

Linux /var/ibm/InstallationManager/logs

Windows
On Windows systems, the directory is created in the following
default location, however the actual location might differ on your
computer:

%ALLUSERSPROFILE%\Application Data\IBM\Installation
Manager\logsWhere %ALLUSERSPROFILE% is the environment variable
that defines the system working directory. The default directory
depends on the operating system:
– On Windows XP and Windows Server 2003:

C:\Documents and Settings\All Users\Application
Data\IBM\Installation Manager\logs

– On Windows Vista and later operating systems:
C:\ProgramData\IBM\Installation Manager\logs

3. If you are still unable to resolve the problem, export the Installation Manager
related information from Installation Manager > Help menu > Export Data
for Problem Analysis, and contact your IBM Support Center with the
exported information.

Dealing with problems during installation
Before you begin

WebSphere Message Broker Explorer on all operating systems:

Procedure
v Scenario: You have problems during the installation of the WebSphere Message

Broker Explorer.
v Solution: Complete the following steps:

1. See the Program Directory for WebSphere Message Broker for z/OS if you
experience problems when installing on z/OS.

2. Refer to the readme file readme.html for any late changes to the installation
instructions.

3. If installation is successful, the installation wizard returns a return code of
zero. If a non-zero return code is returned, check the log file for errors and
explanations. Problems associated with the installation of the WebSphere
Message Broker Explorer are recorded in the log file
MBExplorer_install.log, which is stored in the installation directory. The
default installation directories are as follows:

Linux opt/IBM/MBExplorer

Windows
C:\Program Files\IBM\MBExplorer

Installation Manager hangs
Before you begin

Installation Manager on Linux on x86 and Windows:

3522 WebSphere Message Broker Version 7.0.0.8

Procedure
v Scenario: You click Next in the Installation Manager when it first opens and the

Installation Manager hangs.
v Solution: Close the window and reopen it.

Installation Manager does not show the WebSphere Message
Broker Toolkit components
Before you begin

Installation Manager on Linux on x86 and Windows:

Procedure
v Scenario: You are installing the WebSphere Message Broker Toolkit but the

initial Install Packages page that is displayed by the Installation Manager does
not show the WebSphere Message Broker Toolkit components.

v Explanation: The location of the update repository has not been set correctly.
v Solution: Select File > Preferences and click Add Preferences. Enter the web

address or directory where the installation packages are stored or click Browse
to search for the correct location. Click OK. The packages are listed in the Install
Packages page.

Error restoring Installation Manager state
Before you begin

Installation Manager on Linux and Windows:

Procedure
v Scenario: You already have the IBM Installation Manager installed on your

workstation and the version is earlier than Installation Manager Version 1.3.4.1.
While installing a newer version of the IBM Installation Manager, as supplied
with WebSphere Message Broker Toolkit, you cancel the installation before
completion. When you try to restart the installed Installation Manager from your
workstation, you receive the following error:
Error restoring Installation Manager state
Installation data has incompatible version 0.0.4; expected [0.0.2,0.0.3].
Newer version of the Installation Manager was used on the system

v Solution: To work around this error, complete the following steps:
1. Open the Installation Manager installRegistry.xml file, which is in the

Installation Manager agent data location. The location of this file depends on
your platform. See the Installation Manager Information Center to find out
the location on your workstation: http://publib.boulder.ibm.com/infocenter/
install/v1r2/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/
r_app_data_loc.html.

2. When you have located the installRegistry.xml file, change the following
line in the file and the Installation Manager should start correctly:
<?installRegistry version=’0.0.4’?>

to match the following line:
<?installRegistry version=’0.0.3’?>

Chapter 13. Troubleshooting and support 3523

http://publib.boulder.ibm.com/infocenter/install/v1r2/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_app_data_loc.html
http://publib.boulder.ibm.com/infocenter/install/v1r2/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_app_data_loc.html
http://publib.boulder.ibm.com/infocenter/install/v1r2/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_app_data_loc.html

WebSphere Message Broker Launchpad return code indicates
that an installation has failed
Before you begin

WebSphere Message Broker Launchpad on Windows:

Procedure
v Scenario: You install products by using the WebSphere Message Broker

Launchpad. The Launchpad waits for a return code from each installation
wizard that it initiates, but the return code indicates that an installation has
failed. The Launchpad reports the error and refers you to the documentation for
the product that has failed.

v Explanation: Most installation wizards roll back from the point of the error and
return your system to the state it was in before the failed attempt, and you can
therefore try again after you have corrected the error. However, in this scenario,
the Launchpad has already installed one or more products successfully before
the error occurred, so does not roll back these installations. When you restart the
Launchpad, the status of installed products reflects successful installations from
the previous invocation.

v Solution: To resolve the failed installation, you must either correct the error and
restart the Launchpad, or click Refresh and clear the selection of the product
that failed.
If you are unable to install the failed product, complete the following steps:
– Refer to the readme file readme.html for late changes to the installation

instructions.
– If the Broker component fails to install, check the contents of the installation

log file mqsi7_install.log, which is stored in your installation directory.
If you accepted the default location during installation, this directory is as
follows. The default directory includes the version and release of the product
that you are installing in the format v.r (version.release):

Linux /opt/ibm/mqsi/v.r

UNIX /opt/IBM/mqsi/v.r

Windows 32-bit
C:\Program Files\IBM\MQSI\v.r

Windows 64-bit
C:\Program Files\IBM\MQSI\v.r for the 64-bit version of WebSphere
Message Broker

C:\Program Files (x86)\IBM\MQSI\v.r for the 32-bit version of
WebSphere Message Broker

These locations define the default value of install_dir on each platform.
– If the WebSphere Message Broker Toolkit fails to install, check the contents of

the installation log file YYYYMMDD_TIME.xml, where YYYYMMDD_TIME is the date
and time of installation.

– If the WebSphere Message Broker Explorer fails to install, check the contents
of the installation log file MBExplorer_install.log. The log file is stored in the
installation directory.

– If WebSphere MQ fails to install, check the contents of
MQV7_install.date_time.log stored in the temp directory of your home
directory.

If you are still unable to resolve the problem, contact your IBM Support Center.

3524 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Installing the Broker component” on page 267
Use the installation wizard to install the Broker component.
“Installing the WebSphere Message Broker Toolkit” on page 276
Use the installation wizard graphical interface to install the WebSphere Message
Broker Toolkit on Windows and Linux on x86.
“Installing by using the Windows Launchpad” on page 262
Use the Windows Launchpad to install the WebSphere Message Broker components
and the prerequisite products.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
“Resolving problems when uninstalling”
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.
Related information:

WebSphere Message Broker Requirements

Resolving problems when uninstalling
Work through the advice provided to help you to deal with problems that can
arise when the product is uninstalled.

About this task

The following list describes typical problems when uninstalling, with a
corresponding solution or workaround:
v Broker component:

– “Space problems uninstalling on Solaris”
– “Files left behind after uninstallation completes” on page 3526
– “The uninstallation process is interrupted” on page 3526

Space problems uninstalling on Solaris
Procedure
v Scenario: When you uninstall the Broker component on Solaris on x86-64, the

process fails and reports an error that there is no space on the device.
v Explanation: The process is trying to use temporary files in the /var directory,

but insufficient space is available.
v Solution: Delete unwanted files from the /var directory, then rerun the process.

Chapter 13. Troubleshooting and support 3525

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Files left behind after uninstallation completes
Procedure
v Scenario: When you uninstall the WebSphere Message Broker runtime

components, the wizard completes successfully, but some files and directories
are left behind in the installation directory.

v Explanation: Some processes might still be running during the uninstallation,
which might be locking the directories.

v Solution: When the uninstallation wizard for the WebSphere Message Broker
runtime components has completed, manually delete all remaining files and
directories in the installation directory.

The uninstallation process is interrupted
Procedure
v Scenario: When you uninstall the Broker component on any distributed system,

the process is interrupted, for example by a power failure.
v Solution: Delete the install_dir and all its contents. You can now reinstall if

required.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Resolving problems when installing” on page 3517
Work through the advice provided to help you to deal with problems that can
arise when the product is installed.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
Related reference:
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.

Using logs
There are a variety of logs that you can use to help with problem determination
and troubleshooting.

About this task

This section describes how to view the various logs available to you with
WebSphere Message Broker, and how to interpret the information in those logs. It
contains the following topic areas:

Local error log

v “Windows: Viewing the local error log” on page 3527
v “Linux and UNIX systems: Configuring the syslog daemon” on page

3529
v “z/OS: Viewing broker job logs” on page 3530

Eclipse log

3526 WebSphere Message Broker Version 7.0.0.8

v “Viewing the Eclipse error log” on page 3532

There is also a section of reference topics about the various types of log.
Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
Related reference:
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.

Windows: Viewing the local error log
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.

Viewing the system log
About this task

The system log contains events logged by the Windows system components. For
example, the failure of a driver or other system component to load during startup
is recorded in the system log. To view the system log:

Procedure
1. Open a command prompt.
2. At the prompt, type eventvwr. This opens the Windows Event Viewer.
3. On Windows XP and Windows Server 2003, click System Log in the left pane

of this window. This option might be selected by default.
On Windows Vista and Windows Server 2008, expand the Windows Logs tree
in the left pane of this window, and click System. This option might be selected
by default.
All the events that have been written to the local system are displayed.

Viewing the application log
About this task

The application log contains events that are logged by applications or programs.
For example, a database program might record a file error in the application log.
To view the application log:

Chapter 13. Troubleshooting and support 3527

Procedure
1. Open a command prompt.
2. At the prompt, type eventvwr. This opens the Windows Event Viewer.
3. On Windows XP and Windows Server 2003, click Application Log in the left

pane of this window. This option might be selected by default.
On Windows Vista and Windows Server 2008, expand the Windows Logs tree
in the left pane of this window, and click Application. This option might be
selected by default.
All the events that have been written by applications or programs to the local
system are displayed.

Interpreting log information
About this task

In both logs, each event is displayed on a separate row, in date and time order
(most recent first), with the following information:
v Type: The event type, which can be information, a warning, or an error.
v Date and time: The date and time when the event was written to the log.
v Source: What action has caused the event.
v Category: The category of the event. The default category is none.
v Event: The event number.
v User: The name of the user at the time of the event.
v Computer: The name of the local machine.

To view an individual log entry:

Procedure
1. Within the system or application log, find the log entry.
2. Right-click the entry.
v On Windows XP and Windows Server 2003, click Properties to open the

Information Properties window.
The window shows a description of the event and a Data section that details
bytes or words that were parsed when the record was written to the log.

v On Windows Vista and Windows Server 2008, click Events to open the Event
Properties window.
The window shows a description of the event. Select the Details tab to view
bytes or words that were parsed when the record was written to the log.

3. In the Information Properties or Event Properties window, use the up and
down arrows to move through the events of the log.

4. To close the Information Properties or Event Properties window, click OK to
return to the system or application log.

Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the

3528 WebSphere Message Broker Version 7.0.0.8

problems.
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
“Linux and UNIX systems: Configuring the syslog daemon”
On Linux and UNIX systems, all WebSphere Message Broker messages (other than
messages that are generated by the command-line utilities) are sent to the syslog
subsystem.
“z/OS: Viewing broker job logs” on page 3530
On z/OS, the broker writes messages to the appropriate z/OS system log and job
logs. These messages might include information, warning, error, and severe
messages to indicate various situations and events.
Related reference:
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.

Linux and UNIX systems: Configuring the syslog daemon
On Linux and UNIX systems, all WebSphere Message Broker messages (other than
messages that are generated by the command-line utilities) are sent to the syslog
subsystem.

About this task

UNIX You must configure this subsystem so that all diagnostic messages that
enable you to monitor the performance and behavior of your broker environment
are displayed.

The configuration steps you make to ensure that all relevant messages are
displayed depend on the version of Linux and UNIX that you are using. Refer to
your operating system documentation relating to syslog (or syslog-ng for some
versions of Linux) for information about how to configure the syslog subsystem.

WebSphere Message Broker processes call the syslog commands on the operating
system but only those messages that correspond to the filter defined for the output
destination are displayed. WebSphere Message Broker messages have:
v A facility of user.
v A level of err, warn, or info, depending on the severity of the situation causing

the message to be issued.

To record all WebSphere Message Broker messages, create a filter on the user
facility for messages of level info or greater. It is good practice to write these
messages to a separate file; there might be a high number of them and they are
more likely to be of interest to broker administrators rather than to system
administrators.

The following line in a syslog.conf file causes all WebSphere Message Broker
events to be written to a file /var/log/user.log
user.info /var/log/user.log

Many UNIX systems provide a command-line utility, known as logger, to help you
test and refine your configuration of the syslog subsystem.

Chapter 13. Troubleshooting and support 3529

On UNIX, syslog entries are restricted in length and messages that are sent to the
syslog are truncated by the new line character. To record a large amount of data in
a log on UNIX, set the Destination property on the Trace node to File or User
Trace instead of Local Error Log.

What to do next

See the documentation for your operating system.
Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
“z/OS: Viewing broker job logs”
On z/OS, the broker writes messages to the appropriate z/OS system log and job
logs. These messages might include information, warning, error, and severe
messages to indicate various situations and events.
Related reference:
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.

z/OS: Viewing broker job logs
On z/OS, the broker writes messages to the appropriate z/OS system log and job
logs. These messages might include information, warning, error, and severe
messages to indicate various situations and events.

Understanding the broker address spaces
About this task

The broker runs in multiple address spaces. A single control address space is
always running when the broker is active, and is responsible for communicating
with the WebSphere Message Broker Toolkit.

Each execution group within the broker is mapped to its own address space, and
as these execution groups start and stop, the corresponding address spaces are
started and stopped. The control address space is assigned a JOBNAME and
STEPNAME, which is the same as the broker name. The execution groups have a
JOBNAME that is also the same as the broker name, and a STEPNAME that
matches the last seven characters of the execution group name.

3530 WebSphere Message Broker Version 7.0.0.8

Viewing the z/OS system console log
About this task

The broker writes all its messages to the z/OS system console log. You can see
messages from all address spaces running on the z/OS system in this log. It is easy
to identify jobs that are associated with the broker in the console log, because of
the naming of broker address spaces. By using the console log, you can see the
order of event reporting for different products. This information can be helpful for
cross-product problem determination.

Viewing the broker job logs
About this task

The broker control address space, and each of the execution group address spaces,
has its own job log. When you select the job log for the appropriate address space,
you can see all messages relating to that address space. Use this option in a busy
system where the system console log might have many messages from different
products obscuring the information in which you are interested.

Interpreting log information
About this task

In both logs, each message is displayed on its own, in date and time order; it
might span multiple lines, if necessary. For each message, the following
information is available:
v Date and time: The exact date and time when the event was written to the log.
v JOBID: The started task job identifier of the address space.
v Message Number: The message number that identifies whether the event is

information, a warning, or an error, with diagnostic text.
v JOBNAME: The JOBNAME of the address space issuing the message. This name

is always the same as the broker name.
v STEPNAME: The STEPNAME of the address space that is issuing the message.

For the control address space, this name is the same as the broker name; for
execution groups, it is the same as the last eight characters of the execution
group that is issuing the message.

v PROCSTEP: The procedure STEPNAME, which equals BROKER for the main
broker control address space. For execution group address spaces, this is either
EGNOENV, if there is not an execution group specific profile, or EGENV if
there is an execution group specific profile.

Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
“Linux and UNIX systems: Configuring the syslog daemon” on page 3529
On Linux and UNIX systems, all WebSphere Message Broker messages (other than
messages that are generated by the command-line utilities) are sent to the syslog
subsystem.

Chapter 13. Troubleshooting and support 3531

“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
Related reference:
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.

Viewing the Eclipse error log
The Eclipse error log captures internal errors that are caused by the operating
system or your code.

About this task

To view the Eclipse error log:

Procedure
1. Switch to the Plug-in Development perspective.
2. From the main menu, select Window > Show view > Other. Then select

General > Error Log.
The error log is displayed, showing the following information for each error:
v The status of the error (for example, error or warning)
v A brief description of the error
v From which plug-in the error derived
v The date and time that the error was produced

3. If an error has a plus sign (+) at the start of it, it is a complex problem, and
there are a number of errors contributing to it. Click the plus sign to view the
individual errors.

4. To see the details of a particular problem, double-click the entry in the
Problems view. A separate window is displayed, showing more details of the
error.

Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
Related reference:
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.

3532 WebSphere Message Broker Version 7.0.0.8

Using trace
You can use different types of trace to help you with problem determination and
troubleshooting.

About this task

How to use the optional trace.

For user trace:

v “Starting user trace” on page 3197
v “Checking user trace options” on page 3199
v “Changing user trace options” on page 3201
v “Retrieving user trace” on page 3204
v “Stopping user trace” on page 3202

For service trace:

v “Starting service trace” on page 3534
v “Checking service trace options” on page 3537
v “Changing service trace options” on page 3538
v “Retrieving service trace” on page 3542
v “Stopping service trace” on page 3540

For both types of trace:

v “Formatting trace” on page 3543
v “Interpreting trace” on page 3546
v “Clearing old information from trace files” on page 3548
v “Changing trace settings from the WebSphere Message Broker Explorer”

on page 3549

Other types of trace:

v “ODBC trace” on page 3551
v “Administration API (CMP) trace” on page 3554
v “Switching Trace nodes on and off” on page 3555

You can also use the “IBM Support Assistant Data Collector” on page 3565 to help
with data collection.
Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.

Chapter 13. Troubleshooting and support 3533

“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
“IBM Support Assistant Data Collector” on page 3565
You can collect diagnostic documents by using IBM Support Assistant Data
Collector, and submit a problem report to IBM. IBM Support Assistant Data
Collector is included with your WebSphere Message Broker installation.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.
“Database facilities” on page 6891
The database products used by WebSphere Message Broker also record information
that might be useful if you have any problems with their access.

Starting service trace
Service trace is used to get detailed information about your environment for use by
your IBM Support Center.

About this task

Activate service traces only when you receive an error message that instructs you
to start service trace, or when directed to do so by your IBM Support Center

Use the mqsichangetrace command to start WebSphere Message Broker service
trace facilities.

3534 WebSphere Message Broker Version 7.0.0.8

You can select only one broker on each invocation of the command, but you can
activate concurrent traces for more than one broker by invoking the command
more than once.

To limit the scope of a trace, you must specify the individual broker that you want
to trace.

If the trace cannot be associated with a specific component, the component name
part of the file name is set to utility; for example, when tracing a command such
as mqsilist, when no arguments are used.

To trace the mqsichangeresourcestats, mqsicreateexecutiongroup,
mqsideleteexecutiongroup, mqsideploy, mqsilist, mqsimode, mqsireloadsecurity,
mqsireportresourcestats, mqsistartmsgflow, and mqsistopmsgflow commands, use
the -v parameter. This parameter takes an argument that is the name of the file to
which trace records are written. For example, the following command outputs
trace of the mqsistartmsgflow command to the specified file:
mqsistartmsgflow MB7BROKER -e eg1 -m simpleflow -v .\trace.txt

If you want to trace the command executable files themselves, set the environment
variables MQSI_UTILITY_TRACE and MQSI_UTILITY_TRACESIZE before you run
the command.

MQSI_UTILITY_TRACE
Set this variable to normal for a basic level of trace, or debug for a fuller
trace.

MQSI_UTILITY_TRACESIZE
The size, in kilobytes, of the binary trace file. See the -c parameter of the
mqsichangetrace command.

Ensure that you reset these variables when the command that you are tracing has
completed. If you do not do so, all subsequent commands are also traced, and
their performance is therefore degraded.

To enable service trace of your CMP applications, take one of the following steps:
v Call the method BrokerProxy.enableAdministrationAPITracing(String filename).
v Before running your CMP application, set the environment variable

MQSI_CMP_TRACE to the name of the file to which trace is sent.

You can also use the WebSphere Message Broker Explorer to activate service trace
on execution groups and message flows.

To enable service trace for execution groups or messages flows in the WebSphere
Message Broker Explorer:
1. In the Navigator view, expand the Brokers folder and right-click the execution

group or message flow with which you want to work.
2. Click Service Trace > Normal or Service Trace > Debug to select the level of

service trace that you require.

Example: starting service trace for the broker
About this task

To start debug level service tracing for the broker A on distributed systems, enter
the following command:
mqsichangetrace BrokerA -t -b -l debug

Chapter 13. Troubleshooting and support 3535

where:

-t specifies service trace
-b specifies that trace for the agent subcomponent of the specified component
is to be started
-l specifies the level of trace (in this case, debug)

z/OS

On z/OS, enter the following command:

F MQPIBRK,ct t=yes, b=yes, l=debug

Example: starting service trace for an execution group
About this task

To start debug level service tracing for an execution group EG1 on broker A on
distributed systems, enter the following command:
mqsichangetrace BrokerA -t -e EG1 -l debug -m fast -c 200000 -r

where:

-t specifies service trace
-l specifies the level of trace (in this case, debug)
-m specifies the way trace information is to be buffered (in this case, fast)
-c specifies the size of the trace file in KB (in this case, 200000)
-r specifies that the trace file is reset

z/OS

On z/OS, enter the following command:

F MQPIBRK,ct t=yes, e=EG1, l=debug, m=fast, c=20000, r=yes

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Checking service trace options” on page 3537
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers.

3536 WebSphere Message Broker Version 7.0.0.8

“Stopping service trace” on page 3540
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
stop an active service trace.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
Related reference:
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.

Checking service trace options
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers.

About this task

Specify the component for which the check is required. The command responds
with the current trace status for the component that you have specified.

Example: checking service trace options for an execution group
using the WebSphere Message Broker Explorer
About this task

To check what options are currently set for the execution group by using the
WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view, expand the Brokers folder and right-click the execution

group with which you want to work.
2. Click Service to view user trace settings for your execution group.

Example: checking service trace options for a broker
About this task

To check what options are currently set for the broker, on distributed systems,
enter the following command:
mqsireporttrace brokerA -t

where -t specifies service trace.

z/OS

On z/OS, enter the following command:

F MQP1BRK,reporttrace t=yes

Results

If you have started tracing by following the example in “Starting service trace” on
page 3534, the response to the mqsireporttrace command is:

Chapter 13. Troubleshooting and support 3537

BIP8098I: Trace level: debug, mode: safe, size: 1024 KB
BIP8071I: Successful command completion

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Checking user trace options” on page 3199
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers, execution groups
and message flows.
“Starting service trace” on page 3534
Service trace is used to get detailed information about your environment for use by
your IBM Support Center.
“Changing service trace options”
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
change the service trace options that you have set.
Related reference:
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

Changing service trace options
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
change the service trace options that you have set.

Example: changing service trace from debug to normal on an
execution group using the WebSphere Message Broker Explorer
About this task

To change from a debug level of trace to a normal level on the execution group
using the WebSphere Message Broker Explorer:

3538 WebSphere Message Broker Version 7.0.0.8

Procedure
1. In the Navigator view, expand the Brokers folder and right-click the execution

group with which you want to work.
2. Click Service > Normal.

Example: changing service trace from debug to normal
About this task

To change from a debug level of trace to a normal level on the broker, on
distributed systems, enter the following command:
mqsichangetrace BrokerA -t -b -l normal

where:

-t specifies service trace
-b specifies that tracing for the agent subcomponent of the specified component
is to be changed
-l specifies the level of trace (in this case, changing it to normal)

z/OS

On z/OS, enter the following command:

F MQP1BRK,ct t=yes, b=yes, l=normal

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Changing user trace options” on page 3201
Use the mqsichangetrace command to change the trace options that you have set.
You can also use the WebSphere Message Broker Explorer to change the trace
options for execution groups and assigned message flows.
“Starting service trace” on page 3534
Service trace is used to get detailed information about your environment for use by
your IBM Support Center.
“Checking service trace options” on page 3537
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers.
Related reference:

Chapter 13. Troubleshooting and support 3539

“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.

Stopping service trace
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
stop an active service trace.

Procedure
v Use the mqsichangetrace command with a trace level of none to stop an active

trace. This action stops the trace activity for the component that you specify on
the command. It does not affect active traces on other components. For example,
if you stop tracing on the execution group test, an active trace on another
execution group continues.

v Click Service Trace > None on an execution group or message flow, in the
WebSphere Message Broker Explorer, to stop an active service trace on the
selected object.

Results

If you redeploy a component from the WebSphere Message Broker Toolkit, trace
for that component is returned to its default setting of none.

Example: stopping service trace on an execution group, using
the WebSphere Message Broker Explorer
About this task

To stop the service trace using the WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view, expand the Brokers folder and right-click the execution

group with which you want to work.
2. Click Service TraceNone.

Example: stopping service trace on an execution group, using
the mqsichangetrace command
About this task

To stop debug level service tracing for an execution groupEG1 on broker A on
distributed systems, enter the command

mqsichangetrace BrokerA -t -e EG1 -l none

where:

-t specifies service trace
-l specifies the level of trace (in this case, none)

z/OS

On z/OS, enter the command

F MQPIBRK,ct t=yes, b=yes, l=none

3540 WebSphere Message Broker Version 7.0.0.8

Example: stopping service trace on the broker
About this task

To stop the trace started by the command shown in “Starting service trace” on
page 3534, on distributed systems, enter the following command:
mqsichangetrace BrokerA -t -b -l none

where:

-t specifies service trace
-b specifies that trace for the agent subcomponent of the specified component
is to be stopped
-l specifies the level of trace (in this case, none)

z/OS

On z/OS, enter the following command:

F MQP1BRK,ct t=yes, b=yes, l=none

Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Stopping user trace” on page 3202
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Stop user trace facilities by using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Starting service trace” on page 3534
Service trace is used to get detailed information about your environment for use by
your IBM Support Center.
“Clearing old information from trace files” on page 3548
If the component that you are tracing has stopped, you can delete its trace files
from the log subdirectory of the WebSphere Message Broker home directory.
Related reference:
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.

Chapter 13. Troubleshooting and support 3541

“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.

Retrieving service trace
Use the mqsireadlog command to access the trace information recorded by the
service trace facilities.

Procedure

This command retrieves the trace details according to parameters that you specify
on the command, and writes the requested records to a file, or to the
command-line window, in XML format.

Example: retrieving service trace information in XML format
Procedure

To retrieve information for the service trace activated with the mqsichangetrace
command, and write it to an output file, on distributed systems, enter the
following command:
mqsireadlog brokerName -t -b agent -f -o /path/to/strace.xml
where:

-t specifies service trace.
-b agent specifies that trace for the agent subcomponent of the specified
component is to be retrieved.
-f specifies that the log file is to be read directly from the file system (this flag
is mandatory for service trace).
-o specifies the output file (in this case, /path/to/strace.xml.) If you do not
specify a path to the file, the file is created in the current directory. Ensure that
there is enough space for the output file.

Results

This command sends a log request to the broker to retrieve the service trace log,
and stores the responses in the specified file. You can view this file using a plain
text editor.

Example: retrieving service trace information in XML format for
an execution group
Procedure

To retrieve information for the service trace activated with the mqsichangetrace
command and associated with execution group EG1 on broker A, and write it to
an output file, on distributed systems, enter the following command:
mqsireadlog BrokerA -t -e EG1 -f -o /path/to/strace.xml
where:

-t specifies service trace.
-f specifies that the log file is to be read directly from the file system (this flag
is mandatory for service trace).
-o specifies the output file (in this case, /path/to/strace.xml.) If you do not
specify a path to the file, the file is created in the current directory. Ensure that
there is enough space for the output file.

3542 WebSphere Message Broker Version 7.0.0.8

Results

This command sends a log request to the broker to retrieve the service trace log,
and stores the responses in the specified file. You can view this file using a plain
text editor.
Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Retrieving user trace” on page 3204
Use the mqsireadlog command to access the trace information that is recorded by
the user trace facilities.
“Formatting trace”
Use the mqsiformatlog command to format trace information.
“Interpreting trace” on page 3546
Use the information in a formatted trace file to identify unexpected behavior.
Related reference:
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.

Formatting trace
Use the mqsiformatlog command to format trace information.

About this task

The trace information that is generated by the mqsireadlog command is not easy to
read unless you use an XML viewer (such as an Internet browser) or an XML
editor that understands the document type descriptor (DTD) in the file.

Procedure

WebSphere Message Broker provides the command mqsiformatlog to format the
trace information to a flat file, so that you can view it using a text editor.

Chapter 13. Troubleshooting and support 3543

Results

The mqsiformatlog command takes a file generated by the mqsireadlog command
as input, and flattens the XML log into structured records. It also retrieves the
inserts for the XML message in your current locale. You can direct the formatted
output to a file, or view it in the command line window.

Each trace entry contains a time stamp and a WebSphere Message Broker message
that contains a number (for example, BIP2622) and a text string containing variable
inserts.

Example: formatting service trace information for an execution
group
About this task

To format the service trace file for an execution group, enter the command

mqsiformatlog -i </path/to/output.xml> -o </path/to/output.txt>

where:
-i specifies the path to the input file that contains the unformatted service trace
information for the execution group
-o specifies the path to the output file that is to contain the formatted service
trace information

Example: formatting user trace information on Windows
About this task

Windows On Windows, to format the trace file that is created in “Starting user
trace” on page 3197, enter the command

mqsiformatlog -i trace.xml -o formattrace.log

where:
-i specifies the input file (in this case, trace.xml)
-o specifies the output file (in this case, formattrace.log)

This command reads the trace information in the file trace.xml, formats it, and
writes it to the file formattrace.log. The following example shows a portion of the
output of the mqsiformatlog command for a normal level trace file.

Timestamps are formatted in local time, 330 minutes past GMT.

2003-06-19 11:30:29.795999 2852 UserTrace BIP2632I: Message received and
propagated to ’out’ terminal of MQ Input node ’Video_Test.VIDEO_XML_IN’.
2003-06-19 11:30:29.795999 2852 UserTrace BIP6060I: Parser type ’Properties’
created on behalf of node ’Video_Test.VIDEO_XML_IN’ to handle portion of incoming
message of length
0 bytes beginning at offset ’0’.
2003-06-19 11:30:29.795999 2852 UserTrace BIP6061I: Parser type ’MQMD’
created on behalf of node ’Video_Test.VIDEO_XML_IN’ to handle portion of incoming
message of length ’364’ bytes beginning at offset ’0’. Parser type selected based
on value ’MQHMD’ from previous parser.
2003-06-19 11:30:29.795999 2852 UserTrace BIP6061I: Parser type ’MRM’
created on behalf of node ’Video_Test.VIDEO_XML_IN’ to handle portion of incoming
message of length ’650’ bytes beginning at offset ’364’. Parser type selected based
on value ’MRM’ from previous parser.
2003-06-19 11:30:29.795999 2852 UserTrace BIP2537I: Node ’Video_Test.Extract
Fields’:

3544 WebSphere Message Broker Version 7.0.0.8

Executing statement ’BEGIN ... END;’ at (.Video_Test_Compute.Main, 2.2).
2003-06-19 11:30:29.795999 2852 UserTrace BIP2537I: Node ’Video_Test.Extract
Fields’:
Executing statement ’SET OutputRoot = InputRoot;’ at (.Video_Test_Compute.Main, 7.3).

2003-06-19 11:30:29.795999 2852 UserTrace BIP2538I: Node ’Video_Test.Extract
Fields’:
Evaluating expression ’InputRoot’ at (.Video_Test_Compute.Main, 7.20).

2003-06-19 11:30:29.795999 2852 UserTrace BIP2568I: Node ’Video_Test.Extract
Fields’:
Performing tree copy of ’InputRoot’ to ’OutputRoot’.

...

2003-06-19 11:30:29.827999 2852 UserTrace BIP4124I: Message propagated to
’out’ terminal of Compute node ’Video_Test.Extract Fields’.

2003-06-19 11:30:29.827999 2852 UserTrace BIP2638I: The MQ Output node
’Video_Test.VIDEO_OUT’ attempted to write a message to queue ’VIDEO_OUT’ connected
to queue manager ’’. The MQCC was ’0’ and the MQRC was ’0’.

2003-06-19 11:30:29.827999 2852 UserTrace BIP2622I: Message successfully
output by output node ’Video_Test.VIDEO_OUT’ to queue ’VIDEO_OUT’ on queue manager ’’.

Threads encountered in this trace:
2852

Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Retrieving user trace” on page 3204
Use the mqsireadlog command to access the trace information that is recorded by
the user trace facilities.
“Retrieving service trace” on page 3542
Use the mqsireadlog command to access the trace information recorded by the
service trace facilities.
“Interpreting trace” on page 3546
Use the information in a formatted trace file to identify unexpected behavior.
“Clearing old information from trace files” on page 3548
If the component that you are tracing has stopped, you can delete its trace files
from the log subdirectory of the WebSphere Message Broker home directory.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

Chapter 13. Troubleshooting and support 3545

“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.

Interpreting trace
Use the information in a formatted trace file to identify unexpected behavior.

About this task

A formatted log file, like the one in “Formatting trace” on page 3543, contains a
sequence of WebSphere Message Broker messages. These messages record the
activity in a specific part of the system (the part that you identify when you start
the trace). You can use this sequence to understand what is happening, and to
check that the behavior that is recorded is what you are expecting.

For example, message flow trace records the path that a message takes through the
message flow. You can see why decisions result in this path (where a choice is
available).

Procedure
1. Verify that the trace file is complete.

If the size of the trace log is too small to contain all events, trace output
continues at the start of the trace log, overwriting existing entries. This is
known as wrapping.
An indication that a trace has wrapped is the relationship between the first and
last timestamp in it, and the time that trace was enabled. For example, assume
that you start tracing at 10:15, and collect the trace at 10:30. If the trace
timestamps run from 10:20 to 10:30, it is probable that trace wrapped. Of course
it could mean that nothing happened between 10:15 and 10:20.
Examine the trace and decide whether the beginning of it makes sense, and
whether it looks complete. For example, if you want to trace the passage of
three messages through a flow, and trace starts half way through the second
message, it could have wrapped, or trace might not have been enabled early
enough.

2. If trace has wrapped, increase the size of the trace file, and rerun trace. For
information on trace settings, see “mqsichangetrace command” on page 3822.

3. If you see unexpected behavior in a message flow or execution group, use this
trace information to check the actions that have been taken and identify the
source of an error or other discrepancy.

Results

The messages contain identifiers for the resources that are being traced, for
example the execution groups and message flows. The identifier that is given is
typically the label (the name) that you gave to the resource when you defined it.

Here is an extract from a user trace file. In the example, each column has been
labeled:

3546 WebSphere Message Broker Version 7.0.0.8

Timestamp Thread ID Trace type Message
2005-07-12 16:17:18.242605 5344 UserTrace BIP2537I: Node ’Reply.MapToRequestor’:

Executing statement ’’SET I = I + 1;’’
at (’.MapToRequestor.CopyMessageHeaders’,
’6.4’).

2005-07-12 16:17:18.242605 5344 UserTrace BIP2539I: Node ’Reply.MapToRequestor’:
Evaluating expression ’’I’’ at
(’.MapToRequestor.CopyMessageHeaders’,
’6.12’). This resolved to ’’I’’. The
result was ’’1’’.

2005-07-12 16:17:18.242605 5344 UserTrace BIP2539I: Node ’Reply.MapToRequestor’:
Evaluating expression ’’I + 1’’ at
(’.MapToRequestor.CopyMessageHeaders’,
’6.14’). This resolved to ’’1 + 1’’.
The result was ’’2’’.

2005-07-12 16:17:18.242605 5344 UserTrace BIP2566I: Node ’Reply.MapToRequestor’:
Assigning value ’’2’’ to field / variable
’’I’’.

References such as ’6.12’ apply to the row and column number within a function
that specify the location of the command that is being executed; in this case, row 6,
column 12.
Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Retrieving user trace” on page 3204
Use the mqsireadlog command to access the trace information that is recorded by
the user trace facilities.
“Retrieving service trace” on page 3542
Use the mqsireadlog command to access the trace information recorded by the
service trace facilities.
“Formatting trace” on page 3543
Use the mqsiformatlog command to format trace information.
“Resolving problems with user-defined extensions” on page 3511
Advice for dealing with some common problems that can arise when you work
with user-defined extensions
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

Chapter 13. Troubleshooting and support 3547

“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.

Clearing old information from trace files
If the component that you are tracing has stopped, you can delete its trace files
from the log subdirectory of the WebSphere Message Broker home directory.

About this task

If you are tracing an execution group, you can use the -r parameter of the
mqsichangetrace command to reset (clear) the trace log (the -r parameter can be
specified only if you specify the -e parameter). You might clear the log when you
start a new trace, to ensure that all the records on the log are unique to the new
trace.

Example: clearing the user trace log for the default execution
group
About this task

To clear the user trace log for the default execution group, on distributed systems,
enter the command: mqsichangetrace WBRK_BROKER -u -e default -r where:

WBRK_BROKER specifies the name of the broker
-u specifies user trace
-e specifies the execution group (in this case the default execution group)
-r clears the trace log

z/OS

On z/OS, enter the command F MQP1BRK,ct u=yes, e=’default’, r=yes

Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Starting service trace” on page 3534
Service trace is used to get detailed information about your environment for use by
your IBM Support Center.

3548 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.

Changing trace settings from the WebSphere Message Broker
Explorer

Collect trace information, in addition to user and service trace, by selecting options
in the WebSphere Message Broker Explorer.

About this task
v Trace for the broker and WebSphere Message Broker Explorer components.
v Trace for the Administration API (also known as the CMP API)

The following sections tell you how to change the settings for these types of trace.

Changing the WebSphere MQ Java Client trace settings
About this task

You control tracing of the WebSphere MQ Java Client from the WebSphere Message
Broker Explorer:

Procedure
1. Click Window > Preferences.
2. In the left menu, expand Broker Explorer.
3. Click Service Trace.
4. In the WebSphere MQ Java Client section, select the check box to enable

tracing on the WebSphere MQ Java Client. The default file to which trace is
written is C:/Documents and Settings/userid/Application Data/IBM/MQ
Explorer/.metadata/MQClientTraceEnabled.log where userid is your user ID.

5. Click OK to apply your changes and to close the Preferences window.

Changing the CMP trace settings
About this task

You control tracing of the CMP API from the WebSphere Message Broker Explorer:

Chapter 13. Troubleshooting and support 3549

Procedure
1. Click Window > Preferences.
2. In the left menu, expand Broker Explorer.
3. Click Service Trace.
4. In the CMP Administration API section, select the check box to enable tracing

on the CMP. The default file to which trace is written is C:/Documents and
Settings/userid/Application Data/IBM/MQ Explorer/.metadata/
AdminAPITrace.log where userid is your user ID.

5. Click OK to apply your changes and to close the Preferences window.

Changing the Broker Explorer trace settings
About this task

You can control tracing of the WebSphere Message Broker Explorer using the
Broker Explorer Preferences page:

Procedure
1. Click Window > Preferences.
2. In the left menu, expand Broker Explorer.
3. Click Service Trace.
4. Select the check box for the component that you want to trace, and select a

location for the log file for the trace. The default location for the trace files in is
the WebSphere MQ Explorer workspace directory.

5. Set a value for the log file size in the Maximum Broker Explorer Trace File Size
field. When the size of the log file you set is exceeded, the original log file is
copied to filename.ext.bak. A new log file with the selected name is started.

6. Click OK to apply your changes and to close the Preferences window.
Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Administration API (CMP) trace” on page 3554
Enable or disable service trace for the Administration API for WebSphere Message
Broker (also known as the CMP API).
Related reference:

3550 WebSphere Message Broker Version 7.0.0.8

“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“WebSphere Message Broker Toolkit” on page 6783
The WebSphere Message Broker Toolkit provides your application development
environment on Windows and Linux on x86.

ODBC trace
You can use various methods to trace for ODBC activity, depending on the
operating system that you are using.

About this task

Windows For Windows, use the Tracing tab of the ODBC function:
1. Click Start > Settings > Control Panel > Administrative Tools.
2. Double-click Data Sources.
3. Click the Tracing tab.
4. Click Start Tracing Now.
5. Click OK.

To stop ODBC tracing, on the Tracing tab, click Stop Tracing Now, then OK.

Linux

UNIX

For Linux and UNIX operating systems using DataDirect

drivers:
v To initiate trace for ODBC activity, edit the [ODBC] stanza in the file pointed to

by your ODBCINI environment variable as follows:
1. Change Trace=0 to Trace=1.
2. Specify a path and file name for TraceFile
3. Ensure that the TraceFile entry points to a file system that has enough space

to receive the trace output

Trace information is written to the location that is specified in the odbc.ini file.

Linux

UNIX

For Linux and UNIX operating systems using WebSphere

Message Broker ODBC Database Extender (IE02) drivers:
v To initiate trace for ODBC activity, edit the [ODBC] stanza in the file pointed to

by your ODBCSYSINI environment variable as follows:
1. Change Trace=no to Trace=yes.
2. Specify a path and file name for TraceFile
3. Ensure that the TraceFile entry points to a file system that has enough space

to receive the trace output

z/OS

For z/OS, to initiate application trace for ODBC activity:

Chapter 13. Troubleshooting and support 3551

1. Edit the BIPDSNAO file in the component dataset and under the stanza entry
[COMMON], change APPLTRACE=0 to APPLTRACE=1

2. Remove the comment from the COMPDIR variable declaration and the APPLTRC DD
from the steps EGNOENV and EGENV, in the WebSphere Message Broker started
task JCL.

3. Stop and restart the broker after you have made all the changes to the BIPDSNAO
file and the started task JCL.
By default, the trace output file is written to <component_HFS>/output/, into a
file called db2appltrace.. Each address space has a unique number, and the
eight character execution group label appended to the end of db2appltrace.
This unique number, appended to the ODBC file, is the SE number in the
execution group address space JOBLOG.
If the eight character execution group label is not unique across multiple
execution groups, look for the value of SE in the JOBLOG for which you want
to view the ODBC trace, and find the file that specifies this value.

Results

Example

DB2 on WebSphere Message Broker for z/OS

The following sample ODBC trace files show the layout of a trace file, together
with some examples of successful and error returns. The general layout of each
group in an ODBC file is that:
v Each line is preceded by a time stamp.
v The first line displays what the call does.
v The second line displays the return.
v The third line displays the result.

The first trace file shows a trace where a call fails because an object does not have
the correct authority to perform an action:
[2008-09-24 15:49:20.544123] SQLAllocStmt(hDbc=2, phStmt=&1c7f9554)
[2008-09-24 15:49:20.544156] SQLAllocStmt(phStmt=1)
[2008-09-24 15:49:20.544163] ---> SQL_SUCCESS

[2008-09-24 15:49:20.544179] SQLFreeStmt(hStmt=1, fOption=SQL_CLOSE)
[2008-09-24 15:49:20.544189] SQLFreeStmt()
[2008-09-24 15:49:20.544194] ---> SQL_SUCCESS

[2008-09-24 15:49:20.544205] SQLPrepare(hStmt=1)
[2008-09-24 15:49:20.544212] (pszSqlStr="SELECT TESTTABLE.ID FROM
WMQI77.TESTTABLE TESTTABLE", cbSqlStr=-3)
[2008-09-24 15:49:20.587083] SQLPrepare()
[2008-09-24 15:49:20.587101] ---> SQL_ERROR

[2008-09-24 15:49:20.587157] SQLError(hEnv=0, hDbc=0, hStmt=1,
pszSqlState=&3902af28, pfNativeError=&3902af24, pszErrorMsg=&1b88b0b0,
cbErrorMsgMax=1024, pcbErrorMsg=&3902aefc)
[2008-09-24 15:49:20.587190] SQLError(pszSqlState="42501", pfNativeError=-551,
pszErrorMsg="{DB2 FOR OS/390}{ODBC DRIVER}{DSN09015}
DSNT408I SQLCODE = -551, ERROR: WMQI83 DOES NOT HAVE THE PRIVILEGE TO PERFORM

OPERATION SELECT ON OBJECT WMQI77.TESTTABLE
DSNT418I SQLSTATE = 42501 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXOSC SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -100 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X’FFFFFF9C’ X’00000000’ X’00000000’ X’FFFFFFFF’

X’00000000’ X’00000000’ SQL DIAGNOSTIC INFORMATION

3552 WebSphere Message Broker Version 7.0.0.8

ERRLOC=1:13:2", pcbErrorMsg=623)
[2008-09-24 15:49:20.587666] ---> SQL_SUCCESS

[2008-09-24 15:49:20.587725] SQLError(hEnv=0, hDbc=0, hStmt=1,
pszSqlState=&3902af28, pfNativeError=&3902af24, pszErrorMsg=&1b88b0b0,
cbErrorMsgMax=1024, pcbErrorMsg=&3902aefc)
[2008-09-24 15:49:20.587752] SQLError()
[2008-09-24 15:49:20.587757] ---> SQL_NO_DATA_FOUND

[2008-09-24 15:49:20.588049] SQLFreeStmt(hStmt=1, fOption=SQL_DROP)
[2008-09-24 15:49:20.588075] SQLFreeStmt()
[2008-09-24 15:49:20.588080] ---> SQL_SUCCESS

[2008-09-24 15:49:20.593800] SQLTransact(hEnv=1, hDbc=0, fType=SQL_COMMIT)
[2008-09-24 15:49:20.593887] SQLTransact()
[2008-09-24 15:49:20.593893] ---> SQL_SUCCESS

The second trace file shows the same trace file with the operation working:
[2008-09-24 16:00:25.287052] SQLAllocStmt(hDbc=1, phStmt=&1c7f8e54)
[2008-09-24 16:00:25.287068] SQLAllocStmt(phStmt=1)
[2008-09-24 16:00:25.287075] ---> SQL_SUCCESS

[2008-09-24 16:00:25.287088] SQLFreeStmt(hStmt=1, fOption=SQL_CLOSE)
[2008-09-24 16:00:25.287098] SQLFreeStmt()
[2008-09-24 16:00:25.287104] ---> SQL_SUCCESS

[2008-09-24 16:00:25.287114] SQLPrepare(hStmt=1)
[2008-09-24 16:00:25.287121] (pszSqlStr="SELECT TESTTABLE.ID FROM
WMQI77.TESTTABLE TESTTABLE", cbSqlStr=-3)
[2008-09-24 16:00:25.302484] SQLPrepare()
[2008-09-24 16:00:25.302510] ---> SQL_SUCCESS

[2008-09-24 16:00:25.302539] SQLFreeStmt(hStmt=1,
fOption=SQL_CLOSE)
[2008-09-24 16:00:25.302555] SQLFreeStmt()
[2008-09-24 16:00:25.302560] ---> SQL_SUCCESS

[2008-09-24 16:00:25.302573] SQLExecute(hStmt=1)
[2008-09-24 16:00:25.302622] SQLExecute()
[2008-09-24 16:00:25.302628] ---> SQL_SUCCESS

[2008-09-24 16:00:25.302660] SQLNumResultCols(hStmt=1,
pcCol=&3902c7fa)
[2008-09-24 16:00:25.302672] SQLNumResultCols(pcCol=1)
[2008-09-24 16:00:25.302679] ---> SQL_SUCCESS

[2008-09-24 16:00:25.302697] SQLDescribeCol(hStmt=1, iCol=1,
pszColName=&3902cb10, cbColNameMax=200, pcbColName=&3902c804,
pfSQLType=&3902c802, pcbColDef=&3902c858, pibScale=&3902c800,
pfNullable=&3902c7fe)
[2008-09-24 16:00:25.302733] SQLDescribeCol(pszColName="ID",
pcbColName=2, pfSQLType=SQL_CHAR, pcbColDef=10, pibScale=0,
pfNullable=SQL_NULLABLE)
[2008-09-24 16:00:25.302819] ---> SQL_SUCCESS

[2008-09-24 16:00:25.302826] SQLColAttribute(hStmt=1, iCol=1,
fDescType=SQL_DESC_OCTET_LENGTH, rgbDesc=NULL, cbDescMax=0,
pcbDesc=NULL, pfDesc=&3902c864)
[2008-09-24 16:00:25.302850] SQLColAttribute(pfDesc=10)
[2008-09-24 16:00:25.302857] ---> SQL_SUCCESS

[2008-09-24 16:00:25.302866] SQLBindCol(hStmt=1, iCol=1,
fCType=SQL_C_CHAR, rgbValue=&1b48829c, cbValueMax=12,
pcbValue=&1b488298)
[2008-09-24 16:00:25.302888] SQLBindCol()
[2008-09-24 16:00:25.302894] ---> SQL_SUCCESS

Chapter 13. Troubleshooting and support 3553

[2008-09-24 16:00:25.302901] SQLSetStmtAttr(hStmt=1,
fAttribute=SQL_ATTR_ROW_BIND_TYPE, pvParam=&10, iStrLen=0)
[2008-09-24 16:00:25.302917] SQLSetStmtAttr()
[2008-09-24 16:00:25.302922] ---> SQL_SUCCESS

[2008-09-24 16:00:25.302928] SQLSetStmtAttr(hStmt=1,
fAttribute=Unknown value 9, pvParam=&20, iStrLen=0)
[2008-09-24 16:00:25.302943] SQLSetStmtAttr()
[2008-09-24 16:00:25.302949] ---> SQL_SUCCESS

[2008-09-24 16:00:25.302956] SQLExtendedFetch(hStmt=1,
fFetchType=SQL_FETCH_NEXT,iRow=0, pcRow=&1c7f6894,
rgfRowStatus=&1bca17d0)
[2008-09-24 16:00:25.317947] (Row=1, iCol=1, fCType=SQL_C_CHAR,
rgbValue="TABLG ", pcbValue=10)
[2008-09-24 16:00:25.317980] (Row=2, iCol=1, fCType=SQL_C_CHAR,
rgbValue="TABLF ", pcbValue=10)
[2008-09-24 16:00:25.318001] (Row=3, iCol=1, fCType=SQL_C_CHAR, r
gbValue="TABLE ", pcbValue=10)
[2008-09-24 16:00:25.318022] (Row=4, iCol=1, fCType=SQL_C_CHAR,
rgbValue="TABLD ", pcbValue=10)
[2008-09-24 16:00:25.318044] (Row=5, iCol=1, fCType=SQL_C_CHAR,
rgbValue="TABLC ", pcbValue=10)
[2008-09-24 16:00:25.318065] (Row=6, iCol=1, fCType=SQL_C_CHAR,
rgbValue="TABLB ", pcbValue=10)
[2008-09-24 16:00:25.318087] (Row=7, iCol=1, fCType=SQL_C_CHAR,
rgbValue="TABLA ", pcbValue=10)
[2008-09-24 16:00:25.318109] SQLExtendedFetch(pcRow=7)

Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Database facilities” on page 6891
The database products used by WebSphere Message Broker also record information
that might be useful if you have any problems with their access.

Administration API (CMP) trace
Enable or disable service trace for the Administration API for WebSphere Message
Broker (also known as the CMP API).

Enabling CMP API trace
About this task

To enable tracing for the CMP API for your application, set the environment
variable MQSI_CMP_TRACE, where <filename> is the name of the file to which the
trace is sent:
export MQSI_CMP_TRACE=<filename>

Or you can enable tracing by using the following API call in your code:

3554 WebSphere Message Broker Version 7.0.0.8

// Enable Message Broker Administration service trace
BrokerProxy.enableAdministrationAPITracing("outputfile.txt");

This request logs all calls to the CMP API to the outputfile.txt file in the current
directory. All CMP API activity in the entire Java virtual machine is logged.

You can also enable CMP API service trace from the File menu of the CMP API
Exerciser.

In addition, because the CMP API uses the WebSphere MQ Java client, you can
enable WebSphere MQ Java client tracing.

Disabling CMP API trace
About this task

To disable tracing for the CMP API for your application, use the following API call
in your code:
// Disable Message Broker Administration service trace

BrokerProxy.disableAdministrationAPITracing();

You can also disable CMP API service trace from the File menu of the CMP API
Exerciser.
Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Resolving problems when developing Administration API applications” on page
3510
Use the advice given here to help you to resolve problems that can arise when
developing Administration API for WebSphere Message Broker (also known as the
CMP API) applications.
Related reference:
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.

Switching Trace nodes on and off
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
switch Trace nodes on and off.

Chapter 13. Troubleshooting and support 3555

About this task

When an execution group is created, or a message flow is deployed, its Trace node
switch is set to on by default. Execution groups and message flows that you have
migrated from a previous version are also handled in this way. The message flow
level Trace node switch setting is not changed on redeployment. You can
significantly improve the performance of a flow that includes Trace nodes by
switching Trace nodes off.

Restriction: If you switch off Trace nodes in a flow that was migrated from a
version earlier than 6.1, you can no longer revert that flow to its earlier state.

If the Trace node setting for an execution group is off, all Trace nodes in its flows
are disabled. You can change the settings for Trace nodes in individual message
flows; the settings are applied when you turn on Trace nodes for the execution
group. If the Trace node setting for an execution group is on, the Trace node switch
setting of each message flow determines the effective settings. Use the
“mqsireporttrace command” on page 3947 to check the settings for message flows
and execution groups.

Example: switching off Trace nodes for an execution group on
distributed systems, using the command line
Procedure

To disable the Trace node switch settings of all message flows in an execution
group of a broker called MB7BROKER, (that is, stop all the Trace nodes in any of
the message flows deployed to the execution group from executing), enter the
following command:
mqsichangetrace MB7BROKER –n off -e default

In this example, -n off switches off Trace nodes in the default execution group (-e
default).
All Trace nodes are switched off, even if the message flow that contains them has
its Trace node switch set to on.

Example: switching off Trace nodes for an execution group on
z/OS systems, using the command line
Procedure

To disable the Trace node switch settings of all message flows in an execution
group of a broker called MQP1BRK, (that is, stop all the Trace nodes in any of the
message flows deployed to the execution group from executing), enter the
following command:
F MQP1BRK,ct n=’off’, e=’default’

In this example, n=’off’ switches off Trace nodes in the default execution group
(e=’default’).
All Trace nodes are switched off, even if the message flow that contains them has
its Trace node switch set to on.

Example: switching off Trace nodes for a message flow on
distributed systems, using the command line
About this task

Trace nodes for the default execution group in broker MB7BROKER are switched
on. You want to turn off Trace nodes for the myFlow message flow.

3556 WebSphere Message Broker Version 7.0.0.8

Procedure

Enter the following command:
mqsichangetrace MB7BROKER -n off -e default -f myFlow

Example: switching on Trace nodes for a message flow and an
execution group on distributed systems, using the command line
About this task

Trace nodes for the default execution group in broker MB7BROKER are switched
off. You want to turn on Trace nodes for the myFlow message flow, then turn on
Trace nodes for the execution group.

Procedure
1. To turn on Trace nodes for the message flow, enter the following command:

mqsichangetrace MB7BROKER -n on -e default -f myFlow

Trace nodes for the myFlow message flow are turned on, but this setting is not
applied until you turn on trace nodes for the execution group.

2. To turn on Trace nodes for the execution group, enter the following command:
mqsichangetrace MB7BROKER –n on -e default

Trace nodes are turned on for the default execution group. Within that
execution group, Trace nodes are enabled in all message flows that have Trace
nodes turned on, including the myFlow message flow.

Example: switching off Trace nodes for a message flow on z/OS
systems, using the command line
About this task

Trace nodes for the default execution group in broker MQP1BRK are switched on.
You want to turn off Trace nodes for one of the message flows (myFlow).

Procedure

Enter the following command:
F MQP1BRK,ct n=’off’, e=’default’, f=’myFlow’

Example: switching on Trace nodes for an execution group,
using the WebSphere Message Broker Explorer
About this task

Trace nodes are enabled by default. If you have switched them off, follow these
steps to enable Trace nodes for an execution group from the WebSphere Message
Broker Explorer:

Procedure
1. In the Navigator view, expand the Brokers folder and right-click the execution

group with which you want to work.
2. Click Trace Nodes All Flows > Enable. An alert saying Trace nodes are

switched on is displayed in the Alert Viewer. The Trace node switch setting of
each message flow determines the effective settings.

Chapter 13. Troubleshooting and support 3557

Example: switching on Trace nodes for a message flow, using
the WebSphere Message Broker Explorer
Before you begin

If the Trace node setting for an execution group is off, all Trace nodes in its flows
are disabled. You can change the settings for Trace nodes in individual message
flows; the settings are applied when you turn on Trace nodes for the execution
group. If the Trace node setting for an execution group is on, the Trace node switch
setting of each message flow determines the effective settings.

About this task

Follow these steps to enable Trace nodes for one of your message flows from the
WebSphere Message Broker Explorer:

Procedure
1. In the Navigator view, expand the Brokers folder and right-click the message

flow with which you want to work.
2. Click Trace Nodes > Enable An alert is displayed in the Alert Viewer.
Related concepts:
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related reference:
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.

Using dumps and abend files
A dump or an abend file might be produced when a problem occurs. Dumps and
abend files can be used by IBM to resolve the problem.

About this task

This section contains the following topics:

Procedure
v “Checking for dumps” on page 3559
v “Using the DUMP command on z/OS” on page 3560
v “Checking for abend files” on page 3562

What to do next

You can also use the “IBM Support Assistant Data Collector” on page 3565 to help
with data collection.
Related tasks:

3558 WebSphere Message Broker Version 7.0.0.8

Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
“IBM Support Assistant Data Collector” on page 3565
You can collect diagnostic documents by using IBM Support Assistant Data
Collector, and submit a problem report to IBM. IBM Support Assistant Data
Collector is included with your WebSphere Message Broker installation.
Related reference:
“Abend files” on page 6880
When a process does not end normally an abend file is generated.
“Dumps” on page 6877
Under exceptional circumstances, Windows MiniDumps, UNIX core dumps, or
z/OS SVC or core dumps might be produced.

Checking for dumps
If a dump occurs on your system, an error message is produced.

Procedure
v On Windows

BIP2111 error message (message broker internal error). The error message
contains the path to the MiniDump file in your errors directory.

v On UNIX

BIP2060 error message (execution group terminated unexpectedly). Look in the
directory where the broker was started, or in the service user ID's home
directory, to find the core dump file.

v On z/OS

– BIP2060 error message (execution group ended unexpectedly) from the main
Broker Address Space. This message should be accompanied by one of the
following messages and dump.

– IEF450I message in the syslog, or component's joblog, showing an abend
code followed by a reason code, for example:
IEF450I MQ83BRK DEFAULT - ABEND=S2C1 U0000 REASON=000000C4

Look in the system's dump dataset hlq for the dump dataset, or search the
syslog for the appropriate IEA611I message to find out the dump dataset
name.

– IEA993I message in the syslog for a SYSMDUMP. Look in the started task
user's directory for the coredump.pid file, as specified in the syslog:
IEA993I SYSMDUMP TAKEN TO coredump.00500319

– An error message for an SVC dump; see “Dumps on WebSphere Message
Broker for z/OS” on page 6878 for further information on SVC dumps.

Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.

Chapter 13. Troubleshooting and support 3559

“Using dumps and abend files” on page 3558
A dump or an abend file might be produced when a problem occurs. Dumps and
abend files can be used by IBM to resolve the problem.
“Checking for abend files” on page 3562
Abend files are produced when a process ends abnormally. The information
contained in an abend file helps the IBM Support Center to diagnose and fix the
problem.
“Using the DUMP command on z/OS”
Follow the steps in this task to use the DUMP command on z/OS.
Related reference:
“Dumps” on page 6877
Under exceptional circumstances, Windows MiniDumps, UNIX core dumps, or
z/OS SVC or core dumps might be produced.
“Abend files” on page 6880
When a process does not end normally an abend file is generated.

Using the DUMP command on z/OS
Follow the steps in this task to use the DUMP command on z/OS.

About this task

z/OS You might be asked to dump any or several of the following address
spaces for IBM to resolve the problem:
v Control address space
v DataFlowEngine address space
v OMVS kernel address space

The following procedure demonstrates how to dump the DataFlowEngine address
space. This procedure is the same for any of the address spaces.

Procedure
1. Find the address space ID of the address space that you want to dump using

the display command on the z/OS syslog:
D OMVS,U=your started task user ID

This command displays the address spaces of all the processes that are running
from your started task user ID, for example:
D OMVS,U=MQ01BRK
BPXO040I 16.14.30 DISPLAY OMVS 237
OMVS 000D ACTIVE OMVS=(14)
USER JOBNAME ASID PID PPID STATE START CT_SECS

MQ01BRK MQ01BRK 009D 67306064 84083282 HRI--- 15.41.55 48.37
LATCHWAITPID= 0 CMD=bipservice MQ01BRK AUTO

MQ01BRK MQ01BRK 009D 84083282 1 1WI--- 15.41.55 48.37
LATCHWAITPID= 0 CMD=/argoinst/S000_L30307_P/usr/lpp/mqsi/bin

MQ01BRK MQ01BRK 009D 16974444 67306064 HRI--- 15.42.01 48.37
LATCHWAITPID= 0 CMD=bipbroker MQ01BRK

MQ01BRK MQ01BRK 009F 16974445 1 1W---- 15.42.05 2914.22
LATCHWAITPID= 0 CMD=/argoinst/S000_L30307_P/usr/lpp/mqsi/bin

MQ01BRK MQ01BRK 009F 33751662 16974445 HR---- 15.42.05 2914.22
LATCHWAITPID= 0 CMD=DataFlowEngine MQ01BRK ca614eec-f300-000

The infrastructure main program bipimain is the first process in every address
space. For a control address space, bipimain starts the bipservice process, which

3560 WebSphere Message Broker Version 7.0.0.8

starts the bipbroker process, which might also start the biphttplistener process,
depending on the configuration. For a DataFlowEngine address space, bipimain
starts the DataFlowEngine process. For each execution group, an additional
DataFlowEngine address space is started. In this example, only one execution
group is deployed.

2. Use the z/OS DUMP command to dump the DataFlowEngine address space,
which is shown in the above example as 9F.
a. Enter the following command:

DUMP TITLE=(DFE)

The console returns:
*`15 IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

b. Enter:
R 15,ASID=9F,CONT

The console returns:
*16 IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

c. Enter:
R 16,SDATA=(CSA,RGN,PSA,SQA,LSQA,LPA,TRT,GRSQ,SUM),END

The console returns:
IEE600I REPLY TO 16 IS;SDATA=(CSA,RGN,PSA,SQA,LSQA,LPA,TRT,GRSQ,SUM),END
IEA794I SVC DUMP HAS CAPTURED: 356
DUMPID=014 REQUESTED BY JOB (*MASTER*)
DUMP TITLE=DFE
IEF196I IGD101I SMS ALLOCATED TO DDNAME (SYS00018)
IEF196I DSN (SYS3.DUMP.ARG5.#MASTER#.T142958.S00014)
IEF196I STORCLAS (SMS) MGMTCLAS (DUMP) DATACLAS ()
IEF196I VOL SER NOS= ARGSMR

The dump is stored in either a pre-allocated dump data set called
SYS1.DUMPxx, or an automatically allocated dump data set named according
to an installation-specified pattern.

3. In some scenarios, all address spaces for a given broker, that is, all those listed
in the example above, plus the OMVS address space and dataspaces, are
needed by IBM to resolve the problem. Use the z/OS DUMP command to
dump all MQ01BRK address spaces.
a. Enter the command:

DUMP TITLE=(ALL)

The console returns:
`15 IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

b. Enter:
R 15,JOBNAME=(OMVS,MQ01BRK),DSPNAME=(’OMVS’.*),SDATA=(PSA,SQA,LSQA,RGN,TRT,

LPA,CSA,GRSQ,SUM,NUC)

The console returns:
IEE600I REPLY TO 15 IS;JOBNAME=(OMVS,MQ01BRK),DSPNAME=(’OMVS’.*),S
IEA794I SVC DUMP HAS CAPTURED: 303
DUMPID=040 REQUESTED BY JOB (*MASTER*)
DUMP TITLE=ALL
IEE853I 13.40.40 SYS1.DUMP TITLES 306
SYS1.DUMP DATA SETS AVAILABLE=000 AND FULL=000
CAPTURED DUMPS=0001, SPACE USED=00000447M, SPACE FREE=00001053M

DUMP.MVK4.#MASTER#.D030415.T134007.S00039 DATA UNAVAILABLE WHILE

Chapter 13. Troubleshooting and support 3561

BEING DUMPED TO
IEA611I COMPLETE DUMP ON DUMP.MVK4.#MASTER#.D030415.T134007.S00039 309
DUMPID=040 REQUESTED BY JOB (*MASTER*)
FOR ASIDS(000D,009D,009F)

Results

You can also find information on the individual thread by issuing the DISPLAY
z/OS console command, as in the example:
D OMVS,PID=83886535

Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using dumps and abend files” on page 3558
A dump or an abend file might be produced when a problem occurs. Dumps and
abend files can be used by IBM to resolve the problem.
“Checking for dumps” on page 3559
If a dump occurs on your system, an error message is produced.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
Related reference:
“Dumps” on page 6877
Under exceptional circumstances, Windows MiniDumps, UNIX core dumps, or
z/OS SVC or core dumps might be produced.
“Abend files” on page 6880
When a process does not end normally an abend file is generated.

Checking for abend files
Abend files are produced when a process ends abnormally. The information
contained in an abend file helps the IBM Support Center to diagnose and fix the
problem.

About this task

The following list contains examples of what might cause the broker to produce an
abend file:

Procedure
v The broker runs out of memory.
v A user-defined extension causes an instruction in the broker process that is not

valid.
v An unrecoverable error occurs in the broker.

Results

Abend files are never produced during normal operation. If an abend file is
produced, contact the IBM Support Center for assistance.
Related tasks:

3562 WebSphere Message Broker Version 7.0.0.8

“Contacting your IBM Support Center”
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Checking for dumps” on page 3559
If a dump occurs on your system, an error message is produced.
“Using dumps and abend files” on page 3558
A dump or an abend file might be produced when a problem occurs. Dumps and
abend files can be used by IBM to resolve the problem.
“Using the DUMP command on z/OS” on page 3560
Follow the steps in this task to use the DUMP command on z/OS.
Related reference:
“Dumps” on page 6877
Under exceptional circumstances, Windows MiniDumps, UNIX core dumps, or
z/OS SVC or core dumps might be produced.
“Abend files” on page 6880
When a process does not end normally an abend file is generated.

Contacting your IBM Support Center
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.

About this task

Before you contact your Support Center, use the checklist shown here to gather
important information. Some items might not be relevant in every situation, but
provide as much information as you can to enable the IBM Support Center to
re-create your problem. You can also use the “IBM Support Assistant Data
Collector” on page 3565 to help with data collection.

For WebSphere Message Broker:

v The product version.
v Any fix packs applied.
v Any interim fixes applied.
v All current trace and error logs, including relevant Windows Event log

or LinuxUNIX operating system syslog entries, and any abend or dump
files from the install_dir\errors directory on Windows, or the
/var/mqsi/errors directory on LinuxUNIX. Obtain user trace log files at
debug level for all relevant message flows and preferably format them.
Also include any requested service trace files.
To send files from distributed systems, create a compressed file using
any compression utility.
To send a file from the file system to IBM, use tar to compress the file.
For example tar -cx -f coredump.0002009E coredump.toibm. To send

Chapter 13. Troubleshooting and support 3563

MVS data sets to IBM, terse them using TRSMAIN, which you can
download from z/OS tools download.

v A list of the components installed. Include details of the number of
computers and their operating systems, the number of brokers and the
computers on which they are running, and the existence and details of
each User Name Server.

v The compressed file obtained by exporting your workspace and
appropriate message flows and message sets. This action is performed
from the WebSphere Message Broker Toolkit.

v Details of the operation that you were performing, the results that
occurred, and the results that you were expecting.

v A sample of the messages that were being used when the problem arose
v If relevant, the report file from the C or COBOL importer. This file is

located in the directory from which the file import was attempted.
v If you are using tagged delimited wire format on message sets, the TDS

log files.

For WebSphere MQ:

v The product version.
v Any fix packs applied.
v Any interim fixes applied.
v All current trace and error logs, including relevant Windows Event log

or Linux and UNIX operating system syslog entries and First Failure
Support Technology™ (FFST™) output files. You can find these files,
which have the extension .fdc, in the errors subdirectory in the
WebSphere MQ home directory.

v Details of WebSphere MQ client software, if appropriate.

For each database that you are using:

v The product and release level (for example, DB2 9.1).
v Any fix packs applied.
v Any interim fixes applied.
v All current trace and error logs, including relevant Windows Event log

or Linux and UNIX operating system syslog entries, for example the
db2dialog.log file on DB2. Check the database product documentation
for details of where to find these files.

v Definitions of any database tables.
v Any ODBC traces.

Windows For Windows:

v The version.
v The Service Pack level.
v The environment settings.

UNIX For Linux and UNIX operating systems:

v The product version. You can find the version installed by using the
uname -a command.

v Any service level and patches that have been applied.
v The environment settings.

z/OS For z/OS:

v The product version

3564 WebSphere Message Broker Version 7.0.0.8

ftp://public.dhe.ibm.com/s390/mvs/tools/packlib/

v The list of PTFs that have been applied
v The environment settings
v The job logs from all address spaces

Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
“Linux and UNIX systems: Configuring the syslog daemon” on page 3529
On Linux and UNIX systems, all WebSphere Message Broker messages (other than
messages that are generated by the command-line utilities) are sent to the syslog
subsystem.
“IBM Support Assistant Data Collector”
You can collect diagnostic documents by using IBM Support Assistant Data
Collector, and submit a problem report to IBM. IBM Support Assistant Data
Collector is included with your WebSphere Message Broker installation.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

IBM Support Assistant Data Collector
You can collect diagnostic documents by using IBM Support Assistant Data
Collector, and submit a problem report to IBM. IBM Support Assistant Data
Collector is included with your WebSphere Message Broker installation.

Chapter 13. Troubleshooting and support 3565

About this task

You might have other versions of IBM Support Assistant, but if you run the
commands provided in the following topics, you will collect the appropriate
information for WebSphere Message Broker.

Procedure
v “Collecting data in console mode with IBM Support Assistant Data Collector”
v “Selecting a problem collector for IBM Support Assistant Data Collector” on

page 3568

What to do next

Note: The IBM Support Assistant Data Collector is not supported for z/OS.
Related concepts:
“Selecting a problem collector for IBM Support Assistant Data Collector” on page
3568
You can use the problem collectors installed with IBM Support Assistant Data
Collector to gather diagnostic information.
Related tasks:
“Collecting data in console mode with IBM Support Assistant Data Collector”
You can use the IBM Support Assistant Data Collector in console mode to collect
diagnostic documents for submission to IBM.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.

Collecting data in console mode with IBM Support Assistant
Data Collector

You can use the IBM Support Assistant Data Collector in console mode to collect
diagnostic documents for submission to IBM.

Before you begin

Before you start:

Before contacting IBM Software Support, ensure that your company has an active
IBM software subscription and support contract, and that you are authorized to
submit problems to IBM. See “Contacting IBM Software Support” on page 3571 for
more details.

3566 WebSphere Message Broker Version 7.0.0.8

About this task

Procedure

To run the IBM Support Assistant Data Collector and collect diagnostic documents,
complete the following steps:
1. Ensure that the WebSphere Message Broker run time variables are set correctly

for your environment by using the mqsiprofile command. See “Environment
variables after installation” on page 3642 for more information.

2. At a command prompt, enter the mqsidc command.

Note: You can ensure that the script is executable by entering the following
command to change the file permissions: chmod 755 mqsidc
The IBM Support Assistant Data Collector starts in console mode.

3. Start the data collection. Available options are presented as numbered lists.
a. Type a file name for saving the collected data, or press Enter to generate a

unique file name.
b. At the input field prompts, type the number of the required option and

press Enter.
4. Choose a data transfer method.

a. Type the number of the required option for transferring the diagnostic
documents to IBM and press Enter. The available options are:
1) Send the documents to IBM Software Support using secure transfer

(HTTPS). You require a problem management record (PMR) number
obtained through IBM Software Support.

2) FTP the documents to IBM Software Support (unencrypted). You require
a PMR number obtained through IBM Software Support. This option is
less secure than option i.

3) FTP the documents to another location (unencrypted). You are required
to provide a target FTP location and appropriate authentication to access
the documents.

4) End the collection without sending.
If you choose any of the first three options above, you are required to enter
additional information to complete the upload.

b. Type the number of the required option to confirm the data collection.
When the IBM Support Assistant Data Collector completes, a .zip file is created
at the location specified during the collection. You can extract the compressed
files and examine the collected data by using a suitable tool.

What to do next

Note: The IBM Support Assistant Data Collector is not supported for z/OS.
Related concepts:
“Selecting a problem collector for IBM Support Assistant Data Collector” on page
3568
You can use the problem collectors installed with IBM Support Assistant Data
Collector to gather diagnostic information.
Related tasks:
“IBM Support Assistant Data Collector” on page 3565
You can collect diagnostic documents by using IBM Support Assistant Data
Collector, and submit a problem report to IBM. IBM Support Assistant Data

Chapter 13. Troubleshooting and support 3567

Collector is included with your WebSphere Message Broker installation.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
“Contacting IBM Software Support” on page 3571
IBM Software Support provides assistance with product defects.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.

Selecting a problem collector for IBM Support Assistant Data
Collector

You can use the problem collectors installed with IBM Support Assistant Data
Collector to gather diagnostic information.

Note: Before you can use the problem collectors, WebSphere Message Broker must
have installed successfully, and an mqsiprofile must exist which you can start
successfully (see “Environment variables after installation” on page 3642 for more
information).

Generic problem collector
The generic problem collector gathers configuration information about
WebSphere Message Broker, operating system details, WebSphere MQ
levels, environment details, the application event log, and the syslog.

Broker problem collector
The broker problem collector gathers information about the broker's
deployed configuration, the standard system logs (STDOUT and STDERR)
for its components (admin agent, ExecutionGroup, and httplistener), and
abend files. This problem collector also gathers the diagnostic data
collected by the generic problem collector.

Related tasks:
“IBM Support Assistant Data Collector” on page 3565
You can collect diagnostic documents by using IBM Support Assistant Data
Collector, and submit a problem report to IBM. IBM Support Assistant Data
Collector is included with your WebSphere Message Broker installation.
“Collecting data in console mode with IBM Support Assistant Data Collector” on
page 3566
You can use the IBM Support Assistant Data Collector in console mode to collect
diagnostic documents for submission to IBM.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.

3568 WebSphere Message Broker Version 7.0.0.8

“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.

Searching knowledge bases
If you have a problem with your IBM software, you want it resolved quickly. Begin
by searching the available knowledge bases to determine whether the resolution to
your problem is already documented.

Procedure
1. Search the information center

IBM provides extensive documentation in the form of online information
centers. An information center can be installed on your local machine or on a
local intranet. An information center can also be viewed on the IBM Web site.
You can use the powerful search function of the information center to query
conceptual and reference information as well as detailed instructions for
completing tasks.

2. Search the Internet

If you cannot find an answer to your question in the information center, search
the Internet for the latest, most complete information that might help you
resolve your problem, including:
v IBM technotes
v IBM downloads
v IBM Redbooks publications
v IBM developerWorks
v Forums and newsgroups
v Internet search engines

Related concepts:
“Troubleshooting overview” on page 3345
Troubleshooting is the process of finding and eliminating the cause of a problem.
Whenever you have a problem with your IBM software, the troubleshooting
process begins as soon as you ask yourself "what happened?"
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.

Chapter 13. Troubleshooting and support 3569

“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Using dumps and abend files” on page 3558
A dump or an abend file might be produced when a problem occurs. Dumps and
abend files can be used by IBM to resolve the problem.
“Getting product fixes”
A product fix might be available to resolve your problem. You can determine what
fixes are available from the IBM support site.
“Contacting IBM Software Support” on page 3571
IBM Software Support provides assistance with product defects.
“Recovering after failure” on page 3574
Follow a set of procedures to recover after a serious problem.
Related reference:
“Troubleshooting” on page 6864
Use the reference information in this section to help you diagnose errors in
WebSphere Message Broker.

Getting product fixes
A product fix might be available to resolve your problem. You can determine what
fixes are available from the IBM support site.

About this task

To determine what fixes are available from the IBM support site:
1. Open the WebSphere Message Broker support web page.
2. Click Downloads, then Recommended fixes. This web page provides links to

the latest available maintenance for the in service WebSphere Message Broker
family of products.

To receive weekly email notifications about fixes and other news about IBM
products, follow these steps.

Procedure
1. From the support site (WebSphere Message Broker support web page), locate

the Notifications box in the center of the page.
2. If you are not signed in, click Sign in to create, manage or view your

subscriptions. If you have not registered, click register now on the sign-in page
and follow the on-screen instructions.

3. Click Manage my subscriptions.
4. Click the Subscribe tab. A list of products families is shown.
5. In the Software column, click WebSphere. A list of products is shown.
6. Select the product for which you want to receive notifications (for example,

WebSphere Message Broker), then click Continue.
7. Set options to determine what notifications you receive, how often you receive

them, and to which folder they are saved, then click Submit.
Related concepts:

3570 WebSphere Message Broker Version 7.0.0.8

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker

“Troubleshooting overview” on page 3345
Troubleshooting is the process of finding and eliminating the cause of a problem.
Whenever you have a problem with your IBM software, the troubleshooting
process begins as soon as you ask yourself "what happened?"
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Using dumps and abend files” on page 3558
A dump or an abend file might be produced when a problem occurs. Dumps and
abend files can be used by IBM to resolve the problem.
“Getting product fixes” on page 3570
A product fix might be available to resolve your problem. You can determine what
fixes are available from the IBM support site.
“Contacting IBM Software Support”
IBM Software Support provides assistance with product defects.
“Recovering after failure” on page 3574
Follow a set of procedures to recover after a serious problem.
Related reference:
“Troubleshooting” on page 6864
Use the reference information in this section to help you diagnose errors in
WebSphere Message Broker.

Contacting IBM Software Support
IBM Software Support provides assistance with product defects.

About this task

Before you contact IBM Software Support, you must ensure that your company has
an active IBM software subscription and support contract, and that you are
authorized to submit problems to IBM. The type of software subscription and
support contract that you need depends on the type of product that you have:
v For IBM distributed software products (including, but not limited to, Tivoli,

Lotus®, and Rational products, as well as DB2 and WebSphere products that run
on Windows or UNIX operating systems), enroll in Passport Advantage in one
of the following ways:
– Online: Go to the Passport Advantage web page and click How to Enroll.

Chapter 13. Troubleshooting and support 3571

http://www-01.ibm.com/software/lotus/passportadvantage/

– By telephone: For the telephone number to call in your country, go to the
Software Support Handbook, click Contacts, then Worldwide contacts.

v For customers with Subscription and Support (S & S) contracts, go to the Open
service request web page.

v For customers with IBMLink, CATIA, Linux, S/390®, iSeries, pSeries, zSeries,
and other support agreements, go to the IBM Support Line web page.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software subscription and support agreement by working
directly with an IBM marketing representative or an IBM Business Partner. For
more information about support for eServer software products, go to the
Support for IBM Systems web page.

If you are not sure what type of software subscription and support contract you
need, call 1-800-IBMSERV (1-800-426-7378) in the United States or, from other
countries, go to the contacts page of the Software Support Handbook and click the
name of your geographic region for telephone numbers of people who provide
support for your location.

Follow the steps in this topic to contact IBM Software Support:

Procedure
1. “Determine the effect of the problem on your business”
2. “Describe your problem and gather background information” on page 3573
3. “Submit your problem to IBM Software Support” on page 3573

Determine the effect of the problem on your business
About this task

When you report a problem to IBM, you will be asked to supply a severity level.
Therefore, you need to understand and assess the effect on your business of the
problem that you are reporting. Use the following criteria:

Severity 1
Critical effect on business: You are unable to use the program, resulting in
a critical effect on operations. This condition requires an immediate
solution.

Severity 2
Significant effect on business: The program is usable but is severely
limited.

Severity 3
Some effect on business: The program is usable with less significant
features (not critical to operations) unavailable.

Severity 4
Minimal effect on business: The problem has little effect on operations, or
a reasonable workaround to the problem has been implemented.

3572 WebSphere Message Broker Version 7.0.0.8

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www-01.ibm.com/software/support/probsub.html
http://www-01.ibm.com/software/support/probsub.html
http://www-935.ibm.com/services/us/index.wss/home?category=4&subcategory=575
http://www-947.ibm.com/systems/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Describe your problem and gather background information
About this task

When you are explaining a problem to IBM, be as specific as possible. Include all
relevant background information so that IBM Software Support specialists can help
you to solve the problem efficiently. To save time, know the answers to these
questions:
v What software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can the problem be re-created? If so, what steps led to the failure?
v Have any changes been made to the system? (For example, hardware, operating

system, networking software, and so on.)
v Are you currently using a workaround for this problem? If so, be prepared to

explain it when you report the problem.

Submit your problem to IBM Software Support
About this task

You can submit your problem in one of two ways:
v Online: Go to the Software Support Handbook and enter your information into

the appropriate problem submission tool.
v By telephone: For the telephone number to call in your country, go to the

contacts page of the Software Support Handbook and click the name of your
geographic region for telephone numbers of people who provide support for
your location.

The IBM Support Assistant Data Collector can be used to submit diagnostic
documents if you have an existing problem management record (PMR). For more
information, see “IBM Support Assistant Data Collector” on page 3565.

If the problem that you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support might create an Authorized Program
Analysis Report (APAR). The APAR describes the problem in detail. Whenever
possible, IBM Software Support provides a workaround for you to implement until
the APAR is resolved and a fix is delivered.

IBM publishes resolved APARs on the IBM product support Web pages daily, so
that other users who experience the same problem can benefit from the same
resolutions.
Related concepts:
“Troubleshooting overview” on page 3345
Troubleshooting is the process of finding and eliminating the cause of a problem.
Whenever you have a problem with your IBM software, the troubleshooting
process begins as soon as you ask yourself "what happened?"
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.

Chapter 13. Troubleshooting and support 3573

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Using dumps and abend files” on page 3558
A dump or an abend file might be produced when a problem occurs. Dumps and
abend files can be used by IBM to resolve the problem.
“Getting product fixes” on page 3570
A product fix might be available to resolve your problem. You can determine what
fixes are available from the IBM support site.
“Contacting IBM Software Support” on page 3571
IBM Software Support provides assistance with product defects.
“Recovering after failure”
Follow a set of procedures to recover after a serious problem.
Related reference:
“Troubleshooting” on page 6864
Use the reference information in this section to help you diagnose errors in
WebSphere Message Broker.

Recovering after failure
Follow a set of procedures to recover after a serious problem.

About this task

Use the recovery methods described here only if you cannot resolve the underlying
problem by using the diagnostic techniques described throughout the Chapter 13,
“Troubleshooting and support,” on page 3345 section of the information center. If
your problem cannot be resolved by using these techniques, contact your IBM
Support Center.

This section contains the following topics:

Procedure
v “Recovering after the broker fails” on page 3575
v “Recovering after an execution group fails” on page 3576
v “Recovering after the broker's queue manager fails” on page 3576
Related tasks:
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.

3574 WebSphere Message Broker Version 7.0.0.8

“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.

Recovering after the broker fails
Check what recovery procedures are available, according to what has failed.

Before you begin

Try to get to the root of the problem first, using the diagnosis techniques described
throughout the Chapter 13, “Troubleshooting and support,” on page 3345 section of
the information center. If your problem cannot be resolved using these techniques,
contact your IBM Support Center. Use the procedure in this section only as a last
resort.

If you are able to recover, and can start the broker again, the broker attempts to
recover and re-establish all sessions with CMP applications that were active at the
time of failure. CMP applications include the WebSphere Message Broker Explorer,
the WebSphere Message Broker Toolkit, and applications that you have written to
this API.

About this task

If you cannot correct the current problem by using problem determination,
complete the following sequence of operations to re-create the broker:

Procedure
1. Stop the broker by using the mqsistop command.
2. Stop the broker queue manager by using the endmqm command.
3. Delete the broker by using the mqsideletebroker command.
4. Re-create the broker by using the mqsicreatebroker command.
5. Start the broker by using the mqsistart command.
6. Redeploy all resources to the broker.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Deleting a broker” on page 930
Delete a broker using the command line on the system where the broker
component is installed.

Chapter 13. Troubleshooting and support 3575

“Recovering after failure” on page 3574
Follow a set of procedures to recover after a serious problem.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Recovering after an execution group fails
Follow the steps in this task to recover if an execution group fails.

Before you begin

Try to get to the root of the problem first, using the diagnosis techniques described
throughout the Chapter 13, “Troubleshooting and support,” on page 3345 section of
the information center. If your problem cannot be resolved using these techniques,
contact your IBM Support Center. Use the procedure in this section only as a last
resort.

About this task

If a single execution group fails, and the problem cannot be corrected using
problem determination, or by the IBM Support Center, perform the following
sequence of operations to re-create the execution group:

Procedure
1. Delete the execution group.
2. Create an execution group of the same name.
3. Redeploy the configuration.

What to do next

If more than one execution group fails, you might need to re-create the broker. See
“Recovering after the broker fails” on page 3575 for information on how to do this.
Related tasks:
“Recovering after failure” on page 3574
Follow a set of procedures to recover after a serious problem.
“Recovering after the broker fails” on page 3575
Check what recovery procedures are available, according to what has failed.

Recovering after the broker's queue manager fails
Check what recovery procedures are available, according to what has failed.

3576 WebSphere Message Broker Version 7.0.0.8

Before you begin

Try to get to the root of the problem first, by using the diagnosis techniques
described throughout the Chapter 13, “Troubleshooting and support,” on page 3345
section of the information center. If your problem cannot be resolved by using
these techniques, contact your IBM Support Center. Use the procedure in this
section only as a last resort.

About this task

If the broker's queue manager fails and cannot be corrected by using problem
determination, or by the IBM Support Center, perform the following sequence of
operations to re-create the queue manager:

Procedure
1. Ensure that no WebSphere Message Broker Toolkit users are deploying to the

broker. You must wait until any such actions have completed.
2. Stop the broker by using the mqsistop command.
3. Delete the broker by using the mqsideletebroker command, with the -q

parameter to remove the queue manager.
4. Re-create the broker by using the mqsicreatebroker command. The

mqsicreatebroker command creates the queue manager and default queues
automatically.

5. Re-create any specific queues that are needed for your message flows.
6. Start your brokers by using the mqsistart command.
7. Redeploy all resources to the broker to ensure that its configuration is

consistent.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
“Deleting a broker” on page 930
Delete a broker using the command line on the system where the broker
component is installed.
“Recovering after failure” on page 3574
Follow a set of procedures to recover after a serious problem.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Chapter 13. Troubleshooting and support 3577

3578 WebSphere Message Broker Version 7.0.0.8

Chapter 14. Reference

Use the reference information in this section to accomplish the tasks that address
your business needs.
v “Migration and upgrade”
v “Installation” on page 3581
v Security
v “Configuration and administration” on page 3657
v “z/OS configuration and administration specific information” on page 3979
v “Message flow development” on page 4015
v “Testing and debugging applications” on page 6708
v “Performance and monitoring” on page 6723
v “WebSphere Message Broker Toolkit” on page 6783
v “WebSphere Message Broker Explorer views” on page 6838
v “Troubleshooting” on page 6864

Migration and upgrade
Consider the factors involved in the migration of components and resources from
Version 6.0 or Version 6.1 to Version 7.0.

This section contains the following topics:
v “Supported migration paths”
Related concepts:
Chapter 4, “Installing and uninstalling,” on page 231
Install and uninstall WebSphere Message Broker components and service.
Related tasks:
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.

Supported migration paths
You can migrate to WebSphere Message Broker Version 7.0 from previous versions
of the product.

You cannot migrate from the Windows on x86 product (any version) to the
Windows on x86-64 product. Similarly, you cannot migrate from the Linux on x86
product (any version) to the Linux on x86-64 product. You must re-create the
brokers from scratch.

For the latest details of all supported levels of hardware and software, visit the
WebSphere Message Broker Requirements website.

From ... You can migrate to ...

WebSphere Message Broker 1 WebSphere Message Broker Version 7.0

WebSphere Message Broker with Rules and Formatter
Extension

WebSphere Message Broker Version 7.02

WebSphere Message Broker Version 6.03 WebSphere Message Broker Version 7.0

3579

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

From ... You can migrate to ...

WebSphere Message Broker with Rules and Formatter
Extension Version 6.03

WebSphere Message Broker Version 7.02

WebSphere Event Broker Version 6.03
v WebSphere MQ Version 7.0.14

v WebSphere Message Broker Version 7.0

WebSphere Event Broker Version 6.03
v WebSphere MQ Version 7.0.0.15

v WebSphere Message Broker Version 7.0

WebSphere Message Broker with Rules and Formatter
Extension Version 6.03

v WebSphere Message Broker Version 7.0.0.1 or later2

v WebSphere Message Broker with Rules and Formatter
Extension Version 7.02

WebSphere Message Broker with Rules and Formatter
Extension 3

v WebSphere Message Broker Version 7.0.0.1 or later2

v WebSphere Message Broker with Rules and Formatter
Extension Version 7.02

Notes:

1. You can migrate WebSphere Message Broker at Fix Pack 3 (Version 6.1.0.3) or
later. You must upgrade your Version 6.1 installation to use WebSphere MQ
Version 7.0.1 before migration.
If you are using WebSphere Application Server with WebSphere Message
Broker, or you have publish/subscribe applications that use the SubIdentity
option, you must upgrade WebSphere Message Broker to Fix Pack 4 before you
can migrate to WebSphere Message Broker Version 7.0.

2. You can migrate to WebSphere Message Broker Version 7.0 only if you do not
use the additional features provided by Rules and Formatter, or you choose not
to use them after migration. If you want to use the additional features provided
by Rules and Formatter, you need to migrate to WebSphere Message Broker
Version 7.0.0.1 or later, with WebSphere Message Broker with Rules and
Formatter Extension Version 7.0.

3. You can migrate Version 6.0 products at Fix Pack 9 (Version 6.0.0.9) or later for
runtime components, and Version 6.0.2 or later for the WebSphere Message
Broker Toolkit. You must upgrade your Version 6.0 installation to use
WebSphere MQ Version 7.0.1 before migration.
If you are using WebSphere Application Server with WebSphere Message
Broker, or you have publish/subscribe applications that use the SubIdentity
option, you must upgrade WebSphere Message Broker Version 6.0 or
WebSphere Event Broker Version 6.0 to Fix Pack 10 before you can migrate to
WebSphere Message Broker Version 7.0.

4. If you use only publish/subscribe functions with WebSphere Event Broker
Version 6.0, your typical migration path is to WebSphere MQ Version 7.0.1.
This migration path is handled completely by WebSphere MQ; see the
Migration section of the WebSphere MQ Version 7 Information Center online.

5. If you use only publish/subscribe functions with WebSphere Event Broker
Version 6.0, your typical migration path is to WebSphere MQ Version 7.0.0.1.
This migration path is handled completely by WebSphere MQ; see the
Migration section of the WebSphere MQ Version 7 Information Center online.

Related concepts:
Chapter 4, “Installing and uninstalling,” on page 231
Install and uninstall WebSphere Message Broker components and service.
Related tasks:

3580 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
Related information:

WebSphere MQ Version 7 Information Center online

Installation
Use the reference information in this section to understand installation
requirements, installation options, and how they affect your computer.
v “System requirements”
v “Installation and uninstallation interfaces” on page 3617
v “Installation and uninstallation authorization” on page 3628
v “Multicultural support” on page 3628
v System changes

Read the product readme.html file for late changes to the installation instructions;
this file is provided on CD or DVD and installed with the product. You can find
the most up-to-date version on the web, as described in “Finding the latest
information” on page 232.

Product requirements are also available on the web, and are occasionally updated.
Check for the latest information about WebSphere Message Broker Requirements.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
Related information:

WebSphere Message Broker Requirements

System requirements
Use the reference information in this section to understand the hardware, software,
and license requirements.
v “Hardware requirements” on page 3582
v “Software requirements” on page 3588
v “License requirements” on page 3606

The product readme file readme.html might contain updates to the information in
this chapter. The readme file includes information pertinent to all components and
platforms, and is maintained in US English on the product readmes web site:
www.ibm.com/support/docview.wss?uid=swg27006913

You must check this file to ensure that you have the latest information. Translated
readme files are available on the documentation FTP site:
ftp://public.dhe.ibm.com/software/integration/wbibrokers/docs/

Chapter 14. Reference 3581

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/support/docview.wss?uid=swg27006913
ftp://public.dhe.ibm.com/software/integration/wbibrokers/docs/

A readme file is included with the product; it contains a minimum level of
information and directs you to the online version. It is available in these locations:
v Before installation, on the product media.

The readme file is included in location \readmes\locale\ (where locale identifies
country, region, or language, for example en_US) on all of the following disks:
– DVD (on Linux on x86, Linux on x86-64, and Windows only)
– WebSphere Message Broker component Disk 1 (all operating systems)
– WebSphere Message Broker component Disk 2 (Windows only)
– WebSphere Message Broker Toolkit Disk 1

v After installation, in the installation directory:
– For runtime components, in install_dir\readmes\locale\ (where locale

identifies country, region, or language, for example en_US).
– For the WebSphere Message Broker Toolkit, in package_group_directory\

wmbt\documentation\locale\ (where locale identifies country, region, or
language, for example en_US).

For further support information, including latest fixes and troubleshooting
techniques, visit the WebSphere Message Broker support web page:
www.ibm.com/software/integration/wbimessagebroker/support/

The supported hardware and software environments are updated occasionally;
view the latest requirements information about the WebSphere Message Broker
Requirements web site:
www.ibm.com/software/integration/wbimessagebroker/requirements/

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
Related information:

WebSphere Message Broker Requirements

Hardware requirements
View the processor and related hardware requirements on all platforms.
v “Supported processors” on page 3583
v “Memory and disk space requirements” on page 3584
v “Communications” on page 3588
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.

3582 WebSphere Message Broker Version 7.0.0.8

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Related reference:
“Software requirements” on page 3588
View the operating system, database, and other software requirements.
“License requirements” on page 3606
Use the reference information in this section to understand license requirements.
Related information:

WebSphere Message Broker Requirements

Supported processors:

WebSphere Message Broker is supported on multiple processors.

The hardware requirements for each supported operating system are given in the
following table. All support statements assume that the stated systems can run the
required level of a compatible operating system and have enough storage for the
WebSphere Message Broker components that you install, and all prerequisite
products.

Table 31. Hardware requirements

Operating system Requirements1

AIX 64-bit IBM System p systems
Any hardware from IBM or other vendors that
can run trademarked AIX systems2

HP-Itanium Itanium systems

Linux on POWER 64-bit System i® and System p IBM POWER processor-based systems only

Linux on x86 IBM eserver System x or equivalent Intel-based servers3

Linux on x86-64 AMD64, EM64T, or compatible processor servers3

Linux on IBM z Systems Any server capable of running one of the supported
Linux on IBM z Systems releases

Solaris on SPARC Sun Microsystems SPARC processor servers

Solaris on x86-64 AMD64, EM64T, and compatible processor servers

Windows 32-bit Windows x86 technology-compatible PC hardware3

Windows 64-bit AMD64, EM64T, or compatible processor servers3

z/OS4 Any server capable of running one of the supported z/OS releases

Notes:

1. Always check the WebSphere Message Broker Requirements web site and the
readme.html file for the latest information about supported processors.
The readme.html file that is supplied on the product DVD or CD (for all
components) provides a minimum level of information, and directs you to the
online file on the product readmes web page, which is updated regularly.
Always use the online file to check that you have the latest level of
information.

2. You can use AIX systems only if they have passed a set of verification tests for
compliance with the AIX application binary and programming interfaces.

3. The WebSphere Message Broker Toolkit is supported on 32-bit and 64-bit
systems. It requires a computer with an Intel Pentium III processor (or higher)
that has a speed of at least 700 MHz. This specification is the minimum
supported level; for improved performance use a 2 GHz processor.

Chapter 14. Reference 3583

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/support/docview.wss?uid=swg27006913

A minimum display resolution of at least 1024 x 768 is required for some
dialogs (for example, the Preferences dialog).

4. For further information, see the Program Directory for WebSphere Message Broker
for z/OS on the WebSphere Message Broker Library web page.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Additional software requirements” on page 3598
WebSphere Message Broker requires additional software products to run
successfully.
Related information:

WebSphere Message Broker Requirements

Memory and disk space requirements:

Check the memory and disk space that is required for your installation.

Requirements for memory and disk space depend on the installation operating
system, and on the WebSphere Message Broker components and other products
that you are installing.

Distributed systems

v 512 MB of RAM is required to support runtime operations (1 MB equals
approximately 1 000 000 bytes).

v 512 MB of RAM is required to support WebSphere Message Broker
Toolkit operations on Linux on x86, Linux on x86-64, or Windows. This
specification is the minimum supported level; for improved
performance, provide 1 GB (1 GB equals approximately 1 000 000 000
bytes).

v 512 MB of RAM is required to support the WebSphere Message Broker
Explorer.

v Disk space requirements are dependent on the components that you
install and the working space that is required by those components (for
example, for WebSphere MQ queues and persistent messages).
Check that your computer has at least the space shown in the table,
which provides guidance for both permanent product requirements and
temporary space. Check that these requirements have not been updated
in the latest product readme file readme.html.
If the installation directory and the temporary space are on the same
partition or drive, add the two figures to check that you have enough
space available. If you do not, increase the available storage or change
the location of either the temporary space or the installation directory.
The temporary files are deleted when installation is complete.

3584 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/library/index.html
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

– On AIX, HP-UX, and Linux systems, the default temporary space
directory is /tmp.

– On Solaris systems, the default temporary space directory is /var/tmp.
– On Windows, the default temporary space directory is pointed to by

the TEMP system variable. On some systems, the variable TMP exists
and is used before TEMP, therefore you must check or change the
setting of both these variables.

The installation wizard displays requirements for permanent space, but
not for temporary space. If the figure that the installation wizard
displays is greater than the figure shown in the following tables, check
that your computer has sufficient space before you continue with the
installation.

Table 32. Disk space requirements (Linux and Windows systems)

Component /
product

Linux on
POWER Linux on x861

Linux on
x86-64

Linux on IBM
z Systems

Windows
32-bit1

Windows
64-bit1

Broker component 520 MB plus
330 MB
temporary
space

456 MB plus
330 MB
temporary
space

477 MB plus
330 MB
temporary
space

469 MB plus
330 MB
temporary
space

495 MB plus
330 MB
temporary
space

538 MB plus
330 MB
temporary
space

WebSphere Message
Broker Toolkit

Unavailable 1.6 GB plus
1.6 GB
temporary
space

1.9 GB plus
220 MB
temporary
space

Unavailable 1.6 GB plus
1.6 GB
temporary
space

1.9 GB plus
220 MB
temporary
space

WebSphere Message
Broker Explorer

Unavailable 250 MB plus
300 MB
temporary
space

250 MB plus
300 MB
temporary
space

Unavailable 200 MB plus
250 MB
temporary
space

200 MB plus
250 MB
temporary
space

WebSphere Message
Broker ODBC
Database Extender
(IE02)

90 MB plus 90
MB
temporary
space

80 MB plus 80
MB
temporary
space

75 MB plus 75
MB
temporary
space

80 MB plus 80
MB temporary
space

Unavailable Unavailable

Note:

1. The space required for the WebSphere Message Broker Toolkit
includes space for the shared resources directory and the package
group directory.

Table 33. Disk space requirements (UNIX)

Component / product AIX HP-Itanium Solaris on SPARC Solaris on x86-64

Broker component 710 MB plus 330
MB temporary
space

960 MB plus 330
MB temporary
space

620 MB plus 330
MB temporary
space

620 MB plus 330
MB temporary
space

WebSphere Message Broker
Toolkit

Unavailable Unavailable Unavailable Unavailable

WebSphere Message Broker
Explorer

Unavailable Unavailable Unavailable Unavailable

WebSphere Message Broker
ODBC Database Extender
(IE02)

80 MB plus 80 MB
temporary space

200 MB plus 200
MB temporary
space

130 MB plus 130
MB temporary
space

130 MB plus 130
MB temporary
space

v On computers on which you create a broker, up to 60 MB is required for
the broker configuration data within your file system.

Chapter 14. Reference 3585

v If you create user databases that are accessed by message flows,
additional space is required on those computers.

v If you intend to create more than one broker on any one computer, you
require additional memory and swap space. For example, you might
create more than one broker at different versions to complete migration.
Plan for 1 GB RAM and 1 GB of swap space for each broker, in addition
to the space and memory requirements of other applications.
You must increase these figures if you deploy complex message flows to
the brokers, or if you process large messages (of many megabytes), or
complex messages that contain many different tags.

z/OS Details are given in “Disk space requirements on z/OS.” You must also
check for later updates to this information in the section about DASD
storage requirements in the Program Directory for WebSphere Message Broker
for z/OS on the WebSphere Message Broker Library web page.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Uninstalling” on page 331
Remove the Broker component, the WebSphere Message Broker Toolkit, or the
WebSphere Message Broker Explorer from your computer.
Related reference:
“System requirements” on page 3581
Use the reference information in this section to understand the hardware, software,
and license requirements.
“Disk space requirements on z/OS”
The installation of WebSphere Message Broker for z/OS uses approximately 400
MB of disk space; plan on using 500 MB to allow for the component directories,
and for new service fixes to be applied.

Disk space requirements on z/OS:

The installation of WebSphere Message Broker for z/OS uses approximately 400
MB of disk space; plan on using 500 MB to allow for the component directories,
and for new service fixes to be applied.

When you apply service, if you do not replace your existing installation (for
example, you apply the new fix pack level alongside your existing installation),
you must plan the same amount of disk space for the higher service level libraries.

If you are transferring the files by using tar to package them, you need
approximately 200 MB of space for the .tar file.

You can check how much space is used and how much is free in a file system by
using the OMVS command:
df -P /pathname

100 MB is 3 276 800 512 byte sectors.

3586 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/library/index.html

The following table gives guidance on the space required for a minimum
installation (base installation and verification test) of WebSphere Message Broker
for each component implemented on z/OS.

Component Space required Purpose

Component directory 20 MB Holds the runtime-deployed configuration
information and output directories for the
component.

This information includes all deployment
information, such as ESQL, JAR files,
message sets, XSLT files, and so on.

This information also includes WebSphere
Message Broker trace files and other user
problem determination data, which might
become large.

Consideration must be given to the
potential size of deployments to the
WebSphere Message Broker runtime
environment and, therefore, the size of this
directory (including sub directories).

Component PDSE 1 MB Holds the customization and
administration jobs, procedures, and data
for the component.

The data set must be allocated with a fixed
record length of 80 (LRECL=80) and a format
of FB 80. Reserve directory space for 50
members, or use a PDSE if possible.

Started task user ID home
directory

8 GB Collects diagnostic materials: for example,
dumps. Dumps are usually more than 500
MB in size.

8 GB of space must be available in the file
system, but many user IDs can have their
home directory in the file system.

The Component directory and the Started task user ID home directory must be
separate to ensure that, when dumps are taken in the Started task user ID home
directory, they do not cause problems with the runtime broker that still has to
write to the Component directory.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Using the file system on z/OS” on page 596
If you have more than one MVS image, consider how you will use the file system.
You can share files in a file system with different members of a sysplex. The file
system is mounted on one MVS image and requests to the file are routed to the
owning system using XCF from systems which do not have it mounted.

Chapter 14. Reference 3587

Communications:

Your system must have communications hardware that supports the protocols that
brokers can use.

Choose one or more of the following protocols:
v NetBIOS
v SNA LU 6.2
v SPX
v TCP/IP
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
Related reference:
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Memory and disk space requirements” on page 3584
Check the memory and disk space that is required for your installation.

Software requirements
View the operating system, database, and other software requirements.

This section provides information about requirements of WebSphere Message
Broker:
v “Support for 32-bit and 64-bit platforms” on page 3589
v “Operating system requirements” on page 3590
v “Supported databases” on page 3591
v “Additional software requirements” on page 3598
v “Optional software support” on page 3603
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.
“License requirements” on page 3606
Use the reference information in this section to understand license requirements.
Related information:

WebSphere Message Broker Requirements

3588 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Support for 32-bit and 64-bit platforms:

WebSphere Message Broker operates in 32-bit mode or 64-bit mode, on supported
operating systems.

The following table shows support for 32-bit and 64-bit mode. Changes since
Version 6.1 are summarized beneath the table. If support on your platform has
changed, you might need to make additional changes to your configuration. See
“Migrating from Version 6.1 products” on page 163 and Chapter 7, “Configuring
brokers for test and production environments,” on page 579 for further details.

Table 34. Support for 32-bit and 64-bit operation

Platform

WebSphere
Message Broker
internal
components and
commands

32-bit execution
groups

64-bit execution
groups

AIX1 64-bit No Yes

HP-Itanium 64-bit No Yes

Linux on POWER 64-bit No Yes

Linux on x86 32-bit Yes No

Linux on x86-642 32-bit Yes No

Linux on x86-642 64-bit No Yes

Linux on IBM z Systems 64-bit No Yes

Solaris on SPARC1 64-bit No Yes

Solaris on x86-64 64-bit No Yes

Windows 32-bit 32-bit Yes No

Windows 64-bit2 32-bit Yes No

Windows 64-bit2 64-bit No Yes

z/OS1 64-bit No Yes

Changes since Version 6.1:

1. On this platform, you can no longer create or run with 32-bit execution groups.
Execution groups can be only 64-bit mode.

2. On the Windows 64-bit and Linux on x86-64 platforms, you can install either
the 32-bit or the 64-bit version of WebSphere Message Broker.

Execution groups

You can create an execution group by using one of the following:
v WebSphere Message Broker Toolkit
v WebSphere Message Broker Explorer
v mqsicreateexecutiongroup command
v CMP

If you do not specify the size of execution group that you require, the size that is
created depends on how you create it, and the version of the target broker to
which you deploy it. The following default values apply:

Chapter 14. Reference 3589

v If the target broker is Version 7.0 or later, the execution group is 64-bit except on
those platforms that support 32-bit only (Linux on x86, and Windows).

Table 35. Execution group default sizes

Workbench Command CMP API
32-bit only
platforms

32-bit and
64-bit
platforms

64-bit only
platforms

Default no options createExecutionGroup(name) 32-bit 64-bit 64-bit

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Migrating from Version 6.1 products” on page 163
Migrate your components and resources to WebSphere Message Broker Version 7.0.

Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Creating an execution group using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer” on page 937
Use the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
to create execution groups on your broker.
“Creating an execution group using the mqsicreateexecutiongroup command” on
page 939
Use the mqsicreateexecutiongroup command to create execution groups on your
broker.
Related reference:
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.

Operating system requirements:

WebSphere Message Broker is supported on multiple operating systems.

The following operating systems support WebSphere Message Broker V7.0:
v AIX
v HP-Itanium
v Linux on POWER
v Linux on x86
v Linux on x86-64
v Linux on IBM z Systems
v Solaris on SPARC
v Solaris on x86-64
v Windows 32-bit

3590 WebSphere Message Broker Version 7.0.0.8

v Windows 64-bit
v z/OS

The software requirements for these operating systems are defined in the List of
supported software for WebSphere Message Broker V7.0 web page.

In all operating environments except z/OS, defect support is available for
virtualization environments where they relate to releases that are already
supported by WebSphere Message Broker. Unless stated elsewhere in the system
requirements, WebSphere Message Broker has not been tested in virtualization
environments. WebSphere Message Broker support is therefore unable to assist in
issues related to configuration and setup, or issues that are directly related to the
virtualization environment itself.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Supported databases”
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Additional software requirements” on page 3598
WebSphere Message Broker requires additional software products to run
successfully.
Related information:

WebSphere Message Broker Requirements

Supported databases:

You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

The information shown here indicates the support for databases on each operating
system, valid when the information center was published. However, database
support might be enhanced after the release is made available. For the latest
information about database support, visit the WebSphere Message Broker
Requirements website.

If you run message flows that access data that is held in databases, you must
install and configure a supported database. Some data types supported by these
databases are not supported by WebSphere Message Broker; for details, see “Data
types of values from external databases” on page 5288.

Chapter 14. Reference 3591

http://www-01.ibm.com/support/docview.wss?rs=849&uid=swg27016972
http://www-01.ibm.com/support/docview.wss?rs=849&uid=swg27016972
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

In most environments, the broker and the database server must not be running on
the same operating system. For details about local and remote database use, and
the restrictions that apply, see “Database locations” on page 3595.

WebSphere Message Broker supports both transactional (XA) and non-transactional
connections to databases. You can define an ODBC connection, or a JDBC type 4
connection, or both, to your database instances. XA support is referred to as a
globally coordinated message flow.

On a single broker, you can use ODBC XA, or JDBC XA, but not both. This
restriction applies to all supported platforms, and to all database servers for which
XA is supported.

The following sections give details of this support, and describe restrictions where
applicable:
v “ODBC support”
v “JDBC type 4 support” on page 3594

ODBC support

The following table lists the supported database servers for each broker platform
for non-XA support. XA connections are supported by most of these servers: See
the notes following the table for details.

For the latest details of the versions of the database servers that are supported,
visit the WebSphere Message Broker Requirements website.

Unless otherwise stated, the ODBC client code for the database is at the same
version and release as the server.

Operating system DB21, 2 Informix5 Microsoft
SQL Server

Oracle1, 3, 4 solidDB Sybase1

AIX Supported Supported Supported6 Supported Supported Supported

HP-Itanium Supported Supported Supported6 Supported Supported Supported

Linux on POWER Supported Supported Not
supported

Supported Not
supported

Supported

Linux on x86 Supported Supported Supported6 Supported Supported Supported

Linux on x86-64 Supported Supported Supported6 Supported Supported Supported

Linux on IBM z
Systems

Supported Supported Supported6 Supported Not
supported

Not supported

i5/OS and OS/400®7 Supported Not
supported

Not
supported

Not
supported

Not
supported

Not supported

Solaris on SPARC Supported Supported Supported6 Supported Supported Supported

Solaris on x86-64 Supported Supported Not
supported

Supported Supported Supported

Windows 7 Supported Supported8 Supported Supported8 Supported8 Supported8

Windows 7 (64-bit) Supported Not
supported

Supported Supported9 Supported8 Not supported

Windows XP and
Server 2003

Supported Supported8 Supported Supported8 Supported8 Supported8

Windows Vista Supported Supported8 Supported Supported8 Supported8 Supported8

3592 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Operating system DB21, 2 Informix5 Microsoft
SQL Server

Oracle1, 3, 4 solidDB Sybase1

Windows Server
2008

Supported Supported8 Supported Supported8 Supported8 Supported8

Windows Server
2008 R2

Supported Not
supported

Supported Supported9 Supported8 Not supported

z/OS Supported Not
supported

Not
supported

Not
supported

Not
supported

Not supported

Notes:

1. XA support:
Supported releases of DB2, Oracle, and Sybase can participate as a resource
manager in a distributed XA transaction, and can be coordinated by
WebSphere MQ as the XA Transaction Manager, unless otherwise stated in the
following notes. On z/OS, all transactions are coordinated by Recoverable
Resource Services (RRS).
v Additional conditions forWebSphere MQ:

– If you use WebSphere MQ Version 7 for XA coordination on Windows,
you must configure the queue manager to run under the broker service
user ID by specifying the -si option on the strmqm command; for
example, strmqm -si QM_name

v Additional conditions for databases:
– DB2 on i5/OS and OS/400, is not supported for XA connections.
– If you deploy message flows that access databases, you can define the

message flows to be coordinated so that updates to those databases are
synchronized with updates to other resources.

– ODBC drivers for Oracle and Sybase on all relevant systems, and for SQL
Server on Linux and UNIX systems, are supplied with WebSphere
Message Broker. Alternative drivers are not supported on these systems.
For other systems, and for other databases on all systems, obtain these
files from your database vendor.

v Additional conditions for z/OS
– On z/OS all transactions are globally coordinated by using RRS. As with

other platforms you can choose for ODBC database operations to be
committed or rolled back irrespective of the success or failure of the
message flow transaction as a whole. However only one uncoordinated
ODBC database connection per thread is supported.

2. Automatic Client Reroute for DB2 is supported on all platforms.
3. If you install the Oracle Database Server on 32-bit systems, you must also

install the Oracle Runtime Client.
4. On all Linux, UNIX, and Windows systems, you can use Oracle RAC (Real

Application Clusters) databases. For Oracle RAC XA and non-XA, failover
support is limited to the Connect-Time Failover feature only.

5. Each broker system requires only the Client SDK; install the Dynamic Server on
the system on which you create databases.
Large Objects (LOBs) are not supported.

6. On Linux and UNIX systems, you can remotely access an SQL Server database
on Windows by using a supplied wire protocol driver.

7. You can configure message flows to access DB2 databases on i5/OS and
OS/400 for user data. The message flows can run on all supported broker

Chapter 14. Reference 3593

platforms. For further details of these restrictions, and for information about the
PTFs that are required with DB2 on these operating systems, see “Database
locations” on page 3595.

8. Windows 32-bit edition of WebSphere Message Broker only.
9. WebSphere Message Broker for Windows 64-bit is supported only in non-XA

environments.

JDBC type 4 support

For non-XA transactions, you can create a JDBC type 4 connection from a broker to
all the database servers that are listed in the ODBC support table. Connections are
supported from all broker platforms, including z/OS.

For XA connections, the following restrictions apply:
v On distributed platforms, only DB2 and Oracle are supported.
v On z/OS, XA connections are not supported.

JDBC type 4 drivers are not supplied with WebSphere Message Broker; obtain
these files from your database vendor. For the latest details of the drivers that are
supported, visit the WebSphere Message Broker Requirements website.
Related tasks:
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
Related reference:
“Database locations” on page 3595
The broker can access databases set up on the local computer or on a remote
server, subject to restrictions.
“Data types of values from external databases” on page 5288
How database data types are implicitly cast to ESQL data types.
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Additional software requirements” on page 3598
WebSphere Message Broker requires additional software products to run
successfully.
“Support for 32-bit and 64-bit platforms” on page 3589
WebSphere Message Broker operates in 32-bit mode or 64-bit mode, on supported
operating systems.
Related information:

WebSphere Message Broker Requirements

DB2 V9.5 Information Center (distributed systems)

DB2 V9.1 Information Center (distributed systems)

DB2 Information Center (z/OS)

3594 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp

Database locations:

The broker can access databases set up on the local computer or on a remote
server, subject to restrictions.

You can deploy message flows that access user databases to one or more of your
brokers.
v You can use a local or remote database for user data, subject to the following

restrictions:

Databases on i5/OS and OS/400

– You can use only DB2 (UDB) on iSeries (System i) under OS/400 or
i5/OS.

– You must install OS/400 V5R2, or i5/OS V5R3 or V5R4.
– On Linux, UNIX, and Windows, you can connect using DB2 Connect.

On Windows only, you can also use iSeries Access for Windows.
– You cannot define globally coordinated (XA) transactions.
– You can call stored procedures only if access to the remote database is

provided by DB2 Connect.

Databases on z/OS

– You can use only DB2 (UDB) on z/OS.
– You must use DB2 Connect on Linux, UNIX, and Windows.

For further details, see the Program Directory for WebSphere Message Broker
for z/OS on the WebSphere Message Broker Library web page.

WebSphere Information Integrator databases

– You can configure message flows on all distributed systems to access
user data in WebSphere Information Integrator for Linux, UNIX, and
Windows Version 9.1.
You can also configure message flows to access user data, by using
JDBC only, in WebSphere Information Integrator Classic Federation
(IICF) for z/OS Version 9.1, on operating systems for which the
WebSphere IICF client code is provided.

– You can configure message flows on z/OS brokers to access user data,
by using JDBC only, in WebSphere Information Integrator Classic
Federation for z/OS Version 8.2. This support provides connectivity
with the following z/OS data sources:
- IMS
- VSAM
- ISAM
- Sequential files
- CA-IDMS
- CA-Datacom
- Software AG ADABAS
- DB2
Brokers can connect directly to WebSphere Information Integrator
Classic Federation for z/OS Version 9.1 by JDBC only.
Brokers can connect indirectly to WebSphere Information Integrator
Classic Federation for z/OS Version 9.1 through an intermediate DB2
system on z/OS. If you use this configuration, only an ODBC CAF
(Call Attachment Facility) connection is supported between the broker
and DB2; this connection therefore does not support two-phase
commit.

Chapter 14. Reference 3595

http://www.ibm.com/software/integration/wbimessagebroker/library/index.html

You must configure all broker ODBC data resources as either CAF or
RRSAF (Recoverable Resource Services Attachment Facility). If you
use CAF, database operations are not coordinated by RRS.

v If you use a remote database, you must configure the ODBC connection to the
database correctly. Refer to the documentation for the database product that you
are using for further information.

See the documentation for the database product that you are using with
WebSphere Message Broker to determine the best options for your specific
environment and requirements, and information about how to configure remote
database access.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“User database connections” on page 2110
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.
Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Sample WebSphere Message Broker ODBC Database Extender (IE02) configuration files:

How you use WebSphere Message Broker ODBC Database Extender (IE02) to load
the correct data source driver.

To use extended database support, the following configuration files need to be set
up, and be accessible from the environment in which you are running the broker.

solidDB data sources

Client side

odbc.ini file
The odbc.ini configuration file is referenced by the environment variable
ODBCUOINI on Linux and UNIX systems, or in the ODBC configuration on
Windows.

3596 WebSphere Message Broker Version 7.0.0.8

The odbc.ini file must present, at least, the following two items for each
data source:
v ODBC Data Source Name
v Logical name of the actual ODBC driver being used

For example, on AIX:
[ODBC DATA SOURCES]
SOLIDDB_DB=IBM solidDB Datasource

[SOLIDDB_DB]
Description=solidDB Datasource
Driver=solid_db

Note that all additional information is ignored.

odbcinst.ini file
The directory containing the odbcinst.ini file is referenced by the
environment variable ODBCSYSINI on Linux and UNIX systems, or in the
ODBC configuration on Windows.

The odbcinst.ini file must present, at least, the following two items for
each data source:
v The logical name of the driver
v The full path to, and name of, the ODBC driver

For example, on AIX:
[solid_db]
Driver=<Your solidDB install Directory>/bin/saca5x6465.so

solid.ini file
This configuration file is located in the directory referenced by the
environment variable SOLIDDIR.

The solid.ini mapping is from the data source name (as defined in
ODBCUOINI) to the solidDB connection string.

The connection string takes the form <logical name of the driver> =
<physical solidDB connect string>.

The Physical connection string specifies the:
v Protocol
v Machine name or IP address
v Port number to use

For example, on AIX:
[Data Sources]
SOLIDDB_DB=tcp my_aix_system 1964

Server side

solid.ini file

For example, on AIX:
[Data Sources]
SOLIDDB_DB=tcp my_aix_system 1964

[COM]
Listen=tcpip 1964

[SQL]
CharPadding=yes
NumericPadding=yes

Chapter 14. Reference 3597

Related tasks:
“Connecting to a database from Linux and UNIX systems using the WebSphere
Message Broker ODBC Database Extender (IE02)” on page 682
WebSphere Message Broker ODBC Database Extender encapsulates the unixODBC
driver manager and this topic describes how you set up and configure the broker
to use it.

Additional software requirements:

WebSphere Message Broker requires additional software products to run
successfully.
v “WebSphere MQ”
v “Microsoft Visual C++ ” on page 3599
v Java runtime environment
v “IBM Installation Manager” on page 3600
v “Browsers” on page 3600

WebSphere MQ

All WebSphere Message Broker components require WebSphere MQ at the
minimum supported level shown in the table.

WebSphere MQ Version 7.0.1 (with tailored terms and conditions for use with
WebSphere Message Broker) is supplied on DVD on Linux on x86, Linux on
x86-64, and Windows only, and on CD on all other platforms. If you have a
previous version of WebSphere MQ, you can use the supplied CD or DVD to
upgrade your current installation.

A broker requires a WebSphere MQ queue manager. More than one broker cannot
share a single queue manager.

Table 36. WebSphere MQ requirements

Operating system Requirements

All distributed systems1 WebSphere MQ Version 7.0.1 (or later)2, 3

z/OS4 WebSphere MQ Version 7.0.1 (or later) with MQ Java Classes
feature

Notes:

1. WebSphere MQ is not required on Linux on x86, Linux on x86-64, or Windows
systems on which you install only the WebSphere Message Broker Toolkit.
You can configure SSL connections between the WebSphere Message Broker
Toolkit or the WebSphere Message Broker Explorer and the broker. To configure
an SSL connection you must have an SSL certificate manager installed on the
computer on which you have installed the WebSphere Message Broker Toolkit
or the WebSphere Message Broker Explorer. If you choose to use
WebSphere MQ to provide SSL management, install either the Client or the
Server; both components include IBM Key Management tools.

2. The minimum set of components that you must install are the server and Java
Messaging components.
You can install WebSphere MQ before or after you have installed WebSphere
Message Broker.

3598 WebSphere Message Broker Version 7.0.0.8

If you have already installed WebSphere MQ, check that your installation
includes the Java Messaging component; add it from the WebSphere MQ media
if it is not installed.
If you start the WebSphere MQ installation program directly on any platform,
including Windows, select a custom installation and include the server and
Java Messaging components.
If you want to use the WebSphere MQ Explorer, the graphical interface that is
available on Linux on x86, Linux on x86-64, and Windows only, install the
WebSphere Eclipse Platform Version 3.3 and the WebSphere MQ Explorer
components. The WebSphere MQ Explorer is a required prerequisite if you
want to use the WebSphere Message Broker Explorer.
Other WebSphere MQ components are optional.

3. On Windows, before WebSphere MQ Version 7.1 all configuration information,
and most queue manager configuration information, was stored in the
Windows registry. From WebSphere MQ Version 7.1 onwards all configuration
information is stored in files. See the WebSphere MQ documentation for further
information.

4. On z/OS, WebSphere MQ is a mandatory requirement and must be installed
before you install WebSphere Message Broker.
See the Program Directory for WebSphere Message Broker for z/OS for further
details about required levels of WebSphere MQ.

For details of WebSphere MQ products and supported versions, see the WebSphere
MQ product information website.

Microsoft Visual C++

When you install the Windows 64-bit version of WebSphere Message Broker on
Windows 7 or Windows Server 2008 R2 only, Microsoft Visual C++ Runtime V10
for 32-bit and for 64-bit are required. The Visual C++ Runtime V10 installers
supplied with the product media are in US English only. The installer for the
Broker component installs Visual C++ Runtime V10 automatically for you. If you
want to install Visual C++ Runtime V10 separately, the installers are on the root of
Runtime Disk 1.

If you want to install a multicultural version of this product, which displays a
translated installation interface and product license agreement, but is otherwise
identical to the US English version, you must download both the required versions
that you want from the Microsoft website and install them before you install the
WebSphere Message Broker runtime.

JRE

A Java runtime environment (JRE) is required on all platforms:
v On distributed platforms, Java Runtime Environment (JRE) Version 6 is

embedded in product components.
v On z/OS, you must acquire and install a JRE. See WebSphere Message Broker

Requirements for the latest information on JRE requirements for z/OS.
For more information, see the Program Directory for WebSphere Message Broker for
z/OS available on the IBM Publications Center website. In particular, review the
information in "Preventative Service Planning".

WebSphere Message Broker supports all JMS providers that conform to the Java
Message Service Specification, version 1.1, and requires the minimum JRE levels

Chapter 14. Reference 3599

http://www.ibm.com/support/docview.wss?uid=swg27007431
http://www.ibm.com/support/docview.wss?uid=swg27007431
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

stated. You must consider both these factors when you select a JMS provider
whose client is embedded in the broker.

Browsers

For best results when viewing the information center from the WebSphere Message
Broker Toolkit, use Mozilla 1.4.2 (or later) on Linux on x86 and Linux on x86-64.

On Windows, an embedded browser is launched to view the information center.

Some Linux on x86 and Linux on x86-64 offerings do not install Mozilla by default.
If you plan to install the WebSphere Message Broker Toolkit on your Linux on x86
or Linux on x86-64 system, check that a supported version of Mozilla is already
installed. If not, install Mozilla from your Linux on x86 or Linux on x86-64
operating system media.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Customizing the version of Java on z/OS” on page 607
Check the version of Java in your enterprise, and change it, if necessary.
“Considering security for the WebSphere Message Broker Toolkit and WebSphere
Message Broker Explorer” on page 500
Set up appropriate levels of security for the WebSphere Message Broker Toolkit
and WebSphere Message Broker Explorer.
Related reference:
“IBM Installation Manager”
WebSphere Message Broker Toolkit is installed by the IBM Installation Manager.
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
Related information:

WebSphere Message Broker Requirements

IBM Installation Manager:

WebSphere Message Broker Toolkit is installed by the IBM Installation Manager.

All Rational products at Version 7.0 or later are installed by IBM Installation
Manager, which also controls management, updates, licensing, and uninstallation.
The WebSphere Message Broker Toolkit includes some Rational product
components, and therefore includes and uses Installation Manager.

The following Rational products are controlled by Installation Manager:

3600 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

v WebSphere Message Broker Toolkit Version 7.0 or later
v Rational Application Developer (RAD) Version 7.5 or later
v Rational Software Architect (RSA) Version 7.0 or later
v WebSphere Integration Developer (WID) Version 7.0.0.1 or later

Installation Manager is included with the WebSphere Message Broker Toolkit and
with the other products in this list. When you first install the WebSphere Message
Broker Toolkit (or another listed product), Installation Manager installs itself into a
directory that you specify, and then drives the installation of the WebSphere
Message Broker Toolkit (or other listed product). If you install another product,
Installation Manager detects that it is already installed, and drives only the
installation of that product.

The WebSphere Message Broker Toolkit shares certain resources with these other
products, if installed; for example, Eclipse features and plug-ins. All common
resources that are used by the installed products must be installed into a single
directory, which is known as the shared resources directory. You are asked to specify
the location of this directory when you first install the WebSphere Message Broker
Toolkit or another Rational product.

If you install another product, Installation Manager finds the shared resources
directory and uses its content during the installation process; you cannot change
the location of this directory.

The shared resources directory must be on a drive that is local to this computer;
you cannot specify a mapped or remote drive. The drive that you specify for the
shared resources directory must be of sufficient size to handle all your expected
installations; you cannot change or expand this directory after installation. When
you specify the directory during a first installation, specify a new directory to
ensure that it does not contain any files that might cause conflicts.

Memory requirements for the WebSphere Message Broker Toolkit are listed in
“Memory and disk space requirements” on page 3584. If you plan to install
additional Rational products, allow 2 GB for each additional product.

You must also allocate space in another directory in which you can manage the
workspace resources that you create for the installed Rational products.

Package groups

When you install the WebSphere Message Broker Toolkit, you are also asked to
specify a package group. Products that you install into a single package group
share Eclipse features and plug-ins, and these resources are loaded and viewable in
a single Eclipse instance. You can choose whether to install a product in a package
group with other products, or to install WebSphere Message Broker Toolkit in a
new package group.

Each package group is isolated from products in other package groups, although
all package groups access a single shared resources directory. You are asked to
specify the location for the package group directory; you must specify a new
directory for each new package group. All product-specific files are installed into
this directory.

You might choose to use separate package groups to install different combinations
of the WebSphere Message Broker Toolkit and other Rational products, so that

Chapter 14. Reference 3601

users can gain access to tailored Eclipse instances. When you install the first
product, the first package group is created with the name IBM WebSphere
Message Broker Toolkit. This name is fixed; you cannot change it.

If you choose to install another product into a new package group, another group
is created with the name IBM Software Development Platform_1. Each new
package group name follows this same naming pattern with the numeric suffix
incremented by one.

For example, you might have defined the following package groups:
v IBM WebSphere Message Broker Toolkit into which you have installed the

WebSphere Message Broker Toolkit and RAD.
v IBM WebSphere Message Broker Toolkit_1 into which you have installed the

WebSphere Message Broker Toolkit and RSA.
v IBM WebSphere Message Broker Toolkit_2 into which you have installed WID

and RSA.

When you start an Eclipse session in one of these package groups, you can access
only those resources that are associated with the products installed in that group.

If you install later versions of any of the products in a different package group, the
updates are available only in that group. The shared resources directory is also
updated with later versions of shared files, which are maintained separately from
the original versions and are used only for the upgraded products.

Each Rational product specifies which versions of plug-ins and features it requires,
if appropriate. Installation Manager ensures the integrity of these requirements in
each package group. If the product that you are currently installing breaks this
integrity, Installation Manager prevents the installation into that package group.

Installation Manager also controls uninstallation of the WebSphere Message Broker
Toolkit and the other products previously listed; you cannot uninstall Installation
Manager until all listed products in all package groups have been removed.

Installation Manager is not required for any of the Broker component prerequisite
products, such as WebSphere MQ.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Additional software requirements” on page 3598
WebSphere Message Broker requires additional software products to run
successfully.
Related information:

WebSphere Message Broker Requirements

3602 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Optional software support:

The products listed here are not required, but might be useful. Except where
stated, these products are not supplied with WebSphere Message Broker.
v “EIS client libraries”
v “WebSphere Adapters”
v “Tivoli License Manager”
v “Security providers”
v “JMS providers”
v “Compilers” on page 3604
v “Adobe Flash Player” on page 3604
v Citrix XenApp
v “WebSphere Process Server and WebSphere Integration Developer” on page 3604
v “WebSphere Service Registry and Repository” on page 3604

EIS client libraries

If you plan to use WebSphere Adapters on any supported operating system, you
must obtain the appropriate Enterprise Information System (EIS) client libraries
from the relevant EIS vendor (for example, PeopleSoft, Siebel, or SAP). The client
libraries are required to complete connections between Adapters nodes and the
EIS; install them on each computer on which you run a broker that hosts message
flows that include Adapters nodes.

WebSphere Adapters

For details of the versions of WebSphere Adapters supported by WebSphere
Message Broker Version 7.0, visit the WebSphere Message Broker Requirements
website. For more information about the hardware and software requirements of
WebSphere Adapters, see Supported software for WebSphere Adapters.

Tivoli License Manager

To monitor the use of software products including WebSphere Message Broker,
install IBM Tivoli License Manager (ITLM). For the details of the version of ITLM
that is required, visit the WebSphere Message Broker Requirements website.

Security providers

The message flow security manager interacts with external security providers:
v Lightweight Directory Access Protocol (LDAP) provides authentication and

authorization services. For details of the LDAP version that your LDAP server
must support, visit the WebSphere Message Broker Requirements website.

v WS-Trust V1.3 STS providers (including TFIM V6.2) provide authentication,
mapping, and authorization services.

v Tivoli Federated Identity Manager (TFIM) V6.1 provides authentication,
mapping, and authorization services.

JMS providers

For details of the version of the Java Message Service Specification that the
JMSInput and JMSOutput nodes are compatible with, and work with, visit the
WebSphere Message Broker Requirements website.

Chapter 14. Reference 3603

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www-01.ibm.com/support/docview.wss?uid=swg27006249
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Compilers

C/C++ user-defined extensions that were built with older levels of compilers can
be used when migrating an existing broker or setting up a new broker.

However, C/C++ user-defined extensions on Linux might cause problems if linked
against libstdc++.so.5 as WebSphere Message Broker is now linked against
libstdc++.so.6. Recompile your user-defined extensions using a supported compiler.

For details of the versions of the compilers that are supported, visit the WebSphere
Message Broker Requirements website.

Adobe Flash Player

If you want to start the Quick Tour from the information center in the WebSphere
Message Broker Toolkit, you must install the Adobe Flash Player. For details of the
versions of the Adobe Flash Player that are supported, visit the WebSphere
Message Broker Requirements website. You can freely download from the Adobe
website an Adobe Flash Player plug-in for the web browsers that are supported by
the WebSphere Message Broker Toolkit.

WebSphere Process Server and WebSphere Integration Developer

The SCA nodes allow interoperability with WebSphere Process Server, a business
integration server that supports solutions that are based on service-oriented
architecture (SOA). Service Component Architecture (SCA) is a specification that
describes a model for building applications and systems using SOA and the SCA
nodes support scenarios in which service components that run on WebSphere
Process Server either are invoked from WebSphere Message Broker or invoke a
WebSphere Message Broker message flow. For details of the versions of WebSphere
Process Server that are supported by WebSphere Message Broker, visit the
WebSphere Message Broker Requirements website.

WebSphere Integration Developer is the development environment for WebSphere
Process Server. It is the tool for building and deploying SOA-based integration
solutions on WebSphere Process Server. To enable WebSphere Message Broker to
interoperate with WebSphere Process Server, SCA import and export components
need to be imported into WebSphere Message Broker from WebSphere Integration
Developer, and Broker SCA definitions need to be exported from WebSphere
Message Broker to WebSphere Integration Developer. For details of the versions of
WebSphere Integration Developer that are supported by WebSphere Message
Broker, visit the WebSphere Message Broker Requirements website.

WebSphere Service Registry and Repository

WebSphere Service Registry and Repository provides a central repository of
documents that describe services, service interfaces, and associated policies. For
details of the versions of WebSphere Service Registry and Repository that are
supported by WebSphere Message Broker, see the WebSphere Message Broker
Requirements website.
Related concepts:
“WebSphere Service Registry and Repository” on page 1875
The WebSphere Service Registry and Repository (WSRR) is a central repository of
entities. A wide range of entities can be stored and retrieved, including
user-defined concepts and definitions related specifically to Web services, such as

3604 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.macromedia.com/software/flashplayer/
http://www.macromedia.com/software/flashplayer/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

WSDL services, service interfaces, and associated policies.
“Working with Service Component Architecture (SCA)” on page 2095
Start here to find out how you can use SCA to allow interoperability with
WebSphere Process Server Version 6.2.
Related tasks:
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Chapter 10, “Testing and debugging message flow applications,” on page 3143
Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.
“Installing Tivoli License Manager” on page 301
IBM Tivoli License Manager (ITLM) enables you to monitor the use of IBM (and
other) software products. WebSphere Message Broker includes support for ITLM
Version 2.1.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.
“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.

Quick Tour

System requirements for Citrix XenApp:

This topic gives information about licensing issues, and the software and hardware
that you need to use WebSphere Message Broker in a Citrix XenApp environment.

Operating system

The required operating system is Windows 2003 Server. Client versions of
Windows, such as Windows XP, cannot be used because Citrix XenApp
requires Terminal Server, which is not available on client versions of
Windows.

The recommended version of Windows Server 2003 is Enterprise Edition.
You can also use Windows Server 2003 Standard Edition, but you might
need to reduce the maximum heap size for the Java virtual machine that is
used by the WebSphere Message Broker Toolkit.

Software prerequisites

Citrix XenApp (previously known as Citrix Presentation Server 4.0 or 4.5)
and its prerequisites must be installed on the Windows 2003 server.

Hardware prerequisites

The server must have enough CPU, RAM, disk space, and network
bandwidth for each concurrent user. Performance depends on the tasks
that are being performed, and on the hardware, software and networking
setup. As a guide, the server should have a minimum of 1 GB of RAM
per concurrent user and at least 4 GB of RAM in total. If the tasks require
frequent disk access, it should help performance to have a separate
physical disk for each user so that they do not slow each other down.

Licensing

Any number of users can use the WebSphere Message Broker Toolkit
through Citrix, provided they all connect only to a Message Broker that
has a valid license.

Chapter 14. Reference 3605

Related concepts:
“Users and Citrix” on page 304
Review the categories of user that might want to use with Citrix, and how to
configure for concurrent multi-users.
Related tasks:
“Publishing in a Citrix XenApp environment” on page 302
Supply application location and user details to Citrix to publish a WebSphere
Message Broker command console or WebSphere Message Broker Toolkit.

License requirements
Use the reference information in this section to understand license requirements.

You can install WebSphere Message Broker to support a full range of
transformation and routing operations. If appropriate, you can install an edition
that supports a restricted set of functions, if that subset fulfills your business
requirements. You must ensure that your use and configuration of the product
conforms to the license agreement that you have purchased:
v WebSphere Message Broker Trial Edition. You can download this edition from

the Web, at no charge. This edition has its own license and terms and conditions
which is valid for 90 days. You can use all available function, and are not
limited in the number of resources that you create and maintain.

v WebSphere Message Broker Starter Edition. If you expect to use all or most of
the features that are available, but you configure a limited environment because
of low capacity requirements, purchase this edition. You can use all available
function, but are limited in the number of resources that you create and
maintain.

v WebSphere Message Broker Entry Edition. If you expect to use only a basic set
of features and have only low capacity requirements, purchase this edition. You
can use a limited set of nodes, and you are limited in the number of resources
that you create and maintain.

v WebSphere Message Broker Remote Adapter Deployment. If you expect your
typical use of WebSphere Message Broker to be integration with Enterprise
Information Systems (EIS), purchase this edition. This edition supports the
subset of development resources that provide EIS interaction.

v WebSphere Message Broker. If you want to set up a full broker environment that
uses most or all of the features available, you require a full (unrestricted) license.

WebSphere Message Broker for z/OS is unavailable in Remote Adapter
Deployment, Starter Edition, Entry Edition, and Trial Edition.

If you choose to change your license agreement from a full license to either of the
two specialized licenses, you might find that your current configuration is no
longer supported. For further details about what features are available for each
license, and how to configure your environment, see “WebSphere Message Broker
technical overview” on page 27.

You can upgrade to the full license from another edition, if appropriate, by
purchasing another license.

Your license also covers use of the product for development and unit test
purposes. All developers in your organization, who are working on resources and
applications for WebSphere Message Broker, can install one copy of all components
on their computer. They can create and configure a broker environment without
any functional or resource restrictions. Installation of the WebSphere Message

3606 WebSphere Message Broker Version 7.0.0.8

Broker Toolkit limits this use to Windows, Linux on x86, and Linux on x86-64
computers. The unit test environment is limited to these three platforms even if
you have purchased a license for WebSphere Message Broker for z/OS.

You can also install the supplied WebSphere MQ product on the computers on
which your developers create their development and test configurations, regardless
of the license agreement that you have purchased.

You can view licenses after installation in your chosen language in directory
install_dir/license/. Terms and conditions are also supplied for third-party
products used by WebSphere Message Broker. The file containing these details is
stored in the same license subdirectory when you install one or more runtime
components.

Contact your IBM representative if you want further details about license
agreements, or if you want to purchase additional licenses or change the type of
license that you have purchased.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.
“Software requirements” on page 3588
View the operating system, database, and other software requirements.
Related information:

WebSphere Message Broker Requirements

General industry standards supported by WebSphere Message
Broker

WebSphere Message Broker supports general industry standards that are associated
with message processing.

Supported standards

The following table details the general standards that are supported by WebSphere
Message Broker, with additional comments and supported versions where
appropriate.

Standard Comments or supported releases in Version 7.0

Java 1.6 (Version 6)

SSL

SOAP 1.1, 1.2

TLS

WSDL 1.1

Chapter 14. Reference 3607

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Standard Comments or supported releases in Version 7.0

WS-Addressing 1.0 (Final 2005/08), Submission 2004/08

WS-Security 1.0

XPath 1.0

XSD 1.0

XSLT 1.0

Related concepts:
“WebSphere Message Broker technical overview” on page 27
WebSphere Message Broker enables information packaged as messages to flow
between different business applications, ranging from large traditional systems
through to unmanned devices such as sensors on pipelines.

Installation packages
View the installation packages that are available, and the contents of those
packages.

This section contains the following topics:
v “Packaging options”
v “Package contents” on page 3610
v “The Broker component and WebSphere Message Broker Explorer package” on

page 3611
v “Toolkit package” on page 3614
v “DVD package” on page 3616
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related information:

WebSphere Message Broker Requirements

Packaging options
Both physical media and electronic images are available for the installation of
WebSphere Message Broker.

Physical media

You can order the physical media for WebSphere Message Broker Starter
Edition, Entry Edition, Remote Adapter Deployment, and the full
(unrestricted) licenses. Contents are described in “Package contents” on
page 3610.

When you install the product from the media, configure your brokers to
operate in the mode that conforms to the license you have purchased. See
the information center for further details.

Electronic images

3608 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

If you are registered with IBM Passport Advantage, you can download
electronic images from IBM Passport Advantage for WebSphere Message
Broker Starter Edition, Entry Edition, Remote Adapter Deployment, and
the full (unrestricted) licenses. You can also request one set of the physical
media.

The electronic images exactly mirror the physical media that are described
in “Package contents” on page 3610, although are not formatted as CD or
DVD images. For further information, and to register, access the IBM
Passport Advantage website.

Electronic images are available on request for WebSphere Message Broker
for z/OS. Contact your IBM representative for further information and
assistance.

When you install the product from these images, you must configure your
brokers to operate in the mode that conforms to the license that you have
purchased. See the information center for further details.

Trial Edition electronic images

For distributed systems only, you can download electronic images for
WebSphere Message Broker Trial Edition from the developerWorks
WebSphere Message Broker Trial package website.

Images are provided for the Broker component and the WebSphere
Message Broker Toolkit. Use this edition to assess how the product can
address your business requirements, and explore how you might use it
with existing software in your enterprise.

For the latest information about supported trial versions, always check the
WebSphere Message Broker readme.html file on the product readmes
website.

The following restrictions apply:
v All product features are available, but the Broker component operates

for only 90 days after installation.
v Electronic images of WebSphere MQ are not included with the

WebSphere Message Broker Trial Edition. If you have not already
ordered and installed WebSphere MQ, you can download a trial package
from the Web. The WebSphere MQ trial versions include the required
Java and Eclipse components. Download from the WebSphere MQ Trial
package website.

v Physical images are not available for the Trial Edition.
v The Trial Edition is not available for z/OS.

If you choose to buy WebSphere Message Broker during or after the trial
period, and want to continue to use the product components that you have
installed, you do not have to reinstall them, but you must reconfigure
existing brokers, and create new brokers, in the mode that conforms to the
license that you have purchased. You can retain all the associated resources
that you have developed or imported during the trial period. For further
information, see “Changing the operation mode of your broker” on page
655.

Unless otherwise stated in this book, you can use electronic images in the same
way as the physical CDs or DVDs, and all installation and set up procedures
described are identical for the trial and full packages.
Related tasks:

Chapter 14. Reference 3609

https://www.ibm.com/software/howtobuy/passportadvantage/paocustomer/
http://www.ibm.com/developerworks/downloads/ws/wmb/
http://www.ibm.com/support/docview.wss?uid=swg27006913
http://www.ibm.com/developerworks/downloads/ws/wmq/
http://www.ibm.com/developerworks/downloads/ws/wmq/

“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Installation packages” on page 3608
View the installation packages that are available, and the contents of those
packages.
Related information:

WebSphere Message Broker Requirements

Package contents
Contents of the physical media packages for WebSphere Message Broker Starter
Edition, Remote Adapter Deployment, Entry Edition, and the full (unrestricted)
licenses. The electronic images that you can download have equivalent content.

Content for the Trial Edition packages is restricted; differences are described where
they apply.

The contents of the package depend on the product that you have ordered:

WebSphere Message Broker

The package includes product code for all supported distributed operating
systems, plus other optional software and documentation:
v The Quick Start CD, which contains documentation in PDF format. This

CD is always at the top of the package. The CD includes the following
documentation:
– PDF files for the Quick Start Guide (US English and translations).
– PDF files for the Installation Guide (US English and translations).

v A plastic wallet that contains four DVDs, one for Linux on x86, one for
Linux on x86-64, one for Windows 32-bit, and one for Windows 64-bit.
The DVDs contains all required and optional product code. The structure
of the DVD content is described in “DVD package” on page 3616.
The WebSphere Message Broker Toolkit package is contained on the
DVDs. For more information about the contents of the WebSphere
Message Broker Toolkit package, see “Toolkit package” on page 3614.

v A set of plastic wallets that contain CDs for installation of the broker,
grouped by operating system, for systems other than Linux on x86,
Linux on x86-64, and Windows. The CDs are listed in “The Broker
component and WebSphere Message Broker Explorer package” on page
3611.

v The Quick Start Guide, printed in US English, French, and Japanese.

WebSphere Message Broker for z/OS

The package includes product code for the z/OS operating system on tape,
plus other optional software and documentation. In addition, you receive
WebSphere Message Broker for Linux on x86, Linux on x86-64, and
Windows, because the WebSphere Message Broker Toolkit is available only
on those operating systems.

3610 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

The electronic images that you can download have equivalent content.
v A plastic wallet that contains four DVDs, one for Linux on x86, one for

Linux on x86-64, one for Windows 32-bit, and one for Windows 64-bit.
The DVDs contain all required and optional product code. The structure
of the DVD content is described in “DVD package” on page 3616.
The WebSphere Message Broker Toolkit package is contained on the
DVDs. For more information about the contents of the WebSphere
Message Broker Toolkit package, see “Toolkit package” on page 3614.

v z/OS tapes
For information about tapes supplied with WebSphere Message Broker
for z/OS, see the Program Directory for WebSphere Message Broker for z/OS
on the WebSphere Message Broker Library web page.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Installation packages” on page 3608
View the installation packages that are available, and the contents of those
packages.
Related information:

WebSphere Message Broker Requirements

The Broker component and WebSphere Message Broker Explorer package:

The Broker component and WebSphere Message Broker Explorer packages contain
CDs and images supplied for WebSphere Message Broker and associated products.

The contents listed in the following table are supplied for installation of the Broker
component. WebSphere MQ images are not included in the Trial Edition.

On Linux on x86, Linux on x86-64, and Windows, the product code is delivered on
DVD. The structure of the DVD content is described in “DVD package” on page
3616. On these operating systems, the following table shows the contents of the
downloaded images.

The physical package for the DVD is marked with the symbol .

On operating systems other than Linux on x86, Linux on x86-64, Windows, and
z/OS, the product code is delivered on CD.

The physical packages for the CDs are marked with the symbol .

Chapter 14. Reference 3611

http://www.ibm.com/software/integration/wbimessagebroker/library/index.html
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Table 37. CDs and images supplied for WebSphere Message Broker and associated products

Operating System1 CD label Description

AIX WebSphere Message Broker Version 7.0 AIX (Runtime
Disk 1)

Product code2

WebSphere MQ Version 7.0.1 AIX (Runtime Disk 2) Product code

WebSphere Message Broker ODBC Database Extender
(IE02) (Runtime Disk 1)

Product code2

HP-Itanium WebSphere Message Broker Version 7.0 HP-Itanium
(Runtime Disk 1)

Product code 2

WebSphere MQ Version 7.0.1 HP-Itanium platform
(Runtime Disk 2)

Product code

WebSphere Message Broker ODBC Database Extender
(IE02) (Runtime Disk 1)

Product code2

Linux on POWER WebSphere Message Broker Version 7.0 Linux on
POWER (Runtime Disk 1)

Product code2

WebSphere MQ Version 7.0.1 Linux on POWER
platform (Runtime Disk 2)

Product code

WebSphere Message Broker ODBC Database Extender
(IE02) (Runtime Disk 1)

Product code2

Linux on x86 WebSphere Message Broker Version 7.0 Linux on x86
(Runtime Disk 1)

Product code2

WebSphere MQ Version 7.0.1 Linux on x86 (Runtime
Disk 2)

Product code

WebSphere Message Broker ODBC Database Extender
(IE02) (Runtime Disk 1)

Product code2

Linux on x86-64 WebSphere Message Broker Version 7.0 Linux on
x86-64 (Runtime Disk 1)

Product code2

WebSphere MQ Version 7.0.1 Linux on x86-64
platform (Runtime Disk 2)

Product code

WebSphere Message Broker ODBC Database Extender
(IE02) (Runtime Disk 1)

Product code2

Linux on IBM z
Systems

WebSphere Message Broker Version 7.0 Linux on IBM
z Systems (Runtime Disk 1)

Product code2

WebSphere MQ Version 7.0.1 Linux on IBM z Systems
platform (Runtime Disk 2)

Product code

WebSphere Message Broker ODBC Database Extender
(IE02) (Runtime Disk 1)

Product code2

Solaris on SPARC WebSphere Message Broker Version 7.0 Solaris
(Runtime Disk 1)

Product code2

WebSphere MQ Version 7.0.1 Solaris (Runtime Disk 2) Product code

WebSphere Message Broker ODBC Database Extender
(IE02) (Runtime Disk 1)

Product code2

Solaris on x86-64 WebSphere Message Broker Version 7.0 Solaris on
x86-64 (Runtime Disk 1)

Product code2

WebSphere MQ Version 7.0.1 Solaris on x86-64
(Runtime Disk 2)

Product code

WebSphere Message Broker ODBC Database Extender
(IE02) (Runtime Disk 1)

Product code2

3612 WebSphere Message Broker Version 7.0.0.8

Table 37. CDs and images supplied for WebSphere Message Broker and associated products (continued)

Operating System1 CD label Description

Windows 32-bit WebSphere Message Broker Version 7.0 Windows
32-bit (Runtime Disk 1)

Product code3

WebSphere MQ Version 7.0.1 Windows 32-bit
(Runtime Disk 2)

Product code4

Windows 64-bit WebSphere Message Broker Version 7.0 Windows
64-bit (Runtime Disk 1)

Product code3

WebSphere MQ Version 7.0.1 Windows 64-bit
(Runtime Disk 2)

Product code4

Notes:

1. On all operating systems, the CDs and images for WebSphere MQ (Runtime
Disk 2) are not included in the Trial Edition. You must obtain prerequisite
software from other sources to support the Trial Edition of WebSphere Message
Broker. See “Additional software requirements” on page 3598 for more
information.

2. Disk 1 for all Linux and UNIX systems includes the following resources:
v WebSphere Message Broker installation files.
v WebSphere Message Broker Explorer installation file (Linux on x86 and Linux

on x86-64 only).
v WebSphere Message Broker ODBC Database Extender (IE02) (Linux and

UNIX only).
v License files. These files are used by the installation wizard and are supplied

in all supported languages.
v The readme file in English and supported languages. The readme.html file

contains late updates about the product and its documentation. The latest
version of the readme file is available in English only on the product
readmes web page. The readme file that is included on the product media
contains a link to the latest version on the product readmes web page.

v The Installation Guide PDF file in English and supported languages. The
Installation Guide PDF file is available after a major release of the information
center, such as Version 7.0. If significant changes are accumulated between
major releases, the Installation Guide PDF file is refreshed and provided in
English, on the customer FTP site and the Library web page. The PDF file
content is the same as the content that is provided in the information center
at the time of publish. However the PDF file documentation is updated less
frequently than the information center. For the latest information, see the
“Installation” on page 3581 and “Installing” on page 231 sections in the
online information center.

v Sample scripts. Use the sample response files to run the silent interface to
install and uninstall components.

3. Disk 1 for Windows includes the following resources:
v WebSphere Message Broker installation files.
v WebSphere Message Broker Explorer installation file.
v The Launchpad.
v The Quick Tour stand-alone executable program.
v License files. These files are used by the installation wizard and are supplied

in all supported languages.
v The readme file in English and supported languages. The readme.html file

contains late updates about the product and its documentation. The latest
version of the readme file is available in English only on the product

Chapter 14. Reference 3613

http://www.ibm.com/support/docview.wss?uid=swg27006913
http://www.ibm.com/support/docview.wss?uid=swg27006913
http://www.ibm.com/support/docview.wss?uid=swg27006913
http://www.ibm.com/support/docview.wss?uid=swg27006913

readmes web page. The readme file that is included on the product media
contains a link to the latest version on the product readmes web page.

v The Installation Guide PDF file in English and supported languages. The
Installation Guide PDF file is available within a quarter of a year after a major
release of the information center, such as Version 7.0, or when significant
changes are accumulated. The PDF file content is the same as the content
that is provided in the information center at the time of publish. However
the PDF file documentation is updated less frequently than the information
center. For the latest information, see the “Installation” on page 3581 and
“Installing” on page 231 sections in the online information center.

v Sample scripts. Use the sample response files to run the silent interface to
install and uninstall components.

4. The Launchpad and stand-alone Quick Tour are also included on Disk 2 on
Windows.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Installation packages” on page 3608
View the installation packages that are available, and the contents of those
packages.
Related information:

WebSphere Message Broker Requirements

Toolkit package:

Contents of the Toolkit package.

The Toolkit package is supplied on the product DVDs for installation of the
WebSphere Message Broker Toolkit. The structure of the DVD content is described
in “DVD package” on page 3616.

The Toolkit package contains three directories, called disk1, disk2, and disk3. The
contents of the disks in shown in the following table.

Table 38. DVD and images supplied for WebSphere Message Broker Toolkit

Operating System Directory Description

Linux on x86 disk1 v Product code
v Installation Manager1

v Additional resources2

disk2 Product code

disk3 Product code

3614 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/support/docview.wss?uid=swg27006913
http://www.ibm.com/support/docview.wss?uid=swg27006913
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

Table 38. DVD and images supplied for WebSphere Message Broker Toolkit (continued)

Operating System Directory Description

Linux on x86-64 disk1 v Product code
v Installation Manager1

v Additional resources2

disk2 Product code

disk3 Product code

Windows 32-bit disk1 v Product code
v Installation Manager1

v Additional resources2

disk2 Product code

disk3 Product code

Windows 64-bit disk1 v Product code
v Installation Manager1

v Additional resources2

disk2 Product code

disk3 Product code

Notes:

1. Installation Manager is installed only if it does not exist on the target computer;
this product is required to manage the WebSphere Message Broker Toolkit
installation.

2. Disk 1 includes the following additional resources:
v Readme files. The readme.html files contain late updates about the product

and its documentation and are supplied in all supported languages.
v Installation Guides. PDF files of the Installation Guide are supplied in all

supported languages to which it has been translated.
v Sample scripts. Use these sample response files to run the silent interface to

install and uninstall components.
v On Windows only, the Launchpad.
v On Windows only, the Quick Tour stand-alone executable program.

These files are identical to the equivalent files described in “The Broker
component and WebSphere Message Broker Explorer package” on page 3611.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Installation packages” on page 3608
View the installation packages that are available, and the contents of those
packages.
Related information:

WebSphere Message Broker Requirements

Chapter 14. Reference 3615

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

DVD package:

Use the DVD package to install the Broker component, the WebSphere Message
Broker Toolkit, the WebSphere Message Broker Explorer, WebSphere MQ Version
7.0.1, and WebSphere Message Broker ODBC Database Extender (IE02) (Linux and
UNIX only).

DVDs (type DVD-R, size DVD-5) are supplied only for Linux on x86, Linux on
x86-64, and Windows. The DVD labels are WebSphere Message Broker Version 7.0
Linux on x86, WebSphere Message Broker Version 7.0 Linux on x86-64, WebSphere
Message Broker Version 7.0 Windows 32-bit, and WebSphere Message Broker
Version 7.0 Windows 64-bit.

DVD images are not included in the Trial Edition.

The physical package is marked with the symbol .

The DVDs contain code for the following products:
v Broker component
v WebSphere Message Broker Toolkit
v WebSphere Message Broker Explorer
v WebSphere MQ Version 7.0.1
v WebSphere Message Broker ODBC Database Extender (IE02) (Linux and UNIX

only)

If you use the Launchpad to install on Windows, as described in “Installing by
using the Windows Launchpad” on page 262, the Launchpad navigates the DVD to
find the products and components that you have chosen to install; therefore, you
do not need to be familiar with the structure of the DVD contents.

If you install on Linux on x86, Linux on x86-64, or Windows, and choose not to
use the Launchpad, use the DVD structure shown in the following table to find
what you need.

Table 39. DVD contents

Directory Description

\ (root) v WebSphere Message Broker installation files
v (Windows only) Launchpad and Quick Tour1

\ie02 WebSphere Message Broker ODBC Database Extender (IE02) (Linux and
UNIX only)

\installation_guide Installation Guides3, 4

\license License files3

\Message_Broker_Toolkit_V7.0 WebSphere Message Broker Toolkit installation repository 2

\MBExplorer WebSphere Message Broker Explorer installation repository

\readmes Readme files3

\sample-scripts Sample response files3

\WebSphere_MQ_V7.0.1 WebSphere MQ installation images

Notes:

3616 WebSphere Message Broker Version 7.0.0.8

1. This item is a stand-alone executable version of the Quick Tour, which is
available only on Windows. On Linux on x86, Linux on x86-64, and Windows,
you can access the Quick Tour from the WebSphere Message Broker Toolkit.

2. This directory contains WebSphere Message Broker Toolkit installation
repository and Installation Manager. The version of the Installation Manager in
this directory is specific to the target operating system.

3. The files in this directory are identical to the equivalent files described in “The
Broker component and WebSphere Message Broker Explorer package” on page
3611.

4. On Linux on x86 and Linux on x86-64, this directory has two subdirectories:
one for US English and one for translated PDF files.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Installation packages” on page 3608
View the installation packages that are available, and the contents of those
packages.
Related information:

WebSphere Message Broker Requirements

Installation and uninstallation interfaces
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.

When you install or uninstall the Broker component, you can choose a graphical,
console, or silent interface. These options are described in “How to install and
uninstall the Broker component” on page 3618.

When you install or uninstall the WebSphere Message Broker Toolkit, you can
choose a graphical or silent interface. These options are described in “How to
install and uninstall the WebSphere Message Broker Toolkit” on page 3623.

Examples of commands in the topics in this section use installer and uninstaller for
the names of the installation or uninstallation wizard. Substitute the correct names
for the platform on which you are using the wizard. Unless otherwise specified,
you can use the examples for uninstalling components, or applying service; the
same format is used for all three operations.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.

Chapter 14. Reference 3617

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Uninstalling the Broker component” on page 332
You can uninstall the Broker component on distributed systems in a number of
ways.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Uninstalling the WebSphere Message Broker Toolkit” on page 340
Choose the method that you want to use to uninstall the WebSphere Message
Broker Toolkit and follow the instructions to remove the component.
Related reference:
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

How to install and uninstall the Broker component
You can install and uninstall the Broker component by using one of three
interfaces.
v “Graphical interface”
v “Console interface” on page 3619
v “Silent interface” on page 3619

Each interface has different advantages, which are discussed in the appropriate
sections. When you have chosen the interface that you want to use, complete the
following steps:
v Check that your user ID has the correct authority to complete this task; see

“Installation and uninstallation authorization” on page 3628 for details.
v If you have multiple broker installations on your system, see “How to uninstall

multiple installations of the Broker component” on page 3620.
v Follow the installation instructions in “Installing” on page 231 (for a new

installation or to install service to existing components), or in “Uninstalling” on
page 331 (for product components and service).

Graphical interface

The installation and uninstallation wizards open a graphical interface if you start
them with no options (the default interface). The wizards guide you through the
installation or uninstallation process with a series of pages that present options and
defaults. You can accept the default values, or change them to suit your
environment and requirements.

The graphical interface provides the highest level of information and guidance. Use
this interface when you are unfamiliar with the product, or to monitor progress.

If you click Cancel before the Install Progress or Uninstall Progress panel appears,
you can exit the setup. If you choose to exit, your system returns to the state that it
was in before the wizard was started. However, if you cancel the installation
wizard after installation or uninstallation has completed, and the final summary
panel is displayed, your system is not restored to its previous state; the wizard
stops immediately. If you want to remove any program that has been installed,
invoke the uninstallation wizard.

3618 WebSphere Message Broker Version 7.0.0.8

When you use the wizards, you might have to wait a few seconds to move to the
next panel after clicking Next. Progress is not always displayed on all panels. If
you click Next twice, you might skip an entire panel. To ensure that the installer or
uninstaller is progressing, monitor your processor usage, which increases greatly
during both installation and uninstallation.

Console interface

The console interface is a character-based interface with which you interact in a
command window. It presents the same options as the graphical interface.

Use the console interface if you want a command-line or text interface rather than
a graphical interface. This interface is suitable for users who use only the keyboard
to choose values and navigate through installation, and those users with screen
reader software, such as JAWS.

Invoke the installer by using the following command. Use the same format for the
uninstaller.
installer -console

Use these prompts to navigate through the wizard:
v 1 Move to the next panel
v 2 Return to the previous panel
v 3 Cancel and terminate the wizard
v 4 Redisplay the current screen

The default option is always displayed within brackets, for example [1]. If this
default option is the correct choice, press Enter to continue.

Silent interface

Use the silent interface for automated installation or uninstallation over many
identical systems. If you start a silent installation or uninstallation, the wizard runs
without any interaction. Using this interface, the process is completed with default
options, or according to a predefined set of options. The silent interface does not
provide any feedback to the caller, therefore you must view the log to check
whether the action was successful.

If you use the silent interface to uninstall the Broker component, the wizard always
uninstalls components from the last known Version 7.0 installation location (that is,
the most recent installation), regardless of the location of the uninstallation wizard
that you invoke. To remove components from an earlier Version 7.0 installation,
use the console or graphical interface.

You can perform a silent installation in the following ways:
v With default options:

The installation wizard performs the following actions:
– Checks that prerequisite software is installed
– Installs to the default directory
– Installs all selectable features
Because the installation wizard checks for prerequisite software by using the
silent interface, the program fails if the prerequisite software is not already
installed. You can override this check if you use a response file (see “Using

Chapter 14. Reference 3619

response files with the Broker component” on page 3621), or include the
appropriate parameter with a non-default value on the command invocation.
The uninstallation wizard performs the following actions:
– Removes all selectable features
To run the wizard with default options, specify the -silent -G
licenseAccepted=true options on the command:
installer -silent -G licenseAccepted=true

v With one or more non-default options:
If you want the wizard to use non-default values for one or more options,
specify non-default options either on the command invocation, or in a response
file, as described in “Using response files with the Broker component” on page
3621.
A sample response file is provided in the sample-scripts directory of the root
CD or DVD directory. This file includes detailed information about the options
that you can change, and the values that you must enter to change them. Tailor
this file to match your requirements, or generate a new response file.
To run a tailored silent installation using a response file called response1.txt,
specify the -silent option and the file name on the command:
installer -silent -G licenseAccepted=true -options response1.txt

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Uninstalling the Broker component” on page 332
You can uninstall the Broker component on distributed systems in a number of
ways.
Related reference:
“Using response files with the Broker component” on page 3621
You can use a response file to define the behavior of an installation or
uninstallation wizard that is running the silent interface.
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

How to uninstall multiple installations of the Broker component:

Uninstalling the Broker component when you have multiple installations.

If you install the same version and release of the Broker component on a single
computer (for example, Version 7.0) more than once, the installer support provided
by the operating system cannot manage these installations in the normal way.

3620 WebSphere Message Broker Version 7.0.0.8

If you later want to uninstall one of the multiple installations, use the
uninstallation program uninstaller in the _uninst_runtime directory of the specific
installation that you want to remove, not the facilities provided by the operating
system.

You can view the install.properties file to see current installations and their
locations, and check the operating system representation:

AIX The first installation is recorded as mqsivr, for example mqsi70. Subsequent
installations at the same vr level are displayed under the first one when
you list installed products with lslpp. If you use smitty and geninstall to
manage those subsequent installations, results are unpredictable.

Linux, HP-UX, and Solaris
The first installation is recorded as mqsi/vr, for example mqsi/70.
Subsequent installations at the same vr level are recorded as mqsi/vr-2,
and so on.

Windows
The most recent installation that you completed for any given version and
release is displayed in Add/Remove Programs. No other installations are
shown here. Similarly, the Command Console option in the Start menu is
that associated with the most recent installation for any given version and
release.

If you uninstall the product at a specific version and release listed by
Add/Remove Programs, earlier installations that you completed on the
computer are not reinstated in that view.

To uninstall other instances, navigate to the directory that contains the
uninstallation program. For details of uninstallation tasks, see the
information center.

Using response files with the Broker component:

You can use a response file to define the behavior of an installation or
uninstallation wizard that is running the silent interface.

A response file is a text file that contains options that define the choices that the
wizard makes. You can use response files to install or uninstall the Broker
component, or to apply service updates by using non-default values.
v “Editing the sample response files”
v “Recording a response file” on page 3622
v “Generating response files” on page 3622
v “Calling response files in commands” on page 3622

Editing the sample response files:
A sample response file is supplied. On Linux and UNIX systems, the file is
/sample-scripts/install.opt. On Windows, the file is \sample-scripts\
install.opt. The sample response files include detailed information about the
options that you can change, and the values that you can enter to change them.
You can tailor the file to match your requirements.

A number sign (#) at the start of a line denotes a comment. Remove the comment
character to enable the line.

You must remove the comment character at the start of the following line. If you
do not remove this character, your other options are ignored.

Chapter 14. Reference 3621

-W setupTypes.selectedSetypTypeId=

Some examples of how you can modify the installation response file follow:
v To accept the product license:

-G licenseAccepted=true

v Choose a custom installation (typical is the default option):
-W setupTypes.selectedSetupTypeId=custom

v Install to a non-default directory.
Find the following line, remove the number signs, and insert your chosen
installation directory:
-P installLocation=new_location

v Specify whether the program is to check for prerequisite software.
Add the following line to the file to instruct the installation wizard to ignore the
check for WebSphere MQ:
don’t check for WebSphere MQ
-P mqPrerequisite.active=false

Recording a response file:
Use the following command to record a response file:
installer -options-record responsefile

where responsefile is the full path and name of your chosen response file. On
Windows, surround the path and name with quotation marks if it contains spaces
("response file"). Create this file in a directory different from the one in which the
product is installed.

The installation wizard starts its graphical interface and records your responses as
it progresses. When installation is complete, the response file contains all the
choices that you have made during installation.

If you want to record a response file during a console installation, use the
following command:
installer -options-record responsefile -console

Generating response files:
Use the following command to generate a template installation response file. The
wizard does not perform installation or uninstallation when you start it with these
options:
installer -options-template responsefile

where responsefile is the full path and name of your chosen response file. On
Windows, surround the path and name with quotation marks if it contains spaces.
If you are uninstalling, create the response file in another directory to ensure that it
is not deleted as part of the uninstallation.

The generated template response file contains full instructions on how to edit it to
specify your required options.

To generate a response file during a console installation, use the following
command:
installer -options-template responsefile -console

Calling response files in commands:
Use the following command to run the silent interface with a response file:

3622 WebSphere Message Broker Version 7.0.0.8

installer -options responsefile -silent

where responsefile is the full path and name of your chosen response file. On
Windows, surround the path and name with quotation marks if it contains spaces.

The wizard runs, taking its input from the response file.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Installing the Broker component in silent mode” on page 272
Install the Broker component by using the installation wizard in silent mode.
“Uninstalling the Broker component” on page 332
You can uninstall the Broker component on distributed systems in a number of
ways.

How to install and uninstall the WebSphere Message Broker
Toolkit
Install and uninstall the WebSphere Message Broker Toolkit by using one of two
interfaces.
v “Graphical interface”
v “Silent interface” on page 3624

Each interface has different advantages, which are explained in the appropriate
sections. When you have chosen the interface that you want to use:
v Check that your user ID has the correct authority to complete this task; see

“Installation and uninstallation authorization” on page 3628 for details.
v Before installing WebSphere Message Broker Toolkit on Linux, check that the

default permissions are set correctly by running the following command under a
user ID with root authority:
umask

A value of 0022 should be returned, indicating the permissions are correctly set.
If any other value is returned, set the correct permissions by running the
following command:
umask 0022

v Follow the installation instructions in “Installing” on page 231 (for a new
installation or to install service to existing components), or in “Uninstalling” on
page 331 (for product components and service).

Graphical interface

The installation and uninstallation wizards open a graphical interface if you start
them with no options (the default interface). The wizards guide you through the
installation or uninstallation process with a series of pages that present options and
defaults. You can accept the default values, or change them to suit your
environment and requirements.

The graphical interface provides the highest level of information and guidance. Use
this interface when you are unfamiliar with the product, or to monitor progress.

Chapter 14. Reference 3623

If you click Cancel before the Install Progress or Uninstall Progress panel appears,
you can exit the setup. If you choose to exit, your system returns to its state that it
was in before the wizard was started. However, if you cancel the installation
wizard after installation or uninstallation has completed, and the final summary
panel is displayed, your system is not restored to its previous state: the wizard
stops immediately. If you want to remove any program that has been installed,
start the uninstallation wizard.

When you use the wizards, you must wait a few seconds to move to the next
panel after clicking Next. Progress is not always displayed on all panels. If you
click Next twice, you might skip an entire panel. To ensure that the installer or
uninstaller is progressing, you can monitor your processor usage, which increases
greatly during both installation and uninstallation.

Silent interface

Use the silent interface for automated installations over many identical systems. If
you start a silent installation or uninstallation, the wizard runs without any
interaction; the process is completed with default options, or according to a
predefined set of options. The silent interface does not provide any feedback to the
caller; therefore, you must check the log to determine whether the action was
successful.

You can run a silent installation with default settings, or with one or more
non-default values:
v With default settings, the installation wizard performs the following actions:

– Installs to the default directories
– Installs all supported locales
To run a default silent installation, change the path to the
/Message_Broker_Toolkit_V7.0/disk1 directory of the local or remote DVD, or
the network drive, and run the following command:

Linux Linux on x86
installToolkit-silent.sh

Windows Windows
installToolkit-silent.bat

v With one or more non-default settings, the wizard applies the options that you
specify in a response file to determine what actions to take.
If you want the wizard to use non-default values for one or more options,
specify a recorded response file, as described in “Using response files with the
WebSphere Message Broker Toolkit” on page 3625.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Uninstalling the WebSphere Message Broker Toolkit” on page 340
Choose the method that you want to use to uninstall the WebSphere Message

3624 WebSphere Message Broker Version 7.0.0.8

Broker Toolkit and follow the instructions to remove the component.
Related reference:
“Using response files with the WebSphere Message Broker Toolkit”
Specify a response file to define the behavior of the installation or uninstallation
wizard.
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.
“Installation and uninstallation authorization” on page 3628
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

Using response files with the WebSphere Message Broker Toolkit:

Specify a response file to define the behavior of the installation or uninstallation
wizard.

You can use response files to install or uninstall the WebSphere Message Broker
Toolkit, or to apply service updates.
v “Editing the sample response files”
v “Recording a response file”
v “Calling response files in commands”

Editing the sample response files:
A sample response file mbtoolkit-silent.xml is supplied on Linux on x86 and
Windows. The files assume that IBM Installation Manager has not yet been
installed, and sets options to install both Installation Manager and the WebSphere
Message Broker Toolkit in the default locations.

Although you can tailor these files to match your requirements, for example by
changing the installation locations, the record option on a graphical installation or
uninstallation is preferable. If you use the record option, you do not have to
modify the file content, which is complex because the files handle multiple
installations, directories, and options.

Recording a response file:
Use the following command to record a response file:
v On Linux on x86:

./install -record response.xml

v On Windows:
install.exe -record response.xml

where response.xml is the full path and name of your chosen response file. On
Windows, surround the path and name with quotation marks if it contains spaces.
Create this file in a directory different from the one in which the product is
installed.

The installation wizard opens its graphical interface, and requires your input as it
progresses. Your responses are recorded during installation. When installation is
complete, the response file contains all the choices that you have made during
installation.

Calling response files in commands:

Chapter 14. Reference 3625

Use the following command to run the installation wizard with the silent interface
and a recorded response file:
v On Linux on x86:

./install -nosplash --launcher.suppressErrors -silent -input response.xml

v On Windows:
install.exe -nosplash --launcher.suppressErrors -silent -input response.xml

where response.xml is the full path and name of the response file you recorded. On
Windows, surround the path and name with quotation marks if it contains spaces.

The wizard runs, taking its input from the response file.
Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Uninstalling the WebSphere Message Broker Toolkit” on page 340
Choose the method that you want to use to uninstall the WebSphere Message
Broker Toolkit and follow the instructions to remove the component.

Installation wizard names
View the installation wizards that are used to install the Broker component, the
WebSphere Message Broker Toolkit, and the WebSphere Message Broker Explorer.

The installation wizard has a different name on each operating system. To help you
find these programs quickly, the names are shown in the following tables.

Installation wizard names for the Broker component

The following table shows the installation wizard names that are used to start the
installers for the Broker component.

Table 40. Installation wizard names for the Broker component

Operating system Installation wizard name

AIX setupaix

HP-Itanium setuphpia64

Linux on POWER setuplinuxppc

Linux on x86 setuplinuxia32

Linux on x86-64 setuplinuxx64

Linux on IBM z Systems setuplinux390

Solaris on SPARC setupsolaris

Solaris on x86-64 setupsolarisx64

Windows 32-bit setup.exe

Windows 64-bit setup.exe

3626 WebSphere Message Broker Version 7.0.0.8

Installation wizard names for WebSphere Message Broker Toolkit

The following table shows the installation wizard names that are used to start
Installation Manager that controls the installation of the WebSphere Message
Broker Toolkit.

Table 41. Installation wizard names for WebSphere Message Broker Toolkit

Operating system Installation wizard name

Linux on x86 install

Linux on x86-64 install

Windows 32-bit install.exe1

Windows 64-bit install.exe1

Note:

1. You can also use installc.exe to start Installation Manager. This program
operates synchronously and does not return control to the command line until
the installation has completed.

Installation wizard names for WebSphere Message Broker Explorer

The following table shows the installation wizard names that are used to start the
installers for the WebSphere Message Broker Explorer.

Table 42. Installation wizard names for WebSphere Message Broker Explorer

Operating system Installation wizard name

Linux on x86 install

Linux on x86-64 install

Windows 32-bit install.exe

Windows 64-bit install.exe

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Installing the Broker component” on page 267
Use the installation wizard to install the Broker component.
“Installing the WebSphere Message Broker Toolkit” on page 276
Use the installation wizard graphical interface to install the WebSphere Message
Broker Toolkit on Windows and Linux on x86.
“Installing WebSphere Message Broker Explorer” on page 280
To use WebSphere Message Broker Explorer only, without installing the complete
WebSphere Message Broker Toolkit, use the WebSphere Message Broker Explorer
installation wizard to install the WebSphere Message Broker Explorer.
Related reference:
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.

Chapter 14. Reference 3627

Installation and uninstallation authorization
Check the authorization requirements for the user ID that you use to install or
uninstall the Broker component and the WebSphere Message Broker Toolkit.

Check that your user ID has the following authority to complete installation or
uninstallation tasks:
v On AIX systems, you must log in as root.
v On Linux and other UNIX systems, your user ID must have root authority to

complete installation. Follow your local security guidelines to acquire root
authority; either log in as root, or log in as another user and become root.

v On all Windows operating systems and editions, your user ID must be a
member of the Administrators group.

v On z/OS systems, your user ID must be no more than eight characters in length.
It must also have suitable privileges to install in your environment with SMP/E.
Use a supported external security manager, for example RACF or ACF2, to grant
the required privileges. Your user ID must have a valid OMVS segment, because
the product installs into the file system paths specified during the SMP/E
APPLY processing.

Related tasks:
“Installing” on page 231
Installation information for WebSphere Message Broker is provided in the
WebSphere Message Broker Installation Guide, which is available in the WebSphere
Message Broker Version 7.0 information center, on the WebSphere Message Broker
Version 7.0 Library web page, and in the WebSphere Message Broker Version 7.0
Quick Start Guide.
“Applying service to the Broker component” on page 314
Apply maintenance updates and program fixes to the Broker component.
“Uninstalling the Broker component” on page 332
You can uninstall the Broker component on distributed systems in a number of
ways.
“Applying service to the WebSphere Message Broker Toolkit” on page 325
Apply maintenance updates and program fixes to the WebSphere Message Broker
Toolkit.
“Uninstalling the WebSphere Message Broker Toolkit” on page 340
Choose the method that you want to use to uninstall the WebSphere Message
Broker Toolkit and follow the instructions to remove the component.
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.
Related reference:
“Installation and uninstallation interfaces” on page 3617
You can use different interfaces for installation and uninstallation of the Broker
component and the WebSphere Message Broker Toolkit.

Multicultural support
Multicultural support is available for a selection of languages on both distributed
systems and z/OS.

The user interface and message catalogs are provided in the following languages
on distributed systems:
v Brazilian Portuguese
v French

3628 WebSphere Message Broker Version 7.0.0.8

v German
v Italian
v Japanese
v Korean
v Simplified Chinese
v Spanish
v Traditional Chinese
v US English

The message catalogs are provided in the following languages on z/OS:
v Japanese
v Simplified Chinese
v US English

The messages written to the z/OS operator console (which are a subset of the
messages written to the syslog) are in US English only, and are written in mixed
case or in uppercase depending on your chosen system configuration.

WebSphere Message Broker provides a selection of message catalogs that are used
by the product components to report any problems that occur. Products that are
used in conjunction with WebSphere Message Broker might cause WebSphere
Message Broker to report errors using its message catalogs, or might report
problems using their own techniques.

You must refer to the documentation supplied with any other products that you
use to determine the process they employ. In particular, you must check the
documentation supplied by the databases that you use and documentation
provided with any user-defined node or parser that you integrate into the
WebSphere Message Broker environment.

You can install WebSphere Message Broker and WebSphere MQ in any supported
language; all language versions for each product are compatible with all language
versions for the other product. All languages for the WebSphere MQ messaging
products are included on the WebSphere MQ server CD or DVD supplied with
WebSphere Message Broker.

All messages generated for internal inter-component message exchange (for
example, deployed configuration messages and log files for mqsireadlog) are
generated in code page 1208 (utf-8).
Related tasks:
“Converting code page and message encoding” on page 2476
You can use ESQL within a Compute node to convert data for code page and
message encoding.
“Changing locales” on page 819
You can change the locale for the system on which a runtime component is
installed.

Locales
Message support is provided in a number of locales.

WebSphere Message Broker supports at least the following locales:

Windows AIX Solaris HP-UX1 Linux2 z/OS

English (United
States)

en_US en_US en_US.iso88591,
en_US.roman8

en_US En_US.IBM-1047,
En_US.IBM-037

Chapter 14. Reference 3629

Windows AIX Solaris HP-UX1 Linux2 z/OS

German (Standard) de_DE, De_DE de de_DE.ISO88591,
de_DE.roman8

de_DE not supported

Spanish (Modern
Sort)

es_ES, Es_ES es es_ES.ISO88591,
es_ES.roman8

es_ES not supported

French (Standard) fr_FR, Fr_FR fr fr_FR.ISO88591,
fr_FR.roman8

fr_FR not supported

Italian (Standard) it_IT, It_IT it it_IT.ISO88591,
it_IT.roman8

it_IT not supported

Portuguese (Brazilian) pt_BR, Pt_BR pt_BR pt_BR.ISO88591,
pt_BR.utf8

pt_BR not supported

Japanese Ja_JP, ja_JP ja_JP.PCK, ja ja_JP.SJIS,
ja_JP.eucJP

ja_JP Ja_JP.IBM-939,
Ja_JP.IBM-930

Simplified Chinese
(China)

Zh_CN, zh_CN zh, zh.GBK zh_CN.hp15CN zh_CN Zh_CN.IBM-
1388,
Zh_CN.IBM-935

Traditional Chinese
(Taiwan)

Zh_TW, zh_TW zh_TW,
zh_TW.BIG5

zh_TW.big5,
zh_TW.eucTW

zh_TW not supported

Korean ko_KR ko ko_KR.eucKR ko_KR not supported

Notes:

1. Because of limited syslog support on HP-Itanium operating systems, messages
are written to the log in US English only.

2. These values are the same for all Linux systems.

Other locales might be supported; check your operating system for further details.
Related tasks:
“Changing locales” on page 819
You can change the locale for the system on which a runtime component is
installed.
Related reference:
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.

System changes caused by installation and configuration
When you install WebSphere Message Broker, the installation program makes
certain changes to your computer.

Resources are also affected by how you configure your system (for example, the
brokers that you create).
v Start and main menu updates
v Directory structures
v Registry contents
v Environment variables
v Default WebSphere MQ resources
Related tasks:

3630 WebSphere Message Broker Version 7.0.0.8

“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Software requirements” on page 3588
View the operating system, database, and other software requirements.
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

Start and main menu updates after installation
When you install WebSphere Message Broker components on Linux on x86 or
Windows, the installation program updates the main or Start menus.

WebSphere Message Broker Toolkit on Linux on x86 running Red Hat

The main menu is populated with the following entries:
v Programming > IBM WebSphere Message Broker Toolkit

v Programming > IBM Installation Manager

If you install multiple products with Installation Manager on this operating
system, a single entry exists in the main menu and refers to the last
product that you installed. The package groups of installed products are
not reflected in the main menu. To invoke applications that you installed
previously, including other installations of the WebSphere Message Broker
Toolkit, you must use the command-line interface.

If you want to start Installation Manager, for example to update or
uninstall one or more packages, you cannot use the main menu items,
because these actions require root authority. Become root and start the
Installation Manager program /eclipse/IBMIM in the Installation Manager
installation directory on the command line.

WebSphere Message Broker Toolkit on Linux on x86 running SUSE

The main menu is populated with the following entries:
v All Applications > Development > IBM WebSphere Message Broker

Toolkit

v All Applications > Development > IBM Installation Manager

If you install multiple products with Installation Manager on this operating
system, a single entry exists in the main menu and refers to the last
product that you installed. The package groups of installed products are
not reflected in the main menu. To invoke applications that you installed
previously, including other installations of the WebSphere Message Broker
Toolkit, you must use the command-line interface.

If you want to start Installation Manager, for example to update or
uninstall one or more packages, you cannot use the main menu items,
because these actions require root authority. Become root and start the
Installation Manager program /eclipse/IBMIM in the Installation Manager
installation directory on the command line.

Chapter 14. Reference 3631

WebSphere Message Broker Toolkit on Windows

The Start menu is populated with the following entries:
v IBM Software Development Platform > IBM WebSphere Message

Broker Toolkit > WebSphere Message Broker Toolkit

v IBM Software Development Platform > IBM WebSphere Message
Broker Toolkit > Release Notes

v IBM Software Development Platform > IBM WebSphere Message
Broker Toolkit > Start Toolkit Help

v IBM Software Development Platform > IBM WebSphere Message
Broker Toolkit > Stop Toolkit Help

These entries assume that you have installed into the first or default
package group. Additional products that you install in this package group
might also appear in this start list.

Entries are also added to the Start menu when Installation Manager is first
installed:
v Programs > IBM Installation Manager > IBM Installation Manager

v Programs > IBM Installation Manager > Release Notes

v Programs > IBM Installation Manager > Uninstall IBM Installation
Manager

v Programs > IBM Installation Manager > View Installed Packages

WebSphere Message Broker Explorer on Linux on x86

No additions are made to the main menu on either SUSE or Red Hat Linux
systems.

WebSphere Message Broker Explorer on Windows

The Start menu is populated with the following entry:
v Programs > IBM WebSphere Message Broker Explorer

Broker component on Windows

The Start menu is populated with the following entries:
v Start > Programs > IBM WebSphere Message Broker 7.0 > Command

Console

v Start > Programs > IBM WebSphere Message Broker 7.0 > Java
Programming APIs > CMP API Documentation

v Start > Programs > IBM WebSphere Message Broker 7.0 > Java
Programming APIs > CMP API Exerciser

v Start > Programs > IBM WebSphere Message Broker 7.0 > Java
Programming APIs > Java Plugin API Documentation

Related tasks:
“Finding the latest information” on page 232
Access the latest information for WebSphere Message Broker.
Related reference:
“Software requirements” on page 3588
View the operating system, database, and other software requirements.
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.

3632 WebSphere Message Broker Version 7.0.0.8

“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

Directory structures after installation
When you install WebSphere Message Broker components, the installation program
creates a structure of subdirectories under the directory that you specified as the
installation directory. The exact structure depends on the platform on which you
have installed WebSphere Message Broker, and the components that you have
installed. If you install the WebSphere Message Broker Toolkit, other directories
might be created for IBM Installation Manager, the Shared Resources Directory, and
the package group in which you install the toolkit.

Platforms covered are:
v “AIX, Solaris on SPARC, and Linux on x86-64 for the 64-bit version of

WebSphere Message Broker”
v “HP-Itanium, Linux on POWER, Linux on IBM z Systems, and Solaris on

x86-64” on page 3634
v “Linux on x86, and Linux on x86-64 for the 32-bit version of WebSphere Message

Broker” on page 3636
v “Windows” on page 3638
v “z/OS” on page 3641

AIX, Solaris on SPARC, and Linux on x86-64 for the 64-bit version of
WebSphere Message Broker

On AIX, and Solaris on SPARC, you can install only the broker component.

On Linux on x86-64 for the 64-bit version of WebSphere Message Broker, in
addition to the 64-bit broker component, you have the option of installing the
32-bit version of the WebSphere Message Broker Toolkit, and the WebSphere
Message Broker Explorer. For more information, see the relevant Toolkit and
Explorer sections under “Linux on x86, and Linux on x86-64 for the 32-bit version
of WebSphere Message Broker” on page 3636.

The default home directory install_dir is /opt/IBM/mqsi/v.r or /opt/ibm/mqsi/v.r.
The default directory includes the version and release of the product, in the format
v.r (version.release).

The directories created in install_dir are shown in the following table.

Directories under install_dir Contents

_uninst_runtime Uninstall programs

_uninst_runtime_jvm Uninstall programs (JVM)

adapters WebSphere Adapters files

bin Executable binary files

catalina Web Services support files

classes Java class files

DD64 Symbolic link to the ODBC driver files

docs Java API files

Chapter 14. Reference 3633

Directories under install_dir Contents

exmltConfig XML transformation files

include Header and other files for samples

itlm Tivoli License Manager files

jplugin Java plug-in files

jre16 IBM Runtime Environment for the Java Platform Version 6
(also known as Version 1.6)

lib Shared library files

license License files

lil Loadable library files

messages Description files for messages and exceptions

migration Migration files

ODBC ODBC driver and related files

ODBC64 Symbolic link to the ODBC driver files

readmes Product readme files

sample C, C++, and Java sample files

SecurityProviders Security files

webservices Web Services files

xlxpc Product library files

xml4c XML processing files

isadc IBM Support Assistant Data Collector files

On AIX, Linux on x86-64, and Solaris on SPARC, the working directory is
/var/mqsi/. The directories created are shown in the following table.

Directories under /var/mqsi Contents

common/errors Error files

common/locks Resource locks

common/log Trace files

common/profiles User profiles

components Component details

config User configuration of profiles and shared classes

ODBC64 Symbolic link to the ODBC driver files

registry Registry information

shared-classes User installed user-defined node classes

XML XML files

XSL XSL style sheets

HP-Itanium, Linux on POWER, Linux on IBM z Systems, and Solaris on
x86-64

On HP-Itanium, Linux on POWER, Linux on IBM z Systems, and Solaris on x86-64,
you can install only the broker component.

3634 WebSphere Message Broker Version 7.0.0.8

The default home directory install_dir is /opt/IBM/mqsi/v.r or /opt/ibm/mqsi/v.r.
The default directory includes the version and release of the product, in the format
v.r (version.release).

The directories created in install_dir are shown in the following table.

Directories under install_dir Contents

_uninst_runtime Uninstall programs

_uninst_runtime_jvm Uninstall programs (JVM)

adapters WebSphere Adapters files

bin Executable binary files

catalina Web Services support files

classes Java class files

DD64 Symbolic link to the ODBC driver files

docs Java API files

exmltConfig XML transformation files

include Header and other files for samples

itlm Tivoli License Manager files

jplugin Java plug-in files

jre16 IBM Runtime Environment for the Java Platform Version 6
(also known as Version 1.6)

lib Shared library files

license License files

lil Loadable library files

messages Description files for messages and exceptions

migration Migration files

ODBC ODBC driver and related files

ODBC64 Symbolic link to the ODBC driver files

readmes Product readme files

sample C, C++, and Java sample files

SecurityProviders Security files

webservices Web Services files

xlxpc Product library files

xml4c XML processing files

isadc IBM Support Assistant Data Collector files

On HP-Itanium, Linux on POWER, Linux on IBM z Systems, and Solaris on x86-64,
the default working directory is /var/mqsi/. The directories created are shown in
the following table.

Directories under /var/mqsi Contents

common/errors Error files

common/locks Resource locks

common/log Trace files

common/profiles User profiles

Chapter 14. Reference 3635

Directories under /var/mqsi Contents

components Component details

config User configuration of profiles and shared classes

ODBC64 Symbolic link to the ODBC driver files

registry Registry information

shared-classes User installed user-defined node classes

XML XML files

XSL XSL style sheets

Linux on x86, and Linux on x86-64 for the 32-bit version of WebSphere
Message Broker

On this platform, you can install the broker, the WebSphere Message Broker
Toolkit, and the WebSphere Message Broker Explorer.

Broker

The default home directory install_dir is /opt/ibm/mqsi/v.r. The default directory
includes the version and release of the product, in the format v.r (version.release).

The directories created in install_dir are shown in the following table.

Directories under install_dir Contents

_uninst_runtime Uninstall programs

_uninst_runtime_jvm Uninstall programs (JVM)

adapters WebSphere Adapters files

bin Executable binary files

catalina Web Services support files

classes Java class files

docs Java API files

exmltConfig XML transformation files

include Header and other files for samples

itlm Tivoli License Manager files

jplugin Java plug-in files

jre16 IBM Runtime Environment for the Java Platform Version 6
(also known as Version 1.6)

lib Shared library files

license License files

lil Loadable library files

merant Symbolic link to the ODBC driver files

messages Description files for messages and exceptions

migration Migration files

ODBC ODBC driver and related files

ODBC32 Symbolic link to the ODBC driver files

readmes Product readme files

3636 WebSphere Message Broker Version 7.0.0.8

Directories under install_dir Contents

sample C, C++, and Java sample files

SecurityProviders Security files

webservices Web Services files

xlxpc Product library files

xml4c XML processing files

isadc IBM Support Assistant Data Collector files

The default working directory is /var/mqsi/. The directories created are shown in
the following table.

Directories under /var/mqsi Contents

common/errors Error files

common/locks Resource locks

common/log Trace files

common/profiles User profiles

components Component details

config User configuration of profiles and shared classes

ODBC64 Symbolic link to the ODBC driver files

registry Registry information

shared-classes User installed user-defined node classes

XML XML files

XSL XSL style sheets

WebSphere Message Broker Toolkit

The default IBM Installation Manager installation directory is /opt/ibm/
InstallationManager. The default Shared Resources Directory is
/opt/IBM/SDPShared/. The default package group directory is /opt/IBM/WMBT700.
These directories are defined and described in the “Installing the WebSphere
Message Broker Toolkit” on page 276.

The directories created are shown in the following tables.

Directories under
/opt/ibm/InstallationManager Contents

eclipse Eclipse plug-in directories and files

license License files

Directories under
/opt/IBM/SDPShared/ Contents

atoc Eclipse plug-in directories and files

extra License files

features Product files for features installed on this computer

native

Chapter 14. Reference 3637

Directories under
/opt/IBM/SDPShared/ Contents

plugins Eclipse plug-in directories and files common to features
installed on this computer

Directories under
/opt/IBM/WMBT700 Contents

bin Directories and files for products within the package group

configuration Configuration files

eclipse Eclipse files

features Directories and files for products within the package group

jdk Java directories and files

lum License files

plugins Eclipse plug-ins and related files

ResourceAdapters Rational directories and files

runtimes Rational directories and files

samples Sample response files

uninstall Product uninstallation files

wmbt Toolkit files

Other files are also stored by the Installation Manager in the directory
/var/ibm/InstallationManager.

WebSphere Message Broker Explorer

Windows

On this platform, you can install the broker, the WebSphere Message Broker
Toolkit, and the WebSphere Message Broker Explorer.

Broker

The default home directory install_dir is:
v On Windows 32-bit editions: C:\Program Files\IBM\MQSI\v.r.
v On Windows 64-bit editions:

– C:\Program Files\IBM\MQSI\v.r for the 64-bit version of WebSphere Message
Broker.

– C:\Program Files (x86)\IBM\MQSI\v.r for the 32-bit version of WebSphere
Message Broker.

The default directory includes the version and release of the product, in the format
v.r (version.release).

The directories created in install_dir are shown in the following table.

Directories under install_dir Contents

_uninst_runtime uninstallation programs

_uninst_runtime_jvm uninstallation programs (JVM)

3638 WebSphere Message Broker Version 7.0.0.8

Directories under install_dir Contents

adapters WebSphere Adapters files

bin Executable binary files

catalina Web Services support files

classes Java class files

DataDirect ODBC driver and related files

docs Java API files

exmltConfig XML transformation files

include Header and other files for samples

itlm Tivoli License Manager files

jplugin Java plug-in files

jre16 IBM Runtime Environment for the Java Platform Version 6
(also known as Version 1.6)

lib Shared library files

license License files

messages Description files for messages and exceptions

migration Migration files

readmes Product readme files

sample C, C++, and Java sample files

webservices Web Services files

WMQFTE Files for WebSphere MQ File Transfer Edition.

isadc IBM Support Assistant Data Collector files

The default working directory is %ALLUSERSPROFILE%\Application Data\IBM\MQSI
where %ALLUSERSPROFILE% is the environment variable that defines the system
working directory. The default directory depends on the operating system:
v On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\Application Data\IBM\MQSI

v On Windows Vista and later operating systems: C:\ProgramData\IBM\MQSI

The actual value might be different on your computer.

The directories created are shown in the following table.

Directories under work_dir Contents

Common/errors Error files

Common/locks Resource locks

Common/log Trace files

Common/profiles User profiles

components Component details

config User configuration of profiles and shared classes

odbc ODBC files

registry Registry information

shared-classes User installed user-defined node classes

XML XML files

Chapter 14. Reference 3639

Directories under work_dir Contents

XSL XSL style sheets

WebSphere Message Broker Toolkit

On Windows 32-bit, the default IBM Installation Manager installation directory is
C:\Program Files\IBM\InstallationManager, the default Shared Resources
Directory is C:\Program Files\IBM\SDPShared\, and the default package group
directory is C:\Program Files\IBM\WMBT700.

On Windows 64-bit, the default IBM Installation Manager installation directory is
C:\Program Files(x86)\IBM\InstallationManager, the default Shared Resources
Directory is C:\Program Files (x86)\IBM\SDPShared\v.r, and the default package
group directory is C:\Program Files (x86)\IBM\WMBT700.

These directories are defined and described in the “Installing the WebSphere
Message Broker Toolkit” on page 276.

The directories created are shown in the following tables.

Directories under
\IBM\InstallationManager Contents

eclipse Eclipse plug-in directories and files

license License files

Directories under \SDPShared Contents

atoc Eclipse plug-in directories and files

extra License files

features Product files for features installed on this computer

native

plugins Eclipse plug-in directories and files common to features
installed on this computer

Directories under \WMBT700 Contents

bin Eclipse plug-in directories and files

configuration License files

features Product files for features installed on this computer

jdk Java directories and files

lum License files

plugins Eclipse plug-in directories and files common to features
installed on this computer

ResourceAdapters Rational directories and files

runtimes Rational directories and files

samples Sample response files

uninstall Product uninstall files

wmbt Toolkit files

3640 WebSphere Message Broker Version 7.0.0.8

Other files are also stored by the Installation Manager in the following directories:
v On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\Application Data\IBM\Installation Manager and C:\Documents and
Settings\Administrator\IBM\InstallationManagerInstaller. Your computer
might have a different value for C:\Documents and Settings, but the remainder
of these paths are fixed.

v On Windows Vista and later operating systems: C:\ProgramData\IBM\
Installation Manager and C:\ProgramData\IBM\InstallationManagerInstaller.

WebSphere Message Broker Explorer

z/OS

The default installation directory is /usr/lpp/mqsi/VxRxMx where VxRxMx
represents Version X, Release X, Modification X, for example, V7R0M0.

For more details about locations, libraries, and file system paths, see the Program
Directory for WebSphere Message Broker for z/OS on the WebSphere Message Broker
Library web page.
Related reference:
“Hardware requirements” on page 3582
View the processor and related hardware requirements on all platforms.
“Software requirements” on page 3588
View the operating system, database, and other software requirements.

Registry changes created by installation and configuration
When you install WebSphere Message Broker, the installation program creates a
number of entries in a registry. Further changes are made by some configuration
updates (for example, when you create a broker).

Runtime components

On Windows, the ALLUSERPROFILE environment variable is used; on Linux and
UNIX systems, equivalent values are stored within the installation directory
structure. On all platforms, the environment variable MQSI_REGISTRY is set to
point to the exact location. Do not alter or remove these entries unless instructed to
do so by your IBM Service representative.

On Windows, some entries are also added to the system registry under
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI (for 32-bit brokers on 32-bit
operating system editions and 64-bit brokers on 64-bit operating system editions)
or under HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBCINST.INI (for 32-bit
brokers on 64–bit operating system editions); these entries record the installed
32–bit database drivers for Oracle and Sybase, which contain driver locations and
parameters.

An entry is also added under the HKEY_LOCAL_MACHINE\SOFTWARE\IBM\
WebSphereMQIntegrator (for 32-bit brokers on 32-bit operating system editions and
64-bit brokers on 64-bit operating system editions) or under HKEY_LOCAL_MACHINE\
SOFTWARE\Wow6432Node\IBM\WebSphereMQIntegrator (for 32-bit brokers on 64–bit
operating system editions).

A final entry is added under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\Eventlog\Application\WebSphere Broker v*** for Event Log
information, where v*** is the current three-digit product version number.

Chapter 14. Reference 3641

http://www.ibm.com/software/integration/wbimessagebroker/library/index.html
http://www.ibm.com/software/integration/wbimessagebroker/library/index.html

WebSphere Message Broker Toolkit

All registry entries are controlled by IBM Installation Manager. On Windows, the
system registry is used; on Linux on x86, equivalent entries are stored in
/var/ibm/InstallationManager/. Do not alter or remove these entries unless
instructed to do so by your IBM Service representative.

The installation directory for Installation Manager is stored in
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\Installation Manager (for 32–bit operating
system editions) or HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\IBM\Installation
Manager (for 64–bit operating system editions), under the location value.

Uninstall keys are created for all products that are installed by Installation
Manager under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Current\
Version\Uninstall\IBM Installation Manager, under the name
IM-packagegroupname where packagegroupname is the name of the package group in
which the product is installed; for example, IBM Software Development Platform.

WebSphere Message Broker Explorer
Related reference:
“Supported processors” on page 3583
WebSphere Message Broker is supported on multiple processors.
“Operating system requirements” on page 3590
WebSphere Message Broker is supported on multiple operating systems.
“Directory structures after installation” on page 3633
When you install WebSphere Message Broker components, the installation program
creates a structure of subdirectories under the directory that you specified as the
installation directory. The exact structure depends on the platform on which you
have installed WebSphere Message Broker, and the components that you have
installed. If you install the WebSphere Message Broker Toolkit, other directories
might be created for IBM Installation Manager, the Shared Resources Directory, and
the package group in which you install the toolkit.

Environment variables after installation
On distributed systems, ensure that your environment is set up correctly.

If you have installed on z/OS, see “Customizing the z/OS environment” on page
591.

Sample profile files are provided with WebSphere Message Broker; check their
content to ensure the variables are set correctly for your environment before you
use the product or configure any resources.
v On Linux and UNIX systems, the profile is install_dir/bin/mqsiprofile.
v On Windows systems, a command console is set up when you install

components. Access this through the Start menu. When you select this option, a
command window containing the correct environment is opened.
If you prefer, run install_dir\bin\mqsiprofile.cmd in a command window
before working with WebSphere Message Broker in the same command window.

If you have more than one installation on a single system, ensure that you run the
correct profile, or access the correct command console, for the installation that you
want to work with. If an installation is at Version 6.0, the profile is incompatible
with the Version 7.0 profile. You must log off and log on again before you run a
second profile.

3642 WebSphere Message Broker Version 7.0.0.8

Check the readme file (readme.html) to ensure that you have the latest version of
the profile.
Related tasks:
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
“Are the Linux and UNIX environment variables set correctly?” on page 3350
Use the mqsiprofile command to set a command environment.

Default WebSphere MQ resources created during installation
and configuration
When you install WebSphere Message Broker and create components,
WebSphere MQ resources are created for use by those components.

The names of these resources begin with the reserved characters SYSTEM. The
resources are additional to the default WebSphere MQ objects that are created
when you install that product. The following table lists the resources created.

Resource name Type Description

SYSTEM.BROKER.ADAPTER.FAILED Queue Failure messages generated by adapters.

SYSTEM.BROKER.ADAPTER.INPROGRESS Queue In progress messages generated by adapters.

SYSTEM.BROKER.ADAPTER.NEW Queue New request messages generated by adapters.

SYSTEM.BROKER.ADAPTER.PROCESSED Queue Processed messages generated by adapters.

SYSTEM.BROKER.ADAPTER.UNKNOWN Queue Unknown messages generated by adapters.

SYSTEM.BROKER.ADMIN.QUEUE Queue Target for request messages sent by CMP API
applications (including commands) to modify the
configuration and operation of the broker.

SYSTEM.BROKER.ADMIN.REPLYTODM Queue Target for internal messages sent by the broker.

SYSTEM.BROKER.AGGR.CONTROL Queue Used internally to store a control message for
each aggregate group.

SYSTEM.BROKER.AGGR.REPLY Queue Used internally to store each known response
message received by an AggregateReply node.

SYSTEM.BROKER.AGGR.REQUEST Queue Used internally to store each request message that
forms part of an aggregate group.

SYSTEM.BROKER.AGGR.TIMEOUT Queue Used internally in the timeout and unknown
timeout processing within an AggregateReply
node.

SYSTEM.BROKER.AGGR.UNKNOWN Queue Stores each unknown response received by an
AggregateReply node.

SYSTEM.BROKER.AUTH Queue Stores authorization records for administration
requests against the broker.

SYSTEM.BROKER.DEPLOY.QUEUE Queue Target for publish/subscribe control requests that
applications send to the broker.

SYSTEM.BROKER.DEPLOY.REPLY Queue Target for response messages sent by
publish/subscribe control requests that
applications send to the broker.

Chapter 14. Reference 3643

Resource name Type Description

SYSTEM.BROKER.EDA.COLLECTIONS Queue Used internally to store event handler information
for message collections generated by the Collector
node.

SYSTEM.BROKER.EDA.EVENTS Queue Used internally to store messages received by the
Collector node.

SYSTEM.BROKER.EXECUTIONGROUP.QUEUE Queue Target for messages sent to execution groups by
internal broker processes.

SYSTEM.BROKER.EXECUTIONGROUP.REPLY Queue Target for response messages sent by execution
groups to internal broker processes.

SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONSQueue Target for publish/subscribe messages sent by
neighbor brokers.

SYSTEM.BROKER.MODEL.QUEUE Queue Model for dynamic response queues.

SYSTEM.BROKER.TIMEOUT.QUEUE Queue Used internally to support the TimeoutControl
and TimeoutNotification nodes.

SYSTEM.BROKER.WS.ACK Queue Used internally for Web Services client support.

SYSTEM.BROKER.WS.INPUT Queue Used internally for Web Services client support.

SYSTEM.BROKER.WS.REPLY Queue Used internally for Web Services client support.

SYSTEM.BKR.CONFIG SVRCONN A connection channel for WebSphere Message
Broker Toolkit and WebSphere Message Broker
Explorer clients.

Related reference:
“Designing the WebSphere MQ infrastructure” on page 584
You must create and manage the WebSphere MQ resources that are required to
support your brokers, and the applications that connect to them to supply or
receive messages.
“Software requirements” on page 3588
View the operating system, database, and other software requirements.

Security requirements for administrative tasks
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.

This section contains the following topics:
v “Tasks and authorizations for broker administration security” on page 3645
v “Commands and authorizations for broker administration security” on page

3646
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655
Related concepts:
Chapter 5, “Security,” on page 351
Security is an important consideration for both developers of WebSphere Message
Broker applications, and for system administrators configuring WebSphere Message
Broker authorities.
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the

3644 WebSphere Message Broker Version 7.0.0.8

system.
Related tasks:
“Planning for security when you install WebSphere Message Broker” on page 353
The Installation Guide describes the security tasks that you must complete before,
during, and after installation.

Tasks and authorizations for broker administration security
If you have enabled broker administration security, users require specific authority
so that they can complete administration tasks.

The following table shows the list of actions that a user can perform, and the
authorizations that you must set to allow them to complete these tasks when
broker administrative security is enabled. The authority is required regardless of
the way in which the user requests the action; from a CMP API application, the
WebSphere Message Broker Explorer, or the WebSphere Message Broker Toolkit.

In addition to the permissions for the specific tasks that are shown in the following
table, you must also be able to connect to the broker. For more information, see
“Authorizing users for broker administration” on page 371.:

Tasks Authorization Queue

Set broker properties Read and writeSYSTEM.BROKER.AUTH

View broker properties Read SYSTEM.BROKER.AUTH

Create or delete configurable
services

Read and writeSYSTEM.BROKER.AUTH

Set configurable services
properties

Read and writeSYSTEM.BROKER.AUTH

View configurable services
properties

Read SYSTEM.BROKER.AUTH

Create or delete execution groups Read and writeSYSTEM.BROKER.AUTH

Rename execution groups Read and writeSYSTEM.BROKER.AUTH

List execution groups Read SYSTEM.BROKER.AUTH

Start or stop execution groups Read SYSTEM.BROKER.AUTH

Execute SYSTEM.BROKER.AUTH or SYSTEM.BROKER.AUTH.EG

Set execution group properties Read SYSTEM.BROKER.AUTH

Write SYSTEM.BROKER.AUTH.EG

View execution group properties Read SYSTEM.BROKER.AUTH

Read SYSTEM.BROKER.AUTH.EG

Start or stop resource statistics
collection

Read SYSTEM.BROKER.AUTH

Execute SYSTEM.BROKER.AUTH.EG1

Report resource statistics Read SYSTEM.BROKER.AUTH

Read SYSTEM.BROKER.AUTH.EG2

Deploy Read SYSTEM.BROKER.AUTH

Write SYSTEM.BROKER.AUTH.EG

List message flows and other
deployed objects

Read SYSTEM.BROKER.AUTH

Read SYSTEM.BROKER.AUTH.EG

Chapter 14. Reference 3645

Tasks Authorization Queue

Start or stop message flows Read SYSTEM.BROKER.AUTH

Execute SYSTEM.BROKER.AUTH.EG

Delete resources from an
execution group

Read SYSTEM.BROKER.AUTH

Write SYSTEM.BROKER.AUTH.EG

Notes:

1. If you are changing resource statistics collection for all execution groups on the
broker, you must grant execute authority for all execution groups.

2. If you are reporting resource statistics collection for all execution groups on the
broker, you must grant read authority for all execution groups.

3. In the queue name SYSTEM.BROKER.AUTH.EG, the EG refers to the name of
your execution group.

4. In the queue name SYSTEM.BROKER.AUTH.EG, the EG refers to the value of
the egForView property that you specify in your DataCaptureStore configurable
service.

5. In the queue name SYSTEM.BROKER.AUTH.EG, the EG refers to the value of
the egForReplay property that you specify in your DataDestination configurable
service.

If you grant a user ID authority at the broker level (on queue
SYSTEM.BROKER.AUTH), it does not inherit authority for execution groups. You
must explicitly grant authority to all, or to individual, execution groups.
Related tasks:
“Setting up broker administration security” on page 368
Control the actions that users can request against a broker and its resources.
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.

Commands and authorizations for broker administration
security

If you have enabled broker administration security, users require specific authority
to be able to run the administration commands.

The following table shows the list of commands, and the authorizations you must
set up before users can to run them.

Command Authorization Queue

mqsichangeresourcestats Read SYSTEM.BROKER.AUTH

Execute SYSTEM.BROKER.AUTH.EG1

mqsicreateexecutiongroup Read and write SYSTEM.BROKER.AUTH

mqsideleteexecutiongroup Read and write SYSTEM.BROKER.AUTH

mqsideploy Read SYSTEM.BROKER.AUTH

Write SYSTEM.BROKER.AUTH.EG

3646 WebSphere Message Broker Version 7.0.0.8

Command Authorization Queue

mqsilist Read SYSTEM.BROKER.AUTH

Read SYSTEM.BROKER.AUTH.**2

mqsimode Read (to display) or read and write (to change)SYSTEM.BROKER.AUTH

mqsireloadsecurity Read SYSTEM.BROKER.AUTH

Write SYSTEM.BROKER.AUTH.**3

mqsireportresourcestats Read SYSTEM.BROKER.AUTH

Read SYSTEM.BROKER.AUTH.EG4

mqsistartmsgflow5 Read SYSTEM.BROKER.AUTH

Execute SYSTEM.BROKER.AUTH.EG

mqsistopmsgflow5 Read SYSTEM.BROKER.AUTH

Execute SYSTEM.BROKER.AUTH.EG

Notes:

1. If you are changing resource statistics collection for all execution groups on the
broker, you must have execute authority for all execution groups.

2. You must have read authority for every broker and every execution group for
which you are requesting information. If you request details about a resource
for which you do not have authority, one or more of the following messages
are returned to identify each resource with inappropriate authority:
BIP1185S: You cannot view execution group ’<egname>’ on broker ’<brokername>’.

BIP1014S: You cannot view broker ’<brokername>’.

The command completes the request and returns results for all the resources for
which authority is correct.

3. Where SYSTEM.BROKER.AUTH.** is specified, the user ID running the
command must have authority for all execution groups. You can set up this
level of authority by either creating a generic profile for all execution groups, or
a specific profile for every execution group.

4. If you are reporting resource statistics collection for all execution groups on the
broker, you must have read authority for all execution groups.

5. Exact requirements for this command depend on the combination of parameters
that you specify on the command; for details, see the authorization section in
“mqsistartmsgflow command” on page 3969 and “mqsistopmsgflow command”
on page 3975.

6. In the queue name SYSTEM.BROKER.AUTH.EG, the EG refers to the name of
your execution group.

Only the commands that are listed in this table are subject to broker administration
security.

Note: The authorizations that are listed in this table are in addition to the
authorizations required to run the command on specific platforms. Refer to the
following topics for information about platform-specific authorizations:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655
Related tasks:

Chapter 14. Reference 3647

“Setting up broker administration security” on page 368
Control the actions that users can request against a broker and its resources.
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Authorizing users for broker administration” on page 371
Grant authority to one or more groups or users to authorize them to complete
specific tasks against a broker and its resources.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.

Security requirements for Linux and UNIX platforms
View a summary of the authorizations in a Linux or UNIX environment.

You must add the required user IDs to the appropriate group to enable them to
complete the relevant tasks.

Note: If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Task Command Authorization

Create, delete or
migrate a broker

mqsicreatebroker

mqsideletebroker

mqsimigratecomponents

v Member of mqbrkrs and mqm.
v Using LDAP: Ensure that the registry

is appropriately secured to prevent
unauthorized access. The setting of
LdapPrincipal and LdapCredentials
parameters on mqsichangebroker is
not required for correct operation of
the broker. The password is not stored
in clear text in the file system.

Change a broker mqsichangebroker v Member of mqbrkrs.
v If you specify the -s parameter to

activate broker administration security,
the user ID used to run this command
must be a member of the mqm group,
because several queues are created for
use by the broker.

v Using LDAP: Ensure that the registry
is appropriately secured to prevent
unauthorized access. The setting of
LdapPrincipal and LdapCredentials
parameters on mqsichangebroker is
not required for correct operation of
the broker. The password is not stored
in clear text in the file system.

3648 WebSphere Message Broker Version 7.0.0.8

Task Command Authorization

Add or remove a
broker instance

mqsiaddbrokerinstance

mqsiremovebrokerinstance

v Member of mqbrkrs and mqm.
Additionally, you need to make the
uid and gid for this user ID the same
on all the systems, and the user ID
needs to be the same one that created
the first instance of the multi-instance
broker, using the mqsicreatebroker
command.

v Change the uid and gid with caution,
as it affects the permission levels of
files on the system. Changing a uid or
gid causes the ownership of all the
files previously owned by that user or
group to change to the integer of the
previous owner of the file. Therefore,
you must ensure that your system
administrator manually restores the
ownerships of the affected files and
directories.

Backup or restore a
broker

mqsibackupbroker

mqsirestorebroker

v Member of mqbrkrs.

Start a broker, or verify
a broker

mqsistart

mqsicvp

v Member of mqbrkrs.
v Member of mqm if the queue

manager is not already running.

Stop a broker mqsistop v Member of mqbrkrs. However, the
root user ID can stop a broker without
membership of mqbrkrs.

v The user ID must be the same as the
user ID that started the broker.

v Member of mqm if -q is specified.

Create or delete an
execution group

mqsicreateexecutiongroup

mqsideleteexecutiongroup

v Member of mqbrkrs.
v If broker administration security is

active, the user ID that runs this
command must be a member of the
group mqm. If you do not want your
broker to run with mqm authority,
you must work with your
WebSphere MQ administrator to
create or delete the appropriate
authority queue when you create or
delete an execution group.

Start or stop a message
flow

mqsistartmsgflow

mqsistopmsgflow

v Member of mqbrkrs.

Create or delete a
configurable service

mqsicreateconfigurableservice

mqsideleteconfigurableservice

v Member of mqbrkrs.

List brokers mqsilist v Member of mqbrkrs.

Chapter 14. Reference 3649

Task Command Authorization

Show broker properties mqsireportbroker

mqsireportproperties

mqsireportflowmonitoring

mqsireportflowstats

mqsireportflowuserexits

mqsireportresourcestats

v Member of mqbrkrs.

Change properties mqsichangeproperties

mqsichangeflowmonitoring

mqsichangeflowstats

mqsichangeflowuserexits

mqsichangeresourcestats

v Member of mqbrkrs.

Set and update
passwords

mqsisetdbparms v Member of mqbrkrs.

Report or update a
broker mode

mqsimode v Member of mqbrkrs.

Deploy an object to a
broker

mqsideploy v Member of mqbrkrs.

Reload a broker,
execution groups or
security

mqsireload

mqsireloadsecurity

v Member of mqbrkrs.

Trace a broker mqsichangetrace

mqsireporttrace

mqsireadlog

mqsiformatlog

v Member of mqbrkrs.

Set up symbolic links
needed for coordinated
transactions

mqsimanagexalinks v Root user.

Add the mqbrkrs
group

mqsisetsecurity v Root user.

User is...1 Command Used Local domain (WORKSTATION)

Running a broker (WebSphere MQ
non-trusted application) (login ID).

v Not applicable v Member of mqbrkrs.
v The broker runs under the login ID

that started it.

Running a broker (WebSphere MQ trusted
application) (login ID).

v Not applicable v Login ID must be mqm.
v mqm must be a member of mqbrkrs.

Ensure that mqbrkrs has access to all user-defined queues that you have defined
for use by your message flows. You can use the setmqaut command to set
permissions.
v Set the following permissions on all input queues:

setmqaut -m MB7BROKER -n TEST_INPUT -t queue -g mqbrkrs +get +inq

3650 WebSphere Message Broker Version 7.0.0.8

v Set the following permissions on all output queues:
setmqaut -m MB7BROKER -n TEST_OUTPUT -t queue -g mqbrkrs +put +inq +setall

v You might also need to add +passid +passall +setid +setall, depending on
your requirements.

Related tasks:
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.

Security requirements for Windows systems
Security requirements depend on the administrative task that you want to perform.

The following tables summarize the requirements for administrative tasks. They
show what group membership is required if you are using a local security domain
defined on your local system.

Note: If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Domain users in a multi-workstation domain, or from domains that are in a
Windows transitive trust relationship with the local domain, can also perform these
administrative tasks. They need to fulfill the group membership requirements
specified in the tables. One way to set up this group membership is by adding the
domain user to a domain group which in turn is a member of the local group. For
an example of how to set up security by using domain groups, see “Security in a
Windows domain environment” on page 249.

Task Command Authorization

Create, delete or
migrate a broker

mqsicreatebroker

mqsideletebroker

mqsimigratecomponents

v Must be a user ID defined in
WORKSTATION.

v Member of Administrators.

v On Windows 7, Windows Vista, and
Windows Server 2008 systems, the
user ID used to run this command
must be run from a command prompt
with elevated privileges. For more
information, see “mqsicommandconsole
command” on page 3830.

v Using LDAP: Ensure that the registry
is appropriately secured to prevent
unauthorized access. The setting of
LdapPrincipal and LdapCredentials
parameters on mqsichangebroker is
not required for correct operation of
the broker. The password is not stored
in clear text in the file system.

Chapter 14. Reference 3651

Task Command Authorization

Change a broker mqsichangebroker v Must be a user ID defined in
WORKSTATION.

v Member of mqbrkrs.
v If you specify the -s parameter to

activate broker administration security,
the user ID used to run this command
must be a member of the mqm group,
because several queues are created for
use by the broker.

v Using LDAP: Ensure that the registry
is appropriately secured to prevent
unauthorized access. The setting of
LdapPrincipal and LdapCredentials
parameters on mqsichangebroker is
not required for correct operation of
the broker. The password is not stored
in clear text in the file system.

Add or remove a
broker instance

mqsiaddbrokerinstance

mqsiremovebrokerinstance

v Must be a user ID defined in
WORKSTATION.

v Member of Administrators.
v On Windows 7, Windows Vista, and

Windows Server 2008 systems, the
user ID used to run this command
must be run from a command prompt
with elevated privileges. For more
information, see “mqsicommandconsole
command” on page 3830.

Backup or restore a
broker

mqsibackupbroker

mqsirestorebroker

v Member of mqbrkrs.

Start a broker, or verify
a broker

mqsistart

mqsicvp

v Member of mqbrkrs.
v Member of mqm if the queue

manager is not already running.

Stop a broker mqsistop v Member of mqbrkrs.
v Member of mqm if -q is specified.

Create or delete an
execution group

mqsicreateexecutiongroup

mqsideleteexecutiongroup

v Member of mqbrkrs.
v If broker administration security is

active, the user ID that runs this
command must be a member of the
group mqm. If you do not want your
broker to run with mqm authority,
you must work with your
WebSphere MQ administrator to
create or delete the appropriate
authority queue when you create or
delete an execution group.

Start or stop a message
flow

mqsistartmsgflow

mqsistopmsgflow

v Member of mqbrkrs.

Create or delete a
configurable service

mqsicreateconfigurableservice

mqsideleteconfigurableservice

v Member of mqbrkrs.

3652 WebSphere Message Broker Version 7.0.0.8

Task Command Authorization

List brokers mqsilist v Must be a user ID defined in
WORKSTATION.

v Member of mqbrkrs or mqm to run
the command with broker and
execution group specified:

mqsilist broker_name execution_group_name

Show broker properties mqsireportbroker

mqsireportproperties

mqsireportflowmonitoring

mqsireportflowstats

mqsireportflowuserexits

mqsireportresourcestats

v Member of mqbrkrs.

Change properties mqsichangeproperties

mqsichangeflowmonitoring

mqsichangeflowstats

mqsichangeflowuserexits

mqsichangeresourcestats

v Member of mqbrkrs.

Set and update
passwords

mqsisetdbparms v Member of mqbrkrs.

Report or update a
broker mode

mqsimode v Member of mqbrkrs.

Deploy an object to a
broker

mqsideploy v Member of mqbrkrs.

Reload a broker,
execution groups or
security

mqsireload

mqsireloadsecurity

v Member of mqbrkrs.

Trace a broker mqsichangetrace

mqsireporttrace

mqsireadlog

mqsiformatlog

v Must be a user ID defined in
WORKSTATION.

v Member of mqbrkrs.

Add the mqbrkrs
group

mqsisetsecurity v Must be a user ID defined in
WORKSTATION.

v Member of Administrators.
v On Windows 7, Windows Vista, and

Windows Server 2008 systems, the
user ID used to run this command
must be run from a command prompt
with elevated privileges. For more
information, see “mqsicommandconsole
command” on page 3830.

Chapter 14. Reference 3653

Task Command Authorization

Run commands that
require elevated
privileges

mqsicommandconsole v Member of Administrators.
v On Windows 7 and Windows Server

2008 systems, the user ID used to run
this command must be run from a
command prompt with elevated
privileges. For more information, see
“mqsicommandconsole command” on
page 3830.

User is...1 Command Used Local domain (WORKSTATION)

Running a broker (WebSphere MQ fast
path off) (service user ID)2

v Not applicable v Must be a user ID defined in
WORKSTATION

v Member of mqbrkrs

v Must have the Logon as a service
privilege in the Windows Local
Security Policy.

This privilege is added when
mqsicreatebroker is run, if necessary.

Running a broker (WebSphere MQ fast
path on) (service user ID)2

v Not applicable v Must be a user ID defined in
WORKSTATION

v Member of mqbrkrs

v Member of mqm

v Must have the Logon as a service
privilege in the Windows Local
Security Policy.

This privilege is added when
mqsicreatebroker is run, if necessary.

Running a WebSphere Message Broker
Toolkit3

v Start WebSphere Message Broker
Toolkit from the Start menu

v Must be a user ID defined in
WORKSTATION. For example,
WORKSTATION\User1 is valid,
PRIMARY\User2 and
TRUSTED\User3 are not.

Notes:

1. By default when a broker is created, the service user ID is given the required
permissions to access to relevant directories of the product directory tree; for
example, write access to the logs directory.
This happens even if you set a location that is not the default, with the –w flag
on the mqsicreatebroker command, or use the –e flag on the mqsicreatebroker
command to create a multi-instance broker. If these permissions are changed
manually, you must always ensure that the mqbrkrs group has appropriate
access to these locations.

2. Ensure that mqbrkrs has access to all user-defined queues that you have
defined for use by your message flows. You can use the setmqaut command to
set permissions.
v Set the following permissions on all input queues:

setmqaut -m MB7BROKER -n TEST_INPUT -t queue -g mqbrkrs +get +inq

v Set the following permissions on all output queues:
setmqaut -m MB7BROKER -n TEST_OUTPUT -t queue -g mqbrkrs +put +inq +setall

v You might also need to add +passid +passall +setid +setall, depending on
your requirements.

3654 WebSphere Message Broker Version 7.0.0.8

3. All WebSphere Message Broker Toolkit users need read access to the
WebSphere MQ Java \lib subdirectory of the WebSphere MQ home directory
(the default location is X:\Program Files\WebSphere MQ, where X: is the
operating system disk). This access is restricted to users in the local group mqm
by WebSphere MQ. WebSphere Message Broker installation overrides this
restriction and gives read access for this subdirectory to all users.

Broker security requirements on Windows

On all Windows platforms, there is no longer any requirement for the service user
ID to be a member of the Administrators group.

The only requirement is that the service user ID is a member of the mqbrkrs
group. In addition, the LocalSystem account can be used as the service user ID by
specifying LocalSystem for the –i parameter on the mqsicreatebroker command.

In this case you must enter the –a (password) parameter on the command line, but
the value entered is ignored.
Related tasks:
“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.

Security requirements for z/OS
View a summary of the authorizations in a z/OS environment.

The following table summarizes the UNIX System Services file access
authorizations in a z/OS environment.

Note: If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Task Command Authorization

Create, delete or
migrate a broker

mqsicreatebroker

mqsideletebroker

mqsimigratecomponents

v READ and WRITE access to the
component directory by the z/OS user
ID running the command.

v The broker runs under its z/OS
assigned started task user ID.

Change a broker mqsichangebroker v READ and WRITE access to the
component directory by the z/OS user
ID running the command.

v The broker runs under its z/OS
assigned started task user ID.

Backup or restore a
broker

mqsibackupbroker

mqsirestorebroker

v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Start or stop a broker Console commands v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

v UPDATE authority in class
OPERCMDS to the
MVS.START.STC.message_broker_component_started_task
resource.

Chapter 14. Reference 3655

Task Command Authorization

Create or delete an
execution group

mqsicreateexecutiongroup

mqsideleteexecutiongroup

v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Start or stop a message
flow

mqsistartmsgflow

mqsistopmsgflow

v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Create or delete a
configurable service

mqsicreateconfigurableservice

mqsideleteconfigurableservice

v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

List brokers mqsilist v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Show broker properties mqsireportbroker

mqsireportproperties

mqsireportflowmonitoring

mqsireportflowstats

mqsireportflowuserexits

mqsireportresourcestats

v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Change properties mqsichangeproperties

mqsichangeflowmonitoring

mqsichangeflowstats

mqsichangeflowuserexits

mqsichangeresourcestats

v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Set and update
passwords

mqsisetdbparms v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Deploy an object to a
broker

mqsideploy v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Reload a broker,
execution groups or
security

mqsireload

mqsireloadsecurity

v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Trace a broker mqsichangetrace

mqsireporttrace

mqsireadlog

mqsiformatlog

v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Report or update a
broker mode

mqsimode v READ and WRITE access to the
component directory by the z/OS
assigned started task user ID.

Related tasks:
“Setting up z/OS security” on page 556
On z/OS, you must complete several security configuration tasks before
WebSphere Message Broker can work correctly.

3656 WebSphere Message Broker Version 7.0.0.8

“Broker component security” on page 497
You must consider several security aspects when you are setting up brokers
running on Windows, Linux, or UNIX platforms.
Related reference:
“Summary of required access (z/OS)” on page 3985
The professionals in your organization require access to components and resources
on z/OS.
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.

Configuration and administration
Use the reference information in this section to accomplish the configuration and
administration tasks that address your business needs.
v “Restrictions that apply in each operation mode”
v “Database configuration” on page 3659
v “Administration API” on page 3672
v “Commands” on page 3672
Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.

Restrictions that apply in each operation mode
The operation mode in which your broker is working defines how many execution
groups you can use, and which nodes are available.

Trial Edition mode

All features are enabled, but you can use the product for only 90 days after
installation.

Starter Edition mode

All features are enabled. You can create one execution group, but the number of
message flows that you can deploy is unlimited.

Not all samples work in Starter Edition mode because the sample import and
deploy wizards create one or more execution groups, and the number of execution
groups is limited in this mode.

Chapter 14. Reference 3657

You can run a sample in Starter Edition mode if the default execution group is
deleted after you have run the Default Configuration wizard, but before you install
the sample. For example, to run the Pager sample:
1. Run the Default Configuration wizard.
2. Delete the default execution group on the MB7BROKER that is created by the

wizard.
3. To import and deploy the Pager sample, click Set up the Pager samples.
4. Follow the documented steps to run the Pager samples.

If you want to run samples to explore and understand the features of the product,
you can install them on your development and unit test computers; see
“Development and unit test” on page 50.

Entry Edition mode

In entry mode, the broker operates with a limited set of nodes available for
deployed flows. You are also limited to one execution group. If you attempt to
exceed the limits of this mode, the deployment is rejected. Use this edition for
simple use cases only.

The functions that are enabled and the number of execution groups that you can
create are limited. Therefore, not all samples work in Entry Edition mode.

The following message flow nodes can be used in entry mode. Plug-in nodes are
also supported in entry mode.

v Check node
v Database node
v EmailOutput node
v FileInput node
v FileOutput node
v FlowOrder node
v HTTPHeader node
v HTTPInput node
v HTTPReply node
v HTTPRequest node
v Input node
v JavaCompute node
v JMSHeader node
v JMSInput node
v JMSMQTransform node
v JMSOutput node
v JMSReply node

v Label node
v Mapping node
v MQGet node
v MQHeader node
v MQInput node
v MQJMSTransform node
v MQOutput node
v MQReply node
v Output node
v Passthrough node
v PHPCompute node
v Publication node
v ResetContentDescriptor node
v RouteToLabel node
v SOAPAsyncRequest node
v SOAPAsyncResponse node
v SOAPEnvelope node

v SOAPExtract node
v SOAPInput node
v SOAPReply node
v SOAPRequest node
v TCPIPClientInput node
v TCPIPClientOutput node
v TCPIPClientReceive node
v TCPIPServerInput node
v TCPIPServerOutput node
v TCPIPServerReceive node
v Throw node
v Trace node
v TryCatch node
v Validate node
v XSLTransform node

Remote Adapter Deployment mode

Only adapter-related features are enabled, and the types of node that you can use,
and the number of execution groups that you can create, are limited. You can
create up to two execution groups, with no limit on the number of deployed
message flows in each of these execution groups.

Not all samples work in this mode. If you want to run samples to explore and
understand the features of the product, you can install them on your development
and unit test computers; see “Development and unit test” on page 50.

3658 WebSphere Message Broker Version 7.0.0.8

The following message flow nodes can be used in adapter mode. Plug-in nodes are
also supported in adapter mode.

v CDInput node
v CDOutput node
v CICSRequest node
v CORBARequest node
v DatabaseInput node
v EmailInput node
v EndpointLookup node
v FileInput node
v FileOutput node
v FTEInput node
v FTEOutput node
v HTTPInput node
v HTTPReply node
v HTTPRequest node
v IMSRequest node
v Input node
v JavaCompute node
v JDEdwardsInput node
v JDEdwardsRequest node

v JMSInput node
v JMSOutput node
v MQGet node
v MQInput node
v MQOutput node
v Output node
v PeopleSoftInput node
v PeopleSoftRequest node
v PHPCompute node
v Real-timeInput node
v Real-timeOptimizedFlow node
v RegistryLookup node
v SAPInput node
v SAPReply node
v SAPRequest node
v SCAAsyncRequest node
v SCAAsyncResponse node

v SCAInput node
v SCAReply node
v SCARequest node
v SecurityPEP node
v SiebelInput node
v SiebelRequest node
v SOAPInput node
v SOAPReply node
v SOAPRequest node
v TCPIPClientInput node
v TCPIPClientOutput node
v TCPIPClientReceive node
v TCPIPServerInput node
v TCPIPServerOutput node
v TCPIPServerReceive node
v TimeoutControl node
v TimeoutNotification node

Enterprise mode

All features are enabled and no restrictions or limits are imposed.
Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Checking the operation mode of your broker” on page 657
Use the mqsimode command to find out the operation mode of your broker.
“Changing the operation mode of your broker” on page 655
Change the operation mode in which your broker is working by using the
mqsimode command.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“What the Default Configuration wizard creates” on page 107
A table of the components that are created by the wizard, details of how to resolve
problems, and how to view errors.

Database configuration
Sample ODBC definition files are supplied to help you to define an ODBC
connection to a database from your brokers or applications.

Chapter 14. Reference 3659

Using the DataDirect drivers

For a copy of the sample ODBC definition file that is supplied with WebSphere
Message Broker, for use with the DataDirect drivers, see the following topic:
v “Sample DataDirect odbc.ini file”

Using the WebSphere Message Broker Database Extender (IE02)
drivers

For a copy of the sample ODBC definition file that is supplied with WebSphere
Message Broker for use with the WebSphere Message Broker Database Extender
(IE02) drivers, see the following topic:
v “Sample WebSphere Message Broker ODBC Database Extender (IE02)

configuration files” on page 3596
Related concepts:
“Databases overview” on page 2109
Brokers can access user databases to manipulate your business data. If you have
user databases, you must configure them before you can access them from your
message flow.
Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.

Sample DataDirect odbc.ini file
A copy of the sample DataDirect ODBC definition file that is supplied with
WebSphere Message Broker.

Purpose

Configure the odbc.ini file when you define an ODBC connection to a DB2,
Informix, Oracle, Sybase, or SQLServer database. Follow the instructions in
“Connecting to a database from Linux and UNIX systems using the DataDirect
drivers” on page 674.

Some lines in this topic have been split to improve readability; you must not split
these lines within your copy of the file.

AIX, Linux on x86-64, Solaris on SPARC, and HP-Itanium
;##
;# ODBC database driver manager initialisation file. #
;##
;# It is recommended that you take a copy of this file and then edit the #
;# copy. #
;# #
;# 1. Complete the ’Mandatory information stanza’ section #
;# at the end of the file. #
;# #
;# 2. For each data source, add the name of the data source into #
;# the ’List of data sources stanza’ section. #
;# #
;# 3. For each data source, create a stanza in the #
;# ’Individual data source stanzas’ section. #
;##

3660 WebSphere Message Broker Version 7.0.0.8

;##
;###### List of data sources stanza #######
;##
[ODBC Data Sources]
DB2DB=IBM DB2 ODBC Driver
ORACLEDB=DataDirect 6.0 Oracle Wire Protocol
ORACLERACDB=DataDirect 6.0 Oracle Wire Protocol (Real Application Clusters)
SYBASEDB=DataDirect 6.0 Sybase Wire Protocol
SYBASEDBUTF8=DataDirect 6.0 Sybase UTF8 Wire Protocol
SQLSERVERDB=DataDirect 6.0 SQL Server Wire Protocol
INFORMIXDB=IBM Informix ODBC Driver

;##
;########## Individual data source stanzas ################
;##

;# DB2 stanza
[DB2DB]
DRIVER=libdb2Wrapper.so
Description=DB2DB DB2 ODBC Database
Database=DB2DB

;# Oracle stanza
[ORACLEDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKora24.so
Description=DataDirect 6.0 Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
SID=<Your Oracle SID>
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

;# Oracle Real Application Clusters stanza
[ORACLERACDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKora24.so
Description=DataDirect 6.0 Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
ServiceName=<Your Oracle Real Application Cluster Service Name>
AlternateServers=(HostName=<Your alternative host name>:PortNumber=<Port on
which Oracle is listening on the alternative host>:ServiceName=<Your
Oracle Real Application Cluster Service Name>)
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

;# Sybase Stanza
[SYBASEDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKase24.so
Description=DataDirect 6.0 Sybase Wire Protocol
Database=<Your Database Name>
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
SelectMethod=0
NetworkAddress=<Your Sybase Server Name>,<Your Sybase Port Number>
SelectUserName=1

Chapter 14. Reference 3661

ColumnSizeAsCharacter=1
EnableSPColumnTypes=2
LoginTimeout=0
TimestampTruncationBehavior=1
XAConnOptBehaviour=3

;# Sybase Stanza for a UTF8 datasource
[SYBASEDBUTF8]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKase24.so
Description=DataDirect 6.0 Sybase Wire Protocol
Database=<Your Database Name>
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
SelectMethod=0
NetworkAddress=<Your Sybase Server Name>,<Your Sybase Port Number>
SelectUserName=1
ColumnSizeAsCharacter=1
EnableSPColumnTypes=2
Charset=UTF8
LoginTimeout=0
TimestampTruncationBehavior=1
XAConnOptBehaviour=3

;# UNIX to SQLServer stanza
[SQLSERVERDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKmsss24.so
Description=DataDirect 6.0 SQL Server Wire Protocol
Address=<Your SQLServer Machine Name>,<Your SQLServer Port Number>
;# Alternative way to locate server using a named instance
;# Address=<Your SQLServer Machine Name>\<Your SQLServer Instance Name>
AnsiNPW=Yes
Database=db
QuotedId=No
ColumnSizeAsCharacter=1

;# Informix Stanza
[INFORMIXDB]
Driver=libinfWrapper.so
Description=IBM Informix ODBC Driver
ServerName=<Your Informix Server Name>
Database=<Your Database Name>

;##
;###### Mandatory information stanza ######
;##

[ODBC]
;# To turn on ODBC trace set Trace=1
Trace=0
TraceOptions=3
TraceFile=<A Directory with plenty of free space to hold trace
output>/odbctrace.out
TraceDll=<Your Broker install directory>/ODBC/V6.0/lib/odbctrac.so
InstallDir=<Your Broker install directory>/ODBC/V6.0
UseCursorLib=0
IANAAppCodePage=4
UNICODE=UTF-8

Linux on x86
;##
;# ODBC database driver manager initialisation file. #
;##
;# It is recommended that you take a copy of this file and then edit the #
;# copy. #
;# #
;# 1. Complete the ’Mandatory information stanza’ section #
;# at the end of the file. #
;# #

3662 WebSphere Message Broker Version 7.0.0.8

;# 2. For each data source, add the name of the data source into #
;# the ’List of data sources stanza’ section. #
;# #
;# 3. For each data source, create a stanza in the #
;# ’Individual data source stanzas’ section. #
;##

;##
;###### List of data sources stanza #######
;##
[ODBC Data Sources]
DB2DB=IBM DB2 ODBC Driver
ORACLEDB=DataDirect 6.0 Oracle Wire Protocol
ORACLERACDB=DataDirect 6.0 Oracle Wire Protocol (Real Application Clusters)
SYBASEDB=DataDirect 6.0 Sybase Wire Protocol
SYBASEDBUTF8=DataDirect 6.0 Sybase UTF8 Wire Protocol
SQLSERVERDB=DataDirect 6.0 SQL Server Wire Protocol
INFORMIXDB=IBM Informix ODBC Driver

;##
;########## Individual data source stanzas ################
;##

;# DB2 stanza
[DB2DB]
Driver=<Your DB2 install directory>/lib32/libdb2.so
Description=DB2 ODBC Database
Database=DB2DB

;# Oracle stanza
[ORACLEDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKora24.so
Description=DataDirect 6.0 Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
SID=<Your Oracle SID>
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

;# Oracle Real Application Cluster stanza
[ORACLERACDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKor824.so
Description=DataDirect 6.0 Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
ServiceName=<Your Oracle Real Application Cluster Service Name>
;#This shows one alternate server definition. Add extra ones using a ’,’ to seperate each definition.
AlternateServers=(HostName=<Your alternative hostname>:PortNumber=<Port number on which Oracle is listening on the alternative host>:ServiceName=<Your Oracle Real Application Cluster Service Name>)
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

;# Sybase Stanza
[SYBASEDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKase24.so
Description=DataDirect 6.0 Sybase Wire Protocol
Database=<Your Database Name>
ServerName=<Your Sybase Server Name>

Chapter 14. Reference 3663

EnableDescribeParam=1
OptimizePrepare=1
SelectMethod=0
NetworkAddress=<Your Sybase Server Name>,<Your Sybase Port Number>
SelectUserName=1
ColumnSizeAsCharacter=1
EnableSPColumnTypes=2
LoginTimeout=0
TimestampTruncationBehavior=1
XAConnOptBehaviour=3

;# Sybase Stanza for a UTF8 datasource
[SYBASEDBUTF8]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKase24.so
Description=DataDirect 6.0 Sybase Wire Protocol
Database=<Your Database Name>
ServerName=<Your Sybase Server Name>
EnableDescribeParam=1
OptimizePrepare=1
SelectMethod=0
NetworkAddress=<Your Sybase Server Name>,<Your Sybase Port Number>
SelectUserName=1
ColumnSizeAsCharacter=1
Charset=UTF8
EnableSPColumnTypes=2
LoginTimeout=0
TimestampTruncationBehavior=1
XAConnOptBehaviour=3

;# UNIX to SQLServer stanza
[SQLSERVERDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKmsss24.so
Description=DataDirect 6.0 SQL Server Wire Protocol
Address=<Your SQLServer Machine Name>,<Your SQLServer Port Number>
;# Alternative way to locate server using a named instance
;# Address=<Your SQLServer Machine Name>\<Your SQLServer Instance Name>
AnsiNPW=Yes
QuotedId=No
ColumnSizeAsCharacter=1

;# Informix Stanza
[INFORMIXDB]
Driver=<Your Informix Client Directory>/lib/cli/iclit09b.so
Description=IBM Informix ODBC Driver
ServerName=<Your Informix Server Name>
Database=<Your Database Name>

;##
;###### Mandatory information stanza ######
;##

[ODBC]
;# To turn on ODBC trace set Trace=1
Trace=0
TraceOptions=3
TraceFile=<A Directory with plenty of free space to hold trace
output>/odbctrace.out
TraceDll=<Your Broker install directory>/ODBC/V6.0/lib/odbctrac.so
InstallDir=<Your Broker install directory>/ODBC/V6.0
UseCursorLib=0
IANAAppCodePage=4
UNICODE=UTF-8

Linux on POWER, and Solaris on x86-64
;##
;# ODBC database driver manager initialisation file. #
;##
;# It is recommended that you take a copy of this file and then edit the #
;# copy. #

3664 WebSphere Message Broker Version 7.0.0.8

;# #
;# 1. Complete the ’Mandatory information stanza’ section #
;# at the end of the file. #
;# #
;# 2. For each data source, add the name of the data source into #
;# the ’List of data sources stanza’ section. #
;# #
;# 3. For each data source, create a stanza in the #
;# ’Individual data source stanzas’ section. #
;##

;##
;###### List of data sources stanza #######
;##
[ODBC Data Sources]
DB2DB=IBM DB2 ODBC Driver
ORACLEDB=DataDirect 6.0 Oracle Wire Protocol
ORACLERACDB=DataDirect 6.0 Oracle Wire Protocol (Real Application Clusters)
SYBASEDB=DataDirect 6.0 Sybase Wire Protocol
SYBASEDBUTF8=DataDirect 6.0 Sybase UTF8 Wire Protocol
INFORMIXDB=IBM Informix ODBC Driver

;##
;########## Individual data source stanzas ################
;##

;# DB2 stanza
[DB2DB]
DRIVER=libdb2Wrapper.so
Description=DB2DB DB2 ODBC Database
Database=DB2DB

;# Oracle stanza
[ORACLEDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKora24.so
Description=DataDirect 6.0 Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
SID=<Your Oracle SID>
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

;# Oracle Real Application Clusters stanza
[ORACLERACDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKora24.so
Description=DataDirect 6.0 Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
ServiceName=<Your Oracle Real Application Cluster Service Name>
AlternateServers=(HostName=<Your alternative host name>:PortNumber=<Port on
which Oracle is listening on the alternative host>:ServiceName=<Your
Oracle Real Application Cluster Service Name>)
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

Chapter 14. Reference 3665

;# Sybase Stanza
[SYBASEDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKase24.s0
Description=DataDirect 6.0 Sybase Wire Protocol
Database=<Your Database Name>
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
SelectMethod=0
NetworkAddress=<Your Sybase Server Name>,<Your Sybase Port Number>
SelectUserName=1
ColumnSizeAsCharacter=1
EnableSPColumnTypes=2
LoginTimeout=0
TimestampTruncationBehavior=1
XAConnOptBehaviour=3

;# Sybase Stanza for a UTF8 datasource
[SYBASEDBUTF8]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKase24.so
Description=DataDirect 6.0 Sybase Wire Protocol
Database=<Your Database Name>
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
SelectMethod=0
NetworkAddress=<Your Sybase Server Name>,<Your Sybase Port Number>
SelectUserName=1
ColumnSizeAsCharacter=1
Charset=UTF8
EnableSPColumnTypes=2
LoginTimeout=0
TimestampTruncationBehavior=1
XAConnOptBehaviour=3

;# Informix Stanza
[INFORMIXDB]
Driver=libinfWrapper.so
Description=IBM Informix ODBC Driver
ServerName=<Your Informix Server Name>
Database=<Your Database Name>

;##
;###### Mandatory information stanza ######
;##

[ODBC]
;# To turn on ODBC trace set Trace=1
Trace=0
TraceOptions=3
TraceFile=<A Directory with plenty of free space to hold trace
output>/odbctrace.out
TraceDll=<Your Broker install directory>/ODBC/V6.0/lib/odbctrac.so
InstallDir=<Your Broker install directory>/ODBC/V6.0
UseCursorLib=0
IANAAppCodePage=4
UNICODE=UTF-8

Linux on IBM z Systems
;##
;# ODBC database driver manager initialisation file. #
;##
;# It is recommended that you take a copy of this file and then edit the #
;# copy. #
;# #
;# 1. Complete the ’Mandatory information stanza’ section #
;# at the end of the file. #
;# #

3666 WebSphere Message Broker Version 7.0.0.8

;# 2. For each data source, add the name of the data source into #
;# the ’List of data sources stanza’ section. #
;# #
;# 3. For each data source, create a stanza in the #
;# ’Individual data source stanzas’ section. #
;##

;##
;###### List of data sources stanza #######
;##
[ODBC Data Sources]
DB2DB=IBM DB2 ODBC Driver
ORACLEDB=DataDirect 6.0 Oracle Wire Protocol
ORACLERACDB=DataDirect 6.0 Oracle Wire Protocol (Real Application Clusters)
SQLSERVERDB=DataDirect 6.0 SQL Server Wire Protocol
INFORMIXDB=IBM Informix ODBC Driver

;##
;########## Individual data source stanzas ################
;##

;# DB2 stanza
[DB2DB]
DRIVER=libdb2Wrapper.so
Description=DB2DB DB2 ODBC Database
Database=DB2DB

;# Oracle stanza
[ORACLEDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKora24.so
Description=DataDirect 6.0 Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
SID=<Your Oracle SID>
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

;# Oracle Real Application Clusters stanza
[ORACLERACDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKora24.so
Description=DataDirect 6.0 Oracle Wire Protocol
HostName=<Your Oracle Server Machine Name>
PortNumber=<Port on which Oracle is listening on HostName>
ServiceName=<Your Oracle Real Application Cluster Service Name>
AlternateServers=(HostName=<Your alternative host name>:PortNumber=<Port on
which Oracle is listening on the alternative host>:ServiceName=<Your
Oracle Real Application Cluster Service Name>)
CatalogOptions=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1
EnableDescribeParam=1
OptimizePrepare=1
WorkArounds=536870912
ProcedureRetResults=1
ColumnSizeAsCharacter=1
LoginTimeout=0

;# SQLServer stanza
[SQLSERVERDB]
Driver=<Your Broker install directory>/ODBC/V6.0/lib/UKmsss24.so
Description=DataDirect 6.0 SQL Server Wire Protocol
Address=<Your SQLServer Machine Name>,<Your SQLServer Port Number>
;#Alternative way to locate server using a named instance
;#Address=<Your SQLServer Machine Name>\<Your SQLServer Instance Name>

Chapter 14. Reference 3667

AnsiNPW=Yes
Database=db
QuotedId=No
ColumnSizeAsCharacter=1

;# Informix Stanza
[INFORMIXDB]
Driver=libinfWrapper.so
Description=IBM Informix ODBC Driver
ServerName=<Your Informix Server Name>
Database=<Your Database Name>

;##
;###### Mandatory information stanza ######
;##

[ODBC]
;# To turn on ODBC trace set Trace=1
Trace=0
TraceOptions=3
TraceFile=<A Directory with plenty of free space to hold trace
output>/odbctrace.out
TraceDll=<Your Broker install directory>/ODBC/V6.0/lib/odbctrac.so
InstallDir=<Your Broker install directory>/ODBC/V6.0
UseCursorLib=0
IANAAppCodePage=4
UNICODE=UTF-8

On UNIX and Linux systems, you can check that the ODBC environment is
configured correctly by running the mqsicvp command. This command also
validates the connection to all data sources that are listed in the odbc.ini file that
have been associated with a broker by using the mqsisetdbparms command. For
more information, see “mqsicvp command” on page 3857.
Related tasks:
“Connecting to a database from Linux and UNIX systems using the DataDirect
drivers” on page 674
To enable a broker to connect to a database, define the ODBC data source name
(DSN) for the database.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Sample WebSphere Message Broker ODBC Database Extender (IE02) configuration
files” on page 3596
How you use WebSphere Message Broker ODBC Database Extender (IE02) to load
the correct data source driver.

Support for Unicode and DBCS data in databases
You can manipulate Unicode Standard version 3.0 data, in suitably configured
databases, using ESQL, in nodes that access databases by ODBC. The broker does
not support DBCS-only columns in tables that are defined in databases.

The broker does not, therefore, support certain data types, including the following
types:
v NCHAR, NVARCHAR, NVARCHAR2, NCLOB (on Oracle)
v NCHAR, NVARCHAR, NTEXT, UNICHAR, UNIVARCHAR (on Sybase)
v NCHAR, NVARCHAR (on Informix)

3668 WebSphere Message Broker Version 7.0.0.8

For WebSphere Message Broker 7.0.0.4 and later, GRAPHIC, VARGRAPHIC,
LONGVARGRAPHIC, and DBCLOB data type support on DB2 is provided for the
broker with the following limitations:
v Due to issues related to the z/OS Unicode support when calling stored

procedures by using PASSTHRU, you must not use this method of calling stored
procedures. For more information, see “PASSTHRU statement” on page 5147.

v Using the DB2 string functions with Unicode data can return unexpected results.
For more information, see “Unicode string functions in DB2” on page 3670.

Support for Unicode is available only for the generally-supported versions of the
following database managers:
v IBM DB2 for Windows, Linux, UNIX, and z/OS operating systems.
v Oracle
v Microsoft SQL server
v Sybase Adaptive Server Enterprise (ASE)

For information about the versions of databases supported, see WebSphere
Message Broker Requirements.

Support for the manipulation of Unicode data is not available for nodes that access
databases that use JDBC; for example, DatabaseRetrieve and DatabaseRoute.

The following instructions apply to both 32-bit and 64-bit applications.

If you are using DB2:
v On Windows, Linux, and UNIX operating systems, your database must be

created with code set utf-8.
v On z/OS, set the variable MQSI_DB2_CONVERSION in the broker environment

to the value UNICODE. In the ODBC definition add the statement
CURRENTAPPENSCH=UNICODE to the [COMMON] stanza.

v On all platforms, DB2 returns the lengths of strings in bytes, rather than
characters; this response has implications for the behavior of string
length-related ESQL functions.
Some functions might fail, or function differently, when processed by the
database. See “Unicode string functions in DB2” on page 3670 for further
information.

If you are using Oracle:
v Your database must be created with NLS_CHARACTERSET of AL32UTF8.
v Your ODBC data source definition must include the setting

ColumnSizeAsCharacter=1.
On UNIX and Linux platforms, this setting must be included in the appropriate
stanza in the ODBC ini files.
On Windows platforms, this string value must be added to the ODBC data
source key in the registry.
See “Enabling ODBC connections to the databases” on page 668 for further
information.

v For 32-bit connections, you must set the variable NLS_LANG in the broker
environment to the value <yourlanguage>_<yourterritory>.AL32UTF8.

if you are using Microsoft SQL server:

Chapter 14. Reference 3669

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

v You must use NCHAR, NVARCHAR, and NTEXT data types for your column
definitions.

v For brokers on UNIX and Linux platforms, your ODBC data source definition
must include the setting ColumnSizeAsCharacter=1; this setting must be included
in the appropriate stanza in the ODBC .ini files.

If you are using Sybase ASE:
v The default character set of your ASE server must be UTF-8.
v Your ODBC data source definition must include the settings

ColumnSizeAsCharacter=1 and CharSet=UTF8.
On UNIX and Linux platforms, this setting must be included in the appropriate
stanza in the ODBC .ini files.
On Windows platforms, this string value must be added to the ODBC data
source key in the registry.
See “Enabling ODBC connections to the databases” on page 668 for further
information.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“User database connections” on page 2110
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.
Related tasks:
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Unicode string functions in DB2:

When you use string functions in ESQL expressions, certain parameters refer to
character positions or counts.

For example, with the SUBSTRING function, coding:
SUBSTRING(’Hello World!’ FROM 7 FOR 4)

results in the string Worl because 7 refers to the seventh character position, and 4
refers to four characters.

3670 WebSphere Message Broker Version 7.0.0.8

If the string Hello World! is represented in an ASCII code page, the seventh byte of
that representation is the seventh character. However, in other code pages or
encoding schemes (for example, some Unicode representations) the seventh
character could start at byte 13, and 4 characters can occupy 8 bytes.

WebSphere Message Broker correctly handles this situation; that is, the numeric
parameters and results of these string functions always refer to characters and not
the bytes used to represent them.

In some situations, WebSphere Message Broker delegates expressions to a database
engine for processing. For example, if there is a WHERE clause, in a SELECT
function, applied to a database data source, the database is passed the WHERE
clause if it can interpret all the functions in the expression.

If there are functions that are not supported by the database, WebSphere Message
Broker passes only those parts of the expression that can be interpreted, retrieves
an unfiltered record set, and performs the remaining filtering itself.

DB2 string functions use byte indexing and not character indexing. Therefore, for
Unicode data, the meaning of certain functions differs from the WebSphere
Message Broker functions, even though they can be ‘interpreted'.

Characters in Unicode UTF8 representation, for example, can occupy from 1-4
bytes, so that the seventh character can start anywhere from byte 7 to byte 25.

The following string functions are affected:
v INSERT function
v LEFT function
v LENGTH function
v OVERLAY function
v POSITION function
v RIGHT function
v SPACE function
v SUBSTRING function

These functions either take numeric parameters, or return numeric results that refer
to indexes, or counts, of characters in a string.

When expressions involving these functions are passed to the DB2 database, and
Unicode string data is manipulated in the database, the results can be unexpected,
or an error might occur.

This error might also occur if, for example, an expression of this type is passed
directly to the database by using the PASSTHRU function. In this situation, you
could modify each expression yourself, as necessary, for the target database.

It is not possible to systematically modify expressions to avoid this problem and
WebSphere Message Broker does not attempt to do so.

If the Unicode strings do not use any characters that, in UTF8 representation,
occupy more than 1 byte each, the functions perform correctly.
Related concepts:

Chapter 14. Reference 3671

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
Related reference:
“Support for Unicode and DBCS data in databases” on page 3668
You can manipulate Unicode Standard version 3.0 data, in suitably configured
databases, using ESQL, in nodes that access databases by ODBC. The broker does
not support DBCS-only columns in tables that are defined in databases.

Administration API
Use the Administration API for WebSphere Message Broker (CMP API) Java classes
and methods to develop CMP applications.

Full details of the Java classes and methods are provided in the CMP API Javadoc
information.
Related concepts:
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
“Developing applications that use the Administration API” on page 956
Develop Java applications that use the Administration API (also known as the
CMP API) to communicate with, deploy to, and manage brokers and their
associated resources.

Commands
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.

For information about the equivalent commands on z/OS, see “Summary of
commands on Linux, UNIX, Windows, and z/OS systems” on page 3674.

WebSphere Message Broker Toolkit commands

Command name Topic reference

mqsiapplybaroverride “mqsiapplybaroverride command” on page 3684

mqsicreatebar “mqsicreatebar command” on page 3699

mqsicreatemsgdefs “mqsicreatemsgdefs command” on page 3702

mqsicreatemsgdefsfromwsdl “mqsicreatemsgdefsfromwsdl command” on page 3712

mqsireadbar “mqsireadbar command” on page 3697

3672 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker commands

Table 43. Broker commands

Command name Topic reference

mqsiaddbrokerinstance “mqsiaddbrokerinstance command” on page 3715

mqsiapplybaroverride “mqsiapplybaroverride command” on page 3684

mqsibackupbroker “mqsibackupbroker command” on page 3720

mqsichangebroker “mqsichangebroker command” on page 3723

mqsicreatebroker “mqsicreatebroker command” on page 3831

mqsicreateexecutiongroup “mqsicreateexecutiongroup command” on page 3854

mqsideletebroker “mqsideletebroker command” on page 3863

mqsideleteexecutiongroup “mqsideleteexecutiongroup command” on page 3869

mqsimode “mqsimode command” on page 3899

mqsireadbar “mqsireadbar command” on page 3697

mqsireload “mqsireload command” on page 3909

mqsiremovebrokerinstance “mqsiremovebrokerinstance command” on page 3918

mqsireportbroker “mqsireportbroker command” on page 3919

mqsirestorebroker “mqsirestorebroker command” on page 3952

Table 44. Database commands

Command name Topic reference

mqsimanagexalinks “mqsimanagexalinks command” on page 3891

mqsisetdbparms “mqsisetdbparms command” on page 3954

Table 45. Security commands

Command name Topic reference

mqsireloadsecurity “mqsireloadsecurity command” on page 3911

mqsisetdbparms “mqsisetdbparms command” on page 3954

mqsisetsecurity “mqsisetsecurity command” on page 3964

Table 46. Start and stop commands

Command name Topic reference

mqsistart “mqsistart command” on page 3965

mqsistartmsgflow “mqsistartmsgflow command” on page 3969

mqsistop “mqsistop command” on page 3972

mqsistopmsgflow “mqsistopmsgflow command” on page 3975

Table 47. List and trace commands

Command name Topic reference

mqsichangetrace “mqsichangetrace command” on page 3822

mqsiformatlog “mqsiformatlog command” on page 3880

mqsilist “mqsilist command” on page 3882

mqsireadlog “mqsireadlog command” on page 3905

Chapter 14. Reference 3673

Table 47. List and trace commands (continued)

Command name Topic reference

mqsireporttrace “mqsireporttrace command” on page 3947

Table 48. Migration commands

Command name Topic reference

mqsimigratecomponents “mqsimigratecomponents command” on page 3894

Table 49. Properties commands

Command name Topic reference

mqsichangeproperties “mqsichangeproperties command” on page 3756

mqsireportproperties “mqsireportproperties command” on page 3937

Table 50. Monitoring commands

Command name Topic reference

mqsichangeflowmonitoring “mqsichangeflowmonitoring command” on page 3738

mqsireportflowmonitoring “mqsireportflowmonitoring command” on page 3924

Table 51. Statistics commands

Command name Topic reference

mqsichangeflowstats “mqsichangeflowstats command” on page 3744

mqsichangeresourcestats “mqsichangeresourcestats command” on page 3819

mqsireportflowstats “mqsireportflowstats command” on page 3929

mqsireportresourcestats “mqsireportresourcestats command” on page 3944

Table 52. Miscellaneous commands

Command name Topic reference

mqsichangeflowuserexits “mqsichangeflowuserexits command” on page 3751

mqsicommandconsole “mqsicommandconsole command” on page 3830

mqsicreateconfigurableservice “mqsicreateconfigurableservice command” on page
3849

mqsicvp “mqsicvp command” on page 3857

mqsideleteconfigurableservice “mqsideleteconfigurableservice command” on page
3866

mqsideploy “mqsideploy command” on page 3872

mqsiexplain “mqsiexplain command” on page 3879

mqsireportflowuserexits “mqsireportflowuserexits command” on page 3933

Summary of commands on Linux, UNIX, Windows, and z/OS
systems
The following table summarizes the runtime commands that are available on
Linux, UNIX, and Windows systems, and provides the z/OS equivalent, where it is
available.

3674 WebSphere Message Broker Version 7.0.0.8

Command on Windows,
Linux, and UNIX systems

z/OS equivalent:
type z/OS equivalent z/OS References

mqsiapplybaroverride Utility JCL BIPOBAR “Contents of the broker
PDSE” on page 3991

mqsibackupbroker Utility JCL BIPBUBK “Contents of the broker
PDSE” on page 3991

mqsichangebroker 1. Console
command:
modify

2. Utility JCL

1. changebroker

2. BIPCHBK

1. “mqsichangebroker
command” on page 3723

2. “Contents of the broker
PDSE” on page 3991

mqsichangeflowmonitoring 1. Console
command:
modify

2. Utility JCL

1. changeflowmonitoring

2. BIPCHME

1.
“mqsichangeflowmonitoring
command” on page 3738

2. “Contents of the broker
PDSE” on page 3991

mqsichangeflowstats 1. Console
command:
modify

2. Utility JCL

1. changeflowstats

2. BIPCHMS

1. “mqsichangeflowstats
command” on page 3744

2. “Contents of the broker
PDSE” on page 3991

mqsichangeflowuserexits 1. Console
command:
modify

2. Utility JCL

1. changeflowuserexits

2. BIPCHUE

1. “mqsichangeflowuserexits
command” on page 3751

2. “Contents of the broker
PDSE” on page 3991

mqsichangeproperties Utility JCL BIPCHPR “Contents of the broker
PDSE” on page 3991

mqsichangeresourcestats Utility JCL BIPCHRS “mqsichangeresourcestats
command” on page 3819

mqsichangetrace Console command:
modify

changetrace “mqsichangetrace command”
on page 3822

mqsicreatebroker Utility JCL BIPCRBK “Contents of the broker
PDSE” on page 3991

mqsicreateconfigurableserviceUtility JCL BIPJADPR “Contents of the broker
PDSE” on page 3991

mqsicreateexecutiongroup Utility JCL BIPCREG “Contents of the broker
PDSE” on page 3991

mqsicvp Not applicable

mqsideletebroker Utility JCL BIPDLBK “Contents of the broker
PDSE” on page 3991

mqsideleteconfigurableserviceUtility JCL BIPJADPR “Contents of the broker
PDSE” on page 3991

mqsideleteexecutiongroup Utility JCL BIPDLEG “Contents of the broker
PDSE” on page 3991

mqsideploy 1. Console
command:
modify

2. Utility JCL

1. deploy

2. BIPDPLY

1. “mqsideploy command” on
page 3872

2. “Contents of the broker
PDSE” on page 3991

mqsiexplain Utility JCL BIPEXPL “Contents of the broker
PDSE” on page 3991

Chapter 14. Reference 3675

Command on Windows,
Linux, and UNIX systems

z/OS equivalent:
type z/OS equivalent z/OS References

mqsiformatlog Utility JCL BIPFMLG “Contents of the broker
PDSE” on page 3991

mqsilist 1. Console
command:
modify

2. Utility JCL

1. list

2. BIPLIST

1. “mqsilist command” on
page 3882

2. “Contents of the broker
PDSE” on page 3991

mqsimanagexalinks Not applicable

mqsimigratecomponents Utility JCL BIPMGCMP “mqsimigratecomponents
command” on page 3894

mqsimode Utility JCL BIPMODE “Contents of the broker
PDSE” on page 3991

mqsireadbar Utility JCL BIPRBAR “Contents of the broker
PDSE” on page 3991

mqsireadlog Utility JCL BIPRELG “Contents of the broker
PDSE” on page 3991

mqsireload Console command:
modify

reload “mqsireload command” on
page 3909

mqsireloadsecurity 1. Console
command:
modify

2. Utility JCL

1. reloadsecurity

2. BIPRLSEC

1. “mqsireloadsecurity
command” on page 3911

2. “Contents of the broker
PDSE” on page 3991

mqsireportbroker Utility JCL BIPRPBK “Contents of the broker
PDSE” on page 3991

mqsireportflowmonitoring 1. Console
command:
modify

2. Utility JCL

1. reportflowmonitoring

2. BIPRPME

1.
“mqsireportflowmonitoring
command” on page 3924

2. “Contents of the broker
PDSE” on page 3991

mqsireportflowstats 1. Console
command:
modify

2. Utility JCL

1. reportflowstats

2. BIPRPMS

1. “mqsireportflowstats
command” on page 3929

2. “Contents of the broker
PDSE” on page 3991

mqsireportflowuserexits 1. Console
command:
modify

2. Utility JCL

1. reportflowuserexits

2. BIPRPUE

1. “mqsireportflowuserexits
command” on page 3933

2. “Contents of the broker
PDSE” on page 3991

mqsireportproperties Utility JCL BIPRPPR “Contents of the broker
PDSE” on page 3991

mqsireportresourcestats Utility JCL BIPRPRS “mqsireportresourcestats
command” on page 3944

mqsireporttrace Console command:
modify

reporttrace “mqsireporttrace command”
on page 3947

mqsirestorebroker Utility JCL BIPRSBK “Contents of the broker
PDSE” on page 3991

mqsisetdbparms Utility JCL BIPSDBP “mqsisetdbparms command”
on page 3954

mqsisetsecurity Not applicable

3676 WebSphere Message Broker Version 7.0.0.8

Command on Windows,
Linux, and UNIX systems

z/OS equivalent:
type z/OS equivalent z/OS References

mqsi_setupdatabase Not applicable

mqsistart 1. Console
command: start

2. Console
command:
modify

1. Standard MVS start
command

2. startcomponent

1. -

2. “mqsistart command” on
page 3965

mqsistartmsgflow Utility JCL BIPSTMF “Contents of the broker
PDSE” on page 3991

mqsistop 1. Console
command: stop

2. Console
command:
modify

1. Standard MVS stop
command

2. ’p’ stopcomponent

1. -

2. “mqsistop command” on
page 3972

mqsistopmsgflow Utility JCL BIPSPMF “Contents of the broker
PDSE” on page 3991

Related reference:
“WebSphere Message Broker Toolkit commands” on page 3699
Several commands are provided as part of the WebSphere Message Broker Toolkit.
“Runtime commands” on page 3715
The topics in this section describe the WebSphere Message Broker runtime
commands.
“Runtime and WebSphere Message Broker Toolkit commands (common)” on page
3683
Some commands are common to both runtime and WebSphere Message Broker
Toolkit environments.
“Characters allowed in commands” on page 3680
You must adhere to a few rules when you provide names or identifiers for the
components and resources in your broker environment.
“Rules for using commands” on page 3681
Observe the following rules when using the WebSphere Message Broker commands
on distributed systems.

Syntax diagrams
The syntax for commands and ESQL statements and functions is presented in the
form of a railroad diagram. The diagram tells you what you can do with the
command, statement, or function and indicates relationships between different
options and, sometimes, different values of an option.

For details about how to read a railroad diagram, see “How to read railroad
diagrams.”
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.

How to read railroad diagrams:

Understand the syntax used in railroad diagrams that show syntax.

Chapter 14. Reference 3677

Each railroad diagram begins with a double right arrow and ends with a right and
left arrow pair. Lines that begin with a single right arrow are continuation lines.
You read a railroad diagram from left to right and from top to bottom, following
the direction of the arrows.

The following examples show other conventions used in railroad diagrams.

This example shows that you must specify values A, B, and C. Required values are
shown on the main line of a railroad diagram:

►► A B C ►◄

This shows that you can specify value A. Optional values are shown below the
main line of a railroad diagram:

►►
A

►◄

The next example specifies that values A, B, and C are options, one of which you
must specify:

►► A
B
C

►◄

Values A, B, and C are options in this example, one of which you can specify:

►►
A
B
C

►◄

The next example shows that you can specify one or more of the values A, B, and C.
Any required separator for multiple or repeated values (in this example, the
comma (,)) is shown on the arrow:

3678 WebSphere Message Broker Version 7.0.0.8

►► ▼

,

A
B
C

►◄

In this example, you can specify value A multiple times. The separator in this
example is optional:

►► ▼

,

A
►◄

Values A, B, and C are alternatives in the next example, one of which you can
specify. If you specify none of the values shown, the default A (the value shown
above the main line) is used:

►►
A

B
C

►◄

The last example shows the use of a syntax fragment Name, which is shown
separately from the main railroad diagram. This technique is used to simplify the
diagram, or help fit it into the page of text. The fragment can be used multiple
times in the railroad diagram:

►► Name ►◄

Name:

A
B

Punctuation and uppercase values must be specified exactly as shown.

Lowercase values (for example, name) indicate where to type your own text in
place of the name variable.
Related reference:

Chapter 14. Reference 3679

“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.

Characters allowed in commands
You must adhere to a few rules when you provide names or identifiers for the
components and resources in your broker environment.

The character set that you can use to name brokers, execution groups, and message
identifiers is as follows:
v Uppercase alphabetic characters A-Z
v Lowercase alphabetic characters a-z
v Numeric characters 0-9
v All special characters supported by the underlying file system:

– The following special characters are accepted on Windows platforms:

$ % ' (apostrophe) " (quotation mark)
- (dash) _ (underscore) @ ~ (tilde)
! () {
} [] &
& + , (comma)
; = (space)

– The following special characters, except for a space, are accepted on Linux
and UNIX platforms:

. (dot) % - (dash) _ (underscore)
@ ~ (tilde) ! {
} [] &
, (comma) = (space)
+

In general, you can use characters A through Z, a through z, and 0 through 9.
If you expect to trace the operation of an execution group, restrict the name of
the execution group to include only the valid alphabetic and numeric characters
listed. The trace commands do not support the use of special characters for an
execution group name.
If you intend to use WebSphere MQ File Transfer Edition for managed file
transfers, see “Preparing the environment for WebSphere MQ File Transfer
Edition nodes” on page 740 for information about naming execution groups.

The acceptable character set for configurable service names is identical to the
character set for directory names on the file system of the target broker. The names
of deployable resources (such as message flows, dictionaries, and JAR files) must
consist only of characters that are acceptable in file names on the file systems of
both the WebSphere Message Broker Toolkit and the target broker.

On Windows platforms, broker names are not case-sensitive. For example, broker
names Broker1 and BROKER1 refer to the same broker.

On Linux and UNIX systems, broker names are case sensitive, and the previous
examples refer to different brokers.

On z/OS systems, you must enclose mixed-case names in quotation marks.

3680 WebSphere Message Broker Version 7.0.0.8

Additional rules are enforced for naming message service folders in the MQRFH2
header.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
“Syntax diagrams” on page 3677
“Message service folders” on page 6401
A number of folders are defined for use by WebSphere MQ products.

Rules for using commands
Observe the following rules when using the WebSphere Message Broker commands
on distributed systems.

If you are using commands on z/OS, refer to the section on z/OS commands in
“Commands” on page 3672.
v Each command must be issued on the system on which the resource to which it

relates is defined (or is to be created).
v Each command starts with a primary keyword (the executable command name)

followed by one or more blanks.
v Following the primary keyword, flags (parameters) can occur in any order.
v Flags are shown in this book in the form -t, for example. In all cases, the

character / can be substituted for the - character.
v If a flag has a corresponding value, its value must follow the flag to which it

relates. A flag can be followed by its value directly or can be separated by any
number of blanks.

v Flags can be concatenated if they do not have corresponding values, although
the last flag in a concatenated group can have a value associated with it. For
example, the command:
mqsireadlog MB7BROKER -u -e default -o trace.xml -f

can be entered as:
mqsireadlog MB7BROKER -ufedefault -o trace.xml

where the name of the execution group, default, relates to the -e flag. For
clarity, all examples given in this documentation are shown with separate flags
and with a space before any associated value.

v Repeated flags are not allowed.
v Strings that contain blanks or special characters must be enclosed in double

quotation marks. For example:
mqsireadlog "My Broker" -u -e default -o trace.xml -f

Additionally, you can specify a null, or empty, string with a pair of quotation
marks with nothing between: "".

v z/OS If you are running a command by submitting one of the JCL utilities
(see “Contents of the broker PDSE” on page 3991), and an argument to one of
the parameters contains a blank character, you must replace the blank with the
mnemonic before you submit the JCL. For example, if you are using
BIPDPLY to run the mqsideploy command to delete a deployed .jar file that is
named my jar.jar from the execution group default, then modify the JCL to
contain the following sample:

Chapter 14. Reference 3681

|
|
|
|
|
|
|

mqsideploy MB7BROKER -e default -d my jar.jar

v The case sensitivity of primary keywords and parameters depends on the
underlying operating system. On Windows platforms, keywords are not case
sensitive; mqsistart, mqsiSTART, and MQSISTART are all acceptable. On Linux and
UNIX platforms, you must use lowercase; only mqsistart is acceptable.

All WebSphere Message Broker commands have dependencies on WebSphere MQ
function. You must ensure that WebSphere MQ is available before issuing these
commands.
Related reference:
“Characters allowed in commands” on page 3680
You must adhere to a few rules when you provide names or identifiers for the
components and resources in your broker environment.
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
“Responses to commands”
Responses are issued to the commands as messages. Messages that are returned to
several commands are listed here; messages that are specific to a command, or
have a specific meaning, are listed with the command.

Responses to commands
Responses are issued to the commands as messages. Messages that are returned to
several commands are listed here; messages that are specific to a command, or
have a specific meaning, are listed with the command.

If a command is successful, it returns a return code of zero, and a message with
the number BIP8071I (command successful).

Warning and error responses are listed in the command descriptions. If the
command is unsuccessful and returns, for example, the message BIP8083, it has an
exit code, in this case, of 83.

The following responses are returned by many commands, and are not listed with
each individual command:
v BIP8001 Unknown flag selected
v BIP8002 Selected flags are not valid
v BIP8003 Duplicate flag
v BIP8004 Invalid flags or arguments specified
v BIP8005 Flag or argument missing
v BIP8006 Mandatory flag missing
v BIP8007 Mandatory argument missing
v BIP8009 Program name not valid
v BIP8010 Component name not supplied
v BIP8013 Component does not exist
v BIP8071 Successful command completion
v BIP8073 Not a valid component
v BIP8081 Error generated by command processing
v BIP8083 Invalid component name
v BIP8087 Component exists and cannot be created

3682 WebSphere Message Broker Version 7.0.0.8

|

v BIP8092 Cannot locate return code in message catalog
v BIP8093 and BIP8094 Unable to access the WebSphere MQ queue manager
v BIP8099 The supplied parameters are not valid
Related reference:
“Characters allowed in commands” on page 3680
You must adhere to a few rules when you provide names or identifiers for the
components and resources in your broker environment.
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
“Rules for using commands” on page 3681
Observe the following rules when using the WebSphere Message Broker commands
on distributed systems.

Runtime and WebSphere Message Broker Toolkit commands
(common)
Some commands are common to both runtime and WebSphere Message Broker
Toolkit environments.

The following commands are available on workstations that have either the
runtime, the WebSphere Message Broker Toolkit, or both components installed:
v “mqsiapplybaroverride command” on page 3684
v “mqsireadbar command” on page 3697

If either of these commands is run on a workstation that has both the runtime and
WebSphere Message Broker Toolkit components installed, the version of the
command that is used is determined by the relative locations of the WebSphere
Message Broker Toolkit and runtime directories in the PATH variable of the
workstation. The directory that appears earlier in the PATH takes precedence.

In most cases the WebSphere Message Broker Toolkit and runtime versions of the
command are identical. However, if different levels of service pack have been
applied to the WebSphere Message Broker Toolkit and runtime components, the
updated commands might differ. For this reason, when either command is run, the
first line of the output describes which version of the command is being used. For
example:
BIP1138I: Overriding BAR File using runtime mqsiapplybaroverride.

Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
“Characters allowed in commands” on page 3680
You must adhere to a few rules when you provide names or identifiers for the
components and resources in your broker environment.
“Rules for using commands” on page 3681
Observe the following rules when using the WebSphere Message Broker commands

Chapter 14. Reference 3683

on distributed systems.
“Syntax diagrams” on page 3677
“Runtime commands” on page 3715
The topics in this section describe the WebSphere Message Broker runtime
commands.
“WebSphere Message Broker Toolkit commands” on page 3699
Several commands are provided as part of the WebSphere Message Broker Toolkit.

mqsiapplybaroverride command:

Use the mqsiapplybaroverride command to replace configurable values in the
broker archive (BAR) deployment descriptor with new values that you specify in a
properties file.

Supported operating systems:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPOBAR.

Purpose:
Use the mqsireadbar command to see which properties you can configure by using
the mqsiapplybaroverride command.

Write scripts to create BAR files and apply different override values in the broker
deployment descriptor archive file by using the mqsiapplybaroverride command,
together with the mqsicreatebar command. For a list of message flow node
properties and the corresponding properties of the mqsiapplybaroverride
command, see “Configurable properties” on page 3687. The mqsiapplybaroverride
command properties are also listed in the tables of properties in the reference topic
for each affected node.

Syntax:

►► mqsiapplybaroverride -b BarFile
-m manualOverrides

►

►
-o outputFile -p overridesFile -v traceFileName

►◄

Parameters:

-b BarFile
(Required) The path to the BAR file (in compressed format) to which the
override values apply. The path can be absolute or relative to the executable
command.

-m manualOverrides
(Optional) A list of the property-name=override pairs, current-property-
value=override pairs, or a combination of them, to be applied to the BAR file.
The pairs in the list are separated by commas (,). On Windows, you must
enclose the list in quotation marks (" "). If used with the overridesFile (–p)

3684 WebSphere Message Broker Version 7.0.0.8

parameter, overrides specified by the manualOverrides (–m) parameter are
performed after any overrides specified the –p parameter have been made.

-o outputFile
(Optional) The name of the output BAR file to which the BAR file changes are
to be made. If an output file is not specified, the input file is overwritten.

-p overridesFile
(Optional) The path to one of the following resources:
v A BAR file that contains the deployment descriptor that is used to apply

overrides to the BAR file.
You can use XML for the deployment descriptor file. If you use an XML
property file written in EBCDIC onz/OS, ensure that you remove any
encoding="UTF-8" from the XML header; for example, change:
<?xml version="1.0" encoding="UTF-8"?>

to
<?xml version="1.0"?>

v A properties file in which each line contains a property-name=override or
current-property-value=new-property-value pair.

v A deployment descriptor that is used to apply overrides to the BAR file.

-v traceFileName
(Optional) Specifies that the internal trace is to be sent to the named file.

In all cases, any existing deployment descriptor in the BAR file is renamed to
META-INF\broker.xml.old, replacing any existing file of that name.

Each override that is specified in a –p overrides file or a –m overrides list must
conform to one of the following syntaxes:
v FlowName#NodeName.PropertyName=NewPropertyValue (or

FlowName#PropertyName=NewPropertyValue for message flow properties) where:
– FlowName is the name of the message flow without the .cmf extension (for

example, Flow1).
– NodeName is the optional name of the node whose property is overridden (for

example, InputNode).
– PropertyName is the name of the property to be overridden (for example,

queueName).
– NewPropertyValue is the value to assign to that property (for example,

PRODUCTION_QUEUE_NAME).
v OldPropertyValue=NewPropertyValue. This syntax does a global search and

replace on the property value OldPropertyValue. It overrides the value fields of
OldPropertyValue in the deployment descriptor with NewPropertyValue.

v FlowName#NodeName.PropertyName (or FlowName#PropertyName for message flow
properties). This syntax removes any override that is applied to the property of
the supplied name.

Variables and comments are not allowed in property files.

When the mqsiapplybaroverride command runs, it displays the version of the
command that is being used (either runtime environment or WebSphere Message
Broker Toolkit) before it does anything else. For example:
BIP1138I: Overriding BAR File using runtime mqsiapplybaroverride

Chapter 14. Reference 3685

Authorization:
On Windows 7, Windows Vista, and Windows Server 2008 systems, the user ID
used to run this command must be running with elevated privileges on the local
system:
v The user ID must be a member of the group Administrators.
v The command must be started from an environment that has Run as

Administrator authority.

If you do not run the command from a privileged environment, you are asked to
confirm that you want to continue. When you click OK, a new privileged
command console is created and the command completed, but all responses are
written to the privileged environment and are lost when that console closes when
the command completes.

On all operating systems, the user ID used to invoke this command must have
write authority to the BAR file on the local system.

Responses:
This command returns the following responses:

0 The command completed successfully.

99 One or more of the parameters that you specified is invalid.

Windows

This command is supplied as a batch file. If you run the command in an

automation system or from a script, use the Windows CALL command, to ensure
that the correct ERRORLEVEL is returned:
...
CALL mqsiapplybaroverride
...

Examples:
Open the BAR file myflow.bar, and replace configurable values in its deployment
descriptor (typically broker.xml) with the values that are specified in the properties
file mychanges.properties:
mqsiapplybaroverride -b myflow.bar -p mychanges.properties

Override the deployment descriptor in c:\test.bar by using the key=value pairs
specified in c:\my.properties:
mqsiapplybaroverride -b c:\test.bar -p c:\my.properties

Override the deployment descriptor in c:\test.bar by using the deployment
descriptor contained in c:\previous.bar:
mqsiapplybaroverride –b c:\test.bar –p c:\previous.bar

Override the deployment descriptor in c:\test.bar by using the deployment
descriptor contained in c:\broker.xml:
mqsiapplybaroverride –b c:\test.bar –p c:\broker.xml

Override any properties with values set to OLDA and OLDB in c:\test.bar with
the values NEWA and NEWB:
mqsiapplybaroverride –b c:\test.bar –m OLDA=NEWA,OLDB=NEWB

Override the value of the property name sampleFlow#MQInput.queueName to NEWC:
mqsiapplybaroverride –b c:\test.bar –m sampleFlow#MQInput.queueName=NEWC

3686 WebSphere Message Broker Version 7.0.0.8

For an example of the details that are contained in a properties file, see “Editing
configurable properties” on page 3227.
Related concepts:
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
“Configurable properties of a broker archive” on page 3217
System objects that are defined in message flows can have properties that you can
update in the broker archive (BAR) file before deployment.
Related tasks:
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“mqsicreatebar command” on page 3699
Use the mqsicreatebar command to create deployable broker archive (BAR) files
containing message flows and dictionaries.
“mqsireadbar command” on page 3697
Use the mqsireadbar command to read a deployable BAR file and identify its
defined keywords.
“Syntax diagrams” on page 3677

Configurable properties:

Some properties of message flow nodes are configurable and can be changed by
using the mqsiapplybaroverride command. The following table maps the message
flow node properties to the corresponding properties of the mqsiapplybaroverride
command.

The mqsiapplybaroverride command properties are also listed in the tables of
properties in the reference topic for each affected node.

Node Configurable node property
mqsiapplybaroverride command
property

AggregateControl Aggregate Name aggregateName

AggregateReply Aggregate Name aggregateName

Chapter 14. Reference 3687

Node Configurable node property
mqsiapplybaroverride command
property

CDInput Message Coded Character Set ID messageCodedCharSetIDProperty

Message Encoding messageEncodingProperty

Retry threshold retryThreshold

Short retry interval shortRetryInterval

Long retry interval longRetryInterval

Validate validateMaster

Instances instances

Instances pool instancesPool

Configurable service configurableService

Directory filter inputDirectory

File name filter filenamePattern

Action on successful processing processedFileAction

Action on failing file failedFileAction

CDOutput Process name process Name

Configurable service configurableService

SNODE snode

Destination directory destinationDirectory

Destination file name destinationFileName

Disposition disposition

Transfer mode transferMode

Validate validateMaster

CICSRequest CICS server cicsServer

Mirror transaction ID mirrorTran

Request timeout (sec) requestTimeoutSecs

Security identity securityIdentity

Security profile securityProfileName

Set EIBTRNID only eibtrnidOnly

Validate validateMaster

Collector Collector Expiry collectionExpiry

Compute Data Source dataSource

Validate validateMaster

CORBARequest Naming service namingService

Object reference name referenceName

Database Data Source dataSource

3688 WebSphere Message Broker Version 7.0.0.8

Node Configurable node property
mqsiapplybaroverride command
property

DatabaseInput Additional instances additionalInstances

Additional instances pool componentLevel

Data Source dataSource

Long retry interval longRetryInterval

Polling interval (sec) waitInterval

Retry threshold retryThreshold

Short retry interval shortRetryInterval

DataDelete Data source dataSource

DataInsert Data source dataSource

DataUpdate Data source dataSource

DatabaseRetrieve Data source dataSource

DatabaseRoute Data source dataSource

EmailInput Action on failing email emailFailureAction

Additional instances additionalInstances

Additional instances pool componentLevel

Email server emailServer

Polling interval (sec) waitInterval

Long retry interval (sec) longRetryInterval

Retry threshold retryThreshold

Security identity securityIdentity

Short retry interval (sec) shortRetryInterval

EmailOutput SMTP Server and Port smtpServer

Security Identity securityIdentity

Validate validateMaster

EndpointLookup Port Type Name name

Port Type Namespace namespace

Port Type Version portVersion

Extract (deprecated) Data Source dataSource

Chapter 14. Reference 3689

Node Configurable node property
mqsiapplybaroverride command
property

FileInput Additional Instances additionalInstances

Additional Instances Pool componentLevel

File Name or Pattern filenamePattern

Input Directory inputDirectory

Long Retry Interval longRetryInterval

Message CCSID messageCodedCharSetIdProperty

Message Encoding messageEncodingProperty

Polling Interval (sec) waitInterval

Remote Transfer fileFtp

Retry Threshold retryThreshold

Security Identity fileFtpUser

Server and Port fileFtpServer

Server Directory fileFtpDirectory

Short Retry Interval shortRetryInterval

Transfer Protocol remoteTransferType

Validate validateMaster

FileOutput Directory outputDirectory

File Name or Pattern outputFilename

Remote Transfer fileFtp

Req Dir Property Location requestDirectoryLocation

Req File Name Prop Location requestNameLocation

Security Identity fileFtpUser

Server and Port fileFtpServer

Server Directory fileFtpDirectory

Transfer Protocol remoteTransferType

Validate validateMaster

FileRead Custom Delimiter customDelimiter

File Name or Pattern filenamePattern

Input Directory inputDirectory

Message Coded Character Set ID messageCodedCharSetIdProperty

Message Encoding messageEncodingProperty

Validate validateMaster

Filter Data Source dataSource

3690 WebSphere Message Broker Version 7.0.0.8

Node Configurable node property
mqsiapplybaroverride command
property

FTEInput Additional instances additionalInstances

Additional instances pool componentLevel

Directory filter inputDirectory

File name filter filenamePattern

Long retry interval (sec) longRetryInterval

Message coded character set ID messageCodedCharSetIdProperty

Message encoding messageEncodingProperty

Retry threshold retryThreshold

Short retry interval (sec) shortRetryInterval

Validate validateMaster

FTEOutput Destination agent destinationAgent

Destination file directory destinationDirectory

Destination file name destinationFileName

Destination queue manager destinationQMgr

Disable computation of MD5 check sum checkSumDisabled

Job name jobName

Mode transferMode

Overwrite files on destination system overwriteDestination

Validate validateMaster

HTTPInput Fault Format faultFormat

Path Suffix for URL URLSpecifier

Security Profile securityProfileName

Use HTTPS useHTTPS

Validate validateMaster

HTTPReply Validate validateMaster

HTTPRequest Allow SSL Ciphers allowedCiphers

Enable HTTP/1.1 keep-alive enableKeepAlive

HTTP Version httpVersion

HTTP(S) Proxy Location httpProxyLocation

Protocol protocol

Request Timeout (sec) timeoutForServer

Security Profile securityProfileName

Validate validateMaster

Web Service URL URLSpecifier

Chapter 14. Reference 3691

Node Configurable node property
mqsiapplybaroverride command
property

IMSRequest Configurable service configurableService

Data store name dataStoreName

Hostname hostname

Message CCSID messageCodedCharSetIdProperty

Message encoding messageEncodingProperty

Port number portNumber

Security identity securityIdentity

Security profile securityProfileName

Validate validateMaster

JavaCompute Validate validateMaster

JDEdwardsRequest Default method defaultMethod

Secondary adapter mode secondaryAdapterMode

JMSHeader JMS Reply-to jmsReplyTo

JMSInput Backout Destination backoutDestination

Connection Factory Name connectionFactoryName

Durable Subscription ID durableSubscriptionID

Initial Context Factory initialContextFactory

Location JNDI bindings locationJndiBindings

Source Queue sourceQueueName

Subscription Topic topic

Validate validateMaster

JMSOutput Connection Factory Name connectionFactoryName

Destination Queue destinationQueueName

Initial Context Factory initialContextFactory

Location JNDI Bindings locationJndiBindings

Message Type messageType

Publication Topic topic

Reply-to Destination replyToDestination

Send to Destination List useDistList

Validate validateMaster

JMSReply Connection Factory Name connectionFactoryName

Initial Context Factory initialContextFactory

Location JNDI Bindings lcationJndiBindings

Send to Destination List useDistList

Validate validateMaster

Mapping Data Source dataSource

MQGet Queue Name queueName

Validate validateMaster

3692 WebSphere Message Broker Version 7.0.0.8

Node Configurable node property
mqsiapplybaroverride command
property

MQHeader Destination QMgr Name mqdlhDestQMgrName

Destination Queue Name mqdlhDestQName

Reply-to Queue mqmdReplyToQ

Reply-to Queue Manager mqmdReplyToQMgr

MQInput Additional Instances additionalInstances

Additional Instances Pool componentLevel

Queue Name queueName

Reset Browse Timeout resetBrowseTimeout

Security Profile securityProfileName

Topic topicProperty

Validate validateMaster

z/OS serialization token serializationToken

MQOptimizedFlow Queue Name queueName

MQOutput Queue Manager Name queueManagerName

Queue Name queueName

Reply-to Queue replyToQ

Reply-to Queue Manager replyToQMgr

Security Profile securityProfileName

Validate validateMaster

MQReply Validate validateMaster

PeopleSoftInput Adapter Component adapterComponent

Secondary adapter mode secondaryAdapterMode

Additional Instances Pool componentLevel

Additional Instances additionalInstances

Retry Threshold retryThreshold

Short retry interval shortRetryInterval

Long retry interval longRetryInterval

PeopleSoftRequest Default Method defaultMethod

Secondary adapter mode secondaryAdapterMode

PHPCompute PHP Script ScriptName

Validate validateMaster

RegistryLookup Name name

Namespace namespace

Template template

Version serviceVersion

Resequence Queue prefix queuePrefix

Missing message timeout missingMessageTimeoutSeconds

Start of sequence definition startSequenceSeconds

End of sequence definition endSequenceSeconds

ResetContentDescriptor Validate validateMaster

Chapter 14. Reference 3693

Node Configurable node property
mqsiapplybaroverride command
property

Route Distribution Mode distributionMode

SAPInput Adapter Component adapterComponent

Secondary adapter mode secondaryAdapterMode

Additional Instances Pool componentLevel

Additional Instances additionalInstances

Retry Threshold retryThreshold

Short retry interval shortRetryInterval

Long retry interval longRetryInterval

SAPRequest Default method defaultMethod

Secondary adapter mode secondaryAdapterMode

Security profile securityProfileName

SecurityPEP Security Profile securityProfileName

SCAAsyncResponse Security Profile securityProfileName

SCAInput Security Profile securityProfileName

SiebelInput Adapter Component adapterComponent

Secondary adapter mode secondaryAdapterMode

Additional Instances Pool componentLevel

Additional Instances additionalInstances

Retry Threshold retryThreshold

Short retry interval shortRetryInterval

Long retry interval longRetryInterval

SiebelRequest Default Method defaultMethod

Secondary adapter mode secondaryAdapterMode

SOAPInput Additional Instances additionalInstances

Failure Action validateFailureAction

Max Client Wait Time (sec) maxClientWaitTime

Path Suffix for URL urlSelector

Policy Set policySet

Policy Set Bindings policySetBindings

Rte inb processing fails sendProcessingFaultsToFailure

Security Profile securityProfileName

Use HTTPS useHTTPS

Validate validateMaster

SOAPReply Allow MTOM allowMTOM

Validate validateMaster

3694 WebSphere Message Broker Version 7.0.0.8

Node Configurable node property
mqsiapplybaroverride command
property

SOAPRequest Allow MTOM allowMTOM

Allow SSL Ciphers allowedSSLCiphers

Failure Action validateFailureAction

HTTP(S) Proxy Location httpProxyLocation

Policy Set policySet

Policy Set Bindings policySetBindings

Protocol (if using SSL) sslProtocol

Security Profile securityProfileName

Validate validateMaster

Web Service URL webServiceURL

SOAPAsyncRequest Allow MTOM allowMTOM

Allow SSL Ciphers allowedSSLCiphers

HTTP(S) Proxy Location httpProxyLocation

Policy Set policySet

Policy Set Bindings policySet Bindings

Request Timeout requestTimeout

Protocol (if using SSL) sslProtocol

Security Profile securityProfileName

Unique Identifier asyncResponseCorrelator

Web Service URL webServiceURL

SOAPAsyncResponse Additional Instances additionalInstances

Additional Instances Pool componentLevel

Failure Action validateFailureAction

Unique Identifier asyncRequestCorrelator

Validate validateMaster

TCPIPClientInput Additional Instances additionalInstances

Additional Instances Pool componentLevel

Connection Details connectionDetails

Long Retry Interval longRetryInterval

Message CCSID messageCodedCharSetIdProperty

Message Encoding messageEncodingProperty

Retry Threshold retryThreshold

Short Retry Interval shortRetryInterval

Timeout Waiting for Data timeoutWaitingForData

Validate validateMaster

TCPIPClientOutput Connection Details connectionDetails

Timeout Sending Data Recs timeoutSendingData

Validate validateMaster

Chapter 14. Reference 3695

Node Configurable node property
mqsiapplybaroverride command
property

TCPIPClientReceive Connection Details connectionDetails

Message CCSID messageCodedCharSetIdProperty

Message Encoding messageEncodingProperty

Timeout Waiting for Data timeoutWaitingForData

Validate validateMaster

TCPIPServerInput Additional Instances additionalInstances

Additional Instances Pool componentLevel

Connection Details connectionDetails

Long Retry Interval longRetryInterval

Message CCSID messageCodedCharSetIdProperty

Message Encoding messageEncodingProperty

Retry Threshold retryThreshold

Short Retry Interval shortRetryInterval

Timeout Waiting for Data timeoutWaitingForData

Validate validateMaster

TCPIPServerOutput Connection Details connectionDetails

Timeout Sending Data Recs timeoutSendingData

Validate validateMaster

TCPIPServerReceive Connection Details connectionDetails

Message CCSID messageCodedCharSetIdProperty

Message Encoding messageEncodingProperty

Timeout Waiting for Data timeoutWaitingForData

Validate validateMaster

TimeoutControl Unique Identifier uniqueIdentifier

TimeoutNotification Unique Identifier uniqueIdentifier

Validation validateMaster

Timeout Interval timeoutInterval

Trace File Path filePath

TwineballInput Adapter Component adapterComponent

Secondary adapter mode secondaryAdapterMode

Additional Instances Pool componentLevel

Additional Instances additionalInstances

Retry Threshold retryThreshold

Short retry interval shortRetryInterval

Long retry interval longRetryInterval

TwineballRequest Default Method defaultMethod

Secondary adapter mode secondaryAdapterMode

Validate validateMaster

Validate Validate validateMaster

Warehouse Data Source dataSource

3696 WebSphere Message Broker Version 7.0.0.8

Node Configurable node property
mqsiapplybaroverride command
property

XSLTransform Stylesheet Directory stylesheetPath

Stylesheet Name stylesheetName

Related concepts:
“Configurable properties of a broker archive” on page 3217
System objects that are defined in message flows can have properties that you can
update in the broker archive (BAR) file before deployment.
Related tasks:
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“mqsiapplybaroverride command” on page 3684
Use the mqsiapplybaroverride command to replace configurable values in the
broker archive (BAR) deployment descriptor with new values that you specify in a
properties file.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.

mqsireadbar command:

Use the mqsireadbar command to read a deployable BAR file and identify its
defined keywords.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPRBAR.

Purpose:
The mqsireadbar command returns the keywords defined for each deployable file
in a deployable broker archive file.

Syntax:

►► mqsireadbar -b BarName
-v traceFileName

►◄

Parameters:

-b BarName
(Required) The name of the BAR archive file to be read. The BAR file is in
compressed format.

Chapter 14. Reference 3697

-v traceFileName
(Optional) The name of the file to which the command trace is sent. This
option activates an internal debug trace; specify this option only at the request
of an IBM service representative.

Authorization:
On Windows 7, Windows Vista, and Windows Server 2008 systems, the user ID
used to run this command must be running with elevated privileges on the local
system:
v The user ID must be a member of the group Administrators.
v The command must be started from an environment that has Run as

Administrator authority.

If you do not run the command from a privileged environment, you are asked to
confirm that you want to continue. When you click OK, a new privileged
command console is created and the command completed, but all responses are
written to the privileged environment and are lost when that console closes when
the command completes.

On all platforms, the user ID that is used to start this command must have the
authority to read the BAR file on the local system.

Responses:
This command returns the following responses:

0 The command completed successfully.

99 One or more of the parameters that you specified is invalid.

The command displays the version of the command that is being run (either
WebSphere Message Broker Toolkit or runtime environment), before all other
response data:
BIP1052I: Reading BAR File using runtime mqsireadbar

The command then displays a list of the deployable files, together with their
keywords. For example:
C:\test.bar

BAR Entry: simpleflow.cmf (07/10/07 10:43:44)
Author = Matt
VERSION = v1.1
Information = This flow simply removes messages from IN.Q

It also displays deployment descriptors and the list of any properties in the BAR
file that can be overridden, together with the new values of any overrides that are
currently applied. For example:
Deployment descriptor:

simpleflow#additionalInstances
simpleflow#commitCount
simpleflow#commitInterval
simpleflow#coordinatedTransaction
simpleflow#MQInput.topicProperty
simpleflow#MQInput.validateMaster
simpleflow#MQInput.queueName = OVERRIDDEN.Q
simpleflow#MQInput.serializationToken

Windows This command is supplied as a batch file. If you run the command in an
automation system or from a script, use the Windows CALL command to ensure
that the correct ERRORLEVEL is returned:

3698 WebSphere Message Broker Version 7.0.0.8

...
CALL mqsireadbar
...

Examples:
The following example reads the file my_bar_file.bar and returns defined
keywords within the given file:

mqsireadbar -b my_bar_file.bar

Related concepts:
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
Related reference:
“mqsicreatebar command”
Use the mqsicreatebar command to create deployable broker archive (BAR) files
containing message flows and dictionaries.
“Syntax diagrams” on page 3677

WebSphere Message Broker Toolkit commands
Several commands are provided as part of the WebSphere Message Broker Toolkit.

These commands are available only on a computer that has the WebSphere
Message Broker Toolkit installed.

See “Commands” on page 3672 for a list of all the WebSphere Message Broker
commands.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
“Syntax diagrams” on page 3677

mqsicreatebar command:

Use the mqsicreatebar command to create deployable broker archive (BAR) files
containing message flows and dictionaries.

Supported platforms:

v Windows
v Linux on x86

Purpose:
If you use a repository to store your message flows and dictionaries, you can write
scripts that use the mqsicreatebar command and the repository's command-line
tools to deploy your message flow applications.

Syntax:

Chapter 14. Reference 3699

►► mqsicreatebar -data WorkSpace -b BarName
-cleanBuild

►

►
-version VersionString -Esql21

▼

-p ProjectName

►

► ▼

-o FilePath ►◄

Parameters:

-data WorkSpace
(Required) The path of the workspace in which your projects are created.

The workspace location is also the default location for projects. Relative paths
are interpreted as being relative to the directory from which the command was
started.

-b BarName
(Required) The name of the BAR (compressed file format) archive file where
the result is stored. The BAR file is replaced if it already exists and the
META-INF/broker.xml file is created.

-cleanBuild
(Optional) Refreshes the projects in the workspace and then invokes a clean
build before new items are added to the BAR file.

Use the -cleanBuild parameter to refresh all the projects in the BAR file and
run a clean build if amendments have been made to BAR file resources by
using external tools.

-version VersionString
(Optional) Appends the _ (underscore) character and the value of VersionString
to the names of the compiled versions of the message flows (.cmf) files added
to the BAR file, before the file extension.

-Esql21
(Optional) Compile ESQL for brokers at Version 2.1 of the product.

-p ProjectName
(Optional) Projects containing files to include in the BAR file in a new
workspace. A new workspace is a system folder without the .metadata folder.

The projects defined must already exist in the folder defined in the -data
parameter, and must include all projects and their reference projects that a
deployable resource, defined in the -o parameter, needs.

The -p parameter is optional with an existing workspace, but you should use
-p, together with a new workspace, in a build environment.

If a project that you specify is part of your workspace but is currently closed,
the command opens and builds the project so that the files in the project can
be included in the BAR file.

3700 WebSphere Message Broker Version 7.0.0.8

-o FilePath
(Required) The workspace relative path (including the project) of a deployable
file to add to the BAR file; for example, a msgflow or messageSet.mset file.

You can add more than one deployable file to this command by using the
following format: -o FilePath1 FilePath2 FilePath'n'

Authorization:
On Windows XP and Windows Server 2003 systems, the user ID used to run this
command must be a member of the group Administrators on the local system.

On Windows 7, Windows Vista, and Windows Server 2008 systems, the user ID
used to run this command must be running with elevated privileges on the local
system:
v The user ID must be a member of the group Administrators.
v The command must be started from an environment that has Run as

Administrator authority.

If you do not run the command from a privileged environment, you are asked to
confirm that you want to continue. When you click OK, a new privileged
command console is created and the command completed, but all responses are
written to the privileged environment and are lost when that console closes when
the command completes.

On Linux on x86, the user ID must have write access to the -data (workspace) and
-b (BAR file location) directories.

Responses:
This command returns the following responses:
v BIP0956 Unable to start mqsicreatebar
v BIP0957 Incorrect arguments supplied to mqsicreatebar
v BIP0958 Nothing to do in mqsicreatebar
v BIP0959 Incorrect arguments supplied to mqsicreatebar (Project name)
v BIP0960 Incorrect arguments supplied to mqsicreatebar (Project directory)
v BIP0961 Error opening workspace in mqsicreatebar (Project could not be

created)
v BIP0962 Error opening workspace in mqsicreatebar (Project could not be

opened)
v BIP0963 Error saving file in mqsicreatebar
v BIP0964 Incorrect "-o" argument supplied to mqsicreatebar
v BIP0965 Error compiling files in mqsicreatebar

Examples:
You can run the mqsicreatebar command from a window opened anywhere in the
file structure as long as the PATH environment variable specifies the correct path
to the WMB toolkit directory.
v On Windows 32-bit editions, the default location of the WMB toolkit directory is

C:\Program Files\IBM\WMBT700

v On Windows 64-bit editions, the default is C:\Program Files
(x86)\IBM\WMBT700, and

v On Linux on x86, the default is /opt/IBM/WMBT700.

Your installation might differ from the default.

Chapter 14. Reference 3701

The -b parameter specifies the name of the BAR file and an optional alternative
path for BAR file generation. When a path is not specified as part of the -b
parameter, the location in the file structure where the mqsicreatebar command
runs specifies where the BAR file is created. For example, if you are currently in
C:\> and run the mqsicreatebar command, the BAR file is created on C:\.
However, if you run the mqsicreatebar with -b c:\myfiles\myflow.bar specified,
the BAR file is created in the myfiles directory.

The following example creates a BAR file called myflow.bar in the directory where
the command is issued. The Test.msgflow message flow from the TestFlowProject
is added to the BAR file as a compiled message flow (.cmf) file.

mqsicreatebar -data C:\Workspace -b myflow.bar -p TestFlowProject -o TestFlowProject\TestFlow\Test.msgflow

The following example creates a BAR file called mySet.bar. The messageSet.mset
message set from the TestSetProject is added to the BAR file.

mqsicreatebar -data C:\Workspace -b mySet.bar -o TestSetProject\TestSet\messageSet.mset

The following example creates a BAR file called mySet.bar. The messageSet.mset
message set from the TestSetProject and Test.msgflow message flow from the
TestFlowProject are added to the BAR file. The message flow is added as a
compiled message flow (.cmf) file.

mqsicreatebar -data C:\Workspace -b mySet.bar -o TestFlowProject\TestFlow\Test.msgflow
TestSetProject\TestSet\messageSet.mset

Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
Related reference:
“Syntax diagrams” on page 3677
“mqsiapplybaroverride command” on page 3684
Use the mqsiapplybaroverride command to replace configurable values in the
broker archive (BAR) deployment descriptor with new values that you specify in a
properties file.

mqsicreatemsgdefs command:

Use the mqsicreatemsgdefs command to create message definition files.

Supported platforms:

v Windows
v Linux on x86

Purpose:
The mqsicreatemsgdefs command generates message definition files (*.mxsd),
according to a set of import options that are specified in an option file. The
generated files are placed in the specified message set folder.

The command takes as a parameter a directory where source files of various types,
for example, C and COBOL source files, are located (in addition to various other
parameters), and starts the appropriate operation based on the extensions to the
files.
1. Ensure that only the files that are required for the command to run exist in the

directory and subdirectory structure that you specify. One of the actions that

3702 WebSphere Message Broker Version 7.0.0.8

the mqsicreatemsgdefs command performs is to copy all the files in the
directory and subdirectories into the workspace, before creating the message
definition. The mqsicreatemsgdefs command copies the source files into the
import files folder of the messageSet project. Therefore the source directory
should not be, or contain the message set project folder. Files that are not
related to the message definitions that you are trying to create might also be
copied.

2. You must specify the -data WorkspacePath parameter to specify the target
workspace.

Syntax:

►► mqsicreatemsgdefs -p MessageSetProjectName ►

► -d Pathname of source files folder -data WorkspacePath ►

►
-base baseMessageSetProjectName\baseMessageSetName -rmp

►

►
-rmd -ns -msg -opt xxx.xml -v

►

►
-log ReportFilePathName

►◄

Parameters:

-p MessageSetProjectName
(Required) The name of the message set project. If the project does not exist, a
new message set project is created.

-d Pathname of source files folder
(Required) The absolute or relative path name of the directory of definition
files (source files).

All relevant files that are located in any sub-folders under the source files
folder are scanned and imported.

-data WorkspacePath
(Required) The path of the workspace in which your projects are created.

The workspace location is also the default location for projects. Relative paths
are interpreted as being relative to the directory from which the command was
started.

-base baseMessageSetProjectName\baseMessageSetName
(Optional) If a new message set is to be created, specifies the existing message
set project and message set, on which it is based.

-rmp
(Optional) Replaces the existing project of the same name.

-rmd
(Optional) Replaces an existing message definition file of the same name.
1. If you omit this flag, and a message definition file of the same name exists,

a warning is returned.

Chapter 14. Reference 3703

2. The location of the generated message definition file in the message set is
determined by the target namespace.

-ns
(Optional) If a new message set is to be created, the message set is enabled for
namespace support.

-msg
(Optional) Creates messages from complex imported structures.

-opt xxx.xml
(Optional) The absolute or relative path name of the options file. The options
file can be one of the following types:
v C language - “C options file for the mqsicreatemsgdefs command” on page

3705
v COBOL language - “COBOL options file for the mqsicreatemsgdefs

command” on page 3707
v XSD_NO_NS - “XSD options file for the mqsicreatemsgdefs command” on

page 3709

If you do not specify an option, the default options file
(mqsicreatemsgdefs.xml) is used; see “Default options file for the
mqsicreatemsgdefs command” on page 3710.

You can copy the default options file, and customize it, to create an options file
for your environment.

-v
(Optional) Verbose report.

-log ReportFilePathname
(Optional) Absolute or relative path name of the report file. If you omit this
option, the report is written to the default log file
(mqsicreatemsgdefs.report.txt) in the Eclipse current directory.

If you specify -log without the report file path name, or with a path name that
is not valid, the command issues an error message and stops.

Authorization:
On Windows 7, Windows Vista, and Windows Server 2008 systems, the user ID
used to run this command must be running with elevated privileges on the local
system:
v The user ID must be a member of the group Administrators.
v The command must be started from an environment that has Run as

Administrator authority.

If you do not run the command from a privileged environment, you are asked to
confirm that you want to continue. When you click OK, a new privileged
command console is created and the command completed, but all responses are
written to the privileged environment and are lost when that console closes when
the command completes.

On other platforms, no specific authority is required to run this command.

Examples:
The following example creates or uses the message set project newproject in the
source file c:\myproject\source and replaces the existing message project and
message definition files of the same name.

3704 WebSphere Message Broker Version 7.0.0.8

mqsicreatemsgdefs -p newproject -d c:\myproject\source -rmp -rmd

Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
Related tasks:
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
Related reference:
“Syntax diagrams” on page 3677

C options file for the mqsicreatemsgdefs command:

Specify the options for the mqsicreatemsgdefs command when you import a C
header file.

The following table lists the elements in the C language section of the options file.
The following restrictions apply:
v You must specify, in an XML file, a valid value for the options listed, unless

otherwise specified. See “Default options file for the mqsicreatemsgdefs
command” on page 3710 for details of the syntax.

v Values of options are case-sensitive.
v If you do not specify the -opt parameter on the mqsicreatemsgdefs command,

the default options file called mqsicreatemsgdefs.xml is used; see “Default
options file for the mqsicreatemsgdefs command” on page 3710.

For further information on using these options, see “Importing from C” on page
2934.

<C> element Possible values

COMPILER_NAME1
v Msvc (Default)

v Icc

v AIXgcc

v AIXxlc

v OS390

CODEPAGE v SO8859-1

v Cp037

v Cp1252 (Default)

FLOATING_POINT_FORMAT v IEEE Extended INTEL (Default)

v IEEE Extended AIX

v IEEE Extended OS/390®

v IEEE Non-Extended

v IBM 390 Hexadecimal

INCLUDE_PATH2 Absolute path names of other header files, or an empty string (this
is the default value).

BYTE_ORDER v Little Endian (Default)

v Big Endian

ADDRESS_SIZE v 32 (Default)

v 64

Chapter 14. Reference 3705

<C> element Possible values

SIZE_OF_LONG_DOUBLE v 64 (Default)

v 128 (Not supported)

PACK_LEVEL1
v 1

v 2

v 4

v 8 (Default)

v 16

SIZE_OF_ENUM v 1

v 2

v 4

v 5 (Default)

PRESERVE_CASE_IN_VARIABLE_NAMES v True (Default)

v False

STRING_ENCODING v SPACE - Fixed-length strings (Default)

v NULL - Null-terminated strings

STRING_PADDING_CHARACTER v SPACE (Default)

v NUL

v 'c'

v "c"

v 0xYY

v YY

v U+xxxx

SCHEMA_TARGET_NAMESPACE_URI A valid namespace URI, or empty (default)

MESSAGE_PREFIX3 A string with which to prefix created messages, or empty. Default
is msg_.

PRE_PROCESSING_OPTION v none (default)

v ale_idoc

v file_idoc

Notes:

1. If COMPILER_NAME is set to AIXxlc, the value of PACK_LEVEL is not used.
2. In INCLUDE_PATH, separate paths by the system-dependent path separator

character.
3. MESSAGE_PREFIX is ignored if PRE_PROCESSING_OPTION is ale_idoc or

file_idoc.
Related reference:
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“COBOL options file for the mqsicreatemsgdefs command” on page 3707
Specify the options for the mqsicreatemsgdefs command when you import a
COBOL copybook.
“XSD options file for the mqsicreatemsgdefs command” on page 3709
Specify the options for the mqsicreatemsgdefs command when you import an XML
Schema file.

3706 WebSphere Message Broker Version 7.0.0.8

“Default options file for the mqsicreatemsgdefs command” on page 3710
Options for the mqsicreatemsgdefs command take default values if you do not
specify an options file.

COBOL options file for the mqsicreatemsgdefs command:

Specify the options for the mqsicreatemsgdefs command when you import a
COBOL copybook.

The following table lists the elements in the COBOL language section of the
options file. The following restrictions apply:
v You must specify in an XML file a valid value for the options listed, unless

otherwise specified. See “Default options file for the mqsicreatemsgdefs
command” on page 3710 for details of the syntax.

v Options values are case-sensitive.
v If you do not specify the -opt parameter on the mqsicreatemsgdefs command,

the default options file (mqsicreatemsgdefs.xml) is used; see “Default options file
for the mqsicreatemsgdefs command” on page 3710.

For further information about using these options, see “Importing from COBOL
copybooks” on page 2937. For more information about COBOL parameters, see
Compiler Options

<COBOL> element Possible values

PLATFORM_SELECTION Operating system that your enterprise uses:

v 0 (Win32) (Default)

v 1 (AIX)

v 2 (z/OS)

CODEPAGE Indicates the numeric identifier of the code page associated
with a language.

v ISO8859_1 (Default)

v 037

FLOATING_POINT_FORMAT Indicates how floating point numbers are encoded.

v IEEE Non-Extended (Default)

v IBM 390 Hexadecimal

ENDIAN Indicates whether the most significant byte is first (big
endian) or last (little endian).

v Big

v Little (Default)

EXT_DECIMAL_SIGN Indicates the physical type of the sign numeric element. For
more information, see “CWF properties for compound
element decimal types” on page 6107.

v ASCII (Default)

v EBCDIC

v EBCDIC Custom

TRUNC Specifies how arithmetic fields are truncated.

v STD (Default)

v OPT

v BIN

Chapter 14. Reference 3707

http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.aix.cbl.doc/rpcosaix.htm

<COBOL> element Possible values

NSYMBOL Indicates whether to use the National or double-byte
character sets.

v DBCS

v NATIONAL (Default)

QUOTE Indicates whether single or double quotes are used.

v SINGLE

v DOUBLE (Default)

CREATE_DEFAULT_VALUES
FROM_INITIAL_VALUES

Indicates whether initial values are used as defaults.

v True

v False (Default)

CREATE_FACETS_FROM
LEVEL_88_VALUE_CLAUSES

Indicates whether to create XSD facets from level-88 values.

v True

v False (Default)

PRESERVE_CASE_IN VARIABLE_NAMES Indicates whether upper- and lowercase are kept when using
names of variables.

v True (Default)

v False

CREATE_NULL_VALUES_FOR_FIELDS Indicates whether fields should be set up with null values.

v True

v False (Default)

NULL_CHARACTER Indicates which character is to be used as the null character.

v SPACE (Default)

v NUL

v 'c'

v "c"

v 0xYY

v YY

v U+xxxx

STRING_PADDING_CHARACTER Indicates which character is to be used as the padding
character for strings.

v SPACE (Default)

v NUL

v 'c'

v "c"

v 0xYY

v YY

v U+xxxx

SCHEMA_TARGET_NAMESPACE_URI A valid namespace URI, or empty (default)

MESSAGE_PREFIX A string with which to prefix created messages, or empty.
Default is msg_.

Related reference:
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“C options file for the mqsicreatemsgdefs command” on page 3705
Specify the options for the mqsicreatemsgdefs command when you import a C
header file.

3708 WebSphere Message Broker Version 7.0.0.8

“XSD options file for the mqsicreatemsgdefs command”
Specify the options for the mqsicreatemsgdefs command when you import an XML
Schema file.
“Default options file for the mqsicreatemsgdefs command” on page 3710
Options for the mqsicreatemsgdefs command take default values if you do not
specify an options file.

XSD options file for the mqsicreatemsgdefs command:

Specify the options for the mqsicreatemsgdefs command when you import an XML
Schema file.

The following tables list the elements in the XML Schema sections of the options
file.

The first table applies to all message sets, but the second table applies only to
message sets that do not support namespaces. The following restrictions apply:
v You must specify in an XML file a valid value for each of the options listed,

unless otherwise specified.
v Options values are case-sensitive.
v If you do not specify the -opt parameter on the mqsicreatemsgdefs command,

the default options file (mqsicreatemsgdefs.xml) is used; see “Default options file
for the mqsicreatemsgdefs command” on page 3710.

For further information about using these options, see “Importing from XML
Schema” on page 2957.

<XSD> element Possible values

MSG v elements (default)

v types

v both

<XSD_NO_NS> element Possible values

IMPORT v modify (default)

v reject

REDEFINE v modify (default)

v reject

v accept

LIST v modify (default)

v reject

v accept

UNION v modify (default)

v reject

v accept

ABSTRACT_CT v modify (default)

v reject

v accept

Chapter 14. Reference 3709

<XSD_NO_NS> element Possible values

ABSTRACT_ELEMENT v modify (default)

v reject

v accept

XSD_PREFIX v xsi (default)

v <any other prefix>

URI_PREFIX_PAIRS
Note: You can specify zero, or more
URI_PREFIX_PAIRS elements.

Attribute pair

v uri=<uri_value>

v prefix=<prefix_value>

Related reference:
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“C options file for the mqsicreatemsgdefs command” on page 3705
Specify the options for the mqsicreatemsgdefs command when you import a C
header file.
“COBOL options file for the mqsicreatemsgdefs command” on page 3707
Specify the options for the mqsicreatemsgdefs command when you import a
COBOL copybook.
“Default options file for the mqsicreatemsgdefs command”
Options for the mqsicreatemsgdefs command take default values if you do not
specify an options file.

Default options file for the mqsicreatemsgdefs command:

Options for the mqsicreatemsgdefs command take default values if you do not
specify an options file.

The following text lists the supplied default options file used with the
mqsicreatemsgdefs command.

If you want to make any changes to the default file contents, the file is stored in
the package group directory structure at %PACKAGE_GROUP_LOCATION%\plugins\
com.ibm.etools.msg.importer.cmdline_%VERSION%\mqsicreatemsgdefs.xml. For
example, if you have installed into the default location on Windows XP, the file is
stored at C:\Program Files\IBM\SDP70Shared\plugins\
com.ibm.etools.msg.importer.cmdline_build_version\mqsicreatemsgdefs.xml.
build_version is the exact build version of the installed component; for example,
6.1.100.200803031447.

<?xml version="1.0" encoding="UTF-8"?>
<OPTIONS>
<!-- Message Definition File Import Options -->
<!-- Import Options for C -->

<C>
<!-- COMPILER_NAME = (Msvc|icc|AIXgcc|AIXxlc|OS390) -->
<COMPILER_NAME>Msvc</COMPILER_NAME>
<!-- CODEPAGE = (ISO8859-1|Cp037|Cp1252) -->
<CODEPAGE>Cp1252</CODEPAGE>
<!-- FLOATING_POINT_FORMAT = (IEEE Extended INTEL|

IEEE Extended AIX|IEEE Extended OS/390|
IEEE Non-Extended|IBM 390 Hexadecimal) -->

<FLOATING_POINT_FORMAT>IEEE Extended INTEL</FLOATING_POINT_FORMAT>
<!-- BYTE_ORDER = (Little Endian|Big Endian) -->
<BYTE_ORDER>Little Endian</BYTE_ORDER>
<!-- ADDRESS_SIZE = (32|64) -->

3710 WebSphere Message Broker Version 7.0.0.8

<ADDRESS_SIZE>32</ADDRESS_SIZE>
<!-- SIZE_OF_LONG_DOUBLE = (64|128) -->
<!-- NOTE: 128 is not supported; therefore 64 is always the value -->
<SIZE_OF_LONG_DOUBLE>64</SIZE_OF_LONG_DOUBLE>
<!-- PACK_LEVEL = (1|2|4|8|16) -->
<PACK_LEVEL>8</PACK_LEVEL>
<!-- SIZE_OF_ENUM = (1|2|4|5) -->
<SIZE_OF_ENUM>5</SIZE_OF_ENUM>
<!-- STRING ENCODING = SPACE | NULL) -->
<!-- NOTE: SPACE = Fixed length strings, NULL = Null terminated strings -->
<STRING_ENCODING>SPACE</STRING_ENCODING>
<!-- STRING PADDING CHARACTER = (SPACE|NUL|’c’|"c"|0xYY|YY|U+xxxx)-->
<!-- Note: Only used for Fixed Length strings -->
<STRING_PADDING_CHARACTER>SPACE</STRING_PADDING_CHARACTER>
<!-- PRESERVE_CASE_IN_VARIABLE_NAMES = (true|false) -->
<PRESERVE_CASE_IN_VARIABLE_NAMES>true</PRESERVE_CASE_IN_VARIABLE_NAMES>
<!-- INCLUDE_PATH = absolute paths to other include files -->
<!-- Paths should be separated by the system-dependent path-separator character.

On UNIX systems, this character is ’:’; on Win32 systems it is ’;’ -->
<INCLUDE_PATH />
<!-- SCHEMA TARGET NAMESPACE URI = (... any valid namespace URI or empty) -->
<SCHEMA_TARGET_NAMESPACE_URI/>
<!-- MESSAGE_PREFIX = (msg_ ... any string including empty string) -->
<MESSAGE_PREFIX>msg_</MESSAGE_PREFIX>
<!-- PRE_PROCESSING_OPTION = (none|ale_idoc|file_idoc) -->
<PRE_PROCESSING_OPTION>none</PRE_PROCESSING_OPTION>

</C>
<!-- Import Options for COBOL -->

<COBOL>
<!-- PLATFORM_SELECTION = (0:"Win32"|1:"AIX"|2:"z/OS") -->
<PLATFORM_SELECTION>Win32</PLATFORM_SELECTION>
<!-- CODEPAGE = (ISO8859_1|037) -->
<CODEPAGE>ISO8859_1</CODEPAGE>
<!-- FLOATING_POINT_FORMAT = (IEEE Non-Extended|IBM 390 Hexadecimal) -->
<FLOATING_POINT_FORMAT>IEEE Non-Extended</FLOATING_POINT_FORMAT>
<!-- ENDIAN = (Big|Little) -->
<ENDIAN>Little</ENDIAN>
<!-- EXT_DECIMAL_SIGN = (ASCII|EBCDIC|EBCDIC Custom) -->
<EXT_DECIMAL_SIGN>ASCII</EXT_DECIMAL_SIGN>
<!-- TRUNC = (STD|OPT|BIN) -->
<TRUNC>STD</TRUNC>
<!-- NSYMBOL = (DBCS|NATIONAL) -->
<NSYMBOL>NATIONAL</NSYMBOL>
<!-- QUOTE = (SINGLE|DOUBLE) -->
<QUOTE>DOUBLE</QUOTE>
<!-- CREATE_DEFAULT_VALUES_FROM_INITIAL_VALUES = (true|false) -->
<CREATE_DEFAULT_VALUES_FROM_INITIAL_VALUES>false</CREATE_DEFAULT_

VALUES_FROM_INITIAL_VALUES>
<!-- CREATE FACETS FROM LEVEL 88 VALUE CLAUSES = (true|false) -->
<CREATE_FACETS_FROM_LEVEL_88_VALUE_CLAUSES>false</CREATE_FACETS_

FROM_LEVEL_88_VALUE_CLAUSES>
<!-- PRESERVE_CASE_IN_VARIABLE_NAMES = (true|false) -->
<PRESERVE_CASE_IN_VARIABLE_NAMES>true</PRESERVE_CASE_IN_VARIABLE_NAMES>
<!-- CREATE NULL VALUES FOR FIELDS = (true|false) -->
<CREATE_NULL_VALUES_FOR_FIELDS>false</CREATE_NULL_VALUES_FOR_FIELDS>
<!-- NULL CHARACTER = (SPACE|NUL|’c’|"c"|0xYY|YY|U+xxxx)-->
<NULL_CHARACTER>SPACE</NULL_CHARACTER>
<!-- STRING PADDING CHARACTER = (SPACE|NUL|’c’|"c"|0xYY|YY|U+xxxx)-->
<!-- Note: Only used for Fixed Length strings -->
<STRING_PADDING_CHARACTER>SPACE</STRING_PADDING_CHARACTER>
<!-- SCHEMA TARGET NAMESPACE URI = (... any valid namespace URI or empty) -->
<SCHEMA_TARGET_NAMESPACE_URI/>
<!-- MESSAGE_PREFIX = (msg_ ... any string including empty string) -->
<MESSAGE_PREFIX>msg_</MESSAGE_PREFIX>

</COBOL>
<!-- Import Options for XML Schema in general -->

<XSD>

Chapter 14. Reference 3711

<!-- MSG = (elements|types|both) -->
<!-- Create messages from imported complex global elements, -->
<!-- or from imported global complex types, or both -->
<MSG>elements</MSG>

</XSD>
<!-- Import Options for XML Schema when importing into a message set

that does NOT support namespaces -->
<XSD_NO_NS>

<!-- IMPORT = (modify|reject|accept) -->
<IMPORT>modify</IMPORT>
<!-- REDEFINE = (modify|reject|accept) -->
<REDEFINE>modify</REDEFINE>
<!-- LIST = (modify|reject|accept) -->
<LIST>modify</LIST>
<!-- UNION = (modify|reject|accept) -->
<UNION>modify</UNION>
<!-- ABSTRACT_CT = (modify|reject|accept) -->
<ABSTRACT_CT>modify</ABSTRACT_CT>
<!-- ABSTRACT_ELEMENT = (modify|reject|accept) -->
<ABSTRACT_ELEMENT>modify</ABSTRACT_ELEMENT>
<!-- XSD_PREFIX = (xsi|... any other prefix) -->
<XSD_PREFIX>xsi</XSD_PREFIX>
<!-- This is where you list the additional uri/prefix pairs. -->
<!-- URI prefix pairs can be listed as follows: -->
<!-- <URI_PREFIX_PAIRS uri="http://www.ibm.com" prefix="ibm" /> -->
<!-- <URI_PREFIX_PAIRS uri="http://www.eclipse.org" prefix="eclipse"/> -->

</XSD_NO_NS>
</OPTIONS>

Related reference:
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“C options file for the mqsicreatemsgdefs command” on page 3705
Specify the options for the mqsicreatemsgdefs command when you import a C
header file.
“COBOL options file for the mqsicreatemsgdefs command” on page 3707
Specify the options for the mqsicreatemsgdefs command when you import a
COBOL copybook.
“XSD options file for the mqsicreatemsgdefs command” on page 3709
Specify the options for the mqsicreatemsgdefs command when you import an XML
Schema file.

mqsicreatemsgdefsfromwsdl command:

Use the mqsicreatemsgdefsfromwsdl command to import a single WSDL definition.

Supported platforms:

v Windows
v Linux on x86

Purpose:
If the WSDL is split into multiple files then the file specified must contain the
WSDL service definition or binding definition. The WS-I validator can be run
automatically on the imported WSDL under the control of the -vfa flag.
1. Ensure that only the files that are required for the WSDL definition you are

importing exist in the directory and subdirectory structure. One of the actions
the mqsicreatemsgdefsfromwsdl command performs is to copy all the files in
the directory and subdirectories into the workspace prior to creating the
message definition. Files that are not associated to that WSDL definition but
exist in the directory are also copied.

3712 WebSphere Message Broker Version 7.0.0.8

2. If the WSDL definition uses a relative path that includes files outside of the
directory or subdirectory structure specified, you must import these files into
the workspace before you run the command. Make sure that the relative paths
are still valid after importing these files into the workspace.

3. Message sets that are created are namespace enabled.
4. Existing message sets must be namespace enabled and have an XML physical

format.
5. If you are creating a new message set for runtime parsing, you should base it

on an existing message set which has an XML physical format.

Syntax:

►► mqsicreatemsgdefsfromwsdl -p MessageSetProjectName ►

► -d Pathname of source files folder -f WSDL file name ►

► -data WorkspacePath ►

►
-base baseMessageSetProjectName\baseMessageSetName

►

►
-binding BindingName -log ReportFilePathName -rmp

►

►
-rmd -vfa Validation failure action -v

►◄

Parameters:

-p MessageSetProjectName
(Required) The name of the message set project. If the project exists, it must be
namespace-enabled. If the project does not exist, a new namespace-enabled
project is created.

-base baseMessageSetProjectName\baseMessageSetName
(Optional) If a new message set is to be created, specify the existing message
set project and message set on which it is based

-binding BindingName
(Optional) The name of a binding to be imported. This parameter is mandatory
if the WSDL definition includes more than one binding, but optional if the
WSDL definition includes a single binding

-d Pathname of source files folder
(Required) The absolute or relative path name of the directory where the
top-level WSDL file is located. The top-level WSDL file can contain the entire
WSDL definition, or it can be the top of a hierarchy of files, each of which can
import further files via import elements. An import element specifies the
location of the resource to import with a location attribute

The importer attempts to resolve all relative import locations relative to the
specified directory; the importer also attempts to resolve any absolute import
locations that it encounters. However, avoid using absolute import locations,
because any further imports in the hierarchy must use absolute locations after
the first time you specify an absolute location.

Chapter 14. Reference 3713

-data WorkspacePath
(Required) The path of the workspace in which your projects are created.

The workspace location is also the default location for projects. Relative paths
are interpreted as being relative to the directory from which the command was
started.

-f <WSDL file name>
(Required) The file name of the top-level WSDL file to be imported.

Where a path is required to fully identify the filename, the path should be
specified using the -d parameter.

-log ReportFilePathName
(Optional) Absolute or relative path name of the report file; if omitted, the
report is written to the default log file and is named Wsdl-file-
name.wsdl.report.txt. Wsdl-file-name is the name of the WSDL definition you
are importing and it is placed in the directory from which the command is
invoked.

-rmd
(Optional) Replaces an existing message definition file of the same name.

Note:

1. If you omit this flag, and a message definition file of the same name exists,
a warning is returned.

2. The location of the generated message definition file in the message set is
determined by the target namespace.

-rmp
(Optional) Replaces the existing project of the same name.

-v
(Optional) Verbose report.

-vfa
(Optional) Validation failure action. Specifies the required action if WS-I
compliance checking detects a problem in the WSDL to be imported. The
default is set to fail. Select from:
v fail: If the WSDL definition is not WS-I compliant, the import process stops,

and errors are written to the log file.
v warn: If the WSDL definition is not WS-I compliant, the import process

writes warning errors to the log file.
v ignore: If the WSDL definition is not WS-I compliant, the import process

ignores them and informational messages of how this WSDL definition is
not compliant to the WS-I profile are written to the logfile.

Authorization:
On Windows 7, Windows Vista, and Windows Server 2008 systems, the user ID
used to run this command must be running with elevated privileges on the local
system:
v The user ID must be a member of the group Administrators.
v The command must be started from an environment that has Run as

Administrator authority.

If you do not run the command from a privileged environment, you are asked to
confirm that you want to continue. When you click OK, a new privileged

3714 WebSphere Message Broker Version 7.0.0.8

command console is created and the command completed, but all responses are
written to the privileged environment and are lost when that console closes when
the command completes.

On other platforms, no specific authority is required to run this command.

Examples:
In the following example, the WSDL document service.wsdl which exists in the
directory wsdlfiles, is to be imported into the project myProject and overwrite the
project if it exists.

mqsicreatemsgdefsfromwsdl -p myProject -d .\wsdlfiles -f service.wsdl -rmd -data .\wsdlfilewspc

In the following example, the WSDL document service.wsdl which exists in the
directory wsdlfiles, is to be imported to create a new message set project
(newProj) based on an existing project (existingProj).

mqsicreatemsgdefsfromwsdl -p newProj -base existingProj -d .\wsdlfiles -f service.wsdl -data .\wsdlfilewspc

Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
Related tasks:
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Importing WSDL definitions from the command line” on page 2948
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.

Runtime commands
The topics in this section describe the WebSphere Message Broker runtime
commands.

These commands are available on all computers on which you have installed the
broker.

See “Commands” on page 3672 for a list of all the WebSphere Message Broker
commands.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
“Syntax diagrams” on page 3677

mqsiaddbrokerinstance command:

Use the mqsiaddbrokerinstance command to create a multi-instance broker on a
server where WebSphere Message Broker has been installed.

Supported platforms:

v Windows

Chapter 14. Reference 3715

v Linux and UNIX systems

Purpose:
Use the mqsiaddbrokerinstance command to add a broker instance to any
additional server on which you require multi-instance support. You must first
create a multi-instance enabled broker on one server by using the
mqsicreatebroker command.

If you add a broker instance with the mqsiaddbrokerinstance command, you
cannot use this command to start and stop a multi-instance broker as a
WebSphere MQ service; you must use the “mqsichangebroker command” on page
3723 instead.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsiaddbrokerinstance command - Linux and UNIX systems” on page 3717
v “mqsiaddbrokerinstance command - Windows platforms” on page 3718

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

On all Windows platforms, you must install WebSphere MQ on a domain server,
and create a user to own WebSphere MQ resources. The user must either be a
member of domain group mqm or a member of another global domain group which
is directly or indirectly a member of mqm. Make this user the owner of the shared
queue manager and log files. The sid of the user who owns the queue manager
and log files is then the same as the sid of the user that runs instances of the
queue manager.

On Linux and UNIX systems, the user ID used to run this command must be a
member of both the mqbrkrs group and the mqm group. Additionally, you need to
make the uid and gid for this user ID the same on all the systems, and the user ID
needs to be the same one that created the first instance of the multi-instance
broker, using the mqsicreatebroker command.

You might need to edit the /etc/passwd file on each system to set a common uid
and gid for the user ID being used to create and add broker instances; then reboot
your systems.

You should change the uid and gid in the Linux and UNIX environments with
caution, as it affects the permission levels of files on the system.

Changing a uid or gid causes the ownership of all the files previously owned by
that user or group to change to the actual integer of the previous owner of the file.
Therefore, you must ensure that your system administrator manually restores the
ownerships of the affected files and directories.
Related reference:
“Syntax diagrams” on page 3677

3716 WebSphere Message Broker Version 7.0.0.8

“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsiremovebrokerinstance command” on page 3918
Use the mqsiremovebrokerinstance command to remove a multi-instance broker
from a server where WebSphere Message Broker has been installed.

mqsiaddbrokerinstance command - Linux and UNIX systems:

Use the mqsiaddbrokerinstance command to add a multi-instance broker on Linux
and UNIX systems.

Syntax:

►► mqsiaddbrokerinstance brokerName -e sharedWorkpath ►

►
-w Workpath

►◄

Parameters:

brokerName
(Required) The name of the broker instance that you are adding. You must
specify the name as the first parameter and the name is case-sensitive. The
broker instance name must match that of a multi-instance enabled broker
previously created using the mqsicreatebroker command.

For restrictions on the character set that you can use, see “Characters allowed
in commands” on page 3680.

-e sharedWorkpath
(Required) The value represents the directory in which globally accessible
working files for this broker are located in shared network storage (NFS or
NAS).

You must ensure the broker has access to this network storage location before
you start the broker, and that the queue manager for the broker has been
configured as a WebSphere MQ multi-instance queue manager.

The information stored in this shared directory includes:
v The broker registry
v Component directories
v Internal broker tables and files for deployed message flows
v Configurable service properties.

-w Workpath
(Optional) The directory in which working files specific to this broker instance
are stored locally on the server where the broker instance is going to run. If
you do not specify this parameter, files are stored in the default Work path,

Chapter 14. Reference 3717

which is the one you specified when the product was installed. If you specify
this parameter, you must create this directory before you start the broker.

This directory is also used for trace records that are created when tracing is
active. These records are written to a subdirectory, log, which you must create
before you start the broker.
Error logs that are written by the broker when a process ends abnormally are
stored in this directory.
The error log is unbounded and continues to grow. Check this directory
periodically and clear out old error information.
You cannot change this parameter using the mqsichangebroker command. To
specify or change the work path, delete and re-create the broker.
Specifying this parameter creates a separate working directory for the broker.
This working directory is a subset of the default working directory structure
that contains fewer subdirectories and no common\profiles subdirectory.

Examples:
The following example adds a broker instance on broker Mybroker using queue
manager MyQmgr on the shared work path MyNetworkSharedWorkpath:
mqsiaddbrokerinstance MyBroker –e /MyNetworkSharedWorkpath

Related reference:
“Syntax diagrams” on page 3677
“mqsiaddbrokerinstance command” on page 3715
Use the mqsiaddbrokerinstance command to create a multi-instance broker on a
server where WebSphere Message Broker has been installed.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsiremovebrokerinstance command” on page 3918
Use the mqsiremovebrokerinstance command to remove a multi-instance broker
from a server where WebSphere Message Broker has been installed.

mqsiaddbrokerinstance command - Windows platforms:

Use the mqsiaddbrokerinstance command to add a multi-instance broker on
Windows platforms.

Syntax:

►► mqsiaddbrokerinstance brokerName -e sharedWorkpath ►

►
-w Workpath

-i serviceUserId -a servicePassword ►◄

Parameters:

brokerName
(Required) The name of the broker instance that you are adding. You must

3718 WebSphere Message Broker Version 7.0.0.8

specify the name as the first parameter and the name is case-sensitive. The
broker instance name must match that of a multi-instance enabled broker
previously created using the mqsicreatebroker command.

For restrictions on the character set that you can use, see “Characters allowed
in commands” on page 3680.

-e sharedWorkpath
(Required) The value represents the directory in which globally accessible
working files for this broker are located in shared network storage (NFS or
NAS).

You must ensure the broker has access to this network storage location before
you start the broker, and that the queue manager for the broker has been
configured as a WebSphere MQ multi-instance queue manager.

The information stored in this shared directory includes:
v The broker registry
v Component directories
v Internal broker tables and files for deployed message flows
v Configurable service properties.

-w Workpath
(Optional) The directory in which working files specific to this broker instance
are stored locally on the server where the broker instance is going to run. If
you do not specify this parameter, files are stored in the default Work path,
which is the one you specified when the product was installed. If you specify
this parameter, you must create this directory before you start the broker.

This directory is also used for trace records that are created when tracing is
active. These records are written to a subdirectory, log, which you must create
before you start the broker.
Error logs that are written by the broker when a process ends abnormally are
stored in this directory.
The error log is unbounded and continues to grow. Check this directory
periodically and clear out old error information.
You cannot change this parameter using the mqsichangebroker command. To
specify or change the work path, delete and re-create the broker.
Specifying this parameter creates a separate working directory for the broker.
This working directory is a subset of the default working directory structure
that contains fewer subdirectories and no common\profiles subdirectory.

-i serviceUserId
(Required) The user ID under which the broker runs.

You can specify the serviceUserId in any valid user name syntax:
v \\server\username

v .\username

v username

Do not use a domain name as part of the serviceUserId parameter.
If you use the unqualified form for this user ID (username), the operating
system searches for the user ID throughout its domain, starting with the local
system. This search might take some time to complete.
The serviceUserId that you specify must be a direct or indirect member of the
mqbrkrs local group. The serviceUserId must also be authorized to access the
home directory (where WebSphere Message Broker has been installed), and the
working directory (if specified by the -w parameter).
If you specify that the broker is to run as a WebSphere MQ trusted application

Chapter 14. Reference 3719

(-t parameter), you must also add the service user ID to the mqm group.
The security requirements for the serviceUserId are described in “Security
requirements for Windows systems” on page 3651.

-a servicePassword
(Required) The password for the serviceUserId.

For compatibility with existing systems, you can specify <password>. However,
if you do not specify a password with this parameter when you run the
command, you are prompted to enter a password. You must enter the
password a second time to verify that you have entered it correctly.

Examples:
The following example adds a broker instance on broker Mybroker on the shared
work path MyNetworkSharedWorkpath:
mqsiaddbrokerinstance MyBroker –e /MyNetworkSharedWorkpath -i Fred -a Test

Related reference:
“Syntax diagrams” on page 3677
“mqsiaddbrokerinstance command” on page 3715
Use the mqsiaddbrokerinstance command to create a multi-instance broker on a
server where WebSphere Message Broker has been installed.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsiremovebrokerinstance command” on page 3918
Use the mqsiremovebrokerinstance command to remove a multi-instance broker
from a server where WebSphere Message Broker has been installed.

mqsibackupbroker command:

Use the mqsibackupbroker command to back up the current configuration of a
broker.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPBUBK; see “Contents

of the broker PDSE” on page 3991.

Purpose:
The mqsibackupbroker command creates a record of the current configuration of a
broker in a file, in compressed file format. You can use the file to restore the broker
at a later time, if required.

Usage notes:
The command backs up of the following persistent configuration data associated
with the broker:
v Deployed resources; message flows, dictionaries, JAR files, and other runtime

resources that you have previously deployed in a BAR file.
v Execution groups.

3720 WebSphere Message Broker Version 7.0.0.8

v Broker configuration; for example, configurable services.

The command does not back up the following resources:
v Transient information; for example, inflight aggregations or collections.
v Executable code, including resources that are associated with user-defined

extensions (nodes, parsers, and exits).
v Resources required by message flows to function correctly; for example,

WebSphere MQ queues and data stored in user databases.

Use the backup file to restore a broker on a computer that has an identical
configuration; the operating system must be at the same level, and the broker and
queue manager names must be identical.

You can run this command for a broker that is active. However, you must not take
a backup while the broker is processing configuration changes and deployments;
the backup file created might contain incomplete information. If the file contains
partial records, you cannot use it to restore the broker at a later time.

To ensure that the backup is complete and correct, either take a backup when the
broker is not processing a configuration change (such as a deployment or change
property) or when the broker is stopped.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Syntax:

►► mqsibackupbroker brokerName -d directory ►

►
-a archiveName -v traceFileName -f

►◄

Parameters:

brokerName
(Required) The name of the broker that you want to back up. You must specify
the name as the first parameter.

-d directory
(Required) The directory in which the backup file is created. You must specify
a directory that is on a file system that can be accessed by the computer on
which you run this command.

Chapter 14. Reference 3721

-a archiveName
(Optional) The name of the backup (archive) file. The file is created in
compressed file format. If you do not specify this parameter, the default name
brokerName_yyMMdd_HHmmss.zip is used.

-v traceFileName
(Optional) The location of a trace file that records details of the actions taken
by the command.

-f
(Optional) Force incomplete backup files to be created if one or more parts of
the broker configuration cannot be read.

The command creates a backup file that contains all available information; if it
cannot access some configuration detail, that subset of data is not saved. For
example, if a message flow required exclusive access to a deployed resource,
and the message flow is running, the deployed resource might not be included
in the backup file.

If you do not specify this option, the command fails if it cannot create
complete backup file.

Specify this option only if directed to do so by your IBM service representative.

Examples:
The following example backs up broker MB7BROKER on Windows:
mqsibackupbroker MB7BROKER -d C:\MQSI\BACKUP -v C:\MQSI\BACKUP\trace.log

Related tasks:
“Backing up the broker” on page 1013
Back up the broker configuration and all associated resources.
“Command environment: Linux and UNIX systems” on page 310
Set up the Linux or UNIX environment to run WebSphere Message Broker
commands.
“Command environment: Windows systems” on page 306
Set up the Windows environment to run WebSphere Message Broker commands.
Related reference:
“Contents of the broker PDSE” on page 3991
After you have successfully customized the broker, the broker PDSE members have
been set up.
“Syntax diagrams” on page 3677
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsirestorebroker command” on page 3952
Use the mqsirestorebroker command to restore the broker configuration from a
backup file.
“Sample BIPBUBK file” on page 4004
The sample BIPBUBK file that is shipped with WebSphere Message Broker is

3722 WebSphere Message Broker Version 7.0.0.8

included here for your reference.

mqsichangebroker command:

Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Note: You can use the mqsireportbroker command to report the current values of
the configuration parameters of the broker before you change anything, and to
confirm any changes that you made. See “mqsireportbroker command” on page
3919 for more information.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command either as a console command, or by customizing and

submitting BIPCHBK; see “Contents of the broker PDSE” on page 3991

Purpose:
You can modify the value of many, but not all, of the parameters that you set
when you created the broker. For example, after you change a password, you must
run the mqsichangebroker command. You can also use this command to set the
UserExitPath property or to enable administrative authority.

You can use the mqsichangebroker command with the -c parameter on WebSphere
Message Broker Version 7.0 in the same way that you did for WebSphere Message
Broker .

However, the converter file name must follow the WebSphere Message Broker
Version 7.0 form, and the location given must specify the path up to, but not
including, the icudt38b component; see “Generating a new code page converter” on
page 824 for further information.

You must stop the broker before you issue this command, and restart the broker
for the changes to take effect:
v On Windows, Linux, and UNIX systems, use the mqsistop and mqsistart

commands to stop and restart the broker.
v On z/OS, you must have started the original broker control process by using the

/S option. You must stop the broker components using the /F broker, PC option
and start the broker components again using the /F broker, SC option.

On Windows systems, Linux, and UNIX systems, use this command to specify
whether the broker can start and stop as a WebSphere MQ service.

Use the -f (function level) parameter to specify functions that become available
in WebSphere Message Broker fix packs. See the version of the command that is
applicable to your enterprise for more information.

For details of this command on the operating system that your enterprise uses, see
the appropriate topic:
v “mqsichangebroker command - Linux and UNIX systems” on page 3724
v “mqsichangebroker command - Windows systems” on page 3729
v “mqsichangebroker command - z/OS” on page 3733

Chapter 14. Reference 3723

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Generating a new code page converter” on page 824
Generate a code page converter to handle conversions of data that belongs to a
code page that is not in the default set of code pages provided by WebSphere
Message Broker.
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“Security requirements for Linux and UNIX platforms” on page 3648
View a summary of the authorizations in a Linux or UNIX environment.
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.
“START and STOP commands on z/OS” on page 3981

mqsichangebroker command - Linux and UNIX systems:

Use the mqsichangebroker command on Linux and UNIX systems to modify your
broker.

Syntax:

3724 WebSphere Message Broker Version 7.0.0.8

►► mqsichangebroker BrokerName
-t
-n

-l userLilPath
►

►
-g configurationChangeTimeout

►

►
-k internalConfigurationTimeout -P httpListenerPort

►

►
-v statisticsMajorInterval

►

►
-y ldapPrincipal -z ldapCredentials

►

►
-c ICU converter path -x userExitPath

►

►
-e activeUserExits -o operationMode

►

►
-f function level -s active

inactive
-d defined

undefined

►◄

Parameters:

BrokerName

(Required) This parameter must be the first parameter. Specify the name of the
broker to modify.

-t (Optional) The broker runs as a WebSphere MQ trusted application.

For more details about using WebSphere MQ trusted applications, see the
Intercommunication section of the WebSphere MQ Version 7 Information Center
online.

-n

(Optional) The broker ceases to run as a WebSphere MQ trusted application.

-l userLilPath
(Optional) A list of paths (directories) from which the broker loads Loadable
implementation libraries (LIL files) for user-defined message processing nodes.

On Linux and UNIX systems, directory names are case sensitive. You must
include the names in single quotation marks if they contain mixed case
characters.
Do not include environment variables in the path; the broker ignores them.

Create your own directory for storing your .lil or .jar files. Do not save
them in the WebSphere Message Broker installation directory.
If you specify more than one additional directory, each directory must be
separated by the default platform-specific path separator.

Chapter 14. Reference 3725

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

-g configurationChangeTimeout
(Optional) The maximum time (in seconds) that is allowed for a user
configuration request to be processed. It defines the length of time taken
within the broker to apply to an execution group a configuration change that
you have initiated. For example, if you deploy a configuration from the
WebSphere Message Broker Toolkit, the broker must respond to the
Configuration Manager within this time.

A message flow cannot respond to a configuration change while it is
processing an application message. An execution group returns a negative
response to the deployed configuration message if any one of its message
flows does not finish processing an application message and apply the
configuration change within this timeout.

Specify the value in seconds, in the range 10 - 3600. The default is 300.

For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-k internalConfigurationTimeout
(Optional) The maximum time (in seconds) that is allowed for an internal
configuration change to be processed. For example, it defines the length of
time taken within the broker to start an execution group.

The response time of each execution group differs according to system load
and the load of its own processes. The value must reflect the longest response
time that any execution group takes to respond. If the value is too low, the
broker returns a negative response, and might issue error messages to the local
error log.
Specify the value in seconds, in the range 10 - 3600. The default is 60.
For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-P httpListenerPort
(Optional) Enter the number of the port on which the Web services support is
listening.

The broker starts this listener when a message flow that includes HTTP nodes
or Web services support is started; the default is 7080.

Ensure that the port that you specify has not been specified for any other
purpose.

-v statisticsMajorInterval
(Optional) The time interval (in minutes) at which statistics and accounting
archive records are written. The valid range is from 1 minute to 43200 minutes;
the default value is 60.

-y ldapPrincipal
(Optional, but mandatory when ldapCredentials is provided.) The user principal
for access to an optional LDAP directory that holds the JNDI administered
Initial Context for the JMS provider.

-z ldapCredentials
(Optional, but mandatory when ldapPrincipal is provided.) The user password
for access to LDAP.

-c ICU converter path
(Optional) A set of directories to search for additional code page converters,
delimited by a colon (:).

3726 WebSphere Message Broker Version 7.0.0.8

The code page converters must be either of the form codepagename.cnv, or in
an ICU data package called icudt38.dat. The code page converters must be
located in a sub-directory named icudt38_<platform_suffix> of the specified
directory where <platform_suffix> is one of the following values:
v l for little-endian ASCII platforms
v b for big-endian ASCII platforms
v e for EBCDIC platforms

-x userExitPath
(Optional) The path that contains the location of all user exits to be loaded for
execution groups in this broker. This path is added to the system library search
path (PATH,LIBPATH,LD_LIBRARY_PATH,SHLIBPATH) for the execution group
process only.

-e activeUserExits
(Optional) Active user exits. By default, user exits are inactive. Adding a
userExit name to this colon-separated list changes its default state to active for
this broker. You can use the mqsichangeflowuserexits command to override
the default state at the execution group or message flow level. If you specify a
user exit name, and no library is found to provide that user exit when the
execution group starts, a BIP2314 message is written to the system log. The
execution group fails to start.

-o operationMode
(Optional) Use this parameter to set the mode of your broker; see “Operation
modes” on page 48. Valid values that you can set are enterprise (the full
package, enterprise mode), entry (Entry Edition mode), starter (Starter
Edition mode), and adapter (Remote Adapter Deployment mode). The default
is enterprise unless you have the Trial Edition, when the default is trial. If
no -o parameter is set, the default is set automatically.

-f function level
(Optional) Use this parameter to enable function that becomes available in
WebSphere Message Broker fix packs. Valid values that you can set are all,
which enables all functions, or a version string of the form V.R.M.F (for
example, 7.0.0.7), which indicates the maximum level of feature function to
enable. You can use this parameter to revert to a previous fix pack level, but
you must first remove any flows that are using the new functions.

This command does not disable all new features, and it is not possible to use
this flag to run the broker at a different major version.

-s security_status
(Optional) Specify this parameter to change the administrative security status
of the broker.
v If you specify active, administrative security is enabled for the broker. The

command creates authorization queues that are required, if they do not exist.
v If you specify inactive, administrative security is disabled for the broker.

The command does not delete or clear the security queues that are
associated with this broker and its execution groups.

If you omit this parameter, the security status is unchanged.

For further information about using security, see “Broker administration
security overview” on page 362 and “Authorizing users for broker
administration” on page 371.

-d (Optional) Enables a broker to be started and stopped as a WebSphere MQ
service when the queue manager starts and stops.

Chapter 14. Reference 3727

This option is an alternative to starting a multi-instance broker in standby
mode using the mqsistart command.

If you specify -d defined, the WebSphere MQ service is defined to the queue
manager and the broker starts and stops when the queue manager starts and
stops.

If you specify -d undefined, the WebSphere MQ service is not defined to the
queue manager and the broker does not start and stop when the queue
manager starts and stops. This is the default setting.

To change other broker properties, first delete and re-create the broker, and then
use the WebSphere Message Broker Toolkit to redeploy the broker configuration. If
you want to update the user ID credentials that the broker uses to access one or
more databases from deployed message flows, use the mqsisetdbparms command.
For more information, see “Accessing databases from message flows” on page
2112.

Examples:
Define the path to user-defined exits:
mqsichangebroker MB7BROKER -x /opt/3rdparty/wmbexit

Enable the new function that is supplied in WebSphere Message Broker Version
7.0.0.7:
mqsichangebroker MB7BROKER -f 7.0.0.7

Set the broker's security status to active, so that the broker checks that the user
has the correct authority to complete actions that are requested after this change.
mqsichangebroker MB7BROKER -s active

Set the WebSphere MQ status of the broker to defined, so that the broker starts
and stops when its associated queue manager starts and stops.
mqsichangebroker MB7BROKER -d defined

Set the WebSphere MQ service status to undefined, so that the broker no longer
starts and stops when its associated queue manager starts and stops. The broker
starts only when using the mqsistart command.
mqsichangebroker MB7BROKER -d undefined

Related tasks:
“Setting configuration timeout values” on page 3258
Change timeout values that affect configuration tasks in the broker.
“Modifying a broker on Windows, Linux, and UNIX systems” on page 632
Use the mqsichangebroker command on Windows, Linux, and UNIX to modify
your broker.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

3728 WebSphere Message Broker Version 7.0.0.8

mqsichangebroker command - Windows systems:

Use the mqsichangebroker command on Windows systems to modify your broker.

Syntax:

►► mqsichangebroker BrokerName ►

►
-a servicePassword

-i serviceUserId
-t
-n

►

►
-l userLilPath -g configurationChangeTimeout

►

►
-k internalConfigurationTimeout -P httpListenerPort

►

►
-v statisticsMajorInterval

►

►
-y ldapPrincipal -z ldapCredentials -c ICU converter path

►

►
-x userExitPath -e activeUserExits

►

►
-o operationMode -f function level -s active

inactive

►

►
-d defined

undefined

►◄

Parameters:

BrokerName

(Required) This parameter must be the first parameter. Specify the name of the
broker to modify.

-a servicePassword
(Optional) The password for the serviceUserId.

-i serviceUserId
(Optional) The user ID under which the broker runs. You must also change the
password (-a) if you change this value.

You can specify the serviceUserId in any valid user name syntax:
v \\server\username

v .\username

v username

Do not use a domain name as part of the serviceUserId parameter.
If you use the unqualified form for this user ID (username), the operating
system searches for the user ID throughout its domain, starting with the local

Chapter 14. Reference 3729

system. This search might take some time to complete.
The serviceUserId that you specify must be a direct or indirect member of the
mqbrkrs local group. The serviceUserId must also be authorized to access the
home directory (where WebSphere Message Broker has been installed), and the
working directory (if specified by the -w parameter).
If you specify that the broker is to run as a WebSphere MQ trusted application
(-t parameter), you must also add the service user ID to the mqm group.
The security requirements for the serviceUserId are described in “Security
requirements for Windows systems” on page 3651.

-t (Optional) The broker runs as a WebSphere MQ trusted application.

For more details about using WebSphere MQ trusted applications, see the
Intercommunication section of the WebSphere MQ Version 7 Information Center
online.

-n

(Optional) The broker ceases to run as a WebSphere MQ trusted application.

-l userLilPath
(Optional) A list of paths (directories) from which the broker loads Loadable
implementation libraries (LIL files) for user-defined message processing nodes.

Create your own directory for storing your .lil or .jar files. Do not save
them in the WebSphere Message Broker installation directory.
If you specify more than one additional directory, each directory must be
separated by the default platform-specific path separator.

-g configurationChangeTimeout
(Optional) The maximum time (in seconds) that is allowed for a user
configuration request to be processed. It defines the length of time taken
within the broker to apply to an execution group a configuration change that
you have initiated. For example, if you deploy a configuration from the
WebSphere Message Broker Toolkit, the broker must respond to the
Configuration Manager within this time.

A message flow cannot respond to a configuration change while it is
processing an application message. An execution group returns a negative
response to the deployed configuration message if any one of its message
flows does not finish processing an application message and apply the
configuration change within this timeout.

Specify the value in seconds, in the range 10 - 3600. The default is 300.

For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-k internalConfigurationTimeout
(Optional) The maximum time (in seconds) that is allowed for an internal
configuration change to be processed. For example, it defines the length of
time taken within the broker to start an execution group.

The response time of each execution group differs according to system load
and the load of its own processes. The value must reflect the longest response
time that any execution group takes to respond. If the value is too low, the
broker returns a negative response, and might issue error messages to the local
error log.
Specify the value in seconds, in the range 10 - 3600. The default is 60.
For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

3730 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

-P httpListenerPort
(Optional) Enter the number of the port on which the Web services support is
listening.

The broker starts this listener when a message flow that includes HTTP nodes
or Web services support is started; the default is 7080.

Ensure that the port that you specify has not been specified for any other
purpose.

-v statisticsMajorInterval
(Optional) The time interval (in minutes) at which statistics and accounting
archive records are written. The valid range is from 1 minute to 43200 minutes;
the default value is 60.

-y ldapPrincipal
(Optional, but mandatory when ldapCredentials is provided.) The user principal
for access to an optional LDAP directory that holds the JNDI administered
Initial Context for the JMS provider.

-z ldapCredentials
(Optional, but mandatory when ldapPrincipal is provided.) The user password
for access to LDAP.

-c ICU converter path
(Optional) A set of directories to search for additional code page converters,
delimited by a semicolon (;).

The code page converters must be either of the form codepagename.cnv, or in
an ICU data package called icudt38.dat. The code page converters must be
located in a sub-directory named icudt38_<platform_suffix> of the specified
directory where <platform_suffix> is one of the following values:
v l for little-endian ASCII platforms
v b for big-endian ASCII platforms
v e for EBCDIC platforms

-x userExitPath
(Optional) The path that contains the location of all user exits to be loaded for
execution groups in this broker. This path is added to the system library search
path (PATH,LIBPATH,LD_LIBRARY_PATH,SHLIBPATH) for the execution group
process only.

-e activeUserExits
(Optional) Active user exits. By default, user exits are inactive. Adding a
userExit name to this colon-separated list changes its default state to active for
this broker. You can use the mqsichangeflowuserexits command to override
the default state at the execution group or message flow level. If you specify a
user exit name, and no library is found to provide that user exit when the
execution group starts, a BIP2314 message is written to the system log. The
execution group fails to start.

Note you can use double quotation marks to remove all the user exits from the
active list:
mqsichangebroker <brokername> ""

-o operationMode
(Optional) Use this parameter to set the mode of your broker; see “Operation
modes” on page 48. Valid values that you can set are enterprise (the full
package, enterprise mode), entry (Entry Edition mode), starter (Starter
Edition mode), and adapter (Remote Adapter Deployment mode). The default

Chapter 14. Reference 3731

value is enterprise, unless you have the Trial Edition, when the default value
is trial. If you do not set the -o parameter, the default value is used
automatically.

-f function level
(Optional) Use this parameter to enable function that becomes available in
WebSphere Message Broker fix packs. Valid values that you can set are all,
which enables all functions, or a version string of the form V.R.M.F (for
example, 7.0.0.7), which indicates the maximum level of feature function to
enable. You can use this parameter to revert to a previous fix pack level, but
you must first remove any flows that are using the new functions.

This command does not disable all new features, and it is not possible to use
this flag to run the broker at a different major version.

-s security_status
(Optional) Specify this parameter to change the administrative security status
of the broker.
v If you specify active, administrative security is enabled for the broker. The

command creates authorization queues that are required, if they do not exist.
v If you specify inactive, administrative security is disabled for the broker.

The command does not delete or clear the security queues that are
associated with this broker and its execution groups.

If you omit this parameter, the security status is unchanged.

For further information about using security, see “Broker administration
security overview” on page 362 and “Authorizing users for broker
administration” on page 371.

-d (Optional) Enables a broker to be started and stopped as a WebSphere MQ
service when the queue manager starts and stops.

This option is an alternative to starting a multi-instance broker in standby
mode using the mqsistart command.

If you specify -d defined, the WebSphere MQ service is defined to the queue
manager and the broker starts and stops when the queue manager starts and
stops.

If you specify -d undefined, the WebSphere MQ service is not defined to the
queue manager and the broker does not start and stop when the queue
manager starts and stops. This is the default setting.

To change other broker properties, first delete and re-create the broker, and then
use the WebSphere Message Broker Toolkit to redeploy the broker configuration. If
you want to update the user ID credentials that the broker uses to access one or
more databases from deployed message flows, use the mqsisetdbparms command.
For more information, see “Accessing databases from message flows” on page
2112.

Examples:
Define the path to user-defined exits:
mqsichangebroker MB7BROKER -x /opt/3rdparty/wmbexit

Enable the new function that is supplied in WebSphere Message Broker Version
7.0.0.7:
mqsichangebroker MB7BROKER -f 7.0.0.7

3732 WebSphere Message Broker Version 7.0.0.8

Set the broker's security status to active, so that the broker checks that the user
has the correct authority to complete actions that are requested after this change.
mqsichangebroker MB7BROKER -s active

Set the broker's WebSphere MQ status to defined, so that the broker starts and
stops when its associated queue manager starts and stops.
mqsichangebroker MB7BROKER -d defined

Set the WebSphere MQ service status to undefined, so that the broker no longer
starts and stops when its associated queue manager starts and stops. The broker
starts only when using the mqsistart command.
mqsichangebroker MB7BROKER -d undefined

Related tasks:
“Setting configuration timeout values” on page 3258
Change timeout values that affect configuration tasks in the broker.
“Modifying a broker on Windows, Linux, and UNIX systems” on page 632
Use the mqsichangebroker command on Windows, Linux, and UNIX to modify
your broker.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

mqsichangebroker command - z/OS:

Use the mqsichangebroker command on z/OS to modify your broker.

Syntax:

z/OS command - BIPCHBK:

Chapter 14. Reference 3733

►► mqsichangebroker BrokerName
-l UserLilPath

►

►
-g ConfigurationChangeTimeout

►

►
-k InternalConfigurationTimeout -P HTTPListenerPort

►

►
-v StatisticsMajorInterval

►

►
-y LdapPrincipal -z LdapCredentials -c ICUConverterPath

►

►
-x UserExitPath -e ActiveUserExits

►

►
-f function level -s active

inactive

►◄

z/OS console command:
Synonym: cb

►► changebroker
cb

▼ g=ConfigurationChangeTimeout
k=InternalConfigurationTimeout
l=UserLilPath
v=StatisticsMajorinterval
P=HTTPListenerPort

►

►
y=LdapPrincipal z=LdapCredentials c=ICUConverterPath

►

►
x=UserExitPath e=ActiveUserExits f=function_level

►

►
s=security_status

►◄

Parameters:

3734 WebSphere Message Broker Version 7.0.0.8

BrokerName
(Required) This parameter must be the first parameter. Specify the name of the
broker to modify.

This parameter is implied in the console form of the command.

-l UserLilPath
(Optional) A list of paths (directories) from which the broker loads Loadable
implementation libraries (LIL files) for user-defined message processing nodes.

This name is case sensitive; enclose the names in single quotation marks if they
are in mixed case.
Do not include environment variables in this path; WebSphere Message Broker
ignores them.

Create your own directory for storing your .lil or .jar files. Do not save
them in the WebSphere Message Broker installation directory.
If you specify more than one additional directory, each directory must be
separated by the default platform-specific path separator.

-g ConfigurationChangeTimeout
(Optional) The maximum time (in seconds) that is allowed for a user
configuration request to be processed. It defines the length of time taken
within the broker to apply to an execution group a configuration change that
you have initiated. For example, if you deploy a configuration from the
WebSphere Message Broker Toolkit, the broker must respond to the
Configuration Manager within this time.

A message flow cannot respond to a configuration change while it is
processing an application message. An execution group returns a negative
response to the deployed configuration message if any one of its message
flows does not finish processing an application message and apply the
configuration change within this timeout.

Specify the value in seconds, in the range 10 - 3600. The default is 300.

For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-k InternalConfigurationTimeout
(Optional) The maximum time (in seconds) that is allowed for an internal
configuration change to be processed. For example, it defines the length of
time taken within the broker to start an execution group.

The response time of each execution group differs according to system load
and the load of its own processes. The value must reflect the longest response
time that any execution group takes to respond. If the value is too low, the
broker returns a negative response, and might issue error messages to the local
error log.
Specify the value in seconds, in the range 10 - 3600. The default is 60.
For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-P HTTPListenerPort
(Optional) Enter the number of the port on which the Web services support is
listening.

The broker starts this listener when a message flow that includes HTTP nodes
or Web services support is started; the default is 7080.

Ensure that the port that you specify has not been specified for any other
purpose.

Chapter 14. Reference 3735

-v StatisticsMajorInterval
(Optional) Specify the interval (in minutes) at which statistics and accounting
archive records are to be written. The valid range is from 1 minute to 43200
minutes; the default value is 60.

An interval of zero minutes indicates that the operating system has an external
method of notification (the ENF timer), and is not using an internal timer
within WebSphere Message Broker.

-y LdapPrincipal
(Optional, but mandatory when ldapCredentials is provided.) The user principal
for access to an optional LDAP directory that holds the JNDI administered
Initial Context for the JMS provider.

-z LdapCredentials
(Optional, but mandatory when ldapPrincipal is provided.) The user password
for access to LDAP.

-c ICUConverterPath
(Optional) A delimited set of directories to search for additional code page
converters; the delimiter is a period (.).

The code page converters must be either of the form codepagename.cnv, or in
an ICU data package called icudt38.dat. The code page converters must be
located in a sub-directory named icudt38_<platform_suffix> of the specified
directory where <platform_suffix> is one of the following values:
v l for little-endian ASCII platforms
v b for big-endian ASCII platforms
v e for EBCDIC platforms

Do not use this parameter to set the converter path if you are using a
converter that matches one of the built-in converters that are provided with
Version 6.0, and that converter is the local code page for the broker. Use the
ICU_DATA environment variable instead.

-x UserExitPath
(Optional) The path that contains the location of all user exits to be loaded for
execution groups in this broker. This path is added to the system library search
path (PATH,LIBPATH,LD_LIBRARY_PATH,SHLIBPATH) for the execution group
process only.

-e ActiveUserExits
(Optional) Active user exits. By default, user exits are inactive. Adding a
userExit name to this colon-separated list changes its default state to active for
this broker. You can use the mqsichangeflowuserexits command to override
the default state at the execution group or message flow level. If you specify a
user exit name, and no library is found to provide that user exit when the
execution group starts, a BIP2314 message is written to the system log. The
execution group fails to start.

-f function level
(Optional) Use this parameter to enable function that becomes available in
WebSphere Message Broker fix packs. Valid values that you can set are all,
which enables all functions, or a version string of the form V.R.M.F (for
example, 7.0.0.7), which indicates the maximum level of feature function to
enable. You can use this parameter to revert to a previous fix pack level, but
you must first remove any flows that are using the new functions.

This command does not disable all new features, and it is not possible to use
this flag to run the broker at a different major version.

3736 WebSphere Message Broker Version 7.0.0.8

-s security_status
(Optional) Specify this parameter to change the administrative security status
of the broker.
v If you specify active, administrative security is enabled for the broker. The

command creates authorization queues that are required, if they do not exist.
v If you specify inactive, administrative security is disabled for the broker.

The command does not delete or clear the security queues that are
associated with this broker and its execution groups.

If you omit this parameter, the security status is unchanged.

For further information about using security, see “Broker administration
security overview” on page 362 and “Authorizing users for broker
administration” on page 371.

To change other broker properties, first delete and re-create the broker, and then
use the WebSphere Message Broker Toolkit to redeploy the broker configuration. If
you want to update the user ID credentials that the broker uses to access one or
more databases from deployed message flows, use the mqsisetdbparms command.
For more information, see “Accessing databases from message flows” on page
2112.

Examples:
When you run the console command, you must use a comma between each
command option, as shown in these examples.

Change the configuration timeout parameters:
F MQP1BRK,cb g=100,k=200

Specify both the x and e parameters to set the user exit path and set an exit to
active state:
/f MA05BRK,cb x=’/u/test/wbi/MsgFlowTrackingUserExit/zOS’,e=’MqsiStrUserExit02:MqsiStrUserExit03’

Enable the new function that is supplied in WebSphere Message Broker Version
7.0.0.7:
F MQP1BRK,cb f=7.0.0.7

Set the broker's security status to active, so that the broker checks that the user
has the correct authority to complete actions that are requested after this change.
mqsichangebroker MB7BROKER -s active

Related tasks:
“Setting configuration timeout values” on page 3258
Change timeout values that affect configuration tasks in the broker.
“Modifying a broker on z/OS” on page 634
Use the mqsichangebroker command on z/OS to modify your broker.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Chapter 14. Reference 3737

mqsichangeflowmonitoring command:

Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

Supported operating systems:

v Windows
v Linux and UNIX systems
v z/OS: Run this command either as a console command, or by customizing and

submitting BIPCHME; see “Contents of the broker PDSE” on page 3991.

Purpose:
Use the mqsichangeflowmonitoring command to carry out the following tasks:
v Activate or deactivate monitoring for a message flow
v Enable or disable an event source within a message flow
v Associate a configurable service with a message flow by setting its

monitoringProfile property.

This facility can be used to change the state (enabled or disabled) of any event in
the message flow, whether it was configured using the node's monitoring
properties, or a monitoring profile configurable service. The new state takes effect
immediately (but safely).

The state change persists, and so it survives a restart of the message flow or
execution group. For an event configured using the node's monitoring properties,
the state change is lost if the message flow is redeployed, unless the node property
is also changed.

Select the appropriate link for details of the mqsichangeflowmonitoring command
on the platform that your enterprise uses:
v “mqsichangeflowmonitoring command - Windows, Linux and UNIX systems” on

page 3739
v “mqsichangeflowmonitoring command - z/OS” on page 3741

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangeflowmonitoring command”
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

3738 WebSphere Message Broker Version 7.0.0.8

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Security requirements for Linux and UNIX platforms” on page 3648
View a summary of the authorizations in a Linux or UNIX environment.
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

mqsichangeflowmonitoring command - Windows, Linux and UNIX systems:

Use the mqsichangeflowmonitoring command on Windows, Linux and UNIX
systems to enable monitoring of message flows.

Syntax:

►► mqsichangeflowmonitoring BrokerName ►

►

▼

-c Control -m MonitoringProfileName
,

-i EventState -s EventSourceAddress

►

►
(1)

-e ExecutionGroupName -f MessageFlow
-j

-g -j

►◄

Notes:

1 See the parameter descriptions for information about valid combinations of
the e, f, g, and j parameters.

Parameters:

BrokerName
(Required) Specify the label of the broker to which the message flows that you
want to be monitored are deployed.

-c Control
(Optional) Specify the string value that controls monitoring for the specified
message flows. Possible values are:

active - activate monitoring
inactive - deactivate monitoring

-f MessageFlow
(Required) Specify the label for the message flow, for which the monitoring
options are to be activated or updated.

Chapter 14. Reference 3739

You must specify either -f or -j. If you do not specify one of these arguments
you receive an error message.

-g
(Required) Specifies that the command applies to all execution groups that
belong to the broker.

You must specify either -e or -g. If you do not specify one of these arguments
you receive an error message.

-i EventState
(Optional) Specify the string value that controls monitoring for the specified
event source. Valid only when used with the -e and -f parameters. Possible
values are:

enable - enable monitoring for the specified event sources.
disable - disable monitoring for the specified event sources.

-j
(Required) Specifies that the command applies to all message flows that belong
to the execution group.

You must specify either -f or -j. If you do not specify one of these arguments
you receive an error message.

Note: If you set the -g option for all execution groups, you must use -j instead
of -f.

-m MonitoringProfileName
(Optional) Specify the name of the monitoring profile which the specified
message flows should use.

If there is no monitoring profile with the specified name on the specified
broker, the command completes successfully, and the message flows attempt to
use the specified monitoring profile. Each message flow logs a warning in the
User Trace to indicate that it was instructed to use a nonexistent monitoring
profile. No event message is created. If a monitoring profile with the specified
name is later deployed to the broker, the message flows do not immediately
begin to use it. A refresh of the monitoring state can be triggered by issuing
the command again with the –c option to activate or reactivate monitoring.

-s EventSourceAddress
(Optional) Comma-separated list of the event sources to be enabled or
disabled. Valid only when used with the -e and -f parameters. This value takes
the form <node name>.<event source>, where <event source> is one of the
following values:

'terminal.<terminal name>'
'transaction.Start'

'transaction.End'

'transaction.Rollback'

If a message flow contains two or more nodes with identical names, the event
sources on those nodes cannot be accurately addressed. If this is attempted,
behavior is undefined.

<node name> is the label of the node as known by the broker runtime
components. If the node is in a subflow, the label reflects this. For example,
flow A contains an instance of flow B as a subflow that is labeled 'myB'. Flow
B contains an instance of a Compute node that is labeled 'myCompute'. The
<node name> for the Compute node is 'myB.myCompute'.

3740 WebSphere Message Broker Version 7.0.0.8

If you issue this command with a comma separated list to enable or disable
individual event sources, and you have not already issued the command with
the -c parameter, monitoring is not activated for these event sources. To enable
monitoring, reissue the command with the -c parameter set to active.

Examples:
Assign monitoringProfile1 to messageFlow1 in execution group default:
mqsichangeflowmonitoring WBRK_BROKER -e default

-f messageFlow1 -m monitoringProfile1

Activate monitoring for all message flows in all execution groups:
mqsichangeflowmonitoring WBRK_BROKER -c active -g -j

Enable individual event sources:
mqsichangeflowmonitoring WBRK_BROKER

-e default
-f myMessageFlow
-s "SOAP Input1.terminal.out,MQOutput1.terminal.in"
-i enable

Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

mqsichangeflowmonitoring command - z/OS:

Use the mqsichangeflowmonitoring command on z/OS to enable monitoring of
message flows.

Syntax:

z/OS console command:
Synonym: cm

Chapter 14. Reference 3741

►► changeflowmonitoring
cm

BrokerName ►

►

▼

c=Control m=MonitoringProfileName
,

i=EventState s= EventSourceAddress

►

►
(1)

e=ExecutionGroupName f=MessageFlow
j=yes

g=yes j=yes

►◄

Notes:

1 See the parameter descriptions for information about valid combinations of
the e, f, g, and j parameters.

Parameters:

BrokerName
(Required) Specify the label of the broker to which the message flows that you
want to be monitored are deployed.

This parameter is implied on the console form of the command.

c=Control
(Optional) Specify the string value that controls monitoring for the specified
message flows. Possible values are:

active - activate monitoring
inactive - deactivate monitoring

e=ExecutionGroupName
(Required) Specify the name for the execution group to which the message
flows that you want to be monitored are deployed.

You must specify either -e or -g. If you do not specify one of these arguments
you receive an error message.

f=MessageFlow
(Required) Specify the label for the message flow, for which the monitoring
options are to be activated or updated.

You must specify either -f or -j. If you do not specify one of these arguments
you receive an error message.

g (Required) Specifies that the command applies to all execution groups that
belong to the broker.

You must specify either -e or -g. If you do not specify one of these arguments
you receive an error message.

i=EventState
(Optional) Specify the string value that controls monitoring for the specified
event source. Valid only when used with the -e and -f parameters. Possible
values are:

enable - enable monitoring for the specified event sources.

3742 WebSphere Message Broker Version 7.0.0.8

disable - disable monitoring for the specified event sources.

j (Required) Specifies that the command applies to all message flows that belong
to the execution group.

You must specify either -f or -j. If you do not specify one of these arguments
you receive an error message.

Note: If you set the -g option for all execution groups, you must use -j instead
of -f.

m=MonitoringProfileName
(Optional) Specify the name of the monitoring profile which the specified
message flows should use.

If there is no monitoring profile with the specified name on the specified
broker, the command completes successfully, and the message flows attempt to
use the specified monitoring profile. Each message flow logs a warning in the
User Trace to indicate that it was instructed to use a nonexistent monitoring
profile. No event message is created. If a monitoring profile with the specified
name is later deployed to the broker, the message flows do not immediately
begin to use it. A refresh of the monitoring state can be triggered by issuing
the command again with the –c option to activate or reactivate monitoring.

s=EventSourceAddress
(Optional) Comma-separated list of the event sources to be enabled or
disabled. Valid only when used with the -e and -f parameters. This value takes
the form <node name>.<event source>, where <event source> is one of the
following values:

'terminal.<terminal name>'
'transaction.Start'

'transaction.End'

'transaction.Rollback'

If a message flow contains two or more nodes with identical names, the event
sources on those nodes cannot be accurately addressed. If this is attempted,
behavior is undefined.

<node name> is the label of the node as known by the broker runtime
components. If the node is in a subflow, the label reflects this. For example,
flow A contains an instance of flow B as a subflow that is labeled 'myB'. Flow
B contains an instance of a Compute node that is labeled 'myCompute'. The
<node name> for the Compute node is 'myB.myCompute'.

If you issue this command with a comma separated list to enable or disable
individual event sources, and you have not already issued the command with
the -c parameter, monitoring is not activated for these event sources. To enable
monitoring, reissue the command with the -c parameter set to active.

Example:
Activate monitoring on all message flows in all execution groups:
F MI10BRK,cm c=active,g=yes,j=yes

Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
Related reference:
“Syntax diagrams” on page 3677

Chapter 14. Reference 3743

“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

mqsichangeflowstats command:

Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.

Supported Platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command in one of two ways - as a console command, or by

customizing and submitting BIPCHMS; see “Contents of the broker PDSE” on
page 3991

Purpose:
Use the mqsichangeflowstats command to:
v Turn on or off accounting and statistics snapshot publication, or archive record

output.
v Specify that the command is applied to a specific flow message flow, or all flows

in an execution group, or all execution groups belonging to a broker.
v Modify the granularity of the data collected in addition to the standard message

flow accounting and statistics. This extra data can include thread related data,
node related data, node terminal related data, or a mixture of this data.

The options set using this command remain active until modified by a subsequent
mqsichangeflowstats command, or until affected by a subsequent deploy.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsichangeflowstats command - Windows, Linux and UNIX systems” on page

3745
v “mqsichangeflowstats command - z/OS” on page 3748

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

3744 WebSphere Message Broker Version 7.0.0.8

input message is received.
Related tasks:
“Optimizing message flow throughput” on page 587
Each message flow that you design must provide a complete set of processing for
messages received from a certain source. This design might result in very complex
message flows that include large numbers of nodes that can cause a performance
overhead, and might create potential bottlenecks. You can increase the number of
message flows that process your messages to provide the opportunity for parallel
processing and therefore improved throughput.
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

mqsichangeflowstats command - Windows, Linux and UNIX systems:

Use the mqsichangeflowstats command on Windows, Linux and UNIX systems to
control the accumulation of statistics about message flow operation.

Syntax:

►► mqsichangeflowstats BrokerName -a
-s

►

►
(1)

-e ExecutionGroupName -f MessageFlow
-j

-g -j

►

►
-b AccountingOrigin -c Control -n NodeData

►

►
-o OutputFormat -r -t ThreadData

►◄

Notes:

1 See the parameter descriptions for information on valid combinations of
the e, f, g, and j parameters.

Parameters:

Chapter 14. Reference 3745

BrokerName
(Required) Specify the label of the broker for which accounting and statistics
are to be changed.

-a (Required) Specify that the command modifies archive accounting and statistics
collection.

You must specify either -a or -s. If you do not specify one of these arguments
you receive a warning message.

-b AccountingOrigin
(Optional) Specifies that the environment tree path Broker.Accounting.Origin is
used to partition the collected statistics into distinct outputs. Possible values
are:
v none - do not partition statistics according to accounting origin data
v basic - partition statistics according to accounting origin data

-c Control
(Optional) Specify the string value that controls the level of the action to be
applied to accounting and statistics collection for snapshot or archiving.
Possible values are:
v active - turn on snapshot or archiving
v inactive - turn off snapshot or archiving.

-e ExecutionGroupName
(Required) Specify the name for the execution group, for which accounting and
statistics options are to be changed.

You must specify either -e or -g. If you do not specify one of these arguments
you receive a warning message.

-f MessageFlow
(Required) Specify the label for the message flow, for which accounting and
statistics options are to be changed.

You must specify either -f or -j. If you do not specify one of these arguments
you receive a warning message.

-g
(Required) Specifies that the command applies to all execution groups that
belong to the broker.

You must specify either -e or -g. If you do not specify one of these arguments
you receive a warning message.

-j
(Required) Specifies that the command applies to all message flows that belong
to the execution group.

You must specify either -f or -j. If you do not specify one of these arguments
you receive a warning message.

Note: If you set the -g option for all execution groups, you must use -j instead
of -f.

-n NodeData
(Optional) Specify a string value to modify the collection of node statistics data
for a message flow. Possible values are:
v none - exclude node related data in the statistics
v basic - include node related statistics in the statistics
v advanced - include node related and terminal related data in the statistics

3746 WebSphere Message Broker Version 7.0.0.8

-o OutputFormat
(Optional) Specify the output destination for the statistics reports. Possible
values are:
v usertrace - this is the default and writes "bip" messages to usertrace, which

can be post processed in the normal way using the mqsireadlog and
mqsiformatlog commands

v xml - the statistics reports are generated as XML documents and published
by the broker running the message flow.
The topic on which the data is published has the following structure:
$SYS/Broker/<brokerName>/StatisticsAccounting/<recordType>
/<executionGroupLabel>/<messageFlowLabel>

where recordType is set to Snapshot or Archive, and broker, execution
group, and message flow names are specified according to the subscriber's
requirements.

-r (Optional) This parameter applies only to archive data and specifies that
archive data is to be reset.

This results in the clearing out of accounting and statistics data accumulated so
far for this interval, and restarts collection from this point. All archive data for
all flows in the execution group, or groups, is reset.

The archive interval timer is only reset if the -v option (statistics archive interval)
of mqsicreatebroker or mqsichangebroker is non zero.

That is, the interval timer is set only if the internal interval notification
mechanism is being used, and not an external method.

-s (Required) Specify that the command modifies snapshot accounting and
statistics collection.

You must specify either -a or -s. If you do not specify one of these arguments
you receive a warning message.

-t ThreadData
(Optional) Specify a string value to modify the collection of thread statistics
data for a message flow Possible values are:
v none - exclude thread related data from the statistics
v basic - include thread related data in the statistics

Examples:
Turn on snapshot statistics for the message flow "myFlow1" in all execution groups
of BrokerA and specify that the statistics are not to be partitioned according to
accounting origin data:
mqsichangeflowstats BrokerA -s -g -j -b none -c active

Turn off the collection of archive statistics for message flow "MyFlow1" in
execution group "EGRP2" for BrokerA, and at the same time modify the
granularity of data that is to be collected (when next activated) to include thread
related data.
mqsichangeflowstats BrokerA -a -e EGRP2 -f MyFlow1 -c inactive -t basic

Turn off snapshot data for all message flows in all execution groups for Broker A.
mqsichangeflowstats BrokerA -s -g -j -c inactive

Related reference:
“Syntax diagrams” on page 3677

Chapter 14. Reference 3747

“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.

mqsichangeflowstats command - z/OS:

Use the mqsichangeflowstats command on z/OS to control the accumulation of
statistics about message flow operation.

Syntax:

z/OS command - BIPCHMS:

►► mqsichangeflowstats BrokerName -a
-s

►

►
(1)

-e ExecutionGroupName -f MessageFlow
-j

-g -j

►

►
-b AccountingOrigin -c Control -n NodeData

►

►
-o OutputFormat -r -t ThreadData

►◄

Notes:

1 See the parameter descriptions for information on valid combinations of
the e, f, g, and j parameters.

z/OS console command:
Synonym: cs

3748 WebSphere Message Broker Version 7.0.0.8

►► changeflowstats
cs

a=yes
s=yes

►

►
(1)

e=ExecutionGroupName f=MessageFlow
j=yes

g=yes j=yes
c=Control

►

►
t=ThreadData n=NodeData r=yes b=AccountingOrigin

►

►
o=OutputFormat

►◄

Notes:

1 See the parameter descriptions for information on valid combinations of
the e,f, g, and j parameters.

Parameters:

BrokerName
(Required) Specify the label of the broker for which accounting and statistics
are to be changed.

This parameter is implied on the console form of the command.

-a (Required) Specify that the command modifies archive accounting and statistics
collection.

You must specify either -a or -s. If you do not specify one of these arguments
you receive a warning message.

-b AccountingOrigin
(Optional) Specifies that the environment tree path Broker.Accounting.Origin is
used to partition the collected statistics into distinct outputs. Possible values
are:
v none - do not partition statistics according to accounting origin data
v basic - partition statistics according to accounting origin data

-c Control
(Optional) Specify the string value that controls the level of the action to be
applied to accounting and statistics collection for snapshot or archiving.
Possible values are:
v active - turn on snapshot or archiving
v inactive - turn off snapshot or archiving.

-e ExecutionGroupName
(Required) Specify the name for the execution group, for which accounting and
statistics options are to be changed.

You must specify either -e or -g. If you do not specify one of these arguments
you receive a warning message.

Chapter 14. Reference 3749

-f MessageFlow
(Required) Specify the label for the message flow, for which accounting and
statistics options are to be changed.

You must specify either -f or -j. If you do not specify one of these arguments
you receive a warning message.

-g
(Required) Specifies that the command applies to all execution groups that
belong to the broker.

You must specify either -e or -g. If you do not specify one of these arguments
you receive a warning message.

-j
(Required) Specifies that the command applies to all message flows that belong
to the execution group.

You must specify either -f or -j. If you do not specify one of these arguments
you receive a warning message.

Note: If you set the -g option for all execution groups, you must use -j instead
of -f.

-n NodeData
(Optional) Specify a string value to modify the collection of node statistics data
for a message flow. Possible values are:
v none - exclude node related data in the statistics
v basic - include node related statistics in the statistics
v advanced - include node related and terminal related data in the statistics

-o OutputFormat
(Optional) Specify the output destination for the statistics reports. Possible
values are:
v usertrace - this is the default and writes "bip" messages to usertrace, which

can be post processed in the normal way using the mqsireadlog and
mqsiformatlog commands

v xml - the statistics reports are generated as XML documents and published
by the broker running the message flow.
The topic on which the data is published has the following structure:
$SYS/Broker/<brokerName>/StatisticsAccounting/<recordType>
/<executionGroupLabel>/<messageFlowLabel>

where recordType is set to Snapshot or Archive, and broker, execution
group, and message flow names are specified according to the subscriber's
requirements.

v smf - statistics reports are output as SMF type 117 records.

-r (Optional) This parameter applies only to archive data and specifies that
archive data is to be reset.

This results in the clearing out of accounting and statistics data accumulated so
far for this interval, and restarts collection from this point. All archive data for
all flows in the execution group, or groups, is reset.

The archive interval timer is only reset if the -v option (statistics archive interval)
of mqsicreatebroker or mqsichangebroker is non zero.

That is, the interval timer is set only if the internal interval notification
mechanism is being used, and not an external method.

3750 WebSphere Message Broker Version 7.0.0.8

-s (Required) Specify that the command modifies snapshot accounting and
statistics collection.

You must specify either -a or -s. If you do not specify one of these arguments
you receive a warning message.

-t ThreadData
(Optional) Specify a string value to modify the collection of thread statistics
data for a message flow Possible values are:
v none - exclude thread related data from the statistics
v basic - include thread related data in the statistics

Examples:
Using the command BIPCHMS:
v Turn on snapshot statistics for the message flow "myFlow1" in all execution

groups and specify that the statistics are not to be partitioned according to
accounting origin data:
mqsichangeflowstats BrokerA -s -g -j -b none

v Turn off the collection of archive statistics for message flow "MyFlow1" in
execution group "EGRP2" , and at the same time modify the granularity of data
that is to be collected (when next activated) to include thread related data.
mqsichangeflowstats BrokerA -a -e "EGRP2" -f MyFlow1 -c inactive -t basic

The following example uses the console form of the command. Turn on archive
accounting for all the message flows in all the execution groups that belong to the
broker and output the report as SMF records.
F VCP2BRK,CS A=YES,G=YES,J=YES,C=ACTIVE,O=SMF

Related reference:
“Syntax diagrams” on page 3677
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.

mqsichangeflowuserexits command:

Use the mqsichangeflowuserexits command to set the list of active or inactive user
exits. A list of active and a list of inactive user exits is maintained for each
execution group and message flow. The effective state of user exits for a given flow
is decided when the flow starts.

Supported operating systems:

v Windows
v Linux and UNIX systems
v z/OS. Run this command in one of two ways - as a console command, or by

customizing and submitting the BIPCHUE utility; see “Contents of the broker
PDSE” on page 3991

Purpose:
The order of precedence is message flow, execution group, then broker default. The
active list takes precedence over the inactive list in the message flow and execution
group settings.

If the state for a given user exit is not set for the message flow, its state is taken
from the execution group setting. If its state is not set for the message flow or

Chapter 14. Reference 3751

execution group, it takes the default state which is implicitly inactive, or can be
explicitly defined as active by the broker property activeUserExits, through the
mqsichangebroker command.

If a particular user exit name is present in both the active and inactive lists for a
message flow or execution group, the active list takes precedence and the user exit
is active for that level. Therefore, if you want to change a user exit from active to
inactive you must specify it as part of the inactive list, by using the -i flag and
also remove it from the active list by re-specifying the new active list by using the
-a flag.

When multiple exits are active for a given flow, they are invoked in a defined
order. Those exits in the message flow's active list are invoked first in the order in
which they were specified on the -a flag.

After those have been invoked, the exits in the execution group's active list (which
were in neither the message flow's active nor inactive list) are invoked. These exits
are invoked in the order in which they were specified on the -a flag.

Note, that to clear the user exit lists, double quotation marks must be used as an
argument with the -i or -a flag, depending on which user exit list is to be cleared.

All user exits that are not mentioned in the execution group's or message flow's
active or inactive list, but are in the broker's active list, are invoked in the order in
which they were specified when the broker property activeUserExits was set.

If any of the user exits specified in either the active or inactive list are not
registered for the target execution group, the command fails with a BIP8858 error.

After successful command completion, if a user exit becomes invalid, the following
action is taken, depending on which list the user exit appeared in:
v If the user exit was specified in the message flow's active or inactive list, the

flow fails to start and a BIP2315 message is written to system log.
v If the user exit was specified in the execution group's active or inactive list, the

execution group fails to start and a BIP2314 message is written to system log.

A user exit might become invalid for one of the following reasons:
v The broker or execution group is restarted after you change the

MQSI_USER_EXIT_PATH variable by removing the directory containing the user
exit library.

v The broker or execution group is restarted after you change the userExitPath
broker property by removing the directory containing the user exit library.

v The user exit library (or one of its dependencies) is removed, or the broker is
unable to load it.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsichangeflowuserexits command - Windows, Linux, and UNIX systems” on

page 3753
v “mqsichangeflowuserexits command - z/OS” on page 3754

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648

3752 WebSphere Message Broker Version 7.0.0.8

v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“mqsireportflowuserexits command” on page 3933
Use the mqsireportflowuserexits command to report the list of active and inactive
user exits for the specified broker, execution group, or message flow.

mqsichangeflowuserexits command - Windows, Linux, and UNIX systems:

Use the mqsichangeflowuserexits command on Windows, Linux, and UNIX
systems to set the list of active or inactive user exits. A list of active and a list of
inactive user exits is maintained for each execution group and message flow. The
effective state of user exits for a given flow is decided when the flow starts.

Syntax:

►► mqsichangeflowuserexits BrokerName ►

► -e EgName
-f MessageFlow -a ActiveUserExitNames

-i InactiveUserExitNames

►◄

Parameters:

BrokerName
(Required). The name of the broker.

-a ActiveUserExitNames
(Optional). A list of the names, separated by colons, of the active user exits.
These are the names registered by the user exits when they were loaded. If any
of the user exits listed are not registered for the target execution group, then
the command fails with a BIP8858 error.

-e EgName
(Required). The name of the execution group.

-f MessageFlow
(Optional). The name of the message flow.

If you supply this value, the user exit is changed for that message flow; if you
do not, the user exit is set at the execution group level.

Chapter 14. Reference 3753

-i InactiveUserExitNames
(Optional). A list of the names, separated by colons, of the inactive user exits.
These are the names registered by the user exits when they were loaded. If any
of the user exits listed are not registered for the target execution group, then
the command fails with a BIP8858 error.

Examples:
Setting active exits at flow level
mqsichangeflowuserexits MB7BROKER -e default -f myFlow -a exit2

Setting inactive exits at flow level
mqsichangeflowuserexits MB7BROKER -e default -f myFlow -i exit1

Setting active exits at execution group level:
mqsichangeflowuserexits MB7BROKER -e default -a exit3,exit1

Setting inactive exits at execution group level:
mqsichangeflowuserexits MB7BROKER -e default -1 exit2

Changing exit1 to inactive and leaving exit2 active at flow level (A command had
previously been issued with "-a exit1:exit2" to set them both active):
mqsichangeflowuserexits MB7BROKER -e default -f myFlow -i exit1 -a exit2

Clearing the active user exit list at flow level:
mqsichangeflowuserexits MB7BROKER -e default -f myFlow -a ""

Related reference:
“Syntax diagrams” on page 3677
“mqsichangeflowuserexits command” on page 3751
Use the mqsichangeflowuserexits command to set the list of active or inactive user
exits. A list of active and a list of inactive user exits is maintained for each
execution group and message flow. The effective state of user exits for a given flow
is decided when the flow starts.

mqsichangeflowuserexits command - z/OS:

Use the mqsichangeflowuserexits command on z/OS to set the list of active or
inactive user exits. A list of active and a list of inactive user exits is maintained for
each execution group and message flow. The effective state of user exits for a given
flow is decided when the flow starts.

Syntax:

z/OS command - BIPCHUE:

►► mqsichangeflowuserexits BrokerName ►

► -e EgName
-f MessageFlow -a ActiveUserExitNames

-i InactiveUserExitNames

►◄

z/OS console command:

3754 WebSphere Message Broker Version 7.0.0.8

Synonym: cx

►► changeflowuserexits
cx

e= EgName
f=MessageFlow

►

►
a=ActiveUserExitNames
i=InactiveUserExitNames

►◄

Parameters:

BrokerName
(Required). The name of the broker.

-a ActiveUserExitNames
(Optional). A list of the names, separated by colons, of the active user exits.
These are the names registered by the user exits when they were loaded. If any
of the user exits listed are not registered for the target execution group, then
the command fails with a BIP8858 error.

-e EgName
(Required). The name of the execution group.

-f MessageFlow
(Optional). The name of the message flow.

If you supply this value, the user exit is changed for that message flow; if you
do not, the user exit is set at the execution group level.

-i InactiveUserExitNames
(Optional). A list of the names, separated by colons, of the inactive user exits.
These are the names registered by the user exits when they were loaded. If any
of the user exits listed are not registered for the target execution group, then
the command fails with a BIP8858 error.

Examples:
Setting active exits at flow level
mqsichangeflowuserexits MB7BROKER -e default -f myFlow -a exit2

Setting inactive exits at flow level
mqsichangeflowuserexits MB7BROKER -e default -f myFlow -i exit1

Setting active exits at execution group level
mqsichangeflowuserexits MB7BROKER -e default -a exit3,exit1

Setting inactive exits at execution group level
mqsichangeflowuserexits MB7BROKER -e default -1 exit2

Changing exit1 to inactive and leaving exit2 active at flow level (A command had
previously been issued with "-a exit1:exit2" to set them both active)
mqsichangeflowuserexits MB7BROKER -e default -f myFlow -i exit1 -a exit2

Related reference:
“Syntax diagrams” on page 3677

Chapter 14. Reference 3755

“mqsichangeflowuserexits command” on page 3751
Use the mqsichangeflowuserexits command to set the list of active or inactive user
exits. A list of active and a list of inactive user exits is maintained for each
execution group and message flow. The effective state of user exits for a given flow
is decided when the flow starts.

mqsichangeproperties command:

Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

Supported platforms:

v Windows systems.
v Linux and UNIX systems.
v z/OS. Run this command by customizing and submitting the BIPCHPR utility;

see “Contents of the broker PDSE” on page 3991.

Purpose:
Use the mqsichangeproperties command to change properties that are associated
with a broker:
v Properties that affect the whole broker; for example, an HTTP listener or Service

Federation Management
v Properties that affect one or more execution groups; for example, the broker

registry
v Properties that affect a configurable service; for example, a JMS provider

You can also use the WebSphere Message Broker Explorer or the Administration
API for WebSphere Message Broker (also known as the CMP API) to change
properties.

Use the mqsireportproperties command to view properties that are associated
with a broker.

Usage notes:

Before you run the mqsichangeproperties command, ensure that the broker is
running.
If you change one or more values, stop and start the broker again for the
change to take effect.
When a message flow that includes HTTP nodes is started, the broker starts the
HTTP and HTTPS listeners, unless this listener has been disabled.

Syntax:

►► mqsichangeproperties BrokerName
-b ComponentName
-c ConfigurableService
-e ExecutionGroupLabel

►

► -o ObjectName -n PropertyName -v PropertyValue
-p Path.FileName
-d

-f
►◄

3756 WebSphere Message Broker Version 7.0.0.8

Parameters:

BrokerName
(Required) The name of the broker to modify. This parameter must be the first
parameter.

-b ComponentName
(Optional) The name of the component. Valid values are httplistener,
securitycache, and servicefederation. The properties associated with these
components affect the whole broker.

-c ConfigurableService
(Optional) The type of configurable service. The type is predefined; for
example, JMSProviders. You can define additional services of all defined types
by using the WebSphere Message Broker Explorer or the
mqsicreateconfigurableservice command.

The valid resource types are listed in “Configurable services properties” on
page 3766.

-e ExecutionGroupLabel
(Optional) The label of the execution group for which you want to change
properties.

-o ObjectName
(Required) The name of the broker resource for which you want to change the
properties.

You must also specify -b, -e, or -c with -o, except if you specify the object
name BrokerRegistry, or the object name ComIbmJVMManager to change a
property related to the heap size.

For compatibility with previous versions, you can also specify the value
ComIbmXmlParserFactory for the ObjectName.

-n PropertyName
(Required) The name of the property to be changed. The available property
names differ according to the component or configurable service that you have
specified. All property names start with a lowercase character.

The property names for predefined configurable services are described in
“Configurable services properties” on page 3766.

If you specify a Configurable Service of type UserDefined, the PropertyName
specified is created if it does not exist.

-v PropertyValue
(Required) The value that is assigned to the property that is specified by the -n
parameter.

You can specify more than one property name together with a corresponding
value, by using commas as separators, if you use a valid value for the
corresponding property; for example, -n Name1,Name2 -v Value1,Value2.

Do not leave a space after each comma in the list of names and corresponding
values. Use "" to specify an empty PropertyValue string.

If the property value contains a comma, enclose the value with escaped double
quotation marks (\" and \"); for example, -n Name1,Name2 -v
Value1,\"Value21,Value22\".

Chapter 14. Reference 3757

UNIX On UNIX, if the -v parameter contains a semicolon (;), enclose the
entire string in quotation marks, as shown in the following example:
mqsichangeproperties MB7BROKER -c JDBCProviders -o DB2EXTRA -n connectionUrlFormat
-v "jdbc:db2://[serverName]:[portNumber]/[databaseName]:user=[user];password=[password];"

If you set the -c parameter to EISProviders or JMSProviders, and the -n
parameter to jarsURL, the expected value is a URL that specifies the file
location of the EIS or JMS provider JAR files, but omits the file:// part of the
URL. (On Windows, the file location cannot be a mapped network drive on a
remote Windows computer; the directory must be local or on a Storage Area
Network (SAN) disk.)

-p Path.FileName
(Optional) The location and name of a file from which the command reads the
property value. Use this command as an alternative to -v where the value of
the property is complex and is defined in a file, such as an XML file.

The following conditions apply to the use of this parameter:
v -p can be used to set a single property only. Therefore, the -n parameter

must have a single property name, not a comma-separated list.
v White space characters (including line feed, carriage return, and end of file

characters) read from the file are preserved by the command.

Use this parameter for policy sets and bindings.

Use this parameter for monitoring profiles; the XML file must conform to the
monitoring profile schema.

-d (Optional) This parameter is valid only if you specify a configurable service of
type UserDefined. If the property that you specify on the -n parameter exists,
it is deleted.

If you specify this parameter for other configurable services or components, an
error is generated.

-f (Optional) This parameter is valid only if you specify a property of an
execution group level object. If the property that you specify on the -n
parameter exists, its value is changed to the PropertyValue specified by the -v
parameter.

You can use this parameter only when the execution group is in the stopped
state. You are advised to use this parameter only under the direction of IBM
support to recover from execution group startup failures.

If you specify this parameter for other configurable services or components, an
error is generated.

For detailed information about valid components, configurable services, object
names, properties, and values, select the appropriate topic:
v “Broker registry object parameter values” on page 3765
v “Configurable services properties” on page 3766
v “Content based filtering component parameter values” on page 3805
v “Execution group HTTP listener parameters (SOAP and HTTP nodes)” on page

3805
v “Broker-wide HTTP listener parameters” on page 3809
v “JVM parameter values” on page 3813
v “Parameter values for the securitycache component” on page 3815
v “Parameter values for the servicefederation component” on page 3816

3758 WebSphere Message Broker Version 7.0.0.8

v “ServiceFederationManager object property values” on page 3818

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Examples:
Always enter the command on a single line; in some examples, line breaks have
been added to enhance readability.

Changes to broker components

The following examples specify the -b parameter to identify a particular broker
component.
v Disable the broker-wide HTTP listener:

mqsichangeproperties MB7BROKER -b httplistener -o HTTPListener
-n startListener -v false

v Enable the broker-wide HTTP listener:
mqsichangeproperties MB7BROKER -b httplistener -o HTTPListener

-n startListener -v true

v Enable the HTTPSConnector for the HTTP nodes deployed to the specified
broker that use the broker-wide listener:
mqsichangeproperties MB7BROKER -b httplistener -o HTTPListener
-n enableSSLConnector -v true

v Change the default SSL protocol from SSLv3 to TLS for the HTTP nodes that are
deployed to the specified broker:
mqsichangeproperties MB7BROKER -b httplistener -o HTTPSConnector

-n sslProtocol -v TLS

v Change the securitycache timeout to 200 seconds:
mqsichangeproperties MB7BROKER -b securitycache -o SecurityCache

-n cacheTimeout -v 200

v Enable Service Federation Management (SFM) and specify a host name and
contact name:
mqsichangeproperties MB7BROKER -b servicefederation -o scmp
-n enabled,hostname,contactName -v true,mbhost.ibm.com,John.Smith

v Change the JVM heap size for the broker:
mqsichangeproperties MB7BROKER -o ComIbmJVMManager
-n jvmMaxHeapSize -v size_in_bytes

Changes to properties that are associated with execution groups

The following examples include the -e parameter to specify the execution group to
change.
v Configure the execution group so that all deployed HTTP nodes use the

embedded listener:
mqsichangeproperties MB7BROKER -e exgroup1 -o ExecutionGroup
-n httpNodesUseEmbeddedListener -v true

Chapter 14. Reference 3759

If you disable the broker-wide listener (as shown in a previous example), you do
not have to change the execution group configuration as shown in this
command; if the broker-wide listener is not active, all execution groups use the
embedded listener by default for all HTTP message handling.

v Configure the execution group properties so that deployed HTTP nodes do not
use the embedded listener:
mqsichangeproperties MB7BROKER -e exgroup1 -o ExecutionGroup
-n httpNodesUseEmbeddedListener -v false

v Set the port number when changing properties for execution groups:
mqsichangeproperties MB7BROKER -e exgroup1 -o HTTPSConnector

-n explicitlySetPortNumber -v 7777

v Set the list of ciphers allowed by the HTTPS listener of the execution group:
mqsichangeproperties MB7BROKER -e default
-o HTTPSConnector -n ciphers
-v \"SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA\"

On distributed systems, if the property value contains a comma, enclose the
value with escaped double quotation marks (\" and \"); for example:
-v \"SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA\"

On z/OS, if the property value contains a comma, enclose the value with double
quotation marks (" and "); for example:
-v "SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA"

v Set the JVM port number to activate message flow debugging:
mqsichangeproperties MB7BROKER -e exgroup1 -o ComIbmJVMManager
-n jvmDebugPort -v 8018

v Change the JVM heap size for the execution group:
mqsichangeproperties MB7BROKER -e exgroup1 -o ComIbmJVMManager
-n jvmMaxHeapSize -v size_in_bytes

v Set the type of server keystore:
mqsichangeproperties MB7BROKER -e AddressSampleProvider
-o ComIbmJVMManager
-n keystoreType -v JKS

v Set a host name and port to be used in the endpoint address of SFM proxies
created in an execution group that is to be used as an SFM Connectivity
Provider:
mqsichangeproperties MB7BROKER -e exgroup1
-o ServiceFederationManager
-n proxyURLHostName,port,securePort -v mbhost.ibm.com,8811,8844

v Set the coordination queue manager to QM2 for execution group
myExecutionGroup in broker MB7BROKER:
mqsichangeproperties MB7BROKER -e myExecutionGroup
-o FTEAgent -n coordinationQMgr -v QM2

Note: After running this command, you must reload the execution group for the
change to take effect.

v Configure the expiry compensation to prevent messages from immediately
expiring when put:
mqsichangeproperties MB7BROKER -e default
-o ComIbmMQConnectionManager -n expiryCompensation -v option

where option specifies if the expiry compensation is active or not:
– false This option is the default value. No adjustment is applied to the expiry

3760 WebSphere Message Broker Version 7.0.0.8

– true This option causes the expiry to be reduced by the amount of time that
the message has spent in the flow at the time that the MQPUT call is made
by the MQOutput Node.

Changes to the BrokerRegistry object

v Set the HTTPConnector Port Range in the broker registry:
mqsichangeproperties MB7BROKER -o BrokerRegistry
-n httpConnectorPortRange -v 7777-8888

Changes to configurable services

The following examples include the -c parameter to specify the type of
configurable service to change.
v Change an Aggregation configurable service:

mqsichangeproperties MB7BROKER -c Aggregation
-o myAggregationService
-n timeoutSeconds -v 120

This command changes all nodes that are configured to use the
myAggregationService configurable service by setting the timeout of an
aggregation to 120 seconds.

v Change a CICSConnection configurable service:
mqsichangeproperties MB7BROKER -c CICSConnection -o myCICSConnectionService
-n connectionTimeoutSecs -v 120

This command changes the CICSRequest node that is configured to use the
myCICSConnectionService configurable service by setting the Connection
timeout to 120 seconds.

v Change a Collector configurable service:
mqsichangeproperties MB7BROKER -c Collector
-o myCollectorService
-n collectionExpirySeconds -v 120

This command changes all nodes that are configured to use the
myCollectorService configurable service by setting the expiry time of collections
to 120 seconds.

v Change the location of the object reference for all nodes that are configured to
use the myCORBAService configurable service. After you run this command, all
nodes look for the object reference name "Europe.region/Market.object" in the
naming service on the local host on port 2809.
mqsichangeproperties MB7BROKER -c CORBA -o myCORBAService -n namingService,objectReferenceName -v localhost:2809,Europe.region/Market.object

v Change an EmailServer configurable service:
mqsichangeproperties MB7BROKER -c EmailServer -o
myEmailConfigurableServiceName -n securityIdentity -v
myNewSecurityIdentityObjectName

This command changes the EmailInput node that is configured to use the
myEmailConfigurableServiceName configurable service by renaming the
securityIdentity object to myNewSecurityIdentityObjectName.

v Change the myCDServer configurable service to use a specific staging directory
-/tmp/cdtransfer.
Note that you can use any string for the -o Objectname parameter.
mqsichangeproperties MB7BROKER -c CDServer -o myCDServer -n brokerPathToStagingDir
-v /tmp/cdtransfer

v Make the JAR files and shared libraries available to the WebSphere Adapter for
SAP:

Chapter 14. Reference 3761

mqsichangeproperties MB7BROKER -c EISProviders -o SAP
-n jarsURL,nativeLibs

-v c:\sapjco\jars,c:\sapjco\bin

v For the FtpServer configurable service called TEST1, change the protocol to SFTP
and change the server name to winlnx58:
mqsichangeproperties MB7BROKER -c FtpServer -o TEST1
-n protocol,serverName,scanDelay,remoteDirectory,securityIdentity,
cipher,compression,strictHostKeyChecking
-v SFTP,winlnx58,30,.,chbatey,blowfish-cbc,9,no

v Change all the nodes that are configured to use the myIMSConnectService
configurable service. After you run this command, all nodes connect to the
production system (production.ims.ibm.com) instead of the test system
(test.ims.ibm.com).
mqsichangeproperties MB7BROKER -c IMSConnect
-o myIMSConnectService
-n Hostname -v production.ims.ibm.com

v Update the security identity for the JDBCProvider service for Oracle:
mqsichangeproperties MB7BROKER -c JDBCProviders -o Oracle

-n securityIdentity -v OracleDSN

OracleDSN is the DSN with which you have associated a user ID and password
using the mqsisetdbparms command.

v Change the location of the JAR files for the IBM WebSphere MQ JMS client:
mqsichangeproperties MB7BROKER -c JMSProviders -o WebSphere_MQ

-n jarsURL -v file://D:\SIBClient\Java

v Change the value of the properties proprietaryAPIAttr2 and
proprietaryAPIAttr3 for a user-defined JMS provider configurable service
definition called BEA_Weblogic, where the properties represent the URL of the
BEA WebLogic bindings and the DNS name of the JMS server:
mqsichangeproperties MB7BROKER -c JMSProviders -o BEA_Weblogic

-n proprietaryAPIAttr2, proprietaryAPIAttr3
-v t3://9.20.94.16:7001,BEAServerName

v Change the value of the jndiEnvironmentParms property in the definition of a
user-defined JMS provider configurable service called myJMSprovider:
mqsichangeproperties MB7BROKER -c JMSProviders -o myJMSprovider

-n jndiEnvironmentParms
-v domainName=myDomain;timeout=6000

v Set the properties of monitoring profile 'mp1' by using the contents of file
mp1.xml:
mqsichangeproperties MB7BROKER -c MonitoringProfiles -o mp1
-n profileProperties -p mp1.xml

v Change all connections that are used by the adapter
myPeopleSoftAdapter.outadapter. After you run this command, all adapters connect
to the production system (my.peoplesoft.production.com) instead of the test
system (my.peoplesoft.qa.com).
mqsichangeproperties MB7BROKER -c PeopleSoftConnection

-o myPeopleSoftAdapter.outadapter -n hostName
-v "my.peoplesoft.production.com"

v When you create a policy set, its properties are always set to default values. Use
this command to change the property values.
Import a policy set to a broker from a file:
mqsichangeproperties MB7BROKER -c PolicySets -o Policy_2

-n ws-security -p policyset.xml

3762 WebSphere Message Broker Version 7.0.0.8

This command reads file policyset.xml and sets its contents as Policy_2 in
broker MB7BROKER. The command is used to move policy sets between
brokers, or to restore from a backup.

v Import a policy set bindings to a broker from a file:
mqsichangeproperties MB7BROKER -c PolicySetBindings -o Bindings_2

-n ws-security -p bindings.xml

This command reads file bindings.xml and sets its contents as Bindings_2 in
broker MB7BROKER. The command is used to move policy set bindings
between brokers, or to restore from a backup.

v Change a Resequence configurable service:
mqsichangeproperties MB7BROKER -c Resequence -o myResequenceService
-n missingMessageTimeoutSeconds -v 120

This command changes all nodes that are configured to use the
myResequenceService configurable service, by setting them to propagate
message sequences that have missing messages after waiting for 120 seconds.

v Change all connections that are used by the adapter mySAPAdapter.outadapter.
After you run this command, all adapters connect to the production system
(production.sap.ibm.com) instead of the test system (test.sap.ibm.com).
mqsichangeproperties MB7BROKER -c SAPConnection -o mySAPAdapter
-n applicationServerHost -v production.sap.ibm.com

v Change a SecurityProfiles configurable service to enable identity mapping using
the WS-Trust v1.3 STS provider interface to Tivoli Federated Identity Manager
(TFIM) V6.2:
mqsichangeproperties MB7BROKER -c SecurityProfiles

-o TFIMv62MapSecProfile
-n mapping,mappingConfig
-v "WS-Trust v1.3 STS",
http://wstrusthost1.ibm.com:9080/TrustServerWST13/services/RequestSecurityToken

v Change the connection timeout for queries issued by the WebSphere Service
Registry and Repository nodes to 180 seconds:
mqsichangeproperties MB7BROKER -c ServiceRegistries -o DefaultWSRR

-n connectionTimeout -v 180

v Change the connection that is used by the adapter myAdapter.outadapter. After
you run this command, all message flows in all execution groups that use this
adapter connect to the production system (my.siebel.production.com) instead of
the test system (my.siebel.qa.com). If you are using different adapters in the
message flow, run the mqsichangeproperties command for each named adapter.
mqsichangeproperties MB7BROKER -c SiebelConnection
-o mySiebelAdapter.outadapter
-n connectString
-v "siebel://my.siebel.production.com/SBA_80/SSEObjMgr_enu"

v Update the TCPIPClient configurable service so that it does not create client
connections until they are required:
mqsichangeproperties MB7BROKER -c TCPIPClient
-o ClientPort1452HostnameJsmith

-n MinimumConnections -v 0

v Change the connection expiry time on TCPIPServer connections to 30 seconds:
mqsichangeproperties MB7BROKER -c TCPIPServer -o ServerPort1452

-n ExpireConnectionSec -v 30

v Change the TCPIPClient configurable service to use alternative addresses:
mqsichangeproperties MB7BROKER -c TCPIPClient -o MyTCPIPClient

-n AlternativeAddresses -v smith6:1111;jones7

Chapter 14. Reference 3763

v Change the TCPIPClient configurable service to use a connection pool other than
the main pool:
mqsichangeproperties MB7BROKER -c TCPIPClient -o MyTCPIPClient

-n UseUniqueConnectionPool -v true

v Change a TCPIPClient or TCPIPServer configurable service to use SSL:
“Configuring TCP/IP client nodes to use SSL” on page 551
“Configuring TCP/IP server nodes to use SSL” on page 553

v Change a Timer configurable service:
mqsichangeproperties MB7BROKER -c Timer -o myTimerService
-n timeoutIntervalSeconds -v 1

This command changes all TimeoutNotification nodes that are configured to use
the myTimerService configurable service, by configuring them to generate events
every second if the node is configured in Automatic mode.

v Select content based filtering on the default execution group:
mqsichangeproperties MB7BROKER -e default -o ContentBasedFiltering

-n cbfEnabled -v true

v Select content based filtering on the default execution group and increase the
number of evaluation threads to five:
mqsichangeproperties MB7BROKER -e default -o ContentBasedFiltering

-n validationThreads -v 5

v Change a JavaClassLoader service:
mqsichangeproperties MB7BROKER -c JavaClassLoader

-o myJavaClassLoader
-n sharedJarPath
-v /var/app2/jars

v Add a property to a configurable service of type UserDefined:
mqsichangeproperties MB7BROKER -c UserDefined

-o MyService1 -n VerifyRequestTimeout -v 60

v Delete a property of a configurable service of type UserDefined:
mqsichangeproperties MB7BROKER -c UserDefined

-o HTTP_Timeout -n VerifyRequestTimeout -d

Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
Related tasks:
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.
Related reference:

3764 WebSphere Message Broker Version 7.0.0.8

“Syntax diagrams” on page 3677
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
Related information:
Administration API for WebSphere Message Broker (CMP API)

Broker registry object parameter values:

Select the names of the properties and values that you want to change for the
broker registry object.

To change these properties, you must specify the broker name and the ObjectName
BrokerRegistry. You do not have to specify -b, -c, or -e to change properties
associated with this object.

The following properties and values are valid:

-n brokerKeystorePass
The password used to access the server certificate from the specified
keystore file.

Set the password by using mqsisetdbparms when the broker is stopped.
v Value type - string
v Initial value - brokerKeystore::password

-n brokerKeystoreFile
The path to the keystore file where the server certificate, which is to be
loaded, has been stored. The HTTP listener expects a file with the default
name .keystore in the home directory of the user who started the broker.
v Value type - string
v Initial value - default value (described previously)

-n brokerKeystoreType
The type of keystore file to be used for the server certificate.
v Value type - string
v Initial value - JKS

-n brokerTruststorePass
The password used to access the server certificate from the specified
keystore file.

Set the password by using mqsisetdbparms when the broker is stopped.
v Value type - string
v Initial value - brokerKeystore::password

Chapter 14. Reference 3765

-n brokerTruststoreFile
The path to the keystore file where the server certificate, which is to be
loaded, has been stored. The HTTP listener expects a file with the default
name .keystore in the home directory of the user who started the broker.
v Value type - string
v Initial value - default value (described previously)

-n brokerTruststoreType
The type of keystore file to be used for the server certificate.
v Value type - string
v Initial value - JKS

-n httpConnectorPortRange
The numeric range of ports available to the HTTPConnector object that is
associated with SOAP nodes.
v Value type - integer
v Initial value - 7800-7842

-n httpsConnectorPortRange
The numeric range of ports available to the HTTPSConnector object that is
associated with SOAP nodes.
v Value type - integer
v Initial value - 7843-7884

See the “mqsichangeproperties command” on page 3756 for examples of how to
change BrokerRegistry parameters. Other examples are provided for particular
tasks:

“Viewing and setting keystore and truststore runtime properties at broker level”
on page 780
“Accessing a secure WSRR repository” on page 1884

Related tasks:
“Viewing and setting keystore and truststore runtime properties at broker level” on
page 780
Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Execution group HTTP listener parameters (SOAP and HTTP nodes)” on page
3805
Select the resources and properties associated with the HTTPInput, HTTPReply,
SOAPInput, SOAPReply, and SOAPAsyncResponse nodes that you want to change.

“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Configurable services properties:

The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

3766 WebSphere Message Broker Version 7.0.0.8

Use the WebSphere Message Broker Explorer to view, create, and modify
configurable services. You can also delete custom-named configurable services;
however, you cannot delete IBM-defined configurable services. For more
information, see “Using the WebSphere Message Broker Explorer to work with
configurable services” on page 644.

You can create your own configurable services by using the
mqsicreateconfigurableservice command. For examples of how to use this
command to create each configurable service, see “mqsicreateconfigurableservice
command” on page 3849. You can also delete services that you have created by
using the mqsideleteconfigurableservice command. For examples of how to use
this command to delete each configurable service, see
“mqsideleteconfigurableservice command” on page 3866.

If you want to change the properties for a configurable service, use the
mqsichangeproperties command and specify the broker name and -c
ConfigurableService. Set the ObjectName to the name of the service for which you
want to change properties; the name can be a predefined name (one of the names
shown for the service type in the following tables), or the name of a configurable
service that you have created yourself. For examples of how to use this command,
see “mqsichangeproperties command” on page 3756.

To display one or more of the defined configurable services, use the
mqsireportproperties command. The following example displays all configurable
services that are available for a single broker:
mqsireportproperties brokerName -c AllTypes -o AllReportableEntityNames -r

Specify the appropriate parameters from those parameters shown in the following
tables on the mqsichangeproperties and mqsireportproperties commands:
v Specify -c to identify the configurable service type.
v Specify -o to identify the name of the configurable service object.
v Specify -n to identify the properties of the service.
v Specify -v to identify the values of the properties specified.

Follow the link to the configurable service that you want to use to view the
available properties:
v “Aggregation configurable service” on page 3769
v “CICSConnection configurable service” on page 3770
v “Collector configurable service” on page 3771
v “CORBA configurable service” on page 3771
v “EmailServer configurable service” on page 3772
v “EISProviders configurable service” on page 3773
v “FtpServer configurable service” on page 3773
v “IMSConnect configurable service” on page 3776
v “JavaClassLoader configurable service” on page 3777
v “JDBCProviders configurable service” on page 3778
v “JDEdwardsConnection configurable service” on page 3779
v “JMSProviders configurable service” on page 3780
v “MonitoringProfiles configurable service” on page 3781
v “PeopleSoftConnection configurable service” on page 3781
v “PolicySets configurable service” on page 3782

Chapter 14. Reference 3767

v “PolicySet Bindings configurable service” on page 3782
v “Resequence configurable service” on page 3783
v “SAPConnection configurable service” on page 3784
v “SecurityProfiles configurable service” on page 3785
v “Service Registries configurable service” on page 3788
v “SiebelConnection configurable service” on page 3789
v “SMTP configurable service” on page 3789
v “TCPIPClient configurable service” on page 3789
v “TCPIPServer configurable service” on page 3792
v “Timer configurable service” on page 3793
v “UserDefined configurable service” on page 3793

3768 WebSphere Message Broker Version 7.0.0.8

Aggregation configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

None queuePrefix The queue prefix used to specify the storage queues that are
generated for use by the aggregation nodes. This property is optional.

Five queues are required:

v SYSTEM.BROKER.AGGR.QueuePrefix.CONTROL

v SYSTEM.BROKER.AGGR.QueuePrefix.REPLY

v SYSTEM.BROKER.AGGR.QueuePrefix.REQUEST

v SYSTEM.BROKER.AGGR.QueuePrefix.UNKNOWN

v SYSTEM.BROKER.AGGR.QueuePrefix.TIMEOUT

The prefix can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight
characters and must not begin or end with a period (.). For example,
SET.1 is valid, but .SET1 and SET1. are invalid. Multiple configurable
services can use the same queue prefix.

If no queue prefix is specified, the aggregation nodes use the default
queues that are generated when the broker is created:

v SYSTEM.BROKER.AGGR.CONTROL

v SYSTEM.BROKER.AGGR.REPLY

v SYSTEM.BROKER.AGGR.REQUEST

v SYSTEM.BROKER.AGGR.UNKNOWN

v SYSTEM.BROKER.AGGR.TIMEOUT

timeoutSeconds The timeout value used by the AggregateControl node to set the
expiry time (in seconds) of an aggregation. The value can be any
positive integer.

This property is optional; if it is not set, the value set on the node is
used.

The value of this property overrides the value set on the node, but it
can be overridden by a value in the local environment.

timeoutThreads The number of threads used by the AggregateReply node to process
expired messages. The value can be any positive integer.

This property is optional.

When the property is set, a unique queuePrefix property must be set
on the Aggregation configurable service, and this Aggregation
configurable service must be used only in a single execution group.

If the property is not set, a single thread is used to process expired
messages.

Chapter 14. Reference 3769

CICSConnection configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

None cicsServer The value that is used by the CICSRequest node to determine the
connection to CICS Transaction Server for z/OS. One of the following
connection methods can be specified:

A direct connection to CICS (two-tier):
If making a direct connection from WebSphere Message
Broker to CICS, the cicsServer property must contain the
URL of the CICS Transaction Server for z/OS region where
the program exists. The URL allows you to specify a
protocol, host name, and port number, which is the
minimum information you need to connect to the CICS
target region.

The URL must be made up of the following structure:

protocol://hostname:port

Where:

v protocol can be tcp or ssl.

v hostname is the Internet Protocol version 4 (IPv4) TCP/IP
address or DNS-resolvable host name of the CICS host.

v port is the port number of the TCPIPSERVICE listener in
CICS that is listening for IP InterCommunications (IPIC)
protocol requests over TCP/IP or Secure Sockets Layer
(SSL) protocol. You can enter an integer in the range 1 -
65535.

For example: tcp://mycicsregion.com:12345 or
ssl://mycicsregion.com:56789.

You can obtain the hostname and port values from the IPIC
TCPIPSERVICE definition in the CICS target region.

A connection to CICS through a CICS Transaction Gateway
(three-tier):

If you make connections to CICS through a Transaction
Gateway (CICS TG),

v The gatewayURL property must contain the URL for the
CICS TG to use for the connection, and

v The cicsServer property must contain the CICS server
definition that you have specified in the CICS TG (.INI)
initialization file. For example, the property can specify
the particular CICS region that you want the transaction
gateway to connect to.

For more information about the two-tier and three-tier connection
models, see “CICS Transaction Server for z/OS overview” on page
2173 for a high-level overview, or “CICS Transaction Server for z/OS
two-tier connectivity” on page 2177 and “CICS Transaction Server for
z/OS three-tier connectivity” on page 2181 for detailed conceptual
information.

clientApplid The APPLID by which WebSphere Message Broker is known to the
CICS region. This is not the APPLID of the CICS region. You can
enter a maximum of 8 characters.

This property is optional.

clientQualifier The APPLID qualifier by which WebSphere Message Broker is known
to the CICS region. You can enter a maximum of 8 characters.

This property is optional.

securityIdentity The name of the security identity object that is created and
configured by the mqsisetdbparms command, which contains the user
ID and password to be used by the broker to authenticate the
connection to CICS. Use the mqsisetdbparms command to set the
security identity user ID and password to be accessed by the broker.

For more information about CICS security identity support, see
“mqsisetdbparms command” on page 3954.

connectionTimeoutSecsThe timeout value that is used by the CICSRequest node to set the
expiry time in seconds for WebSphere Message Broker to establish a
connection to the CICS region. The default value for this property is
30, indicating that the CICSRequest node waits for 30 seconds. You
can enter an integer in the range 0 - 2147483. Where 0 indicates that
no timeout is applied.

This property is optional.

requestTimeoutSecs The timeout value that is used by the CICSRequest node to set the
expiry time in seconds for the CICS program to respond. The default
value for this property is 120, indicating that the CICSRequest node
waits for 120 seconds. This period does not include the connection
time period. You can enter an integer in the range 0 - 2147483. Where
0 indicates that no timeout is applied.

This property is optional.

When setting this property for a specified configurable service, for
example myCICSConnection, it is important to remember that the
defined value overrides the CICSRequest node Request timeout Basic
property value for all nodes that are using the myCICSConnection
configurable service.

gatewayURL The URL to use to connect to CICS Transaction Gateway for
Multiplatforms. If this property is specified, the cicsServer property
must contain the CICS server definition that you have specified in the
CICS TG .INI initialization file.

The gatewayURL property allows you to specify a protocol, host name,
and port number, which is the minimum information you need to
connect to

CICS TG.

The URL must be made up of the following structure:

protocol://hostname:port

Where:

v protocol can be tcp or ssl.

v hostname is the Internet Protocol version 4 (IPv4) TCP/IP address
or DNS-resolvable host name of the CICS TG host.

v port is the port number of the TCP/IP or SSL protocol listener for
the gateway daemon of CICS TG. You can enter an integer in the
range 1 - 65535.

For example: tcp://mycicstransactiongateway.com:12345 or
ssl://mycicstransactiongateway.com:56789.

If using SSL, the broker keyring must trust the CICS TG middle tier.

You can obtain the hostname and port values from the

CICS TG .INI initialization file.

The default for this property is local, which indicates a direct
two-tier connection to CICS.

3770 WebSphere Message Broker Version 7.0.0.8

Collector configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

None queuePrefix The queue prefix used to specify the storage queues that are
generated for use by the Collector node. This property is optional.

Two queues are required:

v SYSTEM.BROKER.EDA.QueuePrefix.EVENTS

v SYSTEM.BROKER.EDA.QueuePrefix.COLLECTIONS

The prefix can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight
characters and must not begin or end with a period (.). For example,
SET.1 is valid, but .SET1 and SET1. are invalid. Multiple configurable
services can use the same queue prefix.

If no queue prefix is specified, the Collector node uses the default
queues that are generated when the broker is created:

v SYSTEM.BROKER.EDA.EVENTS

v SYSTEM.BROKER.EDA.COLLECTIONS

These default queues are also used by the Resequence node.

collectionExpirySecondsThe value used by the Collector node to set the expiry time (in
seconds) of a collection. The value can be any positive integer.

This property is optional; if it is not set, the value set on the node is
used.

The value of this property (if it is set) overrides the value set on the
node.

CDServer configurable service

For information about FtpServer configurable service properties, see “CDServer
configurable service properties” on page 3798.

CORBA configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

None namingService The host name of the naming service from which to get the object
reference. The format of this value is host:port, where port is
optional. For example, localhost:2809.

You can obtain this value from the administrator of the CORBA
application that you are calling.

objectReferenceName The name of the reference to the object in the naming service. You
can obtain this value from the CORBA server that you are calling.

For more information about how to specify the object reference name,
see “CORBA naming service” on page 2154.

Chapter 14. Reference 3771

EmailServer configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

None serverName The URL of the email server where the email messages exist for
retrieving. The URL allows you to specify a protocol, host name, and
port number, which is the minimum information you need to connect
to the email server.

The URL must be made up of the following structure:

protocol://hostname:port

Where:

v protocol can be pop3 or imap.

v hostname is the Internet Protocol version 4 (IPv4) TCP/IP address or
DNS-resolvable host name of the email host.

v port is the port number that the email server is listening on for
connections over Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP). You can enter an integer in the range 1 -
65535.

For example: pop3://myemailserver.com:12345 or
imap://myemailserver.com:56789.

There is no default value for this property, however this property is
mandatory, and therefore must be configured with a URL.

You can obtain the hostname and port values from the email server or
email server administrator.

securityIdentity The name of the security identity object that is created and configured
by the mqsisetdbparms command, which contains the user ID and
password to be used by the broker to authenticate the connection to
the email server. Use the mqsisetdbparms command to set the security
identity user ID and password to be accessed by the broker.

This property is optional. There is no default value for this property.
If a value is not entered, the security identity object is taken from the
Security identity property value that is configured on the
EmailInput node.

For more information about email server security identity support, see
“mqsisetdbparms command” on page 3954.

3772 WebSphere Message Broker Version 7.0.0.8

EISProviders configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

PeopleSoft
SAP
Siebel
Twineball

jarsURL A URL that specifies the file location of the EIS provider JAR files.
Omit file:// from the URL. On Windows, the file location cannot be
a mapped network drive on a remote Windows computer; the
directory must be local or on a storage area network (SAN) disk.

If you do not set the -n parameter on the
mqsicreateconfigurableservice command, the default location for
the EIS provider JAR files is the broker shared-classes directories.

nativeLibs The file location of any libraries that the EIS provider owns. If you do
not set the -n parameter on the mqsicreateconfigurableservice
command, the default location for any libraries that the EIS provider
owns, is the broker LILPATH.

Siebel siebelPropertiesURL A URL that specifies the file location of a siebel.properties file.

To connect to a Siebel server in a clustered environment, use the
siebel.conmgr.virtualhosts property in the siebel.properties file
to list the Siebel servers in the cluster.

The siebel.conmgr.virtualhosts property is used to list groups of
servers with the same function. Servers are listed by using a
comma-separated list in the format hostname:port.

The only property in the siebel.properties file that WebSphere
Message Broker supports is siebel.conmgr.virtualhosts. Information
message BIP3427 indicates if a siebel.properties file is being used,
and error message BIP3428 indicates if a problem occurs when
attempting to access the siebel.properties file.

FtpServer configurable service

For more information about FtpServer configurable service properties, see
“FtpServer configurable service properties” on page 3794.

Chapter 14. Reference 3773

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

None accountInfo Some FTP servers require an account name during the FTP logon
procedure. If this property is specified, its value is the account name
that is supplied when it is requested during FTP logon. If this
property is not specified, and the server requests an account name,
the FTP transfer fails.

cipher This property identifies the cipher that is used for encryption. This
property takes the form of one or more of the following values,
separated by plus signs (+):
v blowfish-cbc
v 3des-cbc
v aes128-cbc

The cipher that you use for encryption depends on your SSH
implementation. List the values in order of preference.

This property is valid only when SFTP is specified as the protocol. If
FTP is used, this property is ignored.

If no value is specified, the following default is used:
blowfish-cbc+3des-cbc+aes128-cbc

compression This property specifies the level of compression to be used. Valid
values are integers in the range 0 - 9, where 0 specifies no
compression and 9 specifies maximum compression.

This property is valid only when SFTP is specified as the protocol. If
FTP is used, this property is ignored.

If no value is specified, the default value of 0 is used.

connectionType This property identifies the FTP data socket connection. Valid values
are ACTIVE or PASSIVE.

This property is valid only when FTP is specified as the protocol. If
SFTP is specified, this property is ignored.

knownHostsFile This property specifies the location of the known hosts file. The value
must be the fully qualified path to a valid known hosts file.

The host information is stored in a known_hosts file in the standard
OpenSSH format.

This property is mandatory if the strictHostKeyChecking property is
set to Yes. If the strictHostKeyChecking property is set to No, this
property is ignored.

This property is valid only when SFTP is specified as the protocol. If
FTP is used, this property is ignored.

mac This property specifies the Message Authentication Code. This
property takes the form of one or more of the following values,
separated by plus signs (+):
v hmac-md5
v hmac-sha1

The MAC that you use depends on your SSH implementation. List
the values in order of preference.

This property is valid only when SFTP is specified as the protocol. If
FTP is used, this property is ignored.

If no value is specified, the following default is used: hmac-md5+
hmac-sha1

preserveRemoteFileDateThis property specifies whether files that are retrieved from a remote
server by the FileInput node retain the last modified date on the
server.

The default value is No. If you select Yes, the FileInput node
completes appropriate parsing to determine the remote file date
during processing. The MDTM command is used where it is
supported by the remote server. Where the MDTM command is not
supported, the listing text is used.

When parsing from listing text, the precision is limited to the
information that is available in the specific listing format used by the
remote server. If the listing format is ambiguous, the FileInput node
bases parsing on the locale settings of the broker. If the date cannot
be determined reliably from the remote server, an exception is issued
and the message is not processed.

protocol This property specifies the remote transfer protocol to use. Valid
values are FTP or SFTP. If no protocol is specified in the configurable
service, the value specified in the node is used.

remoteDirectory This property indicates the relative or absolute directory name on the
remote FTP server. If it is set, this property overrides the Server
directory property on the FTP tab of the FileInput or FileOutput
node that uses this service.

scanDelay This property specifies the time, in seconds, to wait after a scan of the
directory results in no files being identified for processing. The
default value is 60 seconds. If it is set, this property overrides the
Scan delay property on the FTP tab of the FileInput node that uses
this service.

securityIdentity This property indicates the name of a security identity that is defined
by using the mqsisetdbparms command. If it is set, this property
overrides the Security identity property on the FTP tab of the
FileInput or FileOutput node that uses this service. If the value of this
property is secId, use the following command to define the security
identity:

v If you are using FTP:

mqsisetdbparms BrokerName
-n ftp::secId -u userName
-p password

v If you are using SFTP:

mqsisetdbparms BrokerName
-n sftp::secId -u userName
-p password

or

mqsisetdbparms BrokerName
-n sftp::secId -u userName
-i SSHIdentityFile
-r Passphrase

serverName This property indicates the IP address and, optionally, port number
for the remote FTP server. The syntax for the property is identical to
the syntax that is permitted for the FTP server and port property of
the FileInput and FileOutput nodes (except that it cannot be the name
of an FtpServer configurable service).

strictHostKeyCheckingThis property specifies how host keys are checked during the
connection and authentication phase. Valid values are:

No Specifies that the following action is performed:

v If the connection is to a new host, connect and accept the
host key, and store it

v If the connection is to a host that has been connected to
previously, and the host key has changed, issue an
exception (in the FileOutput node).

If you select No, a default known hosts file (managed by the
broker) is used.

Yes Connect only to known hosts with valid keys; otherwise
issue an exception.

If you select Yes, you must specify your own known hosts
file using the knownHostsFile property.

The default value is No.

The host information is stored in a known_hosts file in the standard
OpenSSH format.

This property is valid only when SFTP is specified as the protocol. If
FTP is used, this property is ignored.

timeoutSec This property specifies the timeout value, in seconds, to establish a
connection to the remote FTP or SFTP server. You can set any valid
integer as the timeoutSec property value. A timeout of 0 is interpreted
as an infinite timeout. If you are using FTP, the default value is 5
seconds. If you are using SFTP, the default value is 20 seconds.

transferMode This property specifies the transfer mode of the FTP connection. Valid
values are BINARY (the default) or ASCII. If it is set, this property
overrides the Transfer mode property on the FTP tab of the FileInput
or FileOutput node that uses this service.

This property is valid only when FTP is specified as the protocol. If
SFTP is specified, this property is ignored.

3774 WebSphere Message Broker Version 7.0.0.8

Chapter 14. Reference 3775

IMSConnect configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service that
is defined Description of properties

None Hostname The host name of the computer on which the IMS Connect
instance is running. This property is mandatory; if you leave it
blank, the node cannot connect to IMS Connect.

PortNumber The port number on which the IMS Connect instance is listening.
This value must be a positive integer. This property is
mandatory; if you leave it blank, the node cannot connect to IMS
Connect.

DataStoreName The data store name against which the IMS Connect instance is
running. This property is not mandatory, but if you do not set it,
an exception is issued by any node that attempts to use this
configurable service.

SocketTimeoutSec The socket timeout is the maximum amount of time that the IMS
Connector for Java waits for a response from IMS Connect before
it disconnects the socket and returns an exception to the broker.
If network problems or routing failures occur, this property
prevents the client that is using the IMS Resource Adapter from
waiting indefinitely for a response from IMS Connect. This
property is based on the TCP/IP sockets that IMS Connect and
the IMS Resource Adapter use to communicate; therefore, it is
not applicable with the Local option. This property is optional,
and the default value is 0 (zero), indicating that the socket never
times out. You can enter an integer in the range 0 - 2147483.

You set the socket timeout independently of the execution
timeout on the configurable service. The socket timeout is used
to respond to network problems (such as a loss of connection),
while the execution timeout is used to recover from a
non-responsive IMS program. The socket timeout is typically
longer than the execution timeout.

ExecutionTimeoutSec The execution timeout is the maximum amount of time that the
IMS Connector for Java waits for a response from a transaction.
This property is not mandatory, and the default value is 60,
indicating that the IMS Connector for Java waits for 60 seconds.
You can enter an integer in the range 1 - 2147483.

ConnectionIdleTimeoutSec The connection idle timeout is the maximum amount of time, in
seconds, that a connection can be idle before it expires. This
property is not mandatory, and the default value is 0 (zero),
indicating that the connection never times out. You can enter an
integer in the range 0 - 2147483. Any IMS connection that is idle
for more than the value specified by this property is not reused,
and it is removed from the connection pool.

UseSSL The value that defines whether the TCP/IP connection to IMS
Connect uses Secure Sockets Layer (SSL) encryption. Valid values
are True or False. Both values are not case-sensitive.

If no value is specified, the default value of False is used.

SSLEncryptionType The value of the cipher that is used for encryption. This value
takes effect only when property UseSSL is set to True. Valid
encryption values are Strong, Weak, or ENULL. These values are
case-sensitive.

Value definition, where:

v ENULL allows for authentication during the SSL handshaking
process. When the handshaking process for a socket has
completed including authentication as required, all messages
then flow in plain text over that authenticated socket. This
value is useful if trust assertion is required, but the additional
encryption work involved is not required.

v Weak indicates a low level of encryption that is based on the
strength of the cipher that is related to the key length.

v Strong indicates a high level of encryption that is based on the
strength of the cipher that is related to the key length.

If the encryption value specified by the client and server do not
match, a handshake failure occurs and an exception is thrown.

If no value is specified, the default value of Weak is used.

CodedCharSetID The Coded Character Set Identifier (CCSID). The default value is
500 (EBCDIC International). Change this value if your IMS
system or IMSConnect uses a different CCSID, for example
CCSID 37. See CCSID Comparisons for details of differences
between EBCDIC CCSIDs.

3776 WebSphere Message Broker Version 7.0.0.8

http://www-01.ibm.com/support/docview.wss?fdoc=imdb2z&rs=64&uid=swg21197185

JavaClassLoader configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

None includedDeployedJars The JAR files that are loaded by the classloader. The JAR files must
have been deployed to the execution group.

Specify one of the following values:

v none if no deployed JAR files are to be loaded.

v automatic if only the JAR file that contains the class that
implements a JavaCompute node is to be loaded.

v a semicolon separated list of JAR file names that are to be loaded.
The JAR file names must end with .jar. No wildcard characters are
supported.

You can include automatic in the list to also load the JAR file that
contains the class required by a JavaCompute node.

The default value is automatic.

Java classes in the JAR files in includedDeployedJars are searched and
loaded before classes in the JAR files in the sharedJarPath.

sharedJarPath The fully qualified file path of a single additional directory to be
searched by the classloader. The directory must not be in the broker
file path or work path, as defined by the MQSI_FILEPATH and
MQSI_WORKPATH environment variables.

If the directory is specified, it is used to resolve additional classes.

If the directory is not specified, the broker shared-classes directories
are used to resolve additional classes.

Java classes in the JAR files in includedDeployedJars are searched and
loaded before classes in the JAR files in the sharedJarPath.

Chapter 14. Reference 3777

JDBCProviders configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

DB2
Informix
Informix_With_Date_Format
Microsoft_SQL_Server
Oracle
Sybase_JConnect6_05

connectionUrlFormat A pattern that represents the connection URL definition, which is
specific to a particular database type. For example, the pattern for
DB2 is defined with the following fixed content:

jdbc:db2://[serverName]:[portNumber]/[databaseName]
:user=[user];password=[password];

Do not use the mqsichangeproperties command to change the
pattern itself; changes made to the pattern might cause
unpredictable results.

connectionUrlFormatAttr1
connectionUrlFormatAttr2
connectionUrlFormatAttr3
connectionUrlFormatAttr4
connectionUrlFormatAttr5

If the specified URL format contains non-standard JDBC data
source properties, such as a server identifier, specify one of five
general-purpose connection attributes to define these additional
properties.

For example, if connectionURLFormat = jdbc:oracle:thin:[user]/
[password]@[serverName]:[portNumber]:[connectionUrlFormatAttr1],
connectionUrlFormatAttr1 must contain an Oracle server identifier,
which you must supply by defining the value for the property
connectionUrlFormatAttr1 on the mqsicreateconfigurableservice
or mqsichangeproperties command. The broker can then substitute
all the required values into the required pattern.

databaseName The name of the database to which the data source entry enables
connections; for example, employees.

databaseType The database type, for example, DB2.

databaseVersion The database version; for example, 9.1.

description An optional property to describe the data source definition.

environmentParms DB2 only. An optional property specifying a list of data source
properties of the form name=value each separated by a semicolon.

jarsURL The local directory path on the system on which the broker is
running, where the JAR file that contains the type 4 driver class is
located.

portNumber The port number on which the database server is listening; for
example, 50000.

securityIdentity A unique security key to perform a second broker registry lookup
to find an entry under the broker DSN entries, which store the
encrypted password for the user on their associated host system;
for example, jdbc::mysecurityIdentity. Use the mqsisetdbparms
command to create a DSN entry, as described in “Securing a JDBC
type 4 connection” on page 689.

serverName The name of the server; for example, host1.

type4DatasourceClassNameThe name of the JDBC type 4 data source class name that is used
to establish a type 4 connection to a remote database and for
coordinated transaction support; for example,
com.ibm.db2.jcc.DB2XADataSource.

type4DriverClassName The name of the JDBC driver class name that is used to establish a
connection; for example, com.ibm.db2.jcc.DB2Driver.

jdbcProviderXASupport This property is optional. Setting this property to true, indicates
that the selected JDBC provider supports XA coordinated
transactions, and the database server is enabled to use the XA
transaction protocol. Setting this property to false, indicates that
the selected JDBC provider either does not support XA coordinated
transactions, or the database server is not enabled to use the XA
transaction protocol.

The default value for this property is true.

If you set this property to true, and the selected JDBC provider
does not support XA transactions, an exception is raised.

If you set this property to false, but the Coordinated
Transaction message flow property is selected, an exception is
raised.

maxConnectionPoolSize Connection pooling is switched on for a JDBCProviders
configurable service when the value for this attribute is non-zero
and within the range 1 - 100000.

The connection pool limits the number of connections for that
configurable service for each execution group. Note that, after you
have set a value for this attribute, you must stop and restart the
execution group for the changes to take effect.

The default value for this attribute is zero and this value turns
connection pooling off for the execution group.

All message flows in an execution group that use the same
JDBCProviders configurable service share the same connection
pool. Multiple JDBCProviders configurable services that refer to the
same database have their own pool of independently controlled
connections to that database

3778 WebSphere Message Broker Version 7.0.0.8

JDEdwardsConnection configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

None assuredOnceDelivery Specifies whether to provide assured once-only delivery for inbound
events. This property applies only to .inadapter files.

The default value is an empty string, which indicates that behavior is
controlled by the .inadapter file.

Environment The JD Edwards EnterpriseOne environment to which to connect.

A JD Edwards EnterpriseOne environment is a user-defined pointer
that indicates the location of data and objects on a JD Edwards
EnterpriseOne server. Users can be authorized to use multiple JD
Edwards EnterpriseOne environments on a single JD Edwards
EnterpriseOne server.

Role The role that is applicable to the JD Edwards connection.

Roles define what authority users have. Users can have multiple roles.
A user's access to applications, forms, table columns, data sources, and
so on, is based on one or more roles to which the user is assigned.
Roles are created and named by the JD Edwards EnterpriseOne
administrator.

Chapter 14. Reference 3779

JMSProviders configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

ActiveMQ
BEA_Weblogic
FioranoMQ
Generic_File
Generic_LDAP
JBoss
JOnAS
Joram
OpenJMS
Oracle_OEMS
SeeBeyond
SonicMQ
SwiftMQ
Tibco_EMS
WebSphere_MQ
WebSphere_WAS_Client

clientAckBatchSize This property is optional. Set this property to configure JMS
message flows to send a batch acknowledgment of
non-transactional messages that have been received. The value of
this property is an integer that represents the threshold number of
messages received before the batch acknowledgment is sent.

This property can be used in combination with the
clientAckBatchTime property. If both properties are set, and the
time interval set on clientAckBatchTime has expired, the batch
acknowledgment is sent even if the clientAckBatchSize threshold
for the number of received messages has not been reached.

A batch acknowledgment is also sent when:

v there are no more input messages on the JMS server

v an error occurs during message processing

v the message flow stops.

The minimum non-zero value is 2. To disable batch
acknowledgment, set clientAckBatchSize to 0 and ensure that
clientAckBatchTime is set to 0.

clientAckBatchTime This property is optional. Set this property to configure JMS
message flows to send a batch acknowledgment of
non-transactional messages that have been received. The value of
this property is an integer that represents the length, in
milliseconds, of a repeating interval. At the end of each interval a
batch acknowledgment is sent for all unacknowledged
non-transactional JMS messages that were received during the
preceding interval.

This property can be used in combination with the
clientAckBatchSize property. If both properties are set, and the
threshold set on clientAckBatchSize is reached, the batch
acknowledgment is sent even if the time interval specified by
clientAckBatchTime has not yet expired.

A batch acknowledgment is also sent when:

v there are no more input messages on the JMS server

v an error occurs during message processing

v the message flow stops.

To disable batch acknowledgment, set clientAckBatchTime to 0 and
ensure that clientAckBatchSize is set to 0.

initialContextFactory This property is optional. The fully qualified class name of the class
used to perform JNDI lookups. If set it overrides the property set
on a node that uses this JMS Provider.

jarsURL A URL that specifies the file location of the JMS provider JAR files.
Omit file:// from the URL. If you do not set the -n parameter on
the mqsicreateconfigurableservice command, the default location
for the JMS provider JAR files is the broker shared-classes
directories.

To connect to different versions of the same JMS provider (for
example, JBoss), create a JMSProviders configurable service for
each version of the JMS provider, then set the jarsURL property to
a unique path.

jmsAsyncExceptionHandlingThis property is optional. If you set this property to true, the
broker registers an exception listener on the JMS connection when
the connection is created, and handles connection exceptions
asynchronously from the main flow. When this parameter is set to
true, the broker can detect when the connection has been broken
and can try to reconnect. By default, this parameter is set to false
for all JMS providers except JBoss.

jndiBindingsLocation This property is optional. The location used to look up JNDI
Administered objects such as Connection Factories and
Destinations. If set, this property overrides the property set on a
node that uses this JMS Provider.

jndiEnvironmentParms This property is optional. A list of JNDI environment parameters
expressed as name-value pairs separated by semicolons. Use these
parameters in JMSInput, JMSOutput, and JMSReply nodes.

nativeLibs The file location of any libraries that the JMS provider owns. If you
do not set the -n parameter on the mqsicreateconfigurableservice
command, the default location for any libraries that the JMS
provider owns, is the broker LILPATH.

proprietaryAPIHandler The name of the IBM supplied Java class to interface with a
proprietary API of a JMS provider.

proprietaryAPIAttr1
proprietaryAPIAttr2
proprietaryAPIAttr3
proprietaryAPIAttr4
proprietaryAPIAttr5

These attributes are optional. If you configure these attributes, they
might be used on one or more method calls to the vendor
proprietary API. The usage of these attributes is specific to a
vendor interface and their meaning is determined by the IBM
proprietary API Handler.

3780 WebSphere Message Broker Version 7.0.0.8

MonitoringProfiles configurable service

Supplied configurable
services that are created
for each broker

Properties for each
configurable service
that is defined Description of properties

DefaultMonitoringProfile profileProperties The name of the monitoring profile. The monitoring options
defined by the monitoring profile can be configured with an
XML file that conforms to the monitoring profile schema.

useParserNameInMonitoringPayloadWhen the payload is included in a monitoring message,
setting this property to TRUE forces the
wmb:applicationData/wmb:complexContent/wmb:elementName
attribute to contain the name of the input node parser if
present.

This property is optional. Valid values are TRUE and FALSE.
The default value is FALSE, which means that the
wmb:applicationData/wmb:complexContent/wmb:elementName
attribute contains the MessageType property value.

Setting this property on the default monitoring profile affects
the behavior for all nodes that are not explicitly using
configurable services.

PeopleSoftConnection configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

None hostName Identifies, either by name or IP address, the server that hosts
PeopleSoft Enterprise.

This property is mandatory. By default, the value of this property is
an empty string, therefore you must set a valid host name or IP
address.

port The port number that the adapter uses to access the PeopleSoft
Enterprise server.

This property is mandatory. By default, the value of this property is
an empty string, therefore you must set a valid port number.

connectionIdleTimeout The number of seconds for which a connection can be idle before it is
closed by WebSphere Message Broker to effectively maintain the
connection pool. The default value for this property is 0 (zero)
seconds, indicating that no timeout occurs.

Chapter 14. Reference 3781

PolicySets configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

WSS10Default config Reserved for future use.

ws-security The content of the policy set. The content is edited with the Policy
Sets and Policy Set Bindings editor and can be backed up and
restored by using the -p parameter on the mqsireportproperties and
mqsichangeproperties commands.

PolicySet Bindings configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service
that is defined Description of properties

WSS10Default associatedPolicySet The name of the policy set configurable service with which this
policy set binding is associated. This value is set by the Policy Set
editor when an association is defined. If you are restoring a policy
set and binding by using the mqsichangeproperties command,
ensure that this command refers to the correct associated policy set.

config Reserved for future use.

ws-security The content of the policy set binding. The content is edited with the
Policy Sets and Policy Set Bindings editor and can be backed up
and restored by using the -p parameter on the
mqsireportproperties and mqsichangeproperties commands.

3782 WebSphere Message Broker Version 7.0.0.8

Resequence configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

None queuePrefix The queue prefix used to specify the storage queues that are
generated for use by the Resequence node. This property is
optional.

Two queues are required:

v SYSTEM.BROKER.EDA.QueuePrefix.EVENTS

v SYSTEM.BROKER.EDA.QueuePrefix.COLLECTIONS

The prefix can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight
characters and must not begin or end with a period (.). For
example, SET.1 is valid, but .SET1 and SET1. are invalid. Multiple
configurable services can use the same queue prefix.

If no queue prefix is specified, the Resequence node uses the
default queues that are generated when the broker is created:

v SYSTEM.BROKER.EDA.EVENTS

v SYSTEM.BROKER.EDA.COLLECTIONS

These default queues are also used by the Collector node.

missingMessageTimeoutSecondsThe value used by the Resequence node to specify how long the
node waits for the next message in a sequence before it is
propagated. The value can be any integer that is greater than 1.

The value of this property (if it is set) overrides the value set on the
node.

This property is optional; if it is not set, the value set on the node
is used.

startSequenceSeconds The value used by the Resequence node to specify how long the
node waits before calculating the start number in a sequence of
messages. The value can be any positive integer.

This value is used only if the Start of sequence property of the
Resequence node is set to Automatic.

The value of this property (if it is set) overrides the value set on the
node.

This property is optional; if it is not set, the value set on the node
is used.

endSequenceSeconds The value used by the Resequence node to specify how long the
node waits for the next message in the sequence to arrive before it
closes the sequence. The value can be any positive integer.

The value of this property (if it is set) overrides the value set on the
node.

This property is optional; if it is not set, the value set on the node
is used.

Chapter 14. Reference 3783

SAPConnection configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

None applicationServerHost Specifies the IP address or the name of the application server host
to which the adapter logs on. This property applies to .inadapter
and .outadapter files.

This property is mandatory; you must set the value to a valid SAP
server host name or IP address.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

assuredOnceDelivery Specifies whether to provide assured once-only delivery for
inbound events. This property applies only to .inadapter files.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter file.

client The client number of the SAP system to which the adapter
connects. This property applies to .inadapter and .outadapter
files.

Set this property to the required SAP client number, which is a
three-digit integer in the range 000 - 999.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

connectionIdleTimeout The number of seconds for which a connection can be idle before it
is closed by WebSphere Message Broker to effectively maintain the
connection pool. The default value for this property is 0 (zero)
seconds, indicating that no timeout occurs.

New connections to SAP are opened with different user IDs,
therefore do not set this property to zero if you are using identity
propagation.

gatewayHost The host name of the SAP gateway. This property applies to
.inadapter and .outadapter files.

This property is not mandatory.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

gatewayService The identifier of the gateway on the gateway host that carries out
the RFC services. This property applies to .inadapter and
.outadapter files.

This property is not mandatory.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

The property controls the port number that the broker uses when
establishing a TCP/IP connection to the SAP server. Set the
property to either of the following values:

v The name of the service, which must be defined in the services
(/etc/services or C:\Windows\System32\drivers\etc\services)
with the port number that corresponds to the port on which the
SAP gateway is listening

v The port number

The name of the gatewayService property and its corresponding
port number typically depend on the system number. The gateway
service name is usually sapgwXX and the port number is 33XX,
where XX is the system number. For example, if the system number
is 01, one of the following conditions applies:

v The etc/services file typically has a line with "sapgw01
3301/tcp" defined, in which case, the gatewayService property of
this configurable service is set to sapgw01.

v If the service is not defined in the etc/services file, the
gatewayService property of this configurable service is set to
3301.

loadBalancing Specifies how to connect to a message server or application server.
This property applies to .inadapter and .outadapter files.

You can set this property to true or false.

Set this property to false to connect directly to the application
server that is specified in the applicationServerHost property. If
you set this property to false, the logonGroup, messageServer, and
SAPSystemID properties are ignored.

Set this property to true to connect to a message server by using
the logonGroup, messageServer, and SAPSystemID properties. If you
set this property to true, the values that are configured on the
.inadapter or .outadapter file are used, unless they are overridden
on this configurable service. If some of these properties are
overridden on the configurable service, they are used, and the rest
of the properties are taken from the .inadapter or .outadapter file.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

logonGroup The name of the group of application server instances that have
been defined in transaction SMLG and linked together for logon
load balancing. This property applies to .inadapter and
.outadapter files.

You can set this property to any string. The default value is an
empty string, which indicates that behavior is controlled by the
.inadapter or .outadapter file.

MessageServerHost Specifies the name of the host on which the message server is
running. This property applies to .inadapter and .outadapter files.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

numberOfListeners The number of RFC connections that are established to SAP by the
.inadapter component. This number corresponds to the maximum
number of RFC or tRFC calls from SAP that can be handled
concurrently by the adapter. This property applies only to
.inadapter files.

If you set the numberOfListeners property to 1, the number of
listeners matches the number of additional instances in the message
flow. If you set this property to any value other than 1, that value
represents the number of listeners.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter file.

retryConnectionOnStartupSpecifies whether to go into a retry cycle if it is not possible to
make a connection to the SAP system when the SAPInput node is
deployed or when the broker or execution group is started. This
property applies only to .inadapter files.

If you set this property to false, deployment fails if a connection
cannot be made. Otherwise, deployment succeeds and the adapter
tries to connect again in the background. User trace reports the
status of these attempts.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter file.

retryInterval Specifies the time interval (in milliseconds) between attempts to
restart the event listeners. This property applies only to .inadapter
files.

You can set this property to a positive integer. The default value is
an empty string, which indicates that behavior is controlled by the
.inadapter component.

retryLimit Specifies the number of times the adapter tries to restart the event
listeners. This property applies only to .inadapter files.

You can set this property to a positive integer. The default value is
an empty string, which indicates that behavior is controlled by the
.inadapter file.

RFCTraceLevel Specifies the global trace level. This property applies to .inadapter
and .outadapter files.

This property is not mandatory.
v If you set this value to 1, SAP JCo Java API logging occurs.
v If you set this value to 3, SAP JCo JNI API logging occurs.
v If you set this value to 5, error diagnostic logging occurs.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

RFCTracePath Sets the fully qualified local path to the folder into which the RFC
trace files are written. This property applies to .inadapter and
.outadapter files.

This property is mandatory only if the RFCTraceOn property is set to
true. By default, the value of this property is an empty string,
therefore, when RFCTraceOn is set to true, you must set a valid path
for the RFCTracePath.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

RFCTraceOn Specifies whether to generate a text file detailing the RFC activity
for each event listener. This property applies to .inadapter and
.outadapter files.

This property is not mandatory. Set this property to true to enable
RFC trace.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

rfcProgramID The remote function call identifier under which the adapter
registers in the SAP gateway. This property applies only to
.inadapter files.

The value of this property must match the RFC Program ID that is
registered in SAP (transaction SM59).

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter file.

SAPSystemID Specifies the system ID of the SAP system for which logon load
balancing is allowed. This property applies to .inadapter and
.outadapter files.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

sharedTidStoreClientDefinitionFileThe URL to a client definition table that is used when connecting to
the event store queue manager. This property applies to .inadapter
and .outadapter files.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

sharedTidStoreQmgr The name of the queue manager that is used to store the state for
tRFC events. This property applies to .inadapter and .outadapter
files.

By setting this property, adapters on separate brokers can share the
same store and process IDocs by using the same RFC Program ID
while still providing the "exactly once" quality of service.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

systemNumber The system number of the SAP application server. This property
applies to .inadapter and .outadapter files.

This property is not mandatory. Set this property to the required
SAP system number, which is a two-digit integer in the range 00 -
99.

The default value is an empty string, which indicates that behavior
is controlled by the .inadapter or .outadapter file.

3784 WebSphere Message Broker Version 7.0.0.8

SecurityProfiles configurable service

For more information about SecurityProfiles configurable services, see
“SecurityProfiles configurable service properties” on page 3801.

Chapter 14. Reference 3785

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

Default_Propagation authentication The type of authentication that is performed on the source identity.
Valid values are:

v NONE

v LDAP

v TFIM

v WS-Trust V1.3 STS

v A user-defined value

If you are using TFIM V6.1, specify TFIM. If you are using TFIM
V6.2, specify WS-Trust V1.3 STS.

authenticationConfig The information that the broker needs to connect to the provider,
specific to the provider. It is a provider-specific configuration string.

authorization The types of authorization checks that are performed on the
mapped or source identity. Valid values are:

v NONE

v LDAP

v TFIM

v WS-Trust V1.3 STS

v A user-defined value

If you are using TFIM V6.1, specify TFIM. If you are using TFIM
V6.2, specify WS-Trust V1.3 STS.

authorizationConfig How the broker connects to the provider, specific to the provider. It
is a provider-specific configuration string.

mapping The type of mapping that is performed. Valid values are:

v NONE

v TFIM

v WS-Trust V1.3 STS

v A user-defined value

If you are using TFIM V6.1, specify TFIM. If you are using TFIM
V6.2, specify WS-Trust V1.3 STS.

mappingConfig How the broker connects to the provider, specific to the provider. It
is a provider-specific configuration string.

passwordValue How passwords are treated when they enter a message flow. Valid
values are:

v PLAIN

v MASK

v OBFUSCATE

propagation Indicates whether identity propagation is performed on output and
request nodes. Valid values are:

v TRUE

v FALSE

3786 WebSphere Message Broker Version 7.0.0.8

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

rejectBlankpassword Indicates whether the security manager rejects authentication of a
username that has an empty password token, without passing it to
LDAP. Valid values are:

v TRUE

v FALSE

Default is FALSE.

Chapter 14. Reference 3787

Service Registries configurable service

Supplied
configurable services
that are created for
each broker

Properties for each
configurable service that
is defined Description of properties

DefaultWSRR connectionFactoryName The name of the WSRR WebSphere Application Server JMS
provider JMS connection factory for Cache Notifications. The
default value is jms/SRConnectionFactory.

connectionTimeout The WSRR connection timeout period in seconds. The default
value is 180 seconds (3 minutes).

enableCacheNotification The default value is False. Select True to enable WebSphere
Message Broker WSRR Cache Notification.

endpointAddress The location or endpoint of the WSRR server. The default value
for all versions of WSRR is http://
fill.in.your.host.here:9080/WSRRCoreSDO/services/
WSRRCoreSDOPort

For information about the specific levels of WSRR that are
supported with WebSphere Message Broker, see WebSphere
Message Broker Requirements.

initialContextFactory The name of the WSRR WebSphere Application Server JMS
provider JMS context factory for Cache Notifications. The default
value is

com.ibm.websphere.naming.WsnIitialContextFactory

locationJNDIBinding The URL to the WebSphere Application Server JMS provider
JNDI bindings. The default value is iiop://host_name:2809/

needCache The default value is True, indicating that the WebSphere Message
Broker WSRR cache is enabled.

predefinedCacheQueries A list of semicolon-separated WSRR XPath query expressions
with which to initialize the WebSphere Message Broker WSRR
cache at start-up. These WSRR XPath query expressions are
defined by the WSRR SOAP interface query expression language,
and might include an optional depth specifier extension.

refreshQueriesAfter
Notification

When a notification is received from WSRR, if
refreshQueriesAfterNotification is set to True, the Cache is
updated with the new version of the object immediately; if it is
set to False, the Cache is updated on the next request. The default
value is True.

subscriptionTopic The topic name that is used to receive WebSphere Application
Server JMS provider Cache Notifications. The default value is
jms/SuccessTopic.

timeout The cache expiry time in milliseconds. The default value is
10000000, which is approximately 166 minutes.

3788 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbimessagebroker/requirements/

SiebelConnection configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

None connectString The connection URL that is needed to connect to the Siebel server.

This property is mandatory. By default, the value of this property is
an empty string, therefore you must set a valid URL. The URL has the
following format:

Protocol://machinename:port/enterprisename/object manager/server name

For example:

v For Siebel 7.0.5 to 7.5x:

siebel://IP_ADDRESS/siebel/SSEObjMgr_ENU/sebldev1

v For Siebel 7.8:

siebel://IP_ADDRESS:2321/Sieb78/SSEObjMgr_enu

v For Siebel 8:

siebel://IP_ADDRESS:2321/SBA_80/SSEObjMgr_enu

The default port number is 2320, but in these examples, for Siebel
version 7.8 and 8, the port has been set to 2321.

connectionIdleTimeout The number of seconds for which a connection can be idle before it is
closed by WebSphere Message Broker to effectively maintain the
connection pool. The default value for this property is 0 (zero)
seconds, indicating that no timeout occurs.

SMTP configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

None serverName The name of the server; for example, host1.

securityIdentity The name of a security identity that is defined using the
mqsisetdbparms command.

TCPIPClient configurable service

Applying TCPIP configurable service changes implies restarting the TCPIP
connection managers, so all flows which use configurable services to specify TCPIP
parameters can be expected to pick up new TCPIP connections.

Chapter 14. Reference 3789

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service that is
defined Description of properties

Default Hostname The host name of the remote system to which to connect with a
client connection. A valid value is any IP address or computer
name. You cannot change this value if there is already a
configurable service with this name using the same port (unless
the port is set to 0 (zero)).

Port The port number to be used for this configurable service. The
default is 0 (zero), which means no port number. By default, the
configurable service is disabled and the value of the port
provided on the node is used instead.

A port number can be assigned to only one configurable service
at a time; if you try to assign a port number to more than one
configurable service, an error occurs.

AlternativeAddresses The list of secondary host names and ports to be tried if the
main remote address fails. If no addresses are specified, only the
main remote address is used. Addresses must be in the format
hostname:port. If no port is specified, the main port number is
used. Multiple addresses must be separated with semicolons; for
example: jones6:1111;edwards

CloseWithUnprocessedData The default value is false.

When the value is set to true, the Broker reads ahead up to 1
MB on the stream to look for TCP/IP close events from the
steam. If a close event is encountered, then the connection is
allowed to close if it is not owned by an input node. This
process allows flows that contain connections that are owned by
receive nodes to respond to TCP/IP close events, even if
execution never proceeds to another Receive node (for example
if the flow's input node is idle when the close occurs).

MinimumConnections The minimum number of client connections made by the broker.
The broker attempts to establish this number of connections
even if no flows are using the connections. The default value is
0 (zero), which means that the broker does not make any client
connections until they are required.

MaximumConnections The maximum number of client connections that can be made
on this port. The default value is 100, which means that, by
default, the broker accepts up to 100 server connections.

MaxReceiveRecordBytes The maximum size a record can reach before an exception is
thrown. The default value is 104857600, which means that, by
default, the broker accepts messages with a maximum size of
100 MB. The record size is taken to be the size of the data
including all delimiters.

ExpireConnectionSec The length of time (in seconds) that a connection is kept open
without being used. The value can be any integer. A value of 0
(zero) causes the connection to be closed immediately, and a
value of -1 causes the connection to remain open indefinitely
(no expiry).

UseUniqueConnectionPool Specifies whether the connection pool corresponding to the
configurable service is the main connection pool for the
specified host name and port. You can have two connection
pools for the same remote address, and you can use the
UseUniqueConnectionPool property to specify whether the
connection pool corresponding to this configurable service is the
main connection pool.

The nodes in a message flow specify which pool to use by
specifying the appropriate configurable service.

The host name and port specified in the node override the
properties defined in the main configurable service only.

Possible values for this property are True and False. A value of
True means that the connection pool for the configurable service
is a separate connection pool rather than the main one. The
value True is not case-sensitive.

By default, this property is set to False, which means that the
configurable service defines the main connection pool. Any
value other than True (including a null value) defaults to a
value of False.

SO_RCVBUF The size (in bytes) of the SO_RCVBUF property on the socket.
Valid values vary according to the operating system that you
are using. This property is a standard TCP/IP property. The
default value is 0 (zero), which sets the size of the SO_RCVBUF
property to the operating system default.

SO_SNDBUF The size (in bytes) of the SO_SNDBUF property on the socket.
Valid values vary according to the operating system that you
are using. This property is a standard TCP/IP property. The
default value is 0 (zero), which sets the size of the SO_SNDBUF
property to the operating system default.

TCP_NODELAY The value of the TCP_NODELAY property on the socket. If the
value is set to True, the socket sends data as soon as it is sent to
its buffer. The default value is False.

TrafficClass The traffic class that is set on any connection that is established.
Valid values are positive integers. The default value is -1, which
leaves the TrafficClass set to the platform default.

SO_LINGER The SO_LINGER property on any connection that is established.
This property is a standard TCP/IP property. The default value
is False.

SO_LINGER_TIMEOUT_SEC The SO_LINGER_TIMEOUT_SEC property on any connection
that is established. This property is a standard TCP/IP property.
Valid values are positive integers. The default value is -1, which
leaves the SO_LINGER_TIMEOUT_SEC value set to the
operating system default.

SSLProtocol The SSL protocol to use. Valid values are:

"", or none
SSL is not used. The default value.

SSL Use SSL.

SSLv3 Use SSLv3.

TLS Use TLS.

SSLCiphers A semicolon-delimited list of
cipher suites that can be
used for the SSL handshake.
The default value "" means
that all available cipher
suites can be used.

3790 WebSphere Message Broker Version 7.0.0.8

|

|

Chapter 14. Reference 3791

TCPIPServer configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service that is
defined Description of properties

Default CloseWithUnprocessedData The default value is false.

When the value is set to true, the Broker reads ahead up to 1
MB on the stream to look for TCP/IP close events from the
steam. If a close event is encountered, then the connection is
allowed to close if it is not owned by an input node. This
process allows flows that contain connections that are owned by
receive nodes to respond to TCP/IP close events, even if
execution never proceeds to another Receive node (for example
if the flow's input node is idle when the close occurs).

Port The port number to be used for this configurable service. The
default is 0 (zero), which means no port number. By default, the
configurable service is disabled and the value of the port
provided on the node is used instead.

A port number can be assigned to only one configurable service
at a time; if you try to assign a port number to more than one
configurable service, an error occurs.

MaximumConnections The maximum number of server connections that can be made
on this port. The default value is 100.

MaxReceiveRecordBytes The maximum size a record can reach before an exception is
thrown. The default value is 104857600, which means that, by
default, the broker accepts messages with a maximum size of
100 MB. The record size is taken to be the size of the data
including any delimiters.

ExpireConnectionSec The length of time (in seconds) that a connection is kept open
without being used. The value can be any integer. A value of 0
(zero) causes the connection to be closed immediately, and a
value of -1 causes the connection to remain open indefinitely (no
expiry).

SO_RCVBUF The size (in bytes) of the SO_RCVBUF property on the socket.
Valid values vary according to the operating system that you are
using. This property is a standard TCP/IP property. The default
value is 0 (zero), which sets the size of the SO_RCVBUF
property to the operating system default.

SO_SNDBUF The size (in bytes) of the SO_SNDBUF property on the socket.
Valid values vary according to the operating system that you are
using. This property is a standard TCP/IP property. The default
value is 0 (zero), which sets the size of the SO_SNDBUF
property to the operating system default.

SO_KEEPALIVE The value of the KEEPALIVE property on the socket. If the
value is set to True, the socket checks that it is still connected
after a specified time. The length of time depends on the
TCP/IP implementation on the operating system, but is typically
two hours. Keep alive processing works only if the underlying
operating system supports SO_KEEPALIVE. This property is a
standard TCP/IP property. The default value is False, which
means that no keep alive processing is performed.

TCP_NODELAY The value of the TCP_NODELAY property on the socket. If the
value is set to True, the socket sends data as soon as it is sent to
its buffer. The default value is False.

TrafficClass The traffic class on any connection that is established. Valid
values are positive integers. The default value is -1, which leaves
the TrafficClass set to the platform default.

SO_LINGER The SO_LINGER property on any connection that is established.
This property is a standard TCP/IP property. The default value
is False.

SO_LINGER_TIMEOUT_SEC The SO_LINGER_TIMEOUT_SEC property on any connection
that is established. This property is a standard TCP/IP property.
Valid values are positive integers. The default value is -1, which
leaves the SO_LINGER_TIMEOUT_SEC value set to the
operating system default.

SSLCiphers A semicolon-delimited list of cipher suites that can be used for
the SSL handshake. The default value "" means that all available
cipher suites can be used.

SSLProtocol The SSL protocol to use. Valid values are:

"", or none
SSL is not used. The default value.

SSL Use SSL.

SSLv3 Use SSLv3.

TLS Use TLS.

SSLClientAuth Specify whether the client must provide authentication
information about itself. Valid values are:

"" Client authentication is disabled. This value is the
default.

want Client authentication is requested. The connection is
allowed even if the client does not give authorization
information.

request The same as want.

need Client authentication is requested. If the client fails to
give the required authorization information, the
connection is closed.

require The same as need.

SSLKeyAlias The key alias that identifies
the key in the broker or
execution group keystore
that is to be used for the
SSL connection. Set this
optional property if your
keystore contains more than
one key. The default value
"", or none, means that an
SSL key alias is not used.
Any other string value
identifies the alias.
Note: If the keystore
contains more than one key,
and no key alias is defined,
the Java virtual machine
arbitrarily chooses a key at
run time.

3792 WebSphere Message Broker Version 7.0.0.8

||

|
|
|
|
|
|
|
|

Timer configurable service

Supplied
configurable
services that are
created for each
broker

Properties for each
configurable service
that is defined Description of properties

None queuePrefix The queue prefix used to specify the storage queue that is
generated for use by the Timer nodes. This property is optional.

The following queue is required:

v SYSTEM.BROKER.TIMEOUT.QueuePrefix.QUEUE

The prefix can contain any characters that are valid in a
WebSphere MQ queue name, but must be no longer than eight
characters and must not begin or end with a period (.). For
example, SET.1 is valid, but .SET1 and SET1. are invalid. Multiple
configurable services can use the same queue prefix.

If no queue prefix is specified, the Timer nodes use the default
queue that is generated when the broker is created:

v SYSTEM.BROKER.TIMEOUT.QUEUE

timeoutIntervalSeconds The value used by the TimeoutNotification node to set the timeout
interval (in seconds) when running in automatic mode. The value
can be any integer that is greater than 1.

This property is optional; if it is not set, the value set on the node
is used.

The value of this property overrides the value set on the node, but
it is ignored if the node is not running in automatic mode.

UserDefined configurable service

A UserDefined configurable service has no predefined properties. You can create,
modify, and delete properties for your own purposes; for more information, see
“UserDefined configurable service properties” on page 3804.
Related concepts:
“Caching artifacts from the WebSphere Service Registry and Repository” on page
1888
WebSphere Message Broker saves the data it retrieves from the WebSphere Service
Registry and Repository (WSRR) in a local cache.
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice

Chapter 14. Reference 3793

command or an editor in the WebSphere Message Broker Explorer.
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
Related reference:
“FtpServer configurable service properties”
Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.
“SecurityProfiles configurable service properties” on page 3801
Select the objects and properties that you want to change for the SecurityProfiles
configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

FtpServer configurable service properties:

Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.

To change these properties, you must specify the broker name and -c FtpServer.

You must also set the ObjectName to the name of the configurable service that you
have previously created.

See the “mqsichangeproperties command” on page 3756 for examples of its use.

49

If you define an FtpServer configurable service by using the
mqsicreateconfigurableservice command, you can then specify the name of this
configurable service in the Remote server and port property on the FTP tab of the
FileInput and FileOutput nodes.

To create an FtpServer configurable service, the command has the following syntax:

3794 WebSphere Message Broker Version 7.0.0.8

►► mqsicreateconfigurableservice BrokerName -c FtpServer ►

► -o ObjectName

▼

,

-n
PropertyName

►

►

▼

,

-v
PropertyValue

►◄

where Objectname is the name of the configurable service and PropertyName is one
or more of the properties described in this topic.

If you define an FtpServer configurable service, you must specify a value for its
serverName property. All the other properties are optional.

serverName
The IP address and, optionally, port number for the remote FTP or SFTP server.
The syntax for the property is identical to the syntax that is permitted for the
Remote server and port property of the FileInput and FileOutput nodes
(except that it cannot be the name of an FtpServer configurable service).

accountInfo
Some FTP servers require an account name during the FTP logon procedure. If
this property is specified, its value is the account name supplied when
requested during FTP logon. If this property is not specified and the server
requests an account name, the FTP transfer fails.

cipher
The cipher used for encryption. This property takes the form of a list of one or
more of the following values, separated by plus signs (+):
v blowfish-cbc
v 3des-cbc
v aes128-cbc

The cipher that you use for encryption depends on your SSH implementation.
List the values in order of preference.

This property is valid only when SFTP is specified as the protocol. If FTP is
used, this property is ignored.

If no value is specified, the following default is used: blowfish-cbc+3des-
cbc+aes128-cbc

compression
Specifies the level of compression to be used. Valid values are integers in the
range 0 - 9, where 0 specifies no compression and 9 specifies maximum
compression.

This property is valid only when SFTP is specified as the protocol. If FTP is
used, this property is ignored.

If no value is specified, the default value of 0 is used.

connectionType
The FTP data socket connection. It is either ACTIVE or PASSIVE.

Chapter 14. Reference 3795

This property is valid only when FTP is specified as the protocol. If SFTP is
specified, this property is ignored.

knownHostsFile
The location of the known hosts file. The value must be the fully qualified path
to a valid known hosts file.

The host information is stored in a known_hosts file in the standard OpenSSH
format.

This property is mandatory if the strictHostKeyChecking property is set to Yes.
If the strictHostKeyChecking property is set to No, this property is ignored.

This property is valid only when SFTP is specified as the protocol. If FTP is
used, this property is ignored.

mac
Message Authentication Code. This property takes the form of a list of one or
more of the following values, separated by plus signs (+):
v hmac-md5
v hmac-sha1

The MAC that you use depends on your SSH implementation. List the values
in order of preference.

This property is valid only when SFTP is specified as the protocol. If FTP is
used, this property is ignored.

If no value is specified, the following default is used: hmac-md5+hmac-sha1

preserveRemoteFileDate
This property specifies whether files that are retrieved from a remote server by
the FileInput node retain the last modified date on the server.

The default value is No. If you select Yes, the FileInput node completes
appropriate parsing to determine the remote file date during processing. The
MDTM command is used where it is supported by the remote server. Where
the MDTM command is not supported, the listing text is used.

When parsing from listing text, the precision is limited to the information that
is available in the specific listing format used by the remote server. If the
listing format is ambiguous, the FileInput node bases parsing on the locale
settings of the broker. If the date cannot be determined reliably from the
remote server, an exception is issued and the message is not processed.

protocol
The remote transfer protocol to use. Valid values are FTP or SFTP. If no
protocol is specified in the configurable service, the value specified in the node
is used.

remoteDirectory
The relative or absolute directory name on the remote FTP server. If set, this
property overrides the Server directory on the FTP tab of the FileInput or
FileOutput node that uses this service.

scanDelay
The length of time, in seconds, to wait after a scan of the directory has resulted
in no files having been identified for processing. The default is 60 seconds. If
set, this property overrides the Scan delay on the FTP tab of the FileInput
node that uses this service.

securityIdentity
The name of a security identity defined using the mqsisetdbparms command. If

3796 WebSphere Message Broker Version 7.0.0.8

set, this property overrides Security identity on the FTP tab of the FileInput
or FileOutput node that uses this service. If the value of this property is secId,
define the security identity using the following command:
v If you are using FTP:

mqsisetdbparms MB7BROKER -n ftp::secId -u userName -p password

v If you are using SFTP:
mqsisetdbparms MB7BROKER -n sftp::secId -u userName -p password

or
mqsisetdbparms MB7BROKER -n sftp::secId -u userName -i SSHIdentityFile
-r Passphrase

strictHostKeyChecking
Specifies how host keys are checked during the connection and authentication
phase. Valid values are:

No Specifies that the following action is performed:
v If the connection is to a new host, connect and accept the host's key,

and store it
v If the connection is to a host that has been connected to previously,

and the host key has changed, issue an exception (FileOutput node).

If you select No, a default known hosts file (managed by the broker) is
used.

Yes Connect only to known hosts with valid keys; otherwise issue an
exception.

If you select Yes, you must specify your own known hosts file using
the knownHostsFile property.

The default value is No.

The host information is stored in a known_hosts file in the standard OpenSSH
format.

This property is valid only when SFTP is specified as the protocol. If FTP is
used, this property is ignored.

timeoutSec
The timeout value in seconds to establish a connection to the remote FTP or
SFTP server. You can set any valid integer as the timeoutSec property value. A
timeout of 0 is interpreted as an infinite timeout. If you are using FTP, the
default value is 5 seconds. If you are using SFTP, the default value is 20
seconds.

transferMode
The transfer mode of the FTP connection. This value is either BINARY or ASCII.
The default is BINARY. If set, this property overrides Transfer mode on the FTP
tab of the FileInput or FileOutput node that uses this service.

This property is valid only when FTP is specified as the protocol. If SFTP is
specified, this property is ignored.

By default, none of these properties in the FtpServer configurable service definition
is set. The only mandatory property when you define an FtpServer configurable
service is serverName.

The following example of a mqsicreateconfigurableservice command shows how
to create an FtpServer configurable service:

Chapter 14. Reference 3797

mqsicreateconfigurableservice MB7BROKERR -c FtpServer -o Server01
-n serverName,scanDelay,transferMode,connectionType,securityIdentity
-v one.hursley.abc.com:123,20,BINARY,ACTIVE,secId

Values set in properties in the FtpServer configurable service definition override
the values set in the corresponding properties in the FileInput and FileOutput
nodes.

If you set the accountInfo property, it is used during the login protocol when
connecting to the FtpServer configurable service after supplying the user identifier
and password. This information is sometimes required by FTP servers and
requested as part of the login protocol. This setting allows the FileInput and
FileOutput nodes to respond appropriately during login.

If you set the connectionType property, it alters the type of data socket that is used
to transfer files to or from the FTP server. If you set this property to ACTIVE, this
refers to a socket that is established by the remote server to the client (the broker
message flow). If you set this property to PASSIVE, it refers to a socket that is
established by the client to the remote server (as is the login or control socket). The
default is PASSIVE, which is more likely to be tolerated by most types of firewall
protection that allow the client to log in. You can set this property to ACTIVE if
either the FTP server does not support PASSIVE connections, or there are special
arrangements that your configuration must meet.
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

CDServer configurable service properties:

Select the objects and properties that you want to change for the CDServer
configurable service.

You can use configurable services if, for example, you have different CDOutput
nodes addressing more than one Connect:Direct server.

3798 WebSphere Message Broker Version 7.0.0.8

To change the CDServer configurable service properties, you must specify the
broker name and -c CDServer.

The -o parameter is set to the name of the configurable service you are using.

You can edit the predefined configurable service, named Default, to alter the
default behavior of the CDInput and CDOutput nodes.

Alternatively, you can create your own configurable service, name it (for example,
-o myCDServer), and reference this configurable service in the CDServer
configurable service property of the CDInput or CDOutput node; for more
information, see “CDInput node” on page 4305 and “CDOutput node” on page
4312.

The hostname and port properties are mandatory; all the other properties are
optional.

-n hostname
The host name of the Connect:Direct server
v Value type - string
v Initial value - localhost
v Other valid value:

– Host name of the machine running the Connect:Direct server.

-n port
The API port of the Connect:Direct server.
v Value type - string
v Initial value - 1363
v Other valid value:

– API port on which the Connect:Direct server is listening.

-n brokerPathToStagingDir
The high level path used by the CDOutput node for staging files to
transfer. The CDOutput node creates directories and files under this path.

The path given is used by the broker on the machine running the
WebSphere Message Broker. The Connect:Direct server must have access to
these files and if it is on a different machine, the directory must be
mounted on the remote machine.

If the remote path to the mounted directory is different on the IBM Sterling
Connect:Direct machine, the cdPathToStagingDir must be set to the correct
value.
v Value type - string
v Initial value - ""

If not set, the broker uses the following default location:
$MQSI_WORKPATH/common/CD/Tranfers

v Other valid value:
– Any path on the brokers machine to which the broker user has both

read and write access.

-n cdPathToStagingDir
The high level path used by the Connect:Direct server node for accessing
files staged by the CDOutput node. The CDOutput node creates directories

Chapter 14. Reference 3799

and files under this path which the Connect:Direct server must have access
to. The path given is used by the Connect:Direct server on the machine
running the Connect:Direct server.
v Value type - string
v Initial value - ""

If not set, the value uses the default location set in brokerPathToStagingDir

v Other valid value:
– The path on the Connect:Direct server machine that allows access to

the files staged by the CDOutput node.

-n cdPathToInputDir
The directory, including all subdirectories, on the Connect:Direct server
machine that contains the files transferred by CD in which this
configurable service is interested. Transfers to any other directory are
ignored.

For WebSphere Message Broker to be able to process the files transferred to
this directory, this directory must be accessible toWebSphere Message
Broker.

If the directory is remote, the directory must be mounted to the WebSphere
Message Broker machine. If the mounted file system has a different path
on the WebSphere Message Broker machine, the brokerPathToInputDir must
be set to the correct value.
v Value type - string
v Initial value - ""

The CDInput node uses the file path sent by the Connect:Direct server.
v Other valid value:

– A path to a directory structure on the Connect:Direct server machine.

-n brokerPathToInputDir
The file path to reach files transferred to cdPathToInputDir from the
WebSphere Message Broker machine.
v Value type - string
v Initial value - ""

The CDInput node uses the file path sent by the Connect:Direct server.
v Other valid value:

– A path to a directory structure on the WebSphere Message Broker
machine.

-n queuePrefix
A queue prefix for use when WebSphere Message Broker stores data on
WebSphere MQ about this Connect:Direct server. Two queues are used to
store state:
v SYSTEM.BROKER.CD.STATS
v SYSTEM.BROKER.CD.TRANSFERS

If you give a prefix, use the following queue name formats:
v SYSTEM.BROKER.CD.<queuePrefix>.STATS
v SYSTEM.BROKER.CD.<queuePrefix>.TRANSFERS
v Value type - string
v Initial value - ""

3800 WebSphere Message Broker Version 7.0.0.8

The SYSTEM.BROKER.CD.STATS queue and
SYSTEM.BROKER.CD.TRANSFERS queue are used.

v Other valid value:
– The queues are created and used with the <queuePrefix> inserted.

The <queuePrefix> must:
Be a maximum length of 16 characters
Be a valid value for a queue name
Not begin or end in a period.

-n securityIdentity
A security identity used to connect to the Connect:Direct server.
v Value type - string
v Initial value - default

The default security identity is used.
v Other valid value:

– Any valid security identity that is defined on the broker. You must
define the identity by using the syntax cd::<name>.

See the “mqsichangeproperties command” on page 3756 for examples of its use.
Related concepts:
“IBM Sterling Connect:Direct overview and concepts” on page 1810
An overview of IBM Sterling Connect:Direct and its terminology when used with
WebSphere Message Broker.
Related tasks:
“Initiating a managed file transfer using IBM Sterling Connect:Direct” on page
1873
Use a CDOutput node to send a file from a specified directory on your primary
Connect:Direct server (PNODE) to a filename and directory on a secondary
Connect:Direct server (SNODE).
Related reference:
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

SecurityProfiles configurable service properties:

Select the objects and properties that you want to change for the SecurityProfiles
configurable service.

To change these properties, you must specify the broker name and -c
SecurityProfiles.

Chapter 14. Reference 3801

You must also set the ObjectName to either Default_Propagation or the name of a
SecurityProfiles configurable service that you have defined by using the
mqsicreateconfigurableservice. The properties and values are the same for all
services.

This configurable service is independent of the securitycache component.

-n authentication
The type of authentication that is performed on the source identity.
v Value type - enum
v Initial value - NONE
v Other valid values:

– LDAP
– TFIM
– WS-Trust V1.3 STS
– A user-defined value
TFIM applies to TFIM V6.1 only. If you are using TFIM V6.2, specify
WS-Trust V1.3 STS.

-n authenticationConfig
The information that the broker needs to connect to the provider, specific
to the provider.
v Value type - string
v Initial value - None

-n authorization
The types of authorization checks that are performed on the mapped or
source identity.
v Value type - enum
v Initial value - NONE
v Other valid values:

– LDAP
– TFIM
– WS-Trust V1.3 STS
– A user-defined value

TFIM applies to TFIM V6.1 only. If you are using TFIM V6.2, specify
WS-Trust V1.3 STS.

-n authorizationConfig
How the broker connects to the provider, specific to the provider.
v Value type - string
v Initial value - None

-n mapping
The type of mapping that is performed.
v Value type - enum
v Initial value - NONE
v Other valid values:

– TFIM
– WS-Trust V1.3 STS
– A user-defined value

3802 WebSphere Message Broker Version 7.0.0.8

TFIM applies to TFIM V6.1 only. If you are using TFIM V6.2, specify
WS-Trust V1.3 STS.

-n mappingConfig
How the broker connects to the provider, specific to the provider.
v Value type - string
v Initial value - None

-n passwordValue
How passwords are treated when they enter a message flow.
v Value type - enum
v Initial value - PLAIN
v Other valid values:

– MASK
– OBFUSCATE

-n propagation
Indicates whether identity propagation is performed on output and request
nodes.
v Value type - Boolean
v Initial value - TRUE

-n rejectBlankpassword
Indicates whether the security manager rejects a username that has an
empty password token, without passing it to LDAP.
v Value type - Boolean
v Initial value - FALSE

See the “mqsichangeproperties command” on page 3756 for examples of its use.
Related concepts:
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that

Chapter 14. Reference 3803

you want to change.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

UserDefined configurable service properties:

A UserDefined configurable service has no predefined properties; you can create,
change, view, and delete your own values.

To change these properties, you must specify the broker name and -c UserDefined.

You must also set the ObjectName to the name of a UserDefined configurable
service that you have defined by using the mqsicreateconfigurableservice
command.

Use a UserDefined configurable service to define properties that you can access in
your message flows. The properties that you can define are unlimited; you can
create properties to serve any purpose that you can think of. Possible uses include:
v Set timeout values for HTTP message processing.
v Set timeouts that are associated with by message category for HTTP messages.

A UserDefined configurable service is accessible by the JavaCompute Node node
only, and cannot be accessed by ESQL.

See the “mqsichangeproperties command” on page 3756 for examples of its use
with a UserDefined configurable service.
Related concepts:
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that
you want to change.

3804 WebSphere Message Broker Version 7.0.0.8

|
|

“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Content based filtering component parameter values:

Select the objects and properties associated with the content based filtering
component that you want to change.

To change these properties, you must specify the broker name and -e
ExecutionGroupLabel. You must also set the ObjectName to ContentBasedFiltering.

-n cbfEnabled
Whether content-based filtering is enabled.
v Value type - Boolean
v Initial value - false

-n evaluationThreads
The number of evaluation threads available.
v Value type - integer
v Initial value - 1
v Other valid values: positive integer in the range 2 - 32.

-n validationThreads
The number of validation threads available.
v Value type - integer
v Initial value - 1
v Other valid values: positive integer in the range 2 - 32.

Note, that if cbfEnabled = true and you set either of the thread settings to zero, the
value of that thread setting is changed to one automatically.

See the “mqsichangeproperties command” on page 3756 for examples of its use.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

Execution group HTTP listener parameters (SOAP and HTTP nodes):

Select the resources and properties associated with the HTTPInput, HTTPReply,
SOAPInput, SOAPReply, and SOAPAsyncResponse nodes that you want to change.

To change these properties, you must specify the broker name and -e followed by
the name of a single execution group, and -o to specify the execution group object.
If you specify -o ExecutionGroup, you can omit -e to change a property that
applies to all execution groups on the specified broker.

Because you define all of these properties at the execution group level, they apply
to all HTTPInput, HTTPReply, SOAPInput, SOAPReply, and SOAPAsyncResponse
nodes that you deploy to the specified execution group.

Chapter 14. Reference 3805

By default, the HTTP nodes that you deploy to the broker all use the single
broker-wide listener. If you prefer, you can change the configuration of the broker
so that all execution groups use the embedded execution group. You can also use
the broker-wide listener for some execution groups, and the embedded listener in
other execution groups. For more information about these options, see “HTTP
listeners” on page 1589.

If you want HTTP nodes to use the broker-wide listener, see “Broker-wide HTTP
listener parameters” on page 3809 for further information about setting this
configuration.

You must restart the execution group for all changes to be implemented.

Choose the ObjectName from the following options:
v ExecutionGroup for controlling common properties
v HTTPConnector for controlling HTTP communication.
v HTTPSConnector for controlling HTTPS communication.

The following combinations are valid:

-o ExecutionGroup
The following properties and values are valid:

-n httpNodesUseEmbeddedListener
A value of false, the default value, indicates that all HTTPInput
and HTTPReply nodes use the broker-wide HTTP listener. If you
set this property to true, all HTTPInput and HTTPReply nodes that
are deployed to the specified execution group use the embedded
execution group listener.

If you have disabled the broker-wide HTTP listener, all
HTTPInput, HTTPReply nodes use the embedded listener
regardless of the value of this property.
v Value type - Boolean
v Initial value - False

-o HTTPConnector
The following properties and values are valid for HTTPConnector and
HTTPSConnector:

-n address
For servers with more than one IP address, this value specifies
which address is used for listening on the specified port. By
default, this port is used on all IP addresses associated with the
server. If specified, only one address can be used.
v Value type - string
v Initial value - null

-n explicitlySetPortNumber
The TCP/IP port number on which this Connector creates a server
socket and awaits incoming connections.

Setting this value disconnects the automatic port-finding capability
of the connector; this port is the only one allowed, and the
connector fails to start if another program has already used this
port.
v Value type - integer
v Initial value - 7800-7842
v Other valid values - any integer in the range 0-65536.

3806 WebSphere Message Broker Version 7.0.0.8

You must use the explicitlySetPortNumber attribute, because the
port attribute no longer works.

When you set the value to zero, the system enables the automatic
port-finding capability again, starting with the last used port,
which was saved by the execution group. You can change the
default port used when port-scanning starts by explicitly setting a
value in the range 7800-7842, then specifying the port number as
zero.

The default initial value for HTTPS is 7843 within the range
7843-7884.

-n autoRespondHTTPHEADRequests

Specifies if the connector handles HEAD requests for HTTP traffic
in the same way that it does for SOAP traffic. When the value is
True, if the request is for a URI associated with a flow, the
connector returns an HTTP 200 OK response. If not, the connector
returns an HTTP 404 Not Found response.

When the value is False or left unchanged from the initial value, if
the request is for a URI associated with a message flow, the request
causes the message flow to be invoked. Otherwise, the connector
returns an HTTP 404 Not Found response.
v Value type - boolean
v Initial value - False

serverName
Set the value that is set in the "Server" header for all HTTP
responses sent by this server.
v Value type - string
v Initial value - Apache-Coyote/1.1

-o HTTPSConnector
The properties listed for object name HTTPConnector (address,
explicitlySetPortNumber, autoRespondHTTPHEADRequests, and
autoRespondHTTPHEADRequests) are also valid for this object name. See
HTTPConnector for more information.

The following additional properties and values are valid:

Tip: The valid values for keystoreType, sslProtocol, sslSessionTimeout,
and ciphers are JSSE-implementation specific. These values are in the JSSE
provider documentation. For a list of the platforms that use IBM Java, see
Appendix A of the IBM JSSE2 Guide, at: http://www.ibm.com/
developerworks/java/jdk/security/60/secguides/jsse2Docs/
JSSE2RefGuide.html.

-n algorithm
The certificate encoding algorithm to be used.
v Value type - string
v Initial value -

– Solaris

HP-UX

SunX509 on Solaris and HP-UX

– AIX

z/OS

Linux

Windows

IbmX509 on other

systems (AIX, Linux, Windows, z/OS)

-n ciphers
A comma-separated list of the encryption ciphers that can be used.
If not specified (the default), any available cipher can be used. The

Chapter 14. Reference 3807

|
|
|
|
|

http://www.ibm.com/developerworks/java/jdk/security/60/secguides/jsse2Docs/JSSE2RefGuide.html
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/jsse2Docs/JSSE2RefGuide.html
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/jsse2Docs/JSSE2RefGuide.html

client sends a list of ciphers in priority order. The server selects the
first acceptable cipher in the list. If none of the ciphers in the list
are suitable, the server returns a handshake failure alert and closes
the connection.
v Value type - string
v Initial value - null

-n clientAuth
Set to true if the SSL stack requires a valid certificate chain from
the client before accepting a connection. A false value (which is the
default) does not require a certificate chain.
v Value type - string
v Initial value - false

-n keyAlias
The alias that is used for the server certificate in the keystore. If
not specified, the first key that is read in the keystore is used.
v Value type - string
v Initial value - null

-n keystoreFile
The path to the keystore file where the server certificate, which is
to be loaded, is stored. By default the HTTP listener expects a file
called .keystore in the home directory of the user who started the
broker.
v Value type - string
v Initial value - default value (described previously)

-n keystorePass
The password used to access the server certificate from the
specified keystore file.
v Value type - string
v Initial value - changeit

-n keystoreType
The type of keystore file to be used for the server certificate.
v Value type - string
v Initial value - JKS

-n sslProtocol

Specifies the version of the SSL protocol to use.
v Value type - string
v Initial value - TLS
v Other valid values - SSL, SSLv3

-n sslSessionTimeout
Specifies the timeout value in seconds, and is set on the
SSLSessionContext for SSLSessions created by the HTTPConnector.
v Value type - integer
v Initial value - 86400 (24 hours)
v Other valid values - any positive integer, 0 means no timeout

See the “mqsichangeproperties command” on page 3756 for examples of its use.
Related concepts:
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from

3808 WebSphere Message Broker Version 7.0.0.8

one to the other for individual execution groups.
Related reference:
“Broker registry object parameter values” on page 3765
Select the names of the properties and values that you want to change for the
broker registry object.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Broker-wide HTTP listener parameters”
Select the resources and properties associated with the broker-wide HTTP listener
that you want to change.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.

Broker-wide HTTP listener parameters:

Select the resources and properties associated with the broker-wide HTTP listener
that you want to change.

To change these properties, you must specify the broker name and -b
httplistener.

The httplistener component defines properties for the broker that are used for all
the HTTPInput and HTTPReply nodes that you deploy to that broker. These
properties include the broker-wide listener for all HTTP nodes; if you prefer, you
can disable this option so that the HTTP nodes use the listener that is embedded
within each execution group.

You must restart the broker for all changes to be implemented.

Choose the ObjectName from the following options:
v HTTPListener for controlling the HTTPListener process

You can use the following values with HTTPListener:
uuid=’HTTPListener’

enableSSLConnector=’false’
threadPoolSize=’’
traceOverrideLevel=’’
traceOverrideSize=’’

Chapter 14. Reference 3809

traceLevel=’none’
traceSize=’102400 KB’
javaDebugPort=’’
startListener=’true’

v HTTPConnector for controlling HTTP communication.
You can use the following values with HTTPConnector:
uuid=’HTTPConnector’
address=’’
port=’7080’
allowTrace=’’
maxPostSize=’’
acceptCount=’’
bufferSize=’’
compressableMimeTypes=’’
compression=’’
connectionLinger=’’
connectionTimeout=’’
maxHttpHeaderSize=’’
maxKeepAliveRequests=’’
maxSpareThreads=’’
maxThreads=’20’
minSpareThreads=’’
noCompressionUserAgents=’’
restrictedUserAgents=’’
socketBuffer=’’
tcpNoDelay=’’
enableLookups=’false’

v HTTPSConnector for controlling HTTPS communication.
You can use the following values with HTTPSConnector:
uuid=’HTTPSConnector’

algorithm=’Platform Default’
clientAuth=’Platform Default’
keystoreFile=’Platform Default’
keystorePass=’********’
keystoreType=’Platform Default’
sslProtocol=’Platform Default’
ciphers=’Platform Default’
keyAlias=’’
keypass=’********’
address=’’
port=’’
allowTrace=’’
maxPostSize=’’
acceptCount=’’
bufferSize=’’
compressableMimeTypes=’’
compression=’’
connectionLinger=’’
connectionTimeout=’’
maxHttpHeaderSize=’’
maxKeepAliveRequests=’’
maxSpareThreads=’’
maxThreads=’’
minSpareThreads=’’
noCompressionUserAgents=’’
restrictedUserAgents=’’
socketBuffer=’’
tcpNoDelay=’’
enableLookups=’false’

The following combinations are valid for the httplistener component:

-o HTTPListener
The following properties and values are valid:

3810 WebSphere Message Broker Version 7.0.0.8

enableSSLConnector
A Boolean value which can be used to enable or disable the HTTPS
(SSL) connector. You must set this value to TRUE to start the HTTP
listener listening for inbound SSL connections.
v Value type - Boolean
v Initial value - FALSE

-n maxKeepAliveRequests
The value is the maximum number of HTTP requests that can be
pipelined until the connection is closed by the server. Setting the
attribute to 1 disables HTTP/1.0 keep-alive, as well as HTTP/1.1
keep-alive and pipelining. Setting the value to -1 allows an
unlimited amount of pipelined or keep-alive HTTP requests.
v Value type - integer
v Initial value -100

-n maxThreads
The value is the maximum number of request processing threads
to be created by this Connector. This value, therefore, determines
the maximum number of simultaneous requests that can be
handled.
v Value type - integer
v Initial value - 200

-n startListener

The broker-wide listener that is used by deployed HTTP nodes is
started by default. Use this parameter to change its status between
active and inactive.

If this listener is active, all HTTP nodes in all execution groups use
this listener, unless you have activated the embedded listener in
the execution group by using the mqsichangeproperties command
for that execution group. For information about configuring an
execution group so that HTTP nodes can use the embedded
listener, see “Execution group HTTP listener parameters (SOAP
and HTTP nodes)” on page 3805.

If this listener is disabled, all execution groups use the embedded
listener for all nodes.
v Value type - Boolean
v Initial value -TRUE

-o HTTPConnector
The following properties and values are valid:

address
For servers with more than one IP address, this value specifies
which address is used for listening on the specified port. By
default, this port is used on all IP addresses associated with the
server. If specified, only one address can be used.
v Value type - string
v Initial value - null

port The TCP port number on which this HTTPConnector creates a
server socket and awaits incoming connections.
v Value type - integer
v Initial value - 7080

Chapter 14. Reference 3811

serverName
Set the value that is set in the "Server" header for all HTTP
responses sent by this server.
v Value type - string
v Initial value - Apache-Coyote/1.1

-o HTTPSConnector
The properties listed for object name HTTPConnector are also valid for this
object name. The following additional properties and values are valid:

algorithm
The certificate encoding algorithm to be used.
v Value type - string
v Initial value -

– Solaris

HP-UX

SunX509 on Solaris and HP-UX

– AIX

z/OS

Linux

Windows

IbmX509 on other

systems (AIX, Linux, Windows, z/OS)

ciphers
A comma-separated list of the encryption ciphers that can be used.
If not specified (the default), any available cipher can be used.
v Value type - string
v Initial value - null

clientAuth
Set to true if the SSL stack requires a valid certificate chain from
the client before accepting a connection. A false value (which is the
default) does not require a certificate chain unless the client
requests a resource protected by a security constraint that uses
CLIENT-CERT authentication.
v Value type - string
v Initial value - false

keyAlias
The alias that is used for the server certificate in the keystore. If
not specified, the first key that is read in the keystore is used.
v Value type - string
v Initial value - null

keystoreFile
The path to the keystore file where the server certificate, which is
to be loaded, has been stored. By default, the HTTP listener expects
a file called .keystore in the home directory of the user who
started the broker.
v Value type - string
v Initial value - default value (described previously)

keystorePass
The password used to access the server certificate from the
specified keystore file.
v Value type - string
v Initial value - changeit

keystoreType
The type of keystore file to be used for the server certificate.
v Value type - string
v Initial value - JKS

sslProtocol
The version of the SSL protocol to use.

3812 WebSphere Message Broker Version 7.0.0.8

|
|
|
|
|

v Value type - string
v Initial value - SSLv3

-n sessionCacheSize
Set the value to the maximum number of sessions that you allow
in the SSL Session Cache. These cached sessions are available for
SSL session renegotiation.
v Value type - integer
v Initial value - 100

The properties listed for object name HTTPConnector are also valid for this
object name. The valid values for keystoreType, sslProtocol, and ciphers
are JSSE-implementation-specific, and these values are in the JSSE provider
documentation.

See the “mqsichangeproperties command” on page 3756 for examples of how to
change parameters for the httplistener component.
Related concepts:
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
Related reference:
“Execution group HTTP listener parameters (SOAP and HTTP nodes)” on page
3805
Select the resources and properties associated with the HTTPInput, HTTPReply,
SOAPInput, SOAPReply, and SOAPAsyncResponse nodes that you want to change.

“Parameter values for the servicefederation component” on page 3816
Select the objects and properties associated with the servicefederation component
that you want to change.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.

JVM parameter values:

Select the objects and properties associated with the Java Virtual Machine (JVM)
that you want to change.

Chapter 14. Reference 3813

To change these properties, you must specify the broker name, and set the
ObjectName to ComIbmJVMManager. If you are setting a debug port number, you must
also include -e and specify the name of the execution group which will use the
port.

-n jvmMinHeapSize
The minimum size of the storage available to the JVM, specified in bytes.
v Value type: integer
v Initial value: -1, which represents 33554432 bytes (32MB)

-n jvmMaxHeapSize
The maximum size of the storage available to the JVM, specified in bytes.
If you have configured a publish/subscribe domain, when execution
groups retain publications, you might need to increase this value. If you
have included the XSLTransform node in one or more message flows, and
the node is processing very large XML messages, you might also have to
change this parameter.
v Value type: integer
v Initial value: -1, which represents 268435456 bytes (256 MB)

-n jvmDebugPort
The port on which the execution group is listening. You must set a port
number to activate debug in the execution group.
v Value type: integer
v Initial value: 0

-n jvmNativeStackSize
The maximum stack size for Java threads.
v Value type: integer
v Initial value: -1, which represents 1048576 bytes (1 MB) on Solaris and

Linux platforms, otherwise the value is JVM dependent

-n jvmJavaOSStackSize
The default stack size for Java Operating System threads. If you have a
message flow with large number of nodes between two nodes written in
Java (for example, JavaCompute nodes or Java user-defined nodes), you
might have to increase the size of this parameter.
v Value type: integer
v Initial value: JVM dependent

-n jvmSystemProperty
The value of this property defines Java system properties for an execution
group that can be used by JavaCompute nodes. The format is in the form
-Dname1=value1. You can set multiple properties in the following way:
-v"-Dname1=value1 -Dname2=value2"

v Value type: integer
v Initial value: JVM dependent

-n jvmVerboseOption
The value of this property identifies the type of Java verbose information
that is displayed for an execution group.
v Value type: string
v Initial value: none
v Other valid values:

– class: display information about each class loaded

3814 WebSphere Message Broker Version 7.0.0.8

– jni: display information about use of native methods and other Java
Native Interface activity

– gc: display information about each garbage collection event
– all: display information for all of the verbose options

See the “mqsichangeproperties command” on page 3756 for examples of how to
change parameters for the JVM. Other examples are provided for particular tasks:

“Using the Test Client in trace and debug mode” on page 3155
“Attaching the flow debugger to an execution group for debugging” on page
3160
“Setting the JVM heap size” on page 3254

Related concepts:
“JVM heap sizing” on page 3269
The Java virtual machine (JVM) heap is an independent memory allocation that
can reduce the capacity of the main memory heap.
Related tasks:
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.

Parameter values for the securitycache component:

Select the objects and properties associated with the securitycache component that
you want to change.

To change these properties, you must specify the broker name and -b
securitycache. You must also set the ObjectName to SecurityCache.

-n cacheTimeout
The timeout value for marking entries in the cache as invalid. The time is
specified in seconds.
v Value type - integer
v Initial value - 60
v Other valid values: any positive integer.

The cacheSweepInterval property, which is displayed when you report the
properties of the securitycache component, is ignored and has no effect.

See the “mqsichangeproperties command” on page 3756 for examples of its use.
Related reference:

Chapter 14. Reference 3815

“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsireloadsecurity command” on page 3911
Use the mqsireloadsecurity command to force the immediate expiry of some or all
the entries in the security cache.

Parameter values for the servicefederation component:

Select the objects and properties associated with the servicefederation component
that you want to change.

To change these properties, you must specify the broker name and -b
servicefederation. Choose the ObjectName from the following options:
v HTTPConnector for controlling the properties of the HTTP port that processes

Service Control Management Protocol (SCMP) Atom requests. Property values
and usage are the same as for the properties available on the HTTPConnector
option on the httplistener component and are described in “Broker-wide HTTP
listener parameters” on page 3809. The default HTTP port used for SCMP Atom
requests is 7088.

v HTTPSConnector for controlling the properties of the secure HTTPS port that
processes SCMP Atom requests. Property values and usage are the same as for
the properties available on the HTTPSConnector option on the httplistener
component and are described in “Broker-wide HTTP listener parameters” on
page 3809. The default HTTPS port used for SCMP Atom requests is 7089.

v scmp for controlling the properties that relate to the implementation of Service
Federation Management (SFM) support in WebSphere Message Broker.

You can select these properties when you specify scmp as the ObjectName:

enabled
A Boolean value to establish whether the broker is to start Service
Federation SCMP Atom support so that an SFM console can connect to the
broker. You must set this value to true if you want WebSphere Message
Broker to start Service Federation and accept a connection from the SFM
console.
v Value type - Boolean
v Initial value - false

enableSSL
A Boolean value to establish whether the SFM console needs to use HTTPS
to the SCMP Atom port. You must set this value to true if you need to use
HTTPS. You must set this value to false if you need to use HTTP. If you
specify a value of true, you must configure the HTTPSConnector option,
ensuring that you set appropriate values in the keystore-related properties.
If you specify a value of false, you must configure the HTTPConnector
option.
v Value type - Boolean
v Initial value - true

hostname
The host name that the SFM console should use to reach the Broker host.

3816 WebSphere Message Broker Version 7.0.0.8

The SFM console might run in a separate network domain so ensure that
you specify a fully qualified domain name, for example
brkhost01.location.ibm.com. If you do not set a value, the value that is
supplied is, on many systems, the dot-separated IP address of the host; this
address is subject to change should the network be re-configured.
v Value type - string
v Initial value - null

contextRoot
A valid URI path to define the context root of all URIs for SCMP Atom
requests.
v Value type - string
v Initial value - /scmp

contactName
The contact property presented in the connectivity provider Atom entry for
all execution groups in the broker. This value of the property might,
typically, be the contact details of the broker administrator.
v Value type - string
v Initial value - null

locationName
The location property presented in the connectivity provider Atom entry
for all execution groups in the broker. This value of the property might,
typically, be the location details of the broker.
v Value type - string
v Initial value - null

-n organizationName
This value specifies the organization property presented in the connectivity
provider Atom entry for all execution groups in the broker. This value of
the property might, typically, be the organization details of the services
hosted by the broker.
v Value type - string
v Initial value - null

Related concepts:
“Working with Service Federation Management (SFM)” on page 911
You can use a broker as a connectivity server that can be administered by a Service
Federation Management (SFM) console provided with WebSphere Service Registry
and Repository (WSRR) V7.0. The SFM console can then configure SFM proxies in
the broker.
Related reference:
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“Broker-wide HTTP listener parameters” on page 3809
Select the resources and properties associated with the broker-wide HTTP listener
that you want to change.
“ServiceFederationManager object property values” on page 3818
Select the properties associated with the ServiceFederationManager component that
you want to change.

Chapter 14. Reference 3817

ServiceFederationManager object property values:

Select the properties associated with the ServiceFederationManager component that
you want to change.

To change these properties, you must specify the execution group name and -o
ServiceFederationManager.

port The insecure HTTP port that Service Federation Management (SFM) proxy
input endpoints that are created in this connectivity provider are to use.
You might select a particular port value to make that port available
through a firewall, for example. If you do not specify a value or if you
specify a value of 0, the broker selects the first unused port in the range
8810 - 8842.
v Value type - integer
v Initial value - 0

securePort
The secure HTTPS port that SFM proxy input endpoints that are created in
this connectivity provider are to use. You might select a particular port
value to make that port available through a firewall, for example. If you do
not specify a value or if you specify a value of 0, the broker selects the first
unused port in the range 8843 - 8872.
v Value type - integer
v Initial value - 0

maxWaitTime
The maximum time, in seconds, that an SFM proxy is to wait for the target
service to respond to a request that it has sent. If this time is exceeded, the
proxy returns a SOAP fault to the calling client.
v Value type - integer
v Initial value - 180

proxyURLHostName
The host name that is to appear in the input endpoint URL for an SFM
proxy created in this connectivity provider. You might, typically, set this to
a domain name that the service consumer should use to address the proxy,
given that the service consumer might be accessing it from a remote
network domain. An example is myhost.location.ibm.com.
v Value type - string
v Initial value - null

ProxyPathPrefix
The fixed path prefix that is to be appended with unique digits and
prefixed to the input endpoint URL for an SFM proxy created in this
connectivity provider. If set to null, no prefix is used in the proxy input
path and the remainder of the proxy path becomes the target service path.
For example, if a proxy is created for a service which has the endpoint
URL http:://host:7080/service and the initial value proxy is used, the
proxy URL that is created would be similar to http:://myhost:8810/
proxy1/service.
v Value type - string
v Initial value - proxy

Related reference:

3818 WebSphere Message Broker Version 7.0.0.8

“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“Parameter values for the servicefederation component” on page 3816
Select the objects and properties associated with the servicefederation component
that you want to change.

mqsichangeresourcestats command:

Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.

Supported platforms:

v Windows systems
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPCHRS; see

“Contents of the broker PDSE” on page 3991

Purpose:
Use this command to start or stop statistics collection for the resource types listed
in “Resource statistics data” on page 6745.

You can run this command only if the broker is running. If you start statistics
collection, then stop and restart the broker, you do not have to rerun this
command; the active status is maintained when the broker starts again.

If you start statistics collection for all execution groups on a broker, you can stop
collection on all execution groups or on individual execution groups. If you start
statistics collection for individual execution groups, you can stop collection for
those specific execution groups or for all execution groups.

Syntax:

Chapter 14. Reference 3819

►► mqsichangeresourcestats brokerSpec -c Control ►

►
-e executionGroupName -w timeoutSecs

►

►
-v traceFileName

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

Parameters:

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

3820 WebSphere Message Broker Version 7.0.0.8

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note” on
page 3971.

-c Control
(Required) The value to define the action to be applied to resource statistics
collection:
v Specify active to start resource statistics collection
v Specify inactive to stop resource statistics collection

-e executionGroupName
(Optional) The name of the execution group for which resource statistics
collection is started or stopped.

If you do not specify -e, resource statistics collection is started or stopped for
all execution groups on the broker.

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:

Chapter 14. Reference 3821

0 The command completed successfully.

2 (Failure) The broker received the deployment request but was unable to
process it successfully. See the messages issued from the utility (or the
Administration log) for more information.

9 (Failure) The request has been submitted to the broker, but no response
was received before the timeout expired.

10 (Failure) Another user or application canceled the request operation before
the broker was able to process it.

98 The broker is not running.

99 One or more of the parameters that you specified is invalid.

Examples:
Start resource statistics collection for all execution groups on BrokerA:
mqsichangeresourcestats BrokerA -c active

Stop resource statistics collection for the execution group default on broker
BrokerA:
mqsichangeresourcestats BrokerA -c inactive -e default

:

Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
Related reference:
“Syntax diagrams” on page 3677
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.
“Example of an XML publication for resource statistics” on page 6746
This example message shows an XML publication that contains resource statistics
data.

mqsichangetrace command:

Use the mqsichangetrace command to set the tracing characteristics for a broker.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS - as a console command

Purpose:
This command is valid for:
v User trace. Specify the -u option.
v Service trace. Specify the -t option. Use this option only if directed to do so by

the action described in a BIPxxxx message, or by your IBM Support Center.
v Trace nodes. Specify the -n option to switch Trace nodes on or off. You can

significantly improve the performance of a flow by switching Trace nodes off.

You can initiate, modify, or end user (or service) tracing for a broker.

3822 WebSphere Message Broker Version 7.0.0.8

You can switch Trace nodes for a broker on and off, but you cannot use this
command to initiate service tracing for the WebSphere Message Broker Toolkit.

If you specify a broker, or any of its resources (execution group or message flow),
you must have deployed them before you can start trace. If you want to use the
mqsichangetrace command to start or stop user trace, you must ensure the broker
is running. But for service trace, you can also use the mqsichangetrace command
to enable or disable trace when the broker is in a shutdown state. This allows you
to trace the startup of the broker components.

The output for service and user trace generated by these commands is written to
trace files in the log subdirectory. When you have completed the work you want to
trace, use the mqsireadlog command to retrieve the log as an XML format file. Use
either the mqsiformatlog command (to produce a formatted file), or an XML
browser to view the XML records.

When you set tracing on, you cause additional processing to be executed for every
activity in the broker that you are tracing. Expect performance to be affected when
trace is active.

If you want to trace the command processes themselves, set the environment
variables MQSI_UTILITY_TRACE and MQSI_UTILITY_TRACESIZE before you initiate
trace.

You can set MQSI_UTILITY_TRACE to normal or debug, depending whether you want
normal or debug tracing, and you should set MQSI_UTILITY_TRACESIZE to the
maximum size of the trace file that you require in kilobytes (KB), the default being
102400 (100MB).

Ensure that you reset these variables when tracing for the selected command is
complete. If you do not do so, all subsequent commands are also traced, and their
performance degraded. For more information about MQSI_UTILITY_TRACE and
MQSI_UTILITY_TRACESIZE, see “Starting service trace” on page 3534.

You can also start and stop tracing activity for execution groups and message flows
using the facilities of the WebSphere Message Broker Toolkit. See “User trace” on
page 6873 for more information.

If you want to view the tracing options that are currently in effect, use the
mqsireporttrace command.

To enable service trace of your CMP applications, take one of the following steps:
v Call the method BrokerProxy.enableAdministrationAPITracing(String filename).
v Before running your CMP application, set the environment variable

MQSI_CMP_TRACE to the name of the file to which trace is sent.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsichangetrace command - Windows, Linux, and UNIX systems” on page

3824
v “mqsichangetrace command - z/OS” on page 3827

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648

Chapter 14. Reference 3823

v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related tasks:
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
“Switching Trace nodes on and off” on page 3555
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
switch Trace nodes on and off.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

mqsichangetrace command - Windows, Linux, and UNIX systems:

Use the mqsichangetrace command to set the tracing characteristics for a broker.

Syntax:

User trace:

►► mqsichangetrace brokerName -e egName -u
-c size

►

►
-f messageFlow -l level -m mode -r

►◄

Service trace:

3824 WebSphere Message Broker Version 7.0.0.8

►► mqsichangetrace brokerName -t ►

► -b
-e egName

-f messageFlow -r
-c size

►

►
-l level -m mode

►◄

Trace nodes:

►► mqsichangetrace brokerName -n switch -e egName ►

►
-f messageFlow

►◄

Parameters:

brokerName
(Required) Specify the name of the broker that you want to trace.. All names
are case sensitive on Linux and UNIX systems.

Key words WebSphere Message Broker Toolkit and utility are reserved, and
must not be used as a broker name.

-c size

(Optional) The size of the trace file in KB (kilobytes). If you do not specify this
parameter, the current value is left unchanged.

Each broker starts with a default value of 102400 KB. Specify this option to
reset the value. The maximum value you can specify depends on how you
subsequently intend to read the log, by using the mqsireadlog command;
v If you use this command with the -f option set, the log file is read directly

from the file system. In this case, the maximum value that you can specify is
2097151, which allows a trace file up to 2 GB (gigabyte) to be created.

v If you use this command without setting the -f option, a WebSphere MQ
message is sent to the broker to retrieve the log. In this case, do not allow
the trace file to exceed 70 MB (megabytes). The maximum value that you
can set is 70000.

On HP-UX, set the size value below 500 MB.

However you intend to retrieve the trace file, you might want to keep its size
small, either by using a low value for this parameter, or by using the reset (-r)
option on this command to clear the trace log. The benefit of adopting this
approach is that the formatting process (mqsiformatlog) is much faster and
requires less resource to carry out its task.

If you change this value, it affects tracing for the execution group (if you have
specified one), or for the agent component (if you have not specified an
execution group).

Chapter 14. Reference 3825

-e egName
(Required for user trace; required for service trace if you do not specify the -b
flag)

Identifies the execution group for which trace options are to be modified (for
example, started or stopped).

-f messageFlow

(Optional) Identifies the message flow for which trace options are to be
modified. This option is valid only if you have specified an execution group
(flag -e).

-l level

(Optional) Set the level of the trace. The following options are supported:
v normal. This option provides a basic level of trace information.
v none. This option switches tracing off.
v debug. This option provides a more comprehensive trace.

Each broker is created with a default value of none. If you do not specify this
parameter, the current value is unchanged. When you have successfully
changed this value, it is persistent.

-m mode

(Optional) Indicate the way trace information is to be buffered:
v safe. This mode causes trace entries to be written to file when they are

generated.
v fast. This mode causes trace entries to be buffered, and written to file in

batches.

Each broker starts with a default value of safe. If you do not specify this
parameter, the current value is unchanged.

If you change this value, it affects tracing for the execution group (if you have
specified one), or for the agent component (if you have not specified an
execution group).

-r

(Optional) This option requests that the trace log is reset: that is, all current
records are discarded. Use this option when you start a new trace to ensure
that all records in the log are unique to the new trace.

This option is valid only if you have specified an execution group (flag -e).

-u (Required for user trace)

Specifies that user trace options are to be modified.

Additional parameters exclusive to service trace:
Use these options only when directed to do so by your IBM Support Center, or by
a BIPxxxx message.

-b

(Required) Specifies that service trace options for the agent subcomponent of
the broker specified are to be modified (for example, started or stopped). You
can specify this flag only if -t is also specified.

You must specify the -b flag or the -e flag, but not both.

-m mode

3826 WebSphere Message Broker Version 7.0.0.8

(Optional) In addition to the safe and fast modes available for user trace,
there is a third temp mode available with execution group service trace only:
v temp. This mode is the same as safe mode but trace is automatically

switched off when the component restarts. You cannot specify a mode of
temp if -f is also specified.

-t

(Required) Specifies that service trace options are to be modified.

Additional parameters exclusive to Trace nodes:

-n switch
(Required) Specifies the mode for trace flow. Valid values are on and off.

Examples:
To collect and process a user trace for the default execution group use the
command:
mqsichangetrace MB7BROKER -u -e default -l normal -c 5000

To collect and process a service trace for flow f1 in the default execution group use
the command:
mqsichangetrace MB7BROKER -t -e default -m fast

To collect and process a service trace for an agent use the command:
mqsichangetrace MB7BROKER -t -b -m -l normal

To switch off Trace nodes in the default execution group, use the command:
mqsichangetrace MB7BROKER –n off -e default

Related tasks:
“Switching Trace nodes on and off” on page 3555
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
switch Trace nodes on and off.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.

mqsichangetrace command - z/OS:

Use the mqsichangetrace command to set the tracing characteristics for a broker.

Syntax:

z/OS console command:
User trace

►► changetrace
ct

, e=egName u=yes
, c=size , f=messageFlow

►

►
, l=level , m=mode , r=yes

►◄

Chapter 14. Reference 3827

Service trace

►► changetrace
ct

t=yes ►

► , b=yes
, e=egName

, f=messageFlow , r=yes
, c=size

►

►
, l=level , m=mode

►◄

Trace nodes:

►► changetrace
ct

n=switch , e=egName
, f=messageFlow

►◄

Parameters:

-c size

(Optional) The size of the trace file in KB (kilobytes). If you do not specify this
parameter, the current value is left unchanged.

Each broker starts with a default value of 102400 KB. Specify this option to
reset the value. The maximum value you can specify depends on how you
subsequently intend to read the log, by using the mqsireadlog command;
v If you use this command with the -f option set, the log file is read directly

from the file system. In this case, the maximum value that you can specify is
2097151, which allows a trace file up to 2 GB (gigabyte) to be created.

v If you use this command without setting the -f option, a WebSphere MQ
message is sent to the broker to retrieve the log. In this case, do not allow
the trace file to exceed 70 MB (megabytes). The maximum value that you
can set is 70000.

However you intend to retrieve the trace file, you might want to keep its size
small, either by using a low value for this parameter, or by using the reset (-r)
option on this command to clear the trace log. The benefit of adopting this
approach is that the formatting process (mqsiformatlog) is much faster and
requires less resource to carry out its task.

If you change this value, it affects tracing for the execution group (if you have
specified one), or for the agent component (if you have not specified an
execution group).

-e egName
(Required for user trace; optional for service trace)

Identifies the execution group for which trace options are to be modified (for
example, started or stopped).

This name is case sensitive; you must include names in single quotes if they
contains mixed case characters.

3828 WebSphere Message Broker Version 7.0.0.8

-f messageFlow

(Optional) Identifies the message flow for which trace options are to be
modified. This option is valid only if you have specified an execution group
(flag -e).

This name is case sensitive; you must include names in single quotes if they
contain mixed case characters.

-l level

(Optional) Set the level of the trace. The following options are supported:
v normal. This option provides a basic level of trace information.
v none. This option switches tracing off.
v debug. This option provides a more comprehensive trace.

Each broker is created with a default value of none. If you do not specify this
parameter, the current value is unchanged. When you have successfully
changed this value, it is persistent.

-m mode

(Optional) Indicate the way trace information is to be buffered:
v safe. This mode causes trace entries to be written to file when they are

generated.
v fast. This mode causes trace entries to be buffered, and written to file in

batches.

Each broker starts with a default value of safe. If you do not specify this
parameter, the current value is unchanged.

If you change this value, it affects tracing for the execution group (if you have
specified one), or for the agent component (if you have not specified an
execution group).

-r

(Optional) This option requests that the trace log is reset: that is, all current
records are discarded. Use this option when you start a new trace to ensure
that all records in the log are unique to the new trace.

This option is valid only if you have specified an execution group (flag -e).

-u (Required for user trace)

Specifies that user trace options are to be modified.

Additional parameters exclusive to service trace:
Use these options only when directed to do so by your IBM Support Center, or by
a BIPxxxx message.

-b

(Required) Specifies that service trace options for the agent subcomponent of
the broker specified are to be modified (for example, started or stopped). You
can specify this flag only if -t is also specified.

-m mode

(Optional) In addition to the safe and fast modes available for user trace,
there is a third temp mode available with execution group service trace only:
v temp. This mode is the same as safe mode but trace is automatically

switched off when the component restarts. You cannot specify a mode of
temp if -f is also specified.

Chapter 14. Reference 3829

-t

(Required) Specifies that service trace options are to be modified.

Additional parameters exclusive to Trace nodes:

n=switch
(Required) Specifies the mode for trace flow. Valid values are on and off.

Examples:
To collect and process a user trace for the default execution group use the
command:
F MQP1BRK,ct U=YES, E=’default’, L=NORMAL, C=5000

and in the PDSE member BIPRELG, set the option for mqsireadlog to
-u -e default -f

To collect and process a service trace for flow f1 in the default execution group use
the command:
F MQP1BRK,ct T=YES, E=’default’, F=’F1’, M=FAST, L=DEBUG

and in the PDSE member BIPRELG, set the option for mqsireadlog to
-t -e default -f

To collect and process a service trace for an agent use the command:
F MQP1BRK,ct T=YES, B=YES, M=FAST, L=DEBUG

and in the PDSE member BIPRELG, set the option for mqsireadlog to
-t -b agent -f

To switch off Trace nodes for the default execution group, use the command:
F MQP1BRK,ct n=’off’, e=’default’

Related tasks:
“Switching Trace nodes on and off” on page 3555
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
switch Trace nodes on and off.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.

mqsicommandconsole command:

Use the mqsicommandconsole command to launch an elevated command console
from which commands that require elevation on Windows can be run.

Supported platforms:

v Windows

Purpose:
The mqsicommandconsole command is required for the following commands:
v mqsiaddbrokerinstance

v mqsicreatebroker

v mqsimigratecomponents

3830 WebSphere Message Broker Version 7.0.0.8

v mqsisetsecurity

v mqsimanagexalinks

Syntax:

►► mqsicommandconsole ►◄

Parameters:
None

Authorization:
On Windows XP and Windows Server 2003 systems, the user ID used to run this
command must be a member of the group Administrators on the local system.

On Windows 7, Windows Vista, and Windows Server 2008 systems, the user ID
used to run this command must be running with elevated privileges on the local
system:
v The user ID must be a member of the group Administrators.
v The command must be run from an elevated command prompt. To obtain an

elevated command prompt, run the mqsicommandconsole command and follow
the Windows prompt to launch a new elevated command console.
This console starts with the correct mqsiprofile environment from which
commands that require elevation can be run.

If you do not run the command from within a privileged command console, the
command will not process successfully.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related reference:
“Syntax diagrams” on page 3677
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

mqsicreatebroker command:

Use the mqsicreatebroker command to create a broker and its associated resources.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPCRBK; see

“Contents of the broker PDSE” on page 3991

Purpose:
The mqsicreatebroker command completes the following tasks.

Chapter 14. Reference 3831

1. The command checks whether the specified WebSphere MQ queue manager
exists:
v If the queue manager does not exist, the following behavior occurs.

– If you run this command on z/OS, the action fails and an error is issued.
– If you run this command on Linux, UNIX, or Windows, a queue manager

is created.
If WebSphere MQ Version 7.1, or later, has been selected for the queue
manager, the channel auth security is automatically disabled.
The queues that are created include a dead letter queue (DLQ),
SYSTEM.DEAD.LETTER.QUEUE. The security settings are the same as for
other broker-specific WebSphere MQ queues.
If a message received by a message flow cannot be processed, it is
typically backed out onto the input queue. If it cannot be backed out, or
the message flow is not configured to back out messages, or to complete
alternative error processing, the broker puts the message to the DLQ.
The mqsideletebroker command does not delete the default DLQ (unless
the queue manager is deleted).

v If the queue manager does exist, check that the queue manager has a DLQ
defined; the queue is not created by this command on an existing queue
manager, but is required because the broker puts messages that cannot be
processed to the DLQ.
If you use WebSphere MQ clusters in your domain, define the queue
manager before you run this command, and configure the queue manager in
the cluster to benefit from reduced administration and increased availability.
– If you run this command on Linux, UNIX, or Windows and the existing

queue manager is WebSphere MQ Version 7.1, or later, it is assumed that
the user has applied the appropriate security configuration to meet their
requirements, and therefore channel auth security is not disabled.

2. The command starts the WebSphere MQ queue manager, if it is not already
running, except on z/OS.
If the command creates the queue manager on Windows, the queue manager is
not started as a service. If you log off, the queue manager stops. Therefore, you
must either remain logged on, or change the startup status of the queue
manager service. If you lock your workstation, the WebSphere MQ queue
manager does not stop.

3. The command connects to the associated queue manager.
4. The command creates the WebSphere MQ queues that are required by the

broker, if they do not exist.
If you enable administrative security, the queues required for this support are
also created by this command.

5. On Windows only, the command installs a service under which the broker runs.
6. The command creates the broker in one of the available modes. If the full

package is installed, the default mode is enterprise. If the trial package is
installed, the default mode is trial. For more information, see “Operation
modes” on page 48.

7. The command creates a record for the component in the registry.
8. On Windows systems, Linux, and UNIX systems, the command allows you to

specify, when the broker is created, whether the broker can be started and
stopped as a WebSphere MQ service.

3832 WebSphere Message Broker Version 7.0.0.8

Brokers can access only local queue managers, so you cannot create a broker on a
queue manager that is on a remote system.

Usage notes:
If you have migrated from Version 6.1 or Version 6.0, the following restrictions
apply.

In previous versions of WebSphere Message Broker, parameters that you specified
on this command were used by the broker to provide default authorization for
database access: either the database user ID and password (if specified) or the
service user ID and password. Because the Version 7.0 broker does not use a
database for its own purposes, the database user ID and password parameters
have been deprecated. The broker service ID and password parameters have also
been deprecated, except on Windows.

If you migrate a broker from a previous release, the associated values are stored
and used for default user database access as though you had entered these values
by using the mqsisetdbparms command.

When you create a Version 7.0 broker, you must use the mqsisetdbparms command
to set up database access authorization.

When you create a multi-instance broker, the resources are stored on a shared file
system. The user that issues the mqsicreatebroker command must have the correct
permissions on the shared file system to create these resources.

For details of this command on the operating system that your enterprise uses, see
the appropriate topic.
v “mqsicreatebroker command - Linux and UNIX systems” on page 3835
v “mqsicreatebroker command - Windows systems” on page 3840
v “mqsicreatebroker command - z/OS” on page 3845

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

WebSphere MQ queues created:
v SYSTEM.BROKER.ADAPTER.FAILED
v SYSTEM.BROKER.ADAPTER.INPROGRESS
v SYSTEM.BROKER.ADAPTER.NEW
v SYSTEM.BROKER.ADAPTER.PROCESSED
v SYSTEM.BROKER.ADAPTER.UNKNOWN
v SYSTEM.BROKER.ADMIN.QUEUE
v SYSTEM.BROKER.ADMIN.REPLYTODM
v SYSTEM.BROKER.AGGR.CONTROL
v SYSTEM.BROKER.AGGR.REPLY
v SYSTEM.BROKER.AGGR.REQUEST
v SYSTEM.BROKER.AGGR.TIMEOUT
v SYSTEM.BROKER.AGGR.UNKNOWN

Chapter 14. Reference 3833

|
|
|

v SYSTEM.BROKER.AUTH
v SYSTEM.BROKER.CONTROL.QUEUE
v SYSTEM.BROKER.DEPLOY.QUEUE
v SYSTEM.BROKER.DEPLOY.REPLY
v SYSTEM.BROKER.EDA.COLLECTIONS
v SYSTEM.BROKER.EDA.EVENTS
v SYSTEM.BROKER.EXECUTIONGROUP.QUEUE
v SYSTEM.BROKER.EXECUTIONGROUP.REPLY
v SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS
v SYSTEM.BROKER.MODEL.QUEUE
v SYSTEM.BROKER.TIMEOUT.QUEUE
v SYSTEM.BROKER.WS.ACK
v SYSTEM.BROKER.WS.INPUT
v SYSTEM.BROKER.WS.REPLY

Access authority is granted for the WebSphere Message Broker group mqbrkrs to
all these queues. If the DLQ is enabled, it also has the same authority.

Responses:
If you run the mqsicreatebroker command and it fails, resolve the problem that
caused the failure:
v Check responses; see “Responses to commands” on page 3682.
v Check the error logs; see “Local error logs” on page 6867.
v Check the error messages in the error log; you can search for error messages in

the information center.

When you run the same command again, you might receive a series of messages
specifying items that cannot be created. Receiving these messages does not indicate
a problem with the mqsicreatebroker command itself.
Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

3834 WebSphere Message Broker Version 7.0.0.8

“mqsireportbroker command” on page 3919
Use the mqsireportbroker command to display broker registry entries.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.

mqsicreatebroker command - Linux and UNIX systems:

Use the mqsicreatebroker command to create a broker on a Linux or UNIX
systems.

Syntax:

►► mqsicreatebroker brokerName -q queueManagerName ►

►
-w workPath -t -m -l userLilPath

►

►
-g configurationChangeTimeout

►

►
-k internalConfigurationTimeout -P httpListenerPort

►

►
-v statisticsMajorInterval

►

►
-y ldapPrincipal -z ldapCredentials

►

►
-c icuConverterPath -x userExitPath

►

►
-o operationMode -s active

inactive
-e sharedWorkPath

►

►
-d defined

undefined

►◄

Parameters:

brokerName
(Required) The name of the broker that you are creating. This parameter must
be the first parameter, and it is case sensitive.

For restrictions on the character set that you can use, see “Characters allowed
in commands” on page 3680.

-q queueManagerName
(Required) The name of the queue manager, (or multi-instance queue manager

Chapter 14. Reference 3835

if creating a multi instance broker) that is associated with this broker instance.
Use the same name for your broker and the queue manager to simplify the
organization and administration of your network. Queue manager names are
limited to 48 characters in length, and they are case sensitive.

The default behavior is to create a queue manager using the default mqm path,
if the queue manager does not already exist on the same server.

When creating a multi-instance broker where the queue manager does not exist
on the server, a multi-instance queue manager is created beneath the
multi-instance broker shared work path using the WebSphere MQ crtmqm
command as follows:

crtmqm –md /<broker sharedWorkPath>/mqm/qmdata
-ld //<broker sharedWorkPath>/mqm/qmlog queueManagerName

If this shared queue manager path is not appropriate, create the multi-instance
queue manager on the server before you run this command.

The queue manager attribute MAXMSGLEN (the maximum length of messages that
can be put to queues) is updated to 100 MB. This attribute is updated
regardless of whether the queue manager is created by this command.

For restrictions on the character set that you can use, see “Characters allowed
in commands” on page 3680.

-w workPath
(Optional) The directory in which working files for this broker are stored. If
you do not specify this parameter, files are stored in the default work path,
which was specified when the product was installed. If you specify this
parameter, you must create this directory before you start the broker.

When a broker has been enabled for multi-instance mode using the –e flag, the
broker workPath is divided between data that is specific to this broker instance,
and that which is shared between this broker and any of its instances created
using the mqsiaddbrokerinstance command. Data specific to the multi-instance
enabled broker is stored in the workPath directory on the local server, whereas
the shared data is held in a directory on network storage at the location
specified using the –e flag.

This directory is also used for trace records that are created when tracing is
active. These records are written to a subdirectory, log, which you must create
before you start the broker.
Error logs that are written by the broker when a process ends abnormally are
stored in this directory.
The error log is unbounded and continues to grow. Check this directory
periodically and clear out old error information.
You cannot change this parameter using the mqsichangebroker command. To
specify or change the work path, delete and re-create the broker.
Specifying this parameter creates a separate working directory for the broker.
This working directory is a subset of the default working directory structure
that contains fewer subdirectories and no common\profiles subdirectory.

-t (Optional) The broker runs as a WebSphere MQ trusted application.

If you specify this parameter on HP-UX and Solaris, specify the serviceUserId as
mqm.

For more details about using WebSphere MQ trusted applications, see the
Intercommunication section of the WebSphere MQ Version 7 Information Center
online.

3836 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

-l userLilPath
(Optional) A list of paths (directories) from which the broker loads Loadable
implementation libraries (LIL files) for user-defined message processing nodes.

Directory names are case sensitive, and you must include the names in single
quotation marks if they contain mixed case characters.
Do not include environment variables in the path; the broker ignores them.

Create your own directory for storing your .lil or .jar files. Do not save
them in the WebSphere Message Broker installation directory.
If you specify more than one directory, separate directories by using a colon
(:).

-g configurationChangeTimeout
(Optional) The maximum time (in seconds) that is allowed for a user
configuration request to be processed. It defines the length of time taken
within the broker to apply to an execution group a configuration change that
you have initiated. For example, if you deploy a configuration from the
WebSphere Message Broker Toolkit, the broker must respond to the
Configuration Manager within this time.

A message flow cannot respond to a configuration change while it is
processing an application message. An execution group returns a negative
response to the deployed configuration message if any one of its message
flows does not finish processing an application message and apply the
configuration change within this timeout.

Specify the value in seconds, in the range 10 - 3600. The default is 300.

For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-k internalConfigurationTimeout
(Optional) The maximum time (in seconds) that is allowed for an internal
configuration change to be processed. For example, it defines the length of
time taken within the broker to start an execution group.

The response time of each execution group differs according to system load
and the load of its own processes. The value must reflect the longest response
time that any execution group takes to respond. If the value is too low, the
broker returns a negative response, and might issue error messages to the local
error log.
Specify the value in seconds, in the range 10 - 3600. The default is 60.
For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-P httpListenerPort
(Optional) Enter the number of the port on which the Web services support is
listening.

The broker starts this listener when a message flow that includes HTTP nodes
or Web services support is started; the default is 7080.

Ensure that the port that you specify has not been specified for any other
purpose.

-v statisticsMajorInterval
(Optional) Specify the interval (in minutes) at which statistics and accounting
archive records are to be written. The valid range is from 1 minute to 43200
minutes; the default value is 60.

Chapter 14. Reference 3837

-y ldapPrincipal
(Optional, but mandatory when ldapCredentials is provided.) The user principal
for access to an optional LDAP directory that holds the JNDI administered
Initial Context for the JMS provider.

-z ldapCredentials
(Optional, but mandatory when ldapPrincipal is provided.) The user password
for access to LDAP.

-c icuConverterPath
(Optional) A set of directories to search for additional code page converters,
delimited by a colon (:).

Do not use this parameter to set the converter path if you are using a
converter that matches one of the built-in converters that are provided, and
that converter is the local code page for the broker. Use the ICU_DATA
environment variable instead.

-x userExitPath
(Optional) The path that contains the location of all user exits to be loaded for
execution groups in this broker. This path is added to the system library search
path (PATH,LIBPATH,LD_LIBRARY_PATH,SHLIBPATH) for the execution group
process only.

-o operationMode
(Optional) Use this parameter to set the mode of your broker; for more
information, see “Operation modes” on page 48. Valid values are enterprise
(the full package, enterprise mode), starter (Starter Edition mode), entry
(Entry Edition mode), and adapter (Remote Adapter Deployment mode). The
default value is enterprise, unless you have the Trial Edition, in which case
the default value is trial. If you do not set the -o parameter, the default value
is used automatically.

-s (Optional) Specify the administrative security status for the broker.

If you specify -s active, administration security is enabled. Only user IDs that
you authorize are permitted to complete actions on the broker. Read, write,
and execute authority is always granted on the security queue
SYSTEM.BROKER.AUTH to all user IDs that belong to the security group
mqbrkrs. When the broker has been created, you can add further user ID
authorizations to this queue.

When you create an execution group on a broker for which administrative
security is enabled, the queue SYSTEM.BROKER,AUTH.egroup_name is created.
Populate the queue with the appropriate user authorization.

If you specify -s inactive, or omit this parameter, broker administration
security is not enabled. All users are able to complete all actions against the
broker and all execution groups.

For further information about using security, see “Broker administration
security overview” on page 362 and “Authorizing users for broker
administration” on page 371.

-e sharedWorkPath
(Optional) Setting this value enables the broker for the multi-instance mode of
operation.

You must ensure the broker has access to this network storage location before
you start the broker, and that the queue manager for the broker has been
configured as a WebSphere MQ multi-instance queue manager. The
information stored in this shared directory includes:

3838 WebSphere Message Broker Version 7.0.0.8

v The broker registry
v Component directories
v Internal broker tables and files for deployed message flows
v Configurable service properties.

-d (Optional) Specify whether you enable a broker to be started and stopped as a
WebSphere MQ service when the queue manager starts and stops.

This option is an alternative to starting a multi-instance broker in standby
mode using the mqsistart command.

If you specify -d defined, the WebSphere MQ service is defined to the queue
manager and the broker starts and stops when the queue manager starts and
stops.

If you specify -d undefined, the WebSphere MQ service is not defined to the
queue manager and the broker does not start and stop when the queue
manager starts and stops. This is the default setting.

-i serviceUserId
(Deprecated) This parameter is included for compatibility with earlier versions.

-a servicePassword
(Deprecated) This parameter is included for compatibility with earlier versions.

Examples:
Create a broker to run as a trusted application:

mqsicreatebroker MB7BROKER
-q MB7QMGR -t

Create a broker that references user exits:
mqsicreatebroker MB7BROKER
-q MB7QMGR -x /opt/3rdparty/wmbexits

Create a broker with administrative security enabled:
mqsicreatebroker MB7BROKER
-q MB7QMGR -s active

Create a broker, by using the multi-instance queue manager MyQMGR and the shared
work path MyNetworkSharedWorkpath, where the broker starts as a WebSphere MQ
service:

mqsicreatebroker MB7BROKER
-q MyQmgr -e MyNetworkSharedWorkpath -d defined

Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
“Setting configuration timeout values” on page 3258
Change timeout values that affect configuration tasks in the broker.
Related reference:
“Syntax diagrams” on page 3677
“mqsiaddbrokerinstance command” on page 3715
Use the mqsiaddbrokerinstance command to create a multi-instance broker on a
server where WebSphere Message Broker has been installed.

Chapter 14. Reference 3839

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

mqsicreatebroker command - Windows systems:

Use the mqsicreatebroker command to create a broker on a Windows system.

Syntax:

►► mqsicreatebroker brokerName -i serviceUserId
LocalSystem

►

► -a servicePassword -q queueManagerName
-w workPath

►

►
-t -m -l userLilPath

►

►
-g configurationChangeTimeout

►

►
-k internalConfigurationTimeout -P httpListenerPort

►

►
-v statisticsMajorInterval

►

►
-y ldapPrincipal -z ldapCredentials -c icuConverterPath

►

►
-x userExitPath -o operationMode -s active

inactive

►

►
-e sharedWorkPath -d defined

undefined

►◄

Parameters:

brokerName
(Required) The name of the broker that you are creating. This parameter must
be the first parameter. If you create a broker with an uppercase name, you
must also specify the name in uppercase in the WebSphere Message Broker
Toolkit.

3840 WebSphere Message Broker Version 7.0.0.8

For restrictions on the character set that you can use, see “Characters allowed
in commands” on page 3680.

-i serviceUserId
(Optional) The user ID under which the broker runs.

You can specify the serviceUserId in any valid user name syntax:
v \\server\username

v .\username

v username

Do not use a domain name as part of the serviceUserId parameter.
If you use the unqualified form for this user ID (username), the operating
system searches for the user ID throughout its domain, starting with the local
system. This search might take some time to complete.
The serviceUserId that you specify must be a direct or indirect member of the
mqbrkrs local group. The serviceUserId must also be authorized to access the
home directory (where WebSphere Message Broker has been installed), and the
working directory (if specified by the -w parameter).
If you specify that the broker is to run as a WebSphere MQ trusted application
(-t parameter), you must also add the service user ID to the mqm group.
The security requirements for the serviceUserId are described in “Security
requirements for Windows systems” on page 3651.

-i LocalSystem
(Optional) You can specify LocalSystem instead of serviceUserId.

If you specify LocalSystem, you must use the servicePassword parameter,
however, the value of the servicePassword parameter is ignored.

If you specify the -e parameter, LocalSystem should not be used. When
specifying the -e parameter, you must use a real userid for the -i option.

For Windows, only the -i LocalSystem option is available. If you specify the -e
parameter for a multi-instance broker, the system issues an error (BIP8022E:
Invalid service userid and password combination supplied).

Note: Either the Localsystem or serviceUserId option must be specified for the -i
parameter.

-a servicePassword
(Required) The password for the serviceUserId.

For compatibility with existing systems, you can specify <password>. However,
if you do not specify a password with this parameter when you run the
command, you are prompted to enter a password. You must enter the
password a second time to verify that you have entered it correctly.

-q queueManagerName
(Required) The name of the queue manager, (or multi-instance queue manager
if creating a multi instance broker) that is associated with this broker instance.
Use the same name for your broker and the queue manager to simplify the
organization and administration of your network. Queue manager names are
limited to 48 characters in length, and they are case sensitive.

The default behavior is to create a queue manager using the default mqm path,
if the queue manager does not already exist on the same server.

Chapter 14. Reference 3841

When creating a multi-instance broker where the queue manager does not exist
on the server, a multi-instance queue manager is created beneath the
multi-instance broker shared work path using the WebSphere MQ crtmqm
command as follows:

crtmqm –md /<broker sharedWorkPath>/mqm/qmdata
-ld //<broker sharedWorkPath>/mqm/qmlog queueManagerName

If this shared queue manager path is not appropriate, create the multi-instance
queue manager on the server before you run this command.

The queue manager attribute MAXMSGLEN (the maximum length of messages that
can be put to queues) is updated to 100 MB. This attribute is updated
regardless of whether the queue manager is created by this command.

For restrictions on the character set that you can use, see “Characters allowed
in commands” on page 3680.

-w workPath
(Optional) The directory in which working files for this broker are stored. If
you do not specify this parameter, files are stored in the default work path,
which was specified when the product was installed. If you specify this
parameter, you must create this directory before you start the broker.

When a broker has been enabled for multi-instance mode using the –e flag, the
broker workPath is divided between data that is specific to this broker instance,
and that which is shared between this broker and any of its instances created
using the mqsiaddbrokerinstance command. Data specific to the multi-instance
enabled broker is stored in the workPath directory on the local server, whereas
the shared data is held in a directory on network storage at the location
specified using the –e flag.

This directory is also used for trace records that are created when tracing is
active. These records are written to a subdirectory, log, which you must create
before you start the broker.
Error logs that are written by the broker when a process ends abnormally are
stored in this directory.
The error log is unbounded and continues to grow. Check this directory
periodically and clear out old error information.
You cannot change this parameter using the mqsichangebroker command. To
specify or change the work path, delete and re-create the broker.
Specifying this parameter creates a separate working directory for the broker.
This working directory is a subset of the default working directory structure
that contains fewer subdirectories and no common\profiles subdirectory.

-t (Optional) The broker runs as a WebSphere MQ trusted application.

If you specify this parameter, add the serviceUserId (identified by the -i
parameter) to the mqm group.

For more details about using WebSphere MQ trusted applications, see the
Intercommunication section of the WebSphere MQ Version 7 Information Center
online.

-l userLilPath
(Optional) A list of paths (directories) from which the broker loads Loadable
implementation libraries (LIL files) for user-defined message processing nodes.

Do not include environment variables in the path; the broker ignores them.

3842 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Create your own directory for storing your .lil or .jar files. Do not save
them in the WebSphere Message Broker installation directory.
If you specify more than one directory, separate directories by using a
semicolon (;).

-g configurationChangeTimeout
(Optional) The maximum time (in seconds) that is allowed for a user
configuration request to be processed. It defines the length of time taken
within the broker to apply to an execution group a configuration change that
you have initiated. For example, if you deploy a configuration from the
WebSphere Message Broker Toolkit, the broker must respond to the
Configuration Manager within this time.

A message flow cannot respond to a configuration change while it is
processing an application message. An execution group returns a negative
response to the deployed configuration message if any one of its message
flows does not finish processing an application message and apply the
configuration change within this timeout.

Specify the value in seconds, in the range 10 - 3600. The default is 300.

For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-k internalConfigurationTimeout
(Optional) The maximum time (in seconds) that is allowed for an internal
configuration change to be processed. For example, it defines the length of
time taken within the broker to start an execution group.

The response time of each execution group differs according to system load
and the load of its own processes. The value must reflect the longest response
time that any execution group takes to respond. If the value is too low, the
broker returns a negative response, and might issue error messages to the local
error log.
Specify the value in seconds, in the range 10 - 3600. The default is 60.
For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-P httpListenerPort
(Optional) Enter the number of the port on which the Web services support is
listening.

The broker starts this listener when a message flow that includes HTTP nodes
or Web services support is started; the default is 7080.

Ensure that the port that you specify has not been specified for any other
purpose.

-v statisticsMajorInterval
(Optional) Specify the interval (in minutes) at which statistics and accounting
archive records are to be written. The valid range is from 1 minute to 43200
minutes; the default value is 60.

-y ldapPrincipal
(Optional, but mandatory when ldapCredentials is provided.) The user principal
for access to an optional LDAP directory that holds the JNDI administered
Initial Context for the JMS provider.

-z ldapCredentials
(Optional, but mandatory when ldapPrincipal is provided.) The user password
for access to LDAP.

Chapter 14. Reference 3843

-c icuConverterPath
(Optional) A delimited set of directories to search for additional code page
converters. On Windows systems, the delimiter is a semicolon (;). On UNIX
and Linux systems, the delimiter is a colon (:).

Do not use this parameter to set the converter path if you are using a
converter that matches one of the built-in converters that are provided, and
that converter is the local code page for the broker. Use the ICU_DATA
environment variable instead.

-x userExitPath
(Optional) The path that contains the location of all user exits to be loaded for
execution groups in this broker. This path is added to the system library search
path (PATH,LIBPATH,LD_LIBRARY_PATH,SHLIBPATH) for the execution group
process only.

-o operationMode
(Optional) Use this parameter to set the mode of your broker; see “Operation
modes” on page 48. Valid values that you can set are enterprise (the full
package, enterprise mode), entry (Entry Edition mode), starter (Starter
Edition mode), and adapter (Remote Adapter Deployment mode). The default
value is enterprise, unless you have the Trial Edition, in which case the
default value is trial. If you do not set the -o parameter, the default value is
used automatically.

-s (Optional) Specify the administrative security status for the broker.

If you specify -s active, administration security is enabled. Only user IDs that
you authorize are permitted to complete actions on the broker. Read, write,
and execute authority is always granted on the security queue
SYSTEM.BROKER.AUTH to all user IDs that belong to the security group
mqbrkrs. When the broker has been created, you can add further user ID
authorizations to this queue.

When you create an execution group on a broker for which administrative
security is enabled, the queue SYSTEM.BROKER,AUTH.egroup_name is created.
Populate the queue with the appropriate user authorization.

If you specify -s inactive, or omit this parameter, broker administration
security is not enabled. All users are able to complete all actions against the
broker and all execution groups.

For further information about using security, see “Broker administration
security overview” on page 362 and “Authorizing users for broker
administration” on page 371.

-e sharedWorkPath
(Optional) Setting this value enables the broker for the multi-instance mode of
operation.

You must ensure the broker has access to this network storage location before
you start the broker, and that the queue manager for the broker has been
configured as a WebSphere MQ multi-instance queue manager. The
information stored in this shared directory includes:
v The broker registry
v Component directories
v Internal broker tables and files for deployed message flows
v Configurable service properties.

3844 WebSphere Message Broker Version 7.0.0.8

-d (Optional) Specify whether you enable a broker to be started and stopped as a
WebSphere MQ service when the queue manager starts and stops.

This option is an alternative to starting a multi-instance broker in standby
mode using the mqsistart command.

If you specify -d defined, the WebSphere MQ service is defined to the queue
manager and the broker starts and stops when the queue manager starts and
stops.

If you specify -d undefined, the WebSphere MQ service is not defined to the
queue manager and the broker does not start and stop when the queue
manager starts and stops. This is the default setting.

Examples:
Create a broker to run as a trusted application:

mqsicreatebroker MB7BROKER -i wbrkuid -a wbrkpw -q MB7QMGR -t

Create a broker that references user exits:
mqsicreatebroker MB7BROKER -i wbrkuid -a wbrkpw
-q MB7QMGR -x /opt/3rdparty/wmbexits

Create a broker with administrative security enabled:
mqsicreatebrokerMB7BROKER -q MB7QMGR -s active

Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
“Setting configuration timeout values” on page 3258
Change timeout values that affect configuration tasks in the broker.
Related reference:
“Syntax diagrams” on page 3677
“mqsiaddbrokerinstance command” on page 3715
Use the mqsiaddbrokerinstance command to create a multi-instance broker on a
server where WebSphere Message Broker has been installed.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

mqsicreatebroker command - z/OS:

Use the mqsicreatebroker command to create a broker on a z/OS system.

Syntax:
z/OS command - BIPCRBK

Chapter 14. Reference 3845

►► mqsicreatebroker BrokerName -q QueueManagerName
-1

►

►
-2 -l UserLilPath -P HTTPListenerPort

►

►
-g ConfigurationChangeTimeout

►

►
-k InternalConfigurationTimeout -v StatisticsMajorInterval

►

►
-y LdapPrincipal -z LdapCredentials -c ICUConverterPath

►

►
-x UserExitPath -s active

inactive

►◄

Parameters:

BrokerName
(Required) The name of the broker that you are creating. This parameter must
be the first parameter. If you create a broker with an uppercase name, you
must also specify the name in uppercase in the WebSphere Message Broker
Toolkit.

For restrictions on the character set that you can use, see “Characters allowed
in commands” on page 3680.

-q QueueManagerName
(Required) The name of the queue manager, (or multi-instance queue manager
if creating a multi instance broker) that is associated with this broker instance.
Use the same name for your broker and the queue manager to simplify the
organization and administration of your network. Queue manager names are
limited to 48 characters in length, and they are case sensitive.

The default behavior is to create a queue manager using the default mqm path,
if the queue manager does not already exist on the same server.

When creating a multi-instance broker where the queue manager does not exist
on the server, a multi-instance queue manager is created beneath the
multi-instance broker shared work path using the WebSphere MQ crtmqm
command as follows:

crtmqm –md /<broker sharedWorkPath>/mqm/qmdata
-ld //<broker sharedWorkPath>/mqm/qmlog queueManagerName

If this shared queue manager path is not appropriate, create the multi-instance
queue manager on the server before you run this command.

The queue manager attribute MAXMSGLEN (the maximum length of messages that
can be put to queues) is updated to 100 MB. This attribute is updated
regardless of whether the queue manager is created by this command.

For restrictions on the character set that you can use, see “Characters allowed
in commands” on page 3680.

3846 WebSphere Message Broker Version 7.0.0.8

-l UserLilPath
(Optional) A list of paths (directories) from which the broker loads Loadable
implementation libraries (LIL files) for user-defined message processing nodes.

This name is case sensitive; enclose the names in single quotation marks if they
are in mixed case.
Do not include environment variables in this path; WebSphere Message Broker
ignores them.

You must create your own directory for storing your .lil or .jar files. Do not
save these files in the WebSphere Message Broker install directory.

-P HTTPListenerPort
(Optional) Enter the number of the port on which the Web services support is
listening.

The broker starts this listener when a message flow that includes HTTP nodes
or Web services support is started; the default is 7080.

Ensure that the port that you specify has not been specified for any other
purpose.

-g ConfigurationChangeTimeout
(Optional) The maximum time (in seconds) that is allowed for a user
configuration request to be processed. It defines the length of time taken
within the broker to apply to an execution group a configuration change that
you have initiated. For example, if you deploy a configuration from the
WebSphere Message Broker Toolkit, the broker must respond to the
Configuration Manager within this time.

A message flow cannot respond to a configuration change while it is
processing an application message. An execution group returns a negative
response to the deployed configuration message if any one of its message
flows does not finish processing an application message and apply the
configuration change within this timeout.

Specify the value in seconds, in the range 10 - 3600. The default is 300.

For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-k InternalConfigurationTimeout
(Optional) The maximum time (in seconds) that is allowed for an internal
configuration change to be processed. For example, it defines the length of
time taken within the broker to start an execution group.

The response time of each execution group differs according to system load
and the load of its own processes. The value must reflect the longest response
time that any execution group takes to respond. If the value is too low, the
broker returns a negative response, and might issue error messages to the local
error log.
Specify the value in seconds, in the range 10 - 3600. The default is 60.
For information about how to set the value for this timeout, see “Setting
configuration timeout values” on page 3258.

-v StatisticsMajorInterval
(Optional) Specify the interval (in minutes) at which statistics and accounting
archive records are to be written. The valid range is from 1 minute to 43200
minutes; the default value is 60.

Chapter 14. Reference 3847

An interval of zero minutes indicates that the operating system has an external
method of notification (the ENF timer), and is not using an internal timer
within WebSphere Message Broker.

-1
(Optional) The registry pass, which creates only the broker registry.

You must run the command with option 1 before you run the command with
option 2, otherwise the command fails.

-2
(Optional) The WebSphere MQ pass, which creates only the broker
WebSphere MQ queues.

-y LdapPrincipal
(Optional, but mandatory when ldapCredentials is provided.) The user principal
for access to an optional LDAP directory that holds the JNDI administered
Initial Context for the JMS provider.

-z LdapCredentials
(Optional, but mandatory when ldapPrincipal is provided.) The user password
for access to LDAP.

-c ICUConverterPath
(Optional) A delimited set of directories to search for additional code page
converters.

The code page converters must be either of the form codepagename.cnv, or in
an ICU data package called icudt38.dat. The code page converters must be
located in a sub-directory named icudt38_<platform_suffix> of the specified
directory where <platform_suffix> is one of the following values:
v l for little-endian ASCII platforms
v b for big-endian ASCII platforms
v e for EBCDIC platforms

Do not use this parameter to set the converter path if you are using a
converter that matches one of the built-in converters that are provided with
Version 6.0, and that converter is the local code page for the broker. Use the
ICU_DATA environment variable instead.

-x UserExitPath
(Optional) The path that contains the location of all user exits to be loaded for
execution groups in this broker. This path is added to the system library search
path (PATH,LIBPATH,LD_LIBRARY_PATH,SHLIBPATH) for the execution group
process only.

-s (Optional) Specify the administrative security status for the broker.

If you specify -s active, administration security is enabled. Only user IDs that
you authorize are permitted to complete actions on the broker. Read, write,
and execute authority is always granted on the security queue
SYSTEM.BROKER.AUTH to all user IDs that belong to the security group
mqbrkrs. When the broker has been created, you can add further user ID
authorizations to this queue.

When you create an execution group on a broker for which administrative
security is enabled, the queue SYSTEM.BROKER,AUTH.egroup_name is created.
Populate the queue with the appropriate user authorization.

If you specify -s inactive, or omit this parameter, broker administration
security is not enabled. All users are able to complete all actions against the
broker and all execution groups.

3848 WebSphere Message Broker Version 7.0.0.8

For further information about using security, see “Broker administration
security overview” on page 362 and “Authorizing users for broker
administration” on page 371.

Examples:
Create a broker on z/OS by using a single command:
mqsicreatebroker CSQ1BRK -q CSQ1

Create a broker with administrative security enabled:
mqsicreatebroker MB7BROKER -q MB7QMGR -s active

Related tasks:
“Setting configuration timeout values” on page 3258
Change timeout values that affect configuration tasks in the broker.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

mqsicreateconfigurableservice command:

Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.

You can also use the WebSphere Message Broker Explorer to create configurable
services. For more information, see “Using the WebSphere Message Broker
Explorer to work with configurable services” on page 644.

Supported platforms:

v Windows.
v Linux and UNIX systems.
v z/OS. Run this command by customizing and submitting BIPCRCS. For more

information, see “Contents of the broker PDSE” on page 3991.

Purpose:
For configurable services that you add by using the
mqsicreateconfigurableservice command:
v Use the mqsireportproperties command to view the configurable services.
v Use the mqsichangeproperties command to modify the configurable services.
v Use the mqsideleteconfigurableservice command to delete configurable

services.

You do not have to use the mqsicreateconfigurableservice command to create EIS
providers, because definitions are supplied for you. Use the mqsichangeproperties
command to modify EIS providers.

Chapter 14. Reference 3849

Usage notes:

v Before you run this command, ensure that the broker is running.
v Stop and restart the broker before you use any new broker resources and

properties.

Syntax:

►► mqsicreateconfigurableservice BrokerName -c ConfigurableService ►

► -o ObjectName

▼

▼

,

-n PropertyName
,

-v PropertyValue

►◄

Parameters:

BrokerName
(Required) The name of the broker to modify. This parameter must be the first
parameter.

-c ConfigurableService
(Required) The type of external resource (configurable service). Use the
mqsireportproperties command to view the list of valid values.

The valid resource types are listed in “Configurable services properties” on
page 3766.

-o ObjectName
(Required) The name of the object whose properties you want to change.

For example, if the -c parameter is set to JDBCProviders, the expected object
name is either an IBM-defined JDBC provider name, or a user-defined JDBC
provider name. Default services are provided for the supported databases to
which you can connect over JDBC type 4 connections. Use the supplied
services as a template when you create a service by using this command. Use
the mqsireportproperties command to view the list of default provider names.

-n PropertyName
(Optional) The name of the property that is being changed.

The valid property names are listed in “Configurable services properties” on
page 3766.

-v PropertyValue
(Optional, but required if the -n parameter is specified) The value that is
assigned to the property that is specified by the -n parameter. You can specify
more than one property name and corresponding value by using commas as
separators; for example, -n Name1,Name2 -v Value1,Value2.

If the property value contains a comma, enclose the value with escaped double
quotation marks (\" and \"); for example, -n Name1,Name2 -v
Value1,\"Value21,Value22\".

3850 WebSphere Message Broker Version 7.0.0.8

UNIX

On UNIX systems, if the -v parameter contains a semi-colon (;),

enclose the entire string in quotation marks, as shown in the following
example:

mqsicreateconfigurableservice MB7BROKER -c JDBCProviders -o DB2EXTRA -n connectionUrlFormat
-v "jdbc:db2://[serverName]:[portNumber]/[databaseName]:user=[user];password=[password];"

The property values are described in “Configurable services properties” on
page 3766.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:
v BIP8011 Unable to create configuration data
v BIP8012 Unable to connect to system components
v BIP8014 Component cannot be created
v BIP8073 Invalid broker name
v BIP8983 Configurable service already exists
v BIP8984 Configurable service was not found

Examples:
Create an Aggregation configurable service that uses a set of queues that is
prefixed with SYSTEM.BROKER.AGGR.SET1, and with a timeout of 60 seconds:
mqsicreateconfigurableservice MB7BROKER -c Aggregation -o myAggregationService
-n queuePrefix,timeoutSeconds -v SET1,60

Create a CICSConnection configurable service for the CICS instance that is running
at tcp://test.cics.ibm.com port 12345. The broker is identified by APPLID
BRKApp and qualifier BRKQual. The connection timeout is 10 seconds and the
request timeout is 5 seconds in this example:
mqsicreateconfigurableservice MB7BROKER -c CICSConnection -o myCICSConnectionService
-n cicsServer,clientApplid,clientQualifier,connectionTimeoutSecs,
requestTimeoutSecs -v tcp://test.cics.ibm.com:12345,BRKApp,BRKQual,10,5

Create a Collector configurable service that uses queues that are prefixed with
SYSTEM.BROKER.EDA.SET1, and with a collection expiry of 60 seconds:
mqsicreateconfigurableservice MB7BROKER -c Collector -o myCollectorService
-n queuePrefix,collectionExpirySeconds -v SET1,60

Create a Connect:Direct server configurable service on object test, with a host
name of 9.122.17.58 and port number 1369:
mqsicreateconfigurableservice MB7BROKER -c CDServer -o test
-n Hostname,Port -v 9.122.17.58,1369

Create a CORBA configurable service that specifies the location of the object
reference:

Chapter 14. Reference 3851

mqsicreateconfigurableservice MB7BROKER -c CORBA -o myCORBAService
-n namingService,objectReferenceName -v localhost:2809,Europe.region/Market.object

Create an EmailServer configurable service to which the EmailInput node or
message flow can refer at run time to connect to an email server. The server is
running at pop3://test.email.server.ibm.com on port 12345. In this example, the
security identity is identified by mySecurityIdentityObjectName.
mqsicreateconfigurableservice MB7BROKER -c EmailServer -o myEmailConfigurableServiceName
-n serverName,securityIdentity -v pop3://test.email.server.ibm.com
:12345,mySecurityIdentityObjectName

Create an FtpServer configurable service:
mqsicreateconfigurableservice MB7BROKER -c FtpServer -o Server01
-n serverName,scanDelay,transferMode,connectionType,securityIdentity
-v one.hursley.abc.com:123,20,Binary,ACTIVE,secId

Create an FtpServer configurable service to use SFTP without strict host key
checking:

mqsicreateconfigurableservice MB7BROKER -c FtpServer -o TEST1
-n protocol,serverName,scanDelay,remoteDirectory,securityIdentity,cipher,compression,strictHostKeyChecking
-v SFTP,winlnx58,30,.,chbatey,blowfish-cbc,9,no

Create an IMSConnect configurable service for the IMS instance IMSA that is
running on test.ims.ibm.com port 9999:
mqsicreateconfigurableservice MB7BROKER -c IMSConnect -o myIMSConnectService
-n Hostname,PortNumber,DataStoreName -v test.ims.ibm.com,9999,IMSA

Create a JavaClassLoader service:
mqsicreateconfigurableservice MB7BROKER -c JavaClassLoader
-o myJavaClassLoader
-n includedDeployedJars,sharedJarPath
-v "jcnapp1.jar","/var/app1/jars"

Add a JMS provider that is called "MyProviderXYZ":
mqsicreateconfigurableservice MB7BROKER -c JMSProviders -o JMS_MyProviderXYZ

Add a JMS provider that is called "ProviderABC", with default values for the
resource properties:
mqsicreateconfigurableservice MB7BROKER -c JMSProviders -o JMS_ProviderABC

Add a JMS provider that is called "BEAV91", specifying the name of an IBM
supplied Java class that is called
com.ibm.broker.apihandler.BEAWebLogicAPIHandler to handle vendor-specific API
calls:
mqsicreateconfigurableservice MB7BROKER -c JMSProviders -o BEAV91
-n proprietaryAPIHandler,proprietaryAPIAttr1,proprietaryAPIAttr2,proprietaryAPIAttr3
–v com.ibm.broker.apihandler.BEAWebLogicAPIHandler,weblogic.jndi.WLInitialContextFactory,
t3://19.21.194.126:7001,BEAServerName

Create a monitoring profile with the name 'mp1' to broker MB7BROKER:
mqsicreateconfigurableservice MB7BROKER -c MonitoringProfiles -o mp1

Create a PeopleSoftConnection configurable service for the PeopleSoft instance that
is running on my.peoplesoft.qa.com:
mqsicreateconfigurableservice MB7BROKER -c PeopleSoftConnection
-o myPeopleSoftAdapter.outadapter -n hostName,port -v "my.peoplesoft.qa.com",9000

3852 WebSphere Message Broker Version 7.0.0.8

Create a Resequence configurable service that uses a set of queues that are prefixed
with SYSTEM.BROKER.EDA.SET1, and with a missing message timeout of 60
seconds:
mqsicreateconfigurableservice MB7BROKER -c Resequence -o myResequenceService
-n queuePrefix,missingMessageTimeoutSeconds -v SET1,60

Create a SAPConnection configurable service for the SAP adapter
mySAPAdapter.outadapter that connects to the SAP host test.sap.ibm.com, and uses
client 001 for the connections into that server:
mqsicreateconfigurableservice MB7BROKER -c SAPConnection -o mySAPAdapter.outadapter
-n applicationServerHost,client -v test.sap.ibm.com,001

You can set the user name and password for an SAP adapter by using the
mqsisetdbparms command.

Create a security profile for a WS-Trust V1.3 STS provider by using Tivoli
Federated Identity Manager (TFIM) V6.2:
mqsicreateconfigurableservice MB7BROKER -c SecurityProfiles -o myWSTrustTFIMv62Profile
-n authentication,mapping,authorization,propagation,mappingConfig
-v "WS-Trust v1.3 STS","WS-Trust v1.3 STS","WS-Trust v1.3 STS",TRUE,
http://wstrusthost1.ibm.com:9080/TrustServerWST13/services/RequestSecurityToken

The Default Propagation profile is a predefined profile that requests only identity
propagation. For more information about creating a security profile for a WS-Trust
V1.3 STS provider, LDAP, or TFIM V6.1, see “Creating a security profile” on page
433.

Create a SiebelConnection configurable service for the Siebel adapter
mySiebelAdapter.outadapter that connects to the Siebel server "siebel://my.siebel.qa.com/
SBA_80/SSEObjMgr_enu".
mqsicreateconfigurableservice MB7BROKER -c SiebelConnection -o mySiebelAdapter.outadapter
-n connectString -v "siebel://my.siebel.qa.com/SBA_80/SSEObjMgr_enu"

You can set the user name and password for a Siebel adapter by using the
mqsisetdbparms command.

Create a TCPIPServer configurable service:
mqsicreateconfigurableservice MB7BROKER -c TCPIPServer -o ServerPort1452
-n Port,MaximumConnections,ExpireConnectionSec -v 1452,1000,15

Create a TCPIPClient configurable service:
mqsicreateconfigurableservice MB7BROKER -c TCPIPClient
-o ClientPort1452HostnameJsmith
-n Port,Hostname,AlternativeAddresses,MinimumConnections,MaximumConnections
-v 1452,jsmith.hursley.ibm.com,jones:1111;edwards,5,10

Create a TCP/IP configurable service that uses SSL:
“Configuring TCP/IP client nodes to use SSL” on page 551
“Configuring TCP/IP server nodes to use SSL” on page 553

Create a Timer configurable service that uses a queue that is prefixed with
SYSTEM.BROKER.TIMEOUT.SET1, and has a timeout of 5 seconds:
mqsicreateconfigurableservice MB7BROKER -c Timer -o myTimerService
-n queuePrefix,timeoutIntervalSeconds -v SET1,5

Create a UserDefined service:

Chapter 14. Reference 3853

mqsicreateconfigurableservice MB7BROKER -c UserDefined
-o HTTP_Timeout -n VerifyRequestTimeout -v 60

Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.
“Configuring the broker to enable a JMS provider's proprietary API” on page 748
Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java class
to interface with that proprietary API.
Related reference:
“Contents of the broker PDSE” on page 3991
After you have successfully customized the broker, the broker PDSE members have
been set up.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“FtpServer configurable service properties” on page 3794
Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.

mqsicreateexecutiongroup command:

Use the mqsicreateexecutiongroup command to add a new execution group to a
broker.

Supported platforms:

v Windows
v Linux and UNIX systems

3854 WebSphere Message Broker Version 7.0.0.8

v z/OS. Run this command by customizing and submitting BIPCREG; see
“Contents of the broker PDSE” on page 3991

Purpose:
You must start the broker before you run the mqsicreateexecutiongroup command.

Syntax:

►► mqsicreateexecutiongroup brokerSpec -e executionGroupName ►

►
-w timeoutSecs -v traceFileName

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

Parameters:

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Chapter 14. Reference 3855

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note.”

-e executionGroupName
(Required) The name of the execution group to create.

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:

0 The command completed successfully.

2 (Failure) The broker received the deployment request but was unable to

3856 WebSphere Message Broker Version 7.0.0.8

process it successfully. See the messages issued from the utility (or the
Administration log) for more information.

9 (Failure) The request has been submitted to the broker, but no response
was received before the timeout expired.

10 (Failure) Another user or application canceled the request operation before
the broker was able to process it.

98 The broker is not running.

99 One or more of the parameters that you specified is invalid.

Examples:
Create an execution group called EG1 on the broker that is hosted by the queue
manager QMGR, which is listening on fred.abc.com:1414.

mqsicreateexecutiongroup -i fred.abc.com -p 1414 -q QMGR –e EG1

Create an execution group called EG2 on the broker that is defined by the
connection parameters in file BROKER.broker

mqsicreateexecutiongroup –n BROKER.broker –e EG2

Create an execution group EG3 on the broker that is defined by the connection
parameters in file FRED.broker. Wait 5 minutes for the broker to respond, and send
output to trace.txt.

mqsicreateexecutiongroup –n FRED.broker –e EG3 –w 300 –v trace.txt

Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
Related reference:
“mqsideleteexecutiongroup command” on page 3869
Use the mqsideleteexecutiongroup command to remove an execution group from a
broker.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“Syntax diagrams” on page 3677

mqsicvp command:

Use the mqsicvp command to perform verification tests on a broker, or to verify
ODBC connections.

Supported platforms:

v Windows
v Linux and UNIX systems

When you start a broker by using the mqsistart command, this command is run
automatically to verify the component.

On z/OS, the same verification procedures are run automatically when you start a
broker.

Chapter 14. Reference 3857

You can run this command against a broker that is running, or is not running. If
the broker is not running, the verification tests are performed, but the broker is not
started.

Purpose:
The mqsicvp command completes the following actions:
v The command checks that the broker environment is set up correctly; for

example, that the installed level of Java is supported.
v The command verifies that the WebSphere MQ queues are defined and

accessible.

v Linux UNIX On Linux and UNIX systems, the command verifies that the
ODBC environment (if specified) is configured correctly.
If the ODBCINI environment variable is set, the mqsicvp command writes
warning messages to the syslog in the following situation:
– If the file to which the ODBCINI environment variable points does not exist,

or the broker does not have access to read it or write to it

If the environment variable ODBCUOINI is set, the mqsicvp command writes
warning messages to the syslog in the following situations:
– If the file that is referenced by the ODBCUOINI environment variable does

not exist, or the broker does not have access to read or write to the file
– If ODBCSYSINI is not set
– If the directory that is referenced by the ODBCSYSINI environment variable

does not contain a file called odbcinst.ini, or the broker does not have access
to read or write to this file

– If the IE02_PATH environment variable is not set

v Linux UNIX On Linux and UNIX systems, if the ODBC environment
check is successful, the command connects to all data sources that are listed in
the odbc.ini files, and that were associated with the broker by using the
mqsisetdbparms command.

Use of the command to provide information about user data sources:
Extra invocations of the mqsicvp command have been added to provide ODBC Test
Tool function. This function provides useful information and diagnostics about a
user data source, or Compares two user data sources for equivalence. These
invocations are discrete from the existing invocation of the mqsicvp command, and
are not run at broker startup.

When you use the mqsicvp command as an ODBC Test Tool, the command issues
an informational message on successful connection, providing the name of the
datasource, database type, and version. If a secondary datasource is supplied, the
mqsicvp command issues a second informational message on successful connection
to that datasource, with the same information concerning the secondary
datasource, and informing you that a comparison will be made.

When the tool is run against one data source, it completes several checks against
the ODBC interface to determine which data types and functions are supported,
together with information on the names and sizes of those data types. If any data
types or functions are not supported, they are summarized in a final informational
message.

When these tests are run against two data sources, they are run against both data
sources, and both results are shown. A final informational message states whether

3858 WebSphere Message Broker Version 7.0.0.8

the two data sources are equivalent and eligible to be used within the same
message processing node; for more information, see “Accessing databases from
ESQL” on page 2115.

Syntax:
Invocation to verify the broker

When you run the mqsicvp command with only the broker name, and no other
parameters, the command completes the following checks:
v Checks that the broker environment is set up correctly (for example, the installed

level of Java is supported).
v Verifies that the WebSphere MQ queues are defined and accessible.

v Linux UNIX On Linux and UNIX systems only, the command verifies
that the ODBC environment (if specified) is configured correctly. If the ODBCINI
environment variable is not set, ODBC environment verification is skipped. If
the ODBC environment check is completed successfully, the command then tries
to connect to all data sources that are listed in the odbc.ini files where the
mqsisetdbparms command was used to associate the data source with the broker.

►► mqsicvp brokername ►◄

Syntax:
Invocation where data source names have not been associated with the broker

When you run the mqsicvp command with parameters shown in the following
syntax diagram, the command provides ODBC test tool function. You can use the
command to display useful information about a user data source, or compare two
user data sources. On Linux and UNIX systems only, invocations of the command
that use these parameters also verify that the ODBC environment (if specified) is
configured correctly. In these cases, the command checks that the ODBCINI,
ODBCSYSINI, ODBCUOINI, and IE02_PATH variables are set.

Each data source name (DSN) is fully specified with a user name and password.

This invocation does not rely on an association between the broker and the data
source, and returns information about the data source even when there is no
association with a broker.

►► mqsicvp -n primaryDatasource -u primaryDatasourceUserId -p primaryDatasourcePassword ►

►
-c secondaryDatasource -i secondaryDatasourceUserId -a secondaryDatasourcePassword -v

►◄

Syntax:

Chapter 14. Reference 3859

Invocation where data source names were associated with the broker

This invocation requires an association between the broker and the data source
name (DSN). In order to successfully use this invocation, you must first run the
mqsisetdbparms command to identify a specific user ID and password for the
broker to use when connecting to the data source. The output from this invocation
is the same as the output from the invocation where data source names have not
been associated with the broker.

When using the mqsisetdbparms command, you can either specify the data source
name directly, or add one of the following prefixes:
v dsn::

v odbc::

These prefixes identify the type of identity being created in mqsisetdbparms, and
must be omitted when using this identity as the data source in mqsicvp. For
example:
v mqsisetdbparms MB7BROKER -n dsn::myDsn -u username -p password

v mqsicvp MB7BROKER -n myDsn

If you use mqsisetdbparms to set an execution group level identity for a data
source, the identity cannot be used in mqsicvp. Additionally, mqsicvp cannot use a
default user ID and password that has been set for all data sources.

Linux

UNIX

On Linux and UNIX systems only, invocations of the

command that use the parameters in the following syntax diagram also verify that
the ODBC environment (if specified) is configured correctly. In these cases, the
command checks that the ODBCINI, ODBCSYSINI, ODBCUOINI, and IE02_PATH
variables are set.

►► mqsicvp brokername -n primaryDatasource
-c secondaryDatasource

►

►
-v

►◄

Parameters:

brokername
(Required - if you are using an invocation containing brokername) Specify a
broker name to verify, or the broker name with which the primaryDatasource
is associated.

Linux

UNIX

All names are case sensitive on Linux and UNIX systems.

-n primaryDatasource
(Required if you are using an invocation containing primaryDatasource) Name
of the ODBC connection to verify.

-u primaryDatasourceUserId
(Required if you have not previously associated the data source name with the
broker) User name with which to connect to the primaryDatasource.

3860 WebSphere Message Broker Version 7.0.0.8

-p primaryDatasourcePassword
(Required if you have not previously associated the data source name with the
broker) Password used with the primaryDatasourceUserId.

-c secondaryDatasource
(Optional) If two data sources are being compared for equivalence, this is the
second ODBC connection name.

-i secondaryDatasourceUserId
(Optional) User name with which to connect to the secondaryDatasource.

-a secondaryDatasourcePassword
(Optional) Password used with the secondaryDatasourceUserId.

-v (Optional) Causes extra, untranslated, diagnostics related to supported CASTS
to be output by the command.

Authorization:
For information about authorizations that are specific to operating systems, see the
following topics:

v Linux UNIX “Security requirements for Linux and UNIX platforms” on
page 3648

v Windows “Security requirements for Windows systems” on page 3651

If you enabled broker administration security, you must also set up the authority
that is described in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:

v BIP8040W: No database access (unable to connect).
v BIP8267W: Warning, there might be issues using this data source. See the

preceding messages for more information.
v BIP8268I: The two data sources supplied are compatible, and can be used in the

same Compute node.
v BIP8269W: The two data sources supplied are not compatible, and must not be

used in the same Compute node.
v BIP8270I: Connected to datasource <..multiple inserts..>
v BIP8271I: Connected to second datasource <..multiple inserts..> for comparison.
v BIP8272W: Datasource specified has not been associated with the broker.
v BIP8273I: The following datatypes and functions are not natively supported by

datasource '&1': <..multiple inserts..>
v BIP8274W: The following datatypes and functions might cause problems when

using datasource '&1' with WebSphere Message Broker: <..multiple inserts..>
v BIP8288W: Unable to read ODBCINI file 'file_name'. Check that this file exists,

and that the broker user ID has permission to read and write the file.
v BIP8289W: Unable to read ODBCSYSINI file in specified directory

'directory_name'. Check that this file exists, and that the broker user ID has
permission to read and write the file.

v BIP8290I: Verification passed for the ODBC environment.
v BIP8291W: The IE02_PATH environment variable is not set.
v BIP8292I: 'insert1' user data sources were not verified because they do not have

mqsisetdbparms credentials.
v BIP8293W: Unable to read ODBCUOINI file 'file_name'. Check that this file exists,

and that the broker user ID has permission to read and write to the file.

Chapter 14. Reference 3861

v BIP8294I: ODBC environment verification was skipped because both the
ODBCINI and ODBCUOINI environment variables are not set.

v BIP8295E: ODBCINI environment variables have not been set, or are invalid.
v BIP8296W: The ODBCSYSINI environment variable is not set.
v BIP8297W: 'environment_variable_name' file 'file_name' is empty.
v BIP8873I: Starting the component verification for broker 'broker_name'.
v BIP8874I: The component verification for 'broker_name' has finished successfully.
v BIP8875W: The component verification for 'broker_name' has finished, but one or

more checks failed.
v BIP8876I: Starting the environment verification for broker 'broker_name'.
v BIP8877W: The environment verification for broker 'broker_name' has finished,

but one or more checks failed.
v BIP8878I: The environment verification for broker 'broker_name' has finished

successfully.
v BIP8882I: Starting the WebSphere MQ verification for broker 'broker_name'.
v BIP8883W: The WebSphere MQ verification for broker 'broker_name' has finished,

but one or more checks failed.
v BIP8884I: The WebSphere MQ verification for broker 'broker_name' has finished

successfully.
v BIP8885E: Verification failed. Failed to connect to queue manager

'queue_manager_name'. MQRC: return_code MQCC: completion_code

v BIP8886I: Verification passed for queue 'queue_name' on queue manager
'queue_manager_name'.

v BIP8887E: Verification failed for queue 'queue_name' on queue manager
'queue_manager_name' while issuing 'operation'. MQRC: return_code MQCC:
completion_code

v BIP8888E: Verification failed. Failed to disconnect from queue manager
'queue_manager_name'. MQRC: return_code MQCC: completion_code

v BIP8892E: Verification failed. The installed Java level 'level_installed' does not
meet the required Java level 'level_supported'.

v BIP8893E: Verification failed for environment variable 'variable_name'. Unable to
access file 'file_name' with user ID 'user_ID'. Additional information for IBM
support: data1 data2.

v BIP8894I: Verification passed for 'broker_name'.
v BIP8895E: Verification failed. Environment variable 'variable_name' is incorrect or

missing.
v BIP8896E: Verification failed. Unable to access the registry with user ID 'user_ID'.

Additional information for IBM support: data1 data2

v BIP8897E: Verification failed. Environment variable 'variable_name' does not
match the broker name 'broker_name'.

v BIP8900I: APF Authorization check successful for file 'file_name'.
v BIP8903E: Verification failed. The APF Authorization check failed for file

'file_name'.
v BIP8904E: Verification failed. Failed to stat file 'file_name1' with return code

'return_code' and errno 'error_number'.

Examples:
Run verification checks on the broker named MB7BROKER:
mqsicvp MB7BROKER

3862 WebSphere Message Broker Version 7.0.0.8

Data Source Name (DSN) MyDB is associated with the broker MB7BROKER using
the mqsisetdbparms command:
mqsicvp MB7BROKER -n MyDB

DSNMyDB is compared against a secondary DSN MyDB2 associated with the broker
MB7BROKER using the mqsisetdbparms command:
mqsicvp MB7BROKER -n MyDB -c MyDB2

The fully qualified DSN MyDB is compared against a secondary fully qualified DSN
MyDB2 using the primary and secondary user IDs and passwords:
mqsicvp –n MyDB –u username –p password –c MyDB2 –i username2 –a password2

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Accessing databases from ESQL” on page 2115
Configure your broker and your database to support connections from message
flows.
Related reference:
“Syntax diagrams” on page 3677
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

mqsideletebroker command:

Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPDLBK; see

“Contents of the broker PDSE” on page 3991

Purpose:
The mqsideletebroker command:
v On Windows platforms, stops the service that runs the broker.
v Stops and deletes the WebSphere MQ queue manager for the broker, if

requested.
v Deletes the administrative security queues that are associated with the broker, if

requested.
v Removes the record for the component in the registry.

If you delete a broker that has WebSphere MQ publish/subscribe broker
neighbors, you must also run the clrmqbrk on each of these neighbors. You must
identify the broker that you are deleting on this command.

Chapter 14. Reference 3863

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsideletebroker command - Windows, Linux, and UNIX systems”
v “mqsideletebroker command - z/OS” on page 3865

Usage notes:
If you run the command against a component that does not exist (for example, the
component has already been deleted, or you have mistyped the component name),
the command returns with a successful completion message. The command does
not inform you that the component does not exist.

You cannot delete a broker to which you have an open connection; the command
fails. For example, if your WebSphere Message Broker Explorer session is currently
connected to a broker, you cannot delete that broker until you disconnect it.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related tasks:
“Deleting a broker” on page 930
Delete a broker using the command line on the system where the broker
component is installed.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

mqsideletebroker command - Windows, Linux, and UNIX systems:

Use the mqsideletebroker command to delete a broker on Linux, UNIX, or
Windows systems.

Syntax:

►► mqsideletebroker BrokerName
-q -w -s

►◄

Parameters:

3864 WebSphere Message Broker Version 7.0.0.8

BrokerName
(Required) The name of the broker that you want to delete. You must specify
this parameter first.

-q (Optional) Specifies that the broker's queue manager should be deleted. If you
do not specify this parameter, only the WebSphere MQ queues and broker's
data are deleted.

-w (Optional) Deletes all files related to this broker from the work path.

-s (Optional) Specify this option to delete all administrative security queues for
this broker when the broker is deleted. The queue SYSTEM.BROKER.AUTH
and the queue for every defined execution group
(SYSTEM.BROKER.AUTH.egroup_name) are deleted.

If you do not specify this option, the security queues are retained and can be
reused if you re-create the broker.

This parameter is ignored if you specify -q, which deletes the queue manager
and all its queues.

Examples:
Delete the broker and its associated queue manager:
mqsideletebroker MB7BROKER -q

Delete the broker and all its security queues that are defined on the associated
queue manager:
mqsideletebroker MB7BROKER -s

Related reference:
“Syntax diagrams” on page 3677
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

mqsideletebroker command - z/OS:

Use the mqsideletebroker command to delete a broker on a z/OS system.

Syntax:

z/OS command - BIPDLBK:

►► mqsideletebroker BrokerName
-1 -2 -s

►◄

Parameters:

Chapter 14. Reference 3865

BrokerName
(Required) The name of the broker that you want to delete. You must specify
this parameter first.

-1
(Optional) Deletes only the broker registry.

-2
(Optional) Deletes only the broker WebSphere MQ queues.

-s (Optional) Specify this option to delete all administrative security queues for
this broker when the broker is deleted. The queue SYSTEM.BROKER.AUTH
and the queue for every defined execution group
(SYSTEM.BROKER.AUTH.egroup_name) are deleted.

If you do not specify this option, the security queues are retained and can be
reused if you re-create the broker.

Examples:
Delete the broker registry for the broker CSQ1BRK on z/OS:
mqsideletebroker CSQ1BRK -1

Delete the broker CSQ2BRK and all its associated resources:
mqsideletebroker CSQ2BRK

Delete the broker and all its security queues that are defined on the associated
queue manager:
mqsideletebroker CSQ1BRK -s

Related reference:
“Syntax diagrams” on page 3677
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

mqsideleteconfigurableservice command:

Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.

You can also use the WebSphere Message Broker Explorer to delete custom-named
configurable services; however, you cannot delete IBM-defined configurable
services. See “Using the WebSphere Message Broker Explorer to work with
configurable services” on page 644 for more information.

Supported platforms:

v Windows systems
v Linux and UNIX systems

3866 WebSphere Message Broker Version 7.0.0.8

v z/OS. Run this command by customizing and submitting BIPDLCS; see
“Contents of the broker PDSE” on page 3991

Purpose:
Use this command to delete a configurable service. Use the mqsireportproperties
command to view the configurable services that are defined.

Usage notes:

v Before you run this command, ensure that the broker is running.
v After you have run this command, stop and restart the broker to ensure that

deleted broker resources and properties are not being used.

Syntax:

►► mqsideleteconfigurableservice BrokerName -c ConfigurableService ►

► -o ObjectName ►◄

Parameters:

BrokerName
(Required) The name of the broker to modify. This parameter must be the first
parameter.

-c ConfigurableService
(Required) The type of configurable service. Use the mqsireportproperties
command to view the list of all defined services.

For a list of supplied configurable services, and their properties and values, see
“Configurable services properties” on page 3766.

-o ObjectName
(Required) The name of the object for which you want to delete the properties.
Use the mqsireportproperties command to view the list of properties that you
can delete.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses
v BIP8012 Unable to connect to system components
v BIP8014 Component cannot be created
v BIP8073 Invalid broker name
v BIP8984 Configurable service was not found

Chapter 14. Reference 3867

Examples:
Delete a CICSConnection configurable service for broker MB7BROKER:
mqsideleteconfigurableservice MB7BROKER -c CICSConnection
-o myCICSConnectionService

Delete a CORBA configurable service for broker MB7BROKER:
mqsideleteconfigurableservice MB7BROKER -c CORBA -o myCORBAService

Delete an EmailServer configurable service for broker MB7BROKER called
myEmailConfigurableServiceName that the EmailInput node or message flow is
referring to at runtime:
mqsideleteconfigurableservice MB7BROKER -c EmailServer
-o myEmailConfigurableServiceName

Delete an FtpServer configurable service for broker MB7BROKER:
mqsideleteconfigurableservice MB7BROKER -c FtpServer -o Server01

Delete an IMS configurable service called myIMSconnectService:
mqsideleteconfigurableservice MB7BROKER -c IMSConnect
-o myIMSconnectService

Delete a JavaClassLoader configurable service:
mqsideleteconfigurableservice MB7BROKER -c JavaClassLoader -o myJavaClassLoader

Delete a JMS provider configurable service called MyProviderXYZ:
mqsideleteconfigurableservice MB7BROKER -c JMSProviders -o JMS_MyProviderXYZ

Delete a monitoring profile:
mqsideleteconfigurableservice MB7BROKER -c MonitoringProfiles -o myMonitoringProfile

Delete the PeopleSoftConnection configurable service that is associated with
myPeopleSoftAdapter.outadapter:
mqsideleteconfigurableservice MB7BROKER -c PeopleSoftConnection
-o myPeopleSoftAdapter.outadapter

Delete a security profile for LDAP use:
mqsideleteconfigurableservice MB7BROKER -c SecurityProfiles -o MyLDAPProfile

Delete the SiebelConnection configurable service that is associated with
mySiebelAdapter.outadapter:
mqsideleteconfigurableservice MB7BROKER -c SiebelConnection -o mySiebelAdapter.outadapter

Delete a TCPIPClient configurable service:
mqsideleteconfigurableservice MB7BROKER -c TCPIPClient
-o ClientPort1452HostnameJsmith

Delete a TCPIPServer configurable service:
mqsideleteconfigurableservice MB7BROKER -c TCPIPServer -o ServerPort1452

Related concepts:
“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.

3868 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Contents of the broker PDSE” on page 3991
After you have successfully customized the broker, the broker PDSE members have
been set up.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

mqsideleteexecutiongroup command:

Use the mqsideleteexecutiongroup command to remove an execution group from a
broker.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPDLEG; see

“Contents of the broker PDSE” on page 3991

Purpose:
You must start the broker before you can issue this command.

Syntax:

►► mqsideleteexecutiongroup brokerSpec -e executionGroupName ►

►
-w timeoutSecs -v traceFileName

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

Chapter 14. Reference 3869

Parameters:

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note” on
page 3871.

-e executionGroupName
(Required) The name of the execution group to delete.

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

3870 WebSphere Message Broker Version 7.0.0.8

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:

0 The command completed successfully.

2 (Failure) The broker received the deployment request but was unable to
process it successfully. See the messages issued from the utility (or the
Administration log) for more information.

9 (Failure) The request has been submitted to the broker, but no response
was received before the timeout expired.

10 (Failure) Another user or application canceled the request operation before
the broker was able to process it.

98 The broker is not running.

99 One or more of the parameters that you specified is invalid.

Examples:
Delete an execution group called EG1 on the broker defined by connection
parameters specified by the file BKR1.broker.

mqsideleteexecutiongroup –n BKR1.broker –e EG1

Delete an execution group EG2 on the broker specified by the file FRED.broker. Wait
5 minutes for the broker to tidy up related resources, and send output to
trace.txt.

mqsideleteexecutiongroup –n FRED.broker –e EG2 –w 300 –v trace.txt

Delete the execution group EG3 on the locally defined broker MYBROKER.
mqsideleteexecutiongroup MYBROKER –e EG3

Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can

Chapter 14. Reference 3871

complete specific tasks against that broker and its resources.
Related reference:
“mqsicreateexecutiongroup command” on page 3854
Use the mqsicreateexecutiongroup command to add a new execution group to a
broker.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“Syntax diagrams” on page 3677

mqsideploy command:

Use the mqsideploy command to make a deployment request to the broker.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command in one of two ways - as a console command, or by

customizing and submitting BIPDPLY; see “Contents of the broker PDSE” on
page 3991

Purpose:
Use the mqsideploy command to make deployment requests of all types from a
batch command script, without the need for manual interaction.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsideploy command - Windows, Linux, and UNIX systems” on page 3873
v “mqsideploy command - z/OS” on page 3876

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:

0 The command completed successfully.

2 (Failure) The broker received the deployment request but was unable to
process it successfully. See the messages issued from the utility (or the
Administration log) for more information.

9 (Failure) The request has been submitted to the broker, but no response
was received before the timeout expired.

10 (Failure) Another user or application canceled the request operation before
the broker was able to process it.

98 The broker is not running.

3872 WebSphere Message Broker Version 7.0.0.8

99 One or more of the parameters that you specified is invalid.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

mqsideploy command - Windows, Linux, and UNIX systems:

Use the mqsideploy command on Windows, Linux, and UNIX systems to make a
deployment request to the broker.

Syntax:

►► mqsideploy brokerSpec ►

►
-e executionGroupName -a BARFileName

-m
-d deployedObjects

►

►
-w timeoutSecs -v traceFileName

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

Parameters:

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

Chapter 14. Reference 3873

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

-a BARFileName
(Optional) This parameter specifies the name of the broker archive (BAR) file
that is to be used for deployment of the message flow and other resources. You
must also specify the -e parameter with this option.

-d deployedObjects
(Optional) This parameter describes the set of objects that you want to remove
from the execution group. You can specify multiple files to delete by separating
the filenames with a colon (:).

You can specify objects of all types, but if you specify an ambiguous object
name (for example, "top", when both "top.dictionary" and "top.cmf" are
deployed to the same execution group), the entire command fails with the
message BIP1089. In these circumstances, you must specify the fully qualified
name of the objects to remove; for example, "top.dictionary:top.cmf".

3874 WebSphere Message Broker Version 7.0.0.8

-e executionGroupName
(Optional) This parameter specifies the name of the execution group to which
to deploy. You must also specify the -a parameter with this option.

-m
(Optional) This parameter specifies deployment of complete information:

The default operation is a delta or incremental deployment. Use the -m
parameter to override the default operation and run a complete deployment.
v For a BAR file deployment, -m removes all currently-deployed message flows

and message sets from the execution group as part of the deployment. If you
do not set -m, the contents of the BAR file are deployed in addition to what
is already deployed to the execution group. Any deployed objects with the
same name as an item inside the BAR file are replaced by the version inside
the BAR file.

v For a remove message flow or message set operation, the -m parameter is ignored.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

-w timeoutSecs
(Optional) This parameter specifies the maximum time in seconds that the
command waits for the broker to complete the request before returning.

You can set this parameter to a value in the range 1 - 2 145 336 164. If you do
not provide a timeoutValue value, or you set a value less than 1 or greater than
2 145 336 164 is specified, an error is returned.

Set this parameter to a value greater than the sum of the configuration timeout
parameters ConfigurationChangeTimeout and InternalConfigurationTimeout
that you specified for the broker, if you want to ensure that a response is
received within the timeoutValue period. If you set a smaller value, the response
returned might indicate that the state of the deploy request is unknown.

Examples:
The following examples show the use of the -n parameter to define the connection
parameters for the broker; if you prefer, you can specify the i, p, and q parameters.
If the broker is on the local computer, you can specify it by name.

Deploy a BAR file to the broker identified by the connection parameters in the file
b1.broker, and remove all currently-deployed message flows and message sets
from the execution group as part of the deployment. Allow 10 minutes for the
broker to reply.
mqsideploy -n b1.broker -e default -a mybar.bar -m -w 600

Remove the message flow top and the dictionary bar from the execution group
default on the broker identified by the connection parameters in the file
b1.broker.
mqsideploy –n b1.broker –e default –d top.cmf:bar.dictionary

For information about using this command with SSL protected channels, see You
want to run a command that uses SSL to administer a remote broker over a
secured channel
Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are

Chapter 14. Reference 3875

packaged in broker archive (BAR) files for deployment.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“Syntax diagrams” on page 3677
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.

mqsideploy command - z/OS:

Use the mqsideploy command on z/OS to make a deployment request to a local
broker.

Syntax:

z/OS command - BIPDPLY:

►► mqsideploy brokerSpec ►

► -e executionGroupName -a BARFileName
-m

-d deployedObjects

►

►
-w timeoutSecs -v traceFileName

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

z/OS console command:
Synonym: dp

►► deploy
dp

e=executionGroupName a=BARFileName
m=yes

d=deployedObjects

►

►
w=timeoutValue v=traceFileName

►◄

3876 WebSphere Message Broker Version 7.0.0.8

Parameters:

brokerSpec
You must specify at least one parameter to identify the target broker for this
command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker. If you
specify a queue manager, it must be defined on the local computer.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is irrelevant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note” on
page 3878.

-a BARFileName
(Optional) This parameter specifies the name of the broker archive (BAR) file
that is to be used for deployment of the message flow and other resources. You
must also specify the -e parameter with this option.

The BAR file can be in a local or remote file system, if the user ID or the
broker that is running the command can access the file and read it.

-d deployedObjects
(Optional) This parameter describes the set of objects that you want to remove
from the execution group. You can specify multiple files to delete by separating
the filenames with a colon (:).

You can specify objects of all types, but if you specify an ambiguous object
name (for example, "top", when both "top.dictionary" and "top.cmf" are
deployed to the same execution group), the entire command fails with the

Chapter 14. Reference 3877

message BIP1089. In these circumstances, you must specify the fully qualified
name of the objects to remove; for example, "top.dictionary:top.cmf".

-e executionGroupName
(Optional) This parameter specifies the name of the execution group to which
to deploy. You must also specify the -a parameter with this option.

-m (Optional) This parameter specifies deployment of complete information:

The default operation is a delta or incremental deployment. Use the -m
parameter to override the default operation and run a complete deployment.
v For a BAR file deployment, -m removes all currently-deployed message flows

and message sets from the execution group as part of the deployment. If you
do not set -m, the contents of the BAR file are deployed in addition to what
is already deployed to the execution group. Any deployed objects with the
same name as an item inside the BAR file are replaced by the version inside
the BAR file.

v For a remove message flow or message set operation, the -m parameter is ignored.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

-w timeoutSecs
(Optional) This parameter specifies the maximum time in seconds that the
command waits for the broker to complete the request before returning.

You can set this parameter to a value in the range 1 - 2 145 336 164. If you do
not provide a timeoutValue value, or you set a value less than 1 or greater than
2 145 336 164 is specified, an error is returned.

Set this parameter to a value greater than the sum of the configuration timeout
parameters ConfigurationChangeTimeout and InternalConfigurationTimeout
that you specified for the broker, if you want to ensure that a response is
received within the timeoutValue period. If you set a smaller value, the response
returned might indicate that the state of the deploy request is unknown.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Examples:
The following examples show the use of the -n parameter to define the connection
parameters for the broker. If the broker is on the local computer, you can specify it
by name.

Deploy a BAR file to the broker identified by the connection parameters in the file
b1.broker, and remove all deployed message flows and message sets from the
execution group as part of the deployment. Allow 10 minutes for the broker to
reply.
mqsideploy -n broker1.broker -e default -a mybar.bar -m -w 600

3878 WebSphere Message Broker Version 7.0.0.8

Remove the message flow top and the dictionary bar from the execution group
default on the broker identified by the connection parameters in the file
b1.broker.
mqsideploy –n b1.broker –e default –d top.cmf:bar.dictionary

Deploy a BAR file by using the console command:
F MQ01BRK,dp e=default,a=flows.bar

Related concepts:
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“Syntax diagrams” on page 3677
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.

mqsiexplain command:

Use the mqsiexplain command to display the contents of a WebSphere Message
Broker BIP message.

Supported platforms:

v Windows
v Linux and UNIX systems

Purpose:
The mqsiexplain command returns the full details of a BIP message that you
specify, including the user response and explanation sections.

Syntax:

►► mqsiexplain messageNumber ►◄

Parameters:

messageNumber
(Required) The BIP message for which you want to display details. You can
identify the message by using a number only (for example, 2393), or you can
precede the number with "BIP" (for example, BIP2393). You can also include
the severity marker (I, E, or W) at the end of the number (for example,
BIP2393E).

Authorization:
The user ID that is used to run this command must have Administrator authority
on the local system.

Chapter 14. Reference 3879

Responses:
This command shows the full contents of the specified message, including the user
response and explanation sections. Where inserts are expected in the message, this
command substitutes them with "insert#".

Examples:
The following example is used to display the full content of error message BIP2393:
mqsiexplain 2393

The command returns the following information:
BIP2393E: Database error: ODBC return code ’insert1’ from data source ’insert2’ using ODBC driver manager ’insert3’.
The broker received an error when processing a database operation. The ODBC return code was ’insert1’. See the following messages for information obtained from the database about this error.
Use the following messages to determine the cause of the error. Typical problems are an incorrect data source, or table names. Correct either the database or the broker configuration.

BIP8071I: Successful command completion.

The following example is used to display the full content of error message BIP3595:
mqsiexplain BIP3595E

The command returns the following information:
BIP3595E: The connection with the ID: ’insert1’ on Hostname: ’insert2’ and Port: ’insert3’ exists but the node timed out waiting for data to arrive on the connection.
There was a connection available with the specified details but no data arrived within the permitted length of time.
Ensure that the end application is running correctly and sending data on this connection.

BIP8071I: Successful command completion.

Related tasks:
“Are there any error messages or return codes that explain the problem?” on page
3350
You can find details of error messages and return codes in several places.
Related reference:
Diagnostic messages
Diagnostic messages are listed in this section in numeric order, grouped according
to the component to which they relate.
“Troubleshooting” on page 6864
Use the reference information in this section to help you diagnose errors in
WebSphere Message Broker.
“Syntax diagrams” on page 3677

mqsiformatlog command:

Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPFMLG; see

“Contents of the broker PDSE” on page 3991

Purpose:
The mqsiformatlog command interprets an input log file that has been created on
any system in a platform-independent code page, utf-8. Use this command to
produce formatted output from input log files transferred from other systems to

3880 WebSphere Message Broker Version 7.0.0.8

the system on which you issue the command. If you use this facility, ensure that
you use a file transfer program that does not convert the data (for example, by
specifying a binary transfer option).

You can direct the output to a file, or to the command shell.

Syntax:

►► mqsiformatlog -i Inputfilename
-o Outputfilename

►◄

Parameters:

-i Inputfilename
(Required) The filename of the XML log file that is to be formatted. This file is
created by the mqsireadlog command; it is encoded in utf-8.

-o Outputfilename
(Optional) The filename of the file into which the formatted log output is to be
written. If this is not specified, the formatted log data is written to stdout.

Output written by this command (to file or stdout) is written in a code page
suitable for the current user locale.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Examples:
mqsiformatlog -i trace.xml -o formattrace.log

The following extract shows the output that is generated by this command:
Timestamps are formatted in local time, local time is GMT.
.
.
.
2003-02-12 12:57:21.895999 388 UserTrace BIP2638E:
MQPUT to queue ’SYSTEM.BROKER.EXECUTIONGROUP.REPLY’ on queue manager
’MB7QMGR’: MQCC=0, MQRC=0; node ConfigurationMessageFlow.outputNode’.
The node ’ConfigurationMessageFlow.outputNode’ attempted
to write a message to the specified queue ’SYSTEM.BROKER.EXECUTIONGROUP.REPLY’
connected to queue manager ’MB7QMGR’.
The MQCC was 0 and the MQRC was 0.
No user action required.

2003-02-12 12:57:21.895999 388 UserTrace BIP2622I:
Message successfully output by output node ’ConfigurationMessageFlow.outputNode’
to queue ’SYSTEM.BROKER.EXECUTIONGROUP.REPLY’ on queue manager
’MB7QMGR’. The WebSphere MQ output node ConfigurationMessageFlow.outputNode’
successfully wrote an output message to the specified queue

Chapter 14. Reference 3881

SYSTEM.BROKER.EXECUTIONGROUP.REPLY connected to queue manager MB7QMGR.
No user action required.
.
.
.
Threads encountered in this trace: 335 388

Related tasks:
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

mqsilist command:

Use the mqsilist command to list installed brokers and their associated resources.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command in one of two ways - as a console command, or by

customizing and submitting BIPLIST; see “Contents of the broker PDSE” on
page 3991

Purpose:
The mqsilist command reports on the configuration of one or more brokers. Your
choice of parameters on the command determines which resources are included in
the response, and the level of detail that the response provides.

The command returns information about the following resources:
v Local and remote brokers
v Execution groups defined on the brokers
v All resources that you have deployed to each execution group, including

message flows and message sets
v Runtime versioning information for those resources, if applicable

You can also specify that you want the command to recursively examine resources
and return information, so that you need only specify a single resource to get
details about its children.

You can choose the level of detail that you want returned for each resource
requested:
v A list of resource names. This level of output is compatible with previous

versions of WebSphere Message Broker.

3882 WebSphere Message Broker Version 7.0.0.8

v A one line summary for each resource, including name and active or inactive
status.

v A detailed view of each resource, including build level and platform for brokers,
and resources that have been deployed to each execution group.

On Windows platforms, Linux, and UNIX systems, the command also reports
whether a broker is configured as a WebSphere MQ service.

Only a subset of this information is returned if the broker is not running.

On Windows, Linux, and UNIX systems, the output is directed to STDOUT.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsilist command - Windows, Linux, and UNIX systems”
v “mqsilist command - z/OS” on page 3888

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
“Verifying brokers” on page 630
Use the mqsilist command to display the brokers that you have created on your
computer.
Related reference:
“Syntax diagrams” on page 3677

mqsilist command - Windows, Linux, and UNIX systems:

Use the mqsilist command to list information about one or more brokers and their
deployed resources.

Syntax:

Chapter 14. Reference 3883

►► mqsilist
-a
brokerSpec

-e egName

-d detailLevel
►

►
-r -v traceFileName -w timeoutSecs

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

If you specify this command with no parameters, a summary is returned for broker
that you have created in the current installation on this computer.

The current installation is associated with the command console that you have
opened (on Windows), or the mqsiprofile that is active (on Linux and UNIX
systems).

Parameters:

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

3884 WebSphere Message Broker Version 7.0.0.8

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

-a (Optional) List all the brokers installed on the local computer, in all
installations.

If you specify this option on a computer on which you have installed versions
earlier than Version 7.0, only brokers are listed for those versions, if they exist;
the level of detail corresponds to -d 0 for these earlier brokers, even if you
have specified (or allowed to default) a different level of detail on this
command. If you want to view information about other components that you
have created in earlier versions, you must use the corresponding version of the
mqsilist command.

You cannot use this option to list information about remote brokers and their
resources.

-d detailLevel
(Optional) Specify the level of detail to be returned; the default value is 1.
v 0 returns only broker name and the names of their associated queue

managers (this information is the same as the detail provided in previous
versions). This list of local brokers is returned without connecting to a queue
manager, and remote broker options are not supported.
Note that while they are starting, execution groups might report a PID of 0.

v 1 returns a one line summary of each resource.
v 2 returns detailed information about each resource.

-e egName
(Optional) Selects an execution group within a broker. Specify the label of the
execution group for which you want to list message flows. The command
returns a list of message flows assigned to the specified execution group within
the broker.

The specified broker must be active for message flow information to be
returned.

-r (Optional) Run the command recursively; display information about
subcomponents.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

Chapter 14. Reference 3885

|
|

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

Examples:
The following example lists all brokers created in the current installation:
mqsilist -d0

The following responses are generated:
BIP8099I: Broker: MB7BROKER - MB7QMGR
BIP8099I: Broker: test - testqm

BIP8071I: Successful command completion.

The following example requests a summary of the execution groups that are
defined on a specific broker. (The -d parameter is not specified and therefore has
the default value of 1.)
mqsilist MB7BROKER

The following responses are generated:
BIP1286I: Execution group ’ello’ on broker ’MB7BROKER’ is running.

BIP8071I: Successful command completion.

Display detailed information about all resources for brokers on the local computer:
mqsilist -a -r -d2

The following responses are generated:
BIP1280I: The number of runtime installations on this machine is ’1’.

7.0.0.0 : C:\Program Files\IBM\MQSI\7.0

===================================
BIP1284I: Broker ’MB7BROKER’ on queue manager ’MB7QMGR’ is running.

Broker version: ’7000’ (build ’S000-L90708’)
Platform: ’Microsoft Windows XP’, ’5.1 build 2600 Service Pack 3’, ’x86’
Process ID: ’3116’
Short description: ’’
Long description: ’’

BIP1286I: Execution group ’ello’ on broker ’MB7BROKER’ is running.

Number of message flows that are enabled to run: ’2’.
Number of applications that are enabled to run: ’1’.
Process ID: ’4220’
UUID: ’45ef67ac-2201-0000-0080-f364270ba85e’
Short description: ’’
Long description: ’’

BIP1288I: Message flow ’simpleflow’ on execution group ’ello’ is running.

Additional thread instances: ’0’
Deployed: ’24/07/09 16:37’ in Bar file ’C:\Documents and Settings\Matt\My Documents\BAR Files\test.bar’
Last edited: ’08/08/07 17:42’
User-defined property names:
Keywords:

Author = ’Matt’
Information = ’This flow simply removes messages from SYSTEM.DEFAULT.LOCAL.QUEUE’

3886 WebSphere Message Broker Version 7.0.0.8

Usage = ’This usage is buried inside the CMF’
VERSION = ’v1.1’

BIP1288I: Message flow ’MyApplicationFlow’ on execution group ’ello’ is running.

Additional thread instances: ’0’
Deployed: ’27/07/09 20:15’ in Bar file ’C:\Documents and Settings\Matt\My Documents\BAR Files\overridden.bar’
Last edited: ’12/06/07 17:06’
User-defined property names:
Keywords:

BIP1290I: File ’Swift_2002_MT103.dictionary’ is deployed to execution group ’ello’.

Deployed: ’27/07/09 16:47’ in Bar file ’C:\Documents and Settings\Matt\My Documents\BAR Files\SWIFT.bar’
Last edited: ’06/09/05 15:17’.
Keywords:

===================================
BIP1285I: Broker ’test’ on queue manager ’testqm’ is stopped.

Start the broker for more information.

BIP8071I: Successful command completion.

The following response is generated when a broker is a multi-instance broker in
Standby mode:
BIP1280I: The number of runtime installations on this machine is ’1’.

7.0.0.0 : C:\Program Files\IBM\MQSI\7.0

===================================
BIP1292I: Broker ’MIBROKER1’ is a multi-instance broker .
The broker instance is running in Standby-mode on multi-instance
Queue manager 'MIQMGR1’

More information will be available when the broker instance is active.

BIP8071I: Successful command completion

The following response is generated when a broker is a multi-instance broker in
Active mode:
BIP1280I: The number of runtime installations on this machine is ’1’.

7.0.0.0 : C:\Program Files\IBM\MQSI\7.0

===================================
BIP1293I: Broker ’MIBROKER1’ is a multi instance broker .
The broker instance is active and running on multi-instance
Queue manager 'MIQMGR1’

BIP1286I: Execution group ’default’ on broker ’MIBROKER1’ is running.

Number of message flows that are enabled to run: ’1’.
Number of applications that are enabled to run: ’1’.
Process ID: ’4876’
UUID: ’45ef7be4-2203-0000-0080-b764270fa96c’
Short description: ’’
Long description: ’’

BIP1288I: Message flow ’jmsflow’ on execution group ’default’ is running.

Additional thread instances: ’0’

Chapter 14. Reference 3887

Deployed: ’26/09/09 18:21’ in Bar file ’C:\Documents and Settings\JDoe\My Documents\
BAR Files\test.bar’

Last edited: ’24/09/09 12:16’
User-defined property names:
Keywords:

Author = ’JDoe’
Information = ’This flow runs a simple jms scenario’
Usage = ’Takes JMS input and writes to an MQOutput node’
VERSION = ’v2.3’

BIP8071I: Successful command completion.

The following response is generated when a broker is a multi-instance broker being
started as a WebSphere MQ service:
BIP1296I: Broker ’HABK1’ is a multi-instance broker that will be started as a WebSphere MQ service.
Multi-instance queue manager ’HAQM1’ is stopped.
BIP1298I: Broker ’BK3’ will be started as a WebSphere MQ service.
Queue manager ’QM3’ is stopped.

:

Related reference:
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.
“Syntax diagrams” on page 3677

mqsilist command - z/OS:

Use the mqsilist command to list information about one or more brokers and their
deployed resources.

Syntax:

z/OS command - BIPLIST:

►► mqsilist
brokerSpec

-e egName
-d detailLevel

►

►
-r -v traceFileName -w timeoutSecs

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

z/OS console command:
Synonym: l

3888 WebSphere Message Broker Version 7.0.0.8

►► list
l e=egName r=yes d=detailLevel

►◄

If you specify this command with no parameters, a list of the execution groups is
displayed.

Parameters:

brokerSpec
You must specify at least one parameter to identify the target broker for this
command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker. If you
specify a queue manager, it must be defined on the local computer.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is irrelevant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note” on
page 3890.

-d detailLevel
(Optional) Specify the level of detail to be returned; the default value is 1.

Chapter 14. Reference 3889

v 0 returns only broker name and the names of their associated queue
managers (this information is the same as the detail provided in previous
versions).
Note that while they are starting, execution groups might report a PID of 0.

v 1 returns a one line summary of each resource.
v 2 returns detailed information about each resource.

-e egName
(Optional) Selects an execution group within a broker. Specify the label of the
execution group for which you want to list message flows. The command
returns a list of message flows assigned to the specified execution group within
the broker.

The specified broker must be active for message flow information to be
returned.

-r (Optional) Run the command recursively; display information about
subcomponents.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Examples:
Use the console command to request a summary of the execution groups for the
broker. (The d= parameter is not specified and therefore has the default value of 1.)
F MQP1BRK,list

The following responses are generated:
BIP1286I: Execution group ’ello’ on broker ’MQP1BRK’ is running.

BIP8071I: Successful command completion.

Use the console command to list the message flows in the specified execution
group:
F MQP1BRK,list e=’exgrp1’

The responses generated are in the following form:
BIP1288I: Message flow ’simpleflow’ on execution group ’ello’ is running.

BIP8071I: Successful command completion

3890 WebSphere Message Broker Version 7.0.0.8

For examples of running the command by using BIPLIST, and the responses that
are generated, see “mqsilist command - Windows, Linux, and UNIX systems” on
page 3883.

:

Related reference:
“mqsilist command” on page 3882
Use the mqsilist command to list installed brokers and their associated resources.
“Syntax diagrams” on page 3677

mqsimanagexalinks command:

Use the mqsimanagexalinks command to set up links for a supported database on
and UNIX systems for XA coordination under the control of WebSphere MQ.

Supported platforms:

v Linux and UNIX systems

Purpose:
The command sets up or removes the links required by WebSphere MQ to include
databases in XA transactions.

You can also use the mqsimanagexalinks command to return a list of supported
ODBC drivers.

Run the mqsimanagexalinks command before you create the database that you
want the broker to connect to. You can run the command before or after you install
your database; specify either the intended or the actual database installation
directory where indicated.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsimanagexalinks command - Linux and UNIX systems”
Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Configuring databases for global coordination of transactions” on page 665
If your message flow interacts with a user database, and you want to globally
coordinate the updates made to the database with other actions within the message
flow, configure your databases for global coordination.
“Configuring ODBC connections for globally coordinated transactions” on page
699
Configure the definition of your ODBC databases to the transaction manager (the
queue manager).

mqsimanagexalinks command - Linux and UNIX systems:

Set up links for a supported database on Linux and UNIX systems for XA
coordination under the control of WebSphere MQ.

Syntax:

Chapter 14. Reference 3891

►► mqsimanagexalinks create
remove

ODBC_driver_type ►

► broker_installation_directory
database_installation_directory

►◄

►► mqsimanagexalinks list ►◄

Parameters:

create
(Required) Specify that the required links are created.

remove
(Required) Specify that the defined links are removed.

ODBC_driver_type
(Required) The ODBC driver type. See the list command for the list of ODBC
drivers that are supported.

This parameter is required if you specify create, and is optional if you specify
remove. If you specify remove and omit this parameter, all links are removed.

broker_installation_directory
(Required) The full path to your broker installation.

This parameter is required only if you specify create.

database_installation_directory
(Optional). The full path to your database installation.

This parameter is required only if you specify create, and have created a DB2
database.

list
(Required) Display the list of supported ODBC driver versions. Use the output
to check what values you can specify for ODBC_driver_type.

For example, the following output is generated on AIX:

Supported information for the create option.

Supported version of the ODBC drivers Version number for mqsimanagexalinks

DB2 DB2

DataDirect Connect for ODBC V6.0 DD60

Supported information for the remove option.

Supported version of the ODBC drivers Version number for mqsimanagexalinks

DB2 DB2

DataDirect Connect for ODBC V5.2 DD52

DataDirect Connect for ODBC V5.3 DD53

DataDirect Connect for ODBC V6.0 DD60

Links created in /var/mqm/exits:

3892 WebSphere Message Broker Version 7.0.0.8

Links are only created in /var/mqm/exits on Linux on x86. The links created for
each supported database are shown here.

DB2

database_install_dir/lib32/libdb2.so

database_install_dir/lib32/libdb2.so.1

broker_install_dir/sample/xatm/db2swit

Oracle

broker_install_dir/ODBC/V6.0/lib/libUKicu24.so

broker_install_dir/ODBC/V6.0/lib/UKora24.so

broker_install_dir/ODBC/V6.0/lib/UKoradtc24.so

broker_install_dir/ODBC/V6.0/lib/libodbcinst.so

Sybase

broker_install_dir/ODBC/V6.0/lib/libUKicu24.so

broker_install_dir/ODBC/V6.0/lib/UKase24.so

broker_install_dir/ODBC/V6.0/lib/UKasedtc24.so

broker_install_dir/ODBC/V6.0/lib/libodbcinst.so

Links created in /var/mqm/exits64:
Links are created in /var/mqm/exits64 on all Linux and UNIX systems except on
Linux on x86. The links created are shown later in this section for each supported
database. Not all links are created on all platforms; the links created are
determined by the database support on each platform. In the links shown, x
represents the relevant library extension on your platform.

DB2

database_install_dir/lib64/libdb2.x

database_install_dir/lib64/libdb2.x.1

broker_install_dir/sample/xatm/db2swit

Where .x is the library extension on your platform: .a on AIX or .so on all
other platforms.

Oracle

broker_install_dir/ODBC/V6.0/lib/libUKicu24.x

broker_install_dir/ODBC/V6.0/lib/UKora24.so

broker_install_dir/ODBC/V6.0/lib/UKoradtc24.so

broker_install_dir/ODBC/V6.0/lib/libodbcinst.x

Where .x is the library extension on your platform: .a on AIX or .so on all
other platforms.

Sybase

broker_install_dir/ODBC/V6.0/lib/libUKicu24.x

broker_install_dir/ODBC/V6.0/lib/UKase24.so

broker_install_dir/ODBC/V6.0/lib/UKasedtc24.so

broker_install_dir/ODBC/V6.0/lib/libodbcinst.x

Where .x is the library extension on your platform: .a on AIX or .so on all
other platforms.

Authorization:
The user ID with which you run this command must be root.

Chapter 14. Reference 3893

Examples:
To create the links required for DB2:
mqsimanagexalinks create DB2 /opt/IBM/mqsi/V7.0 /opt/IBM/db2/V9.1

To create the links required for Oracle and Sybase databases (these databases use
the DataDirect V5.3 drivers):
mqsimanagexalinks create DD60 /opt/IBM/mqsi/V7.0

To remove the links required for Oracle and Sybase databases (these databases
previously used the DataDirect V5.3 drivers):
mqsimanagexalinks remove DD53

To list the supported database drivers:
mqsimanagexalinks list

Related tasks:
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Configuring databases for global coordination of transactions” on page 665
If your message flow interacts with a user database, and you want to globally
coordinate the updates made to the database with other actions within the message
flow, configure your databases for global coordination.
“Configuring ODBC connections for globally coordinated transactions” on page
699
Configure the definition of your ODBC databases to the transaction manager (the
queue manager).
Related reference:
“Syntax diagrams” on page 3677

mqsimigratecomponents command:

Use the mqsimigratecomponents command to migrate a component from a
previously installed version of the product to another version on the same
computer.

Supported platforms:

v Windows.
v Linux and UNIX systems.
v z/OS. Run this command by customizing and submitting BIPMGCMP.

Purpose:
Migrate components to WebSphere Message Broker Version 7.0 from Version 6.1 or
from Version 6.0:
v If you are migrating from Version 6.1 you must have installed Version 6.1.0.3

(Fix Pack 3) or later.
If you are using WebSphere Application Server with WebSphere Message Broker,
or you have publish/subscribe applications that use the SubIdentity option, you
must upgrade WebSphere Message Broker to Fix Pack 4 before you can migrate
to WebSphere Message Broker Version 7.0.

v If you are migrating from Version 6.0, you must have installed Version 6.0.0.9
(Fix Pack 9) or later.
If you are using WebSphere Application Server with WebSphere Message Broker,
or you have publish/subscribe applications that use the SubIdentity option, you

3894 WebSphere Message Broker Version 7.0.0.8

must upgrade WebSphere Message Broker Version 6.0 or WebSphere Event
Broker Version 6.0 to Fix Pack 10 before you can migrate to WebSphere Message
Broker Version 7.0.

When you migrate a broker to Version 7.0, its configuration is read from the broker
database, and migrated to an internal repository that is maintained by the
migrated broker. The broker database used by the Version 6.1 or Version 6.0 broker
is no longer required by the Version 7.0 broker. When you have successfully
completed migration, you can delete the database, or uninstall the database
product, if you have no further use of it.

You can also use the mqsimigratecomponents command to return a broker from
Version 7.0 to an earlier version to reverse the effects of forward migration;
however, the broker is restored with the configuration that was active at the time
of the forward migration, and updates that you have made after migration are not
reflected in the database that is associated with the broker at the earlier version.
You must retain the relevant broker database to be able to use the broker at the
earlier version.

You must run this command from whichever version of the installed product is the
later, regardless of whether it is the source version or the target version.

You must have an installation of the product at both target and source versions,
with the required component code installed, to issue this command successfully.

Before you start migration, stop the broker and all active debug sessions in the
WebSphere Message Broker Toolkit. You cannot migrate message flows that are
being debugged.

Specify appropriate options on this command to perform one of the following
actions:
v Check that the component is suitable for the required migration, without

changing that component (-c).
v Move a component to a different version, in full or part (-s and -t).
v Undo a failed migration step (-u).
v Verify that a move has been successful (-v).

Usage notes:
If you have specified a data source user ID and password on the mqsicreatebroker
command for the broker that you are migrating, the values of these parameters are
also migrated and saved in the format that is used by the mqsisetdbparms
command. The values are used by the broker to access user databases for which
you have not set alternative values by using the mqsisetdbparms command. After
migration, if you want to change the user IDs or passwords that the broker uses to
access user databases, you can use only the mqsisetdbparms command.

If you update the user ID and password values, and you migrate the broker back
to the previous version, the new values are also migrated back to the original
broker.

Syntax:

Chapter 14. Reference 3895

►► mqsimigratecomponents
Move
Check
Undo
Verify

ComponentName
-q

►◄

Check:

-c
-s SourceVersion -t TargetVersion

Move:

▼

-1
-2

(1)
-3

-s SourceVersion -t TargetVersion

Undo:

-u ▼

-1
-2

(1)
-3

-s SourceVersion -t TargetVersion

Verify:

-v
-t TargetVersion

Notes:

1 Valid only for forward migration to Version 7.0.

Parameters:

-c

(Optional) Check a specified component before migration, to ensure that:
v The auto-detected version of the broker matches any version specified on the

command line.
v Any database tables accessed in a previous release do not contain any rows

that are incorrectly indexed.

You can check a running component. The check does not affect the component,
apart from a slight degradation of performance.

The check command either succeeds or fails, and prints a message about
whether the migration will succeed, but no modifications are made during the
process.

3896 WebSphere Message Broker Version 7.0.0.8

The -c and -v parameters are mutually exclusive. Additionally, if you specify
either of these parameters, you cannot specify any other parameter when you
run this command.

-v

(Optional) Check a specified component after migration, to ensure that:
v The registry is in the correct format for the new version.
v The correct queues exist for the new version.

The -c and -v parameters are mutually exclusive. Additionally, if you specify
either of these parameters, you cannot specify any other parameter when you
run this command.

-q

(Optional) Print fewer status messages during the operation.

-1

(Optional) Do only registry and file system work.
v When you migrate to Version 7.0, use the -1 parameter before the -2 or -3

parameters.
v When you migrate backwards from Version 7.0 to a previous version, use

the -2 parameter before the -1 parameter.

-2

(Optional) Do only WebSphere MQ work.

-3 (Optional) Do only database work.

This option is valid only for forward migration to Version 7.0. If you specify
this parameter for backwards migration, it is ignored; changes that you have
made to the broker state cannot be migrated back and applied to the database
belonging to the broker at the earlier version.

-u (Optional) Undo a failed migration step; you must also specify at least one of
-1, -2, or -3. Use this option only when migration has failed, and also failed to
auto-recover (for example, if a failure occurs during split migration).

-3 is valid only for forward migration to Version 7.0.

-s SourceVersion

(Optional) The previous version of the component.
v If not specified, this value is detected automatically.
v When you perform split migration to Version 7.0, the -s parameter is

mandatory after you run the mqsimigratecomponents command with the -1
parameter, as shown in the split migration example.

v See “Purpose” on page 3894 for the restrictions to the version numbers of
the product that are supported.

-t TargetVersion

(Optional) The destination version of the component.
v If not specified, this value is assumed to be the current version.
v When you perform split migration from Version 7.0 to a previous version,

the -t parameter is mandatory.
v See “Purpose” on page 3894 for the restrictions to the version numbers of

the product that are supported.

Chapter 14. Reference 3897

ComponentName

(Required) The name of the component to migrate.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

The mqsimigratecomponents command updates your registry, file system, and
WebSphere MQ definitions.

If the user ID used to run this command does not have the authority to perform all
these steps, you can run the command one part at a time. Different users can run
the part for which they are authorized in order to achieve the overall result. This
approach is referred to as split migration, and is performed by using the -1, -2, and
-3 parameters.

If you run single-step migration, your user ID must be able to:
v Write to the registry and the file system for the product
v Modify queue definitions
v Read from the database that is associated with the broker

If you run split migration, your user ID must always be able to read from the
registry for the product.

If you are doing a backward split migration of the registry, an integrity check to
verify the levels of both WebSphere MQ and the database are done that requires
your user ID to have
v SELECT authority on the broker database tables
v WebSphere MQ authority to open the SYSTEM.BROKER.* queues.

The following specific authorization for each step is required in order to succeed:
v -1 requires the ability to write to the registry and the file system for the product,

SELECT from the broker database tables, and open the SYSTEM.BROKER.* queues
v -2 requires the ability to modify queue definitions
v -3 requires the ability to read from databases associated with the broker

Responses:
This command can produce many possible responses, depending on the results of
the various operations. This command differs from other commands in the way it
produces messages: they are displayed when they are generated, rather than being
reported in a batch at the end of the program.

When you migrate database tables, z/OS produces more output than distributed
systems. Use the -q parameter to reduce the number of messages displayed.

Examples:
The following example shows a split migration from Version 6.1 to Version 7.0:

3898 WebSphere Message Broker Version 7.0.0.8

mqsimigratecomponents BROKER1 -1
mqsimigratecomponents BROKER1 -2
mqsimigratecomponents BROKER1 -3

The following example shows a migration from Version 7.0 back to Version 6.1:
mqsimigratecomponents MYBROKER -t 6.1.0.3

Related tasks:
Chapter 3, “Migrating and upgrading,” on page 137
To migrate a broker domain to WebSphere Message Broker Version 7.0, plan your
migration strategy, perform pre-migration tasks, migrate your domain components,
and then complete post-migration tasks.
Related reference:
“Migration and upgrade” on page 3579
Consider the factors involved in the migration of components and resources from
Version 6.0 or Version 6.1 to Version 7.0.

mqsimode command:

Use the mqsimode command to configure and retrieve operation mode information.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPMODE; see

“Contents of the broker PDSE” on page 3991

Purpose:
Use the mqsimode command to change the operation mode of a broker, or to
retrieve information about the mode in which the broker is currently working.

Syntax:

►► mqsimode brokerSpec
-o operationMode

►

►
-w timeoutSecs -v traceFileName -x modeExtensions

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

Parameters:

Chapter 14. Reference 3899

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note” on
page 3901.

-o operationMode
(Optional) This parameter sets the mode of the target broker. Valid values are
enterprise (the full edition), starter (Starter Edition), entry (Entry Edition),
and adapter (Remote Adapter Deployment mode). If you do not specify the -o
parameter, the command displays the mode in which the broker is running.

-x modeExtensions
(Optional) This parameter uses a comma separated list of to specify the mode

3900 WebSphere Message Broker Version 7.0.0.8

extensions to which the broker is entitled. You can also use the -x parameter to
switch off all mode extensions (See “Examples”).

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:

0 The command completed successfully.

2 (Failure) The broker received the deployment request but was unable to
process it successfully. See the messages issued from the utility (or the
Administration log) for more information.

9 (Failure) The request has been submitted to the broker, but no response
was received before the timeout expired.

10 (Failure) Another user or application canceled the request operation before
the broker was able to process it.

98 The broker is not running.

99 One or more of the parameters that you specified is invalid.

Examples:
Running the mqsimode command specifying the -o parameter

When you run the mqsimode command for broker BROKER1, and specify the -o
parameter, the mode is updated, and you receive a report about all errors. For
example, if you run the following mqsimode command to change your broker to the
Remote Adapter Deployment mode, and your broker is in the following state:
v Broker_Name1 is the name of your broker.
v Message_Flow is the name of your message flow.

Chapter 14. Reference 3901

v Execution_Group is the name of your execution group.
v The command changes Broker_Name1 to the Remote Adapter Deployment mode,

but contains a node Node_Type that is not valid in this mode.
mqsimode BROKER1 –o adapter

You receive the following messages:
BIP1044: Connecting to the broker’s queue manager...
BIP1045: Connecting to the broker...
BIP1805: The mode for broker ’Broker_Name1’ has been changed to ’adapter’.
BIP1823: WARNING: Broker ’Broker_Name1’ has a message flow called ’Message_Flow’
in execution group ’Execution_Group’, which contains one or more nodes that are not
valid in this mode: Node_Type.
BIP8229: The command completed with the following number of warnings: 1.

Running the mqsimode command without the -o parameter

When you run the mqsimode command without the -o parameter, you receive a
report about the mode being used by your broker, a report about all mode
violations, and a report for any mode extensions that are required and not set. For
example, if you run the following mqsimode command, and your broker is in the
following state:
v Broker_Name is the name of your broker.
v Your broker is in Starter Edition mode.
v Your broker has no violations.
mqsimode Broker_Name

You receive the following messages:
BIP1044: Connecting to the broker’s queue manager...
BIP1807: Discovering mode information from broker ’Broker_Name’...
BIP1802: Broker ’Broker_Name’ is in ’starter’ mode.
BIP8071: Successful command completion.

Switching off all mode extensions

To switch off all mode extensions, run the mqsimode command with the -x
parameter:
mqsimode Broker_Name –x

where Broker_Name is the name of your broker.

Running the mqsimode command specifying the -o parameter against a broker
that is running a version before V6.1

When you run the -o parameter against a broker that is running a version before
V6.1 you receive a report with an appropriate message. For example, where
Broker_Name is the name of your broker:
BIP1044: Connecting to the broker’s queue manager...
BIP1045: Connecting to the broker...
BIP1808: Broker ’Broker_Name’ is not at the required software level to
change the operation mode.
BIP8229: The command completed with the following number of warnings: 1.

Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.

3902 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Checking the operation mode of your broker” on page 657
Use the mqsimode command to find out the operation mode of your broker.
“Changing the operation mode of your broker” on page 655
Change the operation mode in which your broker is working by using the
mqsimode command.
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Example: Changing the operation mode of your broker” on page 3904
You want to convert from the Starter Edition (starter mode) to the full package
(enterprise mode).
“Example: Changing the Trial Edition to the full edition”
You want to convert all of your brokers from the Trial Edition mode to the full
edition (enterprise mode).
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

Example: Changing the Trial Edition to the full edition:

You want to convert all of your brokers from the Trial Edition mode to the full
edition (enterprise mode).

About this task

Contact your IBM representative to upgrade your license, and change the brokers
that you have created to conform to your new license.

Before, or after, the Trial Edition expires complete the following steps:

Procedure

1. Open a command prompt.

v Linux On Linux and UNIX, run the mqsiprofile command to initialize
the command environment.

v Windows On Windows, click Start > Programs > IBM WebSphere Message
Broker 7.0 > Command Console to open a command console.

2. Run the following mqsimode command for every broker:
mqsimode –i localhost –p 2414 –q MB7QMGR –o enterprise

When this command completes successfully, the broker is fully functional, but
all new brokers are still created in trial mode by default.

3. To ensure that all new brokers start in enterprise mode, uninstall the trial
package and reinstall the full package; see “Moving from Trial Edition” on page
656.

Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:

Chapter 14. Reference 3903

“Checking the operation mode of your broker” on page 657
Use the mqsimode command to find out the operation mode of your broker.
“Changing the operation mode of your broker” on page 655
Change the operation mode in which your broker is working by using the
mqsimode command.
“Moving from Trial Edition” on page 656
You want to convert from Trial Edition mode to an alternative edition.
“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Related reference:
“Restrictions that apply in each operation mode” on page 3657
The operation mode in which your broker is working defines how many execution
groups you can use, and which nodes are available.
“mqsimode command” on page 3899
Use the mqsimode command to configure and retrieve operation mode information.

Example: Changing the operation mode of your broker:

You want to convert from the Starter Edition (starter mode) to the full package
(enterprise mode).

About this task

Contact your IBM representative to upgrade your license, and change the brokers
that you have created to conform to your new license.

Procedure

1. Open a command prompt.

v Linux On Linux and UNIX, run the mqsiprofile command to initialize
the command environment.

v Windows On Windows, click Start > Programs > IBM WebSphere Message
Broker 7.0 > Command Console to open a command console.

2. Run the following mqsimode command to change the mode of your broker from
starter to enterprise (where Broker_Name is the name of your broker):
mqsimode –i localhost –p 1414 –q MB7QMGR –o enterprise

The following messages are displayed:
BIP1044: Connecting to the broker’s queue manager...
BIP1809: Deploying ’enterprise’ mode on broker ’Broker_Name’...
BIP1805: The mode for broker ’Broker_Name’ has been changed to ’enterprise’.

Related concepts:
“Operation modes” on page 48
The operation mode that you use for your broker is determined by the license that
you purchase.
Related tasks:
“Checking the operation mode of your broker” on page 657
Use the mqsimode command to find out the operation mode of your broker.
“Changing the operation mode of your broker” on page 655
Change the operation mode in which your broker is working by using the
mqsimode command.

3904 WebSphere Message Broker Version 7.0.0.8

“Setting up a command environment” on page 213
After you have installed the product on one of the distributed systems, you must
initialize the environment before you can use a runtime component or command.
Related reference:
“Restrictions that apply in each operation mode” on page 3657
The operation mode in which your broker is working defines how many execution
groups you can use, and which nodes are available.
“mqsimode command” on page 3899
Use the mqsimode command to configure and retrieve operation mode information.

mqsireadlog command:

Use the mqsireadlog command to retrieve trace records for the specified
component.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPRELG; see

“Contents of the broker PDSE” on page 3991

Purpose:
The mqsireadlog command is valid for:

User trace
Specify the -u option.

Service trace
Specify the -t option. You are recommended to use this option only if
directed to do so by the action described in a BIPxxxx message, or by your
IBM Support Center.

You can specify the output to be directed to file, or to STDOUT. The trace records
returned by this command are in XML format and can be browsed with an XML
browser. If you direct output to file, the data is written in code page utf-8. The file
is therefore platform-independent, and can be transferred to other systems for
browsing or formatting using the mqsiformatlog command.

On HP-UX, set the size parameter of the mqsichangetrace command to be less
than 500 MB because the size of the XML generated files is often half as much
again as the original trace file, and setting the value of the size parameter to be
greater than 500 MB can cause problems.

If you transfer this file to another system, ensure that you use a file transfer
program that does not convert the data (for example, by specifying a binary
transfer option).

If you specify a broker, or any of its resources (execution group or message flow)
you must have deployed them before you can start trace and read the log files.

To enable service trace of your CMP applications, take one of the following steps:
v Call the method BrokerProxy.enableAdministrationAPITracing(String filename).
v Before running your CMP application, set the environment variable

MQSI_CMP_TRACE to the name of the file to which trace is sent.

Chapter 14. Reference 3905

Syntax:

User trace:

►► mqsireadlog Component -u
-e Egroup -f

►

►
-o Outputfilename

►◄

Service trace:

►► mqsireadlog Component -t -b Qualifier
-e Egroup
-x EgroupUuid

-f ►

►
-o Outputfilename

►◄

Parameters common to user trace and service trace:

Component
(Required) The name of the component for which the log is to be read. The
component can be either a broker name, or the fixed values, WebSphere
Message Broker Toolkit, or utility (all are case sensitive on Linux and UNIX
systems, and on z/OS).

-e Egroup
(Optional) The label of the execution group for which log information is to be
read.

-o Outputfilename
(Optional) The name of the file into which to write the log data. If you specify
a full path name, the file is created in the directory specified. If you specify just
the filename, the file is created in the current working directory. The contents
of the file are written in code page utf-8, which is platform-independent and
preserves data such as DBCS characters.

You must specify a file name if you want to format the log by using the
mqsiformatlog command. If you do not specify a filename, the contents of the
log are written to stdout. Use a file extension of .xml, which represents the
format of the data.

-f (Optional for User trace; required for Service trace). Read the log file directly
from the file system. If you do not specify this option, the command sends an
XML message to the component to request the log contents. If you have
specified -t (service trace), you must specify this flag as well.

If you specify this option, stop tracing (by using mqsichangetrace) before you
run the mqsireadlog command. If the log file is in use when you issue this
command with this flag specified, partial XML records might be returned.
Specify -m safe on the mqsichangetrace command to reduce the risk of partial

3906 WebSphere Message Broker Version 7.0.0.8

records. If the component being traced has itself stopped, you do not then
need to issue a mqsichangetrace command.

If you do not stop tracing before you issue this command, check the contents
of the log file created, and remove any partial records from the end by using a
text editor before running the mqsiformatlog command, as partial records
cannot be read by the format command.

Additional parameter exclusive to user trace:

-u (Required) Read the log contents from the user trace log. This option is valid
only if you select the broker component.

Additional parameters exclusive to service trace:
Use these options only when directed to do so by your IBM Support Center or by
a BIPxxxx message.

-t (Required) Read the log contents from the service trace log.

-b Qualifier
(Required) Read the contents of the log for the broker agent, or for the
specified command utility program. This option is valid only if you have
specified -t (service trace).

The following table shows the valid combinations of qualifier and component
for service trace.

This option is generally used to trace the commands themselves. If you want
to trace a particular command, run that command with environment variable
MQSI_UTILITY_TRACE set to debug or normal before you issue this command
to read the trace output generated.

Enter these values exactly as shown.

The agent trace is initiated when you specify the -b flag on the
mqsichangetrace command. Do this only when directed to do so by a
WebSphere Message Broker error message, or when instructed to do so by
your IBM Support Center.

The service trace is initiated when you specify the -b flag on the
mqsichangetrace command. The format of the command is:
mqsireadlog brokername -t -b service -f -o service.xml

Run this command only when directed to do so by a WebSphere Message
Broker error message, or when instructed to do so by your IBM Support
Center.

-xEgroupUuid
(Optional) Read the contents of the log for the execution group UUID
(Universally Unique Identifier).

This option is valid only if you have specified -t (service trace).

Use this option when the execution group label is not available. The execution
group UUID can be obtained from the BIP2201I or BIP2208I message that is
written to the system log when the execution group starts up.

The format of the command is:
mqsireadlog brokername -t

-x ce40b73e-2701-0000-0080-85557ff4a8ad -f -o service.xml

Chapter 14. Reference 3907

Qualifier Component=
broker_name

Component=
WebSphere

Message Broker
Toolkit

Component= utility

mqsichangebroker x

mqsichangeflowmonitoring x

mqsichangeflowstats x

mqsichangeflowuserexits x

mqsichangeproperties x

mqsichangetrace x

mqsicreatebroker x

mqsicreateconfigurableservice x

mqsicvp x

mqsideletebroker x

mqsideleteconfigurableservice x

mqsideploy x

mqsiformatlog1 x

mqsimigratecomponents x

mqsireadlog x x

mqsireload x

mqsireloadsecurity x

mqsireportbroker x

mqsireportflowmonitoring x

mqsireportflowstats x

mqsireportflowuserexits x

mqsireportproperties x

mqsireporttrace x

mqsisetdbparms x

mqsistart x

mqsistop x

agent x

service x

WebSphere Message Broker Toolkit x

httplistener x

Notes:

1. Because this command does not have a component parameter, trace
information is recorded in, and retrieved from, the utility component trace files.
For further details see the mqsichangetrace command.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651

3908 WebSphere Message Broker Version 7.0.0.8

v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Examples:
Retrieve the user trace for broker MB7BROKER:
mqsireadlog MB7BROKER -u -e default -o trace.xml

Retrieve service trace for utility mqsiformatlog:
mqsireadlog utility -t -b agent -f -o trace.xml

You can format the log file (trace.xml in the above examples) by using the
command mqsiformatlog, or view it using an XML editor or viewer.
Related tasks:
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

mqsireload command:

Use the mqsireload command to request the broker to stop and restart execution
groups.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS - as a console command

Purpose:
When you issue this command, a message is sent to the broker, which stops and
restarts all its execution groups. You can specify a single execution group to be
reloaded, but if you use the default form of this command to reload all execution
groups you ensure state and data integrity is preserved.

Because an execution group does not stop until all message flows within it
terminates, the ability of the broker to reload quickly depends on the processing
time for the longest running message flow. This affects the performance of this
command, therefore review any long-running message flows before running this
command.

Chapter 14. Reference 3909

If you have included a user-defined node or parser within a message flow on the
broker, these are deleted by this command, and the relevant termination functions
called. When message flows are restarted, the resources used by user-defined
nodes and parsers are re-accessed and reacquired. However, it is better
programming practice to ensure that user-defined nodes and parsers provide their
own mechanism to reload persistent state and data dynamically, and do not rely
on the use of this command.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsireload command - Windows, Linux, and UNIX systems”
v “mqsireload command - z/OS” on page 3911

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
No additional responses are returned.
Related tasks:
“Deleting a broker” on page 930
Delete a broker using the command line on the system where the broker
component is installed.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

mqsireload command - Windows, Linux, and UNIX systems:

Use the mqsireload command on Windows, Linux, and UNIX systems to request
the broker to stop and restart execution groups.

Syntax:

►► mqsireload BrokerName
-e Egroup

►◄

Parameters:

BrokerName
(Required) The name of the broker to which the reload request is sent.

3910 WebSphere Message Broker Version 7.0.0.8

-e Egroup
(Optional) The name of the execution group that is to be reloaded. If this
parameter is not specified, all execution groups on the specified broker are
stopped and restarted.

Examples:
mqsireload broker1

Related reference:
“Syntax diagrams” on page 3677
“mqsireload command” on page 3909
Use the mqsireload command to request the broker to stop and restart execution
groups.

mqsireload command - z/OS:

Use the mqsireload command on z/OS to request the broker to stop and restart
execution groups.

Syntax:

z/OS console command:
Synonym: re

►► reload
re e='Egroup'

►◄

Parameters:

e= Egroup
(Optional) The name of the execution group that is to be reloaded. If this
parameter is not specified, all execution groups on the specified broker are
stopped and restarted.

Examples:
F MQP1BRK,re e=’EgName’

Related reference:
“Syntax diagrams” on page 3677
“mqsireload command” on page 3909
Use the mqsireload command to request the broker to stop and restart execution
groups.

mqsireloadsecurity command:

Use the mqsireloadsecurity command to force the immediate expiry of some or all
the entries in the security cache.

Supported platforms:

v Windows
v Linux and UNIX systems

Chapter 14. Reference 3911

v z/OS. Run this command in one of two ways - as a console command, or by
customizing and submitting BIPRLSEC; see “Contents of the broker PDSE” on
page 3991

Purpose:
Entries in the security cache are valid for a specified length of time, after which the
entries are marked as ‘expired'. When an entry is marked as expired, it must be
reauthenticated with the security provider before it can be reused, and its expiry
time must be reset. If reauthentication fails, the entry remains marked as expired.
All entries in the security cache marked as expired are removed when the next
sweep of the cache is performed.

Use the mqsichangeproperties command to set the time for which entries in the
cache are valid, and also the value for the sweep of the security cache. When the
entries in the security cache have expired, you must reauthenticate them.

Select the appropriate link for details of this command on the operating system
that is used by your enterprise:
v “mqsireloadsecurity command - Windows, Linux, and UNIX systems” on page

3913
v “mqsireloadsecurity command - z/OS” on page 3915

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:

0 The command completed successfully.

2 (Failure) The broker received the deployment request but was unable to
process it successfully. See the messages issued from the utility (or the
Administration log) for more information.

9 (Failure) The request has been submitted to the broker, but no response
was received before the timeout expired.

10 (Failure) Another user or application canceled the request operation before
the broker was able to process it.

98 The broker is not running.

99 One or more of the parameters that you specified is invalid.
Related concepts:
Chapter 5, “Security,” on page 351
Security is an important consideration for both developers of WebSphere Message
Broker applications, and for system administrators configuring WebSphere Message
Broker authorities.
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the

3912 WebSphere Message Broker Version 7.0.0.8

message.
Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
“Diagnosing security problems” on page 496
This topic explains how to find out why access to a secured flow has been denied.
Related reference:
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that
you want to change.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsireloadsecurity command - Windows, Linux, and UNIX systems”
Use the mqsireloadsecurity command on Windows, Linux, and UNIX to force the
immediate expiry of some or all of the entries in the security cache.
“mqsireloadsecurity command - z/OS” on page 3915
Use the mqsireloadsecurity command on z/OS to force the immediate expiry of
some or all the entries in the security cache.
“Syntax diagrams” on page 3677

mqsireloadsecurity command - Windows, Linux, and UNIX systems:

Use the mqsireloadsecurity command on Windows, Linux, and UNIX to force the
immediate expiry of some or all of the entries in the security cache.

Syntax:

►► mqsireloadsecurity brokerSpec
-u useridList

►

►
-w timeoutSecs

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

Parameters:

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

Chapter 14. Reference 3913

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

-u useridList
(Optional) This parameter reloads all entries in the security cache for the
specified list of users (separated by colons). If you do not specify this
parameter, all entries in the security cache are reloaded. For cached certificates,
this value is the common name element value.

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

Examples:
Reload the cache for all users on the specified broker. :
mqsireloadsecurity BROKER1

3914 WebSphere Message Broker Version 7.0.0.8

Reload the cache for a single user on the specified broker. The connection
parameters for the broker are defined in the file BROKER1.broker.
mqsireloadsecurity -n BROKER1.broker -u user1

Reload the cache for a list of users on the specified broker, and wait for five
seconds before returning:
mqsireloadsecurity My_Broker -u user1:user2:user3 -w 5

Related concepts:
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
Chapter 5, “Security,” on page 351
Security is an important consideration for both developers of WebSphere Message
Broker applications, and for system administrators configuring WebSphere Message
Broker authorities.
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Diagnosing security problems” on page 496
This topic explains how to find out why access to a secured flow has been denied.
Related reference:
“mqsireloadsecurity command” on page 3911
Use the mqsireloadsecurity command to force the immediate expiry of some or all
the entries in the security cache.
“Syntax diagrams” on page 3677
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that
you want to change.

mqsireloadsecurity command - z/OS:

Use the mqsireloadsecurity command on z/OS to force the immediate expiry of
some or all the entries in the security cache.

Syntax:

z/OS command - BIPRLSEC:

Chapter 14. Reference 3915

►► mqsireloadsecurity brokerSpec
-u useridList

►

►
-w timeoutSecs

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

z/OS console command:

►► reloadsecurity
rc u=useridList w=timeoutValue

►◄

Parameters:

brokerSpec
You must specify at least one parameter to identify the target broker for this
command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker. If you
specify a queue manager, it must be defined on the local computer.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is irrelevant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:

3916 WebSphere Message Broker Version 7.0.0.8

v -i ipAddress: The host name or the IP address of the computer on
which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note.”

-u useridList
(Optional) This parameter reloads all entries in the security cache for the
specified list of users (separated by colons). If you do not specify this
parameter, all entries in the security cache are reloaded. For cached certificates,
this value is the common name element value.

-w timeoutValue
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Examples:
Reload the cache for a single user on the specified broker. The connection
parameters for the broker are defined in the file BROKER1.broker.
mqsireloadsecurity -n BROKER1.broker -u user1

Reload the cache for all users by using the console command:
F MQP1BRK,rc

Reload the cache for a single user:
F MQP1BRK,rc u=user1

Reload the cache for a list of users, and wait for 5 seconds before returning:
F MQP1BRK,rc u=user1:user2:user3,w=5

Related concepts:
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
Chapter 5, “Security,” on page 351
Security is an important consideration for both developers of WebSphere Message
Broker applications, and for system administrators configuring WebSphere Message
Broker authorities.

Chapter 14. Reference 3917

“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related tasks:
“Diagnosing security problems” on page 496
This topic explains how to find out why access to a secured flow has been denied.
Related reference:
“Syntax diagrams” on page 3677
“mqsireloadsecurity command” on page 3911
Use the mqsireloadsecurity command to force the immediate expiry of some or all
the entries in the security cache.
“Parameter values for the securitycache component” on page 3815
Select the objects and properties associated with the securitycache component that
you want to change.

mqsiremovebrokerinstance command:

Use the mqsiremovebrokerinstance command to remove a multi-instance broker
from a server where WebSphere Message Broker has been installed.

Supported platforms:

v Windows
v Linux and UNIX systems

Purpose:
Use the mqsiremovebrokerinstance command to remove a broker instance from
any additional server on which you no longer require multi-instance support. You
must first create a multi-instance enabled broker on one server using the
mqsicreatebroker command.

Syntax:

►► mqsiremovebrokerinstance brokerName ►◄

Parameters:

brokerName
(Required) The name of the broker instance that you are deleting; the name is
case-sensitive. The broker instance name must match that of a multi-instance
enabled broker previously created by using the mqsicreatebroker command.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

3918 WebSphere Message Broker Version 7.0.0.8

Examples:
The following example removes a broker instance from broker Mybroker:
mqsiremovebrokerinstance MyBroker

Related reference:
“Syntax diagrams” on page 3677
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“mqsiaddbrokerinstance command” on page 3715
Use the mqsiaddbrokerinstance command to create a multi-instance broker on a
server where WebSphere Message Broker has been installed.

mqsireportbroker command:

Use the mqsireportbroker command to display broker registry entries.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPRPBK; see

“Contents of the broker PDSE” on page 3991

Purpose:
You can use the mqsireportbroker command to view the property values set when
you create or change the broker.

On Windows platforms, Linux, and UNIX systems, the mqsireportbroker
command also reports whether a broker is configured as a WebSphere MQ service.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsireportbroker command - Windows, Linux, and UNIX systems” on page

3921
v “mqsireportbroker command - z/OS” on page 3923

Usage notes:
The following rules apply on the report:
v You can run this command if the broker is stopped or running.
v If values for a password are set, eight asterisks are displayed.
v Units are shown in the output for all numeric values.

Responses:
The following table shows the output returned when you run the
mqsireportbroker command.

Property (Units) Notes

brokerName 1

Service userId 2, 3, 4

Chapter 14. Reference 3919

Property (Units) Notes

Service password 2, 3, 4

Queue manager 1

Work path 1

Trusted (fastpath) queue manager application - true 2, 3

Trusted (fastpath) queue manager application - false 3, 5

User LIL path 2

Configuration change timeout (seconds) 2

Internal configuration timeout (seconds) 2

Administration security enabled (true or false) 2

Statistics major interval (minutes) 2

LDAP principal 2

LDAP credentials 2

ICU converter path 2

User exit path 2

Operation mode 2, 3

Fix pack capability level 5

Active user exits 5

Broker UUID 7

Install path 8

Process ID 7

Notes:

1. This value is set by the mqsicreatebroker command.
2. This value is set by the mqsicreatebroker command or later modified by the

mqsichangebroker command.
3. This option is applicable only on distributed systems.
4. This option is not relevant on Windows, because this value is stored in the

service.
5. This option can be set only by the mqsichangebroker command.
6. (Not used.)
7. This value is generated automatically when the broker is started.
8. You cannot set this value by using a command.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related concepts:

3920 WebSphere Message Broker Version 7.0.0.8

“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Generating a new code page converter” on page 824
Generate a code page converter to handle conversions of data that belongs to a
code page that is not in the default set of code pages provided by WebSphere
Message Broker.
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“Security requirements for administrative tasks” on page 3644
You can configure access permissions to govern which users and groups can
manipulate objects in the broker network. Security requirements for administrative
tasks depend on the platform that you use.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.

mqsireportbroker command - Windows, Linux, and UNIX systems:

Use the mqsireportbroker command to display broker registry entries.

Syntax:

►► mqsireportbroker brokerName ►◄

Parameters:

brokerName
(Required) The label of the broker for which registry entries are to be reported.

Examples: Windows

Display registry entries of the specified broker on Windows:
mqsireportbroker SOAPBR

The following output is returned:
BIP8927I: Broker Name ’SOAPBR’
Install path = ’C:\Program Files\IBM\MQSI\8.0.0.0’
Work path = ’C:\Documents and Settings\All Users\Application Data\IBM\MQSI’
Broker UUID = ’91c31c2a-1a01-0000-0080-d9cfce7fc2e8’
Process id = ’6928’

Chapter 14. Reference 3921

Queue manager = ’SOAPQM’
User lil path = ’C:\Documents and Settings\All Users\Application Data\lilPath’
User exit path = ’C:\Documents and Settings\All Users\Application Data\userExits’
Active user exits = ’activeUE’
LDAP principal = ’ldapuser’
LDAP credentials = ’********’
ICU converter path = ’C:\Documents and Settings\All Users\Application Data\converters’
Trusted (fathpath) queue manager application = ’true’
Configuration change timeout = ’320’ seconds
Internal configuration timeout = ’70’ seconds
Statistics major interval = ’61’ minutes
Operation mode = ’enterprise’
Fixpack capability level = ’all’ (effective level ’8.0.0.0’)
Broker registry format = ’v8.0’
Administration security = ’inactive’
Multi-instance Broker = 'true’
Shared Work Path = ’ \\?\UNC\Server1\HAShared’
Start As MQ Service = ’defined’
HTTP listener port = ’24’

Linux UNIX

Display registry entries of the specified broker on Linux:
mqsireportbroker SOAPBR

The following output is returned:
BIP8926I: Broker Name ’SOAPBR’
Install path = ’usr/lpp/ibm/mqsi/8.0.0.0/’
Work path = ’/var/mqsi’
Broker UUID = ’91c31c2a-1a01-0000-0080-d9cfce7fc2e8’
Process id = ’6928’
Queue manager = ’SOAPQM’
User lil path = ’/usr/lpp/ibm/mqsi/8.0.0.0/userlilpath’
User exit path = ’/usr/lpp/ibm/mqsi/8.0.0.0/userexitpath’
Active user exits = ’activeUE’
LDAP principal = ’ldapuser’
LDAP credentials = ’********’
ICU converter path = ’/usr/lpp/ibm/mqsi/8.0.0.0/converterPath’
Trusted (fathpath) queue manager application = ’true’
Configuration change timeout = ’320’ seconds
Internal configuration timeout = ’70’ seconds
Statistics major interval = ’61’ minutes
Operation mode = ’enterprise’
Fixpack capability level = ’all’ (effective level ’8.0.0.0’)
Broker registry format = ’v8.0’
Administration security = ’inactive’
Multi-instance Broker = 'true’
Shared Work Path = ’ //?/UNC/Server1/HAShared’
Start As MQ Service = ’defined’
HTTP listener port = ’24’

Related tasks:
“Modifying a broker on Windows, Linux, and UNIX systems” on page 632
Use the mqsichangebroker command on Windows, Linux, and UNIX to modify
your broker.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

3922 WebSphere Message Broker Version 7.0.0.8

mqsireportbroker command - z/OS:

Use the mqsireportbroker command to display broker registry entries.

Syntax:

►► mqsireportbroker brokerName ►◄

Parameters:

brokerName
(Required) The label of the broker for which registry entries are to be reported.

Examples: z/OS

Display registry entries of the specified broker on z/OS:
mqsireportbroker MQ81BRK

The following output is returned:
BIP8928I: Broker Name ’MQ81BRK’
Install path = ’/usr/lpp/ibm/mqsi/7.0.0.0/’
Work path = ’/u/wmqi81/broker’
Broker UUID = ’91c31c2a-1a01-0000-0080-d9cfce7fc2e8’
Process id = ’6928’
Queue manager = ’MQ81’
User lil path = ’/u/wmqi81/broker/userlilpath’
User lil path64 = ’/u/wmqi81/broker/userlilpath64’
User exit path = ’/u/wmqi81/broker/userexitpath’
User exit path64 = ’/u/wmqi81/broker/userexitpath64’
Active user exits = ’activeUE’
LDAP principal = ’wmqi81’
LDAP credentials = ’********’
ICU converter path = ’/u/wmqi81/broker/converterPath’
Trusted (fathpath) queue manager application = ’true’
Configuration change timeout = ’320’ seconds
Internal configuration timeout = ’70’ seconds
Statistics major interval = ’61’ minutes
Operation mode = ’enterprise’
Fixpack capability level = ’all’ (effective level ’7.0.0.0’)
Broker registry format = ’v7.0’

Related tasks:
“Modifying a broker on z/OS” on page 634
Use the mqsichangebroker command on z/OS to modify your broker.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Chapter 14. Reference 3923

mqsireportflowmonitoring command:

Use the mqsireportflowmonitoring command to display the current options for
monitoring that have been set using the mqsichangeflowmonitoring command.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS: Run this command either as a console command, or by customizing and

submitting BIPRPME; see “Contents of the broker PDSE” on page 3991.

Purpose:
Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsireportflowmonitoring command - Windows, Linux and UNIX systems”
v “mqsireportflowmonitoring command - z/OS” on page 3927

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.
Related reference:
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

mqsireportflowmonitoring command - Windows, Linux and UNIX systems:

Use the mqsireportflowmonitoring command on Windows, Linux and UNIX
systems to display the current options for monitoring that have been set by the
mqsichangeflowmonitoring command.

Syntax:

3924 WebSphere Message Broker Version 7.0.0.8

►► mqsireportflowmonitoring BrokerName SingleFlow
MultipleFlows

►◄

SingleFlow:

-e ExecutionGroupName -f MessageFlow

▼

-n
-a

,

-s EventSourceAddress
-x -p File

MultipleFlows:

-e ExecutionGroupName -f MessageFlow
-j

-g

Parameters:

BrokerName
(Required) Specify the label of the broker, for which monitoring options are to
be reported.

-a
(Optional) Report the flow-level monitoring properties and the properties of all
event sources within the flow, whether configured or not.

-e ExecutionGroupName
(Required) Specify the name for the execution group, for which monitoring
options are to be reported.

You must specify either -e or -g. If you do not specify one of these arguments
you receive an error message.

-f MessageFlow
(Required) Specify the label for the message flow, for which monitoring
options are to be reported.

You must specify either -f or -j. If you do not specify one of these arguments
you receive an error message.

-g
(Required) Specifies that the command applies to all execution groups that
belong to the broker.

You must specify either -e or -g. If you do not specify one of these arguments
you receive an error message.

-j
(Required) Specifies that the command applies to all message flows that belong
to the execution group.

You must specify either -f or -j. If you do not specify one of these arguments
you receive an error message.

Chapter 14. Reference 3925

Note: If you set the -g option for all execution groups, you must use -j instead
of -f.

-n
(Optional) Report the flow-level monitoring properties and the properties of
any configured event sources within the flow.

-p (Optional unless -x is specified.) The file name to which the monitoring profile
will be written, in XML format.

-s EventSourceAddress
(Optional) Report the flow-level monitoring properties and the properties of
the specified event sources within the flow, whether configured or not.

You must provide a comma-separated list of the event source addresses for
which monitoring options are to be reported. An event source address takes
the form <node name>.<event source>, where <event source> is one of the
following values:

'terminal.<terminal name>'
'transaction.Start'

'transaction.End'

'transaction.Rollback'

If a message flow contains two or more nodes with identical names, the event
sources on those nodes cannot be accurately addressed. If this is attempted,
behavior is undefined.

Note: <node name> is the label of the node as known by the broker runtime
components. If the node is in a subflow the label reflects this. For example,
flow A contains an instance of flow B as a subflow labeled 'myB'; flow B
contains an instance of a Compute node labeled 'myCompute'. The <node
name> for the Compute node is 'myB.myCompute'.

-x
(Optional; if you specify -x you must also specify the -p parameter.) Outputs
the current monitoring properties for the specified message flow as a
monitoring profile XML file.

Note:

v If all flags are omitted, only the flow-level properties are reported.
v Flags -n, -a, -s and -x can be used only when -f is present.
v Flags -n, -a, -s and -x are alternatives and cannot be used together.

Examples:
Request a report of the monitoring options for message flow "MyFlow1" in the
execution group "default" for broker "BrokerA":
mqsireportflowmonitoring BrokerA -e default -f MyFlow1

Request a report of the current monitoring options for all message flows in all
execution groups for broker "BrokerA" :

mqsireportflowmonitoring BrokerA -g -j

Related tasks:
“Reporting monitoring settings” on page 3343
Use the mqsireportflowmonitoring command to report monitoring settings for a
flow.
Related reference:

3926 WebSphere Message Broker Version 7.0.0.8

“Syntax diagrams” on page 3677
“mqsireportflowmonitoring command” on page 3924
Use the mqsireportflowmonitoring command to display the current options for
monitoring that have been set using the mqsichangeflowmonitoring command.
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

mqsireportflowmonitoring command - z/OS:

Use the mqsireportflowmonitoring command on z/OS to display the current
options for monitoring that have been set by the mqsichangeflowmonitoring
command.

Syntax:

z/OS console command:
Synonym: rm

►► mqsireportflowmonitoring BrokerName
rm

SingleFlow
MultipleFlows

►◄

SingleFlow:

e=ExecutionGroupName f=MessageFlow

▼

n=yes
a=yes

,

s= EventSourceAddress
x=yes p=File

MultipleFlows:

e=ExecutionGroupName f=MessageFlow
j=yes

g=yes

Parameters:

BrokerName
(Required) Specify the label of the broker, for which monitoring options are to
be reported.

a (Optional) Report the flow-level monitoring properties and the properties of all
event sources within the flow, whether configured or not.

e ExecutionGroupName
(Required) Specify the name for the execution group, for which monitoring
options are to be reported.

Chapter 14. Reference 3927

You must specify either -e or -g. If you do not specify one of these arguments
you receive an error message.

f MessageFlow
(Required) Specify the label for the message flow, for which monitoring
options are to be reported.

You must specify either -f or -j. If you do not specify one of these arguments
you receive an error message.

g (Required) Specifies that the command applies to all execution groups that
belong to the broker.

You must specify either -e or -g. If you do not specify one of these arguments
you receive an error message.

j (Required) Specifies that the command applies to all message flows that belong
to the execution group.

You must specify either -f or -j. If you do not specify one of these arguments
you receive an error message.

Note: If you set the -g option for all execution groups, you must use -j instead
of -f.

n (Optional) Report the flow-level monitoring properties and the properties of
any configured event sources within the flow.

p (Optional unless -x is specified.) The file name to which the monitoring profile
will be written, in XML format.

s EventSourceAddress
(Optional) Report the flow-level monitoring properties and the properties of
the specified event sources within the flow, whether configured or not.

You must provide a comma-separated list of the event source addresses for
which monitoring options are to be reported. An event source address takes
the form <node name>.<event source>, where <event source> is one of the
following values:

'terminal.<terminal name>'
'transaction.Start'

'transaction.End'

'transaction.Rollback'

If a message flow contains two or more nodes with identical names, the event
sources on those nodes cannot be accurately addressed. If this is attempted,
behavior is undefined.

Note: <node name> is the label of the node as known by the broker runtime
components. If the node is in a subflow the label reflects this. For example,
flow A contains an instance of flow B as a subflow labeled 'myB'; flow B
contains an instance of a Compute node labeled 'myCompute'. The <node
name> for the Compute node is 'myB.myCompute'.

x (Optional; if you specify -x you must also specify the -p parameter.) Outputs
the current monitoring properties for the specified message flow as a
monitoring profile XML file.

Note:

v If all flags are omitted, only the flow-level properties are reported.

3928 WebSphere Message Broker Version 7.0.0.8

v Flags -n, -a, -s and -x can be used only when -f is present.
v Flags -n, -a, -s and -x are alternatives and cannot be used together.

Examples:
Request a report of monitoring options for message flow "MFlow1" in the
execution group "default":
F MI10BRK,rm e=’default’,f=’MFlow1’

Request a report of the current monitoring options for all message flows in all
execution groups:
F MI10BRK,rm g=yes,j=yes

Related tasks:
“Reporting monitoring settings” on page 3343
Use the mqsireportflowmonitoring command to report monitoring settings for a
flow.
Related reference:
“Syntax diagrams” on page 3677
“mqsireportflowmonitoring command” on page 3924
Use the mqsireportflowmonitoring command to display the current options for
monitoring that have been set using the mqsichangeflowmonitoring command.
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

mqsireportflowstats command:

Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command in one of two ways - as a console command, or by

customizing and submitting BIPRPMS; see “Contents of the broker PDSE” on
page 3991

Purpose:
Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsireportflowstats command - Windows, Linux and UNIX systems” on page

3930
v “mqsireportflowstats command - z/OS” on page 3931

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Chapter 14. Reference 3929

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Optimizing message flow throughput” on page 587
Each message flow that you design must provide a complete set of processing for
messages received from a certain source. This design might result in very complex
message flows that include large numbers of nodes that can cause a performance
overhead, and might create potential bottlenecks. You can increase the number of
message flows that process your messages to provide the opportunity for parallel
processing and therefore improved throughput.
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
Related reference:
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.

mqsireportflowstats command - Windows, Linux and UNIX systems:

Use the mqsireportflowstats command on Windows, Linux and UNIX systems to
display the current options for accounting and statistics that have been set by the
mqsichangeflowstats command.

Syntax:

►► mqsireportflowstats BrokerName -a
-s

►

► -e ExecutionGroupName -f MessageFlow
-g -j

►◄

Parameters:

BrokerName
(Required) Specify the label of the broker for which the previously stored
accounting and statistics options are to be reported.

-a (Required) Specify that the command reports the stored settings for the archive
accounting and statistics collection.

You must specify -a or -s, or both arguments. If you do not specify at least one
of these arguments you receive a warning message.

-e ExecutionGroupName
(Required) Specify the name for the execution group, for which accounting and
statistics options are to be reported.

You must specify either -e or -g. If you do not specify one of these arguments
you receive a warning message.

3930 WebSphere Message Broker Version 7.0.0.8

-f MessageFlow
(Required) Specify the label for the message flow, for which accounting and
statistics options are to be reported.

You must specify either -f or -j. If you do not specify one of these arguments
you receive a warning message.

-g
(Required) Specifies that the command applies to all execution groups that
belong to the broker.

You must specify either -e or -g. If you do not specify one of these arguments
you receive a warning message.

-j
(Required) Specifies that the command applies to all message flows that belong
to the execution group.

You must specify either -f or -j. If you do not specify one of these arguments
you receive a warning message.

Note: If you set the -g option for all execution groups, you must use -j instead
of -f.

-s (Required) Specify that the command reports the stored settings for the
snapshot accounting and statistics collection.

You must specify -a or -s, or both arguments. If you do not specify at least one
of these arguments you receive a warning message.

Examples:
Request a report for message flow "MyFlow1" in the execution group "default" for
broker "BrokerA" for both archive and snapshot statistics collection:
mqsireportflowstats BrokerA -s -a -e default -f MyFlow1

Request a report of the snapshot options that are currently stored for all message
flows in all execution groups for broker "BrokerA" :

mqsireportflowstats BrokerA -s -g -j

Related reference:
“Syntax diagrams” on page 3677
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

mqsireportflowstats command - z/OS:

Use the mqsireportflowstats command on z/OS to display the current options for
accounting and statistics that have been set by the mqsichangeflowstats command.

Syntax:

z/OS command - BIPRPMS:

Chapter 14. Reference 3931

►► mqsireportflowstats BrokerName -a
-s

►

► -e ExecutionGroupName -f MessageFlow
-g -j

►◄

z/OS console command:
Synonym: rs

►► reportflowstats
rs

a=yes
s=yes

e=ExecutionGroupName f=MessageFlow
g=yes j=yes

►◄

Parameters:

BrokerName
(Required) Specify the label of the broker for which the previously stored
accounting and statistics options are to be reported.

-a (Required) Specify that the command reports the stored settings for the archive
accounting and statistics collection.

You must specify -a or -s, or both arguments. If you do not specify at least one
of these arguments you receive a warning message.

-e ExecutionGroupName
(Required) Specify the name for the execution group, for which accounting and
statistics options are to be reported.

You must specify either -e or -g. If you do not specify one of these arguments
you receive a warning message.

-f MessageFlow
(Required) Specify the label for the message flow, for which accounting and
statistics options are to be reported.

You must specify either -f or -j. If you do not specify one of these arguments
you receive a warning message.

-g
(Required) Specifies that the command applies to all execution groups that
belong to the broker.

You must specify either -e or -g. If you do not specify one of these arguments
you receive a warning message.

-j
(Required) Specifies that the command applies to all message flows that belong
to the execution group.

You must specify either -f or -j. If you do not specify one of these arguments
you receive a warning message.

Note: If you set the -g option for all execution groups, you must use -j instead
of -f.

3932 WebSphere Message Broker Version 7.0.0.8

-s (Required) Specify that the command reports the stored settings for the
snapshot accounting and statistics collection.

You must specify -a or -s, or both arguments. If you do not specify at least one
of these arguments you receive a warning message.

Examples:
Using the command BIPRPMS:
v Request a report for message flow "MyFlow1" in the execution group "default"

for both archive and snapshot statistics collection:
mqsireportflowstats BrokerA -s -a -e default -f MyFlow1

v Request a report of the snapshot options that are currently stored for all message
flows in all execution groups:

mqsireportflowstats BrokerA -s -g -j

Using the console form of the command, request a report for message flow
"MyFlow1" in the execution group "default" for both archive and snapshot statistics
collection:

mqsireportflowstats s= a= e=default f=MyFlow1

Related reference:
“Syntax diagrams” on page 3677
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

mqsireportflowuserexits command:

Use the mqsireportflowuserexits command to report the list of active and inactive
user exits for the specified broker, execution group, or message flow.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command in one of two ways - as a console command, or by

customizing and submitting BIPRPUE; see “Contents of the broker PDSE” on
page 3991

Purpose:
Use the mqsireportflowuserexits command to generate a report about the status
of user exits:
v If you specify only the broker name, the command returns a list of all user exits

that you have set to be active at the broker level by using the mqsichangebroker
command.

v If you specify the broker and execution group names, the command returns the
list returned for the broker name only, plus:
– A list of all user exits that you have set to be active at the execution group

level by using the mqsichangeflowuserexits command.
– A list of all user exits that you have set to be inactive at the execution group

level by using the mqsichangeflowuserexits command.
v If you specify the broker, execution group, and message flow names, the

command returned the list returned for the broker and execution group names,
plus:

Chapter 14. Reference 3933

– A list of all user exits that you have set to be active at the message flow level
by using the mqsichangeflowuserexits command.

– A list of all user exits that you have set to be inactive at the message flow
level by using the mqsichangeflowuserexits command.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsireportflowuserexits command - Windows, Linux, and UNIX systems”
v “mqsireportflowuserexits command - z/OS” on page 3935

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“mqsichangeflowuserexits command” on page 3751
Use the mqsichangeflowuserexits command to set the list of active or inactive user
exits. A list of active and a list of inactive user exits is maintained for each
execution group and message flow. The effective state of user exits for a given flow
is decided when the flow starts.

mqsireportflowuserexits command - Windows, Linux, and UNIX systems:

Use the mqsireportflowuserexits command on distributed systems to report the
list of active and inactive user exits for the specified broker, execution group, or
message flow.

Syntax:

►► mqsireportflowuserexits BrokerName ►

►
-e EgName

-f MessageFlow

►◄

3934 WebSphere Message Broker Version 7.0.0.8

Parameters:

BrokerName
(Required). The name of the broker.

-e EgName
(Optional). The name of the execution group.

-f MessageFlow
(Optional). The name of the message flow.

The user exits that are reported by this command depend on the parameters that
you specify.
v If you specify only the broker name, the command lists user exits that have been

set to active at the broker level by using the mqsichangebroker command.
v If you specify the broker name and execution group name, the command lists

the following user exits:
– User exits that have been set to active at the broker level by using the

mqsichangebroker command
– User exits that have been set to active at the execution group level by using

the mqsichangeflowuserexits command
– User exits that have been set to inactive at the execution group level by using

the mqsichangeflowuserexits command
v If you specify the broker name, execution group name, and a message flow

name, the command lists the following user exits:
– User exits that have been set to active at the broker level by using the

mqsichangebroker command
– User exits that have been set to active at the execution group level by using

the mqsichangeflowuserexits command
– User exits that have been set to inactive at the execution group level by using

the mqsichangeflowuserexits command
– User exits that have been set to active at the message flow level by using the

mqsichangeflowuserexits command
– User exits that have been set to inactive at the message flow level by using

the mqsichangeflowuserexits command

Examples:
mqsireportflowuserexits MB7BROKER -e default -f MYFLOW

BIP8859 User Exits active for broker MYBROKER: exit1, exit2

BIP8854 User Exits active for Execution Group default: exit1,exit3

BIP8855 User Exits inactive for Execution Group default: exit2

BIP8856 User Exits active for Message Flow MYFLOW: exit2

BIP8857 User Exits inactive for Message Flow MYFLOW: exit1

Related reference:
“Syntax diagrams” on page 3677
“mqsireportflowuserexits command” on page 3933
Use the mqsireportflowuserexits command to report the list of active and inactive
user exits for the specified broker, execution group, or message flow.

mqsireportflowuserexits command - z/OS:

Use the mqsireportflowuserexits command on z/OS to report the list of active
and inactive user exits for the specified broker, execution group, or message flow.

Chapter 14. Reference 3935

Syntax:

z/OS command - BIPRPUE:

►► mqsireportflowuserexits BrokerName ►

►
-e EgName

-f MessageFlow

►◄

z/OS console command:
Synonym: rx

►► reportflowuserexits
rx e=EgName

f=MessageFlow

►◄

Parameters:

BrokerName
(Required). The name of the broker.

-e EgName
(Optional). The name of the execution group.

-f MessageFlow
(Optional). The name of the message flow.

The user exits that are reported by this command depend on the parameters that
you specify.
v If you specify only the broker name, the command lists user exits that have been

set to active at the broker level by using the mqsichangebroker command.
v If you specify the broker name and execution group name, the command lists

the following user exits:
– User exits that have been set to active at the broker level by using the

mqsichangebroker command
– User exits that have been set to active at the execution group level by using

the mqsichangeflowuserexits command
– User exits that have been set to inactive at the execution group level by using

the mqsichangeflowuserexits command
v If you specify the broker name, execution group name, and a message flow

name, the command lists the following user exits:
– User exits that have been set to active at the broker level by using the

mqsichangebroker command
– User exits that have been set to active at the execution group level by using

the mqsichangeflowuserexits command

3936 WebSphere Message Broker Version 7.0.0.8

– User exits that have been set to inactive at the execution group level by using
the mqsichangeflowuserexits command

– User exits that have been set to active at the message flow level by using the
mqsichangeflowuserexits command

– User exits that have been set to inactive at the message flow level by using
the mqsichangeflowuserexits command

Examples:
mqsireportflowuserexits MB7BROKER -e default -f MYFLOW

BIP8859 User Exits active for broker MYBROKER: exit1, exit2

BIP8854 User Exits active for Execution Group default: exit1,exit3

BIP8855 User Exits inactive for Execution Group default: exit2

BIP8856 User Exits active for Message Flow MYFLOW: exit2

BIP8857 User Exits inactive for Message Flow MYFLOW: exit1

Related reference:
“Syntax diagrams” on page 3677
“mqsireportflowuserexits command” on page 3933
Use the mqsireportflowuserexits command to report the list of active and inactive
user exits for the specified broker, execution group, or message flow.

mqsireportproperties command:

Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

You can also use the WebSphere Message Broker Explorer to create and view
configurable services. See “Using the WebSphere Message Broker Explorer to work
with configurable services” on page 644 for more information.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPRPPR; see “Contents

of the broker PDSE” on page 3991.

Purpose:
Use the mqsireportproperties command to examine the values of properties or
broker resources that are set by using the mqsichangeproperties command, or
created by using the mqsicreateconfigurableservice command.

Usage notes:

v Before you run the mqsireportproperties command, ensure that the broker is
running.

v If you use the mqsichangeproperties command to change any value, the change
is applied only after you stop and restart the broker or execution group.

v If you run the mqsireportproperties command after changing properties, but
before you restart the broker or execution group, the command shows the
changed value, even though that value is not yet in effect.

Syntax:

Chapter 14. Reference 3937

►► mqsireportproperties BrokerName
-b ComponentName
-e ExecutionGroupLabel
-c ConfigurableService

►

► -o ObjectName -n PropertyName
-a
-r

-p FileName -f
►◄

Parameters:

BrokerName
(Required) The name of the broker.

-b ComponentName
(Optional) The name of the component selected. Valid values are httplistener,
securitycache, and servicefederation.

-c ConfigurableService
(Optional) The type of the configurable service. Specify a value of AllTypes to
report on all configurable service types.

For a list of supplied configurable services, and their properties and values, see
“Configurable services properties” on page 3766.

-e ExecutionGroupLabel
(Optional) The label of the execution group for which a report is required.

-o ObjectName
(Required) The name of the object whose properties you want to read.

You must also specify -b, -e, or -c after -o, except if you specify the object
name BrokerRegistry.

Set ObjectName to match other parameters:
v Specify BrokerRegistry for broker registry parameters.
v Specify the name of a configurable service (predefined or user-defined) of a

type that you have specified with -c.
For example:
– -c EISProviders with SAP, Siebel, or PeopleSoft for a predefined

WebSphere Adapters configurable service.
– -c JMSProviders with the name of a predefined or user-defined service,

for example, WebSphere_MQ.
v Specify a communications object for the httplistener component that you

have specified with -b; one of HTTPListener, HTTPConnector, or
HTTPSConnector. Values are defined for all HTTP nodes that you have
deployed to the broker.
You can set a parameter to disable or enable the broker-wide listener for
HTTP nodes; by default, this listener is active.

v Specify a communications object for the execution group that you have
specified with -e; one of HTTPListener, HTTPConnector, or HTTPSConnector.
Values are defined for all SOAP nodes that you have deployed to the
specified execution group.
You can configure the execution group such that all HTTP nodes use the
embedded listener instead of the broker-wide listener. For more information,
see “HTTP listeners” on page 1589.

3938 WebSphere Message Broker Version 7.0.0.8

v Specify DynamicSubscriptionEngine for inter-broker communications
properties for the execution group that you have specified with -e. These
properties apply to brokers that you have configured in collectives, or
cloned.

v Specify SecurityCache for properties for the securitycache component that
you have specified with -b.

v Specify an object for the servicefederation component that you have
specified with -b; one of scmp, HTTPConnector, or HTTPSConnector. The
properties apply to the broker HTTP(S) port that processes Service
Federation Management (SFM) SCMP Atom requests.

v Specify ServiceFederationManager for properties involved in the creation of
an SFM proxy for the execution group that you have specified with -e.

Specify a value of AllReportableEntityNames to return a list of all valid object
names. If you run the mqsireportproperties command on the command line
without any properties, AllReportableEntityNames is used.

-n PropertyName
(Optional) Display only the named property.

You must select only one option from -n, -a, and -r.

-a
(Optional) Indicates that all property values of the object are displayed, and
does not act in a recursive manner on properties that have child values.

-r
(Optional) Indicates that all property values of the object are displayed and,
additionally, displays the child values for all properties that have child values.

Note, that this option does not show all the possible values for
AllReportableEntityNames. Furthermore, not all entities support this
parameter.

-p FileName
(Optional) The location and name of the file to which the command writes all
selected properties. If you do not specify -n, the property values, but not the
property names, are written.

-f
(Optional) This parameter is valid only if you specify an execution group level
object.

You can use this parameter only when the execution group is in the stopped
state, and you must also specify -e and -o.

If you specify this parameter for other configurable services or components, an
error is generated.

For more information about objects, properties, and values, and valid combinations
of these parameters, see “mqsichangeproperties command” on page 3756.

For the httplistener component, the mqsireportproperties command does not
report those properties that have not been explicitly set with the
mqsichangeproperties command, even if those properties have a default setting.

For example, the default HTTPSConnector port that is used (unless it has been
changed) is 7083. However, this value is not reported by the mqsireportproperties
command unless you have changed it from this default by using the

Chapter 14. Reference 3939

mqsichangeproperties command. To see the default values for all properties that
the mqsireportproperties command can report, see the mqsichangeproperties
command description.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
Responses are of the form:
v HTTPConnector

– PortNumber = 7800
v HTTPSConnector

– PortNumber = 7843

Examples:
Always enter the command on a single line; in some examples, a line break has
been added to enhance readability.

Displaying properties associated with broker components

The following examples include the -b parameter to specify the component to
view.
v Check if the broker-wide listener is active for deployed HTTP nodes in one or

more execution groups:
mqsireportproperties MB7BROKER -b httplistener -o HTTPListener -n startListener

v Display all the current HTTPListener settings associated with HTTP nodes
(defined in the httplistener component):
mqsireportproperties MB7BROKER -b httplistener -o HTTPListener -a

v Display the HTTPSConnector port setting for the HTTP nodes (defined in the
httplistener component):
mqsireportproperties MB7BROKER -b httplistener -o HTTPSConnector -n port

v Display all Service Federation object properties and their values:
mqsichangeproperties MB7BROKER -b servicefederation -o AllReportableEntityNames -r

Displaying properties associated with execution groups

The following example includes the -e parameter to specify the execution group to
view.
v Display the FTE agent name for execution group FTESAMPLE in broker

MB7BROKER:
mqsireportproperties MB7BROKER -e FTESAMPLE -o FTEAgent -n agentName

If the agent has been created, the command returns the agent name. If the agent
has not been created, the command returns an empty string.

v Check if the deployed HTTP nodes are using the execution group embedded
listener:

3940 WebSphere Message Broker Version 7.0.0.8

mqsireportproperties MB7BROKER -e exgroup1 -o ExecutionGroup -n httpNodesUseEmbeddedListener

v Display the properties that control the creation of an SFM proxy for an execution
group that is to be used as an SFM Connectivity Provider:
mqsireportproperties MB7BROKER -e exgroup1 -o ServiceFederationManager -a

The result of this command has the following format:
ServiceFederationManager

uuid=’ServiceFederationManager’
userTraceLevel=’none’
traceLevel=’none’
userTraceFilter=’none’
traceFilter=’none’
port=’8811’
securePort=’8844’
maxWaitTime=’180’
proxyURLHostName=’ mbhost.ibm.com ’
proxyPathPrefix=’proxy’
proxyPathPrefixesEnabled=’TRUE’
creationTime=’2009-09-11 15:37:52.639219’
nextProxyPathPrefixCount=’8’
ownedProxyGroupCount=’2’

Displaying properties associated with configurable services

The following examples include the -c parameter to specify the configurable
service to view.
v Display all Aggregation configurable services:

mqsireportproperties MB7BROKER -c Aggregation -o AllReportableEntityNames -r

v Display all CICSConnection configurable services:
mqsireportproperties MB7BROKER -c CICSConnection -o AllReportableEntityNames -r

v Display all configurable services for Connect:Direct server (that you have
defined to this broker with the mqsicreateconfigurableservice command)
mqsireportproperties MB7BROKER -c CDServer -o AllReportableEntityNames -r

The result of this command has the following format:
CDServer

Default
hostname=’localhost’
port=’1363’
brokerPathToStagingDir=’’
cdPathToStagingDir=’’
brokerPathToInputDir=’’
cdPathToInputDir=’’
queuePrefix= ’’
securityIdentity=”Default”

v Display all Collector configurable services:
mqsireportproperties MB7BROKER -c Collector -o AllReportableEntityNames -r

v Display all CORBA configurable services:
mqsireportproperties MB7BROKER -c CORBA -o AllReportableEntityNames -r

v Display all EmailServer configurable services that EmailInput nodes or message
flows are referring to at runtime:
mqsireportproperties MB7BROKER -c EmailServer -o AllReportableEntityNames -r

v Display all properties of the FtpServer configurable service called TEST1:
mqsireportproperties MB7BROKER -c FtpServer -o TEST1 -r

v Display the protocol property setting of the FtpServer configurable service
called TEST1:

Chapter 14. Reference 3941

mqsireportproperties MB7BROKER -c FtpServer -o TEST1 -n protocol

v Display all IMSConnect configurable services:
mqsireportproperties MB7BROKER -c IMSConnect -o AllReportableEntityNames -r

v Report the properties of the Oracle JDBCProvider configurable service:
mqsireportproperties MB7BROKER -c JDBCProviders -o Oracle -r

v Display the properties for all the broker's JMS provider resources (default JMS
provider resources and those configurable services that you have defined by
using the mqsicreateconfigurableservice command):
mqsireportproperties MB7BROKER -c JMSProviders

-o AllReportableEntityNames -r

v Display the properties for all the JMS provider resources of WebSphere MQ.
mqsireportproperties MB7BROKER -c JMSProviders

-o WebSphere_MQ -r

v Display the properties for all the JMS provider resources (default JMS provider
resources and those configurable services that you have defined to this broker
with the mqsicreateconfigurableservice command):
mqsireportproperties MB7BROKER -c JMSProviders

-o BEA_WebLogic –r

The result of this command has the following format:
ReportableEntityName=’’
JMSProviders

BEA_Weblogic=’’
jarsURL=’default_Path’
nativeLibs=’default_Path’
proprietaryAPIAttr1=’weblogic.jndi.WLInitialContextFactory’
proprietaryAPIAttr2=’t3://9.20.94.16:7001’
proprietaryAPIAttr3=’BEAServerName’
proprietaryAPIAttr4=’default_none’
proprietaryAPIAttr5=’default_none’proprietaryAPIHandler=’BEAWebLogicAPIHandler.jar’

v Display all PeopleSoftConnection configurable services:
mqsireportproperties MB7BROKER -c PeopleSoftConnection -o AllReportableEntityNames -r

v Display all policy sets for broker MB7BROKER:
mqsireportproperties MB7BROKER -c PolicySets

-o AllReportableEntityNames -a

v Display all policy set bindings for broker MB7BROKER:
mqsireportproperties MB7BROKER -c PolicySetBindings

-o AllReportableEntityNames -a

v Export policy set Policy_2 in broker MB7BROKER to file policyset.xml:
mqsireportproperties MB7BROKER -c PolicySets

-o Policy_2 -n ws-security -p policyset.xml

You can use the output file to move policy sets between brokers, and for backup.
v Export a policy set bindings from a broker to a file:

mqsireportproperties MB7BROKER -c PolicySetBindings
-o Bindings_2 -n ws-security -p bindings.xml

This command writes the Policy Set Bindings file Bindings_2 in broker
MB7BROKER to file bindings.xml. You can use this file to move policy set
bindings between brokers, and for backup.

v Display all Resequence configurable services:
mqsireportproperties MB7BROKER -c Resequence -o AllReportableEntityNames -r

v Report the dependencies for the WebSphere Adapter for SAP:
mqsireportproperties MB7BROKER -c EISProviders -o SAP -r

3942 WebSphere Message Broker Version 7.0.0.8

v Display all SAPConnection configurable services:
mqsireportproperties MB7BROKER -c SAPConnection -o AllReportableEntityNames -r

v Display the properties for all the security profiles (default security profiles and
any that you have defined on this broker by using the
mqsicreateconfigurableservice command):
mqsireportproperties MB7BROKER -c SecurityProfiles

-o AllReportableEntityNames -r

The result of this command has the following format:
ReportableEntityName=’’
SecurityProfiles

Default_Propagation=’’
Authentication = ’NONE’
AuthenticationConfig = ’’
Mapping = ’NONE’
MappingConfig = ’’
Authorization = ’NONE’
AuthorizationConfig = ’’
Propagation = ’TRUE’
passwordValue = ’PLAIN’

v Display the properties for the security profile called MyFirstSecurityProfile:
mqsireportproperties MB7BROKER -c SecurityProfiles

-o MyFirstSecurityProfile -r

The result of this command has the following format:
ReportableEntityName=’’
SecurityProfiles
MyFirstSecurityProfile=’’
Authentication = ’LDAP’
AuthenticationConfig = ’ldap://localhost:389/ou=users,o=ibm’
Mapping = ’TFIM’
MappingConfig = ’http://tfimhost1:80’
Authorization = ’NONE’
AuthorizationConfig = ’’
Propagation = ’TRUE’
passwordValue = ’PLAIN’

v Display all SiebelConnection configurable services:
mqsireportproperties MB7BROKER -c SiebelConnection -o AllReportableEntityNames -r

v Display all TCPIPclient configurable services:
mqsireportproperties MB7BROKER -c TCPIPClient

-o AllReportableEntityNames -r

v Display all TCPIPServer configurable services:
mqsireportproperties MB7BROKER -c TCPIPServer

-o AllReportableEntityNames -r

v Display all Timer configurable services:
mqsireportproperties MB7BROKER -c Timer -o AllReportableEntityNames -r

v Display all JavaClassLoader services:
mqsireportproperties MB7BROKER -c JavaClassLoader

-o AllReportableEntityNames -r

Related concepts:
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.

Chapter 14. Reference 3943

“Using the WebSphere Message Broker Explorer to work with configurable
services” on page 644
Configurable services are used to define properties that are related to external
services on which the broker relies. Use the WebSphere Message Broker Explorer to
view, add, modify and delete configurable services.
Related tasks:
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“Parameter values for the servicefederation component” on page 3816
Select the objects and properties associated with the servicefederation component
that you want to change.
“ServiceFederationManager object property values” on page 3818
Select the properties associated with the ServiceFederationManager component that
you want to change.

mqsireportresourcestats command:

Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Supported platforms:

v Windows systems
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPRPRS; see

“Contents of the broker PDSE” on page 3991

Purpose:
Use this command to view the status of statistics collection for the resource types
listed in “Resource statistics data” on page 6745.

You can run this command only if the broker is running.

Syntax:

3944 WebSphere Message Broker Version 7.0.0.8

►► mqsireportresourcestats brokerSpec
-e executionGroupName

►

►
-w timeoutSecs -v traceFileName

►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

Parameters:

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:

Chapter 14. Reference 3945

v -i ipAddress: The host name or the IP address of the computer on
which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note.”

-e executionGroupName
(Optional) The name of the execution group for which resource statistics
collection status is reported.

If you do not specify -e, resource statistics status is reported for all execution
groups on the broker.

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:

0 The command completed successfully.

2 (Failure) The broker received the deployment request but was unable to
process it successfully. See the messages issued from the utility (or the
Administration log) for more information.

9 (Failure) The request has been submitted to the broker, but no response
was received before the timeout expired.

3946 WebSphere Message Broker Version 7.0.0.8

10 (Failure) Another user or application canceled the request operation before
the broker was able to process it.

98 The broker is not running.

99 One or more of the parameters that you specified is invalid.

If the command completes successfully, one report message per resource type is
returned for each execution group specified by the command. Each message has
the general format:
BIP8940I Statistics settings for resource type type in execution group execution_group_name is state. [measurement]

where:
v type is the resource type. For more information about the resource types for

which statistics can be requested, see “Resource statistics” on page 3306.
v state can be active or inactive
v measurement is a repeating field that depends on the resource type; for example,

TotalSocketsOpened is returned for resource type Sockets. Details of all the
measurements reported are provided in “Resource statistics data” on page 6745.

Examples:
Request a report for the execution group default on broker BrokerA for statistics
collection for all resources:
mqsireportresourcestats BrokerA -e default

Request a report for all execution groups on broker BrokerA for statistics collection
for all resources:
mqsireportresourcestats BrokerA

:

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
Related reference:
“Syntax diagrams” on page 3677
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“Example of an XML publication for resource statistics” on page 6746
This example message shows an XML publication that contains resource statistics
data.

mqsireporttrace command:

Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

Chapter 14. Reference 3947

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS as a console command

Purpose:
The mqsireporttrace command can be used to report on the current trace options
that are currently set for an active broker. The broker name is a mandatory
parameter, but if no other parameters are specified, the mqsireporttrace lists all
active user and service trace settings for that broker. Alternatively, you can use the
following options for more specific reports on the current trace settings:
v User trace. Specify the -u option.
v Service trace. Specify the -t option. Use this option only if directed to do so by

the action described in a BIPxxxx message, or by your IBM Support Center.
v Trace nodes. Specify the -n option.

If you specify a broker, or any of its resources (execution group or message flow),
you must have deployed those resources, and the broker must be running, before
you can query trace settings.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsireporttrace command - Windows, Linux, and UNIX systems” on page

3949
v “mqsireporttrace command - z/OS” on page 3951

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related tasks:
“Using trace” on page 3533
You can use different types of trace to help you with problem determination and
troubleshooting.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.

3948 WebSphere Message Broker Version 7.0.0.8

“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.

mqsireporttrace command - Windows, Linux, and UNIX systems:

Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

Syntax:

Report broker-wide active user and service trace settings:

►► mqsireporttrace brokerName
-u
-t

►◄

Report individual component user trace settings:

►► mqsireporttrace brokerName -u -e egName
-f messageFlow

►◄

Report individual component service trace settings:

►► mqsireporttrace brokerName -t ►

► -b
-e egName

-f messageFlow

►◄

Report Trace nodes:

Chapter 14. Reference 3949

►► mqsireporttrace brokerName -n -e egName
-f messageFlow

►◄

Parameters:

brokerName
(Required) The name of a broker; this name is case sensitive on Linux and
UNIX systems.

-e egName
(Required for component user trace, otherwise optional) The label of the
execution group for which a report is required.

-f messageFlow
(Optional) The label of the message flow for which a report is required. This
option is valid only if you have specified an execution group.

-u (Required for component user trace, otherwise optional) Derive report
information from the user trace.

Additional parameters exclusive to service trace:
Use these options only when directed to do so by your IBM Support Center, or by
a BIPxxxx message.

-b (Alternative to -e on all platforms) Request a report for agent function.

-t (Required for component service trace, otherwise optional) Derive report
information from the service trace.

Additional parameters exclusive to Trace nodes:

-n Report the setting of the Trace node switch. One BIP message is reported for
each message flow.

Examples:
To derive report information from service trace for execution group exgrp1 in
broker MB7BROKER, enter the command:
mqsireporttrace MB7BROKER -t -e "exgrp1"

To report the setting of the Trace node switch for execution group exgrp1 in broker
MB7BROKER, enter the command:
mqsireporttrace MB7BROKER -n -e "exgrp1"

To report all active trace settings in broker MB7BROKER, enter the command:
mqsireporttrace MB7BROKER

Related reference:
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“Syntax diagrams” on page 3677
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

3950 WebSphere Message Broker Version 7.0.0.8

mqsireporttrace command - z/OS:

Use the mqsireporttrace command to display the trace options currently in effect.

Syntax:

z/OS console command:

Report broker-wide active user and service trace settings:

►► reporttrace
rt ,t=yes

,u=yes

►◄

Report individual component user trace settings:

►► reporttrace
rt

u=yes , e=egName
, f=messageFlow

►◄

Report individual component service trace settings:

►► reporttrace
rt

t=yes , b=yes
, e=egName

, f=messageFlow

►◄

Report Trace nodes:

►► reporttrace
rt

n=yes , e=egName
, f=messageFlow

►◄

Parameters:

-e egName
(Required for component user trace, otherwise optional) The label of the
execution group for which a report is required.

This name is case sensitive; include the name in single quotes if it contains
mixed-case characters.

-f messageFlow
(Optional) The label of the message flow for which a report is required. This
option is valid only if you have specified an execution group.

Chapter 14. Reference 3951

This name is case sensitive; include the name in single quotes if it contains
mixed-case characters.

-u (Required for component user trace, otherwise optional) Derive report
information from the user trace.

Additional parameters exclusive to service trace:
Use these options only when directed to do so by your IBM Support Center or by
a BIPxxxx message.

-b (Alternative to -e on all platforms) Request a report for agent function.

-t (Required for component service trace, otherwise optional) Derive report
information from the service trace.

Additional parameters exclusive to Trace nodes:

n=yes
Report the setting of the Trace node switch. One BIP message is reported for
each message flow.

Examples:
To report information from service trace for execution group exgrp1, enter the
command:
F MQP1BRK,rt t=yes, e=’exgrp1’

To report the setting of the Trace node switch for execution group exgrp1, enter the
command:
F MQP1BRK,rt n=yes, e=’exgrp1’

To report all active trace settings in broker MQP1BRK, enter the command:
F MQP1BRK,rt

Related reference:
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“Syntax diagrams” on page 3677
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

mqsirestorebroker command:

Use the mqsirestorebroker command to restore the broker configuration from a
backup file.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPRSBK; see “Contents

of the broker PDSE” on page 3991.

Purpose:

3952 WebSphere Message Broker Version 7.0.0.8

The mqsirestorebroker command restores the broker configuration from a backup
file that you have created by using the mqsibackupbroker command. You can
restore a broker only on a computer that has an identical configuration; the
operating system must be at the same level, and the broker and queue manager
names must be identical.

Usage notes:
The command restores the following persistent configuration data associated with
the broker that is contained in the backup file:
v Deployed resources; message flows, dictionaries, JAR files, and other runtime

resources that you have previously deployed in a BAR file.
v Execution groups.
v Broker configuration; for example, configurable services.

Always stop the broker before you run this command. If you specify -c to restore
common configuration data that is shared with other brokers, you must also stop
all brokers with which this broker shares that data. If you run this command when
a relevant broker is active, the results are unpredictable.

If the mqsibackupbroker command that created the backup file includes
information about files that were locked when the backup was taken, and therefore
cannot be backed up, the mqsirestorebroker command returns the names of the
files affected.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Syntax:

►► mqsirestorebroker brokerName -d directory -a archiveName ►

►
-c -v traceFileName

►◄

Parameters:

brokerName
(Required) The name of the broker that you want to restore. You must specify
the name as the first parameter. If the name that you specify does not match
the name of the broker associated with the backup file, the command fails.

-d directory
(Required) The directory in which the backup file is stored. The file must be
stored in a file system that can be accessed by the computer on which you run
this command.

Chapter 14. Reference 3953

-a archiveName
(Required) The name of the backup (archive) file.

-c
(Optional) Specify this parameter to restore all configuration data that is shared
with other brokers on the same computer; for example, profiles.

-v traceFileName
(Optional) The location of a trace file that records details of the actions taken
by the command.

Examples:
The following example restores broker MB7BROKER on Windows:
mqsirestorebroker MB7BROKER -d C:\MQSI\BACKUP -a 20090101.zip

Related tasks:
“Restoring the broker” on page 1015
Restore a broker configuration that you backed up previously.
“Command environment: Linux and UNIX systems” on page 310
Set up the Linux or UNIX environment to run WebSphere Message Broker
commands.
“Command environment: Windows systems” on page 306
Set up the Windows environment to run WebSphere Message Broker commands.
Related reference:
“Contents of the broker PDSE” on page 3991
After you have successfully customized the broker, the broker PDSE members have
been set up.
“Syntax diagrams” on page 3677
“mqsibackupbroker command” on page 3720
Use the mqsibackupbroker command to back up the current configuration of a
broker.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.
“Sample BIPRSBK file” on page 4012
The sample BIPRSBK file that is shipped with WebSphere Message Broker is
included here for your reference.

mqsisetdbparms command:

Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPSDBP.

3954 WebSphere Message Broker Version 7.0.0.8

Purpose:
Use the mqsisetdbparms command to set security credentials for a specific user ID
and password (or SSH identity file) for the following resources:
v A CICSConnection configurable service
v A data source name (DSN) that is accessed from a message flow
v An EmailServer configurable service
v An FtpServer configurable service
v An IMSConnect configurable service
v A JDBCProvider configurable service
v A JMS or JNDI resource, for example a JMSProviders configurable service
v Kerberos Key Distribution Center (KDC) client credentials for SOAPRequest

nodes with a WS-Security policy set and bindings that specify Kerberos
v Lightweight Directory Access Protocol (LDAP) bind credentials for the broker

security manager
v The Service Federation Manager (SFM) user ID and password credentials to

authorize Service Control Management Protocol (SCMP) Atom requests
v An SMTP configurable service
v The broker keystore password
v An account name, with a user name and password, for the WebSphere Adapters
v A WebSphere Service Registry and Repository (WSRR) configurable service

The user ID and password pair is created in the DSN folder under the broker
registry folder.

You can run the mqsisetdbparms command while the broker is running. However,
you must stop and start each execution group that uses a particular DSN, before
that information is read and used by that execution group.

This behavior is different from the default behavior in WebSphere Message Broker
where the broker must be stopped to issue this command.

If you are using the mqsisetdbparms command on Linux or a UNIX console, add
an escape character if you use one or more of the reserved characters. For example,
you must specify these values:
mqsisetdbparms DUMMYBROKER -n ftp::DUMMYFTP -u dummy\\user -p abcdef

Do not use the following format:
mqsisetdbparms DUMMYBROKER -n ftp::DUMMYFTP -u dummy\user -p abcdef

If you use the latter format, the backslash character (\) in the user ID or password
is ignored. The example causes the FTP connection through the FileInput node to
fail with incorrect user credentials.

For a full list of reserved characters, and the rules that are associated with those
characters when you use quotation marks and escape characters, see the
documentation that is supplied with the shell.

Syntax:

Create:

Chapter 14. Reference 3955

►► mqsisetdbparms BrokerName -n ResourceName -u UserId ►

► -p Password
-i SSHIdentityFile

-r Passphrase
-f

►◄

Alter:

►► mqsisetdbparms BrokerName -n ResourceName
-u UserId

►

► -p Password
-i SSHIdentityFile

-r Passphrase
-f

►◄

Delete:

►► mqsisetdbparms BrokerName -n ResourceName -d
-f

►◄

Adapter connection:

►► mqsisetdbparms BrokerName -n AdapterName -u EISUserId ►

► -p EISPassword
-f

►◄

Parameters:

BrokerName
(Required) The name of the broker for which settings are to be created, altered,
or deleted.

-n ResourceName or AdapterName
(Required) This parameter identifies one of the following resources:
v The ODBC data source for which the user ID and password pair are to be

created or modified. The ResourceName takes the form dsn::datasource_name,
where datasource_name identifies the data source name for the database to
which you want to connect.
Data source names are used by the following nodes:
– Compute
– Database
– DatabaseRetrieve

3956 WebSphere Message Broker Version 7.0.0.8

– DatabaseRoute
– DataDelete
– DataInsert
– DataUpdate
– Filter
– Mapping
– Warehouse

If you use the same DSN to refer to the same database instance from
multiple nodes, the same user ID and password pairing is used.
To define default values for user ID and password for the broker to use for
all data source names for which you have not set specific values, specify
dsn::DSN.
If you migrated the broker from a previous version, the values that you
define on this command replace the values that you set on the
mqsicreatebroker or mqsichangebroker commands before migration; the
relevant parameters on those commands are deprecated in WebSphere
Message Broker Version 7.0.

v The name of the security identity that is used to connect an IBM Sterling
Connect:Direct CDOutput or node to itsConnect:Direct server. The
ResourceName takes the form cd::secId, where secId is specified as the value
of the security identity property on a CDServer configurable service. Change
security identity cd::default to alter the default user ID and password.

v The name of the security identity that is used to authenticate a CICS
Transaction Server for z/OS connection. The ResourceName takes the form
cics::secId, where secId is specified as the value of the Security identity
property on the CICSRequest node or in the -n securityIdentity property
of the associated CICSConnection configurable service.

v The name of the security identity that the EmailInput node or EmailServer
configurable service use to authenticate with an email server to retrieve
email messages. The ResourceName takes the form email::secId, where secId
is specified as the value of the Security identity property on the
EmailInput node or in the -n securityIdentity property of the associated
EmailServer configurable service.

v The name of the security identity that is used to authenticate a JDBC type 4
connection. The ResourceName takes the form jdbc::secId, where secId is
specified as the value of the -n securityIdentity property of the associated
JDBCProvider configurable service on the mqsicreateconfigurableservice or
mqsichangeproperties command.
Specify jdbc::JDBC to define default values for user ID and password for the
broker to use for all JDBC connections for which you have not set specific
values.

v The name of the security identity that is used to authenticate a connection to
a JMS or JNDI resource. The ResourceName takes the form jms::secId or
jndi::secId, where secId is specified as the value.

v The name of the security identity that is used for retrieving client credentials
from the Kerberos Key Distribution Center (KDC) by a SOAPRequest node
with a policy set and binding specifying Kerberos.

v The name of the security identity that is used to authenticate an LDAP
directory.

Chapter 14. Reference 3957

Specify ldap::<servername> to define credentials for an individual server. If
you want the broker to bind anonymously to this server, specify anonymous
as the user ID.
Specify ldap::LDAP to define a default setting. The broker uses the specified
user ID and password values for all servers that do not have an explicit
ldap::<servername> entry. Therefore, all servers that previously used
anonymous bind by default start to use the details defined in an ldap::LDAP
entry.

v The name of the adapter connection to the external EIS. The AdapterName
takes the form eis::adapterName, where adapterName is specified as the
value.

v The name of the IMS connection. The ResourceName takes the form
ims::secId, where secId is the same as the value of the Security identity
property on the IMSRequest node or in the -n securityIdentity property of
the associated IMSConnect configurable service.

v The name of the security identity that is used to authenticate an SMTP
server.

v The name of the security identity that is used to authenticate a connection to
an FTP server. The ResourceName takes the form ftp::secId, where secId is
specified as the value of the Security identity property of the FileInput or
FileOutput node, or in the -n securityIdentity property of the associated
FtpServer configurable service on the mqsicreateconfigurableservice or
mqsichangeproperties command.

v The name of the security identity that is used to authenticate a connection to
an SFTP server. The security identity is used to locate the user name and
password or the Secure Shell (SSH) identity file. The ResourceName takes the
form sftp::secId, where secId is specified as the value of the Security
identity property of the FileInput or FileOutput node, or in the -n
securityIdentity property of the associated FtpServer configurable service
on the mqsicreateconfigurableservice or mqsichangeproperties command.

v The name of the security identity that is used to authenticate a broker
keystore.

v The name of the security identity that is used to authenticate a WSRR
configurable service.

v The name of the security identity for SFM. Specify sfm::scmp to define the
basic access authentication credentials that must be present in every SCMP
Atom request that is received on the SFM HTTP(S) port.
The user ID and password that are configured in this way must match the
user ID and password that the SFM console can provide. It is good practice
to configure SFM to use SSL when you set basic access authentication.

-u UserId or EISUserId
(Required for Create and adapter connection; Optional for Alter) The user ID
to be associated with this resource or EIS.

-p Password
(Required for Create, Alter, and adapter connection) The password to be
associated with this resource or EIS.

For compatibility with existing systems, you can still specify <password>.
However, if you do not specify a password with this parameter when you run
the command, you are prompted to enter a password during its invocation,
and to enter the password a second time to verify that you have entered it
correctly.

3958 WebSphere Message Broker Version 7.0.0.8

On z/OS only, this parameter is optional with the dsn::DSN resource type. If
you omit this parameter, the broker uses the started task user ID to connect to
DB2. The broker uses the user ID that you specified with the -u parameter
when it constructs fully qualified SQL statements; for example, for stored
procedures. If you create fully qualified SQL statements, the broker uses these
statements as created.

This parameter is required with the ftp:: resource type, but is optional with
the sftp:: resource type. However, if you do not specify a password with an
sftp:: resource, you must specify the SSHIdentityFile parameter.

-i SSHIdentityFile
(Optional) The name of an identity file, in the OpenSSH format, to be used for
authentication with SFTP, in place of a password. You must specify either a
password or an identity file, but not both. If you specify an identity file, you
can also specify a pass phrase with the Passphrase parameter.

On z/OS systems, known hosts files and SSH identity files are stored in
EBCDIC format, and on other operating systems they are stored in ASCII
format.

-r Passphrase
(Optional) The pass phrase that is used for authentication with SFTP. This
parameter is valid only when the SSHIdentityFile parameter is also specified.
The pass phrase is used during decryption of the identity file.

-d (Required for Delete) This parameter deletes completely the resource from the
broker registry.

-f (Optional) Specify this parameter to process the mqsisetdbparms command only
when the broker itself is stopped.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Ensure that the registry is appropriately secured to prevent unauthorized access.

Examples:
CICS connections

Use the mqsisetdbparms command in the following format to associate a user ID
and password pair with CICS.
mqsisetdbparms broker name -n ResourceName -u userID -p password

For example:
mqsisetdbparms MB7BROKER -n cics::mySecurityIdentity -u myUserID -p myPassword

Data source names

The following example show use of the command for a specific data source name
(no Universal Record Identifier (URI) prefix is required for this purpose):

Chapter 14. Reference 3959

mqsisetdbparms MB7BROKER -n Database1 -u MQUserId -p password

The following example deletes all the values that are defined for a specific data
source name from the broker registry:
mqsisetdbparms MB7BROKER -n ClientDB -d

The following example shows how to set up a default user ID and password for
the broker to use for all data source names where no explicit values have been set:
mqsisetdbparms MB7BROKER -n dsn::DSN -u UserId1 -p password1

The following examples show the use of the additional prefix odbc::. Use this
option to set the user ID and password at the execution group level, and at the
broker level:
mqsisetdbparms MB7BROKER -n odbc::DSN -u myuserid

-p mypassword

mqsisetdbparms MB7BROKER -n odbc::DSN::default -u myuserid -p mypassword

Email server connections

Use the mqsisetdbparms command in the following format to associate a user ID
and password pair with an email server for the EmailInput node or the
EmailServer configurable service to use to retrieve email messages.
mqsisetdbparms broker name -n ResourceName -u userID -p password

For example:
mqsisetdbparms MB7BROKER -n email::mySecurityIdentityObjectName
-u myUserID -p myPassword

IBM Sterling Connect:Direct

Use the mqsisetdbparms command in the following format to associate a user ID
and password pair with a Connect:Direct server.
mqsisetdbparms broker name -n ResourceName -u userID -p password

For example:
mqsisetdbparms MB7BROKER -n cd::default -u mqbroker -p xxxxxxx

JDBC type 4 connections

Use the mqsisetdbparms command to associate a user ID and password pair with a
JDBC type 4 connection. The value that you specify for the -n ResourceName must
have a prefix of jdbc::, followed by the value that matches the -n
securityIdentity property of the associated JDBCProvider configurable service.
mqsisetdbparms broker name -n resource_name -u userID -p password

For example:
mqsisetdbparms MB7BROKER -n jdbc::mySecurityIdentity -u myuserid -p secretpw

The following example shows how to set up a default user ID and password for
the broker to use for all JDBC connections for which you have not set specific
values:
mqsisetdbparms MB7BROKER -n jdbc::JDBC -u UserId2 -p password2

3960 WebSphere Message Broker Version 7.0.0.8

JMS and JNDI resource names

The following examples show the use of the command when the URI for a JMS or
JNDI resource name is substituted for the -n ResourceName parameter.

For a JMS resource, the URL prefix is "jms::"; for JNDI, the prefix is "jndi::".

On Linux and UNIX systems, if the parameter string includes a backslash (\)
character, you must escape from this character by using a second backslash
character (\\) when you enter the mqsisetdbparms command.

For example, to specify a user ID of myuserid and password secret for JMS topic
connection factory tcf1, use the following syntax:
mqsisetdbparms MB7BROKER -n jms::tcf1 -u myuserid -p secret

Similarly, to specify the same security for a JNDI initial context
com.sun.jndi.fscontext.RefFSContextFactory, enter the following command:
mqsisetdbparms MB7BROKER -n jndi::com.sun.jndi.fscontext.RefFSContextFactory

-u myuserid -p secret

JMS node account names

The preceding examples describe how to configure security for JMS and JNDI
resources for all JMS nodes that use those resources in a broker.

To increase the degree of control that you have in the security of JMS nodes, you
can associate a resource with an account name. The account name comprises the
message flow name that is concatenated with the node label by using the
underscore character (_):

Message Flow Name_Node label

For example, where the message flow name is MyJMSFlow1, and you require a
specific user ID and password for JMSInput node MyJMSInput1, the resulting
account name is:

MyJMSFlow1_MyJMSInput1

You can then specify the account name string in the -n ResourceName parameter on
the mqsisetdbparms command by prefixing the account name with the resource type,
and concatenating the account name with an at sign (@) character followed by the
resource name:

resource typeaccount name@resource name

Therefore, assuming a JMS resource name of tcf1, used by JMSInput node
MyJMSInput1 in message flow MyJMSFlow1, the following resource name is used:

jms::MyJMSFlow1_MyJMSInput1@tcf1

To specify a user ID of myuserid, a password of secret, and the resource name that
is created from the account name, use the following syntax:
mqsisetdbparms MB7BROKER -n jms::MyJMSFlow1_MyJMSInput1@tcf1

-u myuserid -p secret

LDAP servers

Use the mqsisetdbparms command to set up authorization credentials for the LDAP
server ldap.mydomain.com:

Chapter 14. Reference 3961

mqsisetdbparms MB7BROKER -n ldap::ldap.mydomain.com -u ldapuid -p ********

To set up authorization for other servers, use the command to set up default
credentials:
mqsisetdbparms MB7BROKER -n ldap::LDAP -u ldapother -p ********

If you want the broker to bind anonymously to an LDAP server, specify the server
name and the user ID anonymous:
mqsisetdbparms MB7BROKER -n ldap::ldap.mydomain2.com -u anonymous -p ********

For the user ID anonymous, the password is always ignored.

WebSphere Adapters account names

Use the mqsisetdbparms command in the following format to configure an account
name with a user name and password for the WebSphere Adapters.
mqsisetdbparms broker name -n adapter name -u user name -p password

For example:
mqsisetdbparms MB7BROKER -n eis::SAPCustomerInbound.inadapter -u sapuid -p ********
mqsisetdbparms MB7BROKER -n eis::TwineballInbound.inadapter -u mqbroker -p ********

IMS connections

Use the mqsisetdbparms command in the following format to associate a user ID
and password pair with an IMS Connect connection.
mqsisetdbparms broker name -n resource_name -u userID -p password

For example:
mqsisetdbparms MB7BROKER -n ims::mySecurityIdentity -u myuserid -p mypassword

FTP and SFTP server connections

Use the mqsisetdbparms command to associate a user ID and password with an
FTP server connection:
mqsisetdbparms MB7BROKER -n ftp::identityA -u user1 -p MyPassword

Use the mqsisetdbparms command to associate a user ID and password with an
SFTP server connection:
mqsisetdbparms MB7BROKER -n sftp::identityB -u user2 -p MyPassword

Use the mqsisetdbparms command to associate a user ID and SSH identity file with
an SFTP server connection:
mqsisetdbparms MB7BROKER -n sftp::identityC -u user3 -i C:\key_rsa_no_pp

Use the mqsisetdbparms command to associate a user ID, SSH identity file, and
pass phrase with an SFTP server connection:
mqsisetdbparms MB7BROKER -n sftp::identityD -u user4 -i C:\key_rsa_pp -r MyPassPhrase

Service Federation Management

Use the mqsisetdbparms command to set the SCMP enablement to be secured with
basic access authentication by using a user ID and password:
mqsisetdbparms MB7BROKER -n sfm::scmp -u user1 -p MyPassword

3962 WebSphere Message Broker Version 7.0.0.8

Use the mqsisetdbparms command to clear any previous settings and specify that
the SCMP enablement does not require basic access authentication:
mqsisetdbparms MB7BROKER -n sfm::scmp -d

Kerberos

Use the mqsisetdbparms command to provide the broker with the Kerberos client
credentials for accessing the Kerberos Key Distribution Center (KDC). These
credentials (which are required for SOAPRequest nodes) can also be provided in
the broker properties tree.

To set KDC credentials for a specific realm that is used by SOAPRequest nodes in
a specific execution group:
mqsisetdbparms MB7BROKER -n kerberos::realm1::ExecutionGroup1 -u clientId -p ClientPassword

To set KDC credentials for a specific realm that is used by SOAPRequest nodes in
any execution group:
mqsisetdbparms MB7BROKER -n kerberos::realm1 -u clientId -p ClientPassword

To set KDC credentials for any realm that is used by SOAPRequest nodes in any
execution group:
mqsisetdbparms MB7BROKER -n kerberos::kerberos -u clientId -p ClientPassword

Related tasks:
“Accessing a secure WSRR repository” on page 1884
To access a secure WebSphere Service Registry and Repository (WSRR) repository,
set the configuration parameters by using the mqsichangeproperties command.
“Configuring authorization with LDAP” on page 472
This topic describes how to configure a message flow to perform authorization on
an identity using Lightweight Directory Access Protocol (LDAP).
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.
“Securing a JDBC type 4 connection” on page 689
Set up security for the JDBC connection if required by the database provider.
“Viewing and setting keystore and truststore runtime properties at broker level” on
page 780
Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.
Related reference:
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.

Chapter 14. Reference 3963

“EmailInput node” on page 4394
Use the EmailInput node to retrieve an email, with or without attachments, from
an email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“TwineballRequest node” on page 4955
Use the TwineballRequest node to discover out how WebSphere Adapters nodes
work.
“Syntax diagrams” on page 3677
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“FtpServer configurable service properties” on page 3794
Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.

mqsisetsecurity command:

Use the mqsisetsecurity command to create the Windows groups that WebSphere
Message Broker requires for secure access to its runtime libraries and data.

Supported platforms:

v Windows

Purpose:
The mqsisetsecurity command runs automatically as part of the installation
process of the Broker component.

The installation wizard calls the mqsisetsecurity command which creates a new
security group called mqbrkrs, adds your current (logged on) user ID to the group
mqbrkrs, and adds your current user ID to the group mqm, if that group exists. If
WebSphere MQ is installed after WebSphere Message Broker, you can issue this
command to add your account to the group mqm.

Syntax:

►► mqsisetsecurity ►◄

Parameters:
None

3964 WebSphere Message Broker Version 7.0.0.8

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

In addition, this command is supported on Linux and UNIX systems where it only
creates the group mqbrkrs.
Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
Related reference:
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

mqsistart command:

Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS as a console command.

Purpose:
The mqsistart command:
v On distributed systems, starts the associated queue manager if it is not running.
v Checks that the broker environment is set up correctly; for example, that the

installed level of Java is supported.
v Verifies that the WebSphere MQ queues are defined and accessible.

The command completes these checks, and reports all errors in the system log,
or to the command line, or both. If one or more checks fail, the command does
not start the component.

v On Linux and UNIX systems, where the mqsisetdbparms command has been
used to associate the datasource with the broker, the mqsistart command:
– Checks broker connectivity to, and
– Performs tests against

any user data sources where the WebSphere Message Broker Database Extender
(IE02) SupportPac is being used for extended database support.
If any issues are identified, a warning is reported to the system log and
command line. However, this step does not prevent the broker from starting
cleanly.

v Checks the publish/subscribe mode (attribute PSMODE) of the queue manager
associated with the broker. If the PSMODE is set to DISABLED, it is changed to

Chapter 14. Reference 3965

COMPAT and this is reported to the system log. If the PSMODE is already set to
COMPAT or ENABLED, the setting is not changed.

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsistart command - Windows, Linux, and UNIX platforms”
v “mqsistart command - z/OS” on page 3968

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

The broker starts only if the user ID under which it will run is authorized to access
both the following locations. On Windows, the user ID is defined by the
ServiceUserID specified on mqsicreatebroker; on Linux and UNIX systems, it is the
user ID with which you run this command:
v Home directory, where WebSphere Message Broker has been installed.
v Working directory, if specified by the -w flag on the mqsicreatebroker command.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related reference:
“Security requirements for Linux and UNIX platforms” on page 3648
View a summary of the authorizations in a Linux or UNIX environment.
“Security requirements for Windows systems” on page 3651
Security requirements depend on the administrative task that you want to perform.

“Security requirements for z/OS” on page 3655
View a summary of the authorizations in a z/OS environment.
“Syntax diagrams” on page 3677
“mqsicvp command” on page 3857
Use the mqsicvp command to perform verification tests on a broker, or to verify
ODBC connections.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

mqsistart command - Windows, Linux, and UNIX platforms:

Use the mqsistart command to start a broker.

Purpose:
If the queue manager associated with this broker (defined by the mqsicreatebroker
command) is not already running, it is also started by this command. However, no
listeners, channels, or channel initiators associated with the started broker are
started. Use WebSphere MQ Explorer to start any required listeners, channels, or
channel initiators.

3966 WebSphere Message Broker Version 7.0.0.8

Successful completion of this command indicates that the Windows service, or
Linux or UNIX daemon, has started successfully, and that the broker startup has
been initiated. Check the Windows system event log or the Linux or UNIX syslog
to determine if the broker and all related software have started successfully, are
initially active, and remain in an active state.

All errors that have prevented successful startup, that are detected by the broker,
are recorded in the log. Continue to monitor the Windows system event log or
Linux or UNIX syslog.

On Windows platforms, the queue manager is not started as a service, and stops if
you log off. To avoid this happening, either remain logged on, or change the
startup status of the queue manager service as described in “Starting a
WebSphere MQ queue manager as a Windows service” on page 929. (If you lock
your workstation, the queue manager does not stop).

Syntax:

►► mqsistart broker ►◄

Parameters:

broker
(Required) Specify the name of the broker that you want to stop.

On Linux and UNIX systems, all names are case sensitive.

Responses:

v BIP8012 Unable to connect to system components
v BIP8013 Broker does not exist
v BIP8015 Broker cannot be started
v BIP8018 Broker running
v BIP8024 Unable to locate executable
v BIP8025 Broker disabled
v BIP8026 Unable to start broker
v BIP8027 Unable to start WebSphere MQ
v BIP8028 WebSphere MQ unavailable
v BIP8030 Unable to modify user privileges
v BIP8048 Unable to start queue manager
v BIP8056 Unknown queue manager
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping
v BIP8116 Starts a broker

Examples:
To start the broker MB7BROKER:
mqsistart MB7BROKER

Related reference:
“Syntax diagrams” on page 3677

Chapter 14. Reference 3967

“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

mqsistart command - z/OS:

Use the startcomponent command to start a broker when its controller (control
process) is already running, or the start (/S) command to bring a broker into a
state in which you can run the appropriate change command.

Purpose:
The following table distinguishes between the start (/S) and startcomponent
commands, and lists the available options.

Command Description

/S Broker started task name Starts the broker.

/F Broker started task name,SC Starts the broker from a 'stop component' state.

When the controller address space is started, the broker starts automatically. You
can change this behavior by using an optional start parameter in the started task. If
you set the parameter to MAN, the broker does not start automatically; the default
is AUTO.

Issuing commands against the controller means issuing start, stop, or modify
commands from the console to the controller address space. Two scenarios apply
when you use this command:
1. The controller is started with the parameter MAN instead of AUTO.
2. After a stopcomponent command, you must restart the broker.

Syntax:

z/OS console command - startcomponent:
Synonym: sc

►► startcomponent
sc

►◄

Examples:
/F MQ00BRK,sc

Related tasks:
“Starting and stopping a broker” on page 921
Run the appropriate command to start or stop a broker.
Related reference:
“Syntax diagrams” on page 3677
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification

3968 WebSphere Message Broker Version 7.0.0.8

tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

mqsistartmsgflow command:

Use the mqsistartmsgflow command to start execution groups and message flows.

Supported operating systems:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPSTMF; see

“Contents of the broker PDSE” on page 3991

Purpose:
You can use the mqsistartmsgflow command for the following purposes:
v To start a specific message flow in an execution group
v To start all message flows in the execution group
v To start a specific execution group
v To start all execution groups

To use this command, you must have already deployed message flows, if specified,
to the broker in a broker archive (BAR) file. You can start message flows only if the
execution group to which the message flow is deployed is running.

Syntax:

►► mqsistartmsgflow brokerSpec -e executionGroupName
-g

►

►
-m flowName
-j

-v traceFileName -w timeoutSecs
►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

Parameters:

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

Chapter 14. Reference 3969

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note” on
page 3971.

-e executionGroupName
(Optional) The name of the execution group for which to start message flows.
You must specify either -e or -g.

If you specify -e without -m or -j, the execution group is started. Message
flows are started only if they were running when the execution group was
stopped.

If you specify -e with -m or -j, the execution group must be running. If the
execution group is stopped, the request is rejected.

-g (Optional) The specified message flow or flows are started on all execution
groups on the specified broker. You must specify either -e or -g.

3970 WebSphere Message Broker Version 7.0.0.8

If you specify -g without -m or -j, all execution groups are started, but
message flows are started only if they were running when the execution group
was stopped.

If you specify -g with -m or -j, the specified message flow or flows are started
only if the execution group is running. The request checks all execution
groups, and starts message flows on execution groups that are currently
running. Error BIP2851 is reported for each execution group that is not
running.

-j

(Optional) All message flows in the specified execution group are started.

If you do not specify -j or -m, the execution group identified by -e (if
specified), or all execution groups on this broker, are started. Message flows
that were running when the execution group was last stopped are also
restarted.

-m flowName
(Optional) The name of the message flow being started.

If you do not specify -m or -j, the execution group identified by -e (if
specified), or all execution groups on this broker, are started. Message flows
that were running when the execution group was last stopped are also
restarted.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:

0 The command completed successfully.

2 (Failure) The broker received the deployment request but was unable to

Chapter 14. Reference 3971

process it successfully. See the messages issued from the utility (or the
Administration log) for more information.

9 (Failure) The request has been submitted to the broker, but no response
was received before the timeout expired.

10 (Failure) Another user or application canceled the request operation before
the broker was able to process it.

98 The broker is not running.

99 One or more of the parameters that you specified is invalid.

Examples:
Start a named message flow that you have deployed to execution group eg1 on the
broker MB7BROKER:
mqsistartmsgflow MB7BROKER -e eg1 -m simpleflow

Ensure that all message flows are running on the local broker MB7BROKER:
mqsistartmsgflow MB7BROKER -g -j

:

Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.
“mqsistopmsgflow command” on page 3975
Use the mqsistopmsgflow command to stop execution groups and message flows.
“Syntax diagrams” on page 3677

mqsistop command:

Use the mqsistop command to stop the specified component.

Supported platforms:

v Windows
v Linux and UNIX systems
v z/OS as a console command

Select the appropriate link for details of this command on the platform, or
platforms, that your enterprise uses:
v “mqsistop command - Windows, Linux, and UNIX systems” on page 3973
v “mqsistop command - z/OS” on page 3974

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651

3972 WebSphere Message Broker Version 7.0.0.8

v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.
Related reference:
“Syntax diagrams” on page 3677
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.

mqsistop command - Windows, Linux, and UNIX systems:

How to use the mqsistop command on Windows, Linux, and UNIX systems.

Purpose:
Use the mqsistop command to stop a WebSphere Message Broker component.

Syntax:

►► mqsistop Component
-q -i

►◄

Parameters:

Component
(Required) Specify the name of the broker that you want to stop.

On Linux and UNIX systems, all names are case sensitive.

-q (Optional) Stops the WebSphere MQ queue manager associated with this
component.

Specify this flag only if the WebSphere Message Broker component is the last
(or only) WebSphere Message Broker component active on this queue manager.
The mqsistop command initiates a controlled shutdown of the queue manager,
and informs other users of the queue manager that it is closing.

Stop other WebSphere Message Broker components that use this queue
manager before you issue the mqsistop command with this option;
alternatively stop them afterward or restart the queue manager.

If you use this option, be aware that any listeners associated with this queue
manager are not stopped with the queue manager. Stop these listeners
manually after issuing the mqsistop command.

-i (Optional) Immediately stops the broker.

Specify this flag only if you have already tried, and failed, to stop the broker in
a controlled fashion by using the mqsistop command without the -i flag.

Responses:

v BIP8012 Unable to connect to system components
v BIP8013 Component does not exist
v BIP8016 Component cannot be stopped

Chapter 14. Reference 3973

v BIP8019 Component stopped
v BIP8030 Unable to modify user privileges
v BIP8049 Unable to stop queue manager
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping

Examples:
To stop the broker, mybroker, and the WebSphere MQ queue manager associated
with it:
mqsistop mybroker -q

Related reference:
“Syntax diagrams” on page 3677
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

mqsistop command - z/OS:

Use the mqsistop command to stop a WebSphere Message Broker broker; the
controller must be running.

Purpose:
The following table distinguishes between the stop (/P) and stopcomponent
commands, and lists the available options:
v Use the stop (/P) command to bring a component into a state in which you can

run the appropriate change command.
v Use the stopcomponent command to stop a broker when its controller (control

process) is already running.

Component Command Description

Broker /P <Broker started task name>

/F <Broker started task name>,P

/F <Broker started task name>,PC

Stop broker.

Stop broker; this is the same as /P. You can also use
/F <broker started task name>,STOP

Stop broker component. This stops the broker
process (including any execution group address
spaces), but leaves the message broker console
command server running inside the controller
address space. This allows you to run the
“mqsichangebroker command” on page 3723 console
command. Restart the broker afterward by running
the “mqsistart command” on page 3965 (SC) console
command.

Syntax:

z/OS console command - stopcomponent:
Synonym: pc

3974 WebSphere Message Broker Version 7.0.0.8

►► stopcomponent
pc i=yes

►◄

Parameters:

-i (Optional) Immediately stop the broker.

Specify this flag only if you have already tried, and failed, to stop the broker in
a controlled fashion by using the mqsistop command without the -i flag.

This command is rejected by the WebSphere Message Broker console command
server if a previous stop command has failed to complete. This can occur, for
example, if one or more execution group address spaces cannot shutdown.

Examples:
F MQ00BRK,pc

Related reference:
“Syntax diagrams” on page 3677
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

mqsistopmsgflow command:

Use the mqsistopmsgflow command to stop execution groups and message flows.

Supported operating systems:

v Windows
v Linux and UNIX systems
v z/OS. Run this command by customizing and submitting BIPSPMF; see

“Contents of the broker PDSE” on page 3991

Purpose:
You can use the mqsistopmsgflow command for the following purposes:
v To stop a specific message flow in an execution group
v To stop all message flows in the execution group
v To stop a specific execution group
v To stop all execution groups

To use this command, you must have already deployed message flows, if specified,
to the broker in a broker archive (BAR) file.

The broker processes all inflight messages and associated transactions for each
message flow before stopping it. For information about how outstanding units of
work are handled in this situation, see “Message flow transactions” on page 1281.

Syntax:

Chapter 14. Reference 3975

►► mqsistopmsgflow brokerSpec -e executionGroupName
-g

►

►
-m flowName
-j

-v traceFileName -w timeoutSecs
►◄

brokerSpec:

▼

brokerName
-n brokerFileName

-i ipAddress
-p port
-q qMgr

Parameters:

brokerSpec
(Required) You must specify at least one parameter to identify the target
broker for this command, in one of the following forms:

brokerName
This parameter identifies the name of a locally defined broker. You
cannot use this option if the broker is on a remote computer.

-n brokerFileName
This parameter identifies the name of a file that contains the
connection details for a local or remote broker.

Use this option if multiple users want to connect to the same broker, or
if you are using advanced connection parameters such as SSL.

To create this file, right-click the broker in the WebSphere Message
Broker Explorer and select Export *.broker file. When prompted,
navigate to the location in which you want to save the file and enter
the file name; the extension .broker is appended automatically when
you click Save. Include the location (path) and file name when you
specify this parameter. You must ensure that the location is accessible
when you run this command.

If you want to run a command that uses SSL to administer a remote
broker over a secured channel, you must specify the keystore and
truststore password for the connection using the IBM_JAVA_OPTIONS
environment variable. See “Resolving problems when running
commands” on page 3364 for further information.

-i ipAddress, -p port, -q qMgr
These parameters identify the connection details for the broker.

Use this option for connections to remote brokers that do not require
advanced connection parameters.

If you choose this option, you must specify at least one of these three
parameters; the order in which you specify them is insignificant. You
cannot specify each parameter more than once.

3976 WebSphere Message Broker Version 7.0.0.8

Parameters that you omit assume default values:
v -i ipAddress: The host name or the IP address of the computer on

which the broker is running. If you do not specify this parameter, a
value that represents the local computer is used.

v -p port: The TCP port on which the broker's queue manager is
listening. If you do not specify this parameter, the value 1414 is
used.

v -q qMgr: The name of the broker's queue manager. If you do not
specify this parameter, a value that represents the default queue
manager on the local computer is used.

You cannot connect to a remote queue manager on z/OS; see “Usage note” on
page 3978.

-e executionGroupName
(Optional) The name of the execution group for which to stop message flows.
You must specify either -e or -g.

If you specify -e without -m or -j, the execution group is stopped. The state of
every message flow (stopped or started) is retained, and started message flows
are started when the execution group is started again.

If you specify -e with -m or -j, the execution group must be running. If the
execution group is stopped, the request is rejected.

-g (Optional) The specified message flow or flows are stopped on all execution
groups on the specified broker. You must specify either -e or -g.

If you specify -g without -m or -j, all execution groups are stopped. The state
of every message flow (stopped or started) is retained for each execution
group, and started message flows are started when the execution group is
started again.

If you specify -g with -m or -j, the specified message flow or flows are
stopped only if the execution group is running. The request checks all
execution groups, and stops message flows on execution groups that are
currently running. Error BIP2851 is reported for each execution group that is
not running.

-j

(Optional) All message flows in the specified execution group are stopped; the
execution group is not stopped.

If you do not specify -j or -m, the execution group identified by -e (if
specified), or all execution groups on this broker, are stopped.

-m flowName
(Optional) The name of the message flow being stopped.

You can specify only one message flow in a single command. If you want to
stop all message flows deployed to the broker, or to the execution group
identified by -e, specify -j.

If you do not specify -m or -j, the execution group identified by -e (if
specified), or all execution groups on this broker, are stopped.

-v traceFileName
(Optional) This parameter sends internal debug trace information to the
specified file.

Chapter 14. Reference 3977

-w timeoutSecs
(Optional) This parameter specifies the time in seconds that the utility waits to
ensure that the command completed; the default value is 60.

Usage note:
If you try to connect to a remote broker by specifying the i, p, and q parameters,
or by using a connection parameter file (.broker), the command attempts to use
WebSphere MQ Java client code. This option is not supported on z/OS, and
returns the following error:
BIP1046E: Unable to connect with the broker (name)

The reported reason code is MQRC_ENVIRONMENT_ERROR. You must specify a local
queue manager.

Authorization:
For information about platform-specific authorizations, see the following topics:
v “Security requirements for Linux and UNIX platforms” on page 3648
v “Security requirements for Windows systems” on page 3651
v “Security requirements for z/OS” on page 3655

If you have enabled broker administration security, you must also set up the
authority detailed in “Tasks and authorizations for broker administration security”
on page 3645.

Responses:
This command returns the following responses:

0 The command completed successfully.

2 (Failure) The broker received the deployment request but was unable to
process it successfully. See the messages issued from the utility (or the
Administration log) for more information.

9 (Failure) The request has been submitted to the broker, but no response
was received before the timeout expired.

10 (Failure) Another user or application canceled the request operation before
the broker was able to process it.

98 The broker is not running.

99 One or more of the parameters that you specified is invalid.

Examples:
Stop a named execution group on broker MB7BROKER:
mqsistopmsgflow MB7BROKER -e eg2

Stop all execution group processes on the local broker MB7BROKER:
mqsistopmsgflow MB7BROKER -g

:

Related tasks:
“Enabling broker administration security” on page 368
Enable broker administration security on a broker to control which users can
complete specific tasks against that broker and its resources.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.

3978 WebSphere Message Broker Version 7.0.0.8

Related reference:
“mqsideploy command” on page 3872
Use the mqsideploy command to make a deployment request to the broker.
“mqsistartmsgflow command” on page 3969
Use the mqsistartmsgflow command to start execution groups and message flows.
“Syntax diagrams” on page 3677

z/OS configuration and administration specific information
The following links provide more information:
v “Administration in z/OS”
v “z/OS customization” on page 3983
v “z/OS JCL variables” on page 3994
Related concepts:
“z/OS customization overview” on page 592
After you have used SMP/E to install WebSphere Message Broker for z/OS, the
installed executable code is located inside the file system. JCL samples are located
in the PDS <hlq>.SBIPSAMP, the JCL procedures are located in the PDS
<hlq>.SBIPPROC, and load module for synchronizing statistics with SMF are located
in the PDS <hlq>.SBIPAUTH.
Related tasks:
Chapter 7, “Configuring brokers for test and production environments,” on page
579
Create one or more brokers on one or more computers, and configure them on
your test and production systems to process messages that contain your business
data.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.

Administration in z/OS
In the z/OS environment, commands are issued through the console and others in
batch jobs.
v hlq.SBIPSAMP has all the JCL samples to customize.
v hlq.SBIPPROC has all the JCL procedures to customize.

STEPNAME

The processes BIPSERVICE and BIPBROKER are in the same address space (control
address space). After an Execution Group address space is started on z/OS, the
STEPNAME of the address space has the following value:
v The last eight characters are taken from the Execution Group label.
v Any lowercase characters are folded to uppercase.
v Any non alphanumeric characters are changed to the character @.
v If the first character is not an alpha character, it is changed to A.

The STEPNAME is not guaranteed to be a unique value. However, you are
strongly recommended to ensure that the last eight characters of any Execution
Group labels that are deployed to a z/OS broker are unique, and contain only
alphanumeric characters; note that an Execution Group label has a maximum size
of 3000 bytes.

Chapter 14. Reference 3979

See the following topics for more information:
v “Issuing commands to the z/OS console”
v “Guidance for issuing console commands in z/OS” on page 3981
v “START and STOP commands on z/OS” on page 3981
Related tasks:
“Creating an execution group specific environment file” on page 627
You can create an execution group specific environment file, which is used instead
of the default broker environment file when you restart the execution group.
Related reference:
“Issuing commands to the z/OS console”
You operate the broker using the z/OS START, STOP, and MODIFY commands.
“Guidance for issuing console commands in z/OS” on page 3981
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.

Issuing commands to the z/OS console
You operate the broker using the z/OS START, STOP, and MODIFY commands.

You can issue commands, and get responses back from:
v The z/OS operator console
v The TSO CONSOLE facility
v The CONSOLE interface from REXX
v Products such as SDSF
v z/OS automation products, such as NetView

However, you are likely to need to issue commands with mixed case, because
execution group names are often in mixed case. You can issue commands with
mixed case on the z/OS console, using the REXX CONSOLE interface, with
products like SDSF V2.10 and higher, and NetView. Releases of SDSF before V2.10,
and the TSO CONSOLE facility, do not support passing mixed case data.

If you do not have support for mixed case, you can submit the commands through
a batch job. For example:
//MI01CMD JOB MSGCLASS=H
// COMMAND ’f MQP1BRK,ct t=yes,e=’default’,l=debug,f=’lowmfl’’
//STEP1 EXEC PGM=IEFBR14

If your product for issuing console commands supports mixed case input, you
might need to take special actions to use mixed case. For example in SDSF on
OS/390 V2.10 and above, you can enter mixed case keyword values by typing /,
pressing ENTER, and entering the command in the popup window. If you enter /
followed by the command, the command is translated to uppercase. In NetView,
prefix the command with NETVASIS to get lowercase support.
Related reference:
“Administration in z/OS” on page 3979
In the z/OS environment, commands are issued through the console and others in
batch jobs.
“Guidance for issuing console commands in z/OS” on page 3981

3980 WebSphere Message Broker Version 7.0.0.8

Guidance for issuing console commands in z/OS
These examples use a broker called MQP1BRK. Start and stop the broker using the
MVS START (S) and STOP (P) commands. If you want to pass information to the
broker while it is running, use the MVS MODIFY command (F) to issue commands.
For example:
F MQP1BKR,rt

This list summarizes the rules you must follow when issuing console commands:
v Each command starts with a verb followed by zero or more keyword=value

pairs.
v There must be one or more blanks between the verb and the first keyword.
v All characters are converted to lowercase, unless they are within quotation

marks.
v Multiple keywords are separated by , with no blanks.
v The keyword is never case sensitive.
v The value is case sensitive, unless specified otherwise (for example Yes/No,

trace-modes).
v Each keyword must be followed by the equals sign = and parameter value.

Enter parameters in any order in the form:
flag=value

and separate them with commas. Repeated parameters are not allowed.
v Strings that contain blanks or special characters must be enclosed in single

quotation marks ('). If the string itself contains a quotation mark, the quotation
mark is represented by two single quotation marks.

v The verb and keywords are not case sensitive.
v On mixed case consoles the case of values in single quotation marks (') is not

changed.
v For YES/NO flags, all case combinations are allowed.
v The maximum length of the MODIFY command is 126 characters, including

F taskname,

An example console command:
F MQP1BRK,changetrace u=Yes,l=normal,e=’myExecutionGroup’

Related reference:
“Administration in z/OS” on page 3979
In the z/OS environment, commands are issued through the console and others in
batch jobs.
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.

START and STOP commands on z/OS
These examples use a broker called MQP1BRK. Start and stop the broker using the
MVS START (S) and STOP (P) commands. If you want to pass information to the
broker while it is running, use the MVS MODIFY command (F) to issue commands.
For example:
F MQP1BRK,rt

The MVS command START (S) starts a broker on MVS. This initiates the control
address space, plus other address spaces as needed, to run that component.

Chapter 14. Reference 3981

If you have problems starting the broker, use the command:
S <broker name>,STRTP=MAN

This command starts the administration task but not the execution groups.

The MVS command STOP (P) stops a server component completely, including its
control address space.

For administration purposes you can bring the server component into another
state, where the control address space is still running, but all other components are
stopped.

For example, this is needed in order to change broker startup parameters, see
“mqsichangebroker command” on page 3723. You can do this by using the MODIFY
(/F) command on the started component, and using the startcomponent (SC) or
stopcomponent (PC) options. See “mqsistart command” on page 3965 and
“mqsistop command” on page 3972 for more information.
Related reference:
“Administration in z/OS” on page 3979
In the z/OS environment, commands are issued through the console and others in
batch jobs.
“Issuing commands to the z/OS console” on page 3980
You operate the broker using the z/OS START, STOP, and MODIFY commands.
“mqsistart command” on page 3965
Use the mqsistart command to start the specified broker if all initial verification
tests complete successfully.
“mqsistop command” on page 3972
Use the mqsistop command to stop the specified component.

Usage data on z/OS
This topic introduces SMF 89 subtype 1 records as a method of recording
accumulated usage data on z/OS.

Whenever an execution group (DataFlowEngine) address space starts on z/OS, the
system registers the address space for usage data collection; the system writes this
usage data information to SMF 89 subtype 1 records.

When the execution group address space stops, the system deregisters the address
space. The data that is collected in the SMF 89 subtype 1 records does not
correspond to the data that is collected by the Accounting and Statistics SMF 117
records.

The system writes the accumulated usage data at a scheduled interval, the
maximum period of which is one hour. The timing of the interval is set by the
INTERVAL value that is specified for the SMF address space.

The system writes any usage data that is produced by other products to the same
SMF 89 subtype 1 record.

On registering for usage data collection, the system writes the following message
to the system log:
BIP9272I MQ05BRK default 0 THE DATAFLOWENGINE PROCESS HAS REGISTERED SMF 89

SUBTYPE 1 RECORD COLLECTION. RETURN CODE ’0’, : ImbMain(316)

3982 WebSphere Message Broker Version 7.0.0.8

On deregistering from usage data collection, the system writes the following
message to the system log:
BIP9273I MQ05BRK default 0 THE DATAFLOWENGINE PROCESS HAS DEREGISTERED SMF 89

SUBTYPE 1 RECORD COLLECTION. RETURN CODE ’0’, : ImbMain(1079)

The values set in the SMF 89 subtype 1 records are defined in the following table..

Name Description WebSphere Message Broker value

SMF89UPO Product
owner

"IBM CORP"

SMF89UPN Product name "WMB" WebSphere Message Broker
"WRF" WebSphere Message Broker Rules and Formatter

SMF89UPV Product
version

"NOTUSAGE"

SMF89UPQ Product
qualifier

""

SMF89UPI Product ID "5655-74" for WMB
"5697-J09" for WRF

In all cases, the values are left-aligned and padded with blanks.

All execution groups that are started and stopped on a single system provide the
same values when registering and deregistering. Therefore, the usage data that is
written at the end of an interval in the SMF 89 subtype 1 record is an
accumulation of all execution group address spaces.

For further information about SMF 89 subtype 1 records, see the MVS System
Management Facilities (SMF) manual.
Related reference:
“Administration in z/OS” on page 3979
In the z/OS environment, commands are issued through the console and others in
batch jobs.
Related information:

z/OS V1R7.0 LibraryCenter

z/OS customization
This is an introduction topic for a number of reference topics in the area of z/OS
customization. See the links under Related reference information.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.
Related reference:
“Naming conventions for WebSphere Message Broker for z/OS” on page 3984
Decide upon a naming convention for your WebSphere Message Broker for z/OS
broker to make customizing, operating, and administering easier.
“Customization tasks and roles on z/OS” on page 3984
System programmers do most of the customization of WebSphere Message Broker.

Chapter 14. Reference 3983

http://publibz.boulder.ibm.com/libraryserver/zosv1r7/

“Customization planning checklist for z/OS” on page 3991
Use the information contained in the following tables to make a note of the values
to use when you customize your system variables on z/OS.
“Disk space requirements on z/OS” on page 3586
The installation of WebSphere Message Broker for z/OS uses approximately 400
MB of disk space; plan on using 500 MB to allow for the component directories,
and for new service fixes to be applied.
“Contents of the broker PDSE” on page 3991
After you have successfully customized the broker, the broker PDSE members have
been set up.

Naming conventions for WebSphere Message Broker for z/OS
Decide upon a naming convention for your WebSphere Message Broker for z/OS
broker to make customizing, operating, and administering easier.

Each broker requires its own queue manager. Base your broker name on the queue
manager name. For example, append BRK to the queue manager name of MQP1, to
give MQP1BRK. This naming convention has the following advantages:
v It is easy to associate the broker with the queue manager, because they both

begin with the same characters.
v The started task name has the same name as the broker.

Using this convention, you might have the following broker name MQP1BRK for a
queue manager MQP1:
v A started task name of MQP1BRK.
v A started task user ID of MQP1BRK.
v A PDSE containing definitions called hlq.MQP1BRK.xxx.
v A UNIX System Services directory structure like /xxx/yyy/MQP1BRK.

Plan for expansion by selecting names that allow growth.

If your broker name is in uppercase, ensure that the broker name is also in
uppercase in the WebSphere Message Broker Toolkit and WebSphere Message
Broker Explorer.
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker on z/OS” on page 620
Create the broker component and the other resources on which it depends.

Customization tasks and roles on z/OS
System programmers do most of the customization of WebSphere Message Broker.

Tasks that need to be completed by other people in your organization are
identified in the following table.

Role Task

z/OS system programmer “Customizing the z/OS environment” on page 591

“Setting up z/OS security” on page 556

“Summary of required access (z/OS)” on page 3985

3984 WebSphere Message Broker Version 7.0.0.8

Role Task

“Customizing UNIX System Services on z/OS” on page 598

“Creating the broker component” on page 629

“Starting and stopping a broker on z/OS” on page 924

“Checking APF attributes of bipimain on z/OS” on page 607

WebSphere MQ administrator “Setting up WebSphere MQ” on page 558

“Summary of required access (z/OS)”

“WebSphere MQ planning for z/OS” on page 601

“Creating the broker component” on page 629

“Defining the started tasks to z/OS Workload Manager (WLM)” on page 602

WebSphere Message Broker
administrator

“Setting up WebSphere Message Broker Toolkit access on z/OS” on page 559

“Summary of required access (z/OS)”

“Creating a broker on z/OS” on page 620

“Creating the broker component” on page 629

“Checking APF attributes of bipimain on z/OS” on page 607

Performance specialist “Defining the started tasks to z/OS Workload Manager (WLM)” on page 602

Security administrator “Setting up z/OS security” on page 556

“Summary of required access (z/OS)”

Data administrator “Setting up z/OS security” on page 556

“Summary of required access (z/OS)”

“Disk space requirements on z/OS” on page 3586

“Starting and stopping a broker on z/OS” on page 924

“Using the file system on z/OS” on page 596

Some tasks, for example defining queue security, overlap two different roles.
Related reference:
“Summary of required access (z/OS)”
The professionals in your organization require access to components and resources
on z/OS.

Summary of required access (z/OS):

The professionals in your organization require access to components and resources
on z/OS.

Authorizations required for the WebSphere Message Broker started-task user ID:
The following directory authorizations are required for all brokers:
v READ and EXECUTE access to <INSTPATH>, where <INSTPATH> is the directory

where WebSphere Message Broker for z/OS is installed by SMP/E.

Chapter 14. Reference 3985

v READ, WRITE, and EXECUTE access to the component directory
++COMPONENTDIRECTORY++.

v READ and WRITE access to the home directory.
v READ and WRITE access to the directory identified by ++HOME++.
v In UNIX System Services, the started task user ID and the WebSphere Message

Broker administrator user ID must both be members of the groups that have
access to the installation and component directories, because they both need
privileges over these resources. The owner of these directories must give the
appropriate permissions to this group.

All brokers need the following RACF authorizations:
v READ and WRITE access to RACF class BPX.SMF, when you need to create SMF

117 records for accounting and statistics.
v READ access to the CSFRNG resource in the CSFSERV class.

READ access to the component PDSE is required.

WebSphere MQ authorizations

Enable WebSphere MQ security to protect your WebSphere MQ resources. If all
WebSphere MQ security switches are enabled, define the following profiles, and
give the started task user ID the listed access to each profile. For each profile
access listed, <MQ_QMNAME> represents the WebSphere MQ queue manager that the
WebSphere Message Broker component is connected to, and TASKID represents the
started task user ID.
v Connection security: READ access to profile <MQ_QMNAME>.BATCH of class MQCONN.

For example, for queue manager MQP1 and started task ID TASKID, use the RACF
commands:
RDEFINE MQCONN MQP1.BATCH UACC(NONE)
PERMIT MQP1.BATCH CLASS(MQCONN) ID(TASKID) ACCESS(READ)

v Connection security when content-based filtering with publish/subscribe is used:
UPDATE access to profile <MQ_QMNAME>.BATCH of class MQCONN. For example, for
queue manager MQP1 and started task ID TASKID, use the RACF commands:
RDEFINE MQCONN MQP1.BATCH UACC(NONE)
PERMIT MQP1.BATCH CLASS(MQCONN) ID(TASKID) ACCESS(UPDATE)

v Queue security: UPDATE access to profile <MQ_QMNAME>.queue of class MQQUEUE
for all queues. Consider creating profiles for the following queues:
– All component queues, by using the generic profile SYSTEM.BROKER.**
– All transmissions queues that you have defined between component queue

managers.
– All queues that you have specified in message flows.
– Dead-letter queues.
– Model queues.

For example, for queue manager MQP1 and started task ID TASKID, use the
following RACF commands to restrict access to the component queues:
RDEFINE MQQUEUE MQP1.SYSTEM.BROKER.** UACC(NONE)
PERMIT MQP1.SYSTEM.BROKER.** CLASS(MQQUEUE) ID(TASKID) ACCESS(UPDATE)

v Context security: CONTROL access to profile <MQ_QMNAME>.CONTEXT of class
MQADMIN. For example, for queue manager MQP1 and started task ID TASKID, use
the following RACF commands:
RDEFINE MQADMIN MQP1.CONTEXT UACC(NONE)
PERMIT MQP1.CONTEXT.** CLASS(MQADMIN) ID(TASKID) ACCESS(CONTROL)

3986 WebSphere Message Broker Version 7.0.0.8

v Alternate user security: Define the alternate user authority as: UPDATE access to
profile <MQ_QMNAME>.ALTERNATE.USER.id of class MQADMIN, where id represents the
start task ID of the broker component. For example, for queue manager MQP1,
started task ID TASKID, and configuration service ID CFGID, use the following
RACF commands:
RDEFINE MQADMIN MQP1.ALTERNATE.USER.CFGID UACC(NONE)
PERMIT MQP1.ALTERNATE.USER.CFGID CLASS(MQADMIN) ID(TASKID) ACCESS(UPDATE)

UPDATE access to profile <MQ_QMNAME>.ALTERNATE.USER.id of class MQADMIN,
where id represents the user ID of, for example, a publish/subscribe request.

v Process and namelist security: If you have WebSphere MQ security switches
enabled in your system for process and namelist security, you do not have to
define access profiles in a WebSphere Message Broker default configuration.

For users connecting remotely from the WebSphere Message Broker Explorer, the
WebSphere Message Broker Toolkit or from a CMP API application to the broker
on z/OS, the following authorizations are required. CMP applications include the
commands that use that interface; mqsichangeresourcestats,
mqsicreateexecutiongroup, mqsideleteexecutiongroup, mqsideploy, mqsilist,
mqsimode, mqsireloadsecurity, mqsireportresourcestats, mqsistartmsgflow, and
mqsistopmsgflow.
v Connection security: READ access to profile <MQ_QMNAME>.CHIN of class MQCONN.

For example, for queue manager MQP1 and started task ID TASKID, use the
following RACF commands:
RDEFINE MQCONN MQP1.CHIN UACC(NONE)
PERMIT MQP1.CHIN CLASS(MQCONN) ID(TASKID) ACCESS(READ)

v Alternate user security: Define the alternate user authority as: UPDATE access to
profile <MQ_QMNAME>.ALTERNATE.USER.id of class MQADMIN, where id represents the
user ID of the WebSphere Message Broker Toolkit or CMP API application. For
example, for queue manager MQP1, started task ID TASKID, and user ID USERID,
use the following RACF commands:
RDEFINE MQADMIN MQP1.ALTERNATE.USER.USERID UACC(NONE)
PERMIT MQP1.ALTERNATE.USER.USERID CLASS(MQADMIN) ID(TASKID) ACCESS(UPDATE)

Authorizations required for the WebSphere Message Broker administrator:
The broker administrator requires the following authorizations:
v ALTER access to the component PDSE.
v READ, WRITE, and EXECUTE access to the component directory

++COMPONENTDIRECTORY++.
v READ and EXECUTE access to <INSTPATH>, where <INSTPATH> is the directory

where WebSphere Message Broker for z/OS is installed by SMP/E.
v READ and WRITE access to the directory identified by ++HOME++.
v In UNIX System Services, the started task user ID and the WebSphere Message

Broker administrator user ID must both be members of the groups that have
access to the installation and component directories, because they both need
privileges over these resources. The owner of these directories needs to give the
appropriate permissions to this group. In addition, the WebSphere Message
Broker administrator must be a member of the group that is the primary group
of the started task user ID.

Authorizations required for the WebSphere MQ administrator:
If the WebSphere MQ administrator runs the WebSphere MQ pass when creating a
broker, the administrator user ID requires the following authorizations.

Chapter 14. Reference 3987

Alternatively, you can grant authorization to the WebSphere Message Broker
administrator to run the WebSphere MQ pass.
v ALTER access to the component PDSE.
v Directory authorizations:

– READ and EXECUTE access to <INSTPATH>, where <INSTPATH> is the directory
where WebSphere Message Broker for z/OS is installed by SMP/E.

– READ, WRITE, and EXECUTE access to the component directory
++COMPONENTDIRECTORY++.

– READ and WRITE access to the directory identified by ++HOME++.

Enable WebSphere MQ security to protect your WebSphere MQ resources. If all
WebSphere MQ security switches are enabled, define the following profiles and
give the WebSphere MQ administrator the listed access to each profile in order to
run the WebSphere MQ configurations jobs. For each profile access listed,
MQ_QMNAME represents the WebSphere MQ queue manager that the WebSphere
Message Broker component is connected to, and MQADMIN represents the
WebSphere MQ administrator ID:
v Connection security: READ access to profile <MQ_QMNAME>.BATCH of class MQCONN.

For example, for queue manager MQP1 and WebSphere MQ administrator ID
MQADMIN, use the following RACF commands:
RDEFINE MQCONN MQP1.BATCH UACC(NONE)
PERMIT MQP1.BATCH CLASS(MQCONN) ID(MQADMIN) ACCESS(READ)

v Queue security: UPDATE access to profile <MQ_QMNAME>.queue of class MQQUEUE
for component queues created or deleted. You can create a generic profile
SYSTEM.BROKER.** For example, for queue manager MQP1 and WebSphere MQ
administrator ID MQADMIN, use the following RACF commands to restrict access
to the component queues:
RDEFINE MQQUEUE MQP1.SYSTEM.BROKER.** UACC(NONE)
PERMIT MQP1.SYSTEM.BROKER.** CLASS(MQQUEUE) ID(MQADMIN) ACCESS(UPDATE)

v System command server: UPDATE access to profile <MQ_QMNAME>.queue of class
MQQUEUE for SYSTEM.COMMAND.**. For example, for queue manager MQP1 and
WebSphere MQ administrator ID MQADMIN, use the following RACF commands
to restrict access to the system command server:
RDEFINE MQQUEUE MQP1.SYSTEM.COMMAND.** UACC(NONE)
PERMIT MQP1.SYSTEM.COMMAND.** CLASS(MQQUEUE) ID(MQADMIN) ACCESS(UPDATE)

UPDATE access to profile <MQ_QMNAME>.queue of class MQQUEUE for some system
queues used during the create/delete job. You can create a generic profile
<MQ_QMNAME>.**

v Command security:
– To run the WebSphere MQ pass when creating a component you need:

- ALTER access to <MQ_QMNAME>.DEFINE.QLOCAL of class MQCMDS.
- ALTER access to <MQ_QMNAME>.DEFINE.QMODEL of class MQCMDS.
- ALTER access to <MQ_QMNAME>.DEFINE.CHANNEL of class MQCMDS.

– To run the WebSphere MQ pass when deleting a component you need:
- ALTER access to <MQ_QMNAME>.DELETE.QLOCAL of class MQCMDS.
- ALTER access to <MQ_QMNAME>.DELETE.QMODEL of class MQCMDS.
- ALTER access to <MQ_QMNAME>.DELETE.CHANNEL of class MQCMDS.

For queue manager MQP1 and WebSphere MQ administrator ID MQADMIN, use the
following RACF commands:

3988 WebSphere Message Broker Version 7.0.0.8

RDEFINE MQCMDS MQP1.DELETE.QLOCAL UACC(NONE)
PERMIT MQP1.DELETE.QLOCAL CLASS(MQCMDS) ID(MQADMIN) ACCESS(ALTER)

v Resource command security: ALTER access to MQP1.QUEUE.queue of class MQADMIN
for each queue created or deleted. You can create a generic profile
SYSTEM.BROKER.**. For example, for queue manager MQP1 and WebSphere MQ
administrator ID MQADMIN, use the RACF commands:
RDEFINE MQADMIN MQP1.QUEUE.SYSTEM.BROKER.** UACC(NONE)
PERMIT MQP1.QUEUE.SYSTEM.BROKER.** CLASS(MQADMIN) ID(MQADMIN) ACCESS(ALTER)

v Process and namelist security: If you have WebSphere MQ security switches
enabled in your system for process and namelist security, you do not need to
define any access profiles in a WebSphere Message Broker default configuration.

For a description of how to implement WebSphere MQ security using RACF, see
“Setting up WebSphere MQ” on page 558.

Disk space requirements on z/OS
The installation of WebSphere Message Broker for z/OS uses approximately 400
MB of disk space; plan on using 500 MB to allow for the component directories,
and for new service fixes to be applied.

When you apply service, if you do not replace your existing installation (for
example, you apply the new fix pack level alongside your existing installation),
you must plan the same amount of disk space for the higher service level libraries.

If you are transferring the files by using tar to package them, you need
approximately 200 MB of space for the .tar file.

You can check how much space is used and how much is free in a file system by
using the OMVS command:
df -P /pathname

100 MB is 3 276 800 512 byte sectors.

The following table gives guidance on the space required for a minimum
installation (base installation and verification test) of WebSphere Message Broker
for each component implemented on z/OS.

Component Space required Purpose

Component directory 20 MB Holds the runtime-deployed configuration
information and output directories for the
component.

This information includes all deployment
information, such as ESQL, JAR files,
message sets, XSLT files, and so on.

This information also includes WebSphere
Message Broker trace files and other user
problem determination data, which might
become large.

Consideration must be given to the
potential size of deployments to the
WebSphere Message Broker runtime
environment and, therefore, the size of this
directory (including sub directories).

Chapter 14. Reference 3989

Component Space required Purpose

Component PDSE 1 MB Holds the customization and
administration jobs, procedures, and data
for the component.

The data set must be allocated with a fixed
record length of 80 (LRECL=80) and a format
of FB 80. Reserve directory space for 50
members, or use a PDSE if possible.

Started task user ID home
directory

8 GB Collects diagnostic materials: for example,
dumps. Dumps are usually more than 500
MB in size.

8 GB of space must be available in the file
system, but many user IDs can have their
home directory in the file system.

The Component directory and the Started task user ID home directory must be
separate to ensure that, when dumps are taken in the Started task user ID home
directory, they do not cause problems with the runtime broker that still has to
write to the Component directory.
Related tasks:
“Customizing the z/OS environment” on page 591
If you are planning to use a z/OS environment, consider whether to create your
brokers on z/OS. You must also complete a number of tasks to configure your
environment.
“Using the file system on z/OS” on page 596
If you have more than one MVS image, consider how you will use the file system.
You can share files in a file system with different members of a sysplex. The file
system is mounted on one MVS image and requests to the file are routed to the
owning system using XCF from systems which do not have it mounted.

Binding a DB2 plan to use data-sharing groups on z/OS
During customization, you can specify which plan name to use, or use the default
DSNACLI. If you are using XPLINK, the default plan is called DSNACLX. If you want
your broker to access DB2 data-sharing groups other than its own, the DSNACLI
plan must be bound in a special way. If the broker uses one data sharing group,
but might want to access tables on DSNONE and DSNTWO, which are in different
data-sharing groups, amend the DB2 supplied job DSNTIJCL to do the following:
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLICS)ISOLATION(CS)
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLINC)ISOLATION(NC)
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIRR)ISOLATION(RR)
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIRS)ISOLATION(RS)
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIUR)ISOLATION(UR)
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIC1)
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIC2)
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIF4)
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIMS)
BIND PACKAGE (DSNAOCLI)MEMBER(DSNCLIQR)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLICS)ISOLATION(CS)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLINC)ISOLATION(NC)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIRR)ISOLATION(RR)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIRS)ISOLATION(RS)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIUR)ISOLATION(UR)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIC1)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIC2)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIF4)
BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIMS)

3990 WebSphere Message Broker Version 7.0.0.8

BIND PACKAGE (DSNONE.DSNAOCLI)MEMBER(DSNCLIQR)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLICS)ISOLATION(CS)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLINC)ISOLATION(NC)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIRR)ISOLATION(RR)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIRS)ISOLATION(RS)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIUR)ISOLATION(UR)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIC1)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIC2)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIF4)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIMS)
BIND PACKAGE (DSNTWO.DSNAOCLI)MEMBER(DSNCLIQR)
BIND PLAN(DSNACLI)-
PKLIST(*.DSNAOCLI.DSNCLICS -
*.DSNAOCLI.DSNCLINC -
*.DSNAOCLI.DSNCLIRR -
*.DSNAOCLI.DSNCLIRS -
*.DSNAOCLI.DSNCLIUR -
*.DSNAOCLI.DSNCLIC1 -
*.DSNAOCLI.DSNCLIC2 -
*.DSNAOCLI.DSNCLIF4 -
*.DSNAOCLI.DSNCLIMS -
*.DSNAOCLI.DSNCLIQR)

Related concepts:
“XPLink on z/OS” on page 595
Related tasks:
“Using the file system on z/OS” on page 596
If you have more than one MVS image, consider how you will use the file system.
You can share files in a file system with different members of a sysplex. The file
system is mounted on one MVS image and requests to the file are routed to the
owning system using XCF from systems which do not have it mounted.

Customization planning checklist for z/OS
Use the information contained in the following tables to make a note of the values
to use when you customize your system variables on z/OS.

For further information, see the following topics:
v “Installation information - broker” on page 621
v “Component information - broker” on page 622
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Collecting the information required to create a broker” on page 620
This is part of the larger task of creating a broker on z/OS.

Contents of the broker PDSE
After you have successfully customized the broker, the broker PDSE members have
been set up.

Broker PDSE members originating in <hlq>.SBIPSAMP

The PDSE members are described in the following table.

Description Name

Broker profile BIPBPROF

Chapter 14. Reference 3991

Description Name

Broker DB2 dsnaoini file (for user databases)

“Sample BIPDSNAO file” on page 4008 lists
the shipped BIPDSNAO file.

BIPDSNAO

Execution group specific profile BIPEPROF

Broker PDSE members originating in <hlq>.SBIPPROC

The PDSE members are described in the following table.

Description Name

Commented sample job to identify WebSphere MQ resources,
including queues for performance tuning purposes

BIPALMQ

Job to run the “mqsibackupbroker command” on page 3720.

“Sample BIPBUBK file” on page 4004 lists the shipped BIPBUBK file.

BIPBUBK

Job to run the mqsibrowse command. Use this command only at the
request of IBM service.

BIPBRWS

Job to run the “mqsichangebroker command” on page 3723 BIPCHBK

Job to run the “mqsichangeflowmonitoring command” on page
3738

BIPCHME

Job to run the “mqsichangeflowstats command” on page 3744 BIPCHMS

Job to run the “mqsichangeflowuserexits command” on page 3751 BIPCHUE

Job to run the “mqsichangeproperties command” on page 3756 BIPCHPR

Job to run the “mqsichangeresourcestats command” on page 3819 BIPCHRS

Job to run the “mqsicreatebroker command” on page 3831 to:

v Create the WebSphere MQ resources

v Create the broker registry

“Sample BIPCRBK file” on page 4006 lists the shipped BIPCRBK file.

BIPCRBK

Job to run the “mqsicreateconfigurableservice command” on
page 3849

BIPCRCS

Job to run the “mqsicreateexecutiongroup command” on page
3854

BIPCREG

Job to run the “mqsideletebroker command” on page 3863 BIPDLBK

Job to run the “mqsideleteconfigurableservice command” on
page 3866

BIPDLCS

Job to run the “mqsideleteexecutiongroup command” on page
3869

BIPDLEG

Job to run the “mqsideploy command” on page 3872 BIPDPLY

Edit macro for customization. Rename BIPEDIT to a unique name
that identifies it to the current component; for example, MQ01EDBK

“Sample BIPEDIT file” on page 4009 lists the shipped BIPEDIT file.

BIPEDIT (MQP1BRK)

PROC that is called by BIPGEN to convert BIPBPROF, and an
execution group specific profile (renamed BIPEPROF), to a valid
execution group specific ENVFILE.

BIPEGEN

Job to run the “mqsiexplain command” on page 3879 BIPEXPL

3992 WebSphere Message Broker Version 7.0.0.8

Description Name

Job to run the “mqsiformatlog command” on page 3880 BIPFMLG

Job to convert BIPBPROF profile to a valid ENVFILE.

“Sample BIPGEN file” on page 4010 lists the shipped BIPGEN file.

BIPGEN

Job to run the “mqsilist command” on page 3882 BIPLIST

Job to run the “mqsimigratecomponents command” on page 3894 BIPMGCMP

Job to run the “mqsimode command” on page 3899 BIPMODE

Job to run the “mqsiapplybaroverride command” on page 3684 BIPOBAR

Job to run the “mqsireadbar command” on page 3697 BIPRBAR

Job to run the “mqsireadlog command” on page 3905 BIPRELG

Job to run the “mqsireloadsecurity command” on page 3911 BIPRLSEC

Job to run the “mqsireportbroker command” on page 3919 BIPRPBK

Job to run the “mqsireportflowmonitoring command” on page
3924

BIPRPME

Job to run the “mqsireportflowstats command” on page 3929 BIPRPMS

Job to run the “mqsireportflowuserexits command” on page 3933 BIPRPUE

Job to run the “mqsireportproperties command” on page 3937 BIPRPPR

Job to run the “mqsireportresourcestats command” on page 3944 BIPRPRS

Job to run the “mqsirestorebroker command” on page 3952.

“Sample BIPRSBK file” on page 4012 lists the shipped BIPRSBK file.

BIPRSBK

Job to run the “mqsisetdbparms command” on page 3954 to define
a data source, user ID, and password for user data sources.

BIPSDBP

(started task). Rename BIPBRKP to the same name as the
++STARTEDTASKNAME++.

“Sample BIPBRKP file” on page 4000 lists the shipped BIPBRKP file.

BIPBRKP

Job to run the “mqsistartmsgflow command” on page 3969 BIPSTMF

Job to run the “mqsistopmsgflow command” on page 3975 BIPSPMF

Use the standard z/OS IPCS facilities to take a dump. You require access to the
following resources:
v COMPONENT_PDSE

v ComponentDirectory

v SYS1.MIGLIB

v SYS1.SBLSCLI0

v SYS1.PARMLIB

v IPCS

Related concepts:
“Component PDSE on z/OS” on page 595
On z/OS, the component PDSE contains jobs customized for a single component.
These jobs are used to create and administer the component.
Related tasks:
“Customizing the broker component data set” on page 624
This is part of the larger task of creating a broker on z/OS.

Chapter 14. Reference 3993

z/OS JCL variables
Customize JCL variables in BIPEDIT to modify the configuration of your brokers.

The following table lists the JCL variables in alphabetic order, together with a
description and an example value. For JCL variables that apply to specific
commands, see the information that relates to that command.

JCL variable Description Example value
Corresponding value in
BIPEDIT

++COMPONENTDATASET++ The data set where all JCL
relevant to a particular
component is saved.

TESTDEV.MQP1BRK.BROKER componentdataset_value

++COMPONENTDIRECTORY++The file system directory where
the component exists. This
directory includes
subdirectories, for example,
/log and /registry

mqsi/brokers/MQP1BRK compdir_value

++COMPONENTNAME++ The name you give the
component when you create it.

MQP1BRK MQ01BRK

++HOME++ The file system home directory
for the user ID of this
component. This value is
required to dynamically
generate the ENVFILE.

You must have the appropriate
external security manager
authorities to write to this file
system directory when
submitting JCL to run a
command. For example, use
RACF to define authorities.

/u/mqp1usr/mqp1brk /u/mq01brk

++INSTALL++ The directory where you install
the product.

/usr/lpp/mqsi install_value

++JAVA++ Location of your Java
installation.

/usr/lpp/java/IBM/J1.5 /usr/lpp/java/IBM/J1.5

++LANGLETTER++ The letter for the language in
which you want messages
shown.

E (English) E

++LOCALE++ Locale of environment where
commands are run by
submitting JCL.

C C

++MQPATH++ WebSphere MQ location. /usr/lpp/mqm /usr/lpp/mqm

++OPTIONS++ Many commands submitted by
JCL require additional options.
See the reference material for
additional information about
options specific to each
command.

N/A options_value

++QUEUEMANAGER++ The name of the queue
manager associated with the
component for which you
submit the JCL.

MQP1 MQ01

++STARTEDTASKNAME++ Name of the Started Task JCL.
This name can be a maximum
of eight characters.

MQP1BRK MQ01BRK

++TIMEZONE++ Time zone of environment
where commands are run by
submitting JCL.

GMT0BST GMT0BST

3994 WebSphere Message Broker Version 7.0.0.8

JCL variable Description Example value
Corresponding value in
BIPEDIT

++WMQHLQ++ WebSphere MQ
high-level-qualifier

MQM.V700 MQM.V700

Related tasks:
“Collecting the information required to create a broker” on page 620
This is part of the larger task of creating a broker on z/OS.
Related reference:
“Sample BIPEDIT file” on page 4009
The sample BIPEDIT file that is shipped with WebSphere Message Broker is
included here for your reference.

z/OS sample files supplied
Several samples files are provided for you to customize on z/OS.

About this task
v “Sample BIPBPROF file”
v “Sample BIPBRKP file” on page 4000
v “Sample BIPBUBK file” on page 4004
v “Sample BIPCRBK file” on page 4006
v “Sample BIPDSNAO file” on page 4008
v “Sample BIPEDIT file” on page 4009
v “Sample BIPGEN file” on page 4010
v “Sample BIPRSBK file” on page 4012
Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related reference:
“z/OS configuration and administration specific information” on page 3979

Sample BIPBPROF file
The sample BIPBPROF file that is shipped with WebSphere Message Broker is
included here for your reference.

#**
#* *
#* @START_COPYRIGHT@ *
#* *
#* Licensed Materials - Property of IBM; *
#* 5655-G97 (c) Copyright IBM Corp. 2004; *
#* All Rights Reserved; *
#* US Government Users Restricted Rights - use, *
#* duplication or disclosure restricted by GSA *
#* ADP Schedule Contract with IBM Corp.; *
#* See Copyright Instructions *
#* *
#* @END_COPYRIGHT@ *
#* *
#**
#* IBM WebSphere Message Broker *
#* *
#* Sample profile for a broker. *
#* *
#**

Chapter 14. Reference 3995

#* MORE INFORMATION - See: *
#* *
#* WebSphere Message Brokers Information Centre. *
#* *
#* IMPORTANT: *
#* *
#* You must submit BIPGEN each time you update this profile! *
#* *
#**
#* CUSTOMIZE HERE FOR YOUR INSTALLATION
#* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
#* *
#* Replace ++INSTALL++
#* WMB installation directory.
#* e.g. ’/usr/lpp/mqsi’
#*
#* Replace ++COMPONENTDIRECTORY++
#* Broker directory.
#* e.g. ’/mqsi/brokers/MQ01BRK’
#*
#* Replace ++COMPONENTDATASET++
#* Component dataset.
#* e.g. ’BIP.BROKER.MQ01BRK’
#*
#* Replace ++COMPONENTNAME++
#* Broker name.
#* e.g. ’MQ01BRK’
#*
#* Replace ++LOCALE++
#* Locale.
#* e.g. ’C’
#*
#* Replace ++TIMEZONE++
#* Time zone.
#* e.g. ’GMT0BST’
#*
#* Replace ++JAVA++
#* Java location.
#* e.g. ’/usr/lpp/java/IBM/J1.6’
#*
#* Replace ++DB2CONVERSION++
#* Specifies the DB2 Converter.
#* e.g. ’SINGLE’
#* (ONLY REQUIRED FOR USER DATABASES)
#*
#* Replace ++MQPATH++
#* MQ location.
#* e.g. ’/usr/lpp/mqm’
#*
#**
1. Component Settings
#**
#
1.1 MQSI_REGISTRY references the component path. Also needed by
commands.
e.g. MQSI_REGISTRY=/mqsi/brokers/MQ01BRK
#
1.2 MQSI_COMPONENT_NAME is set to the broker name.
e.g. MQSI_COMPONENT_NAME=MQ01BRK
#
1.3 MQSI_FILEPATH needed by commands to reference the component
version install path.
e.g. MQSI_FILEPATH=usr/lpp/mqsi/V7R0M0
#
1.4 MQSI_LILPATH needed by components to find LILs
e.g. MQSI_LILPATH=usr/lpp/mqsi/V7R0M0/lil
#

3996 WebSphere Message Broker Version 7.0.0.8

1.5 MQSI_SECURITY_PROVIDER_PATH needed by components to find LSLs
e.g. MQSI_SECURITY_PROVIDER_PATH=usr/lpp/mqsi/V7R0M0/SecurityProviders
#
export MQSI_REGISTRY=++COMPONENTDIRECTORY++
export MQSI_COMPONENT_NAME=++COMPONENTNAME++
export MQSI_FILEPATH=++INSTALL++
export MQSI_LILPATH=$MQSI_FILEPATH/lil
export MQSI_SECURITY_PROVIDER_PATH=$MQSI_FILEPATH/SecurityProviders

#**
2. NLS Settings
#**
#
2.1 LANG and LC_ALL determine in which locale the component
will run.
e.g. LANG=Ja_JP.IBM-939 and LC_ALL=Ja_JP.IBM-939 for
japanese locale.
LANG=C, LC_ALL=C for US English locale.
#
2.2 TZ has the timezone setting in which you are located.
e.g. TZ=EST5 for USA Eastern Standard Time
TZ=MEZ-1MES,M3.5.0,M10.5.0 for Central Europe
TZ=GMT0BST for the UK
Please refer to the IBM Manual
"Unix System Services Command Reference SC28-1892.
#
2.3 NLSPATH contains the location of the message catalog(s).
(NO NEED TO CHANGE FROM DEFAULT!)
#
2.4 MQSI_CONSOLE_NLSPATH is used to locate the messages for
the console.
For Japanese or S-Chinese messages, change En_US to
Ja_JP or Zh_CN below. For English messages these can be
displayed in mixed or upper case only. (see MC_MESSAGES)
Note that MQSI_CONSOLE_NLSPATH does not use %L or %N
#
export LANG=++LOCALE++
export LC_ALL=++LOCALE++
export TZ=++TIMEZONE++
export NLSPATH=$MQSI_FILEPATH/messages/%L/%N
export NLSPATH=$NLSPATH:$MQSI_FILEPATH/nnsy/MIF/messages/%N
export MQSI_CONSOLE_NLSPATH=$MQSI_FILEPATH/messages/En_US

#**
3. Automatic Restart Management (ARM) Settings
#**
#
3.1 MQSI_USE_ARM specifies whether to use ARM.
e.g. MQSI_USE_ARM=YES for ARM enabled.
MQSI_USE_ARM=NO for ARM not enabled.
#
3.2 MQSI_ARM_ELEMENTNAME required if ARM enabled.
#
3.3 MQSI_ARM_ELEMENTTYPE required if ARM enabled.
#
export MQSI_USE_ARM=NO
export MQSI_ARM_ELEMENTNAME=++COMPONENTNAME++
export MQSI_ARM_ELEMENTTYPE=

#**
4. DB2 Settings
#**
#
4.1 MQSI_DB2_ALWAYS_PREPARE

Chapter 14. Reference 3997

(NO NEED TO CHANGE FROM DEFAULT!)
#
4.2 MQSI_DB2_CONVERSION specifies the DB2 Converter.
(ONLY REQUIRED FOR USER DATABASES)
e.g. MQSI_DB2_CONVERSION=SINGLE
WBIMB uses a SQL_EBCDIC_SCCSID to determine
the DB2 converter.
Note that this setting reflects the current
WBIMB behavior.
MQSI_DB2_CONVERSION=MIXED
WBIMB uses SQL_EBCDIC_MCCSID to determine
the DB2 converter.
Note that this setting requires that DB2 is
configured to accept mixed byte data. This
setting should be used when the customer
wants data to be stored in the configured
DB2 EBCDIC mixed byte code page.
MQSI_DB2_CONVERSION=LOCAL
WBIMB uses localConverter identified by
LC_ALL/LANG settings. This complies to what
is done on distributed. This setting
requires that WBIMB and DB2 are using the same
codepage, otherwise only WBIMB can read DB2
data correctly, it gets unreadable for other
(non-WBIMB) applications that want to read
the data.
#
4.3 DSNAOINI references the component dsnaoini file.
(NO NEED TO CHANGE FROM DEFAULT!)
#
export MQSI_DB2_ALWAYS_PREPARE=NO
#export MQSI_DB2_CONVERSION=++DB2CONVERSION++
export DSNAOINI=//\’++COMPONENTDATASET++\(BIPDSNAO\)\’

#**
5. Java Settings
#**
#
5.1 JAVAHOME contains the root directory of the JAVA install.
e.g. JAVAHOME=/usr/lpp/java/IBM/J1.6
Note that the Java version must be at least 1.6.0
#
export JAVAHOME=++JAVA++

#**
6. WebSphere Message Broker Settings
#**
#
6.1 _BPX_BATCH_SPAWN
(MUST NOT CHANGE FROM DEFAULT!)
#
6.2 MQSI_MC_MESSAGES determines if messages should appear in
mixed case or upper case.
e.g. MQSI_MC_MESSAGES=YES for mixed case
MQSI_MC_MESSAGES=NO for upper case
#
6.3 MQSI_COMMAND_DATABASE_ECHO if defined, mqsi commands
display information when creating DB2 tables/indexes.
#
6.4 MQSI_COMMAND_ZOS_MQ_ECHO if defined, mqsi commands display
information returned from the MQ command server when
creating/deleting queues.
#
6.5 MQSI_COMMAND_ZOS_MQ_ECHO_RC if defined, mqsi commands display
reason and return codes from the MQ command server when
creating/deleting queues.

3998 WebSphere Message Broker Version 7.0.0.8

#
6.6 MQSI_DEPLOY_PROGRESS if defined, shows deployment progress
by the execution group
#
6.7 STEPLIB
(MUST NOT CHANGE FROM DEFAULT!)
#
6.8 MQSI_COMMAND_ZOS_ERROR_RC if defined, mqsi commands return
this value as the return code if an error occurs.
#
6.9 MQSI_FAD current FAD level.
#
export _BPX_BATCH_SPAWN=NO
export MQSI_MC_MESSAGES=NO
export MQSI_COMMAND_DATABASE_ECHO=1
export MQSI_COMMAND_ZOS_MQ_ECHO=1
export MQSI_COMMAND_ZOS_MQ_ECHO_RC=1
export MQSI_DEPLOY_PROGRESS=1
export STEPLIB=CURRENT
export MQSI_COMMAND_ZOS_ERROR_RC=16
export MQSI_FAD=5

#**
7. Other Settings
#**
#
NO NEED TO CHANGE FROM DEFAULT!
#

CP=++MQPATH++/java/lib/com.ibm.mq.jar
CP=$CP:++MQPATH++/java/lib/connector.jar
CP=$CP:++MQPATH++/java/lib/com.ibm.mq.commonservices.jar
CP=$CP:++MQPATH++/java/lib/com.ibm.mq.headers.jar
CP=$CP:++MQPATH++/java/lib/com.ibm.mq.jmqi.jar
CP=$CP:++MQPATH++/java/lib/com.ibm.mq.pcf.jar
CP=$CP:++MQPATH++/java/lib/com.ibm.mqjms.jar
CP=$CP:$MQSI_FILEPATH/classes
CP=$CP:$MQSI_FILEPATH/classes/deploymgr.jar
CP=$CP:$MQSI_FILEPATH/classes/ConfigManagerProxy.jar
CP=$CP:$MQSI_FILEPATH/sample/ConfigManagerProxy/ConfigManagerProxySamples.jar
CP=$CP:$MQSI_FILEPATH/classes/brokerutil.jar
CP=$CP:$JAVAHOME/lib
CP=$CP:$MQSI_FILEPATH/messages
export CLASSPATH=$CP
export ICU_DATA=$MQSI_FILEPATH/nnsy/lib:$MQSI_FILEPATH/icudata
LP=++MQPATH++/java/lib
LP=$LP:$MQSI_FILEPATH/lib/wbirf
LP=$LP:$MQSI_FILEPATH/lib/wbimb
LP=$LP:$MQSI_FILEPATH/lib
LP=$LP:$MQSI_FILEPATH/nnsy/lib
LP=$LP:$MQSI_FILEPATH/nnsy/MIF/lib
LP=$LP:$JAVAHOME/lib/s390x
LP=$LP:$JAVAHOME/lib/s390x/classic
export LIBPATH=$LP
MIBDIRS=$MQSI_FILEPATH/snmp-mib
export MIBDIRS
export PATH=$MQSI_FILEPATH/bin
export PATH=$PATH:$MQSI_FILEPATH/nnsy/bin
export PATH=$PATH:/bin
export PATH=$PATH:$JAVAHOME/bin

Related reference:
“Contents of the broker PDSE” on page 3991
After you have successfully customized the broker, the broker PDSE members have
been set up.

Chapter 14. Reference 3999

“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

Sample BIPBRKP file
The sample BIPBRKP file that is shipped with WebSphere Message Broker is
included here for your reference.

//**
//* *
//* @START_COPYRIGHT@ *
//* *
//* Licensed Materials - Property of IBM; *
//* ProgIds: 5724-J06 5724-J05 5724-J04 5697-J09 5655-M74 5655-M75 5655-G97
//* (C) Copyright IBM Corporation 2004,2010
//* All Rights Reserved; *
//* US Government Users Restricted Rights - use, *
//* duplication or disclosure restricted by GSA *
//* ADP Schedule Contract with IBM Corp.; *
//* See Copyright Instructions *
//* *
//* @END_COPYRIGHT@ *
//* *
//**
//* IBM WebSphere Message Broker *
//* *
//* Sample job to start a broker. *
//* *
//**
//* MORE INFORMATION - See: *
//* *
//* WebSphere Message Broker Information Centre. *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
//* *
//* Replace ++HOME++
//* Unique home directory where ENVFILE
//* will be created.
//* e.g. ’/u/mq01usr/mq01brk’
//*
//* Replace ++INSTALL++
//* WMB installation directory.
//* e.g. ’/usr/lpp/mqsi’
//*
//* Replace ++QUEUEMANAGER++
//* Queue manager name.
//* e.g. ’MQ01’
//*
//* Replace ++COMPONENTDIRECTORY++
//* Broker directory.
//* e.g. ’/mqsi/brokers/MQ01BRK’
//*
//* Replace ++STARTEDTASKNAME++
//* Started Task Name (max 8 chars uppercase).
//* e.g. ’MQ01BRK’
//*
//* Replace ++COMPONENTNAME++
//* Component name.
//* e.g. ’MQ01BRK’

4000 WebSphere Message Broker Version 7.0.0.8

//*
//* Replace ++COMPONENTDATASET++
//* Broker dataset.
//* e.g. ’BIP.BROKER.MQ01BRK’
//*
//* Replace ++DB2HLQ++
//* DB2 high-level-qualifier.
//* e.g. ’SYS2.DB2.V910’
//* (Database nodes require DB2 in order
//* to connect to a datasource.)
//*
//* Replace ++WMQHLQ++
//* WebSphere MQ high-level-qualifier.
//* e.g. ’MQM.V701’
//*
//* Replace ++WMBHLQ++
//* WebSphere Message Broker
//* high-level-qualifier.
//*
//* ONLY NEEDED IF USING EVENT NOTIFICATION
//*
//* e.g. ’MB.V7R0M0’
//*
//* Replace ++LANGLETTER++
//* The letter for the language that
//* you want messages shown in.
//* e.g. ’E’ for English
//*
//**
//*
//* Following variables are changed when starting a DataFlowEngine:
//* Semaphore ID
//* SE=<Semaphore ID>(default is ’’)
//* Shared Memory Segment ID
//* SH=<Shared Memory Segment ID>(default is ’’)
//* Component Unique Name
//* COMPK=’’ (default is ++STARTEDTASKNAME++)
//* Start Parameter
//* STRTP=’’ (default is ’AUTO’)
//* Execution Group name
//* E=’’ (default is ’’)
//*
//**
//*
//++STARTEDTASKNAME++ PROC COMPK=’++STARTEDTASKNAME++’,
// INSTP=’++INSTALL++’,
// MAINP=’bipimain’,
// SRVMP=’bipservice’,
// COMDS=’++COMPONENTDATASET++’,
// STRTP=’AUTO’,
//* COMPDIR=’++COMPONENTDIRECTORY++’,
// SE=’’,
// SH=’’,
// HOME=’++HOME++’,
// E=’’,
//* DB2HLQ=’++DB2HLQ++’,
// WMQHLQ=’++WMQHLQ++’
//*
//*
//**
//* Test to see if the ENVFILE exists.
//* The base ENVFILE called ENVFILE should exist.
//* Execution Group specifc ENVFILEs (ENVFILE.<EGLabel>) may
//* exist if specified. If not then use the base ENVFILE.
//**
//*
//CHECKENV EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,

Chapter 14. Reference 4001

// PARM=’PGM /bin/test -e &HOME./ENVFILE.&E.’
//STDOUT DD SYSOUT=* //STDERR DD SYSOUT=*
//*
//**
//* Copy ENVFILE to SYSOUT
//**
//*
// IF (CHECKENV.RC EQ 0) THEN
//COPYENV1 EXEC PGM=IKJEFT01,
// PARM=’OCOPY INDD(BIPFROM) OUTDD(ENVFILE)’
//SYSTSPRT DD DUMMY
//BIPFROM DD PATHOPTS=(ORDONLY),
// PATH=’&HOME./ENVFILE.&E.’
//ENVFILE DD SYSOUT=*,DCB=(RECFM=V,LRECL=8192)
//SYSTSIN DD DUMMY
// ELSE
//COPYENV2 EXEC PGM=IKJEFT01,
// PARM=’OCOPY INDD(BIPFROM) OUTDD(ENVFILE)’
//SYSTSPRT DD DUMMY
//BIPFROM DD PATHOPTS=(ORDONLY),
// PATH=’&HOME./ENVFILE’
//ENVFILE DD SYSOUT=*,DCB=(RECFM=V,LRECL=8192)
//SYSTSIN DD DUMMY
// ENDIF
//*
//**
//* Copy DSNAOINI to SYSOUT
//**
//*
//COPYDSN EXEC PGM=IKJEFT01,
// PARM=’OCOPY INDD(BIPFROM) OUTDD(DSNAOINI)’
//SYSTSPRT DD DUMMY
//BIPFROM DD DISP=SHR,DSN=&COMDS.(BIPDSNAO)
//DSNAOINI DD SYSOUT=*,DCB=(RECFM=V,LRECL=256)
//SYSTSIN DD DUMMY
//*
//**
//* Test to see if starting a DataFlowEngine address space.
//* Should return RC=0 if starting a Control address space or
//* RC=12 if starting a DataFlowEngine address space.
//**
//*
//*
//CHECKDFE EXEC PGM=IKJEFT01,
// PARM=’LISTDS ’’&COMDS.&SE.’’’
//SYSTSIN DD DUMMY
//SYSTSPRT DD DUMMY
//*
// IF (CHECKDFE.RC=0) THEN
//*
//**
//* Broker MQ and environment verification
//**
//*
//VERIFY EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
// PARM=’PGM &INSTP./bin/mqsicvp ++COMPONENTNAME++’
//* MQSeries Runtime Libraries
//STEPLIB DD DSN=&WMQHLQ..SCSQANL++LANGLETTER++,DISP=SHR
// DD DSN=&WMQHLQ..SCSQAUTH,DISP=SHR
// DD DSN=&WMQHLQ..SCSQLOAD,DISP=SHR
//STDENV DD PATH=’&HOME./ENVFILE’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//*
//**
//* Step to delete residual locks
//* (this is only needed if the broker is ARM enabled)

4002 WebSphere Message Broker Version 7.0.0.8

//**
//*
//*RMLOCKS EXEC PGM=BPXBATCH,REGION=0M,TIME=NOLIMIT,
//* PARM=’SH rm -f &COMPDIR./common/locks/*’
//*
// ENDIF
//*
//**
//* Check RCs from previous steps and call correct program
//* with the correct ENVFILE
//**
//*
// IF (CHECKDFE.RC EQ 0) AND (VERIFY.RC EQ 0) THEN
//*
//**
//* Start Control Address Space with base ENVFILE
//* (bipimain, bipservice and bipbroker)
//**
//*
//BROKER EXEC PGM=BPXBATA8,REGION=0M,TIME=NOLIMIT,
// PARM=’PGM &INSTP./bin/&MAINP. &SRVMP. &COMPK. &STRTP.’
//* MQSeries Runtime Libraries
//STEPLIB DD DSN=&WMQHLQ..SCSQANL++LANGLETTER++,DISP=SHR
// DD DSN=&WMQHLQ..SCSQAUTH,DISP=SHR
// DD DSN=&WMQHLQ..SCSQLOAD,DISP=SHR
//STDENV DD PATH=’&HOME./ENVFILE’
//STDOUT DD SYSOUT=* //STDERR DD SYSOUT=*
//*
// ELSE
// IF (CHECKENV.RC EQ 0) AND (CHECKDFE.RC NE 0) THEN
//*
//**
//* Start DataFlowEngine Address Space with specific ENVFILE
//* (bipimain and DataFlowEngine)
//**
//*
//EGENV EXEC PGM=BPXBATA8,REGION=0M,TIME=NOLIMIT,
// PARM=’PGM &INSTP./bin/&MAINP. &SRVMP. &SE. &SH. &COMPK.
// &STRTP.’
//* MQSeries Runtime Libraries
//STEPLIB DD DSN=&WMQHLQ..SCSQANL++LANGLETTER++,DISP=SHR
// DD DSN=&WMQHLQ..SCSQAUTH,DISP=SHR
// DD DSN=&WMQHLQ..SCSQLOAD,DISP=SHR
//* DB2 Runtime Libraries
//* Database nodes require DB2 to connect to a datasource.
//* Note:
//* DB2 must be included in the STEPLIB if database
//* nodes are deployed to the broker. Also change EGNOENV.
//* DD DISP=SHR,DSN=&DB2HLQ..SDSNEXIT
//* DD DISP=SHR,DSN=&DB2HLQ..SDSNLOAD
//* DD DISP=SHR,DSN=&DB2HLQ..SDSNLOD2
//* APF Authorized Library of Message Broker
//* Required if using Event Notification
//* (All librarys in concatenation
//* need to be APF authorized)
//* DD DISP=SHR,DSN=++WMBHLQ++.SBIPAUTH
//STDENV DD PATH=’&HOME./ENVFILE.&E.’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//* DD to enable DB2 ODBC trace for each Execution Group
//*APPLTRC DD PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
//* PATHMODE=(SIRWXU,SIRWXG),
//* PATH=’&COMPDIR./output/db2appltrace.&SE..&E.’
//*
// ELSE
// IF (CHECKDFE.RC NE 0) THEN
//*

Chapter 14. Reference 4003

//**
//* Start DataFlowEngine Address Space with base ENVFILE
//* (bipimain and DataFlowEngine)
//**
//*
//EGNOENV EXEC PGM=BPXBATA8,REGION=0M,TIME=NOLIMIT,
// PARM=’PGM &INSTP./bin/&MAINP. &SRVMP. &SE. &SH. &COMPK.
// &STRTP.’
//* MQSeries Runtime Libraries
//STEPLIB DD DSN=&WMQHLQ..SCSQANL++LANGLETTER++,DISP=SHR
// DD DSN=&WMQHLQ..SCSQAUTH,DISP=SHR
// DD DSN=&WMQHLQ..SCSQLOAD,DISP=SHR
//* DB2 Runtime Libraries
//* Database nodes require DB2 to connect to a datasource.
//* Note:
//* DB2 must be included in the STEPLIB if database
//* nodes are deployed to the broker. Also change EGENV.
//* DD DISP=SHR,DSN=&DB2HLQ..SDSNEXIT
//* DD DISP=SHR,DSN=&DB2HLQ..SDSNLOAD
//* DD DISP=SHR,DSN=&DB2HLQ..SDSNLOD2
//* APF Authorized Library of Message Broker
//* Required if using Event Notification
//* (All librarys in concatenation
//* need to be APF authorized)
//* DD DISP=SHR,DSN=++WMBHLQ++.SBIPAUTH
//STDENV DD PATH=’&HOME./ENVFILE’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//* DD to enable DB2 ODBC trace for each Execution Group
//*APPLTRC DD PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
//* PATHMODE=(SIRWXU,SIRWXG),
//* PATH=’&COMPDIR./output/db2appltrace.&SE..&E.’
//*
// ENDIF
// ENDIF
// ENDIF
//*
//*---
// PEND
//*---
//*
//

Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

Sample BIPBUBK file
The sample BIPBUBK file that is shipped with WebSphere Message Broker is
included here for your reference.

//BIPBUBK JOB
//**
//* *
//* @START_COPYRIGHT@ *
//* *
//* Licensed Materials - Property of IBM; *
//* ProgIds: 5724-J06 5724-J05 5724-J04 5697-J09 5655-M74 5655-M75 5655-G97
//* (C) Copyright IBM Corporation 2008.
//* All Rights Reserved; *
//* US Government Users Restricted Rights - use, *

4004 WebSphere Message Broker Version 7.0.0.8

//* duplication or disclosure restricted by GSA *
//* ADP Schedule Contract with IBM Corp.; *
//* See Copyright Instructions *
//* *
//* @END_COPYRIGHT@ *
//* *
//**
//* IBM WebSphere Message Broker *
//* *
//* Sample job to backup a broker *
//* (mqsibackupbroker) *
//* *
//**
//* MORE INFORMATION - See: *
//* *
//* WebSphere Message Broker Information Centre. *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
//* *
//* Replace ++HOME++
//* Unique home directory where ENVFILE
//* will be created.
//* e.g. ’/u/mq01usr/mq01brk’
//*
//* Replace ++INSTALL++
//* WMB installation directory.
//* e.g. ’/usr/lpp/mqsi’
//*
//* Replace ++COMPONENTNAME++
//* Broker Name.
//* e.g. ’MQ01’
//*
//* Replace ++DIRECTORYPATHNAME++
//* Directory/Path name where the backup is
//* placed.
//* e.g. ’/u/mq01usr/mq01brk/db’
//*
//* Replace ++ARCHIVENAME++
//* Archive name.
//* e.g. ’-a archive1’
//*
//* Replace ++WMQHLQ++
//* WebSphere MQ high-level-qualifier.
//* e.g. ’MQM.V701’
//*
//* Replace ++LANGLETTER++
//* The letter for the language that
//* you want messages shown in.
//* e.g. ’E’ for English
//*
//**
//*
//**
//* Copy ENVFILE to SYSOUT
//**
//*
//COPYENV EXEC PGM=IKJEFT01,
// PARM=’OCOPY INDD(BIPFROM) OUTDD(ENVFILE)’
//SYSTSPRT DD DUMMY
//BIPFROM DD PATHOPTS=(ORDONLY),
// PATH=’++HOME++/ENVFILE’
//ENVFILE DD SYSOUT=*,DCB=(RECFM=V,LRECL=256)
//SYSTSIN DD DUMMY
//*
//**

Chapter 14. Reference 4005

//* Run mqsibackupbroker command
//**
//*
//BIPBUBK EXEC PGM=IKJEFT01,REGION=0M
//* MQSeries Runtime Libraries
//STEPLIB DD DISP=SHR,DSN=++WMQHLQ++.SCSQANL++LANGLETTER++
// DD DISP=SHR,DSN=++WMQHLQ++.SCSQAUTH
// DD DISP=SHR,DSN=++WMQHLQ++.SCSQLOAD
//STDENV DD PATHOPTS=(ORDONLY),
// PATH=’++HOME++/ENVFILE’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
BPXBATSL PGM -

++INSTALL++/bin/-
mqsibackupbroker -

++COMPONENTNAME++ -
-d ++DIRECTORYPATHNAME++ -
-a ++ARCHIVENAME++

/*
//

Related tasks:
“Customizing the broker component data set” on page 624
This is part of the larger task of creating a broker on z/OS.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsibackupbroker command” on page 3720
Use the mqsibackupbroker command to back up the current configuration of a
broker.
“mqsirestorebroker command” on page 3952
Use the mqsirestorebroker command to restore the broker configuration from a
backup file.

Sample BIPCRBK file
The sample BIPCRBK file that is shipped with WebSphere Message Broker is
included here for your reference.

//BIPCRBK JOB
//**
//* *
//* @START_COPYRIGHT@ *
//* *
//* Licensed Materials - Property of IBM; *
//* ProgIds: 5724-J06 5724-J05 5724-J04 5697-J09 5655-M74 5655-M75 5655-G97
//* (C) Copyright IBM Corporation 2004.
//* All Rights Reserved; *
//* US Government Users Restricted Rights - use, *
//* duplication or disclosure restricted by GSA *
//* ADP Schedule Contract with IBM Corp.; *
//* See Copyright Instructions *
//* *
//* @END_COPYRIGHT@ *
//* *
//**
//* IBM WebSphere Message Broker *
//* *
//* Sample job to create a broker (mqsicreatebroker). *
//* *
//**
//* MORE INFORMATION - See: *

4006 WebSphere Message Broker Version 7.0.0.8

//* *
//* WebSphere Message Broker Information Centre. *
//* Topic "an07080" *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
//* *
//* Replace ++HOME++
//* Unique home directory where ENVFILE
//* will be created.
//* e.g. ’/u/mq01usr/mq01brk’
//*
//* Replace ++INSTALL++
//* WMB installation directory.
//* e.g. ’/usr/lpp/mqsi’
//*
//* Replace ++COMPONENTNAME++
//* Broker name.
//* e.g. ’MQ01BRK’
//*
//* Replace ++QUEUEMANAGER++
//* Queue manager name.
//* e.g. ’MQ01’
//*
//* Replace ++OPTIONS++
//* Options for mqsicreatebroker command.
//* e.g. ’-1’
//*
//* z/OS specific options are
//* -1 Registry pass only
//* This creates the broker directory.
//* -2 MQ pass only
//* This creates the broker MQ queues.
//*
//* Please see documentation for other options.
//*
//* Replace ++WMQHLQ++
//* WebSphere MQ high-level-qualifier.
//* e.g. ’MQM.V701’
//*
//* Replace ++LANGLETTER++
//* The letter for the language that
//* you want messages shown in.
//* e.g. ’E’ for English
//*
//**
//*
//**
//* Copy ENVFILE to SYSOUT
//**
//*
//COPYENV EXEC PGM=IKJEFT01,
// PARM=’OCOPY INDD(BIPFROM) OUTDD(ENVFILE)’
//SYSTSPRT DD DUMMY
//BIPFROM DD PATHOPTS=(ORDONLY),
// PATH=’++HOME++/ENVFILE’
//ENVFILE DD SYSOUT=*,DCB=(RECFM=V,LRECL=256)
//SYSTSIN DD DUMMY
//*
//**
//* Run mqsicreatebroker command
//**
//*
//BIPCRBK EXEC PGM=IKJEFT01,REGION=0M
//* MQSeries Runtime Libraries
//STEPLIB DD DISP=SHR,DSN=++WMQHLQ++.SCSQANL++LANGLETTER++

Chapter 14. Reference 4007

// DD DISP=SHR,DSN=++WMQHLQ++.SCSQAUTH
// DD DISP=SHR,DSN=++WMQHLQ++.SCSQLOAD
//STDENV DD PATHOPTS=(ORDONLY),
// PATH=’++HOME++/ENVFILE’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
BPXBATSL PGM -

++INSTALL++/bin/-
mqsicreatebroker -

++COMPONENTNAME++ -
-q ++QUEUEMANAGER++ -
++OPTIONS++

/*
//

Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

Sample BIPDSNAO file
The sample BIPDSNAO file that is shipped with WebSphere Message Broker is
included here for your reference.

;**
;* *
;* @START_COPYRIGHT@ *
;* *
;* Licensed Materials - Property of IBM; *
;* 5655-G97 (c) Copyright IBM Corp. 2004; *
;* All Rights Reserved; *
;* US Government Users Restricted Rights - use, *
;* duplication or disclosure restricted by GSA *
;* ADP Schedule Contract with IBM Corp.; *
;* See Copyright Instructions *
;* *
;* @END_COPYRIGHT@ *
;* *
;**
;* IBM WebSphere Message Broker *
;* *
;* Sample dsnaoini for a broker. *
;* *
;* (ONLY REQUIRED FOR USER DATABASES) *
;* *
;**
;* MORE INFORMATION - See: *
;* *
;* WebSphere Message Broker Information Centre. *
;* *
;**
;* CUSTOMIZE HERE FOR YOUR INSTALLATION
;* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
;* *
;* Replace ++DB2SUBSYSTEM++
;* DB2 SSID.
;* e.g. ’DFK4’
;*
;* Replace ++DB2LOCATION++
;* DB2 location.
;* e.g. ’DSN810PK’
;*
;* Replace ++DB2CURRENTSQLID++
;* CURRENT SQLID user ID.
;* e.g. ’MQ01GRP’

4008 WebSphere Message Broker Version 7.0.0.8

;*
;* Replace ++DB2DSNACLIPLAN++
;* DB2 plan name for dsnacli.
;* e.g. ’DSNACLI’
;*
;**
[COMMON]
APPLTRACE=0
APPLTRACEfilename="DD:APPLTRC"
TRACETIMESTAMP=3
CONNECTTYPE=2
DIAGTRACE=0
DIAGTRACE_NO_WRAP=0
MAXCONN=0
MULTICONTEXT=0
MVSDEFAULTSSID=++DB2SUBSYSTEM++

; SUBSYSTEM
[++DB2SUBSYSTEM++]
MVSATTACHTYPE=RRSAF
PLANNAME=++DB2DSNACLIPLAN++

; DATASOURCES
[++DB2LOCATION++]
CURRENTSQLID=++DB2CURRENTSQLID++

Related tasks:
“Connecting to a user database on z/OS” on page 696
Complete these tasks to connect to your user databases on z/OS.

Sample BIPEDIT file
The sample BIPEDIT file that is shipped with WebSphere Message Broker is
included here for your reference.

/* REXX */
/**/
/* */
/* @START_COPYRIGHT@ */
/* */
/* Licensed Materials - Property of IBM; */
/* ProgIds: 5724-J06 5724-J05 5724-J04 5697-J09 5655-M74 5655-M75 5655-G97*/
/* (C) Copyright IBM Corporation 2004. */
/* All Rights Reserved; */
/* US Government Users Restricted Rights - use, */
/* duplication or disclosure restricted by GSA */
/* ADP Schedule Contract with IBM Corp.; */
/* See Copyright Instructions */
/* */
/* @END_COPYRIGHT@ */
/* */
/**/
/* IBM WebSphere Message Broker */
/* */
/* REXX utility to customize JCL. */
/* */
/**/
/* MORE INFORMATION - See: */
/* */
/* WebSphere Message Broker Information Centre. */
/* */
/**/
/* */
/* This edit macro can be used to assist you in configuring your */
/* Broker configuration files. */
/* 1. Edit this file to alter the change commands so the second */
/* parameter is the value for your installaton */
/* 2. Save the file */

Chapter 14. Reference 4009

/* 3. Rename it to a broker related file, for example VCP1EDIT for */
/* Broker called VCP1BRK */
/* 4. In TSO or TSO command shell (often ISPF option 6) execute */
/* ALTLIB ACTIVATE APPLICATION(EXEC) DA(’WMB.V7.SBIPPROC’) */
/* where WMB.V7.SBIPPROC is the name of the PDS contaning this */
/* macro */
/* 5. Using the same ISPF session, edit a configuration file */
/* 6. Type the macro name at the commands line and press enter */
/* This will execute the macro. */
/* If you get Command not found, then check you issued the command */
/* in 4. in the same ISPF session */
/* 7. If the macro has any errors, cancel from the file being edited */
/* resolve the errors in the macro and retry */
/* */
/**/
/* See the product docmentation on the meaning of the fields below: */
/**/
ISREDIT MACRO NOPROCESS
ADDRESS ISREDIT
"change ++INSTALL++ install_value all"
"change ++COMPONENTDIRECTORY++ compdir_value all"
"change ++COMPONENTNAME++ MQ01BRK all"
"change ++HOME++ /u/mq01brk all"
"change ++OPTIONS++ options_value all"
"change ++LOCALE++ C all"
"change ++TIMEZONE++ GMT0BST all"
"change ++JAVA++ /usr/lpp/java/IBM/J1.6 all"
"change ++WMQHLQ++ MQM.V701 all"
"change ++LANGLETTER++ E all"
"change ++QUEUEMANAGER++ MQ01 all"
"change ++COMPONENTDATASET++ componentdataset_value all"
"change ++STARTEDTASKNAME++ MQ01BRK all"
"change ++MQPATH++ /usr/lpp/mqm all"
/**/
/* Database nodes and mqsimigratecomponents (BIPMGCMP) require DB2 in */
/* order to connect to a datasource. */
/**/
/*"change ++DB2HLQ++ SYS2.DB2.V910 all" */

Related tasks:
“Customizing the broker JCL” on page 625
This subtask is part of the larger task of creating a broker on z/OS.
Related reference:
“Contents of the broker PDSE” on page 3991
After you have successfully customized the broker, the broker PDSE members have
been set up.

Sample BIPGEN file
The sample BIPGEN file that is shipped with WebSphere Message Broker is included
here for your reference.

//BIPGEN JOB
//**
//* *
//* @START_COPYRIGHT@ *
//* *
//* Licensed Materials - Property of IBM; *
//* ProgIds: 5724-J06 5724-J05 5724-J04 5697-J09 5655-M74 5655-M75 5655-G97
//* (C) Copyright IBM Corporation 2004,2010
//* All Rights Reserved; *
//* US Government Users Restricted Rights - use, *
//* duplication or disclosure restricted by GSA *
//* ADP Schedule Contract with IBM Corp.; *
//* See Copyright Instructions *
//* *

4010 WebSphere Message Broker Version 7.0.0.8

//* @END_COPYRIGHT@ *
//* *
//**
//* IBM WebSphere Message Broker *
//* *
//* Copy component profile to the file system and generate an *
//* ENVFILE. *
//* *
//* IMPORTANT: *
//* *
//* You must submit BIPGEN each time you update a profile! *
//* *
//**
//* MORE INFORMATION - See: *
//* *
//* WebSphere Message Broker Information Centre. *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
//* *
//* Replace ++HOME++
//* Unique home directory where ENVFILE
//* will be created.
//* e.g. ’/u/mq01usr/mq01brk’
//*
//* Replace ++COMPONENTDATASET++
//* Component dataset.
//* e.g. ’BIP.BROKER.MQ01BRK’
//*
//**
//*
//PROCLIB JCLLIB ORDER=(++COMPONENTDATASET++)
//*
//**
//* Copy BIPBPROF to file system
//**
//*
//COPYPROF EXEC PGM=IKJEFT01,
// PARM=’OCOPY INDD(BIPFROM) OUTDD(BIPPROF)’
//SYSTSPRT DD DUMMY
//BIPFROM DD DISP=SHR,DSN=++COMPONENTDATASET++(BIPBPROF)
//BIPPROF DD PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRWXU,SIRWXG),
// PATH=’++HOME++/bipprof’
//SYSTSIN DD DUMMY
//*
//**
//* Copy BIPPROF to SYSOUT
//**
//*
//COPYENV EXEC PGM=IKJEFT01,
// PARM=’OCOPY INDD(BIPFROM) OUTDD(BIPPROF)’
//SYSTSPRT DD DUMMY
//BIPFROM DD PATHOPTS=(ORDONLY),
// PATH=’++HOME++/bipprof’
//BIPPROF DD SYSOUT=*,DCB=(RECFM=V,LRECL=256)
//SYSTSIN DD DUMMY
//*
//**
//* Create ENVFILE from BIPPROF
//**
//*
//CREATENV EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *

BPXBATCH SH -

Chapter 14. Reference 4011

. ++HOME++/bipprof; -
/bin/printenv > -
++HOME++/ENVFILE

//*
//**
//* Copy ENVFILE to SYSOUT
//**
//*
//COPYENV EXEC PGM=IKJEFT01,
// PARM=’OCOPY INDD(BIPFROM) OUTDD(ENVFILE)’
//SYSTSPRT DD DUMMY
//BIPFROM DD PATHOPTS=(ORDONLY),
// PATH=’++HOME++/ENVFILE’
//ENVFILE DD SYSOUT=*,DCB=(RECFM=V,LRECL=256)
//SYSTSIN DD DUMMY
//*
//**
//* For any execution group specific profiles, add additional steps
//* below.
//* These must call BIPEGEN to create the execution group specific
//* ENVFILEs, passing in the name of the EG (last 8 characters as
//* defined in the infocenter). Also a member of this name must
//* exist in the component dataset.
//*
//* See the Message Broker infocenter for more information on
//* execution group specifc profiles on z/OS.
//**
//*BIPEG01 EXEC PROC=BIPEGEN,EG=DEFAULT
//*
//

Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsideletebroker command” on page 3863
Use the mqsideletebroker command to delete a named broker. The command also
deletes the queues on the associated queue manager (created when the broker was
created). You can also specify that the queue manager is to be deleted.

Sample BIPRSBK file
The sample BIPRSBK file that is shipped with WebSphere Message Broker is
included here for your reference.

//BIPRSBK JOB
//**
//* *
//* @START_COPYRIGHT@ *
//* *
//* Licensed Materials - Property of IBM; *
//* ProgIds: 5724-J06 5724-J05 5724-J04 5697-J09 5655-M74 5655-M75 5655-G97
//* (C) Copyright IBM Corporation 2008.
//* All Rights Reserved; *
//* US Government Users Restricted Rights - use, *
//* duplication or disclosure restricted by GSA *
//* ADP Schedule Contract with IBM Corp.; *
//* See Copyright Instructions *
//* *
//* @END_COPYRIGHT@ *
//* *
//**
//* IBM WebSphere Message Broker *
//* *
//* Sample job to restore a broker *
//* (mqsirestorebroker) *
//* *

4012 WebSphere Message Broker Version 7.0.0.8

//**
//* MORE INFORMATION - See: *
//* *
//* WebSphere Message Broker Information Centre. *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
//* *
//* Replace ++HOME++
//* Unique home directory where ENVFILE
//* will be created.
//* e.g. ’/u/mq01usr/mq01brk’
//*
//* Replace ++INSTALL++
//* Message Broker installation directory.
//* e.g. ’/usr/lpp/mqsi’
//*
//* Replace ++COMPONENTNAME++
//* Broker Name.
//* e.g. ’MQ01’
//*
//* Replace ++DIRECTORYPATHNAME++
//* Directory/Path name where the backup is.
//* e.g. ’/u/mq01usr/mq01brk/db’
//*
//* Replace ++ARCHIVENAME++
//* Archive name.
//* e.g. ’-a archive1’
//*
//* Replace ++WMQHLQ++
//* WebSphere MQ high-level-qualifier.
//* e.g. ’MQM.V701’
//*
//* Replace ++LANGLETTER++
//* The letter for the language that
//* you want messages shown in.
//* e.g. ’E’ for English
//*
//**
//*
//**
//* Copy ENVFILE to SYSOUT
//**
//*
//COPYENV EXEC PGM=IKJEFT01,
// PARM=’OCOPY INDD(BIPFROM) OUTDD(ENVFILE)’
//SYSTSPRT DD DUMMY
//BIPFROM DD PATHOPTS=(ORDONLY),
// PATH=’++HOME++/ENVFILE’
//ENVFILE DD SYSOUT=*,DCB=(RECFM=V,LRECL=256)
//SYSTSIN DD DUMMY
//*
//**
//* Run mqsirestorebroker command
//**
//*
//BIPRSBK EXEC PGM=IKJEFT01,REGION=0M
//* MQSeries Runtime Libraries
//STEPLIB DD DISP=SHR,DSN=++WMQHLQ++.SCSQANL++LANGLETTER++
// DD DISP=SHR,DSN=++WMQHLQ++.SCSQAUTH
// DD DISP=SHR,DSN=++WMQHLQ++.SCSQLOAD
//STDENV DD PATHOPTS=(ORDONLY),
// PATH=’++HOME++/ENVFILE’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*

Chapter 14. Reference 4013

//SYSTSIN DD *
BPXBATSL PGM -

++INSTALL++/bin/-
mqsirestorebroker -

++COMPONENTNAME++ -
-d ++DIRECTORYPATHNAME++ -
-a ++ARCHIVENAME++

/*
//

Related tasks:
“Customizing the broker component data set” on page 624
This is part of the larger task of creating a broker on z/OS.
Related reference:
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsibackupbroker command” on page 3720
Use the mqsibackupbroker command to back up the current configuration of a
broker.
“mqsirestorebroker command” on page 3952
Use the mqsirestorebroker command to restore the broker configuration from a
backup file.

Data sources on z/OS
The Data Source name in the Compute and Database nodes identifies the location
of the table referred to in the respective node's ESQL. Data sources on z/OS
correspond to DB2 subsystems rather than DB2 databases. The DB2 owning region
for a particular database table is identified using a combination of the DSNAOINI
file and DB2 subsystem configuration.

The MVSDEFAULTSSID parameter in the DSNAOINI file identifies the local DB2
subsystem to which the broker is connected. This subsystem is used to locate the
data source which is either a local or remote DB2. The mapping between a
particular data source and DB2 subsystem is shown in the DSNTIPR installation
panel of the default DB2 subsystem and SYSIBM.LOCATIONS table.

When you access remote DB2 subsystems, ensure that the DBRMs for ODBC are
bound at the remote subsystem. For more information, refer to the 'Programming
for ODBC' topics in the DB2 Information Management Software Information
Center for z/OS Solutions .

If you need to access databases that are not on DB2 on z/OS, you can use the DB2
Distributed Data Facility (DDF) and Distributed Relational Architecture (DRDA) to
incorporate a remote unit of work within a message flow.
Related tasks:
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.

4014 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp

Message flow development
View the reference material associated with developing message flow applications.
v “Message flows”
v
v “Built-in nodes” on page 4293
v “Transformation interfaces” on page 4980
v “User-defined patterns” on page 5344
v “Message model reference information” on page 5366
v “Publish/subscribe” on page 6395
v “User-defined extensions” on page 6411
v “Web services external standards” on page 6696
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Processing messages” on page 1021
Process your business messages and data by interacting with a broker, which you
can configure to provide services and to communicate with other applications and
systems.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Message flows
Use the reference information in this section to develop your message flows and
related resources.

The following message flow reference information is available:
v “Message flow preferences” on page 4016
v “Description properties for a message flow” on page 4016
v “Configurable message flow properties” on page 4020
v “WebSphere Adapters properties” on page 4024
v “Validation properties” on page 4169
v “Parsing on demand” on page 4173
v “Impact analysis: reference” on page 4174
v “User-defined nodes” on page 6415
v “Supported code pages” on page 4176
v “WebSphere MQ connections” on page 4222
v “Data integrity in message flows” on page 4223
v “Exception list structure” on page 4224
v “Message flow porting” on page 4233
v “Coordinated message flows” on page 4234
v “Element definitions for message parsers” on page 4237
v “XML constructs” on page 4257
Related concepts:

Chapter 14. Reference 4015

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“The Message Flow editor experiences problems when opening a message flow,
and opens in error mode” on page 3435

Message flow preferences
You can change preferences that determine properties of message flows when you
create them.

To edit message flow preferences, open the Preferences dialog box by clicking
Window > Preferences. Select Message Flow from the list of categories.

For a new message flow, you can set the default version tag, which is described in
the following table.

Property Type Meaning

Default version
tag

String Provide the default version information that you want to be set in the message
flow Version property when you create a message flow.

Related concepts:
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related tasks:
“Configuring CVS to run with the WebSphere Message Broker Toolkit” on page
573
Install CVS as a normal program by following the usual prompts. Not all versions
of CVSNT are supported by Eclipse.
Related reference:
“Description properties for a message flow”
The description properties for a message flow include the Version, Short
Description and Long Description. To view and edit the properties of a message
flow click Flow > Properties.

Description properties for a message flow
The description properties for a message flow include the Version, Short
Description and Long Description. To view and edit the properties of a message
flow click Flow > Properties.

4016 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Version String You can enter a version for the message flow in this field. This allows the
version of the message flow to be displayed using the Eclipse properties view.

A default for this field can be set in the messages flow preferences.

Short
Description

String You can enter a short description of the message flow in this field.

Long
Description

String You can add information to enhance the understanding of the message flow's
function in this field.

It is a string field and any standard alphanumeric characters can be used.

You can also use this field to define a keyword and its value that will display for
the deployed message flow in the properties view of Eclipse. An example is:

$MQSI Author=Fred MQSI$

When the properties of the deployed message flow are displayed, this will add a
row to the display showing “Author” as the property name and “Fred” as its
value.

For information on keywords see “Guidance for defining keywords.”

Related concepts:
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related reference:
“Guidance for defining keywords”
You can add extra information to an object in the form of one or more keywords.

Guidance for defining keywords:

You can add extra information to an object in the form of one or more keywords.

This information can display information about an object after the object has been
deployed. The default information that is displayed is the time the object was
deployed and the last time the object was modified.

You can define custom keywords, and their values that the WebSphere Message
Broker Toolkit interprets as additional information to be displayed, in the
properties view. For example, you can define keywords for “Author” and “Subflow
1 Version”:
$MQSI Author=John Smith MQSI$
$MQSI Subflow 1 Version=v1.3.2 MQSI$

The following table contains the information that is displayed by the WebSphere
Message Broker Toolkit:

Object name Example

Deployment Time 28-Aug-2009 15:04

Modification Time 28-Aug-2009 14:27

Version v1.0

Author John Smith

Chapter 14. Reference 4017

Object name Example

Subflow 1 Version v1.3.2

In this display, the version information has been defined by using the Version
property of the object. If the version information had not been defined, it would be
omitted from this display.

Use the following syntax to define a keyword and its associated value:
$MQSI KeywordName = KeywordValue MQSI$

Where:

$MQSI
$MQSI opens the definition. It can be followed by an optional underscore
or white-space character that is ignored.

KeywordName
The name of the keyword for which you are setting the value. It is made
up of a sequence of alphanumeric characters apart from the equals (=)
sign. It can contain white-space characters, but leading or trailing
white-space characters are omitted.

= The equals (=) sign is the delimiter between the keyword and the value
that you are setting it to.

KeywordValue
The value to which the keyword is set. It is made up of a sequence of
alphanumeric characters. It can contain white-space characters, but leading
or trailing white-space characters are omitted.

MQSI$
MQSI$ closes the keyword definition.

Examples

Example definitions Interpreted keyword and value Comments

$MQSIAuthor=JohnMQSI$ or
$MQSI Author=John MQSI$ or
$MQSI Author = John MQSI$

Keyword = "Author"
Value = "John"

Each of these examples shows what
can be set and that the leading and
trailing white-space characters for the
name and value parameters are
ignored.

$MQSI_Author = John MQSI$ Keyword = "Author"
Value = "John"

The first character after $MQSI can
be an underscore character. The
underscore character is omitted in the
interpreted keyword. If a second
underscore character appears, this
forms part of the keyword name.

$MQSI Flow designer = John Smith
MQSI$

Keyword = "Flow designer"
Value = "John Smith"

White-space characters are accepted
for each parameter value.

$MQSI bar = MQSI$ Keyword = "bar"
Value = ""

The keyword value can be set to an
empty ("") string.

4018 WebSphere Message Broker Version 7.0.0.8

Example definitions Interpreted keyword and value Comments

$MQSI_mqsitag=$MQSI$MQSI$ Keyword = "mqsitag"
Value = "$"

This example is a poorly formatted
definition. After defining the
keyword name, the parser is looking
to find the delimiters that form the
boundary of the value to be set. In
this case, the only character before
the MQSI$ that closes the definition
is a '$', and that is set as the keyword
value.

$MQSI=barMQSI$ This pattern is ignored because the
keyword name cannot be an empty
string.

$MQSItagbarMQSI$ This pattern is ignored because there
is not a separator (=) between the
keyword name and the keyword
value.

Do not use the following keywords:

VERSION
When you use the WebSphere Message Broker Toolkit to edit message
flows and dictionaries, it is possible to set the Version property in the
Properties pane, which you can then view in the Broker Archive file editor.
If you set this property, a keyword called VERSION is added to the
resulting .cmf or dictionary file. For this reason, do not add
$MQSI_VERSION=...MQSI$ to these files.

BAR The BAR keyword is associated with each object automatically when it is
deployed and it contains the full path name of the broker archive file that
deployed the object.

The values of both keywords are defined programmatically in the class
com.ibm.broker.config.proxy.DeployedObject.

Restrictions within keywords

Do not use the following characters within keywords because they cause
unpredictable behavior:
^ $. | \ < > ? + * = & [] ()

You can use these characters in the values that are associated with keywords; for
example:
v $MQSI RCSVER=$id$ MQSI$ is acceptable
v $MQSI $name=Fred MQSI$ is not acceptable
Related concepts:
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.
“Adding keywords to ESQL files” on page 2486
You can add keywords to ESQL files to contain information that you want to
associate with a message flow.

Chapter 14. Reference 4019

“Keywords in subflows” on page 1447
You can embed keywords in each subflow that you use in a message flow.
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
“Message set version and keywords” on page 1169
When you develop a message set, you can define the version of the message set,
and other key information that you want to be associated with it.
Related tasks:
“Adding keywords to JAR files” on page 2660
If a BAR file contains JAR files, you can associate keywords with the JAR files.
Related reference:
“Message flow preferences” on page 4016
You can change preferences that determine properties of message flows when you
create them.
“Adding keywords to XSL style sheets” on page 4975
Embedded keywords in an XSL style sheet; their location is not restricted. You can
also add a keyword as an XML comment.
“Description properties for a message flow” on page 4016
The description properties for a message flow include the Version, Short
Description and Long Description. To view and edit the properties of a message
flow click Flow > Properties.

Configurable message flow properties
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.

Additional Instances
This property specifies the number of additional threads that the broker
can use to service the message flow. These additional threads are created
only if there are sufficient input messages. You can use up to 256 threads.
The default value is 0. Additional threads can increase the throughput of a
message flow but you must consider the potential effect on message order.

If the message flow processes WebSphere MQ messages, you can configure
the message flow to control the message order. Set the Order Mode property
on the MQInput node accordingly. You might also need to set the Commit
by Message Group and Logical Order properties.

An MQInput node opens the input queue with
MQOO_INPUT_AS_Q_DEF, which uses the DEFSOPT property of the
input queue. Therefore, you must ensure that the input queue has been
defined with DEFSOPT(SHARED) and with the SHARE property set to
enable multiple broker threads to read from the input queue. If these
properties are not set in this way, the message flow threads report that the
queue is in use (MQRC=2042), and the message flow might stop processing
messages on the input queue.

If you have multiple input nodes in your message flow, the available
additional threads might not be allocated evenly between the different
input nodes. In an extreme case, all the threads might be allocated to a
single input node, and only one aspect of message flow throughput is
improved. To avoid this problem, you can use the Additional Instances

4020 WebSphere Message Broker Version 7.0.0.8

Pool property, together with the Additional Instances property, to allocate
a pool of additional instance threads for each input node.

Commit Count
For WebSphere MQ messages, this property specifies how many input
messages are processed by a message flow before a sync point is taken (by
issuing an MQCMIT).

The default value of 1 is also the minimum permitted value. Change this
property to avoid frequent MQCMIT calls when messages are being
processed quickly and the lack of an immediate commit can be tolerated
by the receiving application.

Use the Commit Interval to ensure that a commit is performed periodically
when not enough messages are received to fulfill the Commit Count.

This property has no effect if the message flow does not process
WebSphere MQ messages.

Commit Interval
This property specifies the maximum time interval between the last
WebSphere MQ message being received, and a sync point being taken. If
no message is received in the specified time interval, a sync point is taken
(by issuing an MQCMIT command), even if the number of messages
processed does not fulfill the value of the Commit Count property.

The time interval is specified in seconds, as a decimal number with a
maximum of three decimal places (millisecond granularity). The value
must be in the range 0.000 through 60.000. The default value is 0.

This property has no effect if the message flow does not process
WebSphere MQ messages, or if the value of the Commit Count is 1

Consumer policy set
This property specifies the consumer policy to use to authenticate, encrypt,
and sign messages for the SOAPRequest, SOAPAsyncRequest, and
SOAPAsyncResponse nodes.

Consumer policy set bindings
This property associates a policy set binding with a consumer policy set
and contains information that is specific to the environment and operating
system, such as information about keys.

Coordinated Transaction
This property controls whether the message flow is processed as a global
transaction, coordinated by WebSphere MQ. Such a message flow is said to
be fully globally coordinated. The default value is No.

Use coordinated transactions only where you need to process the message
and any database updates that are performed by the message flow in a
single unit-of-work, using a two-phase commit protocol. In this case, both
the message is read and the database updates are performed, or neither is
done.

If you change this value, ensure that the queue manager for the broker is
configured correctly. If you do not set up the queue manager correctly, the
broker generates a message when the message flow receives a message to
indicate that, although the message flow is to be globally coordinated, the
queue manager configuration does not support coordination.

See “Supported databases” on page 3591 for information about which
databases are supported as participants in a global transaction, and the

Chapter 14. Reference 4021

System Administration section of the WebSphere MQ Version 7 Information
Center online for how to configure WebSphere MQ and the database
managers.

This property has no effect if the message flow does not process
WebSphere MQ messages.

Monitoring profile name
This property specifies the name of the monitoring profile configurable
service to apply to one or more message flows in a BAR file. The
monitoring profile is used to configure your message flows to emit
monitoring events.

For more information, see “Configuring monitoring event sources using a
monitoring profile” on page 762.

Provider policy set
This property specifies the provider policy to use to authenticate, encrypt,
and sign messages for the SOAPInput and SOAPReply nodes.

Provider policy set bindings
This property associates a policy set binding with a provider policy set and
contains information that is specific to the environment and operating
system, such as information about keys.

Security profile name
This property specifies a security profile that has authorization enabled so
that a message flow can complete authorization with Tivoli Federated
Identity Manager (TFIM). You can set a security profile on a message flow
or on individual input nodes. If no security profile is set for the input
nodes, the setting is inherited from the setting on the message flow.

For more information, see “Configuring authorization with TFIM V6.1” on
page 483.

User-defined properties
The initial value of a user-defined property (UDP) can be modified at
design time by the “Message Flow editor” on page 6810, or overridden at
deployment time by the “Broker Archive editor” on page 6794. The
advantage of UDPs is that their values can be changed by operational staff
at deployment time. If, for example, you use UDPs to hold configuration
data, you can configure a message flow for a particular computer, task, or
environment at deployment time, without having to change the code at the
node level. You can also query and set the values of user-defined
properties at run time by using the Administration API for WebSphere
Message Broker (also known as the CMP API). For example, a systems
monitoring tool might use the CMP API to modify the value of a
user-defined property at run time to change the behavior of the message
flow.

For introductory information about UDPs and dynamic UDPs, see
“User-defined properties in ESQL” on page 2376 and “User-defined
properties” on page 1147.

For information about configuring UDPs at deployment time, see
“Configuring a message flow at deployment time with user-defined
properties” on page 2626.

For information about configuring UDPs at run time, see “Setting message
flow user-defined properties at run time in a CMP application” on page
985.

4022 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

You can view and update other configurable properties for the message flow. The
properties that are displayed depend on the nodes within the message flow; some
have no configurable properties to display. The node properties that are
configurable are predominantly system-related properties that are likely to change
for each broker to which the message flow is deployed. These properties include
data source names and the names of WebSphere MQ queues and queue managers.
For full details of configurable properties for a node, see the appropriate node
description.
Related concepts:
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“The Administration API for WebSphere Message Broker” on page 54
The Administration API for WebSphere Message Broker is a programming interface
that your applications can use to control brokers and their resources through a
remote interface.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Configuring a message flow at deployment time with user-defined properties” on
page 2626
Use user-defined properties (UDPs) to configure message flows at deployment and
run time, without modifying program code. You can give a UDP an initial value
when you declare it in your program, or when you use the Message Flow editor to
create or modify a message flow.
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
Related information:

WebSphere MQ Version 7 Information Center online

Chapter 14. Reference 4023

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

WebSphere Adapters properties
Reference information about the properties that you set for WebSphere Adapters
nodes.

See the properties for the Enterprise Information System (EIS) to which you want
to connect:
v “WebSphere Adapter for SAP properties”
v “WebSphere Adapter for Siebel properties” on page 4092
v “WebSphere Adapter for PeopleSoft properties” on page 4122
v “WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.

WebSphere Adapter for SAP properties:

Reference information to which to refer when you connect to an SAP application.
v “Business object information (SAP)” on page 4025
v “Configuration properties for the WebSphere Adapter for SAP Software” on

page 4043
v “SAP options for rediscovery” on page 4090
Related concepts:

4024 WebSphere Message Broker Version 7.0.0.8

“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.

Business object information (SAP):

A business object contains application-specific information (metadata) about how
the adapter processes the business object, and about the operation to be performed
on the business object.

The name of the business object is generated by the Adapter Connection wizard in
accordance with the naming convention for the adapter.

For more information, see the following topics:
v “Supported data operations (SAP)” on page 4026
v “Naming conventions” on page 4034
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System

Chapter 14. Reference 4025

(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Supported data operations (SAP):

For outbound processing, an operation is the name of the action that is
implemented by the adapter so that the message flow can perform the operation
on the SAP server.

The adapter uses the application-specific information (ASI) inside the business
object definition to implement the operation. The name of the operation typically
indicates the type of action to be implemented, such as create or update. For
inbound processing, adapters implement an operation by delivering events to their
endpoints. For inbound processing, the action that is associated with the event
varies depending on the interface (ALE or Advanced event processing). When the
interface is ALE, the action is pushed to the adapter and the adapter delivers the
event to an endpoint. When the interface is Advanced event processing, the event
status is polled by the adapter and processed accordingly.

For more information, see the following topics:
v “Supported data operations on BAPI business objects” on page 4028
v “Supported data operations on ALE business objects” on page 4029

4026 WebSphere Message Broker Version 7.0.0.8

v “Supported data operations of Query interface for SAP Software business
objects” on page 4031

v “Supported data operations on Advanced event processing business objects” on
page 4032

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Chapter 14. Reference 4027

Supported data operations on BAPI business objects:

The operations that are supported by BAPI business objects are the same as those
supported by BAPI work units. BAPI result sets support only the RetrieveAll
operation.

For BAPI outbound processing, the operation of a BAPI business object is the name
of the BAPI call that an adapter issues on the SAP server. The BAPI method
determines the operation that is associated with it. The adapter uses the
application-specific information (ASI) inside the business object definition to
implement the operation. Operations of a business object are called by the
component that makes calls to SAP through the adapter. The SAP JCo APIs are
used to make the call to the SAP system.

BAPIs and BAPI unit of work

The following table defines operations that the adapter supports for BAPIs and
BAPI work units. The definitions in the table are the expected uses for the
operations. The action that is taken in the SAP application is based on the meaning
of the BAPI itself.

Table 53. Supported operations: BAPI business objects

Operation Definition

Create The top-level business object and all contained children are created.

Update The top-level business object is modified. This operation can include
adding and deleting child objects.

Delete The top-level business object and any contained children are deleted.

Retrieve The top-level business object and any contained children are
retrieved.

For an operation that is not supported, the adapter logs the appropriate error and
produces a ResourceException.

Result sets

The following table defines the operation that the adapter supports for BAPI result
sets.

Table 54. Supported operation: BAPI result sets

Operation Definition

RetrieveAll All the matching records for the BAPI result set are retrieved.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:

4028 WebSphere Message Broker Version 7.0.0.8

“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Supported data operations on ALE business objects:

The operations that are supported by ALE business objects vary, depending on
whether the business object is an outbound or inbound object. The adapter uses
the application-specific information (ASI) inside the business object definition to
implement the operation.

Business objects that are generated with the ALE pass-through IDoc interface are
not associated with an operation.

Outbound business objects

The operation of an ALE outbound business object is called by the application
component that makes calls to SAP through the adapter. The adapter supports the
following outbound operation:

Chapter 14. Reference 4029

Table 55. Supported operation: ALE outbound business objects

Operation Definition

Execute This operation posts the IDoc business object to the SAP
application. This operation is one-way and asynchronous.

For the CWYAP_SAPAdapter_TX.rar version of the adapter,
the transaction ID is returned.

Inbound business objects

For ALE inbound business objects, the application-specific information of an
operation contains the message type, message code, and message function for an
IDoc type. The adapter supports the following inbound operations:

Table 56. Supported operations: ALE inbound business objects

Operation Definition

Create The top-level business object and all contained children
are created.

Update The top-level business object is modified. This operation
can include adding and deleting child objects.

Delete The top-level business object and any contained children
are deleted.

The adapter uses the IDoc control record field data to determine the operation that
is set on the business object before sending it to the endpoint. The following fields
in the control record are used to determine the operation:
v Logical_message_type (MESTYP)
v Logical_message_code (MESCOD)
v Logical_message_function(MESFCT)
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

4030 WebSphere Message Broker Version 7.0.0.8

“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Supported data operations of Query interface for SAP Software business objects:

The SAP Query interface supports the RetrieveAll operation, with which you can
have the results of an SAP table returned to you, and the Exists operation, which
you use to determine whether data can be found in the SAP table. The adapter
uses the application-specific information (ASI) inside the business object definition
to implement the operation.

The supported operations for the Query interface for SAP Software are listed in the
following table.

Table 57. Supported operations: Query interface for SAP Software business objects

Operation Description

RetrieveAll This operation returns a result set in the form of a container of
SAP query business objects, which represent the data for each row
that is retrieved from the table. If a table business object is sent to
the SAP server (instead of a container business object), the rows
are returned one at a time.

Exists This operation provides a means to check for the existence of any
records in SAP for defined search criteria. The Exists operation
does not return any data; it indicates whether the data exists in
SAP. If no data is found, the adapter generates an exception.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.

Chapter 14. Reference 4031

“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Supported data operations on Advanced event processing business objects:

The operations that are supported by Advanced event processing business objects
vary, depending on whether the business object is an outbound or inbound object.
The adapter uses the application-specific information (ASI) inside the business
object definition to implement the operation.

Outbound business objects

The operation of an Advanced event processing outbound business object is called
by the message flow that makes calls to SAP through the adapter. The adapter
supports the following outbound operation.

4032 WebSphere Message Broker Version 7.0.0.8

Table 58. Supported operation: Advanced event processing outbound business objects

Operation Definition

Create The top-level business object and all contained children are
created.

Update The top-level business object is modified. This operation can
include adding and deleting child objects.

Delete The top-level business object and any contained children are
deleted.

Retrieve The top-level business object and any contained children are
retrieved.

Inbound business objects

For Advanced event processing inbound business objects, the application-specific
information of an operation contains the message type, message code, and message
function for an IDoc type. The adapter supports the following inbound operations.

Table 59. Supported operations: Advanced event processing inbound business objects

Operation Definition

Create The top-level business object and all contained children are
created.

Update The top-level business object is modified. This operation can
include adding and deleting child objects.

Delete The top-level business object and any contained children are
deleted.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system

Chapter 14. Reference 4033

administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Naming conventions:

When the Adapter Connection wizard generates a business object, it provides a
name for the business object that is based on the name of the corresponding
business function in the SAP server.

The convention that is applied by the SAP server when naming a business object
varies depending on whether the name is for a BAPI business object, an ALE
business object, an Advanced event processing business object, or a Query interface
for SAP Software business object.

For more information, see the following topics:
v “Naming conventions for BAPI business objects” on page 4035
v “Naming conventions for ALE business objects” on page 4038
v “Naming conventions for Query interface for SAP Software business objects” on

page 4040
v “Naming conventions for Advanced event processing business objects” on page

4041
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System

4034 WebSphere Message Broker Version 7.0.0.8

(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Naming conventions for BAPI business objects:

The Adapter Connection wizard provides names for the business objects for BAPIs,
BAPI work units, and BAPI result sets. The business object name reflects the
structure of the business function on the SAP server.

BAPIs

When it names business objects for BAPIs, the Adapter Connection wizard adds
the prefix Sap. The wizard also converts the name of the business function to
mixed case, removing any separators such as spaces or underscores, capitalizes the
first letter of each word, and it can add an element-specific suffix (for example,
Wrapper for a top-level business object).

The following table describes the convention that is applied by the Adapter
Connection wizard when it names BAPI business objects.

Chapter 14. Reference 4035

Table 60. Naming conventions for BAPI business objects

Element Naming convention

Name of the top-level
business object

Sap + Name of the wrapper object that you specify in the
Adapter Connection wizard + Wrapper

For example: SapSalesOrderWrapper

Name of the BAPI
business object

Sap + Name of the BAPI interface

For example: SapBapiSalesOrderCreateFromDat1

The top-level object can contain more than one BAPI object.

Name of the child object Sap + Name of the Structure/Table

For example: SapReturn

If structures with the same name exist in different BAPIs, or exist in a BAPI (for
example, one at the export level and one at the table level), the Adapter
Connection wizard adds a unique suffix to differentiate the structures. The first
structure is assigned a name (for example, SapReturn) and the second structure is
assigned a name such as SapReturn619647890, where 619647890 is the unique
identifier that is appended to the name by the wizard.

BAPI work units

The following table describes the convention that is applied by the Adapter
Connection wizard when it names a BAPI work unit business object.

Table 61. Naming conventions for BAPI unit of work business objects

Element Naming convention

Name of the top-level
business object

Sap + Name of the wrapper object that you specify in the
Adapter Connection wizard + Txn

For example: SapCustomerTxn

Name of the BAPI
business object

Sap + Name of the BAPI interface

For example: SapCustomer

Name of the child object Sap + Name of the Structure/Table

For example: SapReturn

If structures with the same name exist in different BAPIs, or exist in a BAPI (for
example, one at the export level and one at the table level), the Adapter
Connection wizard adds a unique suffix to differentiate the structures. The first
structure is assigned a name (for example, SapReturn) and the second structure is
assigned a name such as SapReturn619647890, where 619647890 is the unique
identifier that is appended to the name by the wizard.

BAPI result sets

The following table describes the convention that is applied by the Adapter
Connection wizard when it names a BAPI result-sets business object.

4036 WebSphere Message Broker Version 7.0.0.8

Table 62. Naming conventions for BAPI result sets

Element Naming convention

Name of the result set
BAPI business object

Sap + Name of the BAPI interface

For example: SapBapiCustomerGetDetail

Name of the child object Sap + Name of the Structure/Table

For example: SapReturn

Name of the query
business object

Sap + Formatted name of the query BAPI interface

For example: SapBapiCustomerGetList

If structures with the same name exist in different BAPIs, or exist in a BAPI (for
example, one at the export level and one at the table level), the Adapter
Connection wizard adds a unique suffix to differentiate the structures. The first
structure is assigned a name (for example, SapReturn) and the second structure is
assigned a name such as SapReturn619647890, where 619647890 is the unique
identifier that is appended to the name by the wizard.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection

Chapter 14. Reference 4037

wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Naming conventions for ALE business objects:

The Adapter Connection wizard provides names for the ALE business object. The
business object name reflects the structure of the business function on the SAP
server.

If you are using the ALE pass-through IDoc interface, the following naming
conventions apply:
v When you select Generic IDoc from the Object Discovery and Selection window,

the Adapter Connection wizard creates a business object named
SapGenericIDocObject. The naming convention described in the following
sections does not apply to generic IDocs.

v When you discover an IDoc from the system or from a file, the object is named
according to the naming convention for top-level wrapper objects, as described
in Table 63. No other objects are generated.

When it names business objects for ALE, the Adapter Connection wizard adds a
prefix of Sap. The wizard also converts the name of the IDoc and extension to
mixed case, removing any separators such as spaces or underscores, capitalizes the
first letter of each word, and it can add an element-specific suffix.

The following table describes the conventions that are applied by the Adapter
Connection wizard when it names ALE business objects. The [Name of Extension
type IDoc] in the Naming convention column represents an optional entry. It is
included in the name only if the selected IDoc is an Extension Type IDoc.

Table 63. Naming conventions for ALE business objects

Element Naming convention

Name of the top-level
wrapper object

Sap + Name of IDoc + [Name of Extension type IDoc]

For example: SapAlereq01

Name of the IDoc
business object for basic
IDocs

Sap + Name of IDoc + BO

For example, the business object for the IDoc MATMAS03 is:
SapMatmas03BO

Name of the IDoc
business object for
extension type IDocs

Sap + Name of IDoc + Name of Extension type IDoc

For example, the business object for the IDoc DELVRY03 and
extension SD_DESADV_PDC is: SapDelvry03SdDesadvPdc

For an IDoc duplicate name, the Adapter Connection wizard adds a unique suffix
to differentiate the business object. If an IDoc packet has two segments with the

4038 WebSphere Message Broker Version 7.0.0.8

same name (for example, segOrder), the first business object is assigned the name
SapSegOrder and the second business object is assigned a name such as
SapSegOrder619647890, where 619647890 is the unique identifier that the Adapter
Connection wizard appends to the name.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Chapter 14. Reference 4039

Naming conventions for Query interface for SAP Software business objects:

The Adapter Connection wizard provides names for the Query interface for SAP
Software container, business graph, top-level business object, table object, and
query object. The business object name reflects the structure of the business
function on the SAP server.

When it names business objects for the Query interface for SAP Software, the
Adapter Connection wizard adds the prefix Sap. The wizard also converts the
name of the business function or SAP table to mixed case, removing any separators
such as spaces or underscores, capitalizes the first letter of each word, and it can
add an element-specific suffix (for example, Container for a container).

The following table describes the convention that is applied by the Adapter
Connection wizard when it names a Query interface for SAP Software business
object.

Table 64. Naming convention for a Query interface for SAP Software business object

Element Naming convention

Name of the container Sap + Name of the object that you specify in the wizard + Container

For example: SapCustomerContainer

Name of the table object Sap + Name of the SAP table

For example: SapKna1

Name of the query
object

Sap + Name of the SAP table + Querybo

For example: SapKna1Querybo

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system

4040 WebSphere Message Broker Version 7.0.0.8

administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Naming conventions for Advanced event processing business objects:

The Adapter Connection wizard provides names for the Advanced event
processing top-level business object, and the business object. The name of the
business object reflects the structure of the business function on the SAP server.

When it names business objects for the Advanced event processing interface, the
Adapter Connection wizard adds a prefix of Sap. The wizard also converts the
name of the IDoc and extension to mixed case, removing any separators such as
spaces or underscores, capitalizes the first letter of each word, and it might add an
element-specific suffix.

The following table describes the convention that is applied by the Adapter
Connection wizard when it names Advanced event processing business objects.
The [Name of Extension type IDoc] in the Naming convention column represents an
optional entry; it is included in the name only if the selected IDoc is an Extension
Type IDoc.

Table 65. Naming convention for advanced event processing business objects

Element Naming convention

Name of the top-level
wrapper object

Sap + Name of IDoc + [Name of Extension type IDoc]

For example: SapAepreq01

Name of the IDoc
business object for basic
IDocs

Sap + Name of IDoc + BO

For example, the business object for the IDoc MATMAS03 is:
SapMatmas03BO

Name of the IDoc
business object for
extension type IDocs

Sap + Name of IDoc + Name of Extension type IDoc

For example, the business object for the IDoc DELVRY03 and
extension SD_DESADV_PDC is: SapDelvry03SdDesadvPdc

Chapter 14. Reference 4041

For an IDoc duplicate name, the Adapter Connection wizard adds a unique suffix
to differentiate the business object. If an IDoc packet has two segments with the
same name (for example, segOrder), the first business object is assigned the name
SapSegOrder and the second business object is assigned a name such as
SapSegOrder619647890, where 619647890 is the unique identifier that is appended
to the name by the Adapter Connection wizard.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

4042 WebSphere Message Broker Version 7.0.0.8

Configuration properties for the WebSphere Adapter for SAP Software:

The WebSphere Adapter for SAP Software has several categories of configuration
properties, which you set with the Adapter Connection wizard when you generate
or create objects and services.

You can change the connection properties for the Adapter Connection wizard, and
the inbound and outbound adapter properties. For more information, see the
following topics:
v “SAP connection properties for the Adapter Connection wizard” on page 4044
v “Inbound adapter properties for SAP” on page 4054
v “Outbound adapter properties for SAP” on page 4076
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Chapter 14. Reference 4043

“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

SAP connection properties for the Adapter Connection wizard:

Connection properties establish a connection between the Adapter Connection
wizard, a tool that is used to create business objects, and the SAP server. The
properties that you configure in the Adapter Connection wizard specify such
things as connection configuration, and tracing and logging options.

After you have established a connection between the Adapter Connection wizard
and the SAP server, the wizard can access the metadata that it needs from the SAP
server to create business objects.

Some of the properties that you set in the Adapter Connection wizard are used as
the initial values for resource adapter, managed connection factory, and activation
specification properties that you can specify at a later time in the wizard.

The connection properties and their purpose are described in the following table. A
complete description of each property is provided in the sections that follow the
table. If you set any of these connection properties using bidirectional script, you
must set values that identify the format of the bidirectional script that is entered
for that property.

Table 66. Connection properties for the Adapter for SAP Software

Property name Description

“Bidi direction ” on page 4045 The orientation component of the bidi format specification.

“Bidi ordering schema” on page 4046 The ordering schema of the bidi format specification.

“Bidi numeric shaping” on page 4046 The numeric shaping component of the bidi format specification.

“Bidi shaping” on page 4046 The shaping component of the bidi format specification.

“Bidi symmetric swapping” on page 4047 The symmetric swapping component of the bidi format specification.

“Client” on page 4047 The client number of the SAP system to which the adapter connects

“Codepage number (Codepage)” on page
4047

Indicates the numeric identifier of the code page

“Folder for RFC trace files
(RfcTracePath)” on page 4048

Sets the fully qualified local path to the folder into which the RFC trace
files are written

“Host name (ApplicationServerHost)” on
page 4048

Specifies the IP address or the name of the application server host that
the adapter logs on to

“Language code” on page 4049 Specifies the language in which the adapter logs on.

“Log file output location property” on
page 4049

The location of the log file for enterprise metadata discovery.

“Logging level property” on page 4049 The type error for which logging occurs during enterprise metadata
discovery.

“Password” on page 4050 The password of the user account of the adapter on the SAP application
server

“RFC trace level (RcfTraceLevel)” on page
4051

Specifies the global trace level

4044 WebSphere Message Broker Version 7.0.0.8

Table 66. Connection properties for the Adapter for SAP Software (continued)

Property name Description

“RFC trace on (RcfTraceOn)” on page
4051

Specifies whether to generate a text file detailing the RFC activity for
each event listener

“SAP interface name” on page 4052 The SAP interface to be used.

“System number (SystemNumber)” on
page 4052

The system number of the SAP application server

“User name (userName)” on page 4053 The user account for the adapter on the SAP server

The Adapter Connection wizard uses the bidirectional connection properties to
apply the correct bidirectional transformation on the data that is passed to the SAP
server.

The bidi properties specify the bidirectional format for data coming from an
external application into the adapter in the form of any business object that is
supported by this adapter.

Accept the default values for the bidirectional formatting properties on the Adapter
Connection wizard that provides SAP server bidirectional format specification.
When combined, these bidirectional properties define one single bidirectional
format.

The default values for bidirectional formatting properties listed in this section are
based on Windows bidirectional formatting. If the Enterprise Information System
supports a bidirectional format other than the Windows standard bidirectional
format, you must make appropriate changes to the bidi properties that are listed in
the following sections.

Bidi direction

This property specifies the orientation component of the bidi format specification.

Table 67. Bidi direction details

Required No

Possible values Possible values include:

v LTR

The orientation is left-to-right.

v RTL

The orientation is right-to-left.

v contextualLTR

The orientation is left-to-right because of the context. A character that is not categorized as
LTR, and hat is located between two strong characters with a different writing direction,
inherits the main context's writing direction (in a LTR document the character becomes LTR).

v contextualRTL

The orientation is right-to-left because of the context. A character that is not categorized as
RTL, and is located between two strong characters with a different writing direction, inherits
the main context's writing direction (in a RTL document the character becomes RTL).

Default LTR

Property type String

Usage Specifies the orientation component of the bidi format specification.

Globalized Yes

Chapter 14. Reference 4045

Table 67. Bidi direction details (continued)

Bidi supported No

Bidi ordering schema

This property specifies the ordering schema of the bidi format specification.

Table 68. Bidi ordering schema details

Required No

Possible values Implicit
Visual

Default Implicit

Property type String

Usage Specifies the ordering schema of the bidi format specification.

Globalized Yes

Bidi supported No

Bidi numeric shaping

This property specifies the numeric shaping component of the bidi format
specification.

Table 69. Bidi numeric details

Required No

Possible values Nominal
National
Contextual

Default Nominal

Property type String

Usage Specifies the numeric shaping component of the bidi format specification.

Globalized Yes

Bidi supported No

Bidi shaping

This property specifies the shaping component of the bidi format specification.

Table 70. Bidi shaping details

Required No

Possible values Nominal
Shaped
Initial
Middle
Final
Isolated

Default Nominal

Property type String

Usage Specifies the shaping component of the bidi format specification.

4046 WebSphere Message Broker Version 7.0.0.8

Table 70. Bidi shaping details (continued)

Globalized Yes

Bidi supported No

Bidi symmetric swapping

This property specifies the symmetric swapping component of the bidi format
specification.

Table 71. Bidi symmetric swapping details

Required No

Possible values True
False

Default True

Property type Boolean

Usage This property specifies the symmetric swapping component of the bidi format specification.

Globalized Yes

Bidi supported No

Client

This property is the client number of the SAP system to which the adapter
connects.

Table 72. Client details

Required Yes

Possible values You can enter a range of values from 000 to 999.

Default 100

Property type Integer

Usage When an application attempts to log on to the SAP server, the application must have a Client
number associated with it. The Client property value identifies the client (the adapter) that is
attempting to log onto the SAP server.

Globalized No

Bidi supported No

Codepage number (Codepage)

The numeric identifier of the code page.

Table 73. Codepage number details

Required No

Possible values You can enter a range of values from 0000 to 9999.

For a full listing of languages and associated code page numbers that are supported by SAP,
see SAP Note 7360.

Default The default value for this property is conditionally determined by the value set for the
Language code property.

Property type Integer

Chapter 14. Reference 4047

Table 73. Codepage number details (continued)

Usage The value that is assigned to the Codepage number defines the code page to be used and has a
one-to-one relationship with the value set for the Language code property. The Codepage
number establishes a connection to the appropriate language.

Each language code value has a code page number value associated with it. For example, the
language code for English is EN. If you select EN (English) as your language code, the code
page number is automatically set to the numeric value that is associated with EN (English). The
SAP code page number for EN (English) is 1100.

Example If Language code is set to JA (Japanese), Codepage number is set to 8000.

Globalized No

Bidi supported No

Folder for RFC trace files (RfcTracePath)

This property sets the fully qualified local path to the folder in which to write RFC
trace files.

Table 74. Folder for RFC trace files details

Required No

Default No default value

Property type String

Usage Identifies the fully qualified local path into which RFC trace files are written.

If RFC trace on is set to False (not selected), you are not permitted to set a value in the Folder
for RFC trace files property.

Example c:\temp\rfcTraceDir

Globalized Yes

Bidi supported No

Host name (ApplicationServerHost)

Specifies the IP address or the name of the application server host that the adapter
logs on to.

Table 75. Host name details

Required Yes (when load balancing is not used).

Default No default value

Property type String

Usage When the adapter is configured to run without load balancing, this property specifies the IP
address or the name of the application server that the adapter logs on to.

Example sapServer

Globalized No

Bidi supported No

4048 WebSphere Message Broker Version 7.0.0.8

Language code

SAP logon language code.

Table 76. Language code details

Required Yes

Possible values Each of the supported languages is preceded by a 2 character language code. The language
itself is displayed in parentheses.

The language codes in the list represent the SAP default set of 41 languages for non Unicode
systems plus Arabic.

For a full listing of supported language codes and languages, see the SAP documentation.

Default The default language code will be your current locale. If your current locale is not listed as one
of the supported language codes, then a default language code of EN (English) is used.

Property type String

Usage If you manually enter a language code, you do not need to enter the language in parentheses.

Example If the system locale is English, the value for this property is EN (English)

Globalized No

Bidi supported No

Log file output location property

This property specifies the location of the log file for external metadata discovery.

Table 77. Log file output location details

Required Yes

Default The .metadata directory of the workspace

Property type String

Usage Use this directory to hold the log file that lists the errors that occur during the discovery
process.

The type of discovery errors for which logging occurs is controlled by the Logging level
property

Example C:\IBM\WMBT700\workspace\.metadata\SAPMetadataDiscovery.log

Globalized Yes

Bidi supported No

Logging level property

This property specifies the type error for which logging occurs during enterprise
metadata discovery.

Table 78. Logging level details

Required No

Chapter 14. Reference 4049

Table 78. Logging level details (continued)

Possible values FATAL
SEVERE
WARNING
AUDIT
INFO
CONFIG
DETAIL

Default SEVERE

Property type String

Usage Use this property to tailor tracing capabilities. When you specify an error type, you indicate
that trace operations occur only for errors of the specified type.

Example If you accept the default value of SEVERE, trace information is provided on errors that fall into
the SEVERE category. Severe errors mean that an operation cannot continue, although the
adapter can still function. Severe errors also include error conditions that indicate an
impending fatal error, that is, reporting on situations that strongly suggest that resources are on
the verge of being depleted.

Other error descriptions are listed here:

v Fatal

Adapter cannot continue. Adapter cannot function

v Warning

Potential error or impending error, including conditions that indicate a progressive failure
(for example, the potential leaking of resources).

v Audit

Significant event affecting adapter state or resources

v Info

General information outlining overall operation progress.

v Config

Configuration change or status.

v Detail

General information detailing operation progress

Globalized Yes

Bidi supported No

Password

This property is the password of the user account of the adapter on the SAP
application server.

Table 79. Password details

Required Yes

Default No default value

Property type String

4050 WebSphere Message Broker Version 7.0.0.8

Table 79. Password details (continued)

Usage The restrictions on the password depend on the version of SAP Web Application Server.

v For SAP Web Application Server version 6.40 or earlier, the password:

– Must be uppercase

– Must be 8 characters in length

v For versions of SAP Web Application Server later than 6.40, the password:

– Is not case-sensitive

– Can be up to 40 characters in length

Globalized No

Bidi supported Yes

RFC trace level (RcfTraceLevel)

This property specifies the global trace level.

Table 80. RFC trace level details

Required No

Possible values 1 - This is the default RFC trace level. When specified, SAP JCo Java API logging occurs.
3 - When specified, SAP JCo JNI API logging occurs.
5 - When specified, error diagnostic logging occurs.

Default 1

Property type Integer

Usage If RFC trace on is set to False (not selected), you cannot set a value in the RFC trace level
property.

Globalized No

Bidi supported No

RFC trace on (RcfTraceOn)

This property specifies whether to generate a text file detailing the RFC activity for
each event listener.

Table 81. RFC trace on details

Required No

Possible values True
False

Default False

Property type Boolean

Usage A value of True activates tracing, which generates a text file.

This file is created in the directory in which the adapter process was started. The file has a
prefix of rfx and a file type of trc (for example, rfc03912_02220.trc).

Use these text files in a development environment only, because the files can grow rapidly.

If RFC trace on is set to False (not selected), you cannot set values in the Folder for RFC trace
files or RFC trace level properties.

Chapter 14. Reference 4051

Table 81. RFC trace on details (continued)

Example Examples of the information in the file are RfcCall FUNCTION BAPI_CUSTOMER_GETLIST,
followed by the information for the parameters in the interface, or RFC Info rfctable, followed
by the data from one of the interface tables.

The trace file is created in the directory where the adapter process has been started. The trace
file has a .trc file extension and the file name will start with the letters rfc followed by a
unique identifier. For example, rfc03912_02220.trc.

Globalized No

Bidi supported No

SAP interface name

This property indicates whether you are creating business objects for the ALE,
BAPI, Advanced event processing, or Query interface for SAP Software.

Table 82. SAP interface name details

Required Yes

Possible values For outbound:

Advanced event processing (AEP)

ALE

ALE pass-through IDoc

BAPI

BAPI work unit

BAPI result set

Query interface for SAP Software (QSS)

For inbound:

Advanced event processing (AEP)

ALE

ALE pass-through IDoc

BAPI

Default For outbound: BAPI

For inbound:ALE

Property type String

Usage Specifies the interface used by the adapter.

The adapter interacts with the interface to support outbound or inbound processing by
enabling the exchange of data in the form of business objects.

Globalized No

Bidi supported No

System number (SystemNumber)

This property is the system number of the SAP application server.

Table 83. System number details

Required Yes

Possible values You can enter a range of values from 00 to 99.

4052 WebSphere Message Broker Version 7.0.0.8

Table 83. System number details (continued)

Default 00

Property type Integer

Usage The system number further identifies the Gateway service.

Globalized No

Bidi supported No

User name (userName)

This property is the user account for the adapter on the SAP server.

Table 84. User name details

Required Yes

Default No default value

Property type String

Usage Maximum length of 12 characters. The user name is not case sensitive.

It is recommended that you set up a CPIC user account in the SAP application and that you
give this account the necessary privileges to manipulate the data required by the business
objects supported by the adapter. For example, if the adapter must perform certain SAP
business transactions, the adapter's account in the SAP application must have the permissions
set to allow it to perform these transactions.

Example SapUser

Globalized Yes

Bidi supported Yes

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.

Chapter 14. Reference 4053

“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Inbound adapter properties for SAP:

Inbound adapter properties hold the inbound event processing configuration
information for a message endpoint. These properties also control the general
operation of the adapter. Use the Adapter Connection wizard to set these
properties.

These properties are used during endpoint activation to notify the adapter of
eligible event listeners. During inbound processing, the adapter uses these event
listeners to receive events before it forwards them to the endpoint.

The following table lists the properties for inbound processing that you set by
using the Adapter Connection wizard. A more detailed description of each
property is provided in the sections that follow the table.

Table 85. Activation specification properties for ALE inbound processing

Property name Description

Adapter ID to use for logging and tracing (AdapterID) A specific deployment, or instance, of the adapter

ALE packet audit (alePacketUpdate) Specifies if the adapter should send ALEAUD per IDoc
or per packet (TID)

ALE update status (aleUpdateStatus) Specifies whether an audit trail is required for all
message types

Assured once-only delivery (AssuredOnceDelivery) Specifies whether to provide assured once-only delivery
for inbound events

Auto create event table (EP_CreateTable) Specifies whether the adapter should create the event
recovery table automatically if it does not already exist

4054 WebSphere Message Broker Version 7.0.0.8

Table 85. Activation specification properties for ALE inbound processing (continued)

Property name Description

Client (Client) The client number of the SAP system to which the
adapter connects

Codepage number (Codepage) Indicates the numeric identifier of the code page

Database schema name (EP_SchemaName) The schema that is used for automatically creating the
event recovery table

Delivery type (DeliveryType) Determines the order in which events are delivered by
the adapter to the export component.

Enable secure network connection (SncMode) Indicates whether secure network connection mode is
used

Event recovery data source (JNDI) name
(EP_SchemaName)

The JNDI name of the data source that is configured for
event recovery

Event recovery table name (EP_TableName) The name of the event recovery table

Event types to process (EventTypeFilter) A delimited list of event types that the WebSphere
Adapter for SAP Software should deliver.

Failure code (aleFailureCode) The status code for dispatch failure

Failure text (aleFailureText) The descriptive text for dispatch failure

Folder for RFC trace files (RfcTracePath) Sets the fully qualified local path to the folder into which
the RFC trace files are written

Gateway host (GatewayHost) The host name of the SAP gateway

Gateway service (GatewayService) The identifier of the gateway on the gateway host that
carries out the RFC services

Host name (ApplicationServerHost) Specifies the IP address or the name of the application
server host that the adapter logs on to

Ignore IDoc packet errors (IgnoreIDocPacketErrors) Specifies what the adapter does when it encounters an
error while processing the IDoc packet

Language code (Language code) Specifies the Language code in which the adapter logs
on to SAP

Logon group name (Group) An identifier of the name of the group of application
server instances that have been defined in transaction
SMLG and linked together for logon load balancing

Maximum number of events collected during each poll
(PollQuantity)

The number of events that the adapter delivers to the
export during each poll period.

Message server host (MessageServerHost) Specifies the name of the host on which the message
server is running

Number of listeners (NumberOfListeners) Specifies the number of event listeners that are to be
started

Partner character set (PartnerCharset) Specifies PartnerCharset encoding

Password (Password) The password of the user account of the adapter on the
SAP application server

Password used to connect to event data source
(EP_Password)

The user password for connecting to the database

RFC program ID (RfcProgramID) The remote function call identifier under which the
adapter registers in the SAP gateway

RFC trace level (RcfTraceLevel) Specifies the global trace level

RFC trace on (RcfTraceOn) Specifies whether to generate a text file detailing the RFC
activity for each event listener

Chapter 14. Reference 4055

Table 85. Activation specification properties for ALE inbound processing (continued)

Property name Description

SAP system ID (SAPSystemID) Specifies the system ID of the SAP system for which
logon load balancing is allowed

Secure network connection library path (SncLib) Specifies the path to the library that provides the secure
network connection service

Secure network connection name (SncMyname) Specifies the name of the secure network connection

Secure network connection partner (SncPartnername) Specifies the name of the secure network connection
partner

Secure network connection security level (SncQop) Specifies the level of security for the secure network
connection

Selective update (aleSelectiveUpdate) The IDoc Type and MessageType combinations that are
to be updated when the adapter is configured to update
a standard SAP status code

Status message code (aleStatusMsgCode) If required, the message code to use when the adapter
posts the ALEAUD Message IDoc (ALEAUD01)

Stop polling on error (StopPollingOnError) Specifies whether the adapter stops polling for events
when it encounters an error during polling.

Success code (aleSuccessCode) The success status code for Application Document Posted

Success text (aleSuccessText) The descriptive text for successful Application Document
Posted

System number (SystemNumber) The system number of the SAP application server

Interval between polling periods (PollPeriod) The length of time that the adapter waits between
polling periods.

Retry interval if connection fails (RetryInterval) The length of time that the adapter waits between
attempts to establish a new connection after an error
during inbound operations.

User name (userName) The user account for the adapter on the SAP server

User name used to connect to event data source
(EP_UserName)

The user name for connecting to the database

X509 certificate (X509cert) Specifies the X509 certificate to be used as the logon
ticket

Adapter ID to use for logging and tracing (AdapterID)

This property identifies a specific deployment, or instance, of the adapter.

Table 86. Adapter ID to use for logging and tracing details

Required Yes

Default 001

Property type String

4056 WebSphere Message Broker Version 7.0.0.8

Table 86. Adapter ID to use for logging and tracing details (continued)

Usage This property identifies the adapter instance in the log and trace files, and also helps identify
the adapter instance while monitoring adapters. The adapter ID is used with an
adapter-specific identifier, SAPRA, to form the component name used by the Log and Trace
Analyzer tool. For example, if the adapter ID property is set to 001, the component ID is
SAPRA001.

If you run multiple instances of the same adapter, ensure that the first eight characters of the
adapter ID property are unique for each instance so that you can correlate the log and trace
information to a particular adapter instance. By making the first seven characters of an adapter
ID property unique, the component ID for multiple instances of that adapter is also unique,
allowing you to correlate the log and trace information to a particular instance of an adapter.

For example, when you set the adapter ID property of two instances of WebSphere Adapter for
SAP Software to 001 and 002. The component IDs for those instances, SAPRA001 and
SAPRA002, are short enough to remain unique, enabling you to distinguish them as separate
adapter instances. However, instances with longer adapter ID properties cannot be
distinguished from each other. If you set the adapter ID properties of two instances to
Instance01 and Instance02, you will not be able to examine the log and trace information for
each adapter instance because the component ID for both instances is truncated to
SAPRAInstance.

For inbound processing, this property is retrieved from the resource adapter properties. For
outbound processing, it is retrieved from the managed connection factory properties.

Globalized Yes

Bidi supported No

ALE packet audit

ALE update per packet indicates whether the adapter should send ALEAUD audit
IDocs per packet or per IDoc.

Table 87. ALE packet audit details

Required No

Default False (send ALEAUD per IDoc).

Property type Boolean

Usage You can enable and disable this property only if the ALE update status property is set to True.

When you set this property to true, the adapter sends one ALEAUD per IDoc packet which
contains confirmations for all IDocs in the packet.

When you set this property to false, the adapter sends one ALEAUD for each IDoc received at
the adapter.

Globalized No

Bidi supported No

ALE update status (aleUpdateStatus)

This property specifies whether an audit trail is required for all message types.

Table 88. ALE update status details

Required Yes

Possible values True
False

Chapter 14. Reference 4057

Table 88. ALE update status details (continued)

Default False

Property type Boolean

Usage Set this property to True if you want the adapter to update a standard SAP status code after
the ALE module has retrieved an IDoc object for event processing.

If you set this value to True, you must also set following properties:
v ALE failure code
v ALE Success code
v ALE failure text
v ALE success text.

Globalized No

Bidi supported No

Assured once-only delivery (AssuredOnceDelivery)

This property specifies whether to provide assured once-only delivery for inbound
events.

Table 89. Assured once-only delivery details

Required Yes

Default True

Property type Boolean

Usage When this property is set to True, the adapter provides assured once-only event delivery, so
that each event is delivered only once. A value of False does not provide assured once-only
event delivery, but provides better performance.

When this property is set to True, the adapter attempts to store transaction (XID) information in
the event store. If it is set to False, the adapter does not attempt to store the information.

This property is used only if the export component is transactional. If the export component is
not transactional, no transaction can be used, regardless of the value of this property.

Globalized No

Bidi supported No

Note: The Assured once-only delivery property applies only to asynchronous
transactional RFC processing.

Auto create event table (EP_CreateTable)

This property determines if the event table is created automatically.

Table 90. Auto create event table details

Required Yes if Assured once-only event delivery is set to True; otherwise, no.

Possible values True
False

Default True

Property type Boolean

4058 WebSphere Message Broker Version 7.0.0.8

Table 90. Auto create event table details (continued)

Usage This property indicates whether the adapter should create the event recovery table
automatically if it does not already exist.

If you specify a value of True to automatically create the table, you must specify information
about the event table (such as the event recovery table name).

The value that is provided in Event recovery table name property is used to create the table.

Globalized No

Bidi supported No

Client

This property is the client number of the SAP system to which the adapter
connects.

Table 91. Client details

Required Yes

Possible values You can enter a range of values from 000 to 999.

Default 100

Property type Integer

Usage When an application attempts to log on to the SAP server, the application must have a Client
number associated with it. The Client property value identifies the client (the adapter) that is
attempting to log onto the SAP server.

Globalized No

Bidi supported No

Codepage number (Codepage)

The numeric identifier of the code page.

Table 92. Codepage number details

Required No

Possible values You can enter a range of values from 0000 to 9999.

For a full listing of languages and associated code page numbers that are supported by SAP,
see SAP Note 7360.

Default The default value for this property is conditionally determined by the value set for the
Language code property.

Property type Integer

Usage The value that is assigned to the Codepage number defines the code page to be used and has a
one-to-one relationship with the value set for the Language code property. The Codepage
number establishes a connection to the appropriate language.

Each language code value has a code page number value associated with it. For example, the
language code for English is EN. If you select EN (English) as your language code, the code
page number is automatically set to the numeric value that is associated with EN (English). The
SAP code page number for EN (English) is 1100.

Example If Language code is set to JA (Japanese), Codepage number is set to 8000.

Globalized No

Bidi supported No

Chapter 14. Reference 4059

Database schema name (EP_SchemaName)

This property is the schema that is used to create the event recovery table
automatically.

Table 93. Database schema name details

Required No

Default No default value.

Property type String

Usage Specifies the schema name for the database used by the adapter's event persistence feature.

Example ALE_SCHEMA

Globalized Yes

Bidi supported No

Delivery type (DeliveryType)

This property specifies the order in which events are delivered by the adapter to
the export component.

Table 94. Delivery type details

Required No

Possible values ORDERED
UNORDERED

Default ORDERED

Property type String

Usage The following values are supported:

v ORDERED: The adapter delivers events to the export component one at a time.

v UNORDERED: The adapter delivers all events to the export component at once.

Globalized No

Bidi supported No

Enable Secure Network Connection

This property indicates whether secure network connection mode is enabled.

Table 95. Enable Secure Network Connection details

Required No

Possible values 0 (off)
1 (on)

Default 0

Property type String

4060 WebSphere Message Broker Version 7.0.0.8

Table 95. Enable Secure Network Connection details (continued)

Usage Set the value to 1 (on) if you want to use secure network connection.

If you set this value to 1, you must also set following properties:

v Secure Network Connection library path

v Secure Network Connection name

v Secure Network Connection partner

v Secure Network Connection security level

Globalized No

Bidi supported No

Event recovery data source (JNDI) name (EP_DataSource_JNDIName)

This property is the JNDI name of the data source that is configured for event
recovery.

Table 96. Event recovery data source (JNDI) name details

Required Yes

Default No default value.

Property type String

Usage Used in event recovery processing. The data source must be created in WebSphere Message
Broker. The adapter uses the data source for persisting the event state.

Example jdbc/DB2

Globalized No

Bidi supported No

Event recovery table name (EP_TableName)

This property is the name of the event recovery table.

Table 97. Event recovery table name details

Required Yes

Default No default value.

Property type String

Usage Used in event recovery processing. Consult database documentation for information on naming
conventions.

Configure a separate event recovery table for each endpoint. The same data source can be used
to hold all of the event recovery tables.

Example EVENT_TABLE

Globalized No

Bidi supported No

Event type filter

This property provides a delimited list of business object types for which the
adapter should deliver events.

Chapter 14. Reference 4061

Table 98. Event type filter details

Required No

Possible values A comma-delimited (,) list of business object types.

Default null

Property type String

Usage If this property is set, the adapter uses the delimited list as a filter, delivering events for only
those business object types that are contained in the list. If the list is empty (null), the adapter
does not apply filtering, and delivers events for all business object types.

Globalized No

Bidi supported No

Failure code (aleFailureCode)

This property determines how the adapter updates the SAP failure status code
after the ALE module has retrieved an IDoc object for event processing.

Table 99. ALE failure code details

Required Yes if AleUpdateStatus is set to True; otherwise, no.

Possible values 68
58
51

Default 51

Property type Integer

Usage Set a value for this property only if you set the value for the ALE update status property to
True.

Specify a value of 68 for this property to cause the adapter to update the SAP failure status
code after the ALE module has retrieved an IDoc object for event processing. SAP converts this
value to 40 (Application Document not created in receiving system).

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status
code after the adapter retrieves an IDoc object for event processing. An IDoc that is not sent
successfully to the endpoint is considered to be a failure. Use the ALE failure code property to
specify the code that is used to signify this failure.

Globalized No

Bidi supported No

Failure text (aleFailureText)

The property specifies the text that appears when an IDoc is not sent successfully
to the endpoint.

Table 100. ALE failure text details

Required Yes if AleUpdateStatus is set to True; otherwise, no.

Default No default value.

Property type String

4062 WebSphere Message Broker Version 7.0.0.8

Table 100. ALE failure text details (continued)

Usage Use this property only if you set the ALE update status property to True.

The length of the text string cannot exceed 70 characters.

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status
code after the adapter retrieves an IDoc object for event processing. An IDoc that is not sent
successfully to the endpoint is considered to be a failure. Use the ALE failure text property to
specify the descriptive text that is used to signify this failure.

Example ALE Dispatch Failed

Globalized Yes

Bidi supported No

Folder for RFC trace files (RfcTracePath)

This property sets the fully qualified local path to the folder in which to write RFC
trace files.

Table 101. Folder for RFC trace files details

Required No

Default No default value

Property type String

Usage Identifies the fully qualified local path into which RFC trace files are written.

If RFC trace on is set to False (not selected), you are not permitted to set a value in the Folder
for RFC trace files property.

Example c:\temp\rfcTraceDir

Globalized Yes

Bidi supported No

Gateway host (GatewayHost)

This property is the Gateway host name. Enter either the IP address or the name of
the Gateway host. Consult your SAP administrator for information on the Gateway
host name.

Table 102. Gateway host details

Required Yes

Default No default value

Property type String

Usage This property is the host name of the SAP gateway. The gateway enables communication
between work processes on the SAP system and external programs.

The host identified is used as the gateway for the resource adapter.

Maximum length of 20 characters. If the computer name is longer than 20 characters, define a
symbolic name in the THOSTS table.

Globalized No

Bidi supported No

Chapter 14. Reference 4063

Gateway service (GatewayService)

This property is the identifier of the gateway on the gateway host that carries out
the RFC services.

Table 103. Gateway service details

Required Yes

Default sapgw00

Property type String

Usage These services enable communication between work processes on the SAP server and external
programs. The service typically has the format of sapgw00, where 00 is the SAP system number.

Maximum of 20 characters.

Globalized No

Bidi supported No

Host name (ApplicationServerHost)

Specifies the IP address or the name of the application server host that the adapter
logs on to.

Table 104. Host name details

Required Yes (when load balancing is not used).

Default No default value

Property type String

Usage When the adapter is configured to run without load balancing, this property specifies the IP
address or the name of the application server that the adapter logs on to.

Example sapServer

Globalized No

Bidi supported No

Ignore IDoc packet errors (IgnoreIDocPacketErrors)

This property determines whether IDoc packet errors are to be ignored.

Table 105. Ignore IDOC packet errors details

Required No

Possible values True
False

Default False

Property type Boolean

4064 WebSphere Message Broker Version 7.0.0.8

Table 105. Ignore IDOC packet errors details (continued)

Usage If the adapter encounters an error while processing the IDoc packet, it can behave in two
different ways.

v When this property is set to False, the adapter stops processing further IDocs in that packet
and reports an error to the SAP system.

v When this property is set to True, the adapter logs an error and continues to process the rest
of the IDocs in that packet.

The status of the transaction is marked as INPROGRESS. The adapter log displays the IDoc
numbers that failed and you need to resubmit those individual IDocs separately. You need to
manually maintain these records in the event recovery table.

This property is not used for single IDocs and for non-split IDoc packets.

Globalized No

Bidi supported No

Language code

This property specifies the Language code in which the adapter logs on.

Table 106. Language code details

Required Yes

Possible values For a full listing of languages and associated code page numbers that are supported by SAP,
see SAP Note 7360.

Default The default value for the Language code property is based on the system locale.

Property type String

Usage Each of the supported languages is preceded by a two-character language code. The language
itself is displayed in parentheses.

If you enter a language code manually, you do not need to enter the language in parentheses.

The language codes that are listed represent the SAP default set of 41 languages for
non-Unicode systems plus Arabic.

The value that you select determines the value of the Codepage number property.

Example If the system locale is English, the value for this property is EN (English).

Globalized No

Bidi supported No

Logon group name

This property is an identifier for the name of the group of application server
instances that have been defined in transaction SMLG and linked together for
logon load balancing.

Table 107. Logon group details

Required Yes (if load balancing is used)

Possible values Consult SAP documentation for information on creating Logon groups and on calling
transaction SMLG.

Default No default value

Property type String

Chapter 14. Reference 4065

Table 107. Logon group details (continued)

Usage When the adapter is configured for load balancing, this property represents the name of the
group of application server instances that have been defined in transaction SMLG and linked
together for logon load balancing.

Logon load balancing allows for the dynamic distribution of logon connections to application
server instances.

Maximum of 20 characters. On most SAP systems, the SPACE logon group is reserved by SAP.

Globalized No

Bidi supported No

Maximum number of events collected during each poll

This property specifies the number of events that the adapter delivers to the export
component during each poll period.

Table 108. Maximum number of events collected during each poll details

Required Yes

Default 10

Property type Integer

Usage This value must be greater than 0

Globalized No

Bidi supported No

Maximum number of retries in case of system connection failure

This property specifies the number of times the adapter tries to restart the event
listeners.

Table 109. Maximum number of retries in case of system failure details

Required Yes

Default 0

Property type Integer

Usage When the adapter encounters an error related to the inbound connection (if the SAP application
is down for example), this property specifies the number of times the adapter tries to restart
the event listeners. A value of 0 indicates an infinite number of retries.
Note: Configure the Time between retries in case of system connection failure (milliseconds)
appropriately when retrying infinitely.

For each retry attempt, the adapter waits based on the time interval specified in the Time
between retries in case of system connection failure (milliseconds).
Note: If all the retry attempts fail, the adapter logs relevant messages and CEI events and stops
attempting to recover the event listener. If you reach this point, you might have to restart the
application manually.

Globalized No

Bidi supported No

4066 WebSphere Message Broker Version 7.0.0.8

Message server host (MessageServerHost)

This property specifies the name of the host on which the message server is
running.

Table 110. Message server host details

Required Yes (if load balancing is used)

Default No default value

Property type String

Usage This property specifies the name of the host that will inform all the servers (instances)
belonging to this SAP system of the existence of the other servers to be used for load balancing.

The message server host contains the information about load balancing for RFC clients so that
an RFC client can be directed to an appropriate application server.

Example SAPERP05

Globalized No

Bidi supported No

Number of listeners

This property specifies the number of listeners that are started by an event.

Table 111. Number of listeners details

Required No

Default 1

Property type Integer

Usage For event sequencing, this property should be set to 1.

To improve adapter performance, you can increase the number of listeners.

The adapter will not start if the number of listeners is zero (0).

Globalized No

Bidi supported No

Partner character set (PartnerCharset)

This property specifies the partner character set encoding.

Table 112. Partner character set details

Required No

Default UTF-8

Property type String

Usage When an encoding is specified, it is used; otherwise, the default encoding is used.

Globalized No

Bidi supported No

Chapter 14. Reference 4067

Password

This property is the password of the user account of the adapter on the SAP
application server.

Table 113. Password details

Required Yes

Default No default value

Property type String

Usage The restrictions on the password depend on the version of SAP Web Application Server.

v For SAP Web Application Server version 6.40 or earlier, the password:

– Must be uppercase

– Must be 8 characters in length

v For versions of SAP Web Application Server later than 6.40, the password:

– Is not case-sensitive

– Can be up to 40 characters in length

Globalized No

Bidi supported Yes

Password used to connect to event data source (EP_Password)

This property is the user password for connecting to the database.

Table 114. Password to connect to event data source details

Required Yes

Default No default value.

Property type String

Usage This property specifies the password used by event-persistence processing to obtain the
database connection from the data source.

Globalized Yes

Bidi supported No

RFC program ID

This property is the program identifier under which the adapter registers in the
SAP gateway.

Table 115. RFC program ID details

Required Yes

Possible values Use the SAP transaction SM59 (Display and Maintain RFC Destinations) to see a list of
available RFC program IDs.

Default No default value.

Property type String

Usage The adapter registers with the gateway so that listener threads can process events from
RFC-enabled functions. This value must match the program ID registered in the SAP
application.

The maximum length is 64 characters.

Globalized No

4068 WebSphere Message Broker Version 7.0.0.8

Table 115. RFC program ID details (continued)

Bidi supported No

RFC trace level (RcfTraceLevel)

This property specifies the global trace level.

Table 116. RFC trace level details

Required No

Possible values 1 - This is the default RFC trace level. When specified, SAP JCo Java API logging occurs.
3 - When specified, SAP JCo JNI API logging occurs.
5 - When specified, error diagnostic logging occurs.

Default 1

Property type Integer

Usage If RFC trace on is set to False (not selected), you cannot set a value in the RFC trace level
property.

Globalized No

Bidi supported No

RFC trace on (RcfTraceOn)

This property specifies whether to generate a text file detailing the RFC activity for
each event listener.

Table 117. RFC trace on details

Required No

Possible values True
False

Default False

Property type Boolean

Usage A value of True activates tracing, which generates a text file.

This file is created in the directory in which the adapter process was started. The file has a
prefix of rfx and a file type of trc (for example, rfc03912_02220.trc).

Use these text files in a development environment only, because the files can grow rapidly.

If RFC trace on is set to False (not selected), you cannot set values in the Folder for RFC trace
files or RFC trace level properties.

Example Examples of the information in the file are RfcCall FUNCTION BAPI_CUSTOMER_GETLIST,
followed by the information for the parameters in the interface, or RFC Info rfctable, followed
by the data from one of the interface tables.

The trace file is created in the directory where the adapter process has been started. The trace
file has a .trc file extension and the file name will start with the letters rfc followed by a
unique identifier. For example, rfc03912_02220.trc.

Globalized No

Bidi supported No

Chapter 14. Reference 4069

SAP system ID (SAPSystemID)

This property specifies the system ID of the SAP system for which logon load
balancing is allowed.

Table 118. SAP system ID details

Required Yes (when load balancing is used)

Default No default value

Property type String

Usage Value must be three characters

Example DYL

Globalized No

Bidi supported No

Secure Network Connection library path (SncLib)

This property specifies the path to the library that provides the secure network
connection service.

Table 119. Secure Network Connection library path details

Required Yes, if SncMode is set to 1; no otherwise.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
specify the path to the library that provides the service.

Example /WINDOWS/system32/gssapi32.dll

Globalized No

Bidi supported No

Secure Network Connection name (SncMyname)

This property specifies the name of the secure network connection.

Table 120. Secure Network Connection name details

Required Yes, if SncMode is set to 1; no otherwise.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
specify a name for the connection.

Example DOMAINNAME/USERNAME

Globalized No

Bidi supported No

4070 WebSphere Message Broker Version 7.0.0.8

Secure Network Connection partner (SncPartnername)

This property specifies the name of the secure network connection partner.

Table 121. Secure Network Connection partner details

Required Yes, if SncMode is set to 1; no otherwise.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
specify a name for the connection partner.

Example CN=sap00.saperpdev, OU=Adapter, O=IBM, C=US

Globalized No

Bidi supported No

Secure Network Connection security level (SncQop)

This property specifies the level of security for the secure network connection.

Table 122. Secure Network Connection security level details

Required Yes, if SncMode is set to 1; no otherwise.

Possible values 1 (Authentication only)

2 (Integrity protection)

3 (Privacy protection)

8 (Use the value from snc/data_protection/use on the application server)

9 (Use the value from snc/data_protection/max on the application server)

Default 3 (Privacy protection)

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
specify a value to indicate the level of security for the connection.

Globalized No

Bidi supported No

Selective update (aleSelectiveUpdate)

This property specifies which IDoc Type and MessageType combinations are to be
updated.

Table 123. ALE selective update details

Required No

Default No default value

Property type String

Chapter 14. Reference 4071

Table 123. ALE selective update details (continued)

Usage You can set values for this property only if the ALE update status property is set to True.

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status
code after the adapter retrieves an IDoc object for event processing. Use the ALE selective
update property to specify which IDoc Type and MessageType combinations are to be updated.

The syntax for this property is: IDocType: MessageType [;IDocType: MessageType [;...]]
where a slash (/) delimiter separates each IDoc Type and MessageType, and a semicolon (;)
delimiter separates entries in a set.

Example The following example illustrates two sets. In the example, MATMAS03 and DEBMAS03 are
the IDocs, and MATMAS and DEBMAS are the message types:

MATMAS03/MATMAS;DEBMAS03/DEBMAS

Globalized No

Bidi supported No

Status message code (aleStatusMsgCode)

This property specifies the message code to use when the adapter posts the
ALEAUD01 IDoc with message type ALEAUD.

Table 124. ALE status message code details

Required No

Possible values For a list of available codes, refer to the SAP table TEDS1.

Default No default value.

Property type String

Usage You can set a value for this property only if the ALE update status property has been set to
True.

You must configure this message code in the receiving partner profile on SAP.

Globalized No

Bidi supported No

Stop the adapter when an error is encountered while polling
(StopPollingOnError)

This property specifies whether the adapter stops polling for events when it
encounters an error during polling.

Table 125. Stop the adapter when an error is encountered while polling details

Required No

Possible values True
False

Default False

Property type Boolean

Usage If this property is set to True, the adapter stops polling when it encounters an error.

If this property is set to False, the adapter logs an exception when it encounters an error
during polling and continues polling.

Globalized No

4072 WebSphere Message Broker Version 7.0.0.8

Table 125. Stop the adapter when an error is encountered while polling details (continued)

Bidi supported No

Success code (aleSuccessCode)

This property specifies the ALE success code for the successful posting of an IDoc.

Table 126. ALE success code details

Required Yes if AleUpdateStatus is set to True; otherwise, no.

Possible values 52
53

Default No default value

Property type Integer

Usage Use this property only if you set the ALE update status property to True.

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status
code after the adapter retrieves an IDoc object for event processing. Use the ALE success code
property to specify the code for IDoc posted as 53.

After the IDoc is sent to the endpoint, the IDoc status remains as 03 (IDoc posted to port) in
SAP. After posting the IDoc, the adapter posts the audit IDoc with the current IDoc number
and status as 53. SAP converts the current IDoc status to 41 (Application Document Created in
Receiving System).

Globalized No

Bidi supported No

Success text (aleSuccessText)

This property specifies the text that appears when an application document is
posted successfully.

Table 127. ALE success text details

Required Yes if AleUpdateStatus is set to True; otherwise, no.

Default No default value.

Property type String

Usage Use this property only if you set the ALE status update property to True.

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status
code after the adapter retrieves an IDoc object for event processing. Use the ALE success text
property to specify the descriptive text that is used to signify Application Document Posted.

Example ALE Dispatch OK

Globalized Yes

Bidi supported No

System number (SystemNumber)

This property is the system number of the SAP application server.

Table 128. System number details

Required Yes

Chapter 14. Reference 4073

Table 128. System number details (continued)

Possible values You can enter a range of values from 00 to 99.

Default 00

Property type Integer

Usage The system number further identifies the Gateway service.

Globalized No

Bidi supported No

Time between polling for events (milliseconds)

This property specifies the length of time that the adapter waits between polling
periods.

Table 129. Time between polling for events (milliseconds)

Required Yes

Possible values Integers greater than or equal to 0.

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage The time interval between polling events is established at a fixed rate, which means that if
running the poll cycle is delayed for any reason (for example, if a prior poll cycle takes longer
than expected to complete), the next poll cycle occurs immediately to make up for the time that
is lost because of the delay.

Globalized No

Bidi supported No

Time between retries in case of system connection failure (milliseconds)
(ConnectionRetryInterval)

This property specifies the time interval between attempts to restart the event
listeners.

Table 130. Time between retries in case of system connection failure details

Required No

Possible values Positive integers

Default 60000

Unit of measure Milliseconds

Property type Integer

Usage When the adapter encounters an error related to the inbound connection, this property specifies
the time interval the adapter waits in between attempts to restart the event listeners.

Globalized No

Bidi supported No

4074 WebSphere Message Broker Version 7.0.0.8

User name (userName)

This property is the user account for the adapter on the SAP server.

Table 131. User name details

Required Yes

Default No default value

Property type String

Usage Maximum length of 12 characters. The user name is not case sensitive.

It is recommended that you set up a CPIC user account in the SAP application and that you
give this account the necessary privileges to manipulate the data required by the business
objects supported by the adapter. For example, if the adapter must perform certain SAP
business transactions, the adapter's account in the SAP application must have the permissions
set to allow it to perform these transactions.

Example SapUser

Globalized Yes

Bidi supported Yes

User name used to connect to event data source (EP_UserName)

This property is the user name for connecting to the database.

Table 132. User name to connect to event data source details

Required Yes

Default No default value.

Property type String

Usage User name used by event persistence for getting the database connection from the data source.
Consult database documentation for information on naming conventions.

Globalized Yes

Bidi supported No

X509 certificate (X509cert)

This property specifies the X509 certificate to be used as the logon ticket.

Table 133. X509 certificate details

Required No

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
you can provide a value for the X509 certificate.

Globalized No

Bidi supported No

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.

Chapter 14. Reference 4075

“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

Outbound adapter properties for SAP:

Outbound adapter properties define how the adapter creates an outbound
connection instance with the SAP server, and how operations are run on the server.
Use the Adapter Connection wizard to set these properties.

The following table describes the outbound adapter properties. A more detailed
description of each property is provided in the sections that follow the table.

4076 WebSphere Message Broker Version 7.0.0.8

Table 134. Interaction specification properties for Adapter for SAP Software

Property name Description

ABAP debug (ABAPDebug) The ABAP debugger property

Client (Client) The client number of the SAP system to which the
adapter connects

Codepage number (Codepage) Indicates the numeric identifier of the code page

Custom retrieve function name (customFunctionName) The name of a custom function to be used by the Query
interface to SAP Software to retrieve data from an SAP
table.

Enable secure network connection (SncMode) Indicates whether secure network connection mode is
used

Folder for RFC trace files (RfcTracePath) Sets the fully qualified local path to the folder into which
the RFC trace files are written

Function name (functionName) The function name for a specific SAP interface.

Gateway host (GatewayHost) The host name of the SAP gateway

Gateway service (GatewayService) The identifier of the gateway on the gateway host that
carries out the RFC services

Host name (ApplicationServerHost) Specifies the IP address or the name of the application
server host that the adapter logs on to

Ignore errors in BAPI return (IgnoreBAPIReturn) Specifies if errors in BAPI return are ignored.

Language code (Language code) Specifies the Language code in which the adapter logs
on to SAP

Maximum number of hits for the discovery
(ResultSetLimit)

The maximum number of result sets to return during a
RetrieveAll operation.

Message server host (MessageServerHost) Specifies the name of the host on which the message
server is running

Partner character set (PartnerCharset) Specifies PartnerCharset encoding

Password (Password) The password of the user account of the adapter on the
SAP application server

RFC trace level (RcfTraceLevel) Specifies the global trace level

RFC trace on (RcfTraceOn) Specifies whether to generate a text file detailing the RFC
activity for each event listener

SAP system ID (SAPSystemID) Specifies the system ID of the SAP system for which
logon load balancing is allowed

Secure network connection library path (SncLib) Specifies the path to the library that provides the secure
network connection service

Secure network connection name (SncMyname) Specifies the name of the secure network connection

Secure network connection partner (SncPartnername) Specifies the name of the secure network connection
partner

Secure network connection security level (SncQop) Specifies the level of security for the secure network
connection

Select the queue name (QRFCQueueName) The name of a customer-defined queue on the SAP
server.

System number (SystemNumber) The system number of the SAP application server

Use wait parameter before calling BAPI commit Specifies whether the WAIT parameter is set on a
BAPI_TRANSACTION_COMMIT.

User name (userName) The user account for the adapter on the SAP server

Chapter 14. Reference 4077

Table 134. Interaction specification properties for Adapter for SAP Software (continued)

Property name Description

X509 certificate (X509cert) Specifies the X509 certificate to be used as the logon
ticket

ABAP debug

This property specifies whether the adapter invokes the ABAP Debugger for the
appropriate function module when the adapter starts to process a business object.

Table 135. ABAP debug details

Required No

Possible values True
False

Default False

Property type Boolean

Usage When the property is set to True, the adapter opens the SAP GUI in debug mode.

You must have appropriate authorization to use the debugger. Create a dialog user ID because
a CPI-C user ID cannot open an SAP GUI session. You must have authorization to run in
debug mode as well as any authorizations that are required by the ABAP code that is being
debugged. For example, if a BAPI_CUSTOMER_CREATEFROMDATA1 is being debugged, you
must have authorization to create customers.

You can add breakpoints only after the debugger opens.

Always set this property to False in a production environment.

This property is supported on Windows systems only.

Globalized No

Bidi supported No

Client

This property is the client number of the SAP system to which the adapter
connects.

Table 136. Client details

Required Yes

Possible values You can enter a range of values from 000 to 999.

Default 100

Property type Integer

Usage When an application attempts to log on to the SAP server, the application must have a Client
number associated with it. The Client property value identifies the client (the adapter) that is
attempting to log onto the SAP server.

Globalized No

Bidi supported No

4078 WebSphere Message Broker Version 7.0.0.8

Codepage number (Codepage)

The numeric identifier of the code page.

Table 137. Codepage number details

Required No

Possible values You can enter a range of values from 0000 to 9999.

For a full listing of languages and associated code page numbers that are supported by SAP,
see SAP Note 7360.

Default The default value for this property is conditionally determined by the value set for the
Language code property.

Property type Integer

Usage The value that is assigned to the Codepage number defines the code page to be used and has a
one-to-one relationship with the value set for the Language code property. The Codepage
number establishes a connection to the appropriate language.

Each language code value has a code page number value associated with it. For example, the
language code for English is EN. If you select EN (English) as your language code, the code
page number is automatically set to the numeric value that is associated with EN (English). The
SAP code page number for EN (English) is 1100.

Example If Language code is set to JA (Japanese), Codepage number is set to 8000.

Globalized No

Bidi supported No

Custom retrieve function name (customFunctionName)

For the Query interface for SAP Software, this property specifies the name of a
custom function that must be used to retrieve data from an SAP table.

Table 138. Custom retrieve function name details

Required No

Default No default value

Property type String

Usage This property applies to Query interface for SAP Software only.

On non-Unicode systems, the default function used to retrieve data from SAP tables
(RFC_READ_TABLE) might produce an exception. To avoid the problem, you can create
another function on the SAP server and indicate, during configuration, that the adapter must
use this custom function to retrieve data. This property specifies the name of the custom
function.

You must create the function on the SAP server before you specify this property on the Adapter
Connection wizard. Follow the steps listed in SAP note 758278 to make a copy of
RFC_READ_TABLE and modify the copy in line with the note.

Globalized No

Bidi supported No

Chapter 14. Reference 4079

Enable Secure Network Connection (SncMode)

This property indicates whether secure network connection mode is enabled.

Table 139. Enable Secure Network Connection details

Required No

Possible values 0 (off)
1 (on)

Default 0

Property type String

Usage Set the value to 1 (on) if you want to use secure network connection.

If you set this value to 1, you must also set following properties:

v Secure Network Connection library path (SncLib)

v Secure Network Connection name (SncMyname)

v Secure Network Connection partner (SncPartnername)

v Secure Network Connection security level (SncQop)

Globalized No

Bidi supported No

Folder for RFC trace files (RfcTracePath)

This property sets the fully qualified local path to the folder in which to write RFC
trace files.

Table 140. Folder for RFC trace files details

Required No

Default No default value

Property type String

Usage Identifies the fully qualified local path into which RFC trace files are written.

If RFC trace on is set to False (not selected), you are not permitted to set a value in the Folder
for RFC trace files property.

Example c:\temp\rfcTraceDir

Globalized Yes

Bidi supported No

Function name (functionName)

The functionName interaction specification property controls the interaction by
associating operations with the correct interface.

Table 141. Function name details

Required Yes

Possible values True
False

Default Null

Property type String

4080 WebSphere Message Broker Version 7.0.0.8

Table 141. Function name details (continued)

Usage The BAPI/RFC supports the following values for the functionName interaction specification
property:
WBIInteractionSpec.CREATE
WBIInteractionSpec.UPDATE
WBIInteractionSpec.RETRIEVE
WBIInteractionSpec.DELETE

The BAPI result set supports the following value for the functionName interaction specification
property:

WBIInteractionSpec.RETRIEVEALL

The ALE outbound interface supports the following value:

WBIInteractionSpec.EXECUTE

The ALE inbound interface supports the following values for the functionName interaction
specification property:

WBIInteractionSpec.CREATE
WBIInteractionSpec.UPDATE
WBIInteractionSpec.RETRIEVE
WBIInteractionSpec.DELETE

The Query interface for SAP software (QISS) interface supports the following values for the
functionName interaction specification property:

v WBIInteractionSpec.EXISTS

Throws the exceptions NotExistsException and QISSQueryFailedException

v WBIInteractionSpec.RETRIEVEALL

Throws the exceptions QISSQueryFailedException

The Advanced event processing interface for inbound processing supports the following values
for the functionName interaction specification property:

WBIInteractionSpec.CREATE
WBIInteractionSpec.UPDATE
WBIInteractionSpec.DELETE

The Advanced event processing interface for outbound processing supports the following
values for the functionName interaction specification property:

WBIInteractionSpec.CREATE
WBIInteractionSpec.UPDATE
WBIInteractionSpec.RETRIEVE
WBIInteractionSpec.DELETE

Globalized No

Bidi supported No

Gateway host (GatewayHost)

This property is the Gateway host name. Enter either the IP address or the name of
the Gateway host. Consult your SAP administrator for information on the Gateway
host name.

Table 142. Gateway host details

Required Yes

Chapter 14. Reference 4081

Table 142. Gateway host details (continued)

Default No default value

Property type String

Usage This property is the host name of the SAP gateway. The gateway enables communication
between work processes on the SAP system and external programs.

The host identified is used as the gateway for the resource adapter.

Maximum length of 20 characters. If the computer name is longer than 20 characters, define a
symbolic name in the THOSTS table.

Globalized No

Bidi supported No

Gateway service (GatewayService)

This property is the identifier of the gateway on the gateway host that carries out
the RFC services.

Table 143. Gateway service details

Required Yes

Default sapgw00

Property type String

Usage These services enable communication between work processes on the SAP server and external
programs. The service typically has the format of sapgw00, where 00 is the SAP system number.

Maximum of 20 characters.

Globalized No

Bidi supported No

Host name (ApplicationServerHost)

Specifies the IP address or the name of the application server host that the adapter
logs on to.

Table 144. Host name details

Required Yes (when load balancing is not used).

Default No default value

Property type String

Usage When the adapter is configured to run without load balancing, this property specifies the IP
address or the name of the application server that the adapter logs on to.

Example sapServer

Globalized No

Bidi supported No

Ignore errors in BAPI return (IgnoreBAPIReturn)

This property indicates whether to ignore errors that are specified in a BAPI return
operation. The return structure can be data or a table.

4082 WebSphere Message Broker Version 7.0.0.8

Table 145. Ignore errors in BAPI return details

Required No

Possible values True
False

Default False

Property type Boolean

Usage This property applies to BAPI outbound synchronous RFC processing only.

When you set this property to True, the Adapter for SAP Software ignores the checking of error
codes in the BAPI RETURN structure after BAPI has run, and returns this structure to the user
as it is. The RETURN structure is part of every BAPI and contains the status of the BAPI
execution.

If you accept the default value of False, the Adapter for SAP Software processes the RETURN
structure and throws an exception if an error code is found.

Globalized No

Bidi supported No

Language code

This property specifies the Language code in which the adapter logs on.

Table 146. Language code details

Required Yes

Possible values For a full listing of languages and associated code page numbers that are supported by SAP,
see SAP Note 7360.

Default The default value for the Language code property is based on the system locale.

Property type String

Usage Each of the supported languages is preceded by a two-character language code. The language
itself is displayed in parentheses.

If you enter a language code manually, you do not need to enter the language in parentheses.

The language codes that are listed represent the SAP default set of 41 languages for
non-Unicode systems plus Arabic.

The value that you select determines the value of the Codepage number property.

Example If the system locale is English, the value for this property is EN (English).

Globalized No

Bidi supported No

Maximum number of hits for the discovery (ResultSetLimit)

For the Query interface for SAP Software, this property specifies the maximum
number of result sets, which represents data for each row that is retrieved from a
table through a RetrieveAll operation.

Table 147. Result set limit details

Required Yes

Default 100

Property type Integer

Chapter 14. Reference 4083

Table 147. Result set limit details (continued)

Usage This property applies to Query interface for SAP Software only.

If the number of hits in the table on the SAP server exceeds the value of the ResultSetLimit
property, the adapter returns the error: MatchesExceededLimitException. The adapter uses this
property to help avoid out-of-memory issues.

Globalized No

Bidi supported No

Message server host (MessageServerHost)

This property specifies the name of the host on which the message server is
running.

Table 148. Message server host details

Required Yes (if load balancing is used)

Default No default value

Property type String

Usage This property specifies the name of the host that will inform all the servers (instances)
belonging to this SAP system of the existence of the other servers to be used for load balancing.

The message server host contains the information about load balancing for RFC clients so that
an RFC client can be directed to an appropriate application server.

Example SAPERP05

Globalized No

Bidi supported No

Partner character set (PartnerCharset)

This property specifies the partner character set encoding.

Table 149. Partner character set details

Required No

Default UTF-8

Property type String

Usage When an encoding is specified, it is used; otherwise, the default encoding is used.

Globalized No

Bidi supported No

Password

This property is the password of the user account of the adapter on the SAP
application server.

Table 150. Password details

Required Yes

Default No default value

Property type String

4084 WebSphere Message Broker Version 7.0.0.8

Table 150. Password details (continued)

Usage The restrictions on the password depend on the version of SAP Web Application Server.

v For SAP Web Application Server version 6.40 or earlier, the password:

– Must be uppercase

– Must be 8 characters in length

v For versions of SAP Web Application Server later than 6.40, the password:

– Is not case-sensitive

– Can be up to 40 characters in length

Globalized No

Bidi supported Yes

RFC trace level (RcfTraceLevel)

This property specifies the global trace level.

Table 151. RFC trace level details

Required No

Possible values 1 - This is the default RFC trace level. When specified, SAP JCo Java API logging occurs.
3 - When specified, SAP JCo JNI API logging occurs.
5 - When specified, error diagnostic logging occurs.

Default 1

Property type Integer

Usage If RFC trace on is set to False (not selected), you cannot set a value in the RFC trace level
property.

Globalized No

Bidi supported No

RFC trace on (RcfTraceOn)

This property specifies whether to generate a text file detailing the RFC activity for
each event listener.

Table 152. RFC trace on details

Required No

Possible values True
False

Default False

Property type Boolean

Usage A value of True activates tracing, which generates a text file.

This file is created in the directory in which the adapter process was started. The file has a
prefix of rfx and a file type of trc (for example, rfc03912_02220.trc).

Use these text files in a development environment only, because the files can grow rapidly.

If RFC trace on is set to False (not selected), you cannot set values in the Folder for RFC trace
files or RFC trace level properties.

Chapter 14. Reference 4085

Table 152. RFC trace on details (continued)

Example Examples of the information in the file are RfcCall FUNCTION BAPI_CUSTOMER_GETLIST,
followed by the information for the parameters in the interface, or RFC Info rfctable, followed
by the data from one of the interface tables.

The trace file is created in the directory where the adapter process has been started. The trace
file has a .trc file extension and the file name will start with the letters rfc followed by a
unique identifier. For example, rfc03912_02220.trc.

Globalized No

Bidi supported No

SAP system ID (SAPSystemID)

This property specifies the system ID of the SAP system for which logon load
balancing is allowed.

Table 153. SAP system ID details

Required Yes (when load balancing is used)

Default No default value

Property type String

Usage Value must be three characters

Example DYL

Globalized No

Bidi supported No

Secure Network Connection library path (SncLib)

This property specifies the path to the library that provides the secure network
connection service.

Table 154. Secure Network Connection library path details

Required Yes, if SncMode is set to 1; no otherwise.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
specify the path to the library that provides the service.

Example /WINDOWS/system32/gssapi32.dll

Globalized No

Bidi supported No

Secure Network Connection name (SncMyname)

This property specifies the name of the secure network connection.

Table 155. Secure Network Connection name details

Required Yes, if SncMode is set to 1; no otherwise.

Default No default value

Property type String

4086 WebSphere Message Broker Version 7.0.0.8

Table 155. Secure Network Connection name details (continued)

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
specify a name for the connection.

Example DOMAINNAME/USERNAME

Globalized No

Bidi supported No

Secure Network Connection partner (SncPartnername)

This property specifies the name of the secure network connection partner.

Table 156. Secure Network Connection partner details

Required Yes, if SncMode is set to 1; no otherwise.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
specify a name for the connection partner.

Example CN=sap00.saperpdev, OU=Adapter, O=IBM, C=US

Globalized No

Bidi supported No

Secure Network Connection security level (SncQop)

This property specifies the level of security for the secure network connection.

Table 157. Secure Network Connection security level details

Required Yes, if SncMode is set to 1; no otherwise.

Possible values 1 (Authentication only)

2 (Integrity protection)

3 (Privacy protection)

8 (Use the value from snc/data_protection/use on the application server)

9 (Use the value from snc/data_protection/max on the application server)

Default 3 (Privacy protection)

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
specify a value to indicate the level of security for the connection.

Globalized No

Bidi supported No

Select the queue name (QRFCQueueName)

For BAPI outbound processing, when Asynchronous queued RFC is selected, this
property specifies the name of a queue on the SAP server to which BAPIs will be
delivered.

Table 158. Select the queue name details

Required No

Chapter 14. Reference 4087

Table 158. Select the queue name details (continued)

Default The first queue defined on the SAP server. If no queue is defined on the SAP server, no default
value exists.

Property type String

Usage This property applies to BAPI outbound asynchronous queued RFC processing only.

When you want to deliver BAPI calls to a queue on the SAP server, you must specify the name
of the queue. During configuration, you select an existing queue from a drop-down list. If no
queues exist on the SAP server, you can type the name of a queue.

Globalized No

Bidi supported No

System number (SystemNumber)

This property is the system number of the SAP application server.

Table 159. System number details

Required Yes

Possible values You can enter a range of values from 00 to 99.

Default 00

Property type Integer

Usage The system number further identifies the Gateway service.

Globalized No

Bidi supported No

Use wait parameter before calling BAPI commit

This property indicates whether the adapter calls a
BAPI_TRANSACTION_COMMIT with the WAIT parameter set.

Table 160. Use wait parameter before calling BAPI commit

Required No

Possible values True
False

Default False

Property type Boolean

Usage This property applies to BAPI outbound synchronous RFC processing only.

When you set this property to True, the Adapter for SAP Software calls a
BAPI_TRANSACTION_COMMIT with the WAIT parameter set, so that other resource
managers are committed only when the update has been completed in SAP.

If you accept the default value of False, message flow processing might continue before the
update has been completed in SAP. Therefore, after calling a BAPI, the updated data might not
be available when you next access the system.

Globalized No

Bidi supported No

4088 WebSphere Message Broker Version 7.0.0.8

User name (userName)

This property is the user account for the adapter on the SAP server.

Table 161. User name details

Required Yes

Default No default value

Property type String

Usage Maximum length of 12 characters. The user name is not case sensitive.

It is recommended that you set up a CPIC user account in the SAP application and that you
give this account the necessary privileges to manipulate the data required by the business
objects supported by the adapter. For example, if the adapter must perform certain SAP
business transactions, the adapter's account in the SAP application must have the permissions
set to allow it to perform these transactions.

Example SapUser

Globalized Yes

Bidi supported Yes

X509 certificate (X509cert)

This property specifies the X509 certificate to be used as the logon ticket.

Table 162. X509 certificate details

Required No

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),
you can provide a value for the X509 certificate.

Globalized No

Bidi supported No

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you

Chapter 14. Reference 4089

must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.

SAP options for rediscovery:

In WebSphere Message Broker Version 7.0, you can add newly discovered objects
into an existing adapter component without modifying any existing objects. This
facility is known as iterative discovery. You can rediscover certain objects for an
inbound or outbound adapter.

SAP outbound

The following table identifies the options that you can use to rediscover objects for
an outbound adapter.

Discovery option Existing XSD files affected Description

BAPI None Rediscovery is possible. The
addition of another BAPI does not
require any existing XSD file to be
replaced.

BAPI (Wrapper) SAPBusinessObjectNameWrapper.xsdBy default, this option is cleared.
Rediscovery is possible provided
that you do not change the name
of the business object.

BAPI (Work Unit) SAPBusinessObjectNameTxn.xsdRediscovery is possible provided
that you do not change the name
of the business object.

4090 WebSphere Message Broker Version 7.0.0.8

Discovery option Existing XSD files affected Description

BAPI (Result Set) All XSD files need to be
replaced

Incremental rediscovery is not
possible because you can specify
only two objects (Query and
Response).

ALE passthrough IDoc None Rediscovery is possible provided
that you do not change
configuration parameters such as
qRFC, which changes ASI
annotations on top-level objects.

ALE None Rediscovery is possible provided
that you do not change
configuration parameters such as
qRFC, which changes ASI
annotations on top-level objects.

Advanced event
processing (AEP)

None Rediscovery is possible provided
that you do not change
configuration parameters such as
the function module name, which
changes ASI annotations on
top-level objects.

Query interface for SAP
Software (QISS)

None Rediscovery is possible provided
that you do not change
configuration parameters such as
custom function name, which
changes ASI annotations on
top-level objects.

SAP inbound

The following table identifies the options that you can use to rediscover objects for
an inbound adapter.

Discovery option Existing XSD files affected Description

ALE events: create,
update, or delete

None Rediscovery is possible if you add
a new IDoc but do not change
Create, Read, Update, or Delete
operations on previously
discovered IDocs.

ALE passthrough All XSD files need to be
replaced

Rediscovery is possible, but you
can specify only one IDoc. The
IDoc is treated as opaque binary.
Ensure that you select the option
to replace all files.

AEP None Rediscovery is possible because
the addition of another IDoc does
not change existing XSD files.

BAPI None Rediscovery is possible if you add
a new BAPI and do not change
Create, Read, Update, or Delete
operations on previously
discovered BAPIs.

Related concepts:

Chapter 14. Reference 4091

“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
Related tasks:
“Enhancing existing adapters with newly discovered objects” on page 2063
In WebSphere Message Broker Version 7.0, you can take an adapter component that
was created by using the Adapter Connection wizard, and update it with newly
discovered objects from the Enterprise Information System (EIS). This facility is
known as iterative discovery. You can either add the new objects without modifying
existing objects, or replace existing objects.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
Related reference:
“Configuration properties for the WebSphere Adapter for SAP Software” on page
4043
The WebSphere Adapter for SAP Software has several categories of configuration
properties, which you set with the Adapter Connection wizard when you generate
or create objects and services.

WebSphere Adapter for Siebel properties:

Reference information to refer to when you connect to a Siebel application.
v “Business object information (Siebel)” on page 4093
v “Supported data operations (Siebel)” on page 4094
v “Naming conventions for business objects representing Siebel business services”

on page 4095
v “Configuration properties for the WebSphere Adapter for Siebel Business

Applications” on page 4098
v “Siebel connection properties for the Adapter Connection wizard” on page 4099
v “Inbound adapter properties for Siebel” on page 4107
v “Outbound adapter properties for Siebel” on page 4116
Related concepts:
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.

4092 WebSphere Message Broker Version 7.0.0.8

Business object information (Siebel):

A business object is a structure that contains application-specific information
(metadata) about how the adapter should process the business object as well as the
operation to be performed on the business object.

The name of the business object is generated by the Adapter Connection wizard in
accordance with the naming convention for the adapter.

The Siebel business objects are created with long names by default. To generate
business objects with shorter names, select Generate business objects with shorter
names on the Configure Objects screen of the Adapter Connection wizard.

For more information about business objects, see the following topics.
v “Naming conventions for business objects representing Siebel business services”

on page 4095
v “Supported data operations (Siebel)” on page 4094
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.

Chapter 14. Reference 4093

“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Supported data operations (Siebel):

An operation is the action that an adapter can perform on the Siebel server during
outbound processing. The name of the operation typically indicates the type of
action that the adapter takes, such as create or update.

Table 163. Supported operations of business objects

Operation Definition

Create Creates the business component

Delete Deletes the business component and its children

Exists Checks for the existence of incoming business objects

Retrieve Retrieves the values of the business component

Retrieve all Retrieves multiple instances of the same business
component

Update Updates the Siebel application with the incoming object

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.

4094 WebSphere Message Broker Version 7.0.0.8

“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Naming conventions for business objects representing Siebel business services:

When the Adapter Connection wizard generates a business object, it provides a
name for the business object based on the name of the object in the Siebel
application that it uses to build the business object.

Naming conventions for business objects that represent Siebel business services
and integration components

The naming conventions for business objects that represent Siebel business services
are the same for both inbound and outbound processing. The names comprise the
concatenation of several words, including prefix, business service name, integration
object, and method name.

The following table describes the naming conventions that the Adapter Connection
wizard uses to name business objects that represent Siebel business services and
integration components.

Table 164. Business object naming conventions for Siebel business services and integration components

Element Naming convention

Name of the top-level business object <Prefix><Business Service Name><Method Name><Names of all the
integration objects selected for the Input and InputOutput complex type
arguments>

v If no Input or InputOutput arguments exist, the names of all
the output arguments are: <Prefix><Business Service
Name><Method Name><Names of all the integration objects selected
for the output complex type arguments>

v If the method contains no complex arguments in the method,
the naming convention is: <Prefix><Business Service
Name><Method Name>

Name of the inbound object that is generated
against integration components

'IO' + <Name of Integration Object> + 'IC' + <Name of integration
component>

For example:

IOAccountInterfaceICAccount

Name of the outbound object that is generated
against integration components

'IO' + <Name of Integration Object> + 'IC' + <Name of integration
component>

The name of an account interface integration object with the
integration component account, as shown in the following
example:

IOAccountInterfaceICAccount

Optional: Shorter naming conventions for business objects that are generated
against Siebel business services and integration components

The naming conventions for business objects that are generated against Siebel
business services and integration components are valid if the optional 'Generate
business objects with shorter names' property is specified on the configuration
objects pane in the Adapter Connection wizard.

Chapter 14. Reference 4095

If this optional property is used, you should set the 'Folder' property with a unique
value to avoid overwriting existing xsds that were previously generated. For
example, if you select 'EAI Siebel Adapter', and click Query in two different
Adapter Connection wizard runs for the integration objects, 'Account (PRM ANI)'
and 'ATP Check Interface', the top-level object is named EAISiebelAdapter.xsd.

The name comprises the concatenation of several words, including prefix, business
service name, and integration component name.

The following table describes the naming conventions that the Adapter Connection
wizard uses to name business objects that are generated against Siebel business
services and integration components.

Table 165. Shorter business object naming conventions for business objects that are generated against Siebel
business services and integration components

Element Naming convention

Name of the inbound and outbound child business
objects that are generated against integration components

<Prefix>+<Name of the Siebel Integration Component>

The Siebel business object and integration component
names are stripped of all non-alphanumeric characters
before being added to the business object name. If the
resulting names are not unique, a counter is added to the
end of the names.

Name of the inbound top-level business object that is
generated against business services and integration
components

<Prefix>+<Name of the Siebel Integration Component>

The Siebel business object and integration component
names are stripped of all non-alphanumeric characters
before being added to the business object name. If the
resulting names are not unique, a counter is added to the
end of the names.

Name of the outbound top-level business object that is
generated against business services and integration
components

<Prefix>+<Name of the Siebel Business Service>

The Siebel business object and integration component
names are stripped of all non-alphanumeric characters
before being added to the business object name. If the
resulting names are not unique, a counter is added to the
end of the names.

Naming conventions for business objects that represent Siebel business objects

The naming conventions for business objects that represent Siebel business objects
are the same for both inbound and outbound processing. The name comprises the
concatenation of several words, including prefix, business object name, and
business component name.

The following table describes the naming conventions that are used by the Adapter
Connection wizard to name business objects that represent Siebel business objects.

4096 WebSphere Message Broker Version 7.0.0.8

Table 166. Business object naming conventions for Siebel business objects

Element Naming convention

Name of the business object <Prefix>+<BO>+<Business Object Name>+<BC>+<Business
Component Name>.

The Siebel business object and component names are
stripped of all non-alphanumeric characters before being
added to the business object name. If the resulting names
are not unique, a counter is added to the end of the
names. For example, if two business objects have the
name, SiebelBOAccountBCBusinessAddress, a counter is
added as a suffix to make them unique, as shown in this
example:

SiebelBOAccountBCAddress1 and SiebelBOAccountBCAddress2

Name of the container business object that is generated
for the Exists operation

<SiebelExistsResult>

Name of the container business object that is generated
for the Retrieve All operation

<Prefix>+BO+<Business Object Name>+<BC>+<Business
Component Name>+Container

Name of the top-level business object <Prefix>+<BO>+<Business Object Name>+<BC>+<Business
Component Name>

Optional: Shorter naming conventions for business objects that are generated
against Siebel business components

The naming conventions for business objects that are generated against Siebel
business components are valid if the optional 'Generate business objects with
shorter names' property is specified on the configuration objects pane of the
Adapter Connection wizard.

If this optional property is used, set the 'Folder' property with a unique value to
avoid overwriting existing xsds that were previously generated. For example,
Siebel business object > Siebel business component combination of Account-ESP
> Account and Account (as the top-level object) is named Account.xsd.

The name comprises the concatenation of several words, including prefix and
business component name.

The following table describes the naming conventions that the Adapter Connection
wizard uses to name business objects that are generated against Siebel business
components.

Table 167. Shorter business object naming conventions for business objects that are generated against Siebel
business components

Element Naming convention

Name of the top-level business object that is generated
against business components

<Prefix>+<Name of the Siebel Business Component>

The Siebel business object and integration component
names are stripped of all non-alphanumeric characters
before being added to the business object name. If the
resulting names are not unique, a counter is added to the
end of the names.

Related concepts:

Chapter 14. Reference 4097

“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Configuration properties for the WebSphere Adapter for Siebel Business Applications:

WebSphere Adapter for Siebel Business Applications has several categories of
configuration properties, which you set with the Adapter Connection wizard when
you generate or create objects and services.

You can change the connection properties for the Adapter Connection wizard, and
the inbound and outbound adapter properties. For more information, see the
following topics.
v “Siebel connection properties for the Adapter Connection wizard” on page 4099
v “Inbound adapter properties for Siebel” on page 4107
v “Outbound adapter properties for Siebel” on page 4116
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and

4098 WebSphere Message Broker Version 7.0.0.8

PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Siebel connection properties for the Adapter Connection wizard:

Set Adapter Connection wizard properties to establish a connection between the
wizard, a tool that is used to create business objects, and the Siebel server. The
properties that you configure in the Adapter Connection wizard specify such
things as connection configuration, and logging and tracing options.

After you have established a connection between the Adapter Connection wizard
and the Siebel server, the Adapter Connection wizard is able to access the
metadata that it needs from the Siebel server to create business objects.

Some of the properties that you set in the Adapter Connection wizard are used as
the initial value for resource adapter, managed connection factory, and activation
specification properties that you can specify at a later time in the wizard.

The following table describes the Adapter Connection wizard properties and their
purpose. A complete description of each property is provided in the sections that
follow the table.

Chapter 14. Reference 4099

If you set any of these connection properties using bidirectional script, you must
set values that identify the format of the bidirectional script that is entered for that
property.

Table 168. Adapter Connection wizard properties

Property name in the wizard Description

Adapter style The service type that is associated with the adapter
module

Business object namespace The namespace value has been added as a prefix to the
business object name to keep the business object schemas
separated

Code page The code page that the adapter uses to connect to the
Siebel application

Connection URL The connection URL that you need to connect to the
Siebel application

Delimiter for keys in the event store Specifies that the delimiter that is used between two
name value pairs contains the object key name and value

Folder The location of the generated business object

Generate business objects with shorter names Ensures that the adapter generates shorter business
object names, which are based on the Siebel integration
components, business services, and business components
rather than the concatenation of several words (which is
the default)

Language code The language code that is used to log on to the Siebel
server

Method name The name of the business service method to be
implemented

Password The password for the corresponding user name

Prefix for business object names The prefix for the business object name

Siebel business object name for event store The name of the business object in the event store where
events are stored for inbound processing.

Siebel repository name The name of the Siebel repository from which the objects
are to be discovered

Siebel server view mode Specifies the Siebel server mode and controls the kind of
data to be retrieved and what actions can be performed

Type of Siebel objects to discover The type of Siebel objects (business objects or business
services) that need to be discovered and listed

Use resonate support for load balancing on Siebel server Specifies that if resonate support is installed on the
Siebel server, and the value is set to True, the adapter
takes advantage of the load balancing feature to connect
to the Siebel server more efficiently

User name The user name that is used to log into the Siebel
application

Adapter style (AdapterStyle)

This property specifies the service type that is associated with the adapter module.

Table 169. Service type details

Required Yes

Default Outbound

4100 WebSphere Message Broker Version 7.0.0.8

Table 169. Service type details (continued)

Property type List of values

Possible values Outbound
Inbound

Usage Specifies the service type associated with the adapter module

Globalized No

Bidi supported No

Business object namespace (BusinessObjectNameSpace)

This property specifies that the namespace value has been added as a prefix to the
business object name to keep the business object schemas separated.

Table 170. Business object namespace details

Required Yes

Default http://www.ibm.com/xmlns/prod/wbi/j2ca/siebel

Property type String

Usage The namespace value is added as a prefix to the business object name to keep the business
object schemas separated.

Example http://www.ibm.com/xmlns/prod/wbi/j2ca/siebel/IBMSiebelAccountInsertAccount

Globalized No

Bidi supported No

Code page (CodePage)

Specifies the code page that the adapter uses to connect to the Siebel application.

Table 171. Code page details

Required No

Default No default value

Property type String

Usage Use this property to specify the code page details that the adapter uses to connect
to the Siebel server for metadata discovery.

The Siebel Java Data Bean supports a limited list of code page settings. If the
current code page setting of your tooling is not supported, the adapter might not
be able to connect to the Siebel server.

Globalized No

Bidi supported No

Connection URL (ConnectionURL)

This property specifies the connection URL that is needed to connect to the Siebel
application.

Table 172. Connection URL details

Required Yes

Default No default value

Chapter 14. Reference 4101

Table 172. Connection URL details (continued)

Property type String

Usage The connection URLs for all versions of Siebel follow this format: Protocol://
machinename:port/enterprisename/object manager/server name

The default port number is 2320. For Siebel version 7.5x and earlier versions, the port number
(2320) and server name are specified. For Siebel version 7.8, the port and server name are not
specified. If you do not select the default port, you can specify another port number (for
example, 2321).

Examples The following sample connection URLs are for different versions of Siebel:

v For Siebel 7.5: siebel://<IP_address>:2320/siebel/SSEObjMgr_ENU/sebldevl.

v For Siebel 7.8: siebel://<IP_address>/Sieb78/SSEObjMgr_enu.

v For Siebel 8: siebel://<IP_address>:2321/SBA_80/SSEObjMgr_enu.

Globalized Yes

Bidi supported Yes

Delimiter for keys in the event store (DelimiterForKeysInTheEventStore)

Table 173. Delimiter for keys in the event store details

Required Yes

Default ;

Property type String

Usage This is the delimiter that is used between two name value pairs that contain the object key
name and value.

Examples You can change the default value for this property. However, if you remove the default value
and do not set it again, the default value (;) is used. If the event table key field has values, such
as AccountId=1-314:Id=1-325, the event delimiter is the colon (:) . The object key names are
AccountId and Id. The values are 1-314 and 1-325.

Globalized Yes

Bidi supported Yes

Folder (Folder)

This property specifies the location of the generated business objects.

Table 174. Folder details

Required No

Default No default value

Property type String

Usage The generated business objects are copied into this folder.

Example inboundartifacts and outboundartifacts

Globalized No

Bidi supported No

4102 WebSphere Message Broker Version 7.0.0.8

Generate business objects with shorter names
(GenerateBusinessObjectsWithShorterNames)

This property ensures that the adapter generates shorter business object names,
which are based on the Siebel integration components, business services, and
business components rather than the concatenation of several words (which is the
default).

Table 175. Generate business objects with shorter names details

Required No

Default No default value

Property type Boolean

Usage This property ensures that the adapter generates shorter business object names. The shorter
business object names are based on the Siebel integration components, business services, and
business components. The prefix is also attached to the shorter names.

The adapter removes special characters from the shorter business object names. Alphanumeric
characters (a-z, A-Z, and 1-9) are supported, and a counter (1-9) is added to the end of business
object names to avoid duplication of names.

Example If 'Account' is the name of the Siebel business component, and 'Siebel' is the prefix, the shorter
name is 'Siebel_Account'.

Globalized No

Bidi supported No

Language code (LanguageCode)

This property specifies the language code that is used to log on to the Siebel
server.

Table 176. Language code details

Required Yes

Default ENU

Property type String

Usage If the system locale is English, the value for this property is ENU (English). This is used to log
on to the Siebel server.

Globalized No

Bidi supported No

Method name (MethodName)

This property specifies the name of the business service method to be
implemented.

Table 177. Method name details

Required Yes

Default Query

Property type String

Usage The default is Query.

Example Query, QueryByExample, QueryById, and so on.

Globalized Yes

Chapter 14. Reference 4103

Table 177. Method name details (continued)

Bidi supported Yes

Password (Password)

This property specifies the password for the corresponding user name.

Table 178. Password details

Required Yes

Default No default value

Property type String

Usage If a J2C Authentication Alias is used, a password is not required.

Example 1-XYZ

Globalized Yes

Bidi supported Yes

Prefix for business object names (PrefixForBusinessObjectNames)

This property specifies the prefix for the business object name.

Table 179. Prefix details

Required No

Default No default value

Property type String

Usage The prefix string is attached to the front of the business object name that was generated.

Example For example, you use the prefix, IBM, and generate a business object for the EAI Siebel Adapter
and the Insert method. Then you choose the Account Interface and Business Address Interface
integration object against an Input and InputOutput method argument. The corresponding
business object that is generated is:

IBMEAISiebelAdapterInsertAccountInterfacBusinessAddressInterface

Globalized Yes

Bidi supported Yes

Siebel business object name for event store
(SiebelBusinessObjectNameForEventStore)

This property specifies the name of the business object in the event store where
events are stored for inbound processing.

Table 180. Siebel business object name for event store details

Required Yes

Default IBM_EVENT

Property type String

Usage To set this property, click Advanced on the connection properties pane on the Adapter
Connection wizard, then go to the Event configuration tab. The two values listed are IBM_EVENT
and IBM2. If you create a custom event component name, you can specify the value for it in the
list box.

Globalized Yes

4104 WebSphere Message Broker Version 7.0.0.8

Table 180. Siebel business object name for event store details (continued)

Bidi supported No

Siebel repository name (SiebelRepositoryName)

This property specifies the name of the Siebel repository from which the objects are
discovered.

Table 181. Siebel repository name details

Required Yes

Default Siebel repository

Property type String

Usage This default value is Siebel Repository. Although this is a required field, it is optional on the
Adapter Connection wizard. You can edit this value to point to other repositories if needed.

Globalized No

Bidi supported No

Siebel server view mode (SiebelServerViewMode)

This property specifies the Siebel server view mode and controls the data that can
be retrieved and what actions can be performed on it.

Table 182. Siebel server view mode details

Required Yes

Default 3

Property type Integer

Usage This property displays when you click Advanced on the connection properties pane of the
Adapter Connection wizard. This mode, when set to "Type of Siebel objects to discover" applies
only to Siebel business objects, not to Siebel business services. The values that are
supported by Siebel are 1 to 9.

Globalized No

Type of Siebel objects to discover (TypeOfSiebelObjectsToDiscover)

This property specifies the type of Siebel object that needs to be discovered and
listed.

Table 183. Type of Siebel objects to discover details

Required Yes

Possible values Siebel business objects and Siebel business services

Default Siebel business objects

Property type String

Usage Although the default is Siebel business objects, you can select Siebel business services.
Based on your selection, the Adapter Connection wizard retrieves either the business objects or
the business services.

Globalized No

Bidi supported No

Chapter 14. Reference 4105

Use resonate support for load balancing on Siebel server
(UseResonateSupportForLoadBalancingOnSiebelServer)

This property indicates whether the Siebel server uses resonate support.

Table 184. Use resonate support for load balancing on Siebel server details

Required No

Possible values True
False

Default True

Property type Boolean

Usage This property displays after you click Advanced on the connection properties pane of the
Adapter Connection wizard. If you select the check box, the property is set to True and the
adapter takes advantage of the load balancing feature to connect to the Siebel server more
efficiently. If you clear the check box, the property is set to False.

Globalized No

User name (UserName)

This property specifies the user name that is used to log into the Siebel application.

Table 185. User name details

Required Yes

Default No default value

Property type String

Usage If a J2C Authentication Alias is used, a user name is not required.

Globalized Yes

Bidi supported Yes

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).

4106 WebSphere Message Broker Version 7.0.0.8

“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Inbound adapter properties for Siebel:

Inbound adapter properties hold the configuration information for inbound event
processing of a message endpoint. These properties also control the general
operation of the adapter. Use the Adapter Connection wizard to set these
properties.

These properties are used during endpoint activation to notify the adapter of
eligible event listeners. During inbound processing, the adapter uses these event
listeners to receive events before it forwards them to the endpoint.

The following table lists the properties for inbound processing that you set by
using the Adapter Connection wizard. A more detailed description of each
property is provided in the sections that follow the table.

Table 186. Inbound adapter properties

Property name Description

Adapter ID property The name of the adapter instance in the log and trace
files

Connection URL The connection URL that is needed to connect to the
Siebel application

Delivery type Determines the order in which events are delivered by
the adapter to the export component.

Do not process events that have a timestamp in the
future

Specifies whether the adapter filters out future events by
comparing the timestamp on each event with the system
time

Ensure once-only event delivery Specifies whether the adapter provides assured once-only
delivery of events.

Event component name The name of the Siebel component for the event table

Event delimiter Specifies whether the delimiter that is used between two
name value pairs contains the object key name and value

Event types to process A delimited list of event types that indicates to the
adapter which events it should deliver

Interval between polling periods The length of time that the adapter waits between
polling periods.

Chapter 14. Reference 4107

Table 186. Inbound adapter properties (continued)

Property name Description

Language code The language code that is used to log on to the Siebel
server

Maximum connections The maximum number of connections that the adapter
can use for inbound event delivery.

Maximum events in polling period The number of events that the adapter delivers to the
export component during each poll period.

Minimum connections The minimum number of connections that the adapter
can use for inbound event delivery.

Password The password for the corresponding user name

Resonate support Specifies that if resonate support is installed on the
Siebel server, and the value is set to True, the adapter
takes advantage of the load balancing feature to connect
to the Siebel server more efficiently

Siebel server view mode Specifies the Siebel view mode and controls the kind of
data to be retrieved and what actions can be performed

Stop the adapter when an error is encountered while
polling

Specifies whether the adapter stops polling for events
when it encounters an error during polling.

“Retry interval if connection fails (RetryInterval)” on
page 4115

The length of time that the adapter waits between
attempts to establish a new connection after an error
occurs during inbound operations.

User name The user name that is used to log on to the Siebel
application

Adapter ID to use for logging and tracing (AdapterID)

This property identifies a specific deployment, or instance, of the adapter.

Table 187. Adapter ID to use for logging and tracing details

Required Yes

Default 001

Property type String

4108 WebSphere Message Broker Version 7.0.0.8

Table 187. Adapter ID to use for logging and tracing details (continued)

Usage This property identifies the adapter instance in the log and trace files, and also helps identify
the adapter instance while monitoring adapters. The adapter ID is used with an
adapter-specific identifier, SEBLRA, to form the component name used by the Log and Trace
Analyzer tool. For example, if the adapter ID property is set to 001, the component ID is
SEBLRA001.

If you run multiple instances of the same adapter, ensure that the first eight characters of the
adapter ID property are unique for each instance so that you can correlate the log and trace
information to a particular adapter instance. By making the first seven characters of an adapter
ID property unique, the component ID for multiple instances of that adapter is also unique,
allowing you to correlate the log and trace information to a particular instance of an adapter.

For example, when you set the adapter ID property of two instances of WebSphere Adapter for
JD Edwards EnterpriseOne to 001 and 002. The component IDs for those instances, SEBLRA001
and SEBLRA002, are short enough to remain unique, enabling you to distinguish them as
separate adapter instances. However, instances with longer adapter ID properties cannot be
distinguished from each other. If you set the adapter ID properties of two instances to
Instance01 and Instance02, you will not be able to examine the log and trace information for
each adapter instance because the component ID for both instances is truncated to
SEBLRAInstance.

For inbound processing, this property is retrieved from the resource adapter properties. For
outbound processing, it is retrieved from the managed connection factory properties.

Globalized Yes

Bidi supported No

Connection URL (ConnectionURL)

This property specifies the connection URL that is needed to connect to the Siebel
application.

Table 188. Connection URL details

Required Yes

Default No default value

Property type String

Usage Protocol://machinename:port/enterprisename/object manager/server name

For Siebel 7.0.5 to 7.5x : siebel://<IP ADDRESS>/siebel/SSEObjMgr_ENU/sebldev1
For Siebel 7.8 : siebel://<IP ADDRESS>:2321/Sieb78/SSEObjMgr_enu
For Siebel 8 : siebel://<IP ADDRESS>:2321/SBA_80/SSEObjMgr_enu
The default port number is 2320. In the examples above (for Siebel versions
7.8 and 8), another port (2321) has been specified.

Globalized Yes

Bidi supported Yes

Delivery type (DeliveryType)

This property specifies the order in which events are delivered by the adapter to
the export component.

Table 189. Delivery type details

Required No

Chapter 14. Reference 4109

Table 189. Delivery type details (continued)

Possible values ORDERED
UNORDERED

Default ORDERED

Property type String

Usage The following values are supported:

v ORDERED: The adapter delivers events to the export component one at a time.

v UNORDERED: The adapter delivers all events to the export component at once.

Globalized No

Bidi supported No

Do not process events that have a timestamp in the future (FilterFutureEvents)

This property specifies whether the adapter filters out future events by comparing
the timestamp on each event with the system time.

Table 190. Do not process events that have a timestamp in the future details

Required Yes

Possible values True
False

Default False

Property type Boolean

Usage If set to True, the adapter compares the time of each event to the system time. If the event time
is later than the system time, the event is not delivered.

If set to False, the adapter delivers all events.

Globalized No

Bidi supported No

Ensure once-only event delivery (AssuredOnceDelivery)

This property specifies whether to provide ensured once-only event delivery for
inbound events.

Table 191. Ensure once-only event delivery details

Required Yes

Possible values True
False

Default True

Property type Boolean

Usage When this property is set to True, the adapter provides assured once-only event delivery so
that each event is delivered only once. A value of False does not provide assured once event
delivery, but provides better performance.

When this property is set to True, the adapter attempts to store transaction (XID) information in
the event store. If it is set to False, the adapter does not attempt to store the information.

This property is used only if the export component is transactional. If it is not, no transaction
can be used, regardless of the value of this property.

Globalized No

4110 WebSphere Message Broker Version 7.0.0.8

Table 191. Ensure once-only event delivery details (continued)

Bidi supported No

Event component name (EventComponentName)

This property specifies the name of the event store where events are stored for
inbound processing.

Table 192. Event component name details

Required Yes

Default IBM2 (for Siebel version 7.x) and IBM Event (for Siebel version 8)

Property type String

Usage The default value is IBM2 for Siebel version 7.x, and IBM Event for Siebel version 8. If you select
one of these default values to configure the event business component on the Siebel server, it is
the name of the Siebel event business component that was created. You can also select a value
from the list of values provided by the adapter. You can edit the list of values. If you create
your own Siebel event business component, you can edit the list to include the name of that
event business component.

Globalized Yes

Bidi supported Yes

Event delimiter (EventDelimiter)

This property indicates that the delimiter that is used between two name value
pairs contains the object key name and value.

Table 193. Event delimiter details

Required Yes

Default ;

Property type String

Usage If multiple value pairs are set against the object key in the event component, they are used for
the delimiter.

Globalized No

Event types to process (EventTypeFilter)

This property contains a delimited list of event types that indicates to the adapter
which events it should deliver.

Table 194. Event types to process details

Required No

Possible values A comma-delimited (,) list of business object types

Default null

Property type String

Usage Events are filtered by business object type. If the property is set, the adapter delivers only those
events that are in the list. A value of null indicates that no filter will be applied and that all
events will be delivered to the export component.

Chapter 14. Reference 4111

Table 194. Event types to process details (continued)

Example To receive only events that relate to the Customer and Order business objects, specify this
value:
Customer,Order

Globalized No

Bidi supported No

Interval between polling periods (PollPeriod)

This property specifies the length of time that the adapter waits between polling
periods.

Table 195. Interval between polling periods details

Required Yes

Possible values Integers greater than or equal to 0.

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage The poll period is established at a fixed rate, which means that if running the poll cycle is
delayed for any reason (for example, if a prior poll cycle takes longer than expected to
complete) the next poll cycle occurs immediately to make up for the lost time that was caused
by the delay.

Globalized No

Bidi supported No

Language code (LanguageCode)

This property specifies the language code that is used to log on to the Siebel
server.

Table 196. Language code details

Required Yes

Default ENU

Property type String

Usage If the system locale is English, the value for this property is ENU (English), which is used to log
on to the Siebel server.

Globalized No

Bidi supported No

Maximum connections (MaximumConnections)

This property specifies the maximum number of connections that the adapter can
use for inbound event delivery.

Table 197. Maximum connections details

Required No

Default 1

Property type Integer

4112 WebSphere Message Broker Version 7.0.0.8

Table 197. Maximum connections details (continued)

Usage Only positive values are valid. The adapter considers any positive entry less than 1 to be equal
to 1. Typing a negative value or 0 for this property might result in runtime errors.

Globalized No

Bidi supported No

Maximum events in polling period (PollQuantity)

This property specifies the number of events that the adapter delivers to the export
component during each poll period.

Table 198. Maximum events in polling period details

Required Yes

Default 10

Property type Integer

Usage The value must be greater than 0. If this value is increased, more events are processed per
polling period, and the adapter might perform less efficiently. If this value is decreased, fewer
events are processed per polling period, and the adapter's performance might improve slightly.

Globalized No

Bidi supported No

Minimum connections (MinimumConnections)

This property specifies the minimum number of connections that the adapter can
use for inbound event delivery.

Table 199. Minimum connections details

Required No

Default 1

Property type Integer

Usage Only positive values are valid. Any value less than 1 is treated as 1 by the adapter. Typing a
negative value or 0 for this property might result in runtime errors.

Globalized No

Bidi supported No

Password (Password)

This property specifies the password for the corresponding user name.

Table 200. Password details

Required Yes

Default No default value

Property type String

Usage This property displays after you click Advanced on the connection properties pane of the
Adapter Connection wizard. The password is saved in .import and .export files so that the
adapter can connect to the Siebel application after it has been deployed. If a J2C Authentication
Alias is used, a password is not required.

Example sadmin

Chapter 14. Reference 4113

Table 200. Password details (continued)

Globalized Yes

Bidi supported Yes

Resonate support (ResonateSupport)

This property indicates whether the Siebel server uses resonate support.

Table 201. Resonate support details

Required No

Possible values True
False

Default True

Property type Boolean

Usage If you set this property to True, the adapter takes advantage of the load balancing feature to
connect to the Siebel server more efficiently.

Globalized No

Siebel server view mode (SiebelServerViewMode)

This property specifies the Siebel view mode and controls the data that can be
retrieved and what actions can be performed on it.

Table 202. View mode details

Required Yes

Default 3

Property type Integer

Usage The View mode property applies only to Siebel business objects and not to Siebel business
services.

Globalized No

Stop the adapter when an error is encountered while polling
(StopPollingOnError)

This property specifies whether the adapter stops polling for events when it
encounters an error during polling.

Table 203. Stop the adapter when an error is encountered while polling details

Required No

Possible values True
False

Default False

Property type Boolean

Usage If this property is set to True, the adapter stops polling when it encounters an error.

If this property is set to False, the adapter logs an exception when it encounters an error
during polling and continues polling.

Globalized No

4114 WebSphere Message Broker Version 7.0.0.8

Table 203. Stop the adapter when an error is encountered while polling details (continued)

Bidi supported No

Retry interval if connection fails (RetryInterval)

When the adapter encounters an error that is related to the inbound connection,
this property specifies the length of time that the adapter waits before trying to
establish a new connection.

Table 204. Retry interval details

Required Yes

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage Only positive values are valid. When the adapter encounters an error that is related to the
inbound connection, this property specifies the length of time that the adapter waits before
trying to establish a new connection.

Globalized No

Bidi supported No

User name (UserName)

This property specifies the user name that is used to log into the Siebel application.

Table 205. User name details

Required Yes

Default No default value

Property type String

Usage This property displays after you click Advanced on the connection properties pane of the
Adapter Connection wizard. The user name is saved in .import and .export files so that the
adapter can connect to the Siebel application after it has been deployed. If a J2C Authentication
Alias is used, a password is not required.

Globalized Yes

Bidi supported Yes

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).

Chapter 14. Reference 4115

“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

Outbound adapter properties for Siebel:

Outbound adapter properties define how the adapter creates an outbound
connection instance with the Siebel application, and how operations are run on the
server. Use the Adapter Connection wizard to set these properties.

The following table describes the outbound adapter properties. A more detailed
description of each property is provided in the sections that follow the table.

Table 206. Managed connection factory properties

Property name Description

Adapter ID The name of the adapter instance in the log and trace
files

Code page Specifies the code page that the adapter uses to connect
to Siebel server

Connection URL The connection URL that is needed to connect to the
Siebel application

Language code The language code that is used to log on to the Siebel
server

“Maximum records (maxRecords)” on page 4119 Maximum number of records to return during a
RetrieveAll operation

Password The password for the corresponding user name

Prefix The prefix for the business object name

Resonate support Specifies that if resonate support is installed on the
Siebel server, and the value is set to True, the adapter
takes advantage of the load balancing feature to connect
to the Siebel server more efficiently

4116 WebSphere Message Broker Version 7.0.0.8

Table 206. Managed connection factory properties (continued)

Property name Description

Show error on empty result set (errorOnEmptyResultSet) For a business object, this property specifies if the
adapter returns an empty business object or
RecordNotFoundException when the result of RetreiveAll
operation does not return any records. For a business
service, the property specifies whether the adapter
generates an exception when a returned Siebel message
is null.

User name The user name that is used to log into the Siebel
application

View mode Specifies the Siebel view mode and controls the data that
can be retrieved and what actions can be performed on it

Adapter ID (AdapterID)

This property identifies a specific deployment or instance of the adapter.

Table 207. Connection URL details

Required Yes

Default 001

Property type String

Usage This property identifies the adapter instance in the log and trace files, and also helps identify
the adapter instance while monitoring adapters. The adapter ID is used with an
adapter-specific identifier, SEBLRA, to form the component name used by the Log and Trace
Analyzer tool. For example, if the adapter ID property is set to 001, the component ID is
SEBLRA001.

If you run multiple instances of the same adapter, ensure that the first seven characters of the
adapter ID property are unique for each instance so that you can correlate the log and trace
information to a particular adapter instance. By making the first seven characters of an adapter
ID property unique, the component ID for multiple instances of that adapter is also unique,
allowing you to correlate the log and trace information to a particular instance of an adapter.

For example, when you set the adapter ID property of two instances of WebSphere Adapter for
Siebel Business Applications to 001 and 002. The component IDs for those instances,
SEBLRA001 and SEBLRA002, are short enough to remain unique, enabling you to distinguish
them as separate adapter instances. However, instances with longer adapter ID properties
cannot be distinguished from each other. If you set the adapter ID properties of two instances
to Instance01 and Instance02, you will not be able to examine the log and trace information for
each adapter instance because the component ID for both instances is truncated to
SEBLRAInstanc.

Globalized Yes

Bidi supported No

Code page (codePage)

Specifies the code page that the adapter uses to connect to Siebel server.

Table 208. Code page details

Required No

Default No default value

Property type String

Chapter 14. Reference 4117

Table 208. Code page details (continued)

Usage Use this property to specify the code page details that the adapter uses to connect to the Siebel
server.

The Siebel Java Data Bean supports a limited list of code page settings. If the current code page
setting of your run time is not supported, the adapter might not be able to connect to the Siebel
server.

The adapter uses the code page property to change the file.encoding property of the current
Java Virtual Machine (JVM), when it establishes its first connection to the Siebel server. This
change might affect other applications that run on the same JVM. Ensure that the code page
has a valid value for all applications.

Globalized No

Bidi supported No

Connection URL (ConnectionURL)

This property specifies the connection URL that is needed to connect to the Siebel
application.

Table 209. Connection URL details

Required Yes

Default No default value

Property type String

Usage Protocol://machinename:port/enterprisename/object manager/server name

For Siebel 7.0.5 to 7.5x : siebel://<IP ADDRESS>/siebel/SSEObjMgr_ENU/sebldev1
For Siebel 7.8 : siebel://<IP ADDRESS>:2321/Sieb78/SSEObjMgr_enu
For Siebel 8 : siebel://<IP ADDRESS>:2321/SBA_80/SSEObjMgr_enu

The default port number is 2320. In the examples above (for Siebel versions 7.8 and 8) another
port (2321) has been specified.

Globalized Yes

Bidi supported Yes

Language code (LanguageCode)

This property specifies the language code that is used to log on to the Siebel
server.

Table 210. Language code details

Required Yes

Possible values None

Default ENU

Property type String

Usage If the system locale is English, the value for this property is ENU (English). This value is used to
log on to the Siebel server.

Globalized No

Bidi supported No

4118 WebSphere Message Broker Version 7.0.0.8

Maximum records (maxRecords)

This property specifies the maximum number of records to return during a
RetrieveAll operation.

Table 211. Maximum records details

Required Yes

Default 100

Usage If the number of hits in the database exceeds the value of the MaximumRecords property, the
adapter returns the MatchesExceededLimitException error. The adapter uses this property to
help avoid out-of-memory issues.

Property type Integer

Globalized No

Bidi supported No

Password (Password)

This property specifies the password for the corresponding user name.

Table 212. Password details

Required Yes

Default No default value

Property type String

Example sadmin

Usage This property displays after you click Advanced on the connection properties pane of the
Adapter Connection wizard. The password is saved in .import and .export files so that the
adapter can connect to the Siebel application after it has been deployed. If a J2C Authentication
Alias is used, a password is not required.

Globalized Yes

Bidi supported Yes

Prefix (Prefix)

This property specifies the prefix for the business object name.

Table 213. Prefix details

Required No

Default No default value

Property type String

Usage The prefix string is attached to the front of the business object name.

Example If you use the prefix IBM, generate a business object for the EAI Siebel Adapter and the Insert
method, and choose the integration object, Account (PRM ANI), the corresponding business
object generated is:

IBMEAISiebelAdapterInsertAccountU40PRMANIU41

where U40 and U41 are the unicode value replacements of (and).

Globalized Yes

Bidi supported Yes

Chapter 14. Reference 4119

Resonate support (ResonateSupport)

This property indicates whether the Siebel server uses resonate support.

Table 214. Resonate support details

Required No

Possible values True
False

Default True

Property type Boolean

Usage If you select the check box, the property is set to True, and the adapter takes advantage of the
load balancing feature to connect to the Siebel server more efficiently. If you clear the check
box, the property is set to False.

Globalized No

Show error on empty result set (errorOnEmptyResultSet)

For a business object, this property specifies if the adapter returns an empty
business object or RecordNotFoundException when the result of RetreiveAll
operation does not return any records. For a business service, this property
specifies whether the adapter generates an exception when a returned Siebel
message is null.

Table 215. Show error on empty result set details

Required No

Default For a business object: True

For a business service: False

Property type Boolean

Usage For a business object:

v When this property is set to True, a "record not found" exception is issued if no records are
found in RetreiveAll operation.

v When this property is set to False, an empty business object is returned if no records are
found in RetreieveAll operation.

For a business service:

v When this property is set to True, a "record not found" exception is issued if no records are
returned.

v When this property is set to False, a null Siebel message is returned if no records are
returned.

Globalized No

Bidi supported No

User name (UserName)

This property specifies the user name that is used to log into the Siebel application.

Table 216. User name details

Required Yes

Possible values None

Default No default value

4120 WebSphere Message Broker Version 7.0.0.8

Table 216. User name details (continued)

Property type String

Usage This property displays after you click Advanced on the connection properties pane of the
Adapter Connection wizard. The user name is saved in .import and .export files so that the
adapter can connect to the Siebel application after it has been deployed. If a J2C Authentication
Alias is used, a password is not required.

Globalized Yes

Bidi supported Yes

View mode (ViewMode)

This property specifies the Siebel view mode and controls the data that can be
retrieved and what actions can be performed on it.

Table 217. View mode details

Required Yes

Possible values 1 - 9

Default 3.

Property type Integer

Usage The View mode property applies only to Siebel business objects and not to Siebel business
services. When this property is used for Siebel business objects, the default value is 3.

Example The adapter supports values 1 to 9. For example, 1 is Manager View, 2 is Personal View, and 3
is All View.

Globalized No

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection

Chapter 14. Reference 4121

wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for Siebel properties” on page 4092
Reference information to refer to when you connect to a Siebel application.
“SiebelInput node” on page 4740
Use the SiebelInput node to interact with a Siebel application.
“SiebelRequest node” on page 4745
Use the SiebelRequest node to interact with a Siebel application.

WebSphere Adapter for PeopleSoft properties:

Reference information to refer to when you connect to a PeopleSoft application.
v “Business-object information (PeopleSoft)” on page 4123
v “Supported operations (PeopleSoft)” on page 4124
v “PeopleCode for a custom event project” on page 4125
v “Configuration properties for the WebSphere Adapter for PeopleSoft Enterprise”

on page 4131
v “PeopleSoft connection properties for the Adapter Connection wizard” on page

4132
v “Inbound adapter properties for PeopleSoft” on page 4135
v “Outbound adapter properties for PeopleSoft” on page 4143
Related concepts:
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

4122 WebSphere Message Broker Version 7.0.0.8

Business-object information (PeopleSoft):

Information about the content of a business object is located primarily inside the
business-object definition file, a file that is generated by the Adapter Connection
wizard when it creates business objects.

The business-object definition file contains application-specific information (ASI),
which the adapter uses to perform operations, such as creating or updating. You
can also find information about the content of a business object in the name of the
business object. Although business-object names have no semantic value, they
often contain clues about what the business object contains and what operation the
adapter can perform on the PeopleSoft Enterprise server. For example, a business
object named UpdateAddress suggests that the adapter can update an address in
the PeopleSoft Enterprise server.

For more information, see “Supported operations (PeopleSoft)” on page 4124.
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Chapter 14. Reference 4123

“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Supported operations (PeopleSoft):

An operation is the action that an adapter can perform on the PeopleSoft
Enterprise server during outbound processing. The name of the operation typically
indicates the type of action that the adapter takes, such as create or update.

The following table defines the operations that the adapter supports.

Table 218. Supported operations of business objects

Operation Definition

Create The adapter accesses the PeopleSoft component and retrieves values from the attributes
that have the primary key application-specific information set. The adapter then opens
the corresponding component interface by using the value that is provided for the
ObjectName application-specific information. It sets the attribute values on the
corresponding Create Keys in the component interface. An empty Component Interface
is created, and the adapter maps all the business-object data to the created component
interface. When mapping the data, the adapter sends all data for simple attributes in the
hierarchy, and it creates items that match each of the child objects in the hierarchy,
including effective-dated and effective-sequenced child records.

Retrieve The adapter accesses the PeopleSoft component and retrieves values from the attributes
that have the primary key application-specific information set. The adapter then
instantiates the corresponding component interface by using the value that is provided
for the ObjectName application-specific information. It sets the attribute values on the
corresponding Get Keys in the component interface. The adapter then maps the
component data onto the business-object hierarchy. Child objects are included in the data
mapping.

RetrieveAll This operation performs in the same way as the Retrieve operation, except that it allows
retrieval of multiple instances of the same PeopleSoft component.

Update The adapter retrieves an object from PeopleSoft and compares it to the target business
object. When the comparison reveals extra child objects in PeopleSoft, the adapter
deletes children. When the comparison reveals missing children in PeopleSoft, the
adapter creates children. When the comparison reveals child objects that have been
updated in PeopleSoft, the adapter updates them.

Exists The adapter processes an exist operation in the same way that it processes a retrieve
operation, except that it does not populate the business object with retrieved data; it
checks for the existence of an object in PeopleSoft.

Delete Based on the values that are set for the application-specific metadata elements
StatusColumnName and StatusValue, the adapter updates a business object to inactive.
A delete operation can be performed only on a top level object. PeopleSoft does not
allow an object to be physically deleted, so the inactive object remains in the PeopleSoft
database.

Apply Changes This operation updates the PeopleSoft component based on the operation that was
performed on it. The supported operations are create, update, and delete.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and

4124 WebSphere Message Broker Version 7.0.0.8

PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

PeopleCode for a custom event project:

Two PeopleCode functions are required to support inbound processing. If you
create a custom event project in PeopleTools for inbound support, add the
PeopleCode functions to the project.

The following PeopleCode contains the IBMPublishEvent and
IBMPublishFutureDatedEvent functions that are used to publish events to the
event table. Calls to these functions are made from the SavePostChange
PeopleCode function in the PeopleSoft component of interest.
/* IBM event notification */
Component string &KEYSTRING;
Component string &KEYNAME;

Chapter 14. Reference 4125

Component array of string &KEYARRAY;
Component string &KEYDELIM;
Component string &IBMVERB;
Local Record &IBMREC;

Function IBMPublishFutureDatedEvent(&BO, &KEYS, &EFFDATE)
; /* == create a new record object for cw_event_tbl == */

&IBMREC = CreateRecord(Record.IBM_EVENT_TBL);
/* =============== KEYS ================ */
/* composing keys and values in name value format */

&KEYSTRING = "";
&KEYDELIM = ":";
&KEYARRAY = Split(&KEYS, &KEYDELIM);
&LEN = &KEYARRAY.Len;
For &I = 1 To &LEN;

/* get keys and values */
/* get rid of record name */

&POS1 = Find(".", &KEYARRAY [&I]);
&L1 = Len(&KEYARRAY [&I]);
&POS2 = &L1 - &POS1;
&KEYNAME = Right(&KEYARRAY [&I], &POS2);

/****The code below will remove special characters and****/
/****adjust the characters’ case to ensure it is same as the****/
/****attribute name in the business object definition***/
/****Start****/

&lLen = Len(&KEYNAME);
&sOrigString = &KEYNAME;
&sNewString = "";
&lCtr2 = 1;
&isSpecialChar = "true";
For &lCtr = 1 To &lLen;

&sChar = Substring(&sOrigString, &lCtr, 1);
If (&sChar = "A" Or

&sChar = "a" Or
&sChar = "B" Or
&sChar = "b" Or
&sChar = "C" Or
&sChar = "c" Or
&sChar = "D" Or
&sChar = "d" Or
&sChar = "E" Or
&sChar = "e" Or
&sChar = "F" Or
&sChar = "f" Or
&sChar = "G" Or
&sChar = "g" Or
&sChar = "H" Or
&sChar = "h" Or
&sChar = "I" Or
&sChar = "i" Or
&sChar = "J" Or
&sChar = "j" Or
&sChar = "K" Or
&sChar = "k" Or
&sChar = "L" Or
&sChar = "l" Or
&sChar = "M" Or
&sChar = "m" Or
&sChar = "N" Or
&sChar = "n" Or
&sChar = "O" Or
&sChar = "o" Or
&sChar = "P" Or
&sChar = "p" Or
&sChar = "Q" Or
&sChar = "q" Or
&sChar = "R" Or
&sChar = "r" Or
&sChar = "S" Or
&sChar = "s" Or
&sChar = "T" Or
&sChar = "t" Or
&sChar = "U" Or
&sChar = "u" Or
&sChar = "V" Or
&sChar = "v" Or
&sChar = "W" Or
&sChar = "w" Or
&sChar = "X" Or
&sChar = "x" Or
&sChar = "Y" Or
&sChar = "y" Or
&sChar = "Z" Or
&sChar = "z" Or
&sChar = "1" Or
&sChar = "2" Or
&sChar = "3" Or
&sChar = "4" Or
&sChar = "5" Or
&sChar = "6" Or
&sChar = "7" Or
&sChar = "8" Or

4126 WebSphere Message Broker Version 7.0.0.8

&sChar = "9" Or
&sChar = "0") Then

If (&isSpecialChar = "true") Then
&sNewString = &sNewString | Upper(&sChar);
&isSpecialChar = "false";

Else
&sNewString = &sNewString | Lower(&sChar);

End-If;
Else

&isSpecialChar = "true";
End-If;

End-For;
&KEYNAME = &sNewString;

/*********End*********/
&KEYSTRING = &KEYSTRING | &KEYNAME | "=" | @&KEYARRAY [&I] | &KEYDELIM

End-For;
&KEYSTRING = RTrim(&KEYSTRING, ":");
&IBMREC.IBM_OBJECT_KEYS.Value = &KEYSTRING;

/*============== VERB =========================*/
/* verb determination uses variable &IBMVERB */

Evaluate %Mode
When = "A"

&IBMVERB = "Create";
Break;

When = "U"
&IBMVERB = "Update";
Break;

When = "L"
&IBMVERB = "Update";
Break;

When = "C"
&IBMVERB = "Update";
Break;

When-Other
&IBMVERB = "Retrieve";

End-Evaluate;
&IBMREC.IBM_OBJECT_VERB.Value = &IBMVERB;

/* ====================== EVENT_ID GEN ==================================== */
/* create event_id */

&NEWNUM = GetNextNumber(IBM_FETCH_ID.IBM_NEXT_EVENT_ID, 99999);
/* only use newnum if no error generating next number */

If &NEWNUM > 0 Then
&IBMREC.IBM_EVENT_ID.Value = &NEWNUM;

Else
&IBMREC.IBM_EVENT_ID.Value = %Datetime;

End-If; /*Support for Future Effective Date - The adapter will poll such events when the date arrives*/
If &EFFDATE > %Datetime Then

&IBMREC.IBM_EVENT_DTTM.Value = &EFFDATE;
&IBMREC.IBM_EVENT_STATUS.Value = "99";

Else
&IBMREC.IBM_EVENT_DTTM.Value = %Datetime;
&IBMREC.IBM_EVENT_STATUS.Value = "0";

End-If; /*================ INSERT EVENT INTO IBM_EVENT_TBL ============*/
/* insert row into table using record object*/

&IBMREC.IBM_OBJECT_NAME.Value = &BO;
&IBMREC.Insert();

End-Function;

Function IBMPublishEvent(&BO, &KEYS);
/* == create a new record object for cw_event_tbl == */
&IBMREC = CreateRecord(Record.IBM_EVENT_TBL);

/* =============== KEYS ================ */
/* composing keys and values in name value format */
&KEYSTRING = "";
&KEYDELIM = ":";
&KEYARRAY = Split(&KEYS, &KEYDELIM);
&LEN = &KEYARRAY.Len;

For &I = 1 To &LEN;
/* get keys and values */
/* get rid of record name */
&POS1 = Find(".", &KEYARRAY [&I]);
&L1 = Len(&KEYARRAY [&I]);
&POS2 = &L1 - &POS1;
&KEYNAME = Right(&KEYARRAY [&I], &POS2);

/****The code below will remove special characters and
/****adjust the characters’ case to ensure it is same as the
/****attribute name in the business object definition***/
/****Start****/

Chapter 14. Reference 4127

&lLen = Len(&KEYNAME);
&sOrigString = &KEYNAME;
&sNewString = "";
&lCtr2 = 1;
&isSpecialChar = "true";
For &lCtr = 1 To &lLen;

&sChar = Substring(&sOrigString, &lCtr, 1);
If (&sChar = "A" Or

&sChar = "a" Or
&sChar = "B" Or
&sChar = "b" Or
&sChar = "C" Or
&sChar = "c" Or
&sChar = "D" Or
&sChar = "d" Or
&sChar = "E" Or
&sChar = "e" Or
&sChar = "F" Or
&sChar = "f" Or
&sChar = "G" Or
&sChar = "g" Or
&sChar = "H" Or
&sChar = "h" Or
&sChar = "I" Or
&sChar = "i" Or
&sChar = "J" Or
&sChar = "j" Or
&sChar = "K" Or
&sChar = "k" Or
&sChar = "L" Or
&sChar = "l" Or
&sChar = "M" Or
&sChar = "m" Or
&sChar = "N" Or
&sChar = "n" Or
&sChar = "O" Or
&sChar = "o" Or
&sChar = "P" Or
&sChar = "p" Or
&sChar = "Q" Or
&sChar = "q" Or
&sChar = "R" Or
&sChar = "r" Or
&sChar = "S" Or
&sChar = "s" Or
&sChar = "T" Or
&sChar = "t" Or
&sChar = "U" Or
&sChar = "u" Or
&sChar = "V" Or
&sChar = "v" Or
&sChar = "W" Or
&sChar = "w" Or
&sChar = "X" Or
&sChar = "x" Or
&sChar = "Y" Or
&sChar = "y" Or
&sChar = "Z" Or
&sChar = "z" Or
&sChar = "1" Or
&sChar = "2" Or
&sChar = "3" Or
&sChar = "4" Or
&sChar = "5" Or

4128 WebSphere Message Broker Version 7.0.0.8

&sChar = "6" Or
&sChar = "7" Or
&sChar = "8" Or
&sChar = "9" Or
&sChar = "0") Then

If (&isSpecialChar = "true") Then
&sNewString = &sNewString | Upper(&sChar);
&isSpecialChar = "false";

Else
&sNewString = &sNewString | Lower(&sChar);

End-If;
Else

&isSpecialChar = "true";
End-If;

End-For;
&KEYNAME = &sNewString;

/*********End*********/
&KEYSTRING = &KEYSTRING | &KEYNAME | "=" | @&KEYARRAY [&I] | &KEYDELIM

End-For;
&KEYSTRING = RTrim(&KEYSTRING, ":");

&IBMREC.IBM_OBJECT_KEYS.Value = &KEYSTRING;

/*============== VERB =========================*/
/* verb determination uses variable &IBMVERB */
Evaluate %Mode
When = "A"

&IBMVERB = "Create";
Break;

When = "U"
&IBMVERB = "Update";
Break;

When = "L"
&IBMVERB = "Update";
Break;

When = "C"
&IBMVERB = "Update";
Break;

When-Other
&IBMVERB = "Retrieve";

End-Evaluate;

&IBMREC.IBM_OBJECT_VERB.Value = &IBMVERB;

/* ====================== EVENT_ID GEN ============================= */
/* create event_id */

&NEWNUM = GetNextNumber(IBM_FETCH_ID.IBM_NEXT_EVENT_ID, 99999);

/* only use newnum if no error generating next number */

If &NEWNUM > 0 Then
&IBMREC.IBM_EVENT_ID.Value = &NEWNUM;

Else
&IBMREC.IBM_EVENT_ID.Value = %Datetime;

End-If;

&IBMREC.IBM_EVENT_DTTM.Value = %Datetime;

/* ============== EVENT_STATUS =================*/
/* Validate and set event status &IBMSTATUS - list values if date is ok*/
&IBMREC.IBM_EVENT_STATUS.Value = "0";

Chapter 14. Reference 4129

/*================ INSERT EVENT INTO IBM_EVENT_TBL ============*/
/* insert row into table using record object*/

&IBMREC.IBM_OBJECT_NAME.Value = &BO;

&IBMREC.Insert();

End-Function;

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

4130 WebSphere Message Broker Version 7.0.0.8

Configuration properties for the WebSphere Adapter for PeopleSoft Enterprise:

WebSphere Adapter for PeopleSoft Enterprise has several categories of
configuration properties, which you set with the Adapter Connection wizard when
it generates or creates objects and services.

You can change the connection properties for the Adapter Connection wizard, and
the inbound and outbound adapter properties. For more information, see the
following topics.
v “PeopleSoft connection properties for the Adapter Connection wizard” on page

4132
v “Inbound adapter properties for PeopleSoft” on page 4135
v “Outbound adapter properties for PeopleSoft” on page 4143
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.

Chapter 14. Reference 4131

“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

PeopleSoft connection properties for the Adapter Connection wizard:

Connection properties for the Adapter Connection wizard are used to establish a
connection between the Adapter Connection wizard and the application from
which the wizard obtains metadata. These properties specify such things as
connection configuration, and logging options.

If you set any of these connection properties using bidirectional script, you must
set values that identify the format of the bidirectional script entered for that
property.

The connection properties and their purpose are described in the following table. A
complete description of each property is provided in the sections that follow the
table.

Table 219. Connection properties

Property name Description

“Component interface jar file” The PeopleSoft Enterprise component interface that the adapter uses to
establish a connection to the PeopleSoft components that are targets of
integration transactions

“Host name ” on page 4133 The name or address of the server that hosts PeopleSoft Enterprise

“Password ” on page 4133 The password of the user account of the adapter on the PeopleSoft
Enterprise server

“Port number” on page 4133 The port number at which PeopleSoft Enterprise is configured to listen for
client requests.

“Prefix for business object names” on
page 4133

A prefix to be added to generated business objects

“User name” on page 4134 The name of the user account that the adapter uses on the PeopleSoft
Enterprise server

Component interface jar file

This property specifies the PeopleSoft Enterprise component interface that the
adapter uses to establish a connection to the PeopleSoft components that are
targets of integration transactions.

Table 220. Component interface jar file details

Required Yes

Default No default

Property type String

Usage The name of the JAR file that the adapter uses to connect to the PeopleSoft Enterprise
components of interest

Example CWYES_PeopleSoft\connectorModule\WbiEvent.jar

Globalized No

Bidi supported No

4132 WebSphere Message Broker Version 7.0.0.8

Host name

This property specifies the name or address of the server that hosts PeopleSoft
Enterprise.

Table 221. Host name details

Required Yes

Default No default value

Property type String

Usage Identifies the server, either by name or IP address, that hosts PeopleSoft Enterprise

Example 9.26.248.202

Globalized No

Bidi supported No

Password

This property specifies the password of the user account of the adapter on the
PeopleSoft Enterprise server.

Table 222. Password details

Required Yes

Default No default value

Property type String

Usage The restrictions (case, length, and character) are determined by the PeopleSoft Enterprise
version.

Globalized Yes

Bidi supported Yes

Port number

This property specifies the port number at which PeopleSoft Enterprise is
configured to listen for client requests.

Table 223. Port number details

Required Yes

Default The port number that is entered when you run the Adapter Connection wizard

Property type Integer

Example 9000

Globalized No

Bidi supported No

Prefix for business object names

This property specifies a prefix to be added to generated business objects.

Table 224. Prefix details

Required No

Default No default

Chapter 14. Reference 4133

Table 224. Prefix details (continued)

Property type String

Usage Use this property to distinguish between different business objects that are generated against
the same PeopleSoft component interface.

Example If you use IB as a prefix, all business objects that are generated by this service are named using
this prefix.

Globalized Yes

Bidi supported No

User name

This property specifies the name of the user account that the adapter uses on the
PeopleSoft Enterprise server.

Table 225. User name details

Required Yes

Default No default value

Property type String

Usage The restrictions (case, length, and character) are determined by the PeopleSoft Enterprise
version.

Example DV1

Globalized Yes

Bidi supported Yes

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).

4134 WebSphere Message Broker Version 7.0.0.8

“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Inbound adapter properties for PeopleSoft:

Inbound adapter properties hold the configuration information for inbound event
processing of an export component. These properties also control the general
operation of the adapter, such as specifying the namespace for business objects.
Use the Adapter Connection wizard to set these properties.

The following table lists the properties for inbound processing that you set by
using the Adapter Connection wizard. A more detailed description of each
property is provided in the sections that follow the table.

Table 226. Inbound adapter properties

Property name Purpose

Adapter ID to use for logging and
tracing (AdapterID)

The name of the adapter instance in the log and trace files.

Ensure once-only event delivery
(AssuredOnceDelivery)

Specifies whether the adapter provides assured once-only delivery of
events.

Component interface for testing failed
connections (PingCompIntfc)

The component interface that the adapter uses to validate a connection to
the PeopleSoft Enterprise server

Component interface name for event
notification (EventCIName)

The component interface that the adapter uses for event notification

Delivery type (DeliveryType) Determines the order in which events are delivered by the adapter to the
export component.

Delimiter for keys in the event store
(EventKeyDelimiter)

The name and value for an object key in the event table

Event types to process
(EventTypeFilter)

A delimited list of event types that indicates to the adapter which events it
should deliver

Java date format for event timestamp
(DateFormat)

The format that is used to create the event timestamp

Maximum connections
(MaximumConnections)

The maximum number of connections that the adapter can use for inbound
event delivery.

Minimum connections
(MinimumConnections)

The minimum number of connections that the adapter can use for inbound
event delivery.

Chapter 14. Reference 4135

Table 226. Inbound adapter properties (continued)

Property name Purpose

Interval between polling periods
(PollPeriod)

The length of time that the adapter waits between polling periods.

Maximum number of events collected
during each poll (PollQuantity)

The number of events that the adapter delivers to the export component
during each poll period.

Stop polling on error
(StopPollingOnError)

Specifies whether the adapter stops polling for events when it encounters
an error during polling.

Retry interval if connection fails
(RetryInterval)

The length of time that the adapter waits between attempts to establish a
new connection after an error occurs during inbound operations.

Adapter ID to use for logging and tracing (AdapterID)

Required Yes

Default 001

Property type String

Usage This property identifies the adapter instance in the log and trace files, and
also helps identify the adapter instance while monitoring adapters. The
adapter ID is used with an adapter-specific identifier, PSOFTRA, to form
the component name used by the Log and Trace Analyzer tool. For
example, if the adapter ID property is set to 001, the component ID is
PSOFTRA001.

If you run multiple instances of the same adapter, ensure that the first
eight characters of the adapter ID property are unique for each instance so
that you can correlate the log and trace information to a particular adapter
instance. By making the first seven characters of an adapter ID property
unique, the component ID for multiple instances of that adapter is also
unique, allowing you to correlate the log and trace information to a
particular instance of an adapter.

For example, when you set the adapter ID property of two instances of
WebSphere Adapter for PeopleSoft Enterprise to 001 and 002. The
component IDs for those instances, PSOFTRA001 and PSOFTRA002, are
short enough to remain unique, enabling you to distinguish them as
separate adapter instances. However, instances with longer adapter ID
properties cannot be distinguished from each other. If you set the adapter
ID properties of two instances to Instance01 and Instance02, you will not
be able to examine the log and trace information for each adapter instance
because the component ID for both instances is truncated to
PSOFTRAInstance.

For inbound processing, this property is retrieved from the resource
adapter properties. For outbound processing, it is retrieved from the
managed connection factory properties.

Globalized Yes

Bidi
supported

No

Ensure once-only event delivery (AssuredOnceDelivery)

This property specifies whether to provide ensured once-only event delivery for
inbound events.

4136 WebSphere Message Broker Version 7.0.0.8

Table 227. Ensure once-only event delivery details

Required Yes

Possible values True
False

Default True

Property type Boolean

Usage When this property is set to True, the adapter provides assured once-only event delivery so
that each event is delivered only once. A value of False does not provide assured once event
delivery, but provides better performance.

When this property is set to True, the adapter attempts to store transaction (XID) information in
the event store. If it is set to False, the adapter does not attempt to store the information.

This property is used only if the export component is transactional. If it is not, no transaction
can be used, regardless of the value of this property.

Globalized No

Bidi supported No

Component interface for testing failed connection (PingCompInterface)

This property specifies the name of the PeopleSoft Enterprise component interface
that the adapter uses to validate a connection to the PeopleSoft Enterprise server.

Table 228. Component interface for testing failed connection details

Row Explanation

Required Yes

Default The name of the first component interface in the list

Property type String

Usage The name of the component interface that the adapter uses to test connectivity to the
PeopleSoft Enterprise server. Specify a component interface name that already exists in your
PeopleSoft Enterprise applications.

Globalized No

Bidi supported No

Component interface name for event notification (EventCIName)

This property specifies the name of the PeopleSoft Enterprise component interface
that the adapter uses to for inbound processing.

Table 229. Component interface name for event notification details

Row Explanation

Required Yes

Default IBM_EVENT_CI

Property type String

Usage The name of the component interface that the adapter uses for inbound processing. To use
inbound processing, create a component interface specifically for event notification in
PeopleSoft Enterprise.

Globalized No

Bidi supported No

Chapter 14. Reference 4137

Delivery type (DeliveryType)

This property specifies the order in which events are delivered by the adapter to
the export component.

Table 230. Delivery type details

Required No

Possible values ORDERED
UNORDERED

Default ORDERED

Property type String

Usage The following values are supported:

v ORDERED: The adapter delivers events to the export component one at a time.

v UNORDERED: The adapter delivers all events to the export component at once.

Globalized No

Bidi supported No

Delimiter for keys in the event store (EventKeyDelimiter)

This property specifies the delimiter for the object key name-value pair in the
event table.

Table 231. Delimiter for keys in the event store details

Row Explanation

Required No

Default =:

Property type String

Usage Use this property to specify an object name and value to be used as an object key in the event
store.

Example CustomerID=2001

Globalized No

Bidi supported No

Do not process events that have a timestamp in the future (FilterFutureEvents)

This property specifies whether the adapter filters out future events by comparing
the timestamp on each event with the system time.

Table 232. Do not process events that have a timestamp in the future details

Required Yes

Possible values True
False

Default False

Property type Boolean

4138 WebSphere Message Broker Version 7.0.0.8

Table 232. Do not process events that have a timestamp in the future details (continued)

Usage If set to True, the adapter compares the time of each event to the system time. If the event time
is later than the system time, the event is not delivered.

If set to False, the adapter delivers all events.

Globalized No

Bidi supported No

Event types to process (EventTypeFilter)

This property contains a delimited list of event types that indicates to the adapter
which events it should deliver.

Table 233. Event types to process details

Required No

Possible values A comma-delimited (,) list of business object types

Default null

Property type String

Usage Events are filtered by business object type. If the property is set, the adapter delivers only those
events that are in the list. A value of null or * indicates that no filter will be applied and that
all events will be delivered to the export component.

Example To receive only events that relate to the Customer and Order business objects, specify this
value:
Customer,Order

Globalized No

Bidi supported No

Java date format for event timestamp (DateFormat)

This property specifies the format that is used for the event timestamp.

Table 234. Java date format for event timestamp details

Row Explanation

Required Yes

Default MM/dd/yy

Property type String

Usage This property is used to format the date values from the PeopleSoft Enterprise server.

Globalized No

Bidi supported No

Maximum connections (MaximumConnections)

This property specifies the maximum number of connections that the adapter can
use for inbound event delivery.

Table 235. Maximum connections details

Required No

Default 1

Chapter 14. Reference 4139

Table 235. Maximum connections details (continued)

Property type Integer

Usage Only positive values are valid. The adapter considers any positive entry less than 1 to be equal
to 1. Typing a negative value or 0 for this property might result in runtime errors.

Globalized No

Bidi supported No

Minimum connections (MinimumConnections)

This property specifies the minimum number of connections that the adapter can
use for inbound event delivery.

Table 236. Minimum connections details

Required No

Default 1

Property type Integer

Usage Only positive values are valid. Any value less than 1 is treated as 1 by the adapter. Typing a
negative value or 0 for this property might result in runtime errors.

Globalized No

Bidi supported No

Interval between polling periods (PollPeriod)

This property specifies the length of time that the adapter waits between polling
periods.

Table 237. Interval between polling periods details

Required Yes

Possible values Integers greater than or equal to 0.

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage The poll period is established at a fixed rate, which means that if running the poll cycle is
delayed for any reason (for example, if a prior poll cycle takes longer than expected to
complete) the next poll cycle occurs immediately to make up for the lost time that was caused
by the delay.

Globalized No

Bidi supported No

Maximum events in polling period (PollQuantity)

This property specifies the number of events that the adapter delivers to the export
component during each poll period.

Table 238. Maximum events in polling period details

Required Yes

Default 10

Property type Integer

4140 WebSphere Message Broker Version 7.0.0.8

Table 238. Maximum events in polling period details (continued)

Usage The value must be greater than 0. If this value is increased, more events are processed per
polling period, and the adapter might perform less efficiently. If this value is decreased, fewer
events are processed per polling period, and the adapter's performance might improve slightly.

Globalized No

Bidi supported No

Number of times to retry the system connection (RetryLimit)

This property specifies the number of times that the adapter tries to reestablish an
inbound connection.

Table 239. Number of times to retry the system connection details

Required No

Possible values Positive integers

Default 0

Property type Integer

Usage Only positive values are valid.

When the adapter encounters an error that is related to the inbound connection, this property
specifies the number of times that the adapter tries to restart the connection. A value of 0
indicates an infinite number of retries.

Globalized Yes

Bidi supported No

Stop the adapter when an error is encountered while polling
(StopPollingOnError)

This property specifies whether the adapter stops polling for events when it
encounters an error during polling.

Table 240. Stop the adapter when an error is encountered while polling details

Required No

Possible values True
False

Default False

Property type Boolean

Usage If this property is set to True, the adapter stops polling when it encounters an error.

If this property is set to False, the adapter logs an exception when it encounters an error
during polling and continues polling.

Globalized No

Bidi supported No

Retry interval if connection fails (RetryInterval)

When the adapter encounters an error that is related to the inbound connection,
this property specifies the length of time that the adapter waits before trying to
establish a new connection.

Chapter 14. Reference 4141

Table 241. Retry interval details

Required Yes

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage Only positive values are valid. When the adapter encounters an error that is related to the
inbound connection, this property specifies the length of time that the adapter waits before
trying to establish a new connection.

Globalized No

Bidi supported No

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.

4142 WebSphere Message Broker Version 7.0.0.8

“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

Outbound adapter properties for PeopleSoft:

Outbound adapter properties define how the adapter creates an outbound
connection instance with the PeopleSoft Enterprise server, and how operations are
run on the server. Use the Adapter Connection wizard to set these properties.

The following table describes the outbound adapter properties. A more detailed
description of each property is provided in the sections that follow the table.

Table 242. Managed connection factory properties

Property Description

Component interface for testing failed
connection

The component interface that the adapter uses to validate a connection to
the PeopleSoft Enterprise server

Host name The name or address of the server that hosts PeopleSoft Enterprise

“Language (Language)” on page 4144 The language code that the adapter uses to log on to the PeopleSoft
Enterprise server

Maximum number of records for
RetrieveAll operation

The maximum number of records to return during a RetrieveAll operation

“Password (Password)” on page 4144 The password of the user account of the adapter on the PeopleSoft
Enterprise server

“Port number (Port)” on page 4145 The port number that the adapter uses to access the PeopleSoft Enterprise
server

“User name (UserName)” on page 4145 The name of the user account that the adapter uses on the PeopleSoft
Enterprise server

Component interface for testing failed connection (PingCompInterface)

This property specifies the name of the PeopleSoft Enterprise component interface
that the adapter uses to validate a connection to the PeopleSoft Enterprise server.

Table 243. Component interface for testing failed connection details

Required Yes

Default The name of the first component interface in the list

Property type String

Usage Specify a component interface name that already exists within your PeopleSoft Enterprise
applications.

Example WBI_CUSTOMER_CI

Globalized No

Bidi supported No

Host name (HostName)

This property specifies the name or address of the server that hosts PeopleSoft
Enterprise.

Chapter 14. Reference 4143

Table 244. Host name details

Required Yes

Default No default value

Property type String

Usage Identifies, either by name or IP address, the server that hosts PeopleSoft Enterprise

Example 9.26.248.202

Globalized No

Bidi supported No

Language (Language)

This property specifies the language code that the adapter uses to log on to the
PeopleSoft Enterprise server.

Table 245. Language details

Required Yes

Default The default value for the Language property is based on the system locale.

Property type String

Usage Each of the supported languages is preceded by a three-character language code. The language
itself is presented in parentheses.

Example If the system locale is English, the value for this property is ENG (English).

Globalized No

Bidi supported No

Maximum number of records for RetrieveAll operation (MaxRecords)

This property specifies the maximum number of records to return during a
RetrieveAll operation.

Table 246. Maximum number of records for RetrieveAll operation details

Required Yes

Default 100

Usage If the number of hits in PeopleSoft Enterprise exceeds the value of the Maximum number of
records for the RetrieveAll operation property, the adapter returns an error. The adapter uses
this property to help avoid out-of-memory issues.

Property type Integer

Globalized No

Bidi supported No

Password (Password)

This property specifies the password of the user account of the adapter on the
PeopleSoft Enterprise server.

Table 247. Password details

Required Yes

Default No default value

4144 WebSphere Message Broker Version 7.0.0.8

Table 247. Password details (continued)

Property type String

Usage The restrictions (case, length, and character) are determined by the PeopleSoft Enterprise
version.

Globalized No

Bidi supported No

Port number (Port)

This property specifies the port number that the adapter uses to access the
PeopleSoft Enterprise server.

Table 248. Port number details

Required Yes

Default The port number that is entered when you use the Adapter Connection wizard to discover
objects and services

Property type Integer

Example 9000

Globalized No

Bidi supported No

User name (UserName)

This property specifies the name of the user account that the adapter uses on the
PeopleSoft Enterprise server.

Table 249. User name details

Required Yes

Default No default value

Property type String

Usage The restrictions (case, length, and character) are determined by the PeopleSoft Enterprise
version.

Example DV1

Globalized No

Bidi supported No

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
Related tasks:

Chapter 14. Reference 4145

“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for PeopleSoft properties” on page 4122
Reference information to refer to when you connect to a PeopleSoft application.
“PeopleSoftInput node” on page 4630
Use the PeopleSoftInput node to interact with a PeopleSoft application.
“PeopleSoftRequest node” on page 4635
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

WebSphere Adapter for JD Edwards EnterpriseOne properties:

Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.
v “Business object information (JD Edwards)” on page 4147
v “Adapter configuration properties for JD Edwards” on page 4153
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).

4146 WebSphere Message Broker Version 7.0.0.8

“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

Business object information (JD Edwards):

You can determine the purpose of a business object by examining both the
application-specific information in the business object definition file and the name
of the business object.

The application-specific information dictates what operations can be performed on
the JD Edwards EnterpriseOne server. The name typically reflects the operation to
be performed and the structure of the business object.

For more information about business objects, see the following topics:
v “Application-specific information (JD Edwards)” on page 4148
v “Supported operations (JD Edwards)” on page 4151
v “Naming conventions for JD Edwards EnterpriseOne” on page 4152
Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).

Chapter 14. Reference 4147

“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Application-specific information (JD Edwards):

Application-specific information (ASI) is metadata that specifies adapter-dependent
information about how to process business objects for the WebSphere Adapter for
JD Edwards EnterpriseOne.

When the Adapter Connection wizard generates a business object, it automatically
generates a business object definition, which is saved as an XSD (XML Schema
Definition) file. The business object definition contains the ASI for that business
object.

The WebSphere Adapter for JD Edwards EnterpriseOne uses ASI to create queries
for Create, Retrieve, Update, and Delete operations. ASI is generated by the
Adapter Connection wizard at three levels: the business-object level, the property
level, and the operation level.

Application-specific information at the business-object-level

ASI at the business-object level is typically used to specify the name of the
corresponding database table and to provide information necessary to perform a
physical or logical delete operation. The following table describes the ASI at the
business-object level.

Application-specific information Description

Name The name of the operation.

BSFN The list of business functions associated with the operation.

AlwaysReturnResponse Used to designate if the adapter returns a response business object for every
request.

If the value is set to true, the adapter always returns a response business
object.

If the value is set to false, an exception is generated after a JD Edwards
EnterpriseOne business function is completed. This exception is generated
against the user's component.

The default value is false.

For runtime exceptions, for example, if the adapter cannot establish a
connection with the JD Edwards EnterpriseOne server, the exception is still
generated against the user's component.

4148 WebSphere Message Broker Version 7.0.0.8

Application-specific information at the property level

ASI at the property level is typically used to specify the metadata for a property,
and represents either child objects or an array of child objects. The following table
describes the ASI of a complex property (a child) or a structure or table property
(an array of child objects).

Application-specific
information Description Possible values

Name The business function parameter name
as represented in JD Edwards
EnterpriseOne.

BSFNName

Type The type of the business function
parameter as it exists in JD Edwards
EnterpriseOne.

BSFN

IOType The type of the business function
parameter as it exists in JD Edwards
EnterpriseOne.

v IN: the parameter is mapped from the
business object to the business function.

v OUT: the parameter is mapped from the
business function to the business object.

v INOUT: the parameter is mapped both ways.

v DEFAULT: the parameter is mapped by using
the default JD Edwards EnterpriseOne value.
For adapter purposes, it is processed as
INOUT.

RequiredType Identifies if the parameter is required. v YES: the parameter is required.

v NO: the parameter is not required.

v DEFAULT: the parameter is using the JD
Edwards EnterpriseOne value. For adapter
purposes, it is processed as NO.

Length The maximum length for the parameter
value.

None

Reference The XPath of the business object
property that is used to obtain the value
of this attribute. The XPath expression
starts at the business function level

BusinessFunctionContainer
BusinessFunction1
Prop1
BusinessFunction2
Prop2

If the BusinessFunction2/Prop2 property must
be set with the value of BusinessFunction1/
Prop1, the value of Reference for
BusinessFunction2/Prop2 must be set to
BusinessFunction1/Prop1.

Application-specific information at the operation level

ASI at the operation level is used by the adapter to complete operations, such as to
retrieve or update information in the JD Edwards EnterpriseOne server. The
following table describes the ASI at the operation level.

Chapter 14. Reference 4149

Application-specific
information Description Value

Name The name of the business object operation. v Create

v Retrieve

v Update

v Delete

v RetrieveAll

BSFN.Name The name of the business functions to
process.

v Name

v RollbackOnWarnings

BSFN.RollbackOnWarnings Indicates if the adapter must roll back the
current transaction when the business
function returns with warnings.

False (default setting)

RunOnError Used to designate if the adapter should
continue to process the sequential JD
Edwards EnterpriseOne server business
functions when a business function
encounters an error while completing the
business function.

If the value is set to Yes, the adapter
continues to process the subsequent
business functions, even if the business
function fails. The error message is stored
to the attribute, BSFNExecutionErrors.

If the value is set to false, the adapter
stops the execution process and a rollback
operation is performed.

If the ASI RunOnError property is set to
true for all business functions, the rollback
operation is not performed. An error
message for each business function that
has failed is stored in the attribute
BSFNExecutionErrors, against each
business function in the response business
object.

False (default setting)

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere

4150 WebSphere Message Broker Version 7.0.0.8

Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Supported operations (JD Edwards):

An operation is the action that an adapter can perform on the JD Edwards
EnterpriseOne server during outbound processing. The name of the operation
typically indicates the type of action that the adapter takes, such as create or
update.

The following tables define the operations that the WebSphere Adapter for JD
Edwards EnterpriseOne supports during outbound processing for business
functions and XML Lists.

Table 250. Supported operations of business functions

Operation Definition

Create The top-level business object and all contained children are created.

Update The top-level business object is modified. This operation can include adding and
deleting child objects.

Delete The top-level business object and any contained children are deleted.

Retrieve The top-level business object and any contained children are retrieved.

Table 251. Supported operations of XML Lists

Operation Definition

RetrieveAll Retrieves all records from the JD Edwards EnterpriseOne server that correspond to the
query values specified in the XML List. Returns a result set in the form of a container of
JD Edwards EnterpriseOne query business objects, which represent the data for each
row retrieved from the table.

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards

Chapter 14. Reference 4151

EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Naming conventions for JD Edwards EnterpriseOne:

When the Adapter Connection wizard generates a business object, it provides a
name for the business object based on the name of the object in the JD Edwards
EnterpriseOne server that it uses to build the business object.

When the Adapter Connection wizard provides a name for the business object, it
converts the name of the object to mixed case, removing separators, such as spaces
or underscores, then capitalizes the first letter of each word. For example, if the
Adapter Connection wizard uses a JD Edwards EnterpriseOne server object called
CUSTOMER_ADDRESS to generate a business object, it generates a business object
called CustomerAddress.

The generated business object name can indicate the structure of the business
object. However, business objects names have no semantic value to the adapter.
Therefore, if you change the business object name, the behavior of the business
object remains the same.

Element Naming convention Example

Name of the
business
object
container

<name_of_business_object>Container GetEffectiveAddressContainer

Name of the
business
function

Name of the business function discovered by the
Adapter Connection wizard

GetEffectiveAddress

4152 WebSphere Message Broker Version 7.0.0.8

Element Naming convention Example

Name of the
XML List

Name of the XML List table discovered by the
Adapter Connection wizard

F0116

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Adapter configuration properties for JD Edwards:

The WebSphere Adapter for JD Edwards EnterpriseOne has several categories of
connection configuration properties, which you set with the Adapter Connection
wizard while generating or creating objects and services.

You can change the connection properties for the Adapter Connection wizard, and
the inbound and outbound adapter properties. For more information, see the
following topics:
v “Connection properties for the Adapter Connection wizard (JD Edwards)” on

page 4154
v “Inbound adapter properties for JD Edwards” on page 4158
v “Outbound adapter properties for JD Edwards” on page 4165
Related concepts:

Chapter 14. Reference 4153

“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Connection properties for the Adapter Connection wizard (JD Edwards):

Adapter configuration properties establish a connection between the Adapter
Connection wizard and the JD Edwards EnterpriseOne server. The properties that
you configure in the Adapter Connection wizard specify such things as connection
configuration, bidirectional properties, and logging and tracing options.

After a connection between the Adapter Connection wizard and the JD Edwards
EnterpriseOne server is established, the Adapter Connection wizard is able to
access the metadata it needs from the JD Edwards EnterpriseOne server to create
business objects.

The adapter connection properties and their purposes are described in the
following table. A complete description of each property is provided in the sections
that follow the table.

Important: If you set any of these connection properties using bidirectional script,
you must set values that identify the format of the bidirectional script entered for
that property.

4154 WebSphere Message Broker Version 7.0.0.8

Property Description

“Environment” Specifies the JD Edwards EnterpriseOne environment name.

“Log file output location” Specifies the location of the log file for the discovery process.

“Logging level” Specifies the type error for which logging occurs during the discovery
process.

“Password” on page 4156 Password of the adapter user account on the JD Edwards EnterpriseOne
environment.

“Role” on page 4156 Name of the role that is associated with the user name used to access the
JD Edwards EnterpriseOne environment.

“User name” on page 4157 Name of the adapter user account on the JD Edwards EnterpriseOne
environment.

Environment

This property specifies the JD Edwards EnterpriseOne environment name.

Required Yes

Default No default value

Property type String

Usage A JD Edwards EnterpriseOne environment is a user-defined pointer that indicates the location
of data and objects on a JD Edwards EnterpriseOne server. Users can be authorized to use
multiple JD Edwards EnterpriseOne environments on a single JD Edwards EnterpriseOne
server.

Globalized Yes

Bidi supported Yes

Log file output location

This property specifies the location of the log file for the discovery process.

Required Yes

Default The .metadata directory of the workspace

Property type String

Usage Use this directory to hold the log file that lists the errors that occur during the discovery
process. The type of discovery errors for which logging occurs is controlled by the Logging
level property.

Example C:\IBM\wmbt70\workspace\.metadata\JDEMetadataDiscovery.log

Globalized Yes

Bidi supported No

Logging level

This property specifies the type of error for which logging occurs during the
discovery process.

Required No

Chapter 14. Reference 4155

Possible values ALL
OFF
FINE
FINER
FINEST
CONFIG
INFO
SEVERE
WARNING

Default SEVERE

Property type String

Usage Use this property to tailor tracing capabilities. By specifying an error type, you are indicating
that trace operations occur only for errors of the type specified.

Example Accepting the default value of SEVERE provides trace information about errors that fall into
the SEVERE category. Severe errors indicate that an operation cannot continue, although the
adapter can still function. Severe errors also include error conditions that indicate an
impending unrecoverable error, that is, reporting on situations that strongly suggest that
resources are on the verge of being depleted.

Other error descriptions are described in the following list:

v Fatal – The adapter cannot continue. The adapter cannot function.

v Warning – A potential error or impending error, which includes conditions that indicate a
progressive failure; for example, the potential leaking of resources.

v Audit – A significant event affecting adapter state or resources.

v Info – General information outlining overall operation progress.

v Config – Configuration change or status.

v Detail – General information detailing operation progress.

Globalized Yes

Bidi supported No

Password

This property specifies the password of the adapter user account on the JD
Edwards EnterpriseOne environment.

Required No

Default No default value

Property type String

Usage Passwords are created and named by the JD Edwards EnterpriseOne administrator. No
restrictions exist on the type of characters used, the number of characters used, or the case of
the characters used in passwords.

Globalized No

Bidi supported Yes

Role

This property specifies the name of the role that is associated with the user name
used to access the JD Edwards EnterpriseOne environment.

Required Yes

Default No default value

4156 WebSphere Message Broker Version 7.0.0.8

Property type String

Usage Roles define what authority users have. Users can have multiple roles. A user's access to
applications, forms, table columns, data sources, and so on, is based on one or more roles to
which the user is assigned. Roles are created and named by the JD Edwards EnterpriseOne
administrator.

Examples v System administrator

v Human resources

v Accounting

Globalized No

Bidi supported Yes

User name

This property specifies the name of the adapter user account on the JD Edwards
EnterpriseOne environment.

Required No

Default No default value

Property type String

Usage User names are created by the JD Edwards EnterpriseOne administrator. No restrictions exist
on the type of characters used, the number of characters used, or the case of the characters
used in user names.

Globalized Yes

Bidi supported Yes

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection

Chapter 14. Reference 4157

wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Inbound adapter properties for JD Edwards:

Inbound adapter properties hold the inbound event processing configuration
information for a message endpoint. These properties also control the general
operation of the adapter. Use the Adapter Connection wizard to set these
properties.

The following table lists the properties for inbound processing that you set by
using the Adapter Connection wizard. A more detailed description of each
property is provided in the sections that follow the table.

Property Description

“Adapter ID to use for logging and
tracing (AdapterID)” on page 4159

The name of the adapter instance in the log and trace files.

“Auto acknowledge
(AutoAcknowledge)” on page 4159

Specifies the event acknowledge mode that is used.

“Delivery type (DeliveryType)” on
page 4160

Determines the order in which events are delivered by the adapter to the
export component.

“Ensure once-only event delivery
(AssuredOnceDelivery)” on page 4160

Specifies whether the adapter provides assured once-only delivery of events.

“Failed events folder” on page 4160 The absolute path to the file folder on the local system where unsuccessfully
processed events are archived in file format.

Retry limit for failed events The number of times the adapter attempts to deliver an event before
marking the event as failed.

“Interval between polling periods
(PollPeriod)” on page 4161

The length of time that the adapter waits between polling periods.

“Maximum connections
(MaximumConnections)” on page
4162

The maximum number of connections that the adapter can use for inbound
event delivery.

“Maximum events in polling period
(PollQuantity)” on page 4162

The number of events that the adapter delivers to the export component
during each poll period.

“Minimum connections
(MinimumConnections)” on page
4162

The minimum number of connections that the adapter can use for inbound
event delivery.

“No wait (NoWait)” on page 4162 Specifies whether the adapter waits for a time interval to get an event from
the JD Edwards EnterpriseOne transaction server by calling the Dynamic
Java Connector API.

Retry EIS connection on startup Controls whether the adapter retries the connection to the JD Edwards
EnterpriseOne transaction server if it cannot connect at startup.

“Retry interval if connection fails
(RetryInterval)” on page 4164

The length of time that the adapter waits between attempts to establish a
new connection after an error occurs during inbound operations.

“Stop the adapter when an error is
encountered while polling
(StopPollingOnError)” on page 4164

Specifies whether the adapter stops polling for events when it encounters an
error during polling.

4158 WebSphere Message Broker Version 7.0.0.8

Property Description

“Wait time (WaitTime)” on page 4164 Specifies the waiting time if the No Wait property is set to false.

Adapter ID to use for logging and tracing (AdapterID)

This property identifies a specific deployment, or instance, of the adapter.

Required Yes

Default 001

Property type String

Usage This property identifies the adapter instance in the log and trace files, and also helps identify
the adapter instance while monitoring adapters. The adapter ID is used with an
adapter-specific identifier, JDERA, to form the component name used by the Log and Trace
Analyzer tool. For example, if the adapter ID property is set to 001, the component ID is
JDERA001.

If you run multiple instances of the same adapter, ensure that the first eight characters of the
adapter ID property are unique for each instance so that you can correlate the log and trace
information to a particular adapter instance. By making the first seven characters of an adapter
ID property unique, the component ID for multiple instances of that adapter is also unique,
allowing you to correlate the log and trace information to a particular instance of an adapter.

For example, when you set the adapter ID property of two instances of WebSphere Adapter for
JD Edwards EnterpriseOne to 001 and 002. The component IDs for those instances, JDERA001
and JDERA002, are short enough to remain unique, enabling you to distinguish them as
separate adapter instances. However, instances with longer adapter ID properties cannot be
distinguished from each other. If you set the adapter ID properties of two instances to
Instance01 and Instance02, you will not be able to examine the log and trace information for
each adapter instance because the component ID for both instances is truncated to
JDERAInstance.

For inbound processing, this property is retrieved from the resource adapter properties. For
outbound processing, it is retrieved from the managed connection factory properties.

Globalized Yes

bidi supported No

Auto acknowledge (AutoAcknowledge)

This property specifies the event acknowledge mode that is used. You can specify
either the auto acknowledge mode or the client acknowledge mode.

Required No

Possible values True
False

Default False

Property type Boolean

Usage Specifies the event acknowledge mode, which is either the auto acknowledge mode or the
client acknowledge mode.

Example False

Globalized No

bidi supported Yes

Chapter 14. Reference 4159

Delivery type (DeliveryType)

This property specifies the order in which events are delivered by the adapter to
the export component.

Required No

Possible values ORDERED
UNORDERED

Default ORDERED

Property type String

Usage The following values are supported:

v ORDERED: The adapter delivers events to the export component one at a time.

v UNORDERED: The adapter delivers all events to the export component at once.

Globalized No

bidi supported No

Ensure once-only event delivery (AssuredOnceDelivery)

This property specifies whether to provide ensured once-only event delivery for
inbound events.

Required Yes

Possible values True
False

Default True

Property type Boolean

Usage When this property is set to True, the adapter provides assured once-only event delivery so
that each event is delivered only once. A value of False does not provide assured once event
delivery, but provides better performance.

When this property is set to True, the adapter attempts to store transaction (XID) information in
the event store. If it is set to False, the adapter does not attempt to store the information.

This property is used only if the export component is transactional. If it is not, no transaction
can be used, regardless of the value of this property.

Globalized No

bidi supported No

Failed events folder

This property specifies the file folder on the local system where unsuccessfully
processed events are archived in file format.

Required No

Possible
values

No default value

Default Null

Property type String

4160 WebSphere Message Broker Version 7.0.0.8

Usage Create this folder manually on the same system before the adapter is run.
If no failed events folder is specified, the adapter does not archive
unsuccessfully processed events.

Globalized Yes

bidi supported No

Retry limit for failed events (FailedEventRetryLimit)

This property specifies the number of times that the adapter attempts to deliver an
event before marking the event as failed.

Required No

Possible values Integers

Default 5

Property type Integer

Usage Use this property to control how many times the adapter tries
to send an event before marking it as failed. It accepts the
following values:

Default
If this property is not set, the adapter tries five
additional times before marking the event as failed.

0 The adapter tries to deliver the event an infinite
number of times. When the property is set to 0, the
event remains in the event store and the event is
never marked as failed.

> 0 For integers greater than zero, the adapter retries the
specified number of times before marking the event
as failed.

< 0 For negative integers, the adapter does not retry
failed events.

Globalized No

bidi supported No

Interval between polling periods (PollPeriod)

This property specifies the length of time for which the adapter waits between
polling periods.

Required Yes

Possible values Integers greater than or equal to 0.

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage The poll period is established at a fixed rate, so that if running the poll cycle is delayed for any
reason (for example, if a prior poll cycle takes longer than expected to complete), the next poll
cycle occurs immediately to make up for the lost time that was caused by the delay.

Globalized No

bidi supported No

Chapter 14. Reference 4161

Maximum connections (MaximumConnections)

This property specifies the maximum number of connections that the adapter can
use for inbound event delivery.

Required No

Default 1

Property type Integer

Usage Only positive values are valid. The adapter considers any positive entry less than 1 to be equal
to 1. Typing a negative value or 0 for this property might result in runtime errors.

Globalized No

bidi supported No

Maximum events in polling period (PollQuantity)

This property specifies the number of events that the adapter delivers to the export
component during each poll period.

Required Yes

Default 10

Property type Integer

Usage The value must be greater than 0. If this value is increased, more events are processed per
polling period, and the adapter might perform less efficiently. If this value is decreased, fewer
events are processed per polling period, and the performance of the adapter might improve
slightly.

Globalized No

bidi supported No

Minimum connections (MinimumConnections)

This property specifies the minimum number of connections that the adapter can
use for inbound event delivery.

Required No

Default 1

Property type Integer

Usage Only positive values are valid. Any value less than 1 is treated as 1 by the adapter. Typing a
negative value or 0 for this property might result in runtime errors.

Globalized No

bidi supported No

No wait (NoWait)

This property specifies whether the adapter waits for a time interval to get an
event from the JD Edwards EnterpriseOne transaction server by calling the
Dynamic Java Connector API.

Required No

4162 WebSphere Message Broker Version 7.0.0.8

Possible values True
False

Default True

Property type Boolean

Usage Specifies whether the adapter waits for a time interval to get an event from the JD Edwards
EnterpriseOne transaction server by calling the Dynamic Java Connector API.

Example True

Globalized No

bidi supported Yes

Number of times to retry the system connection (RetryLimit)

This property specifies the number of times that the adapter tries to reestablish an
inbound connection.

Required No

Possible values Positive integers

Default 0

Property type Integer

Usage Only positive values are valid.

When the adapter encounters an error that is related to the inbound connection, this property
specifies the number of times that the adapter tries to restart the connection. A value of 0
indicates an infinite number of retries.

Globalized Yes

bidi supported No

Retry EIS connection on startup (RetryConnectionOnStartup)

This property controls whether the adapter attempts to connect again to the JD
Edwards EnterpriseOne server if it cannot connect at startup.

Required No

Possible values True
False

Default False

Property type Boolean

Usage This property indicates whether the adapter retries the connection to the JD Edwards
EnterpriseOne server if the connection cannot be made when the adapter is started.

v Set the property to False when you want immediate feedback about whether the
adapter can establish a connection to the JD Edwards EnterpriseOne server; for
example, when you are building and testing the application that receives events from
the adapter. If the adapter cannot connect, the adapter writes log and trace
information, and stops. The application status is shown as Stopped. After you resolve
the connection problem, start the adapter manually.

v Set the property to True if you do not need immediate feedback about the connection.
If the adapter cannot connect during startup, it writes log and trace information, and
then attempts to reconnect, by using the RetryInterval property to determine how
frequently to retry and the value of the RetryLimit property to retry multiple times
until that value is reached. The application status is shown as Started.

Chapter 14. Reference 4163

Globalized No

bidi supported No

Retry interval if connection fails (RetryInterval)

When the adapter encounters an error that is related to the inbound connection,
this property specifies the length of time that the adapter waits before trying to
establish a new connection.

Required Yes

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage Only positive values are valid. When the adapter encounters an error that is related to the
inbound connection, this property specifies the length of time that the adapter waits before
trying to establish a new connection.

Globalized Yes

bidi supported No

Stop the adapter when an error is encountered while polling
(StopPollingOnError)

This property specifies whether the adapter stops polling for events when it
encounters an error during polling.

Required No

Possible values True
False

Default False

Property type Boolean

Usage If this property is set to True, the adapter stops polling when it encounters an error.

If this property is set to False, the adapter logs an exception when it encounters an error
during polling, and continues polling.

Globalized No

bidi supported No

Wait time (WaitTime)

This property specifies the waiting time if the No Wait property is set to false.

Required No

Possible values Any positive integer. Any negative integer is treated as the default value (3000 milliseconds)

Default 3000

Unit of measure Milliseconds

Property type Integer

Usage This property specifies the waiting time if the No Wait property is set to false.

Example 5000

4164 WebSphere Message Broker Version 7.0.0.8

Globalized No

bidi supported Yes

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Outbound adapter properties for JD Edwards:

Outbound adapter properties define how the adapter creates an outbound
connection instance with the JD Edwards EnterpriseOne server, and how
operations are run on the server. Use the Adapter Connection wizard to set these
properties.

The following table describes the outbound adapter properties. A more detailed
description of each property is provided in the sections that follow the table.

Property Description

Adapter ID The name of the adapter instance in the log and trace
files.

“Environment” on page 4166 The JD Edwards EnterpriseOne environment name.

Chapter 14. Reference 4165

Property Description

Maximum records for RetrieveAll operation The maximum number of records to return during a
RetrieveAll operation

“Password” on page 4167 The password of the adapter user account on the JD
Edwards EnterpriseOne environment.

“Role” on page 4167 The name of the role that is associated with the user
name used to access the JD Edwards EnterpriseOne
environment.

“User name” on page 4168 The name of the adapter user account on the JD Edwards
EnterpriseOne environment.

Adapter ID to use for logging and tracing (AdapterID)

This property identifies a specific deployment, or instance, of the adapter.

Required Yes

Default CWYMY_Adapter

Property type String

Usage This property identifies the adapter instance in the log and trace files, and also helps identify
the adapter instance while monitoring adapters. The adapter ID is used with an
adapter-specific identifier, JDERA, to form the component name used by the Log and Trace
Analyzer tool. For example, if the adapter ID property is set to 001, the component ID is
JDERA001.

If you run multiple instances of the same adapter, ensure that the first eight characters of the
adapter ID property are unique for each instance so that you can correlate the log and trace
information to a particular adapter instance. By making the first seven characters of an adapter
ID property unique, the component ID for multiple instances of that adapter is also unique,
allowing you to correlate the log and trace information to a particular instance of an adapter.

For example, when you set the adapter ID property of two instances of WebSphere Adapter for
JD Edwards EnterpriseOne to 001 and 002. The component IDs for those instances, JDERA001
and JDERA002, are short enough to remain unique, enabling you to distinguish them as
separate adapter instances. However, instances with longer adapter ID properties cannot be
distinguished from each other. If you set the adapter ID properties of two instances to
Instance01 and Instance02, you will not be able to examine the log and trace information for
each adapter instance because the component ID for both instances is truncated to
JDERAInstance.

For inbound processing, this property is retrieved from the resource adapter properties. For
outbound processing, it is retrieved from the managed connection factory properties.

Globalized Yes

bidi supported No

Environment

This property specifies the JD Edwards EnterpriseOne environment name.

Required Yes

Default No default value

Property type String

4166 WebSphere Message Broker Version 7.0.0.8

Usage A JD Edwards EnterpriseOne environment is a user-defined pointer that indicates the location
of data and objects on a JD Edwards EnterpriseOne server. Users can be authorized to use
multiple JD Edwards EnterpriseOne environments on a single JD Edwards EnterpriseOne
server.

Example

Globalized Yes

bidi supported Yes

Maximum number of records for RetrieveAll operation

This property specifies the maximum number of records to return for a RetrieveAll
operation.

Required Yes

Default 100

Usage If the number of hits in the database exceeds the value of the Maximum number of records
property, the adapter returns the errors MatchesExceededLimitException and
MatchesExceededLimitFault. Use this property to avoid out-of-memory issues.

Property type Integer

Globalized No

bidi supported No

Password

This property specifies the password of the adapter user account on the JD
Edwards EnterpriseOne environment.

Required Yes

Default No default value

Property type String

Usage Passwords are created and named by the JD Edwards EnterpriseOne administrator. No
restrictions exist for the type of characters used, the number of characters used, or the case of
the characters used in passwords.

Example

Globalized No

bidi supported Yes

Role

This property specifies the name of the role that is associated with the user name
used to access the JD Edwards EnterpriseOne environment.

Required Yes

Default No default value

Property type String

Chapter 14. Reference 4167

Usage Roles define what authority users have. Users can have multiple roles. A user's access to
applications, forms, table columns, data sources, and so on, is based on one or more roles to
which the user is assigned. Roles are created and named by the JD Edwards EnterpriseOne
administrator.

Examples v System administrator

v Human resources

v Accounting

Globalized No

bidi supported Yes

User name

This property specifies the name of the adapter user account on the JD Edwards
EnterpriseOne environment.

Required Yes

Default No default value

Property type String

Usage User names are created by the JD Edwards EnterpriseOne administrator. No restrictions exist
for the type of characters used, the number of characters used, or the case of the characters
used in user names.

Example

Globalized Yes

bidi supported Yes

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037
Use the Adapter Connection wizard to create the resources that enable the
WebSphere Adapters to connect to an Enterprise Information System (EIS).
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection

4168 WebSphere Message Broker Version 7.0.0.8

wizard by adding them to a broker archive (BAR) file.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.

Validation properties
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.

Validation options are available on the following nodes:

Node type Nodes with validation options

Input node FileInput, FTEInput, HTTPInput, JMSInput, MQInput, SCAInput, ,
SOAPInput,TimeoutNotification,

Output node FileOutput, FTEOutput, HTTPReply, JMSOutput, JMSReply, MQOutput,
MQReply, SCAReply, SOAPReply

Other nodes Compute, CICSRequest, DatabaseRetrieve, HTTPRequest, JavaCompute,
Mapping, MQGet, ResetContentDescriptor, SCAAsyncResponse,
SCARequest, SOAPRequest, SOAPAsyncResponse, Validate, XSLTransform

For an overview of message validation in the broker, refer to “Validating
messages” on page 1478.

You can set the properties that are shown in the following table.

Tab Properties that affect validation

Validation Validate, Failure Action

Parser Options Parse Timing

Validation tab properties:

Validate

Sets whether validation is required. All nodes provide the following
options:

None The default value. No validation is performed.

Content
Indicates that you want to perform content checks, such as Content
validation and Composition.

Content and Value
Indicates that you want to perform content checks, such as Content
validation and Composition, and value checks, such as whether the
value conforms to data type, length, range, and enumeration.

Note: Even if Content is selected, the SOAP and XMLNSC domains always
perform Content and Value validation.

Some nodes also provide the following option:

Chapter 14. Reference 4169

Inherit
Instructs the node to use all the validation options that are
provided with the input message tree in preference to any supplied
on the node. Inherit therefore resolves to None, Content, or Content
And Value. If Inherit is selected, the other validation properties on
the tab are not available.

Failure Action

The action that you want to be taken when a validation failure occurs. You
can set it to the following values:

Exception
The default value. An exception is thrown on the first validation
failure encountered. The resulting exception list is shown below.
The failure is also logged in the user trace if you have asked for
user tracing of the message flow, and validation stops. Use this
setting if you want processing of the message to halt as soon as a
failure is encountered.

MRM and IDOC

Parse

ExceptionList

BIP5285

BIPnnnn

BIP5902

ExceptionList

BIP5286

BIPnnnn

BIP2230

Write

XMLNSC and SOAP

Parse

ExceptionList

BIP5025

BIP5902

ExceptionList

BIP5010

BIP5026

BIP2230

Write

Exception List
Throws an exception if validation failures are encountered, but
only when the current parsing or writing operation has completed.

4170 WebSphere Message Broker Version 7.0.0.8

The resulting exception list is shown below. Each failure is also
logged in the user trace if you have asked for user tracing of the
message flow, and validation stops. Use this setting if you want
processing of the message to halt if a validation failure occurs, but
you want to see the full list of failures encountered. This property
is affected by the Parse Timing property; when partial parsing is
selected the current parsing operation parses only a portion of an
input message, so only the validation failures in that portion of the
message are reported.

MRM and IDOC

Parse

ExceptionList

BIP5285

BIP5393

BIP5902

ExceptionList

BIP5286

BIP5393

BIPnnnnBIPnnnn BIPnnnnBIPnnnn

BIP2230

Write

XMLNSC and SOAP

Parse

ExceptionList

BIP5393

BIP5902

BIP5009

ExceptionList

BIP5010

BIP5393

BIP5026BIP5025 BIP5026BIP5025

BIP2230

Write

... ...

User Trace
Logs all validation failures to the user trace, even if you have not

Chapter 14. Reference 4171

asked for user tracing of the message flow. Use this setting if you
want processing of the message to continue regardless of validation
failures.

Local Error Log
Logs all validation failures to the error log (for example, the Event
Log on Windows). Use this setting if you want processing of the
message to continue regardless of validation failures.

Parser Options tab properties:

Parse Timing

The Parse Timing property determines whether on-demand parsing is to
be used when parsing a message. It also gives you control over the timing
of input message validation:
v If you select a Parse Timing value of On Demand, validation of a field in

the message is delayed until it is parsed by on-demand parsing.
v If you select a Parse Timing value of Immediate, on-demand parsing is

overridden, and everything in the message is parsed and validated
except, if the message domain is MRM, those complex types with a
Composition of Choice or Message that cannot be resolved at the time

v If you select a Parse Timing value of Complete, on-demand parsing is
overridden, and everything is parsed and validated. If the message
domain is MRM, complex types with a Composition of Choice or
Message that cannot be resolved at the time cause a validation failure.

If you enable message validation, and you select On Demand or Immediate
for Parse Timing, validation errors might not be detected until later in the
processing of a message by a message flow, or might never be detected if a
portion of the message is never parsed. To make sure that all fields in a
message are validated, either select Complete or, if the message domain is
MRM, select Immediate and make sure that you resolve all unresolved
types with a Composition of Choice or Message at the start of your
message flow.

The Parse Timing property does not affect the validation of output
messages.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“XML parsers and domains” on page 1084
You can use XML domains to parse and write messages that conform to the W3C
XML standard.

4172 WebSphere Message Broker Version 7.0.0.8

“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
Related tasks:
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Parsing on demand
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.

An input message can be of any length. To improve performance of message flows,
a message is parsed only when necessary to resolve the reference to a particular
part of its content. If none of the message content is referenced within the message
flow (for example, the entire message is stored in a database by the DataUpdate
node, but no manipulation of the message content takes place), the message body
is not parsed.

If a parser can parse an input bit stream on demand, instead of immediately
parsing the entire bit stream, the Parse Timing property of a message flow node
controls the on-demand behavior of the parser.

You can set the Parse Timing property to On Demand (the default), Immediate, or
Complete.

On Demand causes partial parsing to occur. When fields in the message are
referenced, as much of the message is parsed as is necessary to completely resolve
the reference. Therefore, fields might not be parsed until late in the message flow,
or never. This restriction applies to both the message body and the message
headers.

Immediate and Complete both override partial parsing and parse the entire
message, including any message headers, except when the MRM parser encounters
an element with a complex type with Composition set to Choice or Message that
cannot be resolved at the time; for example, the content must be resolved by the
user in ESQL. If Composition is set to Choice, the data is added to the message
tree as an unresolved item, and parsing continues with the next element. If

Chapter 14. Reference 4173

Composition is set to Message, parsing terminates at that point. The only
difference in behavior between Immediate and Complete occurs when MRM
validation is enabled.

The Parse Timing property also gives you control over how MRM message
validation interacts with partial parsing. Refer to “Validation properties” on page
4169 for a full description.

The Parse Timing property has no effect on the serialization of output messages.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Which body parser should you use?” on page 1077
The characteristics of the messages that your applications exchange indicate which
body parser you must use.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.

Impact analysis: reference
Some artifacts are excluded from secondary analysis.

Artifacts that are excluded from secondary analysis

The following artifacts are excluded from secondary analysis:
Message set projects
Message set folders
Namespaces
Message set file files
Message set physical formats
Message category files
Adapter files (.inadapter and .outadapter)
WebSphere Message Broker SCA definitions files (.insca and .outsca)
Message flow projects
WebSphere Message Broker schemas
Message flow test files
Data Design Projects
DBM files
Java projects
Java artifacts
BAR files

If you analyze the effect of renaming a local element or attribute, and that local
element or attribute is used in an ESQL or mapping path, the path is not reported
as a secondary impact.

4174 WebSphere Message Broker Version 7.0.0.8

ESQL paths

Only ESQL paths that start with one of the following identifiers are found as
secondary impacts:

InputRoot
OutputRoot
Root
InputBody
Body

In other paths, such as paths that start with locally defined reference paths, the
root element might not be identifiable (the reference is loosely typed). For example,
you might have a complex type PurchaseOrder with attribute address. The
reference path might be ref.address. If this path occurs in a routine, it cannot be
identified that the attribute address is from PurchaseOrder, and the path cannot be
indexed correctly.

One important result of this restriction is if there are any ESQL references to a
message set artifact, and those references are within an ESQL routine that is not an
ESQL Module, these references are not shown as secondary impacts. This is
because message set artifact references satisfying this criteria cannot begin with one
of the previously mentioned identifiers. Schema-scope routines have the advantage
of being reusable, but there is a loss of impact analysis awareness associated with
using message set artifact references within them.

For performance reasons, ESQL paths are indexed only as far as the first wildcard.
For example, consider the following paths:
InputRoot.XMLNSC.a.b.*.d
InputRoot.XMLNSC.a.b.*
InputRoot.XMLNSC.a.b.*.e.*.f

If impact analysis is performed on artifacts d, e, or f, none of the preceding paths
are reported as an impact. If artifacts a or b are analyzed, all three paths are
reported as an impact.
Related concepts:
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Enabling and disabling indexing” on page 1454
Enable indexing to support impact analysis.
“Analyzing planned changes to message model objects” on page 2897
Use impact analysis to analyze the effect of renaming message model objects.
“Analyzing planned changes to ESQL objects” on page 2403
Use impact analysis to analyze the effect of renaming or moving ESQL objects, or
moving or changing the broker schema of an ESQL file.
“Analyzing the impact of changes to message maps” on page 2234
Use impact analysis to analyze the effect of renaming or moving message maps.
“Analyzing planned changes to message flows” on page 1436
Use impact analysis to analyze the effect of renaming or moving message flows,
including subflows.

Chapter 14. Reference 4175

“Analyzing planned changes to message set resources” on page 1165
Use impact analysis to analyze the effect of renaming message definition or
deployable WSDL files.
Related reference:
“Impact Analysis view” on page 6801
The Impact Analysis view shows information about selected resources, which
changes have been marked as complete, and previous results. You can also use this
view to copy results to the clipboard.

Supported code pages
Application messages must conform to supported code pages.

The message flows that you create, configure, and deploy to a broker can process
and construct application messages in any code page that is listed in the following
tables. You can also generate a new code page converter.

This behavior might be affected by the use of other products with WebSphere
Message Broker. Check the documentation for other products, including any
databases that you use, for further code page support information.

If you experience code page translation problems on HP-UX, check the
WebSphere MQ queue manager attribute CodedCharSetID (CCSID). The default
value for this attribute is 1051. Change this attribute value to 819 for queue
managers that host WebSphere Message Broker components.

When you handle UTF-16 data, CCSIDs 1200, 13488 and 17584 are treated
differently to others. Traditionally, in ICU usage, the endian encoding of these
CSSIDs was platform-specific, and WebSphere Message Broker uses an encoding
parameter with these CSSIDs. You can specify the encoding parameter as
MQENC_INTEGER_REVERSED to use these CCSIDs to explicitly produce little
endian data.

For detailed information about Chinese code page GB18030 support, see “Chinese
code page GB18030” on page 4221.

By default, WebSphere Message Broker supports the code pages that are given in
the following tables. To find a code page for a specific CCSID, search for an
internal converter name in the form ibm-ccsid, where ccsid is the CCSID for which
you are looking.
v Unicode converters
v European and American language converters
v Asian language converters
v Windows US and European converters
v MAC-related converters
v Hebrew, Cyrillic and ECMA language converters
v Indian language converters
v EBCDIC converters

Unicode converters

4176 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

UTF-8 UTF-8

ibm-1208

ibm-1209

ibm-5304

ibm-5305

ibm-13496

ibm-13497

ibm-17592

ibm-17593

windows-65001

cp1208

Java: *UTF-8

UTF-16 UTF-16

ISO-10646-UCS-2

ibm-1204

ibm-1205

unicode

csUnicode

ucs-2

Java: *UTF-16

UTF-16BE UTF-16BE

x-utf-16be

ibm-1200

ibm-1201

ibm-13488

ibm-13489

ibm-17584

ibm-17585

ibm-21680

ibm-21681

ibm-25776

ibm-25777

ibm-61955

ibm-61956

windows-1201

cp1200

cp1201

UTF16_BigEndian

Java: *UTF-16BE

Chapter 14. Reference 4177

Internal converter name Aliases

UTF-16LE UTF-16LE

x-utf-16le

ibm-1202

ibm-1203

ibm-13490

ibm-13491

ibm-17586

ibm-17587

ibm-21682

ibm-21683

ibm-25778

ibm-25779

UTF16_LittleEndian

windows-1200

Java: *UTF-16LE

UTF-32 UTF-32

ISO-10646-UCS-4

ibm-1236

ibm-1237

csUCS4

ucs-4

(No JAVA alias)

UTF-32BE UTF-32BE

UTF32_BigEndian

ibm-1232

ibm-1233

(No JAVA alias)

UTF-32LE UTF-32LE

UTF32_LittleEndian

ibm-1234

ibm-1235

(No JAVA alias)

UTF16_PlatformEndian UTF16_PlatformEndian

(No JAVA alias)

UTF16_OppositeEndian UTF16_OppositeEndian

(No JAVA alias)

UTF32_PlatformEndian UTF32_PlatformEndian

(No JAVA alias)

UTF32_OppositeEndian UTF32_OppositeEndian

(No JAVA alias)

UTF-7 UTF-7

windows-65000

(No JAVA alias)

4178 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

IMAP-mailbox-name IMAP-mailbox-name

(No JAVA alias)

SCSU SCSU

ibm-1212

ibm-1213

(No JAVA alias)

BOCU-1 BOCU-1

csBOCU-1

ibm-1214

ibm-1215

(No JAVA alias)

CESU-8 CESU-8

ibm-9400

(No JAVA alias)

European and American language converters

Internal converter name Aliases

ISO-8859-1 ISO-8859-1

ibm-819

IBM819

cp819

latin1

8859_1

csISOLatin1

iso-ir-100

ISO_8859-1:1987

l1

819

Java: *ISO-8859-1

Chapter 14. Reference 4179

Internal converter name Aliases

US-ASCII US-ASCII

ASCII

ANSI_X3.4-1968

ANSI_X3.4-1986

ISO_646.irv:1991

iso_646.irv:1983

ISO646-US

us

csASCII

iso-ir-6

cp367

ascii7

646

windows-20127

ibm-367

IBM367

Java: *ASCII

gb18030 gb18030

ibm-1392

windows-54936

(No JAVA alias)

ibm-912_P100-1995 ibm-912_P100-1995

ibm-912

ISO-8859-2

ISO_8859-2:1987

latin2

csISOLatin2

iso-ir-101

l2

8859_2

cp912

912

windows-28592

Java: *ISO-8859-2

4180 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-913_P100-2000 ibm-913_P100-2000

ibm-913

ISO-8859-3

ISO_8859-3:1988

latin3

csISOLatin3

iso-ir-109

l3

8859_3

cp913

913

windows-28593

Java: *ISO-8859-3

ibm-914_P100-1995 ibm-914_P100-1995

ibm-914

ISO-8859-4

latin4

csISOLatin4

iso-ir-110

ISO_8859-4:1988

l4

8859_4

cp914

914

windows-28594

Java: *ISO-8859-4

ibm-915_P100-1995 ibm-915_P100-1995

ibm-915

ISO-8859-5

cyrillic

csISOLatinCyrillic

iso-ir-144

ISO_8859-5:1988

8859_5

cp915

915

windows-28595

Java: *ISO-8859-5

Chapter 14. Reference 4181

Internal converter name Aliases

ibm-1089_P100-1995 ibm-1089_P100-1995

ibm-1089

ISO-8859-6

arabic

csISOLatinArabic

iso-ir-127

ISO_8859-6:1987

ECMA-114

ASMO-708

8859_6

cp1089

1089

windows-28596

ISO-8859-6-I

ISO-8859-6-E

Java: *ISO-8859-6

ibm-9005_X110-2007 ibm-9005_X110-2007

ibm-9005

ISO-8859-7

greek

greek8

ELOT_928

ECMA-118

csISOLatinGreek

iso-ir-126

ISO_8859-7:1987

windows-28597

sun_eu_greek

(No JAVA alias)

ibm-813_P100-1995 ibm-813_P100-1995

ibm-813

ISO-8859-7

greek

greek8

ELOT_928

ECMA-118

csISOLatinGreek

iso-ir-126

ISO_8859-7:1987

8859_7

cp813

813

Java: *ISO-8859-7

4182 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-5012_P100-1999 ibm-5012_P100-1999

ibm-5012

ISO-8859-8

hebrew

csISOLatinHebrew

iso-ir-138

ISO_8859-8:1988

ISO-8859-8-I

ISO-8859-8-E

8859_8

windows-28598

Java: *ISO-8859-8

ibm-916_P100-1995 ibm-916_P100-1995

ibm-916

cp916

916

Java: *ibm-916

ibm-920_P100-1995 ibm-920_P100-1995

ibm-920

ISO-8859-9

latin5

csISOLatin5

iso-ir-148

ISO_8859-9:1989

l5

8859_9

cp920

920

windows-28599

ECMA-128

Java: *ISO-8859-9

iso-8859_10-1998 iso-8859_10-1998

ISO-8859-10

iso-ir-157

l6

ISO_8859-10:1992

csISOLatin6

latin6

(No JAVA alias)

iso-8859_11-2001 iso-8859_11-2001

ISO-8859-11

thai8

(No JAVA alias)

Chapter 14. Reference 4183

Internal converter name Aliases

ibm-921_P100-1995 ibm-921_P100-1995

ibm-921

ISO-8859-13

8859_13

windows-28603

cp921

921

Java: *ISO-8859-13

iso-8859_14-1998 iso-8859_14-1998

ISO-8859-14

iso-ir-199

ISO_8859-14:1998

latin8

iso-celtic

l8

(No JAVA alias)

ibm-923_P100-1998 ibm-923_P100-1998

ibm-923

ISO-8859-15

Latin-9

l9

8859_15

latin0

csisolatin0

csisolatin9

iso8859_15_fdis

cp923

923

windows-28605

Java: *ISO-8859-15

Asian language converters

Internal converter name Aliases

ibm-942_P12A-1999 ibm-942_P12A-1999

ibm-942

ibm-932

cp932

shift_jis78

sjis78

ibm-942_VSUB_VPUA

ibm-932_VSUB_VPUA

(No JAVA alias)

4184 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-943_P15A-2003 ibm-943_P15A-2003

ibm-943

Shift_JIS

MS_Kanji

csShiftJIS

windows-31j

csWindows31J

x-sjis

x-ms-cp932

cp932

windows-932

cp943c

IBM-943C

ms932

pck

sjis

ibm-943_VSUB_VPUA

Java: *cp943c

ibm-943_P130-1999 ibm-943_P130-1999

ibm-943

Shift_JIS

cp943

943

ibm-943_VASCII_VSUB_VPUA

Java: *cp943

ibm-33722_P12A_P12A-2004_U2 ibm-33722_P12A_P12A-2004_U2

ibm-33722

ibm-5050

EUC-JP

Extended_UNIX_Code_Packed_Format_for_Japanese

csEUCPkdFmtJapanese

X-EUC-JP

windows-51932

ibm-33722_VPUA

IBM-eucJP

(No JAVA alias)

ibm-33722_P120-1999 ibm-33722_P120-1999

ibm-33722

ibm-5050

cp33722

33722

ibm-33722_VASCII_VPUA

Java: *cp33722

Chapter 14. Reference 4185

Internal converter name Aliases

ibm-954_P101-2007 ibm-954_P101-2007

ibm-954

EUC-JP

Extended_UNIX_Code_Packed_Format_for_Japanese

csEUCPkdFmtJapanese

X-EUC-JP

eucjis

ujis

Java: *EUC-JP

ibm-1373_P100-2002 ibm-1373_P100-2002

ibm-1373

windows-950

(No JAVA alias)

windows-950-2000 windows-950-2000

Big5

csBig5

windows-950

x-big5

Java: *Big5

ibm-950_P110-1999 ibm-950_P110-1999

ibm-950

cp950

950

Java: *cp950

ibm-1375_P100-2007 ibm-1375_P100-2007

ibm-1375

Big5-HKSCS

big5hk

HKSCS-BIG5

Java: *Big5-HKSCS

ibm-5471_P100-2006 ibm-5471_P100-2006

ibm-5471

Big5-HKSCS

MS950_HKSCS

hkbig5

big5-hkscs:unicode3.0

Java: *MS950_HKSCS

4186 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-1386_P100-2001 ibm-1386_P100-2001

ibm-1386

cp1386

windows-936

ibm-1386_VSUB_VPUA

ibm-1381

cp1381

1381

Java: *cp1381

windows-936-2000 windows-936-2000

GBK

CP936

MS936

windows-936

Java: *GBK

ibm-1383_P110-1999 ibm-1383_P110-1999

ibm-1383

GB2312

csGB2312

cp1383

1383

EUC-CN

ibm-eucCN

hp15CN

ibm-1383_VPUA

Java: *cp1383

ibm-5478_P100-1995 ibm-5478_P100-1995

ibm-5478

GB_2312-80

chinese

iso-ir-58

csISO58GB231280

gb2312-1980

GB2312.1980-0

(No JAVA alias)

ibm-964_P110-1999 ibm-964_P110-1999

ibm-964

EUC-TW

ibm-eucTW

cns11643

cp964

964

ibm-964_VPUA

Java: *cp964

Chapter 14. Reference 4187

Internal converter name Aliases

ibm-949_P110-1999 ibm-949_P110-1999

ibm-949

cp949

949

ibm-949_VASCII_VSUB_VPUA

Java: *cp949

ibm-949_P11A-1999 ibm-949_P11A-1999

ibm-949

cp949c

ibm-949_VSUB_VPUA

Java: *cp949c

ibm-970_P110_P110-2006_U2 ibm-970_P110_P110-2006_U2

ibm-970

EUC-KR

KS_C_5601-1987

windows-51949

csEUCKR

ibm-eucKR

KSC_5601

5601

cp970

970

ibm-970_VPUA

Java: *cp970

ibm-971_P100-1995 ibm-971_P100-1995

ibm-971

ibm-971_VPUA

(No JAVA alias)

ibm-1363_P11B-1998 ibm-1363_P11B-1998

ibm-1363

KS_C_5601-1987

KS_C_5601-1989

KSC_5601

csKSC56011987

korean

iso-ir-149

5601

cp1363

ksc

windows-949

ibm-1363_VSUB_VPUA

(No JAVA alias)

4188 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-1363_P110-1997 ibm-1363_P110-1997

ibm-1363

ibm-1363_VASCII_VSUB_VPUA

(No JAVA alias)

windows-949-2000 windows-949-2000

windows-949

KS_C_5601-1987

KS_C_5601-1989

KSC_5601

csKSC56011987

korean

iso-ir-149

ms949

Java: *windows-949

windows-874-2000 windows-874-2000

TIS-620

windows-874

MS874

Java: *windows-874

ibm-874_P100-1995 ibm-874_P100-1995

ibm-874

ibm-9066

cp874

TIS-620

tis620.2533

eucTH

Java: *cp874

ibm-1162_P100-1999 ibm-1162_P100-1999

ibm-1162

(No JAVA alias)

Windows US and European converters

Internal converter name Aliases

ibm-437_P100-1995 ibm-437_P100-1995

ibm-437

IBM437

cp437

437

csPC8CodePage437

windows-437

Java: *cp437

Chapter 14. Reference 4189

Internal converter name Aliases

ibm-720_P100-1997 ibm-720_P100-1997

ibm-720

windows-720

DOS-720

(No JAVA alias)

ibm-737_P100-1997 ibm-737_P100-1997

ibm-737

IBM737

cp737

windows-737

737

Java: *cp737

ibm-775_P100-1996 ibm-775_P100-1996

ibm-775

IBM775

cp775

csPC775Baltic

windows-775

775

Java: *cp775

ibm-850_P100-1995 ibm-850_P100-1995

ibm-850

IBM850

cp850

850

csPC850Multilingual

windows-850

Java: *cp850

ibm-851_P100-1995 ibm-851_P100-1995

ibm-851

IBM851

cp851

851

csPC851

(No JAVA alias)

ibm-852_P100-1995 ibm-852_P100-1995

ibm-852

IBM852

cp852

852

csPCp852

windows-852

Java: *cp852

4190 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-855_P100-1995 ibm-855_P100-1995

ibm-855

IBM855

cp855

855

csIBM855

csPCp855

windows-855

Java: *cp855

ibm-856_P100-1995 ibm-856_P100-1995

ibm-856

IBM856

cp856

856

Java: *cp856

ibm-857_P100-1995 ibm-857_P100-1995

ibm-857

IBM857

cp857

857

csIBM857

windows-857

Java: *cp857

ibm-858_P100-1997 ibm-858_P100-1997

ibm-858

IBM00858

CCSID00858

CP00858

PC-Multilingual-850+euro

cp858

windows-858

Java: *cp858

ibm-860_P100-1995 ibm-860_P100-1995

ibm-860

IBM860

cp860

860

csIBM860

Java: *cp860

Chapter 14. Reference 4191

Internal converter name Aliases

ibm-861_P100-1995 ibm-861_P100-1995

ibm-861

IBM861

cp861

861

cp-is

csIBM861

windows-861

Java: *cp861

ibm-862_P100-1995 ibm-862_P100-1995

ibm-862

IBM862

cp862

862

csPC862LatinHebrew

DOS-862

windows-862

Java: *cp862

ibm-863_P100-1995 ibm-863_P100-1995

ibm-863

IBM863

cp863

863

csIBM863

Java: *cp863

ibm-864_X110-1999 ibm-864_X110-1999

ibm-864

IBM864

cp864

csIBM864

Java: *cp864

ibm-865_P100-1995 ibm-865_P100-1995

ibm-865

IBM865

cp865

865

csIBM865

Java: *cp865

4192 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-866_P100-1995 ibm-866_P100-1995

ibm-866

IBM866

cp866

866

csIBM866

windows-866

Java: *cp866

ibm-867_P100-1998 ibm-867_P100-1998

ibm-867

(No JAVA alias)

ibm-868_P100-1995 ibm-868_P100-1995

ibm-868

IBM868

CP868

868

csIBM868

cp-ar

Java: *CP868

ibm-869_P100-1995 ibm-869_P100-1995

ibm-869

IBM869

cp869

869

cp-gr

csIBM869

windows-869

Java: *cp869

ibm-878_P100-1996 ibm-878_P100-1996

ibm-878

KOI8-R

koi8

csKOI8R

windows-20866

cp878

Java: *KOI8-R

ibm-901_P100-1999 ibm-901_P100-1999

ibm-901

(No JAVA alias)

ibm-902_P100-1999 ibm-902_P100-1999

ibm-902

(No JAVA alias)

Chapter 14. Reference 4193

Internal converter name Aliases

ibm-922_P100-1999 ibm-922_P100-1999

ibm-922

IBM922

cp922

922

Java: *cp922

ibm-1168_P100-2002 ibm-1168_P100-2002

ibm-1168

KOI8-U

windows-21866

(No JAVA alias)

ibm-4909_P100-1999 ibm-4909_P100-1999

ibm-4909

(No JAVA alias)

ibm-5346_P100-1998 ibm-5346_P100-1998

ibm-5346

windows-1250

cp1250

Java: *windows-1250

ibm-5347_P100-1998 ibm-5347_P100-1998

ibm-5347

windows-1251

cp1251

ANSI1251

Java: *windows-1251

ibm-5348_P100-1997 ibm-5348_P100-1997

ibm-5348

windows-1252

cp1252

Java: *windows-1252

ibm-5349_P100-1998 ibm-5349_P100-1998

ibm-5349

windows-1253

cp1253

Java: *windows-1253

ibm-5350_P100-1998 ibm-5350_P100-1998

ibm-5350

windows-1254

cp1254

Java: *windows-1254

4194 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-9447_P100-2002 ibm-9447_P100-2002

ibm-9447

windows-1255

cp1255

Java: *windows-1255

ibm-9448_X100-2005 ibm-9448_X100-2005

ibm-9448

windows-1256

cp1256

Java: *windows-1256

ibm-9449_P100-2002 ibm-9449_P100-2002

ibm-9449

windows-1257

cp1257

Java: *windows-1257

ibm-5354_P100-1998 ibm-5354_P100-1998

ibm-5354

windows-1258

cp1258

Java: *windows-1258

ibm-1250_P100-1995 ibm-1250_P100-1995

ibm-1250

windows-1250

(No JAVA alias)

ibm-1251_P100-1995 ibm-1251_P100-1995

ibm-1251

windows-1251

(No JAVA alias)

ibm-1252_P100-2000 ibm-1252_P100-2000

ibm-1252

windows-1252

(No JAVA alias)

ibm-1253_P100-1995 ibm-1253_P100-1995

ibm-1253

windows-1253

(No JAVA alias)

ibm-1254_P100-1995 ibm-1254_P100-1995

ibm-1254

windows-1254

(No JAVA alias)

ibm-1255_P100-1995 ibm-1255_P100-1995

ibm-1255

(No JAVA alias)

Chapter 14. Reference 4195

Internal converter name Aliases

ibm-5351_P100-1998 ibm-5351_P100-1998

ibm-5351

windows-1255

(No JAVA alias)

ibm-1256_P110-1997 ibm-1256_P110-1997

ibm-1256

(No JAVA alias)

ibm-5352_P100-1998 ibm-5352_P100-1998

ibm-5352

windows-1256

(No JAVA alias)

ibm-1257_P100-1995 ibm-1257_P100-1995

ibm-1257

(No JAVA alias)

ibm-5353_P100-1998 ibm-5353_P100-1998

ibm-5353

windows-1257

(No JAVA alias)

ibm-1258_P100-1997 ibm-1258_P100-1997

ibm-1258

windows-1258

(No JAVA alias)

MAC-related converters

Internal converter name Aliases

macos-0_2-10.2 macos-0_2-10.2

macintosh

mac

csMacintosh

windows-10000

(No JAVA alias)

macos-6_2-10.4 macos-6_2-10.4

x-mac-greek

windows-10006

macgr

(No JAVA alias)

macos-7_3-10.2 macos-7_3-10.2

x-mac-cyrillic

windows-10007

mac-cyrillic

maccy

(No JAVA alias)

4196 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

macos-29-10.2 macos-29-10.2

x-mac-centraleurroman

windows-10029

x-mac-ce

macce

(No JAVA alias)

macos-35-10.2 macos-35-10.2

x-mac-turkish

windows-10081

mactr

(No JAVA alias)

ibm-1051_P100-1995 ibm-1051_P100-1995

ibm-1051

hp-roman8

roman8

r8

csHPRoman8

(No JAVA alias)

ibm-1276_P100-1995 ibm-1276_P100-1995

ibm-1276

Adobe-Standard-Encoding

csAdobeStandardEncoding

(No JAVA alias)

Hebrew, Cyrillic, and ECMA language converters

Internal converter name Aliases

ibm-1006_P100-1995 ibm-1006_P100-1995

ibm-1006

IBM1006

cp1006

1006

Java: *cp1006

ibm-1098_P100-1995 ibm-1098_P100-1995

ibm-1098

IBM1098

cp1098

1098

Java: *cp1098

ibm-1124_P100-1996 ibm-1124_P100-1996

ibm-1124

cp1124

1124

Java: *cp1124

Chapter 14. Reference 4197

Internal converter name Aliases

ibm-1125_P100-1997 ibm-1125_P100-1997

ibm-1125

cp1125

(No JAVA alias)

ibm-1129_P100-1997 ibm-1129_P100-1997

ibm-1129

(No JAVA alias)

ibm-1131_P100-1997 ibm-1131_P100-1997

ibm-1131

cp1131

(No JAVA alias)

ibm-1133_P100-1997 ibm-1133_P100-1997

ibm-1133

(No JAVA alias)

ISO_2022,locale=ja,version=0 ISO_2022,locale=ja,version=0

ISO-2022-JP

csISO2022JP

Java: *ISO-2022-JP

ISO_2022,locale=ja,version=1 ISO_2022,locale=ja,version=1

ISO-2022-JP-1

JIS_Encoding

csJISEncoding

ibm-5054

JIS

(No JAVA alias)

ISO_2022,locale=ja,version=2 ISO_2022,locale=ja,version=2

ISO-2022-JP-2

csISO2022JP2

(No JAVA alias)

ISO_2022,locale=ja,version=3 ISO_2022,locale=ja,version=3

JIS7

(No JAVA alias)

ISO_2022,locale=ja,version=4 ISO_2022,locale=ja,version=4

JIS8

(No JAVA alias)

ISO_2022,locale=ko,version=0 ISO_2022,locale=ko,version=0

ISO-2022-KR

csISO2022KR

Java: *ISO-2022-KR

ISO_2022,locale=ko,version=1 ISO_2022,locale=ko,version=1

ibm-25546

(No JAVA alias)

4198 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ISO_2022,locale=zh,version=0 ISO_2022,locale=zh,version=0

ISO-2022-CN

csISO2022CN

Java: *ISO-2022-CN

ISO_2022,locale=zh,version=1 ISO_2022,locale=zh,version=1

ISO-2022-CN-EXT

(No JAVA alias)

HZ HZ

HZ-GB-2312

(No JAVA alias)

ibm-897_P100-1995 ibm-897_P100-1995

ibm-897

JIS_X0201

X0201

csHalfWidthKatakana

(No JAVA alias)

Indian language converters

Internal converter name Aliases

ISCII,version=0 ISCII,version=0

x-iscii-de

windows-57002

iscii-dev

ibm-4902

(No JAVA alias)

ISCII,version=1 ISCII,version=1

x-iscii-be

windows-57003

iscii-bng

windows-57006

x-iscii-as

(No JAVA alias)

ISCII,version=2 ISCII,version=2

x-iscii-pa

windows-57011

iscii-gur

(No JAVA alias)

ISCII,version=3 ISCII,version=3

x-iscii-gu

windows-57010

iscii-guj

(No JAVA alias)

Chapter 14. Reference 4199

Internal converter name Aliases

ISCII,version=4 ISCII,version=4

x-iscii-or

windows-57007

iscii-ori

(No JAVA alias)

ISCII,version=5 ISCII,version=5

x-iscii-ta

windows-57004

iscii-tml

(No JAVA alias)

ISCII,version=6 ISCII,version=6

x-iscii-te

windows-57005

iscii-tlg

(No JAVA alias)

ISCII,version=7 ISCII,version=7

x-iscii-ka

windows-57008

iscii-knd

(No JAVA alias)

ISCII,version=8 ISCII,version=8

x-iscii-ma

windows-57009

iscii-mlm

(No JAVA alias)

EBCDIC converters

Internal converter name Aliases

LMBCS-1 LMBCS-1

lmbcs

ibm-65025

(No JAVA alias)

4200 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-37_P100-1995 ibm-37_P100-1995

ibm-37

IBM037

ibm-037

ebcdic-cp-us

ebcdic-cp-ca

ebcdic-cp-wt

ebcdic-cp-nl

csIBM037

cp037

037

cpibm37

cp37

Java: *cp037

ibm-273_P100-1995 ibm-273_P100-1995

ibm-273

IBM273

CP273

csIBM273

ebcdic-de

273

Java: *CP273

ibm-277_P100-1995 ibm-277_P100-1995

ibm-277

IBM277

cp277

EBCDIC-CP-DK

EBCDIC-CP-NO

csIBM277

ebcdic-dk

277

Java: *cp277

ibm-278_P100-1995 ibm-278_P100-1995

ibm-278

IBM278

cp278

ebcdic-cp-fi

ebcdic-cp-se

csIBM278

ebcdic-sv

278

Java: *cp278

Chapter 14. Reference 4201

Internal converter name Aliases

ibm-280_P100-1995 ibm-280_P100-1995

ibm-280

IBM280

CP280

ebcdic-cp-it

csIBM280

280

Java: *CP280

ibm-284_P100-1995 ibm-284_P100-1995

ibm-284

IBM284

CP284

ebcdic-cp-es

csIBM284

cpibm284

284

Java: *CP284

ibm-285_P100-1995 ibm-285_P100-1995

ibm-285

IBM285

CP285

ebcdic-cp-gb

csIBM285

cpibm285

ebcdic-gb

285

Java: *CP285

ibm-290_P100-1995 ibm-290_P100-1995

ibm-290

IBM290

cp290

EBCDIC-JP-kana

csIBM290

(No JAVA alias)

ibm-297_P100-1995 ibm-297_P100-1995

ibm-297

IBM297

cp297

ebcdic-cp-fr

csIBM297

cpibm297

297

Java: *cp297

4202 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-420_X120-1999 ibm-420_X120-1999

ibm-420

IBM420

cp420

ebcdic-cp-ar1

csIBM420

420

Java: *cp420

ibm-424_P100-1995 ibm-424_P100-1995

ibm-424

IBM424

cp424

ebcdic-cp-he

csIBM424

424

Java: *cp424

ibm-500_P100-1995 ibm-500_P100-1995

ibm-500

IBM500

CP500

ebcdic-cp-be

csIBM500

ebcdic-cp-ch

500

Java: *CP500

ibm-803_P100-1999 ibm-803_P100-1999

ibm-803

cp803

(No JAVA alias)

ibm-838_P100-1995 ibm-838_P100-1995

ibm-838

IBM838

IBM-Thai

csIBMThai

cp838

838

ibm-9030

Java: *cp838

Chapter 14. Reference 4203

Internal converter name Aliases

ibm-870_P100-1995 ibm-870_P100-1995

ibm-870

IBM870

CP870

ebcdic-cp-roece

ebcdic-cp-yu

csIBM870

Java: *CP870

ibm-871_P100-1995 ibm-871_P100-1995

ibm-871

IBM871

ebcdic-cp-is

csIBM871

CP871

ebcdic-is

871

Java: *CP871

ibm-875_P100-1995 ibm-875_P100-1995

ibm-875

IBM875

cp875

875

Java: *cp875

ibm-918_P100-1995 ibm-918_P100-1995

ibm-918

IBM918

CP918

ebcdic-cp-ar2

csIBM918

Java: *CP918

ibm-930_P120-1999 ibm-930_P120-1999

ibm-930

ibm-5026

IBM930

cp930

930

Java: *cp930

ibm-933_P110-1995 ibm-933_P110-1995

ibm-933

cp933

933

Java: *cp933

4204 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-935_P110-1999 ibm-935_P110-1999

ibm-935

cp935

935

Java: *cp935

ibm-937_P110-1999 ibm-937_P110-1999

ibm-937

cp937

937

Java: *cp937

ibm-939_P120-1999 ibm-939_P120-1999

ibm-939

ibm-931

ibm-5035

IBM939

cp939

939

Java: *cp939

ibm-1025_P100-1995 ibm-1025_P100-1995

ibm-1025

cp1025

1025

Java: *cp1025

ibm-1026_P100-1995 ibm-1026_P100-1995

ibm-1026

IBM1026

CP1026

csIBM1026

1026

Java: *CP1026

ibm-1047_P100-1995 ibm-1047_P100-1995

ibm-1047

IBM1047

cp1047

1047

Java: *cp1047

ibm-1097_P100-1995 ibm-1097_P100-1995

ibm-1097

cp1097

1097

Java: *cp1097

Chapter 14. Reference 4205

Internal converter name Aliases

ibm-1112_P100-1995 ibm-1112_P100-1995

ibm-1112

cp1112

1112

Java: *cp1112

ibm-1122_P100-1999 ibm-1122_P100-1999

ibm-1122

cp1122

1122

Java: *cp1122

ibm-1123_P100-1995 ibm-1123_P100-1995

ibm-1123

cp1123

1123

Java: *cp1123

ibm-1130_P100-1997 ibm-1130_P100-1997

ibm-1130

(No JAVA alias)

ibm-1132_P100-1998 ibm-1132_P100-1998

ibm-1132

(No JAVA alias)

ibm-1137_P100-1999 ibm-1137_P100-1999

ibm-1137

(No JAVA alias)

ibm-4517_P100-2005 ibm-4517_P100-2005

ibm-4517

(No JAVA alias)

ibm-1140_P100-1997 ibm-1140_P100-1997

ibm-1140

IBM01140

CCSID01140

CP01140

cp1140

ebcdic-us-37+euro

Java: *cp1140

ibm-1141_P100-1997 ibm-1141_P100-1997

ibm-1141

IBM01141

CCSID01141

CP01141

cp1141

ebcdic-de-273+euro

Java: *cp1141

4206 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-1142_P100-1997 ibm-1142_P100-1997

ibm-1142

IBM01142

CCSID01142

CP01142

cp1142

ebcdic-dk-277+euro

ebcdic-no-277+euro

Java: *cp1142

ibm-1143_P100-1997 ibm-1143_P100-1997

ibm-1143

IBM01143

CCSID01143

CP01143

cp1143

ebcdic-fi-278+euro

ebcdic-se-278+euro

Java: *cp1143

ibm-1144_P100-1997 ibm-1144_P100-1997

ibm-1144

IBM01144

CCSID01144

CP01144

cp1144

ebcdic-it-280+euro

Java: *cp1144

ibm-1145_P100-1997 ibm-1145_P100-1997

ibm-1145

IBM01145

CCSID01145

CP01145

cp1145

ebcdic-es-284+euro

Java: *cp1145

ibm-1146_P100-1997 ibm-1146_P100-1997

ibm-1146

IBM01146

CCSID01146

CP01146

cp1146

ebcdic-gb-285+euro

Java: *cp1146

Chapter 14. Reference 4207

Internal converter name Aliases

ibm-1147_P100-1997 ibm-1147_P100-1997

ibm-1147

IBM01147

CCSID01147

CP01147

cp1147

ebcdic-fr-297+euro

Java: *cp1147

ibm-1148_P100-1997 ibm-1148_P100-1997

ibm-1148

IBM01148

CCSID01148

CP01148

cp1148

ebcdic-international-500+euro

Java: *cp1148

ibm-1149_P100-1997 ibm-1149_P100-1997

ibm-1149

IBM01149

CCSID01149

CP01149

cp1149

ebcdic-is-871+euro

Java: *cp1149

ibm-1153_P100-1999 ibm-1153_P100-1999

ibm-1153

(No JAVA alias)

ibm-1154_P100-1999 ibm-1154_P100-1999

ibm-1154

(No JAVA alias)

ibm-1155_P100-1999 ibm-1155_P100-1999

ibm-1155

(No JAVA alias)

ibm-1156_P100-1999 ibm-1156_P100-1999

ibm-1156

(No JAVA alias)

ibm-1157_P100-1999 ibm-1157_P100-1999

ibm-1157

(No JAVA alias)

ibm-1158_P100-1999 ibm-1158_P100-1999

ibm-1158

(No JAVA alias)

4208 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-1160_P100-1999 ibm-1160_P100-1999

ibm-1160

(No JAVA alias)

ibm-1164_P100-1999 ibm-1164_P100-1999

ibm-1164

(No JAVA alias)

ibm-1364_P110-2007 ibm-1364_P110-2007

ibm-1364

(No JAVA alias)

ibm-1371_P100-1999 ibm-1371_P100-1999

ibm-1371

(No JAVA alias)

ibm-1388_P103-2001 ibm-1388_P103-2001

ibm-1388

ibm-9580

(No JAVA alias)

ibm-1390_P110-2003 ibm-1390_P110-2003

ibm-1390

(No JAVA alias)

ibm-1399_P110-2003 ibm-1399_P110-2003

ibm-1399

(No JAVA alias)

ibm-5123_P100-1999 ibm-5123_P100-1999

ibm-5123

(No JAVA alias)

ibm-8482_P100-1999 ibm-8482_P100-1999

ibm-8482

(No JAVA alias)

ibm-16684_P110-2003 ibm-16684_P110-2003

ibm-16684

ibm-20780

(No JAVA alias)

ibm-4899_P100-1998 ibm-4899_P100-1998

ibm-4899

(No JAVA alias)

ibm-4971_P100-1999 ibm-4971_P100-1999

ibm-4971

(No JAVA alias)

ibm-9067_X100-2005 ibm-9067_X100-2005

ibm-9067

(No JAVA alias)

Chapter 14. Reference 4209

Internal converter name Aliases

ibm-12712_P100-1998 ibm-12712_P100-1998

ibm-12712

ebcdic-he

(No JAVA alias)

ibm-16804_X110-1999 ibm-16804_X110-1999

ibm-16804

ebcdic-ar

(No JAVA alias)

ibm-37_P100-1995,swaplfnl ibm-37_P100-1995,swaplfnl

ibm-37-s390

(No JAVA alias)

ibm-1047_P100-1995,swaplfnl ibm-1047_P100-1995,swaplfnl

ibm-1047-s390

(No JAVA alias)

ibm-1140_P100-1997,swaplfnl ibm-1140_P100-1997,swaplfnl

ibm-1140-s390

(No JAVA alias)

ibm-1142_P100-1997,swaplfnl ibm-1142_P100-1997,swaplfnl

ibm-1142-s390

(No JAVA alias)

ibm-1143_P100-1997,swaplfnl ibm-1143_P100-1997,swaplfnl

ibm-1143-s390

(No JAVA alias)

ibm-1144_P100-1997,swaplfnl ibm-1144_P100-1997,swaplfnl

ibm-1144-s390

(No JAVA alias)

ibm-1145_P100-1997,swaplfnl ibm-1145_P100-1997,swaplfnl

ibm-1145-s390

(No JAVA alias)

ibm-1146_P100-1997,swaplfnl ibm-1146_P100-1997,swaplfnl

ibm-1146-s390

(No JAVA alias)

ibm-1147_P100-1997,swaplfnl ibm-1147_P100-1997,swaplfnl

ibm-1147-s390

(No JAVA alias)

ibm-1148_P100-1997,swaplfnl ibm-1148_P100-1997,swaplfnl

ibm-1148-s390

(No JAVA alias)

ibm-1149_P100-1997,swaplfnl ibm-1149_P100-1997,swaplfnl

ibm-1149-s390

(No JAVA alias)

4210 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-1153_P100-1999,swaplfnl ibm-1153_P100-1999,swaplfnl

ibm-1153-s390

(No JAVA alias)

ibm-12712_P100-1998,swaplfnl ibm-12712_P100-1998,swaplfnl

ibm-12712-s390

(No JAVA alias)

ibm-16804_X110-1999,swaplfnl ibm-16804_X110-1999,swaplfnl

ibm-16804-s390

(No JAVA alias)

ebcdic-xml-us ebcdic-xml-us

(No JAVA alias)

gsm-03.38-2000 gsm-03.38-2000

GSM0338

(No JAVA alias)

ibm-1004_P100-1995 ibm-1004_P100-1995

ibm-1004

(No JAVA alias)

ibm-1008_P100-1995 ibm-1008_P100-1995

ibm-1008

(No JAVA alias)

ibm-1009_P100-1995 ibm-1009_P100-1995

ibm-1009

(No JAVA alias)

ibm-1010_P100-1995 ibm-1010_P100-1995

ibm-1010

NF_Z_62-010

iso-ir-69

ISO646-FR

fr

csISO69French

(No JAVA alias)

ibm-1011_P100-1995 ibm-1011_P100-1995

ibm-1011

DIN_66003

iso-ir-21

de

ISO646-DE

csISO21German

(No JAVA alias)

Chapter 14. Reference 4211

Internal converter name Aliases

ibm-1012_P100-1995 ibm-1012_P100-1995

ibm-1012

IT

iso-ir-15

ISO646-IT

csISO15Italian

(No JAVA alias)

ibm-1013_P100-1995 ibm-1013_P100-1995

ibm-1013

BS_4730

iso-ir-4

ISO646-GB

gb

uk

csISO4UnitedKingdom

(No JAVA alias)

ibm-1014_P100-1995 ibm-1014_P100-1995

ibm-1014

ES2

iso-ir-85

ISO646-ES2

csISO85Spanish2

(No JAVA alias)

ibm-1015_P100-1995 ibm-1015_P100-1995

ibm-1015

PT2

iso-ir-84

ISO646-PT2

csISO84Portuguese2

(No JAVA alias)

ibm-1016_P100-1995 ibm-1016_P100-1995

ibm-1016

NS_4551-1

iso-ir-60

ISO646-NO

no

csISO60DanishNorwegian

csISO60Norwegian1

(No JAVA alias)

ibm-1017_P100-1995 ibm-1017_P100-1995

ibm-1017

(No JAVA alias)

4212 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-1018_P100-1995 ibm-1018_P100-1995

ibm-1018

SEN_850200_B

iso-ir-10

FI

ISO646-FI

ISO646-SE

se

csISO10Swedish

(No JAVA alias)

ibm-1019_P100-1995 ibm-1019_P100-1995

ibm-1019

(No JAVA alias)

ibm-1020_P100-2003 ibm-1020_P100-2003

ibm-1020

CSA_Z243.4-1985-1

iso-ir-121

ISO646-CA

csa7-1

ca

csISO121Canadian1

(No JAVA alias)

ibm-1021_P100-2003 ibm-1021_P100-2003

ibm-1021

(No JAVA alias)

ibm-1023_P100-2003 ibm-1023_P100-2003

ibm-1023

ES

iso-ir-17

ISO646-ES

csISO17Spanish

(No JAVA alias)

ibm-1046_X110-1999 ibm-1046_X110-1999

ibm-1046

(No JAVA alias)

ibm-1100_P100-2003 ibm-1100_P100-2003

ibm-1100

DEC-MCS

dec

csDECMCS

(No JAVA alias)

ibm-1101_P100-2003 ibm-1101_P100-2003

ibm-1101

(No JAVA alias)

Chapter 14. Reference 4213

Internal converter name Aliases

ibm-1102_P100-2003 ibm-1102_P100-2003

ibm-1102

(No JAVA alias)

ibm-1103_P100-2003 ibm-1103_P100-2003

ibm-1103

(No JAVA alias)

ibm-1104_P100-2003 ibm-1104_P100-2003

ibm-1104

NF_Z_62-010_1973

iso-ir-25

ISO646-FR1

csISO25French

(No JAVA alias)

ibm-1105_P100-2003 ibm-1105_P100-2003

ibm-1105

(No JAVA alias)

ibm-1106_P100-2003 ibm-1106_P100-2003

ibm-1106

(No JAVA alias)

ibm-1107_P100-2003 ibm-1107_P100-2003

ibm-1107

DS_2089

ISO646-DK

dk

csISO646Danish

(No JAVA alias)

ibm-1127_P100-2004 ibm-1127_P100-2004

ibm-1127

(No JAVA alias)

ibm-1161_P100-1999 ibm-1161_P100-1999

ibm-1161

(No JAVA alias)

ibm-1163_P100-1999 ibm-1163_P100-1999

ibm-1163

(No JAVA alias)

ibm-1165_P101-2000 ibm-1165_P101-2000

ibm-1165

(No JAVA alias)

ibm-1166_P100-2002 ibm-1166_P100-2002

ibm-1166

(No JAVA alias)

4214 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-1167_P100-2002 ibm-1167_P100-2002

ibm-1167

KOI8-RU

(No JAVA alias)

ibm-1174_X100-2007 ibm-1174_X100-2007

ibm-1174

KZ-1048

STRK1048-2002

RK1048

csKZ1048

(No JAVA alias)

ibm-1277_P100-1995 ibm-1277_P100-1995

ibm-1277

(No JAVA alias)

ibm-13125_P100-1997 ibm-13125_P100-1997

ibm-13125

(No JAVA alias)

ibm-13140_P101-2000 ibm-13140_P101-2000

ibm-13140

(No JAVA alias)

ibm-13218_P100-1996 ibm-13218_P100-1996

ibm-13218

(No JAVA alias)

ibm-1350_P110-1997 ibm-1350_P110-1997

ibm-1350

(No JAVA alias)

ibm-1351_P110-1997 ibm-1351_P110-1997

ibm-1351

(No JAVA alias)

ibm-1362_P110-1999 ibm-1362_P110-1999

ibm-1362

(No JAVA alias)

ibm-13676_P102-2001 ibm-13676_P102-2001

ibm-13676

(No JAVA alias)

ibm-1380_P100-1995 ibm-1380_P100-1995

ibm-1380

(No JAVA alias)

ibm-1382_P100-1995 ibm-1382_P100-1995

ibm-1382

(No JAVA alias)

Chapter 14. Reference 4215

Internal converter name Aliases

ibm-17221_P100-2001 ibm-17221_P100-2001

ibm-17221

(No JAVA alias)

ibm-17248_X110-1999 ibm-17248_X110-1999

ibm-17248

(No JAVA alias)

ibm-21344_P101-2000 ibm-21344_P101-2000

ibm-21344

(No JAVA alias)

ibm-21427_P100-1999 ibm-21427_P100-1999

ibm-21427

(No JAVA alias)

ibm-256_P100-1995 ibm-256_P100-1995

ibm-256

(No JAVA alias)

ibm-259_P100-1995 ibm-259_P100-1995

ibm-259

IBM-Symbols

csIBMSymbols

(No JAVA alias)

ibm-274_P100-2000 ibm-274_P100-2000

ibm-274

IBM274

EBCDIC-BE

CP274

csIBM274

(No JAVA alias)

ibm-275_P100-1995 ibm-275_P100-1995

ibm-275

IBM275

EBCDIC-BR

cp275

csIBM275

(No JAVA alias)

ibm-286_P100-2003 ibm-286_P100-2003

ibm-286

EBCDIC-AT-DE-A

csEBCDICATDEA

(No JAVA alias)

ibm-293_P100-1995 ibm-293_P100-1995

ibm-293

(No JAVA alias)

4216 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-300_P120-2006 ibm-300_P120-2006

ibm-300

(No JAVA alias)

ibm-301_P110-1997 ibm-301_P110-1997

ibm-301

(No JAVA alias)

ibm-33058_P100-2000 ibm-33058_P100-2000

ibm-33058

(No JAVA alias)

ibm-425_P101-2000 ibm-425_P101-2000

ibm-425

(No JAVA alias)

ibm-4930_P110-1999 ibm-4930_P110-1999

ibm-4930

(No JAVA alias)

ibm-4933_P100-2002 ibm-4933_P100-2002

ibm-4933

(No JAVA alias)

ibm-4948_P100-1995 ibm-4948_P100-1995

ibm-4948

(No JAVA alias)

ibm-4951_P100-1995 ibm-4951_P100-1995

ibm-4951

(No JAVA alias)

ibm-4952_P100-1995 ibm-4952_P100-1995

ibm-4952

(No JAVA alias)

ibm-4960_P100-1995 ibm-4960_P100-1995

ibm-4960

(No JAVA alias)

ibm-5039_P11A-1998 ibm-5039_P11A-1998

ibm-5039

(No JAVA alias)

ibm-5048_P100-1995 ibm-5048_P100-1995

ibm-5048

(No JAVA alias)

ibm-5049_P100-1995 ibm-5049_P100-1995

ibm-5049

(No JAVA alias)

Chapter 14. Reference 4217

Internal converter name Aliases

ibm-5067_P100-1995 ibm-5067_P100-1995

ibm-5067

(No JAVA alias)

ibm-5104_X110-1999 ibm-5104_X110-1999

ibm-5104

(No JAVA alias)

ibm-806_P100-1998 ibm-806_P100-1998

ibm-806

(No JAVA alias)

ibm-808_P100-1999 ibm-808_P100-1999

ibm-808

(No JAVA alias)

ibm-834_P100-1995 ibm-834_P100-1995

ibm-834

(No JAVA alias)

ibm-835_P100-1995 ibm-835_P100-1995

ibm-835

(No JAVA alias)

ibm-837_P100-1995 ibm-837_P100-1995

ibm-837

(No JAVA alias)

ibm-848_P100-1999 ibm-848_P100-1999

ibm-848

(No JAVA alias)

ibm-849_P100-1999 ibm-849_P100-1999

ibm-849

(No JAVA alias)

ibm-859_P100-1999 ibm-859_P100-1999

ibm-859

(No JAVA alias)

ibm-8612_P100-1995 ibm-8612_P100-1995

ibm-8612

(No JAVA alias)

ibm-872_P100-1999 ibm-872_P100-1999

ibm-872

(No JAVA alias)

4218 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-880_P100-1995 ibm-880_P100-1995

ibm-880

IBM880

cp880

EBCDIC-Cyrillic

csIBM880

windows-20880

(No JAVA alias)

ibm-896_P100-1995 ibm-896_P100-1995

ibm-896

(No JAVA alias)

ibm-9027_P100-1999 ibm-9027_P100-1999

ibm-9027

(No JAVA alias)

ibm-9048_P100-1998 ibm-9048_P100-1998

ibm-9048

(No JAVA alias)

ibm-905_P100-1995 ibm-905_P100-1995

ibm-905

IBM905

CP905

ebcdic-cp-tr

csIBM905

windows-20905

(No JAVA alias)

ibm-9056_P100-1995 ibm-9056_P100-1995

ibm-9056

(No JAVA alias)

ibm-9061_P100-1999 ibm-9061_P100-1999

ibm-9061

(No JAVA alias)

ibm-9145_P110-1997 ibm-9145_P110-1997

ibm-9145

(No JAVA alias)

ibm-9238_X110-1999 ibm-9238_X110-1999

ibm-9238

(No JAVA alias)

Chapter 14. Reference 4219

Internal converter name Aliases

ibm-924_P100-1998 ibm-924_P100-1998

ibm-924

IBM00924

CCSID00924

CP00924

ebcdic-Latin9--euro

(No JAVA alias)

ibm-926_P100-2000 ibm-926_P100-2000

ibm-926

(No JAVA alias)

ibm-927_P100-1995 ibm-927_P100-1995

ibm-927

(No JAVA alias)

ibm-928_P100-1995 ibm-928_P100-1995

ibm-928

(No JAVA alias)

ibm-941_P13A-2001 ibm-941_P13A-2001

ibm-941

(No JAVA alias)

ibm-944_P100-1995 ibm-944_P100-1995

ibm-944

(No JAVA alias)

ibm-946_P100-1995 ibm-946_P100-1995

ibm-946

(No JAVA alias)

ibm-947_P100-1995 ibm-947_P100-1995

ibm-947

(No JAVA alias)

ibm-948_P110-1999 ibm-948_P110-1999

ibm-948

(No JAVA alias)

ibm-951_P100-1995 ibm-951_P100-1995

ibm-951

(No JAVA alias)

ibm-952_P110-1997 ibm-952_P110-1997

ibm-952

(No JAVA alias)

ibm-953_P100-2000 ibm-953_P100-2000

ibm-953

(No JAVA alias)

4220 WebSphere Message Broker Version 7.0.0.8

Internal converter name Aliases

ibm-955_P110-1997 ibm-955_P110-1997

ibm-955

(No JAVA alias)

ibm-9577_P100-2001 ibm-9577_P100-2001

ibm-9577

ibm-1385

(No JAVA alias)

iso-8859_16-2001 iso-8859_16-2001

ISO-8859-16

iso-ir-226

ISO_8859-16:2001

latin10

l10

(No JAVA alias)

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Code page converters” on page 823
Brokers complete string operations in Universal Character Set coded in 2 octets
(UCS-2). If incoming strings are not encoded in UCS-2, they are converted to
UCS-2 on arrival.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Generating a new code page converter” on page 824
Generate a code page converter to handle conversions of data that belongs to a
code page that is not in the default set of code pages provided by WebSphere
Message Broker.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Chinese code page GB18030”
If you are working with messages in Chinese code page GB18030, your messages
might be subject to some restrictions.
Related information:

WebSphere MQ Version 7 Information Center online

Chinese code page GB18030:

If you are working with messages in Chinese code page GB18030, your messages
might be subject to some restrictions.

The broker can input, manipulate, and output application messages that are
encoded in code page IBM-5488 (GB18030 support) with the following restrictions:

Chapter 14. Reference 4221

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v If you configure a message flow to store GB18030 data in character form in a user
database, ensure that the database manager that you are using supports GB18030.

v To enable support for GB18030 in the WebSphere Message Broker Toolkit:
– If you run a WebSphere Message Broker Toolkit that requires GB18030 support

on a computer that is running Windows 2003, apply the GB18030 patch
supplied by Microsoft. This support is included in Windows XP.

– Change the text font preference in the WebSphere Message Broker Toolkit to
use GB18030:
- Select Window > Preferences.
- Expand the Workbench item in the left pane of the Preferences dialog (click

the plus sign), and select Fonts.
- In the Fonts window, select Text Font. Click Change, and select the correct

values in the Fonts selection dialog box.
- Click OK to confirm the selection and close the dialog box.
- Click Apply to apply the change, then click OK to close the Preferences

dialog box.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Creating the user databases” on page 661
If your message flows create, update, retrieve, or delete application and business
data in one or more user databases, create the databases before you deploy the
message flows to a broker.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

WebSphere MQ connections
The number of WebSphere MQ connections a broker requires to its queue manager
depends on the actions of the message flows that access the WebSphere MQ
resource.

For each broker flow that accesses a queue, one connection is required for every
message flow thread. If a different node on the same thread uses the same queue
manager, the same connection is used.

The number of queue handles required also depends on the behavior of the flow.
For each flow that accesses queues, one queue handle is required for each unique
queue name for every message flow thread. Nodes that access the same queue
name in the same flow use the same queue handle.

When you start a broker, and while it is running, it opens WebSphere MQ queue
handles. The broker caches these queue handles. For example, when a message
flow node initiates access to the first WebSphere MQ resource it uses, it opens a
connection for the queue manager and opens the queue. This connection is opened

4222 WebSphere Message Broker Version 7.0.0.8

the first time that a message is processed by that message flow node. For MQInput
nodes, the connection is opened when the flow is started. This queue handle
remains open until:

The message flow becomes idle, and has not been used for 1 minute
The execution group is stopped
The broker is stopped

The queue handle for the input node is not released when the flow is idle. The
queue handle is released only when you stop the message flow.

A thread performing WebSphere MQ work becomes idle when it has not received
any messages on its input queue for 1 minute. The allowed idle time starts from
when the input queue being read becomes empty. If a message flow gets a
message from the input queue, the timer is reset.

When a message flow is idle, the execution group periodically releases WebSphere
MQ queue handles. Therefore, connections held by the broker reflect its current use
of these resources.
Related concepts:
“User database connections” on page 2110
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Data integrity in message flows
Code pages in which data is manipulated must be compatible between brokers and
databases that are accessed by those brokers.

Subscription data that is retrieved from client applications (for example, topics
from publishers and subscribers, and content filters from subscribers), and the
character data entered through the WebSphere Message Broker Toolkit (for
example, message flow names), are stored by the broker. This data is translated
from its originating code page to the code page of the process in which the broker
is running, then by the database manager to the code page in which the database
or databases were created.

To preserve data consistency and integrity, ensure that all this subscription data
and WebSphere Message Broker Toolkit character data is originated in a compatible
code page to the two code pages to which it is translated. If you do not do so, you
might get unpredictable results and lose data.

The restrictions described do not apply to user data in messages. Ensure that any
data in messages generated by your applications is compatible with the code page
of all databases that you access from your message flows.

SQL statements that are generated as a result of explicit reference to databases in
message processing nodes can contain character data that has a variety of sources.
For example, the data might have been entered through the WebSphere Message

Chapter 14. Reference 4223

Broker Toolkit, derived from message content, or read from another database. All
this data is translated from its originating code page to the code page in which the
broker was created, then by the database manager to the code page in which the
database was created. Ensure that these three code pages are compatible to avoid
data conversion problems.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow transactions” on page 1281
A transaction describes a set of updates that are made by an application program,
which must be managed together. The updates might be made to one or more
systems. The updates made by the program are controlled by the environment in
which the program executes, and either all are completed, or none. This property
of a transaction is known as consistency: transactions might have other properties of
atomicity, isolation, and durability.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Database connections for coordinated message flows” on page 4235
When you configure a message flow to access a database, the broker establishes a
connection to that database based on the ODBC DSN.
“Database support for coordinated message flows” on page 4236
If the message flow processing includes interaction with an external database, you
can coordinate the transaction by using XA technology.

Exception list structure
An exception list contains information about exceptions, such as error numbers, the
name of the node that generated the exception, and the reason for the exception.

The following figure shows one way in which to construct an exception list.
ExceptionList {

RecoverableException = { 1
File = ’f:/build/argo/src/DataFlowEngine/ImbDataFlowNode.cpp’
Line = 538
Function = ’ImbDataFlowNode::createExceptionList’
Type = ’ComIbmComputeNode’
Name = ’0e416632-de00-0000-0080-bdb4d59524d5’
Label = ’mf1.Compute1’
Text = ’Node throwing exception’
Catalog = ’WebSphere Message

Broker2’
Severity = 3

4224 WebSphere Message Broker Version 7.0.0.8

Number = 2230
RecoverableException = { 2

File = ’f:/build/argo/src/DataFlowEngine/ImbRdlBinaryExpression.cpp’
Line = 231
Function = ’ImbRdlBinaryExpression::scalarEvaluate’
Type = ’ComIbmComputeNode’
Name = ’0e416632-de00-0000-0080-bdb4d59524d5’
Label = ’mf1.Compute1’
Text = ’error evaluating expression’
Catalog = ’WebSphere Message

Broker2’
Severity = 2
Number = 2439
Insert = {

Type = 2
Text = ’2’

}
Insert = {

Type = 2
Text = ’30’

}
RecoverableException = { 3

File = ’f:/build/argo/src/DataFlowEngine/ImbRdlValueOperations.cpp’
Line = 257
Function = ’intDivideInt’
Type = ’ComIbmComputeNode’
Name = ’0e416632-de00-0000-0080-bdb4d59524d5’
Label = ’mf1.Compute1’
Text = ’Divide by zero calculating ’%1 / %2’’
Catalog = ’WebSphere Message

Broker2’
Severity = 2
Number = 2450
Insert = }

Type = 5
Text = ’100 / 0’

}
}

}
}

}

Notes:

1. The first exception description 1 is a child of the root. This identifies error
number 2230, indicating that an exception has been thrown. The node that has
thrown the exception is also identified (mf1.Compute1).

2. Exception description 2 is a child of the first exception description 1. This
identifies error number 2439.

3. Exception description 3 is a child of the second exception description 2. This
identifies error number 2450, which indicates that the node has attempted to
divide by zero.

The following topics provide examples of exception lists that have been written to
the trace output destination (by the Trace node):
v “Database exception trace output” on page 4226
v “Conversion exception trace output” on page 4228
v “Parser exception trace output” on page 4230
v “User exception trace output” on page 4232
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

Chapter 14. Reference 4225

input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
Related tasks:
“Accessing the ExceptionList tree using ESQL” on page 2471
The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.
Related reference:
“Throw node” on page 4929
Use the Throw node to throw an exception in a message flow.
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“THROW statement” on page 5161
Use the THROW statement to generate a user exception.

Database exception trace output:

Use a Trace node to produce details of exceptions that occur when a database
exception is detected.

The following figure shows an extract of the output that might be generated by a
Trace node that has Pattern property set to a value that represents a structure that
includes the exception list tree.

The exception shown occurred when a database exception was detected

4226 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

ExceptionList = (
(0x1000000)RecoverableException = (

(0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbComputeNode.cpp’
(0x3000000)Line = 402
(0x3000000)Function = ’ImbComputeNode::evaluate’
(0x3000000)Type = ’ComIbmComputeNode’
(0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’
(0x3000000)Label = ’esql_13485_check_defect.Compute1’
(0x3000000)Text = ’Caught exception and rethrowing’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 2230
(0x1000000)RecoverableException = (

(0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbRdl\ImbRdlExternalDb.cpp’
(0x3000000)Line = 278
(0x3000000)Function = ’SqlExternalDbStmt::executeStmt’
(0x3000000)Type = ’ComIbmComputeNode’
(0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’
(0x3000000)Label = ’esql_13485_check_defect.Compute1’
(0x3000000)Text = ’The following error occurred execution SQL statement &3. inserts where &4’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 2519
(0x1000000)Insert = (

(0x3000000)Type = 2
(0x3000000)Text = ’1’

)
(0x1000000)Insert = (

(0x3000000)Type = 2
(0x3000000)Text = ’1’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’USERDB’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’DELETE FROM DB2ADMIN.STOCK WHERE (STOCK_ID)=(?)’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’500027, ’

)
(0x1000000)DatabaseException = (

(0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbOdbc.cpp’
(0x3000000)Line = 153
(0x3000000)Function = ’ImbOdbcHandle::checkRcInner’
(0x3000000)Type = ’’
(0x3000000)Name = ’’
(0x3000000)Label = ’’
(0x3000000)Text = ’Root SQL exception’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 2321
(0x1000000)Insert = (

(0x3000000)Type = 2
(0x3000000)Text = ’100’

)
)

)
)

)

Chapter 14. Reference 4227

input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
Related tasks:
“Accessing the ExceptionList tree using ESQL” on page 2471
The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.
Related reference:
“Throw node” on page 4929
Use the Throw node to throw an exception in a message flow.
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“THROW statement” on page 5161
Use the THROW statement to generate a user exception.

Conversion exception trace output:

Use a Trace node to produce details of exceptions that occur when a conversion
(CAST) exception is detected.

The following figure shows an extract of the output that might be generated by a
Trace node that has the Pattern property set to a value that represents a structure
that includes the exception list tree.

The exception shown occurred when a conversion (CAST) exception was detected.

4228 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message

ExceptionList = (
(0x1000000)RecoverableException = (

(0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbComputeNode.cpp’
(0x3000000)Line = 402
(0x3000000)Function = ’ImbComputeNode::evaluate’
(0x3000000)Type = ’ComIbmComputeNode’
(0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’
(0x3000000)Label = ’esql_13485_check_defect.Compute1’
(0x3000000)Text = ’Caught exception and rethrowing’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 2230
(0x1000000)RecoverableException = (

(0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbRdl\ImbRdlTypeCast.cpp’
(0x3000000)Line = 163
(0x3000000)Function = ’SqlTypeCast::evaluate’
(0x3000000)Type = ’’
(0x3000000)Name = ’’
(0x3000000)Label = ’’
(0x3000000)Text = ’Error casting from %3 to %4’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 2521
(0x1000000)Insert = (

(0x3000000)Type = 2
(0x3000000)Text = ’12’

)
(0x1000000)Insert = (

(0x3000000)Type = 2
(0x3000000)Text = ’28’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’CHARACTER’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’INTEGER’

)
(0x1000000)ConversionException = (

(0x3000000)File = ’F:\build\S000_D\src\CommonServices\ImbUtility.cpp’
(0x3000000)Line = 195
(0x3000000)Function = ’imbWcsToInt64’
(0x3000000)Type = ’’
(0x3000000)Name = ’’
(0x3000000)Label = ’’
(0x3000000)Text = ’Invalid characters’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 2595
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’fred’

)
)

)
)

)

Chapter 14. Reference 4229

flow writes information about exceptions that occur when a message is processed.
Related tasks:
“Accessing the ExceptionList tree using ESQL” on page 2471
The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.
Related reference:
“Throw node” on page 4929
Use the Throw node to throw an exception in a message flow.
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“THROW statement” on page 5161
Use the THROW statement to generate a user exception.
“CAST function” on page 5245

Parser exception trace output:

Use a Trace node to produce details of exceptions that occur when the message
parser is started.

The following figure shows an extract of the output that might be generated by a
Trace node that has the Pattern property set to a value that represents a structure
that includes the exception list tree.

The exception shown occurred when the message parser was invoked.

4230 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
Related tasks:
“Accessing the ExceptionList tree using ESQL” on page 2471
The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.
Related reference:
“Throw node” on page 4929
Use the Throw node to throw an exception in a message flow.
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.

ExceptionList = (
(0x1000000)RecoverableException = (

(0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbMqOutputNode.cpp’
(0x3000000)Line = 1444
(0x3000000)Function = ’ImbMqOutputNode::evaluate’
(0x3000000)Type = ’ComIbmMQOutputNode’
(0x3000000)Name = ’c76eb6cd-e600-0000-0080-b78796c5e70d’
(0x3000000)Label = ’esql_13485_check_defect.OUT’
(0x3000000)Text = ’Caught exception and rethrowing’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 2230
(0x1000000)ParserException = (

(0x3000000)File = ’F:\build\S000_D\src\MTI\MTIforBroker\GenXmlParser2\XmlImbParser.cpp’
(0x3000000)Line = 210
(0x3000000)Function = ’XmlImbParser::refreshBitStreamFromElements’
(0x3000000)Type = ’ComIbmMQInputNode’
(0x3000000)Name = ’ce64b6cd-e600-0000-0080-b78796c5e70d’
(0x3000000)Label = ’esql_13485_check_defect.IN’
(0x3000000)Text = ’XML Writing Errors have occurred’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 5010
(0x1000000)ParserException = (

(0x3000000)File = ’F:\build\S000_D\src\MTI\MTIforBroker\GenXmlParser2\XmlImbParser.cpp’
(0x3000000)Line = 551
(0x3000000)Function = ’XmlImbParser::checkForBodyElement’
(0x3000000)Type = ’’
(0x3000000)Name = ’’
(0x3000000)Label = ’’
(0x3000000)Text = ’No valid body of the document could be found.’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 5005

)
)

)
)

Chapter 14. Reference 4231

“THROW statement” on page 5161
Use the THROW statement to generate a user exception.

User exception trace output:

Use a Trace node to produce details of exceptions that occur when user exceptions
are generated.

The following example is an extract of the output that might be generated by a
Trace node that has the Pattern property set to a value that represents a structure
that includes the exception list tree.

The exception shown occurred when a user exception was generated (with the
ESQL THROW statement).

ExceptionList = (
(0x1000000)RecoverableException = (

(0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbComputeNode.cpp’
(0x3000000)Line = 402
(0x3000000)Function = ’ImbComputeNode::evaluate’
(0x3000000)Type = ’ComIbmComputeNode’
(0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’
(0x3000000)Label = ’esql_13485_check_defect.Compute1’
(0x3000000)Text = ’Caught exception and rethrowing’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 3
(0x3000000)Number = 2230
(0x1000000)UserException = (

(0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbRdl\ImbRdlThrowExceptionStatements.cpp’
(0x3000000)Line = 148
(0x3000000)Function = ’SqlThrowExceptionStatement::execute’
(0x3000000)Type = ’ComIbmComputeNode’
(0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’
(0x3000000)Label = ’esql_13485_check_defect.Compute1’
(0x3000000)Text = ’User Generated SQL ’USER’ exception’
(0x3000000)Catalog = ’WMQIv210’
(0x3000000)Severity = 1
(0x3000000)Number = 2949
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’USER’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’Insert1’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’Insert2’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’etc’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’’

4232 WebSphere Message Broker Version 7.0.0.8

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’’

)
(0x1000000)Insert = (

(0x3000000)Type = 5
(0x3000000)Text = ’’

)
)

)
)

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
Related tasks:
“Accessing the ExceptionList tree using ESQL” on page 2471
The ExceptionList tree has its own correlation name, ExceptionList, and you must
use this in all ESQL statements that refer to or set the content of this tree.
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.
Related reference:
“Throw node” on page 4929
Use the Throw node to throw an exception in a message flow.
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“THROW statement” on page 5161
Use the THROW statement to generate a user exception.

Message flow porting
If you have configured a message flow that runs on a broker on a distributed
system, and you now want to deploy it to a broker that runs on z/OS, you might
have to take additional actions to port the flow successfully.

Consider the following resources and attributes:

WebSphere MQ queue manager and queue names
WebSphere MQ imposes some restrictions for resource names on z/OS:
v The queue manager name cannot be greater than four characters.
v All queue names must be in uppercase. Although using quotation marks

preserves the case, certain WebSphere MQ activities on z/OS cannot
find the queue names being referenced.

For more information about configuring on z/OS, refer to the Concepts and
Planning Guide section of the WebSphere MQ Version 7 Information Center
online

File system references
File system references must reflect a UNIX file path. If you deploy a

Chapter 14. Reference 4233

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

message flow to z/OS that you have previously run on Windows, you
might have to make changes. If you have previously deployed the message
flow to a UNIX system (AIX, Linux, Solaris, or HP-UX), you do not have
to make any changes.

Databases
If the message flow accesses one or more databases, it might be subject to
some restrictions based on the system on which the database is defined.
These restrictions are described in “Database locations” on page 3595.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“User database connections” on page 2110
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database
by using ODBC or JDBC.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Database locations” on page 3595
The broker can access databases set up on the local computer or on a remote
server, subject to restrictions.
Related information:

WebSphere MQ Version 7 Information Center online

Coordinated message flows
A coordinated message flow runs in a single transaction, which is started when a
message is received by an input node, and can be committed or rolled back when
all processing has completed.

The following topics provide reference information for database use in coordinated
message flows:
v “Database connections for coordinated message flows” on page 4235
v “Database support for coordinated message flows” on page 4236
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

4234 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

input message is received.
“Message flow transactions” on page 1281
A transaction describes a set of updates that are made by an application program,
which must be managed together. The updates might be made to one or more
systems. The updates made by the program are controlled by the environment in
which the program executes, and either all are completed, or none. This property
of a transaction is known as consistency: transactions might have other properties of
atomicity, isolation, and durability.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Database connections for coordinated message flows:

When you configure a message flow to access a database, the broker establishes a
connection to that database based on the ODBC DSN.

When you configure a message flow to access a database, the broker establishes a
connection to that database based on the ODBC or JDBC DSN. To coordinate the
database updates with other updates (determined by the configuration you have
set for each node that accesses a database), the broker makes a connection for each
transaction mode for each DSN accessed on each message flow thread.

Therefore, if you set the Transaction Mode property for one node in the message
flow to Automatic, and for another node to Commit, the broker establishes two
separate connections to this DSN from the same thread. Take this action into
account when you calculate the number of connections required between a broker
and a specific DSN.

For further information about connections made by the broker to user databases,
see “User database connections” on page 2110.

For details of these connections, refer to “Enabling ODBC connections to the
databases” on page 668 and “Enabling JDBC connections to the databases” on page
683.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“User database connections” on page 2110
User databases contain business data that is written and accessed by deployed
message flows. You must create connections from the broker to the user database

Chapter 14. Reference 4235

by using ODBC or JDBC.
Related tasks:
“Enabling ODBC connections to the databases” on page 668
Set up the resources and environment that the broker requires for Open Database
Connectivity (ODBC) connections to user databases on distributed systems.
“Enabling JDBC connections to the databases” on page 683
Configure connections to a user database through a JDBCProvider service.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Database support for coordinated message flows:

If the message flow processing includes interaction with an external database, you
can coordinate the transaction by using XA technology.

XA coordination ensures that all participants update or return to a consistent state.
This external coordination support is provided by the underlying WebSphere MQ
facilities on distributed systems, and by Resource Recovery Services (RRS) on
z/OS.

The following databases provide the correct level of XA support for coordinating
message flows on distributed systems:
v DB2
v Oracle
v Sybase

On z/OS, database support for coordinated message flows is provided by DB2
only.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.

4236 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Element definitions for message parsers
The topics in this section discuss data types for the WebSphere MQ headers, and
define the element names, types, and attributes for each of the supported headers:
v “Data types of fields and elements”
v “The MQCFH parser” on page 4245
v “The MQCIH parser” on page 4246
v “The MQDLH parser” on page 4248
v “The MQIIH parser” on page 4248
v “The MQMD parser” on page 4249
v “The MQMDE parser” on page 4251
v “The MQRFH parser” on page 4252
v “The MQRFH2 and MQRFH2C parsers” on page 4253
v “The MQRMH parser” on page 4253
v “The MQSAPH parser” on page 4254
v “The MQWIH parser” on page 4255
v “The SMQ_BMH parser” on page 4256

For each parser, the following terms are defined:
v Root element name: the name of the syntax element created by the parser at the

root of its own part of the tree.
v Class name: the name by which the parser defines itself to WebSphere Message

Broker.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Accessing headers” on page 2453
If the input message received by an input node includes message headers that are
recognized by the input node, the node invokes the correct parser for each header.
You can access these headers using ESQL.

Data types of fields and elements:
The fields within WebSphere MQ headers and other subtrees built from the
message are of a particular data type. When you manipulate the messages and
their headers using ESQL in the message flow nodes, be aware of type information
in field references:
v “Data types of the fields in the WebSphere MQ headers” on page 4238
v “Data types for elements in the Properties subtree” on page 4239
v “Data types for elements in the MQ DestinationData subtree” on page 4240
v “Data types for elements in an MRM message” on page 6254
v “Data types for an unstructured (BLOB) message” on page 4244
v “Field names of the IDOC parser structures” on page 6333

Chapter 14. Reference 4237

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Element definitions for message parsers” on page 4237

Data types of the fields in the WebSphere MQ headers:

The fields in the WebSphere MQ headers have specific data types. Parsers are
supplied for the headers included in WebSphere MQ messages.

The parsers determine the data type of each field in the header:
v “The MQCFH parser” on page 4245
v “The MQCIH parser” on page 4246
v “The MQDLH parser” on page 4248
v “The MQIIH parser” on page 4248
v “The MQMD parser” on page 4249
v “The MQMDE parser” on page 4251
v “The MQRFH parser” on page 4252
v “The MQRFH2 and MQRFH2C parsers” on page 4253
v “The MQRMH parser” on page 4253
v “The MQSAPH parser” on page 4254
v “The MQWIH parser” on page 4255
v “The SMQ_BMH parser” on page 4256

The mapping of the WebSphere MQ data types to the data types used in the
broker is shown in the following table.

Data type of the field Represented as

MQLONG INTEGER

MQCHAR, MQCHAR4 CHARACTER

MQBYTE, MQBYTEn BLOB

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.

4238 WebSphere Message Broker Version 7.0.0.8

“Accessing headers” on page 2453
If the input message received by an input node includes message headers that are
recognized by the input node, the node invokes the correct parser for each header.
You can access these headers using ESQL.
Related reference:
“Element definitions for message parsers” on page 4237
“Data types of fields and elements” on page 4237
“Data types for elements in the Properties subtree”
A parser is supplied for the Properties subtree; it associates each field with a
specific data type.
“Data types for elements in the MQ DestinationData subtree” on page 4240
The DestinationData subtree is part of the Destination subtree in the local
environment. Local environment trees are created by input nodes when they
receive a message and, optionally, by Compute nodes. When created, the trees are
empty but you can create data in them by using ESQL statements coded in any of
the SQL nodes.
“Data types for elements in an MRM message” on page 6254
A parser is supplied for the body of a message in the MRM domain; it associates
each field with a specific data type.
“Data types for an unstructured (BLOB) message” on page 4244
A parser is supplied for the body of a message in the BLOB domain; it associates
each field with a specific data type.

Data types for elements in the Properties subtree:

A parser is supplied for the Properties subtree; it associates each field with a
specific data type.

The fields and data type of each field are shown in the following table.

Data type of the element Represented as

CodedCharSetId INTEGER

CreationTime TIMESTAMP

ContentType CHARACTER

Encoding INTEGER

ExpirationTime TIMESTAMP

IdentityMappedIssuedBy CHARACTER

IdentityMappedPassword CHARACTER

IdentityMappedToken CHARACTER

IdentityMappedType CHARACTER

IdentitySourceIssuedBy CHARACTER

IdentitySourcePassword CHARACTER

IdentitySourceToken CHARACTER

IdentitySourceType CHARACTER

MessageFormat CHARACTER

MessageSet CHARACTER

MessageType CHARACTER

Persistence BOOLEAN

Chapter 14. Reference 4239

Data type of the element Represented as

Priority INTEGER

ReplyIdentifier BLOB

ReplyProtocol CHARACTER

Topic (this field contains a list) CHARACTER

Transactional BOOLEAN

Related concepts:
“Message tree structure” on page 1045
The message tree is a part of the logical message tree in which the broker stores its
internal representation of the message body.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Accessing the Properties tree” on page 2460
The Properties tree has its own correlation name, Properties, and you must use this
in all ESQL statements that refer to or set the content of this tree.
Related reference:
“Element definitions for message parsers” on page 4237
“Data types of fields and elements” on page 4237
“Data types of the fields in the WebSphere MQ headers” on page 4238
The fields in the WebSphere MQ headers have specific data types. Parsers are
supplied for the headers included in WebSphere MQ messages.
“Data types for elements in the MQ DestinationData subtree”
The DestinationData subtree is part of the Destination subtree in the local
environment. Local environment trees are created by input nodes when they
receive a message and, optionally, by Compute nodes. When created, the trees are
empty but you can create data in them by using ESQL statements coded in any of
the SQL nodes.
“Data types for elements in an MRM message” on page 6254
A parser is supplied for the body of a message in the MRM domain; it associates
each field with a specific data type.
“Data types for an unstructured (BLOB) message” on page 4244
A parser is supplied for the body of a message in the BLOB domain; it associates
each field with a specific data type.

Data types for elements in the MQ DestinationData subtree:

The DestinationData subtree is part of the Destination subtree in the local
environment. Local environment trees are created by input nodes when they
receive a message and, optionally, by Compute nodes. When created, the trees are
empty but you can create data in them by using ESQL statements coded in any of
the SQL nodes.

The Destination subtree consists of subtrees for zero or more protocols; for
example, WebSphere MQ and WebSphere MQ Everyplace, or a subtree for routing
destinations (RouterList), or both.

The protocol tree has two children:
v Defaults is the first element; there can be only one.

4240 WebSphere Message Broker Version 7.0.0.8

v DestinationData is the following element, and can be repeated any number of
times, to represent each destination to which a message is sent.

“Local environment tree structure” on page 1056 includes a picture of a typical
tree, showing a Destination tree that has both protocol and RouterList subtrees.

The structure of data within the DestinationData folder is the same as that in
Defaults for the same protocol, and can be used to override the default values in
Defaults. You can therefore set up Defaults to contain values that are common to
all destinations, and set only the unique values in each DestinationData subtree. If
a value is set neither in DestinationData, nor in Defaults, the value that you have
set for the corresponding node property is used.

The fields, data type, and valid values for each element of Defaults and
DestinationData subtrees for WebSphere MQ are shown in the following table.
“MQOutput node” on page 4612 describes the corresponding node properties.

Refer to “Accessing the local environment tree” on page 2463 for information about
using DestinationData.

Data type of the element Represented as Corresponding node
property

Valid values

queueManagerName CHARACTER Queue Manager Name

queueName CHARACTER Queue Name

transactionMode CHARACTER Transaction Mode no, yes, automatic

persistenceMode CHARACTER Persistence Mode no, yes, automatic, asQdef

newMsgId CHARACTER New Message ID no, yes

newCorrelId CHARACTER New Correlation ID no, yes

segmentationAllowed CHARACTER Segmentation Allowed no, yes

alternateUserAuthority CHARACTER Alternate User Authority no, yes

replyToQMgr CHARACTER Reply-to queue manager

replyToQ CHARACTER Reply-to queue

Case-sensitivity for data types and values

When you create these fields in the DestinationData folder, enter the data type and
value exactly as shown in the table. If any variations in spelling or case are used,
these fields or values are ignored in the DestinationData records and the next
available value is used.

For example, the following ESQL samples could result in unexpected output:
SET OutputLocalEnvironment.Destination.MQ.DestinationData[1].persistenceMode = ’YES’;

SET OutputLocalEnvironment.Destination.MQ.DestinationData[2].PersistenceMode = ’yes’;

In each case, the DestinationData folder might not write a persistent message for
these destinations. In the first example, the persistenceMode field has been given a
value of 'YES', which is not one of the valid values listed in the table, and this
value is ignored. In the second example, the field named 'PersistenceMode' is
specified incorrectly and is ignored. Either the persistenceMode value of the
Defaults folder, or the value of the associated attribute on the MQOutput node are
used. If this behavior causes a value of 'no' or 'automatic' to be used, a persistent
message is not written.

Chapter 14. Reference 4241

If a DestinationData folder is producing unexpected output, check that you have
used the correct case and spelling in the fields and values.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
Related reference:
“Element definitions for message parsers” on page 4237
“Data types of fields and elements” on page 4237
“Data types of the fields in the WebSphere MQ headers” on page 4238
The fields in the WebSphere MQ headers have specific data types. Parsers are
supplied for the headers included in WebSphere MQ messages.
“Data types for elements in the Properties subtree” on page 4239
A parser is supplied for the Properties subtree; it associates each field with a
specific data type.
“Data types for elements in an MRM message” on page 6254
A parser is supplied for the body of a message in the MRM domain; it associates
each field with a specific data type.
“Data types for an unstructured (BLOB) message” on page 4244
A parser is supplied for the body of a message in the BLOB domain; it associates
each field with a specific data type.

Using LocalEnvironment variables with JMSOutput and JMSReply nodes:

The LocalEnvironment data elements related to the processing of JMS Messages in
the JMSOutput and JMSReply nodes.

LocalEnvironment.WrittenDestination.JMS.DestinationData fields

The DestinationData element is a data structure created by the JMSOutput and
JMSReply nodes for each message that is sent to a JMS Queue or published to a
JMS Topic when:
v The Out terminal of the node is connected to another node in the message flow
v An output message callback routine has been enabled for the message flow. See

“cciOutputMessageCallback” on page 6626.

The fields in the DestinationData structure are described in the following table,
and can be used by a receiving application, or an output message callback routine,
to link request messages with reply messages:

4242 WebSphere Message Broker Version 7.0.0.8

Element name Element Data Type Description

destinationName CHARACTER The name of the JMS Queue to which the node sends an outgoing
message or the JMS Topic to which the node publishes.

This value can specified in these formats:

v a JNDI administered object (predefined in the JNDI bindings specified
in the Location JNDI bindings node property). In which case the
format of the value is jndi://<JNDI Object name>

v a character string that represents the JMS Destination name in an
internal format that recognized by that particular JMS provider. For
example, when using WebSphere MQ as the JMS provider a JMS
Queue Destination would be represented by the character string
queue://<queue manager>/<queue name>

initialContext CHARACTER The Java Class name of the Initial Context Factory for the JMS provider
that the JMSOutput or JMSReply node connects to.

JMSMessageID CHARACTER A JMS message ID is the value assigned by a JMS Provider when a
message is sent to a JMS Queue or published to a JMS Topic.

This value is retrieved from the JMS Message object after the message is
sent or published.

JMSCorrelationID CHARACTER The JMS Message header property called JMSCorrelationID can be used
to hold a value referencing some external information to be used for
linking request with reply messages.

When creating the DestinationData element in the LocalEnvironment this
correlation ID value is obtained from the JMSCorrelationID message tree
field in the folder OutputRoot.JMSTransport.Transport_Folders.
Header_Values.

LocalEnvironment.Destination.JMSDestinationList fields

Transformation nodes can write data elements called DestinationData[n] in the
LocalEnvironment folder called Destination.JMSDestinationList. The
DestinationData elements are written with an array subscript format where the
subscript is an integer that identifies an individual element in the destination list.

A JMSOutput node searches for DestinationData[n] entries in the
LocalEnvironment if it has been configured to send to a destination list. The node
sends an output message to each entry found in the destination list. The following
table describes the format of a DestinationData element.

Chapter 14. Reference 4243

Element name Element Data
Type

Description

DestinationData CHARACTER The name of the JMS Queue to which the node sends an outgoing
message or the JMS Topic to which the node publishes.

This value can specified in the following formats:

v A JNDI administered object (predefined in the JNDI bindings
specified in the Location JNDI bindings node property). In this case,
the format of the value is jndi://<JNDI Object name>

v A character string that represents the JMS Destination name in an
internal format that is recognized by that particular JMS provider. For
example, when using WebSphere MQ as the JMS provider, a JMS
Queue Destination is represented by the character string
queue://<queue manager>/<queue name>

v A complex element with DestinationName and DestinationType child
elements that specify the name and type of the JMS Destination.

DestinationData.DestinationNameCHARACTER A character string that represents the name of the JMS destination in an
external format that is recognized by the JMS provider. If this field is
specified, you must set the DestinationType field.

DestinationData.DestinationTypeCHARACTER The type of the JMS destination referred to in the DestinationName
element. If the DestinationType field is set, you must set the
DestinationName field. Set the DestinationType field to Queue or Topic.

Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
“Populating Destination in the local environment tree” on page 2467
Use the Destination subtree to set up the target destinations that are used by
output nodes, the HTTPRequest node, the SOAPRequest node, the
SOAPAsyncRequest node, and the RouteToLabel node. The following examples
show how you can create and use an ESQL procedure to perform the task of
setting up values for each of these uses.
Related reference:
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“JMSReply node” on page 4562
Use the JMSReply node to send messages to JMS destinations.

Data types for an unstructured (BLOB) message:

A parser is supplied for the body of a message in the BLOB domain; it associates
each field with a specific data type.

An unstructured (BLOB) message has the data types shown in the following table.

4244 WebSphere Message Broker Version 7.0.0.8

Data type of the element Represented as

BLOB BLOB

UnknownParserName CHARACTER

If the broker cannot find a parser that corresponds to the domain that is requested
by the user, the message is assigned to the BLOB parser, and the requested domain
is preserved in the UnknownParserName field. If a BLOB parser is explicitly created,
the UnknownParserName field is still present. It can contain the values of "BLOB"
or "none" or can be the zero length string ("").

This information is used by the header integrity routine (described in “Parsers” on
page 1072) to ensure that the semantic meaning of the message is preserved.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Manipulating messages in the BLOB domain” on page 2615
How to deal with messages that belong to the BLOB domain, and that are parsed
by the BLOB parser.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237

The MQCFH parser:

The elements of the MQCFH parser are listed in this topic.

The root name for this parser is MQPCF. The class name is MQPCF.

The following table lists the elements native to the MQCFH header.

Element Name Element Data Type Element Attributes

Type INTEGER Name Value

StrucLength INTEGER Name Value

Version INTEGER Name Value

Command INTEGER Name Value

MsgSeqNumber INTEGER Name Value

Control INTEGER Name Value

Chapter 14. Reference 4245

Element Name Element Data Type Element Attributes

CompCode INTEGER Name Value

Reason INTEGER Name Value

ParameterCount INTEGER Name Value

For further information about this header and its contents, see the Programmable
Command Formats and Administration Interface section of the WebSphere MQ Version
7 Information Center online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

The MQCIH parser:

The elements of the MQCIH parser are listed in this topic.

The root name for this parser is MQCIH. The class name is MQCICS.

The following table lists the elements native to the MQCIH header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ReturnCode INTEGER Name Value

CompCode INTEGER Name Value

Reason INTEGER Name Value

UOWControl INTEGER Name Value

GetWaitInterval INTEGER Name Value

LinkType INTEGER Name Value

OutputDataLength INTEGER Name Value

FacilityKeepTime INTEGER Name Value

4246 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Element Name Element Data Type Element Attributes

ADSDescriptor INTEGER Name Value

ConversationalTask INTEGER Name Value

TaskEndStatus INTEGER Name Value

Facility BLOB Name Value

Function CHARACTER Name Value

AbendCode CHARACTER Name Value

Authenticator CHARACTER Name Value

Reserved1 CHARACTER Name Value

ReplyToFormat CHARACTER Name Value

RemoteSysId CHARACTER Name Value

RemoteTransId CHARACTER Name Value

TransactionId CHARACTER Name Value

FacilityLike CHARACTER Name Value

AttentionId CHARACTER Name Value

StartCode CHARACTER Name Value

CancelCode CHARACTER Name Value

NextTransactionId CHARACTER Name Value

Reserved2 CHARACTER Name Value

Reserved3 CHARACTER Name Value

CursorPosition INTEGER Name Value

ErrorOffset INTEGER Name Value

InputItem INTEGER Name Value

Reserved4 INTEGER Name Value

For further information about this header and its contents, see the Application
Programming Reference section of the WebSphere MQ Version 7 Information Center
online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

Chapter 14. Reference 4247

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The MQDLH parser:

The elements of the MQDLH parser are listed in this topic.

The root name for this parser is MQDLH. The class name is MQDEAD.

The following table lists the elements native to the MQDLH header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Reason INTEGER Name Value

DestQName CHARACTER Name Value

DestQMgrName CHARACTER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

For further information about this header and its contents, see the Application
Programming Reference section of the WebSphere MQ Version 7 Information Center
online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

The MQIIH parser:

The elements of the MQIIH parser are listed in this topic.

The root name for this parser is MQIIH. The class name is MQIMS.

The following table lists the elements native to the MQIIH header.

4248 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

LTermOverride CHARACTER Name Value

MFSMapName CHARACTER Name Value

ReplyToFormat CHARACTER Name Value

Authenticator CHARACTER Name Value

TranInstanceId BLOB Name Value

TranState CHARACTER Name Value

CommitMode CHARACTER Name Value

SecurityScope CHARACTER Name Value

Reserved CHARACTER Name Value

For further information about this header and its contents, see the Application
Programming Reference section of the WebSphere MQ Version 7 Information Center
online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

The MQMD parser:

The elements of the MQMD parser are listed in this topic.

The root name for this parser is MQMD. The class name is MQHMD.

The following table lists the orphan elements adopted by the MQMD header.

Element Name Element Data Type Element Attributes

SourceQueue CHARACTER Name Value

Transactional BOOLEAN Name Value

Chapter 14. Reference 4249

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The following table lists the elements native to the MQMD header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Report INTEGER Name Value

MsgType INTEGER Name Value

Expiry1 INTEGER/GMTTIMESTAMP Name Value

Feedback INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Priority INTEGER Name Value

Persistence INTEGER Name Value

MsgId BLOB Name Value

CorrelId BLOB Name Value

BackoutCount INTEGER Name Value

ReplyToQ CHARACTER Name Value

ReplyToQMgr CHARACTER Name Value

UserIdentifier CHARACTER Name Value

AccountingToken BLOB Name Value

ApplIdentityData CHARACTER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

ApplOriginData CHARACTER Name Value

GroupId BLOB Name Value

MsgSeqNumber INTEGER Name Value

Offset INTEGER Name Value

MsgFlags INTEGER Name Value

OriginalLength INTEGER Name Value

Note:

1. The Expiry field in the MQMD is a special case:
v An INTEGER value represents an expiry interval in tenths of a second. If the

Expiry field is set to -1, it represents an unlimited expiry interval (that is, the
message never expires) If the Expiry field is a positive INTEGER, it
represents an expiry interval of that number of tenths of a second (for
example, if it is set to 4, it represents 4 tenths of a second, if it is set to 15, it
represents one and a half seconds).

v A GMTTIMESTAMP value represents a specific expiration time.
If Expiry contains a GMTTIMESTAMP in the past, or an INTEGER of less than
1 (excluding -1), it is set to the value 1 (one tenth of a second, the minimum
value).

4250 WebSphere Message Broker Version 7.0.0.8

For further information about this header and its contents, see the Application
Programming Reference section of the WebSphere MQ Version 7 Information Center
online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Accessing the MQMD header” on page 2455
Code ESQL statements to access the fields of the MQMD header.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

The MQMDE parser:

The elements of the MQMDE parser are listed in this topic.

The root name for this parser is MQMDE. The class name is MQHMDE.

The following table lists the elements native to the MQMDE header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

GroupId BLOB Name Value

MsgSeqNumber INTEGER Name Value

Offset INTEGER Name Value

MsgFlags INTEGER Name Value

OriginalLength INTEGER Name Value

For further information about this header and its contents, see the Application
Programming Reference section of the WebSphere MQ Version 7 Information Center
online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 14. Reference 4251

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

The MQRFH parser:

The elements of the MQRFH parser are listed in this topic.

The root name for this parser is MQRFH. The class name is MQHRF.

The following table lists the elements native to the MQRFH header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

Other name value elements might be present that contain information as parsed
from or destined for the option buffer.

For further information about this header and its contents, see the Application
Programming Reference section of the WebSphere MQ Version 7 Information Center
online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

4252 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The MQRFH2 and MQRFH2C parsers:

The MQRFH2 header can be parsed using either the MQRFH2 parser or the
MQRFH2C compact parser.

The root names for these parsers are MQRFH2 and MQRFH2C. The class names
are MQHRF2 and MQHRF2C.

The following table lists the elements that are required for the MQRFH2 header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

NameValueCCSID INTEGER Name Value

Other name and child name value elements might be present that contain
information that is parsed from, or destined for, the option buffer. For further
information about this header and its contents, see “MQRFH2 header” on page
6397 and the Application Programming Reference section of the WebSphere MQ
Version 7 Information Center online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Accessing the MQRFH2 header” on page 2456
Code ESQL statements to access the fields of the MQRFH2 header.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
“MQRFH2 header” on page 6397
The MQRFH2 header is used to pass messages to and from a message broker that
belongs to WebSphere Message Broker.
Related information:

WebSphere MQ Version 7 Information Center online

The MQRMH parser:

The elements of the MQRMH parser are listed in this topic.

The root name for this parser is MQRMH. The class name is MQHREF.

Chapter 14. Reference 4253

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The following table lists the elements native to the MQRMH header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ObjectType CHARACTER Name Value

ObjectInstanceId BLOB Name Value

SrcEnv CHARACTER1 Name Value

SrcName CHARACTER2 Name Value

DestEnv CHARACTER3 Name Value

DestName CHARACTER4 Name Value

DataLogicalLength INTEGER Name Value

DataLogicalOffset INTEGER Name Value

DataLogicalOffset2 INTEGER Name Value

Notes:
1. This field represents both SrcEnvLength and Offset
2. This field represents both SrcNameLength and Offset
3. This field represents both DestEnvLength and Offset
4. This field represents both DestNameLength and Offset

For further information about this header and its contents, see the Application
Programming Reference section of the WebSphere MQ Version 7 Information Center
online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

The MQSAPH parser:

The elements of the MQSAPH parser are listed in this topic.

The root name for this parser is MQSAPH. The class name is MQHSAP.

4254 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The following table lists the elements native to the MQSAPH header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

Client CHARACTER Name Value

Language CHARACTER Name Value

HostName CHARACTER Name Value

UserId CHARACTER Name Value

Password CHARACTER Name Value

SystemNumber CHARACTER Name Value

Reserved BLOB Name Value

For further information about this header and its contents, see the WebSphere MQ
Version 7 Information Center online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

The MQWIH parser:

The elements of the MQWIH parser are listed in this topic.

The root name for this parser is MQWIH. The class name is MQHWIH.

The following table lists the elements native to the MQWIH header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Chapter 14. Reference 4255

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Element Name Element Data Type Element Attributes

Flags INTEGER Name Value

ServiceName CHARACTER Name Value

ServiceStep CHARACTER Name Value

MsgToken BLOB Name Value

Reserved CHARACTER Name Value

For further information about this header and its contents, see the Application
Programming Reference section of the WebSphere MQ Version 7 Information Center
online.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

The SMQ_BMH parser:

The elements of the SMQ_BMH parser are listed in this topic.

The root name for this parser is SMQ_BMH. The class name is SMQBAD.

The following table lists the elements native to the SMQ_BMH header.

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

ErrorType INTEGER Name Value

Reason INTEGER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

Related concepts:

4256 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
Related reference:
“Data types of fields and elements” on page 4237
Related information:

WebSphere MQ Version 7 Information Center online

XML constructs
A self-defining XML message carries the information about its content and
structure within the message in the form of a document that adheres to the XML
specification. Its definition is not held anywhere else.

When the broker receives an XML message, it interprets the message using the
generic XML parser, and created an internal message tree structure according to the
XML definitions contained within that message.

A self-defining message is also known as a generic XML message. It does not have
a recorded format.

The information provided with WebSphere Message Broker does not provide a full
definition or description of XML terminology, concepts, and message constructs: it
is a summary that highlights aspects that are important when you use XML
messages with brokers and message flows.

For further information about XML, see the developerWorks Web site.

Example XML message:
The name elements used in this description (for example, XmlDecl) are provided
by WebSphere Message Broker, and are referred to as field type constants. They are
available for symbolic use within the ESQL that defines the processing of message
content performed by the nodes, such as a Filter node, within a message flow.
They are not part of the XML specification.

A simple XML message might take the form:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>.........</s1>

The corresponding syntax element tree (top level elements only) is shown in the
following diagram:

ElementWhiteSpaceDocTypeDeclWhiteSpaceXmlDecl

Chapter 14. Reference 4257

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www.ibm.com/developerworks

The WhiteSpace elements within the tree are there because of the line breaks in the
original XML document, and have no business meaning. White space is used in
XML for readability; if you process XML messages that contain line breaks (as
shown above), blanks lines, or spaces between tags, these all appear as elements in
the message tree.

WhiteSpace within an XML element (between start and end tags) has business
meaning and is represented using the Content syntax element. See “XML
WhiteSpace and DocTypeWhiteSpace” on page 4287 for more information.

The field type constants for XML name elements (for example, Element and
XmlDecl) equate to a constant value of the form 0x01000000. You can see these
constants in the output created by the Trace node when a message, or a portion of
the message, is traced.
Related concepts:
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
Related tasks:
“Manipulating messages in the XML domains” on page 2535
You can manipulate messages in the XML, XMLNS, and XMLNSC domains.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
Related reference:
“The XML declaration”
The beginning of an XML message can contain an XML declaration.
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.

The XML declaration:

The beginning of an XML message can contain an XML declaration.

The following is an example of a declaration:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>.........</s1>

The XML declaration includes the following field type constants:
v “XML encoding” on page 4259
v “XML standalone” on page 4259
v “XML version” on page 4260
v “XMLDecl” on page 4261

“XML declaration example” on page 4261 includes another example of an XML
declaration and the tree structure it forms.

4258 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Manipulating messages in the XML domains” on page 2535
You can manipulate messages in the XML, XMLNS, and XMLNSC domains.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
Related reference:
“XML declaration example” on page 4261
The following example shows an XML declaration in an XML document.
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.

XML encoding:

The encoding element is a value element and is always a child of the XmlDecl
element.

The value of the encoding element is a string that corresponds to the value of the
encoding string in the declaration. In the following example, the encoding element
has a value of UTF-8.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>.........</s1>

You cannot specify WebSphere MQ encodings in this element.
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Manipulating messages in the XML domains” on page 2535
You can manipulate messages in the XML, XMLNS, and XMLNSC domains.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

XML standalone:

The XML standalone element defines the existence of an externally-defined DTD.

Chapter 14. Reference 4259

It is a value element and stores the data corresponding to the value of the
standalone string in the declaration. It is always a child of the XmlDecl element.
Valid values for the standalone element are yes and no. The following is an
example of this:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>.........</s1>

A value of no indicates that this XML document is not standalone and depends on
an externally-defined DTD. A value of yes indicates that the XML document is
self-contained. However, the current release of WebSphere Message Broker does
not resolve externally-defined DTDs, so the setting of standalone is irrelevant and
is ignored.
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
“Manipulating messages in the XML domains” on page 2535
You can manipulate messages in the XML, XMLNS, and XMLNSC domains.

XML version:

The XML version element is a value element and stores the data corresponding to
the version string in the declaration.

It is always a child of the XmlDecl element. In the following example, the version
element contains the string value 1.0:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>.........</s1>

Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Manipulating messages in the XML domains” on page 2535
You can manipulate messages in the XML, XMLNS, and XMLNSC domains.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

4260 WebSphere Message Broker Version 7.0.0.8

XMLDecl:

XMLDecl is a name element that corresponds to the XML declaration itself.

The XmlDecl element is a child of the XML parser and is written first to a bit
stream. Although the XMLDecl element is a named element, its name has no
relevance. The following shows an example:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>.........</s1>

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
Related tasks:
“Manipulating messages in the XML domains” on page 2535
You can manipulate messages in the XML, XMLNS, and XMLNSC domains.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

XML declaration example:

The following example shows an XML declaration in an XML document.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

The following figure shows the tree structure that is created from the declaration:

XmlDecl

Version
value="1.0"

Standalone
value="yes"

Encoding
value="UTF-8"

Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Manipulating messages in the XML domains” on page 2535
You can manipulate messages in the XML, XMLNS, and XMLNSC domains.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.

Chapter 14. Reference 4261

Related reference:
“The XML declaration” on page 4258
The beginning of an XML message can contain an XML declaration.

The XML message body:

Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.

The body contains complex XML markup, which translates to many syntax
element types in the parsed tree. Each syntax element type is introduced here, with
a series of example XML fragments.

The following common element types are discussed:
v “XML element” on page 4267
v “XML attribute” on page 4264
v “XML content” on page 4267

“XML message body example: elements, attributes, and content” on page 4269
provides an example of an XML message body and the tree structure that is
created from it using the syntax elements types listed above.

More complex XML messages might use some of the following syntax element
types:
v “XML CDataSection” on page 4265
v “XML EntityReferenceStart and EntityReferenceEnd” on page 4268
v “XML comment” on page 4266
v “XML ProcessingInstruction” on page 4270
v “XML AsisElementContent” on page 4263
v “XML BitStream” on page 4264
Related concepts:
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Manipulating messages in the XML domains” on page 2535
You can manipulate messages in the XML, XMLNS, and XMLNSC domains.
“Adding an XML wire format” on page 2853
You can add an XML wire format physical format layer to a message set by using
the Message Set editor.
Related reference:
“XML declaration example” on page 4261
The following example shows an XML declaration in an XML document.
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.

4262 WebSphere Message Broker Version 7.0.0.8

XML AsisElementContent:

AsisElementContent is a special value syntax element that is used to precisely
control generated XML.

The AsisElementContent syntax element is a special value element. The element is
used to precisely control the XML generated in an output message without the
safeguards of the Element, Attribute, and Content syntax elements. If you use
AsisElementContent, you must ensure that the output message is well-formed
XML.

You might choose to use this syntax element if, for example, you want to suppress
the usual behavior in which occurrences of ampersand (&), less than (<), greater
than (>), quotation mark ("), and apostrophe (') are replaced by the predefined
XML entities &, <, >, ", and '.

The following example illustrates the use of AsisElementContent. The statement:
Set OutputRoot.XMLNS.(XML.Element)Message.(XML.Content) = ’<rawMarkup>’;

generates the following XML in an output message:
<Message><rawMarkup></Message>

However, the following statement:
Set OutputRoot.XMLNS.(XML.Element)Message.(XML.AsisElementContent) = ’<rawMarkup>’;

generates the following output message:
<Message><rawMarkup></Message>

These examples show that the value of an AsisElementContent syntax element is
not modified before it is written to the output message.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML element” on page 4267
“XML attribute” on page 4264
“XML content” on page 4267
The content element represents character data that occurs in the XML message.
“XML message body example: elements, attributes, and content” on page 4269
The XML document contains elements, attributes, and content.
“XML CDataSection” on page 4265
The CDataSection value element represents CData sections in the XML message.
“XML EntityReferenceStart and EntityReferenceEnd” on page 4268
The EntityReferenceStart and EntityReferenceEnd elements are used to store entity
references that occur in the XML message.

Chapter 14. Reference 4263

“XML comment” on page 4266
An XML comment encountered outside the document type declaration is
represented by the Comment value syntax element. It contains the comment text
from the XML message.
“XML ProcessingInstruction” on page 4270
ProcessingInstruction is a syntax element used with XML processing instructions.
“XML BitStream”
BitStream is a specialized name-value element designed to aid the processing of
very large messages.

XML attribute:
This syntax element is the default name-value element supported by the XML
parser. Use it to represent the attributes that are associated with its parent element.
The name and value of the syntax element correspond to the name and value of
the attribute that is being represented. Attribute elements have no children, and
must always be children of an element.

When attributes are written to a message, occurrences of ampersand (&), less than
(<), greater than (>), double quotation mark ("), and apostrophe (') within the
attribute value are replaced by the predefined XML entities &, <, >,
", and '.

The attr element is also supported for compatibility with earlier versions of the
product.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML element” on page 4267
“XML message body example: elements, attributes, and content” on page 4269
The XML document contains elements, attributes, and content.

XML BitStream:

BitStream is a specialized name-value element designed to aid the processing of
very large messages.

The XML BitStream syntax element is a name-value element. When writing an
XML message, the value of the BitStream element is written directly into the
message, and the name is not important. The BitStream element might be the only
element in the message tree.

The value of the element must be of type BLOB; any other data type generates an
error while writing the element. Ensure that the content of the element is
appropriate for use in the output message.

4264 WebSphere Message Broker Version 7.0.0.8

Use of the BitStream element is similar to the AsisElementContent element, except
that the AsisElementContent type converts its value into a string, whereas the
BitStream element uses its BLOB value directly. This is a specialized element
designed to aid processing of very large messages.

The following ESQL excerpts demonstrate a typical use for this element. First,
declare the element:
DECLARE StatementBitStream BLOB

Initialize the contents of StatementBitStream from an appropriate source, such as
an input message. If the source field is not of type BLOB, use the CAST statement
to convert the contents to BLOB. Then create the new field in the output message,
for example:
CREATE LASTCHILD OF resultCursor
Type XML.BitStream
NAME ’StatementBitStream’
VALUE StatementBitstream;

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML AsisElementContent” on page 4263
AsisElementContent is a special value syntax element that is used to precisely
control generated XML.
“XML element” on page 4267
“XML attribute” on page 4264
“XML content” on page 4267
The content element represents character data that occurs in the XML message.
“XML comment” on page 4266
An XML comment encountered outside the document type declaration is
represented by the Comment value syntax element. It contains the comment text
from the XML message.
“CAST function” on page 5245
“XML message body example: elements, attributes, and content” on page 4269
The XML document contains elements, attributes, and content.

XML CDataSection:

The CDataSection value element represents CData sections in the XML message.

The content of the CDataSection element is the value of the CDataSection element
without the <![CDATA[that marks its beginning and the]]> that marks its end.

For example, the following Cdata section:
<![CDATA[<greeting>Hello, world!</greeting>]]>

Chapter 14. Reference 4265

is represented by a CDataSection element with a string value of:
"<greeting>Hello, world!</greeting>"

Unlike Content, occurrences of <,>, &, ", and ' are not translated to their escape
sequences when the CDataSection is written out to a serialized message (bit
stream).
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML element” on page 4267
“XML message body example: elements, attributes, and content” on page 4269
The XML document contains elements, attributes, and content.

XML comment:

An XML comment encountered outside the document type declaration is
represented by the Comment value syntax element. It contains the comment text
from the XML message.

If the value of the element contains the character sequence -->, the sequence is
replaced with the text -->. This ensures that the contents of the comment
cannot prematurely terminate the comment. Occurrences of <, >, &, ", and ' are not
translated to their escape sequences.

The following are examples of the XML comment in an XML document and in tree
structure form:
<example><!-- This is a comment --></example>

Element
- name="example"

Comment
- value=" This is a comment "

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:

4266 WebSphere Message Broker Version 7.0.0.8

“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML message body example: elements, attributes, and content” on page 4269
The XML document contains elements, attributes, and content.
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.

XML content:

The content element represents character data that occurs in the XML message.

This syntax element is the default value element supported by the XML parser. Use
content to represent character data (including white space characters) that is part of
the element content. There might be many content elements as children of a single
element, in which case they are separated by other syntax element types such as
nested elements or attributes.

When content is written to a message, occurrences of ampersand (&), less than (<),
greater than (>), double quotation mark ("), and apostrophe (') are replaced by the
predefined XML entities &, <, >, ", and '.

The pcdata element is also supported for compatibility with earlier versions of the
product.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML element”
“XML attribute” on page 4264
“XML message body example: elements, attributes, and content” on page 4269
The XML document contains elements, attributes, and content.

XML element:
This syntax element is the default name element supported by the XML parser, and
is one of the most common elements. The name of the syntax element corresponds
to the name of the XML element in the message. This element can have many
children, including attributes, elements, and content.

The tag element is also supported for backward compatibility.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 14. Reference 4267

Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML attribute” on page 4264
“XML content” on page 4267
The content element represents character data that occurs in the XML message.
“XML message body example: elements, attributes, and content” on page 4269
The XML document contains elements, attributes, and content.

XML EntityReferenceStart and EntityReferenceEnd:

The EntityReferenceStart and EntityReferenceEnd elements are used to store entity
references that occur in the XML message.

When an entity reference is encountered in the XML message, both the expanded
form and the original entity name are stored in the syntax element tree. The name
of the entity is stored as the value of the EntityReferenceStart and
EntityReferenceEnd syntax elements, and any syntax elements between contain the
entity expansion.

The following examples show the XML entity references in an XML document and
in tree structure form:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE example [<!ENTITY entityName "eValue">]>
<example>Test: &entityName;</example>

EntityReferenceEnd
- value="entityName"

Content
- value="eValue"

Element
- name="example"

Content
- value="Test: "

EntityReferenceStart
- value="entityName"

The XML declaration and the document type declaration are not shown here. Refer
to “The XML declaration” on page 4258 and “XML document type declaration” on
page 4271 for details of those sections of the syntax element tree.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.

4268 WebSphere Message Broker Version 7.0.0.8

“XML element” on page 4267
“XML attribute” on page 4264
“XML content” on page 4267
The content element represents character data that occurs in the XML message.
“XML message body example: elements, attributes, and content”
The XML document contains elements, attributes, and content.
“The XML declaration” on page 4258
The beginning of an XML message can contain an XML declaration.
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.

XML message body example: elements, attributes, and content:

The XML document contains elements, attributes, and content.

The following are examples of an XML message body in an XML document and in
tree structure form.

<Person age="32" height="172cm">
<Name>Cormac Keogh</Name>
</Person>

Attribute
- name="age"
- value="32"

Element
- name="Name"

Content
- value="\n"

Attribute
- name="height"
- value="172cm"

Content
- value="\n"

Element
- name="person"

Content
- value="Cormac Keogh"

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML element” on page 4267
“XML attribute” on page 4264
“XML content” on page 4267
The content element represents character data that occurs in the XML message.

Chapter 14. Reference 4269

XML ProcessingInstruction:

ProcessingInstruction is a syntax element used with XML processing instructions.

An XML processing instruction, encountered outside the document type
declaration, is represented by the ProcessingInstruction syntax element. This is a
name-value element; the name of the syntax element is the processing instruction
target name, and the value of the syntax element is the character data of the
processing instruction. The value of the syntax element must not be empty. The
name cannot be XML in either uppercase or lowercase.

If the value of the element contains the character sequence ?>, the sequence is
replaced with the text ?>. This ensures that the content of the processing
instruction cannot prematurely end the processing instruction. Occurrences of <,>,
&, ", and ' are not translated to their escape sequences.

Examples of the XML ProcessingInstruction in an XML document and in tree
structure form are shown in the following:
<example><?target This is a PI.?></example>

Element
- name="example"

ProcessingInstruction
- name="target"
- value="This is a PI."

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML element” on page 4267
“XML attribute” on page 4264
“XML content” on page 4267
The content element represents character data that occurs in the XML message.
“XML message body example: elements, attributes, and content” on page 4269
The XML document contains elements, attributes, and content.
“XML CDataSection” on page 4265
The CDataSection value element represents CData sections in the XML message.
“XML EntityReferenceStart and EntityReferenceEnd” on page 4268
The EntityReferenceStart and EntityReferenceEnd elements are used to store entity
references that occur in the XML message.

4270 WebSphere Message Broker Version 7.0.0.8

“XML comment” on page 4266
An XML comment encountered outside the document type declaration is
represented by the Comment value syntax element. It contains the comment text
from the XML message.
“XML AsisElementContent” on page 4263
AsisElementContent is a special value syntax element that is used to precisely
control generated XML.
“XML BitStream” on page 4264
BitStream is a specialized name-value element designed to aid the processing of
very large messages.

XML document type declaration:

The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.

Only internal (inline) DTD subsets are represented in the syntax element tree. An
inline DTD is a DTD that is declared within the XML document itself. It can be a
complete DTD definition, or can extend the definition in an external DTD.

External DTD subsets (identified by the SystemID or PublicId elements described
later in this section) can be referenced in the message, but those referenced are not
resolved by the broker.

Field type constants are defined by WebSphere Message Broker:
v DocTypeDecl
v NotationDecl
v Entities
v ElementDef
v AttributeList
v AttributeDef
v DocTypePI
v WhiteSpace and DocTypeWhiteSpace
v DocTypeComment

DTD example is an example of an XML DTD.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“The XML declaration” on page 4258
The beginning of an XML message can contain an XML declaration.
“The XML message body” on page 4262
Every XML message must have a body. The body comprises a top-level XML
element that contains all the message data.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.

Chapter 14. Reference 4271

“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML entities” on page 4275
“XML ElementDef” on page 4281
The ElementDef element represents the <!ELEMENT construct in a DTD.
“XML AttributeList” on page 4281
The AttributeList name element represents the <!ATTLIST construct in a DTD.
“XML AttributeDef” on page 4282
The AttributeDef name element describes the definition of an attribute within an
<!ATTLIST construct.
“XML DocTypePI” on page 4286
The DocTypePI element represents a processing instruction found within the DTD.

“XML WhiteSpace and DocTypeWhiteSpace” on page 4287
The WhiteSpace and DocTypeWhiteSpace XML elements represent white space
characters in the message.
“XML DocTypeComment” on page 4286
Comments in the XML DTD are represented by the DocTypeComment element.
“XML DTD example” on page 4288

XML DocTypeDecl:

The DocTypeDecl represents the DOCTYPE declaration.

DocTypeDecl is a named element and is a child of the XML parser. DocTypeDecl is
written to the bit stream before the element that represents the body of the
document during serialization. The following attributes can be specified within this
element:
v IntSubset
v PublicId
v SystemId

The following example is included in DTD example:
<!DOCTYPE test PUBLIC "//this/is/a/URI/test" "test.dtd" [
...
...
]>

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML IntSubset” on page 4273
The IntSubset element groups all elements that represent the DTD constructs
contained in the internal subset of the message.

4272 WebSphere Message Broker Version 7.0.0.8

“XML PublicId”
PublicId is an element that represents a public identifier in an XML message.
“XML SystemId” on page 4274
SystemId is a value element that represents a system identifier in an XML message.

“XML DTD example” on page 4288

XML IntSubset:

The IntSubset element groups all elements that represent the DTD constructs
contained in the internal subset of the message.

Although the IntSubset element is a named element, its name is not relevant.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML PublicId”
PublicId is an element that represents a public identifier in an XML message.
“XML SystemId” on page 4274
SystemId is a value element that represents a system identifier in an XML message.

“XML DTD example” on page 4288

XML PublicId:

PublicId is an element that represents a public identifier in an XML message.

The PublicId element can be part of a DocTypeDecl, NotationDecl, or
UnparsedEntityDecl element. The value of the PublicId element is typically a URL.
A public identifier of the form PUBLIC "//this/is/a/URI/test" has a string value
of //this/is/a/URI/test.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:

Chapter 14. Reference 4273

“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML IntSubset” on page 4273
The IntSubset element groups all elements that represent the DTD constructs
contained in the internal subset of the message.
“XML SystemId”
SystemId is a value element that represents a system identifier in an XML message.

“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML UnparsedEntityDecl” on page 4280
An UnparsedEntityDecl is used to include data in an XML document that is not
well-formed XML, and is not parsed by an XML processor.
“XML DTD example” on page 4288

XML SystemId:

SystemId is a value element that represents a system identifier in an XML message.

SystemId can be part of a DocTypeDecl, NotationDecl, or UnparsedEntityDecl
element. The value of the SystemId is a URI, and is typically a URL or the name of
a file on the current system. A system identifier of the form SYSTEM "Note.dtd" has
a string value of Note.dtd.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML IntSubset” on page 4273
The IntSubset element groups all elements that represent the DTD constructs
contained in the internal subset of the message.
“XML PublicId” on page 4273
PublicId is an element that represents a public identifier in an XML message.
“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML UnparsedEntityDecl” on page 4280
An UnparsedEntityDecl is used to include data in an XML document that is not
well-formed XML, and is not parsed by an XML processor.

4274 WebSphere Message Broker Version 7.0.0.8

“XML DTD example” on page 4288

XML NotationDecl:

The NotationDecl element represents a notation declaration in an XML message.

NotationDecl is a name element whose name corresponds to the name given with
the notation declaration. It must have a SystemId as a child and it can optionally
have a child element of type PublicId. For example:
<!NOTATION gif SYSTEM "image.gif">

The name of the NotationDecl is gif.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML PublicId” on page 4273
PublicId is an element that represents a public identifier in an XML message.
“XML SystemId” on page 4274
SystemId is a value element that represents a system identifier in an XML message.

“XML DTD example” on page 4288

XML entities:
Entities in the DTD are represented by one of six named element types described
in the following topics:
v EntityDecl
v EntityDeclValue
v ExternalParameterEntityDecl
v ExternalEntityDecl
v ParameterEntityDecl
v UnparsedEntityDecl
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:

Chapter 14. Reference 4275

“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML EntityDecl”
The EntityDecl element represents a general entity and is declared in the internal
subset of the DTD.
“XML ParameterEntityDecl” on page 4279
The ParameterEntityDecl represents a parameter entity definition in the internal
subset of the DTD.
“XML ExternalParameterEntityDecl” on page 4278
The ExternalParameterEntityDecl element represents a parameter entity definition
where the entity definition is contained externally to the current message.
“XML ExternalEntityDecl” on page 4279
The ExternalEntityDecl element represents a general entity where the entity
definition is contained externally to the current message.
“XML UnparsedEntityDecl” on page 4280
An UnparsedEntityDecl is used to include data in an XML document that is not
well-formed XML, and is not parsed by an XML processor.
“XML EntityDeclValue” on page 4277
The EntityDeclValue element represents the value of an EntityDecl or
ParameterEntityDecl defined internally in the DOCTYPE construct.
“XML DTD example” on page 4288

XML EntityDecl:

The EntityDecl element represents a general entity and is declared in the internal
subset of the DTD.

The EntityDecl is a named element and has a single child element, which is of type
EntityDeclValue.

An entity declaration of the form:
<!ENTITY bookTitle "User Guide">

has an EntityDecl element of name bookTitle and a child element of type
EntityDeclValue with a string value of User Guide.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.

4276 WebSphere Message Broker Version 7.0.0.8

“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML entities” on page 4275
“XML ParameterEntityDecl” on page 4279
The ParameterEntityDecl represents a parameter entity definition in the internal
subset of the DTD.
“XML ExternalParameterEntityDecl” on page 4278
The ExternalParameterEntityDecl element represents a parameter entity definition
where the entity definition is contained externally to the current message.
“XML ExternalEntityDecl” on page 4279
The ExternalEntityDecl element represents a general entity where the entity
definition is contained externally to the current message.
“XML UnparsedEntityDecl” on page 4280
An UnparsedEntityDecl is used to include data in an XML document that is not
well-formed XML, and is not parsed by an XML processor.
“XML EntityDeclValue”
The EntityDeclValue element represents the value of an EntityDecl or
ParameterEntityDecl defined internally in the DOCTYPE construct.
“XML ElementDef” on page 4281
The ElementDef element represents the <!ELEMENT construct in a DTD.
“XML AttributeList” on page 4281
The AttributeList name element represents the <!ATTLIST construct in a DTD.
“XML AttributeDef” on page 4282
The AttributeDef name element describes the definition of an attribute within an
<!ATTLIST construct.
“XML DocTypePI” on page 4286
The DocTypePI element represents a processing instruction found within the DTD.

“XML WhiteSpace and DocTypeWhiteSpace” on page 4287
The WhiteSpace and DocTypeWhiteSpace XML elements represent white space
characters in the message.
“XML DocTypeComment” on page 4286
Comments in the XML DTD are represented by the DocTypeComment element.
“XML DTD example” on page 4288

XML EntityDeclValue:

The EntityDeclValue element represents the value of an EntityDecl or
ParameterEntityDecl defined internally in the DOCTYPE construct.

The EntityDeclValue is always a child of either an EntityDecl element or a
ParameterEntityDecl element, and is a value element. For the following entity:

<!ENTITY bookTitle "User Guide">

the EntityDeclValue element has the string value User Guide.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 14. Reference 4277

Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML entities” on page 4275
“XML EntityDecl” on page 4276
The EntityDecl element represents a general entity and is declared in the internal
subset of the DTD.
“XML ParameterEntityDecl” on page 4279
The ParameterEntityDecl represents a parameter entity definition in the internal
subset of the DTD.
“XML DTD example” on page 4288

XML ExternalParameterEntityDecl:

The ExternalParameterEntityDecl element represents a parameter entity definition
where the entity definition is contained externally to the current message.

The ExternalParameterEntityDecl is a named element and has a child of type
SystemId. It can also have a child of type PublicId. The name of the entity does not
include the percent sign %. In XML an external parameter entity declaration takes
the form:

<!ENTITY % bookDef SYSTEM "BOOKDEF.DTD">

This represents an ExternalParameterEntityDecl element of name bookDef with a
single child of type SystemId with a string value of BOOKDEF.DTD.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML PublicId” on page 4273
PublicId is an element that represents a public identifier in an XML message.
“XML SystemId” on page 4274
SystemId is a value element that represents a system identifier in an XML message.

4278 WebSphere Message Broker Version 7.0.0.8

“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML entities” on page 4275
“XML DTD example” on page 4288

XML ExternalEntityDecl:

The ExternalEntityDecl element represents a general entity where the entity
definition is contained externally to the current message.

The ExternalEntityDecl is a named element and has a child of type SystemId. It
can also have a child of type PublicId.

An external entity declaration of the form:
<!ENTITY bookAppendix SYSTEM "appendix.txt">

has an EntityDecl element of name bookAppendix and a child element of type
SystemId with a string value of appendix.txt.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML PublicId” on page 4273
PublicId is an element that represents a public identifier in an XML message.
“XML SystemId” on page 4274
SystemId is a value element that represents a system identifier in an XML message.

“XML entities” on page 4275
“XML DTD example” on page 4288

XML ParameterEntityDecl:

The ParameterEntityDecl represents a parameter entity definition in the internal
subset of the DTD.

The ParameterEntityDecl is a named element and has a single child element that is
of type EntityDeclValue. For parameter entities, the name of the entity does not
include the percent sign %. In XML a parameter entity declaration takes the form:

<!ENTITY % inline "#PCDATA | emphasis | link">

Related concepts:

Chapter 14. Reference 4279

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML EntityDeclValue” on page 4277
The EntityDeclValue element represents the value of an EntityDecl or
ParameterEntityDecl defined internally in the DOCTYPE construct.
“XML DTD example” on page 4288

XML UnparsedEntityDecl:

An UnparsedEntityDecl is used to include data in an XML document that is not
well-formed XML, and is not parsed by an XML processor.

An unparsed entity is an external entity whose external reference is not parsed by
an XML processor. This means that you can include data in an XML document that
is not well-formed XML, such as a graphic file. The UnparsedEntityDecl is named
element and a child of type SystemId that identifies the URI for the entity (a URL
or a local file location). UnparsedEntityDecl can optionally have a child of type
PublicId.

UnparsedEntityDecl can also have a child of type NotationReference, a value
element that represents a reference to a notation declaration elsewhere in the XML
document. It defines the type of data of the unparsed entity.

An unparsed entity declaration takes the form:
<!ENTITY pic SYSTEM "scheme.gif" NDATA gif>

In this example, the SystemId has a string value of scheme.gif. The value of
NotationReference is gif. It refers to a NOTATION defined within the XML
document:

<!NOTATION gif SYSTEM "image/gif">

The next entity is included in the DTD example:
<!ENTITY unpsd PUBLIC "//this/is/a/URI/me.gif" "me.gif" NDATA TeX>

This shows the optional PublicId element, which has the string value of
//this/is/a/URI/me.gif.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:

4280 WebSphere Message Broker Version 7.0.0.8

Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML PublicId” on page 4273
PublicId is an element that represents a public identifier in an XML message.
“XML SystemId” on page 4274
SystemId is a value element that represents a system identifier in an XML message.

“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML DTD example” on page 4288

XML ElementDef:

The ElementDef element represents the <!ELEMENT construct in a DTD.

The ElementDef element is a child of the DOCTYPE element. The name of the
element that is defined corresponds to the name of the syntax element. The value
corresponds to the element definition.

This example is included in the DTD example:
<!ELEMENT subel2 (#PCDATA)>

The name of the element is subel2 and the value is (#PCDATA).
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML DTD example” on page 4288

XML AttributeList:

The AttributeList name element represents the <!ATTLIST construct in a DTD.

Chapter 14. Reference 4281

The name of the AttributeList element corresponds to the name of the element for
which the list of attributes is being defined. Its content represents one or more
AttributeDef elements.

This example is included in the DTD example:
<!ATTLIST el5 el5satt CDATA #IMPLIED>

This example shows an AttributeList that defines one AttributeDef, and its content
is explained in AttributeDef.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML AttributeDef”
The AttributeDef name element describes the definition of an attribute within an
<!ATTLIST construct.
“XML DTD example” on page 4288

XML AttributeDef:

The AttributeDef name element describes the definition of an attribute within an
<!ATTLIST construct.

The AttributeDef element is always a child of the AttributeList element. The name
of the syntax element is the name of the attribute being defined. It can have three
children:
v AttributeDefValue
v AttributeDefType
v AttributeDefDefaultType

This example is included in the DTD example:
<!ATTLIST el5 el5satt CDATA #IMPLIED>

The name of the AttributeDef is el5satt and it is a child of AttributeList el5. The
name of the AttributeDefType is CDATA, and the value of the
AttributeDefDefaultType is IMPLIED.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:

4282 WebSphere Message Broker Version 7.0.0.8

Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML entities” on page 4275
“XML ElementDef” on page 4281
The ElementDef element represents the <!ELEMENT construct in a DTD.
“XML AttributeList” on page 4281
The AttributeList name element represents the <!ATTLIST construct in a DTD.
“XML AttributeDefValue”
the AttributeDefValue gives the default value of attributes of type CDATA or
attributes defined by an enumerated list.
“XML AttributeDefDefaultType” on page 4285
The AttributeDefDefaultType syntax element is a value element that represents the
attribute default as defined under the attribute definition.
“XML AttributeDefType” on page 4284
The AttributeDefType syntax element is a name-value element whose name
corresponds to the attribute type found in the attribute definition.
“XML DocTypePI” on page 4286
The DocTypePI element represents a processing instruction found within the DTD.

“XML WhiteSpace and DocTypeWhiteSpace” on page 4287
The WhiteSpace and DocTypeWhiteSpace XML elements represent white space
characters in the message.
“XML DocTypeComment” on page 4286
Comments in the XML DTD are represented by the DocTypeComment element.
“XML DTD example” on page 4288

XML AttributeDefValue:

the AttributeDefValue gives the default value of attributes of type CDATA or
attributes defined by an enumerated list.

For attributes of type CDATA, see “XML AttributeDefType” on page 4284.

For an example of AtrtibuteDefValue, see DTD example.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.

Chapter 14. Reference 4283

Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML AttributeList” on page 4281
The AttributeList name element represents the <!ATTLIST construct in a DTD.
“XML AttributeDef” on page 4282
The AttributeDef name element describes the definition of an attribute within an
<!ATTLIST construct.
“XML AttributeDefDefaultType” on page 4285
The AttributeDefDefaultType syntax element is a value element that represents the
attribute default as defined under the attribute definition.
“XML AttributeDefType”
The AttributeDefType syntax element is a name-value element whose name
corresponds to the attribute type found in the attribute definition.
“XML DTD example” on page 4288

XML AttributeDefType:

The AttributeDefType syntax element is a name-value element whose name
corresponds to the attribute type found in the attribute definition.

Possible values for the name are:
v CDATA
v ID
v IDREF
v IDREFS
v ENTITY
v ENTITIES
v NMTOKEN
v NMTOKENS
v NOTATION

If there is an enumeration present for the attribute definition, the entire
enumeration string is held as a string in the value member of the name-value
syntax element. In this case, the name member of the name-value syntax element is
empty. The value string starts with an open parenthesis (and ends with a close
parenthesis). Each entry in the enumeration string is separated by a vertical bar |
character. If the Attribute value is not defined by an enumerated list, the value
member of the syntax element is empty.

An example is included in AttributeDef.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.

4284 WebSphere Message Broker Version 7.0.0.8

Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML entities” on page 4275
“XML ElementDef” on page 4281
The ElementDef element represents the <!ELEMENT construct in a DTD.
“XML AttributeList” on page 4281
The AttributeList name element represents the <!ATTLIST construct in a DTD.
“XML AttributeDef” on page 4282
The AttributeDef name element describes the definition of an attribute within an
<!ATTLIST construct.
“XML AttributeDefValue” on page 4283
the AttributeDefValue gives the default value of attributes of type CDATA or
attributes defined by an enumerated list.
“XML AttributeDefDefaultType”
The AttributeDefDefaultType syntax element is a value element that represents the
attribute default as defined under the attribute definition.
“XML DocTypePI” on page 4286
The DocTypePI element represents a processing instruction found within the DTD.

“XML WhiteSpace and DocTypeWhiteSpace” on page 4287
The WhiteSpace and DocTypeWhiteSpace XML elements represent white space
characters in the message.
“XML DocTypeComment” on page 4286
Comments in the XML DTD are represented by the DocTypeComment element.
“XML DTD example” on page 4288

XML AttributeDefDefaultType:

The AttributeDefDefaultType syntax element is a value element that represents the
attribute default as defined under the attribute definition.

The value can be one of the following strings:
v #REQUIRED
v #IMPLIED
v #FIXED

An example is included in AttributeDef.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.

Chapter 14. Reference 4285

Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML AttributeList” on page 4281
The AttributeList name element represents the <!ATTLIST construct in a DTD.
“XML AttributeDef” on page 4282
The AttributeDef name element describes the definition of an attribute within an
<!ATTLIST construct.
“XML AttributeDefValue” on page 4283
the AttributeDefValue gives the default value of attributes of type CDATA or
attributes defined by an enumerated list.
“XML AttributeDefType” on page 4284
The AttributeDefType syntax element is a name-value element whose name
corresponds to the attribute type found in the attribute definition.
“XML DTD example” on page 4288

XML DocTypeComment:

Comments in the XML DTD are represented by the DocTypeComment element.

It is a value element for which the value string contains the comment text. This
element follows the same processing rules as the Comment element. See “XML
comment” on page 4266.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML comment” on page 4266
An XML comment encountered outside the document type declaration is
represented by the Comment value syntax element. It contains the comment text
from the XML message.
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML DTD example” on page 4288

XML DocTypePI:

The DocTypePI element represents a processing instruction found within the DTD.

4286 WebSphere Message Broker Version 7.0.0.8

This element is a name-value element. The name of the element is used to store the
processing instruction target name, and the value contains the character data of the
processing instruction. The value of the element can be empty. The name cannot be
the string XML in either uppercase or lowercase form. This element follows the
same processing rules as the ProcessingInstruction element. See “XML
ProcessingInstruction” on page 4270.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML entities” on page 4275
“XML ElementDef” on page 4281
The ElementDef element represents the <!ELEMENT construct in a DTD.
“XML AttributeList” on page 4281
The AttributeList name element represents the <!ATTLIST construct in a DTD.
“XML AttributeDef” on page 4282
The AttributeDef name element describes the definition of an attribute within an
<!ATTLIST construct.
“XML WhiteSpace and DocTypeWhiteSpace”
The WhiteSpace and DocTypeWhiteSpace XML elements represent white space
characters in the message.
“XML DocTypeComment” on page 4286
Comments in the XML DTD are represented by the DocTypeComment element.
“XML DTD example” on page 4288

XML WhiteSpace and DocTypeWhiteSpace:

The WhiteSpace and DocTypeWhiteSpace XML elements represent white space
characters in the message.

The WhiteSpace element represents any white space characters outside the message
body and DTD that are not represented by any other element. For example, white
space within the body of the message (within elements) is reported as element
content using the Content element type, but white space characters between the
XML declaration and the beginning of the message body are represented by the
WhiteSpace element.

<?xml version="1.0"?> <BODY>....</BODY>

Chapter 14. Reference 4287

The characters between "1.0"?> and <BODY> are represented by the WhiteSpace
element.

White space is used in XML for readability and has no business meaning. Input
XML messages can include line breaks, blanks lines, and spaces between tags (all
shown in the following example). If you process XML messages that contain any of
these spaces, they are represented as elements in the message tree. Therefore they
appear when you view the message in the debugger, and in any trace output.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">
<s1>.........
<s2>abc</s2> <s2>def</s2>

<s3>123</s3>
</s1>

If you do not want white space elements in your message trees, you must present
the input message as a single line, or use the XMLNSC compact parser in its
default mode

The DocTypeWhiteSpace element represents white space that is found inside the
DTD that is not represented by any other element. White space characters found
within a DocType between two definitions are represented by the
DocTypeWhiteSpace element.

<!ENTITY % bookDef SYSTEM "BOOKDEF.DTD"> <!ENTITY bookTitle "User Guide">

The characters between DTD"> and <!ENTITY are represented by the
DocTypeWhiteSpace element.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML DocTypePI” on page 4286
The DocTypePI element represents a processing instruction found within the DTD.

“XML DocTypeComment” on page 4286
Comments in the XML DTD are represented by the DocTypeComment element.
“XML DTD example”

XML DTD example:

This example shows an XML DTD in an XML document and the tree structure
form of that document:

4288 WebSphere Message Broker Version 7.0.0.8

<!DOCTYPE test PUBLIC "//this/is/a/URI/test" "test.dtd" [
<!NOTATION TeX PUBLIC "//this/is/a/URI/TexID" "//TexID">
<!ENTITY ent1 "this is an entity">
<!ENTITY % ent2 "#PCDATA | subel2">
<!ENTITY % extent1 PUBLIC "//this/is/a/URI/extent1" "more.txt">
<!ENTITY extent2 PUBLIC "//this/is/a/URI/extent2" "more.txt">
<!ENTITY unpsd PUBLIC "//this/is/a/URI/me.gif" "me.gif" NDATA TeX>
<?test Do this?>
<!--this is a comment-->
<!ELEMENT subel2 (#PCDATA)>
<!ELEMENT subel1 (subel2 | el4)+>
<!ELEMENT el1 (#PCDATA)>
<!ELEMENT el2 (#PCDATA | subel2)*>
<!ELEMENT el3 (#PCDATA | subel2)*>
<!ELEMENT el4 (#PCDATA)>
<!ELEMENT el5 (#PCDATA | subel1)*>
<!ELEMENT el6 (#PCDATA)>
<!ATTLIST subel1
size (big | small) "big"
shape (round | square) #REQUIRED>
<!ATTLIST el5
el5satt CDATA #IMPLIED>
]>

When a message is parsed by the generic XML parser, the relevant part of the
message tree looks like this (assuming that there are no carriage returns or white
space between tags):

IntSubset

XML

DocTypeDecl
- name="test"

SystemId
- value="test.dtd"

PublicId
- value="//this/is/a/URI/test"

The IntSubset structure contains the following structures at the next level of
nesting: the tree structure for each of these is shown in the following tree
structures.

NotationDecl
- name="teX"

SystemId
- value="//TexID"

PublicId
- value="//this/is/a/URI/TexID"

EntityDecl
- name="ent1"

EntityDeclValue
- value="this is a entity"

Chapter 14. Reference 4289

ParameterEntityDecl
- name="ent2"

EntityDeclValue
- value="#PCDATA | subel2"

ExternalParameterEntityDecl
- name="extent1"

SystemId
- value="more.txt"

PublicId
- value="//this/is/a/URI/extent2"

ExternalEntityDecl
- name="extent2"

SystemId
- value="more.txt"

PublicId
- value="//this/is/a/URI/extent2"

UnparsedEntityDecl
- name="unpsd"

SystemId
- value="me.gif"

PublicId
- value="//this/is/a/URI/me.gif"

NotationReference
- value="TeX"

DocTypeWhiteSpace
- value=" "

DocTypePI
- name="test"
- value="Do this"

DocTypeComment
- value="this is a comment"

4290 WebSphere Message Broker Version 7.0.0.8

ElementDef
- name="subel2"
- value="(#PCDATA)"

ElementDef

- name="subel1"

- value="Subel2 | el4"

ElementDef
- name="el1"
- value="(#PCDATA)"

ElementDef
- name="el2"
- value="(#PCDATA | Subel2)*"

ElementDef
- name="el3"
- value="(#PCDATA | Subel2)*"

ElementDef
- name="el4"
- value="(#PCDATA)"

ElementDef
- name="el5"
- value="(#PCDATA | Subel1)*"

ElementDef
- name="el6"
- value="(#PCDATA)"

Chapter 14. Reference 4291

AttributeList
- name="Subel1"

AttributeDef
- name="size"

AttributeDefType
- value="(big | small)"

AttributeDef
- name="shape"

AttributeDefValue
- value="big"

AttributeDefDefaultType
- value="REQUIRED"

AttributeDefType
- value="(round | square)"

AttributeList
- name="el5"

AttributeDef
- name="el5satt"

AttributeDefType
- name="CDATA"

AttributeDefDefaultType
- value="IMPLIED"

Related reference:
“XML document type declaration” on page 4271
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.
“XML DocTypeDecl” on page 4272
The DocTypeDecl represents the DOCTYPE declaration.
“XML NotationDecl” on page 4275
The NotationDecl element represents a notation declaration in an XML message.
“XML entities” on page 4275
“XML ElementDef” on page 4281
The ElementDef element represents the <!ELEMENT construct in a DTD.
“XML AttributeList” on page 4281
The AttributeList name element represents the <!ATTLIST construct in a DTD.
“XML AttributeDef” on page 4282
The AttributeDef name element describes the definition of an attribute within an
<!ATTLIST construct.
“XML DocTypePI” on page 4286
The DocTypePI element represents a processing instruction found within the DTD.

“XML WhiteSpace and DocTypeWhiteSpace” on page 4287
The WhiteSpace and DocTypeWhiteSpace XML elements represent white space
characters in the message.

4292 WebSphere Message Broker Version 7.0.0.8

“XML DocTypeComment” on page 4286
Comments in the XML DTD are represented by the DocTypeComment element.

Built-in nodes
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

The mode that your broker is working in can affect the types of node that you can
use; see “Restrictions that apply in each operation mode” on page 3657.

For information about each of these built-in nodes, use the following links. The
nodes are listed in the categories under which they are grouped in the node
palette, see “Message flow node palette” on page 1027.

WebSphere MQ
v “MQInput node” on page 4594
v “MQOutput node” on page 4612
v “MQReply node” on page 4621
v “MQGet node” on page 4578
v “MQHeader node” on page 4590
v “MQOptimizedFlow node” on page 4612

JMS
v “JMSInput node” on page 4532
v “JMSOutput node” on page 4549
v “JMSReply node” on page 4562
v “JMSHeader node” on page 4529
v “JMSMQTransform node” on page 4547
v “MQJMSTransform node” on page 4610

HTTP
v “HTTPInput node” on page 4474
v “HTTPReply node” on page 4484
v “HTTPRequest node” on page 4488
v “HTTPHeader node” on page 4470

Web Services
v “SOAPInput node” on page 4795
v “SOAPReply node” on page 4819
v “SOAPRequest node” on page 4828
v “SOAPAsyncRequest node” on page 4750
v “SOAPAsyncResponse node” on page 4777
v “SOAPEnvelope node” on page 4786
v “SOAPExtract node” on page 4790
v “RegistryLookup node” on page 4646
v “EndpointLookup node” on page 4407

SCA
v “SCAInput node” on page 4707
v “SCAReply node” on page 4726
v “SCAAsyncRequest node” on page 4690
v “SCAAsyncResponse node” on page 4698
v “SCARequest node” on page 4719

WebSphere Adapters

Chapter 14. Reference 4293

v “JDEdwardsInput node” on page 4519
v “JDEdwardsRequest node” on page 4524
v “PeopleSoftInput node” on page 4630
v “PeopleSoftRequest node” on page 4635
v “SAPInput node” on page 4676
v “SAPReply node” on page 4682
v “SAPRequest node” on page 4685
v “SiebelInput node” on page 4740
v “SiebelRequest node” on page 4745
v “TwineballInput node” on page 4951
v “TwineballRequest node” on page 4955

Routing
v “Filter node” on page 4452
v “Label node” on page 4569
v “Publication node” on page 4643
v “RouteToLabel node” on page 4673
v “Route node” on page 4669
v “AggregateControl node” on page 4296
v “AggregateReply node” on page 4299
v “AggregateRequest node” on page 4303
v “Collector node” on page 4333
v “Resequence node” on page 4651
v “Sequence node” on page 4736

Transformation
v “Mapping node” on page 4571
v “XSLTransform node” on page 4968
v “Compute node” on page 4340
v “JavaCompute node” on page 4514
v “PHPCompute node” on page 4639

Construction
v “Input node” on page 4511
v “Output node” on page 4626
v “Throw node” on page 4929
v “Trace node” on page 4942
v “TryCatch node” on page 4949
v “FlowOrder node” on page 4458
v “Passthrough node” on page 4628
v “ResetContentDescriptor node” on page 4663

Database
v “Database node” on page 4354
v “DatabaseInput node” on page 4360
v “DataDelete node” on page 4382
v “DataInsert node” on page 4386
v “DataUpdate node” on page 4390
v “Warehouse node” on page 4963
v “DatabaseRetrieve node” on page 4363
v “DatabaseRoute node” on page 4373
v “Extract node” on page 4412

File
v “FileInput node” on page 4415
v “FileOutput node” on page 4430

4294 WebSphere Message Broker Version 7.0.0.8

v “FTEInput node” on page 4461
v “FTEOutput node” on page 4466
v “FileRead node” on page 4444
v “CDInput node” on page 4305
v “CDOutput node” on page 4312

Email
v “EmailInput node” on page 4394
v “EmailOutput node” on page 4400

TCPIP
v “TCPIPClientInput node” on page 4854
v “TCPIPClientOutput node” on page 4867
v “TCPIPClientReceive node” on page 4877
v “TCPIPServerInput node” on page 4890
v “TCPIPServerOutput node” on page 4903
v “TCPIPServerReceive node” on page 4913

CORBA
v “CORBARequest node” on page 4349

CICS
v “CICSRequest node” on page 4321

IMS
v “IMSRequest node” on page 4504

Validation
v “Validate node” on page 4959
v “Check node” on page 4318

Security
v “SecurityPEP node” on page 4729

Timer
v “TimeoutControl node” on page 4932
v “TimeoutNotification node” on page 4936
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Designing a message flow” on page 1455
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.

Chapter 14. Reference 4295

AggregateControl node
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties”

Purpose:
Aggregation is an extension of the request/reply application model. It combines
the generation and fan-out of a number of related requests with the fan-in of the
corresponding replies, and compiles those replies into a single aggregated reply
message.

The aggregation function is provided by the following three nodes:
v The AggregateControl node marks the beginning of a fan-out of requests that are

part of an aggregation. It sends a control message that is used by the
AggregateReply node to match the different requests that have been made. The
information that is propagated from the Control terminal includes the broker
identifier, the aggregate name property, and the timeout property. You must not
change the aggregation information that is added to the message Environment
by the AggregateControl node.

v The AggregateRequest node records the fact that the request messages have been
sent. It also collects information that helps the AggregateReply node to construct
the aggregated reply message. You must preserve the information that is added
to the message Environment by the AggregateControl node, otherwise the
aggregation fails.

v The AggregateReply node marks the end of an aggregation fan-in. It collects
replies and combines them into a single aggregated reply message.

This node creates the LocalEnvironment.ComIbmAggregateControlNode folder. This
folder and the fields in it are for internal use by WebSphere Message Broker and
you should not rely on their existence or values when developing your message
flows.

The AggregateControl node is contained in the Routing drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following samples to see how to use this node:
v Aggregation
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:

4296 WebSphere Message Broker Version 7.0.0.8

When you have put an instance of the AggregateControl node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. All mandatory properties for which you must enter a value (those
that do not have a default value defined) are marked with an asterisk.

The AggregateControl node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal to which the original message is routed when processing
completes successfully.

Control The output terminal to which a control message is routed. The control message is sent
to a corresponding AggregateReply node.

The Control terminal is deprecated in Version 6.0; to use connections from the Control
terminal, see “Using control messages in aggregation flows” on page 2745.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The AggregateControl node Description properties are described in the following
table:

Property M C Default Description

Node name No No The node type
(AggregateControl)

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the
message flow.

The AggregateControl node Basic properties are described in the following table:

Property M C Default Description mqsiapplybaroverride
command property

Aggregate
Name

Yes Yes A name that is used to associate the fan-out message
flow with the fan-in message flow. This value must be
contextually unique in a broker.

This name is also used to identify an Aggregation
configurable service (if one exists) to be used by the
node.

aggregateName

Chapter 14. Reference 4297

Property M C Default Description mqsiapplybaroverride
command property

Timeout
(sec)

Yes No 0 The amount of time, in seconds, that it waits for replies
to arrive at the fan-in.

The default value is zero; if you accept this default
value, the timeout is disabled for fan-outs from this node
(that is, it waits for replies indefinitely). If not all
responses are received, the message flow continues to
wait, and does not complete. Set a value greater than
zero to ensure that the message flow can complete, even
if not all responses are received. For further information
about timeouts, see “AggregateReply node” on page
4299.

z/OS

On z/OS, if the Timeout property is not set to

zero, set the queue manager parameter EXPRYINT to 5.

The value specified by the Timeout (sec) property is
overridden by the value set in the timeoutSeconds
property of the Aggregation configurable service, if it is
set. Timeout values specified by the node and the
configurable service are overridden by a timeout value
defined in the message, at the location specified by the
Timeout location property of the AggregateControl
node.

The AggregateControl node Advanced properties are described in the following
table:

Property M C Default Description

Timeout
location

No No '$LocalEnvironment/Aggregation/
Timeout'

The location in the message tree where the aggregation
timeout value is defined. The value specified in the
message tree overrides the Timeout (sec) property of
the AggregateControl node and the timeoutSeconds
property of the Aggregation configurable service.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a

4298 WebSphere Message Broker Version 7.0.0.8

single aggregated reply message.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“AggregateReply node”
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.
“AggregateRequest node” on page 4303
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

AggregateReply node
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4300
v “Terminals and properties” on page 4300

Purpose:
Aggregation is an extension of the request/reply application model. It combines
the generation and fan-out of a number of related requests with the fan-in of the
corresponding replies, and compiles those replies into a single aggregated reply
message.

The aggregation function is provided by the following three nodes:
v The AggregateControl node marks the beginning of a fan-out of requests that are

part of an aggregation. It sends a control message that is used by the
AggregateReply node to match the different requests that have been made. The
information that is propagated from the Control terminal includes the broker
identifier, the aggregate name property, and the timeout property. The
aggregation information that is added to the message Environment by the
AggregateControl node must not be changed.

v The AggregateRequest node records the fact that the request messages have been
sent. It also collects information that helps the AggregateReply node to construct

Chapter 14. Reference 4299

the aggregated reply message. The information that is added to the message
Environment by the AggregateRequest must be preserved, otherwise the
aggregation fails.

v The AggregateReply node marks the end of an aggregation fan-in. It collects
replies and combines them into a single aggregated reply message.

The AggregateReply node is contained in the Routing drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

When incoming messages are stored by the AggregateReply node before all
responses for the aggregation are received, the persistence of the message
determines whether the message is retained across a restart.

If, during an aggregation, one or more of the response messages are not received
by the AggregateReply node, the normal timeout or unknown message processing
deals with the responses that have been received already.

The MQMD.Expiry value of each AggregateReply message is set to -1 in the
compound output message. This value is set because the MQMD.Expiry value has
no meaning once the reply message is no longer on the WebSphere MQ Transport
and has been stored by the broker during the aggregation process.

Using this node in a message flow:
Look at the following samples to see how to use this node:
v Aggregation
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the AggregateReply node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. All mandatory properties for which you must enter a value (those
that do not have a default value defined) are marked with an asterisk.

The AggregateReply node terminals are described in the following table.

Terminal Description

Control The input terminal that accepts control messages that are sent by a corresponding
AggregateControl node.

The Control terminal is deprecated in Version 6.0; to use connections to the Control terminal, see
“Using control messages in aggregation flows” on page 2745.

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected during processing.

Unknown The output terminal to which messages are routed when they cannot be identified as valid reply
messages.

4300 WebSphere Message Broker Version 7.0.0.8

Terminal Description

Out The output terminal to which the compound message is routed when processing completes
successfully.

Timeout The output terminal to which the incomplete compound message is routed when the timeout
interval that is specified in the corresponding AggregateControl node has expired.

Catch The output terminal to which the message is routed if an exception is thrown downstream and
then caught by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the AggregateReply node are described in the
following table.

Property M C Default Description

Node name No No The node type
(AggregateReply)

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The AggregateReply node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Aggregate
Name

Yes Yes A name that is used to associate the fan-in message
flow with the fan-out message flow. This value must
be contextually unique within a broker.

This name is also used to identify an Aggregation
configurable service (if one exists) to be used by the
node.

aggregateName

Unknown
Message
Timeout

No No 0 The amount of time, in seconds, for which messages
that cannot be identified as replies are held before
they are propagated to the Unknown terminal.

The default value is zero; if you accept this default
value, the timeout is disabled, and unknown
messages are propagated to the Unknown terminal
upon receipt.

z/OS

On z/OS, if the Unknown Message

Timeout property is not set to zero, set the queue
manager parameter EXPRYINT to 5.

Chapter 14. Reference 4301

Property M C Default Description mqsiapplybaroverride
command property

Transaction
Mode

Yes No Selected This property defines the transactional characteristics
of this message:

v If you select the check box (the default), the
subsequent message flow is under transaction
control. This setting remains true for messages that
derive from the output message and are produced
by an MQOutput node, unless the MQOutput node
explicitly overrides the transaction status. No other
node can change the transactional characteristics of
the output message.

v If you clear the check box, the subsequent message
flow is not under transaction control. This setting
remains true for messages that derive from the
output message and are produced by an
MQOutput node, unless the MQOutput node has
specified that the message must be put under sync
point.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

4302 WebSphere Message Broker Version 7.0.0.8

“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Using control messages in aggregation flows” on page 2745
The default behavior is that connections between AggregateControl and
AggregateReply nodes for sending control messages are ignored. This
configuration optimizes performance and removes the possibility that response
messages will be received by the AggregateReply node before the control message.

Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateRequest node”
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

AggregateRequest node
Use the AggregateRequest node to record the fact that request messages have been
sent. This node also collects information that helps the AggregateReply node to
construct the compound response message.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4304
v “Terminals and properties” on page 4304

Purpose:
Aggregation is an extension of the request/reply application model. It combines
the generation and fan-out of a number of related requests with the fan-in of the
corresponding replies, and compiles those replies into a single aggregated reply
message.

The aggregation function is provided by the following three nodes:
v The AggregateControl node marks the beginning of a fan-out of requests that are

part of an aggregation. It sends a control message that is used by the
AggregateReply node to match the different requests that have been made. The
information that is propagated from the Control terminal includes the broker
identifier, the aggregate name property, and the timeout property. The
aggregation information that is added to the message Environment by the
AggregateControl node must not be changed.

v The AggregateRequest node records the fact that the request messages have been
sent. It also collects information that helps the AggregateReply node to construct
the aggregated reply message. The information that is added to the message
Environment by the AggregateRequest node must be preserved, otherwise the
aggregation fails.

v The AggregateReply node marks the end of an aggregation fan-in. It collects
replies and combines them into a single aggregated reply message.

Chapter 14. Reference 4303

The AggregateRequest node is contained in the Routing drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following samples to see how to use this node:
v Aggregation
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the AggregateRequest node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. All mandatory properties for which you must enter a value (those
that do not have a default value defined) are marked with an asterisk.

The AggregateRequest node terminals are described in the following table.

Terminal Description

In The input terminal that accepts messages sent as part of an aggregate request.

Out The output terminal to which the input message is routed when processing completes successfully.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The AggregateRequest node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type
(AggregateRequest)

The name of the node

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the
message flow.

The AggregateRequest node Basic property is described in the following table.

Property M C Default Description

Folder Name Yes No The name that is used as a folder in the AggregateReply node's compound
message to store the reply to this request. You must enter a value for this
property, but the value does not need to be unique.

4304 WebSphere Message Broker Version 7.0.0.8

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
Related reference:
“AggregateControl node” on page 4296
Use the AggregateControl node to mark the beginning of a fan-out of requests that
are part of an aggregation.
“AggregateReply node” on page 4299
Use the AggregateReply node to mark the end of an aggregation fan-in. This node
collects replies and combines them into a single compound message.

CDInput node
Use the CDInput node to preview files when using IBM Sterling Connect:Direct in
conjunction with WebSphere Message Broker.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4306
v “Terminals and properties” on page 4306

Purpose:
You can use the CDInput node to extend WebSphere Message Broker support for
file processing through its integration with IBM Sterling Connect:Direct.

Chapter 14. Reference 4305

On z/OS, when the CDInput node receives notification of the arrival of a dataset
that it needs to process, the node copies that dataset into Unix System Services
temporarily, before processing.

The CDInput node is contained in the File drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
You can use the CDInput node in any flow that is designed to accept files from an
IBM Sterling Connect:Direct network.

Terminals and properties:
The CDInput node terminals are described in the following table.

Terminal Description

Failure The output terminal to which a message is routed if an error occurs before a message is propagated
to the Out terminal. Messages propagated to this terminal are not validated, even if you have
specified, using the Validate property, that validation is to take place.

Out The output terminal to which a message is routed if it has been successfully extracted from the
input file. If no errors occur within the input node, a message received from an external resource is
always sent to the Out terminal first.

End of Data The output terminal to which the End of Data message is routed after all the messages in a file
have been processed. The End of Data message flow transaction is initiated only if this terminal is
attached.

The end of data structure consists of an empty message body, and the Local Environment
information propagated from the out terminal.

Catch The output terminal to which the message is routed if an exception is thrown downstream and
caught by this node. Exceptions are caught only if this terminal is attached.

The following tables describe the node properties that you can set on a specified
tab. The column headed M indicates whether the property is mandatory (marked in
the toolkit with an asterisk if you must enter a value when no default is defined).
The column headed C indicates whether the property is configurable (you can
change the value when you add the message flow to the BAR file to deploy it).

When the CDInput node propagates a message, it stores information about it in the
LocalEnvironment.CD and LocalEnvironment.CD.Transfer message trees. If the
input file is empty, an empty message is propagated (assuming that it is valid). If
you specify a file name pattern that contains wildcard characters in the File name
filter property, the CDInput node copies the characters in the file name matched
by wildcard characters, together with any intermediate characters, to the
LocalEnvironment.Wildcard.WildcardMatch message tree. See “Using local
environment variables with file nodes” on page 1820 for more information.

Description properties

Property M C Default Description

Node name No No CDInput The name of the node.

Short Description No No None A brief description of the node.

4306 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Long Description No No None Text that describes the purpose of the node in the message
flow.

Basic properties

Property M C Default Description

Directory filter No Yes None Specify the directory from which the node can process files.
If this property is left blank, the node can process files from
all directories. If multiple CDInput nodes are deployed to
the same execution group, files are distributed randomly
between the nodes unless filtering is defined.

The directory must exist.

If the WebSphere Message Broker and IBM Sterling
Connect:Direct server are on different machines, this is the
path to the directory on the broker machine. For
information on various configurations when using IBM
Sterling Connect:Direct, see “Advanced configuration
properties when using IBM Sterling Connect:Direct nodes”
on page 727 and refer to the Input sections.

If the brokerPathToInputDir field in the configurable
service is set, the directory filter can be a path relative to
that value; otherwise it must be an absolute path.

On z/OS, if the file is a sequential dataset, partitioned
dataset, or partitioned dataset member, leave the Directory
filter field blank.

File name filter Yes Yes None Specify either a file name, or a character sequence that
matches a file name.

Either the file name or the character sequence can contain
at least one of the following wildcard characters:

v * (any sequence of zero or more characters)

v ? (any single character)

By default the node processes all files. If multiple CDInput
nodes are deployed to the same execution group, files are
distributed randomly between the nodes unless filtering is
defined.

The CDInput node can process z/OS sequential datasets,
entire partitioned datasets or partitioned dataset members.
The syntax to address a dataset is based on the full name
for the dataset, for example, MBUSER.TEST1.

Wildcard characters can be used anywhere within a dataset
file name filter, this works in the same way as for normal
file name filter patterns.

For a member within a partitioned dataset, use brackets to
specify the member name, for example,
MBUSER.TEST(MEME01).

When receiving an entire partitioned dataset, each member
in the received dataset is processed as an individual
message.

Chapter 14. Reference 4307

Property M C Default Description

Connect:Direct server
configurable service

No Yes Default The name of the configurable service being used to connect
to the Connect:Direct server, in order to collect transfer
information.

If this value is not set, the default configurable service
(named "Default") is used.

The default configurable service connects to a
Connect:Direct server located on the same machine as the
broker, and using default port configurations.

The default configurable service also uses the "default"
security identity, which must be created using the
mqsisetdbparms command; for example: mqsisetdbparms
MB7BROKER -n cd::default -u mqbroker -p xxxxxxx

For information on various configurations when using IBM
Sterling Connect:Direct, see “Advanced configuration
properties when using IBM Sterling Connect:Direct nodes”
on page 727 and refer to the Input sections.

Action on successful
processing

Yes No No Action Select the action to take once the node has successfully
processed the file.

You can choose to leave the file in the input directory if
other processes also need access to the file. In this case the
notification from IBM Sterling Connect:Direct is deleted,
and the file is left in place.

Deleting files prevents the build up of processed files.

Use the timestamp option if an archive of the file is
required to record all transfers made.

Note that on z/OS the Add Time Stamp option is not
supported when using datasets.

Input Message Parsing properties

Property M C Default Description mqsiapplybaroverride
command property

Message
Domain

No No None The domain that is used to parse the incoming
message.

Message Set No No None The name or identifier of the message set in
which the incoming message is defined.

If you set this property, and then update the
project dependencies to remove this message set
reference, a warning is issued. Either update the
Message Set property, or restore the reference to
this message set project.

Message Type No No None The name of the incoming message.

Message
Format

No No None The name of the physical format of the
incoming message.

Message coded
character set
ID

Yes Yes Broker
System
Default

The ID of the coded character set used to
interpret bytes of the file being read.

messageCodedCharSetIdProperty

4308 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Message
encoding

Yes Yes Broker
System
Determined

The encoding scheme for numbers used to
interpret bytes of the file being read. Valid
values are Broker System Determined or a
numeric encoding value. For more information
about encoding, see “Data conversion” on page
1151.

messageEncodingProperty

Parser Options properties

Property M C Default Description

Parse timing No No On Demand Specifies when an input message is parsed. Valid values are:

v On Demand

v Immediate

v Complete

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using XML
schema data types

No No Cleared Specifies whether the syntax elements in the message tree
have data types taken from the XML schema.

Use XMLNSC compact
parser for XMLNS
domain

No No Cleared Specifies whether the XMLNSC Compact Parser is used for
messages in the XMLNS Domain. If you set this property, the
message data appears under XMLNSC in nodes that are
connected to the output terminal when either of the
following items is XMLNS:

v The input MQRFH2 header.

v The Input Message Parsing property, Message Domain.

Retain mixed content No No Cleared Specifies whether the XMLNSC parser creates elements in the
message tree for mixed text in an input message. If you select
the check box, elements are created for mixed text. If you
clear the check box, mixed text is ignored and no elements
are created.

Retain comments No No Cleared Specifies whether the XMLNSC parser creates elements in the
message tree for comments in an input message. If you select
the check box, elements are created for comments. If you
clear the check box, comments are ignored and no elements
are created.

Retain processing
instructions

No No Cleared Specifies whether the XMLNSC parser creates elements in the
message tree for processing instructions in an input message.
If you select the check box, elements are created for
processing instructions. If you clear the check box, processing
instructions are ignored and no elements are created.

Opaque elements No No Blank Specifies a list of elements in the input message that are to be
opaquely parsed by the XMLNSC parser. Opaque parsing is
performed only if validation is not enabled (that is, if
Validate is None); entries that are specified in Opaque
Elements are ignored if validation is enabled.

Retry properties

Chapter 14. Reference 4309

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

Yes No Failure How the node handles a flow failure. Valid options
are:

v Failure

v Short retry

v Short and long retry

Retry threshold Yes Yes 0 The number of times to try the flow transaction
again when the Retry mechanism property value is
Short retry.

retryThreshold

Short retry
interval
(seconds)

No Yes 0 The interval, in seconds, between each retry if the
Retry threshold property is not zero.

shortRetryInterval

Long retry
interval
(seconds)

No Yes 300 The interval between retries, if the Retry mechanism
property is Short and long retry and the retry
threshold has been exhausted.

longRetryInterval

Action on
failing file

Yes Yes No
Action

The action that the node takes with the input file if
all attempts to process the contents of the input file
fail. Valid options are:

v No Action

v Delete

v Add Time Stamp This option is not available on
z/OS

Records and Elements properties

Property M C Default Description

Record
detection

Yes No Whole File The mechanism used to identify records in the input file. Valid
options are:

v Whole File

v Fixed Length

v Delimited

v Parsed Record Sequence

Length Yes No 80 The length of each record, in bytes, when Fixed Length record
detection is selected.

Delimiter Yes Yes DOS or UNIX
Line End

The type of delimiter bytes that separate, or end, each record when
Delimited record detection is selected. Valid options are:

v DOS or UNIX Line End

v Custom Delimiter

Custom
delimiter

No Yes None The delimiter bytes, expressed in hexadecimal, when Delimited
record detection and Custom Delimiter are selected. This property
is mandatory only if the Delimiter property is set to Custom
Delimiter.

Delimiter type Yes No Postfix The position of the delimiter when Delimited record detection is
selected. Valid options are:

v Postfix

v Infix

This property is ignored unless the Delimiter property is set to
Custom Delimiter.

4310 WebSphere Message Broker Version 7.0.0.8

Validation properties

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes
place. Valid values are:

v None

v Content and Value

v Content

validateMaster

Failure action No No ExceptionThis property controls what happens if validation
fails. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List

Transactions properties

Property M C Default Description

Transaction
mode

No No No The transaction mode on this input node determines whether the rest
of the nodes in the flow are processed under sync point. Valid options
are:

v Yes

v No

Instances properties.

For a full description of these properties, see “Configurable message flow
properties” on page 4020.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are
obtained.

v If you select Use Pool Associated with Message
Flow, additional instances are obtained from the
message flow pool.

v If you select Use Pool Associated with Node,
additional instances are allocated from the
additional instances of the node based on the
number specified in the Additional instances
property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node
can start if the Additional instances pool
property is set to Use Pool Associated with Node.

additionalInstances

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4311

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“IBM Sterling Connect:Direct overview and concepts” on page 1810
An overview of IBM Sterling Connect:Direct and its terminology when used with
WebSphere Message Broker.
“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
“File name patterns” on page 1830
You can specify a file name pattern, using wildcard characters, to identify a file to
be read by the FileInput and FTEInput nodes. You can also specify a file name
pattern, using a single wildcard character, to name the file to be created by the
FileOutput and FTEOutput nodes.
Related tasks:
“Initiating a managed file transfer using IBM Sterling Connect:Direct” on page
1873
Use a CDOutput node to send a file from a specified directory on your primary
Connect:Direct server (PNODE) to a filename and directory on a secondary
Connect:Direct server (SNODE).
“Advanced configuration properties when using IBM Sterling Connect:Direct
nodes” on page 727
CDInput and CDOutput nodes can get connection details and staging directories in
conjunction with a configurable service. To pick up new values when a
configurable service is created or modified, you must reload the broker or
execution group, by using the mqsistop and mqsistart commands, or the
mqsireload command.
Related reference:
“CDOutput node”
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.

CDOutput node
Use the CDOutput node when using IBM Sterling Connect:Direct with WebSphere
Message Broker.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4313
v “Terminals and properties” on page 4313

Purpose:
Use the CDOutput node to serialize the message tree to a file and then transfer it
between two Connect:Direct servers. A directory under the work path within the

4312 WebSphere Message Broker Version 7.0.0.8

execution group is used as the staging area, until the file is ready to be transferred.
Once the file is transferred, it is deleted from the staging area.

The CDOutput node is contained in the File drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
You can use the CDOutput node in conjunction with another transport input node,
for example, MQInput. Any data received from WebSphere MQ is sent to the
CDOutput node which writes the file to an internal directory using the file name
given on the node. The file is then transferred across to the destination
Connect:Direct server, where it is written to the directory and file name given on
the node.

Terminals and properties:
The CDOutput node terminals are described in the following table:

Terminal Description

In The input terminal that accepts a message for processing by the node.

Finish File The input terminal that accepts a message that triggers the final processing of a file.

Out The message received on the In terminal is propagated to this terminal if the record is
written successfully. The message is unchanged except for status information in the Local
Environment.

End of Data The message received on the Finish File terminal is propagated to this terminal if the file is
processed successfully.

Failure The output terminal to which the message is routed if a failure is detected when a message
is propagated.

The following tables describe the node properties that you can set on a specified
tab. The column headed M indicates whether the property is mandatory (marked in
the toolkit with an asterisk if you must enter a value when no default is defined).
The column headed C indicates whether the property is configurable (you can
change the value when you add the message flow to the BAR file to deploy it).

When the CDOutput node propagates a message, either to the Out terminal or to
the End of Data terminal, it stores information about it in the
LocalEnvironment.WrittenDestination.CD message tree.

You can override the:
v Secondary Connect:Direct server (SNODE)name

v Process name

v Accounting data

v Destination file directory

v Destination file name

v Copy from options including SYSOPTS
v Copy to options including SYSOPTS

Chapter 14. Reference 4313

by making changes to the LocalEnvironment.Destination.CD message tree; see
“Using local environment variables with file nodes” on page 1820 for more
information.

Description properties

Property M C Default Description

Node name No No CDOutput The name of the node.

Short Description No No None A brief description of the node.

Long Description No No None Text that describes the purpose of the node in the message
flow.

Basic properties

Property M C Default Description mqsiapplybaroverride
command property

SNODE No Yes The
same as
the
PNODE
being
used

The secondary Connect:Direct server (SNODE) to
which the file is being transferred.

If this is not set, the file is transferred back to the
primary Connect:Direct server server (PNODE).

You must set up a Netmap on the PNODE to ensure
that the transfer reaches the SNODE.

The Netmap entry for this SNODE must contain the
operating system type in the appropriate field. If the
PNODE is on a UNIX operating system, you must use
the description field in the Netmap to store this
information.

The description must contain the string remoteos=xxx,
where the value is Windows, UNIX or OS390. The
CDOutput node cannot be used to transfer to a
SNODE on operating systems other than these.

snode

Destination
file directory

No Yes Empty
string

The directory to which the file is being transferred on
the secondary Connect:Direct server (SNODE).

Note that the directory must exist.

If this field is left blank, the default directory is used
by the SNODE.

On z/OS, if the File name is a sequential dataset, or
partitioned dataset member, leave the directory field
blank.

destinationDirectory

4314 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Destination
file name

Yes Yes None The specific file name or a pattern containing a single
wildcard that defines the name of the file to be created
by the secondary Connect:Direct server (SNODE).

The File name can be a pattern that contains a single
wildcard. The wildcard value is taken from the
element in the local environment folder called
LocalEnvironment.Wildcard.WildcardMatch . This
value is normally set by CDInput or FileInput nodes.

For example, if the CDInput node sets its file pattern
to *.in, it matches the file test.in as "test". If the
CDOutput node's file pattern is set to *.out, the "test"
is substituted to make a file name of test.out.

The file name must be set, but can be overridden using
the local environment field
LocalEnvironment.Destination.CD.Name

You can specify z/OS sequential datasets or
partitioned data set members. For whole, sequential
data sets, specify the full name for the dataset, for
example, MBUSER.TEST1

For a member within a partitioned dataset, use
brackets to specify the member name, for example,
MBUSER.TEST(MEME01).

One wildcard character can be used anywhere within a
dataset name, and works in the same way as for
normal file name patterns.

destinationFileName

CDServer
configurable
service

No Yes Default The name of the configurable service being used to
connect to the primary Connect:Direct server
(PNODE), in order to initiate the transfer.

If this value is not set, the default configurable service
(named "Default") is used.

The default configurable service connects to a PNODE
located on the same machine as the broker, and using
default port configurations.

The default configurable service also uses the "default"
security identity, which must be created using the
mqsisetdbparms command; for example:
mqsisetdbparms MB7BROKER -n cd::default -u
mqbroker -p xxxxxxx

For information on various configurations when using
IBM Sterling Connect:Direct, see “Advanced
configuration properties when using IBM Sterling
Connect:Direct nodes” on page 727 and refer to the
Output sections.

Chapter 14. Reference 4315

Property M C Default Description mqsiapplybaroverride
command property

Process name No Yes None The name used for the process script generated to send
the file from the primary Connect:Direct server
(PNODE) to the secondary Connect:Direct server
(SNODE).

Use this option if you want to identify this transfer
uniquely.

If this value is not set, the process name WMBPROC is
used.

You can use any name you want in the process script.
Note, however, that the name must be a maximum of
eight characters and cannot contain any spaces.

processName

Disposition Yes Yes RPL -
replace
file

How to create the file on the secondary system:

RPL - Replace or create a new file

MOD - Append to existing file. This option is not
available on z/OS

NEW - Create a new file

On z/OS, for partitioned datasets, only RPL and NEW
options are supported. NEW attempts to allocate a
new partitioned dataset, with the following IBM
Sterling Connect:Direct SPACE options:
'(23036,(2,1,1))'

You can override these values in the local environment
by using:
LocalEnvironment.Destination.CD.Copy.To.Option.SPACE
=

disposition

Transfer Mode yes Yes Binary
transfer
(no
conversion)

The mode in which to transfer the file.

binary - The file is transferred as binary, with no
conversion

text - The file is transferred with conversion between
local codepages, as required.

When using transfer mode "text" on z/OS, IBM
Sterling Connect:Direct requires that the file contains at
least one newline character. You must ensure that the
file is created in the correct form for IBM Sterling
Connect:Direct to successfully complete the text
transfer.

transferMode

Request properties

Property M C Default Description

Data location No No $Body The location in the input message tree that contains the record to be
written to the output file. The default value, $Body, means the entire
message.

Records and Elements properties

4316 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Record
definition

Yes No Record is Whole
File

Specifies how records are placed in the output file. Valid options are:
v Record is Whole File
v Record is Unmodified Data
v Record is Fixed Length Data
v Record is Delimited Data

Length
(bytes)

Yes No 80 The required length of the output record. The property is available
only when Record is Fixed Length Data is specified in Record
definition.

Padding byte
(hexadecimal)

Yes No 20 The 2-digit hexadecimal byte to be used to pad short messages. The
property is available only when Record is Fixed Length Data is
specified in Record definition.

Delimiter Yes No Broker System
Line End

The delimiter to be used. The property is available only when Record
is Delimited Data is specified in Record definition. Valid options
are:

v Broker System Line End

v Custom Delimiter (hexadecimal)

Custom
delimiter
(hexadecimal)

Yes No None The delimiter byte sequence to be used. The property is available
only when Record is Delimited Data is specified in the Record
definition property, and Custom Delimiter (hexadecimal) is
specified in the Delimiter property.

Delimiter
type

Yes No Postfix This property specifies how delimiters are to be inserted between
records. The property is available only when Record is Delimited
Data is specified in Record definition. Valid options are:

v Postfix

v Infix

Validation properties

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate Yes Yes Inherit This property controls whether validation takes place.
Valid values are:
v None
v Content and Value
v Content
v Inherit

validateMaster

Failure
action

Yes No ExceptionThis property controls what happens if validation fails.
The property is available only if you set Validate to
Content or Content and Value. Valid values are:
v User Trace
v Local Error Log
v Exception
v Exception List

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4317

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“IBM Sterling Connect:Direct overview and concepts” on page 1810
An overview of IBM Sterling Connect:Direct and its terminology when used with
WebSphere Message Broker.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
Related tasks:
“Initiating a managed file transfer using IBM Sterling Connect:Direct” on page
1873
Use a CDOutput node to send a file from a specified directory on your primary
Connect:Direct server (PNODE) to a filename and directory on a secondary
Connect:Direct server (SNODE).
Related reference:
“CDInput node” on page 4305
Use the CDInput node to preview files when using IBM Sterling Connect:Direct in
conjunction with WebSphere Message Broker.
“CDServer configurable service properties” on page 3798
Select the objects and properties that you want to change for the CDServer
configurable service.

Check node
Use the Check node to compare the template of a message that is arriving on its
input terminal with a message template that you supply when you configure the
Check node.

Attention: The Check node is deprecated in WebSphere Message Broker Version
6.0 and subsequent versions. Although message flows that contain a Check node
remain valid, redesign your message flows where possible to replace Check nodes
with Validate nodes.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4319
v “Terminals and properties” on page 4319

Purpose:
The message domain, message set, and message type of the message are
collectively called the message template. The domain defines the parser that is used
for the message. The set is the message set to which the message belongs. The type

4318 WebSphere Message Broker Version 7.0.0.8

is the structure of the message itself. You can check the incoming message against
one or more of these properties. The message property is checked only if you select
its corresponding Check property, which means that a message property that
contains a null string can be compared.

If the message properties match the specification, the message is propagated to the
Match terminal of the node. If the message properties do not match the
specification, the message is propagated to the Failure terminal. If the Failure
terminal is not connected to some failure handling processing, an exception is
generated.

The Check node is contained in the Validation drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Use the Check node to ensure that the message is routed appropriately through the
message flow. For example, you can configure the node to direct a message that
requests stock purchases through a different route from that required for a message
that requests stock sales.

Another example of this node's use is for the receipt of electronic messages from
staff at your head office. These messages are used for multiple purposes; for
example, to request technical support or stationery, or to advise you about new
customer leads. These messages can be processed automatically because your staff
complete a standard form. If you want these messages to be processed separately
from other messages received, use the Check node to ensure that only staff
messages with a specific message type are processed by this message flow.

Terminals and properties:
When you have put an instance of the Check node into a message flow, node into
a message flow, you can configure it. For more information, see . The properties of
the node are displayed in the Properties view. All mandatory properties for which
you must enter a value (those that do not have a default value defined) are
marked with an asterisk.

The Check node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if the incoming message does not match the
specified properties.

Match The output terminal to which the message is routed if the incoming message matches the specified
properties.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Check node Description properties are described in the following table.

Chapter 14. Reference 4319

Property M C Default Description

Node name No No Check The name of the node

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The Check node Basic properties are described in the following table.

Property M C Default Description

Domain No No The name of the domain.

Check
domain

Yes No Cleared This property checks that a message belongs to a particular domain. To
check the parser that is to be used for the incoming message, select this
check box and select one of the values from the Domain list.

Set No No The message set to which the incoming message belongs.

If you are using the MRM, IDOC, or XMLNSC parser, check that the
incoming message belongs to a particular message set by selecting Check
set and entering the name of the message set in Set.

Leave Set clear for other parsers.

If you set this property, then subsequently update the project
dependencies to remove this message set reference, a warning is issued.
Either update the Message set property, or restore the reference to this
message set project.

Check set Yes No Cleared If you select this check box, the incoming message is checked against the
Set property.

Type No No The message name.

If you are using the MRM parser, check that the incoming message is a
particular message type by selecting Check type and entering the name of
the message in Type.

Leave Type clear for other parsers.

Check type Yes No Cleared If you select this check box, the incoming message is checked against the
Type property.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

4320 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“Validate node” on page 4959
Use the Validate node to check that the message that arrives on its input terminal
is as expected. You can use this node to check that the message has the expected
message template properties, and to check that the content of the message is
correct by selecting message validation.

CICSRequest node
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

This topic contains the following sections:
v “Purpose”
v “Using the CICSRequest node in a message flow”
v “Configuring the CICSRequest node” on page 4323
v “Local environment overrides” on page 4323
v “Terminals and properties” on page 4323

Purpose:
You can use the CICSRequest node to connect WebSphere Message Broker to CICS
applications. The CICSRequest node communicates with CICS by sending
Distributed Program Link (DPL) requests over TCP/IP-based IP
InterCommunications protocol (IPIC). You can create a message flow that contains
a CICSRequest node, which calls a CICS application on a targeted region. The
CICSRequest node can be used by a message flow that is deployed to any broker
platform. The CICSRequest node supports CICS Transaction Server for z/OS
Version 3.2 and later.

Using the CICSRequest node in a message flow:
One possible use of a CICSRequest node is to connect to a CICS application by
using a synchronous style of message flow. You can achieve this connection by
creating the following message flow:

MQInput CICS Request MQOutput

Chapter 14. Reference 4321

The CICSRequest node support in WebSphere Message Broker provides direct
communication with CICS (two-tier connection) by sending Distributed Program
Link (DPL) requests over TCP/IP-based IPIC, or communication with CICS
through CICS Transaction Gateway for Multiplatforms (three-tier connection). For
more information about the two-tier and three-tier connection models, see “CICS
Transaction Server for z/OS overview” on page 2173 for a high-level overview, or
“CICS Transaction Server for z/OS two-tier connectivity” on page 2177 and “CICS
Transaction Server for z/OS three-tier connectivity” on page 2181 for detailed
conceptual information.

You can specify either a COMMAREA data structure or a channel data structure on
the CICSRequest node to use as input for linking to CICS programs. The data
structure that is specified as input returns the same data structure as output.
Channels are an alternative for COMMAREAs, providing relief from the
COMMAREA maximum size of 32767 bytes, and allowing greater flexibility in
input/output data structures. For more information about using a COMMAREA or
channel data structure, see “COMMAREA or channel data structures” on page
2183.

CICS channels hold a number of structures called containers. In WebSphere
Message Broker, a CICS channel is represented as a message collection structure. A
message collection can hold child messages, each treated as a container by the
CICSRequest node. For information about using ESQL to create a message
collection, see “Creating a message collection by using ESQL” on page 2758.

If a single container is required for input only, a message collection does not need
to be constructed. Instead a regular message can be used, provided the
16-character maximum alphanumeric channel name and the single 16-character
maximum alphanumeric container name are specified in the local environment. For
more information about using single message mode, see “COMMAREA or channel
data structures” on page 2183.

Because it is not possible to know how many containers are in the response, a
message collection is always produced as output. However, the CICSRequest node
Result data location property can be used to reduce the result tree down to a
single message folder, or down to a single field or subtree for output.

You can add name-value attributes to a message collection to create CICS
containers. Name-value attributes in the message collection, apart from
CollectionName, can be used in lieu of full message-folders for simple data. For
example, a name-value string attribute can be set in the message collection and
used directly by the CICSRequest node without needing to create a message set for
the element. For information about using attributes, see “COMMAREA or channel
data structures” on page 2183.

Name-value attributes can be produced from containers on output, as well as
accepted for input. To create an attribute instead of a message folder from a
container, select the check box that is available on the Response Message Parsing
tab.

The CICSRequest node is contained in the CICS drawer of the message flow node
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

4322 WebSphere Message Broker Version 7.0.0.8

View the following sample to see how to use the CICSRequest node:
v CICS Transaction Server for z/OS Connectivity

View the following sample to see how to call a channel-based CICS program by
creating and populating a message collection for the CICSRequest node, and how
to process the collection after the call:
v CICS Transaction Server for z/OS Channel Connectivity

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The CICSRequest node can use an identity that is present on an input message,
and propagate it to CICS, by using the Propagate property on the security profile
that is defined for the node. For more information, see “Propagating security
credentials to CICS Transaction Server for z/OS” on page 2208 and “Identity and
security token propagation” on page 426.

You can specify a mirror transaction name on the CICSRequest node for CICS tasks
and programs to run under. This grouping greatly assists stat collection,
accounting, and aids decision making about task priority. For more information
about mirror transactions, see “CICS Transaction Server for z/OS mirror
transactions” on page 2189.

Using configurable services for the CICSRequest node

You can configure the CICSRequest node to get connection details from a
configurable service. For details about creating, changing, reporting, and deleting
the configurable services, see “Changing connection information for the
CICSRequest node” on page 738.

Configuring the CICSRequest node:
When you have put an instance of the CICSRequest node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view.

All mandatory properties for which you must enter a value (properties that do not
have a default value defined) are marked with an asterisk.

Local environment overrides:
You can dynamically override values, on a per message basis, in the local
environment. You can override the CICS program that you are calling, the
COMMAREA length, mirror transactions, and the processing of the response
message. For more information, see “Local environment overrides for the
CICSRequest node” on page 2191.

Terminals and properties:
The CICSRequest node terminals are described in the following table.

Chapter 14. Reference 4323

Terminal Description

In The input terminal that accepts a message for processing by the node. The CICSRequest node is
driven by a message arriving on the In terminal. Data is taken from the message tree and is sent to
CICS.

Out The output terminal from which the message tree is propagated, including the data returned from
CICS.

Failure The output terminal to which a message is routed if a CICSRequest node exception is detected, or
a CICSRequest node to CICS connection failure occurs.

Error The output terminal to which a message is propagated if a CICS error (abend) occurs. The input
message is propagated with a CICS\AbendCode field in the LocalEnvironment. If the Error
terminal is not connected and CICS abend occurs, the abend is lost.

Timeout The output terminal to which the message is propagated if a per-request timeout occurs when an
individual request is sent to CICS, but the request takes too long. The output message contains the
input message body and a timeout exception in the ExceptionList. If the Timeout terminal is not
connected and a timeout occurs, the request timeout exception is routed to the Failure terminal. If
the Failure terminal is not connected, the broker throws an exception and returns control to the
closest upstream node that can process it. The default behavior is that the message is returned to
the input node.

The following tables describe the CICSRequest node properties.

The table column headed M indicates whether the property is mandatory. For
example, the property is marked with an asterisk meaning that you must enter a
value if no default is defined.

The column headed C indicates whether the property is configurable. For example,
you can change the value when you add the message flow to the BAR file to
deploy it.

The CICSRequest node Description properties are described in the following table.

Property M C Default Description

Node name Yes No CICS
Request

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the message flow.

The CICSRequest node Basic properties are described in the following table.

4324 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

CICS
server

Yes Yes None The CICS server property is defined either as a
configurable service name, for example:
myCICSConnection, or as a URL. A URL allows you to
specify a protocol, host name, and port number, which
is the minimum information you need to connect to
the CICS target region.

The URL must be made up of the following structure:

protocol://hostname:port

Where:

v protocol can be tcp or ssl.

v hostname is the Internet Protocol version 4 (IPv4)
TCP/IP address or DNS-resolvable hostname of the
CICS host.

v port is the port number of the TCPIPSERVICE
listener in CICS that is listening for IPIC requests
over TCP/IP or Secure Sockets Layer (SSL)
protocol. You can enter an integer in the range 1 -
65535.

For example: tcp://mycicsregion.com:12345 or
ssl://mycicsregion.com:56789.

You can obtain the hostname and port values from the
IPIC TCPIPSERVICE definition in the target CICS
region.

cicsServer

Program
name

Yes No None The Program name property is the name of the
application that is on the target CICS region that you
are calling.

Programs that use COMMAREAs or channels are
supported.

You can override this property in the local
environment by specifying a value in the following
location:

$LocalEnvironment/Destination/CICS/CICSProgramName

Data
structure

Yes No CommareaWhether to use a COMMAREA or a channel data
structure. The default for this property is Commarea.
The decision depends on the targeted CICS program,
for example; whether the target program is
channel-based or not.

Chapter 14. Reference 4325

Property M C Default Description mqsiapplybaroverride
command property

Commarea
length

Yes No 0 The Commarea length property is the size, in bytes, of
the COMMAREA that is used by the CICS program.
The byte size value is sent to CICS, and before the
program is started, an area of memory is created to
match that number. For example, if you send a
Commarea length value of 100, 100 bytes are allocated.
The program accesses this area as the DFHCOMMAREA.

Ensure that the Commarea length property value is
large enough to contain the input request data, or the
output response data, but that it does not exceed the
maximum value of 32767 bytes. If the Commarea
length value is not large enough to be used for the
response data, or the request data, a memory leak
occurs in CICS.

The size of the COMMAREA cannot be changed by
the CICS program.

If the serialized request data is larger than the
Commarea length, the data is truncated to the Commarea
length.

You can obtain the Commarea length value from the
CICS administrator or developer.

You can override this property in the local
environment by specifying a value in the following
location:

$LocalEnvironment/Destination/CICS/CICSCommareaLen

This property is not configurable if a value of Channel
is selected for the Data structure property.

Security
identity

No Yes None The name of the security identity object that is created
and configured by the mqsisetdbparms command,
which contains the user ID and password to be used
by the broker to authenticate the connection to CICS.
Use the mqsisetdbparms command to set the security
identity user ID and password to be accessed by the
broker.

The default value for this property is None, which
signifies that the user ID and password are not passed
to CICS.

For more information about CICS security identity
support, see “mqsisetdbparms command” on page
3954.

securityIdentity

4326 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Request
timeout
(in
seconds)

Yes Yes 120 If individual requests sent to CICS take more time
than specified here, the request attempt is abandoned.
Because the CICSRequest node is non-transactional,
the state of the work in CICS cannot be guaranteed
and might need to be manually purged.

A request timeout causes an exception to be
propagated from the Timeout terminal. If the Timeout
terminal is not connected, the request timeout
exception is routed to the Failure terminal. If the
Failure terminal is not connected, the broker throws
an exception and returns control to the closest
upstream node that can process it. The default
behavior is that the message is returned to the input
node.

A value of 0 indicates that no timeout occurs.

requestTimeoutSecs

Mirror
transaction
ID

No Yes None You can specify a mirror transaction name by
configuring this property, however the Mirror
transaction ID property value that you specify must
correspond to a defined TRANSACTION resource in
CICS.

For example, if you have a defined TRANSACTION
resource of ATRN in CICS, and you want tasks and
programs to run under that transaction, you must
configure ATRN as the Mirror transaction ID property
value.

When the message flow containing the configured
CICSRequest node is deployed, any CICS programs
that are started thereafter appear in CICS as running
under the specified mirror transaction.

If the value of the Mirror transaction ID property is
not set, the mirror transaction name defaults to CPMI if
called by a distributed platform, or CSMI if called by a
z/OS system.

For more information about mirror transactions, see
“CICS Transaction Server for z/OS mirror
transactions” on page 2189.

mirrorTran

Chapter 14. Reference 4327

Property M C Default Description mqsiapplybaroverride
command property

Set
EIBTRNID
only

No Yes Cleared You can use a weaker form of mirror transaction that
does not change the TRANSACTION resource, but
instead sets a variable called EIBTRNID, which is
available to the called program. You can configure the
EIBTRNID variable to tell the program what
TRANSACTION resource it is running under, without
the TRANSACTION resource being defined in CICS.

For example, you can specify this weaker form of
mirror transaction by configuring the Mirror
transaction ID property with the name of the
required TRANSACTION resource; for example ATRN,
and by selecting this property.

When the message flow containing the configured
CICSRequest node is deployed, any CICS programs
that are started thereafter appear in CICS as running
under the specified mirror transaction.

If the value of the Mirror transaction ID property is
not set, the mirror transaction name defaults to CPMI if
called by a distributed platform, or CSMI if called by a
z/OS system.

For more information about mirror transactions, see
“CICS Transaction Server for z/OS mirror
transactions” on page 2189.

eibtrnidOnly

The CICSRequest node Request properties are described in the following table.

Property M C Default Description

Data
location

Yes No $Body The location in the incoming message tree from which data is retrieved to
form the request that is sent from the CICSRequest node to CICS. The
default value, $Body, represents the incoming message body. You can enter
any XPath or ESQL expression that defines the location of the message
tree to serialize and send to CICS.

Program
name
override
location

No No $LocalEnvironment/
Destination/
CICS/
CICSProgramName

The element of the message assembly that contains the name of the
program to run in CICS.

The CICSRequest node Result properties are described in the following table.

Property M C Default Description

Result data
location

No No $ResultRoot This property specifies which subtree of the result to place in the
message. If a value is not specified for this property, $ResultRoot is
used as the default and the whole response is placed in the output
message at the location that is specified in Output data location.

Output
data
location

No No $OutputRoot The message tree location to which the CICSRequest node sends
output. The default value, $OutputRoot, replaces the incoming
message with the response.

4328 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Copy local
environment

No No Selected This property controls whether to copy the incoming local
environment or propagate the incoming local environment. By
default, this check box is selected, which signifies that the local
environment is copied so that the incoming local environment is
preserved. The additions to the local environment are visible only to
nodes downstream of this node. If this check box is cleared, the
incoming local environment is used for the outgoing message. Any
modifications that are made to the local environment by this node
are visible to both downstream and upstream nodes after this node
has completed.

The CICSRequest node default Response Message Parsing properties are described
in the following table.

Property M C Default Description

Message
domain

No No None
If using a COMMAREA data structure:

The domain to use to parse the response
COMMAREA bit stream.

If using a channel data structure:
The domain to use to parse the response container bit
stream.

You can override this property in the local environment by
specifying a value in the following location:

$LocalEnvironment/Destination/CICS/Response/messageDomain

Message set No No None
If using a COMMAREA or channel data structure:

The name of the message set in which the response
message is defined.

If you set this property, and then update the project
dependencies to remove this message set reference, a warning
is issued. Either update the Message set property, or restore the
reference to this message set project.

You can override this property in the local environment by
specifying a value in the following location:

$LocalEnvironment/Destination/CICS/Response/messageSet

Message type No No None
If using a COMMAREA or channel data structure:

The type of the response message.

You can override this property in the local environment by
specifying a value in the following location:

$LocalEnvironment/Destination/CICS/Response/messageType

Message
format

No No None
If using a COMMAREA or channel data structure:

The name of the physical format of the response
message.

You can override this property in the local environment by
specifying a value in the following location:

$LocalEnvironment/Destination/CICS/Response/messageFormat

Chapter 14. Reference 4329

Property M C Default Description

Message coded
character set
ID

No No EBCDIC (037)
If using a COMMAREA data structure:

The ID of the coded character set (CCSID) that is used
to interpret bytes of the response COMMAREA. This
property defines the CCSID for the message that is
returned from CICS.

If using a channel data structure:
The ID of the coded character set (CCSID) that is used
to interpret bytes of the response container, however
this is ignored for character containers.

You can override this property in the local environment by
specifying a value in the following location:

$LocalEnvironment/Destination/CICS/Response/messageCCSID

For a list of valid values, see “Supported code pages” on page
4176.

Message
encoding

No No Big Endian, with
S390 Floating
Point (785)

If using a COMMAREA data structure:
The encoding scheme for numbers and large
characters that is used to interpret bytes of the
response COMMAREA. This property defines the
message encoding for the message that is returned
from CICS.

If using a channel data structure:
The encoding scheme for numbers and large
characters that is used to interpret bytes of the
response container, however this is ignored for
character containers.

Valid values are:
v Little Endian, with IEEE Floating Point (546)
v Big Endian, with IEEE Floating Point (273)
v Big Endian, with S390 Floating Point (785) (the default value)
v Broker System Determined

For more information about encoding, see “Data conversion”
on page 1151.

You can override this property in the local environment by
specifying a value in the following location:

$LocalEnvironment/Destination/CICS/Response/messageEncoding

Channel Options
If a value of Channel is selected for the Data structure property on the
Basic tab, an additional table is available on the Response Message Parsing
tab named Channel Options. The Channel Options table allows you to
override the default message template properties by specifying parsing
options for individual response containers, on a per-folder basis, when
output from the CICSRequest node. You can also create a name-value
attribute in the message collection to hold the container by selecting the
check box provided.

If the container details are specified in the Channel Options table, those
container details are used in preference to the default message template
properties. If the container details are not specified in the Channel Options
table and the attribute check box is selected, a name-value pair is created.

4330 WebSphere Message Broker Version 7.0.0.8

If the container details are not specified in the Channel Options table and
the name-value attribute check box is not selected, the default message
template properties are used.

The CICSRequest node Parser Options properties are described in the following
table.

Property M C Default Description

Parse timing Yes No On Demand This property controls when a response message is parsed.
Valid values are On Demand, Immediate, and Complete.

For a full description of this property, see “Parsing on demand”
on page 4173.

Build tree using
XML schema
data types

Yes No Cleared This property controls whether the XMLNSC parser creates
syntax elements in the message tree with data types taken from
the XML Schema. You can select this property only if you set
the Validate property on the Validation tab to Content or
Content and Value.

Use XMLNSC
compact parser
for XMLNS
domain

Yes No Cleared This property controls whether the XMLNSC Compact Parser is
used for messages in the XMLNS Domain. If you set this
property, the response message data appears under XMLNSC in
nodes that are connected to the output terminal when the input
MQRFH2 header or Response Message Parsing properties
Domain is XMLNS.

Retain mixed
content

Yes No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text in a
response message. If you select the check box, elements are
created for mixed text. If you clear the check box, mixed text is
ignored and no elements are created.

Retain comments Yes No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments in a
response message. If you select the check box, elements are
created for comments. If you clear the check box, comments are
ignored and no elements are created.

Retain processing
instructions

Yes No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in a response message. If you select the check box,
elements are created for processing instructions. If you clear the
check box, processing instructions are ignored and no elements
are created.

Opaque elements No No Blank This property is used to specify a list of elements in the
response message that are to be opaquely parsed by the
XMLNSC parser. Opaque parsing is performed only if
validation is not enabled (that is, if Validate is None); entries
that are specified in Opaque Elements are ignored if validation is
enabled.

The CICSRequest node Validation properties are described in the following table.

For a full description of these properties see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate Yes Yes None This property controls whether validation takes place. Valid
values are None, Content and Value, Content, and Inherit.

validateMaster

Chapter 14. Reference 4331

Property M C Default Description mqsiapplybaroverride
command property

Failure
action

Yes No ExceptionThis property controls what happens if validation fails. You
can set this property only if you set Validate to Content or
Content and Value. Valid values are User Trace, Local
Error Log, Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“CICS Transaction Server for z/OS overview” on page 2173
CICS Transaction Server for z/OS provides general-purpose transaction processing
software for z/OS. CICS is a powerful application server that meets the
transaction-processing needs of both large and small enterprises.
“CICS Transaction Server for z/OS connectivity” on page 2174
Use the CICSRequest node to connect WebSphere Message Broker with CICS
Transaction Server for z/OS applications.
“CICS Transaction Server for z/OS mirror transactions” on page 2189
You can use a mirror transaction to group CICS Transaction Server for z/OS tasks
and programs together. This grouping greatly assists stat collection, accounting,
and aids decision making about task priority.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“Identity and security token propagation” on page 426
Identity and security token propagation enables the identity and security tokens
(associated with each message) to be propagated throughout a message flow, and
on to target applications through output or request nodes.
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Connecting to a CICS Transaction Server for z/OS application” on page 2192
Connecting to a CICS Transaction Server for z/OS application involves creating a
message flow, building a message, and processing the response from the
CICSRequest node.

4332 WebSphere Message Broker Version 7.0.0.8

“Changing connection information for the CICSRequest node” on page 738
You can create a configurable service that the CICSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name and performance values without needing to redeploy your
message flow.
“Securing the connection to CICS Transaction Server for z/OS by using SSL” on
page 547
Configure the CICSRequest node to communicate with CICS Transaction Server for
z/OS over the Secure Sockets Layer (SSL) protocol by updating a CICSConnection
configurable service or the CICSRequest node to use SSL.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

Collector node
Use the Collector node to create message collections based on rules that you
configure in the node.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4334
v “Configuring the Collector node” on page 4335
v “Terminals and properties” on page 4335

Purpose:
Use the Collector node to create a message collection from one or more sources
based on configurable criteria. For example, you might need to extract, combine,
and transform information from three different sources. The messages from these
different sources might arrive at the input terminals at different times and in an
unknown order. A collection is defined by configuring an event handler for each
input terminal. Each event handler controls the acceptance of a message into a
collection according to the following properties:
v Number of messages
v Collect messages for a set period
v Match the contents of a correlation path
v Match the contents against a correlation pattern

The correlation properties allow collections to be made according to the content of
the messages. The content is specified by using an XPath expression. The Collector
node ensures that each collection contains an identical correlation string across all
its inputs. For more information about XPath 1.0 query syntax, see W3C XPath 1.0
Specification.

A message collection is created when the first message arrives at any of the
dynamic input terminals on the Collector node. Message collections are stored on a
WebSphere MQ queue.

Chapter 14. Reference 4333

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

When the conditions set by the event handlers for a message collection have been
met, the message collection is complete and ready to be propagated. For example,
if you set the event handlers on the Collector node to wait for two messages from
each input terminal, the message collection is complete when two messages have
been received by every terminal. When the next message arrives on an input
terminal, it is added to a new message collection. You can select from a number of
options to determine how the propagation of the message collection is coordinated.
You can specify that the message collection is propagated automatically for
processing, or alternatively that the message collection is propagated when a
control message is received.

You can also set an expiry timeout for message collections that fail to be completed
in a satisfactory time by using a property on the Collector node. The timeout starts
when the first message is added to a message collection. If the timeout expires
before the message collection is complete, the incomplete message collection is
propagated to the Expire terminal. Set a value for the collection expiry to ensure
that incomplete message collections do not remain stored on a queue indefinitely.
Add appropriate processing to your message flow to handle incomplete message
collections.

The Collector node is contained in the Routing drawer of the message flow node
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Collector Node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Use the Collector node to group messages from different input sources for further
processing. A message collection can be processed by the following nodes only:
v Compute
v JavaCompute
v PHPCompute

Errors might be generated if you try to process a message collection with a node
that does not support message collections.

The Collector node has one static input terminal, Control, and four static output
terminals: Out, Expire, Failure and Catch. These static terminals are always
present on the node. In addition to the static input and output terminals, you can
add dynamic input terminals for each input source that you want to use with the
Collector node.

4334 WebSphere Message Broker Version 7.0.0.8

You can add and configure as many input terminals as required to the Collector
node. You can configure the properties of each input terminal separately to control
how the messages received on each input terminal are added to the appropriate
message collection.

You can use the Control terminal to trigger the output of completed message
collections from the Collector node. Configure the Event coordination property to
set the behavior of the Collector node when messages are received on the Control
terminal.

When a message collection is successfully completed, it is ready to be propagated
to the Out terminal. If a value greater than zero is set on the Collection expiry
property, any incomplete message collections are propagated to the Expire
terminal.

A new transaction is created when a message collection is complete, and is
propagated to the next node. Any exceptions that are caught from downstream
nodes cause the message collection to be propagated to the Catch terminal on the
Collector node, together with the exception list. If the Catch terminal is not
connected to any other nodes, the transaction is caused to roll back. Messages in
the message collection are backed out onto the queue of the Collector node. The
exception list is written to the system log. This step is repeated until the message
collection is successfully processed. To avoid an exception that causes the message
collection to fail to be propagated successfully, ensure that you connect the Catch
terminal to a flow to handle any exceptions. Also, ensure that you set an expiry
timeout to propagate incomplete message collections.

Note: Any exceptions that occur downstream of the Collector node are routed to
the Catch terminal. The exception is not processed any further upstream because
the completion of the message collection in the Collector node is the start of the
transaction. This behavior is like the AggregateReply node. Do not connect a
Throw node to the Catch terminal of the Collector node, because control is
returned to the same Catch terminal.

If you use additional instances of a message flow or multiple inputs to the
Collector node, you can use the Correlation path and Correlation pattern
properties to ensure that related messages are added to the same message
collection. If you use additional instances, or multiple inputs to the Collector node
the order of messages in the message collection can be unpredictable. The order of
messages is also unpredictable if you use WebSphere MQ cluster queues as inputs
to the Collector node.

Configuring the Collector node:
When you have put an instance of the Collector node into a message flow, you can
configure it; see “Configuring the Collector node” on page 2767. The properties of
the node are displayed in the Properties view. All mandatory properties for which
you must enter a value (those properties that do not have a default value defined)
are marked with an asterisk.

Terminals and properties:
The Collector node terminals are described in the following table.

Terminal Description

Control The static input terminal that accepts control messages. Any message received by the Control
terminal is treated as a control message.

Chapter 14. Reference 4335

Terminal Description

Out The output terminal to which the complete message collection is routed if the received messages
satisfy the configured conditions for the message collection.

Expire The output terminal to which the incomplete message collection is routed if the received messages
do not satisfy the configured conditions within the time specified on the Collection expiry
property. If you have not set a value for the Collection expiry property this terminal is not used.

Failure The output terminal to which the message collection is routed if a failure is detected during
processing.

Catch The output terminal to which the message collection is routed if an exception is thrown
downstream and caught by this node.

The Collector node can have further dynamic input terminals. You can create
numeric terminal labels for the Collector node; however, the Compute node does
not support numeric labels. Therefore, when you are defining a custom terminal
for the Collector node, ensure that the name begins with an alphabetic character.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Collector node Description properties are described in the following table:

Property M C Default Description

Node name No No The node type,
Collector

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the message
flow.

The Collector node has two types of Basic properties. You can set properties for
each dynamic input terminal that you add to the Collector node in the Collection
Definition table in the Basic properties. The properties in the Collection Definition
table define the event handlers for the messages arriving on the individual input
terminals. The properties that you can set for each of the dynamic input terminals
are described in the following table:

Property M C Default Description

Terminal Yes No The terminal
name

Terminal is not a property of the node, but a label to show the
name of the dynamic input terminal.

Enter values for the event handler properties for each dynamic
input terminal that you have added to the Collector node in the
Collection Definition table.

4336 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Quantity Yes No 1 This property specifies the number of messages that the input
terminal accepts to add to a message collection.

The default value is 1; if you accept this default value, only one
message is added to a collection. If a second message is received
on the terminal, a new collection instance is created for it.

If you select 0 (zero) or do not specify a value, there is no limit to
the number of messages accepted. In this case, the value that is
set on the Timeout property must be greater than zero. If you set
both the Timeout and Quantity properties to values that are
greater than zero, the terminal stops accepting messages when
the first of the two thresholds is reached.

When this threshold is reached, and other criteria have also been
satisfied, the collection is complete and it is propagated to the
Out terminal.

Timeout Yes No 0 This property specifies the maximum time in seconds for which
the input terminal accepts messages.

If you select 0 (zero), the timeout is disabled and there is no limit
on the time to wait for messages. In this case, the value that is set
on the Quantity property must be greater than zero. If you set
both the Timeout and Quantity properties to values that are
greater than zero, the terminal stops accepting messages when
the first of the two thresholds is reached.

When this threshold is reached, and other criteria have also been
satisfied, the collection is complete and it is propagated to the
Out terminal.

Correlation
path

No No Messages are only accepted into a message collection if they have
the same correlation string. If the message has a different
correlation string, it is offered to the next collection in the queue.
If none of the collections accept the message, a new collection is
created with correlation string set to the value of the correlation
string in the message. Messages are grouped by the value from
the correlation path. The correlation path is defined by using
XPath. You can define your own correlation path by using XPath,
or select from the following predefined paths:

v $LocalEnvironment/Wildcard/WildcardMatch

v $Root/MQMD/CorrelId

v $LocalEnvironment/FileInput/Name

v $Root/JMSTransport/Transport_Folders/Header_Values/
JMSCorrelationID

If you define a value for Correlation path, you can optionally
configure a Correlation pattern.

Correlation
pattern

No No This property specifies a pattern to match the contents of a
correlation path value against. You must set the Correlation path
property before you set the value for the Correlation pattern
property. If you set the correlation pattern, you must use one *
character, optionally surrounded by other text. For example,
*.dat.

If the correlation pattern is blank, the entire text from the
correlation path must be matched by the incoming message.

Chapter 14. Reference 4337

The remaining Basic properties for the Collector node are shown in the following
table:

Property M C Default Description mqsiapplybaroverride
command property

Collection
name

No No This property specifies the name of the message
collection.

v If you set this property to contain the wildcard *,
the wildcard is replaced by the correlation string
from the relevant event handler.

v If you leave this property blank or use * and the
correlation string is empty, then the collection name
is set to an empty string.

Collection
expiry

No Yes The amount of time, in seconds, that the Collector
node waits for messages to arrive. After this time an
incomplete message collection is expired and
propagated to the Expire output terminal.

If you set this property to zero, the collection expiry is
disabled and the Collector node waits for messages
indefinitely. Set a value greater than zero to ensure that
the message collection is processed, even if not all
messages are received. A warning is issued if this
property is not set.

This property overrides the Timeout properties that are
set on the input terminals. The Timeout property
specifies the maximum time in seconds for which the
input terminal accepts messages. After this time, the
collection is complete and is propagated to the Out
terminal. If one input terminal does not have a timeout
set, or if its timer has not started, a message collection
might wait for an input message indefinitely. In this
situation, the Collection expiry property is used to
ensure that the incomplete message collection is not
left in an unresolved state, but is propagated to the
Expiry terminal.

This property is overridden by the Collection expiry
property, if set, in the Collector configurable service.

collectionExpiry

The Collector node Advanced properties are described in the following table:

Property M C Default Description

Persistence
mode

No No The node
type,
Collector

This property specifies whether messages are stored on the queues
of the Collector node persistently.

4338 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Event
coordination

Yes No Disabled This property specifies how messages received on the Control
terminal for event coordination processing are handled in the
Collector node.

v If you accept the default value (Disabled), messages to the
Control terminal are ignored and collections are propagated when
they are complete.

v If you select All complete collections, complete message
collections are held on a WebSphere MQ queue. When a message
is received on the control terminal, all complete message
collections on the WebSphere MQ queue are propagated to the
Out terminal.

v If you select First complete collection, complete message
collections are held on a WebSphere MQ queue. When a message
is received on the control terminal, the first complete message
collection on the WebSphere MQ queue is propagated to the Out
terminal. The collections are propagated in the same order that
they become complete. If the WebSphere MQ queue is empty
when the message is received on the Control terminal, the next
complete message collection is immediately propagated to the Out
terminal.

Configurable
service

No Yes None set This property specifies the name of the Collector configurable
service to be used by the Collector node.

The properties set by the Collector configurable service override the
equivalent properties set on the Collector node.

For more information about the properties than you can set with
this configurable service, see “Configurable services properties” on
page 3766.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

You cannot use monitoring properties to configure transaction events on the
following nodes:

“Collector node” on page 4333
“Resequence node” on page 4651

Use a monitoring profile instead; see “Configuring monitoring event sources using
a monitoring profile” on page 762.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 14. Reference 4339

“Message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Creating a flow that uses message collections” on page 2764
Use a Collector node in your message flow to group messages from one or more
sources into a message collection. You can add dynamic input terminals to your
Collector node for each message source that you want to configure for your
message flow.
“Configuring the Collector node” on page 2767
You can configure the Collector node to determine how messages are added to
message collections. You can also use properties on the Collector node to control
when message collections are propagated.
“Adding an input terminal to a Collector node for each input source” on page 2768
Add new dynamic input terminals to the Collector node for all of the sources of
messages for your message collections.
“Using message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources. You can use a Collector node to group together
messages from one or more sources into a message collection, so that they can be
processed together by downstream nodes.

Compute node
Use the Compute node to construct one or more new output messages.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4341
v “Configuring the Compute node” on page 4341
v “Defining database interaction” on page 4341
v “Specifying ESQL” on page 4342
v “Setting the mode” on page 4344
v “Validating messages” on page 4346
v “Terminals and properties” on page 4346

Purpose:
The output messages that you create in the Compute node might be created by
modifying the information that is provided in the input message, or by using only
new information which can be taken from a database or from other sources.
Elements of the input message (for example, headers, header fields, and body
data), its associated environment, and its exception list can be used to create the
new output message.

4340 WebSphere Message Broker Version 7.0.0.8

Specify how the new messages are created by coding ESQL in the message flow
ESQL resource file. For more information, see “Specifying ESQL” on page 4342.

Use the Compute node to:
v Build a new message using a set of assignment statements
v Copy messages between parsers
v Convert messages from one code set to another
v Transform messages from one format to another

The Compute node is contained in the Transformation drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following samples to see how to use this node:
v Airline Reservations
v Aggregation
v JMS Nodes
v Large Messaging
v Message Routing
v Scribble
v Timeout Processing
v Video Rental

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Consider a message flow in which you want to give each order that you receive a
unique identifier for audit purposes. The Compute node does not modify its input
message; it creates a new, modified copy of the message as an output message. You
can use the Compute node to insert a unique identifier for your order into the
output message, which can be used by subsequent nodes in the message flow.

Configuring the Compute node:
When you have put an instance of the Compute node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

Configure the Compute node by:
1. “Defining database interaction”
2. “Specifying ESQL” on page 4342
3. “Setting the mode” on page 4344
4. “Validating messages” on page 4346

Defining database interaction:
To access a database from this node:
v On the Basic tab, specify in Data Source the name by which the appropriate

database is known on the system on which this message flow is to run. The

Chapter 14. Reference 4341

broker connects to this database with user ID and password information that
you have specified on the mqsicreatebroker, mqsichangebroker, or
mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses the broker started task ID, or the

user ID and password that were specified on the mqsisetdbparms command JCL,
BIPSDBP in the customization data set <hlq>.SBIPPROC.

v Select the Transaction setting from the list. The values are:
– Automatic (the default). The message flow, of which the Compute node is a

part, is committed if it is successful. That is, the actions that you define in the
ESQL module are performed on the message and it continues through the
message flow. If the message flow fails, it is rolled back. If you choose
Automatic, the ability to commit or roll back the action of the Compute node
on the database depends on the success or failure of the entire message flow.

– Commit. To commit the action of the Compute node on the database,
irrespective of the success or failure of the message flow as a whole, select
Commit. The database update is committed even if the message flow itself
fails.

The value that you choose is implemented for the one or more database tables
that you have added; you cannot select a different value for each table.

v To treat database warning messages as errors and have the node propagate the
output message to the Failure terminal, select Treat warnings as errors. The
check box is cleared initially.
When you select the check box, the node handles all positive return codes from
the database as errors and generates exceptions in the same way as it does for
the negative, or more serious, errors.
If you do not select the check box, the node treats warnings as typical return
codes, and does not raise any exceptions. The most significant warning raised is
not found, which can be handled as a typical return code safely in most
circumstances.

v To force the broker to generate an exception when a database error is detected,
select Throw exception on database error. The check box is selected initially.
If you clear the check box, you must include ESQL to check for any database
error that might be returned after each database call that you make (you can use
SQLCODE and SQLSTATE to do this). If an error occurs, you must handle the
error in the message flow to ensure the integrity of the broker and the database;
the error is ignored if you do not handle it through your own processing
because you have chosen not to invoke the default error handling by the broker.
For example, you can include the ESQL THROW statement to throw an
exception in this node, or you can use the Throw node to generate your own
exception at a later point in the message flow.

Specifying ESQL:
Code ESQL statements to customize the behavior of the Compute node. For
example, you can customize the node to create a new output message or messages,
using input message or database content (unchanged or modified), or new data.
For example, you might want to modify a value in the input message by adding a
value from a database, and storing the result in a field in the output message.

Code the ESQL statements that you want in an ESQL file that is associated with
the message flow in which you have included this instance of the Compute node.
The ESQL file, which by default has the name <message_flow_name>.esql, contains
ESQL for every node in the message flow that requires it. Each portion of code that
is related to a specific node is known as a module.

4342 WebSphere Message Broker Version 7.0.0.8

If an ESQL file does not already exist for this message flow, double-click the
Compute node, or right-click the node and click Open ESQL. This action creates
and opens a new ESQL file in the ESQL editor view. If you prefer, you can open
the appropriate ESQL file in the Broker Development view and select this node in
the Outline view.

If the file exists already, click Browse beside the ESQL Module property to display
the Module Selection dialog box, which lists the available Compute node modules
defined in the ESQL files that are accessible by this message flow (ESQL files can
be defined in other, dependent, projects). Select the appropriate module and click
OK. If no suitable modules are available, the list is empty.

If the module that you have specified does not exist, it is created for you and the
editor displays it. If the file and the module exist already, the editor highlights the
correct module.

If a module skeleton is created for this node in a new or existing ESQL file, it
consists of the following ESQL. The default module name is shown in this
example:
CREATE COMPUTE MODULE <flow_name>_Compute

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- CALL CopyMessageHeaders();
-- CALL CopyEntireMessage();
RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);
WHILE I < J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;

END WHILE;
END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;

END;
END MODULE;

If you create your own ESQL module, you must create this skeleton exactly as
shown except for the procedure calls and definitions (described later in this
section). You can change the default name, but ensure that the name you specify
matches the name of the corresponding node property ESQL Module. If you want
the module name to include one or more spaces, enclose the name in double
quotation marks in the ESQL Module property.

Add your own ESQL to customize this node after the BEGIN statement that
follows CREATE FUNCTION, and before RETURN TRUE. You can use the two
calls included in the skeleton, to procedures CopyEntireMessage and
CopyMessageHeaders.

These procedures, defined following function Main, provide common functions
that you might want when you manipulate messages. The calls in the skeleton are
commented out; remove the comment markers if you want to use the procedure. If
you do not want to use a procedure, remove both the call and the procedure
definition from the module.

Chapter 14. Reference 4343

Setting the mode:
The Compute Mode property controls which components are used by default in the
output message. Select the property to specify whether the Message,
LocalEnvironment (previously specified as DestinationList), and Exception List
components that are either generated in the node or contained in the incoming
message are used.

This default value is used when the transformed message is routed to the Out
terminal when processing in the node is completed. The default value is also used
whenever a PROPAGATE statement does not specify the composition of its output
message.

Those components that are not included in your selection are passed on
unchanged; even if you modify those components, the updates are local to this
node.

Conversely, those components that are included in the selection are not passed on
and the updates that are made in the node persist.

The seven possible values that the Compute Mode property can take are listed in the
following table.

Mode Description

Message (the default) The message is generated or passed through by the
Compute node as modified in the node.

The message contains the modified OutputRoot tree, the
original InputLocalEnvironment tree, and the original
InputExceptionList tree.

LocalEnvironment The LocalEnvironment tree structure is generated or
passed through by the Compute node as modified in the
node.

The message contains the original InputRoot tree, the
modified OutputLocalEnvironment tree, and the original
InputExceptionList tree.

LocalEnvironment And Message The LocalEnvironment tree structure and message are
generated or passed through by the Compute node as
modified by the node.

The message contains the modified OutputRoot tree, the
modified OutputLocalEnvironment tree, and the original
InputExceptionList tree.

Exception The Exception List is generated or passed through by the
Compute node as modified by the node.

The message contains the original InputRoot tree, the
original InputLocalEnvironment tree, and the modified
OutputExceptionList tree.

Exception And Message The Exception List and message are generated or passed
through by the Compute node as modified by the node.

The message contains the modified OutputRoot tree, the
original InputLocalEnvironment tree, and the modified
OutputExceptionList tree.

4344 WebSphere Message Broker Version 7.0.0.8

Mode Description

Exception and
LocalEnvironment

The Exception List and LocalEnvironment tree structure
are generated or passed through by the Compute node
as modified by the node.

The message contains the original InputRoot tree, the
modified OutputLocalEnvironment tree, and the
modified OutputExceptionList tree.

All The message, Exception List, and LocalEnvironment are
generated or passed through by the Compute node as
modified by the node.

The message contains the modified OutputRoot tree, the
modified OutputLocalEnvironment tree, and the
modified OutputExceptionList tree.

The value of the Compute Mode property specifies which new message trees are
propagated from the Compute node. Therefore, for those message trees that are
selected, the input messages are discarded unless they are explicitly copied into the
new equivalent output message tree.

If All is selected, the Compute node is expecting to generate all three new message
trees for the Root, LocalEnvironment, and ExceptionList by populating the
OutputRoot, OutputLocalEnvironment, and OutputExceptionList. The input
message trees are not passed to the output unless they are copied explicitly from
the Input to the Output.

Therefore, if the Compute Mode property is set to All, you must code the following
ESQL to allow the input trees to be propagated to the output terminal:

SET OutputRoot = InputRoot;
SET OutputLocalEnvironment = InputLocalEnvironment;
SET OutputExceptionList = InputExceptionList;

If the ESQL was CopyEntireMessage(), the LocalEnvironment and ExceptionList are
not copied across and are not propagated to the output terminal; they are lost at
that node in the message flow.

To produce a new or changed output message, and propagate the same
LocalEnvironment and ExceptionList, set the Compute Mode property to Message so
that the LocalEnvironment and ExceptionList that are passed to the Compute or
Mapping node, are passed on from the Compute node.

The Compute Mode applies only to propagation from the node. You can create all
three output trees in a Compute or Mapping node and these can be manipulated
and exist in the node. However, the Compute Mode determines whether such output
trees are used on propagation from the node.

On propagation from the node, the following trees are propagated from the
Compute or Mapping node for the following settings.

Compute Mode Trees propagated

All OutputRoot, OutputLocalEnvironment,
OutputExceptionList

Message OutputRoot, InputLocalEnvironment, InputExceptionList

LocalEnvironment InputRoot, OutputLocalEnvironment, InputExceptionList

Chapter 14. Reference 4345

Compute Mode Trees propagated

LocalEnvironment and Message OutputRoot, OutputLocalEnvironment,
InputExceptionList

Exception InputRoot, InputLocalEnvironment, OutputExceptionList

Exception and Message OutputRoot, InputLocalEnvironment,
OutputExceptionList

Exception and
LocalEnvironment

InputRoot, OutputLocalEnvironment,
OutputExceptionList

Where an output tree is named, ESQL creates this message tree before propagation.
If your ESQL does not create the tree, no tree is propagated for that correlation
name, and the input tree is not used in its place because the Compute Mode property
did not indicate this option. Therefore, dependent on Compute Mode property
settings and your ESQL, you might delete a tree that was input to the node,
because you did not transfer it to the output tree, or propagate a changed tree as
you intended.

The converse is also true. If your ESQL interrogates the input trees and does not
need to propagate these trees, the Compute Mode property value might mean that
the message tree propagates when you do not intend it to. For example, you might
not want to propagate the LocalEnvironment and ExceptionList from a Compute
node, but because you selected Message, the input versions of the trees are
propagated. Even if the ESQL explicitly deletes the OutputLocalEnvironment and
OutputExceptionList, these changes are local to that node because the Compute
Mode property setting causes the input trees to be propagated.

The Environment component of the message tree is not affected by the Compute
Mode property setting. Its contents, if any, are passed on from this node in the
output message.

Set this property to reflect the output message format that you require. If you
select an option (or accept the default value) that does not include a particular part
of the message, that part of the message is not included in any output message
that is constructed.

The Compute node has both an input and output message, so that you can use
ESQL to refer to fields in either message. You can also work with both
InputLocalEnvironment and OutputLocalEnvironment, and InputExceptionList and
OutputExceptionList, as well as the input and output message bodies.

Validating messages:
Set the validation properties to define how the message that is produced by the
Compute node is to be validated. These properties do not cause the input message
to be validated. It is expected that, if such validation is required, the validation has
already been performed by the input node or a preceding validation node.

For more details, see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Terminals and properties:
The Compute node terminals are described in the following table.

4346 WebSphere Message Broker Version 7.0.0.8

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if an unhandled exception occurs during
the computation.

Out The output terminal to which the transformed message is routed when processing in the node is
completed. The transformed message might also be routed to this terminal by a PROPAGATE
statement.

Out1 The first alternative output terminal to which the transformed message might be routed by a
PROPAGATE statement.

Out2 The second alternative output terminal to which the transformed message might be routed by a
PROPAGATE statement.

Out3 The third alternative output terminal to which the transformed message might be routed by a
PROPAGATE statement.

Out4 The fourth alternative output terminal to which the transformed message might be routed by a
PROPAGATE statement.

For the syntax of the PROPAGATE statement, see “PROPAGATE statement” on
page 5150.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file for deployment).

The Compute node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the message
flow.

The Compute node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Data Source No Yes The ODBC data source name for the database that
contains the tables to which you refer in the ESQL
file that is associated with this message flow
(identified in the ESQL Module property). You can
specify only one data source for the node.

If the ESQL that is associated with this node
includes a PASSTHRU statement or SELECT
function and a database reference, you must specify
a value for the Data Source property.

dataSource

Transaction Yes No AutomaticThe transaction mode for the node. Valid options are
Automatic and Commit. The property is valid only if
you have selected a database table for input.

Chapter 14. Reference 4347

Property M C Default Description mqsiapplybaroverride
command property

ESQL Module No No Compute The name of the module in the ESQL file that
contains the statements to run against the database
and input and output messages.

Compute
Mode

Yes No Message Choose from:
v Message
v LocalEnvironment
v LocalEnvironment And Message
v Exception
v Exception And Message
v Exception And LocalEnvironment
v All

For more information about setting the mode
options, see “Setting the mode” on page 4344.

Treat
warnings as
errors

Yes No Cleared If you select the check box, database SQL warnings
are treated as errors.

Throw
exception on
database
error

Yes No Selected If you select this check box, database errors cause
the broker to throw an exception.

The Validation properties of the Compute node are described in the following
table. For a full description of these properties, see “Validation properties” on page
4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes
place. Valid values are None, Content and Value,
Content, and Inherit.

validateMaster

Failure
Action

No No ExceptionThis property controls what happens if a validation
failure occurs. You can set this property only if
Validate is set to Content or Content and Value.
Valid values are User Trace, Local Error Log,
Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

4348 WebSphere Message Broker Version 7.0.0.8

“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“PROPAGATE statement” on page 5150
The PROPAGATE statement propagates a message to the downstream nodes.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Data sources on z/OS” on page 4014
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.

CORBARequest node
Use the CORBARequest node to call an external CORBA application over Internet
Inter-Orb Protocol (IIOP).

This topic contains the following sections:
v “Purpose” on page 4350

Chapter 14. Reference 4349

v “Using this node in a message flow”
v “Configuring the CORBARequest node”
v “Terminals and properties” on page 4351

Purpose:
You can use the CORBARequest to connect WebSphere Message Broker to CORBA
applications. CORBA is a standard for distributing objects across networks so that
operations on those objects can be called remotely. CORBA objects are described in
Interface Definition Language (IDL) files. You can create a message flow that
contains a CORBARequest node, which calls a CORBA server. The message flow
uses the IDL file to configure which operation is called on which interface. By
using a message flow that includes a CORBARequest node, you can give existing
CORBA applications a new external interface; for example, a SOAP interface. The
IDL file is stored in a message set project inside a folder called CORBA IDLs, and is
used to configure the CORBARequest node in the message flow.

Using this node in a message flow:
One possible use of a CORBARequest node is to connect a SOAP-based Web
service application to an existing CORBA IIOP application by using a synchronous
style of message flow. You can achieve this connection by creating the following
message flow:

In this example, the SOAPInput node receives a Web service request, the Mapping
node transforms the data in the SOAP message to a CORBA request, and a request
is made to the CORBA server. The second Mapping node transforms the response
message back into a SOAP reply, which is propagated by the SOAPReply node.

The CORBARequest node is not transactional. After the node has made a request,
it cannot roll back the request. The CORBA nodes use the DataObject domain.

The CORBARequest node is contained in the CORBA drawer of the message flow
node palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Look at the following sample to see how to use this node:
v CORBA nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the CORBARequest node:
When you have put an instance of the CORBARequest node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view.

4350 WebSphere Message Broker Version 7.0.0.8

All mandatory properties for which you must enter a value (properties that do not
have a default value defined) are marked with an asterisk.

Terminals and properties:
The CORBARequest node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node. Data is taken from the
message tree and sent to the CORBA server.

Out The output terminal from which return parameters are propagated.

Failure The output terminal to which a message is routed if a failure is detected.

Error CORBA exception messages that are received in response to the sent request are sent to the Error
terminal. If the Error terminal is not connected, and an error is received, no further processing
occurs in the message flow. The error is logged as a warning in user trace.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined; the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The CORBARequest node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node
name

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the message flow.

The CORBARequest node Basic properties are described in the following table.

Property M C DefaultDescription mqsiapplybaroverride
command property

Naming
service

Yes Yes The location of the naming service that contains the object
that you are calling. For this property, you can specify either
the host name of the naming service or a CORBA
configurable service.

v Specify the host name of the naming service from which to
get the object reference in the format host:port, where port
is optional. For example, localhost:2809. If you do not
specify a port number, the default value is 2809. You can
obtain this value from the administrator of the CORBA
application that you are calling.

v Specify the name of a configurable service of type CORBA.
If you specify a configurable service name, you can use the
configurable service to override the Naming service and
Object reference name properties.

For more information about using a configurable service to
specify a naming service, see “Defining where the
CORBARequest node gets the object reference” on page
734.

namingService

Chapter 14. Reference 4351

Property M C DefaultDescription mqsiapplybaroverride
command property

Object
reference
name

Yes Yes The name of the reference to the object in the naming service.
You can obtain this value from the CORBA server that you
are calling.

For more information about how to specify the object
reference name, see “CORBA naming service” on page 2154.

You can also use a configurable service to specify an object
reference name. For more information, see “Defining where
the CORBARequest node gets the object reference” on page
734.

referenceName

IDL file Yes No The IDL file in a message set project that is used to configure
the CORBARequest node. Click Browse to select an IDL file
in a referenced message set. If you have dragged an
imported IDL file onto the canvas or onto the
CORBARequest node, the IDL file property is set to the
name of the IDL file.

When you specify an IDL file, the Interface name property is
populated with a list of available interfaces.

Interface
name

Yes No The interface from the IDL file that the node calls. Either type
a valid interface name, or click Select interface and select an
interface from the list. If the list contains a large number of
interfaces, you can filter the results.

The values that are listed for this property are the interfaces
in the selected IDL file that have one or more operations.
This list is populated only when an IDL file is specified. If
you have dragged an imported IDL file onto the canvas or
onto the CORBARequest node, the Interface name property
is set according to the IDL file.

If the interface name is contained in a module in the IDL file,
the interface name is qualified with the name of the module.
If the module is nested in another module, the interface
name is qualified with all module names, starting from the
root module; for example:

ModuleNameA.ModuleNameB.InterfaceName

When you specify an interface name, the Operation name
property is populated with a list of available operations.

Operation
name

Yes No The operation to call from the interface.

The values that are listed for this property are the supported
operations that are available in the selected interface. This list
is populated only when an interface name is specified. If you
have dragged an imported IDL file onto the canvas or onto
the CORBARequest node, the Operation name property is set
according to the IDL file.

You can override this property in the local environment by
specifying a value in the following location:

$LocalEnvironment/Destination/CORBA/Request/OperationName

The CORBARequest node Response Message Parsing properties are described in
the following table.

4352 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the response message. By default, the
message that is propagated from the CORBARequest node is in the
DataObject domain. You cannot specify a different domain.

Message set No No Set
automatically

The name of the message set in which the incoming message is defined.
The node detects the message set automatically.

Message
type

No No The name of the response message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the response message. You cannot set
this property.

The CORBARequest node Request properties specify how to make a request, and
are described in the following table.

Property M C Default Description

Data location Yes No $Body The location in the incoming message tree from which data is retrieved to
form the request that is sent by the CORBARequest node.

The CORBARequest node Result properties specify where to store the reply, and
are described in the following table.

Property M C Default Description

Output data
location

No No $OutputRootThe message tree location to which the CORBARequest node sends output.

Copy local
environment

No No Selected This property controls how the local environment is copied to the output
message. If you select this check box, a new copy of the local environment
is created in the tree (at each node in the message flow), and it is populated
with the contents of the local environment from the preceding node.
Therefore, if a node changes the local environment, the previous nodes in
the flow do not see those changes because they have their own copies. This
behavior might be an issue if you are using a FlowOrder node, or if you
use the propagate command on a Compute node.

If you clear the check box, each node does not generate its own copy of the
local environment, but it uses the local environment that is passed to it by
the previous node. Therefore, if a node changes the local environment,
those changes are seen by the upstream nodes.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:

Chapter 14. Reference 4353

“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
“CORBA nodes” on page 2147
Use CORBA nodes to connect WebSphere Message Broker with CORBA Internet
Inter-Orb Protocol (IIOP) applications.
“IDL data types” on page 2150
When you use the DataObject domain with CORBA, you need to know how XML
schema and ESQL types correspond to the types in the IDL file.
“CORBA naming service” on page 2154
A CORBA naming service holds CORBA object references.
“CORBA support” on page 2149
The CORBA nodes in WebSphere Message Broker support a set of types and
operations in imported IDL files.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Developing a message flow with a CORBARequest node” on page 2161
To connect to an external CORBA application, create a message flow that contains
a CORBARequest node.
“Building a message for the CORBARequest node” on page 2164
You can use an XML message for the CORBARequest node, or you can build a
message by using another message flow node.
“Processing responses from a CORBARequest node” on page 2167
Configure the CORBARequest node to define the location to which responses are
sent.
“Resolving problems when you use CORBA nodes” on page 3396
Advice for dealing with common problems that can arise when you develop
message flows that contain CORBA nodes.

Database node
Use the Database node to interact with a database in the specified ODBC data
source.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4355
v “Terminals and properties” on page 4355

Purpose:
You define the nature of the interaction by coding ESQL statements that specify the
data from the input message, and perhaps transform it in some way (for example,
to perform a calculation), and assign the result to a database table.

4354 WebSphere Message Broker Version 7.0.0.8

You can set a property to control whether the update to the database is committed
immediately, or deferred until the message flow completes, at which time the
update is committed or rolled back, according to the overall completion status of
the message flow.

You can use specialized forms of this node to:
v Update values within a database table (the DataUpdate node)
v Insert rows into a database table (the DataInsert node)
v Delete rows from a database table (the DataDelete node)
v Store the message, or parts of the message, in a warehouse (the Warehouse

node)

The Database node is contained in the Database drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following samples to see how to use this node:
v Airline Reservations
v Error Handler

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Consider a situation in which you receive an order for 20 monitors. If you have
sufficient numbers of monitors in your warehouse, you want to reduce the stock
level on your stock database. You can use the Database node to check that you
have enough monitors available, and reduce the value of the quantity field in your
database.

Terminals and properties:
When you have put an instance of the Database node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.
All mandatory properties for which you must enter a value (those properties that
do not have a default value defined) are marked with an asterisk.

The terminals of the Database node are described in the following table. For more
information about the PROPAGATE statement, including its syntax, see
“PROPAGATE statement” on page 5150

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the
computation. If you have selected Treat warnings as errors, the node propagates the message to this
terminal even if the processing completes successfully.

Out The output terminal to which the transformed message is routed when processing in the node is
completed. The transformed message might also be routed to this terminal by a PROPAGATE
statement.

Out1 The first alternative output terminal to which the transformed message might be routed by a
PROPAGATE statement.

Chapter 14. Reference 4355

Terminal Description

Out2 The second alternative output terminal to which the transformed message might be routed by a
PROPAGATE statement.

Out3 The third alternative output terminal to which the transformed message might be routed by a
PROPAGATE statement.

Out4 The fourth alternative output terminal to which the transformed message might be routed by a
PROPAGATE statement.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the Database node are described in the following
table.

Property M C Default Description

Node name No No The node
type,
Database

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The Database node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Data
Source

No Yes The ODBC data source name of the database that
contains the tables to which you refer in the ESQL that is
associated with this node (identified by the Statement
property).

This name identifies the appropriate database as it is
known on the system on which this message flow is to
run. The broker connects to this database with user ID
and password information that you have specified on the
mqsisetdbparms command.

If the ESQL that is associated with this node includes a
PASSTHRU statement or SELECT function and a
database reference, you must specify a value for the Data
Source property.

dataSource

4356 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Statement No No Database The name of the module in the ESQL file that contains
the statements to use against the database. If you want
the module name to include one or more spaces, enclose
the name in double quotation marks.

The ESQL file, which by default has the name
<message_flow_name>.esql, contains ESQL for every node
in the message flow that requires it. Each portion of code
that is related to a specific node is known as a module.
When you code ESQL statements that interact with
tables, those tables are assumed to exist within this
database. If they do not exist, a database error is
generated by the broker at run time.

Code ESQL statements to customize the behavior of the
Database node in an ESQL file that is associated with the
message flow in which you have included this instance
of the Database node. If an ESQL file does not exist for
this message flow, double-click the Database node, or
right-click the node and click Open ESQL to create and
open a new ESQL file in the ESQL editor view.

If an ESQL file exists, click Browse beside the Statement
property to display the Module Selection dialog box,
which lists the available Database node modules that are
defined in the ESQL files that are accessible by this
message flow (ESQL files can be defined in other,
dependent, projects). Select the appropriate module and
click OK. If no suitable modules are available, the list is
empty.

If the module that you have specified does not exist, it is
created for you and the editor displays it. If the file and
the module exist, the editor highlights the correct
module. If a module skeleton is created for this node in a
new or existing ESQL file, it consists of the following
ESQL. The default module name is shown in this
example:

CREATE DATABASE MODULE <flow_name>_Database
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

RETURN TRUE;
END;

END MODULE;

If you create your own ESQL module, create exactly this
skeleton. You can update the default name, but ensure
that the name that you specify matches the name of the
corresponding node property Statement.

To customize this node, add your own ESQL after the
BEGIN statement and before RETURN TRUE. You can
use all the ESQL statements including SET, WHILE,
DECLARE, and IF in this module, but (unlike the
Compute node) the Database node propagates,
unchanged, the message that it receives at its input
terminal to its output terminal. Therefore, like the Filter
node, you have only one message to refer to in a
Database node.

Chapter 14. Reference 4357

Property M C Default Description mqsiapplybaroverride
command property

Transaction Yes No Automatic The transaction mode for the node. The values are:

v Automatic (the default). The message flow, of which
the Database node is a part, is committed if it is
successful; that is, the actions that you define in the
ESQL module are performed and the message
continues through the message flow. If the message
flow fails, it is rolled back. If you select Automatic, the
ability to commit or roll back the action of the
Database node on the database depends on the success
or failure of the entire message flow.

v Commit. To commit all uncommitted actions that are
performed in this message flow on the database that is
connected to this node, irrespective of the success or
failure of the message flow as a whole, select Commit.
The changes to the database are committed even if the
message flow itself fails.

Treat
Warnings
as Errors

Yes No Cleared For database warning messages to be treated as errors,
and for the node to propagate the output message to the
Failure terminal, select Treat Warnings as Errors. The
check box is cleared initially.

When you select the check box, the node handles all
positive return codes from the database as errors, and
generates exceptions in the same way that it does for the
negative, or more serious, errors. If you do not select the
check box, the node treats warnings as normal return
codes, and does not raise an exception. The most
significant warning raised is not found, which can be
handled safely as a typical return code in most
circumstances.

Throw
Exception
on
Database
Error

Yes No Selected For the broker to generate an exception when a database
error is detected, select Throw Exception on Database
Error. The check box is selected initially.

If you clear the check box, include ESQL to check for
database errors that might be returned after each
database call that you make (you can use SQLCODE and
SQLSTATE to get this information). If an error has
occurred, you must handle the error in the message flow
to ensure the integrity of the broker and the database;
the error is ignored if you do not handle it through your
own processing because you have chosen not to use the
default error handling by the broker. For example, you
can include the ESQL THROW statement to throw an
exception in this node, or you can use the Throw node to
generate your own exception at a later point.

The Monitoring properties of the node are described in the following table.

4358 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related tasks:
“Authorizing access to user databases” on page 662
When you have created a user database, you must authorize the broker and its
execution groups to access it.
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“DataDelete node” on page 4382
Use the DataDelete node to interact with a database in the specified ODBC data
source.
“DataInsert node” on page 4386
Use the DataInsert node to interact with a database in the specified ODBC data
source.
“DataUpdate node” on page 4390
Use the DataUpdate node to interact with a database in the specified ODBC data
source.
“Warehouse node” on page 4963
Use the Warehouse node to interact with a database in the specified ODBC data
source.
“PROPAGATE statement” on page 5150
The PROPAGATE statement propagates a message to the downstream nodes.

Chapter 14. Reference 4359

“Data sources on z/OS” on page 4014

DatabaseInput node
Use the DatabaseInput node to detect events recorded in a database, and to
retrieve the data affected by those events.

This topic contains the following sections:
v “Purpose”
v “Terminals and properties”

Purpose:
The DatabaseInput node is contained in the Database drawer of the palette, and is

represented in the WebSphere Message Broker Toolkit by the following icon:

Terminals and properties:
The DatabaseInput node terminals are described in the following table.

Terminal Description

Failure The output terminal to which a message is routed if an error occurs before a message is propagated
to the Out terminal.

Out If no errors occur within the input node, a message received from an external resource is always
sent to the Out terminal first.

Catch The output terminal to which the message is routed if an exception is thrown downstream and
caught by this node. Exceptions are caught only if this terminal is attached.

The following tables describe the node properties that you can set on a specified
tab. The column headed M indicates whether the property is mandatory (marked in
the toolkit with an asterisk if you must enter a value when no default is defined).
The column headed C indicates whether the property is configurable (you can
change the value when you add the message flow to the BAR file to deploy it).

Description properties:

Property M C Default Value Description

Node Name Yes No Database Input The name of the node.

Short Description No No None A brief description of the node.

Long Description No No None Text that describes the purpose of
the node in the message flow.

Basic properties:

4360 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description
mqsiapplybaroverride
command property

Data Source Yes Yes None The ODBC data source
name of the database
that contains the tables
to which you refer in
the ESQL file that is
associated with this
message flow (identified
by the ESQL Module
property). You can
specify only one data
source for the node.

dataSource

ESQL Module Yes No None The name of the
DATABASEEVENT
module in the ESQL file
that contains the
statements to run
against the database
and output messages.

Polling properties:

Property M C Default Description
mqsiapplybaroverride
command property

Polling interval
(seconds)

Yes Yes 5 The polling interval in
seconds.

waitInterval

Retry properties:

Property M C Default Description
mqsiapplybaroverride
command property

Retry mechanism Yes No Failure How the node handles a flow
failure. Valid options are:

v Failure

v Short retry

v Short and long retry

Retry threshold Yes Yes 0 The number of times to try the
flow transaction again when the
Retry mechanism property value is
Short retry or Short and long
retry.

retryThreshold

Short retry
interval

No Yes 0 The interval, in seconds, between
each retry if Retry threshold
property is not zero.

shortRetryInterval

Long retry
interval

No Yes 300 The interval between retries, if
Retry mechanism property is Short
and long retry and the retry
threshold has been exhausted.

longRetryInterval

Transactions properties:

Chapter 14. Reference 4361

Property M
Read
Only C Default Description

mqsiapplybaroverride
command property

Transaction
mode

No Yes No Yes The transaction mode of
Yes on this input node
determines that the
interactions between this
node and the database are
under transactional
control. It also determines
that the rest of the nodes
in the flow are executed
under sync point if those
downstream nodes are
configured with automatic
transaction (that is, if
Transaction mode
property is Automatic). It
is not possible to make the
database interactions
non-transactional.

Instances properties:

Property M C Default Description
mqsiapplybaroverride
command property

Additional
instances pool

No Yes Use Pool Associated
with Message Flow

The pool from which
additional instances are
obtained.

v If you select Use Pool
Associated with
Message Flow, additional
instances are obtained
from the message flow
pool.

v If you select Use Pool
Associated with Node,
additional instances are
allocated from the
additional instances of
the node based on the
number specified in the
Additional instances
property.

componentLevel

Additional
instances

No Yes 0 The number of additional
instances that the node
can start if the Additional
instances pool property
is set to Use Pool
Associated with Node.

additionalInstances

For a full description of the Instances properties, see “Configurable message flow
properties” on page 4020.

The Monitoring properties of the node are described in the following table.

4362 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Event-based database integration” on page 2118
Use a DatabaseInput node to respond to events in a database. For example, the
broker can keep an external system synchronized with a database by sending
updates to the target system whenever data is changed in the database.
“Event tables” on page 2126
An event table stores information about changes to application tables.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Configuring a DatabaseInput node” on page 2120
Create and configure message flows that respond to events in a database.
“Responding to database updates” on page 2123
Implement a message flow that responds to database updates, and presents the
data to another application.
“Working with databases” on page 2109
Create and configure databases to use with your message flow applications.
“Interaction with databases using ESQL” on page 2487
Use ESQL statements and functions to read from, write to, and modify databases
from your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
Related reference:
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Data sources on z/OS” on page 4014

DatabaseRetrieve node
Use the DatabaseRetrieve node to ensure that information in a message is up to
date.

This topic contains the following sections:
v “Purpose” on page 4364
v “Using this node in a message flow” on page 4364

Chapter 14. Reference 4363

v “Making the JDBC provider service available to the DatabaseRetrieve node” on
page 4366

v “Using the Data Source Explorer view to query data sources” on page 4367
v “Configuring the DatabaseRetrieve node” on page 4367
v “Example” on page 4367
v “Validating messages” on page 4369
v “Terminals and properties” on page 4369

Purpose:
Use the DatabaseRetrieve node to modify a message using information from a
database. For example, you can add information to a message using a key that is
contained in a message; the key can be an account number.

The DatabaseRetrieve node is contained in the Database drawer of the message
flow node palette, and is represented in the WebSphere Message Broker Toolkit by
the following icon:

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Simplified Database Routing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Input parameter values that are acquired from message elements in the incoming
message are supported for insertion into prepared statements that are used by this
node. These values are acquired from name, value, and name-value elements in the
incoming parsed input message. Elements are acquired initially in the form of a
com.ibm.broker.plugin.MbElement object, therefore the range of supported Java
object types that values can take is governed by this object's interface. When values
are in the form of Java primitive types or Objects they are converted to their
equivalent JDBC data type, as shown in the following table.

Java JDBC

Integer INTEGER

Long BIGINT

Double DOUBLE

BigDecimal NUMERIC

Boolean BIT

byte[] VARBINARY or LONGVARBINARY

BitSet VARBINARY or LONGVARBINARY

String VARCHAR or LONGVARCHAR

MbTime java.sql.Time

MbTimestamp java.sql.Timestamp

MbDate java.sql.Date

Values are used from an element only if the element is of a known type, and its

4364 WebSphere Message Broker Version 7.0.0.8

value state is valid, otherwise an exception is issued. Output column values that
are acquired in the result set from SQL queries that are carried out by this node are
converted first into matching Java types, then into internal message element value
types, as shown in the following table.

JDBC Java ESQL Type

SMALLINT Integer INTEGER

INTEGER Integer INTEGER

BIGINT Long DECIMAL

DOUBLE Double FLOAT

REAL Double FLOAT

FLOAT Double FLOAT

NUMERIC BigDecimal DECIMAL

DECIMAL BigDecimal DECIMAL

BIT Boolean BOOLEAN

BOOLEAN Boolean BOOLEAN

BINARY byte[] BLOB

VARBINARY byte[] BLOB

LONGVARBINARY byte[] BLOB

CHAR String CHARACTER

VARCHAR String CHARACTER

LONGVARCHAR String CHARACTER

TINYINT byte[1] BLOB

TIME java.util.Date TIME

TIMESTAMP java.util.Date TIMESTAMP

DATE java.util.Date DATE

You can route a message to the same location, whether a query is successful
against a specified database, by wiring both of the non-failure output terminals to
the same output location.

If an error is found in the XPath expression of a pattern, it is reported during
validation in the WebSphere Message Broker Toolkit. The reported error message
might include the incorrect expression string and its associated unique dynamic or
static terminal name, or the string might be marked as broker in the table.

The DatabaseRetrieve node looks up values from a database and stores them as
elements in the outgoing message assembly trees. The type of information that is
obtained from the database in the form of output column values, which is acquired
and passed back in the result set from SQL queries, is converted first into a
matching Java type, then into an internal message element value type when it is
finally stored in a location in am outgoing message assembly tree. If a message
element already exists in the outgoing message tree, the new value overwrites the
old value. If the target element does not exist, it is created, and the value is stored.

The node needs query information that is used to form an SQL select query, which
can access multiple tables in a database using multiple test conditions. Sometimes,
not all the information that you want to retrieve in a result set is in a single
database table. To get the column values that you want, you might need to retrieve
them from two or more tables. This node supports the use of SELECT statements

Chapter 14. Reference 4365

that facilitate getting columns from one or more tables in a single result set. The
normal join syntax that is supported is also referred to as inner join.

Inner join information that is collected to form a query includes a list of table
qualified column values to retrieve and a list of test conditions, which form the
WHERE clause of the SELECT statement. Table qualified column values can form
the left hand operand in a test condition. Choose a comparison operator to apply
to this operand and, optionally, specify an operand on the right to complete the
test condition. The operator could be a null comparison test, in which case an
operand on the right is not needed. The value of the operand on the right can be a
database type (such as Integer, Boolean, or Long), another table qualified column,
or a value that is acquired from an element in the incoming message, as expressed
through an XPath 1.0 general expression.

The application of the expression must result in a single element, double, Boolean,
or string being returned, otherwise an exception occurs. If the query returns
multiple rows, the first row is chosen and the rest are ignored, unless the Multiple
rows option is selected. In this case, all rows are processed, and values in those
rows are used to update the outgoing message assembly trees.

It can be useful to combine a DatabaseRetrieve node with other message flow
nodes. For example, you can use an XSLTransform node to manipulate data before
or after the DatabaseRetrieve node is invoked.

The DatabaseRetrieve node has one input terminal (In) and three output terminals
(Out, KeyNotFound, and Failure). If the message is modified successfully, it is
routed to the Out terminal. If the message is not modified successfully or a failure
is detected during processing, the message is routed to the Failure terminal. If no
rows are returned in the result set following execution of a specified SQL select
query, the original message is routed to the KeyNotFound terminal.

Making the JDBC provider service available to the DatabaseRetrieve node:
The DatabaseRetrieve node constructs its JDBC connections using connection
details that are stored in the broker's registry as a configurable service.
JDBCProvider configurable services are supplied for all supported databases.

Use the WebSphere Message Broker Explorer to modify or create the supplied
service; see “Using the WebSphere Message Broker Explorer to work with
configurable services” on page 644 for more information.

You can also use the mqsichangeproperties command to modify the settings of the
supplied service for your chosen database, or create a new service using the
mqsicreateconfigurableservice command. See “Setting up a JDBC provider for
type 4 connections” on page 684 for further information and assistance on working
with JDBCProvider services. You must set up a different JDBCProvider service for
each database to which you want to connect.

Note: The maxConnectionPoolSize property does not apply to the JDBC
connections used by the DatabaseRetrieve or DatabaseRoute nodes.

When you have defined the service, set the Data source name property of this node
to the name of the JDBCProvider service; the attributes of the service are used to
establish connections for the DatabaseRetrieve node.

4366 WebSphere Message Broker Version 7.0.0.8

You must stop and restart the broker for your changes to take effect, unless you
intend to create a new execution group on the broker to which you will deploy the
message flow that contains this node.

Using the Data Source Explorer view to query data sources:
Use the Data Source Explorer view to discover the names of tables in a target
database, and the names of any columns in those tables. You must import database
definitions for your databases into the WebSphere Message Broker Toolkit before
you can view them in the Data Source Explorer view. See “Adding database
definitions to the WebSphere Message Broker Toolkit” on page 2278 for more
information.
1. Switch to the Broker Application Development perspective.
2. In the Data Source Explorer view, expand Connections. The database

connections are listed.
3. Expand a database connection to list the databases, then expand the

appropriate database.
4. Expand Schemas to list the schemas, then expand the appropriate schema.
5. Expand Tables to list all the tables.
6. Click a table to show its properties in the Properties view.
7. In the Properties view, click the Columns tab to view the column names.

Configuring the DatabaseRetrieve node:
When you have put an instance of the DatabaseRetrieve node into a message flow,
you can configure it. For more information, see “Configuring a message flow
node” on page 1503. The properties of the node are displayed in the Properties
view.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

Example:
The following example adds new elements (family name and wage) to the
incoming message structure. This example uses a database table called Employee.

EmployeeNumber FamilyName FirstName Salary

00001 Smith John 20000

00002 Jones Harry 26000

00003 Doe Jane 31000

To make a copy of the incoming message, select Copy message. When this property
is selected, the node always creates an outgoing message assembly that is based on
the incoming message assembly, and these trees in the new outgoing message
assembly are modified and propagated to the node's Out terminal. This behavior
enables modification of the outgoing message tree itself ($OutputRoot), in addition
to the other logical trees in the message assembly: $OutputLocalEnvironment,
$OutputDestinationList, $OutputExceptionList and $Environment. If the logical
trees only in the message assembly are to be modified by this node, for
performance reasons do not select Copy message. When this property is not
selected, the node always works against the original incoming message assembly,
and it expects that no updates are attempted against the message tree. If an XPath
expression in the Data elements table tries to update this message tree through a
reference to $OutputRoot, an MbReadOnlyMessageException occurs. The incoming
message is:

Chapter 14. Reference 4367

<EmployeeRecord>
<EmployeeNumber>00001</EmployeeNumber>
</EmployeeRecord>

Here is an example of the Query elements table.

Table name Column name Operator
Value
Type Value

Employee FamilyName

Employee Salary

Employee EmployeeNumber = Element $InputRoot/XMLNSC/
EmployeeRecord/
EmployeeNumber

Here is an example of the Data elements table.

Column name Message element

Employee.FamilyName $OutputRoot/XMLNSC/EmployeeRecord/FamilyName

Employee.Salary $OutputRoot/XMLNSC/EmployeeRecord/Wage

The DatabaseRetrieve node connects to the Employee database table and extracts
the value to compare from each incoming message. The XPath expression that is
used to navigate to the message body is $InputBody/EmployeeRecord/
EmployeeNumber. The SQL query is:
SELECT Employee.FamilyName, Employee.Salary
FROM Employee
WHERE EmployeeNumber=?
ORDER BY Employee.FamilyName ASC, Employee.Salary ASC

where ? is the value that is retrieved from the incoming message, which is located
through the Value property in the third row of the Query elements table, which
has a Value Type of Element.
v If the value at this location is 00001, information for John Smith is retrieved. The

first data element row says get the value of the FamilyName column that is
returned from the query, and insert it into a new element named "FamilyName"
under EmployeeRecord. The second data element row says get the value of the
Salary column that is returned from the query, and insert it into a new element
named "Wage" under EmployeeRecord. The resulting outgoing message is:
<EmployeeRecord>
<EmployeeNumber>00001</EmployeeNumber>
<FamilyName>Smith</FamilyName>
<Wage>20000</Wage>

</EmployeeRecord>

v If the value at this location is 00002, information for Harry Jones is retrieved.
The resulting outgoing message is:
<EmployeeRecord>
<EmployeeNumber>00002</EmployeeNumber>
<FamilyName>Jones</FamilyName>
<Wage>26000</Wage>

</EmployeeRecord>

If you select the Multiple rows property, and details of both of the employees are
returned from a query in the form of two rows in the result set, the resulting
outgoing message is:

4368 WebSphere Message Broker Version 7.0.0.8

<EmployeeRecord>
<EmployeeNumber>00001</EmployeeNumber>
<FamilyName>Smith</FamilyName>
<Wage>20000</Wage>
<EmployeeNumber>00002</EmployeeNumber>
<FamilyName>Jones</FamilyName>
<Wage>26000</Wage>
</EmployeeRecord>

Validating messages:
Set the Validation properties to define how the message that is produced by the
DatabaseRetrieve node is to be validated. These properties do not cause the input
message to be validated. It is expected that, if such validation is required, the
validation has already been performed by the input node or a preceding validation
node.

For more details, see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Terminals and properties:
The DatabaseRetrieve node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal to which the outgoing message is routed when it has been
modified successfully.

KeyNotFound The output terminal to which the original message is routed, unchanged, when the
result set is empty.

Failure The output terminal to which the message is routed if a failure is detected during
processing.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The DatabaseRetrieve node Description properties are described in the following
table.

Property M C Default Description

Node name No No DatabaseRetrieve The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The DatabaseRetrieve node Basic properties are described in the following table.

Chapter 14. Reference 4369

Property M C Default Description mqsiapplybaroverride
command property

Data source
name

Yes Yes DB2 The alias that is used to locate JDBCProvider service
definition that is stored in the broker registry. The
alias is used to locate and build the JDBC connection
URL that is used to connect to a DBMS. The
connection URL is driver specific, but it includes the
database name to which to connect.

If connection to the database is by a login account and
password, the node also uses this property as a
lookup key, through which these values can be
acquired from an expected matching broker registry
DSN entry.

If the DBMS is password protected, define the -n
parameter on the mqsisetdbparms command for the
JDBC unique security key before you deploy the
message flow that contains this DatabaseRetrieve
node.

dataSource

Copy
message

No Yes Cleared This property indicates if a copy of the original
incoming message is required because the message
tree is to be updated, possibly in addition to logical
trees in the message assembly. By default, this check
box is cleared. For performance reasons, select this
property only if the input message will be augmented.

Multiple
rows

No Yes Cleared This property indicates if all rows are processed when
a query returns multiple rows. If you select Multiple
rows, all rows are processed, and values in those rows
are used to update the outgoing message assembly
trees. If you do not select this property, the first row is
chosen and the rest are ignored.

Query
elements

Yes No A table of query elements that are used to compose a
single SQL select statement. The table consists of five
columns and one or more rows. The columns are
Table name, Column name, Operator, Value Type, and
Value. These five properties describe a query element,
indicating a table qualified column value to be
retrieved from a database. In this case, the element
forms part of the SELECT and ORDER BY clauses in
the generated query. Otherwise, the query element
acts as a test condition that forms a predicate in the
WHERE clause in the generated query.

Table name Yes No The name of a database table that forms part of the
SQL select statement, including the schema name; for
example, myschema.mytable.

Column
name

Yes No The name of the column in the database table to be
retrieved in the results set, as qualified by the value of
the Table name property. This SELECT clause can refer
to this name as a column value to return from a query
or to be referenced in a test condition in the WHERE
clause.

4370 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Operator Yes No A comparison operator to apply to an operand on the
left (the table column that is specified in the row's
first two columns) and optionally a value to apply to
an operand on the right. If you specify an Ascending
'ASC' or Descending 'DESC' operator value for this
property, this row signifies the declaration of a table
qualified column that forms part of the SELECT and
ORDER BY clauses in the generated query and
optionally can be referenced in future rows as a value
to an operand on the right.

Value Type Yes No A value that is either set to None, or that indicates the
type of value that is expressed in the last column of
this row. If this property is not set to None, it refers to
a row that describes a test condition in the WHERE
clause of the SQL select statement.

Value Yes No A value that is either set to None, or that specifies one
of a specified set of property types as expressed by
the Value Type property. For example, if the Value
Type property is set to Element, the Value property
collects an XPath 1.0 general expression. The value
that is returned from the expression when it is applied
to the node's incoming message is used as value of
the operand on the right to be compared through this
predicate. The compared value of the operand on the
right must match the type that is retrieved for the
table column that is compared against as the operand
on the left. Complex expressions are possible, where
zero or more values can be acquired from the
incoming message, and manipulated to formed a
single value for comparison. For example, the sum of
multiple field values in the incoming message can be
calculated by a general expression that is presented
for a value type of Element.

The DatabaseRetrieve node Data elements table properties are described in the
following table.

Property M C Default Description

Data elements Yes No A list of data elements. A data element is described by the Column
name and Message element properties.

Column name Yes No The name of the database column from which to obtain the element
value. The list of names is updated dynamically based on the
column entries that are entered in the Query elements table.

Message element Yes No An XPath 1.0 read-write path expression that describes the path
location of a message element. The message element is where the
database value is stored. The XPath expression must evaluate to a
single element in the message.

The DatabaseRetrieve node Validation properties are described in the following
table.

For a full description of these properties, see “Validation properties” on page 4169.

Chapter 14. Reference 4371

Property M C Default Description

Validate No Yes None This property controls whether validation takes place.
Valid values are None, Content and Value, Content, and
Inherit.

Failure action No No Exception This property controls what happens if a validation
failure occurs. You can set this property only if
Validate is set to Content or Content and Value. Valid
values are User Trace, Local Error Log, Exception, and
Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.

4372 WebSphere Message Broker Version 7.0.0.8

“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.

DatabaseRoute node
Use the DatabaseRoute node to route messages using information from a database
in conjunction with XPath expressions.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Making the JDBC provider service available to the DatabaseRoute node” on

page 4376
v “Using the Data Source Explorer view to query data sources” on page 4377
v “Configuring the DatabaseRoute node” on page 4377
v “Example” on page 4377
v “Terminals” on page 4378
v “Properties” on page 4379

Purpose:
The DatabaseRoute node uses a collection of named column values from a selected
database row and synchronously applies one or more XPath expressions to these
acquired values to make routing decisions.

For more information about XPath 1.0 query syntax, see W3C XPath 1.0
Specification.

The DatabaseRoute node is contained in the Database drawer of the message flow
node palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Simplified Database Routing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Input parameter values that are acquired from message elements in the incoming
message are supported for insertion into prepared statements that are used by this
node. These values are acquired from name, value, and name-value elements in the
incoming parsed input message. Elements are acquired initially in the form of a
com.ibm.broker.plugin.MbElement object, therefore the range of supported Java

Chapter 14. Reference 4373

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

object types that values can take is governed by this object's interface. When values
are in the form of Java primitive types or Objects they are converted into their
equivalent JDBC data type, as shown in the following table.

Java JDBC

Integer INTEGER

Long BIGINT

Double DOUBLE

BigDecimal NUMERIC

Boolean BIT

byte[] VARBINARY or LONGVARBINARY

BitSet VARBINARY or LONGVARBINARY

String VARCHAR or LONGVARCHAR

MbTime java.sql.Time

MbTimestamp java.sql.Timestamp

MbDate java.sql.Date

Values are used from an element only if the element is of a known type, and its
value state is valid, otherwise an exception is issued. Output column values that
are acquired in the result set from SQL queries that are carried out by this node are
converted first into matching Java types, then into internal message element value
types, as shown in the following table.

JDBC Java ESQL Type

SMALLINT Integer INTEGER

INTEGER Integer INTEGER

BIGINT Long DECIMAL

DOUBLE Double FLOAT

REAL Double FLOAT

FLOAT Double FLOAT

NUMERIC BigDecimal DECIMAL

DECIMAL BigDecimal DECIMAL

BIT Boolean BOOLEAN

BOOLEAN Boolean BOOLEAN

BINARY byte[] BLOB

VARBINARY byte[] BLOB

LONGVARBINARY byte[] BLOB

CHAR String CHARACTER

VARCHAR String CHARACTER

LONGVARCHAR String CHARACTER

TINYINT byte[1] BLOB

TIME java.util.Date TIME

TIMESTAMP java.util.Date TIMESTAMP

DATE java.util.Date DATE

You can route a message to the same location, whether a query is successful

4374 WebSphere Message Broker Version 7.0.0.8

against a specified database, by wiring both of the non-failure output terminals to
the same output location.

If an error is found in the XPath expression of a pattern, it is reported during
validation in the WebSphere Message Broker Toolkit. The reported error message
might include the incorrect expression string and its associated unique dynamic or
static terminal name, or the string might be marked as broken within the table.

The node needs query information that is used to form an SQL select query, which
can access multiple tables in a database using multiple test conditions. Sometimes,
not all the information that you want to retrieve in a result set is in a single
database table. To get the column values that you want, you might need to retrieve
them from two or more tables. This node supports the use of SELECT statements
that facilitate getting columns from one or more tables in a single result set. The
typical join syntax that is supported is also referred to as inner join.

Inner join information that is collected to form a query includes a list of table
qualified column values to retrieve and a list of test conditions, which form the
WHERE clause of the SELECT statement. Table qualified column values can form
the left operand in a test condition. Choose a comparison operator to apply to this
operand and, optionally, specify a right operand to complete the test condition.
The operator can be a null comparison test, in which no right operand is needed.
The value of the right operand can be a database type (such as Integer, Boolean, or
Long), another table qualified column, or a value that is acquired from an element
in the incoming message, as expressed through an XPath 1.0 general expression.

When you deploy a DatabaseRoute node in a message flow, you can select a value
that is associated with the Data Source Name property. The list of values contains
references to existing IBM predefined JDBC provider entries that are defined when
a broker is first created. These entries are incomplete, therefore you must modify
them to access the data source definition with which you want to work. If an
existing default IBM predefined JDBC provider is already referenced and in use by
another JDBC database node that requires different settings, use the WebSphere
Message Broker Explorer; see “Using the WebSphere Message Broker Explorer to
work with configurable services” on page 644 for more information, or the
mqsicreateconfigurableservice command to specify a new JDBC provider entry.

Use the WebSphere Message Broker Explorer, or the
mqsideleteconfigurableservice command to delete any unwanted JDBC provider
entries.

You can delete only custom-named configurable services; you cannot delete
IBM-defined configurable services.

The DatabaseRoute node has one input terminal and a minimum of four output
terminals: Match, keyNotFound, Default, and Failure. The keyNotFound, Default,
and Failure output terminals are static, therefore they are always present on the
node. The dynamic Match terminal is created automatically each time a new
DatabaseRoute node is selected and used in the Message Flow editor. This
behavior means that you do not always need to create this node's first dynamic
output terminal, which is the minimum number of terminals needed for this node
to operate. You can rename this dynamic terminal if "Match" is not an appropriate
name.

A message is copied to the Default terminal if none of the filter expressions are
true. If an exception occurs during filtering, the message is propagated to the

Chapter 14. Reference 4375

Failure terminal. If the database query that is applied to the node's data source
produces an empty result set (that is, no database rows are matched), a message is
copied to the keyNotFound terminal. The DatabaseRoute node can define one or
more dynamic output terminals. For all terminals, the associated filter expression is
applied to the input message and, if the result is true, a copy of the message is
routed to the specified terminal.

Each filter expression in the Filter table can be applied to:
v The input message
v The collection of named column values that are selected from a matched

database row
v Both the input message and the returned column values
v Neither

because expressions can be any valid general XPath 1.0 expression.

As with the Route node, expressions are applied in the order that they are given in
the filter table. If the result is true, a copy of the message is routed to its associated
dynamic output terminal. If you set the Distribution Mode property to First, the
application of all filter expressions might not occur.

The filter expression can fail if you compare a returned column value to a string
literal. How a column entry is stored (for example, a fixed-length character field)
determines what is returned for a specified column from the database. White space
padding occurs for fixed-length character fields that are retrieved from a database,
where the value that is stored is less than the specified column character storage
length. In this case, padding occurs to the right of the character string that is
returned, forming part of the string. You should remember this when comparing
such a column value to a string literal, because an equality comparison expression
might fail if the literal does not contain the exact same string, including padding
characters.

For example, in a table called Employee, a database column called LastName that
is defined as char(10) with the value 'Smith', is returned as 'Smith ', therefore the
filter expression must be:
$Employee_LastName = ’Smith ’

which resolves to true. The expression:
$Employee_LastName = ’Smith’

resolves to false.

Alternatively, the XPath expression can use the following function:
Function: string normalize-space(string?)

The normalize-space function returns the argument string with white space
normalized by stripping leading and trailing white space and replacing sequences
of white space characters with a single space. Therefore the expression is:
normalize-space($Employee_LastName) = ’Smith’

Making the JDBC provider service available to the DatabaseRoute node:
The DatabaseRoute node constructs its JDBC connections using connection details
that are stored in the broker's registry as a configurable service. JDBCProvider
configurable services are supplied for all supported databases. Use the
mqsichangeproperties command to modify the settings of the supplied service for

4376 WebSphere Message Broker Version 7.0.0.8

your chosen database, or create a new service using the
mqsicreateconfigurableservice command. See “Setting up a JDBC provider for
type 4 connections” on page 684 for further information and assistance on working
with JDBCProvider services. You must set up a different JDBCProvider service for
each database to which you want to connect.

Note: The maxConnectionPoolSize property does not apply to the JDBC
connections used by the DatabaseRetrieve or DatabaseRoute nodes.

When you have defined the service, set the Data Source Name property of this node
to the name of the JDBCProvider service; the attributes of the service are used to
establish connections for the DatabaseRoute node.

You must stop and restart the broker for your changes to take effect, unless you
intend to create a new execution group on the broker to which you will deploy the
message flow that contains this node.

Using the Data Source Explorer view to query data sources:

Use the Data Source Explorer view to discover the names of tables within a target
database, and the names of any columns in those tables. You must import database
definitions for your databases into the WebSphere Message Broker Toolkit before
you can view them in the Data Source Explorer view. See “Adding database
definitions to the WebSphere Message Broker Toolkit” on page 2278 for more
information.
1. Switch to the Broker Application Development perspective.
2. In the Data Source Explorer view, expand Connections. The database

connections are listed.
3. Expand a database connection to list the databases, then expand the

appropriate database.
4. Expand Schemas to list the schemas, then expand the appropriate schema.
5. Expand Tables to list all the tables.
6. Click a table to show its properties in the Properties view.
7. In the Properties view, click the Columns tab to view the column names.

Configuring the DatabaseRoute node:
When you have put an instance of the DatabaseRoute node into a message flow,
you can configure it. For more information, see “Configuring a message flow
node” on page 1503. The properties of the node are displayed in the Properties
view.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

Example:
Consider the following example, which uses a database table called Employee.

EmployeeNumber FamilyName FirstName Salary

00001 Smith John 20000

00002 Jones Harry 26000

00003 Doe Jane 31000

The following DatabaseRoute node properties are set as specified:

Chapter 14. Reference 4377

Table Name Column Name Operator Value Type Value

Employee FamilyName ASC None None

Employee Salary ASC None None

Employee EmployeeNumber = Element $Body/
EmployeeRecord/
EmployeeNumber

The DatabaseRoute node connects to the Employee database table and extracts the
value to compare from each incoming message. The XPath expression that is used
to navigate to the message body is $Body/EmployeeRecord/EmployeeNumber. The
SQL query is:
SELECT Employee.FamilyName, Employee.Salary
FROM Employee
WHERE EmployeeNumber=?
ORDER BY Employee.FamilyName ASC, Employee.Salary ASC

where ? is the value that is retrieved from the incoming message. This value is
located through the Value property in the third row of the query elements table,
which has a value type of Element.
v If the value at this location is 00001, information for John Smith is retrieved. The

first XPath expression, which is associated with the out_expr1 dynamic terminal,
is not met, therefore it does not meet its condition, and no message is
propagated to the Out terminal. The second XPath expression is met, so that a
copy of the input message is routed to the out_expr2 dynamic terminal.

v If the value at this location is 00002, information for Harry Jones is retrieved.
The first XPath expression, which is associated with the out_expr1 dynamic
terminal, is met, so that a copy of the input message is routed to the out_expr1
terminal. The second XPath expression is not processed because the
Distribution Mode property is set to First.

Terminals:
The DatabaseRoute node terminals are described in the following table.

Terminal Description

In The static input terminal that accepts a message for processing by the node.

Match A dynamic output terminal to which the original message can be routed when
processing completes successfully. You can create additional dynamic terminals; see
“Dynamic terminals.”

Default The static output terminal to which the message is routed if no filter expression
resolves to true.

keyNotFound The static output terminal to which the message is copied if no database rows are
matched.

Failure The static output terminal to which the message is routed if a failure is detected
during processing.

Dynamic terminals

The DatabaseRoute node can have further dynamic output terminals. Not all
dynamic output terminals that are created on a DatabaseRoute node need to be
mapped to an expression in the filter table. For unmapped dynamic output
terminals, messages are never propagated to them. Several expressions can map to
the same single dynamic output terminal. For more information about using
dynamic terminals, see “Using dynamic terminals” on page 1518.

4378 WebSphere Message Broker Version 7.0.0.8

Properties:
The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The DatabaseRoute node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type,
DatabaseRoute

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the
message flow.

The DatabaseRoute node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Data
Source
Name

Yes Yes DB2 The alias that is used to locate JDBCProvider service
definition that is stored in the broker registry. The alias
is used to locate and build the JDBC connection URL
for connection to a DBMS. The connection URL is
driver specific, but it includes the database name to
which to connect.

If connection to the database is by a login account and
password, the node also uses this property as a lookup
key, through which these values can be acquired from
an expected matching broker registry DSN entry.

If the DBMS is password protected, define the -n
parameter on the mqsisetdbparms command for the
JDBC unique security key before you deploy the
message flow that contains this DatabaseRoute node.

dataSource

Query
Elements

Yes No A table of query elements that are used to compose a
single SQL select statement. The table consists of five
columns and one or more rows. The columns are Table
Name, Column Name, Operator, Value Type, and Value.
These five properties describe a query element,
indicating a table qualified column value to be
retrieved from a database. In this case, the element
forms part of the SELECT and ORDER BY clauses in
the generated query. Otherwise, the query element acts
as a test condition that forms a predicate within the
WHERE clause in the generated query.

Table
Name

Yes No The name of a database table that forms part of the
SQL select statement, including the schema name; for
example, myschema.mytable.

Chapter 14. Reference 4379

Property M C Default Description mqsiapplybaroverride
command property

Column
Name

Yes No The name of the column in the database table to be
retrieved in the results set, as qualified by the value of
the Table Name property. This SELECT clause can refer
to this name as a column value to return from a query,
or to be referenced in a test condition in the WHERE
clause.

Operator Yes No A comparison operator to apply to a left operand (the
table column that is specified in the row's first two
columns) and optionally a right operand value. If you
specify an Ascending 'ASC' or Descending 'DESC'
operator value for this property, this row signifies the
declaration of a table qualified column that forms part
of the SELECT and ORDER BY clauses in the generated
query and optionally can be referenced in future rows
as a right operand value.

Value Type Yes No A value that is either set to None, or that indicates the
type of value that is expressed in the last column of
this row. If this property is not set to None, it refers to a
row that describes a test condition in the WHERE
clause of the SQL select statement.

Value Yes No A value that is either set to None, or that specifies one
of a specified set of property types as expressed by the
Value Type property. For example, if the Value Type
property is set to Element, the Value property collects
an XPath 1.0 general expression. The value that is
returned from the expression when it is applied to the
node's incoming message is used as the right operand
value to be compared through this predicate. The
compared value of the right operand must match the
type that is retrieved for the table column that is
compared against as the left operand. Complex
expressions are possible, where zero or more values can
be acquired from the incoming message, and
manipulated to form a single value for comparison. For
example, the sum of multiple field values in the
incoming message can be calculated by a general
expression that is presented for a value type of Element.

Distribution
mode

No Yes All This property specifies the routing behavior of this
node when an inbound message matches multiple
expressions. If the Distribution Mode property is set to
First, the message is propagated to the first matching
output terminal. If the Distribution Mode property is
set to All, the message is propagated to all matching
output terminals. If there is no matching output
terminal, the message is propagated to the Default
terminal.

The DatabaseRoute node Filter Expression Table properties are described in the
following table.

4380 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Filter table Yes No A table of filters (XPath 1.0 general expressions) and associated terminal
names that define any extra filtering that is performed by this node. The table
consists of two columns and one or more rows. You must have at least one
row in this table so that the node can perform routing logic. As with the
Route node, expressions are evaluated in the order in which they are
displayed in the table. To improve performance, put the XPath expressions
that are satisfied most frequently at the top of the filter table.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flow node terminals” on page 1034
A terminal is the point at which one node in a message flow is connected to
another node.
“XPath overview” on page 1507
The XML Path Language (XPath) is used to uniquely identify or address parts of
an XML document. An XPath expression can be used to search through an XML
document, and extract information from any part of the document, such as an
element or attribute (referred to as a node in XML) in it. XPath can be used alone
or in conjunction with XSLT.
Related tasks:
“Using dynamic terminals” on page 1518
You can add, rename, and remove dynamic terminals on a node in the Message
Flow editor.
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.
“Setting up a JDBC provider for type 4 connections” on page 684
Use the mqsicreateconfigurableservice or the mqsichangeproperties command to
configure a JDBC provider service.

Chapter 14. Reference 4381

“Securing a JDBC type 4 connection” on page 689
Set up security for the JDBC connection if required by the database provider.
Related reference:
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsideleteconfigurableservice command” on page 3866
Use the mqsideleteconfigurableservice command to delete a configurable service,
such as a JMS provider, JDBC provider, or FTP server, that you have created by
using the mqsicreateconfigurableservice command.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Route node” on page 4669
Use the Route node to direct messages that meet certain criteria down different
paths of a message flow.

W3C XPath 1.0 Specification

DataDelete node
Use the DataDelete node to interact with a database in the specified ODBC data
source.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4383

Purpose:
The DataDelete node is a specialized form of the Database node, and the
interaction is restricted to deleting one or more rows from a table within the
database. You specify what is deleted by defining mapping statements that use the
data from the input message to identify the action required.

You can set a property to control whether the update to the database is committed
immediately, or deferred until the message flow completes, at which time the
update is committed or rolled back, according to the overall completion status of
the message flow.

The DataDelete node is contained in the Database drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Consider a situation in which you are running a limited promotion. The goods are
available only for the period of the promotion, and each customer can order only

4382 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xpath

one item. When stocks of the sale goods run out, you want to remove their details
from the stock database. When a message containing an order for the last item
comes in, the DataDelete node is triggered to remove all the details about that item
from the database.

Terminals and properties:
When you have put an instance of the DataDelete node into a message flow, you
can configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view. (If you
double-click the DataDelete node, you open the New Message Map dialog box.)
All mandatory properties for which you must enter a value (those properties that
do not have a default value defined) are marked with an asterisk.

The terminals of the DataDelete node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the
computation. If you have selected Treat warnings as errors, the node propagates the message to
this terminal even if the processing completes successfully.

Out The output terminal that outputs the message following the execution of the database statement.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The DataDelete node Description properties are described in the following table.

Property M C Default Description

Node name No No DataDelete The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The DataDelete node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Data
source

No Yes The ODBC data source name of the database that
contains the tables to which you refer in the
mappings that are associated with this node
(identified by the Statement property).

This name identifies the appropriate database as it is
known on the system on which this message flow is
to run. The broker connects to this database with
user ID and password information that you have
specified on the mqsisetdbparms command.

dataSource

Chapter 14. Reference 4383

Property M C Default Description mqsiapplybaroverride
command property

Statement Yes No DataDelete The name of the mapping routine that contains the
statements that are to be executed against the
database or the message tree. The routine is unique
to this type of node. By default, the name that is
assigned to the mapping routine is identical to the
name of the mappings file in which the routine is
defined. The default name for the file is the name of
the message flow concatenated with the name of the
node when you include it in the message flow (for
example, MFlow1_DataDelete.msgmap for the first
DataDelete node in message flow MFlow1). You
cannot specify a value that includes spaces.

If you click Browse next to this entry field, a dialog
box is displayed that lists all the available mapping
routines that can be accessed by this node. Select the
routine that you want and click OK; the routine
name is set in Statement.

To work with the mapping routine that is associated
with this node, double-click the node, or right-click
the node and click Open Mappings. If the mapping
routine does not exist, it is created for you with the
default name in the default file. If the file exists, you
can also open file flow_name_node_name.msgmap in the
Broker Development view.

A mapping routine is specific to the type of node
with which it is associated; you cannot use a
mapping routine that you have developed for a
DataDelete node with a different node that uses
mappings (for example, a DataInsert node). If you
create a mapping routine, you cannot call it from
another mapping routine, although you can call it
from an ESQL routine.

For more information about working with mapping
files, and defining their content, see “Using message
mappings” on page 2228.

TransactionYes No Automatic The transaction mode for the node. The values are:
v Automatic (the default). The message flow, of

which the DataDelete node is a part, is committed
if it is successful; that is, the actions that you
define in the mappings are performed and the
message continues through the message flow. If
the message flow fails, it is rolled back. Therefore,
if you select Automatic, the ability to commit or
roll back the action of the DataDelete node on the
database depends on the success or failure of the
entire message flow.

v Commit. To commit any uncommitted actions
performed in this message flow on the database
connected to this node, irrespective of the success
or failure of the message flow as a whole, select
Commit. The changes to the database are
committed even if the message flow itself fails.

4384 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Treat
warnings
as errors

Yes No Cleared For database warning messages to be treated as
errors, and the node to propagate the output
message to the failure terminal, select Treat
warnings as errors. The check box is cleared by
default.

When you select the check box, the node handles all
positive return codes from the database as errors,
and generates exceptions in the same way as it does
for the negative, or more serious, errors.

If you do not select the check box, the node treats
warnings as typical return codes, and does not raise
an exception. The most significant warning raised is
not found, which can be handled as a typical return
code safely in most circumstances.

Throw
exception
on
database
error

Yes No Selected For the broker to generate an exception when a
database error is detected, select Throw exception on
database error. The check box is selected by default.

If you clear the check box, you must handle the error
in the message flow to ensure the integrity of the
broker and the database: the error is ignored if you
do not handle it through your own processing
because you have chosen not to run the default error
handling by the broker. For example, you can
connect the Failure terminal to an error processing
subroutine.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
Related tasks:
“Authorizing access to user databases” on page 662
When you have created a user database, you must authorize the broker and its
execution groups to access it.
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

Chapter 14. Reference 4385

“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DataInsert node”
Use the DataInsert node to interact with a database in the specified ODBC data
source.

DataInsert node
Use the DataInsert node to interact with a database in the specified ODBC data
source.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4387

Purpose:
The DataInsert node is a specialized form of the Database node, and the interaction
is restricted to inserting one or more rows into a table within the database. You
specify what is inserted by defining mapping statements that use the data from the
input message to define the action required.

You can set a property to control whether the update to the database is committed
immediately, or deferred until the message flow completes, at which time the
update is committed, or rolled back according to the overall completion status of
the message flow.

The DataInsert node is contained in the Database drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Consider a situation in which your company has developed a new product. The
details about the product have been sent from your engineering department. Your
message flow must extract details from the message and add them as a new row in
your stock database.

4386 WebSphere Message Broker Version 7.0.0.8

Terminals and properties:
When you have put an instance of the DataInsert node into a message flow, you
can configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view. (If you
double-click the DataInsert node, you open the New Message Map dialog box.) All
mandatory properties for which you must enter a value (those properties that do
not have a default value defined) are marked with an asterisk.

The terminals of the DataInsert node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the
computation. If you have selected Treat warnings as errors, the node propagates the message to this
terminal even if the processing completes successfully.

Out The output terminal that outputs the message following the execution of the database statement.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The DataInsert node Description properties are described in the following table.

Property M C Default Description

Node name No No DataInsert The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The DataInsert node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Data
source

No Yes The ODBC data source name of the database that
contains the tables to which you refer in the mappings
that are associated with this node (identified by the
Statement property).

This name identifies the appropriate database as it is
known on the system on which this message flow is to
run. The broker connects to this database with user ID
and password information that you have specified on
the mqsisetdbparms command.

dataSource

Chapter 14. Reference 4387

Property M C Default Description mqsiapplybaroverride
command property

Statement Yes No DataInsert The name of the mapping routine that contains the
statements that are to be executed against the database
or the message tree. The routine is unique to this type
of node. By default, the name that is assigned to the
mapping routine is identical to the name of the
mappings file in which the routine is defined. The
default name for the file is the name of the message
flow concatenated with the name of the node when you
include it in the message flow (for example,
MFlow1_DataInsert.msgmap for the first DataInsert node
in message flow MFlow1). You cannot specify a value
that includes spaces.

If you click Browse next to this entry field, a dialog box
is displayed that lists all the available mapping routines
that can be accessed by this node. Select the routine that
you want and click OK; the routine name is set in
Statement.

To work with the mapping routine that is associated
with this node, double-click the node, or right-click the
node and select Open Mappings. If the mapping
routine does not exist, it is created for you with the
default name in the default file. If the file exists, you can
also open file flow_name_node_name.msgmap in the Broker
Development view.

A mapping routine is specific to the type of node with
which it is associated; you cannot use a mapping
routine that you have developed for a DataInsert node
with a different node that uses mappings (for example,
a DataDelete node). If you create a mapping routine,
you cannot call it from another mapping routine,
although you can call it from an ESQL routine.

For more information about working with mapping
files, and defining their content, see “Using message
mappings” on page 2228.

Transaction Yes No Automatic The transaction mode for the node. The values are:
v Automatic (the default). The message flow, of which

the DataInsert node is a part, is committed if it is
successful. That is, the actions that you define in the
mappings are taken and the message continues
through the message flow. If the message flow fails, it
is rolled back. Therefore if you select Automatic, the
ability to commit or roll back the action of the
DataInsert node on the database depends on the
success or failure of the entire message flow.

v Commit. To commit all uncommitted actions that are
taken in this message flow on the database that is
connected to this node, irrespective of the success or
failure of the message flow as a whole, select
Commit. The changes to the database are committed
even if the message flow itself fails.

4388 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Treat
warnings
as errors

Yes No Cleared For database warning messages to be treated as errors,
and the node to propagate the output message to the
failure terminal, select Treat warnings as errors. The
check box is cleared by default.

When you select the check box, the node handles all
positive return codes from the database as errors and
generates exceptions in the same way as it does for the
negative, or more serious, errors.

If you do not select the check box, the node treats
warnings as typical return codes, and does not raise an
exception. The most significant warning raised is not
found, which can be handled as a typical return code
safely in most circumstances.

Throw
exception
on
database
error

Yes No Selected For the broker to generate an exception when a database
error is detected, select Throw exception on database
error. The check box is selected by default.

If you clear the check box, you must handle the error in
the message flow to ensure the integrity of the broker
and the database. The error is ignored if you do not
handle it through your own processing because you
have chosen not to run the default error handling by the
broker. For example, you can connect the failure
terminal to an error processing subroutine.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
Related tasks:
“Authorizing access to user databases” on page 662
When you have created a user database, you must authorize the broker and its
execution groups to access it.
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

Chapter 14. Reference 4389

“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DataDelete node” on page 4382
Use the DataDelete node to interact with a database in the specified ODBC data
source.

DataUpdate node
Use the DataUpdate node to interact with a database in the specified ODBC data
source.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4391

Purpose:
The DataUpdate node is a specialized form of the Database node, and the
interaction is restricted to updating one or more rows in a table within the
database. You define what is updated by defining mapping statements that use the
data from the input message to identify the action required.

You can set a property to control whether the update to the database is committed
immediately, or deferred until the message flow completes, at which time the
update is committed or rolled back according to the overall completion status of
the message flow.

The DataUpdate node is contained in the Database drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Consider a scenario in which you have added the details of a new product, a
keyboard, to your stock database. Now you have received a message from the
Goods In department that indicates that 500 keyboards have been delivered to

4390 WebSphere Message Broker Version 7.0.0.8

your premises. You can use the DataUpdate node to change the quantity of
keyboards in your database from zero to 500.

Terminals and properties:
When you have put an instance of the DataUpdate node into a message flow, you
can configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view. (If you
double-click the DataUpdate node, you open the New Message Map dialog box.)
All mandatory properties for which you must enter a value (those properties that
do not have a default value defined) are marked with an asterisk.

The terminals of the DataUpdate node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the
computation. If you have selected Treat warnings as errors, the node propagates the message to this
terminal even if the processing completes successfully.

Out The output terminal that outputs the message following the execution of the database statement.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The DataUpdate node Description properties are described in the following table.

Property M C Default Description

Node name No No DataUpdate The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The DataUpdate node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Data
source

No Yes The ODBC data source name of the database that
contains the tables to which you refer in the mappings
that are associated with this node (identified by the
Statement property).

This name identifies the appropriate database as it is
known on the system on which this message flow is to
run. The broker connects to this database with user ID
and password information that you have specified on
the mqsisetdbparms command.

dataSource

Chapter 14. Reference 4391

Property M C Default Description mqsiapplybaroverride
command property

Statement Yes No DataUpdate The name of the mapping routine that contains the
statements that are to be executed against the database
or the message tree. The routine is unique to this type
of node. By default, the name that is assigned to the
mapping routine is identical to the name of the
mappings file in which the routine is defined. The
default name for the file is the name of the message
flow concatenated with the name of the node when
you include it in the message flow (for example,
MFlow1_DataUpdate.msgmap for the first DataUpdate
node in message flow MFlow1). You cannot specify a
value that includes spaces.

If you click Browse next to this entry field, a dialog
box is displayed that lists all available mapping
routines that can be accessed by this node. Select the
routine that you want and click OK; the routine name
is set in Statement.

To work with the mapping routine that is associated
with this node, double-click the node, or right-click the
node and click Open Mappings. If the mapping
routine does not exist, it is created for you with the
default name in the default file. If the file exists, you
can also open file flow_name_node_name.msgmap in the
Broker Development view.

A mapping routine is specific to the type of node with
which it is associated; you cannot use a mapping
routine that you have developed for a DataUpdate
node with a different node that uses mappings (for
example, a DataInsert node). If you create a mapping
routine, you cannot call it from another mapping
routine, although you can call it from an ESQL routine.

For more information about working with mapping
files, and defining their content, see “Using message
mappings” on page 2228.

Transaction Yes No Automatic The transaction mode for the node. The values are:
v Automatic (the default). The message flow, of which

the DataUpdate node is a part, is committed if it is
successful. That is, the actions that you define in the
mappings are performed and the message continues
through the message flow. If the message flow fails,
it is rolled back. Therefore, if you choose Automatic,
the ability to commit or roll back the action of the
DataUpdate node on the database depends on the
success or failure of the entire message flow.

v Commit. To commit all uncommitted actions that are
performed in this message flow on the database that
is connected to this node, irrespective of the success
or failure of the message flow as a whole, select
Commit. The changes to the database are committed
even if the message flow itself fails.

4392 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Treat
warnings
as errors

Yes No Cleared For database warning messages to be treated as errors,
and the node to propagate the output message to the
Failure terminal, select Treat warnings as errors. The
check box is cleared by default.

When you select the check box, the node handles all
positive return codes from the database as errors, and
generates exceptions in the same way as it does for the
negative, or more serious, errors.

If you do not select the check box, the node treats
warnings as normal return codes, and does not raise
an exception. The most significant warning raised is
not found, which can be handled safely as a normal
return code in most circumstances.

Throw
exception
on
database
error

Yes No Selected For the broker to generate an exception when a
database error is detected, select Throw exception on
database error. The check box is selected by default.

If you clear the check box, you must handle the error
in the message flow to ensure the integrity of the
broker and the database: the error is ignored if you do
not handle it through your own processing, because
you have chosen not to run the default error handling
by the broker. For example, you can connect the
Failure terminal to an error processing subroutine.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
Related tasks:
“Authorizing access to user databases” on page 662
When you have created a user database, you must authorize the broker and its
execution groups to access it.
“Accessing databases from message flows” on page 2112
Create and configure message flows to access user databases.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

Chapter 14. Reference 4393

“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DataInsert node” on page 4386
Use the DataInsert node to interact with a database in the specified ODBC data
source.

EmailInput node
Use the EmailInput node to retrieve an email, with or without attachments, from
an email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).

This topic contains the following sections:
v “Purpose”
v “Using the EmailInput node in a message flow” on page 4395
v “Configuring the EmailInput node” on page 4396
v “Terminals and properties” on page 4396

Purpose:
The EmailInput node receives an email, with or without attachments, from an
email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP). The body of the email message, and any attachments, are
propagated in the Multipurpose Internet Mail Extensions (MIME) domain. All
other information relating to the email is stored in the Root.EmailInputHeader
MIME logical tree. The fields in this structure are described in the following table:

Element Location Element Data Type Description

Root.EmailInputHeader.ToCHARACTER A comma-separated list of email addresses.

Root.EmailInputHeader.CcCHARACTER A comma-separated list of email addresses.

Root.EmailInputHeader.FromCHARACTER A comma-separated list of email addresses.

Root.EmailInputHeader.ReplyToCHARACTER A comma-separated list of email addresses.

Root.EmailInputHeader.SubjectCHARACTER The summary of the email content or the subject of the email.

Root.EmailInputHeader.SizeINTEGER The size of the email, including any attachments.

Root.EmailInputHeader.SentDateCHARACTER The sent delivery date of the email.

This structure is propagated with each message written to the Out terminal of the
EmailInput node. For more information about the MIME logical tree, see “MIME
parser and domain” on page 1117.

4394 WebSphere Message Broker Version 7.0.0.8

Using the EmailInput node in a message flow:
To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mqsichangebroker command. For more information,
see “mqsichangebroker command” on page 3723.

You can configure the EmailInput node by using the node properties in the
WebSphere Message Broker Toolkit. One possible use of the EmailInput node is to
poll an email server for email messages at regular intervals, and to retrieve an
email message when an email is available. The message flow receives the email
from the email server as a MIME message.

In the following example message flow, the EmailInput node then passes the email
message, which is associated with the MIME parser, onto a Filter node. The Filter
node processes the email and directs it either to an MQHeader node or to a
FileOutput node based on whether the email has an attachment or not.

If the email message does not contain an attachment, the Filter node sends the
email to an MQHeader node for MQ Message Descriptor (MQMD) customization.
The MQHeader node adds a WebSphere MQ header to the message tree and
passes the message onto the MQOutput node. The MQOutput node serializes the
message body, for example; the text contents of the email, and places the body of
the email on a WebSphere MQ queue for further processing.

If the email message does contain an attachment, the Filter node sends the email
onto a FileOutput node. The FileOutput node then saves the attachment as a file
named email_attachment.dat to a hard disk drive that you specify and, in this
example, the text content of the email is discarded. You can achieve this example
by creating the following message flow:

Email Input Filter

MQ Header MQ Output

File Output

The EmailInput node is contained in the Email drawer of the message flow node
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

View the following sample to see how to use the EmailInput node:
v Email

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Chapter 14. Reference 4395

Using configurable services for the EmailInput node

You can configure the EmailInput node to get the email server URL and security
identity information from a configurable service. For details about creating,
changing, reporting, and deleting the configurable services, see “Changing
connection information for the EmailInput node” on page 1805.

Using a security identity to authenticate with an email server

You can use the mqsisetdbparms command to set a user ID and password security
identity object for the EmailInput node or EmailServer configurable service to use
for accessing the email server. For detailed information about how to configure
email server security identity support, see “mqsisetdbparms command” on page
3954.

Configuring the EmailInput node:
When you have put an instance of the EmailInput node into a message flow, you
can configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

To configure the EmailInput node by using the node properties in the WebSphere
Message Broker Toolkit to retrieve an email, with or without attachments, see
“Receiving an email” on page 1801.

Terminals and properties:
The EmailInput node terminals are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an EmailInput node failure is detected when
a message is propagated, or an EmailInput node fails to access the email server. Connect the Failure
terminal of this node to another node in the message flow to process errors.

Out The output terminal to which the message is routed if it has been propagated successfully. Connect
the Out terminal of this node to another node in the message flow to process the message further,
or send the message to an additional destination.

Catch The output terminal to which the message is routed if an exception is thrown downstream and
caught by this node. Exceptions are caught only if this terminal is attached.

The following tables describe the EmailInput node properties.

The table column headed M indicates whether the property is mandatory. For
example, the property is marked with an asterisk meaning that you must enter a
value if no default is defined.

The column headed C indicates whether the property is configurable. For example,
you can change the value when you add the message flow to the BAR file to
deploy it.

The EmailInput node Description properties are described in the following table.

Property M C Default Description

Node name No No Email Input The name of the node.

4396 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Short
description

No No None A brief description of the node.

Long
description

No No None Text that describes the purpose of the node in the
message flow.

The EmailInput node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Email
server

Yes Yes None The Email server property is defined either as a configurable
service name, for example: myEmailConfigurableServiceName,
or as a URL. A URL allows you to specify a protocol, host
name, and port number, which is the minimum information
you need to access the email server.

The URL must be made up of the following structure:

protocol://hostname:port

Where:

v protocol can be pop3 or imap.

v hostname is the Internet Protocol version 4 (IPv4) TCP/IP
address or DNS-resolvable host name of the email host.

v port is the port number that the email server is listening
on for connections over POP3 or IMAP. You can enter an
integer in the range 1- 65535.

For example: pop3://myemailserver.com:12345 or
imap://myemailserver.com:56789.

There is no default value for this property, however this
property is mandatory, and therefore must be configured
with a configurable service name or a URL.

You can obtain the hostname and port values from the email
server or email server administrator.

emailServer

The EmailInput node Polling properties are described in the following table.

PropertyM C Default Description mqsiapplybaroverride command property

Polling
interval
(in
seconds)

Yes Yes 5 The interval at which the EmailInput node
polls the email server for new emails.

waitInterval

The EmailInput node Security properties are described in the following table.

Chapter 14. Reference 4397

PropertyM C Default Description mqsiapplybaroverride command property

Security
identity

No Yes None The name of the security identity object
that is created and configured by the
mqsisetdbparms command, which contains
the user ID and password to be used by the
broker to authenticate with the email
server. Use the mqsisetdbparms command
to set the security identity user ID and
password to be accessed by the broker.

The default value for this property is None,
which signifies that the user ID and
password are not passed to the email
server.

For more information about email server
security identity support, see
“mqsisetdbparms command” on page 3954.

securityIdentity

The EmailInput node Retry properties are described in the following table. For
more information about configuring the EmailInput node Retry properties, see
“Receiving an email” on page 1801.

PropertyM C Default Description mqsiapplybaroverride command property

Retry
mechanism

Yes No Short
and
Long
Retry

How the EmailInput node handles a
message flow failure. Valid values are
Failure, Short Retry, or Short and Long
Retry.

Retry
threshold

Yes Yes 0 The number of times to try the message
flow transaction again when the Retry
mechanism property value is set to Short
Retry.

retryThreshold

Short
retry
interval
(in
seconds)

No Yes 0 The interval, in seconds, between each retry
if the Retry threshold property value is
not set to zero.

shortRetryInterval

Long
retry
interval
(in
seconds)

No Yes 300 The interval, in seconds, between each
retry, if the Retry mechanism property value
is Short and Long Retry and the retry
threshold has been exhausted.

longRetryInterval

Action
on
failing
email

Yes No Delete
Email

The action that the EmailInput node takes
with the input data source after all attempts
to process the contents fail.

emailFailureAction

The EmailInput node Transactions properties are described in the following table.

PropertyM C Default Description mqsiapplybaroverride command property

Transaction
mode

No Yes No The transaction mode on the EmailInput
node determines if the rest of the nodes in
the message flow are run under sync point.
Valid values are Yes or No.

4398 WebSphere Message Broker Version 7.0.0.8

The EmailInput node Instances properties are described in the following table.

PropertyM C Default Description mqsiapplybaroverride command property

Additional
instances
pool

No Yes Use
Pool
Associated
with
Message
Flow

The pool from which additional instances
are obtained.

If you select the property value Use Pool
Associated with Message Flow, additional
instances are obtained from the message
flow pool.

If you select the property value Use Pool
Associated with Node, additional instances
are allocated from the additional instances
of the node, based on the number specified
in the Additional instances property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the
EmailInput node can start if the Additional
instances pool property is set to the value
Use Pool Associated with Node.

additionalInstances

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
“MIME parser and domain” on page 1117
Use the MIME domain if your messages use the MIME standard for multipart
messages.
“Manipulating messages in the MIME domain” on page 2612
A MIME message does not need to be received over a particular transport. For
example, a message can be received over HTTP by using an HTTPInput node, or
over WebSphere MQ by using an MQInput node. The MIME parser is used to
process a message if the message domain is set to MIME in the input node
properties, or if you are using WebSphere MQ, and the MQRFH2 header has a
message domain of MIME.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:

Chapter 14. Reference 4399

“Processing email messages” on page 1786
You can configure the EmailOutput node to deliver an email from a message flow
to an email server that supports Simple Mail Transfer Protocol (SMTP). You can
also configure the EmailInput node to retrieve an email from an email server that
supports Post Office Protocol 3 (POP3) or Internet Message Access Protocol
(IMAP).
“Receiving emails” on page 1799
You can configure the EmailInput node to receive an email, with or without an
attachment, from an email server that supports Post Office Protocol 3 (POP3) or
Internet Message Access Protocol (IMAP).
“Receiving an email” on page 1801
You can receive an email, with or without attachments, from an email server that
supports Post Office Protocol 3 (POP3) or Internet Message Access Protocol
(IMAP).
“Processing responses from an EmailInput node” on page 1804
The EmailInput node can return different response messages that indicate the
success or failure of receiving an email, with or without attachments, from an
email server that supports Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP).
“Changing connection information for the EmailInput node” on page 1805
You can create a configurable service that the EmailInput node or message flow
refers to at run time for email server connection information, instead of defining
the connection properties on the node or the message flow. The advantage being
that you can change the host name and security identity values without needing to
redeploy your message flow.
“Resolving problems when you use Email nodes” on page 3398
Advice for dealing with common problems that can arise when you develop
message flows that contain Email nodes.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

EmailOutput node
Use the EmailOutput node to send email messages to one or more recipients.

This topic contains the following sections:
v “Purpose”
v “Configuring the EmailOutput node” on page 4401
v “Terminals and properties” on page 4404

Purpose:
The EmailOutput node delivers an email message from a message flow to an
SMTP server that you specify.

You can configure the EmailOutput node by using the node properties in the
WebSphere Message Broker Toolkit, or dynamically from the local environment
and email output header (EmailOutputHeader) that are associated with the
message (for more information, see “Producing dynamic email messages” on page
1791). You can configure the EmailOutput node to produce an e-mail with a single
attachment. When you produce email messages dynamically, you can specify
multiple attachments.

4400 WebSphere Message Broker Version 7.0.0.8

The EmailOutput node is contained in the Email drawer of the message flow node
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Look at the following sample to see how to use this node:
v Email

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the EmailOutput node:
When you have put an instance of the EmailOutput node into a message flow, you
can configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

The following is a description of the four levels of configuration of the
EmailOutput node:
v Option 1: Configure the EmailOutput node by using the node properties in the

WebSphere Message Broker Toolkit to send an email with a statically-defined
subject and text to a statically-defined list of recipients. The same email is sent to
the same recipients and it has no attachments. This method is useful when you
want to test the EmailOutput node, or when notification alone is sufficient. For
more details, see “Sending an email” on page 1789.

v Option 2: This option is the same as Option 1 but with the inclusion of an
attachment. This option causes the email message to be constructed as a MIME
message. The subject, text, and list of recipients remains static, but the content of
the attachment is sought dynamically from the message that is passed to the
EmailOutput node at run time. The location of the attachment in the message is
defined statically. For more details, see “Sending an email with an attachment”
on page 1790.

v Option 3: This option allows for those properties in Options 1 and 2 to be
optional, and to be overridden at run time by values that are specified in the
local environment, the email output header (EmailOutputHeader), or the body
of the message. This option allows a dynamic email message to be produced
where the SMTP server, list of recipients, subject, text, and multiple attachments
are all determined at run time. This option requires previous nodes in the
message flow to construct these overrides. Where a text value is not specified in
the node properties for the main body of the email, the body of the message that
is passed to the EmailOutput node is used. However, content that you set in the
Email message text property overrides dynamically-generated text in the
message body. For more details, see “Producing dynamic email messages” on
page 1791.

v Option 4: This option passes a MIME message to the EmailOutput node. The
EmailOutput node uses the MIME parser to write the MIME message to a bit
stream. This message is then sent to the list of recipients in the SMTP header.

Chapter 14. Reference 4401

Local environment overrides are not taken into consideration when a MIME
message is passed. For more details, see “Sending a MIME message” on page
1795.

Email output header

The email output header (EmailOutputHeader) is a child of root. Values that you
specify in this header override equivalent properties that you set on the node. Use
the SMTP output header to specify any of the email attributes, such as its
recipients.

Location Description

Root.EmailOutputHeader.To A comma separated list of email addresses.

Root.EmailOutputHeader.Cc A comma separated list of email addresses.

Root.EmailOutputHeader.Bcc A comma separated list of email addresses.

Root.EmailOutputHeader.From A comma separated list of email addresses.

Root.EmailOutputHeader.Reply-To A comma separated list of email addresses.

Root.EmailOutputHeader.Subject The subject of the email.

Local environment

Use the local environment to specify overrides to the SMTP server connection
information and attachments.

Local environment Description

Destination.Email.SMTPServer The Server:Port of the SMTP server. Port is optional; if you do not
specify it, the default value is 25.

Destination.Email.SecurityIdentity The security identity for authentication with the SMTP server, which
can be the name of the userid and password pair that is defined
using the mqsisetdbparms command, or it can reference an external
resource that has a securityIdentity attribute that references a userid
and password that are defined using the mqsisetdbparms command.
In both cases, the value is appended after the string “smtp::”. For
example, if you use the mqsisetdbparms command to create a userid
and password of smtp::myUseridPassword, the securityIdentity that is
specified on the node, or indirectly in an external resource, is
myUseridPassword.

Destination.Email.BodyContentType Identifies that the body of the email message contains HTML rather
than plain text. You can set this property to text/plain, text/html, or
text/xml; text/plain is the default value.

To set the content type for the body of the message, use the
following notation.

SET OutputLocalEnvironment.Destination.Email.BodyContentType =
"text/html"

To additionally set the character set (charset) in which the message
body is sent, use the following notation.

SET OutputLocalEnvironment.Destination.Email.BodyContentType =
"text/html; charset=utf-8"

This example sends a text/HTML email with a charset of UTF-8.

Destination.Email.MultiPartContentType The type of multipart, including related, mixed, and alternative. You
can set any value here.

4402 WebSphere Message Broker Version 7.0.0.8

Local environment Description

Destination.Email.Attachment.Content Either the attachment (BLOB/text), or an XPath or ESQL expression
that references an element; for example, an element in the message
tree or local environment. The value of the referenced element is
taken as the content of the attachment.

v If the element is a BLOB, it is an attachment.

v If the element is text, check to see if it can be resolved to another
element in the message tree or local environment. If it can be
resolved, use that element. If it cannot be resolved, add this
element as the attachment.

Destination.Email.Attachment.ContentType The type of attachment (also known as Internet Media Type),
including text/plain, text/html, and text/xml. You can set any value
here.

Destination.Email.Attachment.ContentName The name of the attachment.

Destination.Email.Attachment.ContentEncoding The encoding of the attachment: 7bit, base64, or quoted-printable.

v 7bit is the default value that is used for ASCII text.

v Base64 is used for non ASCII, whether non English or binary
data. This format can be difficult to read.

v Quoted-printable is an alternative to Base64, and is appropriate
when the majority of the data is ASCII with some non-ASCII
parts. This format is more readable; it provides a more compact
encoding because the ASCII parts are not encoded.

Broker properties

You can also configure the SMTP server, port number, and security identity as a
broker external resource property. To do this, use an alias that is specified in the
SMTP Server and Port property on the EmailOutput node. The security identity
references a user ID and password pair that is defined on the broker using the
mqsisetdbparms command. Use the mqsicreateconfigurableservice command to
create an SMTP broker external resource for the alias that is specified on the node.
Then use the mqsichangeproperties command to create an SMTPServer property
with the value in the form of server:port. The port value is optional; if you do not
specify it, the default value is 25. You can also use the mqsichangeproperties
command to create an SMTPSecurityIdentity property with a value that is the
name of a security identity that can be resolved at run time to a user ID and
password for authentication with the SMTP server. For example:
mqsicreateconfigurableservice MY_BROKER –c SMTP –o SMTP_MyAlias

followed by:
mqsichangeproperties MY_BROKER –c SMTP –o SMTP_MyAlias –n serverName –v smtp.hursley.ibm.com:25

These commands override the SMTP server and port values that are specified on
any nodes that also specify an alias of SMTP_MyAlias. If the local environment
contains any overrides, they take preference over the broker external resource
properties. See also the following example:
mqsichangeproperties MY_BROKER –c SMTP –o SMTP_MyAlias –n securityIdentity –v mySecurityIdentity

You must also use the mqsisetdbparms command to define the security identity at
the broker run time.

Connecting the terminals:

Chapter 14. Reference 4403

Connect the In terminal to the node from which outbound messages bound are
routed.

Connect the Out or Failure terminal of this node to another node in this message
flow to process the message further, process errors, or send the message to an
additional destination.

If you connect one of these output terminals to another node in the message flow,
the local environment that is associated with the message is enhanced with the
following information for each destination to which the message has been put by
this node:

Location Description

WrittenDestination.Email.smtpServer The Server:Port of the SMTP server.

WrittenDestination.Email.messageId The ID of the email sent message.

These values are written in WrittenDestination within the local environment tree
structure.

If you do not connect either terminal, the local environment tree is unchanged.

Terminals and properties:
The EmailOutput node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when a message is
propagated. Connect the Failure terminal of this node to another node in the message flow to
process errors.

Out The output terminal to which the message is routed if it has been propagated successfully. Connect
the Out terminal of this node to another node in the message flow to process the message further or
send the message to an additional destination.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file at deployment).

The EmailOutput node Description properties are described in the following table.

Property M C Default Description

Node name No No The node type,
EmailOutput

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

Use the EmailOutput node Basic properties are described in the following table.

4404 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

SMTP
Server
and Port

No Yes This property defines the SMTP server and port to which
emails are sent from this node, and is in the format
server:port; for example: my.smtp.server:25. The port value is
optional, but if you do not specify a port value, the default
value is 25.

You can specify an alias value for this property. If the alias
exists at run time, the specified values are used. If the alias
does not exist at run time, the broker assumes the value to
be a valid SMTP host.

smtpServer

The EmailOutput node Email properties are described in the following table.

Property M C Default Description

To Addresses No No The main recipient or recipients of the email. This property can include a
single email address or a comma-separated list of email addresses.

Cc Addresses No No The carbon copy recipient or recipients of the email. This property can
include a single email address or a comma-separated list of email
addresses.

Bcc Addresses No No The blind carbon copy recipient or recipients of the email. This property
can include a single email address or a comma-separated list of email
addresses.

From Address No No The email address of the sender of the email.

Reply-To
Address

No No The email address to which recipients of the email reply.

Subject of
email

No No The subject of the email.

Email message
text

No No The main text of the email. Use this property to provide a static main
body of an email.

If you use this property, it overrides the content that is provided in the
body of the message tree that is passed to the input node. If you do not
specify a value for this property, the text of the email is the body of the
message tree that is passed to the EmailOutput node.

Body Content
Type

No No text/
plain

You can use this property to force the content type for the body of the
email message. Valid values are:
v None
v text/plain
v text/html
v text/xml

The EmailOutput node Security properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Security
Identity

No Yes A security identifier to retrieve a user ID and password that
are configured at the broker run time.

securityIdentity

The EmailOutput node Attachment properties are described in the following table.

Chapter 14. Reference 4405

Property M C Default Description

Attachment
Content

No No An XPath or ESQL expression that references an element; for example, an
element in the message tree, or local environment. The content of the
attachment is the value of the element that is referenced.

Attachment
Content Name

No No The name of the attachment that is seen by the recipient of the email.
This property is optional. If you do not specify a name, a default name is
assigned.

Attachment
Content Type

No No text/
plain

The type of the attachment. This property is optional, even if you have
specified an attachment. Valid values are:
v text/plain is simple text.
v text/html is HTML.
v text/xml is XML.
v application/octet-stream is the default type for non-text and HTML

(binary data).

Attachment
Content
Encoding

No No 7bit The encoding of the attachment. This property is optional. If you do not
specify a value, a default encoding is assigned. Valid values are:
v 7bit is the default value for ASCII text.
v base64 is used for non-ASCII data, whether it is non-English or binary

data.
v quoted-printable is a more readable-alternative to base64. Use

quoted-printable when the majority of the data is ASCII text with some
non-ASCII parts. This option provides a more compact encoding
because the ASCII parts are not encoded.

Multipart
Content Type

No No Mixed The type of multipart. Valid values are:
v Mixed: each MIME body part is independent of the others.
v Alternative: Each MIME body part is an alternative to the others.
v Related: All MIME body parts should be considered in the aggregate

only.

The Validation properties of the EmailOutput node are described in the following
table.

See “Validation properties” on page 4169 for a full description of these properties.

Property M C Default Description mqsiapplybaroverride
command property

Validate Yes Yes Inherit This property controls whether validation takes place.
Valid values are None, Content and Value, Content, and
Inherit.

validateMaster

Failure
action

Yes No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are User
Trace, Local Error Log, Exception, and Exception
List.

The Monitoring properties of the node are described in the following table.

4406 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“MIME parser and domain” on page 1117
Use the MIME domain if your messages use the MIME standard for multipart
messages.
Related tasks:
“Sending an email” on page 1789
You can send an email with a static subject and static text to a static list of
recipients.
“Sending an email with an attachment” on page 1790
You can send an email with a fixed subject and fixed text, and an attachment, to a
static list of recipients.
“Producing dynamic email messages” on page 1791
You can produce an email where the SMTP server, list of recipients, subject, text,
and multiple attachments are all determined at run time.
“Sending a MIME message” on page 1795
You can send an email that is constructed from a MIME message.
“Changing connection information for the EmailOutput node” on page 1798
You can configure the SMTP server, port number, and security identity for the
EmailOutput node as a broker external resource.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.

EndpointLookup node
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the

Chapter 14. Reference 4407

node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.

This topic contains the following sections:
v “Purpose”
v “EndpointLookup node processing”
v “Sample” on page 4409
v “LocalEnvironment overrides” on page 4409
v “Terminals and properties” on page 4409

Purpose:
The EndpointLookup node retrieves service endpoint information related to a
WSRR service described by WSDL. A WSDL definition defines a service in terms of
an interface (referred to as a portType) made available at a specified port. The
WSDL port defines the endpoint information required to access the service.
Endpoints are retrieved according to search criteria defined by node properties,
optionally supplemented or overridden by local environment definitions at run
time. See “LocalEnvironment overrides” on page 4409 for more details.

The retrieved data is placed in the local environment tree, making it available to
subsequent nodes. The input message received by the node is propagated to the
output terminal unchanged. In addition, the EndpointLookup node can
automatically set up the destination URL to be used by a subsequent
SOAPRequest, SOAPAsyncRequest or HTTPRequest node, depending on the value
of the Match Policy property, see “EndpointLookup node processing.” This is done
by the node setting the local environment overrides that are used by those nodes.

EndpointLookup node processing:
The EndpointLookup node is contained in the Web services drawer of the message
flow node palette, and is represented in the WebSphere Message Broker Toolkit by
the following icon:

When the EndpointLookup node receives a message the following steps occur in
sequence.
1. The EndpointLookup node retrieves the service data from the WSRR by using

the specified search criteria.
2. If one or more matches are found, the EndpointLookup node adds a

representation of those endpoints to the local environment tree.
v If Match Policy is set to One, a single entity is returned by WSRR and added

to the local environment tree. A different entity might be returned each time
the query is issued. In addition, the retrieved endpoint value is set as the
local environment override for the destination URL used by SOAPRequest,
SOAPAsyncRequest, or HTTPRequest nodes. If the registry contains more
than one entity that matches the specified search criteria it is not possible to
determine which one is returned by WSRR.

v If Match Policy is set to All, all matching entities are added to the local
environment tree. The order of the entities is determined by WSRR and
might vary between queries. The destination URL used by SOAPRequest,
SOAPAsyncRequest, or HTTPRequest nodes is not set. Instead, you must add

4408 WebSphere Message Broker Version 7.0.0.8

a compute node to your message flow to select the required address and to
set up the local environment settings required by those request nodes.

The input message is propagated unchanged to the Out terminal. The local
environment tree is propagated to the Out terminal, where it is available for
further processing by transformation nodes. See “EndpointLookup node
output” on page 1894 for details of the local environment output tree.

3. If no matches are found, the EndpointLookup node propagates the input
message to the NoMatch terminal.

4. If a processing error occurs, for example if the WSRR server configured on the
DefaultWSRR configurable service object cannot be connected to, or the
connection times out, the EndpointLookup node propagates the input message
unchanged to the Failure terminal. The ExceptionList is populated with details
of the error.

Sample:
Look at the following sample to see how to use this node:
v WebSphere Service Registry and Repository Connectivity

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

LocalEnvironment overrides:
You can override the RegistryLookup node properties by using local environment
settings. See “Dynamically defining the search criteria” on page 1891.

Terminals and properties:
When you have put an instance of the EndpointLookup node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view.

The EndpointLookup node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if an error occurs within the node's processing.

Out The output terminal to which the unmodified input message and updated local environment
containing the matched registry data is sent.

NoMatch The terminal to which the input message is sent if no matching entity is found based on the specified
search criteria.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The EndpointLookup node Description properties are described in the following
table.

Chapter 14. Reference 4409

Property M C Default Description

Node name No No The node type:
EndpointLookup

The name of the node.

Short
description

No No None A brief description of the node.

Long
description

No No None Text that describes the purpose of the node in the message
flow.

The EndpointLookup node Basic properties are described in the following table.

Property M C DefaultDescription mqsiapplybaroverride
command property

PortType
Name

No Yes None Name tuple that uniquely identifies a WebSphere Service
Registry and Repository defined WSDL service portType.
At least one of the properties is required. If you leave all
three property values blank, an error message is shown
when you try to save.

name

PortType
Namespace

No Yes None namespace

PortType
Version

No Yes None portVersion

User
Properties

No No None Allows a query to specify user-defined properties. Add
User Properties by clicking Add. User Properties refer to
the Additional Properties that are used to catalog the
entities in WSRR. Enter values for Property Name, which is
the case-sensitive match of the additional property in
WSRR, Property Type, and Property Value. The Property
Type can be:

v a String (the default), in which case the Property Value
is a character string to be matched with the additional
property value present in WSRR

v XPATH, or ESQL, in which case the Property Value is a
XPath or ESQL expression which locates a field in the
message tree that contains the character string to be
matched with the additional property value present in
WSRR.

These User Properties and Classification properties are
used in the query to uniquely identify the WSDL service
port.

ClassificationNo No None The Web Ontology Language (OWL) classification system
property. Each classifier is a class in OWL, and has a
Uniform Resource Identifier (URI). Using classifications in
the registry can help to make objects easier to find and can
also add meaning to custom objects that are unique to a
particular system.

Add a Classification by clicking Add and typing the
complete fully-qualified OWL URI for the OWL
classification. For example, it can define a particular service
endpoint's lifecycle state.

These User Properties and Classification properties are
used in the query to uniquely identify the WSDL service
port.

4410 WebSphere Message Broker Version 7.0.0.8

Property M C DefaultDescription mqsiapplybaroverride
command property

Match
Policy

Yes No One WSRR can contain multiple entities that match the search
criteria specified by the previous properties. If Match
Policy is set to One, at most one matching entity is
returned. If Match Policy is set to All, all matching entities
are returned. See “EndpointLookup node output” on page
1894.

If you request a single matching entity by setting Match
Policy to One, the retrieved endpoint value is set as the
local environment override for the destination URL used by
SOAPRequest, SOAPAsyncRequest, or HTTPRequest nodes.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
“Dynamically defining the search criteria” on page 1891
You can use the RegistryLookup and EndpointLookup nodes to issue WebSphere
Service Registry and Repository (WSRR) queries specified in the local environment.

“EndpointLookup node output” on page 1894
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).
“WebSphere Service Registry and Repository” on page 1875
The WebSphere Service Registry and Repository (WSRR) is a central repository of
entities. A wide range of entities can be stored and retrieved, including
user-defined concepts and definitions related specifically to Web services, such as
WSDL services, service interfaces, and associated policies.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.

Chapter 14. Reference 4411

“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Populating Destination in the local environment tree” on page 2467
Use the Destination subtree to set up the target destinations that are used by
output nodes, the HTTPRequest node, the SOAPRequest node, the
SOAPAsyncRequest node, and the RouteToLabel node. The following examples
show how you can create and use an ESQL procedure to perform the task of
setting up values for each of these uses.
Related reference:
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.

Extract node
Use the Extract node to extract the contents of the input message that you want to
be processed by later nodes in the message flow.

Attention: The Extract node is deprecated in WebSphere Message Broker Version
6.0 and later releases. Although message flows that contain an Extract node remain
valid, redesign your message flows where possible to replace Extract nodes with
Mapping nodes.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4413
v “Terminals and properties” on page 4413

Purpose:
Using the Extract node, you can create a new output message that contains only a
subset of the contents of the input message. The output message comprises only
those elements of the input message that you specify for inclusion when
configuring the Extract node, by defining mapping statements.

The Extract node is contained in the Database drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

4412 WebSphere Message Broker Version 7.0.0.8

Using this node in a message flow:
You might find this node useful if you require only a subset of the message after
initial processing of the whole message. For example, you might want to store the
whole message for audit purposes (in the Warehouse node), but propagate only a
small part of the message (order information, perhaps) for further processing.

For example, you receive orders from new clients and you want to collect their
names and addresses for future promotions. Use the Extract node to get this
information from each order, and send it as a new message to head office. These
messages are processed at head office so that the customer details can be included
in the next marketing campaign.

Terminals and properties:
When you have put an instance of the Extract node into a message flow, you can
configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view. (If you
double-click the Extract node, you open the New Message Map dialog box.) All
mandatory properties for which you must enter a value (those that do not have a
default value defined) are marked with an asterisk.

The Extract node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected during extraction.

Out The output terminal to which the transformed message is routed if the input message is processed
successfully.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined), the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Extract node Description properties are described in the following table.

Property M C Default Description

Node name No No Extract The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The Extract node Basic properties are described in the following table.

Chapter 14. Reference 4413

Property M C Default Description

Mapping
module

Yes No Extract The name of the mapping routine that contains the statements to run against
the message tree.

By default, the name that is assigned to the mapping routine is identical to
the name of the mappings file in which the routine is defined. The default
name for the file is the name of the message flow concatenated with the
name of the node when you include it in the message flow (for example,
MFlow1_Extract.msgmap for the first Extract node in message flow MFlow1).
You cannot specify a value that includes spaces.

To work with the mapping routine that is associated with this node,
right-click the node and click Open Mappings. If the mapping routine does
not exist, it is created for you with the default name in the default file. If the
file exists already, you can also open file flow_name_node_name.msgmap in the
Broker Development view.

A mapping routine is specific to the type of node with which it is associated;
you cannot use a mapping routine that you have developed for an Extract
node with any other node that uses mappings (for example, a DataInsert
node). If you create a mapping routine, you cannot call it from any other
mapping routine, although you can call it from an ESQL routine.

For more information about working with mapping files, and defining their
content, see “Using message mappings” on page 2228.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.

4414 WebSphere Message Broker Version 7.0.0.8

“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“DataInsert node” on page 4386
Use the DataInsert node to interact with a database in the specified ODBC data
source.

FileInput node
Use the FileInput node to process messages that are read from files.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4416
v “Configuring the FileInput node” on page 4416
v “Terminals and properties” on page 4422

Purpose:
One or more messages can be read from a single file, and each message is
propagated as a separate flow transaction. The part of a file that generates one
message flow transaction is called a record. A file can be a single record, or a series
of records. Properties on the node specify how the FileInput node determines the
records in a file.

The FileInput node is contained in the File drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Message structure

The FileInput node handles messages in the following message domains:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

When the FileInput node propagates a message, it stores information about it in
the LocalEnvironment.File message tree. If the input file is empty, an empty

Chapter 14. Reference 4415

message is propagated (assuming that it is valid). The following table lists the
LocalEnvironment.File message tree structure. The elements contain data about the
current record.

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of the input directory in the form used by the file
system of the broker. For example, on Windows systems, this starts with
the drive letter prefix (such as C:).

Name CHARACTER File name and extension.

LastModified TIMESTAMP Date and time the file was last modified.

TimeStamp CHARACTER Date and time, in the Coordinated Universal Time (UTC) zone, the input
node started processing the file as a character string. This data is the
string used to create archive and backout file names if a timestamp is
included.

The following elements contain data about the current record:

Offset INTEGER The start of the record within the file. The first record starts at offset 0.
When Offset is part of the End of Data message tree, this value is the
length of the input file.

Record INTEGER The number of the record within the file. The first record is record
number 1. When Record is part of the End of Data message tree, this
value is the number of records.

Delimiter CHARACTER The characters used to separate this record from the preceding record, if
Delimited is specified in Record detection. The first record has a null
delimiter. When Delimiter is part of the End of Data message tree, this
value is the delimiter that follows the last record, if any.

IsEmpty BOOLEAN Whether the record that is propagated by the message flow is empty.
IsEmpty is set to TRUE if the current record is empty. When IsEmpty is
part of the End of Data message tree, this property is always set to TRUE.

Using this node in a message flow:
The FileInput node can be used in any message flow that must accept messages in
files. You can also look at the following samples to see how to use this node:
v Batch Processing
v WildcardMatch

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

If you configure a File node to use FTP, your network might need it to connect to
an FTP proxy server, instead of directly to the remote FTP server. How you
configure the File nodes to use an FTP proxy depends on how that proxy handles
requests. For some FTP proxies, you must encode the target FTP server information
in the logon credentials that you create with the mqsisetdbparms command. For
example, some FTP proxies support the following values:
Username: FtpTargetHostUsername@ProxyUserName@TargetFtpHostname
Password: TargetFtpUserPassword@ProxyUserPassword

Other proxies might require different encodings, or might require external
configuration, or you might not be able to use them with the File nodes.

Configuring the FileInput node:

4416 WebSphere Message Broker Version 7.0.0.8

When you have put an instance of the FileInput node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.
All mandatory properties for which you must enter a value (the properties that do
not have a default value defined) are marked with an asterisk.

Configure the FileInput node:
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, enter the directories and files to be processed by the

FileInput node, together with what to do with any duplicate files encountered.
v In Input directory, specify the directory from which the FileInput node

obtains files. Specify the directory as either an absolute or a relative
directory path. If the directory path is relative, it is based on the directory
specified in the environment variable
MQSI_FILENODES_ROOT_DIRECTORY. An example on Windows systems
is C:\fileinput. An example on UNIX systems is /var/fileinput.
The FileInput node creates an mqsitransitin subdirectory in the specified
input directory to hold and lock input files while they are being processed.
If an execution group that processes files in this input directory is removed,
check the mqsitransitin subdirectory for partially processed or unprocessed
files. Move any such files back into the input directory (and remove the
execution group UUID prefix from the file names) so that they can be
processed by a different execution group. For more information about the
mqsitransitin subdirectory, see “How multiple file nodes share access to
files in the same directory” on page 1818.

v In File name or pattern, specify a pattern for the file name. It is either a
file name or a character sequence (a pattern) that matches a file name. A
pattern is a sequence containing at least one of the following wildcard
characters:

Wildcard character Description Example

* Any sequence of zero or more
characters

*.xml matches all file names with an
xml extension

? Any single character f??????.csv matches all file names
consisting of the letter f followed by
six characters and then the sequence
.csv.

For a file to be processed, its name must match the pattern.
If you specify a file name pattern that contains wildcard characters, the
FileInput node copies the characters in the file name matched by wildcards,
together with any intermediate characters, to the
LocalEnvironment.Wildcard.WildcardMatch element. See “File name
patterns” on page 1830 for more information.

v Select Action on successful processing to specify the action that the
FileInput node takes after successfully processing the file. The action can be
to move the file to the archive subdirectory, to augment the file name with
a time stamp and move the source file to the archive subdirectory, or to
delete the file.
– If you select Move to Archive Subdirectory, the source file is moved to

the archive subdirectory of the input directory. The subdirectory name is
mqsiarchive. For example, if the input directory is /var/fileinput, the

Chapter 14. Reference 4417

absolute path of the archive subdirectory is /var/fileinput/mqsiarchive.
If this directory does not exist, the broker creates it when it first tries to
move a file there.

– If you select Add Timestamp and Move to Archive Subdirectory, the
current date and time are added to the file name, and the file is then
moved to mqsiarchive.

– If you select Delete, the file is deleted after successful processing.

The FileInput node writes a message to the user trace, if user tracing is in
operation, whenever it processes a file.

v Select Replace duplicate archive files if you want to replace a file in the
archive subdirectory with a successfully processed file of the same name. If
you do not set this option, and a file with the same name exists in the
archive subdirectory, the node throws an exception when it tries to move
the successfully processed file.

3. On the Input Message Parsing tab, set values for the properties that the node
uses to determine how to parse the incoming message.
v In Message domain, select the name of the parser that you are using from

the supplied list. The default is BLOB. You can choose from the following
options:
– XMLNSC
– DataObject
– JSON
– BLOB
– MIME
– MRM
– JMSMap
– JMSStream
– XMLNS

You can also specify a user-defined parser, if appropriate.
v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. This list is
populated with available message sets when you select MRM, XMLNSC, or
IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the
list in Message type. This list is populated with available message types
when you select the MRM parser.

v If you are using the MRM or IDOC parser, select the correct message format
from the list in Message format. This list is populated with available
message formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set
ID.

v Select the message encoding from the list in Message encoding or specify a
numeric encoding value. For more information about encoding, see “Data
conversion” on page 1151.

4. On the Parser Options subtab:
v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the entire message to be parsed
immediately, set this property to Immediate or Complete. See “Parsing on
demand” on page 4173 for more details.

4418 WebSphere Message Broker Version 7.0.0.8

v If you are using the XMLNSC parser, set values for the properties that
determine how the XMLNSC parser operates. For more information, see
“Manipulating messages in the XMLNSC domain” on page 2546.

5. On the Polling tab, enter a value for the Polling interval. This property
controls the frequency with which the FileInput node accesses the file system
looking for files to process.
After the initial scan of the directory when the flow is started, whenever the
directory is found to contain no files that match the input pattern, the
FileInput node waits for the period defined by this property. This process
avoids the need for the FileInput node to be continually accessing the file
system, and consuming large amounts of system resource.
The smaller the value set in this property, the more quickly the FileInput node
discovers files that are in the input directory. However, a smaller value
increases the use of system resources. A larger value reduces the use of system
resource but at the cost of the FileInput node discovering files to process less
quickly.
Do not use this property as a means to regulate work, or to schedule
processing. If you want the FileInput node to monitor the input directory for
selected periods only, start and stop the message flow at appropriate times.
If you select the Remote Transfer property and set the Scan delay property on
the FTP tab, the value that you set for Scan delay overrides the value set for
Polling interval.

6. Use the Retry tab to define how retry processing is performed when a
message flow fails:
v Retry mechanism determines the action that occurs if the flow fails:

– Select Failure for the node to report a failure without any retry attempts.
– Select Short retry for the node to try again before reporting a failure if

the condition persists. The number of times that it tries again is specified
in Retry threshold.

– Select Short retry and long retry for the node to try again, first using
the value in Retry threshold as the number of attempts it is to make. If
the condition persists after the Retry threshold value has been reached,
the node then uses the value of Long retry interval between attempts.

v Specify a value for the Retry threshold property. The number of times the
node tries the flow transaction again if the Retry mechanism property is set
to either Short retry or Short retry and long retry.

v Specify a value for the Short retry interval property. The length of time,
in seconds, to wait between short retry attempts.

v Specify a value for the Long retry interval property. The length of time to
wait between long retry attempts until a message is successful, the message
flow is stopped, or the message flow is redeployed. The
MinLongRetryInterval broker property defines the minimum value that the
Long retry interval can take. If the value is lower than the minimum, the
broker value is used.

v Specify a value for the Action on failing file property to determine what
the node is to do with the input file after all attempts to process its contents
fail:
– Move to Backout Subdirectory. The file is moved to the backout

subdirectory of the input directory. The name of this subdirectory is
mqsibackout. If the input directory is /var/fileinput, the absolute path
of the backout subdirectory is /var/fileinput/mqsibackout. If this
subdirectory does not exist, the broker creates it when it first tries to

Chapter 14. Reference 4419

move a file there. If the file cannot be moved to this subdirectory,
perhaps because a file of the same name exists there, the node adds the
current date and time to the file name and makes a second attempt to
move the file. If this second attempt fails, the node stops processing.
Messages BIP3331 and BIP3325 are issued. Resolve the problem with the
subdirectory or file before attempting to restart the message flow.

– Delete. The file is deleted after processing fails.
– Add Time Stamp and Move to Backout Subdirectory. The current date

and time are added to the file name, and then the file is moved to the
backout subdirectory.

7. Use the Records and Elements tab to specify how each file is interpreted as
records:
v Use the Record detection property to determine how the file is split into

records, each of which generates a single message. Choose from the
following options:
– Whole File specifies that the whole file is a single record. A limit of 100

MB applies to the size of the files.
– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record contains the number of bytes specified in the Length
property, except possibly a shorter final record in the file. The value
specified in Length must be in the range 1 byte through 100 MB. The
default is 80 bytes.

– Select Delimited if the records that you are processing are separated, or
terminated, by a DOS or UNIX line end or by a sequence of user-defined
delimiter bytes. Specify the delimiter and delimiter type in the Delimiter
and Delimiter type properties. A limit of 100 MB applies to the length of
the records.

– Select Parsed Record Sequence if the file contains a sequence of one or
more records that are serially recognized by the parser specified in
Message domain. The node propagates each recognized record as a
separate message. If you select the Record detection option, the parser
specified in Message domain must be either XMLNSC or MRM (either
CWF or TDS physical format).

v
If you specify Parsed Record Sequence in Record detection, the FileInput
node does not determine or limit the length of a record. Nodes that are
downstream in the message flow might try to determine the record length
or process a long record. If you intend to process large records in this way,
ensure that your broker has sufficient memory. You might have to apply
flow techniques described in the Large Messaging sample to make best use
of the available memory.

v If you specified Delimited in Record detection, use Delimiter to specify
the delimiter to be used. Choose from:
– DOS or UNIX Line End, which, on UNIX systems, specifies the line feed

character (<LF>, X'0A'), and, on Windows systems, specifies a carriage
return character followed by a line feed character (<CR><LF>, X'0D0A').
The node treats both of these strings as delimiters, irrespective of the
system on which the broker is running. If they are both in the same file,
the node recognizes both as delimiters. The node does not recognize
X'15' which, on z/OS systems, is the 'newline' byte; specify a value of
Custom Delimiter in this property and a value of 15 in the Custom
delimiter property if your input file is coded using EBCDIC new lines,
such as EBCDIC files from a z/OS system.

4420 WebSphere Message Broker Version 7.0.0.8

– Custom Delimiter, which permits a sequence of bytes to be specified in
Custom delimiter

v In Custom delimiter, specify the delimiter byte or bytes to be used when
Custom delimiter is set in the Delimiter property. Specify this value as an
even-numbered string of hexadecimal digits. The default is X'0A' and the
maximum length of the string is 16 bytes (represented by 32 hexadecimal
digits).

v If you specified Delimited in Record detection, use Delimiter type to
specify the type of delimiter. Permitted values are:
– Infix. If you select this value, each delimiter separates two records. If the

file ends with a delimiter, the zero length file content following the final
delimiter is still propagated as a message although it contains no data.

– Postfix. If you specify this value, each delimiter terminates a record. If
the file ends with a delimiter, no empty record is propagated after the
delimiter. If the file does not end with a delimiter, the file is processed as
if a delimiter follows the final bytes of the file. Postfix is the default
value.

v The FileInput node considers each occurrence of the delimiter in the input
file as either separating (Infix) or terminating (Postfix) each record. If the
file begins with a delimiter, the node treats the (zero length) file contents
preceding that delimiter as a record and propagates an empty record to the
flow. The delimiter is never included in the propagated message.

8. Use the Validation tab to provide validation based on the message set for
predefined messages. For more information about validation, see “Validating
messages” on page 1478. For information about how to complete this tab, see
“Validation tab properties” on page 4169.

9. On the FTP tab, select the Remote Transfer property if you want the node to
read files from an FTP or SFTP server using the following properties:
v In Transfer Protocol, specify the protocol that is to be used for remote file

transfer. Possible values are FTP and SFTP.
v In Remote server and port, supply the IP address and port number of the

FTP or SFTP server to be used. Use one of the following syntaxes:
– IP_address_or_URL

– IP_address_or_URL:port_number

If you specify the IP address in IPv6 format, ensure that you enclose it in
square brackets, as in the following examples:
– [12a::13bd:24cd]

– [12a::13bd:24cd]:123 where 123 is the port number

If you are using FTP and you do not specify a port number, 21 is assumed.
If you are using SFTP and you do not specify a port number, a port number
of 22 is assumed. However, if an FtpServer configurable service is defined,
you can enter the name of the configurable service in this field. For
information about how an FtpServer configurable service definition and the
properties on this tab interact, see “FtpServer configurable service
properties” on page 3794.

v In Security identity, specify the name of a security identity that has been
defined using the mqsisetdbparms command. The user identifier and
password that are to be used to log on to the FTP or SFTP server are
obtained from this definition, the name of which must have an ftp:: prefix.
The value of this property is overridden by the value in the securityIdentity
property of the FtpServer configurable service, if it is set.

Chapter 14. Reference 4421

v In Server directory, specify the directory in the FTP or SFTP server from
which to transfer files. The default is a period (.) which means the default
directory after logon. If you specify a relative path, the directory is based on
the default directory after FTP or SFTP logon. Ensure that the syntax of the
path conforms to the file system standards in the FTP or SFTP server. The
value in this property is overridden by the value in the remoteDirectory
property of the FtpServer configurable service, if it is set.

v In Transfer mode, specify how files are transferred. Select Binary if the file
contents are not to be transformed. Select ASCII if the file is to be
transmitted as ASCII. The value of this property is overridden by the value
in the transferMode property of the FtpServer configurable service, if it is
set.
This property is valid only when FTP is selected as the protocol for remote
transfer. If you have specified SFTP as the protocol, the Transfer mode
mode property is ignored and binary encoding is used.

v In Scan delay, specify the delay, in seconds, between directory scans. The
default is 60 seconds. The value set in this property overrides the value set
for the polling interval on the Polling tab when the Remote Transfer
property is selected. The value of this property is overridden by the value
in the scanDelay property of the FtpServer configurable service, if it is set.

10. On the Transactions tab, set the transaction mode. Although all file operations
are non-transactional, the transaction mode on this input node determines
whether the rest of the nodes in the flow are to be run under sync point.
Select Yes if you want the flow updates to be treated transactionally, if
possible, or No if you do not. The default for this property is No.

11. Optional: On the Instances tab, set values for the properties that control the
additional instances (threads) that are available for a node. For more details,
see “Configurable message flow properties” on page 4020.

Terminals and properties:
The FileInput node terminals are described in the following table.

Terminal Description

Failure The output terminal to which a message is routed if an error occurs before a message is propagated
to the Out terminal. Messages propagated to this terminal are not validated, even if you have
specified, using the Validate property, that validation is to take place.

Out The output terminal to which a message is routed if it has been successfully extracted from the
input file. If no errors occur within the input node, a message received from an external resource is
always sent to the Out terminal first.

End of Data The output terminal to which the End of Data message is routed after all the messages in a file
have been processed. The End of Data message flow transaction is initiated only if this terminal is
attached.

Catch The output terminal to which the message is routed if an exception is thrown downstream and
caught by this node. Exceptions are caught only if this terminal is attached.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

Description properties:

4422 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Node name No No FileInput The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the
message flow.

Basic properties:

Property M C Default Description mqsiapplybaroverride
command property

Input directory Yes Yes None The path of the directory from which input files are
processed. The directory must be in a file system to
which the broker has access. If the input directory
does not exist, no files are processed. The FileInput
node checks that the input directory exists at
intervals that are defined by the Scan delay
property. The input directory must exist, even if
you are processing files over FTP or SFTP.

The FileInput node creates an mqsitransitin
subdirectory in the specified input directory. The
mqsitransitin subdirectory holds and locks input
files while they are being processed. If an execution
group that processes files in this input directory is
removed, check the mqsitransitin subdirectory for
partially processed or unprocessed files. Move any
such files back into the input directory (and
remove the execution group UUID prefix from the
file names) so that they can be processed by a
different execution group.

inputDirectory

File name or
pattern

Yes Yes * A file name or string containing optional wildcard
characters (* or ?) identifying the file or files to
process from the input directory.

filenamePattern

Action on
successful
processing

Yes No Delete The action the node takes on the file after
successfully processing the contents. Valid options
are:

v Move to Archive Subdirectory

v Add Time Stamp and Move to Archive
Subdirectory

v Delete

Replace
duplicate
archive files

Yes No Cleared This property controls whether the node replaces
existing archive files with the same name as the
input file. It applies only when Action on
successful processing is not Delete.

The FileInput node Input Message Parsing properties are described in the
following table:

Property M C Default Description mqsiapplybaroverride
command property

Message
Domain

No No The domain that is used to parse the
incoming message.

Chapter 14. Reference 4423

Property M C Default Description mqsiapplybaroverride
command property

Message
Set

No No The name or identifier of the message set in
which the incoming message is defined.

If you set this property, and then update the
project dependencies to remove this message
set reference, a warning is issued. Either
update the Message Set property, or restore
the reference to this message set project.

Message
Type

No No The name of the incoming message.

Message
Format

No No The name of the physical format of the
incoming message.

Message
coded
character
set ID

Yes No Broker
System
Default

The ID of the coded character set used to
interpret bytes of the file being read.

messageCodedCharSetIdProperty

Message
encoding

Yes No Broker
System
Determined

The encoding scheme for numbers and large
characters used to interpret bytes of the file
being read. Valid values are Broker System
Determined or a numeric encoding value. For
more information about encoding, see “Data
conversion” on page 1151.

messageEncodingProperty

Parser Options properties:

Property M C Default Description

Parse timing No No On Demand This property controls when an input message is parsed.
Valid values are:

v On Demand

v Immediate

v Complete

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using XML
schema data types

No No Cleared This property controls whether the syntax elements in the
message tree have data types taken from the XML schema.

Use XMLNSC compact
parser for XMLNS
domain

No No Cleared Specifies whether the XMLNSC Compact Parser is used for
messages in the XMLNS Domain. If you set this property, the
message data is displayed under XMLNSC in nodes that are
connected to the output terminal when either of the
following items is XMLNS:

v The input MQRFH2 header.

v The Input Message Parsing property, Message Domain.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree for mixed text in an input
message. If you select the check box, elements are created for
mixed text. If you clear the check box, mixed text is ignored
and no elements are created.

4424 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Retain comments No No Cleared Specifies whether the XMLNSC parser creates elements in the
message tree for comments in an input message. If you select
the check box, elements are created for comments. If you
clear the check box, comments are ignored and no elements
are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree for processing instructions in an
input message. If you select the check box, elements are
created for processing instructions. If you clear the check box,
processing instructions are ignored and no elements are
created.

Opaque elements No No Blank This property is used to specify a list of elements in the input
message that are to be opaquely parsed by the XMLNSC
parser. Opaque parsing is performed only if validation is not
enabled (that is, if Validate is None); entries that are specified
in Opaque Elements are ignored if validation is enabled.

Polling property:

Property M C Default Description mqsiapplybaroverride
command property

Polling interval
(seconds)

Yes Yes 5 The polling interval in seconds. waitInterval

Retry properties:

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

Yes No Failure How the node handles a flow failure. Valid options
are:

v Failure

v Short retry

v Short and long retry

Retry
threshold

Yes Yes 0 The number of times to try the flow transaction again
when the Retry mechanism property value is Short
retry.

retryThreshold

Short
retry
interval

No Yes 0 The interval, in seconds, between each retry if Retry
threshold property is not zero.

shortRetryInterval

Long
retry
interval

No Yes 300 The interval between retries, if the Retry mechanism
property is Short and long retry and the retry
threshold has been exhausted.

longRetryInterval

Action
on
failing
file

Yes Yes Move to
Backout
Subdirectory

The action that the node takes with the input file if all
attempts to process the contents of the input file fail.
Valid options are:

v Move to Backout Subdirectory

v Delete

v Add Time Stamp and Move to Backout Subdirectory

Records and Elements properties:

Chapter 14. Reference 4425

Property M C Default Description

Record
detection

Yes No Whole File The mechanism used to identify records in the input file. Valid
options are:

v Whole File

When you set this property to Whole File, files larger than 2 Gb
are not supported.

v Fixed Length

v Delimited

v Parsed Record Sequence

Length Yes No 80 The length of each record, in bytes, when Fixed Length record
detection is selected.

Delimiter Yes No DOS or UNIX
Line End

The type of delimiter bytes that separate, or end, each record when
Delimited record detection is selected. Valid options are:

v DOS or UNIX Line End

v Custom Delimiter

Custom
delimiter

No No The delimiter bytes, expressed in hexadecimal, when Delimited
record detection and Custom Delimiter are selected. This property
is mandatory only if the Delimiter property is set to Custom
Delimiter.

Delimiter type Yes No Postfix The position of the delimiter when Delimited record detection is
selected. Valid options are:

v Postfix

v Infix

This property is ignored unless the Delimiter property is set to
Custom Delimiter.

Skip first
record

Yes No FALSE Skip the first record in the file. The FileInput node will read the
first record in the file but not propagate the record to the Out
terminal. Records will be propagated as normal, from the second
record onwards. Use this option when the first record is a header
that does not need to be processed. It is not valid to use this option
when using the whole file.

Validation properties:

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place.
Valid values are:

v None

v Content and Value

v Content

validateMaster

Failure
action

No No Exception This property controls what happens if validation
fails. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List

4426 WebSphere Message Broker Version 7.0.0.8

FTP properties:

Property M C Default Description mqsiapplybaroverride
command property

Remote
Transfer

No Yes Cleared This property defines whether the node uses the
remote file transfer properties listed on the FTP tab
and reads files from either an FTP or SFTP server.

fileFtp

Transfer
protocol

No Yes FTP This property specifies the protocol to be used for
remote transfer. Valid values are:

v FTP

v SFTP

remoteTransferType

Remote server
and port

No Yes None This property can have either of the following
values:

v The IP address or name (and, optionally, the
port number) of a remote FTP or SFTP server;
for example ftp.server.com:21 or
sftp.server.com:22

v The name of a configurable service of type
FtpServer

If a configurable service name is specified, any or
all the other remote transfer properties on the FTP
tab can be overridden by the configurable service.

fileFtpServer

Security
identity

No Yes The name of the user identification used to access
the FTP or SFTP server. This property is
overridden by the securityIdentity property, if set,
in the FtpServer configurable service.

fileFtpUser

Server
directory

No Yes "." The directory on the FTP or SFTP server from
which to transfer files. If you specify this property
as a relative path, it is relative to the home
directory after logon. This property is overridden
by the remoteDirectory property, if set, in the
FtpServer configurable service.

fileFtpDirectory

Transfer mode No No Binary The FTP transfer mode for transfer of file data.
This property is valid only when FTP is selected as
the protocol for remote transfer. Valid values are:

v Binary

v ASCII

This property is overridden by the transferMode
property, if set, in the FtpServer configurable
service.

If you have specified SFTP as the protocol for
remote transfer, the Transfer mode property is
ignored, and binary encoding is used.

Scan delay No Yes 60 The delay, in seconds, between remote directory
scans. This property overrides the value set for
Polling interval when the Remote Transfer
property is selected. This property is overridden
by the scanDelay property, if set, in the FtpServer
configurable service.

Transactions properties:

Chapter 14. Reference 4427

Property M C Default Description

Transaction
mode

No Yes No The transaction mode on this input node determines whether the rest
of the nodes in the flow are run under sync point. Valid options are:

v Yes

v No

Instances properties. For a full description of these properties, see “Configurable
message flow properties” on page 4020.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are
obtained.

v If you select Use Pool Associated with Message
Flow, additional instances are obtained from the
message flow pool.

v If you select Use Pool Associated with Node,
additional instances are allocated from the
additional instances of the node based on the
number specified in the Additional instances
property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node
can start if the Additional instances pool
property is set to Use Pool Associated with Node.

additionalInstances

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“File name patterns” on page 1830
You can specify a file name pattern, using wildcard characters, to identify a file to
be read by the FileInput and FTEInput nodes. You can also specify a file name
pattern, using a single wildcard character, to name the file to be created by the
FileOutput and FTEOutput nodes.
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“How multiple file nodes share access to files in the same directory” on page 1818
WebSphere Message Broker controls access to files so that only one file node at a
time can read or write to a file.
“Archiving” on page 1833
Files that are successfully processed by the FileInput node or FileOutput node can
optionally be moved to the mqsiarchive subdirectory of the input or output
directory.

4428 WebSphere Message Broker Version 7.0.0.8

“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Reading files” on page 1834
Use the FileInput, CDInput, FTEInput, and FileRead nodes to read files.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Problems when developing message flows with file nodes” on page 3402
Use the advice given here to help you to resolve some common problems that can
arise when you develop message flows that contain file nodes.
Related reference:
“Recognizing file records as messages to be parsed” on page 1817
Use the FileInput, FTEInput and FileRead nodes to segment your input file into
messages that are to be parsed.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a

Chapter 14. Reference 4429

broker external resource.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“FtpServer configurable service properties” on page 3794
Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.

FileOutput node
Use the FileOutput node to write messages to files.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4433
v “Configuring the FileOutput node” on page 4433
v “Terminals and properties” on page 4433

Purpose:
You can write one or more messages from message flow transactions to a file in
the file system of the broker. Each message, as it is written to a file, is converted to
a sequence of bytes called a record. Records are accumulated until a process is
triggered that completes the file and places it either in the specified output
directory or a remote FTP or SFTP server directory. Properties on the node specify
how records are accumulated into files and where the files are placed when they
are finished.

The FileOutput node is contained in the File drawer of the palette and is
represented in the workbench by the following icon:

Record processing

The FileOutput node writes files as a sequence of one or more records. Each record
is generated from a single message received on the In terminal of the node.

4430 WebSphere Message Broker Version 7.0.0.8

By default, each file comprises a single record but properties on the FileOutput
node can specify that the file comprises multiple records and how these records are
accumulated in a file. If multiple records are written, the FileOutput node starts
with an empty file and writes records to it until a message is received by the
Finish File terminal. The node does not append new records to a file that exists.
Multiple records can be accumulated in a file in the following ways:
v Concatenated: The record created from each message is added, unmodified, to

the file.
v Padded: Each record is adjusted to be a specific length and padded with a

padding byte, if necessary, before being added to the file.
v Delimited: A delimiter is used to separate or terminate the records as they are

added to the file.

For each message received, whether on the In terminal or the Finish File terminal,
you can modify the output directory and the name of the file to be written (or
finished) by using elements of the message. On the node you can specify these
elements, which, by default, identify elements in the local environment, on the
Request properties tab.

File processing

The FileOutput node writes accumulated messages to a file, and places it in a
specified directory (the output directory) at either of the following times:
v After each record, if the file is to contain a single record. (Specify this behavior

by setting the Record definition property to Record is Whole File on the
Records and Elements tab.)

v When the Finish File terminal receives a message.

The name of the output directory and the names of the output files are determined
by the node properties that you specify and by elements of the message that is
being processed.

The FileOutput node uses subdirectories of the output directory to store files
during and after processing. All these subdirectories begin with the prefix mqsi,
and include subdirectories called mqsitransit (the transit directory) and
mqsiarchive (the archive directory). Records are not accumulated directly into a file
in the output directory but are accumulated in a file in the transit directory. Files
are moved from the transit directory to the output directory when the file is
complete. If a file that is to be moved to the output directory has the same name as
a file that is already there, you can choose whether the file in the output directory
is deleted, moved to the archive directory (mqsiarchive), or renamed before being
moved to the archive directory.

You can specify that the FileOutput node transfers files to a remote FTP or SFTP
server as part of file processing. If the file is successfully transferred, it can be
deleted from the local file system, or, optionally, retained for the rest of the file
processing to occur as usual. The server is identified by the Remote server and
port property on the node. Alternatively, you can override the node property by
setting a value in the local environment. You can also use the local environment to
specify commands to run before or after an FTP or SFTP transfer finishes. For more
information, see “Local environment overrides for the FileOutput node” on page
4443.

Chapter 14. Reference 4431

During the file transfer operation, the FileOutput creates the destination file.
However, the destination file is readable before the file transfer is complete.
Therefore, ensure that remote applications do not read the file until the file transfer
is complete.

When multiple records are written, no file processing occurs until a message is
received on the Finish File terminal of the node. Any message received on the
Finish File terminal causes the file to be moved from the transit directory to either
the specified output directory or to a remote FTP or SFTP directory.

It is not an error if file processing is initiated when there is no file in the transit
directory.

If you set the Record definition property to Record is Whole File on the Records
and Elements tab, messages received on the Finish File processing are ignored
because the file has already been processed.

The UMASK value for WebSphere Message Broker on UNIX and z/OS systems can
be set using the MQSI_SET_DFE_UMASK environment variable as follows:
MQSI_SET_DFE_UMASK=nnnn

where nnnn is the UMASK value that you need to specify. The minimum
permissions level required by WebSphere Message Broker is rwrw_(660). If neither
of the UMASK environment variable are set, then files are created with a UMASK
of 6.

Message propagation

For every message received on the In terminal and successfully processed by the
node, a copy is propagated to the Out terminal for further processing if the
terminal is attached.

For every message received on the Finish File terminal and successfully processed
by the node, a copy is propagated to the End of Data terminal for further
processing if the terminal is attached.

When the FileOutput node propagates a message, either to the Out terminal or to
the End of Data terminal, it stores information in the
LocalEnvironment.WrittenDestination.File message tree. This table describes the
LocalEnvironment.WrittenDestination.File elements:

Element Name Element Data Type Description

Directory CHARACTER Absolute path of the output directory in the form used by the file system
of the broker. For example, on Windows systems, the directory path starts
with the drive letter prefix (such as C:).

Name CHARACTER Name of the output file.

Action CHARACTER Possible values are:
v Replace if an output file of the same name is replaced.
v Create if a new output file is created.
v Append if this message is associated with a record that is added to an

output file.
v Finish if a Finish File message is received and no file is found to finish

(for example, if Record is Whole File is specified and a message is sent
to the Finish File terminal).

v Transmit if the file was transferred by FTP or SFTP and the file was not
retained.

4432 WebSphere Message Broker Version 7.0.0.8

|
|

|

|
|
|
|

Element Name Element Data Type Description

Timestamp CHARACTER The date and time, in character string form, when the node started to
process this file. This value prefixes the names of files that are archived if
you set the Output file action property to Time Stamp, Archive and
Replace Existing File on the Basic tab.

Multiple instances

Several message flows might write to the same file, which can happen where there
are additional instances of the flow, or where multiple flows contain FileOutput
nodes. The FileOutput node permits only a single instance, within an execution
group and between execution groups, to write to a file at the same time. While a
record is being written, all other instances in the execution group must wait. The
order in which instances gain access is not defined.

When the file is complete, the first instance to gain access processes it, and other
instances do not find the file. The Action element of the
LocalEnvironment.WrittenDestination.File message tree is set to Finish for all
instances that fail to discover the file in the transit directory.

Using this node in a message flow:
The FileOutput node can be used in any message flow that sends messages to files.
See “Working with files” on page 1807. You can also look at the following samples
to see how to use this node:
v File Output
v Batch Processing
v WildcardMatch

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

If you configure a File node to use FTP, your network might need it to connect to
an FTP proxy server, instead of directly to the remote FTP server. How you
configure the File nodes to use an FTP proxy depends on how that proxy handles
requests. For some FTP proxies, you must encode the target FTP server information
in the logon credentials that you create with the mqsisetdbparms command. For
example, some FTP proxies support the following values:
Username: FtpTargetHostUsername@ProxyUserName@TargetFtpHostname
Password: TargetFtpUserPassword@ProxyUserPassword

Other proxies might require different encodings, or might require external
configuration, or you might not be able to use them with the File nodes.

Configuring the FileOutput node:
When you have put an instance of the FileOutput node into a message flow, you
must configure it (for more information, see “Configuring a message flow node”
on page 1503). The properties of the node are displayed in the Properties view. All
mandatory properties for which you must enter a value (those properties that do
not have a default value defined) are marked with an asterisk in that view.

Terminals and properties:
The FileOutput node terminals are described in the following table.

Chapter 14. Reference 4433

Terminal Description

In The input terminal that accepts a message for processing by the node.

Finish File The input terminal that accepts a message that triggers the final processing of a file.

Out The message received on the In terminal is propagated to this terminal if the record is
written successfully. The message is unchanged except for status information in the Local
Environment.

End of Data The message received on the Finish File terminal is propagated to this terminal if the file is
processed successfully.

Failure The output terminal to which the message is routed if a failure is detected when a message
is propagated.

The following tables describe the node properties that you can set on a specified
tab. The column headed M indicates whether the property is mandatory (marked
with an asterisk if you must enter a value when no default is defined); the column
headed C indicates whether the property is configurable (you can change the value
when you add the message flow to the BAR file to deploy it).

The FileOutput node Description properties are described in the following table.

Property M C Default Description

Node name No No FileOutput The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the message
flow.

The FileOutput node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Directory No Yes None Specify the output directory in which the FileOutput
node places its files. Specify the directory as an absolute
or relative directory path. If the directory path is
relative, it is based on the directory specified in the
environment variable
MQSI_FILENODES_ROOT_DIRECTORY. For example:
v On Windows: C:\fileoutput
v On UNIX: /var/fileoutput

To write files in the directory that is identified by
MQSI_FILENODES_ROOT_DIRECTORY, ensure that
you specify a value of . (a period) in this property.

You can override the output directory path to be used
by setting values in the current message. For more
information, see the Request tab properties.

outputDirectory

4434 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

File name or
pattern

No Yes None Specify a file name pattern. This property defines the
name of the file that is created by the FileOutput node.
The value is either a specific file name or a character
sequence (pattern) that matches a file name. Only
patterns with a single wildcard character (the asterisk, *)
are allowed in this property field. The file name to be
used is determined in the following way:

v If the file name contains no wildcard, the value of this
property is the name of the file created. This value
must be a valid file name on the file system or the
FTP file system that hosts the broker to which the
message flow is deployed.

v If the file name contains a single wildcard character,
the value of the element
LocalEnvironment.Wildcard.WildcardMatch in the
current message replaces the wildcard character, and
the resulting value is the name of the file created. This
value must be a valid file name on the file system or
the FTP file system that hosts the broker to which the
message flow is deployed. If the WildcardMatch value
is not found, the wildcard character is replaced by an
empty string.

You can override the name of the file by setting values
in the current message. For more information, see the
Request tab properties. If the File name or pattern
property is empty, you must override the name by using
the current message. Wildcard substitution occurs only if
this property is not overridden in this way.

File names are passed to the file system to which the
broker has access and must adhere to the conventions of
these file systems. For example, file names on Windows
systems are not case-sensitive; while on UNIX systems,
they are.

outputFilename

Mode for
writing to file

Yes No Stage
in
transit
directory

Specify if the file must be staged or written to directly.
Select one of the following options:
v Stage in transit and move to output directory on

Finish File
v Write directly to the output file

Chapter 14. Reference 4435

Property M C Default Description mqsiapplybaroverride
command property

Action if file
exists

Yes No Replace
Existing
File

Specify how the file is to be processed when it is
complete. Select one of the following options:
v Replace Existing File (the default value) specifies

that if a file of the same name exists in the output
directory, the new file replaces it.

v Append to Existing File moves the output file to the
transit directory and appends the file contents to the
file. The file is moved back to the output directory
when the append is finished.

v Fail if File Exists specifies that a new file is
created, and that if a file of the same name exists in
the output directory, the new file remains in the
transit directory and exception BIP3307 is produced.

v Archive and Replace Existing File specifies that if
any file of the same name exists in the output
directory, it is moved to the archive directory before
the new file is placed in the output directory. If any
file of the same name exists in the archive directory,
an exception is produced.

v Time Stamp, Archive and Replace Existing File
specifies that if a file of the same name exists in the
output directory, its name is augmented with a time
stamp (a character-based version of the date and time)
before being moved to the archive directory. The
format of the time stamp is
yyyyMMdd_HHmmss_SSSUUU, in UTC time, where
UUU is an additional ID to ensure that the time
stamp is unique.

Replace
duplicate
archive files

Yes No Cleared Select the Replace duplicate archive files check box
to specify that, in cases where Archive and Replace
Existing File or Time Stamp, Archive and Replace
Existing File is specified in Output file action, files
moved to the archive directory replace files that exist
there already with the same name.

By default, this check box is cleared. If this check box is
not selected, and there is already a file in the archive
directory with the same name as a file that is to be
moved there, an exception is produced, and the new file
remains in the transit directory.

The FileOutput node Request properties are described in the following table.

These properties specify the location of the data to be written, and control
information that overrides the Directory and File name or pattern properties on
the Basic tab. You can specify the properties on this tab as XPath or ESQL
expressions. Content assist is available in the properties pane and also in the XPath
Expression Builder, which you can open by using the Edit button to the right of
each property.

4436 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Data
location

Yes No $Body Specify the input data location,
which is the location in the input
message tree that contains the
record to be written to the
output file. The default value is
$Body, meaning the entire
message body ($InputRoot.Body).

When you specify this property,
and the data in the message tree
that it identifies is owned by a
model-driven parser, such as the
MRM parser or XMLNSC parser,
consider the following factors.

v If you are using MRM CWF
format, ensure that the
identified message tree exists
as a message definition. If this
element is defined as a global
element only, exceptions
BIP5180 and BIP5167 are
produced.

v If you are using MRM TDS
format, serialization of the
identified message is
successful if the element is
defined as a global element or
message. However, if the
identified field is not found as
a global element or message,
the following conditions apply:
– If the field is a leaf field in

the message tree, the field is
written as self-defining. No
validation occurs even if
validation is enabled.

– If the field is a complex
element, an internal
exception is generated
(BIP5522), indicating that
the logical type cannot be
converted to a string.

v If you are using MRM XML,
the events are similar as for
the MRM TDS format except
that, if the field is a complex
element, it is written as
self-defining.

v If you use the XMLNSC
parser, no validation occurs
even if validation is enabled.

Chapter 14. Reference 4437

Property M C Default Description mqsiapplybaroverride
command property

Request
directory
property
location

Yes Yes $LocalEnvironment/Destination/
File/Directory

Specify the location of the value
to override the Directory
property on the Basic tab. If you
do not specify a location, the
default value is
$LocalEnvironment/Destination/
File/Directory. If you specify a
location but the element is empty
or missing, the Directory
property is used. The element
has a data type of CHARACTER
and is an absolute or relative
directory path. Use the path
separator character ('/' or '\')
according to the file system on
which the broker runs. Trailing
path separator characters are
ignored. Relative directory paths
are based on the value of the
MQSI_FILENODES_ROOT_DIRECTORY
environment variable.

requestDirectoryLocation

Request
file name
property
location

Yes Yes $LocalEnvironment/Destination/
File/Name

Specify the location of the value
to override the File name or
pattern property on the Basic
tab. If you do not specify a
location, the default value is
$LocalEnvironment/Destination/
File/Name. If you specify a
location but the element is empty
or missing, the File name or
pattern property is used. The
element has a data type of
CHARACTER and is an explicit
file name. No wildcard
substitution occurs for this value.

requestNameLocation

The FileOutput node Records and Elements properties are described in the
following table.

These properties specify how the FileOutput node writes the record derived from
the message.

4438 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Record
definition

Yes No Record is Whole
File

Specify how the records are placed in the output file. Select one of
the following options:

v Record is Whole File specifies that the file is to contain a single
record. The file is finished immediately after the record is written;
the FileOutput node does not wait for a message on the Finish File
terminal. This value is the default.

v Record is Unmodified Data specifies that records are accumulated
in a file with neither padding or delimiters applied. The file is
finished only when a message is received on the Finish File
terminal.

v Record is Fixed Length Data specifies that records are padded to
a given length if necessary and accumulated in a file by
concatenation. You specify this length in the Length property. If the
record is longer than the value specified in Length, the node
produces an exception. Use the Padding byte property to specify
the byte to be used for padding the message to the required
length. Records are added to this file until a message is received
on the Finish File terminal.

v Record is Delimited Data to specify that records are separated by
a delimiter and accumulated by concatenation. The delimiter is
specified by the Delimiter, Custom delimiter, and Delimiter type
properties. Records are added to this file until a message is
received on the Finish File terminal.

Length Yes No 80 Specify the length (in bytes) of records when Record is Fixed
Length Data is specified in Record definition. Records that are
longer than this value cause an exception to be produced. This value
must be in the range 1 byte through 104857600 bytes (100 MB). The
default value is 80 bytes.

Padding byte Yes No X'20' When Record is Fixed Length Data is specified in Record
definition, use the Padding byte property to specify the byte to be
used when padding records to the specified length if they are shorter
than this length. Specify this value as two hexadecimal digits. The
default value is X'20'.

Delimiter Yes No Broker System
Line End

Specify the delimiter to be used if you specify Record is Delimited
Data in Record definition. Select one of the following options:

v Broker System Line End specifies that a line end sequence of bytes
is used as the delimiter, as appropriate for the file system on
which the broker is to run. For example, on Windows systems, the
delimiter is a 'carriage-return, line-feed' pair (X'0D0A'); on UNIX
systems, it is a single 'line-feed' byte (X'0A'); on z/OS systems, it is
a 'newline' byte (X'15'). This value is the default.

v Custom Delimiter specifies that the explicit delimiter sequence
defined in the Custom delimiter property is to be used to delimit
records.

Custom
delimiter

No No None Specify the delimiter sequence of bytes to be used to delimit records
when Custom Delimiter is specified in the Delimiter property.
Specify this value as an even-numbered string of hexadecimal digits.
The default value is X'0A' and the maximum length of the string is
16 bytes.

Chapter 14. Reference 4439

Property M C Default Description

Delimiter
type

Yes No Postfix If you set the Record definition property to Record is Delimited
Data, use Delimiter type to specify how the delimiter is to separate
records. Select one of the following options:

v Postfix specifies that the delimiter is added after each record that
is written. This value is the default.

v Infix specifies that the delimiter is inserted only between any two
adjacent records.

The FileOutput node Validation properties are described in the following table.

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Inherit Specify whether validation takes place. Valid values are:
v None
v Content and Value
v Content
v Inherit

validateMaster

Failure
action

No No ExceptionSpecifies what happens if validation fails. You can set this
property only if you set Validate to Content or Content
and Value. Valid values are:
v User Trace
v Local Error Log
v Exception
v Exception List

The FileOutput node FTP properties are described in the following table.

To transfer files to an FTP or SFTP server, select the Remote Transfer property,
then set the properties described in this table.

Property M C Default Description mqsiapplybaroverride
command property

Remote
transfer

No Yes Cleared To transfer files to an FTP or SFTP server, select
Remote Transfer, then set the other properties in this
table.

fileFtp

Transfer
protocol

No Yes FTP This property specifies the protocol to be used for
remote transfer. Valid values are:
v FTP
v SFTP

remoteTransferType

4440 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Remote server
and port

No Yes None This property can have either of the following values:
v The IP address or name (and, optionally, the port

number) of a remote FTP or SFTP server
v The name of a configurable service of type

FtpServer

Specify the IP address and port number of the FTP or
SFTP server to be used, by using the following syntax:
v IP_address_or_URL or
v IP_address_or_URL:port_number

If you specify the IP address in IPv6 format, ensure
that you enclose it in square brackets, for example:
v [12a::13bd:24cd] or
v [12a::13bd:24cd]:123 where 123 is the port

number

If you are using FTP and you do not specify a port
number, 21 is assumed. If you are using SFTP and
you do not specify a port number, a port number of
22 is assumed. However, if an FtpServer configurable
service is defined, you can enter the name of the
configurable service in this field. If a configurable
service name is specified, any or all of the other
remote transfer properties on the FTP tab can be
overridden by the configurable service. For
information about how an FtpServer configurable
service definition and the properties on this tab
interact, see “FtpServer configurable service
properties” on page 3794.

You can override this property by setting the location
of the server in the local environment. For more
details, see “Local environment overrides for the
FileOutput node” on page 4443.

fileFtpServer

Security
identity

No Yes None Specify the name of a security identity that has been
defined by using the mqsisetdbparms command. The
user identifier and password that are to be used to
log on to the FTP or SFTP server are obtained from
this definition. The name of the definition must have
the prefix ftp::. The value of this property is
overridden by the value in the FtpServer configurable
service property securityIdentity, if it is set.

fileFtpUser

Server
directory

No Yes "." Specify the directory on the FTP or SFTP server to
which to transfer files. The default value is . (a
period), which indicates the default directory after
logon. If you specify a relative path, the directory is
based on the default directory after FTP or SFTP
logon. Ensure that the syntax of the path conforms to
the file system standards in the FTP or SFTP server.
The value of this property is overridden by the value
in the remoteDirectory property of the FtpServer
configurable service, if it is set.

fileFtpDirectory

Chapter 14. Reference 4441

Property M C Default Description mqsiapplybaroverride
command property

Transfer mode No Yes Binary Specify how files are transferred. If the file contents
are not transformed, select Binary. If the file is
transmitted as ASCII, select ASCII. The value of this
property is overridden by the value in the FtpServer
configurable service property transferMode, if it is set.

This property is valid only when FTP is selected as
the protocol for remote transfer. If you have specified
SFTP as the protocol, the Transfer mode property is
ignored and Binary encoding is used.

Action if
remote file
exists

No No Replace
File

Specify whether to create the file or append to an
existing file. Select one of the following options:
v Replace Existing File (the default value) specifies

that if a file of the same name exists in the output
directory, the new file replaces it. The file is
replaced by using the FTP put verb.

v Append to Existing File moves the output file to
the transit directory and appends the file contents
to the file. The file is transferred to the remote
machine by using the FTP append verb and moved
back to the output directory when the append is
finished.

Retain local
file after
transfer

No No Cleared To retain a local copy of the file after the file transfer
process has completed, select the Retain local file
after transfer check box. If this check box is
selected, the local copies are processed after the
transfer is complete, as are other output files, as
specified on the Basic tab. If the check box is cleared,
successfully transferred files are not retained locally.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“File name patterns” on page 1830
You can specify a file name pattern, using wildcard characters, to identify a file to
be read by the FileInput and FTEInput nodes. You can also specify a file name
pattern, using a single wildcard character, to name the file to be created by the
FileOutput and FTEOutput nodes.
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“How multiple file nodes share access to files in the same directory” on page 1818
WebSphere Message Broker controls access to files so that only one file node at a
time can read or write to a file.

4442 WebSphere Message Broker Version 7.0.0.8

“Archiving” on page 1833
Files that are successfully processed by the FileInput node or FileOutput node can
optionally be moved to the mqsiarchive subdirectory of the input or output
directory.
“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Writing a file” on page 1852
Use the FileOutput, CDOutput, and FTEOutput nodes to write files.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“Recognizing file records as messages to be parsed” on page 1817
Use the FileInput, FTEInput and FileRead nodes to segment your input file into
messages that are to be parsed.
“Local environment overrides for the FileOutput node”
Set values in the local environment to override the location of the remote server
specified on the FileOutput node.
“FileInput node” on page 4415
Use the FileInput node to process messages that are read from files.
“FtpServer configurable service properties” on page 3794
Select the properties and values that you want to change for an existing FtpServer
configurable service or to create a new service.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“FTEOutput node” on page 4466
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.

Local environment overrides for the FileOutput node:

Set values in the local environment to override the location of the remote server
specified on the FileOutput node.

Chapter 14. Reference 4443

Remote server location

You can set the location of the FTP or SFTP server for the FileOutput node to use
in LocalEnvironment.Destination.File.Remote.Server. If this field is present in
the local environment, it overrides the Remote server and port property on the
FileOutput node. Set this local environment field to the name of a configurable
service, the name of a server, or a server name and port number.

The local environment override works in the same way as the node property. If a
configurable service exists with the name specified, all the properties of the
configurable service are used instead of the properties on the node. If a
configurable service of that name does not exist, the value is used as a server name
to which the node connects. The system checks for a value with the format
serverName:portNumber first, then it searches for a server name on its own. When a
server name is found, no other properties are overridden. This process is repeated
for every message that passes through the node.
Related concepts:
“How the broker processes files” on page 1814
The broker reads files with the FileInput, FTEInput, and FileRead nodes, and
writes files with the FileOutput and FTEOutput nodes.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Writing a file to a remote FTP or SFTP server” on page 1855
Use a FileOutput node to write a file to a directory on a remote FTP or SFTP
server.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
Related reference:
“FileOutput node” on page 4430
Use the FileOutput node to write messages to files.

FileRead node
Use the FileRead node to read one record, or the entire contents of a file, from
within a message flow.

This topic contains the following sections:
v “Purpose”
v if mo
v “Using this node in a message flow” on page 4445
v “Terminals and properties” on page 4445

Purpose:
You can use the FileRead node to read one record, or the entire contents of a file,
from within the middle of a message flow, see “Routing or enriching a message
based on the contents of a file” on page 1837. The FileRead node is like the
FileInput node which reads a file from the start of a message flow, except it is
driven to read the file by an incoming message.

The FileRead node is contained in the File drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

4444 WebSphere Message Broker Version 7.0.0.8

Using this node in a message flow:
To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mqsichangebroker command. For more information,
see “mqsichangebroker command” on page 3723.

By using any built-in parser, the FileRead node can parse the contents of the file
and propagate the contents as a message tree. The node streams data to parsers
which support this function, in an identical way to the FileInput node.

The main properties of the node specify the file and directory to read the file from.
The file name is given as a pattern which can include wildcards. Both the directory
and file pattern can be overridden by using fields in the local environment.

Terminals and properties:
The FileRead node input terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Finish file in The input terminal that accepts a request to perform the finish file action, without reading any
data.

When a message is received by the Finish file in terminal, the FileRead node starts the processing
that is specified by the Action property. When a message is received by the Finish file in terminal,
no data is read before the action is taken.

The FileRead node output terminals are described in the following table.

Terminal Description

Failure The output terminal to which a message is routed if a failure is detected when the message is
propagated.

Out The output terminal to which a message is routed if it is successfully retrieved from an external
resource. If no errors occur in the input node, a message received from an external resource is
always sent to the Out terminal first.

No match The message received on the No match terminal is propagated to this terminal if the file does not
exist on the file system or it does exist but no record which matches the filter expression can be
found.

If the terminal is not connected, the message is not used.

Finish file out A message arriving on the Finish file in terminal is propagated to the Finish file out terminal with
the content unchanged, but the local environment is updated with details of the action the node
has taken.

The following tables describe the node properties that you can set on a specified
tab. The column headed M indicates whether the property is mandatory (marked in
the toolkit with an asterisk if you must enter a value when no default is defined).
The column headed C indicates whether the property is configurable (you can
change the value when you add the message flow to the BAR file to deploy it).

When the contents of the file have been successfully propagated down the flow,
the file is deleted from the file system. No other file node can access the file when
the read node starts reading data from it. If a file does not exist which matches the

Chapter 14. Reference 4445

pattern, then the original message is propagated to the 'No match' terminal. If the
terminal is not connected then an exception is thrown.

At the end of processing, it is possible to configure the node not to delete the file.
In this mode, any other file read node can also access the file if running in the
same browse only mode.

Description properties

Property M C Default Description

Node name No No FileRead The name of the node.

Long Description No No None Text that describes the purpose of the node in the message
flow.

Short Description No No None A brief description of the node.

Basic properties

Property M C Default Description mqsiapplybaroverride
command
property

Input directory No Yes None Absolute path of the input directory in the form
used by the file system of the broker. For example,
on Windows systems, the directory path starts with
the drive letter prefix (such as C:).

Alternatively, the path can be relative to the file
nodes root directory (which can be overridden with
the same environment variable as used for the File
input and output nodes).

inputDirectory

File name or pattern No Yes * A file name, or a character sequence (pattern) that
matches a file name. A pattern contains at least one
of the following wildcard characters:

v Asterisk (*), representing any sequence of zero or
more characters

v Question mark (?), representing any single
character

If more than one file matches the pattern, and the
Action property is set to No action - do nothing to
the file, an exception is thrown.

Select the Use environment wildcard option if you
want to use part of the file name from the input
node in this field.

filenamePattern

Substitute wildcard
match

No No False If you select this option, the file pattern is no longer
a regular expression. Instead, it must contain only
one *. The * is replaced by the $LocalEnvironment/
Wildcard/WildcardMatch field. This location is
normally populated by a previous node, such as the
FileInput node.

substituteWildcardMatch

4446 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command
property

Action Yes No No action The action performed to the file after either the end
of the file is reached, or a message is received by the
Finish file in terminal. This action occurs in any of
the following circumstances:

1. When a file is read, if Record detection is set to
Whole File.

2. When the record read is the last record in the
file, if Record detection is set to anything other
than Whole File.

3. When a message is received by Finish file in. In
this case no data is read before the action is
performed.

Valid actions are:

v No action - do nothing to the file.

v Delete - delete the file.

v Archive - move the file to an archive directory.

v Archive with timestamp - move the file to the
archive directory and add a timestamp.

By default if move to Archive is selected the file is
moved to the mqsiarchive sub directory, but this
default can be overridden by setting a local
environment variable.

When the local environment override for the archive
file name is set and the finish file action on the node
is set to Archive with timestamp, the file name is
timestamp_nameYouSpecified. Where timestamp is
the date and time the file is archived and
nameYouSpecified is the name you give to the file.

When the local environment override for the archive
name is set and the finish file action on the node is
set to Delete, the file is deleted.

When the local environment override for the archive
name is set and the finish file action on the node is
set to No action, no action is applied to the file.

Replace duplicate
archives

Yes No False By default, an error occurs if a file is archived and a
file exists with the same name. Set this property to
true to ignore the error and replace the archive file.

Request properties

Property M C Default Description mqsiapplybaroverride
command
property

Request directory
property location

No No $LocalEnvironment/
Destination/
File/
Directory

The message element location containing the name
of the input directory.

Chapter 14. Reference 4447

Property M C Default Description mqsiapplybaroverride
command
property

Request file name
property location

No No $LocalEnvironment/
Destination/
File/Name

The message element location containing the name
of the input file pattern.

Offset property
location

No No $LocalEnvironment/
Destination/
File/
Offset

The message element location containing the offset
to start searching for records from.

Length property
location

No No $LocalEnvironment/
Destination/
File/
Length

The message element location containing the length
of the record to read if using fixed-length record
detection.

Result properties

Property M C Default Description mqsiapplybaroverride
command
property

Result data location Yes No $ResultRoot The location in the message retrieved from the file
to copy to the Output data location field in the
outgoing message.

Output data location Yes No $OutputRoot The location in the outgoing message where the
record read from the file is to be copied to. The
part of the record that is copied to the output data
location is defined in the result data location. By
default, the entire record is copied.

Copy local
environment

No No Selected This property specifies whether the local
environment is copied to the output message.

v If Copy local environment is selected, a new
copy of the local environment is created in the
tree, and it is populated with the contents of the
local environment from the preceding node.
Therefore, if a node changes the local
environment, the upstream nodes are not
affected by those changes because they have
their own copies. This value is the default.

v If Copy local environment is cleared, the node
does not generate its own copy of the local
environment, but uses the local environment
that is passed to it by the preceding node.
Therefore, if a node changes the local
environment, the changes are reflected by the
upstream nodes.

4448 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command
property

Record selection
expression

No No true() The expression used to select the correct record
from the file. The expression is evaluated for each
record in the file until one is found that evaluates
to true. That record is then propagated to the Out
terminal.

The expression can be set to any valid XPath
expression that returns a Boolean value.

The expression is not used when Whole File is
selected as the Record Detection option.

The following correlation names are in scope to
use in the expression:

v InputRoot

v InputLocalEnvironment

v OutputRoot

v OutputLocalEnvironment

v ResultRoot

Input Message Parsing properties

Property M C Default Description mqsiapplybaroverride
command property

Message
Domain

No No The domain that is used to parse the incoming
message.

Message Set No No The name or identifier of the message set in
which the incoming message is defined.

If you set this property, and then update the
project dependencies to remove this message set
reference, a warning is issued. Either update the
Message Set property, or restore the reference to
this message set project.

Message Type No No The name of the incoming message.

Message
Format

No No The name of the physical format of the
incoming message.

Message coded
character set
ID

No Yes Broker
System
Default

The ID of the coded character set used to
interpret bytes of the file being read.

messageCodedCharSetIdProperty

Message
encoding

No Yes Broker
System
Determined

The encoding scheme for numbers and large
characters used to interpret bytes of the file
being read. Valid values are Broker System
Determined or a numeric encoding value. For
more information about encoding, see “Data
conversion” on page 1151.

messageEncodingProperty

Parser Options properties

Chapter 14. Reference 4449

Property M C Default Description

Parse timing No No On Demand This property controls when an input message is parsed.
Valid values are:

v On Demand

v Immediate

v Complete

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using XML
schema data types

No No Cleared This property controls whether the syntax elements in the
message tree have data types taken from the XML schema.

Use XMLNSC compact
parser for XMLNS
domain

No No Cleared This property controls whether the XMLNSC Compact Parser
is used for messages in the XMLNS Domain. If you set this
property, the message data is shown under XMLNSC in
nodes that are connected to the output terminal when the
input MQRFH2 header or Input Message Parsing property,
Message Domain is XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text
in an input message. If you select the check box, elements are
created for mixed text. If you clear the check box, mixed text
is ignored and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments in
an input message. If you select the check box, elements are
created for comments. If you clear the check box, comments
are ignored and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in an input message. If you select the check box,
elements are created for processing instructions. If you clear
the check box, processing instructions are ignored and no
elements are created.

Opaque elements No No Blank This property is used to specify a list of elements in the input
message that are to be opaquely parsed by the XMLNSC
parser. Opaque parsing is performed only if validation is not
enabled (that is, if Validate is None); entries that are specified
in Opaque Elements are ignored if validation is enabled.

Records and Elements properties

Property M C Default Description

Record
detection

Yes No Whole File The mechanism used to identify records in the input file. Valid
options are:

v Whole File

v Fixed Length

v Delimited

v Parsed Record Sequence

Length Yes No 80 The length of each record, in bytes, when Fixed Length record
detection is selected.

4450 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Delimiter Yes No DOS or UNIX
Line End

The type of delimiter bytes that separate, or end, each record when
Delimited record detection is selected. Valid options are:

v DOS or UNIX Line End

v Custom Delimiter

You can set the delimiter only when the Record detection property
is set to Delimited.

Custom
delimiter

No Yes The delimiter bytes, expressed in hexadecimal, when Delimited
record detection and Custom Delimiter are selected. This property
is mandatory only if the Delimiter property is set to Custom
Delimiter.

Delimiter type Yes No Postfix The position of the delimiter when Delimited record detection is
selected. Valid options are:

v Postfix

v Infix

This property is ignored unless the Delimiter property is set to
Custom Delimiter.

Validation properties

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes
place. Valid values are:

v None

v Content and Value

v Content

validateMaster

Failure action No No ExceptionThis property controls what happens if validation
fails. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List

Related concepts:
“Routing or enriching a message based on the contents of a file” on page 1837
The FileRead node can route or enrich messages based on the contents of the file.
“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
“File name patterns” on page 1830
You can specify a file name pattern, using wildcard characters, to identify a file to
be read by the FileInput and FTEInput nodes. You can also specify a file name
pattern, using a single wildcard character, to name the file to be created by the
FileOutput and FTEOutput nodes.
Related tasks:

Chapter 14. Reference 4451

“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.

Filter node
Use the Filter node to route a message according to message content.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4453

Purpose:
Create a filter expression in ESQL to define the route that the message is to take.
You can include elements of the input message or message properties in the filter
expression, and you can use data that is held in an external database to complete
the expression. The output terminal to which the message is routed depends on
whether the expression evaluates to true, false, or unknown.

Connect the terminals that cover all situations that could result from the filter; if
the node propagates the message to a terminal that is not connected, the message
is discarded even if it is transactional.

The Filter node accepts ESQL statements in the same way as the Compute and
Database nodes. The last statement that is executed must be a RETURN <expression>
statement, whose expression evaluates to a Boolean value. This Boolean value
determines the terminal to which the message is routed. In many cases, the routing
algorithm is a simple comparison of message field values. The comparison is
described by the expression and the RETURN statement is the only statement. If
you code RETURN without an expression (RETURN;) or with a null expression, the
node propagates the message to the Unknown terminal.

If your message flow requires more complex routing options, use the RouteToLabel
and Label nodes.

The Filter node is contained in the Routing drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following samples for examples of how to use this node:
v Airline Reservations
v Scribble
v Error Handler
v Large Messaging

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Consider a situation in which you have produced an online test with ten multiple
choice questions. Each message coming in has a candidate name and address

4452 WebSphere Message Broker Version 7.0.0.8

followed by a series of answers. Each answer is checked, and if it is correct, the
field SCORE is incremented by one. When all the answers have been checked, the
field SCORE is tested to see if it is greater than five. If it is, the Filter node
propagates the message to the flow that handles successful candidate input;
otherwise, the message is filtered into the rejection process, and a rejection message
is created.

Terminals and properties:
When you have put an instance of the Filter node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.
All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

The Filter node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node

Failure The output terminal to which the message is routed if a failure is detected during the computation

Unknown The output terminal to which the message is routed if the specified filter expression evaluates to
unknown or a null value

False The output terminal to which the message is routed if the specified filter expression evaluates to false

True The output terminal to which the message is routed if the specified filter expression evaluates to true

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default value is defined); the column headed C indicates whether
the property is configurable (you can change the value when you add the message
flow to the BAR file to deploy it).

The Filter node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short
Description

No No A brief description of the node

Long
Description

No No Text that describes the purpose of the node in the message flow

The Filter node Basic properties are described in the following table.

Chapter 14. Reference 4453

Property M C Default Description mqsiapplybaroverride
command
property

Data Source No Yes The ODBC data source name of the database
that contains the tables to which you refer in
the ESQL that is associated with this node
(identified by the Filter Expression property).
This name identifies the appropriate database
on the system on which this message flow is to
execute. The broker connects to this database
with user ID and password information that
you have specified on the mqsicreatebroker,
mqsichangebroker, or mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses

the broker started task ID, or the user ID and
password that are specified on the
mqsisetdbparms command JCL, BIPSDBP, in the
customization data set <hlq>.SBIPPROC.

If the ESQL that is associated with this node
includes a PASSTHRU statement or SELECT
function and a database reference, you must
specify a value for the Data Source property.

dataSource

Transaction Yes No Automatic The transaction mode for the node. The values
are:
v Automatic (the default). The message flow, of

which the Filter node is a part, is committed
if it is successful. That is, the actions that you
define in the ESQL module are performed
and the message continues through the
message flow. If the message flow fails, it is
rolled back. Therefore, if you choose
Automatic, the ability to commit or roll back
the action of the Filter node on the database
depends on the success or failure of the entire
message flow.

v Commit. To commit any uncommitted actions
that are performed in this message flow on
the database that is connected to this node,
irrespective of the success or failure of the
message flow as a whole, select Commit. The
changes to the database are committed even
if the message flow itself fails.

4454 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command
property

Filter Expression No No Filter The name of the module within the ESQL
resource (file) that contains the statements to
execute against the message that is received in
the node The ESQL file, which by default has
the name <message_flow_name>.esql, contains
ESQL for every node in the message flow that
requires it. Each portion of code that is related
to a specific node is known as a module. If you
want the module name to include one or more
spaces, enclose it in double quotation marks in
the Filter Expression property.

Code ESQL statements to customize the
behavior of the Filter node in an ESQL file that
is associated with the message flow in which
you have included this instance of the Filter
node.

If an ESQL file does not already exist for this
message flow, double-click the Filter node, or
right-click the node and click Open ESQL to
create and open a new ESQL file in the ESQL
editor view.

If the file exists already, click Browse beside the
Filter Expression property to display the
Module Selection dialog box, which lists the
available Filter node modules defined in the
ESQL files that can be accessed by this message
flow (ESQL files can be defined in other,
dependent, projects). Select the appropriate
module and click OK; if no suitable modules
are available, the list is empty.

If the module that you specify does not exist,
that module is created for you, and the editor
displays it. If the file and the module exist
already, the editor highlights the correct
module.

If a module skeleton is created for this node in
a new or existing ESQL file, it consists of the
following ESQL. The default module name is
shown in this example:

CREATE FILTER MODULE <flow_name>_Filter
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

RETURN TRUE;
END;

END MODULE;

If you create your own ESQL module, you must
create this skeleton exactly. You can update the
default name, but ensure that the name that you
specify matches the name of the corresponding
node property Filter Expression.

To customize this node, add your own ESQL
after the BEGIN statement, and before the
RETURN statement. If the expression on the
RETURN statement is not TRUE or FALSE, its
value is resolved to determine the terminal to
which the message is propagated. If the
expression resolves to a null value, or you code
RETURN;, or you omit the RETURN statement,
the node propagates the message to the
Unknown terminal.

Chapter 14. Reference 4455

Property M C Default Description mqsiapplybaroverride
command
property

You can use all the ESQL statements including
SET, WHILE, DECLARE, and IF in this module,
but (unlike the Compute node) the Filter node
propagates the message that it receives at its
input terminal to its output terminal
unchanged. Therefore, in the Filter node, like
the Database node, you have only one message
to which to refer.

The ESQL correlation names that you use in a
Filter node are different from those used for a
Compute node. For more information about
correlation names refer to the related links.

You cannot modify any part of any message, so
the assignment statement (the SET statement,
not the SET clause of the INSERT statement)
can assign values only to temporary variables.
The scope of actions that you can take with an
assignment statement is therefore limited.

Treat warnings as
errors

Yes No Cleared For database warning messages to be treated as
errors, and to propagate the output message
from the node to the Failure terminal, select
Treat warnings as errors. The check box is
cleared initially.

When you select the check box, the node
handles all positive return codes from the
database as errors and generates exceptions in
the same way as it does for the negative, or
more serious, errors.

If you do not select the check box, the node
treats warnings as normal return codes and
does not raise any exceptions. The most
significant warning raised is not found, which
can be handled safely as a normal return code
in most circumstances.

Throw exception on
database error

Yes No Selected For the broker to generate an exception when a
database error is detected, select Throw
exception on database error. The check box is
selected initially.

If you clear the check box, you must include
ESQL to check for any database error that might
be returned after each database call that you
make (you can use SQLCODE and SQLSTATE
to do this). If an error has occurred, you must
handle the error in the message flow to ensure
the integrity of the broker and the database; the
error is ignored if you do not handle it through
your own processing because you have chosen
not to invoke the default error handling by the
broker. For example, you can include the ESQL
THROW statement to throw an exception in this
node, or you can use the Throw node to
generate your own exception at a later point.

4456 WebSphere Message Broker Version 7.0.0.8

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
“Correlation names” on page 1069
A correlation name is a field reference that identifies a well-defined starting point
in the logical message tree and is used in field references to describe a standard
part of the tree format.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Chapter 14. Reference 4457

“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Database node” on page 4354
Use the Database node to interact with a database in the specified ODBC data
source.
“Label node” on page 4569
Use the Label node to process a message that is propagated by a RouteToLabel
node to dynamically determine the route that the message takes through the
message flow.
“Route node” on page 4669
Use the Route node to direct messages that meet certain criteria down different
paths of a message flow.
“RouteToLabel node” on page 4673
Use the RouteToLabel node in combination with one or more Label nodes to
dynamically determine the route that a message takes through the message flow,
based on its content.
“RETURN statement” on page 5155
The RETURN statement ends processing. What happens next depends on the
programming context in which the RETURN statement is issued.

FlowOrder node
Use the FlowOrder node to control the order in which a message is processed by a
message flow.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4459
v “Connecting the terminals” on page 4459
v “Terminals and properties” on page 4459

Purpose:
The FlowOrder node propagates the input message to the first output terminal,
and the sequence of nodes that is connected to this terminal processes the message.
When that message processing is complete, control returns to the FlowOrder node.
If the message processing completes successfully, the FlowOrder node propagates
the input message to the second output terminal, and the sequence of nodes that is
connected to this terminal processes the message.

The message that is propagated through the second output terminal is the input
message. It is not modified in any way by the FlowOrder node. If a compute node
that is connected to the first terminal modifies the InputRoot, for example by using
references, these modifications are made visible in the message that is propagated
to the Second terminal.

You can include this node in a message flow at any point where the order of
execution of subsequent nodes is important.

If you connect multiple nodes to the first output terminal, the second output
terminal, or both, the order in which the multiple connections on each terminal are
processed is random and unpredictable. However, the message is propagated to all
target nodes that are connected to the first output terminal, which must all
complete successfully, before the message is propagated to any node that is
connected to the second output terminal.

4458 WebSphere Message Broker Version 7.0.0.8

Your message flow performance can benefit from including the FlowOrder node in
a situation where one sequence of processing that is required for a message is
significantly shorter than another sequence of processing. If you connect the
shorter sequence to the first terminal, any failure is identified quickly and prevents
execution of the second longer sequence of processing.

The FlowOrder node is contained in the Construction drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
For an example of using this node, assume that your company receives orders
from customers using the Internet. When the order is received, it is processed by
nodes that are connected to the first terminal of a FlowOrder node to debit the
stock level in your database and raise an invoice. A check is made to see whether
the customer has indicated that his details can be sent to other suppliers. If the
customer has indicated that he does not want this information to be divulged, this
check fails and no further processing occurs. If the customer is happy for you to
share his details with other companies (that is, the test is successful), the input
message is propagated to the second terminal so that the customer's details can be
added to the mailing list.

Connecting the terminals:
The FlowOrder node has no configurable properties that affects its operation. You
determine how it operates by connecting the first and second output terminals to
subsequent nodes in your message flow.
1. Connect the First terminal to the first node in the sequence of nodes that

provide the first phase of processing this message. This sequence can contain
one or more nodes that perform any valid processing. The sequence of nodes
can optionally conclude with an output node.

2. Connect the Second terminal to the first node in the sequence of nodes that
provide the second phase of processing this message. This sequence can contain
one or more nodes that perform any valid processing. The sequence of nodes
can optionally conclude with an output node.
The message that is propagated through the Second terminal is identical to that
propagated through the First terminal. Any changes that you have introduced
as a result of the first phase of processing are ignored by this node.
If the first phase of processing fails, the FlowOrder node does not regain
control and does not propagate the message through the Second terminal.

Terminals and properties:
When you have put an instance of the FlowOrder node into a message flow, you
can configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view.

The FlowOrder node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected during the
computation.

Chapter 14. Reference 4459

Terminal Description

First The output terminal to which the input message is routed in the first instance.

Second The output terminal to which the input message is routed in the second instance. The
message is routed to this terminal only if routing to First is successful.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The FlowOrder node Description properties are described in the following table.

Property M C Default Description

Node name No No FlowOrder The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Label node” on page 4569
Use the Label node to process a message that is propagated by a RouteToLabel
node to dynamically determine the route that the message takes through the
message flow.

4460 WebSphere Message Broker Version 7.0.0.8

“RouteToLabel node” on page 4673
Use the RouteToLabel node in combination with one or more Label nodes to
dynamically determine the route that a message takes through the message flow,
based on its content.

FTEInput node
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties”

Purpose:
You can use the FTEInput node to extend WebSphere Message Broker Version 7.0
support for file processing through its integration with WebSphere MQ File
Transfer Edition. WebSphere MQ File Transfer Edition is a managed file transfer
product that uses WebSphere MQ as the transport.

The FTEInput node is contained in the File drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
You can use the FTEInput node in any flow that is designed to accept files from a
WebSphere MQ File Transfer Edition network. Look at the following sample to see
how to use this node:
v Managed File Transfer

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
The FTEInput node terminals are described in the following table.

Terminal Description

Failure The output terminal to which a message is routed if an error occurs before a message is propagated
to the Out terminal. Messages propagated to this terminal are not validated, even if you have
specified, using the Validate property, that validation is to take place.

Out The output terminal to which a message is routed if it has been successfully extracted from the
input file. If no errors occur within the input node, a message received from an external resource is
always sent to the Out terminal first.

End of Data The output terminal to which the End of Data message is routed after all the messages in a file
have been processed. The End of Data message flow transaction is initiated only if this terminal is
attached.

Catch The output terminal to which the message is routed if an exception is thrown downstream and
caught by this node. Exceptions are caught only if this terminal is attached.

The following tables describe the node properties that you can set on a specified
tab. The column headed M indicates whether the property is mandatory (marked in

Chapter 14. Reference 4461

the toolkit with an asterisk if you must enter a value when no default is defined).
The column headed C indicates whether the property is configurable (you can
change the value when you add the message flow to the BAR file to deploy it).

When the FTEInput node propagates a message, it stores information about it in
the LocalEnvironment.FTE and LocalEnvironment.FTE.Transfer message trees. If
the input file is empty, an empty message is propagated (assuming that it is valid).
If you specify a file name pattern that contains wildcard characters in the File
name filter property, the FTEInput node copies the characters in the file name
matched by wildcards, together with any intermediate characters, to the
LocalEnvironment.Wildcard.WildcardMatch message tree. See “Using local
environment variables with file nodes” on page 1820 for more information.

Description properties

Property M C Default Description

Node name No No FTE Input The name of the node.

Short Description No No None A brief description of the node.

Long Description No No None Text that describes the purpose of the node in the message
flow.

Basic properties

Property M C Default Description mqsiapplybaroverride
command
property

Directory filter No Yes None The WebSphere MQ File Transfer Edition destination
directory from which input files are processed.

inputDirectory

File name filter Yes Yes * A file name or string containing optional wildcard
characters (* or ?) identifying the file or files to
process from the Input directory.

filenamePattern

Action on successful
processing

Yes No No Action The action the node takes on the file after
successfully processing the contents. Valid options
are:

v No Action

v Delete

v Add Time Stamp

Input Message Parsing properties

Property M C Default Description mqsiapplybaroverride
command property

Message
Domain

No No None The domain that is used to parse the incoming
message.

Message Set No No None The name or identifier of the message set in
which the incoming message is defined.

If you set this property, and then update the
project dependencies to remove this message set
reference, a warning is issued. Either update the
Message Set property, or restore the reference to
this message set project.

Message Type No No None The name of the incoming message.

4462 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Message
Format

No No None The name of the physical format of the
incoming message.

Message coded
character set
ID

Yes Yes Broker
System
Default

The ID of the coded character set used to
interpret bytes of the file being read.

messageCodedCharSetIdProperty

Message
encoding

Yes Yes Broker
System
Determined

The encoding scheme for numbers used to
interpret bytes of the file being read. Valid
values are Broker System Determined or a
numeric encoding value. For more information
about encoding, see “Data conversion” on page
1151.

messageEncodingProperty

Parser Options properties

Property M C Default Description

Parse timing No No On Demand Specifies when an input message is parsed. Valid values are:

v On Demand

v Immediate

v Complete

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using XML
schema data types

No No Cleared Specifies whether the syntax elements in the message tree
have data types taken from the XML schema.

Use XMLNSC compact
parser for XMLNS
domain

No No Cleared Specifies whether the XMLNSC Compact Parser is used for
messages in the XMLNS Domain. If you set this property, the
message data appears under XMLNSC in nodes that are
connected to the output terminal when either of the
following items is XMLNS:

v The input MQRFH2 header.

v The Input Message Parsing property, Message Domain.

Retain mixed content No No Cleared Specifies whether the XMLNSC parser creates elements in the
message tree for mixed text in an input message. If you select
the check box, elements are created for mixed text. If you
clear the check box, mixed text is ignored and no elements
are created.

Retain comments No No Cleared Specifies whether the XMLNSC parser creates elements in the
message tree for comments in an input message. If you select
the check box, elements are created for comments. If you
clear the check box, comments are ignored and no elements
are created.

Retain processing
instructions

No No Cleared Specifies whether the XMLNSC parser creates elements in the
message tree for processing instructions in an input message.
If you select the check box, elements are created for
processing instructions. If you clear the check box, processing
instructions are ignored and no elements are created.

Opaque elements No No Blank Specifies a list of elements in the input message that are to be
opaquely parsed by the XMLNSC parser. Opaque parsing is
performed only if validation is not enabled (that is, if
Validate is None); entries that are specified in Opaque
Elements are ignored if validation is enabled.

Chapter 14. Reference 4463

Retry properties

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

Yes No Failure How the node handles a flow failure. Valid options
are:

v Failure

v Short retry

v Short and long retry

Retry threshold Yes Yes 0 The number of times to try the flow transaction
again when the Retry mechanism property value is
Short retry.

retryThreshold

Short retry
interval
(seconds)

No Yes 0 The interval, in seconds, between each retry if the
Retry threshold property is not zero.

shortRetryInterval

Long retry
interval
(seconds)

No Yes 300 The interval between retries, if the Retry mechanism
property is Short and long retry and the retry
threshold has been exhausted.

longRetryInterval

Action on
failing file

Yes Yes No
Action

The action that the node takes with the input file if
all attempts to process the contents of the input file
fail. Valid options are:

v No Action

v Delete

v Add Time Stamp

Records and Elements properties

Property M C Default Description

Record
detection

Yes No Whole File The mechanism used to identify records in the input file. Valid
options are:

v Whole File

v Fixed Length

v Delimited

v Parsed Record Sequence

Length Yes No 80 The length of each record, in bytes, when Fixed Length record
detection is selected.

Delimiter Yes No DOS or UNIX
Line End

The type of delimiter bytes that separate, or end, each record when
Delimited record detection is selected. Valid options are:

v DOS or UNIX Line End

v Custom Delimiter

Custom
delimiter

No No None The delimiter bytes, expressed in hexadecimal, when Delimited
record detection and Custom Delimiter are selected. This property
is mandatory only if the Delimiter property is set to Custom
Delimiter.

Delimiter type Yes No Postfix The position of the delimiter when Delimited record detection is
selected. Valid options are:

v Postfix

v Infix

This property is ignored unless the Delimiter property is set to
Custom Delimiter.

4464 WebSphere Message Broker Version 7.0.0.8

Validation properties

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes
place. Valid values are:

v None

v Content and Value

v Content

validateMaster

Failure action No No ExceptionThis property controls what happens if validation
fails. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List

Transactions properties

Property M C Default Description

Transaction
mode

No No No The transaction mode on this input node determines whether the rest
of the nodes in the flow are executed under sync point. Valid options
are:

v Yes

v No

Instances properties.

For a full description of these properties, see “Configurable message flow
properties” on page 4020.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are
obtained.

v If you select Use Pool Associated with Message
Flow, additional instances are obtained from the
message flow pool.

v If you select Use Pool Associated with Node,
additional instances are allocated from the
additional instances of the node based on the
number specified in the Additional instances
property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node
can start if the Additional instances pool
property is set to Use Pool Associated with Node.

additionalInstances

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4465

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Managed file transfers using WebSphere MQ File Transfer Edition” on page 1869
Transfer files, with file transfer metadata, in a timely and reliable manner.
“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
“File name patterns” on page 1830
You can specify a file name pattern, using wildcard characters, to identify a file to
be read by the FileInput and FTEInput nodes. You can also specify a file name
pattern, using a single wildcard character, to name the file to be created by the
FileOutput and FTEOutput nodes.
Related tasks:
“Sending a file by WebSphere MQ File Transfer Edition” on page 1859
Send files to an existing WebSphere MQ File Transfer Edition network.
“Receiving a file by WebSphere MQ File Transfer Edition” on page 1845
Use the FTEInput node to receive files from an existing WebSphere MQ File
Transfer Edition network.
Related reference:
“FTEOutput node”
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.

FTEOutput node
Use the FTEOutput node to write messages to files by using the WebSphere MQ
File Transfer Edition.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4467
v “Terminals and properties” on page 4467

Purpose:
You can use the FTEOutput node to extend WebSphere Message Broker Version 7.0
support for file processing through its integration with WebSphere MQ File
Transfer Edition. WebSphere MQ File Transfer Edition is a managed file transfer
product that uses WebSphere MQ as the transport.

The FTEOutput node is contained in the File drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

4466 WebSphere Message Broker Version 7.0.0.8

Using this node in a message flow:
You can use the FTEOutput node in any flow that is designed to send a file across
a WebSphere MQ File Transfer Edition network. Look at the following sample to
see how to use this node:
v Managed File Transfer

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
The FTEOutput node terminals are described in the following table:

Terminal Description

In The input terminal that accepts a message for processing by the node.

Finish File The input terminal that accepts a message that triggers the final processing of a file.

Out The message received on the In terminal is propagated to this terminal if the record is
written successfully. The message is unchanged except for status information in the Local
Environment.

End of Data The message received on the Finish File terminal is propagated to this terminal if the file is
processed successfully.

Failure The output terminal to which the message is routed if a failure is detected when a message
is propagated.

The following tables describe the node properties that you can set on a specified
tab. The column headed M indicates whether the property is mandatory (marked in
the toolkit with an asterisk if you must enter a value when no default is defined).
The column headed C indicates whether the property is configurable (you can
change the value when you add the message flow to the BAR file to deploy it).

When the FTEOutput node propagates a message, either to the Out terminal or to
the End of Data terminal, it stores information about it in the
LocalEnvironment.WrittenDestination.FTE message tree. You can override the
Destination agent, Destination queue manager, Job name, Destination file directory,
Destination file name, and Overwrite files on destination system properties using
additions to the LocalEnvironment.Destination.FTE message tree. See “Using local
environment variables with file nodes” on page 1820 for more information.

Description properties

Property M C Default Description

Node name No No FTE Output The name of the node.

Short Description No No None A brief description of the node.

Long Description No No None Text that describes the purpose of the node in the message
flow.

Basic properties

Chapter 14. Reference 4467

Property M C Default Description mqsiapplybaroverride
command property

Job name No Yes None The name for the transfer that appears in the transfer
logs and the metadata.

jobName

Destination
agent

No Yes None The name of the destination agent to send the file to.
If Destination agent is not specified, and not
overridden using the LocalEnvironment tree, it will
default to the agent embedded in the Execution
Group.

destinationAgent

Destination
queue
manager

No Yes None The name of the destination queue manager to send
the file to.

destinationQMgr

Destination
file directory

No Yes None The remote directory that the destination agent writes
the file to.

destinationDirectory

Destination
file name

Yes Yes None The specific file name or a pattern containing a single
wildcard that defines the name of the file to be created
by the destination agent.

destinationFileName

Mode No Yes Binary
transfer
(no
conversion)

The mode to transfer the file in. Valid values are:
v Binary transfer (no conversion)
v Text transfer (ASCII/EBCDIC and CR/LF

automated)

transferMode

Disable
computation
of MD5 check
sum

Yes Yes FALSE Specifies whether the computation of the MD5 check
sum on the transferred file is disabled.

checkSumDisabled

Overwrite
files on
destination
system

Yes Yes FALSE Specifies whether files on the destination system can
be overwritten when the destination agent moves files
of the same name there. If the destination agent fails
to overwrite the file, the transfer fails and the transfer
logs report the failure. The FTEOutput node does not
throw or log any errors.

overwriteDestination

Request properties

Property M C Default Description

Data location No No $Body The location in the input message tree that contains the record to be
written to the output file. The default value, $Body, means the entire
message.

Records and Elements properties

Property M C Default Description

Record
definition

Yes No Record is Whole
File

Specifies how records are placed in the output file. Valid options are:
v Record is Whole File
v Record is Unmodified Data
v Record is Fixed Length Data
v Record is Delimited Data

Length
(bytes)

Yes No 80 The required length of the output record. The property is available
only when Record is Fixed Length Data is specified in Record
definition.

Padding byte
(hexadecimal)

Yes No 20 The 2-digit hexadecimal byte to be used to pad short messages. The
property is available only when Record is Fixed Length Data is
specified in Record definition.

4468 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Delimiter Yes No Broker System
Line End

The delimiter to be used. The property is available only when Record
is Delimited Data is specified in Record definition. Valid options
are:

v Broker System Line End

v Custom Delimiter (hexadecimal)

Custom
delimiter
(hexadecimal)

Yes No None The delimiter byte sequence to be used. The property is available
only when Record is Delimited Data is specified in the Record
definition property, and Custom Delimiter (hexadecimal) is
specified in the Delimiter property.

Delimiter
type

Yes No Postfix This property specifies how delimiters are to be inserted between
records. The property is available only when Record is Delimited
Data is specified in Record definition. Valid options are:

v Postfix

v Infix

Validation properties

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate Yes Yes Inherit This property controls whether validation takes place.
Valid values are:
v None
v Content and Value
v Content
v Inherit

validateMaster

Failure
action

Yes No ExceptionThis property controls what happens if validation fails.
The property is available only if you set Validate to
Content or Content and Value. Valid values are:
v User Trace
v Local Error Log
v Exception
v Exception List

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Managed file transfers using WebSphere MQ File Transfer Edition” on page 1869
Transfer files, with file transfer metadata, in a timely and reliable manner.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can

Chapter 14. Reference 4469

store information while the message flow processes the message.
“Using local environment variables with file nodes” on page 1820
You can use fields in the local environment to dynamically alter the behavior of the
FileInput, FileOutput, FTEInput, and FTEOutput nodes. You can also find what
values the output nodes used to process the file.
Related tasks:
“Sending a file by WebSphere MQ File Transfer Edition” on page 1859
Send files to an existing WebSphere MQ File Transfer Edition network.
“Receiving a file by WebSphere MQ File Transfer Edition” on page 1845
Use the FTEInput node to receive files from an existing WebSphere MQ File
Transfer Edition network.
Related reference:
“FTEInput node” on page 4461
Use the FTEInput node to receive files using the WebSphere MQ File Transfer
Edition.

HTTPHeader node
Use the HTTPHeader node to add, modify, or delete HTTP headers such as
HTTPInput, HTTPResponse, HTTPRequest and HTTPReply.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties”

Purpose:
The HTTPHeader node provides a toolkit interface to manipulate HTTP headers
without any need for coding; it does not modify the message body. You can add or
remove a whole header, or selected header properties. You can set the properties to
a fixed value, or to a value specified by an XPath expression that accesses a value
in one of the message trees. XPath is used to provide a valid location from which a
value for a property can be copied. For example, the location can be the body of
the message, the local environment tree or exception list.

HTTPInput and HTTPResponse headers can only be deleted or carried forward
from the incoming message; their header properties cannot be modified or added
to.

The HTTPHeader node is contained in the HTTP drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following sample for more details about how to use the node:
v HTTPHeader node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:

4470 WebSphere Message Broker Version 7.0.0.8

When you have put an instance of the node into a message flow, you can configure
it; see . This node has no mandatory properties.

HTTPHeader node terminals are described in the following table:

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected
during extraction.

Out The output terminal to which the transformed message is routed if the input message
is processed successfully.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The HTTPHeader node Description properties are described in the following table:

Property M C Default Description

Node name No No HTTPHeader The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

HTTPInput Header properties are described in the following table:

Property M C Default Description

HTTPInput Header
Options

No Yes Carry
forward
header

Options to control the HTTPInputHeader as a whole.

Select Carry forward the header to carry forward
values from incoming message if present.

Select Delete header to delete the header if present.

HTTPResponse Header properties are described in the following table:

Property M C Default Description

HTTPResponse Header
Options

No Yes Carry
forward
header

Options to control the HTTPResponseHeader as a
whole.

Select Carry forward the header to carry forward
values from incoming message if present.

Select Delete header to delete the header if present.

HTTPRequest Header properties are described in the following table:

Chapter 14. Reference 4471

Property M C Default Description

HTTPRequest Header
Options

No Yes Carry
forward
header

Configure the HTTPRequest header. These options are
available.

Carry forward header
Select this option to carry forward values
from an incoming message.

Add header
Select this option to add new properties to
the header, or to modify or delete existing
properties.

Modify header
Select this option to add properties, or
modify and delete existing properties.

Delete header
Select this option to remove the
HTTPRequest header and all associated
properties from the incoming message.

Clear incoming values No Yes Cleared This option, which is enabled only if you choose
Modify header, removes all property names and
associated values from the incoming message if
present.

HTTPRequest Header No Yes No default
value

This field is enabled only if you chose Add header or
Modify header for the HTTPRequest Header
Options. The screen has no predefined properties;
you use it to create custom properties and values. Use
the property table to add new properties, or modify
or delete existing properties, for the header. There is
no limit to the number of properties. Each property
must have a name and a type qualifier. The type
qualifier can be Value, XPath, or Delete.

Value Enter a new valid value for the selected
property. A null value or empty string is also
considered as a valid value.

XPath Specify a valid XPath expression. WebSphere
Message Broker supports XPath definitions
that start with an XPath variable such as
$Root or $LocalEnvironment. Only the first
occurrence is returned if there are multiple
values for the XPath expression. (Examples
of valid XPath expressions are:
$LocalEnvironment/Host, and
$Root/HTTPRequest/Content-Type).

Delete Specify the property to be deleted from the
incoming message. The value associated with
the selected property is also deleted.

HTTPReply Header properties are described in the following table:

4472 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

HTTPReply Header
Options

No Yes Carry
forward
header

Configure the HTTPReply header. These options are
available.

Carry forward header
Select this option to carry forward values
from an incoming message.

Add header
Select this option to add new properties to
the header, or to modify or delete existing
properties.

Modify header
Select this option to add properties, or
modify and delete existing properties.

Delete header
Select this option to remove the HTTPReply
header and all associated properties from the
incoming message.

Clear incoming values No Yes Cleared This option, which is is enabled only if you choose
Modify header, removes all property names and
associated values from the incoming message if
present.

HTTPReply Header No Yes No default
value

This field is enabled only if you chose Add header or
Modify header for HTTPRequest Header Options.
The screen has no predefined properties; you use it to
create custom properties and values. Use the property
table to add new properties, or modify or delete
existing properties, for the header. There is no limit to
the number of properties. Each property must have a
name and a type qualifier. The type qualifier can be
Value, XPath, or Delete.

Value Enter a new valid value for the selected
property. A null value or empty string is also
considered as a valid value.

XPath Specify a valid XPath expression. WebSphere
Message Broker supports XPath definitions
that start with an XPath variable such as
$Root or $LocalEnvironment. Only the first
occurrence is returned if there are multiple
values for the XPath expression. (Examples
of valid XPath expressions are:
$LocalEnvironment/Host, and
$Root/HTTPRequest/Content-Type).

Delete Specify the property to be deleted from the
incoming message. The value associated with
the selected property is also deleted.

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4473

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

HTTPInput node
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4475
v “Using the HTTPInput and HTTPReply nodes to act as a web server” on page

4476
v “Connecting the terminals” on page 4477
v “Terminals and properties” on page 4477

Purpose:
If you use the HTTPInput node with the HTTPReply and HTTPRequest nodes, the
broker can act as an intermediary for web services, and web service requests can
be transformed and routed in the same way as other message formats that are
supported by WebSphere Message Broker.

Web service requests can be received either in standard HTTP (1.0 or 1.1) format or
in HTTP over SSL (HTTPS) format. For more information about web services, see
“Processing Web service messages” on page 1601.

The HTTPInput node supports HTTP POST and HTTP GET. For more information
about enabling HTTP GET, see “HTTPRequest node” on page 4488.

If your message flows are processing SOAP messages, use the SOAP nodes in
preference to the HTTPInput node to take advantage of enhanced features,
including WS-Addressing and WS-Security.

The HTTPInput node handles messages in the following message domains:
v MRM
v XMLNSC
v XMLNS
v MIME
v BLOB
v XML (this domain is deprecated; use XMLNSC)
v JSON

HTTP messages are always non-persistent, and have no associated order.

HTTP messages are non-transactional. However, if the message flow interacts with
a database or another external resource, such as a WebSphere MQ queue, these
interactions are performed in a transaction. The HTTPInput node provides commit
or rollback, depending on how the message flow has ended, and how it is
configured for error handling (how failure terminals are connected, for example). If

4474 WebSphere Message Broker Version 7.0.0.8

the message flow is rolled back by this node, a fault message is generated and
returned to the client. The format of the fault is defined by the Fault format
property.

If an exception occurs downstream in this message flow, and it is not caught but is
returned to this node, the node constructs an error reply to the client. This error is
derived from the exception, and the format of the error is defined by the Fault
format property.

If you include an output node in a message flow that starts with an HTTPInput
node, the output node can be any of the supported output nodes (including
user-defined output nodes). You can create a message flow that receives messages
from web service clients, and generates messages for clients that use all the
supported transports to connect to the broker. You can configure the message flow
to request the broker to provide any conversion that is necessary.

If you create a message flow to use as a subflow, you cannot use a standard input
node; you must use an Input node as the first node to create an In terminal for the
subflow.

The HTTPInput node is contained in the HTTP drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
If you include an HTTPInput node in a message flow, you must either include an
HTTPReply node in the same flow, or pass the message to another flow that
includes an HTTPReply node (for example, through an MQOutput node to a
second flow that starts with an MQInput node). In the latter case, the request from,
and reply to, the client are coordinated by the request identifier stored in the local
environment by the HTTPInput node.

You cannot use a SOAPReply node to respond to a web service request that is
received by an HTTPInput node; the broker generates an exception when the reply
is attempted.

When the HTTPInput node receives a message from a web service client, the node
starts the appropriate parsers to interpret the headers and the body of the message,
and to create the message tree that is used internally by the message flow. The
node creates a unique identifier for the input message and stores it as a binary
array of 24 bytes in the local environment tree at
LocalEnvironment.Destination.HTTP.RequestIdentifier. This value is used by the
HTTPReply node, therefore you must not modify it.

By default, HTTP and HTTPS messages are handled by the broker-wide listener,
which is started when a message flow that includes an HTTP node is started. All
inbound and outbound HTTP messages are routed through this listener, for all
HTTP nodes deployed to all message flows in all execution groups on the broker.

You can configure an execution group to use its embedded listener to service the
HTTP nodes in all message flows that are deployed to that execution group. The
embedded listener, which is always used for the SOAP nodes, communicates
directly with the client and the nodes.

Chapter 14. Reference 4475

If you configure the execution group to use its embedded listener for HTTP nodes,
you must deploy the flow that includes the HTTPReply node to the same
execution group. If your broker is configured to start the broker-wide listener to
support HTTP nodes, you must deploy the reply flow to the same broker, but the
execution group is not significant.

For further information about using the embedded listener, see “HTTP listeners”
on page 1589.

If a client sends a gzip or deflate compressed request to the HTTPInput node, it
can be extracted using the Decompress input message option. This decompression
occurs only if the execution group has been configured so that HTTP nodes use the
embedded execution group HTTP listener, and not the broker-wide HTTP listener.

Using the HTTPInput and HTTPReply nodes to act as a web server:
A broker can support multiple HTTPInput nodes. When you configure the
HTTPInput node, specify the requests to which the node listens in the form of a
URL path, excluding the host and port details.

For example, if the broker is listening on address http://localhost:7080, and
receives the request http://localhost:7080/Joe/Mary, the listener removes the
HTTP address, leaving the request Joe/Mary. The listener then matches this request
with the information that is specified in the URL property of the HTTPInput node
or nodes.

The match is done from the most specific to the most generic data; you can use a
wildcard (an asterisk) to satisfy less specific matches. For example, if you have
configured an HTTPInput node to accept requests that match /Joe/Mary, that node
receives the message. However if the request is http://localhost:7080/Joe/Sally,
the match is not made with this node. It can match with a node that has a more
generic URL, such as one of the following values:
/Joe/*
/*

If the request does not match any URL property, and you do not have an input
node with /* specified, the HTTPInput node returns a response to the originator.

You can use a URL of /* to catch all requests that failed to match the URLs in the
HTTPInput nodes, so that you can send a reply message and take other actions as
appropriate.

This example uses port 7080, which is the default HTTP port for the broker-wide
listener. The default port numbers for the embedded execution group listener are
7800 for HTTP and 7843 for HTTPS. You can change these port numbers, and port
ranges used by the execution group listeners, by using the mqsichangeproperties
command.

If you choose to handle HTTP messages by using the execution group listener, you
must carefully check the URL specifications in your HTTPInput and SOAPInput
nodes. If both URL specifications match an incoming message, the wrong type of
node might get the message, and processing might fail or produce unexpected
results. This situation occurs if you specify identical values for the Path suffix for
URL properties of the HTTPInput node and the SOAPInput node. It can also occur
if you use wildcards in either or both specifications, and an incoming message
matches both properties.

4476 WebSphere Message Broker Version 7.0.0.8

If you want to use the broker listener for HTTP and HTTPS traffic, check that the
broker properties for the listener ports for HTTP and HTTPS are suitable. The
default port for HTTP is 7080; the default port for HTTPS is 7083.

If you want to use the execution group listener, you must configure the execution
group by using the mqsichangeproperties command to activate the listener for
HTTP and HTTPS messages. The default port for HTTP is 7800; the default port
for HTTPS is 7843. You can change these port numbers, and the ranges from which
the ports are allocated, by using the mqsichangeproperties command.

If you want to collect trace information about HTTP message processing, see
“Resolving problems when you use HTTP and SOAP nodes” on page 3407.

Connecting the terminals:
The HTTPInput node routes each message that it retrieves successfully to the Out
terminal. If message validation fails, the message is routed to the Failure terminal;
you can connect nodes to this terminal to handle this condition. If you have not
connected the Failure terminal, the message is discarded, the Maximum client wait
time expires, and an error is returned to the client. No other situations exist in
which the message is routed to the Failure terminal.

If the message is caught by this node after an exception has been thrown further
on in the message flow, the message is routed to the Catch terminal. If you have
not connected the Catch terminal, the message is discarded, the Maximum client
wait time expires, and an error is returned to the client.

If the Maximum client wait time expires, by default, the listener returns a fault
message to the client to indicate that the timeout has expired. If the HTTP Timeout
terminal is connected and the execution group is configured such that the HTTP
nodes use the embedded listener, this timeout fault message is propagated to the
timeout terminal. In this scenario the listener waits again for the interval defined
by the Maximum client wait time (sec) property, or for 10 seconds, whichever is
the shorter interval:
v If a response is received before this second interval expires, the listener

propagates the response to the client.
v If a response is not received before this second interval expires, the listener

sends a fault message to the client, indicating that its timeout has expired.

Because the listener waits for only a brief interval after the message has been
propagated through the HTTP Timeout terminal, you must ensure that the
sequence of nodes that you connect to the HTTP Timeout terminal includes an
HTTPReply node, which sends a response before this interval expires.

Terminals and properties:
When you have put an instance of the HTTPInput node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view.

The terminals of the HTTPInput node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs.

Out The output terminal to which the message is routed if it is successfully retrieved.

Chapter 14. Reference 4477

Terminal Description

HTTPTimeoutThe output terminal to which a timeout fault message is routed if the HTTPReply node that is
connected to the Out terminal does not respond within the time interval specified by the Maximum
client wait time property. This terminal is used only if the execution group has been configured so
that HTTP nodes use the embedded execution group listener.

Catch The output terminal to which the message is routed if an exception is thrown downstream and caught
by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The HTTPInput node Description properties are described in the following table.

Property M C Default Description

Node name No No The node type,
HTTPInput

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message
flow.

The HTTPInput node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Path suffix
for URL

Yes Yes This property identifies the location from where web
service requests are retrieved. Do not use the full URL.
If the URL that you want is http://hostname[:port]/
[path], specify either /path or /path fragment/* where
* is a wildcard that you can use to mean match any.

URLSpecifier

Use HTTPS No Yes Cleared This property identifies whether the node is to accept
secure HTTP. If the node is to accept secure HTTP,
select the check box.

useHTTPS

The HTTPInput node Advanced properties are described in the following table.

PropertyM C DefaultDescription mqsiapplybaroverride command property

Set
destination
list

No No SelectedThis property specifies whether to add the
method binding name to the route to label
destination list. If you select this check box,
the method binding name is added so that
you can use a RouteToLabel node in the
message flow after the HTTPInput node.

4478 WebSphere Message Broker Version 7.0.0.8

PropertyM C DefaultDescription mqsiapplybaroverride command property

Label
prefix

No No None The prefix to add to the method name when
routing to label. Add a label prefix to avoid
a clash of corresponding label nodes when
you include multiple WebSphere Message
Broker input nodes in the same message
flow. By default, there is no label prefix,
therefore the method name and label name
are identical.

Parse
Query
String

No No False This property causes any query string that is
present with an incoming message to be
parsed and decoded (according to
http://tools.ietf.org/html/rfc3986) into
the following location in the local
environment as a series of name-value
elements that match the names and values
present in the query string:

LocalEnvironment.HTTP.Input.QueryString

For example, for this query string:

?myParam1=my%22Value%221&myParam2=my%22Value%222
the following elements are placed into the
local environment under the QueryString
folder:

myParam1 with a value of my"Value"1
myParam2 with a value of my"Value"2

If the QueryString uses a character set that is
not UTF-8, you can use the
MQSI_HTTP_QUERY_STRING_CCSID
environment variable to specify the CCSID
of the QueryString. For example, if your
HTTPRequest node has a QueryStringCCSID
of 943, you can set
MQSI_HTTP_QUERY_STRING_CCSID to 943
to convert the query string parameters to the
943 code page.

Decompress
input
message

No Yes ClearedThis property indicates whether an inbound
HTTP request is decompressed or not. This
property is used only if the execution group
has been configured so that HTTP nodes use
the embedded execution group HTTP
listener.

If this option is selected, and the HTTP
header Content-Encoding field is "gzip" or
"deflate", the input message is
decompressed and propagated to the Out
terminal, and the Content-Encoding field is
removed.

decompressInputMessage

The HTTPInput node Input Message Parsing properties are described in the
following table.

Chapter 14. Reference 4479

Property M C Default Description

Message
domain

No No BLOB The domain that is used to parse the incoming message. If you leave this field
blank, the default value is BLOB. Select the name of the parser that you are
using from the list:
v MRM
v XMLNSC
v XMLNS
v MIME
v BLOB
v XML (this domain is deprecated; use XMLNSC)
v JSON

You can also specify a user-defined parser, if appropriate.

Message
set

No No The name or identifier of the message set in which the incoming message is
defined. All available message sets are in the list.

If you are using the MRM parser or the XMLNSC parser in validating mode,
select the Message set that you want to use. This list is populated with
available message sets when you select MRM or XMLNSC as the domain.

If you set this property, then later update the project dependencies to remove
this message set reference, a warning is issued. Either update the Message set
property, or restore the reference to this message set project.

Message
type

No No The name of the incoming message.

If you are using the MRM parser, select the type of message from the list in
Message type. This list is populated with messages that are defined in the
Message set that you have selected.

Message
format

No No The name of the physical format of the incoming message.

If you are using the MRM parser, select the format of the message from the list
in Message format. This list includes all the physical formats that you have
defined for this Message set.

The properties of the Parser Options for the HTTPInput node are described in the
following table.

Property M C Default Description

Parse
timing

No No On
Demand

This property controls when an input message is parsed. Valid values are On
Demand, Immediate, and Complete.

By default, this property is set to On Demand, which causes parsing of the
message to be delayed. To cause the message to be parsed immediately, see
“Parsing on demand” on page 4173.

Build tree
using XML
schema
data types

No No Cleared This property controls whether the XMLNSC parser creates syntax elements
in the message tree with data types taken from the XML schema. You can
select this property only if you set the Validate property on the Validation
tab to Content or Content and Value.

Use
XMLNSC
compact
parser for
XMLNS
domain

No No Cleared This property controls whether the XMLNSC Compact Parser is used for
messages in the XMLNS Domain. If you set this property, the message data is
displayed under XMLNSC in nodes that are connected to the output terminal
when the input MQRFH2 header or the input message Parsing property
Message domain is XMLNS.

4480 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Retain
mixed
content

No No Cleared This property controls whether the XMLNSC parser creates elements in the
message tree when it encounters mixed text in an input message. If you
select the check box, elements are created for mixed text. If you clear the
check box, mixed text is ignored and no elements are created.

Retain
comments

No No Cleared This property controls whether the XMLNSC parser creates elements in the
message tree when it encounters comments in an input message. If you select
the check box, elements are created for comments. If you clear the check box,
comments are ignored and no elements are created.

Retain
processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates elements in the
message tree when it encounters processing instructions in an input message.
If you select the check box, elements are created for processing instructions. If
you clear the check box, processing instructions are ignored and no elements
are created.

Opaque
elements

No No Blank This property is used to specify a list of elements in the input message that
are to be opaquely parsed by the XMLNSC parser. Opaque parsing is
performed only if validation is not enabled (that is, if Validate is None);
entries that are specified in Opaque Elements are ignored if validation is
enabled.

The HTTPInput node Error handling properties are described in the following
table.

Property M C Default Description mqsiapplybaroverride
command property

Maximum
client wait
time (sec)

Yes Yes 180 The length of time, in seconds, for which the TCP/IP
listener that received the input message from the web
service client waits for a response from the HTTPReply
node in the message flow. The valid range is zero
(which means a short wait) through (231)-1. If a
response is received within this time, the listener
propagates the response to the client. If a response is
not received in this time, a fault message is generated
indicating that the timeout has expired. This fault
message is either sent by the listener or timeout
terminal processing.

For more details about the HTTP Timeout terminal, see
“Connecting the terminals” on page 4477 and
“Terminals and properties” on page 4477.

Fault
format

No Yes SOAP 1.1 The format of any HTTP errors that are returned to the
client. Valid values are SOAP 1.1, SOAP 1.2, and HTML.

faultFormat

The Validation properties of the HTTPInput node are described in the following
table. If a message is propagated to the Failure terminal of the node, it is not
validated. For more details, see “Validating messages” on page 1478 and
“Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes
place. Valid values are None, Content and Value, and
Content.

validatemaster

Chapter 14. Reference 4481

Property M C Default Description mqsiapplybaroverride
command property

Failure
action

No No Exception This property controls what happens if validation
fails. You can set this property only if you set
Validate to Content or Content and Value. Valid
values are User Trace, Local Error Log, Exception,
and Exception List.

The Security properties of the HTTPInput node are described in the following
table. Set values for the properties that control the extraction of an identity from a
message when a security profile is associated with the node. For more information
about these properties, see “Identity” on page 390, “Configuring the extraction of
an identity or security token” on page 447, “Message flow security overview” on
page 383, and “Setting up message flow security” on page 431

Property M C Default Description

Identity
token
type

No No None This property specifies the type of identity token that is present in the incoming
message. Valid values are:

v Transport Default

v Username

v Username + Password

v SAML Assertion

v X.509 Certificate

If this property is not specified, the identity is retrieved from the Basic-Auth
transport header and the type is set to Username + Password.

Identity
token
location

No No None This property specifies where, in the message, the identity can be found. The
location is specified as an ESQL field reference, an XPath expression, or a string
literal. If you use a string literal, it must be enclosed in single quotation marks and
must not contain a period (.), If this property is not specified, the identity is
retrieved from the Authorization Transport headers.

Identity
password
location

No No None This property specifies where, in the message, the password can be found. The
location is specified as an ESQL field reference, an XPath expression, or a string
literal. If you use a string literal, it must be enclosed in single quotation marks and
must not contain a period (.), If you do not specify a value for this property, the
password is retrieved from the Authorization Transport headers. You can set this
property only if the Identity type is set to Username + Password.

Identity
IssuedBy
location

No No None This property specifies a string or path expression that describes the issuer of the
identity.

The location is specified as an ESQL field reference, an XPath expression, or a
string literal. If you use a string literal, it must be enclosed in single quotation
marks and must not contain a period (.), The value specifies the Issuer that is
passed to a WS-Trust v1.3 STS provider.

If you do not specify a value for this property, the default value is the name of the
User Agent, or, if this name is not set, the string HTTP.

Treat
security
exceptions
as normal
exceptions

No No False This property specifies whether to treat security exceptions (such as Access
Denied) as normal exceptions, and propagate them to the Failure terminal (if
wired). This option is turned off by default, which ensures that security exceptions
cause the message to be backed out even if the Failure terminal is wired.

The Monitoring properties of the node are described in the following table.

4482 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“ESQL field references” on page 2381
An ESQL field reference is a sequence of period-separated values that identify a
specific field (which might be a structure) within a message tree or a database
table.
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
“HTTP headers” on page 1583
When an HTTPInput or HTTPRequest node receives a message, it parses the HTTP
headers to create elements in the message tree. When an HTTPReply or
HTTPRequest node sends a message, it parses the HTTP headers from the message
tree into a bit stream.
“Using compression with HTTP and SOAP nodes” on page 1597
You can configure HTTP and SOAP nodes to use HTTP compression and
decompression when sending and receiving messages.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Configuring HTTPInput and HTTPReply nodes to use SSL (HTTPS)” on page 535
Configure the HTTPInput and HTTPReply nodes to communicate with other
applications that use HTTPS by creating a keystore file, configuring the broker or
execution group to use SSL, and creating a message flow to process HTTPS
requests.
“Resolving problems when you use HTTP and SOAP nodes” on page 3407
Use the advice given here to help you to resolve common problems that can arise
when you develop Web Services message flows that contain HTTP and SOAP
nodes.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined

Chapter 14. Reference 4483

messages.
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
“Using timeouts with HTTP and SOAP nodes” on page 1595
Connect the HTTP Timeout terminal of the HTTPInput or SOAPInput nodes to
further nodes to process timeouts.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“HTTPReply node”
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“Input node” on page 4511
Use the Input node as an In terminal for an embedded message flow (a subflow).
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

HTTPReply node
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.

This topic contains the following sections:
v “Purpose”
v “Connecting the output terminals to another node” on page 4485
v “Terminals and properties” on page 4485

Purpose:
The HTTPReply node can be used in a message flow that sends a response to an
inbound HTTP or HTTPS messages. The most common example of this scenario is
a message flow that implements a Web service.

For more information about Web services, see “Processing Web service messages”
on page 1601.

4484 WebSphere Message Broker Version 7.0.0.8

By default, HTTP messages are handled by the broker-wide listener, which is
started when a message flow that includes HTTP nodes is started. All inbound and
outbound HTTP messages are routed through this listener, for all HTTP nodes
deployed to all message flows in all execution groups on the broker.

You can configure the execution group to use its embedded listener to service the
HTTP nodes in all message flows that are deployed to that execution group. The
embedded listener, which is always used for the SOAP nodes, communicates
directly with the client and the nodes.

For further information about using the embedded listener, see “HTTP listeners”
on page 1589.

You cannot use an HTTPReply node to respond to a Web service request that is
received by a SOAPInput node; the broker generates an exception when the reply
is attempted.

If you have configured the execution group to use its embedded listener for HTTP
nodes, you must deploy the flow that includes the HTTPReply node to the same
execution group as the message flow that includes the HTTPInput node. If your
broker is configured to start the broker-wide listener to support HTTP nodes, you
must deploy the reply flow to the same broker, but the execution group is not
significant, because the listener is shared.

The HTTPReply node constructs a reply message for the Web service client from
the entire input message tree, and returns it to the requester. If the message was
initially received by an HTTPInput node in another message flow, the response is
associated with the reply by a request identifier that is stored in the local
environment of the message by the HTTPInput node.

The HTTPReply node is contained in the HTTP drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Connecting the output terminals to another node:
Connect the Out or Failure terminal of this node to another node in this message
flow if you want to process the message further, process errors, or send the
message to an additional destination.

Terminals and properties:
When you have put an instance of the HTTPReply node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. All mandatory properties for which you must enter a value (those that do
not have a default value defined) are marked with an asterisk.

The HTTPReply node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the message is
propagated.

Chapter 14. Reference 4485

Terminal Description

Out The output terminal to which the message is routed if it has been propagated successfully, and if further
processing is required in this message flow.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file for deployment).

The HTTPReply node Description properties are described in the following table.

Property M C Default Description

Node
name

No No HTTPReply The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The HTTPReply node Basic properties are described in the following table.

Property M C Default Description

Ignore
transport
failures

Yes No Selected Select Ignore transport failures if you want transport-related failures to be
ignored (for example, if the client is disconnected). If you clear the check box,
and a transport-related error occurs, the input message is propagated to the
Failure terminal. If you clear the check box, you must supply a value for
Reply send timeout (sec).

Reply send
timeout
(sec)

Yes No 120 Set the Reply send timeout (sec) value if you are not ignoring transport
failures. This property specifies the length of time, in seconds, that the node
waits for an acknowledgment that the client has received the reply. If the
acknowledgment is received within this time, the input message is
propagated through the Out terminal to the rest of the message flow, if it is
connected. If an acknowledgment is not received within this time, the input
message is propagated through the Failure terminal, if it is connected. If the
Failure terminal is not connected, and an acknowledgment is not received in
time, an exception is generated.

The valid range is zero (which means an indefinite wait) to (231)-1. This
property is valid only if Ignore transport failures is cleared.

Generate
default
HTTP
headers
from reply
or response

Yes No Selected Select Generate default HTTP headers from reply or response if you want
the default Web service headers to be created using values from the
HTTPReplyHeader or the HTTPResponseHeader. If the appropriate header is
not present in the input message, default values are used.

The node always includes, in the HTTPReplyHeader, a Content-Length
header, which is set to the correct calculated value, even if this header was
not included in the original request.

The Validation properties of the HTTPReply node are described in the following
table.

If a message is propagated to the Failure terminal of the node, it is not validated.
For a full description of these properties, see “Validation properties” on page 4169.

4486 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Inherit This property controls whether validation takes place. Valid
values are None, Content and Value, Content, and Inherit.

validateMaster

Failure
action

No No Exception This property controls what happens if validation fails. You
can set this property only if you set Validate to Content or
Content and Value. Valid values are User Trace, Local Error
Log, Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Processing HTTP messages” on page 1579
Hypertext Transfer Protocol (HTTP) is an Internet protocol that is used to transfer
and display hypertext and XML documents on the Web.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“HTTP listeners” on page 1589
You can choose between broker-wide listeners and execution group (embedded)
listeners to manage HTTP messages in your HTTP flows. Learn about the two
types of listener, how ports are assigned to them, and how you can switch from
one to the other for individual execution groups.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.

Chapter 14. Reference 4487

“HTTPRequest node”
Use the HTTPRequest node to interact with a web service.

HTTPRequest node
Use the HTTPRequest node to interact with a web service.

This topic contains the following sections:
v “Purpose”
v “Using the HTTPRequest node to issue a request to a web service”
v “Using the HTTPRequest node in a message flow” on page 4489
v “Configuring the HTTPRequest node” on page 4491
v “Terminals and properties” on page 4496
v “Local environment overrides” on page 4501

Purpose:
The HTTPRequest node interacts with a web service, using all or part of the input
message as the request that is sent to that service. You can also configure the node
to create an output message from the contents of the input message, augmented by
the contents of the web service response, before you propagate the message to
subsequent nodes in the message flow.

Depending on the configuration, this node constructs an HTTP or an HTTP over
SSL (HTTPS) request from the specified contents of the input message, and sends
this request to the web service. The node receives the response from the web
service, and parses the response for inclusion in the output tree. The node
generates HTTP headers if they are required by your configuration.

You can use this node in a message flow that does or does not contain an
HTTPInput or HTTPReply node.

The HTTPRequest node handles messages in the following message domains:
v XMLNSC
v JSON
v BLOB
v MIME
v MRM
v XMLNS

The HTTPRequest node is contained in the HTTP drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using the HTTPRequest node to issue a request to a web service:
An HTTP request has two parts:
1. The URL of a service.
2. A stream of data that the remote server processes, then sends back a response,

which is often a SOAP or other web service message in XML.

The URL is of the format http://<address>[:<port>]/<function>; for example,
http://localhost:7080/request. This URL can be specified statically in the
HTTPRequest node parameters as a field in the message itself, or as a field in the
local environment. The data to be sent to the web service can be the whole, or a
portion of, the message tree, as specified in the HTTPRequest node properties.

4488 WebSphere Message Broker Version 7.0.0.8

The data must be in CCSID 1208 format for most requests. The reply can replace
the input message, or be inserted into the message tree; the location is specified in
the HTTPRequest node parameters. The domain for the reply is XMLNS. If the
request is successful, the HTTPResponse is inserted into the front of the message
tree, the reply placed in the specified location in the tree, and the request
propagated to the Out terminal. If the HTTPRequest node is not able to issue the
request, an ExceptionList is inserted into the message tree and the tree is
propagated to the Failure terminal.

If the request is sent successfully by the HTTPRequest node, but the web service is
not successful, the HTTPResponse is inserted into the message tree, and
propagated to the Error terminal. The error message location parameter on the
HTTPRequest node specifies where in the tree the response is placed, for example
OutputRoot.XMLNS.error. You might have to use a Compute node to cast this
response to an appropriate code page to be able to display the data, for example:

Set OutputRoot.XMLNS.error850 = CAST(InputRoot.XMLNS.error.BLOB as CHAR CCSID 850);

For information about HTTP, see Hypertext Transfer Protocol - HTTP/1.1. For
more information about HTTP return codes, see HTTP Response codes.

You can specify a timeout interval, so that if the request takes longer than the
specified duration, the request is propagated to the Failure terminal with an
appropriate message. For each request that the HTTPRequest node processes, it
opens a connection, and then closes it when the response is returned. If the
timeout interval is specified, the socket is closed after the interval. This closure
ensures that a request gets only the correct response, and any response data for a
request that has timed out is discarded.

You can use the HTTP proxy to route a request through an intermediate site. You
can run tools as a proxy to see the request and the response, and therefore debug
your flows. The HTTP destination is as seen by the proxy; if you specify the HTTP
destination of localhost, and the HTTP proxy is running on a different computer,
the request is routed to the remote proxy computer, not the computer from which
the original request was issued.

Using the HTTPRequest node in a message flow:
The HTTPRequest node can be used in any message flow that must send an HTTP
request. The most common example is a message flow that calls a web service.

For more information about web services, see “Processing Web service messages”
on page 1601.

Handling errors

The node interacts directly with an external service using TCP/IP; it can, therefore,
experience the following types of error:
v Errors that are generated by TCP/IP, for example no route to host or

connection refused.
If the node detects these errors, it generates an exception, populates the
exception list with the error information that is received, and routes the input
message unchanged to the Failure terminal.

v Errors that are returned by the web server. These errors are represented by
HTTP status codes that are outside the range 100 - 299. If the node detects these
errors, it routes the reply to the Error terminal while following the properties
specified on the Error tab.

Chapter 14. Reference 4489

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6

The reply is produced as a BLOB message because the node cannot determine in
what format the reply will be. If you have not configured this node to handle
redirection, messages with a redirection status code (3xx) are also handled in the
same way.

HTTP Response Codes

The HTTPRequest node treats the 100 series status codes as a 'continue' response,
discards the current response, and waits for another response from the web server.

The 200 series status codes are treated as success, the settings on the various tabs
on the node determine the format of the output message that is generated, and the
response is routed to the Out terminal of the node.

The 300 series status codes are for redirection. If the Follow HTTP(s) Redirection
property is selected, the node resends the request to the new destination that is
specified in the response that is received. If the Follow HTTP(s) Redirection
property is not selected, the codes are treated as an error, as described in “Using
the HTTPRequest node to issue a request to a web service” on page 4488. For more
information about HTTP return codes, see HTTP Response codes.

The 400 and 500 series status codes are errors, and are treated as described in
“Using the HTTPRequest node to issue a request to a web service” on page 4488.
For more information about HTTP return codes, see HTTP Response codes.

Manipulating headers

If you select Replace input message with web-service response or Replace input
with error, the header for the input message (the header that belongs to the
message when it arrives at the In terminal of the HTTPRequest node) is not
propagated with the message that leaves the HTTPRequest node. However, if one
of the properties that specify a location in the message tree is specified, the input
message headers are propagated.

The HTTPResponse header, which contains the headers that are returned by the
remote web service, is the first header in the message (after Properties) that is
propagated from the node. This action is taken regardless of the options that are
selected. Therefore, for the reply from the HTTPRequest node to be put to a
WebSphere MQ queue, manipulate the headers so that an MQMD is the first
header (after Properties).

If you are replacing the input message with a response, you can copy the input
message MQMD to the Environment tree before the HTTPRequest node, and then
copy it back into the message tree after the HTTPRequest node. If you are
specifying a location for the response, in order to maintain existing input message
headers, you must move or remove the HTTP Response header so that the MQMD
is the first header.

The following example contains ESQL that removes the HTTPHeader:
SET OutputRoot = InputRoot;
SET OutputRoot.HTTPResponseHeader = NULL;

The following example contains ESQL for moving the HTTPHeader, and therefore
preserving the information that it provides:

4490 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6

SET OutputRoot = InputRoot;
DECLARE HTTPHeaderRef REFERENCE TO OutputRoot.HTTPResponseHeader;
DETACH HTTPHeaderRef;
ATTACH HTTPHeaderRef TO OutputRoot.MQMD AS NEXTSIBLING;

Configuring the HTTPRequest node:
When you have put an instance of the HTTPRequest node into a message flow,
you can configure the node; see . The properties of the node are displayed in the
Properties view.

All mandatory properties, for which you must enter a value, are marked with an
asterisk.

Configure the HTTPRequest node:
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab:

a. The HTTPRequest node determines the URL for the web service to which it
sends a request. Select one of the following three options; the node checks
these in the order shown (that is, the first always overrides the second, the
second overrides the third):
1) X-Original-HTTP-URL in the HTTPRequest header in the input message
2) LocalEnvironment.Destination.HTTP.RequestURL in the input message
3) The Web service URL property
The first two options provide dynamic methods to set a URL for each input
message as it passes through the message flow. To use either of these
options, include a Compute node in the message flow, before the
HTTPRequest node, to create and initialize the required value.
The third option provides a value that is fixed for every message that is
received in this node. Set this property to contain a default setting that is
used if the other fields have not been created, or contain a null value. If
either field contains a value, the setting of this property is ignored. The Web
service URL property must contain a valid URL or the deployment fails.
Ensure that the value that you set in X-Original-HTTP-URL or the
LocalEnvironment.Destination.HTTP.RequestURL is also a valid URL; if it is
not, the node uses the default setting from the Web service URL property.
If a URL begins http://, the request node makes an HTTP request to the
specified URL. If the URL begins https://, the request node makes an
HTTP over SSL (HTTPS) request to the specified URL, using the parameters
that are specified on the SSL tab for the node.

b. Set the value of the Request timeout (sec) property, which is the length of
time, in seconds, that the node waits for a response from the web service. If
a response is received within this time, the reply is propagated through the
Out terminal to the rest of the message flow. If a response is not received
within this time, the input message is propagated through the Failure
terminal, if it is connected. If the Failure terminal is not connected, and a
response is not received in this time, an exception is generated.

3. On the HTTP Settings tab:
a. In HTTP(S) proxy location, set the location of the proxy server to which

requests are sent.
b. Select Follow HTTP(S) redirection to specify how the node handles web

service responses that contain an HTTP status code of 300 to 399:

Chapter 14. Reference 4491

v If you select the check box, the node follows the redirection that is
provided in the response, and reissues the web service request to the new
URL (included in the message content).

v If you clear the check box, the node does not follow the redirection
provided. The response message is propagated to the Error terminal.

c. Select one of the options for the HTTP version property. Valid values are:
1.0 or 1.1.
If you select the HTTP version property value 1.1, you can also select
Enable HTTP/1.1 keep-alive.

d. Select one of the options for the HTTP method property. Valid values are:
POST, GET, PUT, DELETE, and HEAD.

e. Select one of the options for the Use compression property to specify the
compression of the content of the HTTP request. You can select gzip, zlib
(deflate), deflate or none. The value zlib (deflate) represents RFC 1950
and RFC 1951 combined, and deflate represents RFC 1951 only. The default
value is none, meaning that the content of the request is not compressed.

4. On the SSL tab, if you want to use HTTP over SSL (HTTPS) requests, set the
values for HTTPS requests:
a. Specify the Protocol property that you want to use to make the request.

Both ends of an SSL connection must agree on the protocol to use.
Therefore, the selected protocol must be one that the remote server can
accept. The following options are available:
v SSL. This option is the default. This option tries to connect using the

SSLv3 protocol first, but enables the handshake to fall back to the SSLv2
protocol where the SSLv2 protocol is supported by the underlying JSSE
provider.

v SSLv3. This option tries to connect with the SSLv3 protocol only. Fallback
to SSLv2 is not possible.

v TLS. This option tries to connect with the TLS protocol only. Fallback to
SSLv3 or SSLv2 is not possible.

v TLSv1.0. This option attempts to connect with the TLS v1.0 protocol only.
Fallback to SSLv3 or SSLv2 is not allowed.

v TLSv1.1. This option attempts to connect with the TLS v1.1 protocol only.
Fallback to SSLv3, SSLv2, or TLSv1.0 is not allowed.

v TLSv1.2. This option attempts to connect with the TLS v1.2 protocol only.
Fallback to SSLv3, SSLv2, TLSv1.0, or TLSv1.1 is not allowed.

v SSL_TLS. This option enables all SSL v3.0 and TLS v1.0 protocols. Fallback
to SSLv2 is not allowed.

v SSL_TLSv2. This option enables all SSL v3.0 and TLS v1.0, v1.1, and v1.2
protocols. Fallback to SSLv2 is not allowed.

b. Set the Allowed SSL ciphers property. Use this setting to specify a single
cipher (such as SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA) or a list of
ciphers that are the only ones used by the connection. This set of ciphers
must include one or more that are accepted by the remote server. A comma
is used as a separator between the ciphers. The default value is an empty
string, which enables the node to use any, or all, of the available ciphers
during the SSL connection handshake. This method gives the greatest scope
for making a successful SSL connection.

5. On the Response Message Parsing tab, set values for the properties that
describe the message domain, message set, message type, and message format
that the node uses to determine how to parse the response message returned

4492 WebSphere Message Broker Version 7.0.0.8

by the web service. If an error message is returned by the web service, the
values of these properties are ignored, and the message is parsed by the BLOB
parser.
a. In Message domain, select the name of the parser that you are using from the

list. If the field is blank, the default value is BLOB. Choose from the
following options:
v XMLNSC
v JSON
v BLOB
v MIME
v MRM
v XMLNS
You can also specify a user-defined parser, if appropriate.

b. If you are using the MRM or IDOC parser, or the XMLNSC parser in
validating mode, select the Message set that you want to use. This list is
populated with available message sets when you select MRM, XMLNSC, or
IDOC as the domain.

c. If you are using the MRM parser, select the correct message type from the
list in Message type. This list is populated with available message types
when you select the MRM parser.

d. If you are using the MRM or IDOC parser, select the correct message format
from the list in Message format. This list is populated with available
message formats when you select the MRM or IDOC parser.

6. On the Parser Options subtab:
a. Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see
“Parsing on demand” on page 4173.

b. If you are using the XMLNSC parser, set values for the properties that
determine how the XMLNSC parser operates. For more information, see
“Manipulating messages in the XMLNSC domain” on page 2546.

7. On the Error Handling tab, set values for the properties that determine how an
error message returned by the web service is handled:
a. For the whole web service error message to be propagated as the output

message, leave Replace input with error selected (the default setting).
For the web service error message to be included in the output message
with part of the input message content, clear Replace input with error and
set the Error message location property. If you clear this property, the
node copies the input message to the output message and writes the web
service error message over the output message content at the specified
location (the input message itself is not modified).

b. In the Error message location field, enter the start location (within the
output message tree) at which the parsed elements from the web service
error message bit stream are stored. This property is required only if you
have cleared Replace input with error.
You can enter any valid ESQL field reference, including expressions within
the reference and new field references (to create a node in the message tree
for the response). For example, enter:
OutputRoot.XMLNSC.ABC.DEF

or
Environment.WSError

If you select Replace input with error, this property is ignored.

Chapter 14. Reference 4493

8. On the Advanced tab, set values for the Advanced properties that describe the
structure and content of the web service request and response:
a. Specify the content of the request message that is sent to the web service:
v For the request message to be the whole input message body, leave Use

whole input message as request selected (the default setting).
For the request message to contain a subset of the input message, clear
Use whole input message as request and set the Request message
location in tree property.

v In the Request message location in tree field, enter the start location from
which the content of the input message tree is copied to the request
message. This property is required only if you have cleared Use whole
input message as request. The node creates a request message and copies
the specified parts of the input message (the input message itself is not
modified).
You can enter any valid ESQL field reference, including expressions
within the reference. For example, enter:
InputRoot.XMLNSC.ABC

If you select Use whole input message as request, this property is
ignored.

When the appropriate message tree content is parsed to create a bit stream,
the message properties (Message domain, Message set, Message type, and
Message format) that are associated with the input message body and stored
in the Properties folder are used.

b. Specify the content of the output message that is propagated to the next
node in the message flow:
v For the whole web service response message to be propagated as the

output message, leave Replace input message with web-service
response selected (the default setting).
For the web service response message to be included in the output
message with part of the input message content, clear Replace input
message with web-service response and set the Response message
location in tree property. If you clear this property, the node copies the
input message to the output message and writes the web service response
message over the output message content at the specified location (the
input message itself is not modified).

v In the Response message location in tree field, enter the start location
(within the output message tree) at which the parsed elements from the
web service response message bit stream are stored. This property is
required only if you have cleared Replace input message with
web-service response.
You can enter any valid ESQL field reference, including expressions
within the reference, and including new field references (to create a node
in the message tree for the response). For example, enter:
OutputRoot.XMLNSC.ABC.DEF

or
Environment.WSReply

If you select Replace input message with web-service response, this
property is ignored.

4494 WebSphere Message Broker Version 7.0.0.8

When the response bit stream is parsed to create message tree contents, the
message properties (Message domain, Message set, Message type, and
Message format), that you have specified in the Response Message Parsing
properties of the node, are used.

c. For the node to generate an HTTPRequestHeader for the request message,
leave Generate default HTTP headers from input selected (the default
setting).
If you do not want the node to generate an HTTPRequestHeader for the
request message, clear Generate default HTTP headers from input. To
control the contents of the HTTPRequestHeader that is included in the
request message, include a Compute node that adds an
HTTPRequestHeader to the input message before this HTTPRequest node in
the message flow, and clear this check box.
v If you have selected Generate default HTTP headers from input and the

input message includes an HTTPRequestHeader, the HTTPRequest node
extracts web service headers from the input HTTPRequestHeader and
adds any unique web service headers, except Host (see the following
table), that are present in an HTTPInputHeader, if one exists in the input
message. (An HTTPInputHeader might be present if the input message
has been received from a web service by the HTTPInput node.)
The HTTPRequest node also adds the web service headers shown in the
following table, with default values, if these are not present in the
HTTPRequestHeader or the HTTPInputHeader.

Header Default value

SOAPAction "" (empty string)

Content-Type text/xml; charset=ccsid of the message body

Unless the input message is in the JSON domain, where the
default is:

application/json; charset=ccsid of the message body

Host The host name to which the request is to be sent.

The HTTPRequest node also adds the optional header Content-Length
with the correct calculated value, even if this value is not present in the
HTTPRequestHeader or the HTTPInputHeader.

v If you have selected Generate default HTTP headers from input and the
input message does not include an HTTPRequestHeader, the
HTTPRequest node extracts web service headers, except Host, from the
HTTPInputHeader (if it is present in the input message). The
HTTPRequest node adds the required web service headers with default
values, if these values are not present in the HTTPInputHeader.

v If you have cleared Generate default HTTP headers from input and the
input message includes an HTTPRequestHeader, the node extracts all web
service headers present in the input HTTPRequestHeader. The node does
not check for the presence of an HTTPInputHeader in the input message,
and it does not add the required web service headers if they are not
supplied by the input HTTPRequestHeader.

v If you have cleared Generate default HTTP headers from input and the
input message does not include an HTTPRequestHeader, no web service
headers are generated. The HTTPRequest node does not check for the
presence of an HTTPInputHeader in the input message and does not add
any required web service header. The request message is propagated to

Chapter 14. Reference 4495

the web service without an HTTPRequestHeader. This action typically
causes an error to be generated by the web service, unless the web service
is configured to handle the message contents.

If you have selected Use compression or Accept compressed responses by
default, the Content-Encoding and Accept-Encoding HTTP header fields are
populated regardless of whether you have selected Generate default HTTP
headers from input:
v If the value of Use compression is not the default of None, the

Content-Encoding HTTP header is populated with this value, and the bit
stream is compressed. If the Content-Encoding header is already present
in an existing HTTP header, this field is updated with the value of the
Use compression property. If the existing Content-Encoding header
already starts with the named compression function, then no further
compression takes place. If the Content-Encoding header starts with
deflate, then no compression takes place irrespective of whether ZLIB
(deflate)or deflate is selected.

v If you have selected Accept compressed responses, the Accept-Encoding
field is populated. If this field is already present in an existing HTTP
header, the existing value overrides the property on the node. However, if
a compressed response is received, it is not decompressed.

d. Select the Accept compressed responses by default property to indicate
whether the request accepts compressed responses. If you select this option,
the request can receive responses with a Content-Encoding of gzip or
deflate. If such a response is received, the content is decoded and the
Content-Encoding header is removed. If the Request Header does not
contain an Accept-Encoding header then selecting this option sets the
Accept-Encoding header to "gzip, deflate".

9. On the Validation tab, set Validation properties if you want the parser to
validate the body of response messages against the Message set. (If a message
is propagated to the Failure terminal of the node, it is not validated.) These
properties do not cause the input message to be validated. It is expected that, if
such validation is required, the validation has already been performed by the
input node or a preceding validation node.
For more details see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Connecting the output terminals to another node

Connect the Out, Error, or Failure terminal of this node to another node in this
message flow to process the message further, to process errors, or to send the
message to an additional destination. If you do not connect the Error terminal, the
message is discarded. If you do not connect the Failure terminal, the broker
provides default error processing, see “Handling errors in message flows” on page
2823.

Terminals and properties:
The HTTPRequest node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected during processing in
the node.

Out The output terminal to which the message is routed if it represents successful completion of the
web service request, and if further processing is required within this message flow.

4496 WebSphere Message Broker Version 7.0.0.8

Terminal Description

Error The output terminal to which messages that include an HTTP status code that is not in the range
200 through 299, including redirection codes (3xx) if you have not set the property Follow HTTP(s)
redirection property, is routed.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk on the panel if you
must enter a value when no default is defined); the column headed C indicates
whether the property is configurable (you can change the value when you add the
message flow to the broker archive file to deploy it).

The HTTPRequest node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type,
HTTPRequest

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the message
flow.

The HTTPRequest node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Web service
URL

Yes Yes The URL for the web service. You must provide this in
the form http://hostname[:port]/[path] where
v http://hostname must be specified.
v port has a default of 80. If you specify a value, you

must include the : before the port number.
v path has a default of /. If you specify a value, you

must include the / before the path.

URLSpecifier

Request
timeout (sec)

Yes Yes 120 The time in seconds that the node waits for a response
from the web service. The valid range is 1 through
(231)-1. You cannot enter a value that represents an
unlimited wait. The timeout might take up to one
second longer than the specified value.

timeoutForServer

The HTTPRequest node HTTP Settings properties are described in the following
table.

Property M C Default Description mqsiapplybaroverride
command property

HTTP(S)
proxy
location

No Yes The proxy server to which requests are sent. This
value must be in the form hostname:port.

httpProxyLocation

Follow
HTTP(S)
redirection

No No Cleared If you select the check box, redirections are
followed. If you clear this check box, redirections
are not followed.

HTTP version No Yes 1.0 The HTTP version to use for requests. Valid
values are 1.0 and 1.1.

httpVersion

Chapter 14. Reference 4497

Property M C Default Description mqsiapplybaroverride
command property

Enable
HTTP/1.1
keep-alive

No Yes Selected (if
HTTP
version is
1.1)

Use HTTP/1.1 Keep-Alive. enableKeepAlive

HTTP
method

No No POST The HTTP method. Valid values are POST, GET,
PUT, DELETE, and HEAD. By default, the
HTTPRequest node uses the HTTP POST method
when it connects to the remote web server. HEAD is
used to determine whether a service is available -
for example, by a Network Dispatcher trying to
work out which servers are available - and sends
back the correct headers (including
content-length) but no body data.

Use
compression

No Yes None This property controls whether the content of the
HTTP request is compressed. You can choose a
value from none, gzip, zlib (deflate), and
deflate. If the request is compressed, the
Content-Encoding header is set to indicate that
the content is compressed.

zlib (deflate) represents RFC 1950 + RFC 1951
combined.

deflate represents RFC 1951 only.

requestCompressionType

The HTTPRequest node SSL properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Protocol No Yes SSL The SSL protocol to use when making an HTTPS
request.

protocol

Allowed SSL
ciphers

No Yes A comma-separated list of ciphers to use when
making an SSL request. The default value of an
empty string means use all available ciphers.

allowedCiphers

Perform
hostname
checking

No Yes No This property specifies whether the host name of the
server that is receiving the request must match the
host name in the SSL certificate.

hostnameChecking

The HTTPRequest node Response Message Parsing properties are described in the
following table.

Property M C Default Description

Message
domain

No No BLOB The domain that is used to parse the message that is received from
the web service. If the field is blank then the default is BLOB.

Message set No No The name or identifier of the message set in which the response
message is defined.

If you set this property, and then update the project dependencies
to remove this message set reference, a warning is issued. Either
update the Message set property, or restore the reference to this
message set project.

Message type No No The name of the response message.

4498 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
format

No No The name of the physical format of the response message.

The HTTPRequest node Parser Options properties are described in the following
table.

Property M C Default Description

Parse timing No No On Demand This property controls when a response message is parsed.
Valid values are On Demand, Immediate, and Complete.

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using
XML schema data
types

No No Cleared This property controls whether the XMLNSC parser creates
syntax elements in the message tree with data types taken
from the XML schema. You can select this property only if you
set the Validate property on the Validation tab to Content or
Content and Value.

Use XMLNSC
compact parser for
XMLNS domain

No No Cleared This property controls whether the XMLNSC Compact Parser
is used for messages in the XMLNS Domain. If you set this
property, the response message data is displayed under
XMLNSC in nodes that are connected to the output terminal
when the input MQRFH2 header or Response Message Parsing
properties Domain is XMLNS.

Retain mixed
content

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text in
a response message. If you select the check box, elements are
created for mixed text. If you clear the check box, mixed text is
ignored and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments in
a response message. If you select the check box, elements are
created for comments. If you clear the check box, comments
are ignored and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in a response message. If you select the check box,
elements are created for processing instructions. If you clear
the check box, processing instructions are ignored and no
elements are created.

Opaque elements No No Blank This property is used to specify a list of elements in the
response message that are to be opaquely parsed by the
XMLNSC parser. Opaque parsing is performed only if
validation is not enabled (that is, if the Validate property is
set to None); entries that are specified in Opaque Elements are
ignored if validation is enabled.

The HTTPRequest node Error Handling properties are described in the following
table.

Property M C Default Description

Replace input with
error

No No Selected If you select this check box, the input message content is
replaced by the error message content. If you clear this check
box, you must specify Error message location.

Chapter 14. Reference 4499

Property M C Default Description

Error message
location

Yes No OutputRoot The start location at which the parsed elements from the web
service error bit stream are stored. This property takes the form
of an ESQL field reference.

The HTTPRequest node Advanced properties are described in the following table.

Property M C Default Description mqsiapplybaroverride command
property

Use whole
input
message as
request

No No Selected If you select this check box, the whole
input message body is to be passed to
the web service. If you clear this check
box, you must select Request message
location in tree.

Request
message
location in
tree

Yes No InputRootThe start location from which the bit
stream is created for sending to the web
service. This property takes the form of
an ESQL field reference.

Replace
input
message
with
web-service
response

No No Selected If you select this check box, the web
service response message replaces the
copy of the input message as the
content of the output message that is
created. If you clear this check box, you
must select Response message location
in tree.

Response
message
location in
tree

Yes No OutputRootThe start location at which the parsed
elements from the web service response
bit stream are stored. This property
takes the form of an ESQL field
reference.

Generate
default
HTTP
headers
from input

No No Selected If you select this check box, an
HTTPRequestHeader is generated. If
you clear this check box, a valid
HTTPRequestHeader must exist in the
input message.

Accept
compressed
responses
by default

No Yes Cleared This property indicates whether the
request node handles compressed
responses by default. If the request
header does not contain an
Accept-Encoding header and this option
is selected, the node sets the
Accept-Encoding header to "gzip,
deflate", and any compressed response
that is received is decompressed by the
node.

If the message propagated to the
Request node includes an
Accept-Encoding header, the message
flow or client application should handle
any compressed response. Therefore
selecting this option has no effect in
that case.

acceptCompressedResponses

The HTTPRequest node Validation properties are described in the following table.

4500 WebSphere Message Broker Version 7.0.0.8

For a full description of these properties see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place.
Valid values are None, Content and Value, Content,
and Inherit.

validateMaster

Failure
action

No No ExceptionThis property controls what happens if validation
fails. You can set this property only if you set
Validate to Content or Content and Value. Valid
values are User Trace, Local Error Log, Exception,
and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Local environment overrides:
You can dynamically override set values in the local environment in the same way
as setting values in other elements of a message. The following values can be set
under LocalEnvironment.Destination.HTTP.

Setting Description

RequestURL Overrides the Web service URL property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.RequestURL = ’http://ibm.com/abc/’;

Timeout Overrides the Request timeout (sec) property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.Timeout = 42;

TimeoutMillis Overrides the Request timeout (sec) property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.TimeoutMillis = 5000;

This property defines the timeout in milliseconds. The value of TimeoutMillis overrides
the value for Timeout if both values are set.

ProxyURL Overrides the HTTP(S) proxy location property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.ProxyURL = ’my.proxy’;

RequestLine.RequestURI Overrides the RequestURI, which is the path after the URL and port. For example:

SET OutputLocalEnvironment.Destination.HTTP.RequestLine.RequestURI = ’/abc/def’;

RequestLine.HTTPVersion Overrides the HTTP version property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.RequestLine.HTTPVersion = ’HTTP/1.1’;

KeepAlive Overrides the Enable HTTP/1.1 keep-alive property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.KeepAlive = TRUE;

RequestLine.Method Overrides the HTTP method property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.RequestLine.Method = ’GET’;

Chapter 14. Reference 4501

Setting Description

SSLProtocol Overrides the SSLProtocol. For example:

SET OutputLocalEnvironment.Destination.HTTP.SSLProtocol = ’TLS’;

Valid values are: SSL, SSLv3, TLS, TLSv1, TLSv1.1, TLSv1.2, SSL_TLS, and SSL_TLSv2

SSLCiphers Overrides the Allowed SSL Ciphers property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.SSLCiphers =
’SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA’;

ProxyConnectHeaders Specifies additional headers that are used if the outbound request is an SSL connection
through a proxy. These additional headers are sent with the initial CONNECT request to
the proxy. For example, you can send proxy authentication information to a proxy server
when you are using SSL. You can send multiple headers but each one must be separated
by a carriage return and a line feed (ASCII 0x0D 0x0A), in accordance with RFC2616; for
example:

DECLARE CRLF CHAR CAST(X’0D0A’ AS CHAR CCSID 1208);
SET OutputLocalEnvironment.Destination.HTTP.ProxyConnectHeaders =
’Proxy-Authorization: Basic Zm5lcmJsZTpwYXNzd29yZA==’ || CRLF ||
’Proxy-Connection: Keep-Alive’ || CRLF;

This setting is used only if the request is an SSL request through a proxy server. To send
proxy authentication information for a non-SSL request, specify the individual headers in
the HTTPRequestHeader folder, as shown in the following example:

SET OutputRoot.HTTPRequestHeader."Proxy-Authorization" =
’Basic Zm5lcmJsZTpwYXNzd29yZA==’;
SET OutputRoot.HTTPRequestHeader."Proxy-Connection" = ’Keep-Alive’;

UseFolderMode Sets the UseFolderMode. Use for bitstream generation; for certain parsers this changes the
output bitstream. For example:

SET OutputLocalEnvironment.Destination.HTTP.UseFolderMode = TRUE;

QueryString Allows the setting of outbound query string parameters. Each parameter must be set
individually. For example:

SET OutputLocalEnvironment.Destination.HTTP.QueryString.param1 = ’my"Value"1’;
SET OutputLocalEnvironment.Destination.HTTP.QueryString.param2 = ’my"Value"2’;

The above ESQL results in the following query string being encoded (according to
http://tools.ietf.org/html/rfc3986) and sent with the outbound request:

?param1=my%22Value%221¶m2= my%22Value%222

If the destination URL already has one or more query parameters, additional parameters
specified here are appended to the existing list.

QueryStringCCSID Specifies that, before encoding, the query string parameters must be converted into a
character set other than the default, which is UTF-8. Any query string parameters are
first converted into the specified CCSID before the resulting string is encoded, according
to RFC3986. For example:

SET OutputLocalEnvironment.Destination.HTTP.QueryStringCCSID = 943;

The above ESQL results in any QueryString parameters being converted to the 943 code
page before they are encoded. Note: Any query string parameters must contain the data
in unicode.

Compression Overrides the Use compression property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.Compression =
’gzip’;

4502 WebSphere Message Broker Version 7.0.0.8

http://tools.ietf.org/html/rfc3986

Working with WrittenDestination data

After the request has been made, the WrittenDestination folder in the local
environment is updated with the URI to which the request was sent and
compression details (if used). A WrittenDestination for an HTTPRequest node has
the following format, with Compression present only if it is used:
WrittenDestination = (

HTTP = (
RequestURL = ’http://127.0.0.1:7800/HTTPFLOW’ (CHARACTER)
Compression = (
OriginalSize = 53 (INTEGER)
CompressedSize = 71 (INTEGER)

)
)

)

Related concepts:
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“ESQL field references” on page 2381
An ESQL field reference is a sequence of period-separated values that identify a
specific field (which might be a structure) within a message tree or a database
table.
“EndpointLookup node output” on page 1894
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).
“Using compression with HTTP and SOAP nodes” on page 1597
You can configure HTTP and SOAP nodes to use HTTP compression and
decompression when sending and receiving messages.
Related tasks:
“Configuring authentication with HTTP basic authentication” on page 451
Use a security profile to configure HTTP basic authentication in the HTTPRequest
or SOAPInput nodes.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:

Chapter 14. Reference 4503

“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“HTTPReply node” on page 4484
Use the HTTPReply node to return a response from the message flow to an HTTP
client. This node generates the response to an HTTP client from which the input
message was received by the HTTPInput node, and waits for confirmation that it
has been sent.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“ASBITSTREAM function” on page 5224
The ASBITSTREAM field function generates a bit stream for the subtree of a given
field according to the rules of the parser that owns the field.
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.

IMSRequest node
Use the IMSRequest node to send a request to run a transaction on a local or
remote IMS system, and wait for a response. IMS Connect must be configured and
running on the IMS system.

This topic contains the following sections:
v “Purpose”
v “Using the IMSRequest node in a message flow” on page 4505
v “Terminals and properties” on page 4506

Purpose:
The following example illustrates a situation in which you would use an
IMSRequest node.

WebSphere Message Broker can be used to expose an existing target IMS banking
application as a Web Service. For example, the IMS application provides
transactions that operate on a database that contains information about customers'
bank accounts. In this example, the Web service consumer sends a SOAP message
across HTTP to WebSphere Message Broker and synchronously waits for the
response. The WebSphere Message Broker message flow transforms the SOAP
message to IMS format (including the LLZZ and transaction code fields), then
sends that bit stream to IMS. The message flow waits for a response. IMS
schedules the destination program and queues the request data for that program.
The target program accesses the customer account database, builds a response

4504 WebSphere Message Broker Version 7.0.0.8

message that consists of the account statement, and returns it to the WebSphere
Message Broker message flow. The message flow transforms the IMS format to a
SOAP format and sends that SOAP response back across HTTP to the Web service
consumer.

The IMSRequest node is contained in the IMS drawer of the message flow node
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Using the IMSRequest node in a message flow:
The IMSRequest node sends requests to IMS by using IMS Connect. The node
takes the incoming message's bit stream and sends it to IMS. It then receives a bit
stream, which it passes to the response parser. The bit stream that is sent to IMS
must conform to the format that is shown in the following diagram:

LL ZZ Transacton name Rest of data

The message flow that contains the IMSRequest node ensures that the message that
is received by the IMSRequest node has this structure where:
v LLZZ is a four-byte field. The first two bytes indicate the length of the bit

stream, and the other two bytes are reserved for use by IMS.
v For request segments, the transaction code must follow. The transaction code can

contain up to eight characters; if it contains less than eight characters, the
transaction code must be delimited by a space. The response segments do not
need to have the transaction name, but an IMS program can add it.

v The rest of the data comprises anything else that the IMS program needs.

The IMS program produces many messages. You can receive all messages as a
single transmission bit stream, or you can receive them separately. Each message
can contain multiple segments; all segments for each message are returned at the
same time.

The IMSRequest node has two modes of operation, which you specify by selecting
or clearing the Use connection properties defined on node check box. If you
select the check box, all properties are taken from the node by using the following
properties in the node connection details section:
v Hostname
v Port number
v Data store name

If you clear the Use connection properties defined on node check box, all
connection details are retrieved from the configurable services. However, if the
Security identity property is set, the security identity on the configurable service
is ignored and the value of the node property is used instead.

The IMSRequest node can also use an identity that is present on an input message,
and propagate it to IMS, by using the Propagate property on the security profile
that is defined for the node. For more information, see “Propagating security
credentials to IMS” on page 2144.

View the following sample to see how to use this node:

Chapter 14. Reference 4505

v IMS Synchronous Request

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Using configurable services for IMS nodes

You can configure IMS nodes to get connection details from a configurable service.
For details about creating, changing, reporting, and deleting the configurable
services, see “Changing connection information for the IMSRequest node” on page
732.

Terminals and properties:
When you have put an instance of the IMSRequest node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. All mandatory properties for which you must enter a value (those that do
not have a default value defined) are marked with an asterisk.

The IMSRequest node terminals are described in the following table.

Terminal Description

In The input terminal that receives the message that triggers the node.

Out The output terminal to which the node sends a message after it has been received from the external
resource. The message is sent to the terminal unchanged, except for some added status information.

Failure If an error occurs in the IMSRequest node, the message is sent to the Failure terminal.

Timeout The output terminal to which the message is sent if a timeout occurs. The input message is propagated
to this terminal with an exception list that describes the timeout. If the Timeout terminal is not
connected and a timeout occurs, the message is routed to the Failure terminal. A timeout can occur in
either of the following situations:
v The IMS program has not responded by the time the execution timeout has expired. The execution

timeout is configured by using the Timeout waiting for a transaction to be executed property on
the IMSRequest node.

v WebSphere Message Broker has not received the response across the TCP/IP network by the time the
socket timeout expires. You can configure the socket timeout on the configurable service.

The following tables describe the node properties. The columns headed M indicate
whether the property is mandatory (marked with an asterisk on the panel if you
must enter a value when no default is defined); the columns headed C indicate
whether the property is configurable (you can change the value when you add the
message flow to the BAR file to deploy it).

The IMSRequest node Description properties are described in the following table.

Property M C Default Description

Node name No No The node type,
IMSRequest

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

4506 WebSphere Message Broker Version 7.0.0.8

The IMSRequest node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Use
connection
properties
defined on
node

No Yes Selected If you select this check box, the connection properties that
are defined on the node are used instead of a configurable
service and security identity that are defined on the broker.

If you clear this check box, you must set the Configurable
service and Security identity properties.

Hostname Yes Yes The IP address or host name of the computer that is
running the target IMS Connect system. This property is
mandatory if the Use connection properties defined on
node check box is selected and can be set only if the Use
connection properties defined on node check box is
selected.

hostname

Port
number

Yes Yes 0 The port number on which IMS Connect is listening for
TCP/IP connections. You can obtain the port number from
the IMS Connect job log on the IMS system. This property
is mandatory only if the Use connection properties
defined on node check box is selected and can be set only
if the Use connection properties defined on node check
box is selected.

portNumber

Data store
name

Yes Yes The name of the data store that IMS Connect is using. This
value must match the ID parameter of the Datastore
statement that is specified in the IMS Connect
configuration member. This name also serves as the XCF
member name for IMS during internal XCF
communications between IMS Connect and IMS OTMA.
You can obtain the data store name from the IMS Connect
job log on the IMS system. This property is mandatory
only if the Use connection properties defined on node
check box is selected and can be set only if the Use
connection properties defined on node check box is
selected.

dataStoreName

Timeout
waiting for
a
transaction
to be
executed

No No 60 The time (in seconds) that the node waits for IMS to
process a transaction. If IMS fails to process a transaction
in this time, the node issues an exception, but the
connection is not closed.

You can set this property only if the Use connection
properties defined on node check box is selected. If the
check box is cleared, the ExecutionTimeoutSec property on
the configurable service is used.

Configurable
service

Yes Yes The configurable service from which to get the connection
details. All connection details are obtained from the
configurable service, except for security information, which
is obtained from the Security identity property.

This property is mandatory if the Use connection
properties defined on node check box is cleared, and can
be set only if the Use connection properties defined on
node is cleared.

configurableService

Chapter 14. Reference 4507

Property M C Default Description mqsiapplybaroverride
command property

Security
identity

No Yes An
empty
string

The security identity to look up in the broker to get the
user name and password to use. You use the
mqsisetdbparms command to set the security identity on
the broker. The default value for this property is an empty
string, which signifies that the user ID and password are
not passed to IMS Connect.

securityIdentity

The IMSRequest node Advanced properties are described in the following table.

Property M C Default Description

Commit
mode

Yes No 1: SEND_THEN_COMMIT The commit mode to use when processing IMS transactions.
Available values are:

v 1: SEND_THEN_COMMIT: (the default value) The transaction is
processed using commit mode 1 in IMS. The request
transaction is run and data is sent back to the node. After the
node acknowledges that it has received the response, the
transaction is committed. You cannot process the response
before it is committed. The node sends the response after the
acknowledgment is sent to IMS.

v 0: COMMIT_THEN_SEND: The transaction is processed using
commit mode 0 in IMS. The request transaction is run and
committed before data is sent back to the node. The node
waits for all response messages to be returned before it
continues processing.

Sync level Yes No 1: CONFIRM The synchronization level to use when processing IMS
transactions. If Commit mode is set to 0, the Sync level is
automatically set to 1: CONFIRM. If Commit mode is set to 1, the
Sync level property can have either of the following values:
v 1: CONFIRM: (the default value) The node sends an

acknowledgment to IMS after it receives the replies. The node
then sends the response after the acknowledgment is sent to
IMS. If you set the Sync level to 1: CONFIRM, the IMS
program is blocked until the IMSRequest node acknowledges
the transaction output, which might affect performance.

v 0: NONE: The node does not send any acknowledgments. This
value is applicable only when Commit mode is set to 1.

Typically, Sync level can be set to 0: NONE for read-only types
of interactions, such as queries, which do not need an
acknowledgment. However, for critical transactions that involve
updates and deletions, it is important to be able to acknowledge
the output from IMS. If the acknowledgment is not received (for
example, because of a connection failure between WebSphere
Message Broker and IMS Connect), the transaction is backed
out, avoiding the need for a compensation transaction.

The IMSRequest node Request properties are described in the following table.

Property M C Default Description

Data
Location

Yes No $Body The location in the incoming message tree from which data is retrieved to
form the request that is sent from the IMSRequest node to IMS. The
default value, $Body, represents the incoming message body. You can enter
any XPath or ESQL expression that defines the location of the message tree
to serialize and send to IMS.

4508 WebSphere Message Broker Version 7.0.0.8

The IMSRequest node Result properties are described in the following table.

Property M C Default Description

Output data
location

No No $OutputRoot The message tree location to which the IMSRequest node copies the
response message tree in the outgoing message assembly. The default
value, $OutputRoot, replaces the incoming message with the response.

Copy local
environment

No No Selected This property controls whether to copy the incoming local environment or
propagate the incoming local environment. By default, this check box is
selected, which signifies that the local environment is copied so that the
incoming local environment is preserved. The additions to the local
environment are visible only to nodes downstream of this node. If this
check box is cleared, the incoming local environment is used for the
outgoing message. Any modifications that are made to the local
environment by this node are visible to both downstream and upstream
nodes after this node has completed.

The IMSRequest node Response Message Parsing properties are described in the
following table.

Property M C Default Description mqsiapplybaroverride
command property

Message
domain

No No The domain to use to parse the message from
the external resource's supplied bit stream.

Message
set

No No Set
automatically

The name of the message set in which the
incoming message is defined.

If you set this property, then subsequently
update the project dependencies to remove
this message set reference, a warning is
issued. Either update the Message set
property, or restore the reference to this
message set project.

Message
type

No No The name of the response message.

Message
format

No No The name of the physical format of the
response message.

Message
coded
character
set ID

Yes No EBCDIC
(500)

The ID of the coded character set that is used
to interpret bytes of the data that is being
read. Valid values are EBCDIC (500) and
Broker System Default.

messageCodedCharSetIdProperty

Message
encoding

Yes No Big Endian,
with S390
Floating
Point (785)

The encoding scheme for numbers and large
characters that is used to interpret bytes of the
data that is being read. Valid values are:
v Little Endian, with IEEE Floating Point

(546)
v Big Endian, with IEEE Floating Point (273)
v Big Endian, with S390 Floating Point (785)
v Broker System Determined

For more information about encoding, see
“Data conversion” on page 1151.

messageEncodingProperty

The IMSRequest node Parser Options properties are described in the following
table.

Chapter 14. Reference 4509

Property M C Default Description

Parse timing Yes No On Demand This property controls when a response message is
parsed. Valid values are On Demand, Immediate, and
Complete.

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using XML
schema data types

Yes No Cleared This property controls whether the XMLNSC parser
creates syntax elements in the message tree with data
types taken from the XML Schema. You can select this
property only if you set the Validate property on the
Validation tab to Content or Content and Value.

Use XMLNSC compact
parser for XMLNS
domain

Yes No Cleared This property controls whether the XMLNSC Compact
Parser is used for messages in the XMLNS Domain. If
you set this property, the response message data
appears under XMLNSC in nodes that are connected to
the output terminal when the input MQRFH2 header
or Response Message Parsing properties Domain is
XMLNS.

Retain mixed content Yes No Cleared This property controls whether the XMLNSC parser
creates elements in the message tree when it encounters
mixed text in a response message. If you select the
check box, elements are created for mixed text. If you
clear the check box, mixed text is ignored and no
elements are created.

Retain comments Yes No Cleared This property controls whether the XMLNSC parser
creates elements in the message tree when it encounters
comments in a response message. If you select the
check box, elements are created for comments. If you
clear the check box, comments are ignored and no
elements are created.

Retain processing
instructions

Yes No Cleared This property controls whether the XMLNSC parser
creates elements in the message tree when it encounters
processing instructions in a response message. If you
select the check box, elements are created for
processing instructions. If you clear the check box,
processing instructions are ignored and no elements are
created.

Opaque elements No No Blank This property is used to specify a list of elements in the
response message that are to be opaquely parsed by the
XMLNSC parser. Opaque parsing is performed only if
validation is not enabled (that is, if Validate is None);
entries that are specified in Opaque Elements are
ignored if validation is enabled.

The IMSRequest node Validation properties are described in the following table.

For a full description of these properties see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate Yes Yes None This property controls whether validation takes place. Valid
values are None, Content and Value, Content, and Inherit.

validateMaster

4510 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Failure
action

Yes No Exception This property controls what happens if validation fails. You
can set this property only if you set Validate to Content or
Content and Value. Valid values are User Trace, Local
Error Log, Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“IBM Information Management System (IMS)” on page 2129
IMS is a message-based transaction manager and hierarchical-database manager for
z/OS. External applications can use transactions to interact with applications that
run inside IMS.
“IMS nodes” on page 2130
WebSphere Message Broker message flows use IMS nodes to call programs that are
running in IMS.
Related tasks:
“Preparing the environment for IMS nodes” on page 731
Before you can use the IMS nodes, you must set up the broker runtime
environment so that you can access the IMS system.
“Changing connection information for the IMSRequest node” on page 732
You can create a configurable service that the IMSRequest node or message flow
refers to at run time for connection information, instead of defining the connection
properties on the node or the message flow. The advantage being that you can
change the host name, performance, and security values without needing to
redeploy your message flow.
“Resolving problems when you use IMS nodes” on page 3419
Advice for dealing with common problems that can arise when you develop
message flows that contain IMS nodes.
Related reference:
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Input node
Use the Input node as an In terminal for an embedded message flow (a subflow).

This topic contains the following sections:
v “Purpose” on page 4512
v “Using this node in a message flow” on page 4512
v “Terminals and properties” on page 4512

Chapter 14. Reference 4511

Purpose:
You can use a subflow for a common task that can be represented by a sequence of
message flow nodes. For example, you can create a subflow to increment or
decrement a loop counter, or to provide error processing that is common to a
number of message flows.

You must use an Input node to provide the In terminal to a subflow; you cannot
use a standard input node (a built-in input node such as MQInput, or a
user-defined input node).

When you have started your subflow with an Input node, you can connect it to
any In terminal on any message flow node, including an Output node.

You can include one or more Input nodes in a subflow. Each Input node that you
include provides a terminal through which to introduce messages to the subflow. If
you include more than one Input node, you cannot predict the order in which the
messages are processed through the subflow.

The Input node is contained in the Construction drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

When you select and include a subflow in a message flow, it is represented by the
following icon:

When you include the subflow in a message flow, this icon shows a terminal for
each Input node that you include in the subflow, and the name of the terminal
(which you can see when you hold the mouse pointer over it) matches the name of
that instance of the Input node. Give your Input nodes meaningful names that you
can recognize easily when you use their corresponding terminal on the subflow
node in your message flow.

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Error Handler

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the Input node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.

The Input node terminals are described in the following table.

Terminal Description

Out The input terminal that delivers a message to the subflow.

4512 WebSphere Message Broker Version 7.0.0.8

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Input node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type,
Input.

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“Output node” on page 4626
Use the Output node as an out terminal for an embedded message flow (a
subflow).

Chapter 14. Reference 4513

JavaCompute node
Use the JavaCompute node to work with messages by using the Java language.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Specifying Java” on page 4515
v “Terminals and properties” on page 4516

Purpose:
By using this node, you can complete the following tasks:
v Use Java to examine an incoming message and, depending on its content,

propagate it unchanged to one of the two output terminals of the node. The
node behaves in a similar way to a Filter node, but uses Java instead of ESQL to
determine which output terminal to use.

v Use Java to change part of an incoming message and propagate the changed
message to one of the output terminals.

v Use Java to create and build a new output message that is totally independent of
the input message.

The Java code that is used by the node is stored in an Eclipse Java project.

The JavaCompute node is contained in the Transformation drawer of the palette,
and is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
The JavaCompute node uses the same execution model as Java user-defined nodes
and therefore the restrictions and assumptions associated with Java user-defined
nodes also apply to Java code developed for JavaCompute nodes; see “Creating a
message processing or output node in Java” on page 3062. Only one instance of the
JavaCompute node is created regardless of the number of threads running against
the flow (either as a result of additional instances or multiple input nodes).
Therefore all of your user Java code must be threadsafe and reentrant. For more
information, see “User-defined extensions execution model” on page 2981 and
“Threading considerations for user-defined extensions” on page 2978.

Double-click the JavaCompute node to open the New Java Compute Node Class
wizard. The wizard guides you through the creation of a new Java project and a
Java class that contains some skeleton code. This skeleton code is displayed in a
Java editor. For more information about creating Java code for a JavaCompute
node, and for examples of the skeleton code or template that are provided, see
“Creating Java code for a JavaCompute node” on page 2629. If it is not the first
time that you have double-clicked the node, the Java code is displayed.

The MbJavaComputeNode class contains two methods that you can override:
onInitialize() and onDelete(). If you want the node to perform cleanup
operations, for example closing sockets, include an implementation of the onDelete
method:

4514 WebSphere Message Broker Version 7.0.0.8

public void onDelete()
{

// perform node cleanup if necessary
}

The onInitialize() method is called either during deployment or on broker
startup. During deployment, the method is called before deployment has been
committed. Other nodes can throw exceptions during their initialization; therefore,
the flow will fail to deploy, even if the onInitialize() method for this node
works. If your onInitialize() method throws an exception, the flow either fails to
deploy, or fails to start. Therefore, complete tasks that will always work or always
fail during the onInitialize() method. The broker does not try to start the flow
again until the broker is restarted. If you need to initialize an external connection
that might need to be retried, do so on the first message through the flow so that
the flow can retry the transaction as necessary.

Look at the following sample to see how to use this node.
v JavaCompute Node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

For instructions about the tasks that you can complete with a JavaCompute node,
see the following topics:
v Manipulating message body data
v Manipulating other parts of the message tree
v Accessing broker properties
v Accessing user-defined properties
v “Adding keywords to JAR files” on page 2660
v Interacting with databases
v “Calling an Enterprise Java Bean” on page 2666
v Handling exceptions
v Logging errors

Specifying Java:
Code Java statements to customize the behavior of the JavaCompute node. For
example, you can customize the node to create a new output message or messages,
using input message or database content (unchanged or modified), or new data.
For example, you might want to modify a value in the input message by adding a
value from a database, and store the result in a field in the output message.

Code the Java statements that you want in a Java file that is associated with the
JavaCompute node.

If a Java file does not already exist for this node, right-click the JavaCompute node
and click Open Java to create and open a new Java file in the Editor view. If the
file exists already, click Browse beside the Java Class property to display the
JavaCompute Node Type Selection window. When you type at least one character
in the Select field, matching Java classes are listed. You can use the asterisk (*) to
represent any character as part of a search string; for example, a*b. Select the
appropriate Java class and click OK.

Chapter 14. Reference 4515

Restriction: Do not try to create another instance of a JavaCompute node from
Java code; this is not supported.

Terminals and properties:
When you have put an instance of the JavaCompute node into a message flow, you
can configure it; see . To associate an instance of a JavaCompute node with a Java
class, configure the node's properties. The properties of the node are displayed in
the Properties view. All mandatory properties for which you must enter a value
(those that do not have a default value defined) are marked with an asterisk.

The JavaCompute node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected during the
computation. (Even if the Validate property is set, messages that are propagated to the Failure
terminal of the node are not validated.)

Out The output terminal to which the transformed message is routed.

Alternate An alternative output terminal to which the transformed message can be routed, instead of to the Out
terminal.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the JavaCompute node are described in the following
table.

Property M C Default Description

Node name No No The node type:
JavaCompute

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message
flow.

The Basic properties for the JavaCompute node are described in the following
table.

Property M C Default Description

Java class Yes No None The name of the Java class that is used in this node. This name must be
displayed in the list of Java classes that are available in the project references
for the message flow project.

To select a file that already exists, click Browse. When you type at least one
character in the Select field, matching Java classes are listed. You can use the
asterisk (*) to represent any character as part of a search string; for example,
a*b. Select the appropriate Java class and click OK.

4516 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Java
classloader
service

No Yes None The name of the JavaClassLoader configurable service that is used in this node.
If no name is specified, and a if JavaClassLoader configurable service with the
same name as the execution group exists, it is used in this node. Otherwise, no
JavaClassLoader configurable service is used.

All the nodes in an execution group that specify the same JavaClassLoader
configurable service use the same instance of the classloader. Consequently all
the nodes use the same in-memory version of the classes, including access to
the same static variables.

For more information, see “JavaCompute node classloading” on page 2635.

The Parser Options properties for the JavaCompute node are described in the
following table.

Property M C Default Description

Use XMLNSC
Compact Parser
for XMLNS
Domain

No No Cleared Setting this property causes the outgoing MQRFH2 to specify the
XMLNS instead of XMLNSC parser, allowing an external application to
remain unchanged. If outgoing messages do not contain MQRFH2
headers, this property has no effect.

The Validation properties of the JavaCompute node are described in the following
table.

Set the validation properties to define how the message that is produced by the
JavaCompute node is validated. These properties do not cause the input message
to be validated. It is expected that, if such validation is required, the validation has
already been performed by the input node or a preceding validation node. For
more details, see “Validating messages” on page 1478 and “Validation properties”
on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place, and
what part of the message is validated. Valid values are
None, Content and Value, Content, and Inherit.

validateMaster

Failure
action

No No Exception This property controls what happens if a validation failure
occurs. You can set this property only if Validate is set to
Content or Content and Value. Valid values are User Trace,
Local Error Log, Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related tasks:

Chapter 14. Reference 4517

“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Creating Java code for a JavaCompute node” on page 2629
Use these instructions to associate Java code with your JavaCompute node.
“Writing Java” on page 2638
When you create a message flow, you include input nodes that receive messages
and, optionally, output nodes that send out new or updated messages. If the
message processing requires it, you can include other nodes after the input node
that are customized in Java to complete the actions that your applications need.
“Accessing broker properties from the JavaCompute node” on page 2658
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your Java programs. It can be useful, during
the run time of your code, to have real-time access to details of a specific node,
flow, or broker.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“Simple type logical value constraints” on page 5450
The properties, and their permissible values, vary according to the object type.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
Related information:
Java user-defined extensions API

4518 WebSphere Message Broker Version 7.0.0.8

JDEdwardsInput node
Use the JDEdwardsInput node to interact with a JD Edwards EnterpriseOne server.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4520

Purpose:
Use the JDEdwardsInput node to interact with JD Edwards EnterpriseOne
applications. For example, a JDEdwardsInput node monitors a JD Edwards
EnterpriseOne server for a specified event. When that event occurs, the
JDEdwardsInput node generates a message tree that represents the business object
with the new event details. The message tree is propagated to the Out terminal so
that the rest of the message flow can use the data to update other systems, or audit
the changes.

The JDEdwardsInput node is contained in the WebSphere Adapters drawer of the
message flow node palette, and is represented in the WebSphere Message Broker
Toolkit by the following icon:

Using this node in a message flow:
To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mqsichangebroker command. For more information,
see “mqsichangebroker command” on page 3723.

Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment (as described in “Adding
external software dependencies for JD Edwards EnterpriseOne” on page 2090).

To function correctly, the JDEdwardsInput node needs an adapter component (see
“Connecting to an EIS by using the Adapter Connection wizard” on page 2037),
which you set by using the Adapter component node property, and business object
definitions, which are stored in the message set that you reference from the node.
For this reason, you must provide a message set. By default, the message that is
propagated from the JDEdwardsInput node is in the DataObject domain, therefore
the Message domain property is set to DataObject. You cannot specify a different
domain. The message type is detected automatically by the node.

The JDEdwardsInput node populates the route to label destination list with the
name of the method binding. If you add a RouteToLabel node to the message flow
after the JDEdwardsInput node, the RouteToLabel node can use the name of the
method binding to route the message to the correct part of the message flow for
processing.

You can deploy only one input node that uses a particular adapter component to
an execution group, but you can deploy many input nodes that use different
adapter components to an execution group.

Chapter 14. Reference 4519

You can use the mqsisetdbparms command in the following format to configure an
account name with a user name and password for the Adapter for JD Edwards
EnterpriseOne.
mqsisetdbparms broker name -n adapter name -u user name -p password

For example:
mqsisetdbparms BRK1 -n eis::JDEdwardsCustomerInbound.inadapter -u jdedwardsuid -p ********

Using configurable services for JD Edwards nodes

JD Edwards nodes can get JD Edwards connection details from either the adapter
component or a configurable service. By using a configurable service, you can
change the connection details for an adapter without the need to redeploy the
adapter. For more details about creating, changing, reporting, and deleting the
configurable services for JD Edwards, see “Changing connection details for JD
Edwards adapters” on page 724.

Terminals and properties:
When you have put an instance of the JDEdwardsInput node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. If you double-click a JDEdwardsInput node, you open the Adapter
Connection wizard. All mandatory properties for which you must enter a value
(those properties that do not have a default value defined) are marked with an
asterisk.

The SiebelInput node terminals are described in the following table.

Terminal Description

Out Business object events from the adapter are sent to the Out terminal.

Failure If an error happens in the JDEdwardsInput node, the message is propagated to the Failure terminal.
Information about the error, and business object events can also be propagated to the Failure terminal.

Catch Business object events are sent to the Catch terminal if they cause an uncaught exception in the
message flow. If the Catch terminal is not connected, the retry process is activated to handle the
business object.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The JDEdwardsInput node Description properties are described in the following
table.

Property M C Default Description

Node
name

No No The node type,
JDEdwardsInput.

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The JDEdwardsInput node Basic properties are described in the following table.

4520 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Primary
adapter
component

Yes Yes The name of the adapter component that contains
configuration properties for the adapter. Either enter a
name of an adapter file or click Browse to select an
adapter file from the list of files that are available in
referenced message set projects.

When theJDEdwardsInput node receives data from the JD
Edwards system, it associates that data with a method
name, depending on the service operation name that is
assigned to that type of data when you run the Adapter
Connection wizard. The JDEdwardsInput node attempts
to handle methods that are defined in the primary
adapter. If the type of data that is received does not
correspond to any of the methods that are defined in the
primary adapter, the node can handle methods that are
defined in matching secondary adapters that are deployed
to the same execution group.

adapterComponent

Secondary
adapter
mode

No Yes None Specifies whether the node can handle methods that are
defined in secondary adapters.

If you set the Secondary adapter mode property to None,
the node handles only methods that are defined in the
primary adapter. If the type of data that is received does
not correspond to any of the methods that are defined in
the primary adapter, a failure occurs.

If you set this property to All adapters in execution
group, the node can handle methods that are defined in
any JD Edwards inbound adapters that are deployed to
the same execution group.

secondaryAdapterMode

The JDEdwardsInput node Routing properties are described in the following table.

Property M C Default Description

Set
destination
list

No No Selected This property specifies whether to add the method binding name to the route to
label destination list. If you select this check box, the method binding name is
added so that you can use a RouteToLabel node in the message flow after the
JDEdwardsInput node.

Label
prefix

No No The prefix to add to the method name when routing to label. Add a label prefix
to avoid a clash of corresponding label nodes when you include multiple
WebSphere Adapters input nodes in the same message flow. By default, there is
no label prefix, so the method name and label name are identical.

The JDEdwardsInput node Input Message Parsing properties are described in the
following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the incoming message. By default, the
message that is propagated from the JDEdwardsInput node is in the
DataObject domain. You cannot specify a different domain.

Chapter 14. Reference 4521

Property M C Default Description

Message
set

Yes No Set
automatically

The name of the message set in which the incoming message is defined.
This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project dependencies
to remove this message set reference, a warning is issued. Either update
the Message set property, or restore the reference to this message set
project.

Message
type

No No The name of the incoming message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the incoming message. You cannot set
this property.

The JDEdwardsInput node Transactionality properties are described in the
following table.

Property M C Default Description

Transaction
mode

No No Yes The transaction mode on this input node determines whether the rest of the
nodes in the flow operate under sync point.

The Instances properties of the JDEdwardsInput node are described in the
following table. For a full description of these properties, see “Configurable
message flow properties” on page 4020.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are obtained.
v If you select Use Pool Associated with Message Flow,

additional instances are obtained from the message flow
value.

v If you select Use Pool Associated with Node, additional
instances are allocated from the additional instances for
the node, based on the number specified in the
Additional instances property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node can start
if the Additional instances pool property is set to Use
Pool Associated with Node. By default, no additional
instances are given to the node.

additionalInstances

The JDEdwardsInput node Retry properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

No No Failure This property specifies how retry processing is handled when
a failure is rolled back to the JDEdwardsInput node.
v If you select Failure, retry processing is not performed so

you cannot set the remaining properties.
v If you select Short and long retry, retry processing is

performed first at the interval that is specified by the Short
retry interval property, and if that is unsuccessful, it is
then performed at the interval that is specified by the Long
retry interval property.

4522 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Retry
threshold

No Yes 0 The maximum number of times that retry processing is
performed for short retry.

retryThreshold

Short
retry
interval

No Yes 0 The interval between short retry attempts. shortRetryThreshold

Long
retry
interval

No Yes 0 The interval between long retry attempts. longRetryThreshold

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for JD Edwards EnterpriseOne” on page
2090
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Changing connection details for JD Edwards adapters” on page 724
JD Edwards nodes can get JD Edwards EnterpriseOne connection details from
either the adapter component or a configurable service. By using configurable
services, you can change the connection details for adapters without the need to
redeploy the adapters. To pick up new values when a configurable service is
created or modified, you must reload the broker or execution group to which the
adapter was deployed, by using the mqsistop and mqsistart commands, or the
mqsireload command.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.

Chapter 14. Reference 4523

“Resolving problems when developing message flows with WebSphere Adapters
nodes” on page 3428
Advice for dealing with common problems that can arise when you develop
message flows that contain WebSphere Adapters nodes.
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.
Related reference:
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“JDEdwardsRequest node”
Use the JDEdwardsRequest node to interact with a JD Edwards EnterpriseOne
server.

JDEdwardsRequest node
Use the JDEdwardsRequest node to interact with a JD Edwards EnterpriseOne
server.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4525

Purpose:
Use the JDEdwardsRequest node to discover JD Edwards EnterpriseOne business
functions and XML lists. For example, a user might want to retrieve address details
for a person where the record exists on a JD Edwards server.

The JDEdwardsRequest node can send and receive business data.

The JDEdwardsRequest node is contained in the WebSphere Adapters drawer of
the message flow node palette, and is represented in the WebSphere Message
Broker Toolkit by the following icon:

Using this node in a message flow:
To enable function that becomes available in WebSphere Message Broker fix packs,
use the -f parameter on the mqsichangebroker command. For more information,
see “mqsichangebroker command” on page 3723.

Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment (as described in “Adding
external software dependencies for JD Edwards EnterpriseOne” on page 2090).

To function correctly, the JDEdwardsRequest node needs an adapter component
(see “Connecting to an EIS by using the Adapter Connection wizard” on page
2037), which you set by using the Adapter component node property, and business

4524 WebSphere Message Broker Version 7.0.0.8

object definitions, which are stored in the message set that you reference from the
node. For this reason, you must provide a message set. By default, the message
that is propagated from the JDEdwardsRequest node is in the DataObject domain,
therefore the Message domain property is set to DataObject. You cannot specify a
different domain. The message type is detected automatically by the node.

The JDEdwardsRequest node supports local transactions by using the Local
Transaction Manager of the broker, and global transactions by using the external
syncpoint coordinator of the broker.

To effectively maintain the pool of connections to JD Edwards, you can set a
connection timeout value on a configurable service. For more information, see
“Configuring EIS connections to expire after a specified time” on page 726.

You can deploy several WebSphere Adapters request nodes that use the same
adapter component to an execution group.

Use the mqsisetdbparms command in the following format to configure an account
name with a user name and password for the Adapter for JD Edwards
EnterpriseOne.
mqsisetdbparms broker name -n adapter name -u user name -p password

For example:
mqsisetdbparms BRK1 -n eis::JDEdwardsCustomerOutbound.outadapter -u jdedwardsuid -p ********

Look at the following sample to see how to use this node:
v JD Edwards Connectivity

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Using configurable services for JD Edwards nodes

JD Edwards nodes can get JD Edwards connection details from either the adapter
component or a configurable service. By using a configurable service, you can
change the connection details for an adapter without the need to redeploy the
adapter. For more details about creating, changing, reporting, and deleting the
configurable services for JD Edwards, see “Changing connection details for JD
Edwards adapters” on page 724.

Terminals and properties:
When you have put an instance of the JDEdwardsRequest node into a message
flow, you can configure it; see . The properties of the node are displayed in the
Properties view. If you double-click a JDEdwardsRequest node, you open the
Adapter Connection wizard. All mandatory properties for which you must enter a
value (those properties that do not have a default value defined) are marked with
an asterisk.

The JDEdwardsRequest node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the JDEdwardsRequest node. The
JDEdwardsRequest node is driven by a message arriving on the In terminal.

Chapter 14. Reference 4525

Terminal Description

Out The output terminal from which the message tree is propagated.

Failure If an error happens in the JDEdwardsRequest node, the message is propagated to the Failure terminal.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk on the panel if you
must enter a value when no default is defined); the column headed C indicates
whether the property is configurable (you can change the value when you add the
message flow to the BAR file to deploy it).

The JDEdwardsRequest node Description properties are described in the following
table.

Property M C Default Description

Node
name

No No The node type, for
example,
JDEdwardsRequest

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The JDEdwardsRequest node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Primary
adapter
component

Yes No The name of the adapter component that contains
configuration properties for the adapter. Either enter a
name of an adapter file, or click Browse to select an
adapter file from the list of files that are available in
referenced message set projects.

When theJDEdwardsRequest node receives data from the
JD Edwards system, it associates that data with a method
name. The JDEdwardsRequest node attempts to call
methods that are defined in the primary adapter. If the
method is not defined in the primary adapter, the node
can call methods that are defined in matching secondary
adapters that are deployed to the same execution group.

Secondary
adapter
mode

No Yes None Specifies whether the node can call methods that are
defined in secondary adapters.

If you set the Secondary adapter mode property to None,
the JDEdwardsRequest node calls only methods that are
defined in the primary adapter. If the method is not
defined in the primary adapter, an error occurs.

If you set this property to All adapters in execution
group, the node can call methods that are defined in any
JD Edwards outbound adapter that is deployed to the
same execution group.

For more information, see “Calling new services from a
WebSphere Adapters request node without changing
existing deployed resources” on page 2042.

secondaryAdapterMode

4526 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Default
method

Yes Yes The default method binding to use. This property lists the
methods that are defined by the adapter. You can override
this property by setting the method name in the
LocalEnvironment.Adapter subtree. For more information,
see “Local environment tree structure” on page 1056.

The method names correspond to the Service Operation
names, which are configured by the Adapter Connection
wizard. In most cases, the names are based on the name of
the service that is being discovered.

defaultMethod

The JDEdwardsRequest node Response Message Parsing properties are described
in the following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the response message. By default, the
response message that is propagated from the JDEdwardsRequest node is in
the DataObject domain. You cannot specify a different domain.

Message
set

No No Set
automatically

The name of the message set in which the incoming message is defined. This
field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project dependencies
to remove this message set reference, a warning is issued. Either update the
Message set property, or restore the reference to this message set project.

Message
type

No No The name of the response message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the response message. You cannot set this
property.

The JDEdwardsRequest node Transactionality properties are described in the
following table.

Property M C Default Description

Transaction
mode

No No No This property specifies that updates are performed independently, not as part
of a local transaction. You cannot change this property.

The JDEdwardsRequest node Request properties are described in the following
table.

Property M C Default Description

Method
Location

Yes No $LocalEnvironment/
Adapter/MethodName

The location of the business function or XML list method that is
used to trigger the JDEdwardsRequest node to perform an
action on the external system.

Data
Location

Yes No $Body The location in the incoming message tree from which data is
retrieved to form the request that is sent from the
JDEdwardsRequest node to the EIS.

The default value, $Body, represents the incoming message
body. You can enter any XPath or ESQL expression that defines
the location of the message tree to serialize and send.

Chapter 14. Reference 4527

The JDEdwardsRequest node Result properties are described in the following table.

Property M C Default Description

Output data
location

No No $OutputRoot The message tree location to which the JDEdwardsRequest node sends
output.

The default value, $OutputRoot, replaces the incoming message with the
response.

Copy local
environment

No No Selected This property controls whether to copy the incoming local environment or
propagate the incoming local environment. By default, this check box is
selected, which signifies that the local environment is copied so that the
incoming local environment is preserved. The additions to the local
environment are visible only to nodes downstream of this node. If this
check box is cleared, the incoming local environment is used for the
outgoing message. Any modifications that are made to the local
environment by this node are visible to both downstream and upstream
nodes after this node has completed.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Overview of WebSphere Adapter for JD Edwards EnterpriseOne” on page 2023
With the WebSphere Adapter for JD Edwards EnterpriseOne, you can create
integrated processes that include the exchange of information with a JD Edwards
EnterpriseOne server, without special coding.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“WebSphere Adapters deployment” on page 3219
When you have run the Adapter Connection wizard and created a message flow,
you must deploy the resources that are generated by adding them to a broker
archive (BAR) file.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.

4528 WebSphere Message Broker Version 7.0.0.8

“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
“Calling new services from a WebSphere Adapters request node without changing
existing deployed resources” on page 2042
If your message flow acts as a gateway to an Enterprise Information System (EIS),
you can use it to call new services that did not exist when you developed the flow.
Therefore, if a new service is provided by the EIS, you do not have to modify and
retest the message flow.
“Controlling the functional level of WebSphere Message Broker” on page 51
You can control the functional level of your broker to enable new functionality
added in WebSphere Message Broker fix packs.
Related reference:
“WebSphere Adapter for JD Edwards EnterpriseOne properties” on page 4146
Reference information to refer to when you connect to a JD Edwards
EnterpriseOne application.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

JMSHeader node
Use the JMSHeader node to modify contents of the JMS Header_Values and
Application properties so that you can control the node's output without
programming.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4530

Purpose:
Use the node to control the output from a JMSOutput node. A subset of common
values can be changed in the JMS Header, and user-chosen properties can be
added, changed, or deleted for the Application properties.

For JMS Header_Values properties, the node provides a set of fields that you can
modify using predefined values, user-defined values, or XPath expressions. XPath
is used to provide a valid location from which a value for a property can be
copied. For example, the location can be the body of the message, the local
environment tree, or an exception list.

For JMS Application properties, the node provides a way to add, modify, and
delete name-value pairs of application properties.

The JMSHeader node is contained in the JMS drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:

Chapter 14. Reference 4529

Look at the following sample for more details about how to use the node:
v JMSHeader node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the node into a message flow, you can configure
it; see . This node has no mandatory properties.

JMSHeader node terminals are described in the following table:

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected
during extraction.

Out The output terminal to which the transformed message is routed if the input message
is processed successfully.

The following tables describes the node properties. The column headed M
indicates whether the property is mandatory (marked with an asterisk if you must
enter a value when no default is defined); the column headed C indicates whether
the property is configurable (you can change the value when you add the message
flow to the BAR file to deploy it).

The JMSHeader node Description properties are described in the following table:

Property M C Default Description

Node name No No JMSHeader The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The JMSHeader node JMS transport header options are described in the following
table:

4530 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

JMS
header
options

No Yes Carry
forward
header

Options to control the JMSTransport header as a whole.

Select Carry forward header to carry forward any values that are present in
an incoming message.

Select Add header to add a new header using the specified property values.
If a header already exists, the header is modified using the specified property
values. If Inherit from header is specified as a property value and the header
does not exist, the default value for the property is used.

Select Modify header to change an existing header using the specified
property values. If a header does not exist, a new header is added first. If
Inherit from header is specified as a property value and the header does not
exist, the default value for the property is used.

Select Delete header to delete the header, if it exists.
Note: The Add header and Modify header options both add a header if it
does not exist, and change a header if it does exist. However, the default
values offered by each option differ, so use the appropriate option.

The JMSHeader node JMSHeader_Value properties are described in the following
table:

Property M C Default Description
mqsiapplybaroverride
command property

JMS Delivery
Mode

No Yes Non
_Persistent

Filter messages by message delivery mode:
v Non_Persistent
v Persistent

JMS Message
Expiration(ms)

No Yes 0 Ask the JMS provider to keep the output JMS
message for a specified time. Values are in
milliseconds; the default value 0 means that
the message should not expire.

JMS Message
Priority

No Yes 4 Assign relative importance to the message. A
receiving JMS client application or a
JMSOutput node can use this value. JMS
defines a ten-level priority value, with 0 as
the lowest priority and 9 as the highest.

JMS Correlation
Identifier

No Yes No
default
value

A client can use the JMS Correlation Identifier
header field to link one message with another.
A typical use is to link a response message
with its request message.

JMS Reply To No Yes No
default
value

The JMS Reply To header field contains a
destination supplied by a client when a
message is sent. It is the destination where a
reply message should be sent to.

jmsReplyTo

The JMSHeader node Application properties are described in the following table:

Chapter 14. Reference 4531

Property M C Default Description

Application
Properties

No Yes This screen is enabled only if you chose Add header or Modify
header for JMS Transport header. The screen has no predefined
properties; you use it to create custom properties and values. Use
the property table to add new properties, or modify or delete
existing properties, for the header. There is no limit to the number
of properties. Each property must have a name, and a type qualifier.
The type qualifier can be Value, XPath, or Delete.

Value Enter a new valid value for the selected property. A null
value or empty string is also considered as a valid value.

XPath Specify a valid XPath expression. WebSphere Message
Broker supports XPath definitions that start with an XPath
variable such as $Root or $LocalEnvironment. Only the first
occurrence is returned if there are multiple values for the
XPath expression. (Examples of valid XPath expressions
are: $LocalEnvironment/Host, and $Root/HTTPRequest/
Content-Type).

Delete Specify the property to be deleted from the incoming
message. The value associated with the selected property is
also deleted.

Clear incoming
values

No Yes Cleared This option, which is is enabled only if you choose Modify header,
removes all property names and associated values from the
incoming message if present.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related tasks:
“Accessing headers” on page 2453
If the input message received by an input node includes message headers that are
recognized by the input node, the node invokes the correct parser for each header.
You can access these headers using ESQL.
Related reference:
“JMSInput node”
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.

JMSInput node
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

This topic contains the following sections:
v “Purpose” on page 4533

4532 WebSphere Message Broker Version 7.0.0.8

v “Using the JMSInput node in a message flow”
v “Making the JMS provider client available to the JMS nodes” on page 4534
v “Connecting the terminals” on page 4534
v “Configuring for coordinated transactions” on page 4535
v “Configuring for batch acknowledgment” on page 4535
v “Terminals and properties” on page 4535

Purpose:
The JMSInput node acts as a JMS message consumer and can receive all six
message types that are defined in the Java Message Service Specification, version
1.1. Messages are received by using method calls, which are described in the JMS
specification.

The JMSInput node is contained in the JMS drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using the JMSInput node in a message flow:
The following sample contains a message flow in which the JMSInput node is
used. This sample is an example of how to use the JMSInput node.
v JMS Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The JMSInput node receives and propagates messages with a JMS message tree.
You can set the properties of the JMSInput node to control the way in which the
JMS messages are received.

The JMSInput node handles messages in the following message domains:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

Message flows that handle messages that are received from connections to JMS
providers must always start with a JMSInput node. If you include an output node
in a message flow that starts with a JMSInput node, it can be any of the supported
output nodes (including user-defined output nodes); you do not have to include a
JMSOutput node. However, if you do not include a JMSOutput node, you must
include the JMSMQTransform node to transform the message to the format that is
expected by the output node.

If you are propagating JMS messages and creating a message flow to use as a
subflow, you cannot use a standard input node; you must use an instance of the
JMSInput node as the first node in order to create an In terminal for the subflow.

Chapter 14. Reference 4533

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

Restriction: When the JMSInput node receives publication topics, it internally
restricts the message flow property Additional Instances to zero to prevent the
receipt of duplicate publications.

Making the JMS provider client available to the JMS nodes:
Configurable services are defined for a number of JMS providers. You can choose
one of the predefined services, or you can create a service for a new provider, or
for one of the existing providers. The predefined services are listed in
“Configurable services properties” on page 3766.
v If you want to use the WebSphere MQ JMS provider, and you have installed

WebSphere MQ in the default location on the broker system, the properties are
already set and you do not have to change them.

v If you want to use the WebSphere MQ JMS provider, and you have installed
WebSphere MQ in a different (nondefault) location, or if you want to use one of
the other defined services, you must set the jarsURL property to identify the
location of the service JAR files on the broker system. On Windows, the file
location cannot be a mapped network drive on a remote Windows computer; the
directory must be local or on a storage area network (SAN) disk.
Use the mqsireportproperties command to view the provider properties, and
the mqsichangeproperties command to set or modify the properties.

v If no service is defined for your JMS provider, or if you want to create another
service for an existing JMS provider, use the mqsicreateconfigurableservice
command to identify the new service and to set its properties.

v When you configure the node, select the appropriate service from the list of
predefined services shown for the JMS provider name property, or type in the
name of your required service.

v Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java
class to interface with that proprietary API. For example, if the JMS nodes use
BEA WebLogic as the JMS provider, and the nodes have to participate in a
globally coordinated message flow, you must modify the configurable services
properties that are associated with that vendor. For more information, see
“Configuring the broker to enable a JMS provider's proprietary API” on page
748.

v Some JMS providers, such as the BEA WebLogic provider, do not update the
optional JMSXDeliveryCount field in the JMS message header; therefore,
JMSInput node backout processing is not possible. To cope with any failures in
the message flow, connect the Failure terminal of the JMSInput node.

v To connect to different versions of a JMS provider, create a JMSProviders
configurable service for each version of the JMS provider, then set the jarsURL
property to a unique path.

Connecting the terminals:
For each message that is received successfully, the JMSInput node routes the
message to the Out terminal. If this action fails, the message is retried. If the retry
threshold is reached, where the threshold is defined by the Backout threshold
property of the node, the message is routed to the Failure terminal. You can
connect nodes to the Failure terminal to handle this condition.

If an exception occurs in the failure path, the path is tried again until the number
of attempts is twice the Backout threshold. If that limit is exceeded, the message is
put to the Backout destination.

4534 WebSphere Message Broker Version 7.0.0.8

If you have not connected nodes to the Failure terminal, the message is written to
the Backout destination. If you have not specified a Backout destination, the
node issues a BIP4669 error message and stops processing further input.

If processing is not resumed after you restart the broker or execution group, check
the Deployment Log for a cause, such as an incorrect parser being specified in the
node properties. Correct the problem and redeploy the message flow. If the
message itself is not valid, remove the message from the input queue to resume
processing.

If the message is caught by the JMSInput node after an exception has been
generated elsewhere in the message flow, the message is routed to the Catch
terminal. If you have not connected nodes to the Catch terminal, the node backs
out messages for redelivery until the problem is resolved, or the Backout
threshold is reached. If you do not define a Backout destination, the node issues
a BIP4669 error message and stops processing further input.

Configuring for coordinated transactions:
When you include a JMSInput node in a message flow, the value that you set for
Transaction mode defines whether messages are received under sync point. See
“Configuring for coordinated JMS transactions” on page 4544.

Configuring for batch acknowledgment:
You can configure the JMSInput node to send a batch acknowledgment for receipt
of non-transactional JMS messages. See “Configuring the JMSInput node for batch
message processing” on page 751.

Terminals and properties:
When you have put an instance of the JMSInput node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. All mandatory properties that do not have a default value defined are
marked with an asterisk.

The terminals of the JMSInput node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property
is set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is retrieved successfully.

Catch The output terminal to which the message is routed if an exception is generated downstream and
caught by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the JMSInput node are described in the following
table.

Property M C Default Description

Node name No No The node type,
JMSInput

The name of the node.

Chapter 14. Reference 4535

Property M C Default Description

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The Basic properties of the JMSInput node are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Source
queue

No Yes Selected The name of the queue from which the node receives
incoming messages. If the node is to read from a
queue (point-to-point), select Source queue and enter
the name of the source queue, which is the JMS queue
that is listed in the bindings file. This property is
mutually exclusive with Subscription topic.

sourceQueueName

Subscription
topic

No Yes Cleared The name of the topic to which the node is subscribed.
If the node is to read from a Subscription topic
(publish/subscribe), select Subscription topic and
enter the name of the subscription topic.
v If you select Subscription topic, the node operates

in the publish/subscribe message domain only.
v This property is mutually exclusive with Source

queue.
v The Subscription topic name must conform to the

standards of the JMS provider that is being used by
the node.

topic

Durable
subscription
ID

No Yes The identifier for a durable subscription topic. If the
node is to receive publications from a durable
subscription topic, enter a Durable subscription ID.
v Removing a durable subscription is a separate

administration task. For information about removing
a durable subscription see the JMS provider
documentation.

v This property is valid only when a Subscription
topic string has been specified.

durableSubscriptionID

The JMS Connection properties of the JMSInput node are described in the
following table.

Property M C Default Description mqsiapplybaroverride
command property

JMS
provider
name

Yes No WebSphere MQ Select a JMS vendor name from the list, or
enter a name of your choice. When you select
a name from the list, the Initial context
factory property is updated automatically
with the relevant Java class. If you enter your
own JMS provider name, you must also enter
a value for the Initial context factory The
name must match the name of a configurable
service that is defined for the broker to which
you deploy the message flow.

4536 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Initial
context
factory

Yes Yes com.sun.jndi.fscontext.
RefFSContextFactory

The starting point for a JNDI namespace.

A JMS application uses the initial context to
obtain and look up the connection factory and
queue or topic objects for the JMS provider. If
you select a JMS provider name from the list
in JMS provider name, the Initial context
factory property is updated automatically
with the relevant Java class. If you enter your
own JMS provider name, you must also enter
a value for the Initial context factory. The
default value is
com.sun.jndi.fscontext.RefFSContextFactory,
which defines the file-based Initial context
factory for the WebSphere MQ JMS provider.

If the node is set to use your own JMS
Provider, and the corresponding Configurable
services property of the mqsichangeproperties
definition has the InitialContextFactory
attribute set, this attribute overrides the
setting on the node.

initialContextFactory

Location
JNDI
bindings

Yes Yes The system path or the LDAP location for the
bindings file. The bindings file contains
definitions for the JNDI administered objects
that are used by the JMSInput node.

When you enter a value for Location JNDI
bindings, ensure that it complies with the
following instructions:
v Construct the bindings file before you

deploy a message flow that contains a
JMSInput node.

v Do not include the file name of the
bindings file in this field.

v If you have specified an LDAP location that
requires authentication, configure the
LDAP principal (user ID) and LDAP
credentials (password) separately. These
values are configured at broker level. For
information about configuring these values,
see “mqsicreatebroker command” on page
3831 and “mqsichangebroker command” on
page 3723.

v The string value must include a supported
URL prefix that has a URL handler that is
available on the class path.

For information about constructing the JNDI
administered objects bindings file, see the JMS
provider documentation.

If the node is set to use your own JMS
Provider, and the corresponding Configurable
services property of the mqsichangeproperties
definition has the jndiBindingsLocation
attribute set, this attribute overrides the
setting on the node.

locationJndiBindings

Chapter 14. Reference 4537

Property M C Default Description mqsiapplybaroverride
command property

Connection
factory
name

Yes Yes The name of the connection factory that is
used by the JMSInput node to create a
connection to the JMS provider. This name
must exist in the bindings file. The
Connection factory name can be a JMS
QueueConnectionFactory or a JMS
TopicConnectionFactory, but it must match
the message model that is used by the node.
You can also specify the generic JMS
ConnectionFactory, which can be used for
both JMS queue or JMS topic destinations.

connectionFactoryName

Backout
destination

No Yes The JMSInput node sends input messages to
this destination when errors prevent the
message flow from processing the message,
and the message must be removed from the
input destination. The backout destination
name must exist in the bindings file.

backoutDestination

Backout
threshold

No Yes 0 The value that controls when a redelivered
message is put to the backout destination. For
example, if the value is 3, the JMS provider
attempts to deliver the message to the input
destination three times. After the third
attempted delivery, the message is removed
from the input destination and is sent to the
Backout destination.

See “Configuring the backout threshold
property” on page 4544.

The JMSInput node Input Message Parsing properties are described in the
following table.

Property M C Default Description

Message
domain

No No The domain that is used to parse the incoming message.
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

You can also specify a user-defined parser, if appropriate.

The Message domain that is set on the node takes precedence except when the
Message domain is set to blank on the node property. If Message domain is left
blank, the JMSInput node determines the message domain in one of two ways:
v By checking for the presence of data in the JMSType header value of the JMS

input message
v Based upon the Java Class of the JMS message

For more information, see “JMS message payload and appropriate parser” on page
1698.

4538 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
set

No No The name or identifier of the message set in which the incoming message is
defined. If you are using the MRM parser or the XMLNSC parser in validating
mode, select the Message set that you want to use. This list is populated with
available message sets when you select MRM or XMLNSC as the Message domain.

If you set this property, then later update the project dependencies to remove this
message set reference, a warning is issued. Either update the Message set property,
or restore the reference to this message set project.

Message
type

No No The name of the incoming message. If you are using the MRM parser, select the
message that you want from the list in Message type. This list is populated with
messages that are defined in the Message set that you have selected.

Message
format

No No The name of the physical format of the incoming message. If you are using the
MRM parser, select the format of the message from the list in Message format. This
list includes all of the physical formats that you have defined for this Message set.

The properties of the Parser Options for the JMSInput node are described in the
following table.

Property M C Default Description

Parse
timing

No No On Demand This property controls when an input message is parsed. Valid values are:
v On Demand
v Immediate
v Complete

Parse timing is, by default, set to On Demand, which causes parsing of the
message to be delayed. To cause the message to be parsed immediately, see
“Parsing on demand” on page 4173.

Build tree
using XML
schema
data types

No No Cleared This property controls whether the XMLNSC parser creates syntax elements
in the message tree with data types taken from the XML schema.

For more information about how the XMLNSC parser operates, see
“Manipulating messages in the XMLNSC domain” on page 2546.

Use
XMLNSC
compact
parser for
XMLNS
domain

No No Cleared This property controls whether the XMLNSC Compact Parser is used for
messages in the XMLNS Domain. If you set this property, the message data is
displayed under XMLNSC in nodes that are connected to the output terminal
when the input MQRFH2 header or Input Message Parsing properties
Message domain is XMLNS.

Retain
mixed
content

No No Cleared This property controls whether the XMLNSC parser creates elements in the
message tree when it encounters mixed text in an input message. If you
select the check box, elements are created for mixed text. If you clear the
check box, mixed text is ignored and no elements are created.

Retain
comments

No No Cleared This property controls whether the XMLNSC parser creates elements in the
message tree when it encounters comments in an input message. If you select
the check box, elements are created for comments. If you clear the check box,
comments are ignored and no elements are created.

Retain
processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates elements in the
message tree when it encounters processing instructions in an input message.
If you select the check box, elements are created for processing instructions. If
you clear the check box, processing instructions are ignored and no elements
are created.

Chapter 14. Reference 4539

Property M C Default Description

Opaque
elements

No No Blank This property is used to specify a list of elements in the input message that
are to be opaquely parsed by the XMLNSC parser. Opaque parsing is
performed only if validation is not enabled (that is, if Validate is None);
entries that are specified in Opaque Elements are ignored if validation is
enabled.

The Message Selectors properties of the JMSInput node are described in the
following table. Set these properties to filter messages. For a description of how to
construct the JMS message selector, see JMS message selector.

Property M C Default Description

Application
property

No No The message selector that filters messages according to the application property
value.

If the JMS provider is required to filter messages, based on message properties that
are set by the originating JMS client application, enter a selector string for
Application property, specifying both the property name and the selection
conditions; for example, OrderValue > 200.

Leave Application property blank if you do not want the input node to make a
selection based on application property.

Timestamp No No The message selector that filters messages according to the JMSTimestamp.

If the JMS provider is required to filter messages that have been generated at
specific times, enter a selector string for Timestamp, where the value is an
unqualified Java millisecond time; for example, 105757642321. Qualify the selector
with operators, such as =, BETWEEN or AND.

Leave Timestamp blank if you do not want the input node to make a selection
based on the JMSTimeStamp.

Delivery
mode

No No All The message selector that filters messages according to the message delivery mode.

If the JMS provider is required to filter messages based on the JMSDeliveryMode
header value in the JMS messages, select an option for Delivery mode from the list:
v Select Non Persistent to receive messages that are marked as nonpersistent by

the originating JMS client application.
v Select Persistent to receive messages that are marked as persistent by the

originating JMS client application.
v Select All to receive both persistent and nonpersistent messages. (This value is

the default.)

Priority No No The message selector that filters messages according to the message priority.

If the JMS provider is required to filter messages based on the JMSPriority header
value in the JMS message, enter a selector string for Priority.

Valid values for Priority are from 0 (lowest) to 9 (highest). For example, enter = 5
to receive messages of priority 5, > 4 to receive messages with a priority greater
than 4, or BETWEEN 4 AND 8 to receive messages with a priority in the range 4 - 8.

Leave Priority blank if you do not want the input node to make a selection based
on the JMSPriority.

4540 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
ID

No No The message selector that filters messages according to the message ID.

If the JMS provider is required to filter messages based on the JMSMessageID
header, enter a selector string for Message ID. For example, enter > WMBRK123456 to
return messages where the Message ID is greater than WMBRK123456.

Leave Message ID blank if you do not want the input node to make a selection
based on JMSMessageID.

Redelivered No No If the JMS provider is required to filter messages based on the JMSRedelivered
header, enter a selector string for Redelivered:
v Enter = FALSE if the input node accepts only messages that have not been

redelivered by the JMS provider.
v Enter = TRUE if the input node accepts only messages that have been redelivered

by the JMS provider.
v Leave Redelivered blank if you do not want the input node to make a selection

based on JMSRedelivered.

Correlation
ID

No No The message selector that filters messages according to the correlation ID.

If the JMS provider is required to filter messages based on the JMSCorrelationID
header, enter a selector string for Correlation ID. For example, = WMBRKABCDEFG
returns messages with a Correlation ID that matches this value.

Leave Correlation ID blank if you do not want the input node to make a selection
based on JMSCorrelationID.

The Advanced properties of the JMSInput node are described in the following
table.

Property M C Default Description

Transaction
mode

Yes No None This property controls whether the incoming message is received under external
sync point, local sync point, or out of sync point.
v Select None if the incoming message is to be treated as nonpersistent. If you

select this value, the message is received using a non-transacted JMS session
that is created using the Session.AUTO_ACKNOWLEDGE flag.

v Select Local if the JMSInput node must coordinate the commit or roll back of
JMS messages that are received by the node, along with any other resources
such as DB2 or WebSphere MQ that perform work within the message flow. If
you select this value, the node uses a transacted JMS session.

v Select Global if the JMSInput node must participate in a global message flow
transaction that is managed by the external sync point coordinator of the
Broker. The sync point coordinator is the queue manager of the Broker on
distributed systems and RRS (Resource Recovery Services) on z/OS. If you
select this value, any messages that are received by the node are globally
coordinated using an XA JMS session.

The Validation properties of the JMSInput node are described in the following
table. For more details, see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Chapter 14. Reference 4541

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place. Valid
values are:
v None
v Content and Value
v Content

If you select Content or Content and Value, select an option
from the Failure action list.

validateMaster

Failure
action

No No Exception This property controls what happens if validation fails. You
can set this property only if you set Validate to Content or
Content and Value. Valid values are:
v User Trace
v Local Error Log
v Exception (The default value)
v Exception List

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.
“JMS message transformation” on page 1684
The JMSInput and JMSOutput nodes expect JMS messages, and therefore expect a
native JMS message tree representation.
Related tasks:
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Configuring JMS and SOAP nodes to support global transactions” on page 1716
To include nodes that use JMS transport, such as the JMS and SOAP nodes, in
globally coordinated transactions, you must complete additional configuration.
“Configuring the broker to enable a JMS provider's proprietary API” on page 748
Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java class
to interface with that proprietary API.
“Connecting to different versions of the same JMS provider” on page 750
To use different versions of the same JMS provider, create a configurable service

4542 WebSphere Message Broker Version 7.0.0.8

for the JMS provider, and set the jarsURL property to a unique path.
“Configuring the broker to use SSL with JMS nodes” on page 530
Configure your broker to work with a JMS provider that supports JMS clients that
can connect by using the Secure Sockets Layer (SSL) protocol.
Related reference:
“Configuring the backout threshold property” on page 4544
You can set the backout threshold property on nodes that use JMS transport to
specify how many attempts are made to deliver the message to the input
destination.
“Configuring for coordinated JMS transactions” on page 4544
Configure your message flow to receive or output messages under coordinated
transactions.
“JMS message payload and appropriate parser” on page 1698
Configure the JMSInput node properties to specify the message domain that will
be used to parse the JMS message payload.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“JMS message selector” on page 1703
A message selector allows a JMS consumer to be more selective about the messages
that it receives from a particular topic or queue.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“JMSReply node” on page 4562
Use the JMSReply node to send messages to JMS destinations.
“JMSMQTransform node” on page 4547
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.
“MQJMSTransform node” on page 4610
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
Related information:

WebSphere MQ Version 7 Information Center online

Chapter 14. Reference 4543

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Configuring the backout threshold property:

You can set the backout threshold property on nodes that use JMS transport to
specify how many attempts are made to deliver the message to the input
destination.

If the Backout threshold is set to 0 then redelivery is not attempted. If the Backout
threshold is 1 or greater, the message will be redelivered the specified number of
times.

Set the value of Backout threshold depending on the capabilities of the JMS
provider.

If the JMS provider supports JMSXDeliveryCount, you can set the Backout threshold
to any value.

If the JMS provider does not support JMSXDeliveryCount, the Backout threshold
must only be set to 0 or 1. If the JMS provider does not support JMSXDeliveryCount
and the value is set to greater than 1, a redelivered message is repeatedly backed
out and reprocessed, and is never delivered to the backout destination.
Related reference:
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

Configuring for coordinated JMS transactions:

Configure your message flow to receive or output messages under coordinated
transactions.

When you include a node using JMS transport in a message flow, such as the
JMSInput or SOAPInput node when using JMS transport, the value that you set for
Transaction mode defines whether messages are received under sync point.
v If you set this property to Global, the message is received under external sync

point coordination; that is, within a WebSphere MQ unit of work. Any messages
that are sent later, by an output node in the same instance of the message flow,
are put under sync point, unless the output node overrides this setting explicitly.

v If you set this property to Local, the message is received under the local sync
point control of the node. Any messages that are sent later, by an output node in
the flow, are not put under local sync point, unless an individual output node
specifies that the message must be put under local sync point.

v If you set this property to None, the message is not received under sync point.
Any messages that are sent later, by an output node in the flow, are not put
under sync point, unless an individual output node specifies that the message
must be put under sync point.

4544 WebSphere Message Broker Version 7.0.0.8

To receive messages under external sync point, you must take additional
configuration steps, which need be applied only the first time that a specific node
using JMS transport is deployed to the broker for a particular JMS provider.
v On distributed systems, the external sync point coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction
mode property is set to Global or Yes, and is intended to use globally coordinated
transactions, modify the queue manager .ini file to include extra definitions for
each JMS provider resource manager that participates in globally coordinated
transactions.

– Windows

On Windows:

1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Click Add... .
5. Set the options as follows:

- Set Name to any value.
- On Windows on x86 systems, set the SwitchFile property to

install_dir\bin\JMSSwitch.dll. On Windows on x86-64 systems, set
the SwitchFile property to JMSSwitch.dll.

- Set the XAOpenString property to a string value as follows: Initial
Context,location JNDI,Optional_parms.

- Set the ThreadOfControl property to Thread.
6. On Windows on x86-64 systems only, copy the switch file JMSSwitch32.dll

to the \exits subdirectory in the WebSphere MQ installation directory,
and rename it to JMSSwitch.dll. Copy the switch file JMSSwitch.dll to the
\exits64 subdirectory in the WebSphere MQ installation directory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

– Linux

UNIX

On Linux and UNIX systems, add a stanza to the queue

manager .ini file for each JMS provider.
For example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/ JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

Where:

Name is an installation defined name that identifies a JMS provider resource
manager.

SwitchFile
is the file system path to the JMSSwitch library that is supplied in the
bin directory of the broker.

XAOpenString can have the following values:
– Initial Context is the value that is set in the JMSInput node property Initial

context factory.
– location JNDI is the value that is set in the JMSInput node property Location

JNDI bindings. This value must include a supported URL prefix that has a
URL handler that is available on the class path.

The following parameters are optional:

Chapter 14. Reference 4545

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

– LDAP Principal matches the value that is set for the broker by using the
mqsicreatebroker or mqsichangebroker commands.

– LDAP Credentials matches the value that is set for the broker by using the
mqsicreatebroker or mqsichangebroker commands.

– Recovery Connection Factory Name is the JNDI administered connection
factory that is defined in the bindings file. If a value is not specified, you
must add a default value for recoverXAQCF to the bindings file. In either case,
the Recovery Connection Factory must be defined as an XA Queue
Connection Factory for the JMS provider that is associated with the Initial
context factory.

The optional parameters are comma-separated and are positional. Therefore, any
parameters that are missing must be represented by a comma. For example:
com.sun.jndi.fscontext.RefFSContextFactory,file:/C:/webservices/SOAP/JMS/JNDIXA,,,QCF

1. Update the Java CLASSPATH environment variable for the queue manager
of the broker to include a reference to xarecovery.jar; for example:
install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the queue manager of the
broker to point to the bin directory in which the SwitchFile is located; for
example:
install_dir/bin

Finally, ensure that you have taken the following configuration steps:
– In the message flow, ensure that the coordinated property is enabled by using

the WebSphere Message Broker Archive editor.
– Ensure that each node that must be part of the XA transaction is set to the

global transaction mode.
– Ensure that the service ID that is used for the broker and the queue manager

is the same user ID.
– Ensure that the JNDI connection factory objects that the JMS nodes use for a

global transaction are configured to be of the type MQXAConnectionFactory,
MQXAQueueConnectionFactory, or MQXATopicConnectionFactory.
- If you create the bindings using WebSphere Message Broker Explorer,

ensure the Support XA Transactions option is checked when you define
your connection factory.

- If you create the bindings using JMSAdmin, use the command DEF XAQCF or
DEF XATCF, instead of DEF QCF or DEF TCF, when you define your connection
factory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

v z/OS On z/OS, the external sync point manager is Resource Recovery
Services (RRS). The only JMS provider that is supported on z/OS is WebSphere
MQ JMS. The only transport option that is supported for WebSphere MQ JMS on
z/OS is the bind option.
Sync point control for the JMS provider is managed with RRS sync point
coordination of the queue manager of the broker. You do not have to modify the
.ini file.

Related reference:
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker

4546 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

operates as a SOAP Web Services provider.
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“SOAPAsyncResponse node” on page 4777
Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest
node to construct a pair of message flows that call a Web service asynchronously.

JMSMQTransform node
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.

This topic contains the following sections:
v “Purpose”
v “Using the JMSMQTransform node in a message flow”
v “Terminals and properties”

Purpose:
You can use the JMSMQTransform node to send messages to existing message
flows and to work with WebSphere MQ JMS and WebSphere Message Broker
publish/subscribe.

The JMSMQTransform node handles messages in all supported message domains.

The JMSMQTransform node is contained in the JMS drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using the JMSMQTransform node in a message flow:
The following sample contains a message flow in which the JMSMQTransform
node is used. Look at this sample for an example of how to use the
JMSMQTransform node.
v JMS Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the JMSMQTransform node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view.

The terminals of the JMSMQTransform node are described in the following table.

Chapter 14. Reference 4547

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property
is set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the JMS
destination.

In The input terminal that accepts a message for processing by the node.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The JMSMQTransform node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node
type,
JMSMQTransform

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“MQJMSTransform node” on page 4610
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.

4548 WebSphere Message Broker Version 7.0.0.8

JMSOutput node
Use the JMSOutput node to send messages to JMS destinations.

This topic contains the following sections:
v “Purpose”
v “Using the JMSOutput node in a message flow”
v “Controlling the type of the JMS output message”
v “Sending a JMS message to a destination list” on page 4550
v “Making the JMS provider client available to the JMS nodes” on page 4550
v “Using the Message Destination Mode” on page 4551
v “Invoking an output message callback function” on page 4552
v “Working with the JMS message ID” on page 4553
v “Configuring for coordinated transactions” on page 4553
v “Connecting the terminals” on page 4555
v “Terminals and properties” on page 4555

Purpose:
The JMSOutput node acts as a JMS message producer, and can publish all six
message types that are defined in the Java Message Service Specification, version
1.1. Messages are published by using method calls, which are described in the JMS
specification.

The JMSOutput node is contained in the JMS drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using the JMSOutput node in a message flow:
The following sample contains a message flow in which the JMSOutput node is
used. Look at this sample for an example of how to use the JMSOutput node.
v JMS Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Message flows that handle messages that are received from connections to JMS
providers must always start with a JMSInput node. If you include the JMSOutput
node in a message flow, you do not need to include a JMSInput node; but if you
do not include a JMSInput node, you must include the MQJMSTransform node to
transform the message to the format that is expected by the JMSOutput node.

If you are propagating JMS messages and creating a message flow to use as a
subflow, use an instance of the JMSOutput node as the last node to create an out
terminal for the subflow.

Controlling the type of the JMS output message:
In the JMS message tree, the JMS message type is represented by the PayloadType
field of the Message_MetaData subfolder. To control the type of JMS message that
is created by the JMSOutput node, use ESQL code to set the Payload value, as
shown in the following example:
SET OutputRoot.JMSTransport.Transport_Folders.Message_MetaData.PayloadType=Payload value

Chapter 14. Reference 4549

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

For more information about the JMS message tree and payload values, see
“Representation of messages in the JMS Transport” on page 1691.

Sending a JMS message to a destination list:
To send a JMS message to a destination list, ensure that the following conditions
are met.
v Select Send to destination list in local environment on the Basic properties

tab of the JMSOutput node.
v Set up the list in the local environment, as shown in the following example.

CREATE PROCEDURE CreateJMSDestinationList() BEGIN
SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[1] = ’jndi://TestDestQueue1’;
SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[2] = ’jndi://TestDestQueue2’;
SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[3] = ’jndi://TestDestQueue3’;

END;

v Ensure that the message model (point-to-point or publish/subscribe) matches
the model that is used by the JMSOutput node. In this case, the model is
point-to-point.

v If the destination name in the list is prefixed with the string “jndi://”, it
indicates to the JMSOutput node that the value represents the name of a JNDI
administered object, which needs to be looked up. Alternatively, if the JMS
provider-specific format for a destination is known, it can be used; for example,
queue://qmgrname/queuename for WebSphere MQ. Otherwise, the value is used to
create a temporary destination.

v The items to which the JMS destination list refers represent JMS destinations that
can be either JMS queues or JMS topics. These destination types must be
consistent with the connection factory type that is specified in the JMSOutput
node that will process the destination list. For example, a JMS queue destination
can be processed by a JMS queue connection factory or a generic JMS connection
factory. Similarly, a JMS topic destination can be processed by a JMS topic
connection factory or a generic JMS connection factory.

For further information about using local environment variables in a JMSOutput
node, see “Using LocalEnvironment variables with JMSOutput and JMSReply
nodes” on page 4242.

Making the JMS provider client available to the JMS nodes:
Configurable services are defined for a number of JMS providers. You can choose
one of the predefined services, or you can create a new service for a new provider,
or for one of the existing providers. The predefined services are listed in
“Configurable services properties” on page 3766.
v If you want to use the WebSphere MQ JMS provider, and you have installed

WebSphere MQ in the default location on the broker system, the properties are
already set and you do not have to make any changes.

v If you want to use the WebSphere MQ JMS provider, and you have installed
WebSphere MQ in a different (non-default) location, or if you want to use one of
the other defined services, you must set the jarsURL property to identify the
location of the service JAR files on the broker system. On Windows, the file
location cannot be a mapped network drive on a remote Windows computer; the
directory must be local or on a Storage Area Network (SAN) disk.
Use the mqsireportproperties command to view the provider properties, and
the mqsichangeproperties command to set or modify the properties.

v If no service is defined for your JMS provider, or if you want to create another
service for an existing JMS provider, use the mqsicreateconfigurableservice
command to identify the new service and set its properties.

4550 WebSphere Message Broker Version 7.0.0.8

v When you configure the node, select the appropriate service from the list of
predefined services shown for the JMS provider name property, or type in the
name of your new service.

v Some JMS providers provide an alternative interface from the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java JAR
file to interface with that proprietary API. For example, if the JMS nodes use
BEA WebLogic as the JMS provider, and the nodes need to participate in a
globally coordinated message flow, you must modify the configurable services
properties that are associated with that vendor. For more information, see
“Configuring the broker to enable a JMS provider's proprietary API” on page
748.

v To connect to different versions of a JMS provider, create a JMSProviders
configurable service for each version of the JMS provider, then set the jarsURL
property to a unique path.

Using the Message Destination Mode:
The JMSOutput node acts as a message producer and supports the following
message scenarios:
v “Sending a datagram message”
v “Sending a reply message”
v “Sending a request message” on page 4552

For more information about how to build JMS destination lists, see “Populating
Destination in the local environment tree” on page 2467.

Sending a datagram message

A datagram is a self-contained, independent entity of data that carries sufficient
information to be routed from the source to the destination computer, without
reliance on earlier exchanges between the source and destination computer and the
transporting network. The following instructions describe how to send a datagram
message:
1. On the Basic tab, set the message destination depending on the message model

that is being used. Set one of the following properties to a valid JNDI
administered object name:
v Publication Topic

v Destination Queue

2. Leave the Reply To Destination field blank.

The node resolves the name of the JNDI administered object, which is supplied in
either the Publication topic or Destination queue property, and sends the
message to that JMS destination.

Sending a reply message

The sender of a message might want the recipient to reply to the message. In this
case, the JMSOutput message can treat the outgoing message as a reply, and route
it according to the value that is obtained from the JMSReplyTo property from the
request message. You can modify the value of the JMSReplyTo property in the
MbMessage; for example, using a Compute node or a JavaCompute node. This
action allows dynamic routing of messages from the JMSOutput node. The node
sends the message to the JMS destination name that is set in the JMSReplyTo field
of the MbMessage Tree.

Chapter 14. Reference 4551

The JMSReplyTo value in the MbMessage Tree represents the name of the JMS
Destination that is resolved from JNDI. For example:
queue://QM_mn2/myJMSQueue4

In this case, the value is the JMS-provider specific representation of a JMS
destination for the WebSphere MQ JMS provider.

If you do not want to specify a resolved JMS destination name, the JMSOutput
node can also accept a JNDI administered object name in the JMSReplyTo field.
However, the node must resolve an administered object name through JNDI before
it can route the message to the underlying JMS destination. In this case, the value
in the JMSReplyTo field must be prefixed with the string: jndi://. For example:
jndi://jmsQ4

where jmsQ4 is the name of the JNDI-administered object.

Performance might be affected when you use this method because of the need to
look up the administered object in JNDI.

Sending a request message

The JMSOutput node can send a message to a JMS destination with the expectation
of a response from the message consumer that processes the request. The following
instructions describe how to send a request message:
1. On the Basic tab, set the message destination depending on the message model

that is being used. Set one of the following properties to a valid
JNDI-administered object name:
v Publication Topic

v Destination Queue

2. The JMSReplyTo destination in the outgoing message can be derived from the
JMSReplyTo field of the MbMessage Tree that is passed to the node.
Alternatively, this value can be overridden by a JNDI-administered object name
that is set in the Reply To Destination node property.
To allow the JMSOutput node to set the JMSReplyTo property dynamically in
the outgoing message, leave the Reply To Destination field blank on the Basic
tab, and set the JMSReplyTo value in the MbMessage using a Compute node or
a JavaCompute node.

The node looks first for a value in the JMSReplyTo field of the MbMessage. If the
node finds the value, it passes this value into the JMSReplyTo field of the outgoing
message. However, if the Reply To Destination field of the Basic tab has been
specified, this value overrides anything that is set previously in the JMSReplyTo
property of the outgoing message, after first resolving the name of the
JNDI-administered object.

The node resolves the name of the JNDI-administered object that is supplied in
either Publication Topic or Destination Queue, and sends the message to that
JMS destination.

Invoking an output message callback function:
The cciOutputMessageCallback function can be registered as a callback and
invoked whenever a message is sent by a JMSOutput node. See
“cciOutputMessageCallback” on page 6626.

4552 WebSphere Message Broker Version 7.0.0.8

If the user exit state is active, the cciOutputMessageCallback function is invoked
for every output message that is sent successfully from a JMSOutput node where
the callback is registered.

If the node provides WrittenDestination information in the LocalEnvironment tree,
the callback is invoked after this information is created. See “Using
LocalEnvironment variables with JMSOutput and JMSReply nodes” on page 4242.

Working with the JMS message ID:
The JMS message ID is generated by the JMS provider when a message is sent by
the JMSOutput node. You cannot set the message ID in the message flow, but you
can use one of the following methods to obtain the generated ID after the message
has been sent:
v Connect a Compute node to the Out terminal.

Connect a Compute node to the Out terminal of a JMSOutput node and
interrogate the WrittenDestination List. For more information, see “Viewing the
logical message tree in trace output” on page 1481.
An entry for a JMSOutput node has the following format:
WrittenDestination = (

JMS = (
DestinationData = (

destinationName = ’queue://jmsQueue1’
initialContext = ’com.sun.jndi.fscontext.RefFSContextFactory’
JMSMessageID = ID:414d512054657374514d2020202020206ab98b4520017a02’
JMSCorrelationID = ’ABCDEFGHIJKLMNOPQRSTUVW’

)
)

)

v Configure a user exit to process an output message callback event. For more
information, see “Exploiting user exits” on page 2985.

Configuring for coordinated transactions:
When you include a JMSOutput node in a message flow, the value that you set for
Transaction Mode defines whether messages are sent under syncpoint.
v If you set the Transaction Mode to Global, the message is sent under external

syncpoint coordination; that is, within a WebSphere MQ unit of work. Any
messages that are sent subsequently by an output node in the same instance of
the message flow are put under syncpoint, unless the output node overrides this
setting explicitly.

v If you set the Transaction Mode to Local, the message is sent under the local
syncpoint control of the JMSOutput node. Any messages that are sent
subsequently by an output node in the flow are not put under local syncpoint,
unless an individual output node specifies that the message must be put under
local syncpoint.

v If you set the Transaction Mode to None, the message is not sent under
syncpoint. Any messages that are sent subsequently by an output node in the
flow are not put under syncpoint, unless an individual output node specifies
that the message must be put under syncpoint.

When you want to send messages under external syncpoint, you must perform
additional configuration steps, which need to be applied only the first time that a
JMSOutput or JMSInput is deployed to the broker for a particular JMS provider:
v On distributed systems, the external syncpoint coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction

Chapter 14. Reference 4553

Mode is set to Global, modify the queue manager .ini file to include extra
definitions for each JMS provider resource manager that participates in globally
coordinated transactions:

– Windows

On Windows on x86 systems:

1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Set the SwitchFile property to the following value:

install_dir/bin/ JMSSwitch.dll
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

– Windows

On Windows on x86-64 systems:

1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Set the SwitchFile property to the following value:

JMSSwitch
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

5. Copy the switch file JMSSwitch32.dll to the \exits subdirectory in the
WebSphere MQ installation directory, and rename it to JMSSwitch.dll.
Copy the switch file JMSSwitch.dll to the \exits64 subdirectory in the
WebSphere MQ installation directory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

– Linux

UNIX

On Linux and UNIX systems, add a stanza to the queue

manager's .ini file for each JMS provider.
For example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

Where:

Name is an installation-defined name that identifies a JMS provider resource
manager.

SwitchFile
is the file system path to the JMSSwitch library that is supplied in the
bin directory of the broker.

XAOpenString can have the following values:
- Initial Context is the value that is set in the JMSInput node basic property

Initial context factory.
- location JNDI is the value that is set in the JMSInput node basic property

Location of JNDI bindings. This value must include the leading keyword,
which is file://, iiop://, or ldap://

The following parameters are optional:

4554 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

- LDAP Principal matches the value that is set for the broker by using the
mqsicreatebroker or mqsichangebroker commands.

- LDAP Credentials matches the value that is set for the broker by using the
mqsicreatebroker or mqsichangebroker commands.

- Recovery Connection Factory Name is the JNDI administered connection
factory that is defined in the bindings file. If a value is not specified, a
default value for recoverXAQCF must be added to the bindings file. In either
case, the Recovery Connection Factory must be defined as an XA Queue
Connection Factory for the JMS provider that is associated with the Initial
Context Factory.

The optional parameters are comma-separated and are positional. Therefore,
any parameters that are missing must be represented by a comma.
1. Update the Java CLASSPATH environment variable for the broker's queue

manager to include a reference to xarecovery.jar; for example:
install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the broker's queue
manager to point to the bin directory, which is where the switch file is
located; for example:
install_dir/bin

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

– z/OS

On z/OS, the external syncpoint manager is Resource Recovery

Services (RRS). The only JMS provider that is supported on z/OS is
WebSphere MQ JMS. The only transport option that is supported for
WebSphere MQ JMS on z/OS is the bind option.
Syncpoint control for the JMS provider is managed with RRS syncpoint
coordination of the queue manager of the broker. You do not need to modify
the .ini file.

If the JMSOutput node uses BEA WebLogic as the JMS provider, and the nodes
need to participate in a globallyan XA coordinated message flow, see “Making the
JMS provider client available to the JMS nodes” on page 4550.

Connecting the terminals:
Connect the In terminal of the JMSOutput node to the node from which outbound
messages are routed.

Connect the Out terminal of the JMSOutput node to another node in the message
flow to process the message further, to process errors, or to send the message to an
additional destination.

Terminals and properties:
When you have put an instance of the JMSOutput node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. All mandatory properties that do not have a default value defined are
marked with an asterisk.

The terminals of the JMSOutput node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property is
set, messages that are propagated to this terminal are not validated.

Chapter 14. Reference 4555

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Terminal Description

Out The output terminal to which the message is routed if it has been successfully put to the output
destination (topic or queue).

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined), the column headed C indicates whether the
property is configurable (you can change the value when you add the message
flow to the BAR file to deploy it).

The Description properties of the JMSOutput node are described in the following
table.

Property M C Default Description

Node name No No The node type,
JMSOutput

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The Basic properties of the JMSOutput node are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Destination
Queue

No Yes The name of the queue to which the node publishes
outgoing messages. If the JMSOutput node is to be
used to send point-to-point messages, enter the
Destination queue name for the JMS queue name
that is listed in the bindings file.

destinationQueueName

Publication
Topic

No Yes The name of the topic to which the node publishes
messages.
v If this property is configured, the node operates

only in the publish/subscribe message domain.
v This property is mutually exclusive with the

Destination queue property.
v The Publication Topic name must conform to the

standards of the JMS provider that is being used by
the node.

topic

Reply to
destination

No Yes The name of the JMS destination to which the
receiving application must send a reply message. For
a reply message to be returned to this JMS
destination, the JMS destination name must be known
to the domain of the JMS provider that is used by the
receiving client. You can enter a JMS destination,
which can be either a subscription queue or a
destination topic.

The default value is blank, in which case the JMS
output message can be regarded as a datagram. If the
field is blank, the JMSOutput node does not expect a
reply from the receiving JMS client.

replyToDestination

4556 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Send to
destination
list in local
environment

No Yes Cleared When you have built a list of JMS destinations in the
local environment, select this check box to use the
destination list. If you do not select this check box,
the node uses the configured JMS destination. If you
select this check box but you have not built a list of
JMS destination in the local environment, the node
uses the configured JMS destination.

useDistList

The JMS Connection properties of the JMSOutput node are described in the
following table.

Property M C Default Description mqsiapplybaroverride
command property

JMS
provider
name

Yes No WebSphere MQ Select a JMS vendor name from the list, or
enter a name of your choice. When you
select a name from the list, the Initial
Context Factory property is updated
automatically with the relevant Java class.
If you enter your own JMS provider name,
you must also enter a value for the
Initial Context Factory. The name must
match the name of a configurable service
defined for the broker to which you
deploy the message flow.

Initial
Context
Factory

Yes Yes com.sun.jndi.fscontext.
RefFSContextFactory

This property is the starting point for a
JNDI namespace. A JMS application uses
the initial context to obtain and look up
the connection factory and queue or topic
objects for the JMS provider.

If you select a JMS provider name from the
list in JMS provider name, the Initial
Context Factory property is updated
automatically with the relevant Java class.
If you enter your own JMS provider name,
you must also enter a value for the
Initial Context Factory. The default
value is
com.sun.jndi.fscontext.RefFSContextFactory,
which defines the file-based initial context
factory for the WebSphere MQ JMS
provider.

If the node is set to use your own JMS
provider, and the corresponding
Configurable services property of the
mqsichangeproperties definition has the
InitialContextFactory attribute set, this
overrides the setting on the node.

initialContextFactory

Chapter 14. Reference 4557

Property M C Default Description mqsiapplybaroverride
command property

Location
JNDI
Bindings

Yes Yes The system path or the LDAP location for
the bindings file. The bindings file contains
definitions for the JNDI-administered
objects that are used by the JMSOutput
node.

When you enter a value for Location JNDI
Bindings, ensure that it complies with the
following instructions:
v Construct the bindings file before you

deploy a message flow that contains a
JMSOutput node.

v Do not include the file name of the
bindings file in this field.

v If you have specified an LDAP location
that requires authentication, configure
both the LDAP principal (userid) and
LDAP credentials (password) separately.
These values are configured at broker
level. For information about configuring
these values, see “mqsicreatebroker
command” on page 3831 and
“mqsichangebroker command” on page
3723.

v The string value must include a
supported URL prefix that has a URL
handler that is available on the class
path.

For information about constructing the
JNDI-administered objects bindings file,
see the documentation that is supplied
with the JMS provider.

If the node is set to use your own JMS
provider, and the corresponding
Configurable services property of the
mqsichangeproperties definition has the
jndiBindingsLocation attribute set, this
overrides the setting on the node.

locationJndiBindings

Connection
Factory
Name

Yes Yes The name of the connection factory that is
used by the JMSOutput node to create a
connection to the JMS provider. This name
must already exist in the bindings file. The
Connection factory can be a JMS
QueueConnectionFactory or a JMS
TopicConnectionFactory, but it must match
the message model that is used by the
node. Alternatively, you can specify the
generic JMS ConnectionFactory, which can
be used for both JMS queue or JMS topic
destinations.

connectionFactoryName

The Advanced properties of the JMSOutput node are described in the following
table.

4558 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

New
Correlation
ID

No Yes If the JMSOutput node is required to generate a new Correlation ID for the
message, select New Correlation ID. If you leave the check box cleared, the
Correlation ID of the output message is taken from the JMSCorrelationID
field in the JMSTransport_Header_Values section of the message tree.

Transaction
Mode

Yes No None This property controls whether the incoming message is received under
syncpoint.
v Select None if the outgoing message is to be treated as nonpersistent. If

you select this value, the message is sent using a non-transacted JMS
session that is created using the Session.AUTO_ACKNOWLEDGE flag.

v Select Local if the input node that received the message must coordinate
the commit or roll-back of JMS messages that have been sent by the
JMSOutput node, along with any other resources, such as DB2 or
WebSphere MQ, that perform work within the message flow. If you
select this value, the node uses a transacted JMS session.

v Select Global if the JMSOutput node must participate in a global
message flow transaction that is managed by the broker's external
syncpoint coordinator. The syncpoint coordinator is the broker's queue
manager on distributed systems, and RRS (Resource Recovery Services)
on z/OS. If you select this value, any messages that are received by the
node are globally coordinated using an XA JMS session.

Delivery
Mode

No Yes Non
Persistent

This property controls the persistence mode that a JMS provider uses for a
message. Valid values are:
v Automatic: the mode from the input message is inherited
v Persistent: the message survives if the JMS provider has a system

failure
v Non Persistent: the message is lost if the JMS provider has a system

failure

Message
Expiration
(ms)

No Yes 0 This property controls the length of time, in milliseconds, for which the
JMS provider keeps the output JMS message. The default value, 0, is used
to indicate that the message must not expire.

Select Inherit from header or enter an integer that represents a number of
milliseconds. If you select Inherit from header, the property inherits the
value of the JMSExpiry field in the JMS message, which is found at the
following location:

OutputRoot.JMSTransport.Transport_Folders.Header_Values.JMSExpiration

Message
Priority

No Yes 4 This property assigns relative importance to the message and it can be used
for message selection by a receiving JMS client application or a JMSOutput
node.

Select a value between 0 (lowest priority) and 9 (highest priority) or select
Inherit from header.

The default value is 4, which indicates medium priority. Priorities in the
range 0 to 4 relate to typical delivery. Priorities in the range 5 to 9 relate to
graduations of expedited delivery. If you select Inherit from header, the
property inherits the value of the JMSPriority field in the JMS message,
which is found at the following location:

OutputRoot.JMSTransport.Transport_Folders.Header_Values.JMSPriority

Chapter 14. Reference 4559

Property M C Default Description

Message
Type

No Yes Determine
output
message type
from the JMS
Message Tree

Select a value from the list to configure the type of JMS message that is
produced by the JMSOutput node. If you do not set a value for this
property, the node assumes the output type from the metadata
PayLoadType field in the JMS message tree, as indicated by the default
value, Determine output message type from the JMS Message Tree. Valid
values are:
v Determine output message type from the JMS Message Tree
v TextMessage
v BytesMessage
v MapMessage
v StreamMessage
v ObjectMessage
v Base JMS message with no payload

The Validation properties of the JMSOutput node are described in the following
table. For more information about Validation properties, see “Validating messages”
on page 1478 and “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Inherit This property controls whether validation takes place.
Valid values are None, Content, Content And Value, and
Inherit.

validateMaster

Failure
Action

No No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are User
Trace, Local Error Log, Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.
Related tasks:
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Configuring JMS and SOAP nodes to support global transactions” on page 1716
To include nodes that use JMS transport, such as the JMS and SOAP nodes, in
globally coordinated transactions, you must complete additional configuration.

4560 WebSphere Message Broker Version 7.0.0.8

“Configuring the broker to enable a JMS provider's proprietary API” on page 748
Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java class
to interface with that proprietary API.
“Configuring the broker to use SSL with JMS nodes” on page 530
Configure your broker to work with a JMS provider that supports JMS clients that
can connect by using the Secure Sockets Layer (SSL) protocol.
“Processing bytes messages with JMS nodes” on page 1729
The default behavior of WebSphere Message Broker when processing bytes
messages can affect clients that are designed to use the readUTF() and writeUTF()
methods. Construct an equivalent UTF bit stream by using a Compute node.
“Configuring for identity propagation” on page 492
To enable a message flow to perform identity propagation, the input nodes must
extract the identity and the output node must propagate it.
“Connecting to different versions of the same JMS provider” on page 750
To use different versions of the same JMS provider, create a configurable service
for the JMS provider, and set the jarsURL property to a unique path.
Related reference:
“Representation of messages in the JMS Transport” on page 1691
Messages that are sent in the JMS Transport are represented by the JMS Transport
message tree.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSReply node” on page 4562
Use the JMSReply node to send messages to JMS destinations.
“JMSMQTransform node” on page 4547
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.
“MQJMSTransform node” on page 4610
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.
“Using LocalEnvironment variables with JMSOutput and JMSReply nodes” on
page 4242
The LocalEnvironment data elements related to the processing of JMS Messages in
the JMSOutput and JMSReply nodes.
Related information:

Chapter 14. Reference 4561

WebSphere MQ Version 7 Information Center online

JMSReply node
Use the JMSReply node to send messages to JMS destinations.

This topic contains the following sections:
v “Purpose”
v “Using the JMSReply node in a message flow”
v “Calling an output message callback function”
v “Working with the JMS message ID”
v “Terminals and properties” on page 4563

Purpose:
The JMSReply node has a similar function to the JMSOutput node, but the
JMSReply node sends JMS messages only to the reply destination that is supplied
in the JMSReplyTo header field of the JMS message tree. Use the JMSReply node
when you want to treat a JMS message that is produced from a message flow as a
reply to a JMS input message, and where you have no other routing requirements.

The JMSReply node is contained in the JMS drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using the JMSReply node in a message flow:
Consider a situation in which you create a message flow in which a JMSInput
node message obtains point-to-point messages from a JMS destination called
MyJMSInputQueue. The message flow updates a database using the contents of the
message, then replies to a JMS destination called MyJMSReplyQueue, which is set
by the generating application in the JMSReplyTo header of the input message.

In a similar scenario for the publish/subscribe message model, a JMSInput node
subscribes to TopicA, and the JMSReply node publishes on the TopicB destination,
which was retrieved from the JMSReplyTo header of the input message.

Calling an output message callback function:
The cciOutputMessageCallback function can be registered as a callback and called
whenever a message is sent by a JMSReply node. See “cciOutputMessageCallback”
on page 6626.

If the user exit state is active, the cciOutputMessageCallback function is called for
every output message that is sent successfully from a JMSReply node where the
callback is registered.

If the node provides WrittenDestination information in the LocalEnvironment tree,
the callback is called after this information is created. See “Using
LocalEnvironment variables with JMSOutput and JMSReply nodes” on page 4242.

Working with the JMS message ID:
The JMS message ID is generated by the JMS provider when a message is sent by
the JMSReply node. You cannot set the message ID in the message flow, but you
can use one of the following methods to obtain the generated ID after the message
has been sent:
v Connect a Compute node to the Out terminal.

4562 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Connect a Compute node to the Out terminal of a JMSReply node and
interrogate the WrittenDestination List. For more information, see “Viewing the
logical message tree in trace output” on page 1481.
An entry for a JMSReply node has the following format:
WrittenDestination = (

JMS = (
DestinationData = (

destinationName = ’queue://jmsQueue1’
initialContext = ’com.sun.jndi.fscontext.RefFSContextFactory’
JMSMessageID = ID:414d512054657374514d2020202020206ab98b4520017a02’
JMSCorrelationID = ’ABCDEFGHIJKLMNOPQRSTUVW’

)
)

)

v Configure a user exit to process an output message callback event. For more
information, see “Exploiting user exits” on page 2985.

Terminals and properties:
When you have put an instance of the JMSReply node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. All mandatory properties that do not have a default value defined are
marked with an asterisk.

The terminals of the JMSReply node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property is
set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the
WebSphere MQ queue.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined), the column headed C indicates whether the
property is configurable (you can change the value when you add the message
flow to the BAR file to deploy it).

The Description properties of the JMSReply node are described in the following
table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The Basic properties of the JMSReply node are described in the following table.

Chapter 14. Reference 4563

Property M C Default Description mqsiapplybaroverride
command property

Send to
destination
list in local
environment

No Yes Cleared When you have built a list of JMS destinations in the
local environment, select this check box to use the
destination list. If you do not select this check box, the
node uses the configured JMS destination. If you select
this check box but you have not built a list of JMS
destinations in the local environment, the node uses the
configured JMS destination.

useDistList

The JMS Connection properties of the JMSReply node are described in the
following table.

Property M C Default Description mqsiapplybaroverride
command property

JMS
provider
name

Yes No WebSphere MQ Select a JMS vendor name from the
list, or enter a name of your choice.
When you select a name from the list,
the Initial Context Factory
property is updated automatically
with the relevant Java class. If you
enter your own JMS provider name,
you must also enter a value for the
Initial Context Factory. The default
value is WebSphere MQ.

Initial
Context
Factory

Yes Yes com.sun.jndi.fscontext.
RefFSContextFactory

This property is the starting point for
a JNDI namespace. A JMS application
uses the initial context to obtain and
look up the connection factory and
queue or topic objects for the JMS
provider. If you select a JMS provider
name from the list in JMS provider
name, the Initial Context Factory
property is updated automatically
with the relevant Java class. If you
enter your own JMS provider name,
you must also enter a value for the
Initial Context Factory.

The default value of

com.sun.jndi.fscontext.
RefFSContextFactory

defines the file-based initial context
factory for the WebSphere MQ JMS
provider.

If the node is set to use your own
JMS Provider, and the corresponding
Configurable services property of the
mqsichangeproperties definition has
the InitialContextFactory attribute
set, this overrides the setting on the
node.

initialContextFactory

4564 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Location
JNDI
Bindings

Yes Yes This property specifies either the file
system path or the LDAP location for
the bindings file. The bindings file
contains definitions for the
JNDI-administered objects that are
used by the JMSReply node.

When you enter a value for Location
JNDI Bindings, ensure that it complies
with the following instructions:
v Construct the bindings file before

you deploy a message flow that
contains a JMSReply node.

v Do not include the file name of the
bindings file in this field.

v If you have specified an LDAP
location that requires
authentication, configure both the
LDAP principal (userid) and LDAP
credentials (password) separately.
These values are configured at
broker level. For information about
configuring these values, refer to
the mqsicreatebroker and
mqsichangebroker commands.

v The string value must include a
supported URL prefix that has a
URL handler that is available on
the class path.

For information about constructing
the JNDI-administered objects
bindings file, refer to the
documentation that is supplied with
the JMS provider.

If the node is set to use your own
JMS Provider, and the corresponding
Configurable services property of the
mqsichangeproperties definition has
the jndiBindingsLocation attribute
set, this overrides the setting on the
node.

locationJndiBindings

Connection
Factory
Name

Yes Yes The name of the connection factory
that is used by the JMSReply node to
create a connection to the JMS
provider. This name must already
exist in the bindings file.

connectionFactoryName

The Advanced properties of the JMSReply node are described in the following
table.

Chapter 14. Reference 4565

Property M C Default Description

New
Correlation
ID

No Yes Cleared If the JMSReply node is required to generate a new Correlation ID for the
message, select the check box. The check box is cleared by default; if you
leave the check box cleared, the Correlation ID of the output message is
taken from the JMSCorrelationID field in the JMSTransport_Header_Values
section of the message tree.

Transaction
Mode

No No None This property controls whether the incoming message is received under
sync point. To define the transactional characteristics of how the message is
handled, select one of the following values:
v Select None if the outgoing message is to be treated as non-persistent. If

you select this value, the message is sent using a non-transacted JMS
session that is created using the Session.AUTO_ACKNOWLEDGE parameter.

v Select Local if the input node that receives the message should
coordinate the commit or roll-back of JMS messages that have been sent
by the JMSReply node, along with any other resources, such as DB2 or
WebSphere MQ, that perform work within the message flow. If you
select this value, the node uses a transacted JMS session.

v Select Global if the JMSReply node should participate in a global
message flow transaction that is managed by the broker's external sync
point coordinator. The sync point coordinator is the broker's queue
manager on distributed systems, and RRS (Resource Recovery Services)
on z/OS. If you select this value, any messages that are received by the
node are globally coordinated using an XA JMS session.

Delivery
Mode

No Yes Automatic This property controls the persistence mode that a JMS provider uses for a
message. Valid values are:
v Automatic: the mode from the input message is inherited
v Persistent: the message survives if the JMS provider has a system

failure
v Non-persistent: the message is lost if the JMS provider has a system

failure

Message
Expiration
(ms)

Yes Yes 0 This property controls the length of time, in milliseconds, for which the
JMS provider keeps the output JMS message. The default value, 0, is used
to indicate that the message must not expire.

Select Inherit from header or enter an integer that represents a number of
milliseconds. If you select Inherit from header, the property inherits the
value of the JMSExpiry field in the JMS message, which is found at the
following location:

OutputRoot.JMSTransport.Transport_Folders.Header_Values.JMSExpiration

Message
Priority

No Yes 4 This property assigns relative importance to the message and it can be used
for message selection by a receiving JMS client application or a JMSReply
node.

Select a value between 0 (lowest priority) and 9 (highest priority) or select
Inherit from header.

The default value is 4, which indicates medium priority. Priorities in the
range 0 to 4 relate to normal delivery. Priorities in the range 5 to 9 relate to
graduations of expedited delivery. If you select Inherit from header, the
property inherits the value of the JMSPriority field in the JMS message,
which is found at the following location:

OutputRoot.JMSTransport.Transport_Folders.Header_Values.JMSPriority

4566 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
type

No Yes TextMessage This property controls the class of the JMS output message. The default
value is TextMessage. Valid values are:
v TextMessage
v BytesMessage
v MapMessage
v StreamMessage
v ObjectMessage
v Base JMS message with no payload

If you do not set this property, the node assumes the output type from the
metadata PayLoadType field in the JMS message tree.

The Validation properties of the JMSReply node are described in the following
table. Refer to “Validation properties” on page 4169 for a full description of these
properties.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Inherit This property controls whether validation takes place. Valid
values are:
v None
v Content and Value
v Content
v Inherit

If a message is propagated to the Failure terminal of the
node, it is not validated.

validateMaster

Failure
Action

No No ExceptionThis property controls what happens if validation fails. You
can set this property only if you set Validate to Content or
Content and Value. Valid values are:
v User Trace
v Local Error Log
v Exception (default value)
v Exception List

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.

Chapter 14. Reference 4567

“JMS message transformation” on page 1684
The JMSInput and JMSOutput nodes expect JMS messages, and therefore expect a
native JMS message tree representation.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Using more than one input node” on page 1473
You can include more than one input node in a single message flow.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Configuring the broker to enable a JMS provider's proprietary API” on page 748
Some JMS providers provide an alternative interface to the standard JMS
specification for particular JMS API calls. In these cases, IBM supplies a Java class
to interface with that proprietary API.
“Configuring the broker to use SSL with JMS nodes” on page 530
Configure your broker to work with a JMS provider that supports JMS clients that
can connect by using the Secure Sockets Layer (SSL) protocol.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“JMS message selector” on page 1703
A message selector allows a JMS consumer to be more selective about the messages
that it receives from a particular topic or queue.
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“JMSMQTransform node” on page 4547
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.
“MQJMSTransform node” on page 4610
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.

4568 WebSphere Message Broker Version 7.0.0.8

“Using LocalEnvironment variables with JMSOutput and JMSReply nodes” on
page 4242
The LocalEnvironment data elements related to the processing of JMS Messages in
the JMSOutput and JMSReply nodes.

Label node
Use the Label node to process a message that is propagated by a RouteToLabel
node to dynamically determine the route that the message takes through the
message flow.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4570

Purpose:
Use the Label node in combination with a RouteToLabel node to route a message
through the message flow based on message content. The RouteToLabel node
interrogates the LocalEnvironment of the message to determine the identifier of the
Label node to which the message must be routed next. You can propagate the
message by coding ESQL in a Compute node, or by coding Java in a JavaCompute
or user-defined node.

Precede the RouteToLabel node in the message flow with a Compute node or
JavaCompute node and populate the LocalEnvironment of the message with the
identifiers of one or more Label nodes that introduce the next sequence of
processing for the message.

Design your message flow so that a Label node logically follows a RouteToLabel
node in a message flow, but do not connect it physically to the RouteToLabel node.
The connection is made by the broker, when required, according to the contents of
LocalEnvironment.

The Label node provides a target for a routing decision, and does not process the
message that it handles in any way. Typically, a Label node connects to a subflow
that processes each message in a specific way, and either ends in an output node
or in another RouteToLabel node.

The Label node can also be used in conjunction with a SOAPExtract node or as the
target of a PROPAGATE statement, which is specified in a Compute or Database
node.

The Label node is contained in the Routing drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online

Chapter 14. Reference 4569

information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the Label node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.
All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

The Label node terminals are described in the following table.

Terminal Description

Out The output terminal to which the message is routed.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Label node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The Label node Basic properties are described in the following table.

Property M C Default Description

Label
Name

Yes No An identifier for the node. It is used as a target for a message that is
routed by a RouteToLabel node. Label Name must not be the same as the
name of the instance of the node itself, and it must be unique in the
message flow in which it appears. The name of the instance can be
modified by the WebSphere Message Broker Toolkit if the subflow, of
which this Label node is a part, is embedded into another message flow.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:

4570 WebSphere Message Broker Version 7.0.0.8

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Creating destination lists” on page 1477
Create a list of destinations to indicate where a message is sent.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.
“Creating a message processing or output node in Java” on page 3062
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.
Related reference:
“FlowOrder node” on page 4458
Use the FlowOrder node to control the order in which a message is processed by a
message flow.
“RouteToLabel node” on page 4673
Use the RouteToLabel node in combination with one or more Label nodes to
dynamically determine the route that a message takes through the message flow,
based on its content.
“PROPAGATE statement” on page 5150
The PROPAGATE statement propagates a message to the downstream nodes.
Related information:
Java user-defined extensions API

Mapping node
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4572
v “Terminals and properties” on page 4572

Purpose:
You can populate the new messages with the following types of information:
v New information
v Modified information from the input message
v Information taken from a database

Chapter 14. Reference 4571

You can modify elements of the message body data, and the local environment
tree.

When you first open or create a message map for the node, if you select This map
is called from a message flow node and maps properties and message body, the
headers in the input message are always copied to the output message without
modification. To modify the message headers in a Mapping node, select This map
is called from a message flow node and maps properties, headers, and
message body. When you select this property, the map that is created allows
additional elements, including WebSphere MQ, HTTP, and JMS headers, to be
mapped.

These components of the output message can be defined by using mappings that
are based on elements of both the input message and data from an external
database. You create the mappings that are associated with this node, in the
mapping file that is associated with this node, by mapping inputs (message or
database) to outputs. You can modify the assignments made by these mappings by
using supplied or user-defined functions and procedures; for example, you can
convert a string value to uppercase when you assign it to the message output field.

Use the Mapping node to:
v Build a new message
v Copy messages between parsers
v Transform a message from one format to another

The Mapping node is contained in the Transformation drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Pager

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the Mapping node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.
All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

The Mapping node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the
computation. If you have selected Treat Warnings as Errors, the node propagates the message to this
terminal if database warning messages are returned, even though the processing might have completed
successfully.

4572 WebSphere Message Broker Version 7.0.0.8

Terminal Description

Out The output terminal that propagates the message following completion of the mappings.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Mapping node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The Mapping node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Data Source No Yes The ODBC data source name of the database that
contains the tables to which you refer in the
mappings that are associated with this node
(identified by the Mapping Module property). This
name identifies the appropriate database on the
system on which this message flow is to execute. The
broker connects to this database with user ID and
password information that you have specified on the
mqsicreatebroker, mqsichangebroker, or
mqsisetdbparms command. If the name is different
from the data source name used in the Mapping
Editor, select the Use data source from flow property
option on the Override Data Source and Schema
dialog (see “Message mapping tips and restrictions”
on page 2314).

z/OS

On z/OS systems, the broker uses the

broker started task ID, or the user ID and password
that are specified on the mqsisetdbparms command
JCL, BIPSDBP in the customization data set
hlq>.SBIPPROC.

dataSource

Chapter 14. Reference 4573

Property M C Default Description mqsiapplybaroverride
command property

Transaction Yes No Automatic The transaction mode for the node. The values are:
v Automatic (the default). The message flow, of which

the Mapping node is a part, is committed if it is
successful; that is, the actions that you define in the
mappings are performed and the message
continues through the message flow. If the message
flow fails, it is rolled back. If you choose Automatic,
the ability to commit or rollback the action of the
Mapping node on the database depends on the
success or failure of the entire message flow.

v Commit. To commit any uncommitted actions that
are performed in this message flow on the database
that is connected to this node, irrespective of the
success or failure of the message flow as a whole,
select Commit. The changes to the database are
committed even if the message flow fails.

Mapping
Routine

Yes No Mapping The name of the mapping routine that contains the
statements to execute against the database or the
message tree. By default, the name that is assigned to
the mapping routine is identical to the name of the
mapping file in which the routine is defined. The
default name for the file is the name of the message
flow concatenated with the name of the node when
you include it in the message flow (for example,
MFlow1_Mapping.msgmap for the first Mapping node in
message flow MFlow1). You cannot specify a value
that includes spaces.

If you click Browse next to this entry field, a dialog
box is displayed that lists all available mapping
routines that this node can access. Select the routine
that you want and click OK; the routine name is set
in Mapping Module.

To work with the mapping routine that is associated
with this node, double-click the node, or right-click
the node and click Open Mappings. If the mapping
routine does not exist, it is created for you with the
default name in the default file. If the file exists
already, you can also open file
<flow_name>_<node_name>.msgmap in the Broker
Development view.

A mapping routine is specific to the type of node
with which it is associated; you cannot use a mapping
routine that you have developed for a Mapping node
with any other node that uses mappings (for example,
a DataInsert node). If you create a mapping routine,
you cannot call it from any other mapping routine,
although you can call it from an ESQL routine.

For more information about working with mapping
files, and defining their content, see “Using message
mappings” on page 2228.

4574 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Mapping
Mode

Yes No Message The mode that is used to process information that is
passed through the Mapping node. Valid values are:
v Message (the default): the message is generated or

passed through by the Mapping node, as modified
within the node.

v LocalEnvironment: the LocalEnvironment tree
structure is generated or passed through by the
Mapping node, as modified within the node.

v LocalEnvironment And Message: the
LocalEnvironment tree structure and message are
generated or passed through by the Mapping node,
as modified by the node.

v Exception: the ExceptionList is passed through by
the Mapping node unchanged.

v Exception And Message: the ExceptionList is passed
through unchanged, and the message is generated
or passed through by the Mapping node, as
modified by the node.

v Exception And LocalEnvironment: the ExceptionList
is passed through unchanged, and the
LocalEnvironment tree is generated or passed
through by the Mapping node, as modified by the
node.

v All: the ExceptionList is passed through
unchanged, the message and the localEnvironment
are generated or passed through by the Mapping
node, as modified by the node.

You must set this property to reflect accurately the
output message format that you need. If you select an
option (or accept the default value) that does not
include a particular component of the message, that
component is not included in any output message
that is constructed.

You can choose any combination of Message,
LocalEnvironment, and Exception components to be
generated and modified by the Mapping node. To
construct a map that propagates multiple target
messages, set this property to LocalEnvironment And
Message to ensure that the node executes correctly.

LocalEnvironment was known as DestinationList in
some previous versions; it is retained for
compatibility.

The Environment component of the message tree is
not affected by the mode setting. Its contents, if any,
are passed on from this node.

Chapter 14. Reference 4575

Property M C Default Description mqsiapplybaroverride
command property

Treat
Warnings as
Errors

Yes No Cleared For database warning messages to be treated as
errors, and the node to propagate the output message
to the Failure terminal, select Treat Warnings as
Errors. The check box is cleared initially.

When you select the check box, the node handles all
positive return codes from the database as errors and
generates exceptions in the same way as it does for
the negative, or more serious, errors. If you do not
select the check box, the node treats warnings as
normal return codes, and does not raise any
exceptions. The most significant warning raised is not
found, which can be handled safely as a normal
return code in most circumstances.

Throw
Exception
on Database
Error

Yes No Selected For the broker to generate an exception when a
database error is detected, select Throw Exception on
Database Error. The check box is selected initially. If
you clear the check box, you must handle the error in
the message flow to ensure the integrity of the broker
and the database. The error is ignored if you do not
handle it through your own processing, because you
have chosen not to invoke the default error handling
by the broker. For example, you could connect the
Failure terminal to an error processing subroutine.

The parser options for the Mapping node are described in the following table.

Property M C Default Description

Use XMLNSC
Compact Parser
for XMLNS
Domain

No No Cleared If you select this check box, the outgoing MQRFH2 specifies the XMLNS
instead of XMLNSC parser, allowing an external application to remain
unchanged. If outgoing messages do not contain MQRFH2 headers, this
property has no effect.

The Validation properties of Mapping node are described in the following table.

If a message is propagated to the Failure terminal of the node, it is not validated.
These properties do not cause the input message to be validated. It is expected
that, if such validation is required, the validation has already been performed by
the input node or a preceding validation node. For more details about validating
messages and validation properties, see “Validating messages” on page 1478 and
“Validation properties” on page 4169.

Property M C Default Description

Validate No Yes None This property controls whether validation takes place. Valid values are
None, Content and Value, Content, and Inherit.

Failure
Action

No No Exception This property controls what happens if a validation failure occurs. You can
set this property only if Validate is set to Content or Content and Value.
Valid values are User Trace, Local Error Log, Exception, and Exception List.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

4576 WebSphere Message Broker Version 7.0.0.8

“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“DataInsert node” on page 4386
Use the DataInsert node to interact with a database in the specified ODBC data
source.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Chapter 14. Reference 4577

MQGet node
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.

You can also use the MQGet node to retrieve messages that were previously placed
in a WebSphere MQ message queue that is defined to the broker queue manager.

This topic contains the following sections:
v “Purpose”
v “Using the MQGet node in a message flow”
v “Configuring for coordinated transactions” on page 4579
v “Overriding node properties during message processing” on page 4579
v “Connecting the terminals” on page 4580
v “Terminals and properties” on page 4581

The topic uses the following terms:

input message
A message that enters the In terminal of the MQGet node.

queue message
A message that the MQGet node reads from the queue.

Purpose:
The MQGet node reads a message from a specified queue, and establishes the
processing environment for the message. If appropriate, you can define the input
queue as a WebSphere MQ clustered queue or shared queue.

You can use an MQGet node anywhere in a message flow, unlike an MQInput
node, which you can use only as the first node in a message flow. The output
message tree from an MQGet node is constructed by combining the input tree with
the result tree from the MQGET call. You can set the properties of the MQGet node
to control the way in which messages are received; for example, you can indicate
that a message is to be processed under transaction control, or you can request
that, when the result tree is being created, data conversion is performed on receipt
of every input message.

The MQGet node handles messages in the following message domains:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

The MQGet node is contained in the WebSphere MQ drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using the MQGet node in a message flow:

4578 WebSphere Message Broker Version 7.0.0.8

For information about how to use the MQGet node in a message flow, see “A
request-response scenario that uses an MQGet node” on page 1569.

Look at the following sample to see how to browse messages with the MQGet
node:
v Browsing WebSphere MQ Queues

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the MQGet node:
When you have put an instance of the MQGet node into a message flow, you can
configure it; for more information, see “Configuring a message flow node” on page
1503. The properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those properties that
do not have a default value defined) are marked with an asterisk.

Configuring for coordinated transactions:
When you include an MQGet node in a message flow, the value that you set for
Transaction mode defines whether messages are received under sync point.
v If you set the property to Yes (the default), the queue message is received under

sync point (that is, in a WebSphere MQ unit of work). Any messages that an
output node in the same instance of the message flow sends later are put under
sync point, unless the output node, or any other subsequent node, overrides this
setting explicitly.

v If you set the property to Automatic, the queue message is received under sync
point if the incoming message is marked as persistent. Otherwise, it is not
received under sync point. Any message that is sent later by an output node is
put under sync point, as determined by the incoming persistence property,
unless the output node, or any other subsequent node, overrides this setting
explicitly.

v If you set the property to No, the queue message is not received under sync
point. Any messages that are sent later by an output node in the message flow
are not put under sync point, unless an individual output node, or any other
subsequent node, specifies that the message must be put under sync point.

If you set the Browse only property, the value that you set for the Transaction
mode property is ignored because a message cannot be browsed under sync point.
However, any derived messages that are propagated later by an output node in the
same instance of the message flow follow the behavior that is described previously
in accordance with the specified Transaction mode value.

Overriding node properties during message processing:
When you include and configure an MQGet node in a message flow, you might
want to override its properties under some conditions. For example, you might
want to read from a queue that is identified in another part of the message, or that
is retrieved from a database record.

To override the values that you set for the MQGet node properties to achieve a
more dynamic way to process messages, include a Compute or JavaCompute node
in your message flow before the MQGet node. Configure this node to create an

Chapter 14. Reference 4579

output message, and add fields to the local environment tree to define new values
for the properties that you want to change.

For example, add a Compute node into the flow and define a new queue name for
the MQGet node to read for messages, by including the following ESQL statement:
SET LocalEnvironment.MQ.GET.QueueName = ’new_queue’;

Use LocalEnvironment.MQ.GET. as the correlation name for all fields that relate to
the MQGet node.

You can set the following properties under the InputLocalEnvironment.MQ.GET
tree. If you have set a value for the Input MQ parameters location property on the
MQGet node, that tree location is checked instead.

Setting Description

QueueName This setting overrides the MQGet node Queue name property; for example:

SET InputLocalEnvironment.MQ.GET.QueueName = ’myQueue’;

InitialBufferSize This setting overrides the MQGet node Minimum message buffer size
property; for example:

SET InputLocalEnvironment.MQ.GET.InitialBufferSize = 1024;

MQGMO.* This setting overrides the MQGET message options used by the MQGet
node; for example:

SET InputLocalEnvironment.MQ.GET.MQGMO.Options = MQGMO_ACCEPT_TRUNCATED_MSG;
SET InputLocalEnvironment.MQ.GET.MQGMO.WaitInterval = 10000;

This override is provided for flexibility, but should be used with caution
because the MQGMO is used exactly as specified. Node properties and
other local environment overrides are not considered.

For more information about the MQGMO structure, see the WebSphere
MQ Version 7 Information Center online.

Connecting the terminals:
Connect the Out, Warning, Failure, and No Message output terminals of this node
to another node in the message flow to process the message further, process errors,
or send the message to an additional destination.

The completion code (CC) that is generated by the MQGET call controls what is
propagated to each of the output terminals.
v If the MQGET call is successful, the MQGet node routes each parsed output

message to the Out terminal.
v If the MQGET call fails, but with a CC that indicates a warning, an unparsed

output message is propagated to the Warning terminal.
v If the MQGET call fails with a CC more severe than a warning, the input

message is propagated to the Failure terminal.
v If the MQGET call fails with a reason code of MQRC_NO_MSG_AVAILABLE,

the output message is propagated (without a result body) to the No Message
terminal. The output message that is propagated to the No Message terminal is
constructed from the input message only, according to the values of the Generate
mode, Copy message, and Copy local environment properties.

v If you do not connect the Out, Warning, or No Message terminals to another
node in the message flow, any message that is propagated to those terminals is
discarded.

4580 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v If you do not connect the Failure terminal to another node in the message flow,
the broker generates an exception when a message is propagated to that
terminal.

For more information, see “Connecting failure terminals” on page 2827.

Terminals and properties:
The terminals of the MQGet node are described in the following table.

Terminal Description

In The input terminal that accepts the message that is being processed by the message
flow.

Warning The output terminal to which the output tree is propagated if an error (with a CC that
indicates a warning) occurs in the node while trying to get a message from the queue.
The MQMD part of the message is parsed, but the rest of the message is an unparsed
BLOB element. The warning is discarded if the terminal is not connected, and there is
no output propagation from the node at all.

Failure The output terminal to which the input message is routed if an error (with a CC that
indicates an error that is more severe than a warning) occurs in the node while trying
to get a message from the queue.

Out The output terminal to which the message is routed if it is retrieved successfully from
the WebSphere MQ queue.

No Message The output terminal to which the input message is routed if no message is available
on the queue. The output message that is propagated to the No Message terminal is
constructed from the input message only, according to the values of the Generate
mode, Copy message, and Copy local environment properties.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value); the column headed C indicates whether the property is configurable (you
can change the value when you add the message flow to the BAR file to deploy it).

The Description properties of the MQGet node are described in the following table.

Property M C Default Description

Node name No No The node type,
MQGet

The name of the node.

Short description No No Blank A brief description of the node.

Long description No No Blank Text that describes the purpose of the node in the message flow.

The Basic properties of the MQGet node are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Queue
name

Yes Yes None The name of the WebSphere MQ message queue from
which this node retrieves messages.

You must predefine this queue to the queue manager that
hosts the broker on which the message flow is deployed. If
this queue is not a valid queue, the node generates an
exception, and the input message is propagated to the
Failure terminal.

queueName

Chapter 14. Reference 4581

The MQGet node Input Message Parsing properties are described in the following
table.

If the queue message has an MQRFH2 header, you do not have to set values for
the Input Message Parsing properties, because the values can be derived from the
<mcd> folder in the MQRFH2 header; for example:
<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>
<Fmt>XML</Fmt></mcd>

If you set values, and the values differ from those values in the MQRFH2 header,
the values in the MQRFH2 header take precedence.

Property M C Default Description

Message
domain

No No BLOB The domain that is used to parse the queue message. If the MQRFH2 header
does not supply the Message domain value, then you can select a value from the
list. If you do not select a value, the default value is BLOB. You can also specify a
user-defined parser, if appropriate.

Message set No No None The name or identifier of the message set in which the queue message is
defined. If you are using the MRM or IDOC parser, or the XMLNSC parser in
validating mode, select the Message set that you want to use.

If you set this property, then later update the project dependencies to remove
this message set reference, a warning is issued. Either update the Message set
property, or restore the reference to this message set project.

Message
type

No No None The name of the queue message. If you are using the MRM parser, select the
correct message from the list in Message type. This list is populated with
messages that are defined in the Message set that you have selected.

Message
format

No No None The name of the physical format of the queue message. If you are using the
MRM or IDOC parser, select the format of the message from the list in Message
format. This list includes all the physical formats that you have defined for this
Message set. If you set the Message domain property to DataObject, you can set
this property to XML or SAP ALE IDoc. Set this property to SAP ALE IDoc when
you have to parse a bit stream from an external source and generate a message
tree.

The Parser Options properties of the MQGet node are described in the following
table.

Property M C Default Description

Parse timing No No On Demand This property controls when the queue message is parsed. Valid values are
On Demand, Immediate, and Complete. By default, this property is set to On
Demand, which causes parsing of the message to be delayed. To cause the
message to be parsed immediately, see “Parsing on demand” on page
4173.

Use MQRFH2C
compact parser
for MQRFH2
header

No No Cleared This property controls whether the MQRFH2C compact parser, instead of
the MQRFH2 parser, is used for MQRFH2 headers. Select Use MQRFH2C
compact parser for MQRFH2 header if you want the MQRFH2C parser to
be used. By default, this check box is cleared, which means that the
compact parser is not used.

Build tree using
XML schema
data types

No No Cleared This property controls whether the XMLNSC parser creates syntax
elements in the message tree with data types taken from the XML schema.
You can select this property only if you set the Validate property on the
Validation tab to Content or Content and Value. For more information
about XMLNSC, see “Manipulating messages in the XMLNSC domain” on
page 2546.

4582 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Use XMLNSC
compact parser
for XMLNS
domain

No No Cleared This property controls whether the XMLNSC Compact Parser is used for
messages in the XMLNS Domain. If you set this property, the message
data is displayed under XMLNSC in nodes that are connected to the
output terminal when the input MQRFH2 header or Input Message
Parsing properties Message domain is XMLNS.

Retain mixed
content

No No Cleared This property controls whether the XMLNSC parser creates elements in
the message tree when it encounters mixed text in the queue message
message. If you select the check box, elements are created for mixed text.
If you clear the check box, mixed text is ignored and no elements are
created.

Retain
comments

No No Cleared This property controls whether the XMLNSC parser creates elements in
the message tree when it encounters comments in the queue message
message. If you select the check box, elements are created for comments. If
you clear the check box, comments are ignored and no elements are
created.

Retain
processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates elements in
the message tree when it encounters processing instructions in the queue
message. If you select the check box, elements are created for processing
instructions. If you clear the check box, processing instructions are ignored
and no elements are created.

Opaque
elements

No No Blank This property is used to specify a list of elements in the queue message
that are to be opaquely parsed by the XMLNSC parser. Opaque parsing is
performed only if validation is not enabled (that is, if Validate is None);
entries that are specified in Opaque Elements are ignored if validation is
enabled.

The Advanced properties of the MQGet node are described in the following table.

Property M C Default Description

Transaction
mode

No No Yes This property controls whether the incoming message is received
under sync point.

Select a value for Transaction mode from the list to define the
transactional characteristics of how this message is handled:
v If you select Automatic, the queue message is received under sync

point if it is marked as persistent. If the message is not marked as
persistent, it is not received under sync point. The persistence or
non-persistence of the input message determines the
transactionality of any derived messages that are later propagated
by an output node, unless the output node, or any other
subsequent node in the message flow, overrides the transactionality
explicitly.

v If you select Yes, the queue message is received under sync point.
Any derived messages that are later propagated by an output node
in the same instance of the message flow are sent transactionally,
unless the output node, or any other subsequent node in the
message flow, overrides the transactionality explicitly.

v If you select No, the queue message is not received under sync
point. Any derived messages that are later propagated by an
output node in the same instance of the message flow are sent
non-transactionally, unless the output node, or any other
subsequent node in the message flow, has specified that the
messages must be put under sync point.

Chapter 14. Reference 4583

Property M C Default Description

Generate
mode

No No Message This property controls which parts of the message from the input tree
are copied.

Select a value for Generate mode from the list to define which
components of the output message are generated in the MQGet node,
and which components are taken from the input message.
v If you select None, all the components of the message from the

input tree are propagated unchanged.
v If you select Message (the default), a new Message component is

created by the node, but the local environment, environment, and
exception list components from the input tree are propagated
unchanged.

v If you select LocalEnvironment, a new local environment
component is created by the node, but the message, environment,
and exception list components from the input tree are propagated
unchanged.

v If you select Message and LocalEnvironment, new message and
local environment components are created by the node, but the
environment and exception list components from the input tree are
propagated unchanged.

Copy
message

No No None This property controls which parts of the message from the input tree
are copied.

If you have set Generate mode to either Message or Message And
LocalEnvironment, select a value for Copy message from the list to
define which parts of the message are generated in the MQGet node,
and which parts are taken from the input message.
v If you select None (the default), no part of the input message from

the input tree is propagated.
v If you select Copy Headers, the headers from the input message in

the input tree are copied to the output message.
v If you select Copy Entire Message, the entire input message from

the input tree is copied to the output message.

Copy local
environment

No No Copy Entire
LocalEnvironment

This property controls how the local environment is copied to the
output message.

If you have set Generate mode to either LocalEnvironment or Message
And LocalEnvironment, select a value for Copy Local Environment
from the list to define which parts of the local environment are
generated in the MQGet node, and which parts are taken from the
input message.
v If you select Copy Entire LocalEnvironment (the default), at each

node in the message flow, a new copy of the local environment is
created in the tree, and it is populated with the contents of the
local environment from the preceding node. Therefore, if a node
changes the local environment, the upstream nodes do not see
those changes because they have their own copies. This behavior
might be an issue if you are using a FlowOrder node, or if you use
the propagate command on a Compute node. The entire local
environment that is defined in the input message is copied to the
output message.

v If you select None, each node does not generate its own copy of the
local environment, but it uses the local environment that is passed
to it by the previous node. Therefore, if a node changes the local
environment, those changes are seen by the upstream nodes.

4584 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Wait
interval (ms)

Yes No 1000 The maximum time, in milliseconds, to wait for the queue message to
be obtained from the message queue.

Provide a value for the Wait interval (ms) property to specify how
many milliseconds to wait for a message to be received from the
MQGET call. If you select 0, the wait interval is disabled and there is
no wait time for messages. The Wait interval (ms) value cannot be
negative. If you do not provide a value, the default value of 1000
milliseconds is used.

Minimum
message
buffer size
(KB)

Yes No 4 The minimum size, in KB, of the get buffer. The minimum value of
this property is 1.

Provide a value for this property to specify the size of the initial
buffer for the MQGET call. The buffer expands automatically to
accept a message of any size, but if messages are likely to be large,
specify a suitable value to reduce the frequency of the buffer being
resized. If you do not provide a value, the size of the buffer is 4 KB.

The Request properties of the MQGet node are described in the following table.

Property M C Default Description

Input MQMD
location

No No InputRoot.MQMD The location in the input message assembly where
the MQMD that is to be used for the MQGET can be
found. The default location is InputRoot.MQMD.

Input MQ
parameters
location

No No InputLocalEnvironment.MQ.GET The location in the input message assembly where
the WebSphere MQ parameters (for example, the
initial buffer size and the MQGMO overrides) can be
found. The default location is
InputLocalEnvironment.MQ.GET.

Get by
correlation ID

No No Cleared If you select this check box, only messages that have
the specified correlation ID are retrieved.

If you select Get by correlation ID, the CorrelId
field of the message to be retrieved must match the
CorrelId field in the Input MQMD location. By
default, this check box is cleared.

Setting the CorrelId field to MQCI_NONE has the
same effect as not selecting Get by correlation ID.

Get by
message ID

No No Cleared If you select this check box, only messages that have
the specified message ID are retrieved.

If you select Get by message ID, the MsgId field of
the message to be retrieved must match the MsgId
field in the Input MQMD location. By default, this
check box is cleared.

Chapter 14. Reference 4585

Property M C Default Description

Use all input
MQMD fields

No No Cleared If you select Use all input MQMD fields, all MQMD
fields at the Input MQMD location are used to
retrieve the message. If an MQMD bit stream is
present at the Input MQMD location, all fields in the
bit stream are used. Make sure that the MQMD of
the message to be retrieved matches these fields. By
default, this check box is cleared.

If you do not supply an input MQMD, the default
MQMD is used.

If you do supply an input MQMD, the default
MQMD is used after the following modifications:

v If you set the property Use all input MQMD
fields, all MQMD fields supplied are copied into
the default MQMD from the input MQMD.

v If you do not set the property Use all input MQMD
fields, and the properties Get by Message ID or
Get by Correlation ID are selected, the respective
IDs are copied into the default MQMD from the
input MQMD.

For more information about how the MQMD for the
MQGET call is constructed, see “A request-response
scenario that uses an MQGet node” on page 1569.

Browse only No No Cleared This property controls whether a message is
removed from the queue when it is read. If this
check box is selected, the message is not removed
from the queue when it is read. Select Browse only
to specify that the message must be retained on the
queue when it is read.

Reset browse
cursor

No No Cleared You can set this property only if you have selected
Browse only. When you select Reset browse cursor,
the node browses from the start of the MQ queue
(that is, the MQGMO_BROWSE_FIRST MQ get
option is specified).

If you do not select this property, the node browses
from the current cursor position in the MQ queue
(that is, the MQGMO_BROWSE_NEXT MQ get
option is specified).

The Result properties of the MQGet node are described in the following table. Set
these properties to determine how the results of the MQGET call are handled.

4586 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Output data
location

No No OutputRoot This property specifies where the output data is
placed. If you leave the field blank, OutputRoot is
used as a default. Enter the start location in the
output message tree at which the parsed elements
from the bit string of the queue message are stored.
All elements at this location are deleted, and the
default behavior is to replace the input tree message
with the queue message.

You can enter any valid ESQL field reference (this
reference can include expressions), including new
field references to create a node in the message tree
for inserting the response into the message that is
propagated from the input tree. For example,
OutputRoot.XMLNS.ABC.DEF and
Environment.GotReply are valid field references. For
more detailed information, see “A request-response
scenario that uses an MQGet node” on page 1569.

When the queue message bit string is parsed to
create the contents of the message tree, the message
properties that you have specified as the Input
Message Parsing properties of the node are used.

Result data
location

No No ResultRoot This property specifies which subtree (of the queue
message) to use. If you leave this field blank,
ResultRoot is used as a default, and the whole
queue message is used. If, for example,
ResultRoot.MQMD.ReplyToQ is specified, only that
subtree is used.

Set this property to control which subtree of the
queue message is placed in the output message. If,
for example, you want only the MQMD from the
queue message, use ResultRoot.MQMD; this subtree is
then placed at the location specified by Output data
location.

Output MQ
parameters
location

No No OutputLocalEnvironment.MQ.GET This property specifies where the output
WebSphere MQ parameters are located. If you leave
this field blank, OutputLocalEnvironment.MQ.GET
is used as a default. Set Generate mode to include
LocalEnvironment to ensure that the updated values
are visible in downstream nodes. The default
location is OutputLocalEnvironment.MQ.GET.

Set this property to control where the CC
(completion code), the RC (reason code), the
Browsed indicator, and any other WebSphere MQ
parameters (for example, the MQMD that is used by
the MQGET call) are placed in the output tree.

Chapter 14. Reference 4587

Property M C Default Description

Warning data
location

No No OutputRoot This property specifies where the output data is
placed if MQGET returns a warning code. If you
leave this field blank, OutputRoot is used as a
default.

Set this property to control where the queue
message is placed when the MQGET call returns a
warning code. You can enter any valid ESQL field
reference (see the description of the Output data
location property). The data that is placed at this
location is always the complete result tree, with the
body as a BLOB element. Result data location is
not used for warning data.

Include
message
contents in
output
message
assembly

No No Selected This property specifies that no result or warning
data is required for the output message assembly. If
you select this check box, the node gets or browses
the message on the queue without completely
reading or parsing its contents.

If you select Include message contents in output
message assembly, the message contents are not
guaranteed to be included in the output tree because
this inclusion depends on other node properties,
such as the Generate mode property.

Clear Include message contents in output message
assembly to specify that no result or warning data is
required for the output message assembly. This
action gets or browses the message on the queue
without reading or parsing its contents.

The Validation properties of the MQGet node are described in the following table.
For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place.
Valid values are None, Content, Content and Value, and
Inherit.

validateMaster

Failure
action

No No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are User
Trace, Local Error Log, Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

4588 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
Related tasks:
“Using MQGet nodes” on page 1564
The MQGet node processes messages in a particular way, and you can use it in
request-response message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Connecting failure terminals” on page 2827
When a node that has a failure terminal detects an internal error, it propagates the
message to that terminal. If it does not have a failure terminal, or if you have not
connected the failure terminal, the broker generates an exception.
“Using WebSphere MQ cluster queues for input and output” on page 1544
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.
“Using WebSphere MQ shared queues for input and output (z/OS)” on page 1546
On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows. You might need to serialize access to those
messages.
Related reference:
“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.

Chapter 14. Reference 4589

“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
Related information:

WebSphere MQ Version 7 Information Center online

MQHeader node
Use the MQHeader node to add, modify, or delete MQ Message Descriptor
(MQMD) and MQ Dead Letter Header (MQDLH) headers.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties”

Purpose:
You can add or remove a whole header, or you can change only certain fields in a
header. You can set these fields to a fixed value, or to a value specified by an
XPath expression to access a value in one of the message trees. XPath is used to
provide a valid location from which a value for a property can be copied. For
example, the location can be the body of the message, the local environment tree,
or an exception list.

The MQHeader node is contained in the WebSphere MQ drawer of the palette,
and is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following sample for more details about how to use the node:
v MQHeader node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the node into a message flow, you can configure
it; see . The properties of the node are displayed in the Properties view. This node
has no mandatory properties.

MQHeader node terminals are described in the following table:

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected.

4590 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Terminal Description

Out The output terminal to which the transformed message is routed if the input message
is processed successfully.

The following tables describes the node properties. The column headed M
indicates whether the property is mandatory (marked with an asterisk if you must
enter a value when no default is defined); the column headed C indicates whether
the property is configurable (you can change the value when you add the message
flow to the BAR file to deploy it).

The MQHeader node Description properties are described in the following table:

Property M C Default Description

Node name No No MQHeader The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The MQ Message Descriptor properties are described in the following table: Refer
to WebSphere MQ Application Programming Reference and WebSphere MQ Application
Programming Guide for full details of each of the MQ property and its supported
values.

Property M C Default Description
mqsiapplybaroverride
command property

MQMD header
options

No No Carry forward header Options to control the MQMD as a whole.

Select Carry forward header to carry
forward any values that are present in an
incoming message.

Select Add header to add a new header
using the specified property values. If a
header already exists, the header is
modified using the specified property
values. If Inherit from header is specified
as a property value and the header does
not exist, the default value for the property
is used.

Select Modify header to change an existing
header using the specified property values.
If a header does not exist, a new header is
added first. If Inherit from header is
specified as a property value and the
header does not exist, the default value for
the property is used.

Select Delete header to delete the header, if
it exists.
Note: The Add header and Modify header
options both add a header if it does not
exist, and change a header if it does exist.
However, the default values offered by each
option differ, so use the appropriate option.

Chapter 14. Reference 4591

Property M C Default Description
mqsiapplybaroverride
command property

Coded Character
Set Identifer

No No MQCCSI_Q_MGR The character set identifier of character data
in the message. A sample set of custom
literals for EBCIDIC and other common
Unicode values is given here:

MQCCSI_INTL_EBCIDIC : 500
MQCCSI_US_EBCIDIC : 037
MQCCSI_UNICODE_1200 : 1200
MQCCSI_UNICODE_1208 : 1208
MQCCSI_UNICODE_13488 : 13488
MQCCSI_UNICODE_17584 : 17584

Refer to the WebSphere MQ Application
Programming Reference and WebSphere MQ
Application Programming Guide for full
details.

Format No No MQFMT_NONE A name that the sender of the message can
use to indicate to the receiver the nature of
the data in the message.

Version Number No No MQMD_VERSION_1 The version ID of the MQMD message.

Message Type No No MQMT_DATAGRAM The message type.

Message Expiry No No MQEI_UNLIMITED A period of time expressed in tenths of a
second, set by the application that puts the
message. The message becomes eligible to
be discarded if it has not been removed
from the destination queue before this
period of time elapses.

Feedback or
Reason Code

No No MQFB_NONE Used with a message of type MQMT_REPORT
to indicate the nature of the report, and
meaningful only with that type of message.

Message Priority No No MQPRI_PRIORITY_AS_Q_DEF Message priority. 0 is the lowest value, and
9 is the highest. Custom display literals are
as follows:

MQPRI_PRIORITY_HIGH : 9
MQPRI_PRIORITY_8 : 8
MQPRI_PRIORITY_7 : 7
MQPRI_PRIORITY_6 : 6
MQPRI_PRIORITY_5 : 5
MQPRI_PRIORITY_MEDIUM : 4
MQPRI_PRIORITY_3 : 3
MQPRI_PRIORITY_2 : 2
MQPRI_PRIORITY_1 : 1
MQPRI_PRIORITY_LOW : 0

Message
Persistence

No No MQPER_PERSISTENCE_AS_Q_DEF Indicates whether the message survives
system failures and restarts of the queue
manager.

Message
Identifier

No No MQMI_NONE A string that is used to distinguish one
message from another.

Correlation
Identifier

No No MQCI_NONE A string that the application can use to
relate one message to another, or to relate
the message to other work that the
application is performing.

Reply To Queue No Yes <No default value> The message queue to which the
application that issued the get request for
the message should send Reply and Report
messages.

mqmdReplyToQ

Reply To Queue
Manager

No Yes <No default value> The queue manager to which the reply
message or report message should be sent.

mqmdReplyToQMgr

The Report properties are described in the following table:

4592 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Inherit from header No No Selected This property is enabled only when the
Modify header option is selected. Select this
field to inherit any MQMD report property
value that is present in an incoming message.

Exception No No No default value A type of MQ report message. Exception
report message is generated.

Expiration No No No default value A type of MQ report message. Expiration
report message is generated.

Confirm on arrival No No No default value A type of MQ report message. Confirm on
arrival report message is generated.

Confirm on delivery No No No default value A type of MQ report message. Confirm on
delivery report message is generated.

Notification No No No default value A type of MQ report Message. Action
notification report message is generated.

The MQDLH header properties are described in the following table:

Property M C Default Description
mqsiapplybaroverride
command property

MQDLH
header options

No No Carry forward the
header

Options to control the MQMD as a
whole.

Select Carry forward header to
carry forward any values that are
present in an incoming message.

Select Add header to add a new
header using the specified
property values. If a header
already exists, the header is
modified using the specified
property values. If Inherit from
header is specified as a property
value and the header does not
exist, the default value for the
property is used.

Select Modify header to change an
existing header using the specified
property values. If a header does
not exist, a new header is added
first. If Inherit from header is
specified as a property value and
the header does not exist, the
default value for the property is
used.

Select Delete header to delete the
header, if it exists.
Note: The Add header and Modify
header options both add a header
if it does not exist, and change a
header if it does exist. However,
the default values offered by each
option differ, so use the
appropriate option.

Chapter 14. Reference 4593

Property M C Default Description
mqsiapplybaroverride
command property

Coded
Character Set
Identifer

No No MQCCSI_UNDEFINED The character set identifier of
character data in the message.

Format No No MQFMT_NONE A name that the sender of the
message can use to indicate to the
receiver the nature of the data in
the message.

Reason No No MQRC_NONE A code that indicates why the
message is sent to the dead letter
queue (DLQ).

Destination
Queue Name

No Yes No default value The name of the destination queue. mqdlhDestQName

Destination
Queue
Manager
Name

No Yes No default value The name of the destination queue
manager.

mqdlhDestQMgrName

Save dead
letter queue

No No Selected If selected, the dead letter queue
name is stored in the local
environment.

Save source
queue

No No Selected If selected, the original source
queue name is stored in the local
environment.

Put
Application
Name

No No The name of the
application that put the
message on the
dead-letter queue.

This property is set to
WebSphereMQIntegrator and
appended with the broker major
version number, for example:
WebSphereMQIntegrator9.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

MQInput node
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

This topic contains the following sections:
v “Purpose” on page 4595
v “Using the MQInput node in a message flow” on page 4595
v “Connecting the terminals” on page 4596
v “Configuring for coordinated transactions” on page 4596
v “Terminals and properties” on page 4597

4594 WebSphere Message Broker Version 7.0.0.8

|
|
|

Purpose:
The MQInput node receives a message from a WebSphere MQ message queue that
is defined on the queue manager of the broker. The node uses MQGET to read a
message from a specified queue, and establishes the processing environment for
the message. If appropriate, you can define the input queue as a WebSphere MQ
clustered queue or shared queue.

Message flows that handle messages that are received across WebSphere MQ
connections must always start with an MQInput node. You can set the properties
of the MQInput node to control the way in which messages are received, by
causing appropriate MQGET options to be set. For example, you can indicate that
a message is to be processed under transaction control. You can also request that
data conversion is performed on receipt of every input message.

The MQInput node handles messages in the following message domains:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

If you include an output node in a message flow that starts with an MQInput
node, the output node can be any one of the supported output nodes, including
user-defined output nodes; you do not have to include an MQOutput node. You
can create a message flow that receives messages from WebSphere MQ clients and
generates messages for clients that use any of the supported transports to connect
to the broker, because you can configure the message flow to request that the
broker provides any conversion that is necessary.

If you create a message flow to use as a subflow, you cannot use a standard input
node; you must use an Input node as the first node to create an In terminal for the
subflow.

If your message flow does not receive messages across WebSphere MQ
connections, you can choose one of the supported input nodes.

The MQInput node is contained in the WebSphere MQ drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Using the MQInput node in a message flow:
Look at the following samples to see how to use the MQInput node:
v Pager
v Airline Reservations
v Error Handler
v Aggregation
v JMS Nodes
v Large Messaging

Chapter 14. Reference 4595

v Message Routing
v Scribble
v Timeout Processing
v Video Rental
v XSL Transform
v Browsing WebSphere MQ Queues

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Connecting the terminals:
The MQInput node routes each message that it retrieves successfully to the Out
terminal. If this action fails, the message is tried again. If the backout count is
exceeded (as defined by the BackoutThreshold attribute of the input queue), the
message is routed to the Failure terminal; you can connect nodes to this terminal to
handle this condition. If you have not connected the Failure terminal, the message
is written to the backout queue.

If the message is caught by this node after an exception has been thrown further
on in the message flow, the message is routed to the Catch terminal. If you have
not connected the Catch terminal, the message loops continually through the node
until the problem is resolved.

You must define a backout queue or a dead-letter queue (DLQ) to prevent the
message from looping continually through the node.

Configuring for coordinated transactions:
When you include an MQInput node in a message flow, the value that you set for
Transaction mode defines whether messages are received under sync point:
v If you set the property to Automatic, the message is received under sync point if

the incoming message is marked as persistent; otherwise, it is not received
under sync point. Any message that is sent later by an output node is put under
sync point, as determined by the incoming persistence property, unless the
output node has overridden this property explicitly.

v If you set the property to Yes (the default), the message is received under sync
point; that is, within a WebSphere MQ unit of work. Any messages that are sent
later by an output node in the same instance of the message flow are put under
sync point, unless the output node has overridden this explicitly.

v If you set the property to No, the message is not received under sync point. Any
messages that are sent later by an output node in the message flow are not put
under sync point, unless an individual output node has specified that the
message must be put under sync point.

The MQOutput node is the only output node that you can configure to override
this option.

If you have set the Browse Only property, the value that is set for the Transaction
mode property is ignored because a message cannot be browsed under sync point.
However, any derived messages that are propagated later by an output node in the
same instance of the message flow follow the behavior that is described previously
in accordance with the specified Transaction mode value.

MQGET buffer size:

4596 WebSphere Message Broker Version 7.0.0.8

The MQGET buffer size is implemented internally by the broker and you cannot
change it. The following description is provided for information only. You must not
rely on it when you develop your message flows, because the internal
implementation might change.

When the MQInput node initializes, it sets the size of the default buffer for the first
MQGET to 4 KB. The MQInput node monitors the size of messages and increases
or reduces the size of the buffer:
1. If an MQGET fails because the message is larger than the size of the buffer, the

node immediately increases the size of the buffer to accommodate the message,
issues the MQGET again, and zeros a message count.

2. When 10 messages have been counted since the increase in the size of the
buffer, the node compares the size of the largest of the 10 messages with the
size of the buffer. If the size of the largest message is less than 75% of the size
of the buffer, the buffer is reduced to the size of the largest of the 10 messages.
If an MQGET fails during the 10 messages because the message is larger than
the size of the buffer, the node takes action 1.

For example, if the first message that the node receives is 20 MB, and the next 10
messages are each 14 MB, the size of the buffer is increased from 4 KB to 20 MB
and remains at 20 MB for 10 messages. However, after the 10th message the size of
the buffer is reduced to 14 MB.

Terminals and properties:
When you have put an MQInput node into a message flow, you can configure the
node; see . The properties of the node are displayed in the Properties view. All
mandatory properties that do not have a default value defined are marked with an
asterisk.

The terminals of the MQInput node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property
is set, messages propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the
WebSphere MQ queue.

Catch The output terminal to which the message is routed if an exception is thrown downstream and caught
by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the MQInput node are described in the following
table.

Property M C Default Description

Node name No No The node
type,
MQInput

The name of the node.

Short
description

No No A brief description of the node.

Chapter 14. Reference 4597

Property M C Default Description

Long
description

No No Text that describes the purpose of the node in the message flow.

The Basic properties of the MQInput node are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Queue
name

Yes Yes The name of the WebSphere MQ input queue from which
this node retrieves messages (using MQGET) for
processing by this message flow. You must predefine this
WebSphere MQ queue to the queue manager that hosts
the broker to which the message flow is deployed.

queueName

The MQInput node Input Message Parsing properties are described in the
following table.

If the incoming message has an MQRFH2 header, you do not have to set values for
the Input Message Parsing properties because the values are derived from the
<mcd> folder in the MQRFH2 header; for example:
<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>
<Fmt>XML</Fmt></mcd>

If you set values, and those values differ from the values in the MQRFH2 header,
and the <Msd> element is a valid domain, the values in the MQRFH2 header take
precedence.

Property M C Default Description

Message
domain

No No BLOB The domain that is used to parse the incoming message. If no MQRFH2 header
exists to supply the value for the Message domain, you can select the property
value from the list. You can either select an option or leave the property blank,
in which case the default that is used is BLOB. The following options are
available:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

You can also specify a user-defined parser, if appropriate.

Message
set

No No If you use the MRM or IDOC parser, or the XMLNSC parser in validating mode,
select the name or identifier of the message set in which the incoming message is
defined. The list of message sets consists of the message sets that are available
when you select MRM, XMLNSC, or IDOC as the domain.

If you set this property, then later update the project dependencies to remove
this message set reference, a warning is issued. Either update the Message set
property, or restore the reference to this message set project.

Message
type

No No If you use the MRM parser, select the type of message from the list. This list is
populated with messages that are defined in the message set that you have
selected.

4598 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
format

No No If you are using the MRM or IDOC parser, select the physical format of the
incoming message from the list. This list includes all the physical formats that
you have defined for this message set. If you set the Message domain property to
DataObject, you can set this property to XML or SAP ALE IDoc. Set this property to
SAP ALE IDoc when you have to parse a bit stream from an external source and
generate a message tree.

The properties of the Parser Options for the MQInput node are described in the
following table.

Property M C Default Description

Parse timing No No On
Demand

This property controls when an input message is parsed. Valid values are On
Demand, Immediate, and Complete.

Parse timing is, by default, set to On Demand, which causes parsing of the
message to be delayed. To cause the message to be parsed immediately, see
“Parsing on demand” on page 4173.

Use
MQRFH2C
compact
parser for
MQRFH2
header

No No Cleared This property controls whether the MQRFH2C compact parser, instead of the
MQRFH2 parser, is used for MQRFH2 headers.

Build tree
using XML
schema data
types

No No Cleared This property controls whether the XMLNSC parser creates syntax elements in
the message tree with data types taken from the XML schema. You can select
this property only if you set the Validate property on the Validation tab to
Content or Content and Value.

Use
XMLNSC
compact
parser for
XMLNS
domain

No No Cleared This property controls whether the XMLNSC compact parser is used for
messages in the XMLNS domain. If you set this property, the message data is
displayed under XMLNSC in nodes that are connected to the output terminal
when the input MQRFH2 header or the Input Message Parsing property
Message domain is XMLNS. For more information, see “Manipulating messages
in the XMLNSC domain” on page 2546.

Retain mixed
content

No No Cleared This property controls whether the XMLNSC parser creates elements in the
message tree when it encounters mixed text in an input message. If you select
the check box, elements are created for mixed text. If you clear the check box,
mixed text is ignored and no elements are created.

Retain
comments

No No Cleared This property controls whether the XMLNSC parser creates elements in the
message tree when it encounters comments in an input message. If you select
the check box, elements are created for comments. If you clear the check box,
comments are ignored and no elements are created.

Retain
processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates elements in the
message tree when it encounters processing instructions in an input message. If
you select the check box, elements are created for processing instructions. If
you clear the check box, processing instructions are ignored and no elements
are created.

Opaque
elements

No No Blank This property is used to specify a list of elements in the input message that are
to be opaquely parsed by the XMLNSC parser. Opaque parsing is performed
only if validation is not enabled (that is, if Validate is None); entries that are
specified in Opaque Elements are ignored if validation is enabled.

Chapter 14. Reference 4599

The Advanced properties of the MQInput node are described in the following
table. Set these properties to determine how the message is processed, such as its
transactional characteristics. Many of these properties map to options on the
MQGET call.

Property M C Default Description mqsiapplybaroverride
command property

Transaction
mode

Yes No Yes This property controls whether the incoming message is
received under sync point. Valid values are Automatic,
Yes, and No.

v If you select Automatic, the incoming message is
received under sync point if it is marked persistent,
otherwise it is not received under sync point. The
transactionality of any derived messages that are sent
later by an output node is determined by the incoming
persistence property, unless the output node has
overridden transactionality explicitly.

v If you select Yes, the incoming message is received
under sync point. Any derived messages that are sent
later by an output node in the same instance of the
message flow are sent transactionally, unless the
output node has overridden transactionality explicitly.

v If you select No, the incoming message is not received
under sync point. Any derived messages that are sent
later by an output node in the message flow are sent
non-transactionally, unless the output node has
specified that the messages must be put under sync
point.

4600 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Order
mode

Yes No Default The order in which messages are retrieved from the
input queue and processed.

Messages arriving can be processed in order, or any
thread can process any message when it is ready. When
ordering is imposed, a thread processes a message only if
it is the first unprocessed message available with a
unique ordering value.Valid values are Default, By User
ID, By Queue Order, and User Defined. This property has
an effect only if the message flow property Additional
instances on the Instances tab, is set to greater than
zero; that is, if multiple threads read the input queue.
Valid values are:

v Default. Messages are retrieved in the order that is
defined by the queue attributes, but this order is not
guaranteed because the messages are processed by the
message flow.

v By User ID. Messages that have the same
UserIdentifier value in the MQMD are retrieved and
processed in the order that is defined by the queue
attributes; this order is guaranteed to be preserved
when the messages are processed. A message that is
associated with a particular user identifier that is being
processed by one thread, is completely processed
before the same thread, or another thread, can start to
process another message with the same user identifier.
Ensure that each message has a unique message ID in
the MQMD of the incoming message. No other
ordering is guaranteed to be preserved.

v By Queue Order. Messages are retrieved and processed
by this node in the order that is defined by the queue
attributes; this order is guaranteed to be preserved
when the messages are processed. This behavior is
identical to the behavior that is exhibited if the
message flow property Additional instances is set to
zero. However, if you set Order mode to By Queue
Order then redeploy the message flow, additional
instances that are already running are not released.
Therefore, when you set Order mode to By Queue
Order, either stop and restart the message flow, or run
the mqsireload command for the execution group after
you redeploy the flow.

v ⌂User Defined. You can specify a message element
using the Order field location property.

For more details about using this option, see
“Optimizing message flow throughput” on page 587 and
“Receiving messages in a WebSphere MQ message
group” on page 1554.

Order field
location

N N "" An XPath or ESQL expression property to control which
part of the message is used to impose ordering on
incoming messages when Order mode is User Defined.

If the field is missing, an exception is raised, and the
message is rolled back. NULL and empty values are
processed separately, in parallel.

Chapter 14. Reference 4601

Property M C Default Description mqsiapplybaroverride
command property

Logical
order

Yes No Selected If you select this check box, messages are received in
logical order, as defined by WebSphere MQ. This option
maps to the MQGMO_LOGICAL_ORDER option of the
MQGMO of the MQI.

If you clear the check box, messages that are sent as part
of a group are not received in a predetermined order. If a
broker expects to receive messages in groups, and you
have not selected this check box, either the order of the
input messages is not significant, or you must design the
message flow to process them appropriately.

You must also select Commit by message group if you
want message processing to be committed only after the
final message of a group has been received and
processed.

More information about the options to which this
property maps is available in the Application Programming
Reference section of the WebSphere MQ Version 7
Information Center online.

For more details about using this option, see “Receiving
messages in a WebSphere MQ message group” on page
1554.

All
messages
available

Yes No Cleared Select All messages available if you want message
retrieval and processing to be done only when all
messages in a single group are available. This property
maps to the MQGMO_ALL_MSGS_AVAILABLE option
of the MQGMO of the MQI. Clear this check box if
message retrieval does not depend on all of the messages
in a group being available before processing starts.

More information about the options to which this
property maps is available in the Application Programming
Reference section of the WebSphere MQ Version 7
Information Center online.

Match
message
ID

No No A message ID that must match the message ID in the
MQMD of the incoming message. Enter a message
identifier if you want the input node to receive only
messages that contain a matching message identifier
value in the MsgId field of the MQMD.

Enter an even number of hexadecimal digits (characters 0
to 9, A to F, and a to f are valid) up to a maximum of
48 digits. If the matching message identifier that you
enter is shorter than the size of the MsgId field, Match
message ID is padded on the right with X’00’ characters.
This property maps to the MQMO_MATCH_MSG_ID
option of the MQGMO of the MQI.

Leave this property blank if you do not want the input
node to check that the message ID matches.

More information about the options to which this
property maps is available in the Application Programming
Reference section of the WebSphere MQ Version 7
Information Center online.

4602 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Property M C Default Description mqsiapplybaroverride
command property

Match
correlation
ID

No No A correlation ID that must match the correlation ID in
the MQMD of the incoming message. Enter a message
identifier if you want the input node to receive only
messages that contain a matching correlation identifier
value in the CorrelId field of the MQMD.

Enter an even number of hexadecimal digits (characters 0
to 9, A to F, and a to f are valid) up to a maximum of
48 digits. If the ID that you enter is shorter than the size
of the CorrelId field, it is padded on the right with X’00’
characters. This property maps to the
MQMO_MATCH_CORREL_ID option of the MQGMO of
the MQI.

Leave this property blank if you do not want the input
node to check that the CorrelID matches.

More information about the options to which this
property maps is available in the Application Programming
Reference section of the WebSphere MQ Version 7
Information Center online.

Chapter 14. Reference 4603

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Property M C Default Description mqsiapplybaroverride
command property

Convert Yes No Cleared If you select this check box, WebSphere MQ converts
data in the message to be received, in conformance with
the CodedCharSetId and Encoding values set in the
MQMD. Select Convert if you want WebSphere MQ to
perform data conversion on the message when it is
retrieved from the queue. This option is useful if you are
handling messages in the BLOB domain, or are using a
user-defined parser. Do not select this option if you are
parsing messages with the XML or MRM domains,
because the parser does the conversion.

WebSphere MQ converts the incoming message to the
encoding and coded character set that is specified in the
MQMD that the input node supplies on the MQGET call
to retrieve the message from the input queue. The broker
uses the MQGMO_CONVERT option on the MQGET
call; typical rules for WebSphere MQ conversion apply.
The values that you specify in the Convert encoding and
Convert coded character set ID options are used in the
MsgDesc Encoding and CCSID fields in the MQGET
call. WebSphere MQ can convert the incoming message
only if the MQMD Format field is a built-in
WebSphere MQ value that identifies character data, or if
a data conversion exit exists in WebSphere MQ.

This property maps to the MQGMO_CONVERT option
of the MQGMO of the MQI.

Clear the check box if you do not want WebSphere MQ
to convert the message.

If you select this check box, you can also specify values
for the Convert encoding and Convert coded character
set ID properties.

For more information about WebSphere MQ data
conversion, and why you might choose to use this
option, see the Application Programming Guide section of
the WebSphere MQ Version 7 Information Center online.

4604 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Property M C Default Description mqsiapplybaroverride
command property

Convert
encoding

No No The representation used for numeric values in the
message data, expressed as an integer value. This
property is valid only if you have selected Convert.

Enter the number that represents the encoding to which
you want to convert numeric data in the message body.
Valid values include:

v Linux Windows 546 for DOS, all Windows
systems, and Linux on x86

v Linux UNIX 273 for Linux on Linux on
POWER, Linux on IBM z Systems, and all UNIX
systems

v z/OS 785 for z/OS messages that use Binary
Packed Decimals, and 273 for messages that use IEEE
floating point numbers

The encoding is used only in the following
circumstances:

v If a user-defined WebSphere MQ data conversion exit
uses the encoding.

v If the built-in WebSphere MQ conversion exit uses the
encoding to convert messages in any of the predefined
WebSphere MQ formats.

If you specify an incorrect value, no conversion is done.

For further information about the values that you can
specify for Convert encoding, see “Data conversion” on
page 1151 and the Application Programming Reference
section of the WebSphere MQ Version 7 Information
Center online.

Convert
coded
character
set ID

No No The coded character set identifier of character data in the
message data, expressed as an integer value. This
property is valid only if you have selected Convert.

Enter the value that represents the character set identifier
to which you want to convert character data in the
message body. If you specify an incorrect value, no
conversion is done.

For further information about the values that you can
specify for Convert coded character set ID, see the
Application Programming Reference section of the
WebSphere MQ Version 7 Information Center online.

Chapter 14. Reference 4605

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Property M C Default Description mqsiapplybaroverride
command property

Commit by
message
group

Yes No Cleared This property controls when a transaction is committed
when processing messages that are part of a message
group. If you select the check box, the transaction is
committed when the message group has been processed.
If you leave this check box cleared, a commit is
performed after each message has been propagated
completely through the message flow.

This property is relevant only if you have selected
Logical order.

Set the Order mode property to By Queue Order if the
messages in a group must be retrieved and processed in
the order in which they are displayed on the queue.

z/OS
serialization
token

No No On z/OS only: A user-defined token for serialized
application support. The value that is specified must
conform to the rules for a valid ConnTag in the
WebSphere MQ MQCNO structure. Enter a serialization
token if you want to use the serialized access to shared
resources that is provided by WebSphere MQ.

The value that you provide for the serialization token
must conform to the rules described in the Application
Programming Reference section of the WebSphere MQ
Version 7 Information Center online.

For more information about serialization and queue
sharing on z/OS, see the Concepts and Planning Guide
section of the WebSphere MQ Version 7 Information
Center online.

serializationToken

Topic No Yes The default topic for the input message. You can
associate a message with a publish/subscribe topic by
using this property. You can enter any characters as the
topic name. When messages pass through the MQInput
node, they take on whatever topic name you have
entered. (If you are using publish/subscribe, you can
subscribe to a topic and see any messages that passed
through the MQInput node and were published under
that topic name.) If the incoming message has an
MQRFH2 header, you do not have to set a value for the
Topic property because the value can be obtained from
the <psc> folder in the MQRFH2 header; for example:

<psc><Topic>stockquote</Topic></psc>

If you set a Topic property value, and that value differs
from the <Topic> value in the MQRFH2 header, the
value in the MQRFH2 header takes precedence.

topicProperty

Browse
Only

No No Cleared This property controls whether a message is removed
from the queue when it is read. If you select this check
box, the message is not removed from the queue when it
is read. If you select this option,
OutputLocalEnvironment.MQ.GET.Browsed is set to true
when a message is propagated to the output terminal of
the MQInput node.

4606 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Property M C Default Description mqsiapplybaroverride
command property

Reset
browse
timeout
(ms)

Yes Yes -1 The time, in milliseconds, between the last eligible
message being browsed on the input queue and the
browse being reset to the beginning of the queue. The
default value of -1 indicates that the browse is not reset.

The Validation properties of the MQInput node are described in the following
table. Set these properties if you want the parser to validate the body of messages
against the Message set. (If a message is propagated to the Failure terminal of the
node, it is not validated.)

For more details, see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place.
Valid values are None, Content, and Content and Value.

validateMaster

Failure
action

No No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are User
Trace, Local Error Log, Exception, and Exception List.

The Security properties of the MQInput node are described in the following table.
Set values for these properties to control the extraction of an identity from a
message (when a security profile is associated with the node). For more
information about these properties, see “Identity” on page 390, “Configuring the
extraction of an identity or security token” on page 447, “Message flow security
overview” on page 383, and “Setting up message flow security” on page 431.

Property M C Default Description

Identity
token type

No No None This property specifies the type of identity token present in the incoming
message. Valid values are:

v Transport Default

v Username

v Username + Password

v SAML Assertion

v X.509 Certificate

If this property is not specified, the identity is retrieved from the transport
headers and the type is set to Username.

Identity
token
location

No No None This property specifies where, in the message, the identity can be found. The
location is specified as an ESQL field reference, an XPath expression, or a
string literal. If you use a string literal, it must be enclosed in single quotation
marks and must not contain a period (.), If this property is not specified, the
identity is retrieved from the MQMD.UserIdentifier transport header.

Identity
password
location

No No None This property specifies where, in the message, the password can be found. The
location is specified as an ESQL field reference, an XPath expression, or a
string literal. If you use a string literal, it must be enclosed in single quotation
marks and must not contain a period (.), If it is not specified, the password is
not set. This property can be set only if Identity token type is set to
Username + Password.

Chapter 14. Reference 4607

Property M C Default Description

Identity
IssuedBy
location

No No None This property specifies a string or path expression that describes the issuer of
the identity. The location is specified as an ESQL field reference, an XPath
expression, or a string literal. If you use a string literal, it must be enclosed in
single quotation marks and must not contain a period (.), The value specifies
the Issuer that is passed to a WS-Trust v1.3 STS provider. If this property is
not specified, the MQMD.PutApplName value is used. If you leave the
Identity issuedBy location field blank and the MQMD.PutApplName is also
blank, the string MQ is used.

Treat
security
exceptions as
normal
exceptions

No No False This property specifies whether to treat security exceptions (such as "Access
Denied") as normal exceptions, and propagate them to the Failure terminal (if
wired). This property is turned off by default, which ensures that security
exceptions cause the message to be backed out even if the Failure terminal is
wired.

The Instances properties of the MQInput node are described in the following table.
Set values for these properties to control the additional instances that are available
for a node. For a full description of these properties, see “Configurable message
flow properties” on page 4020.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are
obtained.

v If you select Use Pool Associated with Message
Flow, additional instances are obtained from the
message flow value.

v If you select Use Pool Associated with Node,
additional instances are allocated from the
additional instances of the node, based on the
number specified in the Additional instances
property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node can
start if the Additional instances pool property is set
to Use Pool Associated with Node. By default, no
additional instances are given to the node.

additionalInstances

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.

4608 WebSphere Message Broker Version 7.0.0.8

“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
Related tasks:
“Using more than one input node” on page 1473
You can include more than one input node in a single message flow.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using WebSphere MQ cluster queues for input and output” on page 1544
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.
“Using WebSphere MQ shared queues for input and output (z/OS)” on page 1546
On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows. You might need to serialize access to those
messages.
“Receiving messages in a WebSphere MQ message group” on page 1554
You can configure the MQInput node to receive messages that are in a WebSphere
MQ message group.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.

Chapter 14. Reference 4609

“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“WebSphere MQ Enterprise Transport” on page 1542
WebSphere MQ Enterprise Transport is a service that connects applications to
messaging middleware.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.
“Input node” on page 4511
Use the Input node as an In terminal for an embedded message flow (a subflow).
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.
“MQGet node” on page 4578
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.
“MQReply node” on page 4621
Use the MQReply node to send a response to the originator of the input message.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.
Related information:

WebSphere MQ Version 7 Information Center online

MQJMSTransform node
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.

This topic contains the following sections:
v “Purpose”
v “Using the MQJMSTransform node in a message flow” on page 4611
v “Terminals and properties” on page 4611

Purpose:
Use the MQJMSTransform node to send messages to existing message flows and to
interoperate with WebSphere MQ JMS and WebSphere Message Broker
publish/subscribe.

4610 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The JMSMQTransform node handles messages in all supported message domains.

The MQJMSTransform node is contained in the JMS drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using the MQJMSTransform node in a message flow:
The following sample contains a message flow in which the MQJMSTransform
node is used. Look at this sample for an example of how to use the
MQJMSTransform node.
v JMS Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the MQJMSTransform node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view.

The terminals of the MQJMSTransform node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property
is set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the
WebSphere MQ queue.

In The input terminal that accepts a message for processing by the node.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The MQJMSTransform node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type,
MQJMSTransform

The name of the node.

Short
Description

No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the message
flow.

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4611

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“JMSInput node” on page 4532
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.
“JMSOutput node” on page 4549
Use the JMSOutput node to send messages to JMS destinations.
“JMSMQTransform node” on page 4547
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.
“WebSphere Broker JMS Transport” on page 1681
The WebSphere Broker JMS Transport is a service that connects applications that
send and receive messages that conform to the Java Message Service (JMS)
standard.

MQOptimizedFlow node
Use the MQOptimizedFlow node to provide a high-performance publish/subscribe
message flow. The node supports publishers and subscribers that use Java Message
Service (JMS) application programming interfaces and the WebSphere MQ
Enterprise Transport.

Restriction: z/OS You cannot use an MQOptimizedFlow node in message
flows that you deploy to z/OS systems.

The MQOptimizedFlow node is deprecated. The node continues to work but is no
longer required.

MQOutput node
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4613
v “Contents of the WebSphere MQ reply message” on page 4614
v “Terminals and properties” on page 4615

Purpose:

4612 WebSphere Message Broker Version 7.0.0.8

The MQOutput node delivers an output message from a message flow to a
WebSphere MQ queue. The node uses MQPUT to put the message to the
destination queue or queues that you specify.

If appropriate, define the queue as a WebSphere MQ clustered queue or shared
queue. When you use a WebSphere MQ clustered queue, leave the Queue
Manager Name empty.

You can configure the MQOutput node to put a message to a specific
WebSphere MQ queue that is defined on any queue manager that is accessible by
the queue manager for the broker, or to the destinations identified in the local
environment that is associated with the message.

Set other properties to control the way in which messages are sent, by causing
appropriate MQPUT options to be set; for example, you can request that a message
is processed under transaction control. You can also specify that WebSphere MQ
can, if appropriate, break the message into segments in the queue manager.

If you create a message flow to use as a subflow, you cannot use a standard output
node; use an instance of the Output node to create an Out terminal for the subflow
through which to propagate the message.

If you do not want your message flow to send messages to a WebSphere MQ
queue, choose another supported output node.

The MQOutput node checks for the presence of an MQMD (WebSphere MQ
message descriptor) header in the message tree. If no MQMD header is present, the
MQOutput node creates one in the message tree, and populates it with MQMD
default properties. If an MQMD header is found, the MQOutput node checks that
it is an WebSphere MQ type header; if it is not, the Message Context property is
set to Default. The MQOutput node treats any other transport headers in the
message tree as data. If such headers are not required as part of the message body,
use a transformation node to remove them from the message tree before the
MQOutput node. If the message tree is sourced from JMS, you can use a
JMSMQTransform node to construct a message tree compatible with MQ. For
further details, see “JMS message transformation” on page 1684.

The MQOutput node is contained in the WebSphere MQ drawer of the palette,
and is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following samples to see how to use this node:
v Pager
v Airline Reservations
v Error Handler
v Aggregation
v Large Messaging
v Message Routing
v Timeout Processing
v Video Rental
v XSL Transform

Chapter 14. Reference 4613

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

For an example of how to use this node, assume that you have written a
publishing application that publishes stock updates on a regular basis. The
application sends the messages to the broker on an MQInput node, and the
message flow makes the publications available to multiple subscribers through a
Publication node. You configure a Compute node to create a new output message
whenever one particular stock is changed, and connect this node to an MQOutput
node to record each price change for this stock.

Working with WrittenDestination data

After the message has been put, the WrittenDestination folder in the local
environment is updated with the destination information. WrittenDestination data
for an MQOutput node has the following format:
WrittenDestination = (

MQ = (
z`DestinationData = (

queueName = ’OUT’
queueManagerName = ’MYQUEUEMANAGER’
replyIdentifier = X’4d...2e’
msgId = X’3c...2c’
correlId = X’2a...00’
GroupId = X’3a...00’

)
)

)

Connecting the terminals:
Connect the In terminal to the node from which outbound messages bound are
routed.

Connect the Out or Failure terminal of this node to another node in this message
flow to process the message further, process errors, or send the message to an
additional destination.

If you use aggregation in your message flows, you must use the output terminals.

Contents of the WebSphere MQ reply message:
The:
v Values of the following fields in MQMD are set, irrespective of the settings you

make:
MQMD.Report = 0;
MQMD.PutApplType = MQAT_BROKER;
MQMD.PutDate = Taken from current Timestamp
MQMD.PutTime = Taken from current Timestamp
MQMD.PutApplName = MsgTree.MQMD.ReplyToQMgr (first 28 chars)

v Values of the following fields are set from the values in the Root.MQMD folder:
MQMD.Version
MQMD.Format
MQMD.Priority
MQMD.Persistence
MQMD.Expiry
MQMD.Encoding
MQMD.CodedCharSetId
MQMD.GroupId

4614 WebSphere Message Broker Version 7.0.0.8

MQMD.MsgSeqNumber
MQMD.Offset
MQMD.MsgFlags
MQMD.OriginalLength

v Following values in MQMD are set conditionally, based on values in the
MQOutput node and the Root.MQMD folder:

IF MsgTree.MQMD.MsgType = MQMT_REQUEST THEN
MQMD.MsgType = MQMT_REPLY;

IF Nodes Message Context is Default, PassAll or PassIdentity THEN
MQMD.UserIdentifer = MsgTree.MQMD.UserIdentifier;

IF MsgTree.MQMD.Report contains MQRO_PASS_CORREL_ID THEN
MQMD.CorrelId = MsgTree.MQMD.CorrelId;

ELSE
MQMD.CorrelId = MsgTree.MQMD.MsgId;

IF MsgTree.MQMD.Report contains MQRO_PASS_MSG_ID THEN
MQMD.MsgId = MsgTree.MQMD.MsgId;

ELSE
MQMD.MsgId = MQMI_NONE;

v Value of the MQMD.Persistence field is set based on the Persistence mode on the
MQOutput node.

When the output MQMD structure has been constructed, the Message Context on
the MQOutput node is ignored, and the behavior is as set All.

The values that are overridden, are done only in the output MQMD structure; no
updates are made to the MQMD folder in the message tree.

Configuring for coordinated transactions:
When you define an MQOutput node, the option that you select for the
Transaction Mode property defines whether the message is written under sync
point:
v If you select Yes, the message is written under sync point (that is, within a

WebSphere MQ unit of work).
v If you select Automatic (the default), the message is written under sync point if

the incoming input message is marked as persistent.
v If you select No, the message is not written under sync point.

Another property of the MQOutput node, Persistence Mode, defines whether the
output message is marked as persistent when it is put to the output queue:
v If you select Yes, the message is marked as persistent.
v If you select Automatic (the default), the message persistence is determined from

the properties of the incoming message, as set in the MQMD.
v If you select No, the message is not marked as persistent.
v If you select As Defined for Queue, the message persistence is set as defined in

the WebSphere MQ queue by the MQOutput node specifying the
MQPER_PERSISTENCE_AS_Q_DEF option in the MQMD.

Terminals and properties:
When you have put an instance of the MQOutput node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view.

The MQOutput node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Chapter 14. Reference 4615

Terminal Description

Failure The output terminal to which the message is routed if a failure is detected when the
message is put to the output queue.

Out The output terminal to which the message is routed if it has been successfully put to
the output queue.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file for deployment).

The MQOutput node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type,
MQOutput

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the
message flow.

The MQOutput node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Queue
Manager
Name

No Yes Enter the name of the WebSphere MQ queue
manager to which this output queue (which is
specified by the Queue Name property) is defined.

The Queue Manager Name property is only needed if
the queue specified is defined on another queue
manager or is a cluster queue. If it is a cluster
queue, then Queue Manager Name can optionally be
specified if you want to be prescriptive about which
queue manager receives the message. If the queue is
defined on a remote queue manager, the Queue
Manager Name must be specified and it must match
the transmission queue defined on the broker's local
queue manager, for that remote queue manager.

queueManagerName

Queue Name No Yes To send the output message to a single destination
queue that is defined by this node, enter the name
of the WebSphere MQ output queue to which the
message flow sends messages.

If you set the Destination Mode property to Queue
Name, you must specify a value for the Queue Name
property. If you set Destination Mode to another
value, this property is ignored.

queueName

The MQOutput node Advanced properties are described in the following table.
These properties define the transactional control for the message and the way in
which the message is put to the queue. Many of these properties map to options
on the MQPUT call.

4616 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Destination
Mode

Yes No Queue Name The queues to which the output message is sent.

v If you select Queue Name (the default), the message is sent to the
queue that is named in the Queue Name property. If you select this
option, you must set the Queue Manager Name and Queue Name
properties.

v If you select Reply To Queue, the message is sent to the queue that is
named in the ReplyToQ field in the MQMD.

When you select this value, the MQOutput node constructs a
WebSphere MQ reply message. For more information about the
settings that are used by the MQOutput node and the Root.MQMD
folder in this situation, see “Contents of the WebSphere MQ reply
message” on page 4614.

v If you select Destination List, the message is sent to the list of
queues that are named in the local environment that is associated
with the message. The data that you have provided is used in the
DestinationData subtree of the local environment. For more
information about the DestinationData subtree, see “Data types for
elements in the MQ DestinationData subtree” on page 4240. For
more information about destination lists, see “Creating destination
lists” on page 1477.

Transaction
Mode

Yes No Automatic This property controls whether the message is put transactionally.

v If you select Automatic (the default), the message transactionality is
derived from the way that it was specified at the input node.

v If you select Yes, the message is put transactionally.

v If you select No, the message is put non-transactionally.

For more information, see “Configuring for coordinated transactions”
on page 4615.

Persistence
Mode

Yes No Automatic This property controls whether the message is put persistently.

v If you select Automatic (the default), the persistence is as specified in
the incoming message.

v If you select Yes, the message is put persistently.

v If you select No, the message is put non-persistently.

v If you select As Defined for Queue, the message persistence is set as
defined for the WebSphere MQ queue.

New Message
ID

Yes No Cleared If you select this check box, WebSphere MQ generates a new message
identifier to replace the contents of the MsgId field in the MQMD. This
property maps to the MQPMO_NEW_MSG_ID option of the MQPMO
of the MQI. Clear the check box if you do not want to generate a new
ID. A new message ID is still generated if you select the Request
property on the Request tab.

For more information about the options to which this property maps,
see the Application Programming Reference section of the WebSphere MQ
Version 7 Information Center online.

New
Correlation ID

Yes No Cleared If you select this check box, WebSphere MQ generates a new
correlation identifier to replace the contents of the CorrelId field in the
MQMD. This property maps to the MQPMO_NEW_CORREL_ID option
of the MQPMO of the MQI. Clear the check box if you do not want to
generate a new ID.

For more information about the options to which this property maps,
see the Application Programming Reference section of the WebSphere MQ
Version 7 Information Center online.

Chapter 14. Reference 4617

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Property M C Default Description

Segmentation
Allowed

Yes No Cleared If you select this check box, WebSphere MQ breaks the message into
segments in the queue manager. Clear the check box if you do not
want segmentation to occur. For more information about message
segmentation, see “Sending message segments in a WebSphere MQ
message” on page 1557.

For more information about the options to which this property maps,
see the Application Programming Reference section of the WebSphere MQ
Version 7 Information Center online.

Message
Context

Yes No Pass All This property controls how origin context is handled.

v Pass All maps to the MQPMO_PASS_ALL_CONTEXT option of the
MQPMO of the MQI.

v Pass Identity maps to the MQPMO_PASS_IDENTITY_CONTEXT
option of the MQPMO of the MQI.

v Set All maps to the MQPMO_SET_ALL_CONTEXT option of the
MQPMO of the MQI.

v Set Identity maps to the MQPMO_SET_IDENTITY_CONTEXT
option of the MQPMO of the MQI.

v Default maps to the MQPMO_DEFAULT_CONTEXT option of the
MQPMO of the MQI.

v None maps to the MQPMO_NO_CONTEXT option of the MQPMO of
the MQI.

When a security profile is associated with the node and is configured to
perform identity propagation, the chosen context can be overridden to
ensure that the outgoing identity is set.

For more information about the options to which these properties map,
see the Application Programming Reference section of the WebSphere MQ
Version 7 Information Center online.

Alternate User
Authority

Yes No Cleared If you select this check box, alternate authority is used when the output
message is put and the MQOO_ALTERNATE_USER_AUTHORITY
option is set in the open options (MQOO) of the MQI. If you select this
check box, this option is specified when the queue is opened for
output. The alternative user information is retrieved from the context
information in the message. Clear the check box if you do not want to
specify alternative user authority. If you clear the check box, the broker
service user ID is used when the message is put.

The MQOutput node Request properties are described in the following table. These
properties define the characteristics of each output message that is generated.

4618 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Property M C Default Description mqsiapplybaroverride
command property

Request Yes No Cleared If you select the check box, each output message in
the MQMD is generated as a request message
(MQMT_REQUEST), and the message identifier field
is cleared (and set to MQMI_NONE) so that
WebSphere MQ generates a new identifier. Clear the
check box to indicate that each output message is
not marked as a request message. If you have set
Destination Mode to Reply To Queue, you cannot
select this check box.

A new message identifier is generated even if the
New Message ID check box is not selected on the
Advanced tab.

Reply-to
Queue
Manager

No Yes The name of the WebSphere MQ queue manager to
which the output queue, which is specified in
Reply-to Queue, is defined. This name is inserted
into the MQMD of each output message as the
reply-to queue manager.

replyToQMgr

Reply-to
Queue

No Yes The name of the WebSphere MQ queue to which to
put a reply to this request. This name is inserted
into the MQMD of each output message as the
reply-to queue.

replyToQ

The Validation properties of the MQOutput node are described in the following
table.

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Inherit This property controls whether validation takes
place. Valid values are None, Content and Value,
Content, and Inherit.

validateMaster

Failure
Action

No No Exception This property controls what happens if validation
fails. You can set this property only if you set
Validate to Content or Content and Value. Valid
values are User Trace, Local Error Log, Exception,
and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:

Chapter 14. Reference 4619

“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Using WebSphere MQ cluster queues for input and output” on page 1544
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.
“Using WebSphere MQ shared queues for input and output (z/OS)” on page 1546
On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows. You might need to serialize access to those
messages.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“MQGet node” on page 4578
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQReply node” on page 4621
Use the MQReply node to send a response to the originator of the input message.

4620 WebSphere Message Broker Version 7.0.0.8

“Output node” on page 4626
Use the Output node as an out terminal for an embedded message flow (a
subflow).
Related information:

WebSphere MQ Version 7 Information Center online

MQReply node
Use the MQReply node to send a response to the originator of the input message.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Configuring the MQReply node” on page 4622
v “Terminals and properties” on page 4623

Purpose:
The MQReply node is a specialized form of the MQOutput node that puts the
output message to the WebSphere MQ queue that is identified by the ReplyToQ
field of the input message header. If appropriate, you can define the queue as a
WebSphere MQ clustered queue or shared queue.

The MQReply node uses the options that are set in the Report field in the MQMD.
By default (if no options are set), the MQReply node generates a new MsgId field
in the reply message, and copies the message ID from the input message to the
CorrelId field in the reply message. If the receiving application expects other
values in these fields, ensure that the application that puts the message to the
message flow input queue sets the required report options, or that you set the
appropriate options in the MQMD during message processing in the message flow;
for example, use a Compute node to set the Report options in the message.

More information about the Report field is available in the Application Programming
Reference section of the WebSphere MQ Version 7 Information Center online.

The MQReply node is contained in the WebSphere MQ drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

You can use this node when you receive an order from a customer. When the order
message is processed, a response is sent to the customer acknowledging receipt of
the order and providing a possible date for delivery.

Chapter 14. Reference 4621

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Working with data in the WrittenDestination folder

After the message has been put to the reply queue, the WrittenDestination folder in
the local environment tree is updated with the destination information. A
WrittenDestination folder for an MQOutput node has the following format:
WrittenDestination = (

MQ = (
DestinationData = (

queueName = ’OUT’
queueManagerName = ’MYQUEUEMANAGER’
replyIdentifier = X’4d...2e’
msgId = X’3c...2c’
correlId = X’2a...00’
GroupId = X’3a...00’

)
)

)

Configuring the MQReply node:
When you have put an instance of the MQReply node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view.

Configure the MQReply node as follows:
1. Optional: On the Description tab, enter a short description, a long description,

or both. You can also rename the node on this tab.
2. On the Advanced tab:

a. Select Segmentation Allowed if you want WebSphere MQ to break the
message into segments in the queue manager, when appropriate. You must
also set MQMF_SEGMENTATION_ALLOWED in the MsgFlags field in the MQMD for
segmentation to occur.
More information about the options to which this property maps is
available in the Application Programming Reference section of the WebSphere
MQ Version 7 Information Center online.

b. Choose the persistence mode that you want for the output message.
v If you select Automatic (the default), the persistence is as specified in the

incoming message.
v If you select Yes, the message is put persistently.
v If you select No, the message is put non-persistently.
v If you select As Defined for Queue, the message persistence is set as

defined in the WebSphere MQ queue.
c. Choose the transaction mode that you want for the output message.
v If you select Automatic (the default), the message transactionality is

derived from how it was specified at the MQInput node.
v If you select Yes, the message is put transactionally.
v If you select No, the message is put non-transactionally.

3. On the Validation tab, set the validation properties; see “Validation properties”
on page 4169. If a message is propagated to the Failure terminal of the node, it
is not validated.
For more details, see “Validating messages” on page 1478.

The reply message is put (using MQPUT) to the queue named in the input
message MQMD as the ReplyTo queue. You cannot change this destination.

4622 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Connecting the output terminals to another node:
Connect the Out or Failure terminal of this node to another node in the message
flow to process the message further, process errors, or send the message to an
additional destination.

If you use aggregation in your message flows, you must connect these output
terminals.

Configuring for coordinated transactions:
When you define an MQReply node, the option that you select for the Transaction
Mode property defines whether the message is written under sync point:
v If you select Yes, the message is written under sync point (that is, in a

WebSphere MQ unit of work).
v If you select Automatic (the default), the message is written under sync point if

the incoming input message is marked as persistent.
v If you select No, the message is not written under sync point.

Another property of the MQReply node, Persistence Mode, defines whether the
output message is marked as persistent when it is put to the output queue:
v If you select Yes, the message is marked as persistent.
v If you select Automatic (the default), the message persistence is determined by

the properties of the incoming message, as set in the MQMD (the
WebSphere MQ message descriptor).

v If you select No, the message is not marked as persistent.
v If you select As Defined for Queue, the message persistence is set as defined in

the WebSphere MQ queue; the MQReply node specifies the
MQPER_PERSISTENCE_AS_Q_DEF option in the MQMD.

Terminals and properties:
The MQReply node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the message is
put to the output queue.

Out The output terminal to which the message is routed if it has been successfully put to the output
queue, and if further processing is required in this message flow.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory; the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file for deployment).

The MQReply node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type.

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the message
flow.

Chapter 14. Reference 4623

The MQReply node Advanced properties are described in the following table.

Property M C Default Description

Segmentation
Allowed

Yes No Cleared If you select this check box, WebSphere MQ breaks the message
into segments in the queue manager.

Persistence
Mode

Yes No Automatic This property controls whether the message is put persistently.
Valid values are Automatic, Yes, No, and As Defined for Queue.

Transaction
Mode

Yes No Automatic This property controls whether the message is put transactionally.
Valid values are Automatic, Yes, and No.

The Validation properties of the MQReply node are described in the following
table.

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Inherit This property controls whether validation takes place.
Valid values are None, Content and Value, Content,
and Inherit.

validateMaster

Failure
Action

No No Exception This property controls what happens if validation
fails. You can set this property only if you set
Validate to Content or Content and Value. Valid
values are User Trace, Local Error Log, Exception,
and Exception List.

The MQReply node also has the following properties that you cannot access or
modify through the WebSphere Message Broker Toolkit interface. However, these
values are used by the broker when the message is processed in the message flow.

Property Description

Queue Manager
Name

The name of the WebSphere MQ queue manager to which the output queue, identified in Queue
Name, is defined. This name is retrieved from the ReplyTo field of the MQMD header of the input
message.

Queue Name The name of the WebSphere MQ queue to which the output message is put. This name is
retrieved from the ReplyTo field of the MQMD header of the input message.

Destination This property always has the value reply.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

4624 WebSphere Message Broker Version 7.0.0.8

input message is received.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Using WebSphere MQ cluster queues for input and output” on page 1544
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.
“Using WebSphere MQ shared queues for input and output (z/OS)” on page 1546
On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows. You might need to serialize access to those
messages.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“MQGet node” on page 4578
Use the MQGet node to receive messages from clients that connect to the broker by
using the WebSphere MQ Enterprise Transport, and the MQI and AMI application
programming interfaces.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Chapter 14. Reference 4625

“SCADAOutput node” on page 4706
The SCADAOutput node, available in earlier versions of WebSphere Message
Broker, is not supported in WebSphere Message Broker Version 7.0. See for
information about migrating your message flows from WebSphere Message Broker
to WebSphere Message Broker Version 7.0.
Related information:

WebSphere MQ Version 7 Information Center online

Output node
Use the Output node as an out terminal for an embedded message flow (a
subflow).

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4627

Purpose:
You can use a subflow for a common task that can be represented by a sequence of
message flow nodes. For example, you can create a subflow to increment or
decrement a loop counter, or to provide error processing that is common to a
number of message flows.

You must use an Output node to provide the Out terminal to a subflow; you
cannot use a standard output node (a built-in output node such as MQOutput, or a
user-defined output node).

You can include one or more Output nodes in a subflow. Each one that you
include provides a terminal through which you can propagate messages to
subsequent nodes in the message flow in which you include the subflow.

The Output node is contained in the Construction drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

When you select and include a subflow in a message flow, it is represented by the
following icon:

When you include the subflow in a message flow, this icon exhibits a terminal for
each Output node that you included in the subflow, and the name of the terminal
(which you can see when you move your mouse pointer over it) matches the name
of that instance of the Output node. Give your Output nodes meaningful names,
you can easily recognize them when you use their corresponding terminal on the
subflow node in your message flow.

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Error Handler

4626 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the Output node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.

The Output node terminals are described in the following table.

Terminal Description

In The output terminal that defines an out terminal for the subflow.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Output node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type, Output

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can

Chapter 14. Reference 4627

use in your message flows.
Related reference:
“Input node” on page 4511
Use the Input node as an In terminal for an embedded message flow (a subflow).
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Passthrough node
Use the Passthrough node to enable version control of a subflow at run time.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties”

Purpose:
Use the Passthrough node to add a label to your message flow or subflow. By
combining this label with keyword replacement from your version control system,
you can identify which version of a subflow is included in a deployed message
flow. You can use this label for your own purposes. If you have included the
correct version keywords in the label, you can see the value of the label:
v Stored in the broker archive (BAR) file, using the mqsireadbar command
v As last deployed to a particular broker, on the properties of a deployed message

flow in the WebSphere Message Broker Toolkit
v At run time, if you enable user trace for that message flow

The Passthrough node does not process the message in any way. The message that
it propagates on its Out terminal is the same message that it received on its In
terminal.

The Passthrough node is contained in the Construction drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Use this node to identify a subflow; for example, if you develop an error
processing subflow to include in several message flows, you might want to modify
that subflow. However, you might want to introduce the modified version initially
to just a subset of the message flows in which it is included. Set a value for the
instance of the Passthrough node that identifies which version of the subflow you
have included.

Terminals and properties:
When you have put an instance of the Passthrough node into a message flow, you
can configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view. All
mandatory properties for which you must enter a value (those that do not have a
default value defined) are marked with an asterisk.

The Passthrough node terminals are described in the following table.

4628 WebSphere Message Broker Version 7.0.0.8

Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal that delivers a message to the subflow.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined), the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Passthrough node Description properties are described in the following table.

Property M C Default Description

Node name No No Passthrough The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message
flow.

The Passthrough node Basic properties are described in the following table.

Property M C Default Description

Label No No The label (identifier) of the node. Enter a value that defines a unique
characteristic; for example, the version of the subflow in which the node is
included.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Subflows” on page 1030
You can include subflows in your message flows in the same way as you include
built-in or user-defined nodes. You can also connect subflows to other nodes in the
same way.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
Related reference:

Chapter 14. Reference 4629

“Input node” on page 4511
Use the Input node as an In terminal for an embedded message flow (a subflow).

PeopleSoftInput node
Use the PeopleSoftInput node to interact with a PeopleSoft application.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4631

Purpose:
Use the PeopleSoftInput node to interact with PeopleSoft applications. For
example, a PeopleSoftInput node monitors a PeopleSoft system for a specified
event. When that event occurs, the PeopleSoftInput node generates a message tree
that represents the business object with the new event details. The message tree is
propagated to the Out terminal so that the rest of the message flow can use the
data to update other systems, or audit the changes.

The PeopleSoftInput node is contained in the WebSphere Adapters drawer of the
message flow node palette, and is represented in the WebSphere Message Broker
Toolkit by the following icon:

Using this node in a message flow:
To function correctly, the PeopleSoftInput node needs an adapter component,
which you set using the Adapter component node property, and business object
definitions, which are stored in the message set that you reference from the node.
For this reason, you must provide a message set. By default, the message that is
propagated from the PeopleSoftInput node is in the DataObject domain, so the
Message domain property is set to DataObject. You cannot specify a different
domain. The message type is detected automatically by the node.

The PeopleSoftInput node populates the route to label destination list with the
name of the method binding. If you add a RouteToLabel node to the message flow
after the PeopleSoftInput node, the RouteToLabel node can use the name of the
method binding to route the message to the correct part of the message flow for
processing.

You can deploy only one input node that uses a particular adapter component to
an execution group, but you can deploy many input nodes that use different
adapter components to an execution group.

You can use the mqsisetdbparms command in the following format to configure an
account name with a user name and password for the Adapter for PeopleSoft
Enterprise.
mqsisetdbparms broker name -n adapter name -u user name -p password

For example:
mqsisetdbparms BRK1 -n eis::PeopleSoftCustomerInbound.inadapter -u peoplesoftuid -p ********

Using configurable services for PeopleSoft nodes

4630 WebSphere Message Broker Version 7.0.0.8

PeopleSoft nodes can get PeopleSoft connection details from either the adapter
component or a configurable service. By using a configurable service, you can
change the connection details for an adapter without the need to redeploy the
adapter. For more details about creating, changing, reporting, and deleting the
configurable services for PeopleSoft, see “Changing connection details for
PeopleSoft adapters” on page 722.

Terminals and properties:
When you have put an instance of the PeopleSoftInput node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. If you double-click a PeopleSoftInput node, you open the Adapter
Connection wizard. All mandatory properties for which you must enter a value
(those that do not have a default value defined) are marked with an asterisk.

The PeopleSoftInput node terminals are described in the following table.

Terminal Description

Out Business object events from the adapter are sent to the Out terminal.

Failure If an error happens in the PeopleSoftInput node, the message is propagated to the Failure terminal.
Information about the error, and business object events can also be propagated to the Failure terminal.

Catch Business object events are sent to the Catch terminal if they cause an uncaught exception in the
message flow. If the Catch terminal is not connected, the retry process is activated to handle the
business object.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The PeopleSoftInput node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type,
PeopleSoftInput.

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The PeopleSoftInput node Basic properties are described in the following table.

Chapter 14. Reference 4631

Property M C Default Description mqsiapplybaroverride
command property

Primary
adapter
component

Yes Yes The name of the adapter component that contains
configuration properties for the adapter. Either enter a
name of an adapter file or click Browse to select an
adapter file from the list of files that are available in
referenced message set projects.

When the PeopleSoftInput node receives data from the
PeopleSoft system, it associates that data with a method
name, depending on the service operation name that is
assigned to that type of data when you run the Adapter
Connection wizard. The PeopleSoftInput node attempts to
handle methods that are defined in the primary adapter.
If the type of data that is received does not correspond to
any of the methods that are defined in the primary
adapter, the node can handle methods that are defined in
matching secondary adapters that are deployed to the
same execution group.

adapterComponent

Secondary
adapter
mode

No Yes None Specifies whether the node can handle methods that are
defined in secondary adapters.

If you set the Secondary adapter mode property to None,
the node handles only methods that are defined in the
primary adapter. If the type of data that is received does
not correspond to any of the methods that are defined in
the primary adapter, a failure occurs.

If you set this property to All adapters in execution
group, the node can handle methods that are defined in
any PeopleSoft inbound adapters that are deployed to the
same execution group.

secondaryAdapterMode

The PeopleSoftInput node Routing properties are described in the following table.

Property M C Default Description

Set
destination
list

No No Selected This property specifies whether to add the method binding name to the route
to label destination list. If you select this check box, the method binding name
is added so that you can use a RouteToLabel node in the message flow after
the PeopleSoftInput node.

Label prefix No No The prefix to add to the method name when routing to label. Add a label
prefix to avoid a clash of corresponding label nodes when you include
multiple WebSphere Adapters input nodes in the same message flow. By
default, there is no label prefix, so the method name and label name are
identical.

The PeopleSoftInput node Input Message Parsing properties are described in the
following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the incoming message. By default, the
message that is propagated from the PeopleSoftInput node is in the
DataObject domain. You cannot specify a different domain.

4632 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
set

Yes No Set
automatically

The name of the message set in which the incoming message is defined.
This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project dependencies
to remove this message set reference, a warning is issued. Either update the
Message set property, or restore the reference to this message set project.

Message
type

No No The name of the incoming message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the incoming message. You cannot set
this property.

The PeopleSoftInput node Transactionality properties are described in the
following table.

Property M C Default Description

Transaction
mode

No Yes The transaction mode on this input node determines whether the rest of the
nodes in the flow operate under sync point.

The Instances properties of the PeopleSoftInput node are described in the following
table. For a full description of these properties, refer to “Configurable message
flow properties” on page 4020.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are
obtained.
v If you select Use Pool Associated with Message

Flow, additional instances are obtained from the
message flow value.

v If you select Use Pool Associated with Node,
additional instances are allocated from the node's
additional instances based on the number specified
in the Additional instances property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node can
start if the Additional instances pool property is set
to Use Pool Associated with Node. By default, no
additional instances are given to the node.

additionalInstances

The PeopleSoftInput node Retry properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

No No Failure This property specifies how retry processing is handled
when a failure is rolled back to the PeopleSoftInput node.
v If you select Failure, retry processing is not performed

so you cannot set the remaining properties.
v If you select Short and long retry, retry processing is

performed first at the interval that is specified by the
Short retry interval property, and if that is
unsuccessful, it is then performed at the interval that is
specified by the Long retry interval property.

Chapter 14. Reference 4633

Property M C Default Description mqsiapplybaroverride
command property

Retry
threshold

No Yes 0 The maximum number of times that retry processing is
performed for short retry.

retryThreshold

Short
retry
interval

No Yes 0 The interval between short retry attempts. shortRetryInterval

Long
retry
interval

No Yes 0 The interval between long retry attempts. longRetryInterval

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.

4634 WebSphere Message Broker Version 7.0.0.8

“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

PeopleSoftRequest node
Use the PeopleSoftRequest node to interact with a PeopleSoft application.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4636

Purpose:
Use the PeopleSoftRequest node to interact with PeopleSoft applications. For
example, a PeopleSoftRequest node requests information from a PeopleSoft
Enterprise Information System (EIS). A customer business object is sent to
PeopleSoft, causing PeopleSoft to retrieve information about a customer, such as an
address and account details. The response information that is retrieved by the
PeopleSoftRequest node can then be used by the rest of the message flow. The
PeopleSoftRequest node can send and receive business data.

The PeopleSoftRequest node is contained in the WebSphere Adapters drawer of
the message flow node palette, and is represented in the WebSphere Message
Broker Toolkit by the following icon:

Using this node in a message flow:
To function correctly, the PeopleSoftRequest node needs an adapter component,
which you set using the Adapter component node property, and business object
definitions, which are stored in the message set that you reference from the node.
For this reason, you must provide a message set. By default, the message that is
propagated from the PeopleSoftRequest node is in the DataObject domain, so the
Message domain property is set to DataObject. You cannot specify a different
domain. The message type is detected automatically by the node.

The PeopleSoftRequest node supports local transactions using the broker's Local
Transaction Manager, and global transactions using the broker's external syncpoint
coordinator.

To effectively maintain the pool of connections to PeopleSoft, you can set a
connection timeout value on a configurable service. For more information, see
“Configuring EIS connections to expire after a specified time” on page 726.

You can deploy several WebSphere Adapters request nodes that use the same
adapter component to an execution group.

Chapter 14. Reference 4635

You can use the mqsisetdbparms command in the following format to configure an
account name with a user name and password for the Adapter for PeopleSoft
Enterprise.
mqsisetdbparms broker name -n adapter name -u user name -p password

For example:
mqsisetdbparms BRK1 -n eis::PeopleSoftCustomerOutbound.outadapter -u peoplesoftuid -p ********

Using configurable services for PeopleSoft nodes

PeopleSoft nodes can get PeopleSoft connection details from either the adapter
component or a configurable service. By using a configurable service, you can
change the connection details for an adapter without the need to redeploy the
adapter. For more details about creating, changing, reporting, and deleting the
configurable services for PeopleSoft, see “Changing connection details for
PeopleSoft adapters” on page 722.

Terminals and properties:
When you have put an instance of the PeopleSoftRequest node into a message
flow, you can configure it; see . The properties of the node are displayed in the
Properties view. If you double-click a PeopleSoftRequest node, you open the
Adapter Connection wizard. All mandatory properties for which you must enter a
value (those that do not have a default value defined) are marked with an asterisk.

The PeopleSoftRequest node terminals are described in the following table.

Terminal Description

In The input terminal that accepts the request business object.

Out The output terminal to which the response business object is sent if it represents successful completion
of the request, and if further processing is required within this message flow.

Failure If an error happens in the PeopleSoftRequest node, the message is propagated to the Failure terminal.
Information about the error, and business object events can also be propagated to the Failure terminal.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk on the panel if you
must enter a value when no default is defined); the column headed C indicates
whether the property is configurable (you can change the value when you add the
message flow to the BAR file to deploy it).

The PeopleSoftRequest node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type,
PeopleSoftRequest

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The PeopleSoftRequest node Basic properties are described in the following table.

4636 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Primary
adapter
component

Yes No The name of the adapter component that contains
configuration properties for the adapter. Either enter a name
of an adapter file, or click Browse to select an adapter file
from the list of files that are available in referenced message
set projects.

When thePeopleSoftRequest node receives data from the
PeopleSoft system, it associates that data with a method
name. The PeopleSoftRequest node attempts to call methods
that are defined in the primary adapter. If the method is not
defined in the primary adapter, the node can call methods
that are defined in matching secondary adapters that are
deployed to the same execution group.

Secondary
adapter
mode

No Yes None Specifies whether the node can call methods that are
defined in secondary adapters.

If you set the Secondary adapter mode property to None, the
PeopleSoftRequest node calls only methods that are defined
in the primary adapter. If the method is not defined in the
primary adapter, an error occurs.

If you set this property to All adapters in execution
group, the node can call methods that are defined in any
PeopleSoft outbound adapter that is deployed to the same
execution group.

secondaryAdapterMode

Default
method

Yes Yes The default method binding to use. defaultMethod

The PeopleSoftRequest node Response Message Parsing properties are described in
the following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the response message. By default, the
response message that is propagated from the PeopleSoftRequest node is in the
DataObject domain. You cannot specify a different domain.

Message
set

Yes No Set
automatically

The name of the message set in which the response message is defined. This
field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project dependencies to
remove this message set reference, a warning is issued. Either update the
Message set property, or restore the reference to this message set project.

Message
type

No No The name of the response message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the response message. You cannot set this
property.

The PeopleSoftRequest node Transactionality properties are described in the
following table.

Property M C Default Description

Transaction
mode

No No No This property specifies that updates are performed independently, not as part of
a local transaction. You cannot change this property.

Chapter 14. Reference 4637

The PeopleSoftRequest node Request properties are described in the following
table.

Property M C Default Description

Method
Location

Yes No $LocalEnvironment/Adapter/
MethodName

The location of the business method (such as
createPurchaseOrder or deletePurchaseOrder) that is
used to trigger the PeopleSoftRequest node to perform
an action on the external system.

Data
Location

Yes No $Body The location in the incoming message tree from which
data is retrieved to form the request that is sent from
the PeopleSoftRequest node to the EIS.

The PeopleSoftRequest node Result properties are described in the following table.

Property M C Default Description

Output
data
location

No No $OutputRoot The message tree location to which the PeopleSoftRequest node sends
output.

Copy local
environment

No No Selected This property controls how the local environment is copied to the output
message. If you select the check box, at each node in the message flow, a
new copy of the local environment is created in the tree, and it is
populated with the contents of the local environment from the preceding
node. So if a node changes the local environment, the upstream nodes do
not see those changes because they have their own copies. This behavior
might be an issue if you are using a FlowOrder node, or if you use the
propagate command on a Compute node.

If you clear the check box, each node does not generate its own copy of
the local environment, but it uses the local environment that is passed to it
by the previous node. So if a node changes the local environment, those
changes are seen by the upstream nodes.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 2013
With the adapter for PeopleSoft Enterprise you can create integrated processes that
exchange information with PeopleSoft Enterprise through a standard interface. This
interface shields the message flow developer from having to understand the lower
level details about implementation of the application or data structures used on the
PeopleSoft Enterprise server.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.

4638 WebSphere Message Broker Version 7.0.0.8

“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Creating a custom event project in PeopleTools” on page 2083
The WebSphere Adapter requires an event project in PeopleSoft to perform
asynchronous inbound event processing. Use PeopleTools to create the custom
event project.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

PHPCompute node
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

Support for the PHP scripting language is available on all operating systems on
which WebSphere Message Broker is supported.

This topic contains the following sections:
v “Purpose”
v “Using the PHPCompute node in a message flow” on page 4640
v “Specifying PHP” on page 4640
v “Configuring the PHPCompute node” on page 4640
v “Terminals and properties” on page 4641

Purpose:
The PHPCompute node can use the PHP scripting language to route and transform
incoming messages.

Using this node, you can achieve the following goals:
v Examine an incoming message and, depending on its content, propagate it

unchanged to the node's output terminal.
v Change part of an incoming message and propagate the changed message to the

output terminal by using PHP.

Chapter 14. Reference 4639

v Create and build a new output message that is independent of the input
message by using PHP.

The PHPCompute node is contained in the Transformation drawer of the palette,
and is represented in the WebSphere Message Broker Toolkit by the following icon:

Using the PHPCompute node in a message flow:
Look at the following sample to see how to use this node:
v PHPCompute Node

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Specifying PHP:
Create PHP statements to customize the behavior of the PHPCompute node. For
example, you can customize the node to create one or more output messages by
using either new data or the content of an input message or database (unchanged
or modified). For example, you might want to modify a value in the input message
by adding a value from a database, and store the result in a field in the output
message.

Create the PHP statements that you want in a PHP script file and ensure that it
exists in the workspace before you associate it with the PHPCompute node.

If the required PHP script file exists, import it into the workspace before
associating it with the PHPCompute node (see “Importing file systems into the
WebSphere Message Broker Toolkit” on page 2931).

If a PHP file does not exist for this node, create one in the project folder with a file
extension of .php (for example, myfile.php). For more information about creating a
PHP script file, see “Creating PHP code for a PHPCompute node” on page 2672.

The PHPCompute node provides support for Simple Network Management
Protocol (SNMP). The Management Information Base (MIB) files are installed
during the installation of WebSphere Message Broker, and their location is
specified by the MIBDIRS environment variable.

Configuring the PHPCompute node:
When you have put an instance of the PHPCompute node into a message flow,
you can configure it. For more information about how to configure nodes, see .

The properties of the node are displayed in the Properties view. All mandatory
properties for which you must enter a value (the ones that do not have a default
value defined) are marked with an asterisk in that view.

To configure the PHPCompute node:
1. Optional: On the Description tab, enter a short description, a long description,

or both. You can also rename the node on this tab.

4640 WebSphere Message Broker Version 7.0.0.8

2. On the Basic tab, use the PHP script property to specify the name of the PHP
file. Select the Invoke 'evaluate()' method in PHP class definition property
if the code in your PHP script file includes an evaluate method.

3. On the Parser options tab, select the Use XMLNSC compact parser for the
XMLNS domain property to specify that the XMLNSC Compact Parser is used for
messages in the XMLNS Domain.

4. On the Validation tab, specify the parser validation properties of the node. For
more information about validation, see “Validating messages” on page 1478.
For information about how to complete this tab, see “Validation tab properties”
on page 4169.

Terminals and properties:
The PHPCompute node terminals are described in the following table.

Terminal Type Description

In Input data The input terminal that accepts a message for processing by the node.

Out Output data The output terminal to which the transformed message is routed.

Failure Output data The output terminal to which the message is routed if a failure is detected
during the computation. Even if the Validate property is set, messages that are
propagated to the Failure terminal of the node are not validated.

* (dynamic) Dynamic output Zero or more dynamic output terminals can be created to support message
routing.

You can define additional dynamic output terminals on the PHPCompute node.
Not all dynamic output terminals that are created on a PHPCompute node need to
be mapped to an expression in the filter table. If any of the dynamic output
terminals are unmapped, they never have messages propagated to them. Several
expressions can map to the same single dynamic output terminal. No static output
terminal exists to which the message is passed straight through. For more
information about using dynamic terminals, see “Using dynamic terminals” on
page 1518.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the PHPCompute node are described in the
following table:

Property M C Default Description

Node name No No PHPCompute The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the
message flow.

The Basic properties of the PHPCompute node are described in the following table:

Chapter 14. Reference 4641

Property M C Default Description mqsiapplybaroverride
command property

PHP script Yes Yes A string containing the name of the PHP script
file.

ScriptName

The Parser Options properties of the PHPCompute node are described in the
following table.

Property M C Default Description

Use XMLNSC
compact parser for
XMLNS domain

No No False This property controls whether the XMLNSC Compact Parser is
used for messages in the XMLNS Domain. If you set this property,
the message data appears under XMLNSC in nodes that are
connected to the output terminal when the input MQRFH2 header
or Input Message Parsing property, Message Domain, is XMLNS.

The Validation properties of the PHPCompute node are described in the following
table.

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No No None This property controls whether validation takes place.
Valid values are:

v None

v Content and Value

v Content

v Inherit

validateMaster

Failure
action

No No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

4642 WebSphere Message Broker Version 7.0.0.8

“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Using dynamic terminals” on page 1518
You can add, rename, and remove dynamic terminals on a node in the Message
Flow editor.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

Publication node
Use the Publication node to filter output messages from a message flow and
transmit them to subscribers who have registered an interest in a particular set of
topics.

This information contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4644
v “Terminals and properties” on page 4644

Purpose:
Use the Publication node to publish a message through the WebSphere MQ queue
manager associated with the broker. Applications that expect to receive
publications must register a subscription.

The message being published must be:
v A Publish command message
v A Delete Publication command message, or
v Have at least one topic present in the standard properties of the message.

Chapter 14. Reference 4643

The Publication node uses the topic, or topics, and any options present in the
command message to publish the message. The WebSphere MQ queue manager
delivers the publication to all subscribing applications matching the topic, and any
other options specified on their subscriptions.

The Publication node is contained in the Routing drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following samples to see how to use this node:
v Scribble
v JMS Nodes
v Pager

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

For an example of how to use this node, assume that you have written a
publishing application that publishes stock updates on a regular basis. The
application sends the messages to the broker on an MQInput node, and the
message flow provides a conversion from the input currency to a number of
output currencies. Include a Publication node for each currency that is supported,
and set the Subscription Point property to a value that reflects the currency in
which the stock price is published by the node; for example, Sterling, or USD.

Terminals and properties:
When you have put an instance of the Publication node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view.

The Publication node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

NoMatch If no subscribers are matched on any of the published topics, the original message is propagated here.

Out If at least one subscriber is matched by WebSphere MQ on at least one of the published topics, the
original message is propagated here.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory; the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Publication node Description properties are described in the following table.

Property M C Default Description

Node name No No The node type:
Publication

The name of the node.

4644 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The Publication node Basic properties are described in the following table.

Property M C Default Description

Implicit
Stream
Naming

Yes No Cleared Select Implicit Stream Naming to take the name of the WebSphere MQ queue
on which the message was received by the message flow as the stream name.
This property provides compatibility with earlier versions of WebSphere MQ
Publish/Subscribe, and applies to messages with an MQRFH header when
MQPSStream is not specified.

Clear the check box if you do not want this action to be taken.

Subscription
Point

No No The subscription point value for the node. If you do not specify a value for this
property, the default subscription point is assumed. Set a subscription point for
a Publication node to restrict the forwarding of its publications to those
subscribers that specify the subscription point in their subscription (as described
in the example scenario in “Using this node in a message flow” on page 4644).

For more information, see “Subscription points” on page 2222.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Publish/Subscribe” on page 2215
Publish/subscribe is a style of messaging application in which the providers of
information (publishers) are decoupled from the consumers of that information
(subscribers).
“Subscription points” on page 2222
A subscription point is the name that a subscriber uses to request publications from
a particular set of Publication nodes. It is the property of a Publication node that
differentiates that Publication node from other Publication nodes in the same
message flow.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.

Chapter 14. Reference 4645

“Routing using publish/subscribe applications” on page 2215
You can route your messages to applications using the publish/subscribe method
of messaging.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using WebSphere MQ cluster queues for input and output” on page 1544
Design your broker network to use WebSphere MQ queues, if appropriate for your
business needs.
“Using WebSphere MQ shared queues for input and output (z/OS)” on page 1546
On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows. You might need to serialize access to those
messages.
Related reference:
“MQOutput node” on page 4612
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

Real-timeInput node
The Real-timeInput node, available in earlier versions of WebSphere Message
Broker, is not supported in WebSphere Message Broker Version 7.0. See “Migrating
from Version 6.1 products” on page 163 for information about migrating your
message flows from WebSphere Message Broker to WebSphere Message Broker
Version 7.0.

Real-timeOptimizedFlow node
The Real-timeOptimizedFlow node, available in earlier versions of WebSphere
Message Broker, is not supported in WebSphere Message Broker Version 7.0. See
“Migrating from Version 6.1 products” on page 163 for information about
migrating your message flows from WebSphere Message Broker to WebSphere
Message Broker Version 7.0.

RegistryLookup node
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

This topic contains the following sections:
v “Purpose”
v “Local environment overrides” on page 4647
v “Terminals and properties” on page 4648

Purpose:
The RegistryLookup node retrieves any type of entity held in WSRR.

4646 WebSphere Message Broker Version 7.0.0.8

Data is retrieved according to search criteria defined by node properties, possibly
supplemented or overridden by local environment definitions at run time; see
“Local environment overrides” for more details.

The retrieved data is placed in the local environment tree, making it available to
subsequent nodes. The input message received by the node is propagated to the
output terminal unchanged.

RegistryLookup node processing

The RegistryLookup node is contained in the Web services drawer of the message
flow node palette, and is represented in the WebSphere Message Broker Toolkit by
the following icon:

When the RegistryLookup node receives a message the following steps occur in
sequence.
1. The RegistryLookup node retrieves the data from WSRR using the specified

search criteria.
2. If one or more matches are found, the RegistryLookup node adds a

representation of those entities to the local environment tree.
v If Match Policy is set to One, a single entity is returned by WSRR and added

to the local environment tree. If the registry contains more than one entity
that matches the specified search criteria it is not possible to determine
which one is returned by WSRR. A different one can be returned each time
the query is issued.

v If Match Policy is set to All, all matching entities are added to the local
environment tree. The order of the entities is determined by WSRR and
might vary between queries.

The input message is propagated unchanged to the Output terminal. The local
environment tree is propagated to the Out terminal, where it is available for
further processing by transformation nodes. The exact representation of an
entity in the local environment tree depends on the Depth Policy property. See
“RegistryLookup node output” on page 1897 for details of the local
environment output tree.
Add a compute node to your message flow to interpret and act on the returned
data. For instance, if the local environment tree contains multiple endpoint
addresses for use by subsequent request nodes the Compute node should select
the required address and set up any transport headers or local environment
settings required by those request nodes.

3. If no matches are found, the RegistryLookup node propagates the input
message to the NoMatch terminal.

4. If a processing error occurs, for example if the WSRR server configured on the
DefaultWSRR configurable service object cannot be connected to, or the
connection times out, the RegistryLookup node propagates the input message
unchanged to the Failure terminal. The ExceptionList is populated with details
of the error.

Local environment overrides:
You can override the RegistryLookup node properties by using local environment
settings. See “Dynamically defining the search criteria” on page 1891.

Chapter 14. Reference 4647

Terminals and properties:
When you have put an instance of the RegistryLookup node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view.

The RegistryLookup node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if an error occurs within the node's processing.

Out The output terminal to which the unmodified input message and updated local environment containing
the matched registry data is sent.

NoMatch The terminal to which the input message is sent if no matching entity is found based on the specified
search criteria.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The RegistryLookup node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type
(RegistryLookup)

The name of the node

Short
description

No No None A brief description of the node

Long
description

No No None Text that describes the purpose of the node in the message
flow

The RegistryLookup node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Name No Yes None Enter the string values for one or more of Name,
Namespace, and Version for the entities or artifacts that
you want to retrieve from WSRR.

At least one of the properties is required. If you leave all
three property values blank, you will get an error
message when you try to save.

name

Namespace No Yes None namespace

Version No Yes None serviceVersion

4648 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

User
Properties

No No None Allows a query to specify user-defined properties. Add
User Properties by clicking Add. User Properties refer
to the Additional Properties that are used to catalog the
entities in WSRR. Enter values for Property Name, which
is the case sensitive match of the additional property in
WSRR, Property Type, and Property Value. The
Property Type can be:

v a String (the default), in which case the Property
Value is a character string to be matched with the
additional property value present in WSRR

v XPATH, or ESQL, in which case the Property Value is
a XPath or ESQL expression which locates a field in
the message tree that contains the character string to
be matched with the property value present in WSRR.

Classification No No None The Web Ontology Language (OWL) classification
system property. Each classifier is a class in OWL, and
has a Uniform Resource Identifier (URI). Using
classifications in the registry can help to make objects
easier to find and can also add meaning to custom
objects that are unique to a particular system.

Add a Classification by clicking Add and typing the
complete fully qualified OWL URI for the OWL
classification. For example, it can define a particular
service endpoint's lifecycle state.

Match
Policy

Yes No One WSRR can contain multiple entities that match the search
criteria specified by the properties above. If Match
Policy is set to One, at most one matching entity is
returned. If Match Policy is set to All, all matching
entities are returned. See “RegistryLookup node output”
on page 1897

The RegistryLookup node Advanced properties are described in the following
table.

Chapter 14. Reference 4649

Property M C Default Description

Depth
Policy

Yes No Return matched
only (Depth =
0)

Specify the depth of the WSRR query and the contents of the entity data
to be returned. The returned entities are stored in the ServiceRegistry
message tree in the LocalEnvironment.

Select Return matched only (Depth = 0) to use a WSRR query depth of
0, and to return only the matched entities.

Select Return matched showing immediate relationships (For
compatibility only) to use a WSRR query depth of 1, and to return only
the matched entities. Returned entities include elements listing the
bsrURIs of related child entities. This option provides compatibility with
versions of WebSphere Message Broker before Version 6.1.0.4, using the
output format that was used in those prior versions. This option is
deprecated, use one of the other options.

Select Return matched plus immediate related entities (Depth = 1) to
use a WSRR query depth of 1, and to return the matched entities and the
immediate related child entities.

Select Return matched plus all related entities (Depth = -1) to use a
WSRR query depth of -1, and to return the matched entities and all the
related child entities.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
“Dynamically defining the search criteria” on page 1891
You can use the RegistryLookup and EndpointLookup nodes to issue WebSphere
Service Registry and Repository (WSRR) queries specified in the local environment.

“RegistryLookup node output” on page 1897
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

4650 WebSphere Message Broker Version 7.0.0.8

“WebSphere Service Registry and Repository” on page 1875
The WebSphere Service Registry and Repository (WSRR) is a central repository of
entities. A wide range of entities can be stored and retrieved, including
user-defined concepts and definitions related specifically to Web services, such as
WSDL services, service interfaces, and associated policies.
“Configurable services” on page 1296
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.

Resequence node
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.

This topic contains the following sections:
v “Purpose”
v “Using the Resequence node in a message flow” on page 4653
v “Configuring the Resequence node” on page 4653
v “Terminals and properties” on page 4655

Purpose:
The Resequence node controls the sequence in which a group (or groups) of
incoming messages are propagated through the node in a message flow.

Chapter 14. Reference 4651

You can use a Resequence node to rearrange groups of messages into sequential
order according to a sequence number in the message. Each message must contain
a sequence number, which can be any positive or negative integer. The sequence
number is calculated by an XPath expression defined in the Path to sequence
number property on the node, and it can be one that was added to the message by
a Sequence node.

The Resequence node can reorder multiple sequence groups independently of each
other, but it cannot reorder messages between sequence groups. The group to
which a message belongs is determined by the properties of the Resequence node.

Each sequence group can be associated with only one Resequence node. Multiple
Resequence nodes can have a sequence group with the same name, but each of
those sequence groups is treated as a separate group. The combination of the
execution group name, message flow name, node name, and sequence group name
is used to differentiate between the sequence groups.

For example, you might have a message flow called flow1 containing a Resequence
node called node1, which is deployed to an execution group called eg1. A message
is sent to it using a sequence group called group1. The result is
eg1/flow1/node1/group1. Exactly the same message flow in a different execution
group, for example eg2, would result in eg2/flow1/node1/group1.

You can configure a Resequence node to use multiple threads for propagating
messages, but only if each message that is being propagated belongs to a different
sequence group. For messages belonging to the same sequence group, only one
thread at a time can be used to propagate messages. As a result, the sequential
order of messages in a sequence group is preserved, but no order between groups
is maintained.

A transaction break occurs at the Resequence node. Messages arriving at the node
are not directly propagated to the output terminal; all messages (including the next
message in the sequence) are initially serialized to an internal WebSphere MQ
queue. The storing of the message occurs in the current transaction; when it has
been stored, the transaction is completed. If a stored message is the next one in the
sequence, it is propagated down the message flow under a new transaction. Only
the serializable part of the data is propagated from the node; local environment,
environment, and exception lists are not preserved.

Any exceptions that occur in nodes following the Resequence node are rolled back
to the Catch terminal of the Resequence node. If the Catch terminal is not
connected to any other nodes, the messages are re-delivered to the original
terminal (Out, Missing, or Expired). The messages are never backed-out or
discarded.

The Resequence node stores all received messages onto internal queues before
propagating messages downstream, even when they are received in order. The
message flow is effectively split into two running flows (one before the Resequence
node and one after it. If the part of the message flow before the Resequence node
runs significantly faster than the part of the message flow after it, the number of
messages on the internal queue can increase more quickly than can be processed.
Also, any expiry times given for end of groups or missing messages do not occur
in a timely manner. When the queues are full, messages arriving at the Resequence
node cause exceptions to be thrown. You can avoid this problem by following
these steps:

4652 WebSphere Message Broker Version 7.0.0.8

1. Ensure that the controlling applications send only a finite amount of work at a
time, which the message flow can manage.

2. Configure additional instances so that the second part of the message flow has
more instances to do work with on. Use the properties on the Instances tab to
give the Resequence node its own set of additional instances.

3. Structure the message flow so that the part of the flow that places the most
demands on the CPU (transformation, for example), comes before the
Resequence node.

4. If the large workload is transient, increase the maximum queue depth on the
internal queues.

5. Use the Resequence configurable service to partition the queues. This can
prevent the situation in which an instance of the Resequence node fills up the
queues and stops another instance working.

For information about the various states and state transitions of the Resequence
node, see “Resequence node state machines” on page 4658.

The Resequence node is contained in the Routing drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using the Resequence node in a message flow:
Look at the following sample to see how to use the Resequence node:
v Healthcare

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the Resequence node:
When you have put an instance of the Resequence node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view.

All mandatory properties that do not have a default value defined are marked
with an asterisk.

Configure the Resequence node:
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, set the properties that determine how the message sequence

is controlled.
v Use the Path to sequence number property to specify an XPath expression

that is used to calculate the sequence number of the message. The XPath
expression can calculate the sequence number or it can point to an integer
field in the message. Messages can also contain an optional sequence group
identifier. This property is mandatory.

Chapter 14. Reference 4653

v Use the Path to sequence group identifier property to specify the location
of the sequence group identifier. The location is specified as an XPath
expression. Messages that have the same group identifier are considered part
of the same sequence group.

v Use the Start of sequence definition property to identify the first
sequence number in each group.
– Select Literal to specify a literal sequence number, which can be any

positive or negative numeric value. When the message with the specified
sequence number arrives, the messages are propagated.

– Select Predicate to specify an XPath expression that evaluates to either
True or False, indicating whether the message is the first in the sequence.
Messages continue to be collected while the expression evaluates to False.
When the expression of a message is evaluated to True, it indicates that
the message is the first in the sequence.
Typically, the XPath expression evaluates to a Boolean; however, if other
data types are returned, the predicate is determined in the following way:

Table 252.

Returned data type True False

Boolean True False

Numeric Any non-zero value 0 or 0.0

String Any string matching true
(case-insensitive)

Any string not matching
true (case insensitive)

NodeSet Never Always

When a message evaluates the expression to True (and is therefore
identified as the start of the sequence), the node checks that the message
has the smallest sequence number collected up to that point. If messages
are found with lower sequence numbers, an exception is thrown.
When the first message that evaluates to true has been processed
successfully, the XPath expressions of subsequent messages are not
checked. If a message arrives with a lower sequence number than the
message that was identified as the start of the sequence, an exception is
thrown.

– Select Automatic to specify a time limit for gathering messages before
using the lowest numbered message.

v Use the End of sequence definition property to specify when each
sequence group has been completed.
– Select Literal to specify a literal sequence number. This value can be any

positive or negative numeric value that is equal to or greater than the
value of the Start of sequence definition property. When the message
with the specified sequence number arrives, the sequence group remains
open and waits for missing messages until the Missing message timeout
property expires. Any messages that arrive within that time are included
in the group (unless they are duplicates or outside the allowed range)
until the sequence group is closed. When the sequence group is closed,
any new messages arriving for that group are treated as belonging to a
new instance of the group.

– Select Predicate to specify an XPath expression that evaluates to either
True or False, to indicate whether the message is the last in the sequence.

4654 WebSphere Message Broker Version 7.0.0.8

Typically, the XPath expression evaluates to a Boolean; however, if other
data types are returned, the predicate is determined in the way shown in
Table 1.
When the predicate evaluates to True, the sequence number of the
message is assigned to the End of sequence definition property.
When a message has been received with the end of sequence predicate set
to True, the sequence group remains open and waits for missing messages
until the Missing message timeout property expires. Any messages that
arrive within that time are included in the group (unless they are
duplicates or outside the allowed range) until the sequence group is
closed. When the sequence group is closed, any new messages arriving for
that group are treated as belonging to a new instance of the group.
If a message arrives with the end of sequence predicate set to True and
with a lower sequence number than a message that has already arrived,
an exception is thrown.

– Select Automatic to specify the timeout period for the node. This option
specifies how long (in seconds) the node waits for messages to arrive in
an empty queue, before closing the sequence group. This option is useful
for applications that cannot determine the final number in the sequence.
The timer starts when there are no messages in the queue waiting to be
propagated. If new messages arrive before the timeout period is reached,
the timer is canceled. If no new messages arrive before the end of the
specified time, the sequence group is closed and any further messages for
the group are considered part of a new group.

v Use the Missing message timeout property to specify how long (in seconds)
the node waits for the next message in the sequence before it moves on to
the next message in the sequence. Messages that arrive within the specified
time limit are propagated in sequential order to the Out terminal.
When the specified time limit has been exceeded, the messages are
propagated in sequential order to the Expire terminal. Subsequent messages
in the sequence group are also routed to the Expire terminal. If the missing
message eventually arrives, it is propagated to the Missing terminal.

3. On the Advanced tab:
v Use the Persistence mode property to specify whether to store incomplete

sequences of messages persistently.
v Use the Configurable service property to specify the name of a Resequence

configurable service that overrides specified properties of the Resequence
node.

4. Optional: On the Instances tab, set values for the properties that show the
additional instances (threads) that are available for a node.
Multiple threads can be used to propagate messages from the same Resequence
node, but only if each message that is being propagated belongs to a different
sequence group. For messages belonging to the same sequence group, only one
thread at a time can be used to propagate messages. As a result, the sequential
order of messages in a sequence group is preserved, but no order between
groups is maintained.
For more information about specifying additional instances, see “Configurable
message flow properties” on page 4020.

Terminals and properties:
The terminals of the Resequence node are described in the following table.

Chapter 14. Reference 4655

Terminal Description

In The input terminal through which the incoming message assembly arrives at the
node.

Failure The output terminal to which the message is routed if an error occurs. This value
includes failures caused by retry processing.

Out The output terminal to which the output message is propagated by default.

Expire The output terminal to which the message is routed if a timeout occurs while the
node is waiting for the message to arrive. All subsequent messages in the same group
are also propagated to this terminal.

Missing The output terminal to which the missing message (which caused a timeout to occur)
is routed if it subsequently arrives at the node.

Catch The output terminal to which the message is routed if an exception is issued
downstream and caught by this node. Exceptions are caught only if this terminal is
attached.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file for deployment).

The Description properties of the Resequence node are described in the following
table.

Property M C Default Description

Node name No No Resequence The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The Basic properties of the Resequence node are described in the following table.

Property M C Default Description

Path to sequence
number

Yes No An XPath expression that calculates the sequence
number of the message.

Path to sequence group
identifier

No No An XPath expression that calculates the sequence
group identifier. Messages that have the same group
identifier are considered part of the same sequence
group. This property functions in the same way as the
Correlation path property in the Collector node.

Start of sequence
definition

Yes No Literal, 0 Specifies the first sequence number in each group.
Valid values are:

v Literal and number

v Predicate and XPath

v Automatic and time in seconds

If this property is set to Automatic, the associated time
is overridden by the value of the
startSequenceSeconds property, if set, in the
Resequence configurable service.

4656 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

End of sequence
definition

Yes No Automatic Specifies when each sequence group has been
completed. Valid values are:

v Literal and number

v Predicate and XPath

v Automatic and time in seconds

If this property is set to Automatic, the associated time
is overridden by the value of the endSequenceSeconds
property, if set, in the Resequence configurable service.

Missing message
timeout (seconds)

No No Specifies how long (in seconds) the node waits for the
next message in the sequence before it moves on to the
following one. This property is overridden by the
Missing message timeout property, if set, in the
Resequence configurable service.

The Instances properties of the Resequence node are described in the following
table. For a full description of these properties, see “Configurable message flow
properties” on page 4020.

Property M C Default Description

Additional instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message
Flow, additional instances are obtained from the
message flow pool.

v If you select Use Pool Associated with Node,
additional instances are allocated from the node's
additional instances based on the number specified
in the Additional instances property.

Additional instances No Yes 0 The number of additional instances that the node can
start if the Additional instances pool property is set
to Use Pool Associated with Node.

The Advanced properties of the Resequence node are described in the following
table.

Property M C Default Description

Persistence mode Yes No Non-
persistent

Specifies whether to store incomplete sequences of
messages persistently. Valid options are:
v Non-persistent
v Persistent

Configurable service No Yes None set This property specifies the name of a Resequence
configurable service to be used by the Resequence
node.

The properties set by the Resequence configurable
service override the equivalent properties set on the
Resequence node.

For more information about the properties than you
can set with this configurable service, see
“Configurable services properties” on page 3766.

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4657

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

You cannot use monitoring properties to configure transaction events on the
following nodes:

“Collector node” on page 4333
“Resequence node” on page 4651

Use a monitoring profile instead; see “Configuring monitoring event sources using
a monitoring profile” on page 762.
Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Message collections” on page 2755
A message collection is a single message that contains multiple messages derived
from one or more sources.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Sequence node” on page 4736
Use the Sequence node to add a sequence number to one or more groups of input
messages.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.

Resequence node state machines:

State machine diagrams show the possible actions and states of a system, and the
transitions between those states.

The following topics contain state machine diagrams showing the states,
transitions, and actions of the Resequence node:
v “Automatic start and end of sequence” on page 4659
v “Literal start and end of sequence” on page 4661

4658 WebSphere Message Broker Version 7.0.0.8

v “Predicate start and end of sequence” on page 4662

In each of the diagrams, the following syntax is used:
<action> [<predicate list>] / <result list>

where the predicate list and result list are separated by commas.

You can use these diagrams to infer the behavior of other combinations of
sequence start and end definitions for a sequence group; for example, combinations
such as literal start of sequence and automatic end of sequence.

For more information about state machine diagrams, see the Agile Modeling Web
site at http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm. For
information about the Unified Modeling Language (UML), see the Object
Management Group (OMG) UML Web site at http://www.uml.org/.
Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Sequence groups” on page 2786
Use sequence groups to control the way in which messages are grouped together
for processing by Sequence and Resequence nodes.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.

Automatic start and end of sequence:

This state machine diagram shows the states, transitions, and actions of the
Resequence node with both start and end definitions of a sequence group set to
Automatic.

Chapter 14. Reference 4659

Missing message timer times out [more than one gap]

/ propagate stored messages up to first gap to Expire terminal,

reset missing message timer

Start sequence timer times out [gaps]

/ set start sequence number to lowest received,

propagate all messages up to first gap to Out terminal,

start missing message timer

Start sequence timer times out [no gaps]

/ set start sequence number to lowest received,

propagate all stored messages to Out terminal, start end of sequence timer

automatic start

state

Receive message / store message

Missing message timer times out [one gap]

/ propagate all stored messages to Expire terminal,

start end of sequence timer,

cancel missing message timer

End of sequence timer times out

/ close group

Receive message [next in sequence, one gap]

/ propagate all stored messages to Expire terminal,

start end of sequence timer, cancel missing message timer

Receive message [not next in sequence]

/ store message, cancel end of sequence timer,

start missing message timer

unordered expired

state

Receive message [next in sequence, more than one gap] / propagate stored messages up to first gap to Expire terminal, reset missing message timer

Receive message [not next in sequence, before lowest stored message] / store message, reset missing message timer

Receive message [not next in sequence, after lowest stored message] / store message

Receive message [missed message] / propagate message to Missing terminal

Missing message timer times out [more than one gap] / propagate stored messages up to first gap to Expire terminal, reset missing message timer

Receive message [out of range] / throw an exception

Missing message timer times out [one gap]

/ propagate all stored messages to Expire terminal,

start end of sequence timer, cancel missing message timer

ordered expired

state

Receive message [next in sequence] / propagate message to Expire terminal, reset end of sequence timer

Receive message [missed message] / propagate message to Missing terminal

Receive message [out of range] / throw an exception, reset end of sequence timer

End of sequence timer times out

/ close group

Receive message [next in sequence, one gap]

/ propagate all stored messages to Out terminal,

start end of sequence timer, cancel missing message timer

Receive message [not next in sequence]

/ store message, cancel end of sequence timer,

start missing message timer

unordered

state

Receive message [next in sequence, more than one gap] / propagate stored messages up to first gap to Out terminal, reset missing message timer

Receive message [not next in sequence, before lowest stored message] / store message, reset missing message timer

Receive message [not next in sequence, after lowest stored message] / store message

Receive message [out of range] / throw an exception

Receive message [new group]

/ create new group, store message

ordered

state

Receive message [next in sequence] / propagate message to Out terminal, reset end of sequence timer

Receive message [out of range] / throw an exception, reset end of sequence timer

Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Sequence groups” on page 2786
Use sequence groups to control the way in which messages are grouped together
for processing by Sequence and Resequence nodes.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
Related reference:
“Resequence node state machines” on page 4658
State machine diagrams show the possible actions and states of a system, and the
transitions between those states.
“Literal start and end of sequence” on page 4661
This state machine diagram shows the states, transitions, and actions of the
Resequence node with both start and end definitions of a sequence group set to
Literal.
“Predicate start and end of sequence” on page 4662
This state machine diagram shows the states, transitions, and actions of the
Resequence node with both start and end definitions of a sequence group set to
Predicate.
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.

4660 WebSphere Message Broker Version 7.0.0.8

Literal start and end of sequence:

This state machine diagram shows the states, transitions, and actions of the
Resequence node with both start and end definitions of a sequence group set to
Literal.

Missing message timer times out [one gap]

/ propagate all stored messages to Expire terminal,

cancel missing message timer

Receive message [new group, less than start literal]

/ throw an exception

Receive message [new group, greater than start literal]

/ create new group, store message,

set start sequence number to start literal,

set end sequence number to end literal
Receive message [new group, equals start literal]

/ create new group,

set start sequence number to start literal,

set end sequence number to end literal,

propagate message to Out terminal

Missing message timer times out [more than one gap]

/ propagate stored messages up to first gap to Expire terminal,

reset missing message timer

Check end sequence number received [true]

/ close group

Receive message [not next in sequence]

/ store message, start missing message timer

Receive message [next in sequence, one gap]

/ propagate all stored messages to Expire terminal,

cancel missing message timer

unordered expired

state

Receive message [next in sequence, more than one gap] / propagate stored messages up to next gap to Expire terminal, reset missing message timer

Receive message [not next in sequence, before lowest stored message] / store message, reset missing message timer

Receive message [not next in sequence, after lowest stored message] / store message

Recieve message[missed message] / propagate message to Missing terminal

Missing message timer times out [more than one gap] / propagate stored messages up to first gap to Expire terminal, reset missing message timer

Receive message [out of range] / throw an exception

Missing message timer times out [one gap]

/ propagate all stored messages to Expire terminal,

cancel missing message timer

ordered expired

state

Receive message [next in sequence] / propagate message to Expire terminal

Receive message [missed message] / propagate message to Missing terminal

Receive message [out of range] / throw an exception

Check end sequence number received [false] / do nothing

Check end sequence number received [true]

/ close group

Receive message [not next in sequence]

/ store message, start missing message timer

unordered

state

Receive message [next in sequence, more than one gap] / propagate stored messages up to first gap to Out terminal, reset missing message timer

Receive message [not next in sequence, before lowest stored message] / store message, reset missing message timer

Receive message [not next in sequence, after lowest stored message] / store message

Receive message [out of range] / throw an exception

ordered

state

Receive message [next in sequence] / propagate message to Out terminal

Receive message [out of range] / throw an exception

Check end sequence number received [false] / do nothing

Receive message [next in sequence, one gap]

/ propagate all stored messages to Out terminal,

cancel missing message timer

Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Sequence groups” on page 2786
Use sequence groups to control the way in which messages are grouped together
for processing by Sequence and Resequence nodes.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
Related reference:
“Resequence node state machines” on page 4658
State machine diagrams show the possible actions and states of a system, and the
transitions between those states.
“Predicate start and end of sequence” on page 4662
This state machine diagram shows the states, transitions, and actions of the
Resequence node with both start and end definitions of a sequence group set to
Predicate.

Chapter 14. Reference 4661

“Automatic start and end of sequence” on page 4659
This state machine diagram shows the states, transitions, and actions of the
Resequence node with both start and end definitions of a sequence group set to
Automatic.
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.

Predicate start and end of sequence:

This state machine diagram shows the states, transitions, and actions of the
Resequence node with both start and end definitions of a sequence group set to
Predicate.

Receive message [matches start predicate, gaps] /

propagate stored messages up to first gap to Out terminal,

set start sequence number, start missing message timer
Receive message [matches start predicate, no gaps]

/ set start sequence number, propagate all stored messages to Out terminal

predicate start

state

Receive message [does not match start predicate] / store message

Receive message [new group, does not match start predicate]

/ create new group, store message

Receive message [new group, matches start predicate]

/ create new group, store message,

set start sequence number, propagate message to Out terminal

Missing message timer times out [more than one gap]

/ propagate stored messages up to first gap to Expire terminal,

reset missing message timer

Missing message timer times out [one gap]

/ propagate all stored messages to Expire terminal,

cancel missing message timer

Check match for end predicate received [true]

/ close group

Receive message [next in sequence, one gap]

/ propagate all stored messages to Expire terminal,

cancel missing message timer

Receive message [not next in sequence]

/ store message, start missing message timer

unordered expired

state

Receive message [next in sequence, more than one gap] / propagate stored messages up to first gap to Expire terminal, reset missing message timer

Receive message [not next in sequence, before lowest stored message] / store message, reset missing message timer

Receive message [not next in sequence, after lowest stored message] / store message

Recieve message[missed message] / propagate message to Missing terminal

Missing message timer times out [more than one gap] / propagate stored messages up to first gap to Expire terminal, reset missing message timer

Receive message [out of range] / throw an exception

Missing message timer times out [one gap]

/ propagate all stored messages tp Expire terminal,

cancel missing message timer

ordered expired

state

Receive message [next in sequence] / propagate message to Expire terminal

Receive message [missed message] / propagate message to Missing terminal

Receive message [out of range] / throw an exception

Check match for end predicate received [false] / do nothing

Check match for end predicate received [true]

/ close group

Receive message [not next in sequence]

/ store message, start missing message timer

unordered

state

Receive message [next in sequence, more than one gap] / propagate stored messages up to first gap to Out terminal, reset missing message timer

Receive message [not next in sequence, before lowest stored message] / store message, reset missing message timer

Receive message [not next in sequence, after lowest stored message] / store message

Receive message [out of range] / throw an exception

ordered

state

Receive message [next in sequence] / propagate message to Out terminal

Receive message [out of range] / throw an exception

Check match for end predicate received [false] / do nothing

Receive message [next in sequence, one gap]

/ propagate all stored messages to Out terminal,

cancel missing message timer

Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
“Sequence groups” on page 2786
Use sequence groups to control the way in which messages are grouped together
for processing by Sequence and Resequence nodes.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
Related reference:
“Resequence node state machines” on page 4658
State machine diagrams show the possible actions and states of a system, and the

4662 WebSphere Message Broker Version 7.0.0.8

transitions between those states.
“Automatic start and end of sequence” on page 4659
This state machine diagram shows the states, transitions, and actions of the
Resequence node with both start and end definitions of a sequence group set to
Automatic.
“Literal start and end of sequence” on page 4661
This state machine diagram shows the states, transitions, and actions of the
Resequence node with both start and end definitions of a sequence group set to
Literal.
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.

ResetContentDescriptor node
Use the ResetContentDescriptor node to request that the message is reparsed by a
different parser.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4664
v “Configuring the ResetContentDescriptor node” on page 4664
v “Terminals and properties” on page 4666

Purpose:
The node associates the new parser information with the input message bit stream.
If the message has been parsed already to create a message tree, and the contents
of the tree have been modified (for example, by a Compute node), the
ResetContentDescriptor node must re-create the bit stream from the message tree
by calling the current parser.

If your message flow has updated the message before it is received by the
ResetContentDescriptor node, ensure that the changed message contents are still
valid for the current parser. If the contents are not valid, the parser generates an
error when it attempts to re-create the bit stream from the message tree, and the
ResetContentDescriptor node raises an exception. For example, if you have added
a new field to a message in the MRM domain, and the field is not present in the
model, the recreation of the bit stream fails.

If you specify MRM as the new parser, you can also specify a different message
template (message set, message type, and message format). This node does not
reparse the message, but the properties that you set for this node determine how
the message is parsed when it is next reparsed by the message flow.

The ResetContentDescriptor node does not:
v Change the message content; it changes message properties to specify the way in

which the bit stream is parsed next time that the parser is started.
v Convert the message from one format to another; for example, if the incoming

message has a message format of XML and the outgoing message format is
binary, the ResetContentDescriptor node does not do any reformatting. It starts
the parser to re-create the bit stream of the incoming XML message, which
retains the XML tags in the message. When the message is reparsed by a
subsequent node, the XML tags are not valid and the parse fails.

Chapter 14. Reference 4663

The ResetContentDescriptor node is contained in the Construction drawer of the
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Using this node in a message flow:
For an example of how to use this node, assume that you want to swap between
the BLOB and the MRM domains. The format of an incoming message might be
unknown when it enters a message flow, therefore the BLOB parser is started.
Later on in the message flow, you might decide that the message is predefined as a
message in the MRM domain, and you can use the ResetContentDescriptor node to
set the correct values to use when the message is parsed by a subsequent node in
the message flow.

The following table shows typical ResetContentDescriptor node properties.

Property Value

Message domain MRM

Reset message domain Selected

Message set MyMessageSet

Reset message set Selected

Message type m_MESSAGE1

Reset message type Selected

Message format Text1

Reset message format Selected

The Message domain is set to MRM, and the MRM parser is started when the
message is next parsed. The Message set, Message type, and Message format are
the message template values that define the message model, and all of the reset
check boxes are selected because all of the properties need to change.

The ResetContentDescriptor node causes the BLOB parser that is associated with
the input message to construct the physical bit stream of the message (not the
logical tree representation of it), which is later passed to the MRM parser. The
MRM parser then parses the bit stream using the message template (Message set,
Message type, and Message format) specified in this ResetContentDescriptor node.

In Version 6.1, you do not need to include a ResetContentDescriptor node after an
XSLTransform node in your message flow to set Message domain, Message set,
Message type, and Message format of the message generated by the XSLTransform
node. The XSLTransform node performs this function.

Configuring the ResetContentDescriptor node:
When you have put an instance of the ResetContentDescriptor node into a message
flow, you can configure the node. For more information, see . The properties of the
node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

4664 WebSphere Message Broker Version 7.0.0.8

1. Optional: On the Description tab, enter a Short description, a Long
description, or both. You can also rename the node on this tab.

2. On the Basic tab:
a. To use a different parser associated with the message, specify the new

domain in the Message domain property:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS
You can also specify a user-defined parser if appropriate.
You must also select the Reset message domain check box.
If you leave the Message domain property blank and do not select the Reset
message domain check box, the domain is not reset. If you leave the Message
domain property blank and select the Reset message domain check box, the
default value is BLOB.

b. If the MRM, XMLNSC, or IDOC parser is to reparse the message, specify
the other properties of the model that are to be associated with the input
message, and select the relevant reset check box beneath each field. If you
select a reset check box for a property and you have not specified a value
for that property, the value of that property is reset to blank. Alternatively,
if you have specified a value for that property, the property is not blank. If
you do not select the reset check box for a property, the value for that
property is inherited from the incoming message. If the parser is associated
with the input message already, specify only the properties that are to
change.
1) Define the Message set. Choose a value from the list of available

message models (the name and identifier of the message model are
shown), and select the Reset message set check box.

2) For MRM domains, define the name of the message in Message type.
Enter the name and select the Reset message type check box.

3) For MRM and IDOC, define the Message format. This property specifies
the physical format for the parser. You can select one of the formats
from the list (which lists the names of those formats that you have
defined on the Message set specified previously), and select Reset
message format.

These actions are taken only if suitable headers exist. If the message does
not have an MQRFH2 header, the node does not create one.

3. On the Parser Options subtab:
a. Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed.
For more details, see “Parsing on demand” on page 4173.

b. Select Use MQRFH2C compact parser for MQRFH2 header if you want the
MQRFH2C parser to be used. By default, this check box is cleared, which
means that the compact parser is not used.

Chapter 14. Reference 4665

c. If you are using the XMLNSC parser, set values for the properties that
determine how the XMLNSC parser operates. For more information, see
“Manipulating messages in the XMLNSC domain” on page 2546.

4. On the Validation tab, set the validation properties if you want the parser to
validate the body of messages against the Message set. (If a message is
propagated to the Failure terminal of the node, it is not validated.)
For more details, see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Terminals and properties:
The ResetContentDescriptor node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if an error is detected by the
node.

Out The output terminal to which the message is routed if a new parser is identified by
the properties.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the ResetContentDescriptor node are described in the
following table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The Basic properties of the ResetContentDescriptor node are described in the
following table.

The ResetContentDescriptor node Basic properties are described in the following
table.

Property M C Default Description

Message
domain

No No BLOB The message domain that is associated with the message that you
want to reparse.

Reset message
domain

Yes No Cleared If you select the reset check box, the Message domain property is reset.
In this case, if you do not select a value for the Message domain
property, the Message domain property value is BLOB.

4666 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message set No No The message set that is associated with the message that you want to
reparse.

If you set this property, then later update the project dependencies to
remove this message set reference, a warning is issued. Either update
the Message set property, or restore the reference to this message set
project.

Reset message
set

Yes No Cleared If you select the reset check box, the Message set property is reset. In
this case, if you do not select a value for the Message set property, the
Message set property value is blank.

Message type No No The message type that is associated with the message that you want to
reparse.

Reset message
type

Yes No Cleared If you select the reset check box, the Message type property is reset. In
this case, if you do not select a value for the Message type property,
the Message type property value is blank.

Message format No No The message format that is associated with the message that you want
to reparse. If you set the Message domain property to DataObject, you
can set this property to XML or SAP ALE IDoc. Set this property to SAP
ALE IDoc when you need to parse a bit stream from an external source
and generate a message tree.

Reset message
format

Yes No Cleared If you select the reset check box, the Message format property is reset.
In this case, if you do not select a value for the Message format
property, the Message format property value is blank.

The Parser Options properties of the ResetContentDescriptor node are described in
the following table.

Property M C Default Description

Parse timing No No On
Demand

This property controls when the reparsed message is parsed.
Valid values are On Demand, Immediate, and Complete.

For a full description of this property, see “Parsing on demand”
on page 4173.

Use MQRFH2C
compact parser for
MQRFH2 header

No No Cleared This property controls whether the MQRFH2C compact parser,
instead of the MQRFH2 parser, is used for MQRFH2 headers.

Build tree using XML
schema data types

No No Cleared This property controls whether the XMLNSC parser creates
syntax elements in the message tree with data types taken from
the XML Schema. You can select this property only if you set the
Validate property on the Validation tab to Content or Content
and Value.

Use XMLNSC compact
parser for XMLNS
domain

No No Cleared This property controls whether the XMLNSC Compact Parser is
used for messages in the XMLNS Domain. If you set this
property, the message data is displayed under XMLNSC in
nodes that are connected to the output terminal when the input
MQRFH2 header or Domain is XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text in
the reparsed message. If you select the check box, elements are
created for mixed text. If you clear the check box, mixed text is
ignored and no elements are created.

Chapter 14. Reference 4667

Property M C Default Description

Retain comments No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments in
the reparsed message. If you select the check box, elements are
created for comments. If you clear the check box, comments are
ignored and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in the reparsed message. If you select the check box,
elements are created for processing instructions. If you clear the
check box, processing instructions are ignored and no elements
are created.

Opaque elements No No Blank This property is used to specify a list of elements in the
reparsed message that are to be opaquely parsed by the
XMLNSC parser. Opaque parsing is performed only if validation
is not enabled (that is, if the value of the Validate property is
set to None); entries that are specified in Opaque Elements are
ignored if validation is enabled.

The Validation properties of the ResetContentDescriptor node are described in the
following table. For a full description of these properties, see “Validation
properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place.
Valid values are None, Content, Content and Value,
and Inherit.

validateMaster

Failure
action

No No Exception This property controls what happens if validation
fails. You can set this property only if you set
Validate to Content and Value or Content. Valid
values are User Trace, Local Error Log, Exception, and
Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.

4668 WebSphere Message Broker Version 7.0.0.8

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.

Route node
Use the Route node to direct messages that meet certain criteria down different
paths of a message flow.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4670
v “Terminals” on page 4671
v “Properties” on page 4671

Purpose:
As an example, you can forward a message to different service providers, based on
the request details. You can also use the Route node to bypass unnecessary steps.
For example, you can check to see if certain data is in a message, and perform a
database lookup operation only if the data is missing. If you set the Distribution
Mode property to All, you can trigger multiple events that each require different

Chapter 14. Reference 4669

conditions. For example, you can log requests that relate to a particular account
identifier, and send requests that relate to a particular product to be audited.

You use XPath filter expressions to control processing. A result of a filter
expression is cast as Boolean, so the result is guaranteed to be either true or false.
For more information about XPath 1.0 query syntax, see W3C XPath 1.0
Specification.

The Route node is contained in the Routing drawer of the message flow node
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Simplified Database Routing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The Route node has one input terminal and a minimum of three output terminals:
Match, Default, and Failure. The Default and Failure output terminals are static, so
they are always present on the node. The dynamic Match terminal is created
automatically each time a new Route node is selected and used in the Message
Flow editor. This behavior means that you do not always have to create the first
dynamic output terminal for this node, which is the minimum number of terminals
needed for this node to operate. You can rename this dynamic terminal if "Match"
is not an appropriate name.

A message is copied to the Default terminal if none of the filter expressions are
true. If an exception occurs during filtering, the message is propagated to the
Failure terminal. The Route node can define one or more dynamic output
terminals. For all terminals, the associated filter expression is applied to the input
message and, if the result is true, a copy of the message is routed to the specified
terminal. The Route node determines the order in which the terminals are driven.
The node always propagates messages to the terminals in the order in which they
appear in the filter table.

Each filter expression is applied to the input message in the order that is given in
the filter table. If the result is true, a copy of the message is routed to its associated
dynamic output terminal. If you set the Distribution Mode property to First,
application of all filter expressions might not occur.

Consider the following example input message:
<EmployeeRecord>
<EmployeeNumber>00001</EmployeeNumber>
<FamilyName>Smith</FamilyName>
<Wage>20000</Wage>
</EmployeeRecord>

and the following XPath filter expressions:

4670 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

$Root/XMLNSC/EmployeeRecord/EmployeeNumber="00002"|Match
$Root/XMLNSC/EmployeeRecord/EmployeeNumber="00001"|out_exp2

In this example, the Distribution Mode property is set to First. The Route node
processes the XPath filter expressions, in the order in which the are displayed,
against the input message. Because the Distribution Mode property is set to First,
the unmodified input message is propagated only once to the dynamic output
terminal that is mapped to the first filter expression that resolves to true. In the
previous example, the first filter expression, which is associated with the Match
terminal, is false because the employee number in the input message is not
"00002". Therefore no message is propagated to the Match terminal. The second
filter expression is true, therefore a copy of the input message is routed to the
"out_expr2" dynamic terminal. If the employee number in the input message is
"00003", and therefore does not match either filter expression, the message is
propagated to the static Default output terminal. If the Distribution Mode property
is set to All for this example, the same outcome is achieved because only one filter
expression is true.

Terminals:
The Route node terminals are described in the following table.

Terminal Description

In The static input terminal that accepts a message for processing by the node.

Match A dynamic output terminal to which the original message can be routed when processing
completes successfully. You can create additional dynamic terminals; see “Dynamic terminals.”

Default The static output terminal to which the message is routed if no filter expression resolves to true.

Failure The static output terminal to which the message is routed if a failure is detected during
processing.

Dynamic terminals

The Route node can have further dynamic output terminals. Not all dynamic
output terminals that are created on a Route node have to be mapped to an
expression in the filter table. Messages are never propagated to unmapped
dynamic output terminals. Several expressions can map to the same single
dynamic output terminal. No static output terminal exists to which the message is
passed straight through. For more information about using dynamic terminals, see
“Using dynamic terminals” on page 1518.

Properties:
When you have put an instance of the Route node into a message flow, you can
configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view. All
mandatory properties for which you must enter a value (those properties that do
not have a default value defined) are marked with an asterisk.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Route node Description properties are described in the following table.

Chapter 14. Reference 4671

Property M C Default Description

Node name No No The node
type, Route

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the message
flow.

The Route node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Filter table Yes No A table where all rows are expressions and associated
terminal names that define the switching that is
performed by this node following evaluation of each
filter expression. The full expression is in the format

XPath filter expression, terminal name

All XPath expressions must start with $Root,
$Properties, $LocalEnvironment, $DestinationList,
$ExceptionList, or $Environment. If you are creating an
expression by hand, you can also start the expression
with $Body. However, the XPath Expression Builder and
associated validation in the WebSphere Message Broker
Toolkit do not support use of the $Body variable. If you
are using the XPath Expression Builder, use the $Root
variable instead.

Expressions are evaluated in the order in which they are
displayed in the table. To improve performance, specify
the expressions that are satisfied most frequently at the
top of the filter table. Typically, you specify a unique
terminal name for each XPath expression.

Distribution
Mode

No Yes All This property determines the routing behavior of the
node when an inbound message matches multiple filter
expressions. If you set the Distribution Mode property
to First, the message is propagated to the associated
output terminal of the first expression in the table that
resolves to true. If you set this property to All, the
message is propagated to the associated output terminal
for each expression in the table that resolves to true. If
no output terminal matches, the message is propagated
to the Default terminal.

distributionMode

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

4672 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flow node terminals” on page 1034
A terminal is the point at which one node in a message flow is connected to
another node.
“XPath overview” on page 1507
The XML Path Language (XPath) is used to uniquely identify or address parts of
an XML document. An XPath expression can be used to search through an XML
document, and extract information from any part of the document, such as an
element or attribute (referred to as a node in XML) in it. XPath can be used alone
or in conjunction with XSLT.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Using dynamic terminals” on page 1518
You can add, rename, and remove dynamic terminals on a node in the Message
Flow editor.
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.

W3C XPath 1.0 Specification

RouteToLabel node
Use the RouteToLabel node in combination with one or more Label nodes to
dynamically determine the route that a message takes through the message flow,
based on its content.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4674
v “Terminals and properties” on page 4674

Purpose:
The RouteToLabel node interrogates the local environment of the message to
determine the identifier of the Label node to which to route the message.

You must precede the RouteToLabel node in the message flow with a Compute
node that populates the local environment of the message with the identifiers of
one or more Label nodes that introduce the next sequence of processing for the
message. The destinations are set up as a list of label names in the local
environment tree in a specific location. This excerpt of ESQL from the Airline
Reservations sample demonstrates how to set up the local environment content in
a Compute node:

Chapter 14. Reference 4673

http://www.w3.org/TR/xpath

IF InputRoot.XMLNSC.PassengerQuery.ReservationNumber<>’’ THEN
SET OutputLocalEnvironment.Destination.RouterList.DestinationData[1].labelName = ’SinglePassenger’;

ELSE
SET OutputLocalEnvironment.Destination.RouterList.DestinationData[1].labelName = ’AllReservations’;

END IF;

The label names can be any string value, and can be specified explicitly in the
Compute node, taken or cast from any field in the message, or retrieved from a
database. A label name in the local environment must match the Label Name
property of a corresponding Label node.

When you configure the Compute node, you must also select a value for the
Compute Mode property from the list that includes LocalEnvironment.

Design your message flow so that a RouteToLabel node logically precedes one or
more Label nodes in a message flow, but do not physically wire the RouteToLabel
node with a Label node. The connection is made by the broker, when required,
according to the contents of the local environment.

The RouteToLabel node is contained in the Routing drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Airline Reservations

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the RouteToLabel node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. All mandatory properties for which you must enter a value are
marked with an asterisk.

The RouteToLabel node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected during processing.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The RouteToLabel node Description properties are described in the following table.

4674 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Node name No No The node type:
RouteToLabel

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The RouteToLabel node Basic properties are described in the following table.

Property M C Default Description

Mode Yes No Route To Last This property controls how the RouteToLabel node processes the items
in the local environment that is associated with the current message .
Valid values are:
v Route To First: removes the first item from the local environment.

The current message is routed to the Label node that is identified by
labelName in that list item.

v Route To Last (the default): removes the last item from the local
environment. The current message is routed to the Label node that is
identified by labelName in that list item.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Accessing the local environment tree” on page 2463
The local environment tree has its own correlation name, LocalEnvironment, and
you must use this name in all ESQL statements that refer to or set the content of
this tree.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

Chapter 14. Reference 4675

“Using nodes for decision making” on page 2209
You can use several built-in nodes in different ways to control the path that a
message takes through the message flow.
Related reference:
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“FlowOrder node” on page 4458
Use the FlowOrder node to control the order in which a message is processed by a
message flow.
“Label node” on page 4569
Use the Label node to process a message that is propagated by a RouteToLabel
node to dynamically determine the route that the message takes through the
message flow.
“CAST function” on page 5245
“SET statement” on page 5159
The SET statement assigns a value to a variable.

SAPInput node
Use the SAPInput node to accept input from an SAP application.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4678

Purpose:
Use the SAPInput node to accept input from SAP applications. For example, the
SAPInput node might monitor an SAP system for new purchase orders. When a
new purchase order is raised, the SAPInput node generates a message tree that
represents the business object with the new purchase order details. The message
tree is propagated to the Out terminal so that the rest of the message flow can use
the data to update other systems, or to audit the changes.

The SAPInput node is contained in the WebSphere Adapters drawer of the
message flow node palette, and is represented in the WebSphere Message Broker
Toolkit by the following icon:

Using this node in a message flow:
The SAPInput node needs an adapter component to function correctly. You set the
component by using the Adapter component node property and business object
definitions, which are stored in the message set that you reference from the node.
For this reason, you must provide a message set. By default, the message that is
propagated from the SAPInput node is in the DataObject domain, so the Message
domain property is set to DataObject. You cannot specify a different domain. The
message type is detected automatically by the node.

The SAPInput node populates the route-to-label destination list with the name of
the method binding. If you add a RouteToLabel node to the message flow after the
SAPInput node, the RouteToLabel node can use the name of the method binding to
route the message to the correct part of the message flow for processing.

4676 WebSphere Message Broker Version 7.0.0.8

You can deploy only one input node that uses a particular adapter component to
an execution group, but you can deploy many input nodes that use different
adapter components to an execution group.

You can use the mqsisetdbparms command in the following format to configure an
account name with a user name and password for the Adapter for SAP Software.
mqsisetdbparms broker name -n adapter name -u user name -p password

For example:
mqsisetdbparms BRK1 -n eis::SAPCustomerInbound.inadapter -u sapuid -p ********

The SAP inbound adapter has a property called Number of listeners, which
configures the adapter to have a particular number of threads listening to the SAP
RFC program ID. These threads are not used directly to process messages in a
message flow. When a message listener has an event to deliver to the message
flow, it requests one of the instances of the flow. In general, it is sensible to keep
the number of listeners equal to the number of instances (where instances equals 1
plus additional instances set on the flow or node). For example:
v If the number of listeners is 1, and additional instances is 0, you get a

single-threaded message flow that processes one message at a time.
v If the number of listeners is 2, and additional instances is 1, you get two threads

that process messages at the same time.
v If the number of listeners is 2, and additional instances is 0, you get two threads

that receive data from the EIS, but only one message flow thread will ever run.

The listeners block processing until a message flow instance is available; the
listeners do not queue multiple pieces of work. If you leave the number of listeners
set to 1 (the default value), the broker ensures that the number of listeners is equal
to the number of additional instances plus one. Additional threads can increase the
throughput of a message flow, but consider the potential effect on message order.

Using configurable services for SAP nodes

SAP nodes can get SAP connection details from either the adapter component or a
configurable service. By using a configurable service, you can change the
connection details for an adapter without the need to redeploy the adapter. For
more details about creating, changing, reporting, and deleting the configurable
services for SAP, see “Changing connection details for SAP adapters” on page 719.

Generic IDoc routing

By using the SAPInput node in passthrough mode, WebSphere Message Broker can
receive any IDoc and route it according to IDoc type. For more information, see
“Generic IDoc routing” on page 1976. You can use a pattern to process IDocs of
various kinds with a single RFC program ID without having to redeploy or
rediscover existing message sets and adapters, even when adding new types of
IDoc. For more information, look at the pattern: Data distribution SAP to
WebSphere MQ: one-way (for IDoc). You can view patterns in the information
center by using the links only when you use the information center that is
integrated with the WebSphere Message Broker Toolkit, or when you use the
online information center.

Look at the following samples to see how to use this node:
v SAP Connectivity
v SAP callout to a synchronous system

Chapter 14. Reference 4677

v SAP callout to an asynchronous system

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the SAPInput node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. If you double-click an SAPInput node, you open the Adapter Connection
wizard. All mandatory properties for which you must enter a value (those
properties that do not have a default value defined) are marked with an asterisk.

The SAPInput node terminals are described in the following table.

Terminal Description

Out Business object events from the adapter are sent to the Out terminal.

Failure If an error occurs in the SAPInput node, the message is propagated to the Failure terminal.
Information about the error, and business object events can also be propagated to the Failure terminal.

Catch Business object events are sent to the Catch terminal if they cause an uncaught exception in the
message flow. If the Catch terminal is not connected, the retry process is activated to handle the
business object.

The following tables describe the node properties. The columns headed M indicate
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the columns headed C indicate whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The SAPInput node Description properties are described in the following table.

Property M C Default Description

Node name No No The node type,
SAPInput

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The SAPInput node Basic properties are described in the following table.

4678 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Primary
adapter
component

Yes Yes The name of the adapter component that contains
configuration properties for the adapter. Either enter a
name of an adapter file, or click Browse to select an
adapter file from the list of files that are available in
referenced message set projects.

When the SAPInput node receives data from the SAP
system, it associates that data with a method name,
depending on the service operation name that is assigned
to that type of data when you run the Adapter Connection
wizard. The SAPInput node attempts to handle methods
that are defined in the primary adapter. If the type of data
that is received does not correspond to any of the methods
that are defined in the primary adapter, the node can
handle methods that are defined in matching secondary
adapters that are deployed to the same execution group.

adapterComponent

Secondary
adapter
mode

No Yes None Specifies whether the node can handle methods that are
defined in secondary adapters.

If you set the Secondary adapter mode property to None, the
node handles only methods that are defined in the primary
adapter. If the type of data that is received does not
correspond to any of the methods that are defined in the
primary adapter, a failure occurs.

If you set this property to All adapters in execution
group, the node can handle methods that are defined in
matching SAP inbound adapters that are deployed to the
same execution group. For example, if the primary adapter
is configured for IDoc messages, matching secondary
adapters are IDoc inbound adapters.

secondaryAdapterMode

The SAPInput node Advanced properties are described in the following table.

Property M C Default Description

Maximum
client wait
time
(secs)

No Yes 60 The time (in seconds) for the SAP system to wait for a reply to be returned by
an SAPReply node. The default value is 60 seconds. If a reply is sent to an
SAPReply node after the timeout, the SAPReply node issues an exception. If the
broker is stopped while the adapter is waiting for an SAPReply node to provide
a reply, a system failure is sent back to the SAP system.

If you set this property to zero (0), the SAP system waits indefinitely for a reply
to be returned by an SAPReply node.

This property is applicable to synchronous callback mode only; it does not apply
to asynchronous BAPIs or IDOCs. If you set this property for an SAPInput node
that is configured with an adapter that is not for synchronous callback, a
warning is issued.

The SAPInput node Routing properties are described in the following table.

Chapter 14. Reference 4679

Property M C Default Description

Set
destination
list

No No Selected Specifies whether to add the method binding name to the route-to-label
destination list. If you select this check box, the method binding name is added
so that you can use a RouteToLabel node in the message flow after the
SAPInput node.

Label
prefix

No No The prefix to add to the method name when routing to a label. Add a label
prefix to avoid a clash of corresponding label nodes when you include multiple
WebSphere Adapters input nodes in the same message flow. By default, there is
no label prefix, so the method name and label name are identical.

The SAPInput node Input Message Parsing properties are described in the
following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the incoming message. By default, the
message that is propagated from the SAPInput node is in the DataObject
domain. You cannot specify a different domain.

Message set Yes No Set
automatically

The name of the message set in which the incoming message is defined.
This field is set automatically from the Adapter component property.

If you set this property, then later update the project dependencies to
remove this message set reference, a warning is issued. Either update the
Message set property, or restore the reference to this message set project.

Message
type

No No The name of the incoming message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the incoming message. You cannot set
this property.

The SAPInput node Transactionality properties are described in the following table.

Property M C Default Description

Transaction
mode

No No Yes The transaction mode on this input node determines whether the rest of the
nodes in the message flow are executed under sync point.

The Instances properties of the SAPInput node are described in the following table.
For a full description of these properties, refer to “Configurable message flow
properties” on page 4020. For more information about tuning the SAP adapter, see
“Tuning the SAP adapter for scalability and performance” on page 3278.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are obtained.
v If you select Use Pool Associated with Message Flow,

additional instances are obtained from the message
flow value.

v If you select Use Pool Associated with Node,
additional instances are allocated from the additional
instances of the node based on the number specified in
the Additional instances property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node can
start if the Additional instances pool property is set to
Use Pool Associated with Node. By default, no additional
instances are given to the node.

additionalInstances

4680 WebSphere Message Broker Version 7.0.0.8

The SAPInput node Retry properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

No No Failure Specifies how retry processing is handled when a
failure is rolled back to the SAPInput node.
v If you select Failure, retry processing is not

performed so you cannot set the remaining
properties.

v If you select Short and long retry, retry processing
is performed first at the interval that is specified by
the Short retry interval property, and if that is
unsuccessful, it is then performed at the interval that
is specified by the Long retry interval property.

Retry
threshold

No Yes 0 The maximum number of times that retry processing is
performed for short retry.

retryThreshold

Short
retry
interval

No Yes 0 The interval between short retry attempts. shortRetryInterval

Long
retry
interval

No Yes 0 The interval between long retry attempts. longRetryInterval

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.

Chapter 14. Reference 4681

“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Routing IDocs to separate message flows” on page 2055
You can use a pattern to process IDocs of various kinds with a single RFC program
ID without having to redeploy or rediscover existing message sets and adapters,
even when adding new types of IDoc.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapter for SAP properties” on page 4024
Reference information to which to refer when you connect to an SAP application.
“SAPRequest node” on page 4685
Use the SAPRequest node to send requests to an SAP application.
“SAPReply node”
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote
function call (RFC) destination.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

SAPReply node
Use the SAPReply node to send a reply to an SAP synchronous callout. Use this
node with an SAPInput node to implement a message flow that acts as a remote
function call (RFC) destination.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4683
v “Terminals and properties” on page 4683

Purpose:
An SAP program can call functions on remote RFC servers. These functions can be
called asynchronously or synchronously, where they must provide a reply. A
message flow can act as an RFC destination and receives the function call through
the SAPInput node. When the function is called synchronously, use the SAPReply
node to send a reply back.

The SAPReply node is contained in the WebSphere Adapters drawer of the
message flow node palette, and is represented in the WebSphere Message Broker
Toolkit by the following icon:

4682 WebSphere Message Broker Version 7.0.0.8

Using this node in a message flow:
You can use an SAPReply node in the same message flow as an SAPInput node, or
in a different flow from an SAPInput node. The SAPReply node must be deployed
in the same execution group as the SAPInput node.

Look at the following samples to see how to use this node:
v SAP callout to a synchronous system
v SAP callout to an asynchronous system

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the SAPReply node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. To display the properties of the node in the Properties dialog, either
double-click the node, or right-click the node and click Properties. All mandatory
properties for which you must enter a value (those properties that do not have a
default value defined) are marked with an asterisk.

The SAPReply node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the message is
propagated.

Out The output terminal to which the message is routed if it has been sent to an external resource. The
message is unchanged except for the addition of status information.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk in the Properties view)
if you must enter a value when no default is defined). The column headed C
indicates whether the property is configurable (you can change the value when you
add the message flow to the BAR file to deploy it).

The SAPReply node Description properties are described in the following table.

Property M C Default Description

Node
name

No No The node type:
SAPReply

The name of the node.

Short
description

No No None A brief description of the node.

Long
description

No No None Text that describes the purpose of the node in the message flow.

The SAPReply node Basic properties are described in the following table.

Chapter 14. Reference 4683

Property M C Default Description

SAP
Reply
Identifier

No No $LocalEnvironment/Destination/
Adapter/Reply/ReplyIdentifier

Use this property to specify the location of the SAP
reply identifier.

The SAPReply node issues an exception in the
following circumstances:
v The SAPReply node receives a reply for a BAPI that

has timed out
v The SAPReply node receives a reply for a BAPI

when the broker has been restarted or
redeployment has occurred after the flow with the
SAPInput node has finished, but before the flow
with the SAPReply node has started.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Passing parameters and reporting errors” on page 1942
The BAPI interface is defined by its input parameters (IMPORT), output
parameters (EXPORT), and tables.
“BAPI inbound scenarios” on page 1943
In SAP, you can call functions in other applications or SAP systems that are
registered with SAP as remote function call (RFC) servers. In WebSphere Message
Broker, you can register the SAP adapter with SAP as an RFC server so that it
accepts synchronous and asynchronous calls from SAP.
“SAP adapter scalability and performance” on page 1949
You can improve performance by configuring the number of listeners on the
adapter and the number of additional instances on the message flow to prevent
delays when processing synchronous calls from SAP.
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.

4684 WebSphere Message Broker Version 7.0.0.8

“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Tuning the SAP adapter for scalability and performance” on page 3278
You can configure the number of listeners on the adapter and the number of
additional instances on the message flow to prevent delays when processing
synchronous calls from SAP.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“SAPInput node” on page 4676
Use the SAPInput node to accept input from an SAP application.
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

SAPRequest node
Use the SAPRequest node to send requests to an SAP application.

This topic contains the following sections:
v “Purpose”
v “Using the SAPRequest node in a message flow”
v “Terminals and properties” on page 4686

Purpose:
Use the SAPRequest node to send requests to SAP applications. For example, the
SAPRequest node might request information from an SAP Enterprise Information
System (EIS). A customer business object is sent to SAP, causing SAP to retrieve
information about a customer, such as an address and account details. The
response information that is retrieved by the SAPRequest node can then be used
by the rest of the message flow. The SAPRequest node can send and receive
business data.

The SAPRequest node is contained in the WebSphere Adapters drawer of the
message flow node palette, and is represented in the WebSphere Message Broker
Toolkit by the following icon:

Using the SAPRequest node in a message flow:
The SAPRequest node needs an adapter component to function correctly. You set
the component by using the Adapter component node property and business object
definitions, which are stored in the message set that you reference from the node.

Chapter 14. Reference 4685

For this reason, you must provide a message set. By default, the message that is
propagated from the SAPRequest node is in the DataObject domain, so that the
Message domain property is set to DataObject. You cannot specify a different
domain. The node automatically detects the message type.

The SAPRequest node supports local transactions by using the Local Transaction
Manager of the broker.

You can deploy several WebSphere Adapters request nodes that use the same
adapter component to an execution group.

The SAPRequest node can use an identity that is present on an input message, and
propagate it to SAP, by using the Propagate property on the security profile that is
defined on the node. For more information, see “Propagating security credentials
to an SAP request” on page 2065.

To effectively maintain the pool of connections to SAP, you can set a connection
timeout value on a configurable service. By default, the connectionIdleTimeout
property is set to zero, indicating that no timeout occurs. However, new
connections to SAP are opened with different user IDs, therefore do not set this
property to zero if you are using identity propagation. For more information, see
“Configuring EIS connections to expire after a specified time” on page 726.

You can use the mqsisetdbparms command in the following format to configure an
account name with a user name and password for the Adapter for SAP Software.
The mqsisetdbparms command stores the password in case-sensitive form.
However, when the SAP GUI sets a password, it automatically converts the
password to uppercase. Therefore, specify an uppercase password to connect to the
SAP system.
mqsisetdbparms broker name -n adapter name -u user name -p PASSWORD

For example:
mqsisetdbparms BRK1 -n eis::SAPCustomerOutbound.outadapter -u sapuid -p ********

Look at the following sample to see how to use this node:
v SAP Connectivity

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Using configurable services for SAP nodes

SAP nodes can get SAP connection details from either the adapter component or a
configurable service. By using a configurable service, you can change the
connection details for an adapter without the need to redeploy the adapter. For
more details about creating, changing, reporting, and deleting the configurable
services for SAP, see “Changing connection details for SAP adapters” on page 719.

Terminals and properties:
When you have put an instance of the SAPRequest node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. If you double-click an SAPRequest node, you open the Adapter Connection

4686 WebSphere Message Broker Version 7.0.0.8

wizard. All mandatory properties for which you must enter a value (those that do
not have a default value defined) are marked with an asterisk.

The SAPRequest node terminals are described in the following table.

Terminal Description

In The input terminal that accepts the request business object.

Out The output terminal to which the response business object is sent if it represents successful completion
of the request, and if further processing is required within this message flow.

Failure If an error occurs in the SAPRequest node, the message is propagated to the Failure terminal.
Information about the error, and business object events can also be propagated to the Failure terminal.

The following tables describe the node properties. The columns headed M indicate
whether the property is mandatory (marked with an asterisk on the panel if you
must enter a value when no default is defined); the columns headed C indicate
whether the property is configurable (you can change the value when you add the
message flow to the BAR file to deploy it).

The SAPRequest node Description properties are described in the following table.

Property M C Default Description

Node name No No The node type,
SAPRequest

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The SAPRequest node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Primary
adapter
component

Yes No The name of the adapter component that contains
configuration properties for the adapter. Either enter a
name of an adapter file, or click Browse to select an
adapter file from the list of files that are available in
referenced message set projects.

When the SAPRequest node receives data from the SAP
system, it associates that data with a method name. The
SAPRequest node attempts to call methods that are
defined in the primary adapter. If the method is not
defined in the primary adapter, the node can call methods
that are defined in matching secondary adapters that are
deployed to the same execution group.

Chapter 14. Reference 4687

Property M C Default Description mqsiapplybaroverride
command property

Secondary
adapter
mode

No Yes None Specifies whether the node can call methods that are
defined in secondary adapters.

If you set the Secondary adapter mode property to None,
the SAPRequest node calls only methods that are defined
in the primary adapter. If the method is not defined in the
primary adapter, an error occurs.

If you set this property to All adapters in execution
group, the node can call methods that are defined in
matching SAP outbound adapters that are deployed to the
same execution group. For example, if the primary
adapter is configured for IDoc messages, matching
secondary adapters are IDoc outbound adapters.

secondaryAdapterMode

Default
method

Yes Yes The default method binding to use. This property lists the
methods that are defined by the adapter. You can override
this property by setting the method name in the
LocalEnvironment.Adapter subtree. For more information,
see “Local environment tree structure” on page 1056.

The method names correspond to the Service Operation
names, which are configured by the Adapter Connection
wizard. In most cases, the names are based on the name of
the service that is being discovered (for example, a BAPI).

defaultMethod

The SAPRequest node Response Message Parsing properties are described in the
following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the response message. By default, the
message that is propagated from the SAPRequest node is in the
DataObject domain. You cannot specify a different domain.

Message set Yes No Set
automatically

The name of the message set in which the incoming message is defined.
This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project
dependencies to remove this message set reference, a warning is issued.
Either update the Message set property, or restore the reference to this
message set project.

Message
type

No No The name of the response message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the response message. You cannot set
this property.

The SAPRequest node Transactionality properties are described in the following
table.

4688 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Transaction
mode

No No Automatic Specifies how updates are handled.
v If you select Yes, the SAPRequest node takes part in the local

transaction that is started by the message flow's input node.
v If you select No, the SAPRequest node does not take part in the local

transaction that is started by the message flow's input node.
v If you select Automatic, the SAPRequest node uses the value that is set

on the input node that drives the message flow. For example, if the
message flow is driven by an SAPInput node, the SAPRequest assumes
the Transaction mode that is set on the SAPInput node.

For more information about transactionality, see “SAP BAPI transaction
commit” on page 1928.

The SAPRequest node Request properties are described in the following table.

Property M C Default Description

Method
Location

Yes No $LocalEnvironment/
Adapter/MethodName

The location of the business method (such as
createPurchaseOrder or deletePurchaseOrder) that is used to
trigger the SAPRequest node to perform an action on the
external system.

Data
Location

Yes No $Body The location in the incoming message tree from which data is
retrieved to form the request that is sent from the SAPRequest
node to the EIS.

The SAPRequest node Result properties are described in the following table.

Property M C Default Description

Output data
location

No No $OutputRoot The message tree location to which the SAPRequest node sends output.

Copy local
environment

No No Selected This property controls how the local environment is copied to the output
message. If you select this check box, a new copy of the local environment
is created in the tree (at each node in the message flow), and it is
populated with the contents of the local environment from the preceding
node. Therefore, if a node changes the local environment, the previous
nodes in the flow do not see those changes because they have their own
copies. This behavior might be an issue if you are using a FlowOrder
node, or if you use the propagate command on a Compute node.

If you clear the check box, each node does not generate its own copy of
the local environment, but it uses the local environment that is passed to it
by the previous node. Therefore, if a node changes the local environment,
those changes are seen by the upstream nodes.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Chapter 14. Reference 4689

Related concepts:
“Overview of WebSphere Adapter for SAP Software” on page 1917
With WebSphere Adapter for SAP Software you can create integrated processes
that include the exchange of information with an SAP server, without special
coding.
“SAP BAPI transaction commit” on page 1928
When the SAP adapter is used with the BAPI interface, you must consider certain
factors when you design transactional flows.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Adding external software dependencies for SAP” on page 2048
Before you can develop message flows that use WebSphere Adapters nodes, you
must add prerequisite files to the runtime environment.
“Configuring the SAP server to work with the adapter” on page 2050
Before you configure the WebSphere Adapter for SAP Software for Application
Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)
destination on the SAP server, and configure a receiver port, logical system,
distribution model, and partner profile on the SAP server. Ask your system
administrator if these items have been configured.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

SCAAsyncRequest node
Use the SCAAsyncRequest node with the SCAAsyncResponse node to construct a
pair of message flows that invoke a WebSphere Process Server service component
asynchronously.

4690 WebSphere Message Broker Version 7.0.0.8

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4692
v “Configuring the SCAAsyncRequest node” on page 4692
v “Terminals and properties” on page 4694

Purpose:
The SCAAsyncRequest node sends a request to a business process that is running
on WebSphere Process Server, but the node does not wait for the associated
response to be received. However, the SCAAsyncRequest node does wait for an
acknowledgment before continuing with the message flow. The response to the
Process Server request is received by the SCAAsyncResponse node, which can be
in the same message flow or in a separate message flow. The nodes are used as a
pair, and correlate responses against the original requests.

The SCAAsyncRequest node is the first half of the asynchronous request and
response node pair. The SCAAsyncRequest node sends a request to a business
process that is running on WebSphere Process Server. The request is sent by the
SCAAsyncRequest node, but the SCAAsyncRequest node does not receive the
response. The response is received by a SCAAsyncResponse node that is running
on a different thread. The SCAAsyncResponse node is typically at the beginning of
a different message flow; however, it must be in the same execution group as the
SCAAsyncRequest node.

A Broker SCA definition is required to configure both the SCAAsyncRequest node
and the SCAAsyncResponse node. The Broker SCA definition contains specific data
related to the Process Server binding.

The SCAAsyncRequest node is contained in the SCA drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

some
message

some
response

Input

Output

SCAAsyncRequest

SCAAsyncResponse

External
SCA endpoint

Message Flow 1

Message Flow 2

Chapter 14. Reference 4691

Using this node in a message flow:
Look at the following sample to see how to use the node:

SCA nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

You can change the operation that should be invoked by changing the value in the
following location in the local environment:
LocalEnvironment.Destination.SCA.Request.Operation

For a Web Services binding, you can change the URL to which the request is sent.
Change the value in the following location in the local environment:
LocalEnvironment.Destination.SCA.Request.Binding.WebServices.Transport.HTTP.WebServiceURL

For an MQ binding, you can change the Request Queue Manager and Request
Queue by changing the values in the following locations:
LocalEnvironment.Destination.SCA.Request.Binding.MQ.queueManagerName
LocalEnvironment.Destination.SCA.Request.Binding.MQ.queueName

You can store context data in the following location in the local environment. The
SCAAysncResponse node can later retrieve this data.
LocalEnvironment.Destination.SCA.Request.UserContext

LocalEnvironment.Destination.SCA.Request.KeyAlias

Configuring the SCAAsyncRequest node:
Ensure that the message set contains a Broker SCA definition with an extension of
.outsca with which to configure the SCAAsyncRequest node.

There are two methods of putting an instance of the SCAAsyncRequest node into a
message flow: you can either drag an instance of the node from the node palette,
or drag a Broker SCA definition with an extension of .outsca from a message set
onto the message flow editor canvas.

Dragging a node onto the canvas

If you have dragged an instance of the node from the palette onto the canvas,
use one of the following methods to start to configure it:
v Drag a Broker SCA definition with an extension of .outsca onto the node.
v Type the file name in the SCA file name option in the Properties view of the

node.
v Browse to the file (SCA file name option in the Properties view of the node.)

Dragging a .outsca file onto the canvas

v If the .outsca file contains a WSDL that has only a single, one-way
operation defined, a SCARequest node is created.

v If the .outsca file contains a WSDL that only has request-response
operations, you first select the operation, and say whether you want the
outbound request to be sent synchronously or asynchronously. For a

4692 WebSphere Message Broker Version 7.0.0.8

synchronous request, a SCARequest node is created and configured. For an
asynchronous request, a pair of SCAAsyncRequest and SCAAsyncResponse
nodes are created and configured.

v If the .outsca file contains a WSDL that has a mixture of one-way and
request-response operations defined, and you select a one-way operation, a
SCARequest node is created.

The values for many of the node properties are provided in the Broker SCA
definition. The properties of the node are displayed in the Properties view. All
mandatory properties for which you must enter a value (properties that do not
have a default value defined) are marked with an asterisk.
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, set the Unique identifier and Broker SCA definition

properties.
v Unique identifier. You must specify the unique string that is common to

your pair of SCAAsyncRequest and SCAAsyncResponse nodes. This property
is mandatory.

v In Broker SCA definition, specify the name of the Broker SCA definition
that contains configuration properties for the SCAAsyncRequest node. If you
have created the node by dragging a Broker SCA definition from a message
set onto the Message flow editor canvas, this property is preset to the name
of the Broker SCA definition. If you created the node by selecting it from the
palette, you can set this property in one of the following ways:
– If you have a Broker SCA definition, you can select it from the Broker

SCA definitions by clicking Browse.
– Type a file name that is relative to the message set project in which the

Broker SCA definition exists.
– If you have Broker SCA definitions, but no message set, you can create a

message set:
a. Click Browse to open the Broker SCA Definition Selection pane.
b. Click Import/Create New to open the Import Broker SCA definition

wizard.
c. Enter the message set name and message set project name, then click

Next.
d. Choose the relevant option:

- If your Broker SCA definition exists in your workspace, click Use
resources from the workspace, and select the Broker SCA definition.

- If your Broker SCA definition is in the file system, click Use external
resources, select the Broker SCA definition, click Next.

e. Select the Broker SCA definition to import.
f. Click Finish. A new message set project and message set are created

with message definitions. The Broker SCA definition is added to the
Broker SCA Definitions folder.

g. Select the Broker SCA definition from the Broker SCA Definition
Selection window, then click OK.

– If you have a message set but no Broker SCA definition, generate a Broker
SCA definition by following the instructions in “Generating a Broker SCA
definition from a message set” on page 2967.

– Drag a Broker SCA definition from a message set onto the node.

Chapter 14. Reference 4693

3. On the Binding tab, specify properties that relate to the WebSphere Process
Server binding. Some of the properties on this tab are derived from the Broker
SCA definition.
v The value of the Binding type property is derived from the binding

information in the Broker SCA definition. It is read-only. Possible values are:
– WebService. Requests from WebSphere Process Server are sent as SOAP

messages over the HTTP transport. See the WSDL properties table in
“Terminals and properties” for details of binding properties that are either
supplied by the Broker SCA definition, or that you need to set.

– MQ. Requests from WebSphere Process Server arrive as WebSphere MQ
messages. See the MQ properties table and the Transactionality table in
“Terminals and properties,” for details of binding properties that are either
supplied by the Broker SCA definition, or that you need to set.

Terminals and properties:
The SCAAsyncRequest node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message.

Failure The output terminal to which the message is sent if a failure is detected in the node.

Out The output terminal to which the message is sent after the node has successfully sent
the message to the SCA resource.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the SCAAsyncRequest node are described in the
following table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the
message flow.

The Basic properties of the SCAAsyncRequest node are described in the following
table.

Property M C Default Description

Unique identifier Yes Yes Not set The property specifies a unique identifier that is
common to your pair of SCAAsyncRequest and
SCAAsyncResponse nodes.

4694 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Broker SCA definition Yes Yes Not set The property specifies the name of the Broker SCA
definition that contains configuration properties for the
SCAAsyncRequest node. You can click Browse to see a
list of all relevant Broker SCA definitions in the current
workspace.

The Binding property of the SCAAsyncRequest node is described in the following
table.

Property M C Default Description

Binding type Yes No From SCA
export

This property is read-only. It is supplied by the toolkit
when the SCA export configuration file is parsed. The
property describes the binding type that was found in
the Broker SCA definition. If the binding is Web
Services, only the WSDL properties are shown. If the
binding is MQ, only the MQ properties are shown.

The WSDL properties are described in the following table. These properties are
shown only if the binding type is Web Services.

Note: The values for the properties must be supplied on the node. They are not
marked as mandatory on the node because the Broker SCA definition might not
contain all the property values, resulting in node errors being shown. You must
supply values for those properties that have not been configured by the Broker
SCA definition file.

Property M C Default Description

WSDL file name Yes No Not set The WSDL file name is taken from the WSDL file that
is referenced by the Broker SCA definition.

Target namespace No No From Broker
SCA
definition

This property type is String. It is supplied by the
toolkit when the WSDL configuration file that is
referenced by the Broker SCA definition is parsed.

Port type Yes No By default,
the Port
type that is
referenced in
the Broker
SCA
definition.

This property type is String. This property is read-only.

Error Conditions:

v The selected Port type does not contain at least one
operation.

Imported binding Yes No From Broker
SCA
definition

This property type is String. It is supplied by the
toolkit when the WSDL that is referenced by the
Broker SCA definition is parsed.

Error Conditions:

v No SOAP bindings (with HTTP transport) in the
WSDL file are associated with the Port type.

v The selected binding does not have any operations.

Operation Yes No From Broker
SCA
definition

This property type is String.

The Operation property lists the operations that are
defined by the port type. The first two-way operation
in the list is selected by default. Only two-way
operations are supported.

Chapter 14. Reference 4695

Property M C Default Description

Service port Yes No From Broker
SCA
definition

This property type is String. It is supplied by the
toolkit when the WSDL configuration file is parsed.

Error Conditions:

v No ports point to the selected binding.

Web service URL Yes Yes From Broker
SCA
definition

This property type is String. This property is
automatically derived from the <soap:address>
element of the selected Service port. Whenever the
selected port is updated, the Web service URL is
updated accordingly. However, if you override the
value, your value persists and the URL is no longer
updated from the service port.

If you choose to override this property you must
specify it in the form http://<hostname>[:<port>]/
[<path>] where:
v http://<hostname> must be specified.
v <port> has a default of 80. If you specify a value,

you must include the : before the port number.
v <path> has a default of /. If you specify a value,

you must include the / before the path.

The MQ properties are described in the following table. These properties are
shown only if the binding type is MQ.

Note: The values for the properties must be supplied on the node. They are not
marked as mandatory on the node because the Broker SCA definition might not
contain all the property values, resulting in node errors being shown. You must
provide values for those properties that have not been configured by the Broker
SCA definition file.

Property M C Default Description

Operation Yes No From the
Broker SCA
definition

The available operations that are found in the interface
of the Broker SCA definition. Only two-way operations
are supported.

Queue name Yes Yes From the
Broker SCA
definition

The name of the queue that receives a request message
from WebSphere Message Broker. This is taken from
the Broker SCA definition, but can be updated directly
in the node.

This can be a remote queue; see “How does
distributed queuing work?” in the Intercommunication
section of the WebSphere MQ information center.

Queue manager name Yes Yes From the
Broker SCA
definition

The name of the queue manager that receives a
message from WebSphere Message Broker. It is taken
from the Broker SCA definition, but can be updated
directly in the node.

If a remote queue is used, leave this property blank to
allow WebSphere MQ to resolve the queue manager
name.

Reply-to queue name Yes Yes From the
Broker SCA
definition

The name of the queue that receives a response
message from WebSphere Process Server. It is taken
from the Broker SCA definition, but can be updated
directly in the node.

4696 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Reply-to queue
manager name

No Yes From the
Broker SCA
definition

The name of the queue manager that receives a
response from WebSphere Process Server. It is taken
from the Broker SCA definition, but can be updated
directly in the node.

This queue manager must be local to the broker.

Response message
correlation

Yes No From the
Broker SCA
definition

This property indicates how WebSphere Process Server
provides correlation ID information in the response
message. This correlation information is used by the
WebSphere Message Broker to determine which
message is a response to which request, and is
supplied by the toolkit when the SCA export file is
parsed.

Select From Message ID if the WebSphere Process
Server is expected to copy the MQMD MSGID field in
the request to the MQMD CORRELID field in the
response.

Select From Correl ID if the WebSphere Process Server
is expected to copy the MQMD CORRELID field in the
request to the MQMD CORRELID field in the
response.

The Transactionality property of the SCAAsyncRequest node is described in the
following table.

Property M C Default Description

Transaction mode No No For MQ,
'yes'

This property can be 'automatic', 'no', or 'yes'. The
property is enabled only when the Binding type is
MQ.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“SOAP tree overview” on page 1611
This tree format allows you to access the key parts of the SOAP message in a

Chapter 14. Reference 4697

convenient way.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“Working with Service Component Architecture (SCA)” on page 2095
Start here to find out how you can use SCA to allow interoperability with
WebSphere Process Server Version 6.2.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“SCAAsyncResponse node”
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.
“SCARequest node” on page 4719
Use the SCARequest node to send a request to WebSphere Process Server. The
node is a synchronous request and response node, and blocks after sending the
request until the response is received. The node can also send one-way requests.
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SCAReply node” on page 4726
Use the SCAReply node to send a message from the broker to the originating client
in response to a message received by a SCAInput node.

SCAAsyncResponse node
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.

This topic contains the following sections:
v “Purpose” on page 4699
v “Using this node in a message flow” on page 4699
v “Configuring the node” on page 4699
v “Terminals and properties” on page 4701

4698 WebSphere Message Broker Version 7.0.0.8

Purpose:
The node allows the broker to receive the response to a previous asynchronous
request made from an SCAAsyncRequest node.

The node is contained in the SCA drawer of the palette, and is represented in the
WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following sample to see how to use the node:

SCA nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

You can retrieve context data that has been stored by the SCAAsyncRequest node
from the following location in the local environment:
LocalEnvironment.SCA.Response.UserContext

You can access the SOAP header and context information in an inbound response
in the local environment, at the following locations:
LocalEnvironment.SCA.Response.Binding.WebServices.SOAP.Header
LocalEnvironment.SCA.Response.Binding.WebServices.SOAP.Context

Configuring the node:
Ensure that the message set contains a Broker SCA definition with an extension of
.outsca with which to configure the node.

some
message

some
response

Input

Output

SCAAsyncRequest

SCAAsyncResponse

External
SCA endpoint

Message Flow 1

Message Flow 2

Chapter 14. Reference 4699

There are two methods of putting an instance of the node into a message flow: You
can either drag an instance of the node from the node palette, or drag a Broker
SCA definition with an extension of .outsca from a message set, onto the message
flow editor canvas. Dragging a Broker SCA definition with an extension of .outsca
onto the canvas creates a pair of SCAAsyncRequest and SCAAsyncResponse
nodes.

If you have dragged an instance of the node from the palette onto the canvas, you
must then start to configure it by dragging a Broker SCA definition with an
extension of .outsca onto the node. The values for many of the node properties are
provided in the Broker SCA definition. If you have dragged a Broker SCA
definition onto the canvas and created a pair of SCAAsyncRequest and
SCAAsyncResponse nodes, many of the values for the node properties have
already been supplied from the Broker SCA definition.

The properties of the node are displayed in the Properties view. All mandatory
properties for which you must enter a value (properties that do not have a default
value defined) are marked with an asterisk.
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, set the Unique identifier and Broker SCA definition

properties.
v Unique identifier. You must specify the unique URL fragment that is

common to your pair of SCAAsyncRequest and SCAAsyncResponse nodes.
This property is mandatory.

v In Broker SCA definition, specify the name of the Broker SCA definition
that contains configuration properties for the node. If you have created the
node by dragging a Broker SCA definition from a message set onto the
Message flow editor canvas, this property is preset to the name of the Broker
SCA definition. If you created the node by selecting it from the palette, you
can set this property in one of the following ways:
– If you have a Broker SCA definition, you can select it from the Broker

SCA definitions by clicking Browse.
– If you have Broker SCA definitions, but no message set, you can create a

message set:
a. Click Browse to open the Broker SCA Definition Selection pane.
b. Click Import/Create New to open the Import Broker SCA definition

wizard.
c. Enter the message set name and message set project name, then click

Next.
d. Choose the relevant option:

- If your Broker SCA definition exists in your workspace, click Use
resources from the workspace, and select the Broker SCA definition.

- If your Broker SCA definition is in the file system, click Use external
resources, select the Broker SCA definition, then click Next.

e. Select the Broker SCA definition to import.
f. Click Finish. A new message set project and message set are created

with message definitions. The Broker SCA definition is added to the
Broker SCA Definitions folder.

g. Select the Broker SCA definition from the Broker SCA Definition
Selection window, then click OK.

4700 WebSphere Message Broker Version 7.0.0.8

– If you have a message set but no Broker SCA definition, generate a Broker
SCA definition by following the instructions in “Generating a Broker SCA
definition from a message set” on page 2967.

– Drag a Broker SCA definition from a message set onto the node.
– Type a file name that is relative to the message set project in which the

Broker SCA definition exists.
3. On the Binding tab, specify properties that relate to the binding. Some of the

properties on this tab are derived from the Broker SCA definition.
The value of the Binding type property is derived from the binding information
in the Broker SCA definition, and is read-only. Possible values are:
v WebService. Web service responses are sent as SOAP messages over the

HTTP transport.
v MQ. MQ responses arrive as messages.
The Propagate only SOAP body (owned by XMLNSC domain) check box is shown
only when the Binding type is Web Services. It is not shown when the Binding
type is MQ; there are no MQ-specific binding properties.

4. On the Response Message Parsing tab, the properties are set automatically
from the Broker SCA Definition file.
v If the Binding type is Web Services, the Message domain is always SOAP. If

the Binding type is MQ, you can change the domain to MRM, XMLNSC,
XMLNS, MIME, JSON or BLOB.

v If the Binding type is MQ, the Message domain defaults to XMLNSC if the
data bindings for all operations are using XML. Otherwise the default
domain is BLOB.

5. On the Parser Options sub tab, set properties that are associated with the
parser.
v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. For information about how to cause the message to
be parsed immediately, see “Parsing on demand” on page 4173.

v XMLNSC Parser Options. Set values for the properties that determine how the
XMLNSC parser operates. For more information, see “Manipulating
messages in the XMLNSC domain” on page 2546.

6. Use the Validation tab to provide validation based on the message set for
predefined messages. For more information about validation, see “Validating
messages” on page 1478. For information about how to complete this tab, see
“Validation tab properties” on page 4169.

7. Use the Instances tab to specify how additional threads are handled for the
message flow.
v The Additional instances pool property specifies whether additional

instance threads are allocated from a thread pool for the whole message flow,
or from a thread pool for use by that node only. By default, this property is
set to Use Pool Associated with Message Flow.

v The Additional instances property specifies the number of additional
threads that the broker can use to service the message flow and has the
default value 0.

Terminals and properties:
The terminals of the node are described in the following table.

Chapter 14. Reference 4701

Terminal Description

Failure The output terminal to which the message is routed if a failure is detected when the message is
propagated.

Out The output terminal to which the message is routed if it has been propagated successfully, and if further
processing is required within this message flow.

Fault The output terminal to which a SOAP fault message is routed if the Binding type is Web Services. The
Fault terminal is not used by any other type of Binding type.

Catch The output terminal to which the message is routed if an exception is thrown downstream and caught
by this node.

When you have put an instance of the node into a message flow, you can configure
it; see . The properties of the node are displayed in the Properties view. All
mandatory properties for which you must enter a value (properties that do not
have a default value defined) are marked with an asterisk.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the node are described in the following table.

Property M C Default Description

Node name No No The node type:
SOAPAsyncResponse

The name of the node.

Short
description

No No None A brief description of the node.

Long
description

No No None Text that describes the purpose of the node in the message
flow.

The Basic properties of the node are described in the following table:

Property M C Default Description

Unique
identifier

Yes No Not set Specify the unique identifier that is common to your pair of nodes.

Broker
SCA
definition

Yes Yes Not set The property specifies the name of the Broker SCA definition that contains
configuration properties for the node. You can click Browse to see a list of all
relevant Broker SCA definitions in the current workspace.

.

The Binding properties of the node are described in the following table:

Property M C Default Description

Binding
type

Yes No Not set The binding type that was found in the SCA Import.

extractSOAPBodyNo No Cleared This option is available if the binding is Web Services. If the check box is selected,
only the SOAP body is propagated. If it is cleared, the entire SOAP message is
propagated.

4702 WebSphere Message Broker Version 7.0.0.8

The Response Message Parsing properties of the node are described in the
following table. The node sets these properties automatically; the table describes
when you can change them.

Property M C Default Description

Message
domain

No No Set automatically according to the
binding that is defined in the
corresponding node.

The domain that is used to parse the response
message. It is determined according to the Binding
type. You can change this property if the Binding
type is MQ. The property is read-only when the
Binding type is Web Services.

Message
set

No No Picked automatically according to the
Broker SCA definition that is chosen in
the corresponding node.

The name of the message set in which the response
message is defined. Message set is set automatically
to the message set that contains the SCA file that is
configured on the corresponding node. This
property is read-only.

Message
type

No No Not set The node detects the message type automatically.
You can change this property if the Binding type is
MQ and the message domain is MRM. You cannot
change this property if the Binding type is Web
Services.

Message
format

No No Not set The name of the physical format of the response
message. You can change this property if the
Binding type is MQ and the message domain is
MRM. You cannot change this property if the
Binding type is Web Services.

The Parser Options properties of the node are described in the following table.

Property M C Default Description

Parse timing Yes No On Demand This property controls when a response message is parsed. Valid values
are On Demand, Immediate, and Complete.

By default, parse timing is set to On demand, which causes parsing of the
input message to be delayed. For a full description of this property, see
“Parsing on demand” on page 4173.

Build tree
using XML
schema data
types

No No Selected This property controls whether the XMLNSC parser creates syntax
elements in the message tree with data types taken from the XML
Schema.

Retain mixed
content

Yes No Cleared This property controls whether the parser creates elements in the
message tree when it encounters mixed text in a response message. If
you select the check box, elements are created for mixed text. If the
check box is cleared, mixed text is ignored and no elements are created.

Retain
comments

Yes No Cleared This property controls whether the parser creates elements in the
message tree when it encounters comments in a response message. If
you select the check box, elements are created for comments. If the
check box is cleared, comments are ignored and no elements are created.

Retain
processing
instructions

Yes No Cleared This property controls whether the parser creates elements in the
message tree when it encounters processing instructions in a response
message. If you select the check box, elements are created for processing
instructions. If the check box is cleared, processing instructions are
ignored and no elements are created.

Chapter 14. Reference 4703

Property M C Default Description

Opaque
elements

No No Not set This property is used to specify a list of elements in the response
message that are to be opaquely parsed. Opaque parsing is performed
only if validation is not enabled (that is, if Validate is None); entries that
are specified in Opaque Elements are ignored if validation is enabled.

The Validation properties of the node are described in the following table.

If validation fails, the message is propagated to the failure terminal, if this terminal
is wired. For more details, see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Property M C Default Description

Validate Yes Yes Content
and
value

This property controls whether validation takes place. Valid values are None,
Content and value, and Content.

Failure
action

Yes Yes Exception This property controls what happens if validation fails. You can set this
property only if you set Validate to Content or Content and value. Valid
values are User trace, Exception list, Local error log, and Exception.

The Security properties of the node are described in the following table. Set values
for these properties to control the extraction of an identity from a message (when a
security profile is associated with the node). For more information about these
properties, see “Identity” on page 390, “Configuring the extraction of an identity or
security token” on page 447, “Message flow security overview” on page 383, and
“Setting up message flow security” on page 431.

Property M C Default Description

Identity token
type

No No None This property specifies the type of identity token present in the incoming
message. Valid values are: Transport Default, Username, Username +
Password, SAML Assertion, and X.509 Certificate. If this property is not
specified, the identity is retrieved from the Basic-Auth transport header and
the type is set to Username + Password.

Identity token
location

No No None This property specifies where, in the message, the identity can be found.
The location is specified as an ESQL field reference, an XPath expression, or
a string literal. If you use a string literal, it must be enclosed in single
quotation marks and must not contain a period (.), If this property is not
specified, the identity is retrieved from the MQMD.UserIdentifier transport
header.

Identity
password
location

No No None This property specifies where, in the message, the password can be found.
The location is specified as an ESQL field reference, an XPath expression, or
a string literal. If you use a string literal, it must be enclosed in single
quotation marks and must not contain a period (.), If it is not specified, the
password is not set. This property can be set only if Identity token type is
set to Username + Password.

Identity
IssuedBy
location

No No None This property specifies a string or path expression that describes the issuer
of the identity. The location is specified as an ESQL field reference, an XPath
expression, or a string literal. If you use a string literal, it must be enclosed
in single quotation marks and must not contain a period (.), The value
specifies the Issuer that is passed to a WS-Trust v1.3 STS provider. If this
property is not specified, the MQMD.PutApplName value is used. If you
leave the Identity issuedBy location field blank and the
MQMD.PutApplName is also blank, the string MQ is used.

4704 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Treat security
exceptions as
normal
exceptions

No No False This property specifies whether to treat security exceptions (such as "Access
Denied") as normal exceptions, and propagate them to the Failure terminal
(if wired). This property is turned off by default, which ensures that
security exceptions cause the message to be backed out even if the Failure
terminal is wired.

The Instances properties of the node are described in the following table.

Property M C Default Description

Additional
instances
pool

No Yes Flow The pool from which additional instances are obtained.
v If you select Flow, additional instances are obtained from the message flow

value.
v If you select Node, additional instances are allocated from the additional

instances pool for that node; how many are allocated is specified in the
Additional instances property.

Additional
instances

No Yes 0 The number of additional instances that the node can start if the Additional
instances pool property is set to Node. By default, no additional instances are
given to the node.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“Working with Service Component Architecture (SCA)” on page 2095
Start here to find out how you can use SCA to allow interoperability with
WebSphere Process Server Version 6.2.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format

Chapter 14. Reference 4705

for working with Web services, independent of the physical bitstream format.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“SCAAsyncRequest node” on page 4690
Use the SCAAsyncRequest node with the SCAAsyncResponse node to construct a
pair of message flows that invoke a WebSphere Process Server service component
asynchronously.
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SCAReply node” on page 4726
Use the SCAReply node to send a message from the broker to the originating client
in response to a message received by a SCAInput node.
“SCARequest node” on page 4719
Use the SCARequest node to send a request to WebSphere Process Server. The
node is a synchronous request and response node, and blocks after sending the
request until the response is received. The node can also send one-way requests.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

SCADAInput node
The SCADAInput node, available in earlier versions of WebSphere Message Broker,
is not supported in WebSphere Message Broker Version 7.0. See “Migrating from
Version 6.1 products” on page 163 for information about migrating your message
flows from WebSphere Message Broker to WebSphere Message Broker Version 7.0.

SCADAOutput node
The SCADAOutput node, available in earlier versions of WebSphere Message
Broker, is not supported in WebSphere Message Broker Version 7.0. See “Migrating
from Version 6.1 products” on page 163 for information about migrating your
message flows from WebSphere Message Broker to WebSphere Message Broker
Version 7.0.

4706 WebSphere Message Broker Version 7.0.0.8

SCAInput node
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Configuring the SCAInput node”
v “Terminals and properties” on page 4710

Purpose:
If you use service components in WebSphere Process Server, you can use this node
to start a service provided by WebSphere Message Broker. The flow acts as a SCA
endpoint for the service component to use through an import binding.

The SCAInput node is contained in the SCA drawer of the message flow node
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Using this node in a message flow:
Look at the following sample to see how to use the node:
v SCA nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

You can access the operation that is being called on an inbound request in the
following location in the local environment:
LocalEnvironment.SCA.Input.Operation

You can access the SOAP Header information that is present in an inbound request
from the following location in the local environment:
LocalEnvironment.SCA.Input.Binding.WebServices.SOAP.Header

You can also access the SOAP context information that is present in an inbound
request in the local environment. The SOAP context is stored in the following
location:
LocalEnvironment.SCA.Input.Binding.WebServices.SOAP.Context

Configuring the SCAInput node:
Ensure that the message set contains a Broker SCA definition with an extension of
.insca with which to configure the SCAInput node.

You can put an instance of the SCAInput node into a message flow in either of the
following ways:
v Drag a Broker SCA definition with an extension of .insca from a message set

onto the message flow editor canvas. If the .insca file contains only one-way
operations, dragging a .insca file onto the canvas creates a SCAInput node.

Chapter 14. Reference 4707

Otherwise, a pair of SCAInput and SCAReply nodes is created. If you use this
method, many of the values for the properties of the node or nodes are supplied
by the Broker SCA definition.

v Drag an instance of the node from the node palette onto the canvas. You then
configure the node by dragging a Broker SCA definition with an extension of
.insca onto the node.

The properties of the node are displayed in the Properties view. All mandatory
properties for which you must enter a value (properties that do not have a default
value defined) are marked with an asterisk.
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, set the Broker SCA definition and Message routing

properties.
v In Broker SCA definition, specify the name of the Broker SCA definition

that contains configuration properties for the SCAInput node. If you have
created the node by dragging a Broker SCA definition from a message set
onto the Message flow editor canvas, this property is preset to the name of
the Broker SCA definition. If you created the node by selecting it from the
palette, you can set this property in one of the following ways:
– If you have a Broker SCA definition, you can select it from the Broker

SCA definitions by clicking Browse.
– If you have Broker SCA definitions, but no message set, you can create a

message set:
a. Click Browse to open the Broker SCA Definition Selection pane.
b. Click Import/Create New to open the Import Broker SCA definition

wizard.
c. Enter the message set name and message set project name, then click

Next.
d. Choose the relevant option:

- If your Broker SCA definition exists in your workspace, click Use
resources from the workspace, and select the Broker SCA definition.

- If your Broker SCA definition is in the file system, click Use external
resources, select the Broker SCA definition, then click Next.

e. Select the Broker SCA definition to import.
f. Click Finish. A new message set project and message set are created

with message definitions. The Broker SCA definition is added to the
Broker SCA Definitions folder.

g. Select the Broker SCA definition from the Broker SCA Definition
Selection window, then click OK.

– If you have a message set but no Broker SCA definition, generate a Broker
SCA definition by following the instructions in “Generating a Broker SCA
definition from a message set” on page 2967.

– Drag a Broker SCA definition from a message set onto the node.
– Type a file name that is relative to the message set project in which the

Broker SCA definition exists.
v Use Message routing to specify whether to allow message propagation to

dynamic terminals for the operations defined in the SCA message or to the
common Out terminal. By default, each operation is routed to its own
terminal. You can select:

4708 WebSphere Message Broker Version 7.0.0.8

– Route each operation to its own terminal. The default. One terminal is
generated on the node for each operation defined in the interface of the
Broker SCA definition and messages are propagated to the appropriate
terminal.

– Route to a common out terminal. One Out terminal is generated on the
node. All messages are propagated to this terminal. If you select this
option, the Propagate only SOAP body (owned by XMLNSC domain) check
box is disabled and you cannot select it.

If you specify the Broker SCA definition property by typing a file name, or
by selecting a Broker SCA definition by using the Browse facility, on an
SCAInput node that already has dynamic terminals configured on it, the
existing dynamic terminals are replaced. If you specify a file name that is not
valid, previously existing dynamic terminals are removed and no terminals
are added.
If you drag a Broker SCA definition onto an SCAInput node that already has
dynamic terminals configured on it, a dialog box is displayed allowing you
to confirm whether you want to override the existing dynamic terminals
with dynamic terminals that might be generated from the Broker SCA
definition. If you choose to override existing dynamic terminals, any existing
connections that are configured for these terminals are also deleted. You can
specify that this dialog box is not displayed again.
If you drag a Broker SCA definition onto an SCAInput node which already
has an Out terminal, no dynamic terminals which be generated from the
Broker SCA definition are added and the node continues to operate with its
Out terminal.

3. On the Binding tab, properties that relate to the WebSphere Process Server
binding are specified. Some of the properties on this tab are derived from the
Broker SCA definition.
v The value of the Binding type property is derived from the binding

information in the Broker SCA definition. It is read-only. Possible values are:
– Web Service. Requests from WebSphere Process Server are sent as SOAP

messages over the HTTP transport. See the WSDL properties table in
“Terminals and properties” on page 4710 for details of binding properties
that are either supplied by the Broker SCA definition, or that you must
set.

– MQ. Requests from WebSphere Process Server arrive as WebSphere MQ
messages. See the MQ properties table and the Transactionality table in
“Terminals and properties” on page 4710, for details of binding properties
that are either supplied by the Broker SCA definition, or that you must
set.

4. On the Input Message Parsing tab, the properties are set automatically when
the WSDL file is configured.
v If the Binding type is Web Services, the Message domain is always SOAP.
v If the Binding type is MQ, the Message domain defaults to XMLNSC if the

data bindings for all operations are using XML. Otherwise the default
domain is BLOB. You can change the domain to MRM, XMLNSC, XMLNS,
MIME, JSON, or BLOB.

5. On the Parser Options sub tab, set properties that are associated with the
parser.
v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. For information about how to cause the message to
be parsed immediately, see “Parsing on demand” on page 4173.

Chapter 14. Reference 4709

v XMLNSC Parser Options. Set values for the properties that determine how the
XMLNSC parser operates. For more information, see “Manipulating
messages in the XMLNSC domain” on page 2546.

6. Use the Validation tab to provide validation based on the message set for
predefined messages. For more information about validation, see “Validating
messages” on page 1478. For information about how to complete this tab, see
“Validation tab properties” on page 4169.

7. Use the Instances tab to specify how additional threads are handled for the
message flow.
v The Additional instances pool property specifies whether additional

instance threads are allocated from a thread pool for the whole message flow,
or from a thread pool for use by that node only. By default, this property is
set to Use Pool Associated with Message Flow.

v The Additional instances property specifies the number of additional
threads that the broker can use to service the message flow and has the
default value 0.

8. Use the Retry tab to define how retry processing is carried out when a failure
gets rolled back to the input node.
v The Retry mechanism defines the format of the mechanism, and its type is

Enumerate. Set the property to either Failure or Short and long retry.
v The Retry threshold property defines the number of retries to correct the

failure, and its type is Integer.
v The Short retry interval property defines the time the client waits in

seconds before attempting to correct the failure, and its type is Integer.
v The Long retry interval property defines the time the client waits in

seconds before attempting to correct the failure, and its type is Integer.

Terminals and properties:
The following table describes the terminals of the SCAInput node.

Terminal Description

Failure The output terminal to which the received message is propagated when a failure
(such as a message validation failure) is detected

Out The output terminal to which the message is routed if you have selected Route to
common out terminal on the Message routing property.

Catch The output terminal to which the message is routed if an exception is thrown
downstream and caught by this node.

* (dynamic) (Applicable only when the Binding type is Web Services.) A dynamic terminal is
generated for each operation that is supported by the port type and implemented by
the imported binding. The dynamic operation terminal to which the SCA message is
routed depends on the operation that is defined in the SCA message when it is
received.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The following table describes the Description properties of the SCAInput node.

4710 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Node name No No The node
type

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the
message flow.

The following table describes the Basic properties of the SCAInput node.

Property M C Default Description

Broker SCA definition Yes No <None> This property type is String. The name of the Broker
SCA definition that contains configuration properties
for the SCAInput node.

Message routing Yes No Route each
operation
to its own
terminal

This property determines whether a common Out
terminal is to be used, or whether each operation is to
be routed to its own terminal.

v If the Binding type is MQ, the common out terminal
is always used.

v If the Binding type is Web Services, you can choose
whether to route messages to a dynamic terminal, or
to the common Out terminal.

The following table describes the Binding properties of the SCAInput node; the
binding that is found in Broker SCA definition is defined here.

Property M C Default Description

Binding type Yes No Derived
from the
Broker SCA
definition

This property type is String. Its value derives from the
Broker SCA definition.

The following table describes the Web Service properties of the SCAInput node.
These properties are only relevant if Binding type is Web Services.

Property M C Default Description

WSDL file name Yes No <None> This property type is String. A value is given to this
property when the WSDL configuration file is parsed.

Target namespace No No Derived
from the
Broker SCA
definition

This property type is String. Target namespace
displays the namespace of the selected WSDL file.

Port type Yes No The default
value is the
port type
from the
Broker SCA
definition.

This property type is String. This property is read-only.

Error conditions:

v Selected Port type does not contain at least one
operation.

Chapter 14. Reference 4711

Property M C Default Description

Imported binding Yes No Derived
from the
Broker SCA
definition.

This property type is String. The Imported binding box
lists all the SOAP bindings that are associated with the
selected port type. Bindings are listed in the order that
they are displayed in the WSDL file. By default, the
first binding that is pointed to by the port in the
Broker SCA definition is selected. This property is
updated every time the Port type value changes, and
an information message is displayed that states that
corresponding changes must be made in the
WebSphere Process Server system.

Error conditions:

v No SOAP bindings in the WSDL file are associated
with the Port type.

v Selected binding does not have any operations.

Service port Yes No Derived
from the
Broker SCA
definition

This property type is String. The Service port box
lists all the service ports that point to the selected
binding. The service port that is referenced in the
Broker SCA definition is selected by default. This
property is updated every time the selected binding
value changes, and an information message is
displayed that states that corresponding changes must
be made in the WebSphere Process Server system.

Error conditions:

v No ports point to the selected binding.

URL selector Yes Yes Derived
from the
Broker SCA
definition

This property type is String. URL selector is the HTTP
path selector upon which the node accepts inbound
messages.

Use HTTPS No Yes Derived
from the
Broker SCA
definition

This property type is Boolean. Its value is True if the
HTTP location is an HTTPS; otherwise, its value is
False.

Propagate only SOAP
Body

No No True This property type is Boolean. Select the check box if
only the body of the SOAP message is to be
propagated.

Use WS-Addressing No No False This property type is Boolean. Select the check box if
WS-Addressing is to be used.

The following table describes the MQ properties of the SCAInput node. These
properties are only relevant if the Binding type is MQ.

Property M C Default Description

Queue name Yes Yes Derived
from the
Broker SCA
definition

This property type is String. The value of this property
can be changed directly on the node. If the property is
changed, an information message is displayed that
states that corresponding changes must be made to the
WebSphere Process Server system.

The SCAInput node Input Message Parsing properties are described in the
following table.

4712 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
domain

No No Set automatically according to the
binding that is defined in the
corresponding node.

The domain that is used to parse the incoming
message. The domain is determined according to the
Binding type type. You can change this property if
the Binding type is MQ. The property is read-only
when the Binding type is Web Services.

Message
set

No No Picked automatically according to the
Broker SCA definition that is chosen in
the corresponding node.

The name of the message set in which the incoming
message is defined. Message set is set automatically
to the message set that contains the SCA file that is
configured on the corresponding node. This
property is read-only.

Message
type

No No Not set The node detects the message type automatically.
You can change this property if the Binding type is
MQ and the message domain is MRM. You cannot
change this property if the Binding type is Web
Services.

Message
format

No No Not set The name of the physical format of the incoming
message. You can change this property if the
Binding type is MQ and the message domain is
MRM. You cannot change this property if the
Binding type is Web Services.

The following table describes the Parser Options properties of the SCAInput node.

Property M C Default Description

Parse timing No No On demand This property controls when an input message is
parsed. Valid values are On demand, Immediate, and
Complete.

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using XML
Schema data types

No No Selected This property controls whether the syntax elements in
the message tree have data types taken from the XML
Schema.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser
creates elements in the message tree when it
encounters mixed text in an input message. If you
select the check box, elements are created for mixed
text. If you clear the check box, mixed text is ignored
and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser
creates elements in the message tree when it
encounters comments in an input message. If you
select the check box, elements are created for
comments. If you clear the check box, comments are
ignored and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser
creates elements in the message tree when it
encounters processing instructions in an input
message. If you select the check box, elements are
created for processing instructions. If you clear the
check box, processing instructions are ignored and no
elements are created.

Chapter 14. Reference 4713

Property M C Default Description

Opaque elements No No Blank This property is used to specify a list of elements in
the input message that are to be opaquely parsed.
Opaque parsing is performed only if validation is not
enabled (that is, if Validate is None); entries that are
specified in Opaque Elements are ignored if validation
is enabled.

The following table describes the Validation properties of the SCAInput node. For
more information, see “Validation properties” on page 4169.

Property M C Default Description

Validate No Yes Content and
value

This property controls whether validation takes place.
Valid values are None, Content and value, and Content.

Failure action No No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and value. Valid values are User
Trace, Local Error Log, Exception, and Exception
List.

The Security properties of the node are described in the following table. Set values
for these properties to control the extraction of an identity from a message (when a
security profile is associated with the node). For more information about these
properties, see “Identity” on page 390, “Configuring the extraction of an identity or
security token” on page 447, “Message flow security overview” on page 383, and
“Setting up message flow security” on page 431.

Property M C Default Description

Identity token
type

No No None This property specifies the type of identity token present in the incoming
message. Valid values are: Transport Default, Username, Username +
Password, SAML Assertion, and X.509 Certificate. If this property is not
specified, the identity is retrieved from the Basic-Auth transport header and
the type is set to Username.

Identity token
location

No No None This property specifies where, in the message, the identity can be found.
The location is specified as an ESQL field reference, an XPath expression, or
a string literal. If you use a string literal, it must be enclosed in single
quotation marks and must not contain a period (.), If this property is not
specified, the identity is retrieved from the MQMD.UserIdentifier transport
header.

Identity
password
location

No No None This property specifies where, in the message, the password can be found.
The location is specified as an ESQL field reference, an XPath expression, or
a string literal. If you use a string literal, it must be enclosed in single
quotation marks and must not contain a period (.), If it is not specified, the
password is not set. This property can be set only if Identity token type is
set to Username + Password.

Identity
IssuedBy
location

No No None This property specifies a string or path expression that describes the issuer
of the identity. The location is specified as an ESQL field reference, an XPath
expression, or a string literal. If you use a string literal, it must be enclosed
in single quotation marks and must not contain a period (.), The value
specifies the Issuer that is passed to a WS-Trust v1.3 STS provider. If this
property is not specified, the MQMD.PutApplName value is used. If you
leave the Identity issuedBy location field blank and the
MQMD.PutApplName is also blank, the string MQ is used.

4714 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Treat security
exceptions as
normal
exceptions

No No False This property specifies whether to treat security exceptions (such as "Access
Denied") as normal exceptions, and propagate them to the Failure terminal
(if wired). This property is turned off by default, which ensures that
security exceptions cause the message to be backed out even if the Failure
terminal is wired.

The following table describes the Instances properties of the SCAInput node.

Property M C Default Description

Additional instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message
Flow, additional instances are obtained from the
message flow value.

v If you select Use Pool Associated with Node,
additional instances are allocated from the additional
instances of the node, based on the number specified
in the Additional instances property.

Additional instances No Yes 0 The number of additional instances that the node can
start if the Additional instances pool property is set
to Use Pool Associated with Node. By default, no
additional instances are given to the node.

The following table describes the Retry properties of the SCAInput node.

Property M C Default Description

Retry mechanism No No Failure This property specifies how retry processing is
handled when a failure is rolled back to the SCAInput
node.

v If you select Failure, retry processing is not
performed so you cannot set the remaining
properties.

v If you select Short and long retry, retry processing
is performed first at the interval that is specified by
the Short retry interval property, and if that is
unsuccessful, it is then performed at the interval that
is specified by the Long retry interval property.

Retry threshold No Yes 0 The maximum number of times that retry processing is
performed for short retry.

Short retry interval No Yes 0 The interval between short retry attempts.

Long retry interval No Yes 0 The interval between long retry attempts.

The Transactionality property of the SCAInput node is described in the following
table.

Property M C Default Description

Transaction mode No No For MQ,
'yes'

This property can be 'automatic', 'no', or 'yes'.

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4715

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Working with Service Component Architecture (SCA)” on page 2095
Start here to find out how you can use SCA to allow interoperability with
WebSphere Process Server Version 6.2.
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Service Component Architecture (SCA) overview” on page 2096
Service Component Architecture (SCA) is a specification that describes a model for
building applications and systems using a service-oriented architecture (SOA).
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Creating an application based on SCA import or export files” on page 1422
You can create a new application that is based on existing SCA import or export
files.
Related reference:

4716 WebSphere Message Broker Version 7.0.0.8

“SCAAsyncRequest node” on page 4690
Use the SCAAsyncRequest node with the SCAAsyncResponse node to construct a
pair of message flows that invoke a WebSphere Process Server service component
asynchronously.
“SCAReply node” on page 4726
Use the SCAReply node to send a message from the broker to the originating client
in response to a message received by a SCAInput node.
“SCAAsyncResponse node” on page 4698
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.
“SCARequest node” on page 4719
Use the SCARequest node to send a request to WebSphere Process Server. The
node is a synchronous request and response node, and blocks after sending the
request until the response is received. The node can also send one-way requests.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“WS-Addressing with the SOAPInput node” on page 1651
Various options are available when you use WS-Addressing with the SOAPInput
node.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“Message domains used by SCA nodes”
Use the Message domain property of the SCAInput node to determine which
domain to use to parse the incoming message.
“SecurityPEP node” on page 4729
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

Message domains used by SCA nodes:

Use the Message domain property of the SCAInput node to determine which
domain to use to parse the incoming message.

If the Binding type is MQ, you must set the message domain. The SCAInput node
supports all MQ data formats used by WebSphere Process Server. If the data
format in the Service Component Definition Language (SCDL) file is either
com.ibm.websphere.sca.mq.data.impl.MQDataBindingImplXML or
com.ibm.wbiserver.datahandler.xml.XMLDataHandler, the default domain is
XMLNSC; otherwise the default domain is BLOB.

See the following table for the relationship between the MQ data format and
default message domain:

Data format Description Default message domain

Delimited MQ Serializes the business object
to and from a delimited
format in the message that is
sent and received from the
MQ client.

BLOB

Chapter 14. Reference 4717

Data format Description Default message domain

Fixed Width MQ Serializes the business object
to and from a fixed width
format in the message that is
sent and received from the
MQ client.

BLOB

JSON Sends and receives a
business object that is based
on JavaScript Object
Notation (JSON) from the
MQ client.

BLOB

JMS adapter language Needed if your message
body contains a message in
C, or COBOL, or PL/I.

BLOB

MQ serialized business object
XML

Serializes a business object to
an XML document, and
deserializes an XML
document to a business
object. Wrapped data objects
must be a complex type; they
cannot be a simple type.

XMLNSC

MQ serialized Java Serializes a business object to
a Java object and deserializes
a Java object to a business
object.

BLOB

MQ unstructured binary
message

Sets the incoming bytes into
a business object property
called value on the inbound
message, and gets the bytes
from the business object
property called value, and
sets it in the output stream
on the outbound message.

BLOB

MQ unstructured text
message

Sets the incoming text
message into a business
object property called value
on the inbound message, and
gets the text message from
the business object property
called value, and sets it in
the output stream on the
outbound message.

BLOB

MQRFH header Contains fixed size and
variable sized pieces of
information that are specified
by the MQRFH header
standard.

BLOB

MQRFH2 header Contains fixed size and
variable sized pieces of
information that are specified
by the MQRFH2 header
standard.

BLOB

4718 WebSphere Message Broker Version 7.0.0.8

Data format Description Default message domain

WTX Allows the use of WebSphere
Transformation Extender
(WTX), a universal validation
and transformation engine,
to convert business objects to
many data formats, and
many data formats to
business objects.

BLOB

If the Binding type is Web Service, the message domain is always SOAP.

SCARequest node
Use the SCARequest node to send a request to WebSphere Process Server. The
node is a synchronous request and response node, and blocks after sending the
request until the response is received. The node can also send one-way requests.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Configuring the SCARequest node” on page 4720
v “Terminals and properties” on page 4721

Purpose:
The SCARequest node sends synchronous outbound two-way (request-response)
requests, and one-way (request only) operations, to a business process on
WebSphere Process Server.

An outbound Broker SCA definition (.outsca) file is required to configure the
SCARequest node. The Broker SCA definition contains specific data related to the
binding that is used by the SCA Export component.

The SCARequest node is contained in the SCA drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
You can use the node in any message flow that needs to call an application
running on WebSphere Process Server.
LocalEnvironment.Destination.SCA.Request.KeyAlias

You can change the timeout by changing the value in the following location in the
local environment:
LocalEnvironment.Destination.SCA.Request.Timeout

You can change the timeout by changing the value in the following location in the
local environment:
LocalEnvironment.Destination.SCA.Request.Timeout

For a Web Services binding, you can change the URL to which the request is sent.
Change the value in the following location in the local environment:
LocalEnvironment.Destination.SCA.Request.Binding.WebServices.Transport.HTTP.WebServiceURL

Chapter 14. Reference 4719

For an MQ binding, you can change the Request Queue Manager and Request
Queue by changing the values in the following locations:
LocalEnvironment.Destination.SCA.Request.Binding.MQ.queueManagerName
LocalEnvironment.Destination.SCA.Request.Binding.MQ.queueName

Configuring the SCARequest node:
Ensure that the message set contains a Broker SCA definition with an extension of
.outsca with which to configure the SCARequest node.

There are two methods of putting an instance of the SCARequest node into a
message flow: You can either drag an instance of the node from the node palette,
or drag a Broker SCA definition with an extension of .outsca from a message set,
onto the message flow editor canvas.

Dragging a node onto the canvas

If you have dragged an instance of the node from the palette onto the canvas,
use one of the following methods to start to configure it:
v Drag a Broker SCA definition with an extension of .outsca onto the node.
v Type the file name in the SCA file name option in the Properties view of the

node.
v Browse to the file (SCA file name option in the Properties view of the node.)

Dragging a .outsca file onto the canvas

v If the .outsca file contains a WSDL that has only a single, one-way
operation defined, a SCARequest node is created.

v If the .outsca file contains a WSDL that only has request-response
operations, you first select the operation, and say whether you want the
outbound request to be sent synchronously or asynchronously. For a
synchronous request, a SCARequest node is created and configured. For an
asynchronous request, a pair of SCAAsyncRequest and SCAAsyncResponse
nodes are created and configured.

v If the .outsca file contains a WSDL that has a mixture of one-way and
request-response operations defined, and you select a one-way operation, a
SCARequest node is created.

If the request contains a two-way operation, the node blocks until a response
message is received, or for the time defined by the timeout property (120 seconds
by default). If the timeout period is exceeded, the message received on the input
terminal of the SCARequest is propagated to the Failure terminal.

The SOAP, XMLNSC, XMLNS, MRM, MIME, JSON, and BLOB domains are
available to parse the response.
v If the Binding type is Web Service, the message domain is SOAP.
v If the Binding type is MQ, the default domain is BLOB if any operations have

non-XML data bindings. If all operations have XML data binding the default
domain is XMLNSC. The data binding is identified as XML if the SCA Export
uses com.ibm.websphere.sca.mq.data.impl.mqdatabindingimplxml or
com.ibm.wbiserver.datahandler.xml.XMLDataHandler.

If the request contains a one-way operation, the node sends the request message,
then routes the input message through to the Out terminal. In this case, the
properties in the Response Message Parsing tab are unavailable.

The values for many of the properties of the node are provided by the Broker SCA
definition. The properties of the node are displayed in the Properties view. All

4720 WebSphere Message Broker Version 7.0.0.8

mandatory properties for which you must enter a value (properties that do not
have a default value defined) are marked with an asterisk.

Terminals and properties:
The SCARequest node terminals are described in the following table.

Name Type Description

In Input data The node is driven by a message arriving on the In terminal.

Out Output data When a message has been sent to an external resource it is sent to the Out
terminal unchanged, except for the addition of status information.

Failure Output data A failure in the node is sent to the failure terminal.

Fault Output data A SOAP fault from the external system is sent to this terminal. This terminal
is only used when the Binding type is Web Services.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the SCARequest node are described in the following
table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the
message flow.

The Basic properties of the SCARequest node are described in the following table.

Property M C Default Description

Broker SCA
Definition

Yes No none The name of the Broker SCA Definition that contains
configuration properties for the SCA Request node.
Click the browse button to list all relevant Broker SCA
Definitions in the current workspace.

The Binding properties of the SCARequest node are described in the following
table.

Property M C Default Description

Binding type Yes No none The binding type that was found in the SCA Export.

Request Timeout No Yes 120 The time in seconds before the request times out
waiting for a response from WebSphere Process Server.
If the timeout period is exceeded, the message received
on the input terminal of the SCARequest is propagated
to the Failure terminal. This property is disabled if the
Broker SCA definition (inbound) contains only one-way
operations.

Chapter 14. Reference 4721

The Web Services properties are described in the following table. These properties
are shown only if the binding type is Web Services.

Property M C Default Description

WSDL file
name

Yes No <none> This property type is String. When you
select a WSDL file for the WSDL file name
field, the WSDL is validated to ensure that
it is WS-I compliant. Only Deployable
WSDL can be used to configure the SCA
nodes. After a valid WSDL file is selected,
the message set project to which WSDL file
belongs is added as a referenced project to
the corresponding flow project, if the
reference does not exist.

Port type Yes No From
WSDL

This property type is String. The field lists
all the Port types defined in WSDL file
selected in the WSDL file name property.

Error Conditions:

v Selected Port type does not contain at
least one operation.

WSDL properties are disabled when the
node is configured to act in gateway mode.

Imported
Binding

Yes No From
WSDL

This property type is String.

This property is updated every time that
the Port type value changes. The field lists
the imported SOAP bindings with HTTP or
JMS transport associated with the selected
Port type. When you select a binding, the
property tab for the associated transport is
enabled; otherwise, it is disabled.

Bindings are listed in the same order in
which they appear in the WSDL file. The
selected binding is the one that has both
ports and operations. If there is no such
binding, then binding with ports is
selected. If no bindings have ports then the
first binding in the list is selected.

Error Conditions:

v No SOAP bindings (with HTTP or JMS
transport) in the WSDL file are
associated with the Port type.

v The selected binding does not have any
operations.

WSDL properties are disabled when the
node is configured to act in gateway mode.

4722 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Operation Yes No From
WSDL

This property type is String.

The Binding operation box contains all the
operations defined by the selected binding.
The first operation in the list is selected by
default. This property is updated every
time the selected binding value changes

WSDL properties are disabled when the
node is configured to act in gateway mode.

Service port Yes No From
WSDL

This property type is String. This field is
updated every time that the selected
binding is updated. This field lists all the
WSDL ports that point to the selected
binding. The first service port for the
binding is selected by default. This
property is updated every time the selected
binding value changes.

Error Conditions:

v No ports point to the selected binding.

WSDL properties are disabled when the
node is configured to act in gateway mode.

Target
namespace

Yes No From
WSDL

Target namespace is implemented as a
read-only field.

This hidden property type is String. It is
updated with the Target namespace of the
WSDL file when the WSDL file name is
configured.

WSDL properties are disabled when the
node is configured to act in gateway mode.

Web service
URL

Yes Yes none The URL of the SOAP address selected.
This property is automatically derived from
the <soap:address> element of the selected
Service port. Whenever the selected port
is updated, the Web service URL is updated
accordingly. However, if you override the
value then your value persists and the URL
is no longer updated from the service port.

If you choose to override this property you
must specify it in the form
http://<hostname>[:<port>]/[<path>]
where:
v http://<hostname> must be specified.
v <port> has a default of 80. If you specify

a value, you must include the colon :
before the port number.

v <path> has a default of /. If you specify
a value, you must include the / before
the path.

For more details of how to override this
property, see Changing the default URL for
a SOAPRequest node or a
SOAPAsyncRequest node request.

Chapter 14. Reference 4723

Property M C Default Description

Propagate only
SOAP Body,
owned by
XMLNSC
domain

No No false If selected, only the SOAP body is
propagated, otherwise the entire SOAP
message is propagated.

Use
WS-
Addressing

No No false Select the check box if you want to use
WS-Addressing.

The MQ properties are described in the following table. These properties are
shown only if the binding type is MQ.

Property M C Default Description

Operation Yes No From
WSDL

The selected operation from the selected
binding in the WSDL file. The WSDL is
not displayed; the WSDL is in the Broker
SCA Definition file.

Queue name Yes Yes none The queue that receives a request message
from WebSphere Message Broker.

Queue
manager name

Yes Yes none The Queue Manager that receives a
request from WebSphere Message Broker.

Reply-to
queue name

Yes Yes none The queue that receives a response
message from WebSphere Process Server.

Reply-to
queue
manager name

No Yes none The Queue Manager that receives a
response from WebSphere Process Server.

Response
Message
Correlation

Yes No FromMsgId This property indicates how WebSphere
Message Broker is to complete correlation
ID information in the response message.

The Response Message Parsing properties of the node are described in the
following table. The node sets these properties automatically; the table describes
when you can change them.

Property M C Default Description

Message
domain

No No Set automatically according to the
binding that is defined in the
corresponding node.

The domain that is used to parse the response
message. It is determined according to the Binding
type. You can change this property if the Binding
type is MQ. The property is read-only when the
Binding type is Web Services.

Message
set

No No Picked automatically according to the
Broker SCA definition that is chosen in
the corresponding node.

The name of the message set in which the response
message is defined. Message set is set automatically
to the message set that contains the SCA file that is
configured on the corresponding node. This
property is read-only.

Message
type

No No Not set The node detects the message type automatically.
You can change this property if the Binding type is
MQ and the message domain is MRM. You cannot
change this property if the Binding type is Web
Services.

4724 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
format

No No Not set The name of the physical format of the response
message. You can change this property if the
Binding type is MQ and the message domain is
MRM. You cannot change this property if the
Binding type is Web Services.

The validation properties are described in the following table. For more
information, see “Validation properties” on page 4169.

Property M C Default Description

Validate No Yes Content and
value

This property controls whether validation takes place.
Valid values are None, Content and value, and Content.

Failure action No No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and value. Valid values are User
Trace, Local Error Log, Exception, and Exception
List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“SOAP tree overview” on page 1611
This tree format allows you to access the key parts of the SOAP message in a
convenient way.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“Working with Service Component Architecture (SCA)” on page 2095
Start here to find out how you can use SCA to allow interoperability with
WebSphere Process Server Version 6.2.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:

Chapter 14. Reference 4725

“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“SCAAsyncResponse node” on page 4698
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SCAReply node”
Use the SCAReply node to send a message from the broker to the originating client
in response to a message received by a SCAInput node.

SCAReply node
Use the SCAReply node to send a message from the broker to the originating client
in response to a message received by a SCAInput node.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4727
v “Terminals and properties” on page 4727

Purpose:
The SCAReply node can be used in a message flow to send a reply back to the
client that used an SCAInput node to send an SCA request to the WebSphere
Message Broker. The SCAReply node and the SCAInput node must be in the same
execution group.

The SCAReply node must use the same transport as the SCAInput node that
originated the SCA request.

The SCAReply node is contained in the SCA drawer of the message flow node
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

4726 WebSphere Message Broker Version 7.0.0.8

Using this node in a message flow:
Look at the following sample to seem how to use the node:

SCA nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

A ReplyIdentifier is created on the SCAInput node and is set in the message
context and the local environment.

The value needs to be preserved throughout the flow especially if the SCAInput
and SCAReply nodes are in different flows, so that the reply can reach the
originating WebSphere Process Server client. The reply identifier is stored in the
following location:
LocalEnvironment.Destination.SCA.Reply.ReplyIdentifier

Terminals and properties:
When you have put an instance of the SCAReply node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. All mandatory properties for which you must enter a value (properties that
do not have a default value defined) are marked with an asterisk.

The SCAReply node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected in this node.

Out The output terminal to which the message is routed if it has been propagated successfully, and if further
processing is required within this message flow. The message is propagated unchanged, except for the
addition of status information.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The following table describes the Description properties of the SCAReply node.

Property M C Default Description

Node
name

No No The node type:
SCAReply

The name of the node.

Short
description

No No None A brief description of the node.

Long
description

No No None Text that describes the purpose of the node in the message flow.

Chapter 14. Reference 4727

The following table describes the Validation properties of the SCAReply node.

Property M C Default Description

Validate Yes Yes Inherit Valid values are None, Content, Content and Value, and Inherit.

Failure action Yes No Exception This property controls what happens if validation fails. You can set this
property only if you set Validate to Content or Content and Value. Valid
values are User Trace, Local Error, Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Working with Service Component Architecture (SCA)” on page 2095
Start here to find out how you can use SCA to allow interoperability with
WebSphere Process Server Version 6.2.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
“Service Component Architecture (SCA) overview” on page 2096
Service Component Architecture (SCA) is a specification that describes a model for
building applications and systems using a service-oriented architecture (SOA).
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Importing WSDL definitions from the command line” on page 2948
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.
“Creating an application based on SCA import or export files” on page 1422
You can create a new application that is based on existing SCA import or export
files.

4728 WebSphere Message Broker Version 7.0.0.8

Related reference:
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.
“SCAAsyncRequest node” on page 4690
Use the SCAAsyncRequest node with the SCAAsyncResponse node to construct a
pair of message flows that invoke a WebSphere Process Server service component
asynchronously.
“SCAAsyncResponse node” on page 4698
Use the SCAAsyncResponse node with the SCAAsyncRequest node to construct a
pair of message flows that start a component asynchronously.
“SCARequest node” on page 4719
Use the SCARequest node to send a request to WebSphere Process Server. The
node is a synchronous request and response node, and blocks after sending the
request until the response is received. The node can also send one-way requests.

SecurityPEP node
Use the SecurityPEP node in a message flow to invoke the message flow security
manager at any point in the message flow.

This topic contains the following sections:
v “Purpose”
v “Using the SecurityPEP node in a message flow” on page 4731
v “Configuring the SecurityPEP node” on page 4731
v “Terminals and properties” on page 4732

Purpose:
The SecurityPEP node enables you to invoke the message flow security manager at
any point in the message flow between an input node and an output (or request)
node.

Message flow security enables the broker to perform end-to-end processing of an
identity or security token carried in a message through a message flow. This
capability enables you to configure security for a message flow, allowing you to
control access based on the identity or security token associated with the message
and providing a security mechanism that is independent of both transport type
and message format.

The SecurityPEP node enables you to invoke the security manager even if your
message flow input nodes do not support message flow security (for example,
TCPIPClientInput or SAPInput nodes). If you use input nodes that do not support
message flow security, or you require some processing or routing of the message
before the required security operation can be identified, you can use the
SecurityPEP node to invoke the message flow security.

The SecurityPEP node also enables you to invoke different aspects of security at
different points in the message flow. For example, you might require authentication
to occur at a security enabled input node, whereas token mapping and
authorization might be required after some logic in the message flow has
determined the necessary business operation. Alternatively, you might have a
message flow with multiple request nodes that require SecurityPEP nodes to
enable one type of security token to be mapped to another type for propagation by
the request nodes.

Chapter 14. Reference 4729

You can use the node properties to specify the location of the security tokens in the
message tree. These properties contain an XPath expression or ESQL path that
defines the location of the security tokens in the message tree. The message flow
security manager extracts this information from the message and sends it to the
external Policy Decision Point (PDP), which uses the information for
authentication, authorization, or mapping. The PDP to be used is configured by the
associated security profile.

Alternatively, you can configure the SecurityPEP node to use the current tokens,
which have already been extracted by an upstream input node or SecurityPEP
node, and stored in the Properties folder. When the node is configured with the
token type as Current token, if a mapped token exists, the mapped token is used;
otherwise, the source token is used.

The SecurityPEP node must be associated with a security profile, which specifies
the security operations to be enforced by the node, including authentication,
authorization, and mapping. If no security profile is associated with the node, the
node propagates the message to the Output terminal without enforcing any
security. Security profiles are configured by the broker administrator before
deploying a message flow, and are accessed by the security manager at run time. If
a security profile is specified on either a message flow or a node, the profile must
be available when the message flow is deployed; otherwise, a deployment error
occurs.

The associated security profile also allows you to specify the external security
provider to be used (LDAP, WS-Trust V1.3 STS, or TFIM V6.1), and to configure
the way in which they are used. The security profile is associated with the
SecurityPEP node (or its owning message flow) during deployment, by editing the
Security Profile property with the Broker Archive editor.

For information about the types of security token that are supported by the
SecurityPEP node, see “Identity” on page 390.

The SecurityPEP node propagates messages to the Out terminal only if all the
configured security operations complete successfully. The input messages are
propagated unmodified, apart from the population of the source identity and
mapped identity (if one exists).

If any of the configured security operations are unsuccessful, the SecurityPEP node
throws a security exception wrapped in a recoverable exception (unlike the
security enabled input nodes), which invokes the error handling that is provided
by the message flow. This enables the exception to be caught and processed.
Alternatively, you can handle SecurityPEP node exceptions by wiring the node's
failure terminal into specific security failure processing logic. When a security
operation fails, the input messages are unmodified apart from the population of
the exception list.

The SecurityPEP node is contained in the Security drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

4730 WebSphere Message Broker Version 7.0.0.8

Message structure

The SecurityPEP node handles messages in the following message domains:
v MRM
v XMLNSC
v DataObject
v XMLNS
v JMSMap
v JMSStream
v MIME
v BLOB
v SOAP
v XML (this domain is deprecated; use XMLNSC)
v IDOC (this domain is deprecated; use MRM)

Using the SecurityPEP node in a message flow:
Look at the following sample to see how to use the SecurityPEP node:
v Security Policy Enforcement Point (PEP)

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the SecurityPEP node:
When you have put an instance of the SecurityPEP node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view.

All mandatory properties that do not have a default value defined are marked
with an asterisk.

Configure the SecurityPEP node:
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, set values for the properties that control the extraction of an

identity or security token from a message (when a security profile is associated
with the node).
v Select an option from the Identity token type list to specify the type of

identity in the incoming message tree. If you leave this option to the default
(Current token), the token type that exists in the identity mapped or source
field in the Properties folder is used.
If Current token is selected, the Identity token location and Identity
password location fields are disabled.

v In Identity token location, enter the XPath expression, ESQL field
reference, or string literal that specifies where, in the message, the identity or
token is located. If you use a string literal, it must be enclosed in single
quotes and must not contain a period (.),
This property is disabled if the Identity token type property is set to
Current token.

v In Identity password location, enter the XPath expression, ESQL field
reference, or string literal that specifies where, in the message, the password
can be found. If you use a string literal, it must be enclosed in single quotes
and must not contain a period (.),

Chapter 14. Reference 4731

This option can be set only if the Identity token type is set to Username +
Password.
This property is disabled if the Identity token type property is set to
Current token.

v In Identity issuedBy location, specify an XPath expression, an ESQL field
reference, or a string literal that specifies the location in the message of the
issuer value. If you use a string literal, it must be enclosed in single quotes
and must not contain a period (.),
If the associated security profile specifies a WS-Trust v1.3 STS provider (for
example, TFIM V6.2) and this field is left blank, no WS-Trust Issuer.Address
element is included in the WS-Trust request.

3. On the Advanced tab, set the properties to override the default settings for a
WS-Trust v1.3 STS. These properties can be set only if the security profile
associated with the SecurityPEP node specifies a WS-Trust v1.3 STS.
v Use the WS-Trust Applies-To Address property to specify the Address for

the /wst:RequestSecurityToken/wsp:AppliesTo element of the WS-Trust
message. You can use this property to provide the URI of the service for
which the security token is to be validated or issued.
You can specify this value as an ESQL field reference, an XPath expression,
or a string literal. If you use a string literal, it must be enclosed in single
quotes and must not contain a period (.),
By default, this value is a URI for the fully qualified name of the message
flow, in the form uri:Brokername.Execution Group Name.Message Flow Name

v Use the WS-Trust Applies-To Service property to specify the Service Name
for the /wst:RequestSecurityToken/wsp:AppliesTo element of the WS-Trust
message. You can use this property to provide the Service Name of the
service for which the security token is to be validated or issued.
You can specify this value as an ESQL field reference, an XPath expression,
or a string literal. If you use a string literal, it must be enclosed in single
quotes and must not contain a period (.),
By default, this value is left blank, which means that the WS-Trust request
will not include this element.

v Use the WS-Trust Applies-To PortType property to specify the Port Type for
the /wst:RequestSecurityToken/wsp:AppliesTo element of the WS-Trust
message. You can use this property to provide the Port Type of the service
for which the security token is to be validated or issued.
You can specify this value as an ESQL field reference, an XPath expression,
or a string literal. If you use a string literal, it must be enclosed in single
quotes and must not contain a period (.),

For more information, see “Message flow security overview” on page 383 and
“Setting up message flow security” on page 431.

Terminals and properties:
The terminals of the SecurityPEP node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing.

Out The output terminal to which the message is routed if the SecurityPEP node is
associated with a security profile and if all the configured security operations
complete successfully. The propagated properties folder identity elements are updated
by the configured security operations.

4732 WebSphere Message Broker Version 7.0.0.8

Terminal Description

Failure The output terminal to which the message is routed if there is a failure in the node;
for example, if the configured security operations return an exception.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the bar file to deploy it).

The Description properties of the SecurityPEP node are described in the following
table.

Property M C Default Description

Node name No No The node
type,
SecurityPEP

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The Basic properties of the SecurityPEP node are described in the following table.
Set values for these properties to control the extraction of an identity from a
message (when a security profile is associated with the node). For more
information about these properties, see “Identity” on page 390, “Configuring the
extraction of an identity or security token” on page 447, “Message flow security
overview” on page 383, and “Setting up message flow security” on page 431.

Property M C Default Description

Identity
token type

No No None This property specifies the type of identity token present in the incoming
message. Valid values are:

v Current token

v Username

v Username and password

v X.509 Certificate

v SAML assertion

v Kerberos GSS v5 AP_REQ

v LTPA v2 token

v Universal WSSE token

If this property is set to Current token, the identity in the Properties folder is
used.

You can also specify the Username and password value to validate a RACF
PassTicket using a WS-Trust V1.3 STS such as TFIM V6.2.

Identity
token
location

No No None This property specifies where, in the message, the identity or security token
can be found. The location is specified as an ESQL field reference, an XPath
expression, or a string literal. If you use a string literal, it must be enclosed in
single quotes and must not contain a period (.),

Chapter 14. Reference 4733

Property M C Default Description

Identity
password
location

No No None This property specifies where, in the message, the password can be found. The
location is specified as an ESQL field reference, an XPath expression, or a
string literal. If you use a string literal, it must be enclosed in single quotes
and must not contain a period (.),

This property can be set only if Identity token type is set to Username and
password.

Identity
IssuedBy
location

No No None This property specifies an XPath expression or ESQL path that describes the
issuer of the identity or security token. The location is specified as an ESQL
field reference, an XPath expression, or a string literal. If you use a string
literal, it must be enclosed in single quotes and must not contain a period (.),

This option is used when the associated security profile specifies a WS-Trust
V1.3 STS provider (for example, TFIM V6.2) for authentication, mapping or
authorization. In this case, when this field is left blank, no WS-Trust
Issuer.Address element is sent.

The Advanced properties of the SecurityPEP node are described in the following
table. These properties are used only if the security profile specifies a WS-Trust
V1.3 STS (for example, TFIM V6.2).

Property M C Default Description

WS-Trust Applies-To
Address

No Yes Not set This property sets the Address for the
/wst:RequestSecurityToken/wsp:AppliesTo element of
the WS-Trust message. Use this property to provide the
URI of the service for which the security token is to be
validated or issued.

This value can be specified as an ESQL field reference,
an XPath expression, or a string literal. If you use a
string literal, it must be enclosed in single quotes and
must not contain a period (.),

By default, this value is a URI for the fully qualified
name of the message flow, in the form
uri:Brokername.Execution Group Name.Message Flow Name.

WS-Trust Applies-To
Service

No Yes Not set This property sets the Service Name for the
/wst:RequestSecurityToken/wsp:AppliesTo element of
the WS-Trust message. Use this property to provide the
Service Name of the service for which the security
token is to be validated or issued.

This value can be specified as an ESQL field reference,
an XPath expression, or a string literal. If you use a
string literal, it must be enclosed in single quotes and
must not contain a period (.),

By default, this value is left blank, which means that
the WS-Trust request does not include this element.

4734 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

WS-Trust Applies-To
Port Type

No Yes Not set This property sets the Port Type for the
/wst:RequestSecurityToken/wsp:AppliesTo element of
the WS-Trust message. Use this property to provide the
Port Type of the service for which the security token is
to be validated or issued.

This value can be specified as an ESQL field reference,
an XPath expression, or a string literal. If you use a
string literal, it must be enclosed in single quotes and
must not contain a period (.),

By default, this value is left blank, which means that
the WS-Trust request does not include this element.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“Security profiles” on page 387
A security profile defines the security operations that are to be performed in a
message flow at SecurityPEP nodes and security enabled input and output nodes.
“WS-Security” on page 765
Web Services Security (WS-Security) describes enhancements to SOAP messaging
to provide quality of protection through message integrity, message confidentiality,
and single message authentication. WS-Security mechanisms can be used to
accommodate a wide variety of security models and encryption technologies.
Related tasks:
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Creating a security profile” on page 433
You can create a security profile for use with Lightweight Directory Access
Protocol (LDAP) or a WS-Trust V1.3 compliant security token server (STS), such as
Tivoli Federated Identity Manager (TFIM) V6.2. Support is also provided for TFIM
V6.1, for compatibility with previous versions of WebSphere Message Broker. You
can create the security profile by using either the mqsicreateconfigurableservice
command or an editor in the WebSphere Message Broker Explorer.

Chapter 14. Reference 4735

Related reference:
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SCAInput node” on page 4707
Use the SCAInput node with the SCAReply node to process messages from
WebSphere Process Server.

Sequence node
Use the Sequence node to add a sequence number to one or more groups of input
messages.

This topic contains the following sections:
v “Purpose”
v “Using the Sequence node in a message flow” on page 4737
v “Configuring the Sequence node” on page 4737
v “Terminals and properties” on page 4738

Purpose:
The Sequence node enables you to receive groups of messages from an input
source, and preserve the order in which the messages in each group arrived.

Use a Sequence node to generate a monotonically increasing sequence number for
each sequence group. As each message in the group arrives at the Sequence node,
the sequence number for the group is incremented and stored with the message in
a location specified by the node property Path to store sequence number (for
example, LocalEnvironment, MQRFH2 header, message body).

The sequencing applies to messages within the same sequence group only. You can
use properties in the Sequence node to organize messages into groups according to
a specified condition; for example, grouping all messages with the same value in a
customer number field in the message. If no sequence group is specified, a single
default group is used for all messages.

A Sequence node can receive input from multiple input nodes in the message flow
or from input nodes that have additional instances. The Sequence node can process
multiple sequence groups in parallel, but it processes only one request at a time for
sequence numbers from the same sequence group.

The Sequence node allocates a sequence number to each message in a sequence
group, and the next sequence number in the group is not allocated until the
current message in the group has finished processing (either by being committed
or rolled back). Only one thread at a time can process messages in the same
sequence group downstream of the Sequence node, which ensures that sequencing
is maintained for the group when there are multiple threads in the message flow.

When the Sequence node receives messages from multiple threads, the order in
which the messages reach the Sequence node is preserved. However, the order in

4736 WebSphere Message Broker Version 7.0.0.8

which the messages arrive at the Sequence node might be different from the order
in which they are taken from the transport by the input node. This situation can
occur because messages on one thread might be overtaken by messages on other
threads between the input node and Sequence node.

Each sequence group can be associated with only one Sequence node. Multiple
Sequence nodes can have a sequence group with the same name, but each of those
sequence groups is treated as a separate group. The combination of the execution
group name, message flow name, node name, and sequence group name is used to
differentiate between the sequence groups.

For example, you might have a message flow called flow1 containing a Sequence
node called node1, which is deployed to an execution group called eg1. A message
is sent to it using a sequence group called group1. The result is
eg1/flow1/node1/group1. Exactly the same message flow in a different execution
group, for example eg2, would result in eg2/flow1/node1/group1.

The Sequence node is contained in the Routing drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using the Sequence node in a message flow:
Look at the following sample to see how to use the Sequence node:
v Healthcare

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the Sequence node:
When you have put an instance of the Sequence node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.

All mandatory properties that do not have a default value defined are marked
with an asterisk.

Configure the Sequence node:
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, set the properties that determine how the message sequence

is controlled.
v Use the Path to store sequence number property to specify the location in

which to save the sequence number of the message. The location is specified
as an XPath expression.

v Use the Path to sequence group identifier property to specify the location
of the sequence group identifier. The location is specified as an XPath
expression. Messages that have the same group identifier are considered part
of the same sequence group.

Chapter 14. Reference 4737

v Use the Start of sequence definition property to specify the first sequence
number in each group. In the Literal field, specify any positive or negative
numeric value as the first sequence number in the group. The default value
is 0.
When the first message of a specific sequence group is propagated by the
Sequence node, the specified starting sequence number is used to assign the
first sequence number; successive messages contain monotonically increasing
sequence numbers. This value is overridden by the
LocalEnvironment.Sequence.StartOfSequenceNumber variable.

v Use the End of sequence definition property to specify when each
sequence group has been completed.
– Select Literal to specify a literal sequence number. This value can be any

positive or negative numeric value that is greater than the value of the
Start of sequence definition property. When the message with the
specified sequence number arrives, the sequence group is closed.

– Select Predicate to specify an XPath expression that evaluates to either
True or False, indicating whether the message is the last in the sequence.
When the first message in the sequence has been determined, messages
for that sequence group continue to have sequence numbers assigned to
them until the end of sequence predicate evaluates to True.
If the XPath expression is valid but is not present in the message, it
evaluates to False and the next message in the sequence group is assigned
a sequence number. When the predicate evaluates to True, the message
becomes the last in the sequence and no more messages are assigned to
the sequence for that sequence group.
If the XPath expression is invalid, it fails and the message rolls back

– Select Automatic to specify the timeout period for the node. This option
specifies how long (in seconds) the node waits for messages to arrive in
an empty queue, before closing the sequence group. This option is useful
for applications that cannot determine the final number in the sequence.
The timer starts when there are no messages in the queue waiting to be
propagated. If new messages arrive before the timeout period is reached,
the timer is canceled. If no new messages arrive before the end of the
specified time, the sequence group is closed and any further messages for
the group are considered part of a new group.

3. On the Advanced tab:
v Use the Persistence mode property to specify whether to store sequence

group state persistently. The default value is Non-persistent.

Terminals and properties:
The terminals of the Sequence node are described in the following table.

Terminal Description

In The input terminal through which the incoming message assembly arrives at the
node.

Failure The output terminal to which the message is routed if an error occurs. This value
includes failures caused by retry processing.

Out The output terminal to which the output message is propagated by default.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a

4738 WebSphere Message Broker Version 7.0.0.8

value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file for deployment).

The Description properties of the Sequence node are described in the following
table.

Property M C Default Description

Node name No No Sequence The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The Basic properties of the Sequence node are described in the following table.

Property M C Default Description

Path to store sequence
number

No No $OutputLocalEnvironment/
Sequence/Number

An XPath expression that specifies the location in
which to save the sequence number of the message.

Path to sequence group
identifier

No No Not set An XPath expression that points to the location of the
sequence group identifier. Messages that have the
same group identifier are considered part of the same
sequence group. This property functions in the same
way as the Correlation path property in the Collector
node.

Start of sequence
definition

Yes No 0 Specifies the first sequence number in each group.
Valid values are positive or negative integers. The
default value is 0.

End of sequence
definition

Yes No Automatic Specifies when each sequence group has been
completed. Valid values are:

v Literal and number

v Predicate and XPath

v Automatic and time in seconds

The default is Automatic.

The Advanced properties of the Sequence node are described in the following
table.

Property M C Default Description

Persistence mode Yes No Non-
persistent

Specifies whether to store sequence group state
persistently. Valid options are:
v Non-persistent
v Persistent

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4739

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message sequencing” on page 2784
Use message sequencing to ensure that messages are delivered to the receiving
application in a particular order.
Related tasks:
“Using message sequences” on page 2783
You can maintain or change the sequence of messages in a message flow based on
the sequence number and group ID contained in each message.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Resequence node” on page 4651
Use the Resequence node to control the sequence in which a group (or groups) of
incoming messages are propagated in a message flow.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.

SiebelInput node
Use the SiebelInput node to interact with a Siebel application.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4741
v “Terminals and properties” on page 4741

Purpose:
Use the SiebelInput node to interact with Siebel applications. For example, a
SiebelInput node monitors a Siebel system for a specified event. When that event
occurs, the SiebelInput node generates a message tree that represents the business
object with the new event details. The message tree is propagated to the Out
terminal so that the rest of the message flow can use the data to update other
systems, or audit the changes.

The SiebelInput node is contained in the WebSphere Adapters drawer of the
message flow node palette, and is represented in the WebSphere Message Broker
Toolkit by the following icon:

4740 WebSphere Message Broker Version 7.0.0.8

Using this node in a message flow:
To use the SiebelInput node, you must first create the Siebel event table. For
instructions, see “Creating the event store manually” on page 2072.

To function correctly, the SiebelInput node needs an adapter component, which
you set using the Adapter component node property, and business object
definitions, which are stored in the message set that you reference from the node.
For this reason, you must provide a message set. By default, the message that is
propagated from the SiebelInput node is in the DataObject domain, so the Message
domain property is set to DataObject. You cannot specify a different domain. The
message type is detected automatically by the node.

The SiebelInput node populates the route to label destination list with the name of
the method binding. If you add a RouteToLabel node to the message flow after the
SiebelInput node, the RouteToLabel node can use the name of the method binding
to route the message to the correct part of the message flow for processing.

You can deploy only one input node that uses a particular adapter component to
an execution group, but you can deploy many input nodes that use different
adapter components to an execution group.

You can use the mqsisetdbparms command in the following format to configure an
account name with a user name and password for the Adapter for Siebel Business
Applications.
mqsisetdbparms broker name -n adapter name -u user name -p password

For example:
mqsisetdbparms BRK1 -n eis::SiebelCustomerInbound.inadapter -u siebeluid -p ********

Using configurable services for Siebel nodes

Siebel nodes can get Siebel connection details from either the adapter component
or a configurable service. By using a configurable service, you can change the
connection details for an adapter without the need to redeploy the adapter. For
more details about creating, changing, reporting, and deleting the configurable
services for Siebel, see “Changing connection details for Siebel adapters” on page
720.

You can also connect to different versions of Siebel by creating a custom
EISProviders configurable service and setting the location of the appropriate library
files. For more information, see “Connecting to different versions of Siebel” on
page 2077.

Terminals and properties:
When you have put an instance of the SiebelInput node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. If you double-click a SiebelInput node, you open the Adapter Connection
wizard. All mandatory properties for which you must enter a value (those that do
not have a default value defined) are marked with an asterisk.

The SiebelInput node terminals are described in the following table.

Terminal Description

Out Business object events from the adapter are sent to the Out terminal.

Chapter 14. Reference 4741

Terminal Description

Failure If an error happens in the SiebelInput node, the message is propagated to the Failure terminal.
Information about the error, and business object events can also be propagated to the Failure terminal.

Catch Business object events are sent to the Catch terminal if they cause an uncaught exception in the
message flow. If the Catch terminal is not connected, the retry process is activated to handle the
business object.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The SiebelInput node Description properties are described in the following table.

Property M C Default Description

Node
name

No No The node type,
SiebelInput.

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The SiebelInput node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Primary
adapter
component

Yes Yes The name of the adapter component that contains
configuration properties for the adapter. Either enter a
name of an adapter file or click Browse to select an
adapter file from the list of files that are available in
referenced message set projects.

When theSiebelInput node receives data from the Siebel
system, it associates that data with a method name,
depending on the service operation name that is assigned
to that type of data when you run the Adapter
Connection wizard. The SiebelInput node attempts to
handle methods that are defined in the primary adapter. If
the type of data that is received does not correspond to
any of the methods that are defined in the primary
adapter, the node can handle methods that are defined in
matching secondary adapters that are deployed to the
same execution group.

adapterComponent

4742 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Secondary
adapter
mode

No Yes None Specifies whether the node can handle methods that are
defined in secondary adapters.

If you set the Secondary adapter mode property to None,
the node handles only methods that are defined in the
primary adapter. If the type of data that is received does
not correspond to any of the methods that are defined in
the primary adapter, a failure occurs.

If you set this property to All adapters in execution
group, the node can handle methods that are defined in
any Siebel inbound adapters that are deployed to the
same execution group.

secondaryAdapterMode

The SiebelInput node Routing properties are described in the following table.

Property M C Default Description

Set
destination
list

No No Selected This property specifies whether to add the method binding name to the route to
label destination list. If you select this check box, the method binding name is
added so that you can use a RouteToLabel node in the message flow after the
SiebelInput node.

Label
prefix

No No The prefix to add to the method name when routing to label. Add a label prefix
to avoid a clash of corresponding label nodes when you include multiple
WebSphere Adapters input nodes in the same message flow. By default, there is
no label prefix, so the method name and label name are identical.

The SiebelInput node Input Message Parsing properties are described in the
following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the incoming message. By default, the
message that is propagated from the SiebelInput node is in the DataObject
domain. You cannot specify a different domain.

Message
set

Yes No Set
automatically

The name of the message set in which the incoming message is defined.
This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project dependencies
to remove this message set reference, a warning is issued. Either update
the Message set property, or restore the reference to this message set
project.

Message
type

No No The name of the incoming message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the incoming message. You cannot set
this property.

The SiebelInput node Transactionality properties are described in the following
table.

Property M C Default Description

Transaction
mode

No No Yes The transaction mode on this input node determines whether the rest of the
nodes in the flow operate under sync point.

Chapter 14. Reference 4743

The Instances properties of the SiebelInput node are described in the following
table. For a full description of these properties, see “Configurable message flow
properties” on page 4020.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are obtained.
v If you select Use Pool Associated with Message Flow,

additional instances are obtained from the message
flow value.

v If you select Use Pool Associated with Node,
additional instances are allocated from the node's
additional instances based on the number specified in
the Additional instances property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node can
start if the Additional instances pool property is set to
Use Pool Associated with Node. By default, no
additional instances are given to the node.

additionalInstances

The SiebelInput node Retry properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

No No Failure This property specifies how retry processing is handled
when a failure is rolled back to the SiebelInput node.
v If you select Failure, retry processing is not performed

so you cannot set the remaining properties.
v If you select Short and long retry, retry processing is

performed first at the interval that is specified by the
Short retry interval property, and if that is
unsuccessful, it is then performed at the interval that is
specified by the Long retry interval property.

Retry
threshold

No Yes 0 The maximum number of times that retry processing is
performed for short retry.

retryThreshold

Short retry
interval

No Yes 0 The interval between short retry attempts. shortRetryThreshold

Long retry
interval

No Yes 0 The interval between long retry attempts. longRetryThreshold

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without

4744 WebSphere Message Broker Version 7.0.0.8

special coding.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Creating the event store manually” on page 2072
To configure the Siebel application, create an event table and a Siebel business
object.
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

SiebelRequest node
Use the SiebelRequest node to interact with a Siebel application.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4746
v “Terminals and properties” on page 4746

Purpose:
Use the SiebelRequest node to interact with Siebel applications. For example, a
SiebelRequest node requests information from a Siebel Enterprise Information
System (EIS). A customer business object is sent to Siebel, causing Siebel to retrieve
information about a customer, such as an address and account details. The
response information that is retrieved by the SiebelRequest node can then be used
by the rest of the message flow. The SiebelRequest node can send and receive
business data.

The SiebelRequest node is contained in the WebSphere Adapters drawer of the
message flow node palette, and is represented in the WebSphere Message Broker
Toolkit by the following icon:

Chapter 14. Reference 4745

Using this node in a message flow:
To function correctly, the SiebelRequest node needs an adapter component, which
you set using the Adapter component node property, and business object
definitions, which are stored in the message set that you reference from the node.
For this reason, you must provide a message set. By default, the message that is
propagated from the SiebelRequest node is in the DataObject domain, so the
Message domain property is set to DataObject. You cannot specify a different
domain. The message type is detected automatically by the node.

The SiebelRequest node supports local transactions by using the local transaction
manager for the broker, and global transactions by using the external syncpoint
coordinator for the broker.

To effectively maintain the pool of connections to Siebel, you can set a connection
timeout value on a configurable service. For more information, see “Configuring
EIS connections to expire after a specified time” on page 726.

You can deploy several WebSphere Adapters request nodes that use the same
adapter component to an execution group.

You can use the mqsisetdbparms command in the following format to configure an
account name with a user name and password for the Adapter for Siebel Business
Applications.
mqsisetdbparms broker name -n adapter name -u user name -p password

For example:
mqsisetdbparms BRK1 -n eis::SiebelCustomerOutbound.outadapter -u siebeluid -p ********

Using configurable services for Siebel nodes

Siebel nodes can get Siebel connection details from either the adapter component
or a configurable service. By using a configurable service, you can change the
connection details for an adapter without the need to redeploy the adapter. For
more details about creating, changing, reporting, and deleting the configurable
services for Siebel, see “Changing connection details for Siebel adapters” on page
720.

You can also connect to different versions of Siebel by creating a custom
EISProviders configurable service and setting the location of the appropriate library
files. For more information, see “Connecting to different versions of Siebel” on
page 2077.

Terminals and properties:
When you have put an instance of the SiebelRequest node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. If you double-click a SiebelRequest node, you open the Adapter
Connection wizard. All mandatory properties for which you must enter a value
(those that do not have a default value defined) are marked with an asterisk.

The SiebelRequest node terminals are described in the following table.

4746 WebSphere Message Broker Version 7.0.0.8

Terminal Description

In The input terminal that accepts the request business object.

Out The output terminal to which the response business object is sent if it represents successful completion of
the request, and if further processing is required within this message flow.

Failure If an error happens in the SiebelRequest node, the message is propagated to the Failure terminal.
Information about the error, and business object events can also be propagated to the Failure terminal.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk on the panel if you
must enter a value when no default is defined); the column headed C indicates
whether the property is configurable (you can change the value when you add the
message flow to the BAR file to deploy it).

The SiebelRequest node Description properties are described in the following table.

Property M C Default Description

Node
name

No No The node type, for
example,
SiebelRequest

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The SiebelRequest node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Primary
adapter
component

Yes No The name of the adapter component that contains
configuration properties for the adapter. Either enter a
name of an adapter file, or click Browse to select an
adapter file from the list of files that are available in
referenced message set projects.

When theSiebelRequest node receives data from the Siebel
system, it associates that data with a method name. The
SiebelRequest node attempts to call methods that are
defined in the primary adapter. If the method is not
defined in the primary adapter, the node can call methods
that are defined in matching secondary adapters that are
deployed to the same execution group.

Secondary
adapter
mode

No Yes None Specifies whether the node can call methods that are
defined in secondary adapters.

If you set the Secondary adapter mode property to None,
the SiebelRequest node calls only methods that are
defined in the primary adapter. If the method is not
defined in the primary adapter, an error occurs.

If you set this property to All adapters in execution
group, the node can call methods that are defined in any
Siebel outbound adapter that is deployed to the same
execution group.

secondaryAdapterMode

Chapter 14. Reference 4747

Property M C Default Description mqsiapplybaroverride
command property

Default
method

Yes Yes The default method binding to use. defaultMethod

The SiebelRequest node Response Message Parsing properties are described in the
following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the response message. By default, the
response message that is propagated from the SiebelRequest node is in the
DataObject domain. You cannot specify a different domain.

Message
set

Yes No Set
automatically

The name of the message set in which the incoming message is defined. This
field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project dependencies
to remove this message set reference, a warning is issued. Either update the
Message set property, or restore the reference to this message set project.

Message
type

No No The name of the response message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the response message. You cannot set this
property.

The SiebelRequest node Transactionality properties are described in the following
table.

Property M C Default Description

Transaction
mode

No No No This property specifies that updates are performed independently, not as part
of a local transaction. You cannot change this property.

The SiebelRequest node Request properties are described in the following table.

Property M C Default Description

Method
Location

Yes No $LocalEnvironment/
Adapter/MethodName

The location of the business method (such as
createPurchaseOrder or deletePurchaseOrder) that is used to
trigger the SiebelRequest node to perform an action on the
external system.

Data
Location

Yes No $Body The location in the incoming message tree from which data is
retrieved to form the request that is sent from the SiebelRequest
node to the EIS.

The SiebelRequest node Result properties are described in the following table.

Property M C Default Description

Output data
location

No No $OutputRoot The message tree location to which the SiebelRequest node sends output.

4748 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Copy local
environment

No No Selected This property controls how the local environment is copied to the output
message. If you select the check box, at each node in the message flow, a
new copy of the local environment is created in the tree, and it is
populated with the contents of the local environment from the preceding
node. So if a node changes the local environment, the upstream nodes do
not see those changes because they have their own copies. This behavior
might be an issue if you are using a FlowOrder node, or if you use the
propagate command on a Compute node.

If you clear the check box, each node does not generate its own copy of
the local environment, but it uses the local environment that is passed to it
by the previous node. So if a node changes the local environment, those
changes are seen by the upstream nodes.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Overview of WebSphere Adapter for Siebel Business Applications” on page 2002
With WebSphere Adapter for Siebel Business Applications, you can create
integrated processes that exchange information with a Siebel application, without
special coding.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:

Chapter 14. Reference 4749

“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

SOAPAsyncRequest node
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4751
v “Using WSDL with the SOAPAsyncRequest node” on page 4752
v “Terminals and properties” on page 4753
v “LocalEnvironment overrides” on page 4768
v “Working with WrittenDestination data” on page 4768

Purpose:
The SOAPAsyncRequest node can use HTTP or JMS transport. It is linked as a pair
with a SOAPAsyncResponse using a unique identifier, and WS-Addressing, to
correlate response messages with the original request. The SOAPAsyncRequest and
SOAPAsyncResponse nodes cannot be used with one-way operations.

The SOAPAsyncRequest node sends a Web service request, but the node does not
wait for the associated Web service response to be received. This asynchronous
functionality enables multiple outbound requests to be made almost in parallel
because the outbound request is not blocked waiting for the response. However,
when using HTTP transport, the SOAPAsyncRequest node does wait for the HTTP
202 acknowledgment before continuing with the message flow, and the
SOAPAsyncRequest node blocks if the acknowledgment is not received. The Web
service response is received by the SOAPAsyncResponse node, which can be in a
separate message flow. The nodes are used as a pair, and correlate responses
against the original requests.

4750 WebSphere Message Broker Version 7.0.0.8

The SOAPAsyncRequest node is the first half of the asynchronous request and
response node pair. The SOAPAsyncRequest node calls a remote SOAP-based Web
service. The request is sent by the SOAPAsyncRequest node, but the
SOAPAsyncRequest node does not receive the response. The response is received
by a SOAPAsyncResponse node that is running on a different thread. The
SOAPAsyncResponse node is typically at the beginning of a different message
flow; however, it must be in the same execution group as the SOAPAsyncRequest
node.

The SOAPAsyncRequest node is WSDL-driven, in a similar manner to the
SOAPRequest node.

The SOAPAsyncRequest node is contained in the Web Services drawer of the
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Using this node in a message flow:
A SOAPAsyncRequest node is linked as a pair with a SOAPAsyncResponse using a
unique identifier to correlate request and response messages.

The following sample demonstrates how to use the asynchronous SOAP nodes
when you call a Web service. The Web service simulates an order service, and the
client shows how existing WebSphere MQ interfaces can be extended to make Web
service requests.
v Asynchronous Consumer

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

some
message

some
response

WSDLInput

Output

SOAP
Async

Request

SOAP
Async

Response

External
Web service

Chapter 14. Reference 4751

Using WSDL with the SOAPAsyncRequest node:
A SOAPAsyncRequest node must be associated with a WSDL file unless it is
operating in gateway mode. For more information about gateway mode, see
“Gateway operation mode for SOAP nodes” on page 1645.

In WSDL mode, when you select a WSDL file for the WSDL file name field, the
WSDL is validated to ensure that it is WS-I compliant. If the WSDL uses a
SOAP/JMS transport URI it is not WS-I compliant, but by default no error is
shown. To enable strict WS-I validation and display a warning when a SOAP/JMS
transport is used, click Window > Preferences > Broker Development > Message
Sets > Validation and clear the WS-I BP 1.1: Allow SOAP/JMS as transport URI
check box.

After a valid WSDL file is selected, the message set project to which WSDL file
belongs is added as a referenced project to the corresponding flow project, if the
reference does not exist. If the WSDL file is not valid, or an incorrect file name is
entered, an error message is displayed in the Properties view and all WSDL
properties are blank.

If the node was created by dropping a WSDL file from a message set onto the
message flow editor, this property is preset to the name of the WSDL file. If the
name of the WSDL file is not preset, you can set this property in one of the
following ways.
v If you have Deployable WSDL, you can select from the Deployable WSDL files

by clicking Browse.
v If you have WSDL definitions, but no message set, then you can create a

message set:
1. Click Browse to open the WSDL Selection window.
2. Click Import/Create New to open the Import WSDL file wizard.
3. Enter the message set name and message set project name. Click Next.
4. Select the relevant option:

– If your WSDL file exists in your workspace, select Use resources from the
workspace, and select the WSDL file.

– If your WSDL file is in the file system, select Use external resources.
Select the WSDL file. Click Next.

5. Select the WSDL bindings to import. Any warnings or errors are displayed in
the wizard banner.

6. Click Finish. Result: Creates a new message set project and message set, with
message definitions. The WSDL definitions are added to the Deployable
WSDL folder.

7. You can now select the WSDL file from the WSDL Selection window. Click
OK.

v If you have a message set but no WSDL definition, you must generate a WSDL
definition. See “Generating a WSDL definition from a message set” on page
2968.

v Drag a WSDL file from a message set onto the node.
v Type in a file name that is relative to the message set project in which the

deployable WSDL file exists.

When you save the flow file, it is validated that the WSDL file name exists in the
message set. If it is does not, an error is generated, and you will not be able to add
a flow that contains this SOAPAsyncRequest node to the broker archive (BAR) file.

4752 WebSphere Message Broker Version 7.0.0.8

Terminals and properties:
The SOAPAsyncRequest node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a SOAP request message for dispatch to the target by the node.

Failure The output terminal to which the message is routed if a failure is detected when the SOAP
request message is dispatched to the target (such as a message validation failure).

Out The output terminal to which the message is routed if it has been successfully dispatched to the
target, and if further processing is required within this message flow. The message that leaves
the Out terminal is the same as the message that arrived at the In terminal.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined). The column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

Some SOAPAsyncRequest node properties are initially set from properties in the
imported WSDL. These properties are parsed differently depending on which URI
format is used by the address element in the WSDL. For details, see “WSDL URI
formats for JMS” on page 1668.

The SOAPAsyncRequest node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the
message flow.

The SOAPAsyncRequest node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Unique
identifier

Yes No This property is the unique identifier that links a
pair of SOAPAsyncRequest and
SOAPAsyncResponse nodes.

When using HTTP transport, this identifier is
used as a unique URL fragment to identify
incoming response messages for the
SOAPAsyncResponse node.

When using JMS transport, this property is used
as a unique identifier only if the Get Response
By Correl ID property is checked. If the Get
Response By Correl ID property is cleared and
JMS transport is used, the Reply To Destination
queue acts as the unique identifier instead, and
therefore must be unique to this pair of nodes.

asyncResponseCorrelator

Chapter 14. Reference 4753

Property M C Default Description mqsiapplybaroverride
command property

Operation
mode

Yes Yes Invoke a
specific web
service
defined by a
WSDL
interface

This property allows you to specify the
operation mode of the node, which determines
whether it acts in WSDL mode or in gateway
mode. In WSDL mode, the node performs
operations according to the WSDL it is
configured with. However, gateway mode
allows you to configure your flow to handle
generic SOAP request/response and one-way
messages, or to act as a façade between multiple
web services clients and multiple back-end web
services providers.

Invoke a specific web service defined by a
WSDL interface

Configure the node with a deployable
WSDL by setting the WSDL file name
property or by dragging a WSDL onto
the node. This is the default option.

Invoke a generic web service
Configure the node to act in gateway
mode with no WSDL required. See
“Gateway operation mode for SOAP
nodes” on page 1645 for a fuller
explanation of gateway mode.

4754 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

WSDL file
name

Yes No None This property indicates the location of the WSDL
file that you want to use to configure the node.
Enter the full path to the WSDL file, or click
Browse to locate the WSDL file in your
workspace.

When you select a WSDL file for the WSDL file
name property, the WSDL is validated to ensure
that it is WS-I compliant. If the WSDL has a
binding using SOAP/JMS which is not WS-I
compliant, by default no error is shown. To
enable strict WS-I validation and display a
warning when a SOAP/JMS transport is used,
click Window > Preferences > Broker
Development > Message Sets > Validation and
clear the WS-I BP 1.1: Allow SOAP/JMS as
transport URI check box.

Only deployable WSDL files can be used to
configure the SOAP nodes. After a valid WSDL
file is selected, the message set project to which
the WSDL file belongs is added as a referenced
project to the corresponding message flow
project, if the reference does not exist.

If the WSDL file is not valid, or an incorrect file
name is entered, an error message is displayed
in the Properties view and all WSDL properties
are blank.

If the node was created by dropping a WSDL
file from a message set onto the Message Flow
editor, this property is preset to the name of the
WSDL file.

This property takes a string value.

The following situations result in an error
condition:
v The WSDL file does not belong to a message

set project, or the WSDL file was not imported
correctly; see “Importing from WSDL” on
page 2946 and “Importing WSDL definitions
from the command line” on page 2948.

v The WSDL file contains no HTTP or JMS
bindings.

v The WSDL file contains no port type.
v The WSDL file that is specified in the field

does not exist.

WSDL properties are disabled when the node is
configured to act in gateway mode.

Chapter 14. Reference 4755

Property M C Default Description mqsiapplybaroverride
command property

Port type Yes No By default,
the first Port
type found in
the WSDL
file, that has
an associated
HTTP or JMS
binding with
it, is selected.

This property type is String. This field lists all
the port types defined by the specified WSDL
file. By default, the first port type found in the
WSDL file that has an associated HTTP or JMS
binding is selected.

When you save the flow file, it is validated that
the selected Port type is valid within the
content of the selected WSDL file. If it is not
valid, an error is generated, and you will not be
able to add a flow that contains this
SOAPAsyncRequest node to the broker archive
(BAR) file.

Error Conditions:

v Selected Port type does not contain at least
one operation.

WSDL properties are disabled when the node is
configured to act in gateway mode.

Imported
binding

Yes No This property type is String. The Imported
binding box lists all the SOAP bindings
associated with the selected port type. Only
HTTP or JMS transport is supported. Bindings
are listed in the order that they are displayed in
the WSDL file. By default, the first binding that
implements the operation and has an associated
service port is selected. This property is updated
every time the Port type value changes.

Error Conditions:

v No SOAP bindings (with HTTP or JMS
transport) in the WSDL file are associated
with the Port type.

v Selected binding does not have any
operations.

WSDL properties are disabled when the node is
configured to act in gateway mode.

Binding
operation

Yes No This property type is String.

The Binding operation box contains all the
operations defined by the selected binding. The
first operation in the list is selected by default.
This property is updated every time the selected
binding value changes.When you save the flow
file, it is validated that the selected Binding
operation is valid within the content of the
selected WSDL file. If it is not valid, an error is
generated, and you will not be able to add a
flow that contains this SOAPAsyncRequest node
to the broker archive (BAR) file.

WSDL properties are disabled when the node is
configured to act in gateway mode.

4756 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Service port Yes No This property type is String. The Service port
box lists all the service ports that point to the
selected binding. The first service port for the
binding is selected by default. This property is
updated every time the selected binding value
changes.

When you save the flow file, it is validated that
the selected Service port is valid within the
content of the selected WSDL file. If it is not
valid, an error is generated, and you will not be
able to add a flow that contains this
SOAPAsyncRequest node to the broker archive
(BAR) file.

Error Conditions:

v No ports point to the selected binding.

WSDL properties are disabled when the node is
configured to act in gateway mode.

Target
namespace

No No This property type is String. Target namespace
displays the namespace of the selected WSDL
file.

WSDL properties are disabled when the node is
configured to act in gateway mode.

Transport No No HTTP This property is set automatically when the
Imported binding property is selected. The value
of this property shows the transport used by the
selected WSDL binding; for example, HTTP or
JMS.

If you choose to switch the transport from JMS to
HTTP, a dialog box displays, which allows you to
reset the JMS-specific properties. You must reset
the JMS properties to deploy the message flow
to a runtime environment version prior to fix
pack V7.0.0.1.

The SOAPAsyncRequest node HTTP Transport properties are described in the
following table. These settings are used only when the node uses HTTP transport.

Chapter 14. Reference 4757

Property M C Default Description mqsiapplybaroverride
command property

Web service
URL

Yes No This property type is String. This property is
automatically derived from the <soap:address>
element of the selected Service port. Whenever the
selected port is updated, the Web service URL is
updated accordingly. However, if you override the
value then your value persists and the URL is no
longer updated from the service port.

If you choose to override this property you must
specify it in the form http://<hostname>[:<port>]/
[<path>] where:
v http://<hostname> must be specified.
v <port> has a default of 80. If you specify a value,

you must include the colon (:) before the port
number.

v <path> has a default of forward slash (/). If you
specify a value, you must include the forward
slash (/) before the path.

For more details of how to override this property, see
Changing the default URL for a SOAPRequest node
or a SOAPAsyncRequest node request.

webServiceURL

Request
timeout (in
seconds)

No Yes 120 This property type is Integer. This property has the
value of the wait time for the remote server to
respond with an acknowledgment that the message
has been received.

The time in seconds that the node waits for a
response from the Web service. The valid range is 1
to (231)-1. You cannot enter a value that represents an
unlimited wait.

requestTimeout

HTTP(S)
proxy
location

No Yes This property type is String. The location of the
proxy server to which requests are sent. This value
must be in the form hostname:port.

httpProxyLocation

4758 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

SSL Protocol
(if using SSL)

No Yes TLS This property type is Enumerate. The SSL protocol to
use when making an HTTPS request. Valid values
are:

SSL This option attempts to connect by using the
SSLv3 protocol first, but the handshake can
fall back to the SSLv2 protocol where the
SSLv2 protocol is supported by the
underlying JSSE provider.

SSLv3 This option attempts to connect with the
SSLv3 protocol only. The handshake cannot
fall back to SSLv2.

TLS The default. This option attempts to connect
with the TLS protocol only. The handshake
cannot fall back to SSLv3 or SSLv2.

TLSv1 This option attempts to connect with the
TLS v1.0 protocol only. Fallback to SSLv3 or
SSLv2 is not allowed.

TLSv1.1
This option attempts to connect with the
TLS v1.1 protocol only. Fallback to SSLv3,
SSLv2, or TLSv1.0 is not allowed.

TLSv1.2
This option attempts to connect with the
TLS v1.2 protocol only. Fallback to SSLv3,
SSLv2, TLSv1.0, or TLSv1.1 is not allowed.

SSL_TLS
This option enables all SSL v3.0 and TLS
v1.0 protocols. Fallback to SSLv2 is not
allowed.

SSL_TLSv2
This option enables all SSL v3.0 and TLS
v1.0, v1.1, and v1.2 protocols. Fallback to
SSLv2 is not allowed.

Both ends of an SSL connection must use the same
protocol. The protocol must be one that the remote
server can accept.

sslProtocol

Allowed SSL
ciphers (if
using SSL)

No Yes Empty This property type is String. A comma-separated list
of ciphers to use when making an SSL request. This
setting enables you to specify a single cipher (such as
SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA), or a
list of ciphers that are the only ones used by the
connection. This list of ciphers must include one or
more that are accepted by the remote server. The
default value is an empty string, which allows the
node to use any, or all, of the available ciphers
during the SSL connection handshake. This method
enables the greatest scope for making a successful
SSL connection.

allowedSSLCiphers

Chapter 14. Reference 4759

||
|
|
|
|

||
|
|

||
|
|

||
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

Property M C Default Description mqsiapplybaroverride
command property

Use
compression

No No None This property controls whether the content of the
HTTP request is compressed. Valid values are none,
gzip, zlib (deflate) and deflate. If the request is
compressed, the Content-Encoding header is set to
indicate that the content is compressed.

zlib (deflate) represents RFC 1950 + RFC 1951
combined.

deflate represents RFC 1951 only.

requestCompressionType

Accept
compressed
responses by
default

No Yes Cleared This property indicates whether the request accepts
compressed responses. If this option is selected, it is
possible for the request to receive responses with a
Content-Encoding of gzip or deflate. If such a
response is received the content is decoded and the
Content-Encoding header is removed.

If the Request Header does not contain an
Accept-Encoding header then selecting this option
sets the Accept-Encoding header to "gzip, deflate".

acceptCompressedResponses

Enable SSL
certificate
hostname
checking

No Yes No This property specifies if the host name of the server
that is receiving the request must match the host
name in the SSL certificate.

hostnameChecking

The SOAPAsyncRequest node JMS Transport properties are described in the
following table. These settings are used only when the node uses JMS transport.

Property M C Default Description mqsiapplybaroverride
command property

Destination Yes Yes None The destination to which the node sends
outgoing messages. If the SOAPAsyncRequest
node is to be used to send point-to-point
messages, enter the Destination queue name
for the JMS queue name that is listed in the
bindings file.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Destination is set to the
value of destinationName found in the WSDL
if a W3C-style URI is found, or destination if
an IBM-style URI is found.

jmsDestination

4760 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Reply To
Destination

Yes Yes None The name of the JMS destination to which the
receiving application must send a reply
message. For a reply message to be returned
to this JMS destination, the JMS destination
name must be known to the domain of the
JMS provider that is used by the receiving
client.

If the Get Response By Correl ID property is
cleared, this queue uniquely identifies
messages destined for the paired
SOAPAsyncResponse node. If the Get
Response By Correl ID property is checked,
this queue can then be shared between
multiple nodes.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Reply To Destination is
set to the value of replyToName found in the
WSDL if a W3C-style URI is found, or to the
first of replyToName, replyTo,
replyToDestination, or replyDestination if
an IBM-style URI is found. If any of these
other properties are present, they display as a
name-value pair in the User Parameters table.

jmsReplyToDestination

JMS provider
name

Yes No WebSphere
MQ

Select a JMS vendor name from the list, or
enter a name of your choice. The name must
match the name of a configurable service that
is defined for the broker to which you deploy
the message flow.

When you select a name from the list, the
Initial context factory property is updated
automatically with the relevant Java class. If
you enter your own JMS provider name, you
must also enter a value for the Initial
context factory.

Chapter 14. Reference 4761

Property M C Default Description mqsiapplybaroverride
command property

Initial context
factory

Yes Yes com.sun.jndi.fscontext.
RefFSContextFactory

The starting point for a JNDI namespace.

A JMS application uses the initial context to
obtain and look up the connection factory and
queue or topic objects for the JMS provider. If
you select a JMS provider name from the list
in JMS provider name, the Initial context
factory property is updated automatically
with the relevant Java class. If you enter your
own JMS provider name, you must also enter
a value for the Initial context factory. The
default value is
com.sun.jndi.fscontext.RefFSContextFactory,
which defines the file-based Initial context
factory for the WebSphere MQ JMS provider.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Initial context factory
is set to the value of
jndiInitialContextFactory found in the
WSDL if a W3C-style URI is found, or
initialContextFactory if an IBM-style URI is
found.

initialContextFactory

4762 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

JNDI URL
bindings location

Yes Yes The system path or the LDAP location for the
bindings file. The bindings file contains
definitions for the JNDI administered objects
that are used by the SOAPAsyncRequest node.

This property is disabled when the Initial
context factory is com.ibm.mq.jms.Nojndi.

When you enter a value for JNDI URL
bindings location, ensure that it complies
with the following instructions:
v Construct the bindings file before you

deploy a message flow that contains a
SOAPAsyncRequest node.

v Do not include the file name of the bindings
file in this field.

v If you have specified an LDAP location that
requires authentication, configure the LDAP
principal (userid) and LDAP credentials
(password) separately. These values are
configured at broker level. For information
about configuring these values, see
“mqsicreatebroker command” on page 3831
and “mqsichangebroker command” on page
3723.

v The string value must include a supported
URL prefix that has a URL handler that is
available on the class path.

For information about constructing the JNDI
administered objects bindings file, see the JMS
provider documentation.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. JNDI URL bindings
location is set to the value of jndiURL found
in the WSDL if a W3C-style URI is found, or
jndiProviderURL if an IBM-style URI is found.

locationJndiBindings

Chapter 14. Reference 4763

Property M C Default Description mqsiapplybaroverride
command property

Connection
factory name

Yes Yes The name of the connection factory that is
used by the SOAPAsyncRequest node to
create a connection to the JMS provider. This
property is initially configured from the
imported WSDL. This name must exist in the
bindings file. The Connection factory name
must be a JMS QueueConnectionFactory.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Connection factory name
is set to the value of
jndiConnectionFactoryName found in the
WSDL if a W3C-style URI is found, or
connectionFactory if an IBM-style URI is
found.

connectionFactoryName

User Parameters No No This table describes user properties that will
be sent in the requestURI property of the
outgoing request message. The properties are
name-value pairs that exist in the WSDL and
are not used by other properties of the
SOAPAsyncRequest node.

JNDI parameters No No A table mapping JNDI context parameters to
their type.

These properties take their initial values from
any W3C-style WSDL properties starting with
jndi-. IBM-style WSDL does not support JNDI
parameters, but you can set these properties
on the node.

Get Response By
Correl ID

No Yes Cleared If this property is checked, the
SOAPAsyncRequest node sends the request
message with the Correl ID specified in the
Unique identifier property, and the
SOAPAsyncResponse node receives only
response messages that match that Correl ID.
This allows a single Reply To Destination
queue to be shared between several pairs of
SOAPAsyncRequest and SOAPAsyncResponse
nodes, if this property is checked for all those
nodes.

This functionality works only with web
service providers that support reading the
Correl ID from the request message and using
it as the Correl ID in the response message.

Backout
destination

No Yes The SOAPAsyncResponse node sends
response messages to this destination when
errors prevent the response message flow from
processing the response message. The message
is removed from the reply to destination.

The backout properties are set by the
SOAPAsyncRequest node, but used only by its
paired SOAPAsyncResponse node.

backoutDestination

4764 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Backout threshold No Yes 0 This value controls when a message is put to
the backout destination. For example, if the
value is 3, the JMS provider attempts to
deliver the message to the input destination
three times. After the third attempted delivery,
the message is not rolled back to the reply to
destination and is sent to the Backout
destination.

The backout properties are set by the
SOAPAsyncRequest node, but used only by its
paired SOAPAsyncResponse node.

See “Configuring the backout threshold
property” on page 4770.

The SOAPAsyncRequest node Message Delivery properties are described in the
following table. This sub tab is enabled only if the selected binding in the Basic tab
uses JMS transport.

Property M C Default Description mqsiapplybaroverride
command property

Target Service No No None Used by the SOAPAsyncRequest node when
dispatching the service request.

This property takes its initial value from the
targetService WSDL property.

targetService

Delivery mode No Yes Persistent This property controls the persistence mode
that a JMS provider uses for a message. Valid
values are:

v Persistent: the message survives if the JMS
provider has a system failure.

v Non Persistent: the message is lost if the
JMS provider has a system failure.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Delivery mode is set to the
value of deliveryMode found in the WSDL if a
W3C-style URI is found, or to the first of
deliveryMode or persistence if an IBM-style
URI is found. If both these properties are
present, the second property displays as a
name-value pair in the User Parameters table.

deliveryMode

Chapter 14. Reference 4765

Property M C Default Description mqsiapplybaroverride
command property

Message Priority No Yes 4 This property assigns relative importance to
the message and can be used for message
selection by a receiving web service.

Select a value between 0 (lowest priority) and
9 (highest priority). The default value is 4,
which indicates medium priority. Priorities in
the range 0 - 4 indicate typical delivery.
Priorities in the range 5 - 9 indicate faster
delivery.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Priority is set to the value
of priority found in the WSDL if a W3C-style
URI is found, or to the first of priority or
Priority if an IBM-style URI is found. If both
these properties are present, the second
property displays as a name-value pair in the
User Parameters table.

messagePriority

Message
Expiration (ms)

No Yes 0 This property controls the length of time, in
milliseconds, for which the JMS provider
keeps the output JMS message. The default
value, 0, is used to indicate that the message
must not expire.

This property takes its initial value from the
timeToLive WSDL property.

messageExpiration

Message Type No Yes bytes Select a value from the list to configure the
type of JMS message that is produced by the
SOAPAsyncRequest node. Valid values are
text and bytes.

messageType

The SOAPAsyncRequest node Transactions properties are described in the
following table. This setting does not apply when the node uses HTTP transport.

Property M C Default Description

Transaction
Mode

Yes No AutomaticThis property controls whether the message is output under a JMS transaction.
Valid values are Yes, No, and Automatic.

Select No to output the message using a non-transactional JMS session.

Select Yes to output the message using a transactional JMS session. The JMS
transaction can be either local or global. To use a global transaction, using an XA
JMS session, you must also select the message flow property Coordinated
Transaction in the BAR file properties.

Select Automatic if you want the message transactionality to be inherited from the
Transaction mode setting on the Input node at the start of the flow.

See “Configuring for coordinated JMS transactions” on page 4770.

The SOAPAsyncRequest node Advanced properties are described in the following
table.

4766 WebSphere Message Broker Version 7.0.0.8

SOAP headers that are part of the must understand headers list are incorporated
into the flow rather than causing a SOAP fault. Adding headers to the must
understand headers list stops SOAP faults being generated by SOAP headers.

You do not need to add must understand headers for WS-Addressing and
WS-Security because these are understood if you configure WS Extensions.

The must understand headers list that is configured on this node is applied to the
corresponding SOAPAsyncResponse node when the SOAPAsyncResponse node
receives the reply from the remote server.

Property M C Default Description

WSDL-defined
SOAP response
headers

No No The WSDL-defined SOAP response headers table is read-only, and is
populated based on the SOAP headers defined in the output part of
the selected operations. By default, the check boxes, in the second
column of the table, are cleared for all entries in the WSDL-defined
SOAP response headers table. You must select the relevant check box
to add the header to the must understand headers list.

When the node is configured to act in gateway mode, with no WSDL
required, this table is cleared. The original values of these fields are
restored if the operation mode of the node is changed back to WSDL
mode.

User-defined SOAP
response headers

No No You can add custom headers (headers that are not defined in the
WSDL file) in the User-defined SOAP headers table. Use Add, Edit,
and Delete for this table. You must select the relevant check box, in
the second column of the table, to ensure that the newly added
custom header is added to the must understand headers list.

The SOAPAsyncRequest node WS Extensions properties are described in the
following table.

Property M C DefaultDescription

Use
WS-
Addressing

No No SelectedYou cannot edit this property. This
property indicates that WS-Addressing is
always engaged on the
SOAPAsyncRequest node.

For more details about WS-Addressing
with the SOAPAsyncRequest node, see
“WS-Addressing with the
SOAPAsyncRequest and
SOAPAsyncResponse nodes” on page 1655.

Allow
MTOM

No Yes No This property controls whether MTOM is
enabled for the parser. Valid values are
Yes, No, and Inherit.

For more information about using SOAP
MTOM with the SOAPReply,
SOAPRequest, and SOAPAsyncRequest
nodes; see “Using SOAP MTOM with the
SOAPReply, SOAPRequest, and
SOAPAsyncRequest nodes” on page 1678.
For more information about MTOM, see
“SOAP MTOM” on page 6697.

MTOM support is disabled when the node
is configured to act in gateway mode.

allowMTOM

Chapter 14. Reference 4767

Property M C DefaultDescription

WS-
Security

No No This table and features two columns:

v Alias

v XPath Expression

You can add XPath expressions with an
associated Alias value to the WS-Security
table. The Alias is resolved in a Policy Set
that is created by the administrator. The
Policy Set resolves the Alias to either
encrypt or sign the part of the message
referred to by the XPath Expression. You
can Add, Edit, and Delete in this table.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

LocalEnvironment overrides:
You can dynamically override set values in the local environment in the same way
as setting values in other elements of a message. For a full list of values you can
override in the local environment, see Local environment overrides.

Working with WrittenDestination data:
After the request has been made, the WrittenDestination folder in
LocalEnvironment is updated with the WS-Addressing, compression details (if in
use), and transport details. A WrittenDestination for a SOAPAsyncRequest node
has the following format, with WS-Addressing and Compression present only if it
is used:
WrittenDestination = (

SOAP = (
Request = (

WSA = (
To = ’URI’
ReplyTo = ’http://server:7800/reply’
MessageID = ’id’
Action = ’doAllTheStuff’

)
Transport = (

HTTP = (
WebServiceURL = ’http://server:8080/service’
Compression = (

OriginalSize = 775
CompressedSize = 411

)
)

)
)

)

4768 WebSphere Message Broker Version 7.0.0.8

The following example uses JMS transport:
WrittenDestination = (

SOAP = (
Request = (

WSA = (
To = ’URI’
ReplyTo = ’http://server:7800/reply’
MessageID = ’id’
Action = ’doAllTheStuff’

)
Transport = (

JMS = (
Destination = ’jms:jndi:B2BQUEUEIN’

)
)

)
)

)

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“SOAP tree overview” on page 1611
This tree format allows you to access the key parts of the SOAP message in a
convenient way.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“Using compression with HTTP and SOAP nodes” on page 1597
You can configure HTTP and SOAP nodes to use HTTP compression and
decompression when sending and receiving messages.
Related tasks:
“Configuring authentication with HTTP basic authentication” on page 451
Use a security profile to configure HTTP basic authentication in the HTTPRequest
or SOAPInput nodes.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message

Chapter 14. Reference 4769

Broker Toolkit to create a new message definition from WSDL.
Related reference:
“Configuring the backout threshold property”
You can set the backout threshold property on nodes that use JMS transport to
specify how many attempts are made to deliver the message to the input
destination.
“Configuring for coordinated JMS transactions” on page 4544
Configure your message flow to receive or output messages under coordinated
transactions.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“SOAPAsyncResponse node” on page 4777
Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest
node to construct a pair of message flows that call a Web service asynchronously.
“WS-Addressing with the SOAPAsyncRequest and SOAPAsyncResponse nodes” on
page 1655
The remote Web service must understand WS-Addressing to be able to work with
SOAPAsyncRequest and SOAPAsyncResponse nodes.

Configuring the backout threshold property:

You can set the backout threshold property on nodes that use JMS transport to
specify how many attempts are made to deliver the message to the input
destination.

If the Backout threshold is set to 0 then redelivery is not attempted. If the Backout
threshold is 1 or greater, the message will be redelivered the specified number of
times.

Set the value of Backout threshold depending on the capabilities of the JMS
provider.

If the JMS provider supports JMSXDeliveryCount, you can set the Backout threshold
to any value.

If the JMS provider does not support JMSXDeliveryCount, the Backout threshold
must only be set to 0 or 1. If the JMS provider does not support JMSXDeliveryCount
and the value is set to greater than 1, a redelivered message is repeatedly backed
out and reprocessed, and is never delivered to the backout destination.

Configuring for coordinated JMS transactions:

Configure your message flow to receive or output messages under coordinated
transactions.

When you include a node using JMS transport in a message flow, such as the
JMSInput or SOAPInput node when using JMS transport, the value that you set for
Transaction mode defines whether messages are received under sync point.

4770 WebSphere Message Broker Version 7.0.0.8

v If you set this property to Global, the message is received under external sync
point coordination; that is, within a WebSphere MQ unit of work. Any messages
that are sent later, by an output node in the same instance of the message flow,
are put under sync point, unless the output node overrides this setting explicitly.

v If you set this property to Local, the message is received under the local sync
point control of the node. Any messages that are sent later, by an output node in
the flow, are not put under local sync point, unless an individual output node
specifies that the message must be put under local sync point.

v If you set this property to None, the message is not received under sync point.
Any messages that are sent later, by an output node in the flow, are not put
under sync point, unless an individual output node specifies that the message
must be put under sync point.

To receive messages under external sync point, you must take additional
configuration steps, which need be applied only the first time that a specific node
using JMS transport is deployed to the broker for a particular JMS provider.
v On distributed systems, the external sync point coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction
mode property is set to Global or Yes, and is intended to use globally coordinated
transactions, modify the queue manager .ini file to include extra definitions for
each JMS provider resource manager that participates in globally coordinated
transactions.

– Windows

On Windows:

1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Click Add... .
5. Set the options as follows:

- Set Name to any value.
- On Windows on x86 systems, set the SwitchFile property to

install_dir\bin\JMSSwitch.dll. On Windows on x86-64 systems, set
the SwitchFile property to JMSSwitch.dll.

- Set the XAOpenString property to a string value as follows: Initial
Context,location JNDI,Optional_parms.

- Set the ThreadOfControl property to Thread.
6. On Windows on x86-64 systems only, copy the switch file JMSSwitch32.dll

to the \exits subdirectory in the WebSphere MQ installation directory,
and rename it to JMSSwitch.dll. Copy the switch file JMSSwitch.dll to the
\exits64 subdirectory in the WebSphere MQ installation directory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

– Linux

UNIX

On Linux and UNIX systems, add a stanza to the queue

manager .ini file for each JMS provider.
For example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/ JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

Where:

Chapter 14. Reference 4771

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Name is an installation defined name that identifies a JMS provider resource
manager.

SwitchFile
is the file system path to the JMSSwitch library that is supplied in the
bin directory of the broker.

XAOpenString can have the following values:
– Initial Context is the value that is set in the JMSInput node property Initial

context factory.
– location JNDI is the value that is set in the JMSInput node property Location

JNDI bindings. This value must include a supported URL prefix that has a
URL handler that is available on the class path.

The following parameters are optional:
– LDAP Principal matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– LDAP Credentials matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– Recovery Connection Factory Name is the JNDI administered connection

factory that is defined in the bindings file. If a value is not specified, you
must add a default value for recoverXAQCF to the bindings file. In either case,
the Recovery Connection Factory must be defined as an XA Queue
Connection Factory for the JMS provider that is associated with the Initial
context factory.

The optional parameters are comma-separated and are positional. Therefore, any
parameters that are missing must be represented by a comma. For example:
com.sun.jndi.fscontext.RefFSContextFactory,file:/C:/webservices/SOAP/JMS/JNDIXA,,,QCF

1. Update the Java CLASSPATH environment variable for the queue manager
of the broker to include a reference to xarecovery.jar; for example:
install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the queue manager of the
broker to point to the bin directory in which the SwitchFile is located; for
example:
install_dir/bin

Finally, ensure that you have taken the following configuration steps:
– In the message flow, ensure that the coordinated property is enabled by using

the WebSphere Message Broker Archive editor.
– Ensure that each node that must be part of the XA transaction is set to the

global transaction mode.
– Ensure that the service ID that is used for the broker and the queue manager

is the same user ID.
– Ensure that the JNDI connection factory objects that the JMS nodes use for a

global transaction are configured to be of the type MQXAConnectionFactory,
MQXAQueueConnectionFactory, or MQXATopicConnectionFactory.
- If you create the bindings using WebSphere Message Broker Explorer,

ensure the Support XA Transactions option is checked when you define
your connection factory.

- If you create the bindings using JMSAdmin, use the command DEF XAQCF or
DEF XATCF, instead of DEF QCF or DEF TCF, when you define your connection
factory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

4772 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

v z/OS On z/OS, the external sync point manager is Resource Recovery
Services (RRS). The only JMS provider that is supported on z/OS is WebSphere
MQ JMS. The only transport option that is supported for WebSphere MQ JMS on
z/OS is the bind option.
Sync point control for the JMS provider is managed with RRS sync point
coordination of the queue manager of the broker. You do not have to modify the
.ini file.

Local environment overrides for the SOAPAsyncRequest node:

You can dynamically override values in the local environment in the same way as
setting values in other elements of a message. These local environment overrides
are used only by the SOAPAsyncRequest node and not by the
SOAPAsyncResponse node.

This topic contains the following sections:
v “Local environment overrides for the SOAPAsyncRequest node”
v “LocalEnvironment overrides for HTTP transport”
v “Local environment overrides for JMS transport” on page 4774

Local environment overrides for the SOAPAsyncRequest node:
You can set the following properties under
LocalEnvironment.Destination.SOAP.Request:

Setting Description

TransportType Overrides the Transport property on the node to switch transport. For example, if the node is
configured to use the JMS transport, use the following to switch to HTTP transport:

SET OutputLocalEnvironment.Destination.SOAP.Request.TransportType = ’http’;

To switch to JMS transport:

SET OutputLocalEnvironment.Destination.SOAP.Request.TransportType = ’jms’;

This overrides only the request transport for this message. The response transport is not
changed from the property set on the SOAPAsyncResponse node.

Operation Overrides the Operation property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Operation = ’myOperation’;

UserContext You can store context data in the following location in the local environment. The
SOAPAsyncResponse node can later retrieve this data.

SET OutputLocalEnvironment.Destination.SOAP.Request.UserContext = ’myData’;

LocalEnvironment overrides for HTTP transport:
You can set the following properties under
LocalEnvironment.Destination.SOAP.Request.Transport.HTTP. These properties
apply only when using HTTP transport.

You can switch between HTTP and JMS transport using the TransportType
override, or the WS-Addressing To field; see “WS-Addressing information in the
local environment” on page 1656.

Setting Description

WebServiceURL Overrides the Web service URL property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.WebServiceURL =
’http://ibm.com/abc/’;

Chapter 14. Reference 4773

Setting Description

RequestURI Overrides the RequestURI, which is the path after the URL and port. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.RequestURI =
’/abc/def?x=y&g=h’;

Timeout Overrides the Request timeout (in seconds) property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Timeout = 42;

This is the time that the node waits to receive the HTTP 202 acknowledgment, rather than
the time to wait for the associated Web service response.

ProxyURL Overrides the HTTP(S) proxy location property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.ProxyURL =
’my.proxy’;

SSLProtocol Overrides the SSLProtocol property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.SSLProtocol =
’TLS’;

Valid values are: SSL, SSLv3, and TLS.

SSLCiphers Overrides the Allowed SSL Ciphers (if using SSL) property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.SSLCiphers =
’SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA’;

HTTPVersion Overrides the HTTPVersion. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.HTTPVersion =
’HTTP/1.1’;

Method Overrides the Method. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Method = ’GET’;

ProxyConnectHeaders Specifies additional headers that are used if the outbound request is an SSL connection
through a proxy. These additional headers are sent with the initial CONNECT request to
the proxy. For example, you can send proxy authentication information to a proxy server
when you are using SSL. You can send multiple headers but each one must be separated
by a carriage return and a line feed (ASCII 0x0D 0x0A), in accordance with RFC2616; for
example:

DECLARE CRLF CHAR CAST(X’0D0A’ AS CHAR CCSID 1208);
SET OutputLocalEnvironment.Destination.HTTP.ProxyConnectHeaders =
’Proxy-Authorization: Basic Zm5lcmJsZTpwYXNzd29yZA==’ || CRLF ||
’Proxy-Connection: Keep-Alive’ || CRLF;

This setting is used only if the request is an SSL request through a proxy server. To send
proxy authentication information for a non-SSL request, specify the individual headers in
the HTTPRequestHeader folder, as shown in the following example:

SET OutputRoot.HTTPRequestHeader."Proxy-Authorization" =
’Basic Zm5lcmJsZTpwYXNzd29yZA==’;
SET OutputRoot.HTTPRequestHeader."Proxy-Connection" = ’Keep-Alive’;

Compression Overrides the Use compression property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Compression =
’gzip’;

Local environment overrides for JMS transport:
You can set the following JMS properties in the SOAPAsyncRequest node under
LocalEnvironment.Destination.SOAP.Request.Transport.JMS. These properties
apply only when using JMS transport.

4774 WebSphere Message Broker Version 7.0.0.8

You can switch between HTTP and JMS transport using the TransportType
override, or the WS-Addressing To field; see “WS-Addressing information in the
local environment” on page 1656.

Some JMS local environment overrides for the SOAPAsyncRequest node have
equivalent properties in the JMSTransport header. If you specify a local
environment override, it takes precedence over any equivalent property set in the
JMSTransport header.

Setting Description

CorrelationID Sets the request message CorrelID. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.CorrelationID =
’myCorrelID’;

DeliveryMode Overrides the DeliveryMode property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.DeliveryMode =
’NON_PERSISTENT’;

Allowed values for this property are PERSISTENT and NON_PERSISTENT. If the UriFormat is ibm,
1 and 0 are additional allowed values for DeliveryMode.

Destination Overrides the Destination property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.Destination =
’REPLYTOQ2’;

DestinationURI You can override multiple JMS properties at the same time in the local environment using
the DestinationURI setting. Properties that you set in this way can be overridden by setting
local environment overrides for individual JMS properties as shown in the following tables.

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.DestinationURI =
’jms:jndi:INPUTQ1?jndiConnectionFactoryName=QCF&
replyToName=REPLYTOQ2&
jndiInitialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory&
jndiURL=file:/C:/Webservices/SOAP/JMS/JNDI&
userParam1=value1&
userParam2=value2&
timeToLive=30000’;

This local environment override can be set with either a W3C-style or IBM-style URI format.
For more information, see “WSDL URI formats for JMS” on page 1668.

Expiration Overrides the Expiration property on the node. This property is specified in milliseconds.
For example, to set an expiration of 100 milliseconds:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.Expiration =
’100’;

MessagePriority Overrides the MessagePriority property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.MessagePriority =
’7’;

MessageType Overrides the MessageType property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.MessageType =
’text’;

Allowed values for this property are textand bytes.

ProviderName Overrides the JMS provider name property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.ProviderName =
’WebSphere MQ’;

TargetService Overrides the TargetService property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.TargetService =
’testService’;

Chapter 14. Reference 4775

Setting Description

TransactionMode Overrides the Transaction mode property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.TransactionMode = ’Yes’;

Allowable values for this property are Yes, No and ForceLocal.

v No means that no transaction takes place, and is equivalent to None.

v Yes means that a local transaction takes place if the flow's Coordinated Transaction is not
selected, or a global transaction takes place if the flow's Coordinated Transaction property
is selected.

v ForceLocal means that a local transaction is always used, even if the flow's Coordinated
Transaction property is selected.

UriFormat Overrides the UriFormat property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.UriFormat =
’w3c’;

Allowable values for this property are w3c and ibm.

Local environment overrides for JNDI

You can set the following JMS properties in the SOAPAsyncRequest node under
LocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI. These
properties apply only when using JMS transport.

Setting Description

BindingsLocation Overrides the JNDI URL bindings location property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.BindingsLocation =
’file:/C:/Webservices/SOAP/JMS/JNDI’;

ConnectionFactoryNameOverrides the Connection factory name property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.ConnectionFactoryName =
’QCF’;

ContextParameters Specify JNDI context parameters in addition to the JNDI context parameters defined on the
node. You can define specific JNDI context parameters, for example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.ContextParameters.property1 =
’value1’;
SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.ContextParameters.property2 =
’value2’;

InitialContextFactory Overrides the Initial context factory property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.InitialContextFactory =
’com.sun.jndi.fscontext.RefFSContextFactory’;

UserProperties Specify user context parameters in addition to the user context parameters defined on the
node. You can define specific user context parameters, for example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.UserProperties.property1 =
’value1’;
SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.UserProperties.property2 =
’value2’;

Local environment overrides for WS-Addressing ReplyTo

You can set the following JMS WS-Addressing ReplyTo properties in the
SOAPAsyncRequest node under

4776 WebSphere Message Broker Version 7.0.0.8

LocalEnvironment.Destination.SOAP.Request.Transport.JMS.AsyncReply. Set these
properties if you want to override how the remote server locates the JNDI
definitions for the response queue.

These properties apply only when using JMS transport. You can switch between
HTTP and JMS transport using the TransportType override, or the WS-Addressing
To field; see “WS-Addressing information in the local environment” on page 1656.

Setting Description

BindingsLocation Overrides the BindingsLocation property in the WS-Addressing ReplyTo.

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.AsyncReply.JNDI.BindingsLocation =
’file:/C:/webservices/SOAP/JMS/JNDI’;

ConnectionFactoryNameOverrides the ConnectionFactoryName property in the WS-Addressing ReplyTo.

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.AsyncReply.JNDI.ConnectionFactoryName =
’QCF’;

ContextParameters Specify JNDI context parameters in the WS-Addressing ReplyTo. You can define specific
JNDI context parameters, for example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.AsyncReply.JNDI.ContextParameters.property1 =
’value1’;
SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.AsyncReply.JNDI.ContextParameters.property2 =
’value2’;

InitialContextFactory Overrides the InitialContextFactory property in the WS-Addressing ReplyTo.

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.AsyncReply.JNDI.InitialContextFactory =
’com.sun.jndi.fscontext.RefFSContextFactory’;

Setting Description

OneWay Instructs the node that the inbound message was a one-way message and that no reply
message is needed. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Gateway.OneWay = True

If the inbound message used HTTP transport, the node sends an acknowledgment HTTP 202
message. If the inbound message used JMS transport, no response is expected. The outbound
message has no reply-to queue, and the node does not wait for a response.

For more information, see “One-way messages in Gateway mode” on page 1648.

SOAPAsyncResponse node
Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest
node to construct a pair of message flows that call a Web service asynchronously.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4778
v “Terminals and properties” on page 4779
v “LocalEnvironment overrides” on page 4782

Purpose:
The SOAPAsyncRequest node sends a Web service request, but the node does not
wait for the associated Web service response to be received. However, the
SOAPAsyncRequest node does wait for the HTTP 202 acknowledgment before
continuing with the message flow, and the SOAPAsyncRequest node blocks if the
acknowledgment is not received. The Web service response is received by the
SOAPAsyncResponse node, which can be in a separate message flow. The nodes

Chapter 14. Reference 4777

are used as a pair, and correlate responses against the original requests.

The SOAP parser invokes the XMLNSC parser to parse the XML content of the
SOAP Web service, and to validate the XML body of the SOAP Web service. The
SOAP parser options are passed through to the XMLNSC parser. For more
information, see “Manipulating messages in the XMLNSC domain” on page 2546.

The SOAPAsyncResponse node is contained in the Web Services drawer of the
palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Using this node in a message flow:
Configuration of the SOAPAsyncResponse node is not WSDL-driven, although the
'must understand headers' list configured on the corresponding
SOAPAsyncRequest node is applicable to the SOAPAsyncResponse node.

Most configuration options for this node are set on its paired SOAPAsyncRequest
node, including the Backout destination and Backout threshold properties. No
SOAP fault is sent when the backout threshold is reached.

You can retrieve context data that has been stored by the SOAPAsyncRequest node
from the following location in the local environment:
LocalEnvironment.SOAP.Response.UserContext

The following sample demonstrates how to use the asynchronous SOAP nodes
when you call a Web service. The Web service simulates an order service, and the
client shows how existing WebSphere MQ interfaces can be extended to make Web
service requests.
v Asynchronous Consumer

some
message

some
response

WSDLInput

Output

SOAP
Async

Request

SOAP
Async

Response

External
Web service

4778 WebSphere Message Broker Version 7.0.0.8

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

The SOAPAsyncResponse node can receive a response that has a Content-Encoding
of gzip or deflate. When such a response is received, the content is decoded and
the Content-Encoding header is removed.

Terminals and properties:
When you have put an instance of the SOAPAsyncResponse node into a message
flow, you can configure it; see . The properties of the node are displayed in the
Properties view. All mandatory properties for which you must enter a value (those
that do not have a default value defined) are marked with an asterisk.

The SOAPAsyncResponse node terminals are described in the following table.

Terminal Description

Failure The output terminal to which an asynchronous SOAP response message is routed if a failure is detected
when the message received is propagated to the Out flow (such as a message validation failure).

Out The output terminal to which the asynchronous SOAP response message is routed if it has been
successfully received, and if further processing is required in this message flow. If no errors occur in the
node, a valid none fault SOAP response message received from an external resource is always sent to
the Out terminal first.

Fault The output terminal to which an asynchronous SOAP fault response is routed if it has been successfully
received, and if further processing of the fault is required in this message flow.

Catch The output terminal to which the message is routed if an exception is thrown downstream and caught
by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The SOAPAsyncResponse node Description properties are described in the
following table.

Property M C Default Description

Node name No No The node type:
SOAPAsyncResponse

The name of the node.

Short
description

No No None A brief description of the node.

Long
description

No No None Text that describes the purpose of the node in the message
flow.

The SOAPAsyncResponse node Basic properties are described in the following
table.

Property M C Default Description mqsiapplybaroverride
command property

Unique
identifier

Yes No Specify the unique URL fragment that is common to your
pair of SOAPAsyncRequest and SOAPAsyncResponse nodes.

asyncRequestCorrelator

Chapter 14. Reference 4779

The SOAPAsyncResponse node Transactions property is described in the following
table. This setting does not apply when the node uses HTTP transport.

Property M C Default Description

Transaction
mode

Yes No No This property controls whether the message is received under a JMS
transaction. Valid values are Yes and No.

Select No to receive the message using a non-transactional JMS session.

Select Yes to receive the message using a transactional JMS session. The JMS
transaction can be either local or global. To use a global transaction, using
an XA JMS session, you must also select the message flow property
Coordinated Transaction in the BAR file properties.

See “Configuring for coordinated JMS transactions” on page 4784.

The SOAPAsyncResponse node Advanced property is described in the following
table.

Property M C Default Description

Set destination
list

No No Selected This property indicates whether to add the incoming SOAP operation to
the route to label destination list.

Label prefix No No Use this property to add a prefix to the SOAP Operation name in the
destination list. You must add a Label prefix if you want to use multiple
SOAPAsyncResponse nodes in the same message flow without causing
their corresponding Label nodes to clash. By default, the prefix is an
empty string so that the operation name and the label name are identical.
This property is not available if the Set destination list property is
cleared.

Place
WS-Addressing
headers into
LocalEnvironment

No No Cleared This property specifies whether the node puts WS-Addressing headers
from the response message into the local environment tree.
WS-Addressing headers are not accessible to the flow if this check box is
cleared because by default, all headers are processed and removed.

The SOAPAsyncResponse node Instances properties are described in the following
table.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are
obtained.
v If you select Use Pool Associated with Message

Flow, additional instances are obtained from the
message flow value.

v If you select Use Pool Associated with Node,
additional instances are allocated from the node's
additional instances based on the number specified
in the Additional instances property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node can
start if the Additional instances pool property is set
to Use Pool Associated with Node. By default, no
additional instances are given to the node.

additionalInstances

4780 WebSphere Message Broker Version 7.0.0.8

The SOAPAsyncResponse node Response Message Parsing properties are described
in the following table. The SOAPAsyncResponse node sets these properties
automatically; you cannot set them yourself.

Property M C Default Description

Message
domain

No No SOAP The domain that is used to parse the response message. By
default, the message that is propagated from the
SOAPAsyncResponse node is in the SOAP domain. You
cannot specify a different domain. For more information, see
“SOAP parser and domain” on page 1082.

The Response Message Parsing properties are ignored when
the paired SOAPAsyncRequest node is configured to act in
gateway mode.

Message
set

Yes No Set automatically from the
WSDL file name property
that is provided by the
SOAPAsyncRequest node.

The name of the message set in which the response message
is defined. Message set is set automatically to the message
set that contains the WSDL file that is configured on the
corresponding SOAPAsyncRequest node.

If you set this property, and then subsequently update the
project dependencies to remove this message set reference, a
warning is issued. Either update the Message set property, or
restore the reference to this message set project.

The Response Message Parsing properties are ignored when
the paired SOAPAsyncRequest node is configured to act in
gateway mode.

Message
type

No No The name of the response message. The node detects the
message type automatically. You cannot set this property.

Message
format

No No The name of the physical format of the response message.
You cannot set this property.

The SOAPAsyncResponse node Parser Options properties are described in the
following table. The properties are passed through to the XMLNSC parser.

Property M C Default Description

Parse timing No No On Demand This property controls when a response message is parsed. Valid values
are On Demand, Immediate, and Complete.

By default, parse timing is set to On demand, which causes parsing of the
input message to be delayed. For a full description of this property, see
“Parsing on demand” on page 4173.

Build tree
using XML
schema data
types

No No Selected This property controls whether the XMLNSC parser creates syntax
elements in the message tree with data types taken from the XML
Schema.

This property is ignored when the paired SOAPAsyncRequest node is
configured to act in gateway mode.

Retain mixed
content

No No Cleared This property controls whether the XMLNSC parser creates elements in
the message tree when it encounters mixed text in a response message. If
you select the check box, elements are created for mixed text. If you clear
the check box, mixed text is ignored and no elements are created.

Retain
comments

No No Cleared This property controls whether the XMLNSC parser creates elements in
the message tree when it encounters comments in an response message.
If you select the check box, elements are created for comments. If you
clear the check box, comments are ignored and no elements are created.

Chapter 14. Reference 4781

Property M C Default Description

Retain
processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates elements in
the message tree when it encounters processing instructions in a response
message. If you select the check box, elements are created for processing
instructions. If you clear the check box, processing instructions are
ignored and no elements are created.

Opaque
elements

No No Blank This property is used to specify a list of elements in the response
message that are to be opaquely parsed by the XMLNSC parser. Opaque
parsing is performed only if validation is not enabled (that is, if Validate
is None); entries that are specified in Opaque Elements are ignored if
validation is enabled.

The SOAPAsyncResponse node Validation properties are described in the following
table. By default, validation is enabled.

If a message is propagated to the Failure terminal of the node, it is not validated.
For more details, see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Content
and value

This property controls whether validation takes place.
Valid values are None, Content and value, and Content.

Validation properties are ignored when the paired
SOAPAsyncRequest node is configured to act in
gateway mode.

validateMaster

Failure
action

No No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and value. Valid values are User
trace, Exception list, Local error log, and
Exception.

Validation properties are ignored when the paired
SOAPAsyncRequest node is configured to act in
gateway mode.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

LocalEnvironment overrides:
You can retrieve information that was set by the paired SOAPAsyncRequest node
from the following property under LocalEnvironment.Destination.SOAP.Response :

4782 WebSphere Message Broker Version 7.0.0.8

Setting Description

UserContext You can retrieve context data that was stored by the SOAPAsyncRequest node from the
following location in the local environment:

SET myVar = InputLocalEnvironment.Destination.SOAP.Response.UserContext;

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Configuring for coordinated JMS transactions” on page 4544
Configure your message flow to receive or output messages under coordinated
transactions.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.

Chapter 14. Reference 4783

“WS-Addressing with the SOAPAsyncRequest and SOAPAsyncResponse nodes” on
page 1655
The remote Web service must understand WS-Addressing to be able to work with
SOAPAsyncRequest and SOAPAsyncResponse nodes.

Configuring for coordinated JMS transactions:

Configure your message flow to receive or output messages under coordinated
transactions.

When you include a node using JMS transport in a message flow, such as the
JMSInput or SOAPInput node when using JMS transport, the value that you set for
Transaction mode defines whether messages are received under sync point.
v If you set this property to Global, the message is received under external sync

point coordination; that is, within a WebSphere MQ unit of work. Any messages
that are sent later, by an output node in the same instance of the message flow,
are put under sync point, unless the output node overrides this setting explicitly.

v If you set this property to Local, the message is received under the local sync
point control of the node. Any messages that are sent later, by an output node in
the flow, are not put under local sync point, unless an individual output node
specifies that the message must be put under local sync point.

v If you set this property to None, the message is not received under sync point.
Any messages that are sent later, by an output node in the flow, are not put
under sync point, unless an individual output node specifies that the message
must be put under sync point.

To receive messages under external sync point, you must take additional
configuration steps, which need be applied only the first time that a specific node
using JMS transport is deployed to the broker for a particular JMS provider.
v On distributed systems, the external sync point coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction
mode property is set to Global or Yes, and is intended to use globally coordinated
transactions, modify the queue manager .ini file to include extra definitions for
each JMS provider resource manager that participates in globally coordinated
transactions.

– Windows

On Windows:

1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Click Add... .
5. Set the options as follows:

- Set Name to any value.
- On Windows on x86 systems, set the SwitchFile property to

install_dir\bin\JMSSwitch.dll. On Windows on x86-64 systems, set
the SwitchFile property to JMSSwitch.dll.

- Set the XAOpenString property to a string value as follows: Initial
Context,location JNDI,Optional_parms.

- Set the ThreadOfControl property to Thread.
6. On Windows on x86-64 systems only, copy the switch file JMSSwitch32.dll

to the \exits subdirectory in the WebSphere MQ installation directory,
and rename it to JMSSwitch.dll. Copy the switch file JMSSwitch.dll to the
\exits64 subdirectory in the WebSphere MQ installation directory.

4784 WebSphere Message Broker Version 7.0.0.8

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

– Linux

UNIX

On Linux and UNIX systems, add a stanza to the queue

manager .ini file for each JMS provider.
For example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/ JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

Where:

Name is an installation defined name that identifies a JMS provider resource
manager.

SwitchFile
is the file system path to the JMSSwitch library that is supplied in the
bin directory of the broker.

XAOpenString can have the following values:
– Initial Context is the value that is set in the JMSInput node property Initial

context factory.
– location JNDI is the value that is set in the JMSInput node property Location

JNDI bindings. This value must include a supported URL prefix that has a
URL handler that is available on the class path.

The following parameters are optional:
– LDAP Principal matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– LDAP Credentials matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– Recovery Connection Factory Name is the JNDI administered connection

factory that is defined in the bindings file. If a value is not specified, you
must add a default value for recoverXAQCF to the bindings file. In either case,
the Recovery Connection Factory must be defined as an XA Queue
Connection Factory for the JMS provider that is associated with the Initial
context factory.

The optional parameters are comma-separated and are positional. Therefore, any
parameters that are missing must be represented by a comma. For example:
com.sun.jndi.fscontext.RefFSContextFactory,file:/C:/webservices/SOAP/JMS/JNDIXA,,,QCF

1. Update the Java CLASSPATH environment variable for the queue manager
of the broker to include a reference to xarecovery.jar; for example:
install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the queue manager of the
broker to point to the bin directory in which the SwitchFile is located; for
example:
install_dir/bin

Finally, ensure that you have taken the following configuration steps:
– In the message flow, ensure that the coordinated property is enabled by using

the WebSphere Message Broker Archive editor.
– Ensure that each node that must be part of the XA transaction is set to the

global transaction mode.
– Ensure that the service ID that is used for the broker and the queue manager

is the same user ID.

Chapter 14. Reference 4785

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

– Ensure that the JNDI connection factory objects that the JMS nodes use for a
global transaction are configured to be of the type MQXAConnectionFactory,
MQXAQueueConnectionFactory, or MQXATopicConnectionFactory.
- If you create the bindings using WebSphere Message Broker Explorer,

ensure the Support XA Transactions option is checked when you define
your connection factory.

- If you create the bindings using JMSAdmin, use the command DEF XAQCF or
DEF XATCF, instead of DEF QCF or DEF TCF, when you define your connection
factory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

v z/OS On z/OS, the external sync point manager is Resource Recovery
Services (RRS). The only JMS provider that is supported on z/OS is WebSphere
MQ JMS. The only transport option that is supported for WebSphere MQ JMS on
z/OS is the bind option.
Sync point control for the JMS provider is managed with RRS sync point
coordination of the queue manager of the broker. You do not have to modify the
.ini file.

SOAPEnvelope node
Use the SOAPEnvelope node to add a SOAP envelope onto an existing message.
This node is designed to be used with the SOAPExtract node.

This topic contains the following sections:
v “Purpose”
v “Using the SOAPEnvelope node in a message flow”
v “Configuring the SOAPEnvelope node”
v Supported parsers
v “Example SOAP messages” on page 4787
v “Terminals and properties” on page 4788

Purpose:
The default behavior of the SOAPEnvelope node is to attach the SOAP envelope
from a standard location ($LocalEnvironment/SOAP/Envelope) in the local
environment tree; you can specify an explicit location by using an XPath
expression.

You can also use the node in a flow without a corresponding SOAPExtract node;
the node has an option to create a default SOAP envelope.

The SOAPEnvelope node is contained in the Web Services drawer of the palette,
and is represented in the WebSphere Message Broker Toolkit by the following icon:

Using the SOAPEnvelope node in a message flow:
This node is designed to be used in conjunction with the SOAPExtract node; see
“SOAPExtract node” on page 4790.

Configuring the SOAPEnvelope node:
When you have put an instance of the SOAPEnvelope node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view.

4786 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Supported parsers:
This node is designed to work with SOAP messages. Use one of the following
parsers:
v XMLNSC
v MRM
v XMLNS

Other XML parsers are not supported because they do not support namespaces. An
exception is thrown if a message is received which is not using the correct parser
or does not conform to the basic structure of a SOAP message.

Full validation is not done on the SOAP message, which just needs to contain a
body element.

As the SOAP domain is not supported by the SOAPEnvelope node, you cannot
add the envelope extracted by the SOAPExtract node, from the SOAP domain,
back into the message flow again; that is, a flow such as the following example is
not supported:
SOAPInput node-> SOAPExtract node->SOAPEnvelope node

Example SOAP messages:
Incoming SOAP envelope
<?xml version="1.0"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>
<tns:requestHeader>

<tns:assessorUrl>header1</tns:assessorUrl>
</tns:requestHeader>

</soapenv:Header>
</soapenv:Envelope>

Incoming SOAP message body
<?xml version="1.0"?>
<tns:requestAvailability
xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:carDetails>body1</tns:carDetails>
<tns:claimID>body2</tns:claimID>
<tns:location>body3</tns:location>
<tns:reqDate>body4</tns:reqDate>

</tns:requestAvailability>

Outgoing SOAP message
<?xml version="1.0"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>
<tns:requestHeader>

Chapter 14. Reference 4787

<tns:assessorUrl>header1</tns:assessorUrl>
</tns:requestHeader>

</soapenv:Header>
<soapenv:Body>

<tns:requestAvailability>
<tns:carDetails>body1</tns:carDetails>
<tns:claimID>body2</tns:claimID>
<tns:location>body3</tns:location>
<tns:reqDate>body4</tns:reqDate>

</tns:requestAvailability>
</soapenv:Body>

</soapenv:Envelope>

Terminals and properties:
The terminals of the SOAPEnvelope node are described in the following table:

Terminal Description

In The input terminal that accepts a SOAP message for processing by the node.

Out The output terminal that outputs the SOAP message that was constructed from the SOAP
message body and a SOAP envelope.

Failure The output terminal to which the message is routed if a failure is detected during processing.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the SOAPEnvelope node are described in the
following table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the message
flow.

The Basic properties of the SOAPEnvelope node are described in the following
table.

Property M C Default Description

Create new
envelope

No No Cleared This property controls whether the node creates a SOAP
envelope, or gets an existing one from the message tree.
If you select the check box, the node creates a new
envelope. If you clear the check box, the node copies the
envelope from the value entered in the Existing
Envelope Location property.

4788 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Existing
Envelope
Location

No No $LocalEnvironment/
SOAP/Envelope

An XPath expression that represents the location from
which the node will copy the SOAP envelope. The
following correlation names are available:

$Root
The root of the message tree.

$Body
The last child of the root of the message tree
(equivalent to /).

$LocalEnvironment
The root of the local environment tree.

$Environment
The root of the global environment tree.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
Related tasks:

Chapter 14. Reference 4789

Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“SOAPExtract node”
Use the SOAPExtract node to remove SOAP envelopes, allowing just the body of a
SOAP message to be processed. It can also route a SOAP message based on its
operation name. Both functions are optional; they are contained in one node
because they are often used together.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.

SOAPExtract node
Use the SOAPExtract node to remove SOAP envelopes, allowing just the body of a
SOAP message to be processed. It can also route a SOAP message based on its
operation name. Both functions are optional; they are contained in one node
because they are often used together.

This topic contains the following sections:
v “Purpose”
v “Using the SOAPExtract node in a message flow” on page 4791
v “Configuring the SOAPExtract node” on page 4791
v “Supported parsers” on page 4791
v “Terminals and properties” on page 4792
v “Example SOAP messages” on page 4793

Purpose:
The SOAPExtract node can perform two functions:

Extract function
The default behavior is to detach the SOAP envelope to a standard location
($LocalEnvironment/SOAP/Envelope) in the LocalEnvironment tree.
Alternatively, you can specify an explicit location using an XPath expression.
Any existing SOAP envelope at the chosen location is replaced.

Routing function
The SOAP message is routed to a Label node in the message flow as identified
by the SOAP operation in the message. The SOAP Operation is identified in
the SOAP body tag.

Ensure that the message parser options in the properties folder of the outgoing
message are correctly set up to parse the message, by copying the message set and
message format from the incoming message. The message type is derived from the
SOAP envelope message body first child.

Only a single child of the SOAP message body is supported.

4790 WebSphere Message Broker Version 7.0.0.8

The SOAPExtract node is contained in the Web Services drawer of the palette, and
is represented in the workbench by the following icon:

Using the SOAPExtract node in a message flow:
Look at the following sample to see how to use this node:
v SOAP Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the SOAPExtract node:
When you have put an instance of the SOAPExtract node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view.
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab:

a. Specify in Remove envelope whether the node must remove the soap
envelope and place it in the location given in Envelope Destination, or
leave it on the message. The default value is that the node removes the
envelope.

b. In Envelope Destination, enter an XPath expression that represents the
destination to which the node will copy the envelope. By default, the node
copies the envelope to the LocalEnvironment ($LocalEnvironment/SOAP/
Envelope).

c. In Destination path mode, specify the behavior of the Envelope Destination
property.
v Create path: The node creates the tree if the path specifies a location that

does not already exist. Only simple expressions of the form aaa/bbb/ccc
in Envelope Destination are supported. The default.

v XPath location of existing element: If you know that the destination
element exists, you can use any valid XPath 1.0 expression in Envelope
Destination.

d. In Route to 'operation' label, specify whether the node must route the
message to the SOAP operation given in the message. The default setting is
for the node to send the message to the Out terminal.

e. In Label Prefix, enter the value to prefix to the label used for routing by
the node. Entering a prefix allows for name spacing between subflows. By
default, no value is prefixed to the label name used for routing the message.

Supported parsers:
This node is designed to work with SOAP messages. Use one of the following
parsers:
v SOAP
v XMLNSC
v MRM
v XMLNS

Chapter 14. Reference 4791

Other XML parsers are not supported because they do not support namespaces. An
exception is thrown if a message is received which is not using the correct parser
or does not conform to the basic structure of a SOAP message.

Full validation is not done on the SOAP message, which just needs to contain a
body element.

Terminals and properties:
The terminals of the SOAPExtract node are described in the following table:

Terminal Description

In The input terminal that accepts a SOAP message for processing by the node.

Out The output terminal that outputs the SOAP message body (without the envelope if
the Remove envelope check box is selected on the node properties).

Failure The output terminal to which the message is routed if a failure is detected during
processing.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the SOAPExtract node are described in the following
table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The Basic properties of the SOAPExtract node are described in the following table.

Property M C Default Description

Remove
envelope

No No Selected If you select the check box, the node removes the SOAP
header from the message. For a SOAP tree, the node
outputs to the Out terminal the first child of SOAP.body
from the SOAP tree. It outputs to Envelope Destination
the full SOAP tree minus the first child of SOAP.body.

If you clear the check box, the node leaves the envelope
on the message. In the case of a SOAP tree, the full tree
is propagated to the Out terminal.

4792 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Envelope
Destination

No No $LocalEnvironment/
SOAP/Envelope

An XPath expression that represents the destination to
which the node will copy the SOAP envelope. The
following correlation names are available:

$Root
The root of the message tree.

$Body
The last child of the root of the message tree
(equivalent to /).

$LocalEnvironment
The root of the LocalEnvironment tree.

$Environment
The root of the Global Environment tree.

Destination path
mode

No No Create path This determines the behavior of the Envelope
Destination property. Set this property:

Create path
The default. The tree is created if the path specifies a
location that does not exist. Only simple expressions
of the form aaa/bbb/ccc are supported.

XPath location of existing element
If you know that the destination element exists, you
can enter any valid XPath 1.0 expression.

Route to
'operation' label

No No Cleared This property determines whether the node must route
the message to the SOAP operation given in the message.

If you select the check box, the message is routed to a
Label node that matches the SOAP operation. An
exception is thrown if no Label node matches. The name
of the first child element of the SOAP body is used to
determine the RouteToLabel name. For the ‘RPC literal'
and ‘wrapped doc literal' WSDL types, this is the
‘operation' name. For a SOAP tree, the first child of
SOAP.Body supplies the operation name.

If you clear the check box, the node sends the message to
the Out terminal.

Label Prefix No No The value to prefix to the label that the node uses for
routing. Entering a prefix allows for name spacing
between subflows.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Example SOAP messages:

Chapter 14. Reference 4793

Incoming SOAP message
<?xml version="1.0"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>
<tns:requestHeader>

<tns:assessorUrl>header1</tns:assessorUrl>
</tns:requestHeader>
</soapenv:Header>
<soapenv:Body>

<tns:requestAvailability>
<tns:carDetails>body1</tns:carDetails>
<tns:claimID>body2</tns:claimID>
<tns:location>body3</tns:location>
<tns:reqDate>body4</tns:reqDate>

</tns:requestAvailability>
</soapenv:Body>

</soapenv:Envelope>

De-enveloped message

The operation name is requestAvailability. Note that the namespacing is removed
from the operation.
<?xml version="1.0"?>
<tns:requestAvailability
xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:carDetails>body1</tns:carDetails>
<tns:claimID>body2</tns:claimID>
<tns:location>body3</tns:location>
<tns:reqDate>body4</tns:reqDate>

</tns:requestAvailability>

Removed envelope
<?xml version="1.0"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>
<tns:requestHeader>

<tns:assessorUrl>header1</tns:assessorUrl>
</tns:requestHeader>

</soapenv:Header>
</soapenv:Envelope>

Related concepts:
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

4794 WebSphere Message Broker Version 7.0.0.8

input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“SOAPEnvelope node” on page 4786
Use the SOAPEnvelope node to add a SOAP envelope onto an existing message.
This node is designed to be used with the SOAPExtract node.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.

SOAPInput node
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4796
v “Using port numbers when deploying a SOAPInput node to an execution

group” on page 4796
v “Connecting the terminals” on page 4797
v “Terminals and properties” on page 4797

Purpose:
The SOAPInput node is typically used with the SOAPReply node, which can be
included in the same message flow, or a different flow in the same execution
group.

Chapter 14. Reference 4795

You can connect a SOAPReply node to the Out terminal to handle successful
responses. If you also want your message flow to handle reply processing after a
timeout, connect a SOAPReply node to the HTTP Timeout terminal.

You cannot use an HTTPReply node to respond to a Web service request that is
received by a SOAPInput node; the broker raises an exception when the reply is
attempted.

If you choose to handle HTTP messages by using the execution group listener, you
must carefully check the URL specifications in your HTTPInput and SOAPInput
nodes. If both URL specifications match an incoming message, the wrong type of
node might get the message, and processing might fail or produce unexpected
results. This situation occurs if you specify identical values for the Path suffix for
URL properties of the HTTPInput node and the SOAPInput node. It can also occur
if you use wildcards in either or both specifications, and an incoming message
matches both properties.

The SOAPInput node is contained in the Web Services drawer of the message flow
node palette, and is represented in the WebSphere Message Broker Toolkit by the
following icon:

Using this node in a message flow:
The SOAPInput node can be used in a message flow that accepts and processes
SOAP messages. The node is configured using deployable WSDL. Look at the
following sample to see how to use this node:
v SOAP Nodes

A client can send an HTTP GET to the web service endpoint exposed by the
SOAPInput node, suffixed with a query string ?wsdl, and receive a response with
the WSDL definition used to configure the flow; see “Using WSDL to configure
message flows” on page 1664.

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

A client can send a request that has a Content-Encoding of gzip or deflate. When
such a request is received the content is decoded and the Content-Encoding header
is removed.

Using port numbers when deploying a SOAPInput node to an execution group:
When processing HTTP messages, you can use either the broker-wide listener or
execution group (embedded) listeners for your HTTP message flows. See “HTTP
listeners” on page 1589. However, SOAP nodes always use the embedded listener.

Each execution group that contains a SOAPInput node has one listener and two
ports, an HTTP port and an HTTPS port. The default SOAP node port numbers are
7800 for HTTP and 7843 for HTTPS. If you deploy the flow to multiple execution
groups, the port number is incremented by one for each successive deployment.
The message flow that is deployed to the first execution group receives requests on
port 7800 (by default), the next one uses port 7801, and so on, up to the specified

4796 WebSphere Message Broker Version 7.0.0.8

limit of 7842. In this scenario, you typically use an intermediary router that listens
on one port, then distributes the requests across the range of ports that you are
using.

If you do not want the port to be allocated dynamically, you can define a specific
port by using the mqsichangeproperties command. You can also change the
default range of port numbers by using this command.

Connecting the terminals:
The SOAPInput node routes each message that it retrieves successfully to the Out
terminal. If message validation fails, the message is routed to the Failure terminal;
you can connect nodes to this terminal to handle this condition. If you have not
connected the Failure terminal, the message is discarded, the Maximum client wait
time expires, and an error is returned to the client.

If the message is caught by this node after an exception has been thrown further
on in the message flow, the message is routed to the Catch terminal. If you have
not connected the Catch terminal, the message is discarded, the Maximum client
wait time expires, and an error is returned to the client.

If the Maximum client wait time expires, by default, the listener sends a SOAP
fault message to the client, indicating that its timeout has expired. If you have
connected the HTTP Timeout terminal, and you are using the HTTP transport, the
SOAP Fault message is propagated through the HTTP Timeout terminal. You must
include a SOAPReply node in the sequence of nodes connected to the HTTP
Timeout terminal and this node must send a valid SOAP Fault message. The
listener waits again for the interval defined by the Maximum client wait time
(sec) property, or for 10 seconds, whichever is the shorter interval:
v If a response is received before this second interval expires, the listener

propagates the response to the client.
v If a response is not received before this second interval expires, the listener

sends a SOAP fault message to the client, indicating that its timeout has expired.

Because the listener waits for only a brief interval after the message has been
propagated through the HTTP Timeout terminal, you must ensure that the
sequence of nodes that you connect to the HTTP Timeout terminal includes a
SOAPReply node, which sends a response before this interval expires. If you have
connected the HTTP Timeout terminal, but you are not using the HTTP transport,
the message is not propagated through the HTTP Timeout terminal. The listener
sends a SOAP fault message to the client, indicating that its timeout has expired.

Terminals and properties:
The SOAPInput node terminals are described in the following table.

Name Type Description

Failure Output data The output terminal to which a SOAP message is routed if a failure is
detected when the message received is propagated to the Out terminal (such
as a message validation failure).

Out Output data The output terminal to which the SOAP message is routed when it is received
successfully and if further processing is required in this message flow. If no
errors occur in the input node, a valid SOAP message that is received from an
external resource is always sent to the Out terminal first.

Chapter 14. Reference 4797

Name Type Description

HTTPTimeout Output data The output terminal to which a timeout SOAP fault message is routed if the
SOAPReply node that is connected to the Out terminal does not respond
within the time interval specified by the Maximum client wait time property.
This terminal is used only if the message is sent across the HTTP transport,
and WS-RM is not being used.

Catch Output data The output terminal to which the message is routed if an exception is thrown
downstream and is caught by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

Some SOAPInput node properties are initially set from properties in the imported
WSDL. These properties are parsed differently depending on which URI format is
used by the address element in the WSDL. For details, see “WSDL URI formats for
JMS” on page 1668.

The following Retry properties are no longer available on the SOAPInput node:
v Retry mechanism
v Retry threshold
v Short retry interval
v Long retry interval

When a SOAP over HTTP message fails, a SOAP fault is sent back to the client; the
message exchange pattern is complete and no message exists to retry. When a
SOAP over JMS message fails, retry processing is handled according to the backout
properties defined on the JMS Transport tab.

The SOAPInput node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type;
SOAPInput

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the message
flow.

The SOAPInput node Basic properties are described in the following table.

4798 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Operation
mode

Yes Yes Specify WSDL
interface to
expose

This property allows you to specify the operation mode of the
node, which determines whether it acts in WSDL mode or in
gateway mode. In WSDL mode, the node performs operations
according to the WSDL it is configured with. However, gateway
mode allows you to configure your flow to handle generic SOAP
request/response and one-way messages, or to act as a façade
between multiple web services clients and multiple back-end web
services providers.

Specify WSDL interface to expose
Configure the node with a deployable WSDL by setting the
WSDL file name property or by dragging a WSDL onto the
node. This is the default option.

Operate in gateway mode
Configure the node to act in gateway mode with no WSDL
required. See “Gateway operation mode for SOAP nodes”
on page 1645 for a fuller explanation of gateway mode.

WSDL file
name

Yes No None This property indicates the location of the WSDL file that you want
to use to configure the node. Enter the full path to the WSDL file,
or click Browse to locate the WSDL file in your workspace.

When you select a WSDL file for the WSDL file name property, the
WSDL is validated to ensure that it is WS-I compliant. If the WSDL
has a binding using SOAP/JMS which is not WS-I compliant, by
default no error is shown. To enable strict WS-I validation and
display a warning when a SOAP/JMS transport is used, click
Window > Preferences > Broker Development > Message Sets >
Validation and clear the WS-I BP 1.1: Allow SOAP/JMS as
transport URI check box.

Only deployable WSDL files can be used to configure the SOAP
nodes. After a valid WSDL file is selected, the message set project
to which the WSDL file belongs is added as a referenced project to
the corresponding message flow project, if the reference does not
exist.

If the WSDL file is not valid, or an incorrect file name is entered, an
error message is displayed in the Properties view and all WSDL
properties are blank.

If the node was created by dropping a WSDL file from a message
set onto the Message Flow editor, this property is preset to the
name of the WSDL file.

This property takes a string value.

The following situations result in an error condition:
v The WSDL file does not belong to a
v message set project, or the WSDL file was not imported correctly;

for more details, see “Importing from WSDL” on page 2946 and
“Importing WSDL definitions from the command line” on page
2948.

v The WSDL file contains no HTTP or JMS bindings.
v The WSDL file contains no port type.
v The WSDL file that is specified in the field does not exist.

WSDL properties are disabled when the node is configured to act in
gateway mode.

Chapter 14. Reference 4799

Property M C Default Description

Port type Yes No The first Port
type found in
the WSDL file
(that has an
associated HTTP
binding with it).

This property lists all the port types that are defined by the
specified WSDL file. By default, the first port type found in the
WSDL file that has an associated HTTP or JMS binding is selected.
This property takes a string value.

The following situation causes an error condition:

v The selected Port type does not contain at least one operation.

When you save the message flow file, validation of some of the
WSDL-related properties occur to ensure that:
v The WSDL file exists in the message set.
v The selected Port type, Binding operation, and Service port are

all valid in the content of the selected WSDL file.

If one or more of these conditions are not met, an error is
generated, and you cannot add a message flow that contains this
SOAPInput node to a broker archive (BAR) file.

WSDL properties are disabled when the node is configured to act in
gateway mode.

Imported
binding

Yes No The Imported binding property lists the imported SOAP bindings
associated with the selected port type. Only HTTP or JMS transport
is supported. When you select a binding, the property tab for the
associated transport is enabled; otherwise, it is disabled.

Bindings are listed in the order in which they are displayed in the
WSDL file. By default, the first imported binding that implements
the operation, and has an associated service port, is selected. This
property is updated every time the Port type value changes. This
property type is String.

The following situations cause an error condition:

v No imported SOAP bindings (with HTTP or JMS transport) in
the WSDL file are associated with the Port type.

v The selected binding does not have any operations.

WSDL properties are disabled when the node is configured to act in
gateway mode.

Service port Yes No The Service port field lists all the service ports that point to the
selected binding. By default, the first service port for the binding is
selected. This property is updated every time the selected binding
value changes. This property type is String.

The following situation causes an error condition:

v No ports point to the selected binding.

WSDL properties are disabled when the node is configured to act in
gateway mode.

Target
namespace

Yes No This property displays the namespace of the selected WSDL file.
This property type is String.

WSDL properties are disabled when the node is configured to act in
gateway mode.

4800 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Transport No No This property is set automatically when the Imported binding
property is selected. The value of this property shows the transport
used by the selected WSDL binding if one is selected; for example,
HTTP or JMS.

If you choose to switch the transport from JMS to HTTP, a dialog box
displays, which allows you to reset the JMS-specific properties. You
must reset the JMS properties to deploy the message flow to a
runtime environment version prior to fix pack V7.0.0.1.

The SOAPInput node HTTP Transport properties are described in the following
table. These settings are used only when the node uses HTTP transport.

Property M C Default Description mqsiapplybaroverride
command property

Path suffix
for URL

Yes Yes None Path suffix for URL is the HTTP path selector on
which the node accepts inbound messages. This
property is set automatically from the
<soap:address> element of the selected Service
port. Whenever the selected port is updated, URL
Selector is updated accordingly. However, if you
override this value, your value persists, and the
URL is no longer updated from the service port.

If you choose to override this property, you must
specify the [<path>].

If you configure the same HTTP path for nodes in
multiple message flows, an inbound request to that
endpoint might be processed by any of those
message flows. If the message flows are configured
differently, they process the message differently
and so this can lead to unpredictable behavior.

If you require additional resources for a single
HTTP path, you can configure additional instances
instead of creating multiple message flows. For
more information, see “Configurable message flow
properties” on page 4020.

urlSelector

Chapter 14. Reference 4801

Property M C Default Description mqsiapplybaroverride
command property

Use HTTPS No Yes Cleared This property type is Boolean and is configured
automatically from the <soap:address> element of
the selected Service port. If the address contains
an HTTPS URL, the check box is selected;
otherwise it is cleared. However, if you manually
override this property value, it is no longer
updated from the corresponding service port.

To enable the HTTPS protocol when this property
is selected, perform the following steps:

1. Create a new key store of type "jks" and choose
a password.

2. Create a new self signed certificate with a label
of your choice.

3. Run the following command:
mqsichangeproperties brokername -o
BrokerRegistry -n brokerKeystoreFile -v
keystoreFile

4. Run the following command:
mqsichangeproperties brokername -o
BrokerRegistry -n brokerTruststoreFile -v
keystoreFile

5. Run the following command: mqsisetdbparms
brokername -n brokerKeystore::password -u
na -p keystorePassword

6. Run the following command: mqsisetdbparms
brokername -n brokerTruststore::password -u
na -p keystorePassword

7. Deploy your message flow to the broker.

8. This process uses TLS rather than SSL. To
enable SSL, run the following command:
mqsichangeproperties brokername -e
executionGroup -o HTTPSConnector -n
sslProtocol -v SSL. If your flow uses a
SOAPRequest node, you should also change the
value of the Protocol property on the
SOAPRequest node.

useHTTPS

4802 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Maximum
client wait
time (sec)

Yes Yes 180 The time that the client waits for a remote server to
respond with a "message received"
acknowledgment. The valid range is zero (which
means a short wait) through (231)-1. This property
specifies the maximum length of time that the
TCP/IP listener that received the input message
from the Web service client waits for a response
from a SOAPReply node. If a response is received
within this time, the listener propagates the
response to the client. If a response is not received
in this time, a SOAP fault message is generated
indicating that the timeout has expired. This fault
message is either sent by the listener or when
using the HTTP transport, the timeout terminal
processing.

See the “Connecting the terminals” on page 4797
and “Terminals and properties” on page 4797
sections for more information on the HTTP
Timeout terminal.

maxClientWaitTime

Enable
support for
?wsdl

N Y Cleared If this property is selected, the broker returns
WSDL and XML Schema information relating to
this endpoint in response to an HTTP GET request
with a ?wsdl query string. This allows you to
control the distribution of your WSDL. For a full
description, see “Using WSDL to configure
message flows” on page 1664.

This property is disabled when the node is
configured to act in gateway mode.

The SOAPInput node JMS Transport properties are described in the following
table. These settings are used only when the node uses JMS transport

Property M C Default Description mqsiapplybaroverride
command property

Source Yes No None The name of the queue from which the node
receives incoming messages.

This property takes its initial value from a WSDL
URI property, depending on whether the WSDL
address URI is formatted in the W3C (standards)
style, or the IBM (proprietary) style. Source is set to
the value of destinationName found in the WSDL if
a W3C-style URI is found, or destination if an
IBM-style URI is found.

source

JMS provider
name

Yes No WebSphere
MQ

Select a JMS vendor name from the list, or enter a
name of your choice. When you select a name from
the list, the Initial context factory property is
updated automatically with the relevant Java class.
If you enter your own JMS provider name, you
must also enter a value for the Initial context
factory. The name must match the name of a
configurable service that is defined for the broker
to which you deploy the message flow.

Chapter 14. Reference 4803

Property M C Default Description mqsiapplybaroverride
command property

Initial context
factory

Yes Yes com.sun.jndi.fscontext.
RefFSContextFactory

The starting point for a JNDI namespace.

A JMS application uses the initial context to obtain
and look up the connection factory and queue or
topic objects for the JMS provider. If you select a
JMS provider name from the list in JMS provider
name, the Initial context factory property is
updated automatically with the relevant Java class.
If you enter your own JMS provider name, you
must also enter a value for the Initial context
factory. The default value is
com.sun.jndi.fscontext.RefFSContextFactory,
which defines the file-based Initial context
factory for the WebSphere MQ JMS provider.

This property takes its initial value from a WSDL
URI property, depending on whether the WSDL
address URI is formatted in the W3C (standards)
style, or the IBM (proprietary) style. Initial
context factory is set to the value of
jndiInitialContextFactory found in the WSDL if a
W3C-style URI is found, or initialContextFactory
if an IBM-style URI is found.

initialContextFactory

4804 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

JNDI URL
bindings
location

Yes Yes The system path or the LDAP location for the
bindings file. The bindings file contains definitions
for the JNDI administered objects that are used by
the SOAPInput node.

This property is disabled when the Initial
context factory is com.ibm.mq.jms.Nojndi.

When you enter a value for JNDI URL bindings
location, ensure that it complies with the
following instructions:
v Construct the bindings file before you deploy a

message flow that contains a SOAPInput node.
v Do not include the file name of the bindings file

in this field.
v If you have specified an LDAP location that

requires authentication, configure the LDAP
principal (userid) and LDAP credentials
(password) separately. These values are
configured at broker level. For information about
configuring these values, see “mqsicreatebroker
command” on page 3831 and “mqsichangebroker
command” on page 3723.

v The string value must include a supported URL
prefix that has a URL handler that is available on
the classpath.

For information about constructing the JNDI
administered objects bindings file, see the JMS
provider documentation.

This property takes its initial value from a WSDL
URI property, depending on whether the WSDL
address URI is formatted in the W3C (standards)
style, or the IBM (proprietary) style. JNDI URL
bindings location is set to the value of jndiURL
found in the WSDL if a W3C-style URI is found, or
jndiProviderURL if an IBM-style URI is found.

locationJndiBindings

Connection
factory name

Yes Yes The name of the connection factory that is used by
the SOAPInput node to create a connection to the
JMS provider. This property is initially configured
from the imported WSDL. This name must exist in
the bindings file. The Connection factory name
must be a JMS QueueConnectionFactory.

This property takes its initial value from a WSDL
URI property, depending on whether the WSDL
address URI is formatted in the W3C (standards)
style, or the IBM (proprietary) style. Connection
factory name is set to the value of
jndiConnectionFactoryName found in the WSDL if a
W3C-style URI is found, or connectionFactory if
an IBM-style URI is found.

connectionFactoryName

Chapter 14. Reference 4805

Property M C Default Description mqsiapplybaroverride
command property

Backout
destination

No Yes The SOAPInput node sends input messages to this
destination when errors prevent the message flow
from processing the message, and the message
must be removed from the input destination. The
backout destination name must exist in the
bindings file.

backoutDestination

Backout
threshold

No Yes 0 The value that controls when a message is put to
the backout destination. For example, if the value
is 3, the JMS provider attempts to deliver the
message to the input destination three times. After
the third attempted delivery, the message is not
rolled back to the input destination and is sent to
the Backout destination.

A SOAP fault is sent only when the backout
threshold has been reached.

See “Configuring the backout threshold property”
on page 4816.

JNDI context
parameters

No No A table that maps JNDI context parameters to their
type. These properties are initially configured from
the imported WSDL.

These properties take their initial values from any
W3C-style WSDL properties starting with jndi-.
IBM-style WSDL URIs do not support JNDI context
parameters, but you can set these properties on the
node.

The SOAPInput node Message Selectors properties are described in the following
table. This tab is enabled only if the selected binding in the Basic tab uses JMS
transport.

For a description of how to construct the JMS message selector, see JMS message
selector.

PropertyM C DefaultDescription mqsiapplybaroverride command
property

Application
property

No Yes The message selector that filters messages according
to the application property value.

If the JMS provider is required to filter messages,
based on message properties that are set by the
originating JMS client application, enter a selector
string for Application property, specifying both the
property name and the selection conditions; for
example, OrderValue > 200.

Leave Application property blank if you do not
want the input node to make a selection based on
application property.

4806 WebSphere Message Broker Version 7.0.0.8

PropertyM C DefaultDescription mqsiapplybaroverride command
property

TimestampNo Yes The message selector that filters messages according
to the JMSTimestamp.

If the JMS provider is required to filter messages
that have been generated at specific times, enter a
selector string for Timestamp, where the value is an
unqualified Java millisecond time; for example,
105757642321. Qualify the selector with operators,
such as =, BETWEEN or AND.

Leave Timestamp blank if you do not want the input
node to make a selection based on the
JMSTimeStamp.

Delivery
mode

No Yes All The message selector that filters messages according
to the message delivery mode.

If the JMS provider is required to filter messages
based on the JMSDeliveryMode header value in the
JMS messages, select an option for Delivery mode
from the list:
v Select Non Persistent to receive messages that

are marked as non-persistent by the originating
JMS client application.

v Select Persistent to receive messages that are
marked as persistent by the originating JMS client
application.

v Select All to receive both persistent and
non-persistent messages. (This value is the
default.)

This property takes its initial value from a WSDL
URI property, depending on whether the WSDL
address URI is formatted in the W3C (standards)
style, or the IBM (proprietary) style. Delivery mode
is set to the value of deliveryMode found in the
WSDL if a W3C-style URI is found, or to the first of
deliveryMode or persistence if an IBM-style URI is
found.

Chapter 14. Reference 4807

PropertyM C DefaultDescription mqsiapplybaroverride command
property

PriorityNo Yes The message selector that filters messages according
to the message priority.

If the JMS provider is required to filter messages
based on the JMSPriority header value in the JMS
message, enter a selector string for Priority.

Valid values for Priority are from 0 (lowest) to 9
(highest). For example, enter = 5 to receive
messages of priority 5, > 4 to receive messages with
a priority greater than 4, or BETWEEN 4 AND 8 to
receive messages with a priority in the range 4 - 8.

Leave Priority blank if you do not want the input
node to make a selection based on the JMSPriority.

This property takes its initial value from a WSDL
URI property, depending on whether the WSDL
address URI is formatted in the W3C (standards)
style, or the IBM (proprietary) style. Priority is set
to the value of priority found in the WSDL if a
W3C-style URI is found, or to the first of priority
or Priority if an IBM-style URI is found.

Message
ID

No Yes The message selector that filters messages according
to the message ID.

If the JMS provider is required to filter messages
based on the JMSMessageID header, enter a selector
string for Message ID. For example, enter >
WMBRK123456 to return messages where the Message
ID is greater than WMBRK123456.

Leave Message ID blank if you do not want the
input node to make a selection based on
JMSMessageID.

RedeliveredNo Yes If the JMS provider is required to filter messages
based on the JMSRedelivered header, enter a
selector string for Redelivered:
v Enter = FALSE if the input node accepts only

messages that have not been redelivered by the
JMS provider.

v Enter = TRUE if the input node accepts only
messages that have been redelivered by the JMS
provider.

v Leave Redelivered blank if you do not want the
input node to make a selection based on
JMSRedelivered.

4808 WebSphere Message Broker Version 7.0.0.8

PropertyM C DefaultDescription mqsiapplybaroverride command
property

Correlation
ID

No Yes The message selector that filters messages according
to the correlation ID.

If the JMS provider is required to filter messages
based on the JMSCorrelationID header, enter a
selector string for Correlation ID. For example, =
WMBRKABCDEFG returns messages with a Correlation
ID that matches this value.

Leave Correlation ID blank if you do not want the
input node to make a selection based on
JMSCorrelationID.

Target
service

No No This property is configured from the value of the
targetService property found in the JMS endpoint
location URL that is contained in the port section of
the WSDL. The SOAP/JMS message will be read
from the source queue only if the message has a
targetService value that matches the value defined
on the node. This value is used by the server
component to determine the port component to
which the request is dispatched.

This property takes its initial value from the
targetService WSDL property.

targetService

The SOAPInput node Transactions properties are described in the following table.
This setting does not apply when the node is using HTTP transport.

Property M C Default Description

Transaction
Mode

Yes No No This property controls whether the message is received under a JMS transaction.
Valid values are Yes and No.

Select No to receive the message using a non-transactional JMS session.

Select Yes to output the message using a transactional JMS session. The JMS
transaction can be either local or global. To use a global transaction, using an XA
JMS session, you must also select the message flow property Coordinated
Transaction in the BAR file properties.

See “Configuring for coordinated JMS transactions” on page 4817.

The value set for Transaction mode on the SOAPInput node is inherited by nodes
downstream in the message flow that have their Transaction mode set to Automatic.

Other resources that perform work within the message flow, such as DB2 or
WebSphere MQ, use transactions regardless of the node's Transaction mode setting,
and commit their transaction after the message is processed.

The SOAPInput node Advanced properties are described in the following table.

Chapter 14. Reference 4809

Property M C Default Description

SOAP 1.1
actor
(SOAP 1.2
role)

Yes No Ultimate
Destination
(Ultimate
Receiver)

Use this property to configure the
SOAP actor (SOAP 1.1 protocol) or
SOAP role (SOAP 1.2 protocol) that is
performed by the SOAPInput node. The
default value is Ultimate Destination
(Ultimate Receiver). (Ultimate
Destination relates to SOAP 1.1 and
Ultimate Receiver relates to SOAP 1.2).
You can enter any predefined or
user-defined value.

Predefined roles are specified in the
respective SOAP 1.1 or SOAP 1.2
specifications, and are used to process
SOAP headers that are targeted at the
specific role.

If you select empty, an error occurs
when the message flow is validated.

This property takes a string value.

Set
destination
list

No No Selected This property specifies whether to add
the method binding name to the
route-to-label destination list. If you
select this check box, the method
binding name is added so that you can
use a RouteToLabel node in the
message flow after the SOAPInput
node. This property type is Boolean.

Label prefix No No None The prefix to add to the method name
when routing to label. Add a Label
prefix to avoid a clash of
corresponding label nodes when you
include multiple input nodes in the
same message flow. By default, no label
prefix exists; therefore, the method
name and label name are identical.

The default prefix is an empty string so
that the operation name and the label
name are identical, but the field
displays the user instruction: <enter a
prefix if required>. This property is
enabled only if the setDestinationList
property is enabled.

4810 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Route
inbound
processing
failures to
failure
terminal

No Yes Cleared Select this check box to send any fault
to the Failure terminal during inbound
SOAP processing. If this property is
selected, in a situation during inbound
SOAP processing that results in a SOAP
fault, instead of immediately sending
the SOAP fault back to the client, the
fault is sent to the Failure terminal
instead to allow logging and recovery
processing. In this situation, an
exception list is sent to the Failure
terminal with the inbound message as a
BLOB. By default, this check box is
cleared.

sendProcessingFaultsToFailure

WSDL
defined
SOAP
headers

No No This table is read-only and is populated
by the SOAP headers that are defined
in the output part of the selected
operations. The table is updated
automatically when the selected
operation is updated. By default, the
check boxes in the second column of
the table are cleared for all entries in
the WSDL-defined table.

You must select the check boxes for
those headers that you want to add to
the must understand headers list. SOAP
headers that are part of the must
understand headers list are
incorporated into the flow rather than
causing a SOAP fault. Adding headers
to the must understand headers list
stops SOAP faults being generated by
SOAP headers. You do not have to add
must understand headers for
WS-Addressing and WS-Security
because these elements are understood
if you configure WS Extensions. This
property is generated in the CMF file.

When the node is configured to act in
gateway mode, with no WSDL
required, this table is cleared. The
original values of these fields are
restored if the operation mode of the
node is changed back to WSDL mode.

Chapter 14. Reference 4811

Property M C Default Description

User
defined
SOAP
headers

No Yes None You can add custom headers in this
table. Use the Add, Edit and Delete
controls to manipulate rows in this
table. You must ensure that the check
box for the custom header you have
added is selected (in the second column
of the table), so that the header is
added to the must understand headers
list. This property is generated in the
CMF file.

When the node is configured to act in
gateway mode, with no WSDL
required, custom headers in this table
have their Operation set to *. The
original values of these fields are
restored if the operation mode of the
node is changed back to WSDL mode.

The SOAPInput node WS Extensions properties are described in the following
table.

Property M C Default Description

Use
WS-Addressing

No No Cleared This property indicates whether to engage WS-Addressing on the
SOAPInput node. By default, this check box is cleared. If this
property is selected, a reply can be sent back to a different web
service client as specified in the WS-Addressing properties. The reply
can be sent using a transport that is different than the one used for
the incoming message.

Place
WS-Addressing
headers into
LocalEnvironment

No No Cleared This property specifies whether the node puts WS-Addressing
headers received in the message into the local environment tree.
WS-Addressing headers are not accessible to the flow if this check
box is cleared because, by default, all headers are processed and
removed.

WS-Security No Yes This complex property is in the form of a table and consists of two
columns:
v Alias
v XPath Expression

You can add XPath expressions with an associated Alias value to the
WS-Security table. The Alias is resolved in a policy set that is created
by the administrator. The policy set resolves the Alias to either
encrypt or sign the part of the message that is referenced by the
XPath Expression. You can use the Add, Edit and Delete controls in
this table.

The SOAPInput node Input Message Parsing properties are described in the
following table.

4812 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
domain

No No SOAP The domain that is used to parse the incoming message. By
default, the message that is propagated from the SOAPInput node
is in the SOAP domain. You cannot specify a different domain.

Input message parsing properties are disabled when the node is
configured to act in gateway mode.

Message set Yes No Set
automatically
from the WSDL
file name
property.

The name of the message set in which the incoming message is
defined. This value is set automatically to the message set that
contains the WSDLfile when the WSDL is associated with the
node.

If you set this property, then later update the project dependencies
to remove this message set reference, a warning is issued. Either
update the Message set property, or restore the reference to this
message set project.

Input message parsing properties are disabled when the node is
configured to act in gateway mode.

Message type No No The name of the incoming message. The node detects the message
type automatically. You cannot set this property.

Message
format

No No The name of the physical format of the incoming message. You
cannot set this property.

The SOAPInput node Parser Options properties are described in the following
table.

Property M C Default Description

Parse timing No No On demand This property controls when an input message is parsed. Valid
values are On demand, Immediate, and Complete. The default value,
On demand, causes parsing of the message to be delayed.

For a full description of this property, see “Parsing on demand”
on page 4173.

Build tree using
XML Schema data
types

No No Selected This property controls whether the syntax elements in the
message tree have data types taken from the XML Schema.

This property is cleared and disabled when the node is configured
to act in gateway mode.

Retain mixed
content

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text in an
input message. If you select the check box, elements are created
for mixed text. If you clear the check box, mixed text is ignored
and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments in an
input message. If you select the check box, elements are created
for comments. If you clear the check box, comments are ignored
and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in an input message. If you select the check box,
elements are created for processing instructions. If you clear the
check box, processing instructions are ignored and no elements
are created.

Chapter 14. Reference 4813

Property M C Default Description

Opaque elements No No Blank This property is used to specify a list of elements in the input
message that are to be parsed opaquely. Opaque parsing is
performed only if validation is not enabled (that is, if Validate is
None); entries that are specified in Opaque Elements are ignored if
validation is enabled.

The SOAPInput node Validation properties are described in the following table.
See “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Content and
value

This property controls whether the SOAP parser
validates the body of each input message against
XML schema generated from the message set.
Valid values are None, Content and value, and
Content. The SOAP parser invokes the XMLNSC
parser to validate the XML body of the SOAP Web
Service. If a message is propagated to the Failure
terminal of the node, it is not validated. For more
details, see “Validating messages” on page 1478
and “Validation properties” on page 4169.

Validation properties are disabled, and the
Validate property is set to None, when the node is
configured to act in gateway mode.

validateMaster

Failure
action

No No Exception This property controls what happens if validation
fails. You can set this property only if you set
Validate to Content or Content and value. Valid
values are User Trace, Local Error Log,
Exception, and Exception List.

Validation properties are disabled when the node
is configured to act in gateway mode.

The SOAPInput node Instances properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

This property specifies whether additional instance
threads are allocated from a thread pool for the
whole message flow, or from a thread pool for use
by that node only.
v If you select Use Pool Associated with Message

Flow, additional instances are obtained from the
message flow value.

v If you select Use Pool Associated with Node,
additional instances are allocated based on the
number specified in the Additional instances
property.

Additional
instances

No Yes 0 The number of additional instances that the node
can start if the Additional instances pool
property is set to Use Pool Associated with Node.
By default, no additional instances are given to the
node.

additionalInstances

4814 WebSphere Message Broker Version 7.0.0.8

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Identity” on page 390
In WebSphere Message Broker, an identity is a security token that uniquely
identifies an individual, or that provides a set of assertions that can be validated.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“WSDL URI formats for JMS” on page 1668
You must use WSDL to configure SOAP nodes. When using WSDL with a JMS
transport, different URI formats can exist in the address element in the WSDL,
which affect how properties are parsed and applied to the configured nodes.
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Setting up message flow security” on page 431
Set up security on a message flow to control access based on the identity of a
message passing through the message flow.
“Configuring the extraction of an identity or security token” on page 447
You can configure the SecurityPEP node or security enabled input nodes to extract
the identity or security token from a message and store it in the properties tree
identity fields, enabling it to be processed throughout the message flow and
propagated at output or request nodes.

Chapter 14. Reference 4815

“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Importing WSDL definitions from the command line” on page 2948
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Using timeouts with HTTP and SOAP nodes” on page 1595
Connect the HTTP Timeout terminal of the HTTPInput or SOAPInput nodes to
further nodes to process timeouts.
Related reference:
“Configuring the backout threshold property”
You can set the backout threshold property on nodes that use JMS transport to
specify how many attempts are made to deliver the message to the input
destination.
“Configuring for coordinated JMS transactions” on page 4817
Configure your message flow to receive or output messages under coordinated
transactions.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“WS-Addressing with the SOAPInput node” on page 1651
Various options are available when you use WS-Addressing with the SOAPInput
node.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“SOAPAsyncResponse node” on page 4777
Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest
node to construct a pair of message flows that call a Web service asynchronously.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.
“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.
“SOAPExtract node” on page 4790
Use the SOAPExtract node to remove SOAP envelopes, allowing just the body of a
SOAP message to be processed. It can also route a SOAP message based on its
operation name. Both functions are optional; they are contained in one node
because they are often used together.

Configuring the backout threshold property:

You can set the backout threshold property on nodes that use JMS transport to
specify how many attempts are made to deliver the message to the input
destination.

4816 WebSphere Message Broker Version 7.0.0.8

If the Backout threshold is set to 0 then redelivery is not attempted. If the Backout
threshold is 1 or greater, the message will be redelivered the specified number of
times.

Set the value of Backout threshold depending on the capabilities of the JMS
provider.

If the JMS provider supports JMSXDeliveryCount, you can set the Backout threshold
to any value.

If the JMS provider does not support JMSXDeliveryCount, the Backout threshold
must only be set to 0 or 1. If the JMS provider does not support JMSXDeliveryCount
and the value is set to greater than 1, a redelivered message is repeatedly backed
out and reprocessed, and is never delivered to the backout destination.

Configuring for coordinated JMS transactions:

Configure your message flow to receive or output messages under coordinated
transactions.

When you include a node using JMS transport in a message flow, such as the
JMSInput or SOAPInput node when using JMS transport, the value that you set for
Transaction mode defines whether messages are received under sync point.
v If you set this property to Global, the message is received under external sync

point coordination; that is, within a WebSphere MQ unit of work. Any messages
that are sent later, by an output node in the same instance of the message flow,
are put under sync point, unless the output node overrides this setting explicitly.

v If you set this property to Local, the message is received under the local sync
point control of the node. Any messages that are sent later, by an output node in
the flow, are not put under local sync point, unless an individual output node
specifies that the message must be put under local sync point.

v If you set this property to None, the message is not received under sync point.
Any messages that are sent later, by an output node in the flow, are not put
under sync point, unless an individual output node specifies that the message
must be put under sync point.

To receive messages under external sync point, you must take additional
configuration steps, which need be applied only the first time that a specific node
using JMS transport is deployed to the broker for a particular JMS provider.
v On distributed systems, the external sync point coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction
mode property is set to Global or Yes, and is intended to use globally coordinated
transactions, modify the queue manager .ini file to include extra definitions for
each JMS provider resource manager that participates in globally coordinated
transactions.

– Windows

On Windows:

1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Click Add... .
5. Set the options as follows:

- Set Name to any value.

Chapter 14. Reference 4817

- On Windows on x86 systems, set the SwitchFile property to
install_dir\bin\JMSSwitch.dll. On Windows on x86-64 systems, set
the SwitchFile property to JMSSwitch.dll.

- Set the XAOpenString property to a string value as follows: Initial
Context,location JNDI,Optional_parms.

- Set the ThreadOfControl property to Thread.
6. On Windows on x86-64 systems only, copy the switch file JMSSwitch32.dll

to the \exits subdirectory in the WebSphere MQ installation directory,
and rename it to JMSSwitch.dll. Copy the switch file JMSSwitch.dll to the
\exits64 subdirectory in the WebSphere MQ installation directory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

– Linux

UNIX

On Linux and UNIX systems, add a stanza to the queue

manager .ini file for each JMS provider.
For example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/ JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

Where:

Name is an installation defined name that identifies a JMS provider resource
manager.

SwitchFile
is the file system path to the JMSSwitch library that is supplied in the
bin directory of the broker.

XAOpenString can have the following values:
– Initial Context is the value that is set in the JMSInput node property Initial

context factory.
– location JNDI is the value that is set in the JMSInput node property Location

JNDI bindings. This value must include a supported URL prefix that has a
URL handler that is available on the class path.

The following parameters are optional:
– LDAP Principal matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– LDAP Credentials matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– Recovery Connection Factory Name is the JNDI administered connection

factory that is defined in the bindings file. If a value is not specified, you
must add a default value for recoverXAQCF to the bindings file. In either case,
the Recovery Connection Factory must be defined as an XA Queue
Connection Factory for the JMS provider that is associated with the Initial
context factory.

The optional parameters are comma-separated and are positional. Therefore, any
parameters that are missing must be represented by a comma. For example:
com.sun.jndi.fscontext.RefFSContextFactory,file:/C:/webservices/SOAP/JMS/JNDIXA,,,QCF

1. Update the Java CLASSPATH environment variable for the queue manager
of the broker to include a reference to xarecovery.jar; for example:
install_dir/classes/xarecovery.jar

4818 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

2. Update the Java PATH environment variable for the queue manager of the
broker to point to the bin directory in which the SwitchFile is located; for
example:
install_dir/bin

Finally, ensure that you have taken the following configuration steps:
– In the message flow, ensure that the coordinated property is enabled by using

the WebSphere Message Broker Archive editor.
– Ensure that each node that must be part of the XA transaction is set to the

global transaction mode.
– Ensure that the service ID that is used for the broker and the queue manager

is the same user ID.
– Ensure that the JNDI connection factory objects that the JMS nodes use for a

global transaction are configured to be of the type MQXAConnectionFactory,
MQXAQueueConnectionFactory, or MQXATopicConnectionFactory.
- If you create the bindings using WebSphere Message Broker Explorer,

ensure the Support XA Transactions option is checked when you define
your connection factory.

- If you create the bindings using JMSAdmin, use the command DEF XAQCF or
DEF XATCF, instead of DEF QCF or DEF TCF, when you define your connection
factory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

v z/OS On z/OS, the external sync point manager is Resource Recovery
Services (RRS). The only JMS provider that is supported on z/OS is WebSphere
MQ JMS. The only transport option that is supported for WebSphere MQ JMS on
z/OS is the bind option.
Sync point control for the JMS provider is managed with RRS sync point
coordination of the queue manager of the broker. You do not have to modify the
.ini file.

SOAPReply node
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4820
v “LocalEnvironment overrides” on page 4820
v “Working with WrittenDestination data” on page 4820
v “Terminals and properties” on page 4820

Purpose:
The SOAPReply node is typically used with the SOAPInput node, which can be
included in the same message flow, or a different flow in the same execution
group.

You cannot use a SOAPReply node to respond to a Web service request that is
received by an HTTPInput node; the broker generates an exception when the reply
is attempted.

The SOAPReply node is contained in the Web Services drawer of the message
flow node palette, and is represented in the WebSphere Message Broker Toolkit by
the following icon:

Chapter 14. Reference 4819

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Using this node in a message flow:
The SOAPReply node can be used in any message flow that needs to send SOAP
messages from the broker to the originating client in response to a message
received by a SOAPInput node. If a SOAPReply node is connected in a message
flow that receives a one-way message, the message propagates to the Failure
terminal of the SOAPReply node, and an exception is raised.

Look at the following sample to see how to use this node:
v SOAP Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Working with WrittenDestination data:
After the reply has been made, the WrittenDestination folder in the
LocalEnvironment is updated if WS-Addressing is in use, and with transport
details if WS-Addressing is in non-anonymous mode. A WrittenDestination for a
SOAPReply node has the following format:
WrittenDestination = (

SOAP = (
Reply = (

WSA = (
To = ’URI’
MessageID = ’id’
Action = ’doAllTheStuff’

))
)

)

LocalEnvironment overrides:
You can dynamically override set values in the local environment in the same way
as setting values in other elements of a message. For a full list of values you can
override in the local environment, see Local environment overrides.

Terminals and properties:
When you have put an instance of the SOAPReply node into a message flow, you
can configure it; see . The properties of the node are displayed in the Properties
view. All mandatory properties for which you must enter a value (those that do
not have a default value defined) are marked with an asterisk.

The SOAPReply node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the message is
propagated.

Out The output terminal to which the message is routed if it has been propagated successfully, and if further
processing is required within this message flow.

4820 WebSphere Message Broker Version 7.0.0.8

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The SOAPReply node Description properties are described in the following table.

Property M C Default Description

Node
name

No No The node type:
SOAPReply

The name of the node.

Short
description

No No None A brief description of the node.

Long
description

No No None Text that describes the purpose of the node in the message flow.

The SOAPReply node Transactions property is described in the following table.
This setting does not apply when the node uses HTTP transport.

Property M C Default Description

Transaction
mode

Yes No AutomaticThis property controls whether the message is sent under a JMS transaction.
Valid values are Yes, No, and Automatic.

Select No to send the message using a non-transactional JMS session.

Select Yes to output the message using a transactional JMS session. The JMS
transaction can be either local or global. To use a global transaction, using
an XA JMS session, you must also select the message flow property
Coordinated Transaction in the BAR file properties.

Select Automatic if you want the message transactionality to be inherited
from the Transaction mode setting on the Input node at the start of the flow.

See “Configuring for coordinated JMS transactions” on page 4823.

The Transactions properties apply only to messages sent using JMS
transport.

The SOAPReply node Validation properties are described in the following table. By
default, validation is enabled.

If a message is propagated to the Failure terminal of the node, it is not validated.
For more details, see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Inherit This property controls whether validation takes place.
Valid values are None, Content and Value, Content, and
Inherit.

validateMaster

Failure
action

No No User
trace

This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are User
trace, Local error log, Exception, and Exception list.

Chapter 14. Reference 4821

The SOAPReply node WS Extensions property is described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Allow
MTOM

No Yes No This property controls whether MTOM is enabled for the
parser. Valid values are Yes, No, and Inherit. For more
information about using SOAP MTOM with the SOAPReply,
SOAPRequest, and SOAPAsyncRequest nodes, see “Using
SOAP MTOM with the SOAPReply, SOAPRequest, and
SOAPAsyncRequest nodes” on page 1678.

allowMTOM

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by
manually configuring properties, or both.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Importing WSDL definitions from the command line” on page 2948
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.
Related reference:

4822 WebSphere Message Broker Version 7.0.0.8

“Configuring for coordinated JMS transactions”
Configure your message flow to receive or output messages under coordinated
transactions.
“WS-Addressing with the SOAPReply node” on page 1653
Various options are available when you use WS-Addressing with the SOAPReply
node.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPExtract node” on page 4790
Use the SOAPExtract node to remove SOAP envelopes, allowing just the body of a
SOAP message to be processed. It can also route a SOAP message based on its
operation name. Both functions are optional; they are contained in one node
because they are often used together.
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.

Configuring for coordinated JMS transactions:

Configure your message flow to receive or output messages under coordinated
transactions.

When you include a node using JMS transport in a message flow, such as the
JMSInput or SOAPInput node when using JMS transport, the value that you set for
Transaction mode defines whether messages are received under sync point.
v If you set this property to Global, the message is received under external sync

point coordination; that is, within a WebSphere MQ unit of work. Any messages
that are sent later, by an output node in the same instance of the message flow,
are put under sync point, unless the output node overrides this setting explicitly.

v If you set this property to Local, the message is received under the local sync
point control of the node. Any messages that are sent later, by an output node in
the flow, are not put under local sync point, unless an individual output node
specifies that the message must be put under local sync point.

v If you set this property to None, the message is not received under sync point.
Any messages that are sent later, by an output node in the flow, are not put
under sync point, unless an individual output node specifies that the message
must be put under sync point.

To receive messages under external sync point, you must take additional
configuration steps, which need be applied only the first time that a specific node
using JMS transport is deployed to the broker for a particular JMS provider.
v On distributed systems, the external sync point coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction
mode property is set to Global or Yes, and is intended to use globally coordinated
transactions, modify the queue manager .ini file to include extra definitions for
each JMS provider resource manager that participates in globally coordinated
transactions.

– Windows

On Windows:

1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Click Add... .

Chapter 14. Reference 4823

5. Set the options as follows:
- Set Name to any value.
- On Windows on x86 systems, set the SwitchFile property to

install_dir\bin\JMSSwitch.dll. On Windows on x86-64 systems, set
the SwitchFile property to JMSSwitch.dll.

- Set the XAOpenString property to a string value as follows: Initial
Context,location JNDI,Optional_parms.

- Set the ThreadOfControl property to Thread.
6. On Windows on x86-64 systems only, copy the switch file JMSSwitch32.dll

to the \exits subdirectory in the WebSphere MQ installation directory,
and rename it to JMSSwitch.dll. Copy the switch file JMSSwitch.dll to the
\exits64 subdirectory in the WebSphere MQ installation directory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

– Linux

UNIX

On Linux and UNIX systems, add a stanza to the queue

manager .ini file for each JMS provider.
For example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/ JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

Where:

Name is an installation defined name that identifies a JMS provider resource
manager.

SwitchFile
is the file system path to the JMSSwitch library that is supplied in the
bin directory of the broker.

XAOpenString can have the following values:
– Initial Context is the value that is set in the JMSInput node property Initial

context factory.
– location JNDI is the value that is set in the JMSInput node property Location

JNDI bindings. This value must include a supported URL prefix that has a
URL handler that is available on the class path.

The following parameters are optional:
– LDAP Principal matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– LDAP Credentials matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– Recovery Connection Factory Name is the JNDI administered connection

factory that is defined in the bindings file. If a value is not specified, you
must add a default value for recoverXAQCF to the bindings file. In either case,
the Recovery Connection Factory must be defined as an XA Queue
Connection Factory for the JMS provider that is associated with the Initial
context factory.

The optional parameters are comma-separated and are positional. Therefore, any
parameters that are missing must be represented by a comma. For example:
com.sun.jndi.fscontext.RefFSContextFactory,file:/C:/webservices/SOAP/JMS/JNDIXA,,,QCF

1. Update the Java CLASSPATH environment variable for the queue manager
of the broker to include a reference to xarecovery.jar; for example:

4824 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the queue manager of the
broker to point to the bin directory in which the SwitchFile is located; for
example:
install_dir/bin

Finally, ensure that you have taken the following configuration steps:
– In the message flow, ensure that the coordinated property is enabled by using

the WebSphere Message Broker Archive editor.
– Ensure that each node that must be part of the XA transaction is set to the

global transaction mode.
– Ensure that the service ID that is used for the broker and the queue manager

is the same user ID.
– Ensure that the JNDI connection factory objects that the JMS nodes use for a

global transaction are configured to be of the type MQXAConnectionFactory,
MQXAQueueConnectionFactory, or MQXATopicConnectionFactory.
- If you create the bindings using WebSphere Message Broker Explorer,

ensure the Support XA Transactions option is checked when you define
your connection factory.

- If you create the bindings using JMSAdmin, use the command DEF XAQCF or
DEF XATCF, instead of DEF QCF or DEF TCF, when you define your connection
factory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

v z/OS On z/OS, the external sync point manager is Resource Recovery
Services (RRS). The only JMS provider that is supported on z/OS is WebSphere
MQ JMS. The only transport option that is supported for WebSphere MQ JMS on
z/OS is the bind option.
Sync point control for the JMS provider is managed with RRS sync point
coordination of the queue manager of the broker. You do not have to modify the
.ini file.

Local environment overrides for the SOAPReply node:

You can dynamically override set values in the local environment in the same way
as setting values in other elements of a message.

Other local environment overrides are available for WS-Addressing. See
“WS-Addressing with the SOAPReply node” on page 1653.

You can set the following HTTP properties in the SOAPReply node under
LocalEnvironment.Destination.SOAP.Request.Transport.HTTP.AsyncReply. These
properties apply only when you make an HTTP reply with WS-Addressing. You
can switch between HTTP and JMS transport using the WS-Addressing To field;
see “WS-Addressing information in the local environment” on page 1656.

Setting Description

HTTPVersion Overrides the HTTPVersion. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.HTTP.AsyncReply.HTTPVersion =
’HTTP/1.1’;

Method Overrides the reply message Method. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.HTTP.AsyncReply.Method = ’GET’;

Chapter 14. Reference 4825

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Setting Description

ProxyConnectHeaders Specifies additional headers that are used if the outbound request is an SSL connection
through a proxy. These additional headers are sent with the initial CONNECT request to the
proxy. For example, you can send proxy authentication information to a proxy server when
you are using SSL. You can send multiple headers but each one must be separated by a
carriage return and a line feed (ASCII 0x0D 0x0A), in accordance with RFC2616; for example:

DECLARE CRLF CHAR CAST(X’0D0A’ AS CHAR CCSID 1208);
SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.HTTP.AsyncReply.ProxyConnectHeaders =
’Proxy-Authorization: Basic Zm5lcmJsZTpwYXNzd29yZA==’ || CRLF ||
’Proxy-Connection: Keep-Alive’ || CRLF;

This setting is used only if the request is an SSL request through a proxy server. To send
proxy authentication information for a non-SSL request, specify the individual headers in the
HTTPRequestHeader folder, as shown in the following example:

SET OutputRoot.HTTPReplyHeader."Proxy-Authorization" = ’Basic Zm5lcmJsZTpwYXNzd29yZA==’;
SET OutputRoot.HTTPReplyHeader."Proxy-Connection" = ’Keep-Alive’;

ProxyURL Overrides the reply message HTTP(S) proxy location. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.HTTP.AsyncReply.ProxyURL =
’my.proxy’;

RequestURI Overrides the reply message RequestURI, which is the path after the URL and port. For
example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.HTTP.AsyncReply.RequestURI =
’/abc/def?x=y&g=h’;

SSLCiphers Overrides the reply message Allowed SSL Ciphers (if using SSL). For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.HTTP.AsyncReply.SSLCiphers =
’SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA’;

SSLProtocol Overrides the reply message SSLProtocol. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.HTTP.AsyncReply.SSLProtocol =
’TLS’;

Valid values are SSL, SSLv3, and TLS.

Timeout Overrides the reply message Request timeout (in seconds). For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.HTTP.AsyncReply.Timeout = 42;

WebServiceURL Overrides the reply message Web service URL. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.HTTP.AsyncReply.WebServiceURL =
’http://ibm.com/abc/’;

You can set the following JMS properties in the SOAPReply node under
LocalEnvironment.Destination.SOAP.Reply.Transport.JMS. These properties apply
only when you make a JMS reply with WS-Addressing. You can switch between
HTTP and JMS transport using the WS-Addressing To field; see “WS-Addressing
information in the local environment” on page 1656.

Setting Description

BindingsLocation Overrides the reply message JNDI URL bindings location. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.JNDI.BindingsLocation =
’file:/C:/mqsi6/Webservices/SOAP/JMS/JNDI’;

ConnectionFactoryNameOverrides the reply message Connection factory name. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.JNDI.ConnectionFactoryName =
’QCF’;

4826 WebSphere Message Broker Version 7.0.0.8

Setting Description

ContextParameters Overrides the reply message JNDI context parameters. You can override specific JNDI
context parameters, for example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.JNDI.ContextParameters.foo =
’bar’;
SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.JNDI.ContextParameters.foo2 =
’baz’;

CorrelationID Sets the reply message CorrelID. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.CorrelationID =
’myCorrelID’;

Destination Overrides the reply message Destination. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.Destination =
’REPLYTOQ2’;

DeliveryMode Overrides the reply message DeliveryMode. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.DeliveryMode =
’NON_PERSISTENT’;

Allowed values for this property are PERSISTENT and NON_PERSISTENT. If the UriFormat is ibm,
1 and 0 are additional allowed values for DeliveryMode.

Expiration Overrides the reply message Expiration. This property is specified in milliseconds. For
example, to set an expiration of 100 milliseconds:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.Expiration =
’100’;

InitialContextFactory Overrides the reply message Initial context factory. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.JNDI.InitialContextFactory =
’com.sun.jndi.fscontext.RefFSContextFactory’;

MessagePriority Overrides the reply message MessagePriority. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.MessagePriority =
’7’;

MessageType Overrides the reply message MessageType. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.MessageType =
’text’;

Allowed values for this property are text and bytes.

ProviderName Overrides the reply message JMS provider name. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.ProviderName =
’WebSphere MQ’;

TransactionMode Overrides the Transaction mode property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.TransactionMode = ’Yes’;

Allowable values for this property are Yes, No and ForceLocal.

v No means that no transaction takes place, and is equivalent to None.

v Yes means that a local transaction takes place if the flow's Coordinated Transaction is not
selected, or a global transaction takes place if the flow's Coordinated Transaction property
is selected.

v ForceLocal means that a local transaction is always used, even if the flow's Coordinated
Transaction property is selected.

UriFormat Overrides the reply message UriFormat. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.UriFormat =
’w3c’;

Allowable values for this property are w3c and ibm.

Chapter 14. Reference 4827

Setting Description

UserProperties Overrides the User Context Parameters on the node. You can override specific user context
parameters, for example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.JNDI.UserProperties.property1 =
’value1’;
SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.JNDI.UserProperties.property2 =
’value2’;

Setting Description

OneWay Instructs the node that the inbound message was a one-way message. The node resources are
cleared because no reply message is needed. For example:

SET OutputLocalEnvironment.Destination.SOAP.Reply.Gateway.OneWay = True

Additionally, if the inbound message used HTTP transport, the node sends an
acknowledgment HTTP 202 message.

For more information, see “One-way messages in Gateway mode” on page 1648.

SOAPRequest node
Use the SOAPRequest node to send a SOAP request to the remote Web service.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties”
v “Working with WrittenDestination data” on page 4843
v “Local environment overrides” on page 4844

Purpose:
The SOAPRequest node is a synchronous request and response node, which blocks
processing after sending the request until the response is received. This node
enables the HTTP 1.1 Keep-Alive method by default.

The SOAPRequest node is contained in the Web Services drawer of the message
flow node palette, and is represented in the WebSphere Message Broker Toolkit by
the following icon:

Using this node in a message flow:
The SOAPRequest node can be used in any message flow that needs to call a Web
service. Look at the following sample to see how to use this node:
v SOAP Nodes

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
The SOAPRequest node terminals are described in the following table.

4828 WebSphere Message Broker Version 7.0.0.8

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which a message is routed if a failure is detected when the message is
propagated to the Out flow (such as a message validation failure). Failures routed to this terminal
include failures caused by the retry processing occurring before the retry propagates the message
to the Out flow.

Out The output terminal to which the message is routed if the SOAP request has been sent and
responded to successfully, and if further processing is required within this message flow. If no
errors occur within the SOAPRequest node and a none fault SOAP response is received from the
external resource it is always sent to the Out terminal first.

Fault SOAP fault messages received in response to the sent request are directed to the Fault terminal. If
no connection is provided to the Fault terminal no further processing occurs for a received fault
within this message flow.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined; the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

Some SOAPRequest node properties are initially set from properties in the
imported WSDL. These properties are parsed differently depending on which URI
format is used by the address element in the WSDL. For details, see “WSDL URI
formats for JMS” on page 1668.

The SOAPRequest node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the message flow.

The SOAPRequest node Basic properties are described in the following table.

Chapter 14. Reference 4829

Property M C Default Description

Operation
mode

Yes Yes Invoke a specific
web service
defined by a WSDL
interface

This property allows you to specify the operation mode of the
node, which determines whether it acts in WSDL mode or in
gateway mode. In WSDL mode, the node performs operations
according to the WSDL it is configured with. However, gateway
mode allows you to configure your flow to handle generic SOAP
request/response and one-way messages, or to act as a façade
between multiple web services clients and multiple back-end web
services providers.

Invoke a specific web service defined by a WSDL interface
Configure the node with a deployable WSDL by setting
the WSDL file name property or by dragging a WSDL
onto the node. This is the default option.

Invoke a generic web service
Configure the node to act in gateway mode with no
WSDL required. See “Gateway operation mode for SOAP
nodes” on page 1645 for a fuller explanation of gateway
mode.

WSDL file
name

Yes No None This property indicates the location of the WSDL file that you want
to use to configure the node. Enter the full path to the WSDL file,
or click Browse to locate the WSDL file in your workspace.

When you select a WSDL file for the WSDL file name property, the
WSDL is validated to ensure that it is WS-I compliant. If the WSDL
has a binding using SOAP/JMS which is not WS-I compliant, by
default no error is shown. To enable strict WS-I validation and
display a warning when a SOAP/JMS transport is used, click
Window > Preferences > Broker Development > Message Sets >
Validation and clear the WS-I BP 1.1: Allow SOAP/JMS as
transport URI check box.

Only deployable WSDL files can be used to configure the SOAP
nodes. After a valid WSDL file is selected, the message set project
to which the WSDL file belongs is added as a referenced project to
the corresponding message flow project, if the reference does not
exist.

If the WSDL file is not valid, or an incorrect file name is entered,
an error message is displayed in the Properties view and all WSDL
properties are blank.

If the node was created by dropping a WSDL file from a message
set onto the Message Flow editor, this property is preset to the
name of the WSDL file.

This property takes a string value.

The following situations result in an error condition:
v The WSDL file does not belong to a message set project, or the

WSDL file was not imported correctly; see “Importing from
WSDL” on page 2946 and “Importing WSDL definitions from the
command line” on page 2948.

v The WSDL file contains no HTTP or JMS bindings.
v The WSDL file contains no port type.
v The WSDL file that is specified in the field does not exist.

WSDL properties are disabled when the node is configured to act
in gateway mode.

4830 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Port type Yes No By default, the first
Port type found in
the WSDL file, that
has an associated
HTTP binding
with it, is selected.

This property type is String. The field lists all the Port types
defined in WSDL file selected in the WSDL file name property.

Error Conditions:

v Selected Port type does not contain at least one operation.

WSDL properties are disabled when the node is configured to act
in gateway mode.

Imported
binding

Yes No This property type is String.

This property is updated every time that the Port type value
changes. The field lists the imported SOAP bindings with HTTP or
JMS transport associated with the selected Port type. When you
select a binding, the property tab for the associated transport is
enabled; otherwise, it is disabled.

Bindings are listed in the same order in which they appear in the
WSDL file. The selected binding is the one that has both ports and
operations. If there is no such binding, then binding with ports is
selected. If no bindings have ports then the first binding in the list
is selected.

Error Conditions:

v No SOAP bindings (with HTTP or JMS transport) in the WSDL
file are associated with the Port type.

v The selected binding does not have any operations.

WSDL properties are disabled when the node is configured to act
in gateway mode.

Binding
operation

Yes No This property type is String.

The Binding operation box contains all the operations defined by
the selected binding. The first operation in the list is selected by
default. This property is updated every time the selected binding
value changes

WSDL properties are disabled when the node is configured to act
in gateway mode.

Service port Yes No This property type is String. This field is updated every time that
the selected binding is updated. This field lists all the WSDL ports
that point to the selected binding. The first service port for the
binding is selected by default. This property is updated every time
the selected binding value changes.

Error Conditions:

v No ports point to the selected binding.

WSDL properties are disabled when the node is configured to act
in gateway mode.

Target
namespace

Yes No Target namespace is implemented as a read-only field.

This hidden property type is String. It is updated with the Target
namespace of the WSDL file when the WSDL file name is configured.

WSDL properties are disabled when the node is configured to act
in gateway mode.

Chapter 14. Reference 4831

Property M C Default Description

Transport No No This property is set automatically when the Imported binding
property is selected. The value of this property shows the transport
used by the selected WSDL binding; for example, HTTP or JMS.

If you choose to switch the transport from JMS to HTTP, a dialog box
displays, which allows you to reset the JMS-specific properties. You
must reset the JMS properties to deploy the message flow to a
runtime environment version prior to fix pack V7.0.0.1.

The SOAPRequest node HTTP Transport properties are described in the following
table. These settings are used only when the node uses HTTP transport

Property M C Default Description mqsiapplybaroverride
command property

Web service URL Yes Yes SOAP
address of
the selected
port

The URL of the SOAP address selected. This
property is automatically derived from the
<soap:address> element of the selected
Service port. Whenever the selected port is
updated, the Web service URL is updated
accordingly. However, if you override the
value then your value persists and the URL is
no longer updated from the service port.

If you choose to override this property you
must specify it in the form
http://<hostname>[:<port>]/[<path>] where:
v http://<hostname> must be specified.
v <port> has a default of 80. If you specify a

value, you must include the colon : before
the port number.

v <path> has a default of /. If you specify a
value, you must include the / before the
path.

For more details of how to override this
property, see Changing the default URL for a
SOAPRequest node or a SOAPAsyncRequest
node request.

webServiceURL

Request timeout
(in seconds)

No Yes 120 The number of seconds that the client waits
for a remote server to respond with a
'message received' acknowledgment. The
timeout might take up to one second longer
than the value specified.

If no response is received in this time, a SOAP
Fault exception is raised and is propagated to
the Failure terminal.

HTTP(S) proxy
location

No Yes Blank The location of the proxy server to which
requests are sent.

httpProxyLocation

4832 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Protocol (if using
SSL)

No Yes TLS The selected protocol if you use SSL. This
property type is Enumerate. The following
options are available:

SSL This option attempts to connect by
using the SSLv3 protocol first, but
allows the handshake to fall back to
the SSLv2 protocol where the SSLv2
protocol is supported by the
underlying JSSE provider.

SSLv3 This option attempts to connect with
the SSLv3 protocol only. Fallback to
SSLv2 is not allowed.

TLS The default. This option attempts to
connect with the TLS protocol only.
Fallback to SSLv3 or SSLv2 is not
allowed.

TLSv1 This option attempts to connect with
the TLS v1.0 protocol only. Fallback
to SSLv3 or SSLv2 is not allowed.

TLSv1.1
This option attempts to connect with
the TLS v1.1 protocol only. Fallback
to SSLv3, SSLv2, or TLSv1.0 is not
allowed.

TLSv1.2
This option attempts to connect with
the TLS v1.2 protocol only. Fallback
to SSLv3, SSLv2, TLSv1.0, or TLSv1.1
is not allowed.

SSL_TLS
This option enables all SSL v3.0 and
TLS v1.0 protocols. Fallback to SSLv2
is not allowed.

SSL_TLSv2
This option enables all SSL v3.0 and
TLS v1.0, v1.1, and v1.2 protocols.
Fallback to SSLv2 is not allowed.

Both ends of an SSL connection must agree on
the protocol to use; therefore, the chosen
protocol must be one that the remote server
can accept.

sslProtocol

Chapter 14. Reference 4833

||
|
|
|
|
|

||
|
|

||
|
|
|

||
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

Property M C Default Description mqsiapplybaroverride
command property

Allowed SSL
ciphers (if using
SSL)

No Yes None The specific SSL cipher, or ciphers, that you
are using. This setting allows you to specify a
single cipher (such as
SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA) or a list
of ciphers that are the only ones used by the
connection. This set of ciphers must include
one or more that are accepted by the remote
server.

You can specify a list of ciphers in priority
order. The server selects the first acceptable
cipher in the list. If none of the ciphers in the
list are suitable, the server returns a
handshake failure alert and closes the
connection.

A comma is used as a separator between the
ciphers. The default value is an empty string,
which allows the node to use any, or all, of
the available ciphers during the SSL
connection handshake. This method allows the
greatest scope for making a successful SSL
connection.

allowedSSLCiphers

Use compression No No None This property controls whether the content of
the HTTP request is compressed. Valid values
are none, gzip, zlib (deflate) and deflate. If the
request is compressed, the Content-Encoding
header is set to indicate that the content is
compressed.

zlib (deflate) represents RFC 1950 + RFC 1951
combined.

deflate represents RFC 1951 only.

requestCompressionType

Accept
compressed
responses by
default

No Yes Cleared This property indicates whether the request
accepts compressed responses. If this option is
selected, it is possible for the request to
receive responses with a Content-Encoding of
gzip or deflate. If such a response is received,
the content is decoded and the
Content-Encoding header is removed.

If the Request Header does not contain an
Accept-Encoding header then selecting this
option sets the Accept-Encoding header to
"gzip, deflate".

acceptCompressedResponses

Perform
hostname
checking (if using
SSL)

No Yes No This property specifies if the host name of the
server that is receiving the request must match
the host name in the SSL certificate.

hostnameChecking

The SOAPRequest node JMS Transport properties are described in the following
table. These settings are used only when the node uses JMS transport

4834 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Destination Yes Yes None The destination to which the node sends
outgoing messages. If the SOAPRequest node
is to be used to send point-to-point messages,
enter the Destination queue name for the JMS
queue name that is listed in the bindings file.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Destination is set to the
value of destinationName found in the WSDL
if a W3C-style URI is found, or destination if
an IBM-style URI is found.

jmsDestination

Reply To
Destination

No Yes None The name of the JMS destination to which the
receiving application must send a reply
message. This property is not used if the JMS
operation is one way. For a reply message to
be returned to this JMS destination, the JMS
destination name must be known to the
domain of the JMS provider that is used by
the receiving client. If you do not specify a
reply-to destination, a temporary dynamic
queue is used as the reply-to destination. If
you do not specify a reply-to destination and
you are using the WebSphere MQ JMS
provider, you must configure JMS temporary
dynamic queues. For more information about
configuring JMS temporary dynamic queues,
see “Configuring JMS temporary dynamic
queues for the WebSphere MQ JMS provider”
on page 4848.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Reply To Destination is
set to the value of replyToName found in the
WSDL if a W3C-style URI is found, or to the
first of replyToName, replyTo,
replyToDestination, or replyDestination if
an IBM-style URI is found. If any of these
other properties are present, they display as a
name-value pair in the User Parameters table.

jmsReplyToDestination

Request timeout
(in seconds)

No Yes 120 The time the client waits for a remote server
to send a response message before timing out.

requestTimeout

Chapter 14. Reference 4835

Property M C Default Description mqsiapplybaroverride
command property

JMS provider
name

Yes No WebSphere
MQ

Select a JMS vendor name from the list, or
enter a name of your choice. The name must
match the name of a configurable service that
is defined for the broker to which you deploy
the message flow.

When you select a name from the list, the
Initial context factory property is updated
automatically with the relevant Java class. If
you enter your own JMS provider name, you
must also enter a value for the Initial
context factory.

Initial context
factory

Yes Yes com.sun.jndi.fscontext.
RefFSContextFactory

The starting point for a JNDI namespace.

A JMS application uses the initial context to
obtain and look up the connection factory and
queue or topic objects for the JMS provider. If
you select a JMS provider name from the list
in JMS provider name, the Initial context
factory property is updated automatically
with the relevant Java class. If you enter your
own JMS provider name, you must also enter
a value for the Initial context factory. The
default value is
com.sun.jndi.fscontext.RefFSContextFactory,
which defines the file-based Initial context
factory for the WebSphere MQ JMS provider.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Initial context factory
is set to the value of
jndiInitialContextFactory found in the
WSDL if a W3C-style URI is found, or
initialContextFactory if an IBM-style URI is
found.

initialContextFactory

4836 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

JNDI URL
bindings location

Yes Yes The system path or the LDAP location for the
bindings file. The bindings file contains
definitions for the JNDI administered objects
that are used by the SOAPRequest node.

This property is disabled when the Initial
context factory is com.ibm.mq.jms.Nojndi.

When you enter a value for JNDI URL
bindings location, ensure that it complies
with the following instructions:
v Construct the bindings file before you

deploy a message flow that contains a
SOAPRequest node.

v Do not include the file name of the bindings
file in this field.

v If you have specified an LDAP location that
requires authentication, configure the LDAP
principal (userid) and LDAP credentials
(password) separately. These values are
configured at broker level. For information
about configuring these values, see
“mqsicreatebroker command” on page 3831
and “mqsichangebroker command” on page
3723.

v The string value must include a supported
URL prefix that has a URL handler that is
available on the class path.

For information about constructing the JNDI
administered objects bindings file, see the JMS
provider documentation.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. JNDI URL bindings
location is set to the value of jndiURL found
in the WSDL if a W3C-style URI is found, or
jndiProviderURL if an IBM-style URI is found.

locationJndiBindings

Chapter 14. Reference 4837

Property M C Default Description mqsiapplybaroverride
command property

Connection
factory name

Yes Yes The name of the connection factory that is
used by the SOAPRequest node to create a
connection to the JMS provider. This property
is initially configured from the imported
WSDL. This name must exist in the bindings
file. The Connection factory name must be a
JMS QueueConnectionFactory.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Connection factory name
is set to the value of
jndiConnectionFactoryName found in the
WSDL if a W3C-style URI is found, or
connectionFactory if an IBM-style URI is
found.

connectionFactoryName

User Parameters No No This table describes user properties that have
been defined in the request. The properties are
name-value pairs that exist in the WSDL and
are not used by other properties of the
SOAPRequest node.

JNDI parameters No No A table mapping JNDI context parameters to
their type.

These properties take their initial values from
any W3C-style WSDL properties starting with
jndi-. IBM-style WSDL does not support JNDI
parameters, but you can set these properties
on the node.

The SOAPRequest node Message Delivery properties are described in the following
table. This sub tab is enabled only if the selected binding in the Basic tab uses JMS
transport.

Property M C Default Description mqsiapplybaroverride
command property

Target Service No No None Used by the SOAPRequest node when
dispatching the service request.

This property takes its initial value from the
targetService WSDL property.

targetService

4838 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Delivery mode No Yes Persistent This property controls the persistence mode
that a JMS provider uses for a message. Valid
values are:

v Persistent: the message survives if the JMS
provider has a system failure.

v Non Persistent: the message is lost if the
JMS provider has a system failure.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Delivery mode is set to the
value of deliveryMode found in the WSDL if a
W3C-style URI is found, or to the first of
deliveryMode or persistence if an IBM-style
URI is found. If both these properties are
present, the second property displays as a
name-value pair in the User Parameters table.

deliveryMode

Message Priority No Yes 4 This property assigns relative importance to
the message and can be used for message
selection by a receiving web service.

Select a value between 0 (lowest priority) and
9 (highest priority). The default value is 4,
which indicates medium priority. Priorities in
the range 0 - 4 indicate typical delivery.
Priorities in the range 5 - 9 indicate faster
delivery.

This property takes its initial value from a
WSDL URI property, depending on whether
the WSDL address URI is formatted in the
W3C (standards) style, or the IBM
(proprietary) style. Priority is set to the value
of priority found in the WSDL if a W3C-style
URI is found, or to the first of priority or
Priority if an IBM-style URI is found. If both
these properties are present, the second
property displays as a name-value pair in the
User Parameters table.

messagePriority

Message
Expiration (ms)

No Yes 0 This property controls the length of time, in
milliseconds, for which the JMS provider
keeps the output JMS message. The default
value, 0, is used to indicate that the message
must not expire.

This property takes its initial value from the
timeToLive WSDL property.

messageExpiration

Message Type No Yes bytes Select a value from the list to configure the
type of JMS message that is produced by the
SOAPRequest node.

messageType

The SOAPRequest node Transactions properties are described in the following
table. This setting does not apply when the node uses HTTP transport.

Chapter 14. Reference 4839

Property M C Default Description

Transaction
Mode

Yes No AutomaticThis property controls whether the message is output under a JMS transaction.
Valid values are Yes, No, and Automatic.

Select No to output the message using a non-transactional JMS session.

Select Yes to output the message using a transactional JMS session. The JMS
transaction can be either local or global. To use a global transaction, using an XA
JMS session, you must also select the message flow property Coordinated
Transaction in the BAR file properties.

Select Automatic if you want the message transactionality to be inherited from the
Transaction mode setting on the Input node at the start of the flow. This value is
only used when the selected operation is one-way.

See “Configuring for coordinated JMS transactions” on page 4846.

The SOAPRequest node Advanced properties are described in the following table.

Property M C Default Description

WSDL-defined
SOAP response
headers

No No This table is read-only, and is populated by the SOAP headers defined
in the output part of the selected operations. By default, the check
boxes, in the second column of the table, are cleared for all entries in
the WSDL-defined SOAP response headers table. You must select the
relevant check box to add the header to the must understand headers
list.

SOAP headers that are part of the must understand headers list are
incorporated into the flow rather than causing a SOAP fault. Adding
headers to the must understand headers list stops SOAP faults being
generated by SOAP headers.

You do not need to add must understand headers for WS-Addressing
and WS-Security as they are understood if you configure WS
Extensions.The table is updated automatically when the selected
operation is updated. This property is generated in the CMF file.

When the node is configured to act in gateway mode, with no WSDL
required, this table is cleared. The original values of these fields are
restored if the operation mode of the node is changed back to WSDL
mode.

User-defined SOAP
response headers

No Yes None You can add custom headers (headers that are not defined in the
WSDL file) in this table. Use Add, Edit, and Delete for this table. You
must select the check box, in the second column of the table, to
ensure that the newly added custom header is added to the must
understand headers list. This property is generated in the CMF file.

The SOAPRequest node WS Extensions properties are described in the following
table.

Property M C DefaultDescription

Use
WS-
Addressing

No No This property specifies whether to use
WS-Addressing.

For more details about WS-Addressing
with the SOAPRequest node, see
“WS-Addressing with the SOAPRequest
node” on page 1653.

4840 WebSphere Message Broker Version 7.0.0.8

Property M C DefaultDescription

Place
WS-
Addressing
headers
into
LocalEnvironment

No No ClearedThis property specifies whether the node
puts WS-Addressing headers received in
the response message into the local
environment tree. WS-Addressing headers
are not accessible to the flow if this check
box is cleared because by default, all
headers are processed and removed.

Allow
MTOM

No Yes No This property controls whether MTOM is
enabled for the parser. Valid values are
Yes, No, and Inherit. For more information
about using SOAP MTOM with the
SOAPReply, SOAPRequest, and
SOAPAsyncRequest nodes, see “Using
SOAP MTOM with the SOAPReply,
SOAPRequest, and SOAPAsyncRequest
nodes” on page 1678.

MTOM support is disabled when the node
is configured to act in gateway mode.

allowMTOM

WS-
Security

No Yes This complex property is in the form of a
table and consists of two columns:
v Alias
v XPath Expression

You can add XPath expressions with an
associated Alias value to the WS-Security
table. The Alias is resolved in a Policy Set
that is created by the administrator. The
Policy Set resolves the Alias to either
encrypt or sign the part of the message
referred to by the XPath Expression. You
can Add, Edit, and Delete in this table.

The SOAPRequest node Response Message Parsing properties are described in the
following table.

Property M C Default Description

Message domain No No SOAP The domain that is used to parse the response message. By
default, the message that is propagated from the SOAPInput node
is in the SOAP domain. You cannot specify a different domain.
For more information, see “SOAP parser and domain” on page
1082.

The Response Message Parsing properties are disabled when the
node is configured to act in gateway mode.

Chapter 14. Reference 4841

Property M C Default Description

Message set Yes No Set
automatically
from the WSDL
file name
property.

The name of the message set in which the response message is
defined. This property is automatically set to the message set that
contains the WSDL file, when the WSDL is associated with the
node.

If you set this property, then later update the project dependencies
to remove this message set reference, a warning is issued. Either
update the Message set property, or restore the reference to this
message set project.

The Response Message Parsing properties are disabled, and this
property is cleared, when the node is configured to act in gateway
mode.

Message type No No The name of the response message. The node detects the message
type automatically. You cannot set this property.

Message format No No The name of the physical format of the response message. You
cannot set this property.

The SOAPRequest node Parser Options properties are described in the following
table.

Property M C Default Description

Parse timing No No On demand This property controls when a response message is parsed. Valid
values are On demand, Immediate, and Complete. The default
value, On demand, causes parsing of the message to be delayed.

For a full description of this property, see “Parsing on demand”
on page 4173.

Build tree using
XML schema data
types

No No Set This property controls whether the syntax elements in the
message tree have data types taken from the XML Schema. The
SOAP Parser Options properties determine how the SOAP parser
operates. The SOAP parser options are passed through to the
XMLNSC parser.

For more information, see “Manipulating messages in the
XMLNSC domain” on page 2546.

This property is cleared and disabled when the node is
configured to act in gateway mode.

Retain mixed
content

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text in a
response message. If you select the check box, elements are
created for mixed text. If you clear the check box, mixed text is
ignored and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments in a
response message. If you select the check box, elements are
created for comments. If you clear the check box, comments are
ignored and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in a response message. If you select the check box,
elements are created for processing instructions. If you clear the
check box, processing instructions are ignored and no elements
are created.

4842 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Opaque elements No No Blank This property is used to specify a list of elements in the input
message that are to be opaquely parsed. Opaque parsing is
performed only if validation is not enabled (that is, if Validate is
None); entries that are specified in Opaque Elements are ignored if
validation is enabled.

The SOAPRequest node Validation properties are described in the following table.
These properties apply only to the response message; the request message is not
validated.

Property M C Default Description mqsiapplybaroverride command
property

Validate No Yes Content
and
value

This property controls whether the SOAP parser
validates the body of each response message
against XML Schema generated from the message.
Valid values are None, Content and value, and
Content. By default, validation is enabled. The
SOAP parser starts the XMLNSC parser to
validate the XML body of the SOAP Web service.
If a message is propagated to the Failure terminal
of the node, it is not validated.

For more details, see “Validating messages” on
page 1478 and “Validation properties” on page
4169.

Validation properties are disabled, and the
Validate property is set to None, when the node is
configured to act in gateway mode.

validateMaster

Failure
action

No No Exception This property controls what happens if validation
fails. You can set this property only if you set
Validate to Content or Content and value. Valid
values are User trace, Local error log,
Exception, and Exception list.

The Validation properties are disabled when the
node is configured to act in gateway mode.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Working with WrittenDestination data:
After the request has been made, the WrittenDestination folder in the local
environment is updated with the WS-Addressing (if in use), compression details (if
in use) and transport details. A WrittenDestination for a SOAPRequest node has

Chapter 14. Reference 4843

the following format, with WS-Addressing and Compression present only if it is
used, where jmsDestination is the name of your JMS destination:
WrittenDestination = (

SOAP = (
Request = (

WSA = (
To = ’URI’
MessageID = ’id’
Action = ’doAllTheStuff’

)
Transport = (

HTTP = (
WebServiceURL = ’http://server:8080/thing’
Compression = (

OriginalSize = 775
CompressedSize = 411

)
JMS = (

Destination = jmsDestination
)

)
)

)
)

Local environment overrides:
You can dynamically override set values in the local environment in the same way
as setting values in other elements of a message. For a full list of values you can
override in the local environment, see Local environment overrides.

HTTPRequest headers:
To control the contents of a HTTPRequest header that is included in a message,
you must include a Compute node to add a HTTPRequest header to the input
message before the HTTPRequest node in the message flow.

If a SOAPAction is set to an empty string in the HTTPInput header, it is
overridden, unless the action is set explicitly in the HTTPRequest header, for
example:
SET OutputRoot.HTTPRequestHeader.SOAPAction = InputRoot.HTTPInputHeader.SOAPAction

Related concepts:
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“SOAP tree overview” on page 1611
This tree format allows you to access the key parts of the SOAP message in a
convenient way.
“EndpointLookup node output” on page 1894
Use an EndpointLookup node to retrieve the endpoint addresses for WSDL service
definitions held in WebSphere Service Registry and Repository (WSRR).
“SOAP nodes” on page 1609
The SOAP nodes act as points in the flow where Web service processing is
configured and applied. Properties on the SOAP nodes control the processing
carried out and can be configured by supplying a WSDL definition, or by

4844 WebSphere Message Broker Version 7.0.0.8

manually configuring properties, or both.
“WSDL URI formats for JMS” on page 1668
You must use WSDL to configure SOAP nodes. When using WSDL with a JMS
transport, different URI formats can exist in the address element in the WSDL,
which affect how properties are parsed and applied to the configured nodes.
“Using compression with HTTP and SOAP nodes” on page 1597
You can configure HTTP and SOAP nodes to use HTTP compression and
decompression when sending and receiving messages.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Configuring authentication with HTTP basic authentication” on page 451
Use a security profile to configure HTTP basic authentication in the HTTPRequest
or SOAPInput nodes.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.
“Importing WSDL definitions from the command line” on page 2948
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.
“Configuring JMS temporary dynamic queues for the WebSphere MQ JMS
provider” on page 4848
Configure JMS temporary dynamic queues for the WebSphere MQ JMS provider,
so that you can use them with SOAPRequest nodes, by using WebSphere MQ
Explorer.
Related reference:
“SOAPAsyncResponse node” on page 4777
Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest
node to construct a pair of message flows that call a Web service asynchronously.
“SOAPAsyncRequest node” on page 4750
Use the SOAPAsyncRequest node with the SOAPAsyncResponse node to construct
a pair of message flows that call a Web service asynchronously.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.
“SOAPExtract node” on page 4790
Use the SOAPExtract node to remove SOAP envelopes, allowing just the body of a
SOAP message to be processed. It can also route a SOAP message based on its
operation name. Both functions are optional; they are contained in one node
because they are often used together.

Chapter 14. Reference 4845

“SOAPReply node” on page 4819
Use the SOAPReply node to send SOAP messages from the broker to the
originating client in response to a message received by a SOAPInput node.
“HTTPRequest node” on page 4488
Use the HTTPRequest node to interact with a web service.
“EndpointLookup node” on page 4407
Use the EndpointLookup node to retrieve service endpoint information held in the
WebSphere Service Registry and Repository (WSRR). The entities that match the
specified search criteria are stored in the local environment. Depending on the
node configuration, the Web service URL destination used by the SOAP and HTTP
request nodes can also be set. The input message is not modified.
“WS-Addressing with the SOAPRequest node” on page 1653
Various options are available when you use WS-Addressing with the SOAPRequest
node.
“Configuring for coordinated JMS transactions” on page 4544
Configure your message flow to receive or output messages under coordinated
transactions.

Configuring for coordinated JMS transactions:

Configure your message flow to receive or output messages under coordinated
transactions.

When you include a node using JMS transport in a message flow, such as the
JMSInput or SOAPInput node when using JMS transport, the value that you set for
Transaction mode defines whether messages are received under sync point.
v If you set this property to Global, the message is received under external sync

point coordination; that is, within a WebSphere MQ unit of work. Any messages
that are sent later, by an output node in the same instance of the message flow,
are put under sync point, unless the output node overrides this setting explicitly.

v If you set this property to Local, the message is received under the local sync
point control of the node. Any messages that are sent later, by an output node in
the flow, are not put under local sync point, unless an individual output node
specifies that the message must be put under local sync point.

v If you set this property to None, the message is not received under sync point.
Any messages that are sent later, by an output node in the flow, are not put
under sync point, unless an individual output node specifies that the message
must be put under sync point.

To receive messages under external sync point, you must take additional
configuration steps, which need be applied only the first time that a specific node
using JMS transport is deployed to the broker for a particular JMS provider.
v On distributed systems, the external sync point coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction
mode property is set to Global or Yes, and is intended to use globally coordinated
transactions, modify the queue manager .ini file to include extra definitions for
each JMS provider resource manager that participates in globally coordinated
transactions.

– Windows

On Windows:

1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Click Add... .

4846 WebSphere Message Broker Version 7.0.0.8

5. Set the options as follows:
- Set Name to any value.
- On Windows on x86 systems, set the SwitchFile property to

install_dir\bin\JMSSwitch.dll. On Windows on x86-64 systems, set
the SwitchFile property to JMSSwitch.dll.

- Set the XAOpenString property to a string value as follows: Initial
Context,location JNDI,Optional_parms.

- Set the ThreadOfControl property to Thread.
6. On Windows on x86-64 systems only, copy the switch file JMSSwitch32.dll

to the \exits subdirectory in the WebSphere MQ installation directory,
and rename it to JMSSwitch.dll. Copy the switch file JMSSwitch.dll to the
\exits64 subdirectory in the WebSphere MQ installation directory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

– Linux

UNIX

On Linux and UNIX systems, add a stanza to the queue

manager .ini file for each JMS provider.
For example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/ JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

Where:

Name is an installation defined name that identifies a JMS provider resource
manager.

SwitchFile
is the file system path to the JMSSwitch library that is supplied in the
bin directory of the broker.

XAOpenString can have the following values:
– Initial Context is the value that is set in the JMSInput node property Initial

context factory.
– location JNDI is the value that is set in the JMSInput node property Location

JNDI bindings. This value must include a supported URL prefix that has a
URL handler that is available on the class path.

The following parameters are optional:
– LDAP Principal matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– LDAP Credentials matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
– Recovery Connection Factory Name is the JNDI administered connection

factory that is defined in the bindings file. If a value is not specified, you
must add a default value for recoverXAQCF to the bindings file. In either case,
the Recovery Connection Factory must be defined as an XA Queue
Connection Factory for the JMS provider that is associated with the Initial
context factory.

The optional parameters are comma-separated and are positional. Therefore, any
parameters that are missing must be represented by a comma. For example:
com.sun.jndi.fscontext.RefFSContextFactory,file:/C:/webservices/SOAP/JMS/JNDIXA,,,QCF

1. Update the Java CLASSPATH environment variable for the queue manager
of the broker to include a reference to xarecovery.jar; for example:

Chapter 14. Reference 4847

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the queue manager of the
broker to point to the bin directory in which the SwitchFile is located; for
example:
install_dir/bin

Finally, ensure that you have taken the following configuration steps:
– In the message flow, ensure that the coordinated property is enabled by using

the WebSphere Message Broker Archive editor.
– Ensure that each node that must be part of the XA transaction is set to the

global transaction mode.
– Ensure that the service ID that is used for the broker and the queue manager

is the same user ID.
– Ensure that the JNDI connection factory objects that the JMS nodes use for a

global transaction are configured to be of the type MQXAConnectionFactory,
MQXAQueueConnectionFactory, or MQXATopicConnectionFactory.
- If you create the bindings using WebSphere Message Broker Explorer,

ensure the Support XA Transactions option is checked when you define
your connection factory.

- If you create the bindings using JMSAdmin, use the command DEF XAQCF or
DEF XATCF, instead of DEF QCF or DEF TCF, when you define your connection
factory.

For more information, see the System Administration Guide section of the
WebSphere MQ Version 7 Information Center online.

v z/OS On z/OS, the external sync point manager is Resource Recovery
Services (RRS). The only JMS provider that is supported on z/OS is WebSphere
MQ JMS. The only transport option that is supported for WebSphere MQ JMS on
z/OS is the bind option.
Sync point control for the JMS provider is managed with RRS sync point
coordination of the queue manager of the broker. You do not have to modify the
.ini file.

Configuring JMS temporary dynamic queues for the WebSphere MQ JMS
provider:

Configure JMS temporary dynamic queues for the WebSphere MQ JMS provider,
so that you can use them with SOAPRequest nodes, by using WebSphere MQ
Explorer.

About this task

Complete this task before using JMS temporary dynamic queues with the
WebSphere MQ JMS provider in your message flow applications.

If the model queue SYSTEM.JMS.MODEL.QUEUE already exists on your system,
start at step 6 on page 4849 and enter SYSTEM.JMS.MODEL.QUEUE when you are asked
to enter your JMS temporary dynamic model queue name.

Procedure

To set up JMS temporary dynamic queues:
1. In the Navigator view of WebSphere MQ Explorer, expand Queue Managers

> QueueManager, where QueueManager is the name of your queue manager,
click Queues.

4848 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

2. Right-click Queues, then click New > Model Queue. The New Model Queue
wizard opens.

3. Enter a name for your JMS temporary dynamic model queue, for example
SYSTEM.JMS.MODEL.QUEUE, then select SYSTEM.DEFAULT.MODEL.QUEUE as the object
from which to copy attributes, and click Next.

4. Under Change Properties, click Extended and change the following
properties:
a. In the Shareability field, select Shareable.
b. In the Default input open options field, select Input shared.

5. To create your model queue, click Finish.
6. In the Navigator view of WebSphere MQ Explorer, expand JMS

Administered Objects > JNDIRepository, where JNDIRepository is the name
of your JNDI repository, click Connection Factories. A list of Connection
Factories is displayed in the Content view.

7. Right-click the Connection Factory that you want to use, then click Properties.
8. In the Properties window, click Temporary queues.
9. In the Temporary model queue field, enter the name of the JMS temporary

dynamic model queue that you created previously, then click Apply.
10. To save your changes, click OK.

Results

You have created a model queue, and configured your queue manager to create
JMS temporary dynamic queues you can use with the WebSphere MQ JMS
provider.

What to do next

You can now use JMS temporary dynamic queues in your message flow
applications with the WebSphere MQ JMS provider.
Related concepts:
“Processing JMS messages” on page 1679
JMS is the standard J2EE messaging API for building enterprise messaging
applications. WebSphere Message Broker provides built-in input and output nodes
for its supported protocols.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“SOAP over JMS” on page 6698
SOAP over Java Message Service 1.0 is a specification that describes how SOAP
can bind to a messaging system that supports the Java Message Service (JMS).
“The SOAP body” on page 1608
The SOAP body (the <Body> element) is a mandatory sub-element of the SOAP
envelope, which contains information intended for the ultimate recipient of the
message.
Related reference:
“SOAPRequest node” on page 4828
Use the SOAPRequest node to send a SOAP request to the remote Web service.

Chapter 14. Reference 4849

“WebSphere Broker JMS Transport” on page 1681
The WebSphere Broker JMS Transport is a service that connects applications that
send and receive messages that conform to the Java Message Service (JMS)
standard.
Related information:

WebSphere MQ Version 7 Information Center online

Local environment overrides for the SOAPRequest node:

You can dynamically override values in the local environment in the same way as
setting values in other elements of a message.

Other local environment overrides are available for WS-Addressing. See
“WS-Addressing with the SOAPRequest node” on page 1653.

You can set the following properties in the SOAPRequest node under
LocalEnvironment.Destination.SOAP.Request. These local environment overrides
also apply to the SOAPAsyncRequest node.

Setting Description

Operation Overrides the Operation property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Operation = ’myOperation’;

TransportType Overrides the Transport property on the node to switch transport. For example, if the node
is configured to use the JMS transport, use the following to switch to HTTP transport:

SET OutputLocalEnvironment.Destination.SOAP.Request.TransportType = ’http’;

To switch to JMS transport:

SET OutputLocalEnvironment.Destination.SOAP.Request.TransportType = ’jms’;

This overrides the request and response transport for this message.

UserContext You can store BLOB context data in the following location in the local environment. The
SOAPAsyncResponse node can later retrieve this data.

SET OutputLocalEnvironment.Destination.SOAP.Request.UserContext = x’aabbccddeeff11223344556677889900’;

Data stored in the UserContext must be in BLOB format. This field is included in the
message bitstream, and therefore increases the message size.

This setting applies only to the SOAPAsyncRequest node and is ignored by a SOAPRequest
node.

LocalEnvironment overrides for HTTP transport

You can set the following HTTP properties in the SOAPRequest node under
LocalEnvironment.Destination.SOAP.Request.Transport.HTTP. These properties
apply only when using HTTP transport. You can switch between HTTP and JMS
transport using the TransportType override, or the WS-Addressing To field; see
“WS-Addressing information in the local environment” on page 1656.

Setting Description

Compression Overrides the Use compression property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Compression = ’gzip’;

4850 WebSphere Message Broker Version 7.0.0.8

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Setting Description

HTTPVersion Overrides the HTTPVersion. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.HTTPVersion =
’HTTP/1.1’;

Method Overrides the Method. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Method = ’GET’;

ProxyConnectHeaders Specifies additional headers that are used if the outbound request is an SSL connection through a proxy.
These additional headers are sent with the initial CONNECT request to the proxy. For example, you can
send proxy authentication information to a proxy server when you are using SSL. You can send multiple
headers but each one must be separated by a carriage return and a line feed (ASCII 0x0D 0x0A), in
accordance with RFC2616; for example:

DECLARE CRLF CHAR CAST(X’0D0A’ AS CHAR CCSID 1208);
SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.ProxyConnectHeaders =
’Proxy-Authorization: Basic Zm5lcmJsZTpwYXNzd29yZA==’ || CRLF ||
’Proxy-Connection: Keep-Alive’ || CRLF;

This setting is used only if the request is an SSL request through a proxy server. To send proxy
authentication information for a non-SSL request, specify the individual headers in the
HTTPRequestHeader folder, as shown in the following example:

SET OutputRoot.HTTPRequestHeader."Proxy-Authorization" = ’Basic Zm5lcmJsZTpwYXNzd29yZA==’;
SET OutputRoot.HTTPRequestHeader."Proxy-Connection" = ’Keep-Alive’;

ProxyURL Overrides the HTTP(S) proxy location property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.ProxyURL =
’my.proxy’;

RequestURI Overrides the RequestURI, which is the path after the URL and port. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.RequestURI =
’/abc/def?x=y&g=h’;

SSLCiphers Overrides the Allowed SSL Ciphers (if using SSL) property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.SSLCiphers =
’SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA’;

SSLProtocol Overrides the SSLProtocol property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.SSLProtocol =
’TLS’;

Valid values are SSL, SSLv3, and TLS.

Timeout Overrides the Request timeout (in seconds) property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Timeout = 42;

TimeoutMillis Overrides the Request timeout (in seconds) property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.TimeoutMillis = 5000;

This property defines the timeout in milliseconds. The value of TimeoutMillis overrides the value for
Timeout if both values are set.

WebServiceURL Overrides the Web service URL property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.WebServiceURL =
’http://ibm.com/abc/’;

LocalEnvironment overrides for JMS transport

You can set the following JMS properties in the SOAPRequest node under
LocalEnvironment.Destination.SOAP.Request.Transport.JMS. These properties
apply only when using JMS transport. You can switch between HTTP and JMS
transport using the TransportType override, or the WS-Addressing To field; see
“WS-Addressing information in the local environment” on page 1656.

Some JMS local environment overrides for the SOAPRequest node have equivalent
properties in the JMSTransport header. If you specify a local environment override,
it takes precedence over any equivalent property set in the JMSTransport header.

Chapter 14. Reference 4851

Setting Description

BindingsLocation Overrides the JNDI URL bindings location property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.BindingsLocation =
’file:/C:/mqsi6/Webservices/SOAP/JMS/JNDI’;

ConnectionFactoryNameOverrides the Connection factory name property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.ConnectionFactoryName =
’QCF’;

ContextParameters Specify JNDI context parameters in addition to the JNDI context parameters defined on the
node. You can define specific JNDI context parameters, for example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.ContextParameters.property1 =
’value1’;
SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.ContextParameters.property2 =
’value2’;

CorrelationID Sets the request message CorrelID. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.CorrelationID =
’myCorrelID’;

CorrelationPattern Sets the request message correlation pattern. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.CorrelationPattern =
1;

The allowed values are the integers 1 and 2:

v 1 indicates that the messages should be automatically correlated by the CorrelID if one is
present. Otherwise, the messages are correlated by the message ID. This is the default
behavior.

v 2 forces the messages to be correlated by the message ID, even if a CorrelID is present.

DeliveryMode Overrides the DeliveryMode property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.DeliveryMode =
’NON_PERSISTENT’;

Allowed values for this property are PERSISTENT and NON_PERSISTENT. If the UriFormat is ibm,
1 and 0 are additional allowed values for DeliveryMode.

Destination Overrides the Destination property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.Destination =
’REPLYTOQ2’;

DestinationURI You can override multiple JMS properties at the same time in the local environment using
the DestinationURI setting. Properties that you set in this way can be overridden by setting
local environment overrides for individual JMS properties as shown in the following tables.

SET OutputLocalEnvironment.Destination.SOAP.Reply.Transport.JMS.DestinationURI =
’jms:jndi:INPUTQ1?jndiConnectionFactoryName=QCF&
replyToName=REPLYTOQ2&
jndiInitialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory&
jndiURL=file:/C:/Webservices/SOAP/JMS/JNDI&
userParam1=value1&
userParam2=value2&
timeToLive=30000’;

This local environment override can be set with either a W3C-style or IBM-style URI format.
For more information, see “WSDL URI formats for JMS” on page 1668.

Expiration Overrides the Expiration property on the node. This property is specified in milliseconds.
For example, to set an expiration of 100 milliseconds:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.Expiration =
’100’;

4852 WebSphere Message Broker Version 7.0.0.8

Setting Description

InitialContextFactory Overrides the Initial context factory property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.InitialContextFactory =
’com.sun.jndi.fscontext.RefFSContextFactory’;

MessagePriority Overrides the MessagePriority property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.MessagePriority =
’7’;

MessageType Overrides the MessageType property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.MessageType =
’text’;

Allowed values for this property are textand bytes.

ProviderName Overrides the JMS provider name property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.ProviderName =
’WebSphere MQ’;

ReplyToDestination Overrides the ReplyToDestination property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.ReplyToDestination =
’REPLYTOQ3’;

TargetService Overrides the TargetService property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.TargetService =
’testService’;

Timeout Overrides the Timeout property on the node. This value is specified in seconds. For example,
to set a timeout value of 30 seconds:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.Timeout =
’30’;

TransactionMode Overrides the Transaction mode property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.TransactionMode = ’Yes’;

Allowable values for this property are Yes, No and ForceLocal.

v No means that no transaction takes place, and is equivalent to None.

v Yes means that a local transaction takes place if the flow's Coordinated Transaction is not
selected, or a global transaction takes place if the flow's Coordinated Transaction property
is selected.

v ForceLocal means that a local transaction is always used, even if the flow's Coordinated
Transaction property is selected.

UriFormat Overrides the UriFormat property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.UriFormat =
’w3c’;

Allowable values for this property are w3c and ibm.

UserProperties Specify user context parameters in addition to the user context parameters defined on the
node. You can define specific user context parameters, for example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.UserProperties.property1 =
’value1’;
SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.JMS.JNDI.UserProperties.property2 =
’value2’;

Chapter 14. Reference 4853

Setting Description

OneWay Instructs the node that the inbound message was a one-way message and that no reply
message is needed. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Gateway.OneWay = True

If the message is sent over the HTTP transport, the node waits for an acknowledgment
HTTP 202 response message from the remote server. If the message is sent over the JMS
transport no response is expected. In this example the outbound message has no Reply-To
queue, and the node does not wait for any response.

For more information, see “One-way messages in Gateway mode” on page 1648.

TCPIPClientInput node
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.

This topic contains the following sections:
v “Purpose”
v “Using the TCPIPClientInput node in a message flow” on page 4856
v “Configuring the TCPIPClientInput node” on page 4856
v “Terminals and properties” on page 4861

Purpose:
The TCPIPClientInput node opens connections to a remote server application that
is listening on a TCP/IP port. The connections are not made directly by the node
but are obtained from a connection pool managed by the WebSphere Message
Broker execution group. The execution group uses the default TCPIPClient
configurable service to determine which attributes are used for the socket
connection. However, if the configurable service is set on the node, the
configurable service is used for all the properties, including the host and port
number.

You can configure the broker to use SSL for TCP/IP nodes; see “SSL and the
TCP/IP nodes” on page 551.

When a connection is opened by the connection pool, it is sent to a
TCPIPClientInput node (if the Open terminal of the node is connected). The input
event is sent to only one TCPIPClientInput node on the connection.

The node requests a client connection that contains data ready for reading. Until
such a connection is available, the node is paused, waiting for data (in a similar
way to the MQInput node). Therefore, two criteria must be met before the node
becomes available:
v A client connection has been made
v At least one byte of data is available to be processed

By default (as set in the configurable service), no client connections are made by
the input node. The node relies on the creation of client connections by output or
request nodes. In this mode of operation, an input node is never started until an
output or request node starts an interaction.

You can change the mode on the configurable service to create a pool of client
connections ready for processing. To use this function, minimumConnections must be
set to a value larger than zero. The execution group then ensures that the specified

4854 WebSphere Message Broker Version 7.0.0.8

number of connections are always available by creating them at the start, and
continuing to create the connections until the minimum value is reached.

This behavior is different from the TCPIPServerInput node, which does not
attempt to make a minimum number of connections. For more information, see
“TCPIPServerInput node” on page 4890.

The client node also has a maximum value, which limits how many connections it
can create. More connections than the minimum value can exist as a result of
output nodes creating connections.

When connections are available, the second criterion is met when there is at least
one byte of data to be processed; otherwise, the connection closes. In either case,
the connection is given to the node and the event is processed.

The first record of data is detected in accordance with properties on the node and
then sent to the Out terminal. If an error occurs, including a timeout waiting for
data or the closure of a connection while waiting for the full record, the data is
sent to the Failure terminal. If the connection closes and there is no data, a
message is sent to the Close terminal. Although the message has no data, the local
environment does have details of the connection that closed.

For both data and close events, the following local environment is created:

Table 253. Location in local environment

Location in local environment Description

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
Type

The client.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
Hostname

The host name used to make a connection.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
Port

The port number used to make a connection.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
OpenTimestamp

The time stamp when the connection was first opened.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
CloseTimestamp

The time stamp when the connection was closed (null if
not yet closed).

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
SequenceNumber/InputRecord

The sequence number of the message received on this
connection. The first record has a sequencing number of
1; the second record has a sequencing number of 2, and
so on.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
SequenceNumber/OutputRecord

The sequence number of the message sent on this
connection. The first record has a sequencing number of
1; the second record has a sequencing number of 2, and
so on.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/Id The ID of the socket being used. This ID is an internal
identifier used by the message broker to uniquely
identify a connection.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
ReplyId

The reply ID that has been stored on this connection. The
value can be any text string.

When the node has constructed the record from the connection stream it releases
the connection back to the connection pool for use by other nodes. Properties on
the Advanced tab show how that connection can be used by other nodes in the

Chapter 14. Reference 4855

future. By default, the Advanced properties mark the input stream on the TCP/IP
connection as being reserved, which means that no other input node can use it,
until the current use of the message flow is finished. Alternatively, you can reserve
the connection until it is unreserved by another node, or not to reserve it at all and
permit any other node (or thread in this node) to use the connection straight away.
Similar options are available on the output stream but it is kept unreserved by
default.

Another node can access a reserved stream only if the ID of the connection is
known. This behavior allows all the nodes in a message flow to access the same
connection using the same ID while stopping any other flow acquiring the
connection.

The TCPIPClientInput node is contained in the TCPIP drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Message structure

The TCPIPClientInput node handles messages in the following message domains:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

Using the TCPIPClientInput node in a message flow:
Look at the following samples to see how to use the TCPIPClientInput node:
v TCPIP Client Nodes
v TCPIP Handshake

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the TCPIPClientInput node:
When you have put an instance of the TCPIPClientInput node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view.

All mandatory properties that do not have a default value defined are marked
with an asterisk.

Configure the TCPIPClientInput node:
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.

4856 WebSphere Message Broker Version 7.0.0.8

2. On the Basic tab, set the properties that determine how the TCP/IP
connection is controlled.
v Use the Connection details property to specify either the host name and

port number to be used, or the name of a configurable service. This
property is mandatory. The following formats are supported:
– Configurable service name. This value is used to look up the port and

host name in configurable services. For example, TCPIPProfile1.
– <Hostname>:<Port>. This value is the host name followed by the port

number (separated by a colon). For example, tcpip.server.com:1111.
– <Port>. This value is the port number. In this case, the host name is

assumed to be localhost.
v Use the Timeout waiting for a data record (seconds) property to specify

how long the node listens on a connection for more data after the first byte
of data has arrived. You can specify any length of time in seconds. The
default is 60 seconds. When the specified time has been exceeded, all
available data is sent to the Failure terminal.

3. On the Advanced tab, set the properties that determine how the data stream
is controlled.
v Use the Close connection property to specify when and how to close the

connection.
– Select No to leave the connection open. This value is the default.
– Select After timeout to close the connection when a timeout occurs.
– Select After data has been received to close the connection when the

end of the record is found.
– Select At end of flow to close the connection after the flow has been run.

v Select Close input stream after a record has been received to close the
input stream as soon as the data has been retrieved. When the connection
input stream is reserved, no other node can use it without specifying the
ID. This property is not selected by default.

v Use the Input Stream Modification property to specify whether to reserve
the input stream for use only by input and receive nodes that specify the
connection ID, or to release the input stream at the end of the flow. These
options are available only if you have not selected the Close input stream
after a record has been received property.
– Select Leave unchanged to leave the input stream as it was when it

entered the node. This value is selected by default.
– Select Reserve input stream (for use by future TCPIP input and

receive nodes) to specify that this input stream can be used only by this
node and by other receive nodes that request it by specifying the
connection ID. When the connection input stream is reserved, no other
nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCPIP input and
receive nodes) then release at end of flow to specify that this input
stream can be used only by this node and receive nodes that request it
by specifying the correct connection ID. After the flow has been run, this
input stream is returned to the pool and becomes available for use by
any input or receive node.

v Use the Output Stream Modification property to specify whether to release
the output stream.
– Select Leave unchanged to leave the output stream as it was when it

entered the node. This value is selected by default.

Chapter 14. Reference 4857

– Select Release output stream and reset ReplyID to specify that this
output stream is returned to the pool and is available for use by any
output node. The ReplyID is passed in the LocalEnvironment when
leaving this node, but is reset for the next record on this connection.

4. On the Input Message Parsing tab, set values for the properties that the node
uses to determine how to parse the incoming message.
If the incoming message has an MQRFH2 header, you do not have to set
values for the Input Message Parsing properties because the values are
derived from the <mcd> folder in the MQRFH2 header; for example:
<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>
<Fmt>XML</Fmt></mcd>

If you set values that differ from those in the MQRFH2 header, the values in
the MQRFH2 header take precedence.
v In Message domain, select the name of the parser that you are using from

the list. The default is BLOB. You can choose from the following options:
– XMLNSC
– DataObject
– JSON
– BLOB
– MIME
– MRM
– JMSMap
– JMSStream
– XMLNS

You can also specify a user-defined parser, if appropriate.
v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. This list is
populated with available message sets when you select MRM, XMLNSC, or
IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the
list in Message type. This list is populated with available message types
when you select the MRM parser.

v If you are using the MRM or IDOC parser, select the correct message format
from the list in Message format. This list is populated with available
message formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set
ID.

v Select the message encoding from the list in Message encoding or specify a
numeric encoding value. The default is Broker System Determined. You can
choose from the following options:
– Little Endian, with IEEE Floating Point (546)
– Big Endian, with IEEE Floating Point (273)
– Big Endian, with S390 Floating Point (785)
– Broker System Determined

For more information about encoding, see “Data conversion” on page 1151.
5. On the Parser Options subtab:
v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see
“Parsing on demand” on page 4173.

v If you are using the XMLNSC parser, set values for the properties that
determine how the XMLNSC parser operates. For more information, see
“Manipulating messages in the XMLNSC domain” on page 2546.

4858 WebSphere Message Broker Version 7.0.0.8

6. Use the Retry tab to define how retry processing is performed when a flow
fails. You can set the following retry processing:
v Retry mechanism determines the action that occurs if the flow fails. The

following choices can be set:
– Select Failure for the node to report a failure without any retry attempts.
– Select Short retry for the node to retry before reporting a failure if the

condition persists. The number of times that it retries is specified in
Retry threshold.

– Select Short retry and long retry for the node to retry, first using the
value in Retry threshold as the number of attempts to make. If the
condition persists after the Retry threshold has been reached, the node
uses the Long retry interval between attempts.

v Specify the Retry threshold. The number of times the node retries the flow
transaction if the Retry mechanism property is set to either Short retry or
Short retry and long retry.

v Specify the Short retry interval. The length of time, in seconds, to wait
between short retry attempts.

v Specify the Long retry interval. The length of time to wait between long
retry attempts until a message is successful, the message flow is stopped, or
the message flow is redeployed. The broker property MinLongRetryInterval
defines the minimum value that the Long retry interval can take. If the
value is lower than the minimum, the broker value is used.

7. Use the Records and Elements tab to specify how the data is interpreted as
records:
v Use the Record detection property to determine how the data is split into

records, each of which generates a single message. Choose from the
following options:
– End of stream specifies that all of the data sent in the data stream is a

single record.
– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record must contain the number of bytes specified in the
Length property, except possibly a shorter final record in the file.

– Select Delimited if the records you are processing are separated, or
terminated, by a DOS or UNIX line end or by a sequence of user-defined
delimiter bytes. Specify the delimiter and delimiter type in the Delimiter
and Delimiter type properties.

– Select Parsed Record Sequence if the data contains a sequence of one or
more records that are serially recognized by the parser that is specified in
Message domain. The node propagates each recognized record as a
separate message. If you select this Record detection option, the parser
specified in Message domain must be either XMLNSC or MRM (either
CWF or TDS physical format).

v If you set Record detection to Fixed Length, use Length to specify the
required length of the output record. This value must be in the range 1 byte
through 100 MB. The default is 80 bytes.
If you set Record detection to Connection closed, Fixed Length, or
Delimited, a limit of 100 MB applies to the length of the records. If you set
Record detection to Parsed Record Sequence, the TCPIPClientInput node
does not determine or limit the length of a record. Nodes that are
downstream in the message flow might try to determine the record length,
or process a long record. If you intend to process large records in this way,
ensure that your broker has sufficient memory. You might have to apply

Chapter 14. Reference 4859

flow techniques described in the Large Messaging sample to best use the
available memory; see Large Messaging.
You can view information about samples only when you use the
information center that is integrated with the WebSphere Message Broker
Toolkit or the online information center. You can run samples only when
you use the information center that is integrated with the WebSphere
Message Broker Toolkit.

v If you set Record detection to Delimited, use Delimiter to specify the
delimiter to be used. Choose from:
– DOS or UNIX Line End, which, on UNIX systems, specifies the line feed

character (<LF>, X'0A'), and, on Windows systems, specifies a carriage
return character followed by a line feed character (<CR><LF>, X'0D0A').
The node treats both of these strings as delimiters, irrespective of the
system on which the broker is running. If they are both displayed in the
same record, the node recognizes both strings as delimiters. The node
does not recognize X'15', which, on z/OS systems, is the 'newline' byte;
specify a value of Custom Delimiter in this property and a value of 15 in
the Custom delimiter property if your input file is coded using EBCDIC
new lines, such as EBCDIC files from a z/OS system.

– Custom Delimiter, which permits a sequence of bytes to be specified in
Custom delimiter.

v In Custom delimiter, specify the delimiter byte or bytes to be used when
Custom delimiter is set in the Delimiter property. Specify this value as an
even-numbered string of hexadecimal digits. The default is X'0A' and the
maximum length of the string is 16 bytes (represented by 32 hexadecimal
digits).

v If you specify Delimited in Record detection, use Delimiter type to
specify the type of delimiter. Permitted values are:
– Infix. If you select this value, each delimiter separates records. If the

data ends with a delimiter, the (zero length) data following the final
delimiter is still propagated, although it contains no data.

– Postfix. If you specify this value, each delimiter terminates records. If
the data ends with a delimiter, no empty record is propagated after the
delimiter. If the data does not end with a delimiter, it is processed as if a
delimiter follows the final bytes of the data. Postfix is the default value.

v The TCPIPClientInput node considers each occurrence of the delimiter in
the input as either separating (infix) or terminating (postfix) each record. If
the data begins with a delimiter, the node treats the (zero length) contents
preceding that delimiter as a record and propagates an empty record to the
flow. The delimiter is never included in the propagated message.

8. Use the Validation tab to provide validation based on the message set for
predefined messages. For more information about validation, see “Validating
messages” on page 1478. For information about how to complete this tab, see
“Validation tab properties” on page 4169.

9. On the Transactions tab, set the transaction mode. Although TCP/IP
operations are non-transactional, the transaction mode on this input node
determines whether the rest of the nodes in the flow are to be run under point
of consistency. Select Yes if you want the flow updates to be treated
transactionally (if possible) or No if you do not. The default for this property is
No.

10. Optional: On the Instances tab, set values for the properties that show the
additional instances (threads) that are available for a node. For more details,
see “Configurable message flow properties” on page 4020.

4860 WebSphere Message Broker Version 7.0.0.8

Terminals and properties:
The terminals of the TCPIPClientInput node are described in the following table.

Terminal Description

Open The output terminal to which a message is routed when a connection is first opened. Use the Open
terminal if processing is required when a connection is opened rather than when data first arrives.

The connection associated with the message is reserved from the general connection pool until
propagation to the Open terminal has finished. However, the connection can be accessed using the
connectionId specified in the local environment. Each connection that is created is sent to the Open
terminal, including any connections that are created mid-flow by a TCPIPClientReceive node or
TCPIPClientOutput node.

If the Open terminal is not attached, open events are automatically made available in the
connection pool.

Failure The output terminal to which the message is routed if an error occurs. This value includes failures
caused by retry processing. Even if the Validation property is set, messages propagated to this
terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from an external
resource. If no errors occur within the input node, a message received from an external resource is
always sent to the Out terminal first.

Close The output terminal to which the message is routed if the connection closes.

Catch The output terminal to which the message is routed if an exception is issued downstream and
caught by this node. Exceptions are caught only if this terminal is attached.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file for deployment).

The Description properties of the TCPIPClientInput node are described in the
following table.

Property M C Default Description

Node name No No TCPIPClientInput The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The Basic properties of the TCPIPClientInput node are described in the following
table.

Property M C Default Description mqsiapplybaroverride
command property

Connection
details

Yes Yes A string containing either the host name and
port number to be used, or the name of a
configurable service.

connectionDetails

Timeout
waiting for a
data record
(seconds)

Yes Yes 60 Specifies how long the node listens on a
connection for more data after the first byte of
data has arrived. You can specify any length of
time in seconds.

timeoutWaitingForData

Chapter 14. Reference 4861

The Advanced properties of the TCPIPClientInput node are described in the
following table.

Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains open.
Valid options are:
v No
v After Timeout
v After Data has been Received
v At End of Flow

Close input stream
after a record has
been received

Yes No Cleared Specifies whether to close the input stream as soon as the data
has been retrieved. When the connection input stream is
reserved, no other node can use it without knowing the ID.
This property is not selected by default.

Input Stream
Modification

No No Leave
unchanged

Specifies whether to reserve the input stream for use only by
input and receive nodes that specify the connection ID, or to
release it at the end of the flow. Valid options are:

v Leave unchanged

v Reserve input stream (for use by future TCPIP nodes)

v Reserve input stream (for use by future TCPIP nodes)
then release at end of flow

When the connection input stream is reserved, no other nodes
can use it without specifying the correct connection ID. If the
input stream is released at the end of the flow, it is returned
to the pool and becomes available for use by any input or
receive node.

Output Stream
Modification

No No Leave
unchanged

Specifies whether this output stream is released and returned
to the pool for use by any output node. Valid options are:

v Leave unchanged

v Release output stream and reset ReplyID

If you select Release output stream and reset ReplyID, the
ReplyID is passed in the LocalEnvironment when leaving this
node, but is reset for the next record on this connection.

The TCPIPClientInput node Input Message Parsing properties are described in the
following table.

Property M C Default Description mqsiapplybaroverride command
property

Message
domain

No No The domain that is used to parse the
incoming message.

Message set No No The name or identifier of the message
set in which the incoming message is
defined.

If you set this property, then later
update the project dependencies to
remove this message set reference, a
warning is issued. Either update the
Message Set property, or restore the
reference to this message set project.

Message type No No The name of the incoming message.

4862 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride command
property

Message
format

No No The name of the physical format of the
incoming message.

Message
coded
character set
ID

Yes No Broker
System
Default

The ID of the coded character set used
to interpret the data being read.

messageCodedCharSetIdProperty

Message
encoding

Yes No Broker
System
Determined

The encoding scheme for numbers and
large characters used to interpret the
data being read. Valid values are Broker
System Determined or a numeric
encoding value. For more information
about encoding, see “Data conversion”
on page 1151.

messageEncodingProperty

The Parser Options properties of the TCPIPClientInput node are described in the
following table.

Property M C Default Description

Parse timing No No On Demand This property controls when an input message is parsed.
Valid values are:
v On Demand
v Immediate
v Complete

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using XML
schema data types

No No Cleared This property controls whether the syntax elements in the
message tree have data types taken from the XML schema.

Use XMLNSC compact
parser for XMLNS
domain

No No Cleared This property controls whether the XMLNSC Compact
Parser is used for messages in the XMLNS Domain. If you
set this property, the message data is displayed under
XMLNSC in nodes that are connected to the output
terminal when the input MQRFH2 header or Input Message
Parsing property, Message Domain, is XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text
in an input message. If you select the check box, elements
are created for mixed text. If you clear the check box, mixed
text is ignored and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments
in an input message. If you select the check box, elements
are created for comments. If you clear the check box,
comments are ignored and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in an input message. If you select the check
box, elements are created for processing instructions. If you
clear the check box, processing instructions are ignored and
no elements are created.

Opaque elements No No Blank This property is used to specify a list of elements in the
input message that are to be opaquely parsed by the
XMLNSC parser.

Chapter 14. Reference 4863

The Records and Elements properties of the TCPIPClientInput node are described
in the following table:

Property M C Default Description

Record detection Yes No End of Stream The mechanism used to identify records in the input data.
Valid options are:
v End of Stream
v Fixed Length
v Delimited
v Parsed Record Sequence

Length (bytes) Yes No 0 The length of each record, in bytes, when Fixed Length record
detection is selected.

Delimiter Yes No DOS or UNIX
Line End

The type of delimiter bytes that separate, or end, each record
when Delimited record detection is selected. Valid options are:
v DOS or UNIX Line End
v Custom Delimiter (Hexadecimal)

Custom delimiter
(hexadecimal)

No No The delimiter bytes, expressed in hexadecimal, when Delimited
record detection and Custom Delimiter are selected. This
property is mandatory only if the Delimiter property is set to
Custom Delimiter (Hexadecimal).

Delimiter type Yes No Postfix The location of the delimiter when Delimited record detection
and Custom Delimiter (Hexadecimal) are selected. Valid
options are:
v Infix
v Postfix

This property is ignored unless the Delimiter property is set to
Custom Delimiter (Hexadecimal).

The Retry properties of the TCPIPClientInput node are described in the following
table:

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

Yes No Failure How the node handles a flow failure. Valid options
are:
v Failure
v Short Retry
v Short and Long Retry

Retry threshold Yes Yes 0 The number of times to retry the flow transaction
when Retry mechanism is Short retry.

retryThreshold

Short retry
interval

No Yes 0 The interval, in seconds, between each retry if
Retry threshold is not zero.

shortRetryInterval

Long retry
interval

No Yes 300 The interval between retries if Retry mechanism is
Short and long retry and the retry threshold has
been exhausted.

longRetryInterval

The Validation properties of the TCPIPClientInput node are described in the
following table.

For a full description of these properties, see “Validation properties” on page 4169.

4864 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes
place. Valid values are
v None
v Content and Value
v Content

validateMaster

Failure
action

No No Exception This property controls what happens if validation
fails. Valid values are:
v User Trace
v Local Error Log
v Exception
v Exception List

The Transactions properties of the TCPIPClientInput node are described in the
following table:

Property M C Default Description

Transaction
mode

No Yes No The transaction mode on this input node determines whether the rest of
the nodes in the flow are run under point of consistency. Valid options
are:
v No
v Yes

The Instances properties of the TCPIPClientInput node are described in the
following table. For a full description of these properties, see “Configurable
message flow properties” on page 4020.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are
obtained.

v If you select Use Pool Associated with Message
Flow, additional instances are obtained from the
message flow pool.

v If you select Use Pool Associated with Node,
additional instances are allocated from the
additional instances of the node based on the
number specified in the Additional instances
property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node
can start if the Additional instances pool
property is set to Use Pool Associated with Node.

additionalInstances

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4865

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:

4866 WebSphere Message Broker Version 7.0.0.8

“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“TCPIPClientOutput node”
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.

TCPIPClientOutput node
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.

This topic contains the following sections:
v “Purpose”
v “Using the TCPIPClientOutput node in a message flow” on page 4869
v “Configuring the TCPIPClientOutput node” on page 4869
v “Terminals and properties” on page 4873

Purpose:
The TCPIPClientOutput node opens connections to a remote server application that
is listening on a TCP/IP port. The connections are not made directly by the node
but are obtained from a connection pool managed by the WebSphere Message
Broker execution group. The execution group uses the default TCPIPClient
configurable service to determine which attributes are used for the socket

Chapter 14. Reference 4867

connection. However, if the configurable service is set on the node, the
configurable service is used for all the properties, including the host and port
number.

You can configure the broker to use SSL for TCP/IP nodes; see “SSL and the
TCP/IP nodes” on page 551.

The TCPIPClient configurable service is used to create a pool of client connections
ready for processing. To use this function, the minimumConnections property must
be set to a value larger than zero. The execution group ensures that the specified
number of connections are always available by creating them at the start, and
continuing to create the connections until the minimum value is reached.

The node requests a client connection, and, if no connections are available for
sending data, the output node requests that the pool creates a new connection. If
the maximumConnections property has not been exceeded, a new connection is
created.

When the connection has been established, the data is sent. If the data has not been
sent successfully within the time limit specified by the node's Timeout sending a
data record property, an exception is thrown.

Properties in the local environment can override the TCP/IP connection used by
the node:

Table 254. Input local environment properties

Location in local environment Description

$LocalEnvironment/Destination/TCPIP/Output/
Hostname

The host name used to make a connection.

$LocalEnvironment/Destination/TCPIP/Output/Port The port number used to make a connection.

$LocalEnvironment/Destination/TCPIP/Output/Id The ID of the socket being used. This value is an internal
identifier used by WebSphere Message Broker to
uniquely identify a connection.

$LocalEnvironment/Destination/TCPIP/Output/ReplyId The Reply ID that has been stored on this connection. It
can be any text string.

$LocalEnvironment/Destination/TCPIP/Output/Timeout The timeout value used when sending data to the
TCP/IP client connection. This value overrides the
Timeout sending a data record property specified on
the node.

You can dynamically choose the connection details (host name and port number),
and the connection used (ID), by using this property. You can also set the Reply ID
on the connection. The Reply ID enables a string to be stored in the connection and
to be seen in the local environment. You can use this connection to store Reply IDs
from other TCPIP nodes or from other transports, such as WebSphere MQ

The output of the node contains the same information as the input, and any fields
that were missing from the input are updated with details from the connection
used. For example, if the Id property is not provided as input (because you want
to create a new connection or reuse a pool connection), the output local
environment contains the ID of the connection that is used.

4868 WebSphere Message Broker Version 7.0.0.8

Table 255. Output local environment properties

Location in local environment Description

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/Hostname

The host name used to make a connection.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/Port

The port number used to make a connection.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/OpenTimestamp

The time stamp when the connection was first opened.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/CloseTimestamp

The time stamp when the connection was closed (null if
not yet closed).

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/SequenceNumber

The sequence number of the message received on this
connection. The first record has a sequencing number of
1; the second record has a sequencing number of 2, and
so on.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/Id

The ID of the socket being used. This ID is an internal
identifier used by WebSphere Message Broker to
uniquely identify a connection.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/ReplyId

The Reply ID that has been stored on this connection. It
can be any text string.

If the connection closes (or any other type of exception occurs) while using the
TCP/IP transport, an exception is thrown. This exception goes to the Failure
terminal if it is connected, otherwise the exception returns back down the flow.

The node also has a Close input terminal. If a message is sent to this terminal, the
connection is closed using a combination of the details provided in the node and
the local environment.

The TCPIPClientOutput node is contained in the TCPIP drawer of the palette and
is represented in the workbench by the following icon:

Using the TCPIPClientOutput node in a message flow:
The TCPIPClientOutput node can be used in any message flow that needs to send
data to an external application. Look at the following samples to see how to use
this node:
v TCPIP Client Nodes
v TCPIP Handshake

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the TCPIPClientOutput node:
When you have put an instance of the TCPIPClientOutput node into a message
flow, you can configure it (for more information, see “Configuring a message flow
node” on page 1503). The properties of the node are displayed in the Properties
view. All mandatory properties for which you must enter a value (those that do
not have a default value defined) are marked with an asterisk in that view.

Chapter 14. Reference 4869

To configure the TCPIPClientOutput node:
1. Optional: On the Description tab, enter a short description, a long description,

or both. You can also rename the node on this tab.
2. On the Basic tab, set the properties that determine how the TCP/IP connection

is controlled.
v Use the Connection details property to specify either the host name and

port number to be used, or the name of a configurable service. This property
is mandatory. The following formats are supported:
– Configurable service name. This value is used to look up the port and

host name in configurable services. For example, TCPIPProfile1.
– <Hostname>:<Port>. This value is the host name followed by the port

number (separated by a colon). For example, tcpip.server.com:1111.
– <Port>. This value is the port number. In this case, the host name is

assumed to be localhost.
v Use the Timeout sending a data record (seconds) property to specify how

long the node waits when trying to send data. You can specify any length of
time in seconds. When the specified time has been exceeded, all available
data is sent to the Failure terminal. The default is 60 seconds.

3. On the Advanced tab, set the properties that determine how the data stream is
controlled.
v Use the Send to property to specify whether the data is to be sent to one

connection or to all available connections:
– Select One connection to send the message to only one connection, as

specified by the node properties and message overrides. This value is the
default.

– Select All available connections to send the data to all available
connections.

v Use the Close connection property to specify when and how to close the
connection.
– Select No to leave the connection open. This value is the default.
– Select After timeout to close the connection when a timeout occurs.
– Select After data has been sent to close the connection when the end of

the record has been sent.
v Select Close output stream after a record has been sent to close the

output stream as soon as the data has been sent. This property is not selected
by default.

v Use the Output Stream Modification property to specify whether to reserve
or release the output stream. These options are available only if you have not
selected the Close output stream after a record has been sent property.
– Select Leave unchanged to leave the output stream as it was when it

entered the node. This value is selected by default.
– Select Release output stream to specify that this output stream is

returned to the pool and is available for use by any output node.
– Select Reserve output stream (for use by future TCPIP output nodes)

to specify that this output stream can be used only by this node and by
other output nodes that request it by specifying the connection ID. When
the connection input stream is reserved, no other nodes can use it without
specifying the correct connection ID.

– Select Reserve output stream (for use by future TCPIP output nodes)
then release after propagate to specify that this output stream can be
used only by this node and output nodes that request it by specifying the

4870 WebSphere Message Broker Version 7.0.0.8

correct connection ID. After the message has been propagated, this output
stream is returned to the pool and becomes available for use by any
output node.

v Use the Input Stream Modification property to specify whether to reserve
the input stream for use only by input and receive nodes that specify the
connection ID, or to release it at the end of the flow.
– Select Leave unchanged to leave the input stream as it was when it entered

the node. This value is selected by default.
– Select Release input stream to specify that this input stream is returned

to the pool and is available for use by any input or receive node.
– Select Reserve input stream (for use by future TCPIP input and

receive nodes) to specify that this input stream can be used only by this
node and by other input or receive nodes that request it by specifying the
connection ID. When the connection input stream is reserved, no other
nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCPIP input and
receive nodes) then release after propagate to specify that this input
stream can be used only by this node and receive nodes that request it by
specifying the correct connection ID. After the message has been
propagated, this input stream is returned to the pool and becomes
available for use by any input or receive node.

4. On the Request tab, specify the location of the data to be written. You can
specify the properties on this tab as XPath or ESQL expressions. Content Assist
is available in the properties pane and also in the XPath Expression Builder,
which you can invoke by clicking Edit to the right of each property.
a. In Data location, specify the input data location. This value is the location

in the input message tree that contains the record to be written. The default
value is $Body, which is the entire message body ($InputRoot.Body).
When you are specifying this property, and the data in the message tree
that it identifies is owned by a model-driven parser (such as the MRM
parser or XMLNSC parser), consider the following issues:
v If you are using MRM CWF format, ensure that the identified message

tree exists as a message definition. If this value is defined as a global
element only, exceptions BIP5180 and BIP5167 are generated.

v If you are using MRM TDS format, the serialization of the identified
message is successful if the element is defined as a global element or
message. However, if the identified field is not found as a global element
or message, note that:
– If this value is a leaf field in the message tree, the field is written as

self-defining. No validation occurs even if validation is enabled.
– If this value is a complex element, an internal exception is generated,

BIP5522, indicating that the logical type cannot be converted to a
string.

v If you are using MRM XML, the events are similar as for the MRM TDS
format except that, if the field is a complex element, it is written as
self-defining.

v If you use the XMLNSC parser, no validation occurs even if validation is
enabled.

b. In Hostname location, specify the location of the value to override the
Hostname set in the Connection details property of the Basic tab. If you do
not specify a location, the default value is $LocalEnvironment/Destination/
TCPIP/Output/Hostname.

Chapter 14. Reference 4871

c. In Port location, specify the location of the value to override the Port
number set in the Connection details property of the Basic tab. If you do
not specify a location, the default value is $LocalEnvironment/Destination/
TCPIP/Output/Port.

d. In ID location, specify the location of the Id of the socket being used. This
internal identifier is used by WebSphere Message Broker to uniquely
identify a connection. If you do not specify a location, the default value is
$LocalEnvironment/Destination/TCPIP/Output/Id.

e. In Reply ID location, specify the location of the Reply ID that is stored on
the connection being used. The Reply ID can be used when data is returned
in an input node. If you do not specify a location, the default value is
$LocalEnvironment/Destination/TCPIP/Output/ReplyId.

5. Use the Records and Elements tab to specify how the TCPIPClientOutput node
writes the record that is derived from the message.
v In Record definition, choose from:

– Record is Unmodified Data to specify that records are left unchanged.
This value is the default.

– Record is Fixed Length Data to specify that records are padded to a
specified length if necessary. You specify this length in the Length
property. If the record is longer than the value specified in Length, the
node generates an exception. Use the Padding byte (hexadecimal)
property to specify the byte to be used for padding the message to the
required length.

– Record is Delimited Data to specify that records are separated by a
delimiter and accumulated by concatenation. The delimiter is specified by
the Delimiter, Custom delimiter, and Delimiter type properties. The file
is finished only when a message is received on the Finish File terminal.

v In Length (bytes), specify the length (in bytes) of records when Record is
Fixed Length Data is specified in Record definition. Records longer than
this value cause an exception to be issued. This value must be in the range 1
byte through 100 MB. The default is 80 bytes.

v When Record is Fixed Length Data is specified in Record definition, use
Padding byte (hexadecimal) to specify the byte to be used when padding
records to the specified length if they are shorter than this length. Specify
this value as 2 hexadecimal digits. The default value is X'20'.

v In Delimiter, specify the delimiter to be used if you specify Record is
Delimited Data in Record definition. Choose from:
– Broker System Line End to specify that a line end sequence of bytes is

used as the appropriate delimiter for the file system on which the broker
is to run. This value is the default. For example, on Windows systems, this
value is a 'carriage-return, line-feed' pair (X'0D0A'); on UNIX systems, this
value is a single 'line-feed' byte (X'0A'); on z/OS systems, this value is a
'newline' byte (X'15').

– Custom Delimiter (hexadecimal) to specify that the explicit delimiter
sequence defined in the Custom delimiter property is to be used to
delimit records.

v In Custom delimiter (hexadecimal), specify the delimiter sequence of bytes
to be used to delimit records when Custom Delimiter is specified in the
Delimiter property. Specify this value as an even-numbered string of
hexadecimal digits. The default is X'0A' and the maximum length of the
string is 16 bytes.

4872 WebSphere Message Broker Version 7.0.0.8

v If you specify Record is Delimited Data in Record definition, use
Delimiter type to specify how the delimiter is to separate records. Choose
from:
– Postfix to specify that the delimiter is added after each record that is

written. This value is the default.
– Infix to specify that the delimiter is only inserted between any two

adjacent records.
6. On the Validation tab, specify the parser validation properties of the node. For

more information about validation, see “Validating messages” on page 1478.
For information about how to complete this tab, see “Validation tab properties”
on page 4169.

Terminals and properties:
The TCPIPClientOutput node terminals are described in the following table.

Terminal Type Description

In Input data The input terminal that accepts a message for processing by the node.

Close Input control The input terminal to which a message is routed when the connection given in the
local environment is closed.

Out Output data The output terminal to which the message is routed if it is successfully sent to an
external resource. The message received on the In terminal is propagated to the Out
terminal and is left unchanged except for the addition of status information.

Close Output control The output terminal to which a message propagated from the Close input terminal is
routed.

Failure Output data The output terminal to which the message is routed if a failure is detected in the
node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the TCPIPClientOutput node are described in the
following table:

Property M C Default Description

Node name No No TCPIPClientOutput The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The Basic properties of the TCPIPClientOutput node are described in the following
table:

Property M C Default Description mqsiapplybaroverride
command property

Connection
details

Yes Yes A string containing either the host name and port
number to be used, or the name of a configurable
service.

connectionDetails

Chapter 14. Reference 4873

Property M C Default Description mqsiapplybaroverride
command property

Timeout
sending a data
record
(seconds)

Yes Yes 60 Specifies how long the node waits when
attempting to send data. You can specify any
length of time in seconds.

timeoutSendingData

The Advanced properties of the TCPIPClientOutput node are described in the
following table.

Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains open.
Valid options are:
v No
v After Timeout
v After Data has been Sent

Close output
stream after a
record has been
sent

Yes No Cleared Specifies whether to close the output stream as soon as the data
has been sent. This property is not selected by default.

Output Stream
Modification

No No Leave
unchanged

Specifies whether to reserve this output stream or release it and
return it to the pool for use by any output node. Valid options
are:

v Leave unchanged

v Release output stream

v Reserve output stream (for use by future TCPIP nodes)

v Reserve output stream (for use by future TCPIP nodes)
then release at end of flow

Input Stream
Modification

No No Leave
unchanged

Specifies whether to reserve the input stream for use only by
input and receive nodes that specify the connection ID, or to
release it at the end of the message flow. Valid options are:

v Leave unchanged

v Release input stream

v Reserve input stream (for use by future TCPIP nodes)

v Reserve input stream (for use by future TCPIP nodes) then
release at end of flow

When the connection input stream is reserved, no other nodes
can use it without specifying the correct connection ID. If the
input stream is released after the message has been propagated, it
is returned to the pool and becomes available for use by any
input or receive node.

Send to: Yes No One
Connection

Specifies whether the data is to be sent to one connection or to
available connections. Valid options are:
v One Connection
v All Available Connections

The Request properties of the TCPIPClientOutput node are described in the
following table:

4874 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Data location Yes No $Body The location in the input
message tree containing
the record to be written.

Hostname
location

Yes No $LocalEnvironment/Destination/TCPIP/Output/Hostname The message element
location containing the
host name.

Port location Yes No $LocalEnvironment/Destination/TCPIP/Output/Port The message element
location containing the
port.

ID location Yes No $LocalEnvironment/Destination/TCPIP/Output/Id The message element
location containing the
ID.

Reply ID
location

Yes No $LocalEnvironment/Destination/TCPIP/Output/ReplyId The message element
location containing the
reply ID.

The Records and Elements properties of the TCPIPClientOutput node are described
in the following table:

Property M C Default Description

Record
definition

Yes No Record is
Unmodified
Data

This property controls how the records derived from the message
are written. Valid options are:
v Record is Unmodified Data
v Record is Fixed Length Data
v Record is Delimited Data

Length (bytes) Yes No 0 The required length of the output record. This property applies
only when Record is Fixed Length Data is specified in Record
definition.

Padding byte
(hexadecimal)

Yes No 20 The two-digit hexadecimal byte to be used to pad short messages
when Record is Fixed Length Data is specified in Record
definition.

Delimiter Yes No Broker System
Line End

The delimiter to be used when Record is Delimited Data is
specified in Record definition. Valid options are:
v Broker System Line End
v Custom Delimiter (Hexadecimal)

Custom
delimiter
(hexadecimal)

No No None The delimiter byte sequence to be used when Record is
Delimited Data is specified in the Record definition property
and Custom Delimiter (Hexadecimal) is specified in the
Delimiter property.

Delimiter type Yes No Postfix This property specifies the way in which the delimiters are to be
inserted between records when Record is Delimited Data is
specified in Record definition. Valid options are:
v Infix
v Postfix

The Validation properties of the TCPIPClientOutput node are described in the
following table.

For a full description of these properties, see “Validation properties” on page 4169.

Chapter 14. Reference 4875

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Inherit This property controls whether validation takes place.
Valid values are:
v None
v Content and Value
v Content
v Inherit

validateMaster

Failure
action

No No ExceptionThis property controls what happens if validation
fails. You can set this property only if you set
Validate to Content or Content and Value. Valid
values are:
v User Trace
v Local Error Log
v Exception
v Exception List

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

4876 WebSphere Message Broker Version 7.0.0.8

“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPClientReceive node”
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

TCPIPClientReceive node
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.

This topic contains the following sections:
v “Purpose”
v “Using the TCPIPClientReceive node in a message flow” on page 4879
v “Configuring the TCPIPClientReceive node” on page 4879
v “Terminals and properties” on page 4884

Purpose:
The TCPIPClientReceive node waits for data to be received on a TCP/IP
connection, and retrieves the data. If the connection is closed, an exception is
thrown.

You can configure the broker to use SSL for TCP/IP nodes; see “SSL and the
TCP/IP nodes” on page 551.

When a connection is established, the data is sent to the TCPIPClientReceive node.
If the TCPIPClientReceive node fails to receive all of the data within the time

Chapter 14. Reference 4877

specified in the Timeout waiting for a data record property, the message is sent
to the timeout terminal; if no timeout terminal is connected, an exception is
thrown.

Properties in the local environment can override the TCP/IP connection used by
the node.

Table 256. Input local environment properties

Location in local environment for input to node Description

$LocalEnvironment//TCPIP/Receive/Hostname The host name used to make a connection.

$LocalEnvironment//TCPIP/Receive/Port The port number used to make a connection.

$LocalEnvironment/TCPIP/Receive/Id The ID of the socket being used. This ID is an internal
identifier used by WebSphere Message Broker to
uniquely identify a connection.

$LocalEnvironment/TCPIP/Receive/ReplyId The Reply ID to be stored on this connection. This ID
can then be used when data is returned on an input
node. The Reply ID can be any text string.

$LocalEnvironment/TCPIP/Receive/Timeout The timeout value used when waiting for data on the
TCP/IP client connection. This value overrides the
Timeout waiting for a data record property specified
on the node.

$LocalEnvironment/TCPIP/Receive/Length The value used to override the number of bytes to be
read when using fixed size records. This value overrides
the Length (bytes) property specified on the node. If the
Record detection property is set to anything other than
Fixed Length, the local environment field is ignored. If
this field is not present or evaluates to null, it is ignored
and the value on the node is used.

These properties enable the connection details (host name and port number) and
the connection used (ID) to be selected dynamically. You can also set the Reply ID
on the connection, which enables a string to be stored in the connection and to be
seen in the local environment of any data that is received back from this
connection. You can use this connection to store Reply IDs from other TCPIP nodes
or from other transports, such as WebSphere MQ.

When a record has been retrieved, the ConnectionDetails field in the local
environment is populated with the details of the connection that is being used.

Table 257. Output local environment properties

Location in local environment for output from node Description

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
Type

The client.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
Hostname

The host name used to make a connection.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
Port

The port number used to make a connection.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
OpenTimestamp

The time stamp when the connection was first opened.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
CloseTimestamp

The time stamp when the connection was closed (null if
not yet closed).

4878 WebSphere Message Broker Version 7.0.0.8

Table 257. Output local environment properties (continued)

Location in local environment for output from node Description

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
SequenceNumber/InputRecord

The sequence number of the message that is received on
this connection. The first record has a sequencing
number of 1; the second record is 2; and so on.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
SequenceNumber/OutputRecord

The sequence number of the message sent on this
connection. The first record has a sequencing number of
1; the second record is 2; and so on.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
Id

The ID of the socket being used. This ID is an internal
identifier used by WebSphere Message Broker to
uniquely identify a connection.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
ReplyId

The Reply ID that is stored on this connection. This ID
can be any text string.

The TCPIPClientReceive node is contained in the TCPIP drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Message structure

The TCPIPClientReceive node handles messages in the following message
domains:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

Using the TCPIPClientReceive node in a message flow:
Look at the following samples to see how to use the TCPIPClientReceive node:
v TCPIP Client Nodes
v TCPIP Handshake

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the TCPIPClientReceive node:
When you have put an instance of the TCPIPClientReceive node into a message
flow, you can configure it; see . The properties of the node are displayed in the
Properties view.

All mandatory properties that do not have a default value defined are marked
with an asterisk.

Chapter 14. Reference 4879

Configure the TCPIPClientReceive node:
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, set the properties that determine how the TCP/IP connection

is controlled.
v Use the Connection details property to specify either the host name and

port number to be used, or the name of a configurable service. This property
is mandatory. The following formats are supported:
– Configurable service name. This value is used to look up the port and

host name in configurable services. For example, TCPIPProfile1.
– <Hostname>:<Port>. This value is the host name followed by the port

number (separated by a colon); for example, tcpip.server.com:1111
– <Port>. This value is the port number. In this case, the host name is

assumed to be localhost.
v Use the Timeout waiting for a data record (seconds) property to specify

how long the node listens on a connection for more data after the first byte
of data has arrived. You can specify any length of time in seconds. The
default is 60 seconds. When the specified time has been exceeded, all
available data is sent to the Failure terminal.

3. On the Advanced tab, set the properties that determine how the data stream is
controlled.
v Use the Close connection property to specify when and how to close the

connection.
– Select No to leave the connection open. This value is the default.
– Select After timeout to close the connection when a timeout occurs.
– Select After data has been received to close the connection when the

end of the record is found.
v Select Close input stream after a record has been received to close the

input stream as soon as the data has been retrieved. By default this property
is not selected. When the connection input stream is reserved, no other node
can use it without knowing the ID.

v Use the Input Stream Modification property to specify whether to reserve
the input stream for use only by input and receive nodes that specify the
connection ID, or to release the input stream at the end of the flow.
– Select Leave unchanged to leave the input stream as it was when it entered

the node. This value is selected by default.
– Select Release input stream to specify that this input stream is returned

to the pool and is available for use by any input or receive node.
– Select Reserve input stream (for use by future TCPIP input and

receive nodes) to specify that this input stream can be used only by this
node and by other input or receive nodes that request it by specifying the
connection ID. When the connection input stream is reserved, no other
nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCPIP input and
receive nodes) then release after propagate to specify that this input
stream can be used only by this node and receive nodes that request it by
specifying the correct connection ID. After the message has been
propagated, this input stream is returned to the pool and becomes
available for use by any input or receive node.

4880 WebSphere Message Broker Version 7.0.0.8

v Use the Output Stream Modification property to specify whether to reserve
or release the output stream. These options are available only if you have not
selected the Close output stream after a record has been sent property.
– Select Leave unchanged to leave the output stream as it was when it

entered the node. This value is selected by default.
– Select Release output stream to specify that this output stream is

returned to the pool and is available for use by any output node.
– Select Reserve output stream (for use by future TCPIP output nodes)

to specify that this output stream can be used only by this node and by
other output nodes that request it by specifying the connection ID. When
the connection input stream is reserved, no other nodes can use it without
specifying the correct connection ID.

– Select Reserve output stream (for use by future TCPIP output nodes)
then release after propagate to specify that this output stream can be
used only by this node and output nodes that request it by specifying the
correct connection ID. After the message has been propagated, this output
stream is returned to the pool and becomes available for use by any
output node.

4. On the Request tab, specify the location of the data to be written. You can
specify the properties on this tab as XPath or ESQL expressions. Content Assist
is available in the Properties view and also in the XPath Expression Builder,
which you can run by clicking Edit to the right of each property.
v In Hostname location, specify the location of the value to override the

Hostname that is set in the Connection details property of the Basic tab. If
you do not specify a location, the default value is $LocalEnvironment/TCPIP/
Receive/Hostname.

v In Port location, specify the location of the value to override the Port that
is set in the Connection details property of the Basic tab. If you do not
specify a location, the default value is $LocalEnvironment/TCPIP/Receive/
Port.

v In ID location, specify the location of the Id of the socket being used. This
internal identifier is used by WebSphere Message Broker to uniquely identify
a connection. If you do not specify a location, the default value is
$LocalEnvironment/TCPIP/Receive/Id.

v In Reply ID location, specify the location of the Reply ID that is stored on
the connection that is being used. The Reply ID can be used when data is
returned in an input node. If you do not specify a location, the default value
is $LocalEnvironment/TCPIP/Receive/ReplyId.

5. On the Result tab, set values for the properties that determine where the reply
is stored.
v Use the Output data location property to specify the start location in the

output message tree where the parsed elements from the bit string of the
message are stored. The default value is $OutputRoot.

v Use the Copy local environment property to specify whether the local
environment is copied to the output message.
– If Copy local environment is selected, a new copy of the local

environment is created in the tree, and it is populated with the contents of
the local environment from the preceding node. Therefore, if a node
changes the local environment, the upstream nodes are not affected by
those changes because they have their own copies. This value is the
default.

Chapter 14. Reference 4881

– If Copy local environment is not selected, the node does not generate its
own copy of the local environment, but uses the local environment that is
passed to it by the preceding node. Therefore, if a node changes the local
environment, the changes are reflected by the upstream nodes.

6. On the Input Message Parsing tab, set values for the properties that the node
uses to determine how to parse the incoming message.
If the incoming message has an MQRFH2 header, you do not have to set values
for the Input Message Parsing properties because the values are derived from
the <mcd> folder in the MQRFH2 header; for example:
<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>
<Fmt>XML</Fmt></mcd>

If you set values, and if they differ from the values in the MQRFH2 header, the
values in the MQRFH2 header take precedence.
v In Message domain, select the name of the parser that you are using from the

list. The default is BLOB. You can choose from the following options:
– XMLNSC
– DataObject
– JSON
– BLOB
– MIME
– MRM
– JMSMap
– JMSStream
– XMLNS

You can also specify a user-defined parser, if appropriate.
v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. This list is
populated with available message sets when you select MRM, XMLNSC, or
IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the
list in Message type. This list is populated with available message types
when you select the MRM parser.

v If you are using the MRM or IDOC parser, select the correct message format
from the list in Message format. This list is populated with available message
formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set
ID.

v Select the message encoding from the list in Message encoding or specify a
numeric encoding value. For more information about encoding, see “Data
conversion” on page 1151.

7. On the Parser Options subtab:
v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see
“Parsing on demand” on page 4173.

v If you are using the XMLNSC parser, set values for the properties that
determine how the XMLNSC parser operates. For more information, see
“Manipulating messages in the XMLNSC domain” on page 2546.

8. Use the Records and Elements tab to specify how the data is interpreted as
records. Only one record is retrieved each time the TCPIPClientReceive node is
invoked; therefore, if the TCP/IP stream contains multiple logical messages,
you must call the node multiple times to receive all the messages.

4882 WebSphere Message Broker Version 7.0.0.8

v Use the Record detection property to determine how the data is split into
records, each of which generates a single message. Choose from the
following options:
– Connection closed specifies that all of the data sent during a connection is

a single record.
– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record contains the number of bytes specified in the Length
property, except possibly a shorter final record in the file.

– Select Delimited if the records that you are processing are separated, or
terminated, by a DOS or UNIX line end or by a sequence of user-defined
delimiter bytes. Specify the delimiter and delimiter type in the Delimiter
and Delimiter type properties.

– Select Parsed Record Sequence if the data contains a sequence of one or
more records that are serially recognized by the parser specified in
Message domain. The node propagates each recognized record as a separate
message. If you select this Record detection option, the parser specified
in Message domain must be either XMLNSC or MRM (either CWF or TDS
physical format).

v If you set Record detection to Fixed Length, use Length to specify the
required length of the output record. This value must be in the range 1 byte
through 100 MB. The default is 80 bytes.
If you set Record detection to Connection closed, Fixed Length, or
Delimited, a limit of 100 MB applies to the length of the records. If you set
Record detection to Parsed Record Sequence, the TCPIPClientReceive node
does not determine or limit the length of a record. Nodes that are
downstream in the message flow might try to determine the record length or
process a long record. If you intend to process large records in this way,
ensure that your broker has sufficient memory. You might have to apply flow
techniques described in the Large Messaging sample to best use the available
memory.

v If you set Record detection to Delimited, use Delimiter to specify the
delimiter to be used. Choose from the following options:
– DOS or UNIX Line End, on UNIX systems, specifies the line feed character

(<LF>, X'0A'), and, on Windows systems, specifies a carriage return
character followed by a line feed character (<CR><LF>, X'0D0A'). The
node treats both of these strings as delimiters, irrespective of the system
on which the broker is running. If both strings can be seen in the same
record, the node recognizes both as delimiters. The node does not
recognize X'15' which, on z/OS systems, is the 'newline' byte; set this
property to Custom Delimiter and set Custom delimiter to 15 if your
input file is coded using EBCDIC new lines.

– Custom Delimiter (hexadecimal), permits a sequence of bytes to be
specified in Custom delimiter (hexadecimal)

v In Custom delimiter (hexadecimal), specify the delimiter byte or bytes to be
used when Delimiter is set to Custom delimiter (hexadecimal). Specify this
value as an even-numbered string of hexadecimal digits. The default is X'0A'
and the maximum length of the string is 16 bytes (represented by 32
hexadecimal digits).

v If you set Record detection to Delimited, use Delimiter type to specify the
type of delimiter. Permitted values are:
– Infix. If you select this value, each delimiter separates records. If the data

ends with a delimiter, the (zero length) data following the final delimiter
is still propagated, although it contains no data.

Chapter 14. Reference 4883

– Postfix. If you specify this value, each delimiter terminates records. If the
data ends with a delimiter, no empty record is propagated after the
delimiter. If the data does not end with a delimiter, it is processed as if a
delimiter follows the final bytes of the data. Postfix is the default value.

v The TCPIPClientReceive node considers each occurrence of the delimiter in
the input as either separating (infix) or terminating (postfix) each record. If
the data begins with a delimiter, the node treats the (zero length) contents
preceding that delimiter as a record and propagates an empty record to the
flow. The delimiter is never included in the propagated message.

9. Use the Validation tab to provide validation based on the message set for
predefined messages. For more information about validation, see “Validating
messages” on page 1478. For information about how to complete this tab, see
“Validation tab properties” on page 4169.

Terminals and properties:
The terminals of the TCPIPClientReceive node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal to which the message is routed if it is successfully retrieved from an external
resource. If no errors occur in the input node, a message received from an external resource is
always sent to the Out terminal first.

Timeout The terminal to which a message is sent when the time specified in the Timeout waiting for a
data record property has been exceeded. The message text is timeout value is exceeded.

Failure The output terminal to which the message is routed if an error occurs. These errors include
failures caused by retry processing. Even if the Validation property is set, messages propagated to
this terminal are not validated.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the TCPIPClientReceive node are described in the
following table.

Property M C Default Description

Node name No No TCPIPClientReceive The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the message
flow.

The Basic properties of the TCPIPClientReceive node are described in the following
table.

Property M C Default Description mqsiapplybaroverride
command property

Connection
details

Yes Yes A string containing either the host name and port
number to be used, or the name of a configurable
service.

connectionDetails

4884 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Timeout
waiting for a
data record
(seconds)

Yes Yes 60 Specifies how long the node listens on a
connection for more data after the first byte of
data has arrived. You can specify any length of
time in seconds.

timeoutWaitingForData

The Advanced properties of the TCPIPClientReceive node are described in the
following table.

Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains open.
Valid options are:
v No
v After Timeout
v After Data has been Received

Close input stream
after a record has
been received

Yes No Cleared Specifies whether to close the input stream as soon as the data
has been retrieved. When the connection input stream is
reserved, no other node can use it without knowing the ID. By
default, this property is not selected.

Input Stream
Modification

No No Leave
unchanged

Specifies whether to reserve the input stream for use only by
input and receive nodes that specify the connection ID, or to
release the input stream at the end of the flow. Valid options
are:

v Leave unchanged

v Release input stream

v Reserve input stream (for use by future TCPIP nodes)

v Reserve input stream (for use by future TCPIP nodes)
then release at end of flow

When the connection input stream is reserved, no other nodes
can use it without specifying the correct connection ID. If the
input stream is released after the message has been propagated,
it is returned to the pool and becomes available for use by any
input or receive node.

Output Stream
Modification

No No Leave
unchanged

Specifies whether to reserve this output stream or release it and
return it to the pool for use by any output node. Valid options
are:

v Leave unchanged

v Release output stream

v Reserve output stream (for use by future TCPIP nodes)

v Reserve output stream (for use by future TCPIP nodes)
then release at end of flow

The Request properties of the TCPIPClientReceive node are described in the
following table:

Property M C Default Description

Host name
location

Yes No $LocalEnvironment/TCPIP/Receive/Hostname The message element
location that contains the
host name.

Chapter 14. Reference 4885

Property M C Default Description

Port location Yes No $LocalEnvironment/TCPIP/Receive/Port The message element
location that contains the
port.

ID location Yes No $LocalEnvironment//TCPIP/Receive/Id The message element
location that contains the
ID.

Reply ID
location

Yes No $LocalEnvironment/TCPIP/Receive/ReplyId The message element
location that contains the
Reply ID.

Record length
location

No No $LocalEnvironment/TCPIP/Receive/Length The message element
location that contains the
record length to be read.
Specify the location of the
value to override the
Length (bytes) property
on the Records and
elements tab. If you do not
specify a location, the
default value is
$LocalEnvironment/TCPIP/
Receive/Length.

The Result properties of the TCPIPClientReceive node are described in the
following table:

Property M C Default Description

Output data
location

No No $OutputRoot The start location in the output
message tree where the parsed
elements from the bit string of the
message are stored.

Copy local
environment

No No Selected Specifies if the local environment is
copied to the output message.

The Input Message Parsing properties of the TCPIPClientReceive node are
described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Message
domain

No No The domain that is used to parse the
incoming message.

Message set No No The name or identifier of the message set
in which the incoming message is defined.

If you set this property, then later update
the project dependencies to remove this
message set reference, a warning is issued.
Either update the Message Set property, or
restore the reference to this message set
project.

Message
type

No No The name of the incoming message.

Message
format

No No The name of the physical format of the
incoming message.

4886 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Message
coded
character set
ID

Yes No Broker
System
Default

The ID of the coded character set that is
used to interpret the data being read.

messageCodedCharSetIdProperty

Message
encoding

Yes No Broker
System
Determined

The encoding scheme for numbers and
large characters used to interpret the data
that is being read. Valid values are Broker
System Determined or a numeric encoding
value. For more information about
encoding, see “Data conversion” on page
1151.

messageEncodingProperty

The Parser Options properties of the TCPIPClientReceive node are described in the
following table.

Property M C Default Description

Parse timing No No On Demand This property controls when an input message is parsed.
Valid values are:
v On Demand
v Immediate
v Complete

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using
XML schema data
types

No No Cleared This property controls whether the syntax elements in the
message tree have data types taken from the XML Schema.

Use XMLNSC
compact parser for
XMLNS domain

No No Cleared This property controls whether the XMLNSC Compact Parser
is used for messages in the XMLNS domain. If you set this
property, the message datais displayed under XMLNSC in
nodes that are connected to the output terminal when the
input MQRFH2 header or Input Message Parsing property,
Message Domain, is XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text
in an input message. If you select the check box, elements are
created for mixed text. If you clear the check box, mixed text
is ignored and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments in
an input message. If you select the check box, elements are
created for comments. If you clear the check box, comments
are ignored and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in an input message. If you select the check box,
elements are created for processing instructions. If you clear
the check box, processing instructions are ignored and no
elements are created.

Opaque elements No No Blank This property is used to specify a list of elements in the input
message that are to be parsed opaquely by the XMLNSC
parser.

Chapter 14. Reference 4887

The Records and Elements properties of the TCPIPClientReceive node are
described in the following table:

Property M C Default Description

Record detection Yes No Connection
Closed

The mechanism used to identify records in the input data.
Valid options are:
v Connection Closed
v Fixed Length
v Delimited
v Parsed Record Sequence

Length (bytes) Yes No 0 The length of each record, in bytes, when Fixed Length
record detection is selected.

Delimiter Yes No DOS or UNIX Line
End

The type of delimiter bytes that separate, or ends, each
record when Delimited record detection is selected. Valid
options are:
v DOS or UNIX Line End
v Custom Delimiter (Hexadecimal)

Custom delimiter
(hexadecimal)

No No The delimiter bytes, expressed in hexadecimal, when
Delimited record detection and Custom Delimiter
(Hexadecimal) are selected. This property is mandatory
only if the Delimiter property is set to Custom Delimiter
(Hexadecimal).

Delimiter type Yes No Postfix The location of the delimiter when Delimited record
detection and Custom Delimiter (Hexadecimal) are
selected. Valid options are:
v Infix
v Postfix

This property is ignored unless the Delimiter property is
set to Custom Delimiter (Hexadecimal).

The Validation properties of the TCPIPClientReceive node are described in the
following table.

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes
place. Valid values are
v None
v Content and Value
v Content
v inherit

validateMaster

Failure
action

No No Exception This property controls what happens if validation
fails. You can set this property only if you set
Validate to Content or Content and Value. Valid
values are:
v User Trace
v Local Error Log
v Exception
v Exception List

The Monitoring properties of the node are described in the following table.

4888 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.

Chapter 14. Reference 4889

Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPServerInput node”
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerReceive node” on page 4913
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

TCPIPServerInput node
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.

This topic contains the following sections:
v “Purpose”
v “Using the TCPIPServerInput node in a message flow” on page 4892
v “Configuring the TCPIPServerInput node” on page 4892
v “Terminals and properties” on page 4896

Purpose:
The TCPIPServerInput node listens on a port and, when a client socket connects to
the port, the server socket creates a connection for the client. Unlike the
TCPIPClientInput node, the TCPIPServerInput node does not attempt to make a

4890 WebSphere Message Broker Version 7.0.0.8

minimum number of connections, because the server end of the socket cannot
initiate new connections, it can only accept them. The TCPIPServerInput node
accepts connections up to a maximum value, which is specified in the
MaximumConnections property of the TCPIPServer configurable service. By
default, the broker can accept up to 100 server connections. For more information,
see “mqsicreateconfigurableservice command” on page 3849 and
“mqsireportproperties command” on page 3937.

You can configure the broker to use SSL for TCP/IP nodes; see “SSL and the
TCP/IP nodes” on page 551.

When a connection is opened, a message containing details of the connection is
sent to the Open terminal; no data is routed to this terminal. Use the Open
terminal if processing is required when a connection is opened rather than when
data first arrives. The output stream for the connection is reserved until the
propagation of the open message has finished (which happens immediately if the
terminal is not attached to any other nodes). The options on the Advanced tab of
the node do not apply to open events; they are applicable only when the first data
arrives on the connection and is propagated down the Out terminal.

The first record of data is detected in accordance with properties on the node and
then sent to the Out terminal. If an error occurs, including a timeout waiting for
data or the closure of a connection while waiting for the full record, the data is
sent to the Failure terminal. If the connection closes and no data exists, a message
is sent to the Close terminal. Although the message has no data, the local
environment does have details of the connection that closed.

For both data and close events, the following local environment is created.

Table 258. Location in local environment

Location in local environment Description

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
Type

The server.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
Hostname

The host name used to make a connection.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
Port

The port number used to make a connection.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
OpenTimestamp

The time stamp when the connection was first opened.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
CloseTimestamp

The time stamp when the connection was closed (null if
not yet closed).

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
SequenceNumber/InputRecord

The sequence number of the message received on this
connection. The first record has a sequencing number of
1; the second record has a sequencing number of 2; and
so on.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
SequenceNumber/OutputRecord

The sequence number of the message sent on this
connection. The first record has a sequencing number of
1; the second record has a sequencing number of 2; and
so on.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/Id The ID of the socket being used. This ID is an internal
identifier used by WebSphere Message Broker to
uniquely identify a connection.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
ReplyId

The Reply ID that is stored on this connection. It can be
any text string.

Chapter 14. Reference 4891

Table 258. Location in local environment (continued)

Location in local environment Description

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
ClientDetails/Hostname

The fully qualified domain name of the computer from
which the client connected.

$LocalEnvironment/TCPIP/Input/ConnectionDetails/
ClientDetails/Address

The IP address of the computer from which the client
connected.

The TCPIPServerInput node is contained in the TCPIP drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Message structure

The TCPIPServerInput node handles messages in the following message domains:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

Using the TCPIPServerInput node in a message flow:
Look at the following samples to see how to use the TCPIPServerInput node:
v TCPIP Client Nodes
v TCPIP Handshake

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the TCPIPServerInput node:
When you have put an instance of the TCPIPServerInput node into a message
flow, you can configure it; see . The properties of the node are displayed in the
Properties view.

All mandatory properties that do not have a default value defined are marked
with an asterisk.

Configure the TCPIPServerInput node:
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, set the properties that determine how the TCPIP connection

is controlled.

4892 WebSphere Message Broker Version 7.0.0.8

v Use the Connection details property to specify the port number to be
used, or the name of a configurable service. This property is mandatory.
The following formats are supported:
– Configurable service name. This value is used to look up the port

number in configurable services. For example, TCPIPProfile1.
– <Port>. This value is the port number. For example, 1111

v Use the Timeout waiting for a data record (seconds) property to specify
how long the node listens on a connection for more data after the first byte
of data has arrived. You can specify any length of time in seconds. The
default is 60 seconds. When the specified time has been exceeded, all
available data is sent to the Failure terminal.

3. On the Advanced tab, set the properties that determine how the data stream
is controlled.
v Use the Close connection property to specify when and how to close the

connection.
– Select No to leave the connection open. This value is the default.
– Select After timeout to close the connection when a timeout occurs.
– Select After data has been received to close the connection when the

end of the record is found.
– Select At end of flow to close the connection after the flow has been run.

v Select Close input stream after a record has been received to close the
input stream as soon as the data has been retrieved. When the connection
input stream is reserved, no other node can use it without specifying the
ID. This property is not selected by default.

v Use the Input Stream Modification property to specify whether to reserve
the input stream for use only by input and receive nodes that specify the
connection ID, and, if reserved, whether to release the input stream at the
end of the flow. These options are available only if you have not selected
the Close input stream after a record has been received property.
– Select Leave unchanged to leave the input stream as it was when it

entered the node. This value is selected by default.
– Select Reserve input stream (for use by future TCPIP input and

receive nodes) to specify that this input stream can be used only by this
node and by other receive nodes that request it by specifying the
connection ID. When the connection input stream is reserved, no other
nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCPIP input and
receive nodes) then release at end of flow to specify that this input
stream can be used only by this node and receive nodes that request it
by specifying the connection ID. After the flow has been run, this input
stream is returned to the pool and becomes available for use by any
input or receive node.

v Use the Output Stream Modification property to specify whether to release
the output stream.
– Select Leave unchanged to leave the output stream as it was when it

entered the node. This value is selected by default.
– Select Release output stream and reset ReplyID to specify that this

output stream is returned to the pool and is available for use by any
output node. The ReplyID is passed in the local environment when
leaving this node, but is reset for the next record on this connection.

Chapter 14. Reference 4893

4. On the Input Message Parsing tab, set values for the properties that the node
uses to determine how to parse the incoming message.
If the incoming message has an MQRFH2 header, you do not have to set
values for the Input Message Parsing properties because the values are
derived from the <mcd> folder in the MQRFH2 header; for example:
<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>
<Fmt>XML</Fmt></mcd>

If you set values, and those values differ from those in the MQRFH2 header,
the values in the MQRFH2 header take precedence.
v In Message domain, select the name of the parser that you are using from

the list. The default is BLOB. You can choose from the following options:
– XMLNSC
– DataObject
– JSON
– BLOB
– MIME
– MRM
– JMSMap
– JMSStream
– XMLNS

You can also specify a user-defined parser, if appropriate.
v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. This list is
populated with available message sets when you select MRM, XMLNSC, or
IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the
list in Message type. This list is populated with available message types
when you select the MRM parser.

v If you are using the MRM or IDOC parser, select the correct message format
from the list in Message format. This list is populated with available
message formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set
ID.

v Select the message encoding from the list in Message encoding or specify a
numeric encoding value. For more information about encoding, see “Data
conversion” on page 1151.

5. On the Parser Options subtab:
a. Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately,
see “Parsing on demand” on page 4173.

b. If you are using the XMLNSC parser, set values for the properties that
determine how the XMLNSC parser operates. For more information, see
“Manipulating messages in the XMLNSC domain” on page 2546.

6. Use the Retry tab to define how retry processing is performed when a flow
fails. You can set the following properties:
v Retry mechanism determines the action that occurs if the flow fails. Choose

from the following values:
– Select Failure for the node to report a failure without any retry attempts.
– Select Short retry for the node to retry before reporting a failure if the

condition persists. The number of times that it retries is specified in
Retry threshold.

4894 WebSphere Message Broker Version 7.0.0.8

– Select Short retry and long retry for the node to retry, first using the
value in Retry threshold as the number of attempts it should make. If
the condition persists after the Retry threshold has been reached, the
node then uses the Long retry interval between attempts.

v Specify the Retry threshold:The number of times the node retries the flow
transaction if the Retry mechanism property is set to either Short retry or
Short retry and long retry.

v Specify the Short retry interval:The length of time, in seconds, to wait
between short retry attempts.

v Specify the Long retry interval:The length of time to wait between long
retry attempts until a message is successful, the message flow is stopped, or
the message flow is redeployed. The broker property MinLongRetryInterval
defines the minimum value that the Long retry interval can take. If the
value is lower than the minimum, the broker value is used.

7. Use the Records and Elements tab to specify how the data is interpreted as
records.
v Use the Record detection property to determine how the data is split into

records, each of which generates a single message. Choose from the
following options:
– End of stream specifies that all of the data sent in the data stream is a

single record.
– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record contains the number of bytes specified in the Length
property.

– Select Delimited if the records that you are processing are separated, or
ended, by a DOS or UNIX line end or by a sequence of user-defined
delimiter bytes. Specify the delimiter and delimiter type in the Delimiter
and Delimiter type properties.

– Select Parsed Record Sequence if the data contains a sequence of one or
more records that are serially recognized by the parser specified in
Message domain. The node propagates each recognized record as a
separate message. If you select the Record detection option, the parser
specified in Message domain must be either XMLNSC or MRM (either
CWF or TDS physical format).

v If you set Record detection to Fixed Length, use Length to specify the
required length of the output record. This value must be in the range 1 byte
through 100 MB. The default is 80 bytes.
If you set Record detection to End of stream, Fixed Length, or Delimited,
a limit of 100 MB applies to the length of the records. If you set Record
detection toParsed Record Sequence, the TCPIPServerInput node does not
determine or limit the length of a record. Nodes that are downstream in the
message flow might try to determine the record length or process a long
record. If you intend to process large records in this way, ensure that your
broker has sufficient memory. You might have to apply flow techniques
described in the Large Messaging sample to best use the available memory.

v If you set Record detection to Delimited, use Delimiter to specify the
delimiter to be used. Choose from the following values:
– DOS or UNIX Line End, which, on UNIX systems, specifies the line feed

character (<LF>, X'0A'), and, on Windows systems, specifies a carriage
return character followed by a line feed character (<CR><LF>, X'0D0A').
The node treats both of these strings as delimiters, irrespective of the
system on which the broker is running. If both strings are seen in the
same record, the node recognizes both as delimiters. The node does not

Chapter 14. Reference 4895

recognize X'15', which, on z/OS systems, is the 'newline' byte; specify a
value of Custom Delimiter in this property and a value of 15 in the
Custom delimiter property if your input data is coded using EBCDIC
new lines.

– Custom Delimiter, which permits a sequence of bytes to be specified in
Custom delimiter

v In Custom delimiter, specify the delimiter byte or bytes to be used when
Delimiter is set to Custom delimiter. Specify this value as an
even-numbered string of hexadecimal digits. The default is X'0A' and the
maximum length of the string is 16 bytes (represented by 32 hexadecimal
digits).

v If you set Record detection to Delimited, use Delimiter type to specify the
type of delimiter. Permitted values are:
– Infix. If you select this value, each delimiter separates records. If the

data ends with a delimiter, the (zero length) data that follows the final
delimiter is still propagated although it contains no data.

– Postfix. If you specify this value, each delimiter ends records. If the data
ends with a delimiter, no empty record is propagated after the delimiter.
If the data does not end with a delimiter, it is processed as if a delimiter
follows the final bytes of the data. Postfix is the default value.

v The TCPIPServerInput node considers each occurrence of the delimiter in
the input as either separating (infix) or terminating (postfix) each record. If
the data begins with a delimiter, the node treats the (zero length) contents
preceding that delimiter as a record and propagates an empty record to the
flow. The delimiter is never included in the propagated message.

8. Use the Validation tab to provide validation based on the message set for
predefined messages. For more information about validation, see “Validating
messages” on page 1478. For information about how to provide validation for
this tab, see “Validation tab properties” on page 4169.

9. On the Transactions tab, set the transaction mode. Although TCPIP operations
are non-transactional, the transaction mode on this input node determines
whether the rest of the nodes in the flow are to be run under point of
consistency or not. Select Yes if you want the flow updates to be treated
transactionally (if possible) or No if you do not. The default for this property is
No.

10. Optional: On the Instances tab, set values for the properties that determine
the additional instances (threads) that are available for a node. For more
details, see “Configurable message flow properties” on page 4020.

Terminals and properties:
The terminals of the TCPIPServerInput node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. These errors include
failures caused by retry processing. Even if the Validation property is set, messages propagated
to this terminal are not validated.

Open The output terminal to which a message is routed when it is first opened. Use the Open terminal
if processing is required when a connection is opened rather than when data first arrives.

Out The output terminal to which the message is routed if it is successfully retrieved from an
external resource. If no errors occur within the input node, a message that is received from an
external resource is always sent to the Out terminal first.

Close The output terminal to which the message is routed if the connection closes.

4896 WebSphere Message Broker Version 7.0.0.8

Terminal Description

Catch The output terminal to which the message is routed if an exception is thrown downstream and
caught by this node. Exceptions are caught only if this terminal is attached.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the TCPIPServerInput node are described in the
following table.

Property M C Default Description

Node name No No TCPIPServerInput The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The Basic properties of the TCPIPServerInput node are described in the following
table.

Property M C Default Description mqsiapplybaroverride
command property

Connection
details

Yes Yes A string containing the port number to be used, or
the name of a configurable service.

connectionDetails

Timeout
waiting for a
data record
(seconds)

Yes Yes 60 Specifies how long the node listens on a
connection for more data after the first byte of
data has arrived. You can specify any length of
time in seconds.

timeoutWaitingForData

The Advanced properties of the TCPIPServerInput node are described in the
following table.

Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains
open. Valid options are:
v No
v After Timeout
v After Data has been Received
v At End of Flow

Close input stream
after a record has
been received

Yes No Cleared Specifies whether to close the input stream as soon as the
data has been retrieved. When the connection input stream
is reserved, no other node can use it without knowing the
ID. By default, this option is not selected.

Chapter 14. Reference 4897

Property M C Default Description

Input Stream
Modification

No No Leave
unchanged

Specifies whether to reserve the input stream for use only
by input and receive nodes that specify the connection ID,
and, if reserved, whether to release the input stream at the
end of the flow. Valid options are:

v Leave unchanged

v Reserve input stream (for use by future TCPIP nodes)

v Reserve input stream (for use by future TCPIP nodes)
then release at end of flow

When the connection input stream is reserved, no other
nodes can use it without specifying the correct connection
ID. If the input stream is released at the end of the flow, it is
returned to the pool and becomes available for use by any
input or receive node.

Output stream
modification

No No Leave
unchanged

Specifies whether this output stream is released and
returned to the pool for use by any output node. Valid
options are:
v Leave unchanged
v Release output stream and reset ReplyID

If you select Release output stream and reset ReplyID, the
ReplyID is passed in the local environment when leaving
this node, but is reset for the next record on this connection.

The TCPIPServerInput node Input Message Parsing properties are described in the
following table.

Property M C Default Description mqsiapplybaroverride
command property

Message
domain

No No The domain that is used to parse the
incoming message.

Message set No No The name or identifier of the message
set in which the incoming message is
defined.

If you set this property, then later
update the project dependencies to
remove this message set reference, a
warning is issued. Either update the
Message Set property, or restore the
reference to this message set project.

Message type No No The name of the incoming message.

Message
format

No No The name of the physical format of
the incoming message.

Message
coded
character set
ID

Yes No Broker
System
Default

The ID of the coded character set used
to interpret the data being read.

messageCodedCharSetIdProperty

Message
encoding

Yes No Broker
System
Determined

The encoding scheme for numbers and
large characters used to interpret the
data being read. Valid values are
Broker System Determined or a
numeric encoding value. For more
information about encoding, see “Data
conversion” on page 1151.

messageEncodingProperty

4898 WebSphere Message Broker Version 7.0.0.8

The Parser Options properties of the TCPIPServerInput node are described in the
following table.

Property M C Default Description

Parse timing No No On Demand This property controls when an input message is parsed.
Valid values are:
v On Demand
v Immediate
v Complete

For a full description of this property, see “Parsing on
demand” on page 4173.

Build tree using XML
schema data types

No No Cleared This property controls whether the syntax elements in the
message tree have data types taken from the XML Schema.

Use XMLNSC compact
parser for XMLNS
domain

No No Cleared This property controls whether the XMLNSC Compact Parser
is used for messages in the XMLNS Domain. If you set this
property, the message data is displayed under XMLNSC in
nodes that are connected to the output terminal when the
input MQRFH2 header or Input Message Parsing property,
Message Domain, is XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text
in an input message. If you select the check box, elements are
created for mixed text. If you clear the check box, mixed text
is ignored and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments in
an input message. If you select the check box, elements are
created for comments. If you clear the check box, comments
are ignored and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in an input message. If you select the check box,
elements are created for processing instructions. If you clear
the check box, processing instructions are ignored and no
elements are created.

Opaque elements No No Blank This property is used to specify a list of elements in the input
message that are to be opaquely parsed by the XMLNSC
parser.

The Records and Elements properties of the TCPIPServerInput node are described
in the following table:

Property M C Default Description

Record detection Yes No End of Stream The mechanism used to identify records in the input data.
Valid options are:
v End of Stream
v Fixed Length
v Delimited
v Parsed Record Sequence

Length (bytes) Yes No 0 The length of each record, in bytes, when Fixed Length record
detection is selected.

Chapter 14. Reference 4899

Property M C Default Description

Delimiter Yes No DOS or UNIX
Line End

The type of delimiter bytes that separates, or ends, each record
when Delimited record detection is selected. Valid options are:
v DOS or UNIX Line End
v Custom Delimiter (Hexadecimal)

Custom delimiter
(hexadecimal)

No No The delimiter bytes, expressed in hexadecimal, when Delimited
record detection and Custom Delimiter (Hexadecimal) are
selected. This property is mandatory only if the Delimiter
property is set to Custom Delimiter (Hexadecimal).

Delimiter type Yes No Postfix The location of the delimiter when Delimited record detection
and Custom Delimiter (Hexadecimal) are selected. Valid
options are:
v Infix
v Postfix

This property is ignored unless the Delimiter property is set to
Custom Delimiter (Hexadecimal).

The Retry properties of the TCPIPServerInput node are described in the following
table:

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

Yes No Failure How the node handles a flow failure. Valid options
are:
v Failure
v Short Retry
v Short and Long Retry

Retry threshold Yes Yes 0 The number of times to retry the flow transaction
when Retry mechanism is Short retry.

retryThreshold

Short retry
interval
(seconds)

No Yes 0 The interval, in seconds, between each retry if Retry
threshold is not zero.

shortRetryThreshold

Long retry
interval
(seconds)

No Yes 300 The interval between retries if Retry mechanism is
Short and Long Retry and the retry threshold has
been exhausted.

longRetryThreshold

The Validation properties of the TCPIPServerInput node are described in the
following table.

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes
place. Valid values are
v None
v Content and Value
v Content

validateMaster

4900 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Failure
action

No No Exception This property controls what happens if validation
fails. Valid values are:
v User Trace
v Local Error Log
v Exception
v Exception List

The Transactions properties of the TCPIPServerInput node are described in the
following table:

Property M C Default Description

Transaction
mode

No Yes No The transaction mode on this input node determines whether the rest
of the nodes in the flow are executed under point of consistency.
Valid options are:
v Yes
v No

The Instances properties of the TCPIPServerInput node are described in the
following table. For a full description of these properties, see “Configurable
message flow properties” on page 4020.

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are
obtained.

v If you select Use Pool Associated with Message
Flow, additional instances are obtained from the
message flow pool.

v If you select Use Pool Associated with Node,
additional instances are allocated from the
additional instances of the node, based on the
number specified in the Additional instances
property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node
can start if the Additional instances pool property
is set to Use Pool Associated with Node.

additionalInstances

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications

Chapter 14. Reference 4901

that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Data conversion” on page 1151
Convert data that your message flows are transferring between different
environments by using WebSphere MQ or WebSphere Message Broker facilities.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Using more than one input node” on page 1473
You can include more than one input node in a single message flow.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you

4902 WebSphere Message Broker Version 7.0.0.8

select the Manage and Configure tab for the broker archive file.
“Input node” on page 4511
Use the Input node as an In terminal for an embedded message flow (a subflow).
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPServerOutput node”
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.

TCPIPServerOutput node
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.

This topic contains the following sections:
v “Purpose”
v “Using the TCPIPServerOutput node in a message flow” on page 4905
v “Configuring the TCPIPServerOutput node” on page 4905
v “Terminals and properties” on page 4908

Purpose:
The TCPIPServerOutput node listens on a TCP/IP port and waits for a client node
to make a connection with the port. When the client node connects to the port, the
server node creates a connection for the client. The connections are not made
directly by the node but are obtained from a connection pool managed by the
WebSphere Message Broker execution group.

The execution group uses the default TCPIPServer configurable service to
determine which attributes are used for the socket connection. However, if the
configurable service is set on the node, the configurable service is used for all the
properties, including the host and port number.

When the connection has been established, the data is sent. If the data is not sent
successfully within the time limit specified by the node's Timeout sending a data
record property, an exception is thrown.

You can configure the broker to use SSL for TCP/IP nodes; see “SSL and the
TCP/IP nodes” on page 551.

Chapter 14. Reference 4903

Properties in the local environment can override the TCP/IP connection used by
the node.

Table 259. Input local environment properties

Location in local environment Description

$LocalEnvironment/Destination/TCPIP/Output/
Hostname

The host name used to make a connection.

$LocalEnvironment/Destination/TCPIP/Output/Port The port number used to make a connection.

$LocalEnvironment/Destination/TCPIP/Output/Id The ID of the socket being used. This ID is an internal
identifier used by WebSphere Message Broker to
uniquely identify a connection.

$LocalEnvironment/Destination/TCPIP/Output/ReplyId The Reply ID that is stored on this connection. It can be
any text string.

$LocalEnvironment/Destination/TCPIP/Output/Timeout The timeout value used when sending data to the
TCP/IP server connection. This value overrides the
Timeout sending a data record property specified on
the node.

You can dynamically select the connection details (host name and port number),
and the connection used (ID), using these properties. The Reply ID can also be set
on the connection, which enables a string to be stored in the connection and to be
displayed in the local environment. This behavior can be used to store Reply IDs
from other TCPIP nodes or from other transports such as WebSphere MQ.

The output of the node contains the same information as the input, and any fields
that are missing from the input are updated with details from the connection used.
For example, if the Id property is not provided as input (because you want to
create a connection or reuse a pool connection), the output local environment
contains the ID of the connection that is used.

Table 260. Output local environment properties

Location in local environment Description

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/Hostname

The host name used to make a connection.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/Port

The port number used to make a connection.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/OpenTimestamp

The time stamp when the connection was first opened.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/CloseTimestamp

The time stamp when the connection was closed (null if
not yet closed).

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/SequenceNumber

The sequence number of the message received on this
connection. The first record has a sequencing number 1,
the second record has a sequencing number 2, and so on.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/Id

The ID of the socket being used. This ID is an internal
identifier used by WebSphere Message Broker to
uniquely identify a connection.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/ReplyId

The Reply ID that is stored on this connection. It can be
any text string.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/ClientDetails/Hostname

The fully qualified domain name of the computer from
which the client connected.

$LocalEnvironment/WrittenDestination/TCPIP/Output/
ConnectionDetails/ClientDetails/Address

The IP address of the computer from which the client
connected.

4904 WebSphere Message Broker Version 7.0.0.8

If the connection closes (or any other type of exception occurs) while using the
TCP/IP transport, an exception is thrown. This exception goes to the Failure
terminal if it is connected, otherwise the exception goes back down the message
flow.

The node also has a Close input terminal. If a message is sent to this terminal, the
connection is closed using a combination of the details provided in the node and
the local environment.

The TCPIPServerOutput node is contained in the TCPIP drawer of the palette and
is represented in the workbench by the following icon:

Using the TCPIPServerOutput node in a message flow:
You can use the TCPIPServerOutput node in any message flow that must send
data to an external application. Look at the following samples to see how to use it:
v TCPIP Client Nodes
v TCPIP Handshake

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the TCPIPServerOutput node:
When you have put an instance of the TCPIPServerOutput node into a message
flow, you can configure it (for more information, see “Configuring a message flow
node” on page 1503). The properties of the node are displayed in the Properties
view. All mandatory properties for which you must enter a value (those that do
not have a default value defined) are marked with an asterisk in that view.

To configure the TCPIPServerOutput node:
1. Optional: On the Description tab, enter a short description, a long description,

or both. You can also rename the node on this tab.
2. On the Basic tab, set the properties that determine how the TCP/IP connection

is controlled.
v Use the Connection details property to specify the port number to be used,

or the name of a configurable service. This property is mandatory. The
following formats are supported:
– Configurable service name. This value is used to look up the port

number in configurable services; for example, TCPIPProfile1.
– <Port>. This value is the port number; for example, 1111
– <Port>. This value is the port number. In this case the host name is

assumed to be localhost.
v Use the Timeout sending a data record (seconds) property to specify how

long the node waits when trying to send data. You can specify any length of
time in seconds. When the specified time has been exceeded, all available
data is sent to the Failure terminal. The default is 60 seconds.

3. On the Advanced tab, set the properties that determine how the data stream is
controlled.

Chapter 14. Reference 4905

v Use the Send to property to specify whether the data is to be sent to one
connection or to all available connections.
– Select One connection to send the message to only one connection, as

specified by the node properties and message overrides. This value is the
default.

– Select All available connections to send the data to all available
connections.

v Use the Close connection property to specify when and how to close the
connection.
– Select No to leave the connection open. This value is the default.
– Select After timeout to close the connection when a timeout occurs.
– Select After data has been sent to close the connection when the end of

the record has been sent.
v Select Close output stream after a record has been sent to close the

output stream as soon as the data has been sent. By default, this property is
not selected.

v Use the Output Stream Modification property to specify whether to reserve
or release the output stream. These options are available only if you have not
selected the Close output stream after a record has been sent property.
– Select Leave unchanged to leave the output stream as it was when it

entered the node. This value is selected by default.
– Select Release output stream to specify that this output stream is

returned to the pool and is available for use by any output node.
– Select Reserve output stream (for use by future TCPIP output nodes)

to specify that this output stream can be used only by this node and by
other output nodes that request it by specifying the connection ID. When
the connection input stream is reserved, no other nodes can use it without
specifying the correct connection ID.

– Select Reserve output stream (for use by future TCPIP output nodes)
then release after propagate to specify that this output stream can be
used only by this node and output nodes that request it by specifying the
correct connection ID. After the message has been propagated, this output
stream is returned to the pool and becomes available for use by any
output node.

v Use the Input Stream Modification property to reserve the input stream for
use only by input and receive nodes that specify the connection ID, or to
release the input stream at the end of the message flow.
– Select Leave unchanged to leave the input stream as it was when it entered

the node. This value is selected by default.
– Select Release input stream to specify that this input stream is returned

to the pool and is available for use by any input or receive node.
– Select Reserve input stream (for use by future TCPIP input and

receive nodes) to specify that this input stream can be used only by this
node and by other input or receive nodes that request it by specifying the
connection ID. When the connection input stream is reserved, no other
nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCPIP input and
receive nodes) then release after propagate to specify that this input
stream can be used only by this node and receive nodes that request it by
specifying the correct connection ID. After the message has been
propagated, this input stream is returned to the pool and becomes
available for use by any input or receive node.

4906 WebSphere Message Broker Version 7.0.0.8

4. On the Request tab, specify the location of the data to be written. You can
specify the properties on this tab as XPath or ESQL expressions. Content Assist
is available in the Properties view and also in the XPath Expression Builder,
which you can call by using the Edit button to the right of each property.
a. In Data location, specify the input data location, which is the location in

the input message tree that contains the record to be written. The default
value is $Body, which is the entire message body ($InputRoot.Body).
When you specify this property, if the data in the message tree that it
identifies is owned by a model-driven parser (such as the MRM parser or
XMLNSC parser,) be aware of the following considerations:
v If you are using MRM CWF format, ensure that the identified message

tree exists as a message definition. If this message tree is defined as a
global element only, exceptions BIP5180 and BIP5167 are generated.

v If you are using MRM TDS format, the serialization of the identified
message is successful if the element is defined as a global element or
message. However, if the identified field is not found as a global element
or message, note that:
– If this field is a leaf field in the message tree, the field is written as

self-defining. No validation occurs even if validation is enabled.
– If this field is a complex element, an internal exception is generated,

BIP5522, indicating that the logical type cannot be converted to a
string.

v If you are using MRM XML, the events are similar to the MRM TDS
format except that, if the field is a complex element, it is written as
self-defining.

v If you use the XMLNSC parser, no validation occurs, even if validation is
enabled.

b. In Port location, specify the location of the value to override the Port that
is set in the Connection details property of the Basic tab. If you do not
specify a location, the default value is $LocalEnvironment/Destination/
TCPIP/Output/Port.

c. In ID location, specify the location of the Id of the socket being used. This
internal identifier is used by WebSphere Message Broker to uniquely
identify a connection. If you do not specify a location, the default value is
$LocalEnvironment/Destination/TCPIP/Output/Id.

d. In Reply ID location, specify the location of the Reply ID that is stored on
the connection that is being used. The Reply ID can be used when data is
returned in an input node. If you do not specify a location, the default
value is $LocalEnvironment/Destination/TCPIP/Output/ReplyId.

5. Use the Records and Elements tab to specify how the TCPIPServerOutput
node writes the record that is derived from the message.
v In Record definition, choose from the following values:

– Record is Unmodified Data specifies that records are left unchanged. This
value is the default.

– Record is Fixed Length Data specifies that records are padded to a
specified length if necessary. You specify this length in the Length
property. If the record is longer than the value specified in Length, the
node generates an exception. Use the Padding byte property to specify the
byte to be used for padding the message to the required length.

– Record is Delimited Data specifies that records are separated by a
delimiter and accumulated by concatenation. The delimiter is specified by

Chapter 14. Reference 4907

the Delimiter, Custom delimiter, and Delimiter type properties. The file
is finished only when a message is received on the Finish File terminal.

v In Length, specify the length (in bytes) of records when Record definition is
set to Record is Fixed Length Data. Records longer than this value cause an
exception to be thrown. This value must be in the range 1 byte through 100
MB. The default is 80 bytes.

v When Record definition is set to Record is Fixed Length Data, use Padding
byte to specify the byte to be used when padding records to the specified
length if they are shorter than this length. Specify this value as two
hexadecimal digits. The default value is X'20'.

v In Delimiter, specify the delimiter to be used if you set Record definition
to Record is Delimited Data. Choose from:
– Broker System Line End specifies that a line end sequence of bytes is used

as the delimiter as appropriate for the file system on which the broker is
running. This value is the default. For example, on Windows systems, this
line end is a 'carriage-return, line-feed' pair (X'0D0A'); on UNIX systems, it
is a single 'line-feed' byte (X'0A'); on z/OS systems, it is a 'newline' byte
(X'15').

– Custom Delimiter specifies that the explicit delimiter sequence defined in
the Custom delimiter property is to be used to delimit records.

v In Custom delimiter, specify the delimiter sequence of bytes to be used to
delimit records when Delimiter is set to Custom Delimiter. Specify this value
as an even-numbered string of hexadecimal digits. The default is X'0A' and
the maximum length of the string is 16 bytes.

v If you set Record definition to Record is Delimited Data, use Delimiter
type to specify how the delimiter is to separate records. Choose from the
following values:
– Postfix specifies that the delimiter is added after each record that is

written. This value is the default.
– Infix specifies that the delimiter is inserted between any two adjacent

records only.
6. On the Validation tab, specify the parser validation properties of the node. For

more information about validation, see “Validating messages” on page 1478.
For information about how to provide validation for this tab, see “Validation
tab properties” on page 4169.

Terminals and properties:
The TCPIPServerOutput node terminals are described in the following table.

Terminal Type Description

In Input data The input terminal that accepts a message for processing by the node.

Close Input control The input terminal to which a message is routed when the connection given in the
local environment is closed.

Out Output data The output terminal to which the message is routed if it is successfully sent to an
external resource. The message received on the In terminal is propagated to the Out
terminal and is left unchanged except for the addition of status information.

Close Output control The output terminal to which a message propagated from the Close input terminal
is routed.

Failure Output data The output terminal to which the message is routed if a failure is detected in the
node.

4908 WebSphere Message Broker Version 7.0.0.8

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file for deployment).

The Description properties of the TCPIPServerOutput node are described in the
following table:

Property M C Default Description

Node name No No TCPIPServerOutput The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the message
flow.

The Basic properties of the TCPIPServerOutput node are described in the following
table:

Property M C Default Description mqsiapplybaroverride
command property

Connection
details

Yes Yes A string containing the port number to be used, or
the name of a configurable service.

connectionDetails

Timeout
sending a data
record
(seconds)

Yes Yes 60 Specifies how long the node waits when trying to
send data. You can specify any length of time in
seconds.

timeoutSendingData

The Advanced properties of the TCPIPServerOutput node are described in the
following table.

Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains
open. Valid options are:

v No

v After Timeout

v After Data has been Sent

Close output stream
after a record has
been sent

Yes No Cleared Specifies whether to close the output stream as soon as the
data has been sent. By default, this property is not selected.

Output Stream
Modification

No No Leave
unchanged

Specifies whether to reserve this output stream or release it
and return it to the pool for use by any output node. Valid
options are:

v Leave unchanged

v Release output stream

v Reserve output stream (for use by future TCPIP nodes)

v Reserve output stream (for use by future TCPIP nodes)
then release at end of flow

Chapter 14. Reference 4909

Property M C Default Description

Input Stream
Modification

No No Leave
unchanged

Specifies whether to reserve the input stream for use only by
input and receive nodes that specify the connection ID, or to
release the input stream at the end of the flow. Valid options
are:

v Leave unchanged

v Release input stream

v Reserve input stream (for use by future TCPIP nodes)

v Reserve input stream (for use by future TCPIP nodes)
then release at end of flow

When the connection input stream is reserved, no other
nodes can use it without specifying the correct connection
ID. If the input stream is released after the message has been
propagated, it is returned to the pool and becomes available
for use by any input or receive node.

Send to: Yes No One
connection

Specifies whether the data is to be sent to one connection or
to all available connections. Valid options are:
v One Connection
v All Available Connections

The Request properties of the TCPIPServerOutput node are described in the
following table:

Property M C Default Description

Data location Yes No $Body The location in the input
message tree that contains
the record to be written.

Port location Yes No $LocalEnvironment/Destination/TCPIP/Output/Port The message element
location that contains the
port.

ID Yes No $LocalEnvironment/Destination/TCPIP/Output/Id The message element
location that contains the
ID.

Reply ID
location

Yes No $LocalEnvironment/Destination/TCPIP/Output/ReplyId The message element
location that contains the
Reply ID.

The Records and Elements properties of the TCPIPServerOutput node are
described in the following table:

Property M C Default Description

Record definition Yes No Record is
Unmodified
Data

This property controls how the records derived from the
message are written. Valid options are:
v Record is Unmodified Data
v Record is Fixed Length Data
v Record is Delimited Data

Length (bytes) Yes No 0 The required length of the output record. This property applies
only when Record definition is set to Record is Fixed Length
Data.

Padding byte
(hexadecimal)

Yes No 20 The two-digit hexadecimal byte to be used to pad short
messages when Record definition is set to Record is Fixed
Length Data.

4910 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Delimiter Yes No Broker System
Line End

The delimiter to be used when Record definition is set to
Record is Delimited Data. Valid options are:
v Broker System Line End
v Custom Delimiter (Hexadecimal)

Custom delimiter
(hexadecimal)

No No None The delimiter byte sequence to be used when Record definition
is set to Record is Delimited Data and Delimiter is set to
Custom Delimiter (Hexadecimal).

Delimiter type Yes No Postfix This property specifies the way in which the delimiters are
inserted between records when Record definition is set to
Record is Delimited Data. Valid options are:
v Infix
v Postfix

The Validation properties of the TCPIPServerOutput node are described in the
following table.

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes Inherit This property controls whether validation takes place.
Valid values are:
v None
v Content and Value
v Content
v Inherit

validateMaster

Failure
action

No No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are:
v User Trace
v Local Error Log
v Exception
v Exception List

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.

Chapter 14. Reference 4911

“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow aggregation” on page 2718
Aggregation is the generation and fan-out of related requests that are derived from
a single input message, and the fan-in of the corresponding replies to produce a
single aggregated reply message.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Configuring aggregation flows” on page 2721
Use aggregation message flows to generate and fan-out a number of related
requests, fan-in the corresponding replies, and compile those replies into a single
aggregated reply message, by using the AggregateControl, AggregateRequest, and
AggregateReply nodes.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.
“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.

4912 WebSphere Message Broker Version 7.0.0.8

“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.
“TCPIPServerReceive node”
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

TCPIPServerReceive node
Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

This topic contains the following sections:
v “Purpose”
v “Using the TCPIPServerReceive node in a message flow” on page 4915
v “Configuring the TCPIPServerReceive node” on page 4915
v “Terminals and properties” on page 4919

Purpose:
The TCPIPServerReceive node waits for data to be received on a TCP/IP
connection, and retrieves the data. If the connection is closed, an exception is
thrown.

When a connection is established, the data is sent to the TCPIPServerReceive node.
If the TCPIPServerReceive node fails to receive all the data within the time
specified in the Timeout waiting for a data record property, the message is sent
to the Timeout terminal; if no Timeout terminal is connected, an exception is
thrown.

You can configure the broker to use SSL for TCP/IP nodes; see “SSL and the
TCP/IP nodes” on page 551.

Properties in the local environment can override the TCP/IP connection used by
the node.

Table 261. Input local environment properties

Location in local environment for input to
node Description

$LocalEnvironment//TCPIP/Receive/
Hostname

The host name used to make a connection.

$LocalEnvironment//TCPIP/Receive/Port The port number used to make a connection.

$LocalEnvironment/TCPIP/Receive/Id The ID of the socket being used. This ID is an internal identifier used
by WebSphere Message Broker to uniquely identify a connection.

$LocalEnvironment/TCPIP/Receive/
ReplyId

The Reply ID to be stored on this connection. This ID can then be
used when data is returned on an input node. The Reply ID can be
any text string.

$LocalEnvironment/TCPIP/Receive/
Timeout

The timeout value used when waiting for data on the TCP/IP server
connection. This value overrides the Timeout waiting for a data
record property specified on the node.

Chapter 14. Reference 4913

Table 261. Input local environment properties (continued)

Location in local environment for input to
node Description

$LocalEnvironment/TCPIP/Receive/Length The value used to override the number of bytes to be read when using
fixed size records. This value overrides the Length (bytes) property
specified on the node. If the Record detection property is set to
anything other than Fixed Length, the local environment field is
ignored. If this field is not present or evaluates to null, it is ignored
and the value on the node is used.

These properties enable the connection details (host name and port number) and
the connection used (ID) to be selected dynamically. The Reply ID can also be set
on the connection, which enables a string to be stored in the connection and to be
displayed in the local environment. In this way, you can store Reply IDs from
other TCPIP nodes or from other transports, such as WebSphere MQ.

When a record has been retrieved, the ConnectionDetails field in the local
environment tree is populated with the details of the connection that is being used.

Table 262. Output local environment properties

Location in local environment for output from node Description

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
Type

The Server.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
Hostname

The host name used to make a connection.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
Port

The port number used to make a connection.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
OpenTimestamp

The time stamp when the connection was first opened.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
CloseTimestamp

The time stamp when the connection was closed (null if
not yet closed).

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
SequenceNumber/InputRecord

The sequence number of the message that is received on
this connection. The first record has a sequencing
number of 1; the second record is 2; and so on.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
SequenceNumber/OutputRecord

The sequence number of the message that is sent on this
connection. The first record has a sequencing number of
1; the second record is 2; and so on.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
Id

The ID of the socket being used. This ID is an internal
identifier used by WebSphere Message Broker to
uniquely identify a connection.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
ReplyId

The Reply ID that is stored on this connection. It can be
any text string.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
ClientDetails/Hostname

The fully qualified domain name of the computer from
which the client connected.

$LocalEnvironment/TCPIP/Receive/ConnectionDetails/
ClientDetails/Address

The IP address of the computer from which the client
connected.

The TCPIPServerReceive node is contained in the TCPIP drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

4914 WebSphere Message Broker Version 7.0.0.8

Message structure

The TCPIPServerReceive node handles messages in the following message
domains:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

Using the TCPIPServerReceive node in a message flow:
Look at the following samples to see how to use the TCPIPServerReceive node:
v TCPIP Client Nodes
v TCPIP Handshake

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the TCPIPServerReceive node:
When you have put an instance of the TCPIPServerReceive node into a message
flow, you can configure it; see . The properties of the node are displayed in the
Properties view.

All mandatory properties that do not have a default value defined are marked
with an asterisk.

Configure the TCPIPServerReceive node:
1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.
2. On the Basic tab, set the properties that determine how the TCP/IP connection

is controlled.
v Use the Connection details property to specify either the host name and

port number to be used, or the name of a configurable service. This property
is mandatory. The following formats are supported:
– Configurable service name. This value is used to look up the port and

host name in configurable services. For example, TCPIPProfile1.
– <Hostname>:<Port>. This value is the host name followed by the port

number (separated by a colon); for example, tcpip.server.com:1111
– <Port>. This value is the port number. In this case, the host name is

assumed to be localhost.
v Use the Timeout waiting for a data record (seconds) property to specify

how long the node listens on a connection for more data after the first byte

Chapter 14. Reference 4915

of data has arrived. You can specify any length of time in seconds. The
default is 60 seconds. When the specified time has been exceeded, all
available data is sent to the Failure terminal.

3. On the Advanced tab, set the properties that determine how the data stream is
controlled.
v Use the Close connection property to specify when and how to close the

connection.
– Select No to leave the connection open. This value is the default.
– Select After timeout to close the connection when a timeout occurs.
– Select After data has been received to close the connection when the

end of the record is found.
v Select Close input stream after a record has been received to close the

input stream as soon as the data has been retrieved. By default this property
is not selected. When the connection input stream is reserved, no other node
can use it without knowing the ID.

v Use the Input Stream Modification property to specify whether to reserve
the input stream for use only by input and receive nodes that specify the
connection ID, or to release the input stream at the end of the flow.
– Select Leave unchanged to leave the input stream as it was when it entered

the node. This value is selected by default.
– Select Release input stream to specify that this input stream is returned

to the pool and is available for use by any input or receive node.
– Select Reserve input stream (for use by future TCPIP input and

receive nodes) to specify that this input stream can be used only by this
node and by other input or receive nodes that request it by specifying the
connection ID. When the connection input stream is reserved, no other
nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCPIP input and
receive nodes) then release after propagate to specify that this input
stream can be used only by this node and receive nodes that request it by
specifying the correct connection ID. After the message has been
propagated, this input stream is returned to the pool and becomes
available for use by any input or receive node.

v Use the Output Stream Modification property to specify whether to reserve
or release the output stream. These options are available only if you have not
selected the Close output stream after a record has been sent property.
– Select Leave unchanged to leave the output stream as it was when it

entered the node. This value is selected by default.
– Select Release output stream to specify that this output stream is

returned to the pool and is available for use by any output node.
– Select Reserve output stream (for use by future TCPIP output nodes)

to specify that this output stream can be used only by this node and by
other output nodes that request it by specifying the connection ID. When
the connection input stream is reserved, no other nodes can use it without
specifying the correct connection ID.

– Select Reserve output stream (for use by future TCPIP output nodes)
then release after propagate to specify that this output stream can be
used only by this node and output nodes that request it by specifying the
correct connection ID. After the message has been propagated, this output
stream is returned to the pool and becomes available for use by any
output node.

4916 WebSphere Message Broker Version 7.0.0.8

4. On the Request tab, specify the location of the data to be written. You can
specify the properties on this tab as XPath or ESQL expressions. Content Assist
is available in the Properties view and also in the XPath Expression Builder,
which you can run by clicking Edit to the right of each property.
v In Hostname location, specify the location of the value to override the

Hostname that is set in the Connection details property of the Basic tab. If
you do not specify a location, the default value is $LocalEnvironment/TCPIP/
Receive/Hostname.

v In Port location, specify the location of the value to override the Port that
is set in the Connection details property of the Basic tab. If you do not
specify a location, the default value is $LocalEnvironment/TCPIP/Receive/
Port.

v In ID location, specify the location of the Id of the socket being used. This
internal identifier is used by WebSphere Message Broker to uniquely identify
a connection. If you do not specify a location, the default value is
$LocalEnvironment/TCPIP/Receive/Id.

v In Reply ID location, specify the location of the Reply ID that is stored on
the connection that is being used. The Reply ID can be used when data is
returned in an input node. If you do not specify a location, the default value
is $LocalEnvironment/TCPIP/Receive/ReplyId.

5. On the Result tab, set values for the properties that determine where the reply
is stored.
v Use the Output data location property to specify the start location in the

output message tree where the parsed elements from the bit string of the
message are stored. The default value is $OutputRoot.

v Use the Copy local environment property to specify whether the local
environment is copied to the output message.
– If Copy local environment is selected, a new copy of the local

environment is created in the tree, and it is populated with the contents of
the local environment from the preceding node. Therefore, if a node
changes the local environment, the upstream nodes are not affected by
those changes because they have their own copies. This value is the
default.

– If Copy local environment is not selected, the node does not generate its
own copy of the local environment, but uses the local environment that is
passed to it by the preceding node. Therefore, if a node changes the local
environment, the changes are reflected by the upstream nodes.

6. On the Input Message Parsing tab, set values for the properties that the node
uses to determine how to parse the incoming message.
If the incoming message has an MQRFH2 header, you are not required to set
values for the Input Message Parsing properties because the values are derived
from the <mcd> folder in the MQRFH2 header; for example:
<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>
<Fmt>XML</Fmt></mcd>

If you set values, and if they differ from the values in the MQRFH2 header, the
values in the MQRFH2 header take precedence.
v In Message domain, select the name of the parser that you are using from the

list. The default is BLOB. You can choose from the following options:
– XMLNSC
– DataObject
– JSON
– BLOB
– MIME

Chapter 14. Reference 4917

– MRM
– JMSMap
– JMSStream
– XMLNS

You can also specify a user-defined parser, if appropriate.
v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. This list is
populated with available message sets when you select MRM, XMLNSC, or
IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the
list in Message type. This list is populated with available message types
when you select the MRM parser.

v If you are using the MRM or IDOC parser, select the correct message format
from the list in Message format. This list is populated with available message
formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set
ID.

v Select the message encoding from the list in Message encoding or specify a
numeric encoding value. For more information about encoding, see “Data
conversion” on page 1151.

7. On the Parser Options subtab:
v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see
“Parsing on demand” on page 4173.

v If you are using the XMLNSC parser, set values for the properties that
determine how the XMLNSC parser operates. For more information, see
“Manipulating messages in the XMLNSC domain” on page 2546.

8. Use the Records and Elements tab to specify how the data is interpreted as
records. Only one record is retrieved each time the TCPIPServerReceive node is
started; therefore, if the TCP/IP stream contains multiple logical messages, you
must start the node multiple times to receive all the messages.
v Use the Record detection property to determine how the data is split into

records, each of which generates a single message. Choose from the
following options:
– Connection closed specifies that all of the data sent during a connection is

a single record.
– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record contains the number of bytes specified in the Length
property, except possibly a shorter final record in the file.

– Select Delimited if the records that you are processing are separated, or
terminated, by a DOS or UNIX line end or by a sequence of user-defined
delimiter bytes. Specify the delimiter and delimiter type in the Delimiter
and Delimiter type properties.

– Select Parsed Record Sequence if the data contains a sequence of one or
more records that are serially recognized by the parser that is specified in
Message domain. The node propagates each recognized record as a separate
message. If you select this Record detection option, the parser specified
in Message domain must be either XMLNSC or MRM (either CWF or TDS
physical format).

v If you set Record detection to Fixed Length, use Length to specify the
required length of the output record. This value must be between 1 byte and
100 MB. The default is 80 bytes.

4918 WebSphere Message Broker Version 7.0.0.8

If you set Record detection to Connection closed, Fixed Length, or
Delimited, a limit of 100 MB applies to the length of the records. If you set
Record detection to Parsed Record Sequence, the TCPIPServerReceive node
does not determine or limit the length of a record. Nodes that are
downstream in the message flow might try to determine the record length or
process a long record. If you intend to process large records in this way,
ensure that your broker has sufficient memory. You might have to apply
message flow techniques described in the Large Messaging sample to make
the best use of the available memory.

v If you set Record detection to Delimited, use Delimiter to specify the
delimiter to be used. Choose from the following options:
– DOS or UNIX Line End, on UNIX systems, specifies the line feed character

(<LF>, X'0A'), and, on Windows systems, specifies a carriage return
character followed by a line feed character (<CR><LF>, X'0D0A'). The
node treats both of these strings as delimiters, irrespective of the system
on which the broker is running. If both strings can be seen in the same
record, the node recognizes both as delimiters. The node does not
recognize X'15' which, on z/OS systems, is the 'newline' byte; set this
property to Custom Delimiter and set Custom delimiter to 15 if your
input file is coded using EBCDIC new lines.

– Custom Delimiter (hexadecimal), permits a sequence of bytes to be
specified in Custom delimiter (hexadecimal)

v In Custom delimiter (hexadecimal), specify the delimiter byte or bytes to be
used when Delimiter is set to Custom delimiter (hexadecimal). Specify this
value as an even-numbered string of hexadecimal digits. The default is X'0A'
and the maximum length of the string is 16 bytes (represented by 32
hexadecimal digits).

v If you set Record detection to Delimited, use Delimiter type to specify the
type of delimiter. Permitted values are:
– Infix. If you select this value, each delimiter separates records. If the data

ends with a delimiter, the (zero length) data following the final delimiter
is still propagated, although it contains no data.

– Postfix. If you specify this value, each delimiter terminates records. If the
data ends with a delimiter, no empty record is propagated after the
delimiter. If the data does not end with a delimiter, it is processed as if a
delimiter follows the final bytes of the data. Postfix is the default value.

v The TCPIPServerReceive node considers each occurrence of the delimiter in
the input as either separating (infix) or terminating (postfix) each record. If
the data begins with a delimiter, the node treats the (zero length) contents
preceding that delimiter as a record and propagates an empty record to the
flow. The delimiter is never included in the propagated message.

9. Use the Validation tab to provide validation based on the message set for
predefined messages. For more information about validation, see “Validating
messages” on page 1478. For information about how to complete this tab, see
“Validation tab properties” on page 4169.

Terminals and properties:
The terminals of the TCPIPServerReceive node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Chapter 14. Reference 4919

Terminal Description

Out The output terminal to which the message is routed if it is successfully retrieved from an external
resource. If no errors occur within the input node, a message received from an external resource is
always sent to the Out terminal first.

Timeout The terminal to which a message is sent when the time specified in the Timeout waiting for a
data record property has been exceeded. The message text is Timeout value is exceeded.

Failure The output terminal to which the message is routed if an error occurs. These errors include
failures caused by retry processing. Even if the Validation property is set, messages propagated to
this terminal are not validated.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the TCPIPServerReceive node are described in the
following table.

Property M C Default Description

Node name No No TCPIPServerReceive The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message
flow.

The Basic properties of the TCPIPServerReceive node determine how the TCP/IP
connection is controlled, and are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Connection
details

Yes Yes A string containing the port number to be used, or the
name of a configurable service. The following formats
are supported:

v Configurable service name. This value is used to
look up the port and host name in configurable
services. For example, TCPIPProfile1.

v <Port>. This value is the port number; for example,
1111.

v <Port>. This value is the port number. In this case,
the host name is assumed to be localhost.

connectionDetails

Timeout
waiting for a
data record
(seconds)

Yes Yes 60 Specifies how long the node listens on a connection for
more data after the first byte of data has arrived. You
can specify any length of time in seconds. The default
is 60 seconds. When the specified time has been
exceeded, all available data is sent to the Failure
terminal.

timeoutWaitingForData

The Advanced properties of the TCPIPServerReceive node determine how the data
stream is controlled, and are described in the following table.

4920 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains open.
Valid options are:
v Select No to leave the connection open. This value is the

default.
v Select After timeout to close the connection when a timeout

occurs.
v Select After data has been received to close the connection

when the end of the record is found.

Close input stream
after a record has
been received

Yes No Cleared Specifies whether to close the input stream as soon as the data
has been retrieved. When the connection input stream is
reserved, no other node can use it without knowing the ID. By
default this property is not selected.

Input Stream
Modification

No No Leave
unchanged

Specifies whether to reserve the input stream for use only by
input and receive nodes that specify the connection ID, or to
release the input stream at the end of the flow. Valid options
are:
v Select Leave unchanged to leave the input stream as it was

when it entered the node. This value is selected by default.
v Select Release input stream to specify that this input stream

is returned to the pool and is available for use by any input
or receive node.

v Select Reserve input stream (for use by future TCPIP
input and receive nodes) to specify that this input stream
can be used only by this node and by other input or receive
nodes that request it by specifying the connection ID. When
the connection input stream is reserved, no other nodes can
use it without specifying the correct connection ID.

v Select Reserve input stream (for use by future TCPIP
input and receive nodes) then release after propagate to
specify that this input stream can be used only by this node
and receive nodes that request it by specifying the correct
connection ID. After the message has been propagated, this
input stream is returned to the pool and becomes available
for use by any input or receive node.

Output Stream
Modification

No No Leave
unchanged

Specifies whether to reserve this output stream or release it and
return it to the pool for use by any output node. These options
are available only if you have not selected the Close output
stream after a record has been sent property.
v Select Leave unchanged to leave the output stream as it was

when it entered the node. This value is selected by default.
v Select Release output stream to specify that this output

stream is returned to the pool and is available for use by any
output node.

v Select Reserve output stream (for use by future TCPIP
output nodes) to specify that this output stream can be used
only by this node and by other output nodes that request it
by specifying the connection ID. When the connection input
stream is reserved, no other nodes can use it without
specifying the correct connection ID.

v Select Reserve output stream (for use by future TCPIP
output nodes) then release after propagate to specify that
this output stream can be used only by this node and output
nodes that request it by specifying the correct connection ID.
After the message has been propagated, this output stream is
returned to the pool and becomes available for use by any
output node.

Chapter 14. Reference 4921

The Request properties of the TCPIPServerReceive node specify the location of the
data to be written. You can specify the properties on this tab as XPath or ESQL
expressions. Content Assist is available in the Properties view and also in the
XPath Expression Builder, which you can run by clicking Edit to the right of each
property. The Request properties are described in the following table:

Property M C Default Description

Port location Yes No $LocalEnvironment/TCPIP/Receive/Port The message element location that
contains the Port. Specify the
location of the value to override the
Port that is set in the Connection
details property of the Basic tab. If
you do not specify a location, the
default value is
$LocalEnvironment/TCPIP/Receive/
Port.

ID location Yes No $LocalEnvironment/TCPIP/Receive/Id The message element location that
contains the ID. Specify the location
of the Id of the socket that is being
used. This internal identifier is used
by WebSphere Message Broker to
uniquely identify a connection. If
you do not specify a location, the
default value is
$LocalEnvironment/TCPIP/Receive/
Id.

Reply ID
location

Yes No $LocalEnvironment/TCPIP/Receive/ReplyId The message element location that
contains the Reply ID. Specify the
location of the Reply ID that is
stored on the connection being used.
The Reply ID can be used when
data is returned in an input node. If
you do not specify a location, the
default value is
$LocalEnvironment/TCPIP/Receive/
ReplyId.

Record
length
location

No No $LocalEnvironment/TCPIP/Receive/Length The message element location that
contains the record length to be
read. Specify the location of the
value to override the Length
(bytes) property on the Records
and elements tab. If you do not
specify a location, the default value
is $LocalEnvironment/TCPIP/
Receive/Length.

The Result properties of the TCPIPServerReceive node determine where the reply
is to be stored, and are described in the following table:

Property M C Default Description

Output data
location

No No $OutputRoot The start location in the output message tree where the
parsed elements from the bit string of the message are
stored.

4922 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Copy local
environment

No No Selected Specifies whether the local environment is copied to the
output message.
v If Copy local environment is selected, a new copy of

the local environment is created in the tree, and it is
populated with the contents of the local environment
from the preceding node. Therefore, that if a node
changes the local environment, the upstream nodes are
not affected by those changes because they have their
own copies. This value is the default.

v If Copy local environment is not selected, the node
does not generate its own copy of the local
environment, but uses the local environment that is
passed to it by the preceding node. Therefore, if a
node changes the local environment, the changes are
reflected by the upstream nodes.

The Input Message Parsing properties of the TCPIPServerReceive node determine
how to parse the incoming message.

If the incoming message has an MQRFH2 header, you do not have to set values for
the Input Message Parsing properties because the values are derived from the
<mcd> folder in the MQRFH2 header; for example:
<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>
<Fmt>XML</Fmt></mcd>

If you set values, and if they differ from the values in the MQRFH2 header, the
values in the MQRFH2 header take precedence.

The TCPIPServerReceive node Input Message Parsing properties are described in
the following table.

Property M C Default Description mqsiapplybaroverride
command property

Message
domain

No No BLOB The domain that is used to parse the
incoming message. The default is BLOB. You
can choose from the following options:
v XMLNSC
v DataObject
v JSON
v BLOB
v MIME
v MRM
v JMSMap
v JMSStream
v XMLNS

You can also specify a user-defined parser,
if appropriate.

Chapter 14. Reference 4923

Property M C Default Description mqsiapplybaroverride
command property

Message set No No If you are using the MRM or IDOC parser,
or the XMLNSC parser in validating mode,
select the Message set in which the
incoming message is defined. The list
contains the message sets that are available
when you select MRM, XMLNSC, or IDOC
as the domain.

If you set this property, then later update
the project dependencies to remove this
message set reference, a warning is issued.
Either update the Message Set property, or
restore the reference to this message set
project.

Message type No No The name of the incoming message. If you
are using the MRM parser, select the
correct message type from the list in
Message type. This list is populated with
available message types when you select
the MRM parser.

Message
format

No No The name of the physical format of the
incoming message. If you are using the
MRM or IDOC parser, select the correct
message format from the list in Message
format. This list is populated with
available message formats when you select
the MRM or IDOC parser.

Message
coded
character set
ID

Yes No Broker
System
Default

The ID of the coded character set used to
interpret the data being read.

messageCodedCharSetIdProperty

Message
encoding

Yes No Broker
System
Determined

The encoding scheme for numbers and
large characters used to interpret the data
being read. Valid values are Broker System
Determined or a numeric encoding value.
For more information about encoding, see
“Data conversion” on page 1151.

messageEncodingProperty

The Parser Options properties of the TCPIPServerReceive node are described in the
following table.

Property M C Default Description

Parse timing No No On Demand This property controls when an input message is parsed. Valid
values are:

v On Demand

v Immediate

v Complete

Parse timing is, by default, set to On Demand, which causes
parsing of the message to be delayed. To cause the message to be
parsed immediately, see “Parsing on demand” on page 4173.

Build tree using XML
schema data types

No No Cleared This property controls whether the syntax elements in the
message tree have data types taken from the XML Schema.

4924 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Use XMLNSC compact
parser for XMLNS
domain

No No Cleared This property controls whether the XMLNSC Compact Parser is
used for messages in the XMLNS Domain. If you set this
property, the message data is displayed under XMLNSC in
nodes that are connected to the output terminal when the input
MQRFH2 header or Input Message Parsing property, Message
Domain, is XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters mixed text in an
input message. If you select the check box, elements are created
for mixed text. If you clear the check box, mixed text is ignored
and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters comments in an
input message. If you select the check box, elements are created
for comments. If you clear the check box, comments are ignored
and no elements are created.

Retain processing
instructions

No No Cleared This property controls whether the XMLNSC parser creates
elements in the message tree when it encounters processing
instructions in an input message. If you select the check box,
elements are created for processing instructions. If you clear the
check box, processing instructions are ignored and no elements
are created.

Opaque elements No No Blank This property is used to specify a list of elements in the input
message that are to be opaquely parsed by the XMLNSC parser.

The Records and Elements properties of the TCPIPServerReceive node specify how
the data is interpreted as records, and are described in the following table:

Property M C Default Description

Record
detection

Yes No Connection
closed

The mechanism used to identify records in the input data.
v Connection closed specifies that all of the data sent during a

connection is a single record.
v Fixed Length specifies that each record is a fixed number of

bytes in length. Each record contains the number of bytes
specified in the Length property, except possibly a shorter final
record in the file.

v Select Delimited if the records you are processing are separated,
or ended, by a DOS or UNIX line end or by a sequence of
user-defined delimiter bytes. Specify the delimiter and delimiter
type in the Delimiter and Delimiter type properties.

v Select Parsed Record Sequence if the data contains a sequence of
one or more records that are serially recognized by the parser
specified in Message domain. The node propagates each
recognized record as a separate message. If you select this
Record detection option, the parser specified in Message domain
must be either XMLNSC or MRM (either CWF or TDS physical
format).

Chapter 14. Reference 4925

Property M C Default Description

Length (bytes) Yes No 0 If you set Record detection to Fixed Length, use Length to specify
the required length of the output record in bytes. This value must
be in the range 1 byte through 100 MB. The default is 80 bytes.

If you set Record detection to Connection closed, Fixed Length,
or Delimited, a limit of 100 MB applies to the length of the
records. If you set Record detection to Parsed Record Sequence,
the TCPIPServerReceive node does not determine or limit the
length of a record. Nodes that are downstream in the message
flow might try to determine the record length or process a long
record. If you intend to process large records in this way, ensure
that your broker has sufficient memory. You might have to apply
message flow techniques described in the Large Messaging sample
to make the best use of the available memory.

Delimiter Yes No DOS or UNIX
Line End

If you set Record detection to Delimited, use Delimiter to specify
the delimiter to be used. Choose from the following options:
v DOS or UNIX Line End, on UNIX systems, specifies the line feed

character (<LF>, X'0A'), and, on Windows systems, specifies a
carriage return character followed by a line feed character
(<CR><LF>, X'0D0A'). The node treats both of these strings as
delimiters, irrespective of the system on which the broker is
running. If both strings are displayed in the same record, the
node recognizes both as delimiters. The node does not recognize
X'15' which, on z/OS systems, is the 'newline' byte; set this
property to Custom Delimiter and set Custom delimiter to 15 if
your input file is coded using EBCDIC new lines, such as
EBCDIC files from a z/OS system.

v Custom Delimiter (hexadecimal), permits a sequence of bytes to
be specified in Custom delimiter (hexadecimal)

Custom
delimiter
(hexadecimal)

No No The delimiter byte or bytes to be used when Delimited record
detection and Custom Delimiter (Hexadecimal) are selected. This
property is mandatory only if the Delimiter property is set to
Custom Delimiter (Hexadecimal). Specify this value as an
even-numbered string of hexadecimal digits. The default is X'0A'
and the maximum length of the string is 16 bytes (represented by
32 hexadecimal digits).

Delimiter type Yes No Postfix The location of the delimiter when Delimited record detection and
Custom Delimiter (Hexadecimal) are selected. Valid options are:
v Infix. If you select this value, each delimiter separates records.

If the data ends with a delimiter, the (zero length) data
following the final delimiter is still propagated, although it
contains no data.

v Postfix. If you specify this value, each delimiter ends records. If
the data ends with a delimiter, no empty record is propagated
after the delimiter. If the data does not end with a delimiter, it is
processed as if a delimiter follows the final bytes of the data.
Postfix is the default value.

The TCPIPServerReceive node considers each occurrence of the
delimiter in the input as either separating (infix) or terminating
(postfix) each record. If the data begins with a delimiter, the node
treats the (zero length) contents preceding that delimiter as a
record and propagates an empty record to the flow. The delimiter
is never included in the propagated message.

This property is ignored unless the Delimiter property is set to
Custom Delimiter (Hexadecimal).

4926 WebSphere Message Broker Version 7.0.0.8

The Validation properties of the TCPIPServerReceive node are described in the
following table.

For a full description of these properties, see “Validation properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place.
Valid values are
v None
v Content and Value
v Content
v Inherit

validateMaster

Failure
action

No No Exception This property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are:
v User Trace
v Local Error Log
v Exception
v Exception List

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“WebSphere Broker TCP/IP Transport” on page 1735
The WebSphere Broker TCP/IP Transport is a service that connects applications
that use raw TCP/IP sockets for transferring data.
“TCP/IP nodes” on page 1738
WebSphere Message Broker implements access to the TCP/IP input and output
streams through a series of nodes.
“Scenarios for WebSphere Message Broker and TCP/IP” on page 1746
Two example scenarios show how you might use TCP/IP and WebSphere Message
Broker as part of a business solution.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.

Chapter 14. Reference 4927

“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Working with TCP/IP” on page 1750
You can use WebSphere Message Broker TCPIP nodes and TCP/IP configurable
services to perform various tasks.
“Using more than one input node” on page 1473
You can include more than one input node in a single message flow.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Configurable message flow properties” on page 4020
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Manage and Configure tab for the broker archive file.
“Input node” on page 4511
Use the Input node as an In terminal for an embedded message flow (a subflow).
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“mqsicreateconfigurableservice command” on page 3849
Use the mqsicreateconfigurableservice command to create an object name for a
broker external resource.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“TCPIPClientInput node” on page 4854
Use the TCPIPClientInput node to create a client connection to a raw TCP/IP
socket, and to receive data over that connection.

4928 WebSphere Message Broker Version 7.0.0.8

“TCPIPClientOutput node” on page 4867
Use the TCPIPClientOutput node to create a client connection to a raw TCP/IP
socket, and to send data over that connection to an external application.
“TCPIPServerInput node” on page 4890
Use the TCPIPServerInput node to create a server connection to a raw TCPIP
socket, and to receive data over that connection.
“TCPIPServerOutput node” on page 4903
Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP
socket, and to send data over the connection to an external application.
“TCPIPClientReceive node” on page 4877
Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.

Throw node
Use the Throw node to throw an exception in a message flow.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4930

Purpose:
An exception can be caught and processed by:
v A preceding TryCatch node
v The message flow input node (the built-in nodes, for example HTTPInput and

MQInput, have Catch terminals)
v A preceding AggregateReply node

Include a Throw node to force an error path through the message flow if the
content of the message contains unexpected data. For example, to back out a
message that does not contain a particular field, you can check (using a Filter
node) that the field exists; if the field does not exist, the message can be passed to
a Throw node that records details about the exception in the exception list subtree
in the message.

The Throw node is contained in the Construction drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following samples to see how to use this node:
v Airline Reservations
v Error Handler
v Large Messaging

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Include a Throw node with a TryCatch node in your message flow to alert the
systems administrator of a potential error situation; for example, if you have a
Compute node that calculates a number, test the result of this calculation and

Chapter 14. Reference 4929

throw an exception if the result exceeds a certain amount. The TryCatch node
catches this exception and propagates the message to a sequence of nodes that
process the error.

Terminals and properties:
When you have put an instance of the Throw node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.
All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

The Throw node terminal is described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Throw node Description properties are described in the following table.

Property M C Default Description

Node name No No The node type: Throw The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The Throw node Basic properties are described in the following table.

Property M C Default Description

Message
Catalog

No No The name of the message catalog from which the error text for the error number
of the exception is extracted. Enter the fully-qualified path and file name of the
message catalog that contains the message source. This file can be your own
message catalog, or the default message catalog that is supplied with WebSphere
Message Broker. To use the default supplied catalog, leave this property blank.

Message
Number

No No 3001 The error number of the exception that is being thrown.
v If you have created your own message catalog, enter the number for the

message in the catalog that you want to use when this exception is thrown.
v If you are using the default message catalog, specify a number between 3001

(the default) and 3049. These numbers are reserved in the default catalog for
your use. The text of each of these messages in the default message catalog is
identical, but you can use a different number in this range for each situation
in which you throw an exception; use the number to identify the exact cause
of the error.

4930 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
Text

No No Additional text that explains the cause of the error. Enter any additional free
format text that contains information that you want to include with the message
when it is written to the local error log; for example, if you have checked for the
existence of a particular field in a message and thrown an exception when that
field is not found, you might include the text:

The message did not contain the required field: Branch number

If you are using the default message catalog, this text is inserted as &1 in the
message text.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
Related reference:
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“HTTPInput node” on page 4474
Use the HTTPInput node to receive an HTTP message from an HTTP client for
processing by a message flow.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

Chapter 14. Reference 4931

“SCADAInput node” on page 4706
The SCADAInput node, available in earlier versions of WebSphere Message Broker,
is not supported in WebSphere Message Broker Version 7.0. See for information
about migrating your message flows from WebSphere Message Broker to
WebSphere Message Broker Version 7.0.
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“TryCatch node” on page 4949
Use the TryCatch node to provide a special handler for exception processing.

TimeoutControl node
Use the TimeoutControl node to process an input message that contains a timeout
request.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4933

Purpose:
The TimeoutControl node validates the timeout request message, stores the
message, and propagates the message (unchanged) to the next node in the message
flow. For more information, see “Sending timeout request messages” on page 2810.

The TimeoutControl node is contained in the Timer drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Use a TimeoutControl node and a TimeoutNotification node together in a message
flow for an application that requires events to occur at particular times, or at
regular intervals.

Examples of when you can use the timeout nodes in a message flow include:
v You need to run a batch job every day at midnight.
v You want information about currency exchange rates to be sent to banks at

hourly intervals.
v You want to confirm that important transactions are processed within a certain

time period and perform some other specified actions to warn when a
transaction has not been processed in that time period.

You can use more than one TimeoutControl node with a TimeoutNotification node.
Timeout requests that are initiated by those TimeoutControl nodes are all processed
by the same TimeoutNotification node if the same Unique identifier is used for
the TimeoutNotification node and each of the TimeoutControl nodes.

You can use TimeoutControl nodes with a TimeoutNotification node that is in a
separate message flow only if the following conditions are met:
v The same Unique identifier is used for your TimeoutNotification node and

each of your TimeoutControl nodes

4932 WebSphere Message Broker Version 7.0.0.8

v The message flow that contains your TimeoutControl nodes and the message
flow that contains your TimeoutNotification node are deployed to the same
execution group

Look at the following sample for more details about how to use the timeout
processing nodes:
v Timeout Processing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the TimeoutControl node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. All mandatory properties for which you must enter a value (those
that do not have a default value defined) are marked with an asterisk.

The TimeoutControl node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message tree for processing (which includes validating the timeout
request specified in the message tree at Request location) and adds it to the control queue.

Failure The output terminal to which the input message is propagated if a failure is detected during processing in
this node. If this terminal is not connected to another node, error information is passed back to the
previous node in the message flow.

Out The output terminal to which incoming messages are propagated, unchanged, after successful timeout
request processing. If this terminal is not connected to another node, no propagation occurs. If
propagation of the message fails, the message is propagated to the Failure terminal.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the TimeoutControl node are described in the
following table.

Property M C Default Description

Node
name

No No The node type,
TimeoutControl

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The Basic properties of the TimeoutControl node are described in the following
table.

Chapter 14. Reference 4933

Property M C Default Description mqsiapplybaroverride
command property

Unique
identifier

Yes Yes None This is the only mandatory property for the
node. Its value must be unique within the
broker. The equivalent property of the
TimeoutNotification node with which it is
paired must have the same value. The
maximum length of this identifier is 12
characters.

This name is also used to identify a Timer
configurable service (if one exists) to be used by
the node.

uniqueIdentifier

Request
location

No No None This property describes where to find the
timeout request information in the incoming
message. This value can be any valid location in
the input message tree and is validated at run
time. If you do not specify a request location,
InputLocalEnvironment.TimeoutRequest is
assumed. For more information about the
timeout request message, see “Sending timeout
request messages” on page 2810.

Request
persistence

No No Automatic This property controls whether an incoming
timeout request survives a restart of either the
broker or the message flow that contains the
TimeoutNotification node that is paired with
this TimeoutControl node.

Select Yes if you want the incoming request to
persist; select No if you do not. If you select
Automatic (the default), the Persistence setting
in the Properties folder of the incoming message
is used.

The Message properties of the TimeoutControl node are described in the following
table.

The TimeoutControl node Message properties are described in the following table.

Property M C Default Description

Stored
message
location

No No None This property identifies the location of the part of the request message that
you want to store for propagation by the TimeoutNotification node with
which this node is paired. If you do not specify a value, the entire message is
stored. You can specify any valid location in the message tree. If you choose
to store the entire message, you do not need to specify any values in Message
domain, Message set, Message type, or Message format.

4934 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
domain

No No BLOB The domain that is used to parse the stored timeout request message by the
TimeoutNotification node. If you do not specify a value and the message
location is stored, the default value is BLOB.

Select the name of the parser that you are using. This value, and the three
corresponding values in Message set, Message type, and Message format, are
used by the TimeoutNotification node with which it is paired when it
rebuilds the stored message for propagation. If you have stored the entire
request message (by leaving Stored message location blank), do not specify
any values here. If you choose to store part of the request message, specify
values here that reflect the stored request message fragment as if it were the
entire message, which is the case when it is processed by the
TimeoutNotification node. Choose from the following parsers:
v XMLNSC
v JSON
v BLOB
v MRM
v XMLNS

You can also specify a user-defined parser, if appropriate.

Message
set

No No None The name or identifier of the message set in which the stored timeout request
message is defined. If you are using the MRM parser, or the XMLNSC parser
in validating mode, select the Message set that you want to use from the list.

If you set this property, then later update the project dependencies to remove
this message set reference, a warning is issued. Either update the Message set
property, or restore the reference to this message set project.

Message
type

No No None The name of the stored timeout request message. If you are using the MRM
parser, select the correct message from the list in Message type. This list is
populated with messages that are defined in the Message set that you have
selected.

Message
format

No No None The name of the physical format of the stored timeout request message. If
you are using the MRM parser, select the format of the message from the list
in Message format. This list includes all the physical formats that you have
defined for this Message set.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from

Chapter 14. Reference 4935

the internal message tree representation.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Configuring timeout flows” on page 2809
Use the TimeoutControl and TimeoutNotification nodes in message flows to
process timeout requests or to generate timeout notifications at specified intervals.
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
Related reference:
“TimeoutNotification node”
Use the TimeoutNotification node to manage timeout-dependent message flows.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

TimeoutNotification node
Use the TimeoutNotification node to manage timeout-dependent message flows.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4937

Purpose:
The TimeoutNotification node is an input node that you can use in two ways:
v A TimeoutNotification node can be paired with one or more TimeoutControl

nodes.
The TimeoutNotification node processes timeout request messages that are sent
by the TimeoutControl nodes with which it is paired, and propagates copies of
the messages (or selected fragments of the messages) to the next node in the
message flow.

v A TimeoutNotification node can be used as a stand-alone node.
Generated messages are propagated to the next node in the message flow at
time intervals that are specified in the configuration of this node.

The TimeoutNotification node is contained in the Timer drawer of the palette, and
is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:

4936 WebSphere Message Broker Version 7.0.0.8

Use a TimeoutControl node and a TimeoutNotification node together in a message
flow for an application that requires events to occur at a particular time, or at
regular intervals; for example, when you want a batch job to run every day at
midnight, or you want information about currency exchange rates to be sent to
banks at hourly intervals.

You can use more than one TimeoutControl node with a TimeoutNotification node.
Timeout requests that are initiated by those TimeoutControl nodes are all processed
by the same TimeoutNotification node if the same Unique identifier is used for
the TimeoutNotification node and each of the TimeoutControl nodes. However, do
not use the same Unique identifier for more than one TimeoutNotification node.

You can use TimeoutControl nodes with a TimeoutNotification node that is in a
separate message flow only if the following conditions are met:
v The same Unique identifier is used for your TimeoutNotification node and

each of your TimeoutControl nodes
v The message flow that contains your TimeoutControl nodes and the message

flow that contains your TimeoutNotification node are deployed to the same
execution group

Timeout request messages are stored for processing on a queue used by the
TimeoutNotification node. By default, this queue is the
SYSTEM.BROKER.TIMEOUT.QUEUE. However, you can use a Timer configurable
service to specify an alternative timeout queue, which provides greater control
over the storage of messages. For information about using an alternative timeout
queue, see “Configuring the storage of events for timeout nodes” on page 760.

When a TimeoutNotification node is started as a result of the broker starting, or by
the message flow that contains the node starting, it scans its internal timeout store
and purges any non-persistent timeout requests. Notifications are issued for any
persistent timeout requests that are now past and that have the IgnoreMissed
property set to False.

If you use a TimeoutNotification node to generate a WebSphere MQ message to an
output node, such as theMQOutput node, provide a valid MQMD. You must also
provide a valid MQMD if the TimeoutNotification node is running in automatic
mode (as a stand-alone node). If the TimeoutNotification node is running in
controlled mode (that is, it is paired with one or more TimeoutControl nodes), you
must provide a valid MQMD only if the stored messages do not already have an
MQMD. The following ESQL shows how to provide a valid MQMD:
CREATE NEXTSIBLING OF OutputRoot.Properties DOMAIN ’MQMD’;
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
SET OutputRoot.MQMD.Format = ’XML’;

Look at the following sample for more details about how to use the timeout
processing nodes:
v Timeout Processing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:

Chapter 14. Reference 4937

When you have put an instance of the TimeoutNotification node into a message
flow, you can configure it; see . The properties of the node are displayed in the
Properties view. All mandatory properties for which you must enter a value (those
that do not have a default value defined) are marked with an asterisk.

The terminals of the TimeoutNotification node are described in the following table.

Terminal Description

Failure The output terminal to which the message is propagated if a failure is detected during processing in this
node. Nodes can be connected to this terminal to process these failures. If this terminal is not connected
to another node, messages are not propagated and no logging or safe storage of data occurs.

Out The output terminal to which messages are propagated after timeouts expire.
v If the TimeoutNotification node is running in Automatic mode (that is, there are no TimeoutControl

nodes paired with this node), the propagated messages contain only a Properties folder and a
LocalEnvironment that is populated with the timeout information.

v If the TimeoutNotification node is running in Controlled mode (that is, TimeoutControl nodes that are
paired with this node store timeout requests), the propagated messages contain what was stored by the
TimeoutControl nodes, which might be entire request messages or fragments of them.

If the TimeoutNotification node is used as the input node to a message flow that generates a WebSphere
MQ message (for example, by using an MQOutput node), the message flow must create the necessary
MQ headers and data (for example, MQMD).

Catch The output terminal to which the message is propagated if an exception is thrown downstream. If this
terminal is not connected to another node, the following events occur:
1. The TimeoutNotification node writes the error to the local error log.
2. The TimeoutNotification node repeatedly tries to process the request until the problem that caused

the exception is resolved.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the TimeoutNotification node are described in the
following table.

Property M C Default Description

Node name No No The node type:
TimeoutNotification

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message
flow.

The Basic properties of the TimeoutNotification node are described in the following
table.

4938 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Unique
Identifier

Yes Yes None This property specifies a value that is unique
within the broker and that is the same as the
identifier that is specified for the TimeoutControl
nodes with which this node is paired (if there
are any). The maximum length of this identifier
is 12 characters.

This name is also used to identify a Timer
configurable service (if one exists) to be used by
the node.

Do not use the same Unique Identifier for
more than one TimeoutNotification node.

uniqueIdentifier

Transaction
Mode

No No Yes The transaction mode for the node. If the
transaction mode is Automatic, a transaction is
based on the persistence of the stored messages,
which is controlled by the Request Persistence
property of the TimeoutControl node with which
it is paired. You can set this property to one of
the following values:
v Select Yes if you want a transaction to be

started.
v Select No if you do not want a transaction to

be started.
v Select Automatic only if you have set

Operation Mode to Controlled. Whether a
transaction is started depends on the
persistence of the stored timeout requests,
which is controlled by the value of Request
Persistence in the TimeoutControl node with
which it is paired.

Operation
Mode

No No Automatic This property indicates whether this node is
paired with any paired TimeoutControl nodes.
Valid values are:
v If you select Automatic the node is not paired

with any TimeoutControl nodes. The node
generates timeout requests with an interval
that is controlled by the setting of the Timeout
Value property, which must be a positive
integer.

v If you select Controlled the node processes all
timeout requests that have been stored by the
TimeoutControl nodes with which it is paired.

Timeout
Interval

No Yes 1 The interval (in seconds) between timeout
requests. This property is relevant only if
Operation Mode is set to Automatic.

The value of this property must be a positive
integer.

If the Operation Mode is set to Automatic, the
value of the Timeout Interval property is
overridden by the Timeout interval property, if
set, in the Timer configurable service.

timeoutInterval

Chapter 14. Reference 4939

The properties of the Parser Options for the TimeoutNotification node are
described in the following table.

Property M C Default Description

Parse Timing No No On
Demand

This property controls when the timeout message is parsed. Valid
values are On Demand, Immediate, and Complete.

By default, this property is set to On Demand, which causes parsing of
the message to be delayed. To cause the message to be parsed
immediately, see “Parsing on demand” on page 4173.

Build tree using
XML schema data
types

No No Cleared This property controls whether the XMLNSC parser creates syntax
elements in the message tree with data types taken from the XML
Schema. You can select this property only if you set the Validate
property on the Validation tab to Content or Content and Value.

Use MQRFH2C
Compact Parser
for MQRFH2
Domain

No No Cleared This property controls whether the MQRFH2C Compact Parser, instead
of the MQRFH2 parser, is used for MQRFH2 headers.

Use XMLNSC
Compact Parser
for XMLNS
Domain

No No Cleared This property controls whether the XMLNSC Compact Parser is used
for messages in the XMLNS Domain. If you set this property, the
message data appears under XMLNSC in nodes that are connected to
the output terminal when the input RFH2 header or default properties
Domain is XMLNS.

Retain Mixed
Content

No No None This property controls whether the XMLNSC parser creates elements in
the message tree when it encounters mixed text in a timeout message.
If you select the check box, elements are created for mixed text. If you
clear the check box, mixed text is ignored and no elements are created.

Retain Comments No No None This property controls whether the XMLNSC parser creates elements in
the message tree when it encounters comments in a timeout message.
If you select the check box, elements are created for comments. If you
clear the check box, comments are ignored and no elements are
created.

Retain Processing
Instructions

No No None This property controls whether the XMLNSC parser creates elements in
the message tree when it encounters processing instructions in a
timeout message. If you select the check box, elements are created for
processing instructions. If you clear the check box, processing
instructions are ignored and no elements are created.

Opaque elements No No Blank This property is used to specify a list of elements in the timeout
message that are to be opaquely parsed by the XMLNSC parser.
Opaque parsing is performed only if validation is not enabled (that is,
if Validate is None); entries that are specified in Opaque Elements are
ignored if validation is enabled.

The Validation properties of the TimeoutNotification node are described in the
following table.

If a message is propagated to the Failure terminal of the node, it is not validated.
For more information, see “Validating messages” on page 1478 and “Validation
properties” on page 4169.

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place.
Valid values are None, Content, and Content And Value.

validateMaster

4940 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Failure
Action

No No ExceptionThis property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are User
Trace, Local Error Log, Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Configuring timeout flows” on page 2809
Use the TimeoutControl and TimeoutNotification nodes in message flows to
process timeout requests or to generate timeout notifications at specified intervals.
“Handling timeout notification errors” on page 2833
The TimeoutNotification node takes various actions when it handles errors with
transactional messages, depending on whether the Failure and Catch terminals are
connected.
“Sending timeout request messages” on page 2810
To set a controlled timeout, send a message with a set of elements with well
known names to a TimeoutControl node. These elements control the properties of
the timeout to be created or deleted.
“Considering performance for timeout flows” on page 2822
When you design timeout flows, the decisions that you make can affect the
performance of your brokers and applications.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
“Manipulating messages in the XMLNSC domain” on page 2546
If you are writing ESQL to process messages in the XMLNSC domain, it is helpful
to learn about the structure of the message tree that the XMLNSC parser builds.

Chapter 14. Reference 4941

“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Parsing on demand” on page 4173
On-demand parsing, referred to as partial parsing, is used to parse an input
message bit stream only as far as is necessary to satisfy the current reference. The
parsers that can perform partial parsing of input messages are the JSON, MRM,
XML, XMLNS, and XMLNSC parsers.
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options
tabs for the nodes that are listed in the following table.
“TimeoutControl node” on page 4932
Use the TimeoutControl node to process an input message that contains a timeout
request.
“Example XML timeout request message” on page 2812
The format used here is XML, but you can use any format that is supported by an
installed parser.
“Configurable services properties” on page 3766
The supplied configurable services, and the configurable services that you create,
are defined by their names and properties. You can use the supplied services.

Trace node
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4943
v “Terminals and properties” on page 4943

Purpose:
Trace records can incorporate text, message content, and date and time
information, to help you to monitor the behavior of the message flow.

You can write the records to the user trace file, another file, or the local error log
(which contains error and information messages written by all other WebSphere
Message Broker components). If you write traces to the local error log, you can
issue a message from the default message catalog that is supplied with WebSphere
Message Broker, or you can create your own message catalog.

The operation of the Trace node is independent of the setting of user tracing for
the message flow that contains it. In particular, records that are written by the
Trace node to the user trace log are written even if user trace is not currently active
for the message flow.

The Trace node is contained in the Construction drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

4942 WebSphere Message Broker Version 7.0.0.8

Using this node in a message flow:
Look at the following samples to see how to use this node:
v Airline Reservations
v Aggregation
v Timeout Processing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Include a Trace node to help diagnose errors in your message flow. By tracing the
contents of the message at various points in the flow, you can determine the
sequence of processing. You can configure the Trace node to record the content of a
message, and to check the action of a specific node on the message. For example,
you can include a Trace node immediately after a Compute node to check that the
output message has the expected format.

You can also use the Trace node to provide information in error handling in your
message flows. For example, you can use this node to record failures in processing
because of errors in the content or format of a message.

When you have tested the message flow and proved that its operation is correct,
remove Trace nodes from your message flow, or switch them off.

Terminals and properties:
When you have put an instance of the Trace node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.
All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

The terminals of the Trace node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal through which the message is propagated.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the Trace node are described in the following table.

Property M C Default Description

Node
name

No No The node type: Trace The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

Chapter 14. Reference 4943

The Basic properties of the Trace node are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Destination Yes No User
Trace

The destination of the trace record that is written by
the node. The Destination refers to the computer that
hosts the broker on which the Trace node is deployed:
v To write the trace record to the local system error

log, select Local Error Log.

The information that you include in the trace record
is written to one of the following locations:

– Windows

On Windows systems, data is written

to the Event log (Application View)

– Linux

UNIX

On Linux and UNIX

systems, data is written to the syslog

– z/OS

On z/OS systems, data is written to

the operator console

UNIX

On UNIX systems, syslog entries are

restricted in length and messages are truncated by
the newline character. To record a large amount of
data in a log, set the destination to File or User
Trace instead.

If you select Local Error Log, indicate the number
of the trace message that is to be written, and the
message catalog in which the message is defined.
– If you leave Message Catalog blank, the default

message catalog is used as the source of the
message that is to be written.

You must also enter the error number of the
record in Message Number. Numbers 3051 to 3099
are reserved in the default catalog for this use.
The text of each of these messages in the default
message catalog is identical, but if you use a
different number in this range for each situation
that you trace, you can identify the exact cause of
the error. The default message number is 3051.

– If you create your own message catalog, enter the
fully qualified file name for your catalog in
Message Catalog.

You must also enter the appropriate number for
the message in the catalog that you want to write
to the local error log in Message Number. On some
systems, message numbers that end 00 are
reserved for system use; do not include messages
with numbers such as 3100 in your message
catalog.

4944 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

v To write the trace record to the system-generated
user trace log, select User Trace.

These records are written regardless of the setting of
the User Trace property for the deployed message
flow.

The location of the trace logs depends on your
environment:

Windows Windows
If you set the work path using the -w
parameter of the mqsicreatebroker
command, the location is workpath\log.

If you have not specified the broker work
path, the location is:%ALLUSERSPROFILE%\
Application Data\IBM\MQSI\common\log
where %ALLUSERSPROFILE% is the
environment variable that defines the
system working directory. The default
directory depends on the operating system:

– On Windows XP and Windows Server
2003: C:\Documents and Settings\All
Users\Application Data\IBM\MQSI\
common\log

– On Windows Vista and Windows Server
2008: C:\ProgramData\IBM\MQSI\common\
log

The actual value might be different on your
computer.

Linux UNIX Linux and UNIX
/var/mqsi/common/log

z/OS z/OS
/component_filesystem/log

The file name is made up of the broker name, the
broker UUID, and a suffix of userTrace.bin (for
example, broker.e51906cb-dd00-0000-0080-
b10e69a5d551.userTrace.bin.0). Use the
mqsireadlog and mqsiformatlog commands before
you view the user trace log.

Chapter 14. Reference 4945

Property M C Default Description mqsiapplybaroverride
command property

v To write the trace record to a file of your choice,
select File.

If you select this option, you must also set File Path
to the fully qualified path name for the trace. If you
do not set the path, the location of the file depends
on the system; for example, on z/OS, the file is
created in the home directory of the broker service
ID.

You can use any name for the trace file; for example,
c:\user\trace\trace.log

If you specify a file that does not exist already, the
file is created. However, directories are not created
by this process, so the full path must exist.

The file is written as text, in the format specified by
the Pattern property. You do not need to run the
mqsireadlog or mqsiformatlog commands against
the file.

If a file write error occurs during processing
(because of an out of space condition, for example),
a single warning message, BIP4065, is written to the
local system error log, and the message flow
continues to process messages without logging
further errors. Check the error log carefully for such
a message.

v If you do not want to write trace records, select
None. You can also switch off Trace nodes.

File Path No Yes The fully qualified file name of the file to which to
write records. This property is valid only if
Destination is set to File.

filePath

4946 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Pattern No No The data that is to be included in the trace record.
Create an ESQL pattern to specify what information to
write. If you write the trace record to the local error
log, the pattern governs the information that is written
in the text of the message number that is selected. If
you use the default message catalog, and a number
between 3051 and 3099, the pattern information is
inserted as &1 in the message text.
v You can write plain text, which is copied into the

trace record exactly as you have entered it.
v You can identify parts of the message to write to the

trace record, specifying the full field identifiers
enclosed between the characters ${ and }. To record
the entire message, specify ${Root}.

v Use the ESQL functions to provide additional
information; for example, use the ESQL function
CURRENT_DATE to record the date, time, or both,
at which the trace record is written.

The pattern shown here includes some of the options
that are available. The pattern writes an initial line of
text, records two elements of the current message, and
adds a simple timestamp:

Message passed through with the following fields:
Store name is ${Body.storedetailselement.storename}
Total sales are ${Body.totalselement.totalsales}
Time is: ${EXTRACT(HOUR FROM CURRENT_TIMESTAMP)}

:${EXTRACT(MINUTE FROM CURRENT_TIMESTAMP)}

The resulting trace record is:

Message passed through with the following fields:
Store name is ’SRUCorporation’
Total sales are ’34.98’
Time is: 11:19

A pattern that contains syntax errors does not prevent
a message flow that contains the Trace node from
deploying, but the node writes no trace records.

Message
Catalog

No No The name of the message catalog from which the error
text for the error number of the exception is extracted.
The default value (blank) indicates that the message is
taken from the message catalog that is supplied with
WebSphere Message Broker. See “Creating message
catalogs” on page 3138 for more information.

Message
Number

No No 3051 The error number of the message that is written.

The Monitoring properties of the node are described in the following table.

Chapter 14. Reference 4947

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Switching Trace nodes on and off” on page 3555
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
switch Trace nodes on and off.
Related reference:
“Throw node” on page 4929
Use the Throw node to throw an exception in a message flow.
“TryCatch node” on page 4949
Use the TryCatch node to provide a special handler for exception processing.
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the

4948 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker Toolkit.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.
“CURRENT_DATE function” on page 5179

TryCatch node
Use the TryCatch node to provide a special handler for exception processing.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Connecting the terminals”
v “Terminals and properties” on page 4950

Purpose:
Initially, the input message is routed on the Try terminal, which you must connect
to the remaining non-error processing nodes of the message flow. If a downstream
node (which can be a Throw node) throws an exception, the TryCatch node catches
it and routes the original message to its Catch terminal. Connect the Catch
terminal to further nodes to provide error processing for the message after an
exception. If the Catch terminal is connected, the message is propagated to it. If the
Catch terminal is not connected, the message is discarded.

The TryCatch node is contained in the Construction drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
Look at the following sample to see how to use this node:
v Error Handler

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Use the Throw and TryCatch nodes when you use the Compute node to calculate a
total. You can create a message that is sent to your system administrator when the
total that is calculated exceeds the maximum value for the Total field.

Connecting the terminals:
The TryCatch node has no configurable properties that affect its operation. You
determine how it operates by connecting the output terminals to subsequent nodes
in your message flow.
1. Connect the Try terminal to the first node in the sequence of nodes that

provides the normal (non-error) phase of processing of this message. This

Chapter 14. Reference 4949

sequence can contain one or more nodes that perform any valid processing.
The sequence of nodes can optionally conclude with an output node.

2. Connect the Catch terminal to the first node in the sequence of nodes that
provides the error processing for this message flow. This sequence can contain
one or more nodes that perform any valid processing. The sequence of nodes
can optionally conclude with an output node.
When an exception is thrown in the message flow, either by the explicit use of
the Throw node or the ESQL THROW statement, or by the broker raising an
implicit exception when it detects an error that the message flow is not
programmed to handle, control returns to the TryCatch node.
The node propagates the message to the sequence of nodes connected to the
Catch terminal (the catch flow) and the error handling that you have designed
is initiated. The content of the message tree that is propagated is identical to
the content that was propagated to the Try terminal, which is the content of the
tree when the TryCatch node first received it. The node enhances the message
tree with the new exception information that it has written to the exception list
tree. Any modifications or additions that the nodes in try flow made to the
message tree are not present in the message tree that is propagated to the catch
flow.

Terminals and properties:
When you have put an instance of the TryCatch node into a message flow, you can
configure it; see . The properties of the node are displayed in the Properties view.

The TryCatch node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Catch The output terminal to which the message is propagated if an exception is thrown downstream and
caught by this node.

Try The output terminal to which the message is propagated if it is not caught.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The TryCatch node Description properties are described in the following table.

Property M C Default Description

Node name No No The node type:
TryCatch

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The Monitoring properties of the node are described in the following table.

4950 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Exception list tree structure” on page 1066
The exception list tree is a part of the logical message tree in which the message
flow writes information about exceptions that occur when a message is processed.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
Related reference:
“Throw node” on page 4929
Use the Throw node to throw an exception in a message flow.
“Trace node” on page 4942
Use the Trace node to generate trace records that you can use to monitor the
behavior of a message flow.
“THROW statement” on page 5161
Use the THROW statement to generate a user exception.

TwineballInput node
Use the TwineballInput node to discover how the WebSphere Adapters nodes
work.

This topic contains the following sections:
v “Purpose”
v “Terminals and properties” on page 4952

Purpose:
The TwineballInput node is provided for educational purposes and helps you to
see how the WebSphere Adapters nodes work. The TwineballInput node is a
sample node with its own sample EIS. You cannot use the TwineBall nodes to
connect to the external SAP, Siebel, and PeopleSoft EIS systems. Do not use this
node in production.

The TwineballInput node is contained in the WebSphere Adapters drawer of the
message flow node palette, and is represented in the WebSphere Message Broker
Toolkit by the following icon:

Chapter 14. Reference 4951

You can use the mqsisetdbparms command in the following format to configure an
account name with a user name and password for the Twineball adapter.
mqsisetdbparms broker name -n adapter name -u user name -p password

For example:
mqsisetdbparms BRK1 -n eis::TwineballInbound.inadapter -u mqbroker -p ********

Look at the following sample to see how to use this node:
v Twineball Example EIS Adapter

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the TwineballInput node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. If you double-click a TwineballInput node, you open the Adapter
Connection wizard. All mandatory properties for which you must enter a value
(those that do not have a default value defined) are marked with an asterisk.

The TwineballInput node terminals are described in the following table.

Terminal Description

Out Business object events from the adapter are sent to the Out terminal.

Failure If an error happens in the TwineballInput node, the message is propagated to the Failure terminal.
Information about the error, and business object events can also be propagated to the Failure terminal.

Catch Business object events are sent to the Catch terminal if they cause an uncaught exception in the
message flow. If the Catch terminal is not connected, the retry process is activated to handle the
business object.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file at deployment).

The TwineballInput node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type,
TwineballInput.

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

4952 WebSphere Message Broker Version 7.0.0.8

The TwineballInput node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Adapter
component

Yes Yes The name of the adapter component that contains
configuration properties for the adapter. Either enter a
name of an adapter file or click Browse to select an
adapter file from the list of files that are available in
referenced message set projects.

adapterComponent

The TwineballInput node Routing properties are described in the following table.

Property M C Default Description

Set
destination
list

No No Selected This property specifies whether to add the method binding name to the route
to label destination list. If you select this check box, the method binding name
is added so that you can use a RouteToLabel node in the message flow after
the TwineballInput node.

Label
prefix

No No The prefix to add to the method name when routing to label. Add a label
prefix to avoid a clash of corresponding label nodes when you include multiple
WebSphere Adapters input nodes in the same message flow. By default, there is
no label prefix, so that the method name and label name are identical.

The TwineballInput node Input Message Parsing properties are described in the
following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the incoming message. By default, the
message that is propagated from the TwineballInput node is in the
DataObject domain. You cannot specify a different domain.

Message set Yes No Set
automatically

The name of the message set in which the incoming message is defined.
This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project
dependencies to remove this message set reference, a warning is issued.
Either update the Message set property, or restore the reference to this
message set project.

Message type No No The name of the incoming message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the incoming message. You cannot
set this property.

The TwineballInput node Transactional properties are described in the following
table.

Property M C Default Description

Transaction
mode

No No Yes The transaction mode on this input node determines whether the rest of the
nodes in the flow operate under sync point.

The Instances properties of the TwineballInput node are described in the following
table. For a full description of these properties, see “Configurable message flow
properties” on page 4020.

Chapter 14. Reference 4953

Property M C Default Description mqsiapplybaroverride
command property

Additional
instances
pool

No Yes Use Pool
Associated
with
Message
Flow

The pool from which additional instances are
obtained.
v If you select Use Pool Associated with Message

Flow, additional instances are obtained from the
message flow value.

v If you select Use Pool Associated with Node,
additional instances are allocated from the node's
additional instances based on the number specified
in the Additional instances property.

componentLevel

Additional
instances

No Yes 0 The number of additional instances that the node can
start if the Additional instances pool property is set
to Use Pool Associated with Node. By default, no
additional instances are given to the node.

additionalInstances

The TwineballInput node Retry properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Retry
mechanism

No No Failure This property specifies how retry processing is
handled when a failure is rolled back to the
TwineballInput node.

v If you select Failure, retry processing is not
performed so that you cannot set the remaining
properties.

v If you select Short and long retry, retry
processing is performed first at the interval that is
specified by the Short retry interval property,
and if that is unsuccessful, it is then performed at
the interval that is specified by the Long retry
interval property.

Retry
threshold

No Yes 0 The maximum number of times that retry processing
is performed for short retry.

retryThreshold

Short retry
interval

No Yes 0 The interval between short retry attempts. shortRetryThreshold

Long retry
interval

No Yes 0 The interval between long retry attempts. longRetryThreshold

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters

4954 WebSphere Message Broker Version 7.0.0.8

and CORBA applications.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

TwineballRequest node
Use the TwineballRequest node to discover out how WebSphere Adapters nodes
work.

This topic contains the following sections:
v “Purpose”
v “Terminals and properties” on page 4956

Purpose:
The TwineballRequest node is provided for educational purposes and helps you to
see how the WebSphere Adapters nodes work. The TwineballRequest node is a
sample node with its own sample EIS. You cannot use the TwineBall nodes to
connect to the external SAP, Siebel, and PeopleSoft EIS systems. Do not use this
node in production.

The TwineballRequest node is contained in the WebSphere Adapters drawer of the
message flow node palette, and is represented in the WebSphere Message Broker
Toolkit by the following icon:

You can use the mqsisetdbparms command in the following format to configure an
account name with a user name and password for the Twineball adapter.
mqsisetdbparms broker name -n adapter name -u user name -p password

Chapter 14. Reference 4955

For example:
mqsisetdbparms BRK1 -n eis::TwineballOutbound.outadapter -u mqbroker -p ********

Look at the following sample to see how to use this node:
v Twineball Example EIS Adapter

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Terminals and properties:
When you have put an instance of the TwineballRequest node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view. If you double-click a TwineballRequest node, you open the
Adapter Connection wizard. All mandatory properties for which you must enter a
value (those that do not have a default value defined) are marked with an asterisk.

The TwineballRequest node terminals are described in the following table.

Terminal Description

In The input terminal that accepts the request business object.

Out The output terminal to which the response business object is sent if it represents successful completion
of the request, and if further processing is required within this message flow.

Failure If an error happens in the TwineballRequest node, the message is propagated to the Failure terminal.
Information about the error, and business object events can also be propagated to the Failure terminal.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk on the panel if you
must enter a value when no default is defined); the column headed C indicates
whether the property is configurable (you can change the value when you add the
message flow to the BAR file to deploy it).

The TwineballRequest node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type,
TwineballRequest

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

The TwineballRequest node Basic properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Adapter
component

Yes No The name of the adapter component that contains
configuration properties for the adapter. Either enter a
name of an adapter file, or click Browse to select an
adapter file from the list of files that are available in
referenced message set projects.

4956 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Default
method

Yes Yes The default method binding to use. defaultMethod

The TwineballRequest node Response Message Parsing properties are described in
the following table.

Property M C Default Description

Message
domain

No No DataObject The domain that is used to parse the response message. By default, the
response message that is propagated from the TwineballRequest node is in
the DataObject domain. You cannot specify a different domain.

Message set Yes No Set
automatically

The name of the message set in which the incoming message is defined.
This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project
dependencies to remove this message set reference, a warning is issued.
Either update the Message set property, or restore the reference to this
message set project.

Message type No No The name of the response message. The node detects the message type
automatically. You cannot set this property.

Message
format

No No The name of the physical format of the response message. You cannot set
this property.

The TwineballRequest node Transactionality properties are described in the
following table.

Property M C Default Description

Transaction
mode

No No Automatic This property specifies how updates are handled. If you select Yes, updates
are performed in a single transaction. If you select No, updates are
performed independently.

The TwineballRequest node Request properties are described in the following table.

Property M C Default Description

Method
Location

Yes No $LocalEnvironment/
Adapter/MethodName

The location of the business method (such as
createPurchaseOrder or deletePurchaseOrder) that is used to
trigger the TwineballRequest node to perform an action on
the external system.

Data
Location

Yes No $Body The location in the incoming message tree from which data is
retrieved to form the request that is sent from the
TwineballRequest node to the EIS.

The TwineballRequest node Result properties are described in the following table.

Property M C Default Description

Output data
location

No No $OutputRoot The message tree location to which the TwineballRequest node sends
output.

Chapter 14. Reference 4957

Property M C Default Description

Copy local
environment

No No Selected This property controls how the local environment is copied to the
output message. If you select the check box, at each node in the message
flow, a new copy of the local environment is created in the tree, and it is
populated with the contents of the local environment from the preceding
node. If a node changes the local environment, the upstream nodes do
not see those changes because they have their own copies. This behavior
might be an issue if you are using a FlowOrder node, or if you use the
propagate command on a Compute node.

If you clear the check box, each node does not generate its own copy of
the local environment, but it uses the local environment that is passed to
it by the previous node. If a node changes the local environment, those
changes are seen by the upstream nodes.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related tasks:
“Preparing the environment for WebSphere Adapters nodes” on page 717
Before you can use the WebSphere Adapters nodes, you must set up the broker
runtime environment so that you can access the Enterprise Information System
(EIS).
“Developing message flows that use WebSphere Adapters” on page 2033
For information about how to develop message flows that use WebSphere
Adapters, see the following topics.
“Deploying a message flow that uses WebSphere Adapters” on page 3240
Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.
“Debugging message flows that contain WebSphere Adapters nodes” on page 3192
You can use various methods to monitor message flows that include WebSphere
Adapters nodes.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

4958 WebSphere Message Broker Version 7.0.0.8

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Validate node
Use the Validate node to check that the message that arrives on its input terminal
is as expected. You can use this node to check that the message has the expected
message template properties, and to check that the content of the message is
correct by selecting message validation.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4960
v “Terminals and properties” on page 4960

Purpose:
The checks that you can perform depend on the domain of the message.

Check Domain

Check message domain All domains

Check message set XMLNSC, MRM, and IDOC only

Check message type MRM only

Validate message body XMLNSC, MRM and IDOC only

You can check the message against one or more of message domain, message set,
or message type. The property is checked only if you select its corresponding
check box, which means that a property that contains an empty string can be
compared.

You can check the content of the message by giving a value to the Validate
property. Validation takes place if the Validate property is set to a value other
than None, which is the default value.

For validation failures to be returned to the Validate node from the parser, set the
Failure Action property to either Exception or Exception List. Otherwise,
validation failures are just logged.

If all the specified checks pass, the message is propagated to the Match terminal of
the node.

If any of the checks fail, the message is propagated to the Failure terminal. If the
Failure terminal is not connected to some failure handling processing, an exception
is generated.

The Validate node replaces the Check node, which is deprecated in WebSphere
Message Broker Version 6.0 and subsequent releases. The Validate node works in
the same way as the Check node, but it has additional Validation properties to
allow the validation of message content by parsers that support that capability.

The Validate node is contained in the Validation drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Chapter 14. Reference 4959

Using this node in a message flow:
Use the Validate node to confirm that a message has the correct message template
properties, and has valid content, before propagating the message to the rest of the
flow. Subsequent nodes can then rely on the message being correct, without doing
their own error checking.

You can also use the Validate node to ensure that the message is routed
appropriately through the message flow. For example, configure the node to direct
a message that requests stock purchases through a different route from that
required for a message that requests stock sales.

Another routing example is the receipt of electronic messages from your staff at
your head office. These messages are used for multiple purposes (for example, to
request technical support or stationery, or to advise you about new customer
leads). These messages can be processed automatically because your staff complete
a standard form. If you want these messages to be processed separately from other
messages that are received, use the Validate node to ensure that only staff
messages that have a specific message type are processed by this message flow.

Terminals and properties:
When you have put an instance of the Validate node into a message flow, you can
configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view. All
mandatory properties for which you must enter a value (those that do not have a
default value defined) are marked with an asterisk.

The terminals of the Validate node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if the incoming message does not match the specified
properties.

Match The output terminal to which the message is routed if the incoming message matches the specified
properties.

The following tables describe the properties of the node. The column headed M
indicates whether the property is mandatory (marked with an asterisk if you must
enter a value when no default is defined); the column headed C indicates whether
the property is configurable (you can change the value when you add the message
flow to the BAR file to deploy it).

The Description properties of the Validate node are described in the following
table.

Property M C Default Description

Node name No No Validate The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

4960 WebSphere Message Broker Version 7.0.0.8

The Validate node Basic properties are described in the following table.

Property M C Default Description

Domain No No The name of the domain. Select one of the following values from the list of the
Domain property:
v XMLNSC
v SOAP
v DataObject
v XMLNS
v JMSMap
v JMSStream
v MIME
v MRM
v BLOB

You can also specify a user-defined parser, if appropriate.

Check
domain

Yes No Cleared If you select this check box, the incoming message is checked against the Domain
property.

Set No No The name or identifier of the message set to which the incoming message
belongs. If you are using the XMLNSC, DataObject, SOAP, MRM, or IDOC
parser and want to check that the incoming message belongs to a particular
message set, select Check set and select one of the values from the list of the Set
property. This list is populated when you select XMLNSC, DataObject, SOAP,
MRM, or IDOC as the message domain.

Leave Set clear for the other parsers.

If you set this property, then subsequently update the project dependencies to
remove this message set reference, a warning is issued. Either update the Set
property, or restore the reference to this message set project.

Check set Yes No Cleared If you select the check box, the incoming message is checked against the Set
property. If you are using the XMLNSC,DataObject, SOAP, MRM, or IDOC
parser and want to check that the incoming message belongs to a particular
message model, select Check set and select one of the values from the list of the
Set property.

Type No No The message name. If you are using the MRM parser and want to check that the
incoming message is a particular message type, select Check type and enter the
name of the message in the Type property.

Leave Type clear for the other parsers.

Check
type

Yes No Cleared If you select the check box, the incoming message is checked against the Type
property. If you are using the MRM parser and want to check that the incoming
message is a particular message type, select Check type and enter the name of
the message in the Type property.

The Validation properties of the Validate node are described in the following table.

If you are using the XMLNSC, DataObject, SOAP, MRM, or IDOC parser and want
to validate the body of messages against the message set, select the required
validation properties on the Validation tab. For more details, see “Validating
messages” on page 1478 and “Validation properties” on page 4169.

Chapter 14. Reference 4961

Property M C Default Description mqsiapplybaroverride
command property

Validate No Yes None This property controls whether validation takes place.
Valid values are None, Content and Value, Content, and
Inherit.

validateMaster

Failure
Action

No No ExceptionThis property controls what happens if validation fails.
You can set this property only if you set Validate to
Content or Content and Value. Valid values are User
Trace, Local Error Log, Exception, and Exception List.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“Validation properties” on page 4169
You can control validation by setting properties on the Validate and Parser Options

4962 WebSphere Message Broker Version 7.0.0.8

tabs for the nodes that are listed in the following table.
“Check node” on page 4318
Use the Check node to compare the template of a message that is arriving on its
input terminal with a message template that you supply when you configure the
Check node.

Warehouse node
Use the Warehouse node to interact with a database in the specified ODBC data
source.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 4964

Purpose:
The Warehouse node is a specialized form of the Database node that stores the
entire message, parts of the message, or both, in a table within the database. You
define what is stored by creating mappings that use the data from the input
message to identify the action that is required.

You can use the Warehouse node for various purposes. For example:
v To maintain an audit trail of messages that are passing through the broker
v For offline or batch processing of messages that have passed through the broker

(data mining)
v As a source from which to reprocess selected messages in the broker

Use standard database query and mining techniques to retrieve messages that you
have stored in the warehouse. (No explicit support is provided by WebSphere
Message Broker.)

You must have created or identified the following items:
v Input data in the form of a message set and message
v An ODBC connection to the database
v A database and database table to store the message
v At least two columns in the table: one for the binary object (the message), and

one for the timestamp

The Warehouse node is contained in the Database drawer of the palette, and is
represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
When you use the Warehouse node, you can store the following elements in the
database that is associated with the node:
v The entire message, optionally with an associated timestamp. The message is

stored as a binary object, with the timestamp in a separate column. This option
has two advantages:
– There is no need to decide beforehand how to use the warehoused data

because after the data is stored, it can be retrieved, and data mining tools
applied.

Chapter 14. Reference 4963

– You do not need to define a specific database schema for every type of
message that might pass through the broker. In a complex system, many
different message types might be processed, and the time involved in
defining a unique schema for each message type can become prohibitive. You
can precede each Warehouse node with a Compute node that converts each
message into a canonical warehouse format with a common schema, or you
can store the whole message as a binary object.

v Selected parts of the message, optionally with an associated timestamp, which
requires a defined database schema for that message type. The message is
mapped to true type so, for example, a character string in the message is stored
as a character string in the database.

Terminals and properties:
When you have put an instance of the Warehouse node into a message flow, you
can configure it. For more information, see “Configuring a message flow node” on
page 1503. The properties of the node are displayed in the Properties view. (If you
double-click a Warehouse node, you open the New Message Map dialog box.) All
mandatory properties for which you must enter a value (those that do not have a
default value defined) are marked with an asterisk.

The terminals of the Warehouse node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the
computation. If you have selected Treat warnings as errors, the node propagates the message to this
terminal even if the processing completes successfully.

Out The output terminal that outputs the message following the execution of the database statement.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Warehouse node Description properties are described in the following table.

Property M C Default Description

Node
name

No No Warehouse The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The Warehouse node Basic properties are described in the following table.

4964 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Data source No Yes The ODBC data source name of the
database that contains the tables to which
you refer in the mappings that are
associated with this node (identified by the
Field mapping property).

This name identifies the appropriate
database as it is known on the system on
which this message flow is to run. The
broker connects to this database with user
ID and password information that you have
specified on the mqsisetdbparms command.

dataSource

Chapter 14. Reference 4965

Property M C Default Description mqsiapplybaroverride
command property

Field
mapping

Yes No Warehouse The name of the mapping routine that
contains the statements that are to be
executed against the database or the
message tree.

By default, the name that is assigned to the
mapping routine is identical to the name of
the mappings file in which the routine is
defined. The default name for the file is the
name of the message flow concatenated
with the name of the node when you
include it in the message flow (for example,
MFlow1_Warehouse.msgmap for the first
Warehouse node in message flow MFlow1).
You cannot specify a value that includes
spaces.

If you click Browse next to this entry field,
a dialog box displays that lists all available
mapping routines that can be accessed by
this node. Select the routine that you want
and click OK; the routine name is set in
Field mapping.

To work with the mapping routine that is
associated with this node, double-click the
node, or right-click the node and select
Open Mappings. If the mapping routine
does not exist, it is created for you with the
default name in the default file. If the file
exists, you can also open file
flow_name_node_name.msgmap in the Broker
Development view.

The content of the mapping routine
determines what is stored in the database,
and in what format. You can, for example,
store all or just a part of each message. You
can also store the data as binary data, or
store each field in the same format as it is
in the message (for example, a character
field in the message is stored as character in
the database).

A mapping routine is specific to the type of
node with which it is associated; you
cannot use a mapping routine that you
have developed for a Warehouse node with
any other node that uses mappings (for
example, a DataInsert node). If you create a
mapping routine, you cannot call it from
any other mapping routine, although you
can call it from an ESQL routine.

For more information about working with
mapping files, and defining their content,
see “Using message mappings” on page
2228.

4966 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description mqsiapplybaroverride
command property

Transaction Yes No Automatic The transaction mode for the node. Select
the value that you require:
v If you select Automatic (the default), the

message flow, of which the Warehouse
node is a part, is committed if it is
successful; that is, the actions that you
define in the mappings are taken and the
message continues through the message
flow. If the message flow fails, it is rolled
back. Therefore, selecting Automatic
means that the ability to commit or roll
back the action of the Warehouse node on
the database depends on the success or
failure of the entire message flow.

v If you select Commit, any uncommitted
actions that are taken in this message
flow are committed on the database that
is connected to this node, irrespective of
the success or failure of the message flow
as a whole. The changes to the database
are committed even if the message flow
itself fails.

Treat
warnings as
errors

Yes No Cleared For database warning messages to be
treated as errors, and the node to propagate
the output message to the Failure terminal,
select Treat warnings as errors. The check
box is cleared by default.

When you select the check box, the node
handles all positive return codes from the
database as errors and generates exceptions
in the same way as it does for the negative,
or more serious, errors.

If you do not select the check box, the node
treats warnings as typical return codes, and
does not raise any exceptions. The most
significant warning raised is not found,
which can be handled as a typical return
code safely in most circumstances.

Throw
exception
on database
error

Yes No Selected For the broker to generate an exception
when a database error is detected, select
Throw exception on database errors. The
check box is selected by default.

If you clear the check box, you must handle
the error in the message flow to ensure the
integrity of the broker and the database; the
error is ignored if you do not handle it
through your own processing, because you
have chosen not to invoke the default error
handling by the broker; for example, you
can connect the Failure terminal to an error
processing subroutine.

Related concepts:

Chapter 14. Reference 4967

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Client application programming interfaces” on page 1038
You can configure the nodes in your message flows to customize the behavior of
those nodes by using one or more of the supported programming interfaces.
Related tasks:
“Deciding which nodes to use” on page 1457
WebSphere Message Broker includes many message processing nodes that you can
use in your message flows.
“Configuring transactionality for message flows” on page 1290
A message flow runs in a single transaction, which is started when data is received
by an input node, and can be committed or rolled back when all processing has
completed.
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Editing configurable properties” on page 3227
You can edit configurable properties in the deployment descriptor file (broker.xml)
of your broker archive.
Related reference:
“mqsichangebroker command” on page 3723
Use the mqsichangebroker command to change one or more of the configuration
parameters of the broker.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.
“DataInsert node” on page 4386
Use the DataInsert node to interact with a database in the specified ODBC data
source.

XSLTransform node
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.

This node was formerly known as the XMLTransformation node.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 4969
v “Configuring the XSLTransform node” on page 4970
v “Terminals and properties” on page 4970

Purpose:

4968 WebSphere Message Broker Version 7.0.0.8

You can specify the location of the style sheet to apply to this transformation in
three ways:
v Use the content of the XML data within the message itself to transform the

message according to a style sheet that the message itself defines.
v Set a value in the LocalEnvironment folder. You must set this value in a node

that precedes the XSLTransform node (for example, a Compute node). You can
therefore use a variety of inputs to determine which style sheet to use for this
message, such as the content of the message data, or a value in a database.

v Use node properties to ensure that the transformation that is defined by this
single style sheet is applied to every message that is processed by this node.

An XSLT (Extensible Stylesheet Language for Transformations) compiler is used for
the transformation if the style sheet is not embedded within the message, and the
node cache level (node property Stylesheet Cache Level) is greater than zero. If the
XSLT is cached, the performance is improved because the XSLT is not parsed every
time it is used.

If the prologue of the input message body contains an XML encoding declaration,
the XSLTransform node ignores the encoding, and always uses the CodedCharSetId
in the message property folder to decode the message.

The XSLTransform node is contained in the Transformation drawer of the palette,
and is represented in the WebSphere Message Broker Toolkit by the following icon:

Using this node in a message flow:
For an example of how to use this node, consider two news organizations that
exchange information on a regular basis. One might be a television station, the
other a newspaper. Although the information is similar, the vocabulary that is used
by the two is different. This node can transform one format to the other by
applying the rules of the specified style sheet. If you specify the style sheet in the
message (either the XML data or the LocalEnvironment), the same node can
perform both transformations.

You cannot use relative path external entities that are defined in the DTD of input
messages (for example, <!DOCTYPE note [<!ENTITY chap1 SYSTEM "chap1.xml">]>).
Use an absolute path definition.

The XSLTransform node supports a number of local environment message tree
variables, which you can use to dynamically alter the values that are set in the
node's properties. For more details, see “Using local environment variables to set
properties” on page 4976.

You can use style sheets in two different ways with the XSLTransform node. For
more details, see “Deployed and non-deployed style sheets” on page 4978.

If you have large XML messages and receive an out of memory error, use the
mqsireportproperties command to see the current value of the Java Heap size for
the XSLT engine:
mqsireportproperties brokerName -e executionGroupLabel

-o ComIbmJVMManager -n jvmMaxHeapSize

Chapter 14. Reference 4969

Use the mqsichangeproperties command to increase the Java Heap size:
mqsichangeproperties brokerName -e executionGroupLabel

-o ComIbmJVMManager -n jvmMaxHeapSize -v newSize

In the previous examples, replace brokerName, executionGroupLabel, and newSize with
the appropriate values.

The value that you choose for newSize depends on the amount of physical memory
that your computer has, and how much you are using Java. A value in the range
512 MB (536870912) to 1 GB (1073741824) is typically sufficient.

Look at the following sample for more details about how to use the XSLTransform
node:
v XSL Transform

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Configuring the XSLTransform node:
When you have put an instance of the XSLTransform node into a message flow,
you can configure it; see . The properties of the node are displayed in the
Properties view.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

Terminals and properties:
The XSLTransform node terminals are described in the following table.

Terminal Description

In The input terminal that accepts the message for processing by the node.

Failure The output terminal to which the original message is routed if an error is detected during
transformation.

Out The output terminal to which the successfully transformed message is routed.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The XSLTransform node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

4970 WebSphere Message Broker Version 7.0.0.8

The XSLTransform node Stylesheet properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Stylesheet
name

No Yes The name of the style sheet, which is used if the style
sheet specification is searched for in node properties. To
specify a style sheet by using node properties, enter the
required value for Stylesheet name.

Specify a principal style sheet using one of the following
methods:
v Click Browse next to Stylesheet name. The identified

principal style sheet and all its relatively-referenced
descendant style sheets are added automatically to the
BAR file when you add a message flow to a BAR file
(if both they and their parent style sheets are
available).

v To identify an already deployed, or ready to be
deployed, style sheet, use the Stylesheet name
property, and leave the Stylesheet directory
property blank.

v In the Message Flow editor, drag an .xslt file onto
the XSLTransform node; the Stylesheet name is set
automatically.

stylesheetName

The XSLTransform node Advanced properties are described in the following table.

Property M C Default Description mqsiapplybaroverride
command property

Stylesheet
directory

No Yes The path where the style sheet is located. This path is used
by all location methods.

If the style sheet identification is fully qualified, the
Stylesheet directory property is ignored; otherwise, the
value that you set in this property is added to the
beginning of the specification, regardless of where it is
found.

stylesheetPath

Chapter 14. Reference 4971

Property M C Default Description mqsiapplybaroverride
command property

Stylesheet
cache level

No No 5 The number of compiled or parsed style sheets that are
stored in this instance of the node.

Enter a positive integer between zero (0) and 100. The
default value is 5. If you set this property to zero (0), no
style sheet is cached, and style sheets are interpreted rather
than compiled. If your message flow does not set the style
sheet dynamically by using the local environment, the
same style sheet is always used, and any value greater
than zero ensures that it is compiled. If your message flow
does set the style sheet dynamically, you can tune the
value to improve performance. If you set this property to a
character other than a positive integer, a flow configuration
exception error message is issued.

The style sheet cache is retained for the life of the node,
and is cleared when the node is deleted from the flow,
when the flow is deleted, or when the execution group is
stopped.

If you change a cached style sheet (by redeploying or
replacing the file in the file system), the XSLTransform
node that is holding the cache replaces the cached version
with the modified (latest) version before a new message is
processed. If a deployed style sheet is redeployed, or an
external style sheet is replaced in the file system, the
update is detected but you cannot replace a style sheet that
is deployed in a BAR file by changing the deployed style
sheet on disk. To change a style sheet that is deployed in a
BAR file, you must redeploy the BAR file. If you are
changing several style sheets, stop the relevant message
flows before you make any changes. If you do not stop the
relevant message flows before you make the changes, the
order of the changes cannot be guaranteed by running
message flows, which might cause an incompatibility
between the style sheets that are changed. Use the
mqsireload command to reload a style sheet; however, this
command does not prevent incompatibility.

Consider performance when you set this property.
Typically, when you set this property to a number greater
than the default value of 5, performance is faster because
style sheet re-compilation is less likely. However, cached
style sheets use Java virtual machine (JVM) heap space; if
you keep too many cached style sheets, the JVM is likely
to slow. In addition, if the cached style sheets are not used
regularly and you set this property to a large number,
performance can be affected because compiling style sheets
increases processor usage. Therefore, to decide on the most
suitable value for this property, you must balance how
many style sheets you use with the size of the style sheets,
the size of the JVM heap space, and your usage pattern.
For more information about the JVM heap space, see “JVM
heap sizing” on page 3269.

The XSLTransform node Output Message Parsing properties are described in the
following table.

4972 WebSphere Message Broker Version 7.0.0.8

Property M C Default Description

Message
domain

No No BLOB The message domain that is associated with the output message. To associate
a specific parser with the output message, specify the new domain in Message
domain. The default value is BLOB. This domain is applied to the output
message. Alternatively, use Inherit to associate the parser that owned the
input message. XML is deprecated; use XMLNSC instead.

You can also specify a user-defined parser if appropriate.

Message
set

No No The message set that is associated with the output message. If you are using
the MRM parser, or the XMLNSC parser in validating mode, select the
Message set that you want to use. This list is populated with available
message sets when you select MRM or XMLNSC as the domain.

If you set this property, then subsequently update the project dependencies to
remove this message set reference, a warning is issued. Either update the
Message set property, or restore the reference to this message set project.

Message
type

No No The message type that is associated with the output message. If you are using
the MRM parser, select the correct message from the list in Message type. This
list is populated with messages that are defined in the Message set that you
have selected.

Message
format

No No The message format that is associated with the output message. If you are
using the MRM parser, select the XML physical format for the output message
from the list in Message format. This list includes all the physical formats that
you have defined for this Message set.

Character
set

No No The numeric value of the character set for the output message. To specify a
character set for the output message by using node properties, specify the
required value for Character set. The value that you specify must be
numeric; for example, specify 1200 to encode the output message as UTF-16.

The XSLTransform node Parser Options are described in the following table.

Property M C Default Description

Parse timing No No On Demand This property controls when an output message is parsed. Valid values are
On Demand, Immediate, and Complete. Parse timing is, by default, set to On
Demand, which causes parsing of the message to be delayed. To cause the
message to be parsed immediately, see “Parsing on demand” on page 4173.

Build tree
using XML
schema data
types

No No Cleared This property controls whether the XMLNSC parser creates syntax elements
in the message tree with data types taken from the XML Schema. You can
select this property only if you set the Validate property to Content or
Content and Value. For more information, see “Manipulating messages in
the XMLNSC domain” on page 2546.

Use
XMLNSC
compact
parser for
XMLNS
domain

No No No This property controls whether the XMLNSC Compact Parser is used for
output messages in the XMLNS Domain. If you set this property, the
message data appears under XMLNSC in nodes that are connected to the
output terminal when the input MQRFH2 header or Domain is XMLNS.

The XSLTransform node Validation properties are described in the following table.
Set the validation properties for the parser to validate the body of messages
against the Message set. (If a message is propagated to the Failure terminal of the
node, it is not validated.) For more details, see “Validating messages” on page 1478
and “Validation properties” on page 4169.

Chapter 14. Reference 4973

Property M C Default Description

Validate No Yes None This property controls whether validation takes place of the output message.
Valid values are None, Content, Content and Value, and Inherit.

Failure
action

No No Exception This property controls what happens if validation of the output message
fails. You can set this property only if you set Validate to Content and Value
or Content. Valid values are User Trace, Local Error Log, Exception, and
Exception List.

The XSLTransform node Detail Trace properties are described in the following
table.

Property M C Default Description

Trace
setting

Yes No Off This property is deprecated. Start user trace instead. The user trace contains the
same XSL trace information. If you set this property, it does not affect user trace.

In previous versions of WebSphere Message Broker, this property controls whether
tracing is on or off. If tracing is on, low level tracing is recorded in a file.

The Monitoring properties of the node are described in the following table.

Property M C Default Description

Events No No None Events that you have defined for the node are displayed on this tab. By
default, no monitoring events are defined on any node in a message flow. Use
Add, Edit, and Delete to create, change or delete monitoring events for the
node; see “Configuring monitoring event sources using monitoring properties”
on page 3327 for details.

You can enable and disable events that are shown here by selecting or clearing
the Enabled check box.

Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Handling errors in message flows” on page 2823
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.

4974 WebSphere Message Broker Version 7.0.0.8

“Setting the JVM heap size” on page 3254
When you start an execution group, it creates a Java virtual machine (JVM) for
executing a Java user-defined node.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Adding keywords to XSL style sheets”
Embedded keywords in an XSL style sheet; their location is not restricted. You can
also add a keyword as an XML comment.
“mqsichangeproperties command” on page 3756
Use the mqsichangeproperties command to modify broker properties and
properties of broker resources.
“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“mqsireload command” on page 3909
Use the mqsireload command to request the broker to stop and restart execution
groups.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“RegistryLookup node” on page 4646
Use the RegistryLookup node to retrieve any type of entity held in the WebSphere
Service Registry and Repository (WSRR). The entities that match the specified
search criteria are stored in the local environment. The input message is not
modified.

Adding keywords to XSL style sheets:

Embedded keywords in an XSL style sheet; their location is not restricted. You can
also add a keyword as an XML comment.

XML comments must have the following format:
$MQSI keyword = value MQSI$

The example shows how to add the keyword of author with the value John to an
XML style sheet:
<?xml version="1.0" encoding="UTF-8">
<!-- $MQSI author = John MQSI$ -->
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text" encoding="UTF-8"/>
<xsl:template match="/">
<xsl:value-of select="message"/>
</xsl:template>
</xsl:stylesheet>

Chapter 14. Reference 4975

Restrictions within keywords

Do not use the following characters within keywords, because they might cause
unpredictable behavior:
^ $. | \ < > ? + * = & [] ()

You can use these characters in the values that are associated with keywords; for
example:
v $MQSI RCSVER=$id$ MQSI$ is acceptable
v $MQSI $name=Fred MQSI$ is not acceptable
Related concepts:
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related reference:
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.
“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.

Using local environment variables to set properties:

The XSLTransform node supports a number of local environment message tree
variables, which you can use to dynamically alter the values that are set in the
node's properties.

The following table lists each local environment variable against the name of the
node property that it overrides:

Local environment variable name Node property name

XSL.StyleSheetName Stylesheet name

XSL.MessageDomain Message domain

XSL.MessageSet Message set

XSL.MessageType Message type

XSL.MessageFormat Message format

XSL.OutputCharSet Character set

This node searches for the name of the style sheet to be used by interrogating, in
the following order:
1. The input message.

The node searches the message XML data for information about the location of
the style sheet. For example, the XML data might contain:
<?xml-stylesheet type="text/xsl" href="me.xsl"?>

4976 WebSphere Message Broker Version 7.0.0.8

and "me.xsl" is then used as the name of the style sheet.
2. The local environment.

If no style sheet name is found in the input message, the node searches the
local environment that is associated with the current message for style sheet
information stored in an element called XSL.StyleSheetName.
This node was available in Version 6.0, and element
ComIbmXslXmltStylesheetname was used for the name of the style sheet,
therefore the current node checks both elements. If both are present, the value
in XSL.StyleSheetName takes precedence.

3. The node properties.
If no style sheet name is found in the input message or local environment, the
node uses the Stylesheet name and Stylesheet directory properties to
determine the correct values.

The node searches for the message domain, message set, message type, and
message format to use for the output message by interrogating, in the following
order:
1. The local environment.

The node searches the local environment that is associated with the current
message for message domain, message set, message type, and message format
information stored in elements called XSL.MessageDomain, XSL.MessageSet,
XSL.MessageType, and XSL.MessageFormat.

2. The node's properties.
If no message domain, message set, message type, or message format
information is found in these local environment variables, the node uses the
Message domain, Message set, Message type, and Message format properties to
determine the correct values.

If the node cannot determine the message domain from either XSL.MessageDomain
or the Message domain property, the default value of BLOB is used. No default
values exist for message set, message type, and message format.

The node searches for the character set to use for the output message by
interrogating, in the following order:
1. The local environment.

The node searches the local environment that is associated with the current
message for character set information stored in an element called
XSL.OutputCharSet; for example, to encode the output of the transformation as
UTF-8, enter the value 1208 as a string in this element.
This node was available in Version 6.0, and element
ComIbmXslXmltOutputcharset was used for the output character set, therefore
the current node checks both elements. If both are present, the value in
XSL.OutputCharSet takes precedence.

2. The node's properties.
If no character set information is found in the local environment, the node uses
the Character set property to determine the correct value.
If you set a value for Character set, the value that you enter must be numeric;
for example, to encode the output of the transformation as UTF-16, enter 1200.

If the node cannot determine the output character set from either of these two
sources, because either no value is set or the selection priorities are set to zero, the
default value of 1208 (UTF-8) is used.

Chapter 14. Reference 4977

Be aware of the following factors if the input to the XSLTransform node is
generated from the XMLNSC parser or the MRM parser. The XMLNSC parser
discards certain information in XML documents, such as processing instructions
and comments, if you do not set properties to retain this information in a
preceding node. To ensure that the XSLTransform node transforms the message
correctly, set the Retain mixed content, Retain comments, and Retain processing
instructions properties correctly on the preceding node (for example, an MQInput
node). The MRM parser also discards this information, but you cannot retain
information for this parser, therefore avoid using the MRM domain if such
information is vital to your transformation.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Adding keywords to XSL style sheets” on page 4975
Embedded keywords in an XSL style sheet; their location is not restricted. You can
also add a keyword as an XML comment.
“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.

Deployed and non-deployed style sheets:

You can use style sheets in two different ways with the XSLTransform node.

Deployed style sheets
Deployed style sheets are style sheets that you import into a broker archive
(BAR) file and deploy to target systems. Deployed style sheets are
managed by the broker. A principal style sheet is the root style sheet that is
referenced in a message flow; for example, a reference to a principal style
sheet in the Eclipse workspace, C:\\project1\a\b.xsl must be specified as
a/b.xsl (or ./a/b.xsl). A principal style sheet can reference (include or
import) its descendent style sheets.

Non-deployed style sheets
Non-deployed style sheets are style sheets that you store in a location
where the XSLTransform node can access them. Non-deployed style sheets
are not managed by the broker.

4978 WebSphere Message Broker Version 7.0.0.8

Deployment of deployed style sheets or XML files

Before you can configure the XSLTransform node, you must understand how to
work with style sheets. A style sheet can refer to both another XML file and a style
sheet. To use deployed style sheets or XML files:
1. Make sure that the files have the correct file name extensions.

Style sheets that are to be deployed must have either .xsl or .xslt as their file
extension, and XML files to be deployed must have .xml as their file extension.

2. Import the files into the Eclipse workspace.
Import into an Eclipse workspace project all style sheets and XML files that are
to be deployed. Put location-dependent descendant style sheets, or XML files
that are to be deployed, in the correct directory structure relative to their parent
style sheets. Do not put in the Eclipse workspace location-dependent
descendants that you do not want to deploy.

3. Make sure that all references to the files are relative.
Typically, all references to a deployed style sheet must be made relative, no
matter where they are displayed. A reference to a principal style sheet must be
made relative to the root of the relevant Eclipse workspace project.
The only exception is when you specify a principal style sheet as the
Stylesheet name property on an XSLTransform node; you can use an absolute
path that points to the correct directory structure in the Eclipse workspace. If
the principal style sheet is found, the system resets the node property
automatically to the correct relative value.
The system also performs an automatic deployment of the principal style sheet,
together with all of its location-dependent descendant style sheets that are
available in the relevant Eclipse workspace project. All references to the
location-dependent descendant style sheets (or XML files) of a principal style
sheet must be made relative to the location of their parent style sheets. For
example, if style sheet //project1/a/b.xsl references style sheet
//project1/a/c/d.xsl, the reference must be changed to c/d.xsl (or
./c/d.xsl).

4. Handle non-deployed child style sheets or XML files.
Style sheets can refer to other style sheets. If you have a relatively-referenced
child style sheet (or XML file) that is not to be deployed, yet its parent is, make
sure that the child style sheet is placed in the correct location under
workpath/XSL/external (workpath/XML/external), where workpath is the full
path to the working directory of the broker. You can use the MQSI_WORKPATH
environment variable to find the location of the workpath on your system; for
example, on Windows XP systems, the default workpath is
MQSI_WORKPATH=C:\Documents and Settings\All Users\Application
Data\IBM\MQSI.
A broker automatically associates the execution group deployed storage tree,
workpath/XSL/external, and workpath/XML/external tree, together. Therefore if,
for example, the document b/c.xml is not found in the broker's deployed
storage, the broker automatically searches for a reference to it in the
workpath/XML/external/a/b directory in the deployed principal style sheet
a/style.xsl. Relative path references must also be used for files that have been
deployed but which are not available in the workspace.

5. Deploy the files.
Deploy manually only those style sheets or XML files that are not picked up by
the system (the WebSphere Message Broker Toolkit provides warnings about

Chapter 14. Reference 4979

these files). If you click Browse for the node, or provide the full path of the
location of the style sheet in the Eclipse workspace, the style sheet is included
automatically in the BAR file.
To deploy manually, add the files to be deployed to a broker archive. For more
information, see “Adding files to a broker archive” on page 3223 and “Adding
keywords to XSL style sheets” on page 4975.
For every execution group that uses the XSLTransform node, perform one of
the following actions:
v Include the style sheet in the workpath/XSL/external directory on the broker;

do not include the style sheet in the BAR file.
If a style sheet in the workpath/XSL/external directory shares the same path
and name with a deployed style sheet, the deployed style sheet is used.

v Include the style sheet in the BAR file and deploy the BAR file. If multiple
BAR files include the same style sheet name, the style sheet from the last
BAR file that was deployed is used.

v Deploy the style sheet in its own BAR file. If the BAR files use XSLTransform
nodes, but do not include the style sheet, the WebSphere Message Broker
Toolkit issues warning messages.

Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Adding keywords to XSL style sheets” on page 4975
Embedded keywords in an XSL style sheet; their location is not restricted. You can
also add a keyword as an XML comment.
“XSLTransform node” on page 4968
Use the XSLTransform node to transform an XML message to another form of
message, according to the rules provided by an XSL (Extensible Stylesheet
Language) style sheet, and to set the Message domain, Message set, Message type,
and Message format for the generated message.

Transformation interfaces
View the reference material associated with the different ways in which you can
transform messages in message flows.
v “Message mappings” on page 4981
v “ESQL reference” on page 5019
v “Java reference” on page 5312
v “PHP API” on page 5313
Related concepts:

4980 WebSphere Message Broker Version 7.0.0.8

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Processing messages” on page 1021
Process your business messages and data by interacting with a broker, which you
can configure to provide services and to communicate with other applications and
systems.
“Transforming and enriching messages” on page 2227
Transform and enrich messages by using one or more of the techniques described
in this section.

Message mappings
Edit and configure message maps using the Message Mapping editor.

This section contains topics that provide reference information about message
mapping:
v “Message Mapping editor”

– Source pane
– Target pane
– Edit pane
– Spreadsheet pane

v “Mapping node” on page 4994
– Syntax
– Functions
– Casts

Related concepts:
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Message Mapping editor:

You use the Message Mapping editor to create and edit message mappings.

You can use the Message Mapping editor to set values for:
v The message destination
v Message headers
v Message content

Here is an example of the Message Mapping editor. There are separate panes for
working with sources, targets and expressions, as well as a spreadsheet view.

Chapter 14. Reference 4981

1. Source pane: displays a source message or database table
2. Target pane: displays a target message
3. Edit pane: displays the expression to be used to derive the target element value
4. Spreadsheet pane: displays a summary of the mappings in spreadsheet

columns (each target field and its value)

Use the Message Mapping editor to perform various mapping tasks.

Wizards and dialog boxes are provided for tasks such as adding mappable
elements, working with ESQL, and working with submaps. Mappings that are
created with the Message Mapping editor are automatically validated and
compiled, ready for adding to a broker archive (BAR) file, and subsequent
deployment to WebSphere Message Broker.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.

1 2

3

4

4982 WebSphere Message Broker Version 7.0.0.8

“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Message Mapping editor Source pane:

Details of the elements present in the Source pane of the Message Mapping Editor.

The following example shows the “Message Mapping editor” on page 4981. The
pane that is labelled as 1 in the example is the Source pane:

The following list describes the elements that are present in the Source pane:
v A source message is identified by $source.
v A source database is identified by $db:select.
v A database stored procedure is identified by $db:proc.
v A database user-defined function is identified by $db:func.
v A mapped entry is indicated by a blue triangle alongside the element. In this

example, Customer_ID and Order_Date are mapped.
v Square brackets contain minimum and maximum occurrences of an element.
v An optional field is indicated by [0,1]. In this example, First_Class is optional.
v A repeating field is indicated by [minoccurs, maxoccurs].
v A choice field is indicated by a choice line; under the choice line are the possible

choices. In this example, First_Class, Second_Class, and Airmail are choices of
Delivery_Method.

v The type of each element is indicated in round brackets after the element name.
v If the message schema uses namespaces, the namespace prefix is shown before

the element name, separated by a colon.

Use the Source pane to invoke a number of actions, a list of which is displayed
when you right-click within the Source pane. The following table describes the
available actions.

1 2

3

4

Chapter 14. Reference 4983

Action Description Related tasks

Undo Undo previous action

Redo Redo previous action

Revert Discard

Open Declaration (message) Display the element
definition from the message
set.

For this action to be
available, select any source
message element except
LocalEnvironment or
Headers.

Open Declaration (database) Display the database,
schema, or table definition
from the database.

For this action to be
available, select any source
database object.

Show Derived Types Hide or display derived
types for an element in the
source or target pane.

For this action to be
available, select a target
element displayed as a
specialization folder in the
source pane.

Show Substituting elements Hide or display the
substituting elements of the
head element in the source
or target pane.

For this action to be
available, select a target
element displayed as a
substitutions folder in the
source pane.

Add Sources Add a message definition or
a database table to a source.

For this action to be
available, select any source
object.

“Adding messages or
message components to the
source or target” on page
2273, “Adding a database as
a source or target” on page
2274

Go To For this action to be
available, select any source
object.

Delete (message) Remove a message and any
existing maps from the
source.

For this action to be
available, select the source
message ($source).

4984 WebSphere Message Broker Version 7.0.0.8

Action Description Related tasks

Delete (database) Remove a database and any
existing maps from the
source.

For this action to be
available, select the source
database root ($db:select).

Delete (database stored
procedure)

Remove a database stored
procedure and any existing
maps from the source.

For this action to be
available, select the database
stored procedure root
($db:proc).

Delete (database user-defined
function)

Remove a database
user-defined function and
any existing maps from the
source.

For this action to be
available, select the database
user-defined function root
($db:func).

Map from Source Create a map between the
focus source element and the
focus target element.

For this action to be
available, select compatible
source and target elements.

“Mapping a target element
from source message
elements” on page 2254,
“Mapping from source: by
selection” on page 2240

Map by Name Create a map between the
focus source element and the
focus target element.

For this action to be
available, select compatible
source and target elements.

“Mapping a target element
from source message
elements” on page 2254,
“Mapping from source: by
name” on page 2241

Accumulate If the source and target fields
contain numeric data types,
this action maps all
occurrences of a repeating
source field to a
non-repeating target,
resulting in the sum of all
the source elements.

For this action to be
available, select the source
and target element.

“Configuring a repeating
source and a non-repeating
target” on page 2266

Create New Submap For this action to be
available, select source and
target elements that are
either elements of complex
types or wildcard elements.

“Creating and calling
submaps and subroutines”
on page 2298, “Creating a
new submap” on page 2299,
“Creating a new submap for
a wildcard source” on page
2300

Chapter 14. Reference 4985

Action Description Related tasks

Create New Database
Submap

Create a submap to modify a
database

“Creating a submap to
modify a database” on page
2301

Call Existing Submap Call an existing submap “Creating and calling
submaps and subroutines”
on page 2298, “Calling a
submap” on page 2305

Call ESQL Routine Call an ESQL routine “Creating and calling
submaps and subroutines”
on page 2298, “Calling an
ESQL routine” on page 2308

Call Java Method Call a Java Method “Calling a Java method” on
page 2310

Add or Remove Headers and
Folders

Include message headers and
folders for source messages
in a message map

“Mapping headers and
folders” on page 2271

Toggle Add/Remove Stored
Procedure Return Value

Specify if a database stored
procedure sets a return
value.

DB2 on z/OS and Oracle
stored procedures do not set
a return value.

“Mapping a target element
from database stored
procedures” on page 2290

Add or Remove Result Set
Columns

Specify the Result Set
Columns for a database
stored procedure

“Mapping a target element
from database stored
procedures” on page 2290

Save Save the .msgmap file

Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Configuring a repeating source and a non-repeating target” on page 2266
To map a repeating source element to a non-repeating target element, drag
elements between the Message Mapping editor Source and Target panes.
“Mapping a target element from source message elements” on page 2254
“Adding messages or message components to the source or target” on page 2273
“Adding a database as a source or target” on page 2274
Add a database as a source, and database tables as targets, to message maps that
support database mappings.
Related reference:
“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.

4986 WebSphere Message Broker Version 7.0.0.8

Message Mapping editor Target pane:

Details of the elements present in the Target pane of the Message Mapping Editor.

The following example shows the “Message Mapping editor” on page 4981. The
pane that is labelled as 2 in the example is the Target pane:

The following list describes the elements that are present in the Target pane:
v A target message is identified by $target.
v A mapped entry is indicated by a yellow triangle alongside the element. In this

example, Customer_ID, Order_Number, and Order_Date are mapped.
v Square brackets contain minimum and maximum occurrences of an element.
v An optional field is indicated by [0,1]. In this example, First_Class is optional.
v A repeating field is indicated by [minoccurs, maxoccurs].
v A choice field is indicated by a choice line; under the choice line are the possible

choices. In this example, First_Class, Second_Class, and Airmail are choices of
Delivery_Method.

v The type of each element is indicated in round brackets after the element name.
v If the message schema uses namespaces, the namespace prefix is shown before

the element name, separated by a colon.

Use the Target pane to invoke a number of actions, a list of which is displayed
when you right-click within the Target pane. The following table describes the
available actions.

Action Description Related tasks

Undo Undo previous action

Redo Redo previous action

Revert Discard

1 2

3

4

Chapter 14. Reference 4987

Action Description Related tasks

Open Declaration (message) Display the element
definition from the message
set.

For this action to be
available, select any target
message element except
LocalEnvironment or
Headers.

Open Declaration (database) Display the database,
schema, or table definition
from the database.

For this action to be
available, select any target
database object.

Show Derived Types Hide or display derived
types for an element in the
source or target pane.

For this action to be
available, select a target
element displayed as a
specialization folder in the
target pane.

Show Substituting elements Hide or display the
substituting elements of the
head element in the source
or target pane.

For this action to be
available, select a target
element displayed as a
substitutions folder in the
target pane.

Add Sources and Targets Add a message definition or
a database table to a source.

For this action to be
available, select any target
object.

“Adding messages or
message components to the
source or target” on page
2273, “Adding a database as
a source or target” on page
2274

Go To For this action to be
available, select any target
object.

Delete (message) Remove a message and any
existing maps from the
source.

For this action to be
available, select the target
message ($target).

4988 WebSphere Message Broker Version 7.0.0.8

Action Description Related tasks

Map from Source Create a map between the
focus source element and the
focus target element.

For this action to be
available, select compatible
source and target elements.

“Mapping a target element
from source message
elements” on page 2254,
“Mapping from source: by
selection” on page 2240

Map by Name Create a map between the
focus source element and the
focus target element.

For this action to be
available, select compatible
source and target elements.

“Mapping a target element
from source message
elements” on page 2254,
“Mapping from source: by
name” on page 2241

Enter Expression For this action to be
available, select any target
object except $target

“Setting the value of a target
element to a constant” on
page 2257, “Setting the value
of a target element using an
expression or function” on
page 2261

Accumulate If the source and target fields
contain numeric data types,
this action maps all
occurrences of a repeating
source field to a
non-repeating target,
resulting in the sum of all
the source elements.

For this action to be
available, select the source
and target element.

“Configuring a repeating
source and a non-repeating
target” on page 2266

Create New Submap For this action to be
available, select source and
target elements that are
either elements of complex
types or wildcard elements.

“Creating and calling
submaps and subroutines”
on page 2298, “Creating a
new submap” on page 2299,
“Creating a new submap for
a wildcard source” on page
2300

Call Existing Submap Call an existing submap “Creating and calling
submaps and subroutines”
on page 2298, “Calling a
submap” on page 2305

Call ESQL Routine Call an existing ESQL routine “Creating and calling
submaps and subroutines”
on page 2298, “Calling an
ESQL routine” on page 2308

Save Save the .msgmap file

Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.

Chapter 14. Reference 4989

“Adding messages or message components to the source or target” on page 2273
“Adding a database as a source or target” on page 2274
Add a database as a source, and database tables as targets, to message maps that
support database mappings.
“Mapping a target element from source message elements” on page 2254
“Setting the value of a target element to a constant” on page 2257
Use the Message Mapping editor to set the value of a target element to a constant.

“Setting the value of a target element using an expression or function” on page
2261
“Configuring a repeating source and a non-repeating target” on page 2266
To map a repeating source element to a non-repeating target element, drag
elements between the Message Mapping editor Source and Target panes.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Edit pane”
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.

Message Mapping editor Edit pane:

Details of how you use the Edit pane of the Message Mapping Editor.

The following example shows the “Message Mapping editor” on page 4981. The
pane that is labelled as 3 in the example is the Edit pane:

1 2

3

4

4990 WebSphere Message Broker Version 7.0.0.8

When you have selected a source or target element, use the Edit pane to enter an
expression. Right-click inside the Edit pane to invoke a list of available actions,
most of which are standard Windows functions, such as cut, copy, and paste. Click
Edit > Content Assist (or press Ctrl+Space) to access ESQL Content Assist, which
provides a drop-down list of functions that are available in a Mapping node.

To display the definition associated with a selected element or database object,
right-click in the Edit pane, and click Open Declaration. The appropriate editor
opens to display the definition associated with the element or database definition.
Related concepts:
“Mapping node syntax” on page 4995
“Mapping node functions” on page 4997
You can configure your message mappings to use a variety of predefined and
user-defined functions.
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane”
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.

Message Mapping editor Spreadsheet pane:

Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.

The following example shows the “Message Mapping editor” on page 4981. The
pane that is labelled as 4 in the example is the Spreadsheet pane:

Chapter 14. Reference 4991

Use the Spreadsheet pane to invoke a number of actions, a list of which is
displayed when you right-click within the Spreadsheet pane. The following table
describes the available actions.

Action Description Related tasks

Undo Undo previous action

Redo Redo previous action

Revert Discard

Open Declaration (message) Display the element
definition from the message
set.

For this action to be
available, select any message
element except
LocalEnvironment or
Headers.

Open Declaration (database) Display the database,
schema, or table definition
from the database.

For this action to be
available, select any database
object.

Add Sources and Targets Add a message definition to
a target.

“Adding messages or
message components to the
source or target” on page
2273, “Adding a database as
a source or target” on page
2274

Copy Copy the selected item to the
clipboard.

1 2

3

4

4992 WebSphere Message Broker Version 7.0.0.8

Action Description Related tasks

Paste Paste the item from the
clipboard.

Delete Remove a row from the
Spreadsheet.

For Define a repeating condition. “Configuring a repeating
source and a non-repeating
target” on page 2266,
“Configuring a repeating
source and a repeating
target” on page 2269

If Define what must evaluate to
'true' to process subsequent
mappings.

“Configuring a repeating
source and a non-repeating
target” on page 2266,
“Configuring conditional
mappings” on page 2265

ElseIf Define what must evaluate to
'true' to process subsequent
mappings if previous If or
Elseif does not evaluate to
'true'..

“Configuring a repeating
source and a non-repeating
target” on page 2266,
“Configuring conditional
mappings” on page 2265

Else Placeholder to process
subsequent mappings if
previous If or ElseIf does not
evaluate to 'true'.

“Configuring conditional
mappings” on page 2265

Select Data Source Define a database to be used
in the mapping.

Insert Children Expand a structure so that
each of its children has a row
in the spreadsheet.

Insert Sibling After Create a number of new
rows in the spreadsheet to
set the values of specific
instances of a repeating field.
Can also be used to insert
any non-repeating element,
attribute or database column
if valid at the selected
location.

“Configuring a non-repeating
source and a repeating
target” on page 2268

Insert Sibling Before Create a number of new
rows in the spreadsheet to
set the values of specific
instances of a repeating field.
Can also be used to insert
any non-repeating element,
attribute or database column
if valid at the selected
location.

“Configuring a non-repeating
source and a repeating
target” on page 2268

Replace Substitute an element,
attribute or database column
in the spreadsheet with a
similar item, retaining the
mapping expression and any
child mapping statements.

Save Save the .msgmap file.

Chapter 14. Reference 4993

Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Adding messages or message components to the source or target” on page 2273
“Adding a database as a source or target” on page 2274
Add a database as a source, and database tables as targets, to message maps that
support database mappings.
“Configuring a repeating source and a non-repeating target” on page 2266
To map a repeating source element to a non-repeating target element, drag
elements between the Message Mapping editor Source and Target panes.
“Configuring a repeating source and a repeating target” on page 2269
“Configuring conditional mappings” on page 2265
How to set the value of a target element conditionally in a Mapping node.
“Configuring a non-repeating source and a repeating target” on page 2268
To map a non-repeating source element to a repeating target element, drag
elements between the Message Mapping editor Source and Target panes.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.

Mapping node:

The Mapping node has one or more mappings that are stored in message map files
(with a .msgmap file extension). These files are configured using the Message
Mapping editor.

A Mapping node must contain the following inputs and outputs:
v Zero or one source (input) messages
v Zero or more source (input) databases
v One or more target (output) messages

You must define, in message definition files in a message set, the source and target
messages that are to be mapped. You can specify the parser of the source message
at run time (for example, in an MQRFH2 header), but the target message is built
using the runtime parser that is specified by the Message Domain property of the
message set.

If a message mapping is between elements of different types, you might need to
include casts in your mapping definitions, depending on which runtime parser is
specified by the Message Domain property of your message set.

The Mapping node uses a language to manipulate messages that are based on
XPath.

4994 WebSphere Message Broker Version 7.0.0.8

To develop message mappings for a Mapping node, use the Message Mapping
editor, which provides separate panes for working with sources, targets and
expressions.
Related concepts:
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Mapping node syntax”
“Mapping node functions” on page 4997
You can configure your message mappings to use a variety of predefined and
user-defined functions.
“Mapping node casts” on page 5009
Source and target elements can be of different types in a Mapping node.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Mapping node syntax: In a Mapping node, the source message, if present, is
identified in the “Message Mapping editor” on page 4981 by $source.

The message tree is represented in XPath format. For example, if you have an
element called Body within a source message called Envelope, this is represented
in the Mapping node as:

$source/soap11:Envelope/soap11:Body

where soap11 is a namespace prefix.

The first target message is identified by $target; additional target messages are
identified by $target_1, $target_2, and so on.

The first source database is identified by $db:select; additional source databases are
identified by $db:select_1, $db:select_2, and so on.

The first source database stored procedure is identified by $db:proc; additional
source stored procedures are identified by $db:proc_1, $db:proc_2, and so on.

The first source database user-defined function is identified by $db:func; additional
source user-defined functions are identified by $db:func_1, $db:func_2, and so on.

The database element is represented in the following format:
$db:select.DB.SCH.TAB.COL1

where:
DB is the database name
SCH is the database schema name
TAB is the table name
COL1 is the column name

You can also use the Mapping node to:
v make comparisons

Chapter 14. Reference 4995

v perform arithmetic
v create complex conditions

The comparison operators are:
= equals
!= not equals
> greater than
>= greater than or equals
< less than
<= less than or equals

The arithmetic operators are:
+ plus
- minus
* multiply
div divide

Conditional operators ‘or' and ‘and' are supported (these are case-sensitive).

The following objects can be mapped:
v LocalEnvironment

– Destination
– WrittenDestination
– File
– SOAP
– TCPIP
– ServiceRegistry
– Adapter
– Wildcard
– Variables

v Message headers (optional)
– MQ Headers
– HTTP Headers
– JMSTransport
– email Headers

v Message elements
v Database columns

Database objects with names that do not conform to the XML NCName format

Some database objects have names that do not conform to the XML NCName
format (for example, the names contains characters like '#', or '$'). To reference such
database objects use the msgmap:db-path function.

For more information, see “Predefined mapping functions” on page 5007
Related concepts:
“Mapping node functions” on page 4997
You can configure your message mappings to use a variety of predefined and
user-defined functions.

4996 WebSphere Message Broker Version 7.0.0.8

“Mapping node casts” on page 5009
Source and target elements can be of different types in a Mapping node.
“Message Mapping editor” on page 4981
You use the Message Mapping editor to create and edit message mappings.
“Mapping node” on page 4994
The Mapping node has one or more mappings that are stored in message map files
(with a .msgmap file extension). These files are configured using the Message
Mapping editor.
“Local environment tree structure” on page 1056
The local environment tree is a part of the logical message tree in which you can
store information while the message flow processes the message.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Configuring the LocalEnvironment” on page 2271
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Mapping node functions:

You can configure your message mappings to use a variety of predefined and
user-defined functions.

The following predefined functions are available to use in your message maps:
v ESQL - prefixed esql:
v XPath - prefixed fn:
v Mapping - prefixed msgmap:
v Schema casts - prefixed xs:

Not all ESQL functions can be used in a Mapping node. For information about
which functions are supported, and for a description of how to achieve equivalent
processing for ESQL functions that are not supported, see the ESQL topics. For
information about the predefined ESQL functions, see “ESQL mapping functions”
on page 4998.

The fn:true() function (which always returns true) and the fn:false() function
(which always returns false) are examples of XPath functions. You can get more
information about the other XPath functions and XPath syntax from the online
W3C XML Path Language document. For information about the predefined XPath
functions, see “Predefined XPath mapping functions” on page 5001.

For information about the predefined mapping functions, see “Predefined mapping
functions” on page 5007. See “Mapping node casts” on page 5009 for a list of the
schema casts.

The Mapping node can also:
v Set the value of a target to a WebSphere MQ constant. The expression to set the

value looks similar to a function with $mq: used as the prefix.
v Call a Java method directly. The expression to set the value looks similar to a

function with java: used as a prefix.

Chapter 14. Reference 4997

http://www.w3.org/TR/xpath

Related concepts:
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
“Mapping node” on page 4994
The Mapping node has one or more mappings that are stored in message map files
(with a .msgmap file extension). These files are configured using the Message
Mapping editor.
“Mapping node syntax” on page 4995
“Mapping node casts” on page 5009
Source and target elements can be of different types in a Mapping node.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Calling a Java method” on page 2310
To call an existing Java method from a mapping node, select the method from the
Call Existing Java Method wizard, or enter an XPath expression in the Edit pane.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.
“ESQL mapping functions”
Some predefined ESQL functions are available for use with message maps.
“Predefined XPath mapping functions” on page 5001
Some XPath functions are available for use with message maps.
“Predefined mapping functions” on page 5007
Some predefined mapping functions are provided for use with message maps.

ESQL mapping functions:

Some predefined ESQL functions are available for use with message maps.

This table details the predefined ESQL mapping functions that are available to use
with message maps:

Name ESQL equivalent Notes

Numeric functions: abs
absval acos asin atan atan2
bitand bitnot bitor bitxor ceil
ceiling cos cosh cot degrees
exp floor in log log10 mod
power radians rand sign sin
sinh sqrt tan tanh truncate

ESQL function of the name same name such as ABS and
ABSVAL.

The same parameters apply as for ESQL.

String functions: left length
lower lcase ltrim replace
replicate right rtrim space
translate upper ucase

ESQL function of the same name such as LEFT and
LENGTH.

The same parameters apply as for ESQL.

Field functions: bitstream
fieldname fieldnamespace
fieldtype fieldvalue lastmove
samefield

ESQL function of the same name such as BITSTREAM
and FIELDNAME.

The same parameters apply as for ESQL.

4998 WebSphere Message Broker Version 7.0.0.8

Name ESQL equivalent Notes

asbitstream These signatures are supported:

ASBITSTREAM(FieldRef)

ASBITSTREAM(FieldRef, typeExp, setExp, formatExp)

ASBITSTREAM(FieldRef, typeExp, setExp, formatExp,
encodingExp, ccsidExp)

ASBITSTREAM(FieldRef, typeExp, setExp, formatExp,
encodingExp, ccsidExp, options)

FieldRef is a source field reference such as
$source/po:PurchaseOrder

typeExp is a string literal of the name of the message
body, such as purchaseOrder, optionally qualified with a
namespace URI, such as {http://
www.ibm.com}:purchaseOrder

setExp is a string literal of the name of the message set,
such as PurchaseOrder

formatExp is a string literal of the wire format of the
message, such as XML1

encodingExp and ccsidExp evaluate to integers with values
corresponding to ESQL ENCODING and CCSID
constants.

options is an ESQL constant or bit-or of ESQL constant
that evaluates to an integer.

cardinality CARDINALITY The same parameters apply as for ESQL.

coalesce COALESCE The same parameters apply as for ESQL.

current-date CURRENT_DATE No parameters apply.

current-gmtdate CURRENT_GMTDATE No parameters apply.

current-gmttime CURRENT_GMTTIME No parameters apply.

current-gmttimestamp CURRENT_ GMTTIMESTAMP No parameters apply.

current-time CURRENT_TIME No parameters apply.

current-timestamp CURRENT_TIMESTAMP No parameters apply.

date DATE

for FOR (expression) Optional parameters are not supported.

gmttime GMTTIME

gmttimestamp GMTTIMESTAMP

interval-year INTERVAL YEAR The same parameters apply as for ESQL. Some examples:

esql:interval-minute(’90’)
esql:interval-year-to-month(’1-06’)

interval-year-to-month INTERVAL YEAR TO MONTH

interval-month INTERVAL MONTH

interval-day INTERVAL DAY

interval-day-to-hour INTERVAL DAY TO HOUR

interval-day-to-minute INTERVAL DAY TO MINUTE

interval-day-to-second INTERVAL DAY TO SECOND

interval-hour INTERVAL HOUR

interval-hour-to-minute INTERVAL HOUR TO MINUTE

interval-hour-to-second INTERVAL HOUR TO SECOND

interval-minute INTERVAL MINUTE

interval-minute-to-second INTERVAL MINUTE TO SECOND

interval-second INTERVAL SECOND

is-null Operand IS NULL Some examples:

esql:is-null($source/po:purchaseOrder/po:comment)
esql:is-null
($db:select.ACME.PARTS.INVENTORY.LAST_TRANSACTION)

like source LIKE pattern For example:

esql:like
($source/po:purchaseOrder/shipTo/first_name,’Fred’)

source LIKE pattern ESCAPE EscapeChar For example:

esql:like
($source/po:purchaseOrder/shipTo
/zip,’L6F$_1C7’,’$’)

local-timezone LOCAL_TIMEZONE

Chapter 14. Reference 4999

Name ESQL equivalent Notes

nullif NULLIF The same parameters apply as for ESQL.

overlay OVERLAY Str1 PLACING Str2 FROM Start For example:

esql:overlay
($source/po:purchaseOrder/shipTo/city,’abc’,2)

OVERLAY Str1 PLACING Str2 FROM Start For Length For example:

esql:overlay
($source/po:purchaseOrder/shipTo/city,’abcde’,2,3)

position POSITION searchExp IN SourceExp For example:

esql:position
(’aet’,$source/po:purchaseOrder/shipTo/first_name)

POSITION searchExp IN SourceExp FROM FromExp For example:

esql:position
(’do’,$source/po:purchaseOrder/shipTo/last_name,1)

POSITION searchExp IN SourceExp FROM FromExp
REPEAT RepeatExp

For example:

esql:position
(’a’,$source/po:purchaseOrder/billTo
/first_name,1,2)

round ROUND Optional parameters are not supported.

sqlcode SQLCODE No parameters apply.

sqlerrortext SQLERRORTEXT

sqlnativeerror SQLNATIVEERROR

sqlstate SQLSTATE

time TIME

timestamp TIMESTAMP The same parameters apply as for ESQL. For example:

esql:gmttimestamp
(’1999-12-31 23:59:59.999999’)

trim-leading TRIM LEADING FROM Source For example:

esql:trim-leading
($source/po:purchaseOrder/shipTo/state)

TRIM LEADING Singleton FROM Source For example:

esql:trim-leading
(’G’,$source/po:purchaseOrder/shipTo/zip)

trim-trailing TRIM TRAILING FROM Source For example:

esql:trim-trailing
($source/po:purchaseOrder/billTo/last_name)

TRIM TRAILING Singleton FROM Source For example:

esql:trim-trailing
(’e’,$source/po:purchaseOrder/billTo/street)

trim-both TRIM BOTH FROM Source For example:

esql:trim-both
($source/po:purchaseOrder/shipTo/city)

TRIM BOTH Singleton FROM Source For example:

esql:trim-both
(",$source/po:purchaseOrder/shipTo/city)

5000 WebSphere Message Broker Version 7.0.0.8

Name ESQL equivalent Notes

trim TRIM Source For example:

esql:trim
($source/po:purchaseOrder/shipTo/city)

TRIM Singleton FROM Source For example:

esql:trim
(",$source/po:purchaseOrder/shipTo/city)

uuidasblob UUIDASBLOB Takes zero or more parameters as in ESQL.

uuidaschar UUIDASCHAR

Related concepts:
“Mapping node” on page 4994
The Mapping node has one or more mappings that are stored in message map files
(with a .msgmap file extension). These files are configured using the Message
Mapping editor.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“ESQL constants” on page 5302
Use these constants to make or parse a bit stream.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“Predefined XPath mapping functions”
Some XPath functions are available for use with message maps.
“Predefined mapping functions” on page 5007
Some predefined mapping functions are provided for use with message maps.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Predefined XPath mapping functions:

Some XPath functions are available for use with message maps.

This table details the predefined XPath functions that are available for use with
message maps. You can get more information about XPath functions and XPath
syntax from the online W3C XML Path Language document.

Name Parameters Notes

true

false

Chapter 14. Reference 5001

http://www.w3.org/TR/xpath

Name Parameters Notes

sum Source field from the
message or database or
“XPath "for" expression” on
page 5005.

Source supports an XPath predicate. An XPath predicate
is an expression enclosed in square brackets, serving to
filter a sequence, retaining some items and discarding
others.

Predicates are supported on the XPath aggregate
functions of avg, count, max, min, and sum.

Predicates must be in one of the two forms:

v An integer literal – aggregation is done for elements
whose context position equals the integer.

v A Boolean expression – aggregation is done for
elements that make the Boolean expression evaluate
to true.

See “Aggregating XPath expressions conditionally” on
page 5003 for more information.

avg

max

min

count

concat Two or more strings. You cannot use fn:concat($source/myElem) to
concatenate instances of 'myElem'.

not 1- Expression resolved to a
Boolean value.

exists Source field from the
message or database.empty

substring 1- String
2- One-based starting

index
3- Length

For example:

fn:substring
($source/po:purchaseOrder/billTo/street, 3, 5)

substring-before Two strings Returns the substring of the first string that precedes the
first occurrence of the second string.

substring-after Two strings Returns the substring of the first string that follows the
first occurrence of the second string.

starts-with Two strings Returns a Boolean value indicating whether the first
string starts with the second string.

ends-with Two strings Returns a Boolean value indicating whether the first
string ends with the second string.

contains Two strings Returns a Boolean value indicating whether the first
string contains the second string.

year-from-dateTime 1- xs:dateTime For example:

fn:month-from-dateTime
(xs:dateTime($source/po:purchaseOrder
/shipTo/datetime))

where $source/po:purchaseOrder/shipTo/datetime is
xs:string.

month-from-dateTime

day-from-dateTime

hours-from-dateTime

minutes-from-dateTime

seconds-from-dateTime

year-from-date 1-xs:date For example:

fn:year-from-date(xs:date
($source/po:purchaseOrder/billTo/date))

where $source/po:purchaseOrder/billTo/date is
xs:string.

month-from-date

day-from-date

5002 WebSphere Message Broker Version 7.0.0.8

Name Parameters Notes

hours-from-time 1- xs:time Some examples:

fn:hours-from-time(xs:time("13:20:10:5"))
fn:hours-from-time(xs:time
($source/po:purchaseOrder/shipTo/time))

minutes-from-time

seconds-from-time

years-from-duration 1- xdt:dayTimeDuration For example:

fn:minutes-from-duration
(xdt:dayTimeDuration(PT47H30M))

months-from-duration

days-from-duration

hours-from-duration

minutes-from-duration

seconds-from-duration

Related concepts:
“Mapping node” on page 4994
The Mapping node has one or more mappings that are stored in message map files
(with a .msgmap file extension). These files are configured using the Message
Mapping editor.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Aggregating XPath expressions conditionally”
You can perform calculations using conditions, called predicates in XPath, on the
aggregate functions in the Mapping node. The aggregate functions are avg, count,
max, min, and sum.
“XPath "for" expression” on page 5005
You can use the for expression to perform specific calculations as the argument of
an aggregation function in the Mapping node.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“ESQL mapping functions” on page 4998
Some predefined ESQL functions are available for use with message maps.
“Predefined mapping functions” on page 5007
Some predefined mapping functions are provided for use with message maps.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Aggregating XPath expressions conditionally:

You can perform calculations using conditions, called predicates in XPath, on the
aggregate functions in the Mapping node. The aggregate functions are avg, count,
max, min, and sum.

About this task

XPath aggregate functions

XPath aggregate functions take a sequence as their argument:

Chapter 14. Reference 5003

http://www.w3.org/TR/xpath-functions/#aggregate-functions

fn:count($arg as item()*) as xs:integer
fn:avg($arg as xs:anyAtomicType*) as xs:anyAtomicType?
fn:max($arg as xs:anyAtomicType*) as xs:anyAtomicType?
fn:min($arg as xs:anyAtomicType*) as xs:anyAtomicType?
fn:sum($arg as xs:anyAtomicType*) as xs:anyAtomicType?

where the atomic value can be, for example, an integer, a string, or a Boolean
value.

In an aggregation
fn:sum($source/inventory/category/product/price)

the node
$source/inventory/category/product/price

is put into its typed value, which is a sequence of Atomictype price values.

In the following aggregation, the argument is a node tns:price, which is contained
in tns:product, which is in turn contained in tns:category, and so on.
fn:sum($source/tns:Inventory/tns:category/tns:product/tns:price)

How aggregation works in this sequence depends upon the scope of the iteration
(or for) loop for product and category. For example, if there is no iteration loop,
summation is done for all instances of all prices in all products in all categories.

However, if there is an iteration loop on category, one summation is calculated for
each category. The summation is obtained from all prices of all products of a
particular category being iterated upon.

You can add a predicate (see predicates for further information) to make the result
more specific. For example:
fn:sum($source/tns:Inventory/tns:category[$source/tns:Inventory/tns:category/

tns:c_id=’abc’]/tns:product[3]/tns:price)

has a predicate of tns:c_id=’abc’ on category, and a predicate of 3 on product.
The result that you obtain is the third product in the category that has
tns:c_id=’abc’.

In both of the preceding examples, whether the expression contains a condition or
not, you reference one source item only; it is price that is aggregated.

Predicates are supported only when they are used in message sources. For
example, the [boolean expression] must be used within a segment of a path
that represents a message source. Predicates are not supported in $db:select or
$db:proc.

Consider a more complicated scenario, where product prices are kept in a database
table, and the input message contains the quantity of the product being ordered.
The objective is to calculate a total price by adding up all prices multiplied by
quantity.

It might seem to be straightforward to write the following aggregation function:
fn:sum($source/inventory/product/quantity × $db:select/PRICE_TB/PRICE)

However, the first step of evaluating an XPath arithmetic expression is to evaluate
its operands. If any operand is evaluated into a sequence of more than one item,

5004 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xpath20/#id-predicates

either only the first item is used in the arithmetic expression, or an error is raised;
for further information, see Arithmetic expressions.

You, therefore, cannot add up the product of quantity and PRICE for each product.
If you want to aggregate the result of an arithmetic expression, see “XPath "for"
expression.”
Related concepts:
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“XPath "for" expression”
You can use the for expression to perform specific calculations as the argument of
an aggregation function in the Mapping node.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“Predefined XPath mapping functions” on page 5001
Some XPath functions are available for use with message maps.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

XPath "for" expression:

You can use the for expression to perform specific calculations as the argument of
an aggregation function in the Mapping node.

About this task

For expressions

To perform a specific operation you can use the XPath for expression iteration
facility. For more information, see the for expression online document.

You can express a sequence of price multiplied by quantity in many ways using
the for expression. For example:
v for $i in $source/inventory/category/product return $i/price * $i/quantity

You can use a similar expression when all operands of the return expression
(price and quantity) are defined in the same repeatable container (product).
Only one variable is needed in the for expression.

v for $i in $db:select, $j in $source/inventory/category/product
[$i.db1.sch2.PRICE_TB.PROD_ID=$j/product_id]
return $i.db1.sch2.PRICE_TB.PRICE * $j/quantity

You can use a similar expression when some operands of the return expression
(price) are kept in a database table, and other operands (quantity) are kept in a
message. At least one variable is needed for the path to a database result set,
and another variable is needed for the path to a repeatable XML element.

Chapter 14. Reference 5005

http://www.w3.org/TR/xpath20/#id-arithmetic
http://www.w3.org/TR/xpath20/#id-for-expressions

v for $i in $source/order_info/product1, $j in $source/price_record/product2
[$i/product_id=$j/product_id] return $i/quantity * $j/price

You can use a similar expression when the operands (price and quantity) are
defined in different repeatable elements (product1 and product2) in the source
message.

When you have an expression that represents a sequence of items, aggregation can
be done by using the for expression as the argument of the aggregation function.

Example

Examples

Obtain the average cost, which is price multiplied by quantity, for all products:
fn:avg(for $i in $source/inventory/category/product

return $i/price * $i/quantity)

Obtain the total cost of all products where prices are from a database, and
quantities are from a message and paired up based on a product identifier:
fn:sum(for $i in $db:select, $j in $source/inventory/category/product

[$i.db1.sch2.PRICE_TB.PROD_ID=$j/product_id]
return $i.db1.sch2.PRICE_TB.PRICE * $j/quantity)

Obtain the length of the longest product identifier text:
fn:max(for $i in $source/inventory/category/product

return esql:length($i/id))

Obtain the minimum price when the price was stored in a message as a string, and
convert each source item into a numeric value before using an aggregate function:
fn:min(for $i in $source/inventory/category/product

return xs:decimal($i/price))

The aggregation functions that are supported in WebSphere Message Broker can be
expressed using a for expression.

For example, you might have:
fn:sum($source/inventory/category/product/price)

This expression is equivalent to:
fn:sum(for $i in $source/inventory/category/product

return $i/price)

Related concepts:
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Aggregating XPath expressions conditionally” on page 5003
You can perform calculations using conditions, called predicates in XPath, on the
aggregate functions in the Mapping node. The aggregate functions are avg, count,
max, min, and sum.
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:

5006 WebSphere Message Broker Version 7.0.0.8

“Predefined XPath mapping functions” on page 5001
Some XPath functions are available for use with message maps.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Predefined mapping functions:

Some predefined mapping functions are provided for use with message maps.

This table details the predefined mapping functions that are available to use with
message maps.

Name Parameters Return Notes

cdata-element One string Nothing Create an XML element with CData content in
the following target message domains:

v XMLNSC

v SOAP

v XMLNS

v XML

v JMSMap

v JMSStream

For example:

msgmap:cdata-element(’<date><month>05
</month><day>11</day><year>2008</year></date>’)

db-path These signatures are supported:

msgmap:db-path(databasePath)

msgmap:db-path(databasePath, delimiter)

Nothing Used when the database path does not conform
to the XML NCName format. For example, the
database path contains characters like '#', or '$'.

databasePath is a reference to either a $db:select
statement, a $db:insert statement, a $db:update
statement, a $db:delete statement, a $db:proc
statement, or a $db:func statement.

delimiter is a string literal used between the
segments in the database path. delimiter has a
default value of '.'.

For example:

msgmap:db-path(“$db:select.DB#1.SCH$#1.
CustInfo.Name”)

In this case, the default value, '.', is used as the
delimiter.

msgmap:db-path(“$db:select/DB#1/SCH$#1/
Cust.Info/Name”, “/”)

In this case, '/' is used as the delimiter because
the database table name includes the default
value.

Chapter 14. Reference 5007

Name Parameters Return Notes

occurrence Source field from the message or database The index of the
source field.

Often used in a condition statement when source
repeats to execute specific statements for a
specific occurrence. For example:

msgmap:occurrence
($source/po:purchaseOrder
/items)=2

means the second field,

po:purchaseOrder

is being processed. Use code similar to the
previous example if you want to specify a
particular source occurrence. If you only want to
assign the index value to a target you can specify
the following code:

msgmap:occurrence
($source/po:purchaseOrder
/items)

exact-type 1- Source field from the
message or database

2- Namespace prefix
3- Name of the type

True if the source
is of the specified
type in the
specified
namespace.

Often used in a condition to execute specific
statements for a specific source type. For
example:

msgmap:exact-type
($source/tn1:msg2,’tn1’,
’extendedMsgType’)

The namespace prefix can be '*', indicating that
only the name of the type is to be checked. For
example:

msgmap:exact-type($source/tn1:msg2,’*’,
’extendedMsgType’)

returns true if the element

$source/tn1:msg2

has a type of

extendedMsgType

in any namespace.

empty-element() None Nothing Creates an XML element with an empty tag. For
example, if an element is named MyElement and
the mapping expression for MyElement is set to
msgmap:empty-element(), the output message
will contain an element with no content:

<MyElement/>

Call this function only for an XML element.

5008 WebSphere Message Broker Version 7.0.0.8

Name Parameters Return Notes

element-from-
bitstream

These signatures are supported:

msgmap:element-from-bitstream(StreamRef)

msgmap:element-from-bitstream(StreamRef, typeExp,
setExp, formatExp)

msgmap:element-from-bitstream(StreamRef, typeExp,
setExp, formatExp, encodingExp, ccsidExp)

msgmap:element-from-bitstream(StreamRef, typeExp,
setExp, formatExp, encodingExp, ccsidExp, options)

Nothing Used to parse a bit stream. This function can be
called only for a message element target. The
parsed bit stream is placed in the target message
tree as the target element.

StreamRef is a reference to a BLOB of stream, such
as $source/BLOB or
$db:select.dsn.schema.table.column

typeExp is a string literal of the name of the
message body, such as purchaseOrder, optionally
qualified with a namespace URI, such as
{http://www.ibm.com}:purchaseOrder

setExp is a string literal of the name of the
message set, such as PurchaseOrder

formatExp is a string literal of the wire format of
the message, such as XML1

encodingExp and ccsidExp evaluate to integers
with values corresponding to ESQL ENCODING
and CCSID constants

options is an ESQL constant or bit-or of ESQL
constants that evaluate to an integer.

Related concepts:
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“ESQL constants” on page 5302
Use these constants to make or parse a bit stream.
“ESQL mapping functions” on page 4998
Some predefined ESQL functions are available for use with message maps.
“Predefined XPath mapping functions” on page 5001
Some XPath functions are available for use with message maps.
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Mapping node casts:

Source and target elements can be of different types in a Mapping node.

Depending on which runtime parsers are used, automatic casting cannot be done.
In these cases, use one of the cast functions shown in the following table.

Chapter 14. Reference 5009

Function name Signature Parameter type

xs:anyURI xs:anyURI(&exp)

xs:anyURI(&exp, &ccsid)

xs:anyURI(&exp, &ccsid, &encoding)

$exp is a reference to a source
element of one of the following
types:

v xs:base64Binary

v xs:boolean

v xs:date

v xs:dateTime

v xs:dayTimeDuration

v xs:decimal

v xs:double

v xs:duration

v xs:float

v xs:gDay

v xs:gMonth

v xs:gMonthDay

v xs:gYear

v xs:gYearMonth

v xs:hexBinary

v xs:int

v xs:integer

v xs:long

v xs:QName

v xs:string

v xs:time

v xs:yearMonthDuration

&ccsid is one of the following
values:

v $source/Properties/
CodedCharSetId

v $source/MQMD/
CodedCharSetId

v An integer. For example, 1208
for UTF-8

&encoding is one of the following
values:

v $source/Properties/Encoding

v $source/MQMD/Encoding

v $mq:MQENC_WINDOWS (546)

v $mq:MQENC_UNIX (273)

v $mq:MQENC_390 (785)

v Other $mq:MQENC_* constants
and their BIT OR

5010 WebSphere Message Broker Version 7.0.0.8

Function name Signature Parameter type

xs:base64Binary xs:base64Binary(&exp)

xs:base64Binary(&exp, &ccsid)

xs:base64Binary(&exp, &ccsid,
&encoding)

$exp is a reference to a source
element of one of the following
types:

v xs:hexBinary

v xs:int

v xs:string

&ccsid is one of the following
values:

v $source/Properties/
CodedCharSetId

v $source/MQMD/
CodedCharSetId

v An integer. For example, 1208
for UTF-8

&encoding is one of the following
values:

v $source/Properties/Encoding

v $source/MQMD/Encoding

v $mq:MQENC_WINDOWS (546)

v $mq:MQENC_UNIX (273)

v $mq:MQENC_390 (785)

v Other $mq:MQENC_* constants
and their BIT OR

xs:boolean xs:boolean(&exp) $exp is a reference to a source
element of type xs:string.

xs:date xs:date(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:dateTime

v xs:gDay

v xs:gMonth

v xs:gMonthDay

v xs:gYear

v xs:gYearMonth

v xs:string

xs:dateTime xs:dateTime(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:date

v xs:string

v xs:time

xs:dayTimeDurationxs:dayTimeDuration(&exp) $exp is a reference to a source
element of type xs:string.

Chapter 14. Reference 5011

Function name Signature Parameter type

xs:decimal xs:decimal(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:decimal

v xs:float

v xs:int

v xs:integer

v xs:string

xs:double xs:double(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:duration

v xs:float

v xs:int

v xs:string

xs:duration xs:duration(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:decimal

v xs:float

v xs:int

v xs:string

xs:float xs:float(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:double

v xs:duration

v xs:int

v xs:string

xs:gDay xs:gDay(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:date

v xs:dateTime

v xs:gMonth

v xs:gMonthDay

v xs:gYear

v xs:gYearMonth

v xs:string

5012 WebSphere Message Broker Version 7.0.0.8

Function name Signature Parameter type

xs:gMonth xs:gMonth(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:date

v xs:dateTime

v xs:gDay

v xs:gMonthDay

v xs:gYear

v xs:gYearMonth

v xs:string

xs:gMonthDay xs:gMonthDay(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:date

v xs:dateTime

v xs:gDay

v xs:gMonth

v xs:gYear

v xs:gYearMonth

v xs:string

xs:gYear xs:gYear(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:date

v xs:dateTime

v xs:gDay

v xs:gMonth

v xs:gMonthDay

v xs:gYearMonth

v xs:string

xs:gYearMonth xs:gYearMonth(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:date

v xs:dateTime

v xs:gDay

v xs:gMonth

v xs:gMonthDay

v xs:gYear

v xs:string

Chapter 14. Reference 5013

Function name Signature Parameter type

xs:hexBinary xs:hexBinary(&exp)

xs:hexBinary(&exp, &ccsid)

xs:hexBinary(&exp, &ccsid,
&encoding)

$exp is a reference to a source
element of one of the following
types:

v xs:base64Binary

v xs:int

v xs:string

&ccsid is one of the following
values:

v $source/Properties/
CodedCharSetId

v $source/MQMD/
CodedCharSetId

v An integer. For example, 1208
for UTF-8

&encoding is one of the following
values:

v $source/Properties/Encoding

v $source/MQMD/Encoding

v $mq:MQENC_WINDOWS (546)

v $mq:MQENC_UNIX (273)

v $mq:MQENC_390 (785)

v Other $mq:MQENC_* constants
and their BIT OR

xs:int xs:int(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:base64Binary

v xs:decimal

v xs:duration

v xs:float

v xs:hexBinary

v xs:string

xs:integer xs:integer(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:base64Binary

v xs:decimal

v xs:duration

v xs:int

v xs:string

5014 WebSphere Message Broker Version 7.0.0.8

Function name Signature Parameter type

xs:long xs:long(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:base64Binary

v xs:decimal

v xs:duration

v xs:float

v xs:hexBinary

v xs:string

Chapter 14. Reference 5015

Function name Signature Parameter type

xs:QName xs:QName(&exp)

xs:QName(&exp, &ccsid)

xs:QName(&exp, &ccsid,
&encoding)

$exp is a reference to a source
element of one of the following
types:

v xs:anyURI

v xs:base64Binary

v xs:boolean

v xs:date

v xs:dateTime

v xs:dayTimeDuration

v xs:decimal

v xs:double

v xs:duration

v xs:float

v xs:gDay

v xs:gMonth

v xs:gMonthDay

v xs:gYear

v xs:gYearMonth

v xs:hexBinary

v xs:int

v xs:integer

v xs:long

v xs:string

v xs:time

v xs:yearMonthDuration

&ccsid is one of the following
values:

v $source/Properties/
CodedCharSetId

v $source/MQMD/
CodedCharSetId

v An integer. For example, 1208
for UTF-8

&encoding is one of the following
values:

v $source/Properties/Encoding

v $source/MQMD/Encoding

v $mq:MQENC_WINDOWS (546)

v $mq:MQENC_UNIX (273)

v $mq:MQENC_390 (785)

v Other $mq:MQENC_* constants
and their BIT OR

5016 WebSphere Message Broker Version 7.0.0.8

Function name Signature Parameter type

xs:string xs:string(&exp)

xs:string(&exp, &ccsid)

xs:string(&exp, &ccsid, &encoding)

$exp is a reference to a source
element of one of the following
types:

v xs:anyURI

v xs:base64Binary

v xs:boolean

v xs:date

v xs:dateTime

v xs:dayTimeDuration

v xs:decimal

v xs:double

v xs:duration

v xs:float

v xs:gDay

v xs:gMonth

v xs:gMonthDay

v xs:gYear

v xs:gYearMonth

v xs:hexBinary

v xs:int

v xs:integer

v xs:long

v xs:QName

v xs:time

v xs:yearMonthDuration

&ccsid is one of the following
values:

v $source/Properties/
CodedCharSetId

v $source/MQMD/
CodedCharSetId

v An integer. For example, 1208
for UTF-8

&encoding is one of the following
values:

v $source/Properties/Encoding

v $source/MQMD/Encoding

v $mq:MQENC_WINDOWS (546)

v $mq:MQENC_UNIX (273)

v $mq:MQENC_390 (785)

v Other $mq:MQENC_* constants
and their BIT OR

xs:time xs:time(&exp) $exp is a reference to a source
element of one of the following
types:

v xs:dateTime

v xs:string

Chapter 14. Reference 5017

Function name Signature Parameter type

xs:yearMonthDurationxs:yearMonthDuration(&exp) $exp is a reference to a source
element of type xs:string.

Related concepts:
“Mapping node” on page 4994
The Mapping node has one or more mappings that are stored in message map files
(with a .msgmap file extension). These files are configured using the Message
Mapping editor.
“Mapping node syntax” on page 4995
“Mapping node functions” on page 4997
You can configure your message mappings to use a variety of predefined and
user-defined functions.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

Headers and Mapping node:

This topic lists the headers that can be manipulated by the Mapping node.

You can map these headers:
v MQ Headers

MQMD
MQCFH header with root element MQPCF
MQCIH
MQDLH
MQIIH
MQMDE
MQRFH
MQRFH header with MQRFH2 or MQRFH2C parser
MQRMH
MQSAPH
MQWIH
SMQ_BMH

v Email Headers
EmailOutputHeader

v HTTP Headers
HTTPInputHeader
HTTPReplyHeader
HTTPRequestHeader
HTTPResponseHeader

v JMSTransport
Related concepts:

5018 WebSphere Message Broker Version 7.0.0.8

“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
Related reference:
“Mapping node” on page 4571
Use the Mapping node to construct one or more new messages and populate them
with various types of information.

ESQL reference
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

This section covers the following topics:

“Syntax diagrams” on page 3677
This describes the formats that are available for viewing ESQL syntax
diagrams.

“ESQL data types in message flows” on page 5020
This describes the valid data types for ESQL.

“ESQL field reference overview” on page 5049
This topic describes the syntax of field references.

“Special characters, case sensitivity, and comments in ESQL” on page 5305
This describes the special characters you use when writing ESQL
statements.

“ESQL operators” on page 5056
This describes the operators that are available.

“ESQL reserved keywords” on page 5307
This lists the reserved keywords which you cannot use for variable names.

“ESQL non-reserved keywords” on page 5307
This lists the keywords that are not reserved, as well as those reserved for
future releases, which you can use if you choose.

“ESQL functions” on page 5168
This topic lists the functions available in ESQL, and what they do.

“ESQL constants” on page 5302
This topic lists the constants available in ESQL, and what they do.

“ESQL statements” on page 5067
This topic lists the different statement types available in ESQL, and what
they do.

“Calling ESQL functions” on page 5168
This topic describes all the ESQL functions in detail.

“ESQL variables” on page 5048
This topic describes the types of ESQL variable and their lifetimes.

“Broker properties that are accessible from ESQL and Java” on page 5302
This topic lists the broker attributes that can be accessed from ESQL code.

Chapter 14. Reference 5019

An XML format message that is used in many of the ESQL examples in these
topics is shown in “Example message” on page 5311.

For information about how you can use ESQL statements and functions to
configure Compute, Database, and Filter nodes, see “Writing ESQL” on page 2413.

Syntax diagrams:
The syntax for commands and ESQL statements and functions is presented in the
form of a railroad diagram. The diagram tells you what you can do with the
command, statement, or function and indicates relationships between different
options and, sometimes, different values of an option.

For details about how to read a railroad diagram, see “How to read railroad
diagrams” on page 3677.
Related reference:
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.

ESQL data types in message flows:

All data that is referred to in message flows must be one of the defined types.

The defined types are:
v “ESQL BOOLEAN data type” on page 5021
v “ESQL datetime data types” on page 5021
v “ESQL NULL data type” on page 5032
v “ESQL numeric data types” on page 5033
v “ESQL REFERENCE data type” on page 5037
v “ESQL ROW data type” on page 5038
v “ESQL string data types” on page 5040
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“ESQL-to-Java data-type mapping table” on page 5043
Table summarizing the mappings from ESQL to Java.

5020 WebSphere Message Broker Version 7.0.0.8

ESQL BOOLEAN data type:

The BOOLEAN data type holds a Boolean value.

The Boolean value can have the following values:
v TRUE
v FALSE
v UNKNOWN

Boolean literals consist of the keywords TRUE, FALSE, and UNKNOWN. The
literals can appear in uppercase or lowercase. For further information about
UNKNOWN, see the “IF statement” on page 5134.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“IF statement” on page 5134
The IF statement executes one set of statements based on the result of evaluating
condition expressions.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

ESQL datetime data types:

ESQL supports several data types that handle datetime values.

The following data types are collectively known as datetime data types:
v “ESQL DATE data type” on page 5022
v “ESQL TIME data type” on page 5023
v “ESQL GMTTIME data type” on page 5024
v “ESQL TIMESTAMP data type” on page 5025
v “ESQL GMTTIMESTAMP data type” on page 5026
v “ESQL INTERVAL data type” on page 5027

For information about datetime functions see “ESQL datetime functions” on page
5176.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an

Chapter 14. Reference 5021

input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Using numeric operators with datetime values” on page 2439
The following examples show the ESQL that you can code to manipulate datetime
values with numeric operators.
“Calculating a time interval” on page 2441
You can use ESQL to calculate the time interval between two events, and to set a
timer to be triggered after a specified interval.
Related reference:
“ESQL DATE data type”
The DATE data type holds a Gregorian calendar date (year, month, and day).
“ESQL GMTTIME data type” on page 5024
The GMTTIME data type is similar to the TIME data type, except that its values are
interpreted as values in Greenwich Mean Time.
“ESQL GMTTIMESTAMP data type” on page 5026
The GMTTIMESTAMP data type is similar to the TIMESTAMP data type, except that the
values are interpreted as values in Greenwich Mean Time.
“ESQL INTERVAL data type” on page 5027
The INTERVAL data type holds an interval of time.
“ESQL TIME data type” on page 5023
The TIME data type holds a time of day in hours, minutes, seconds, and fractions of
a second.
“ESQL TIMESTAMP data type” on page 5025
The TIMESTAMP data type holds a DATE and a TIME in years, months, days, hours,
minutes, seconds, and fractions of a second.

ESQL DATE data type:

The DATE data type holds a Gregorian calendar date (year, month, and day).

The format of a DATE literal is the word DATE followed by a space, followed by a
date in single quotation marks in the form 'yyyy-MM-dd'. For example:
DECLARE MyDate DATE;
SET MyDate = DATE ’2000-02-29’;

Do not omit leading zeros from the year, month, and day.
Related concepts:
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related reference:

5022 WebSphere Message Broker Version 7.0.0.8

“ESQL TIME data type”
The TIME data type holds a time of day in hours, minutes, seconds, and fractions of
a second.
“ESQL GMTTIME data type” on page 5024
The GMTTIME data type is similar to the TIME data type, except that its values are
interpreted as values in Greenwich Mean Time.
“ESQL TIMESTAMP data type” on page 5025
The TIMESTAMP data type holds a DATE and a TIME in years, months, days, hours,
minutes, seconds, and fractions of a second.
“ESQL GMTTIMESTAMP data type” on page 5026
The GMTTIMESTAMP data type is similar to the TIMESTAMP data type, except that the
values are interpreted as values in Greenwich Mean Time.
“ESQL INTERVAL data type” on page 5027
The INTERVAL data type holds an interval of time.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL TIME data type:

The TIME data type holds a time of day in hours, minutes, seconds, and fractions of
a second.

The format of a TIME literal is the word TIME followed by a space, followed by a
time in single quotation marks in the form 'hh:mm:ss.ffffff'. For example:
DECLARE MyTime TIME;
SET MyTime = TIME ’11:49:23.656’;

Each of the hour, minute, and second fields in a TIME literal must always be two
digits; the optional fractional seconds field can be up to 6 digits in length.

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps
can be inconsistent if the CVT field is not set correctly.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:

Chapter 14. Reference 5023

“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL DATE data type” on page 5022
The DATE data type holds a Gregorian calendar date (year, month, and day).
“ESQL GMTTIME data type”
The GMTTIME data type is similar to the TIME data type, except that its values are
interpreted as values in Greenwich Mean Time.
“ESQL TIMESTAMP data type” on page 5025
The TIMESTAMP data type holds a DATE and a TIME in years, months, days, hours,
minutes, seconds, and fractions of a second.
“ESQL GMTTIMESTAMP data type” on page 5026
The GMTTIMESTAMP data type is similar to the TIMESTAMP data type, except that the
values are interpreted as values in Greenwich Mean Time.
“ESQL INTERVAL data type” on page 5027
The INTERVAL data type holds an interval of time.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL GMTTIME data type:

The GMTTIME data type is similar to the TIME data type, except that its values are
interpreted as values in Greenwich Mean Time.

GMTTIME literals are defined in a similar way to TIME values. For example:
DECLARE MyGetGmttime GMTTIME;
SET MyGetGmttime = GMTTIME ’12:00:00’;

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps
can be inconsistent if the CVT field is not set correctly.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:

5024 WebSphere Message Broker Version 7.0.0.8

“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL DATE data type” on page 5022
The DATE data type holds a Gregorian calendar date (year, month, and day).
“ESQL TIME data type” on page 5023
The TIME data type holds a time of day in hours, minutes, seconds, and fractions of
a second.
“ESQL TIMESTAMP data type”
The TIMESTAMP data type holds a DATE and a TIME in years, months, days, hours,
minutes, seconds, and fractions of a second.
“ESQL GMTTIMESTAMP data type” on page 5026
The GMTTIMESTAMP data type is similar to the TIMESTAMP data type, except that the
values are interpreted as values in Greenwich Mean Time.
“ESQL INTERVAL data type” on page 5027
The INTERVAL data type holds an interval of time.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL TIMESTAMP data type:

The TIMESTAMP data type holds a DATE and a TIME in years, months, days, hours,
minutes, seconds, and fractions of a second.

The format of a TIMESTAMP literal is the word TIMESTAMP followed by a space,
followed by a time stamp in single quotation marks in the form 'yyyy-MM-dd
HH:mm:ss.SSSSSS'. For example:
DECLARE MyTimeStamp TIMESTAMP;
SET MyTimeStamp = TIMESTAMP ’1999-12-31 23:59:59’;

The year field must always be four digits in length. The month, day, hour, and
minute fields must always be two digits. (Do not omit leading zeros.) The optional
fractional seconds field can be 0 - 6 digits long.

For a description of the characters used when formatting a time stamp in the ESQL
CAST function, see “Formatting and parsing dateTimes as strings” on page 5253

The PutTime reported by WebSphere MQ on z/OS and other times or time stamps
can be inconsistent if the CVT field is not set correctly.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.

Chapter 14. Reference 5025

Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL DATE data type” on page 5022
The DATE data type holds a Gregorian calendar date (year, month, and day).
“ESQL TIME data type” on page 5023
The TIME data type holds a time of day in hours, minutes, seconds, and fractions of
a second.
“ESQL GMTTIME data type” on page 5024
The GMTTIME data type is similar to the TIME data type, except that its values are
interpreted as values in Greenwich Mean Time.
“ESQL GMTTIMESTAMP data type”
The GMTTIMESTAMP data type is similar to the TIMESTAMP data type, except that the
values are interpreted as values in Greenwich Mean Time.
“ESQL INTERVAL data type” on page 5027
The INTERVAL data type holds an interval of time.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL GMTTIMESTAMP data type:

The GMTTIMESTAMP data type is similar to the TIMESTAMP data type, except that the
values are interpreted as values in Greenwich Mean Time.

GMTTIMESTAMP values are defined in a similar way to TIMESTAMP values, for example:
DECLARE MyGetGMTTimeStamp GMTTIMESTAMP;
SET MyGetGMTTimeStamp = GMTTIMESTAMP ’1999-12-31 23:59:59.999999’;

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps
can be inconsistent if the CVT field is not set correctly.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:

5026 WebSphere Message Broker Version 7.0.0.8

Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL DATE data type” on page 5022
The DATE data type holds a Gregorian calendar date (year, month, and day).
“ESQL TIME data type” on page 5023
The TIME data type holds a time of day in hours, minutes, seconds, and fractions of
a second.
“ESQL GMTTIME data type” on page 5024
The GMTTIME data type is similar to the TIME data type, except that its values are
interpreted as values in Greenwich Mean Time.
“ESQL TIMESTAMP data type” on page 5025
The TIMESTAMP data type holds a DATE and a TIME in years, months, days, hours,
minutes, seconds, and fractions of a second.
“ESQL INTERVAL data type”
The INTERVAL data type holds an interval of time.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL INTERVAL data type:

The INTERVAL data type holds an interval of time.

This data type has a number of subtypes:
v YEAR
v YEAR TO MONTH
v MONTH
v DAY
v DAY TO HOUR
v DAY TO MINUTE
v DAY TO SECOND
v HOUR
v HOUR TO MINUTE
v HOUR TO SECOND
v MINUTE
v MINUTE TO SECOND
v SECOND

All these subtypes describe intervals of time and all can take part in the full range
of operations of the INTERVAL type; for example, addition and subtraction
operations with values of type DATE, TIME, or TIMESTAMP.

Use the CAST function to convert from one subtype to another, except for intervals
described in years and months, or months, which cannot be converted to those
described in days, hours, minutes, and seconds.

Chapter 14. Reference 5027

The split between months and days arises because the number of days in each
month varies. An interval of one month and a day is not meaningful, and cannot
be sensibly converted into an equivalent interval in numbers of days only.

An interval literal is defined by the syntax:
INTERVAL <interval string> <interval qualifier>

The format of interval string and interval qualifier are defined by the following
table.

Interval qualifier Interval string format Example

YEAR '<year>' or '<sign> <year>' '10' or '-10'

YEAR TO MONTH '<year>-<month>' or '<sign> <year>-<month>' '2-06' or '- 2-06'

MONTH '<month>' or '<sign> <month>' '18' or '-18'

DAY '<day>' or '<sign> <day>' '30' or '-30'

DAY TO HOUR '<day> <hour>' or '<sign> <day> <hour>' '1 02' or '-1 02'

DAY TO MINUTE '<day> <hour>:<minute>' or '<sign> <day>
<hour>:<minute>'

'1 02:30' or '-1 02:30'

DAY TO SECOND '<day> <hour>:<minute>:<second>' or '<sign>
<day> <hour>:<minute>:<second>'

'1 02:30:15' or '-1 02:30:15.333'

HOUR '<hour>' or '<sign> <hour>' '24' or '-24'

HOUR TO MINUTE '<hour>:<minute>' or '<sign> <hour>:<minute>' '1:30' or '-1:30'

HOUR TO SECOND '<hour>:<minute>:<second>' or '<sign>
<hour>:<minute>:<second>'

'1:29:59' or '-1:29:59.333'

MINUTE '<minute>' or '<sign> <minute>' '90' or '-90'

MINUTE TO SECOND '<minute>:<second>' or '<sign>
<minute>:<second>'

'89:59' or '-89:59'

SECOND '<second>' or '<sign> <second>' '15' or '-15.7'

Where an interval contains both a year and a month value, a hyphen is used
between the two values. In this instance, the month value must be within the
range [0, 11]. If an interval contains a month value and no year value, the month
value is unconstrained.

A space is used to separate days from the rest of the interval.

If an interval contains more than one of HOUR, MINUTE, and SECOND, a colon is
needed to separate the values and all except the leftmost are constrained as
follows:
HOUR

0-23
MINUTE

0-59
SECOND

0-59.999...

The largest value of the left-most value in an interval is +/- 2147483647.

Some examples of valid interval values are:
v 72 hours
v 3 days: 23 hours

5028 WebSphere Message Broker Version 7.0.0.8

v 3600 seconds
v 90 minutes: 5 seconds

Some examples of invalid interval values are:
v 3 days: 36 hours

A day field is specified, so the hours field is constrained to [0,23].
v 1 hour: 90 minutes

An hour field is specified, so minutes are constrained to [0,59].

Here are some examples of interval literals:
INTERVAL ’1’ HOUR
INTERVAL ’90’ MINUTE
INTERVAL ’1-06’ YEAR TO MONTH

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Using numeric operators with datetime values” on page 2439
The following examples show the ESQL that you can code to manipulate datetime
values with numeric operators.
“Calculating a time interval” on page 2441
You can use ESQL to calculate the time interval between two events, and to set a
timer to be triggered after a specified interval.
Related reference:
“ESQL DATE data type” on page 5022
The DATE data type holds a Gregorian calendar date (year, month, and day).
“ESQL TIME data type” on page 5023
The TIME data type holds a time of day in hours, minutes, seconds, and fractions of
a second.
“ESQL GMTTIME data type” on page 5024
The GMTTIME data type is similar to the TIME data type, except that its values are
interpreted as values in Greenwich Mean Time.
“ESQL TIMESTAMP data type” on page 5025
The TIMESTAMP data type holds a DATE and a TIME in years, months, days, hours,
minutes, seconds, and fractions of a second.
“ESQL GMTTIMESTAMP data type” on page 5026
The GMTTIMESTAMP data type is similar to the TIMESTAMP data type, except that the
values are interpreted as values in Greenwich Mean Time.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.
“CAST function” on page 5245

Chapter 14. Reference 5029

Representation of ESQL datetime data types:

When your application sends a message to a broker, the way in which the message
data is interpreted depends on the content of the message itself and the
configuration of the message flow. If your application sends a message to be
interpreted either by the generic XML parser, or the MRM parser, that is tailored
by an XML physical format, the application can include date or time data that is
represented by any of the XML Schema primitive datetime data types.

The XML Schema data type of each piece of data is converted to an ESQL data
type, and the element that is created in the logical message tree is of the converted
type. If the datetime data in an input message does not match the rules of the
chosen schema data type, the values that the parser writes to the logical message
tree are modified even if the message is in the MRM domain and you have
configured the message flow to validate the input message. (Validation is not
available for generic XML messages.)

This has the following effect on the subfields of the input datetime data:
v If any of the subfields of the input message are missing, a default value is

written to the logical message tree. This default is substituted from the full
timestamp that refers to the beginning of the current epoch: 1970-01-01 00:00:00.

v If the input message contains information for subfields that are not present in
the schema, the additional data is discarded. If this occurs, no exception is
raised, even if a message in the MRM domain is validated.

v After the data is parsed, it is cast to one of three ESQL datetime data types.
These are DATE, TIME, and TIMESTAMP.
– If a datetime value contains only date subfields, it is cast to an ESQL DATE.
– If a datetime value contains only time subfields, it is cast to an ESQL TIME.
– If a datetime value contains both date and time subfields, it is cast to an

ESQL TIMESTAMP.

The following examples illustrate these points.

Input data XML Schema
data type

Schema rules Input value in the bit
stream

Value written to the logical
tree (ESQL data type in
brackets)

xsd:dateTime CCYY-MM-DDThh:mm:ss 2002-12-31T23:59:59 2002-12-31 23:59:59
(TIMESTAMP)

--24 1970-01-24 (DATE)

23:59:59 23:59:59 (TIME)

xsd:date CCYY-MM-DD 2002-12-31 2002-12-31 (DATE)

2002-12-31T23:59:59 2002-12-31 (DATE)

-06-24 1970-06-24 (DATE)

xsd:time hh:mm:ss 14:15:16 14:15:16 (TIME)

xsd:gDay ---DD ---24 1970-01-24 (DATE)

xsd:gMonth --MM --12 1970-12-01 (DATE)

xsd:gMonthDay --MM-DD --12-31 1970-12-31 (DATE)

xsd:gYear CCYY 2002 2002-01-01 (DATE)

xsd:gYearMonth CCYY-MM 2002-12 2002-12-01 (DATE)

5030 WebSphere Message Broker Version 7.0.0.8

Validation with missing subfields: When you consider which schema datetime data
type to use, consider that, if the message is in the MRM domain, and you
configure the message flow to validate messages, missing subfields can cause
validation exceptions.

The schema data types Gday, gMonth, gMonthDay, gYear, and gYearMonth are
used to record particular recurring periods of time. There is potential confusion
when validation is turned on, because the recurring periods of time that are used
in these schema data types are stored by ESQL as specific points in time.

For example, when the 24th of the month, which is a gDay (a monthly day) type,
is written to the logical tree, the missing month and year subfields are supplied
from the epoch (January 1970) to provide the specific date 1970-01-24. If you code
ESQL to manipulate this date, for example by adding an interval of 10 days, and
then generate an output message that is validated, an exception is raised. This is
because the result of the calculation is 1970-02-03 which is invalid because the
month subfield of the date no longer matches the epoch date.

Use within an MRM domain: In MRM it is possible to define an element that has
the logical type of dateTime.

When a dateTime element is parsed, a field is created in the message tree that has
the ESQL datatype of CURRENT_TIME or CURRENT_TIMESTAMP. However, the
CURRENT_TIME and CURRENT_TIMESTAMP data types do not have the
functionality to store timezone information, and the MRM does not adjust the time
according to the input timezone and the timezone of the broker.

Although the CURRENT_TIME and CURRENT_TIMESTAMP data types cannot
store timezone information, the MRM stores this information as part of the
underlying field. This means that if the field is copied between message trees, the
timezone information is copied with it, allowing this information to be preserved
on output.

Note that the information is preserved only if the field is copied to a field of the
same name.

However, if any new field is derived from the original field, the new field does not
have the timezone information. This means that if such a field is cast as a
character, the new field assumes the timezone of the broker, but its value is not
adjusted for any difference between the input timezone and the timezone of the
broker.

For example, an input dateTime element containing 2009-02-20T06:08:07-08:00
could be copied from the input message tree to the output message tree and
appear in an output message in exactly the same format. However, if the element
is cast as character, using format IU, by a broker running GMT the result would be
2009-02-20T06:08:07.000Z.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 14. Reference 5031

“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
“Defining input message characteristics” on page 1475
When a message is received by an input node in a message flow, the node detects
how to interpret that message by determining the domain in which the message is
defined and starting the appropriate parser.
“Validating messages” on page 1478
The broker provides validation based on the message model for predefined
messages.
Related reference:
“ESQL datetime functions” on page 5176
“DateTime formats” on page 6310
When you create an element or attribute with a simple type of dateTime, you must
specify a format string in the object's Format String property for each physical
format layer (CWF, TDS, XML).
“CURRENT_TIME function” on page 5179
“CURRENT_TIMESTAMP function” on page 5180

ESQL NULL data type:

All ESQL data types (except REFERENCE) support the concept of the null value. A
value of null means that the value is unknown, undefined, or uninitialized. Null
values can arise when you refer to message fields that do not exist, access database
columns for which no data has been supplied, or use the keyword NULL, which
supplies a null literal value.

Null is a distinct state and is not the same as any other value. In particular, for
integers it is not the same thing as the value 0 and for character variables it is not
the same thing as a string of zero characters. The rules of ESQL arithmetic take
null values into account, and you are typically unaware of their existence.
Generally, but not always, these rules mean that, if any operand is null, the result
is null.

If an expression returns a null value its data type is not, in general, known. All
null values, whatever their origin, are therefore treated equally.

This can be regarded as their belonging to the data type NULL , which is a data
type that can have just one value, null.

An expression always returns NULL if any of its elements are NULL.

Testing for null values

To test whether a field contains a null value, use the IS operator described in
Operator=.

The effect of setting a field to NULL:
Take care when assigning a null value to a field. For example, the following
command deletes the Name field:

5032 WebSphere Message Broker Version 7.0.0.8

SET OutputRoot.XMLNS.Msg.Data.Name = NULL; -- this deletes the field

The correct way to assign a null value to a field is as follows:
SET OutputRoot.XMLNS.Msg.Data.Name VALUE = NULL;
-- this assigns a NULL value to a field without deleting it

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL numeric data types:

ESQL supports several data types that handle numeric values, including
DECIMAL, FLOAT, and INTEGER.

The following data types are collectively known as numeric data types:
v “ESQL DECIMAL data type” on page 5034
v “ESQL FLOAT data type” on page 5036
v “ESQL INTEGER data type” on page 5037

Notes:

1. INTEGER and DECIMAL types are represented exactly inside the broker;
FLOAT types are inherently subject to rounding error without warning. Do not
use FLOAT if you need absolute accuracy, for example, to represent money.

2. Various casts are possible between different numeric types. These can result in
loss of precision, if exact types are cast into FLOAT.

For information about numeric functions see “ESQL numeric functions” on page
5183.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 14. Reference 5033

“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL DECIMAL data type”
“ESQL FLOAT data type” on page 5036
“ESQL INTEGER data type” on page 5037
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

ESQL DECIMAL data type:
The DECIMAL data type holds an exact representation of a decimal number.
Decimals have precision, scale, and rounding. Precision is the total number of
digits of a number:
v The minimum precision is 1
v The maximum precision is 34

Scale is the number of digits to the right of the decimal point:
v The minimum scale (-exponent) is -999,999,999
v The maximum scale (-exponent) is +999,999,999

You cannot define precision and scale when declaring a DECIMAL, because they
are assigned automatically. It is only possible to specify precision and scale when
casting to a DECIMAL.

Scale, precision, and rounding:
The following scale, precision, and rounding rules apply:
v Unless rounding is required to keep within the maximum precision, the scale of

the result of an addition or subtraction is the greater of the scales of the two
operands.

v Unless rounding is required to keep within the maximum precision, the scale of
the result of a multiplication is the sum of the scales of the two operands.

v The precision of the result of a division is the smaller of the number of digits
needed to represent the result exactly and the maximum precision.

v All addition, subtraction, multiplication, and division calculations round the
least significant digits, as necessary, to stay within the maximum precision

v All automatic rounding is banker's or half even symmetric rounding. The rules of
this are:
– When the first dropped digit is 4 or less, the first retained digit is unchanged
– When the first dropped digit is 6 or more, the first retained digit is

incremented

5034 WebSphere Message Broker Version 7.0.0.8

– When the first dropped digit is 5, the first retained digit is incremented if it is
odd, and unchanged if it is even. Therefore, both 1.5 and 2.5 round to 2 while
3.5 and 4.5 both round to 4

– Negative numbers are rounded according to the same rule

Decimal literals:
Decimal literals that consist of an unquoted string of digits only, that is, that
contain neither a decimal point nor an exponent (for example 12345) are of type
INTEGER if they are small enough to be represented as integers. Otherwise they
are of type DECIMAL.

Decimal literals that consist of an unquoted string of digits, optionally a decimal
point, and an exponent (for example 123e1), are of type FLOAT if they are small
enough to be represented as floats. Otherwise they are of type DECIMAL.

Decimal literals that consist of the keyword DECIMAL and a quoted string of
digits, with or without a decimal point and with or without an exponent, are of
type DECIMAL, for example, DECIMAL '42', DECIMAL '1.2346789e+203'.

The strings in this type of literal can also have the values:
v 'NAN', not a number
v 'INF', 'INFINITY'
v '+INF', '+INFINITY'
v '-INF', '-INFINITY'
v 'MAX'
v 'MIN'

(in any mixture of case) to denote the corresponding values.

Note, if you do not specify sufficient precision digits, that INF is returned, as
shown in the following example:
SET VAL = CAST(’123456’ AS DECIMAL(3,0))

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:

Chapter 14. Reference 5035

“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL INTEGER data type” on page 5037
“ESQL FLOAT data type”
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL FLOAT data type:
The FLOAT data type holds a 64-bit, base 2, fraction and exponent approximation
to a real number. This gives a range of values between +-1.7E–308 and +- 1.7E+308.

Float literals consist of an unquoted string of digits and either a decimal point (for
example 123.4) or an exponent (for example 123e4) or both (for example 123.4e5) .
They are of type FLOAT if they are small enough to be represented as floats.
Otherwise they are of type DECIMAL

Rounding:
When you CAST a FLOAT to an INTEGER, either implicitly or explicitly, the
FLOAT is truncated; that is, the numbers after the decimal point are removed and
no rounding occurs.

When you CAST a FLOAT to a DECIMAL or CHARACTER, either implicitly or
explicitly, the FLOAT can be rounded to a maximum precision of 15 digits.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL INTEGER data type” on page 5037
“ESQL DECIMAL data type” on page 5034
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable

5036 WebSphere Message Broker Version 7.0.0.8

and, optionally, its initial value.

ESQL INTEGER data type:
The INTEGER data type holds an integer number in 64-bit two's complement form.
This gives a range of values between -9223372036854775808 and
+9223372036854775807.

Integer literals consist of an unquoted string of digits only; that is, they contain
neither a decimal point nor an exponent; for example, 12345. They are of type
INTEGER if they are small enough to be represented as integers. Otherwise they
are of type DECIMAL.

In addition to this format, you can write integer literals in hexadecimal notation;
for example, 0x1234abcd. You can write the hexadecimal letters A to F, and the “x”
after the initial zero, in uppercase or lowercase. If you use hexadecimal format, the
number must be small enough to fit into an integer. (That is, it cannot be a
decimal.)
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL FLOAT data type” on page 5036
“ESQL DECIMAL data type” on page 5034
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL REFERENCE data type:

The REFERENCE data type holds the location of a field in a message. It cannot
hold the location of a constant, a database table, a database column, or another
reference.

Chapter 14. Reference 5037

For compatibility with earlier versions, reference variables can also point at scalar
variables

A reference literal is an hierarchic path name, consisting of a list of path elements
separated by periods. The first element in the list is known as the correlation
name, and identifies a reference, row, or scalar variable. Any subsequent elements
apply to references to message trees only, and identify field types, names, and
indexes within the message tree relative to the field pointed to by the correlation
name.

Note: If you use a REFERENCE, you are able to modify any element, even if the
element is part of an input tree.

For example:
InputRoot.MQMD.Priority

is a field reference literal that refers to the Priority field contained within an
MQMD structure within an input message.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL field reference overview” on page 5049
You can use ESQL field references to form paths to message body elements.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL ROW data type:

The ROW data type holds a tree structure. A row in a database is a particular type
of tree structure, but the ROW data type is not restricted to holding data from
database rows.

In a database, a row is a fixed, ordered, set of scalar values. A scalar is defined as a
single entity value or a string.

A database table is an unordered set of rows and therefore represents a two
dimensional "array" of scalar values, in which one dimension is fixed and the other
is variable. In ESQL, a row is an open-ended, ordered, set of named values in

5038 WebSphere Message Broker Version 7.0.0.8

which each value can be scalar, or another row. That is, a row is an open-ended
tree structure with no restrictions on dimensions or regularity. Consider the
following diagram:
Root

Row
PartNumber = 1
Description = ’Chocolate bar’
Price = 0.30

Row
PartNumber = 2
Description = ’Biscuit’
Price = 0.35

Row
PartNumber = 3
Description = ’Fruit’
Price = 0.42

In the example, Root contains three elements all named “Row”. Each of these
elements in turn contains three elements with different names and values. This
diagram equally describes an instance of an ESQL row data type (that is, a tree
structure) or the contents of a database table.

ROW and LIST

The ROW data type is a normal data type. You can use the DECLARE statement to
create ROW variables in the same way as you create INTEGER or CHARACTER
variables. There is also a more general concept of a ROW data type. In the
previous example, Root is the root element of a ROW variable. Each of the
elements called “Row”, while not the root element of ROW variables, is a root
element of substructures. Many ESQL operations (and particularly the SELECT
function) work with the general concept of ROW and operate equally on whole
trees or parts of trees.

There is also a general concept of a LIST data type. The set of elements called
“Row” can be regarded as a list. Some ESQL operations (particularly SELECT)
work with the general concept of list.

InputRoot, OutputRoot, and so on, are examples of ROW variables that are
automatically declared and present in the data structure, ready for use.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.

Chapter 14. Reference 5039

“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL string data types:

ESQL supports several data types that handle string values, including BIT, BLOB,
and CHARACTER.

The following data types are collectively known as string data types:
v “ESQL BIT data type”
v “ESQL BLOB data type” on page 5041
v “ESQL CHARACTER data type” on page 5042

For information about string functions, see “ESQL string manipulation functions”
on page 5205.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“ESQL BIT data type”
“ESQL BLOB data type” on page 5041
“ESQL CHARACTER data type” on page 5042
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL BIT data type:
The BIT data type holds a variable length string of binary digits. It is commonly
used to represent arbitrary binary data that does not contain an exact number of
bytes. A bit string literal consists of the letter B, followed by a string of binary
digits enclosed in single quotation marks, as in the following example:
B’0100101001’

5040 WebSphere Message Broker Version 7.0.0.8

Any number of digits, which must be either 0 or 1, can be specified. The initial B
can be specified in uppercase or lowercase.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL CHARACTER data type” on page 5042
“ESQL BLOB data type”
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL BLOB data type:
The BLOB data type holds a variable length string of 8-bit bytes. It is commonly
used to represent arbitrary binary data. A BLOB literal consists of the letter X,
followed by a string of hexadecimal digits enclosed in single quotation marks, as
in the following example:
X’0123456789ABCDEF’

There must be an even number of digits in the string, because two digits are
required to define each byte. Each digit can be one of the hexadecimal digits 0-9
and A-F. Both the initial X and the hexadecimal letters can be specified in
uppercase or lowercase.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.

Chapter 14. Reference 5041

“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL CHARACTER data type”
“ESQL BIT data type” on page 5040
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL CHARACTER data type:
The character data type holds a variable length string of Unicode characters. A
character string literal consists of any number of characters in single quotation
marks. If you want to include a single quotation mark within a character string
literal, use another single quotation mark as an escape character.

For example, the assignment SET X=’he’’was’’’ puts the value he’was’ into X.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL BLOB data type” on page 5041
“ESQL BIT data type” on page 5040

5042 WebSphere Message Broker Version 7.0.0.8

“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL-to-Java data-type mapping table:

Table summarizing the mappings from ESQL to Java.

The following table summarizes the mappings from ESQL to Java.

Notes:

v Only the Java scalar wrappers are passed to Java.
v The ESQL scalar types are mapped to Java data types as object wrappers, or

object wrapper arrays, depending upon the direction of the procedure parameter.
Each wrapper array contains exactly one element.

v Scalar object wrappers are used to allow NULL values to be passed to and from
Java methods.

ESQL data types 1 Java IN data types Java INOUT and OUT data types

INTEGER, INT java.lang.Long java.lang.Long []

FLOAT java.lang.Double java.lang.Double[]

DECIMAL java.math.BigDecimal java.math.BigDecimal[]

CHARACTER, CHAR java.lang.String java.lang.String[]

BLOB byte[] byte[][]

BIT java.util.BitSet java.util.BitSet[]

DATE com.ibm.broker.plugin.MbDate com.ibm.broker.plugin.MbDate[]

TIME 2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

GMTTIME 2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

TIMESTAMP 2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

GMTTIMESTAMP 2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

INTERVAL Not supported Not supported

BOOLEAN java.lang.Boolean java.lang.Boolean[]

REFERENCE (to a message tree) 3 4

5 6
com.ibm.broker.plugin.MbElement com.ibm.broker.plugin.MbElement[]

(Supported for INOUT. Not
supported for OUT)

ROW Not supported Not supported

LIST Not supported Not supported

1. Variables that are declared to be CONSTANT (or references to variables that are
declared to be CONSTANT) are not allowed to have the direction INOUT or
OUT.

2. The time zone set in the Java variable is not important; you obtain the required
time zone in the output ESQL.

3. The reference parameter cannot be NULL when passed into a Java method.
4. The reference cannot have the direction OUT when passed into a Java method.
5. If an MbElement is passed back from Java to ESQL as an INOUT parameter, it

must point to a location in the same message tree as that pointed to by the
MbElement that was passed into the called Java method.

Chapter 14. Reference 5043

For example, if an ESQL reference to OutputRoot.XML.Test is passed into a Java
method as an INOUT MbElement, but a different MbElement is passed back to
ESQL when the call returns, the different element must also point to
somewhere in the OutputRoot tree.

6. An MbElement cannot be returned from a Java method with the RETURNS
clause, because no ESQL routine can return a reference. However, an MbElement
can be returned as an INOUT direction parameter, subject to the conditions
described in point 5.

A REFERENCE to a scalar variable can be used in the CALL of a Java method,
provided that the data type of the variable to which the reference refers matches
the corresponding data type in the Java program signature.
Related reference:
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.
“CREATE FUNCTION statement” on page 5091
The CREATE FUNCTION statement defines a callable function or procedure.

ESQL to XML Schema data type mapping:

Mapping from XML Schema simple type to ESQL message tree data type.

The following table shows the mapping that WebSphere Message Broker parsers
use when converting between the simple types of XML Schema and the data types
of the message tree. The mapping applies to all parsers that use an XML Schema
model when parsing and serializing.

XML Schema simple type Data type in message tree

anyURI CHARACTER

base64Binary BLOB

boolean BOOLEAN

byte INTEGER

date DATE

dateTime TIMESTAMP

dayTimeDuration INTERVAL

decimal DECIMAL

double FLOAT

duration INTERVAL

ENTITIES List of CHARACTER

ENTITY STRING

float FLOAT

gDay DATE

gMonth DATE

gMonthDay DATE

gYear DATE

gYearMonth DATE

hexBinary BLOB

ID CHARACTER

5044 WebSphere Message Broker Version 7.0.0.8

XML Schema simple type Data type in message tree

IDREF CHARACTER

IDREFS List of CHARACTER

int INTEGER

integer DECIMAL

language CHARACTER

long INTEGER

Name CHARACTER

NCName CHARACTER

negativeInteger DECIMAL

NMTOKEN CHARACTER

NMTOKENS List of CHARACTER

nonNegativeInteger DECIMAL

nonPositiveInteger DECIMAL

normalizedString CHARACTER

NOTATION CHARACTER

positiveInteger DECIMAL

QName CHARACTER

short INTEGER

string CHARACTER

time TIME

token CHARACTER

unsignedByte INTEGER

unsignedInt INTEGER

unsignedLong DECIMAL

unsignedShort INTEGER

yearMonthDuration INTERVAL

Related concepts:
“XMLNSC data types” on page 1102
Mapping between XML Schema simple types and the data types that the XMLNSC
parser uses in the message tree when Build tree using XML Schema types is
specified.
Related reference:
“Data types for elements in an MRM message” on page 6254
A parser is supplied for the body of a message in the MRM domain; it associates
each field with a specific data type.
“ESQL data types in message flows” on page 5020
All data that is referred to in message flows must be one of the defined types.

Chapter 14. Reference 5045

ESQL-to-XPath mapping table:

A table that summarizes the mappings from ESQL to XPath.

ESQL XPath 1.0 XPath 1.0 usage notes

BOOLEAN data types
True True() Equivalent to Boolean "1" or

"True"

False False() Equivalent to Boolean "0" or
"False"

Unknown No equivalent

Date Time data types No equivalent

NULL data type No equivalent

Numeric data types
DECIMAL 12678967.543233 with or without

quotation marks
Cannot express an exponent or a
leading plus sign.

FLOAT 1.7976931348623158 with or
without quotation marks

Cannot express an exponent or a
leading plus sign.

INTEGER 9223372036854775807 with or
without quotation marks

Cannot express an exponent or a
leading plus sign.

REFERENCE data type FilterExpression '/'
RelativeLocationPath

For example, $InputRoot/MQMD/
Priority

String data types

BIT
BLOB
CHARACTER

No equivalent
No equivalent
Literal For example ’a "b"’ or "a ’b’"

NAME $NAME Can assign such a variable any
valid value, of type Boolean,
number, or string.

Simple comparison operators

>
<
>=
'='
<>

>
<
>=
'='
!=

Complex comparison operators No equivalent

Logical operators

AND
OR
NOT

and
or
not (operand) The not function returns true if its

argument is false, and false
otherwise.

Numeric operators

Unary -
+
-
*
/

 - Unary expression
+
-
*
div

Multiplication operator

String operator No equivalent

Date time functions No equivalent

5046 WebSphere Message Broker Version 7.0.0.8

ESQL XPath 1.0 XPath 1.0 usage notes

Numeric functions

FLOOR
CEIL and CEILING
ROUND

floor (number)
ceiling (number)
No equivalent

String manipulation functions
SUBSTRING substring(string, number, number)

TRANSLATE translate(string, string, string)

Related tasks:
“Using XPath” on page 1506
XPath provides an alternative method to ESQL for entering expressions in the
property fields of specific built-in nodes.

XPath property editors:

The XPath files are supplied in three property editors located in the
com.ibm.etools.mft.ibmnodes plugin.

The property editors are:

Read only
Located in
com.ibm.etools.mft.ibmnodes.editors.xpath.XPathReadOnlyPropertyEditor

Read write
Located in
com.ibm.etools.mft.ibmnodes.editors.xpath.XPathReadWritePropertyEditor

Expression
Located in
com.ibm.etools.mft.ibmnodes.editors.xpath.XPathPropertyEditor

For information on adding a property editor to your workspace, see “Adding a
property editor or compiler” on page 3091.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“XPath overview” on page 1507
The XML Path Language (XPath) is used to uniquely identify or address parts of
an XML document. An XPath expression can be used to search through an XML
document, and extract information from any part of the document, such as an
element or attribute (referred to as a node in XML) in it. XPath can be used alone
or in conjunction with XSLT.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

Chapter 14. Reference 5047

“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

ESQL variables:

ESQL variables can be described as external variables, normal variables, or shared
variables; their use is defined in the DECLARE statement.

Types of variable

External
External variables (defined with the EXTERNAL keyword) are also known
as user-defined properties (see “User-defined properties in ESQL” on page
2376). They exist for the entire lifetime of a message flow and are visible to
all messages that pass through the flow. You can define external variables
only at the module and schema level. You can modify their initial values
(optionally set by the DECLARE statement) by using the Message Flow
editor, or at deployment time, by using the Broker Archive editor. You can
query and set the values of user-defined properties at run time by using
the Administration API for WebSphere Message Broker (also known as the
CMP API). For more information, see “Setting message flow user-defined
properties at run time in a CMP application” on page 985.

Normal
Normal variables have a lifetime of just one message passing through a
node. They are visible to that message only. To define a normal variable,
omit both the EXTERNAL and SHARED keywords.

Shared
Shared variables (defined with the SHARED keyword) can be used to
implement an in-memory cache in the message flow; see “Optimizing
message flow response times” on page 3264. Shared variables have a long
lifetime and are visible to multiple messages that pass through the flow;
see “Long-lived variables” on page 2378. They exist for the lifetime of the
execution group process, the lifetime of the flow or node, or the lifetime of
the node's SQL that declares the variable (whichever is the shortest). They
are initialized when the first message passes through the flow or node after
each broker startup.

See also the ATOMIC option of the “BEGIN ... END statement” on page
5070. The BEGIN ATOMIC construct is useful when a number of changes
have to be made to a shared variable and when it is important to prevent
other instances seeing the intermediate states of the data.

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“ESQL variables” on page 2374
An ESQL variable is a data field that is used to help process a message.
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.

5048 WebSphere Message Broker Version 7.0.0.8

“User-defined properties” on page 1147
A user-defined property (UDP) is a property that is defined when you construct a
message flow by using the Message Flow editor. This property can be used by the
ESQL or Java program inside message flow nodes, such as a Compute node.
“Long-lived variables” on page 2378
You can use appropriate long-lived ESQL data types to cache data in memory.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.
Related reference:
“DECLARE statement” on page 5117
Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

ESQL field reference overview:

You can use ESQL field references to form paths to message body elements.

The full syntax for field references is shown in the following examples:

►► CorrelationName

▼

.

PathElement

►◄

PathElement:

(Type)
►

► - Name
: { NameExpression }

Namespace *
{ NamespaceExpression }

*

►

►
[]

Index
<

Index
>

Index
<

Chapter 14. Reference 5049

A field reference consists of a correlation name, followed by zero or more Path
Elements separated by periods (.). The correlation name identifies a well-known
starting point and must be the name of a constant, a declared variable (scalar, row
or reference), or one of the predefined start points; for example, InputRoot. The
path Fields define a path from the start point to the desired field.

See:
v “Namespace” on page 5051 for the meaning of the different combinations of

namespace and name
v “Target field references” on page 5054 for the meaning of the different

combinations of field references
v “Index” on page 5051 for the meaning of the different combinations of index

clauses
v “Type” on page 5052 for the meaning of the different combinations of types

For example:
InputRoot.XMLNS.Data.Invoice

starts the broker at the location InputRoot (that is, the root of the input message to
a Compute node) and then performs a sequence of navigations. First, it navigates
from root to the first child field called XMLNS, then to the first child field of the
XMLNS field called Data. Finally, the broker navigates to the first child field of the
Data field called Invoice. Whenever this field reference occurs in an ESQL
program, the invoice field is accessed.

This form of field reference is simple, convenient, and is the most commonly used.
However, it does have two limitations:
v Because the names used must be valid ESQL identifiers, you can use only names

that conform to the rules of ESQL. That is, the names can contain only
alphanumeric characters including underscore, the first character cannot be
numeric, and names must be at least one character long. You can avoid these
limitations by enclosing names not conforming to these rules in double
quotation marks. For example:
InputRoot.XMLNS."Customer Data".Invoice

If you need to refer to fields that contain quotation marks, use two pairs of
quotation marks around the reference. For example:
Body.Message."""hello"""

Some identifiers are reserved as keywords but, with the exception of the
correlation name, you can use them in field references without the use of double
quotation marks

v Because the names of the fields appear in the ESQL program, they must be
known when the program is written. This limitation can be avoided by using the
alternative syntax that uses braces ({ ... }). This syntax allows you to use any
expression that returns a non-null value of type character.
For example:
InputRoot.XMLNS."Customer Data".{’Customer-’ ||
CurrentCustomer}.Invoice

in which the invoices are contained in a folder with a name is formed by
concatenating the character literal Customer- with the value in CurrentCustomer
(which in this example must be a declared variable of type character).

5050 WebSphere Message Broker Version 7.0.0.8

You can use the asterisk (*) wildcard character in a path element to match any
name. For example:

InputRoot.XMLNS.*.Invoice.Value

matches any path element in which the invoices are contained.

Note that enclosing anything in double quotation marks in ESQL makes it an
identifier; enclosing anything in single quotation marks makes it a character literal.
You must enclose all character strings in single quotation marks.

Namespace:
Field names can belong to namespaces. Field references provide support for
namespaces as follows:
v Each field of each field reference that contains a name clause can also contain a

namespace clause defining the namespace to which the specified name belongs.
v Each namespace name can be defined by either a simple identifier or by an

expression (enclosed in curly braces). If an identifier is the name of a declared
namespace constant, the value of the constant is used. If an expression is used, it
must return a non-null value of type character.

v A namespace clause of * explicitly states that namespace information is to be
ignored when locating Fields in a tree.

v A namespace clause consisting of only : explicitly targets the notarget
namespace. The clause has no identifier, expression or wildcard (*).

For example:
DECLARE sp1 NAMESPACE ’http://www.ibm.com/space1’;

/* Namespace declaration to associate prefix ’space1’ with the namespace */

SET OutputRoot.XMLNS.TestCase.(XML.NamespaceDecl)xmlns:space1 = ’http://www.ibm.com/space1’;
SET OutputRoot.XMLNS.TestCase.sp1:data1 = ’Hello!’;

generates:
<TestCase xmlns:space1="http://www.ibm.com/space1">
<space1:data1>Hello!</space1:data1>
</TestCase>

Index:
Each field of a field reference can contain an index clause. This clause is denoted
by brackets ([...]) and accepts any expression that returns a non-null value of
type integer. This clause identifies which of several fields with the same name is to
be selected. Fields are numbered, starting at one. If this clause is not present, it is
assumed that the first field is required. Therefore, the following two examples have
exactly the same meaning:
InputRoot.XMLNS.Data[1].Invoice
InputRoot.XMLNS.Data.Invoice[1]

This construct is most commonly used with an index variable, so that a loop steps
though all such fields in sequence. For example:
WHILE count < 32 DO

SET TOTAL = TOTAL + InputRoot.XMLNS.Data.Invoice[count].Amount;
SET COUNT = COUNT + 1

END WHILE;

Chapter 14. Reference 5051

Use this kind of construct with care, because it implies that the broker must count
the fields from the beginning each time round the loop. If the repeat count is large,
performance will be poor. In such cases, a better alternative is to use a field
reference variable.

Index expressions can optionally be preceded by a less-than sign (<), indicating
that the required field is to be indexed from the last field, not the first. In this case,
the index 1 refers to the last field and the index 2 refers to the penultimate field.
For completeness, you can use a greater-than sign to indicate counting from the
first field. The following example shows ESQL code that handles indexes where
there are four fields called Invoice.
InputRoot.XMLNS.Data.Invoice -- Selects the first
InputRoot.XMLNS.Data.Invoice[1] -- Selects the first
InputRoot.XMLNS.Data.Invoice[>] -- Selects the first
InputRoot.XMLNS.Data.Invoice[>1] -- Selects the first
InputRoot.XMLNS.Data.Invoice[>2] -- Selects the second
InputRoot.XMLNS.Data.Invoice[<] -- Selects the fourth
InputRoot.XMLNS.Data.Invoice[<1] -- Selects the fourth
InputRoot.XMLNS.Data.Invoice[<2] -- Selects the third
InputRoot.XMLNS.Data.Invoice[<3] -- Selects the second

An index clause can also consist of an empty pair of brackets ([]). This selects all
fields with matching names. Use this construct with functions and statements that
expect lists (for example, the SELECT, CARDINALITY, SINGULAR, and EXISTS
functions, or the SET statement) .

Type:
Each field of a field reference can contain a type clause. These are denoted by
parentheses (()), and accept any expression that returns a non-null value of type
integer. The presence of a type expression restricts the fields that are selected to
those of the matching type. This construct is most commonly used with generic
XML, where there are many field types and it is possible for one XML field to
contain both attributes and further XML Fields with the same name.

For example:
<Item Value = ’1234’>

<Value>5678</Value>
</Item>

Here, the XML field Item has two child Fields, both called “Value”. The child
Fields can be distinguished by using type clauses:
Item.(<Domain>.Attribute)Value to select the attribute, and
Item.(XML.Element)Value to select the field, where <Domain> is one of XML,
XMLNS, or XMLNSC, as determined by the message domain of the source.

Type constraints

A type constraint checks the data type returned by a field reference.

5052 WebSphere Message Broker Version 7.0.0.8

►►
(1)

(FieldReference) ScalarDataTypeName ►◄

Notes:

1 ScalarDataTypeName can be any one of BOOLEAN, INTEGER, INT, FLOAT,
DECIMAL, DEC, DATE, TIME, TIMESTAMP, GMTTIME,
GMTTIMESTAMP, INTERVAL, CHARACTER, CHAR, BLOB, BIT.

Typically, a type constraint causes the scalar value of the reference to be extracted
(in a similar way to the FIELDVALUE function) and an exception to be thrown if
the reference is not of the correct type. By definition, an exception will be thrown
for all nonexistent fields, because these evaluate to NULL. This provides a
convenient and fast way of causing exceptions if essential fields are missing from
messages.

However, when type constraints occur in expressions that are candidates for being
passed to a database (for example, they are in a WHERE clause), the information is
used to determine whether the expression can be given to the database. This can
be important if a WHERE clause contains a CAST operating on a database table
column. In the absence of a type constraint, such expressions cannot be given to
the database because the broker cannot tell whether the database is capable of
performing the required conversion. Note, however, that you should always
exercise caution when using casts operating on column values, because some
databases have exceedingly limited data conversion capabilities.

Field references summary:

*, *[..], (..)*, (..)*[..]
None of these forms specifies a name or namespace. The target field can
have any name, in any namespace or in no namespace. It is located solely
by its type, its index, or its type and index, as appropriate.

Name, Name[..], (..)Name, (..)Name[..]
All these forms specify a name but no namespace. The target field is
located by namespace and name, and also by type and index where
appropriate.

The namespace is taken to be the only namespace in the namespace path
containing this name. The only namespace that can be in the path is the
notarget namespace.

These forms all existed before namespaces were introduced. Although their
behavior has changed in that they now compare both name and
namespace, existing transforms should see no change in their behavior
because all existing transforms create their Fields in the notarget
namespace.

:*, :*[..], (..):*, (..):*[..]
All these forms specify the notarget namespace but no name. The target
field is located by its namespace and also by type and index where
appropriate.

:Name, :Name[..], (..):Name, (..):Name[..]
All these forms specify a name and the notarget namespace. The target
field is located by namespace and name and also by type and index where
appropriate.

Chapter 14. Reference 5053

:, *:*[..], (..)*:*, (..)*:*[..]
None of these forms specifies a name or a namespace. Note that “*:*” is
equivalent to “*”, and matches no namespace as well as any namespace.
The target field can have any name, in any namespace or in no namespace.
It is located solely by its type, its index, or its type and index, as
appropriate.

*:Name, *:Name[..], (..)*:Name, (..)*:Name[..]
All these forms specify a name but no namespace. The target field is
located by name and also by type and index where appropriate.

Namespace:*, Namespace:*[..], (..)Namespace:*, (..)Namespace:*[..]
All these forms specify a namespace but no name. The target field is
located by namespace and also by type and index where appropriate.

Namespace:Name, Namespace:Name[..], (..)Namespace:Name,
(..)Namespace:Name[..]

All these forms specify a namespace and name. The target field is located
by namespace and name and also by type and index where appropriate.

In all the preceding cases a name, or namespace, provided by an expression
contained in braces ({}) is equivalent to a name provided as an identifier.

By definition, the name of the notarget namespace is the empty string. The empty
string can be selected by expressions which evaluate to the empty string, the
empty identifier "", or by reference to a namespace constant defined as the empty
string.

Target field references:
The use of field references usually implies searching for an existing field. However,
if the required field does not exist, as is usually the case for field references that
are the targets of SET statements and those in the AS clauses of SELECT functions,
it is created.

In these situations, there are a variety of circumstances in which the broker cannot
tell what the required name or namespace is, and in these situations the following
general principles apply :
v If the name clause is absent or does not specify a name, and the namespace

clause is absent or does not specify or imply a namespace (that is, there is no
name or namespace available), one of the following conditions applies:
– If the assignment algorithm does not copy the name from some existing field,

the new field has both its name and namespace set to the empty string and
its name flag is not set automatically.
In the absence of a type specification, the field's type is not Name or
NameValue, which effectively indicates that the new field is nameless.

– Otherwise, if the assignment algorithm copies the name from some existing
field, the new field has both its name and namespace copied from the existing
field and its Name flag is set automatically

v If the name clause is present and specifies a name, but the namespace clause is
absent or does not specify or imply a namespace (that is, a name is available but
a namespace is not), the new field has its:
– Name set to the given value
– Namespace set to the empty string
– Name flag set automatically

5054 WebSphere Message Broker Version 7.0.0.8

v If the name clause is absent or does not specify a name, but the namespace
clause is present and specifies or implies a namespace (that is, a namespace is
available but a name is not), the new field has its:
– Namespace set to the given value
– Name set to the empty string
– Name flag set automatically

v If the name clause is present and specifies a name, and the namespace clause is
present and specifies or implies a namespace, the new field has its:
– Name set to the given value
– Namespace set to the given value
– Name flag set automatically

There are also cases where the broker creates Fields in addition to those referenced
by field references:
v Tree copy: new Fields are created by an algorithm that uses a source tree as a

template. If the algorithm copies the name of a source field to a new field, its
namespace is copied as well.

v Anonymous select expressions: SELECT clauses are not obliged to have AS
clauses; those that do not have them, set the names of the newly created Fields
to default values (see “SELECT function” on page 5260).
These defaults can be derived from field names, column names or can simply be
manufactured sequence names. If the name is an field name, this is effectively a
tree copy, and the namespace name is copied as above.
Otherwise, the namespace of the newly-created field is derived by searching the
path, that is, the name is be treated as the NameId syntax of a field reference.

The effect of setting a field to NULL:

Take care when assigning a null value to a field. For example, the following
command deletes the Name field:
SET OutputRoot.XMLNS.Msg.Data.Name = NULL; -- this deletes the field

The correct way to assign a null value to a field is as follows:
SET OutputRoot.XMLNS.Msg.Data.Name VALUE = NULL;
-- this assigns a NULL value to a field without deleting it

Note: to users on compatibility with earlier versions

For compatibility with earlier versions, the LAST keyword is still supported, but its
use is deprecated. LAST cannot be used as part of an index expression: [LAST] is
valid, and is equivalent to [<], but [LAST3] is not valid.

The LAST keyword has been replaced by the following arrow syntax, which allows
both a direction of search and index to be specified:

Field [>] -- The first field, equivalent to [1]
Field [> (a + b) * 2]
Field [<] -- The last field, equivalent to [LAST]
Field [< 1] -- The last field, equivalent to [LAST]
Field [< 2] -- The last but one field
Field [< (a + b) / 3]

Related concepts:

Chapter 14. Reference 5055

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“ESQL field references” on page 2381
An ESQL field reference is a sequence of period-separated values that identify a
specific field (which might be a structure) within a message tree or a database
table.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Accessing known multiple occurrences of an element” on page 2425
When you refer to or create the content of messages, it is very likely that the data
contains repeating fields. If you know how many instances there are of a repeating
field, and you want to access a specific instance of such a field, you can use an
array index as part of a field reference.
“Manipulating message body content” on page 2418
The message body is always the last child of root, and is identified by its parser
name, for example XML or MRM. You can refer to, modify, and create message
body data.

ESQL operators:

A list of the various groups of operators that ESQL supports.

This section provides reference information for the following groups of operators,
and for the rules for precedence:
v Simple comparison operators
v Complex comparison operators
v Logical operators
v Numeric operators
v String operator
v Rules for operator precedence
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL operators” on page 2382
An ESQL operator is a character or symbol that you can use in expressions to
specify relationships between fields or values.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your

5056 WebSphere Message Broker Version 7.0.0.8

message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

ESQL simple comparison operators:

The simple comparison operators >, <, >=, <=, =, and <>.

This topic describes ESQL's simple comparison operators. For information about
ESQL's complex comparison operators, see “ESQL complex comparison operators”
on page 5058.

ESQL provides a full set of comparison operators (predicates). Each compares two
scalar values and returns a Boolean. If either operand is null the result is null.
Otherwise the result is true if the condition is satisfied and false if it is not.

Comparison operators can be applied to all scalar data types. However, if the two
operands are of different types, special rules apply. These are described in “Implicit
casts” on page 5282.

Some comparison operators also support the comparison of rows and lists, as
follows:

Operator>
The first operand is greater than the second.

Operator <
The first operand is less than the second.

Operator>=
The first operand is greater than or equal to the second.

Operator <=
The first operand is less than or equal to the second.

Operator =
The first operand is equal to that of the second.

This operator can also compare rows and lists. See “ROW and LIST
comparisons” on page 5271 for a description of list and row comparison.

Operator <>
The first operand is not equal to the second.

This operator can also compare rows and lists. See “ROW and LIST
comparisons” on page 5271 for a description of list and row comparison.

The meanings of “equal”, “less”, and “greater” in this context are as follows:
v For the numeric types (INTEGER, FLOAT, DECIMAL) the numeric values are

compared. Thus 4.2 is greater than 2.4 and -2.4 is greater than -4.2.
v For the date/time types (DATE, TIME, TIMESTAMP, GMTTIME,

GMTTIMESTAMP but not INTERVAL) a later point in time is regarded as being
greater than an earlier point in time. Thus the date 2004-03-31 is greater than the
date 1947-10-24.

v For the INTERVAL type, a larger interval of time is regarded as being greater
than a smaller interval of time.

Chapter 14. Reference 5057

For the string types (CHARACTER, BLOB, BIT) the comparison is lexicographic.
Starting from the left, the individual elements (each character, byte or bit) are
compared. If no difference is found, the strings are equal. If a difference is found,
the values are greater if the first different element in the first operand is greater
than the corresponding element in the second and less if they are less. In the
special case where two strings are of unequal length but equal as far as they go,
the longer string is regarded as being greater than the shorter. Thus:
’ABD’ is greater than ’ABC’
’ABC’ is greater than ’AB’

Trailing blanks are regarded as insignificant in character comparisons. Thus if you
want to ensure that two strings are truly equal you need to compare both the
strings themselves and their lengths. For example:
’ABC ’ is equal to ’ABC’

Note that comparing strings with a length of one is equivalent to comparing
individual characters, bytes, or bits. Because ESQL has no single character, byte, or
bit data types, it is standard practice to use strings of length one to compare single
characters, bytes, or bits.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“ESQL complex comparison operators”
ESQL supports several operators for complex comparison tasks.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ROW and LIST comparisons” on page 5271
You can compare ROWs and LISTs against other ROWs and LISTs.
“Implicit casts” on page 5282

ESQL complex comparison operators:

ESQL supports several operators for complex comparison tasks.

If you want to use ESQL to perform a simple comparison, see “ESQL simple
comparison operators” on page 5057.

5058 WebSphere Message Broker Version 7.0.0.8

Operator BETWEEN
Use the BETWEEN operator to test whether a value lies between two
boundary values.

BETWEEN operator

►► expression
NOT

BETWEEN
ASYMMETRIC

SYMMETRIC
►

► endpoint_1 AND endpoint_2 ►◄

This operator exists in two forms, SYMMETRIC and ASYMMETRIC (which
is the default if neither is specified). The SYMMETRIC form is equivalent
to:
(source>= boundary1 AND source <= boundary2) OR
(source>= boundary2 AND source <= boundary1)

The ASYMMETRIC form is equivalent to:
source>= boundary1 AND source <= boundary2

The ASYMMETRIC form is simpler but returns only the result that you
expect when the first boundary value has a smaller value than the second
boundary. It is useful only when the boundary condition expressions are
literals.

If the operands are of different types, special rules apply. These rules are described
in “Implicit casts” on page 5282.

Operator EXISTS

EXISTS operator

►► Operand (ListExpression) ►◄

The operator EXISTS returns a Boolean value that indicates whether a
SELECT function returned one or more values (TRUE) or none (FALSE).
EXISTS(SELECT * FROM something WHERE predicate)

Operator IN
Use the operator IN to test whether a value is equal to one of a list of
values.

Chapter 14. Reference 5059

IN operator

►► operand_1
NOT

IN (▼

,

operand_2) ►◄

The result is TRUE if the left operand is not NULL and is equal to one of
the right operands. The result is FALSE if the left operand is not NULL,
and is not equal to one or more of the right operands, none of which have
NULL values. Otherwise the result is UNKNOWN. If the operands are of
different types, special rules apply. These rules are described in “Implicit
casts” on page 5282.

operand_1 must evaluate to a scalar value. operand_2 can be a sequence of
expressions that return scalars of types comparable with operand_1 or it can
be a single expression that returns a LIST. If the LIST is one that is
returned from a SELECT function, there can be only a single column in the
SelectClause and each ROW in that column is compared with operand_1 for
equality.

The following examples show a sequence of expressions.
v Result1 is set to TRUE because 30 is not present in the given list:

SET OutputRoot.XMLNSC.Top.Result1 = 30 NOT IN(34, 42, 45)

v Result2 is set to TRUE if the value of var1 is found in var2, var3 or var4:
SET OutputRoot.XMLNSC.Top.Result2 = var1 IN(var2, var3, var4);

The following examples show a list containing a single column.
v Result3 is set to TRUE if 42 is found in the result set returned from the

SELECT statement:
SET OutputRoot.XMLNSC.Top.Result3 = 42 IN(

SELECT A FROM InputRoot.XMLNSC.Top.a[] AS A);

v Result4 is set to TRUE because 42 is present in the given list:
SET OutputRoot.XMLNSC.Top.Result4 = 42 IN(

LIST{34,36,37,38,39,40,41,42,43,44});

v Result5 is set to TRUE if var1 is found in one of the repeating 'test'
elements or its immediate children, if present:
SET OutputRoot.XMLNSC.Top.Result5 = var1 IN(

InputRoot.XMLNSC.Top.test[]);

Operator IS
Use the operator IS to test whether an expression has returned a special
value.

5060 WebSphere Message Broker Version 7.0.0.8

IS operator

►► Operand IS
NOT

TRUE
FALSE
INF
+INF
-INF
INFINITY
+INFINITY
-INFINITY
NAN
NULL
NUM
NUMBER
UNKNOWN

►◄

The primary purpose of the IS operator is to test whether a value is NULL.
You cannot use the comparison operator (=) to test for a NULL value,
because the result of comparing any value with NULL is NULL.

You can also use the IS operand to test for the Boolean values TRUE and
FALSE, and to test decimal values for special values. These values are
denoted by INF, +INF, -INF, NAN (not a number), and NUM (a valid
number) in upper, lower, or mixed case. The alternative forms +INFINITY,
-INFINITY, and NUMBER are also accepted.

If applied to non-numeric types, the result is FALSE.

Operator LIKE
Use the LIKE operator to search for strings that match a certain pattern.

LIKE operator

►► source
NOT

LIKE pattern
ESCAPE EscapeChar

►◄

The result is TRUE if none of the operands are NULL and the source
operand matches the pattern operand. The result is FALSE if none of the
operands are NULL and the source operand does not match the pattern
operand. Otherwise the result is UNKNOWN.

The pattern is specified by a string in which the percent (%) and
underscore (_) characters have a special meaning:
v The underscore character matches a single character.

For example, the following finds matches for IBM and for IGI, but not
for International Business Machines or IBM Corp:
Body.Trade.Company LIKE ’I__’

v The percent character % matches a string of zero or more characters.
For example, the following phrase finds matches for IBM, IGI,
International Business Machines, and IBM Corp:
Body.Trade.Company LIKE ’I%’

Chapter 14. Reference 5061

To use the percent and underscore characters within the expressions that
are to be matched, precede the characters with an ESCAPE character,
which defaults to the backslash (\) character.

For example, the following predicate finds a match for IBM_Corp.
Body.Trade.Company LIKE ’IBM_Corp’

You can specify a different escape character by using the ESCAPE clause.
For example, you could also specify the previous example in this way:
Body.Trade.Company LIKE ’IBM$_Corp’ ESCAPE ’$’

Operator SINGULAR

SINGULAR operator

►► Operand (ListExpression) ►◄

The operator SINGULAR returns a Boolean value of TRUE if the list has
exactly one element, otherwise it returns FALSE.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“ESQL simple comparison operators” on page 5057
The simple comparison operators >, <, >=, <=, =, and <>.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ROW and LIST comparisons” on page 5271
You can compare ROWs and LISTs against other ROWs and LISTs.
“Implicit casts” on page 5282

ESQL logical operators:

The logical operators AND, OR and NOT.

ESQL provides the following logical operators:

5062 WebSphere Message Broker Version 7.0.0.8

Operator AND
The result is the logical AND of the two operands. Both operands must be
Boolean values.

Operator OR
The result is the logical OR of the two operands. Both operands must be
Boolean values.

Operator NOT
The result is the logical NOT of the operand, which must be a Boolean
value.

NULL and UNKNOWN values are treated as special values by these operators,
according to the following rules:
v NULL and UNKNOWN are treated the same.
v If an operand is NULL, the result is NULL unless the operation result is already

dictated by the other parameter.

The evaluation of the individual clauses in a statement that includes the AND or
OR logical operators is stopped as soon as the overall statement can be resolved.
For example, see the following statements:
v IF A OR B THEN ...

– If A is false, B is evaluated.
– If A is true, B is not evaluated because the statement is already resolved to be

true.
v IF A AND B THEN ...

– If A is true, B is evaluated.
– If A is false, B is not evaluated because the statement is already resolved to be

false.

The result of AND and OR operations is defined by the following table:

Value of P Value of Q Result of P AND Q Result of P OR Q

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE UNKNOWN UNKNOWN TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN TRUE

UNKNOWN FALSE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

The result of NOT operations is defined by the following table.

Operand Result of NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

Related concepts:

Chapter 14. Reference 5063

“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL operators” on page 2382
An ESQL operator is a character or symbol that you can use in expressions to
specify relationships between fields or values.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ESQL simple comparison operators” on page 5057
The simple comparison operators >, <, >=, <=, =, and <>.
“ESQL numeric operators”
The numeric operators +, −, *, /, and {.
“Rules for ESQL operator precedence” on page 5066
How ESQL calculates expressions involving more than one operator.

ESQL numeric operators:

The numeric operators +, −, *, /, and {.

ESQL provides the following numeric operators:

Unary Operator -
The result is the negation of the operand (that is, it has the same
magnitude as the operand but the opposite sign). You can negate numeric
values (INTEGER, DECIMAL and FLOAT) and intervals (INTERVAL).

Operator +
The result is the sum of the two operands. You can add two numeric
values, two intervals, and an interval to a datetime value (DATE, TIME,
TIMESTAMP, GMTTIME, and GMTTIMESTAMP).

Operator -
The result is the difference between the two operands. It is possible to:
v Subtract one numeric value from another.
v Subtract one date-time from another. The result is an interval.
v Subtract one interval from another. The result is an interval.
v Subtract an interval from a datetime value. The result is a date-time.

5064 WebSphere Message Broker Version 7.0.0.8

When subtracting one date-time from another, you must indicate the type
of interval required. You do this by using a qualifier consisting of
parentheses enclosing the expression, followed by an interval qualifier. For
example:
SET OutputRoot.XMLNS.Data.Age =

(DATE ’2005-03-31’ - DATE ’1947-10-24’) YEAR TO MONTH;

Operator *
The result is the product of the two operands. You can multiply numeric
values and multiply an interval by a numeric value.

Operator /
The result is the dividend of the two operands. You can divide numeric
values and divide an interval by a numeric value.

Operator ||
The result is the concatenation of the two operands. You can concatenate
string values (CHARACTER, BIT, and BLOB).

In all cases, if either operand is NULL, the result is NULL. If the operands are of
different types, special rules apply. These are described in “Implicit casts” on page
5282.

For examples of how you can use these operators to manipulate datetime values,
see “Using numeric operators with datetime values” on page 2439.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL operators” on page 2382
An ESQL operator is a character or symbol that you can use in expressions to
specify relationships between fields or values.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Using numeric operators with datetime values” on page 2439
The following examples show the ESQL that you can code to manipulate datetime
values with numeric operators.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ESQL simple comparison operators” on page 5057
The simple comparison operators >, <, >=, <=, =, and <>.

Chapter 14. Reference 5065

“ESQL logical operators” on page 5062
The logical operators AND, OR and NOT.
“Rules for ESQL operator precedence”
How ESQL calculates expressions involving more than one operator.

ESQL string operator:

A single string operator, concatenation, is supported in ESQL.

Operator ||
The result is the concatenation of the two operands. You can concatenate
string values (CHARACTER, BIT, and BLOB).

If either operand is NULL, the result is NULL.
Related concepts:
“ESQL operators” on page 2382
An ESQL operator is a character or symbol that you can use in expressions to
specify relationships between fields or values.
Related reference:
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.
“ESQL simple comparison operators” on page 5057
The simple comparison operators >, <, >=, <=, =, and <>.
“ESQL logical operators” on page 5062
The logical operators AND, OR and NOT.
“ESQL numeric operators” on page 5064
The numeric operators +, −, *, /, and {.
“Rules for ESQL operator precedence”
How ESQL calculates expressions involving more than one operator.

Rules for ESQL operator precedence:

How ESQL calculates expressions involving more than one operator.

When an expression involves more than one operator, the order in which the
expression is evaluated might affect the result. Consider the following example:

Under ESQL's precedence rules, c is multiplied by d and the result is added to b.
This rule states that multiplication takes precedence over addition, so reordering
the expression as follows:

makes no difference. ESQL's precedence rules are set out later in this section, but it
is generally considered good practice to use parentheses to make the meaning
clear. The order of precedence is:
1. Parentheses
2. Unary operators including unary - and NOT
3. Multiplication and division
4. Concatenation
5. Addition and subtraction

Operations at the same level are evaluated from left to right.

SET a = b + c * d;

SET a = c * d + b;

5066 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message mapping overview” on page 2229
Message mappings define the blueprint for creating a message, where the created
message is known as the target message.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.

ESQL statements:

You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

The following table summarizes the ESQL statements and what they do.

Statement type Description

Basic statements:

“BEGIN ... END statement” on page 5070 Gives the statements defined within the
BEGIN and END keywords the status of a
single statement.

“CALL statement” on page 5077 Invokes a user-written routine that has been
defined using a CREATE FUNCTION or
CREATE PROCEDURE statement.

“CASE statement” on page 5081 Uses rules defined in WHEN clauses to
select a block of statements to execute.

“CREATE FUNCTION statement” on page
5091

Like CREATE PROCEDURE, CREATE
FUNCTION defines a user-written routine.
(The few differences between CREATE
FUNCTION and CREATE ROUTINE are
described in the reference material.)

“CREATE MODULE statement” on page
5101

Creates a module (a named container
associated with a node).

“CREATE PROCEDURE statement” on page
5103

Like CREATE FUNCTION, CREATE
PROCEDURE defines a user-written routine.
(The few differences between CREATE
FUNCTION and CREATE ROUTINE are
described in the reference material.)

Chapter 14. Reference 5067

Statement type Description

“DECLARE statement” on page 5117 Declares one or more variables that can be
used to store temporary values.

“IF statement” on page 5134 Processes a set of statements based on the
result of evaluating condition expressions.

“ITERATE statement” on page 5139 Abandons processing the current iteration of
the containing WHILE, REPEAT, LOOP, or
BEGIN statement, and might start the next
iteration.

“LEAVE statement” on page 5140 Abandons processing the current iteration of
the containing WHILE, REPEAT, LOOP or
BEGIN statement, and stops looping.

“LOOP statement” on page 5144 Processes a sequence of statements
repeatedly and unconditionally.

“REPEAT statement” on page 5154 Processes a sequence of statements, then
evaluates a condition expression. If the
expression evaluates to TRUE, executes the
statements again.

“RETURN statement” on page 5155 Stops processing the current function or
procedure and passes control back to the
caller.

“SET statement” on page 5159 Evaluates a source expression, and assigns
the result to the target entity.

“THROW statement” on page 5161 Generates a user exception.

“WHILE statement” on page 5167 Evaluates a condition expression, and if it is
TRUE executes a sequence of statements.

Message tree manipulation statements:

“ATTACH statement” on page 5069 Attaches a portion of a message tree into a
new position in the message hierarchy.

“CREATE statement” on page 5082 Creates a new message field.

“DELETE statement” on page 5129 Detaches and destroys a portion of a
message tree, allowing its memory to be
reused.

“DETACH statement” on page 5130 Detaches a portion of a message tree
without deleting it.

“FOR statement” on page 5133 Iterates through a list (for example, a
message array).

“MOVE statement” on page 5145 Changes the field pointed to by a target
reference variable.

Database update statements:

“DELETE FROM statement” on page 5127 Deletes rows from a table in an external
database based on a search condition.

“INSERT statement” on page 5135 Adds a new row to an external database.

“PASSTHRU statement” on page 5147 Takes a character value and passes it as an
SQL statement to an external database.

“UPDATE statement” on page 5163 Updates the values of specified rows and
columns in a table in an external database.

Node interaction statements:

5068 WebSphere Message Broker Version 7.0.0.8

Statement type Description

“PROPAGATE statement” on page 5150 Propagates a message to the downstream
nodes within the message flow.

Other statements:

“BROKER SCHEMA statement” on page
5073

This statement is optional and is used in an
ESQL file to explicitly identify the schema
that contains the file.

“DECLARE HANDLER statement” on page
5124

Declares an error handler.

“EVAL statement” on page 5131 Takes a character value, interprets it as an
SQL statement, and executes it.

“LOG statement” on page 5142 Writes a record to the event or user trace
log.

“RESIGNAL statement” on page 5155 Re-throws the current exception (if any).
This is used by an error handler, when it
cannot handle an exception, to give an error
handler in higher scope the opportunity of
handling the exception.

ATTACH statement:

The ATTACH statement attaches a portion of a message tree into a new position in
the message hierarchy.

Syntax

►► ATTACH dynamic reference TO field reference AS FIRSTCHILD
LASTCHILD
PREVIOUSSIBLING
NEXTSIBLING

►◄

The following example illustrates how to use the ATTACH statement, together
with the DETACH statement described in “DETACH statement” on page 5130, to
modify a message structure. The dynamic reference supplied to the DETACH
statement must point to a modifiable message tree such as Environment,
LocalEnvironment, OutputRoot, OutputExceptionList, or InputLocalEnvironment.

There are some limitations on the use of ATTACH. In general, elements detached
from the output trees of a Compute node are not attached to the environment or to
input trees.

For example, if you take the following message:
<Data>

<Order>
<Item>cheese

<Type>stilton</Type>
</Item>
<Item>bread</Item>

</Order>
<Order>

Chapter 14. Reference 5069

<Item>garlic</Item>
<Item>wine</Item>

</Order>
</Data>

the following ESQL statements:
SET OutputRoot = InputRoot;
DECLARE ref1 REFERENCE TO OutputRoot.XMLNSC.Data.Order[1].Item[1];
DETACH ref1;
ATTACH ref1 TO OutputRoot.XMLNSC.Data.Order[2] AS LASTCHILD;

result in the following new message structure:
<Data>

<Order>
<Item>bread</Item>

</Order>
<Order>

<Item>garlic</Item>
<Item>wine</Item>
<Item>cheese

<Type>stilton</Type>
</Item>

</Order>
</Data>

For information about dynamic references see “Creating dynamic field references”
on page 2431.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Creating dynamic field references” on page 2431
You can use a variable of type REFERENCE as a dynamic reference to navigate a
message tree. This acts in a similar way to a message cursor or a variable pointer.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“DETACH statement” on page 5130
The DETACH statement detaches a portion of a message tree without deleting it.
This portion can be reattached using the ATTACH statement.

BEGIN ... END statement:

The BEGIN ... END statement gives the statements defined within the BEGIN and
END keywords the status of a single statement.

This allows the contained statements to:
v Be the body of a function or a procedure
v Have their exceptions handled by a handler

5070 WebSphere Message Broker Version 7.0.0.8

v Have their execution discontinued by a LEAVE statement

Syntax

►► BEGIN Statements END
Label : ATOMIC Label

NOT

►◄

The second Label can be present only if the first Label is present. If both labels are
present, they must be identical. Two or more labeled statements at the same level
can have the same label, but this partly negates the advantage of the second label.
The advantage is that the labels unambiguously and accurately match each END
with its BEGIN. However, a labeled statement nested within Statements cannot
have the same label, because this makes the behavior of the ITERATE and LEAVE
statements ambiguous.

Scope of variables

A new local variable scope is opened immediately after the opening BEGIN and,
therefore, any variables declared within this statement go out of scope when the
terminating END is reached. If a local variable has the same name as an existing
variable, any references to that name that occur after the declaration access the
local variable. For example:
DECLARE Variable1 CHAR ’Existing variable’;

-- A reference to Variable1 here returns ’Existing variable’

BEGIN
-- A reference to Variable1 here returns ’Existing variable’

DECLARE Variable1 CHAR ’Local variable’; -- Perfectly legal even though
the name is the same

-- A reference to Variable1 here returns ’Local variable’
END;

ATOMIC

If ATOMIC is specified, only one instance of a message flow (that is, one thread) is
allowed to execute the statements of a specific BEGIN ATOMIC... END statement
(identified by its schema and label), at any one time. If no label is present, the
behavior is as if a zero length label had been specified.

The BEGIN ATOMIC construct is useful when a number of changes need to be
made to a shared variable and it is important to prevent other instances seeing the
intermediate states of the data. Consider the following code example:
CREATE PROCEDURE WtiteSharedVariable1(IN NewValue CHARACTER)
SharedVariableMutex1 : BEGIN ATOMIC

-- Set new value into shared variable
END;

CREATE FUNCTION ReadSharedVariable1() RETURNS CHARACTER
SharedVariableMutex1 : BEGIN ATOMIC

Chapter 14. Reference 5071

DECLARE Value CHARACTER;
-- Get value from shared variable
RETURN Value;

END;

The last example assumes that the procedure WriteSharedVariable1 and the
function ReadSharedVariable1 are in the same schema and are used by nodes
within the same flow. However, it does not matter whether or not the procedure
and function are contained within modules, or whether they are used within the
same or different nodes. The broker ensures that, at any particular time, only one
thread is executing any of the statements within the atomic sections. This ensures
that, for example, two simultaneous writes or a simultaneous read and write are
executed serially. Note that:
v The serialization is limited to the flow. Two flows which use BEGIN ATOMIC...

END statements with the same schema and label can be executed
simultaneously. In this respect, multiple instances within a flow and multiple
copies of a flow are not equivalent.

v The serialization is limited by the schema and label. Atomic BEGIN ... END
statements specified in different schemas or with different labels do not interact
with each other.

Note: You can look at this in a different way, if you prefer. For each combination
of message flow, schema, and label, the broker has a mutex that prevents
simultaneous access to the statements associated with that mutex.

Do not nest BEGIN ATOMIC... END statements, either directly or indirectly, because
this could lead to “deadly embraces”. For this reason, do not use a PROPAGATE
statement from within an atomic block.

It is not necessary to use the BEGIN ATOMIC construct in flows that will never be
deployed with more than one instance (but it might be unwise to leave this to
chance). It is also unnecessary to use the BEGIN ATOMIC construct on reads and
writes to shared variables. The broker always safely writes a new value to, and
safely reads the latest value from, a shared variable. ATOMIC is only required
when the application is sensitive to seeing intermediate results.

Consider the following example:
DECLARE LastOrderDate SHARED DATE;
...
SET LastOrderDate = CURRENT_DATE;
...
SET OutputRoot.XMLNSC.Data.Orders.Order[1].Date = LastOrderDate;

Here we assume that one thread is periodically updating LastOrderDate and
another is periodically reading it. There is no need to use ATOMIC, because the
second SET statement always reads a valid value. If the updating and reading
occur very closely in time, whether the old or new value is read is indeterminate,
but it is always one or the other. The result will never be garbage.

But now consider the following example:
DECLARE Count SHARED INT;
...
SET Count = Count + 1;

Here we assume that several threads are periodically executing the SET statement.
In this case you do need to use ATOMIC, because two threads might read Count in

5072 WebSphere Message Broker Version 7.0.0.8

almost the same instant, and get the same value. Both threads perform the
addition and both store the same value back. The end result is thus N+1 and not
N+2.

The broker does not automatically provide higher-level locking than this (for
example, locking covering the whole SET statement), because such locking is liable
to cause “deadly embraces”.

Hint

You can consider the BEGIN ... END statement to be a looping construct, which
always loops just once. The effect of an ITERATE or LEAVE statement nested
within a BEGIN ... END statement is then as you would expect: control is
transferred to the statement following the END. Using ITERATE or LEAVE within
a BEGIN ... END statement is useful in cases where there is a long series of
computations that needs to be abandoned, either because a definite result has been
achieved or because an error has occurred.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

BROKER SCHEMA statement:

The BROKER SCHEMA statement is optional; use it in an ESQL file to explicitly
identify the schema that contains the file.

Chapter 14. Reference 5073

Syntax

►► esqlContents
BROKER SCHEMA schemaName PATH schemaPathList

►◄

schemaName:

▼

< . <

identifier

schemaPathList:

▼

< , <

SchemaName

esqlContents:

▼

<<

createFunctionStatement
createModuleStatement
createProcedureStatement
DeclareStatement

An ESQL schema is a named container for functions, procedures, modules, and
variables. ESQL schema is similar to the namespace concept of C++, XML, and
.NET, and to the package concept of Java.

In the absence of a BROKER SCHEMA statement, all functions, procedures,
modules, and constants belong to the default schema. The default schema is
similar to the default namespace in C++, the no-target namespace in XML Schema,
and the default package in Java.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“PATH clause” on page 5075
The PATH clause specifies a list of additional schemas to be searched when
matching function and procedure calls to their implementations. The schema in
which the call lies is implicitly included in the PATH clause.
“Syntax diagrams” on page 3677

5074 WebSphere Message Broker Version 7.0.0.8

“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“CREATE MODULE statement” on page 5101
The CREATE MODULE statement creates a module, which is a named container
associated with a node.

PATH clause:

The PATH clause specifies a list of additional schemas to be searched when
matching function and procedure calls to their implementations. The schema in
which the call lies is implicitly included in the PATH clause.

The PATH clause is used to resolve unqualified function and procedure names in
the tools according to the following algorithm.

A single function or procedure must match the unqualified name, or the tools
report an error. You can correct the error by qualifying the function or procedure
name with a schemaId:
1. The current module (if any) is searched for a matching function or procedure.

Module-scope functions or procedures are visible only within their containing
module. If functions or procedures with the same name are found in the
current module and schema, module-scope functions or procedures take
precedence over schema scoped functions or procedures.

2. The <node schema> (but none of its contained modules) and the <SQL-broker
schema> or schemas identified by the PATH clause are searched for a matching
function or procedure.

Note: The schemaId must be a fully qualified schema name.

When you start a function or procedure, the name that you use must be qualified
by the schema name. The behavior depends on the circumstances:

For a module routine:
v If the schema is specified, the named schema routine is started. The scalar

built-in functions, excluding CAST, EXTRACT, and the special registers, are
considered to be defined within an implicitly declared schema called SQL.

v If the schema is not specified, and the calling statement is in a module routine,
and a routine of the given name exists in the local module, then that local
routine is started.

v If the schema is not specified, and the calling statement is in a module routine,
and a routine of the given name does not exist in the local module, then all of
the schemas in the schema path are searched for a routine of the same name.
If a matching function exists in one schema, it is used. A compile-time error
occurs if a matching function exists in more than one schema. If there is no
matching function, then the schema SQL is searched.
This rule and the preceding rule imply that a local module routine takes priority
over a built-in routine of the same name.

For a schema routine:
v If the schema is specified, the named schema routine is started. The scalar

built-in functions, excluding CAST, EXTRACT, and the special registers, are
considered to be defined within an implicitly declared schema called SQL.

Chapter 14. Reference 5075

v If the schema is not specified, and the caller is a schema routine, and a routine
of the given name exists in the local schema, that local routine is started.

v If the schema is not specified, and the calling statement is in a schema routine,
and a routine of the given name does not exist in the local schema, then all of
the schemas in the schema path are searched for a routine of the same name.
If a matching function exists in one schema, it is used. A compile-time error
occurs if a matching function exists in more than one schema. If there is no
matching function, the schema SQL is searched.
This rule and the preceding rule imply that a local schema routine takes priority
over a built-in routine of the same name.

The <node schema> is defined as the schema containing the node's message flow.

The <node schema> is specified in this manner to provide compatibility with
earlier versions of WebSphere Message Broker.

When the <node schema> is the only schema referenced, the broker XML message
does not include the extra features contained in WebSphere Message Broker V6.1.

Brokers in previous versions of WebSphere Message Broker do not support
multiple schemas, for example, subroutine libraries for reuse. To deploy to a broker
in a previous version of the product, put all of the ESQL subroutines into the same
schema as the message flow and node that start the ESQL subroutines.

Eclipse tooling uses WebSphere Message Broker V6.1 ESQL syntax in content assist
and source code validation.

The broker schema of the message flow must contain, at the schema level, any of
the following in its ESQL files:
v A schema level function
v A schema level procedure
v A schema level constant
v A module level constant
v A module level variable

Without the presence of any of the preceding items, the Eclipse tooling generates
broker ESQL without module and funtion Main wrappers.

Function and procedure names must be unique within their schema or module.

Examples

The following example adds a path to a schema called CommonUtils:
BROKER SCHEMA CommonUtils
PATH SpecialUtils;

MODULE

The next example adds a path to the default schema:
PATH CommonUtils, SpecialUtils;

MODULE

Related concepts:

5076 WebSphere Message Broker Version 7.0.0.8

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“BROKER SCHEMA statement” on page 5073
The BROKER SCHEMA statement is optional; use it in an ESQL file to explicitly
identify the schema that contains the file.
“CREATE MODULE statement” on page 5101
The CREATE MODULE statement creates a module, which is a named container
associated with a node.

CALL statement:

The CALL statement calls (invokes) a routine.

Chapter 14. Reference 5077

Syntax

►► CALL RoutineName (ParameterList)
BrokerSchemaName .

►

►
Qualifiers INTO target

►◄

BrokerSchemaName:

▼

.

Identifier

ParameterList:

▼

,

Expression

Qualifiers:

IN DatabaseSchemaReference
EXTERNAL SCHEMA DatabaseSchemaName

DatabaseSchemaReference:

Database . SchemaClause
. DatabaseSourceClause

DatabaseSourceClause:

DatabaseSourceName
{ DatabaseSourceExpr }

SchemaClause:

SchemaName
{ SchemaExpr }

Using the CALL statement

The CALL statement invokes a routine. A routine is a user-defined function or
procedure that has been defined by one of the following:
v A CREATE FUNCTION statement
v A CREATE PROCEDURE statement

5078 WebSphere Message Broker Version 7.0.0.8

As well as standard user-defined functions and procedures, you can also use CALL
to invoke built-in (broker-provided) functions and user-defined SQL functions.
However, the usual way of invoking these types of function is simply to include
their names in expressions.

The called routine must be invoked in a way that matches its definition. For
example, if you have defined a routine with three parameters, the first two of type
integer and the third of type character, the CALL statement must pass three
variables to the routine, each of a data type that matches the definition. This
technique is called exact signature matching, which means that the signature
provided by the CALL statement must match the signature provided by the
definition of the routine.

Exact signature matching also applies to the value returned to a routine. If the
RETURNS clause is specified on the CREATE FUNCTION statement, or the routine
is a built-in function, the INTO clause must be specified on the CALL statement. A
return value from a routine cannot be ignored. Conversely, if the RETURNS clause
is not specified on the CREATE FUNCTION statement, the INTO clause must not
be specified, because there is no return value from the routine.

You can use the CALL statement to invoke a routine that has been implemented in
all the following ways:
v ESQL.
v Java.
v As a stored procedure in a database.
v As a built-in (broker-provided) function (although as stated earlier, names are

typically included in expressions).

This variety of implementation means that some of the clauses in the CALL syntax
diagram are not applicable (or allowed) for all types of routine. It also allows the
CALL statement to invoke any type of routine, irrespective of how the routine has
been defined.

When the optional BrokerSchemaName parameter is not specified, the broker SQL
parser searches for the named procedure using the algorithm described in the
PATH statement (see the “PATH clause” on page 5075 of the BROKER SCHEMA
statement).

When the BrokerSchemaName parameter is specified, the broker SQL parser invokes
the named procedure in the specified schema without first searching the path.
However, if a procedure reference is ambiguous (that is, there are two procedures
with the same name in different broker schemas) and the reference is not qualified
by the optional BrokerSchemaName, the Eclipse toolset generates an error in the
Problems view that you must correct to deploy the ambiguous code.

The broker-provided built-in functions are automatically placed in a predefined
broker schema called SQL. The SQL schema is always searched last for a routine
that has not been matched to a user-defined routine. Therefore, a user-defined
module takes precedence over a built-in routine of the same name.

Each broker schema provides a unique symbol or namespace for a routine, so a
routine name is unique when it is qualified by the name of the schema to which it
belongs.

The INTO clause is used to store the return value from a routine that has been
defined with a RETURNS clause, or from a built-in function. The target can be an

Chapter 14. Reference 5079

ESQL variable of a data type that matches the data type on the RETURNS clause,
or a dot-separated message reference. For example, both of the following ESQL
statements are valid:

CALL myProc1() INTO cursor;
CALL myProc1() INTO OutputRoot.XMLNS.TestValue1;

The CALL statement passes the parameters into the procedure in the order given
to it. Parameters that have been defined as IN or INOUT on the routine's definition
are evaluated before the CALL is made, but parameters defined as OUT are always
passed in as NULL parameters of the correct type. When the procedure has
completed, any parameters declared as OUT or INOUT are updated to reflect any
changes made to them during the procedure's execution. Parameters defined as IN
are never changed during the cause of a procedure's execution.

Routine overloading is not supported, which means that you cannot create two
routines of the same name in the same broker schema. If the broker detects that a
routine has been overloaded, it raises an exception. Similarly, you cannot invoke a
database stored procedure that has been overloaded. A database stored procedure
is overloaded if another procedure of the same name exists in the same database
schema. However, you can invoke an overloaded Java method, provided that you
create a separate ESQL definition for each overloaded method you want to call,
and give each ESQL definition a unique routine name.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Invoking stored procedures” on page 2503
To invoke a procedure that is stored in a database, use the ESQL CALL statement.
The stored procedure must be defined by a CREATE PROCEDURE statement that
has a Language clause of DATABASE and an EXTERNAL NAME clause that
identifies the name of the procedure in the database and, optionally, the database
schema to which it belongs.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.
“BROKER SCHEMA statement” on page 5073
The BROKER SCHEMA statement is optional; use it in an ESQL file to explicitly
identify the schema that contains the file.
“PATH clause” on page 5075
The PATH clause specifies a list of additional schemas to be searched when
matching function and procedure calls to their implementations. The schema in
which the call lies is implicitly included in the PATH clause.

5080 WebSphere Message Broker Version 7.0.0.8

CASE statement:

The CASE statement uses rules defined in WHEN clauses to select a block of
statements to process.

There are two forms of the CASE statement: the simple form and the searched
form.

Syntax

Simple CASE statement

►► CASE MainExpression ▼

<

WHEN Expression THEN Statements ►

►
ELSE statements

END CASE ►◄

Searched CASE statement

►► CASE ▼

<

WHEN Expression THEN Statements
ELSE statements

►

► END CASE ►◄

In the simple form, the main expression is evaluated first. Each WHEN clause
expression is evaluated in turn until the result is equal to the main expression's
result. That WHEN clause's statements are then processed. If no match is found
and the optional ELSE clause is present, the ELSE clause's statements are executed
instead. The test values do not have to be literals. The only requirement is that the
main expression and the WHEN clause expressions evaluate to types that can be
compared.

In the searched form, each WHEN clause expression is evaluated in turn until one
evaluates to TRUE. That WHEN clause's statements are then executed. If none of
the expressions evaluates to TRUE and the optional ELSE clause is present, the
ELSE clause's statements are executed. There does not have to be any similarity
between the expressions in each CASE clause. The only requirement is that they all
evaluate to a Boolean value.

The ESQL language has both a CASE statement and a CASE function (see “CASE
function” on page 5243 for details of the CASE function). The CASE statement

Chapter 14. Reference 5081

chooses one of a set of statements to execute. The CASE function chooses one of a
set of expressions to evaluate and returns as its value the return value of the
chosen expression.

Examples

Simple CASE statement:
CASE size

WHEN minimum + 0 THEN
SET description = ’small’;

WHEN minimum + 1 THEN
SET description = ’medium’;

WHEN minimum + 2 THEN
SET description = ’large’;
CALL handleLargeObject();

ELSE
SET description = ’unknown’;
CALL handleError();

END CASE;

Searched CASE statement:
CASE
WHEN i <> 0 THEN

CALL handleI(i);
WHEN j> 1 THEN
CALL handleIZeroAndPositiveJ(j);

ELSE
CALL handleAllOtherCases(j);

END CASE;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“CASE function” on page 5243
CASE is a complex function that has two forms; the simple-when form and the
searched-when form. In either form CASE returns a result, the value of which
controls the path of subsequent processing.

CREATE statement:

The CREATE statement creates a new message field.

5082 WebSphere Message Broker Version 7.0.0.8

Syntax

►► CREATE Qualifier Target
AsClause (1)

DomainClause
(2)

RepeatClauses
ValuesClauses
FromClause

(3)
ParseClause

►◄

Qualifier:

FIELD
PREVIOUSSIBLING OF
NEXTSIBLING
FIRSTCHILD
LASTCHILD

AsClause:

AS AliasFieldReferenceVariable

DomainClause:

DOMAIN expression

RepeatClauses:

REPEAT
VALUE -expression

ValuesClauses:

NamesClauses VALUE expression

NamesClauses:

(4)

TYPE Expression NAMESPACE Expression NAME Expression
IDENTITY PathElement

FromClause:

FROM SourceFieldReference

ParseClause:

▼

PARSE (BitStreamExpression)
<<

ENCODING expression
CCSID expression
SET expression
TYPE expression
FORMAT expression
Options

Chapter 14. Reference 5083

Options:

OPTIONS
expression

Notes:

1 Do not use the DomainClause and ParseClause with the FIELD qualifier.

2 Use the RepeatClauses only with the PREVIOUSSIBLING and
NEXTSIBLING qualifiers.

3 Each subclause within the ParseClause can occur once only.

4 If present, the TYPE, NAMESPACE, and NAME elements must appear in
the order shown in the railroad diagram.

The new message field is positioned either at a given location (CREATE FIELD) or
relative to a currently existing location (CREATE ... OF...). New fields can be
created only when the target field reference points to a modifiable message; for
example, Environment, InputLocalEnvironment, OutputLocalEnvironment,
OutputRoot, or OutputExceptionList.

If you include a FIELD clause, the field that is specified by Target is navigated to
(creating the fields, if necessary) and any values clause, or from clause, is
processed. Including a FIELD clause does not necessarily create any fields; it
ensures only that the given fields exist.

If you use array indexes in the target field reference, only one instance of a
particular field can be created. Therefore, if you write a SET statement that starts:
SET OutputRoot.XMLNS.Message.Structure[2].Field = ...

at least one instance of Structure must already exist in the message. That is, the
only fields in the tree that are created are ones on a direct path from the root to the
field identified by the field reference.

If you include a PREVIOUSSIBLING, NEXTSIBLING, FIRSTCHILD, or
LASTCHILD clause, the field that is specified by Target is navigated to (creating
the fields if necessary) in exactly the same way as for the FIELD clause. A new
field is then created and attached in the specified position (for example, as
PREVIOUSSIBLING or FIRSTCHILD). A CREATE statement with one of these
clauses always creates a new field, and places it in the specified position.

If you use two CREATE FIRSTCHILD OF target statements that specify the same
target, the second statement creates a new field as the first child of the target, and
displaces the previously created first child to the right in the message tree (so that
it is no longer the first child). Similarly, CREATE LASTCHILD OF target navigates
to the target field and adds a new field as its rightmost child, displacing the
previous last child to the left.

CREATE PREVIOUSSIBLING OF Target creates a field to the immediate left of the
field that is specified by Target (so the depth of the tree is not changed); similarly,
CREATE NEXTSIBLING OF Target creates a field to the immediate right of the

5084 WebSphere Message Broker Version 7.0.0.8

field that is specified by Target. When creating PREVIOUSSIBLING or
NEXTSIBLING, you can use the REPEAT keyword to copy the type and name of
the new field from the current field.

AS clause:

If present, the AS clause moves the named reference variable to point at the
newly-created field. Use this clause if you want to involve the new field in some
further processing.

DOMAIN clause:

If present, the DOMAIN clause associates the new field with a new parser of the
specified type. This clause expects a root field name (for example, XMLNS or
MQRFH2). If the DOMAIN clause is present, but the value supplied is a
zero-length character string, a new parser of the same type as the parser that owns
the field specified by target is created. An exception is thrown if the supplied
domain name is not CHARACTER data type or its value is NULL. Do not specify
the DOMAIN clause with the FIELD clause; it is not certain that a new field is
created.

REPEAT clause:

Use the REPEAT clause to copy the new field's type and name from the target
field. Alternatively, the new field's type, name, and value can be:
v Copied from any existing field (using the FROM clause)
v Specified explicitly (using the VALUES clause)
v Defined by parsing a bit stream (using the PARSE clause)

In the case of the FROM and PARSE clauses, you can also create children of the
new field.

VALUES clause:

For the VALUES clause, the type, name, and value (or any subset of these) can be
specified by any expression that returns a suitable data type (INTEGER for type,
CHARACTER for name, and any scalar type for value). An exception is thrown if
the value supplied for a type or name is NULL.

NAMES clause:

The NAMES clause takes any expression that returns a non-null value of type
character. The meaning depends on the presence of NAME and NAMESPACE
clauses as follows:

NAMESPACE NAME Element named as follows

No No The element is nameless (the name flag is
not automatically set).

No Yes The element is given the name in the default
namespace.

Yes No The element is given the empty name in the
given namespace.

Yes Yes The element is given the given name in the
given namespace.

Chapter 14. Reference 5085

The IDENTITY operand takes a single path element in place of the TYPE and
NAME clauses, where a path element contains (at most) a type, a namespace, a
name, and an index. These elements specify the type, namespace, name, and index
of the element to be created and follow all the rules described in the topic for field
references (see “ESQL field reference overview” on page 5049). For example:
IDENTITY (XMLNS.attribute)Space1:Name1[42]

See the following Examples section for information about how to use the
IDENTITY operand.

FROM clause:

For the FROM clause, the new field's type, name, and value are taken from the
field pointed to by SourceFieldReference. Any existing child fields of the target are
detached (the field might already exist in the case of a FIELD clause), and the new
field is given copies of the source field's children.

PARSE clause:

If a PARSE clause is present, a subtree is built under the newly-created field from
the supplied bit stream. The algorithm for building the subtree varies from parser
to parser and according to the options specified. All parsers support the mode
RootBitStream, in which the tree creation algorithm is the same as that used by an
input node.

Some parsers also support a second mode, FolderBitStream, which generates a sub
tree from a bit stream created by the ASBITSTREAM function (see “ASBITSTREAM
function” on page 5224) that is using that mode.

When you use the PARSE clause, specify a scalar value containing the bit stream
that is to be parsed for BitStreamExpression. If you use a message tree field
reference you must ensure it contains a scalar value that contains the bit stream.
An existing message body folder such as InputRoot.XMLNSC does not contain a bit
stream and therefore cannot be used this to serialize the XMLNS folder. If you pass a
value other than a scalar containing the bit stream to the PARSE clause for
BitStreamExpression, the message flow produces a BIP2906 error message. Instead,
you must first call the ASBITSTREAM function to serialize the existing message
tree folder. The result of the ASBITSTREAM function can then be passed as the
BitStreamExpression to the PARSE clause.

The following example shows how to serialize the XMLNSC folder, then use the
result of the ASBITSTREAM in the PARSE clause.
DECLARE inCCSID INT InputProperties.CodedCharSetId;
DECLARE inEncoding INT InputProperties.Encoding;
DECLARE inBitStream BLOB ASBITSTREAM(InputRoot.XMLNSC, inEncoding, inCCSID);
CREATE LASTCHILD OF OutputRoot DOMAIN(’MRM’)

PARSE(inBitStream, inEncoding, inCCSID, ’DP3UK14002001’,
’TestCase’, ’XML1’, options);

When the PARSE statement is processed, any PARSE clause expressions are
evaluated. An exception is thrown if any of the following expressions do not result
in a non-null value of the appropriate type:

Clause Type Default value

OPTIONS Integer RootBitStream & ValidateNone

ENCODING Integer 0

5086 WebSphere Message Broker Version 7.0.0.8

Clause Type Default value

CCSID Integer 0

SET Character Zero length string

TYPE Character Zero length string

FORMAT Character Zero length string

For details of the syntax of the TYPE clause, see “Specifying namespaces in the
Message Type property” on page 1208.

Although the OPTIONS clause accepts any expression that returns a value of type
integer, it is only meaningful to generate option values from the list of supplied
constants, using the BITOR function if more than one option is required.

Once generated, the value becomes an integer and you can save it in a variable or
pass it as a parameter to a function, as well as using it directly with a CREATE
statement. The list of globally defined constants is:

Validate master options...
ValidateContentAndValue
ValidateValue -- Can be used with ValidateContent
ValidateContent -- Can be used with ValidateValue
ValidateNone

Validate failure action options...
ValidateException
ValidateExceptionList
ValidateLocalError
ValidateUserTrace

Validate timing options...
ValidateComplete
ValidateImmediate
ValidateDeferred

Notes:

1. For full details of the validation options, refer to “Validation properties” on
page 4169.

2. The Validate timing options correspond to Parse Timing options and, in particular,
ValidateDeferred corresponds to Parse Timing On Demand.

C and Java equivalent APIs

Note that equivalent options are not available on:
v The Java plugin node API MBElement methods

createElementAsLastChildFromBitstream() and toBitstream()
v The C plugin node API methods cniCreateElementAsLastChildFromBitstream()

and cniElementAsBitstream.

You can specify only one option from each group, with the exception of
ValidateValue and ValidateContent, which you can use together to obtain the
content and value validation. If you do not specify an option within a group, the
option in bold is used.

The ENCODING clause accepts any expression that returns a value of type integer.
However, it is only meaningful to generate option values from the list of supplied
constants:

Chapter 14. Reference 5087

MQENC_INTEGER_NORMAL
MQENC_INTEGER_REVERSED
MQENC_DECIMAL_NORMAL
MQENC_DECIMAL_REVERSED
MQENC_FLOAT_IEEE_NORMAL
MQENC_FLOAT_IEEE_REVERSED
MQENC_FLOAT_S390

The values used for the CCSID clause follow the normal numbering system. For
example, 1200 = UCS-2, 1208 = UTF-8.

For absent clauses, the given default values are used. Use the CCSID and encoding
default values because these take their values from the queue manager's encoding
and CCSID settings.

Similarly, using the default values for each of the message set, type, and format
options is useful, because many parsers do not require message set, type, or format
information, and so any valid value is sufficient.

When any expressions have been evaluated, a bit stream is parsed using the results
of the expressions.

Note: Because this function has a large number of clauses, an alternative syntax is
supported, in which the parameters are supplied as a comma-separated list rather
than by named clauses. In this case the expressions must be in the order:
ENCODING -> CCSID -> SET -> TYPE -> FORMAT -> OPTIONS

The list can be truncated at any point and an entirely empty expression can be
used in any clauses where you do not supply a value.

Examples of how to use the CREATE statement

1. The following example creates the specified field:
CREATE FIELD OutputRoot.XMLNS.Data;

2. The following example creates a field with no name, type, or value as the first
child of ref1:
CREATE FIRSTCHILD OF ref1;

3. The following example creates a field using the specified type, name, and
value:
CREATE NEXTSIBLING OF ref1 TYPE NameValue NAME ’Price’ VALUE 92.3;

4. The following example creates a field with a type and name, but no value; the
field is added before the sibling indicated by the dynamic reference (ref1):
CREATE PREVIOUSSIBLING OF ref1 TYPE Name NAME ’Quantity’;

5. The following example creates a field named Component, and moves the
reference variable targetCursor to point at it:
CREATE FIRSTCHILD OF targetCursor AS targetCursor NAME ’Component’;

6. The following example creates a new field as the right sibling of the field
pointed to by the reference variable targetCursor having the same type and
name as that field. The statement then moves targetCursor to point at the new
field:
CREATE NEXTSIBLING OF targetCursor AS targetCursor REPEAT;

7. The following example shows how to use the PARSE clause:

5088 WebSphere Message Broker Version 7.0.0.8

DECLARE bodyBlob BLOB ASBITSTREAM(InputRoot.XMLNS, InputProperties.Encoding,
InputProperties.CodedCharSetId);

DECLARE creationPtr REFERENCE TO OutputRoot;
CREATE LASTCHILD OF creationPtr DOMAIN(’XMLNS’) PARSE(bodyBlob,

InputProperties.Encoding,
InputProperties.CodedCharSetId);

This example can be extended to show the serializing and parsing of a field or
folder:
DECLARE bodyBlob BLOB ASBITSTREAM(InputRoot.XMLNS.TestCase.myFolder,

InputProperties.Encoding,
InputProperties.CodedCharSetId,",",",FolderBitStream);
DECLARE creationPtr REFERENCE TO OutputRoot;
CREATE LASTCHILD OF creationPtr DOMAIN(’XMLNS’) PARSE(bodyBlob,

InputProperties.Encoding,
InputProperties.CodedCharSetId,",",",FolderBitStream);

8. The following example shows how to use the IDENTITY operand:
CREATE FIELD OutputRoot.XMLNS.TestCase.Root IDENTITY (XML.ParserRoot)Root;
CREATE FIELD OutputRoot.XMLNS.TestCase.Root.Attribute

IDENTITY (XML.Attribute)NSpace1:Attribute VALUE ’Attrib Value’;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Root

IDENTITY (XML.Element)NSpace1:Element1[1] VALUE ’Element 1 Value’;
CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Root

IDENTITY (XML.Element)NSpace1:Element1[2] VALUE ’Element 2 Value’;

This produces the following output message:
<TestCase>
<Root xmlns:NS1="NSpace1" NS1:Attribute="Attrib Value">
<NS1:Element1>Element 1 Value</NS1:Element1>
<NS1:Element1>Element 2 Value</NS1:Element1>
</Root>

</TestCase>

9. The following example shows how you can use the DOMAIN clause to avoid
losing information unique to the XMLNS parser when an unlike parser copy
occurs:

DECLARE bodyBlob BLOB ASBITSTREAM(InputRoot.XMLNS, InputProperties.Encoding,
InputProperties.CodedCharSetId);
CREATE FIELD Environment.Variables.myXMLTree;
DECLARE creationPtr REFERENCE TO Environment.Variables.myXMLTree;
CREATE FIRSTCHILD OF creationPtr DOMAIN(’XMLNS’) PARSE(bodyBlob,

InputProperties.Encoding,
InputProperties.CodedCharSetId);

An example of a CREATE statement

This example provides sample ESQL and an input message, which together
produce the output message at the end of the example.

CREATE COMPUTE MODULE CreateStatement_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

CALL CopyMessageHeaders();

CREATE FIELD OutputRoot.XMLNS.TestCase.description TYPE NameValue VALUE ’This is my TestCase’ ;
DECLARE cursor REFERENCE TO OutputRoot.XMLNS.TestCase;
CREATE FIRSTCHILD OF cursor Domain(’XMLNS’)

NAME ’Identifier’ VALUE InputRoot.XMLNS.TestCase.Identifier;
CREATE LASTCHILD OF cursor Domain(’XMLNS’) NAME ’Sport’ VALUE InputRoot.XMLNS.TestCase.Sport;
CREATE LASTCHILD OF cursor Domain(’XMLNS’) NAME ’Date’ VALUE InputRoot.XMLNS.TestCase.Date;
CREATE LASTCHILD OF cursor Domain(’XMLNS’) NAME ’Type’ VALUE InputRoot.XMLNS.TestCase.Type;
CREATE FIELD cursor.Division[1].Number TYPE NameValue VALUE ’Premiership’;
CREATE FIELD cursor.Division[1].Result[1].Number TYPE NameValue VALUE ’1’ ;
CREATE FIELD cursor.Division[1].Result[1].Home TYPE Name;
CREATE LASTCHILD OF cursor.Division[1].Result[1].Home NAME ’Team’ VALUE ’Liverpool’ ;
CREATE LASTCHILD OF cursor.Division[1].Result[1].Home NAME ’Score’ VALUE ’4’;

Chapter 14. Reference 5089

CREATE FIELD cursor.Division[1].Result[1].Away TYPE Name;
CREATE LASTCHILD OF cursor.Division[1].Result[1].Away NAME ’Team’ VALUE ’Everton’;
CREATE LASTCHILD OF cursor.Division[1].Result[1].Away NAME ’Score’ VALUE ’0’;
CREATE FIELD cursor.Division[1].Result[2].Number TYPE NameValue VALUE ’2’;
CREATE FIELD cursor.Division[1].Result[2].Home TYPE Name;
CREATE LASTCHILD OF cursor.Division[1].Result[2].Home NAME ’Team’ VALUE ’Manchester United’;
CREATE LASTCHILD OF cursor.Division[1].Result[2].Home NAME ’Score’ VALUE ’2’;
CREATE FIELD cursor.Division[1].Result[2].Away TYPE Name;
CREATE LASTCHILD OF cursor.Division[1].Result[2].Away NAME ’Team’ VALUE ’Arsenal’;
CREATE LASTCHILD OF cursor.Division[1].Result[2].Away NAME ’Score’ VALUE ’3’;
CREATE FIELD cursor.Division[2].Number TYPE NameValue VALUE ’2’;
CREATE FIELD cursor.Division[2].Result[1].Number TYPE NameValue VALUE ’1’;
CREATE FIELD cursor.Division[2].Result[1].Home TYPE Name;
CREATE LASTCHILD OF cursor.Division[2].Result[1].Home NAME ’Team’ VALUE ’Port Vale’;
CREATE LASTCHILD OF cursor.Division[2].Result[1].Home NAME ’Score’ VALUE ’9’ ;
CREATE FIELD cursor.Division[2].Result[1].Away TYPE Name;
CREATE LASTCHILD OF cursor.Division[2].Result[1].Away NAME ’Team’ VALUE ’Brentford’;
CREATE LASTCHILD OF cursor.Division[2].Result[1].Away NAME ’Score’ VALUE ’5’;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);
WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;
END WHILE;

END;

END MODULE;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“XMLNSC: Working with XML messages and bit streams” on page 2541
Use the ASBITSTREAM function and the CREATE statement to manage XML
message content.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“ASBITSTREAM function” on page 5224
The ASBITSTREAM field function generates a bit stream for the subtree of a given
field according to the rules of the parser that owns the field.

5090 WebSphere Message Broker Version 7.0.0.8

CREATE FUNCTION statement:

The CREATE FUNCTION statement defines a callable function or procedure.

You can also use the CREATE PROCEDURE statement to define a callable function
or procedure, also known as a routine.

Chapter 14. Reference 5091

Syntax

►► CREATE RoutineType RoutineName (ParameterList) ►

►
ReturnType Language ResultSet

RoutineBody ►◄

RoutineType:

FUNCTION
PROCEDURE

ParameterList:

▼

,

Parameter

Parameter:

(1)
IN
OUT
INOUT

ParameterName DataType
CONSTANT

(2)
NAMESPACE
NAME

ReturnType:

RETURNS DataType

Language:

LANGUAGE ESQL
(3)

DATABASE
JAVA

ResultSet:

DYNAMIC RESULT SETS integer

RoutineBody:

Statement
EXTERNAL NAME ExternalRoutineName

Notes:

5092 WebSphere Message Broker Version 7.0.0.8

1 If the routine type is FUNCTION, the direction indicator (IN, OUT, or
INOUT) is optional for each parameter. However, for documentation
purposes, it is good programming practice to specify a direction indicator
for all new routines; if you do not specify the direction, a default value of
IN is used.

2 When the NAMESPACE or NAME clause is used, its value is implicitly
CONSTANT and of type CHARACTER. For information about the use of
CONSTANT variables, see the “DECLARE statement” on page 5117.

3 If the routine type is FUNCTION, you cannot specify a LANGUAGE of
DATABASE.

Overview

The CREATE FUNCTION and CREATE PROCEDURE statements define a callable
function or procedure, also known as a routine.

In previous versions of this product, CREATE FUNCTION and CREATE
PROCEDURE had different uses and different capabilities. Subsequent
enhancements have resulted in the differences listed previously in notes 1 and 3.

Routines are useful for creating reusable blocks of code that can be run
independently many times. You can implement them as a series of ESQL
statements, a Java method, or a database stored procedure. This flexibility means
that some of the clauses in the syntax diagram are not applicable (or allowed) for
all types of routine.

Each routine has a name, which must be unique within the schema to which it
belongs. Routine names therefore cannot be overloaded; if the broker detects that a
routine name has been overloaded, it raises an exception.

The LANGUAGE clause specifies the language the routines body is written in. The
options are:

DATABASE
The procedure is called as a database stored procedure.

ESQL
The procedure is called as an ESQL routine.

JAVA
The procedure is called as a static method in a Java class.

Unspecified
If you do not specify the LANGUAGE clause, the default language is ESQL
unless you specify the EXTERNAL NAME clause (in which case, the default
language is DATABASE).

Restrictions on the use of the LANGUAGE clause exist. You cannot use:
v The ESQL option with an EXTERNAL NAME clause
v The DATABASE or JAVA options without an EXTERNAL NAME clause
v The DATABASE option with a routine type of FUNCTION

Specify the name of the routine by using the RoutineName clause, and its
parameters by using the ParameterList clause. If the LANGUAGE clause specifies
ESQL, implement the routine by using a single ESQL statement. This statement is

Chapter 14. Reference 5093

most useful if it is a compound statement (BEGIN ... END), because it can then
contain as many ESQL statements as necessary to fulfill its function.

Alternatively, instead of providing an ESQL body for the routine, you can specify a
LANGUAGE clause other than ESQL. You can then use the EXTERNAL NAME
clause to provide a reference to the actual body of the routine, wherever it is
located externally to the broker. For more information about using the EXTERNAL
NAME clause, see “Invoking stored procedures” on page 2503 and Calling a Java
routine.

Routines of any LANGUAGE type can have IN, OUT, and INOUT parameters. The
caller can pass several values into the routine, and receive back several updated
values. These returned parameters are in addition to any RETURNS clause that
you have defined for the routine. The RETURNS clause defines the value that the
routine returns to the caller.

Routines that are implemented in different languages have their own restrictions
on which data types can be passed in or returned; these restrictions are
documented later in this section. The data type of the returned value must match
the data type of the value that is defined to be returned from the routine. Also, if a
routine is defined to have a return value, the caller of the routine cannot ignore it.
For more information, see “CALL statement” on page 5077.

Routines can be defined in either a module or a schema. Routines that are defined
in a module are local in scope to the current node, which means that only code
belonging to that same module (or node) can invoke them. Routines that are
defined in a schema, however, can be invoked by using either of the following
options:
v Code in the same schema
v Code in any other schema, if either of the following conditions applies:

– The other schemas PATH clause contains the path to the called routine
– The called routine is invoked by using its fully qualified name (which is its

name, prefixed by its schema name, separated by a period)

Thus, if you need to invoke the same routine in more than one node, define it in a
schema.

For any language or routine type, the method of invocation of the routine must
match the manner of declaration of the routine. If the routine has a RETURNS
clause, use either the FUNCTION invocation syntax or a CALL statement with an
INTO clause. Conversely, if a routine has no RETURNS clause, you must use a
CALL statement without an INTO clause.

Parameter directions

Parameters that are passed to routines always have a direction associated with
them, which is one of the following types:

IN The value of the parameter cannot be changed by the routine. A NULL value
for the parameter is allowed, and can be passed to the routine.

OUT
When it is received by the called routine, the parameter that is passed into the
routine always has a NULL value of the correct data type. This value is set
irrespective of its value before the routine is called. The routine is allowed to
change the value of the parameter.

5094 WebSphere Message Broker Version 7.0.0.8

INOUT
INOUT is both an IN and an OUT parameter. It passes a value into the
routine, and the value that is passed in can be changed by the routine. A
NULL value for the parameter is allowed, and can be passed both into and out
of the routine.

If the routine type is FUNCTION, the direction indicator (IN, OUT, INOUT) is
optional for each parameter. However, it is good programming practice to specify a
direction indicator for all new routines of any type for documentation purposes.

ESQL variables that are declared to be CONSTANT (or references to variables
declared to be CONSTANT) are not allowed to have the direction OUT or INOUT.

ESQL routines

ESQL routines are written in ESQL, and have a LANGUAGE clause of ESQL. The
body of an ESQL routine is typically a compound statement of the form BEGIN ...
END, that contains multiple statements for processing the parameters that are
passed to the routine.

ESQL example 1

The following example shows the same procedure as in “Database routine example
1” on page 5112, but is implemented as an ESQL routine and not as a stored
procedure. The CALL syntax and results of this routine are the same as found in:
CREATE PROCEDURE swapParms (

IN parm1 CHARACTER,
OUT parm2 CHARACTER,
INOUT parm3 CHARACTER)

BEGIN
SET parm2 = parm3;
SET parm3 = parm1;

END;

ESQL example 2

This example procedure shows the recursive use of an ESQL routine. It parses a
tree, visiting all places at and below the specified starting point, and reports what
it has found:

SET OutputRoot.MQMD = InputRoot.MQMD;

DECLARE answer CHARACTER;
SET answer = ’’;

CALL navigate(InputRoot.XMLNS, answer);
SET OutputRoot.XMLNS.Data.FieldNames = answer;

CREATE PROCEDURE navigate (IN root REFERENCE, INOUT answer CHARACTER)
BEGIN

SET answer = answer || ’Reached Field... Type:’
|| CAST(FIELDTYPE(root) AS CHAR)||
’: Name:’ || FIELDNAME(root) || ’: Value :’ || root || ’: ’;

DECLARE cursor REFERENCE TO root;
MOVE cursor FIRSTCHILD;
IF LASTMOVE(cursor) THEN

SET answer = answer || ’Field has children... drilling down ’;
ELSE

SET answer = answer || ’Listing siblings... ’;

Chapter 14. Reference 5095

END IF;

WHILE LASTMOVE(cursor) DO
CALL navigate(cursor, answer);
MOVE cursor NEXTSIBLING;

END WHILE;

SET answer = answer || ’Finished siblings... Popping up ’;
END;

When given the following input message:
<Person>

<Name>John Smith</Name>
<Salary period=’monthly’ taxable=’yes’>-1200</Salary>

</Person>

the procedure produces the following output, which has been manually formatted:
Reached Field... Type:16777232: Name:XML: Value :: Field has children...
drilling down
Reached Field... Type:16777216: Name:Person: Value :: Field has children...
drilling down
Reached Field... Type:16777216: Name:Name:
Value :John Smith: Field has children... drilling down
Reached Field... Type:33554432: Name::
Value :John Smith: Listing siblings... Finished siblings... Popping up
Finished siblings... Popping up
Reached Field... Type:16777216: Name:Salary:
Value :-1200: Field has children... drilling down
Reached Field... Type:50331648: Name:period:
Value :monthly: Listing siblings... Finished siblings... Popping up
Reached Field... Type:50331648: Name:taxable:
Value :yes: Listing siblings... Finished siblings... Popping up
Reached Field... Type:33554432: Name::
Value :-1200: Listing siblings... Finished siblings... Popping up
Finished siblings... Popping up
Finished siblings... Popping up
Finished siblings... Popping up

Java routines

A Java routine is implemented as a Java method, and has a LANGUAGE clause of
JAVA. For Java routines, the ExternalRoutineName must contain the class name and
method name of the Java method to be called. Specify the ExternalRoutineName like
the following example:
>>--"-- className---.---methodName--"--------------><

where className identifies the class that contains the method and methodName
identifies the method to invoke. If the class is part of a package, the class identifier
part must include the complete package prefix; for
example,“com.ibm.broker.test.MyClass.myMethod”

To find the Java class, the broker uses the search method that is described in
“Deploying Java classes” on page 5099.

Any Java method that you want to invoke must have the following basic signature:
public static <return-type> <method-name> (< 0 - N parameters>)

Where <return-type> must be in the list of Java IN data types in the table in
“ESQL to Java data type mapping” on page 5098 (excluding the REFERENCE type,
which is not permitted as a return value), or the Java void data type. The

5096 WebSphere Message Broker Version 7.0.0.8

parameter data types must also be in the “ESQL to Java data type mapping” on
page 5098 table. In addition, the Java method is not allowed to have exception
throws clause in its signature.

The Java methods signature must match the ESQL routines declaration of the
method. You must also observe the following rules:
v Ensure that the Java method name, including the class name and any package

qualifiers, matches the procedures EXTERNAL NAME.
v If the Java return type is void, do not put a RETURNS clause on the ESQL

routines definition. Conversely, if the Java return type is not void, you must put
a RETURNS clause on the ESQL routines definition.

v Ensure that every parameters type and direction matches the ESQL declaration,
according to the rules listed in the table in “ESQL to Java data type mapping”
on page 5098.

v Ensure that the methods return type matches the data type of the RETURNS
clause.

v Enclose EXTERNAL NAME in quotation marks because it must contain at least
"class.method".

v If you want to invoke an overloaded Java method, you must create a separate
ESQL definition for each overloaded method and give each ESQL definition a
unique routine name.

You can use the Java user-defined node API in your Java method, if you observe
the restrictions documented in “Restrictions on Java routines” on page 5099. For
more information about using the Java API, see “Compiling a Java user-defined
node” on page 3074.

Java routine example 1

This routine contains three parameters of varying directions, and returns an
integer, which maps to a Java return type of java.lang.Long.
CREATE FUNCTION myProc1(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)
RETURNS INTEGER
LANGUAGE JAVA
EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod1";

You can use the following ESQL to invoke myProc1:
CALL myProc1(intVar1, intVar2, intVar3) INTO intReturnVar3;
-- or
SET intReturnVar3 = myProc1(intVar1, intVar2, intVar3);

Java routine example 2

This routine contains three parameters of varying directions and has a Java return
type of void.
CREATE PROCEDURE myProc2(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)
LANGUAGE JAVA
EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod2";

You must use the following ESQL to invoke myProc2:
CALL myProc2(intVar1, intVar2, intVar3);

The following Java class provides a method for each of the preceding Java
examples:

Chapter 14. Reference 5097

package com.ibm.broker.test;

class MyClass {
public static Long myMethod1(Long P1, Long[] P2 Long[] P3) { ... }
public static void myMethod2(Long P2, Long[] P2 Long[] P3) { ... }

/* When either of these methods is called:
P1 might or might not be NULL (depending on the value of intVar1).
P2[0] is always NULL (whatever the value of intVar2).
P3[0] might or might not be NULL (depending on the value of intVar3).
This is the same as with LANGUAGE ESQL routines.
When these methods return:

intVar1 is unchanged
intVar2 might still be NULL or might have been changed
intVar3 might contain the same value or might have been changed.

This is the same as with LANGUAGE ESQL routines.

When myMethod1 returns: intReturnVar3 is either NULL (if the
method returns NULL) or it contains the value returned by the
method.

*/
}

ESQL to Java data type mapping

The following table summarizes the mappings from ESQL to Java.

Notes:

v Only the Java scalar wrappers are passed to Java.
v The ESQL scalar types are mapped to Java data types as object wrappers, or

object wrapper arrays, depending upon the direction of the procedure parameter.
Each wrapper array contains exactly one element.

v Scalar object wrappers are used to allow NULL values to be passed to and from
Java methods.

ESQL data types 1 Java IN data types Java INOUT and OUT data types

INTEGER, INT java.lang.Long java.lang.Long []

FLOAT java.lang.Double java.lang.Double[]

DECIMAL java.math.BigDecimal java.math.BigDecimal[]

CHARACTER, CHAR java.lang.String java.lang.String[]

BLOB byte[] byte[][]

BIT java.util.BitSet java.util.BitSet[]

DATE com.ibm.broker.plugin.MbDate com.ibm.broker.plugin.MbDate[]

TIME 2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

GMTTIME 2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

TIMESTAMP 2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

GMTTIMESTAMP 2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

INTERVAL Not supported Not supported

BOOLEAN java.lang.Boolean java.lang.Boolean[]

REFERENCE (to a message tree) 3 4

5 6
com.ibm.broker.plugin.MbElement com.ibm.broker.plugin.MbElement[]

(Supported for INOUT. Not
supported for OUT)

ROW Not supported Not supported

5098 WebSphere Message Broker Version 7.0.0.8

ESQL data types 1 Java IN data types Java INOUT and OUT data types

LIST Not supported Not supported

1. Variables that are declared to be CONSTANT (or references to variables that are
declared to be CONSTANT) are not allowed to have the direction INOUT or
OUT.

2. The time zone set in the Java variable is not important; you obtain the required
time zone in the output ESQL.

3. The reference parameter cannot be NULL when passed into a Java method.
4. The reference cannot have the direction OUT when passed into a Java method.
5. If an MbElement is passed back from Java to ESQL as an INOUT parameter, it

must point to a location in the same message tree as that pointed to by the
MbElement that was passed into the called Java method.
For example, if an ESQL reference to OutputRoot.XML.Test is passed into a Java
method as an INOUT MbElement, but a different MbElement is passed back to
ESQL when the call returns, the different element must also point to
somewhere in the OutputRoot tree.

6. An MbElement cannot be returned from a Java method with the RETURNS
clause, because no ESQL routine can return a reference. However, an MbElement
can be returned as an INOUT direction parameter, subject to the conditions
described in point 5.

A REFERENCE to a scalar variable can be used in the CALL of a Java method,
provided that the data type of the variable to which the reference refers matches
the corresponding data type in the Java program signature.

Restrictions on Java routines

The following restrictions apply to Java routines that are called from ESQL:
v The Java method must be threadsafe (reentrant).
v Database connections must be JDBC type 2 or type 4. Furthermore, database

operations are not part of a broker transaction and therefore cannot be controlled
by an external resource coordinator (as is the case in an XA environment).

v The Java user-defined node API must be used only by the same thread that
invoked the Java method.
You can create threads inside your method. However, created threads must not
use the Java APIs, and you must return control back to the broker.
All restrictions that apply to the usage of the Java API also apply to Java
methods that are called from ESQL.

v Java methods that are called from ESQL must not use the MbNode class.
Therefore, they cannot create objects of type MbNode, or call any of the methods
on an existing MbNode object.

v WebSphere MQ or JMS work done inside a Java method that is called from
ESQL must be done in accordance with the guidelines for performing
WebSphere MQ and JMS work in a user-defined node. See “Planning
user-defined input nodes” on page 2995.

Deploying Java classes

You can deploy your Java classes to a broker within a Java Archive (JAR) file, by
using one of the following two methods:
1. Add the JAR file to the broker archive (BAR) file

Chapter 14. Reference 5099

The most efficient and flexible method of deploying to the broker is to add
your JAR file to the BAR file. You can do this manually or automatically using
the WebSphere Message Broker Toolkit.
If the WebSphere Message Broker Toolkit finds the correct Java class inside a
referenced Java project open in the workspace, it automatically compiles the
Java class into a JAR file and adds it to the BAR file. This procedure is the
same procedure that you follow to deploy a JavaCompute node inside a JAR,
as described in “User-defined node class loading” on page 3120.
When you deploy a JAR file from the WebSphere Message Broker Toolkit, the
flow that has been redeployed reloads the JAR file contained in the BAR file.
The files are also reloaded if the message flow that references a Java class is
stopped and restarted. Ensure that you stop and restart (or redeploy) all flows
that reference the JAR file that you want to update. This action avoids the
problem of some flows running with the old version of the JAR file and other
flows running with the new version.
The WebSphere Message Broker Toolkit deploys only JAR files; it does not
deploy stand-alone Java class files.

2. Store the JAR file in either of the following locations:

a. The workpath/shared-classes/ folder on the machine running the broker
b. The CLASSPATH environment variable on the computer running the broker
You must complete this action manually; you cannot use the WebSphere
Message Broker Toolkit.
In this method, redeploying the message flow does not reload the referenced
Java classes; neither does stopping and restarting the message flow. The only
way to reload the classes in this case is to stop and restart the broker itself.

To enable the broker to find a Java class, ensure that it is in one of the preceding
locations. If the broker cannot find the specified class, it generates an exception.

Although you have the choices shown previously when you deploy the JAR file,
by using the WebSphere Message Broker Toolkit to deploy the BAR file provides
the greatest flexibility when redeploying the JAR file.

Database routines

CREATE FUNCTION does not support database routines. Use CREATE
PROCEDURE to define a database routine.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Invoking stored procedures” on page 2503
To invoke a procedure that is stored in a database, use the ESQL CALL statement.
The stored procedure must be defined by a CREATE PROCEDURE statement that
has a Language clause of DATABASE and an EXTERNAL NAME clause that
identifies the name of the procedure in the database and, optionally, the database
schema to which it belongs.

5100 WebSphere Message Broker Version 7.0.0.8

“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“CALL statement” on page 5077
The CALL statement calls (invokes) a routine.
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.
“ESQL-to-Java data-type mapping table” on page 5043
Table summarizing the mappings from ESQL to Java.
Related information:
Java user-defined extensions API

CREATE MODULE statement:

The CREATE MODULE statement creates a module, which is a named container
associated with a node.

Syntax

►► CREATE COMPUTE
DATABASE
FILTER
DATABASEEVENT

MODULE
(1)

ModuleName ►

►

▼

<<---;---<<

ModuleStatement

END MODULE ►◄

Notes:

1 ModuleName must be a valid identifier

A module in the Eclipse tools is referred to from a message processing node by
name. The module must be in the <node schema>.

Module names occupy the same symbol space as functions and procedures defined
in the schema. That is, modules, functions, and procedures contained by a schema
must all have unique names.

Note: You are warned if there is no module associated with an ESQL node. You
cannot deploy a flow containing a node in which a module is missing.

Chapter 14. Reference 5101

The modules for the Compute node, Database node, and Filter node must all
contain exactly one function called Main. This function should return a Boolean. It
is the entry point used by a message flow node when processing a message.

The modules for the DatabaseInput node must contain the following entry points:

ReadEvents
This procedure gets details of events to be processed from your event
store.

BuildMessage
This procedure builds the message that will be propagated to the flow.

EndEvent
This procedure updates the event table to ensure that this event is not
processed again.

Correlation name
Compute
module

Filter
module

Database
module

DatabaseEvent
module

Database x x x x

Environment x x x x

Root x x x

Body x x

Properties x x x

ExceptionList x x x

LocalEnvironment x x x

InputRoot x

InputBody x

InputProperties x

InputExceptionList x

InputLocalEnvironment x

OutputRoot x

OutputExceptionList x

OutputLocalEnvironment x

DestinationList Deprecated synonym for LocalEnvironment

InputDestinationList Deprecated synonym for InputLocalEnvironment

OutputDestinationListDeprecated synonym for OutputLocalEnvironment

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677

5102 WebSphere Message Broker Version 7.0.0.8

“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“CALL statement” on page 5077
The CALL statement calls (invokes) a routine.
“BROKER SCHEMA statement” on page 5073
The BROKER SCHEMA statement is optional; use it in an ESQL file to explicitly
identify the schema that contains the file.
“PATH clause” on page 5075
The PATH clause specifies a list of additional schemas to be searched when
matching function and procedure calls to their implementations. The schema in
which the call lies is implicitly included in the PATH clause.

CREATE PROCEDURE statement:

The CREATE PROCEDURE statement defines a callable function or procedure.

You can also use the CREATE FUNCTION statement to define a callable function
or procedure, also known as a routine.

Chapter 14. Reference 5103

Syntax

►► CREATE RoutineType RoutineName (ParameterList) ►

►
ReturnType Language ResultSet

RoutineBody ►◄

RoutineType:

FUNCTION
PROCEDURE

ParameterList:

▼

,

Parameter

Parameter:

(1)
IN
OUT
INOUT

ParameterName DataType
CONSTANT

(2)
NAMESPACE
NAME

ReturnType:

RETURNS DataType

Language:

LANGUAGE ESQL
(3)

DATABASE
JAVA

ResultSet:

DYNAMIC RESULT SETS integer

RoutineBody:

Statement
EXTERNAL NAME ExternalRoutineName

Notes:

5104 WebSphere Message Broker Version 7.0.0.8

1 If the routine type is FUNCTION, the direction indicator (IN, OUT, or
INOUT) is optional for each parameter. However, for documentation
purposes, it is good programming practice to specify a direction indicator
for all new routines; if you do not specify the direction, a default value of
IN is used.

2 When the NAMESPACE or NAME clause is used, its value is implicitly
CONSTANT and of type CHARACTER. For information about the use of
CONSTANT variables, see the “DECLARE statement” on page 5117.

3 If the routine type is FUNCTION, you cannot specify a LANGUAGE of
DATABASE.

Parameter directions

Parameters that are passed to routines always have a direction associated with
them, which is one of the following types:

IN The value of the parameter cannot be changed by the routine. A NULL value
for the parameter is allowed, and can be passed to the routine.

OUT
When it is received by the called routine, the parameter that is passed into the
routine always has a NULL value of the correct data type. This value is set
irrespective of its value before the routine is called. The routine is allowed to
change the value of the parameter.

INOUT
INOUT is both an IN and an OUT parameter. It passes a value into the
routine, and the value that is passed in can be changed by the routine. A
NULL value for the parameter is allowed, and can be passed both into and out
of the routine.

If the routine type is FUNCTION, the direction indicator (IN, OUT, INOUT) is
optional for each parameter. However, it is good programming practice to specify a
direction indicator for all new routines of any type for documentation purposes.

ESQL variables that are declared to be CONSTANT (or references to variables
declared to be CONSTANT) are not allowed to have the direction OUT or INOUT.

ESQL routines

ESQL routines are written in ESQL, and have a LANGUAGE clause of ESQL. The
body of an ESQL routine is typically a compound statement of the form BEGIN ...
END, that contains multiple statements for processing the parameters that are
passed to the routine.

ESQL example 1

The following example shows the same procedure as in “Database routine example
1” on page 5112, but is implemented as an ESQL routine and not as a stored
procedure. The CALL syntax and results of this routine are the same as found in:
CREATE PROCEDURE swapParms (

IN parm1 CHARACTER,
OUT parm2 CHARACTER,
INOUT parm3 CHARACTER)

Chapter 14. Reference 5105

BEGIN
SET parm2 = parm3;
SET parm3 = parm1;

END;

ESQL example 2

This example procedure shows the recursive use of an ESQL routine. It parses a
tree, visiting all places at and below the specified starting point, and reports what
it has found:

SET OutputRoot.MQMD = InputRoot.MQMD;

DECLARE answer CHARACTER;
SET answer = ’’;

CALL navigate(InputRoot.XMLNS, answer);
SET OutputRoot.XMLNS.Data.FieldNames = answer;

CREATE PROCEDURE navigate (IN root REFERENCE, INOUT answer CHARACTER)
BEGIN

SET answer = answer || ’Reached Field... Type:’
|| CAST(FIELDTYPE(root) AS CHAR)||
’: Name:’ || FIELDNAME(root) || ’: Value :’ || root || ’: ’;

DECLARE cursor REFERENCE TO root;
MOVE cursor FIRSTCHILD;
IF LASTMOVE(cursor) THEN

SET answer = answer || ’Field has children... drilling down ’;
ELSE

SET answer = answer || ’Listing siblings... ’;
END IF;

WHILE LASTMOVE(cursor) DO
CALL navigate(cursor, answer);
MOVE cursor NEXTSIBLING;

END WHILE;

SET answer = answer || ’Finished siblings... Popping up ’;
END;

When given the following input message:
<Person>

<Name>John Smith</Name>
<Salary period=’monthly’ taxable=’yes’>-1200</Salary>

</Person>

the procedure produces the following output, which has been manually formatted:
Reached Field... Type:16777232: Name:XML: Value :: Field has children...
drilling down
Reached Field... Type:16777216: Name:Person: Value :: Field has children...
drilling down
Reached Field... Type:16777216: Name:Name:
Value :John Smith: Field has children... drilling down
Reached Field... Type:33554432: Name::
Value :John Smith: Listing siblings... Finished siblings... Popping up
Finished siblings... Popping up
Reached Field... Type:16777216: Name:Salary:
Value :-1200: Field has children... drilling down
Reached Field... Type:50331648: Name:period:
Value :monthly: Listing siblings... Finished siblings... Popping up
Reached Field... Type:50331648: Name:taxable:
Value :yes: Listing siblings... Finished siblings... Popping up
Reached Field... Type:33554432: Name::

5106 WebSphere Message Broker Version 7.0.0.8

Value :-1200: Listing siblings... Finished siblings... Popping up
Finished siblings... Popping up
Finished siblings... Popping up
Finished siblings... Popping up

Java routines

A Java routine is implemented as a Java method, and has a LANGUAGE clause of
JAVA. For Java routines, the ExternalRoutineName must contain the class name and
method name of the Java method to be called. Specify the ExternalRoutineName like
the following example:
>>--"-- className---.---methodName--"--------------><

where className identifies the class that contains the method and methodName
identifies the method to invoke. If the class is part of a package, the class identifier
part must include the complete package prefix; for
example,“com.ibm.broker.test.MyClass.myMethod”

To find the Java class, the broker uses the search method that is described in
“Deploying Java classes” on page 5099.

Any Java method that you want to invoke must have the following basic signature:
public static <return-type> <method-name> (< 0 - N parameters>)

Where <return-type> must be in the list of Java IN data types in the table in
“ESQL to Java data type mapping” on page 5098 (excluding the REFERENCE type,
which is not permitted as a return value), or the Java void data type. The
parameter data types must also be in the “ESQL to Java data type mapping” on
page 5098 table. In addition, the Java method is not allowed to have exception
throws clause in its signature.

The Java methods signature must match the ESQL routines declaration of the
method. You must also observe the following rules:
v Ensure that the Java method name, including the class name and any package

qualifiers, matches the procedures EXTERNAL NAME.
v If the Java return type is void, do not put a RETURNS clause on the ESQL

routines definition. Conversely, if the Java return type is not void, you must put
a RETURNS clause on the ESQL routines definition.

v Ensure that every parameters type and direction matches the ESQL declaration,
according to the rules listed in the table in “ESQL to Java data type mapping”
on page 5098.

v Ensure that the methods return type matches the data type of the RETURNS
clause.

v Enclose EXTERNAL NAME in quotation marks because it must contain at least
"class.method".

v If you want to invoke an overloaded Java method, you must create a separate
ESQL definition for each overloaded method and give each ESQL definition a
unique routine name.

You can use the Java user-defined node API in your Java method, if you observe
the restrictions documented in “Restrictions on Java routines” on page 5099. For
more information about using the Java API, see “Compiling a Java user-defined
node” on page 3074.

Chapter 14. Reference 5107

Java routine example 1

This routine contains three parameters of varying directions, and returns an
integer, which maps to a Java return type of java.lang.Long.
CREATE FUNCTION myProc1(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)
RETURNS INTEGER
LANGUAGE JAVA
EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod1";

You can use the following ESQL to invoke myProc1:
CALL myProc1(intVar1, intVar2, intVar3) INTO intReturnVar3;
-- or
SET intReturnVar3 = myProc1(intVar1, intVar2, intVar3);

Java routine example 2

This routine contains three parameters of varying directions and has a Java return
type of void.
CREATE PROCEDURE myProc2(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)
LANGUAGE JAVA
EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod2";

You must use the following ESQL to invoke myProc2:
CALL myProc2(intVar1, intVar2, intVar3);

The following Java class provides a method for each of the preceding Java
examples:
package com.ibm.broker.test;

class MyClass {
public static Long myMethod1(Long P1, Long[] P2 Long[] P3) { ... }
public static void myMethod2(Long P2, Long[] P2 Long[] P3) { ... }

/* When either of these methods is called:
P1 might or might not be NULL (depending on the value of intVar1).
P2[0] is always NULL (whatever the value of intVar2).
P3[0] might or might not be NULL (depending on the value of intVar3).
This is the same as with LANGUAGE ESQL routines.
When these methods return:

intVar1 is unchanged
intVar2 might still be NULL or might have been changed
intVar3 might contain the same value or might have been changed.

This is the same as with LANGUAGE ESQL routines.

When myMethod1 returns: intReturnVar3 is either NULL (if the
method returns NULL) or it contains the value returned by the
method.

*/
}

ESQL to Java data type mapping

The following table summarizes the mappings from ESQL to Java.

Notes:

v Only the Java scalar wrappers are passed to Java.
v The ESQL scalar types are mapped to Java data types as object wrappers, or

object wrapper arrays, depending upon the direction of the procedure parameter.
Each wrapper array contains exactly one element.

5108 WebSphere Message Broker Version 7.0.0.8

v Scalar object wrappers are used to allow NULL values to be passed to and from
Java methods.

ESQL data types 1 Java IN data types Java INOUT and OUT data types

INTEGER, INT java.lang.Long java.lang.Long []

FLOAT java.lang.Double java.lang.Double[]

DECIMAL java.math.BigDecimal java.math.BigDecimal[]

CHARACTER, CHAR java.lang.String java.lang.String[]

BLOB byte[] byte[][]

BIT java.util.BitSet java.util.BitSet[]

DATE com.ibm.broker.plugin.MbDate com.ibm.broker.plugin.MbDate[]

TIME 2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

GMTTIME 2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

TIMESTAMP 2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

GMTTIMESTAMP 2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

INTERVAL Not supported Not supported

BOOLEAN java.lang.Boolean java.lang.Boolean[]

REFERENCE (to a message tree) 3 4

5 6
com.ibm.broker.plugin.MbElement com.ibm.broker.plugin.MbElement[]

(Supported for INOUT. Not
supported for OUT)

ROW Not supported Not supported

LIST Not supported Not supported

1. Variables that are declared to be CONSTANT (or references to variables that are
declared to be CONSTANT) are not allowed to have the direction INOUT or
OUT.

2. The time zone set in the Java variable is not important; you obtain the required
time zone in the output ESQL.

3. The reference parameter cannot be NULL when passed into a Java method.
4. The reference cannot have the direction OUT when passed into a Java method.
5. If an MbElement is passed back from Java to ESQL as an INOUT parameter, it

must point to a location in the same message tree as that pointed to by the
MbElement that was passed into the called Java method.
For example, if an ESQL reference to OutputRoot.XML.Test is passed into a Java
method as an INOUT MbElement, but a different MbElement is passed back to
ESQL when the call returns, the different element must also point to
somewhere in the OutputRoot tree.

6. An MbElement cannot be returned from a Java method with the RETURNS
clause, because no ESQL routine can return a reference. However, an MbElement
can be returned as an INOUT direction parameter, subject to the conditions
described in point 5.

A REFERENCE to a scalar variable can be used in the CALL of a Java method,
provided that the data type of the variable to which the reference refers matches
the corresponding data type in the Java program signature.

Chapter 14. Reference 5109

Restrictions on Java routines

The following restrictions apply to Java routines that are called from ESQL:
v The Java method must be threadsafe (reentrant).
v Database connections must be JDBC type 2 or type 4. Furthermore, database

operations are not part of a broker transaction and therefore cannot be controlled
by an external resource coordinator (as is the case in an XA environment).

v The Java user-defined node API must be used only by the same thread that
invoked the Java method.
You can create threads inside your method. However, created threads must not
use the Java APIs, and you must return control back to the broker.
All restrictions that apply to the usage of the Java API also apply to Java
methods that are called from ESQL.

v Java methods that are called from ESQL must not use the MbNode class.
Therefore, they cannot create objects of type MbNode, or call any of the methods
on an existing MbNode object.

v WebSphere MQ or JMS work done inside a Java method that is called from
ESQL must be done in accordance with the guidelines for performing
WebSphere MQ and JMS work in a user-defined node. See “Planning
user-defined input nodes” on page 2995.

Deploying Java classes

You can deploy your Java classes to a broker within a Java Archive (JAR) file, by
using one of the following two methods:
1. Add the JAR file to the broker archive (BAR) file

The most efficient and flexible method of deploying to the broker is to add
your JAR file to the BAR file. You can do this manually or automatically using
the WebSphere Message Broker Toolkit.
If the WebSphere Message Broker Toolkit finds the correct Java class inside a
referenced Java project open in the workspace, it automatically compiles the
Java class into a JAR file and adds it to the BAR file. This procedure is the
same procedure that you follow to deploy a JavaCompute node inside a JAR,
as described in “User-defined node class loading” on page 3120.
When you deploy a JAR file from the WebSphere Message Broker Toolkit, the
flow that has been redeployed reloads the JAR file contained in the BAR file.
The files are also reloaded if the message flow that references a Java class is
stopped and restarted. Ensure that you stop and restart (or redeploy) all flows
that reference the JAR file that you want to update. This action avoids the
problem of some flows running with the old version of the JAR file and other
flows running with the new version.
The WebSphere Message Broker Toolkit deploys only JAR files; it does not
deploy stand-alone Java class files.

2. Store the JAR file in either of the following locations:

a. The workpath/shared-classes/ folder on the machine running the broker
b. The CLASSPATH environment variable on the computer running the broker
You must complete this action manually; you cannot use the WebSphere
Message Broker Toolkit.
In this method, redeploying the message flow does not reload the referenced
Java classes; neither does stopping and restarting the message flow. The only
way to reload the classes in this case is to stop and restart the broker itself.

5110 WebSphere Message Broker Version 7.0.0.8

To enable the broker to find a Java class, ensure that it is in one of the preceding
locations. If the broker cannot find the specified class, it generates an exception.

Although you have the choices shown previously when you deploy the JAR file,
by using the WebSphere Message Broker Toolkit to deploy the BAR file provides
the greatest flexibility when redeploying the JAR file.

Database routines

Database routines are implemented as database stored procedures. Database
routines have a LANGUAGE clause of DATABASE, and must have a routine type
of PROCEDURE.

When writing stored procedures in languages like C, you must use NULL
indicators to ensure that your procedure can process the data correctly.

Although the database definitions of a stored procedure vary between the
databases, the ESQL used to invoke them does not. The names given to parameters
in the ESQL do not have to match the names they are given on the database side.
However, the external name of the routine, including any package or container
specifications, must match its defined name in the database.

The DYNAMIC RESULT SETS clause is allowed only for database routines. It is
required only if a stored procedure returns one or more result sets. The integer
parameter to this clause must be 0 (zero) or more, and specifies the number of
result sets to be returned.

The optional RETURNS clause is required if a stored procedure returns a single
scalar value.

The EXTERNAL NAME clause specifies the name by which the database knows
the routine. Can be either a qualified or an unqualified name, where the qualifier is
the name of the database schema in which the procedure is defined. If you do not
provide a schema name, the database connection user name is used as the schema
in which to locate the procedure. If the required procedure does not exist in this
schema, you must provide an explicit schema name, either on the routine
definition or on the CALL to the routine at run time. For more information about
dynamically choosing the schema that contains the routine, see the “CALL
statement” on page 5077. When a qualified name is used, the name must be in
quotation marks.

A fully qualified routine typically takes the form:
EXTERNAL NAME "mySchema.myProc";

However, if the procedure belongs to an Oracle package, the package is treated as
part of the procedures name. Therefore you must provide a schema name and the
package name, in the form:
EXTERNAL NAME "mySchema.myPackage.myProc";

This form allows the schema, but not the package name, to be chosen dynamically
in the CALL statement.

If the name of the procedure contains SQL wildcards (which are the percent (%)
character and the underscore (_) character), the procedure name is modified by the
broker to include the database escape character immediately before each wildcard
character. This technique ensures that the database receives the wildcards as literal

Chapter 14. Reference 5111

characters. For example, assuming that the database escape character is a
backslash, the following clause is modified by the broker so that
“mySchema.Proc_” is passed to the database.
EXTERNAL NAME "mySchema.Proc_";

All external procedures have the following restrictions:
v A stored procedure cannot be overloaded on the database side. A stored

procedure is considered overloaded if there is more than one procedure of the
same name in the same database schema. If the broker detects that a procedure
has been overloaded, it raises an exception.

v Parameters cannot be of the ESQL REFERENCE, ROW, LIST, or INTERVAL data
types.

v User-defined types cannot be used as parameters or as return values.

For LANGUAGE DATABASE routines, the ExternalRoutineName is not optional and
contains the schema name, package name, and procedure name of the routine to be
called. Specify the ExternalRoutineName as follows:
>>--"schemaName---.---packageName---.---procedureName--"--------------><

where:
v schemaName is optional.
v packageName is optional and applies only to Oracle data sources. If you supply a

packageName you must supply a schemaName.

v procedureName is not optional.

Database routine example 1

The following example shows an ESQL definition of a stored procedure that
returns a single scalar value and an OUT parameter:
CREATE PROCEDURE myProc1(IN P1 INT, OUT P2 INT)
RETURNS INTEGER
LANGUAGE DATABASE
EXTERNAL NAME "myschema.myproc";

Use this ESQL to invoke the myProc1 routine:
/*using CALL statement invocation syntax*/
CALL myProc1(intVar1, intVar2) INTO intReturnVar3;

/*or using function invocation syntax*/
SET intReturnVar3 = myProc1(intVar1, intVar2);

Database routine example 2

The following ESQL code demonstrates how to define and call DB2 stored
procedures:
ESQL Definition:
DECLARE inputParm CHARACTER;
DECLARE outputParm CHARACTER;
DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;
SET inputOutputParm = ’World’;
CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (
IN parm1 CHARACTER,
OUT parm2 CHARACTER,

5112 WebSphere Message Broker Version 7.0.0.8

INOUT parm3 CHARACTER
)
LANGUAGE DATABASE
EXTERNAL NAME dbSwapParms;

To register this stored procedure with DB2, copy the following script to a file (for
example, test1.sql)
-- DB2 Example Stored Procedure
DROP PROCEDURE dbSwapParms @
CREATE PROCEDURE dbSwapParms
(IN in_param CHAR(32),

OUT out_param CHAR(32),
INOUT inout_param CHAR(32))

LANGUAGE SQL
BEGIN
SET out_param = inout_param;

SET inout_param = in_param;
END @

Now run the file from the DB2 command prompt:
db2 -td@ -vf test1.sql

Expect the following results from running this code:
v The value of the IN parameter does not (and cannot, by definition) change.
v The value of the OUT parameter becomes “World”.
v The value of the INOUT parameter changes to “Hello”.

Database routine example 3

The following ESQL code demonstrates how to define and call Oracle stored
procedures:
ESQL Definition:
DECLARE inputParm CHARACTER;
DECLARE outputParm CHARACTER;
DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;
SET inputOutputParm = ’World’;
CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (
IN parm1 CHARACTER,
OUT parm2 CHARACTER,
INOUT parm3 CHARACTER

)
LANGUAGE DATABASE
EXTERNAL NAME dbSwapParms;

To register this stored procedure with Oracle, copy the following script to a file (for
example, test1.sql)
CREATE OR REPLACE PROCEDURE dbSwapParms
(in_param IN VARCHAR2,

out_param OUT VARCHAR2,
inout_param IN OUT VARCHAR2)

AS
BEGIN

out_param := inout_param;
inout_param := in_param;

END;
/

Now run the file:

Chapter 14. Reference 5113

sqlplus userID/password @test1.sql

Expect the following results from running this code:
v The value of the IN parameter does not (and cannot, by definition) change.
v The value of the OUT parameter becomes “World”.
v The value of the INOUT parameter changes to “Hello”.

Database routine example 4

The following ESQL code demonstrates how to define and call SQL Server stored
procedures:
ESQL Definition:
DECLARE inputParm CHARACTER;
DECLARE outputParm CHARACTER;
DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;
SET inputOutputParm = ’World’;
CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (
IN parm1 CHARACTER,
INOUT parm2 CHARACTER,
INOUT parm3 CHARACTER

)
LANGUAGE DATABASE
EXTERNAL NAME dbSwapParms;

To register this stored procedure with SQL Server, copy the following script to a
file (for example, test1.sql)
-- SQLServer Example Stored Procedure
DROP PROCEDURE dbSwapParms
go
CREATE PROCEDURE dbSwapParms
@in_param CHAR(32),
@out_param CHAR(32) OUT,
@inout_param CHAR(32) OUT
AS

SET NOCOUNT ON
SET @out_param = @inout_param
SET @inout_param = @in_param

go

Now run file:
isql -UuserID -Ppassword -Sserver -ddatasource -itest1.sql

SQL Server considers OUTPUT parameters from stored procedures as INPUT/OUTPUT
parameters. If you declare them as OUT parameters in your ESQL you encounter a
type mismatch error at run time. To avoid that mismatch you must declare SQL
Server OUTPUT parameters as INOUT in your ESQL.

Use the SET NOCOUNT ON option, as shown in the preceding example, with SQL
stored procedures for the following reasons:
1. To limit the amount of data returned from SQL Server to the broker.
2. To allow result sets to be returned correctly.

Expect the following results from running this code:
v The value of the IN parameter does not (and cannot, by definition) change.
v The value of the OUT parameter becomes “World”.

5114 WebSphere Message Broker Version 7.0.0.8

v The value of the INOUT parameter changes to “Hello”.

Database routine example 5

The following ESQL code demonstrates how to define and call Sybase stored
procedures:
ESQL Definition:
DECLARE inputParm CHARACTER;
DECLARE outputParm CHARACTER;
DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;
SET inputOutputParm = ’World’;
CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (
IN parm1 CHARACTER,
INOUT parm2 CHARACTER,
INOUT parm3 CHARACTER

)
LANGUAGE DATABASE
EXTERNAL NAME dbSwapParms;

To register this stored procedure with Sybase, copy the following script to a file
(for example, test1.sql)
-- SYBASE Example Stored Procedure
DROP PROCEDURE dbSwapParms
go
CREATE PROCEDURE dbSwapParms
@in_param CHAR(32),
@out_param CHAR(32) OUT,
@inout_param CHAR(32) OUT
AS

SET @out_param = @inout_param
SET @inout_param = @in_param

go

Now run file:
isql -U<userID> -P<password> -S<server> -D<datasource> -itest1.sql

Sybase considers OUTPUT parameters from stored procedures as INPUT/OUTPUT
parameters. If you declare them as OUT parameters in your ESQL, you encounter a
type mismatch error at run time. To avoid that mismatch, declare Sybase OUTPUT
parameters as INOUT in your ESQL.

Expect the following results from running this code:
v The value of the IN parameter does not (and cannot, by definition) change.
v The value of the OUT parameter becomes “World”.
v The value of the INOUT parameter changes to “Hello”.

Database routine example 6

The following ESQL code demonstrates how to define and call Informix stored
procedures:
ESQL Definition:
DECLARE inputParm CHARACTER ’Hello’;
DECLARE outputParm CHARACTER;
DECLARE inputOutputParm CHARACTER ’World’;
CALL swapParms(inputParm, outputParm, inputOutputParm);

Chapter 14. Reference 5115

CREATE PROCEDURE swapParms (
IN parm1 CHARACTER,
INOUT parm2 CHARACTER,
INOUT parm3 CHARACTER

)
LANGUAGE DATABASE
EXTERNAL NAME dbSwapParms;

To register this stored procedure with Informix, copy the following script to a file
(for example, test1.sql)
DROP SPECIFIC PROCEDURE dbSwapParms;
CREATE PROCEDURE dbSwapParms

(inParm CHAR(20),
OUT outParm CHAR(20),
INOUT inoutParm CHAR(20))

SPECIFIC dbSwapParms

LET outParm = inoutParm;
LET inoutParm = inParm;

END PROCEDURE;

Now run file:

From the Informix server shell environment enter:
dbaccess <dataBaseName> <fully qualified path/test1.sql>

Expect the following results from running this code:
v The value of the IN parameter does not (and cannot, by definition) change.
v The value of the OUT parameter becomes “World”.
v The value of the INOUT parameter changes to “Hello”.

The following restrictions apply to Informix stored procedures:
v Procedures that use the Informix INTERVAL datatype cannot be invoked from

the broker.
v Procedures can return only one result set.
v Procedures that return a result set must contain only IN parameters.
v Procedures cannot return CLOBs or BLOBs in result sets or as scalar return

values.
v Procedures can return either a result set or a scalar value, but not both.

Database routine example 7

This example shows how to call a stored procedure that returns two result sets, in
addition to an out parameter:
CREATE PROCEDURE myProc1 (IN P1 INT, OUT P2 INT)

LANGUAGE DATABASE
DYNAMIC RESULT SETS 2
EXTERNAL NAME "myschema.myproc";

Use the following ESQL to invoke myProc1:
/* using a field reference */
CALL myProc1(intVar1, intVar2, Environment.RetVal[], OutputRoot.XMLNS.A[])
/* using a reference variable*/
CALL myProc1(intVar1, intVar2, myReferenceVariable.RetVal[], myRef2.B[])

Related concepts:

5116 WebSphere Message Broker Version 7.0.0.8

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Invoking stored procedures” on page 2503
To invoke a procedure that is stored in a database, use the ESQL CALL statement.
The stored procedure must be defined by a CREATE PROCEDURE statement that
has a Language clause of DATABASE and an EXTERNAL NAME clause that
identifies the name of the procedure in the database and, optionally, the database
schema to which it belongs.
“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“CALL statement” on page 5077
The CALL statement calls (invokes) a routine.
“CREATE FUNCTION statement” on page 5091
The CREATE FUNCTION statement defines a callable function or procedure.
“ESQL-to-Java data-type mapping table” on page 5043
Table summarizing the mappings from ESQL to Java.
Related information:
Java user-defined extensions API

DECLARE statement:

Use the DECLARE statement to define a variable, the data type of the variable
and, optionally, its initial value.

You can define three types of variable with the DECLARE statement:
v External
v Normal
v Shared

For further information, see “ESQL variables” on page 5048.

Chapter 14. Reference 5117

Syntax

►► ▼

<<-,-<<

DECLARE -Name
SHARED (1) (2)
EXTERNAL (3) (4)

►

► DataType (5)
CONSTANT InitialValueExpression

NAMESPACE (6)
NAME (6)

►◄

Notes:

1. The SHARED keyword is not valid within a function or procedure.
2. You cannot specify SHARED with a DataType of REFERENCE TO. To store a

message tree in a shared variable, use the ROW data type.
3. EXTERNAL variables are implicitly constant.
4. It is good programming practice to give an EXTERNAL variable an initial

value.
5. If you specify a DataType of REFERENCE TO, you must specify an initial value

(of either a variable or a tree) in InitialValueExpression.
6. When you use the NAMESPACE and NAME clauses, their values are implicitly

constant and of type CHARACTER.

Follow the links to see more information about all these parameters:
v “CONSTANT”
v “DataType” on page 5119
v “EXTERNAL” on page 5119
v “NAME” on page 5120
v “NAMESPACE” on page 5121
v “SHARED” on page 5121

CONSTANT

Use CONSTANT to define a constant. You can declare constants within schemas,
modules, routines, or compound statements (both implicit and explicit). The
behavior of these cases is shown in the following list:
v Within a compound statement, constants and variables occupy the same

namespace.
v Within expressions, a constant or variable that is declared within a compound

statement overlays all constants and variables of the same name that are
declared in containing compound statements, modules, and schemas.

v Within field reference namespace fields, a namespace constant that is declared
within a compound statement overlays all namespace constants of the same
name that are declared in containing compound statements.

5118 WebSphere Message Broker Version 7.0.0.8

A constant or variable that is declared within a routine overlays any parameters of
the same name, as well as all constants and variables of the same name that are
declared in a containing module or schema.

DataType

The values that you can specify for DataType are:
v BOOLEAN
v INT
v INTEGER
v FLOAT
v DECIMAL
v DATE
v TIME
v TIMESTAMP
v GMTTIME
v GMTTIMESTAMP
v INTERVAL. This value does not apply to external variables (EXTERNAL

keyword specified).
v CHAR
v CHARACTER
v BLOB
v BIT
v ROW. This value does not apply to external variables (EXTERNAL keyword

specified).
v REFERENCE TO. This value does not apply to external or shared variables

(EXTERNAL or SHARED keyword specified).

EXTERNAL

Use EXTERNAL to denote a user-defined property (UDP). A UDP is a user-defined
constant whose initial value (optionally set by the DECLARE statement) can be
modified, at design time, by the Message Flow editor (see “Message Flow editor”
on page 6810) or overridden, at deployment time, by the Broker Archive editor (see
“Broker Archive editor” on page 6794). The value of a UDP cannot be modified by
ESQL.

When a UDP is given an initial value on the DECLARE statement, this value
becomes its default. However, any value that you specify in the Message Flow
editor at design time, or in the Broker Archive editor at deployment time (even a
zero length string) overrides any initial value that was coded on the DECLARE
statement.

For example, if you code:
DECLARE deployEnvironment EXTERNAL CHARACTER ’Dev’;

you have defined a UDP variable of deployEnvironment with an initial value Dev.

Add the UDP to the message flow by using the UDP tab in the message flow
editor. When you add the flow to the BAR file, the UDP is there as an attribute of
the flow; you must name the attribute to be the same as the ESQL variable in the
DECLARE statement (in this case, deployEnvironment) to ensure that the initial
value that you set is unchanged.

All the UDPs in a message flow must have a value, given either on the DECLARE
statement or by the Message Flow or Broker Archive editor; otherwise a

Chapter 14. Reference 5119

deployment-time error occurs. At run time, after the UDP has been declared, its
value can be queried by subsequent ESQL statements.

You can define a UDP for a subflow. A UDP has global scope and is not specific to
a particular subflow. If you reuse a subflow in a message flow, and those subflows
have identical UDPs, you cannot set the UDPs to different values.

The advantage of UDPs is that their values can be changed at deployment time.
For example, if you use the UDPs to hold configuration data, it means that you
can configure a message flow for a particular computer, task, or environment at
deployment time, without having to change the code at the node level. UDPs can
also be modified at run time by using the CMP API.

You can declare UDPs only in modules or schemas; that is, you can use the
DECLARE statement with the EXTERNAL keyword only at the MODULE or
SCHEMA level. If you use a DECLARE statement with the EXTERNAL keyword
within a PROCEDURE or FUNCTION, a BIP2402E exception occurs when you
deploy the message flow.

The following types of broker node can access UDPs:
v Compute node
v Database node
v Filter node
v Nodes that are derived from these node types

Take care when specifying the data type of a UDP, because a CAST is used to
change the value to the requested DataType.

For an overview of UDPs, see “User-defined properties in ESQL” on page 2376.

Example 1:
DECLARE mycolor EXTERNAL CHARACTER ’blue’;

Example 2:
DECLARE TODAYSCOLOR EXTERNAL CHARACTER;
SET COLOR = TODAYSCOLOR;

where TODAYSCOLOR is a user-defined property that has a TYPE of CHARACTER and a
VALUE set by the Message Flow editor.

NAME

Use NAME to define an alias (an alternative name) by which a variable can be
known.

Example 1:
-- The following statement gives Schema1 an alias of ’Joe’.
DECLARE Schema1 NAME ’Joe’;
-- The following statement produces a field called ’Joe’.
SET OutputRoot.XMLNS.Data.Schema1 = 42;

-- The following statement inserts a value into a table called Table1
-- in the schema called ’Joe’.
INSERT INTO Database.Schema1.Table1 (Answer) VALUES 42;

Example 2:

5120 WebSphere Message Broker Version 7.0.0.8

-- At Module scope define ColourElementName and set it external
-- so that its default value of ’black’ can be overridden as a UDP
DECLARE ColourElementName EXTERNAL NAME ’black’;

-- Use the ColourElementName in a function
CREATE FIRSTCHILD OF OutputRoot.XMLNSC.TestCase.ColourElementName

Domain(’XMLNSC’)
NAME ’Node1’ VALUE ’1’;

If the owning message flow has been configured with a UDP named
ColourElementName of type String, which has been given the value red, the
following output message is generated:
<xml version="1.0"?>
<TestCase>

<red>
<Node1>1</Node1>

</red>

NAMESPACE

Use NAMESPACE to define an alias (an alternative name) by which a namespace
can be known.

Example:

This example illustrates a namespace declaration, its use as a SpaceId in a path, and
its use as a character constant in a namespace expression:

DECLARE prefixOne NAMESPACE ’http://www.example.com/PO1’;

-- On the right hand side of the assignment a namespace constant
-- is being used as such while, on the left hand side, one is
-- being used as an ordinary constant (that is, in an expression).

SET OutputRoot.XMLNS.{prefixOne}:{’PurchaseOrder’} =
InputRoot.XMLNS.prefixOne:PurchaseOrder;

SHARED

Use SHARED to define a shared variable. Shared variables are private to the flow
(if declared within a schema) or node (if declared within a module), but are shared
between instances of the flow (threads). No type of variable is visible beyond the
flow level; for example, you cannot share variables across execution groups.

You can use shared variables to implement an in-memory cache in the message
flow; see “Optimizing message flow response times” on page 3264. Shared
variables have a long lifetime and are visible to multiple messages passing through
a flow; see “Long-lived variables” on page 2378.

Shared variables exist for the lifetime of the:
v Execution group process
v Flow or node, or
v Node ESQL code that declares the variable

(whichever is the shortest). They are initialized when the first message passes
through the flow or node after each broker startup.

You cannot define a shared variable within a function or procedure.

Chapter 14. Reference 5121

The advantages of shared variables, relative to databases, are that:
v Write access is much faster.
v Read access to small data structures is faster.
v Access is direct; that is, there is no need to use a special function (SELECT) to

get data, or special statements (INSERT, UPDATE, or DELETE) to modify data.
You can refer to the data directly in expressions.

The advantages of databases, relative to shared variables, are that:
v The data is persistent.
v The data is changed transactionally.

These read/write variables are ideal for users who are prepared to sacrifice the
persistence and transactional advantages of databases in order to obtain better
performance, because they have a longer life than only one message and perform
better than a database.

Because SHARED variables can be updated by multiple additional instances, you
must ensure that you do not change SHARED variables that might cause
unexpected results, for example, if the variable is being used as a counter.

As SHARED variables are initialized once on the first message through a node, it
is possible to initialize a SHARED ROW variable once with the results from a
Database query. The following code shows an example of how this is achieved:

CREATE SCHEMA testSchema
DECLARE mySharedRow SHARED ROW;
DECLARE initialized SHARED BOOLEAN myINIT();

CREATE COMPUTE MODULE testModule

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
SET OutputRoot.XMLNSC.Top.TEST.Result1 VALUE = initialized;
SET OutputRoot.XMLNSC.Top.TEST.Result2 = mySharedRow;

END;

END MODULE;

CREATE FUNCTION myINIT() RETURNS BOOLEAN
BEGIN

LOG EVENT VALUES(’myINIT CALLED’);
SET mySharedRow.Top[] = SELECT A.MyCol1, A.MyCol2 from Database.Test AS A;
RETURN TRUE;

END;

You can prevent other instances seeing the intermediate stages of the data by using
a BEGIN ATOMIC construct; see “BEGIN ... END statement” on page 5070.

Your user program can make an efficient read, or write, copy of an input message
in the input node by using shared-row variables, which simplifies the technique for
handling large messages.

Restriction:

Subtrees cannot be copied directly from one shared row variable to another shared
row variable. Subtrees can be copied indirectly by using a non-shared row variable.
Scalar values extracted from one shared row variable (by using the FIELDVALUE
function) can be copied to another shared row variable.

5122 WebSphere Message Broker Version 7.0.0.8

Sample program

The following sample shows how to use both shared and external variables:
v Message Routing

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“User-defined properties in ESQL” on page 2376
Access user-defined properties (UDPs) as variables in your ESQL program by
specifying the EXTERNAL keyword on a DECLARE statement. For example, the
ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines a
user-defined property called today with an initial value monday.
“Long-lived variables” on page 2378
You can use appropriate long-lived ESQL data types to cache data in memory.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Creating dynamic field references” on page 2431
You can use a variable of type REFERENCE as a dynamic reference to navigate a
message tree. This acts in a similar way to a message cursor or a variable pointer.
“Configuring a message flow at deployment time with user-defined properties” on
page 2626
Use user-defined properties (UDPs) to configure message flows at deployment and
run time, without modifying program code. You can give a UDP an initial value
when you declare it in your program, or when you use the Message Flow editor to
create or modify a message flow.
“Setting message flow user-defined properties at run time in a CMP application”
on page 985
Use the CMP API to query, discover, and set message flow user-defined properties
dynamically at run time. You can use the CMP API to set properties with a data
type of character.
“Optimizing message flow response times” on page 3264
You can use different solutions to improve message flow response times.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“ESQL variables” on page 5048
ESQL variables can be described as external variables, normal variables, or shared
variables; their use is defined in the DECLARE statement.
“ESQL data types in message flows” on page 5020
All data that is referred to in message flows must be one of the defined types.

Chapter 14. Reference 5123

“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“FIELDVALUE function” on page 5234
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.
“BEGIN ... END statement” on page 5070
The BEGIN ... END statement gives the statements defined within the BEGIN and
END keywords the status of a single statement.

DECLARE HANDLER statement:

The DECLARE HANDLER statement creates an error handler for handling
exceptions.

Syntax

►► DECLARE CONTINUE
EXIT

HANDLER FOR State Stmt ►◄

State:

▼

<<-- , --<<

SQLSTATE ' Text '
VALUE
LIKE ' Text '

ESCAPE ' Text '

You can declare handlers in both explicitly declared (BEGIN...END) scopes and
implicitly declared scopes (for example, the ELSE clause of an IF statement).
However, all handler declarations must be together at the top of the scope, before
any other statements.

If there are no exceptions, the presence of handlers has no effect on the behavior or
performance of an SQL program. If an exception occurs, WebSphere Message
Broker compares the SQL state of the exception with the SQL states associated with
any relevant handlers, until either the exception leaves the node (just as it would if
there were no handlers) or a matching handler is found. Within any one scope,
handlers are searched in the order they are declared; that is, first to last. Scopes are
searched from the innermost to outermost.

The SQL state values provided in DECLARE... HANDLER... statements can be
compared directly with the SQL state of the exception or can be compared using
wildcard characters. To compare the state values directly, specify either VALUE or
no condition operator. To make a wildcard comparison, use the underscore and
percent characters to represent single and multiple character wildcards,

5124 WebSphere Message Broker Version 7.0.0.8

respectively, and specify the LIKE operator. The wildcard method allows all
exceptions of a general type to be handled without having to list them
exhaustively.

If a matching handler is found, the SQLSTATE and other special registers are
updated (according to the rules described later in this section) and the handler's
statement is processed.

As the handler's statement must be a single statement, it is typically a compound
statement (such as BEGIN...END) that contains multiple other statements. There is
no special behavior associated with these inner statements and there are no special
restrictions. They can, for example, include RETURN, ITERATE, or LEAVE; these
affect their containing routines and looping constructs in the same way as if they
were contained in the scope itself.

Handlers can contain handlers for exceptions occurring within the handler itself

If processing of the handler's code completes without throwing further unhandled
exceptions, execution of the normal code is resumed as follows:
v For EXIT handlers, the next statement processed is the first statement after the

handler's scope.
v For CONTINUE handlers, it is the first directly-contained statement after the one

that produced the exception.

Each handler has its own SQLCODE, SQLSTATE, SQLNATIVEERROR, and
SQLERRORTEXT special registers. These come into scope and their values are set
just before the handler's first statement is executed. They remain valid until the
handler's last statement has been executed. Because there is no carry over of
SQLSTATE values from one handler to another, handlers can be written
independently.

Handlers absorb exceptions, preventing their reaching the input node and thus
causing the transaction to be committed rather than rolled back. A handler can use
a RESIGNAL or THROW statement to prevent this.

See “SQLSTATE function” on page 5173 for a list of the valid SQLSTATES that you
can use in a HANDLER.

Example 1

The following example demonstrates proper use of a USER EXCEPTION, and
passing SQLCODE, SQLSTATE, SQLNATIVEERROR and SQLERRORTEXT from
the exception to the handler. The example also uses the SQLSTATE to catch the
specific exception:
DECLARE retryCount INTEGER 0;
DECLARE afterCount INTEGER 0;

WHILE retryCount <= 10 DO
DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’U11222’
BEGIN
/* This demonstrates how to pass data to the HANDLER in the SQL

special registers */
SET OutputRoot.XMLNSC.Top.WHILE.mySQLCODE = SQLCODE;
SET OutputRoot.XMLNSC.Top.WHILE.mySQLSTATE = SQLSTATE;
SET OutputRoot.XMLNSC.Top.WHILE.mySQLNATIVEERROR = SQLNATIVEERROR;
SET OutputRoot.XMLNSC.Top.WHILE.mySQLERRORTEXT = SQLERRORTEXT;

Chapter 14. Reference 5125

SET retryCount = retryCount + 1;

/* If we are an EXIT HANDLER, control is now passed to back to the
WHILE statement */

END;

/* In a real scenario this could be a PROPAGATE statement, and the exception
could be thrown by a ’downstream’ node. In this case the HANDLER would
normally cope with a wider range of exception, for example, using LIKE ’%’ */

THROW USER EXCEPTION VALUES(-1, ’U11222’, 42, ’error text’);

/* This is the next statement executed if it is a CONTINUE HANDLER */
SET afterCount = afterCount + 1;

END WHILE;

SET OutputRoot.XMLNSC.Top.WHILE.retryCount = retryCount;
SET OutputRoot.XMLNSC.Top.WHILE.afterCount = afterCount;

With EXIT (as above) the output is:
<Top>

<WHILE>
<mySQLCODE>-1</mySQLCODE>
<mySQLSTATE>U11222</mySQLSTATE>
<mySQLNATIVEERROR>42</mySQLNATIVEERROR>
<mySQLERRORTEXT>error text</mySQLERRORTEXT>
<retryCount>11</retryCOUNT>
<afterCount>0</afterCOUNT>

</WHILE>
</Top>

Changing the HANDLER to be CONTINUE (DECLARE CONTINUE HANDLER FOR SQLSTATE VALUE
’U11222’) then the output is:
<Top>

<WHILE>
<mySQLCODE>-1</mySQLCODE>
<mySQLSTATE>U11222</mySQLSTATE>
<mySQLNATIVEERROR>42</mySQLNATIVEERROR>
<mySQLERRORTEXT>error text</mySQLERRORTEXT>
<retryCount>11</retryCOUNT>
<afterCount>11</afterCOUNT>

</WHILE>
</Top>

You see the difference in afterCount in the output message.

Example 2
-- Drop the tables so that they can be re-created with the latest definition.
-- If the program has never been run before, errors will occur because you
-- can’t drop tables that don’t exist. We ignore these.

BEGIN
DECLARE CONTINUE HANDLER FOR SQLSTATE LIKE’%’ BEGIN END;

PASSTHRU ’DROP TABLE Shop.Customers’ TO Database.DSN1;
PASSTHRU ’DROP TABLE Shop.Invoices’ TO Database.DSN1;
PASSTHRU ’DROP TABLE Shop.Sales’ TO Database.DSN1;
PASSTHRU ’DROP TABLE Shop.Parts’ TO Database.DSN1;

END;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:

5126 WebSphere Message Broker Version 7.0.0.8

“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“RESIGNAL statement” on page 5155
The RESIGNAL statement rethrows the current exception, if one exists.
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“SQLSTATE function” on page 5173
SQLSTATE is a database state function that returns a 5 character data type of
CHARACTER with a default value of '00000' (five zeros as a string).

DELETE FROM statement:

The DELETE FROM statement deletes rows from a table in an external database,
based on a search condition.

Syntax

►► DELETE FROM TableReference
AS CorrelationName

►

►
WHERE Expression

►◄

WHERE:

TableReference = Database ►

►
. SchemaClause

. DataSourceClause

. TableClause

DataSourceClause = DataSourceName
{ DataSourceExpression }

SchemaClause = SchemaName
{ SchemaExpression }

TableClause = TableName
{ TableExpression }

All rows for which the WHERE clause expression evaluates to TRUE are deleted
from the table identified by TableReference.

Chapter 14. Reference 5127

Each row is examined in turn and a variable is set to point to the current row.
Typically, the WHERE clause expression uses this variable to access column values
and thus cause rows to be retained or deleted according to their contents. The
variable is referred to by CorrelationName or, in the absence of an AS clause, by
TableName.

Table reference

A table reference is a special case of the field references that are used to refer to
message trees. It always starts with the word “Database” and can contain any of
the following elements:
v A table name only
v A schema name and a table name
v A data source name (that is, the name of a database instance), a schema name,

and a table name

In each case, the name can be specified directly or by an expression enclosed in
braces ({...}). A directly-specified data source, schema, or table name is subject to
name substitution. That is, if the name used has been declared to be a known
name, the value of the declared name is used rather than the name itself (see
“DECLARE statement” on page 5117).

If a schema name is not specified, the default schema for the broker's database user
is used.

If a data source name is not specified, the database pointed to by the node's data
source attribute is used.

The WHERE clause

The WHERE clause expression can use any of the broker's operators and functions
in any combination. It can refer to table columns, message fields, and any declared
variables or constants.

However, be aware that the broker treats the WHERE clause expression by
examining the expression and deciding whether the whole expression can be
evaluated by the database. If it can, it is given to the database. In order to be
evaluated by the database, it must use only those functions and operators
supported by the database.

The WHERE clause can, however, refer to message fields, correlation names
declared by containing SELECT functions, and to any other declared variables or
constants within scope.

If the whole expression cannot be evaluated by the database, the broker looks for
top-level AND operators and examines each sub-expression separately. It then
attempts to give the database those sub-expressions that it can evaluate, leaving
the broker to evaluate the rest. You need to be aware of this situation for two
reasons:
1. Apparently trivial changes to WHERE clause expressions can have large effects

on performance. You can determine how much of the expression was given to
the database by examining a user trace.

2. Some databases' functions exhibit subtle differences of behavior from those of
the broker.

5128 WebSphere Message Broker Version 7.0.0.8

Handling errors

It is possible for errors to occur during delete operations. For example, the
database might not be operational. In these cases, an exception is thrown (unless
the node has its throw exception on database error property set to FALSE). These
exceptions set appropriate SQL code, state, native error, and error text values and
can be dealt with by error handlers (see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database
state” on page 2512.

Examples

The following example assumes that the dataSource property has been configured
and that the database it identifies has a table called SHAREHOLDINGS, with a
column called ACCOUNTNO.
DELETE FROM Database.SHAREHOLDINGS AS S

WHERE S.ACCOUNTNO = InputBody.AccountNumber;

This example removes all the rows from the SHAREHOLDINGS table where the
value in the ACCOUNTNO column (in the table) is equal to that in the
AccountNumber field in the message. This operation might delete zero, one, or more
rows from the table.

The next example shows the use of calculated data source, schema, and table
names:
-- Declare variables to hold the data source, schema, and table names and
-- set their default values
DECLARE Source CHARACTER ’Production’;
DECLARE Schema CHARACTER ’db2admin’;
DECLARE Table CHARACTER ’DynamicTable1’;

-- Code which calculates their actual values comes here

-- Delete rows from the table
DELETE FROM Database.{Source}.{Schema}.{Table} As R WHERE R.Name = ’Joe’;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

DELETE statement:

The DELETE statement detaches and destroys a portion of a message tree,
allowing its memory to be reused. This statement is particularly useful when
handling very large messages.

Chapter 14. Reference 5129

Syntax

►► DELETE FIELD
FIRSTCHILD OF
LASTCHILD
PREVIOUSSIBLING
NEXTSIBLING

FieldReference ►◄

If the target field does not exist, the statement does nothing and normal processing
continues. If any reference variables point into the deleted portion, they are
disconnected from the tree so that no action involving them has any effect, and the
LASTMOVE function returns FALSE. Disconnected reference variables can be
reconnected by using a MOVE... TO... statement.

Example
DELETE FIELD OutputRoot.XMLNS.Data.Folder1.Folder12;
DELETE LASTCHILD OF Cursor;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Working with large XML messages” on page 2543
The tree representation of an XML message is typically bigger than the input bit
stream. Manipulating a large message tree can require much storage but you can
code ESQL statements that help to reduce the storage load on the broker.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“CREATE statement” on page 5082
The CREATE statement creates a new message field.

DETACH statement:

The DETACH statement detaches a portion of a message tree without deleting it.
This portion can be reattached using the ATTACH statement.

Syntax

►► DETACH dynamic_reference ►◄

5130 WebSphere Message Broker Version 7.0.0.8

For information about dynamic references, see “Creating dynamic field references”
on page 2431.

For an example of DETACH, see the example in “ATTACH statement” on page
5069.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“ATTACH statement” on page 5069
The ATTACH statement attaches a portion of a message tree into a new position in
the message hierarchy.

EVAL statement:

The EVAL statement takes a character value, interprets it as an SQL statement, and
processes that statement.

For details of the EVAL function, see “EVAL function” on page 5294.

Syntax

►► EVAL (SQL_character_value) ►◄

EVAL takes one parameter in the form of an expression, evaluates this expression,
and casts the resulting value to a character string if it is not one already. The
expression that is passed to EVAL must therefore be able to be represented as a
character string.

After this first stage evaluation is complete, the behavior of EVAL depends on
whether it is being used as a complete ESQL statement, or in place of an
expression that forms part of an ESQL statement:
v If it is a complete ESQL statement, the character string derived from the first

stage evaluation is processed as if it were an ESQL statement.
v If it is an expression that forms part of an ESQL statement, the character string is

evaluated as if it were an ESQL expression and EVAL returns the result.

User defined procedures cannot be defined within an EVAL statement but EVAL
can be used to call a user-defined procedure that is in scope where the EVAL
statement is used.

Chapter 14. Reference 5131

If you use the EVAL statement to call out to a user-defined procedure that is not
called from anywhere else in the ESQL for a given node, you need to add the
following code to your ESQL, to ensure that the user-defined procedure being
called is included when the code is compiled:

IF (FALSE) THEN CALL procedure(<parameters>); END IF;

Note, that in the preceding code, you must replace procedure() with the named
procedure in question.

In the following examples, A and B are integer scalar variables, and scalarVar1 and
OperatorAsString are character string scalar variables.

The following examples are valid uses of EVAL:
v SET OutputRoot.XMLNS.Data.Result = EVAL(A+B);

The expression A+B is acceptable because, although it returns an integer value,
integer values are representable as character strings, and the necessary cast is
performed before EVAL continues with its second stage of evaluation.

v SET OutputRoot.XMLNS.Data.Result = EVAL(’A’ || operatorAsString ||
’B’);

v EVAL(’SET ’ || scalarVar1 || ’ = 2;’);

The semicolon included at the end of the final string literal is necessary, because
if EVAL is being used in place of an ESQL statement, its first stage evaluation
must return a string that represents a valid ESQL statement, including the
terminating semicolon.

Variables declared in an EVAL statement do not exist outside that EVAL statement.

The real power of EVAL is that it allows you to dynamically construct ESQL
statements or expressions. In the second and third examples above, the value of
scalarVar1 or operatorAsString can be set according to the value of an incoming
message field, or other dynamic value, allowing you to effectively control what
ESQL is processed without requiring a potentially lengthy IF-THEN ladder.

However, consider the performance implications in using EVAL. Dynamic
construction and processing of statements or expressions is necessarily more
time-consuming than simply processing pre-constructed ones. If performance is
vital, you might prefer to write more specific, but faster, ESQL.

The following are not valid uses of EVAL:
v SET EVAL(scalarVar1) = 2;

In this example, EVAL is being used to replace a field reference, not an
expression.

v SET OutputRoot.XMLNS.Data.Result[] = EVAL((SELECT T.x FROM Database.y AS
T));

In this example, the (SELECT T.x FROM Database.y) passed to EVAL returns a
list, which is not representable as a character string.

The following example is acceptable because (SELECT T.x FROM Database.y AS T)
is a character string literal, not an expression in itself, and therefore is
representable as a character string.
SET OutputRoot.XMLNS.Data.Result[]
= EVAL(’(SELECT T.x FROM Database.y AS T)’);

5132 WebSphere Message Broker Version 7.0.0.8

Functions that are referenced only in an EVAL statement, and not in the rest of the
ESQL module, might not be included in the BAR file. In the following examples,
the function MyFunction must be referenced somewhere else in the ESQL module,
otherwise the BAR file might fail to deploy.
EVAL(’CALL MyFunction(parm1, parm2);’);

DECLARE functionName CHARACTER ’Function’;
DECLARE callStmt CHARACTER ’CALL My’ || functionName || ’(parm1, parm2);’;
EVAL(callStmt);

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“EVAL function” on page 5294
The EVAL function takes a character value and interprets that value as an ESQL
expression that returns a value.

FOR statement:

The FOR statement iterates through a list (for example, a message array).

Syntax

►► FOR correlation_name AS field_reference DO statements END FOR ►◄

For each iteration, the FOR statement makes the correlation variable
(correlation_name in the syntax diagram) equal to the current member of the list
(field_reference), then executes the block of statements. The advantage of the FOR
statement is that it iterates through a list without your having to write any sort of
loop construct (and eliminates the possibility of infinite loops).

For example the following ESQL:
SET OutputRoot.MQMD=InputRoot.MQMD;

SET Environment.SourceData.Folder[1].Field1 = ’Field11Value’;
SET Environment.SourceData.Folder[1].Field2 = ’Field12Value’;
SET Environment.SourceData.Folder[2].Field1 = ’Field21Value’;
SET Environment.SourceData.Folder[2].Field2 = ’Field22Value’;

DECLARE i INTEGER 1;
FOR source AS Environment.SourceData.Folder[] DO

CREATE LASTCHILD OF OutputRoot.XMLNSC.Data.ResultData.MessageArrayTest.Folder[i]
NAME ’FieldA’ VALUE ’\’ || source.Field1 || ’\’ || CAST(i AS CHAR);

Chapter 14. Reference 5133

CREATE LASTCHILD OF OutputRoot.XMLNSC.Data.ResultData.MessageArrayTest.Folder[i]
NAME ’FieldB’ VALUE ’\’ || source.Field2 || ’\’ || CAST(i AS CHAR);

SET i = i + 1;
END FOR;

generates the output message:
<Data>
<ResultData>
<MessageArrayTest>
<Folder>
<FieldA>Field11Value\1</FieldA>
<FieldB>Field12Value\1</FieldB>
</Folder>
<Folder>
<FieldA>Field21Value\2</FieldA>
<FieldB>Field22Value\2</FieldB>
</Folder>
</MessageArrayTest>
</ResultData>
</Data>

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

IF statement:

The IF statement executes one set of statements based on the result of evaluating
condition expressions.

Syntax

►► IF ▼

ELSEIF

expression THEN statements
ELSE statements

END IF ►◄

Each expression is evaluated in turn until one results in TRUE; the corresponding
set of statements is then executed. If none of the expressions returns TRUE, and
the optional ELSE clause is present, the ELSE clause's statements are executed.

5134 WebSphere Message Broker Version 7.0.0.8

UNKNOWN and FALSE are treated the same: the next condition expression is
evaluated. ELSEIF is one word with no space between the ELSE and the IF.
However, you can nest an IF statement within an ELSE clause: if you do, you can
terminate both statements with END IF.

Example
IF i = 0 THEN

SET size = ’small’;
ELSEIF i = 1 THEN

SET size = ’medium’;
ELSEIF j = 4 THEN

SET size = ’large’;
ELSE

SET size = ’unknown’;
END IF;

IF J> MAX THEN
SET J = MAX;
SET Limit = TRUE;

END IF;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Accessing elements in the message body” on page 2420
When you want to access the contents of a message, for reading or writing, use the
structure and arrangement of the elements in the tree that is created by the parser
from the input bit stream.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

INSERT statement:

The INSERT statement inserts a row into a database table.

Chapter 14. Reference 5135

Syntax

►► INSERT INTO TableReference

▼

,

(ColumnName)

►

► ▼

,

VALUES (Expression) ►◄

WHERE:

TableReference = Database ►

►
. SchemaClause

. DataSourceClause

. TableClause

DataSourceClause = DataSourceName
{ DataSourceExpression }

SchemaClause = SchemaName
{ SchemaExpression }

TableClause = TableName
{ TableExpression }

A single row is inserted into the table identified by TableReference. The ColumnName
list identifies those columns in the target table that are to be given specific values.
These values are determined by the expressions within the VALUES clause (the
first expression gives the value of the first named column, and so on). The number
of expressions in the VALUES clause must be the same as the number of named
columns. Any columns present in the table but not mentioned in the list are given
their default values.

Table reference

A table reference is a special case of the field references that are used to refer to
message trees. It always starts with the word “Database” and can contain any of
the following elements:
v A table name only
v A schema name and a table name
v A data source name (that is, the name of a database instance), a schema name,

and a table name

In each case, the name can be specified directly or by an expression enclosed in
braces ({...}). A directly-specified data source, schema, or table name is subject to

5136 WebSphere Message Broker Version 7.0.0.8

name substitution. That is, if the name used has been declared to be a known
name, the value of the declared name is used rather than the name itself (see
“DECLARE statement” on page 5117).

If a schema name is not specified, the default schema for the broker's database user
is used.

If a data source name is not specified, the database pointed to by the node's data
source attribute is used.

Handling errors

Errors can occur during insert operations. For example, the database might not be
operational, or the table might have constraints defined that the new row would
violate. In these cases, an exception is thrown, unless you have cleared the node
property Throw Exception on Database Error. These exceptions set appropriate
values for the following items, and can be dealt with by error handlers (see the
DECLARE HANDLER statement):
v SQL code
v State
v Native error
v Error text

For further information about handling database errors, see “Capturing database
state” on page 2512.

Examples

The following example assumes that the Data Source property of the Database
node has been configured, and that the database it identifies has a table called
TABLE1 with columns A, B, and C.

Given a message with the following generic XML body:
<A>
1
<C>2</C>
<D>3</D>

The following INSERT statement inserts a new row into the table with the values
1, 2, and 3 for the columns A, B, and C:
INSERT INTO Database.TABLE1(A, B, C) VALUES (Body.A.B, Body.A.C, Body.A.D);

The next example shows the use of calculated data source, schema, and table
names:
-- Declare variables to hold the data source, schema, and table names
-- and set their default values
DECLARE Source CHARACTER ’Production’;
DECLARE Schema CHARACTER ’db2admin’;
DECLARE Table CHARACTER ’DynamicTable1’;

-- Code which calculates their actual values comes here

-- Insert the data into the table
INSERT INTO Database.{Source}.{Schema}.{Table} (Name, Value) values (’Joe’, 12.34);

Inserting a bit stream into a database

Chapter 14. Reference 5137

If the database column into which you want to insert data is set to a binary data
type such as BLOB, the input message must be represented in bitstream form. If
the input message is in the BLOB domain, use the following ESQL code:
DECLARE msgBitStream BLOB InputRoot.BLOB.BLOB;
INSERT INTO Database.TABLE1(MSGDATA) VALUES (msgBitStream);

Alternatively, if the input message is in an XML domain such as XMLNS, then the
message tree must be serialized before the INSERT statement. To serialize the
message tree and insert the contents into the database, use the following ESQL
code:
DECLARE propRef REFERENCE TO InputRoot.Properties;
DECLARE msgBitStream BLOB ASBITSTREAM(InputRoot.XMLNS, propRef.Encoding, propRef.CodedCharSetId);
INSERT INTO Database.TABLE1(MSGDATA) VALUES (msgBitStream);

If the input messages received by your message flow come from different code
pages, the CodedCharSetID and Encoding information is lost if you use the previous
example. To capture CodedCharSetID and Encoding information, you can extend the
table with two numeric columns to store the CodedCharSetID and Encoding data. To
extend the table, modify the ESQL from the previous example to insert the
CodedCharSetID and Encoding data into separate database columns:
DECLARE propRef REFERENCE TO InputRoot.Properties;
DECLARE inCCSID INT propRef.CodedCharSetId;
DECLARE inEncoding INT propRef.Encoding;
DECLARE msgBitStream BLOB ASBITSTREAM(InputRoot.XMLNS, inEncoding, inCCSID);
INSERT INTO Database.TABLE1(MSGDATA, MSGENCODING, MSGCCSID) VALUES
(msgBitStream, inEncoding, inCCSID);

As an extension to the previous example, if you require the entire message to be
stored along with its MQMD header, and use it later for reconstructing the entire
message in another message flow on a different platform using a different code
page and encoding, the database table can be extended to hold all the numeric
fields of the MQMD header.

For example, a message flow running on AIX inserts a message bit stream into the
database table and another message flow running on Windows retrieves it and
attempts to reconstruct the message along with the stored MQMD header.

The following set of numeric fields are contained in the MQMD header:
BackoutCount (MQLONG)
CodedCharSetId (MQLONG)
Encoding (MQLONG)
Expiry (MQLONG)
Feedback (MQLONG)
MsgFlags (MQLONG)
MsgSeqNumber (MQLONG)
MsgType (MQLONG)
Offset (MQLONG)
OriginalLength (MQLONG)
Persistence (MQLONG)
Priority (MQLONG)
PutApplType (MQLONG)
Report (MQLONG)
Version (MQLONG)

The following example uses CodedCharSetID, Encoding, Priority, and
MsgSeqNumber:

DECLARE propRef REFERENCE TO InputRoot.Properties;
DECLARE mqmdRef REFERENCE TO InputRoot.MQMD;
DECLARE inCCSID INT propRef.CodedCharSetId;

5138 WebSphere Message Broker Version 7.0.0.8

DECLARE inEncoding INT propRef.Encoding;

DECLARE inPriority INT mqmdRef.Priority;
DECLARE inMsgSeqNumber INT mqmdRef.MsgSeqNumber;

DECLARE msgBitStream BLOB ASBITSTREAM(InputRoot, inEncoding, inCCSID);

INSERT INTO Database.TABLE1(MSGDATA, MSGENCODING, MSGCCSID, MSGPRIORITY,MSGSEQNUMBER)
VALUES (msgBitStream, inEncoding, inCCSID, inPriority, inMsgSeqNumber);

If you want to insert an XML message into a database column that has a CHAR or
VARCHAR data type, the ESQL must be modified to convert the input message to
the CHAR data type before the INSERT statement. In the following example, a CAST
is used to transform the serialized message to the CHAR data type. The
CodedCharSetID and Encoding data are inserted into separate database columns.

DECLARE propRef REFERENCE TO InputRoot.Properties;
DECLARE inCCSID INT propRef.CodedCharSetId;
DECLARE inEncoding INT propRef.Encoding;
DECLARE msgBitStream BLOB ASBITSTREAM(InputRoot.XMLNS, inEncoding, inCCSID);
DECLARE msgChar CHAR CAST(msgBitStream AS CHAR CCSID inCCSID);
INSERT INTO Database.TABLE1(MSGDATA, MSGENCODING, MSGCCSID) VALUES (msgChar, inEncoding, inCCSID);

For examples of how to extract a message bit stream from a database, based on the
two previous examples, see “Selecting bitstream data from a database” on page
2493.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Capturing database state” on page 2512
If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

ITERATE statement:

The ITERATE statement stops the current iteration of the containing WHILE,
REPEAT, LOOP, or BEGIN statement identified by Label.

The containing statement evaluates its loop condition (if any), and either starts the
next iteration or stops looping, as the condition dictates.

Chapter 14. Reference 5139

Syntax

►► ITERATE Label ►◄

Example

In the following example, the loop iterates four times; that is the line identified by
the comment Some statements 1 is passed through four times. However, the line
identified by the comment Some statements 2 is passed through twice only because
of the action of the IF and ITERATE statements. The ITERATE statement does not
bypass testing the loop condition. Take particular care that the action of the
ITERATE does not bypass the logic that makes the loop advance and eventually
terminate. The loop count is incremented at the start of the loop in this example:
DECLARE i INTEGER;
SET i = 0;
X : REPEAT

SET i = i + 1;

-- Some statements 1

IF i IN(2, 3) THEN
ITERATE X;

END IF;

-- Some statements 2

UNTIL
i>= 4

END REPEAT X;

ITERATE statements do not have to be directly contained by their labelled
statement, making ITERATE statements particularly powerful.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

LEAVE statement:

The LEAVE statement stops the current iteration of the containing WHILE,
REPEAT, LOOP, or BEGIN statement identified by Label.

5140 WebSphere Message Broker Version 7.0.0.8

The containing statement's evaluation of its loop condition (if any) is bypassed and
looping stops.

Syntax

►► LEAVE Label ►◄

Examples

In the following example, the loop iterates four times:
DECLARE i INTEGER;
SET i = 1;
X : REPEAT

...
IF i>= 4 THEN
LEAVE X;

END IF;

SET i = i + 1;
UNTIL

FALSE
END REPEAT;

LEAVE statements do not have to be directly contained by their labelled statement,
making LEAVE statements particularly powerful.
DECLARE i INTEGER;
SET i = 0;
X : REPEAT -- Outer loop

...
DECLARE j INTEGER;
SET j = 0;
REPEAT -- Inner loop
...
IF i>= 2 AND j = 1 THEN

LEAVE X; -- Outer loop left from within inner loop
END IF;
...
SET j = j + 1;

UNTIL
j>= 3

END REPEAT;

SET i = i + 1;
UNTIL

i>= 3
END REPEAT X;

-- Execution resumes here after the leave

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.

Chapter 14. Reference 5141

Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

LOG statement:

Use the LOG statement to write a record to the event log or to the user trace.

Syntax

►►

▼

LOG EVENT
USER TRACE EXCEPTION Options ,

FULL
VALUES (Expression)

►◄

WHERE:

Options =
SEVERITY Expression CATALOG Expression MESSAGE Expression

CATALOG
CATALOG is an optional clause; if you omit it, CATALOG defaults to the
WebSphere Message Broker current version catalog. To use the current version
message catalog explicitly, use BIPmsgs on all operating systems.

EVENT
A record is written to the event log, and also to the user trace, if user tracing is
enabled.

EXCEPTION
The current exception, if any, is logged.

For more information on exceptions, see “Errors and exception handling” on
page 2973.

FULL
The complete nested exception report is logged, just as if the exception had
reached the input node. If FULL is not specified, any wrapping exceptions are
ignored, and only the original exception is logged. Therefore, you can have
either a full report or simply the actual error report without the extra
information regarding what was going on at the time. A current exception only
exists within handler blocks (see “Handling errors in message flows” on page
2823).

MESSAGE
The number of the message to be used. If specified, the MESSAGE clause can
contain any expression that returns a non-NULL, integer, value.

If you omit MESSAGE, its value defaults to the first message number (2951) in
a block of messages that is provided for use by the LOG and THROW
statements in the WebSphere Message Broker catalog. If you specify a message
number, you can use message numbers 2951 through 2999. Alternatively, you
can generate your own catalog.

5142 WebSphere Message Broker Version 7.0.0.8

SEVERITY
The severity associated with the message. If specified, the SEVERITY clause
can contain any expression that returns a non-NULL, integer, value. If you
omit the clause, its value defaults to 1.

USER TRACE
A record is written to the user trace, whether user trace is enabled or not.

VALUES
Use the optional VALUES clause to provide values for the data inserts in your
message. You can insert any number of pieces of information, but the messages
supplied (2951 - 2999) cater for a maximum of ten data inserts.

Note the general similarity of the LOG statement to the THROW statement.
-- Write a message to the event log specifying the severity, catalog and message
-- number. Four inserts are provided
LOG EVENT SEVERITY 1 CATALOG ’BIPmsgs’ MESSAGE 2951 VALUES(1,2,3,4);

-- Write to the trace log whenever a divide by zero occurs
BEGIN
DECLARE a INT 42;
DECLARE b INT 0;
DECLARE r INT;

BEGIN
DECLARE EXIT HANDLER FOR SQLSTATE LIKE ’S22012’ BEGIN
LOG USER TRACE EXCEPTION VALUES(SQLSTATE, ’DivideByZero’);

SET r = 0x7FFFFFFFFFFFFFFFF;
END;

SET r = a / b;
END;

SET OutputRoot.XMLNS.Data.Result = r;
END;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“RETURN statement” on page 5155
The RETURN statement ends processing. What happens next depends on the
programming context in which the RETURN statement is issued.
“THROW statement” on page 5161
Use the THROW statement to generate a user exception.
“Example message” on page 5311

Chapter 14. Reference 5143

LOOP statement:

The LOOP statement executes the sequence of statements repeatedly and
unconditionally.

Ensure that the logic of the program provides some means of terminating the loop.
You can use either LEAVE or RETURN statements.

Syntax

►► LOOP statements END LOOP
Label : LOOP statements END LOOP Label

►◄

If present, Label gives the statement a name. This has no effect on the behavior of
the LOOP statement, but allows statements to include ITERATE and LEAVE
statements or other labelled statements, which in turn include ITERATE and
LEAVE. The second Label can be present only if the first Label is present and, if it
is, the labels must be identical.

Two or more labelled statements at the same level can have the same Label but this
partly negates the advantage of the second Label. The advantage is that it
unambiguously and accurately matches each END with its LOOP. However, a
labelled statement within statements cannot have the same label, because this
makes the behavior of the ITERATE and LEAVE statements ambiguous.

The LOOP statement is useful in cases where the required logic dictates that a loop
is always exited part way through. This is because, in these cases, the testing of a
loop condition that occurs in REPEAT or WHILE statements is both unnecessary
and wasteful.

Example
DECLARE i INTEGER;
SET i = 1;
X : LOOP

...
IF i>= 4 THEN
LEAVE X;

END IF;
SET i = i + 1;

END LOOP X;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677

5144 WebSphere Message Broker Version 7.0.0.8

“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

MOVE statement:

The MOVE statement changes the field to which the Target reference variable
points.

Syntax

►► MOVE Target TO SourceFieldReference
PARENT
FIRSTCHILD NAME clauses
LASTCHILD
PREVIOUSSIBLING
NEXTSIBLING

►◄

NAME clauses:

TYPE Expression NAMESPACE Expression NAME Expression
*

IDENTITY PathElement
(1)

REPEAT TYPE
NAME
TYPE-NAME

Notes:

1 The RepeatClause can be used only with the PREVIOUSSIBLING and
NEXTSIBLING qualifiers.

If you include a TO clause, this clause changes the target reference to point to the
same entity as that pointed to by source; this can either be a message field or a
declared variable.

If you include a PARENT, PREVIOUSSIBLING, NEXTSIBLING, FIRSTCHILD, or
LASTCHILD clause, the MOVE statement attempts to move the target reference
variable in the direction specified relative to its current position. If any field exists
in the given direction, the move succeeds. If there is no such field, the move fails;
that is the reference variable continues to point to the same field or variable as
before, and the LASTMOVE function returns false. You can use the LASTMOVE
function to determine the success or failure of a move.

If a TYPE clause, NAME clause, or both are present, the target is again moved in
the direction specified (PREVIOUSSIBLING or NEXTSIBLING, or FIRSTCHILD or
LASTCHILD) but to a field with the given type, name, or both. This is particularly
useful when the name or type (or both) of the target field is known, because this
reduces the number of MOVE statements required to navigate to a field. This is
because fields that do not match the criteria are skipped over; this can also include
unexpected message tree fields, for example, those representing white space.

Chapter 14. Reference 5145

If the specified move cannot be made (that is, a field with the given type or name
does not exist), the target remains unchanged and the LASTMOVE function returns
false. The TYPE clause, NAME clause, or both clauses can contain any expression
that returns a value of a suitable data type (INTEGER for type and CHARACTER
for name). An exception is thrown if the value supplied is NULL.

Two further clauses, NAMESPACE and IDENTITY enhance the functionality of the
NAME clause.

The NAMESPACE clause takes any expression that returns a non-null value of
type character. It also takes an * indicating any namespace. Note that this cannot
be confused with an expression because * is not a unary operator in ESQL.

The meaning depends on the presence of NAME and NAMESPACE clauses as
follows:

NAMESPACE NAME Element located by...

No No Type, index, or both

No Yes Name in the default namespace

* Yes Name

Yes No Namespace

Yes Yes Name and namespace

The IDENTITY clause takes a single path element in place of the TYPE,
NAMESPACE, and NAME clauses and follows all the rules described in the topic
for field references (see “ESQL field reference overview” on page 5049).

When using MOVE with PREVIOUSSIBLING or NEXTSIBLING, you can specify
REPEAT, TYPE, and NAME keywords that move the target to the previous or next
field with the same type and name as the current field. The REPEAT keyword is
particularly useful when moving to a sibling of the same kind, because you do not
have to write expressions to define the type and name.

Example
MOVE cursor FIRSTCHILD TYPE Name NAME ’Field1’;

This example moves the reference variable cursor to the first child field of the field
to which the cursor is currently pointing, that has the type Name and the name
Field1.

See “FIELDTYPE function” on page 5231 for a list of the types you can use.

The MOVE statement never creates new fields.

A common usage of the MOVE statement is to step from one instance of a
repeating structure to the next. The fields within the structure can then be accessed
by using a relative field reference. For example:
WHILE LASTMOVE(sourceCursor) DO

SET targetCursor.ItemNumber = sourceCursor.item;
SET targetCursor.Description = sourceCursor.name;
SET targetCursor.Price = sourceCursor.prc;
SET targetCursor.Tax = sourceCursor.prc * 0.175;

5146 WebSphere Message Broker Version 7.0.0.8

SET targetCursor.quantity = 1;
CREATE NEXTSIBLING OF targetCursor AS targetCursor REPEAT;
MOVE sourceCursor NEXTSIBLING REPEAT TYPE NAME;

END WHILE;

For more information about reference variables, and an example of moving a
reference variable, see “Creating dynamic field references” on page 2431.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Creating dynamic field references” on page 2431
You can use a variable of type REFERENCE as a dynamic reference to navigate a
message tree. This acts in a similar way to a message cursor or a variable pointer.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“FIELDTYPE function” on page 5231
The FIELDTYPE field function returns the type of a given field.
“LASTMOVE function” on page 5237

PASSTHRU statement:

The PASSTHRU statement evaluates an expression and runs the resulting character
string as a database statement.

Chapter 14. Reference 5147

►► PASSTHRU ►

►

▼

▼

Expression
TO DatabaseReference ,

VALUES (Expression)
(1)

(Expression)
,

, Expression

►◄

WHERE:

DatabaseReference = Database . DataSourceClause

Notes:

1 The lower half of the main syntax diagram (the second of the two ways of
coding the Expression to be passed to PASSTHRU) describes syntax
retained for backward compatability.

Usage

The main use of the PASSTHRU statement is to issue administrative commands to
databases (for example, to create a table).

Note: Do not use PASSTHRU to call stored procedures; instead, use the CALL
statement because PASSTHRU imposes limitations (you cannot use output
parameters, for example).

The first expression is evaluated and the resulting character string is passed to the
database pointed to by DatabaseReference (in the TO clause) for execution. If the TO
clause is not specified, the database pointed to by the node's data source attribute
is used.

Use question marks (?) in the database string to denote parameters. The parameter
values are supplied by the VALUES clause.

If the VALUES clause is specified, its expressions are evaluated and passed to the
database as parameters; (that is, the expressions' values are substituted for the
question marks in the database statement).

If only one VALUE expression exists, the result might or might not be a list. If it is
a list, the list's scalar values are substituted sequentially for the question marks. If
it is not a list, the single scalar value is substituted for the (single) question mark
in the database statement. If more than one VALUE expression exists, none of the
expressions evaluate to a list; their scalar values are substituted sequentially for the
question marks instead.

Because the database statement is constructed by the user program, it is not
essential to use parameter markers (that is, the question marks) or the VALUES
clause, because the whole of the database statement could be supplied, as a literal
string, by the program. However, use parameter markers whenever possible
because this reduces the number of different statements that need to be prepared
and stored in the database and the broker.

5148 WebSphere Message Broker Version 7.0.0.8

Database reference

A database reference is a special instance of the field references that is used to refer
to message trees. It consists of the word Database followed by the name of a data
source (that is, the name of a database instance).

You can specify the data source name directly or by an expression enclosed in
braces ({...}). A directly-specified data source name is subject to name substitution.
That is, if the name used has been declared to be a known name, the value of the
declared name is used rather than the name itself (see “DECLARE statement” on
page 5117).

If you have created a message flow that contains one of the following nodes, and
the ESQL that is associated with this node includes a PASSTHRU statement and a
database reference, you must specify a value for the Data source property of the
relevant node:
v Compute
v Database
v Filter

Handling errors

It is possible for errors to occur during PASSTHRU operations. For example, the
database might not be operational or the statement might be invalid. In these
cases, an exception is thrown (unless the node has its Throw exception on
database error property cleared). These exceptions set appropriate SQL code,
state, native error, and error text values and can be dealt with by error handlers
(see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database
state” on page 2512.

Examples

The following example creates the table Customers in schema Shop in database
DSN1:
PASSTHRU ’CREATE TABLE Shop.Customers (

CustomerNumber INTEGER,
FirstName VARCHAR(256),
LastName VARCHAR(256),
Street VARCHAR(256),
City VARCHAR(256),
Country VARCHAR(256)

)’ TO Database.DSN1;

If, as in the last example, the ESQL statement is specified as a string literal, you
must put single quotation marks around it. If, however, it is specified as a variable,
omit the quotation marks. For example:
SET myVar = ’SELECT * FROM user1.stocktable’;
SET OutputRoot.XMLNS.Data[] = PASSTHRU(myVar);

The following example “drops” (that is, deletes) the table Customers from schema
Shop in database DSN1:
PASSTHRU ’DROP TABLE Shop.Customers’ TO Database.DSN1;

Chapter 14. Reference 5149

PROPAGATE statement:

The PROPAGATE statement propagates a message to the downstream nodes.

Syntax

►► PROPAGATE
TO TERMINAL TerminalExpression MessageSources Controls

LABEL LabelExpression

►◄

WHERE:

MessageSources =
ENVIRONMENT Expression MESSAGE Expression EXCEPTION Expression

Controls =
FINALIZE DEFAULT DELETE DEFAULT

NONE NONE

You can use the PROPAGATE statement in Compute and Database nodes, but not
in Filter nodes. The additions to this statement assist in error handling - see
“Coding ESQL to handle errors” on page 2506.

TO TERMINAL clause
If the TO TERMINAL clause is present, TerminalExpression is evaluated. If the
result is of type CHARACTER, a message is propagated to a terminal
according to the rule:
’nowhere’ : no propagation
’failure’ : Failure
’out’ : Out
’out1’ : Out1
’out2’ : Out2
’out3’ : Out3
’out4’ : Out4

Tip: Terminal names are case sensitive so, for example, Out1 does not match
any terminal.

If the result of TerminalExpression is of type INTEGER, a message is propagated
to a terminal according to the rule:
-2 : no propagation
-1 : Failure
0 : Out
1 : Out1
2 : Out2
3 : Out3
4 : Out4

If the result of TerminalExpression is neither a CHARACTER nor an INTEGER,
the broker throws an exception.

If there is neither a TO TERMINAL nor a TO LABEL clause, the broker
propagates a message to the Out terminal.

5150 WebSphere Message Broker Version 7.0.0.8

Tip: Using character values in terminal expressions leads to the most natural
and readable code. Integer values, however, are easier to manipulate in loops
and marginally faster.

TO LABEL clause
If the TO LABEL clause is present, LabelExpression is evaluated. If the result is
of type CHARACTER and there is a Label node with a Label property that
matches LabelExpression, in the same flow, the broker propagates a message to
that node.

Tip: Labels, like terminals, are case sensitive. Also, note that, as with route to
Label nodes, it is the Label Name property of the Label node that defines the
target, not the node's label itself.

If the result of LabelExpression is NULL or not of type CHARACTER, or there is
no matching Label node in the flow, the broker throws an exception.

If there is neither a TO TERMINAL nor a TO LABEL clause, the broker
propagates a message to the out terminal.

MessageSources clauses

The MessageSources clauses select the message trees to be propagated. This
clause is only applicable to the Compute node (it has no effect in the Database
node).

The values that you can specify in MessageSources clauses are:
ENVIRONMENT :

InputLocalEnvironment
OutputLocalEnvironment

Message :
InputRoot
OutputRoot

ExceptionList :
InputExceptionList
OutputExceptionList

If there is no MessageSources clause, the node's Compute mode property is
used to determine which messages are propagated.

FINALIZE clause
Finalization is a process that fixes header chains and makes the Properties
folder match the headers. If present, the FINALIZE clause allows finalization to
be controlled.

This clause is only applicable to the Compute node (it has no effect in a
Database node).

The Compute node allows its output message to be changed by other nodes
(by the other nodes changing their input message). However, a message
created by a Compute node cannot be changed by another node after:
v It has been finalized
v It has reached any output or other node which generates a bit-stream

If FINALIZE is set to DEFAULT, or the FINALIZE clause is absent, the output
message (but not the Environment, Local Environment or Exception List) is
finalized before propagation.

If FINALIZE is set to NONE, no finalization takes place. This option is
required if you want to preserve and allow updates of the entire output

Chapter 14. Reference 5151

message tree by the nodes downstream in the message flow and is used with
DELETE NONE as described in the next section.

DELETE clause
The DELETE clause allows the clearing of the output local environment,
message, and exception list to be controlled.

The DELETE clause is only applicable to the Compute node (it has no effect in
a Database node).

If DELETE is set to DEFAULT, or the DELETE clause is absent, the output local
environment, message, and exception list are all cleared and their memory
recovered immediately after propagation.

If DELETE is set to NONE, nothing is cleared. Use DELETE NONE if you
want the downstream nodes to be able to see a single instance of output local
environment message, and exception list trees. Each propagate starts with the
content of these trees as created by the previous propagate rather than starting
with empty trees. If you also want these nodes to update the output tree,
DELETE NONE must be used with the FINALIZE NONE option described in
the previous section.

Note that the output trees that are finalized are cleared, regardless of which
ones are propagated.

Propagation is a synchronous process. That is, the next statement is not executed
until all the processing of the message in downstream nodes has completed. Be
aware that this processing might throw exceptions and, if these exceptions are not
caught, they will prevent the statement following the PROPAGATE call being
reached. This behavior might be what the logic of your flow requires but, if it is
not, you can use a handler to catch the exception and perform the necessary
actions. Note that exceptions thrown downstream of a propagate, if not caught,
will also prevent the final automatic actions of a Compute or Database node (for
example, issuing a COMMIT Transaction set to Commit) from taking place.

If you are using the PROPAGATE statement in your node it is important that you
use a RETURN FALSE; to prevent automatic propagation of the message to the next
node in the message flow.
DECLARE i INTEGER 1;
DECLARE count INTEGER;
SET count = CARDINALITY(InputRoot.XMLNS.Invoice.Purchases."Item"[])

WHILE i <= count DO
--use the default tooling-generated procedure for copying message headers
CALL CopyMessageHeaders();
SET OutputRoot.XMLNS.BookSold.Item = InputRoot.XMLNS.Invoice.Purchases.Item[i];
PROPAGATE;
SET i = i+1;

END WHILE;
RETURN FALSE;

The following messages are produced on the Out terminal by the PROPAGATE
statement:
<BookSold>
<Item>
<Title Category="Computer" Form="Paperback" Edition="2">The XML Companion </Title>
<ISBN>0201674866</ISBN>
<Author>Neil Bradley</Author>
<Publisher>Addison-Wesley</Publisher>
<PublishDate>October 1999</PublishDate>

5152 WebSphere Message Broker Version 7.0.0.8

<UnitPrice>27.95</UnitPrice>
<Quantity>2</Quantity>
</Item>
</BookSold>

<BookSold>
<Item>
<Title Category="Computer" Form="Paperback" Edition="2">A Complete Guide to
DB2 Universal Database</Title>
<ISBN>1558604820</ISBN>
<Author>Don Chamberlin</Author>
<Publisher>Morgan Kaufmann Publishers</Publisher>
<PublishDate>April 1998</PublishDate>
<UnitPrice>42.95</UnitPrice>
<Quantity>1</Quantity>
</Item>
</BookSold>

<BookSold>
<Item>
<Title Category="Computer" Form="Hardcover" Edition="0">JAVA 2 Developers
Handbook</Title>
<ISBN>0782121799</ISBN>
<Author>Phillip Heller, Simon Roberts </Author>
<Publisher>Sybex, Inc.</Publisher>
<PublishDate>September 1998</PublishDate> <UnitPrice>59.99</UnitPrice>
<Quantity>1</Quantity>
</Item>
</BookSold>

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Coding ESQL to handle errors” on page 2506
When you process messages in a message flow, errors can have a number of
different causes and the message flow designer must decide how to handle those
errors.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Generating multiple output messages” on page 2437
You can use the PROPAGATE statement to generate multiple output messages in
the Compute node. The output messages that you generate can have the same or
different content. You can also direct output messages to any of the four alternate
output terminals of the Compute node, or to a Label node.
“Committing database updates” on page 2501
When you create a message flow that interacts with databases, you can choose
whether the updates that you make are committed when the current node has
completed processing, or when the current invocation of the message flow has
terminated.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“RETURN statement” on page 5155
The RETURN statement ends processing. What happens next depends on the

Chapter 14. Reference 5153

programming context in which the RETURN statement is issued.
“Example message” on page 5311

REPEAT statement:

The REPEAT statement processes a sequence of statements, then evaluates the
condition expression.

Syntax

►► RepeatUntil
Label : RepeatUntil Label

►◄

RepeatUntil:

REPEAT statements UNTIL condition END REPEAT

The REPEAT statement repeats the steps until condition is TRUE. Ensure that the
logic of the program is such that the loop terminates. If the condition evaluates to
UNKNOWN, the loop does not terminate.

If present, the Label gives the statement a name. This has no effect on the behavior
of the REPEAT statement, but allows statements to include ITERATE and LEAVE
statements or other labelled statements, which in turn include ITERATE and
LEAVE. The second Label can be present only if the first Label is present and, if it
is, the labels must be identical. Two or more labelled statements at the same level
can have the same label, but this partly negates the advantage of the second Label.
The advantage is that it unambiguously and accurately matches each END with its
REPEAT. However, a labelled statement within statements cannot have the same
label because this makes the behavior of the ITERATE and LEAVE statements
ambiguous.

Example
DECLARE i INTEGER;
SET i = 1;
X : REPEAT

...
SET i = i + 1;

UNTIL
i>= 3

END REPEAT X;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:

5154 WebSphere Message Broker Version 7.0.0.8

“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

RESIGNAL statement:

The RESIGNAL statement rethrows the current exception, if one exists.

Syntax

►► RESIGNAL ►◄

You can use RESIGNAL only in error handlers.

Typically, RESIGNAL is used when an error handler catches an exception that it
cannot handle. The handler uses RESIGNAL to rethrow the original exception so
that a handler in higher-level scope has the opportunity to handle it.

Because the handler throws the original exception, rather than a new (and
therefore different) one:
1. The higher-level handler is not affected by the presence of the lower-level

handler.
2. If no higher-level handler is present, you get a full error report in the event log.

Example
RESIGNAL;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“DECLARE HANDLER statement” on page 5124
The DECLARE HANDLER statement creates an error handler for handling
exceptions.
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

RETURN statement:

The RETURN statement ends processing. What happens next depends on the
programming context in which the RETURN statement is issued.

Chapter 14. Reference 5155

Syntax

►► RETURN
expression

►◄

Main Function

When used in the Main function, the RETURN statement stops processing of the
module and returns control to the next node in a message flow. In the Main
function the return statement must contain an expression of BOOLEAN type. The
behavior of the RETURN statement in the Main function is dependant on the node.
In the Compute node for example, if expression is anything other than TRUE,
propagation of the message is stopped. In the Filter node, however, the message is
propagated to the terminal matching the value of expression: TRUE, FALSE and
UNKNOWN. The following table describes the differences between the RETURN
statement when used in the Main function of the Compute, Filter, and Database
nodes.

Node RETURN TRUE;
RETURN
FALSE;

RETURN
UNKNOWN (if
BOOLEAN
type) or
RETURN NULL; RETURN;

Compute Propagate
message to Out
terminal.

Stop propagation Stop propagation Deploy failure
(BIP2912E: Type
mismatch on
RETURN)

Database Propagate
message to Out
terminal.

Stop propagation Stop propagation Deploy failure
(BIP2912E: Type
mismatch on
RETURN)

Filter Propagate
message to True
terminal

Propagate
message to False
terminal

Propagate
message to
Unknown
terminal

Deploy failure
(BIP2912E: Type
mismatch on
RETURN)

User defined functions and procedures

When used in a function or a procedure, the RETURN statement stops processing
of that function and returns control to the calling expression. The expression, which
must be present if the function or procedure has been declared with a RETURNS
clause, is evaluated and acts as the return value of the function. The data type of
the returned value must be the same as that in the function's declaration. The
following table describes the differences between the RETURN statement when
used in user defined functions and procedures.

5156 WebSphere Message Broker Version 7.0.0.8

RETURN
expression;

RETURN NULL;
(or return
expression that
evaluates to
NULL) RETURN;

No RETURN
statement

User defined
function or
procedure with a
RETURNS
clause

Returns control
to the calling
expression with
the value of
expression

Returns control
to the calling
expression with
NULL

Deploy failure
(BIP2912E: Type
mismatch on
RETURN)

Returns control
to the calling
expression with
NULL after all
the statements in
the function or
procedure have
been run

User defined
function or
procedure
without a
RETURNS
clause

Deploy failure
(BIP2401E:
Syntax error:
expected ; but
found expression)

Deploy failure
(BIP2401E:
Syntax error:
expected ; but
found NULL)

Returns control
to the calling
expression

Returns control
to the calling
expression after
all the
statements in the
function or
procedure have
been run

The RETURN statement must be used within the body of a function or procedure
that has the RETURNS statement in its declaration. This function can be invoked
using the CALL ... INTO statement. The RETURNS statement provides the
datatype that the function or procedure returns to the “CALL statement” on page
5077. The CALL ... INTO statement specifies the variable to which the return value
is assigned. The example in this topic shows an example of how a RETURNS and
CALL ... INTO statement are used together to assign the return statement. If you
use the CALL ... INTO statement to call a function or procedure that does not have
a RETURNS statement declared, a BIP2912E error message is generated.

Example

The following example, which is based on “Example message” on page 5311,
illustrates how the RETURN, RETURNS and CALL...INTO statements can be used:
CREATE FILTER MODULE ProcessOrder
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

DECLARE SpecialOrder BOOLEAN;
SET OutputRoot.MQMD = InputRoot.MQMD;
CALL IsBulkOrder(InputRoot.XMLNS.Invoice.Purchases) INTO SpecialOrder;

--
-- more processing could be inserted here
-- before routing the order to the appropriate terminal
--
RETURN SpecialOrder;

END;

CREATE FUNCTION IsBulkOrder (P1 REFERENCE)
RETURNS BOOLEAN

BEGIN
-- Declare and initialize variables--
DECLARE a INT 1;
DECLARE PriceTotal FLOAT 0.0;
DECLARE NumItems INT 0;

Chapter 14. Reference 5157

DECLARE iroot REFERENCE TO P1;

-- Calculate value of order, however if this is a bulk purchase, the --
-- order will need to be handled differently (discount given) so return TRUE --
-- or FALSE depending on the size of the order --
WHILE a <= CARDINALITY(iroot.Item[]) DO

SET NumItems = NumItems + iroot.Item[a].Quantity;
SET PriceTotal = PriceTotal + iroot.Item[a].UnitPrice;
SET a = a + 1;

END WHILE;
RETURN (PriceTotal/NumItems> 42);

END;

END MODULE;

In the example, if the average price of items is greater than 42, TRUE is returned;
otherwise FALSE is returned. Thus, a Filter node could route messages describing
expensive items down a different path from messages describing inexpensive
items. From the example, the CALL
IsBulkOrder(InputRoot.XMLNS.Invoice.Purchases) INTO SpecialOrder; statement
can also be written as SpecialOrder =
IsBulkOrder(InputRoot.XMLNS.Invoice.Purchases);

If you are using the PROPAGATE statement in your node it is important that you
use a RETURN FALSE; to prevent automatic propagation of the message to the next
node in the message flow. See “PROPAGATE statement” on page 5150 for an
example of preventing the implicit propagate at the end of processing in a
Compute node.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Using the CALL statement to call a user-written routine” on page 2623
The ESQL CALL statement calls routines that have been created and implemented
in different ways.
Related reference:
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.
“CREATE FUNCTION statement” on page 5091
The CREATE FUNCTION statement defines a callable function or procedure.
“Compute node” on page 4340
Use the Compute node to construct one or more new output messages.
“Filter node” on page 4452
Use the Filter node to route a message according to message content.
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

5158 WebSphere Message Broker Version 7.0.0.8

“PROPAGATE statement” on page 5150
The PROPAGATE statement propagates a message to the downstream nodes.
“Example message” on page 5311

SET statement:

The SET statement assigns a value to a variable.

Syntax

►► SET TargetFieldReference = SourceExpression
TYPE
NAMESPACE
NAME
VALUE

►◄

Introduction

TargetFieldReference identifies the target of the assignment. The target can be any of
the following:
v A declared scalar variable
v A declared row variable
v One of the predefined row variables (for example, InputRoot)
v A field within any kind of row variable (that is, a sub tree or conceptual row)
v A list of fields within any kind of row variable (that is, a conceptual list)
v A declared reference variable that points to any of the above

The target cannot be any kind of database entity.

SourceExpression is an expression that supplies the value to be assigned. It can be
any kind of expression and can return a scalar, row or list value.

Assignment to scalar variables

If the target is a declared scalar variable, SourceExpression is evaluated and assigned
to the variable. If need be, its value is converted to the data type of the variable. If
this conversion is not possible, there will be either an error at deploy time or an
exception at run time.

Null values are handled in exactly the same way as any other value. That is, if the
expression evaluates to null, the value “null” is assigned to the variable.

For scalar variables the TYPE, NAME, NAMESPACE, and VALUE clauses are
meaningless and are not allowed.

Assignment to rows, lists, and fields

If the target is a declared row variable, one of the predefined row variables, a field
within any kind of row variable, a list of fields within any kind of row variable, or
a declared reference variable that points to any of these things, the ultimate target
is a field. In these cases, the target field is navigated to (creating the fields if
necessary).

Chapter 14. Reference 5159

If array indices are used in TargetFieldReference, the navigation to the target field
can only create fields on the direct path from the root to the target field. For
example, the following SET statement requires that at least one instance of
Structure already exists in the message:
SET OutputRoot.XMLNS.Message.Structure[2].Field = ...

The target field's value is set according to a set of rules, based on:
1. The presence or absence of the TYPE, NAME, NAMESPACE, or VALUE clauses
2. The data type returned by the source expression
1. If no TYPE, NAME, NAMESPACE, or VALUE clause is present (which is the

most common case) the outcome depends on whether SourceExpression
evaluates to a scalar, a row, or a list:
v If SourceExpression evaluates to a scalar, the value of the target field is set to

the value returned by SourceExpression, except that, if the result is null, the
target field is discarded. Note that the new value of the field might not be of
the same data type as its previous value.

v If SourceExpression evaluates to a row:
a. The target field is identified.
b. The target field's value is set.
c. The target field's child fields are replaced by a new set, dictated by the

structure and content of the list.
v If SourceExpression evaluates to a list:

a. The set of target fields in the target tree are identified.
b. If there are too few target fields, more are created; if there are too many,

the extra ones are removed.
c. The target fields' values are set.
d. The target fields' child fields are replaced by a new set, dictated by the

structure and content of the list.
For further information on working with elements of type list see “Working
with elements of type list” on page 2448

2. If a TYPE clause is present, the type of the target field is set to the value
returned by SourceExpression. An exception is thrown if the returned value is
not scalar, is not of type INTEGER, or is NULL.

3. If a NAMESPACE clause is present, the namespace of the target field is set to
the value returned by SourceExpression. An exception is thrown if the returned
value is not scalar, is not of type CHARACTER, or is NULL.

4. If a NAME clause is present, the name of the target field is set to the value
returned by SourceExpression. An exception is thrown if the returned value is
not scalar, is not of type CHARACTER, or is NULL.

5. If a VALUE clause is present, the value of the target field is changed to that
returned by SourceExpression. An exception is thrown if the returned value is
not scalar.

Notes

SET statements are particularly useful in Compute nodes that modify a message,
either changing a field or adding a new field to the original message. SET
statements are also useful in Filter and Database nodes, to set declared variables or
the fields in the Environment tree or Local Environment trees. You can use
statements such as the following in a Compute node that modifies a message:
SET OutputRoot = InputRoot;
SET OutputRoot.XMLNS.Order.Name = UPPER(InputRoot.XMLNS.Order.Name);

5160 WebSphere Message Broker Version 7.0.0.8

This example puts one field in the message into uppercase. The first statement
constructs an output message that is a complete copy of the input message. The
second statement sets the value of the Order.Name field to a new value, as defined
by the expression on the right.

If the Order.Name field does not exist in the original input message, it does not
exist in the output message generated by the first statement. The expression on the
right of the second statement returns NULL (because the field referenced inside the
UPPER function call does not exist). Assigning the NULL value to a field has the
effect of deleting it if it already exists, and so the effect is that the second statement
has no effect.

If you want to assign a NULL value to a field without deleting the field, use a
statement like this:
SET OutputRoot.XMLNS.Order.Name VALUE = NULL;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Accessing elements in the message body” on page 2420
When you want to access the contents of a message, for reading or writing, use the
structure and arrangement of the elements in the tree that is created by the parser
from the input bit stream.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

THROW statement:

Use the THROW statement to generate a user exception.

Syntax

►► THROW
USER

EXCEPTION
SEVERITY expression

►

►
CATALOG catalog name MESSAGE message number

►

►

▼

,

VALUES (expression)

►◄

Chapter 14. Reference 5161

The USER keyword indicates the type of exception being thrown. (Currently, only
USER exceptions are supported, and if you omit the USER keyword the exception
defaults to a USER exception anyway.) Specify the USER keyword, even though it
currently has no effect, for the following reasons:
v If future broker releases support other types of exception, and the default type

changes, your code will not need to be changed.
v It makes it clear that this is a user exception.

SEVERITY is an optional clause that determines the severity associated with the
exception. The clause can contain any expression that returns a non-NULL, integer
value. If you omit the clause, it defaults to 1.

On Windows you must set SEVERITY to 3, so that the Windows event log reports
the error correctly.

CATALOG is an optional clause; if you omit it, CATALOG defaults to the
WebSphere Message Broker current version catalog. To use the current version
message catalog explicitly, use BIPmsgs on all operating systems.

MESSAGE is an optional clause; if you omit it, it defaults to the first message
number of the block of messages provided for using THROW statements in the
default catalog (2951). If you enter a message number in the THROW statement,
you can use message numbers 2951 to 2999 from the default catalog. Alternatively,
you can generate your own catalog by following the instructions in “Creating
message catalogs” on page 3138.

Use the optional VALUES field to insert data into your message. You can insert
any number of pieces of information, but the messages supplied (2951 - 2999) cater
for eight inserts only.

Examples

Here are some examples of how you might use a THROW statement:
v

THROW USER EXCEPTION;
v

THROW USER EXCEPTION CATALOG ’BIPmsgs’ MESSAGE
2951 VALUES(1,2,3,4,5,6,7,8) ;

v
THROW USER EXCEPTION CATALOG ’BIPmsgs’ MESSAGE
2951 VALUES(’The SQL State: ’,

SQLSTATE, ’The SQL Code: ’, SQLCODE, ’The SQLNATIVEERROR: ’, SQLNATIVEERROR,
’The SQL Error Text: ’, SQLERRORTEXT) ;

v
THROW USER EXCEPTION CATALOG ’BIPmsgs’ MESSAGE
2951 ;

v
THROW USER EXCEPTION CATALOG ’MyCatalog’ MESSAGE
2951 VALUES(’Hello World’) ;

v THROW USER EXCEPTION MESSAGE
2951 VALUES(’Insert text 1’, ’Insert text 2’) ;

For more information about how to throw an exception, and details of SQLSTATE,
SQLCODE, SQLNATIVEERROR, and SQLERRORTEXT, see “ESQL database state functions”
on page 5168.
Related concepts:

5162 WebSphere Message Broker Version 7.0.0.8

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Throwing an exception” on page 2511
If you detect an error or other situation in your message flow in which you want
message processing to be ended, you can throw an exception in a message flow in
two ways.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“ESQL database state functions” on page 5168

UPDATE statement:

The UPDATE statement changes the values of specified columns, in selected rows,
in a table in an external database.

Chapter 14. Reference 5163

Syntax

►► UPDATE TableReference
AS CorrelationName

►

► ▼

,

SET Column = Expression
WHERE Expression

►◄

WHERE:

TableReference = Database ►

►
. SchemaClause

. DataSourceClause

. TableClause

DataSourceClause = DataSourceName
{ DataSourceExpression }

SchemaClause = SchemaName
{ SchemaExpression }

TableClause = TableName
{ TableExpression }

All rows for which the WHERE clause expression evaluates to TRUE are updated
in the table identified by TableReference. Each row is examined in turn and a
variable is set to point to the current row. Typically, the WHERE clause expression
uses this variable to access column values and thus cause rows to be updated, or
retained unchanged, according to their contents. The variable is referred to by
CorrelationName or, in the absence of an AS clause, by TableName. When a row has
been selected for updating, each column named in the SET clause is given a new
value as determined by the corresponding expression. These expressions can, if
you want, refer to the current row variable.

Table reference

A table reference is a special case of the field references that are used to refer to
message trees. It always starts with the word “Database” and can contain any of
the following elements:
v A table name only
v A schema name and a table name
v A data source name (that is, the name of a database instance), a schema name,

and a table name

5164 WebSphere Message Broker Version 7.0.0.8

In each case, the name can be specified directly or by an expression enclosed in
braces ({...}). A directly-specified data source, schema, or table name is subject to
name substitution. That is, if the name used has been declared to be a known
name, the value of the declared name is used rather than the name itself (see
“DECLARE statement” on page 5117).

If a schema name is not specified, the default schema for the broker's database user
is used.

If a data source name is not specified, the database pointed to by the node's data
source attribute is used.

The WHERE clause

The WHERE clause expression can use any of the broker's operators and functions
in any combination. It can refer to table columns, message fields, and any declared
variables or constants.

However, be aware that the broker treats the WHERE clause expression by
examining the expression and deciding whether the whole expression can be
evaluated by the database. If it can, it is given to the database. In order to be
evaluated by the database, it must use only those functions and operators
supported by the database.

The WHERE clause can, however, refer to message fields, correlation names
declared by containing SELECT functions, and to any other declared variables or
constants within scope.

If the whole expression cannot be evaluated by the database, the broker looks for
top-level AND operators and examines each sub-expression separately. It then
attempts to give the database those sub-expressions that it can evaluate, leaving
the broker to evaluate the rest. You need to be aware of this situation for two
reasons:
1. Apparently trivial changes to WHERE clause expressions can have large effects

on performance. You can determine how much of the expression was given to
the database by examining a user trace.

2. Some databases' functions exhibit subtle differences of behavior from those of
the broker.

Handling errors

It is possible for errors to occur during update operations. For example, the
database might not be operational, or the table might have constraints defined that
the new values would violate. In these cases, an exception is thrown (unless the
node has its throw exception on database error property set to FALSE). These
exceptions set appropriate SQL code, state, native error, and error text values and
can be dealt with by error handlers (see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database
state” on page 2512.

Examples

The following example assumes that the dataSource property of the Database node
has been configured, and that the database it identifies has a table called

Chapter 14. Reference 5165

STOCKPRICES, with columns called COMPANY and PRICES. It updates the
PRICE column of the rows in the STOCKPRICES table whose COMPANY column
matches the value given in the Company field in the message.
UPDATE Database.StockPrices AS SP
SET PRICE = InputBody.Message.StockPrice
WHERE SP.COMPANY = InputBody.Message.Company

In the following example (which make similar assumptions), the SET clause
expression refers to the existing value of a column and thus decrements the value
by an amount in the message:
UPDATE Database.INVENTORY AS INV
SET QUANTITY = INV.QUANTITY - InputBody.Message.QuantitySold
WHERE INV.ITEMNUMBER = InputBody.Message.ItemNumber

The following example updates multiple columns:
UPDATE Database.table AS T
SET column1 = T.column1+1,

column2 = T.column2+2;

Note that the column names (on the left of the "=") are single identifiers. They
must not be qualified with a table name or correlation name. In contrast, the
references to database columns in the expressions (to the right of the "=") must be
qualified with the correlation name.

The next example shows the use of calculated data source, schema, and table
names:
-- Declare variables to hold the data source, schema and table names
-- and set their default values
DECLARE Source CHARACTER ’Production’;
DECLARE Schema CHARACTER ’db2admin’;
DECLARE Table CHARACTER ’DynamicTable1’;
-- Code which calculates their actual values comes here

-- Update rows in the table
UPDATE Database.{Source}.{Schema}.{Table} AS R SET Value = 0;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Capturing database state” on page 2512
If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

5166 WebSphere Message Broker Version 7.0.0.8

WHILE statement:

The WHILE statement evaluates a condition expression, and if it is TRUE executes
a sequence of statements.

Syntax

►► While
Label : While

Label

►◄

While:

WHILE condition DO statements END WHILE

The WHILE statement repeats the steps specified in DO provided that condition is
TRUE. It is your responsibility to ensure that the logic of the program is such that
the loop terminates. If condition evaluates to UNKNOWN, the loop terminates
immediately.

If present, Label gives the statement a name. This has no effect on the behavior of
the WHILE statement itself, but allows statements to include ITERATE and LEAVE
statements or other labelled statements, which in turn include them. The second
Label can be present only if the first Label is present and if it is, the labels must be
identical. It is not an error for two or more labelled statements at the same level to
have the same Label, but this partly negates the advantage of the second Label. The
advantage is that it unambiguously and accurately matches each END with its
WHILE. However, it is an error for a labelled statement within statements to have
the same label, because this makes the behavior of the ITERATE and LEAVE
statements ambiguous.

Example

For example:
DECLARE i INTEGER;
SET i = 1;
X : WHILE i <= 3 DO

...
SET i = i + 1;
END WHILE X;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Creating dynamic field references” on page 2431
You can use a variable of type REFERENCE as a dynamic reference to navigate a

Chapter 14. Reference 5167

message tree. This acts in a similar way to a message cursor or a variable pointer.
Related reference:
“Syntax diagrams” on page 3677
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.

ESQL functions:

The following types of function are available.
v “Calling ESQL functions”
v “ESQL database state functions”
v “ESQL datetime functions” on page 5176
v “ESQL numeric functions” on page 5183
v “ESQL string manipulation functions” on page 5205
v “ESQL field functions” on page 5224
v “ESQL list functions” on page 5238
v “Complex ESQL functions” on page 5242
v “Miscellaneous ESQL functions” on page 5290
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.

Calling ESQL functions:

Most ESQL functions belong to a schema called SQL and this is particularly useful
if you have functions with the same name.

For example, if you have created a function called SQRT, you can code:
/* call my SQRT function */

SET Variable1=SQRT (4);

/* call the SQL supplied function */

SET Variable2=SQL.SQRT (144);

Most of the functions described in this section impose restrictions on the data
types of the arguments that can be passed to the function. If the values passed to
the functions do not match the required data types, errors are generated at node
configuration time whenever possible. Otherwise runtime errors are generated
when the function is evaluated.

ESQL database state functions:
ESQL provides four functions to return database state. These are:
v “SQLCODE function” on page 5169
v “SQLERRORTEXT function” on page 5170

5168 WebSphere Message Broker Version 7.0.0.8

v “SQLNATIVEERROR function” on page 5171
v “SQLSTATE function” on page 5173
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Capturing database state” on page 2512
If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.

SQLCODE function:

SQLCODE is a database state function that returns an INTEGER data type with a
default value of 0 (zero).

Syntax

►► SQLCODE ►◄

Within a message flow, you can access and update an external database resource
using the available ESQL database functions in the Filter, Database, and Compute
nodes. When making calls to an external database, you might get errors, such as a
table does not exist, a database is not available, or an insert for a key that already
exists.

When these errors occur, the default action of the broker is to generate an
exception. This behavior is determined by how you have set the property Throw
exception on database error. If this check box is selected, the broker stops
processing the node, propagates the message to the node's failure terminal, and
writes the details of the error to the ExceptionList. If you want to override the
default behavior and handle a database error in the ESQL in the node, clear the
Throw exception on database error check box. The broker does not throw an
exception and you must include the THROW statement to throw an exception if a
certain SQL state code is not expected. See “THROW statement” on page 5161 for a
description of THROW.

Chapter 14. Reference 5169

If you choose to handle database errors in a node, you can use the database state
function SQLCODE to receive information about the status of the DBMS call made
in ESQL. You can include it in conditional statements in current node's ESQL to
recognize and handle possible errors.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Capturing database state” on page 2512
If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.
Related reference:
“SQLERRORTEXT function”
SQLERRORTEXT is a database state function that returns a CHARACTER data
type with a default value of '' (empty string).
“SQLNATIVEERROR function” on page 5171
SQLNATIVEERROR is a database state function that returns an INTEGER data
type with a default value of 0 (zero).
“SQLSTATE function” on page 5173
SQLSTATE is a database state function that returns a 5 character data type of
CHARACTER with a default value of '00000' (five zeros as a string).

SQLERRORTEXT function:

SQLERRORTEXT is a database state function that returns a CHARACTER data
type with a default value of '' (empty string).

Syntax

►► SQLERRORTEXT ►◄

Within a message flow, you can access and update an external database resource
using the available ESQL database functions in the Filter, Database, and Compute
nodes. When making calls to an external database, you might get errors, such as a
table does not exist, a database is not available, or an insert for a key that already
exists.

5170 WebSphere Message Broker Version 7.0.0.8

When these errors occur, the default action of the broker is to generate an
exception. This behavior is determined by how you have set the property Throw
exception on database error. If you have selected this check box, the broker stops
processing the node, propagates the message to the node's failure terminal, and
writes the details of the error to the ExceptionList. If you want to override the
default behavior and handle a database error in the ESQL in the node, clear the
Throw exception on database error check box. The broker does not throw an
exception and you must include the THROW statement to throw an exception if a
certain SQL state code is not expected. See “THROW statement” on page 5161 for a
description of THROW.

If you choose to handle database errors in a node, you can use the database state
function SQLERRORTEXT to receive information about the status of the DBMS call
made in ESQL. You can include it in conditional statements in current node's ESQL
to recognize and handle possible errors.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Capturing database state” on page 2512
If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.
Related reference:
“SQLCODE function” on page 5169
SQLCODE is a database state function that returns an INTEGER data type with a
default value of 0 (zero).
“SQLNATIVEERROR function”
SQLNATIVEERROR is a database state function that returns an INTEGER data
type with a default value of 0 (zero).
“SQLSTATE function” on page 5173
SQLSTATE is a database state function that returns a 5 character data type of
CHARACTER with a default value of '00000' (five zeros as a string).

SQLNATIVEERROR function:

SQLNATIVEERROR is a database state function that returns an INTEGER data
type with a default value of 0 (zero).

Chapter 14. Reference 5171

Syntax

►► SQLNATIVEERROR ►◄

Within a message flow, you can access and update an external database resource
using the available ESQL database functions in the Filter, Database, and Compute
nodes. When making calls to an external database, you might get errors, such as a
table does not exist, a database is not available, or an insert for a key that already
exists.

When these errors occur, the default action of the broker is to generate an
exception. This behavior is determined by how you have set the property Throw
exception on database error. If you have selected this check box, the broker stops
processing the node, propagates the message to the node's failure terminal, and
writes the details of the error to the ExceptionList. If you want to override the
default behavior and handle a database error in the ESQL in the node, clear the
Throw exception on database error check box. The broker does not throw an
exception and you must include the THROW statement to throw an exception if a
certain SQL state code is not expected. See “THROW statement” on page 5161 for a
description of THROW.

If you choose to handle database errors in a node, you can use the database state
function SQLNATIVEERROR to receive information about the status of the DBMS
call made in ESQL. You can include it in conditional statements in current node's
ESQL to recognize and handle possible errors.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Capturing database state” on page 2512
If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.
Related reference:
“SQLCODE function” on page 5169
SQLCODE is a database state function that returns an INTEGER data type with a
default value of 0 (zero).
“SQLERRORTEXT function” on page 5170
SQLERRORTEXT is a database state function that returns a CHARACTER data

5172 WebSphere Message Broker Version 7.0.0.8

type with a default value of '' (empty string).
“SQLSTATE function”
SQLSTATE is a database state function that returns a 5 character data type of
CHARACTER with a default value of '00000' (five zeros as a string).

SQLSTATE function:

SQLSTATE is a database state function that returns a 5 character data type of
CHARACTER with a default value of '00000' (five zeros as a string).

Syntax

►► SQLSTATE ►◄

Within a message flow, you can access and update an external database resource
using the available ESQL database functions in the Compute, Database, and Filter
nodes. When making calls to an external database, you might get errors, such as a
table does not exist, a database is not available, or an insert for a key that already
exists.

When these errors occur, the default action of the broker is to generate an
exception. This behavior is determined by how you have set the property Throw
exception on database error. If you select this property, the broker stops
processing the node, propagates the message to the node's failure terminal, and
writes the details of the error to the ExceptionList. If you want to override the
default behavior and handle a database error in the ESQL in the node, clear Throw
exception on database error. The broker does not throw an exception and you
must include the THROW statement to throw an exception if a certain SQL state
code is not expected. See “THROW statement” on page 5161 for a description of
THROW.

To handle database errors in a node, you can use the database state function
SQLSTATE to receive information about the status of the DBMS call made in ESQL.
You can include it in conditional statements in current node's ESQL to recognize
and handle possible errors.

SQL states

In ESQL, SQL states are variable length character strings. By convention, they are
six characters long and contain only the characters 0-9, A-Z . The significance of
the six characters is:
Char 1

The origin of the exception
Chars 2 - 3

The class of the exception
Chars 4 - 6

The subclass of the exception

The SQL state of an exception is determined by a two stage process. In the first
stage, the exception information is examined and any wrapping exceptions (that is,

Chapter 14. Reference 5173

information that says what the broker was doing at the time the exception
occurred) is stepped over until the exception that describes the original error is
located.

The second stage is as follows:
1. If the selected exception is a database exception, the SQL state is that supplied

by the database, but prefixed by the letter “D” to avoid any confusion with
exceptions arising in the broker. The SQL code, native error, and error text are
those supplied by the database.

2. If the selected exception is a user exception (that is, it originated in a THROW
statement), the SQL code, state, native error, and error text are taken from the
first four inserts of the exception, in order. The resulting state value is taken as
is (not prefixed by a letter such as “U”). The letter “U” is not used by the
broker as an origin indicator. If you want to define a unique SQL state rather
than to imitate an existing one, use SQL states starting with the letter “U”. If
you use SQL states that start with the letter “U”, you can write an error
handler to match all user-defined and thrown exceptions with a LIKE'U%'
operator.

3. If the selected exception originated in the message transport or in the ESQL
implementation itself, the SQL code, state, native error, and error text are as
described in the list later in this section.

4. For all other exceptions, the SQL state is '', indicating no origin, no class, and
no subclass.

Some exceptions that currently give an empty SQL state might give individual
states in future releases. If you want to catch unclassified exceptions, use the “all”
wildcard (“%”) for the SQL state on the last handler of a scope. This wildcard will
continue to catch the same set of exceptions if previously unclassified exceptions
are given new unique SQL states.

The following SQL states are defined:

Dddddd
ddddd is the state returned by the database.

SqlState = 'S22003'
Arithmetic overflow. An operation whose result is a numeric type resulted in a
value beyond the range supported.

SqlState = 'S22007'
Date time format not valid. A character string used in a cast from character to
a datetime type had either the wrong basic format (for example, '01947-10-24')
or had values outside the ranges allowed by the Gregorian calendar (for
example, '1947-21-24').

SqlState = 'S22008'
Date time field overflow. An operation whose result is a datetime type resulted
in a value beyond the range supported.

SqlState = 'S22012'
Divide by zero. A divide operation whose result data type has no concept of
infinity had a zero right operand.

SqlState = 'S22015'
Interval field overflow. An operation whose result is of type INTERVAL
resulted in a value beyond the range supported by the INTERVAL data type.

5174 WebSphere Message Broker Version 7.0.0.8

SqlState = 'S22018'
Character value for cast not valid.

SqlState = 'SFN001'
A SELECT function used in an IN predicate returned more than one column
when only one column is allowed in this case.

SqlState = 'SPS001'
Target terminal not valid. A PROPAGATE to terminal statement attempted to
use a terminal name that is not valid.

SqlState = 'SPS002'
Target label not valid. A PROPAGATE to label statement attempted to use a
label that is not valid.

SqlState = 'SPS003'
PROPAGATE statement not valid in this context. Use the RETURN function
instead.

SqlState = 'MQW001', SqlNativeError = 0
The bit stream does not meet the requirements for WebSphere MQ messages.
No attempt was made to put it to a queue. Retrying and queue administration
does not resolve this problem.

SqlState = 'MQW002', SqlNativeError = 0
The target queue or queue manager names were not valid (that is, they could
not be converted from Unicode to the queue manager's code page). Retrying
and queue emptying does not resolve this problem.

SqlState = 'MQW003', SqlNativeError = 0
Request mode was specified but the “reply to” queue or queue manager names
were not valid (that is, could not be converted from Unicode to the message's
code page). Retrying and queue emptying does not resolve this problem.

SqlState = 'MQW004', SqlNativeError = 0
Reply mode was specified but the queue or queue manager names taken from
the message were not valid (that is, they could not be converted from the
given code page to Unicode). Retrying and queue emptying does not resolve
this problem.

SqlState = 'MQW005', SqlNativeError = 0
Destination list mode was specified but the destination list supplied does not
meet the basic requirements for destination lists. No attempt was made to put
any message to a queue. Retrying and queue administration does not resolve
this problem.

SqlState = 'MQW101', SqlNativeError = returned by WebSphere MQ
The target queue manager or queue could not be opened. Queue
administration might resolve this problem but retrying does not.

SqlState = 'MQW102', SqlNativeError = returned by WebSphere MQ
The target queue manager or queue could not be written to. Retrying and
queue administration might resolve this problem.

SqlState = 'MQW201', SqlNativeError = number of destinations with an error
More than one error occurred while processing a destination list. The message
might have been put to zero or more queues. Retrying and queue
administration might resolve this problem.

Anything that the user has used in a THROW statement
Use Uuuuuuu for user exceptions, unless imitating one of the exceptions defined
above.

Chapter 14. Reference 5175

Empty string
All other errors.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Capturing database state” on page 2512
If an error occurs when the broker accesses an external database, you can either let
the broker throw an exception during node processing or use ESQL statements to
process the exception within the node itself.
Related reference:
“SQLCODE function” on page 5169
SQLCODE is a database state function that returns an INTEGER data type with a
default value of 0 (zero).
“SQLERRORTEXT function” on page 5170
SQLERRORTEXT is a database state function that returns a CHARACTER data
type with a default value of '' (empty string).
“SQLNATIVEERROR function” on page 5171
SQLNATIVEERROR is a database state function that returns an INTEGER data
type with a default value of 0 (zero).

ESQL datetime functions:
This topic lists the ESQL datetime functions.

In addition to the functions described here, you can use arithmetic operators to
perform various calculations on datetime values. For example, you can use the -
(minus) operator to calculate the difference between two dates as an interval, or
you can add an interval to a timestamp.

This section covers the following topics:

“EXTRACT function” on page 5177

“CURRENT_DATE function” on page 5179

“CURRENT_TIME function” on page 5179

“CURRENT_TIMESTAMP function” on page 5180

“CURRENT_GMTDATE function” on page 5180

“CURRENT_GMTTIME function” on page 5181

“CURRENT_GMTTIMESTAMP function” on page 5182

“LOCAL_TIMEZONE function” on page 5182

5176 WebSphere Message Broker Version 7.0.0.8

EXTRACT function:

The EXTRACT function extracts fields (or calculates values) from datetime values
and intervals.

The result is INTEGER for YEAR, MONTH, DAY, HOUR, MINUTE, DAYS,
DAYOFYEAR, DAYOFWEEK, MONTHS, QUARTEROFYEAR, QUARTERS,
WEEKS, WEEKOFYEAR, and WEEKOFMONTH extracts, but FLOAT for SECOND
extracts, and BOOLEAN for ISLEAPYEAR extracts. If the SourceDate is NULL, the
result is NULL regardless of the type of extract.

Syntax

►► EXTRACT (YEAR FROM SourceDate)
MONTH
DAY
HOUR
MINUTE
SECOND
DAYS
DAYOFYEAR
DAYOFWEEK
MONTHS
QUARTEROFYEAR
QUARTERS
WEEKS
WEEKOFYEAR
WEEKOFMONTH
ISLEAPYEAR

►◄

EXTRACT extracts individual fields from datetime values and intervals. You can
extract a field only if it is present in the datetime value specified in the second
parameter. Either a parse-time or a runtime error is generated if the requested field
does not exist within the data type.

The following table describes the extracts that are supported:

Note: All new integer values start from 1.

Table 263.

Extract Description

YEAR Year

MONTH Month

DAY Day

HOUR Hour

MINUTE Minute

SECOND Second

DAYS Days encountered between 1st January 0001
and the SourceDate.

DAYOFYEAR Day of year

Chapter 14. Reference 5177

Table 263. (continued)

Extract Description

DAYOFWEEK Day of the week: Sunday = 1, Monday = 2,
Tuesday = 3, Wednesday = 4, Thursday = 5,
Friday = 6, Saturday = 7.

MONTHS Months encountered between 1st January
0001 and the SourceDate.

QUARTEROFYEAR Quarter of year: January to March = 1, April
to June = 2, July to September = 3, October
to December = 4.

QUARTERS Quarters encountered between 1st January
0001 and the SourceDate.

WEEKS Weeks encountered between 1st January
0001 and the SourceDate.

WEEKOFYEAR Week of year

WEEKOFMONTH Week of month

ISLEAPYEAR Whether this is a leap year

Notes:

1. A week is defined as Sunday to Saturday, not any seven consecutive days. You
must convert to an alternative representation scheme if required.

2. The source date time epoch is 1 January 0001. Dates before the epoch are not
valid for this function.

3. The Gregorian calendar is assumed for calculation.

Example
EXTRACT(YEAR FROM CURRENT_DATE)

and
EXTRACT(HOUR FROM LOCAL_TIMEZONE)

both work without error, but
EXTRACT(DAY FROM CURRENT_TIME)

fails.
EXTRACT (DAYS FROM DATE ’2000-02-29’)

calculates the number of days encountered since year 1 to ’2000-02-29’ and
EXTRACT (DAYOFYEAR FROM CURRENT_DATE)

calculates the number of days encountered since the beginning of the current year
but
EXTRACT (DAYOFYEAR FROM CURRENT_TIME)

fails because CURRENT_TIME does not contain date information.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.

5178 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL datetime functions” on page 5176

CURRENT_DATE function:
The CURRENT_DATE datetime function returns the current date.

Syntax

►► CURRENT_DATE ►◄

CURRENT_DATE returns a DATE value representing the current date in local time.
As with all SQL functions that take no parameters, no parentheses are required or
accepted. All calls to CURRENT_DATE within the processing of one node are
guaranteed to return the same value.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL datetime functions” on page 5176

CURRENT_TIME function:
The CURRENT_TIME datetime function returns the current local time.

Syntax

►► CURRENT_TIME ►◄

CURRENT_TIME returns a TIME value representing the current local time. As
with all SQL functions that take no parameters, no parentheses are required or
accepted. All calls to CURRENT_TIME within the processing of one node are
guaranteed to return the same value.
Related concepts:

Chapter 14. Reference 5179

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL datetime functions” on page 5176

CURRENT_TIMESTAMP function:
The CURRENT_TIMESTAMP datetime function returns the current date and local
time.

Syntax

►► CURRENT_TIMESTAMP ►◄

CURRENT_TIMESTAMP returns a TIMESTAMP value representing the current
date and local time. As with all SQL functions that take no parameters, no
parentheses are required or accepted. All calls to CURRENT_TIMESTAMP within
the processing of one node are guaranteed to return the same value.

Example

To obtain the following XML output message:
<Body>
<Message>Hello World</Message>
<DateStamp>2006-02-01 13:13:56.444730</DateStamp>
</Body>

use the following ESQL:
SET OutputRoot.XMLNS.Body.Message = ’Hello World’;
SET OutputRoot.XMLNS.Body.DateStamp = CURRENT_TIMESTAMP;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL datetime functions” on page 5176

CURRENT_GMTDATE function:

5180 WebSphere Message Broker Version 7.0.0.8

The CURRENT_GMTDATE datetime function returns the current date in the GMT
time zone.

Syntax

►► CURRENT_GMTDATE ►◄

CURRENT_GMTDATE returns a DATE value representing the current date in the
GMT time zone. As with all SQL functions that take no parameters, no parentheses
are required or accepted. All calls to CURRENT_GMTDATE within the processing
of one node are guaranteed to return the same value.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL datetime functions” on page 5176

CURRENT_GMTTIME function:
The CURRENT_GMTTIME datetime function returns the current time in the GMT
time zone.

Syntax

►► CURRENT_GMTTIME ►◄

It returns a GMTTIME value representing the current time in the GMT time zone.
As with all SQL functions that take no parameters, no parentheses are required or
accepted. All calls to CURRENT_GMTTIME within the processing of one node are
guaranteed to return the same value.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.

Chapter 14. Reference 5181

Related reference:
“Syntax diagrams” on page 3677
“ESQL datetime functions” on page 5176

CURRENT_GMTTIMESTAMP function:

The CURRENT_GMTTIMESTAMP datetime function returns the current date and
time in the GMT time zone.

Syntax

►► CURRENT_GMTTIMESTAMP ►◄

CURRENT_GMTTIMESTAMP returns a GMTTIMESTAMP value representing the
current date and time in the GMT time zone. As with all SQL functions that take
no parameters, no parentheses are required or accepted. All calls to
CURRENT_GMTTIMESTAMP within the processing of one node are guaranteed to
return the same value.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL datetime functions” on page 5176

LOCAL_TIMEZONE function:

The LOCAL_TIMEZONE datetime function returns the displacement of the local
time zone from GMT.

Syntax

►► LOCAL_TIMEZONE ►◄

LOCAL_TIMEZONE returns an interval value representing the local time zone
displacement from GMT. As with all SQL functions that take no parameters, no
parentheses are required or accepted. The value returned is an interval in hours
and minutes representing the displacement of the current time zone from
Greenwich Mean Time.

5182 WebSphere Message Broker Version 7.0.0.8

The sign of the interval is such that a local time can be converted to a time in GMT
by subtracting the result of the LOCAL_TIMEZONE function. However, for
calculations involving GMTTIMEs and GMTTIMESTAMPs, ESQL performs this
transformation automatically.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL datetime functions” on page 5176

ESQL numeric functions:

A list of the numeric functions that ESQL supports.

This topic covers the following:

“ABS and ABSVAL functions” on page 5184

“ACOS function” on page 5185

“ASIN function” on page 5185

“ATAN function” on page 5186

“ATAN2 function” on page 5186

“BITAND function” on page 5187

“BITNOT function” on page 5187

“BITOR function” on page 5188

“BITXOR function” on page 5189

“CEIL and CEILING functions” on page 5190

“COS function” on page 5190

“COSH function” on page 5191

“COT function” on page 5192

“DEGREES function” on page 5192

“EXP function” on page 5193

“FLOOR function” on page 5193

“LN and LOG functions” on page 5194

“LOG10 function” on page 5195

“MOD function” on page 5195

“POWER function” on page 5196

“RADIANS function” on page 5196

Chapter 14. Reference 5183

“RAND function” on page 5197

“ROUND function” on page 5198

“SIGN function” on page 5201

“SIN function” on page 5202

“SINH function” on page 5202

“SQRT function” on page 5203

“TAN function” on page 5203

“TANH function” on page 5204

“TRUNCATE function” on page 5205

ABS and ABSVAL functions:
The ABS and ABSVAL numeric functions return the absolute value of a supplied
number.

Syntax

►► ABS (source_number)
ABSVAL

►◄

The absolute value of the source number is a number with the same magnitude as
the source but without a sign. The parameter must be a numeric value. The result
is of the same type as the parameter unless it is NULL, in which case the result is
NULL.

For example:
ABS(-3.7)

returns 3.7
ABS(3.7)

returns 3.7
ABS(1024)

returns 1024
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677

5184 WebSphere Message Broker Version 7.0.0.8

“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

ACOS function:
The ACOS numeric function returns the angle of a given cosine.

Syntax

►► ACOS (NumericExpression) ►◄

The ACOS function returns the angle, in radians, whose cosine is the given
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

ASIN function:
The ASIN numeric function returns the angle of the given sine.

Syntax

►► ASIN (NumericExpression) ►◄

The ASIN function returns the angle, in radians, whose sine is the given
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.

Chapter 14. Reference 5185

Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

ATAN function:
The ATAN numeric function returns the angle of the given tangent.

Syntax

►► ATAN (NumericExpression) ►◄

The ATAN function returns the angle, in radians, whose tangent is the given
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

ATAN2 function:
The ATAN2 numeric function returns the angle subtended in a right angled
triangle between an opposite and the base.

Syntax

►► ATAN2 (OppositeNumericExpression , BaseNumericExpression) ►◄

The ATAN2 function returns the angle, in radians, subtended (in a right angled
triangle) by an opposite given by OppositeNumericExpression and the base given by
BaseNumericExpression. The parameters can be any built-in numeric data type. The
result is FLOAT unless either parameter is NULL, in which case the result is NULL
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.

5186 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

BITAND function:
The BITAND numeric function performs a bitwise AND on the binary
representation of two or more numbers.

Syntax

►► ▼

,

BITAND (source_integer , source_integer) ►◄

BITAND takes two or more integer values and returns the result of performing the
bitwise AND on the binary representation of the numbers. The result is INTEGER
unless either parameter is NULL, in which case the result is NULL.

For example:
BITAND(12, 7)

returns 4 as shown by this worked example:
Binary Decimal
1100 12

AND 0111 7

0100 4

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

BITNOT function:
The BITNOT numeric function performs a bitwise complement on the binary
representation of a number.

Chapter 14. Reference 5187

Syntax

►► BITNOT (source_integer) ►◄

BITNOT takes an integer value and returns the result of performing the bitwise
complement on the binary representation of the number. The result is INTEGER
unless either parameter is NULL, in which case the result is NULL.

For example:
BITNOT(7)

returns -8, as shown by this worked example:
Binary Decimal

00...0111 7
NOT

11...1000 -8

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

BITOR function:
The BITOR numeric function performs a bitwise OR on the binary representation
of two or more numbers.

Syntax

►► ▼

,

BITOR (source_integer , source_integer) ►◄

BITOR takes two or more integer values and returns the result of performing the
bitwise OR on the binary representation of the numbers. The result is INTEGER
unless either parameter is NULL, in which case the result is NULL.

For example:
BITOR(12, 7)

5188 WebSphere Message Broker Version 7.0.0.8

returns 15, as shown by this worked example:
Binary Decimal
1100 12

OR 0111 7

1111 15

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

BITXOR function:

The BITXOR numeric function performs a bitwise XOR on the binary
representation of two or more numbers.

Syntax

►► ▼

,

BITXOR (source_integer , source_integer) ►◄

BITXOR takes two or more integer values and returns the result of performing the
bitwise XOR on the binary representation of the numbers. The result is INTEGER
unless either parameter is NULL, in which case the result is NULL.

For example:
BITXOR(12, 7)

returns 11, as shown by this worked example:
Binary Decimal
1100 12

XOR 0111 7

1011 11

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:

Chapter 14. Reference 5189

“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

CEIL and CEILING functions:
The CEIL and CEILING numeric functions return the smallest integer equivalent of
a decimal number.

Syntax

►► CEIL (source_number)
CEILING

►◄

CEIL and CEILING return the smallest integer value greater than or equal to
source_number. The parameter can be any numeric data type. The result is of the
same type as the parameter unless it is NULL, in which case the result is NULL.

For example:
CEIL(1)

returns 1
CEIL(1.2)

returns 2.0
CEIL(-1.2)

returns -1.0

If possible, the scale is changed to zero. If the result cannot be represented at that
scale, it is made sufficiently large to represent the number.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

COS function:

5190 WebSphere Message Broker Version 7.0.0.8

The COS numeric function returns the cosine of a given angle.

Syntax

►► COS (NumericExpression) ►◄

The COS function returns the cosine of the angle, in radians, given by
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

COSH function:
The COSH numeric function returns the hyperbolic cosine of a given angle.

Syntax

►► COSH (NumericExpression) ►◄

The COSH function returns the hyperbolic cosine of the angle, in radians, given by
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677

Chapter 14. Reference 5191

“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

COT function:
The COT numeric function returns the cotangent of a given angle.

Syntax

►► COT (NumericExpression) ►◄

The COT function returns the cotangent of the angle, in radians, given by
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

DEGREES function:
The DEGREES numeric function returns the angle of the radians supplied.

Syntax

►► DEGREES (NumericExpression) ►◄

The DEGREES function returns the angle, in degrees, specified by
NumericExpression in radians. The parameter can be any built-in numeric data type.
The result is FLOAT unless the parameter is NULL, in which case the result is
NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and

5192 WebSphere Message Broker Version 7.0.0.8

Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

EXP function:
The EXP numeric function returns the exponential value of a given number.

Syntax

►► EXP (NumericExpression) ►◄

The EXP function returns the exponential of the value specified by
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

FLOOR function:
The FLOOR numeric function returns the largest integer equivalent to a given
decimal number.

Syntax

►► FLOOR (source_number) ►◄

FLOOR returns the largest integer value less than or equal to source_number. The
parameter can be any numeric data type. The result is of the same type as the
parameter unless it is NULL, in which case the result is NULL.

For example:
FLOOR(1)

returns 1

Chapter 14. Reference 5193

FLOOR(1.2)

returns 1.0
FLOOR(-1.2)

returns -2.0

If possible, the scale is changed to zero. If the result cannot be represented at that
scale, it is made sufficiently large to represent the number.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

LN and LOG functions:
The LN and LOG equivalent numeric functions return the natural logarithm of a
given value.

Syntax

►► LN (NumericExpression)
LOG

►◄

The LN and LOG functions return the natural logarithm of the value specified by
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

5194 WebSphere Message Broker Version 7.0.0.8

LOG10 function:
The LOG10 numeric function returns the logarithm to base 10 of a given value.

Syntax

►► LOG10 (NumericExpression) ►◄

The LOG10 function returns the logarithm to base 10 of the value specified by
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

MOD function:
The MOD numeric function returns the remainder when dividing two numbers.

Syntax

►► MOD (dividend , divisor) ►◄

MOD returns the remainder when the first parameter is divided by the second
parameter. The result is negative only if the first parameter is negative. Parameters
must be integers. The function returns an integer. If any parameter is NULL, the
result is NULL.

For example:
MOD(7, 3)

returns 1
MOD(-7, 3)

returns -1
MOD(7, -3)

returns 1

Chapter 14. Reference 5195

MOD(6, 3)

returns 0
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

POWER function:
The POWER numeric function raises a value to the power supplied.

Syntax

►► POWER (ValueNumericExpression , PowerNumericExpression) ►◄

POWER returns the given value raised to the given power. The parameters can be
any built-in numeric data type. The result is FLOAT unless any parameter is
NULL, in which case the result is NULL

An exception occurs, if the value is either:
v Zero and the power is negative, or
v Negative and the power is not an integer
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

RADIANS function:
The RADIANS numeric function returns a given radians angle in degrees.

5196 WebSphere Message Broker Version 7.0.0.8

Syntax

►► RADIANS (NumericExpression) ►◄

The RADIANS function returns the angle, in radians, specified by
NumericExpression in degrees. The parameter can be any built-in numeric data type.
The result is FLOAT unless the parameter is NULL, in which case the result is
NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

RAND function:
The RAND numeric function returns a pseudo random number.

Syntax

►► RAND ()
IntegerExpression

►◄

The RAND function returns a pseudo random number in the range 0.0 to 1.0. If
supplied, the parameter initializes the pseudo random sequence.

The parameter can be of any numeric data type, but any fractional part is ignored.
The result is FLOAT unless the parameter is NULL, in which case the result is
NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.

Chapter 14. Reference 5197

Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

ROUND function:
The ROUND numeric function rounds a supplied value to a given number of
places.

Syntax

►► ROUND (source_number , precision
(1)

MODE RoundingMode

►

►) ►◄

RoundingMode:

ROUND_UP
ROUND_DOWN
ROUND_CEILING
ROUND_FLOOR
ROUND_HALF_UP
ROUND_HALF_EVEN
ROUND_HALF_DOWN

Notes:

1 If you do not specify MODE, a value of ROUND_HALF_EVEN is used.

If precision is a positive number, source_number is rounded to precision places right
of the decimal point. If precision is negative, the result is source_number rounded to
the absolute value of precision places to the left of the decimal point.

source_number can be any built-in numeric data type; precision must be an integer.
The result is of the same data type as the source_number parameter unless
source_number is NULL, in which case the result is NULL.

This means that the result of the function is:
v INTEGER if source_number is INTEGER
v FLOAT if source_number is FLOAT
v DECIMAL if source_number is DECIMAL

When rounding, the banker's or half-even symmetric rounding rules are used by
default, unless a RoundingMode is specified.

RoundingMode

RoundingMode can take one of the following values:

5198 WebSphere Message Broker Version 7.0.0.8

ROUND_UP
Round away from zero. Always increments the digit prior to a nonzero
discarded fraction. This rounding mode never decreases the magnitude of
the calculated value.

ROUND_DOWN
Round towards zero. Never increments the digit prior to a discarded
fraction, that is, truncates. This rounding mode never increases the
magnitude of the calculated value.

ROUND_CEILING
Round towards positive infinity. If the decimal is positive, behaves as for
ROUND_UP; if negative, behaves as for ROUND_DOWN. This rounding
mode never decreases the calculated value.

ROUND_FLOOR
Round towards negative infinity. If the decimal is positive, behaves as for
ROUND_DOWN; if negative, behaves as for ROUND_UP. This rounding
mode never increases the calculated value.

ROUND_HALF_UP
Round towards "nearest neighbor" unless both neighbors are equidistant,
in which case round up. Behaves as for ROUND_UP if the discarded
fraction is greater than, or equal to, 0.5; otherwise, behaves as for
ROUND_DOWN. This is the rounding mode that is typically taught in
schools.

ROUND_HALF_DOWN
Round towards "nearest neighbor" unless both neighbors are equidistant,
in which case round down. Behaves as for ROUND_UP if the discarded
fraction is grater than 0.5; otherwise, behaves as for ROUND_DOWN.

ROUND_HALF_EVEN
Round towards the "nearest neighbor" unless both neighbors are
equidistant, in which case, round towards the even neighbor. Behaves as
for ROUND_HALF_UP if the digit to the left of the discarded fraction is
odd; behaves as for ROUND_HALF_DOWN if it is even. This is the
rounding mode that minimizes cumulative error when applied repeatedly
over a sequence of calculations, and is sometimes referred to as Banker's
rounding.

The following table gives a summary of rounding operations, with a precision of
zero, under different rounding modes.

Input
number

ROUND
UP

ROUND
DOWN

ROUND
CEILING

ROUND
FLOOR

ROUND
HALF UP

ROUND
HALF

DOWN

ROUND
HALF
EVEN

5.5 6 5 6 5 6 5 6

2.5 3 2 3 2 3 2 2

1.6 2 1 2 1 2 2 2

1.1 2 1 2 1 1 1 1

1.0 1 1 1 1 1 1 1

-1.0 -1 -1 -1 -1 -1 -1 -1

-1.1 -2 -1 -1 -2 -1 -1 -1

-1.6 -2 -1 -1 -2 -2 -2 -2

-2.5 -3 -2 -2 -3 -3 -2 -2

Chapter 14. Reference 5199

Input
number

ROUND
UP

ROUND
DOWN

ROUND
CEILING

ROUND
FLOOR

ROUND
HALF UP

ROUND
HALF

DOWN

ROUND
HALF
EVEN

-5.5 -6 -5 -5 -6 -6 -5 -6

Examples using the default rounding mode (ROUND_HALF_EVEN):
ROUND(27.75, 2)

returns 27.75
ROUND(27.75, 1)

returns 27.8
ROUND(27.75, 0)

returns 28
ROUND(27.75, -1)

returns 30

Examples using a rounding mode with a precision of zero:
ROUND(5.5, 0 MODE ROUND_UP);

returns 6
ROUND(5.5, 0 MODE ROUND_DOWN);

returns 5
ROUND(5.5, 0 MODE ROUND_CEILING);

returns 6
ROUND(5.5, 0 MODE ROUND_FLOOR);

returns 5
ROUND(5.5, 0 MODE ROUND_HALF_UP);

returns 6
ROUND(5.5, 0 MODE ROUND_HALF_DOWN);

returns 5
ROUND(5.5, 0 MODE ROUND_HALF_EVEN);

returns 6
ROUND(2.5, 0 MODE ROUND_UP);

returns 3
ROUND(2.5, 0 MODE ROUND_DOWN);

returns 2
ROUND(2.5, 0 MODE ROUND_CEILING);

returns 3
ROUND(2.5, 0 MODE ROUND_FLOOR);

5200 WebSphere Message Broker Version 7.0.0.8

returns 2
ROUND(2.5, 0 MODE ROUND_HALF_UP);

returns 3
ROUND(2.5, 0 MODE ROUND_HALF_DOWN);

returns 2
ROUND(2.5, 0 MODE ROUND_HALF_EVEN);

returns 2

If possible, the scale is changed to the given value. If the result cannot be
represented within the given scale, it is INFINITY.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

SIGN function:
The SIGN numeric function tells you whether a given number is positive, negative,
or zero.

Syntax

►► SIGN (NumericExpression) ►◄

The SIGN function returns -1, 0, or +1 when the NumericExpression value is
negative, zero, or positive respectively. The parameter can be any built-in numeric
data type and the result is of the same type as the parameter. If the parameter is
NULL, the result is NULL
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:

Chapter 14. Reference 5201

“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

SIN function:
The SIN numeric function returns the sine of a given angle.

Syntax

►► SIN (NumericExpression) ►◄

The SIN function returns the sine of the angle, in radians, given by
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

SINH function:
The SINH numeric function returns the hyperbolic sine of a given angle.

Syntax

►► SINH (NumericExpression) ►◄

The SINH function returns the hyperbolic sine of the angle, in radians, given by
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:

5202 WebSphere Message Broker Version 7.0.0.8

“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

SQRT function:
The SQRT numeric function returns the square root of a given number.

Syntax

►► SQRT (source_number) ►◄

SQRT returns the square root of source_number. The parameter can be any built-in
numeric data type. The result is a FLOAT. If the parameter is NULL, the result is
NULL.

For example:
SQRT(4)

returns 2E+1
SQRT(2)

returns 1.414213562373095E+0
SQRT(-1)

throws an exception.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

TAN function:
The TAN numeric function returns the tangent of a given angle.

Chapter 14. Reference 5203

Syntax

►► TAN (NumericExpression) ►◄

The TAN function returns the tangent of the angle, in radians, given by
NumericExpression. The parameter can be any built-in numeric data type. The result
is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

TANH function:
The TANH numeric function returns the hyperbolic tangent of an angle.

Syntax

►► TANH (NumericExpression) ►◄

The TANH function returns the hyperbolic tangent of the angle, in radians, given
by NumericExpression. The parameter can be any built-in numeric data type. The
result is FLOAT unless the parameter is NULL, in which case the result is NULL.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

5204 WebSphere Message Broker Version 7.0.0.8

TRUNCATE function:
The TRUNCATE numeric function truncates a supplied decimal number a
specified number of places.

Syntax

►► TRUNCATE (source_number , precision) ►◄

If precision is positive, the result of the TRUNCATE function is source_number
truncated to precision places right of the decimal point. If precision is negative, the
result is source_number truncated to the absolute value of precision places to the left
of the decimal point.

source_number can be any built-in numeric data type. precision must evaluate to an
INTEGER. The result is of the same data type as source_number. If any parameter is
NULL, the result is NULL.

For example:
TRUNCATE(27.75, 2)

returns 27.75
TRUNCATE(27.75, 1)

returns 27.7
TRUNCATE(27.75, 0)

returns 27.0
TRUNCATE(27.75, -1)

returns 20.0

If possible, the scale is changed to the given value. If the result cannot be
represented within the given scale, it is INF.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL numeric functions” on page 5183
A list of the numeric functions that ESQL supports.

ESQL string manipulation functions:

A list of the ESQL string manipulation functions that you can use.

Chapter 14. Reference 5205

Most of the following functions manipulate all string data types (BIT, BLOB, and
CHARACTER). Exceptions to this are UPPER, LOWER, LCASE, UCASE, and
SPACE, which operate only on character strings.

In these descriptions, the term singleton refers to a single part (BIT, BLOB, or
CHARACTER) within a string of that type.

In addition to the functions that are described here, you can use the logical OR
operator to perform various calculations on ESQL string manipulation values.

To concatenate two strings, use the “ESQL string operator” on page 5066.

This section covers the following topics:

“CONTAINS function”

“ENDSWITH function” on page 5207

“LEFT function” on page 5208

“LENGTH function” on page 5209

“LOWER and LCASE functions” on page 5209

“LTRIM function” on page 5210

“OVERLAY function” on page 5211

“POSITION function” on page 5212

“REPLACE function” on page 5213

“REPLICATE function” on page 5214

“RIGHT function” on page 5215

“RTRIM function” on page 5216

“SPACE function” on page 5217

“STARTSWITH function” on page 5217

“SUBSTRING function” on page 5218

“TRANSLATE function” on page 5220

“TRIM function” on page 5221

“UPPER and UCASE functions” on page 5222

CONTAINS function:

CONTAINS is a string manipulation function that manipulates all string data types
(BIT, BLOB, and CHARACTER), and returns a Boolean value to indicate whether
one string is present within another.

Syntax

►► CONTAINS (SourceExpression , SearchExpression) ►◄

5206 WebSphere Message Broker Version 7.0.0.8

CONTAINS returns TRUE if the SearchExpression is present within the
SourceExpression, otherwise it returns FALSE.

The parameter strings for both SourceExpression and SearchExpression can be of the
CHARACTER, BLOB, or BIT data type, but must be of the same data type.

If any parameter is NULL, the result is NULL.

Examples
CONTAINS(’Hello World!’, ’ello’);

returns TRUE.
CONTAINS(’Hello World!’, ’daisy’);

returns FALSE.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

ENDSWITH function:

ENDSWITH is a string manipulation function that manipulates all string data
types (BIT, BLOB, and CHARACTER), and returns a Boolean value to indicate
whether one string ends with another.

Syntax

►► ENDSWITH (SourceExpression , SearchExpression) ►◄

ENDSWITH returns TRUE if SourceExpression ends with SearchExpression, otherwise
it returns FALSE.

The parameter strings for both SearchExpression and SourceExpression can be of the
CHARACTER, BLOB, or BIT data type, but must be of the same data type.

If any parameter is NULL, the result is NULL.

Chapter 14. Reference 5207

Examples
ENDSWITH(’Hello World!’, ’World!’);

returns TRUE.
ENDSWITH(’Hello World!’, ’World’);

returns FALSE.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

LEFT function:

LEFT is a string manipulation function that returns a string consisting of the
source string truncated to the length given by the length expression.

Syntax

►► LEFT (source_string , LengthIntegerExpression) ►◄

The source string can be of the CHARACTER, BLOB or BIT data type and the
length must be of type INTEGER. The truncation discards the final characters of
the source_string

The result is of the same type as the source string. If the length is negative or zero,
a zero length string is returned. If either parameter is NULL, the result is NULL
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677

5208 WebSphere Message Broker Version 7.0.0.8

“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

LENGTH function:

The LENGTH function is used for string manipulation on all string data types
(BIT, BLOB, and CHARACTER) and returns an integer value giving the number of
singletons in source_string.

Syntax

►► LENGTH (source_string) ►◄

It If the source_string is NULL, the result is the NULL value. The term singleton
refers to a single part (BIT, BYTE, or CHARACTER) within a string of that type.

For example:
LENGTH(’Hello World!’);

returns 12.
LENGTH(’’);

returns 0.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

LOWER and LCASE functions:

The LOWER and LCASE functions are equivalent, and manipulate CHARACTER
string data; they both return a new character string, which is identical to
source_string, except that all uppercase letters are replaced with the corresponding
lowercase letters.

Chapter 14. Reference 5209

Syntax

►► LOWER (source_string)
LCASE

►◄

For example:
LOWER(’Mr Smith’)

returns ’mr smith’.
LOWER(’22 Railway Cuttings’)

returns ’22 railway cuttings’.
LCASE(’ABCD’)

returns ’abcd’.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

LTRIM function:

LTRIM is a string manipulation function, used for manipulating all data types (BIT,
BLOB, and CHARACTER), that returns a character string value of the same data
type and content as source_string, but with any leading default singletons removed.

Syntax

►► LTRIM (source_string) ►◄

The term singleton is used to refer to a single part (BIT, BLOB, or CHARACTER)
within a string of that type.

The LTRIM function is equivalent to TRIM(LEADING FROM source_string).

If the parameter is NULL, the result is NULL.

5210 WebSphere Message Broker Version 7.0.0.8

The default singleton depends on the data type of source_string:

Table 264.

Character ' ' (space)

BLOB X'00'

Bit B'0'

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

OVERLAY function:

OVERLAY is a string manipulation function that manipulates all string data types
(BIT, BLOB, and CHARACTER) and replaces part of a string with a substring.

Syntax

►► OVERLAY (source_string PLACING source_string2 ►

► FROM start_position)
FOR string_length

►◄

OVERLAY returns a new string of the same type as the source and is identical to
source_string, except that a given substring in the string, starting from the specified
numeric position and of the given length, has been replaced by source_string2.
When the length of the substring is zero, nothing is replaced.

For example:
OVERLAY (’ABCDEFGHIJ’ PLACING ’1234’ FROM 4 FOR 3)

returns the string ’ABC1234GHIJ’

If any parameter is NULL, the result is NULL. If string_length is not specified, it is
assumed to be equal to LENGTH(source_string2).

The result of the OVERLAY function is equivalent to:
SUBSTRING(source_string FROM 1 FOR start_position -1)

|| source_string2 ||
SUBSTRING(source_string FROM start_position + string_length)

Chapter 14. Reference 5211

where || is the concatenation operator.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

POSITION function:

POSITION is a string manipulation function that manipulates all data types (BIT,
BLOB, and CHARACTER), and returns the position of one string within another.

Syntax

►► POSITION (SearchExpression IN SourceExpression
FROM FromExpression

►

►)
REPEAT RepeatExpression

►◄

POSITION returns an integer giving the position of one string (SearchExpression) in
a second string (SourceExpression). A position of one corresponds to the first
character of the source string.

If present, the FROM clause gives a position within the search string at which the
search commences. In the absence of a FROM clause, the source string is searched
from the beginning.

If present, the REPEAT clause gives a repeat count, returning the position returned
to be that of the nth occurrence of the search string within the source string. If the
repeat count is negative, the source string is searched from the end.

In the absence of a REPEAT clause, a repeat count of +1 is assumed; that is, the
position of the first occurrence, searching from the beginning is returned. If the
search string has a length of zero, the result is one.

If the search string cannot be found, the result is zero: if the FROM clause is
present, this applies only to the section of the source string being searched; if the
REPEAT clause is present this applies only if there are insufficient occurrences of
the string.

If any parameter is NULL, the result is NULL.

5212 WebSphere Message Broker Version 7.0.0.8

The search and source strings can be of the CHARACTER, BLOB, or BIT data
types but they must be of the same type.

For example:
POSITION(’Village’ IN ’Hursley Village’); returns 9
POSITION(’Town’ IN ’Hursley Village’); returns 0

POSITION (’B’ IN ’ABCABCABCABCABC’); -> returns 2
POSITION (’D’ IN ’ABCABCABCABCABC’); -> returns 0

POSITION (’A’ IN ’ABCABCABCABCABC’ FROM 4); -> returns 4
POSITION (’C’ IN ’ABCABCABCABCABC’ FROM 2); -> returns 3

POSITION (’B’ IN ’ABCABCABCABCABC’ REPEAT 2); -> returns 5
POSITION (’C’ IN ’ABCABCABCABCABC’ REPEAT 4); -> returns 12

POSITION (’A’ IN ’ABCABCABCABCABC’ FROM 4 REPEAT 2); -> returns 7
POSITION (’AB’ IN ’ABCABCABCABCABC’ FROM 2 REPEAT 3); -> returns 10

POSITION (’A’ IN ’ABCABCABCABCABC’ REPEAT -2); -> returns 10
POSITION (’BC’ IN ’ABCABCABCABCABC’ FROM 2 REPEAT -3); -> returns 5

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Selecting a subfield from a larger field” on page 2442
You might have a message flow that processes a message containing delimited
subfields. You can code ESQL to extract a subfield from the surrounding content if
you know the delimiters of the subfield.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

REPLACE function:

REPLACE is a string manipulation function that manipulates all string data types
(BIT, BLOB, and CHARACTER), and replaces parts of a string with supplied
substrings.

Syntax

►► REPLACE (SourceStringExpression , SearchStringExpression)
ReplaceStringExpression

►◄

REPLACE returns a string consisting of the source string, with each occurrence of
the search string replaced by the replace string. The parameter strings can be of the
CHARACTER, BLOB, or BIT data types, but all three must be of the same type.

Chapter 14. Reference 5213

If any parameter is NULL, the result is NULL.

The search process is single pass from the left and disregards characters that have
already been matched.

If you do not specify the replace string expression, the replace string uses the
default value of an empty string, and the behavior of the function is to delete all
occurrences of the search string from the result.

The following examples give the results shown:
REPLACE(’ABCDABCDABCDA’, ’A’, ’AA’)
-- RESULT = AABCDAABCDAABCDAA

The above example shows that replacement is single pass. Each occurrence of A is
replaced by AA but these are not then expanded further.

REPLACE(’AAAABCDEFGHAAAABCDEFGH’, ’AA’, ’A’)
-- RESULT = AABCDEFGHAABCDEFGH

This example shows that after characters are matched, they are not considered
further. Each occurrence of AA is replaced by A. The resulting AA pairs are not
matched.

REPLACE(’AAAAABCDEFGHAAAABCDEFGH’, ’AA’, ’XYZ’)
-- RESULT = XYZXYZABCDEFGHXYZXYZBCDEFGH

This last example shows that matching is from the left. The first four As are
matched as two pairs and replaced. The fifth A is not matched.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

REPLICATE function:

REPLICATE is a string manipulation function that manipulates all data types (BIT,
BLOB, and CHARACTER) and returns a string made up of multiple copies of a
supplied string.

Syntax

►► REPLICATE (PatternStringExpression , CountNumericExpression) ►◄

5214 WebSphere Message Broker Version 7.0.0.8

REPLICATE returns a string consisting of the pattern string given by
PatternStringExpression repeated the number of times given by
CountNumericExpression.

The pattern string can be of the CHARACTER, BLOB, or BIT datatype and the
count must be of type INTEGER. The result is of the same data type as the pattern
string.

If the count is negative or zero, a zero length string is returned. If either parameter
is NULL, the result is NULL.

The count is limited to 32*1024*1024 to protect the broker from erroneous
programs. If this limit is exceeded, an exception condition is issued.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

RIGHT function:

RIGHT is a string manipulation function that manipulates all data types (BIT,
BLOB, and CHARACTER), and truncates a string.

Syntax

►► RIGHT (SourceStringExpression , LengthIntegerExpression) ►◄

RIGHT returns a string consisting of the source string truncated to the length given
by the length expression. The truncation discards the initial characters of the source
string.

The source string can be of the CHARACTER, BLOB, or BIT data type and the
length must be of type INTEGER.

If the length is negative or zero, a zero length string is returned. If either
parameter is NULL, the result is NULL
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.

Chapter 14. Reference 5215

Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

RTRIM function:

RTRIM is a string manipulation function that manipulates all data types (BIT,
BLOB, and CHARACTER), and removes trailing singletons from a string.

Syntax

►► RTRIM (source_string) ►◄

RTRIM returns a string value of the same data type and content as source_string
but with any trailing default singletons removed. The term singleton refers to a
single part (BIT, BLOB, or CHARACTER) within a string of that type.

The RTRIM function is equivalent to TRIM(TRAILING FROM source_string).

If the parameter is NULL, the result is NULL.

The default singleton depends on the data type of source_string:

Data type of source string Default singleton

Character ' ' (space)

BLOB X'00'

Bit B'0'

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

5216 WebSphere Message Broker Version 7.0.0.8

SPACE function:

SPACE is a string manipulation function that manipulates all data types (BIT,
BLOB, and CHARACTER), and creates a string consisting of a defined number of
blank spaces.

Syntax

►► SPACE (NumericExpression) ►◄

SPACE returns a character string consisting of the number of blank spaces given
by NumericExpression. The parameter must be of type INTEGER; the result is of
type CHARACTER.

If the parameter is negative or zero, a zero length character string is returned. If
the parameter is NULL, the result is NULL.

The string is limited to 32*1024*1024 to protect the broker from erroneous
programs. If this limit is exceeded, an exception condition is issued.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

STARTSWITH function:

STARTSWITH is a string manipulation function that manipulates all string data
types (BIT, BLOB, and CHARACTER), and returns a Boolean value to indicate
whether one string begins with another.

Syntax

►► STARTSWITH (SourceExpression , SearchExpression) ►◄

STARTSWITH returns TRUE if SourceExpression begins with SearchExpression,
otherwise it returns FALSE.

Chapter 14. Reference 5217

The parameter strings for both SearchExpression and SourceExpression can be of the
CHARACTER, BLOB, or BIT data type, but must be of the same data type.

If any parameter is NULL, the result is NULL.

Examples
STARTSWITH(’Hello World!’, ’Hello’);

returns TRUE.
STARTSWITH(’Hello World!’, ’World’);

returns FALSE.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

SUBSTRING function:

SUBSTRING is a string manipulation function that manipulates all string data
types (BIT, BLOB, and CHARACTER), and extracts characters from a string to
create another string.

Syntax

►► SUBSTRING (SourceExpression FROM StartPosition
BEFORE BeforeExpression
AFTER AfterExpression

►

►)
FOR StringLength

►◄

Parameters must be of the following types:
v SourceExpression, BeforeExpression, and AfterExpression can be BIT, BLOB, or

CHARACTER.
v StartPosition and StringLength can be INTEGER only.

StartPosition

If you specify StartPosition, SUBSTRING returns a new string of the same type as
SourceExpression containing one contiguous sequence of characters that are

5218 WebSphere Message Broker Version 7.0.0.8

extracted from SourceExpression, as specified by StartPosition and StringLength. If
you do not specify StringLength, the sequence runs from StartPosition until the end
of SourceExpression. The StartPosition can be negative, and together, the StartPosition
and StringLength define a range. The result is the overlap between this range and
the SourceExpression; the StringLength cannot be less than the StartPosition.

BeforeExpression

If you specify BeforeExpression, SUBSTRING returns a new string of the same type
as SourceExpression containing one contiguous sequence of characters that are
extracted from StringLength characters before the first occurrence of BeforeExpression
within SourceExpression, up to (but not including) the first character of the first
occurrence of BeforeExpression. If you do not specify StringLength, the sequence of
characters is taken from the beginning of SourceExpression up to (but not including)
the first character of the first occurrence of BeforeExpression. If the BeforeExpression
string does not occur in SourceExpression, an empty (zero length) string is returned.

The BeforeExpression string must be of the same data type as SourceExpression.

AfterExpression

If you specify AfterExpression, SUBSTRING returns a new string of the same type
as SourceExpression, containing one contiguous sequence of characters that are
extracted from SourceExpression, beginning with the first character after the end of
the first occurrence of AfterExpression until the end of SourceExpression (or
StringLength characters, if specified). If the AfterExpression string does not occur in
SourceExpression, an empty (zero length) string is returned.

The AfterExpression string must be of the same data type as SourceExpression.

If any parameter is NULL, the result is NULL. This is not a zero length string.

Examples:
SUBSTRING(’Hello World!’ FROM 7 FOR 4)

returns ’Worl’.
SUBSTRING(’Hello World!’ BEFORE ’World’);

returns ’Hello ’.
SUBSTRING(’Hello World!’ BEFORE ’World’ FOR 3);

returns ’lo ’.
SUBSTRING(’Hello World!’ BEFORE ’e’);

returns ’H’.
SUBSTRING(’Hello World!’ AFTER ’World’);

returns ’!’.
SUBSTRING(’Hello World!’ AFTER ’W’ FOR 2);

returns ’or’.
SUBSTRING(’Hello World!’ AFTER ’P’);

returns ’’.
Related concepts:

Chapter 14. Reference 5219

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Selecting a subfield from a larger field” on page 2442
You might have a message flow that processes a message containing delimited
subfields. You can code ESQL to extract a subfield from the surrounding content if
you know the delimiters of the subfield.
“Manipulating messages in the BLOB domain” on page 2615
How to deal with messages that belong to the BLOB domain, and that are parsed
by the BLOB parser.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

TRANSLATE function:

TRANSLATE is a string manipulation function that manipulates all string data
types (BIT, BLOB, and CHARACTER), and replaces specified characters in a string.

Syntax

►► TRANSLATE (SourceStringExpression , SearchStringExpression)
ReplaceStringExpression

►◄

TRANSLATE returns a string consisting of the source string, with each occurrence
of any character that occurs in the search string being replaced by the
corresponding character from the replace string.

The parameter strings can be of the CHARACTER, BLOB, or BIT data type but all
three must be of the same type. If any parameter is NULL, the result is NULL.

If the replace string is shorter than the search string, there are characters in the
search string for which there is no corresponding character in the replace string.
This is treated as an instruction to delete these characters and any occurrences of
these characters in the source string are absent from the returned string

If the replace string expression is not specified, the replace string is assumed to be
an empty string, and the function deletes all occurrences of any characters in the
search string from the result.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:

5220 WebSphere Message Broker Version 7.0.0.8

“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

TRIM function:

TRIM is a string manipulation function that manipulates all string data types (BIT,
BLOB, and CHARACTER), and removes trailing and leading singletons from a
string.

Syntax

►► TRIM (
trim_singleton FROM
BOTH
LEADING
TRAILING trim_singleton

►

► source_string) ►◄

TRIM returns a new string of the same type as source_string, in which the leading,
trailing, or both leading and trailing singletons have been removed. The term
singleton refers to a single part (BIT, BYTE, or CHARACTER) within a string of that
type.

The singleton can contain a list of multiple characters to be trimmed from the
source string.

If trim_singleton is not specified, a default singleton is assumed. The default
singleton depends on the data type of source_string:

Character ' ' (space)

BLOB X'00'

Bit B'0'

If any parameter is NULL, the result is NULL.

It is often unnecessary to strip trailing blanks from character strings before
comparison, because the rules of character string comparison mean that trailing
blanks are not significant.

The following examples illustrate the behavior of the TRIM function:
TRIM(TRAILING ’b’ FROM ’aaabBb’)

returns ’aaabB’.
TRIM(’ a ’)

Chapter 14. Reference 5221

returns ’a’.
TRIM(LEADING FROM ’ a ’)

returns ’a ’.
TRIM(’b’ FROM ’bbbaaabbb’)

returns ’aaa’.

An example of using a multiple character singleton is:
DECLARE input1 CHARACTER ’testmgktest’;
SET OutputRoot.XMLNSC.Top.Out1 = TRIM(’ste’ FROM input1);

The preceding code produces the output message:
<Top><Out1>mgk</Out1></Top>

An example of using a multiple character singleton to remove leading and trailing
white space characters is:
DECLARE whiteSpace CONSTANT CHARACTER CAST(X’090D0A20’ AS CHAR CCSID 1208);
/* tab, cr, lf, space */
DECLARE input2 CHARACTER ’smith’;

SET input2 = whiteSpace || input2 || whiteSpace;
SET OutputRoot.XMLNSC.Top.Out2 = TRIM(whiteSpace FROM input2);

The preceding code produces the output message:
<Top><Out2>smith</Out2></Top>

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Selecting a subfield from a larger field” on page 2442
You might have a message flow that processes a message containing delimited
subfields. You can code ESQL to extract a subfield from the surrounding content if
you know the delimiters of the subfield.
Related reference:
“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

UPPER and UCASE functions:

UPPER and UCASE are equivalent string manipulation functions that manipulate
CHARACTER string data and convert lowercase characters in a string to
uppercase.

5222 WebSphere Message Broker Version 7.0.0.8

Syntax

►► UPPER (source_string)
UCASE

►◄

UPPER and UCASE both return a new character string, which is identical to
source_string, except that all lowercase letters are replaced with the corresponding
uppercase letters.

For example:
UPPER(’ABCD’)

returns ’ABCD’.
UCASE(’abc123’)

returns ’ABC123’.

Converting characters from different code pages to uppercase

If you are using certain code pages, characters with no uppercase equivalent in
your code page might be converted when you use the UPPER or UCASE function.
This conversion happens because the bit stream is converted to a Unicode message
tree by the message parser. Even though characters might have no uppercase
equivalent in the source code page, they can still have an uppercase equivalent in
the Unicode code page, and are converted by the UPPER or UCASE function.
When the bit stream is converted back to the original code page, these characters
cannot be converted back, and a substitution character is inserted into the output
message for each character. The substitution character inserted depends on the
original code page. For example, conversion to an EBCDIC code page inserts an
X'3F' byte and conversion to a Japanese code page inserts an X'7F' byte.

A solution to this problem is to use the TRANSLATE function to convert selected
characters to uppercase, instead of using the UPPER or UCASE function. Any
characters that have no uppercase equivalent in the code page are excluded from
the conversion.

In the following example, the input message is in code page 284, and the
InputRoot.XML.MSG.APPDATA element contains characters that do not have an
uppercase equivalent in code page 284, but do have uppercase equivalents in the
Unicode code page. The TRANSLATE function is used to convert only the
lowercase characters 'a' to 'z' to their equivalent uppercase characters. Any other
characters in InputRoot.XML.MSG.APPDATA are excluded from the conversion.

DECLARE char1 CHAR;
SET char1 = TRANSLATE(InputRoot.XML.MSG.APPDATA,’abcdefghijklmnopqrstuvwxyz’,’ABCDEFGHIJKLMNOPQRSTUVWXYZ’);
SET OutputRoot.MQMD.CodedCharSetId = 284;
SET OutputRoot.XML.TEST.translated = char1;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.

Chapter 14. Reference 5223

Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“TRANSLATE function” on page 5220
TRANSLATE is a string manipulation function that manipulates all string data
types (BIT, BLOB, and CHARACTER), and replaces specified characters in a string.

“Syntax diagrams” on page 3677
“ESQL string manipulation functions” on page 5205
A list of the ESQL string manipulation functions that you can use.

ESQL field functions:

ESQL provides functions that support field operations.

“ASBITSTREAM function”

“BITSTREAM function (deprecated)” on page 5228

“FIELDNAME function” on page 5229

“FIELDNAMESPACE function” on page 5230

“FIELDTYPE function” on page 5231

“FIELDVALUE function” on page 5234

“FOR function” on page 5235

“LASTMOVE function” on page 5237

“SAMEFIELD function” on page 5237

Related tasks:
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ESQL operators” on page 5056
A list of the various groups of operators that ESQL supports.
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“ESQL functions” on page 5168
The following types of function are available.

ASBITSTREAM function:

The ASBITSTREAM field function generates a bit stream for the subtree of a given
field according to the rules of the parser that owns the field.

The ASBITSTREAM field function uses parameters supplied by the caller for:
v Encoding

5224 WebSphere Message Broker Version 7.0.0.8

v CCSID
v Message set
v Message type
v Message format
v Options

The ASBITSTREAM function removes the limitation of the existing BITSTREAM
function, which can be used only on a tree produced by a parser that belongs to an
input node.

The BITSTREAM function is retained only for compatibility with earlier versions.

Syntax

►►

▼

ASBITSTREAM (FieldReference)
<<

OPTIONS expression
ENCODING expression
CCSID expression
SET expression
TYPE expression
FORMAT expression

►◄

Note that each clause can occur once only.

ASBITSTREAM returns a value of type BLOB that contains a bitstream
representation of the field that is pointed to by FieldReference and its children.

The algorithm for doing this varies from parser to parser, and according to the
options specified. All parsers support the following modes:
v RootBitStream, in which the algorithm that generates the bit stream is the same

as the algorithm that is used by an output node. In this mode, a meaningful
result is obtained only if the field pointed to is at the head of a subtree with an
appropriate structure.

v EmbeddedBitStream, in which not only is the algorithm that generates the bit
stream the same as the algorithm used by an output node, but also the
– Encoding
– CCSID
– Message set
– Message type
– Message format

are determined, if not explicitly specified, in the same way as the output node.
That is, they are determined by searching the previous siblings of FieldReference
on the assumption that they represent headers.
In this way, the algorithm for determining these properties is essentially the
same as that used for the BITSTREAM function.

Chapter 14. Reference 5225

Some parsers also support another mode, FolderBitStream, which generates a
meaningful bit stream for any subtree, provided that the field that is pointed to
represents a folder.

In all cases, the bit stream obtained can be given to a CREATE statement with a
PARSE clause, using the same DOMAIN and OPTIONS to reproduce the original
subtree.

When the function is called, any clause expressions are evaluated. An exception is
thrown if any of the expressions do not result in a value of the appropriate type.

If any parameter is NULL the result is NULL.

Clause Type Default value

OPTIONS Integer RootBitStream & ValidateNone

ENCODING Integer 0

CCSID Integer 0

SET Character Zero length string

TYPE Character Zero length string

FORMAT Character Zero length string

For details of the syntax of the TYPE clause, refer to “Specifying namespaces in the
Message Type property” on page 1208.

Although the OPTIONS clause accepts any expression that returns a value of type
integer, it is only meaningful to generate option values from the list of supplied
constants, using the BITOR function if more than one option is required.

The generated value becomes an integer and can be saved in a variable, passed as
a parameter to a function, or used directly in an ASBITSTREAM call. The list of
globally-defined constants is:

Validate master options...
ValidateContentAndValue
ValidateValue -- Can be used with ValidateContent
ValidateContent -- Can be used with ValidateValue
ValidateNone

Validate failure action options...
ValidateException
ValidateExceptionList
ValidateLocalError
ValidateUserTrace

Note:

1. For full details of the validation options, refer to “Validation properties” on
page 4169.

C and Java equivalent APIs

Note that equivalent options are not available on:
v The Java plugin node API MBElement methods

createElementAsLastChildFromBitstream() and toBitstream()
v The C plugin node API methods cniCreateElementAsLastChildFromBitstream()

and cniElementAsBitstream.

5226 WebSphere Message Broker Version 7.0.0.8

Only one option from each group can be specified, with the exception of
ValidateValue and ValidateContent, which can be used together to obtain the
content and value validation. If you do not specify an option within a group, the
option in bold is used.

The ENCODING clause accepts any expression that returns a value of type integer.
However, it is only meaningful to generate encoding values from the list of
supplied constants:

0
MQENC_INTEGER_NORMAL
MQENC_INTEGER_REVERSED
MQENC_DECIMAL_NORMAL
MQENC_DECIMAL_REVERSED
MQENC_FLOAT_IEEE_NORMAL
MQENC_FLOAT_IEEE_REVERSED
MQENC_FLOAT_S390

0 uses the queue manager's encoding.

The values that are used for the CCSID clause follow the normal numbering
system. For example, 1200 = UCS-2, 1208 = UTF-8.

In addition the special values 0 and -1 are supported:
v 0 uses the queue manager's CCSID
v -1 uses the CCSID's as determined by the parser itself. This value is reserved.

For absent clauses, the given default values are used. Use the CCSID and encoding
default values, because they take their values from the queue manager's encoding
and CCSID settings.

Similarly, use the default values for each of the message set, type, and format
options, because many parsers do not require message set, type, or format
information; any valid value is sufficient.

When any expressions have been evaluated, the appropriate bit stream is
generated.

Note: Because this function has a large number of clauses, an alternative syntax is
supported in which the parameters are supplied as a comma-separated list rather
than by named clauses. In this case, the expressions must be in the following
order:
ENCODING -> CCSID -> SET -> TYPE -> FORMAT -> OPTIONS

The list can be truncated at any point and you can use an empty expression for
any clauses for which you do not supply a value.

Examples
DECLARE options INTEGER BITOR(FolderBitStream, ValidateContent,

ValidateValue);
SET result = ASBITSTREAM(cursor OPTIONS options CCSID 1208);
SET Result = ASBITSTREAM(Environment.Variables.MQRFH2.Data,,1208

,,,,options);

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message

Chapter 14. Reference 5227

flow.
“Specifying namespaces in the Message Type property” on page 1208
When using the MRM domain, the Message Type property is used to specify the
name of the message.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Working with large XML messages” on page 2543
The tree representation of an XML message is typically bigger than the input bit
stream. Manipulating a large message tree can require much storage but you can
code ESQL statements that help to reduce the storage load on the broker.
“XMLNSC: Working with XML messages and bit streams” on page 2541
Use the ASBITSTREAM function and the CREATE statement to manage XML
message content.
Related reference:
“Syntax diagrams” on page 3677
“ESQL field functions” on page 5224
ESQL provides functions that support field operations.
“BITSTREAM function (deprecated)”
The BITSTREAM field function returns a value that represents the bit stream that
is described by the given field and its children. Its use is deprecated; use the newer
ASBITSTREAM function instead.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.

BITSTREAM function (deprecated):

The BITSTREAM field function returns a value that represents the bit stream that
is described by the given field and its children. Its use is deprecated; use the newer
ASBITSTREAM function instead.

The BITSTREAM function can be used only on a tree produced by a parser
belonging to an input node. The ASBITSTREAM function does not suffer from this
limitation.

Syntax

►► BITSTREAM (field_reference) ►◄

The BITSTREAM function returns a value of type BLOB that represents the bit
stream that is described by the given field and its children. For incoming messages,
the appropriate portion of the incoming bit stream is used. For messages that are
constructed by Compute nodes, the following algorithm is used to establish the
ENCODING, CCSID, message set, message type, and message format:

5228 WebSphere Message Broker Version 7.0.0.8

v If the addressed field has a previous sibling, and this sibling is the root of a
subtree that belongs to a parser capable of providing an ENCODING and
CCSID, these values are obtained and used to generate the requested bit stream.
Otherwise, the broker's default ENCODING and CCSID (that is, those of its
queue manager) are used.

v Similarly, if the addressed field has a previous sibling, and this sibling is the root
of a subtree that belongs to a parser capable of providing a message set,
message type, and message format, these values are obtained and used to
generate the requested bit stream. Otherwise, zero length strings are used.

This function is typically used for message warehouse scenarios, where the bit
stream of a message needs to be stored in a database. The function returns the bit
stream of the physical portion of the incoming message, identified by the
parameter. In some cases, it does not return the bit stream that represents the
actual field identified. For example, the following two calls return the same value:
BITSTREAM(Root.MQMD);
BITSTREAM(Root.MQMD.UserIdentifier);

because they lie in the same portion of the message.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL field functions” on page 5224
ESQL provides functions that support field operations.
“ASBITSTREAM function” on page 5224
The ASBITSTREAM field function generates a bit stream for the subtree of a given
field according to the rules of the parser that owns the field.

FIELDNAME function:
The FIELDNAME field function returns the name of a given field.

Syntax

►► FIELDNAME (source_field_reference) ►◄

FIELDNAME returns the name of the field identified by source_field_reference as a
character value. If the parameter identifies a nonexistent field, NULL is returned.

For example:
v FIELDNAME(InputRoot.XMLNS) returns XMLNS.

Chapter 14. Reference 5229

v FIELDNAME(InputBody) returns the name of the last child of InputRoot, which
could be XMLNS.

v FIELDNAME(InputRoot.*[<]) returns the name of the last child of InputRoot,
which could be XMLNS.

This function does not show any namespace information; this must be obtained by
a separate call to the “FIELDNAMESPACE function.”

Whereas the following ESQL sets X to "F1":
SET X=FIELDNAME(InputBody.*[<]);

The following ESQL sets Y to null:
SET Y=FIELDNAME(InputBody.F1.*[<]);

However, the following ESQL sets Z to the (expected) child of F1:
SET Z=FIELDNAME(InputBody.*[<].*[<]);

This is because F1 belongs to a namespace and needs to be explicitly referenced by,
for example:
DECLARE ns NAMESPACE ’urn:nid:xxxxxx’;

SET Y=FIELDNAME(InputBody.ns:F1.*[<]);

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL field functions” on page 5224
ESQL provides functions that support field operations.

FIELDNAMESPACE function:
The FIELDNAMESPACE field function returns the namespace of a given field.

Syntax

►► FIELDNAMESPACE (FieldReference) ►◄

FIELDNAMESPACE takes a field reference as a parameter and returns a value of
type CHARACTER containing the namespace of the addressed field. If the
parameter identifies a nonexistent field, NULL is returned.
Related concepts:

5230 WebSphere Message Broker Version 7.0.0.8

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL field functions” on page 5224
ESQL provides functions that support field operations.

FIELDTYPE function:

The FIELDTYPE field function returns the type of a given field.

Syntax

►► FIELDTYPE (source_field_reference) ►◄

FIELDTYPE returns an integer representing the type of the field identified by
source_field_reference; this is the type of the field, not the data type of the field that
the parameter identifies. If the parameter identifies a nonexistent entity, NULL is
returned.

The mapping of integer values to field types is not published, and might change
from release to release. Compare the results of the FIELDTYPE function with
named field types.

For example:
IF FIELDTYPE(source_field_reference) = NameValue
THEN ...

The named field types that you can use in this context are listed in this section.
You must use these types with the capitalization shown.

The following types are domain-independent:
v Name

v Value

v NameValue

v MQRFH2.BitStream

v MQRFH2.Field

v MQRFH2C.Field

The XML.* types are applicable to the XML, XMLNS, JMSMap, and JMSStream
domains, except for XML.NamespaceDecl, which is specific to the XML domain.
v XML.AsisElementContent

v XML.Attribute

Chapter 14. Reference 5231

v XML.AttributeDef

v XML.AttributeDefDefaultType

v XML.AttributeDefType

v XML.AttributeDefValue

v XML.AttributeList

v XML.BitStream

v XML.CDataSection

v XML.Comment

v XML.Content

v XML.DocTypeCommentt

v XML.DocTypeDecl

v XML.DocTypePI

v XML.DocTypeWhiteSpace

v XML.Element

v XML.ElementDef

v XML.Encoding

v XML.EntityDecl

v XML.EntityDeclValue

v XML.EntityReferenceEnd

v XML.EntityReferenceStart

v XML.EntityValue

v XML.ExternalEntityDecl

v XML.ExternalParameterEntityDecl

v XML.ExtSubset

v XML.IntSubset

v XML.NamespaceDecl

v XML.NotationDecl

v XML.NotationReference

v XML.Opaque

v XML.ParameterEntityDecl

v XML.ParserRoot

v XML.ProcessingInstruction

v XML.PublicId

v XML.RequestedDomain

v XML.Standalone

v XML.SystemId

v XML.UnparsedEntityDecl

v XML.Version

v XML.WhiteSpace

v XML.XmlDecl

The XMLNSC.* types are applicable to the XMLNSC domain. The same constants
can also be prefixed with SOAP.* for use in the SOAP domain.
v XMLNSC.AnyCData

v XMLNSC.AnyHybrid

5232 WebSphere Message Broker Version 7.0.0.8

v XMLNSC.AnyPCData

v XMLNSC.AnyValue

v XMLNSC.AsisElementContent

v XMLNSC.Attribute

v XMLNSC.base64Binary

v XMLNSC.BitStream

v XMLNSC.CDataField

v XMLNSC.CDataValue

v XMLNSC.Comment

v XMLNSC.DocumentType

v XMLNSC.DoubleAttribute

v XMLNSC.DoubleEntityDefinition

v XMLNSC.DoubleNamespaceDecl

v XMLNSC.Element

v XMLNSC.EntityDefinition

v XMLNSC.EntityReference

v XMLNSC.Field

v XMLNSC.Folder

v XMLNSC.gDay

v XMLNSC.gMonth

v XMLNSC.gMonthDay

v XMLNSC.gYear

v XMLNSC.gYearMonth

v XMLNSC.HybridField

v XMLNSC.HybridValue

v XMLNSC.NamespaceDecl

v XMLNSC.Opaque

v XMLNSC.PCDataField

v XMLNSC.PCDataValue

v XMLNSC.ProcessingInstruction

v XMLNSC.SingleAttribute

v XMLNSC.SingleEntityDefinition

v XMLNSC.SingleNamespaceDecl

v XMLNSC.Value

v XMLNSC.XmlDeclaration

You can also use this function to determine whether a field in a message exists. To
do this, use the form:
FIELDTYPE(SomeFieldReference) IS NULL

If the field exists, an integer value is returned to the function that indicates the
field type (for example, string). When this is compared to NULL, the result is
FALSE. If the field does not exist, NULL is returned and therefore the result is
TRUE. For example:

IF FIELDTYPE(InputRoot.XMLNS.Message1.Name)
IS NULL THEN

// Name field does not exist, take error
action....

Chapter 14. Reference 5233

... more ESQL ...
ELSE
// Name field does exist, continue....
... more ESQL ...
END IF

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL field functions” on page 5224
ESQL provides functions that support field operations.
“XML, MRM, and XMLNSC parser constants” on page 6691
The names of the XML and MRM parser constants, together with their
corresponding values, and a link to the XMLNSC constants.
“XMLNSC: Using field types” on page 1094
The XMLNSC parser sets the field type on every syntax element that it creates.

FIELDVALUE function:
The FIELDVALUE field function returns the scalar value of a given field.

Syntax

►► FIELDVALUE (source_field_reference) ►◄

FIELDVALUE returns the scalar value of the field identified by
source_field_reference. If it identifies a non-existent field, NULL is returned.

For example, consider the following XML input message:
<Data>

<Qty Unit="Gallons">1234</Qty>
</Data>

The ESQL statement
SET OutputRoot.XML.Data.Quantity =

FIELDVALUE(InputRoot.XML.Data.Qty);

gives the result:
<Data><Quantity>1234</Quantity></Data>

whereas this ESQL statement (without the FIELDVALUE function):
SET OutputRoot.XML.Data.Quantity =

InputRoot.XML.Data.Qty;

causes a tree copy, with the result:

5234 WebSphere Message Broker Version 7.0.0.8

<Data><Quantity Unit="Gallons">1234</Quantity></Data>

because the field Qty is not a leaf field.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“XMLNSC: Attributes and elements” on page 2552
The XMLNSC parser uses field types to represent attributes and elements.
“Syntax diagrams” on page 3677
“ESQL field functions” on page 5224
ESQL provides functions that support field operations.

FOR function:

The FOR field function evaluates an expression and assigns a resulting value of
TRUE, FALSE, or UNKNOWN.

Syntax

►► FOR
ALL
-ANY
-SOME

▼

,

fieldreference
AS Identifier

►

► (expression) ►◄

FOR enables you to write an expression that iterates over all instances of a
repeating field. For each instance it processes a boolean expression and collates the
results.

For example:
FOR ALL Body.Invoice.Purchases."Item"[] AS I (I.Quantity <= 50)

Note:

1. With the quantified predicate , the first thing to note is the [] on the end of the
field reference after the FOR ALL. The square brackets define iteration over all
instances of the Item field.

Chapter 14. Reference 5235

In some cases, this syntax appears unnecessary, because you can get that
information from the context, but it is done for consistency with other pieces of
syntax.

2.

The ASclause associates the name I in the field reference with the current
instance of the repeating field. This is similar to the concept of iterator classes
used in some object oriented languages such as C++. The expression in
parentheses is a predicate that is evaluated for each instance of the Item field.

If you specify the ALL keyword, the function iterates over all instances of the field
Item inside Body.Invoice.Purchases and evaluates the predicate I.Quantity <= 50.
If the predicate evaluates to:
v TRUE (if the field is empty, or for all instances of Item) return TRUE.
v FALSE (for any instance of Item) return FALSE.
v Anything else, return UNKNOWN.

The ANY and SOME keywords are equivalent. If you use either, the function
iterates over all instances of the field Item inside Body.Invoice.Purchases and
evaluates the predicate I.Quantity <= 50. If the predicate evaluates to:
v FALSE (if the field is empty, or for all instances of Item) return FALSE.
v TRUE (for any instance of Item) return TRUE.
v Anything else, return UNKNOWN.

To further illustrate this, the following examples are based on the message
described in “Example message” on page 5311. In the following filter expression:
FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Title = ’The XML Companion’)

the sub-predicate evaluates to TRUE. However, this next expression returns FALSE:
FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Title = ’C Primer’)

because the C Primer is not included on this invoice. If in this instance some of the
items in the invoice do not include a book title field, the sub-predicate returns
UNKNOWN, and the quantified predicate returns the value UNKNOWN.

Take great care to deal with the possibility of null values appearing. Write this
filter with an explicit check on the existence of the field, as follows:
FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Book IS NOT NULL AND
I.Book.Title = ’C Primer’)

The IS NOT NULL predicate ensures that, if an Item field does not contain a Book,
a FALSE value is returned from the sub-predicate.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Accessing unknown multiple occurrences of an element” on page 2427
To access repeating fields in a message, you must use a construct that can iterate

5236 WebSphere Message Broker Version 7.0.0.8

over all instances of a repeating field.
Related reference:
“Syntax diagrams” on page 3677
“Example message” on page 5311

LASTMOVE function:
The LASTMOVE field function tells you whether the last MOVE function
succeeded.

Syntax

►► LASTMOVE (source_dynamic_reference) ►◄

LASTMOVE returns a Boolean value indicating whether the last MOVE function
applied to source_dynamic_reference was successful (TRUE) or not (FALSE).

See “MOVE statement” on page 5145 for an example of using the MOVE
statement, and the LASTMOVE function to check its success.

See “Creating dynamic field references” on page 2431 for information about
dynamic references.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL field functions” on page 5224
ESQL provides functions that support field operations.
“MOVE statement” on page 5145
The MOVE statement changes the field to which the Target reference variable
points.

SAMEFIELD function:
The SAMEFIELD field function tells you whether two field references point to the
same target.

Syntax

►► SAMEFIELD (source_field_reference1 , source_field_reference2) ►◄

Chapter 14. Reference 5237

SAMEFIELD returns a BOOLEAN value indicating whether two field references
point to the same target. If they do, SAMEFIELD returns TRUE; otherwise
SAMEFIELD returns FALSE.

For example:
DECLARE ref1 REFERENCE TO OutputRoot.XMLNS.Invoice.Purchases.Item[1];
MOVE ref1 NEXTSIBLING;
SET Result = SAMEFIELD(ref1,OutputRoot.XMLNS.Invoice.Purchases.Item[2]);

Result is TRUE.

See “Creating dynamic field references” on page 2431 for information about
dynamic references.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“ESQL field functions” on page 5224
ESQL provides functions that support field operations.
“MOVE statement” on page 5145
The MOVE statement changes the field to which the Target reference variable
points.

ESQL list functions:

ESQL provides several functions to work with lists.

“CARDINALITY function”

“EXISTS function” on page 5239

“SINGULAR function” on page 5241

“THE function” on page 5242

CARDINALITY function:
The CARDINALITY function returns the number of elements in a list.

Syntax

►► CARDINALITY (ListExpression) ►◄

CARDINALITY returns an integer value giving the number of elements in the list
specified by ListExpression.

5238 WebSphere Message Broker Version 7.0.0.8

ListExpression is any expression that returns a list. All the following, for example,
return a list:
v A LIST constructor
v A field reference with the [] array indicator
v Some SELECT expressions (not all return a list)

A common use of this function is to determine the number of fields in a list before
iterating over them.

Examples
-- Determine the number of F1 fields in the message.
-- Note that the [] are required
DECLARE CountF1 INT CARDINALITY(OutputRoot.XMLNS.Data.Source.F1[]);

-- Determine the number of fields called F1 with the value ’F12’ in the message.
-- Again note that the [] are required
DECLARE CountF1F12 INT

CARDINALITY(SELECT F.* FROM OutputRoot.XMLNS.Data.Source.F1[] AS F
where F = ’F12’);

-- Use the value returned by CARDINALITY to refer to a specific element
-- in a list or array:
-- Array indices start at 1, so this example refers to the third-from-last
-- instance of the Item field
Body.Invoice.Item[CARDINALITY(Body.Invoice.Item[]) - 2].Quantity

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“EXISTS function”
The EXISTS function returns a Boolean value to indicate whether a list contains at
least one element (that is, whether the list exists).
“SINGULAR function” on page 5241
The SINGULAR function returns a Boolean value that indicates whether a list
contains exactly one element.
“THE function” on page 5242
The THE function returns the first element of a list.
“Syntax diagrams” on page 3677
“ESQL list functions” on page 5238
ESQL provides several functions to work with lists.

EXISTS function:

The EXISTS function returns a Boolean value to indicate whether a list contains at
least one element (that is, whether the list exists).

Chapter 14. Reference 5239

Syntax

►► EXISTS (ListExpression) ►◄

If the list specified by ListExpression contains one or more elements, EXISTS returns
TRUE. If the list contains no elements, EXISTS returns FALSE.

ListExpression is any expression that returns a list. All the following expressions, for
example, return a list:
v A LIST constructor
v A field reference with the [] array indicator
v Some SELECT expressions (not all return a list)

If you want to know only whether a list contains at least one elements or none,
EXISTS executes more quickly than an expression involving the CARDINALITY
function (for example, CARDINALITY(ListExpression) <> 0).

A typical use of this function is to determine whether a field exists.

Examples
-- Determine whether the F1 array exists in the message. Note that the []
-- are required
DECLARE Field1Exists BOOLEAN EXISTS(OutputRoot.XMLNS.Data.Source.F1[]);

-- Determine whether the F1 array contains an element with the value ’F12’.
-- Again note that the [] are required
DECLARE Field1F12Exists BOOLEAN

EXISTS(SELECT F.* FROM OutputRoot.XMLNS.Data.Source.F1[] AS F where F = ’F12’);

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“CARDINALITY function” on page 5238
“SINGULAR function” on page 5241
The SINGULAR function returns a Boolean value that indicates whether a list
contains exactly one element.
“THE function” on page 5242
The THE function returns the first element of a list.
“Syntax diagrams” on page 3677
“ESQL list functions” on page 5238
ESQL provides several functions to work with lists.

5240 WebSphere Message Broker Version 7.0.0.8

SINGULAR function:

The SINGULAR function returns a Boolean value that indicates whether a list
contains exactly one element.

Syntax

►► SINGULAR (ListExpression) ►◄

If the list specified by ListExpression contains exactly one element, SINGULAR
returns TRUE. If the list contains more or fewer elements, SINGULAR returns
FALSE.

ListExpression is an expression that returns a list. All the following expressions, for
example, return a list:
v A LIST constructor
v A field reference with the [] array indicator
v Some SELECT expressions (not all return a list)

If you want to know only whether a list contains just one element or some other
number, SINGULAR executes more quickly than an expression involving the
CARDINALITY function (for example, CARDINALITY(ListExpression) = 1).

A typical use of this function is to determine whether a field is unique.

Examples
-- Determine whether there is just one F1 field in the message.
-- Note that the [] are required
DECLARE Field1Unique BOOLEAN SINGULAR(OutputRoot.XMLNS.Data.Source.F1[]);

-- Determine whether there is just one field called F1 with the value ’F12’
-- in the message. Again note that the [] are required
DECLARE Field1F12Unique BOOLEAN

SINGULAR(SELECT F.* FROM OutputRoot.XMLNS.Data.Source.F1[] AS F where F = ’F12’);

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“CARDINALITY function” on page 5238
“EXISTS function” on page 5239
The EXISTS function returns a Boolean value to indicate whether a list contains at
least one element (that is, whether the list exists).
“THE function” on page 5242
The THE function returns the first element of a list.
“Syntax diagrams” on page 3677

Chapter 14. Reference 5241

“ESQL list functions” on page 5238
ESQL provides several functions to work with lists.

THE function:

The THE function returns the first element of a list.

Syntax

►► THE (ListExpression) ►◄

If ListExpression contains one or more elements; THE returns the first element of
the list. In all other cases, it returns an empty list.

Restrictions

ListExpression must be a SELECT expression.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“CARDINALITY function” on page 5238
“EXISTS function” on page 5239
The EXISTS function returns a Boolean value to indicate whether a list contains at
least one element (that is, whether the list exists).
“SINGULAR function” on page 5241
The SINGULAR function returns a Boolean value that indicates whether a list
contains exactly one element.
“Syntax diagrams” on page 3677
“ESQL list functions” on page 5238
ESQL provides several functions to work with lists.

Complex ESQL functions:
This topic lists the complex ESQL functions and covers the following:

“CASE function” on page 5243

“CAST function” on page 5245

“SELECT function” on page 5260

“ROW constructor function” on page 5267

“LIST constructor function” on page 5269

“ROW and LIST combined” on page 5270

5242 WebSphere Message Broker Version 7.0.0.8

“ROW and LIST comparisons” on page 5271

“Supported casts” on page 5273

“Implicit casts” on page 5282

“Implicit CASTs for comparisons” on page 5282

“Implicit CASTs for arithmetic operations” on page 5285

“Implicit CASTs for assignment” on page 5287

“Data types of values from external databases” on page 5288

CASE function:

CASE is a complex function that has two forms; the simple-when form and the
searched-when form. In either form CASE returns a result, the value of which
controls the path of subsequent processing.

Syntax

►► CASE simple-when-clause
searched-when-clause

ELSE NULL

ELSE result_expression
END ►◄

simple-when-clause:

source_value ▼ WHEN test_value THEN result_value
NULL

searched-when-clause:

▼ WHEN search_condition THEN result_value
NULL

In the simple-when form, source_value is compared with each test_value until a
match is found. The result of the CASE function is the value of the corresponding
result_value. The data type of source_value must therefore be comparable to the data
type of each test_value.

The CASE function must have at least one WHEN clause. The ELSE expression is
optional. The default ELSE expression is NULL. A CASE expression is delimited by
END. The test values do not have to be literal values.

The searched-when form is similar, but has the additional flexibility of allowing a
number of different values to be tested.

Chapter 14. Reference 5243

The following example shows a CASE function with a simple WHEN clause. In
this example, the CASE can be determined only by one variable that is specified
next to the CASE keyword.
DECLARE CurrentMonth CHAR;
DECLARE MonthText CHAR;
SET CurrentMonth = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2);

SET MonthText =
CASE CurrentMonth

WHEN ’01’ THEN ’January’
WHEN ’02’ THEN ’February’
WHEN ’03’ THEN ’March’
WHEN ’04’ THEN ’April’
WHEN ’05’ THEN ’May’
WHEN ’06’ THEN ’June’
ELSE ’Second half of year’

END;

The following example shows a CASE function with a searched-when-clause. This
example is still determined by one variable CurrentMonth:
DECLARE CurrentMonth CHAR;
DECLARE MonthText CHAR;
SET CurrentMonth = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2);

SET MonthText =
CASE

WHEN Month = ’01’ THEN ’January’
WHEN Month = ’02’ THEN ’February’
WHEN Month = ’03’ THEN ’March’
WHEN Month = ’04’ THEN ’April’
WHEN Month = ’05’ THEN ’May’
WHEN Month = ’06’ THEN ’June’
ELSE ’Second half of year’

END;

In a searched-when-clause, different variables can be used in the WHEN clauses to
determine the result. This is demonstrated in the following example of the
searched-when-clause:
DECLARE CurrentMonth CHAR;
DECLARE CurrentYear CHAR;
DECLARE MonthText CHAR;
SET CurrentMonth = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2);
SET CurrentYear = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 1 FOR 4);

SET MonthText =
CASE

WHEN CurrentMonth = ’01’ THEN ’January’
WHEN CurrentMonth = ’02’ THEN ’February’
WHEN CurrentMonth = ’03’ THEN ’March’
WHEN CurrentYear = ’2000’ THEN ’A month in the Year 2000’
WHEN CurrentYear = ’2001’ THEN ’A month in the Year 2001’
ELSE ’Not first three months of any year or a month in the Year 2000 or 2001’

END;

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and

5244 WebSphere Message Broker Version 7.0.0.8

Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“Complex ESQL functions” on page 5242
“MOVE statement” on page 5145
The MOVE statement changes the field to which the Target reference variable
points.

CAST function:
CAST is a complex function that transforms one or more values from one data
type into another.

Syntax

►► CAST (▼

<< , <<

source_expression AS DataType
CCSID expression

►

►
ENCODING expression FORMAT expression DEFAULT expression

►

►) ►◄

In practice, you cannot specify all of the above parameters at the same time. For
example, CCSID and ENCODING parameters take effect only on string-to-string
conversions, while FORMAT applies only to string-numeric and string-datetime
conversions (in either direction).

Not all conversions are supported; see “Supported casts” on page 5273 for a list of
supported conversions.

Parameters:
Source expression

CAST returns its first parameter (source_expression), which can contain more than
one value, as the data type that is specified by its second parameter (DataType). In
all cases, if the source expression is NULL, the result is NULL. If the evaluated
source expression is not compatible with the target data type, or if the source
expression is of the wrong format, a runtime error is generated.

CCSID

The CCSID parameter is used only for conversions to or from one of the string data
types. Use the CCSID parameter to specify the code page of the source or target
string.

Chapter 14. Reference 5245

The CCSID parameter can be any expression that evaluates to a value of type INT.
The expression is interpreted according to normal WebSphere Message Broker rules
for CCSIDs. See “Supported code pages” on page 4176 for a list of valid values.

DataType

The DataType parameter is the data type into which the source value is
transformed. The possible values are:
v String types:

– BIT
– BLOB
– CHARACTER

v Numeric types:
– DECIMAL
– FLOAT
– INTEGER

v Date/Time types:
– DATE
– GMTTIME
– GMTTIMESTAMP
– INTERVAL
– TIME
– TIMESTAMP

v Boolean:
– BOOLEAN

Ensure that you specify a valid ESQL interval subtype after a Date/Time type of
INTERVAL. For valid ESQL interval subtypes, see “ESQL INTERVAL data type” on
page 5027. For example commands that show how to specify a valid ESQL interval
subtype, see examples 12, 13, and 14 later in this section.

DEFAULT

The DEFAULT parameter provides a method of avoiding exceptions being thrown
from CAST statements by providing a last-resort value to return.

The DEFAULT parameter must be a valid ESQL expression that returns the same
data type as that specified on the DataType parameter, otherwise an exception is
thrown.

The CCSID, ENCODING, and FORMAT parameters are not applied to the result of the
DEFAULT parameter; the expression must, therefore, be of the correct CCSID,
ENCODING, and FORMAT.

ENCODING

Use the ENCODING parameter to specify the encoding for certain conversions. The
ENCODING value can be any expression that evaluates to a value of type INT, and is
interpreted according to normal WebSphere Message Broker rules for encoding.
Valid values are:
v MQENC_NATIVE (0x00000222L)
v MQENC_INTEGER_NORMAL (0x00000001L)
v MQENC_INTEGER_REVERSED (0x00000002L)
v MQENC_DECIMAL_NORMAL (0x00000010L)

5246 WebSphere Message Broker Version 7.0.0.8

v MQENC_DECIMAL_REVERSED (0x00000020L)
v MQENC_FLOAT_IEEE_NORMAL (0x00000100L)
v MQENC_FLOAT_IEEE_REVERSED (0x00000200L)
v MQENC_FLOAT_S390 (0x00000300L)

FORMAT

Use the FORMAT parameter for conversions between string data types and numeric
or date/time data types. For conversions from string types, FORMAT defines how the
source string should be parsed to fill the target data type. For conversions to string
types, it defines how the data in the source expression is formatted in the target
string.

FORMAT takes different types of expression for date/time and numeric conversions.
However, the same FORMAT expression can be used irrespective of whether the
conversion is to a string or from a string.

You can specify a FORMAT parameter when casting:
v From any of the string data types (BIT, BLOB, or CHARACTER) to:

– DECIMAL
– FLOAT
– INTEGER
– DATE
– GMTTIMESTAMP
– TIMESTAMP
– GMTTIME
– TIME

v To any of the string data types (BIT, BLOB, or CHARACTER) from any of the
numeric and date/time data types in the previous list.

Specifying FORMAT for an unsupported combination of source and target data types
causes error message BIP3205 to be issued.

For more information about conversion to and from numeric data types, see
“Formatting and parsing numbers as strings” on page 5250. For more information
about conversion to and from date/time data types, see “Formatting and parsing
dateTimes as strings” on page 5253.

The FORMAT parameter is equivalent to those used in many other products, such as
ICU and Microsoft Excel.

Examples:
Example 1. Formatted CAST from DECIMAL to CHARACTER
DECLARE source DECIMAL 31415.92653589;
DECLARE target CHARACTER;
DECLARE pattern CHARACTER ’#,##0.00’;
SET target = CAST(source AS CHARACTER FORMAT pattern);
-- target is now ’31,415.93’

Example 2. Formatted CAST from DATE to CHARACTER
DECLARE now CHARACTER;
SET now = CAST(CURRENT_TIMESTAMP AS CHARACTER FORMAT ’yyyyMMdd-HHmmss’);
-- target is now ’20041007-111656’ (in this instance at least)

Chapter 14. Reference 5247

Example 3. Formatted CAST from CHARACTER to DATE
DECLARE source CHARACTER ’01-02-03’;
DECLARE target DATE;
DECLARE pattern CHARACTER ’dd-MM-yy’;
SET target = CAST(source AS DATE FORMAT pattern);
-- target now contains Year=2003, Month=02, Day=01

Example 4. Formatted CAST from CHARACTER to TIMESTAMP
DECLARE source CHARACTER ’12 Jan 03, 3:45pm’;
DECLARE target TIMESTAMP;
DECLARE pattern CHARACTER ’dd MMM yy, h:mma’;
SET target = CAST(source AS TIMESTAMP FORMAT pattern);
-- target now contains Year=2003, Month=01, Day=03, Hour=15, Minute=45,

Seconds=58
-- (seconds taken from CURRENT_TIME since not present in input)

Example 5. Formatted CAST from DECIMAL to CHARACTER, with negative
pattern
DECLARE source DECIMAL -54231.122;
DECLARE target CHARACTER;
DECLARE pattern CHARACTER ’#,##0.00;(#,##0.00)’;
SET target = CAST(source AS CHARACTER FORMAT pattern);
-- target is now ’£(54,231.12)’

Example 6. Formatted CAST from CHARACTER to TIME
DECLARE source CHARACTER ’16:18:30’;
DECLARE target TIME;
DECLARE pattern CHARACTER ’hh:mm:ss’;
SET target = CAST(source AS TIME FORMAT pattern);
-- target now contains Hour=16, Minute=18, Seconds=30

Example 7. CASTs from the numeric types to DATE
CAST(7, 6, 5 AS DATE);
CAST(7.4e0, 6.5e0, 5.6e0 AS DATE);
CAST(7.6, 6.51, 5.4 AS DATE);

Example 8. CASTs from the numeric types to TIME
CAST(9, 8, 7 AS TIME);
CAST(9.4e0, 8.6e0, 7.1234567e0 AS TIME);
CAST(9.6, 8.4, 7.7654321 AS TIME);

Example 9. CASTs to TIMESTAMP
CAST(DATE ’0001-02-03’, TIME ’04:05:06’ AS TIMESTAMP);
CAST(2, 3, 4, 5, 6, 7.8 AS TIMESTAMP);

Example 10. CASTs to GMTTIMESTAMP
CAST(DATE ’0002-03-04’, GMTTIME ’05:06:07’ AS GMTTIMESTAMP);
CAST(3, 4, 5, 6, 7, 8 AS GMTTIMESTAMP);
CAST(3.1e0, 4.2e0, 5.3e0, 6.4e0, 7.5e0, 8.6789012e0 AS GMTTIMESTAMP);
CAST(3.2, 4.3, 5.4, 6.5, 7.6, 8.7890135 AS GMTTIMESTAMP);

Example 11. CASTs to INTERVAL from INTEGER
CAST(1234 AS INTERVAL YEAR);
CAST(32, 10 AS INTERVAL YEAR TO MONTH);
CAST(33, 11 AS INTERVAL DAY TO HOUR);
CAST(34, 12 AS INTERVAL HOUR TO MINUTE);
CAST(35, 13 AS INTERVAL MINUTE TO SECOND);
CAST(36, 14, 10 AS INTERVAL DAY TO MINUTE);
CAST(37, 15, 11 AS INTERVAL HOUR TO SECOND);
CAST(38, 16, 12, 10 AS INTERVAL DAY TO SECOND);

5248 WebSphere Message Broker Version 7.0.0.8

Example 12. CASTs to INTERVAL from FLOAT
CAST(2345.67e0 AS INTERVAL YEAR);
CAST(3456.78e1 AS INTERVAL MONTH);
CAST(4567.89e2 AS INTERVAL DAY);
CAST(5678.90e3 AS INTERVAL HOUR);
CAST(6789.01e4 AS INTERVAL MINUTE);
CAST(7890.12e5 AS INTERVAL SECOND);
CAST(7890.1234e0 AS INTERVAL SECOND);

Example 13. CASTs to INTERVAL from DECIMAL
CAST(2345.67 AS INTERVAL YEAR);
CAST(34567.8 AS INTERVAL MONTH);
CAST(456789 AS INTERVAL DAY);
CAST(5678900 AS INTERVAL HOUR);
CAST(67890100 AS INTERVAL MINUTE);
CAST(789012000 AS INTERVAL SECOND);
CAST(7890.1234 AS INTERVAL SECOND);

Example 14. CASTs to FLOAT from INTERVAL
CAST(INTERVAL ’1234’ YEAR AS FLOAT);
CAST(INTERVAL ’2345’ MONTH AS FLOAT);
CAST(INTERVAL ’3456’ DAY AS FLOAT);
CAST(INTERVAL ’4567’ HOUR AS FLOAT);
CAST(INTERVAL ’5678’ MINUTE AS FLOAT);
CAST(INTERVAL ’6789.01’ SECOND AS FLOAT);

Example 15. CASTs DECIMAL from INTERVAL
CAST(INTERVAL ’1234’ YEAR AS DECIMAL);
CAST(INTERVAL ’2345’ MONTH AS DECIMAL);
CAST(INTERVAL ’3456’ DAY AS DECIMAL);
CAST(INTERVAL ’4567’ HOUR AS DECIMAL);
CAST(INTERVAL ’5678’ MINUTE AS DECIMAL);
CAST(INTERVAL ’6789.01’ SECOND AS DECIMAL);

Example 16. A ternary cast that fails and results in the substitution of a default
value
CAST(7, 6, 32 AS DATE DEFAULT DATE ’1947-10-24’);

Example 17. A sexternary cast that fails and results in the substitution of a
default value
CAST(2, 3, 4, 24, 6, 7.8 AS TIMESTAMP DEFAULT TIMESTAMP ’1947-10-24 07:08:09’);

Example 18. A ternary cast that fails and throws an exception
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE LIKE ’%’ BEGIN
SET OutputRoot.XMLNS.Data.Date.FromIntegersInvalidCast = ’Exception thrown’;
END;

DECLARE Dummy CHARACTER CAST(7, 6, 32 AS DATE);
END;

Example 19. A sexternary cast that fails and throws an exception
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE LIKE ’%’ BEGIN
SET OutputRoot.XMLNS.Data.Timestamp.FromIntegersInvalidCast = ’Exception thrown’;
END;

DECLARE Dummy CHARACTER CAST(2, 3, 4, 24, 6, 7.8 AS TIMESTAMP);
END;

Related concepts:

Chapter 14. Reference 5249

“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Casting data from message fields” on page 2474
You can use the CAST function to transform the data type of one value to match
the data type of the other. For example, you can use the CAST function when you
process generic XML messages. All fields in an XML message have character
values, so if you want to perform arithmetic calculations or datetime comparisons,
for example, you must convert the string value of the field into a value of the
appropriate type using CAST.
Related reference:
“Syntax diagrams” on page 3677
“Complex ESQL functions” on page 5242
“Supported casts” on page 5273
“Implicit casts” on page 5282
“Formatting and parsing numbers as strings”
For conversions between string data types and numeric data types, you can supply,
on the FORMAT parameter of the CAST function, an optional formatting
expression.
“Formatting and parsing dateTimes as strings” on page 5253
This section gives information on how you can specify the dateTime format using
a string of pattern letters.
“Data types of values from external databases” on page 5288
How database data types are implicitly cast to ESQL data types.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.

Formatting and parsing numbers as strings:

For conversions between string data types and numeric data types, you can supply,
on the FORMAT parameter of the CAST function, an optional formatting
expression.

For conversions from string types, the formatting expression defines how the source
string should be parsed to fill the target data type.

For conversions to string types, the formatting expression defines how the data in
the source expression is to be formatted in the target string.

You can specify a FORMAT expression for the following numeric conversions
(Specifying a FORMAT expression for date/time conversions is described in
“Formatting and parsing dateTimes as strings” on page 5253).
v From any of the string data types (BIT, BLOB, or CHARACTER) to:

– DECIMAL
– FLOAT
– INTEGER

v To any of the string data types (BIT, BLOB, or CHARACTER) from any of the
numeric data types that are in the previous list.

5250 WebSphere Message Broker Version 7.0.0.8

The formatting expression consists of three parts:
1. A subpattern that defines positive numbers.
2. An optional subpattern that defines negative numbers. (If only one subpattern

is defined, negative numbers use the positive pattern, prefixed with a minus
sign.)

3. The optional parameters groupsep and decsep.

Syntax

►► subpattern
; subpattern :groupsep= chars

►

►
:decsep= chars

►◄

subpattern:

chars
digits

.digits e digits
E

chars

Parameters:
chars

A sequence of zero or more characters. All characters can be used, except the
special characters that are listed under “subpattern” on page 5252.

decsep

One or more characters to be used as the separator between the whole and decimal
parts of a number (the decimal separator). The default decimal separator is a
period (.).

digits

A sequence of one or more of the numeric tokens (0 # - + , .) that are listed under
“subpattern” on page 5252.

groupsep

One or more characters to be used as the separator between clusters of integers, to
make large numbers more readable (the grouping separator). The default grouping
separator is nothing (that is, there is no grouping of digits or separation of groups).

Grouping is commonly done in thousands, but it can be redefined by either the
pattern or the locale. There are two grouping sizes:

The primary grouping size
Used for the least significant integer digits.

The secondary grouping size
Used for all other integer digits.

Chapter 14. Reference 5251

In most cases, the primary and secondary grouping sizes are the same, but they
can be different. For example, if the pattern used is #,##,##0, the primary
grouping size is 3 and the secondary is 2. The number 123456789 would become
the string “12,34,56,789”.

If multiple grouping separators are used (as in the previous example), the
rightmost separator defines the primary size, and the penultimate rightmost
separator defines the secondary size.

subpattern

The subpattern consists of:
1. An optional prefix (chars)
2. A mandatory pattern representing a whole number
3. An optional pattern representing decimal places
4. An optional pattern representing an exponent (the power by which the

preceding number is raised)
5. An optional suffix (chars)

Parts 2, 3, and 4 of the subpattern are defined by the tokens in the following table.

Token Represents

0 Any digit, including a leading zero.

Any digit, excluding a leading zero. (See the explanation of the
difference between 0 and # that follows this table.)

. Decimal separator.

+ Prefix of positive numbers.

- Prefix of negative numbers.

, Grouping separator.

E/e Separates the number from the exponent.

; Subpattern boundary.

' Quotation mark, applied to special characters. If a quotation mark is
needed in output, it must be doubled ('').

* Padding specifier. The character following the asterisk is used to pad
the number to fit the length of the format pattern.

The # and 0 characters are used for digit substitution, the difference between them
being that a # character is removed if there is no number to replace it with. For
example, 10 formatted by the pattern #,##0.00 gives “10.00”, but formatted by
0,000.00 gives “0,010.00”.

To specify padding characters, use an asterisk. When an asterisk is placed in either
of the two chars regions (the prefix and suffix), the character immediately following
it is used to pad the output. Padding can be specified only once. For example, a
pattern of *x#,###,##0.00 applied to 1234 gives “xxx1,234.00”. But applied to
1234567, it gives “1,234,567.00”.

Examples of formatting patterns:
The following table shows formatting patterns and the strings that are generated
from sample numeric input.

5252 WebSphere Message Broker Version 7.0.0.8

Pattern Input number Output string

+###,##0.00;-
###,###,##0.00:groupsep='':decsep=,

123456789.123 “+123'456'789,12”

##0.00 1000000 “1000000.00”

##0.00 3.14159265 “3.14”

Related reference:
“CAST function” on page 5245
“Formatting and parsing dateTimes as strings”
This section gives information on how you can specify the dateTime format using
a string of pattern letters.
“Supported casts” on page 5273
“Implicit casts” on page 5282

Formatting and parsing dateTimes as strings:

This section gives information on how you can specify the dateTime format using
a string of pattern letters.

When you convert a date or time into a string, a format pattern must be applied
that directs the conversion. Apply the format pattern to convert a date or time into
a string, or to parse a string into a date or time.

During the conversion (for example, of a dateTime into a string), a pattern or a set
of tokens is replaced with the equivalent source. The following diagram shows
how a pattern is used to format a dateTime source to produce a character string
output.

When a string is parsed (for example, when converting the string to a dateTime),
the pattern or set of tokens is used to determine which part of the target dateTime
is represented by which part of the string. The following diagram shows how this
is done.

source pattern

output

Year=2004, Month=10, Day=07,
Hour=10, Minute=24, Second=40

yyyy-MM-dd HH:mm:ss

2004-10-07 10:24:40

Chapter 14. Reference 5253

Syntax

The expression pattern is defined by:

►► ▼ symbol
string

►◄

Where:

symbol
is a character in the set adDeEFGhHIkKmMsSTUwWyYzZ.

string is a sequence of characters enclosed in single quotation marks. If a single
quotation mark is required within the string, use two single quotation
marks (").

Characters for formatting a dateTime as a string

The following table lists the characters that you can use in a pattern for formatting
or parsing strings in relation to a dateTime. The table is followed by some notes
that explain more about some of the examples in the table.

Symbol Meaning Presentation Examples

a am or pm marker Text Input am, AM, pm, PM.
Output AM or PM

d day in month (1-31) Number 1, 20

dd day in month (01-31) Number 01, 31

D day in year (1-366) Number 3, 80, 100

DD day in year (01-366) Number 03, 80, 366

DDD day in year (001-366) Number 003

e day in week (1-7)1 Number 2

EEE day in week1 Text Tue

EEEE day in week1 Text Tuesday

source pattern

output

12 Jan 03, 3:45pm dd MMM yy, h:ma

Year=2003, Month=01, Day=12,
Hour=15, Minute=45

5254 WebSphere Message Broker Version 7.0.0.8

Symbol Meaning Presentation Examples

F day of week in month (1-5)2 Number 2

G Era Text BC or AD

h hour in am or pm (1-12) Number 6

hh hour in am or pm (01-12) Number 06

H hour of day in 24 hour
form (0-23)3

Number 7

HH hour of day in 24 hour
form (00-23)3

Number 07

I ISO8601 Date/Time (up to
yyyy-MM-dd'T'HH:mm:ss.
SSSZZZ)4

Text 2006-10-
07T12:06:56.568+01:00

IU ISO8601 Date/Time (similar
to I, but ZZZ with output
"Z" if the time zone is
+00:00)4

Text 2006-10-
07T12:06:56.568+01:00,
2003-12 -15T15:42:12.000Z

k hour of day in 24 hour
form (1-24)3

Number 8

kk hour of day in 24 hour
form (01-24)3

Number 08

K hour in am or pm (0-11) Number 9

KK hour in am or pm (00-11) Number 09

m minute Number 4

mm minute Number 04

M numeric month Number 5, 12

MM numeric month Number 05, 12

MMM named month Text Jan, Feb

MMMM named month Text January, February

s seconds10 Number 5

ss seconds10 Number 05

S decisecond5 Number 7

SS centisecond5 Number 70

SSS millisecond5 Number 700

SSSS 0.0001 second5 Number 7000

SSSSS 0.00001 second5 Number 70000

SSSSSS 0.000001 second5 Number 700000

T ISO8601 Time (up to
HH:mm:ss.SSSZZZ)4

Text 12:06:56.568+01:00

TU ISO8601 Time (similar to T,
but a time zone of +00:00 is
replaced with 'Z')4

Text 12:06:56.568+01:00,
15:42:12.000Z

w week in year6 Number 7, 53

ww week in year6 Number 07, 53

W week in month7 Number 2

yy year8 Number 06

Chapter 14. Reference 5255

Symbol Meaning Presentation Examples

yyyy year8 Number 2006

YY year: use with week in year
only6

Number 06

YYYY year: use with week in year
only6

Number 2006

zzz time zone (abbreviated
name)9

Text EST

zzzz time zone (full name) Text Eastern Standard Time

Z time zone (+/-n) Text +3

ZZ time zone (+/-nn) Text +03

ZZZ time zone (+/-nn:nn) Text +03:00

ZZZU time zone (as ZZZ, "+00:00"
is replaced by "Z")

Text +03:00, Z

ZZZZ time zone (GMT+/-nn:nn) Text GMT+03:00

ZZZZZ time zone (as ZZZ, but no
colon) (+/-nnnn)

Text +0300

' escape for text 'User text'

" (two single quotation
marks) single quotation
mark within escaped text

'o"clock'

The presentation of the dateTime object depends on what symbols you specify.
v Text. If you specify four or more of the symbols, the full form is presented. If

you specify less than four symbols, the short or abbreviated form, if it exists, is
presented. For example, EEEE produces Monday, EEE produces Mon.

v Number. The number of characters for a numeric dateTime component must be
within the bounds of the corresponding formatting symbols. Repeat the symbol
to specify the minimum number of digits that are required. The maximum
number of digits allowed is the upper bound for a particular symbol. For
example, day in month has an upper bound of 31; therefore, a format string of d
allows the values 2 or 21 to be parsed but disallows the values 32 and 210. On
output, numbers are padded with zeros to the specified length. A year is a
special case; see note 8 in the following list. Fractional seconds are also special
case; see note 5 in the following list.

v Any characters in the pattern that are not in the ranges of ['a'..'z'] and ['A'..'Z']
are treated as quoted text. For example, characters like colon (:), comma (,),
period (.), the number sign (hash or pound, #), the at sign (@), and space appear
in the resulting time text even if they are not enclosed within single quotes.

v You can create formatting strings that produce unpredictable results; therefore,
you must use these symbols with care. For example, if you specify dMyyyy, you
cannot distinguish between day, month, and year. dMyyyy tells the broker that a
minimum of one character represents the day, a minimum of one character
represents the month, and four characters represent the year. Therefore, 3111999
can be interpreted as either 3/11/1999 or 31/1/1999.

Notes: The following notes apply to the table above.
1. You can specify the following values in the day in week field:
v 1 - Sunday

5256 WebSphere Message Broker Version 7.0.0.8

v 2 - Monday
v 3 - Tuesday
v 4 - Wednesday
v 5 - Thursday
v 6 - Friday
v 7 - Saturday

2. 12th July 2006 is the second Wednesday in July and can be expressed as 2006
July Wednesday 2 using the format string yyyy MMMM EEEE F. Note that this
format does not represent the Wednesday in week 2 of July 2006, which is 5th
July 2006; the format string for this is yyyy MMMM EEEE W.

3. 24-hour fields might result in an ambiguous time, if specified with a
conflicting am/pm field.

4. See “ISO8601, I and T DateTime tokens” on page 5258.
5. Fractional seconds are represented by uppercase S. The length must implicitly

match the number of format symbols on input. The format string ss SSS or
ss.SSS, for example, represents seconds and milliseconds. However, the
format string ss.sss represents a repeated field (of seconds); the value after
the period (.) is taken as a seconds field, not as fractional seconds. The output
is truncated to the specified length.

6. In ESQL, the first day of the year is assumed to be in the first week; therefore,
January 1 is always in week 1. As a result, dates that are specified relative to
one year might be in a different year. For example, "Monday week 1 2005"
parsed using "EEEE’ week ’w’ ’YYYY" gives a date of 2004-12-27, because the
Monday of the first week in 2005 is a date in 2004.
If you use the y symbol, the adjustment is not done and unpredictable results
might occur for dates around the end of the year. For example, if the string
"2005 01 Monday" is formatted:
v Monday of week 1 in 2005 using format string "YYYY ww EEEE" is correctly

interpreted as 27th December 2004
v Monday of week 1 in 2005 using format string "yyyy ww EEEE" is incorrectly

interpreted as 27th December 2005
7. The first and last week in a month might include days from neighboring

months. For example, Monday 31st July 2006 can be expressed as Monday in
week one of August 2006, which is 2006 08 1 Monday using format string yyyy
MM W EEEE.

8. Year is handled as a special case.
v On output, if the count of y is 2, the year is truncated to 2 digits. For

example, if yyyy produces 1997, yy produces 97.
v On input, for 2 digit years the century window is fixed to 53. For example,

an input date of 52 results in a year value of 2052, whereas an input date of
53 gives an output year of 1953, and 97 gives 1997.

9. Using the zzz option can have ambiguous results. For example, BST can be
interpreted as Bangladesh Standard Time or British Summer Time. For
compatibility reasons, WebSphere Message Broker uses the former
interpretation.
To avoid these problems, use the zzzz option with a well-defined name; for
example, Europe/London, Asia/Dhaka, or America/Los_Angeles.

10. Seconds s & ss, must be in the range 0-59. If you need to construct a
TIMESTAMP representing the time during a leap second, where the value
being created or cast uses the value 60 for seconds, you must handle this case

Chapter 14. Reference 5257

|
|
|

within your ESQL code. The CURRENT_ datetime functions (for example,
CURRENT_TIME) within the product never produce a time where the seconds
value falls outside of the 0-59 range.

ISO8601, I and T DateTime tokens

If your dateTime values comply with the ISO8601:2000 'Representation of dates
and times' standard, consider using the formatting symbols I and T, which match
the following subset of the ISO8601 standard.
v The restricted profile as proposed by the W3C at http://www.w3.org/TR/

NOTE-datetime
v Truncated representations of calendar dates, as specified in section 5.2.1.3 of

ISO8601:2000
– Basic format (subsections c, e, and f)
– Extended format (subsections a, b, and d)

Use the formatting symbols I and T only on their own:
v The I formatting symbol matches any dateTime string that conforms to the

supported subset.
v The T formatting symbol matches any dateTime string that conforms to the

supported subset that consists of a time portion only.

The following table shows how the output form relates to the logical data type.

Logical model data type ESQL data type Output form

xsd:dateTime TIMESTAMP or GMTTIMESTAMP yyyy-MM-dd'T'HH:mm:ss.SSSZZZ

xsd:date DATE yyyy-MM-dd

xsd:gYear INTERVAL yyyy

xsd:gYearMonth INTERVAL yyyy-MM

xsd:gMonth INTERVAL --MM

xsd:gmonthDay INTERVAL --MM-dd

xsd:gDay INTERVAL ---dd

xsd:time TIME / GMTTIME 'T'HH:mm:ss.SSSZZZ

Note:

v On input, both I and T accept both '+00:00' and 'Z' to indicate a zero time
difference from Coordinated Universal Time (UTC), but on output they always
generate '+00:00'. If you want 'Z' to always be generated on output, use the IU
or TU formatting symbols instead.

v ZZZ always writes '+00:00' to indicate a zero time difference from Coordinated
Universal Time (UTC). If you want 'Z' to always be generated on output, use
ZZZU instead.

Using the input UTC format on output

An element or attribute of logical type xsd:dateTime or xsd:time that contains a
dateTime as a string can specify Coordinated Universal Time (UTC) by using either
the Z symbol or time zone +00:00. On input, the MRM parser remembers the UTC
format of such elements and attributes. On output, you can specify whether Z or
+00:00 is displayed by using the Default DateTime Format property of the element
or attribute. Alternatively, you can preserve the input UTC format by selecting the

5258 WebSphere Message Broker Version 7.0.0.8

|
|
|

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

message set property Use input UTC format on output. If this property is selected,
the UTC format is preserved in the output message and overrides the format that
is implied by the dateTime format property.

Understanding daylight saving time and the CAST function

When the broker is running in a time zone other than GMT, it calculates the
daylight saving time (DST) offset on times that are supplied to it by the CAST
function. For CAST to calculate the offset correctly, the time passed into CAST
must have a time zone associated with it, as a Z parameter. If no time zone is
associated with the value passed, the time is converted into GMT time; it is not
treated as a local time stamp.

Also, when you use CAST to cast a string to a time value, the DST offset is
calculated using the current system date. To cast a string to a time variable and
calculate DST for a specific date, you must also specify the date.

For example, if timeValue='10:00:00', the following code, run on a broker that is in
the Central Daylight Time zone, converts the time to GMT, because no time zone
identifier is specified:
DECLARE castTime TIME;
SET castTime = CAST (timeValue AS TIME FORMAT timePattern)

The time is not converted into GMT again if the castTime variable is used in any
subsequent code, for example
CAST(castDate, castTime AS GMTTIMESTAMP);

Examples

The following table shows a few examples of dateTime formats.

Format pattern Result

"yyyy.MM.dd 'at' HH:mm:ss ZZZ" 2006.07.10 at 15:08:56 -05:00

"EEE, MMM d, "yy" Wed, July 10, '06

"h:mm a" 8:08 PM

"hh o"clock a, ZZZZ" 09 o'clock AM, GMT+09:00

"K:mm a, ZZZ" 9:34 AM, -05:00

"yyyy.MMMMM.dd hh:mm aaa" 1996.July.10 12:08 PM

Use within an MRM domain

In MRM it is possible to define an element that has the logical type of dateTime.

When a dateTime element is parsed, a field is created in the message tree that has
the ESQL datatype of CURRENT_TIME or CURRENT_TIMESTAMP. However, the
CURRENT_TIME and CURRENT_TIMESTAMP data types do not have the
functionality to store timezone information, and the MRM does not adjust the time
according to the input timezone and the timezone of the broker.

Although the CURRENT_TIME and CURRENT_TIMESTAMP data types cannot
store timezone information, the MRM stores this information as part of the

Chapter 14. Reference 5259

underlying field. This means that if the field is copied between message trees, the
timezone information is copied with it, allowing this information to be preserved
on output.

Note that the information is preserved only if the field is copied to a field of the
same name.

However, if any new field is derived from the original field, the new field does not
have the timezone information. This means that if such a field is cast as a
character, the new field assumes the timezone of the broker, but its value is not
adjusted for any difference between the input timezone and the timezone of the
broker.

For example, an input dateTime element containing 2009-02-20T06:08:07-08:00
could be copied from the input message tree to the output message tree and
appear in an output message in exactly the same format. However, if the element
is cast as character, using format IU, by a broker running GMT the result would be
2009-02-20T06:08:07.000Z.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“CAST function” on page 5245
“CURRENT_TIME function” on page 5179
“CURRENT_TIMESTAMP function” on page 5180
“Supported casts” on page 5273
“Implicit casts” on page 5282

SELECT function:

The SELECT function combines, filters, and transforms complex message and
database data.

5260 WebSphere Message Broker Version 7.0.0.8

Syntax

►►
(1)

SELECT SelectClause FromClause
WhereClause

►◄

WHERE:

SelectClause = ▼

<<---- ,------ <<

Expression
AS Path
INSERT

ITEM Expression
(2)

COUNT (Expression)
MAX
MIN
SUM

FromClause = FROM ▼

<<---- ,------ <<

FieldReference
AS CorrelationName

WhereClause = WHERE Expression

Notes:

1 You no longer require the enclosing parentheses in SELECT expressions.
This does not prevent you using parentheses but, if they are present, they
are merely normal, expression-scoping, parentheses.

2 For the COUNT parameter only, you can specify the value of the following
Expression as a single star (*).

Usage

The SELECT function is the usual and most efficient way of transforming
messages. You can use SELECT to:
v Comprehensively reformat messages
v Access database tables
v Make an output array that is a subset of an input array
v Make an output array that contains only the values of an input array
v Count the number of entries in an array
v Select the minimum or maximum value from a number of entries in an array
v Sum the values in an array

Chapter 14. Reference 5261

Introduction to SELECT

The SELECT function considers a message tree (or sub-tree) to consist of a number
of rows and columns, rather like a database table. A FieldReference in a FROM
clause identifies a field in a message tree. The identified field is regarded in the
following ways:
v The identified field is regarded as a row in a table.
v The field's siblings are regarded as other rows of the same table.
v The field's children are regarded as the table's columns.

Note: The FieldReference in a FROM clause can also be a table reference that refers
directly to a real database table.

The return value of the SELECT function is typically another message tree that
contains rows whose structure and content is determined by the SelectClause. The
number of rows in the result is the sum of all the rows pointed to by all the field
references and table references in the FROM clause, filtered by the WHERE clause;
only those fields for which the WHERE clause evaluates to TRUE are included.

The return value of the SELECT function can also be scalar (see “ITEM selections”
on page 5264).

You can specify the SelectClause in several ways; see:
v “Simple selections”
v “INSERT selections” on page 5264
v “ITEM selections” on page 5264
v “Column function selections” on page 5264

If you have created a message flow that contains one of the following nodes, and
the ESQL that is associated with this node includes a SELECT function and a
database reference, you must specify a value for the Data source property of the
relevant node:
v Compute
v Database
v Filter

Simple selections

To understand the SELECT function in more detail, first consider the following
simple case:
v The SelectClause consists of a number of expressions, each with an AS Path

clause.
v The FROM clause contains a single FieldReference and an AS CorrelationName

clause.

The SELECT function creates a local, reference, correlation variable, whose name is
given by the AS CorrelationName clause, and then steps, in turn, through each row
of the list of rows derived from the FROM clause. For each row:
1. The correlation variable is set to point to the current row.
2. The WHERE clause (if present) is evaluated. If it evaluates to FALSE or

unknown (null), nothing is added to the result tree and processing proceeds to
the next row of the input. Otherwise processing proceeds to the next step.

3. A new member is added to the result list.

5262 WebSphere Message Broker Version 7.0.0.8

4. The SELECT clause expressions are evaluated and assigned to fields named as
dictated by the AS Path clause. These fields are child fields of the new member
of the result list.

Typically, both the SelectClause and the WHERE clause expressions use the
correlation variable to access column values (that is, fields in the input message
tree) and thus to build a new message tree containing data from the input
message. The correlation variable is referred to by the name specified in the AS
CorrelationName clause or, if an AS clause is not specified, by the final name in the
FROM FieldReference (that is, the name after the last dot).

Note that:
v Despite the analogy with a table, you are not restricted to accessing or creating

messages with a flat, table-like, structure; you can access and build trees with
arbitrarily deep folder structures.

v You are not restricted to a column being a single value; a column can be a
repeating list value or a structure.

These concepts are best understood by reference to the examples.

If the field reference is a TableReference, the operation is very similar. In this case,
the input is a real database table and is thus restricted to the flat structures
supported by databases. The result tree is still not so restricted, however.

If the FROM clause contains more than one field reference, the rightmost reference
steps through each of its rows for each row in the next-to-rightmost reference, and
so on. The total number of rows in the result is thus the product of the number of
rows in each table. Such selects are known as joins and commonly use a WHERE
clause that excludes most of these rows from the result. Joins are commonly used
to add database data to messages.

The AS Path clause is optional. If it is unspecified, the broker generates a default
name according to the following rules:
1. If the SelectClause expression is a reference to a field or a cast of a reference to a

field, the name of the field is used.
2. Otherwise the broker uses the default names Column1, Column2, and so on.

Examples

The following example performs a SELECT on the table Parts in the schema Shop
in the database DSN1. Because no WHERE clause exists, all rows are selected.
Because the select clause expressions (for example, P.PartNumber) contain no AS
clauses, the fields in the result adopt the same names:
SET PartsTable.Part[] = SELECT

P.PartNumber,
P.Description,
P.Price
FROM Database.DSN1.Shop.Parts AS P;

If the target of the SET statement (PartsTable) is a variable of type ROW, after the
statement is executed PartsTable will have, as children of its root element, a field
called Part for each row in the table. Each of the Part fields will have child fields
called PartNumber, Description, and Price. The child fields will have values
dictated by the contents of the table. (PartsTable could also be a reference into a
message tree).

Chapter 14. Reference 5263

The next example performs a similar SELECT. This case differs from the last in that
the SELECT is performed on the message tree produced by the first example
(rather than on a real database table). The result is assigned into a subfolder of
OutputRoot:
SET OutputRoot.XMLNS.Data.TableData.Part[] = SELECT

P.PartNumber,
P.Description,
P.Price
FROM PartsTable.Part[] AS P;

INSERT selections

The INSERT clause is an alternative to the AS clause. It assigns the result of the
SelectClause expression (which must be a row) to the current new row itself, rather
than to a child of it. The effect of this is to merge the row result of the expression
into the row being generated by the SELECT. This differs from the AS clause, in
that the AS clause always generates at least one child element before adding a
result, whereas INSERT generates none. INSERT is useful when inserting data from
other SELECT operations, because it allows the data to be merged without extra
folders.

ITEM selections

The SelectClause can consist of the keyword ITEM and a single expression. The
effect of this is to make the results nameless. That is, the result is a list of values of
the type returned by the expression, rather than a row. This option has several
uses:
v In conjunction with a scalar expression and the THE function, it can be used to

create a SELECT query that returns a single scalar value (for example, the price
of a particular item from a table).

v In conjunction with a CASE expression and ROW constructors, it can be used to
create a SELECT query that creates or handles messages in which the structure
of some rows (that is, repeats in the message) is different from others. This is
useful for handling messages that have a repeating structure but in which the
repeats do not all have the same structure.

v In conjunction with a ROW constructor, it can be used to create a SELECT query
that collapses levels of repetition in the input message.

Column function selections

The SelectClause can consist of one of the functions COUNT, MAX, MIN, and SUM
operating on an expression. These functions are known as column functions. They
return a single scalar value (not a list) giving the count, maximum, minimum, or
sum of the values that Expression evaluated to in stepping through the rows of the
FROM clause. If Expression evaluates to NULL for a particular row, the value is
ignored, so that the function returns the count, maximum, minimum, or sum of the
remaining rows.

For the COUNT function only, Expression can consist of a single star (*). This form
counts the rows regardless of null values.

To make the result a useful reflection of the input message, Expression typically
includes the correlation variable.

Typically, Expression evaluates to the same data type for each row. In these cases,
the result of the MAX, MIN, and SUM functions are of the same data type as the

5264 WebSphere Message Broker Version 7.0.0.8

operands. The returned values are not required to be all of the same type however,
and if they are not, the normal rules of arithmetic apply. For example, if a field in
a repeated message structure contains integer values for some rows and float
values for others, the sum follows the normal rules for addition. The sum is of
type float because the operation is equivalent to adding a number of integer and
float values.

The result of the COUNT function is always an integer.

Differences between message and database selections

FROM expressions in which a correlation variable represents a row in a message
behave slightly differently from those in which the correlation variable represents a
row in a real database table.

In the message case, a path involving a star (*) has the normal meaning; it ignores
the field's name and finds the first field that matches the other criteria (if any).

In the database case a star (*) has, for historical reasons, the special meaning of all
fields. This special meaning requires advance knowledge of the definition of the
database table and is supported only when querying the default database (that is,
the database pointed to by the node's data source attribute). For example, the
following queries return column name and value pairs only when querying the
default database:
SELECT * FROM Database.Datasource.SchemaName.Table As A
SELECT A.* FROM Database.Datasource.SchemaName.Table As A
SELECT A FROM Database.Datasource.SchemaName.Table AS A

Specifying the SELECT expressions

SelectClause
SelectClause expressions can use any of the broker's operators and functions in
any combination. They can refer to the tables' columns, message fields,
correlation names declared by containing SELECTs, and to any other declared
variables or constants that are in scope.

AS Path
An AS Path expression is a relative path (that is, there is no correlation name)
but is otherwise unrestricted in any way. For example, it can contain:
v Indexes (for example, A.B.C[i])
v Field-type specifiers (for example, A.B.(XML.Attribute)C)
v Multipart paths (for example, A.B.C)
v Name expressions (for example, A.B.{var})

Any expressions in these paths can also use any of the broker's operators and
functions in any combination. The expressions can refer to the tables' columns,
message fields, correlation names declared by containing SELECTs, and any
declared variables or constants.

FROM clause
FROM clause expressions can contain multiple database references, multiple
message references, or a mixture of the two. You can join tables with tables,
messages with messages, or tables with messages.

FROM clause FieldReferences can contain expressions of any kind (for example,
Database.{DataSource}.{Schema}.Table1).

You can calculate a field, data source, schema, or table name at run time.

Chapter 14. Reference 5265

WHERE clause

The WHERE clause expression can use any of the broker's operators and
functions in any combination. It can refer to table columns, message fields, and
any declared variables or constants.

However, be aware that the broker treats the WHERE clause expression by
examining the expression and deciding whether the whole expression can be
evaluated by the database. If it can, it is given to the database. In order to be
evaluated by the database, it must use only those functions and operators
supported by the database.

The WHERE clause can, however, refer to message fields, correlation names
declared by containing SELECT functions, and to any other declared variables
or constants within scope.

If the whole expression cannot be evaluated by the database, the broker looks
for top-level AND operators and examines each sub-expression separately. It
then attempts to give the database those sub-expressions that it can evaluate,
leaving the broker to evaluate the rest. You need to be aware of this situation
for two reasons:
1. Apparently trivial changes to WHERE clause expressions can have large

effects on performance. You can determine how much of the expression
was given to the database by examining a user trace.

2. Some databases' functions exhibit subtle differences of behavior from those
of the broker.

Relation to the THE function

You can use the function THE (which returns the first element of a list) in
conjunction with SELECT to produce a non-list result. This is useful, for example,
when a SELECT query is required to return no more than one item. It is
particularly useful in conjunction with ITEM (see “ITEM selections” on page 5264).

Differences from the SQL standard

ESQL SELECT differs from database SQL SELECT in the following ways:
v ESQL can produce tree-structured result data
v ESQL can accept arrays in SELECT clauses
v ESQL has the THE function and the ITEM and INSERT parameters
v ESQL has no SELECT ALL function in this release
v ESQL has no ORDER BY function in this release
v ESQL has no SELECT DISTINCT function in this release
v ESQL has no GROUP BY or HAVING parameters in this release
v ESQL has no AVG column function in this release

Restrictions

The following restrictions apply to the current release:
v When a SELECT command operates on more than one database table, all the

tables must be in the same database instance. (That is, the TableReferences must
not specify different data source names.)

v If the FROM clause refers to both messages and tables, the tables must precede
the messages in the list.

5266 WebSphere Message Broker Version 7.0.0.8

v Using dynamic DSN, SCHEMA and TABLE names with 'SELECT *' statements is
not supported. If you use a schema, table or datasource name as a variable
(dynamic variables) in 'SELECT *' queries, the variables are not resolved to the
correct set of schema or table names.

v The WHERE clause of a SELECT statement cannot itself contain a SELECT
statement that relies on results returned from the original SELECT if either
SELECT statement is from database tables.

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Selecting data from database columns” on page 2491
You can configure a Compute, Filter, or Database node to select data from database
columns and include it in an output message.
“Transforming a simple message” on page 2516
When you code the ESQL for a Compute node, use the SELECT function to
transform simple messages.
“Transforming a complex message” on page 2520
When you code the ESQL for a Compute node, use the SELECT function for
complex message transformation.
“Returning a scalar value in a message” on page 2523
Use a SELECT statement to return a scalar value by including both the THE and
ITEM keywords.
“Interaction with databases using ESQL” on page 2487
Use ESQL statements and functions to read from, write to, and modify databases
from your message flows.
Related reference:
“Syntax diagrams” on page 3677
“Complex ESQL functions” on page 5242

ROW constructor function:
ROW constructor is a complex function used to explicitly generate rows of values
that can be assigned to fields in an output message.

Syntax

►► ▼

<< , <<

ROW (expression)
AS fieldreference

►◄

A ROW consists of a sequence of named values. When assigned to a field reference
it creates that sequence of named values as child fields of the referenced field. A
ROW cannot be assigned to an array field reference.

Chapter 14. Reference 5267

Examples:

Example 1
SET OutputRoot.XMLNS.Data = ROW(’granary’ AS bread,

’riesling’ AS wine,
’stilton’ AS cheese);

produces:
<Data>

<bread>granary</bread>
<wine>riesling</wine>
<cheese>stilton</cheese>

</Data>

Example 2

Given the following XML input message body:
<Proof>

<beer>5</beer>
<wine>12</wine>
<gin>40</gin>

</Proof>

the following ESQL:
SET OutputRoot.XMLNS.Data = ROW(InputBody.Proof.beer,

InputBody.Proof.wine AS vin,
(InputBody.Proof.gin * 2) AS special);

produces the following result:
<Data>

<beer>5</beer>
<vin>12</vin>
<special>80</special>

</Data>

Because the values in this case are derived from field references that already have
names, it is not necessary to explicitly provide a name for each element of the row,
but you might choose to do so.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Accessing the environment tree” on page 2469
The environment tree has its own correlation name, Environment, and you must
use this name in all ESQL statements that refer to, or set, the content of this tree.
Related reference:
“Complex ESQL functions” on page 5242
“LIST constructor function” on page 5269
“ROW and LIST combined” on page 5270

5268 WebSphere Message Broker Version 7.0.0.8

“ROW and LIST comparisons” on page 5271
You can compare ROWs and LISTs against other ROWs and LISTs.

LIST constructor function:
The LIST constructor complex function is used to explicitly generate lists of values
that can be assigned to fields in an output message.

Syntax

►► ▼

<< , <<

LIST { expression } ►◄

A LIST consists of a sequence of unnamed values. When assigned to an array field
reference (indicated by [] suffixed to the last element of the reference), each value
is assigned in sequence to an element of the array. A LIST cannot be assigned to a
non-array field reference.

Examples:
Example 1

Given the following XML message input body:
<Car>

<size>big</size>
<color>red</color>

</Car>

The following ESQL:
SET OutputRoot.XMLNS.Data.Result[] = LIST{InputBody.Car.colour,

’green’,
’blue’};

produces the following results:
<Data>

<Result>red</Result>
<Result>green</Result>
<Result>blue</Result>

</Data>

In the case of a LIST, there is no explicit name associated with each value. The
values are assigned in sequence to elements of the message field array specified as
the target of the assignment. Curly braces rather than parentheses are used to
surround the LIST items.

Example 2

Given the following XML input message body:
<Data>

<Field>Keats</Field>
<Field>Shelley</Field>
<Field>Wordsworth</Field>
<Field>Tennyson</Field>
<Field>Byron</Field>

</Data>

Chapter 14. Reference 5269

the following ESQL:
-- Copy the entire input message to the output message,
-- including the XML message field array as above
SET OutputRoot = InputRoot;
SET OutputRoot.XMLNS.Data.Field[] = LIST{’Henri’,’McGough’,’Patten’};

Produces the following output:
<Data>

<Field>Henri</Field>
<Field>McGough</Field>
<Field>Patten</Field>

</Data>

The previous members of the Data.Field[] array have been discarded. Assigning a
new list of values to an already existing message field array removes all the
elements in the existing array before the new ones are assigned.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Accessing the environment tree” on page 2469
The environment tree has its own correlation name, Environment, and you must
use this name in all ESQL statements that refer to, or set, the content of this tree.
Related reference:
“Complex ESQL functions” on page 5242
“ROW constructor function” on page 5267
“ROW and LIST combined”
“ROW and LIST comparisons” on page 5271
You can compare ROWs and LISTs against other ROWs and LISTs.

ROW and LIST combined:
ROW and LIST combined form a complex function.

A ROW might validly be an element in a LIST. For example:
SET OutputRoot.XMLNS.Data.Country[] =

LIST{ROW(’UK’ AS name,’pound’ AS currency),
ROW(’US’ AS name, ’dollar’ AS currency),

’default’};

produces the following result:
<Data>

<Country>
<name>UK</name>
<currency>pound</currency>

</Country>
<Country>

<name>US</name>
<currency>dollar</currency>

</Country>
<Country>default</Country>

</Data>

5270 WebSphere Message Broker Version 7.0.0.8

ROW and non-ROW values can be freely mixed within a LIST.

A LIST cannot be a member of a ROW. Only named scalar values can be members
of a ROW.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Accessing the environment tree” on page 2469
The environment tree has its own correlation name, Environment, and you must
use this name in all ESQL statements that refer to, or set, the content of this tree.
Related reference:
“Complex ESQL functions” on page 5242
“ROW constructor function” on page 5267
“LIST constructor function” on page 5269
“ROW and LIST comparisons”
You can compare ROWs and LISTs against other ROWs and LISTs.

ROW and LIST comparisons:

You can compare ROWs and LISTs against other ROWs and LISTs.

Examples:
Example 1
IF ROW(InputBody.Data.*[1],InputBody.Data.*[2]) =

ROW(’Raf’ AS Name,’25’ AS Age) THEN ...
IF LIST{InputBody.Data.Name, InputBody.Data.Age} = LIST{’Raf’,’25’} THEN ...

With the following XML input message body both the IF expressions in both the
above statements evaluate to TRUE:
<Data>

<Name>Raf</Name>
<Age>25</Age>

</Data>

In the comparison between ROWs, both the name and the value of each element
are compared; in the comparison between LISTs only the value of each element is
compared. In both cases, the cardinality and sequential order of the LIST or ROW
operands being compared must be equal in order for the two operands to be equal.
Therefore, the following examples are false because either the sequential order or
the cardinality of the operands being compared do not match:
ROW(’alpha’ AS A, ’beta’ AS B) =

ROW(’alpha’ AS A, ’beta’ AS B, ’delta’ AS D)
ROW(’alpha’ AS A, ’beta’ AS B) =

ROW(’beta’ AS B,’alpha’ AS A)
LIST{1,2,3} = LIST{1,2,3,4}
LIST{3,2,1} = LIST{1,2,3}

Chapter 14. Reference 5271

Example 2

Consider the following ESQL:
IF InputBody.Places =

ROW(’Ken’ AS first, ’Bob’ AS second, ’Kate’ AS third) THEN ...

With the following XML input message body, the above IF expression evaluates to
TRUE:
<Places>

<first>Ken</first>
<second>Bob</second>
<third>Kate</third>

</Places>

The presence of an explicitly-constructed ROW as one of the operands to the
comparison operator results in the other operand also being treated as a ROW.

Contrast this with a comparison such as:
IF InputBody.Lottery.FirstDraw = InputBody.Lottery.SecondDraw THEN ...

which compares the value of the FirstDraw and SecondDraw fields, not the names
and values of each of FirstDraw and SecondDraw's child fields constructed as a
ROW. Thus an XML input message body such as:
<Lottery>

<FirstDraw>wednesday
<ball1>32</ball1>
<ball2>12</ball2>

</FirstDraw>
<SecondDraw>saturday

<ball1>32</ball1>
<ball2>12</ball2>

</SecondDraw>
</Lottery>

would not result in the above IF expression being evaluated as TRUE, because the
values wednesday and saturday are being compared, not the names and values of
the ball fields.

Example 3

Consider the following ESQL:
IF InputBody.Cities.City[] = LIST{’Athens’,’Sparta’,’Thebes’} THEN ...

With the following XML input message body, the IF expression evaluates to TRUE:
<Cities>
<City>Athens</City>
<City>Sparta</City>
<City>Thebes</City>
</Cities>

Two message field arrays can be compared together in this way, for example:
IF InputBody.Cities.Mediaeval.City[] =

InputBody.Cities.Modern.City[] THEN ...

IF InputBody.Cities.Mediaeval.*[] = InputBody.Cities.Modern.*[] THEN ...

IF InputBody.Cities.Mediaeval.(XML.Element)[] =
InputBody.Cities.Modern.(XML.Element)[] THEN ...

5272 WebSphere Message Broker Version 7.0.0.8

With the following XML input message body, the IF expression of the first and
third of the statements above evaluates to TRUE:
<Cities>

<Mediaeval>1350
<City>London</City>
<City>Paris</City>

</Mediaeval>
<Modern>1990

<City>London</City>
<City>Paris</City>

</Modern>
</Cities>

However the IF expression of the second statement evaluates to FALSE, because
the *[] indicates that all the children of Mediaeval and Modern are to be compared,
not just the (XML.Element)s. In this case the values 1350 and 1990, which form
nameless children of Mediaeval and Modern, are compared as well as the values of
the City tags.

The IF expression of the third statement above evaluates to TRUE with an XML
input message body such as:
<Cities>

<Mediaeval>1350
<Location>London</Location>
<Location>Paris</Location>

</Mediaeval>
<Modern>1990

<City>London</City>
<City>Paris</City>

</Modern>
</Cities>

LISTs are composed of unnamed values. It is the values of the child fields of
Mediaeval and Modern that are compared, not their names.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Complex ESQL functions” on page 5242
“ROW constructor function” on page 5267
“LIST constructor function” on page 5269
“ROW and LIST combined” on page 5270

Supported casts:
This topic lists the CASTs that are supported between combinations of data-types.

A CAST is not supported between every combination of data-types. Those that are
supported are listed in the following table, along with the effect of the CAST.

Chapter 14. Reference 5273

When casting, there can be a one-to-one or a many-to-one mapping between the
source data-type and the target data-type. An example of a one-to-one mapping is
where the source data-type is a single integer and the target data-type a single
float. An example of a many-to-one mapping is where the source data consists of
three integers that are converted to a single date. Table 265 lists the supported
one-to-one casts. Table 266 on page 5280 lists the supported many-to-one casts.

See “ESQL data types” on page 2373 for information about precision, scale, and
interval qualifier.

Table 265. Supported casts: one-to-one mappings of source to target data-type

Source data-type Target data-type Effect

BIT BIT The result is the same as the input.

BIT BLOB The bit array is converted to a byte array with a maximum of 263

elements. An error is reported if the source is not of a suitable length
to produce a BLOB (that is a multiple of 8).

BIT CHARACTER The result is a string conforming to the definition of a bit string literal
whose interpreted value is the same as the source value. The resulting
string has the form B'bbbbbb' (where b is either 0 or 1).

If you specify either a CCSID or ENCODING clause, the bit array is
assumed to be characters in the specified CCSID and encoding, and is
code-page converted into the character return value.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding
are unknown, the data supplied is not an integral number of characters
of the code page, or the data contains characters that are not valid in
the given code page.

BIT INTEGER The bit array has a maximum of 263 elements and is converted to an
integer. An error is reported if the source is not of the correct length to
match an integer.

BLOB BIT The given byte array is converted to a bit array with a maximum of 263

elements.

BLOB BLOB The result is the same as the input.

BLOB CHARACTER The result is a string conforming to the definition of a binary string
literal whose interpreted value is the same as the source value. The
resulting string has the form X'hhhh' (where h is any hexadecimal
character).

If you specify either a CCSID or ENCODING clause, the byte array is
assumed to be characters in the specified CCSID and encoding, and is
code-page converted into the character return value.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding
are unknown, the data supplied is not an integral number of characters
of the code page, or the data contains characters that are not valid in
the given code page.

5274 WebSphere Message Broker Version 7.0.0.8

Table 265. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

BLOB INTEGER The byte array has a maximum of 263 elements and is converted to an
integer. An error is reported if the source is not of the correct length to
match an integer.

BOOLEAN BOOLEAN The result is the same as the input.

BOOLEAN CHARACTER If the source value is TRUE, the result is the character string TRUE. If
the source value is FALSE, the result is the character string FALSE.
Because the UNKNOWN Boolean value is the same as the NULL value
for Booleans, the result is NULL if the source value is UNKNOWN.

CHARACTER BIT The character string must conform to the rules for a bit string literal or
for the contents of the bit string literal. That is, the character string can
be of the form B'bbbbbbb' or bbbbbb (where b' can be either 0 or 1).

If you specify either a CCSID or ENCODING clause, the character
string is converted into the specified CCSID and encoding and placed
without further conversion into the bit array return value.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding
are unknown or the data contains Unicode characters that cannot be
converted to the given code page.

CHARACTER BLOB This cast can work in two ways:

1. If you specify either a CCSID or ENCODING clause, the whole
string is written out in the code page or encoding that you
requested. For example, the string "Cat" in CCSID 850 becomes the
three-byte array in hexadecimal, 43,61,74.

2. If you specify neither the CCSID nor ENCODING clause, the string
must itself contain two-character hexadecimal digits of the form
X'hhhhhh' or hhhhhh (where h can be any hexadecimal characters).
In this case, the input string "436174" becomes the same three-byte
binary array (43,61,74).

Note that an error is generated if the input string is not of the
correct format.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding
are unknown or the data contains Unicode characters that cannot be
converted to the given code page.

CHARACTER BOOLEAN The character string is interpreted in the same way as a Boolean literal.
That is, the character string must be one of the strings TRUE, FALSE,
or UNKNOWN (in any case combination).

CHARACTER CHARACTER The result is the same as the input.

CHARACTER DATE If a FORMAT clause is not specified, the character string must conform
to the rules for a date literal or the date string. That is, the character
string can be either DATE '2002-10-05' or 2002-10-05.

See also “Formatting and parsing dateTimes as strings” on page 5253.

Chapter 14. Reference 5275

Table 265. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

CHARACTER DECIMAL The character string is interpreted in the same way as an exact numeric
literal to form a temporary decimal result with a scale and precision
defined by the format of the string. This is converted into a decimal of
the specified precision and scale, with a runtime error being
generated if the conversion results in loss of significant digits.

If you do not specify the precision and scale, the precision and
scale of the result are the minimum necessary to hold the given value.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing numbers as strings” on page 5250.

CHARACTER FLOAT The character string is interpreted in the same way as a floating point
literal.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing numbers as strings” on page 5250.

CHARACTER GMTTIME The character string must conform to the rules for a GMT time literal
or the time string. That is, the character string can be either GMTTIME
'09:24:15' or 09:24:15.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing dateTimes as strings” on page 5253.

CHARACTER GMTTIMESTAMP The character string must conform to the rules for a GMT timestamp
literal or the timestamp string. That is, the character string can be
either GMTTIMESTAMP '2002-10-05 09:24:15' or 2002-10-05 09:24:15.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing dateTimes as strings” on page 5253.

CHARACTER INTEGER The character string is interpreted in the same way as an integer literal.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing numbers as strings” on page 5250.

CHARACTER INTERVAL The character string must conform to the rules for an interval literal
with the same interval qualifier as specified in the CAST function,
or it must conform to the rules for an interval string that apply for the
specified interval qualifier.

CHARACTER TIME The character string must conform to the rules for a time literal or for
the time string. That is, the character string can be either TIME
'09:24:15' or 09:24:15.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing dateTimes as strings” on page 5253.

CHARACTER TIMESTAMP The character string must conform to the rules for a timestamp literal
or for the timestamp string. That is, the character string can be either
TIMESTAMP '2002-10-05 09:24:15' or 2002-10-05 09:24:15.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing dateTimes as strings” on page 5253.

5276 WebSphere Message Broker Version 7.0.0.8

Table 265. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

DATE CHARACTER The result is a string conforming to the definition of a date literal,
whose interpreted value is the same as the source date value.

For example:

CAST(DATE ’2002-10-05’ AS CHARACTER)

returns

DATE ’2002-10-05’

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing dateTimes as strings” on page 5253.

DATE DATE The result is the same as the input.

DATE GMTTIMESTAMP The result is a value whose date fields are taken from the source date
value, and whose time fields are taken from the current GMT time.

DATE TIMESTAMP The result is a value whose date fields are taken from the source date
value, and whose time fields are taken from the current time.

DECIMAL CHARACTER The result is the shortest character string that conforms to the
definition of an exact numeric literal and whose interpreted value is
the value of the decimal.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing numbers as strings” on page 5250.

DECIMAL DECIMAL
The value is converted to the specified precision and scale, with a
runtime error being generated if the conversion results in loss of
significant digits. If you do not specify the precision and scale, the
value, precision and scale are preserved; it is a NOOP (no operation).

DECIMAL FLOAT The number is converted, with rounding if necessary.

DECIMAL INTEGER The value is rounded and converted into an integer, with a runtime
error being generated if the conversion results in loss of significant
digits.

DECIMAL INTERVAL If the interval qualifier specified has only one field, the result is an
interval with that qualifier with the field equal to the value of the exact
numeric. Otherwise a runtime error is generated.

FLOAT CHARACTER The result is the shortest character string that conforms to the
definition of an approximate numeric literal and whose mantissa
consists of a single digit that is not 0, followed by a period and an
unsigned integer, and whose interpreted value is the value of the float.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing numbers as strings” on page 5250.

When you CAST a FLOAT to a DECIMAL or CHARACTER, either
implicitly or explicitly, the FLOAT can be rounded to a maximum
precision of 15 digits.

FLOAT FLOAT The result is the same as the input.

Chapter 14. Reference 5277

Table 265. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

FLOAT DECIMAL The value is rounded and converted into a decimal of the specified
precision and scale, with a runtime error being generated if the
conversion results in loss of significant digits. If you do not specify the
precision and scale, the precision and scale of the result are the
minimum necessary to hold the given value.

When you CAST a FLOAT to a DECIMAL or CHARACTER, either
implicitly or explicitly, the FLOAT can be rounded to a maximum
precision of 15 digits.

FLOAT INTEGER The value is rounded and converted into an integer, with a runtime
error being generated if the conversion results in loss of significant
digits.

FLOAT INTERVAL If the specified interval qualifier has only one field, the result is an
interval with that qualifier with the field equal to the value of the
numeric. Otherwise a runtime error is generated.

GMTTIME CHARACTER The result is a string conforming to the definition of a GMTTIME
literal whose interpreted value is the same as the source value. The
resulting string has the form GMTTIME 'hh:mm:ss'.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing dateTimes as strings” on page 5253.

GMTTIME GMTTIME The result is the same as the input.

GMTTIME TIME The resulting value is the source value plus the local time zone
displacement (as returned by LOCAL_TIMEZONE). The hours field is
calculated modulo 24.

GMTTIME GMTTIMESTAMP The result is a value whose date fields are taken from the current date,
and whose time fields are taken from the source GMT time.

GMTTIME TIMESTAMP The result is a value whose date fields are taken from the current date,
and whose time fields are taken from the source GMT time, plus the
local time zone displacement (as returned by LOCAL_TIMEZONE).

GMTTIMESTAMP CHARACTER The result is a string conforming to the definition of a
GMTTIMESTAMP literal whose interpreted value is the same as the
source value. The resulting string has the form GMTTIMESTAMP
'yyyy-mm-dd hh:mm:ss'.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing dateTimes as strings” on page 5253.

GMTTIMESTAMP DATE The result is a value whose fields consist of the date fields of the
source GMTTIMESTAMP value.

GMTTIMESTAMP GMTTIME The result is a value whose fields consist of the time fields of the
source GMTTIMESTAMP value.

GMTTIMESTAMP TIME The result is a value whose time fields are taken from the source
GMTTIMESTAMP value, plus the local time zone displacement (as
returned by LOCAL_TIMEZONE). The hours field is calculated
modulo 24.

GMTTIMESTAMP GMTTIMESTAMP The result is the same as the input.

GMTTIMESTAMP TIMESTAMP The resulting value is source value plus the local time zone
displacement (as returned by LOCAL_TIMEZONE).

INTEGER BIT The given integer is converted to a bit array with a maximum of 263

elements.

5278 WebSphere Message Broker Version 7.0.0.8

Table 265. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

INTEGER BLOB The given integer is converted to a byte array with a maximum of 263

elements.

INTEGER CHARACTER The result is the shortest character string that conforms to the
definition of an exact numeric literal and whose interpreted value is
the value of the integer.

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing numbers as strings” on page 5250.

INTEGER FLOAT The number is converted, with rounding if necessary.

INTEGER INTEGER The result is the same as the input.

INTEGER DECIMAL The value is converted into a decimal of the specified precision and
scale, with a runtime error being generated if the conversion results in
loss of significant digits. If you do not specify the precision and scale,
the precision and scale of the result are the minimum necessary to
hold the given value.

INTEGER INTERVAL If the interval qualifier specified has only one field, the result is an
interval with that qualifier with the field equal to the value of the exact
numeric. Otherwise a runtime error is generated.

INTERVAL CHARACTER The result is a string conforming to the definition of an INTERVAL
literal, whose interpreted value is the same as the source interval value.

For example:

CAST(INTERVAL ’4’ YEARS AS CHARACTER)

returns

INTERVAL ’4’ YEARS

INTERVAL DECIMAL If the interval value has a qualifier that has only one field, the result is
a decimal of the specified precision and scale with that value, with a
runtime error being generated if the conversion results in loss of
significant digits. If the interval has a qualifier with more than one
field, such as YEAR TO MONTH, a runtime error is generated. If you
do not specify the precision and scale, the precision and scale of the
result are the minimum necessary to hold the given value.

INTERVAL FLOAT If the interval value has a qualifier that has only one field, the result is
a float with that value. If the interval has a qualifier with more than
one field, such as YEAR TO MONTH, a runtime error is generated.

INTERVAL INTEGER If the interval value has a qualifier that has only one field, the result is
an integer with that value. If the interval has a qualifier with more
than one field, such as YEAR TO MONTH, a runtime error is
generated.

INTERVAL INTERVAL The result is the same as the input.

Year-month intervals can be converted only to year-month intervals,
and day-second intervals only to day-second intervals. The source
interval is converted into a scalar in units of the least significant field
of the target interval qualifier. This value is normalized into an
interval with the target interval qualifier. For example, to convert an
interval that has the qualifier MINUTE TO SECOND into an interval
with the qualifier DAY TO HOUR, the source value is converted into a
scalar in units of hours, and this value is normalized into an interval
with qualifier DAY TO HOUR.

Chapter 14. Reference 5279

Table 265. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

TIME CHARACTER The result is a string conforming to the definition of a TIME literal,
whose interpreted value is the same as the source time value.

For example:

CAST(TIME ’09:24:15’ AS CHARACTER)

returns

TIME ’09:24:15’

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing dateTimes as strings” on page 5253.

TIME GMTTIME The result value is the source value minus the local time zone
displacement (as returned by LOCAL_TIMEZONE). The hours field is
calculated modulo 24.

TIME GMTTIMESTAMP The result is a value whose date fields are taken from the current date,
and whose time fields are taken from the source GMT time, minus the
local time zone displacement (as returned by LOCAL_TIMEZONE).

TIME TIME The result is the same as the input.

TIME TIMESTAMP The result is a value whose date fields are taken from the current date,
and whose time fields are taken from the source time value.

TIMESTAMP CHARACTER The result is a string conforming to the definition of a TIMESTAMP
literal, whose interpreted value is the same as the source timestamp
value.

For example:

CAST(TIMESTAMP ’2002-10-05 09:24:15’ AS CHARACTER)

returns

TIMESTAMP ’2002-10-05 09:24:15’

The behavior changes if the FORMAT clause is specified. See also
“Formatting and parsing dateTimes as strings” on page 5253.

TIMESTAMP DATE The result is a value whose fields consist of the date fields of the
source timestamp value.

TIMESTAMP GMTTIME The result is a value whose time fields are taken from the source
TIMESTAMP value, minus the local time zone displacement (as
returned by LOCAL_TIMEZONE). The hours field is calculated
modulo 24.

TIMESTAMP GMTTIMESTAMP The resulting value is the source value minus the local time zone
displacement (as returned by LOCAL_TIMEZONE).

TIMESTAMP TIME The result is a value whose fields consist of the time fields of the
source timestamp value.

TIMESTAMP TIMESTAMP The result is the same as the input.

Table 266. Supported casts: many-to-one mappings of source to target data-type

Source data-type Target data-type Effect

Numeric, Numeric,
Numeric

DATE Creates a DATE value from the numerics in the order year, month, and
day. Non-integer values are rounded.

Numeric, Numeric,
Numeric

TIME Creates a TIME value from the numerics in the order hours, minutes,
and seconds. Non-integer values for hours and minutes are rounded.

5280 WebSphere Message Broker Version 7.0.0.8

Table 266. Supported casts: many-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

Numeric, Numeric,
Numeric

GMTIME Creates a GMTTIME value from the numerics in the order of hours,
minutes, and seconds. Non-integer values for hours and minutes are
rounded.

Numeric, Numeric,
Numeric, Numeric,
Numeric, Numeric

TIMESTAMP Creates a TIMESTAMP value from the numerics in the order years,
months, days, hours, minutes, and seconds. Non-integer values for
years, months, days, hours, and minutes are rounded.

Numeric, Numeric,
Numeric, Numeric,
Numeric, Numeric

GMTTIMESTAMP Creates a GMTIMESTAMP value from the numerics in the order years,
months, days, hours, minutes, and seconds. Non-integer values for
years, months, days, hours, and minutes are rounded.

DATE, TIME TIMESTAMP The result is a TIMESTAMP value with the given DATE and TIME.

DATE, GMTTIME GMTIMESTAMP The result is a GMTTIMESTAMP value with the given DATE and
GMTTIME.

Numeric, Numeric INTERVAL YEAR
TO MONTH

The result is an INTERVAL with the first source as years and the
second as months. Non-integer values are rounded.

Numeric, Numeric INTERVAL HOUR
TO MINUTE

The result is an INTERVAL with the first source as hours and the
second as minutes. Non-integer values are rounded.

Numeric, Numeric,
Numeric

INTERVAL HOUR
TO SECOND

The result is an INTERVAL with the sources as hours, minutes, and
seconds, respectively. Non-integer values for hours and minutes are
rounded.

Numeric, Numeric INTERVAL MINUTE
TO SECOND

The result is an INTERVAL with the sources as minutes and seconds,
respectively. Non-integer values for minutes are rounded.

Numeric, Numeric INTERVAL DAY TO
HOUR

The result is an INTERVAL with the sources as days and hours,
respectively. Non-integer values are rounded.

Numeric, Numeric,
Numeric

INTERVAL DAY TO
MINUTE

The result is an INTERVAL with the sources as days, hours, and
minutes, respectively. Non-integer values are rounded.

Numeric, Numeric,
Numeric, Numeric

INTERVAL DAY TO
SECOND

The result is an INTERVAL with the sources as days, hours, minutes,
and seconds, respectively. Non-integer values for days, hours, and
minutes are rounded.

Numeric INTERVAL YEAR The result is an INTERVAL with the source as years, rounded if
necessary.

Numeric INTERVAL MONTH The result is an INTERVAL with the source as months, rounded if
necessary.

Numeric INTERVAL DAY The result is an INTERVAL with the source as days, rounded if
necessary.

Numeric INTERVAL HOUR The result is an INTERVAL with the source as hours, rounded if
necessary.

Numeric INTERVAL MINUTE The result is an INTERVAL with the source as minutes, rounded if
necessary.

Numeric INTERVAL
SECOND

The result is an INTERVAL with the source as seconds.

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.

Chapter 14. Reference 5281

“ESQL data types” on page 2373
A data type defines the characteristics of an item of data, and determines how that
data is processed. ESQL supports six data types, listed later in this section. Data
that is retrieved from databases, received in a self-defining message, or defined in
a message model (using MRM data types), is mapped to one of these basic ESQL
types when it is processed in ESQL expressions.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Complex ESQL functions” on page 5242
“CAST function” on page 5245
“Implicit casts”
“Data types of values from external databases” on page 5288
How database data types are implicitly cast to ESQL data types.
“Supported code pages” on page 4176
Application messages must conform to supported code pages.

Implicit casts:
This topic discusses implicit casts.

It is not always necessary to cast values between types. Some casts are done
implicitly. For example, numbers are implicitly cast between the three numeric
types for the purposes of comparison and arithmetic. Character strings are also
implicitly cast to other data types for the purposes of comparison.

There are three situations in which a data value of one type is cast to another type
implicitly. The behavior and restrictions of the implicit cast are the same as
described for the explicit cast function, except where noted in the following topics.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Complex ESQL functions” on page 5242
“Implicit CASTs for comparisons”
The standard SQL comparison operators>, <,>=, <=, =, <> are supported for
comparing two values in ESQL.
“Implicit CASTs for arithmetic operations” on page 5285
“Implicit CASTs for assignment” on page 5287

Implicit CASTs for comparisons:

The standard SQL comparison operators>, <,>=, <=, =, <> are supported for
comparing two values in ESQL.

5282 WebSphere Message Broker Version 7.0.0.8

When the data types of the two values are not the same, one of them can be
implicitly cast to the type of the other to allow the comparison to proceed. In the
following table, the vertical axis represents the left hand operand, the horizontal
axis represents the right hand operand.

L means that the right hand operand is cast to the type of the left hand operand
before comparison; R means the opposite; X means that no implicit casting takes
place; a blank means that comparison between the values of the two data types is
not supported.

ukn bln int float dec char time gtm date ts gts ivl blob bit

ukn

bln X L

int X R R L

float L X L L

dec L R X L

chr R R R R X R R R R R R1 R R

tm L X L

gtm L R X

dt L X R2 R2

ts L L2 X L

gts L L2 R X

ivl L1 X

blb L X

bit L X

Notes:

1. When casting from a character string to an interval, the character string must
be of the format INTERVAL '<values>' <qualifier>. The format <values>, which
is allowede for an explicit CAST, is not allowed here because no qualifier
external to the string is supplied.

2. When casting from a DATE to a TIMESTAMP or GMTTIMESTAMP, the time
portion of the TIMESTAMP is set to all zero values (00:00:00). This is different
from the behavior of the explicit cast, which sets the time portion to the current
time.

Numeric types:
The comparison operators operate on all three numeric types.

Character strings:
You cannot define an alternative collation order that, for example, collates upper
and lowercase characters equally.

When comparing character strings, trailing blanks are not significant, so the
comparison ’hello’ = ’hello ’ returns true.

Datetime values:
Datetime values are compared in accordance with the natural rules of the
Gregorian calendar and clock.

Chapter 14. Reference 5283

You can compare the time zone you are working in with the GMT time zone. The
GMT time zone is converted into a local time zone based on the difference
between your local time zone and the GMT time specified. When you compare
your local time with the GMT time, the comparison is based on the difference at a
given time on a given date.

Conversion is always based on the value of LOCAL_TIMEZONE. This is because
GMT timestamps are converted to local timestamps only if it can be done
unambiguously. Converting a local timestamp to a GMT timestamp has difficulties
around the daylight saving cut-over time, and converting between times and GMT
times (without date information) has to be done based on the LOCAL_TIMEZONE
value, because you cannot specify which time zone difference to use otherwise.

Booleans:
Boolean values can be compared using all the normal comparison operators. The
TRUE value is defined to be greater than the FALSE value. Comparing either value
to the UNKNOWN Boolean value (which is equivalent to NULL) returns an
UNKNOWN result.

Intervals:
Intervals are compared by converting the two interval values into intermediate
representations, so that both intervals have the same interval qualifier. Year-month
intervals can be compared only with other year-month intervals, and day-second
intervals can be compared only with other day-second intervals.

For example, if an interval in minutes, such as INTERVAL ’120’ MINUTE is compared
with an interval in days to seconds, such as INTERVAL ’0 02:01:00’, the two
intervals are first converted into values that have consistent interval qualifiers,
which can be compared. So, in this example, the first value is converted into an
interval in days to seconds, which gives INTERVAL ’0 02:00:00’, which can be
compared with the second value.

Comparing character strings with other types:
If a character string is compared with a value of another type, the broker attempts
to cast the character string into a value of the same data type as the other value.

For example, you can write an expression:
’1234’> 4567

The character string on the left is converted into an integer before the comparison
takes place. This behavior reduces some of the need for explicit CAST operators
when comparing values derived from a generic XML message with literal values.
(For details of explicit casts that are supported, see “Supported casts” on page
5273.) It is this facility that allows you to write the following expression:
Body.Trade.Quantity> 5000

In this example, the field reference on the left evaluates to the character string
'1000' and, because this is being compared to an integer, that character string is
converted into an integer before the comparison takes place.

You must still check whether the price field that you want interpreted as a decimal
is greater than a given threshold. Make sure that the literal you compare it to is a
decimal value and not an integer.

Consider the following example:
Body.Trade.Price> 100

5284 WebSphere Message Broker Version 7.0.0.8

This comparison does not return the required or expected result, because the Price
field is converted into an integer, and that conversion fails because the character
string contains a decimal point. However, the following expression succeeds:
Body.Trade.Price> 100.00

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Complex ESQL functions” on page 5242
“Supported casts” on page 5273
“Implicit casts” on page 5282
“Implicit CASTs for arithmetic operations”
“Implicit CASTs for assignment” on page 5287

Implicit CASTs for arithmetic operations:
This topic lists the implicit CASTs available for arithmetic operations.

Normally the arithmetic operators (+, -, *, and /) operate on operands of the same
data type, and return a value of the same data type as the operands. Cases where
it is acceptable for the operands to be of different data types, or where the data
type of the resulting value is different from the type of the operands, are shown in
the following table.

The following table lists the implicit CASTs for arithmetic operation.

Left operand data type Right operand data type Supported
operators

Result data type

INTEGER FLOAT +, -, *, / FLOAT1

INTEGER DECIMAL +, -, *, / DECIMAL1

INTEGER INTERVAL * INTERVAL4

FLOAT INTEGER +, -, *, / FLOAT1

FLOAT DECIMAL +, -, *, / FLOAT1

FLOAT INTERVAL * INTERVAL4

DECIMAL INTEGER +, -, *, / DECIMAL1

DECIMAL FLOAT +, -, *, / FLOAT1

DECIMAL INTERVAL * INTERVAL4

TIME TIME - INTERVAL2

TIME GMTTIME - INTERVAL2

TIME INTERVAL +, - TIME3

GMTTIME TIME - INTERVAL2

GMTTIME GMTTIME - INTERVAL2

GMTTIME INTERVAL +, - GMTTIME3

Chapter 14. Reference 5285

Left operand data type Right operand data type Supported
operators

Result data type

DATE DATE - INTERVAL2

DATE INTERVAL +, - DATE3

TIMESTAMP TIMESTAMP - INTERVAL2

TIMESTAMP GMTTIMESTAMP - INTERVAL2

TIMESTAMP INTERVAL +, - TIMESTAMP3

GMTTIMESTAMP TIMESTAMP - INTERVAL2

GMTTIMESTAMP GMTTIMESTAMP - INTERVAL2

GMTTIMESTAMP INTERVAL +, - GMTTIMESTAMP3

INTERVAL INTEGER *, / INTERVAL4

INTERVAL FLOAT *, / INTERVAL4

INTERVAL DECIMAL *, / INTERVAL4

INTERVAL TIME + TIME3

INTERVAL GMTTIME + GMTTIME3

INTERVAL DATE + DATE3

INTERVAL TIMESTAMP + TIMESTAMP3

INTERVAL GMTTIMESTAMP + GMTTIMESTAMP3

Notes:

1. The operand that does not match the data type of the result is cast to the data type of the result before the
operation proceeds. For example, if the left operand to an addition operator is an INTEGER, and the right
operand is a FLOAT, the left operand is cast to a FLOAT before the addition operation is performed.

2. Subtracting a (GMT)TIME value from a (GMT)TIME value, a DATE value from a DATE value, or a
(GMT)TIMESTAMP value from a (GMT)TIMESTAMP value, results in an INTERVAL value representing the time
interval between the two operands.

3. Adding or subtracting an INTERVAL from a (GMT)TIME, DATE or (GMT)TIMESTAMP value results in a new
value of the data type of the non-INTERVAL operand, representing the point in time represented by the original
non-INTERVAL, plus or minus the length of time represented by the INTERVAL.

4. Multiplying or dividing an INTERVAL by an INTEGER, FLOAT, or DECIMAL value results in a new INTERVAL
representing the length of time represented by the original, multiplied or divided by the factor represented by
the non-INTERVAL operand. For example, an INTERVAL value of 2 hours 16 minutes multiplied by a FLOAT
value of 2.5 results in a new INTERVAL value of 5 hours 40 minutes. The intermediate calculations involved in
multiplying or dividing the original INTERVAL are carried out in the data type of the non-INTERVAL, but the
individual fields of the INTERVAL (such as HOUR, YEAR, and so on) are always integral, so some rounding
errors might occur.

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Complex ESQL functions” on page 5242
“Implicit casts” on page 5282

5286 WebSphere Message Broker Version 7.0.0.8

“Implicit CASTs for comparisons” on page 5282
The standard SQL comparison operators>, <,>=, <=, =, <> are supported for
comparing two values in ESQL.
“Implicit CASTs for assignment”

Implicit CASTs for assignment:
Values can be assigned to one of three entities.

A message field (or equivalent in an exception or destination list)
Support for implicit conversion between the WebSphere Message Broker
data types and the message (in its bitstream form) depends on the
appropriate parser. For example, the XML parser casts everything as
character strings before inserting them into the WebSphere MQ message.

A field in a database table

WebSphere Message Broker converts each of its data types into a suitable
standard SQL C data type, as detailed in the following table. Conversion
between this standard SQL C data type, and the data types supported by
each DBMS, depends on the DBMS. Consult your DBMS documentation
for more details.

The following table lists the available conversions from WebSphere
Message Broker to SQL data types

WebSphere Message Broker data type SQL data type

NULL, or unknown or invalid value SQL_NULL_DATA

BOOLEAN SQL_C_BIT

INTEGER SQL_C_LONG

FLOAT SQL_C_DOUBLE

DECIMAL SQL_C_CHAR1

CHARACTER SQL_C_CHAR

TIME SQL_C_TIME

GMTTIME SQL_C_TIME

DATE SQL_C_DATE

TIMESTAMP SQL_C_TIMESTAMP

GMTTIMESTAMP SQL_C_DATE

INTERVAL Not supported2

BLOB SQL_C_BINARY

BIT Not supported2

Notes:

1. For convenience, DECIMAL values are passed to the DBMS in character form.

2. There is no suitable standard SQL C data type for INTERVAL or BIT. Cast these to
another data type, such as CHARACTER, if you need to assign them to a database
field.

A scalar variable
When assigning to a scalar variable, if the data type of the value being
assigned and that of the target variable data type are different, an implicit
cast is attempted with the same restrictions and behavior as specified for
the explicit CAST function. The only exception is when the data type of the
variable is INTERVAL or DECIMAL.

Chapter 14. Reference 5287

In both these cases, the value being assigned is first cast to a CHARACTER
value, and an attempt is made to cast the CHARACTER value to an
INTERVAL or DECIMAL. This is because INTERVAL requires a qualifier
and DECIMAL requires a precision and scale. These must be specified in
the explicit cast, but must be obtained from the character string when
implicitly casting. Therefore, a further restriction is that when implicitly
casting to an INTERVAL variable, the character string must be of the form
INTERVAL '<values>' <qualifier>. The shortened <values> form that is
acceptable for the explicit cast is not acceptable here.

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Complex ESQL functions” on page 5242
“Implicit casts” on page 5282
“Implicit CASTs for comparisons” on page 5282
The standard SQL comparison operators>, <,>=, <=, =, <> are supported for
comparing two values in ESQL.
“Implicit CASTs for arithmetic operations” on page 5285

Data types of values from external databases:

How database data types are implicitly cast to ESQL data types.

The ESQL data type of message fields depends on the type of the message (for
example, XML), and the parser that is used to parse it. The ESQL data type of the
value returned by a database column reference depends on the data type of the
column in the database.

The following table shows how the various built-in database data types are cast to
ESQL data types, when they are accessed by message flows that are running in a
broker.

The versions that are supported for the database products shown in this table are
listed in “Supported databases” on page 3591.

DB2 SQL Server and
Sybase

Oracle Informix ESQL data type

N/A BIT N/A N/A BOOLEAN

SMALLINT,
INTEGER, BIGINT

INT, SMALLINT,
TINYINT

N/A INT, SMALLINT INTEGER

REAL, DOUBLE FLOAT, REAL NUMBER()1 FLOAT,
SMALLFLOAT,
DOUBLE

FLOAT

DECIMAL DECIMAL,
NUMERIC, MONEY,
SMALLMONEY

NUMBER(P)1,
NUMBER(P,S)1

DECIMAL, MONEY DECIMAL

5288 WebSphere Message Broker Version 7.0.0.8

DB2 SQL Server and
Sybase

Oracle Informix ESQL data type

CHAR,
VARCHAR, CLOB,
GRAPHIC,
VARGRAPHIC2

CHAR, VARCHAR,
TEXT

CHAR, VARCHAR2,
ROWID, UROWID,
LONG, CLOB

CHAR, VARCHAR,
CHAR VARYING

CHARACTER

TIME N/A N/A N/A TIME

N/A N/A N/A N/A GMTTIME

DATE N/A N/A DATE DATE

TIMESTAMP DATETIME,
SMALLDATETIME,
TIMESTAMP

DATE DATETIME TIMESTAMP

N/A N/A N/A N/A GMTTIMESTAMP

N/A N/A N/A INTERVAL INTERVAL

BLOB BINARY,
VARBINARY,
IMAGE,
UNIQUEIDENTIFIER

RAW LONG, RAW BLOB N/A BLOB

N/A N/A N/A N/A BIT

XML N/A v Up to Version 7.0.0.2:
CHAR

v At Version 7.0.0.3
onwards: XML

N/A BLOB

The table shows all data types that are supported for each database.

If an Oracle database column with NUMBER data type is defined with an explicit
precision (P) and scale (S), it is cast to an ESQL DECIMAL value; otherwise it is
cast to a FLOAT. For example, an ESQL statement like this:
SET OutputRoot.xxx[]
= (SELECT T.department FROM Database.personnel AS T);

where Database.personnel resolves to a TINYINT column in an SQL Server
database table, results in a list of ESQL INTEGER values being assigned to
OutputRoot.xxx.

By contrast, an identical query, where Database.personnel resolves to a NUMBER()
column in an Oracle database, results in a list of ESQL FLOAT values being
assigned to OutputRoot.xxx.

Note, that data types of stored procedure parameters are cast using the definition
of that external procedure in the “CREATE PROCEDURE statement” on page 5103.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.

Chapter 14. Reference 5289

Related reference:
“Support for Unicode and DBCS data in databases” on page 3668
You can manipulate Unicode Standard version 3.0 data, in suitably configured
databases, using ESQL, in nodes that access databases by ODBC. The broker does
not support DBCS-only columns in tables that are defined in databases.
“Complex ESQL functions” on page 5242
“CAST function” on page 5245
“CREATE PROCEDURE statement” on page 5103
The CREATE PROCEDURE statement defines a callable function or procedure.
“Supported casts” on page 5273
“Implicit casts” on page 5282
“Supported databases” on page 3591
You can optionally configure databases to contain data that is accessed by your
message flows. Databases from IBM and other suppliers are supported at specific
versions on supported operating systems.

Miscellaneous ESQL functions:

ESQL provides additional functions that support miscellaneous operations.
v “BASE64DECODE function”
v “BASE64ENCODE function” on page 5291
v “CHANGEIDENTIFIERTIMEOUT function” on page 5292
v “COALESCE function” on page 5294
v “EVAL function” on page 5294
v “NULLIF function” on page 5296
v “PASSTHRU function” on page 5297
v “SLEEP function” on page 5299
v “UUIDASBLOB function” on page 5300
v “UUIDASCHAR function” on page 5301
Related tasks:
“Writing ESQL” on page 2413
How you can use ESQL to customize nodes.
Related reference:
“ESQL reference” on page 5019
SQL is the industry standard language for accessing and updating database data
and ESQL is a language derived from SQL Version 3, particularly suited to
manipulating both database and message data.
“ESQL operators” on page 5056
A list of the various groups of operators that ESQL supports.
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or
interact with nodes.
“ESQL functions” on page 5168
The following types of function are available.

BASE64DECODE function:

BASE64DECODE is a function that manipulates CHARACTER strings that are
base64-encoded, and returns a BLOB string that contains the base64-decoded
version of the source string.

5290 WebSphere Message Broker Version 7.0.0.8

Syntax

►► BASE64DECODE (SourceExpression) ►◄

BASE64DECODE returns a BLOB string containing a base64-decoded
representation of the source string. The source string can only be of the
CHARACTER data type. If SourceExpression is NULL, the result is NULL. If the
source string does not contain valid base64 data, SQSTATE 'S22018' exception is
produced.

Examples

For examples of usage see the BASE64ENCODE function.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.

BASE64ENCODE function:

BASE64ENCODE is a function that manipulates all string data types (BIT, BLOB,
and CHARACTER).

BASE64ENCODE returns a CHARACTER string that contains the base64-encoded
version of the source string.

Syntax

►► BASE64ENCODE (SourceExpression) ►◄

BASE64ENCODE returns a CHARACTER string containing a base64 representation
of the source string. The source string can be a string of the CHARACTER, BLOB,
or BIT data type. If SourceExpression is NULL, the result is NULL.

If SourceExpression is of CHARACTER type, it is first converted to the UTF-8 code
page before encoding as base64.
If SourceExpression is of BLOB type, it is encoded as base64 directly, without any
prior changes.

Chapter 14. Reference 5291

If SourceExpression is of BIT type, it is first CAST to BLOB before encoding as
base64 and so its length must be a multiple of 8.

Examples

The base64 encoding of a BLOB source string and subsequent decoding back to
BLOB is shown by the following example:
DECLARE original BLOB X’48656c6c6f’;
DECLARE encoded CHARACTER BASE64ENCODE(original);
DECLARE decoded BLOB BASE64DECODE(encoded);

The base64 encoding of a CHARACTER source string that is first automatically
converted to UTF-8 and later decoded is shown by the following example:
DECLARE original CHARACTER ’Hello World!’;
DECLARE encoded CHARACTER BASE64ENCODE(original);
DECLARE decoded BLOB BASE64DECODE(encoded);
DECLARE decoded2 CHARACTER CAST(decoded AS CHARACTER CCSID 1208);

The base64 encoding of a BIT source string that is first automatically converted to
a BLOB and later decoded is shown by the following example:
DECLARE original BIT B’0010001001000001’;
DECLARE encoded CHARACTER BASE64ENCODE(original);
DECLARE decoded BLOB BASE64DECODE(encoded);
DECLARE decoded2 BIT CAST(decoded AS BIT);

Encoding from a CHARACTER source string to a BLOB and back to CHARACTER
again in a code page other than UTF-8 is shown by the following example:
DECLARE original CHARACTER ’Hello World!’;
DECLARE originalBlob BLOB CAST(original AS BLOB CCSID 819);
DECLARE encoded CHARACTER BASE64ENCODE(originalBlob);
DECLARE decoded BLOB BASE64DECODE(encoded);
DECLARE decoded2 CHARACTER CAST(decoded AS CHARACTER CCSID 819);

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.

CHANGEIDENTIFIERTIMEOUT function:

The CHANGEIDENTIFIERTIMEOUT function changes the timeout value
associated with the reply identifier of a SOAPInput node or the request identifier
of an HTTPInput node. The function returns a Boolean value to indicate the
success or otherwise of the change.

5292 WebSphere Message Broker Version 7.0.0.8

Syntax

►► CHANGEIDENTIFIERTIMEOUT (IdentifierExpression, TimeoutExpression) ►◄

The function returns TRUE if the given identifier is valid and the timeout was
adjusted to the new value without the new value causing the identifier to timeout.
It returns FALSE if the identifier passed to the function is invalid or, after the
timeout adjustment, the identifier has expired. Note that if the function is passed
an identifier that has already expired, the function always return FALSE. Note that
for HTTPInput nodes, the function only processes identifiers that are associated
with the embedded execution group listener.

The IdentifierExpression parameter is a BLOB expression that must resolve to a valid
reply identifier (for a SOAPInput node) or request identifier (for an HTTPInput
node). An identifier is unique to an individual message, therefore only the message
associated with the identifier will be affected by this function.

The TimeoutExpression parameter is an INTEGER expression that represents a
certain number of seconds to be added to or subtracted from the identifier's
timeout value. Specifying a positive value will cause the timeout to be increased by
the chosen amount, whilst specifying a negative value will cause the timeout to be
decreased by the chosen amount. Passing a value of 0 allows an identifier to be
tested for validity without changing it, because FALSE is returned if the identifier
is invalid or has expired, whereas TRUE is returned if the identifier is valid and
has not timed out.

If either parameter is NULL, the result is NULL.

Examples

The following example shows how to reduce the timeout of the specified SOAP
reply identifier by 5 seconds. It returns TRUE if the identifier is valid and has not
expired after changing the timeout duration:
ChangeIdentifierTimeout(

LocalEnvironment.Destination.SOAP.Reply.ReplyIdentifier, -5);

The following example shows how to increase the timeout on the specified
identifier by 30 seconds. It returns TRUE if the identifier is valid and has not
expired after changing the timeout duration:
ChangeIdentifierTimeout(myReplyIdentifier, 30);

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677

Chapter 14. Reference 5293

“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.

COALESCE function:
COALESCE is a miscellaneous function that lets you provide default values for
fields.

Syntax

►► ▼

,

COALESCE (source_value) ►◄

The COALESCE function evaluates its parameters in order and returns the first
one that is not NULL. The result is NULL if, and only if, all the arguments are
NULL. The parameters can be of any scalar type, but they need not all be of the
same type.

Use the COALESCE function to provide a default value for a field, which might
not exist in a message. For example, the expression:
COALESCE(Body.Salary, 0)

returns the value of the Salary field in the message if it exists, or 0 (zero) if that
field does not exist.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Transforming a complex message” on page 2520
When you code the ESQL for a Compute node, use the SELECT function for
complex message transformation.
Related reference:
“Syntax diagrams” on page 3677
“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.

EVAL function:

The EVAL function takes a character value and interprets that value as an ESQL
expression that returns a value.

For details of the EVAL statement, see “EVAL statement” on page 5131.

5294 WebSphere Message Broker Version 7.0.0.8

Syntax

►► EVAL (SQL_character_value) ►◄

EVAL takes one parameter in the form of an expression, evaluates this expression,
and casts the resulting value to a character string if it is not one already. The
expression that is passed to EVAL must therefore be able to be represented as a
character string.

User defined functions cannot be defined within an EVAL function but EVAL can
be used to call a user-defined function that is in scope where the EVAL function is
used.

If you use the EVAL function to call out to a user-defined function that is not
called from anywhere else in the ESQL for a given node, you need to add the
following code to your ESQL, to ensure that the user-defined function being called
is included when the code is compiled:

IF (FALSE) THEN CALL function(<parameters>) INTO Environment.temp; END IF;

Note, that in the preceding example, you must replace function() with the name
of the function in question.

In the following examples, A and B are integer scalar variables, and scalarVar1 and
OperatorAsString are character string scalar variables.

The following examples are valid uses of EVAL:
v SET OutputRoot.XMLNS.Data.Result = EVAL(A+B);

The expression A+B is acceptable because, although it returns an integer value,
integer values are representable as character strings, and the necessary cast is
performed before EVAL continues with its second stage of evaluation.

v SET OutputRoot.XMLNS.Data.Result = EVAL(’A’ || operatorAsString ||
’B’);

v EVAL(’SET ’ || scalarVar1 || ’ = 2;’);

The semicolon included at the end of the final string literal is necessary, because
if EVAL is being used in place of an ESQL statement, its first stage evaluation
must return a string that represents a valid ESQL statement, including the
terminating semicolon.

The real power of EVAL is that it allows you to dynamically construct ESQL
statements or expressions. In the second and third examples above, the value of
scalarVar1 or operatorAsString can be set according to the value of an incoming
message field, or other dynamic value, allowing you to effectively control what
ESQL is executed without requiring a potentially lengthy IF-THEN ladder.

However, consider the performance implications in using EVAL. Dynamic
construction and execution of statements or expressions is necessarily more
time-consuming than simply executing pre-constructed ones. If performance is
vital, you might prefer to write more specific, but faster, ESQL.

The following are not valid uses of EVAL:

Chapter 14. Reference 5295

v SET EVAL(scalarVar1) = 2;

In this example, EVAL is being used to replace a field reference, not an
expression.

v SET OutputRoot.XMLNS.Data.Result[] = EVAL((SELECT T.x FROM Database.y AS
T));

In this example, the (SELECT T.x FROM Database.y) passed to EVAL returns a
list, which is not representable as a character string.

The following example is acceptable because (SELECT T.x FROM Database.y AS T)
is a character string literal, not an expression in itself, and therefore is
representable as a character string.
SET OutputRoot.XMLNS.Data.Result[]
= EVAL(’(SELECT T.x FROM Database.y AS T)’);

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.
“EVAL statement” on page 5131
The EVAL statement takes a character value, interprets it as an SQL statement, and
processes that statement.

NULLIF function:
NULLIF is a miscellaneous function that returns a NULL value if the arguments
are equal.

Syntax

►► NULLIF (expression1 , expression2) ►◄

The NULLIF function returns a NULL value if the arguments are equal; otherwise,
it returns the value of the first argument. The arguments must be comparable. The
result of using NULLIF(e1,e2) is the same as using the expression:
CASE WHEN e1=e2 THEN NULL ELSE e1 END

When e1=e2 evaluates to unknown (because one or both of the arguments is
NULL), NULLIF returns the value of the first argument.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message

5296 WebSphere Message Broker Version 7.0.0.8

flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.

PASSTHRU function:

The PASSTHRU function evaluates an expression and executes the resulting
character string as a database statement, returning a result set.

Syntax

►►

▼

▼

PASSTHRU (Expression)

TO DatabaseReference ,

VALUES (Expression)
,

(1)
, Expression

►◄

WHERE:

DatabaseReference = Database . DataSourceClause

DataSourceClause = DataSourceName
{ DataSourceExpression }

Notes:

1 The lower half of the main syntax diagram describes syntax retained for
backward compatability.

The PASSTHRU function is similar to the PASSTHRU statement, which is
described in “PASSTHRU statement” on page 5147.

Usage

The main use of the PASSTHRU function is to issue complex SELECTs, not
currently supported by the broker, to databases. (Examples of complex SELECTs
not currently supported by the broker are those containing GROUP BY or
HAVING clauses.)

The first expression is evaluated and the resulting character string is passed to the
database pointed to by DatabaseReference (in the TO clause) for execution. If the TO
clause is not specified, the database pointed to by the node's data source attribute
is used.

Chapter 14. Reference 5297

Use question marks (?) in the database string to denote parameters. The parameter
values are supplied by the VALUES clause.

If the VALUES clause is specified, its expressions are evaluated and passed to the
database as parameters; (that is, the expressions' values are substituted for the
question marks in the database statement).

If only one VALUE expression exists, the result might or might not be a list. If it is
a list, the list's scalar values are substituted sequentially for the question marks. If
it is not a list, the single scalar value is substituted for the (single) question mark
in the database statement. If more than one VALUE expression exists, none of the
expressions evaluate to a list; their scalar values are substituted sequentially for the
question marks instead.

Because the database statement is constructed by the user program, it is not
essential to use parameter markers (that is, the question marks) or the VALUES
clause, because the whole of the database statement could be supplied, as a literal
string, by the program. However, use parameter markers whenever possible
because this reduces the number of different statements that need to be prepared
and stored in the database and the broker.

Database reference

A database reference is a special instance of the field references that is used to refer
to message trees. It consists of the word Database followed by the name of a data
source (that is, the name of a database instance).

You can specify the data source name directly or by an expression enclosed in
braces ({...}). A directly-specified data source name is subject to name substitution.
That is, if the name used has been declared to be a known name, the value of the
declared name is used rather than the name itself (see “DECLARE statement” on
page 5117).

If you have created a message flow that contains one of the following nodes, and
the ESQL that is associated with this node includes a PASSTHRU statement and a
database reference, you must specify a value for the Data source property of the
relevant node:
v Compute
v Database
v Filter

Handling errors

It is possible for errors to occur during PASSTHRU operations. For example, the
database might not be operational or the statement might be invalid. In these
cases, an exception is thrown (unless the node has its Throw exception on
database error property cleared). These exceptions set appropriate SQL code,
state, native error, and error text values and can be dealt with by error handlers
(see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database
state” on page 2512.

5298 WebSphere Message Broker Version 7.0.0.8

Example

The following example performs a SELECT on table Table1 in schema Schema1 in
database DSN1, passing two parameters to the WHERE clause and asking for the
result set to be ordered in ascending name order. The result set is assigned to the
SelectResult folder:
SET OutputRoot.XML.Data.SelectResult.Row[] =

PASSTHRU(’SELECT R.* FROM Schema1.Table1 AS R WHERE R.Name = ? OR R.Name =
? ORDER BY Name’

TO Database.DSN1
VALUES (’Name1’, ’Name4’));

The above example assigns the result set to the OutputRoot message body tree that
is owned by the Generic XML parser, which allows self-defining messages.

If assigning the result set into a message tree owned by one of the MRM parsers,
and the result set structure exactly matches the MRM message definition, the result
set can be assigned directly into the OutputRoot message body tree.

If the result set structure does not exactly match the MRM message definition, you
must first assign the result set into a ROW data type, or an Environment tree that
does not have any parsers associated with it. The required data can then be
assigned to OutputRoot to build a message tree that conforms to the message
definition.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Selecting data from database columns” on page 2491
You can configure a Compute, Filter, or Database node to select data from database
columns and include it in an output message.
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“PASSTHRU statement” on page 5147
The PASSTHRU statement evaluates an expression and runs the resulting character
string as a database statement.
“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.

SLEEP function:

The SLEEP function delays the execution of a message flow instance for a defined
period of time, and returns a Boolean value to indicate whether the sleep
completed without interruption.

Chapter 14. Reference 5299

Syntax

►► SLEEP (DurationExpression) ►◄

The SLEEP function returns TRUE if the sleep is completed for the specified
duration without interruption, otherwise it returns FALSE.

The DurationExpression parameter specifies the number of milliseconds to sleep. It
must be of INTEGER data type. If DurationExpression is NULL, the function returns
NULL immediately without sleeping.

SLEEP cannot be called from inside an ATOMIC block because this would block
other instances from having access to the shared resource. If such a call is
attempted, FALSE is returned immediately.

The SLEEP function is automatically interrupted and returns FALSE, if a
configuration or redeploy message for the flow arrives while the flow is sleeping.

Example

In the following example, SLEEP is called for 1000, if it is not interrupted for
reconfiguration:
DECLARE returnValue BOOLEAN
SET returnValue = SLEEP(1000); /* attempt to sleep for one second */

Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.

UUIDASBLOB function:
UUIDASBLOB is a miscellaneous function that returns universally unique
identifiers (UUIDs) as BLOBs.

Syntax

►► UUIDASBLOB
(source_character_uuid)

►◄

5300 WebSphere Message Broker Version 7.0.0.8

If (source_character_uuid) is not specified, UUIDASBLOB creates a new UUID and
returns it as a BLOB.

If (source_character_uuid) is specified, UUIDASBLOB converts an existing character
UUID in the form dddddddd_dddd_dddd_dddd_dddddddddddd to the BLOB form. An
exception is thrown if the parameter is not of the expected form.

The result is NULL if a NULL parameter is supplied.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677
“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.

UUIDASCHAR function:
UUIDASCHAR is a miscellaneous function that returns universally unique
identifiers (UUIDs) as CHARACTER values.

Syntax

►► UUIDASCHAR
(source_blob_uuid)

►◄

If (source_blob_uuid) is not specified, UUIDASCHAR creates a new UUID and
returns it as a CHARACTER value.

If (source_blob_uuid) is specified, UUIDASCHAR converts an existing BLOB UUID
to the character form.

The result is NULL if a NULL parameter is supplied.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“Syntax diagrams” on page 3677

Chapter 14. Reference 5301

“Miscellaneous ESQL functions” on page 5290
ESQL provides additional functions that support miscellaneous operations.

ESQL constants:

Use these constants to make or parse a bit stream.

ESQL constants in the Mapping node Corresponding ESQL constants

$esql:RootBitStream RootBitStream

$esql:FolderBitStream FolderBitStream

$esql:ValidateContentAndValue ValidateContentAndValue

$esql:ValidateValue ValidateValue

$esql:ValidateContent ValidateContent

$esql:ValidateNone ValidateNone

$esql:ValidateException ValidateException

$esql:ValidateExceptionList ValidateExceptionList

$esql:ValidateLocalError ValidateLocalError

$esql:ValidateUserTrace ValidateUserTrace

$esql:ParseComplete ParseComplete

$esql:ParseImmediate ParseImmediate

$esql:ParseOnDemand ParseOnDemand

Related tasks:
“Setting the value of a target element to an ESQL constant” on page 2260
There are two ways to set the value of a target element to an ESQL constant,
depending on whether the target element has an entry in the Map Script column of
the Message Mapping editor Spreadsheet pane.

Broker properties that are accessible from ESQL and Java:

You can access broker, message flow, and node properties from ESQL and Java.

The following table shows the properties that are available to ESQL and Java code
by using the CMP interface.

The Java code, where applicable, is shown in the third column of the table.

Note that the BrokerProxy, ExecutionGroupProxy, MessageFlowProxy, and
LocalBrokerUtilities classes are all part of the CMP interface
(ConfigManagerProxy.jar). This JAR needs to be referenced from your Java project
in your WebSphere Message Broker Toolkit, but it does not need to be deployed to
the broker.

For a complete overview of broker properties, see “Broker properties” on page
1144.

5302 WebSphere Message Broker Version 7.0.0.8

Table 267. General broker properties.
Note: The only broker-defined properties that can be used in a Trace node are those in the “General broker
properties” group. For example, you could specify the Pattern setting of a Trace node as:

Start Trace Input Message
Time: ${CURRENT_TIMESTAMP}
Broker: ${BrokerName} Version: ${BrokerVersion} Platform: ${Family}
ProcessID: ${ProcessId} BrokerUserId: ${BrokerUserId}
ExecutionGroupLabel: ${ExecutionGroupLabel}
Transaction: ${Transaction}
Root Tree: ${Root}

End Trace Input Message

ESQL Property name Java access method Description

BrokerName (Character) Accessible through:
1. MbNode.getBroker()
2. MbBroker.getName()

The name of the broker.

BrokerUserId (Character) Use

System.getProperty("user.name");
to get the name of the user ID under
which the broker was started.

The user ID under which the broker
is running (that is, the user ID
specified by the -i flag on the
mqsicreatebroker command on
Windows, or the user ID that started
the broker by using the mqsistart
command on Linux and UNIX
systems).

BrokerVersion (Character) Use

BrokerProxy b = BrokerProxy.getLocalInstance();
int v = b.getBrokerVersion();

The 4-character version number of
the broker (see “BrokerVersion” on
page 5305).

ExecutionGroupLabel (Character) Use

ExecutionGroupProxy eg = ExecutionGroupProxy.getLocalInstance();
eg.getName();

The label of the execution group (a
human-readable name).

ExecutionGroupName (Character) Use

ExecutionGroupProxy eg = ExecutionGroupProxy.getLocalInstance();
eg.getUUID();

The name of the execution group
(typically a UUID identifier).

Family (Character) Use

System.getProperty("os.name")

to return the operating system name
from Java.

The generic name of the software
platform that the broker is running
on (’WINDOWS’, ’UNIX’, or ’ZOS’).

ProcessId (Integer) Use

ExecutionGroupProxy eg = ExecutionGroupProxy.getLocalInstance();
String processId =
eg.getRuntimeProperty(AttributeConstants.EG_THIS_PROCESSID_PROPERTY);

The process identifier (PID) of the
execution group.

QueueManagerName (Character) The name of the WebSphere MQ
queue manager to which the broker
is connected.

WorkPath (Character) To return any non-default workpath
in Java, use:

String wp = LocalBrokerUtilities.getLocalBrokerWorkpath(brokerName);

(Optional) The directory in which
working files for this broker are
stored.

Chapter 14. Reference 5303

Table 268. Flow properties

ESQL Property name Java access method Description

AdditionalInstances (Integer) Use

ExecutionGroupProxy eg = ExecutionGroupProxy.getLocalInstance();
MessageFlowProxy mf = eg.getMessageFlowByName("mf1");
int i = mf.getAdditionalInstances();

The number of additional threads
that the broker can use to service the
message flow.

CommitCount (Integer) Use

ExecutionGroupProxy eg = ExecutionGroupProxy.getLocalInstance();
MessageFlowProxy mf = eg.getMessageFlowByName("mf1");
int i = mf.getCommitCount();

The number of input messages that
are processed by the message flow
before a syncpoint is taken.

CommitInterval (Integer) Use

ExecutionGroupProxy eg = ExecutionGroupProxy.getLocalInstance();
MessageFlowProxy mf = eg.getMessageFlowByName("mf1");
int i = mf.getCommitInterval();

The time interval at which a commit
is taken when the CommitCount
property is greater than 1 (that is,
where the message flow is batching
messages), but the number of
messages processed has not reached
the value of the CommitCount
property.

CoordinatedTransaction (Boolean) Not possible Whether the message flow is
processed as a global transaction,
coordinated by WebSphere MQ.

MessageFlowLabel (Character) Not possible The name of the flow.

Table 269. Node properies

ESQL Property name Java access method Description

DataSource (Character) Not possible The ODBC Data Source Name (DSN)
of the database in which the user
tables are created.

DataSourceUserId (Character) Not possible The user ID that the broker uses to
access the database user tables.

MessageOptions (Integer 64-bit)1 Not possible The bit stream and validation options
in force.

NodeLabel (Character) Not applicable The name of the node.

NodeType (Character) Not applicable The type of node (Compute,
Database, or Filter).

ThrowExceptionOnDatabaseError
(Boolean)1

Not possible Whether the broker generates an
exception when a database error is
detected.

TransactionType (Character)1 Not possible The type of transaction (Automatic or
Commit) used to access a database
from this node.

TreatWarningsAsErrors (Boolean)1 Not possible Whether database warning messages
are treated as errors, and cause the
output message to be propagated to
the failure terminal.

Notes:
1. Not applicable for the DatabaseInput node.

5304 WebSphere Message Broker Version 7.0.0.8

BrokerVersion

The BrokerVersion property contains a 4-character code that indicates the version
of the broker. The code is based on the IBM Version/Release/Modification/Fix
pack (VRMF) product-numbering system. The VRMF code works like this:

V The Version number. A Version is a separate IBM licensed program that
usually has significant new code or new function. Each version has its own
license, terms, and conditions.

R The Release number. A Release is a distribution of new function and
authorized program analysis report (APAR) fixes for an existing product.

M The Modification number. A Modification is new function added to an
existing product, and is delivered separately from an announced Version or
Release.

F The Fix pack number. Fix packs contain defect and APAR fixes. They do
not contain new function.

A fix pack is cumulative: that is, it contains all the fixes shipped in
previous maintenance to the release, including previous fix packs. It can be
applied on top of any previously-shipped maintenance to bring the system
up to the current fix pack level.

Related concepts:
“Broker properties” on page 1144
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your ESQL programs. A subset of the
properties is also accessible from Java programs. It can be useful, at run time, to
have real-time access to details of a specific node, flow, or broker.
Related tasks:
“Accessing broker properties from ESQL” on page 2625
You can access broker properties, at run time, from the ESQL modules in your
message flow nodes.
“Accessing broker properties from the JavaCompute node” on page 2658
For each broker, WebSphere Message Broker maintains a set of properties. You can
access some of these properties from your Java programs. It can be useful, during
the run time of your code, to have real-time access to details of a specific node,
flow, or broker.
“Creating a user-defined extension in Java” on page 3054
You must complete a series of tasks to create user-defined nodes that use the Java
language.
Related reference:
“ESQL-to-Java data-type mapping table” on page 5043
Table summarizing the mappings from ESQL to Java.
Related information:
Java user-defined extensions API

Special characters, case sensitivity, and comments in ESQL:

When you work with ESQL, it is useful to know about the special characters that
are available, whether ESQL syntax is case sensitive, and how to handle comments.
v “Special characters” on page 5306
v “Case sensitivity of ESQL syntax” on page 5306
v “Comments” on page 5306

Chapter 14. Reference 5305

Special characters

Symbol Name Usage

; semicolon End of ESQL statement

. period Field reference separator or decimal point

= equals Comparison or assignment

> greater than Comparison

< less than Comparison

[] square brackets Array subscript

' single quotation mark Delimit string, date-time, and decimal literals

Note, that to escape a single quotation mark
inside a string literal, you must use two single
quotation marks.

|| double vertical bar Concatenation

() parentheses Expression delimiter

" quotation mark Identifier delimiter

* asterisk Any name or multiply

+ plus Arithmetic add

- minus Arithmetic subtract, date separator, or negation

/ forward slash Arithmetic divide

_ underscore LIKE single wildcard

% percent LIKE multiple wildcard

\ backslash LIKE escape character

: colon Name space and Time literal separator

, comma List separator

<> less than greater than Not equals

-- double minus ESQL single line comment

/* */ slash asterisk asterisk slash ESQL multiline comment

? question mark Substitution variable in PASSTHRU

<= less than or equal Comparison

>= greater than or equal Comparison

/*!{ }!*/ executable comment Bypass tools check

Case sensitivity of ESQL syntax

The case of ESQL statements is:
v Case sensitive in field reference literals
v Not case sensitive in ESQL language words

Comments

ESQL has two types of comment: single line and multiple line. A single line
comment starts with the characters -- and ends at the end of the line.

In arithmetic expressions you must take care not to initiate a line comment
accidentally. For example, consider the expression:

5306 WebSphere Message Broker Version 7.0.0.8

1 - -2

Removing all white space from the expression results in:
1--2

which is interpreted as the number 1, followed by a line comment.

A multiple line comment starts with /* anywhere in ESQL and ends with */.

ESQL reserved keywords:

The keywords listed are reserved in uppercase, lowercase, or mixed case.

You cannot use these keywords for variable names. However, you can use reserved
keywords as names in a field reference.

The following list shows all ESQL reserved keywords:
v ALL
v ASYMMETRIC
v BOTH
v CASE
v DISTINCT
v FROM
v ITEM
v LEADING
v NOT
v SYMMETRIC
v TRAILING
v WHEN
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“ESQL non-reserved keywords”
Some keywords are used in the ESQL language, but are not reserved. Do not use
them for variable, function, or procedure names (in any combination of uppercase
and lowercase) because your code can become difficult to understand.

ESQL non-reserved keywords:

Some keywords are used in the ESQL language, but are not reserved. Do not use
them for variable, function, or procedure names (in any combination of uppercase
and lowercase) because your code can become difficult to understand.

The following keywords are used in the ESQL language, but are not reserved.
v AND

Chapter 14. Reference 5307

v ANY
v AS
v ATOMIC
v ATTACH
v BEGIN
v BETWEEN
v BIT
v BLOB
v BOOLEAN
v BY
v CALL
v CATALOG
v CCSID
v CHAR
v CHARACTER
v COMPUTE
v CONDITION
v CONSTANT
v CONTINUE
v COORDINATED
v COUNT
v CREATE
v CURRENT_DATE
v CURRENT_GMTDATE
v CURRENT_GMTTIME
v CURRENT_GMTTIMESTAMP
v CURRENT_TIME
v CURRENT_TIMESTAMP
v DATA
v DATABASE
v DATE
v DAY
v DAYOFWEEK
v DAYOFYEAR
v DAYS
v DECIMAL
v DECLARE
v DEFAULT
v DELETE
v DETACH
v DO
v DOMAIN
v DYNAMIC
v ELSE
v ELSEIF
v ENCODING
v END
v ENVIRONMENT
v ESCAPE
v ESQL
v EVAL
v EVENT
v EXCEPTION
v EXISTS
v EXIT
v EXTERNAL

5308 WebSphere Message Broker Version 7.0.0.8

v FALSE
v FIELD
v FILTER
v FINALIZE
v FIRSTCHILD
v FLOAT
v FOR
v FORMAT
v FOUND
v FULL
v FUNCTION
v GMTTIME
v GMTTIMESTAMP
v GROUP
v HANDLER
v HAVING
v HOUR
v IDENTITY
v IF
v IN
v INF
v INFINITY
v INOUT
v INSERT
v INT
v INTEGER
v INTERVAL
v INTO
v IS
v ISLEAPYEAR
v ITERATE
v JAVA
v LABEL
v LANGUAGE
v LAST
v LASTCHILD
v LEAVE
v LIKE
v LIST
v LOCALTIMEZONE
v LOG
v LOOP
v MAX
v MESSAGE
v MIN
v MINUTE
v MODIFIES
v MODULE
v MONTH
v MONTHS
v MOVE
v NAME
v NAMESPACE
v NAN
v NEXTSIBLING
v NONE

Chapter 14. Reference 5309

v NULL
v NUM
v NUMBER
v OF
v OPTIONS
v OR
v ORDER
v OUT
v PARSE
v PASSTHRU
v PATH
v PLACING
v PREVIOUSSIBLING
v PROCEDURE
v PROPAGATE
v QUARTEROFYEAR
v QUARTERS
v READS
v REFERENCE
v REPEAT
v RESIGNAL
v RESULT
v RETURN
v RETURNS
v ROW
v SAMEFIELD
v SCHEMA
v SECOND
v SELECT
v SET
v SETS
v SEVERITY
v SHARED
v SHORT
v SOME
v SQL
v SQLCODE
v SQLERRORTEXT
v SQLEXCEPTION
v SQLNATIVEERROR
v SQLSTATE
v SQLWARNING
v SUM
v TERMINAL
v THE
v THEN
v THROW
v TIME
v TIMESTAMP
v TO
v TRACE
v TRUE
v TYPE
v UNCOORDINATED
v UNKNOWN
v UNTIL

5310 WebSphere Message Broker Version 7.0.0.8

v UPDATE
v USER
v UUIDASBLOB
v UUIDASCHAR
v VALUE
v VALUES
v WEEKOFMONTH
v WEEKOFYEAR
v WEEKS
v WHERE
v WHILE
v YEAR
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
Related reference:
“ESQL reserved keywords” on page 5307
The keywords listed are reserved in uppercase, lowercase, or mixed case.

Example message:
This topic defines the example message that is used in many of the examples
throughout the information center.

The example message is:
<Invoice>

<InvoiceNo>300524</InvoiceNo>
<InvoiceDate>2000-12-07</InvoiceDate>
<InvoiceTime>12:40:00</InvoiceTime>
<TillNumber>3</TillNumber>
<Cashier StaffNo=’089’>Mary</Cashier>
<Customer>
<FirstName>Andrew</FirstName>
<LastName>Smith</LastName>
<Title>Mr</Title>
<DOB>20-01-70</DOB>
<PhoneHome>01962818000</PhoneHome>
<PhoneWork />
<Billing>

<Address>14 High Street</Address>
<Address>Hursley Village</Address>
<Address>Hampshire</Address>
<PostCode>SO213JR</PostCode>

</Billing>
</Customer>
<Payment>
<CardType>Visa</CardType>
<CardNo>4921682832258418</CardNo>
<CardName>Mr Andrew J. Smith</CardName>
<Valid>1200</Valid>
<Expires>1101</Expires>

</Payment>
<Purchases>
<Item>

Chapter 14. Reference 5311

<Title Category=’Computer’ Form=’Paperback’ Edition=’2’>The XML Companion</Title>
<ISBN>0201674866</ISBN>
<Author>Neil Bradley</Author>
<Publisher>Addison-Wesley</Publisher>
<PublishDate>October 1999</PublishDate>
<UnitPrice>27.95</UnitPrice>
<Quantity>2</Quantity>

</Item>
<Item>

<Title Category=’Computer’ Form=’Paperback’ Edition=’2’>A Complete Guide to DB2 Universal Database</Title>
<ISBN>1558604820</ISBN>
<Author>Don Chamberlin</Author>
<Publisher>Morgan Kaufmann Publishers</Publisher>
<PublishDate>April 1998</PublishDate>
<UnitPrice>42.95</UnitPrice>
<Quantity>1</Quantity>

</Item>
<Item>

<Title Category=’Computer’ Form=’Hardcover’ Edition=’0’>JAVA 2 Developers Handbook</Title>
<ISBN>0782121799</ISBN>
<Author>Philip Heller, Simon Roberts </Author>
<Publisher>Sybex, Inc.</Publisher>
<PublishDate>September 1998</PublishDate>
<UnitPrice>59.99</UnitPrice>
<Quantity>1</Quantity>

</Item>
</Purchases>
<StoreRecords/>
<DirectMail/>
<Error/>

</Invoice>

For a diagrammatic representation of this message, and for examples of how this
message can be manipulated with ESQL statements and functions, refer to “Writing
ESQL” on page 2413.

Java reference
You can use Java language from within JavaCompute nodes and from user-defined
nodes.

To see the Java classes and methods see “Java user-defined node API”
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Java user-defined node API:

Use the API described here for both user-defined nodes, and for Java code that is
called by JavaCompute nodes.

The Java classes and methods are described in the Java user-defined extensions
API.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.

5312 WebSphere Message Broker Version 7.0.0.8

Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

PHP API
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

The following five classes have been defined:
v “MbsElement”
v “MbsElementIterator” on page 5316
v “MbsMessage” on page 5317
v “MbsMessageAssembly” on page 5319
v “MbsBlob” on page 5322

See “PHP data types” on page 5323 for information about the mappings between
PHP and ESQL data types.

See “PHP extensions” on page 5324 for information about the PHP extensions
supported by WebSphere Message Broker.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

MbsElement:

The MbsElement class represents a single parsed element in a message (or other
logical tree).

The MbsElement class provides the API methods shown in the following table
(parameters in square brackets are optional):

Method Description

Constructor() Instantiates a new MbsElement object.

object getValue() Returns the value of the current element.

void setValue(object $value) Sets the value of the current element.

int getType() Returns the specific type of the current
element. For a full list of type values, see
“PHP constants for type values” on page
5343.

void setType(int $type) Sets the specific type of the current element.
For a full list of type values, see “PHP
constants for type values” on page 5343.

Chapter 14. Reference 5313

Method Description

object xpath(string $expression [, array
$namespace])

Evaluates the XPath expression with the
current element as the context node. It
returns the result as either a string, double,
boolean, or a nodeset as an array of
MbsElement objects. The optional namespace
parameter is an associative array with
namespace prefixes as the keys and
namespace URIs as the values.

string getName() Returns the name of the current element.

void setName(string $name) Sets the name of the current element.

string getNamespace() Returns the namespace URI of the current
element.

void setNamespace($namespace) Sets the namespace URI of the current
element.

MbsElement getParent() Returns the parent of the current element.

MbsElement getChild(string $name [, int
$occurrence])

Returns the first child of the current element
whose name is given by the first parameter.
The nth occurrence of that child can be
returned by specifying the second optional
parameter.

array getChildren([string $namespace]) Returns all the child elements n of the
current element as an array of MbsElements.
If the namespace parameter is specified, the
array contains only the child elements with
that namespace URI.

MbsElement getFirstChild() Returns the first child of the current
element.

MbsElement getLastChild() Returns the last child of the current element.

MbsElement getNextSibling() Returns the next sibling of the current
element.

MbsElement getPreviousSibling() Returns the previous sibling of the current
element.

MbsElement getAttribute(string $name) Returns the attribute of the current element
given by the name parameter.

MbsElement addAttribute(string $name,
object $value [, string $namespace])

Adds an attribute to the current element.

MbsElement addElement(string $name, object
$value [, string $namespace [, int $type [, int
$position]]])

Creates an element as last child (by default)
of the current element. The optional type
parameter is the parser-specific type of the
new node (which defaults to XML element
type for XML parsers). The optional
position parameter can be one of the
following values:
v MB_FIRST_CHILD
v MB_LAST_CHILD
v MB_NEXT_SIBLING
v MB_PREVIOUS_SIBLING

MbsElement detach() Detaches the current element from the tree.

void detachAllChildren() Detaches all child elements of the current
element.

5314 WebSphere Message Broker Version 7.0.0.8

Method Description

string asBitstream([array $options]) Serializes the element tree to produce a bit
stream. When using the MRM parser (and
other parsers), the options array must be
populated with the following key/value
pairs:

array (’set’ => ’<MessageSet>’,
’type’ => ’<MessageType>’,
’format’ => ’<MessageFormat>’,
’encoding’ => ’<encoding>’,
’ccsid’ => ’<ccsid>’)

void addElementFromBitstream(string
$bitstream [, array $options])

Creates an element tree from the supplied
bit stream. Without options supplied, the bit
stream is parsed by using the parser of the
current element and attached as its last child
(no domain element is created in this case).
If options is supplied, it must contain the
key/value pair ’domain’ =>
’<parserDomain>’ plus any of the additional
options for the MRM parser (see
asBitstream()). In this case, a parser element
is created at the head of the new subtree
and attached as the last child of the current
element.

You can create elements in PHP to build subtrees. The following example shows a
PHP function that generates and returns part of an output tree:
function transformItem($input) {

$item = new MbsElement;
$item->Desc = $input->Description;
$item->Cost = $input->Price->getValue() * 1.6;
$item->Qty = $input->Quantity;

return $item;
}

You can copy this subtree into an output message by using the following code:
$output_assembly->XMLNSC->doc->item = transformItem($input_sub_tree);

where $input_sub_tree is a reference to a part of the input message.
Related concepts:
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
Related reference:
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.

Chapter 14. Reference 5315

“MbsElementIterator”
The MbsElementIterator implements the SPL RecursiveIterator.
“MbsMessage” on page 5317
The MbsMessage class represents one of the logical trees that make up the message
assembly.
“MbsMessageAssembly” on page 5319
The MbsMessageAssembly class represents the message assembly that is
propagated between nodes in a message flow.
“MbsBlob” on page 5322
The MbsBlob class supports the ESQL BLOB type.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP constants for type values” on page 5343
You can use type values to create syntax elements in your message tree.

MbsElementIterator:

The MbsElementIterator implements the SPL RecursiveIterator.

The MbsElementIterator class provides the API methods shown in the following
table:

Method Description

mixed current() Returns the current element as an
MbsElementIterator object, or NULL on
failure.

object getChildren() Returns an MbsElementIterator object
containing child elements of the current
MbsElementIterator element.

bool hasChildren() Returns TRUE if the current
MbsElementIterator element has child
elements; otherwise returns FALSE.

mixed key() Returns the name of the current element, or
FALSE on failure.

void next() Moves the MbsElementIterator to the next
element.

void rewind() Rewinds the MbsElementIterator to the first
element.

bool valid() Checks whether the current element is valid
after calls to rewind() or next(). It returns
TRUE if the current element is valid;
otherwise returns FALSE.

Related concepts:
“Using SPL iterators with PHP” on page 2695
The PHPCompute node provides support for the Standard PHP Library (SPL)
syntax, which provides iterators that can be used in PHP code.
“Iterating over elements” on page 2696
Use the MbsElementIterator class to provide sequential iteration over elements in
the message tree.
“Recursive iterators” on page 2697
You can use a RecursiveIteratorIterator to iterate over a whole message tree, by

5316 WebSphere Message Broker Version 7.0.0.8

using it to wrap around an MbsElementIterator.
“Iterating with a filter” on page 2698
Use a FilterIterator to filter elements in the message tree.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
Related reference:
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“MbsBlob” on page 5322
The MbsBlob class supports the ESQL BLOB type.
“MbsElement” on page 5313
The MbsElement class represents a single parsed element in a message (or other
logical tree).
“MbsMessage”
The MbsMessage class represents one of the logical trees that make up the message
assembly.
“MbsMessageAssembly” on page 5319
The MbsMessageAssembly class represents the message assembly that is
propagated between nodes in a message flow.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

MbsMessage:

The MbsMessage class represents one of the logical trees that make up the message
assembly.

The MbsMessage class provides the API methods shown in the following table.
The parameters in square brackets are optional:

Method Description

Constructor([MbsMessage $msg]) Instantiates a new message object, which is a
copy of the msg parameter (optional). If no
parameter is supplied, a new empty
message is created.

int getType() Returns the specific type of the root element.

array xpath(string $expression [, array
$namespace])

Evaluates the XPath expression by using the
last child of root (body element) as the
context node. It returns the result as either a
string, double, boolean, or a nodeset as an
array of MbsElement objects. The optional
namespace parameter is an associative array
with namespace prefixes as the keys and
namespace URIs as the values.

Chapter 14. Reference 5317

Method Description

MbsElement getChild(string $name [, int
$occurrence])

Returns the first child of the root element
whose name is given by the first parameter.
The nth occurrence of that child can be
returned by specifying the second optional
parameter.

array getChildren([string $namespace]) Returns all the child elements of the root
element as an array of MbsElements. If the
namespace parameter is specified, the array
contains only the child elements with that
namespace URI.

MbsElement getFirstChild() Returns the first child of the root element.

MbsElement getLastChild() Returns the last child of the root element.

MbsElement addElement(string $name, object
$value [, string $namespace [, int $type [, int
$position]]])

Creates an element as last child (by default)
of the root element. The optional type
parameter is the parser-specific type of the
new node, which defaults to XML element
type for XML parsers. The optional position
parameter can be one of the following
values:
v MB_FIRST_CHILD
v MB_LAST_CHILD
v MB_NEXT_SIBLING
v MB_PREVIOUS_SIBLING

MbsElement addDomainElement(string
$domainName)

Creates a domain element.

void detachAllChildren() Detaches all child elements of the root
element.

string asBitstream([array $options]) Serializes the element tree to produce a bit
stream. When using the MRM parser (and
other parsers), the options array must be
populated with the following key/value
pairs:

array (’set’ => ’<MessageSet>’,
’type’ => ’<MessageType>’,
’format’ => ’<MessageFormat>’,
’encoding’ => ’<encoding>’,
’ccsid’ => ’<ccsid>’)

void addElementFromBitstream(string
$bitstream [, array $options])

Creates an element tree from the supplied
bit stream. Without options supplied, the bit
stream is parsed by the parser of the root
element and attached as its last child (no
domain element is created in this case). If
options is supplied, it must contain the
key/value pair ’domain’ =>
’<parserDomain>’ plus any of the additional
options for the MRM parser (see
asBitstream()). In this case, a parser element
is created at the head of the new subtree
and attached as the last child of the root
element.

Related concepts:
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input

5318 WebSphere Message Broker Version 7.0.0.8

bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
Related reference:
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“MbsElement” on page 5313
The MbsElement class represents a single parsed element in a message (or other
logical tree).
“MbsElementIterator” on page 5316
The MbsElementIterator implements the SPL RecursiveIterator.
“MbsMessageAssembly”
The MbsMessageAssembly class represents the message assembly that is
propagated between nodes in a message flow.
“MbsBlob” on page 5322
The MbsBlob class supports the ESQL BLOB type.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

MbsMessageAssembly:

The MbsMessageAssembly class represents the message assembly that is
propagated between nodes in a message flow.

The message assembly comprises four individual trees:
v Message
v LocalEnvironment
v GlobalEnvironment
v ExceptionList

If assembly is an instance of MbsMessageAssembly, you can access the four
component trees by using the following code:
MbsMessage message = $assembly[MB_MESSAGE];
MbsMessage local_env = $assembly[MB_LOCAL_ENVIRONMENT];
MbsMessage global_env = $assembly[MB_GLOBAL_ENVIRONMENT];
MbsMessage ex_list = $assembly[MB_EXCEPTION_LIST];

The MbsMessageAssembly class provides the API methods shown in the following
table. Parameters in square brackets are optional:

Chapter 14. Reference 5319

Method Description

Constructor(MbsMessageAssembly $assembly,
MbsMessage $msg [, MbsMessage $local_env [,
MbsMessage $exception_list]])

Instantiates a new message assembly object
based on the specified template assembly.
The message for the assembly is replaced by
the message passed in on the msg parameter.
The other logical trees can also be replaced if
their associated parameter is provided. If the
associated parameter is not provided, the
tree from the template assembly is used.

int getType() Returns the specific type of the root element
of the message tree.

array xpath(string $expression [, array
$namespace])

Evaluates the XPath expression with the last
child of root (body element) as the context
node. It returns the result as either a string,
double, boolean, or a nodeset as an array of
MbsElement objects. The optional namespace
parameter is an associative array with
namespace prefixes as the keys and
namespace URIs as the values.

MbsElement getChild(string $name [, int
$occurrence])

Returns the first child of the root element of
the message tree whose name is given by
the first parameter. The nth occurrence of
that child can be returned by specifying the
second optional parameter.

array getChildren([string $namespace]) Returns all the child elements of the root
element of the message tree as an array of
MbsElements. If the namespace parameter is
specified, the array contains only the child
elements with that namespace URI.

MbsElement getFirstChild() Returns the first child of the root element of
the message tree.

MbsElement getLastChild() Returns the last child of the root element of
the message tree.

MbsElement addElement(string $name, object
$value [, string $namespace [, int $type [, int
$position]]])

Creates an element as last child (by default)
of the root element of the message tree. The
optional type parameter is the
parser-specific type of the new node
(defaults to XML element type for XML
parsers). The optional position parameter
can be one of the following values:
v MB_FIRST_CHILD
v MB_LAST_CHILD
v MB_NEXT_SIBLING
v MB_PREVIOUS_SIBLING

MbsElement addDomainElement(string
$domainName)

Creates a domain element.

void detachAllChildren() Detaches all child elements of the root
element of the message tree.

5320 WebSphere Message Broker Version 7.0.0.8

Method Description

string asBitstream([array $options]) Serializes the element tree to produce a bit
stream. When using the MRM parser (and
other parsers), the options array must be
populated with the following key/value
pairs:

array (’set’ => ’<MessageSet>’,
’type’ => ’<MessageType>’,
’format’ => ’<MessageFormat>’,
’encoding’ => ’<encoding>’,
’ccsid’ => ’<ccsid>’)

void addElementFromBitstream(string
$bitstream [, array $options])

Creates an element tree from the supplied
bit stream. Without options supplied, the bit
stream is parsed by the parser of the root
element of the message tree and attached as
its last child (no domain element is created
in this case). If options is supplied, it must
contain the key/value pair ’domain’ =>
’<parserDomain>’ plus any of the additional
options for the MRM parser (see
asBitstream()). In this case, a parser element
is created at the head of the new subtree
and attached as the last child of the root
element of the message tree.

void propagate(string $terminalName) Propagates the message assembly to the
output terminal given by the parameter
terminalName.

void routeToLabel(string $labelName) Routes the message assembly to the Label
node given by the parameter labelName.

Related concepts:
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“MbsElement” on page 5313
The MbsElement class represents a single parsed element in a message (or other
logical tree).
“MbsElementIterator” on page 5316
The MbsElementIterator implements the SPL RecursiveIterator.

Chapter 14. Reference 5321

“MbsMessage” on page 5317
The MbsMessage class represents one of the logical trees that make up the message
assembly.
“MbsBlob”
The MbsBlob class supports the ESQL BLOB type.

MbsBlob:

The MbsBlob class supports the ESQL BLOB type.

The MbsBlob class provides the API methods shown in the following table:

Method Description

Constructor([string $blob]) Instantiates a new BLOB object from the
string parameter (or an empty BLOB if no
parameter is supplied).

string getValue() Returns the value of the current element.

void setValue([string $value]) Sets the value of the current element.

Related concepts:
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
Related reference:
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“MbsElement” on page 5313
The MbsElement class represents a single parsed element in a message (or other
logical tree).
“MbsElementIterator” on page 5316
The MbsElementIterator implements the SPL RecursiveIterator.
“MbsMessage” on page 5317
The MbsMessage class represents one of the logical trees that make up the message
assembly.
“MbsMessageAssembly” on page 5319
The MbsMessageAssembly class represents the message assembly that is
propagated between nodes in a message flow.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

5322 WebSphere Message Broker Version 7.0.0.8

PHP data types:

PHP data types are supported by WebSphere Message Broker.

The following table shows the mappings between the ESQL and PHP data types:

ESQL type PHP type

INTEGER, INT v int - for integers in the range -2147483648
- 2147483647

v float - for integers outside the range
-2147483648 - 2147483647

FLOAT float

DECIMAL Java BigDecimal

CHARACTER, CHAR string

BLOB MbsBlob

DATE Java com.ibm.broker.plugin.MbDate

TIME, GMTIME Java com.ibm.broker.plugin.MbTime

TIMESTAMP, GMTIMESTAMP Java com.ibm.broker.plugin.MbTimestamp

INTERVAL Not supported

BOOLEAN Boolean

REFERENCE MbsElement

Some of the PHP types are mapped onto Java data types; for example, BigDecimal
and MbTimestamp. You can manipulate these values by using the Java bridge. For
more information, see “Calling Java from PHP” on page 2716.

No 64-bit integer type exists in PHP, therefore large values are represented as a
float. You can use the Java bridge to manipulate Java types. The INTERVAL ESQL
type is not represented in the Java API for the broker.

PHP processes the values stored in a string data type as single-byte strings.
However, PHP has a multibyte string extension that enables the manipulation of
multibyte strings in a PHP string variable. This PHP extension is included with the
PHPCompute node.

For more information about PHP extensions, see the PHP: Hypertext Preprocessor
website.

The following multibyte functions are provided with the PHPCompute node:

Function Description

mb_convert_encodingConverts the character encoding of a string.

mb_decode_mimeheaderDecodes the encoded string in a MIME header.

mb_encode_mimeheaderEncodes a string with MIME header encoding.

mb_ereg Runs the regular expression match with multibyte support.

mb_ereg_replace Replaces the regular expression with multibyte support.

mb_internal_encodingSets or gets the internal character encoding.

mb_regex_encoding Returns the current encoding for a multibyte regex as a string.

Chapter 14. Reference 5323

http://www.php.net

Function Description

mb_regex_set_optionsSets the default options (specified by the options parameter) for
multibyte regex functions.

mb_split Splits a multibyte string and returns the result as an array.

mb_stripos Finds the position of the first occurrence of a string within another.
This function is not case sensitive.

mb_stristr Finds the first occurrence of a string within another. This function is
not case sensitive.

mb_strlen Gets the length of a string.

mb_strpos Finds the position of the first occurrence of a string in a string.

mb_strrchr Finds the last occurrence of a character in a string within another
string.

mb_strrichr Finds the last occurrence of a character in a string within another
string. This function is not case sensitive.

mb_strripos Finds the position of the last occurrence of a string within another
string. This function is not case sensitive.

mb_strrpos Finds the position of the last occurrence of a string within a string.

mb_strstr Finds the first occurrence of a string within another.

mb_strtolower Makes a string lowercase.

mb_strtoupper Makes a string uppercase.

mb_substitute_characterSets or gets a substitution character.

mb_substr Gets part of a string.

mb_substr_count Counts the number of substring occurrences.

Related concepts:
“Calling Java from PHP” on page 2716
The IBM sMash Runtime for PHP provides access to Java classes and functionality
from PHP. This Java Bridge can instantiate Java classes and call their methods.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
Related reference:
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.

PHP extensions:

WebSphere Message Broker supports a set of PHP extensions.

The following PHP functions (listed by extension) are provided by WebSphere
Message Broker. However, some differences exist between PHP.net and the

5324 WebSphere Message Broker Version 7.0.0.8

implementation of PHP that is provided by WebSphere Message Broker. For more
information about these differences, see “Differences between WebSphere Message
Broker PHP and PHP.net” on page 5339.

Array
v array
v array_change_key_case
v array_chunk
v array_combine
v array_count_values
v array_diff
v array_diff_assoc
v array_diff_key
v array_diff_uassoc
v array_diff_ukey
v array_fill
v array_fill_keys
v array_filter
v array_flip
v array_intersect
v array_intersect_assoc
v array_intersect_key
v array_intersect_uassoc
v array_intersect_ukey
v array_key_exists
v array_keys
v array_map
v array_merge
v array_merge_recursive
v array_multisort
v array_pad
v array_pop
v array_product
v array_push
v array_rand
v array_reduce
v array_reverse
v array_search
v array_shift
v array_slice
v array_splice
v array_sum
v array_udiff
v array_udiff_assoc
v array_udiff_uassoc
v array_uintersect
v array_uintersect_assoc
v array_uintersect_uassoc
v array_unique
v array_unshift
v array_values
v array_walk
v array_walk_recursive
v arsort
v asort
v compact

Chapter 14. Reference 5325

v count
v current
v each
v end
v extract
v in_array
v key
v key_exists
v krsort
v ksort
v natcasesort
v natsort
v next
v pos
v prev
v range
v reset
v rsort
v shuffle
v sizeof
v sort
v uasort
v uksort
v usort

BC Math
v bcadd
v bccomp
v bcdiv
v bcmod
v bcmul
v bcpow
v bcpowmod
v bcscale
v bcsqrt
v bcsub

Class-object
v call_user_method
v call_user_method_array
v class_exists
v get_class
v get_class_methods
v get_class_vars
v get_declared_classes
v get_declared_interfaces
v get_object_vars
v get_parent_class
v interface_exists
v is_a
v is_subclass_of
v method_exists
v property_exists

Date and time
v checkdate
v date

5326 WebSphere Message Broker Version 7.0.0.8

v date_create
v date_date_set
v date_default_timezone_get
v date_default_timezone_set
v date_format
v date_isodate_set
v date_modify
v date_offset_get
v date_parse
v date_sun_info
v date_sunrise
v date_sunset
v date_time_set
v date_timezone_get
v date_timezone_set
v DateTime_construct
v DateTime_format
v DateTime_getOffset
v DateTime_getTimeZone
v DateTime_modify
v DateTime_setDate
v DateTime_setISODate
v DateTime_setTime
v DateTime_setTimeZone
v DateTimeZone_construct
v DateTimeZone_getName
v DateTimeZone_getOffset
v DateTimeZone_getTransitions
v DateTimeZone_listAbbreviations
v DateTimeZone_listIdentifiers
v getdate
v gettimeofday
v gmdate
v gmmktime
v gmstrftime
v idate
v localtime
v microtime
v mktime
v strftime
v strptime
v strtotime
v time
v timezone_abbreviations_list
v timezone_identifiers_list
v timezone_name_from_abbr
v timezone_name_get
v timezone_offset_get
v timezone_open
v timezone_transitions_get

Directory
v chdir
v closedir
v dir
v Directory.close

Chapter 14. Reference 5327

v Directory.read
v getcwd
v opendir
v readdir
v rewinddir
v scandir

Error handling and logging
v debug_backtrace
v debug_print_backtrace
v error_get_last
v error_log
v error_reporting
v restore_error_handler
v restore_exception_handler
v set_error_handler
v set_exception_handler
v trigger_error
v user_error

File system
v basename
v chgrp
v chmod
v chown
v clearstatcache
v copy
v dirname
v disk_free_space
v diskfreespace
v fclose
v feof
v fflush
v fgetc
v fgetcsv
v fgets
v file
v file_exists
v file_get_contents
v file_put_contents
v fileatime
v filectime
v filegroup
v fileinode
v filemtime
v fileowner
v fileperms
v filesize
v filetype
v flock
v fopen
v fpassthru
v fputcsv
v fputs
v fread
v fseek
v fstat

5328 WebSphere Message Broker Version 7.0.0.8

v ftell
v ftruncate
v fwrite
v glob
v is_dir
v is_executable
v is_file
v is_link
v is_readable
v is_uploaded_file
v is_writable
v is_writeable
v link
v linkinfo
v lstat
v mkdir
v move_uploaded_file
v parse_ini_file
v pathinfo
v pclose
v popen
v readfile
v readlink
v realpath
v rename
v rewind
v rmdir
v stat
v symlink
v tempnam
v touch
v umask
v unlink

Function handling
v call_user_func
v call_user_func_array
v create_function
v func_get_arg
v func_get_args
v func_num_args
v function_exists
v get_defined_functions
v register_shutdown_function
v register_tick_function
v unregister_tick_function

Java
v java_import

Mail
v ezmlm_hash
v mail

Math
v abs
v acos
v acosh

Chapter 14. Reference 5329

v asin
v asinh
v atan
v atan2
v atanh
v base_convert
v bindec
v ceil
v cos
v cosh
v decbin
v dechex
v decoct
v deg2rad
v exp
v expm1
v floor
v fmod
v getrandmax
v hexdec
v hypot
v is_finite
v is_infinite
v is_nan
v lcg_value
v log
v log10
v log1p
v max
v min
v mt_getrandmax
v mt_rand
v mt_srand
v octdec
v pi
v pow
v rad2deg
v rand
v round
v sin
v sinh
v sqrt
v srand
v tan
v tanh

Message Broker
v mb_get_user_defined_property

Miscellaneous
v constant
v define
v defined
v eval
v highlight_string
v ignore_user_abort
v pack

5330 WebSphere Message Broker Version 7.0.0.8

v sleep
v uniqid
v unpack
v usleep

Multibyte string
v mb_convert_encoding
v mb_decode_mimeheader
v mb_detect_encoding
v mb_detect_order
v mb_encode_mimeheader
v mb_ereg
v mb_eregi
v mb_eregi_replace
v mb_ereg_replace
v mb_internal_encoding
v mb_language
v mb_regex_encoding
v mb_regex_set_options
v mb_split
v mb_stripos
v mb_stristr
v mb_strlen
v mb_strpos
v mb_strrchr
v mb_strrichr
v mb_strripos
v mb_strrpos
v mb_strstr
v mb_strtolower
v mb_strtoupper
v mb_substitute_character
v mb_substr
v mb_substr_count

MySQL
v mysql_affected_rows
v mysql_client_encoding
v mysql_close
v mysql_connect
v mysql_create_db
v mysql_data_seek
v mysql_db_query
v mysql_drop_db
v mysql_errno
v mysql_error
v mysql_escape_string
v mysql_fetch_array
v mysql_fetch_assoc
v mysql_fetch_field
v mysql_fetch_lengths
v mysql_fetch_object
v mysql_fetch_row
v mysql_field_flags
v mysql_field_len
v mysql_field_name
v mqsql_field_seek

Chapter 14. Reference 5331

v mysql_field_table
v mysql_field_type
v mysql_free_result
v mysql_get_client_info
v mysql_get_host_info
v mqsql_get_proto_info
v mysql_get_server_info
v mqsql_info
v mysql_insert_id
v mysql_list_dbs
v mysql_list_fields
v mysql_list_processes
v mysql_list_tables
v mysql_num_fields
v mysql_num_rows
v mysql_pconnect
v mysql_ping
v mysql_query
v mysql_real_escape_string
v mysql_result
v mysql_select_db
v mysql_set_charset
v mysql_stat
v mysql_tablename
v mysql_thread_id
v mysql_unbuffered_query

Network
v checkdnsrr
v closelog
v define_syslog_variables
v fsockopen
v gethostbyaddr
v gethostbyname
v gethostbynamel
v getmxrr
v inet_ntop
v inet_pton
v ip2long
v long2ip
v pfsockopen
v socket_get_status
v socket_set_blocking
v socket_set_timeout
v syslog

Output control
v flush
v ob_clean
v ob_end_clean
v ob_end_flush
v ob_flush
v ob_get_clean
v ob_get_contents
v ob_get_flush
v ob_get_length
v ob_get_level

5332 WebSphere Message Broker Version 7.0.0.8

v ob_get_status
v ob_implicit_flush
v ob_list_handlers
v ob_start

PHP options and information
v assert
v assert_options
v extension_loaded
v get_cfg_var
v get_current_user
v get_defined_constants
v get_extension_funcs
v get_include_path
v get_included_files
v get_loaded_extensions
v get_magic_quotes_gpc
v get_magic_quotes_runtime
v getenv
v getmypid
v getrusage
v ini_alter
v ini_get
v ini_get_all
v ini_restore
v ini_set
v magic_quotes_runtime
v memory_get_usage
v php_sapi_name
v php_uname
v phpinfo
v phpversion
v putenv
v restore_include_path
v set_include_path
v set_magic_quotes_runtime
v set_time_limit
v sys_get_temp_dir
v version_compare
v zend_version

POSIX Regex
v ereg
v ereg_replace
v eregi
v eregi_replace
v split
v spliti
v sql_regcase

Program execution
v escapeshellarg
v escapeshellcmd
v exec
v passthru
v proc_close
v proc_open

Chapter 14. Reference 5333

v proc_terminate
v shell_exec
v system

PCRE
v preg_grep
v preg_last_error
v preg_match
v preg_match_all
v preg_quote
v preg_replace
v preg_replace_callback
v preg_split

Session
v session_cache_expire
v session_cache_limiter
v session_commit
v session_decode
v session_destroy
v session_encode
v session_get_cookie_params
v session_id
v session_is_registered
v session_module_name
v session_name
v session_regenerate_id
v session_register
v session_save_path
v session_set_cookie_params
v session_set_save_handler
v session_start
v session_unregister
v session_unset
v session_write_close

SNMP
v snmp2_get
v snmp2_getnext
v snmp2_real_walk
v snmp2_set
v snmp2_walk
v snmp3_get
v snmp3_getnext
v snmp3_real_walk
v snmp3_set
v snmp3_walk
v snmp_get_quick_print
v snmp_get_valueretrieval
v snmp_read_mib
v snmp_set_enum_print
v snmp_set_oid_numeric_print
v snmp_set_oid_output_format
v snmp_set_quick_print
v snmp_set_valueretrieval
v snmpget
v snmpgetnext

5334 WebSphere Message Broker Version 7.0.0.8

v snmprealwalk
v snmpset
v snmpwalk
v snmpwalkoid

SPL

Data structures
v SplObjectStorage

Iterators
v AppendIterator
v ArrayIterator
v CachingIterator
v DirectoryIterator
v EmptyIterator
v FilterIterator
v InfiniteIterator
v IteratorIterator
v LimitIterator
v NoRewindIterator
v RecursiveDirectoryIterator
v RecursiveFilterIterator
v RecursiveIteratorIterator

Interfaces
v Countable
v OuterIterator
v RecursiveIterator
v SeekableIterator

Exceptions
v BadFunctionCallException
v BadMethodCallException
v DomainException
v InvalidArgumentException
v LengthException
v LogicException
v OutOfBoundsException
v OutOfRangeException
v OverflowException
v RangeException
v RuntimeException
v UnderflowException
v UnexpectedValueException

SPL functions
v class_implements
v spl_autoload_call
v spl_autoload_extensions
v spl_autoload_functions
v spl_autoload_register
v spl_autoload_unregister
v spl_autoload

File handling
v SplFileInfo

Streams
v stream_bucket_append

Chapter 14. Reference 5335

v stream_bucket_make_writeable
v stream_bucket_new
v stream_bucket_prepend
v stream_context_create
v stream_context_get_default
v stream_context_get_options
v stream_context_get_params
v stream_context_set_default
v stream_context_set_option
v stream_context_set_params
v stream_copy_to_stream
v stream_filter_append
v stream_filter_prepend
v stream_filter_register
v stream_filter_remove
v stream_get_contents
v stream_get_filters
v stream_get_line
v stream_get_meta_data
v stream_get_transports
v stream_get_wrappers
v stream_select
v stream_set_blocking
v stream_set_timeout
v stream_socket_accept
v stream_socket_client
v stream_socket_get_name
v stream_socket_pair
v stream_socket_recvfrom
v stream_socket_sendto
v stream_socket_server
v stream_socket_shutdown
v stream_wrapper_register
v stream_wrapper_restore
v stream_wrapper_unregister

String
v addcslashes
v addslashes
v bin2hex
v chop
v chr
v chunk_split
v convert_cyr_string
v convert_uudecode
v convert_uuencode
v count_chars
v crc32
v echo
v explode
v fprintf
v get_html_translation_table
v hebrev
v hebrevc
v html_entity_decode
v htmlentities

5336 WebSphere Message Broker Version 7.0.0.8

v htmlspecialchars
v htmlspecialchars_decode
v implode
v join
v levenshtein
v localeconv
v ltrim
v md5
v md5_file
v metaphone
v money_format
v nl2br
v nl_langinfo
v number_format
v ord
v parse_str
v print
v printf
v quoted_printable_decode
v quotemeta
v rtrim
v setlocale
v sha1
v sha1_file
v similar_text
v soundex
v sprintf
v sscanf
v str_ireplace
v str_pad
v str_repeat
v str_replace
v str_rot13
v str_shuffle
v str_split
v str_word_count
v strcasecmp
v strchr
v strcmp
v strcoll
v strcspn
v strip_tags
v stripcslashes
v stripos
v stripslashes
v stristr
v strlen
v strnatcasecmp
v strnatcmp
v strncasecmp
v strncmp
v strpbrk
v strpos
v strrchr
v strrev
v strripos

Chapter 14. Reference 5337

v strrpos
v strspn
v strstr
v strtok
v strtolower
v strtoupper
v strtr
v substr
v substr_compare
v substr_count
v substr_replace
v trim
v ucfirst
v ucwords
v vfprintf
v vprintf
v vsprintf
v wordwrap

Tokenizer
v token_get_all
v token_name

URL
v base64_decode
v base64_encode
v http_build_query
v parse_url
v rawurldecode
v rawurlencode
v urldecode
v urlencode

Variable handling
v debug_zval_dump
v doubleval
v empty
v floatval
v get_defined_vars
v get_resource_type
v gettype
v intval
v is_array
v is_bool
v is_callable
v is_double
v is_float
v is_int
v is_integer
v is_long
v is_null
v is_numeric
v is_object
v is_real
v is_resource
v is_scalar
v is_string

5338 WebSphere Message Broker Version 7.0.0.8

v isset
v print_r
v serialize
v settype
v strval
v unserialize
v unset
v var_dump
v var_export

For more information about the PHP extension functions, see the PHP: Hypertext
Preprocessor website.
Related concepts:
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
“Accessing user-defined properties from a PHPCompute node” on page 2716
Customize a PHPCompute node to access properties that you have associated with
the message flow in which the node is included.
Related reference:
“Differences between WebSphere Message Broker PHP and PHP.net”
Some differences exist between PHP.net and the implementation of PHP that is
provided by WebSphere Message Broker.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

Differences between WebSphere Message Broker PHP and PHP.net:

Some differences exist between PHP.net and the implementation of PHP that is
provided by WebSphere Message Broker.

The differences for each function are shown in the following tables.

Chapter 14. Reference 5339

http://www.php.net
http://www.php.net

Table 270. MySQL functions

Function Differences

mysql_fetch_field Checks for a distinction between types that
are returned from TINYTEXT and
VARCHAR. One is a blob, the other is a
string. This implementation returns both as
VARCHAR, therefore it is not possible to
distinguish between them. The call returns
the maximum length that is defined in the
database, not the maximum length that is
used. For example, (VARCHAR[50] xyz = abc)
gives 3 on PHP.net, and 50 on WebSphere
Message Broker PHP.

Table 271. String functions

Function Differences

crypt Not available on Windows.

html_entity_decode Results in a warning if the specified
character set hint is not equal to UTF8.

htmlentities Results in a warning if the specified
character set hint is not equal to UTF8.

htmlspecialchars Results in a warning if the specified
character set hint is not equal to UTF8.

Table 272. Session handling functions

Function Differences

Session handling functions The INI option support session.use_trans_sid
is not supported.

Table 273. File system functions

Function Differences

All file system functions Safe mode is not supported.

clearstatcache No statcache exists, therefore this function
has no effect.

flock You cannot use flock(, LOCK_EX) to obtain
an exclusive lock on a file that is opened as
read-only, unless you also have write
permissions for the file; this does not mean
that you must open the file in write mode,
just that you have permission to do so. If
you do not have write permissions and False
is returned indicating that no lock has been
obtained, a warning is generated.

fopen The PHP.net runtime issues a "No such file
or directory" message when an invalid mode
is used within fopen, whereas WebSphere
Message Broker PHP issues a message
saying that it is an invalid mode.

fseek When you use fopen and file modes with
the "t" option under Windows (Windows
translation), fseek does not operate in the
same way as the runtime PHP.net runtime.

5340 WebSphere Message Broker Version 7.0.0.8

Table 273. File system functions (continued)

Function Differences

realpath The realpath() function does not detect
changes to file names that were previously
symbolic links because of the canonical file
name cache in Java. To replicate the
behavior in PHP, you can start the JVM with
Dsun.io.useCanonCaches=false

Table 274. BCMath Arbitrary Precision Mathematics functions

Function Differences

All BCMath Arbitrary Precision Mathematics
functions

WebSphere Message Broker PHP raises an
E_WARNING, whereas PHP.net writes a
warning to STDERR.

bcmul WebSphere Message Broker PHP does not
truncate trailing zeros.

bcpow WebSphere Message Broker PHP does not
truncate trailing zeros.

bcpowmod WebSphere Message Broker PHP does not
support trailing zeros when a scale other
than 0 is used.

Table 275. Network functions

Function Differences

fsockopen The errno output argument is not supported.
The errstr argument is not supported.
Encrypted streams (SSL and TLS) are not
available.

Table 276. Array functions

Function Differences

All array functions When sorting array entries that have equal
weight under the sorting algorithm in use,
the resulting sorted array might have entries
in a different order to that produced by the
sorting algorithms used by PHP.net. For
example, a SORT_NUMERIC sort of the
values "a","b","c".

Table 277. Multibyte string functions

Function Differences

All multibyte string functions If you specify the correct encoding for
character data and if the character data is
correct, the mb_* functions operate in the
same way as MBString. No guarantee exists
that the output is the same as MBString if
the character data is not valid or if you do
not specify the correct encoding. For
example, mb_substr, if you pass in str and
define it as UTF-32 when it is really ASCII
or UTF-8, you do not get the same result as
PHP.net.

Chapter 14. Reference 5341

Table 277. Multibyte string functions (continued)

Function Differences

mb_convert_encoding Does not support an array or string
containing multiple encodings, or auto being
passed as the from_encoding value. A PHP
warning is generated in these cases.

Table 278. Program execution functions

Function Differences

All program execution functions WebSphere Message Broker PHP does not
support Safe mode.

proc_open WebSphere Message Broker PHP does not
support the additional options that are
specified by the optional sixth parameter.

proc_terminate WebSphere Message Broker PHP does not
support the sending of signals to the child
process, as specified by the optional second
parameter.

proc_get_status This function is not supported by
WebSphere Message Broker PHP.

Table 279. Error handling and logging functions

Function Differences

error_log Does not support message_type of 1 (email).
A warning is issued and function returns
false.

Table 280. Stream functions

Function Differences

stream_get_meta_data The unread bytes field (used buffer size) in
return is not always the same for file
streams, because the file stream
implementation does not use buffers.

stream_context_create Support for stream contexts is limited; the
HTTP stream type supports only header,
method, timeout, and content options.

Related concepts:
“Accessing elements in the message tree from a PHPCompute node” on page 2692
Access the contents of a message, for reading or writing, by using the structure
and arrangement of the elements in the tree that the parser creates from the input
bit stream.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
“Creating PHP code for a PHPCompute node” on page 2672
Use these instructions to create your PHP code and associate it with your
PHPCompute node.
“Accessing user-defined properties from a PHPCompute node” on page 2716
Customize a PHPCompute node to access properties that you have associated with
the message flow in which the node is included.

5342 WebSphere Message Broker Version 7.0.0.8

Related reference:
“PHP extensions” on page 5324
WebSphere Message Broker supports a set of PHP extensions.
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“PHP API” on page 5313
The WebSphere Message Broker PHP API provides classes to represent the
message, the message assembly, and the element tree.
“PHP data types” on page 5323
PHP data types are supported by WebSphere Message Broker.

PHP constants for type values:

You can use type values to create syntax elements in your message tree.

The following tables detail PHP constants for type variables and their
corresponding XMLNSC constants:
v “Common field types”
v “XMLNSC field types”
v “JSON field types” on page 5344

Common field types

Use the following common field type constants to create syntax elements in the
message tree.

Construct PHP Field Type constant Field Type constant

A name element MB_TYPE_NAME Name

A name value element MB_TYPE_NAME_VALUE NameValue

A value element MB_TYPE_VALUE Value

XMLNSC field types

Use the following XMLNSC field type constants to create syntax elements in the
message tree.

Construct PHP Field Type constant Field Type constant

Simple element MB_XMLNSC_FIELD
MB_XMLNSC_CDATA_FIELD

XMLNSC.Field
XMLNSC.CDataField

Attribute MB_XMLNSC_SINGLE_ATTRIBUTE
MB_XMLNSC_ATTRIBUTE

XMLNSC.SingleAttribute
XMLNSC.Attribute

Mixed content MB_XMLNSC_VALUE
MB_XMLNSC_CDATA_VALUE

XMLNSC.Value
XMLNSC.CDataValue

Namespace declaration MB_XMLNSC_NAMESPACE_DECL XMLNSC.NamespaceDecl

Complex element MB_XMLNSC_FOLDER XMLNSC.Folder

Inline DTD MB_XMLNSC_DOCUMENT_TYPE XMLNSC.DocumentType

XML declaration MB_XMLNSC_XML_DECLARATION XMLNSC.XmlDeclaration

Entity reference MB_XMLNSC_ENTITY_REFERENCE XMLNSC.EntityReference

Entity definition MB_XMLNSC_SINGLE_ENTITY
MB_XMLNSC_ENTITY

XMLNSC.SingleEntityDefinition
XMLNSC.EntityDefinition

Chapter 14. Reference 5343

Construct PHP Field Type constant Field Type constant

Comment MB_XMLNSC_COMMENT XMLNSC.Comment

Processing instruction MB_XMLNSC_PROCESSING_INSTRUCTION XMLNSC.ProcessingInstruction

BLOB type element
to be written directly to the bit stream

MB_XMLNSC_BITSTREAM XMLNSC.BitStream

JSON field types

Use the following JSON field type constants to create syntax elements in the
message tree.

Construct PHP Field Type constant Field Type constant

JSON array MB_JSON_ARRAY JSON.ARRAY

Related concepts:
“PHP overview” on page 2671
WebSphere Message Broker provides support for the PHP scripting language.
Related tasks:
“Using PHP” on page 2670
You can use the PHP scripting language for message routing and transformation.
Related reference:
“PHPCompute node” on page 4639
Use the PHPCompute node to route and transform an incoming message, using
the PHP scripting language.
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.

User-defined patterns
View the reference information in this section to modify user-defined patterns by
using the Java API and the PHP API. Use these APIs to write code that modifies a
pattern instance when a pattern instance is generated by a pattern user.

APIs

To find information about APIs, see the following topics:
v “Java API for user-defined patterns” on page 5345
v “PHP API for user-defined patterns” on page 5345
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:

5344 WebSphere Message Broker Version 7.0.0.8

“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

Java API for user-defined patterns
Use the Java API to write Java code to modify user-defined pattern instances.

To view the Javadoc for the Java API, see Java API.

For the Java user-defined node API, which applies to user-defined nodes and to
Java code that is called by JavaCompute nodes, see Java user-defined extensions
API.
Related concepts:
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.

PHP API for user-defined patterns
Use the PHP API to write PHP code to develop user-defined pattern applications.

PHP API

For information about the mb_pattern_run_template function, see
“mb_pattern_run_template.”

For information about the variables available in the _MB superglobal, see “_MB
superglobal variables” on page 5347.

For information about the PHP extensions supported by WebSphere Message
Broker, see “PHP extensions” on page 5348.
Related concepts:
“Patterns” on page 1310
A pattern is a reusable solution that encapsulates a tested approach to solving a
common architecture, design, or deployment task in a particular context.
“User-defined patterns” on page 1334
A user-defined pattern extends the function of WebSphere Message Broker so that
you are able to create patterns that you can reuse within your organization.
“Modifying pattern instances by using Java or PHP” on page 1364
Use Java or PHP code to modify pattern instances when the pattern user generates
an instance of a user-defined pattern. For example, you can use Java or PHP code
to modify the structure of a message flow based on the values of pattern
parameters.
Related tasks:
“Extending a user-defined pattern” on page 1340
Extend a user-defined pattern to customize its behavior so that it is easier to use or
to provide guidance to pattern users.

mb_pattern_run_template:

Use the mb_pattern_run_template function to run a PHP script from within
another script in user-defined patterns.

Chapter 14. Reference 5345

The following example shows how the mb_pattern_run_template function is called:

mb_pattern_run_template(string $project_name, string template_path, string
$output_path);

The arguments taken by mb_pattern_run_template are shown in the following
table.

Argument Description

project_name The name of the pattern instance project to
which the output from the template is
written. You can include the pattern instance
name if you are not using an exemplar
project.For example, if the pattern includes
an exemplar project called project1, and the
pattern user creates an instance called
instance1, the project_name is project1
(although the actual project name created is
instance1_project1). However, if the pattern is
not an exemplar project, you can specify the
prefix for that project: instance1_project1.

template_path The relative path from this PHP script to the
template PHP script that you want to run.
For example, if the template script is called
example.esql.php and it is in the same
directory, template_path is example.esql.php.
If the template script is in a subdirectory,
testdirectory, of the directory where the
current script is located, template_path is
testdirectory/example.esql.php.

output_path The relative path in the project to where the
output from the template script is written.
This path is relative to the root directory of
the pattern instance project specified by
project_name. The path must exist. For
example, if the output file is called
example.esql and is written to the root
directory of the pattern instance project,
output_path is example.esql. If the file is
written to a subdirectory, outputdirectory,
of the pattern instance project, output_path is
outputdirectory/example.esql

Related tasks:
“Modifying pattern instances by using PHP” on page 1389
Add PHP code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Examples of PHP API code” on page 1390
Use the following examples of PHP API code for common tasks to help you write
your own PHP code to modify pattern instances.
“Testing PHP API code” on page 1394
After writing PHP code to modify pattern instances, test the code to check that it
works correctly.
Related reference:

5346 WebSphere Message Broker Version 7.0.0.8

“_MB superglobal variables”
The PHP API for user-defined patterns contains four variables within the _MB
superglobal. You can use these variables in PHP scripts that are used to modify
instances of user-defined patterns.
“PHP extensions” on page 5348
WebSphere Message Broker supports a set of PHP extensions.
“Differences between WebSphere Message Broker PHP and PHP.net” on page 5363
Some differences exist between PHP.net and the implementation of PHP that is
provided by WebSphere Message Broker.

_MB superglobal variables:

The PHP API for user-defined patterns contains four variables within the _MB
superglobal. You can use these variables in PHP scripts that are used to modify
instances of user-defined patterns.

The _MB superglobal for the PHP API for user-defined patterns contains the
variables shown in the following table.

Variable Description

PATTERN_INSTANCE_MANAGER Includes methods to log messages and get
access to message flows. For more
information about the methods available in
PATTERN_INSTANCE_MANAGER, see
“Java API for user-defined patterns” on page
5345. The following example shows you
how to access
PATTERN_INSTANCE_MANAGER
methods:

<?php
$pim = $_MB["PATTERN_INSTANCE_MANAGER"];
$flow = $pim->getMessageFlow("Transform", "mqsi/Transform.msgflow");
$node = $flow->getNodeByName("MQInput");

?>

PP Returns an array that is populated with the
pattern parameters. The following example
shows you how to print the value of the
parameter pp2:

<?php
var_dump($_MB[’PP’][’pp2’]);

?>

PATTERN_INSTANCE_NAME Returns the name of the current pattern
instance that is being generated.

WORKSPACE_ROOT Returns the full path to the current
workspace location.

Related tasks:
“Modifying pattern instances by using PHP” on page 1389
Add PHP code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Examples of PHP API code” on page 1390
Use the following examples of PHP API code for common tasks to help you write
your own PHP code to modify pattern instances.
“Testing PHP API code” on page 1394
After writing PHP code to modify pattern instances, test the code to check that it

Chapter 14. Reference 5347

works correctly.
Related reference:
“mb_pattern_run_template” on page 5345
Use the mb_pattern_run_template function to run a PHP script from within
another script in user-defined patterns.
“PHP extensions”
WebSphere Message Broker supports a set of PHP extensions.
“Differences between WebSphere Message Broker PHP and PHP.net” on page 5363
Some differences exist between PHP.net and the implementation of PHP that is
provided by WebSphere Message Broker.

PHP extensions:

WebSphere Message Broker supports a set of PHP extensions.

The following PHP functions (listed by extension) are provided by WebSphere
Message Broker. However, some differences exist between PHP.net and the
implementation of PHP that is provided by WebSphere Message Broker. For more
information about these differences, see “Differences between WebSphere Message
Broker PHP and PHP.net” on page 5339.

Array
v array
v array_change_key_case
v array_chunk
v array_combine
v array_count_values
v array_diff
v array_diff_assoc
v array_diff_key
v array_diff_uassoc
v array_diff_ukey
v array_fill
v array_fill_keys
v array_filter
v array_flip
v array_intersect
v array_intersect_assoc
v array_intersect_key
v array_intersect_uassoc
v array_intersect_ukey
v array_key_exists
v array_keys
v array_map
v array_merge
v array_merge_recursive
v array_multisort
v array_pad
v array_pop
v array_product
v array_push
v array_rand
v array_reduce
v array_reverse
v array_search
v array_shift

5348 WebSphere Message Broker Version 7.0.0.8

v array_slice
v array_splice
v array_sum
v array_udiff
v array_udiff_assoc
v array_udiff_uassoc
v array_uintersect
v array_uintersect_assoc
v array_uintersect_uassoc
v array_unique
v array_unshift
v array_values
v array_walk
v array_walk_recursive
v arsort
v asort
v compact
v count
v current
v each
v end
v extract
v in_array
v key
v key_exists
v krsort
v ksort
v natcasesort
v natsort
v next
v pos
v prev
v range
v reset
v rsort
v shuffle
v sizeof
v sort
v uasort
v uksort
v usort

BC Math
v bcadd
v bccomp
v bcdiv
v bcmod
v bcmul
v bcpow
v bcpowmod
v bcscale
v bcsqrt
v bcsub

Class-object
v call_user_method
v call_user_method_array

Chapter 14. Reference 5349

v class_exists
v get_class
v get_class_methods
v get_class_vars
v get_declared_classes
v get_declared_interfaces
v get_object_vars
v get_parent_class
v interface_exists
v is_a
v is_subclass_of
v method_exists
v property_exists

Date and time
v checkdate
v date
v date_create
v date_date_set
v date_default_timezone_get
v date_default_timezone_set
v date_format
v date_isodate_set
v date_modify
v date_offset_get
v date_parse
v date_sun_info
v date_sunrise
v date_sunset
v date_time_set
v date_timezone_get
v date_timezone_set
v DateTime_construct
v DateTime_format
v DateTime_getOffset
v DateTime_getTimeZone
v DateTime_modify
v DateTime_setDate
v DateTime_setISODate
v DateTime_setTime
v DateTime_setTimeZone
v DateTimeZone_construct
v DateTimeZone_getName
v DateTimeZone_getOffset
v DateTimeZone_getTransitions
v DateTimeZone_listAbbreviations
v DateTimeZone_listIdentifiers
v getdate
v gettimeofday
v gmdate
v gmmktime
v gmstrftime
v idate
v localtime
v microtime
v mktime

5350 WebSphere Message Broker Version 7.0.0.8

v strftime
v strptime
v strtotime
v time
v timezone_abbreviations_list
v timezone_identifiers_list
v timezone_name_from_abbr
v timezone_name_get
v timezone_offset_get
v timezone_open
v timezone_transitions_get

Directory
v chdir
v closedir
v dir
v Directory.close
v Directory.read
v getcwd
v opendir
v readdir
v rewinddir
v scandir

Error handling and logging
v debug_backtrace
v debug_print_backtrace
v error_get_last
v error_log
v error_reporting
v restore_error_handler
v restore_exception_handler
v set_error_handler
v set_exception_handler
v trigger_error
v user_error

File system
v basename
v chgrp
v chmod
v chown
v clearstatcache
v copy
v dirname
v disk_free_space
v diskfreespace
v fclose
v feof
v fflush
v fgetc
v fgetcsv
v fgets
v file
v file_exists
v file_get_contents
v file_put_contents

Chapter 14. Reference 5351

v fileatime
v filectime
v filegroup
v fileinode
v filemtime
v fileowner
v fileperms
v filesize
v filetype
v flock
v fopen
v fpassthru
v fputcsv
v fputs
v fread
v fseek
v fstat
v ftell
v ftruncate
v fwrite
v glob
v is_dir
v is_executable
v is_file
v is_link
v is_readable
v is_uploaded_file
v is_writable
v is_writeable
v link
v linkinfo
v lstat
v mkdir
v move_uploaded_file
v parse_ini_file
v pathinfo
v pclose
v popen
v readfile
v readlink
v realpath
v rename
v rewind
v rmdir
v stat
v symlink
v tempnam
v touch
v umask
v unlink

Function handling
v call_user_func
v call_user_func_array
v create_function
v func_get_arg

5352 WebSphere Message Broker Version 7.0.0.8

v func_get_args
v func_num_args
v function_exists
v get_defined_functions
v register_shutdown_function
v register_tick_function
v unregister_tick_function

Java
v java_import

Mail
v ezmlm_hash
v mail

Math
v abs
v acos
v acosh
v asin
v asinh
v atan
v atan2
v atanh
v base_convert
v bindec
v ceil
v cos
v cosh
v decbin
v dechex
v decoct
v deg2rad
v exp
v expm1
v floor
v fmod
v getrandmax
v hexdec
v hypot
v is_finite
v is_infinite
v is_nan
v lcg_value
v log
v log10
v log1p
v max
v min
v mt_getrandmax
v mt_rand
v mt_srand
v octdec
v pi
v pow
v rad2deg
v rand

Chapter 14. Reference 5353

v round
v sin
v sinh
v sqrt
v srand
v tan
v tanh

Message Broker
v mb_get_user_defined_property

Miscellaneous
v constant
v define
v defined
v eval
v highlight_string
v ignore_user_abort
v pack
v sleep
v uniqid
v unpack
v usleep

Multibyte string
v mb_convert_encoding
v mb_decode_mimeheader
v mb_detect_encoding
v mb_detect_order
v mb_encode_mimeheader
v mb_ereg
v mb_eregi
v mb_eregi_replace
v mb_ereg_replace
v mb_internal_encoding
v mb_language
v mb_regex_encoding
v mb_regex_set_options
v mb_split
v mb_stripos
v mb_stristr
v mb_strlen
v mb_strpos
v mb_strrchr
v mb_strrichr
v mb_strripos
v mb_strrpos
v mb_strstr
v mb_strtolower
v mb_strtoupper
v mb_substitute_character
v mb_substr
v mb_substr_count

MySQL
v mysql_affected_rows
v mysql_client_encoding
v mysql_close

5354 WebSphere Message Broker Version 7.0.0.8

v mysql_connect
v mysql_create_db
v mysql_data_seek
v mysql_db_query
v mysql_drop_db
v mysql_errno
v mysql_error
v mysql_escape_string
v mysql_fetch_array
v mysql_fetch_assoc
v mysql_fetch_field
v mysql_fetch_lengths
v mysql_fetch_object
v mysql_fetch_row
v mysql_field_flags
v mysql_field_len
v mysql_field_name
v mqsql_field_seek
v mysql_field_table
v mysql_field_type
v mysql_free_result
v mysql_get_client_info
v mysql_get_host_info
v mqsql_get_proto_info
v mysql_get_server_info
v mqsql_info
v mysql_insert_id
v mysql_list_dbs
v mysql_list_fields
v mysql_list_processes
v mysql_list_tables
v mysql_num_fields
v mysql_num_rows
v mysql_pconnect
v mysql_ping
v mysql_query
v mysql_real_escape_string
v mysql_result
v mysql_select_db
v mysql_set_charset
v mysql_stat
v mysql_tablename
v mysql_thread_id
v mysql_unbuffered_query

Network
v checkdnsrr
v closelog
v define_syslog_variables
v fsockopen
v gethostbyaddr
v gethostbyname
v gethostbynamel
v getmxrr
v inet_ntop
v inet_pton

Chapter 14. Reference 5355

v ip2long
v long2ip
v pfsockopen
v socket_get_status
v socket_set_blocking
v socket_set_timeout
v syslog

Output control
v flush
v ob_clean
v ob_end_clean
v ob_end_flush
v ob_flush
v ob_get_clean
v ob_get_contents
v ob_get_flush
v ob_get_length
v ob_get_level
v ob_get_status
v ob_implicit_flush
v ob_list_handlers
v ob_start

PHP options and information
v assert
v assert_options
v extension_loaded
v get_cfg_var
v get_current_user
v get_defined_constants
v get_extension_funcs
v get_include_path
v get_included_files
v get_loaded_extensions
v get_magic_quotes_gpc
v get_magic_quotes_runtime
v getenv
v getmypid
v getrusage
v ini_alter
v ini_get
v ini_get_all
v ini_restore
v ini_set
v magic_quotes_runtime
v memory_get_usage
v php_sapi_name
v php_uname
v phpinfo
v phpversion
v putenv
v restore_include_path
v set_include_path
v set_magic_quotes_runtime
v set_time_limit
v sys_get_temp_dir

5356 WebSphere Message Broker Version 7.0.0.8

v version_compare
v zend_version

POSIX Regex
v ereg
v ereg_replace
v eregi
v eregi_replace
v split
v spliti
v sql_regcase

Program execution
v escapeshellarg
v escapeshellcmd
v exec
v passthru
v proc_close
v proc_open
v proc_terminate
v shell_exec
v system

PCRE
v preg_grep
v preg_last_error
v preg_match
v preg_match_all
v preg_quote
v preg_replace
v preg_replace_callback
v preg_split

Session
v session_cache_expire
v session_cache_limiter
v session_commit
v session_decode
v session_destroy
v session_encode
v session_get_cookie_params
v session_id
v session_is_registered
v session_module_name
v session_name
v session_regenerate_id
v session_register
v session_save_path
v session_set_cookie_params
v session_set_save_handler
v session_start
v session_unregister
v session_unset
v session_write_close

SNMP
v snmp2_get
v snmp2_getnext

Chapter 14. Reference 5357

v snmp2_real_walk
v snmp2_set
v snmp2_walk
v snmp3_get
v snmp3_getnext
v snmp3_real_walk
v snmp3_set
v snmp3_walk
v snmp_get_quick_print
v snmp_get_valueretrieval
v snmp_read_mib
v snmp_set_enum_print
v snmp_set_oid_numeric_print
v snmp_set_oid_output_format
v snmp_set_quick_print
v snmp_set_valueretrieval
v snmpget
v snmpgetnext
v snmprealwalk
v snmpset
v snmpwalk
v snmpwalkoid

SPL

Data structures
v SplObjectStorage

Iterators
v AppendIterator
v ArrayIterator
v CachingIterator
v DirectoryIterator
v EmptyIterator
v FilterIterator
v InfiniteIterator
v IteratorIterator
v LimitIterator
v NoRewindIterator
v RecursiveDirectoryIterator
v RecursiveFilterIterator
v RecursiveIteratorIterator

Interfaces
v Countable
v OuterIterator
v RecursiveIterator
v SeekableIterator

Exceptions
v BadFunctionCallException
v BadMethodCallException
v DomainException
v InvalidArgumentException
v LengthException
v LogicException
v OutOfBoundsException
v OutOfRangeException

5358 WebSphere Message Broker Version 7.0.0.8

v OverflowException
v RangeException
v RuntimeException
v UnderflowException
v UnexpectedValueException

SPL functions
v class_implements
v spl_autoload_call
v spl_autoload_extensions
v spl_autoload_functions
v spl_autoload_register
v spl_autoload_unregister
v spl_autoload

File handling
v SplFileInfo

Streams
v stream_bucket_append
v stream_bucket_make_writeable
v stream_bucket_new
v stream_bucket_prepend
v stream_context_create
v stream_context_get_default
v stream_context_get_options
v stream_context_get_params
v stream_context_set_default
v stream_context_set_option
v stream_context_set_params
v stream_copy_to_stream
v stream_filter_append
v stream_filter_prepend
v stream_filter_register
v stream_filter_remove
v stream_get_contents
v stream_get_filters
v stream_get_line
v stream_get_meta_data
v stream_get_transports
v stream_get_wrappers
v stream_select
v stream_set_blocking
v stream_set_timeout
v stream_socket_accept
v stream_socket_client
v stream_socket_get_name
v stream_socket_pair
v stream_socket_recvfrom
v stream_socket_sendto
v stream_socket_server
v stream_socket_shutdown
v stream_wrapper_register
v stream_wrapper_restore
v stream_wrapper_unregister

String
v addcslashes

Chapter 14. Reference 5359

v addslashes
v bin2hex
v chop
v chr
v chunk_split
v convert_cyr_string
v convert_uudecode
v convert_uuencode
v count_chars
v crc32
v echo
v explode
v fprintf
v get_html_translation_table
v hebrev
v hebrevc
v html_entity_decode
v htmlentities
v htmlspecialchars
v htmlspecialchars_decode
v implode
v join
v levenshtein
v localeconv
v ltrim
v md5
v md5_file
v metaphone
v money_format
v nl2br
v nl_langinfo
v number_format
v ord
v parse_str
v print
v printf
v quoted_printable_decode
v quotemeta
v rtrim
v setlocale
v sha1
v sha1_file
v similar_text
v soundex
v sprintf
v sscanf
v str_ireplace
v str_pad
v str_repeat
v str_replace
v str_rot13
v str_shuffle
v str_split
v str_word_count
v strcasecmp
v strchr

5360 WebSphere Message Broker Version 7.0.0.8

v strcmp
v strcoll
v strcspn
v strip_tags
v stripcslashes
v stripos
v stripslashes
v stristr
v strlen
v strnatcasecmp
v strnatcmp
v strncasecmp
v strncmp
v strpbrk
v strpos
v strrchr
v strrev
v strripos
v strrpos
v strspn
v strstr
v strtok
v strtolower
v strtoupper
v strtr
v substr
v substr_compare
v substr_count
v substr_replace
v trim
v ucfirst
v ucwords
v vfprintf
v vprintf
v vsprintf
v wordwrap

Tokenizer
v token_get_all
v token_name

URL
v base64_decode
v base64_encode
v http_build_query
v parse_url
v rawurldecode
v rawurlencode
v urldecode
v urlencode

Variable handling
v debug_zval_dump
v doubleval
v empty
v floatval
v get_defined_vars

Chapter 14. Reference 5361

v get_resource_type
v gettype
v intval
v is_array
v is_bool
v is_callable
v is_double
v is_float
v is_int
v is_integer
v is_long
v is_null
v is_numeric
v is_object
v is_real
v is_resource
v is_scalar
v is_string
v isset
v print_r
v serialize
v settype
v strval
v unserialize
v unset
v var_dump
v var_export

For more information about the PHP extension functions, see the PHP: Hypertext
Preprocessor website.
Related tasks:
“Modifying pattern instances by using PHP” on page 1389
Add PHP code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.
“Examples of PHP API code” on page 1390
Use the following examples of PHP API code for common tasks to help you write
your own PHP code to modify pattern instances.
“Testing PHP API code” on page 1394
After writing PHP code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“mb_pattern_run_template” on page 5345
Use the mb_pattern_run_template function to run a PHP script from within
another script in user-defined patterns.
“_MB superglobal variables” on page 5347
The PHP API for user-defined patterns contains four variables within the _MB
superglobal. You can use these variables in PHP scripts that are used to modify
instances of user-defined patterns.
“Differences between WebSphere Message Broker PHP and PHP.net” on page 5363
Some differences exist between PHP.net and the implementation of PHP that is
provided by WebSphere Message Broker.

5362 WebSphere Message Broker Version 7.0.0.8

http://www.php.net
http://www.php.net

Differences between WebSphere Message Broker PHP and PHP.net:

Some differences exist between PHP.net and the implementation of PHP that is
provided by WebSphere Message Broker.

The differences for each function are shown in the following tables.

Table 281. MySQL functions

Function Differences

mysql_fetch_field Checks for a distinction between types that
are returned from TINYTEXT and
VARCHAR. One is a blob, the other is a
string. This implementation returns both as
VARCHAR, therefore it is not possible to
distinguish between them. The call returns
the maximum length that is defined in the
database, not the maximum length that is
used. For example, (VARCHAR[50] xyz = abc)
gives 3 on PHP.net, and 50 on WebSphere
Message Broker PHP.

Table 282. String functions

Function Differences

crypt Not available on Windows.

html_entity_decode Results in a warning if the specified
character set hint is not equal to UTF8.

htmlentities Results in a warning if the specified
character set hint is not equal to UTF8.

htmlspecialchars Results in a warning if the specified
character set hint is not equal to UTF8.

Table 283. Session handling functions

Function Differences

Session handling functions The INI option support session.use_trans_sid
is not supported.

Table 284. File system functions

Function Differences

All file system functions Safe mode is not supported.

clearstatcache No statcache exists, therefore this function
has no effect.

flock You cannot use flock(, LOCK_EX) to obtain
an exclusive lock on a file that is opened as
read-only, unless you also have write
permissions for the file; this does not mean
that you must open the file in write mode,
just that you have permission to do so. If
you do not have write permissions and False
is returned indicating that no lock has been
obtained, a warning is generated.

Chapter 14. Reference 5363

Table 284. File system functions (continued)

Function Differences

fopen The PHP.net runtime issues a "No such file
or directory" message when an invalid mode
is used within fopen, whereas WebSphere
Message Broker PHP issues a message
saying that it is an invalid mode.

fseek When you use fopen and file modes with
the "t" option under Windows (Windows
translation), fseek does not operate in the
same way as the runtime PHP.net runtime.

realpath The realpath() function does not detect
changes to file names that were previously
symbolic links because of the canonical file
name cache in Java. To replicate the
behavior in PHP, you can start the JVM with
Dsun.io.useCanonCaches=false

Table 285. BCMath Arbitrary Precision Mathematics functions

Function Differences

All BCMath Arbitrary Precision Mathematics
functions

WebSphere Message Broker PHP raises an
E_WARNING, whereas PHP.net writes a
warning to STDERR.

bcmul WebSphere Message Broker PHP does not
truncate trailing zeros.

bcpow WebSphere Message Broker PHP does not
truncate trailing zeros.

bcpowmod WebSphere Message Broker PHP does not
support trailing zeros when a scale other
than 0 is used.

Table 286. Network functions

Function Differences

fsockopen The errno output argument is not supported.
The errstr argument is not supported.
Encrypted streams (SSL and TLS) are not
available.

Table 287. Array functions

Function Differences

All array functions When sorting array entries that have equal
weight under the sorting algorithm in use,
the resulting sorted array might have entries
in a different order to that produced by the
sorting algorithms used by PHP.net. For
example, a SORT_NUMERIC sort of the
values "a","b","c".

5364 WebSphere Message Broker Version 7.0.0.8

Table 288. Multibyte string functions

Function Differences

All multibyte string functions If you specify the correct encoding for
character data and if the character data is
correct, the mb_* functions operate in the
same way as MBString. No guarantee exists
that the output is the same as MBString if
the character data is not valid or if you do
not specify the correct encoding. For
example, mb_substr, if you pass in str and
define it as UTF-32 when it is really ASCII
or UTF-8, you do not get the same result as
PHP.net.

mb_convert_encoding Does not support an array or string
containing multiple encodings, or auto being
passed as the from_encoding value. A PHP
warning is generated in these cases.

Table 289. Program execution functions

Function Differences

All program execution functions WebSphere Message Broker PHP does not
support Safe mode.

proc_open WebSphere Message Broker PHP does not
support the additional options that are
specified by the optional sixth parameter.

proc_terminate WebSphere Message Broker PHP does not
support the sending of signals to the child
process, as specified by the optional second
parameter.

proc_get_status This function is not supported by
WebSphere Message Broker PHP.

Table 290. Error handling and logging functions

Function Differences

error_log Does not support message_type of 1 (email).
A warning is issued and function returns
false.

Table 291. Stream functions

Function Differences

stream_get_meta_data The unread bytes field (used buffer size) in
return is not always the same for file
streams, because the file stream
implementation does not use buffers.

stream_context_create Support for stream contexts is limited; the
HTTP stream type supports only header,
method, timeout, and content options.

Related tasks:
“Modifying pattern instances by using PHP” on page 1389
Add PHP code to a code plug-in project to modify a pattern instance when the
pattern instance is generated by a pattern user.

Chapter 14. Reference 5365

“Examples of PHP API code” on page 1390
Use the following examples of PHP API code for common tasks to help you write
your own PHP code to modify pattern instances.
“Testing PHP API code” on page 1394
After writing PHP code to modify pattern instances, test the code to check that it
works correctly.
Related reference:
“mb_pattern_run_template” on page 5345
Use the mb_pattern_run_template function to run a PHP script from within
another script in user-defined patterns.
“_MB superglobal variables” on page 5347
The PHP API for user-defined patterns contains four variables within the _MB
superglobal. You can use these variables in PHP scripts that are used to modify
instances of user-defined patterns.
“PHP extensions” on page 5348
WebSphere Message Broker supports a set of PHP extensions.

Message model reference information
Reference information in this section can help you develop and configure message
models.

Message model reference information is available for:
v “Message set preferences”
v “Message set properties” on page 5371
v “Message definition file properties” on page 5409
v “Message category properties” on page 5413
v “Message model object properties” on page 5416
v “Deprecated message model object properties” on page 6069
v “Additional MRM domain information” on page 6251
v “Additional MIME domain information” on page 6322
v “Import formats” on page 6346
v “Message model wizards” on page 6360
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

Message set preferences
Preferences for message sets.

Property Type Meaning

Default version
tag

String Provide the default version information you would like to be set in the message
set Version property when you create a new message set.

5366 WebSphere Message Broker Version 7.0.0.8

You can alter a number of the preferences that affect the way certain areas of
message set processing are handled. The areas are:
v “Message Set Editor and Message Definition Editor preferences”
v “Validation of the message model” on page 5369
v “XML Schema Importer” on page 5370
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Configuring message set preferences” on page 2840
This task topic explains how to make changes to preferences that relate to message
set processing. These preferences are for message set editors, message set model
validation, and importing XML Schema.
“Configuring CVS to run with the WebSphere Message Broker Toolkit” on page
573
Install CVS as a normal program by following the usual prompts. Not all versions
of CVSNT are supported by Eclipse.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message Set Editor and Message Definition Editor preferences”
While looking at a large message set that contains a number of message definition
files that have different namespaces, or multiple message definition files that have
the same namespace, you might want to view the information in alternative ways
to make it easier for you to visualize the structure of the message set. If you
double-click the global construct, you open the message definition file in which the
global construct is defined.
“Validation of the message model” on page 5369
You can customize some of the warning messages that are generated by message
set validation. Use the Message Set Validation Preference page to do this.
“XML Schema Importer” on page 5370
Preferences for the message set XML Schema Importer.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Message Set Editor and Message Definition Editor preferences:

While looking at a large message set that contains a number of message definition
files that have different namespaces, or multiple message definition files that have
the same namespace, you might want to view the information in alternative ways

Chapter 14. Reference 5367

to make it easier for you to visualize the structure of the message set. If you
double-click the global construct, you open the message definition file in which the
global construct is defined.

Message set editor settings

Property Type Meaning

Group by
namespace and
then by
collections

Button Selecting this view groups the global constructs by namespace then by collection
(for example, Messages, Types, Groups, or Elements and Attributes). Using this
view you can visualize all of the constructs that belong to each of the defined
namespaces.

Group by
collections and
then by
namespace

Button Selecting this view groups the global constructs by collection (for example,
Messages, Types, Groups, or Elements and Attributes) then by namespace. Using
this view you can visualize which global construct in the message set is defined
in which namespace.

Message definition editor settings

Property Type Meaning

Show base
complex types

Check box Where your complex type is based on another complex type that is derived by
an extension, selecting this will display the base complex type in the outline
view.

Prefix for
created
messages

String This property allows you to specify a prefix to precede the name of the initial
complex type in the name of the created message. This prefix applies only to
messages created from C or COBOL files. The default value is msg_.

Note, however, that no prefix is applied when a message is created from a C file,
and the selected preprocessing option is SAP ALE IDoc or SAP File IDoc.

Tab Extensions

Click Tab Extensions to display check boxes that allow you to determine what tabs
are enabled for the Message Set Editor, the Message Definition Editor, and the
Message Category Editor. All these check boxes are always selected and cannot be
cleared.

Editor Tab Extensions

Message Set Editor Properties

Message Definition Editor Overview

Properties

Message Category Editor Properties

A control is provided that allows you to choose the order in which the tab
extensions for each of the editors are displayed.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:

5368 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Configuring message set preferences” on page 2840
This task topic explains how to make changes to preferences that relate to message
set processing. These preferences are for message set editors, message set model
validation, and importing XML Schema.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Validation of the message model”
You can customize some of the warning messages that are generated by message
set validation. Use the Message Set Validation Preference page to do this.
“XML Schema Importer” on page 5370
Preferences for the message set XML Schema Importer.

Validation of the message model:

You can customize some of the warning messages that are generated by message
set validation. Use the Message Set Validation Preference page to do this.

Any warning or error that falls into a category from the following list can be
customized according to the relevant category. The customization can affect both
severity and priority.

The severity can be one of the following values:
v Error
v Warning
v Info
v Ignore

If the severity is not Ignore, the priority can be one of the following values:
v High
v Normal
v Low

If the severity is Ignore, you cannot change the priority.

Message set validation settings

The categories that you can customize are described in the following list:
v Use of deprecated constructs
v Messages with abstract global elements
v Facet runtime validation differences
v Type/Element substitution runtime validation differences
v Mixed content runtime validation differences
v Wildcard runtime validation differences
v Unique Particle Attribution checks

Chapter 14. Reference 5369

v Tagged/Delimited String group content
v Zero Custom Wire Format length count
v Zero Tagged/Delimited String Format length count
v Empty Tagged/Delimited String Format tag
v List or Union with Custom Wire Format
v List or Union with Tagged/Delimited String Format
v Unbounded max occurs with Custom Wire Format
v Unbounded max occurs with Tagged/Delimited String Format
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Configuring message set preferences” on page 2840
This task topic explains how to make changes to preferences that relate to message
set processing. These preferences are for message set editors, message set model
validation, and importing XML Schema.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message Set Editor and Message Definition Editor preferences” on page 5367
While looking at a large message set that contains a number of message definition
files that have different namespaces, or multiple message definition files that have
the same namespace, you might want to view the information in alternative ways
to make it easier for you to visualize the structure of the message set. If you
double-click the global construct, you open the message definition file in which the
global construct is defined.
“XML Schema Importer”
Preferences for the message set XML Schema Importer.

XML Schema Importer:

Preferences for the message set XML Schema Importer.

You can customize the following categories that affect the way in which an XML
Schema is imported into a message set that does not support namespaces.

Category Modify Reject Accept

Import Converts Import to Include Import fails if it sees an
Import

Not applicable

Redefine Removes the Redefine
statements

Import fails if it sees a
Redefine

Redefine imported (gives
task list error)

List Changes type base to
xsd:string

Import fails if it sees a List List imported

5370 WebSphere Message Broker Version 7.0.0.8

Category Modify Reject Accept

Union Changes type base to
xsd:string

Import fails if it sees a
Union

Union imported

Abstract Complex Type Sets abstract to false Import fails if it sees an
Abstract Complex Type

Abstract Complex Type
imported

Abstract Element Sets abstract to false Import fails if it sees an
Abstract Element

Abstract Element imported

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Configuring message set preferences” on page 2840
This task topic explains how to make changes to preferences that relate to message
set processing. These preferences are for message set editors, message set model
validation, and importing XML Schema.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message Set Editor and Message Definition Editor preferences” on page 5367
While looking at a large message set that contains a number of message definition
files that have different namespaces, or multiple message definition files that have
the same namespace, you might want to view the information in alternative ways
to make it easier for you to visualize the structure of the message set. If you
double-click the global construct, you open the message definition file in which the
global construct is defined.
“Validation of the message model” on page 5369
You can customize some of the warning messages that are generated by message
set validation. Use the Message Set Validation Preference page to do this.

Message set properties
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

General message set properties

The following table defines the properties that you can set to customize the
message set.

Chapter 14. Reference 5371

Property Type Meaning

Default
message
domain and
Supported
message
domains

String and
check boxes

The message parser name must match the Message Domain property of any input
node that processes messages from the message set, or the <Msd> element value
of any MQRFH2 header that precedes a message from the message set.

Choose a value from the list offered for the Default Message Domain property, and
select check boxes (from Supported Message Domains) to choose other domains.
You can select as many of these check boxes as you want.

Use the message parser name when you write ESQL field references for
messages in the message set; for example, InputRoot.MRM.Document. The
Mapping editor and the content assist feature of the ESQL editor use the
message parser name when they generate ESQL field references.

You can choose from the following names:

v XMLNSC (the default if you select Finish from page two of the New Message
Set wizard). Choose this domain if you want to model XML messages. You
can deploy the message set to brokers if you want, because the XMLNSC
parser optionally uses the message set at run time.

v MRM. Choose this domain for binary or text messages. You can also use this
domain for XML messages. You must deploy the message set to the brokers
that receive these messages. The deploy action creates a runtime dictionary
against which the MRM parser checks the received message.

v SOAP. Choose this domain for SOAP Web Services.

v DataObject. Choose this domain for data from WebSphere Adapters.

v XMLNS. You might need to choose this domain for some kinds of XML
messages. You do not have to deploy the message set to brokers, because the
XMLNS parser does not use the message set at run time.

v JMSMap. Choose this domain if you want to model a JMS MapMessage
message. You do not have to deploy the message set to brokers, because this
parser does not use the message set at run time.

v JMSStream. Choose this domain if you want to model a JMS StreamMessage
message. You do not have to deploy the message set to brokers, because this
parser does not use the message set at run time.

v MIME. Choose this domain if you want to model a MIME message. You do
not have to deploy the message set to brokers, because the MIME parser does
not use the message set at run time.

v JSON. Choose this domain if you want to model a JSON message. You do not
have to deploy the message set to brokers, because the JSON parser does not
use the message set at run time.

v XML. This domain is deprecated. Use the XMLNSC domain instead.

v IDOC. This domain is deprecated. Use the MRM domain instead.

Use namespaces Check box Select this property if you want to use namespaces within the message set.
Namespaces provide a method of avoiding naming conflicts where different
document definitions have elements of the same name. For further information
see Namespaces.

By default, this check box is selected.

Using namespaces affects how elements are created in the logical message tree.
Each element in the message tree has both a name and a namespace, so an ESQL
or Java reference to one of these elements has to specify both name and
namespace. Therefore, using namespaces has an effect on the ESQL or the Java
that you write.

Always select this property if you want to use the message set to model XML
messages.

5372 WebSphere Message Broker Version 7.0.0.8

MRM domain

Property Type Meaning

Default wire
format

String (Optional) Specify the default wire format used, only if you select MRM as the
default message domain, or MRM is selected in the list of supported message
domains. The default value is <no default specified>.

If you do not select MRM, either as the default message domain or as one of the
supported message domains, the Default Wire Format property is unavailable.

Message set ID String This property is a unique identifier that is automatically generated for you when
you create the message set. You cannot change this property.

Message set
alias

String Specify an alternative unique value that identifies the message set. This property
is only required if you are using the Message Identity technique to identify
embedded messages. Using this technique, the embedded messages are defined
in this message set but the parent message is defined in a different message set,
and the bit stream does not contain the actual message set name or identifier.

Message type
prefix

String This property is used when you define multipart messages, specifically when
using the Message Path technique to identify embedded messages.

The value that you specify is used as an absolute or relative path to the
innermost message from the outermost, and is used as a prefix to the value of
the Message Type property that is specified for the outermost message (specified
either in the MQRFH2 header of the message, or in the input node of the
message flow).

If you set a value, it must be in the form id1/id2/.../idnu where id1 is the
identifier of the outermost message, id2 is the identifier of the next element or
message, and idn is the identifier of the innermost message. The default value is
blank (not set).

The following table, describing the use of the message set property Message Type
Prefix, shows how this value is combined with the Message Type property of an
input message.

Broker will treat
Length facet as
MaxLength

Check box Select this property if you want the COBOL importer to create a maxLength
facet, rather than a length facet, for a fixed length string element.

By default, this check box is selected.

Use of the Message type prefix property

The following table shows the implications of using the property Message type
prefix. The message type or message prefix can describe either elements or
messages.

Message Type property example Message type prefix not set Message type prefix set

Simple Message Type:msg_type Results in the simple Message
Type:msg_type

Results in the path Message Type:
/msg_prefix_1/.../msg_prefix_n/
msg_type

Path Message Type:msg_type_1/.../
msg_type_m

Results in the path Message
Type:/msg_type_1/.../msg_type_m

Results in the combined path
Message Type: /msg_prefix_1.../
msg_prefix_n /msg_type_1/.../
msg_type_m

Chapter 14. Reference 5373

Message Type property example Message type prefix not set Message type prefix set

Simple absolute Message
Type:/msg_type

Results in the simple Message
Type:msg_type

Results in the simple Message
Type:msg_type

An error is raised if Message Type
Prefix is set to any value other than
msg_type.

Path absolute Message
Type:/msg_type_1/.../msg_type_m

Results in the path Message
Type:/msg_type_1/.../msg_type_m

Results in the path Message
Type:/msg_type_1/.../msg_type_m

An error is raised if all identifiers in
Message Type Prefix do not match
the corresponding identifiers in the
resulting path.

If you are using MRM or IDOC domains, in addition to the main message set
properties, you can update message set properties that are specific to each of the
physical formats. The following reference topics describe these properties.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“XMLNSC parser” on page 1090
The XMLNSC parser is a flexible, general-purpose XML parser that offers high
performance XML parsing and optional XML Schema validation.
“XMLNS parser” on page 1104
The XMLNS parser is a flexible, general-purpose XML parser.
“XML parser” on page 1110
The XML domain is very similar to the XMLNS domain, but the XML domain has
no support for XML namespaces or opaque parsing.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“Which XML parser should you use?” on page 1080
If your messages are general-purpose XML documents, you can use one of the
dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can
use the MRM domain to parse the message.
“JMS parsers and domains” on page 1116
The JMSMap and JMSStream domains can be used for modeling messages that are
produced by the implementations of the Java Messaging Service standard.
“SOAP parser and domain” on page 1082
You can use the SOAP parser to create a common WSDL-based logical tree format
for working with Web services, independent of the physical bitstream format.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Identifying an embedded message by using a Message Identity” on page 1193
You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.

5374 WebSphere Message Broker Version 7.0.0.8

“Identifying an embedded message by using a Message Path” on page 1196
The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
Related tasks:
“Accessing embedded messages in the MRM domain” on page 2594
If you have defined a multipart message, you have at least one message embedded
within another. Within the overall complex type that represents the outer messages,
you can model the inner message in two ways.
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
Related reference:
“Custom Wire Format message set properties”
The tables define the properties that you can set for a Custom Wire Format
message set.
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Custom Wire Format message set properties:

The tables define the properties that you can set for a Custom Wire Format
message set.

Some of the message set properties (marked with an asterisk (*)) are relevant only
if the message being processed is not using WebSphere MQ as the transport
protocol.

If the transport protocol is WebSphere MQ, values are derived from the message
headers (for example, MQMD), and the message set properties, if set, are ignored.

Chapter 14. Reference 5375

Binary representation of boolean values

Property Type Meaning

Boolean True
Value

String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator
(0x) preceding this number. Each digit is a half byte. The maximum length is 4
bytes. You must enter an even number of digits (a whole number of bytes). This
value must be different from, but the same length as, the Boolean False Value.
The default value is 00000001.

Boolean False
Value

String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator
(0x) preceding this number. Each digit is a half byte. The maximum length is 4
bytes. You must enter an even number of digits (a whole number of bytes). This
value must be different from, but the same length as, the Boolean True Value.
The default value is 00000000.

Boolean Null
Value

String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator
(0x) preceding this number. Each digit is a half byte. The maximum length is 4
bytes. You must enter an even number of digits (a whole number of bytes). This
value can be the same as either Boolean True Value or Boolean False Value, or
different. The default value is 00000000.

Output settings

Use these settings when messages are being produced.

Property Type Meaning

Byte Alignment
Pad

String If the xsd:element Custom Wire Format properties Byte Alignment, Leading Skip
Count, and Trailing Skip Count cause bytes to be skipped in the bit stream
when the message is serialized, this property supplies the character to be used in
the skipped positions. Set this character in one of the following ways:

v Select SPACE, NUL, or 0 (the default) from the list of values shown.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Policy for
Missing
Elements

Enumerated This property determines the action that is taken by the broker when fields are
missing from the message tree when the message is serialized (for output):

v Use Default Value (the default). If a Default Value exists for the element, write
it; otherwise, throw an exception.

v Use Null Value. If the Nillable property of the element is selected, and an
Encoding Null Value is specified for the element, write the Encoding Null Value
according to the rules that are defined by the Encoding Null property;
otherwise, throw an exception.

5376 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Truncate fixed
length strings

Check box This property applies only to output strings.

If this check box is selected, and the element or attribute is a fixed length string
(that is, the logical type is xsd:string and the physical type is Fixed Length
String) that is longer than either the length that is specified in the model or the
length reference, the string is truncated to this length. No exception is raised on
output, unless validation (see “Validating messages” on page 1478) is active.

The end from which data is truncated is determined by the value of the
Justification property. If the value of the Justification property is Left justify, data
is truncated from the right; if the value of the Justification property is Right
justify, data is truncated from the left. However, if the value of the Justification
property is Not applicable, truncation does not occur and an exception occurs if
the string is too long.

If this check box is cleared, an exception occurs if the element or attribute is a
fixed length string (that is, the logical type is xsd:string and the physical type is
Fixed Length String) that is longer than either the length that is specified in the
model, or the length reference. This behavior occurs in releases of the WebSphere
Message Broker earlier than Version 6.1.

By default, this check box is cleared.

Binary representation of decimal values

Property Type Meaning

Packed Decimal
Positive Code

Enumerated Select, from the list, the positive sign that is used for packed decimal numbers.
The default value is C, which indicates that 0x0C is used as the positive sign; this
value is used in most systems. You can also select F, which indicates that 0x0F is
used as the positive sign; this value is used in some systems.

Datetime settings

Property Type Meaning

Derive default
dateTime
format from
logical type

Button Select this option if you want the default dateTime format to be determined by
the logical type of the element or attribute.

You can override this property for an element or attribute within a complex
type.

Use default
dateTime
format

Button and
String

Select this option if you want to specify a default dateTime format that is fixed
for all elements or attributes of logical type dateTime, date, time, gYear,
gYearMonth, gMonth, gMonthDay, and gDay.

You can override this property for an element or attribute within a complex
type.

For more information, see “DateTime formats” on page 6310.

Start of century
for 2-digit years

Integer This property determines how 2-digit years are interpreted. Specify the two
digits that start a 100-year window that contains the current year. For example, if
you specify 89, and the current year is 2002, all 2-digit dates are interpreted as
being in the range 1989 - 2088.

Chapter 14. Reference 5377

Property Type Meaning

Days in First
Week of Year

Enumerated Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days
in that week is less than the value specified here, the week is considered to be
the last week of the previous year; therefore, week 1 starts some days into the
new year. Otherwise, it is considered to be the first week of the new year; in this
case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a number from the list that is displayed.

First Day Of
Week

Enumerated Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a value from the list that is displayed.

5378 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Strict DateTime
Checking

Check box Select this option if you want to restrict dateTimes to a valid dateTime format. If
Strict DateTime Checking is selected, receiving an incorrect dateTime causes an
error.

Strict dateTime checking
Examples of strict dateTime checking are:

v DateTimes are restricted to valid dateTimes only. When you use this
option, a date such as the 35th March is not processed as 4th April,
and 10:79 is not processed as 11:19. Receiving an out-of-band
dateTime, such as these examples, causes an error to occur.

v The number of characters for a numeric dateTime component must
be within the bounds of the corresponding formatting symbols.
Repeat the symbol to specify the minimum number of digits that you
require. The maximum number of digits that is permitted becomes
the upper bound for a particular symbol. For example, day in month
has an upper bound of 31; therefore, a format string of 'd' allows the
values 2 and 21 to be parsed, but does not allow the values 32 and
210. On output, numbers are padded with zeros to the specified
length. A year is a special case; see the message set property Start of
century for 2 digit years. For fractional seconds, the length must
implicitly match the number of format symbols on input. The output
is rounded to the specified length.

v White space is not skipped over. The white space in the input string
must correspond with the same number and position of white space
in the formatting string.

v If data remains that is not parsed in the input string after all the
symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking
Examples of lenient dateTime checking are:

v The parser converts out-of-band dateTime values to the appropriate
in-band value. For example, a date of 2005-05-32 is converted to
2005-06-01.

v Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where '-' is the field
separator) allows one or more characters to be parsed against MM
and dd. Therefore, dates that are not valid - for example, 2005-1-123
and 2005-011-12 - can be entered. The first value of 2005-1-123 is
output as the date 2005-05-03, and the second value of 2005-011-12 is
output as the date 2005-11-12.

v The number of the timezone formatting symbol Z is applicable only
to the output dateTime format.

v White space is skipped over.

Time Zone Enumerated The value that you set for this property is used if the value that you specified
for the Default DateTime Format property does not include Time Zone
information.

The initial value is Use Broker Locale, which causes the broker to get the
information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight Saving
Time

Check box Select this option if the area in the Time Zone property observes daylight saving
time. If it does not observe daylight saving time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,
the value passed represents the time zone without the daylight saving time.

Chapter 14. Reference 5379

Property Type Meaning

Use input UTC
format on
output

Check box This property applies to elements and attributes of logical type xsd:dateTime or
xsd:time that contain a dateTime as a string and that have a dateTime format of
I, IU, T, or TU, or that include ZZZ or ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by
using either the Z character or timezone +00:00 in the value. On input, the MRM
parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output
message, the UTC format is preserved into the output message and overrides the
format that is implied by the dateTime format property.

If this property is cleared, or if the element or attribute was not copied from an
input message, the UTC format in the output message is controlled solely by the
dateTime format property.

Character and numeric encoding for non-WebSphere MQ messages

Use these settings only for messages with no MQMD.

Property Type Meaning

Default CCSID* Integer Enter a numeric value for the default Coded Character Set Identifier. The default
is 500.

If the input message is a WebSphere MQ message, the equivalent attribute that
is set for the queue manager is used, and this property is ignored.

Default Byte
Order*

Enumerated Select either Big Endian (the default) or Little Endian from the list to specify the
byte order of numbers that are represented as binary integers.

In C, this is equivalent to data type short or long. In COBOL, this is equivalent
to a PIC 9, COMP, COMP-4, COMP-5, or BINARY data type.

Your choice must match the encoding with which messages are created.
Typically, Big Endian is the correct option for messages that are created on UNIX
or z/OS; Little Endian is the correct option for messages that are created on
Windows.

Do not use this property if the message is received across the WebSphere MQ
transport protocol; in this case, the property is deduced from the MQMD of the
message, or from the encoding of the broker queue manager.

Default Packed
Decimal Byte
Order*

Enumerated Select Big Endian (the default) or Little Endian from the displayed list to specify
the byte order of numbers that are represented as packed decimal. In COBOL,
this is equivalent to PIC 9 COMP-3 data type. There is no equivalent data type
in C.

Your choice must match the encoding with which messages are created.
Typically, Big Endian is the correct option for messages that are created on UNIX
or z/OS; Little Endian is the correct option for messages that are created on
Windows.

Default Float
Format*

Enumerated Select one of S390 (the default), IEEE, or Reverse IEEE from the displayed list to
specify the byte order of numbers in the message that are represented as floating
point.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise

5380 WebSphere Message Broker Version 7.0.0.8

appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.
“TDS Format message set properties”
The following tables show the properties that you can set for a TDS format
message set.

TDS Format message set properties:

The following tables show the properties that you can set for a TDS format
message set.

See “Default TDS message set properties” on page 5394 for the default settings of
these properties for each of the industry standards.

Chapter 14. Reference 5381

Messaging Standard

Property Type Meaning

Messaging
Standard

Enumerated Specify the standard to be used for this wire format. Select one of the following
values:

v User Defined Text - for text data not based on a standard

v SWIFT

v ACORD AL3

v EDIFACT

v X12

v TLOG

v HL7

v CSV - Comma Separated Values

v User Defined Mixed - for mixed text and binary data

If you are defining your own tagged/delimited messages, or are using a
standard that is not included in the list of values shown, select either User
Defined Text, if all your data is text, or User Defined Mixed, if not all your data
is text.

The value that you select for this property determines the default values of some
of the other properties.

The default is User Defined Text.

Data element separation settings

Property Type Meaning

Group Indicator String Specify the default value of a special character or string that precedes the data
that belongs to a group or complex type within the bit stream.

Group
Terminator

String Specify the default value of a special character or string that terminates data that
belongs to a group or a complex type within the bit stream.

Delimiter String Specify the default value of a special character or string that specifies the
delimiter that is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message. Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

v Never. Use this option to ensure that even if optional elements are not
present, all delimiters are written out. This option must be used when the
same delimiter is used to delimit parent objects and child objects. For
example, if an optional child element is missing and all the delimiters are the
same, message processing applications cannot tell where the child elements in
a message ends and where the next parent element starts.

5382 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Tag Data
Separator

String Specify the default value of a special character or string that separates the tag
from the data.

If you set the property Tag Data Separator, the Length of Tag property is
ignored.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Integer Specify the default length of a tag value. When the message is parsed, this
property allows tags to be extracted from the bit stream.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, the Length of Tag property is ignored.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Note: Any value that you set for a group or complex type property overrides the
value that you set for the corresponding message set property.

Character data settings

Property Type Meaning

Default CCSID Integer CCSID (Coded Character Set Identification) specifies the mapping between
character codes and symbols. You must specify a code set that is supported by
WebSphere Message Broker.

This property stores the default CCSID for the message bit stream, but this value
can be overridden when the message is processed (for example, by the CCSID in
the header of a WebSphere MQ input message).

Chapter 14. Reference 5383

Property Type Meaning

Trim on input Enumerated This property applies only to elements and attributes with a physical type of
Text. This property specifies whether a simple element or attribute value is to be
trimmed when it is parsed. The property does not apply to a simple element, or
attribute, with a logical type of Boolean or Binary. All trimming is applied to
element or attribute values before the conversion of the value to its logical type.
This property does not apply when writing elements or attributes.

This property only applies to a simple element, or attribute, that is contained
within a complex type or group that has the Justification property set to Left
Justify or Right Justify, and that satisfies one of the following conditions:

v The Data Element Separation property is set to Fixed Length, Fixed Length
AL3, Tagged Fixed Length, Use Data Pattern, or Tagged Encoded Length.

v The Data Element Separation property is set to Variable Length Elements
Delimited, and the element or attribute has a value set for its model length or
length reference.

v The Data Element Separation property is set to Tagged Delimited or All
Elements Delimited, and the Observe Element Length property is set. The
element or attribute has a model length or length reference value set.

This property can be set to one of the following values:

v No Trim. No characters are trimmed from the element or attribute value.

v Leading White Spaces. White space characters are trimmed from the left of the
element or attribute value.

v Trailing White Spaces. White space characters are trimmed from the right of
the element or attribute value.

v Trim Both. White space characters are trimmed from both the left and the
right of the element or attribute value.

v Trim Padding Chars. Padding characters are trimmed from the element or
attribute value. The padding character is set by the Padding Character
property of the element or attribute. If the Justification property of the
element or attribute is set to Left Justify, the padding characters are trimmed
from the right. If the Justification property of the element or attribute is set
to Right Justify, the padding characters are trimmed from the left. If the
Justification property of the element or attribute is set to Not Applicable, no
trimming takes place.

White space characters include control characters that are in the range from
U+0000 to U+001f and from U+007f to U+009f.

You might need to use this property if you have data input that is mapped to a
numeric simple type. For example, if the input data has leading spaces, you can
set this property to Leading White Spaces to avoid data conversion problems
when you process these fields.

5384 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Truncate on
output

Check box This property applies only to output strings that have a physical type of Text.

The property applies to elements or attributes that have a logical type of
xsd:string and that are contained within a structure with a Data Element
Separation of Fixed Length, Fixed Length AL3, Tagged Fixed Length, Use Data
Pattern, or Variable Length Elements Delimited where a length has been
specified.

If this check box is selected, and the element or attribute has a length that is
longer than the length that is specified in the model or the length reference, the
string is truncated to this length. No exception is raised on output, unless
validation (see “Validating messages” on page 1478) is active.

The end from which data is truncated is determined by the value of the
Justification property. If the value of the Justification property is Left justify, data
is truncated from the right; if the value of the Justification property is Right
justify, data is truncated from the left. However, if the value of the Justification
property is Not applicable, truncation does not occur and an exception occurs if
the string is too long.

If this check box is cleared, an exception occurs if the element or attribute is a
fixed length string (that is, the physical type is Text and a length has been
specified) that is longer than either the length that is specified in the model or
the length reference. This behavior occurs in releases of the WebSphere Message
Broker earlier than Version 6.1.

Escape
Character

Button and
String

Specify the escape character that is used to allow special reserved characters
(such as delimiters) to be included as part of data. You must specify a single
character only, or a mnemonic that represents a single character.

Escape characters apply only in variable length fields.

Escape characters, on parsing, always escape the next character, and are always
removed.

Escape characters, on writing, are inserted in front of all the characters that are
listed in Reserved Characters.

You can specify either an escape character or a quote character, but not both, for
a given message set.

Quote
Character

Button and
String

Specify the quote character that is used to allow special reserved characters
(such as delimiters) to be included as part of data. You must specify a single
character only, or a mnemonic that represents a single character.

Quote characters apply only to variable length fields.

Quote characters, on parsing, must be present at both the start and the end of
the data, and are always removed.

Quote characters, on writing, are added to both the start and end of the data, if
the data contains any character that is listed in the Reserved Characters
property.

You can specify either an Escape Character or a Quote Character, but not both,
for a given message set.

Chapter 14. Reference 5385

Property Type Meaning

Reserved
Characters

String Specify any special reserved characters. Either these reserve characters must be
preceded by the Escape Character, or the data field that contains them must be
delimited by a pair of Quote Characters, if they are to be included as part of the
data. The Escape Character, Quote Character, delimiters, and group indicators
must be included in this list.

If the set of reserved characters is to be updated dynamically (in the case of
EDIFACT and X12 when reserved characters, such as delimiters, are specified in
service strings), you must use the supplied mnemonics to specify characters in
this list.

If you have specified Reserved Characters, an Escape Character or a Quote
Character must also be specified.

Reserved characters apply only in variable length fields.

Reserved characters are not used when parsing.

Numeric settings

Property Type Meaning

Decimal Point String Specify the character that is used to separate the whole part of a number from
its fraction.

Packed decimal
positive code

String Controls the positive sign that is used for packed decimal fields.

Valid values are C or F.Specify the character that is used to separate the whole
part of a number from its fraction.

Strict Numeric
Checking

Check box Use this property in conjunction with the Messaging Standard property, the
Virtual Decimal Point property and the Precision property of an element.
Using this property allows you to apply stricter rules for the checking of
numbers.

The rules for Strict Numeric Checking are:

v If the Precision property of an element is set to All Significant Digits , a
decimal separator is present only if the value has a fractional part.

v If the Precision property of an element is set to Explicit Decimal Point, the
decimal separator must always be present, even if the fractional part is
missing.

v If the Precision property of an element is set to Exponential Notation, the
incoming value must be in exponential notation. Exponential notation is only
allowed for floating numbers.

v If the Precision property of an element is set to a specific value, the specific
number of digits after the decimal separator must be present.

v All values must contain at least one digit in the integer part of the number.

v If a Virtual Decimal Point of an element has been set, the number must not
have a decimal point.

v Except for EDIFACT, the decimal separator can be only the specified value,
and '.' is not permitted. For EDIFACT, both '.' and the specified separator are
permitted. In this case, the decimal separator must be specified as ',' and the
code permits '.' to be used.

v Except for exponential functions, only digits 0-9, the decimal separator, the
positive sign, and the negative sign are permitted. For exponential functions
the characters 'e' and 'E' are also permitted. Padding characters are permitted
only if they are in a position to be stripped from the number.

5386 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Derive sign
from logical
type

Check box If this property is selected, an unset TDS Signed property attempts to derive its
value from the simple type of the element (integer and decimal simple logical
types only). For these logical types it applies only to the Integer, External
Decimal, and Packed Decimal physical types.

Default byte
order

Enumerated Controls the byte order of numbers that are represented as binary integers for
messages with no MQMD.

Valid values are Big Endian or Little Endian.

This property stores the default byte order for numbers that are represented as
binary integers for messages with no MQMD, but this value can be overridden
when the message is processed.

Default packed
decimal byte
order

Enumerated Controls the byte order of numbers that are represented as packed decimal for
messages with no MQMD.

Valid values are Big Endian or Little Endian.

This property stores the default byte order of numbers that are represented as
packed decimal for messages with no MQMD, but this value can be overridden
when the message is processed.

Default float
format

Enumerated Controls the format of numbers that are represented as float for messages with
no MQMD.

Valid values are S390, IEEE, or Reverse IEEE.

This property stores the default format of numbers that are represented as float
for messages with no MQMD, but this value can be overridden when the
message is processed.

Representation of boolean values

Property Type Meaning

Text boolean
true value

String Specifies the character that represents the text Boolean true value.

Text boolean
false value

String Specifies the character that represents the text Boolean false value.

Text boolean
null value

String Specifies the character that represents the text Boolean null value.

Binary boolean
true value

String Specifies a hexadecimal value that represents the binary Boolean true value.

Binary boolean
false value

String Specifies a hexadecimal value that represents the binary Boolean false value.

Binary boolean
null value

String Specifies a hexadecimal value that represents the binary Boolean null value.

Datetime settings

Property Type Meaning

Derive default
dateTime
format from
logical type

Button Select this option if you want the default dateTime format to be determined by
the logical type of the element or attribute.

You can override this property for an element or attribute within a complex
type.

Chapter 14. Reference 5387

Property Type Meaning

Use default
dateTime
format

Button and
String

Select this option if you want to specify a default dateTime format that is fixed
for all elements or attributes of logical type dateTime, date, time, gYear,
gYearMonth, gMonth, gMonthDay, and gDay.

You can override this property for an element or attribute within a complex
type.

For more information, see “DateTime formats” on page 6310.

Start of century
for 2-digit years

Integer This property determines how 2-digit years are interpreted. Specify the two
digits that start a 100-year window that contains the current year. For example, if
you specify 89, and the current year is 2002, all 2-digit dates are interpreted as
being in the range 1989 - 2088.

Days in First
Week of Year

Enumerated Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days
in that week is less than the value specified here, the week is considered to be
the last week of the previous year; therefore, week 1 starts some days into the
new year. Otherwise, it is considered to be the first week of the new year; in this
case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a number from the list that is displayed.

First Day Of
Week

Enumerated Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a value from the list that is displayed.

5388 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Strict DateTime
Checking

Check box Select this option if you want to restrict dateTimes to a valid dateTime format. If
Strict DateTime Checking is selected, receiving an incorrect dateTime causes an
error.

Strict dateTime checking
Examples of strict dateTime checking are:

v DateTimes are restricted to valid dateTimes only. When you use this
option, a date such as the 35th March is not processed as 4th April,
and 10:79 is not processed as 11:19. Receiving an out-of-band
dateTime, such as these examples, causes an error to occur.

v The number of characters for a numeric dateTime component must
be within the bounds of the corresponding formatting symbols.
Repeat the symbol to specify the minimum number of digits that you
require. The maximum number of digits that is permitted becomes
the upper bound for a particular symbol. For example, day in month
has an upper bound of 31; therefore, a format string of 'd' allows the
values 2 and 21 to be parsed, but does not allow the values 32 and
210. On output, numbers are padded with zeros to the specified
length. A year is a special case; see the message set property Start of
century for 2 digit years. For fractional seconds, the length must
implicitly match the number of format symbols on input. The output
is rounded to the specified length.

v White space is not skipped over. The white space in the input string
must correspond with the same number and position of white space
in the formatting string.

v If data remains that is not parsed in the input string after all the
symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking
Examples of lenient dateTime checking are:

v The parser converts out-of-band dateTime values to the appropriate
in-band value. For example, a date of 2005-05-32 is converted to
2005-06-01.

v Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where '-' is the field
separator) allows one or more characters to be parsed against MM
and dd. Therefore, dates that are not valid - for example, 2005-1-123
and 2005-011-12 - can be entered. The first value of 2005-1-123 is
output as the date 2005-05-03, and the second value of 2005-011-12 is
output as the date 2005-11-12.

v The number of the timezone formatting symbol Z is applicable only
to the output dateTime format.

v White space is skipped over.

Time Zone Enumerated The value that you set for this property is used if the value that you specified
for the Default DateTime Format property does not include Time Zone
information.

The initial value is Use Broker Locale, which causes the broker to get the
information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight Saving
Time

Check box Select this option if the area in the Time Zone property observes daylight saving
time. If it does not observe daylight saving time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,
the value passed represents the time zone without the daylight saving time.

Chapter 14. Reference 5389

Property Type Meaning

Use input UTC
format on
output

Check box This property applies to elements and attributes of logical type xsd:dateTime or
xsd:time that have a dateTime format of I, IU, T, or TU, or that include ZZZ or
ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by
using either the Z character or timezone +00:00 in the value. On input, the MRM
parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output
message, the UTC format is preserved into the output message and overrides the
format that is implied by the dateTime format property.

If this property is cleared, or the element or attribute was not copied from an
input message, the UTC format in the output message is controlled solely by the
dateTime format property.

General settings

Property Type Meaning

Output policy
for missing
elements

Enumerated Controls whether the default value or null value is used on output for missing
elements.

Valid values are UseDefaultValue or UseNullValue.

Derive default
length from
logical type

Check box If this property is selected, an unset TDS Length property attempts to derive its
default value from the simple type of the element (string, binary, integer, and
decimal simple logical types only). For these logical types, it applies only to the
Binary, Text, Integer, External Decimal, and Packed Decimal physical types.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“Custom Wire Format message set properties” on page 5375
The tables define the properties that you can set for a Custom Wire Format
message set.

5390 WebSphere Message Broker Version 7.0.0.8

“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.
“TDS Mnemonics”
The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both.
“White space characters in TDS” on page 5533
White space characters are defined as ASCII characters (hexadecimal) 'X'09 to 'X'0D
and EBCDIC characters 'X'05, 'X'0B, 'X'0C, 'X'0D, 'X'25, and 'X'40.
“Default TDS message set properties” on page 5394
The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

TDS Mnemonics:

The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both.

These TDS mnemonics and their associated properties are listed in the following
table.

Mnemonic string Meaning Default value Associated property

<EDIFACT_CS> Component separator in
EDIFACT

: Message set and complex type
or group, Delimiter

<EDIFACT_DEC_NOTATION> Decimal notation in EDIFACT . Message set, Decimal Point

<EDIFACT_DS> Data element separator in
EDIFACT

+ Message set and complex type
or group, Delimiter

<EDIFACT_ESC_CHAR> Escape character in EDIFACT ? Message set, Escape Character

<EDIFACT_GROUP_TERM> Tag terminator in EDIFACT ' Message set, Group Terminator

<EDIFACT_TAGDATA_SEP> Tag data separator in EDIFACT

This is overridden with the
same value as that which
overrides <EDIFACT_DS>

+ Message set and complex type
or group, Tag Data Separator

<HL7_CS> Component separator in HL7 ^ Message set and complex type
or group, Delimiter

<HL7_FS> Data element separator in HL7 | Message set and complex type
or group, Delimiter

<HL7_RS> Repeating element delimiter in
HL7

~ Local element and element
reference, Repeating Element
Delimiter

<HL7_SCS> Sub-component separator in
HL7

& Message set and complex type
or group, Delimiter

<X12_CS> Component separator for X12 : Message set and complex type
or group, Delimiter

<X12_DS> Data element separator for X12 * Message set and complex type
or group, Delimiter

Chapter 14. Reference 5391

Mnemonic string Meaning Default value Associated property

<X12_ERS> Element repetition separator for
X12

{ Local element and element
reference, Repeating Element
Delimiter

<X12_GROUP_TERM> Tag terminator in X12 ! Message set level, Group
Terminator

Mnemonics for control characters are shown in the following table.

Mnemonic Hex
value

Unicode Description

<ACK> X'06' <U+0006> Acknowledge

<BEL> X'07' <U+0007> Bell

<BS> X'08' <U+0008> Backspace

<CAN> X'18' <U+0018> Cancel

<CR> X'0D' <U+000D> Carriage Return

<DC1> X'11' <U+0011> Device Control One

<DC2> X'12' <U+0012> Device Control Two

<DC3> X'13' <U+0013> Device Control Three

<DC4> X'14' <U+0014> Device Control Four

<DLE> X'10' <U+0010> Data Link Escape

 X'19' <U+0019> End of Medium

<ENQ> X'05' <U+0005> Inquiry

<EOT> X'04' <U+0004> End of Transmission

<ESC> X'1B' <U+001B> Escape

<ETB> X'17' <U+0017> End of Transmission Block

<ETX> X'03' <U+0003> End of Text

<FF> X'0C' <U+000C> Form Feed

<FS> X'1C' <U+001C> File Separator

<GS> X'1D' <U+001D> Group Separator

<GT> X'3E' <U+003E> Greater Than

<HT> X'09' <U+0009> Horizontal Tabulation

<LF> X'0A' <U+000A> Line Feed

<LT> X'3C' <U+003C> Less Than

<NAK> X'15' <U+0015> Negative Acknowledge

<NUL> X'00' <U+0000> Null-

<RS> X'1E' <U+001E> Record Separator

<SI> X'0F' <U+000F> Locking Shift Zero (Shift In)

<SO> X'0E' <U+000E> Locking Shift One (Shift Out)

<SOH> X'01' <U+0001> Start of Heading

<SP> X'20' <U+0020> Space

<STX> X'02' <U+0002> Start of Text

<SUB> X'1A' <U+001A> Substitute

5392 WebSphere Message Broker Version 7.0.0.8

Mnemonic Hex
value

Unicode Description

<SYN> X'16' <U+0016> Synchronous Idle

<US> X'1F' <U+001F> Unit Separator

<VT> X'0B' <U+000B> Vertical Tabulation

These mnemonics were created for characters that cannot be entered into the
message editor.

You can enter a mnemonic in the form <U+NNNN>, where NNNN are hexadecimal
digits. None of the characters in this structure are case-sensitive. Do not enclose
spaces inside the angle brackets. These numbers represent a Unicode character, not
a character in the code page of the input message.

You can enter a mnemonic in the form <0xNN>, where NN are hexadecimal digits.
None of the characters in this structure are case-sensitive. Do not enclose spaces
inside the angle brackets. These numbers represent a raw hexadecimal byte value,
not a character in the code page of the input message.

If a mnemonic is of the form <0xNN>, it is applied directly to the input data, and no
code page conversion takes place. Otherwise, a mnemonic is applied to the data
after the data has been converted into Unicode from the code page of the input
data.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“Default TDS message set properties” on page 5394
The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.

Chapter 14. Reference 5393

Default TDS message set properties:

The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.

For more information about the TDS Format, see “TDS Format message set
properties” on page 5381 and “TDS Mnemonics” on page 5391.

Default message set property values for TDS (part 1 of 3)

Property Messaging standard = User
Defined Text

Messaging Standard =
SWIFT

Messaging standard =
ACORD AL3

Group Indicator Empty <CR><LF>: Empty

Group Terminator Empty <CR><LF>- Empty

Delimiter Empty <CR><LF>: Empty

Suppress Absent
Element Delimiters

End of Type End of Type End of Type

Tag Data Separator Empty : Empty

Length of Tag Empty Empty Empty

Default CCSID 367 37 367

Trim on input No Trim Trim Both No Trim

Truncate on output Cleared Cleared Cleared

Escape Character Chosen - empty Chosen - empty Chosen - empty

Quote character Not chosen Not chosen Not chosen

Reserved Characters Empty Empty Empty

Decimal Point . , .

Packed decimal
positive code

C Not applicable Not applicable

Strict Numeric
Checking

Cleared Selected Selected

Derive sign from
logical type

Selected Not applicable Not applicable

Default byte order Big Endian Not applicable Not applicable

Default packed
decimal byte order

Big Endian Not applicable Not applicable

Default float format S390 Not applicable Not applicable

Text boolean true
value

1 1 Y

Text boolean false
value

0 0 N

Text boolean null
value

0 0 N

Binary boolean true
value

00000001 Not applicable Not applicable

Binary boolean false
value

00000000 Not applicable Not applicable

Binary boolean null
value

00000000 Not applicable Not applicable

5394 WebSphere Message Broker Version 7.0.0.8

Property Messaging standard = User
Defined Text

Messaging Standard =
SWIFT

Messaging standard =
ACORD AL3

Derive default
dateTime format
from logical type

Chosen Chosen Chosen

Use default
DateTime Format1

Not chosen, but
yyyy-MM-dd'T'HH:mm:ssZZZ
if chosen

Not chosen, but
yyyy-MM-dd'T'HH:mm:ssZZZ
if chosen

Not chosen, but
yyyy-MM-dd'T'HH:mm:ssZZZ
if chosen

Start of century for
2 digit years

53 80 53

Days in First Week
of Year

Use Broker Locale Use Broker Locale Use Broker Locale

First Day of Week Use Broker Locale Use Broker Locale Use Broker Locale

Strict Datetime
Checking

Selected Selected Selected

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale

Daylight Saving
Time

Cleared Cleared Cleared

Use input UTC
format on output

Cleared Cleared Cleared

Output policy for
missing elements

UseDefaultValue UseDefaultValue UseDefaultValue

Derive default
length from logical
type

Selected Selected Selected

Default message set property values for TDS (part 2 of 3)

Property Messaging standard =
EDIFACT

Messaging Standard = X12 Messaging standard = TLOG

Group Indicator Empty Empty Empty

Group Terminator <EDIFACT_GROUP_TERM> <X12_GROUP_TERM> Empty

Delimiter <EDIFACT_CS> <X12_CS> :

Suppress Absent
Element Delimiters

End of Type End of Type End of Type

Tag Data Separator <EDIFACT_TAGDATA_SEP> Empty Empty

Length of Tag Empty Empty Empty

Default CCSID 367 367 367

Trim on input Trim Both Trim Both No Trim

Truncate on output Cleared Cleared Cleared

Escape Character Chosen -
<EDIFACT_ESC_CHAR>

Chosen - empty Chosen - empty

Quote character Not chosen Not chosen Not chosen

Reserved Characters <EDIFACT_ESC_CHAR>
<EDIFACT_TAGDATA_SEP>
<EDIFACT_GROUP_TERM>
<EDIFACT_CS>

Empty Empty

Decimal Point <EDIFACT_DEC_NOTATION> . .

Chapter 14. Reference 5395

Property Messaging standard =
EDIFACT

Messaging Standard = X12 Messaging standard = TLOG

Packed decimal
positive code

Not applicable Not applicable Not applicable

Strict Numeric
Checking

Selected Selected Cleared

Derive sign from
logical type

Not applicable Not applicable Not applicable

Default byte order Not applicable Not applicable Not applicable

Default packed
decimal byte order

Not applicable Not applicable Not applicable

Default float format Not applicable Not applicable Not applicable

Text boolean true
value

1 1 1

Text boolean false
value

0 0 0

Text boolean null
value

0 0 0

Binary boolean true
value

Not applicable Not applicable Not applicable

Binary boolean false
value

Not applicable Not applicable Not applicable

Binary boolean null
value

Not applicable Not applicable Not applicable

Derive default
dateTime format
from logical type

Chosen Chosen Chosen

Use default
DateTime Format1

Not chosen, but
yyyy-MM-dd'T'HH:mm:ssZZZ
if chosen

Not chosen, but
yyyy-MM-dd'T'HH:mm:ssZZZ
if chosen

Not chosen, but
yyyy-MM-dd'T'HH:mm:ssZZZ
if chosen

Start of century for
2 digit years

53 53 53

Days in First Week
of Year

Use Broker Locale Use Broker Locale Use Broker Locale

First Day of Week Use Broker Locale Use Broker Locale Use Broker Locale

Strict Datetime
Checking

Selected Selected Selected

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale

Daylight Saving
Time

Cleared Cleared Cleared

Use input UTC
format on output

Cleared Cleared Cleared

Output policy for
missing elements

UseDefaultValue UseDefaultValue UseDefaultValue

Derive default
length from logical
type

Selected Selected Selected

5396 WebSphere Message Broker Version 7.0.0.8

Default message set property values for TDS (part 3 of 3)

Property Messaging standard = HL7 Messaging Standard = CSV Messaging standard = User
Defined Mixed

Group Indicator Empty Empty Empty

Group Terminator <CR> Empty Empty

Delimiter <HL7_FS> , Empty

Suppress Absent
Element Delimiters

End of Type Never End of Type

Tag Data Separator <HL7_FS> Empty Empty

Length of Tag Empty Empty Empty

Default CCSID 367 367 850

Trim on input No Trim No Trim Trim Padding Chars

Truncate on output Cleared Cleared Cleared

Escape Character Chosen - empty Not chosen Chosen - empty

Quote character Not chosen Chosen - " Not chosen

Reserved
Characters

Empty ,
<CR>
<LF>
"

Empty

Decimal Point . . .

Packed decimal
positive code

Not applicable C C

Strict Numeric
Checking

Cleared Cleared Cleared

Derive sign from
logical type

Not applicable Selected Selected

Default byte order Not applicable Big Endian Big Endian

Default packed
decimal byte order

Not applicable Big Endian Big Endian

Default float format Not applicable S390 S390

Text boolean true
value

1 1 1

Text boolean false
value

0 0 0

Text boolean null
value

0 0 0

Binary boolean true
value

Not applicable 00000001 00000001

Binary boolean
false value

Not applicable 00000000 00000000

Binary boolean null
value

Not applicable 00000000 00000000

Derive default
dateTime format
from logical type

Not chosen Chosen Chosen

Chapter 14. Reference 5397

Property Messaging standard = HL7 Messaging Standard = CSV Messaging standard = User
Defined Mixed

Use default
DateTime Format1

Chosen - yyyy-MM-
dd'T'HH:mm:ssZZZ

Not chosen - but
yyyy-MM-dd'T'HH:mm:ssZZZ
if chosen

Not chosen - but
yyyy-MM-dd'T'HH:mm:ssZZZ
if chosen

Start of century for
2 digit years

53 53 53

Days in First Week
of Year

Use Broker Locale Use Broker Locale Use Broker Locale

First Day of Week Use Broker Locale Use Broker Locale Use Broker Locale

Strict Datetime
Checking

Selected Selected Selected

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale

Daylight Saving
Time

Cleared Cleared Cleared

Use input UTC
format on output

Cleared Cleared Cleared

Output policy for
missing elements

UseDefaultValue UseDefaultValue UseDefaultValue

Derive default
length from logical
type

Selected Selected Selected

Default complex type/group property values for TDS (part 1 of 3)

Property Messaging standard = User
Defined Text

Messaging standard = SWIFT Messaging standard =
ACORD AL3

Data Element
Separation

Fixed Length Tagged Delimited Fixed Length AL3

Group Indicator Empty <CR><LF>: Empty

Group Terminator Empty <CR><LF>- Empty

Delimiter Empty <CR><LF>: not applicable

Suppress Absent
Element Delimiters

End of Type End of Type End of Type

Observe Element
Length

Selected Cleared Selected

Tag Data Separator Empty : Empty

Length of Tag Empty Empty Empty

Length of Encoded
Length

not applicable not applicable not applicable

Extra Chars in
Encoded Length

not applicable not applicable not applicable

Default complex type/group property values for TDS (part 2 of 3)

Property Messaging standard =
EDIFACT

Messaging standard = X12 Messaging standard = TLOG

Data Element
Separation

All Elements Delimited All Elements Delimited Fixed length

5398 WebSphere Message Broker Version 7.0.0.8

Property Messaging standard =
EDIFACT

Messaging standard = X12 Messaging standard = TLOG

Group Indicator Empty Empty Empty

Group Terminator <EDIFACT_GROUP_TERM> <X12_GROUP_TERM> Empty

Delimiter <EDIFACT_CS> <X12_CS> :

Suppress Absent
Element Delimiters

End of Type End of Type End of Type

Observe Element
Length

Cleared Cleared Cleared

Tag Data Separator <EDIFACT_TAGDATA_SEP> Empty Empty

Length of Tag Empty Empty Empty

Length of Encoded
Length

not applicable not applicable not applicable

Extra Chars in
Encoded Length

not applicable not applicable not applicable

Default complex type/group property values for TDS (part 3 of 3)

Property Messaging standard = HL7 Messaging standard = CSV Messaging standard = User
Defined Mixed

Data Element
Separation

All Elements Delimited All Elements Delimited Fixed Length

Group Indicator Empty Empty Empty

Group Terminator <CR> Empty Empty

Delimiter <HL7_FS> , Empty

Suppress Absent
Element Delimiters

End of Type Never End of Type

Observe Element
Length

Cleared Cleared Selected

Tag Data Separator <HL7_FS> not applicable Empty

Length of Tag Empty not applicable Empty

Length of Encoded
Length

not applicable not applicable not applicable

Extra Chars in
Encoded Length

not applicable not applicable not applicable

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

Chapter 14. Reference 5399

“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“TDS Mnemonics” on page 5391
The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both.

XML Wire Format message set properties:

The following tables define the properties for the XML Wire Format for the
message set.

Namespace settings

Property Type Meaning

Namespace URI String Enter the name of the namespace that you are using for the associated prefix.

Prefix String Enter the prefix to associate the element and attribute names that you use it with
to the namespace name.

Namespace schema locations

Property Type Meaning

Namespace URI String Enter the namespace name that identifies which namespace you are using.

Schema location String Enter the location of the schema for the associated namespace name that is used
to validate objects within the namespace.

XML declaration

Property Type Meaning

Suppress XML
Declaration

Check box Select the check box to suppress the XML declaration. If selected, the declaration
(for example, <?xml version='1.0'>) is suppressed.

By default, the check box is cleared.

XML Version Enumerated
type

This controls the value of the version in the generated XML declaration.

The default is 1.0.

If you set Suppress XML Declaration to Yes, this property is ignored.

5400 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Encoding Enumerated
type

This controls whether an encoding attribute is written in the generated XML
declaration.

If Null is selected, no encoding attribute is written in the XML declaration of the
output XML document.

If As document text is selected, an encoding attribute is generated that is
consistent with the text in the XML document.

The default is Null.

If the Suppress XML Declaration check box is selected, this property is ignored.

Standalone
Document

Enumerated
type

Select Yes, No, or Null from the list of values. If you select Null, no standalone
declaration is present in the XML declaration. If you select Yes or No, the
declaration standalone = "yes" or standalone = "no" is added to the XML
declaration when the output message is written. The default value is Null.

The setting of this property does not determine whether an external DTD subset
is loaded; external DTD subsets are never loaded in this release.

If the Suppress XML Declaration check box is selected, this property is ignored.

Output
Namespace
Declaration

Enumerated
type

The Output Namespace Declaration property controls where the namespace
declarations are placed in the output XML document. Select from:

v At start of document. Declarations for all of the entries in the Namespace
schema locations table above are output as attributes of the message in the
output XML document. The disadvantage of this option is that, in some cases,
unnecessary declarations might be output.

v As required. Declarations are output only when required by an element or
attribute that is in that namespace. The disadvantage of this option is that the
same namespace declaration might need to be output more than once in the
output XML document.

The default option is At start of document.

This property is active only if namespaces are enabled for this message set.

XML document type settings

Property Type Meaning

Suppress
DOCTYPE

Check box If you select the check box, the DOCTYPE (DTD) declaration is suppressed.

By default, the check box is selected.

DOCTYPE
System ID

String Specify the System ID for DOCTYPE external DTD subset (if DOCTYPE is
present). This is typically set to the name of the generated (or imported) DTD
for a message set.

If Suppress DOCTYPE is set, this property is ignored and cannot be changed (the
field is disabled). The default value is www.mrmnames.net/, followed by the
message set identifier.

DOCTYPE
Public ID

String Specify the Public ID for DOCTYPE external DTD subset (if DOCTYPE is
present, and System ID is specified).

If Suppress DOCTYPE is set, this property is ignored and cannot be changed (the
field is disabled). The default value is the message set identifier.

Chapter 14. Reference 5401

Property Type Meaning

DOCTYPE Text String Use this property to add additional DTD declarations. It is not parsed by the
XML parser and, therefore, it might not be valid XML. You can include ENTITY
definitions or internal DTD declarations. It is a string (up to 32 KB) in which
new line and tab characters are replaced by \n and \t respectively.

The content is not parsed, and appears in the output message. If there is an
in-line DTD, the content of this property takes precedence.

If you have set Suppress DOCTYPE, this property is ignored and cannot be
changed (the field is disabled).

For more information, see “MRM XML: In-line DTDs and the DOCTYPE text
property” on page 5407.

The default value is empty (not set).

XML representation of Boolean values

Property Type Meaning

Boolean True
Value

String Specify the string that is used to encode and recognize BOOLEAN true values.
When an XML document is parsed, the string 1 is always accepted as true for a
BOOLEAN element. Enter a string of up to 254 characters.

The default is true. 1 is also valid.

Boolean False
Value

String Specify the string that is used to encode and recognize BOOLEAN false values.
When an XML document is parsed, the string 0 is always accepted as false for a
BOOLEAN element. Enter a string of up to 254 characters.

The default is false. 0 is also valid.

XML representation of null values

Property Type Meaning

Encoding
Numeric Null

Enumerated
type

Specify the null encoding for numeric XML elements. This provides a method of
assigning a logical null meaning to such elements. You must select one of the
following values from the list shown:
v NULLEmpty. If the element value is the empty string, the element is null. This is

the default value.
v NULLValue. If the element value matches that provided by associated property

Encoding Numeric Null Value, the element is null.
v NULLXMLSchema. If the element contains an xsi:nil attribute that evaluates to

true, the element is null.
v NULLValueAttribute. This option is valid only for elements that have XML

Wire Format property Render set to either XMLElementAttrVal or
XMLElementAttrIDVal. See “XML Null handling options” on page 6258 for
details.

v NULLAttribute (deprecated). If the element contains an attribute with a name
that matches that provided by associated property Encoding Numeric Null
Value, and the attribute evaluates to true, the element is null.

v NULLElement (deprecated). If the element contains a child element with a name
that matches that provided by associated property Encoding Numeric Null
Value, the element is null.

See “XML Null handling options” on page 6258 for full details.

5402 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Encoding
Numeric Null
Value

String Specify the value to qualify the Encoding Numeric Null property, if you have set
that to NULLValue, NULLAttribute, or NULLElement. Refer to “XML Null handling
options” on page 6258 for further information.

Encoding
Non-Numeric
Null

Enumerated
type

Specify the null encoding for non-numeric XML elements. This provides a
method of assigning a logical null meaning to such elements. The options are
identical to those available for property Encoding Numeric Null.

Encoding
Non-Numeric
Null Value

String Specify the value to qualify the Encoding Non-Numeric Null property. Refer to
“XML Null handling options” on page 6258 for further information.

DateTime settings

Property Type Meaning

Derive default
dateTime
format from
logical type

Button Select this option if you want the default dateTime format to be determined by
the logical type of the element or attribute.

You can override this property for an element or attribute within a complex
type.

Use default
dateTime
format

Button and
String

Select this option if you want to specify a default dateTime format that is fixed
for all elements or attributes of logical type dateTime, date, time, gYear,
gYearMonth, gMonth, gMonthDay, and gDay.

You can override this property for an element or attribute within a complex
type.

For more information, see “DateTime formats” on page 6310.

Start of century
for 2-digit years

Integer This property determines how 2-digit years are interpreted. Specify the two
digits that start a 100-year window that contains the current year. For example, if
you specify 89, and the current year is 2002, all 2-digit dates are interpreted as
being in the range 1989 - 2088.

Days in First
Week of Year

Enumerated Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days
in that week is less than the value specified here, the week is considered to be
the last week of the previous year; therefore, week 1 starts some days into the
new year. Otherwise, it is considered to be the first week of the new year; in this
case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a number from the list that is displayed.

First Day Of
Week

Enumerated Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a value from the list that is displayed.

Chapter 14. Reference 5403

Property Type Meaning

Strict DateTime
Checking

Check box Select this option if you want to restrict dateTimes to a valid dateTime format. If
Strict DateTime Checking is selected, receiving an incorrect dateTime causes an
error.

Strict dateTime checking
Examples of strict dateTime checking are:

v DateTimes are restricted to valid dateTimes only. When you use this
option, a date such as the 35th March is not processed as 4th April,
and 10:79 is not processed as 11:19. Receiving an out-of-band
dateTime, such as these examples, causes an error to occur.

v The number of characters for a numeric dateTime component must
be within the bounds of the corresponding formatting symbols.
Repeat the symbol to specify the minimum number of digits that you
require. The maximum number of digits that is permitted becomes
the upper bound for a particular symbol. For example, day in month
has an upper bound of 31; therefore, a format string of 'd' allows the
values 2 and 21 to be parsed, but does not allow the values 32 and
210. On output, numbers are padded with zeros to the specified
length. A year is a special case; see the message set property Start of
century for 2 digit years. For fractional seconds, the length must
implicitly match the number of format symbols on input. The output
is rounded to the specified length.

v White space is not skipped over. The white space in the input string
must correspond with the same number and position of white space
in the formatting string.

v If data remains that is not parsed in the input string after all the
symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking
Examples of lenient dateTime checking are:

v The parser converts out-of-band dateTime values to the appropriate
in-band value. For example, a date of 2005-05-32 is converted to
2005-06-01.

v Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where '-' is the field
separator) allows one or more characters to be parsed against MM
and dd. Therefore, dates that are not valid - for example, 2005-1-123
and 2005-011-12 - can be entered. The first value of 2005-1-123 is
output as the date 2005-05-03, and the second value of 2005-011-12 is
output as the date 2005-11-12.

v The number of the timezone formatting symbol Z is applicable only
to the output dateTime format.

v White space is skipped over.

Time Zone Enumerated The value that you set for this property is used if the value that you specified
for the Default DateTime Format property does not include Time Zone
information.

The initial value is Use Broker Locale, which causes the broker to get the
information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight Saving
Time

Check box Select this option if the area in the Time Zone property observes daylight saving
time. If it does not observe daylight saving time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,
the value passed represents the time zone without the daylight saving time.

5404 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Use input UTC
format on
output

Check box This property applies to elements and attributes of logical type xsd:dateTime or
xsd:time that have a dateTime format of I, IU, T, or TU, or that include ZZZ or
ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by
using either the Z character or timezone +00:00 in the value. On input, the MRM
parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output
message, the UTC format is preserved into the output message and overrides the
format that is implied by the dateTime format property.

If this property is cleared, or the element or attribute was not copied from an
input message, the UTC format in the output message is controlled solely by the
dateTime format property.

xsi:type settings

Property Type Meaning

Output policy
for xsi:type
attributes

Enumerated
type

When writing XML documents, use this property to specify the circumstances
under which the xsi:type attribute of elements is produced as output.

Never Do not produce xsi:type attributes for elements, even if xsi:type
attributes appear in the message tree.

When present
Produce xsi:type attributes for elements only when xsi:type attributes
appear in the message tree. This value is the default value.

Always (Simple elements only)
Ensure that all simple elements are produced with an xsi:type attribute.
If a simple element already has an xsi:type attribute in the message tree,
it is used; otherwise, an xsi:type attribute is generated by using the
rules in the following table.

Always (All elements)
Ensure that all elements are produced with an xsi:type attribute if
possible to do so. If an element already has an xsi:type attribute in the
message tree, it is used; otherwise, an xsi:type attribute is generated by
using the rules in the following table.

Follow SOAP Encoding rules
Follow the same behavior as for Always (Simple elements only).
Additionally, produce a SOAP encoding-style attribute in the root tag of
all messages.

If an xsi:type attribute needs to be produced as output, but does not appear in the
message tree, the value is generated as described in the following table.

Element type
Value generated when element is
defined in model

Value generated when element is
self-defining

Simple type If the type is global or is a built-in
type, use it.

If the type is local, use the global or
built-in type from which it is derived.

Use the built-in type which best
matches the data type of the element
in the message tree.

Chapter 14. Reference 5405

Element type
Value generated when element is
defined in model

Value generated when element is
self-defining

Complex type with simple content If the type is global use it.

If the type is local, use the global or
built-in type from which it is derived.

Use the built-in type which best
matches the data type of the element
in the message tree.

Complex type with complex content If the type is global use it.

If the type is local, no xsi:type
attribute is produced.

No xsi:type attribute is produced.

Deprecated

Note: The following properties are used to control behavior of the MRM parser;
they should not be changed from their default settings. These properties will be
withdrawn in a future release.

Property Type Meaning

Root Tag Name String Specify the name of the message set root tag. You can leave this property blank,
in which case no wrapper tags are used for messages (that is, the message tag is
the root of the document). The name can be followed by a space and additional
text for attribute/value pairs to appear with the root tag.

The default value is blank.

Suppress
Timestamp
Comment

Check box If selected, the timestamp comment string in the XML output is suppressed.

If not selected, the comment is not suppressed, and a comment of the form
<!--MRM Generated XML Output on: Tue Apr 23 09:34:42 2002--> is included in
the output message.

The default is for the check box to be selected.

Enable
Versioning
Support

Check box If this is selected, versioning support is enabled. This property specifies whether
XML namespace definitions are coded for the root tag in the message, together
with namespace qualifiers for any elements that do not belong to the default
namespace. These namespace definitions are used to represent the message set
dependency information, which is used to support the exchange of messages
between applications that are based on different customizations of the same
message set.

The default is for the check box to be selected, for compatibility with MRM XML
messages in earlier releases. If you did not use MRM XML messages in earlier
releases, you should ensure that this check box is not selected.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Handling xsi:type attributes” on page 1252
The prefix "xsi" is the namespace prefix used by convention for the XML Schema
instance namespace. XML documents can contain elements that have an xsi:type
attribute. This behavior provides an explicit data type for the element.

5406 WebSphere Message Broker Version 7.0.0.8

“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“Custom Wire Format message set properties” on page 5375
The tables define the properties that you can set for a Custom Wire Format
message set.
“MRM XML: In-line DTDs and the DOCTYPE text property”
You can include in-line DTDs in your messages, and you can specify additional
information by setting the property DOCTYPE Text. The parser takes certain actions
when constructing an output message.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

MRM XML: In-line DTDs and the DOCTYPE text property:

You can include in-line DTDs in your messages, and you can specify additional
information by setting the property DOCTYPE Text. The parser takes certain actions
when constructing an output message.
1. If the output message has to be regenerated, for example if you configure a

Compute node to create an output message by coding ESQL statements like SET
OutputRoot.MRM.Field1 = xxx:
v If you have set the property Suppress DOCTYPE for the message set in which

you have defined this message to Yes, both DOCTYPE information (specified
in the DOCTYPE Text property for the message set or message) and in-line
DTD are excluded from the output message.

v If you have set the property Suppress DOCTYPE for the message set in which
you have defined this message to No.
– The in-line DTD is preserved if possible.
– Otherwise, if the message is self-defining, the message set DOCTYPE Text

property information is included in the output message.
– Otherwise (the message is not self-defining), the message level DOCTYPE

Text property information is included in the output message.
2. If the output message does not have to be regenerated, the parser generates an

output message that is a direct copy of the input message. This occurs if you
have configured a Compute node in the message flow to copy the message
using SET OutputRoot = InputRoot (explicitly, or by checking the Copy entire
message check box), and you do not modify the message in any way in this or

Chapter 14. Reference 5407

any other node. In this case the in-line DTD is retained in the output message
but any information that you specify in the DOCTYPE Text property for the
message set or message is not included.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.

Documentation properties for a message set:

Use the documentation property of a message set to add information that enhances
the understanding of the function of the message set.

Property Type Meaning

Version String Use this field to enter a version for the message set. The version of the message set is
then displayed in the Eclipse properties view.

You can set a default value for this field in the message set preferences.

Documentation String You use the documentation property of a message set to add information that enhances
the understanding of the function of the message set.

This field requires a string value ; you can use any standard alphanumeric characters.

You can also use this field to define a keyword and its value that is displayed for the
deployed message set in the properties view of Eclipse. An example is:

$MQSI Author=Fred MQSI$

When the properties of the deployed message set are displayed, a row is added to the
display showing "Author" as the property name and "Fred" as its value.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.

5408 WebSphere Message Broker Version 7.0.0.8

“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
“Message flow version and keywords” on page 1445
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“Message set preferences” on page 5366
Preferences for message sets.
“Guidance for defining keywords” on page 4017
You can add extra information to an object in the form of one or more keywords.

Message definition file properties
The properties of a message definition file.

Namespace

Property Type Meaning

Prefix String The namespace prefix for the target namespace of this file. This field cannot be
changed after the message definition file has been created.

Target
Namespace

String The target namespace for the message definition file. All global objects created
within the file will have this namespace by default. This field cannot be changed
after the message definition file has been created.

Default namespaces for local objects

Property Type Meaning

Elements String The default namespace for all local elements within this message definition file.

Attributes String The default namespace for all local attributes within this message definition file.

Property Type Meaning

Default block String and
Enumerated
type

The default value for the block attribute for all complex types and elements
within this message definition file.

Chapter 14. Reference 5409

Property Type Meaning

Default final String and
Enumerated
type

The default value for the final attribute for all complex types and elements
within this message definition file.

Property Type Meaning

Use xml.xsd
schema

Check box Select this check box if you need to use the xml.xsd schema. When you select
this check box, the http://www.w3.org/2001/xml.xsd schema is imported and
you can use any of the constructs in that schema.

Note: The full text that describes this check box is Use http://www.w3.org/2001/
xml.xsd schema.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Substitution groups in the message model” on page 1199
Substitution groups are an XML Schema feature that provides a way of substituting
one element for another in an XML message.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Message definition file includes properties:

The location of each message definition file that has been included in this message
definition file is displayed.

Property Type Meaning

Schema
Location

String For each message definition file that has been included in this message
definition file, this field displays its location. The location is displayed as a
relative path from the message definition file to the included file.

Related concepts:

5410 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Reusing message model files” on page 1209
One message definition file can reuse message model objects defined in another
file.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Message definition file properties” on page 5409
The properties of a message definition file.

Message definition file imports properties:

The file imports properties of a message definition.

Property Type Meaning

Schema
Location

String For each message definition file that has been imported into this message
definition file, this field displays its location. The location is displayed as a
relative path from the message definition file to the imported file.

Prefix String Displays the namespace prefix for each imported message definition file.

Namespace String Displays the namespace URI for each imported message definition file.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.

Chapter 14. Reference 5411

“Reusing message model files” on page 1209
One message definition file can reuse message model objects defined in another
file.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Message definition file properties” on page 5409
The properties of a message definition file.

Message definition file redefines properties:

This provides details of the properties associated with message definition redefines.

Property Type Meaning

Schema
Location

String For each message definition file that has been redefined in this message
definition file, this field displays its location. The location is displayed as a
relative path from the message definition file to the included file.

Redefines are not supported, and result in a validation error. If you right-click the
error message and select Quick Fix, you can convert the redefines construct into an
include construct, which also removes the error message.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“Namespaces in the message model” on page 1201
Use namespaces to qualify message model object names.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Reusing message model files” on page 1209
One message definition file can reuse message model objects defined in another
file.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.

5412 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Message definition file properties” on page 5409
The properties of a message definition file.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Message category properties
A message category provides a way of grouping your messages.

The following table describes the properties that are associated with a message
category:

Property Type Meaning

Category Kind Enumerated
type

This property describes the purpose of the message category.

Choose from the following values:

v wsdl. This value is the default. Choose this value if the message category is to
participate in the generation of WSDL documents. When the WSDL document
is generated, the name of the message category provides the name for the
<wsdl:operation> element that is generated for eligible messages in the
message category.
Note: Message categories are no longer necessary for the generation of WSDL
documents; they were necessary in Version 6.0.

v other. This value ndicates that the category represents a generic grouping of
messages as an aid to organizing them in your workspace.

Chapter 14. Reference 5413

Property Type Meaning

Category Usage Enumerated
type

Use this property to describe the operation type for a WSDL operation.

Choose from the following values:

v wsdl:request-response. This is the default if Category Kind is wsdl.

v wsdl:solicit-response.

v wsdl:one-way.

v wsdl:notification.

v empty string. This is the default if Category Kind is other.

Documentation String Use this property to add information to enhance the understanding of an object's
function.

This property is a string field; any standard alphanumeric characters can be
used.

If Category Kind is wsdl, the value of the field is included in any generated
WSDL as the wsdl:documentation child of the operation element in the WSDL
portType.

If Category Kind is other, the value of the field merely documents the Message
Category within your workspace.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Working with a message category file” on page 2923
This topic area lists the tasks that are involved when working with a message
category file.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message category member properties”
This describes the properties that are associated with a message category member.

Message category member properties:

This describes the properties that are associated with a message category member.

Property Type Meaning

Role Name String If Category Kind is wsdl, the value of the property becomes the WSDL message
part name and must be unique within the category. It always defaults to the
message name.

If Category Kind is other, the value of the property has no particular
significance.

5414 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Role Type Enumerated
type

This property determines the role that the message plays in the message
category.

Select from:

v wsdl:input

v wsdl:output

v wsdl:return

v wsdl:fault

v empty string

If Category Kind is wsdl, the default value is wsdl:input. This property dictates
the role within a WSDL operation. The value wsdl:return implies wsdl:output,
but for rpc-style WSDL generation it also identifies the message part that is used
as the return value and in this instance can be omitted from the parameterOrder
attribute. No more than one message can have Role Type of wsdl:return.

If Category Kind is other, the value defaults to an empty string and this
property has no role in the message category.

Role Usage Enumerated
type

This property determines the role that the message plays in the SOAP binding.

Select from:

v soap:body

v soap:header

v soap:fault

v soap:headerfault

v empty string

If Category Kind is wsdl, this property defaults to soap:body and dictates the
SOAP-binding child of the WSDL input, output, or fault element.

If Category Kind is other, this property is deactivated.

Documentation String This is a string property; any standard alphanumeric characters can be used.

If Category Kind is wsdl, the value of the property is included in any generated
WSDL as the wsdl:documentation child of the WSDL input, output, or fault
element under the WSDL portType.

If Category Kind is other, the value merely documents the Message Category
within your workspace.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Working with a message category file” on page 2923
This topic area lists the tasks that are involved when working with a message
category file.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5415

“Message category properties” on page 5413
A message category provides a way of grouping your messages.

Message model object properties
Access property information by property kind, or by object.

There are two ways of accessing the reference information for the properties of
message model objects. The following topics allow you to access the property
information by property kind:
v “Logical properties for message model objects”
v “Physical properties for message model objects” on page 5455
v “Documentation properties for all message set objects” on page 5413

Alternatively, you can access the property information by object, starting from:
v “Message model object properties by object” on page 5536

Deprecated objects are dealt with separately. For further information, see
“Deprecated message model object properties” on page 6069
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Logical properties for message model objects”
Logical property information is available for certain objects.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Logical properties for message model objects:

Logical property information is available for certain objects.
v “Attribute group reference logical properties” on page 5417
v “Attribute reference logical properties” on page 5418
v “Complex type logical properties” on page 5419

5416 WebSphere Message Broker Version 7.0.0.8

v “Element reference logical properties” on page 5423
v “Global attribute logical properties” on page 5425
v “Global attribute group logical properties” on page 5429
v “Global element logical properties” on page 5430
v “Global group logical properties” on page 5433
v “Group reference logical properties” on page 5436
v “Key logical properties” on page 5437
v “Keyref logical properties” on page 5437
v “Local element logical properties” on page 5442
v “Local group logical properties” on page 5446
v “Message logical properties” on page 5449
v “Simple type logical properties” on page 5450
v “Unique logical properties” on page 5452
v “Wildcard attribute logical properties” on page 5453
v “Wildcard element logical properties” on page 5453
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute group reference logical properties:

The logical properties of an attribute group reference.

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the list.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

Chapter 14. Reference 5417

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute reference logical properties:

The logical properties of an attribute reference.

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the list.

Property Type Meaning

Usage Enumerated
type

Use this property with the Value property found in an attribute object. The
default value for the Usage property is optional.

Select from the following options:

v optional.

– If the Value property is set to default, and no data has been entered in the
Value property, the attribute can appear once and can have any value.

– If the Value property is set to default, the attribute can appear once. If it
does not appear, its value is the data that has been entered in the Value
property. If it does appear, it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear, its value is the data that has been
entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– If the Value property is set to default, and no data has been entered in the
Value property, the attribute must appear once and can have any value.

– If the Value property is set to fixed, the attribute must appear once, and it
must match the data that has been entered in the Value property.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

5418 WebSphere Message Broker Version 7.0.0.8

Complex type logical properties:

The logical properties of a complex type include properties that describe content
and substitution settings.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Base Type Enumerated
type

You can use this property to select a type (simple or complex) that is used as the
starting point to define a new complex type that is derived by restriction or
extension.

Derived By Enumerated
type

If this property is active, select one of the following options:

v restriction. If a complex type is derived by restriction, the content model of
the complex type is a subset of the base type.

v extension. If the complex type is derived by extension, the content model of
the complex type is the content model of the base type plus the content model
specified in the type derivation.

Derivation by list or union is not supported.

Content

The following table shows the valid settings for Composition and Content
Validation. These properties are located on the group which defines the content of
this type. They can be edited only if the Local group button is selected. If the
Global group button is selected, these properties are taken from the global group
identified by the Group name field.

Valid children in a complex type that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 5422.

Property Type Meaning

Local Group Button Select this property if the content of your complex type is a local group.

Chapter 14. Reference 5419

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select one of the following options:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.If you select this option,
you can define only messages as members. Each member can repeat, but the
same message cannot appear twice in the list of members. Like choice, only
one of the defined members can be present in a message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 1191.

5420 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled
in your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 5422 for further details.

Select from the following options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined
within the message set.

v Open. The complex type can contain any valid element, not just those that
you have added to this complex type.

See “Combinations of Composition and Content Validation” on page 5612 for
further details of these options.

Group
Reference

Button Select this option if the content of your complex type is a reference to a group
object

Group Name Enumerated
type

The Group Name is the name of the group that this complex type refers to. The
groups available to be referenced can be selected from the drop down list.

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Mixed Check box Select this option when the complex type has mixed content, and contains
character data and sub-elements.

Substitution settings

Property Type Meaning

Final Multiple
selection
enumerated
type

The final attribute on a complex type controls whether other types can be
derived from it. Valid values are extension/restriction/all. You can select from
one or more of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are
restrictions of the head element's type.

v extension. Prohibit type substitution by elements whose types are extensions
of the head element's type.

v #all. Prohibit substitution by any method.

To select more than one, you must type the selection into the property field.

Chapter 14. Reference 5421

Property Type Meaning

Block Multiple
selection
enumerated
type

The block attribute on a complex type restricts the types of substitutions which
are allowed for elements based on that type. In the WebSphere Message Broker
its effect is the same as if the block attribute were copied from the complex type
onto every element based on the complex type. You can select from one or more
of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are
restrictions of the head element's type.

v extension. Prohibit type substitution by elements whose types are extensions
of the head element's type.

v #all. Prohibit substitution by any method.

To select more than one, you must type the selection into the property field.

Abstract Check box If selected, no elements based on this type can appear in the message.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

MRM content validation:

Content Validation is applied when the domain is MRM and validation is
enabled. The Content Validation property specifies how strictly the MRM parser
validates the members of a complex type or group.

The first of the following two tables shows the valid settings for Content
Validation if Composition is set to Message. The second table shows the valid
settings for Content Validation if Composition is not set to Message.

Content Validation options if Composition is set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any message, not just those
that you have defined in this message set. You can use this option for sparse messages (see
“Self-defining elements and messages” on page 1198 for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the messages that are
members of this complex type or group. This is always the case for messages represented in
CWF format.

Open Defined When a message is parsed, this complex type or group can contain any message defined within
the message set.

5422 WebSphere Message Broker Version 7.0.0.8

Content Validation options if Composition is not set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any elements and not just
those that you have defined in this message set (see “Self-defining elements and messages” on
page 1198 for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the elements that are
members of this complex type or group.

Open Defined When a message is parsed, this complex type or group can contain any element that you have
defined within the message set.

When you are using Content Validation set to open or open defined, you cannot
specify the precise position where the content that is not modeled is permitted to
occur. If you want to do this, you should consider using a wildcard element as an
alternative. Wildcard elements can appear only within a complex type or group
with Composition of sequence and Content Validation of closed.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Complex type logical properties” on page 5419
The logical properties of a complex type include properties that describe content
and substitution settings.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Element reference logical properties:

The logical properties of an element reference include properties that specify the
number of occurrences of the element reference.

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the list.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Chapter 14. Reference 5423

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

The Min Occurs and Max Occurs properties are used in conjunction with an
element's Value properties. The following table summarizes how an element
reference can be constrained.

Min Occurs Max Occurs Fixed Default Notes

1 1 The element must appear once, and can have
any value.

1 1 Delta The element must appear once, and it must
match the data that has been entered in the
Value property. In this example, the element
must contain the text Delta.

2 -1 Delta The element must appear twice or more, and it
must match the data that has been entered in
the Value property. In this example, at least
two elements must contain the text Delta.

0 1 The element is optional, can appear once, and
can have any value.

0 1 Delta The element is optional, and can appear once.
If it does appear, its value must match the data
that has been entered in the Value property. If
it does not appear, its value is the data that has
been entered in the Value property.

0 1 Delta The element is optional, and can appear once.
If it does not appear, its value is the data that
has been entered in the Value property. If it
does appear, it must be the value given in the
element.

0 2 Delta The element is optional and can appear once,
twice, or not at all. If the element does not
appear, it is not provided. If the element
appears and it is empty, it set to the data held
in the Value property, else it is the value given
in the element.

0 0 The element is prohibited, and must not
appear.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

5424 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute logical properties:

The logical properties of a global attribute.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Chapter 14. Reference 5425

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer. This document is available on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

The Value properties are used with the Usage property in an Attribute Reference or
a Local Attribute.

5426 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Chapter 14. Reference 5427

Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

5428 WebSphere Message Broker Version 7.0.0.8

Global attribute group logical properties:

The logical properties of an attribute group.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5429

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Global element logical properties:

The logical properties of a global element.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer. This document is available on the World Wide Web
Consortium (W3C) Web site.

5430 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Chapter 14. Reference 5431

Property Type Meaning

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Nillable Check box Select this option if you want the element to be able to be defined as null. A null
value is distinct from being empty, when the element contains no data.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the 'head'
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

5432 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Final Enumerated
type

Limit the set of elements that can belong to its substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element.

v extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element.

v #all. Prohibit substitution by all methods.

Block Enumerated
type

Limit the set of elements that can be substituted for this element in a message.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element

v extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element

v substitution. Prohibit element substitution by members of the element's
substitution group.

v #all. Prohibit substitution by all methods.

Substitution
Group

Enumerated
type

Specify the name of a 'head' element. Setting this property indicates that this
element is a member of the substitution group for the head element.

Abstract Check box Select this option if you do not want the element to appear in the message, but
require one of the members of its substitution group to appear in its place.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global group logical properties:

The logical properties of a global group.

Valid children in a global group that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 5422.

Chapter 14. Reference 5433

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

5434 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from the following options:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 1191.

Chapter 14. Reference 5435

Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled
in your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 5422 for further details.

Select from the following options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined
within the message set.

v Open. The complex type can contain any valid element, not just those that
you have added to this complex type.

See “Combinations of Composition and Content Validation” on page 5612 for
further details of these options.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Group reference logical properties:

The logical properties of a group reference include properties that specify the
number of occurrences of the group reference.

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the list.

Occurrence properties

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

5436 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Key logical properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Keyref logical properties:

This describes the logical properties of a keyref.

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:

Chapter 14. Reference 5437

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local attribute logical properties:

The logical properties of a local attribute.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

5438 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer. This document is available on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an
Attribute Reference or a Local Attribute.

Chapter 14. Reference 5439

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

5440 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Usage properties

Property Type Meaning

Usage Enumerated
type

Use this property with the Value property found in an attribute object. The
default value for the Usage property is optional.

Select from the following options:

v optional.

– If the Value property is set to default, and no data has been entered in the
Value property, the attribute can appear once and can have any value.

– If the Value property is set to default, the attribute can appear once. If it
does not appear, its value is the data that has been entered in the Value
property. If it does appear, it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear, its value is the data that has been
entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– If the Value property is set to default, and no data has been entered in the
Value property, the attribute must appear once and can have any value.

– If the Value property is set to fixed, the attribute must appear once, and it
must match the data that has been entered in the Value property.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

Chapter 14. Reference 5441

Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local element logical properties:

The logical properties of a local element include properties that specify the number
of occurrences and value of the local element.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

5442 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer. This document is available on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Chapter 14. Reference 5443

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

5444 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Nillable Check box Select this option if you want the element to be able to be defined as null. A null
value is distinct from being empty, when the element contains no data.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the 'head'
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

Property Type Meaning

Final Enumerated
type

Limit the set of elements that can belong to its substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element.

v extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element.

v #all. Prohibit substitution by all methods.

Block Enumerated
type

Limit the set of elements that can be substituted for this element in a message.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element

v extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element

v substitution. Prohibit element substitution by members of the element's
substitution group.

v #all. Prohibit substitution by all methods.

Substitution
Group

Enumerated
type

Specify the name of a 'head' element. Setting this property indicates that this
element is a member of the substitution group for the head element.

Chapter 14. Reference 5445

Property Type Meaning

Abstract Check box Select this option if you do not want the element to appear in the message, but
require one of the members of its substitution group to appear in its place.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local group logical properties:

The logical properties of a local group include properties that specify the number
of occurrences of the local group.

Valid children in a local group that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 5422.

5446 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from the following options:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 1191.

Chapter 14. Reference 5447

Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled
in your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 5422 for further details.

Select from the following options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined
within the message set.

v Open. The complex type can contain any valid element, not just those that
you have added to this complex type.

See “Combinations of Composition and Content Validation” on page 5612 for
further details of these options.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

5448 WebSphere Message Broker Version 7.0.0.8

Message logical properties:

This section describes the logical properties of a message.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Message Alias String Specify an alternative unique value that identifies the message. This property is
only required if you are using the MRM domain and the Message Identity
technique to identify embedded messages, and the bit stream does not contain
the actual message name.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5449

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Simple type logical properties:

The logical properties of a simple type.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Base Type Enumerated
type

This property only applies to a simple type restriction.

You can use this property to select a base type that is used as the starting point
to define a new simple type that is derived by setting additional value
constraints.

Item Type Enumerated
type

This property only applies to a simple type list.

You can use this property to select the type that is used as the item type of the
list.

Variety Enumerated
type

This property displays the variety of the simple type you have selected, either
atomic, list, or union.

A simple type can also have “Simple type logical value constraints.”
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Simple type logical value constraints:

The properties, and their permissible values, vary according to the object type.

5450 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

Chapter 14. Reference 5451

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Unique logical properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

5452 WebSphere Message Broker Version 7.0.0.8

Wildcard attribute logical properties:

The logical properties of a wildcard attribute.

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

Property Type Meaning

Process Content Enumerated
type

If a message contains an attribute that corresponds to a wildcard in the message
model, Process Content defines how the attribute is validated.

Select one of the following options:

v strict. The parser can match only against attributes declared in the specified
namespace.

v lax. The parser attempts to match against attributes declared in all accessible
namespaces. If the specified namespace cannot be found, an error is not
generated.

v skip. If you select skip, the parser does not perform validation on the
attribute.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard element logical properties:

The logical properties of a wildcard element include properties that specify the
number of occurrences of the wildcard element.

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

Chapter 14. Reference 5453

Property Type Meaning

Process Content Enumerated
type

If a message contains an element that corresponds to a wildcard in the message
model, Process Content defines how the element is validated.

Select one of the following options:

v strict. The parser can match only against elements declared in the specified
namespace.

v lax. The parser attempts to match against elements declared in any accessible
namespace. If the specified namespace cannot be found, an error is not
generated.

v skip. If you select skip the parser does not perform validation on the element.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

5454 WebSphere Message Broker Version 7.0.0.8

Physical properties for message model objects:

CWF, XML, and TDS format physical properties for message model objects.

Property information is available for objects within:
v “Custom Wire Format physical properties for message model objects”
v “XML wire format physical properties for message model objects” on page 5476
v “TDS format physical properties for message model objects” on page 5501
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Physical properties for message model objects”
CWF, XML, and TDS format physical properties for message model objects.

Custom Wire Format physical properties for message model objects:

Custom wire format physical property information is available for some objects.
v “Attribute group reference CWF properties” on page 5456
v “Attribute reference CWF properties” on page 5457
v “Complex type CWF properties” on page 5459
v “Element reference CWF properties” on page 5460
v “Global attribute CWF properties” on page 5462
v “Global attribute group CWF properties” on page 5463
v “Global element CWF properties” on page 5463
v “Global group CWF properties” on page 5464
v “Group reference CWF properties” on page 5465
v “Key CWF properties” on page 5466
v “Keyref CWF properties” on page 5467
v “Local element CWF properties” on page 5469
v “Local group CWF properties” on page 5471

Chapter 14. Reference 5455

v “Message CWF properties” on page 5473
v “Simple type CWF properties” on page 5474
v “Unique CWF properties” on page 5474
v “Wildcard attribute CWF properties” on page 5475
v “Wildcard element CWF properties” on page 5475
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute group reference CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not

5456 WebSphere Message Broker Version 7.0.0.8

separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute reference CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Chapter 14. Reference 5457

Type of object Properties

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.

5458 WebSphere Message Broker Version 7.0.0.8

“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Complex type CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

Chapter 14. Reference 5459

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Element reference CWF properties:

The properties, and permissible values, vary according to the type of object.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

5460 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.

Chapter 14. Reference 5461

Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

5462 WebSphere Message Broker Version 7.0.0.8

“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute group CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global element CWF properties:

There are no CWF properties to show for a global element.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not

Chapter 14. Reference 5463

separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global group CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

5464 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Group reference CWF properties:

The CWF properties of a group reference.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Chapter 14. Reference 5465

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Key CWF properties:

There are no properties to show.
Related concepts:

5466 WebSphere Message Broker Version 7.0.0.8

“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Keyref CWF properties:

This describes the CWF properties of a keyref.

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local attribute CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

Chapter 14. Reference 5467

Type of object Properties

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

5468 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local element CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

Chapter 14. Reference 5469

Type of object Properties

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.

5470 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local group CWF properties:

The CWF properties of a local group are described in the following tables.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Chapter 14. Reference 5471

Property Type Meaning

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

5472 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Message CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5473

Simple type CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Unique CWF properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

5474 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard attribute CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard element CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise

Chapter 14. Reference 5475

appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects”
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

XML wire format physical properties for message model objects:

XML wire format physical property information is available for some objects.
v “Attribute group reference XML properties” on page 5477
v “Attribute reference XML properties” on page 5478
v “Complex type XML properties” on page 5480
v “Element reference XML properties” on page 5481
v “Global attribute XML properties” on page 5483
v “Global attribute group XML properties” on page 5485
v “Global element XML properties” on page 5486
v “Global group XML properties” on page 5488
v “Group reference XML properties” on page 5488
v “Key XML properties” on page 5489
v “Keyref XML properties” on page 5490
v “Local attribute XML properties” on page 5490
v “Local element XML properties” on page 5492
v “Local group XML properties” on page 5494
v “Message XML properties” on page 5495

5476 WebSphere Message Broker Version 7.0.0.8

v “Simple type XML properties” on page 5498
v “Unique XML properties” on page 5499
v “Wildcard attribute XML properties” on page 5499
v “Wildcard element XML properties” on page 5500
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute group reference XML properties:

The XML properties of an attribute group reference.

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.

Chapter 14. Reference 5477

“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute reference XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

5478 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.

Chapter 14. Reference 5479

“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Complex type XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

5480 WebSphere Message Broker Version 7.0.0.8

“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Element reference XML properties:

The properties, and their permissible values, vary according to the type of object.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Chapter 14. Reference 5481

Type of object Properties

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

5482 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Chapter 14. Reference 5483

Type of object Properties

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

5484 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute group XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5485

Global element XML properties:

The properties, and their permissible values, vary according to the type of object.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

5486 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

Chapter 14. Reference 5487

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global group XML properties:

There are no properties to show.

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Group reference XML properties:

The XML properties of a group reference.

There are no properties to show.
Related concepts:

5488 WebSphere Message Broker Version 7.0.0.8

“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Key XML properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.

Chapter 14. Reference 5489

“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Keyref XML properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local attribute XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

5490 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.

Chapter 14. Reference 5491

“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local element XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

5492 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.

Chapter 14. Reference 5493

“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local group XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

5494 WebSphere Message Broker Version 7.0.0.8

“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Message XML properties:

The following tables describe the XML properties of a message.

Namespace schema locations

This property is only active if namespaces have been enabled.

Property Type Meaning

Namespace URI String A unique string, usually in the form of a URL that identifies the schema.

If namespaces have not been enabled, this property displays <no target
namespace>.

This property overrides the same property at the message set level.

Schema location String Enter the location of the schema for the associated namespace name to be used
to validate objects in the namespace.

XML declarations

Property Type Meaning

Output
Namespace
Declaration

Enumerated
type

The Output Namespace Declaration property controls where the namespace
declarations are placed in the output XML document.

Select from:
v At start of document. Declarations for all of the entries in the Namespace

schema locations table above are produced as attributes of the message in the
output XML document. The disadvantage of this option is that in some cases
unnecessary declarations might be produced.

v As required. Declarations are produced only when required by an element or
attribute that is in that namespace. The disadvantage of this option is that the
same namespace declaration might need to be produced more than once in
the output XML document.

The default option is At start of document.

This property is active only if namespaces are enabled for this message set.

Chapter 14. Reference 5495

XML document type settings

Property Type Meaning

DOCTYPE
System ID

String Specify the System ID for DOCTYPE external DTD subset. It overrides the
equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled).

The default value is the value that you specified for the DOCTYPE System ID
property for the message set.

DOCTYPE
Public ID

String Specify the Public ID for DOCTYPE external DTD subset. It overrides the
equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE Public ID
property for the message set.

DOCTYPE Text String Enter optional additional text to include within the DOCTYPE. It overrides the
message set property for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled).

For more information, see “MRM XML: In-line DTDs and the DOCTYPE text
property” on page 5407.

The default value is the value that you specified for the DOCTYPE Text property
for the message set.

Property Type Meaning

Root Tag Name String Specify the name of the root tag for a message bit stream XML document. It
overrides the message set property set for this message.

The default value is the value that you specified for the Root Tag Name property
for the message set.
Note: This property is deprecated. Do not change its value from its default
setting.

Field identification

A number of the following properties will only become active depending on the
value that Render property is set to.

5496 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (for output) in the
resulting XML document. Select one of the following values from the drop-down
list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML Name
property to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise

Chapter 14. Reference 5497

appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Simple type XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.

5498 WebSphere Message Broker Version 7.0.0.8

“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Unique XML properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard attribute XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

Chapter 14. Reference 5499

Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard element XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.

5500 WebSphere Message Broker Version 7.0.0.8

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects”
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

TDS format physical properties for message model objects:

Some objects have TDS wire format properties.

TDS format physical property information is available for the following objects:
v “Attribute group reference TDS properties” on page 5502
v “Attribute reference TDS properties” on page 5503
v “Complex type TDS properties” on page 5505
v “Element reference TDS properties” on page 5509
v “Global attribute TDS properties” on page 5511
v “Global attribute group TDS properties” on page 5513
v “Global element TDS properties” on page 5513
v “Global group TDS properties” on page 5516
v “Group reference TDS properties” on page 5520
v “Key TDS properties” on page 5521
v “Keyref TDS properties” on page 5521
v “Local attribute TDS properties” on page 5522
v “Local element TDS properties” on page 5524
v “Local group TDS properties” on page 5526
v “Message TDS properties” on page 5531
v “Simple type TDS properties” on page 5532
v “Unique TDS properties” on page 5532
v “White space characters in TDS” on page 5533
v “Wildcard attribute TDS properties” on page 5534
v “Wildcard element TDS properties” on page 5534
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

Chapter 14. Reference 5501

“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute group reference TDS properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

5502 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute reference TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

Chapter 14. Reference 5503

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

5504 WebSphere Message Broker Version 7.0.0.8

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Complex type TDS properties:

The TDS properties of a complex type.

Field Identification

If the complex type is based on a global group, the TDS properties listed are
located in the global group. If so, any changes to these properties are applied to
the global group, and affect all references to the group (including any other
complex types which are based on it).

Chapter 14. Reference 5505

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See “Global element TDS properties” on page 5513. You
must also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to
it. You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message
definition file properties” on page 5409.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
5513. If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have
a Length or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

5506 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. Use this option when the same delimiter is used
to delimit parent and child objects. For example, if an optional child element
is missing, message processing applications cannot tell where the child
elements in a message end and the next parent element starts, if the delimiters
are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

v During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

v During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the
Justification and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Chapter 14. Reference 5507

Property Type Meaning

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this property
allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2147483647.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length, and the actual number of data characters is
less than the value found in the length field.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.

5508 WebSphere Message Broker Version 7.0.0.8

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Element reference TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

Complex types

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Chapter 14. Reference 5509

Type of object Properties

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

5510 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

Chapter 14. Reference 5511

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

5512 WebSphere Message Broker Version 7.0.0.8

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute group TDS properties:

The TDS properties of a global attribute group.

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global element TDS properties:

The properties, and their permissible values, vary according to the object type.

Chapter 14. Reference 5513

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

Complex types

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

5514 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Chapter 14. Reference 5515

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global group TDS properties:

The TDS properties of a global group.

5516 WebSphere Message Broker Version 7.0.0.8

Field Identification

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See “Global element TDS properties” on page 5513. You
must also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to
it. You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message
definition file properties” on page 5409.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
5513. If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have
a Length or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

Chapter 14. Reference 5517

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. Use this option when the same delimiter is used
to delimit parent and child objects. For example, if an optional child element
is missing, message processing applications cannot tell where the child
elements in a message end and the next parent element starts, if the delimiters
are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

v During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

v During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the
Justification and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

5518 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this property
allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2147483647.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length, and the actual number of data characters is
less than the value found in the length field.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.

Chapter 14. Reference 5519

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Group reference TDS properties:

The following tables describe the TDS properties of a group reference.

Field identification

Property Type Meaning

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Occurrences

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.

5520 WebSphere Message Broker Version 7.0.0.8

“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Key TDS properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Keyref TDS properties:

There are no properties to show.
Related concepts:

Chapter 14. Reference 5521

“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local attribute TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Binary types

v base64Binary

v hexBinary

Boolean types

v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

5522 WebSphere Message Broker Version 7.0.0.8

Float types

v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types

v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Chapter 14. Reference 5523

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local element TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

Complex types

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

5524 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Chapter 14. Reference 5525

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local group TDS properties:

TDS properties of a local group.

5526 WebSphere Message Broker Version 7.0.0.8

Field Identification

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See “Global element TDS properties” on page 5513. You
must also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to
it. You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message
definition file properties” on page 5409.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
5513. If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have
a Length or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

Chapter 14. Reference 5527

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. Use this option when the same delimiter is used
to delimit parent and child objects. For example, if an optional child element
is missing, message processing applications cannot tell where the child
elements in a message end and the next parent element starts, if the delimiters
are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

v During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

v During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the
Justification and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

5528 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this property
allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2147483647.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length, and the actual number of data characters is
less than the value found in the length field.

Field Identification

Property Type Meaning

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Occurrences

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Chapter 14. Reference 5529

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

5530 WebSphere Message Broker Version 7.0.0.8

Message TDS properties:

Message TDS properties.

Property Type Meaning

Message Key String Specify an alternative unique value that identifies the message in the bit stream.
This property is required if the message is embedded within another message.
Note: From Version 6.0 onwards, the use of Message Key has been deprecated for
identifying an embedded message. You now have the option of identifying an
embedded message by Message Identity, using the Message Alias logical
property.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Identifying an embedded message by using a Message Identity” on page 1193
You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message logical properties” on page 5449
This section describes the logical properties of a message.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Chapter 14. Reference 5531

“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Simple type TDS properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Unique TDS properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

5532 WebSphere Message Broker Version 7.0.0.8

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

White space characters in TDS:

White space characters are defined as ASCII characters (hexadecimal) 'X'09 to 'X'0D
and EBCDIC characters 'X'05, 'X'0B, 'X'0C, 'X'0D, 'X'25, and 'X'40.

You can specify these characters in your message model using TDS mnemonics if
they are important to your processing, for example, to use as group terminators or
delimiting characters. See “TDS Mnemonics” on page 5391 for further information.

If both the following conditions are met, white space after the end of a group and
preceding the tag of the next element is ignored:
v TDS messaging standard property is "X12" or "EDIFACT"
v TDS data element separation in force for the structure is one of the following

types:
– Tagged delimiter
– Tagged fixed length
– Tagged encoded length

The following bit stream is accepted:
Tag<data>!<Any white space character>Tag

where:
v ! is the group terminator
v <Any white space character> is one of the ASCII or EBCDIC characters listed

previously

The following X12 ASCII message successfully parses:
ST*856*777777%<SPC><SPC><SPC><HEX 09>BSN*00*7654321*940920*10000%

The sequence
<SPC><SPC><SPC><HEX 09>

is ignored by the parser.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

Chapter 14. Reference 5533

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard attribute TDS properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard element TDS properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.

5534 WebSphere Message Broker Version 7.0.0.8

“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5535

Message model object properties by object:

The following objects have properties that can be viewed or set.
v “Attribute group reference properties” on page 5537
v “Attribute reference properties” on page 5541
v “Complex type properties” on page 5607
v “Element reference properties” on page 5620
v “Global attribute properties” on page 5697
v “Global attribute group properties” on page 5741
v “Global element properties” on page 5746
v “Global group properties” on page 5800
v “Group reference properties” on page 5810
v “Key properties” on page 5816
v “Keyref properties” on page 5819
v “Local attribute properties” on page 5822
v “Local element properties” on page 5909
v “Local group properties” on page 6014
v “Message properties” on page 6025
v “Simple type properties” on page 6032
v “Unique properties” on page 6057
v “Wildcard attribute properties” on page 6060
v “Wildcard element properties” on page 6064
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

5536 WebSphere Message Broker Version 7.0.0.8

“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Attribute group reference properties:

Different types of properties are available for an attribute group reference.

An attribute group reference can have the following properties;
v “Attribute group reference logical properties” on page 5417
v “Attribute group reference CWF properties” on page 5456
v “Attribute group reference XML properties” on page 5477
v “Attribute group reference TDS properties” on page 5502
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5537

“Additional MRM domain information” on page 6251
More information about the MRM domain.

Attribute group reference logical properties:

The logical properties of an attribute group reference.

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the list.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute group reference CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

5538 WebSphere Message Broker Version 7.0.0.8

“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute group reference XML properties:

The XML properties of an attribute group reference.

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5539

Attribute group reference TDS properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:

5540 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Attribute reference properties:

Different types of properties are available for an attribute reference.

An attribute reference can have the following properties;
v “Attribute reference logical properties” on page 5418
v “Attribute reference CWF properties” on page 5457
v “Attribute reference XML properties” on page 5478
v “Attribute reference TDS properties” on page 5503
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5541

“Additional MRM domain information” on page 6251
More information about the MRM domain.

Attribute reference logical properties:

The logical properties of an attribute reference.

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the list.

Property Type Meaning

Usage Enumerated
type

Use this property with the Value property found in an attribute object. The
default value for the Usage property is optional.

Select from the following options:

v optional.

– If the Value property is set to default, and no data has been entered in the
Value property, the attribute can appear once and can have any value.

– If the Value property is set to default, the attribute can appear once. If it
does not appear, its value is the data that has been entered in the Value
property. If it does appear, it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear, its value is the data that has been
entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– If the Value property is set to default, and no data has been entered in the
Value property, the attribute must appear once and can have any value.

– If the Value property is set to fixed, the attribute must appear once, and it
must match the data that has been entered in the Value property.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Attribute reference CWF properties:

The properties, and their permissible values, vary according to the object type.

5542 WebSphere Message Broker Version 7.0.0.8

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

Chapter 14. Reference 5543

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

5544 WebSphere Message Broker Version 7.0.0.8

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

CWF properties for attribute reference and local attribute binary types:

CWF properties for attribute reference and local attribute binary types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Chapter 14. Reference 5545

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

5546 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 5547

CWF properties for attribute reference and local attribute Boolean types:

CWF properties for attribute reference and local attribute Boolean types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Boolean schema types: Boolean

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5548 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for attribute reference and local attribute dateTime types:

CWF properties for attribute reference and local attribute dateTime types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Chapter 14. Reference 5549

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 6310 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal,
or Binary, and have selected the length to be defined by Length, enter the
number of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

5550 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5551

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

5552 WebSphere Message Broker Version 7.0.0.8

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message

Chapter 14. Reference 5553

models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for attribute reference and local attribute decimal types:

CWF properties for attribute reference and local attribute decimal types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

5554 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5555

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

5556 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234, equivalent to 'V' or 'P' in a COBOL picture clause. There is no C
equivalent

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Chapter 14. Reference 5557

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5558 WebSphere Message Broker Version 7.0.0.8

CWF properties for attribute reference and local attribute float types:

CWF properties for attribute reference and local attribute float types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Float schema types: double, float

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL and is the default value.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float
are represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list.
The default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

Chapter 14. Reference 5559

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

5560 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select or clear (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used with Sign Orientation.

Chapter 14. Reference 5561

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This property is not applicable if you have set Physical Type to Float.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

5562 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 5563

CWF properties for attribute reference and local attribute integer types:

CWF properties for attribute reference and local attribute integer types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1
and 11.

5564 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5565

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

5566 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Chapter 14. Reference 5567

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5568 WebSphere Message Broker Version 7.0.0.8

CWF properties for attribute reference and local attribute string types:

CWF properties for attribute reference and local attribute string types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and
have selected the length to be defined by Length, enter the number of length
units for the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Chapter 14. Reference 5569

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

5570 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Chapter 14. Reference 5571

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

5572 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Attribute reference XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Chapter 14. Reference 5573

Type of object Properties

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

5574 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element binary types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5575

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5576 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

Chapter 14. Reference 5577

Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

XML wire format properties for attribute reference, element reference, local
attribute and local element Boolean types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5578 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5579

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5580 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
dateTime types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element dateTime types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5581

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5582 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of dateTime formats.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical

Chapter 14. Reference 5583

model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element decimal types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5584 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5585

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5586 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element float
types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element float types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5587

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5588 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5589

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element integer types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5590 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5591

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5592 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
string types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element string types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5593

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5594 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5595

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Attribute reference TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

5596 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

Chapter 14. Reference 5597

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

TDS properties for attribute reference binary types:

The TDS wire format properties for attribute reference binary types.

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v Binary schema types: base64Binary, hexBinary

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.

5598 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for attribute reference Boolean types:

There are no properties to show.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5599

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for attribute reference dateTime types:

The TDS wire format properties for attribute reference dateTime types.

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

5600 WebSphere Message Broker Version 7.0.0.8

“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for attribute reference decimal types:

The TDS wire format properties for attribute reference reference decimal types.

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 5601

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5602 WebSphere Message Broker Version 7.0.0.8

TDS properties for attribute reference float types:

The TDS wire format properties for attribute reference float types.

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v Float schema types: double, float

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.

Chapter 14. Reference 5603

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for attribute reference integer types:

The TDS wire format properties for attribute reference integer types.

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as

5604 WebSphere Message Broker Version 7.0.0.8

group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for attribute reference string types:

The TDS wire format properties for attribute reference string types.

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 5605

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5606 WebSphere Message Broker Version 7.0.0.8

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Complex type properties:

Different types of properties are available for a complex type.

A complex type can have the following properties;
v “Complex type logical properties” on page 5419
v “Complex type CWF properties” on page 5459
v “Complex type XML properties” on page 5480
v “Complex type TDS properties” on page 5505
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 5607

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Complex type logical properties:

The logical properties of a complex type include properties that describe content
and substitution settings.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Base Type Enumerated
type

You can use this property to select a type (simple or complex) that is used as the
starting point to define a new complex type that is derived by restriction or
extension.

Derived By Enumerated
type

If this property is active, select one of the following options:

v restriction. If a complex type is derived by restriction, the content model of
the complex type is a subset of the base type.

v extension. If the complex type is derived by extension, the content model of
the complex type is the content model of the base type plus the content model
specified in the type derivation.

Derivation by list or union is not supported.

5608 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Content

The following table shows the valid settings for Composition and Content
Validation. These properties are located on the group which defines the content of
this type. They can be edited only if the Local group button is selected. If the
Global group button is selected, these properties are taken from the global group
identified by the Group name field.

Valid children in a complex type that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 5422.

Property Type Meaning

Local Group Button Select this property if the content of your complex type is a local group.

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select one of the following options:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.If you select this option,
you can define only messages as members. Each member can repeat, but the
same message cannot appear twice in the list of members. Like choice, only
one of the defined members can be present in a message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 1191.

Chapter 14. Reference 5609

Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled
in your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 5422 for further details.

Select from the following options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined
within the message set.

v Open. The complex type can contain any valid element, not just those that
you have added to this complex type.

See “Combinations of Composition and Content Validation” on page 5612 for
further details of these options.

Group
Reference

Button Select this option if the content of your complex type is a reference to a group
object

Group Name Enumerated
type

The Group Name is the name of the group that this complex type refers to. The
groups available to be referenced can be selected from the drop down list.

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Mixed Check box Select this option when the complex type has mixed content, and contains
character data and sub-elements.

Substitution settings

Property Type Meaning

Final Multiple
selection
enumerated
type

The final attribute on a complex type controls whether other types can be
derived from it. Valid values are extension/restriction/all. You can select from
one or more of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are
restrictions of the head element's type.

v extension. Prohibit type substitution by elements whose types are extensions
of the head element's type.

v #all. Prohibit substitution by any method.

To select more than one, you must type the selection into the property field.

5610 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Block Multiple
selection
enumerated
type

The block attribute on a complex type restricts the types of substitutions which
are allowed for elements based on that type. In the WebSphere Message Broker
its effect is the same as if the block attribute were copied from the complex type
onto every element based on the complex type. You can select from one or more
of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are
restrictions of the head element's type.

v extension. Prohibit type substitution by elements whose types are extensions
of the head element's type.

v #all. Prohibit substitution by any method.

To select more than one, you must type the selection into the property field.

Abstract Check box If selected, no elements based on this type can appear in the message.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

MRM content validation:

Content Validation is applied when the domain is MRM and validation is
enabled. The Content Validation property specifies how strictly the MRM parser
validates the members of a complex type or group.

The first of the following two tables shows the valid settings for Content
Validation if Composition is set to Message. The second table shows the valid
settings for Content Validation if Composition is not set to Message.

Content Validation options if Composition is set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any message, not just those
that you have defined in this message set. You can use this option for sparse messages (see
“Self-defining elements and messages” on page 1198 for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the messages that are
members of this complex type or group. This is always the case for messages represented in
CWF format.

Open Defined When a message is parsed, this complex type or group can contain any message defined within
the message set.

Chapter 14. Reference 5611

Content Validation options if Composition is not set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any elements and not just
those that you have defined in this message set (see “Self-defining elements and messages” on
page 1198 for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the elements that are
members of this complex type or group.

Open Defined When a message is parsed, this complex type or group can contain any element that you have
defined within the message set.

When you are using Content Validation set to open or open defined, you cannot
specify the precise position where the content that is not modeled is permitted to
occur. If you want to do this, you should consider using a wildcard element as an
alternative. Wildcard elements can appear only within a complex type or group
with Composition of sequence and Content Validation of closed.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Complex type logical properties” on page 5419
The logical properties of a complex type include properties that describe content
and substitution settings.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Combinations of Composition and Content Validation:

If your message is in the MRM domain, and validation is enabled, the members of
each complex type or group are validated. The MRM validation logic is controlled
by the Composition and Content Validation properties.

Content validation applies also to the IDOC domain because the IDoc parser uses
the MRM parser internally. Content Validation does not affect validation in the
XMLNSC domain.

Valid children in complex types dependent on Composition and Content
Validation

Composition Content Validation Valid children

Empty Closed None

Empty Open None

Empty Open Defined None

Sequence Open Elements, group references, embedded simple types

5612 WebSphere Message Broker Version 7.0.0.8

Composition Content Validation Valid children

Sequence Closed Elements, group references, embedded simple types

Sequence Open Defined Elements, group references, embedded simple types

Choice Closed Elements, group references, embedded simple types

All Closed Elements

All Open Elements

All Open Defined Elements

Unordered Set Open Elements

Unordered Set Closed Elements

Unordered Set Open Defined Elements

Ordered Set Open Elements

Ordered Set Closed Elements

Ordered Set Open Defined Elements

Message Open Messages

Message Closed Messages

Message Open Defined Messages

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Complex type logical properties” on page 5419
The logical properties of a complex type include properties that describe content
and substitution settings.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Valid combinations of repeat and duplicate elements in complex types:

Valid combinations of repeated and duplicate elements within a complex type
depend on the Composition property value.
v A repeated element is an element that is included once within the complex type,

and is defined with the property Min Occurs set to greater than 1. Repeated
elements are therefore always contiguous and are always specified in the form
A[n].

v A duplicate element is an element included more than once anywhere within the
complex type. Duplicate elements do not have to be contiguous.

Chapter 14. Reference 5613

Repeated and duplicate elements in a complex type

Elements in type Example Unordered Set Ordered Set Sequence

No repeats, no
duplicates

A, B, C Yes Yes Yes

Repeated element
(contiguous)

A[n], B, C Yes Yes Yes

Duplicate element A
(contiguous)

A, A, B, C No No Yes

Duplicate element A
(non-contiguous)

A, B, C, A No No Yes

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Complex type logical properties” on page 5419
The logical properties of a complex type include properties that describe content
and substitution settings.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Complex type CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.

5614 WebSphere Message Broker Version 7.0.0.8

“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Complex type XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Chapter 14. Reference 5615

“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Complex type TDS properties:

The TDS properties of a complex type.

Field Identification

If the complex type is based on a global group, the TDS properties listed are
located in the global group. If so, any changes to these properties are applied to
the global group, and affect all references to the group (including any other
complex types which are based on it).

5616 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See “Global element TDS properties” on page 5513. You
must also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to
it. You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message
definition file properties” on page 5409.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
5513. If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have
a Length or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

Chapter 14. Reference 5617

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. Use this option when the same delimiter is used
to delimit parent and child objects. For example, if an optional child element
is missing, message processing applications cannot tell where the child
elements in a message end and the next parent element starts, if the delimiters
are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

v During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

v During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the
Justification and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

5618 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this property
allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2147483647.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length, and the actual number of data characters is
less than the value found in the length field.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.

Chapter 14. Reference 5619

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Element reference properties:

Different types of properties are available for an element reference.

An element reference can have the following properties:
v “Element reference logical properties” on page 5423
v “Element reference CWF properties” on page 5460
v “Element reference XML properties” on page 5481
v “Element reference TDS properties” on page 5509
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:

5620 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Element reference logical properties:

The logical properties of an element reference include properties that specify the
number of occurrences of the element reference.

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the list.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Chapter 14. Reference 5621

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

The Min Occurs and Max Occurs properties are used in conjunction with an
element's Value properties. The following table summarizes how an element
reference can be constrained.

Min Occurs Max Occurs Fixed Default Notes

1 1 The element must appear once, and can have
any value.

1 1 Delta The element must appear once, and it must
match the data that has been entered in the
Value property. In this example, the element
must contain the text Delta.

2 -1 Delta The element must appear twice or more, and it
must match the data that has been entered in
the Value property. In this example, at least
two elements must contain the text Delta.

0 1 The element is optional, can appear once, and
can have any value.

0 1 Delta The element is optional, and can appear once.
If it does appear, its value must match the data
that has been entered in the Value property. If
it does not appear, its value is the data that has
been entered in the Value property.

0 1 Delta The element is optional, and can appear once.
If it does not appear, its value is the data that
has been entered in the Value property. If it
does appear, it must be the value given in the
element.

0 2 Delta The element is optional and can appear once,
twice, or not at all. If the element does not
appear, it is not provided. If the element
appears and it is empty, it set to the data held
in the Value property, else it is the value given
in the element.

0 0 The element is prohibited, and must not
appear.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

5622 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Element reference CWF properties:

The properties, and permissible values, vary according to the type of object.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

Chapter 14. Reference 5623

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

5624 WebSphere Message Broker Version 7.0.0.8

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

CWF properties for element reference and local element binary types:

CWF wire format properties for element reference and local element binary types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Chapter 14. Reference 5625

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

5626 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Chapter 14. Reference 5627

“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element Boolean types:

The CWF wire format properties for element reference and local element Boolean
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Boolean schema types: Boolean

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

5628 WebSphere Message Broker Version 7.0.0.8

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 5629

CWF properties for element reference and local element dateTime types:

The CWF wire format properties for element reference and local element dateTime
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 6310 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal,
or Binary, and have selected the length to be defined by Length, enter the
number of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

5630 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5631

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

5632 WebSphere Message Broker Version 7.0.0.8

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list. The option that you
select determines the value that you must set for the property Encoding Null
Value:

v NULLPadFill. This option is valid only if Physical Type is Fixed Length
String. The field is filled with the value specified by the Padding Character.
The default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value
that is directly substituted as if it is a string. Use this option when the value
you have set for Encoding Null Value to specify a null date is not a dateTime
value, or does not conform to the standard dateTime format yyyy-MM-dd
'T'HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled.

If you set the Encoding Null property to NULLLogicalValue, you must set this
property to an ISO8601 dateTime format. These formats are described in
“DateTime as string data” on page 6311. For example, specify a value
conforming to yyyy-MM-dd'T'HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any
value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Chapter 14. Reference 5633

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

5634 WebSphere Message Broker Version 7.0.0.8

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element decimal types:

The CWF wire format properties for element reference and local element decimal
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Chapter 14. Reference 5635

Property Type Meaning

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

5636 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

Chapter 14. Reference 5637

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234, equivalent to 'V' or 'P' in a COBOL picture clause. There is no C
equivalent

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

5638 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Chapter 14. Reference 5639

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element float types:

The CWF wire format properties for element reference and local element float
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Float schema types: double, float

5640 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL and is the default value.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float
are represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list.
The default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

Chapter 14. Reference 5641

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

5642 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select or clear (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used with Sign Orientation.

Chapter 14. Reference 5643

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This property is not applicable if you have set Physical Type to Float.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

5644 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Chapter 14. Reference 5645

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element integer types:

The CWF wire format properties for element reference and local element integer
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

5646 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1
and 11.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Chapter 14. Reference 5647

Property Type Meaning

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

5648 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Chapter 14. Reference 5649

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

5650 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element string types:

The CWF wire format properties for element reference and local element string
types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Chapter 14. Reference 5651

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and
have selected the length to be defined by Length, enter the number of length
units for the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

5652 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5653

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

5654 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

STRING The use of this property depends on the Encoding Null property. If specified, its
length must be equal to the length of the string element, except for
NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Chapter 14. Reference 5655

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5656 WebSphere Message Broker Version 7.0.0.8

Element reference XML properties:

The properties, and their permissible values, vary according to the type of object.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

Chapter 14. Reference 5657

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

5658 WebSphere Message Broker Version 7.0.0.8

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element binary types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5659

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5660 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

Chapter 14. Reference 5661

Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

XML wire format properties for attribute reference, element reference, local
attribute and local element Boolean types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5662 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5663

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5664 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
dateTime types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element dateTime types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5665

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5666 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of dateTime formats.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical

Chapter 14. Reference 5667

model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element decimal types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5668 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5669

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5670 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element float
types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element float types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5671

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5672 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5673

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element integer types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5674 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5675

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5676 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
string types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element string types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5677

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5678 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5679

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Element reference TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

Complex types

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

5680 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.

Chapter 14. Reference 5681

“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

TDS properties for element reference binary types:

TDS wire format properties for element reference binary types.

The TDS Format properties described here apply to:
v Objects: Element Reference
v Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

5682 WebSphere Message Broker Version 7.0.0.8

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Chapter 14. Reference 5683

“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for element reference Boolean types:

TDS wire format properties for element reference Boolean types.

The TDS Format properties described here apply to:
v Objects: Element Reference
v Boolean schema types: Boolean

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

5684 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for element references to complex elements:

The TDS Format properties that apply to element references where the global
element is of complex type.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Chapter 14. Reference 5685

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5686 WebSphere Message Broker Version 7.0.0.8

TDS properties for element reference dateTime types:

TDS wire format properties for attribute reference and element reference dateTime
types.

The TDS Format properties described here apply to:
v Objects: Element Reference
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Chapter 14. Reference 5687

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5688 WebSphere Message Broker Version 7.0.0.8

TDS properties for element reference decimal types:

The TDS wire format properties for attribute reference and element reference
decimal types.

The TDS Format properties described here apply to:
v Objects: Element Reference
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Chapter 14. Reference 5689

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5690 WebSphere Message Broker Version 7.0.0.8

TDS properties for element reference float types:

TDS wire format properties for attribute reference and element reference float
types.

The TDS Format properties described here apply to:
v Objects: Element Reference
v Float schema types: double, float

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Chapter 14. Reference 5691

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5692 WebSphere Message Broker Version 7.0.0.8

TDS properties for element reference integer types:

TDS wire format properties for attribute reference and element reference integer
types.

The TDS Format properties described here apply to:
v Objects: Element Reference
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Chapter 14. Reference 5693

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5694 WebSphere Message Broker Version 7.0.0.8

TDS properties for element reference string types:

The TDS wire format properties for attribute reference and element reference string
types.

The TDS Format properties described here apply to:
v Objects: Element Reference
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Chapter 14. Reference 5695

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5696 WebSphere Message Broker Version 7.0.0.8

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Global attribute properties:

Different types of properties are available for a global attribute.

A global attribute can have the following properties;
v “Global attribute logical properties” on page 5425
v “Global attribute CWF properties” on page 5462
v “Global attribute XML properties” on page 5483
v “Global attribute TDS properties” on page 5511
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 5697

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Global attribute logical properties:

The logical properties of a global attribute.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

5698 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer. This document is available on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

The Value properties are used with the Usage property in an Attribute Reference or
a Local Attribute.

Chapter 14. Reference 5699

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

5700 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.

Chapter 14. Reference 5701

Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

5702 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.

Chapter 14. Reference 5703

“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

XML properties for global attribute and global element binary types:

The XML wire format properties for global attribute and global element binary
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Binary schema types: base64Binary, hexBinary

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

5704 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element Boolean types:

The XML wire format properties for global attribute and global element Boolean
types.

Chapter 14. Reference 5705

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Boolean schema types: Boolean

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the

5706 WebSphere Message Broker Version 7.0.0.8

function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element dateTime types:

The XML wire format properties for global attribute and global element dateTime
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of dateTime formats.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

Chapter 14. Reference 5707

Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element decimal types:

The XML wire format properties for global attribute and global element decimal
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

5708 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element float types:

The XML wire format properties for global attribute and global element float types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Float schema types: double, float

Chapter 14. Reference 5709

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

5710 WebSphere Message Broker Version 7.0.0.8

“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element integer types:

The XML wire format properties for global attribute and global element integer
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.

Chapter 14. Reference 5711

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element string types:

The XML wire format properties for global attribute and global element string
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:

5712 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Global attribute TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Chapter 14. Reference 5713

Type of object Properties

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.

5714 WebSphere Message Broker Version 7.0.0.8

“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

TDS properties for global attribute binary types:

The TDS format properties for global attribute binary types.

The TDS Format properties described here apply to:
v Objects: Global Attribute
v Binary schema types: base64Binary, hexBinary

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Chapter 14. Reference 5715

Property Type Meaning

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

This value of this property defaults to Binary. It cannot be changed.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive
default length from logical type. If Derive default length from logical
type is selected, the default value is derived from any length or maxLength
value constraint (schema facet) on the object's simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

5716 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global attribute Boolean types:

The TDS format properties for global attribute Boolean types.

The TDS Format properties described here apply to:
v Objects: Global Attribute
v Boolean schema types: Boolean

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Chapter 14. Reference 5717

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5718 WebSphere Message Broker Version 7.0.0.8

TDS properties for global attribute dateTime types:

The TDS format properties for global attribute dateTime types.

The TDS Format properties described here apply to:
v Objects: Global Attribute
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Chapter 14. Reference 5719

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

5720 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Chapter 14. Reference 5721

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5722 WebSphere Message Broker Version 7.0.0.8

TDS properties for global attribute decimal types:

The TDS format properties for global attribute decimal types.

The TDS Format properties described here apply to:
v Objects: Global Attribute
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Chapter 14. Reference 5723

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

5724 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Chapter 14. Reference 5725

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

5726 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

Chapter 14. Reference 5727

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global attribute float types:

The TDS format properties for global attribute float types.

The TDS Format properties described here apply to:
v Objects: Global Attribute
v Float schema types: double, float

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

5728 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. Equates to the data type FLOAT or DOUBLE in C, or the COMP-1 or
COMP-2 numeric data type in COBOL.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5729

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

5730 WebSphere Message Broker Version 7.0.0.8

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

Chapter 14. Reference 5731

Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

v Exponential Notation - Example "1.23456e002": data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent are positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream, assuming that the
value of Negative Sign is "-", and the value of Sign Orientation is Leading.

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is "*" and
Sign Orientation is Trailing.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

5732 WebSphere Message Broker Version 7.0.0.8

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global attribute integer types:

The TDS format properties for global attribute integer types.

The TDS Format properties described here apply to:
v Objects: Global Attribute
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Chapter 14. Reference 5733

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

5734 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Chapter 14. Reference 5735

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

5736 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global attribute string types:

The TDS format properties for global attribute string types.

The TDS Format properties described here apply to:
v Objects: Global Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Chapter 14. Reference 5737

Property Type Meaning

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object are interpreted as having
significance for the parser and, if so, the type of interpretation that occurs. This
interpretation is standard-specific and is therefore hard coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

5738 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5739

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

5740 WebSphere Message Broker Version 7.0.0.8

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Global attribute group properties:

Different types of properties are available for a global attribute group.

A global attribute group can have the following properties;
v “Global attribute group logical properties” on page 5429

Chapter 14. Reference 5741

v “Global attribute group CWF properties” on page 5463
v “Global attribute group XML properties” on page 5485
v “Global attribute group TDS properties” on page 5513
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5742 WebSphere Message Broker Version 7.0.0.8

Global attribute group logical properties:

The logical properties of an attribute group.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute group CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.

Chapter 14. Reference 5743

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute group XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.

5744 WebSphere Message Broker Version 7.0.0.8

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global attribute group TDS properties:

The TDS properties of a global attribute group.

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5745

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Global element properties:

Different types of properties are available for a global element.

A global element can have the following properties;
v “Global element logical properties” on page 5430
v “Global element CWF properties” on page 5463
v “Global element XML properties” on page 5486
v “Global element TDS properties” on page 5513
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

5746 WebSphere Message Broker Version 7.0.0.8

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Global element logical properties:

The logical properties of a global element.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Chapter 14. Reference 5747

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer. This document is available on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

5748 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Nillable Check box Select this option if you want the element to be able to be defined as null. A null
value is distinct from being empty, when the element contains no data.

Chapter 14. Reference 5749

Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the 'head'
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

Property Type Meaning

Final Enumerated
type

Limit the set of elements that can belong to its substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element.

v extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element.

v #all. Prohibit substitution by all methods.

Block Enumerated
type

Limit the set of elements that can be substituted for this element in a message.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element

v extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element

v substitution. Prohibit element substitution by members of the element's
substitution group.

v #all. Prohibit substitution by all methods.

Substitution
Group

Enumerated
type

Specify the name of a 'head' element. Setting this property indicates that this
element is a member of the substitution group for the head element.

Abstract Check box Select this option if you do not want the element to appear in the message, but
require one of the members of its substitution group to appear in its place.

5750 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global element CWF properties:

There are no CWF properties to show for a global element.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5751

Global element XML properties:

The properties, and their permissible values, vary according to the type of object.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

5752 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

Chapter 14. Reference 5753

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

XML properties for global attribute and global element binary types:

The XML wire format properties for global attribute and global element binary
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Binary schema types: base64Binary, hexBinary

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that

5754 WebSphere Message Broker Version 7.0.0.8

are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element Boolean types:

The XML wire format properties for global attribute and global element Boolean
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Boolean schema types: Boolean

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Related concepts:

Chapter 14. Reference 5755

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element dateTime types:

The XML wire format properties for global attribute and global element dateTime
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

5756 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of dateTime formats.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.

Chapter 14. Reference 5757

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element decimal types:

The XML wire format properties for global attribute and global element decimal
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that

5758 WebSphere Message Broker Version 7.0.0.8

are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element float types:

The XML wire format properties for global attribute and global element float types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Float schema types: double, float

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined

Chapter 14. Reference 5759

structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element integer types:

The XML wire format properties for global attribute and global element integer
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

5760 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5761

“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for global attribute and global element string types:

The XML wire format properties for global attribute and global element string
types.

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

5762 WebSphere Message Broker Version 7.0.0.8

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Global element TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

Complex types

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Chapter 14. Reference 5763

Type of object Properties

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

5764 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

TDS properties for global element binary types:

The TDS format properties for global element binary types.

The TDS Format properties described here apply to:
v Objects: Global Element
v Binary schema types: base64Binary, hexBinary

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

For all Messaging Standard values, the Physical Type property is set to Binary
and cannot be changed.

Chapter 14. Reference 5765

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive
default length from logical type. If Derive default length from logical
type is selected, the default value is derived from any length or maxLength
value constraint (schema facet) on the object's simple type.

Length Units Enumerated
type

Always set to Bytes.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5766 WebSphere Message Broker Version 7.0.0.8

TDS properties for global element Boolean types:

The TDS format properties for global element Boolean types.

The TDS Format properties described here apply to:
v Objects: Global Element
v Boolean schema types: Boolean

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

Chapter 14. Reference 5767

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global element of complex type:

The TDS Format properties that apply to global elements of complex type.

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Related concepts:

5768 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global element dateTime types:

The TDS format properties for global element dateTime types.

The TDS Format properties described here apply to:
v Objects: Global Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Chapter 14. Reference 5769

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

5770 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if one of the following statements is true:

v Physical Type is Packed Decimal.

v Physical Type is Text, no Length Reference is specified, and the Data Element
Separation of the parent complex type or group is Fixed Length, Tagged
Fixed Length, or Fixed Length AL3.

The default is dependent on the physical type of the object.

If Physical Type is Length Encoded String 1, Length Encoded String 2, or Null
Terminated String, this property is not applicable.

If Physical Type is Time Seconds, the value of this property is 4, and cannot be
changed.

If Physical Type is Time Milliseconds, the value of this property is 8, and
cannot be changed.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5771

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

5772 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 5773

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global element decimal types:

The TDS format properties for global element decimal types.

The TDS Format properties described here apply to:
v Objects: Global Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

5774 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any totalDigits value constraint (schema facet) or, if none,
any minInclusive, maxInclusive, minExclusive, or maxExclusive value
constraints (schema facets), on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5775

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

5776 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

Chapter 14. Reference 5777

Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

5778 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global element float types:

The TDS format properties for global element float types.

The TDS Format properties described here apply to:
v Objects: Global Element
v Float schema types: double, float

Chapter 14. Reference 5779

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. Equates to the data type FLOAT or DOUBLE in C, or the COMP-1 or
COMP-2 numeric data type in COBOL.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

5780 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5781

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

5782 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

Chapter 14. Reference 5783

Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

v Exponential Notation - Example "1.23456e002": data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent are positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream, assuming that the
value of Negative Sign is "-", and the value of Sign Orientation is Leading.

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is "*" and
Sign Orientation is Trailing.

5784 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 5785

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global element integer types:

The TDS format properties for global element integer types.

The TDS Format properties described here apply to:
v Objects: Global Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

5786 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any totalDigits value constraint (schema facet) or, if none,
any minInclusive, maxInclusive, minExclusive, or maxExclusive value
constraints (schema facets), on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5787

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

5788 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Chapter 14. Reference 5789

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global element interval types:

The TDS format properties for global element string types.

The TDS Format properties described here apply to:
v Objects: Global Element
v Interval schema types: duration

5790 WebSphere Message Broker Version 7.0.0.8

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data's first 2 bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Chapter 14. Reference 5791

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

5792 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Chapter 14. Reference 5793

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

5794 WebSphere Message Broker Version 7.0.0.8

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for global element string types:

The TDS format properties for global element string types.

The TDS Format properties described here apply to:
v Objects: Global Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Chapter 14. Reference 5795

Property Type Meaning

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object are interpreted as having
significance for the parser and, if so, the type of interpretation that occurs. This
interpretation is standard-specific and is therefore hard coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

5796 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5797

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

5798 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 5799

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Global group properties:

Different types of properties are available for a global group.

A global element can have the following properties;
v “Global group logical properties” on page 5433
v “Global group CWF properties” on page 5464
v “Global group XML properties” on page 5488
v “Global group TDS properties” on page 5516
v “Documentation properties for all message set objects” on page 5413
Related concepts:

5800 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Global group logical properties:

The logical properties of a global group.

Valid children in a global group that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 5422.

Chapter 14. Reference 5801

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

5802 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from the following options:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 1191.

Chapter 14. Reference 5803

Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled
in your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 5422 for further details.

Select from the following options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined
within the message set.

v Open. The complex type can contain any valid element, not just those that
you have added to this complex type.

See “Combinations of Composition and Content Validation” on page 5612 for
further details of these options.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global group CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.

5804 WebSphere Message Broker Version 7.0.0.8

“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global group XML properties:

There are no properties to show.

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

Chapter 14. Reference 5805

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Global group TDS properties:

The TDS properties of a global group.

5806 WebSphere Message Broker Version 7.0.0.8

Field Identification

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See “Global element TDS properties” on page 5513. You
must also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to
it. You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message
definition file properties” on page 5409.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
5513. If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have
a Length or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

Chapter 14. Reference 5807

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. Use this option when the same delimiter is used
to delimit parent and child objects. For example, if an optional child element
is missing, message processing applications cannot tell where the child
elements in a message end and the next parent element starts, if the delimiters
are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

v During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

v During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the
Justification and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

5808 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this property
allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2147483647.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length, and the actual number of data characters is
less than the value found in the length field.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.

Chapter 14. Reference 5809

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Group reference properties:

Different types of properties are available for a group reference.

A group reference can have the following properties;
v “Group reference logical properties” on page 5436
v “Group reference CWF properties” on page 5465
v “Group reference XML properties” on page 5488
v “Group reference TDS properties” on page 5520
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:

5810 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Group reference logical properties:

The logical properties of a group reference include properties that specify the
number of occurrences of the group reference.

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the list.

Occurrence properties

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Chapter 14. Reference 5811

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Group reference CWF properties:

The CWF properties of a group reference.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

5812 WebSphere Message Broker Version 7.0.0.8

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 5813

Group reference XML properties:

The XML properties of a group reference.

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Group reference TDS properties:

The following tables describe the TDS properties of a group reference.

Field identification

Property Type Meaning

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

5814 WebSphere Message Broker Version 7.0.0.8

Occurrences

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Chapter 14. Reference 5815

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Key properties:

The different types of properties available for a key.

A key can have the following properties;
v “Key logical properties” on page 5437
v “Key CWF properties” on page 5466
v “Key XML properties” on page 5489
v “Key TDS properties” on page 5521
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

5816 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Key logical properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Key CWF properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

Chapter 14. Reference 5817

Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Key XML properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Key TDS properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

5818 WebSphere Message Broker Version 7.0.0.8

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Keyref properties:

The different types of properties available for a keyref.

A keyref can have the following properties;
v “Keyref logical properties” on page 5437
v “Keyref CWF properties” on page 5467
v “Keyref XML properties” on page 5490
v “Keyref TDS properties” on page 5521
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 5819

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Keyref logical properties:

This describes the logical properties of a keyref.

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Keyref CWF properties:

This describes the CWF properties of a keyref.

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

5820 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Keyref XML properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Keyref TDS properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

Chapter 14. Reference 5821

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Local attribute properties:

Different types of properties are available for a local attribute.

A local attribute can have the following properties;
v “Local attribute logical properties” on page 5438
v “Local attribute CWF properties” on page 5467
v “Local attribute XML properties” on page 5490
v “Local attribute TDS properties” on page 5522
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

5822 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Local attribute logical properties:

The logical properties of a local attribute.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Chapter 14. Reference 5823

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer. This document is available on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an
Attribute Reference or a Local Attribute.

5824 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Chapter 14. Reference 5825

Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Usage properties

Property Type Meaning

Usage Enumerated
type

Use this property with the Value property found in an attribute object. The
default value for the Usage property is optional.

Select from the following options:

v optional.

– If the Value property is set to default, and no data has been entered in the
Value property, the attribute can appear once and can have any value.

– If the Value property is set to default, the attribute can appear once. If it
does not appear, its value is the data that has been entered in the Value
property. If it does appear, it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear, its value is the data that has been
entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– If the Value property is set to default, and no data has been entered in the
Value property, the attribute must appear once and can have any value.

– If the Value property is set to fixed, the attribute must appear once, and it
must match the data that has been entered in the Value property.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

5826 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local attribute CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

Chapter 14. Reference 5827

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

5828 WebSphere Message Broker Version 7.0.0.8

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

CWF properties for attribute reference and local attribute binary types:

CWF properties for attribute reference and local attribute binary types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Chapter 14. Reference 5829

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

5830 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 5831

CWF properties for attribute reference and local attribute Boolean types:

CWF properties for attribute reference and local attribute Boolean types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Boolean schema types: Boolean

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5832 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for attribute reference and local attribute dateTime types:

CWF properties for attribute reference and local attribute dateTime types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Chapter 14. Reference 5833

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 6310 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal,
or Binary, and have selected the length to be defined by Length, enter the
number of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

5834 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5835

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

5836 WebSphere Message Broker Version 7.0.0.8

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message

Chapter 14. Reference 5837

models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for attribute reference and local attribute decimal types:

CWF properties for attribute reference and local attribute decimal types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

5838 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5839

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

5840 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234, equivalent to 'V' or 'P' in a COBOL picture clause. There is no C
equivalent

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Chapter 14. Reference 5841

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5842 WebSphere Message Broker Version 7.0.0.8

CWF properties for attribute reference and local attribute float types:

CWF properties for attribute reference and local attribute float types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Float schema types: double, float

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL and is the default value.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float
are represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list.
The default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

Chapter 14. Reference 5843

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

5844 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select or clear (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used with Sign Orientation.

Chapter 14. Reference 5845

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This property is not applicable if you have set Physical Type to Float.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

5846 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 5847

CWF properties for attribute reference and local attribute integer types:

CWF properties for attribute reference and local attribute integer types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1
and 11.

5848 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5849

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

5850 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Chapter 14. Reference 5851

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5852 WebSphere Message Broker Version 7.0.0.8

CWF properties for attribute reference and local attribute string types:

CWF properties for attribute reference and local attribute string types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and
have selected the length to be defined by Length, enter the number of length
units for the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Chapter 14. Reference 5853

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

5854 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Chapter 14. Reference 5855

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

5856 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Local attribute XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Chapter 14. Reference 5857

Type of object Properties

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

5858 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element binary types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5859

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5860 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

Chapter 14. Reference 5861

Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

XML wire format properties for attribute reference, element reference, local
attribute and local element Boolean types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5862 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5863

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5864 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
dateTime types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element dateTime types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5865

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5866 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of dateTime formats.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical

Chapter 14. Reference 5867

model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element decimal types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5868 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5869

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5870 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element float
types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element float types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5871

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5872 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5873

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element integer types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5874 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5875

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5876 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
string types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element string types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5877

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5878 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5879

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Local attribute TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Binary types

v base64Binary

v hexBinary

Boolean types

v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

5880 WebSphere Message Broker Version 7.0.0.8

Float types

v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types

v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Chapter 14. Reference 5881

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

TDS properties for local attribute binary types:

The TDS format properties for local attribute binary types.

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Binary schema types: base64Binary, hexBinary

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive
default length from logical type. If Derive default length from logical
type is selected, the default value is derived from any length or maxLength
value constraint (schema facet) on the object's simple type.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

5882 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 5883

TDS properties for local attribute Boolean types:

The TDS format properties for local attribute Boolean types.

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Boolean schema types: Boolean

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

5884 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local attribute dateTime types:

The TDS format properties for local attribute dateTime types.

The TDS Format properties described here apply to:
v Objects: Local Attribute
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Chapter 14. Reference 5885

Property Type Meaning

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

5886 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5887

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

5888 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

Chapter 14. Reference 5889

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local attribute decimal types:

The TDS format properties for local attribute decimal types.

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

5890 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5891

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

5892 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

Chapter 14. Reference 5893

Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

5894 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local attribute float types:

The TDS format properties for local attribute float types.

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Float schema types: double, float

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Chapter 14. Reference 5895

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. Equates to the data type FLOAT or DOUBLE in C, or the COMP-1 or
COMP-2 numeric data type in COBOL.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

5896 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 5897

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

5898 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

v Exponential Notation - Example "1.23456e002": data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent are positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream, assuming that the
value of Negative Sign is "-", and the value of Sign Orientation is Leading.

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is "*" and
Sign Orientation is Trailing.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

Chapter 14. Reference 5899

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local attribute integer types:

The TDS format properties for local attribute integer types.

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

5900 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5901

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

5902 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

Chapter 14. Reference 5903

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local attribute string types:

The TDS format properties for local attribute string types.

The TDS Format properties described here apply to:
v Objects: Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

5904 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object are interpreted as having
significance for the parser and, if so, the type of interpretation that occurs. This
interpretation is standard-specific and is therefore hard coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Chapter 14. Reference 5905

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

5906 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 5907

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5908 WebSphere Message Broker Version 7.0.0.8

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Local element properties:

Different types of properties are available for a local element.

A local element can have the following properties;
v “Local element logical properties” on page 5442
v “Local element CWF properties” on page 5469
v “Local element XML properties” on page 5492
v “Local element TDS properties” on page 5524
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 5909

“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Local element logical properties:

The logical properties of a local element include properties that specify the number
of occurrences and value of the local element.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

5910 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

Select from the following options:

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), the Type Selection wizard starts. In this wizard, you can
select any of the available types.

If you select (New Simple Type), the New Simple Type wizard starts. In this
wizard, you can create an Anonymous simple type that is based on an existing
type. This type can be created locally or globally.

If you select (New Complex Type), the New Complex Type wizard starts. In this
wizard, you can create an Anonymous complex type, which can be derived from
an existing base type. This type can be created locally or globally.

For further information about these types, and examples of their use, see the
XML Schema Part 0: Primer. This document is available on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Chapter 14. Reference 5911

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

5912 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Nillable Check box Select this option if you want the element to be able to be defined as null. A null
value is distinct from being empty, when the element contains no data.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the 'head'
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

Property Type Meaning

Final Enumerated
type

Limit the set of elements that can belong to its substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element.

v extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element.

v #all. Prohibit substitution by all methods.

Block Enumerated
type

Limit the set of elements that can be substituted for this element in a message.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the type of the head element

v extension. Prohibit element substitution by elements whose types are
extensions of the type of the head element

v substitution. Prohibit element substitution by members of the element's
substitution group.

v #all. Prohibit substitution by all methods.

Substitution
Group

Enumerated
type

Specify the name of a 'head' element. Setting this property indicates that this
element is a member of the substitution group for the head element.

Chapter 14. Reference 5913

Property Type Meaning

Abstract Check box Select this option if you do not want the element to appear in the message, but
require one of the members of its substitution group to appear in its place.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local element CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

5914 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.

Chapter 14. Reference 5915

Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

CWF properties for element reference and local element binary types:

CWF wire format properties for element reference and local element binary types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

5916 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Chapter 14. Reference 5917

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

5918 WebSphere Message Broker Version 7.0.0.8

“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element Boolean types:

The CWF wire format properties for element reference and local element Boolean
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Boolean schema types: Boolean

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Chapter 14. Reference 5919

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

5920 WebSphere Message Broker Version 7.0.0.8

CWF properties for element reference and local element dateTime types:

The CWF wire format properties for element reference and local element dateTime
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 6310 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal,
or Binary, and have selected the length to be defined by Length, enter the
number of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 5921

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

5922 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Chapter 14. Reference 5923

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list. The option that you
select determines the value that you must set for the property Encoding Null
Value:

v NULLPadFill. This option is valid only if Physical Type is Fixed Length
String. The field is filled with the value specified by the Padding Character.
The default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value
that is directly substituted as if it is a string. Use this option when the value
you have set for Encoding Null Value to specify a null date is not a dateTime
value, or does not conform to the standard dateTime format yyyy-MM-dd
'T'HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled.

If you set the Encoding Null property to NULLLogicalValue, you must set this
property to an ISO8601 dateTime format. These formats are described in
“DateTime as string data” on page 6311. For example, specify a value
conforming to yyyy-MM-dd'T'HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any
value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

5924 WebSphere Message Broker Version 7.0.0.8

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

Chapter 14. Reference 5925

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element decimal types:

The CWF wire format properties for element reference and local element decimal
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

5926 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5927

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

5928 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234, equivalent to 'V' or 'P' in a COBOL picture clause. There is no C
equivalent

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Chapter 14. Reference 5929

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

5930 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element float types:

The CWF wire format properties for element reference and local element float
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Float schema types: double, float

Chapter 14. Reference 5931

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL and is the default value.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float
are represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list.
The default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

5932 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 5933

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select or clear (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used with Sign Orientation.

5934 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This property is not applicable if you have set Physical Type to Float.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Chapter 14. Reference 5935

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

5936 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element integer types:

The CWF wire format properties for element reference and local element integer
types.

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Chapter 14. Reference 5937

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1
and 11.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

5938 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

Chapter 14. Reference 5939

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

5940 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Chapter 14. Reference 5941

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF properties for element reference and local element string types:

The CWF wire format properties for element reference and local element string
types.

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

5942 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and
have selected the length to be defined by Length, enter the number of length
units for the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Chapter 14. Reference 5943

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

5944 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Chapter 14. Reference 5945

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

STRING The use of this property depends on the Encoding Null property. If specified, its
length must be equal to the length of the string element, except for
NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

5946 WebSphere Message Broker Version 7.0.0.8

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 5947

Local element XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

5948 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.

Chapter 14. Reference 5949

“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element binary types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5950 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5951

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

5952 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

XML wire format properties for attribute reference, element reference, local
attribute and local element Boolean types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5953

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5954 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5955

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
dateTime types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element dateTime types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5956 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5957

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of dateTime formats.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical

5958 WebSphere Message Broker Version 7.0.0.8

model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element decimal types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5959

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5960 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5961

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element float
types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element float types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5962 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5963

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5964 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element integer types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 5965

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

5966 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 5967

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML properties for attribute reference, element reference, local attribute, local element
string types:

XML wire format properties for attribute reference, element reference, local
attribute, and local element string types.

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

5968 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 5969

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

5970 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Local element TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

Complex types

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

Chapter 14. Reference 5971

Type of object Properties

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Note: The physical format properties for simple type duration are the same as the
physical properties of the string logical types.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.

5972 WebSphere Message Broker Version 7.0.0.8

“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

TDS properties for local element binary types:

The TDS format properties for local element binary types.

The TDS Format properties described here apply to:
v Objects: Local Element
v Binary schema types: base64Binary, hexBinary

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

For all Messaging Standard values, the Physical Type property is set to Binary
and cannot be changed.

Chapter 14. Reference 5973

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive
default length from logical type. If Derive default length from logical
type is selected, the default value is derived from any length or maxLength
value constraint (schema facet) on the object's simple type.

Length Units Enumerated
type

Always set to Bytes.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

5974 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local element Boolean types:

The TDS format properties for local element Boolean types.

The TDS Format properties described here apply to:
v Objects: Local Element
v Boolean schema types: Boolean

Chapter 14. Reference 5975

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

5976 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 5977

TDS properties for local element of complex type:

The TDS Format properties that apply to local elements of complex type.

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

5978 WebSphere Message Broker Version 7.0.0.8

“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local element dateTime types:

The TDS format properties for local element dateTime types.

The TDS Format properties described here apply to:
v Objects: Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Chapter 14. Reference 5979

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

5980 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if one of the following statements is true:

v Physical Type is Packed Decimal.

v Physical Type is Text, no Length Reference is specified, and the Data Element
Separation of the parent complex type or group is Fixed Length, Tagged
Fixed Length, or Fixed Length AL3.

The default is dependent on the physical type of the object.

If Physical Type is Length Encoded String 1, Length Encoded String 2, or Null
Terminated String, this property is not applicable.

If Physical Type is Time Seconds, the value of this property is 4, and cannot be
changed.

If Physical Type is Time Milliseconds, the value of this property is 8, and
cannot be changed.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5981

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

5982 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Chapter 14. Reference 5983

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

5984 WebSphere Message Broker Version 7.0.0.8

“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local element decimal types:

The TDS format properties for local element decimal types.

The TDS Format properties described here apply to:
v Objects: Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Chapter 14. Reference 5985

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any totalDigits value constraint (schema facet) or, if none,
any minInclusive, maxInclusive, minExclusive, or maxExclusive value
constraints (schema facets), on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

5986 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 5987

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

5988 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Chapter 14. Reference 5989

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

5990 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local element float types:

The TDS format properties for local element float types.

The TDS Format properties described here apply to:
v Objects: Local Element
v Float schema types: double, float

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Chapter 14. Reference 5991

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. Equates to the data type FLOAT or DOUBLE in C, or the COMP-1 or
COMP-2 numeric data type in COBOL.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

5992 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 5993

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

5994 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

v Exponential Notation - Example "1.23456e002": data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent are positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream, assuming that the
value of Negative Sign is "-", and the value of Sign Orientation is Leading.

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is "*" and
Sign Orientation is Trailing.

Chapter 14. Reference 5995

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

5996 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local element integer types:

The TDS format properties for local element integer types.

The TDS Format properties described here apply to:
v Objects: Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Chapter 14. Reference 5997

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any totalDigits value constraint (schema facet) or, if none,
any minInclusive, maxInclusive, minExclusive, or maxExclusive value
constraints (schema facets), on the simple type.

5998 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 5999

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

6000 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Chapter 14. Reference 6001

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

6002 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local element interval types:

The TDS format properties for local element string types.

The TDS Format properties described here apply to:
v Objects: Local Element
v Interval schema types: duration

Chapter 14. Reference 6003

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data's first 2 bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

6004 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 6005

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

6006 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Chapter 14. Reference 6007

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

TDS properties for local element string types:

The TDS format properties for local element string types.

The TDS Format properties described here apply to:
v Objects: Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

6008 WebSphere Message Broker Version 7.0.0.8

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object are interpreted as having
significance for the parser and, if so, the type of interpretation that occurs. This
interpretation is standard-specific and is therefore hard coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated.

Chapter 14. Reference 6009

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. The number of bytes that are
processed in the bit stream depends on the code page of the message.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

6010 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Chapter 14. Reference 6011

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length
of the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer
object must be the same as that of the current object.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

6012 WebSphere Message Broker Version 7.0.0.8

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Chapter 14. Reference 6013

“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Local group properties:

Different types of properties are available for a local group.

A local group can have the following properties;
v “Local group logical properties” on page 5446
v “Local group CWF properties” on page 5471
v “Local group XML properties” on page 5494
v “Local group TDS properties” on page 5526
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:

6014 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Local group logical properties:

The logical properties of a local group include properties that specify the number
of occurrences of the local group.

Valid children in a local group that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 5422.

Chapter 14. Reference 6015

Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from the following options:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any order.
Each element can appear once, or not at all. An all group can be used only at
the top level of a complex type; it cannot be a member of another group
within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards; for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 1191.

6016 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled
in your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 5422 for further details.

Select from the following options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined
within the message set.

v Open. The complex type can contain any valid element, not just those that
you have added to this complex type.

See “Combinations of Composition and Content Validation” on page 5612 for
further details of these options.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local group CWF properties:

The CWF properties of a local group are described in the following tables.

Chapter 14. Reference 6017

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:

6018 WebSphere Message Broker Version 7.0.0.8

“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local group XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

Chapter 14. Reference 6019

“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Local group TDS properties:

TDS properties of a local group.

6020 WebSphere Message Broker Version 7.0.0.8

Field Identification

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and, if a value is specified in the optional
Delimiter property, are separated by that value. You must set the Tag property
for all child elements of simple type, and you can set the Delimiter property
to a non-empty value. See “Global element TDS properties” on page 5513. You
must also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to
it. You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of
Tag property, or variable length delimited by the Tag Data Separator property.
You must also set the Length Of Encoded Length property so that the parser
knows the size of the length field, and set the Extra Chars in Encoded Length
property. This property tells the parser what to subtract from the value in the
Length Of Encoded Length property to get the actual length of the data that
follows the length field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length. Variable length
elements must be delimited by the value specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message
definition file properties” on page 5409.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
5513. If you set the Data Element Separation property of a complex type to
Fixed Length, you must also set the Data Element Separation property of all
complex children of this type to Fixed Length. Each child element must have
a Length or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules regarding missing optional elements, encoded lengths, and versioning,
must be applied. If you set the Data Element Separation property of a
complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

Chapter 14. Reference 6021

Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. Use this option when the same delimiter is used
to delimit parent and child objects. For example, if an optional child element
is missing, message processing applications cannot tell where the child
elements in a message end and the next parent element starts, if the delimiters
are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited or Tagged Delimited. Select this check box if the Length property of
child simple elements is significant when parsing and writing.

v During parsing, an exception is thrown if the length of the extracted data
exceeds the specified length. Otherwise, the data is trimmed according to the
Justification and Padding Character properties of the child element.

v During writing, an exception is thrown if the data to write exceeds the
specified length. Otherwise, the data is padded according to the
Justification and Padding Character properties of the child element.

Clear this check box to ignore the Length property when parsing and writing.

The default value depends on the setting of the Messaging Standard property (at
the message set level) and the Data Element Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is TLOG, the check box is selected.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is other than TLOG, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

For all other data element separation methods, the check box is disabled and
does not influence the behavior of the TDS parser.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually
exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

6022 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this property
allows tags to be extracted from the bit stream if the Tag Data Separator
property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2147483647.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2147483647. The parser subtracts this number from the
number found in the length field to get the number of data characters that
follow the length field.

You must set this property if you have set the Data Element Separation
property to Tagged Encoded Length, and the actual number of data characters is
less than the value found in the length field.

Field Identification

Property Type Meaning

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Occurrences

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Chapter 14. Reference 6023

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the list of integer objects that occur before this object in the
structure of the message. The value of the selected integer specifies the number
of occurrences of this object. If no objects are listed, no integer objects exist
before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validating
the message.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

6024 WebSphere Message Broker Version 7.0.0.8

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Message properties:

Different types of properties are available for a message.

A message can have the following properties;
v “Message logical properties” on page 5449
v “Message CWF properties” on page 5473
v “Message XML properties” on page 5495
v “Message TDS properties” on page 5531
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.

Chapter 14. Reference 6025

“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Message logical properties:

This section describes the logical properties of a message.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Message Alias String Specify an alternative unique value that identifies the message. This property is
only required if you are using the MRM domain and the Message Identity
technique to identify embedded messages, and the bit stream does not contain
the actual message name.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

6026 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Message CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Message XML properties:

The following tables describe the XML properties of a message.

Namespace schema locations

This property is only active if namespaces have been enabled.

Property Type Meaning

Namespace URI String A unique string, usually in the form of a URL that identifies the schema.

If namespaces have not been enabled, this property displays <no target
namespace>.

This property overrides the same property at the message set level.

Chapter 14. Reference 6027

Property Type Meaning

Schema location String Enter the location of the schema for the associated namespace name to be used
to validate objects in the namespace.

XML declarations

Property Type Meaning

Output
Namespace
Declaration

Enumerated
type

The Output Namespace Declaration property controls where the namespace
declarations are placed in the output XML document.

Select from:
v At start of document. Declarations for all of the entries in the Namespace

schema locations table above are produced as attributes of the message in the
output XML document. The disadvantage of this option is that in some cases
unnecessary declarations might be produced.

v As required. Declarations are produced only when required by an element or
attribute that is in that namespace. The disadvantage of this option is that the
same namespace declaration might need to be produced more than once in
the output XML document.

The default option is At start of document.

This property is active only if namespaces are enabled for this message set.

XML document type settings

Property Type Meaning

DOCTYPE
System ID

String Specify the System ID for DOCTYPE external DTD subset. It overrides the
equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled).

The default value is the value that you specified for the DOCTYPE System ID
property for the message set.

DOCTYPE
Public ID

String Specify the Public ID for DOCTYPE external DTD subset. It overrides the
equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE Public ID
property for the message set.

DOCTYPE Text String Enter optional additional text to include within the DOCTYPE. It overrides the
message set property for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled).

For more information, see “MRM XML: In-line DTDs and the DOCTYPE text
property” on page 5407.

The default value is the value that you specified for the DOCTYPE Text property
for the message set.

6028 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Root Tag Name String Specify the name of the root tag for a message bit stream XML document. It
overrides the message set property set for this message.

The default value is the value that you specified for the Root Tag Name property
for the message set.
Note: This property is deprecated. Do not change its value from its default
setting.

Field identification

A number of the following properties will only become active depending on the
value that Render property is set to.

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (for output) in the
resulting XML document. Select one of the following values from the drop-down
list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML Name
property to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Chapter 14. Reference 6029

Property Type Meaning

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

6030 WebSphere Message Broker Version 7.0.0.8

Message TDS properties:

Message TDS properties.

Property Type Meaning

Message Key String Specify an alternative unique value that identifies the message in the bit stream.
This property is required if the message is embedded within another message.
Note: From Version 6.0 onwards, the use of Message Key has been deprecated for
identifying an embedded message. You now have the option of identifying an
embedded message by Message Identity, using the Message Alias logical
property.

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“Identifying an embedded message by using a Message Identity” on page 1193
You can identify an embedded message by using the Message Identity. This
technique is used by the MRM domain, and replaces the use of the Message Key.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message logical properties” on page 5449
This section describes the logical properties of a message.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Chapter 14. Reference 6031

“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Simple type properties:

Different types of properties are available for a simple type.

A simple type can have the following properties;
v “Simple type logical properties” on page 5450
v “Simple type CWF properties” on page 5474
v “Simple type XML properties” on page 5498
v “Simple type TDS properties” on page 5532
v “Documentation properties for all message set objects” on page 5413

A simple type can also have “Simple type logical value constraints” on page 5450.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

6032 WebSphere Message Broker Version 7.0.0.8

“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Simple type logical properties:

The logical properties of a simple type.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Base Type Enumerated
type

This property only applies to a simple type restriction.

You can use this property to select a base type that is used as the starting point
to define a new simple type that is derived by setting additional value
constraints.

Item Type Enumerated
type

This property only applies to a simple type list.

You can use this property to select the type that is used as the item type of the
list.

Chapter 14. Reference 6033

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Variety Enumerated
type

This property displays the variety of the simple type you have selected, either
atomic, list, or union.

A simple type can also have “Simple type logical value constraints” on page 5450.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Simple type logical value constraints:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v base64Binary

v hexBinary

Boolean types v Boolean

DateTime types

v date

v dateTime

v gDay

v gMonth

v gMonthDay

v gYear

v gYearMonth

v time

Decimal types

v decimal

v integer

v negativeInteger

v nonNegativeInteger

v nonPositiveInteger

v positiveInteger

v unsignedLong

6034 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Float types
v double

v float

Integer types

v byte

v int

v long

v short

v unsignedByte

v unsignedInt

v unsignedShort

Interval types v duration

String types

v anyURI

v ENTITIES

v ENTITY

v ID

v IDREF

v IDREFS

v language

v Name

v NCName

v NMTOKEN

v NMTOKENS

v normalizedString

v NOTATION

v QName

v string

v token

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Logical properties for value constraints for simple type binary types:

The logical properties for simple type binary types.

The simple type value constraint properties described here apply to:
v Objects: Simple types

Chapter 14. Reference 6035

v Binary schema types: base64Binary, hexBinary

Length constraints

Property Type Meaning

Length Integer Specify the exact length of the simple type in bytes or characters.

The value must be greater than 0, and less than 2147483648.

Min Integer Specify the minimum length of the simple type in bytes or characters.

The value must be greater than 0, and less than 2147483648.

Max Integer Specify the maximum length of the simple type in bytes or characters.

The value must be greater than 0, and less than 2147483648.

Property Type Meaning

White Space Enumerated
type

Set this property to control the processing of white space characters received for
this type.

Select one of the following values:

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed, and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed, and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed, and
tab characters are replaced with a space character. All adjacent white space
characters are then collapsed to a single space character, and leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Set this property to constrain the values to the list that is specified in this
property. For example, you might create a simple type called RainbowColors, and
add Red, Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations
list.

You must ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, and y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

6036 WebSphere Message Broker Version 7.0.0.8

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression, or a series of regular expressions, that are
used to constrain the data within the simple type. For further information about
patterns and their syntax see “Using regular expressions to parse data elements”
on page 6301.

Select Add to add a default pattern. Overtype the default with the data you
require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 6037

Logical properties for value constraints for simple type Boolean types:

The logical properties for simple type Boolean types.

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Boolean schema types: Boolean

Property Type Meaning

White Space Enumerated
type

Set this property to control the processing of white space characters received for
this type.

Select one of the following values:

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed, and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed, and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed, and
tab characters are replaced with a space character. All adjacent white space
characters are then collapsed to a single space character, and leading or
trailing spaces are stripped from the data.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression, or a series of regular expressions, that are
used to constrain the data within the simple type. For further information about
patterns and their syntax see “Using regular expressions to parse data elements”
on page 6301.

Select Add to add a default pattern. Overtype the default with the data you
require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

6038 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Logical properties for value constraints for simple type dateTime types:

The logical properties for simple type dateTime types.

The simple type value constraint properties described here apply to:
v Objects: Simple types
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Inclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than, or equal to.

When this value is set, it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer Specify the maximum value for which the data in the message must be less than,
or equal to.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Chapter 14. Reference 6039

Exclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than.

When this value is set it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer Specify the maximum value for which the data in the message must be less than.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Property Type Meaning

White Space Enumerated
type

Set this property to control the processing of white space characters received for
this type.

Select one of the following values:

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed, and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed, and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed, and
tab characters are replaced with a space character. All adjacent white space
characters are then collapsed to a single space character, and leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Set this property to constrain the values to the list that is specified in this
property. For example, you might create a simple type called RainbowColors, and
add Red, Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations
list.

You must ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, and y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

6040 WebSphere Message Broker Version 7.0.0.8

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression, or a series of regular expressions, that are
used to constrain the data within the simple type. For further information about
patterns and their syntax see “Using regular expressions to parse data elements”
on page 6301.

Select Add to add a default pattern. Overtype the default with the data you
require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Chapter 14. Reference 6041

Logical properties for value constraints for simple type decimal types:

The logical properties for simple type decimal types.

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Inclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than, or equal to.

When this value is set, it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer Specify the maximum value for which the data in the message must be less than,
or equal to.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Exclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than.

When this value is set it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer Specify the maximum value for which the data in the message must be less than.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Property Type Meaning

Fraction Digits Integer Set this property to limit the number of digits in the fraction part of a numeric
value to the number of digits specified in this property.

The value must be greater than, or equal to, 0, and less than 2147483648.

The value set for Fraction Digits cannot be greater than the value specified for
Total Digits.

6042 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Total Digits Integer Set this property to set the maximum number of digits in a numeric value to the
number of digits specified in this property.

The value must be greater than, or equal to, 0, and less than 2147483648.

The value set for Total Digits cannot be less than the value specified for
Fraction Digits.

Property Type Meaning

White Space Enumerated
type

Set this property to control the processing of white space characters received for
this type.

Select one of the following values:

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed, and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed, and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed, and
tab characters are replaced with a space character. All adjacent white space
characters are then collapsed to a single space character, and leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Set this property to constrain the values to the list that is specified in this
property. For example, you might create a simple type called RainbowColors, and
add Red, Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations
list.

You must ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, and y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression, or a series of regular expressions, that are
used to constrain the data within the simple type. For further information about
patterns and their syntax see “Using regular expressions to parse data elements”
on page 6301.

Select Add to add a default pattern. Overtype the default with the data you
require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Related concepts:

Chapter 14. Reference 6043

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Logical properties for value constraints for simple type float types:

The logical properties for simple type float types.

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Float schema types: double, float

6044 WebSphere Message Broker Version 7.0.0.8

Inclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than, or equal to.

When this value is set, it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer Specify the maximum value for which the data in the message must be less than,
or equal to.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Exclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than.

When this value is set it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer Specify the maximum value for which the data in the message must be less than.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Property Type Meaning

White Space Enumerated
type

Set this property to control the processing of white space characters received for
this type.

Select one of the following values:

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed, and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed, and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed, and
tab characters are replaced with a space character. All adjacent white space
characters are then collapsed to a single space character, and leading or
trailing spaces are stripped from the data.

Chapter 14. Reference 6045

Enumerations

Property Type Meaning

Enumerations String Set this property to constrain the values to the list that is specified in this
property. For example, you might create a simple type called RainbowColors, and
add Red, Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations
list.

You must ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, and y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression, or a series of regular expressions, that are
used to constrain the data within the simple type. For further information about
patterns and their syntax see “Using regular expressions to parse data elements”
on page 6301.

Select Add to add a default pattern. Overtype the default with the data you
require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

6046 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Logical properties for value constraints for simple type integer types:

The logical properties for simple type integer types.

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Inclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than, or equal to.

When this value is set, it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer Specify the maximum value for which the data in the message must be less than,
or equal to.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Exclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than.

When this value is set it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Chapter 14. Reference 6047

Property Type Meaning

Max Integer Specify the maximum value for which the data in the message must be less than.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Property Type Meaning

Fraction Digits Integer Set this property to limit the number of digits in the fraction part of a numeric
value to the number of digits specified in this property.

The value must be greater than, or equal to, 0, and less than 2147483648.

The value set for Fraction Digits cannot be greater than the value specified for
Total Digits.

Property Type Meaning

Total Digits Integer Set this property to set the maximum number of digits in a numeric value to the
number of digits specified in this property.

The value must be greater than, or equal to, 0, and less than 2147483648.

The value set for Total Digits cannot be less than the value specified for
Fraction Digits.

Property Type Meaning

White Space Enumerated
type

Set this property to control the processing of white space characters received for
this type.

Select one of the following values:

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed, and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed, and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed, and
tab characters are replaced with a space character. All adjacent white space
characters are then collapsed to a single space character, and leading or
trailing spaces are stripped from the data.

6048 WebSphere Message Broker Version 7.0.0.8

Enumerations

Property Type Meaning

Enumerations String Set this property to constrain the values to the list that is specified in this
property. For example, you might create a simple type called RainbowColors, and
add Red, Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations
list.

You must ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, and y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression, or a series of regular expressions, that are
used to constrain the data within the simple type. For further information about
patterns and their syntax see “Using regular expressions to parse data elements”
on page 6301.

Select Add to add a default pattern. Overtype the default with the data you
require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

Chapter 14. Reference 6049

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Logical properties for value constraints for simple type interval types:

The logical properties for simple type interval types.

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Interval schema types: duration

Inclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than, or equal to.

When this value is set, it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer Specify the maximum value for which the data in the message must be less than,
or equal to.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Exclusive Constraints

Property Type Meaning

Min Integer Specify the minimum value for which the data in the message must be greater
than.

When this value is set it cannot be equal to, or greater than, the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

6050 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Max Integer Specify the maximum value for which the data in the message must be less than.

When this value is set, it cannot be equal to, or less than, the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Property Type Meaning

White Space Enumerated
type

Set this property to control the processing of white space characters received for
this type.

Select one of the following values:

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed, and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed, and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed, and
tab characters are replaced with a space character. All adjacent white space
characters are then collapsed to a single space character, and leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Set this property to constrain the values to the list that is specified in this
property. For example, you might create a simple type called RainbowColors, and
add Red, Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations
list.

You must ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, and y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression, or a series of regular expressions, that are
used to constrain the data within the simple type. For further information about
patterns and their syntax see “Using regular expressions to parse data elements”
on page 6301.

Select Add to add a default pattern. Overtype the default with the data you
require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Related concepts:

Chapter 14. Reference 6051

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Logical properties for value constraints for simple type string types:

The logical properties for simple type string types.

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Length constraints

Property Type Meaning

Length Integer Specify the exact length of the simple type in bytes or characters.

The value must be greater than 0, and less than 2147483648.

Min Integer Specify the minimum length of the simple type in bytes or characters.

The value must be greater than 0, and less than 2147483648.

6052 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Max Integer Specify the maximum length of the simple type in bytes or characters.

The value must be greater than 0, and less than 2147483648.

Property Type Meaning

White Space Enumerated
type

Set this property to control the processing of white space characters received for
this type.

Select one of the following values:

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed, and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed, and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed, and
tab characters are replaced with a space character. All adjacent white space
characters are then collapsed to a single space character, and leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Set this property to constrain the values to the list that is specified in this
property. For example, you might create a simple type called RainbowColors, and
add Red, Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations
list.

You must ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, and y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression, or a series of regular expressions, that are
used to constrain the data within the simple type. For further information about
patterns and their syntax see “Using regular expressions to parse data elements”
on page 6301.

Select Add to add a default pattern. Overtype the default with the data you
require.

To change an entry, select the entry, and click on the entry a second time (as
distinct from double-click). You can now update the selected entry.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined

Chapter 14. Reference 6053

structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Simple type CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical

6054 WebSphere Message Broker Version 7.0.0.8

formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Simple type XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the

Chapter 14. Reference 6055

function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Simple type TDS properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:

6056 WebSphere Message Broker Version 7.0.0.8

“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Unique properties:

Unique logical, CWF, XML, TDS, and documentation properties.

A unique can have the following properties;
v “Unique logical properties” on page 5452
v “Unique CWF properties” on page 5474
v “Unique XML properties” on page 5499
v “Unique TDS properties” on page 5532
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the

Chapter 14. Reference 6057

function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Unique logical properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Unique CWF properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Unique XML properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical

6058 WebSphere Message Broker Version 7.0.0.8

model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Unique TDS properties:

There are no properties to show.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:

Chapter 14. Reference 6059

“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Wildcard attribute properties:

Different types of properties are available for a wildcard attribute.

A wildcard attribute can have the following properties;
v “Wildcard attribute logical properties” on page 5453
v “Wildcard attribute CWF properties” on page 5475
v “Wildcard attribute XML properties” on page 5499
v “Wildcard attribute TDS properties” on page 5534
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

6060 WebSphere Message Broker Version 7.0.0.8

Wildcard attribute logical properties:

The logical properties of a wildcard attribute.

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

Property Type Meaning

Process Content Enumerated
type

If a message contains an attribute that corresponds to a wildcard in the message
model, Process Content defines how the attribute is validated.

Select one of the following options:

v strict. The parser can match only against attributes declared in the specified
namespace.

v lax. The parser attempts to match against attributes declared in all accessible
namespaces. If the specified namespace cannot be found, an error is not
generated.

v skip. If you select skip, the parser does not perform validation on the
attribute.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard attribute CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.

Chapter 14. Reference 6061

Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard attribute XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.

6062 WebSphere Message Broker Version 7.0.0.8

“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard attribute TDS properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

Chapter 14. Reference 6063

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Wildcard element properties:

Different types of properties are available for a wildcard element.

A wildcard element can have the following properties;
v “Wildcard element logical properties” on page 5453
v “Wildcard element CWF properties” on page 5475
v “Wildcard element XML properties” on page 5500
v “Wildcard element TDS properties” on page 5534
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.

6064 WebSphere Message Broker Version 7.0.0.8

“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Wildcard element logical properties:

The logical properties of a wildcard element include properties that specify the
number of occurrences of the wildcard element.

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

Property Type Meaning

Process Content Enumerated
type

If a message contains an element that corresponds to a wildcard in the message
model, Process Content defines how the element is validated.

Select one of the following options:

v strict. The parser can match only against elements declared in the specified
namespace.

v lax. The parser attempts to match against elements declared in any accessible
namespace. If the specified namespace cannot be found, an error is not
generated.

v skip. If you select skip the parser does not perform validation on the element.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Chapter 14. Reference 6065

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard element CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

6066 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Wildcard element XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Chapter 14. Reference 6067

Wildcard element TDS properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“XML wire format physical properties for message model objects” on page 5476
XML wire format physical property information is available for some objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:

6068 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Deprecated message model object properties
Some objects in the message model are deprecated, but you can reference the
information for their properties.

You can access the reference information for the properties of deprecated message
model objects in two ways. The following topics allow you to access the property
information by property kind:
v “Logical properties for deprecated message model objects” on page 6070
v “Physical properties for deprecated message model objects” on page 6075
v “Documentation properties for all message set objects” on page 5413

Alternatively, you can access the property information by object, starting from the
following topic:
v “Deprecated message model object properties by object” on page 6090
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Logical properties for deprecated message model objects” on page 6070
Logical property information for compound elements and embedded simple types.

“Physical properties for deprecated message model objects” on page 6075
CWF, XML, and TDS format physical properties for deprecated objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Deprecated message model object properties by object” on page 6090
Properties for compound elements and embedded simple types.

Chapter 14. Reference 6069

Logical properties for deprecated message model objects:

Logical property information for compound elements and embedded simple types.

Logical property information is available for the following deprecated objects:
v “Compound element logical properties”
v “Embedded simple type logical properties” on page 6074
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Deprecated message model object properties by object” on page 6090
Properties for compound elements and embedded simple types.

Compound element logical properties:

The logical properties of a compound element include properties that specify the
number of occurrences of the compound element.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

6070 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Nillable Check box Select this option if you want the element to be able to be defined as null. A null
value is distinct from being empty, when the element contains no data.

Abstract Check box Select this option if you do not want the element to appear in the message, but
require one of the members of its substitution group to appear in its place.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Chapter 14. Reference 6071

Property Type Meaning

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

6072 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.

Compound element complex type logical properties:

The Name property is set to **ANONYMOUS** and cannot be changed.

Name property:
Only the complex type properties shown in the following tables are applicable to
compound elements.

Property Type Meaning

Name String This property is set to **ANONYMOUS**, and cannot be changed.

Content:

Property Type Meaning

Group
Reference

Button This radio button is already selected and cannot be changed.

Group Name Enumerated
type

The Group Name is the name of the group that this complex type is referring to.
The groups available to be referenced can be selected from the drop-down list.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

Chapter 14. Reference 6073

“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Logical properties for deprecated message model objects” on page 6070
Logical property information for compound elements and embedded simple types.

“Deprecated message model object properties by object” on page 6090
Properties for compound elements and embedded simple types.

Compound element value constraint properties:

The value constraints for a compound element.

The properties for compound element value constraints are identical to simple type
value constraints. See “Simple type logical value constraints” on page 5450 for
details.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element logical properties” on page 6070
The logical properties of a compound element include properties that specify the
number of occurrences of the compound element.
“Simple type logical value constraints” on page 5450
The properties, and their permissible values, vary according to the object type.

Embedded simple type logical properties:

The logical properties of an embedded simple type include properties that specify
the number of occurrences of the embedded simple type.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

6074 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Physical properties for deprecated message model objects:

CWF, XML, and TDS format physical properties for deprecated objects.

Property information is available for deprecated objects within:
v “Custom Wire Format properties for deprecated message model objects” on page

6076
v “XML wire format physical properties for deprecated message model objects” on

page 6081
v “TDS format physical properties for deprecated objects” on page 6085
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.

Chapter 14. Reference 6075

“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
Related reference:
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Custom Wire Format properties for deprecated message model objects”
CWF properties for compound elements and embedded simple types.
“XML wire format physical properties for deprecated message model objects” on
page 6081
XML wire format physical properties for compound elements and embedded
simple types.
“TDS format physical properties for deprecated objects” on page 6085
TDS format physical properties for compound elements and embedded simple
types.

Custom Wire Format properties for deprecated message model objects:

CWF properties for compound elements and embedded simple types.

Custom wire format physical property information is available for the following
deprecated objects:
v “Compound element CWF properties” on page 6077
v “Embedded simple type CWF properties” on page 6079
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.

6076 WebSphere Message Broker Version 7.0.0.8

“Physical properties for deprecated message model objects” on page 6075
CWF, XML, and TDS format physical properties for deprecated objects.
“XML wire format physical properties for deprecated message model objects” on
page 6081
XML wire format physical properties for compound elements and embedded
simple types.
“TDS format physical properties for deprecated objects” on page 6085
TDS format physical properties for compound elements and embedded simple
types.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Deprecated message model object properties by object” on page 6090
Properties for compound elements and embedded simple types.

Compound element CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_BaseValueBinary

Boolean types
v ComIbmMrm

_BaseValueBoolean

DateTime types
v ComIbmMrm

_BaseValueDateTime

Decimal types
v ComIbmMrm

_BaseValueDecimal

Float types
v ComIbmMrm

_BaseValueFloat

Integer types
v ComIbmMrm

_BaseValueInt

String types
v ComIbmMrm

_BaseValueString

`
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.

Chapter 14. Reference 6077

“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
“Working with data structures” on page 2930
You can create a message definition file in a message set by importing from XML
Schema, XML DTD, SCA import or export components, IBM supplied messages,
WSDL definitions, IDL files, C header files, and COBOL copybooks. This topic area
describes how to import from these data structures using the command line or the
WebSphere Message Broker Toolkit.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.

Compound element complex type CWF properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.

6078 WebSphere Message Broker Version 7.0.0.8

“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Physical properties for deprecated message model objects” on page 6075
CWF, XML, and TDS format physical properties for deprecated objects.
“Compound element complex type TDS properties” on page 6087
The TDS properties for compound element complex types are identical to the TDS
properties for normal complex types.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Deprecated message model object properties by object” on page 6090
Properties for compound elements and embedded simple types.

Embedded simple type CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_AnonBinary

Boolean types
v ComIbmMrm

_AnonBoolean

DateTime types

v ComIbmMrm

_AnonDate

v ComIbmMrm

_AnonDateTime

v ComIbmMrm

_AnonGDay

v ComIbmMrm

_AnonGMonth

v ComIbmMrm

_AnonGMonthDay

v ComIbmMrm

_AnonGYear

v ComIbmMrm

_AnonGYearMonth

v ComIbmMrm

_AnonTime

Decimal types
v ComIbmMrm

_AnonDecimal

Chapter 14. Reference 6079

Type of object Properties

Float types
v ComIbmMrm

_AnonFloat

Integer types
v ComIbmMrm

_AnonInt

String types
v ComIbmMrm

_AnonString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type logical properties” on page 6074
The logical properties of an embedded simple type include properties that specify
the number of occurrences of the embedded simple type.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

6080 WebSphere Message Broker Version 7.0.0.8

XML wire format physical properties for deprecated message model objects:

XML wire format physical properties for compound elements and embedded
simple types.

XML wire format physical property information is available for the following
deprecated objects:
v “Compound element XML properties”
v “Embedded simple type XML properties” on page 6084
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Physical properties for deprecated message model objects” on page 6075
CWF, XML, and TDS format physical properties for deprecated objects.
“Custom Wire Format properties for deprecated message model objects” on page
6076
CWF properties for compound elements and embedded simple types.
“TDS format physical properties for deprecated objects” on page 6085
TDS format physical properties for compound elements and embedded simple
types.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Deprecated message model object properties by object” on page 6090
Properties for compound elements and embedded simple types.

Compound element XML properties:

The properties, and their permissible values, vary according to the object type.

Chapter 14. Reference 6081

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_BaseValueBinary

Boolean types
v ComIbmMrm

_BaseValueBoolean

DateTime types
v ComIbmMrm

_BaseValueDateTime

Decimal types
v ComIbmMrm

_BaseValueDecimal

Float types
v ComIbmMrm

_BaseValueFloat

Integer types
v ComIbmMrm

_BaseValueInt

String types
v ComIbmMrm

_BaseValueString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.

6082 WebSphere Message Broker Version 7.0.0.8

“Compound element logical properties” on page 6070
The logical properties of a compound element include properties that specify the
number of occurrences of the compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Compound element complex type XML properties:

There are no properties to show.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Physical properties for deprecated message model objects” on page 6075
CWF, XML, and TDS format physical properties for deprecated objects.
“Compound element complex type CWF properties” on page 6078
There are no properties to show.
“Compound element complex type TDS properties” on page 6087
The TDS properties for compound element complex types are identical to the TDS
properties for normal complex types.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Deprecated message model object properties by object” on page 6090
Properties for compound elements and embedded simple types.

Chapter 14. Reference 6083

Embedded simple type XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_AnonBinary

Boolean types
v ComIbmMrm

_AnonBoolean

DateTime types

v ComIbmMrm

_AnonDate

v ComIbmMrm

_AnonDateTime

v ComIbmMrm

_AnonGDay

v ComIbmMrm

_AnonGMonth

v ComIbmMrm

_AnonGMonthDay

v ComIbmMrm

_AnonGYear

v ComIbmMrm

_AnonGYearMonth

v ComIbmMrm

_AnonTime

Decimal types
v ComIbmMrm

_AnonDecimal

Float types
v ComIbmMrm

_AnonFloat

Integer types
v ComIbmMrm

_AnonInt

String types
v ComIbmMrm

_AnonString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.

6084 WebSphere Message Broker Version 7.0.0.8

“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type logical properties” on page 6074
The logical properties of an embedded simple type include properties that specify
the number of occurrences of the embedded simple type.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

TDS format physical properties for deprecated objects:

TDS format physical properties for compound elements and embedded simple
types.

TDS format physical property information is available for the following deprecated
objects:
v “Compound element TDS properties” on page 6086
v “Embedded simple type TDS properties” on page 6088
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

Chapter 14. Reference 6085

“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Physical properties for deprecated message model objects” on page 6075
CWF, XML, and TDS format physical properties for deprecated objects.
“Custom Wire Format properties for deprecated message model objects” on page
6076
CWF properties for compound elements and embedded simple types.
“XML wire format physical properties for deprecated message model objects” on
page 6081
XML wire format physical properties for compound elements and embedded
simple types.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Deprecated message model object properties by object” on page 6090
Properties for compound elements and embedded simple types.

Compound element TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_BaseValueBinary

Boolean types
v ComIbmMrm

_BaseValueBoolean

DateTime types
v ComIbmMrm

_BaseValueDateTime

Decimal types
v ComIbmMrm

_BaseValueDecimal

Float types
v ComIbmMrm

_BaseValueFloat

Integer types
v ComIbmMrm

_BaseValueInt

6086 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

String types
v ComIbmMrm

_BaseValueString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element logical properties” on page 6070
The logical properties of a compound element include properties that specify the
number of occurrences of the compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Compound element complex type TDS properties:

The TDS properties for compound element complex types are identical to the TDS
properties for normal complex types.

See “Complex type TDS properties” on page 5505 for details.
Related concepts:

Chapter 14. Reference 6087

“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Physical properties for deprecated message model objects” on page 6075
CWF, XML, and TDS format physical properties for deprecated objects.
“Compound element complex type CWF properties” on page 6078
There are no properties to show.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Deprecated message model object properties by object” on page 6090
Properties for compound elements and embedded simple types.

Embedded simple type TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_AnonBinary

Boolean types
v ComIbmMrm

_AnonBoolean

6088 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

DateTime types

v ComIbmMrm

_AnonDate

v ComIbmMrm

_AnonDateTime

v ComIbmMrm

_AnonGDay

v ComIbmMrm

_AnonGMonth

v ComIbmMrm

_AnonGMonthDay

v ComIbmMrm

_AnonGYear

v ComIbmMrm

_AnonGYearMonth

v ComIbmMrm

_AnonTime

Decimal types
v ComIbmMrm

_AnonDecimal

Float types
v ComIbmMrm

_AnonFloat

Integer types
v ComIbmMrm

_AnonInt

String types
v ComIbmMrm

_AnonString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:

Chapter 14. Reference 6089

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type logical properties” on page 6074
The logical properties of an embedded simple type include properties that specify
the number of occurrences of the embedded simple type.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Deprecated message model object properties by object:

Properties for compound elements and embedded simple types.

The following deprecated objects have properties that can be viewed or set:
v “Compound element properties” on page 6091
v “Embedded simple type properties” on page 6180
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined

6090 WebSphere Message Broker Version 7.0.0.8

structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Logical properties for deprecated message model objects” on page 6070
Logical property information for compound elements and embedded simple types.

“Physical properties for deprecated message model objects” on page 6075
CWF, XML, and TDS format physical properties for deprecated objects.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

Compound element properties:

Logical, CWF, XML, TDS, and document properties for a compound element.
v “Compound element logical properties” on page 6070
v “Compound element CWF properties” on page 6077
v “Compound element XML properties” on page 6081
v “Compound element TDS properties” on page 6086
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 6091

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element logical properties” on page 6070
The logical properties of a compound element include properties that specify the
number of occurrences of the compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Compound element logical properties:

The logical properties of a compound element include properties that specify the
number of occurrences of the compound element.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of alphanumeric characters, including the letters A through Z,
a through z, and the digits 0 through 9.

They might also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can start only with a letter or the underscore character, and not with a
number, hyphen, or period.

Names that begin with xml, or any variant of these characters (for example XmL),
are reserved by the XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

6092 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/REC-xml
http://www.w3.org/

Property Type Meaning

Nillable Check box Select this option if you want the element to be able to be defined as null. A null
value is distinct from being empty, when the element contains no data.

Abstract Check box Select this option if you do not want the element to appear in the message, but
require one of the members of its substitution group to appear in its place.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If missing elements or
attributes are required, the message tree can be serialized and then
re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If missing elements or attributes are
required, the message tree can be serialized and then re-parsed with
validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Chapter 14. Reference 6093

Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

Select one of the following options:

v None This value is the default value, and indicates that the element or
attribute does not have a key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name, or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message, and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message can be defined in either the
current message set, or in a message set identified by using a
MessageSetIdentity.

Note: This property is applicable only when the type of the object is derived
from xsd:string.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.

6094 WebSphere Message Broker Version 7.0.0.8

“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.

Compound element value constraint properties:

The value constraints for a compound element.

The properties for compound element value constraints are identical to simple type
value constraints. See “Simple type logical value constraints” on page 5450 for
details.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element logical properties” on page 6070
The logical properties of a compound element include properties that specify the
number of occurrences of the compound element.
“Simple type logical value constraints” on page 5450
The properties, and their permissible values, vary according to the object type.

Compound element CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_BaseValueBinary

Boolean types
v ComIbmMrm

_BaseValueBoolean

DateTime types
v ComIbmMrm

_BaseValueDateTime

Chapter 14. Reference 6095

Type of object Properties

Decimal types
v ComIbmMrm

_BaseValueDecimal

Float types
v ComIbmMrm

_BaseValueFloat

Integer types
v ComIbmMrm

_BaseValueInt

String types
v ComIbmMrm

_BaseValueString

`
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
“Working with data structures” on page 2930
You can create a message definition file in a message set by importing from XML
Schema, XML DTD, SCA import or export components, IBM supplied messages,
WSDL definitions, IDL files, C header files, and COBOL copybooks. This topic area
describes how to import from these data structures using the command line or the
WebSphere Message Broker Toolkit.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.

6096 WebSphere Message Broker Version 7.0.0.8

CWF properties for compound element binary types:

Physical representation, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 6097

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

6098 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.

Chapter 14. Reference 6099

CWF properties for compound element Boolean types:

Byte alignment and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.

6100 WebSphere Message Broker Version 7.0.0.8

“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.

CWF properties for compound element dateTime types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Chapter 14. Reference 6101

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 6310 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal,
or Binary, and have selected the length to be defined by Length, enter the
number of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

6102 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 6103

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

6104 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list. The option that you
select determines the value that you must set for the property Encoding Null
Value:

v NULLPadFill. This option is valid only if Physical Type is Fixed Length
String. The field is filled with the value specified by the Padding Character.
The default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value
that is directly substituted as if it is a string. Use this option when the value
you have set for Encoding Null Value to specify a null date is not a dateTime
value, or does not conform to the standard dateTime format yyyy-MM-dd
'T'HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled.

If you set the Encoding Null property to NULLLogicalValue, you must set this
property to an ISO8601 dateTime format. These formats are described in
“DateTime as string data” on page 6311. For example, specify a value
conforming to yyyy-MM-dd'T'HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any
value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Chapter 14. Reference 6105

Property Type Meaning

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

6106 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.

CWF properties for compound element decimal types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

Chapter 14. Reference 6107

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

6108 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234, equivalent to 'V' or 'P' in a COBOL picture clause. There is no C
equivalent

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 6109

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

6110 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Chapter 14. Reference 6111

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.

CWF properties for compound element float types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

6112 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL and is the default value.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float
are represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list.
The default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

Chapter 14. Reference 6113

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select or clear (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used with Sign Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

6114 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This property is not applicable if you have set Physical Type to Float.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 6115

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

6116 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Chapter 14. Reference 6117

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.

CWF properties for compound element integer types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

6118 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1
and 11.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

Chapter 14. Reference 6119

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

6120 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Chapter 14. Reference 6121

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

6122 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.

CWF properties for compound element string types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Chapter 14. Reference 6123

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and
have selected the length to be defined by Length, enter the number of length
units for the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

6124 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 6125

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

6126 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

STRING The use of this property depends on the Encoding Null property. If specified, its
length must be equal to the length of the string element, except for
NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Chapter 14. Reference 6127

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.

Compound element XML properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

6128 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

Binary types
v ComIbmMrm

_BaseValueBinary

Boolean types
v ComIbmMrm

_BaseValueBoolean

DateTime types
v ComIbmMrm

_BaseValueDateTime

Decimal types
v ComIbmMrm

_BaseValueDecimal

Float types
v ComIbmMrm

_BaseValueFloat

Integer types
v ComIbmMrm

_BaseValueInt

String types
v ComIbmMrm

_BaseValueString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element logical properties” on page 6070
The logical properties of a compound element include properties that specify the
number of occurrences of the compound element.

Chapter 14. Reference 6129

“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

XML wire format properties for compound element binary types:

Field identification and physical representation.

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

6130 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 6131

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

6132 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.

XML wire format properties for compound element Boolean types:

Field identification.

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 6133

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

6134 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 6135

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.

XML wire format properties for compound element dateTime types:

Field identification and physical representation.

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

6136 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 6137

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of dateTime formats.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical

6138 WebSphere Message Broker Version 7.0.0.8

model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.

XML wire format properties for compound element decimal types:

Field identification.

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 6139

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

6140 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 6141

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.

XML wire format properties for compound element float types:

Field identification.

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

6142 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 6143

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

6144 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.

XML wire format properties for compound element integer types:

Field identification.

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Chapter 14. Reference 6145

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

6146 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 6147

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.

XML wire format properties for compound element string types:

Field identification.

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

6148 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML Name
property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name, ID
Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 6262 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Chapter 14. Reference 6149

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or attribute)
, or for a message. No two elements (or attribute) or messages can have the
same XML name.

If you do not set a value, it defaults to that of the element's identifier. If the
element's identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of
Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

6150 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.

Compound element TDS properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_BaseValueBinary

Boolean types
v ComIbmMrm

_BaseValueBoolean

DateTime types
v ComIbmMrm

_BaseValueDateTime

Decimal types
v ComIbmMrm

_BaseValueDecimal

Float types
v ComIbmMrm

_BaseValueFloat

Integer types
v ComIbmMrm

_BaseValueInt

String types
v ComIbmMrm

_BaseValueString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

Chapter 14. Reference 6151

“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element logical properties” on page 6070
The logical properties of a compound element include properties that specify the
number of occurrences of the compound element.
“Compound element CWF properties” on page 6077
The properties, and their permissible values, vary according to the object type.
“Compound element XML properties” on page 6081
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

TDS properties for compound element binary types:

Field identification and physical representation.

The TDS properties described here apply to:
v Objects: Compound elements

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

6152 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive
default length from logical type. If Derive default length from logical
type is selected, the default value is derived from any length or maxLength
value constraint (schema facet) on the object's simple type.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message

Chapter 14. Reference 6153

models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.

TDS properties for compound element Boolean types:

Field identification and physical representation.

The TDS properties described here apply to:
v Objects: Compound elements

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

6154 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.

Chapter 14. Reference 6155

TDS properties for compound element dateTime types:

Field identification, physical representation, and null values.

The TDS properties described here apply to:
v Objects: Compound elements

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

6156 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 6157

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

6158 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 6159

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.

TDS properties for compound element decimal types:

Field identification, physical representation, numeric representation, and null
values.

The TDS properties described here apply to:
v Objects: Compound elements

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

6160 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any totalDigits value constraint (schema facet) or, if none,
any minInclusive, maxInclusive, minExclusive, or maxExclusive value
constraints (schema facets), on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 6161

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

6162 WebSphere Message Broker Version 7.0.0.8

Numeric representation

Property Type Meaning

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Chapter 14. Reference 6163

Property Type Meaning

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

6164 WebSphere Message Broker Version 7.0.0.8

“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.

TDS properties for compound element float types:

Field identification, physical representation, numeric representation, and null
values.

The TDS properties described here apply to:
v Objects: Compound elements

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Chapter 14. Reference 6165

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. Equates to the data type FLOAT or DOUBLE in C, or the COMP-1 or
COMP-2 numeric data type in COBOL.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

6166 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 6167

Numeric representation

Property Type Meaning

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

v Exponential Notation - Example "1.23456e002": data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent are positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream, assuming that the
value of Negative Sign is "-", and the value of Sign Orientation is Leading.

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is "*" and
Sign Orientation is Trailing.

6168 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Chapter 14. Reference 6169

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.

TDS properties for compound element integer types:

Field identification, physical representation, numeric representation, and null
values.

The TDS properties described here apply to:
v Objects: Compound elements

6170 WebSphere Message Broker Version 7.0.0.8

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Chapter 14. Reference 6171

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any totalDigits value constraint (schema facet) or, if none,
any minInclusive, maxInclusive, minExclusive, or maxExclusive value
constraints (schema facets), on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

6172 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 6173

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

6174 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.

TDS properties for compound element string types:

Field identification, physical representation, and null values.

The TDS properties described here apply to:
v Objects: Compound elements

Chapter 14. Reference 6175

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object are interpreted as having
significance for the parser and, if so, the type of interpretation that occurs. This
interpretation is standard-specific and is therefore hard coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

6176 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 6177

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

6178 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 6179

“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Compound element properties” on page 6091
Logical, CWF, XML, TDS, and document properties for a compound element.
“Compound element TDS properties” on page 6086
The properties, and their permissible values, vary according to the object type.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Embedded simple type properties:

Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
v “Embedded simple type logical properties” on page 6074
v “Embedded simple type CWF properties” on page 6079
v “Embedded simple type XML properties” on page 6084
v “Embedded simple type TDS properties” on page 6088
v “Documentation properties for all message set objects” on page 5413
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

6180 WebSphere Message Broker Version 7.0.0.8

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type logical properties” on page 6074
The logical properties of an embedded simple type include properties that specify
the number of occurrences of the embedded simple type.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Embedded simple type logical properties:

The logical properties of an embedded simple type include properties that specify
the number of occurrences of the embedded simple type.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default
value is 1.

If the value is set to 0, the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default
value is 1.

If this property is not set, the object cannot occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1, to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Related concepts:
“The message model” on page 1160
The message model consists of the following components.

Chapter 14. Reference 6181

Related tasks:
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Logical properties for message model objects” on page 5416
Logical property information is available for certain objects.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Embedded simple type CWF properties:

The properties, and their permissible values, vary according to the object type.

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_AnonBinary

Boolean types
v ComIbmMrm

_AnonBoolean

DateTime types

v ComIbmMrm

_AnonDate

v ComIbmMrm

_AnonDateTime

v ComIbmMrm

_AnonGDay

v ComIbmMrm

_AnonGMonth

v ComIbmMrm

_AnonGMonthDay

v ComIbmMrm

_AnonGYear

v ComIbmMrm

_AnonGYearMonth

v ComIbmMrm

_AnonTime

Decimal types
v ComIbmMrm

_AnonDecimal

Float types
v ComIbmMrm

_AnonFloat

Integer types
v ComIbmMrm

_AnonInt

6182 WebSphere Message Broker Version 7.0.0.8

Type of object Properties

String types
v ComIbmMrm

_AnonString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type logical properties” on page 6074
The logical properties of an embedded simple type include properties that specify
the number of occurrences of the embedded simple type.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

CWF properties for embedded simple type binary types:

Physical representation, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Chapter 14. Reference 6183

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

6184 WebSphere Message Broker Version 7.0.0.8

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

Chapter 14. Reference 6185

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.

CWF properties for embedded simple type Boolean types:

Byte alignment and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

6186 WebSphere Message Broker Version 7.0.0.8

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.

CWF properties for embedded simple type dateTime types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Chapter 14. Reference 6187

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 6310 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal,
or Binary, and have selected the length to be defined by Length, enter the
number of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

6188 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Signed Check box Specify whether the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 6189

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

6190 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list. The option that you
select determines the value that you must set for the property Encoding Null
Value:

v NULLPadFill. This option is valid only if Physical Type is Fixed Length
String. The field is filled with the value specified by the Padding Character.
The default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value
that is directly substituted as if it is a string. Use this option when the value
you have set for Encoding Null Value to specify a null date is not a dateTime
value, or does not conform to the standard dateTime format yyyy-MM-dd
'T'HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled.

If you set the Encoding Null property to NULLLogicalValue, you must set this
property to an ISO8601 dateTime format. These formats are described in
“DateTime as string data” on page 6311. For example, specify a value
conforming to yyyy-MM-dd'T'HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any
value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Chapter 14. Reference 6191

Property Type Meaning

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

6192 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.

CWF properties for embedded simple type decimal types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

Chapter 14. Reference 6193

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

6194 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234, equivalent to 'V' or 'P' in a COBOL picture clause. There is no C
equivalent

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 6195

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

6196 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Chapter 14. Reference 6197

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.

CWF properties for embedded simple type float types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

6198 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL and is the default value.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float
are represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list.
The default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and
10.

v If you set the Physical Type to Extended Decimal, enter a value between 1
and 256. (Numbers greater than the maximum COBOL PICTURE clause of 18
are assumed to be 18.)

Chapter 14. Reference 6199

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select or clear (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used with Sign Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

6200 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point is to be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This property is not applicable if you have set Physical Type to Float.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 6201

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

6202 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Chapter 14. Reference 6203

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.

CWF properties for embedded simple type integer types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

6204 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. Equates to the COMP-3 data type in COBOL.

v External Decimal. Equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1
and 11.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used with Sign
Orientation.

Chapter 14. Reference 6205

Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating
that the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected
Signed, choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This option sets a bit in the first byte if the number is
negative. No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x’3232’. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’7232’. The
default value.

v Leading Separate. This option sets the first byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

v Trailing Overpunched. This option sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x’3232’ and the number -22 would be x’3272’.

v Trailing Separate. This option sets the last byte of the element to '+' if the
number is positive and to '-' if the number is negative. For this option, the
length must include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is
set for you.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this property is inactive.

6206 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the
Physical Type property to Extended Decimal, and the Justification property is
either Left Justify or Right Justify, specify this character in one of the
following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This option is valid only if Physical Type is External Decimal.
The field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Chapter 14. Reference 6207

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, except for
NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

6208 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.

CWF properties for embedded simple type string types:

Physical representation, null values, byte alignment, and occurrences.

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Chapter 14. Reference 6209

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one from the displayed list:

v Fixed Length String. The element's length is determined by other length
properties as follows.

v Length Encoded String 1. The first byte of the element contains the length of
the string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element's first 2 bytes contain the length of the
string following the two length bytes in length units. The maximum length of
a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X'00'.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and
have selected the length to be defined by Length, enter the number of length
units for the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the
name of the integer object that specifies the length of this object. Make your
selection from the displayed list of integer objects that are defined as siblings of
the current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
2900.

6210 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as "latin-1" (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as "UTF-16" (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as "UTF-8" (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This option specifies that the size of each character (in bytes)
is determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page "UTF-8" (CCSID 1208), the minimum character
unit is 1 byte; therefore, the parser can make a single read (of the number
of bytes specified by the Length property) to fetch the entire message. The
message must contain only characters that are encoded in 1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this property is inactive.

Chapter 14. Reference 6211

Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is
padded from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, '0', or SPACE from the displayed list.

v Enter a character between quotation marks; for example, "c" or 'c', where c
is any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotation marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, it is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of 'back space'.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, ensure that the
converted value of the padding character is valid for this code page. If the
padding character cannot be represented in the target code page, it is replaced
by a substitution character. The substitution character is fixed and its value
depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used and you then have the option of
specifying an absolute value as a padding character that is inserted directly into
the output message. If this format is used, ensure still that this value is valid for
the code page of any output messages that are created using these MRM
definitions.

6212 WebSphere Message Broker Version 7.0.0.8

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. Encoding
Null Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. The default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

STRING The use of this property depends on the Encoding Null property. If specified, its
length must be equal to the length of the string element, except for
NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must
resolve to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example 'c' or "c", where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. The default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Chapter 14. Reference 6213

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.

Embedded simple type XML properties:

The properties, and their permissible values, vary according to the object type.

6214 WebSphere Message Broker Version 7.0.0.8

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_AnonBinary

Boolean types
v ComIbmMrm

_AnonBoolean

DateTime types

v ComIbmMrm

_AnonDate

v ComIbmMrm

_AnonDateTime

v ComIbmMrm

_AnonGDay

v ComIbmMrm

_AnonGMonth

v ComIbmMrm

_AnonGMonthDay

v ComIbmMrm

_AnonGYear

v ComIbmMrm

_AnonGYearMonth

v ComIbmMrm

_AnonTime

Decimal types
v ComIbmMrm

_AnonDecimal

Float types
v ComIbmMrm

_AnonFloat

Integer types
v ComIbmMrm

_AnonInt

String types
v ComIbmMrm

_AnonString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.

Chapter 14. Reference 6215

Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type logical properties” on page 6074
The logical properties of an embedded simple type include properties that specify
the number of occurrences of the embedded simple type.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

XML Wire Format properties for embedded simple type binary types:

Physical representation.

The XML wire format properties described here apply to:
v Objects: Embedded simple types

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.

6216 WebSphere Message Broker Version 7.0.0.8

“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.

XML wire format properties for embedded simple type Boolean types:

There are no properties to show.

The XML wire format properties described here apply to:
v Objects: Embedded simple types
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 6217

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.

XML wire format properties for embedded simple type dateTime types:

Physical representation.

The XML wire format properties described here apply to:
v Objects: Embedded simple types

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of dateTime formats.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

6218 WebSphere Message Broker Version 7.0.0.8

“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.

XML wire format properties for embedded simple type decimal types:

There are no properties to show.

The XML Wire Format properties described here apply to:
v Objects: Embedded simple types
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.

XML wire format properties for embedded simple type float types:

There are no properties to show.
Related concepts:

Chapter 14. Reference 6219

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.

XML wire format properties for embedded simple type integer types:

There are no properties to show.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

6220 WebSphere Message Broker Version 7.0.0.8

“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.

XML wire format properties for embedded simple type string types:

There are no properties to show.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.

Embedded simple type TDS properties:

The properties, and their permissible values, vary according to the object type.

Chapter 14. Reference 6221

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link for
the object type from the following table.

Type of object Properties

Binary types
v ComIbmMrm

_AnonBinary

Boolean types
v ComIbmMrm

_AnonBoolean

DateTime types

v ComIbmMrm

_AnonDate

v ComIbmMrm

_AnonDateTime

v ComIbmMrm

_AnonGDay

v ComIbmMrm

_AnonGMonth

v ComIbmMrm

_AnonGMonthDay

v ComIbmMrm

_AnonGYear

v ComIbmMrm

_AnonGYearMonth

v ComIbmMrm

_AnonTime

Decimal types
v ComIbmMrm

_AnonDecimal

Float types
v ComIbmMrm

_AnonFloat

Integer types
v ComIbmMrm

_AnonInt

String types
v ComIbmMrm

_AnonString

Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM Custom Wire Format” on page 1214
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed-format data structures or elements, which are not
separated by delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.

6222 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.
Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type logical properties” on page 6074
The logical properties of an embedded simple type include properties that specify
the number of occurrences of the embedded simple type.
“Embedded simple type CWF properties” on page 6079
The properties, and their permissible values, vary according to the object type.
“Embedded simple type XML properties” on page 6084
The properties, and their permissible values, vary according to the object type.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.

TDS properties for embedded simple type binary types:

Field identification and physical representation.

The TDS properties described here apply to:
v Objects: Embedded simple types

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Chapter 14. Reference 6223

Property Type Meaning

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive
default length from logical type. If Derive default length from logical
type is selected, the default value is derived from any length or maxLength
value constraint (schema facet) on the object's simple type.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

6224 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.

TDS properties for embedded simple type Boolean types:

Field identification and physical representation.

The TDS properties described here apply to:
v Objects: Embedded simple types

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Chapter 14. Reference 6225

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.

6226 WebSphere Message Broker Version 7.0.0.8

TDS properties for embedded simple type dateTime types:

Field identification, physical representation, and null values.

The TDS properties described here apply to:
v Objects: Embedded simple types

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Chapter 14. Reference 6227

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

6228 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type, see “DateTime defaults by logical type” on page 6320.

See “DateTime formats” on page 6310 for details of date and time formats.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 6229

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

6230 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.

TDS properties for embedded simple type decimal types:

Field identification, physical representation, numeric representation, and null
values.

The TDS properties described here apply to:
v Objects: Embedded simple types

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Chapter 14. Reference 6231

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any totalDigits value constraint (schema facet) or, if none,
any minInclusive, maxInclusive, minExclusive, or maxExclusive value
constraints (schema facets), on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

6232 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 6233

Numeric representation

Property Type Meaning

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

6234 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

Chapter 14. Reference 6235

“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.

TDS properties for embedded simple type float types:

Field identification, physical representation, numeric representation, and null
values.

The TDS properties described here apply to:
v Objects: Embedded simple types

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

6236 WebSphere Message Broker Version 7.0.0.8

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. Equates to the data type FLOAT or DOUBLE in C, or the COMP-1 or
COMP-2 numeric data type in COBOL.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 6237

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

6238 WebSphere Message Broker Version 7.0.0.8

Numeric representation

Property Type Meaning

Virtual Decimal
Point

Button and
Integer

Specify a non-zero integer that represents the position of an implied decimal
point within a number, or specify 0, the default, to use the formatting of Float or
Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right side of the number. For example, if you specify 3, the decimal
value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right side of the number. For example, if you specify -3, the
decimal value 1234 represents 1,234,000.

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value
of the Virtual Decimal Point property is 0, which indicates that the decimal
point is present in the data. It deals with truncation, and specifies how many
digits are to follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost.
For example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits,
data is truncated. For example, the value 123.4567 is truncated to 123.45 if
you set Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one option from the list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and no decimal separator is written if no fractional digits are present.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even when no fractional digits are present. The
decimal separator must be present in the input bit stream, even when no
fractional digits are present.

v Exponential Notation - Example "1.23456e002": data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent are positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream, assuming that the
value of Negative Sign is "-", and the value of Sign Orientation is Leading.

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is "*" and
Sign Orientation is Trailing.

Chapter 14. Reference 6239

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

6240 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.

TDS properties for embedded simple type integer types:

Field identification, physical representation, numeric representation, and null
values.

The TDS properties described here apply to:
v Objects: Embedded simple types

Chapter 14. Reference 6241

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. Equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

6242 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any totalDigits value constraint (schema facet) or, if none,
any minInclusive, maxInclusive, minExclusive, or maxExclusive value
constraints (schema facets), on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

Chapter 14. Reference 6243

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

6244 WebSphere Message Broker Version 7.0.0.8

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, "+" is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected.

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, "-" is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Chapter 14. Reference 6245

Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.

TDS properties for embedded simple type string types:

Field identification, physical representation, and null values.

The TDS properties described here apply to:
v Objects: Embedded simple types

6246 WebSphere Message Broker Version 7.0.0.8

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of
its parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length,
the property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that the parser uses to identify the data in the
message to assign to the object. This property is used when the Data Element
Separation method is set to Use Data Pattern in the complex type. For more
details, see “Regular expression syntax” on page 6304.

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object are interpreted as having
significance for the parser and, if so, the type of interpretation that occurs. This
interpretation is standard-specific and is therefore hard coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Repeating
Element
Delimiter

String Specify the delimiter to use between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the previous conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the previous conditions are true, a default is not applied.

Chapter 14. Reference 6247

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text,
User Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The first byte of the data contains the length (in
length units) of the data string that follows the length byte. The maximum
length of a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The first two bytes of the data contain the length
(in length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X'00'.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to
Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length
from logical type is selected, and the Physical type is 'Character', the default
value is derived from any length or maxLength value constraint (schema facet)
on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed-length value. This property is used only when a value is written
as a fixed-length string.

Select one of the following values from the list:

v Not Applicable

v Left Justify

v Right Justify

6248 WebSphere Message Broker Version 7.0.0.8

Property Type Meaning

Padding
Character

String Specify the padding character to be inserted or interpreted on the writing or
parsing of a fixed-length object, if the data is less than the fixed-length value.
This property is used only when a value is written as a fixed-length string.

Set this character in one of the following ways:

v Select NUL, '0', or SPACE from the drop-down list.

v Enter a character between quotation marks, for example "c" or 'c', where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that the hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you convert a message from one code page to another, you must ensure that
the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, it is converted from 0x08 to 0x15; the
ASCII and EBCDIC representations of Backspace.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. If you enter a Unicode mnemonic or numeric value,
it is considered to be the character that is represented by that number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
2900.

Chapter 14. Reference 6249

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the list:

v NULLPadFill. This option is valid only for fixed-length objects and is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This option specifies that Encoding Null Value contains a
value that is directly substituted as if it is a string. For dateTime elements, use
this option if you want to use the Encoding Null Value property to test or
compare the content of the field in the message.

v NULLLiteralFill. This option specifies that the field is filled with the value
specified by the Encoding Null Value property. Encoding Null Value must
resolve to a single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 6293.

Encoding Null
Value

String The use of this property depends on the Encoding Null property. The default
value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 6311.

For example, specify a value that conforms to the yyyy-MM-dd'T'HH:mm:ss
format; for example, 1970-12-01.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

6250 WebSphere Message Broker Version 7.0.0.8

“Deprecated message model object properties” on page 6069
Some objects in the message model are deprecated, but you can reference the
information for their properties.
“Embedded simple type properties” on page 6180
Logical, CWF, XML, TDS, and documentation properties for embedded simple
types.
“Embedded simple type TDS properties” on page 6088
The properties, and their permissible values, vary according to the object type.

Documentation properties for all message set objects:

Use the documentation property of an object to add information that describes the
function of the object.

The documentation property is available on all objects except Key, Keyref, and
Unique objects.

The property is a string field, and you can use any standard alphanumeric
characters.
Related concepts:
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Additional MRM domain information
More information about the MRM domain.
v “Message set preferences” on page 5366
v “Message set properties” on page 5371
v “Message definition file properties” on page 5409
v “Message category properties” on page 5413
v “Message model object properties” on page 5416
v “Deprecated message model object properties” on page 6069
v “Generated model representations” on page 6338
v “Import formats” on page 6346
v “Message model wizards” on page 6360
v “MRM restrictions” on page 6252
v “Data types for elements in an MRM message” on page 6254
v “Additional CWF information” on page 6255
v “Additional XML information” on page 6257
v “Additional TDS information” on page 6264
v “DateTime formats” on page 6310
v “Message model task list errors that have a quick fix” on page 6336
Related concepts:

Chapter 14. Reference 6251

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

MRM restrictions:

The MRM parser does not exactly follow the XML Schema 1.0 specification.

However, the XMLNSC domain fully complies with the XML Schema 1.0
specification when validation is enabled. All of the constructs that are mentioned
in this topic are supported by the XMLNSC domain.

XML Schema features supported only in the message editor:
The following features can be created and edited using the message editor, but are
not honored by the MRM domain.
v Pattern facet on non-string data types. The message broker only validates pattern

facets that are applied to simple types based on xsd:string.
v White space facet. The message broker does not use the white space facet.

However, if necessary, white space facets can be included in the message model.
You can accurately control the processing of white space by using the settings on
the physical formats.

v ID attribute. The message model can contain attributes with the name 'id', but
these will not be checked for uniqueness.

XML Schema exceptions:

6252 WebSphere Message Broker Version 7.0.0.8

The following features can be created and edited using the message editor, but the
MRM domain processes them in a way that differs from the XML Schema
specification.
v Default and fixed values. The processing of default and fixed values depends on

the physical format in which the message is parsed. For details on how each
physical format uses these fields, refer to the concept topic Relationship to the
logical model for the relevant physical format.

v xsi:type attribute. The xsi:type attribute is not automatically processed by the
message broker. An attribute with the name 'xsi:type' can be included in the
message model, and can be processed using a message flow.

Differences in validation:
If validation is enabled in a message flow, the following features or scenarios are
not validated in exactly the same way as a validating XML parser would validate
them:
v Any Element or Any Attribute. If the message model contains a wildcard ('any

element' or 'any attribute'), the message broker validates the 'processContents'
field as follows:
– skip. No checking is done; any element or attribute is allowed.
– lax. No checking is done; any element or attribute is allowed.
– strict. Any element or attribute in the same message set is allowed.

Note: If all of the definitions for a namespace are included within the same
message set, the validation of 'strict' is the same as by a validating XML parser.

v Element substitution and 'all' groups. If an element can be substituted, and it
occurs within an 'all' group, the following exceptions apply to the validation of
the element:
– The element is always validated as if it were optional.
– An input message is not rejected if more than one of the substitutions is used

in the same 'all' group.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“XML Schema extensions in message sets” on page 1173
WebSphere Message Broker provides some additional facilities that are not
specified in the XML Schema 1.0 specification. When using a message set, further
extensions are provided.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

Chapter 14. Reference 6253

“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Data types for elements in an MRM message:

A parser is supplied for the body of a message in the MRM domain; it associates
each field with a specific data type.

For details of mapping from XML Schema data types that you have specified for
elements in the MRM to data types used by the broker and supported by ESQL,
see “ESQL to XML Schema data type mapping” on page 5044. When you create an
element, you might find that associated value constraints are created to ensure a
more accurate mapping of the XML Schema type.

Simple type - list

In the message tree, a list type will be represented as a name node with an
anonymous value child for each list item. This allows repeating lists to be handled
without any loss of information. Repeating lists will appear as sibling name
elements, each of which has its own anonymous value child nodes for its
respective list items.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Manipulating messages in the MRM domain” on page 2581
How to use messages that have been modeled in the MRM domain, and that are
parsed by the MRM parser.
Related reference:
“ESQL to XML Schema data type mapping” on page 5044
Mapping from XML Schema simple type to ESQL message tree data type.
“Data types of fields and elements” on page 4237
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message

6254 WebSphere Message Broker Version 7.0.0.8

models.

Additional CWF information:

Information about data conversion and options for unll handling.
v “CWF data conversion”
v “CWF Null handling options” on page 6256
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

CWF data conversion:

You can convert an MRM message to a different code page or encoding, or both.

To do this, set the CodedCharSetId and Encoding fields in the Properties folder
and the message tree to the target value.

The data conversion that is performed is dependent on the simple type of each
element:
v Binary schema types: base64Binary, hexBinary objects are not converted.
v Boolean schema types: Boolean objects are not converted.
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time objects are handled as binary, string, packed decimal,
timeSeconds, or timeMilliseconds.
If a dateTime element is defined as binary, it is not converted.
If it is defined as string, it is converted as a string element (described later in
this section).
If it is defined as a packed decimal value, it is converted as Decimal (described
later in this section).

Chapter 14. Reference 6255

If it is defined as a timeSeconds or timeMilliseconds value, it is converted as
Integer (described later in this section).

v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,
nonPositiveInteger, positiveInteger, unsignedLong objects with Physical Type set
to External Decimal are converted to the target CodedCharSetId. Elements with
other Physical Type settings are converted to the target Encoding.

v Float schema types: double, float objects with Physical Type set to External
Decimal are converted to the target CodedCharSetId. Elements with other
Physical Type settings are converted to the target Encoding.

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,
unsignedShort objects with Physical Type set to External Decimal are converted
to the target CodedCharSetId. Elements with other Physical Type settings are
converted to the target Encoding.

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,
Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token objects are converted to the target CodedCharSetId (the
length of an object that has Physical Type of Length Encoded String 2 is
converted to the target Encoding).

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional CWF information” on page 6255
Information about data conversion and options for unll handling.

CWF Null handling options:

The Custom Wire Format (CWF) supports handling of null values within messages.
The Boolean Null Value that you set for the message set is applicable for all the
defined objects within the message set.

6256 WebSphere Message Broker Version 7.0.0.8

For more information about the use of nulls, refer to the properties Encoding Null
and Encoding Null Value for objects of each simple type, for example, “CWF
properties for element reference and local element dateTime types” on page 5630.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional CWF information” on page 6255
Information about data conversion and options for unll handling.

Additional XML information:

Options for rendering, and null handling.
v “XML Null handling options” on page 6258
v “XML rendering options” on page 6262
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

Chapter 14. Reference 6257

Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

XML Null handling options:

The XML Wire Format supports the handling of null values in messages. Encoding
null properties for XML are set only on the message set, and apply to all the
defined objects in the message set.

You can use the following two properties to represent the numeric and
non-numeric encoding for NULL in the XML Wire Format:
v Encoding Numeric Null
v Encoding Non-Numeric Null

These properties represent the numeric and non-numeric encoding for NULL
respectively.
v The numeric data types are:

– Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,
nonPositiveInteger, positiveInteger, unsignedLong

– Float schema types: double, float
– Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort
v The non-numeric data types are:

– Binary schema types: base64Binary, hexBinary
– Boolean schema types: Boolean
– DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time
– String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS,

language, Name, NCName, NMTOKEN, NMTOKENS, normalizedString,
NOTATION, QName, string, token

Each of these encodings has the following enumerated values:
v NULLEmpty (default)
v NULLValue
v NULLXMLSchema
v NULLValueAttribute
v NULLAttribute (deprecated)
v NULLElement (deprecated)

You do not have to supply additional information for NULLEmpty, NULLXMLSchema,
and NULLValueAttribute, but if you select NULLValue, NULLAttribute, or
NULLElement, you must define further values to be assigned to represent the NULL
condition in the Encoding Numeric Null Value and Encoding Non-Numeric Null
Value message set properties.

The following table shows how each encoding works. For each encoding, the
example XML causes the element myElem to be given a value NULL.

6258 WebSphere Message Broker Version 7.0.0.8

Encoding Numeric Null
Encoding Non-Numeric Null

Encoding Numeric Null Value
Encoding Non-Numeric Null Value

Example XML

NULLEmpty <myElem/>
<myElem></myElem>

NULLValue zzz <myElem>zzz</myElem>

NULLXMLSchema <myElem xsi:nil=’true’/>1 5

NULLValueAttribute <myElem></myElem>2

<parent id="myElem"></parent>3

NULLElement null4 <myElem><null/></myElem>

NULLAttribute null4 <myElem null=’true’/>1

Notes:

1. The attribute must evaluate to true, so the value must be true, 1, or the
Boolean True Value property.

2. This value is valid only for XMLElementAttrVal element rendering, as specified
in “XML rendering options” on page 6262. Marking an element as being
rendered in this way, and setting it to null, is equivalent to removing the
attribute of the element that provides the element's value.

3. This value is valid only for XMLElementAttrIdVal element rendering, as
specified in “XML rendering options” on page 6262. Marking an element as
being rendered in this way, and setting it to null, is equivalent to removing the
attribute of the element that provides the element's value, but not removing the
attribute that provides the element's name.

4. Both NULLElement and NULLAttribute are deprecated. The element or attribute
name provided must not include a namespace URI or prefix. If namespaces are
enabled for the message set, the name matches any namespace.

5. xsi:nil is not supported with complex elements of MRM-XML.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 6259

“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional XML information” on page 6257
Options for rendering, and null handling.
“XML Null value”
When you set the Encoding Null Num property to NULLValue in XML, the value is
taken as a literal.
“XML Null representation for Binary data” on page 6262
If you use the Encoding Null Non-Num Val field with a binary object in XML, enter
the appropriate hex value.
“XML Wire Format message set properties” on page 5400
The following tables define the properties for the XML Wire Format for the
message set.

XML Null value:

When you set the Encoding Null Num property to NULLValue in XML, the value is
taken as a literal.

A direct comparison is done with the text string, and no logical data conversion is
performed. This behavior is in contrast to the TDS and CWF formats.

For example, if you set the message set property Encoding Null Num to the value
NULLValue, and you set Encoding Null Num Val to 0, a FLOAT value of 0.0 or a
DECIMAL value of +0 does not match NULL.

Seting Encoding Null Num to NULLEmpty is equivalent to setting Encoding Null Num
to NULLValue and Encoding Null Num Val to "".
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

6260 WebSphere Message Broker Version 7.0.0.8

“Additional XML information” on page 6257
Options for rendering, and null handling.
“XML Null handling options” on page 6258
The XML Wire Format supports the handling of null values in messages. Encoding
null properties for XML are set only on the message set, and apply to all the
defined objects in the message set.

XML Null element and NullValAttr:
In XML there are two conventions for storing a value:
1. It can be stored as an XML attribute with a local element or element reference

property Render set to XMLAttribute, XMLElement, XMLElementAttrID,
XMLElementAttrVal, or XMLElementAttrIDVal. For example, <element1
val="12"></element1>.

2. It can be stored as XML content with a local element or element reference
property Render set to XMLElement. For example, <element1>12</element1>.

If you set the message set property Encoding Null Num to NULLElement, there is no
way to represent a null value for an attribute value. If a null value is present in the
tree (from ESQL or another format), an attribute with an empty string is written in
the output message.

Conversely, if you have set the message set property Encoding Null Num or
Encoding Null Non-Num to NULLValAttr, there is no way to represent a null value
for a value rendered as XML content. If a null value is present in the tree, when
writing an empty string, an element with no character content is written out
instead.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional XML information” on page 6257
Options for rendering, and null handling.

Chapter 14. Reference 6261

“XML Null handling options” on page 6258
The XML Wire Format supports the handling of null values in messages. Encoding
null properties for XML are set only on the message set, and apply to all the
defined objects in the message set.

XML Null representation for Binary data:

If you use the Encoding Null Non-Num Val field with a binary object in XML, enter
the appropriate hex value.

Do not insert the word CDATA in this field. If CDataHex is specified in the
Encoding XML property, CDATA rendering is used when the message is written.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional XML information” on page 6257
Options for rendering, and null handling.
“XML Null handling options” on page 6258
The XML Wire Format supports the handling of null values in messages. Encoding
null properties for XML are set only on the message set, and apply to all the
defined objects in the message set.

XML rendering options:

You can use four properties on the XML layer that to affect how the XML messages
are rendered.

The following table shows examples of the values that you can set for the Member
Render property. In this table, the member element is referred to as A, and has the
value value of element. The parent is referred to as X.

6262 WebSphere Message Broker Version 7.0.0.8

The effect of rendering options on XML output

To get XML rendered like this: Set this Member
Render property
value:

Set these other property values:

<X>
<A>value of element
</X>

XMLElement (the
default)

Member XML Name = A

<X A=’value of element’/> XMLAttribute Member XML Name = A

<X>
<Field id=’A’>value of element</Field>
</X>

XMLElementAttrID Member XML Name = Field
Member ID Attribute Name = id
Member ID Attribute Value = A

<X>

</X>

XMLElementAttrVal Member XML Name = A
Member Value Attribute Name = val

<X>
<Field id=’A’ val=’value of element’/>
</X>

XMLElementAttrIDVal Member XML Name = Field
Member ID Attribute Name = id
Member ID Attribute Value = A
Member Value Attribute Name = val

You should not have an element in the model that is rendered as an XML attribute.
This can result in incorrect validation of XML documents. Instead the element
should be redefined as an attribute in the model.

You should not have an attribute in the model that is rendered as an XML element.
This can result in incorrect validation of XML documents. Instead the attribute
should be defined as an element in the model.

There is one scenario where this technique is appropriate. When you have created
a message model by importing a C header file or a COBOL copybook, it will
consist entirely of elements. An XML form of this model can be created by simply
adding an XML physical format to the message set. If you are looking for certain
elements to appear as XML attributes in the XML form, you can use the Render
property to achieve this.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM XML physical format” on page 1247
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.
“Configuring physical properties” on page 2912
Working with the physical properties of message model objects.

Chapter 14. Reference 6263

Related reference:
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Physical properties for message model objects” on page 5455
CWF, XML, and TDS format physical properties for message model objects.
“Custom Wire Format physical properties for message model objects” on page 5455
Custom wire format physical property information is available for some objects.
“TDS format physical properties for message model objects” on page 5501
Some objects have TDS wire format properties.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“Message model object properties by object” on page 5536
The following objects have properties that can be viewed or set.

Additional TDS information:

More information about the TDS physical format.
v “TDS Industry standard formats” on page 6265
v “Message characteristics” on page 6281
v “TDS Null handling options” on page 6293
v “TDS message model integrity” on page 6295
v “Using regular expressions to parse data elements” on page 6301
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

6264 WebSphere Message Broker Version 7.0.0.8

TDS Industry standard formats:

WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.

For more details about each of these industry standards, see:
v “CSV messaging standard” on page 6276
v “EDIFACT messaging standard”
v “HL7 messaging standard” on page 6267
v “SWIFT messaging standard” on page 6268
v “TLOG messaging standard” on page 6270
v “X12 messaging standard” on page 6271
v “ACORD AL3 messaging standard” on page 6272
v “FIX messaging standard” on page 6275
v “IDoc messaging standard” on page 6278

These topics also contain details of any predefined message sets that are available
from IBM. Default property values are supplied as defined in “Default TDS
message set properties” on page 5394.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

EDIFACT messaging standard:

EDIFACT, an international standard for EDI trading in commercial and
non-commercial sectors, has an underlying syntax that is an ISO standard.

Chapter 14. Reference 6265

Within that syntax, there are directories of data elements, composite data elements,
segments, and messages. There are conventions for placing messages in an
“envelope” which identifies the sender and receiver and other attributes of a
transmission. For more information about the EDIFACT messaging standard, see
the United Nations Centre for Trade Facilitation and Electronic Business Web site
and click “Standards” on the left side.

EDIFACT messages can be modeled using the MRM Tagged/Delimited String
Format (TDS).

The high-level structure of an EDIFACT message is as follows:

You can model the top-level interchange of an EDIFACT message by setting the
following properties for the complex type on which the message is based:
Composition = Sequence
Content Validation = Closed
Tag Data Separator = <EDIFACT_TAGDATA_SEP>
Data Element Separation = Tagged Delimited
Delimiter = <EDIFACT_CS>

Within an EDIFACT message, you can define the delimiters to be used in the
message itself using the optional Service String Advice element. To enable this
element to be recognized as an EDIFACT Service String, you must set the element
property Interpret Element Value to EDIFACT Service String. You must also set
the delimiter values to the mnemonic values that are defaulted when you set the
Message Standard property to EDIFACT.

A predefined message set solution for EDIFACT can be purchased from IBM.
Related concepts:

Interchange

Service String Advice
UNA

Interchange Header
UNB

OR
Only Messages

Interchange Trailer
UNZ

Either Functional
Groups

` `

` `Functional Group Hdr-UNG Functional Group Trailer- UNEMessage Message

` `Message Header - UNH Data Segment Message Trailer- UNTData Segment

Value Component Data Element Component Data Element:

TAG + Composite Data ElementSimple Data Element `+

Code : Value

Value Value

6266 WebSphere Message Broker Version 7.0.0.8

http://www.unece.org/cefact/

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.

HL7 messaging standard:

The HL7 messaging standard defines the structure and content of messages that
are exchanged between systems in various administrative, financial, and clinical
activities in the healthcare industry.

HL7 messages can be modeled using the MRM Tagged/Delimited String Format
(TDS).

If you are working with HL7 messages you can specify the messaging standard at
the message set level and a number of the properties for this standard are set to
default settings for HL7 at the message set, complex type, group, and element
levels.

Predefined HL7 message sets are available as part of the following Healthcare
sample:
v Healthcare

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:

Chapter 14. Reference 6267

“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

SWIFT messaging standard:

SWIFT supplies secure, standardized messaging services and interface software to
financial institutions.

SWIFT FIN messages can be modeled using the MRM Tagged/Delimited String
Format (TDS).

The high-level block structure of a SWIFT message is shown in the following table.

SWIFT message high level block structure

Block name Format

Basic header {1:...}

Application header {2:...}

User header {3:...}

Text {4:...}

Trailer {5:...}

When they are concatenated in a message, the blocks appear as:
{1:...}{2:...}{3:...}{4:...}{5:...}

6268 WebSphere Message Broker Version 7.0.0.8

You can model this setting the following type properties for the message:
Data Element Separation = Tagged Delimited
Group Indicator = {
Delimiter = }{
Group Terminator = }
Tag Data Separator = :

Each block is modeled as a complex element with element Tag property values of
1,2,3,4, and 5 respectively.

The text body of the message has the following format:
{4:
:20:X
:32A:940930USD1,
.....
:72:/A/
-}

You can model the complex type of the Text body by setting the following type
properties:
Data Element Separation = Tagged Delimited
Group Indicator = <CR><LF>:
Delimiter = <CR><LF>:
Group Terminator = <CR><LF>-
Tag Data Separator = :

The Tag property of the elements within the body has values of 20, 32A, 72, and so
on.

A predefined message set solution for SWIFT can be purchased from IBM. See the
WebSphere MQ SupportPacs web page.

Swift is a cooperative owned by the financial industry. For more information about
the SWIFT messaging standard, see the SWIFT community website.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 6269

http://www.ibm.com/software/integration/support/supportpacs
http://www.swift.com

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.

TLOG messaging standard:

In the retail industry, a TLOG is the Point of Sale (POS) Transaction Log.

The TLOG is a complete, detailed record of everything that occurs at the Point of
Sale (POS) terminal, including events that are not directly related to a sales
transaction. Typically, the precise TLOG record format is unique to a given POS
application, but most formats are based on a tagged/delimited string format called
Raw TLOG.

Raw TLOG messages can be modeled using the MRM Tagged/Delimited String
Format (TDS).

If you are working with TLOG messages you can specify whether fields in the
messages are in character format or in a format that is specific to the message. The
message format needs the Messaging Standard property (at the message set level)
to be set to TLOG, and that relevant objects that have this non-character based field
in the TDS message have the Physical Type property set to TLOG Specific.

Predefined TLOG message sets are available as part of the following TLOG
Processor samples:
v TLOG Processor

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

6270 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.

X12 messaging standard:

X12 is a standard for EDI trading in commercial and non-commercial sectors. X12
has an underlying syntax, which is an ANSI standard.

Within that syntax, there are directories of data elements, composite data elements,
segments, and messages. There are conventions for placing messages in an
“envelope” which identifies the sender and receiver and other attributes of a
transmission. For more information on the X12 messaging standard, see the ASC
X12 website.

X12 messages can be modeled using the MRM Tagged/Delimited String Format
(TDS).

If you are working with X12 messages, you can define the delimiters to be used in
the message itself using the mandatory Interchange Control Header element. To
enable this element to be recognized as an X12 Service String, you must set the
element property Interpret Element Value to X12 Service String. You must also
set the delimiter values to the mnemonic values defaulted by setting the Message
Standard property to X12.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message

Chapter 14. Reference 6271

http://www.x12.org
http://www.x12.org

models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.

ACORD AL3 messaging standard:

The basic structure of an ACORD AL3 message.

Each group with an ACORD AL3 message has a header consisting of a one-digit
number, three letters, plus a three-digit total length count. These first seven
characters can be modeled as a tag. The data within the headers is fixed length.
Therefore the header type used for the overall message can be modeled as follows:
Data Element Separation = Tagged Fixed Length
Length of Tag = 7

The Transaction Group contains other groups, and is therefore modeled in the
same way as the overall message. The Message Header Group and the Message
Trailer group consist of fixed-length elements, therefore the type used can be
modeled as:
Data Element Separation = Fixed Length

Two Data Element Separation methods are suited to handling ACORD AL3
messages:
v Fixed Length AL3 supports basic handling of ACORD AL3 messages, including

situations where the message groups conform to a different version of the
ACORD AL3 standard. This is deprecated and will be removed in a future
version of the product; an alternative will be provided.

v Tagged Encoded Length supports handling of more sophisticated situations,
including messages containing message groups unknown to the message
dictionary.

The following sections describe their use:
v “Using Fixed Length AL3” on page 6273
v “Using Tagged Encoded Length to support reversioning” on page 6274
Related concepts:

ACORD Message

Transaction Header Group Transaction Control Group (OPTIONAL) Data Group Segments (1 Or More)

Message Header Group Message Trailer GroupTransaction (1 or More)

6272 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.

Using Fixed Length AL3:

Using Fixed Length AL3 is deprecated.

Fixed Length AL3 will be removed in a future version of the product; an
alternative will be provided.

You can select the value Fixed Length AL3 for the Data Element Separation
property for complex types within a message that conforms to the ACORD AL3
standard. Different versions of the ACORD AL3 standard can be supported using
the same message set. This value is like the value Fixed Length except for the
following:
v A question mark (?) in the left-most position of an element means that it is

skipped.
v A sequence of question marks is inserted for all missing optional elements.
v Unused trailing optional elements are truncated.
v Any <CR><LF> after the last element is ignored.
v The length field is extracted on input (and not put to the tree), and automatically

recalculated on output.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined

Chapter 14. Reference 6273

structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.
“ACORD AL3 messaging standard” on page 6272
The basic structure of an ACORD AL3 message.

Using Tagged Encoded Length to support reversioning:

Parse tags containing groups that are not in the current ACORD AL3 standards.

The incoming message might contain a group that is no longer in use within the
current ACORD AL3 standards, and has therefore been deleted from the later
version of the standards. Similarly, the incoming bit stream might be from a later
version of the ACORD AL3 standards, and might contain a new group that was
not defined in earlier versions.

In order to correctly parse this self-defining tag, the TDS parser needs to know the
length of the group it is parsing and skip to the end of all data associated with
that self-defining tag.

Use the Data Element Separation method Tagged Encoded Length to handle these
situations. You must also set these properties:
v Length of Tag or Tag Data Separator, so that the TDS parser knows where tags

end.
v Length of Encoded Length, so that the TDS parser knows the size of the length

field.
v Extra Chars in Encoded Length, are used to indicate to the TDS parser how

many characters, apart from the data itself, are counted in the encoded length
field.

Related concepts:

6274 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.
“ACORD AL3 messaging standard” on page 6272
The basic structure of an ACORD AL3 message.

FIX messaging standard:

FIX messages can be modeled using the MRM Tagged/Delimited String Format
(TDS).

The Financial Information eXchange (FIX) Protocol is a series of messaging
specifications. It is a global language describing trade-related messages, and is
used for automated trading of securities, derivative, and other financial
instruments. For more information about the FIX protocol, see the FIX protocol
website.

A predefined message set solution for FIX can be purchased from IBM. See the
WebSphere MQ SupportPacs web page.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.

Chapter 14. Reference 6275

http://www.fixprotocol.org
http://www.fixprotocol.org
http://www.ibm.com/software/integration/support/supportpacs

“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.

CSV messaging standard:

The comma separated value (CSV) format is a typical format for describing data in
tables or spreadsheets.

The CSV format is used to exchange data between database applications or
spreadsheet applications. Although the CSV format is widely used, a definitive
specification has not been formally documented. However, these are some of the
rules that characterize the CSV format:
v Data fields are separated by commas, and groups of data fields are separated by

repeating field delimiters (for example, the <CR><LF> combination of ASCII
characters).
Here is a typical CSV message:
12345,Smith,John,"3, North Street"<CR><LF>
41352,Jones,Ivor,"5, South Road"<CR><LF>
53421,Edwards,David,"10, East Lane"

v A comma that occurs within a data field is regarded as part of the data, rather
than as a field separator, only if the comma is surrounded by quotation marks
(").

v A quotation mark character (") that is within a data field that is enclosed within
quotation marks must always be 'escaped' by another instance of the quotation
mark character.
For example, xx"xx must be written as "xx""xx", and "xxxx" must be written as
"""xxxx""".

v In an input message, any variable length data field can be enclosed within
quotation mark characters, regardless of whether the field contains any special
characters such as quotation mark characters, escape characters, or other
reserved characters.

6276 WebSphere Message Broker Version 7.0.0.8

The quotation mark characters must occur at the start and end of the data, are
stripped from the data when the field is parsed, and are not added to the output
tree. For example, the data A,"B",C results in an output tree that contains the
values A, B, and C.

v If a data field contains two quotation mark characters and nothing else, the
quotation mark characters are removed by the parser and the data field is
processed in the same way as an empty field.

v In an output message, any data field that contains a quotation mark character, or
any of the special characters that are specified in the TDS message set Reserved
Characters property, has quotation mark characters added.

CSV messages can be modeled by using the MRM Tagged/Delimited String
Format (TDS). The default message set property values are shown in “Default TDS
message set properties” on page 5394.

The following sample is a message set application that shows you how to model
some typical CSV message variants, and how to transform the sample CSV
messages to and from XML. The XML messages illustrate the logical structure of
the data after it has been parsed.
v Comma Separated Value (CSV)

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

You can also import a sample CSV message model by using the New Message
Definition File From IBM Supplied Message wizard.
Related concepts:
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: NULL handling” on page 1240
NULL handling dictates the way in which the MRM parser for TDS messages
handles elements that have been set to Null.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Importing from IBM supplied messages” on page 2942
You can create a new message definition file from an IBM supplied message.
Related reference:
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,

Chapter 14. Reference 6277

SWIFT, TLOG, and X12 standards.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“Default TDS message set properties” on page 5394
The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“New message definition file wizard: IBM supplied message” on page 6366
You can create a new message definition file from an IBM supplied message.

IDoc messaging standard:

Receiving data from SAP systems.

WebSphere Message Broker can receive data from SAP systems in various ways.

Two such ways are:
v ALE IDocs exported from SAP across the WebSphere MQ Link for R3.
v File IDocs exported from SAP to the file system.

Such IDocs are a fixed-length text format, and can be modeled using the MRM
domain Tagged/Delimited String Format (TDS).

The IDOC domain is deprecated.

Note: For SAP data that is received from the WebSphere Adapter for SAP, use the
DataObject domain.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“IDOC parser and domain” on page 1126
The IDOC domain can be used to process messages that are sent to the broker by
SAP R3 clients across the WebSphere MQ link for R3. Such messages are known as

6278 WebSphere Message Broker Version 7.0.0.8

SAP ALE IDocs.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Building the MRM TDS model for an IDoc”
The MRM domain Tagged/Delimited String (TDS) physical format is suitable for
parsing and writing SAP ALE IDocs and SAP File IDocs. ALE IDoc messages are
exported from SAP across the WebSphere MQ Link for R3. File IDocs are exported
from SAP to the file system.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.

Building the MRM TDS model for an IDoc:

The MRM domain Tagged/Delimited String (TDS) physical format is suitable for
parsing and writing SAP ALE IDocs and SAP File IDocs. ALE IDoc messages are
exported from SAP across the WebSphere MQ Link for R3. File IDocs are exported
from SAP to the file system.

About this task

This topic describes how to build the message model that is required by the MRM
parser when parsing and writing SAP ALE and File IDocs using its TDS physical
format.

Obtaining the IDoc:
About this task

Create an import file of the required IDoc data for the WebSphere Message Broker
Toolkit.

Procedure

1. Log on to an SAP system.
2. Run the supplied transaction we60, which extracts the IDoc data as a C header

file.
a. In Basic Type, select the IDoc type of interest; for example, MATMAS02.

Chapter 14. Reference 6279

b. Leave the Control, Data, and Status check boxes cleared.
c. Select the Record types version. A version 4 IDoc is type 3.
d. Press F7 to display a C representation of the IDoc.
e. Click unconverted.
f. Select System > List > Save > Local file.
g. When prompted, enter a file name and directory for the output from the

transaction. The C representation of the IDoc is saved to this C header file.

What to do next

Tip: The exported C header can be imported into the WebSphere Message Broker
Toolkit without any further manual processing. This situation was not true in
previous releases of WebSphere Message Broker.

Modeling the IDoc:
About this task

Create your message model.

Procedure

1. Switch to the Broker Application Development perspective of the WebSphere
Message Broker Toolkit.

2. Use the New Message Set wizard to create a message set for your IDoc. Select
text data as the data to use. This action creates a Tagged/Delimited String
Format (TDS) physical format, and presets the Default message domain property
to MRM.

3. Use the Message Set editor to rename the TDS physical format to Text_IDoc.
4. Use the New Message Definition File From IBM supplied message wizard to

import a prebuilt model of the overall ALE or File IDoc message structure. This
model includes definitions of the DC and DD segments. The prebuilt models
are called SAP ALE IDoc and SAP File IDoc. The resultant message definition
file is called ale_idoc.mxsd or file_idoc.mxsd. For information about using the
New Message Definition File From IBM supplied message wizard, see
“Importing from IBM supplied messages” on page 2942.

5. Use the New Message Definition File From C Header File wizard, or the
mqsicreatemsgdefs command, to import the C representation of the IDoc into
the new message set. Specify the following settings:
v Set the Pre-processing option to SAP ALE IDoc or SAP File IDoc. If this

option is not specified, the C header is not imported.
v Create messages for the segments that appear in the IDoc.
v Use the String Encoding option to import character arrays as fixed-length

strings.
v Use the Padding Char for String option to make space (“ ”) the padding

character that is used.

For information about using the wizard, see “Importing from C” on page 2934.

Using the IDoc message model:
About this task

You can now use your message model to help you to construct a message flow
that processes instances of your IDoc message, in the same way as any other
message that belongs to the MRM domain.

6280 WebSphere Message Broker Version 7.0.0.8

Tip: SupportPac IA0F contains a more detailed description of the steps involved in
building the IDoc message model. You can ignore utilities IDocHeaderTweak and
IDocMsgSetTweak because that processing has been incorporated into the New
Message Definition File From C Header File wizard.
Related concepts:
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
Related tasks:
“Importing from C” on page 2934
Create a message definition file from a C header file for use in the MRM and
IDOC domains.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Manipulating messages in the MRM domain” on page 2581
How to use messages that have been modeled in the MRM domain, and that are
parsed by the MRM parser.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“TDS Industry standard formats” on page 6265
WebSphere Message Broker supports the ACORD AL3, CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards.
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.

Message characteristics:

Features that are supported by the TDS wire format.

A number of features of text string messages are common across many formats.
The following sections give an overview of the main features that are supported by
the TDS wire format:

Chapter 14. Reference 6281

v The text strings in the message can have a tag or a label preceding the data
value. The tag is a string that uniquely identifies the data value. The TDS format
allows you to associate a tag with each element when you define the element in
the WebSphere Message Broker Toolkit.

v The message can contain various special characters or strings in addition to the
tags and text string data values. The TDS format supports a number of different
types of special characters or strings. Some messages have a special character or
string that separates each data value from the next. In the TDS format this is a
known as a delimiter. In formats that have a tag before each data value, the tag
can be separated from its data value by a special character or string. In the TDS
format this is known as a tag data separator.

v A message can be split into a number of substructures in a similar manner to a
to COBOL or C structure. You can model each of these substructures separately
by defining complex types or elements for each one. Complex types and
elements are described in “Message model objects” on page 1174. A substructure
can have a special character or string that indicates its start within the data. This
is known in the TDS format as a group indicator. A substructure can also have a
special character or string that indicates its end in the data. In the TDS format,
this is known as a group terminator. A group indicator and group terminator can
also be defined for the whole message. Group indicators and group terminators
are optional for the message and each substructure.

v Some text strings within a message can be of fixed length, so a delimiter
between each data value is not necessary. This is supported by the TDS format.
If you use a fixed length tag, a tagged data separator is not required.

v The TDS property that controls the way text strings are separated is Data
Element Separation. It has several options that let you choose, for example, if
tags are used, if strings lengths are fixed or variable, and what types of text
strings are permitted. See “Specifying data element separation methods to model
a message” on page 6284.

v The substructures within a message can use different types of Data Element
Separation and use different special characters. Therefore the TDS format allows
you to define different types of data element separation and special characters
for each complex type within the message.

v If you use the Use Data Pattern method of Data Element Separation, you can
use regular expressions to identify parts of the message data to be assigned to
subfields. This is done by setting the regular expression in the Data Pattern
property. See “Using regular expressions to parse data elements” on page 6301
for further details.

The following figure illustrates the tags and special characters in a TDS message,
showing an example data message with each of its components labeled.

6282 WebSphere Message Broker Version 7.0.0.8

v At the top level, each data value has a tag associated with it, each tag is
separated from its data value using a tag data separator of colon (:), and the
data values are separated from each other using the asterisk delimiter (*).

v The group indicator for the message is the left brace ({) and the group
terminator is the right brace (}).

v The data values Data2 and Data3 are in a substructure in which there are no
tags, and each data element is separated from the next using the delimiter plus
(+). The group indicator for this substructure is the left bracket ([) and the group
terminator is the right bracket (]).

v The data values Data4 and Data5 are in a substructure in which the values are
fixed length, and are therefore not separated by a delimiter. The group indicator
for this substructure is the less than symbol (<) and the group terminator is the
greater than symbol (>).

The following sections describe data element separation and the special characters
in more detail:
v “Specifying data element separation methods to model a message” on page 6284
v “Specifying special characters to model a message” on page 6287
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

{Tag1:Data1*Tag2:[Data2+Data3]*Tag3:<Data4Data5>}

Tag
Separator

Data Tag
Separator

Data Tag
Separator

Data

Delimiter DelimiterDelimiter

Tag TagTag

Group
Indicator

Group
Indicator

Group
Indicator

Group
Terminator

Group
Terminator

Group
Terminator

Chapter 14. Reference 6283

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

Specifying data element separation methods to model a message:

Specify the appropriate method of data element separation to identify data
elements in a TDS message.

Elements of data in a TDS message are identified according to the data element
separation method that you must specify for the Data Element Separation
property for a complex type. Depending on the value that you have set for Data
Element Separation, the properties Tag Data Separator and Delimiter (for a
message set and a complex type) might also be required to identify each element.

The following describes the methods that you can specify for each complex type.
The examples given are all based on a complex type that contains three elements
of type STRING. The Tag Data Separator, where used, is the colon (:), and the
Delimiter, where used, is the asterisk (*).

Tagged Delimited
Each data value is preceded by a tag that is specified as an element
property. If the tag has an associated Length of Tag, indicating that the tag
has a fixed length, each data value follows immediately after the tag. If the
tag is not specified as fixed length, the tag is separated from the next
element by a Tag Data Separator. Each data value is separated from the
next by a Delimiter. There is no Delimiter after the last element in the
complex type.

The following example shows tags of fixed length:
tag1data1*tag2data2*tag3data3

The following example shows tags of variable length:
tag1:data1*tag11:data2*tag111:data3

Tagged Fixed Length
This method is the similar to Tagged Delimited, but the data values are
always fixed length. Therefore, no delimiter is required after each data
value. The tags themselves can be fixed length or variable length,
depending the setting of Tag Data Separator and Length of Tag.

The following example shows tags of fixed length:
tag1data1tag2data2tag3data3

The following example shows tags of variable length:
tag1:data1tag11:data2tag111:data3

Tagged Encoded Length
This method has a tag and a length field before the data. It indicates to the
parser that following each tag in the bit stream there is data defining the
length of data to be associated with that tag. You must set the Length of
Encoded Length parameter. If the value in Length of Encoded Length
includes extra characters, you must also set the Extra Chars in Encoded
Length parameter.

6284 WebSphere Message Broker Version 7.0.0.8

The following example shows a tag of fixed length of four characters
(Length of Tag has been set to four), a three-character length field (Length
of Encoded Length has been set to three), and several characters of data.
Extra Chars in Encoded Length has been set to zero:
tagA007dataAAAtagB006dataBBtagC009dataCCCCC

Given the bit stream above, the parser finds the tag "tagA" and extracts the
length value 7. Because Extra Chars in Encoded Length is set to zero, the
next seven (7 - 0) characters are the data. Then follow the characters for the
next tag "tagB" and the length value of 6, and so on for tag "tagC". In each
case in this example, the value in the length field is exactly the length of
data.

The following example shows tags with a fixed length of four characters
(Length of Tag has been set to four), a three-character length field (Length
of Encoded Length has been set to three), and several characters of data.
Extra Chars in Encoded Length has been set to three (because in this
example the length field value includes the three-character length field as
well as the data field):
tagA012dataAAAAAtagB010dataBBBtagC016dataCCCCCCCCC

Given the bit stream above, after "tagA" the parser extracts the length
value 12. But because Extra Chars in Encoded Length is set to three, only
the next nine (12 - 3) characters are the data. Then follow the characters for
"tagB" and length value 10, and so on. In each case in this example, the
value in the length field is three more than the actual length of data.

All Elements Delimited
The data values have no tag, but each data value is separated from the
next by a delimiter.

The following example shows this:
data1*data2*data3

Variable Length Elements Delimited
If a data element is fixed length, the next data value follows immediately
after it. If the data element is variable length, the next data value is
separated from it by the delimiter. There are no tags.

The following example shows element 2 as fixed length, and elements 1
and 3 as variable length:
data1*data2data3

Use Data Pattern
The data associated with each element is determined by the parser
matching the data with the regular expression in the Data Pattern
property for that element. The TDS parser uses the regular expression in
the Data Pattern to:
v Determine the length of data to associate with each element.
v Determine if, in the case of a repeating element, another occurrence of

an element is present in the bit stream.
v Determine the presence (if the pattern is matched) or absence (if the

pattern is not matched) of an element in the bit stream.

There are no delimiters or tags, other than those coded as part of the
regular expression patterns. See “Regular expression syntax” on page 6304
for an explanation of how pattern matching works.

Chapter 14. Reference 6285

The following example shows three elements, each having the regular
expression Data Pattern shown:
First Data Pattern = [A-Z]{1,3}
Second Data Pattern = [0-9]+
Third Data Pattern = [a-z]*

Message data = ’DT31758934information for you’

First element data: ’DT’
Second element data: ’31758934’
Third element data: ’information’

The first Data Pattern means "from one to three characters in the range A
to Z", the second means "one or more characters in the range 0 to 9", and
the third means "zero or more characters in the range a to z". Notice how
each element's data was terminated by the first character that did not
match the element's Data Pattern.

Fixed Length
All elements are fixed length, and each data value immediately follows the
next with no delimiter. There are no tags.

The following example shows this:
data1data2data3

Fixed Length AL3
This method is the same as Fixed Length, but it also notifies the parser to
implement a number of rules in relation to missing elements, length
encoding, and versioning that are predefined in the ACORD AL3 standard.

Undefined
This value is set automatically when you set the Type Composition
property of a complex type to Message, and you cannot set it to any other
value. You are also unable to set values for the TDS Type properties Group
Indicator, Group Terminator, Tag Data Separator, Length of Tag, and
Delimiter.

If you set the Data Element Separation method to Undefined, you must
not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set.

For more information about Type Composition set to Message, see
“Multipart messages” on page 1191.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“Multipart messages” on page 1191
A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

6286 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“Message characteristics” on page 6281
Features that are supported by the TDS wire format.

Specifying special characters to model a message:

You can specify a number of different types of special character in the WebSphere
Message Broker Toolkit.

You can also specify special character values for message sets, types, and type
members. The values that you set for a type override the corresponding values that
are set for the message set in which it is defined.

You can specify a special character value in one of the following ways:
v As a literal string of one or more characters.
v As a mnemonic value.
v As a combination of both mnemonics and literals.

The types of special character are described in the following table.

Special character
type

Description Set as a property
of...

Group Indicator This is a string that indicates the start of a group or
complex type within a message

Message set,
complex type

Group
Terminator

This is a string that indicates that the end of a group
or complex type within a message

Message set,
complex type

Tag Data
Separator

This is the string that is used to separate a tag from
its data.

Message set,
complex type

Delimiter This is the string used to separate data elements
from one another

Message set,
complex type

Repeating
Element
Delimiter

This is the string used to separate repeating data
elements from one another

Local element or
element reference

Tag This is the string that indicates the start of a piece of
data.

Local element or
global element

Escape character This is the character that is used to allow special
reserved characters (such as delimiters) to be
included as part of data

Message set

Chapter 14. Reference 6287

Special character
type

Description Set as a property
of...

Quotation marks This is the character that is used to allow special
reserved characters (such as delimiters) to be
included as part of data.

Message set

Reserved
characters

These are characters that have a special meaning; for
example, escape characters, quotation marks,
delimiters, and group indicators, are all examples of
reserved characters.

Message set

Decimal point This is the character that is used as the separator
between the integer and fractional components of a
decimal number.

Message set

If you create a complex type and set the Data Element Separation property to
Tagged Delimited, the Group Indicator property to left brace ({) , the Group
Terminator to right brace (}), the Tag Data Separator to colon (:), and the Delimiter
to asterisk (*), the bit stream has the following format:
{tag1:data1*tag2:data2*tag3:data3}

In some message formats, a special character is specified before each element or
after each element, as shown in the following two examples:
:data1:data2:data3

data1:data2:data3:

You can model these formats by using a combination of the Data Element
Separation method, the Delimiter value, the Group Indicator value, and the Group
Terminator value.

For the first example, specify Data Element Separation as All Elements Delimited,
Delimiter as colon (:), and Group Indicator as colon (:).

For the second example, specify Data Element Separation as All Elements
Delimited, Delimiter as colon (:), and Group Terminator as colon (:).
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

6288 WebSphere Message Broker Version 7.0.0.8

“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“Message characteristics” on page 6281
Features that are supported by the TDS wire format.

Using mnemonics for special characters:

A mnemonic is a tag that is delimited by < and >. The broker translates the
mnemonic to obtain the actual value of the special character.

Mnemonics can be used in TDS properties Decimal Point, Escape Character,
Reserved Characters, Delimiter, Group Indicator, Tag data Separator, Tag, and
Repeating Element Delimiter to specify special characters.

There are two types of mnemonic:
v Control code mnemonics, which map to the common non-printing characters.

These are mapped using the local code page for your system. This is typically an
ASCII code page on distributed platforms and an EBCDIC code page on other
platforms.
This means that characters are generally mapped to the 'expected' values for
your system. This depends on your code page setting; for more information,
refer to your system documentation. If a specific mnemonic is not mapped to the
value that you need, you can use the explicit representation (<U+xxxx>,
<0xNN>, or <0XNN>) that is described later in this section.

v Message mnemonics for use with specific industry message standards such as
X12.
These are mapped according to their associated message standard. Each
mnemonic has a default mapping, but in message standards such as EDIFACT
and X12, this default can be overridden by a 'service string' that is specified in
the message itself.

Mnemonics can be specified in one of the following ways:
v <Mnemonic_Name>, where Mnemonic_Name can comprise alphanumeric characters

and underscore (_) characters.
v <U+xxxx>, where xxxx are hexadecimal digits. The mnemonic is interpreted as the

Unicode character that corresponds to the value of the digits.
v <0xNN> or <0XNN>, where N is a hexadecimal digit. The mnemonic is interpreted

as the raw byte value given by the digits.

For more details about the supported mnemonics, see “TDS Mnemonics” on page
5391.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

Chapter 14. Reference 6289

“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.
“Message characteristics” on page 6281
Features that are supported by the TDS wire format.
“Specifying special characters to model a message” on page 6287
You can specify a number of different types of special character in the WebSphere
Message Broker Toolkit.

TDS Mnemonics:

The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both.

These TDS mnemonics and their associated properties are listed in the following
table.

Mnemonic string Meaning Default value Associated property

<EDIFACT_CS> Component separator in
EDIFACT

: Message set and complex type
or group, Delimiter

<EDIFACT_DEC_NOTATION> Decimal notation in EDIFACT . Message set, Decimal Point

<EDIFACT_DS> Data element separator in
EDIFACT

+ Message set and complex type
or group, Delimiter

<EDIFACT_ESC_CHAR> Escape character in EDIFACT ? Message set, Escape Character

<EDIFACT_GROUP_TERM> Tag terminator in EDIFACT ' Message set, Group Terminator

<EDIFACT_TAGDATA_SEP> Tag data separator in EDIFACT

This is overridden with the
same value as that which
overrides <EDIFACT_DS>

+ Message set and complex type
or group, Tag Data Separator

<HL7_CS> Component separator in HL7 ^ Message set and complex type
or group, Delimiter

6290 WebSphere Message Broker Version 7.0.0.8

Mnemonic string Meaning Default value Associated property

<HL7_FS> Data element separator in HL7 | Message set and complex type
or group, Delimiter

<HL7_RS> Repeating element delimiter in
HL7

~ Local element and element
reference, Repeating Element
Delimiter

<HL7_SCS> Sub-component separator in
HL7

& Message set and complex type
or group, Delimiter

<X12_CS> Component separator for X12 : Message set and complex type
or group, Delimiter

<X12_DS> Data element separator for X12 * Message set and complex type
or group, Delimiter

<X12_ERS> Element repetition separator for
X12

{ Local element and element
reference, Repeating Element
Delimiter

<X12_GROUP_TERM> Tag terminator in X12 ! Message set level, Group
Terminator

Mnemonics for control characters are shown in the following table.

Mnemonic Hex
value

Unicode Description

<ACK> X'06' <U+0006> Acknowledge

<BEL> X'07' <U+0007> Bell

<BS> X'08' <U+0008> Backspace

<CAN> X'18' <U+0018> Cancel

<CR> X'0D' <U+000D> Carriage Return

<DC1> X'11' <U+0011> Device Control One

<DC2> X'12' <U+0012> Device Control Two

<DC3> X'13' <U+0013> Device Control Three

<DC4> X'14' <U+0014> Device Control Four

<DLE> X'10' <U+0010> Data Link Escape

 X'19' <U+0019> End of Medium

<ENQ> X'05' <U+0005> Inquiry

<EOT> X'04' <U+0004> End of Transmission

<ESC> X'1B' <U+001B> Escape

<ETB> X'17' <U+0017> End of Transmission Block

<ETX> X'03' <U+0003> End of Text

<FF> X'0C' <U+000C> Form Feed

<FS> X'1C' <U+001C> File Separator

<GS> X'1D' <U+001D> Group Separator

<GT> X'3E' <U+003E> Greater Than

<HT> X'09' <U+0009> Horizontal Tabulation

<LF> X'0A' <U+000A> Line Feed

<LT> X'3C' <U+003C> Less Than

Chapter 14. Reference 6291

Mnemonic Hex
value

Unicode Description

<NAK> X'15' <U+0015> Negative Acknowledge

<NUL> X'00' <U+0000> Null-

<RS> X'1E' <U+001E> Record Separator

<SI> X'0F' <U+000F> Locking Shift Zero (Shift In)

<SO> X'0E' <U+000E> Locking Shift One (Shift Out)

<SOH> X'01' <U+0001> Start of Heading

<SP> X'20' <U+0020> Space

<STX> X'02' <U+0002> Start of Text

<SUB> X'1A' <U+001A> Substitute

<SYN> X'16' <U+0016> Synchronous Idle

<US> X'1F' <U+001F> Unit Separator

<VT> X'0B' <U+000B> Vertical Tabulation

These mnemonics were created for characters that cannot be entered into the
message editor.

You can enter a mnemonic in the form <U+NNNN>, where NNNN are hexadecimal
digits. None of the characters in this structure are case-sensitive. Do not enclose
spaces inside the angle brackets. These numbers represent a Unicode character, not
a character in the code page of the input message.

You can enter a mnemonic in the form <0xNN>, where NN are hexadecimal digits.
None of the characters in this structure are case-sensitive. Do not enclose spaces
inside the angle brackets. These numbers represent a raw hexadecimal byte value,
not a character in the code page of the input message.

If a mnemonic is of the form <0xNN>, it is applied directly to the input data, and no
code page conversion takes place. Otherwise, a mnemonic is applied to the data
after the data has been converted into Unicode from the code page of the input
data.
Related concepts:
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MRM TDS format” on page 1221
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Working with physical formats” on page 2847
If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set, then configure the properties of these physical
formats.

6292 WebSphere Message Broker Version 7.0.0.8

Related reference:
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“TDS Format message set properties” on page 5381
The following tables show the properties that you can set for a TDS format
message set.
“Default TDS message set properties” on page 5394
The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.

TDS Null handling options:

TDS supports the handling of null values within messages, provided that the
logical Nillable property of the element is set.

You can use the message set property Boolean Null Representation to specify the
value to be used for Boolean Null representation. You can use the object properties
Encoding Null and Encoding Null Value to control how null handling is
represented for individual objects.

You can select the Encoding Null property from the enumerated values
NULLPadFill, NULLLogicalValue, NULLLiteralValue, and NULLLiteralFill:
v Only use the NULLPadFill option for fixed length objects. If you select this

option for an object of simple type dateTime, a null dateTime is written out,
which is an empty tag with a delimiter. (This is equivalent to selecting
NullLiteralValue, with the Encoding Null Value property set to the empty string
"".) If you select this option for an object of another simple type, the object is
filled with the value specified by the Padding Character property. If you select
this option, the Encoding Null Value property is disabled.

v If you select the NULLLogicalValue option, the value entered for the Encoding
Null Value property is converted to its logical value. For writing, the logical
value is written in the same way as any other value. For parsing, the converted
logical value is compared against the converted message data.

v If you select the NULLLiteralValue option, the value entered for the Encoding
Null Value property is directly substituted as if it were a string value. The value
is not case sensitive. For fixed length objects, the literal value must be no longer
than the length of the object.
If the literal value is shorter, the Encoding Null Value is padded (using Padding
Character) on output. On input, if the NULLLiteralValue's length does not match
the Length field, set the message set level Trim Fix Len String property so that
padded nulls are correctly parsed.

v If you select the NULLLiteralFill option, the value entered for the Encoding
Null Value property is interpreted as a single character string value. Therefore,
each character of the value of the element in the bit stream must match exactly
the character value specified, to be interpreted as a null value.

The use of the Encoding Null Value property is dependent on the value that you
select for the Encoding Null property described above. Null values are not defined
for binary types. The properties Encoding Null and Encoding Null Value are
therefore not set for binary types.

Chapter 14. Reference 6293

Handling missing fields in a delimited format

When dealing with delimited message formats, it is common for fields to be empty.
For example, in a line-oriented format, blank lines might be inserted to separate
lines of data.
This is Line 1<CR><LF>
<CR><LF>
This is Line 3<CR><LF>
This is Line 4

If the TDS property Suppress Absent Element Delimiters of the parent complex
type is set to Never, such a message is successfully parsed, but the blank line does
not appear in the message tree:
MRM

- line1 = ’This is Line 1’
- line3 = ’This is Line 3’
- line4 = ’This is Line 4’

If you need to preserve the blank lines in the message tree, you can use TDS null
handling to treat the blank line as NULL. Configure the following properties on
the element:
v Select Nillable .
v Set TDS Encoding Null to NullLiteralValue.
v Leave TDS Encoding Null Value empty.

The message tree then looks like:
MRM

- line1 = ’This is Line 1’
- line2 = NULL
- line3 = ’This is Line 3’
- line4 = ’This is Line 4’

The example above assumes that each line is modeled as an element of simple type
string. If each line is modeled as an element of complex type, with each line
consisting of a repeating number of word elements, set the three null handling
properties on the word element instead, because an element of complex type
cannot have a null value.

The message tree then looks like:
MRM

- line1
- word = ’This’
- word = ’is’
- word = ’Line’
- word = ’1’

- line2
- word = NULL

- line3
- word = ’This’
- word = ’is’
- word = ’Line’
- word = ’3’

- line4
- word = ’This’
- word = ’is’
- word = ’Line’
- word = ’4’

Related concepts:

6294 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

TDS message model integrity:

When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. These rules are checked whenever the
project is saved.

If an inconsistency is found, the error is displayed in the task list of the WebSphere
Message Broker Toolkit.

The following sections cover the rules for TDS wire format properties:
v “General rules: TDS message model integrity” on page 6296
v “Restrictions for nesting complex types” on page 6298
v “Omission and truncation of elements” on page 6300
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

Chapter 14. Reference 6295

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

General rules: TDS message model integrity:

General rules govern each value that you can set for the Data Element Separation
property of a type.

Tagged Delimited

v The Tag property for every simple child element must contain a
non-empty value.

Tagged Encoded Length

v The Tag property for every simple child element must contain a
non-empty value.

v The Length Of Encoded Length property must contain a positive integer
greater than zero.

Variable Length Elements Delimited

v The Delimiter property must contain a non-empty value.

Use Data Pattern

v Each simple element that is a child of the complex type must have a
regular expression specified for Data Pattern. See “Regular expression
syntax” on page 6304.

All Elements Delimited

v The Delimiter property must contain a non-empty value.

Fixed Length

v All simple child elements must specify a length, unless their data type is
Boolean (or derived from Boolean).

v All compound child elements must specify a length, unless their data
type is Boolean (or derived from Boolean).

v The length can be specified using either the Length property, or the
Length Value Of member property.

Fixed Length AL3

6296 WebSphere Message Broker Version 7.0.0.8

v All complex child elements with a non-Boolean compound element and
non-Boolean simple child elements must have either a nonzero value in
their Length property, or a non-empty value for their Length Value Of
type member property.

Tagged Fixed Length

v All complex child elements with a non-Boolean compound element and
non-Boolean simple child elements must have either a nonzero value in
their Length property or a non-empty value for their Length Value Of
type member property.

v The Tag property for each and every simple child element must contain
a non-empty value.

The following rules also apply:
v If you have set the parent Type Composition to Choice, and the parent Data

Element Separation property to Variable Length Elements Delimited, All
Elements Delimited, Fixed Length, or Fixed Length AL3:
– You must not set the Type Composition to Message for any child complex

types.
– You must not set the Data Element Separation method to Tagged Delimited

or Tagged Fixed Length for any child complex types.

If you do so, the message set does not deploy successfully.
v If you have set the type's Data Element Separation property to Fixed Length,

Fixed Length AL3, or Tagged Fixed Length, you must set either the Length or
Length Value Of property for all simple elements under this parent, and also for
all complex elements with a simple content and compound elements.

v For a Choice in a fixed-length environment (Data Element Separation set to
Fixed Length, Tagged Fixed Length, or Fixed Length AL3), length references are
not valid. Use element lengths.

v Elements specified in a Length Value Of property must be simple elements of
type INTEGER, they must exist in the same structure as the referring element,
and they must appear before the referring element in that structure.

v Complex types with simple content and Compound elements must have an
empty Length Value Of type member property. Otherwise, Length Value Of
element would occur after the referring element in the parent structure, which is
disallowed by the previous rule.

v Complex types with simple content cannot have a separation type of Use Data
Pattern.

v Compound elements cannot have a separation type of Use Data Pattern.
v Regardless of the setting of the type's Data Element Separation property, if the

type of a simple element is BINARY, you must set either the Length or Length
Value Of property.

v For fixed-length elements, the Justification property must be set to something
other than Not Applicable, and the Padding Character property cannot be an
empty value.

v If any element within a message has its Interpret Element Value property set to
Message Key, the Message Key property must be set for all messages within the
message set.

v If you have set the Repeat property in the type member to Yes, you must set a
value for the Max Occurs property in the following two situations:
– If you have defined an element as a member of a complex type that has the

property Data Element Separation set to Fixed Length.

Chapter 14. Reference 6297

– If you have defined a fixed-length element as a member of a complex type
that has the property Data Element Separation set to Variable Length
Elements Delimited.

When it is invoked by the broker to interpret an input message, the parser
assumes that the number of occurrences of the element is equal to the value that
you set for Max Occurs. When the parser constructs an output message, if there
are fewer elements than the value of Max Occurs, the missing elements are
inserted with default values.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

Restrictions for nesting complex types:

If you include a group within another group or complex type, the Data Element
Separation property for the nested group must be compatible with the Data
Element Separation property of the parent group or complex type.

For example, you cannot set the parent property to Fixed Length and the child
property to Tagged Delimited, because the length of the Tagged Delimited
structure would not be known, and would therefore conflict with the parent
definition. If groups are nested to three or more levels, the Data Element
Separation property for each nested group must be compatible with all of its
parent groups.

The rules for compatibility are listed in the following table.

6298 WebSphere Message Broker Version 7.0.0.8

Parent

Child Tagged
Delimited,
Tagged Encoded
Length

All Elements
Delimited,
Variable Length
Elements
Delimited

Fixed Length,
Fixed Length
AL3

Tagged Fixed
Length

Use Data Pattern

Tagged
Delimited,
Tagged Encoded
Length

Allowed Allowed Not allowed Not allowed Allowed

All Elements
Delimited,
Variable Length
Elements
Delimited

Allowed Allowed Not allowed Not allowed Allowed

Fixed Length,
Fixed Length
AL3

Allowed Allowed Allowed Allowed Allowed

Tagged Fixed
Length

Allowed Allowed Not allowed1 Allowed Allowed

Use Data Pattern Allowed Allowed Allowed Allowed Allowed

Note:

1. Tagged Fixed Length cannot exist at the inner level if any outer level has a Data Element Separation method of
Fixed Length or Fixed Length AL3. This is because an item of Tagged Fixed Length can repeat a variable
number of times. Fixed Length and Fixed Length AL3 are parsed by moving a set number of bytes: with a
variable number of repeats, it is not possible to calculate the number of bytes that need to be parsed.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 6299

“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

Omission and truncation of elements:

Omitting and truncating elements depends on the setting of the property Suppress
Absent Element Delimiters.

See “Complex type TDS properties” on page 5505, “Global group TDS properties”
on page 5516, or “Local group TDS properties” on page 5526 for a description of
this property.

If you have created a message in which some elements are optional, an input
message might not contain all defined elements. If the elements are in a complex
type that you have defined with the Data Element Separation property of the type
set to All Elements Delimited or Variable Length Elements Delimited (in which
the elements are separated by a delimiter and have no tag), any elements that are
missing from the end of the complex type must be indicated by the application
that creates the message in one of two ways. These ways provide techniques to
avoid long sequences of delimiters, and to preserve consistent representation of
missing elements.
1. If you have set the Delimiter property for the complex type to a value that

does not match the value that you have set for the Delimiter property for any
of the complex type's parent types, the elements at the end of the message can
be indicated by the occurrence of a Delimiter of one of its parents after the last
actual element in the complex type data.
This is known as the truncation method, in which missing elements are treated
as not expected, and both data and delimiters are omitted in the bit stream.
For example, you define a complex element C that has four optional elements.
You set the Delimiter property to the character plus (+). You define complex
element P, and set the Delimiter property of P to asterisk (*). You add three
elements to P, the first is a string, the second is complex element C, and the
third is a string.
When a particular instance of the message is received by the broker, all the
elements of P are present, but only the first two elements of C are present. The
data in the message appears as follows if the truncation method is used (where
Pn are the values of the elements of P and Cn the values of the elements of C):
P1*C1+C2*P3

When the parser encounters the second asterisk delimiter, it determines that the
last two elements of complex element C are not present, and the next element is
the third element of P.
You can use truncation successfully only when both omission and truncation
cause the parser to exhibit the same behavior, unless the elements truncated are
fixed length.

2. If the Delimiter of the complex type matches that of one of its parents, the
truncation method cannot be used. This is because the parser cannot determine
whether the delimiter after the last element is for the current complex type, or
for one of its parents. Therefore a delimiter must be included in the message
data for each missing element to ensure that the parser can match the elements
with the model.
This is known as the omission method, in which missing simple elements are
represented by an empty sequence of characters between two delimiters.

6300 WebSphere Message Broker Version 7.0.0.8

For example, you define P and C as in the previous example, but set the
Delimiter property for P to plus (+). When the same message is received by the
broker (all elements of P are present, the first two elements of C are present),
the data in the message appears as follows:
P1+C1+C2++P3

Two delimiter characters have been inserted in the message data for the
missing elements of complex element C. If the truncation method had been
used, the parser would have interpreted the data value P3 as the value of the
third element of complex element C and not the third element of complex
element P.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

Using regular expressions to parse data elements:

Use regular expressions to identify parts of an input message that are associated
with subfields.

If your input messages can contain subfields whose presence or absence can be
determined only by examining the actual value of the data (for example, an
optional field of numeric digits followed by one or more alphabetic characters) you
must use the Data Element Separation method Use Data Pattern.

This situation is particularly relevant to messages that conform to the SWIFT
industry standard. To use this method, you must provide regular expressions to

Chapter 14. Reference 6301

identify those portions of an input message that are to be associated with subfields.
You must provide a regular expression value for the Data Pattern property of each
child of the complex type.

When parsing, data is matched in turn with each child of the complex type. The
parser does this by using the regular expression for the child to determine the
number of characters from the message that apply for that child. This number of
characters is the length of the longest string, starting from the current position in
the message, that matches the regular expression. If the longest string that matches
the regular expression is of length zero, the element is present in the message, and
the empty string is used for the value. If no string matches the regular expression,
the element is not present. This situation might cause a subsequent validation error
if the element is required.

After the number of characters from the input message has been determined,
normal data conversion, or further parsing in the case of a complex element, is
performed on the text of the input message to assign values to elements. This
might lead to data overrun or underrun errors if the length identified by the
pattern is not appropriate for the definition of the child.

“Regular expression syntax” on page 6304 explains the full syntax rules and how
to apply them, but the following table gives a few simple examples of parsing
using data patterns. A more complex example appears after the table.

Input message Data Pattern Value matched

"123456ABC" [0-9]* "123456"

"123" [A-Z]* ""

"123" [A-Z]+ Not present

"0x2A2B" \x2A+ X'2A'

"ABCD123"
[A-Z]{1,3} first field

[A-Z]{2,4} second field

"ABC" - first field (the longest
string matching the pattern)

Not present - second field
(minimum length of two
alphabetic characters is not
present)

"ABCDEFGHIJ1234"
[A-Z]{1,3} first field, repeat

[0-9]+ second field

"ABC" - first field [1]

"DEF" - first field [2]

"GHI" - first field [3]

"J" - first field [4]

"1234" - second field (the
repeating field is terminated
when the data "1234" no
longer matches the data
pattern specified for the first
field.)

The following example shows three-field pattern matching.

6302 WebSphere Message Broker Version 7.0.0.8

In the case of a repeating child, instances of the child are parsed for as many times
as the pattern is matched. This is applied even if Max Occurs is specified for the
repeating element and the number of occurrences exceeds the upper bound.
Therefore some terminating condition must be determinable from the regular
expression pattern for the element. The table above includes an example of a
repeating element.

When parsing, the data from the input message that matches the Data Pattern,
and that is assigned to an element, is not further scanned for delimiters of a higher
level complex type. This behavior is similar to that of Data Element Separation
method Fixed Length. However, you can code a regular expression that will match
data to one of a number of possible delimiters.

When writing, if a length is specified for a child, the value is padded as
appropriate to that length. This behavior is similar to that of Data Element
Separation method Variable Length Elements Delimited, but without delimiters.

If the message includes a complex type that has Composition set to Choice, you can
set the Data Element Separation method to Use Data Pattern. In this case, the
Data Pattern values of the children are used to resolve the choice. Starting with
the first child, the first pattern to provide a match determines which child is
present. Therefore the order of children in a choice might be important.

A complex type can contain repeating children with Max Occurs unbounded.
Length, and other associated properties such as Justification and Padding, can
optionally be specified for the children.

See “TDS message model integrity” on page 6295 for rules that you must follow
when using the Data Element Separation method Use Data Pattern, and refer to
“Combinations of Composition and Content Validation” on page 5612 for details of
valid settings of Composition and Content Validation.
Related concepts:

Message definition:
Complex type: Data Element Separation=Use Data Pattern
Field1: xsd:string minOccurs=1, maxOccurs=1, Length=5, Pad=SPACE,

Data Pattern=".{5}"
Field2: xsd:int minOccurs=0, maxOccurs=1,

Data Pattern="[0-9]{0,6}"
Field3: xsd:string minOccurs=1, maxOccurs=1, minLength=3, maxLength=4,

Data Pattern="[A-Z][A-Za-z0-9]{2,3}"

Input1: "ABCDE123F12"
Result1: Field1="ABCDE", Field2="123", Field3="F12"

Input2: "ABCDEF12"
Result2: Field1="ABCDE", Field2=not present, Field3="F12"

Input3: "ABCDE123456XXXX"
Result3: Field1="ABCDE", Field2="123456", Field3="XXXX"

Input4: "ABCDE1234567"
Result4: Field1="ABCDE", Field2="123456", Field3=not present,

which causes an exception if validation is enabled. One
character ("7") remains unassigned to any element, which
also causes an exception.

Chapter 14. Reference 6303

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

Regular expression syntax:

Regular expression syntax elements and example syntax rules.

A regular expression allows you to specify the conditions that a string must satisfy.
For example, you might use a regular expression to specify that a string must
contain eight characters and start with an alphabetic character. Use the syntax in
the following tables to write regular expressions to specify the sets of strings that
are permitted. A regular expression can be made up of one or more branches
(choices), each of which can be a string made up of characters, character classes, or
parenthesized expressions with modifiers to specify repetition rules.

The regular expression syntax that is supported is a subset of XML Schema regular
expressions, with the addition of the \xNN hexadecimal syntax. For the full
syntax, see Appendix F in XML Schema Part 2: Datatypes that can be found on the
World Wide Web Consortium (W3C) Web site.

The following table lists the supported regular expression syntax elements:

Metacharacter Meaning

\ escape

. any single character

* preceding character 0 or more times

+ preceding character 1 or more times

6304 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/

Metacharacter Meaning

? preceding character 0 or 1 time

{...} occurrences of preceding 1

[...] match one of the class contained

[^...] match one of the class not contained 1

(...) group the expressions 1

| match either preceding or following

Escape sequence Meaning

\n new line

\r carriage return

\t tab

\e escape

Class code Meaning

\d digit [0-9]

\D non-digit [^0-9] 2

\s white space[\t\n\r]

\S non-whitespace character[^ \t\n\r] 2

\p{L} all letters 3

\p{N} all numbers, similar to \d 4

[\p{N}\p{L}] all numbers and all letters, similar to \w 4

\P{L} not letters, equivalent to [^\p{L}]

\P{N} not numbers, equivalent to [^\p{N}]

\xNN hexadecimal digits in the range 0 to F (\x00 not supported)

Range Meaning

{n} exactly n times

{n,} at least n times

{n,m} at least n, but no more than m, times

{0,m) zero to m times

Notes:

1. The ellipsis (...) is used to indicate anything inside the { }, or [], or ()
characters.

2. The caret (^) means "not" when inside the [] characters.
3. Consult Appendix F of the document XML Schema Part 2: Datatypes for other

characters that can be used in place of L and N.
4. Consult Appendix F of the document XML Schema Part 2: Datatypes for the

precise differences.

The following table gives some examples of the syntax rules for regular expression
syntax. See “Using regular expressions to parse data elements” on page 6301 for
some examples of their use.

Regular expression data pattern Meaning

a Match character "a"

Chapter 14. Reference 6305

http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2

Regular expression data pattern Meaning

. Match any one character

a+ Match a string of one or more "a"

a* Match a string of zero or more "a"

a? Match zero or one "a"

a{3} Match a string of exactly three "a", that is
"aaa"

a{3,} Match a string of three or more "a"

a{2,4} Match a string with a minimum of two and
a maximum of four occurrences of "a"

[abc] Match any one of the characters "a", "b", or
"c"

[a-zA-Z] Match any one character in the range "a" to
"z", or in the range "A" to "Z". Note that
the range of characters matched is based on
the Unicodes of the characters specified.

[^abc] Match any character except one of "a", "b",
or "c"

(ab)+ Match one or more repetitions of the string
"ab"

(ab)|(cd) Match either of the strings "ab" or "cd"

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

6306 WebSphere Message Broker Version 7.0.0.8

“Additional TDS information” on page 6264
More information about the TDS physical format.

Using multiple delimiters:

To parse messages in which fields are delimited by one of a set of characters or
strings, set Data Element Separation to the method Use Data Pattern.

For example, consider a simple message with two numeric fields that can have
either of the characters ';' or '/' delimiting them. You can use two approaches:
v Model the delimiter as a data element which is added to the message tree. If the

message is rewritten, it looks like the input message.
Consider this model:
Composition = Sequence
Data Element Separation = Use Data Pattern

FieldA Data Pattern = [0-9]*
Delim Data Pattern = [;/] optionally with a default value.
FieldB Data Pattern = [0-9]*

After parsing, the elements FieldA and FieldB each contain any number of the
digits 0 - 9, and the element Delim contains either ";" or "/".

v Recognize the delimiter as a delimiter, which is not added to the tree. If the
message is rewritten, a preferred delimiter (as specified in the model) is used.
Consider this model:
Composition = Choice
Data Element Separation = Use Data Pattern

SubType1 Data Pattern = [0-9]*;[0-9]*
(Composition = Sequence
Data Element Separation = All Elements Delimited
Delimiter = ’;’)
FieldA
FieldB
SubType2 Data Pattern = [0-9]*/[0-9]*
(Composition = Sequence
Data Element Separation = All Elements Delimited
Delimiter = ’/’)
FieldA
FieldB

The regular expressions differentiate between the two options that can occur in
the message, which are then parsed as a normal delimited structure. After
parsing, the elements FieldA and FieldB each contain any number of the digits 0
to 9. The delimiter found in the input message is not saved in an element.
You could refine this approach by using different names for the children, or
elements for SubType1 and SubType2, to provide the knowledge of which
delimiter is used, or to control which delimiter is included in the output
message.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:

Chapter 14. Reference 6307

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

Using a variable number of repeats:

You can use the Data Element Separation method Use Data Pattern to support a
variable number of repetitions in an otherwise fixed length environment, where
there is no markup to indicate the end of the repetitions.

However, it relies on the ability to recognize the end of the repetitions based on
the data content.

In its simplest form, you can do this by specifying a regular expression Data
Pattern that matches a fixed number of characters that is terminated by reaching
the end of the message bit stream.

For example, consider a message with one fixed length field (length 10), followed
by another fixed length field (length 20) that repeats indefinitely to the end of the
bit stream:

Message Data Element Separation=Use Data Pattern
FieldA Data Pattern=.{10}
FieldB Repeat, Min Occurs=1, no Max Occurs, Data Pattern=.{20}

The following example message contains a fixed length field (length 20) that
repeats a variable number of times, and is separated from a second field by the
string ";". The pattern specifies a string of 20 characters starting with anything
except a semicolon:

Message Data Element Separation=All Elements Delimited, Delimiter=;
SubType1 Data Element Separation=Use Data Pattern

FieldA Repeat, Min Occurs=1, no Max Occurs, Data Pattern=[^;].{19}
FieldB

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

6308 WebSphere Message Broker Version 7.0.0.8

“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as
group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

Performance considerations when using regular expressions:

Take care when specifying regular expressions: some forms of regular expression
can involve a large amount of work to find the best match, which might degrade
performance.

Other expressions might produce a result that you did not expect.

For example, to match text up to and including a delimiter character ';' do not use
the pattern ".*;", which matches up to the last ';' character in the message, including
all prior ';' characters in the matched text. Instead, use the pattern "[^;]*;".

Similarly, avoid using the pattern ".*", which always forces a search to the end of
the message to try and find the best match, and therefore might result in poor
performance. However, you must use the pattern ".*" if you intend to match all
remaining data in a message.

For best performance, avoid expressions with redundant nested repeats, such as
"([0-9]+)*". Keep the expressions simple, with precise matching criteria. Simple
expressions avoid the need to perform multiple searches for the best match.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM TDS format: Relationship to the logical model” on page 1243
TDS separation types and logical model properties have some restrictions, such as

Chapter 14. Reference 6309

group composition and group content validation.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional TDS information” on page 6264
More information about the TDS physical format.

DateTime formats:

When you create an element or attribute with a simple type of dateTime, you must
specify a format string in the object's Format String property for each physical
format layer (CWF, TDS, XML).

You can use the symbols defined in the following information to control the format
in which the dateTime appears in the message data.

You can only use dateTime for Gregorian calendar dates.

DateTime information can appear in a message as:
v String data. This includes XML, and all TDS and CWF physical types except

those mentioned in this section. This is described further in “DateTime as string
data” on page 6311.

v Binary data. This is for the TDS or CWF Binary physical type. See “DateTime as
BINARY data” on page 6318 for more information.

v An offset from an epoch in seconds or milliseconds. This is used if you have set
the TDS or CWF Physical Type property to Time Seconds or Time Milliseconds
respectively. See “DateTime as encoded values” on page 6319 for details of this
option.

The defaults that are set for each message set property that relates to dateTime, for
each physical representation (CWF, TDS, XML), are defined in “Message set
defaults” on page 6321.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.

6310 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

DateTime as string data:

You can use a string of pattern letters to specify the dateTime format.

When you convert a date or time into a string, a format pattern must be applied
that directs the conversion. Apply the format pattern to convert a date or time into
a string, or to parse a string into a date or time.

During the conversion (for example, of a dateTime into a string), a pattern or a set
of tokens is replaced with the equivalent source. The following diagram shows
how a pattern is used to format a dateTime source to produce a character string
output.

When a string is parsed (for example, when converting the string to a dateTime),
the pattern or set of tokens is used to determine which part of the target dateTime
is represented by which part of the string. The following diagram shows how this
is done.

source pattern

output

Year=2004, Month=10, Day=07,
Hour=10, Minute=24, Second=40

yyyy-MM-dd HH:mm:ss

2004-10-07 10:24:40

Chapter 14. Reference 6311

Syntax

The expression pattern is defined by:

►► ▼ symbol
string

►◄

Where:

symbol
is a character in the set adDeEFGhHIkKmMsSTUwWyYzZ.

string is a sequence of characters enclosed in single quotation marks. If a single
quotation mark is required within the string, use two single quotation
marks (").

Characters for formatting a dateTime as a string

The following table lists the characters that you can use in a pattern for formatting
or parsing strings in relation to a dateTime. The table is followed by some notes
that explain more about some of the examples in the table.

Symbol Meaning Presentation Examples

a am or pm marker Text Input am, AM, pm, PM.
Output AM or PM

d day in month (1-31) Number 1, 20

dd day in month (01-31) Number 01, 31

D day in year (1-366) Number 3, 80, 100

DD day in year (01-366) Number 03, 80, 366

DDD day in year (001-366) Number 003

e day in week (1-7)1 Number 2

EEE day in week1 Text Tue

EEEE day in week1 Text Tuesday

source pattern

output

12 Jan 03, 3:45pm dd MMM yy, h:ma

Year=2003, Month=01, Day=12,
Hour=15, Minute=45

6312 WebSphere Message Broker Version 7.0.0.8

Symbol Meaning Presentation Examples

F day of week in month (1-5)2 Number 2

G Era Text BC or AD

h hour in am or pm (1-12) Number 6

hh hour in am or pm (01-12) Number 06

H hour of day in 24 hour
form (0-23)3

Number 7

HH hour of day in 24 hour
form (00-23)3

Number 07

I ISO8601 Date/Time (up to
yyyy-MM-dd'T'HH:mm:ss.
SSSZZZ)4

Text 2006-10-
07T12:06:56.568+01:00

IU ISO8601 Date/Time (similar
to I, but ZZZ with output
"Z" if the time zone is
+00:00)4

Text 2006-10-
07T12:06:56.568+01:00,
2003-12 -15T15:42:12.000Z

k hour of day in 24 hour
form (1-24)3

Number 8

kk hour of day in 24 hour
form (01-24)3

Number 08

K hour in am or pm (0-11) Number 9

KK hour in am or pm (00-11) Number 09

m minute Number 4

mm minute Number 04

M numeric month Number 5, 12

MM numeric month Number 05, 12

MMM named month Text Jan, Feb

MMMM named month Text January, February

s seconds10 Number 5

ss seconds10 Number 05

S decisecond5 Number 7

SS centisecond5 Number 70

SSS millisecond5 Number 700

SSSS 0.0001 second5 Number 7000

SSSSS 0.00001 second5 Number 70000

SSSSSS 0.000001 second5 Number 700000

T ISO8601 Time (up to
HH:mm:ss.SSSZZZ)4

Text 12:06:56.568+01:00

TU ISO8601 Time (similar to T,
but a time zone of +00:00 is
replaced with 'Z')4

Text 12:06:56.568+01:00,
15:42:12.000Z

w week in year6 Number 7, 53

ww week in year6 Number 07, 53

W week in month7 Number 2

yy year8 Number 06

Chapter 14. Reference 6313

Symbol Meaning Presentation Examples

yyyy year8 Number 2006

YY year: use with week in year
only6

Number 06

YYYY year: use with week in year
only6

Number 2006

zzz time zone (abbreviated
name)9

Text EST

zzzz time zone (full name) Text Eastern Standard Time

Z time zone (+/-n) Text +3

ZZ time zone (+/-nn) Text +03

ZZZ time zone (+/-nn:nn) Text +03:00

ZZZU time zone (as ZZZ, "+00:00"
is replaced by "Z")

Text +03:00, Z

ZZZZ time zone (GMT+/-nn:nn) Text GMT+03:00

ZZZZZ time zone (as ZZZ, but no
colon) (+/-nnnn)

Text +0300

' escape for text 'User text'

" (two single quotation
marks) single quotation
mark within escaped text

'o"clock'

The presentation of the dateTime object depends on the symbols that you specify.
v Text: If you specify four or more of the symbols, the full form is presented. If

you specify less than four, the short or abbreviated form, if it exists, is presented.
For example, EEEE produces Monday, EEE produces Mon.

v Number: The number of characters for a numeric dateTime component must be
within the bounds of the corresponding formatting symbols. Repeat the symbol
to specify the minimum number of digits required. The maximum number of
digits permitted is the upper bound for a particular symbol. For example, day in
month has an upper bound of 31; therefore, a format string of d allows the
values 2 or 21 to be parsed but does not allow the values 32 or 210 to be parsed.
On output, numbers are padded with zeros to the specified length. A year is a
special case; see note 8. Fractional seconds are also a special case; see note 5.

v Lenient dateTime checking: The parser converts out-of-band dateTime values to
the appropriate in-band value. For example, the date 2005-05-32 is converted to
2005-06-01. Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where '-' is the field separator)
allows one or more characters to be parsed against MM and dd. This conversion
allows dates such as 2006-01-123 and 2006-011-12, which are not valid, to be
input. The value of 2006-01-123 is written as the date 2006-05-03, and the value
of 2006-011-12 is written as the date 2006-11-12. The number of occurrences of
the time zone formatting symbol Z applies only to the output dateTime format.
White space is skipped over.

v Physical Type: If you specify the Physical Type property of the dateTime object
to be Packed Decimal, the only pattern formatting symbols that are valid are
those that represent numbers; that is, those that have Number in the
Presentation column of the table. No other characters are allowed in the format

6314 WebSphere Message Broker Version 7.0.0.8

pattern. For example, yyyyMMdd is valid, but yyyyMMMdd is not valid
because MM is a numeric representation of the month, and MMM is a textual
representation of the month.

v Any characters in the pattern that are not in the ranges of ['a'..'z'] and ['A'..'Z']
are treated as quoted text. For example, characters like colon (:), comma (,),
period (.), the number sign (hash or pound, #), the at sign (@), and space are
displayed in the resulting time text even if they are not enclosed within single
quotation marks.

v You can create formatting strings that produce unpredictable results; therefore,
you must use these symbols with care. For example, if you specify dMyyyy, it is
impossible to distinguish between day, month, and year. dMyyyy tells the broker
that a minimum of one character represents the day, a minimum of one
character represents the month, and four characters represent the year. Therefore
3112006 might be interpreted as 3/11/2006 or as 31/1/2006.

Notes: The following notes apply to the preceding table.
1. The day in week field is the numeric offset into a week and varies according

to the value of the physical message set property First Day of Week. For
example, the third day in the week is Wednesday if the physical message set
property First Day of Week is set to Monday.

2. 12th July 2006 is the second Wednesday in July and can be expressed as 2006
July Wednesday 2 using the format string yyyy MMMM EEEE F. Note that this
format does not represent the Wednesday in week 2 of July 2006, which is 5th
July 2006; the format string for this is yyyy MMMM EEEE W.

3. 24-hour fields might result in an ambiguous time, if specified with a
conflicting am/pm field.

4. See “ISO8601, I and T DateTime tokens” on page 6316.
5. Fractional seconds are represented by uppercase S. The length must implicitly

match the number of format symbols on input. The format string ss SSS or
ss.SSS, for example, represents seconds and milliseconds. However, the
format string ss.sss represents a repeated field (of seconds); the value after
the period (.) is taken as a seconds field, not as fractional seconds. The output
is truncated to the specified length.

6. The start of a year typically falls in the middle of a week. If the number of
days in that week is less than the value specified by the physical message set
property Days in First Week of Year, the week is considered to be the last
week of the previous year; in this case, week 1 starts some days into the new
year. Otherwise, the week is considered to be the first week of the new year;
in this case, week 1 starts some days before the new year. For example,
Monday of week 1 in 2004 (2004 01 Monday, where Days in First Week of Year
= 4 and First Day of Week = Monday) using format string YYYY ww EEEE is in
fact 29th December 2003. If you use Y, the day of week (E) and week in year
(w) are adjusted if necessary to indicate that the date falls in the previous year.
If you use the lowercase y symbol, the adjustment is not done and
unpredictable results might occur for dates around year end. For example, if
the string 2002 01 Monday is formatted:
v Monday of week 1 in 2002 using format string YYYY ww EEEE is correctly

interpreted as 31st December 2001
v Monday of week 1 in 2002 using format string yyyy ww EEEE is incorrectly

interpreted as 30th December 2002
Use Y together with w only; if you do not specify w, use y.

Chapter 14. Reference 6315

7. The first and last week in a month might include days from neighboring
months. For example, Monday 31st July 2006 can be expressed as Monday in
week one of August 2006, which is 2006 08 1 Monday using format string yyyy
MM W EEEE.

8. Year is handled as a special case:
v On output, if the count of y is 2, the year is truncated to 2 digits. For

example, if yyyy produces 2006, yy produces 06.
v On input, for 2-digit years, the physical message set property of Start of

century for 2 digit years is used to determine the century. For example,
if Start of century for 2 digit years is set to 53, year 97 is 1997, year 52
is 2052, and year 53 is 1953.

9. Using the zzz option can have ambiguous results. For example, BST can be
interpreted as Bangladesh Standard Time or British Summer Time. For
compatibility reasons, WebSphere Message Broker uses the former
interpretation.
To avoid these problems, use the zzzz option with a well-defined name; for
example, Europe/London, Asia/Dhaka, or America/Los_Angeles.

10. Seconds s & ss, must be in the range 0-59. If you need to construct a
TIMESTAMP representing the time during a leap second, where the value
being created or cast uses the value 60 for seconds, you must handle this case
within your ESQL code. The CURRENT_ datetime functions (for example,
CURRENT_TIME) within the product never produce a time where the seconds
value falls outside of the 0-59 range.

ISO8601, I and T DateTime tokens

If your dateTime values comply with the ISO8601:2000 'Representation of dates
and times' standard, consider using the formatting symbols I and T, which match
the following subset of the ISO8601 standard.
v The restricted profile as proposed by the W3C at http://www.w3.org/TR/

NOTE-datetime
v Truncated representations of calendar dates, as specified in section 5.2.1.3 of

ISO8601:2000
– Basic format (subsections c, e, and f)
– Extended format (subsections a, b, and d)

Use the formatting symbols I and T only on their own:
v The I formatting symbol matches any dateTime string that conforms to the

supported subset.
v The T formatting symbol matches any dateTime string that conforms to the

supported subset that consists of a time portion only.

The following table shows how the output form relates to the logical data type.

Logical model data type ESQL data type Output form

xsd:dateTime TIMESTAMP or GMTTIMESTAMP yyyy-MM-dd'T'HH:mm:ss.SSSZZZ

xsd:date DATE yyyy-MM-dd

xsd:gYear INTERVAL yyyy

xsd:gYearMonth INTERVAL yyyy-MM

xsd:gMonth INTERVAL --MM

xsd:gmonthDay INTERVAL --MM-dd

6316 WebSphere Message Broker Version 7.0.0.8

|
|
|
|
|
|

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

Logical model data type ESQL data type Output form

xsd:gDay INTERVAL ---dd

xsd:time TIME / GMTTIME 'T'HH:mm:ss.SSSZZZ

Note:

v On input, both I and T accept both '+00:00' and 'Z' to indicate a zero time
difference from Coordinated Universal Time (UTC), but on output they always
generate '+00:00'. If you want 'Z' to always be generated on output, use the IU
or TU formatting symbols instead.

v ZZZ always writes '+00:00' to indicate a zero time difference from Coordinated
Universal Time (UTC). If you want 'Z' to always be generated on output, use
ZZZU instead.

Using the input UTC format on output

An element or attribute of logical type xsd:dateTime or xsd:time that contains a
dateTime as a string can specify Coordinated Universal Time (UTC) by using either
the Z symbol or time zone +00:00. On input, the MRM parser remembers the UTC
format of such elements and attributes. On output, you can specify whether Z or
+00:00 is displayed by using the Default DateTime Format property of the element
or attribute. Alternatively, you can preserve the input UTC format by selecting the
message set property Use input UTC format on output. If this property is selected,
the UTC format is preserved in the output message and overrides the format that
is implied by the dateTime format property.

Examples

The following table shows a few examples of dateTime formats.

Format pattern Result

"yyyy.MM.dd 'at' HH:mm:ss ZZZ" 2006.07.10 at 15:08:56 -05:00

"EEE, MMM d, "yy" Wed, July 10, '06

"h:mm a" 8:08 PM

"hh o"clock a, ZZZZ" 09 o'clock AM, GMT+09:00

"K:mm a, ZZZ" 9:34 AM, -05:00

"yyyy.MMMMM.dd hh:mm aaa" 1996.July.10 12:08 PM

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.

Chapter 14. Reference 6317

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

DateTime as BINARY data:

The count of pattern letters determines the number of bytes used to represent a
value. The symbol used in the pattern of letters can be used only in groups of 1, 2,
or 4; for example, y, yy, or yyyy.

The following table shows the dateTime symbols for binary data:

Symbol Meaning Example

y year 1996

M month in year 7

d day in month 10

H hour in day (0-23) 13

m minute in hour 30

s second in minute 55

S millisecond 978

X Ignore on input
Pad with zeros on output

The following example shows the C language structure tm with an integer of four
bytes:
struct tm
{ int tm_sec; /* seconds after the minute - [0,59]*/
{ int tm_min; /* minutes after the hour - [0,59]*/
{ int tm_hour; /* hours since midnight - [0,23]*/
{ int tm_mday; /* day of the month - [1,31]*/
{ int tm_mon; /* months since January - [0,11]*/
{ int tm_year; /* years since 1900 */
{ int tm_wday; /* days since Sunday - [0,6]*/
{ int tm_yday; /* days since January 1 - [0,365]*/
{ int tm_isdst; /* daylight saving time flag */
};

You can format this structure by specifying the string
"ssssmmmmHHHHddddMMMM+1yyyy+1900XXXXXXXXXXXX". The number of pattern letters
determines the number of bytes. There are 36 A-Z characters specified in this
pattern, which match the 36 byte structure tm. A field followed by a plus sign (+)
has the succeeding numeric characters added to it. Therefore MMMM+1 adds one to
the month, yyyy+1900 adds 1900 to the year. X expects one byte of input, but
ignores its value. On output, it writes the byte as 0.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined

6318 WebSphere Message Broker Version 7.0.0.8

structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

DateTime as encoded values:

You can represent a dateTime element with the TimeSeconds and TimeMilliSeconds
physical types.

TimeSeconds
A 4 byte integer that represents the number of seconds since the epoch.

TimeMilliSeconds
An 8 byte integer that represents the number of milliseconds since the
epoch.

These types provide a way for C time_t and Java dateTime representations to be
parsed.

The epoch (time 0) is specified by a format string. To change the epoch you must
update the physical properties of your dateTime element:
v In the Physical representation section, you must set the Physical Type to either

Time Seconds or Time Milliseconds.
v In the Format field, set the value to the format of "yyyy-MM-dd'T'HH:mm ZZZ".

For example, 2000-01-01T12:59 +00:00.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM Custom wire format: Relationship to the logical model” on page 1219
Some restrictions exist in relation to the logical model for messages that are
defined by using the CWF.
Related tasks:

Chapter 14. Reference 6319

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

DateTime defaults by logical type:

The default value that is assigned to the dateTime Format property is dependent
on the logical type of the property.

The following table lists the default for each of the logical dateTime types:

Logical Type Default Format

date yyyy-MM-dd

dateTime yyyy-MM-dd'T'HH:mm:ss

gDay - - -dd

gMonth - -MM

gMonthDay - -MM-dd

gYear yyyy

gYearMonth yyyy-MM

time HH:mm:ssZZZ

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

6320 WebSphere Message Broker Version 7.0.0.8

“Message model object properties” on page 5416
Access property information by property kind, or by object.

DateTime component defaults:

Default values are assumed if any part of a dateTime element is not present on
input.

For example, the formatting string yyyy-MM’T’HH:mm does not contain any
information about day in month (d), seconds (s), or milliseconds (S). The following
table shows the defaults for all dateTime components.

Component Default value

Year 1970

Month First month of year

Day First day of month

Hour First hour of day

Minute Minute 0 of hour

Second Second 0 of minute

Millisecond Millisecond 0 of second

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Message set defaults:

The default dateTime formatting property settings for the different MRM physical
formats.

Message set property CWF default TDS default XML default

Default DateTime Format See Note 1. See Note 1. See Note 1.

Chapter 14. Reference 6321

Message set property CWF default TDS default XML default

Default Time Zone ID Use Broker Locale (see
Note 2)

Use Broker Locale (see
Note 2)

Use Broker Locale (see
Note 2)

Century Window 53 53 (80 for SWIFT) 53

Days in First Week of
Year

4 Use Broker Locale (see
Note 2)

Use Broker Locale (see
Note 2)

First Day of Week Monday Use Broker Locale (see
Note 2)

Use Broker Locale (see
Note 2)

Note:

1. You can either set the default dateTime format to be derived from its logical
type (the default), or specify the dateTime format that is to be used. This is set
at the message set level for each physical format that has been added.

2. The key phrase Use Broker Locale causes the broker to get the information
from the underlying platform.

You can update all these default values. The CWF defaults are set for all values of
the Physical Type property. If you change the CWF Physical Type to Binary,
Packed Decimal, TimeSeconds, or TimeMilliseconds, you must update the Default
DateTime Format property manually to ensure consistent results.

For more information about these message set properties, see “Custom Wire
Format message set properties” on page 5375, “TDS Format message set
properties” on page 5381, or “XML Wire Format message set properties” on page
5400.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Additional MIME domain information
Standard header fields, and parser use and restrictions.
v “MIME standard header fields” on page 6323

6322 WebSphere Message Broker Version 7.0.0.8

v “MIME parser use and restrictions” on page 6327
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“Physical formats in the MRM domain” on page 1211
Each message definition file within a message set describes both the logical
structure of your messages, and the physical formats that describe the precise
appearance of your message bit stream during transmission.
“MIME parser and domain” on page 1117
Use the MIME domain if your messages use the MIME standard for multipart
messages.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

MIME standard header fields:

Check this quick reference to the common MIME headers.

This information does not provide a definitive specification of MIME. In some
cases, the MIME parser allows documents that are not strictly valid according to
the standard. For example, it does not insist on the presence of a MIME-Version
header. All the standard MIME header fields are simply written to the logical tree
as they appear in the MIME document. The MIME parser takes special note only
of the Content-Type header field.

All MIME headers can include comments enclosed by parentheses, as shown in the
example for the MIME-Version header.

MIME header fields

MIME-Version

Example:

Chapter 14. Reference 6323

MIME-version: 1.0 (generated by my-application 1.2)

For a MIME document to conform with RFC 2045, this field is required in
the top-level header with a value of 1.0. MIME-Version should not be
specified on individual parts.

Content-Type

Content-Type is not required for a document to conform with RFC 2045,
but a top-level Content-Type is required by the MIME parser. Content-Type
defaults to text/plain. Content-Type defines the type of data in each part
as a type/subtype. The MIME parser accepts most values for Content-Type
and stores them in the logical tree. The only exceptions are:
v The MIME parser rejects any Content-Type value with type = message.
v The MIME parser assumes that a Content-Type value with type =

multipart introduces a multipart MIME document, and rejects such a
value if it does not contain a valid boundary parameter. The value of the
boundary parameter defines the separator between message parts in a
multipart message. In a nested multipart message, a unique boundary
value is required for each nesting level.

Syntax:
Content-Type: type/subtype;parameter

where type and subtype define the Content-Type, and all optional
parameters are delimited by semicolons.

Example 1:
Content-Type: multipart/related;type=text/xml

In example 1, the Content-Type is defined as multipart/related, and also
has an optional parameter definition (type=text/xml). Although this
structure is syntactically correct, because a valid boundary parameter does
not exist, this message is rejected.

Example 2:
Content-Type: multipart/related;boundary=Boundary;type=text/xml

Example 2 shows a valid Content-Type definition, both in terms of syntax
and semantics. The boundary value optionally can be enclosed in quotation
marks. When it appears in the MIME body, the value is preceded by the
sequence '--', and you must ensure that the resulting value (in this
example, --Boundary) cannot appear in the message body. If the message
data is encoded as quoted-printable, you must include a boundary that
includes a sequence such as “=_”, which cannot appear in a
quoted-printable body.

The following table shows some common Content-Type values. Other
values are allowed, and stored in the logical tree.

Content-Type Description

text/plain Typically used for a typical mail or news message. text/richtext is also common.

text/xml Typically used with SwA (SOAP with Attachments).

application/octet-stream Used where the message is an unknown type and contains any kind of data as bytes.

application/xml Used for application-specific xml data.

x-type Used for non-standard content type. It must start with the characters x-.

6324 WebSphere Message Broker Version 7.0.0.8

Content-Type Description

image/jpeg Used for images. image/jpeg and image/gif are common image formats that are used

multipart/related Used for multiple related parts in a message. Specifically used with SwA (SOAP with
Attachments)

multipart/signed Used for multiple related parts in a message including signature. Specifically used
with S/MIME

multipart/mixed Used for multiple independent parts in a message

Content-Transfer-Encoding

Optional. Many Content-Types are represented as 8-bit character or binary
data, and can include XML, which typically uses UTF-8 or UTF-16
encoding. This type of data cannot be transmitted over some transport
protocols, and might be encoded to 7-bit.

The Content-Transfer-Encoding header field is used to indicate the type of
transformation that has been used for encoding this type of data into a
7-bit format.

The following values only are allowed by the WS-I Basic Profile:
v 7bit - the default
v 8bit
v binary
v base64
v quoted-printable

The values 7bit, 8bit, and binary all effectively mean that no encoding took
place. A MIME conformant mail gateway might use this value to control
how it handles the message. For example, encoding it as 7bit before
passing routing it over SMTP.

The values base64 and quoted-printable mean that the content has been
encoded. The value quoted-printable means that only non-7-bit characters
in the original are encoded, and is intended to yield a document which is
still human-readable. This setting is most likely to be used in conjunction
with a Content-Type of text/plain.

Content-ID

Optional. This field enables parts to be labeled, and referenced from other
parts of the message. These parts are typically referenced from part 0 (the
first) of the message.

Content-Description

Optional. This field enables parts to be described.

MIME encodings

The following section provides a basic guide to the base64 and quoted-printable
encoding; refer to RFC 1521 (linked at the end of this topic) for a definitive
specification of MIME encodings.

base64

The original data is broken into groups of 3 octets. Each group is then
treated as 4 concatenated 6-bit groups, each of which is translated into a
single digit in the base64 alphabet. The base64 alphabet is A-Z, a-z, 0-9,

Chapter 14. Reference 6325

and / (with A=0 and /=63).

If fewer than 24 bits are available at the end of the data, the encoded data
is padded using the “=” character. The maximum line length in the
encoded data is 76 characters and line breaks (and all other characters not
in the alphabet above) are ignored when decoding.

Examples:

Input Output

Some data encoded in base64. U29tZSBkYXRhIGVuY29kZWQgaW4gYmFzZTY0Lg==

life of brian bGlmZSBvZiBicmlhbg==\012

what d2hhdA==

quoted-printable

This encoding is appropriate only if most of the data comprises printable
characters. Specifically, characters in the ranges 33-60 and 62-126 are
typically represented by the corresponding ASCII characters. Control
characters and 8-bit data must be represented by the sequence = followed
by a pair of hexadecimal digits.

The standard ASCII space <SP> and horizontal tab <HT> represent
themselves, unless they appear at the end of an encoded line (without a
soft line break), in which case the equivalent hexadecimal format must be
used (=09 and =20 respectively).

Line breaks in the data are represented by the RFC 822 line break sequence
<CR><LF> and should be encoded as "=0D=0A" if binary data is being
encoded.

For base64, the maximum line length in the encoded data is 76 characters.
An ‘=' sign at the end of an encoded line (a ‘soft' line break) is used to tell
the decoder that the line is to be continued.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

Original Data

Encoded Data

msb

8 bits

6 bits 6 bits 6 bits 6 bits

8 bits 8 bits

lsb msb lsb msb lsb

Split into 3 x octets

Treat as 4 x 6-bits, each rendered
as one base 64 character

msb = most significant bit
lsb = least significant bit

6326 WebSphere Message Broker Version 7.0.0.8

“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional MIME domain information” on page 6322
Standard header fields, and parser use and restrictions.
Related information:

RFC 1521: MIME Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies

RFC 822: Standard for the format of ARPA Internet text messages

MIME parser use and restrictions:

The MIME domain does not support the full MIME standard, but supports specific
known uses of MIME. Read this general introduction to the MIME parser, and
information about some of the restrictions in its use.

MIME stands for Multipurpose Internet Mail Extensions. A multipart MIME
message comprises a number of message parts, each qualified by MIME headers.
The MIME domain and parser enable you to parse and write multipart MIME
messages.

MIME is used to send email messages. When the email includes attachments, a
multipart MIME message is used. Multipart MIME is becoming more widely used
as a convenient physical format for sending other kinds of message that have
attachments or that consist of multiple separate parts.

Examples are:
v RosettaNet. Each part is typically a separate XML document but there might

also be non-XML attachments. The MIME parser enables the parsing of MIME
messages of the style used by RosettaNet, including nested multipart messages.
However, it does not offer specific support for the wider RosettaNet architecture
or PIPs (Partner Interface Processes).

v SOAP with Attachments (SwA). The first part is a normal SOAP XML message
and the other parts contain XML or non-XML attachments.

v TLOG. This is a specialized use of SwA in which the attachments are groups of
point-of-sale Transaction Log records in either one of two XML forms or a
tagged/delimited string form. Different POS devices generate different TLOG
record formats such as ACE. In addition, the record can either be processed
before it is uploaded or it can be sent unchanged.

Chapter 14. Reference 6327

http://www.faqs.org/rfcs/rfc1521.html
http://www.faqs.org/rfcs/rfc1521.html
http://www.faqs.org/rfcs/rfc822.html

Restrictions

The MIME parser is driven by bit streams and has no external metadata; it relies
exclusively on bitstream metadata when parsing, and on tree metadata when
writing. The parser does not validate MIME messages against a message model
and it ignores the tooling Validate property. The parts of a MIME message are
handled as BLOBs. You can parse specific MIME parts by using a different parser.
If you are using an MRM parser, messages can be validated in the usual way. The
MIME parser does not support on-demand parsing and ignores the Parse Timing
property.

You can specify the new MIME domain either at run time in an MQRFH2 header
(WebSphere MQ only) or statically in their message flow in the tooling (on the
input nodes MQGet, HTTPRequest, ResetContentDescriptor, or XSLTransform). The
MIME parser is then invoked to own the last child of root (for example, the
message body). The MIME domain can be specified with the ESQL CREATE
PARSE clause and ASBITSTREAM function to parse and write bit streams. The
MIME parser handles documents received both over the HTTP transport (where
the Content-Type appears as an HTTP header) and over other transports (where
the Content-Type header is part of the message body). In both cases, set the
Content-Type value using the ContentType property in the MIME domain. Setting
the Content-Type value directly in the MIME tree or HTTP trees can lead to the
value being ignored or used inconsistently.

Typically, the MIME parser handles the majority of uses of MIME in
application-to-application messaging, including multipart MIME with a single part
and non-multipart MIME documents. However, you should use the SOAP domain
for SOAP with Attachments (SwA).
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.
“Additional MIME domain information” on page 6322
Standard header fields, and parser use and restrictions.
“Additional TDS information” on page 6264
More information about the TDS physical format.

6328 WebSphere Message Broker Version 7.0.0.8

Related information:

RFC 1521: MIME Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies

Additional IDOC domain information
More information about the deprecated IDOC domain.

This section provides additional information in relation to the IDOC domain. This
information is categorized into:
v “Building the message model for the IDOC parser” on page 6330
v “Field names of the IDOC parser structures” on page 6333

Note: The IDOC domain is deprecated and is not recommended for developing
new message flows. Instead use the MRM domain with a TDS physical format
when you want to process SAP ALE IDocs that are sent to the broker by SAP R3
clients across the WebSphere MQ link for R3.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“IDOC parser and domain” on page 1126
The IDOC domain can be used to process messages that are sent to the broker by
SAP R3 clients across the WebSphere MQ link for R3. Such messages are known as
SAP ALE IDocs.
“MRM parser and domain” on page 1111
You can use the MRM domain to parse and write a wide range of message
formats.
“DataObject parser and domain” on page 1114
Use the DataObject domain to parse and write messages for WebSphere Adapters
and CORBA applications.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Chapter 14. Reference 6329

http://www.faqs.org/rfcs/rfc1521.html
http://www.faqs.org/rfcs/rfc1521.html

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Additional MRM domain information” on page 6251
More information about the MRM domain.

Building the message model for the IDOC parser:

The ALE IDoc messages that are sent to, and received from, SAP applications by
using the WebSphere MQ Link for R3, can be processed by the IDOC parser, which
requires a message model to interpret the data correctly. This topic describes how
to build the message model.

Before you begin

The IDOC domain is deprecated. To develop new message flows, use the MRM
domain with a TDS physical format when you want to process SAP ALE IDocs
that are sent to the broker by SAP R3 clients across the WebSphere MQ link for R3.

Obtaining the IDoc:
About this task

Create an import file of the required IDoc data for the WebSphere Message Broker
Toolkit.

Procedure

1. Log on to an SAP system.
2. Run the supplied transaction we60, which extracts the IDoc data as a C header

file.
a. In Basic Type, select the IDoc type of interest; for example, MATMAS02.
b. Leave the Control, Data, and Status check boxes cleared.
c. Select the Record types version. A version 4 IDoc is type 3.
d. Press F7 to display a C representation of the IDoc.
e. Select System > List > Save > Local file.
f. Click unconverted.
g. When prompted, enter a file name and directory for the output from the

transaction. The C representation of the IDoc is saved to this C header file.

What to do next

Tip: The exported C header can be imported into the WebSphere Message Broker
Toolkit without any further manual processing.

Modeling the IDoc:
About this task

Create your message model.

Procedure

1. Switch to the Broker Application Development perspective.
2. Use the New Message Set wizard to create a message set for your IDoc. Select

binary data as the data to use. This option creates a message set with a Custom
Wire Format (CWF) physical format, and presets the Default message domain
property to MRM.

6330 WebSphere Message Broker Version 7.0.0.8

3. Use the Message Set editor to change the Default message domain property to
IDOC.

4. Use the New Message Definition File wizard to import a prebuilt model of the
ALE IDoc message structure. To start the wizard, click File > New > Message
Definition File From. When the wizard opens, select IBM supplied message,
then SAP ALE IDoc. This SAP ALE IDoc prebuilt model includes definitions of
the DC and DD segments. The resulting message definition file is called
ale_idoc.mxsd. For information about using the New Message Definition File
wizard, see “Importing from IBM supplied messages” on page 2942.

5. Use the New Message Definition File wizard, or the mqsicreatemsgdefs
command, to import the C representation of the IDoc into the new message set.
To start the wizard, click File > New > Message Definition File From.
Specify the following settings:
v Select C Header file.
v Set Select the pre-processing option to apply to SAP ALE IDoc. If this

option is not specified, the import of the C header fails. If this option is
specified, the message prefix preference is ignored.

v Create messages for the segments that appear in the IDoc.
v Use the String Encoding option to import character arrays as fixed-length

strings.
v Use the Padding Char for String option to make space (“ ”) the padding

character that is used.

For information about using the New Message Definition File From C Header
File wizard, see “Importing from C” on page 2934.

Using the IDoc message model:
About this task

You can now use your message model to help you to construct a message flow
that processes instances of your IDoc message. You can use ESQL or Java to access
the fields of the IDoc. You cannot use graphical maps to access the fields of the
IDoc because the IDOC domain is not supported by the mapping editor.

When you set the properties of the MQInput node that is to receive your IDoc
from the WebSphere MQ Link for R3, the Message Domain property must be IDOC,
the Message Set property must be the name of your message set, and the Message
Format property must be the name of your Custom Wire Format. You do not need
to set a Message Type property on the MQInput node because it is not needed by
the IDOC parser.

When your message flow is complete, add the message set and the message flow
to a broker archive (BAR) file and deploy the BAR file to a broker execution group.

When an IDoc is received by the MQInput node, the IDOC parser processes the
SAP-defined elements in the DC, then, for each DD, processes the SAP-defined
elements, and calls the MRM parser to process the user-defined segment data, as
described by your exported IDoc, using the CWF physical format. The MRM
parser knows the Message Type property to use for the user-defined segment,
because it is obtained from the SAP-defined DD field segnam by the IDOC parser.

Tip: SupportPac IA0F contains a more detailed description of the steps involved in
building the IDoc message model. You can ignore utilities IDocHeaderTweak and
IDocMsgSetTweak because that processing has been incorporated into the New
Message Definition File From C Header File wizard.

Chapter 14. Reference 6331

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“ESQL overview” on page 2371
Extended Structured Query Language (ESQL) is a programming language defined
by WebSphere Message Broker to define and manipulate data within a message
flow.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Message model objects” on page 1174
An introduction to the objects that make up a message model. Message model
objects are defined by XML Schema 1.0, except for Message which is a WebSphere
Message Broker extension to XML Schema.
“IDOC parser and domain” on page 1126
The IDOC domain can be used to process messages that are sent to the broker by
SAP R3 clients across the WebSphere MQ link for R3. Such messages are known as
SAP ALE IDocs.
Related tasks:
“Importing from C” on page 2934
Create a message definition file from a C header file for use in the MRM and
IDOC domains.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Manipulating messages in the MRM domain” on page 2581
How to use messages that have been modeled in the MRM domain, and that are
parsed by the MRM parser.
“Manipulating messages in the IDOC domain” on page 2610
Use ESQL from a Compute node to copy the incoming IDoc to the outgoing IDoc,
and manipulate the message.
“Building the MRM TDS model for an IDoc” on page 6279
The MRM domain Tagged/Delimited String (TDS) physical format is suitable for
parsing and writing SAP ALE IDocs and SAP File IDocs. ALE IDoc messages are
exported from SAP across the WebSphere MQ Link for R3. File IDocs are exported
from SAP to the file system.
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.
“mqsicreatemsgdefs command” on page 3702
Use the mqsicreatemsgdefs command to create message definition files.
“Field names of the IDOC parser structures” on page 6333
The field names of the Control Structure (DC) and the Data Structure (DD) that are
used by the IDOC parser.

6332 WebSphere Message Broker Version 7.0.0.8

Field names of the IDOC parser structures:

The field names of the Control Structure (DC) and the Data Structure (DD) that are
used by the IDOC parser.

The field names are documented in the form that they are used in a SET statement
of ESQL; for example:
SET OutputRoot.Properties = InputRoot.Properties;
SET OutputRoot.MQMD = InputRoot.MQMD;

Control structure (DC) fields:
All the fields must be specified and set.

The syntax is:
<rootname>.<ParserName>.<foldername>.<fieldname>=

For example:
SET "OutputRoot"."IDOC"."DC"."docnum" = ’0000000000000001’;
SET "OutputRoot"."IDOC"."DC"."idoctyp" = ’MATMAS01’

The field names, which must be specified in order, are:
1. tabnam
2. mandt
3. docnum
4. docrel
5. status
6. direct
7. outmod
8. exprss
9. test

10. idoctyp
11. cimtyp
12. mestyp
13. mescod
14. mesfct
15. std
16. stdvrs
17. stdmes
18. sndpor
19. sndprt
20. sndpfc
21. sndprn
22. sndsad
23. sndlad
24. rcvpor
25. rcvprt
26. rcvpfc
27. rcvprn
28. rcvsad

Chapter 14. Reference 6333

29. rcvlad
30. credat
31. cretim
32. refint
33. refgrp
34. refmes
35. arckey
36. serial

Data structure (DD) fields:
To access each DD segment, use the array suffix DD[1], DD[2], and so on.

The syntax is:
<rootname>.<ParserName>.DD[1].<fieldname>=

For example:
SET OutputRoot.IDOC.DD[I].segnam = ’E2MAKTM001’;
SET OutputRoot.IDOC.DD[I].mandt2 = ’111’;

The following list illustrates how the suffix 2 is used to give unique field names to
the mandt and docnum fields.

The field names, which must be supplied in order, are:
1. segnam
2. mandt2
3. docnum2
4. segnum
5. psgnum
6. hlevel

The last 1000 bytes of data in the DD segment are the bytes that are parsed by the
MRM domain. The DD segnam describes the model that the MRM uses.

Segment fields:
The syntax is:
<rootname>.<ParserName>.DD[1].sdatatag.MRM.<fieldname>=

For example:
SET OutputRoot.IDOC.DD[I].sdatatag.MRM.msgfn = ’006’
SET OutputRoot.IDOC.DD[I].sdatatag.MRM.spras_iso = ’EN’

The sdatatag field indicates to the parser that it is the element that contains the
data to be manipulated. The MRM field indicates that the MRM handles the
transformation.
v msgfn
v spras
v maktx
v msgfn
v spras_iso
v fill954

6334 WebSphere Message Broker Version 7.0.0.8

The fill954 field is the filler for the segment because an incoming IDoc to SAP
must have 1000 byte segments.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“IDOC parser and domain” on page 1126
The IDOC domain can be used to process messages that are sent to the broker by
SAP R3 clients across the WebSphere MQ link for R3. Such messages are known as
SAP ALE IDocs.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Developing Java” on page 2628
When you use the JavaCompute node, you customize it to determine the exact
processing that it provides.
“Manipulating messages in the MRM domain” on page 2581
How to use messages that have been modeled in the MRM domain, and that are
parsed by the MRM parser.
“Manipulating messages in the IDOC domain” on page 2610
Use ESQL from a Compute node to copy the incoming IDoc to the outgoing IDoc,
and manipulate the message.
“Building the message model for the IDOC parser” on page 6330
The ALE IDoc messages that are sent to, and received from, SAP applications by
using the WebSphere MQ Link for R3, can be processed by the IDOC parser, which
requires a message model to interpret the data correctly. This topic describes how
to build the message model.
Related reference:
“Data types of fields and elements” on page 4237
“SET statement” on page 5159
The SET statement assigns a value to a variable.

JSON parser use and restrictions
WebSphere Message Broker provides support for the JSON domain.

JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language. A JSON message consists of
objects and arrays, where an object is a set of name-value pairs, and an array is a
list of values. A JSON value can be a simple value (string, number, Boolean, or
null), an array, or an object.

For more information about the JSON parser and domain, see “JSON parser and
domain” on page 1128.

Message modeling and validation

WebSphere Message Broker does not provide support for JSON message modeling.
Because of this, the Message Set Editor, Message Mapping Editor, Mapping node,
and the XSLTransform node do not support the JSON domain.
Related concepts:

Chapter 14. Reference 6335

“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“JSON parser and domain” on page 1128
JSON (JavaScript Object Notation) is a simple data-interchange format based on a
subset of the JavaScript programming language.
“JSON message details” on page 1135
A JSON message consists of name-value pairs (objects), and ordered collections of
values (arrays). Objects, arrays, or both structures can be nested.
“Manipulating messages in the JSON domain” on page 2617
You can manipulate messages that belong to the JSON domain, which are parsed
by the JSON parser.

Message model task list errors that have a quick fix
You can apply a quick fix to some message modeling task list warnings or errors to
correct them.

Unresolved references

The following table provides a list of those errors that have references that cannot
be resolved:

Error type Description Quick Fix

Attribute reference error The attribute reference
cannot be resolved

Allows you to add the
missing include or import
statement

Attribute group reference
error

The attribute group reference
cannot be resolved

Allows you to add the
missing include or import
statement

Attribute type reference The attribute type reference
cannot be resolved

Allows you to add the
missing include or import
statement

Base type error The type has an unresolved
base type

Allows you to add the
missing include or import
statement

Element reference error The element reference cannot
be resolved

Allows you to add the
missing include or import
statement

Element type reference error The element type reference
cannot be resolved

Allows you to add the
missing include or import
statement

Group reference error The group reference cannot
be resolved

Allows you to add the
missing include or import
statement

Schema directive error The schema directive cannot
be resolved

Allows you to add the
missing include or import
statement

Sub group error The element declaration
references a head element
which cannot be resolved.

Allows you to add the
missing include or import
statement

6336 WebSphere Message Broker Version 7.0.0.8

Other errors

The following table provides a list of additional warnings or errors that can be
cleared using a quick fix:

Error type Description Quick Fix

Message key deprecated
warning

TDS property "Message Key"
has been superseded by
logical property "Message
Alias".

Will update your message
definition to use "Message
Alias" instead. (You should
use this if you only have
Version 6.0 brokers in your
domain.)

Message key enumeration
deprecated warning

TDS property "Interpret
Element Value = Message
Key" has been superseded by
logical property "Interpret
Value As = Message
Identity".

Will update your element
definition to use logical
property "Interpret Value As
= Message Identity" instead.
You should use this if you
only have Version 6.0 brokers
in your domain.)

Repeat count deprecated
warning #1

CWF property "Repeat
Count" has been superseded
by "Max Occurs". Both
"Repeat Count" and "Max
Occurs" have been set, but
do not have the same value.

You will have a choice of
two quick fixes:

v Will update your
definition to unset the
"Repeat Count" property.

v Will update your
definition to set "Max
Occurs" to the value of the
"Repeat Count" property,
and to unset the "Repeat
Count" property.

Repeat count deprecated
warning #2

CWF property "Repeat
Count" has been superseded
by "Max Occurs". Both
"Repeat Count" and "Max
Occurs" have been set and
have the same value.

Will update your definition
to unset the "Repeat Count"
property.

Redefine error An XML Schema Redefine
construct has been found but
is not supported.

Will update your message
definition file to use an XML
Schema Include construct
instead. Any redefinitions
will be lost.

Value does not match Length
facet error

The length of a default value,
fixed value or enumeration
value does not match the
effective Length facet for the
simple type.

You will have a choice of
two quick fixes:

v Will update your simple
type definition so that the
Length facet is converted
to a Max length facet.

v Will update all the simple
type definitions in your
message definition file so
that all Length facets are
converted to Max Length
facets, then save the file to
remove all the associated
task list errors.

Chapter 14. Reference 6337

Error type Description Quick Fix

Facet not applicable for
simple type error

A facet has been found on a
simple type, but the facet is
either not permitted on that
simple type or is a duplicate.

Will update your simple type
definition so that all invalid
facets and all duplicate facets
are removed.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“Message model integrity” on page 1210
When you create your message model, it is important that it is internally
consistent.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Applying a Quick Fix to a task list error” on page 2862
During the creation, migration and manipulation of message models, warnings or
errors might occur; these are listed in the Problems view of the Broker Application
Development perspective. Some of these warnings or errors can be cleared by
applying a Quick Fix.

Generated model representations
Information about generating documents, WSDLs, Broker SCA definitions, and
XML schemas.
v “Document generation” on page 6339
v “Broker SCA definition generation” on page 6340
v “WSDL generation” on page 6340
v “XML Schema generation” on page 6343
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:

6338 WebSphere Message Broker Version 7.0.0.8

“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Document generation:

The document generator produces a set of HTML pages and any necessary files
(for example, images) that are required to display the pages correctly.

Output Files:
There is one page for each message definition file in the message set, and one
additional index page linking these pages together.

The index page (index.html), is intended to be the "entry point" into the
documentation.
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“Message set projects” on page 1161
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Generate model representations” on page 1270
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.
“Generating message model documentation” on page 1277
When you have created one or more message models, it can be useful to generate
documentation for business analysis and for developers who are involved with the
messages.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Generating documentation from message sets and message flows” on page 2962
You can generate documentation from your message sets, message flows, message
definition files, message maps, Java files, ESQL files, and deployable WSDL files.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

Chapter 14. Reference 6339

“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Documentation properties for all message set objects” on page 5413
Use the documentation property of an object to add information that describes the
function of the object.
“WSDL generation”
Files and other objects are created by the WSDL Generator.
“XML Schema generation” on page 6343
The behavior of XML Schema generation. For example, use the schema generated
from a message definition file to validate XML instance documents written by
WebSphere Message Broker.

Broker SCA definition generation:

The Broker SCA Definition wizard creates a Broker SCA definition that includes
objects that define the binding, interface, and message format information to
permit interoperation between WebSphere Message Broker and WebSphere Process
Server.

Generated files

The following files are generated:
v A .outsca or .insca Broker SCA Definition is generated and stored under the

Broker SCA Definitions folder in the chosen message set project. The .outsca or
.insca Broker SCA Definition contains a SCA Import or Export, as well as all
XSD files and WSDL files referenced directly or indirectly by the SCA Import or
Export.

v A WSDL file containing one portType with one or more operations.
v XSD files that correspond to the messages used in the operations defined in the

portType.
v If the user has chosen a Web service binding, a WSDL file containing a service

and binding that imports the WSDL containing the portType.
v If the user has chosen an MQ binding, the SCA Import or Export contains the

binding information.
Related reference:
“Generate Broker SCA Definition wizard” on page 6372
The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

WSDL generation:

Files and other objects are created by the WSDL Generator.

Generated Files

The default file and definition element names are shown in the following table.
Message Set is the supplied message set name and <Definition Name> is the
supplied Definition Name solicited by the wizard.

6340 WebSphere Message Broker Version 7.0.0.8

File File Name File Extension

Value of name
attribute on WSDL
<definitions>
element

Service File
(single-file format)

Message_Set wsdl <Definition Name>

Service File (multi-file
format)

Message_SetService wsdl <Definition
Name>Service

Binding File Message_SetBinding wsdl <Definition
Name>Binding

Interface File Message_Set wsdl <Definition Name>

If 'Deployable WSDL' is generated, no additional XML schema (xsd) files are
generated, and the WSDL refers directly to the broker message definition (mxsd)
files; otherwise, separate XML schema (xsd) files are generated, unless you selected
'inline schema'.

Report File

The WSDL generator appends the result of the generation operation to a report
file, listing all errors which occurred. The file name is:

Message_Set.wsdlgen.report.txt

WSDL Content

The following tables show the element or attribute values to be set in the
generated WSDL. The elements are described top-down as they appear in a
conventionally ordered WSDL document. The <schema> section of the WSDL
definition is not shown, because this section corresponds directly to the broker
message definitions.

Element names are from the WSDL 1.1 namespace except where prefixed by soap:
for the WSDL SOAP namespace. Operation elements occur in both the binding and
portType sections, so operation is qualified as necessary; for example, portType /
operation.

The values shown in the following table apply to the WSDL definition as a whole.

Element Attribute Value

definitions xmlns Assign namespace prefixes.

definitions targetNamespace The WSDL Namespace solicited by the wizard,
defaulting to http://tempuri.org/<Message Set>.

message name <operation>_<role> where <operation> is the
operation name and <role> is in, out, or fault

part name The name of the broker message. If Style is set to
rpc, the body parts are defined using the type
attribute. If not, the body parts are defined using the
element attribute.

portType name Message_SetPortType

binding name v ”Message_SetSOAP_HTTP_ Binding”

v ”Message_SetSOAP_JMS_ Binding”

Chapter 14. Reference 6341

Element Attribute Value

soap:binding style From the value of Style set in the wizard.

The following values apply to each individual WSDL operation:

Element Attribute Value

operation name The name of the operation specified in the wizard.

soap:operation style From the value of Style set in the wizard.

input, output,
fault

name <operation>_<role>, where <operation> is the
operation name, and <role> is Input, Output, or
Fault.

soap:body namespace v If Style has been set to rpc, it is the namespace of
the corresponding broker message.

v If Style has been set to document the attribute is
not generated.

soap:header,
soap:fault,
soap:body

use This element is set to literal.

Message Set

The message set provides the basis for many important broker features, including
mapping support and ESQL code completion at development time, and validation
at run time.

Therefore, the WSDL that you use in the broker at development time (for example,
when configuring SOAP nodes) is integrated with the message set, and references
the broker message definitions (mxsd) rather than ordinary Schema (xsd) files. This
is referred to as deployable WSDL and is displayed under the category Deployable
WSDL in the WebSphere Message Broker Toolkit.

Deployable WSDL is generated when you specify your Message Set Folder (the
immediate child of your Message Set Project) as the destination directory for
your WSDL.

Otherwise, regular WSDL is generated, along with separate XML schema (xsd) files
if these were requested. Regular WSDL cannot be used to configure SOAP nodes,
but is suitable for consumption by external applications such as .NET.

Assuming that you are generating deployable WSDL for use in a message flow, the
flow typically must be able to parse and validate the runtime SOAP messages
described by that WSDL. The WSDL generator, therefore, adds additional
definitions to your message set:
v For rpc-style WSDL, additional definitions for the WSDL operations themselves

are added to your message set
v For the version of the SOAP Envelope used by the WSDL an mxsd file is added

– this will be soapenv11.mxsd or soapenv12.mxsd.
v For use by ESQL Content assist and the Mapping editor primarily, a definition

of the SOAP_Domain_Msg tree.
Related concepts:

6342 WebSphere Message Broker Version 7.0.0.8

“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

XML Schema generation:

The behavior of XML Schema generation. For example, use the schema generated
from a message definition file to validate XML instance documents written by
WebSphere Message Broker.

Lax generation

Lax generation affects how complex types that have Content Validation set to
Open or OpenDefined or have Composition set to UnorderedSet are rendered in the
generated schema. Note that such a validating schema will permit a wider range of
messages than MRM parser validation.

Content Validation is set to Open or OpenDefined
Here a complex type (global or anonymous) has its content replaced by a
single wildcard element that repeats an unbounded number of times. The
following generation pattern is used for complex types with Content
Validation set to Open:
<element name="xmlNameOfMessage">
<complexType>
<sequence>
<any processContent="lax"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>

Where Content Validation is set to OpenDefined, the following pattern is
used. (The namespaces listed are all those defined in the containing
message set.)

Chapter 14. Reference 6343

<element name="xmlNameOfMessage">
<complexType>
<sequence>
<any processContent="lax"
minOccurs="0" maxOccurs="unbounded"
namespace="http://www.ns1 http://www.ns2" />

</sequence>
</complexType>
</element>

Composition is set to UnorderedSet
Where Composition is set to UnorderedSet, to mimic the unordered aspect,
a choice is inserted with appropriate cardinality. This is shown as follows:
<element name="xmlNameOfMessage">
<complexType>
<sequence maxOccurs="unbounded"
minOccurs= "(minOccurs of original sequence) *

(items in original sequence)">
<choice>

.. sequence contents ..
</choice>
</sequence>
</complexType>
</element>

Strict generation

Strict generation affects how complex types that have Content Validation set to
Open or OpenDefined or have Composition set to UnorderedSet are rendered in the
generated schema. Note that such a validating schema will permit a narrower
range of messages than MRM parser validation.

Strict is the default generation option and generates a schema that matches the
schema held in the message definition file, without the model extensions.

Content Validation set to Open/OpenDefined
A complex type (global or anonymous) will lose the ability to contain
self-defining elements and becomes closed.

Composition set to UnorderedSet
A complex type (global or anonymous) will lose the ability to be
unordered and becomes a sequence.

Rendering of xsd:elements

If an XML physical format is specified when generating the schema, the wire
format customization is applied to the logical model. These properties control how
an element in the model is rendered when it appears in a message for an XML
wire format. See “XML rendering options” on page 6262 for the different render
options available. The following is a generated schema example showing what is
generated for the different render options available for local elements; note these
examples do not modify the Namespace of any ID Attribute Name or Value
Attribute Name properties and assume that all elements specified in the
complexType1 are of schema built-in type string.

<xsd:complexType name="complexType1">
<xsd:sequence>
<!-- Local element Render = ’XMLElement’ -->

<xsd:element name="localElement1" type="xsd:string"/>
<!-- Local element Render = ’XMLElementAttrID’

ID Attribute Name = ’id’ -->
<xsd:element name="localElement2">

6344 WebSphere Message Broker Version 7.0.0.8

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base="xsd:string">
<xsd:attribute name="id" type="xsd:string"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

<!-- Local element Render = ’XMLElementAttrVal’
Val Attribute Name = ’val’ -->

<xsd:element name="localElement3">
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:string">

<xsd:attribute name="val" type="xsd:string"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<!-- Local element Render = ’XMLElementAttrIDVal’

ID Attribute Name = ’id’ Val Attribute Name = ’val’ -->
<xsd:element name="localElement4">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base="xsd:string">
<xsd:attribute name="val" type="xsd:string"/>
<xsd:attribute name="id" type="xsd:string"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<!-- Local element Render = ’XMLAttribute’ -->
<xsd:attribute name="localElement5" type="xsd:string"/>

</xsd:complexType>

Rendering of xsd:attributes

The rendering of xsd:Attributes is not supported. The user can only change the
name of the attribute.

Embedded simple types and Compound Elements

These are deprecated objects that are only encountered if the message set was
created using WebSphere MQ Integrator Broker Version 2.1.

They are modeled in the message definition file as elements with both minOccurs
and maxOccurs set to 0 and have one of the predefined ComIbmMrm_xxx types.
During the schema generation, the type of such elements is changed to the base
type of the respective ComIbmMrm_xxx type.

If there are global simple types that inherit from one of these ComIbmMrm_xxx
types, these are changed to inherit from the base type of the corresponding
ComIbmMrm_xxx type.

Generated schema files will not have any occurrence of these ComIbmMrm_xxx
types.

For example the global element with type defined as follows:
<element name="globalElement1" type="ns1:ComIbmMrm_BaseValueBinary"/>

Chapter 14. Reference 6345

will result in the generated schema file and a global element with the
corresponding xsd base type defined as follows:
<element name="globalElement1" type="hexBinary"/>

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Import formats
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

This section provides information about the supported features of formats that
have been imported from an external source. Details are provided for:
v “Importing from C (MRM): supported features” on page 6347
v “Importing from COBOL: supported features” on page 6350
v “Importing from SCA Export or SCA Import: generated objects” on page 6355
v “Importing from WSDL: generated objects and restrictions” on page 6355
v “Importing from XML Schema: unsupported features” on page 6359
Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.

6346 WebSphere Message Broker Version 7.0.0.8

“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Importing from C (MRM): supported features:

The C importer uses default values when mapping C data types to message model
elements.

The following table shows how the C definitions influence the XML Schema
settings in the message model. Some xsd types have '-' after the type. This
character indicates that it is an anonymous simple type based on this type. For
strings, the purpose of the anonymous type is to add a maximum length
restriction; for numeric types, the purpose of the anonymous type is to add either
a minimum or a maximum value restriction.

C data type XML Schema data Notes

Char xsd:string- maxlength=1

Char[10] xsd:string- maxlength=10

Char[10][3] xsd:string- maxlength=3
maxOccurs=10

Char[10][3][6] xsd:string- maxlength=6
maxOccurs=30

Unsigned Char xsd:unsignedByte

Unsigned Char[2] xsd:unsignedByte maxOccurs=2

Signed Char xsd:byte

Signed Char[2] xsd:byte maxOccurs=2

Int xsd:int

Int[2] xsd:int maxOccurs=2

Int[2][3] xsd:int maxOccurs=6

Unsigned Int xsd:unsignedInt

Short xsd:short

Unsigned Short xsd:unsignedShort

Long xsd:int

Long Long Int xsd:long

Float xsd:float

Double xsd:double

Long Double (see note 1) xsd:double

<any pointer type> xsd:hexBinary- maxlength=(see note 2)

<any enum> (see note 3)

The following table shows how C definitions influence the physical MRM CWF
characteristics of the elements that are generated in the message model.

Chapter 14. Reference 6347

C data type CWF Physical type CWF Length characteristics Other CWF characteristics

Char Fixed Length Length = 1

Length Units = Bytes

Char[10] Fixed Length Length = 10

Length Units = Bytes

Left justify

Char[10][3] Fixed Length Length = 3

(and Max Occurs = 10)

Length Units = bytes

Left justify

Char[10][3][6] Fixed Length Length =6

(and Max Occurs = 30)

Length Units = bytes

Left justify

Unsigned Char Integer Length = 1 Signed = no

Unsigned Char[2] Integer Length = 1

(and Max Occurs = 2)

Signed = no

Signed Char Integer Length = 1 Signed = yes

Signed Char[2] Integer Length = 1

(and Max Occurs = 2)

Signed = yes

Int Integer Length = 4 Signed = yes

Int[2] Integer Length = 4

(and Max Occurs = 2)

Signed = yes

Int[2][3] Integer Length = 4

(and Max Occurs = 6)

Signed = yes

Unsigned Int Integer Length = 4 Signed = no

Short Integer Length = 2 Signed = yes

Unsigned Short Integer Length = 2 Signed = no

Long Integer Length = 4 (see note 4) Signed = yes

Long Long Int Integer Length = 8 Signed = yes

Float Float Length = 4

Double Float Length = 8

Long Double (see note 1) Float Length = 8

<any pointer type> (see note 2)

<any enum> Integer (see note 3)

Notes:

1. Do not set the value of C importer option size of long double to 128 bit. This
option does not import successfully; use the default 64 bit.

2. The length is affected by the Address Size C importer option:
v For 32 bit, CWF length = 4 bytes.
v For 64 bit, CWF length = 8 bytes.

6348 WebSphere Message Broker Version 7.0.0.8

3. The type and length of an enum is affected by the Size of enum C importer
option:
v For 1: Logical type = xsd:byte, CWF physical type = Integer, CWF length =

1 byte.
v For 2: Logical type = xsd:short, CWF physical type = Integer, CWF length =

2 bytes.
v For 4: Logical type = xsd:int, CWF physical type = Integer, CWF length = 4

bytes.
v For Compact: The smallest representation is chosen that the enumeration fits

into.
4. The length of a long is affected by the Address Size C importer option:
v For 32 bit: CWF length = 4 bytes.
v For 64 bit: CWF length = 8 bytes.

5. Element names that clash with Java language keywords are modified by
prefixing them with a single underscore character.

6. The _Packed keyword is not supported. Only ANSI C declarations are
supported.

7. The C long long data type is not supported.
8. C++ object oriented extensions are not supported. Only ANSI C declarations

are supported.
9. Pointers will be imported as xsd:integer with CWF length set to 4.

10. Recursive C structures are not supported. If a nested structure contains a
structure with a name that is the same as the parent structure, the import
succeeds, but the logical definitions are not correct. To avoid this problem,
ensure that the name of the nested structure is not the same as that of the
outer or parent structure.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Chapter 14. Reference 6349

Importing from COBOL: supported features:

The COBOL importer uses a set of default values and behaviors when mapping
COBOL data types to message model elements.

The following table shows how COBOL definitions influence the XML Schema
settings in the message model.

COBOL Clause XML Schema data
type

Notes

PIC A xsd:string

PIC G xsd:string Set the compile-time locale name to ja_JP in Window > Preferences
> Importer > COBOL to process this.

PIC N xsd:string Set the compile-time locale name to ja_JP in Window > Preferences
> Importer > COBOL to process this.

PIC X xsd:string

PIC 9(n) n = 1-4 xsd:short DISPLAY, COMP, or COMP-3

PIC 9(n) n = 5-9 xsd:int DISPLAY, COMP, or COMP-3

PIC 9(n) n = 10-18 xsd:long DISPLAY, COMP, or COMP-3

PIC 9(n) n = 19-31 xsd:integer DISPLAY, COMP, or COMP-3

PIC 9(n)V9(m) xsd:decimal DISPLAY, COMP, or COMP-3 any virtual decimal point value

COMP-1 xsd:float

COMP-2 xsd:double

Any edited string xsd:string

Any edited number xsd:string For example, a COBOL PICTURE clause that contains any of the
following characters:

 'Z'

'+'

'-'

 '.'

','

'B'

'0'

or a currency symbol.

If you want your broker logical type to be a numeric one, make
sure that the COBOL PICTURE clause does not contain any of these
characters.

VALUE All Non-88 Level VALUE clauses can be imported as schema default
values (option on import wizard).

The following table shows how COBOL definitions influence the physical MRM
CWF characteristics of the elements that are generated in the message model.

COBOL Clause CWF Physical Type CWF Length
Characteristics

Other CWF characteristics

PIC X(n)

PIC A(n)

Fixed Length String Length = n

Length Units = Bytes

Justification = Left Justify

Padding Character =
SPACE

6350 WebSphere Message Broker Version 7.0.0.8

COBOL Clause CWF Physical Type CWF Length
Characteristics

Other CWF characteristics

PIC G(n)

PIC N(n)

Fixed Length String Length = n

Length Units = Characters

Justification = Left Justify

Padding Character =
SPACE

PIC 9(n) DISPLAY n=1-31 External Decimal Length = n

Length Units = Bytes

Justification = Right Justify

Padding Character = '0'

Signed = Unticked

Sign Orientation = Trailing

PIC 9(n) COMP, COMP-4,
COMP-5 or BINARY

Integer Length = 2, 4 or 8 based on
n

Length Units = Bytes

Signed = Unticked

Sign Orientation = Blank

PIC 9(n) COMP-3 n=1-18 Packed Decimal Length =
CEILING((n+1)/2)

Length Units = Bytes

Signed = Unticked

Sign Orientation = Blank

PIC S9(n) DISPLAY n=1-31 External Decimal Length = n

Length Units = Bytes

Signed = Ticked

Sign Orientation = Trailing

*See Note 1

PIC S9(n) COMP or
COMP-3

n=1-18

Integer or Packed Decimal Length = See COMP and
COMP-3 definitions above

Length Units = Bytes

Signed = Ticked

Sign Orientation = Blank

PIC 9(m)V9(n) DISPLAY
n=1-31

External Decimal Length = n+m

Length Units = Bytes

Signed = Unticked

Sign Orientation = Trailing

Virtual Decimal Point = n

PIC 9(m)V9(n) COMP or
COMP-3

Integer or Packed Decimal Length =
CEILING((n+m+1)/2) for
COMP-3

Length = 2, 4 or 8 for
COMP

Length Units = Bytes

Signed = Unticked

Sign Orientation = Blank

Virtual Decimal Point = n

COMP-1 Float Length = 4

Length Units = Bytes

Signed = Ticked

Sign Orientation = Blank

COMP-2 Float Length = 8

Length Units = Bytes

Signed = Ticked

Sign Orientation = Blank

SYNC Float, Integer or Packed
Decimal

Leading Skip Count as
appropriate

Trailing Skip Count as
appropriate

Byte alignment as
appropriate

*See note 2

Chapter 14. Reference 6351

COBOL Clause CWF Physical Type CWF Length
Characteristics

Other CWF characteristics

Notes:

1. Sign Orientation can take one of the following values, based on the
SEPARATE, LEADING, or TRAILING keywords in the COBOL definition:
v Leading
v Leading Separate
v Trailing
v Trailing Separate

2. The SYNC keyword causes the field to be aligned on a 1, 2, 4, or 8-byte
boundary. This might cause 'slack bytes' to be added either before or after a
field. Leading Skip Count is the number of such bytes that are added before a
field; Trailing Skip Count is the number of such bytes that are added after a
field.
Leading Skip Count and Trailing Skip Count are calculated by the importer
for each of the imported elements by the importer, irrespective of the SYNC
clause. They have non-zero values when the SYNC clause is present.
Where there is a repeating element, Leading Skip Count and Trailing Skip
Count are used for the first occurrence of the repeating element; for
subsequent occurrences, only the Trailing Skip Count is used.
Refer to COBOL reference material for details of fields that require byte
alignment.

3. All files that you import must be syntactically correct. Results are
unpredictable if the file being imported is not synctactically correct.

4. COBOL data types that have keywords POINTER, COMP-X, INDEX, or
PROCEDURE-POINTER, are not supported.

5. COBOL clauses that contain the keyword NATIVE cause an error, and are not
imported.

6. COBOL level 66 and level 77 data items are not imported.
7. Hexadecimal binary values cannot be attributed to non-numeric literals. They

cannot reside in the LINKAGE SECTIONs that are imported by the COBOL
importer. They can reside elsewhere in the COBOL file. Alternatively, you can
convert the hexadecimal value to a character string for PIC X, or to a decimal
number for PIC 9.

8. If element names clash with Java language keywords, the element names are
modified by prefixing the element name with a single underscore character.

9. Object-oriented extensions to COBOL 85 are not supported. For example,
OBJECT-REFERENCE is not supported.

10. COBOL OCCURS DEPENDING ON clause. The Byte Alignment, Leading Skip
Count, and Trailing Skip Count CWF properties of elements within such a
structure are not set up properly. You must correct these using the message
editor.

11. When the imported COBOL source file contains QUOTE or QUOTES in the
value clause of a picture string, the default behavior is to enter the data with
double quotation marks, unless you set the COBOL QUOTE compile option to
SINGLE on the Import Options page of the COBOL importer wizard.

6352 WebSphere Message Broker Version 7.0.0.8

Signed external decimal numbers

The MRM Custom Wire Format (CWF) and TDS components of WebSphere
Message Broker support the External Decimal (also known as Zoned Decimal) data
format for numeric data. Numeric data in this format is stored internally as
decimal character data. For example, in a system that uses the EBCDIC code, the
number 1234 stored in a 4-byte external decimal field is stored as the character
string '1234', and its actual internal hexadecimal representation is 'F1F2F3F4'.

With signed external decimal numbers, the sign can be incorporated into the actual
data by modifying the first half of the first or last byte (depending on whether you
are using a sign-leading or sign-trailing representation). Typically, '0xC' is used to
represent a positive number, '0xD' is used to represent a negative number and '0xF'
is used to represent an unsigned number.

Note: In general, any of '0xA', '0xC', '0xE' or '0xF' can be used to indicate a
positive value, and '0xB' or '0xD' can be used to indicate a negative value. The
actual preferred representation is dependent upon the actual hardware architecture.

On ASCII machines, there are a number of mechanisms for the internal
representation of external decimal data. One representation ('Sign ASCII') that is
employed by IBM's pSeries machines, uses the normal ASCII codes ('0' [hex 30] to
'9' [hex 39]) for the first or last digit of both unsigned and positive numbers, and
the characters 'p' [hex 70] to 'y' [hex 79] for negative numbers.

An alternative method (Sign EBCDIC Custom) is used on some other ASCII based
machines. This method uses the same characters as an EBCDIC based machine,
even though the actual internal hexadecimal representations of them are different.
If you use this technique, the character string for both EBCDIC and ASCII
platforms is identical. You could potentially receive a message from an EBCDIC
platform (created from a COBOL copybook that contains such entries as PIC XXX
and PIC S999), and convert the whole message to ASCII, or the other way around.
The character string that represents the external decimal field in the message (after
the ASCII to EBCDIC, or EBCDIC to ASCII, conversion) maps to the code point
that represents the correct sign for the decimal.

This method includes the limitation that curly brace characters are variant (they
have different code points in different EBCDIC code pages). This mechanism works
only for those EBCDIC code pages where the curly brace characters '{' and '}'
(which are used to represent signed 0) have exactly the code points X'C0' and
X'D0'. For example, it works for code page 500 but not for code page 871, where
the curly braces have code points X'8E' and X'9C.

In an ASCII environment (determined by the CCSID property at run time), the
default for both input and output is the 'Sign ASCII' representation. You can
specify the applicable representation in the CWF physical layer for local attributes
and local elements of types decimal, float, and integer.

Note: This option is appropriate only for those elements or attributes that have an
external decimal physical representation, and that have an embedded ('Leading' or
'Trailing') sign (determined by the Sign Orientation property).

The following table shows the internal representation (both character and actual
hexadecimal value) of the first or last digit for external decimal numbers with an

Chapter 14. Reference 6353

included (embedded) leading or trailing sign respectively. (The table does not
specify the representation for unsigned values, which are 0x30-0x39 for ASCII and
0xF0-0xF9 for EBCDIC.)

ASCII environment
EBCDIC

environment ASCII environment
EBCDIC

environment

Positively signed values Negatively signed values

Digit Sign ASCII
Sign EBCDIC

Custom Sign ASCII
Sign EBCDIC

Custom

0 0(30) {(7B) {(C0) p(70) }(7D) }(D0)

1 1(31) A(41) A(C1) q(71) J(4A) J(D1)

2 2(32) B(42) B(C2) r(72) K(4B) K(D2)

3 3(33) C(43) C(C3) s(73) L(4C) L(D3)

4 4(34) D(44) D(C4) t(74) M(4D) M(D4)

5 5(35) E(45) E(C5) u(75) N(4E) N(D5)

6 6(36) F(46) F(C6) v(76) O(4F) O(D6)

7 7(37) G(47) G(C7) w(77) P(50) P(D7)

8 8(38) H(48) H(C8) x(78) Q(51) Q(D8)

9 9(39) I(49) I(C9) y(79) R(52) R(D9)

The next table gives some examples for a range of simple numbers that are
representative of what can be transmitted or received using these approaches.

Sign leading Sign trailing

ASCII Environment
EBCDIC

Environment ASCII Environment
EBCDIC

Environment

Decimal value Sign ASCII
Sign EBCDIC

Custom Sign ASCII
Sign EBCDIC

Custom

1234 31 32 33 34
"1234"

31 32 33 34
"1234"

F1 F2 F3 F4
"1234"

31 32 33 34
"1234"

31 32 33 34
"1234"

F1 F2 F3 F4
"1234"

+1234 31 32 33 34
"1234"

41 32 33 34
"A234"

C1 F2 F3 F4
"A234"

31 32 33 34
"1234"

31 32 33 44
"123D"

F1 F2 F3 C4
"123D"

-1234 71 32 33 34
"q234"

4A 32 33 34
"J234"

D1 F2 F3 F4
"J234"

31 32 33 74
"123t"

31 32 33 4D
"123M"

F1 F2 F3 D4
"123M"

7890 37 38 39 30
"7890"

37 38 39 30
"7890"

F7 F8 F9 F0
"7890"

37 38 39 30
"7890"

37 38 39 30
"7890"

F7 F8 F9 F0
"7890"

+7890 37 38 39 30
"7890"

47 38 39 30
"G890"

C7 F8 F9 F0
"G890"

37 38 39 30
"7890"

37 38 39 7B
"789{"

F7 F8 F9 C0
"789{"

-7890 77 38 39 30
"w890"

50 38 39 30
"P890"

D7 F8 F9 F0
"P890"

37 38 39 70
"789p"

37 38 39 7D
"789}"

F7 F8 F9 D0
"789}"

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:

6354 WebSphere Message Broker Version 7.0.0.8

“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.

Importing from SCA Export or SCA Import: generated objects:

A number of objects are generated when you import from an SCA export or SCA
import.
v A Broker SCA definition file. The file extension is .insca for an import

component, or .outsca for an export component. The .insca or .outsca files are
stored in a Broker SCA Definitions folder under the message set project. If
multiple SCA Import/Exports are imported into a message set, each has its own
.insca or .outsca file.
You can drag the Broker SCA Definition onto the Message Flow Editor to create
a skeleton flow.
– Dragging and dropping a .insca object onto the Message Flow editor creates

a pair of SCAInput and SCAReply nodes if the Broker SCA definition
interface contains one or more request-response operations. Otherwise, only
the SCAInput node is created.

– Dragging and dropping a .outsca object onto the Message Flow editor creates
either a SCARequest node, or a pair of SCAAsyncRequest and
SCAAsyncResponse nodes.

v Corresponding message definitions (.mxsd) files are created from the XSD types
that are used by the messages specified in the WSDL interface in the SCA
Import or Export. The message definitions are stored in their respective target
namespaces.

v If the SCA Import or SCA Export being imported uses a Web Services Binding
type, the deployable WSDL is imported into the message set.

v If the SCA Import or SCA Export being imported uses an MQ Binding type, a
deployable WSDL is not imported into the message set.

v A log is created for the import in the log folder under the message set project.
Related reference:
“New message definition file wizard: Create a new message definition file from an
SCA Import or Export” on page 6369
You can create a new message definition file from an SCA import or export.

Importing from WSDL: generated objects and restrictions:

Several objects are generated when you import from WSDL but restrictions might
apply.

Chapter 14. Reference 6355

Generated objects

Files copied by command line import
The mqsicreatemsgdefsfromwsdl command copies the WSDL files it needs
into the workspace before running the import process. These files are the
top level WSDL files and any imports resolved from a relative location.
The files are copied under the specified message set into a folder called
importFiles.

Report file

The WSDL importer appends the result of the import operation to a report
file, listing all errors that occurred during the process. The file name of the
report file is message set.wsdl.report.txt.

SOAP message definitions

The required SOAP .mxsds files are added to the message set.

To parse SOAP 1.2 instance documents, manually remove the SOAP 1.1
definitions and import the SOAP 1.2 definitions by using the Message
Definition File wizard, selecting IBM supplied message.

If your message set has TDS or CWF layers, you might find that you get a
number of warnings against the imported SOAP definitions. Most of these
can be ignored, but take account of the allowed values for Boolean
attributes. In SOAP 1.1 the Boolean values are 1 or 0, while in SOAP 1.2
the values are true and false. The XML representation of Boolean values for
a message set is specified in the physical properties for the XML physical
format, and might need to be set accordingly.

Message definition files
Other message definition file names are created as input file name.mxsd
and their content depends on the WSDL style.

document-style
WSDL message parts for style="document" (which includes all SOAP
header, fault and headerfault parts) refer to an element defined in XML
Schema. This element is imported as a global element and broker message
in the .xsd or .mxsd file.

The xsi:type output policy on the message is set to "Never".

rpc-style
WSDL message parts for style="rpc" (and exclusively those allocated to the
SOAP body) refer to a type defined in XML Schema. In this case, input and
output messages are created as shown in the following table.

An input message An output message

Derived From The wsdl:input child (if any) of
WSDL operation, and the WSDL
message and parts that it identifies

The wsdl:output child (if any) of
WSDL operation, and the WSDL
message and parts that it identifies

Name of
Element

The value of the name attribute on
the WSDL operation element

The value of the name attribute on
the WSDL operation element
suffixed by "Response"

Namespace of
Element

The value of the namespace
attribute on the corresponding
soap:body element

The value of the namespace
attribute on the corresponding
soap:body element

Each message is of local complex type, being a sequence of elements. The
name of each element is the value of the name attribute on the WSDL parts

6356 WebSphere Message Broker Version 7.0.0.8

of the message identified by either the input or output element. These
elements have no namespace (the underlying schema representation has
form="unqualified"), and are locally scoped to avoid name clashes. The
type of these local elements is the XML schema type referred to by the
type attribute of the corresponding part element. The type is global in the
WSDL schema.

If the soap:body element was defined with use="encoded" in the WSDL
definition, the message definition includes a reference to the attribute
group encodingStyle in the SOAP-ENV namespace and the xsi:type output
policy on the message is set to "Follow SOAP encoding rules". Otherwise,
the xsi:type output policy on the message is set to "Never".

WSDLs generated using .NET
In some instances, WSDL files that are generated by using .NET include
element references to the schema itself; for example:

<xsd:complexType>
<xsd:sequence>
<xsd:element ref="s:schema"/>
</xsd:sequence>

</xsd:complexType>

For WSDL files of this type to be successfully imported into the WebSphere
Message Broker Toolkit without validation errors, you must manually add
a namespace import statement to the namespace of the schema; for
example:
<xsd:import namespace="http://www.w3.org/2001/XMLSchema"/>

Place the import statement first in the schema element, and ensure that it
appears before any complex type or element definitions. Revalidate the
WSDL by right-clicking the updated WSDL and clicking Validate.

Restrictions

Restrictions related to importing WSDL definitions exist where the WSDL
definitions are not WS-I compliant.

SOAP Arrays
A WSDL 1.1 definition can define a SOAP array (applicable only to the
WSDL rpc-encoded style, and not WS-I compliant):

<xsd:complexType name="t">
<xsd:complexContent>

<xsd:restriction base="SOAP-ENC:Array">
<xsd:sequence>

<xsd:element name="item" type="string" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="xsd:string[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

Some uses of SOAP array syntax are not fully supported. Although a
useful tree is created during parsing and can be serialized when writing,
the following restrictions apply.
v The model does not take any account of the SOAP-ENC:arrayType

attribute.
v The model for partially transmitted arrays does not take account of the

SOAP-ENC:offset attribute.

Chapter 14. Reference 6357

For example, the first element of an array specified with offset[2] must
be accessed in ESQL, not as InputRoot.MRM.array.item[3], but as
InputRoot.MRM.array.item[1].

v The model for multi-dimensional arrays flattens the representation into a
single dimension. For example, a 2-dimensional array is accessed in
ESQL, not as InputRoot.MRM.array.item[x][y], but as
InputRoot.MRM.array.item[i] where the index i has to be calculated
appropriately.

Anonymous elements
The WSDL excerpt above describes a SOAP instance document of the
following form:

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[3]">
<item xsi:type="xsd:string">A general text string</item>
<item xsi:type="xsd:token">A restriction of the string type</item>
<item xsi:type="xsd:Name">ARestrictionOfTheTokenType</item>

</SOAP-ENC:Array>

The broker model handles this document as expected, but in SOAP
encoding array, elements are also allowed to use the type-elements from
the SOAP encoding namespace. Therefore, an application using the same
WSDL definition might create an instance document of the following form:

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[3]">
<SOAP-ENC:string>A general text string</SOAP-ENC:string>
<SOAP-ENC:token>A restriction of the string type</SOAP-ENC:token>
<SOAP-ENC:Name>ARestrictionOfTheTokenType</ SOAP-ENC:Name>

</SOAP-ENC:Array>

To handle this case, you must manually edit the broker model that is
created by importing the WSDL, unless it is acceptable to have the parser
treat it as a self-defined element.

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

6358 WebSphere Message Broker Version 7.0.0.8

Importing from XML Schema: unsupported features:

A number of features in XML Schema are not supported, or their support is
restricted in some way.

Message sets with namespace support

v Constructs accepted but not supported when importing from an XML Schema.
When importing an XML Schema into a message set that supports namespaces,
the Redefine construct is accepted, but causes an error message to be displayed
in the task list because it is not fully supported.
The following XML shows an example of the Redefine construct:
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com" xmlns:ibm="http://www.ibm.com">

<!-- Unsupported feature: redefine -->
<redefine schemaLocation="test.xsd"/>

</schema>

Message sets without namespace support

v Constructs accepted and ignored when importing from an XML Schema.
The list of constructs and the action taken is the same as for a message set with
namespace support, as described above.

v Target namespaces not qualified with a prefix.
When importing an XML Schema into a message set that does not support
namespaces, you cannot import a schema document that has a target namespace
that is not qualified with a prefix. For example:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com" xmlns="http://www.ibm.com">
</xsd:schema>

Related concepts:
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“The message model” on page 1160
The message model consists of the following components.
“MRM XML physical format: Relationship to the logical model” on page 1251
The MRM XML physical format generally respects all the settings in the logical
model, but shares certain restrictions in common with the other physical formats.
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.

Chapter 14. Reference 6359

“Working with data structures” on page 2930
You can create a message definition file in a message set by importing from XML
Schema, XML DTD, SCA import or export components, IBM supplied messages,
WSDL definitions, IDL files, C header files, and COBOL copybooks. This topic area
describes how to import from these data structures using the command line or the
WebSphere Message Broker Toolkit.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.
“Message model object properties” on page 5416
Access property information by property kind, or by object.
“Import formats” on page 6346
Supported features of formats that have been imported from C, COBOL, SCA
Export, SCA Import, WSDL, or XML Schema.

Message model wizards
Wizards help to simplify complex message modeling tasks.

As software grows more complex, wizards are increasingly used to step you
through complex tasks or procedures, ensuring that you correctly specify all the
parameters that are required, and that you perform the required tasks in the
correct order.

This topic provides some additional reference material for those wizards where
you might need help in specifying certain parameters.

Each wizard that is documented here has its own high-level topic and a topic for
each panel that is displayed by the wizard. The panels are listed in the order that
they appear, and the fields on each panel appear in the topic in the same order as
they appear on the panel. These topics provide only information about these fields
and panels. You can find further information about the wizards in topics that are
referenced from the wizard's high-level topic.

The following wizards have additional information:
v “New message definition file wizards”
v “Generate WSDL wizard” on page 6382
v “Export WSDL wizard” on page 6390
v “Configure New Web Service Usage wizard” on page 6392
Related tasks:
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Message model reference information” on page 5366
Reference information in this section can help you develop and configure message
models.

New message definition file wizards:

Use the New message definition file wizards to create message definition files.

6360 WebSphere Message Broker Version 7.0.0.8

Depending on the selection that you make, you are routed through the correct
sequence of panels to create the message definition file from the source that you
have requested. Some panels are displayed only if certain conditions are met.
These panels are marked as optional.

The following links provide further information about the panels and fields that
form the New message definition file wizards.
v New Message Definition File (from scratch)
v C header file
v COBOL file
v CORBA IDL file
v IBM supplied message
v SCA Import or Export
v WSDL file
v XML DTD
v XML Schema file
v Database definition
Related tasks:
“Creating a message definition file” on page 2865
Creating an empty message definition file to contain your message model objects.
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
“Importing from IBM supplied messages” on page 2942
You can create a new message definition file from an IBM supplied message.
“Importing from XML DTD” on page 2954
You can create a new message definition from an XML DTD by using the New
Message Definition File wizard in the WebSphere Message Broker Toolkit.
“Importing from C” on page 2934
Create a message definition file from a C header file for use in the MRM and
IDOC domains.
“Importing from COBOL copybooks” on page 2937
This topic describes how to create a new message definition from a COBOL data
structure using the New Message Definition File wizard in the WebSphere Message
Broker Toolkit.
“Importing from WSDL” on page 2946
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from WSDL.

New message definition file wizard: Create a new message definition file from scratch:

Create a new message definition file by using the New message definition file
wizard.

Create a new message definition file from scratch

When you create a new message definition file from scratch, you must set the
following fields:

Chapter 14. Reference 6361

Message sets

Select the target message set
This field lists the message set projects that are available in your
workspace. Click the down-arrow and select the appropriate message set
from the list displayed. Depending on how you started the New message
definition file wizard, a message set might be preselected for you, but this
does not prevent you from selecting a different message set if you prefer.

Message definition file name
Specify the name of the message definition file that you are creating.

Schema for Schema settings

Prefix Specifies the namespace prefix to use for the namespace shown in the
Namespace property.

Namespace
Specifies the namespace to be used.

Target namespace settings

Use target namespace
Selecting this check box allows you to specify a target namespace for the
message definition file. You can choose a target namespace only if
namespaces have been enabled in the message set.

Prefix Specifies the namespace prefix to use for the namespace shown in the
Namespace property.

Namespace
Specifies the namespace to be used.

Related tasks:
“Creating a message definition file from scratch” on page 2866
Create an empty message definition file to contain message model objects.
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.

New message definition file wizard: Create a new message definition file from a C header
file:

You can create a new message definition file from a C header file.

Create a new message definition file from a C header file

When you create a new message definition file from a C header file, you must set
the following fields:

Select a C header file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

6362 WebSphere Message Broker Version 7.0.0.8

Target namespace
Use this field for the name of the target namespace for the message
definition file that you want to create.

Select file from workspace
Choose this option if the C header file that you want to add to the
message definition file that you are creating is in the current workspace,
and select the file from the displayed content of the workspace. C header
files are filtered to only show artifacts in the active working set.

Select file from outside workspace
Choose this option if the C header file that you want to add to the
message definition file that you are creating is not in the current
workspace, and specify the location of the C header file that you want to
add.

Copy source file into the 'importFiles' directory of the message set project
Select this check box to copy the source file into the 'importFiles' directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

C header file options

Include paths

Preserve case in variable names
Select this check box if you want to preserve the case of the
characters that form the names of the variables.

Select the pre-processing option to apply
Choose an option from the list.

Related tasks:
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.

New message definition file wizard: Create a new message definition file from a COBOL
file:

You can create a new message definition file from a COBOL file.

Create a new message definition file from a COBOL file

When you create a new message definition file from a COBOL file, you must set
the following fields:

Select a COBOL file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Chapter 14. Reference 6363

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Target namespace
Use this field for the name of the target namespace for the message
definition file that you want to create.

Select file from workspace
Choose this option if the COBOL file that you want to add to the message
definition file that you are creating is in the current workspace, and select
the file from the displayed content of the workspace. COBOL files are
filtered to only show artifacts in the active working set.

Select file from outside workspace
Choose this option if the COBOL file that you want to add to the message
definition file that you are creating is not in the current workspace, and
specify the location of the COBOL file that you want to add.

Copy source file into the 'importFiles' directory of the message set project
Select this check box to copy the source file into the 'importFiles' directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

COBOL file options

Preserve case in variable names
Select this check box if you want to preserve the case of the
characters that form the names of the variables.

Related tasks:
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.

New message definition file wizard: Create a new message definition file from a CORBA
IDL file:

You can create a new message definition file from a CORBA IDL file.

Create a new message definition file from a CORBA IDL file

When you create a new message definition file from an IDL file, you must set the
following fields:

Select an IDL file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
show artifacts in the active working set.

6364 WebSphere Message Broker Version 7.0.0.8

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Target namespace
Use this field for the name of the target namespace for the message
definition file that you want to create.

Select file from workspace
Choose this option if the IDL file that you want to add to the message
definition file that you are creating is in the current workspace, and select
the file from the displayed content of the workspace. IDL files are filtered
to show artifacts in the active working set.

Select file from outside workspace
Choose this option if the IDL file that you want to add to the message
definition file that you are creating is not in the current workspace, and
specify the location of the IDL file that you want to add.

Add DataObject to supported message domains if they do not exist
Select this check box to add the DataObject message domain to the list of
supported message domains that the message definition supports.

Related concepts:
“Common Object Request Broker Architecture (CORBA)” on page 2145
The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to
work together.
Related tasks:
“Importing an IDL file” on page 2952
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a message definition from an IDL file.
“Connecting to an external CORBA application” on page 2159
Connecting to an external CORBA application involves importing an IDL file,
creating a message flow, building a message, and processing the response from the
CORBARequest node.
“Processing responses from a CORBARequest node” on page 2167
Configure the CORBARequest node to define the location to which responses are
sent.
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.

New message definition file wizard: Create a new message definition file from a database
definition:

You can create a new message definition from a database definition file (.dbm) by
using the New Message Definition File wizard in the WebSphere Message Broker
Toolkit.

Create a new message definition file from a database definition

When you create a new message definition file from a database definition, you
must set the following fields:

Chapter 14. Reference 6365

Select a database definition

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Select file from workspace
Choose this option if the database definition that you want to add to the
message definition file that you are creating is in the current workspace,
and select the file from the displayed content of the workspace. Database
definitions are filtered to only show artifacts in the active working set.

Select file from outside workspace
Choose this option if the database definition that you want to add to the
message definition file that you are creating is not in the current
workspace, and specify the location of the database definition that you
want to add.

Copy source file into the 'importFiles' directory of the message set project
Select this check box to copy the source file into the 'importFiles' directory
of the message set project.

Model unknown user-defined database types as XML schema
If the database definition file does not contain information about
user-defined data types that are present in the table that you are importing,
you must specify how the data is modeled. Choices are string or
HexBinary.

Select the tables to import
Select the tables that you want to import. If you select tables from more
than one schema, a .mxsd file is created for each schema. Each selected
table is created as a global xs:element with a message annotation, so that
the table can be used directly in Mapping and other similar nodes.

Related tasks:
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.

New message definition file wizard: IBM supplied message:

You can create a new message definition file from an IBM supplied message.

IBM supplied message wizard

When you create a message definition file from an IBM supplied message, you
must set the following fields:

Select an IBM supplied message

Message set
Use this field to choose the message set project that will contain the

6366 WebSphere Message Broker Version 7.0.0.8

message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

IBM supplied messages
Select from the displayed set of IBM supplied message definitions. This
field is split into two panes; the pane on the left displays the IBM supplied
message definitions that are available, and the pane on the right contains
text that gives advice about the usage of the message definition that you
have selected in the field's left pane.

Copy source file into the importFiles directory of the message set project
Select this check box to copy the source file into the importFiles directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is required by the precanned schema that you have selected for
import.

Related tasks:
“Importing from IBM supplied messages” on page 2942
You can create a new message definition file from an IBM supplied message.
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.
“IBM supplied messages that you can import”
You can import IBM supplied messages to create a new message definition file.

IBM supplied messages that you can import:

You can import IBM supplied messages to create a new message definition file.

If the message is to be used with an XML parser, the following points apply:
v If the message set to which you are adding the new message definition file has

an XML physical format layer, but does not have namespace support, the
imported IBM supplied message is modified to remove namespaces. Therefore,
enable namespace support before you import an IBM supplied message.

v If the message set to which you are adding the new message definition file does
not have an XML physical format layer, but has namespace support, only the
logical information is displayed in the model. The IBM supplied message is not
modified to remove namespaces. Add an XML physical format to the message
set before you import an IBM supplied message.

v If the message set to which you are adding the new message definition file does
not have an XML physical format layer, and does not have namespace support,
only the logical information appears in the model and the imported IBM
supplied message is modified to remove namespaces.

The IBM supplied messages that you can import are:

SOAP message definitions
These message definitions model the SOAP-defined portions of SOAP XML
messages. They are best used with the SOAP parser. The definitions Soap
1.1 Envelope and Soap 1.2 Envelope model the SOAP envelope structure that
is used to wrapper the user-defined body of a SOAP message. The

Chapter 14. Reference 6367

definitions Soap 1.1 Encoding and Soap 1.2 Encoding model certain structures
for use in "rpc/encoded" style SOAP messages.

An IBM message for the SOAP domain tree is supplied as a schema that
provides content-assist in creating a logical model for the SOAP domain by
using the ESQL or mapping editor.

Multipart MIME message definitions
These message definitions model the MIME-defined portions of multipart
MIME messages and must be used with the message broker's MIME
parser. Use the MIME multipart header definition for typical multipart
MIME messages such as SOAP with Attachments, or RosettaNet. Use the
MIME Nested Multipart header definition for multipart MIME messages in
which the individual parts can themselves be multipart MIME; for
example, S/MIME.

SAP IDoc message definitions
These message definitions model the SAP-defined portion of ALE and File
IDocs that precede the user-defined content. The ALE IDoc model can be
used with the MRM and IDOC parsers. The File IDoc model can be used
with the MRM parser only.

Timeout Request message definition
This message definition models the TimeoutRequest message that is used
in conjunction with the message broker TimeoutControl and
TimeoutNotification nodes. You can use it with any parser.

CSV message definition
This message definition models a CSV (comma separated value) format
message. It can be used with the MRM parser.

Related concepts:
“The structure of a SOAP message” on page 1605
A SOAP message is encoded as an XML document, consisting of an <Envelope>
element, which contains an optional <Header> element, and a mandatory <Body>
element. The <Fault> element, contained in <Body>, is used for reporting errors.
“MIME messages” on page 1120
A MIME message consists of both data and metadata. MIME metadata consists of
HTTP-style headers and MIME boundary delimiters.
Related tasks:
“Importing from IBM supplied messages” on page 2942
You can create a new message definition file from an IBM supplied message.
“Building the message model for the IDOC parser” on page 6330
The ALE IDoc messages that are sent to, and received from, SAP applications by
using the WebSphere MQ Link for R3, can be processed by the IDOC parser, which
requires a message model to interpret the data correctly. This topic describes how
to build the message model.
“Building the MRM TDS model for an IDoc” on page 6279
The MRM domain Tagged/Delimited String (TDS) physical format is suitable for
parsing and writing SAP ALE IDocs and SAP File IDocs. ALE IDoc messages are
exported from SAP across the WebSphere MQ Link for R3. File IDocs are exported
from SAP to the file system.
Related reference:
“New message definition file wizard: IBM supplied message” on page 6366
You can create a new message definition file from an IBM supplied message.
“Example XML timeout request message” on page 2812
The format used here is XML, but you can use any format that is supported by an

6368 WebSphere Message Broker Version 7.0.0.8

installed parser.
“CSV messaging standard” on page 6276
The comma separated value (CSV) format is a typical format for describing data in
tables or spreadsheets.

New message definition file wizard: Create a new message definition file from an SCA
Import or Export:

You can create a new message definition file from an SCA import or export.

Create a new message definition file from an SCA Import or Export

When you create a new message definition file from an SCA import or export file,
you must set the following fields:

Select an SCA Import or Export

Message set
Use this field to choose the message set project that is to contain the
message definition file that you create.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Select a file or archive from workspace
Choose this option if the SCA import or export file, or the archive that
contains the SCA import or export file, that you want to add to the
message definition file that you are creating is in the current workspace,
and select the file from the displayed content of the workspace. Only files
with the following extensions are shown:

.zip (an archive)

.insca (an archive)

.outsca (an archive)

.import

.export

If you select a file with an extension of .insca, .outsca, .import, or .export,
only one SCA import or export file is selected.

Select archive from outside workspace
Choose this option if the archive that contains the SCA import or export
file that you want to add to the message definition file that you are
creating is not in the current workspace, and specify the location of the
archive file that you want to add.

Copy source file into the 'importFiles' directory of the message set project
Select this check box to copy the source file into the 'importFiles' directory
of the message set project.

Add XMLNSC to supported message domains if it does not exist
Select this check box to add the XMLNSC message domain to the list of
supported message domains that the message definition supports.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create an XML wire format for the
message set.

Related tasks:

Chapter 14. Reference 6369

“Importing SCA import or SCA export components” on page 2943
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to import SCA import or SCA export components from WebSphere
Integration Developer. You must import an SCA import or SCA export into the
workspace to provide a broker SCA definition for use in configuring the SCA
nodes.
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.

New message definition file wizard: Create a new message definition file from a WSDL
file:

You can create a new message definition file from a WSDL file.

Create a new message definition file from a WSDL file

When you create a new message definition file from a WSDL file, you must set the
following fields:

Select a WSDL file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Select file from workspace
Choose this option if the WSDL file that you want to add to the message
definition file that you are creating is in the current workspace, and select
the file from the displayed content of the workspace. WSDL files are
filtered to only show artifacts in the active working set.

Select file from outside workspace
Choose this option if the WSDL file that you want to add to the message
definition file that you are creating is not in the current workspace, and
specify the location of the WSDL file that you want to add.

Copy source file into the 'importFiles' directory of the message set project
Select this check box to copy the source file into the 'importFiles' directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

Add SOAP and XMLNSC to supported message domains if they do not exist
Select this check box to add the SOAP and XMLNSC message domains to
the list of supported message domains that the message definition
supports.

Related tasks:

6370 WebSphere Message Broker Version 7.0.0.8

“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.

New message definition file wizard: Create a new message definition file from an XML
DTD file:

You can create a new message definition file from an XML DTD file.

Create a new message definition file from an XML DTD file

When you create a new message definition file from an XML DTD file, you must
set the following fields:

Select an XML DTD file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Select file from workspace
Choose this option if the XML DTD file that you want to add to the
message definition file that you are creating is in the current workspace,
and select the file from the displayed content of the workspace. XML DTD
files are filtered to only show artifacts in the active working set.

Select file from outside workspace
Choose this option if the XML DTD file that you want to add to the
message definition file that you are creating is not in the current
workspace, and specify the location of the XML DTD file that you want to
add.

Copy source file into the 'importFiles' directory of the message set project
Select this check box to copy the source file into the 'importFiles' directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

Related tasks:
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.

Chapter 14. Reference 6371

New message definition file wizard: Create a new message definition file from an XML
Schema file:

You can create a new message definition file from an XML Schema file.

Create a new message definition file from an XML Schema file

When you create a new message definition file from an XML Schema file, you
must set the following fields:

Select an XML Schema file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Select file from workspace
Choose this option if the XML Schema file that you want to add to the
message definition file that you are creating is in the current workspace,
and select the file from the displayed content of the workspace.

Select file from outside workspace
Choose this option if the XML Schema file that you want to add to the
message definition file that you are creating is not in the current
workspace, and specify the location of the XML Schema file that you want
to add.

Copy source file into the 'importFiles' directory of the message set project
Select this check box to copy the source file into the 'importFiles' directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

Related tasks:
“Importing from XML Schema” on page 2957
You can use the New Message Definition File wizard in the WebSphere Message
Broker Toolkit to create a new message definition from an XML Schema
Related reference:
“New message definition file wizards” on page 6360
Use the New message definition file wizards to create message definition files.

Generate Broker SCA Definition wizard:

The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

The following links provide further information in relation to the panels and fields
that form the Generate Broker SCA Definition wizard. Some panels only appear if
certain conditions are met; such panels are marked as (optional).

6372 WebSphere Message Broker Version 7.0.0.8

Open the Generate Broker SCA Definition wizard

To open the Generate Broker SCA Definition wizard:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message set folder from which

you want to generate a Broker SCA definition, and select Generate > Broker
SCA Definition. This action starts the Generate Broker SCA Definition wizard.

Generate Broker SCA Definition wizard

The following panels are shown by the Generate Broker SCA Definition wizard:
v Generate a Broker SCA Definition
v Specify the interface used by the Broker SCA Definition
v Create an interface for the Broker SCA Definition
v Configure Web service binding details
v Configure MQ binding details
v Verify the SCA Import or Export definition that will be generated
Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.

Generate Broker SCA Definition wizard: Generate a Broker SCA Definition:

Use this panel to select the message set folder which contains the source of the
Broker SCA definition and to specify the type of Broker SCA definition you want
to create.

Generate Broker SCA Definition wizard

The following panels are shown by the Generate Broker SCA Definition wizard:
v Generate a Broker SCA Definition
v Specify the interface used by the Broker SCA Definition
v Create an interface for the Broker SCA Definition
v Configure Web service binding details
v Configure MQ binding details
v Verify the SCA Import or Export definition that will be generated

Panel properties

Select the message set folder from which to generate the Broker SCA definition
Specify the message set folder from which to generate the Broker SCA
definition.

Select the type of SCA artifact you want to create
Select from:
v Inbound Broker SCA definition

The Broker SCA definition is an SCA import and has a file extension of
.insca. This is the default.

v Outbound Broker SCA definition

The Broker SCA definition is an SCA export and has a file extension of
.outsca.

Chapter 14. Reference 6373

Binding type
Binding type determines which type of binding the Broker SCA definition
is to provide. The choices are:
v Web Service
v WebSphere MQ

Broker SCA definition name
Specify a name for the Broker SCA definition.

Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
Related reference:
“Generate Broker SCA Definition wizard” on page 6372
The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

Generate Broker SCA Definition wizard: panels to specify the WSDL interface:

Use this panel to specify the WSDL interface to be used by the Broker SCA
definition.

Generate Broker SCA Definition wizard

The following panels are shown by the Generate Broker SCA Definition wizard:
v Generate a Broker SCA Definition
v Specify the interface used by the Broker SCA Definition
v Create an interface for the Broker SCA Definition
v Configure Web service binding details
v Configure MQ binding details
v Verify the SCA Import or Export definition that will be generated

Panel properties

The following options are displayed:

Create a new WSDL definition
This is the default. You must specify a namespace

Use an existing deployable WSDL from the workspace
Select from your workspace directory the WSDL to be used with this
Broker SCA definition. If you select a WSDL that has multiple bindings or
ports, you must select which binding or port is to be used:
v Select a binding

Select the binding that you want to use.
v Select a port

v Select the port that you want to use.
Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
Related reference:

6374 WebSphere Message Broker Version 7.0.0.8

“Generate Broker SCA Definition wizard” on page 6372
The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

Generate Broker SCA Definition wizard: Panels to create a new WSDL definition:

You can create a new WSDL definition to be used by the Broker SCA definition
that you are generating with this wizard.

You see the following panels:
v Create an interface for the Broker SCA definition. You see this panel if you

chose, on the previous panel, to create a new WSDL definition.
v Configure binding details. This panel is always displayed, but the binding

details that are shown depend on the binding type.
Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
Related reference:
“Generate Broker SCA Definition wizard” on page 6372
The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

Generate Broker SCA Definition wizard: Create an interface for the Broker SCA
Definition:

Use this panel to define the operations that you want to add to the WSDL
definition that you are creating as the interface for use by this Broker SCA
definition.

Generate Broker SCA Definition wizard

The following panels are shown by the Generate Broker SCA Definition wizard:
v Generate a Broker SCA Definition
v Specify the interface used by the Broker SCA Definition
v Create an interface for the Broker SCA Definition
v Configure Web service binding details
v Configure MQ binding details
v Verify the SCA Import or Export definition that will be generated

Panel properties

The panel is divided into two panes.

The top pane is read-only and displays a table that describes the operations that
you have defined. The table has four columns with the following headings:

Operation
The name that you have given to the operation.

Input message
The name of the input message.

Chapter 14. Reference 6375

Output message
The name of the output message. This might be blank if no output
message is specified for this operation.

Operation Type
The type of operation. Examples of operation type are:

Request-response
One-way

The bottom pane is where you describe a new operation. The following fields
describe the operation:

Name The name that you have given to the operation.

Operation Type
The type of operation. Examples of operation type are:

Request-response
One-way

Input The name of the input message.

Output
The name of the output message. This is omitted for a One-way operation.

Fault The name of the fault message. You can specify one or more fault
messages.

Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
Related reference:
“Generate Broker SCA Definition wizard” on page 6372
The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

Generate Broker SCA Definition wizard: Configure Web service binding details:

Use this panel to specify the SOAP/HTTP binding details for the WSDL definition
that you are creating for the Broker SCA definition.

Generate Broker SCA Definition wizard

The following panels are shown by the Generate Broker SCA Definition wizard:
v Generate a Broker SCA Definition
v Specify the interface used by the Broker SCA Definition
v Create an interface for the Broker SCA Definition
v Configure Web service binding details
v Configure MQ binding details
v Verify the SCA Import or Export definition that will be generated

Panel properties

The following properties are displayed:

SOAP action
The value for the HTTP SoapAction header. It is possible that an

6376 WebSphere Message Broker Version 7.0.0.8

application might use the SoapAction as a mechanism for relating a SOAP
message to an implementation method. This is often true with rpc-style
WSDL.

Service name
The value of the name attribute on the service element in the generated
WSDL. The exact use of the name depends on products that then use the
WSDL such as the SOAP toolkits and UDDI repositories. For example, if
you then use a SOAP toolkit to generate Java from your WSDL, the service
name is likely to become the Java interface name.

Port name
Port name is the name of a specific WSDL port for this service and would
usually be derived from the Service Name. One convention would be to
provide a service name of <xyz> Service and a port name of <xyz>
Provider.

The value of the name attribute on the port element in the generated
WSDL. The exact use of the name depends on products that then use the
WSDL such as SOAP toolkits and UDDI repositories. For example if you
use a SOAP toolkit to generate Java from your WSDL, the port name could
become a Java class name.

Port address
Port address defines the address at which the service is to be made
available. It must be a valid URL and it must include the port number, if
this is different from the default HTTP port. An example of a port address
is: http://localhost:7800/abcSOAP_HTTP_Service for an inbound Broker
SCA definition.

If you are generating an outbound Broker SCA definition, the port address
property expands to present the following additional properties:
v Module project name

The name of the module project in which you intend to place the
exported Broker SCA definition in WebSphere Integration Developer.

v Host name

The host name of the server for WebSphere Process Server.
v Port number

The port number of the server for WebSphere Process Server.

The port address is generated for you using the values you provide in
Module project name, Host name, and Port number in the format that is
required by WebSphere Integration Developer.

Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
Related reference:
“Generate Broker SCA Definition wizard” on page 6372
The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

Generate Broker SCA Definition wizard: Configure MQ binding details:

Use this panel to specify the MQ binding details for the Broker SCA definition.

Chapter 14. Reference 6377

Generate Broker SCA Definition wizard

The following panels are shown by the Generate Broker SCA Definition wizard:
v Generate a Broker SCA Definition
v Specify the interface used by the Broker SCA Definition
v Create an interface for the Broker SCA Definition
v Configure Web service binding details
v Configure MQ binding details
v Verify the SCA Import or Export definition that will be generated

Panel properties

Certain properties are displayed only when an outbound binding is being
configured. These are indicated in the following list of properties:

Host name
The machine that hosts WebSphere MQ. The default is localhost.

Port The port on which to connect to a specific WebSphere MQ queue manager.
The default is 1414.

Channel
The WebSphere MQ channel. The default is SYSTEM.DEF.SVRCONN.

Request queue manager
The WebSphere MQ queue manager where the request queue resides.

Request queue
The queue to which request messages are sent.

Response queue
(This property is displayed only if the interface has one at least one
request-response operation.) The queue to which response messages are
sent.

Response queue manager
(Outbound binding only. This property is displayed only if the interface
has one at least one request-response operation.) The WebSphere MQ
queue manager where the response queue resides, if different from the
request queue manager. This field is optional; if it is left blank, the
Response queue manager defaults to the Request queue manager.

Request data binding handler

If the default message domain of the message set in which the Broker SCA
definition is to be generated is XMLNSC, XMLNS or XML, the default data
binding handler is UTF8XMLDataHandler. Otherwise, the default data
binding handler is empty, and you can select one of the following options:

COBOL, C, PL/I language data binding generator
CSVDataHandler
Fixed width

You can enter a custom handler instead; the handler must exist in the
WebSphere Integration Developer module.

Response data binding handler
(This property is displayed only if the interface has one at least one
request-response operation.) If the default message domain of the message
set in which the Broker SCA definition is to be generated is XMLNSC,

6378 WebSphere Message Broker Version 7.0.0.8

XMLNS or XML, the default data binding handler is
UTF8XMLDataHandler. Otherwise, the default data binding handler is
empty, and you can select one of the following options:

COBOL, C, PL/I language data binding generator
CSVDataHandler
Fixed width

You can enter a custom handler instead; the handler must exist in the
WebSphere Integration Developer module.

Response correlation ID options
(Outbound binding only.) The message exchange mechanism used to
correlate request messages with their response messages. Choose from From
Request Message ID (default), or From Request Correlation ID.

Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
Related reference:
“Generate Broker SCA Definition wizard” on page 6372
The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

Generate Broker SCA Definition wizard: Verify the Broker SCA definition to be generated:

This panel provides a summary of the Broker SCA definition that you are
generating in this wizard.

Generate Broker SCA Definition wizard

The following panels are shown by the Generate Broker SCA Definition wizard:
v Generate a Broker SCA Definition
v Specify the interface used by the Broker SCA Definition
v Create an interface for the Broker SCA Definition
v Configure Web service binding details
v Configure MQ binding details
v Verify the SCA Import or Export definition that will be generated

This panel consists of two panes. The top pane displays summary information
about the Broker SCA definition that is to be generated:

Message set
The message set folder from which the Broker SCA Definition is to be
generated.

SCA artifact type
The type of Broker SCA definition: inbound or outbound.
v An inbound Broker SCA definition is the WebSphere Message Broker

Toolkit representation of an SCA Import and has a file extension of
.insca.

v An outbound Broker SCA definition is the WebSphere Message Broker
Toolkit representation of an SCA Export and has a file extension of
.outsca.

Chapter 14. Reference 6379

SCA artifact name
The name of the Broker SCA definition.

Binding type
The binding type of the Broker SCA definition.

The bottom pane allows you to start the Export SCA Import or Export from Broker
SCA Definition wizard:

Start Export SCA Import or Export from Broker SCA Definition wizard after
generation is finished

Select the check box for the Export SCA Import or Export from Broker SCA
Definition wizard to start on completion of this wizard.

When the wizard has finished, the Broker SCA definition which has been created is
added to the specified message set project.
Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
Related reference:
“Generate Broker SCA Definition wizard” on page 6372
The Generate Broker SCA Definition wizard creates a Broker SCA definition from a
message set.

Export SCA Import or Export from Broker SCA Definition wizard:

The Export SCA Import or Export from Broker SCA Definition wizard exports an
SCA import or export from a Broker SCA definition in a message set.

The following links provide further information in relation to the panels and fields
that form the Export SCA Import or Export from Broker SCA Definition wizard.

Export SCA Import or Export from Broker SCA Definition wizard

The following panels are shown by the Export SCA Import or Export from Broker
SCA Definition wizard:
v Select the SCA Import or SCA definition you want to export
v Specify the export location
Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.

Export SCA Import or Export from Broker SCA definition wizard: Select the Broker SCA
definition to export:

Use this panel of the Export SCA Import or Export from Broker SCA Definition
wizard to select the SCA import or export definition that you want to export from
a message set.

The following links provide further information in relation to the panels and fields
that form the Export SCA Import or Export from Broker SCA Definition wizard.

6380 WebSphere Message Broker Version 7.0.0.8

Export SCA Import or Export from Broker SCA Definition wizard

The following panels are shown by the Export SCA Import or Export from Broker
SCA Definition wizard:
v Select the SCA Import or SCA definition you want to export
v Specify the export location

Panel properties

The top pane of the panel contains a navigation tree of your workspace. Select the
SCA import or export definition that you want to export.

SCA artifact name
The name of the exported SCA import or export.

Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
Related reference:
“Export SCA Import or Export from Broker SCA Definition wizard” on page 6380
The Export SCA Import or Export from Broker SCA Definition wizard exports an
SCA import or export from a Broker SCA definition in a message set.

Export SCA Import or Export from Broker SCA definition wizard: Specify the export
location:

Use this panel of the Export SCA Import or Export from Broker SCA Definition
wizard to specify the location for the SCA import or export definition that you
want to export from a message set.

The following links provide further information in relation to the panels and fields
that form the Export SCA Import or Export from Broker SCA Definition wizard.

Export SCA Import or Export from Broker SCA Definition wizard

The following panels are shown by the Export SCA Import or Export from Broker
SCA Definition wizard:
v Select the SCA Import or SCA definition you want to export
v Specify the export location

Panel properties

Choose one of the following options:

Export to a workspace directory
The structure of the workspace is displayed. Click the folder to which you
want the SCA import or export definition to be exported.

Export to an external directory
Specify the name of the external directory to which you want the SCA
import or export definition to be exported.

Select the Overwrite existing files without warning check box if you do not want
to be warned that an existing file is about to be overwritten. By default, the check
box is cleared, and you are prompted to confirm that you want to replace existing
files.

Chapter 14. Reference 6381

Related tasks:
“Generating a Broker SCA definition from a message set” on page 2967
WebSphere Message Broker creates a Broker SCA definition from existing message
definitions.
Related reference:
“Export SCA Import or Export from Broker SCA Definition wizard” on page 6380
The Export SCA Import or Export from Broker SCA Definition wizard exports an
SCA import or export from a Broker SCA definition in a message set.

Generate WSDL wizard:

The Generate WSDL wizard creates a WSDL definition from a message set.

The following links provide further information in relation to the panels and fields
that form the Generate WSDL wizard. Some panels only appear if certain
conditions are met. These are marked as (optional).

Open the Generate WSDL wizard

To open the Generate WSDL wizard:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the folder that contains the

message set file from which you want to generate a Web service definition, and
select Generate > WSDL Definition. This starts the Generate WSDL wizard.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you want to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details
v Summary of tasks
Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.

Generate WSDL wizard: Select the action you want to perform:

Use this panel to select how you want to generate the WSDL definition.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you want to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details

6382 WebSphere Message Broker Version 7.0.0.8

v Summary of tasks

Panel properties

A choice of three options is presented.

Generate a new WSDL definition from existing message definitions
Select this option to generate a new WSDL definition from existing
message definitions. This is the default option.

Export an existing WSDL definition to another directory in the workspace or file
system.

Select this option to load the Export WSDL wizard.

Generate a new WSDL definition from existing message definitions using
message categories (deprecated)

Select this option to generate a new WSDL definition using existing
message definitions and message categories. This option is available to
provide compatibility with previous releases of WebSphere Message
Broker.

Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Generate WSDL wizard: Select a message set folder and destination directory:

Use Generate WSDL wizard to select both the source of the WSDL definition and
where you want the generated WSDL definition to be placed.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you want to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details
v Summary of tasks

Panel properties

Select the message set folder from which to generate the WSDL definition:
Specify the message set folder from which to generate the WSDL
definition.

Choose one of the following options to select the destination for the generated
WSDL definition:

Create in a workspace directory
Select from your workspace directory the message set folder that will
contain the generated WSDL definition.

Chapter 14. Reference 6383

Export to an external directory
Specify the address of the directory, outside your workspace, that you
want to contain the generated WSDL definition.

Options
Specify the structure of the generated XML schema

Choose one of the following options to specify the structure of the generated XML
schema:

Generate XML schema definitions with current directory structure
Generates the schema definition using the current directory structure; this
is the default.

Generate XML schema definitions with flat structure
Generates the schema definition as a single level directory structure.

Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Generate WSDL wizard: Specify WSDL details:

Use this panel to describe some details of the WSDL definition that you want to
generate.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you want to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details
v Summary of tasks

Panel properties

File Format
Select from:
v Generate as a single WSDL file

The WSDL definition is written to a single file. This format is widely
understood by external applications and SOAP toolkits.

v Generate as a single WSDL file with all XML schema inlined

The WSDL definition is written to a single file with the XML added.
v Generate as three WSDL files (one each for port type, service, and

binding)

The WSDL definition is split into multiple files. This format offers better
reuse of the component files.

WSDL Version
Select the required version of WSDL.

6384 WebSphere Message Broker Version 7.0.0.8

SOAP Version
Select the required version of SOAP

Style The style determines the format of the runtime SOAP messages described
by the generated WSDL. The choices are:
v rpc
v document

WSDL Namespace
This must be a valid URI and becomes the target namespace for the WSDL
definitions. This value has no particular significance outside of the WSDL
definition itself and does not correspond to the namespace of SOAP
messages described by the generated WSDL. A default value of
http://tempuri.org/<message set name> is set.

RPC Namespace
This field is only enabled if you selected the Style as rpc. It is the
namespace for the immediate children of your SOAP body. The value must
be a valid URI. A default value of http://tempuri.org/<message set name>
is set.

Definition Name
This is used in deriving the names of the WSDL file or files that are
created. The default value is the name of your message set.

Documentation
Optional: This text is included as documentation for the PortType element
on the generated WSDL. It has no implications for the SOAP messages that
are described by the generated WSDL.

Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Generate WSDL wizard: Add operations to the WSDL details:

Use this panel to define the operations that you want to add to the WSDL
definition.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you want to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details
v Summary of tasks

Panel properties

The panel is divided into two panes.

Chapter 14. Reference 6385

The top pane is read-only and displays a table that describes the operations that
you have defined. The table has four columns with the following headings:

Operation
The name that you have given to the operation.

Input message
The name of the input message. This might be blank if the operation is a
Notification type operation.

Output message
The name of the output message. This might be blank if no output
message is specified for this operation.

Operation Type
The type of operation. Examples of operation type are:

Request-response
One-way
Solicit-response
Notification

The bottom pane is where you describe a new operation. The following fields
describe the operation:

Name The name that you have given to the operation.

Operation Type
The type of operation. Examples of operation type are:

Request-response
One-way
Solicit-response
Notification

Input The name of the input message. This is omitted for a Notification operation.

Output
The name of the output message. This is omitted for a One-way operation.

Fault The name of the fault message. This is omitted for a Notification operation.
Otherwise, you can specify one or more fault messages.

Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Generate WSDL wizard: Configure binding details:

Use this panel to specify your SOAP/HTTP or SOAP/JMS binding details.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you want to perform
v Select a message set folder and destination directory

6386 WebSphere Message Broker Version 7.0.0.8

v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details
v Summary of tasks

Panel properties

Service name
The Service Name is the value of the name attribute on the service element
in the generated WSDL. The exact use of the name depends on products
that later use the WSDL such as the SOAP toolkits and UDDI repositories.
For example if you later use a SOAP toolkit to generate Java from your
WSDL, the Service Name is likely to become the Java interface name.

Port name
This property is the name of a specific WSDL port for this service and
would typically be derived from the Service Name. One convention would
be to provide a Service Name of <xyz> Service and a Port Name of <xyz>
Provider.

The Port Name is the value of the name attribute on the port element in
the generated WSDL. The exact use of the name depends on products that
later use the WSDL such as SOAP toolkits and UDDI repositories. For
example if you use a SOAP toolkit to generate Java from your WSDL, the
Port Name could become a Java class name.

A choice of two options is presented:

SOAP/HTTP
Select this option to generate a new WSDL definition using existing
message definitions with an HTTP transport. This is the default option.

SOAP/JMS
Select this option to generate a new WSDL definition using existing
message definitions with a JMS transport.

If you select SOAP/HTTP, the following additional properties are displayed:

SOAP action
This property defines the value for the HTTP SoapAction header. It is
possible that an application will use the SoapAction as a mechanism for
relating a SOAP message to an implementation method. This is often true
with rpc-style WSDL.

If the WSDL definition is to contain multiple operations and they use
different SOAP actions, you must add the unique SOAP action values to
the WSDL after it has been generated. If all operations use the same SOAP
action, specify the value here.

Port address
This property defines the address at which the service is made available. It
must be a valid URL and it must include the port number, if it is different
from the default HTTP port. An example of a port address is:
http://localhost:9080/wassoap/servlet/router

If you select SOAP/JMS, the following additional properties are displayed:

Destination style
The style in which you specify the destination name of the JMS message.
The default value is jndi.

Chapter 14. Reference 6387

Destination name
The name of the destination of the JMS message. This property must be
specified according to the Destination style property.

JMS provider name
Select a JMS vendor name from the list. When you select a name from the
list, the Initial context factory property is updated automatically with
the relevant Java class. The name must match the name of a configurable
service that is defined for the broker to which you deploy the message
flow.

Initial context factory

The starting point for a JNDI namespace. A JMS application uses the initial
context to obtain and look up the connection factory and queue or topic
objects for the JMS provider. When you select a JMS provider name from
the list in JMS provider name, the Initial context factory property is
updated automatically with the relevant Java class. The default value is
com.sun.jndi.fscontext.RefFSContextFactory, which defines the file-based
Initial context factory for the WebSphere MQ JMS provider.

JNDI connection factory
The name of the connection factory that is used. This name must exist in
the bindings file. The JNDI connection factory is a JMS
QueueConnectionFactory. Alternatively, you can specify the generic JMS
ConnectionFactory.

JNDI URL
The JNDI URL for the JMS provider.

Delivery mode
This property controls the persistence mode used for a message. Valid
values are:
v Persistent: the message survives if the JMS provider has a system

failure.
v Non Persistent: the message is lost if the JMS provider has a system

failure.

Request message lifetime
This property controls the length of time, in seconds, for which the output
JMS message is kept. The default value, 0, is used to indicate that the
message must not expire.

JMS request message priority

This property assigns relative importance to the message and can be used
for message selection by a receiving web service.

Select a value between 0 (lowest priority) and 9 (highest priority). The
default value is 4, which indicates medium priority. Priorities in the range
0 - 4 indicate typical delivery. Priorities in the range 5 - 9 indicate faster
delivery.

Reply to Name
The name of the JMS destination to which the receiving application must
send a reply message. For a reply message to be returned to this JMS
destination, the JMS destination name must be known to the domain of the
JMS provider that is used by the receiving client.

Specify JNDI parameters
Enter JNDI context parameters, to be included in the generated WSDL URI,

6388 WebSphere Message Broker Version 7.0.0.8

in this table as name-value pairs. If the Use SOAP/JMS interoperability
protocol check box is cleared, the JNDI parameters table is disabled, and
its values are not generated in the resultant WSDL.

Specify user parameters
Enter additional user parameters, to be included in the generated WSDL
URI, in this table as name-value pairs.

Use SOAP/JMS interoperability protocol
This check box is selected by default. If this check box is selected, the
generated SOAP/JMS WSDL is in the W3C format, otherwise it is
IBM-style WSDL. If you clear this check box, the JNDI parameters table is
disabled, and its values are not generated in the resultant WSDL.

Generate WSDL Definition wizard: Summary of tasks:

Generate WSDL Definition wizard: provides a summary of the actions that will
occur on finalizing the wizard.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you want to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details
v Summary of tasks

Summary information

This panel consists of two panes. The top pane displays a summary of the
selections you have made and the bottom pane lists the message definition files
generated.

The selected message set
The message set you selected on the Select a message set folder and
destination directory panel.

The generated WSDL files will go into:
The destination directory you selected on the Select a message set folder
and destination directory panel.

The version of WSDL to be generated
The version you selected on the Specify WSDL details panel.

The version of SOAP to be generated
The version you selected on the Specify WSDL details panel.

The selected style for WSDL generation:
The style you selected on the Specify WSDL details panel.

The WSDL namespace:
The namespace you selected on the Specify WSDL details panel.

If you selected rpc as the style there is an entry for RPC namespace.

The following bindings are selected:

Chapter 14. Reference 6389

SOAP over HTTP
See Configure binding details for further details.

SOAP over JMS
See Configure binding details for further details.

The following WSDL files will be generated:
The name of the generated file.

Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Export WSDL wizard:

The Export WSDL wizard exports a WSDL definition from a message set.

The following links provide further information in relation to the panels and fields
that form the Export WSDL wizard.

Export WSDL wizard

The following panels are shown by the Export WSDL wizard:
v Select the WSDL definition that you want to export
v Specify the export location
Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.

Export WSDL wizard: Select the WSDL definition you want to export:

Use this panel of the Export WSDL wizard to select the WSDL definition that you
want to export from a message set.

The following links provide further information in relation to the panels and fields
that form the Export WSDL wizard.

Export WSDL wizard

The following panels are shown by the Export WSDL wizard:
v Select the WSDL definition that you want to export
v Specify the export location

Panel properties

The top pane of the panel shows a map of your workspace. Select the WSDL
definition that you want to export.

Export file format
Choose one of the following options:
v Export to a single WSDL file

6390 WebSphere Message Broker Version 7.0.0.8

The WSDL definition is written to a single file. This format is widely
understood by external applications and SOAP toolkits.

v Export to a single WSDL file with all XML schema inlined

The WSDL definition is written to a single file. This format is widely
understood by external applications and SOAP toolkits.

v Export to three WSDL files (one each for port type, service, and
binding)

The WSDL definition is split into multiple files. This format offers better
reuse of the component files.

v Export based on the existing file structure

The WSDL definition is written to a single file. This format is widely
understood by external applications and SOAP toolkits.

WSDL definition name
Select a name for the exported WSDL.

Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.

Export WSDL wizard: Specify the export location:

Use this panel of the Export WSDL wizard to specify the location for the WSDL
definition that you want to export from a message set.

The following links provide further information in relation to the panels and fields
that form the Export WSDL wizard.

Export WSDL wizard

The following panels are shown by the Export WSDL wizard:
v Select the WSDL definition that you want to export
v Specify the export location

Panel properties

Choose one of the following options:

Export to a workspace directory
The structure of the workspace is displayed. Click the folder that you want
the WSDL definition to be exported to.

Export to an external directory
Specify the name of the external directory that you want the WSDL
definition to be exported to.

Select the Overwrite existing files without warning check box if you do not want
to be warned that a file with the name that you specified is being overwritten. By
default, the check box is cleared; if a file exists with the same name as the name
that you have selected, you are prompted to confirm whether you want this file to
be overwritten by the file that you are exporting.
Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.

Chapter 14. Reference 6391

Configure New Web Service Usage wizard:

This provides additional reference information in relation to the Configure New
Web Service Usage wizard.

You can launch this wizard by dragging deployable WSDL onto the message flow
canvas.

The following links provide further information in relation to the panels and fields
that form the Configure New Web Service Usage wizard.

Configure New Web Service Usage wizard

List of panels:
v Configure web service usage
v File generation details
Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Configure New Web Service Usage wizard: Configure Web service usage details:

Use this panel of the Configure New Web Service Usage wizard to configure a new
Web service.

The following links provide further information in relation to the panels and fields
that form the Configure New Web Service Usage wizard.

Configure New Web Service Usage wizard

List of panels:
v Configure web service usage
v File generation details

Panel properties

Web service usage
Select from:
v Expose message flow as Web service

The message flow is exposed as a Web service to its clients.
v Invoke Web service from message flow

The Web service is invoked from the message flow.

Web service parameters
Configure the WSDL-related fields:
v Port type

Port type must be specified, and lists all the port types defined in the
WSDL document.

6392 WebSphere Message Broker Version 7.0.0.8

By default, the drop down is populated with all the port types from the
WSDL, in the order in which they appear in the WSDL file. The initially
selected port type is the first port type that has at least one http binding
associated with it.

v Binding

Binding must be specified and lists all SOAP bindings with HTTP
transport, associated with the selected port type.
Bindings related to the selected port type are populated in the order in
which they appear in the WSDL file. The initially selected binding is the
one that has at least one port and one operation associated with it; if
there is no such binding, the first binding with at least one port is
selected.
If no binding has ports associated with it, the first binding in the list is
selected.

v Service port

Lists all WSDL ports that point to the selected binding.
v Binding operations

Lists all operations defined by the selected port type. Note, that only
those operations implemented by the selected binding are selected by
default.
For every selected operation, the subflow generation process produces
an output terminal, in the generated subflow.
If you select an operation, that is not implemented by the selected
binding, you receive a warning message; however, you can continue
with the selection.

Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

Configure New Web Service Usage wizard: File generation details:

Use the Configure New Web Service Usage wizard to specify file generation
details.

Configure New Web Service Usage wizard

List of panels:
v Configure web service usage
v File generation details

Panel properties

Flow Generation Details
Only one file is generated, namely the subflow. The subflow name is
constructed as follows:

Format of the generated subflow name

Request operation OperationName_WSDLFileName_MainFlow.msgflow

Chapter 14. Reference 6393

Format of the generated subflow name

Extract operation WSDLFileName_MainFlow.msgflow

This page of the wizard lists the name of the file to be generated together
with its location.

Typically, this file represents the subflow that is about to be generated. The
default subflow name is prefixed by the name of the selected WSDL file,
however, you have the option to change the name.

If the file to be generated already exists in the workspace, a warning is
issued and the Finish button is no longer enabled.

You either have to change the name of the file, or select the Overwrite
existing file check box.

Node type to be used by the Web service flows
Select from:
v SOAP nodes

Select this option to use the SOAP domain and the SOAP nodes. This is
the default option.
Using SOAP nodes is WSDL driven and allows you to take advantage of
various WS_* standards; for example WS_Security and WS_Addressing.
If the message set does not support the SOAP domain you receive a
warning.

v HTTP nodes

Select this option if you want to use HTTP nodes rather than SOAP
nodes.
You can select this option only if the message set supports the XMLNSC,
MRM, or XMLNS domains.
If you select HTTP nodes, you see a message explaining the advantages
of the SOAP nodes together with a suggestion that you import WSDL
files.
If you use the ImportFiles folder as your source, you can only select
HTTP node generation.

Details
This pane appears if any additional warnings about the subflow that is
generated apply. Possible warnings are as follows:
v When Service Definition is not found in the WSDL file, the URL

property is not set on the node.
v You have selected one or more operations that are not implemented by

the selected binding.
v When message domain is MRM, but XML wire format not found,

message format property is not set on the HTTPInput or Request node.
Related tasks:
“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.

6394 WebSphere Message Broker Version 7.0.0.8

Publish/subscribe
Use the reference information in this section to help you develop
publish/subscribe applications.

Publish/subscribe reference information is available for the following topics:
v “Special characters in topics”
v “Topic semantics and usage” on page 6396
v “MQRFH2 header” on page 6397
v “Command messages” on page 6403

Special characters in topics
A topic can contain any character in the Unicode character set, but some characters
have a special meaning.

The following three characters have a special meaning:
The topic level separator "/".
The multilevel wildcard "#".
The single-level wildcard "+".

The topic level separator is used to introduce structure into the topic, and can
therefore be specified within the topic for that purpose.

The multilevel wildcard and single-level wildcard can be used for subscriptions,
but they cannot be used within a topic by the publisher of a message.

However, if a publisher uses the characters "+" or "#" together with other
characters in any topic level within a topic, these characters are not treated as
wildcards, and they do not have any special meaning.

The topic level separator:
The topic level separator character "/" is used to provide a hierarchical structure to
the topic space. It must be used by applications to separate levels within a topic
tree. The use of the topic level separator is significant when the two wildcard
characters are encountered in topics specified by subscribers.

Topic hierarchy is important in the administration of access control.

The multilevel wildcard:
The multilevel wildcard character "#" is used to match any number of levels within
a topic. For example, using the example topic tree shown above, if you subscribe to
"USA/Alaska/#", you receive messages on topics "USA/Alaska" and
"USA/Alaska/Juneau".

The multilevel wildcard can represent zero or more levels. Therefore, "USA/#" can
also match the singular "USA", where # represents zero levels. The topic level
separator is meaningless in this context, because there are no levels to separate.

The multilevel wildcard can be specified only on its own or next to the topic level
separator character. Therefore, "#" and "USA/#" are valid topics where the "#"
character is treated as a wildcard. However, although "USA#" is also a valid topic,
the "#" character is not regarded as a wildcard and does not have any special
meaning. See “When wildcards are not wild” on page 6396 for more information.

The single-level wildcard:

Chapter 14. Reference 6395

The single-level wildcard character "+" matches one, and only one, topic level. For
example, "USA/+" matches "USA/Alabama", but not "USA/Alabama/Auburn".
Also, because the single-level wildcard matches only a single level, "USA/+" does
not match "USA".

The single-level wildcard can be used at any level in the topic tree, and in
conjunction with the multilevel wildcard. The single-level wildcard must be
specified next to the topic level separator, except when it is specified on its own.
Therefore, "+" and "USA/+" are valid topics where the "+" character is treated as a
wildcard. However, although "USA+" is also a valid topic, the "+" character is not
regarded as a wildcard and does not have any special meaning. See “When
wildcards are not wild” for more information.

When wildcards are not wild:
The wildcard characters "+" and "#" have no special meaning when they are mixed
with other characters (including themselves) in a topic level.

This means that topics that contain "+" or "#" together with other characters in a
topic level can be published.

For example, consider the following two topics:
1. level0/level1/+/level4/#
2. level0/level1/#+/level4/level#

In the first example, the characters "+" and "#" are treated as wildcards and are
therefore not valid in a topic that is to be published.

In the second example, the characters "+" and "#" are not treated as wildcards and
therefore the topic can be both published and subscribed to.
Related reference:
“Topic semantics and usage”

Topic semantics and usage
When you build an application, the design of the topic tree should take into
account the following principles of topic name syntax and semantics:
v Topic names are case sensitive.

For example, "ACCOUNTS" and "Accounts" are two different topics.
v Topic names can include the space character.

For example, "Accounts payable" is a valid topic.
v A leading "/" creates a distinct topic.

For example, "/USA" is different from "USA" and "/USA' matches "+/+" and
"/+", but not "+".

v A topic name that contains '//' is not a valid name. An attempt to subscribe to a
topic with such a name causes an error.

v Do not include the null character (Unicode \x0000) in any topic.
v The wildcard characters "+" and "#" are not treated as wild cards if they are

mixed with any other characters (including themselves but excluding the topic
level separator "/") within a topic level.

The following principles apply to the construction and content of a topic tree:
v There is no limit to the number of levels in a topic tree.
v There is no limit to the length of the name of a level in a topic tree.

6396 WebSphere Message Broker Version 7.0.0.8

v There can be any number of "root" nodes; that is, there can be any number of
topic trees. These are defined below the root "", which is the root of all root
nodes. It is referred to as "topicRoot", although there is no corresponding topic
name. Applications cannot publish or subscribe to this virtual root.

v The topic trees with roots of "$SYS" and "$ISYS" are reserved for use by
WebSphere Message Broker only.

Related reference:
“Special characters in topics” on page 6395
A topic can contain any character in the Unicode character set, but some characters
have a special meaning.

MQRFH2 header
The MQRFH2 header is used to pass messages to and from a message broker that
belongs to WebSphere Message Broker.

In a message, the MQRFH2 header follows the WebSphere MQ message descriptor
(MQMD) and precedes the message body, if present. The MQRFH2 header can be
parsed by either the MQRFH2 parser or the MQRFH2C parser.

Other headers, such as the IMS/ESA® or CICS bridge headers, are allowed either
before or after the MQRFH2 header, but before the message body.

If you are using the Message Queuing Interface (MQI) to write application
programs you need to understand the structure and content of the MQRFH2
header.

For more information, refer to:
v “MQRFH2 structure”
v “Message service folders” on page 6401

Multiple MQRFH2 headers:
A message can have more than one MQRFH2 header.

For example, if an application forwards a message, including its header, to another
application, a second MQRFH2 header precedes the header in the message being
forwarded.
v Attributes that describe the body of the message, such as the domain, set, type,

and format, or the character set ID and encoding, are taken from the last
MQRFH2 header, which is immediately in front of the body of the message.

v Anything else, such as the topic for a publish/subscribe message, is taken from
the first MQRFH2 header.

Related reference:
“The MQRFH2 and MQRFH2C parsers” on page 4253
The MQRFH2 header can be parsed using either the MQRFH2 parser or the
MQRFH2C compact parser.
“MQInput node” on page 4594
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

MQRFH2 structure:
The MQRFH2 header contains information about the structure of a message, and
its intended consumers, to enable a message broker to process the message and
deliver or publish the message to those consumers.

Chapter 14. Reference 6397

The value 'MQHRF2 ' should be put in the Format field of the preceding header
(usually the MQMD). The constant MQFMT_RF_HEADER_2 is defined with this
value.

For the C programming language, the constant MQFMT_RF_HEADER_2_ARRAY is
also defined. This constant has the same value as MQFMT_RF_HEADER_2, but it
is an array of characters, not a character string.

The character set and encoding of the fields in the MQRFH2 header are as follows:
v Fields other than NameValueData are in the character set and encoding defined

by the fields CodedCharSetId and Encoding in the header structure that
precedes the MQRFH2 header, or by the same fields in the MQMD structure if
the MQRFH2 header is at the start of the application message data. The
character set should be one that has single-byte characters for the characters that
are valid in queue names.

v NameValueData is in the character set defined by the NameValueCCSID field.
Note that not all Unicode character sets are valid for NameValueCCSID; see the
description of NameValueCCSID for details.
Some character sets have a representation that is dependent on the encoding. If
NameValueCCSID defines one of these character sets, NameValueData must be
in the same encoding as the other fields in the MQRFH2 header.

v The user data (if any) that follows NameValueData can be in any supported
character set (single-byte, double-byte, or multi-byte), and in any supported
encoding.

The MQRFH2 header contains the following fields:

Field Name Description Details

StrucId Structure identifier The value must be MQRFH_STRUC_ID, which is the
identifier for the rules and formatting header
structure,.

WebSphere Message Broker populates this field
for you if you are constructing an MQRFH2
header in a message flow.

For the C programming language, the constant
MQRFH_STRUC_ID_ARRAY is also defined; this
constant has the same value as MQRFH_STRUC_ID,
but it is an array of characters, not a character
string.

Version Structure version
number

The value must be MQRFH_VERSION_2, which is
the Version-2 rules and formatting header
structure.

6398 WebSphere Message Broker Version 7.0.0.8

Field Name Description Details

Struclength Total length of
MQRFH2
(including
NameValueData)

The initial value of this field is
MQRFH_STRUC_LENGTH_FIXED_2, which is the
length of the fixed part of the MQRFH2 header
structure.

This is the length in bytes of the MQRFH2
header structure, including any
NameValueLength and NameValueData fields
at the end of the structure.

WebSphere Message Broker populates this field
for you if you are constructing an MQRFH2
header in a message flow.

There might be more than one pair of these
fields at the end of the structure, in the
sequence: length1, data1, length2, data2,
The length of any user data that follows the last
NameValueData field at the end of the
structure is not included in StrucLength.
Note: If Struclength is not a multiple of four,
problems might occur with the data conversion
of user data in some operating system
environments.

Encoding Numeric encoding
of data that follows
NameValueData

The initial value of this field is MQENC_NATIVE.

This field specifies how numeric values in any
data that follows the last NameValueData field
are represented. This applies to binary integer
data, packed decimal integer data and
floating-point data.

CodedCharSetId Character set
identifier of data
that follows
NameValueData

The initial value of this field is MQCCSI_INHERIT,
which means that the character set identifier is
the same as that of the current structure.

This field identifies the coded character set for
any character strings in the data that follows
the last NameValueData field.

Format Format name of
data that follows
NameValueData

The initial value of this field is
MQFMT_NONE.

This field specifies the format name of any data
that follows the last NameValueData field. The
name should be padded with blanks to the
length of the field.
Note: Do not use a null character to terminate
the name before the end of the field; the queue
manager does not change to a blank character
the null character, or any characters that follow
the null character, in the MQRFH2 header.
Note: Do not specify a name with leading or
embedded blank characters.

Flags Flags The initial value of this field is MQRFH_NONE,
which means that there are no flags.

Chapter 14. Reference 6399

Field Name Description Details

NameValueCCSID Character set
identifier of
NameValueData

The initial value of this field is 1208, which
means that the UTF-8 coded character set is
used.

This field identifies the coded character set for
data in the NameValueData field. This is
different from the character set for other
character strings in the MQRFH2 header
structure, and might be different from the
character set for any character data that follows
the last NameValueData field.

NameValueCCSID must have one of the
following values:

1200: UCS-2 open-ended

1208: UTF-8

13488: UCS-2 2.0 subset

17584: UCS-2 2.1 subset (includes the euro
symbol €)

For the UCS-2 character sets, the encoding (byte
order) of the NameValueData field must be the
same as the encoding of the other fields in the
MQRFH2 header structure.
Note: Surrogate characters (X'D800' thru
X'DFFF') are not supported.

The following two fields are optional, but if present they must occur as a pair. They can be
repeated as a pair as many times as required.

If these fields occur more than once, they must occur in the sequence length1, data1,
length2, data2,

NameValueLength Length of
NameValueData

This field specifies the length, in bytes, of the
NameValueData field that follows this field.

WebSphere Message Broker populates this field
for you if you are constructing an MQRFH2
header in a message flow.
Note: If NameValueLength is not a multiple of
four, there might be a problem with the
conversion of the data that follows the
NameValueData field.

NameValueData This is a
variable-length
character string
containing data that
is encoded using an
XML-like structure

The length, in bytes, of this string is given by
the NameValueLength field that precedes this
NameValueData field.

To avoid the problem described in the note
accompanying the description of the
NameValueLength field, either extend this field
with blanks so that its length is a multiple of
four, or terminate the field with a null
character.

6400 WebSphere Message Broker Version 7.0.0.8

C programming language definition

The following structure is defined in the cmqc.h header file that is supplied with
WebSphere MQ. The constants that are used within the NameValueData field are
defined in the BipRfc.h header file that is supplied with WebSphere Message
Broker.
typedef struct tagMQRFH2 {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Total length of MQRFH2 including

NameValueData */
MQLONG Encoding; /* Numeric encoding of data that follows

NameValueData */
MQLONG CodedCharSetId; /* Character set identifier of data that

follows NameValueData */
MQCHAR8 Format; /* Format name of data that follows

NameValueData */
MQLONG Flags; /* Flags */
MQLONG NameValueCCSID; /* Character set identifier of NameValueData */
} MQRFH2;

Message service folders:

A number of folders are defined for use by WebSphere MQ products.
<mcd>

Message content descriptor
<psc> Publish/subscribe command
<pscr>

Publish/subscribe command response
<usr> Application (user) defined properties
<jms> Java Messaging Service

Each folder is contained in a separate NameValueData field, each of which is
preceded by a NameValueLength field.

Independent software vendors can choose other names for their folders. However,
you can prefix your chosen folder name with their internet domain name to avoid
naming conflicts and problems. For example, a vendor with domain name
ourcompany.com might name its folders:
com.ourcompany.xxx or com.ourcompany.ourData

The mcd folder:
The <mcd> folder can contain the following elements that describe the structure of
the message data in a WebSphere MQ message. They are all character strings, and
are case sensitive.

<Msd> Message service domain

Valid values are:
mrm The message is parsed by the MRM domain.
xmlnsc

The message is XML and is parsed by the XMLNSC domain.
xmlns The message is XML and is parsed by the XMLNS domain.
xml The message is XML and is parsed by the XML domain.
mime The message uses the MIME standard and is parsed by the MIME

domain.
idoc The message is an SAP ALE IDoc from the WebSphere MQ Link

for R/3, and is parsed by the IDOC domain.

Chapter 14. Reference 6401

none The message is treated as an opaque BLOB, and delivered to the
recipient without modification.

See “Parsers” on page 1072 for a description of each domain.

<Set> The name of the message set that contains the definition of the message.

If <Msd> is mrm or idoc, you must use the <Set> element to supply the
name of the message set.

If <Msd> is xmlnsc, and validation is enabled in the message flow, you
must use the <Set> element to supply the name of the message set.

<Type> The name of the message type, in the specified message set, to which this
message corresponds. The format of a simple message type is
{namespace-uri}:name where name is the name of the message.

The format {namespace-uri}name (that is, with no colon) is also valid to
maintain compatibility with previous versions of WebSphere Message
Broker.

If <Msd> is mrm or idoc, you must use the <Type> element to supply the
name of the message definition.

<Fmt> The name of a physical format in the specified message set.

If <Msd> is mrm or idoc, you must use the <Fmt> element to supply the
name of the physical format in the message set.

If the message tree contains an MQRFH2 header, any node that modifies the
message tree performs the following steps before propagating the message to the
next node:
v If there is no <mcd> folder, one is added, and the Msd, Set, Type, and Format

fields are populated with values that match the current domain and the current
setting in the Properties folder.

v If there is an <mcd> folder, the Msd, Set, Type, and Format fields are overwritten
with values that match the current domain and the current settings in the
Properties folder.

Tip: If you need to propagate an MQRFH2 header without an <mcd> folder, you
can remove the header by using the following ESQL code with a Compute node:

CALL CopyEntireMessage();
DELETE FIELD OutputRoot.MQRFH2.mcd;
PROPAGATE FINALIZE NONE; -- Propagate the message without updating the headers
RETURN FALSE; -- Ensure that the message is not propagated again.

The psc folder:
The <psc> folder is used to convey publish/subscribe command messages to the
broker.

Only one psc folder is allowed in the NameValueData field.

See “Command messages” on page 6403 for full details.

The pscr folder:
The <pscr> folder is used to contain information from the broker, in response to
publish/subscribe command messages.

Only one pscr folder is present in a response message.

6402 WebSphere Message Broker Version 7.0.0.8

See “Broker Response message” on page 6407 for full details.

The broker ignores this folder in messages that it receives from publish/subscribe
applications.

The usr folder:
The content model of the <usr> folder has the following characteristics.
v Any valid XML name that does not contain a colon can be used as an element

name.
v Only simple elements, not groups, are allowed.
v All elements take the default type of string.
v All elements are optional, but must not occur more than once in a folder.
v An MQRFH2 instance can contain, at most, one <usr> folder.

The jms folder:
The content model of the <jms> folder contains the following MQRFH2 JMS fields:
v Dst - represents the JMSDestination header field.
v Dlv - represents the JMSDeliveryMode header field.
v Exp - represents the JMSExpiration header field.
v Pri - represents the JMSPriority header field.
v Tms - represents the JMSTimestamp header field.
v Cid - represents the JMSCorrelationID header field.
v Rto - represents the JMSReplyTo header field.

See “JMS message structure” on page 1688 for more information about the content
of JMS messages.
Related concepts:
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
Related reference:
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.

Command messages
The following command messages can be sent to WebSphere Message Broker in a
publish/subscribe application:
v “Delete Publication message” on page 6404
v “Publish message” on page 6405

If you are using the Message Queue Interface (MQI) to write applications that use
the publish/subscribe model, you need to understand these messages and the
Broker Response message. Refer to:
v “Broker Response message” on page 6407

Chapter 14. Reference 6403

The commands are contained in a <psc> folder in the NameValueData field of the
MQRFH2 header.

The message that can be sent by a broker in response to a command message is
contained in a <pscr> folder.

Refer to “Message service folders” on page 6401 for details about the message
service folders.

The descriptions of each command list the properties that can be contained in a
folder. Unless otherwise specified, the properties are optional and can occur no
more than once.

Names of properties are shown as <Command>.

Values must be in string format, for example: Publish.

A string constant representing the value of a property is shown in parentheses, for
example: (MQPSC_PUBLISH).

String constants are defined in the header file BipRfc.h which is supplied with
WebSphere Message Broker.

Delete Publication message:
The Delete Publication command message is sent to a broker from a publisher, or
from another broker, to tell the broker to delete any retained publications for the
specified topics.

This message is sent to the input queue of a message flow that contains a
Publication node. You must have the authority to put a message onto this queue,
and to publish on the topic, or topics, that are specified in the message.

The input queue should be the queue that the original publication was sent to.

If you have the authority for some, but not all, of the topics that are specified in
the Delete Publication command message, only those topics are deleted. A Broker
Response message indicates which topics are not deleted.

Similarly, if a Publish command contains more than one topic, a Delete
Publication command matching some, but not all, of those topics deletes only the
publications for the topics that are specified in the Delete Publication command.

Properties:

<Command> (MQPSC_COMMAND)
The value is DeletePub(MQPSC_DELETE_PUBLICATION).

This property must be specified.

<Topic> (MQPSC_TOPIC)
The value is a string that contains a topic for which retained publications are
to be deleted. Wildcard characters can be included in the string to delete
publications on more than one topic.

This property must be specified; it can be repeated for as many topics as
needed.

<DelOpt> (MQPSC_DELETE_OPTION)
The delete options property can take one of the following values:

6404 WebSphere Message Broker Version 7.0.0.8

Local (MQPSC_LOCAL)

All retained publications for the specified topics are deleted at the local
broker (that is, the broker to which this message is sent), whether they
were published with the Local option or not.

Publications at other brokers are not affected.
None (MQPSC_NONE)

All options take their default values. This has the same effect as
omitting the DelOpt property. If other options are specified at the same
time, None is ignored.

The default if this property is omitted is that all retained publications for the
specified topics are deleted at all brokers in the network, regardless of whether
they were published with the Local option.

Example:
Here is an example of NameValueData for a Delete Publication command
message. This is used by the sample application to delete, at the local broker, the
retained publication that contains the latest score in the match between Team1 and
Team2.
<psc>
<Command>DeletePub</Command>
<Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>
<DelOpt>Local</DelOpt>
</psc>

Publish message:
The Publish command message is sent from a publisher to a broker, or from a
broker to a subscriber, to publish information on a specified topic or topics.

This message is sent to the input queue of a message flow that contains a
Publication node. Authority to put a message onto this queue, and to publish on
the specified topic or topics, is necessary.

If the user has authority on some, but not all, topics, only those topics are
published; a warning response indicates which topics are not published.

If a subscriber has any matching subscriptions, the broker forwards the Publish
message to the subscriber queues defined in the corresponding Register
Subscriber command messages.

See “Broker Response message” on page 6407 for details of the message descriptor
(MQMD) parameters needed when sending a command message to the broker, and
used when a broker forwards a publication to a subscriber.

The broker forwards the Publish message to other brokers in the network that have
matching subscriptions, unless it is a local publication.

Publication data, if any, is included in the body of the message. The data can be
described in an <mcd> folder in the NameValueData field of the MQRFH2 header.

Properties:

<Command> (MQPSC_COMMAND)
The value is Publish(MQPSC_PUBLISH).

This property must be specified.

Chapter 14. Reference 6405

<Topic> (MQPSC_TOPIC)
The value is a string that contains a topic that categorizes this publication. No
wildcard characters are allowed.

This property must be specified, and can optionally be repeated for as many
topics as needed.

<SubPoint> (MQPSC_SUBSCRIPTION_POINT)
The subscription point on which the publication is published.

This property should not be included in a publication message sent to the
broker but is added automatically to publication messages by the broker before
those messages are sent to any appropriate subscribers. The value of the
<SubPoint> property is the value of the Subscription Point attribute of the
Publication node that is handling the publishing.

<PubOpt> (MQPSC_PUBLICATION_OPTION)
The publication options property can take the following values:

RetainPub
(MQPSC_RETAIN_PUB)

The broker is to retain a copy of the publication. If this option is not
set, the publication is deleted as soon as the broker has sent the
publication to all its current subscribers.

IsRetainedPub
(MQPSC_IS_RETAINED_PUB)

(Can only be set by a broker.) This publication has been retained by the
broker. The broker sets this option to notify a subscriber that this
publication was published earlier and has been retained, provided that
the subscription has been registered with the InformIfRetained option.
It is set only in response to a Register Subscriber or Request Update
command message. Retained publications that are sent directly to
subscribers do not have this option set.

Local
(MQPSC_LOCAL)

This option tells the broker that this publication should not be sent to
other brokers. All subscribers that registered at this broker receive this
publication if they have matching subscriptions.

OtherSubsOnly
(MQPSC_OTHER_SUBS_ONLY)

This option allows simpler processing of conference-type applications,
where a publisher is also a subscriber to the same topic. It tells the
broker not to send the publication to the publisher's subscriber queue
even if it has a matching subscription. The publisher's subscriber queue
consists of its QMgrName, QName, and optional CorrelId, as described
later in this section.

CorrelAsId
(MQPSC_CORREL_ID_AS_IDENTITY)

The CorrelId in the MQMD (which must not be zero) is part of the
publisher's subscriber queue, in applications where the publisher is
also a subscriber.

None (MQPSC_NONE)

6406 WebSphere Message Broker Version 7.0.0.8

All options take their default values. This has the same effect as
omitting the publication options property. If other options are specified
at the same time, None is ignored.

You can have more than one publication option by introducing additional
<PubOpt> elements.

The default, if this property is omitted, is that no publication options are set.

<PubTime> (MQPSC_PUBLISH_TIMESTAMP)
The value is an optional publication timestamp set by the publisher. It is 16
characters long with format:

YYYYMMDDHHMMSSTH

using Universal Time. This information is not checked by the broker before
being sent to the subscribers.

<SeqNum> (MQPSC_SEQUENCE_NUMBER)
The value is an optional sequence number set by the publisher.

It should be incremented by 1 with each publication. However, this is not
checked by the broker, which merely transmits this information to subscribers.

If publications on the same topic are published to different interconnected
brokers, it is the responsibility of the publishers to ensure that sequence
numbers, if used, are meaningful.

<QMgrName> (MQPSC_Q_MGR_NAME)
The value is a string containing the name of the queue manager for the
publisher's subscriber queue, in applications where the publisher is also a
subscriber (see OtherSubsOnly).

If this property is omitted, the default is the ReplyToQMgr name in the message
descriptor (MQMD). If the resulting name is blank, it defaults to the name of
the broker's queue manager.

<QName> (MQPSC_Q_NAME)
The value is a string containing the name of the publisher's subscriber queue,
in applications where the publisher is also a subscriber (see OtherSubsOnly).

If this property is omitted, the default is the ReplyToQ name in the message
descriptor (MQMD), which must not be blank if OtherSubsOnly is set.

Example:
Here are some examples of NameValueData for a Publish command message.

The first example is for a publication sent by the match simulator in the sample
application to indicate that a match has started.
<psc>
<Command>Publish</Command>
<Topic>Sport/Soccer/Event/MatchStarted</Topic>
</psc>

The second example is for a retained publication. The latest score in the match
between Team1 and Team2 is published.
<psc>
<Command>Publish</Command>
<PubOpt>RetainPub</PubOpt>
<Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>
</psc>

Broker Response message:

Chapter 14. Reference 6407

A Broker Response message is sent from a broker to the ReplyToQ of a publisher or a
subscriber, to indicate the success or failure of a command message received by the
broker if the command message descriptor specified that a response is required.

The response message is contained within the NameValueData field of the MQRFH2
header, in a <pscr> folder.

In the case of a warning or error, the response message contains the <psc> folder
from the command message as well as the <pscr> folder. The message data, if any,
is not contained in the broker response message. In the case of an error, none of
the message that caused an error has been processed; in the case of a warning,
some of the message might have been processed successfully.

If there is a failure sending a response:
v For publication messages, the broker tries to send the response to the WebSphere

MQ dead-letter queue if the MQPUT fails. This allows the publication to be sent
to subscribers even if the response cannot be sent back to the publisher.

v For other messages, or if the publication response cannot be sent to the
dead-letter queue, an error is logged and the command message is normally
rolled back. Whether this happens depends on how the MQInput node has been
configured.

Properties:

<Completion> (MQPSCR_COMPLETION)
The completion code, which can take one of three values:
ok Command completed successfully
warning

Command completed but with warning
error Command failed

<Response> (MQPSCR_RESPONSE)
The response to a command message, if that command produced a completion
code of warning or error. It contains a <Reason> property, and might contain
other properties that indicate the cause of the warning or error.

In the case of one or more errors, there is only one response folder, indicating
the cause of the first error only. In the case of one or more warnings, there is a
response folder for each warning.

<Reason> (MQPSCR_REASON)
The reason code qualifying the completion code, if the completion code is a
warning or error. It is set to one of the error codes listed later in this section.
The <Reason> property is contained within a <Response> folder. The reason
code can be followed by any valid property from the <psc> folder (for
example, a topic name), indicating the cause of the error or warning.

Examples:
Here are some examples of NameValueData in a Broker Response message. A
successful response might be the following:
<pscr>
<Completion>ok</Completion>

</pscr>

Here is an example of a failure response; the failure is a filter error. The first
NameValueData string contains the response; the second contains the original
command.

6408 WebSphere Message Broker Version 7.0.0.8

<pscr>
<Completion>error</Completion>
<Response>

<Reason>3150</Reason>
</Reponse>

</pscr>

<psc>
...
command message (to which
the broker is responding)
...
</psc>

Here is an example of a warning response (due to unauthorized topics). The first
NameValueData string contains the response; the second NameValueData string
contains the original command.
<pscr>
<Completion>warning</Completion>
<Response>

<Reason>3081</Reason>
<Topic>topic1</Topic>

</Reponse>
<Response>

<Reason>3081</Reason>
<Topic>topic2</Topic>

</Reponse>
</pscr>

<psc>
...
command message (to which
the broker is responding)
...
</psc>

Content based filtering
Content based filtering allows a subscriber to filter messages based on their
content.

This section contains the following reference information:
v “Using filters in content-based filtering”
v “Content based filtering examples” on page 6410

For a description of the ESQL language, see “ESQL reference” on page 5019.

Using filters in content-based filtering:

Content based filters are specified as ESQL expressions.

Field references:

►►
Correlation Name

▼

"."

field name
[INDEX]

►◄

Chapter 14. Reference 6409

The field references that can be used in filters for content based filtering form a
subset of those supported by the Filter node. As with the Filter node, to reference a
field in a filter, you must specify a path. Each element of the path consists of a,
possibly indexed, field name.

The syntax of a field reference is shown above, where field name and Correlation
Name are identifiers. These identifiers represent all messages as a hierarchical syntax
element tree. Each path identifies a route through that tree, which leads to a
particular syntax element, starting from one of the predefined correlation names
that refer to fixed points that every message has. The following correlation names
are supported for content based filtering:

Correlation name Purpose

Root Identifies the root of a published message.

Properties Identifies the portion of the message in which the standard
properties of a message lie.

Body Identifies the last child of the root of the message, which is
usually, but not always, the application data that follows
any headers.

Here are some examples of field references, together with their meanings:

Field reference Purpose

Body.Person.Address Refers to the first Address field in the Person entity in the
body of the message.

Properties.Topic Refers to the "Topic" field in the standard properties of a
message.

Root.MQMD.UserIdentifier Refers to the UserIdentifier field in the MQMD of the
message.

Note that path elements of "*" and the array index "LAST" are not supported in the
filters.
Related concepts:
“Content based filtering” on page 6409
Content based filtering allows a subscriber to filter messages based on their
content.
Related information:
“Content based filtering examples”
Some examples of content based filtering.

Content based filtering examples:

Some examples of content based filtering.

Content Filter Explanation

Body.Person.Salary>10000 Filtering against an integer literal

"Body.Person.Address"[1]NOT LIKE’Blen%
’AND"Body.Person.Salary">15000

A more complex filter. Note that field
identifiers can optionally be surrounded by
double quotation marks.

6410 WebSphere Message Broker Version 7.0.0.8

Content Filter Explanation

Body.Date1='2000-02-14' Filtering against a date. The date is matched
as a string and care must be taken with its
layout (see below).

Body.Person.ApprovalFlag Filtering against a Boolean field.

Body.Person.Salary+Person.Bonus>Body.Person.Limit An arithmetic filter.

Properties.Topic='employees/marketing' Filtering on a message property.

Root.MQMD.UserIdentifier='Blair' Filtering on a message attribute.

Body.Person.HourlyRate = 10.24 Filtering against a float literal

Body.Planet.DistanceFromSun = 0.93E8 Filtering against a float literal in exponential
format

Related concepts:
“Content based filtering” on page 6409
Content based filtering allows a subscriber to filter messages based on their
content.
Related information:
“Using filters in content-based filtering” on page 6409
Content based filters are specified as ESQL expressions.

User-defined extensions
Reference material that supports the creation and management of your
user-defined extensions.

This section contains the following information:
v “Sample node files” on page 6412
v “Sample parser files” on page 6414
v “C Header files” on page 6415
v “C language user-defined node API” on page 6416
v “C language user-defined parser API” on page 6538
v “C user exit API” on page 6615
v “C common API” on page 6640
v “C skeleton code” on page 6683
v Java user-defined extensions API
v “Utility function return codes and values” on page 6686
v “Available parsers” on page 6689
v “XML, MRM, and XMLNSC parser constants” on page 6691
v “Trace logging from a user-defined C extension” on page 6693
v “Multicultural support considerations for message catalogs” on page 6694
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.

Chapter 14. Reference 6411

Sample node files
Several sample node files are provided on all platforms.

Windows

On Windows, the following sample node files are in the

install_dir\sample\extensions\nodes directory, where install_dir is the home
directory of your WebSphere Message Broker installation.

Linux

On Linux, the following files are in the install_dir/sample/extensions/

nodes directory, where install_dir is the home directory of your WebSphere Message
Broker installation.

UNIX

On UNIX, the following files are in the install_dir/sample/extensions/

nodes directory, where install_dir is the home directory of your WebSphere Message
Broker installation.

z/OS

On z/OS, the following files are in the install_dir/sample/extensions/

nodes directory, where install_dir is the home directory of your WebSphere Message
Broker installation.

Sample node file Description

SwitchNode.c C source file containing a sample
implementation of a message processing
node that routes a message to one of five
output terminals, depending on the content.

SwitchNode.h The header file for the SwitchNode.c file.

TransformNode.c C source file containing a sample
implementation of a simple fixed
transformation of an input message into an
output message.

TransformNode.h The header file for the TransformNode.c file.

BipSampPluginUtil.c Sample utility functions used by the Switch
and Transform nodes.

BipSampPluginUtil.h The header file for BipSampPluginNode and
BipSampPluginUtil.

NodeFactory.c Common C functions for SwitchNode.c,
TransformNode.c, and BipSampPluginUtil.c

NodeFactory.h The header file for NodeFactory.c

Common.c Common C functions for SwitchNode.c,
TransformNode.c, and BipSampPluginUtil.c

Common.h The header file for Common.c

PluginSample.add.xml A sample XML input message that you can
use to test the C sample nodes.

PluginSample.change.xml A sample XML input message that you can
use to test the C sample nodes.

PluginSample.delete.xml A sample XML input message that you can
use to test the C sample nodes.

JavaPlugin.add.xml A sample XML input message that you can
use to test the Java sample nodes.

JavaPlugin.change.xml A sample XML input message that you can
use to test the Java sample nodes.

6412 WebSphere Message Broker Version 7.0.0.8

Sample node file Description

JavaPlugin.delete.xml A sample XML input message that you can
use to test the Java sample nodes.

JavaPlugin.hold.xml A sample XML input message that you can
use to test the Java sample nodes.

Windows

On Windows, the following sample node files are in the

install_dir\sample\extensions\nodes directory, where install_dir is the home
directory of your WebSphere Message Broker installation.

Linux

On Linux, the following files are in the install_dir/sample/Javaplugin/

com/ibm/samples directory, where install_dir is the home directory of your
WebSphere Message Broker installation.

UNIX

On UNIX, the following files are in the install_dir/sample/Javaplugin/

com/ibm/samples directory, where install_dir is the home directory of your
WebSphere Message Broker installation.

z/OS

On z/OS, the following files are in the install_dir/sample/Javaplugin/

com/ibm/samples directory, where install_dir is the home directory of your
WebSphere Message Broker installation.

Sample node file Description

JavaSwitchPluginNode.java Java source file containing a sample
implementation of a message processing
node that routes a message to one of five
output terminals, depending on the content.

JavaTransformPluginNode.java Java source file containing a sample
implementation of a simple fixed
transformation of an input message into an
output message.

The files that the WebSphere Message Broker Toolkit needs to recognize the Switch
node and Transform node are in the install_dir\sample\extensions\nodes\
com.ibm.samples.nodes directory, where install_dir is the home directory of your
WebSphere Message Broker installation. You can add this directory to your
workspace using the Update Manager, or you can copy it across to your workspace
directory and restart the WebSphere Message Broker Toolkit to see the nodes. The
help files (HelpContexts.xml, SwitchNode.htm, and TransformNode.htm) demonstrate
some features of Eclipse help by adding themselves into the main topic tree,
referencing topics in the main tree, and so on.

GIF files that are used to represent the sample nodes in the WebSphere Message
Broker Toolkit, which you can use, or replace with your own, are supplied. The
GIF files come in three different sizes and can be found in individual directories
under the sample\extensions\nodes\com.ibm.samples.nodes\icons\full\ directory.

SupportPacs:
Many other sample nodes are available as SupportPac offerings. For a complete list
of available SupportPac offerings see WebSphere MQ SupportPacs web page.
Related concepts:

Chapter 14. Reference 6413

http://www.ibm.com/software/integration/support/supportpacs

“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Compiling a Java user-defined node” on page 3074
When you have created the code for your Java user-defined node, you must
compile it for your operating system.
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
Related information:
Java user-defined extensions API

Sample parser files
Several sample parser files are provided on all platforms, to help you to create
your own parsers.

Windows

On Windows, the following sample parser files are in the

install_dir\sample\extensions\parser directory, where install_dir is the home
directory of your WebSphere Message Broker installation.

Linux

On Linux, the following sample parser files are in the

install_dir/sample/extensions/parser directory, where install_dir is the home
directory of your WebSphere Message Broker installation.

UNIX

On UNIX, the following sample parser files are in the

install_dir/sample/extensions/parser directory, where install_dir is the home
directory of your WebSphere Message Broker installation.

z/OS

On z/OS, the following sample parser files are in the

install_dir/sample/extensions/parser directory, where install_dir is the home
directory of your WebSphere Message Broker installation.

Sample parser file Description

BipSampPluginParser.c C source file containing sample implementations of a
simple pseudo-XML parser.

BipSampPluginParser.h The header file for the BipSampPluginParser.c file.

SupportPacs:
Many other sample parsers are available as SupportPac offerings. For a complete
list of available SupportPacs, see http://www.ibm.com/software/integration/
support/supportpacs/.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.

6414 WebSphere Message Broker Version 7.0.0.8

http://www.ibm.com/software/integration/support/supportpacs/
http://www.ibm.com/software/integration/support/supportpacs/

“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Compiling a C user-defined extension” on page 3047
Compile user-defined extensions in C for all supported operating systems.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.

User-defined nodes
You can define your own nodes to use in WebSphere Message Broker message
flows.

User-defined nodes add to the function that is provided by the WebSphere
Message Broker built-in nodes. You can also use nodes that are created and
supplied by independent software vendors and other companies.

If you create your own editors to handle properties for your nodes, you can access
the supported “Property editor API” on page 6686 in this section.

Follow the instructions in “Adding help to the node” on page 3088 to provide help
information for user-defined nodes, and how to include that help in this section of
the information center.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Resolving problems with user-defined extensions” on page 3511
Advice for dealing with some common problems that can arise when you work
with user-defined extensions
Related reference:
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

C Header files
The C interfaces are defined by the following header files.

Chapter 14. Reference 6415

v BipCni.h contains functions for user-defined nodes that have been written in C.
For a list of functions, refer to the “C language user-defined node API.”

v BipCpi.h contains functions for user-defined parsers that have been written in
C. For a list of functions, refer to the “C language user-defined parser API” on
page 6538.

v BipCci.h contains utility functions common to both user-defined nodes and
parsers that have been written in C. For a list of functions, refer to “C common
utility functions” on page 6643. This file also contains definitions for utility
function return codes and values. For more information, see “Utility function
return codes and values” on page 6686.

v BipCos.h contains operating system specific definitions for user-defined nodes
that have been written in C.

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Resolving problems with user-defined extensions” on page 3511
Advice for dealing with some common problems that can arise when you work
with user-defined extensions
Related reference:
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.
“C language user-defined node API”
Learn about the different types of call provided by the API.
“C common utility functions” on page 6643
WebSphere Message Broker provides some additional utilities that user-defined
nodes and parsers can use.
“Utility function return codes and values” on page 6686
By convention, the return code output parameter of all utility functions is set to
indicate successful completion, or an error. The table lists all return codes with
their meanings.

C language user-defined node API
Learn about the different types of call provided by the API.

The C language user-defined node API consists of:
1. A set of implementation functions that provide the functionality of the

user-defined node. These functions are called by the broker. The
implementation functions are mandatory, and if they are not supplied by the
developer, an exception is thrown at run time.

2. A set of utility functions that create resources in the broker, or request a service
of the broker. These utility functions are called by a user-defined node.

Most of the utilities are shared by all types of node; however, a few are specific to
input nodes. This restriction is marked in the text.

These functions are defined in the BipCni.h header file.

6416 WebSphere Message Broker Version 7.0.0.8

This section covers the following topics:

“C node implementation functions”

“C node utility functions” on page 6419

Related concepts:
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.
“C Header files” on page 6415
The C interfaces are defined by the following header files.

C node implementation functions:

The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.

The following functions are provided:

Mandatory function
“cniCreateNodeContext” on page 6447

Optional and conditional functions

v “cniDeleteNodeContext” on page 6454
v Either “cniEvaluate” on page 6475 (for message processing and output

nodes), or “cniRun” on page 6504 (for input nodes)
v “cniGetAttribute” on page 6482
v “cniGetAttribute2” on page 6484
v “cniGetAttributeName” on page 6485
v “cniGetAttributeName2” on page 6487
v “cniSetAttribute” on page 6511

Chapter 14. Reference 6417

These implementation functions are called by the broker, and implemented by the
node.

For certain implementation functions, you might need to specify the name of a
parser that is supplied with WebSphere Message Broker. If so, you must use the
correct class name of the parser. The following table provides a summary of the
parsers, root element names, and class names for different headers.

Parser Root element name Class name

BLOB BLOB NONE

IDOC IDOC IDOC

JMSMap JMSMap JMS_MAP

JMSStream JMSStream JMS_STREAM

MIME MIME MIME

MQCFH MQPCF MQPCF

MQCIH MQCIH MQCICS

MQDLH MQDLH MQDEAD

MQIIH MQIIH MQIMS

MQMD MQMD MQHMD

MQMDE MQMDE MQHMDE

MQRFH MQRFH MQHRF

MQRFH2 MQRFH2 MQHRF2

MQRMH MQRMH MQHREF

MQSAPH MQSAPH MQHSAP

MQWIH MQWIH MQHWIH

MRM MRM MRM

Properties Properties PropertyParser

SMQ_BMH SMQ_BMH SMQBAD

XML XML xml

XMLNS XMLNS xmlns

XMLNSC XMLNSC xmlnsC

Related concepts:
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:

6418 WebSphere Message Broker Version 7.0.0.8

“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions”
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.

C node utility functions:

A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.

Functions are also provided to send messages to an output terminal for
propagation to connected nodes, and to examine message content.

These utility functions are called by the node, and implemented by the broker.

Initialization and resource creation

v “cniCreateNodeFactory” on page 6449
v “cniDefineNodeClass” on page 6451
v “cniDispatchThread” on page 6456 (for input nodes only)
v “cniCreateInputTerminal” on page 6444
v “cniCreateOutputTerminal” on page 6450
v “cniIsTerminalAttached” on page 6494
v “cniGetBrokerInfo” on page 6488

Message management

v “cniCreateMessage” on page 6446
v “cniDeleteMessage” on page 6453
v “cniFinalize” on page 6479
v “cniGetMessageContext” on page 6491
v “cniGetEnvironmentMessage” on page 6490
v “cniPropagate” on page 6501

Message buffer access

v “cniBufferByte” on page 6426
v “cniBufferPointer” on page 6427
v “cniBufferSize” on page 6428
v “cniSetInputBuffer” on page 6520 (for input nodes only)
v “cniWriteBuffer” on page 6537

Syntax element navigation

v “cniRootElement” on page 6503
v “cniParent” on page 6498
v “cniNextSibling” on page 6497
v “cniPreviousSibling” on page 6499
v “cniFirstChild” on page 6481

Chapter 14. Reference 6419

v “cniLastChild” on page 6496
v “cniSearchElement group” on page 6506
v “cniSearchElementInNamespace group” on page 6508
v “cniSqlCreateReadOnlyPathExpression” on page 6524
v “cniSqlCreateModifyablePathExpression” on page 6521
v “cniSqlNavigatePath” on page 6532
v “cniSqlDeletePathExpression” on page 6529

Syntax element access

v “cniAddAfter” on page 6421
v “cniAddBefore” on page 6425
v “cniAddasFirstChild” on page 6422
v “cniAddasLastChild” on page 6423
v “cniCopyElementTree” on page 6430
v “cniCreateElementAfter” on page 6431
v “cniCreateElementAfterUsingParser” on page 6432
v “cniCreateElementBefore” on page 6442
v “cniCreateElementBeforeUsingParser” on page 6443
v “cniCreateElementAsFirstChild” on page 6433
v “cniCreateElementAsFirstChildUsingParser” on page 6435
v “cniCreateElementAsLastChild” on page 6436
v “cniCreateElementAsLastChildFromBitstream” on page 6437
v “cniCreateElementAsLastChildUsingParser” on page 6440
v “cniDetach” on page 6455
v “cniElementAsBitstream” on page 6458
v “cniElementName” on page 6464
v “cniElementNamespace” on page 6465
v “cniElementType” on page 6467
v “cniElementValue group” on page 6468
v “cniElementValueState” on page 6471
v “cniElementValueType” on page 6472
v “cniElementValueValue” on page 6473
v “cniGetParserClassName” on page 6492
v “cniSetElementName” on page 6513
v “cniSetElementNamespace” on page 6514
v “cniSetElementType” on page 6515
v “cniSetElementValue group” on page 6516
v “cniSetElementValueValue” on page 6519

SQL statement handling

v “cniSqlCreateStatement” on page 6527
v “cniSqlExecute” on page 6531
v “cniSqlSelect” on page 6535
v “cniSqlDeleteStatement” on page 6530

Miscellaneous

v “cniGetThreadContext” on page 6494

6420 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Why use a user-defined extension?” on page 2972
Use a user-defined node or parser when the built-in resources do not provide the
required functions.
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.

cniAddAfter:

Use this function to add an unattached syntax element after a specified syntax
element. The currently unattached syntax element, and all child elements it
possesses, is connected to the syntax element tree after the specified target element.

The added element becomes the next sibling of the target element. The target
element must be attached to a tree (that is, it must have a parent element).

Syntax:
void cniAddAfter(
int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Chapter 14. Reference 6421

newElement
The address of the new syntax element object that is to be added to the tree
structure (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniAddasFirstChild”
Use this function to add an unattached syntax element as the first child of a
specified syntax element. The currently unattached syntax element, and all child
elements it possesses, is connected to the syntax element tree as the first child of the
specified target element. The target element need not be attached to a tree.
“cniAddasLastChild” on page 6423
Use this function to add an unattached syntax element as the last child of a
specified syntax element. The currently unattached syntax element, and all child
elements it possesses, is connected to the syntax element tree as the last child of the
specified target element. The new element need not be attached to a tree.
“cniAddBefore” on page 6425
Use this function to add an unattached syntax element before a specified syntax
element. The currently unattached syntax element, and all child elements it
possesses, is connected to the syntax element tree before the specified target
element.

cniAddasFirstChild:

Use this function to add an unattached syntax element as the first child of a
specified syntax element. The currently unattached syntax element, and all child
elements it possesses, is connected to the syntax element tree as the first child of the
specified target element. The target element need not be attached to a tree.

Syntax:
void cniAddAsFirstChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters:

6422 WebSphere Message Broker Version 7.0.0.8

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

newElement
The address of the new syntax element object that is to be added to the tree
structure (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniAddAfter” on page 6421
Use this function to add an unattached syntax element after a specified syntax
element. The currently unattached syntax element, and all child elements it
possesses, is connected to the syntax element tree after the specified target element.

“cniAddasLastChild”
Use this function to add an unattached syntax element as the last child of a
specified syntax element. The currently unattached syntax element, and all child
elements it possesses, is connected to the syntax element tree as the last child of the
specified target element. The new element need not be attached to a tree.
“cniAddBefore” on page 6425
Use this function to add an unattached syntax element before a specified syntax
element. The currently unattached syntax element, and all child elements it
possesses, is connected to the syntax element tree before the specified target
element.

cniAddasLastChild:

Use this function to add an unattached syntax element as the last child of a
specified syntax element. The currently unattached syntax element, and all child

Chapter 14. Reference 6423

elements it possesses, is connected to the syntax element tree as the last child of the
specified target element. The new element need not be attached to a tree.

Syntax:
void cniAddAsLastChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

newElement
The address of the new syntax element object that is to be added to the tree
structure (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniAddAfter” on page 6421
Use this function to add an unattached syntax element after a specified syntax
element. The currently unattached syntax element, and all child elements it
possesses, is connected to the syntax element tree after the specified target element.

“cniAddasFirstChild” on page 6422
Use this function to add an unattached syntax element as the first child of a
specified syntax element. The currently unattached syntax element, and all child
elements it possesses, is connected to the syntax element tree as the first child of the
specified target element. The target element need not be attached to a tree.

6424 WebSphere Message Broker Version 7.0.0.8

“cniAddBefore”
Use this function to add an unattached syntax element before a specified syntax
element. The currently unattached syntax element, and all child elements it
possesses, is connected to the syntax element tree before the specified target
element.

cniAddBefore:

Use this function to add an unattached syntax element before a specified syntax
element. The currently unattached syntax element, and all child elements it
possesses, is connected to the syntax element tree before the specified target
element.

The newly added element becomes the previous sibling of the target element. The
target element must be attached to a tree (that is, it must have a parent element).

Syntax:
void cniAddBefore(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

newElement
The address of the new syntax element object that is to be added to the tree
structure (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:

Chapter 14. Reference 6425

“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniAddAfter” on page 6421
Use this function to add an unattached syntax element after a specified syntax
element. The currently unattached syntax element, and all child elements it
possesses, is connected to the syntax element tree after the specified target element.

“cniAddasFirstChild” on page 6422
Use this function to add an unattached syntax element as the first child of a
specified syntax element. The currently unattached syntax element, and all child
elements it possesses, is connected to the syntax element tree as the first child of the
specified target element. The target element need not be attached to a tree.
“cniAddasLastChild” on page 6423
Use this function to add an unattached syntax element as the last child of a
specified syntax element. The currently unattached syntax element, and all child
elements it possesses, is connected to the syntax element tree as the last child of the
specified target element. The new element need not be attached to a tree.

cniBufferByte:

Use this function to get a single byte from the data buffer associated with (and
owned by) the message object specified in the message argument. The value of the
index argument indicates which byte in the byte array is to be returned.

Syntax:
CciByte cniBufferByte(

int* returnCode,
CciMessage* message,
CciSize index);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the size of the data buffer is to be
returned (input).

index
The offset to use as an index into the buffer (input).

Return values:
The requested byte is returned. If an error occurred, the returnCode parameter
indicates the reason for the error.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.

6426 WebSphere Message Broker Version 7.0.0.8

“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniBufferPointer”
Use this function to get a pointer to the data buffer associated with (and owned
by) the message object specified in the message argument. This function is
typically used by output nodes.
“cniBufferSize” on page 6428
Use this function to get the size of the data buffer associated with (and owned by)
the message object specified in the message argument.
“cniSetInputBuffer” on page 6520
Use this function to supply a buffer. It is used only by input nodes. The address is
specified by the source parameter as an input bit stream of the input message to
the broker.
“cniWriteBuffer” on page 6537
Use this function to write the syntax element tree associated with the specified
message to the data buffer that is owned by the message object. This function is
typically used by output nodes.

cniBufferPointer:

Use this function to get a pointer to the data buffer associated with (and owned
by) the message object specified in the message argument. This function is
typically used by output nodes.

Syntax:
const CciByte* cniBufferPointer(

int* returnCode,
CciMessage* message);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

Chapter 14. Reference 6427

message
The address of the message object for which the address of the data buffer is to
be returned (input).

Return values:
If successful, the address of the data buffer is returned. Otherwise, zero
(CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the reason
for the error.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniBufferByte” on page 6426
Use this function to get a single byte from the data buffer associated with (and
owned by) the message object specified in the message argument. The value of the
index argument indicates which byte in the byte array is to be returned.
“cniBufferSize”
Use this function to get the size of the data buffer associated with (and owned by)
the message object specified in the message argument.
“cniSetInputBuffer” on page 6520
Use this function to supply a buffer. It is used only by input nodes. The address is
specified by the source parameter as an input bit stream of the input message to
the broker.
“cniWriteBuffer” on page 6537
Use this function to write the syntax element tree associated with the specified
message to the data buffer that is owned by the message object. This function is
typically used by output nodes.

cniBufferSize:

Use this function to get the size of the data buffer associated with (and owned by)
the message object specified in the message argument.

Syntax:

6428 WebSphere Message Broker Version 7.0.0.8

CciSize cniBufferSize(
int* returnCode,
CciMessage* message);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the size of the data buffer is to be
returned (input).

Return values:
The size of the buffer in bytes, or zero if no buffer exists. If an error occurred,
(CCI_FAILURE) is returned, and the returnCode parameter indicates the reason for
the error.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniBufferByte” on page 6426
Use this function to get a single byte from the data buffer associated with (and
owned by) the message object specified in the message argument. The value of the
index argument indicates which byte in the byte array is to be returned.
“cniBufferPointer” on page 6427
Use this function to get a pointer to the data buffer associated with (and owned
by) the message object specified in the message argument. This function is
typically used by output nodes.
“cniSetInputBuffer” on page 6520
Use this function to supply a buffer. It is used only by input nodes. The address is
specified by the source parameter as an input bit stream of the input message to

Chapter 14. Reference 6429

the broker.
“cniWriteBuffer” on page 6537
Use this function to write the syntax element tree associated with the specified
message to the data buffer that is owned by the message object. This function is
typically used by output nodes.

cniCopyElementTree:

Use this function to copy a part of the element tree from the source element to the
target element. Only the child elements of the source element are copied. All
existing child elements of the target element are deleted, and are replaced by the
child elements of the source element.

If the target element has not been fully parsed, or represents an unparsed bit
stream, the cniCopyElementTree function results in a parse of the target element
before its child elements are detached. The function therefore ensures consistency
in message-tree formatting so that all references to detached fields by cciElements
remain valid. Therefore, if a parsing exception occurs during the execution of the
cniCopyElementTree function the cause might be a problem with either the target
element or the source element.

Syntax:
void cniCopyElementTree(

int* returnCode,
CciElement* sourceElement,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

sourceElement
The address of the source syntax element object (input).

targetElement
The address of the target syntax element object (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
cniCopyElementTree(&rc, inRootElement, outRootElement);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:

6430 WebSphere Message Broker Version 7.0.0.8

“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.

cniCreateElementAfter:

Use this function to create a new syntax element and insert it after the specified
syntax element. The new element becomes the next sibling of the specified element.

Do not use cniCreateElementAfter when you create a message body folder (such as
XML, XMLNS, MRM, BLOB), because this function does not associate an owning
parser with the folder. To create a message body folder, you can use one of the
following functions:

cniCreateElementAsFirstChildUsingParser
cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When the message body folder has been created, you can use
cniCreateElementAfter to create elements under the folder. You can use
cniCreateElementAfter because the parser, which is associated with the message
body folder, is inherited.

Syntax:
CciElement* cniCreateElementAfter(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the element object (input).

Return values:
If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.

Chapter 14. Reference 6431

“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateElementAfterUsingParser”
Use this function to create a syntax element, insert it after the specified syntax
element, and associate it with the specified parser class name. The new element
becomes the next sibling of the specified element.
“cniCreateElementBefore” on page 6442
Use this function to create a new syntax element and insert it before the specified
syntax element. The new element becomes the previous sibling of the specified
element, and shares the same parent element.
“cniCreateElementBeforeUsingParser” on page 6443
Use this function to create a syntax element, insert it before the specified syntax
element, and associate it with the specified parser class name. The new element
becomes the previous sibling of the specified element.

cniCreateElementAfterUsingParser:

Use this function to create a syntax element, insert it after the specified syntax
element, and associate it with the specified parser class name. The new element
becomes the next sibling of the specified element.

A portion of the syntax element tree that is owned by a parser can only have its
effective root at the first generation of elements (that is, as immediate children of
root). The user-defined node interface does not restrict the ability to create a
subtree that appears to be owned by a different parser. However, it is not possible
to serialize these element trees into a bit stream when producing an output
message.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

The internal name for the BLOB parser is none. Therefore, if you use this function
to create a BLOB parser folder, the associated parser name should be none.

Syntax:
CciElement* cniCreateElementAfterUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:

6432 WebSphere Message Broker Version 7.0.0.8

v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME

TargetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values:
If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateElementAfter” on page 6431
Use this function to create a new syntax element and insert it after the specified
syntax element. The new element becomes the next sibling of the specified element.

“cniCreateElementBefore” on page 6442
Use this function to create a new syntax element and insert it before the specified
syntax element. The new element becomes the previous sibling of the specified
element, and shares the same parent element.
“cniCreateElementBeforeUsingParser” on page 6443
Use this function to create a syntax element, insert it before the specified syntax
element, and associate it with the specified parser class name. The new element
becomes the previous sibling of the specified element.

cniCreateElementAsFirstChild:

Use this function to create a syntax element as the first child of the specified
syntax element.

Do not use cniCreateElementAsFirstChild when creating a message body folder
(such as XML, XMLNS, MRM, BLOB), because it does not associate an owning
parser with the folder. To create a message body folder, you can use one of the
following functions:

cniCreateElementAsFirstChildUsingParser

Chapter 14. Reference 6433

cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When the message body folder has been created, you can call
cniCreateElementAsFirstChild to create elements under the folder. You can use
cniCreateElementAsFirstChild because the parser, which is associated with the
message body folder, is inherited.

Syntax:
CciElement* cniCreateElementAsFirstChild(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the element object (input).

Return values:
If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateElementAsFirstChildUsingParser” on page 6435
Use this function to create a syntax element as the first child of the specified
syntax element, and associates it with the specified parser class name.
“cniCreateElementAsLastChild” on page 6436
Use this function to create a syntax element as the last child of the specified syntax
element.

6434 WebSphere Message Broker Version 7.0.0.8

“cniCreateElementAsLastChildFromBitstream” on page 6437
Use this function to create a syntax element tree as the last child of the specified
syntax element, and associates it with the specified parser. The syntax element tree
is populated by parsing the specified bit stream.
“cniCreateElementAsLastChildUsingParser” on page 6440
Use this function to create a syntax element as the last child of the specified syntax
element, and associate it with the specified parser class name.

cniCreateElementAsFirstChildUsingParser:

Use this function to create a syntax element as the first child of the specified
syntax element, and associates it with the specified parser class name.

A portion of the syntax element tree that is owned by a parser can only have its
effective root at the first generation of elements (that is, as immediate children of
root). The user-defined node interface does not restrict the ability to create a
subtree that appears to be owned by a different parser. However, it is not possible
to serialize these element trees into a bit stream when producing a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

The internal name for the BLOB parser is none. Therefore, if you use this function
to create a BLOB parser folder, the associated parser name should be none.

Syntax:
CciElement* cniCreateElementAsFirstChildUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME

targetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values:
If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.

Chapter 14. Reference 6435

“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateElementAsFirstChild” on page 6433
Use this function to create a syntax element as the first child of the specified
syntax element.
“cniCreateElementAsLastChild”
Use this function to create a syntax element as the last child of the specified syntax
element.
“cniCreateElementAsLastChildFromBitstream” on page 6437
Use this function to create a syntax element tree as the last child of the specified
syntax element, and associates it with the specified parser. The syntax element tree
is populated by parsing the specified bit stream.
“cniCreateElementAsLastChildUsingParser” on page 6440
Use this function to create a syntax element as the last child of the specified syntax
element, and associate it with the specified parser class name.

cniCreateElementAsLastChild:

Use this function to create a syntax element as the last child of the specified syntax
element.

Do not use cniCreateElementAsLastChild when creating a message body folder
(such as XML, XMLNS, MRM, BLOB), because it does not associate an owning
parser with the folder. To create a message body folder, you can use one of the
following functions:

cniCreateElementAsFirstChildUsingParser
cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When the message body folder has been created, you can use
cniCreateElementAsLastChild to create elements under the folder. You can use
cniCreateElementAsLastChild because the parser, which is associated with the
message body folder, is inherited.

Syntax:
CciElement* cniCreateElementAsLastChild(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

6436 WebSphere Message Broker Version 7.0.0.8

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the element object (input).

Return values:
If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned and the returnCode parameter indicates the
reason for the error.

Example:
CciElement* lastChild = cniCreateElementAsLastChild(&rc, outRootElement);
cniSetElementName(&rc, lastChild, elementName);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateElementAsFirstChild” on page 6433
Use this function to create a syntax element as the first child of the specified
syntax element.
“cniCreateElementAsFirstChildUsingParser” on page 6435
Use this function to create a syntax element as the first child of the specified
syntax element, and associates it with the specified parser class name.
“cniCreateElementAsLastChildFromBitstream”
Use this function to create a syntax element tree as the last child of the specified
syntax element, and associates it with the specified parser. The syntax element tree
is populated by parsing the specified bit stream.
“cniCreateElementAsLastChildUsingParser” on page 6440
Use this function to create a syntax element as the last child of the specified syntax
element, and associate it with the specified parser class name.

cniCreateElementAsLastChildFromBitstream:

Use this function to create a syntax element tree as the last child of the specified
syntax element, and associates it with the specified parser. The syntax element tree
is populated by parsing the specified bit stream.

Chapter 14. Reference 6437

During the execution of this function, the bit stream is copied, so the caller can free
or reuse the memory allocated to hold the original bit stream. You can use this
function only to create a message body, that is, the last child of the message
property. An output message must already exist.

The root element of this output message should be passed in as the target element
parameter. Because this call is designed only to be used to create a message body,
you cannot use it to build successive elements. For example, it should not be used
to create an MQRFH2 header as the last child of root, then an XML message as the
last child of root, after the MQRFH2 header.

Syntax:
CciElement* cniCreateElementAsLastChildFromBitstream (

int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value,
const CciChar* parserClassName,
CciChar* messageType,
CciChar* messageSet,
CciChar* messageFormat,
int encoding,
int ccsid,
int options);

Parameters:

returnCode
The return code from the function (output). Specifying a NULL pointer
signifies that the node will not deal with errors. If input is not NULL, the
output signifies the success status of the call. Any exceptions thrown during
the execution of this call are re-thrown to the next upstream node in the flow.
Call cciGetLastExceptionData for details of the exception.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME
v CCI_INV_DATA_POINTER

targetElement
The syntax element under which the new syntax element tree is created
(input). This parameter must be the message property.

parserClassName
The name of the parser class to use to parse the bit stream (input). You must
use the same parser that was used to parse the whole bit stream.

value
A pointer to a CciByteArray struct containing a pointer to the bit stream to be
parsed, and also the size in CciBytes of this bit stream (output).

messageType
The message type definition used to create the element tree from the bit stream
(input). A NULL pointer means that this parameter is ignored. Also, if the
parser specified has no interest in this value, for example if it is a generic XML
parser, the parameter is ignored.

messageSet
The message set definition used to create the element tree from the bit stream

6438 WebSphere Message Broker Version 7.0.0.8

(input). A NULL pointer means that this parameter is ignored. Also, if the
parser specified has no interest in this value, for example if it is a generic XML
parser, the parameter is ignored.

messageFormat
The format used to create the element tree from the bit stream (input). A NULL
pointer means that this parameter is ignored. Also, if the parser specified has
no interest in this value, for example if it is a generic XML parser, the
parameter is ignored.

encoding
The encoding to use when parsing the bit stream (input). This parameter is
mandatory. You can specify a value of 0 to indicate that the queue manager's
encoding should be used.

ccsid
The coded character set identifier to use when parsing the bit stream (input).
This parameter is mandatory. You can specify a value of 0 to indicate that the
queue manager's ccsid should be used.

options
This is reserved for future use. You must specify a value of 0 to maintain
forward compatibility.

Return values:
If successful, the address of the new element object is returned. Otherwise, a value
zero (CCI_NULL_ADDR) is returned, and the return code parameter indicates the
reason for the error. If an exception occurs during execution, returnCode is set to
CCI_EXCEPTION

Example:
outMQMD = cniCreateElementAsFirstChildUsingParser(&rc,

outRootElement,
CciString("MQHMD",BIP_DEF_COMP_CCSID));

checkRC(rc);

cniCopyElementTree(&rc, inMQMD, outMQMD);
checkRC(rc);

outBlobRoot = cniCreateElementAsLastChildFromBitstream(
&rc,
outRootElement,
&bitstream,
inParserClassName,
messageType,
messageSet,
messageFormat,
encoding,
ccsid,
0);

checkRC(rc);
...

return;
}

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.

Chapter 14. Reference 6439

“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.
“cniCreateElementAsFirstChild” on page 6433
Use this function to create a syntax element as the first child of the specified
syntax element.
“cniCreateElementAsFirstChildUsingParser” on page 6435
Use this function to create a syntax element as the first child of the specified
syntax element, and associates it with the specified parser class name.
“cniCreateElementAsLastChild” on page 6436
Use this function to create a syntax element as the last child of the specified syntax
element.
“cniCreateElementAsLastChildUsingParser”
Use this function to create a syntax element as the last child of the specified syntax
element, and associate it with the specified parser class name.

cniCreateElementAsLastChildUsingParser:

Use this function to create a syntax element as the last child of the specified syntax
element, and associate it with the specified parser class name.

A portion of the syntax element tree that is owned by a parser can only have its
effective root at the first generation of elements (that is, as immediate children of
root). The user-defined node interface does not restrict the ability to create a
subtree that appears to be owned by a different parser. However, it is not possible
to serialize these element trees into a bit stream when producing a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser. See “C node implementation
functions” on page 6417 for a list of the supplied parsers.

The internal name for the BLOB parser is none. Therefore, if you use this function
to create a BLOB parser folder, the associated parser name must be none.

Syntax:
CciElement* cniCreateElementAsLastChildUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

Parameters:

returnCode
The return code from the function (output).

6440 WebSphere Message Broker Version 7.0.0.8

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME

targetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values:
If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

Example:
cniElementName(&rc, firstChild, elementName);
CciElementType type = cniElementType(&rc, firstChild);
CciElement* lastChild = cniCreateElementAsLastChildUsingParser(

&rc,
outRootElement,
parserName);

cniSetElementName(&rc, lastChild, elementName);
cniSetElementType(&rc, lastChild, elementType);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniCreateElementAsFirstChild” on page 6433
Use this function to create a syntax element as the first child of the specified
syntax element.
“cniCreateElementAsFirstChildUsingParser” on page 6435
Use this function to create a syntax element as the first child of the specified
syntax element, and associates it with the specified parser class name.

Chapter 14. Reference 6441

“cniCreateElementAsLastChild” on page 6436
Use this function to create a syntax element as the last child of the specified syntax
element.
“cniCreateElementAsLastChildFromBitstream” on page 6437
Use this function to create a syntax element tree as the last child of the specified
syntax element, and associates it with the specified parser. The syntax element tree
is populated by parsing the specified bit stream.

cniCreateElementBefore:

Use this function to create a new syntax element and insert it before the specified
syntax element. The new element becomes the previous sibling of the specified
element, and shares the same parent element.

DO not use cniCreateElementBefore when creating a message body folder (such as
XML, XMLNS, MRM, BLOB), because it does not associate an owning parser with
the folder. To create a message body folder, you can use one of the following
functions:

cniCreateElementAsFirstChildUsingParser
cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When the message body folder has been created, cniCreateElementBefore can be
used to create elements under the folder. cniCreateElementBefore can be used
because the parser, which is associated with the message body folder, is inherited.

Syntax:
CciElement* cniCreateElementBefore(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target element object (input).

Return values:
If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new

6442 WebSphere Message Broker Version 7.0.0.8

message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateElementAfter” on page 6431
Use this function to create a new syntax element and insert it after the specified
syntax element. The new element becomes the next sibling of the specified element.

“cniCreateElementAfterUsingParser” on page 6432
Use this function to create a syntax element, insert it after the specified syntax
element, and associate it with the specified parser class name. The new element
becomes the next sibling of the specified element.
“cniCreateElementBeforeUsingParser”
Use this function to create a syntax element, insert it before the specified syntax
element, and associate it with the specified parser class name. The new element
becomes the previous sibling of the specified element.

cniCreateElementBeforeUsingParser:

Use this function to create a syntax element, insert it before the specified syntax
element, and associate it with the specified parser class name. The new element
becomes the previous sibling of the specified element.

A portion of the syntax element tree that is owned by a parser can only have its
effective root at the first generation of elements (that is, as immediate children of
root). The user-defined node interface does not restrict the ability to create a
subtree that appears to be owned by a different parser. However, it is not possible
to serialize these element trees into a bit stream when producing a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

The internal name for the BLOB parser is none. Therefore, if you use this function
to create a BLOB parser folder, the associated parser name should be none.

Syntax:
CciElement* cniCreateElementBeforeUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION

Chapter 14. Reference 6443

v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME

targetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values:
If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateElementAfter” on page 6431
Use this function to create a new syntax element and insert it after the specified
syntax element. The new element becomes the next sibling of the specified element.

“cniCreateElementAfterUsingParser” on page 6432
Use this function to create a syntax element, insert it after the specified syntax
element, and associate it with the specified parser class name. The new element
becomes the next sibling of the specified element.
“cniCreateElementBefore” on page 6442
Use this function to create a new syntax element and insert it before the specified
syntax element. The new element becomes the previous sibling of the specified
element, and shares the same parent element.

cniCreateInputTerminal:

Use this function to create an input terminal on an instance of a node object and
return the address of the terminal object that was created.

The terminal object is destroyed by the broker when its owning node is destroyed.
You must call this function only from within the implementation function
cniCreateNodeContext.

Syntax:

6444 WebSphere Message Broker Version 7.0.0.8

CciTerminal* cniCreateInputTerminal(
int* returnCode,
CciNode* nodeObject,
CciChar* name);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_NODE_OBJECT
v CCI_INV_TERMINAL_NAME

nodeObject
Specifies the address of the instance of the node object on which the input
terminal is to be created (input). The handle is passed to the
cniCreateNodeContext function.

name
Specifies a name for the terminal being created (input).

Return values:
If successful, the address of the node terminal object is returned. Otherwise, a
value of zero (CCI_NULL_ADDR) is returned.

Example:
entry->handle = cniCreateInputTerminal(

&rc,
context->nodeObject,
(CciChar*)terminalName);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.

Chapter 14. Reference 6445

“cniCreateOutputTerminal” on page 6450
Use this function to create an output terminal on an instance of a node object and
return the address of the terminal object that was created.

cniCreateMessage:

Use this function to create an output message object. For every call to this function,
you must include a matching call to cniDeleteMessage to return allocated resources
when the processing on the output message has been completed.

Syntax:
CciMessage* cniCreateMessage(

int* returnCode,
CciMessageContext* messageContext);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_FAILURE
v CCI_EXCEPTION
v CCI_INV_MESSAGE_CONTEXT

messageContext
The address of the context for the message (input). Use cniGetMessageContext
to get the context from an incoming message; for example, one received in the
cniEvaluate function.

Return values:
If successful, the address of the message object is returned. Otherwise, a value of
zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

Example:
outMsg = cniCreateMessage(&rc, cniGetMessageContext(&rc, message));

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:

6446 WebSphere Message Broker Version 7.0.0.8

“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniDeleteMessage” on page 6453
Use this function to delete the specified message object. For every call to the
cniCreateMessage function, you must include a matching call to cniDeleteMessage
to return allocated resources when the processing on the output message has been
completed.
“cniEvaluate” on page 6475
This function performs node processing. The broker calls this function when a
message is received on one of the input terminals of an instance of a node object.
“cniFinalize” on page 6479
Use this function to cause the broker to request parsers to perform finalize
processing on the specified message. Finalization is a process that fixes header
chains and makes the Properties folder match the headers.
“cniGetEnvironmentMessage” on page 6490
Use this function to get the CciMessage object that corresponds to the environment
tree for the message flow.
“cniGetMessageContext” on page 6491
Use this function to get the address of the message context that is associated with
the specified message. The context of an existing message is used to create an
output message; for example, by using the cniCreateMessage function.
“cniPropagate” on page 6501
Use this function to propagate a message to a specified terminal object. If the
terminal is not attached to another node by a connector, the message is not
propagated, and the function is ignored.

cniCreateNodeContext:

This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.

The responsibilities of the node, when created, are to:
1. (Optional) Verify that the name of the node specified in the nodeName

parameter is supported by the factory.
2. Allocate any node instance specific data areas that might be required (for

example: context, attribute data, and terminals).
3. Perform all additional resource acquisition or initialization that might be

required for the processing of the node.
4. Return the address of the context to the calling function. Whenever an

implementation function for this node instance is called, the appropriate
context is passed as an argument to that function. Therefore, a user-defined
node developed in C does not have to maintain its own static pointers to
per-instance data areas.

Defined In Type Member

CNI_VFT Mandatory iFpCreateNodeContext

Syntax:

Chapter 14. Reference 6447

CciContext* cniCreateNodeContext(
CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject);

Parameters:

factoryObject
The address of the factory object that owns the node being created (input).

nodeName
The name of the node being created (input).

nodeObject
The address of the node object that has just been created (input).

Return values:
If successful, the address of the node context is returned. Otherwise, a value of
zero (CCI_NULL_ADDR) is returned.

Example:
static char* functionName = (char *)"_Switch_createNodeContext()";
NODE_CONTEXT_ST* p;

/* Allocate a pointer to the local context */
p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

if (p) {

/* Clear the context area */
memset(p, 0, sizeof(NODE_CONTEXT_ST));

/* Save our node object pointer in our context */
p->nodeObject = nodeObject;

/* Save our node name */
CciCharNCpy((CciChar*) &p->nodeName, nodeName, MAX_NODE_NAME_LEN);

}
else
/* Handle errors */

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:

6448 WebSphere Message Broker Version 7.0.0.8

“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniDeleteNodeContext” on page 6454
This function deletes any context for an instance of a user-defined node object. It is
called by the broker whenever an instance of a node object is destroyed, when a
message flow is deleted, or when a configuration is redeployed.

cniCreateNodeFactory:

Use this function to create a node factory in the broker. A single instance of the
named message flow node factory is created.

This function must be called only in the initialization function
bipGetMessageFlowNodeFactory, which is called when the LIL is loaded by the
message broker. If cniCreateNodeFactory is called at any other time, the results are
unpredictable.

Syntax:
CciFactory* cniCreateNodeFactory(

int* returnCode,
CciChar* name);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_FAILURE
v CCI_EXCEPTION
v CCI_INV_FACTORY_NAME
v CCI_INV_OBJECT_NAME

name
The name of the factory being created (input).

Return values:
If successful, the address of the node factory object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

Example:
factoryObject = cniCreateNodeFactory(0, (unsigned short *)constPluginNodeFactory);
if (factoryObject == CCI_NULL_ADDR) {

/* Handle errors */

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.

Chapter 14. Reference 6449

“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniDefineNodeClass” on page 6451
Use this function to define a node class, as specified by the name parameter, which
is supported by the node factory specified as thefactoryObject parameter.

cniCreateOutputTerminal:

Use this function to create an output terminal on an instance of a node object and
return the address of the terminal object that was created.

The terminal object is destroyed when its owning node is destroyed. You must call
this function only from within the implementation function cniCreateNodeContext.

Syntax:
CciTerminal* cniCreateOutputTerminal(

int* returnCode,
CciNode* nodeObject,
CciChar* name);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_FAILURE
v CCI_EXCEPTION
v CCI_INV_NODE_OBJECT
v CCI_INV_TERMINAL_NAME

nodeObject
The address of the instance of the node object on which the output terminal is
to be created (input). The handle is passed to the cniCreateNodeContext
function.

name
The name of the terminal being created (input).

Return values:

6450 WebSphere Message Broker Version 7.0.0.8

If successful, the address of the node terminal object is returned. Otherwise, a
value of zero (CCI_NULL_ADDR) is returned.

Example:
entry->handle = cniCreateOutputTerminal(

&rc,
context->nodeObject
(CciChar*)terminalName);

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateInputTerminal” on page 6444
Use this function to create an input terminal on an instance of a node object and
return the address of the terminal object that was created.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniIsTerminalAttached” on page 6494
Use this function to check whether a terminal is attached to another node by a
connector. It returns an integer value that specifies whether the specified terminal
object is attached to one or more terminals on other message flow nodes.

cniDefineNodeClass:

Use this function to define a node class, as specified by the name parameter, which
is supported by the node factory specified as thefactoryObject parameter.

This function is called by the node during execution of
bipGetMessageFlowNodeFactory, when the LIL file is loaded.

If both cniGetAttribute and cniGetAttribute2, or cniGetAttributeName and
cniGetAttributeName2 are implemented, cniDefineNodeClass fails with
CCI_INV_IMPL_FUNCTION.

Syntax:

Chapter 14. Reference 6451

void cniDefineNodeClass(
int* returnCode,
CciFactory* factoryObject,
CciChar* name,
CNI_VFT* functbl);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_FACTORY_OBJECT
v CCI_INV_NODE_NAME
v CCI_INV_OBJECT_NAME
v CCI_INV_VFTP
v CCI_MISSING_IMPL_FUNCTION
v CCI_NAME_EXISTS

factoryObject
The address of the factory object that supports the named node. The address is
returned from cniCreateNodeFactory (input).

name
The name of the node to be defined. The name of the node must end with the
word Node (input).

For example, if you have assigned the name as Basic in the WebSphere
Message Broker Toolkit, the class name of the node must be BasicNode.

functbl
The address of the CNI_VFT structure that contains pointers to the node
implementation functions (input). Here is an example of a function table:
vftable.iFpCreateNodeContext = _Transform_createNodeContext;
vftable.iFpDeleteNodeContext = _deleteNodeContext;
vftable.iFpGetAttributeName2 = _getAttributeName2;
vftable.iFpSetAttribute = _setAttribute;
vftable.iFpGetAttribute2 = _getAttribute2;
vftable.iFpEvaluate = _Transform_evaluate; /* if not an input node */
vftable.iFRun = _run /* if an input node */

You would typically define only one of the last 2 entries, that is, you define
vftable.iFpEvaluate = _Transform_evaluate; for a message processing node,
or you define vftable.iFpRun = _run; for an input node.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.

6452 WebSphere Message Broker Version 7.0.0.8

“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateNodeFactory” on page 6449
Use this function to create a node factory in the broker. A single instance of the
named message flow node factory is created.

cniDeleteMessage:

Use this function to delete the specified message object. For every call to the
cniCreateMessage function, you must include a matching call to cniDeleteMessage
to return allocated resources when the processing on the output message has been
completed.

Syntax:
void cniDeleteMessage(

int* returnCode,
CciMessage* message);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object to be deleted (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
cniDeleteMessage(0, outMsg);

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to

Chapter 14. Reference 6453

complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateMessage” on page 6446
Use this function to create an output message object. For every call to this function,
you must include a matching call to cniDeleteMessage to return allocated resources
when the processing on the output message has been completed.
“cniGetEnvironmentMessage” on page 6490
Use this function to get the CciMessage object that corresponds to the environment
tree for the message flow.
“cniGetMessageContext” on page 6491
Use this function to get the address of the message context that is associated with
the specified message. The context of an existing message is used to create an
output message; for example, by using the cniCreateMessage function.
“cniFinalize” on page 6479
Use this function to cause the broker to request parsers to perform finalize
processing on the specified message. Finalization is a process that fixes header
chains and makes the Properties folder match the headers.
“cniPropagate” on page 6501
Use this function to propagate a message to a specified terminal object. If the
terminal is not attached to another node by a connector, the message is not
propagated, and the function is ignored.

cniDeleteNodeContext:

This function deletes any context for an instance of a user-defined node object. It is
called by the broker whenever an instance of a node object is destroyed, when a
message flow is deleted, or when a configuration is redeployed.

A message flow node might also be deleted when reconfiguring or redeploying a
broker.

The responsibilities of the node are to:
1. Release all node instance specific data areas (such as context) that were

acquired at construction or during node processing.
2. Release all additional resources that might have been acquired for the

processing of the node.

Defined In Type Member

CNI_VFT Optional iFpDeleteNodeContext

6454 WebSphere Message Broker Version 7.0.0.8

Syntax:
void cniDeleteNodeContext(CciContext* context);

Parameters:

context
The address of the context for the instance of the node, as created and returned
by the cniCreateNodeContext function (input).

Example:
void _deleteNodeContext(

CciContext* context
){

static char* functionName = (char *)"_deleteNodeContext()";

return;
}

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.

cniDetach:

Use this function to detach the specified syntax element from the syntax element
tree. The element is detached from its parent and siblings, but all child elements
are left attached.

Syntax:

Chapter 14. Reference 6455

void cniDetach(
int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the syntax element object to be detached (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.

cniDispatchThread:

Use this function to dispatch a new message flow thread to call another thread
instance to run the user-defined message flow input node.

This message flow thread is allocated from a pool of threads maintained for each
message flow, under control of the Additional Instances property of the message
flow. If no threads are available because they are all in use, CCI_SUCCESS is
returned, and returnCode is set to CCI_NO_THREADS_AVAILABLE. This value is
not an error, but represents one of the following causes:
v The message flow was not configured to run with additional threads.
v All additional threads configured are currently running.

The cniDispatchThread function can be called only from an input node. If it is
called at any other time, CCI_FAILURE is returned and returnCode is set to
CCI_INV_NODE_ENV.

Syntax:

6456 WebSphere Message Broker Version 7.0.0.8

int cniDispatchThread(
int* returnCode,
CciNode* nodeObject);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_NO_THREADS_AVAILABLE
v CCI_INV_NODE_OBJECT
v CCI_INV_NODE_ENV

nodeObject
The address of the node object that is run when the broker creates or reuses
the thread. This parameter is passed to the node when its
cniCreateNodeContext implementation function is called (input).

Return values:

v If a thread was successfully allocated, CCI_SUCCESS is returned, and returnCode
is set to CCI_SUCCESS.

v If a thread could not be dispatched because insufficient threads are available in
the message flow thread pool to satisfy the request, CCI_SUCCESS is returned
and returnCode is set to CCI_NO_THREADS_AVAILABLE.

v If the function was not called in an input node, CCI_FAILURE is returned, and
returnCode is set to CCI_INV_NODE_ENV.

v For all other error conditions, CCI_FAILURE is returned, and returnCode
indicates the reason for the error.

Example:
cniDispatchThread(&rcDispatch, ((NODE_CONTEXT_ST *)context)->nodeObject);

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.

Chapter 14. Reference 6457

cniElementAsBitstream:

Use this function to get the bitstream representation of the specified element.

The parser that is associated with the element serializes the element and all its
child elements. The result is copied to memory allocated by the caller. In the
special case where all the options that are specified match those of the original bit
stream, for example a bit stream that is read from a WebSphere MQ queue by the
MQInput node, and the message has not been modified since receiving the original
bit stream, this original bit stream is copied into the allocated memory. In this case,
the parser is not required to parse and reserialize the message.

The algorithm that is used to generate the bit stream depends on the parser that is
used, and the options that are specified. All parsers support the following modes:
v RootBitStream, in which the algorithm that generates the bit stream is the same

as that used by an output node. In this mode, a meaningful result is obtained
only if the element pointed to is at the head of a subtree with an appropriate
structure.

v EmbeddedBitStream, in which not only is the algorithm that generates the bit
stream the same as that used by an output node, but also the following elements
are determined, if not explicitly specified, in the same way as the output node.
Therefore they are determined by searching the previous siblings of element on
the assumption that these elements represent headers:
– Encoding
– CCSID
– Message set
– Message type
– Message format
In this way, the algorithm for determining these properties is essentially the
same as that used for the ESQL BITSTREAM function.

Some parsers also support another mode, FolderBitStream, which generates a
meaningful bit stream for any subtree, provided that the field pointed to represents
a folder.

Syntax:
CciSize cniElementAsBitstream(

int* returnCode,
CciElement* element,
const struct CciByteArray* value,
CciChar* messageType,
CciChar* messageSet,
CciChar* messageFormat,
int encoding,
int ccsid,
int options);

Parameters:

returnCode
The return code from the function (output). If you specify a NULL pointer on
input, the value indicates that the node does not handle errors. If input is not
NULL, the output signifies the success status of the call. Any exceptions that
are produced during the execution of this call are sent to the next upstream
node in the flow. Call cciGetLastExceptionData for details of the exception.

6458 WebSphere Message Broker Version 7.0.0.8

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

element
The syntax element to be serialized (input.)

value
A pointer to a CciByteArray struct that contains a pointer to a region of
memory allocated by the caller, and the size in CciBytes of this memory
(output).

messageType
The message type definition that is used to create the bit stream from the
element tree (input). If you specify a NULL pointer, the parameter is ignored.
The parameter is also ignored if the value is not relevant to the parser
associated with the element; for example, a generic XML parser.

messageSet
The message set definition that is used to create the bit stream from the
element tree (input). If you specify a NULL pointer, the parameter is ignored.
The parameter is also ignored if the value is not relevant to the parser
associated with the element; for example, a generic XML parser.

messageFormat
The format that is used to create the bit stream from the element tree (input). If
you specify a NULL pointer, the parameter is ignored. The parameter is also
ignored if the value is not relevant to the parser associated with the element;
for example, a generic XML parser.

encoding
The encoding to use when writing the bit stream (input). This parameter is
mandatory. You can specify a value of 0 to indicate that the encoding for the
queue manager must be used.

ccsid
The coded character set identifier to use when writing the bit stream (input).
This parameter is mandatory. If you specify a value of 0, the CCSID of the
queue manager is used. A CCSID of -1 indicates that the bit stream is
generated by using CCSID information contained in the subtree consisting of
the field pointed to by the element and its child elements. No supplied parsers
support this option.

options
The integer value that specifies which bitstream generation mode must be
used. Set one of the following values:
v CCI_BITSTREAM_OPTIONS_ROOT
v CCI_BITSTREAM_OPTIONS_EMBEDDED
v CCI_BITSTREAM_OPTIONS_FOLDER

Return values:

v If successful, the correct size of memory that is required to hold the bit stream is
returned.

Chapter 14. Reference 6459

v If the memory allocated by the caller was insufficient, returnCode is
CCI_BUFFER_TOO_SMALL.

v If an exception occurs during execution, returnCode is CCI_EXCEPTION.

Example:
The following example demonstrates how you can use the options parameter to
generate the bit stream for different parts of the message tree.

This code can be copied into the _evaluate function of the sample Transform node.
For an input message such as:
MQMD
MQRFH2
<test><data><aaa>text</aaa></data></test>

the node propagates three messages:
v One that contains a copy of the input message in the BLOB domain
v One that contains a copy of the input MQRFH2 as the message body in the

BLOB domain
v One that contains the <data></data> folder as the message body in the BLOB

domain
CciMessage* outMsg[3];

CciTerminal* terminalObject;
CciElement* bodyChild;
CciElement* inRootElement;
CciElement* inSourceElement[3];
CciElement* outRootElement;
CciElement* outBlobElement;
CciElement* outBody;
struct CciByteArray bitstream[3];
int bitstreamOptions[3];
int retvalue;
int rc = 0;
int loopCount;
CCI_EXCEPTION_ST exception_st = {CCI_EXCEPTION_ST_DEFAULT};
const CciChar* constBLOBParserName =

cciString("NONE",BIP_DEF_COMP_CCSID);
const CciChar* constBLOBElementName =

cciString("BLOB",BIP_DEF_COMP_CCSID);
const CciChar* constEmptyString =

cciString("",BIP_DEF_COMP_CCSID);

/*build up and propagate 3 output messages*/
/*first message has bit stream for input message body*/
/*second message has bit stream for input MQRFH2*/
/*third message has bit stream for sub element from input message*/

/* Get the root element of the input message */
inRootElement = cniRootElement(&rc, message);
/*CCI_CHECK_RC();*/
checkRC(rc);

/*set up the array of source elements and bitstream options*/

/*message body*/
inSourceElement[0] = cniLastChild(&rc,inRootElement);
checkRC(rc);

/*This is the root of the message body so we use RootBitStream mode*/
bitstreamOptions[0] = CCI_BITSTREAM_OPTIONS_ROOT;

/*last header*/

6460 WebSphere Message Broker Version 7.0.0.8

inSourceElement[1] = cniPreviousSibling(&rc,inSourceElement[0]);
checkRC(rc);

/*This is the root of the MQRFH2 so we use RootBitStream mode*/
bitstreamOptions[1] = CCI_BITSTREAM_OPTIONS_ROOT;

/*body.FIRST(first child of message body) */
inSourceElement[2] = cniFirstChild(&rc,inSourceElement[0]);
checkRC(rc);

/*body.FIRST.FIRST */
inSourceElement[2] = cniFirstChild(&rc,inSourceElement[2]);
checkRC(rc);

/*This is a sub tree within the message body so we use FolderBitStream mode*/
bitstreamOptions[2] = CCI_BITSTREAM_OPTIONS_FOLDER;

for (loopCount=0;loopCount<3;loopCount++) {
int bufLength;

/* Create new message for output */
outMsg[loopCount] = cniCreateMessage(&rc, cniGetMessageContext(&rc, message));
checkRC(rc);

/* Get the root element of the output message */
outRootElement = cniRootElement(&rc, outMsg[loopCount]);
checkRC(rc);

/* Copy the contents of the input message to the output message */
cniCopyElementTree(&rc, inRootElement, outRootElement);
checkRC(rc);

/* Get the last child of root (ie the body) */
bodyChild = cniLastChild(&rc, outRootElement);
checkRC(rc);

/*throw away the message body which was copied from the input message*/
cniDetach(&rc,

bodyChild);
checkRC(rc);

/*create the new output message body in the BLOB domain*/
outBody = cniCreateElementAsLastChildUsingParser(&rc,

outRootElement,
constBLOBParserName);

checkRC(rc);

/*create the BLOB element*/
outBlobElement = cniCreateElementAsLastChild(&rc,

outBody);
checkRC(rc);

cniSetElementName(&rc,
outBlobElement,
constBLOBElementName);

checkRC(rc);

/*Set the value of the blob element by obtaining the bit stream for the
element */
bitstream[loopCount].size=512;
bitstream[loopCount].pointer=(CciByte*)malloc(sizeof(CciByte) * 512);

bufLength = cniElementAsBitstream(&rc,
inSourceElement[loopCount],
&bitstream[loopCount],

Chapter 14. Reference 6461

constEmptyString,/*assume XML message so no interest in*/
constEmptyString,/* type, set or format*/
constEmptyString,
0,/*Use Queue Manager CCSID & Encoding*/
0,
bitstreamOptions[loopCount]);

if (rc==CCI_BUFFER_TOO_SMALL)
{

free(bitstream[loopCount].pointer);
bitstream[loopCount].size=bufLength;
bitstream[loopCount].pointer=(CciByte*)malloc(sizeof(CciByte) * bitstream[loopCount].size);

bufLength = cniElementAsBitstream(&rc,
inSourceElement[loopCount],
&bitstream[loopCount],
constEmptyString,/*assume XML message so no interest in*/
constEmptyString,/* type, set or format*/
constEmptyString,
0,/*Use Queue Manager CCSID & Encoding*/
0,
bitstreamOptions[loopCount]);

}
checkRC(rc);
bitstream[loopCount].size=bufLength;

cniSetElementByteArrayValue(&rc,
outBlobElement,
&bitstream[loopCount]);

checkRC(rc);
}

/* Get handle of output terminal */
terminalObject = getOutputTerminalHandle((NODE_CONTEXT_ST *)context,

(CciChar*)constOut);

/* If the terminal exists and is attached, propagate to it */
if (terminalObject) {

if (cniIsTerminalAttached(&rc, terminalObject)) {
/* As this is a new, and changed message, it should be finalized... */
cniFinalize(&rc, outMsg[0], CCI_FINALIZE_NONE);
cniFinalize(&rc, outMsg[1], CCI_FINALIZE_NONE);
cniFinalize(&rc, outMsg[2], CCI_FINALIZE_NONE);
retvalue = cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, outMsg[0]);
retvalue = cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, outMsg[1]);
retvalue = cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, outMsg[2]);
if (retvalue == CCI_FAILURE) {

if (rc == CCI_EXCEPTION) {
/* Get details of the exception */
memset(&exception_st, 0, sizeof(exception_st));
cciGetLastExceptionData(&rc, &exception_st);

/* Any local error handling can go here */

/* Ensure message is deleted prior to return/throw */
cniDeleteMessage(0, outMsg[0]);
cniDeleteMessage(0, outMsg[1]);
cniDeleteMessage(0, outMsg[2]);

/* We must "rethrow" the exception; note this does not return */
cciRethrowLastException(&rc);

}
else {

/* Some other error...the plugin might choose to log it using the CciLog() */
/* utility function */

6462 WebSphere Message Broker Version 7.0.0.8

}
}
else {
}

}
}
else {

/* Terminal did not exist...severe internal error. The plugin might want to */
/* log an error here by using the cciLog() utility function. */

}

/* Delete the messages we created now we have finished with them */
cniDeleteMessage(0, outMsg[0]);
cniDeleteMessage(0, outMsg[1]);
cniDeleteMessage(0, outMsg[2]);

free((void*) constBLOBParserName);
free((void*) constBLOBElementName);
free((void*) constEmptyString);
return;

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“cniElementName” on page 6464
Use this function to get the value of the name attribute for the specified syntax
element. You must sethe syntax element name previously by using
cniSetElementName or cpiSetElementName.
“cniElementType” on page 6467
Use this function to get the value of the type attribute for the specified syntax
element. You must set the syntax element type previously by using
cniSetElementType or cpiSetElementType.
“cniElementValue group” on page 6468
Use one or more of the functions in this group to retrieve the value of the specified
syntax element.
“cniElementValueState” on page 6471
Use this function to get the state of the value of the specified syntax element.
“cniElementValueType” on page 6472
Use this function to get the type attribute for the value of the specified syntax
element. The state of an element after creation is undefined. When the value of the
element is set, its state becomes valid.
“cniElementValueValue” on page 6473
Use this function to get the address of the value object owned by the specified
syntax element.

Chapter 14. Reference 6463

“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.

cniElementName:

Use this function to get the value of the name attribute for the specified syntax
element. You must sethe syntax element name previously by using
cniSetElementName or cpiSetElementName.

Syntax:
CciSize cniElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
Ccisize length);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
The address of the target syntax element object (input).

value
The address of a buffer into which the element name is copied (input).

length
The length, in characters, specified by the value parameter (input).

Return values:

v If successful, the element name is copied into the supplied buffer and the
number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the attribute value, returnCode is set
to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

v For any other failures, CCI_FAILURE is returned, and returnCode indicates the
reason for the error.

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new

6464 WebSphere Message Broker Version 7.0.0.8

message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniElementAsBitstream” on page 6458
Use this function to get the bitstream representation of the specified element.
“cniElementNamespace”
Use this function to get the value of the namespace attribute for the specified syntax
element.
“cniElementType” on page 6467
Use this function to get the value of the type attribute for the specified syntax
element. You must set the syntax element type previously by using
cniSetElementType or cpiSetElementType.
“cniElementValue group” on page 6468
Use one or more of the functions in this group to retrieve the value of the specified
syntax element.
“cniElementValueState” on page 6471
Use this function to get the state of the value of the specified syntax element.
“cniElementValueType” on page 6472
Use this function to get the type attribute for the value of the specified syntax
element. The state of an element after creation is undefined. When the value of the
element is set, its state becomes valid.
“cniElementValueValue” on page 6473
Use this function to get the address of the value object owned by the specified
syntax element.
“cniSetElementName” on page 6513
Use this function to set the name of the specified syntax element.
“cpiSetElementName” on page 6598
This function sets the name of the specified syntax element.

cniElementNamespace:

Use this function to get the value of the namespace attribute for the specified syntax
element.

You must previously have set the syntax element name by using
cniSetElementNamespace or cpiSetElementNamespace.

Use this function when you want to convert a message that belongs to a
namespace-aware domain to a bit stream.

Syntax:
CciSize cniElementNamespace(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length)

Chapter 14. Reference 6465

Parameters:

returnCode
The return code from the function (output). Specifying a NULL pointer
signifies that the node does not want to deal with errors. If input is not NULL,
the output signifies the success status of the call. All exceptions thrown during
the execution of this call are re-thrown to the next upstream node in the flow.
Call cciGetLastExceptionData for details of the exception.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
Specifies the address of the target syntax element object (input).

value
Specifies the address of a buffer into which the element namespace value is
copied (output). A string of characters (including a NULL terminator)
representing the namespace value is copied into this buffer. The buffer must be
a portion of memory previously allocated by the caller.

length
The length, in characters, of the buffer specified by the value parameter (input).

Return values:

v If successful, the number of CciChars copied into the buffer is returned.
v If the buffer is not large enough to contain the attribute value, returnCode is set

to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

v If an exception occurs during execution, returnCode is set to CCI_EXCEPTION.

Example:
if (element != 0) {

/*get name*/
cniElementName(&rc, element, (CciChar*)&elementName, sizeof(elementName));

/*get namespace*/
elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);
elementNamespaceLength = cniElementNamespace(&rc,

element,
elementNamespace,
elementNamespaceLength);

if (rc==CCI_BUFFER_TOO_SMALL){
free(elementNamespace);
elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);
elementNamespaceLength = cniElementNamespace(&rc,

element,
elementNamespace,
elementNamespaceLength);

}
checkRC(rc);

Related concepts:

6466 WebSphere Message Broker Version 7.0.0.8

“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.
“cniElementName” on page 6464
Use this function to get the value of the name attribute for the specified syntax
element. You must sethe syntax element name previously by using
cniSetElementName or cpiSetElementName.
“cniSearchElementInNamespace group” on page 6508
Use this element to search for an element that matches the specified criteria.
“cniSetElementNamespace” on page 6514
Use this function to set the namespace attribute for the specified syntax element
when you manipulate a message that belongs to a namespace-aware domain.
“cpiSetElementNamespace” on page 6599
Use this function to set the namespace attribute for the specified syntax element.

cniElementType:

Use this function to get the value of the type attribute for the specified syntax
element. You must set the syntax element type previously by using
cniSetElementType or cpiSetElementType.

Syntax:
CciElementType cniElementType(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values:

Chapter 14. Reference 6467

The value of the target element type is returned. If an error occurs, CCI_FAILURE
is returned, and the returnCode parameter indicates the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniElementAsBitstream” on page 6458
Use this function to get the bitstream representation of the specified element.
“cniElementName” on page 6464
Use this function to get the value of the name attribute for the specified syntax
element. You must sethe syntax element name previously by using
cniSetElementName or cpiSetElementName.
“cniElementValue group”
Use one or more of the functions in this group to retrieve the value of the specified
syntax element.
“cniElementValueState” on page 6471
Use this function to get the state of the value of the specified syntax element.
“cniElementValueType” on page 6472
Use this function to get the type attribute for the value of the specified syntax
element. The state of an element after creation is undefined. When the value of the
element is set, its state becomes valid.
“cniElementValueValue” on page 6473
Use this function to get the address of the value object owned by the specified
syntax element.
“cniSetElementType” on page 6515
Use this function to set the type of the specified syntax element.
“cpiSetElementType” on page 6601
This function sets the type of the specified syntax element.

cniElementValue group:

Use one or more of the functions in this group to retrieve the value of the specified
syntax element.

Specify the appropriate function from this group that matches the type of data to
be retrieved:
v cniElementBitArrayValue
v cniElementBooleanValue
v cniElementByteArrayValue

6468 WebSphere Message Broker Version 7.0.0.8

v cniElementCharacterValue
v cniElementDateValue
v cniElementDecimalValue
v cniElementGmtTimestampValue
v cniElementGmtTimeValue
v cniElementIntegerValue
v cniElementRealValue
v cniElementTimestampValue
v cniElementTimeValue

Syntax:
CciSize cniElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

CciBool cniElementBooleanValue(
int* returnCode,
CciElement* targetElement);

CciSize cniElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

CciSize cniElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciDate cniElementDateValue(
int* returnCode,
CciElement* targetElement);

CciSize cniElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciTimestamp cniElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cniElementGmtTimeValue(
int* returnCode,
CciElement* targetElement);

CciInt cniElementIntegerValue(
int* returnCode,
CciElement* targetElement);

CciReal cniElementRealValue(
int* returnCode,
CciElement* targetElement);

struct CciTimestamp cniElementTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cniElementTimeValue(
int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Chapter 14. Reference 6469

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
The address of the target syntax element object (input).

value
The address of an output buffer into which the value of the syntax element is
stored (input). Used on relevant function calls only.

length
The length of the output buffer, in characters, specified by the value parameter
(input). Used on relevant function calls only.

Return values:

v If successful, the value of the target element is returned.
v If the size of an element's data can vary, the correct data size is returned.
v If the specified length is too small, the error code is set to

CCI_BUFFER_TOO_SMALL.
v If an error occurs, the returnCode parameter indicates the reason for the error.

Example:
numberOfChars = cniElementCharacterValue(

&rc, firstChild, (CciChar*)&elementValue, sizeof(elementValue)
);

if (rc==CCI_BUFFER_TOO_SMALL) {
free(elementValue);
elementValue = (CciChar*)malloc(numberOfChars * sizeof(CciChar));
numberOfChars = cniElementCharacterValue(

&rc, firstChild, (CciChar*)&elementValue, sizeof(elementValue));
}

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.

6470 WebSphere Message Broker Version 7.0.0.8

“cniElementAsBitstream” on page 6458
Use this function to get the bitstream representation of the specified element.
“cniElementName” on page 6464
Use this function to get the value of the name attribute for the specified syntax
element. You must sethe syntax element name previously by using
cniSetElementName or cpiSetElementName.
“cniElementType” on page 6467
Use this function to get the value of the type attribute for the specified syntax
element. You must set the syntax element type previously by using
cniSetElementType or cpiSetElementType.
“cniElementValueState”
Use this function to get the state of the value of the specified syntax element.
“cniElementValueType” on page 6472
Use this function to get the type attribute for the value of the specified syntax
element. The state of an element after creation is undefined. When the value of the
element is set, its state becomes valid.
“cniElementValueValue” on page 6473
Use this function to get the address of the value object owned by the specified
syntax element.
“cniSetElementValue group” on page 6516
Use one or more of the functions in this group to set the value of the specified
syntax element.

cniElementValueState:

Use this function to get the state of the value of the specified syntax element.

Syntax:
CciValueState cniElementValueState(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values:
The state of the value of the target syntax element is returned. If an error occurs,
CCI_VALUE_STATE_UNDEFINED is returned, and the returnCode parameter
indicates the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new

Chapter 14. Reference 6471

message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniElementAsBitstream” on page 6458
Use this function to get the bitstream representation of the specified element.
“cniElementName” on page 6464
Use this function to get the value of the name attribute for the specified syntax
element. You must sethe syntax element name previously by using
cniSetElementName or cpiSetElementName.
“cniElementType” on page 6467
Use this function to get the value of the type attribute for the specified syntax
element. You must set the syntax element type previously by using
cniSetElementType or cpiSetElementType.
“cniElementValue group” on page 6468
Use one or more of the functions in this group to retrieve the value of the specified
syntax element.
“cniElementValueType”
Use this function to get the type attribute for the value of the specified syntax
element. The state of an element after creation is undefined. When the value of the
element is set, its state becomes valid.
“cniElementValueValue” on page 6473
Use this function to get the address of the value object owned by the specified
syntax element.

cniElementValueType:

Use this function to get the type attribute for the value of the specified syntax
element. The state of an element after creation is undefined. When the value of the
element is set, its state becomes valid.

Syntax:
CciValueType cniElementValueType(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

6472 WebSphere Message Broker Version 7.0.0.8

Return values:
The type of the value of the target syntax element is returned. If an error occurs,
CCI_ELEMENT_TYPE_UNKNOWN is returned, and the returnCode parameter
indicates the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniElementAsBitstream” on page 6458
Use this function to get the bitstream representation of the specified element.
“cniElementName” on page 6464
Use this function to get the value of the name attribute for the specified syntax
element. You must sethe syntax element name previously by using
cniSetElementName or cpiSetElementName.
“cniElementType” on page 6467
Use this function to get the value of the type attribute for the specified syntax
element. You must set the syntax element type previously by using
cniSetElementType or cpiSetElementType.
“cniElementValue group” on page 6468
Use one or more of the functions in this group to retrieve the value of the specified
syntax element.
“cniElementValueState” on page 6471
Use this function to get the state of the value of the specified syntax element.
“cniElementValueValue”
Use this function to get the address of the value object owned by the specified
syntax element.

cniElementValueValue:

Use this function to get the address of the value object owned by the specified
syntax element.

Syntax:
const CciElementValue* cniElementValueValue(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Chapter 14. Reference 6473

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
The address of the target syntax element object (input).

Return values:
The address of the value object of the target syntax element is returned. If an error
occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode parameter
indicates the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniElementAsBitstream” on page 6458
Use this function to get the bitstream representation of the specified element.
“cniElementName” on page 6464
Use this function to get the value of the name attribute for the specified syntax
element. You must sethe syntax element name previously by using
cniSetElementName or cpiSetElementName.
“cniElementType” on page 6467
Use this function to get the value of the type attribute for the specified syntax
element. You must set the syntax element type previously by using
cniSetElementType or cpiSetElementType.
“cniElementValue group” on page 6468
Use one or more of the functions in this group to retrieve the value of the specified
syntax element.
“cniElementValueState” on page 6471
Use this function to get the state of the value of the specified syntax element.
“cniElementValueType” on page 6472
Use this function to get the type attribute for the value of the specified syntax
element. The state of an element after creation is undefined. When the value of the
element is set, its state becomes valid.
“cniSetElementValueValue” on page 6519
Use this function to set the value object of the specified syntax element.

6474 WebSphere Message Broker Version 7.0.0.8

cniEvaluate:

This function performs node processing. The broker calls this function when a
message is received on one of the input terminals of an instance of a node object.

The function forms the main logic of the message processing node or output node.
It is not used with input nodes. You must define a function table before you call
this function.

The responsibilities of the node at this point are to:
1. Process the message in accordance with the values of the attributes on the node

instance.
2. Process the message based on content, if desired.
3. Propagate the message to any appropriate output terminals.
4. Throw an exception if an error occurs.

Defined In Type Member

CNI_VFT Conditional iFpEvaluate

Syntax:
void cniEvaluate(

CciContext *context,
CciMessage *localEnvironment,
CciMessage *exceptionList,
CciMessage *message);

Parameters:

context
The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

localEnvironment
The address of the input local environment object (input).

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The address of the exception list for the message (input).

message
The address of the input message object (input).

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an

Chapter 14. Reference 6475

output node is used to produce a message as a bit stream.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.

cniGetComplexAttribute:

Use cniGetComplexAttribute to locate the user-defined properties of the node
within the deployment message.

Returns a pointer to the part of the deployment message representing the
user-defined properties of the node.

Syntax:
CciElement* cniGetComplexAttribute(

int* returnCode,
CciNode* nodeObject,
CciChar* attributeName);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION

nodeObject
The name of the node for which attributes are required (input).

attributeName
The name and value of the user-defined attribute for the selected node.

Return values:
Returns a syntax element tree that can be navigated to extract the names and
values of all user-defined properties for that node, or NULL if no user-defined
properties exist for this node. If an error occurs, the returnCode parameter indicates
the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:

6476 WebSphere Message Broker Version 7.0.0.8

“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniGetOutputTerminal”
Use cniGetOutputTerminal to locate a named output terminal, it if exists.
“cniGetResourceProperty” on page 6478
Use the resourceManager to obtain the value of the property.

cniGetOutputTerminal:

Use cniGetOutputTerminal to locate a named output terminal, it if exists.

Returns a pointer to the named output terminal, or NULL if a terminal of this
name does not exist.

Syntax:
CciTerminal* cniGetOutputTerminal(

int* returnCode,
CciNode* nodeObject,
CciChar* name);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION

nodeObject
The name of the node (input).

name
The name of the output terminal (input).

Return values:
A pointer to the named output terminal, or NULL if a terminal of this name does
not exist. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.

Chapter 14. Reference 6477

Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniGetComplexAttribute” on page 6476
Use cniGetComplexAttribute to locate the user-defined properties of the node
within the deployment message.
“cniGetResourceProperty”
Use the resourceManager to obtain the value of the property.

cniGetResourceProperty:

Use the resourceManager to obtain the value of the property.

Obtains the value of the property propertyName as managed by the
resourceManager

Syntax:
CciSize cniGetResourceProperty(

int* returnCode,
CciChar* resourceManager,
CciChar* propertyName,
CciChar* value,
CciSize length);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_BUFFER_TOO_SMALL

resourceManager
The address of the resource manager controlling the properties (input).

propertyName
The name of the object for which the value is required.

value
The value of the buffer, already allocated, that you use.

length
The size of the buffer, already allocated, that you use.

If this size is not sufficient, the function fails with returnCode set to
CCI_BUFFER_TOO_SMALL, and returns the required buffer size; that is, the
string length plus one null terminator character.

You should then allocate the required size for the buffer, and call this function
again; this function copies the property string into this buffer.

This usage pattern allows you to manage the memory on your system.

This function performs the same task as the mqsireportproperties command.

Return values:

6478 WebSphere Message Broker Version 7.0.0.8

None or CCI_BUFFER_TOO_SMALL. If any other error occurs, the returnCode
parameter indicates the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniGetOutputTerminal” on page 6477
Use cniGetOutputTerminal to locate a named output terminal, it if exists.
“cniGetComplexAttribute” on page 6476
Use cniGetComplexAttribute to locate the user-defined properties of the node
within the deployment message.
“mqsireportproperties command” on page 3937
Use the mqsireportproperties command to display properties that relate to a
broker, an execution group, or a configurable service.

cniFinalize:

Use this function to cause the broker to request parsers to perform finalize
processing on the specified message. Finalization is a process that fixes header
chains and makes the Properties folder match the headers.

The behavior of this processing is specific to each parser. Some parsers do not
support finalization processing.

Call cniFinalize before you propagate a message from the node; for example,
before you call cniWriteBuffer.

Syntax:
void cniFinalize(

int* returnCode,
CciMessage* message,
int options);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

Chapter 14. Reference 6479

message
The address of the message object for which the element tree is to be finalized
(input).

options
Set this parameter to CCI_FINALIZE_NONE.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
cniFinalize(&rc, outMsg, CCI_FINALIZE_NONE);
retvalue = cniPropagate(

&rc,
terminalObject,
localEnvironment,
exceptionList,
outMsg);

/* Handle errors */

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateMessage” on page 6446
Use this function to create an output message object. For every call to this function,
you must include a matching call to cniDeleteMessage to return allocated resources
when the processing on the output message has been completed.
“cniDeleteMessage” on page 6453
Use this function to delete the specified message object. For every call to the
cniCreateMessage function, you must include a matching call to cniDeleteMessage
to return allocated resources when the processing on the output message has been
completed.
“cniGetEnvironmentMessage” on page 6490
Use this function to get the CciMessage object that corresponds to the environment
tree for the message flow.

6480 WebSphere Message Broker Version 7.0.0.8

“cniGetMessageContext” on page 6491
Use this function to get the address of the message context that is associated with
the specified message. The context of an existing message is used to create an
output message; for example, by using the cniCreateMessage function.
“cniPropagate” on page 6501
Use this function to propagate a message to a specified terminal object. If the
terminal is not attached to another node by a connector, the message is not
propagated, and the function is ignored.
“cniWriteBuffer” on page 6537
Use this function to write the syntax element tree associated with the specified
message to the data buffer that is owned by the message object. This function is
typically used by output nodes.

cniFirstChild:

Use this function to retrieve the address of the syntax element object that is the
first child of the specified syntax element.

Syntax:
CciElement* cniFirstChild(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values:

v If successful, the address of the requested syntax element object is returned.
v If there is no first child, zero is returned, and returnCode is set to CCI_SUCCESS.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

Example:
if (element != 0) {
cniElementName(&rc, element, (CciChar*)&elementName, sizeof(elementName));
firstChild = cniFirstChild(&rc, element);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:

Chapter 14. Reference 6481

“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniLastChild” on page 6496
Use this function to retrieve the address of the syntax element object that is the last
child of the specified syntax element.
“cniNextSibling” on page 6497
Use this function to retrieve the address of the syntax element object that is the
next sibling (right sibling) of the specified syntax element.
“cniParent” on page 6498
Use this function to retrieve the address of the syntax element object that is the
parent of the specified syntax element.
“cniPreviousSibling” on page 6499
Use this function to retrieve the address of the syntax element object that is the
previous sibling (left sibling) of the specified syntax element.
“cniRootElement” on page 6503
Use this function to get the root syntax element associated with a specified
message. It returns the root element that is associated with (and owned by) the
message object identified by the message parameter. When a message object is
constructed by the broker, a root element is automatically created.
“cniSearchElement group” on page 6506
Use one or more of the functions in this group to search previous siblings of the
specified element for an element that matches the specified criteria.

cniGetAttribute:

This function gets the value of an attribute on a specific node instance.

Restriction: This function imposes a restriction on the length of the attribute value.
This function is provided only for compatibility with earlier versions. You should
implement cniGetAttribute2.

This function is invoked by the broker:
v Before the nodes configuration is deployed in order to ascertain default values of

any attributes that might override attributes owned by the framework.
v After setting the deployed configuration in order to write the configuration to

the broker’s database. This call ensures that the configuration persists across
shutdown and restarts of the execution group

The responsibilities of the node are to:
1. Return a character representation of the attribute value.
2. Throw an exception if an error occurs.

If both cniGetAttribute and cniGetAttribute2 are implemented,
cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

Defined In Type Member

CNI_VFT Optional iFpGetAttribute

6482 WebSphere Message Broker Version 7.0.0.8

Syntax:
int cniGetAttribute(

CciContext* context,
CciChar* attrName,
CciChar* buffer,
int bufsize);

Parameters:

context
The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

attrName
The name of the attribute for which the value is to be retrieved (input).

buffer
The address of a buffer into which the attribute value is copied (output).

bufsize
The length, in bytes, of the buffer specified in the buffer parameter (input).

Return values:
If successful, zero is returned, and the character representation of the value of the
attribute is returned in the specified buffer. If the name of the attribute does not
identify one supported by the node, a non-zero value is returned.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniGetAttribute2” on page 6484
Use this function to get the value of an attribute on a specific node instance. It is

Chapter 14. Reference 6483

called by the broker after all the attributes that the user deploys are set.

cniGetAttribute2:

Use this function to get the value of an attribute on a specific node instance. It is
called by the broker after all the attributes that the user deploys are set.

The results are written to the broker persistent configuration data to ensure that
the node is configured correctly after the execution group process is stopped and
started.

The responsibilities of the node are to:
1. Return a character representation of the attribute value.
2. Throw an exception if an error occurs.

If both cniGetAttribute and cniGetAttribute2 functions are implemented,
cniDefineNodeClass fails with return code CCI_INV_IMPL_FUNCTION.

Defined In Type Member

CNI_VFT Optional iFpGetAttribute2

Syntax:
CciSize cniGetAttribute2(

int returnCode,
CciContext* context,
CciChar* attrName,
CciChar* buffer,
int bufsize);

Parameters:

context
The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

returnCode (output)
Pointer to an int. On return, the node must ensure that this int stores a value
that describes the status of completion. Possible return codes are:
v CCI_SUCCESS
v CCI_ATTRIBUTE_UNKNOWN
v CCI_BUFFER_TOO_SMALL

attrName
The name of the attribute for which the value is to be retrieved (input).

buffer
The address of a buffer into which the attribute value is copied (output).

bufsize
The length, in CciChars, of the buffer specified in the buffer parameter (input).

Return values:

v If successful, the attribute value is copied into the supplied buffer and the
number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the attribute value, returnCode is set
to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

6484 WebSphere Message Broker Version 7.0.0.8

v If the attrName is not known to this node, returnCode is set to
CCI_ATTRIBUTE_UNKNOWN.

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniGetAttributeName2” on page 6487
This function returns the name of a node attribute specified by an index. It is
called by the broker when the broker requires the names of the attributes that are
supported by an instance of a node.

cniGetAttributeName:

This functions returns the name of a node attribute specified by an index.

Restriction: This function imposes a restriction on the length of the attribute value.
This function is provided only for compatibility with earlier versions. You should
implement cniGetAttributeName2.

This function is invoked by the message broker when the broker requires the
names of attributes supported by a particular instance of a node. The function
must guarantee to return the attributes in a known, defined order, and to return
the attribute name represented by the index parameter.

If both cniGetAttributeName and cniGetAttributeName2 are implemented,
cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

Defined In Type Member

CNI_VFT Optional iFpGetAttributeName

Chapter 14. Reference 6485

Syntax:
int cniGetAttributeName(

CciContext* context,
int index,
CciChar* buffer,
int bufsize);

Parameters:

context
The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

index
Specifies the index of the attribute name (input). The index of the attributes
starts from zero.

buffer
The address of a buffer into which the attribute name is copied (output).

bufsize
The length, in bytes, of the buffer specified in the buffer parameter (input).

Return values:
If successful, zero is returned, and the name of the attribute is returned in the
specified buffer. If the end of the list of attributes is reached, a non-zero value is
returned.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is

6486 WebSphere Message Broker Version 7.0.0.8

started.
“cniGetAttributeName2”
This function returns the name of a node attribute specified by an index. It is
called by the broker when the broker requires the names of the attributes that are
supported by an instance of a node.

cniGetAttributeName2:

This function returns the name of a node attribute specified by an index. It is
called by the broker when the broker requires the names of the attributes that are
supported by an instance of a node.

The function must return the attributes in a known, defined order, and to return
the attribute name that is represented by the index parameter.

If both cniGetAttributeName and cniGetAttributeName2 are implemented,
cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

Defined In Type Member

CNI_VFT Optional iFpGetAttributeName2

Syntax:
CciSize cniGetAttributeName2(

int returnCode,
CciContext* context,
int index,
CciChar* buffer,
int bufsize);

Parameters:

context
The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

returnCode (output)
Pointer to an int. On return, the node must ensure that this int stores a value
that describes the status of completion. Possible return codes are:
v CCI_SUCCESS
v CCI_ATTRIBUTE_UNKNOWN
v CCI_BUFFER_TOO_SMALL

index
Specifies the index of the attribute name (input). The index of the attributes
starts from zero.

buffer
The address of a buffer into which the attribute name is copied (output).

bufsize
The length, in CciChars, of the buffer specified in the buffer parameter (input).

Return values:

v If successful, the attribute name is copied into the supplied buffer and the
number of CciChar characters copied is returned.

Chapter 14. Reference 6487

v If the buffer is not large enough to contain the attribute name, returnCode is set
to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

v If the end of the list of attributes is reached, and the attribute name is not found,
returnCode is set to CCI_ATTRIBUTE_UNKNOWN. For example, when index is
greater than n-1, where n is the number of attributes for this node.

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniGetAttribute2” on page 6484
Use this function to get the value of an attribute on a specific node instance. It is
called by the broker after all the attributes that the user deploys are set.

cniGetBrokerInfo:

Use this function to query the current broker environment (for example, for
information about broker name and message flow name). The information is
returned in a structure of type CNI_BROKER_INFO_ST.

Syntax:
void cniGetBrokerInfo(

int* returnCode,
CciNode* nodeObject,
CNI_BROKER_INFO_ST* broker_info_st);

Parameters:

returnCode
The return code from the function (output).

6488 WebSphere Message Broker Version 7.0.0.8

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_NODE_OBJECT

nodeObject
The message flow processing node for which broker environment information
is being requested (input).

broker_info_st
The address of a CNI_BROKER_INFO_ST structure that is used to return a
message that represents the input destination (input):
typedef struct broker_info_st {
int versionId; /*Structure version identification*/
CCI_STRING_ST brokerName; /*The label of the broker*/
CCI_STRING_ST executionGroupName; /*The label of the current execution group*/
CCI_STRING_ST messageFlowName; /*The label of the current message flow*/
CCI_STRING_ST queueManagerName; /*The name of the MQ Queue Manager for the broker*/
int commitCount; /*Commit count value*/
int commitInterval; /*Commit interval value*/
int coordinatedTransaction; /*Flag: coordinatedTransaction: 0=no, 1=yes*/
CCI_STRING_ST dataSourceUserId; /*The user ID that the broker uses to connect to the data source*/
} CNI_BROKER_INFO_ST;

Note: The dataSourceUserId parameter returns an empty string. The parameter is
included to maintain compatibility with previous versions of WebSphere Message
Broker that require a broker database.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
cniGetBrokerInfo(&rc, nodeObject, &broker_info_st);

where nodeObject is of type CciNode*
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:

Chapter 14. Reference 6489

“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.

cniGetEnvironmentMessage:

Use this function to get the CciMessage object that corresponds to the environment
tree for the message flow.

Syntax:
CciMessage ImportExportPrefix * ImportExportSuffix

cniGetEnvironmentMessage(
int* returnCode,
CciMessage* message);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the environment is to be obtained.
This message might be an input message that has been received as an
argument to the cniEvaluate implementation function, or a message created by
the cniCreateMessage utility function.

Return values:
If successful, the address of the message object corresponding to the environment
tree is returned. Otherwise, a value of zero is returned, and the returnCode
parameter indicates the reason for the error.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:

6490 WebSphere Message Broker Version 7.0.0.8

“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.
“cniCreateMessage” on page 6446
Use this function to create an output message object. For every call to this function,
you must include a matching call to cniDeleteMessage to return allocated resources
when the processing on the output message has been completed.
“cniDeleteMessage” on page 6453
Use this function to delete the specified message object. For every call to the
cniCreateMessage function, you must include a matching call to cniDeleteMessage
to return allocated resources when the processing on the output message has been
completed.
“cniEvaluate” on page 6475
This function performs node processing. The broker calls this function when a
message is received on one of the input terminals of an instance of a node object.
“cniFinalize” on page 6479
Use this function to cause the broker to request parsers to perform finalize
processing on the specified message. Finalization is a process that fixes header
chains and makes the Properties folder match the headers.
“cniGetMessageContext”
Use this function to get the address of the message context that is associated with
the specified message. The context of an existing message is used to create an
output message; for example, by using the cniCreateMessage function.
“cniPropagate” on page 6501
Use this function to propagate a message to a specified terminal object. If the
terminal is not attached to another node by a connector, the message is not
propagated, and the function is ignored.

cniGetMessageContext:

Use this function to get the address of the message context that is associated with
the specified message. The context of an existing message is used to create an
output message; for example, by using the cniCreateMessage function.

Syntax:
CciMessageContext* cniGetMessageContext(

int* returnCode,
CciMessage* message);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object (input).

Return values:

Chapter 14. Reference 6491

If successful, the address of the message context is returned. Otherwise, zero
(CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the reason
for the error.

Example:
outMsg = cniCreateMessage(&rc, cniGetMessageContext(&rc, message));

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateMessage” on page 6446
Use this function to create an output message object. For every call to this function,
you must include a matching call to cniDeleteMessage to return allocated resources
when the processing on the output message has been completed.
“cniDeleteMessage” on page 6453
Use this function to delete the specified message object. For every call to the
cniCreateMessage function, you must include a matching call to cniDeleteMessage
to return allocated resources when the processing on the output message has been
completed.
“cniFinalize” on page 6479
Use this function to cause the broker to request parsers to perform finalize
processing on the specified message. Finalization is a process that fixes header
chains and makes the Properties folder match the headers.
“cniGetEnvironmentMessage” on page 6490
Use this function to get the CciMessage object that corresponds to the environment
tree for the message flow.
“cniPropagate” on page 6501
Use this function to propagate a message to a specified terminal object. If the
terminal is not attached to another node by a connector, the message is not
propagated, and the function is ignored.

cniGetParserClassName:

Use this function to get the parser class name that is associated with the specified
syntax element.

6492 WebSphere Message Broker Version 7.0.0.8

Syntax:
CciSize cniGetParserClassName(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
The address of the element for which the parser class name is to be returned
(input).

value
The address of an output buffer into which the parser class name is stored
(input).

length
The length of the output buffer, expressed as the number of CciChar
characters, specified in the value parameter (input).

Return values:

v If successful, the returnCode parameter indicates CCI_SUCCESS, and the number
of characters written to the buffer is returned.

v If the buffer is not large enough to retain the returned name, the returnCode
parameter indicates CCI_BUFFER_TOO_SMALL, and the returned value
indicates the number of characters required to store the name.

v If other errors occur, CCI_FAILURE is returned, and the returnCode parameter
indicates the reason for the error.

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using

Chapter 14. Reference 6493

system-provided functions.

cniGetThreadContext:

This function returns the thread context for the current thread.

Syntax:
CciThreadContext *cniGetThreadContext(

int *returnCode,
CciMessageContext *msgContext);

Parameters:

returnCode
This parameter is the return code from the function (output). If the input value
is NULL, this value signifies that errors are silently handled, or are ignored by
the broker. If the input value is not NULL, the output signifies the success
status of the call. If the msgContext parameter is not valid, *returnCode is set to
CCI_INV_MESSAGE_CONTEXT, and a NULL CciThreadContext is returned.

msgContext
This parameter provides the message context from which to acquire the
thread-specific context. It is expected that this parameter is obtained by using
the cniGetMessageContext utility function.

Return values:
If this function is successful, it returns a handle to the CciThreadContext for the
current thread.

The cciMessageContext value must correspond to a cciMessage, where the
cciMessage is passed in to the cniEvaluate or cniRun function on the current
thread.

Example:
CciMessageContext* messageContext = cniGetMessageContext(NULL,message);
CciThreadContext* threadContext = cniGetThreadContext(NULL,messageContext);

Related reference:
“cciRegisterForThreadStateChange” on page 6656
This function registers a function to be called when the current thread enters a
particular state.
“cciRegCallback” on page 6641
This function can be registered as a callback function, and is called when the
registered event occurs. The function is registered by providing a function pointer
which matches a particular typedef.

cniIsTerminalAttached:

Use this function to check whether a terminal is attached to another node by a
connector. It returns an integer value that specifies whether the specified terminal
object is attached to one or more terminals on other message flow nodes.

Use this function to test whether a message can be propagated to a terminal; you
do not have to call this function before you propagate a message with the
cniPropagate utility function. Use the cniIsTerminalAttached function to modify the
node behavior when a terminal is not connected.

Syntax:

6494 WebSphere Message Broker Version 7.0.0.8

int cniIsTerminalAttached(
int* returnCode,
CciTerminal* terminalObject);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_TERMINAL_OBJECT

terminalObject
The address of the input or output terminal to be checked for an attached
connector (input). The address is returned from cniCreateOutputTerminal.

Return values:

v If the terminal is attached to another node by a connector, a value of 1 is
returned.

v If the terminal is not attached, or a failure occurred, a value of zero is returned.
v If a failure occurs, the value of the returnCode parameter indicates the reason for

the error.

Example:
if (terminalObject) {
if (cniIsTerminalAttached(&rc, terminalObject)) {

if (rc == CCI_SUCCESS) {
retvalue = cniPropagate(

&rc,
terminalObject,
localEnvironment,
exceptionList,
message);

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.

Chapter 14. Reference 6495

“cniCreateOutputTerminal” on page 6450
Use this function to create an output terminal on an instance of a node object and
return the address of the terminal object that was created.
“cniPropagate” on page 6501
Use this function to propagate a message to a specified terminal object. If the
terminal is not attached to another node by a connector, the message is not
propagated, and the function is ignored.

cniLastChild:

Use this function to retrieve the address of the syntax element object that is the last
child of the specified syntax element.

Syntax:
CciElement* cniLastChild(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

targetElement
The address of the target syntax element object (input).

Return values:

v If successful, the address of the requested syntax element object is returned.
v If there is no last child, zero is returned, and returnCode is set to CCI_SUCCESS.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

Example:
bodyChild = cniLastChild(&rc, outRootElement);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using

6496 WebSphere Message Broker Version 7.0.0.8

system-provided functions.
“cniFirstChild” on page 6481
Use this function to retrieve the address of the syntax element object that is the
first child of the specified syntax element.
“cniNextSibling”
Use this function to retrieve the address of the syntax element object that is the
next sibling (right sibling) of the specified syntax element.
“cniParent” on page 6498
Use this function to retrieve the address of the syntax element object that is the
parent of the specified syntax element.
“cniPreviousSibling” on page 6499
Use this function to retrieve the address of the syntax element object that is the
previous sibling (left sibling) of the specified syntax element.
“cniRootElement” on page 6503
Use this function to get the root syntax element associated with a specified
message. It returns the root element that is associated with (and owned by) the
message object identified by the message parameter. When a message object is
constructed by the broker, a root element is automatically created.
“cniSearchElement group” on page 6506
Use one or more of the functions in this group to search previous siblings of the
specified element for an element that matches the specified criteria.

cniNextSibling:

Use this function to retrieve the address of the syntax element object that is the
next sibling (right sibling) of the specified syntax element.

Syntax:
CciElement* cniNextSibling(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values:

v If successful, the address of the requested syntax element object is returned.
v If there is no next sibling, zero is returned, and returnCode is set to

CCI_SUCCESS.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

Example:
nextSibling = cniNextSibling(&rc, element);

Related concepts:

Chapter 14. Reference 6497

“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniFirstChild” on page 6481
Use this function to retrieve the address of the syntax element object that is the
first child of the specified syntax element.
“cniLastChild” on page 6496
Use this function to retrieve the address of the syntax element object that is the last
child of the specified syntax element.
“cniParent”
Use this function to retrieve the address of the syntax element object that is the
parent of the specified syntax element.
“cniPreviousSibling” on page 6499
Use this function to retrieve the address of the syntax element object that is the
previous sibling (left sibling) of the specified syntax element.
“cniRootElement” on page 6503
Use this function to get the root syntax element associated with a specified
message. It returns the root element that is associated with (and owned by) the
message object identified by the message parameter. When a message object is
constructed by the broker, a root element is automatically created.
“cniSearchElement group” on page 6506
Use one or more of the functions in this group to search previous siblings of the
specified element for an element that matches the specified criteria.

cniParent:

Use this function to retrieve the address of the syntax element object that is the
parent of the specified syntax element.

Syntax:
CciElement* cniParent(

int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION

6498 WebSphere Message Broker Version 7.0.0.8

v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values:

v If successful, the address of the requested syntax element is returned.
v If there is no parent element, zero is returned.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniFirstChild” on page 6481
Use this function to retrieve the address of the syntax element object that is the
first child of the specified syntax element.
“cniLastChild” on page 6496
Use this function to retrieve the address of the syntax element object that is the last
child of the specified syntax element.
“cniNextSibling” on page 6497
Use this function to retrieve the address of the syntax element object that is the
next sibling (right sibling) of the specified syntax element.
“cniPreviousSibling”
Use this function to retrieve the address of the syntax element object that is the
previous sibling (left sibling) of the specified syntax element.
“cniRootElement” on page 6503
Use this function to get the root syntax element associated with a specified
message. It returns the root element that is associated with (and owned by) the
message object identified by the message parameter. When a message object is
constructed by the broker, a root element is automatically created.
“cniSearchElement group” on page 6506
Use one or more of the functions in this group to search previous siblings of the
specified element for an element that matches the specified criteria.

cniPreviousSibling:

Use this function to retrieve the address of the syntax element object that is the
previous sibling (left sibling) of the specified syntax element.

Syntax:

Chapter 14. Reference 6499

CciElement* cniPreviousSibling(
int* returnCode,
CciElement* targetElement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values:

v If successful, the address of the requested syntax element object is returned.
v If there is no previous sibling, zero is returned, and returnCode is set to

CCI_SUCCESS.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniFirstChild” on page 6481
Use this function to retrieve the address of the syntax element object that is the
first child of the specified syntax element.
“cniLastChild” on page 6496
Use this function to retrieve the address of the syntax element object that is the last
child of the specified syntax element.
“cniNextSibling” on page 6497
Use this function to retrieve the address of the syntax element object that is the
next sibling (right sibling) of the specified syntax element.
“cniParent” on page 6498
Use this function to retrieve the address of the syntax element object that is the
parent of the specified syntax element.

6500 WebSphere Message Broker Version 7.0.0.8

“cniRootElement” on page 6503
Use this function to get the root syntax element associated with a specified
message. It returns the root element that is associated with (and owned by) the
message object identified by the message parameter. When a message object is
constructed by the broker, a root element is automatically created.
“cniSearchElement group” on page 6506
Use one or more of the functions in this group to search previous siblings of the
specified element for an element that matches the specified criteria.

cniPropagate:

Use this function to propagate a message to a specified terminal object. If the
terminal is not attached to another node by a connector, the message is not
propagated, and the function is ignored.

Therefore, you do not have to check whether the terminal is attached before you
propagate the message, unless you want the node to take different in this scenario.
If required, you can use cniIsTerminalAttached to check whether the terminal is
connected before you call this function.

Syntax:
int cniPropagate(

int* returnCode,
CciTerminal* terminalObject,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_TERMINAL_OBJECT
v CCI_INV_MESSAGE_OBJECT

terminalObject
The address of the output terminal to receive the message (input). The address
is returned by cniCreateOutputTerminal.

localEnvironment
The address of the local environment object to be sent with the message
(input).

This message object is used by the publish/subscribe node supplied by the
broker.

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The address of the exception list for the message (input).

message
The address of the message object to be sent (input). If the message being sent
is the same as the input message, this address is the one passed on the
cniEvaluate implementation function.

Chapter 14. Reference 6501

Return values:
If successful, CCI_SUCCESS is returned. Otherwise, CCI_FAILURE is returned, and
the returnCode parameter indicates the reason for the error.

Example:
if (terminalObject) {
if (cniIsTerminalAttached(&rc, terminalObject)) {

if (rc == CCI_SUCCESS) {
cniPropagate(&rc, terminalObject, destinationList, exceptionList, message);

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateMessage” on page 6446
Use this function to create an output message object. For every call to this function,
you must include a matching call to cniDeleteMessage to return allocated resources
when the processing on the output message has been completed.
“cniCreateOutputTerminal” on page 6450
Use this function to create an output terminal on an instance of a node object and
return the address of the terminal object that was created.
“cniDeleteMessage” on page 6453
Use this function to delete the specified message object. For every call to the
cniCreateMessage function, you must include a matching call to cniDeleteMessage
to return allocated resources when the processing on the output message has been
completed.
“cniEvaluate” on page 6475
This function performs node processing. The broker calls this function when a
message is received on one of the input terminals of an instance of a node object.
“cniFinalize” on page 6479
Use this function to cause the broker to request parsers to perform finalize
processing on the specified message. Finalization is a process that fixes header
chains and makes the Properties folder match the headers.
“cniGetEnvironmentMessage” on page 6490
Use this function to get the CciMessage object that corresponds to the environment
tree for the message flow.

6502 WebSphere Message Broker Version 7.0.0.8

“cniGetMessageContext” on page 6491
Use this function to get the address of the message context that is associated with
the specified message. The context of an existing message is used to create an
output message; for example, by using the cniCreateMessage function.
“cniIsTerminalAttached” on page 6494
Use this function to check whether a terminal is attached to another node by a
connector. It returns an integer value that specifies whether the specified terminal
object is attached to one or more terminals on other message flow nodes.

cniRootElement:

Use this function to get the root syntax element associated with a specified
message. It returns the root element that is associated with (and owned by) the
message object identified by the message parameter. When a message object is
constructed by the broker, a root element is automatically created.

Syntax:
CciElement* cniRootElement(

int* returnCode,
CciMessage* message);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object (input).

Return values:
If successful, the address of the root element object is returned. Otherwise, zero
(CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the reason
for the error.

Example:
inRootElement = cniRootElement(&rc, message);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:

Chapter 14. Reference 6503

“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniFirstChild” on page 6481
Use this function to retrieve the address of the syntax element object that is the
first child of the specified syntax element.
“cniLastChild” on page 6496
Use this function to retrieve the address of the syntax element object that is the last
child of the specified syntax element.
“cniNextSibling” on page 6497
Use this function to retrieve the address of the syntax element object that is the
next sibling (right sibling) of the specified syntax element.
“cniParent” on page 6498
Use this function to retrieve the address of the syntax element object that is the
parent of the specified syntax element.
“cniPreviousSibling” on page 6499
Use this function to retrieve the address of the syntax element object that is the
previous sibling (left sibling) of the specified syntax element.
“cniSearchElement group” on page 6506
Use one or more of the functions in this group to search previous siblings of the
specified element for an element that matches the specified criteria.

cniRun:

This function declares the node as an input node.

Message processing nodes and output nodes do not use it, and you do not need to
call cniEvaluate. The broker allocates a thread, and calls this function on that
thread.

Defined In Type Member

CNI_VFT Conditional iFpRun

Syntax:
int cniRun(

CCiContext* context,
CCiMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message

);

Parameters:

context
The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

localEnvironment
The address of the input local environment object (input).

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The address of the exception list for the message (input).

6504 WebSphere Message Broker Version 7.0.0.8

message
The address of the message object to which the data is attached (input).

The user-defined node can call cniSetInputBuffer to associate a bit stream with
this message. Populating the tree of this message is not supported, therefore
calls to functions such as cniAddAsLastChild or
cniCreateElementAsLastChildFromBitstream do not work. To build parts of the
tree, create a new message using cniCreateMessage rather than providing a
buffer to be parsed as the whole message.

For example, if you have a bit stream that is to be used as the payload part of
the message, and you also want to add a header, take the following steps:
1. Create a new message using cniCreateMessage.
2. Create the header part in this new message by using the Syntax Element

Access Utility functions, for example
cniCreateElementAsLastChildUsingParser, and passing in the root element
of this new message.

3. Add fields to the header by using functions such as
cniCreateElementAsLastChild.

4. Create the body of the message by parsing your bit stream through calling
cniCreateElementAsLastChildFromBitstream, and passing in the root
element of this new message.

Return values:
This function is called by the broker as part of a loop. The meaning of the return
value is as follows:

CCI_TIMEOUT
The input node did not receive its input data. This value means that control
should be returned to the broker in case message flow reconfiguration is being
requested. A user-defined input node should return regularly to give control
back to the broker.

CCI_SUCCESS_CONTINUE
A message was successfully processed. The broker performs default transaction
commit processing. The input node's cniRun implementation function is called
immediately so that the node can continue processing.

CCI_SUCCESS_RETURN
A message has been successfully processed. The broker performs default
transaction commit processing. The input node has determined that the thread
is not required, and it is returned to the message flow thread pool. If this
processing is performed on the only thread, or the last active thread, the broker
prevents this last thread being returned to the pool, otherwise no active
threads are available to dispatch another thread. In this situation, the broker
invokes the cniRun implementation function immediately, as if
CCI_SUCCESS_CONTINUE was returned.

CCI_FAILURE_CONTINUE
An error was detected in the processing of a message, and the node is
requesting that transaction rollback processing is performed. The input node's
cniRun implementation function is called immediately.

CCI_FAILURE_RETURN
An error was detected in the processing of a message, and the node is
requesting that transaction rollback processing is performed. However, the
input node has determined that the thread is not required and it can be
returned to the message flow thread pool. If this processing is performed on
the last active thread, the broker prevents this last thread being returned to the

Chapter 14. Reference 6505

pool, otherwise no active threads are available to dispatch another thread. In
this situation the broker invokes the cniRun implementation function
immediately, as if CCI_FAILURE_CONTINUE was returned.

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.

cniSearchElement group:

Use one or more of the functions in this group to search previous siblings of the
specified element for an element that matches the specified criteria.

The search is performed starting at the syntax element specified in the
targetElement parameter, and each of the four functions provides a search in a
different tree direction:
v cniSearchFirstChild searches the immediate child elements of the starting

element from the first child, until either a match is found, or the end of the child
element chain is reached.

v cniSearchLastChild searches the immediate child elements of the starting
element from the last child, until either a match is found, or the end of the child
element chain is reached.

v cniSearchNextSibling searches from the starting element to the next siblings,
until either a match is found, or the end of the sibling chain is reached.

v cniSearchPreviousSibling searches from the starting element to the previous
siblings, until either a match is found, or the start of the sibling chain is reached.

If you use this command to search for an element within a message that belongs to
a namespace-aware domain, the search is performed only on those elements whose
namespace is an empty string. If you want to perform a search for elements in all
namespaces, use one of the cniSearchElementNamespace functions.

Syntax:
CciElement* cniSearchFirstChild(

int* returnCode,
CciElement* targetElement,
CciCompareMode* mode,
CciElementType type,
CciChar name);

CciElement* cniSearchLastChild(
int* returnCode,
CciElement* targetElement,
CciCompareMode* mode,
CciElementType type,
CciChar name);

6506 WebSphere Message Broker Version 7.0.0.8

CciElement* cniSearchNextSibling(
int* returnCode,
CciElement* targetElement,
CciCompareMode* mode,
CciElementType type,
CciChar name);

CciElement* cniSearchPreviousSibling(
int* returnCode,
CciElement* targetElement,
CciCompareMode* mode,
CciElementType type,
CciChar name);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the syntax element object from which the search starts (input).

mode
The search mode to use (input). This parameter indicates what combination of
element type and element name is to be searched for. The possible values are:
v CCI_COMPARE_MODE_FULL
v CCI_COMPARE_MODE_FULL_TYPE
v CCI_COMPARE_MODE_GENERIC_TYPE
v CCI_COMPARE_MODE_SPECIFIC_TYPE
v CCI_COMPARE_MODE_NAME
v CCI_COMPARE_MODE_NAME_SPECIFIC_TYPE
v CCI_COMPARE_MODE_NAME_GENERIC_TYPE
v CCI_COMPARE_MODE_NAME_FULL_TYPE
v CCI_COMPARE_MODE_NULL

type
The element type to search for (input). Use this parameter only if the search
mode involves a match on the type.

name
The element name to search for (input). Use this parameter only if the search
mode involves a match on the name.

Example:
int rc;
CciElement* firstChild = cniSearchFirstChild(

&rc,
inRootElement,
CCI_COMPARE_MODE_NAME,
elementName,
0);

Return values:

v If successful, the address of the requested syntax element object is returned.

Chapter 14. Reference 6507

v If there is no matching element, zero is returned.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniFirstChild” on page 6481
Use this function to retrieve the address of the syntax element object that is the
first child of the specified syntax element.
“cniLastChild” on page 6496
Use this function to retrieve the address of the syntax element object that is the last
child of the specified syntax element.
“cniNextSibling” on page 6497
Use this function to retrieve the address of the syntax element object that is the
next sibling (right sibling) of the specified syntax element.
“cniParent” on page 6498
Use this function to retrieve the address of the syntax element object that is the
parent of the specified syntax element.
“cniPreviousSibling” on page 6499
Use this function to retrieve the address of the syntax element object that is the
previous sibling (left sibling) of the specified syntax element.
“cniRootElement” on page 6503
Use this function to get the root syntax element associated with a specified
message. It returns the root element that is associated with (and owned by) the
message object identified by the message parameter. When a message object is
constructed by the broker, a root element is automatically created.
“cniSearchElementInNamespace group”
Use this element to search for an element that matches the specified criteria.

cniSearchElementInNamespace group:

Use this element to search for an element that matches the specified criteria.

The search starts at the syntax element specified in the element argument, and
each of the four functions provides a search in a different tree direction:
1. cniSearchFirstChildInNamespace searches the immediate child elements of the

starting element from the first child, until either a match is found, or the end of
the child element chain is reached.

6508 WebSphere Message Broker Version 7.0.0.8

2. cniSearchLastChildInNamespace searches the immediate child elements of the
starting element from the last child, until either a match is found, or the end of
the child element chain is reached.

3. cniSearchNextSiblingInNamespace searches from the starting element to the
next siblings, until either a match is found, or the end of the sibling chain is
reached.

4. cniSearchPreviousSiblingInNamespace searches from the starting element to the
previous siblings, until either a match is found, or the start of the sibling chain
is reached.

Use this function when you search a message that belongs to a namespace-aware
domain.

Syntax:
void cniSearchFirstChildInNamespace(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
const CciChar* nameSpace,
const CciChar* name,
CciElementType type)

void cniSearchLastChildInNamespace(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
const CciChar* nameSpace,
const CciChar* name,
CciElementType type)

void cniSearchNextSiblingInNamespace(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
const CciChar* nameSpace,
const CciChar* name,
CciElementType type)

void cniSearchPreviousSiblingInNamespace(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
CciElementType type,
const CciChar* nameSpace,
const CciChar* name)

Parameters:

returnCode
The return code from the function (output). Specifying a NULL pointer
signifies that the node does not want to deal with errors. If input is not NULL,
the output signifies the success status of the call. All exceptions thrown during
the execution of this call are re-thrown to the next upstream node in the flow.
Call cciGetLastExceptionData for details of the exception.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

Chapter 14. Reference 6509

targetElement
The address of the syntax element object from which the search starts (input).

mode
The search mode to use (input). This parameter indicates what combination of
element namespace, element name, and element type is to be searched for. The
possible values are:
v CCI_COMPARE_MODE_SPACE
v CCI_COMPARE_MODE_SPACE_FULL_TYPE
v CCI_COMPARE_MODE_SPACE_GENERIC_TYPE
v CCI_COMPARE_MODE_SPACE_SPECIFIC_TYPE
v CCI_COMPARE_MODE_SPACE_NAME
v CCI_COMPARE_MODE_SPACE_NAME_FULL_TYPE
v CCI_COMPARE_MODE_SPACE_NAME_GENERIC_TYPE
v CCI_COMPARE_MODE_SPACE_NAME_SPECIFIC_TYPE
v CCI_COMPARE_MODE_NULL

When the compare mode does not involve a match on the namespace, all
namespaces are searched. This behavior differs from that of the
cniSearchElement group, where only the empty string namespace is searched.
When you specify one of the valid modes, set the nameSpace parameter to the
empty string.

type
The element type to search for (input). Use this parameter only if the search
mode involves a match on the type.

nameSpace
The namespace to search (input). Use this parameter only if the search mode
involves a match on the namespace.

name
The name to search for (input). Use this parameter only if the search mode
involves a match on the name.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
mode=CCI_COMPARE_MODE_SPACE ;
...

if (forward) {
firstChild = cniSearchFirstChildInNamespace(&rc, element, mode, space, 0,0);

}else{
firstChild = cniSearchLastChildInNamespace(&rc, element, mode, space, 0,0);

}

if (firstChild) {
depth++;
traceElement(firstChild,forward,space);
depth--;

}
currentElement = firstChild;
do{

if (forward) {

6510 WebSphere Message Broker Version 7.0.0.8

nextSibling = cniSearchNextSiblingInNamespace(&rc, currentElement,mode,space,0,0);
}else{
nextSibling = cniSearchPreviousSiblingInNamespace(&rc, currentElement,mode,space,0,0);

}
if (nextSibling) {
traceElement(nextSibling,forward,space);
currentElement=nextSibling;

}

}while (nextSibling) ;

}

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“cniElementNamespace” on page 6465
Use this function to get the value of the namespace attribute for the specified syntax
element.
“cniSearchElement group” on page 6506
Use one or more of the functions in this group to search previous siblings of the
specified element for an element that matches the specified criteria.
“cniSetElementNamespace” on page 6514
Use this function to set the namespace attribute for the specified syntax element
when you manipulate a message that belongs to a namespace-aware domain.
“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.

cniSetAttribute:

This function sets the value of an attribute on a specific node instance. It is called
by the broker when a configuration request is received that attempts to set the
value of a node attribute, or during initialization of the node.

A node receives requests to set attributes for the base. If an unknown attribute
value is received, this function must return a non-zero value so that the broker
processes the request correctly.

The responsibilities of the node are to:
1. Verify that the value of the attribute is correctly specified. If not, a

configuration exception should be thrown using the cciThrowException
function.

Chapter 14. Reference 6511

2. Store the value of the attribute within the context, which should have been
allocated in the cniCreateNodeContext function.

3. Throw a configuration exception if an error occurs, by using the
cciThrowException function.

Defined In Type Member

CNI_VFT Optional iFpSetAttribute

Syntax:
int cniSetAttribute(

CciContext* context,
CciChar* attrName,
CciChar* attrValue);

Parameters:

context
The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

attrName
The name of the attribute whose value is to be set (input).

attrValue
The value of the attribute (input).

Return values:
If successful, zero is returned. If the name of the attribute does not identify one
supported by the node, a non-zero value is returned.
Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node implementation functions” on page 6417
The user-defined node implements a function interface for the broker to call during
runtime operation. This interface includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to perform the processing of the node itself, and functions to examine
messages.

6512 WebSphere Message Broker Version 7.0.0.8

“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cciThrowException” on page 6666
Use this function to throw an exception. The exception is thrown by the broker
interface, and includes the specified arguments as exception data.

cniSetElementName:

Use this function to set the name of the specified syntax element.

Syntax:
void cniSetElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* name);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
The address of the target syntax element object (input).

name
The name of the element (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciElement* lastChild = cniCreateElementAsLastChild(&rc, outRootElement);
cniSetElementName(&rc, lastChild, elementName);
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:

Chapter 14. Reference 6513

“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniElementName” on page 6464
Use this function to get the value of the name attribute for the specified syntax
element. You must sethe syntax element name previously by using
cniSetElementName or cpiSetElementName.
“cniSetElementNamespace”
Use this function to set the namespace attribute for the specified syntax element
when you manipulate a message that belongs to a namespace-aware domain.
“cniSetElementType” on page 6515
Use this function to set the type of the specified syntax element.
“cniSetElementValue group” on page 6516
Use one or more of the functions in this group to set the value of the specified
syntax element.
“cniSetElementValueValue” on page 6519
Use this function to set the value object of the specified syntax element.

cniSetElementNamespace:

Use this function to set the namespace attribute for the specified syntax element
when you manipulate a message that belongs to a namespace-aware domain.

Syntax:
void cniSetElementNamespace(
int* returnCode,
CciElement* targetElement,
const CciChar* nameSpace)

Parameters:

returnCode
The return code from the function (output). Specifying a NULL pointer
signifies that the node does not want to deal with errors. If input is not NULL,
the output signifies the success status of the call. Any exceptions thrown
during the execution of this call are re-thrown to the next upstream node in the
flow. Call cciGetLastExceptionData for details of the exception.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
Specifies the address of the target syntax element object (input).

value
Specifies the address of a null terminated string of CciChars representing the
namespace value (output). An empty string is a valid value for namespace. By
default, elements are created in the empty string namespace, so you could
specify an empty string as the namespace, but it has an effect only if the
element was previously in another namespace and you want to change the
namespace value to empty string.

6514 WebSphere Message Broker Version 7.0.0.8

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“cniElementNamespace” on page 6465
Use this function to get the value of the namespace attribute for the specified syntax
element.
“cniSearchElementInNamespace group” on page 6508
Use this element to search for an element that matches the specified criteria.
“cniSetElementName” on page 6513
Use this function to set the name of the specified syntax element.
“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.

cniSetElementType:

Use this function to set the type of the specified syntax element.

Syntax:
void cniSetElementType(

int* returnCode,
CciElement* targetElement,
CciElementType type);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

type
The type of the element (input).

Chapter 14. Reference 6515

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciElement* lastChild = cniCreateElementAsLastChild(&rc, outRootElement);
cniSetElementName(&rc, lastChild, elementName);
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniElementType” on page 6467
Use this function to get the value of the type attribute for the specified syntax
element. You must set the syntax element type previously by using
cniSetElementType or cpiSetElementType.
“cniSetElementName” on page 6513
Use this function to set the name of the specified syntax element.
“cniSetElementValueValue” on page 6519
Use this function to set the value object of the specified syntax element.

cniSetElementValue group:

Use one or more of the functions in this group to set the value of the specified
syntax element.

Specify the appropriate function from this group that matches the type of data to
be retrieved:
v cniSetElementBitArrayValue
v cniSetElementBooleanValue
v cniSetElementByteArrayValue
v cniSetElementCharacterValue
v cniSetElementDateValue
v cniSetElementDecimalValue
v cniSetElementGmtTimestampValue
v cniSetElementGmtTimeValue
v cniSetElementIntegerValue
v cniSetElementRealValue
v cniSetElementTimestampValue

6516 WebSphere Message Broker Version 7.0.0.8

v cniSetElementTimeValue

Syntax:
void cniSetElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

void cniSetElementBooleanValue(
int* returnCode,
CciElement* targetElement,
CciBool value);

void cniSetElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

void cniSetElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

void cniSetElementDateValue(
int* returnCode,
CciElement* targetElement,
const struct CciDate* value);

void cniSetElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value);

void cniSetElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cniSetElementGmtTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

void cniSetElementIntegerValue(
int* returnCode,
CciElement* targetElement,
CciInt value);

void cniSetElementRealValue(
int* returnCode,
CciElement* targetElement,
CciReal value);

void cniSetElementTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cniSetElementTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION

Chapter 14. Reference 6517

v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

targetElement
The address of the target syntax element object (input).

value
The value to store in the syntax element (input).

length
The length of the data value (input). Used on relevant function calls only.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
static char* functionName = (char *)"_Input_run()";
void* buffer;
CciTerminal* terminalObject;
int buflen = 4096;
int rc = CCI_SUCCESS;
int rcDispatch = CCI_SUCCESS;
char xmlData[] = "<A>data";
buffer = malloc(buflen);
memcpy(buffer, &xmlData, sizeof(xmlData));

cniSetInputBuffer(&rc, message, buffer, buflen);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniElementValue group” on page 6468
Use one or more of the functions in this group to retrieve the value of the specified
syntax element.
“cniSetElementName” on page 6513
Use this function to set the name of the specified syntax element.
“cniSetElementType” on page 6515
Use this function to set the type of the specified syntax element.
“cniSetElementValueValue” on page 6519
Use this function to set the value object of the specified syntax element.

6518 WebSphere Message Broker Version 7.0.0.8

cniSetElementValueValue:

Use this function to set the value object of the specified syntax element.

Syntax:
void cniSetElementValueValue(

int* returnCode,
CciElement* targetElement,
CciElementValue* value);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
The address of the target syntax element object (input).

value
The address of a value object that is used to set the value of the syntax
element specified by the targetElement parameter (input). You can get the
address of the value object by calling cniElementValueValue.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniElementValueValue” on page 6473
Use this function to get the address of the value object owned by the specified
syntax element.
“cniSetElementName” on page 6513
Use this function to set the name of the specified syntax element.
“cniSetElementType” on page 6515
Use this function to set the type of the specified syntax element.

Chapter 14. Reference 6519

“cniSetElementValue group” on page 6516
Use one or more of the functions in this group to set the value of the specified
syntax element.

cniSetInputBuffer:

Use this function to supply a buffer. It is used only by input nodes. The address is
specified by the source parameter as an input bit stream of the input message to
the broker.

By supplying a buffer, an input node can read data into the bit stream that
represents an input message from an external data source. The broker takes a copy
of the data and the caller can free the storage on return.

Syntax:
int cniSetInputBuffer(

void* returnCode,
CciMessage* message,
Void* source,
CCiInt length);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

message
The message object that uses the buffer described by the source parameter to
represent the input bit stream. (input)

source
The address of the buffer to be used as input. (input)

length
The length of the input buffer described by the source parameter. (input)

Return values:
None. If an error occurs, thereturnCode parameter indicates the reason for the error.

Example:
cniSetInputBuffer(&rc, message, buffer, buflen);

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
Related reference:

6520 WebSphere Message Broker Version 7.0.0.8

“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniBufferByte” on page 6426
Use this function to get a single byte from the data buffer associated with (and
owned by) the message object specified in the message argument. The value of the
index argument indicates which byte in the byte array is to be returned.
“cniBufferPointer” on page 6427
Use this function to get a pointer to the data buffer associated with (and owned
by) the message object specified in the message argument. This function is
typically used by output nodes.
“cniBufferSize” on page 6428
Use this function to get the size of the data buffer associated with (and owned by)
the message object specified in the message argument.
“cniWriteBuffer” on page 6537
Use this function to write the syntax element tree associated with the specified
message to the data buffer that is owned by the message object. This function is
typically used by output nodes.

cniSqlCreateModifyablePathExpression:

Use this function to create an SqlPathExpression object that represents the path that
is specified by the path argument. When they are navigated, path elements are
created if they do not already exist. This function returns a pointer to the
PathExpression object, which is used as input to the functions that navigate the
path, namely the cniSqlNavigatePath family.

Because an overhead is incurred in creating the expression, if the same path
expression is to be used for every message, call this function once, and use the
CciSqlPathExpression* that is returned in a call to cniSqlNavigate for each
message. You can use the CciSqlPathExpression on threads other than the one on
which it was created.

Syntax:
CciSqlPathExpression* cniSqlCreateModifiablePathExpression(
int* returnCode,
CciNode* nodeObject,
CciChar* dataSourceName,
CciChar* path);

Parameters:

returnCode (output)
A NULL pointer input signifies that the user-defined node does not handle
errors. Any exceptions that are thrown during the execution of this call are
re-thrown to the next upstream node in the flow. If input is not NULL, output
signifies the success status of the call. If an exception occurs during execution,
*returnCode is set to CCI_EXCEPTION on output. Call
cciGetLastExceptionData to retrieve details of the exception. If an invalid
nodeObject parameter was passed in, returnCode is set to
CCI_INV_NODE_OBJECT. If an invalid path parameter, such as NULL or an
empty string, was passed in, returnCode is set to CCI_INV_ESQL_PATH_EXPR.

nodeObject (input)
Specifies the message flow processing node that the ESQL Path Expression is

Chapter 14. Reference 6521

owned by. This pointer is passed to the cniCreateNodeContext implementation
function. This parameter must not be NULL.

dataSourceName (input)
The ODBC data source name to be used if the statement references an external
database. This parameter can be NULL.

path (input)
Pointer to a NULL terminated string of CciChars. This parameter specifies the
ESQL path expression to be created as defined by the ESQL field reference
syntax diagram, except that it cannot include local ESQL variables, ESQL
reference variables, user-defined functions, or ESQL namespace constants,
because they cannot be declared. This parameter must not be NULL.

Return values:
If successful, the address of the SQLPathExpression object is returned. If an error
occurs, CCI_NULL_ADDR is returned, and the return code parameter indicates the
reason for the error. When the SQLPathExpression is no longer needed, (typically
when the node is deleted) call cniSqlDeletePathExpression to delete it.

Example:
If you add the following code to the Transform node sample, you can create an
element, and all necessary ancestor elements, with one function call.

Create the CciSQLPathExpression in the _Transform_createNodeContext function:
{

CciChar ucsPathExpressionString[32];
char* mbPathExpressionString =

"OutputRoot.XMLNS.Request.A.B.C.D.E";
/* convert our path string to unicode*/
cciMbsToUcs(NULL,

mbPathExpressionString,
ucsPathExpressionString,
32,
BIP_DEF_COMP_CCSID);

p->pathExpression =
cniSqlCreateModifiablePathExpression(

NULL,
nodeObject,
NULL,/* do not reference Database*/
ucsPathExpressionString);

}

Now use the CciSqlPathExpression later in the _Transform_evaluate function
{

CciElement* newElement =
cniSqlNavigatePath(

NULL,
((NODE_CONTEXT_ST *)context)->pathExpression,
message,
localEnvironment,
exceptionList,
outMsg,
NULL,/* do not reference OutputLocalEnvironment*/
NULL/* do not reference OutputLExceptionList*/);

}

Therefore passing in the input message PluginSample.change.xml:

6522 WebSphere Message Broker Version 7.0.0.8

<Request
type="change">

<CustomerAccount>01234567</CustomerAccount>
<CustomerPhone>555-0000</CustomerPhone>

</Request>

The following output message is generated:
<Request
type="modify">

<CustomerAccount>01234567</CustomerAccount>
<CustomerPhone>555-0000</CustomerPhone>
<A>

<C>
<D/>

</C>

</Request>

This approach, rather than using functions such as cniCreateElementAsLastChild,
has the following advantages:
v The path is more dynamic: the path string could be determined at deploy time,

for example based on a node property (you could create the
CciSQLPathExpression in the cniSetAttribute implementation function).

v While navigating to and creating the element, only one function call is made.
This technique is more apparent when the target element is deep within the tree
structure.

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniSqlDeleteStatement” on page 6530
Use this function to delete an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.

Chapter 14. Reference 6523

“cniSqlExecute” on page 6531
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
Use this function when the statement does not return data, for example, when a
PASSTHRU function is used.
“cniSqlSelect” on page 6535
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter. If
the statement returns data, the data is written into the message specified by the
outputMessage parameter.
“cniSqlCreateReadOnlyPathExpression”
Use this function to create an SqlPathExpression object that represents the path that
is specified by the path argument. The navigated path does not create path
elements if they do not already exist. This function returns a pointer to the
PathExpression object, which is used as input to the functions that navigate the
path, namely the cniSqlNavigatePath family.
“cniSqlNavigatePath” on page 6532
Use this function to run the SQLPathExpression that you have created by calling
the cniSqlCreateReadOnlyPathExpression or the
cniSqlCreateModifiablePathExpression utility functions, as defined by the
sqlPathExpression argument.
“cniSqlDeletePathExpression” on page 6529
Use this function to delete the SQLPathExpression that you have created by calling
the cniSqlCreateReadOnlyPathExpression or the
cniSqlCreateModifiablePathExpression utility functions, as defined by the
sqlPathExpression argument.

cniSqlCreateReadOnlyPathExpression:

Use this function to create an SqlPathExpression object that represents the path that
is specified by the path argument. The navigated path does not create path
elements if they do not already exist. This function returns a pointer to the
PathExpression object, which is used as input to the functions that navigate the
path, namely the cniSqlNavigatePath family.

Because an overhead is incurred in creating the expression, if the same path
expression is to be used for every message, call this function once, and use the
CciSqlPathExpression* that is returned in a call to cniSqlNavigate for each
message. You can use the CciSqlPathExpression* on threads other than the one on
which it was created.

Syntax:
CciSqlPathExpression* cniSqlCreateReadOnlyPathExpression(

int* returnCode,
CciNode* nodeObject,
CciChar* dataSourceName,
CciChar* path);

Parameters:

returnCode (output)
A NULL pointer input signifies that the user-defined node does not handle
errors. Any exceptions thrown during the execution of this call are re-thrown
to the next upstream node in the flow. If input is not NULL, output signifies
the success status of the call. If an exception occurs during execution,
*returnCode is set to CCI_EXCEPTION on output. A call to

6524 WebSphere Message Broker Version 7.0.0.8

cciGetLastExceptionData provides details of the exception. If an invalid
nodeObject parameter was passed in, returnCode is set to
CCI_INV_NODE_OBJECT. If an invalid path parameter, such as a NULL or
empty string, was passed in, returnCode is set to
CCI_INV_ESQL_PATH_EXPR.

nodeObject (input)
Specifies the message flow processing node that owns the ESQL Path
Expression. This pointer is passed to the cniCreateNodeContext
implementation function. This parameter must not be NULL.

dataSourceName (input)
The ODBC data source name that is used if the statement references an
external database. NULL is allowed.

path (input)
Pointer to a NULL terminated string of CciChars. This parameter specifies the
ESQL path expression to be created, as defined by the ESQL field reference
syntax diagram. It cannot include local ESQL variables, ESQL reference
variables, user-defined functions, or ESQL namespace constants, because they
cannot be declared. This parameter must not be NULL.

Return values:
If successful, the address of the SQLPathExpression object is returned. If an error
occurs, CCI_NULL_ADDR is returned and the return code parameter indicates the
reason for the error. When the SQLPathExpression is no longer needed (typically
when the node is deleted), call cniSqlDeletePathExpression to delete it.

Example:
The switch node sample shows how to navigate to a syntax element using
functions like cniFirstChild. The following code could be used to achieve the same
result.

In _Switch_createNodeContext function, create the CciSqlPathExpression for use
later.
{

CciChar ucsPathExpressionString[32];
char* mbPathExpressionString = "InputBody.Request.type";
/* convert our path string to unicode*/
cciMbsToUcs(

NULL,
mbPathExpressionString,
ucsPathExpressionString,
32,
BIP_DEF_COMP_CCSID);

p->pathExpression =
cniSqlCreateReadOnlyPathExpression(

NULL,
nodeObject,
NULL, /* do not reference Database*/
ucsPathExpressionString);

}

This code assumes the addition of the field CciSqlPathExpression* pathExpression
to the NODE_CONTEXT_ST struct.

Now use the CciSqlPathExpression in the _Switch_evaluate function.

Chapter 14. Reference 6525

CciElement* targetElement = cniSqlNavigatePath(
NULL,
((NODE_CONTEXT_ST *)context)->pathExpression,
message,
localEnvironment,
exceptionList,
NULL, /* do not reference any output trees*/
NULL,
NULL);

This approach, rather than using functions such as cniFirstChild and
cniNextSibling, has the following advantages:
v The path is more dynamic: the path string could be determined at deploy time

based on a node property (you could create the CciSqlPathExpression in the
cniSetAttribute implementation function).

v While navigating to the element, only one function call is made. This technique
is more apparent when the target element is deep within the tree structure.

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniSqlDeleteStatement” on page 6530
Use this function to delete an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
“cniSqlExecute” on page 6531
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
Use this function when the statement does not return data, for example, when a
PASSTHRU function is used.
“cniSqlSelect” on page 6535
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter. If
the statement returns data, the data is written into the message specified by the
outputMessage parameter.

6526 WebSphere Message Broker Version 7.0.0.8

“cniSqlCreateModifyablePathExpression” on page 6521
Use this function to create an SqlPathExpression object that represents the path that
is specified by the path argument. When they are navigated, path elements are
created if they do not already exist. This function returns a pointer to the
PathExpression object, which is used as input to the functions that navigate the
path, namely the cniSqlNavigatePath family.
“cniSqlNavigatePath” on page 6532
Use this function to run the SQLPathExpression that you have created by calling
the cniSqlCreateReadOnlyPathExpression or the
cniSqlCreateModifiablePathExpression utility functions, as defined by the
sqlPathExpression argument.
“cniSqlDeletePathExpression” on page 6529
Use this function to delete the SQLPathExpression that you have created by calling
the cniSqlCreateReadOnlyPathExpression or the
cniSqlCreateModifiablePathExpression utility functions, as defined by the
sqlPathExpression argument.

cniSqlCreateStatement:

Use this function to create an ESQL expression object that represents the statement
specified by the statement argument, by using the syntax defined for the Compute
node.

You cannot use the following statements:
v CREATE PROCEDURE
v CREATE MODULE
v CREATE SCHEMA
v CREATE FUNCTION

This function returns a pointer to the SQL expression object, which is used as input
to the functions that execute the statement, which are cniSqlExecute and
cniSqlSelect. You can create multiple SQL expression objects in a single message
flow node. Although you can create these objects at any time, you would typically
create them when the message flow node is instantiated, within the
implementation function cniCreateNodeContext.

Syntax:
CciSqlExpression* cniSqlCreateStatement(

int* returnCode,
CciNode* nodeObject,
CciChar* dataSourceName,
CciSqlTransaction transaction,
CciChar* statement);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_NODE_OBJECT
v CCI_INV_TRANSACTION_TYPE
v CCI_INV_STATEMENT

Chapter 14. Reference 6527

nodeObject
The message flow processing node that the SQL expression object is owned by
(input). This pointer is passed to the cniCreateNodeContext implementation
function.

dataSourceName
The ODBC data source name used if the statement references data in an
external database (input).

transaction
Specifies whether a database commit is performed after the statement is
executed (input). Valid values are:

CCI_SQL_TRANSACTION_AUTO
Specifies that a database commit is performed at the completion of the
message flow (that is, as a fully globally coordinated or partially
globally coordinated transaction). This value is the default.

CCI_SQL_TRANSACTION_COMMIT
Specifies that a commit is performed after execution of the statement,
and in the cniSqlExecute or cniSqlSelect function (that is, the message
flow is partially broker coordinated).

statement
The SQL expression to be created, using the syntax as defined for the Compute
node (input).

Return values:
If successful, the address of the SQL expression object is returned. If an error
occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode parameter
indicates the reason for the error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniSqlDeleteStatement” on page 6530
Use this function to delete an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.

6528 WebSphere Message Broker Version 7.0.0.8

“cniSqlExecute” on page 6531
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
Use this function when the statement does not return data, for example, when a
PASSTHRU function is used.
“cniSqlSelect” on page 6535
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter. If
the statement returns data, the data is written into the message specified by the
outputMessage parameter.

cniSqlDeletePathExpression:

Use this function to delete the SQLPathExpression that you have created by calling
the cniSqlCreateReadOnlyPathExpression or the
cniSqlCreateModifiablePathExpression utility functions, as defined by the
sqlPathExpression argument.

Syntax:
void cniSqlDeletePathExpression(

int* returnCode,
CciSqlPathExpression* sqlPathExpression);

Parameters:

returnCode (output)
A NULL pointer input signifies that the user-defined node does not want to
deal with errors. All exceptions thrown during the execution of this call are
re-thrown to the next upstream node in the flow. If input is not NULL, output
signifies the success status of the call. If an exception occurs during execution,
*returnCode is set to CCI_EXCEPTION on output. Call
cciGetLastExceptionData to get details of the exception. If an invalid
sqlPathExpression parameter is passed in, returnCode is set to
CCI_INV_SQL_EXPR_OBJECT.

sqlPathExpression (output)
Specifies the SQLPathExpression object to be deleted as returned by either
cniCreateModifiablePathExpression or cniCreateReadOnlyPathExpression
functions. Tyhis parameter cannot be NULL.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error..

Example:
Expanding on the example for cniSqlCreateReadOnlyPathExpression, include the
following code in _deleteNodeContext.
cniSqlDeletePathExpression(

NULL,
((NODE_CONTEXT_ST *)context)->pathExpression);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.

Chapter 14. Reference 6529

Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniSqlDeleteStatement”
Use this function to delete an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
“cniSqlExecute” on page 6531
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
Use this function when the statement does not return data, for example, when a
PASSTHRU function is used.
“cniSqlSelect” on page 6535
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter. If
the statement returns data, the data is written into the message specified by the
outputMessage parameter.

cniSqlDeleteStatement:

Use this function to delete an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.

Syntax:
void cniSqlDeleteStatement(

int* returnCode,
CciSqlExpression* sqlExpression);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CC_INV_SQL_EXPR_OBJECT

sqlExpression
The SQL expression object to be deleted, as returned by the
cniSqlCreateStatement utility function (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

6530 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniSqlCreateStatement” on page 6527
Use this function to create an ESQL expression object that represents the statement
specified by the statement argument, by using the syntax defined for the Compute
node.
“cniSqlExecute”
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
Use this function when the statement does not return data, for example, when a
PASSTHRU function is used.
“cniSqlSelect” on page 6535
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter. If
the statement returns data, the data is written into the message specified by the
outputMessage parameter.

cniSqlExecute:

Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
Use this function when the statement does not return data, for example, when a
PASSTHRU function is used.

Syntax:
void cniSqlExecute(

int* returnCode,
CciSqlExpression* sqlExpression,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_INV_SQL_EXPR_OBJECT

Chapter 14. Reference 6531

v CCI_INV_MESSAGE_OBJECT

sqlExpression
The SQL expression object to be executed, as returned by the
cniSqlCreateStatement utility function (input).

localEnvironment
The message representing the input local environment (input).

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The message representing the input exception list (input).

message
The message representing the input message (input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniSqlCreateStatement” on page 6527
Use this function to create an ESQL expression object that represents the statement
specified by the statement argument, by using the syntax defined for the Compute
node.
“cniSqlDeleteStatement” on page 6530
Use this function to delete an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
“cniSqlSelect” on page 6535
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter. If
the statement returns data, the data is written into the message specified by the
outputMessage parameter.

cniSqlNavigatePath:

Use this function to run the SQLPathExpression that you have created by calling
the cniSqlCreateReadOnlyPathExpression or the
cniSqlCreateModifiablePathExpression utility functions, as defined by the
sqlPathExpression argument.

6532 WebSphere Message Broker Version 7.0.0.8

Syntax:
CciElement* cniSqlNavigatePath(
int* returnCode,
CciSqlPathExpression* sqlPathExpression,
CciMessage* inputMessageRoot,
CciMessage* inputLocalEnvironment,
CciMessage* inputExceptionList,
CciMessage* outputMessageRoot
CciMessage* outputLocalEnvironment,
CciMessage* outputExceptionList);

Parameters:

returnCode (output)
A NULL pointer input signifies that the user-defined node does not handle
errors. Any exceptions that are thrown during the execution of this call are
re-thrown to the next upstream node in the flow. If input is not NULL, output
signifies the success status of the call. If an exception occurs during execution,
*returnCode is set to CCI_EXCEPTION on output. A call to
cciGetLastExceptionData provides details of the exception. If an invalid
sqlPathExpression parameter was passed in, returnCode is set to
CCI_INV_SQL_EXPR_OBJECT. If an invalid CciMessage* value is passed in,
returnCode is set to CCI_INV_MESSAGE_OBJECT. If the element could not be
navigated to or created, returnCode is set to CCI_PATH_NOT_NAVIGABLE.

sqlPathExpression (input)
Specifies the SQLPathExpression object to be executed as returned by either the
cniCreateReadOnlyPathExpression or the cniCreateModifyablePathExpression
function. This parameter cannot be NULL.

inputMessageRoot (input)
The message representing the input message. This parameter cannot be NULL.

inputLocalEnvironment (input)
The message representing the input local environment. This parameter cannot
be NULL.

inputExceptionList (input)
The message representing the input exception list. This parameter cannot be
NULL.

outputMessageRoot (input)
The message representing the output message. This parameter can be NULL.

outputLocalEnvironment (input)
The message representing the output local environment. This parameter can be
NULL.

outputExceptionList (input)
The message representing the output exception list. This parameter can be
NULL.

The following table shows the mapping between the correlation names accepted in
the ESQL path expression and the data that is accessed.

Correlation name Data accessed

Environment The single Environment tree for the flow. This element is
determined by the broker and it is not necessary to specify
it with this API.

InputLocalEnvironment inputLocalEnvironment parameter to cniSqlNavigatePath

Chapter 14. Reference 6533

Correlation name Data accessed

OutputLocalEnvironment outputLocalEnvironment parameter to cniSqlNavigatePath

InputRoot inputMessageRoot parameter to cniSqlNavigatePath

InputBody Last child of InputRoot

InputProperties InputRoot.Properties (InputRoot.Properties is the first child
of InputRoot, named "Properties")

OutputRoot outputMessageRoot parameter to cniSqlNavigatePath

InputExceptionList inputExceptionList parameter to cniSqlNavigatePath

OutputExceptionList outputExceptionList parameter to cniSqlNavigatePath

Database ODBC datasource identified by dataSourceName parameter
to cniCreateReadOnlyPathExpression or
cniCreateModifyablePathExpression

InputDestinationList Synonym for InputLocalEnvironment that is compatible
with earlier versions

OutputDestinationList Synonym for OutputLocalEnvironment that is compatible
with earlier versions

All other rules regarding the actual navigability and validity of paths are defined
in “Correlation names” on page 1069.

Return values:
If the path is navigated successfully, the address of the syntax element is returned.
However, if the path is not navigable, a value of zero (CCI_NULL_ADDR) is
returned, and the returnCode parameter indicates the reason for the error.

Example:
Assuming that you have previously created a SQLPathExpression (see the example
for cniSqlCreateReadOnlyPathExpression or
cniSqlCreateModifiablePathExpression), you could use the following code to
navigate to the target element.
CciElement* targetElement = cniSqlNavigatePath(

NULL,
((NODE_CONTEXT_ST *)context)->pathExpression,
message,
localEnvironment,
exceptionList,
NULL, /* do not reference any output trees*/
NULL,
NULL);

Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:

6534 WebSphere Message Broker Version 7.0.0.8

“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniCreateNodeContext” on page 6447
This function creates a context for an instance of a node object. It is called by the
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.
“cniSqlDeleteStatement” on page 6530
Use this function to delete an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
“cniSqlExecute” on page 6531
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
Use this function when the statement does not return data, for example, when a
PASSTHRU function is used.
“cniSqlSelect”
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter. If
the statement returns data, the data is written into the message specified by the
outputMessage parameter.
“cniSqlCreateReadOnlyPathExpression” on page 6524
Use this function to create an SqlPathExpression object that represents the path that
is specified by the path argument. The navigated path does not create path
elements if they do not already exist. This function returns a pointer to the
PathExpression object, which is used as input to the functions that navigate the
path, namely the cniSqlNavigatePath family.
“cniSqlCreateModifyablePathExpression” on page 6521
Use this function to create an SqlPathExpression object that represents the path that
is specified by the path argument. When they are navigated, path elements are
created if they do not already exist. This function returns a pointer to the
PathExpression object, which is used as input to the functions that navigate the
path, namely the cniSqlNavigatePath family.
“cniSqlDeletePathExpression” on page 6529
Use this function to delete the SQLPathExpression that you have created by calling
the cniSqlCreateReadOnlyPathExpression or the
cniSqlCreateModifiablePathExpression utility functions, as defined by the
sqlPathExpression argument.

cniSqlSelect:

Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter. If
the statement returns data, the data is written into the message specified by the
outputMessage parameter.

Syntax:
void cniSqlSelect(

int* returnCode,
CciSqlExpression* sqlExpression,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message,
CciMessage* outputMessage);

Chapter 14. Reference 6535

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_SQL_EXPR_OBJECT
v CCI_INV_MESSAGE_OBJECT

sqlExpression
The SQL expression object to be executed, as returned by the
cniSqlCreateStatement utility function (input).

localEnvironment
The message representing the input local environment (input).

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The message representing the input exception list (input).

message
The message representing the input message (input).

outputMessage
The message into which any data returned by the statement is written
(output).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined message processing nodes” on page 2996
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:
“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniSqlCreateStatement” on page 6527
Use this function to create an ESQL expression object that represents the statement
specified by the statement argument, by using the syntax defined for the Compute
node.
“cniSqlDeleteStatement” on page 6530
Use this function to delete an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.

6536 WebSphere Message Broker Version 7.0.0.8

“cniSqlExecute” on page 6531
Use this function to run an SQL statement that you have created by using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
Use this function when the statement does not return data, for example, when a
PASSTHRU function is used.

cniWriteBuffer:

Use this function to write the syntax element tree associated with the specified
message to the data buffer that is owned by the message object. This function is
typically used by output nodes.

This operation serializes the element tree into a bit stream that can then be
processed as a sequence of contiguous bytes. This function should be used when
writing the bit stream to a target that is outside the broker.

You must call cniFinalize before this call, or cniWriteBuffer fails.

Syntax:
void cniWriteBuffer(

int* returnCode,
CciMessage* message);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the element tree is to be serialized
(input).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
cniCopyElementTree(&rc, inLastChild, outLastChild);
cniFinalize(&rc, outMessage);
cniWriteBuffer(&rc, outMessage);

Related concepts:
“User-defined output nodes” on page 3006
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to the nodes supplied with the product.
Related tasks:
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
Related reference:

Chapter 14. Reference 6537

“C node utility functions” on page 6419
A user-defined node created in the C programming language can create or define
broker objects, such as node factories, nodes, and terminals by using
system-provided functions.
“cniBufferByte” on page 6426
Use this function to get a single byte from the data buffer associated with (and
owned by) the message object specified in the message argument. The value of the
index argument indicates which byte in the byte array is to be returned.
“cniBufferPointer” on page 6427
Use this function to get a pointer to the data buffer associated with (and owned
by) the message object specified in the message argument. This function is
typically used by output nodes.
“cniBufferSize” on page 6428
Use this function to get the size of the data buffer associated with (and owned by)
the message object specified in the message argument.
“cniFinalize” on page 6479
Use this function to cause the broker to request parsers to perform finalize
processing on the specified message. Finalization is a process that fixes header
chains and makes the Properties folder match the headers.
“cniSetInputBuffer” on page 6520
Use this function to supply a buffer. It is used only by input nodes. The address is
specified by the source parameter as an input bit stream of the input message to
the broker.

C language user-defined parser API
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.

The two sets of functions are:
1. A set of implementation functions that provide the functionality of the

user-defined parser. These functions are called by the broker. Most
implementation functions are mandatory and, if not supplied by the developer,
cause an exception at run time.

2. A set of utility functions that create resources in the broker or request a service
of the broker. These utility functions can be called by a user-defined parser.

These functions are defined in the BipCpi.h header file.

This section covers the following topics:
v “C parser implementation functions.”
v “C parser utility functions” on page 6539.

C parser implementation functions:

A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

Some implementation functions are mandatory, and must be implemented when
you develop your own parser. Other functions are optional, or conditional.

Mandatory functions

v “cpiCreateContext” on page 6553

6538 WebSphere Message Broker Version 7.0.0.8

v “cpiParseNextSibling” on page 6588
v “cpiParsePreviousSibling” on page 6590
v “cpiParseFirstChild” on page 6586
v “cpiParseLastChild” on page 6587

Optional and conditional functions

v “cpiDeleteContext” on page 6559
v “cpiElementValue” on page 6566
v “cpiNextParserClassName” on page 6573
v “cpiNextParserCodedCharSetId” on page 6574
v “cpiNextParserEncoding” on page 6576
v “cpiParseBuffer” on page 6580
v “cpiParseBufferEncoded” on page 6582
v “cpiParseBufferFormatted” on page 6583
v “cpiParserType” on page 6591
v “cpiSetElementValue” on page 6602
v “cpiSetNextParserClassName” on page 6609
v “cpiWriteBuffer” on page 6610
v “cpiWriteBufferEncoded” on page 6612
v “cpiWriteBufferFormatted” on page 6613

C parser utility functions:

A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

These system-provided functions relate to different types of operation of the
parser:

Initialization and resource creation

v “cpiCreateParserFactory” on page 6555
v “cpiDefineParserClass” on page 6557

Message buffer access

v “cpiAppendToBuffer” on page 6545
v “cpiBufferByte” on page 6547
v “cpiBufferPointer” on page 6548
v “cpiBufferSize” on page 6549

Syntax element navigation

v “cpiRootElement” on page 6592
v “cpiParent” on page 6578
v “cpiNextSibling” on page 6577
v “cpiFirstChild” on page 6571
v “cpiLastChild” on page 6572
v “cpiAddAfter” on page 6540

Syntax element access

v “cpiAddBefore” on page 6544
v “cpiAddAsFirstChild” on page 6541
v “cpiAddAsLastChild” on page 6543

Chapter 14. Reference 6539

v “cpiCreateAndInitializeElement” on page 6551
v “cpiCreateElement” on page 6554
v “cpiElementCompleteNext” on page 6560
v “cpiElementCompletePrevious” on page 6561
v “cpiElementName” on page 6562
v “cpiElementNameSpace” on page 6563
v “cpiElementType” on page 6565
v “cpiElementValue group” on page 6567
v “cpiElementValueValue” on page 6569
v “cpiSetCharacterValueFromBuffer” on page 6594
v “cpiSetElementCompleteNext” on page 6595
v “cpiSetElementCompletePrevious” on page 6596
v “cpiSetElementName” on page 6598
v “cpiSetElementType” on page 6601
v “cpiSetElementValue group” on page 6604
v “cpiSetElementValueValue” on page 6606
v “cpiSetNameFromBuffer” on page 6607

cpiAddAfter:

This function adds a new (and currently unattached) syntax element to the syntax
element tree after the specified target element. The newly added element becomes
the next sibling of the target element.

Syntax
void cpiAddAfter(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added to
the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

6540 WebSphere Message Broker Version 7.0.0.8

Sample
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {
/* Create a new value element, add after the current value element,
and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddAfter(&rc, element, newElement);

}
else {
}

return;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiAddBefore” on page 6544
This function adds a new (and currently unattached) syntax element to the syntax
element tree before the specified target element. The newly added element
becomes the previous sibling of the target element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiAddAsFirstChild:

This function adds a new (and currently unattached) syntax element to the syntax
element tree as the first child of the specified target element.

Syntax
void cpiAddAsFirstChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Chapter 14. Reference 6541

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added to
the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {
/* Create a new value element, add as a first child, and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddAsFirstChild(&rc, element, newElement);

}
else {
}

return;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and

6542 WebSphere Message Broker Version 7.0.0.8

structure.
Related reference:
“cpiAddAsLastChild”
This function adds a new (and currently unattached) syntax element to the syntax
element tree as the last child of the specified target element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiAddAsLastChild:

This function adds a new (and currently unattached) syntax element to the syntax
element tree as the last child of the specified target element.

Syntax
void cpiAddAsLastChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added to
the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);

/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

Related concepts:

Chapter 14. Reference 6543

“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiAddAsFirstChild” on page 6541
This function adds a new (and currently unattached) syntax element to the syntax
element tree as the first child of the specified target element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiAddBefore:

This function adds a new (and currently unattached) syntax element to the syntax
element tree before the specified target element. The newly added element
becomes the previous sibling of the target element.

Syntax
void cpiAddBefore(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added to
the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

6544 WebSphere Message Broker Version 7.0.0.8

Sample
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {
/* Create a new value element, add before the current value element,
and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddBefore(&rc, element, newElement);

}
else {
}

return;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiAddAfter” on page 6540
This function adds a new (and currently unattached) syntax element to the syntax
element tree after the specified target element. The newly added element becomes
the next sibling of the target element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiAppendToBuffer:

This function appends data to the buffer containing the bit stream representation of
a message, for the specified parser object.

Chapter 14. Reference 6545

Syntax
void cpiAppendToBuffer(

int* returnCode,
CciParser* parser,
CciByte* data,
CciSize length);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_LENGTH

parser
Specifies the address of the parser object (input).

data
The address of the data to be appended to the buffer (input).

length
The size in bytes of the data to be appended to the buffer (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiBufferByte” on page 6547
This function gets a single byte from the buffer containing the bit stream
representation of the input message, for the specified parser object. The value of
the index argument indicates which byte in the byte array is to be returned.
“cpiBufferPointer” on page 6548
This function gets a pointer to the buffer containing the bit stream representation

6546 WebSphere Message Broker Version 7.0.0.8

of the input message, for the specified parser object.
“cpiBufferSize” on page 6549
This function gets the size of the buffer that contains the bit stream representation
of the input message, for the specified parser object.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiBufferByte:

This function gets a single byte from the buffer containing the bit stream
representation of the input message, for the specified parser object. The value of
the index argument indicates which byte in the byte array is to be returned.

Syntax
CciByte cpiBufferByte(

int* returnCode,
CciParser* parser,
CciSize index);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT
v CCI_NO_BUFFER_EXISTS

parser
Specifies the address of the parser object (input).

index
Specifies the offset to use as an index into the buffer (input).

Return values

The requested byte is returned. If an error occurs, returnCode indicates the reason
for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void advance(

PARSER_CONTEXT_ST* context,
CciParser* parser

){
int rc = 0;

/* Advance to the next character */
context->iIndex++;

/* Detect and handle the end condition */
if (context->iIndex == context->iSize) return;

Chapter 14. Reference 6547

/* Obtain the next character from the buffer */
context->iCurrentCharacter = cpiBufferByte(&rc, parser, context->iIndex);

}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiAppendToBuffer” on page 6545
This function appends data to the buffer containing the bit stream representation of
a message, for the specified parser object.
“cpiBufferPointer”
This function gets a pointer to the buffer containing the bit stream representation
of the input message, for the specified parser object.
“cpiBufferSize” on page 6549
This function gets the size of the buffer that contains the bit stream representation
of the input message, for the specified parser object.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiBufferPointer:

This function gets a pointer to the buffer containing the bit stream representation
of the input message, for the specified parser object.

Syntax
const CciByte* cpiBufferPointer(

int* returnCode,
CciParser* parser);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT
v CCI_NO_BUFFER_EXISTS

parser
Specifies the address of the parser object (input).

6548 WebSphere Message Broker Version 7.0.0.8

Return values

If successful, the address of the buffer is returned. Otherwise, a value of zero
(CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
int cpiParseBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc;, parser);
pc->iIndex = 0;

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiAppendToBuffer” on page 6545
This function appends data to the buffer containing the bit stream representation of
a message, for the specified parser object.
“cpiBufferByte” on page 6547
This function gets a single byte from the buffer containing the bit stream
representation of the input message, for the specified parser object. The value of
the index argument indicates which byte in the byte array is to be returned.
“cpiBufferSize”
This function gets the size of the buffer that contains the bit stream representation
of the input message, for the specified parser object.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiBufferSize:

This function gets the size of the buffer that contains the bit stream representation
of the input message, for the specified parser object.

Chapter 14. Reference 6549

Syntax
CciSize cpiBufferSize(

int* returnCode,
CciParser* parser);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT
v CCI_NO_BUFFER_EXISTS

parser
Specifies the address of the parser object (input).

Return values

If successful, the size of the buffer, in bytes, is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the error.

Sample

This example is taken from the sample node file BipSampPluginParser.c:
int cpiParseBufferEncoded(

CciParser* parser,

CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save the format of the buffer */
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:

6550 WebSphere Message Broker Version 7.0.0.8

“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiAppendToBuffer” on page 6545
This function appends data to the buffer containing the bit stream representation of
a message, for the specified parser object.
“cpiBufferByte” on page 6547
This function gets a single byte from the buffer containing the bit stream
representation of the input message, for the specified parser object. The value of
the index argument indicates which byte in the byte array is to be returned.
“cpiBufferPointer” on page 6548
This function gets a pointer to the buffer containing the bit stream representation
of the input message, for the specified parser object.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiCreateAndInitializeElement:

This function creates a syntax element, owned by the specified parser, that is not
attached to a syntax tree. The element is partially initialized with the values of the
type, name, firstChildComplete, and lastChildComplete parameters.

Syntax
CciElement* cpiCreateAndInitializeElement(

int* returnCode,
CciParser* parser,
CciElementType type,
const CciChar* name,
CciBool firstChildComplete,
CciBool lastChildComplete);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_FAILURE
v CCI_INV_PARSER_OBJECT

parser
Specifies the address of the parser object (input). This address is passed to the
parser as a parameter of the cpiCreateContext implementation function.

type
Specifies the type of the element being created (input).

name
Specifies a descriptive name for the element (input).

firstChildComplete
Specifies a value for the firstChildComplete flag of the syntax element (input).

Chapter 14. Reference 6551

lastChildComplete
Specifies a value for the lastChildComplete flag of the syntax element (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the
error.

Sample
/* Advance to the end of the value */

while (pc->iCurrentCharacter != quoteChar) {
advance((PARSER_CONTEXT_ST *)context, parser);

}

/* Get a pointer to the end of the tag */
endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Compute the size of the tag */
markedSize = (size_t)endMarker-(int)startMarker;

/* Convert the attribute value into broker form */
data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateAndInitializeElement(&rc, parser, type, name);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
if (pc->trace) {
const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiCreateElement” on page 6554
This function creates a default syntax element that is not attached to a syntax tree.
The element is owned by the specified parser. The element is incomplete in that
none of its attributes (such as type or name) are set.

6552 WebSphere Message Broker Version 7.0.0.8

“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiCreateContext:

This function creates a user-defined extension context associated with a parser
object. It is called by the broker when an instance of a parser object is constructed
or allocated. This action occurs when a message flow causes the message data to
be parsed; the broker constructs or allocates a parser object to acquire the
appropriate section of the message data.

Before this function is called, the broker creates a name element as the effective
root element for the parser. However, this element is not named. The parser must
name this element in the cpiSetElementName function.

The responsibilities of the extension are to:
1. Allocate all parser-instance specific data areas (such as context) that might be

required.
2. Perform all additional resource acquisition or initialization that might be

required.
3. Return the address of the context to the calling function. Whenever an

implementation function for this parser instance is called, the appropriate
context is passed as an argument to that function. Therefore, a user-defined
parser developed in C need not maintain its own static pointers to per-instance
data areas.

Defined In Type Member

CPI_VFT Mandatory iFpCreateContext

Syntax
void cpiCreateContext(

CciParser* parser);

Parameters

parser
The address of the parser object (input).

Return values

If successful, the address of the user-defined extension context is returned.
Otherwise, a value of zero is returned.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related reference:

Chapter 14. Reference 6553

“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiCreateElement:

This function creates a default syntax element that is not attached to a syntax tree.
The element is owned by the specified parser. The element is incomplete in that
none of its attributes (such as type or name) are set.

Syntax
CciElement* cpiCreateElement(

int* returnCode,
CciParser* parser);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_FAILURE
v CCI_INV_PARSER_OBJECT

parser
Specifies the address of the parser object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the
error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
/* Advance to the end of the value */

while (pc->iCurrentCharacter != quoteChar) {
advance((PARSER_CONTEXT_ST *)context, parser);

}

/* Get a pointer to the end of the tag */
endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Compute the size of the tag */
markedSize = (size_t)endMarker-(int)startMarker;

/* Convert the attribute value into broker form */
data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
if (pc->trace) {
const char * mbData = mbString(data, pc->iCcsid);

6554 WebSphere Message Broker Version 7.0.0.8

fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;
object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiCreateAndInitializeElement” on page 6551
This function creates a syntax element, owned by the specified parser, that is not
attached to a syntax tree. The element is partially initialized with the values of the
type, name, firstChildComplete, and lastChildComplete parameters.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiCreateParserFactory:

This function creates a single instance of the named parser factory in the broker.

Purpose

It must be called only in the initialization function bipGetParserFactory, which is
called when the LIL file is loaded by the broker. If cpiCreateParserFactory is called
at a later time, the results are unpredictable.

Syntax
CciFactory* cpiCreateParserFactory(

int* returnCode,
CciChar* name);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_FAILURE
v CCI_INV_FACTORY_NAME

Chapter 14. Reference 6555

v CCI_INV_OBJECT_NAME

name
Specifies the name of the factory being created (input).

Return values

If successful, the address of the parser factory object is returned. Otherwise, a
value of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason
for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void LilFactoryExportPrefix * LilFactoryExportSuffix bipGetParserFactory()
{

/* Declare variables */
CciFactory* factoryObject;
int rc;
static CPI_VFT vftable = {CPI_VFT_DEFAULT};

/* Before we proceed we need to initialise all the static constants */
/* that may be used by the plug-in. */
initParserConstants();

/* Setup function table with pointers to parser implementation functions */
vftable.iFpCreateContext = cpiCreateContext;
vftable.iFpParseBufferEncoded = cpiParseBufferEncoded;
vftable.iFpParseFirstChild = cpiParseFirstChild;
vftable.iFpParseLastChild = cpiParseLastChild;
vftable.iFpParsePreviousSibling = cpiParsePreviousSibling;
vftable.iFpParseNextSibling = cpiParseNextSibling;
vftable.iFpWriteBufferEncoded = cpiWriteBufferEncoded;
vftable.iFpDeleteContext = cpiDeleteContext;
vftable.iFpSetElementValue = cpiSetElementValue;
vftable.iFpElementValue = cpiElementValue;
vftable.iFpNextParserClassName = cpiNextParserClassName;
vftable.iFpSetNextParserClassName = cpiSetNextParserClassName;
vftable.iFpNextParserEncoding = cpiNextParserEncoding;
vftable.iFpNextParserCodedCharSetId = cpiNextParserCodedCharSetId;

/* Create the parser factory for this plugin */
factoryObject = cpiCreateParserFactory(&rc, constParserFactory);
if (factoryObject) {
/* Define the classes of message supported by the factory */
cpiDefineParserClass(&rc, factoryObject, constPXML, &vftable);

}
else {
/* Error: Unable to create parser factory */

}

/* Return address of this factory object to the broker */
return(factoryObject);

}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to

6556 WebSphere Message Broker Version 7.0.0.8

extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiDefineParserClass”
This function defines the name of a parser class that is supported by a parser
factory.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiDefineParserClass:

This function defines the name of a parser class that is supported by a parser
factory.

functbl is a pointer to a virtual function table that contains pointers to the C
implementation functions; that is, those functions that provide the function of the
parser itself.

Syntax
void cpiDefineParserClass(

int* returnCode,
CciFactory* factoryObject,
CciChar* name,
CPI_VFT* functbl);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_FACTORY_OBJECT
v CCI_INV_PARSER_NAME
v CCI_PARSER_NAME_TOO_LONG
v CCI_INV_OBJECT_NAME
v CCI_INV_VFTP
v CCI_MISSING_IMPL_FUNCTION
v CCI_INV_IMPL_FUNCTION
v CCI_NAME_EXISTS

factoryObject
Specifies the address of the factory object that supports the named parser
(input). The address is returned from cpiCreateParserFactory.

name
The name of the parser class to be defined (input). The maximum length of a
parser class name is 8 characters.

Chapter 14. Reference 6557

functbl
The address of the CPI_VFT structure that contains pointers to the
implementation functions (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void LilFactoryExportPrefix * LilFactoryExportSuffix bipGetParserFactory()
{

/* Declare variables */
CciFactory* factoryObject;
int rc;
static CPI_VFT vftable = {CPI_VFT_DEFAULT};

/* Before we proceed we need to initialise all the static constants */
/* that may be used by the plug-in. */
initParserConstants();

/* Setup function table with pointers to parser implementation functions */
vftable.iFpCreateContext = cpiCreateContext;
vftable.iFpParseBufferEncoded = cpiParseBufferEncoded;
vftable.iFpParseFirstChild = cpiParseFirstChild;
vftable.iFpParseLastChild = cpiParseLastChild;
vftable.iFpParsePreviousSibling = cpiParsePreviousSibling;
vftable.iFpParseNextSibling = cpiParseNextSibling;
vftable.iFpWriteBufferEncoded = cpiWriteBufferEncoded;
vftable.iFpDeleteContext = cpiDeleteContext;
vftable.iFpSetElementValue = cpiSetElementValue;
vftable.iFpElementValue = cpiElementValue;
vftable.iFpNextParserClassName = cpiNextParserClassName;
vftable.iFpSetNextParserClassName = cpiSetNextParserClassName;
vftable.iFpNextParserEncoding = cpiNextParserEncoding;
vftable.iFpNextParserCodedCharSetId = cpiNextParserCodedCharSetId;

/* Create the parser factory for this plugin */
factoryObject = cpiCreateParserFactory(&rc, constParserFactory);
if (factoryObject) {
/* Define the classes of message supported by the factory */
cpiDefineParserClass(&rc, factoryObject, constPXML, &vftable);

}
else {
/* Error: Unable to create parser factory */

}

/* Return address of this factory object to the broker */
return(factoryObject);

}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:

6558 WebSphere Message Broker Version 7.0.0.8

“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiCreateParserFactory” on page 6555
This function creates a single instance of the named parser factory in the broker.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiDeleteContext:

This function deletes the context owned by the parser object. It is invoked by the
message broker when an instance of a parser object is destroyed.

The responsibilities of the parser are to:
1. Release all parser-instance specific data areas (such as context) that were

acquired at construction or during parser processing.
2. Release all additional resources that might have been acquired for the

processing of the parser.

Defined In Type Member

CPI_VFT Optional iFpDeleteContext

Syntax
void cpiDeleteContext(

CciParser* parser,
CciContext* context);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

None.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.

Chapter 14. Reference 6559

Related reference:
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiElementCompleteNext:

This function gets the value of the 'next child complete' flag from the target syntax
element. This attribute indicates whether the element tree is complete.

Syntax
CciBool cpiElementCompleteNext(

int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The value of the attribute is returned. If an error occurs, returnCode indicates the
reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
if ((!cpiElementCompleteNext(&rc, element)) &&

(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:

6560 WebSphere Message Broker Version 7.0.0.8

“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiElementCompletePrevious”
This function gets the value of the 'previous child complete' flag from the target
syntax element. This attribute indicates whether the element tree is complete.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiElementCompletePrevious:

This function gets the value of the 'previous child complete' flag from the target
syntax element. This attribute indicates whether the element tree is complete.

Syntax
CciBool cpiElementCompletePrevious(

int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The value of the attribute is returned. If an error occurs, returnCode indicates the
reason for the error.

Sample

This example is based on code taken from the sample parser file
BipSampPluginParser.c. In the sample file, the code uses cpiElementCompleteNext.
if ((!cpiElementCompletePrevious(&rc, element)) &&

(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompletePrevious(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parsePreviousItem(parser, context, pc->iCurrentElement);

}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from

Chapter 14. Reference 6561

the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiElementCompleteNext” on page 6560
This function gets the value of the 'next child complete' flag from the target syntax
element. This attribute indicates whether the element tree is complete.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiElementName:

This function gets the name of the target syntax element. The syntax element name
must be set previously by using cniSetElementName or cpiSetElementName.

Syntax
Ccisize cpiElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
Specifies the address of the target syntax element object (input).

value
Specifies the address of a buffer into which the element name is copied (input).

length
The length, in characters, specified by the value parameter (input).

Return values

If successful, the element name is copied into the supplied buffer and the number
of CciChar characters copied is returned. If the buffer is not large enough to contain
the element name, returnCode is set to CCI_BUFFER_TOO_SMALL and the number
of characters required is returned. For all other failures, CCI_FAILURE is returned

6562 WebSphere Message Broker Version 7.0.0.8

and returnCode indicates the reason for the error.

Sample
cpiElementName(&rc;, element, (CciChar*)&elementName;, sizeof(elementName));

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiElementType” on page 6565
This function gets the type of the target syntax element. The syntax element type
must be set previously by using cniSetElementType or cpiSetElementType.
“cpiElementValue group” on page 6567
This group of functions retrieve the value of the specified syntax element.
“cpiElementValueValue” on page 6569
This function gets the value object from the specified syntax element. This value
object is opaque in that it cannot be interrogated. It can be used to set or derive the
value of one element from another, without knowing its type, by using the
cpiSetElementValueValue function.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiElementNameSpace:

This function retrieves the value of the namespace attribute for the specified syntax
element.

Defined In Type Member

CPI_VFT Optional iFpElementValue

Syntax
CciSize cpiElementNamespace(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Parameters

returnCode
A NULL pointer input signifies that the user-defined node does not want to
deal with errors. All exceptions thrown during the execution of this call are
re-thrown to the next upstream node in the flow. If input is not NULL, output

Chapter 14. Reference 6563

signifies the success status of the call. If an exception occurs during execution,
*returnCode is set to CCI_EXCEPTION on output. You can call
CciGetLastExceptionData to get details of the exception. If the caller did not
allocate enough memory to hold the namespace value, *returncode is set to
CCI_BUFFER_TOO_SMALL.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
Specifies the address of the target syntax element object.

value
Specifies the address of a buffer into which the element namespace value is
copied. A string of characters (including a NULL terminator) representing the
namespace value is copied into this buffer. The buffer must be a portion of
memory previously allocated by the caller.

length
The length in CciChars of the buffer specified by the value parameter.

Return values

If successful, the number of CciChars copied into the buffer is returned.

If the buffer is not large enough to contain the attribute value, returnCode is set to
CCI_BUFFER_TOO_SMALL, and the number of bytes CciChars required is
returned.

Sample
elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);

elementNamespaceLength = cpiElementNamespace(&rc;,
element,
elementNamespace,
elementNamespaceLength);

if (rc==CCI_BUFFER_TOO_SMALL){
free(elementNamespace);
elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);
elementNamespaceLength = cpiElementNamespace(&rc;,

element,
elementNamespace,
elementNamespaceLength);

}
checkRC(rc);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to

6564 WebSphere Message Broker Version 7.0.0.8

extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiSetElementNamespace” on page 6599
Use this function to set the namespace attribute for the specified syntax element.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiElementType:

This function gets the type of the target syntax element. The syntax element type
must be set previously by using cniSetElementType or cpiSetElementType.

Syntax
CciElementType cpiElementType(

int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The value of the element type is returned. If an error occurs, returnCode indicates
the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
if ((!cpiElementCompleteNext(&rc, element)) &&

(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}

Related concepts:

Chapter 14. Reference 6565

“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiElementName” on page 6562
This function gets the name of the target syntax element. The syntax element name
must be set previously by using cniSetElementName or cpiSetElementName.
“cpiElementValue group” on page 6567
This group of functions retrieve the value of the specified syntax element.
“cpiElementValueValue” on page 6569
This function gets the value object from the specified syntax element. This value
object is opaque in that it cannot be interrogated. It can be used to set or derive the
value of one element from another, without knowing its type, by using the
cpiSetElementValueValue function.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiElementValue:

This function gets the value of a specified element. It is called by the broker when
the value of a syntax element is to be retrieved. It provides an opportunity for a
user-defined parser to override the behavior for retrieving element values.

Defined In Type Member

CPI_VFT Optional iFpElementValue

Syntax
const CciElementValue* cpiElementValue(

CciParser* parser,
CciElement* currentElement);

Parameters

parser
The address of the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

The value of the target syntax element object is returned. This value has been
returned by the cpiElementValueValue function.
Related concepts:

6566 WebSphere Message Broker Version 7.0.0.8

“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiSetElementValue” on page 6602
This optional function sets the value of a specified element.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiElementValue group:

This group of functions retrieve the value of the specified syntax element.

Specify the appropriate function from this group that matches the type of data to
be retrieved:
v cpiElementBitArrayValue
v cpiElementBooleanValue
v cpiElementByteArrayValue
v cpiElementCharacterValue
v cpiElementDateValue
v cpiElementDecimalValue
v cpiElementGmtTimestampValue
v cpiElementGmtTimeValue
v cpiElementIntegerValue
v cpiElementRealValue
v cpiElementTimestampValue
v cpiElementTimeValue

Syntax
CciSize cpiElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

CciBool cpiElementBooleanValue(
int* returnCode,
CciElement* targetElement);

CciSize cpiElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

Chapter 14. Reference 6567

CciSize cpiElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciDate cpiElementDateValue(
int* returnCode,
CciElement* targetElement);

CciSize cpiElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciTimestamp cpiElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cpiElementGmtTimeValue(
int* returnCode,
CciElement* targetElement);

CciInt cpiElementIntegerValue(
int* returnCode,
CciElement* targetElement);

CciReal cpiElementRealValue(
int* returnCode,
CciElement* targetElement);

struct CciTimestamp cpiElementTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cpiElementTimeValue(
int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
Specifies the address of the target syntax element object (input).

value
The address of an output buffer into which the value of the syntax element is
stored (input). Used on relevant function calls only.

length
The length of the output buffer, in characters, specified by the value parameter
(input). Used on relevant function calls only.

Return values

The value of the element is returned.

6568 WebSphere Message Broker Version 7.0.0.8

In some cases, if the buffer is not large enough to receive the data, the data is not
written into the buffer. The size of the required buffer is passed as the return
value, and returnCode is set to CCI_BUFFER_TOO_SMALL. For example,
cpiElementCharacterValue or cpiElementDecimalValue use this technique.

If an error occurs, returnCode indicates the reason for the error.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiElementName” on page 6562
This function gets the name of the target syntax element. The syntax element name
must be set previously by using cniSetElementName or cpiSetElementName.
“cpiElementType” on page 6565
This function gets the type of the target syntax element. The syntax element type
must be set previously by using cniSetElementType or cpiSetElementType.
“cpiElementValueValue”
This function gets the value object from the specified syntax element. This value
object is opaque in that it cannot be interrogated. It can be used to set or derive the
value of one element from another, without knowing its type, by using the
cpiSetElementValueValue function.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiElementValueValue:

This function gets the value object from the specified syntax element. This value
object is opaque in that it cannot be interrogated. It can be used to set or derive the
value of one element from another, without knowing its type, by using the
cpiSetElementValueValue function.

This function can be used by parsers that override behavior by calling the
implementation functions cpiElementValue and cpiSetElementValue.

Syntax
const CciElementValue* cpiElementValueValue(

int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Chapter 14. Reference 6569

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The address of the CciElementValue object stored in the specified target syntax
element is returned. If an error occurs, zero (CCI_NULL_ADDR) is returned and
returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
const CciElementValue* cpiElementValue(

CciParser* parser,
CciElement* element

){
CciElement* firstChild;
const CciElementValue* value;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

value = cpiElementValueValue(&rc, element);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {
firstChild = cniFirstChild(&rc, element);
value = cpiElementValueValue(&rc, firstChild);

}
else {
}

return(value);
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiElementName” on page 6562
This function gets the name of the target syntax element. The syntax element name
must be set previously by using cniSetElementName or cpiSetElementName.
“cpiElementType” on page 6565
This function gets the type of the target syntax element. The syntax element type

6570 WebSphere Message Broker Version 7.0.0.8

must be set previously by using cniSetElementType or cpiSetElementType.
“cpiElementValue group” on page 6567
This group of functions retrieve the value of the specified syntax element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiFirstChild:

This function returns the address of the syntax element object that is the first child
of the specified target element.

Syntax
CciElement* cpiFirstChild(

int* returnCode,
const CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The address of the requested syntax element object is returned, unless there is no
child in which case zero is returned. If an error occurs, zero (CCI_NULL_ADDR) is
returned and returnCode indicates the reason for the error.

Sample

This example is taken from the sample node file BipSampPluginParser.c:
while ((!cpiElementCompleteNext(&rc, element)) &&

(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.

Chapter 14. Reference 6571

Related reference:
“cpiLastChild”
This function returns the address of the syntax element object that is the last child
of the specified target element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiLastChild:

This function returns the address of the syntax element object that is the last child
of the specified target element.

Syntax
CciElement* cpiLastChild(

int* returnCode,
const CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The address of the requested syntax element object is returned, unless there is no
child in which case zero is returned. If an error occurs, zero (CCI_NULL_ADDR) is
returned and returnCode indicates the reason for the error.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiFirstChild” on page 6571
This function returns the address of the syntax element object that is the first child
of the specified target element.

6572 WebSphere Message Broker Version 7.0.0.8

“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiNextParserClassName:

This function returns the name of the next parser class in the chain, if defined. Use
this function to return to the broker the name of the parser class that handles the
next section, or remainder, of the message content. Typically, for messages that
have a simple format type, only one message content parser is defined.

For messages that have a more complex format type with multiple message
parsers, each parser can identify the next one in the chain by returning its name in
the buffer parameter. The last parser in the chain must return an empty string.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

Defined In Type Member

CPI_VFT Optional iFpNextParserClassName

Syntax
void cpiNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* buffer,
int size);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

buffer
The address of a buffer into which the parser class name should be put (input).

size
The length, in bytes, of the buffer provided by the broker (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void cpiNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* buffer,
int size

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc = 0;

if (pc->trace) {

Chapter 14. Reference 6573

fprintf(pc->tracefile, "PLUGIN: -> cpiNextParserClassName() parser=0x%x context=0x%x\n",
parser, context);

fflush(pc->tracefile);
}

/* Copy the name to the broker */
CciCharNCpy(buffer, pc->iNextParserClassName, size);

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiNextParserClassName()\n");
fflush(pc->tracefile);

}

return;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiNextParserCodedCharSetId”
This function returns the coded character set ID (CCSID) of the data owned by the
next parser class in the chain, if one is defined.
“cpiNextParserEncoding” on page 6576
This function returns the encoding of data owned by the next parser class in the
chain, if defined.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiNextParserCodedCharSetId:

This function returns the coded character set ID (CCSID) of the data owned by the
next parser class in the chain, if one is defined.

Defined In Type Member

CPI_VFT Optional iFpNextParserCodedCharSetId

Syntax
int cpiNextParserCodedCharSetId(

CciParser* parser,
CciContext* context);

6574 WebSphere Message Broker Version 7.0.0.8

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

The CCSID of the data is returned. If it is not known, zero might be returned, and
a default CCSID is assumed.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
int cpiNextParserCodedCharSetId(

CciParser* parser,
CciContext* context

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int ccsid = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: -> cpiNextParserCodedCharSetId() parser=0x%x

context=0x%x\n", parser, context);
fflush(pc->tracefile);

}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiNextParserCodedCharSetId()\n");
fflush(pc->tracefile);

}

return ccsid;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiNextParserClassName” on page 6573
This function returns the name of the next parser class in the chain, if defined. Use
this function to return to the broker the name of the parser class that handles the
next section, or remainder, of the message content. Typically, for messages that
have a simple format type, only one message content parser is defined.
“cpiNextParserEncoding” on page 6576
This function returns the encoding of data owned by the next parser class in the
chain, if defined.

Chapter 14. Reference 6575

“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiNextParserEncoding:

This function returns the encoding of data owned by the next parser class in the
chain, if defined.

Defined In Type Member

CPI_VFT Optional iFpNextParserEncoding

Syntax
int cpiNextParserEncoding(

CciParser* parser,
CciContext* context);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

The encoding of the data is returned. If it is not known, zero might be returned,
and default encoding is assumed.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
int cpiNextParserEncoding(

CciParser* parser,
CciContext* context

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int encoding = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: -> cpiNextParserEncoding() parser=0x%x context=0x%x\n",

parser, context);
fflush(pc->tracefile);

}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiNextParserEncoding()\n");
fflush(pc->tracefile);

}

return encoding;
}

Related concepts:

6576 WebSphere Message Broker Version 7.0.0.8

“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiNextParserClassName” on page 6573
This function returns the name of the next parser class in the chain, if defined. Use
this function to return to the broker the name of the parser class that handles the
next section, or remainder, of the message content. Typically, for messages that
have a simple format type, only one message content parser is defined.
“cpiNextParserCodedCharSetId” on page 6574
This function returns the coded character set ID (CCSID) of the data owned by the
next parser class in the chain, if one is defined.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiNextSibling:

This function returns the address of the syntax element object that is the next
(right) sibling of the specified target element.

Syntax
CciElement* cpiNextSibling(

int* returnCode,
const CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The address of the requested syntax element object is returned, unless there is no
next sibling in which case zero is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned and returnCode indicates the reason for the error.

Chapter 14. Reference 6577

Sample

This example is taken from the sample node file BipSampPluginParser.c:
while ((!cpiElementCompleteNext(&rc, cpiParent(&rc, element))) &&

(!cpiNextSibling(&rc, element)) &&
(pc->iCurrentElement))

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiParent:

This function returns the address of the syntax element object that is the parent of
the specified target element.

Syntax
CciElement* cpiParent(

int* returnCode,
const CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

If successful, the address of the requested syntax element is returned. If there is no
parent element, zero is returned. If an error occurs, zero (CCI_NULL_ADDR) is
returned and the returnCode parameter indicates the reason for the error.

6578 WebSphere Message Broker Version 7.0.0.8

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void* parseNextItem(

CciParser* parser,
CciContext* context,
CciElement* element

){
void* endMarker;
void* startMarker;
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context;
CciElement* returnElement = element;
CciElement* newElement;
size_t markedSize;
const CciChar* data;
int rc;

if (pc->trace)

/* Skip any white space */
skipWhiteSpace((PARSER_CONTEXT_ST *)context);

/* Are we at the end of the buffer? */
if (pc->iIndex == pc->iSize)

return(0);
}

/* Are we within a tag? */
if (pc->iInTag) {

if (pc->iCurrentCharacter == chCloseAngle) {

/* We have reached the end of a tag */
pc->iInTag = 0;
advance((PARSER_CONTEXT_ST *)context, parser);

}
else if (pc->iCurrentCharacter == chForwardSlash) {

/* We may have reached the end of an empty tag */
advance((PARSER_CONTEXT_ST *)context, parser);

if (pc->iCurrentCharacter == chCloseAngle) {

pc->iInTag = 0;
advance((PARSER_CONTEXT_ST *)context, parser);

cpiSetElementCompleteNext(&rc, element, 1);

returnElement = cpiParent(&rc, element);
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and

Chapter 14. Reference 6579

structure.
Related reference:
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiParseBuffer:

This function prepares a parser to parse a new message object. It is called the first
time (for each message) that the message flow causes the message content to be
parsed.

This function is called for each user-defined parser that is used to parse a
particular message format to complete the following actions:
v Perform all initialization that is required
v Return the length of the message content that it takes ownership for

The offset parameter indicates the offset within the message buffer where parsing is
to commence. This indication is required because another parser might own a
previous portion of the message (for example, an MQMD header is parsed by an
internal parser owned by the broker). The offset must be positive and be less than
the size of the buffer. Verify in this function that the offset is valid, to remove
problems associated with previous parsers.

The parser must return the size of the remaining buffer for which it takes
ownership. The size must be less than or equal to the size of the buffer, less the
current offset.

A parser must not attempt to cause parsing of other portions of the syntax element
tree, for example, by navigating to the root element and to another branch. This
action can cause unpredictable results.

If this implementation function is provided in the CPI_VFT structure, you can call
neither cpiParseBufferEncoded() nor cpiParseBufferFormatted(), because the
cpiDefineParserClass() function fails with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpParseBuffer

Syntax
int cpiParseBuffer(

CciParser* parser,
CciContext* context,
int offset);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

offset
The offset into the message buffer at which parsing is to commence (input).

6580 WebSphere Message Broker Version 7.0.0.8

Return values

The size (in bytes) of the remaining portion of the message buffer for which the
parser takes ownership.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
int cpiParseBuffer(

CciParser* parser,
CciContext* context,
int offset,

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

/* Prime the first byte in the stream */
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

/* Set the current element to the root element */
pc->iCurrentElement = cpiRootElement(&rc, parser);

/* Reset flag to ensure parsing is reset correctly */
pc->iInTag = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseBuffer()
retvalue=%d\n", pc->iSize);
fflush(pc->tracefile);

}

Related concepts:
“User-defined input nodes” on page 2990
A user-defined input node is an extension to the broker that provides a new input
node in addition to the nodes supplied with the product.
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiParseBufferEncoded” on page 6582
This function extends the capability of the cpiParseBuffer() implementation
function, and provides the encoding and coded character set that the input
message is represented in.
“cpiParseBufferFormatted” on page 6583
This function extends the capability of the cpiParseBuffer() implementation
function, and provides additional information about the input message.

Chapter 14. Reference 6581

“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiParseBufferEncoded:

This function extends the capability of the cpiParseBuffer() implementation
function, and provides the encoding and coded character set that the input
message is represented in.

If this implementation function is provided in the CPI_VFT structure, you cannot
specify either cpiParseBuffer() or cpiParseBufferFormatted(); if you do, the
cpiDefineParserClass() function fails with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpParseBufferEncoded

Syntax
int cpiParseBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

encoding
The encoding of the message buffer (input).

ccsid
The CCSID of the message buffer (input).

Return values

The size (in bytes) of the remaining portion of the message buffer for which the
parser takes ownership.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
int cpiParseBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */

6582 WebSphere Message Broker Version 7.0.0.8

pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save the format of the buffer */
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

/* Prime the first byte in the stream */
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

/* Set the current element to the root element */
pc->iCurrentElement = cpiRootElement(&rc, parser);

/* Reset flag to ensure parsing is reset correctly */
pc->iInTag = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseBufferEncoded()
retvalue=%d\n", pc->iSize);
fflush(pc->tracefile);

}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiParseBuffer” on page 6580
This function prepares a parser to parse a new message object. It is called the first
time (for each message) that the message flow causes the message content to be
parsed.
“cpiParseBufferFormatted”
This function extends the capability of the cpiParseBuffer() implementation
function, and provides additional information about the input message.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiParseBufferFormatted:

This function extends the capability of the cpiParseBuffer() implementation
function, and provides additional information about the input message.

The following additional information is available:

Chapter 14. Reference 6583

1. The encoding and coded character set that the input message is represented in.
2. The message set, type, and format for the message.

If this implementation function is provided in the CPI_VFT structure, you cannot
specify either cpiParseBuffer() or cpiParseBufferEncoded(); if you do, the
cpiDefineParserClass() function fails with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpParseBufferFormatted

Syntax
int cpiParseBufferFormatted(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid,
CciChar* set,
CciChar* type,
CciChar* format);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

encoding
The encoding of the message buffer (input).

ccsid
The CCSID of the message buffer (input).

set
The message set to which the message belongs (input).

type
The message type (input).

format
The message format (input).

Return values

The size (in bytes) of the remaining portion of the message buffer for which the
parser takes ownership.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
int cpiParseBufferFormatted(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid,
CciChar* set,
CciChar* type,
CciChar* format

6584 WebSphere Message Broker Version 7.0.0.8

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save the format of the buffer */
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

/* Prime the first byte in the stream */
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

/* Set the current element to the root element */
pc->iCurrentElement = cpiRootElement(&rc, parser);

/* Reset flag to ensure parsing is reset correctly */
pc->iInTag = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseBufferFormatted()
retvalue=%d\n", pc->iSize);
fflush(pc->tracefile);

}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiParseBuffer” on page 6580
This function prepares a parser to parse a new message object. It is called the first
time (for each message) that the message flow causes the message content to be
parsed.
“cpiParseBufferEncoded” on page 6582
This function extends the capability of the cpiParseBuffer() implementation
function, and provides the encoding and coded character set that the input
message is represented in.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

Chapter 14. Reference 6585

cpiParseFirstChild:

This function parses the first child of a specified syntax element. It is called by the
broker when the first child element of the current syntax element is required.

Defined In Type Member

CPI_VFT Mandatory iFpParseFirstChild

Syntax
void cpiParseFirstChild(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void cpiParseFirstChild(

CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

if ((!cpiElementCompleteNext(&rc, element)) &&
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}
}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseFirstChild()\n");
fflush(pc->tracefile);

}

return;
}

Related concepts:

6586 WebSphere Message Broker Version 7.0.0.8

“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiParseLastChild”
This function parses the last child of a specified syntax element. It is called by the
broker when the last child element of the current syntax element is required.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiParseLastChild:

This function parses the last child of a specified syntax element. It is called by the
broker when the last child element of the current syntax element is required.

Defined In Type Member

CPI_VFT Mandatory iFpParseLastChild

Syntax
void cpiParseLastChild(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:

Chapter 14. Reference 6587

void cpiParseLastChild(
CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}
}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseLastChild()\n");
fflush(pc->tracefile);

}

return;
}

The purpose of this code is to parse children of an element until the last child is
reached. You can use this kind of structure in a parser that does not already know
the exact offset in the bit stream of the last child of an element.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiParseFirstChild” on page 6586
This function parses the first child of a specified syntax element. It is called by the
broker when the first child element of the current syntax element is required.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiParseNextSibling:

This function parses the next (right) sibling of a specified syntax element. It is
called by the broker when the next (right) sibling element of the current syntax
element is required.

6588 WebSphere Message Broker Version 7.0.0.8

Defined In Type Member

CPI_VFT Mandatory iFpParseNextSibling

Syntax
void cpiParseNextSibling(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void cpiParseNextSibling(

CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

while ((!cpiElementCompleteNext(&rc, cpiParent(&rc, element))) &&
(!cpiNextSibling(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseNextSibling()\n");
fflush(pc->tracefile);

}

return;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:

Chapter 14. Reference 6589

“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiParsePreviousSibling”
This function parses the previous (left) sibling of a specified syntax element. It is
called by the broker when the previous (left) sibling element of the current syntax
element is required.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiParsePreviousSibling:

This function parses the previous (left) sibling of a specified syntax element. It is
called by the broker when the previous (left) sibling element of the current syntax
element is required.

Defined In Type Member

CPI_VFT Mandatory iFpParsePreviousSibling

Syntax
void cpiParsePreviousSibling(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

None.

Sample
void cpiParsePreviousSibling(

CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

while ((!cpiElementCompletePrevious(&rc, cpiParent(&rc, element))) &&
(!cpiPreviousSibling(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parsePreviousItem(parser, context, pc->iCurrentElement);

6590 WebSphere Message Broker Version 7.0.0.8

}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParsePreviousSibling()\n");
fflush(pc->tracefile);

}

return;
}

The code sample is similar to that used for cpiParseNextSibling. Use
cpiParsePreviousSibling as shown in the example when you are parsing the bit
stream right to left.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiParseNextSibling” on page 6588
This function parses the next (right) sibling of a specified syntax element. It is
called by the broker when the next (right) sibling element of the current syntax
element is required.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiParserType:

This optional function returns whether the parser is an implementation of a
standard parser.

A standard parser expects the Format field of the preceding header to contain the
name of the parser class that follows. Non-standard parsers expects the Domain
field to contain the parser class name. If the cpiParserType implementation
function is not provided, the broker assumes that the parser is a standard parser.

Defined In Type Member

CPI_VFT Optional iFpParserType

Syntax
CciBool cpiParserType(

CciParser* parser,
CciContext* context);

Chapter 14. Reference 6591

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

If the implementation is of a standard parser, zero is returned. Otherwise, the
implementation is assumed to be that of a non-standard parser, nd a non-zero
value is returned.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiRootElement:

This function gets the address of the root syntax element of the specified parser
object.

Syntax
CciElement* cpiRootElement(

int* returnCode,
CciParser* parser);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT

parser
Specifies the address of the parser object (input).

6592 WebSphere Message Broker Version 7.0.0.8

Return values

The address of the root syntax element is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
int cpiParseBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save the format of the buffer */
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

/* Prime the first byte in the stream */
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

/* Set the current element to the root element */
pc->iCurrentElement = cpiRootElement(&rc, parser);

/* Reset flag to ensure parsing is reset correctly */
pc->iInTag = 0;

/* We will assume ownership of the remainder of the buffer */
return(pc->iSize);

}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

Chapter 14. Reference 6593

cpiSetCharacterValueFromBuffer:

This function sets the value of the specified syntax element.

Syntax
void cpiSetCharacterValueFromBuffer(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

targetElement
Specifies the address of the target syntax element object (input).

value
The value to be set in the target element (input).

length
The length of the character string, expressed as the number of CciChar
characters, specified by the value parameter (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetCharacterValueFromBuffer(&rc, newElement, data, length);
if (pc->trace) {
const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

Related concepts:

6594 WebSphere Message Broker Version 7.0.0.8

“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiSetElementCompleteNext:

This function sets the 'next child complete' flag in the target syntax element to the
specified value.

Syntax
void cpiSetElementCompleteNext(

int* returnCode,
CciElement* targetElement,
CciBool value);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

value
The value to be set in the flag (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
/* Get a pointer to the start of the tag */

startMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Skip over the tag */
goToNameEnd((PARSER_CONTEXT_ST *)context, parser);

Chapter 14. Reference 6595

/* Get a pointer to the end of the tag */
endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Compute the size of the tag */
markedSize = (size_t)endMarker-(int)startMarker;

/* Convert the tag into broker form */
data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name element for the tag */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME);
cpiSetElementName(&rc, newElement, data);
cpiSetElementCompletePrevious(&rc, newElement, 0);
cpiSetElementCompleteNext(&rc, newElement, 0);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: New tag found\n");
fprintf(pc->tracefile, "PLUGIN: Created new NAME element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory allocated in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);
cpiSetElementCompletePrevious(&rc, element, 1);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiSetElementCompletePrevious”
This function sets the 'previous child complete' flag in the target syntax element to
the specified value.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiSetElementCompletePrevious:

This function sets the 'previous child complete' flag in the target syntax element to
the specified value.

6596 WebSphere Message Broker Version 7.0.0.8

Syntax
void cpiSetElementCompletePrevious(

int* returnCode,
CciElement* targetElement,
CciBool value);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

value
The value to be set in the flag (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
/* Get a pointer to the start of the tag */

startMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Skip over the tag */
goToNameEnd((PARSER_CONTEXT_ST *)context, parser);

/* Get a pointer to the end of the tag */
endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Compute the size of the tag */
markedSize = (size_t)endMarker-(int)startMarker;

/* Convert the tag into broker form */
data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name element for the tag */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME);
cpiSetElementName(&rc, newElement, data);
cpiSetElementCompletePrevious(&rc, newElement, 0);
cpiSetElementCompleteNext(&rc, newElement, 0);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: New tag found\n");
fprintf(pc->tracefile, "PLUGIN: Created new NAME element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory allocated in CciNString() */
free((void *)data);

Chapter 14. Reference 6597

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);
cpiSetElementCompletePrevious(&rc, element, 1);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiSetElementCompleteNext” on page 6595
This function sets the 'next child complete' flag in the target syntax element to the
specified value.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiSetElementName:

This function sets the name of the specified syntax element.

Syntax
void cpiSetElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* name);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
Specifies the address of the target syntax element object (input).

name
The name to be set in the target element (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

6598 WebSphere Message Broker Version 7.0.0.8

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiSetElementType” on page 6601
This function sets the type of the specified syntax element.
“cpiSetElementValue group” on page 6604
This group of functions set the value of the specified syntax element.
“cpiSetElementValueValue” on page 6606
This function sets the value of the specified syntax element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiSetElementNamespace:

Use this function to set the namespace attribute for the specified syntax element.

Defined In Type Member

CPI_VFT Optional iFpSetElementValue

Chapter 14. Reference 6599

Syntax
void cpiSetElementNamespace(

int* returnCode,
CciElement* targetElement,
const CciChar* nameSpace);

Parameters

returnCode
A NULL pointer input value indicates that the user-defined node does not
want to deal with errors. All exceptions thrown during the execution of this
call are rethrown to the next upstream node in the flow. If the input value is
not NULL, output signifies the success status of the call. If an exception occurs
during execution, *returnCode is set to CCI_EXCEPTION on output. Call
CciGetLastExceptionData to obtain details of the exception. (input).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

currentElement
The address of the current syntax element (input).

targetElement
Specifies the address of the target syntax element object.

value
Specifies the address of a null terminated string of CciChars that represents the
namespace value. An empty string is a valid value for namespace; elements are
created in the empty string namespace by default, therefore if you specify an
empty string as the namespace by using this call, the call is effective only if the
element was previously in another namespace, and the required effect is to
change the namespace value to empty string.

Return values

None.

Sample
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
cpiSetElementNamespace(&rc, newElement, data);
if (pc->trace) {
const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMESPACEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

6600 WebSphere Message Broker Version 7.0.0.8

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiElementNameSpace” on page 6563
This function retrieves the value of the namespace attribute for the specified syntax
element.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiSetElementType:

This function sets the type of the specified syntax element.

Syntax
void cpiSetElementType(

int* returnCode,
CciElement* targetElement,
CciElementType type);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

type
The type to be set in the target element (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Chapter 14. Reference 6601

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
if (pc->trace) {
const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiSetElementName” on page 6598
This function sets the name of the specified syntax element.
“cpiSetElementValue group” on page 6604
This group of functions set the value of the specified syntax element.
“cpiSetElementValueValue” on page 6606
This function sets the value of the specified syntax element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiSetElementValue:

This optional function sets the value of a specified element.

It called by the broker when the value of a syntax element is to be set. It provides
an opportunity for a user-defined parser to override the behavior for setting
element values.

6602 WebSphere Message Broker Version 7.0.0.8

Defined In Type Member

CPI_VFT Optional iFpSetElementValue

Syntax
void cpiSetElementValue(

CciParser* parser,
CciElement* currentElement,
CciElementValue* value);

Parameters

parser
The address of the parser object (input).

currentElement
The address of the current syntax element (input).

value
The value (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {
/* Create a new value element, add as a first child, and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddAsFirstChild(&rc, element, newElement);

}
else {
}

return;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to

Chapter 14. Reference 6603

extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiElementValue” on page 6566
This function gets the value of a specified element. It is called by the broker when
the value of a syntax element is to be retrieved. It provides an opportunity for a
user-defined parser to override the behavior for retrieving element values.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiSetElementValue group:

This group of functions set the value of the specified syntax element.

Specify the appropriate function from this group that matches the type of data to
be set:
v cpiSetElementBitArrayValue
v cpiSetElementByteArrayValue
v cpiSetElementBooleanValue
v cpiSetElementCharacterValue
v cpiSetElementDateValue
v cpiSetElementDecimalValue
v cpiSetElementGmtTimestampValue
v cpiSetElementGmtTimeValue
v cpiSetElementIntegerValue
v cpiSetElementRealValue
v cpiSetElementTimestampValue
v cpiSetElementTimeValue

Syntax
void cpiSetElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

void cpiSetElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

void cpiSetElementBooleanValue(
int* returnCode,
CciElement* targetElement,
CciBool value);

void cpiSetElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

6604 WebSphere Message Broker Version 7.0.0.8

void cpiSetElementDateValue(
int* returnCode,
CciElement* targetElement,
const struct CciDate* value);

void cpiSetElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value);

void cpiSetElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement, const struct CciTimestamp* value);

void cpiSetElementGmtTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

void cpiSetElementIntegerValue(
int* returnCode,
CciElement* targetElement,
CciInt value);

void cpiSetElementRealValue(
int* returnCode,
CciElement* targetElement,
CciReal value);

void cpiSetElementTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cpiSetElementTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

targetElement
Specifies the address of the target syntax element object (input).

value
The value to be set in the target element (input).

length
The length of the data value, expressed as the number of CciChar characters.
This parameter is used on relevant function calls only.

Return values

None. If an error occurs, returnCode indicates the reason for the error.
Related concepts:

Chapter 14. Reference 6605

“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiSetElementName” on page 6598
This function sets the name of the specified syntax element.
“cpiSetElementType” on page 6601
This function sets the type of the specified syntax element.
“cpiSetElementValueValue”
This function sets the value of the specified syntax element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiSetElementValueValue:

This function sets the value of the specified syntax element.

Syntax
void cpiSetElementValueValue(

int* returnCode,
CciElement* targetElement,
CciElementValue* value);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
Specifies the address of the target syntax element object (input).

value
Specifies the address of the CciElementValue object that contains the value to be
stored in the specified target element (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

6606 WebSphere Message Broker Version 7.0.0.8

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {
/* Create a new value element, add as a first child, and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddAsFirstChild(&rc, element, newElement);

}
else {
}

return;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiSetElementName” on page 6598
This function sets the name of the specified syntax element.
“cpiSetElementType” on page 6601
This function sets the type of the specified syntax element.
“cpiSetElementValue group” on page 6604
This group of functions set the value of the specified syntax element.
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiSetNameFromBuffer:

This function sets the name attribute of the target syntax element using the data
supplied in the buffer pointed to by the name parameter. The size of the name is
specified using the length parameter.

Chapter 14. Reference 6607

Syntax
void cpiSetNameFromBuffer(

int* returnCode,
CciElement* targetElement,
const CciChar* name,
CciSize length);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

targetElement
Specifies the address of the target syntax element object (input).

name
The address of a buffer containing the name (input).

length
The length of the character string, expressed as the number of CciChar
characters, specified by the name parameter.

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetNameFromBuffer(&rc, newElement, data, length);
if (pc->trace) {
const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from

6608 WebSphere Message Broker Version 7.0.0.8

the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“C parser utility functions” on page 6539
A user-defined parser can call functions provided by the broker to create or define
objects, such as message parser factories.

cpiSetNextParserClassName:

This optional function returns the name of the next parser class in the chain.

It is called during finalize processing, and returns to the caller a string that
contains the name of the next parser class in the chain. Using this information, a
user-defined parser can, during the finalize phase, modify the syntax element tree
before the phase that causes serialization of the bit stream.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

Defined In Type Member

CPI_VFT Optional iFpSetNextParserClassName

Syntax
void cpiSetNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* name,
CciBool parserType);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

name
The name of the next parser as a string of CciChar characters.

parserType
Indicates whether the referenced parser is standard (parserType=0) or
non-standard (parserType=non-zero) (input). A standard parser expects the
Format field of the preceding header in the chain to contain the name of the
parser class that follows. Non-standard parsers expects the Domain field to
contain the parser class name.

Chapter 14. Reference 6609

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
void cpiSetNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* name,
CciBool isHeaderParser

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc = 0;

/* Save the name in my context */
CciCharNCpy(pc->iNextParserClassName, name, CciCharLen(name));

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiSetNextParserClassName()\n");
fflush(pc->tracefile);

}

return;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiWriteBuffer:

This function writes a syntax element tree to the message buffer associated with a
parser.

It appends data to the bit stream in the message buffer associated with the parser
object, using the current syntax element tree as a source. The element tree cannot
be modified during the execution of this implementation function. The
cpiAppendToBuffer utility function can be used to append the message buffer (bit
stream) with data from the element tree.

6610 WebSphere Message Broker Version 7.0.0.8

If this implementation function is provided in the CPI_VFT structure, you cannot
specify either cpiWriteBufferEncoded() or cpiWriteBufferFormatted(); if you do, the
cpiDefineParserClass() function fails with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpWriteBuffer

Syntax
int cpiWriteBuffer(

CciParser* parser,
CciContext* context);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

The size in bytes of the data appended to the bit stream in the buffer.

Sample
int cpiWriteBuffer(

CciParser* parser,
CciContext* context

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int initialSize = 0;
int rc = 0;
const void* a;
CciByte b;

initialSize = cpiBufferSize(&rc, parser);
a = cpiBufferPointer(&rc, parser);
b = cpiBufferByte(&rc, parser, 0);

cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

return cpiBufferSize(0, parser) - initialSize;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.

Chapter 14. Reference 6611

Related reference:
“cpiWriteBufferEncoded”
This function is an extension of the capability provided by the existing
cpiWriteBuffer() implementation function that provides the encoding and coded
character set that the output message should be represented in when the parser
serializes its element tree to an output bit stream.
“cpiWriteBufferFormatted” on page 6613
This function extends the capability of the cpiWriteBuffer() implementation
function by providing additional information about the output message.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiWriteBufferEncoded:

This function is an extension of the capability provided by the existing
cpiWriteBuffer() implementation function that provides the encoding and coded
character set that the output message should be represented in when the parser
serializes its element tree to an output bit stream.

If serialization is not required, for example when the output is based on an input
bit stream, and the tree has not been modified, this implementation function is not
called by the broker. If this implementation function is provided in the CPI_VFT
structure, you cannot specify either cpiWriteBuffer() or cpiWriteBufferFormatted();
if you do, the cpiDefineParserClass() function fails with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpWriteBufferEncoded

Syntax
int cpiWriteBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

encoding
The encoding of the message buffer (input).

ccsid
The CCSID of the message buffer (input).

Return values

The size in bytes of the data appended to the bit stream in the buffer.

6612 WebSphere Message Broker Version 7.0.0.8

Sample

This example is taken from the sample parser file BipSampPluginParser.c:
int cpiWriteBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int initialSize = 0;
int rc = 0;
const void* a;
CciByte b;

initialSize = cpiBufferSize(&rc, parser);
a = cpiBufferPointer(&rc, parser);
b = cpiBufferByte(&rc, parser, 0);

cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

return cpiBufferSize(0, parser) - initialSize;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiWriteBuffer” on page 6610
This function writes a syntax element tree to the message buffer associated with a
parser.
“cpiWriteBufferFormatted”
This function extends the capability of the cpiWriteBuffer() implementation
function by providing additional information about the output message.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

cpiWriteBufferFormatted:

This function extends the capability of the cpiWriteBuffer() implementation
function by providing additional information about the output message.

The following additional information is provided:

Chapter 14. Reference 6613

1. The encoding and coded character set that the output message is represented in
when the parser serializes its element tree to an output bit stream.

2. The message set, type, and format for the output message for those parsers
which require such information to correctly serialize its element tree to an
output bit stream.

If serialization is not required, for example when the output is based on an input
bit stream, and the tree has not been modified, this implementation function will
not be invoked by the broker.

If this implementation function is provided in the CPI_VFT structure, you cannot
specify either cpiWriteBuffer() or cpiWriteBufferEncoded(); if you do, the
cpiDefineParserClass() function fails with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpWriteBufferFormatted

Syntax
int cpiWriteBufferFormatted(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid,
CciChar* set,
CciChar* type,
CciChar* format);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

encoding
The encoding of the message buffer (input).

ccsid
The CCSID of the message buffer (input).

set
The message set to which the message belongs (input).

type
The message type (input).

format
The message format (input).

Return values

The size in bytes of the data appended to the bit stream in the buffer.

Sample
int cpiWriteBufferFormatted(

CciParser* parser,
CciContext* context,
int encoding,

6614 WebSphere Message Broker Version 7.0.0.8

int ccsid
CciChar* set,
CciChar* type,
CciChar* format

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int initialSize = 0;
int rc = 0;
const void* a;
CciByte b;

initialSize = cpiBufferSize(&rc, parser);
a = cpiBufferPointer(&rc, parser);
b = cpiBufferByte(&rc, parser, 0);

cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

return cpiBufferSize(0, parser) - initialSize;
}

Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“cpiWriteBuffer” on page 6610
This function writes a syntax element tree to the message buffer associated with a
parser.
“cpiWriteBufferEncoded” on page 6612
This function is an extension of the capability provided by the existing
cpiWriteBuffer() implementation function that provides the encoding and coded
character set that the output message should be represented in when the parser
serializes its element tree to an output bit stream.
“C parser implementation functions” on page 6538
A user-defined parser implements its capability through a function interface which
is called by the broker during runtime operation. This interface includes functions
to create and delete all local context storage that is associated with a parser object
and the parsing operations.

C user exit API
The user exit API defines implementation and utility functions.
v A set of implementation functions provides the functionality of the user exits.

Some of these implementation functions are mandatory and others are optional.
These functions are defined in the BipCci.h header file. They are described in “C
user exit implementation functions” on page 6616.

v A set of utility functions that are invoked by user exits.

Chapter 14. Reference 6615

These functions are defined in the BipCpi.h header file. They are described in
“C user exit utility functions” on page 6628.

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“C user exit implementation functions”
A set of implementation functions provide the functionality of the user exits.
“C user exit utility functions” on page 6628
The broker provides several utility functions that you can call from your user exits.

“C Header files” on page 6415
The C interfaces are defined by the following header files.
“C common API” on page 6640
The C language common API consists of implementation and utility functions that
you can use in user-defined nodes, parsers, and user exits.
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.

C user exit implementation functions:

A set of implementation functions provide the functionality of the user exits.

Some implementation functions are mandatory, and must be implemented by the
developer; others are optional:

Mandatory functions

v “bipInitializeUserExits” on page 6617
v “bipTerminateUserExits” on page 6618

Optional functions

v “cciInputMessageCallback” on page 6619
v “cciPropagatedMessageCallback” on page 6623
v “cciOutputMessageCallback” on page 6626
v “cciNodeCompletionCallback” on page 6621
v “cciTransactionEventCallback” on page 6625

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.

6616 WebSphere Message Broker Version 7.0.0.8

“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“C user exit utility functions” on page 6628
The broker provides several utility functions that you can call from your user exits.

“C user exit API” on page 6615
The user exit API defines implementation and utility functions.
“C common API” on page 6640
The C language common API consists of implementation and utility functions that
you can use in user-defined nodes, parsers, and user exits.
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.
“C Header files” on page 6415
The C interfaces are defined by the following header files.

bipInitializeUserExits:

bipInitializeUserExits is an implementation function that is exported by the User
Exit library (.lel file).

This function is called when the execution group starts, just after loading the .lel
file. When this function runs, your exit code must call cciRegisterUserExit to
register each user exit provided by that .lel file.

Syntax:
void bipInitializeUserExits()

Parameters:
None.

Return values:
None.

Example:
extern "C"{

void bipInitializeUserExits(){

int rc = CCI_SUCCESS;
CCI_UE_VFT myVft = {CCI_UE_VFT_DEFAULT};
myVft.iFpInputMessageCallback = myInputMessageCallback;
myVft.iFpTransactionEventCallback = myTransactionEventCallback;
myVft.iFpPropagatedMessageCallback = myPropagatedMessageCallback;
myVft.iFpNodeCompletionCallback = myNodeCompletionCallback;

Chapter 14. Reference 6617

cciRegisterUserExit(&rc,
MyConstants::myUserExitName,
0,
myVft);

/*we should now check the rc for unexpected values*/

return;
}

}/*end of extern "C" */

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:
“cciRegisterUserExit” on page 6638
cciRegisterUserExit is a utility function that can be called by the user’s code when
bipInitializeUserExits is called.

bipTerminateUserExits:

bipInitializeUserExits is an implementation function exported by the User Exit
library (.lel file).

This function is called just before unloading the .lel file, which typically happens
when the execution group process is stopping. When this function runs, your exit
code must clean up all resources that were allocated during the
bipInitializeUserExits function.

If this function is not exported, the .lel file fails to load. You cannot call other
utility functions while bipTerminateUserExits is running. This function is started
on the same thread as the bipInitializeUserExits function.

Syntax:
void bipTerminateUserExits()

Parameters:
None.

Return values:
None.

Example:
extern "C"{

void bipTerminateUserExits(){
/*Here, we clean up any resources, e.g.

spawned threads, file handles, sockets */
freeResources();

}

}/*end of extern "C" */

Related concepts:

6618 WebSphere Message Broker Version 7.0.0.8

“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:
“bipInitializeUserExits” on page 6617
bipInitializeUserExits is an implementation function that is exported by the User
Exit library (.lel file).

cciInputMessageCallback:

The cciInputMessageCallback function can be registered as a callback and is called
every time a message is read by an input node, and before that message is
propagated down the message flow.

The cciInputMessageCallback function is called for every input message that is
read in the execution group where the callback is registered, if the user exit state is
active. The callback is registered by providing a pointer to the function as the
iFpInputMessageCallback field of the CCI_UE_VFT struct that is passed to
cciRegisterUserExit.

Syntax:
typedef void (*cciInputMessageCallback) (

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciMessageOrigin messageOrigin,
CciNode* inputNode);

Parameters:

userContext (input)
The value that is passed to the cciRegisterUserExit function.

message
A handle to the message object. The user exit code must not update transport
headers or Properties elements in this tree. Updating the message can affect
performance, particularly if the input message would not otherwise be
changed in the message flow.

localEnvironment
A handle to the local environment object.

exceptionList
A handle to the exception list object.

environment
A handle to the environment object for the current message flow.

messageOrigin
Depending on the type of input node, the message might have originated from
a bit stream (CCI_MESSAGE_ORIGIN_BITSTREAM) or from a tree
(CCI_MESSAGE_ORIGIN_TREE). The user exit can access one of these sources
without causing processing by the parser. For example, in the case of the
MQInput node, you can access the bitstream safely whereas, in the case of the

Chapter 14. Reference 6619

JMSInput node, you can access the tree safely. You can access the bit stream by
calling cniBufferPointer, cniBufferSize, or cniBufferByte. You can access the
tree by calling cniRootElement and using the usual syntax element navigation
functions (for example, cniFirstChild). Although this parameter tells the user
exit what it can access safely without causing processing by the parser, the
user exit code might ignore this advice and effectively alter the parse timing.

inputNode
A handle to the input node that reads this input message. The handle can be
used to make calls to functions such as cciGetNodeName, cciGetNodeType,
and cniGetBrokerInfo.

Return values:
None.

Example:
void myInputMessageCallback(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciMessageOrigin messageOrigin,
CciNode* inputNode){

...

...
}

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:
“cciRegisterUserExit” on page 6638
cciRegisterUserExit is a utility function that can be called by the user’s code when
bipInitializeUserExits is called.
“cniBufferByte” on page 6426
Use this function to get a single byte from the data buffer associated with (and
owned by) the message object specified in the message argument. The value of the
index argument indicates which byte in the byte array is to be returned.
“cniBufferPointer” on page 6427
Use this function to get a pointer to the data buffer associated with (and owned
by) the message object specified in the message argument. This function is
typically used by output nodes.
“cniBufferSize” on page 6428
Use this function to get the size of the data buffer associated with (and owned by)
the message object specified in the message argument.
“cniRootElement” on page 6503
Use this function to get the root syntax element associated with a specified
message. It returns the root element that is associated with (and owned by) the
message object identified by the message parameter. When a message object is
constructed by the broker, a root element is automatically created.

6620 WebSphere Message Broker Version 7.0.0.8

“cniFirstChild” on page 6481
Use this function to retrieve the address of the syntax element object that is the
first child of the specified syntax element.
“cniGetThreadContext” on page 6494
This function returns the thread context for the current thread.
“cciGetNodeName” on page 6630
This function returns the name of the specified node.
“cciGetNodeType” on page 6631
This function returns the type of the specified node.
“cniGetBrokerInfo” on page 6488
Use this function to query the current broker environment (for example, for
information about broker name and message flow name). The information is
returned in a structure of type CNI_BROKER_INFO_ST.

cciNodeCompletionCallback:

The cciNodeCompletionCallback function can be registered as a callback and is
called whenever a node has completed processing of a message and is returning
control to its upstream node.

The cciNodeCompletionCallback function is called for every message that is
propagated in the execution group where the callback was registered, if the user
exit state is active. The callback is registered by providing a pointer to the function
as the iFpNodeCompletionCallback field of the CCI_UE_VFT struct that is passed
to cciRegisterUserExit.

If the node completes due to an unhandled exception, it returns with a reasonCode
of CCI_EXCEPTION, and that exception’s details can be obtained by calling
cciGetLastExceptionData.

If the node completes normally (including handling an exception on the catch or
failure terminal), it returns with a reasonCode of CCI_SUCCESS. In this case,
calling cciGetLastExceptionData returns unpredictable results.

Syntax:
typedef void (*cciNodeCompletionCallback) (

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection,
int reasonCode);

Parameters:

userContext (input)
The value that is passed to the cciRegisterUserExit function.

message
A handle to the current message object. The current message is the message
that is propagated to the node plus one or more of the following modifications:
v Modifications that are applied to the input root in the node
v Modifications that are made from a user exit during the preceding propagate

callback

Chapter 14. Reference 6621

v Modifications that are made from a user exit during the downstream node
complete callback if the node does not create a new message; for example,
output nodes, Compute nodes with a Compute Mode that is set to
LocalEnvironment, Exception, or Exception And LocalEnvironment, or
request nodes with an Output data location that is set to LocalEnvironment.

The user exit code must not update transport headers or Properties elements in
the message tree. Updating the message can affect performance. Changes that
are made during this callback are visible only if the upstream node does not
cause a new Message to be created.

localEnvironment
A handle to the local environment object that is being propagated.

exceptionList
A handle to the exception list object that is being propagated.

environment
A handle to the environment object for the current message flow.

connection
A handle to the connection object between the two nodes. The handle can be
used, for example, in calls to cciGetSourceNode, cciGetTargetNode,
cciGetSourceTerminalName, and cciGetTargetTerminalName. This handle is
valid only for the duration of this instance of the user exit function.

reasonCode
A reason code that indicates whether the node completes normally
(CCI_SUCCESS) or the node completes as the result of an unhandled exception
(CCI_EXCEPTION). If the node completes due to an unhandled exception, you
can obtain that exception’s details by calling cciGetLastExceptionData. If the
node completes normally (including handling an exception on the catch or
failure terminal), the effect of calling cciGetLastExceptionData is
undetermined.

Return values:
None.

Example:
void myNodeCompletionCallback(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection
int reasonCode){

...

...
}

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:

6622 WebSphere Message Broker Version 7.0.0.8

“cciRegisterUserExit” on page 6638
cciRegisterUserExit is a utility function that can be called by the user’s code when
bipInitializeUserExits is called.
“cciGetSourceNode” on page 6635
This function returns a handle to the upstream node of a given connection.
“cciGetTargetNode” on page 6637
This function returns a handle to the downstream node of a given connection.
“cciGetSourceTerminalName” on page 6636
This function returns the name of the output terminal of the source node for the
specified connection.
“cciGetTargetTerminalName” on page 6637
This function returns the name of the input terminal of the target node for the
specified connection.
“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.

cciPropagatedMessageCallback:

The cciPropagatedMessageCallback function can be registered as a callback and is
called whenever a message is propagated from one node to another.

The cciPropagatedMessageCallback function is called for every message that is
propagated in the execution group where the callback was registered, if the user
exit state is active. The callback is registered by providing a pointer to the function
as the iFpPropagatedMessageCallback field of the CCI_UE_VFT struct that is
passed to cciRegisterUserExit.

Syntax:
typedef void (*cciPropagatedMessageCallback)(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection);

Parameters:

userContext (input)
The value that is passed to the cciRegisterUserExit function.

message
A handle to the message object that is being propagated. The user exit code
must not update transport headers or Properties elements in this tree.
Updating the message can affect performance, particularly if the input message
would not otherwise be changed in the message flow.

localEnvironment
A handle to the local environment object that is being propagated.

exceptionList
A handle to the exception list object that is being propagated.

Chapter 14. Reference 6623

environment
A handle to the environment object for the current message flow.

connection
A handle to the connection object between the two nodes. The handle can be
used, for example, in calls to cciGetSourceNode, cciGetTargetNode,
cciGetSourceTerminalName, and cciGetTargetTerminalName. This handle is
valid only for the duration of this instance of the user exit function.

Return values:
None.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciNode* targetNode = cciGetTargetNode(amp rc,

connection);

CciChar targetNodeName [initialStringBufferLength];
targetNodeNameLength = cciGetNodeName(amp rc,

targetNode,
targetNodeName,
initialStringBufferLength);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL, resize and retry*/

}

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:
“cciRegisterUserExit” on page 6638
cciRegisterUserExit is a utility function that can be called by the user’s code when
bipInitializeUserExits is called.
“cciGetSourceNode” on page 6635
This function returns a handle to the upstream node of a given connection.
“cciGetTargetNode” on page 6637
This function returns a handle to the downstream node of a given connection.
“cciGetSourceTerminalName” on page 6636
This function returns the name of the output terminal of the source node for the
specified connection.
“cciGetTargetTerminalName” on page 6637
This function returns the name of the input terminal of the target node for the
specified connection.

6624 WebSphere Message Broker Version 7.0.0.8

cciTransactionEventCallback:

The cciTransactionEventCallback function can be registered as a callback and is
called every time a message flow transaction ends.

This function is called for every message flow transaction within the execution
group where the callback was registered, if the user exit state is active. The
callback is registered by providing a pointer to the function in the
iFpTransactionEventCallback field of the CCI_UE_VFT struct passed to
cciRegisterUserExit.

Syntax:
typedef void (*cciTransactionEventCallback) (

CciDataContext* userContext,
CciTransactionEventType type,
CciMessage* environment,
CciNode* inputNode);

Parameters:

userContext (input)
This is the value that was passed to the cciRegisterUserExit function.

type
This describes the event that occurred. Possible values are:
v CCI_TRANSACTION_EVENT_COMMIT

A transaction has been successfully committed.
v CCI_TRANSACTION_EVENT_ROLLBACK

A transaction has been rolled back.

If the transaction was rolled back due to an unhandled exception, you can
obtain details of that exception by calling cciGetLastExceptionData.

environment
This is a handle to the environment object for the current message flow.
Although the user exit can update this tree, it is cleared after returning from
this function, so any updates are lost.

inputNode
This is a handle to the input node which reads the input message that
triggered the transaction. It can be used to make calls to functions such as
cciGetNodeName, cciGetNodeType, and cniGetBrokerInfo.

Return values:
None

Example:
void myTransactionEventCallback(

CciDataContext* userContext,
CciTransactionEventType type,
CciMessage* environment,
CciNode* inputNode){

...

...
}

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.

Chapter 14. Reference 6625

Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:
“cciRegisterUserExit” on page 6638
cciRegisterUserExit is a utility function that can be called by the user’s code when
bipInitializeUserExits is called.
“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.
“cciGetNodeName” on page 6630
This function returns the name of the specified node.
“cciGetNodeType” on page 6631
This function returns the type of the specified node.
“cniGetBrokerInfo” on page 6488
Use this function to query the current broker environment (for example, for
information about broker name and message flow name). The information is
returned in a structure of type CNI_BROKER_INFO_ST.

cciOutputMessageCallback:

The cciOutputMessageCallback function can be registered as a callback and is
called whenever a message is sent by an output node.

The cciOutputMessageCallback function is called for every output message that is
sent successfully in the execution group or message flow where the callback was
registered if the user exit state is active. If the node provides WrittenDestination
information in the LocalEnvironment tree, the callback is called after this
information is created.

Calls are made after the following operations are completed:
v Sending a message from an output or reply node (for WebSphere MQ, JMS,

TCPIP, HTTP, or SOAP nodes).
v Sending a message from a request node (TCPIP, HTTP, or SOAP nodes). The

callback is made after the reply has been received.
v Writing to a file (FileOutput node).
v Sending an email (EmailOutput node).
v Completing an adapter request (WebSphere Adapters request nodes).

The callback is registered by providing a pointer to the function as the
iFpOutputMessageCallback field of the CCI_UE_VFT struct that is passed to
cciRegisterUserExit. The iFpOutputMessageCallback field was added in
CCI_UE_VFT struct version 2.

When you implement this callback, check the node type by using cciGetNodeType
before you perform any node-specific operations.

Syntax:
typedef void (*cciOutputMessageCallback) (

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,

6626 WebSphere Message Broker Version 7.0.0.8

CciMessage* exceptionList,
CciMessage* environment,
CciNode* node);

Parameters:

userContext (input)
The value that is passed to the cciRegisterUserExit function.

message (input)
A handle to the message object. You must not update the transport headers or
Properties elements in this tree.

You can update the message body. However, because this callback is called
after the message has been sent to the transport, any changes do not appear in
that message. Changes are visible only to nodes that are connected
downstream of the output node. Updating the message can affect performance,
particularly if the message tree would not otherwise be changed in the
message flow.

localEnvironment (input)
A handle to the local environment object. The handle can contain information
about the destination of the message that is written in the WrittenDestination
subtree. See each node's documentation for more details.

exceptionList (input)
A handle to the exception list object.

environment (input)
A handle to the environment object for the current message flow.

node (input)
A handle to the node that has sent the output message. You can use the handle
to make calls to functions such as cciGetNodeName, cciGetNodeType, and
cniGetBrokerInfo.

Return values:
None.

Example:
void myOutputMessageCallback(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciNode* node){

}

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:

Chapter 14. Reference 6627

“cciRegisterUserExit” on page 6638
cciRegisterUserExit is a utility function that can be called by the user’s code when
bipInitializeUserExits is called.
“cciGetNodeName” on page 6630
This function returns the name of the specified node.
“cciGetNodeType” on page 6631
This function returns the type of the specified node.
“cciGetBrokerInfo” on page 6645
Use the cciGetBrokerInfo function to query the current broker environment (for
example, for information about broker name, execution group name, queue
manager name). The information is returned in a structure of type
CCI_BROKER_INFO_ST.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

C user exit utility functions:

The broker provides several utility functions that you can call from your user exits.
v “cciGetNodeAttribute” on page 6629
v “cciGetNodeName” on page 6630
v “cciGetNodeType” on page 6631
v “cciGetSourceNode” on page 6635
v “cciGetSourceTerminalName” on page 6636
v “cciGetTargetNode” on page 6637
v “cciGetTargetTerminalName” on page 6637
v “cciRegisterUserExit” on page 6638
Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
“Deploying a user exit” on page 3116
Deploy your user exit to the broker.
Related reference:
“C user exit implementation functions” on page 6616
A set of implementation functions provide the functionality of the user exits.
“C user exit API” on page 6615
The user exit API defines implementation and utility functions.
“C common API” on page 6640
The C language common API consists of implementation and utility functions that
you can use in user-defined nodes, parsers, and user exits.
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.

6628 WebSphere Message Broker Version 7.0.0.8

“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.
“C Header files” on page 6415
The C interfaces are defined by the following header files.

cciGetNodeAttribute:

The cciGetNodeAttribute function returns the value of the specified attribute.

Syntax:
CciSize cciGetNodeAttribute (int* returnCode,

CciNode* node,
CciChar* name,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output).
v CCI_INV_BUFFER_TOO_SMALL

The provided buffer was not large enough to hold the value of node's type.

node (input)
This is a handle to a node.

name (input)
This is a pointer to a NULL-terminated string of CciChar specifying the name
of the node attribute being queried.

value (output)
Address of a buffer, allocated by the caller to hold the value of the attribute.

length
The length, in CciChars, of the buffer allocated by the caller.

Return values:

v If successful, the attribute value is copied into the supplied buffer and the
number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the attribute value, returnCode is set
to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

v If name specifies an attribute name that is not appropriate for the given node,
returnCode is set to CCI_ATTRIBUTE_UNKOWN.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciNode* sourceNode = cciGetSourceNode(&rc,

connection);
/*you should now check the rc for unexpected values*/
CciChar queueNameAttribute[16];
cciMbsToUcs(&rc,

"queueName",

Chapter 14. Reference 6629

queueNameAttribute,
16,
BIP_DEF_COMP_CCSID);

/*you should now check the rc for unexpected values*/

CciChar queueName [512];
sourceNodeQueueNameLength = cciGetNodeType(&rc,

sourceNode,
queueName,
512);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL, resize and retry*/

/*sourceNodeQueueNameLength will hold the actual or required size */

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.

cciGetNodeName:

This function returns the name of the specified node.

The name is assigned internally by the WebSphere Message Broker Toolkit and is
unique in the message flow. The label that is assigned to a node by the message
flow designer in the Message Flow Editor can be obtained by calling
“cciGetNodeAttribute” on page 6629 to read the label attribute.

Syntax:
CciSize getNodeName (int* returnCode,

CciNode* node,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output)
v CCI_INV_BUFFER_TOO_SMALL

The provided buffer was not large enough to hold the value of node's name.

node (input)
This is a handle to a node.

value (output)
Address of a buffer, allocated by the caller to hold the value of the node's
name.

length
The length, in CciChars, of the buffer allocated by the caller.

Return values:

v If successful, the node name is copied into the supplied buffer and the number
of CciChar characters copied is returned.

v If the buffer is not large enough to contain the node name, returnCode is set to
CCI_BUFFER_TOO_SMALL, and the number of CciChars required is returned.

6630 WebSphere Message Broker Version 7.0.0.8

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciNode* targetNode = cciGetTargetNode(&rc,

connection);

CciChar targetNodeName [initialStringBufferLength];
targetNodeNameLength = cciGetNodeName(&rc,

targetNode,
targetNodeName,
initialStringBufferLength);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL, resize and retry*/

}

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.

cciGetNodeType:

This function returns the type of the specified node.

Syntax:
CciSize cciGetNodeType (int* returnCode,

CciNode* node,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output).
v CCI_INV_BUFFER_TOO_SMALL

The provided buffer was not large enough to hold the value of node’s type.

node (input)
This is a handle to a node.

value (output)
Address of a buffer, allocated by the caller to hold the value of the node type.

length
The length, in CciChars, of the buffer allocated by the caller.

Return values:

v If the function is successful, the node type is copied into the supplied buffer and
the number of CciChar characters copied is returned.

Chapter 14. Reference 6631

v If the buffer is not large enough to contain the node type, returnCode is set to
CCI_BUFFER_TOO_SMALL, and the number of CciChars required is returned.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciNode* sourceNode = cciGetSourceNode(&rc,

connection);
/*you should now check the rc for unexpected values*/

CciChar sourceNodeType[initialStringBufferLength];
sourceNodeTypeLength = cciGetNodeType(&rc,

sourceNode,
sourceNodeType,
initialStringBufferLength);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL then you should resize and retry*/

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:
“Node types”
Use the cciGetNodeType function to find out the node type of any node.

Node types:

Use the cciGetNodeType function to find out the node type of any node.

Node Node Type

WebSphere MQ

MQInput ComIbmMQInputNode

MQOutput ComIbmMQOutputNode

MQReply ComIbmMQOutputNode

MQGet ComIbmMQGetNode

JMS

JMSHeader ComIbmJMSHeader.msgnode

JMSInput ComIbmJMSClientInputNode

JMSOutput ComIbmJMSClientOutputNode

JMSReply ComIbmJMSClientReplyNode

HTTP

HTTPHeader ComIbmHTTPHeader

HTTPInput ComIbmWSInputNode

HTTPReply ComIbmWSReplyNode

6632 WebSphere Message Broker Version 7.0.0.8

Node Node Type

HTTPRequest ComIbmWSRequestNode

Web Services

SOAPInput ComIbmSOAPInputNode

SOAPReply ComIbmSOAPReplyNode

SOAPRequest ComIbmSOAPRequestNode

SOAPAsyncRequest ComIbmSOAPAsyncRequestNode

SOAPAsyncResponse ComIbmSOAPAsyncResponseNode

SOAPEnvelope ComIbmSOAPWrapperNode

SOAPExtract ComIbmSOAPExtractNode

RegistryLookup SRRetrieveEntityNode

EndpointLookup SRRetrieveITServiceNode

WebSphere Adapters

JDEdwardsInput ComIbmJDEdwardsInputNode

JDEdwardsRequest ComIbmJDEdwardsRequestNode

PeopleSoftInput ComIbmPeopleSoftInputNode

PeopleSoftRequest ComIbmPeopleSoftRequestNode

SAPInput ComIbmSAPInputNode

SAPReply ComIbmSAPReplyNode

SAPRequest ComIbmSAPRequestNode

SiebelInput ComIbmSiebelInputNode

SiebelRequest ComIbmSiebelRequestNode

TwineballInput ComIbmTwineBallInputnode

TwineballRequest ComIbmTwineBallRequestNode

Routing

Filter ComIbmFilterNode

Label ComIbmLabelNode

Publication The subflow is composed of:

RouteToLabel ComIbmRouteToLabelNode

Route ComIbmRouteNode

AggregateControl ComIbmAggregateControlNode

AggregateReply ComIbmAggregateReplyNode

AggregateRequest ComIbmAggregateRequestNode

Collector ComIbmCollectorNode

Resequence ComIbmReSequenceNode

Sequence ComIbmSequenceNode

Transformation

Mapping ComIbmComputeNode

XSLTransform ComIbmXslMqsiNode

Compute ComIbmComputeNode

JavaCompute ComIbmJavaComputeNode

PHPCompute ComIbmPhpCompute

Chapter 14. Reference 6633

Node Node Type

Construction

Throw ComIbmThrowNode

Trace ComIbmTraceNode

TryCatch ComIbmTryCatchNode

FlowOrder ComIbmFlowOrderNode

Passthrough ComIbmPassthruNode

ResetContentDescriptor ComIbmResetContentDescriptorNode

Database

DatabaseInput ComIbmDatabaseInputNode

Database ComIbmDatabaseNode

DataDelete ComIbmDatabaseNode

DataInsert ComIbmDatabaseNode

DataUpdate ComIbmDatabaseNode

Warehouse ComIbmDatabaseNode

DatabaseRetrieve ComIbmDatabaseRetrieveNode

DatabaseRoute ComIbmDatabaseRouteNode

File

FileInput ComIbmFileInputNode

FileRead ComIbmFileReadNode

FileOutput ComIbmFileOutputNode

FTEInput ComIbmFTEInputNode

FTEOutput ComIbmFTEOutputNode

Email

EmailInput ComIbmEmailInputNode

EmailOutput ComIbmEmailOutputNode

TCPIP

TCPIPClientInput ComIbmTCPIPClientInputNode

TCPIPClientOutput ComIbmTCPIPClientOutputNode

TCPIPClientReceive ComIbmTCPIPClientRequestNode

TCPIPServerInput ComIbmTCPIPServerInputNode

TCPIPServerOutput ComIbmTCPIPServerOutputNode

TCPIPServerReceive ComIbmTCPIPServerRequestNode

CORBA

CORBARequest ComIbmCORBARequestNode

CICS

CICSRequest ComIbmCICSIPICRequestNode

IMS

IMSRequest ComIbmIMSRequestNode

Validation

Validate ComIbmValidateNode

Security

6634 WebSphere Message Broker Version 7.0.0.8

Node Node Type

SecurityPEP ComIbmSecurityPEP

Timer

TimeoutControl ComIbmTimeoutControlNode

TimeoutNotification ComIbmTimeoutNotificationNode

Related concepts:
“Message flow nodes” on page 1024
A message flow node is a processing step in a message flow. It can be a built-in
node, a user-defined node, or a subflow node.
Related reference:
“cciGetNodeType” on page 6631
This function returns the type of the specified node.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.

cciGetSourceNode:

This function returns a handle to the upstream node of a given connection.

Syntax:
CciNode* cciGetSourceNode(int* returnCode,

CciConnection * connection);

Parameters:

returnCode (output)
Receives the return code from the function.

connection
This parameter is a handle to a connection on the output terminal of the
requested node.

Return values:
A handle to the node that is on the source side of the connection.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

...

...

int rc = CCI_SUCCESS;
CciNode* sourceNode = cciGetSourceNode(&rc,

connection);
/*you should now check the rc for unexpected values*/

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:

Chapter 14. Reference 6635

“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.

cciGetSourceTerminalName:

This function returns the name of the output terminal of the source node for the
specified connection.

Syntax:
CciSize cciGetSourceTerminalName (int* returnCode,

CciConnection* connection,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output).
v CCI_BUFFER_TOO_SMALL

The provided buffer was not large enough to hold the value of node's name.

connection (input)
This parameter is a handle to a connection between two nodes.

value (output)
Address of a buffer, allocated by the caller to hold the value of the terminal's
name.

length
The length, in CciChars, of the buffer allocated by the caller.

Return values:

v If successful, the terminal name is copied into the supplied buffer, and the
number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the attribute value, returnCode is set
to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

Example:
void myPropagatedMessageCallback(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciChar sourceTerminalName[initialStringBufferLength];
cciGetSourceTerminalName(&rc,

connection,
sourceTerminalName,
initialStringBufferLength);

}

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:

6636 WebSphere Message Broker Version 7.0.0.8

“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.

cciGetTargetNode:

This function returns a handle to the downstream node of a given connection.

Syntax:
CciNode* cciGetTargetNode(int* returnCode,

CciConnection * connection);

Parameters:

returnCode (output)
Receives the return code from the function (output).

connection
This parameter is a handle to a connection on an input terminal of the
requested node.

Return values:
A handle to the node that is on the target side of the connection.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

...

...

CciNode* targetNode = cciGetTargetNode(&rc,
connection);

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.

cciGetTargetTerminalName:

This function returns the name of the input terminal of the target node for the
specified connection.

Syntax:
CciSize cciGetTargetTerminalName (int* returnCode,

CciConnection* connection,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output).
v CCI_BUFFER_TOO_SMALL

Chapter 14. Reference 6637

The provided buffer was not large enough to hold the value of node name.

connection (input)
This parameter is a handle to a connection between two nodes.

value (output)
Address of a buffer, allocated by the caller to hold the value of the terminal's
name.

length
The length, in CciChars, of the buffer allocated by the caller.

Return values:

v If successful, the terminal name is copied into the supplied buffer, and the
number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the terminal name, returnCode is set
to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

Example:
void myPropagatedMessageCallback(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciChar targetTerminalName[initialStringBufferLength];
cciGetTargetTerminalName(&rc,

connection,
targetTerminalName,
initialStringBufferLength);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL then you should resize and retry*/

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.

cciRegisterUserExit:

cciRegisterUserExit is a utility function that can be called by the user’s code when
bipInitializeUserExits is called.

This function is called by the user’s code if the user wants to register functions to
be called every time certain events occur.

Syntax:
typedef struct cci_UEVft {

int reserved;
char StrucId[4];
int Version;
cciInputMessageCallback iFpInputMessageCallback;
cciTransactionEventCallback iFpTransactionEventCallback;
cciPropagatedMessageCallback iFpPropagatedMessageCallback;

6638 WebSphere Message Broker Version 7.0.0.8

cciNodeCompletionCallback iFpNodeCompletionCallback;
cciOutputMessageCallback iFpOutputMessageCallback;

} CCI_UE_VFT;

void cciRegisterUserExit (
int* returnCode,
CciChar* name,
CciDataContext* userContext,
CCI_UE_VFT* functionTable);

Parameters:

returnCode (output)
Requires the return code from the function. Possible values are:
v CCI_DUP_USER_EXIT_NAME

The specified name matches the name of a user exit previously registered in
the current execution group.

v CCI_INV_USER_EXIT_NAME
The specified name was invalid. This can be caused if a NULL pointer,
empty string or a string containing non-alphanumeric characters was
specified.

Name (input)
This parameter must contain a pointer to a NULL-terminated string of
CciChars specifying a name for the user exit. The name must be unique across
all user exits that can be installed on the same broker. This name is used to
identify the user exit in, for example:
v User Trace messages
v Exceptions or syslog messages
v Administration commands (for example, mqsichangeflowuserexits)

The name has the following restrictions:
v It must consist of alphanumeric characters only.
v It must be no greater than 255 characters.
v The name must be unique across all user exits that can be installed on the

same broker.

userContext (input)
This parameter allows the caller to provide a context pointer that is passed to
the callback function when it is called. This parameter can be NULL.

functionTable (input)
This parameter is a pointer to a struct whose fields must contain either
pointers to functions matching the correct signatures or contain NULL. A
NULL value for any of these fields indicates that the user exit must not be
called for that event.

Initialize the structure by using the define CCI_UE_VFT_DEFAULT, which sets
the version as CCI_UE_VFT_CURRENT_VERSION. The
cciOutputMessageCallback was added at version 2, CCI_UE_VFT_VERSION_2.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:

Chapter 14. Reference 6639

extern "C"{

void bipInitializeUserExits(){

int rc = CCI_SUCCESS;
CCI_UE_VFT myVft = {CCI_UE_VFT_DEFAULT};
myVft.iFpInputMessageCallback = myInputMessageCallback;
myVft.iFpTransactionEventCallback = myTransactionEventCallback;
myVft.iFpPropagatedMessageCallback = myPropagatedMessageCallback;
myVft.iFpNodeCompletionCallback = myNodeCompletionCallback;
myVft.iFpOutputMessageCallback = myOutputMessageCallback;

cciRegisterUserExit(&rc,
MyConstants::myUserExitName,
0,
&myVft);

/*you should now check the rc for unexpected values*/

return;
}

}/*end of extern "C" */

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:
“bipInitializeUserExits” on page 6617
bipInitializeUserExits is an implementation function that is exported by the User
Exit library (.lel file).
“cciInputMessageCallback” on page 6619
The cciInputMessageCallback function can be registered as a callback and is called
every time a message is read by an input node, and before that message is
propagated down the message flow.
“cciTransactionEventCallback” on page 6625
The cciTransactionEventCallback function can be registered as a callback and is
called every time a message flow transaction ends.
“cciPropagatedMessageCallback” on page 6623
The cciPropagatedMessageCallback function can be registered as a callback and is
called whenever a message is propagated from one node to another.
“cciNodeCompletionCallback” on page 6621
The cciNodeCompletionCallback function can be registered as a callback and is
called whenever a node has completed processing of a message and is returning
control to its upstream node.
“cciOutputMessageCallback” on page 6626
The cciOutputMessageCallback function can be registered as a callback and is
called whenever a message is sent by an output node.

C common API
The C language common API consists of implementation and utility functions that
you can use in user-defined nodes, parsers, and user exits.

6640 WebSphere Message Broker Version 7.0.0.8

All these functions are defined in the BipCpi.h header file, see “C Header files” on
page 6415.
v “C common implementation functions.”
v “C common utility functions” on page 6643.
Related concepts:
“Developing user-defined extensions” on page 2970
A user-defined extension is a component that you design and implement to extend
the function of WebSphere Message Broker.
Related reference:
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.
“C user exit API” on page 6615
The user exit API defines implementation and utility functions.

C common implementation functions:

You can use the common implementation functions in user-defined nodes and
user-defined parsers. All the functions are called by the broker on occurrence of
certain events.

These functions are defined in theBipCci.h header file.

Optional functions

v cciRegCallback
Related reference:
“cciRegCallback”
This function can be registered as a callback function, and is called when the
registered event occurs. The function is registered by providing a function pointer
which matches a particular typedef.

cciRegCallback:

This function can be registered as a callback function, and is called when the
registered event occurs. The function is registered by providing a function pointer
which matches a particular typedef.

Syntax:
typedef int (*CciRegCallback)(CciDataContext *, cciCallbackType);

Parameters:

type CciDataContext*
This parameter is the pointer that is provided by the caller to the registration
function.

type CciCallbackType
This parameter indicates the reason for the callback. The reason is always one
of the CciCallbackType values that is specified on the registration call
corresponding to this callback.

Return values:

Chapter 14. Reference 6641

type CciRegCallbackStatus (defined in BipCci.h)
v CCI_THREAD_STATE_REGISTRATION_RETAIN: This return code is used for a

callback that is to remain registered as a callback function on a particular thread.
v CCI_THREAD_STATE_REGISTRATION_REMOVE: This return code is used to

signify that the callback is to be de-registered, and that it must not be called
again on this thread unless it is reregistered.

v If another value is returned, a warning is written to a log, and
CCI_THREAD_STATE_REGISTRATION_RETAIN is assumed.

During execution of this function, it is possible that the node or parser that has
registered the function has already been deleted. Therefore, you must not call a
node or parser utility function that depends on the existence of a node or parser.
The only utility functions that can be called from this callback are:
v cciLog
v cciUserTrace
v cciServiceTrace
v cciUserDebugTrace
v cciServiceDebugTrace
v cciIsTraceActive

For each of these five trace utility functions, the CciObject parameter must be
NULL.

Example:
Declare the following struct and function:

typedef struct {
int id;

}MyContext;

static int registered=0;

CciRegCallbackStatus switchThreadStateChange(CciDataContext *context, CciCallbackType type)
{

char traceText[256];
char* typeStr=0;
MyContext* myContext = (MyContext*)context;

if (type==CCI_THREAD_STATE_IDLE){
typeStr = "idle";

}else if(type==CCI_THREAD_STATE_INSTANCE_END){
typeStr = "instance end";

}else if (type==CCI_THREAD_STATE_TERMINATION){
typeStr = "termination";

}else{
typeStr = "unknown";

}

memset(traceText,0,256);
sprintf(traceText,"switchThreadStateChange: context id = %d, thread state %s",myContext->id,typeStr);
cciServiceTrace(NULL,

NULL,
traceText);

return CCI_THREAD_STATE_REGISTRATION_RETAIN;

}

6642 WebSphere Message Broker Version 7.0.0.8

Place the following code into the _Switch_evaluate function in the samples to
enable you to read service trace, and see when the message processing thread
changes state:

/*register for thread state change*/
CciMessageContext* messageContext = cniGetMessageContext(NULL,message);
CciThreadContext* threadContext = cniGetThreadContext(NULL,messageContext);

static MyContext myContext={1};

if(registered==0){
cciRegisterForThreadStateChange(

NULL,
threadContext,
& myContext,
switchThreadStateChange,
CCI_THREAD_STATE_IDLE |
CCI_THREAD_STATE_INSTANCE_END |
CCI_THREAD_STATE_TERMINATION);

registered=1;

}

This example registers only on the first thread that receives a message. If it is
necessary to register every thread that receives a message, the user-defined
extensions must remember on which threads they have registered.

By using the userContext parameter you can see how data is passed from the code
where the callback is registered to the actual callback function.

When registering the callback, a pointer to an instance of the MyContext struct is
passed in. This pointer is the pointer that is passed back to the callback. To ensure
that the pointer is still valid when it is passed back to the callback, an instance of
the struct is declared as static. Another technique to ensure that the pointer is valid
is to allocate storage on the heap.

In the callback function, the userContext parameter can be cast to a (MyContext*).
The original MyContext struct can be referenced through this address. This
technique permits the passing of data from the code where the callback is
registered to the callback function.
Related reference:
“cciRegisterForThreadStateChange” on page 6656
This function registers a function to be called when the current thread enters a
particular state.

C common utility functions:

WebSphere Message Broker provides some additional utilities that user-defined
nodes and parsers can use.

These utilities belong to the following categories:
v Exception handling and logging
v Character representation handling

These functions are defined in the BipCci.h header file.

The following exception handling and logging functions are provided for use by a
user-defined node or parser:

Chapter 14. Reference 6643

v “cciGetLastExceptionData” on page 6647
v “cciGetLastExceptionDataW” on page 6649
v “cciLog” on page 6651
v “cciLogW” on page 6653
v “cciRethrowLastException” on page 6659
v “cciThrowException” on page 6666
v “cciThrowExceptionW” on page 6668

The following utilities help you convert between the processing code (in UCS-2)
that is used internally by WebSphere Message Broker, and file codes (for example,
ASCII).
v “cciMbsToUcs” on page 6655
v “cciUcsToMbs” on page 6672

The following utility functions enable you to determine whether trace is active,
and write entries that are appropriate for the trace settings.
v “cciIsTraceActive” on page 6670
v “cciUserTrace” on page 6678
v “cciUserTraceW” on page 6681
v “cciUserDebugTrace” on page 6673
v “cciUserDebugTraceW” on page 6676
v “cciServiceTrace” on page 6663
v “cciServiceTraceW” on page 6664
v “cciServiceDebugTrace” on page 6660
v “cciServiceDebugTraceW” on page 6661

The following utility function is used to register a function that is to be called
when the current thread enters a particular state:
v “cciRegisterForThreadStateChange” on page 6656

The following utility functions are available for use with user exits:
v “cciGetBrokerInfo” on page 6645
v “cciGetNodeAttribute” on page 6629
v “cciGetNodeName” on page 6630
v “cciGetNodeType” on page 6631
v “cciGetSourceNode” on page 6635
v “cciGetSourceTerminalName” on page 6636
v “cciGetTargetNode” on page 6637
v “cciGetTargetTerminalName” on page 6637
v “cciInputMessageCallback” on page 6619
v “cciNodeCompletionCallback” on page 6621
v “cciPropagatedMessageCallback” on page 6623
v “cciRegisterUserExit” on page 6638
v “cciTransactionEventCallback” on page 6625

6644 WebSphere Message Broker Version 7.0.0.8

cciGetBrokerInfo:

Use the cciGetBrokerInfo function to query the current broker environment (for
example, for information about broker name, execution group name, queue
manager name). The information is returned in a structure of type
CCI_BROKER_INFO_ST.

This function differs from cniGetBrokerInfo in that you do not have to specify a
CciNode* handle, and that it does not return information about a message flow.
Therefore, you can call cciGetBrokerInfo from initialization functions; for example,
bipInitializeUserExits, bipGetMessageParserFactory, and
bipGetMessageFlowNodeFactory.

Syntax:
void cciGetBrokerInfo(

int* returnCode,
CCI_BROKER_INFO_ST* broker_info_st);

Parameters:

returnCode (output)
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_INV_BROKER_INFO_ST
v CCI_EXCEPTION

broker_info_st (output)
The address of a CCI_BROKER_INFO_ST structure to be populated with the
relevant values on successful completion:
typedef struct cci_broker_info_st {
int versionId; /*Structure version identification*/
CCI_STRING_ST brokerName; /*The label of the broker*/
CCI_STRING_ST executionGroupName; /*The label of the current execution group*/
CCI_STRING_ST queueManagerName; /*The name of the MQ Queue Manager for the broker*/
CCI_STRING_ST dataSourceUserId; /*The userid broker connects to datasource as*/
} CCI_BROKER_INFO_ST;

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
int rc = CCI_SUCCESS;

CCI_BROKER_INFO_ST brokerInfo = {CCI_BROKER_INFO_ST_DEFAULT};

#define INTITIAL_STR_LEN 256
CciChar brokerNameStr[INTITIAL_STR_LEN];
CciChar executionGroupNameStr[INTITIAL_STR_LEN];
CciChar queueManagerNameStr[INTITIAL_STR_LEN];

brokerInfo.brokerName.bufferLength = INTITIAL_STR_LEN;
brokerInfo.brokerName.buffer = brokerNameStr;

brokerInfo.executionGroupName.bufferLength = INTITIAL_STR_LEN;
brokerInfo.executionGroupName.buffer = executionGroupNameStr;

brokerInfo.queueManagerName.bufferLength = INTITIAL_STR_LEN;
brokerInfo.queueManagerName.buffer = queueManagerNameStr;

Chapter 14. Reference 6645

cciGetBrokerInfo(&rc,&brokerInfo);

/* just in case any of the buffers were too short*/
if ((brokerInfo.brokerName.bytesOutput < brokerInfo.brokerName.dataLength) ||

(brokerInfo.executionGroupName.bytesOutput < brokerInfo.executionGroupName.dataLength) ||
(brokerInfo.queueManagerName.bytesOutput < brokerInfo.queueManagerName.dataLength)) {

/*at least one of the buffer were too short, need to rerty*/
/* NOTE this is unlikely given that the initial sizes were reasonably large*/

brokerInfo.brokerName.bufferLength =
brokerInfo.brokerName.dataLength;

brokerInfo.brokerName.buffer =
(CciChar*)malloc (brokerInfo.brokerName.bufferLength * sizeof(CciChar));

brokerInfo.executionGroupName.bufferLength =
brokerInfo.executionGroupName.dataLength;

brokerInfo.executionGroupName.buffer =
(CciChar*)malloc (brokerInfo.executionGroupName.bufferLength * sizeof(CciChar));

brokerInfo.queueManagerName.bufferLength =
brokerInfo.queueManagerName.dataLength;

brokerInfo.queueManagerName.buffer =
(CciChar*)malloc (brokerInfo.queueManagerName.bufferLength * sizeof(CciChar));

cciGetBrokerInfo(&rc,&brokerInfo);

/*now do something sensible with these strings before the buffers go out of scope*/
/* for example call a user written function to copy them away*/
copyBrokerInfo(brokerInfo.brokerName.buffer,

brokerInfo.executionGroupName.buffer,
brokerInfo.queueManagerName.buffer);

free((void*)brokerInfo.brokerName.buffer);
free((void*)brokerInfo.executionGroupName.buffer);
free((void*)brokerInfo.queueManagerName.buffer);

}else{
/*now do something sensible with these strings before the buffers go out of scope*/
/* for example call a user written function to copy them away*/
copyBrokerInfo(brokerInfo.brokerName.buffer,

brokerInfo.executionGroupName.buffer,
brokerInfo.queueManagerName.buffer);

}

Related concepts:
“User exits” on page 3015
A user exit is user-provided custom software, written in C, to track data passing
through message flows.
Related tasks:
“Developing a user exit” on page 3114
Develop a user exit by declaring it, implementing its behavior, then compiling it.
Related reference:
“cniGetBrokerInfo” on page 6488
Use this function to query the current broker environment (for example, for
information about broker name and message flow name). The information is
returned in a structure of type CNI_BROKER_INFO_ST.
“bipInitializeUserExits” on page 6617
bipInitializeUserExits is an implementation function that is exported by the User
Exit library (.lel file).

6646 WebSphere Message Broker Version 7.0.0.8

cciGetLastExceptionData:

Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.

You can call this function when a utility function or user exit callback indicates
that an exception has occurred, by setting returnCode to CCI_EXCEPTION.

You must call cciGetLastExceptionData() only when CCI_EXCEPTION is indicated;
at other times, the function returns unpredictable results.

The traceText that is associated with the exception converts to a char* if the char*
is US-ASCII. If the traceText is in another language, use cciGetLastExceptionDataW
and its associated CCI_EXCEPTION_WIDE_ST structure, which stores the traceText
as UTF-16.

If the exception has been raised by the broker, or by cciThrowExceptionW, the
traceText element of the CCI_EXCEPTION_ST structure is an empty string.

Syntax:
void* cciGetLastExceptionData(

int* returnCode,
CCI_EXCEPTION_ST* exception_st);

Parameters:

returnCode
Receives the return code from the function (output). Possible return codes are:
v CCI_INV_DATA_POINTER
v CCI_NO_EXCEPTION_EXISTS
v CCI_EXCEPTION
v CCI_EXCEPTION_UNKNOWN
v CCI_EXCEPTION_FATAL
v CCI_EXCEPTION_RECOVERABLE
v CCI_EXCEPTION_CONFIGURATION
v CCI_EXCEPTION_PARSER
v CCI_EXCEPTION_CONVERSION
v CCI_EXCEPTION_DATABASE
v CCI_EXCEPTION_USER

exception_st
Specifies the address of a CCI_EXCEPTION_ST structure to receive data about
the last exception (output). The type value returned in the lower four bits of
the exception_st.type field is one of the following type values:
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_BASE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_TERMINATION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_FATAL
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_RECOVERABLE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_CONFIGURATION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_PARSER

Chapter 14. Reference 6647

v CCI_EXCEPTION_ST_TYPE_EXCEPTION_CONVERSION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_DATABASE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_USER

The value returned in the exception_st.messageNumber field, for exceptions
resulting in a BIP cataloged exception message, contains the message level in
the high order bytes and the BIP message number in the lower four bytes.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
typedef struct exception_st {

int versionId; /* Structure version identification */
int type; /* Type of exception */
int messageNumber; /* Message number */
int insertCount; /* Number of message inserts */
CCI_STRING_ST inserts[CCI_MAX_EXCEPTION_INSERTS];

/* Array of message insert areas */
const char* fileName; /* Source: file name */
int lineNumber; /* Source: line number in file */
const char* functionName; /* Source: function name */
const char* traceText; /* Trace text associated with exception */
CCI_STRING_ST objectName; /* Object name */
CCI_STRING_ST objectType; /* Object type */

} CCI_EXCEPTION_ST;
char msgnumTypeStr[64];

CCI_EXCEPTION_ST exception_st = malloc(sizeof(CCI_EXCEPTION_ST));
int rc = 0;
memset(&exception_st,0,sizeof(exception_st));
cciGetLastExceptionData(&rc, &exception_st);
sprintf(msgnumTypeStr, "MsgNum: %d Type: %d",
(exception_st.messageNumber & 0x0ffff),
(exception_st.type & 0x0f));

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
“cciLog” on page 6651
Use cciLog to write an error, warning, or informational event.

6648 WebSphere Message Broker Version 7.0.0.8

“cciRethrowLastException” on page 6659
This function re-throws the last exception that has been generated on the current
thread. It is used to pass the exception back to the broker for further handling. The
function, like a C exit call, does not return to the caller.
“cciThrowException” on page 6666
Use this function to throw an exception. The exception is thrown by the broker
interface, and includes the specified arguments as exception data.

cciGetLastExceptionDataW:

Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_WIDE_ST output structure. The user-defined extension uses this
function to determine whether any recovery is required when a utility function
returns an error code.

You can call this function, when a utility function or user exit callback indicates
that an exception has occurred, by setting returnCode to CCI_EXCEPTION.

Unless CCI_EXCEPTION is indicated you must not call
cciGetLastExceptionDataW() because it returns unpredictable results.

Syntax:
void* cciGetLastExceptionDataW(

int* returnCode,
CCI_EXCEPTION_WIDE_ST* exception_st);

Parameters:

returnCode
Receives the return code from the function (output). Possible return codes are:
v CCI_INV_DATA_POINTER
v CCI_NO_EXCEPTION_EXISTS
v CCI_EXCEPTION
v CCI_EXCEPTION_UNKNOWN
v CCI_EXCEPTION_FATAL
v CCI_EXCEPTION_RECOVERABLE
v CCI_EXCEPTION_CONFIGURATION
v CCI_EXCEPTION_PARSER
v CCI_EXCEPTION_CONVERSION
v CCI_EXCEPTION_DATABASE
v CCI_EXCEPTION_USER

exception_st
Specifies the address of a CCI_EXCEPTION_WIDE_ST structure to receive data
about the last exception (output). The type value returned in the lower four
bits of the exception_st.type field is one of the following type values:
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_BASE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_TERMINATION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_FATAL
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_RECOVERABLE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_CONFIGURATION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_PARSER

Chapter 14. Reference 6649

v CCI_EXCEPTION_ST_TYPE_EXCEPTION_CONVERSION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_DATABASE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_USER

The value returned in the exception_st.messageNumber field, for exceptions
resulting in a BIP cataloged exception message, contains the message level in
the high order bytes and the BIP message number in the lower four bytes.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
typedef struct exception_wide_st {

int versionId; /* Structure version identification */
int type; /* Type of exception */
int messageNumber; /* Message number */
int insertCount; /* Number of message inserts */
CCI_STRING_ST inserts[CCI_MAX_EXCEPTION_INSERTS];

/* Array of message insert areas */
const char* fileName; /* Source: file name */
int lineNumber; /* Source: line number in file */
const char* functionName; /* Source: function name */
CCI_STRING_ST traceText; /* Trace text associated with exception */
CCI_STRING_ST objectName; /* Object name */
CCI_STRING_ST objectType; /* Object type */

} CCI_EXCEPTION_WIDE_ST;
char msgnumTypeStr[64];

CCI_EXCEPTION_WIDE_ST exception_st = malloc(sizeof(CCI_EXCEPTION_WIDE_ST));
int rc = 0;
memset(&exception_st,0,sizeof(exception_st));
cciGetLastExceptionDataW(&rc, &exception_st);
sprintf(msgnumTypeStr, "MsgNum: %d Type: %d",
(exception_st.messageNumber & 0x0ffff),
(exception_st.type & 0x0f));

Related reference:
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.
“cciThrowExceptionW” on page 6668
The cciThrowExceptionW exception is thrown by the broker interface and uses the
specified arguments as exception data.
“cciLogW” on page 6653
cciLogW logs an error, warning, or informational event. The event is logged by the

6650 WebSphere Message Broker Version 7.0.0.8

broker interface and uses the specified arguments as log data.
“cciUserTraceW” on page 6681
Use cciUserTraceW to write a message from a message catalog (with inserts) to
user trace. A message is also written to service trace, if service trace is active.
“cciUserDebugTraceW” on page 6676
Use cciUserDebugTraceW to write a message from a message catalog (with inserts)
to user trace when user trace is active at debug level. A message is also written to
service trace, if service trace is active.
“cciServiceTraceW” on page 6664
cciServiceTraceW writes a message to service trace, if service trace is active.
“cciServiceDebugTraceW” on page 6661
The function is very similar to cciServiceTraceW with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

cciLog:

Use cciLog to write an error, warning, or informational event.

The event is logged by the broker interface, and includes the specified arguments
as log data.

Syntax:
void cciLog(

int* returnCode,
CCI_LOG_TYPE type,
char* file,
int line,
char* function,
CciChar* messageSource,
int messageNumber,
char* traceText,

...);

Parameters:

returnCode
The return code from the function (output). Possible return codes are:
v CCI_SUCCESS
v CCI_INV_DATA_POINTER
v CCI_INV_LOG_TYPE

type The type of event, as defined by CCI_LOG_TYPE (input). Valid values are:
v CCI_LOG_ERROR
v CCI_LOG_WARNING
v CCI_LOG_INFORMATION

file The source file name where the function was invoked (input). The value is
optional, but it is useful for debugging purposes.

Chapter 14. Reference 6651

line The line number in the source file where the function was invoked (input).
The value is optional, but it is useful for debugging purposes.

function
The function name that invoked the log function (input). The value is
optional, but it is useful for debugging purposes.

messageSource
The fully-qualified location and name of the Windows message source or
the Linux, UNIX, or z/OS message catalog.

To use the current broker message catalog, specify BIPmsgs on all
operating systems. Alternatively, you can create your own message catalog.

messageNumber
The message number identifying the event (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list.

traceText
Trace information that is written into the broker service trace log (input).
The information is optional, but it is useful for debugging purposes.

... A C variable argument list containing any message inserts that accompany
the message (input). These inserts are treated as character strings, and the
variable arguments are assumed to be of type pointer to char.

char* characters must be strings in either ASCII (Latin) or EBCDIC (1047).

The last argument in this list must be (char*)0.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

6652 WebSphere Message Broker Version 7.0.0.8

“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.
“cciRethrowLastException” on page 6659
This function re-throws the last exception that has been generated on the current
thread. It is used to pass the exception back to the broker for further handling. The
function, like a C exit call, does not return to the caller.
“cciThrowException” on page 6666
Use this function to throw an exception. The exception is thrown by the broker
interface, and includes the specified arguments as exception data.

cciLogW:

cciLogW logs an error, warning, or informational event. The event is logged by the
broker interface and uses the specified arguments as log data.

Syntax:
void cciLogW(

int* returnCode,
CCI_LOG_TYPE type,
const char* file,
int line,
const char* function,
const CciChar* messageSource,
int messageNumber,
const CciChar* traceText,

...
);

Parameters:

returnCode
The return code from the function (output). If the messageSource parameter
is null, the returnCode is set to CCI_INV_DATA_POINTER.

type The type of event, as defined by CCI_LOG_TYPE (input). Valid values are:
v CCI_LOG_ERROR
v CCI_LOG_WARNING
v CCI_LOG_INFORMATION

file The source file name where the function was invoked (input). The value is
optional, but it is useful for debugging purposes.

line The line number in the source file where the function was invoked (input).
The value is optional, but it is useful for debugging purposes.

function
The function name that invoked the log function (input). The value is
optional, but it is useful for debugging purposes.

messageSource
The fully-qualified location and name of the Windows message source or
the Linux, UNIX, or z/OS message catalog.

To use the current broker message catalog, specify BIPmsgs on all
operating systems. Alternatively, you can create your own message catalog.

Chapter 14. Reference 6653

messageNumber
The message number identifying the event (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list (see
example).

traceText
Trace information that is written into the broker service trace log (input).
The information is optional, but it is useful for debugging purposes.

... A C variable argument list containing any message inserts that accompany
the message (input). These inserts are treated as character strings and the
variable arguments are assumed to be of type pointer to CciChar.

The last argument in this list must be (CciChar*)0.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
void logSomethingWithBroker(CciChar* helpfulText,

char* file,
int line,
char* func
){

int rc = CCI_SUCCESS;
/* set up the message catalog name */
const CciChar* catalog = CciString("BIPmsgs", BIP_DEF_COMP_CCSID);

cciLogW(&rc,
CCI_LOG_INFORMATION
file, line, func,
catalog, BIP2111,
helpfulText,
helpfulText,
(CciChar*)0
);

if(CCI_SUCCESS != rc){
const CciChar* message = CciString("Failed to log message",

BIP_DEF_COMP_CCSID);
raiseExceptionWithBroker(message,

__FILE__,
__LINE__,
"logSomethingWithBroker");

}
}

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.

6654 WebSphere Message Broker Version 7.0.0.8

“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Using error logging from a user-defined extension” on page 3137
Program user-defined extensions to write entries in the local error log.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.
“cciRethrowLastException” on page 6659
This function re-throws the last exception that has been generated on the current
thread. It is used to pass the exception back to the broker for further handling. The
function, like a C exit call, does not return to the caller.
“cciThrowException” on page 6666
Use this function to throw an exception. The exception is thrown by the broker
interface, and includes the specified arguments as exception data.

cciMbsToUcs:

Use this function to convert multibyte string data to Universal Character Set (UCS).

Syntax:
int cciMbsToUcs(

int* returnCode,
const char* mbString,
CciChar* ucsString,
int ucsStringLength,
int codePage);

Parameters:

returnCode
The return code from the function (output). Possible return codes are:
v CCI_SUCCESS
v CCI_BUFFER_TOO_SMALL
v CCI_INV_CHARACTER
v CCI_FAILURE
v CCI_INV_CODEPAGE

mbString
The string to be converted, expressed as 'file code' (input).

ucsString
The location of the resulting UCS-2 Unicode string (input). This string has
a trailing CciChar of 0, just as the mbString has a trailing byte of 0.

ucsStringLength
The length (in CciChar) of the buffer that you have provided (input). Each
byte in mbString expands to not more than one CciChar character, and this
defines an upper limit for the buffer size required.

Chapter 14. Reference 6655

codePage
The code page of the source string (input). The value of the code page
must be suitable for the compiler that you are using to compile the
user-defined node.

For an ASCII system, a value of 1208 (meaning code page ibm-1208, which
is UTF-8 Unicode) is a good choice if you are using cciMbsToUcs to
convert string constants for processing by WebSphere Message Broker. 1208
is appropriate for Linux, UNIX, and Windows systems.

On Linux, UNIX systems, nl_langinfo(CODEPAGE) gives you the code page
that has been selected by setlocale.

On z/OS, the default code page for WebSphere MQ, which is 500, must
not be used. Instead, use a code page value of 1047.

Return values:
The returnCode parameter is set to the converted length in half-words (UCS-2
characters).
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
“cciUcsToMbs” on page 6672
Use this function to convert Universal Character Set (UCS) data to multibyte string
data. This function is, typically, used only for formatting diagnostic messages.
Normal processing is best done in UCS-2, which can represent all characters from
all languages.

cciRegisterForThreadStateChange:

This function registers a function to be called when the current thread enters a
particular state.

Syntax:
void cciRegisterForThreadStateChange(

int *returnCode,
CciThreadContext *threadContext,
CciDataContext *userContext,
CciRegCallback callback,
CciCallbackType type);

Parameters:

6656 WebSphere Message Broker Version 7.0.0.8

returnCode
The return code from the function (output). An input value of NULL signifies
that errors are silently handled, or are ignored by the broker. If the input value
is not NULL, the output value signifies the success status of the call. If the
threadContext parameter is not valid, *returnCode is set to
CCI_INV_THREAD_CONTEXT, and the callback is not registered.

threadContext
This parameter provides the thread context in which to register the callback
function and associated data. It is assumed that this parameter is obtained by
calling cniGetThreadContext() on the current thread. If NULL is supplied as
threadContext, the thread context is determined by the framework. This
method is less efficient than calling cniGetThreadContext.

userContext
This parameter allows the caller to provide a context pointer that is passed to
the callback function when it is called. This parameter can be NULL.

callback
This parameter is a pointer to the callback function that is to be called. This
function must be of the type CciRegCallback.

type
This parameter specifies whether the callback is to be called at the time when
the thread is ending, or when the thread is in one of the idle states. The idle
states can be one of the following values:
v CCI_THREAD_STATE_IDLE:

The input node for the current thread is actively polling for data from the
input source, but no data is available. Messages are not propagated through
the message flow until data becomes available for the input node.

v CCI_THREAD_STATE_INSTANCE_END
The input node for the current thread has stopped polling for data and the
thread has been released. The thread is dispatched again either by the same
input node or by another input node in the same message flow. This state is
entered when additional instances, which have been deployed for a message
flow, have been configured to cope with an influx of input data that has
now ceased. The input node continues to poll for input data on a single
thread, and the other threads are released.

v CCI_THREAD_STATE_TERMINATION
The current thread is ending. This action can happen when the broker is
shut down, the execution group process is ending in a controlled manner, or
when the message flow is being deleted. This state can occur after all nodes
and parsers in the flow are deleted.

Alternatively, the type parameter can be the result of a bit-wise OR operation
on two or more of these values. In this case, the specified function is called
when the thread enters the relevant state for each individual type value.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
Declaring the struct and function:

typedef struct {
int id;

}MyContext;

Chapter 14. Reference 6657

static int registered=0;

CciRegCallbackStatus switchThreadStateChange(
CciDataContext *context, CciCallbackType type)

{
char traceText[256];
char* typeStr=0;
MyContext* myContext = (MyContext*)context;

if (type==CCI_THREAD_STATE_IDLE){
typeStr = "idle";

}else if(type==CCI_THREAD_STATE_INSTANCE_END){
typeStr = "instance end";

}else if (type==CCI_THREAD_STATE_TERMINATION){
typeStr = "termination";

}else{
typeStr = "unknown";

}

memset(traceText,0,256);
sprintf(traceText,"switchThreadStateChange: context id = %d, thread state %s",myContext->id,typeStr);
cciServiceTrace(NULL,

NULL,
traceText);

return CCI_THREAD_STATE_REGISTRATION_RETAIN;

}

Place the following code into the _Switch_evaluate function in the samples to
enable you to read service trace, and to see when the message processing thread
changes state:

/*register for thread state change*/
CciMessageContext* messageContext = cniGetMessageContext(NULL,message);
CciThreadContext* threadContext = cniGetThreadContext(NULL,messageContext);

static MyContext myContext={1};

if(registered==0){
cciRegisterForThreadStateChange(

NULL,
threadContext,
& myContext,
switchThreadStateChange,
CCI_THREAD_STATE_IDLE |
CCI_THREAD_STATE_INSTANCE_END |
CCI_THREAD_STATE_TERMINATION);

registered=1;

}

This example registers only on the first thread that receives a message. If it is
necessary to register every thread that receives a message, the user-defined
extensions must remember on which threads they have registered.

By using the userContext parameter, you can see how data is passed from the code
where the callback is registered to the actual callback function.

When registering the callback, a pointer to an instance of the MyContext struct is
passed in. This pointer is the same pointer as is passed back to the callback. To
ensure that the pointer is still valid when it is passed back to the callback, an
instance of the struct is declared as static. Another technique to ensure that the
pointer is valid is to allocate storage on the heap.

6658 WebSphere Message Broker Version 7.0.0.8

In the callback function, the userContext parameter can be cast to a (MyContext*).
The original MyContext struct can be referenced through this address. This
technique permits the passing of data from the code where the callback is
registered to the callback function.
Related reference:
“cniGetThreadContext” on page 6494
This function returns the thread context for the current thread.
“cciRegCallback” on page 6641
This function can be registered as a callback function, and is called when the
registered event occurs. The function is registered by providing a function pointer
which matches a particular typedef.

cciRethrowLastException:

This function re-throws the last exception that has been generated on the current
thread. It is used to pass the exception back to the broker for further handling. The
function, like a C exit call, does not return to the caller.

Syntax:
void cciRethrowLastException(int* returnCode);

Parameters:

returnCode
The return code from the function (output). The possible return code is
CCI_NO_EXCEPTION_EXISTS

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
if (rc == CCI_EXCEPTION) {

cciRethrowLastException(&rc);
}

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Chapter 14. Reference 6659

“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.
“cciLog” on page 6651
Use cciLog to write an error, warning, or informational event.
“cciThrowException” on page 6666
Use this function to throw an exception. The exception is thrown by the broker
interface, and includes the specified arguments as exception data.

cciServiceDebugTrace:

This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

Syntax:
void cciServiceDebugTrace(

int* returnCode,
CciObject* object,
const char* traceText

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not want to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object (input)
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, the name of
that node is written to trace. If it is a CciParser*, the name of the node that
created the parser is written to trace. This object is also used to determine if
the entry should be written to trace. The entry is only written if trace is active
for the node. Currently nodes inherit their trace setting from the message flow.

If this parameter is NULL, the trace level for the execution group is returned.

traceText (input)
A string of characters that ends with NULL (input). This string will be written
to service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string will be a static literal string in the source and
therefore the same string will be in both the source code file and the formatted
trace file.

This string must be in ISO-8859-1 (ibm-819) code page for user-defined
extensions running on distributed platforms and must be in EBCDIC (1047) for
user-defined extensions running on Z/OS See NLS section.

6660 WebSphere Message Broker Version 7.0.0.8

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

cciServiceTrace(&rc,(CciObject*)thisNode,">>_Switch_evaluate()");
checkRC(rc);

Related reference:
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.
“cciUserDebugTrace” on page 6673
Use cciUserDebugTrace to write a message from a message catalog (with inserts) to
user trace when user trace is active at debug level.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

cciServiceDebugTraceW:

The function is very similar to cciServiceTraceW with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

Syntax:
void cciServiceDebugTraceW(

int* returnCode,
CciObject* object,
const CciChar* traceText

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not want to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object (input)
The address of the object that is to be associated with the trace entry (input).

Chapter 14. Reference 6661

This object can be a CciNode* or a CciParser*. If it is a CciNode*, the name of
that node is written to trace. If it is a CciParser*, the name of the node that
created the parser is written to trace. This object is also used to determine if
the entry should be written to trace. The entry is only written if trace is active
for the node. Currently nodes inherit their trace setting from the message flow.

If this parameter is NULL, the trace level for the execution group is returned.

traceText (input)
A string of characters that ends with NULL (input). This string will be written
to service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string will be a static literal string in the source and
therefore the same string will be in both the source code file and the formatted
trace file.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;
CciChar* traceText = CciString(">>_Switch_evaluate()",BIP_DEF_COMP_CCSID");
cciServiceTraceW(&rc,(CciObject*)thisNode,traceText);
checkRC(rc);

Related reference:
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.
“cciThrowExceptionW” on page 6668
The cciThrowExceptionW exception is thrown by the broker interface and uses the
specified arguments as exception data.
“cciLogW” on page 6653
cciLogW logs an error, warning, or informational event. The event is logged by the
broker interface and uses the specified arguments as log data.
“cciUserTraceW” on page 6681
Use cciUserTraceW to write a message from a message catalog (with inserts) to
user trace. A message is also written to service trace, if service trace is active.
“cciUserDebugTraceW” on page 6676
Use cciUserDebugTraceW to write a message from a message catalog (with inserts)
to user trace when user trace is active at debug level. A message is also written to

6662 WebSphere Message Broker Version 7.0.0.8

service trace, if service trace is active.
“cciServiceTraceW” on page 6664
cciServiceTraceW writes a message to service trace, if service trace is active.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

cciServiceTrace:

Writes a message to service trace, if service trace is active.

The message that is written to service trace has the following format:
<date-time stamp> <threadNumber> +cciServiceTrace <nodeName> <nodeType> <traceText>, <nodeLabel>

Syntax:
void cciServiceTrace(

int* returnCode,
CciObject* object,
const char* traceText

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
parameter signifies that the user-defined node does not handle errors.
Exceptions thrown during the execution of this call are thrown again to the
next upstream node in the flow. If the input parameter is not NULL, output
signifies the success status of the call. If an exception occurs during execution,
*returnCode is set to CCI_EXCEPTION on output. Use CciGetLastExceptionData
to get details of the exception.

object (input)
The address of the object that is to be associated with the trace entry (input).
This object can be the address of a CciNode or a CciParser. If you specify a
CciNode, the name of that node is written to trace. If you specify a CciParser,
the name of the node that created the parser is written to trace. This object is
also used to determine if the entry is written to trace. The entry is written only
if trace is active for the node. Currently, nodes inherit their trace setting from
the message flow.

If this parameter is NULL, the following actions are taken:
v <nodeName>, <nodeType>, <nodeLabel>, and <messageFlowLabel> are

omitted from the trace entry.
v The entry is written based on the trace setting of the execution group.

traceText (input)
A string of characters that ends with NULL (input). This string is written to
service trace, and you can use it to correlate trace entries with paths through
the source code. For example, you might have several paths through the code
that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string is a static literal string in the source, and
therefore the same string is in both the source code file and the formatted trace
file.

Chapter 14. Reference 6663

This string must be in ISO-8859-1 (ibm-819) code page for user-defined
extensions running on distributed platforms, and must be in EBCDIC (1047) for
user-defined extensions running on z/OS.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

cciServiceTrace(&rc,(CciObject*)thisNode,">>_Switch_evaluate()");
checkRC(rc);

Related reference:
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.
“cciUserDebugTrace” on page 6673
Use cciUserDebugTrace to write a message from a message catalog (with inserts) to
user trace when user trace is active at debug level.
“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Multicultural support considerations for message catalogs” on page 6694
WebSphere Message Broker converts any message that is loaded from the listed
supported code pages into the local code page of the running processes (brokers)
before output to the syslog.

cciServiceTraceW:

cciServiceTraceW writes a message to service trace, if service trace is active.

The message that is written to service trace has the following format:
<date-time stamp> <threadNumber> +cciServiceTrace <nodeName> <nodeType> <traceText>, <nodeLabel>

Syntax:
void cciServiceTraceW(

int* returnCode,
CciObject* object,
const CciChar* traceText

);

6664 WebSphere Message Broker Version 7.0.0.8

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not want to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object (input)
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, the name of
that node is written to trace. If it is a CciParser*, the name of the node that
created the parser is written to trace. This object is also used to determine if
the entry should be written to trace. The entry is only written if trace is active
for the node. Currently nodes inherit their trace setting from the message flow.

If this parameter is NULL, the trace level for the execution group is returned.

traceText (input)
A string of characters that ends with NULL (input). This string will be written
to service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string will be a static literal string in the source and
therefore the same string will be in both the source code file and the formatted
trace file.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;
const CciChar* traceText = CciString(">>_Switch_evaluate()",

BIP_DEF_COMP_CCSID);
cciServiceTraceW(&rc,(CciObject*)thisNode,traceText);
checkRC(rc);

Related reference:
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.

Chapter 14. Reference 6665

“cciThrowExceptionW” on page 6668
The cciThrowExceptionW exception is thrown by the broker interface and uses the
specified arguments as exception data.
“cciLogW” on page 6653
cciLogW logs an error, warning, or informational event. The event is logged by the
broker interface and uses the specified arguments as log data.
“cciUserTraceW” on page 6681
Use cciUserTraceW to write a message from a message catalog (with inserts) to
user trace. A message is also written to service trace, if service trace is active.
“cciUserDebugTraceW” on page 6676
Use cciUserDebugTraceW to write a message from a message catalog (with inserts)
to user trace when user trace is active at debug level. A message is also written to
service trace, if service trace is active.
“cciServiceDebugTraceW” on page 6661
The function is very similar to cciServiceTraceW with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

cciThrowException:

Use this function to throw an exception. The exception is thrown by the broker
interface, and includes the specified arguments as exception data.

Syntax:
void cciThrowException(

int* returnCode,
CCI_EXCEPTION_TYPE type,
char* file,
int line,
char* function,
CciChar* messageSource,
int messageNumber,
char* traceText,

...);

Parameters:

returnCode
The return code from the function (output). The possible return code is
CCI_INV_DATA_POINTER.

type The type of exception (input). Valid values are:
v CCI_FATAL_EXCEPTION
v CCI_RECOVERABLE_EXCEPTION
v CCI_CONFIGURATION_EXCEPTION
v CCI_PARSER_EXCEPTION
v CCI_CONVERSION_EXCEPTION
v CCI_DATABASE_EXCEPTION
v CCI_USER_EXCEPTION

6666 WebSphere Message Broker Version 7.0.0.8

file The source file name where the exception was generated (input). The value
is optional, but it is useful for debugging purposes.

line The line number in the source file where the exception was generated
(input). The value is optional, but it is useful for debugging purposes.

function
The function name which generated the exception (input). The value is
optional, but it is useful for debugging purposes.

messageSource
The fully-qualified location and name of the Windows message source or
the Linux, UNIX, or z/OS message catalog.

To use the current broker message catalog, specify BIPmsgs on all
operating systems. Alternatively, you can create your own message catalog.

messageNumber
The message number identifying the exception (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list.

traceText
Trace information that is written into the broker service trace log (input).
The information is optional, but it is useful in debugging problems.

... A C variable argument list that contains any message inserts that
accompany the message (input). These inserts are treated as character
strings and the variable arguments are assumed to be of type pointer to
char.

char* characters must be strings in either ASCII (Latin) or EBCDIC (1047).

The last argument in this list must be (char*)0.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Chapter 14. Reference 6667

“cciGetLastExceptionData” on page 6647
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.
“cciLog” on page 6651
Use cciLog to write an error, warning, or informational event.
“cciRethrowLastException” on page 6659
This function re-throws the last exception that has been generated on the current
thread. It is used to pass the exception back to the broker for further handling. The
function, like a C exit call, does not return to the caller.

cciThrowExceptionW:

The cciThrowExceptionW exception is thrown by the broker interface and uses the
specified arguments as exception data.

Syntax:
void cciThrowExceptionW(

int* returnCode,
CCI_EXCEPTION_TYPE type,
const char* file,
int line,
const char* function,
const CciChar* messageSource,
int messageNumber,
const CciChar* traceText,

...
);

Parameters:

returnCode
The return code from the function (output). If the messageSource parameter
is null, the returnCode is set to CCI_INV_DATA_POINTER.

type The type of exception (input). Valid values are:
v CCI_FATAL_EXCEPTION
v CCI_RECOVERABLE_EXCEPTION
v CCI_CONFIGURATION_EXCEPTION
v CCI_PARSER_EXCEPTION
v CCI_CONVERSION_EXCEPTION
v CCI_DATABASE_EXCEPTION
v CCI_USER_EXCEPTION

file The source file name where the exception was generated (input). The value
is optional, but it is useful for debugging purposes.

line The line number in the source file where the exception was generated
(input). The value is optional, but it is useful for debugging purposes.

function
The function name which generated the exception (input). The value is
optional, but it is useful for debugging purposes.

6668 WebSphere Message Broker Version 7.0.0.8

messageSource
A string that identifies the Windows message source or the Linux and
UNIX message catalog. To use the current broker message catalog, specify
BIPmsgs on all operating systems.

messageNumber
The message number identifying the exception (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list.

traceText
Trace information that is written into the service trace log (input). The
information is optional, but it is useful in debugging problems.

... A C variable argument list that contains any message inserts that
accompany the message (input). These inserts are treated as character
strings and the variable arguments are assumed to be of type pointer to
CciChar.

The last argument in this list must be (Ccichar*)0.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
void raiseExceptionWithBroker(CciChar* helpfulText,

char* file, /* which source file is broken */
int line, /* line in above file */
char* func /* function in above file */
){

int rc = CCI_SUCCESS;

/* Set up the message catalog name */
const char* catalog = "BIPmsgs";

/* Convert the catalog name to wide characters.
* BIP_DEF_COMP_CCSID is UTF-8 on distributed and LATIN1 on z/OS
*/
int maxChars = strlen(catalog)+1;
CciChar* wCatalog =(CciChar*)malloc(maxChars*sizeof(CciChar));
cciMbsToUcs(&rc, catalog, wCatalog, maxChars, BIP_DEF_COMP_CCSID);

/* The above might have failed, but we are already throwing an exception,
* so rc is now set to type success. */
rc = CCI_SUCCESS;

/* Throw the exception. The explanation will be added as the traceText and
* as an insert to the message
*/
cciThrowExceptionW(&rc,

CCI_USER_EXCEPTION,
file, line, func,
wCatalog, BIP2111,
helpfulText,
helpfulText,
(CciChar*)0
);

/* The above might have failed, but we are already throwing an exception,
* so the value of rc is not important. */

}

Related concepts:

Chapter 14. Reference 6669

“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
“Using error logging from a user-defined extension” on page 3137
Program user-defined extensions to write entries in the local error log.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
“cciGetLastExceptionDataW” on page 6649
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_WIDE_ST output structure. The user-defined extension uses this
function to determine whether any recovery is required when a utility function
returns an error code.
“cciThrowExceptionW” on page 6668
The cciThrowExceptionW exception is thrown by the broker interface and uses the
specified arguments as exception data.
“cciRethrowLastException” on page 6659
This function re-throws the last exception that has been generated on the current
thread. It is used to pass the exception back to the broker for further handling. The
function, like a C exit call, does not return to the caller.

cciIsTraceActive:

cciIsTraceActive reports whether trace is active and the level at which trace is
active.

Syntax:
CCI_TRACE_TYPE cciIsTraceActive(

int* returnCode,
CciObject* object);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not want to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object
The address of the object that is to be associated with the trace entry (input).

6670 WebSphere Message Broker Version 7.0.0.8

This object can be a CciNode* or a CciParser*. If it is a CciNode*, the name of
that node is written to trace. If it is a CciParser*, the name of the node that
created the parser is written to trace. This object is also used to determine if
the entry should be written to trace. The entry is only written if trace is active
for the node. Currently nodes inherit their trace setting from the message flow.

If this parameter is NULL, the trace level for the execution group is returned.

Return values:
A CCI_TRACE_TYPE value indicating the level of trace that is currently active. The
CCI_TRACE_TYPE type has the following possible values:
v CCI_USER_NORMAL_TRACE
v CCI_USER_DEBUG_TRACE
v CCI_ SERVICE_NORMAL_TRACE
v CCI_SERVICE_DEBUG_TRACE
v CCI_TRACE_NONE

These return values are bitwise values. Combinations of these values are also
possible, for example:
v CCI_USER_NORMAL_TRACE + CCI_ SERVICE_NORMAL_TRACE
v CCI_USER_NORMAL_TRACE + CCI_SERVICE_DEBUG_TRACE
v CCI_USER_DEBUG_TRACE + CCI_ SERVICE_NORMAL_TRACE
v CCI_USER_DEBUG_TRACE + CCI_SERVICE_DEBUG_TRACE

CCI_TRACE_NONE is a zero value and all other values are non zero.

Two further values can be used as bitmasks when querying the active level of
trace. These are:
v CCI_USER_TRACE
v CCI_SERVICE_TRACE

For example, the expression (traceLevel & CCI_USER_TRACE) will evaluate to a non
zero value for traceLevel for the following return values:
v CCI_USER_NORMAL_TRACE + CCI_ SERVICE_NORMAL_TRACE
v CCI_USER_NORMAL_TRACE + CCI_SERVICE_DEBUG_TRACE
v CCI_USER_DEBUG_TRACE + CCI_ SERVICE_NORMAL_TRACE
v CCI_USER_DEBUG_TRACE + CCI_SERVICE_DEBUG_TRACE
v CCI_USER_NORMAL_TRACE
v CCI_USER_DEBUG_TRACE

The expression (traceLevel & CCI_USER_TRACE) will evaluate to zero for traceLevel
for the following return values:
v CCI_SERVICE_NORMAL_TRACE
v CCI_SERVICE_DEBUG_TRACE
v CCI_TRACE_NONE

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

const CCI_TRACE_TYPE traceActive = cciIsTraceActive(&rc, (CciObject*)thisNode);
checkRC(rc);

Related reference:

Chapter 14. Reference 6671

“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.
“cciUserDebugTrace” on page 6673
Use cciUserDebugTrace to write a message from a message catalog (with inserts) to
user trace when user trace is active at debug level.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

cciUcsToMbs:

Use this function to convert Universal Character Set (UCS) data to multibyte string
data. This function is, typically, used only for formatting diagnostic messages.
Normal processing is best done in UCS-2, which can represent all characters from
all languages.

The sample code in BipSampPluginUtil.c contains more utilities for processing
UCS-2 characters in a portable way.

Syntax:
int cciUcsToMbs(

int* returnCode,
const CciChar* ucsString,
char* mbString,
int mbStringLength,
int codePage);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_BUFFER_TOO_SMALL
v CCI_INV_CHARACTER
v CCI_FAILURE
v CCI_INV_CODEPAGE

ucsString
The string to be converted, expressed as UCS-2 Unicode (input).

6672 WebSphere Message Broker Version 7.0.0.8

mbString
The location of the resulting string (input). The string has a trailing byte of
0, just as the Unicode has a trailing CciChar of 0.

mbStringLength
The length (in bytes) of the buffer that you have provided (input). Each
CciChar in the source string expands to one byte (for SBCS code pages), or
up to not more than the code page's MB_CUR_MAX value (typically less
than five bytes), which defines an upper limit of the buffer size required.

codePage
The code page of the resulting string (input). The value of the code page
must be suitable for the compiler that you are using to compile the
user-defined node.

For an ASCII system, a value of 1208 (meaning code page ibm-1208, which
is UTF-8 Unicode) is a good choice if you are using cciUcsToMbs to
convert string constants for processing by WebSphere Message Broker. 1208
is appropriate for Linux, UNIX, and Windows.

On Linux and UNIX systems, nl_langinfo(CODEPAGE) gives you the code
page that has been selected by the setlocale command.

On z/OS, the default code page for WebSphere MQ, which is 500, must
not be used. Instead, use a code page value of 1047.

Return values:
The returnCode parameter is set to the converted length in bytes.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating an input node in C” on page 3027
Create a user-defined input node in C to receive messages into a message flow.
“Creating a message processing or output node in C” on page 3036
A message processing node is used to process a message in some way, and an
output node is used to produce a message as a bit stream.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.
“cciMbsToUcs” on page 6655
Use this function to convert multibyte string data to Universal Character Set (UCS).

“Supported code pages” on page 4176
Application messages must conform to supported code pages.

cciUserDebugTrace:

Use cciUserDebugTrace to write a message from a message catalog (with inserts) to
user trace when user trace is active at debug level.

Chapter 14. Reference 6673

If user trace is not active at debug level, an entry is written to service trace when
service trace is active.

Syntax:
void cciUserDebugTrace(

int* returnCode,
CciObject* object,
const CciChar* messageSource,
int messageNumber,
const char* traceText,
...

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
parameter indicates that the user-defined node does not handle errors. All
exceptions that are thrown during the execution of this call are thrown again to
the next upstream node in the flow. If the input parameter is not NULL, the
output signifies the success status of the call. If an exception occurs during
execution, *returnCode is set to CCI_EXCEPTION on output. Call
CciGetLastExceptionData to obtain details of the exception.

object
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If you specify a CciNode*, the
name of that node is written to trace. If you specify a CciParser*, the name of
the node that created the parser is written to trace. This object is also used to
determine if the entry is written to trace. The entry is written only if trace is
active for the node. Nodes inherit their trace setting from the message flow.

If this parameter is NULL, the trace level for the execution group is returned.

messageSource
The fully qualified location and name of the Windows message source or the
Linux, UNIX, or z/OS message catalog.

To use the current broker message catalog, specify BIPmsgs on all operating
systems. Alternatively, you can create your own message catalog.

When trace is formatted, a message from the NLS version of this catalog is
written.

The locale used is that of the environment where the trace is formatted. You
can run the broker on one operating system, read the log on that operating
system, then format the log on a different operating system. For example, if the
broker is running on Linux, UNIX, or z/OS but no .cat file is available, you
could read the log, then transfer it to Windows where the log can be formatted
by using the .properties file.

If this parameter is NULL, the effect is the same as specifying an empty string.
That is, all other information is written to the log, and the catalog field has an
empty string value. Therefore, the log formatter cannot find the message
source and fails to format this entry.

messageNumber
The number that identifies the message within the specified messageSource
(input). If the messageSource does not contain a message that corresponds to
this messageNumber, the log formatter fails to format this entry.

6674 WebSphere Message Broker Version 7.0.0.8

traceText
A string of characters that ends with NULL (input). This string is written to
service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, you might have several paths through
the code that result in the same message (messageSource and messageNumber)
being written to trace. traceText can be used to distinguish between these
different paths. That is, the traceText string is a static literal string in the source
and therefore the same string is in both the source code file and the formatted
trace file.

...
A C variable argument list that contains other message inserts that accompany
the message (input). These inserts are treated as character strings and the
variable arguments are assumed to be of type pointer to char. The last
argument in this list must be (char*)0.

v For user-defined extensions that are running on distributed platforms, the char*
arguments must be in ISO-8859-1 (ibm-918) code page.

v For user-defined extensions that are running on z/OS platforms, the char*
arguments must be in EBCIDIC (1047).

These requirements apply to all char* arguments in traceText and the variable
argument list of inserts (...).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

const char* mbElementName = mbString((CciChar*)&elementName,BIP_DEF_COMP_CCSID);
const char* mbElementValue = mbString((CciChar*)&elementValue,BIP_DEF_COMP_CCSID);
const char* traceTextFormat = "Switch Element: name=%s, value=%s";
char* traceText = (char*)malloc(strlen(traceTextFormat) +

strlen(mbElementName) +
strlen(mbElementValue));

sprintf(traceText,traceTextFormat,mbElementName,mbElementValue);

cciUserDebugTrace(&rc,
(CciObject*)thisNode,
myMessageSource,
2,
traceText,
mbElementName,
mbElementValue,
(char*)0);

free((void*)mbElementName);
free((void*)mbElementValue);
free((void*)traceText);

Related tasks:
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
Related reference:
“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user

Chapter 14. Reference 6675

trace. A message is also written to service trace, if service trace is active.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

cciUserDebugTraceW:

Use cciUserDebugTraceW to write a message from a message catalog (with inserts)
to user trace when user trace is active at debug level. A message is also written to
service trace, if service trace is active.

If user trace is not active at debug level, an entry is written to service trace when
service trace is active at any level.

Syntax:
void cciUserDebugTraceW(

int* returnCode,
CciObject* object,
const CciChar* messageSource,
int messageNumber,
const CciChar* traceText,
...

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not want to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, the name of
that node is written to trace. If it is a CciParser*, the name of the node that
created the parser is written to trace. This object is also used to determine if
the entry should be written to trace. The entry is only written if trace is active
for the node. Currently nodes inherit their trace setting from the message flow.

If this parameter is NULL, the trace level for the execution group is returned.

6676 WebSphere Message Broker Version 7.0.0.8

messageSource
A string that identifies the Windows message source or the Linux and UNIX
message catalog (input). When trace is formatted, a message from the NLS
version of this catalog is written. The locale used is that of the environment
where the trace is formatted. It is possible to run the broker on one type of
operating system, read the log on that operating system, then format the log
on a different operating system. For example, if the broker is running on Linux
or UNIX but no .cat file is available, the user could read the log, then transfer
it to Windows where the log can be formatted by using the .properties file.

If this parameter is NULL, the effect is the same as specifying an empty string.
That is, all other information will be written to the log, and the catalog field
will have an empty string value. Therefore, the log formatter will not be able
to find the message source. Consequently, the log formatter will fail to format
this entry.

messageNumber
The number that identifies the message within the specified messageSource
(input). If the messageSource does not contain a message that corresponds to
this messageNumber, the log formatter fails to format this entry.

traceText
A string of characters that ends with NULL (input). This string will be written
to service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string will be a static literal string in the source and
therefore the same string will be in both the source code file and the formatted
trace file.

...
A C variable argument list that contains any message inserts that accompany
the message (input). These inserts are treated as character strings and the
variable arguments are assumed to be of type pointer to CciChar.

The last argument in this list must be (CciChar*)0.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;
const CciChar* traceText = CciString("Found an element name and value",

BIP_DEF_COMP_CCSID);

cciUserDebugTraceW(&rc,
(CciObject*)thisNode,
myMessageSource,
2,
traceText,
elementName,
elementValue,
(CciChar*)0);

Related reference:
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user

Chapter 14. Reference 6677

trace. A message is also written to service trace, if service trace is active.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.
“cciThrowExceptionW” on page 6668
The cciThrowExceptionW exception is thrown by the broker interface and uses the
specified arguments as exception data.
“cciLogW” on page 6653
cciLogW logs an error, warning, or informational event. The event is logged by the
broker interface and uses the specified arguments as log data.
“cciUserTraceW” on page 6681
Use cciUserTraceW to write a message from a message catalog (with inserts) to
user trace. A message is also written to service trace, if service trace is active.
“cciServiceTraceW” on page 6664
cciServiceTraceW writes a message to service trace, if service trace is active.
“cciServiceDebugTraceW” on page 6661
The function is very similar to cciServiceTraceW with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

cciUserTrace:

Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.

The message written to user trace has the following format:
<date-time stamp> <threadNumber> UserTrace <Message text with inserts> <Message Explanation>

Syntax:
void cciUserTrace(

int* returnCode,
CciObject* object,
const CciChar* messageSource,
int messageNumber,
const char* traceText,

...
);

Parameters:

6678 WebSphere Message Broker Version 7.0.0.8

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not want to deal with errors. Any
exceptions thrown during the execution of this call are re-thrown to the next
upstream node in the flow. If input is not NULL, output signifies the success
status of the call. If an exception occurs during execution, *returnCode is set to
CCI_EXCEPTION on output. A call to CciGetLastExceptionData provides
details of the exception.

object
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, the name of
that node is written to trace. If it is a CciParser*, the name of the node that
created the parser is written to trace. This object is also used to determine if
the entry should be written to trace. The entry is only written if trace is active
for the node. Currently, nodes inherit their trace setting from the message flow.

If this parameter is NULL, the trace level for the execution group is returned.

messageSource
The fully-qualified location and name of the Windows message source, or the
Linux, UNIX, or z/OS message catalog (input).

To use the current broker message catalog, specify BIPmsgs on all operating
systems. Alternatively, you can create your own message catalog.

When trace is formatted, a message from the NLS version of this catalog is
written. The locale used is that of the environment where the trace is
formatted.

You can run the broker on one operating system, read the log on that
operating system, then format it on a different operating system. For example,
if the broker is running on Linux, but no .cat file is available, you could read
the log, then transfer it to Windows, where the log can be formatted by using
the .properties file.

If this parameter is NULL, the effect is the same as specifying an empty string.
That is, all other information is written to the log, and the catalog field has an
empty string value. Therefore, the log formatter cannot find the message
source. Consequently, the log formatter fails to format this entry.

messageNumber
The number that identifies the message within the specified messageSource
(input). If the messageSource does not contain a message that corresponds to
this messageNumber, the log formatter fails to format this entry.

traceText
A string of characters that ends with NULL (input). This string is written to
service trace, and provides an easy way to correlate trace entries with paths
through the source code. For example, if several paths through the code result
in the same message (messageSource and messageNumber) being written to trace,
you can specify traceText to distinguish between these different paths. That is,
the traceText string is a static literal string in the source, and therefore the same
string appears in both the source code file and the formatted trace file.

...
A C variable argument list that contains any message inserts that accompany
the message (input). These inserts are treated as character strings, and the
variable arguments are assumed to be of type pointer to char.

The last argument in this list must be (char*)0.

Chapter 14. Reference 6679

v For user-defined extensions that are running on distributed platforms, the char*
arguments must be in ISO-8859-1 (ibm-918) code page.

v For user-defined extensions that are running on z/OS platforms, the char*
arguments must be in EBCIDIC (1047).

These requirements include all char* arguments in traceText and the variable
argument list of inserts (...).

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

cciUserTrace(&rc,
(CciObject*)thisNode,
myMessageSource,
1,
"propagating to add terminal",
"add",
(char*)0);

checkRC(rc);

Related tasks:
“Using error logging from a user-defined extension” on page 3137
Program user-defined extensions to write entries in the local error log.
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
Related reference:
“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.
“cciUserDebugTrace” on page 6673
Use cciUserDebugTrace to write a message from a message catalog (with inserts) to
user trace when user trace is active at debug level.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by

6680 WebSphere Message Broker Version 7.0.0.8

default; you must activate it explicitly by using a command.

cciUserTraceW:

Use cciUserTraceW to write a message from a message catalog (with inserts) to
user trace. A message is also written to service trace, if service trace is active.

The message written to user trace has the following format:
<date-time stamp> <threadNumber> UserTrace <Message text with inserts> <Message Explanation>

Syntax:
void cciUserTraceW(

int* returnCode,
CciObject* object,
const CciChar* messageSource,
int messageNumber,
const CciChar* traceText,

...
);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not want to deal with errors. Any
exceptions that are thrown during the execution of this call are re-thrown to
the next upstream node in the flow. If input is not NULL, output indicates the
success status of the call. If an exception occurs during execution, *returnCode
is set to CCI_EXCEPTION on output. Call CciGetLastExceptionData to obtain
details of the exception.

object
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If you specify a CciNode*, the
name of that node is written to trace. If you specify a CciParser*, the name of
the node that created the parser is written to trace. This object is also used to
determine if the entry should be written to trace. The entry is written only if
trace is active for the node. Nodes inherit their trace setting from the message
flow.

If this parameter is NULL, the trace level for the execution group is returned.

messageSource
The fully-qualified location and name of the Windows message source or the
Linux, UNIX, or z/OS message catalog.

To use the current broker message catalog, specify BIPmsgs on all operating
systems. Alternatively, you can create your own message catalog.

When trace is formatted, a message from the NLS version of this catalog is
written.

The locale used is that of the environment where the trace is formatted. You
can run the broker on one operating system, read the log on that operating
system, then format the log on a different operating system. For example, if the
broker is running on Linux, UNIX, or z/OS but no .cat file is available, you
could read the log, then transfer it to Windows where the log can be formatted
by using the .properties file.

Chapter 14. Reference 6681

If this parameter is NULL, the effect is the same as specifying an empty string.
That is, all other information is written to the log, and the catalog field has an
empty string value. Therefore, the log formatter cannot find the message
source and fails to format this entry.

messageNumber
The number that identifies the message within the specified messageSource
(input). If the messageSource does not contain a message that corresponds to
this messageNumber, the log formatter fails to format this entry.

traceText
A string of characters that ends with NULL (input). This string is written to
service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. Use traceText to distinguish between these different paths. That
is, the traceText string is a static literal string in the source, and therefore the
same string is in both the source code file and the formatted trace file.

...
A C variable argument list that contains any message inserts that accompany
the message (input). These inserts are treated as character strings and the
variable arguments are assumed to be of type pointer to CciChar.

The last argument in this list must be (CciChar*)0.

Return values:
None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);
const CciChar* text = CciString("propagating to add terminal",

BIP_DEF_COMP_CCSID);
const CciChar* insert = CciString("add", BIP_DEF_COMP_CCSID);
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;
int rc = CCI_SUCCESS;

cciUserTrace(&rc,
(CciObject*)thisNode,
myMessageSource,
1,
text,
insert,
(CciChar*)0);

checkRC(rc);

Related tasks:
“Creating message catalogs” on page 3138
Create your own message catalogs to write tailored entries to the local error log.
Related reference:
“Trace logging from a user-defined C extension” on page 6693
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.

6682 WebSphere Message Broker Version 7.0.0.8

“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“cciThrowExceptionW” on page 6668
The cciThrowExceptionW exception is thrown by the broker interface and uses the
specified arguments as exception data.
“cciLogW” on page 6653
cciLogW logs an error, warning, or informational event. The event is logged by the
broker interface and uses the specified arguments as log data.
“cciUserDebugTraceW” on page 6676
Use cciUserDebugTraceW to write a message from a message catalog (with inserts)
to user trace when user trace is active at debug level. A message is also written to
service trace, if service trace is active.
“cciServiceTraceW” on page 6664
cciServiceTraceW writes a message to service trace, if service trace is active.
“cciServiceDebugTraceW” on page 6661
The function is very similar to cciServiceTraceW with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

C skeleton code
Use the skeleton code that is supplied as guidance for your C user-defined node.
The code has the minimum content that is required to compile a user-defined node
successfully.

#ifdef __WIN32
#include <windows.h>
#endif
#include <BipCos.h>
#include <BipCci.h>
#include <BipCni.h>
#include <malloc.h>

#define BIP_DEF_COMP_CCSID 437
CciChar* constNodeFactory = 0;
CciChar* constNodeName = 0;
CciChar* constTerminalName = 0;
CciChar* constOutTerminalName = 0;

CciChar* CciString(
const char* source,
int codepage

){
/* Maximum number of characters in Unicode representation */
int maxChars = strlen(source) + 1 ;
CciChar* buffer = (CciChar*)malloc(maxChars * sizeof(CciChar)) ;
int rc ;
cciMbsToUcs(&rc, source, buffer, maxChars, codepage) ;
return buffer ;

Chapter 14. Reference 6683

}
void initNodeConstants(){

constNodeFactory = CciString("myNodeFactory", BIP_DEF_COMP_CCSID);
constNodeName = CciString("myNode",BIP_DEF_COMP_CCSID);
constTerminalName = CciString("in",BIP_DEF_COMP_CCSID);
constOutTerminalName = CciString("out",BIP_DEF_COMP_CCSID);

}

typedef struct {
CciTerminal* iOutTerminal;

}MyNodeContext;

CciContext* createNodeContext(
CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject

){

MyNodeContext * p = (MyNodeContext *)malloc(sizeof(MyNodeContext));

/*here we would create an instance of some data structure
where we could store context about this node instance.
We would return a pointer to this struct and that pointer
will be passed to our other implementation functions */

/* now we create an input terminal for the node*/
cniCreateInputTerminal(NULL, nodeObject, (CciChar*)constTerminalName);
p->iOutTerminal = cniCreateOutputTerminal(NULL, nodeObject, (CciChar*)constOutTerminalName);
return((CciContext*)p);

}

/**/
/* */
/* Plugin Node Implementation Function: cniEvaluate() */
/* */
/**/
void evaluate(

CciContext* context,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message

){
/* we would place our node’s processing logic in here*/
return;

}

int run(
CciContext* context,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message

)
{

char* buffer="<doc><test>hello</test></doc>";
CciChar* wBuffer=CciString(buffer,BIP_DEF_COMP_CCSID);
//cniSetInputBuffer(NULL,message,(void*)wBuffer,strlen(buffer) * sizeof(CciChar));
cniSetInputBuffer(NULL,message,(void*)buffer,strlen(buffer));
cniFinalize(NULL,message,0);

cniPropagate(NULL,((MyNodeContext*)context)->iOutTerminal,localEnvironment,exceptionList,message);
return CCI_SUCCESS_CONTINUE;

}

#ifdef __cplusplus
extern "C"{

6684 WebSphere Message Broker Version 7.0.0.8

#endif
CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix bipGetMessageflowNodeFactory()
{

CciFactory* factoryObject;

/* Before we proceed, we need to initialize all the static constants */
/* that might be used by the plug-in. */
initNodeConstants();

/* Create the Node Factory for this plug-in */
/* If any errors/exceptions */
/* occur during the execution of this utility function, then as we have not */
/* supplied the returnCode argument, the exception will bypass the plugin */
/* and be directly handled by the broker. */
factoryObject = cniCreateNodeFactory(0, (unsigned short *)constNodeFactory);
if (factoryObject == CCI_NULL_ADDR) {

/* Any further local error handling can go here */
}
else {

/* Define the node supported by this factory */
static CNI_VFT vftable = {CNI_VFT_DEFAULT};
/* Setup function table with pointers to node implementation functions */
vftable.iFpCreateNodeContext = createNodeContext;
vftable.iFpEvaluate = evaluate;
vftable.iFpRun = run;

/* Define a node type supported by our factory. If any errors/exceptions */
/* occur during the execution of this utility function, then as we have not */
/* supplied the returnCode argument, the exception will bypass the plugin */
/* and be directly handled by the broker. */
cniDefineNodeClass(NULL, factoryObject, (CciChar*)constNodeName, &vftable);

}

/* Return address of this factory object to the broker */
return(factoryObject);

}
#ifdef __cplusplus
}
#endif

GNU makefile

The following file is a makefile that lists the files, dependencies, and rules by
which the C user-defined node is compiled.

.SUFFIXES : .so .a .o .c

R1INC = .
R1LIB = .

WMQI
MQSIDIR = /cmvc/back/inst.images/x86_linux_2/shipdata/opt/mqsi
MQSIINC = $(MQSIDIR)/include
MQSILIB = $(MQSIDIR)/lib

WMQ
MQIDIR = /usr/mqm

CC = /usr/bin/g++
LD = ${CC}

OBJ = .o
LIL = .lil
THINGSTOCLEAN = *${OBJ}
CFLAGS = -fpic -c #-pedantic -x c -Wall

Chapter 14. Reference 6685

CFLAGSADD = -I${R1INC} -I${MQSIINC} -I${MQSIINC}/plugin ${DEFINES}
DEFINES = -DLINUX

LIBADD = -L${MQSILIB} -limbdfplg
LDFLAG = -shared ${LIBADD}

#CC = /usr/bin/gcc
#LD = ${CC}

OBJECTS = skeleton${OBJ}
.c.o : ; ${CC} ${CFLAGS} ${CFLAGSADD} $<

ALL : ${OBJECTS} Samples${LIL}
clean:
rm *${OBJ} *${LIL}

skeleton${OBJ}: skeleton.c

Samples${LIL}: ${OBJECTS}
${LD} -o $@ ${OBJECTS} ${LDFLAG}

Related tasks:
“Creating a user-defined extension in C” on page 3026
You must complete a series of tasks to create user-defined extensions that use the
C language.
Related reference:
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.
“C language user-defined node API” on page 6416
Learn about the different types of call provided by the API.
“C common implementation functions” on page 6641
You can use the common implementation functions in user-defined nodes and
user-defined parsers. All the functions are called by the broker on occurrence of
certain events.
“C common utility functions” on page 6643
WebSphere Message Broker provides some additional utilities that user-defined
nodes and parsers can use.

Property editor API
The property editor Java API is described in this section. Use the API classes and
methods described here to develop property editor applications.

The Java classes and methods are described in the Property editor API.
Related tasks:
“Adding a property editor or compiler” on page 3091
Create a property editor by using the IPropertyEditor interface to control how the
properties of your user-defined node created in Java or C only, are displayed in the
WebSphere Message Broker Toolkit. Create a custom compiler by using the
IPropertyCompiler interface; for example, to encrypt a value before sending it to
the server.

Utility function return codes and values
By convention, the return code output parameter of all utility functions is set to
indicate successful completion, or an error. The table lists all return codes with
their meanings.

6686 WebSphere Message Broker Version 7.0.0.8

These return codes are defined in the BipCci.h header file.

Return code Explanation

CCI_BUFFER_TOO_SMALL The output buffer is not large enough to
store the requested data.

CCI_EXCEPTION An exception occurred.

CCI_EXCEPTION_CONFIGURATION A configuration exception was detected
when invoking the function. 1

CCI_EXCEPTION_CONVERSION A conversion exception was detected when
invoking the function. 1

CCI_EXCEPTION_DATABASE A database exception was detected when
invoking the function.

CCI_EXCEPTION_FATAL A fatal exception was detected when
invoking the function. 1

CCI_EXCEPTION_PARSER A parser exception was detected when
invoking the function. 1

CCI_EXCEPTION_RECOVERABLE A recoverable exception was detected when
invoking the function. 1

CCI_EXCEPTION_UNKNOWN An unknown exception was specified or
encountered.

CCI_EXCEPTION_USER A user exception was detected when
invoking the function. 1

CCI_FAILURE A function was unsuccessful.

CCI_FAILURE_CONTINUE cniRun() return value: rollback message
processing and continue thread execution

CCI_FAILURE_RETURN cniRun() return value: rollback message
processing and return thread to pool

CCI_INV_CODEPAGE An invalid code page number was specified.

CCI_INV_CHARACTER An invalid character was detected in the
buffer to be converted.

CCI_INV_DATA_BUFLEN A data buffer length of zero was specified.

CCI_INV_DATA_POINTER A null pointer was specified for the address
of an output data area.

CCI_INV_ELEMENT_OBJECT A null pointer was specified for the element
object.

CCI_INV_FACTORY_NAME A factory name that is not valid (blank) was
specified.

CCI_INV_FACTORY_OBJECT A null pointer was specified for the factory
object.

CCI_INV_IMPL_FUNCTION An invalid combination of conditional
implementation functions was specified

CCI_INV_LENGTH A length of zero was specified.

CCI_INV_LOG_TYPE The specified log type is not valid.

CCI_INV_MESSAGE_CONTEXT A null pointer was specified for the message
context.

CCI_INV_MESSAGE_OBJECT A null pointer was specified for the message
object.

CCI_INV_NODE_ENV Attempt to dispatch a thread from a
non-input node.

Chapter 14. Reference 6687

Return code Explanation

CCI_INV_NODE_NAME A node name that is not valid (blank) was
specified.

CCI_INV_NODE_OBJECT A null pointer was specified for the node
object.

CCI_INV_OBJECT_NAME Characters specified in the object name were
not valid.

CCI_INV_PARSER_NAME A parser class name that is not valid (blank)
was specified.

CCI_INV_PARSER_OBJECT A null pointer was specified for the parser
object.

CCI_INV_SQL_EXPR_OBJECT A null pointer was specified for an SQL
expression value.

CCI_INV_STATEMENT A statement was not specified.

CCI_INV_TERMINAL_NAME A terminal name that is not valid (blank)
was specified.

CCI_INV_TERMINAL_OBJECT A null pointer was specified for the terminal
object.

CCI_INV_TRANSACTION_TYPE An invalid value was specified for the
transaction type.

CCI_INV_VFTP A null pointer was specified for the address
of the user-defined extension virtual
function pointer table.

CCI_MISSING_IMPL_FUNCTION A mandatory implementation function was
not defined in the function pointer table.

CCI_NAME_EXISTS A parser with the same class name already
exists.

CCI_NO_BUFFER_EXISTS No buffer exists for the specified parser
object.

CCI_NO_EXCEPTION_EXISTS No previous exception was found for this
thread.

CCI_NO_THREADS_AVAILABLE No threads were available to be dispatched.

CCI_NULL_ADDR A function that should return an address
was unsuccessful; zero is returned instead.

CCI_PARSER_NAME_TOO_LONG The name of the parser class is too long.

CCI_SUCCESS Successful completion.

CCI_SUCCESS_CONTINUE cniRun() return value: commit message
processing and continue thread execution

CCI_SUCCESS_RETURN cniRun() return value: commit message
processing and return thread to pool

CCI_TIMEOUT cniRun() return value: no message
processing but continue thread execution

Note:

1. This return code is returned only by cniGetLastExceptionData to indicate the
type of the last exception.

Related reference:

6688 WebSphere Message Broker Version 7.0.0.8

“C common utility functions” on page 6643
WebSphere Message Broker provides some additional utilities that user-defined
nodes and parsers can use.
“C Header files” on page 6415
The C interfaces are defined by the following header files.

Available parsers
A parser is called by the broker only when that parser is required. The parser that
is called depends upon the parser that has been specified.

For certain implementation functions, it might be necessary to specify the name of
a parser supplied with WebSphere Message Broker. For example, functions include:
v cniCreateElementAfterUsingParser
v cniCreateElementAsFirsthChildUsingParser
v cniCreateElementAsLastChildUsingParser
v cniCreateElementAsLastChildFromBitstream
v cniCreateElementBeforeUsingParser

When using these functions, you must specify the correct class name of the parser.
The following tables provide a summary of the parsers, root element names, and
class names for different headers.

The following table shows the Body parsers.

Parser Root element name Class name

BLOB BLOB NONE

DataObject DataObject DataObject

IDOC (deprecated) IDOC IDOC

JMSMap JMSMap JMS_MAP

JMSStream JMSStream JMS_STREAM

MIME MIME MIME

MRM MRM MRM

SOAP SOAP SOAP

XML (deprecated) XML xml

XMLNS XMLNS xmlns

XMLNSC XMLNSC xmlnsC

JSON1 JSON JSON

Note:

1. To enable the JSON parser on a broker, use the -f parameter on the
mqsichangebroker command. For more information, see “mqsichangebroker
command” on page 3723.

The following table shows the Header parsers.

Parser Root element name Class name

EmailOutputHeader EmailOutputHeader EMAILHDR

HTTPInputHeader HTTPInputHeader WSINPHDR

Chapter 14. Reference 6689

Parser Root element name Class name

HTTPReplyHeader HTTPReplyHeader WSREPHDR

HTTPRequestHeader HTTPRequestHeader WSREQHDR

HTTPResponseHeader HTTPResponseHeader WSRSPHDR

JMS header JMSTransport jms_transport

MQCFH MQPCF MQPCF

MQCIH MQCIH MQCICS

MQDLH MQDLH MQDEAD

MQIIH MQIIH MQIMS

MQMD MQMD MQHMD

MQMDE MQMDE MQHMDE

MQRFH MQRFH MQHRF

MQRFH2 MQRFH2 MQHRF2

MQRFH2C MQRFH2C MQHRF2C

MQRMH MQRMH MQHREF

MQSAPH MQSAPH MQHSAP

MQWIH MQWIH MQHWIH

SMQ_BMH SMQ_BMH SMQBAD

When using the MQMD parser, the MQMD is assumed to be a V2 MQMD.

The following table shows the Properties parser.

Parser Root element name Class name

Properties Properties PropertyParser

You can also create your own user-defined parsers, or you can make use of
user-defined parsers that have been supplied by independent software vendors.
Related concepts:
“User-defined parsers” on page 3010
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation
“User-defined parser life cycle” on page 3011
Various stages exist in the life of a user-defined message flow parser.
“Planning user-defined parsers” on page 3013
Read about the concepts that you should consider before you develop a
user-defined parser.
“Parsers” on page 1072
A parser is a program that interprets the physical bit stream of an incoming
message, and creates an internal logical representation of the message in a tree
structure. The parser also regenerates a bit stream for an outgoing message from
the internal message tree representation.
Related reference:
“XML, MRM, and XMLNSC parser constants” on page 6691
The names of the XML and MRM parser constants, together with their

6690 WebSphere Message Broker Version 7.0.0.8

corresponding values, and a link to the XMLNSC constants.
“C language user-defined parser API” on page 6538
The C language user-defined parser API consists of two complementary sets of
functions that you can use to define the function of your parser.

XML, MRM, and XMLNSC parser constants
The names of the XML and MRM parser constants, together with their
corresponding values, and a link to the XMLNSC constants.

When you are writing user-defined extensions you might need to know the value
of various constants.

XML parser constants:

Name Value

Element 0x01000000

tag 0x01000000

ParserRoot 0x01000010

Content 0x02000000

pcdata 0x02000000

attr 0x03000000

Attribute 0x03000000

UnparsedEntityDecl 0x05000004

NotationDecl 0x05000008

EntityDecl 0x05000011

ParameterEntityDecl 0x05000012

ExternalEntityDecl 0x05000014

XmlDecl 0x05000018

DocTypeDecl 0x05000020

IntSubset 0x05000021

ExtSubset 0x05000022

AttributeList 0x05000024

AttributeDef 0x05000028

ExternalParameterEntityDecl 0x05000040

WhiteSpace 0x06000002

PublicId 0x06000004

SystemId 0x06000008

NotationReference 0x06000010

Version 0x06000011

Encoding 0x06000012

Standalone 0x06000014

Comment 0x06000018

EntityReferenceStart 0x06000020

EntityReferenceEnd 0x06000021

DocTypeComment 0x06000022

Chapter 14. Reference 6691

Name Value

AsisElementContent 0x06000028

CDataSection 0x06000040

EntityDeclValue 0x06000041

AttributeDefValue 0x06000042

AttributeDefDefaultType 0x06000044

DocTypeWhiteSpace 0x06000080

ProcessingInstruction 0x07000002

ElementDef 0x07000004

DocTypePI 0x07000008

AttributeDefType 0x07000010

RequestedDomain 0x07000011

MRM parser constants:

Name Value

PreDefStructureFav 0x01000000

PreDefStructure 0x01000001

SelfDefStructure 0x01000002

StructureInstance 0x01000004

MrmRoot 0x01000008

mtiSelfDefMessage 0x01000010

mtiPreDefMessage 0x01000012

mtiSelfDefIdentifier 0x02000001

mtiSdfFieldType 0x02000002

mtiSdfCharsCodepage 0x02000008

mtiSdfCharsEcho 0x02000010

mtiSdfCharsScale 0x02000011

mtiSdfCharsDateFmt 0x02000012

mtiSdfCharsTimeFmt 0x02000014

mtiSdfCharsTimeStampFmt 0x02000018

mtiSdfCharsBinaryFmt 0x02000020

mtiSdfCharsBinaryFmtContextLen 0x02000021

mtiSdfCharsBinaryFmtContext 0x02000022

mtiMixedContent 0x02000024

PreDefFieldFav 0x03000000

PreDefField 0x03000001

mtiSelfDefField 0x03000002

PreDefFieldInstance 0x03000004

SelfDefFieldInstance 0x03000008

Namespace 0x03000010

mtiPreDefStructureV 0x03000012

6692 WebSphere Message Broker Version 7.0.0.8

Name Value

mtiSelfDefStructureV 0x03000014

mtiStructureInstanceV 0x03000016

mtiSelfDefMessageV 0x03000018

mtiPreDefMessageV 0x03000020

mtiUnresolvedChoice 0x04000001

XMLNSC parser constants:
See “XMLNSC: Using field types” on page 1094 for a list of the XMLNSC parser
constants.

:

Related reference:
“User-defined extensions” on page 6411
Reference material that supports the creation and management of your
user-defined extensions.

Trace logging from a user-defined C extension
Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.

You can use two types of trace:
v Service Trace: entries usually describe what is happening within the code and

are only useful to the owner of the code, such as the user-defined extension
developer.

v User Trace: entries usually describe what is happening at an external level and
are useful to the user of the code. Users of the code include message flow
designers, and broker domain administrators.

For each trace type, there are three levels:
v None
v Normal
v Debug

For C user-defined extensions, the following utility functions are available for each
trace type:
v cciServiceTrace and cciUserTrace: these functions write an entry to the

respective trace type only when trace has been activated, that is, trace is at
normal or debug level.

v cciServiceDebugTrace and cciUserDebugTrace: these functions write an entry to
the respective trace type only when trace is active at debug level.

To help avoid making function calls in the case where no trace is written, the
cciIsTraceActive utility function is provided. cciIsTraceActive reports whether
trace is active and the level at which trace is active.

The cci*Trace functions can be used by a user-defined extension regardless of the
trace settings. The functions determine if trace is active and only write entries
which are appropriate for the trace settings. When calling the cci*Trace functions,
some additional processing can be required. The cciIsTraceActive function is
provided to allow the user-defined extension to query the trace settings and avoid
this extra processing when trace is inactive.

Chapter 14. Reference 6693

In many cases, it is sufficient to treat the value returned from the cciIsTraceActive
function as a Boolean value. If the returned value is non zero, trace is active at
some level and it is appropriate to call any of the cci*Trace functions. The returned
value can also be inspected closely in the cases when details of the trace settings
are required.

Trace settings can be changed at any time so it is advisable to query them
regularly. For example, use cciIsTraceActive to query the trace settings when an
implementation function is entered.

Trace entries can be associated with certain objects, which allows for further
refinement of control for writing trace. A trace entry can be associated with a node
or parser and trace is written according to the trace setting for that object. The
object's trace setting is inherited from the message flow to which the node or
parser belongs. If no object is specified, the trace is associated with the execution
group.
Related reference:
“cciUserDebugTrace” on page 6673
Use cciUserDebugTrace to write a message from a message catalog (with inserts) to
user trace when user trace is active at debug level.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“cciServiceDebugTrace” on page 6660
This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

“cciIsTraceActive” on page 6670
cciIsTraceActive reports whether trace is active and the level at which trace is
active.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.

Multicultural support considerations for message catalogs
WebSphere Message Broker converts any message that is loaded from the listed
supported code pages into the local code page of the running processes (brokers)
before output to the syslog.

You must provide symbolic links to your primary message catalogs for all locales
that you intend to support. WebSphere Message Broker uses the LC_MESSAGES
variable when opening message catalogs.

Multicultural support considerations on Windows:
Windows When you build a message file for Windows that contains multiple

locales, ensure that the locale on the computer is set to a western European locale

6694 WebSphere Message Broker Version 7.0.0.8

(for example, English (United Kingdom)) before building the message catalogs. Use
the chcp (Change Code Page) command to ensure that the code page is 850.

Write or convert all your message files (those with file type .mc) to the following
code pages; each message file should be compiled separately by the message
compiler with the additional flag that is specified in the following table.

DBCS message files do not need to be in Unicode (no -U flag). Use the RC
command to 'resource compile' all the files, then use the link command to build a
single message DLL.

Locale Code page Additional Flags

English (United States) 437 -U

German (Standard) 850 -U

Spanish (Modern Sort) 850 -U

French (Standard) 850 -U

Italian (Standard) 850 -U

Portuguese (Brazilian) 850 -U

Japan 932

Simplified Chinese (China) 1381

Traditional Chinese (Taiwan) 950

Korean 949

Multicultural support considerations on Linux and UNIX:
When you build message catalogs for Linux and UNIX systems, ensure that the
catalogs are built in the code pages defined in the following table.

Locale Code page

English 437

German 850

Spanish 850

French 850

Italian 850

Portuguese (Brazilian) 850

Japan 932

Simplified Chinese (China) 1381

Traditional Chinese (Taiwan) 950

Korean 949

Multicultural support considerations on z/OS:
z/OS When you build message catalogs for z/OS systems, ensure that the

catalogs are built in the code pages defined in the following table.

Locale Code page

English 1047

Japan 939

Simplified Chinese (China) 1388

Chapter 14. Reference 6695

Related tasks:
“Using error logging from a user-defined extension” on page 3137
Program user-defined extensions to write entries in the local error log.

Web services external standards
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.

This section contains the topics that describe the WebSphere Message Broker
support for Web services.
v “SOAP 1.1 and 1.2”
v “SOAP with Attachments” on page 6697
v “SOAP MTOM” on page 6697
v “WSDL Version 1.1” on page 6699
v “WS-I Simple SOAP Binding Profile Version 1.0” on page 6700
v “WS-I Basic Profile Version 1.1” on page 6700
v “WSDL 1.1 Binding Extension for SOAP 1.2” on page 6701
v “XML-Binary Optimised Packaging (XOP)” on page 6702
v “SOAP Binding for MTOM 1.0” on page 6702
v “Web Services Security: SOAP Message Security” on page 6703
v “XML Encryption Syntax and Processing” on page 6704
v “XML-Signature Syntax and Processing” on page 6704
v “WebSphere Message Broker compliance with Web services standards” on page

6704

SOAP 1.1 and 1.2
SOAP is a lightweight, XML-based, protocol for exchange of information in a
decentralized, distributed environment.

The protocol consists of three parts:
v An envelope that defines a framework for describing what is in a message and

how to process it.
v A set of encoding rules for expressing instances of application-defined data

types.
v A convention for representing remote procedure calls and responses.

SOAP can be used with other protocols, such as HTTP.

The specifications for SOAP are published by the World Wide Web Consortium
(W3C).
v World Wide Web Consortium (W3C)

The specification for SOAP 1.1 is described in:
v Simple Object Access Protocol 1.1

This specification has not been endorsed by the W3C, but forms the basis for the
SOAP 1.2 specification. The specification for SOAP 1.1 expands the SOAP acronym
to Simple Object Access Protocol.

SOAP 1.2 is a W3C recommendation and is published in two parts:

6696 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/
http://www.w3.org/TR/soap/

v Part 1: Messaging Framework.
v Part 2: Adjuncts.

The specification also includes a primer that is intended to provide a tutorial on
the features of the SOAP Version 1.2 specification, including usage scenarios. The
specification for SOAP 1.2 does not expand the acronym. The primer is published
at:
v SOAP 1.2 Primer
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
Related information:

http://www.w3.org/

SOAP with Attachments
SOAP with Attachments (SwA) allows you to use SOAP 1.1 or SOAP 1.2 messages
wrapped by MIME.

The SOAP with Attachments (SwA) specification is published as a formal
submission by the World Wide Web Consortium (W3C):
v World Wide Web Consortium (W3C)

SwA uses the following specifications, described at:
v http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
v http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.

SOAP MTOM
SOAP Message Transmission Optimization Mechanism (MTOM) is one of a related
pair of specifications that define conceptually how to optimize the transmission
and format of a SOAP message.

MTOM defines:
v How to optimize the transmission of base64binary data in SOAP messages in

abstract terms
v How to implement optimized MIME multipart serialization of SOAP messages

in a binding independent way using XOP

Chapter 14. Reference 6697

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html

The implementation of MTOM relies on the related XML-binary Optimized
Packaging (XOP) specification. Because these two specifications are so closely
linked, they are normally referred to as MTOM/XOP.

The specification is published by the World Wide Web Consortium (W3C) as a
W3C Recommendation at SOAP Message Transmission Optimization Mechanism.
For further information refer to the following links:
v World Wide Web Consortium (W3C)
v SOAP Message Transmission Optimization Mechanism
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“XML-Binary Optimised Packaging (XOP)” on page 6702
XML-binary Optimized Packaging (XOP) is one of a related pair of specifications
that define how to efficiently serialize XML Infosets that have certain types of
content.
“SOAP Binding for MTOM 1.0” on page 6702
SOAP 1.1 Binding for MTOM 1.0 is a specification that describes how to use the
SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP) specifications with SOAP 1.1.

SOAP over JMS
SOAP over Java Message Service 1.0 is a specification that describes how SOAP
can bind to a messaging system that supports the Java Message Service (JMS).

SOAP is transport-independent and can be bound to any protocol. Both SOAP 1.1
and SOAP 1.2 can be bound in this way using the SOAP 1.2 Protocol Binding
Framework. SOAP over JMS allows you to use the JMS transport with SOAP
messages, and is an alternative messaging mechanism to the standard SOAP over
HTTP messaging.

JMS can be used as a transport for SOAP. The specification for SOAP over Java
Message Service 1.0 is published as a formal recommendation by the World Wide
Web Consortium (W3C):
v SOAP over Java Message Service 1.0 (W3C recommendation)

JMS applications send messages to JMS destinations, which can be queues or
topics. Queues are used in point-to-point messaging, and topics are used in
publish/subscribe (pub/sub) messaging.

WebSphere Message Broker supports the JMS transport on the SOAP nodes, which
are configured by importing WSDL with SOAP/JMS bindings. JMS topic
destinations for publish/subscribe messaging are not supported for SOAP nodes in
WebSphere Message Broker.

WebSphere Message Broker supports both the W3C standard WSDL format and
the IBM proprietary (deprecated) WSDL format. For a summary of differences
between these two WSDL formats, see “WSDL URI formats for JMS” on page 1668.
Related concepts:
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.

6698 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soapjms/

“Processing JMS messages” on page 1679
JMS is the standard J2EE messaging API for building enterprise messaging
applications. WebSphere Message Broker provides built-in input and output nodes
for its supported protocols.
Related reference:
“WebSphere Broker JMS Transport” on page 1681
The WebSphere Broker JMS Transport is a service that connects applications that
send and receive messages that conform to the Java Message Service (JMS)
standard.
“JMS message structure” on page 1688
JMS messages have a defined structure that includes headers and payloads.
“SOAPInput node” on page 4795
Use the SOAPInput node to process client SOAP messages, so that the broker
operates as a SOAP Web Services provider.

WSDL Version 1.1
Web Services Description Language (WSDL) is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.

The operations and messages are described abstractly, then bound to a concrete
network protocol and message format to define an endpoint. Related concrete end
points are combined into abstract endpoints (services).

WSDL is extensible to allow the description of endpoints and their messages
regardless of what message formats or network protocols are used to communicate.
The WSDL 1.1 specification only defines bindings that describe how to use WSDL
in conjunction with:
v SOAP 1.1
v HTTP GET
v HTTP POST
v MIME

The specification for WSDL 1.1 is published by the World Wide Web Consortium
(W3C) as a W3C Note at WSDL Version 1.1.
v World Wide Web Consortium (W3C)
v WSDL Version 1.1
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“WSDL 1.1 Binding Extension for SOAP 1.2” on page 6701
WSDL 1.1 Binding Extension for SOAP 1.2 is a specification that defines the
binding extensions that are required to indicate that Web service messages are
bound to the SOAP 1.2 protocol.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.

Chapter 14. Reference 6699

http://www.w3.org/
http://www.w3.org/TR/wsdl

WS-I Simple SOAP Binding Profile Version 1.0
WS-I Simple SOAP Binding Profile Version 1.0 (SSBP 1.0) is a set of
non-proprietary Web services specifications, along with clarifications and
amendments to those specifications which promote interoperability.

The SSBP 1.0 is derived from the WS-I Basic Profile 1.0 requirements that relate to
the serialization of the envelope and its representation in the message.

WS-I Basic Profile 1.0 is split into two separately published profiles. These profiles
are:
v WS-I Basic Profile Version 1.1
v WS-I Simple SOAP Binding Profile Version 1.0

Together these two profiles supersede the WS-I Basic Profile Version 1.0.

The specification for SSBP 1.0 is published by the Web Services Interoperability
Organization (WS-I):
v Web Services Interoperability Organization (WS-I)

The specification for SSBP 1.0 can be found at:
v WS-I Simple SOAP Binding Profile Version 1.0
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“WS-I Basic Profile Version 1.1”
WS-I Basic Profile Version 1.1 (WS-I BP 1.1) is a set of non-proprietary Web
services specifications, along with clarifications and amendments to those
specifications, which together promote interoperability between different
implementations of Web services.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.
“Message flow security and security profiles” on page 788
WebSphere Message Broker provides a security manager for implementing
message flow security, so that end-to-end processing of a message through a
message flow is secured based on an identity carried in that message instance.

WS-I Basic Profile Version 1.1
WS-I Basic Profile Version 1.1 (WS-I BP 1.1) is a set of non-proprietary Web
services specifications, along with clarifications and amendments to those
specifications, which together promote interoperability between different
implementations of Web services.

The WS-I BP 1.1 is derived from Basic Profile Version 1.0 by incorporating its
published errata and separating out the requirements that relate to the serialization
of envelopes and their representation in messages. These requirements are now
part of the Simple SOAP Binding Profile Version 1.0.

To summarize, the WS-I Basic Profile Version 1.0 is split into two separately
published profiles. These profiles are:
v WS-I Basic Profile Version 1.1
v WS-I Simple SOAP Binding Profile Version 1.0

6700 WebSphere Message Broker Version 7.0.0.8

http://www.ws-i.org/
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html

Together these two profiles supersede the WS-I Basic Profile Version 1.0.

The reason for this separation is to enable the Basic Profile 1.1 to be composed
with any profile that specifies envelope serialization, including the Simple SOAP
Binding Profile 1.0.

The specification for WS-I BP 1.1 is published by the Web Services Interoperability
Organization (WS-I):
v Web Services Interoperability Organization (WS-I)

The specification for WS-I BP 1.1 can be found at:
v WS-I Basic Profile Version 1.1
Related concepts:
“Message flow security and security profiles” on page 788
WebSphere Message Broker provides a security manager for implementing
message flow security, so that end-to-end processing of a message through a
message flow is secured based on an identity carried in that message instance.
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“WS-I Simple SOAP Binding Profile Version 1.0” on page 6700
WS-I Simple SOAP Binding Profile Version 1.0 (SSBP 1.0) is a set of
non-proprietary Web services specifications, along with clarifications and
amendments to those specifications which promote interoperability.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.

WSDL 1.1 Binding Extension for SOAP 1.2
WSDL 1.1 Binding Extension for SOAP 1.2 is a specification that defines the
binding extensions that are required to indicate that Web service messages are
bound to the SOAP 1.2 protocol.

The aim of this specification is to provide functions that are comparable with the
binding for SOAP 1.1.

This specification is published as a formal submission request by the World Wide
Web Consortium (W3C):
v World Wide Web Consortium (W3C)

The WSDL 1.1 Binding Extension for SOAP 1.2 specification is described at:
v http://www.w3.org/Submission/wsdl11soap12/
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“SOAP 1.1 and 1.2” on page 6696
SOAP is a lightweight, XML-based, protocol for exchange of information in a
decentralized, distributed environment.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.

Chapter 14. Reference 6701

http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.w3.org/
http://www.w3.org/Submission/wsdl11soap12/

Related reference:
“What is WSDL?” on page 1615
WSDL is an XML notation for describing a web service. A WSDL definition tells a
client how to compose a web service request and describes the interface that is
provided by the web service provider.

XML-Binary Optimised Packaging (XOP)
XML-binary Optimized Packaging (XOP) is one of a related pair of specifications
that define how to efficiently serialize XML Infosets that have certain types of
content.

XOP defines how to efficiently serialize XML Infosets that have certain types of
content by:
v Packaging the XML in some format. This is called the XOP package. The

specification mentions MIME Multipart/Related but does not limit it to this
format.

v Re-encoding all or part of base64binary content to reduce its size.
v Placing the base64binary content elsewhere in the package and replacing the

encoded content with XML that references it.

XOP is used as an implementation of the MTOM specification, which defines the
optimization of SOAP messages. Because these two specifications are so closely
linked, they are normally referred to as MTOM/XOP.

The specification is published by the World Wide Web Consortium (W3C) as a
W3C Recommendation XML-binary Optimized Packaging (XOP):
v World Wide Web Consortium (W3C)
v XML-binary Optimized Packaging (XOP)
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“SOAP MTOM” on page 6697
SOAP Message Transmission Optimization Mechanism (MTOM) is one of a related
pair of specifications that define conceptually how to optimize the transmission
and format of a SOAP message.
“SOAP Binding for MTOM 1.0”
SOAP 1.1 Binding for MTOM 1.0 is a specification that describes how to use the
SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP) specifications with SOAP 1.1.

SOAP Binding for MTOM 1.0
SOAP 1.1 Binding for MTOM 1.0 is a specification that describes how to use the
SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP) specifications with SOAP 1.1.

This specification defines the minimum changes required to enable MTOM and
XOP to be used interoperably with SOAP 1.1 and to reuse the SOAP 1.2
MTOM/XOP implementation.

The SOAP 1.1 Binding for MTOM 1.0 specification is published as a formal
submission by the World Wide Web Consortium (W3C):
v World Wide Web Consortium (W3C)

6702 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/
http://www.w3.org/TR/xop10/
http://www.w3.org/

The SOAP 1.1 Binding for MTOM 1.0 specification is described at:
v http://www.w3.org/Submission/soap11mtom10/
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“SOAP MTOM” on page 6697
SOAP Message Transmission Optimization Mechanism (MTOM) is one of a related
pair of specifications that define conceptually how to optimize the transmission
and format of a SOAP message.
“XML-Binary Optimised Packaging (XOP)” on page 6702
XML-binary Optimized Packaging (XOP) is one of a related pair of specifications
that define how to efficiently serialize XML Infosets that have certain types of
content.
“What is SOAP?” on page 1604
SOAP is an XML message format used in Web service interactions. SOAP messages
are typically sent over HTTP or JMS, but other transport protocols can be used.
The use of SOAP in a specific Web service is described by a WSDL definition.

Web Services Security: SOAP Message Security
Web Services Security (WSS): SOAP Message Security is a set of enhancements to
SOAP messaging that provides message integrity and confidentiality. WSS: SOAP
Message Security is extensible, and can accommodate a variety of security models
and encryption technologies.

WSS: SOAP Message Security provides three main mechanisms that can be used
independently or together:
v The ability to send security tokens as part of a message, and for associating the

security tokens with message content
v The ability to protect the contents of a message from unauthorized and

undetected modification (message integrity)
v The ability to protect the contents of a message from unauthorized disclosure

(message confidentiality).

WSS: SOAP Message Security can be used in conjunction with other Web service
extensions and application-specific protocols to satisfy a variety of security
requirements.

The specification is published by the Organization for the Advancement of
Structures Standards (OASIS). The specification is called Web Services Security:
SOAP Message Security 1.0 (WS-Security 2004).
v Organization for the Advancement of Structured Information Standards (OASIS)
v Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“How WebSphere Message Broker complies with Web Service Security
specifications” on page 6705
WebSphere Message Broker conditionally complies with Web Services Security:
SOAP Message Security and related specifications by supporting the following
aspects.

Chapter 14. Reference 6703

http://www.w3.org/Submission/soap11mtom10/
http://www.oasis-open.org/home/index.php
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Organization for the Advancement of Structured Information Standards (OASIS)
Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

XML Encryption Syntax and Processing
XML Encryption Syntax and Processing specifies a process for encrypting data and
representing the result in XML. The data can be arbitrary data (including an XML
document), an XML element, or XML element content. The result of encrypting
data is an XML Encryption element that contains or references the cipher data.

XML Encryption Syntax and Processing is a recommendation of the World Wide
Web Consortium (W3C):
v World Wide Web Consortium (W3C)

The XML Encryption Syntax and Processing recommendation is published at:
v XML Encryption Syntax and Processing
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.

XML-Signature Syntax and Processing
XML-Signature Syntax and Processing specifies the processing rules and syntax for
XML digital signatures.

XML digital signatures provide integrity, message authentication, and signer
authentication services for data of any type, whether located in the XML that
includes the signature or elsewhere.

The recommendation for XML-Signature Syntax and Processing is published by the
World Wide Web Consortium (W3C):
v World Wide Web Consortium (W3C)

The XML-Signature Syntax and Processing recommendation is published at:
v XML-Signature Syntax and Processing
Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.

WebSphere Message Broker compliance with Web services
standards
WebSphere Message Broker complies with the supported Web services standards
and specifications, in that you can generate and deploy Web services that are
compliant.

However, WebSphere Message Broker does not enforce this compliance. For
example, for support of the WS-I Basic Profile 1.1 specification, you can apply
additional qualities of service to your Web service that might break the
interoperability outlined in this Profile.

The topics in this section describe how WebSphere Message Broker complies with
Web services standards.
v “How WebSphere Message Broker complies with Web Service Security

specifications” on page 6705

6704 WebSphere Message Broker Version 7.0.0.8

http://www.oasis-open.org/home/index.php
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/
http://www.w3.org/TR/xmldsig-core/

Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.

How WebSphere Message Broker complies with Web Service Security
specifications:

WebSphere Message Broker conditionally complies with Web Services Security:
SOAP Message Security and related specifications by supporting the following
aspects.

Compliance with Web Services Security: SOAP Message Security

Security header
The <wsse:Security> header provides a mechanism, in the form of a SOAP
actor or role, for attaching security-related information that is targeted at a
specific recipient. The recipient can be the ultimate recipient of the message
or an intermediary. The following attributes are supported in WebSphere
Message Broker:
v S11:actor (for an intermediary)
v S11:mustUnderstand
v S12:role (for an intermediary)
v S12:mustUnderstand

Security tokens
The following security tokens are supported in the security header:
v Username and password
v Binary security tokens:

– X.509 certificate
– Kerberos ticket
– LTPA certificate

v SAML assertion

Token references
A security token conveys a set of claims. Sometimes these claims are
elsewhere and need to be accessed by the receiving application. The
<wsse:SecurityTokenReference> element provides an extensible mechanism
for referencing security tokens. The following mechanisms are supported:
v Direct reference
v Key identifier
v Key name
v Embedded reference

Signature algorithms
This specification builds on XML Signature and therefore has the same
algorithm requirements as those specified in the XML Signature
specification. WebSphere Message Broker supports the signature algorithms
as shown in the following table.

Algorithm type Algorithm URI

Digest SHA1 http://www.w3.org/2000/09/
xmldsig#sha1

Chapter 14. Reference 6705

Algorithm type Algorithm URI

Signature DSA with SHA1 (validation only) http://www.w3.org/2000/09/
xmldsig#dsa-sha1

Signature RSA with SHA1 http://www.w3.org/2000/09/
xmldsig#rsa-sha1

Canonicalization Exclusive XML canonicalization
(without comments)

http://www.w3.org/2001/10/xml-
exc-c14n#

Signature signed parts
WebSphere Message Broker allows the following SOAP elements to be
signed:
v The SOAP message body
v The identity token (a type of security token) that is used as an asserted

identity

Encryption algorithms
The data encryption algorithms that are supported are shown in the
following table.

Algorithm URI

Triple Data Encryption Standard algorithm
(Triple DES)

http://www.w3.org/2001/04/
xmlenc#tripledes-cbc

Advanced Encryption Standard (AES)
algorithm with a key length of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-
cbc

Advanced Encryption Standard (AES)
algorithm with a key length of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-
cbc

Advanced Encryption Standard (AES)
algorithm with a key length of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-
cbc

The key encryption algorithm that is supported is shown in the following
table.

Algorithm URI

Key transport (public key cryptography)
RSA Version 1.5

http://www.w3.org/2001/04/xmlenc#rsa-1_5

Encryption message parts
WebSphere Message Broker allows the following SOAP elements to be
encrypted:
v The SOAP body

Timestamp
The <wsu:Timestamp> element provides a mechanism for expressing the
creation and expiration times of the security semantics in a message.
WebSphere Message Broker tolerates the use of timestamps within the Web
services security header on inbound SOAP messages.

Error handling
WebSphere Message Broker generates SOAP fault messages using the
standard list of response codes listed in the specification.

Compliance with Web Services Security: Username Token Profile 1.1

The following aspects of this specification are supported:

6706 WebSphere Message Broker Version 7.0.0.8

Password types
Text

Token references
Direct reference

Compliance with Web Services Security: X.509 Certificate Token Profile 1.1

The following aspects of this specification are supported:

Token types

v X.509 Version 3: Single certificate.
v X.509 Version 3: X509PKIPathv1 without certificate revocation lists

(CRL).
v X.509 Version 3: PKCS7 with or without CRLs. The IBM Software

Development Kit (SDK) supports both. The Sun Java Development Kit
(JDK) supports PKCS7 without CRL only.

For more information, refer to Web Services Security X.509 Certificate
Token Profile.

Token references

v Key identifier - subject key identifier
v Direct reference
v Custom reference - issuer name and serial number

Compliance with Web Services Security: SAML Token Profile

SAML passthru support is provided, which enables interoperability with
WS-Security SAML profiles, without performing subject confirmation processing.
This means that it does not provide validation of the trust relationship between the
SAML subject and message content signatures.

The token is passed through for processing by the message flow security manager,
which passes the token to a WS-Trust STS for processing.

Compliance with Web Services Security: Kerberos Token Profile

The following aspects of this specification are supported:

Token types

v Kerberos GSS v5 AP_REQ
v Kerberos v5 AP_REQ

Aspects that are not supported

The following items are not supported in WebSphere Message Broker:
v Validation of Timestamps for freshness.
v Nonces.
v Web services security for SOAP attachments.
v XrML token profile.
v Web Services Interoperability (WS-I) Basic Security Profile.
v XML enveloping digital signature.
v XML enveloping digital encryption.

Chapter 14. Reference 6707

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

v The following transport algorithms for digital signatures:
– XSLT: http://www.w3.org/TR/1999/REC-xslt-19991116.
– SOAP Message Normalization. For more information, refer to

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008.
v The Diffie-Hellman key agreement algorithm for encryption. For more

information, refer to Diffie-Hellman Key Values.
v The following canonicalization algorithm for encryption, which is optional in the

XML encryption specification:
– Canonical XML with or without comments
– Exclusive XML canonicalization with or without comments

v The digest password type in the Username Token Version 1.0 Profile
specification.

Related concepts:
“Web services external standards” on page 6696
WebSphere Message Broker support for Web services conforms to a number of
industry standards and specifications.
“Web Services Security: SOAP Message Security” on page 6703
Web Services Security (WSS): SOAP Message Security is a set of enhancements to
SOAP messaging that provides message integrity and confidentiality. WSS: SOAP
Message Security is extensible, and can accommodate a variety of security models
and encryption technologies.

W3C Working Group Note 8 October 2003
Diffie-Hellman Key Values
Web Services Security X.509 Certificate Token Profile

Testing and debugging applications
Use the reference information in this section to accomplish the testing and
debugging tasks that address your business needs.
v “Test Client”
v “Message flow debugger” on page 6718

Test Client
Use the Test Client to test message flow applications.

You can send test messages to message flows that use any of the input nodes
specified in “Test Client overview” on page 3144.

The following topics provide reference information to help you to use the Test
Client effectively:
v “Test Client Events tab” on page 6709
v “Enqueue” on page 6712
v “Dequeue” on page 6712
v “Test Client Configuration tab” on page 6713
v “Test Client preferences” on page 6716
v “Deployment Location wizard” on page 6716
v “JMS events in the Test Client” on page 6717

6708 WebSphere Message Broker Version 7.0.0.8

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

Test Client Events tab
You can use the Events tab in the Test Client to edit the properties and content of
your test messages. You also view test events in the Events tab when you run the
test.

Purpose

Use the Events tab to edit and send the test messages, and to monitor the results
of the test.

Message Flow Test Events

The Message Flow Test Events section of the Events tab displays the status and
history of the test execution:

Invoke Message Flow
The Invoke Message Flow event starts the selected message flow. The
message flow selection is defined by the selected message flow input node.
Invoke Message Flow can also be the start of a new test execution with an
empty test message. You can enter the message content and start the
execution.

Starting
The Starting event indicates the beginning of the test execution.

Sending Message
The Sending Message event indicates that the message is being sent.

Enqueue
The Enqueue event indicates that the current message has been queued on
an existing WebSphere MQ queue. Put a message to the specified queue
manager, queue, port, and host name as defined in the Detailed Properties
section. For more information, see “Enqueue” on page 6712.

Dequeue
The Dequeue event indicates that the current message has been dequeued
from an existing WebSphere MQ queue. Click Get Message from the
specified queue manager, queue, port and host name as defined in the
Detailed Properties section. For more information, see “Dequeue” on page
6712.

Monitor
The Monitor event indicates the message was received on an output node
monitor.

Stopped
The Stopped event indicates that the test execution has been stopped. The
test execution can be stopped either by the Test Client or by the user.

Exception
The Exception event indicates when errors are encountered during the test.
A message is displayed in the Exception message box on the right of the
page and the message flow execution errors are logged in the Windows
Event Viewer application log. To view the Windows Event Viewer
application log, click Event Viewer.

Exception Trace
An Exception Trace event occurs when errors are encountered during test
and Trace has been selected. Trace details are displayed in the Exception
Trace panel on the right of the page.

Chapter 14. Reference 6709

Events tab actions

The following actions can be initiated on the Events tab, by right-clicking in
Message Flow Test Events:

Re-run
Reruns the current message. To clone and rerun a previously started test
message, right-click the message flow and click Re-run.

Duplicate
Duplicates the current message. To duplicate a previously started test
message, right-click the message flow and click Duplicate.

Invoke
Restarts the current message. To restart a previously started test message,
right-click the message flow and click Invoke.

Buttons on the Events tab

Several buttons are provided on the upper right of the Events tab:

Invoke
Starts a new Invoke Message Flow event where you can enter a request
message and start the test execution.

Enqueue
Puts the message to the specified queue manager, queue, port, and host
name as defined in the Detailed Properties section on the right of the page.

Dequeue
Gets the message from the specified queue manager, queue, port, and host
name as defined in the Detailed Properties section on the right of the page.

Saved Messages
Displays the Data Pool editor in which you can select values that you have
used in a previous test session. You can use the Data Pool editor to save or
retrieve values for use during tests. When you use the Data Pool editor to
save or retrieve values, the values are saved to, or retrieved from, a global
data pool in your workspace. By selecting Saved Messages, you ensure
that you are always working with the same set of values regardless of how
many Test Client instances or test configurations you are using in your
tests.

Stop Stops the current test.

Show Event Viewer
Displays the Event Viewer if the operating system is Windows.

Show Console
The Message Broker Runtime Console view opens. This view shows more
details of the test run.

Detailed Properties

The Detailed Properties section varies according to the different events that you
have selected in the Message Flow Test Events pane. The Detailed Properties
section displays details of the current event type. The default details are:
v Message Flow. The name of the message flow that is being tested.
v Input node. The input node to which the test message is being sent.

6710 WebSphere Message Broker Version 7.0.0.8

Message
The Message section either displays the test message or the output
message from a test event. If you are creating a new test message, you can
select either the XML Structure editor or the Source editor to edit the test
message. The XML Structure editor is available only if the input node that
is selected on the message flow is expecting an XML message, and an
existing message definition is associated with the message flow.

Header
Select the header to use for your test message if your message flow
uses a WebSphere MQ or JMS input node.

SOAP operation
Select the SOAP operation to use for your test message if your
message flow uses a SOAP input node.

Viewer
Select the appropriate editor to view or edit your test message or
output message from the following editors:

XML Structure editor

Use the XML Structure editor to view and edit an XML test
message derived from an associated message definition.
You can change the content of the message by editing the
entries in the Values column. Right-click to display a menu
with options to change the content of the XML structure,
including adding and removing elements. To view the
generated source code, click Show Generated Source.
Click Saved messages to display a list of saved error
messages.

Source editor
Use the Source editor to compose and send test messages if
you want to import a test message, or if the test message is
not in XML format. To import a test message from a file,
click Import Source.

Source tab
Edit the test message as plain text using the Source
tab.

XML Source tab
Edit the test message in an XML editor using the
XML Source tab.

Hexadecimal (read only) tab
View the test message in hexadecimal format by
using the Hexadecimal (Read Only) tab.

Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
Related reference:
“Test Client” on page 6708
Use the Test Client to test message flow applications.
“Test Client Configuration tab” on page 6713
Configure your test environment in the Configuration tab in the Test Client.

Chapter 14. Reference 6711

Enqueue:

Enqueue is the term that is used to describe the process of putting a message on to
a WebSphere MQ queue.

The following properties are entered on the Events page:

Host The name of the host computer.

Port The number of the port that is used.

Queue Manager
The name of WebSphere MQ Queue manager.

Queue
The name of the queue on the Queue manager.

Related reference:
“WebSphere MQ resources for the broker” on page 585
Each broker depends on a number of WebSphere MQ resources: some are required,
others are optional, and depend on your environment and requirements. Some of
these resources are created for you, but others you must define for yourself.
“Test Client Events tab” on page 6709
You can use the Events tab in the Test Client to edit the properties and content of
your test messages. You also view test events in the Events tab when you run the
test.
“Dequeue”
Dequeue is the term that is used to describe the process of removing a message
from a WebSphere MQ queue.

Dequeue:

Dequeue is the term that is used to describe the process of removing a message
from a WebSphere MQ queue.

The following properties are entered on the Events page:

Host The name of the host computer.

Port The number of the port that is used.

Queue Manager
The name of WebSphere MQ Queue manager.

Queue
The name of the queue on the Queue manager.

Related reference:
“WebSphere MQ resources for the broker” on page 585
Each broker depends on a number of WebSphere MQ resources: some are required,
others are optional, and depend on your environment and requirements. Some of
these resources are created for you, but others you must define for yourself.
“Enqueue”
Enqueue is the term that is used to describe the process of putting a message on to
a WebSphere MQ queue.
“Test Client Events tab” on page 6709
You can use the Events tab in the Test Client to edit the properties and content of
your test messages. You also view test events in the Events tab when you run the
test.

6712 WebSphere Message Broker Version 7.0.0.8

Test Client Configuration tab
Configure your test environment in the Configuration tab in the Test Client.

Purpose

You can use the Test Client Configuration tab to alter the settings that are used
when you test your message flow.

You can set the following settings in the Configuration tab:
v Message Flows
v Deployment
v MQ Settings
v JMS Settings
v MQ Message Headers
v JMS Message Headers

MQ settings apply to invoke, adding to queue, and removing from queue events;
all other settings apply to invoke events only.

Select the relevant options in the left pane to display the properties in the right
pane of the Configuration tab. The following sections describe the properties on
the Configuration tab.

Message Flows

Add or remove Message Flows to be tested
In this section of the Configuration tab, the message flow that you have
selected to test is listed. You can add more message flows to the test
configuration so that you can test multiple message flows at the same time;
for example, if you have an output message from one message flow that
triggers another message flow, or if you are using subflows. Click Add to
add message flows to your test configuration. Click Remove to remove
message flows from the configuration.

Deployment

I will deploy the specified Broker Archive manually
You can select this option to prevent the Test Client from deploying the
message flow before you send a message to test the message flow. Specify
the broker archive (.bar) file that you want to deploy manually in the
Specify Broker Archive file property on the Deployment section of the
Configuration tab. Deploy the broker archive file to the execution group
that is specified in the Deployment Location section.

Always rebuild and deploy a Broker Archive automatically
The Test Client always builds and deploys the file irrespective of whether
there is a change to the broker archive file or its dependents, including
message flows.

You can use this option to force the Test Client to deploy when the Test
Client cannot detect changes in the message flow.

Only rebuild and deploy Broker Archive when changes occur
The Test Client rebuilds and deploys the broker archive file only when
there is a change in the content of the message flow. This action is the
default option.

Override configurable properties when rebuilding Broker Archive file
You can define the configurable properties in the Broker Archive editor.

Chapter 14. Reference 6713

Use this option to specify whether the user-defined value is overridden
when the Test Client rebuilds the broker archive file.

Click Change to select a deployment location, see the “Deployment Location
wizard” on page 6716.

MQ Settings

Stop when first MQ message is received
Use this option if you want the Test Client to stop receiving events when
the first WebSphere MQ Output queue contains a message.

Add one or more conditions. This option is ignored if no MQ queues are
being monitored.

The Test Client monitors MQ queues that are defined in the MQOutput
nodes in the message flows that are being tested. If you check the option,
it instructs the Test Client to stop testing when the message reaches any of
the WebSphere MQ queues that are being monitored.

Select Purge or Browse option
Use this option to either purge a message from the queue or to browse the
messages on the output queue.

Queue manager connection parameters
Enter the character set ID to use for connection to your queue manager.

JMS Settings

Stop when first JMS message is received
Use this option to stop the Test Client receiving events when the first JMS
Output destination contains a message.

Specify JMS Client JARs
Use this option to add and remove JAR files that are used to create JMS
connections.

Select Use preference settings to configure preference settings. This option
is a global setting that can be applied to every Test Client in the same
workbench.

WMQ Message Headers

WMQ Message Headers
Use this option to build multiple MQMD header definitions. When you
send a message to a message flow that contains an MQInput node, you
have the option to select an MQMD with suitable values for your test.
Click Add to enter additional MQMD headers. Each new header is listed
under 'MQ Message Headers' in the left navigator column. Each MQMD
definition name must be unique within the Test Client configuration file.

MQ Message Header "Default Header"
This options specifies the default MQ Message Header definition. You can
edit the values in this definition for your test configuration, or create a
new WebSphere MQ Message Header definition.

If you select MQ Message Headers or JMS Message Headers, a Duplicate context
menu is displayed. This context menu gives you the option to create a new
message header based upon one that already exists.

6714 WebSphere Message Broker Version 7.0.0.8

If you select Include RFH V2 header in the right hand pane you can specify
values in a different folder that are applicable to the MQRFH2 header.

If you select Include MCD folder, the MCD folder properties are included in the
MQRFH2 header.

If you select Include JMS folder, the JMS folder properties are included in the
MQRFH2 header.

If you select Include USR folder, any additional properties you add are included
in the MQRFH2 header.

Note that if you have selected Include JMS folder, the MCD folder is included
automatically. Furthermore, changing the Message type results in a change to the
Message domain in the MCD folder.

When a message containing the MQRFH2 header is received, the header is parsed
and the results appear in the Detailed Properties pane of the Test Client. To
display all the properties of the MQRFH2 header, expand the Header tab.

For further information on how the MQRFH2 values work, see “MQRFH2 header”
on page 6397

JMS Message Headers

JMS Message Headers
Use this option to enter multiple JMS Message Headers. Click Add to enter
additional headers. Each new header is listed under 'JMS Headers' in the
left navigator column.

Select each JMS Message Header to view and change the settings.

JMS Header
Enter the values for your JMS configuration in the JMS Header page.

Related concepts:
“Testing message flows by using the Test Client” on page 3144
You can test message flows in a safe environment before they are used on a
production system by using the Test Client.
Related tasks:
“Configuring the test settings” on page 3148
You can configure the settings in the Test Client to control how your tests are run.
Related reference:
“Test Client” on page 6708
Use the Test Client to test message flow applications.
“Test Client Events tab” on page 6709
You can use the Events tab in the Test Client to edit the properties and content of
your test messages. You also view test events in the Events tab when you run the
test.
“Deployment Location wizard” on page 6716
Use the Deployment Location wizard to set the execution group to which the test
message flow is deployed. You can also use the wizard to create a broker, a
connection to a remote broker, and a new execution group.
“MQRFH2 header” on page 6397
The MQRFH2 header is used to pass messages to and from a message broker that
belongs to WebSphere Message Broker.

Chapter 14. Reference 6715

Test Client preferences
You can set test settings for the local test environment that are used by the
Websphere Message Broker Test Client.

You can configure the settings for the test in the Deployment Location wizard, or
on the Test Client preferences. If you configure the settings on the Test Client
preferences, these settings are applied to all tests. You can access the Test Client
preferences by using the following instructions:
1. Click Window > Preference. The Preferences dialog is displayed.
2. Expand the item for Broker Development on the left and click Message Broker

Test Client.

Use the following fields to define the settings for the local test engine:

Seconds to wait for deployment completion
The amount of time in seconds to allow for deployment. The default value
is 20.

Seconds to wait after Test Client complete the deployment
The amount of time in seconds to wait after the Test Client completes
deployment. The default value is 0.

Seconds to wait on launching the debugger for tracing purposes
The amount of time in seconds to wait before launching the debugger. The
default value is 20.

Show information dialog before disconnecting the debugger
Select this option to display a dialog when you use the Test Client in Run
mode if the flow debugger is already connected.

Seconds to wait for test client to stop
The amount of time in seconds to wait before ending the test. When the
number of seconds has elapsed, monitoring of output nodes is stopped,
and a Timeout event and a Stop event are displayed in the Test Client. The
default value is 120.

Also select the required options:

Create queues of input and output nodes for message flows when host name is
localhost

Use this option to create queues for the local host.

Add or modify (but not clear) what has already been deployed on the execution
group Use this option to add or change, but not delete, what has previously been

deployed on the current execution group.
Related reference:
“Deployment Location wizard”
Use the Deployment Location wizard to set the execution group to which the test
message flow is deployed. You can also use the wizard to create a broker, a
connection to a remote broker, and a new execution group.

Deployment Location wizard
Use the Deployment Location wizard to set the execution group to which the test
message flow is deployed. You can also use the wizard to create a broker, a
connection to a remote broker, and a new execution group.

The Deployment Location wizard is displayed when you click Send Message on
the Events tab of the Test Client the first time that you run a test.

6716 WebSphere Message Broker Version 7.0.0.8

You can run the Test Client in one of the following modes:
v Run mode: test events are produced when the test message has been sent

successfully from the message flow, or when an error occurs. Although you can
also use the debugger, and the Test Client execution halts at the breakpoints, the
Test Client does not receive and record message node-level trace information.
When you use the Test Client in this mode, you are given the option to
disconnect the flow debugger if it is already running. To use the Test Client in
Run mode, ensure that Trace and Debug is not selected on the Deployment
location wizard.

v Trace and debug mode: test trace events are produced when the test message
leaves each node so that you can see the path that the message takes through
the message flow. The results are stored in the broker. If you save the message
flow test file, you can view the results at a later time. The flow debugger is
launched in this mode, if it is not already connected. The test message stops at
any breakpoints that you have configured in the message flow. You must
configure a Java Debug port to run the test in the trace and debug mode.

If you use the Test Client in trace and debug mode, you can select the option Stop
at the beginning of the flow during debug. This option suspends the test at the
beginning of the message flow by setting a breakpoint on every connection after
the selected input node. When you use the Test Client in the trace and debug
mode, you can use the flow debugger in the Debug perspective.

You can also use the Deployment Location wizard to specify settings for the test.
For more information about the test settings, see “Test Client preferences” on page
6716.

After you run a test for the first time, you can access the settings for the
deployment location by clicking Change in the Deployment section of the
Configuration tab.
Related concepts:
“Test Client overview” on page 3144
Use the Test Client to test message flows in a safe environment before they are
used in a production system.
Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
“Using the Test Client in trace and debug mode” on page 3155
You can run the Test Client in trace and debug mode to trace the path of a test
message through a message flow.
Related reference:
“Test Client” on page 6708
Use the Test Client to test message flow applications.
“Test Client Configuration tab” on page 6713
Configure your test environment in the Configuration tab in the Test Client.
“Test Client preferences” on page 6716
You can set test settings for the local test environment that are used by the
Websphere Message Broker Test Client.

JMS events in the Test Client
Use the information in this topic to help you to understand JMS events in the Test
Client.

Chapter 14. Reference 6717

When you test a message flow that contains JMS nodes, you might see some of the
following events in the Message Broker Test Events section of the Test Client.

JMS Information event
The event details are displayed in the following properties.

Property name Description

Initial Context Factory The initial context factory that is used for
JNDI look up

Location JNDI binding The JNDI URL that is used for JNDI look up

Connection Factory The JNDI name of the Connection Factory

Message Properties The properties of the JMS message

Message Header The header of the JMS message

The message content is displayed in the XML Structure or Source view.

JMS Response event
The event details are displayed in the following properties.

Property name Description

Initial Context Factory The initial context factory that is used for
JNDI look up

Location JNDI binding The JNDI URL that is used for JNDI look up

Connection Factory The JNDI name of the Connection Factory

Message Properties The properties of the JMS message

Message Header The header of the JMS message

The message content is displayed in the XML Structure or Source view.

JMS Exception event
The event details are displayed in the following properties.

Property name Description

Initial Context Factory The initial context factory that is used for
JNDI look up

Location JNDI binding The JNDI URL that is used for JNDI lookup

Connection Factory The JNDI name of the Connection Factory

The detailed trace message is displayed as well as the Exception trace
details.

Related tasks:
“Testing a message flow” on page 3146
You can test your message flows using the Test Client.
“Testing a message flow that uses JMS nodes” on page 3150
You can configure settings in the Test Client for testing message flows that uses
JMS nodes.
Related reference:
“Test Client” on page 6708
Use the Test Client to test message flow applications.

Message flow debugger
The flow debugger is a visual interface that supports the debugging of message
flow applications in the WebSphere Message Broker Toolkit.

6718 WebSphere Message Broker Version 7.0.0.8

The following topics provide reference information to help you use the debugger
effectively:
v “Flow debugger shortcuts”
v “Flow debugger icons and symbols” on page 6720

You can also use the “Java Debugger” on page 6723 provided by the Java
Development tools to debug Java code within the WebSphere Message Broker
Toolkit.
Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.

Flow debugger shortcuts
You can use function keys and shortcut keys to complete actions in the flow
debugger views and windows.

Shortcut keys are shown as a pair that you press together, followed by a
subsequent key, for example Shift-F10, C means hold the Shift key down and
press F10, then release both and press key C.

The following tables describe the main shortcuts that are available in the debug
session:
v “Debug view”
v “Breakpoints view”
v “Flow Breakpoint Properties dialog” on page 6720
v “Variables view” on page 6720

To see a complete list of all the shortcuts that are available, press Shift-F10 and
release; the contextual menu is displayed.

Debug view:

Key combination Function

Shift-F10, C Run to completion

Shift-F10, E Disconnect

F5 or Shift-F10, I Step into

F8 or Shift-F10, M Resume

Shift-F10, N Terminate All

F6 or Shift-F10, O Step over

Shift-F10, T Terminate

F7 or Shift-F10, U Step return

Shift-F10, V Terminate and Remove

Breakpoints view:

Chapter 14. Reference 6719

Key combination Function

Shift-F10, A Select All

Shift-F10, B Add breakpoint

Shift-F10, D Disable the selected breakpoints

Shift-F10, E Enable the selected breakpoints

Shift-F10, L Remove all breakpoints

Shift-F10, O Remove the selected breakpoints

Flow Breakpoint Properties dialog:

Key combination Function

E Enable the breakpoint

Alt-R, <space> Restrict the breakpoint to the selected flow instances

Variables view:

Key combination Function

Shift-F10, A Select All

Shift-F10, C Change the value of the selected flow variable

Shift-F10, V Copy variables

Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
Related reference:
“Flow debugger icons and symbols”
The Debug perspective uses various debugger icons and symbols.

Flow debugger icons and symbols
The Debug perspective uses various debugger icons and symbols.

This topic describes the icons and symbols used in the Debug perspective and its
views:
v “Debug perspective”
v “Debug view” on page 6721
v “Message Flow editor” on page 6721
v “Breakpoints view” on page 6722
v “Variables view” on page 6722

Debug perspective:
These icons and symbols are used in the Debug perspective outside any individual
view.

6720 WebSphere Message Broker Version 7.0.0.8

Icon or
Symbol Description

Debug perspective (symbol)

Attach to Flow runtime environment (icon)

Debug view:

Icon or
Symbol Description

Debug view (symbol)

Flow engine (symbol)

Flow (symbol)

Flow instance paused (symbol)

Flow instance running (symbol)

Flow instance terminated (symbol)

Stack frame (symbol)

Detach from the selected flow engine (icon)

Resume flow execution (icon)

Run the flow to completion (icon)

Step into subflow (icon)

Step over node (icon)

Step out of subflow (icon)

Step into source code (icon)

Message Flow editor:
These icons and symbols in the message flow editor are specific to the flow
debugger.

Icon or
Symbol Description

Enabled breakpoint (symbol)

Disabled breakpoint (symbol)

Paused at breakpoint (symbol)

Chapter 14. Reference 6721

Icon or
Symbol Description

Source code available (symbol)

Error or exception (symbol)

Breakpoints view:

Icon or
Symbol Description

Breakpoints view (symbol)

Enabled breakpoint (symbol)

Disabled breakpoint (symbol)

Remove selected breakpoints (icon)

Remove all breakpoints (icon)

Variables view:
These icons and symbols in the Variables view are specific to ESQL.

Icon or
Symbol Description

Variable view (symbol)

Tree reference variable (symbol)

Message (symbol)

ESQL reference variable (symbol)

ESQL constant (symbol)

ESQL scalar variable (symbol)

ESQL schema variable (symbol)

ESQL module variable (symbol)

Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
“Debug perspective” on page 6789
Related tasks:
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work

6722 WebSphere Message Broker Version 7.0.0.8

with the flow debugger.
Related reference:
“Flow debugger shortcuts” on page 6719

Java Debugger
The Java Development Tools include a debugger that enables you to detect and
diagnose errors in your programs running on local or remote systems. You can
control the execution of your program by setting breakpoints, suspending launched
programs, stepping through your code, and examining the contents of variables.

For further information about the Java debugger, refer to the Java Development
User Guide plug-in - Debugger.

Performance and monitoring
Use the reference information in this section to accomplish the performance and
monitoring tasks that address your business needs.
v “Message flow accounting and statistics data”
v “Resource statistics data” on page 6745
v “Monitoring message flows” on page 6767

Message flow accounting and statistics data
You can collect message flow accounting and statistics data in various output
formats.

Details of the information that is collected, and the output formats in which it can
be recorded, are provided in the following topics:
v Statistics details
v Data formats
v Example output

You can also find information on how to use accounting and statistics data to
improve the performance of a message flow in this developerWorks article on
message flow performance.
Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.

Chapter 14. Reference 6723

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html

“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

Message flow accounting and statistics details
You can collect message flow, thread, node, and terminal statistics for message
flows.

Message flow statistics
One record is created for each message flow in an execution group. Each
record contains the following details:
v Message flow name and UUID
v Execution group name and UUID
v Broker name and UUID
v Start and end times for data collection
v Type of data collected (snapshot or archive)
v Processor and elapsed time spent processing messages
v Processor and elapsed time spent waiting for input
v Number of messages processed
v Minimum, maximum, and average message sizes
v Number of threads available and maximum assigned at any time
v Number of messages committed and backed out
v Accounting origin

Thread statistics
One record is created for each thread assigned to the message flow. Each
record contains the following details:
v Thread number (this has no significance and is for identification only)
v Processor and elapsed time spent processing messages
v Processor and elapsed time spent waiting for input
v Number of messages processed
v Minimum, maximum, and average message sizes

Node statistics
One record is created for each node in the message flow. Each record
contains the following details:
v Node name
v Node type (for example MQInput)
v Processor time spent processing messages
v Elapsed time spent processing messages
v Number of times that the node is invoked
v Number of messages processed
v Minimum, maximum, and average message sizes. When the node type is

FileInput, the message size is reported as 0 because the size is not
known at the time that the message is propagated.

Terminal statistics
One record is created for each terminal on a node. Each record contains the
following details:
v Terminal name
v Terminal type (input or output)
v Number of times that a message is propagated to this terminal

For further details about specific output formats, see the following topics:
v “User trace entries for message flow accounting and statistics data” on page

6730
v “XML publication for message flow accounting and statistics data” on page 6726

6724 WebSphere Message Broker Version 7.0.0.8

v “z/OS SMF records for message flow accounting and statistics data” on page
6734

Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“XML publication for message flow accounting and statistics data” on page 6726
Certain information is written to the XML publication for message flow accounting
and statistics data.
“User trace entries for message flow accounting and statistics data” on page 6730
Certain information is written to the user trace log for message flow accounting
and statistics data.
“z/OS SMF records for message flow accounting and statistics data” on page 6734
Certain information is written to z/OS SMF records for message flow accounting
and statistics data.
“Message flow accounting and statistics output formats”
The message flow accounting and statistics data can be written in three formats.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

Message flow accounting and statistics output formats
The message flow accounting and statistics data can be written in three formats.

For more information about the available output formats, see the following topics:
v User trace entries
v XML publication
v z/OS SMF records
Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

Chapter 14. Reference 6725

Related tasks:
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.
“Example message flow accounting and statistics data” on page 6739
You can view message flow accounting and statistic data in an XML publication or
user trace entries. To view z/OS SMF records, use a utility program that processes
SMF records.

XML publication for message flow accounting and statistics data:

Certain information is written to the XML publication for message flow accounting
and statistics data.

The data is created in the folder WMQIStatisticsAccounting, which contains
subfolders that provide more detailed information. All folders are present in the
publication even if you set current data collection parameters to specify that the
relevant data is not collected.

Snapshot data is used for performance analysis, and is published as retained and
not persistent. Archive data is used for accounting where an audit trail might be
required, and is published as retained and persistent. All publications are global
and can be collected by a subscriber that is registered anywhere in the network.
They can also be collected by more than one subscriber.

One XML publication is generated for each message flow that is producing data
for the time period that you choose. For example, if MessageFlowA and
MessageFlowB are both producing archive data over a period of 60 minutes, both
MessageFlowA and MessageFlowB produce an XML publication every 60 minutes.

If you are concerned about the safe delivery of these messages (for example, for
charging purposes), use a secure delivery mechanism such as WebSphere MQ.

The folders and subfolders in the XML publication have the following identifiers:
v WMQIStatisticsAccounting
v MessageFlow
v Threads
v ThreadStatistics
v Nodes
v NodesStatistics
v TerminalStatistics

The tables provided here describe the contents of each of these folders.

6726 WebSphere Message Broker Version 7.0.0.8

The following table describes the general accounting and statistics information,
created in folder WMQIStatisticsAccounting.

Field Data type Details

RecordType Character Type of output, one of:
v Archive
v Snapshot

RecordCode Character Reason for output, one of:
v MajorInterval
v Snapshot
v Shutdown
v ReDeploy
v StatsSettingsModified

The following table describes the message flow statistics information, created in
folder MessageFlow.

Field Data type Details

BrokerLabel Character
(maximum 32)

Broker name

BrokerUUID Character
(maximum 32)

Broker universal unique identifier

ExecutionGroupName Character
(maximum 32)

Execution group name

ExecutionGroupUUID Character
(maximum 32)

Execution group universal unique
identifier

MessageFlowName Character
(maximum 32)

Message flow name

StartDate Character Interval start date
(YYYY-MM-DD)

StartTime Character Interval start time
(HH:MM:SS:NNNNNN)

EndDate Character Interval end date
(YYYY-MM-DD)

EndTime Character Interval end time
(HH:MM:SS:NNNNNN)

TotalElapsedTime Numeric Total elapsed time spent processing
input messages (microseconds)

MaximumElapsedTime Numeric Maximum elapsed time that is spent
processing an input message
(microseconds)

MinimumElapsedTime Numeric Minimum elapsed time that is spent
processing an input message
(microseconds)

TotalCPUTime Numeric Total processor time spent processing
input messages (microseconds)

MaximumCPUTime Numeric Maximum processor time that is spent
processing an input message
(microseconds)

MinimumCPUTime Numeric Minimum processor time that is spent
processing an input message
(microseconds)

Chapter 14. Reference 6727

Field Data type Details

CPUTimeWaitingForInputMessage Numeric Total processor time spent waiting for
input messages (microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time that is spent waiting
for input messages (microseconds)

TotalInputMessages Numeric Total number of messages processed

TotalInputMessages records only those
messages that are propagated from input
node terminals.

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

MaximumSizeOfInputMessages Numeric Maximum input message size (bytes)

MinimumSizeOfInputMessages Numeric Minimum message input size (bytes)

NumberOfThreadsInPool Numeric Number of threads in pool

TimesMaximumNumberofThreadsReached Numeric Number of times the maximum number
of threads is reached

TotalNumberOfMQErrors Numeric Number of MQGET errors (MQInput
node) or web services errors (HTTPInput
node)

For example, a conversion error occurs
when the message is got from the queue.

TotalNumberOfMessagesWithErrors Numeric Number of messages that contain errors

These errors include exceptions that are
thrown downstream of the input node,
and errors that are detected by the input
node after it successfully retrieves the
message from the queue, but before it
propagates it to the output terminal (for
example, a format error).

TotalNumberOfMessagesWithErrors can
include messages that are not included
in TotalInputMessages.

TotalNumberOfErrorsProcessingMessages Numeric Number of errors when processing a
message

TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessagesNumeric Number of timeouts when processing a
message (AggregateReply node only)

TotalNumberOfCommits Numeric Number of transaction commits

TotalNumberOfBackouts Numeric Number of transaction backouts

AccountingOrigin Character (maximum
32)

Accounting origin

The following table describes the thread statistics information, created in folder
Threads.

Field Data type Details

Number Numeric Number of thread statistics subfolders in Threads
folder

6728 WebSphere Message Broker Version 7.0.0.8

The following table describes the thread statistics information for each individual
thread, created in folder ThreadStatistics, a subfolder of Threads.

Field Data type Details

Number Numeric Relative thread number in pool

TotalNumberOfInputMessages Numeric Total number of messages that are processed by a
thread

TotalElapsedTime Numeric Total elapsed time spent processing input messages
(microseconds)

TotalCPUTime Numeric Total processor time spent processing input messages
(microseconds)

CPUTimeWaitingForInputMessage Numeric Total processor time spent waiting for input
messages (microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time that is spent waiting for input
messages (microseconds)

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

MaximumSizeOfInputMessages Numeric Maximum size of input messages (bytes)

MinimumSizeOfInputMessages Numeric Minimum size of input messages (bytes)

The following table describes the node statistics information, created in folder
Nodes.

Field Data type Details

Number Numeric Number of node statistics subfolders in Nodes folder

The following table describes the node statistics information for each individual
node, created in folder NodesStatistics, a subfolder of Nodes.

Field Data type Details

Label Character Name of node (Label)

Type Character Type of node

TotalElapsedTime Numeric Total elapsed time spent processing input messages
(microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent processing input
messages (microseconds)

MinimumElapsedTime Numeric Minimum elapsed time spent processing input
messages (microseconds)

TotalCPUTime Numeric Total processor time spent processing input messages
(microseconds)

MaximumCPUTime Numeric Maximum processor time spent processing input
messages (microseconds)

MinimumCPUTime Numeric Minimum processor time spent processing input
messages (microseconds)

CountOfInvocations Numeric Total number of messages that are processed by this
node

NumberOfInputTerminals Numeric Number of input terminals

NumberOfOutputTerminals Numeric Number of output terminals

Chapter 14. Reference 6729

The following table describes the terminal statistics information, created in folder
TerminalStatistics.

Field Data type Details

Label Character Name of terminal

Type Character Type of terminal, one of:
v Input
v Output

CountOfInvocations Numeric Total number of invocations

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Related reference:
“Message flow accounting and statistics details” on page 6724
You can collect message flow, thread, node, and terminal statistics for message
flows.
“Example of an XML publication for message flow accounting and statistics” on
page 6739
This example shows an XML publication that contains message flow accounting
and statistics data.

User trace entries for message flow accounting and statistics data:

Certain information is written to the user trace log for message flow accounting
and statistics data.

The data records are identified by the following message numbers:
v BIP2380I
v BIP2381I
v BIP2382I
v BIP2383I

The inserts for each message are described in the following tables.

This table describes the inserts in message BIP2380I. One message is written for the
message flow.

Field Data type Details

ProcessID Numeric Process ID

6730 WebSphere Message Broker Version 7.0.0.8

Field Data type Details

Key Numeric Key that is used to associate related
accounting and statistics BIP
messages

Type Character Type of output, one of:
v Archive
v Snapshot

Reason Character Reason for output, one of:
v MajorInterval
v Snapshot
v Shutdown
v ReDeploy
v StatsSettingsModified

BrokerLabel Character
(maximum
32)

Broker name

BrokerUUID Character
(maximum
32)

Broker universal unique identifier

ExecutionGroupName Character
(maximum
32)

Execution group name

ExecutionGroupUUID Character
(maximum
32)

Execution group universal unique
identifier

MessageFlowName Character
(maximum
32)

Message flow name

StartDate Character Interval start date (YYYY-MM-DD)

StartTime Character Interval start time
(HH:MM:SS:NNNNNN)

EndDate Character Interval end date (YYYY-MM-DD)

EndTime Character Interval end time
(HH:MM:SS:NNNNNN)

TotalElapsedTime Numeric Total elapsed time spent processing
input messages (microseconds)

MaximumElapsedTime Numeric Maximum elapsed time that is spent
processing an input message
(microseconds)

MinimumElapsedTime Numeric Minimum elapsed time that is spent
processing an input message
(microseconds)

TotalCPUTime Numeric Total processor time spent processing
input messages (microseconds)

MaximumCPUTime Numeric Maximum processor time that is
spent processing an input message
(microseconds)

MinimumCPUTime Numeric Minimum processor time that is
spent processing an input message
(microseconds)

CPUTimeWaitingForInputMessage Numeric Total processor time spent waiting
for input messages (microseconds)

Chapter 14. Reference 6731

Field Data type Details

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time that is spent
waiting for input messages
(microseconds)

TotalInputMessages Numeric Total number of messages processed

TotalInputMessages records only
those messages that are propagated
from input node terminals.

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

MaximumSizeOfInputMessages Numeric Maximum input message size (bytes)

MinimumSizeOfInputMessages Numeric Minimum input message size (bytes)

NumberOfThreadsInPool Numeric Number of threads in pool

TimesMaximumNumberofThreadsReached Numeric Number of times the maximum
number of threads is reached

TotalNumberOfMQErrors Numeric Number of MQGET errors (MQInput
node) or web services errors
(HTTPInput node)

For example, a conversion error
occurs when the message is got from
the queue.

TotalNumberOfMessagesWithErrors Numeric Number of messages that contain
errors

These errors include exceptions that
are thrown downstream of the input
node, and errors that are detected by
the input node after it successfully
retrieves the message from the queue
(for example, a format error).

TotalNumberOfMessagesWithErrors
can include messages that are not
included in TotalInputMessages.

TotalNumberOfErrorsProcessingMessages Numeric Number of errors while processing a
message

TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages Numeric Number of timeouts while
processing a message
(AggregateReply node only)

TotalNumberOfCommits Numeric Number of transaction commits

TotalNumberOfBackouts Numeric Number of transaction backouts

AccountingOrigin Character
(maximum
32)

Accounting origin

The following table describes the inserts in message BIP2381I. One message is
written for each thread.

Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key that is used to associate related accounting and
statistics BIP messages

6732 WebSphere Message Broker Version 7.0.0.8

Field Data type Details

Number Numeric Relative thread number in pool

TotalNumberOfInputMessages Numeric Total number of messages that are processed by a
thread

TotalElapsedTime Numeric Total elapsed time spent processing input messages
(microseconds)

TotalCUPTime Numeric Total processor time spent processing input messages
(microseconds)

CPUTimeWaitingForInputMessage Numeric Total processor time spent waiting for input messages
(microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time that is spent waiting for input
messages (microseconds)

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

MaximumSizeOfInputMessages Numeric Maximum size of input messages (bytes)

MinimumSizeOfInputMessages Numeric Minimum size of input messages (bytes)

The following table describes the inserts in message BIP2382I. One message is
written for each node.

Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key that is used to associate related accounting and
statistics BIP messages

Label Character Name of node (Label)

Type Character Type of node

TotalElapsedTime Numeric Total elapsed time spent processing input messages
(microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent processing input messages
(microseconds)

MinimumElapsedTime Numeric Minimum elapsed time spent processing input messages
(microseconds)

TotalCPUTime Numeric Total processor time spent processing input messages
(microseconds)

MaximumCPUTime Numeric Maximum processor time spent processing input messages
(microseconds)

MinimumCPUTime Numeric Minimum processor time spent processing input messages
(microseconds)

CountOfInvocations Numeric Total number of messages that are processed by this node

NumberOfInputTerminals Numeric Number of input terminals

NumberOfOutputTerminals Numeric Number of output terminals

The following table describes the inserts in message BIP2383I. One message is
written for each terminal on each node.

Field Data type Details

ProcessID Numeric Process ID

Chapter 14. Reference 6733

Field Data type Details

Key Numeric Key that is used to associate related accounting and
statistics BIP messages

Label Character Name of terminal

Type Character Type of terminal, one of:
v Input
v Output

CountOfInvocations Numeric Total number of invocations

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Related reference:
“Message flow accounting and statistics details” on page 6724
You can collect message flow, thread, node, and terminal statistics for message
flows.
“Example of user trace entries for message flow accounting and statistics” on page
6741
This example shows a user trace that contains message flow accounting and
statistics data.

z/OS SMF records for message flow accounting and statistics data:

Certain information is written to z/OS SMF records for message flow accounting
and statistics data.

The data records are type 117 records with the following identifiers:
v BipSMFDate
v BipSMFRecordHdr
v BipSMFTriplet
v BipSMFMessageFlow
v BipSMFThread
v BipSMFNode
v BipSMFTerminal

The following tables describe the contents of each of these records.

The following table describes the contents of the BipSMFDate record.

6734 WebSphere Message Broker Version 7.0.0.8

Field Data type Details

YYYY signed short int 2 byte year

MM char 1 byte month

DD char 1 byte day

The following table describes the contents of the BipSMFRecordHdr record.

Field Data type Details

SM117LEN unsigned short int SMF record length

SM117SEG unsigned short int System reserved

SM117FLG char System indicator

SM117RTY char Record type 117 (x'75')

SM117TME unsigned int Time when SMF moved the record (time since
midnight in hundredths of a second)

SM117DTE unsigned int Date when SMF moved the record in packed decimal
form 0cyydddF where:

c is 0 (19xx) or 1 (20xx)
yy is the current year (0-99)
ddd is the current day (1-366)
F is the sign

SM117SID unsigned int System ID

SM117SSI unsigned int Subsystem ID

SM117STY unsigned short int Record subtype, one of :
v 1 (only message flow or threads data is being

collected)
v 2 (node data is being collected)1

SM117TCT unsigned int Count of triplets

SM117SRT unsigned char Record type, one of:
v Archive
v Snapshot

SM117SRC unsigned char Record code, one of:
v 00 = None
v 01 = Major Interval
v 02 = Snapshot
v 03 = Shutdown
v 04 = Redeploy
v 05 = Stats Settings Modified

SM117RSQ unsigned short int Sequence number of the record when multiple records
are written for a collection interval.

SM117NOR unsigned short int Total number of related records in a collection interval.

Note:

1. When only nodes data is being collected, a single subtype 2 record is written. If nodes and terminals data is
being collected, multiple subtype 2 records are written.

The following table describes the contents of the BipSMFTriplet record.

Field Data type Details

TRPLTOSE signed int Offset of record from start of SMF record

Chapter 14. Reference 6735

Field Data type Details

TRPLTDLE signed short int Length of data type

TRPLTNDR signed short int Number of data types in SMF record

The following table describes the contents of the BipSMFMessageFlow record.

Field Data type Details

IMFLID short int Control block hex ID (BipSMFMessageFlow_ID)

IMFLLEN short int Length of control block

IMFLEYE char[4] Eyecatcher (IMFL)

IMFLVER int Version number (BipSMFRecordVersion)

IMFLBKNM char[32] Broker name

IMFLBKID char[36] Broker universal unique identifier

IMFLEXNM char[32] Execution group name

IMFLEXID char[36] Execution group universal unique identifier

IMFLMFNM char[32] Message flow name

IMFLSTDT BipSMFDate Interval start date

IMFLSTTM unsigned int Interval start time (format as for SM117TME)

IMFLENDT BipSMFDate Interval end date

IMFLENTM unsigned int Interval end time (format as for SM117TME)

IMFLTPTM long long int Total elapsed time spent processing input messages (8
bytes binary, microseconds)

IMFLMXTM long long int Maximum elapsed time spent processing an input message
(8 bytes binary, microseconds)

IMFLMNTM long long int Minimum elapsed time spent processing an input message
(8 bytes binary, microseconds)

IMFLTPCP long long int Total processor time spent processing input messages (8
bytes binary, microseconds)

IMFLMXCP long long int Maximum processor time spent processing an input
message (8 bytes binary, microseconds)

IMFLMNCP long long int Minimum processor time spent processing an input
message (8 bytes binary, microseconds)

IMFLWTCP long long int Total processor time spent waiting for input messages (8
bytes binary, microseconds)

IMFLWTIN long long int Total elapsed time spent waiting for input messages (8
bytes binary, microseconds)

IMFLTPMG unsigned int Total number of messages processed

IMFLTSMG long long int Total size of input messages (bytes)

IMFLMXMG long long int Maximum input message size (bytes)

IMFLMNMG long long int Minimum input message size (bytes)

IMFLTHDP unsigned int Number of threads in pool

IMFLTHDM unsigned int Number of times the maximum number of threads is
reached

IMFLERMQ1 unsigned int Number of MQGET errors (MQInput node) or Web
services errors (HTTPInput node)

6736 WebSphere Message Broker Version 7.0.0.8

Field Data type Details

IMFLERMG2 unsigned int Number of messages that contain errors

IMFLERPR unsigned int Number of errors processing a message

IMFLTMOU unsigned int Number of timeouts processing a message
(AggregateReply node only)

IMFLCMIT unsigned int Number of transaction commits

IMFLBKOU unsigned int Number of transaction backouts

IMFLACCT char[32] Accounting origin

Notes:
1. For example, a conversion error occurs when the message is got from the queue.
2. These include exceptions that are thrown downstream of the input node, and errors detected by the input node

after it has successfully retrieved the message from the queue (for example, a format error).

The following table describes the contents of the BipSMFThread record.

Field Data type Details

ITHDID short int Control block hex ID (BipSMFThread_ID)

ITHDLEN short int Length of control block

ITHDEYE char[4] Eyecatcher (ITHD)

ITHDVER int Version number (BipSMFRecordVersion)

ITHDNBR unsigned int Relative thread number in pool

ITHDTPMG unsigned int Total number of messages processed by thread

ITHDTPTM long long int Total elapsed time spent processing input messages (8 bytes
binary, microseconds)

ITHDTPCP long long int Total processor time spent processing input messages (8 bytes
binary, microseconds)

ITHDWTCP long long int Total processor time spent waiting for input messages (8
bytes binary, microseconds)

ITHDWTIN long long int Total elapsed time spent waiting for input messages (8 bytes
binary, microseconds)

ITHDTSMG long long int Total size of input messages (bytes)

ITHDMXMG long long int Maximum size of input messages (bytes)

ITHDMNMG long long int Minimum size of input messages (bytes)

The following table describes the contents of the BipSMFNode record.

Field Data type Details

INODID short int Control block hex ID (BipSMFNode_ID)

INODLEN short int Length of control block

INODEYE char[4] Eyecatcher (INOD)

INODVER int Version number (BipSMFRecordVersion)

INODNDNM char[32] Name of node (Label)

INODTYPE char[32] Type of node

INODTPTM long long int Total elapsed time spent processing input messages (8 bytes
binary, microseconds)

Chapter 14. Reference 6737

Field Data type Details

INODMXTM long long int Maximum elapsed time spent processing input messages (8
bytes binary, microseconds)

INODMNTM long long int Minimum elapsed time spent processing input messages (8
bytes binary, microseconds)

INODTPCP long long int Total processor time spent processing input messages (8
bytes binary, microseconds)

INODMXCP long long int Maximum processor time spent processing input messages
(8 bytes binary, microseconds)

INODMNCP long long int Minimum processor time spent processing input messages
(8 bytes binary, microseconds)

INODTPMG unsigned int Total number of messages processed by this node

INODNITL unsigned int Number of input terminals

INODNOTL unsigned int Number of output terminals

The following table describes the contents of the BipSMFTerminal record.

Field Data type Details

ITRMID short int Control block hex ID (BipSMFTerminal_ID)

ITRMLEN short int Length of control block

ITRMEYE char[4] Eyecatcher (ITRM)

ITRMVER int Version number (BipSMFRecordVersion)

ITRMTLNM char[32] Name of terminal

ITRMTYPE char[8] Type of terminal, one of:
v Input
v Output

ITRMTINV unsigned int Total number of invocations

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Related reference:
“Message flow accounting and statistics details” on page 6724
You can collect message flow, thread, node, and terminal statistics for message
flows.

6738 WebSphere Message Broker Version 7.0.0.8

Example message flow accounting and statistics data
You can view message flow accounting and statistic data in an XML publication or
user trace entries. To view z/OS SMF records, use a utility program that processes
SMF records.

The following topics give example output in two formats:
v XML publication
v User trace entries

An example is not provided for z/OS SMF records, because these contain
hexadecimal data and are not easily viewed in that form. To view SMF records, use
any available utility program that processes SMF records.
Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flow accounting and statistics output formats” on page 6725
The message flow accounting and statistics data can be written in three formats.
“mqsichangeflowstats command” on page 3744
Use the mqsichangeflowstats command to control the accumulation of statistics
about message flow operation.
“mqsireportflowstats command” on page 3929
Use the mqsireportflowstats command to display the current options for
accounting and statistics that have been set using the mqsichangeflowstats
command.

Example of an XML publication for message flow accounting and statistics:

This example shows an XML publication that contains message flow accounting
and statistics data.

The following example shows what is generated for a snapshot report. The content
of this publication message shows that the message flow is called XMLflow, and
that it is running in an execution group named default on broker MQ02BRK. The
message flow contains the following nodes:
v An MQInput node called INQueue3
v An MQOutput node called OUTQueue
v An MQOutput node called FAILQueue

The MQInput node's Out terminal is connected to the OUTQueue node. The
MQInput node's Failure terminal is connected to the FAILQueue node.

Chapter 14. Reference 6739

During the interval for which statistics have been collected, this message flow
processed no messages.

A publication that is generated for this data always includes the appropriate
folders, even if there is no current data.

The following command has been issued to achieve these results:
mqsichangeflowstats MQ02BRK -s -c active -e default -f XMLFlow -n advanced -t basic -b basic -o xml

Blank lines have been added between folders to improve readability.

The broker takes information about statistics and accounting from the operating
system. On some operating systems, such as Windows, UNIX, and Linux, rounding
can occur because the system calls that are used to determine the processor times
are not sufficiently granular. This rounding might affect the accuracy of the data.

The following example is the subscription message. The <psc> and <mcd> elements
are part of the RFH header.

<psc>
<Command>Publish</Command>
<PubOpt>RetainPub</PubOpt>
<Topic>$SYS/Broker/MQ02BRK/StatisticsAccounting/SnapShot/default/XMLflow
</Topic>

</psc>

<mcd>
<Msd>xml</Msd>

</mcd>

The following example is the publication that the broker generates:
<WMQIStatisticsAccounting RecordType="SnapShot" RecordCode="Snapshot">

<MessageFlow BrokerLabel="MQ02BRK"
BrokerUUID="7d951e31-f200-0000-0080-efe1b9d849dc"
ExecutionGroupName="default"
ExecutionGroupUUID="77cf1e31-f200-0000-0080-efe1b9d849dc"
MessageFlowName="XMLflow" StartDate="2003-01-17"
StartTime="14:44:34.581320" EndDate="2003-01-17" EndTime="14:44:44.582926"
TotalElapsedTime="0"
MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"
MaximumCPUTime="0"MinimumCPUTime="0" CPUTimeWaitingForInputMessage="685"
ElapsedTimeWaitingForInputMessage="10001425" TotalInputMessages="0"
TotalSizeOfInputMessages="0" MaximumSizeOfInputMessages="0"
MinimumSizeOfInputMessages="0" NumberOfThreadsInPool="1"
TimesMaximumNumberOfThreadsReached="0" TotalNumberOfMQErrors="0"
TotalNumberOfMessagesWithErrors="0" TotalNumberOfErrorsProcessingMessages="0"
TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages="0"
TotalNumberOfCommits="0" TotalNumberOfBackouts="0" AccoutingOrigin="DEPT1"/>

<Threads Number="1">
<ThreadStatistics Number="5" TotalNumberOfInputMessages="0"
TotalElapsedTime="0" TotalCPUTime="0" CPUTimeWaitingForInputMessage="685"
ElapsedTimeWaitingForInputMessage="10001425" TotalSizeOfInputMessages="0"
MaximumSizeOfInputMessages="0" MinimumSizeOfInputMessages="0"/>
</Threads>

<Nodes Number="3">

6740 WebSphere Message Broker Version 7.0.0.8

<NodeStatistics Label="FAILQueue" Type="MQOutput" TotalElapsedTime="0"
MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"
MaximumCPUTime="0" MinimumCPUTime="0" CountOfInvocations="0"
NumberOfInputTerminals="1" NumberOfOutputTerminals="2">

<TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0"/>
<TerminalStatistics Label="in" Type="Input" CountOfInvocations="0"/>
<TerminalStatistics Label="out" Type="Output" CountOfInvocations="0"/>
</NodeStatistics>

<NodeStatistics Label="INQueue3" Type="MQInput" TotalElapsedTime="0"
MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"
MaximumCPUTime="0" MinimumCPUTime="0"CountOfInvocations="0"
NumberOfInputTerminals="0" NumberOfOutputTerminals="3">

<TerminalStatistics Label="catch" Type="Output" CountOfInvocations="0"/>
<TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0"/>
<TerminalStatistics Label="out" Type="Output" CountOfInvocations="0"/>
</NodeStatistics>

<NodeStatistics Label="OUTQueue" Type="MQOutput" TotalElapsedTime="0"
MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"
MaximumCPUTime="0" MinimumCPUTime="0" CountOfInvocations="0"
NumberOfInputTerminals="1" NumberOfOutputTerminals="2">
<TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0"/>
<TerminalStatistics Label="in" Type="Input" CountOfInvocations="0"/>
<TerminalStatistics Label="out" Type="Output" CountOfInvocations="0"/>

</NodeStatistics>

</Nodes>

</WMQIStatisticsAccounting>

Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
Related reference:
“Message flow accounting and statistics output formats” on page 6725
The message flow accounting and statistics data can be written in three formats.

Example of user trace entries for message flow accounting and statistics:

This example shows a user trace that contains message flow accounting and
statistics data.

The following example shows what is generated for a snapshot report. The
messages that are written to the trace show that the message flow is called

Chapter 14. Reference 6741

myExampleFlow, and that it is running in an execution group named default on
broker MQ01BRK. The message flow contains the following nodes:
v An MQInput node called inNode
v A Compute node called First1
v An MQOutput node called outNode

The nodes are connected together (Out terminal to In terminal for each
connection).

During the interval for which statistics have been collected, this message flow
processed 150 input messages.

The records show that two threads are assigned to this message flow. One thread is
assigned when the message flow is deployed (the default number); an additional
thread (thread 0) listens on the input queue. The listening thread starts additional
threads to process input messages that are dependent on the number of instances
that you have configured for the message flow, and on the rate of arrival of the
input messages on the input queue.

The following command has been issued to achieve these results:
mqsichangeflowstats MQ01BRK -s -c active -e default -f myExampleFlow -n advanced -t basic -b basic

The trace entries have been retrieved with the mqsireadlog command and
formatted using the mqsiformatlog command. The output from mqsiformatlog is
shown in the following example. Line breaks have been added to aid readability.

The broker takes information about statistics and accounting from the operating
system. On some operating systems, such as Windows, UNIX, and Linux, rounding
can occur because the system calls that are used to determine the processor times
are not sufficiently granular. This rounding might affect the accuracy of the data.

BIP2380I: WMQI message flow statistics. ProcessID=’328467’, Key=’6’, Type=’SnapShot’, Reason=’Snapshot’,
BrokerLabel=’MQ01BRK’, BrokerUUID=’18792e66-e100-0000-0080-f197e5ed81bd’,
ExecutionGroupName=’default’, ExecutionGroupUUID=’15d4314a-3607-11d4-8000-09140f7b0000’,
MessageFlowName=’myExampleFlow’,
StartDate=’2003-05-20’, StartTime=’13:44:31.885862’,
EndDate=’2003-05-20’, EndTime=’13:44:51.310080’,
TotalElapsedTime=’9414843’, MaximumElapsedTime=’1143442’, MinimumElapsedTime=’35154’,
TotalCPUTime=’760147’, MaximumCPUTime=’70729’, MinimumCPUTime=’3124’,
CPUTimeWaitingForInputMessage=’45501’, ElapsedTimeWaitingForInputMessage=’11106438’,
TotalInputMessages=’150’, TotalSizeOfInputMessages=’437250’,
MaximumSizeOfInputMessages=’2915’, MinimumSizeOfInputMessages=’2915’,
NumberOfThreadsInPool=’1’, TimesMaximumNumberOfThreadsReached=’150’,
TotalNumberOfMQErrors=’0’, TotalNumberOfMessagesWithErrors=’0’,
TotalNumberOfErrorsProcessingMessages=’0’, TotalNumberOfTimeOuts=’0’,
TotalNumberOfCommits=’150’, TotalNumberOfBackouts=’0’, AccountingOrigin="DEPT2".
Statistical information for message flow ’myExampleFlow’ in broker ’MQ01BRK’.
This is an information message produced by WMQI statistics.

BIP2381I: WMQI thread statistics. ProcessID=’328467’, Key=’6’, Number=’0’,
TotalNumberOfInputMessages=’0’,
TotalElapsedTime=’0’, TotalCPUTime=’0’, CPUTimeWaitingForInputMessage=’110’,
ElapsedTimeWaitingForInputMessage=’5000529’, TotalSizeOfInputMessages=’0’,
MaximumSizeOfInputMessages=’0’, MinimumSizeOfInputMessages=’0’.
Statistical information for thread ’0’.
This is an information message produced by WMQI statistics.

BIP2381I: WMQI thread statistics. ProcessID=’328467’, Key=’6’, Number=’18’,
TotalNumberOfInputMessages=’150’,
TotalElapsedTime=’9414843’, TotalCPUTime=’760147’, CPUTimeWaitingForInputMessage=’45391’,
ElapsedTimeWaitingForInputMessage=’6105909’, TotalSizeOfInputMessages=’437250’,

6742 WebSphere Message Broker Version 7.0.0.8

MaximumSizeOfInputMessages=’2915’, MinimumSizeOfInputMessages=’2915’.
Statistical information for thread ’18’.
This is an information message produced by WMQI statistics.

BIP2382I: WMQI node statistics. ProcessID=’328467’, Key=’6’,
Label=’First1’, Type=’ComputeNode’,
TotalElapsedTime=’6428815’, MaximumElapsedTime=’138261’, MinimumElapsedTime=’28367’,
TotalCPUTime=’604060’, MaximumCPUTime=’69645’, MinimumCPUTime=’2115’,
CountOfInvocations=’150’, NumberOfInputTerminals=’1’, NumberOfOutputTerminals=’2’.
Statistical information for node ’First1’.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,
Label=’failure’, Type=’Output’, CountOfInvocations=’0’,
Statistical information for terminal ’failure’.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,
Label=’in’, Type=’Input’, CountOfInvocations=’150’,
Statistical information for terminal ’in’.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,
Label=’out’, Type=’Output’, CountOfInvocations=’150’,
Statistical information for terminal ’out’.
This is an information message produced by WMQI statistics.

BIP2382I: WMQI node statistics. ProcessID=’328467’, Key=’6’,
Label=’inNode’, Type=’MQInputNode’,
TotalElapsedTime=’1813446’, MaximumElapsedTime=’1040209’, MinimumElapsedTime=’1767’,
TotalCPUTime=’70565’, MaximumCPUTime=’686’, MinimumCPUTime=’451’,
CountOfInvocations=’150’, NumberOfInputTerminals=’0’, NumberOfOutputTerminals=’3’.
Statistical information for node ’inNode’.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,
Label=’catch’, Type=’Output’, CountOfInvocations=’0’,
Statistical information for terminal ’catch’.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,
Label=’failure’, Type=’Output’, CountOfInvocations=’0’,
Statistical information for terminal ’failure’.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,
Label=’out’, Type=’Output’, CountOfInvocations=’150’,
Statistical information for terminal ’out’.
This is an information message produced by WMQI statistics.

BIP2382I: WMQI node statistics. ProcessID=’328467’, Key=’6’,
Label=’outNode’, Type=’MQOutputNode’,
TotalElapsedTime=’1172582’, MaximumElapsedTime=’177516’, MinimumElapsedTime=’3339’,
TotalCPUTime=’85522’, MaximumCPUTime=’762’, MinimumCPUTime=’536’,
CountOfInvocations=’150’, NumberOfInputTerminals=’1’, NumberOfOutputTerminals=’2’.
Statistical information for node ’outNode’.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,
Label=’failure’, Type=’Output’, CountOfInvocations=’0’,
Statistical information for terminal ’failure’.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,
Label=’in’, Type=’Input’, CountOfInvocations=’150’,
Statistical information for terminal ’in’.
This is an information message produced by WMQI statistics.

Chapter 14. Reference 6743

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,
Label=’out’, Type=’Output’, CountOfInvocations=’0’,
Statistical information for terminal ’out’.
This is an information message produced by WMQI statistics.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Monitoring message flow performance” on page 3279
You can configure your message flow to collect statistics about the operation and
behavior of your message flows. Use this information to assess the performance of
your message flows.
Related reference:
“Message flow accounting and statistics output formats” on page 6725
The message flow accounting and statistics data can be written in three formats.

Metrics for accounting and statistics data in the WebSphere
Message Broker Explorer
You can filter the metrics displayed for accounting and statistics data in the Broker
Statistics and Broker Statistics Graph views in the WebSphere Message Broker
Explorer.

Broker statistics
The metrics that you can select in the Broker Statistics Graph view for a
broker are:
v Total number of input messages
v Total elapsed time
v Total processor time spent processing messages
v Processor time waiting for input message
v Elapsed time waiting for input message
v Total size of input messages
v Maximum size of input messages
v Minimum size of input messages

Execution group statistics
The metrics that you can select in the Broker Statistics Graph view for an
execution group are:
v Total elapsed time
v Maximum elapsed time
v Minimum elapsed time
v Total processor time
v Maximum processor time
v Minimum processor time
v Processor time waiting for input message
v Elapsed time waiting for input message
v Total input messages
v Total size of input messages
v Maximum size of input messages
v Minimum size of input messages

6744 WebSphere Message Broker Version 7.0.0.8

v Number of threads in pool
v Times maximum number of threads reached
v Total number of WebSphere MQ errors
v Total number of messages with errors
v Total number of errors processing messages
v Total number of time-outs waiting for replies to aggregate messages
v Total number of commits
v Total number of messages backed out

Message flow statistics
The metrics that you can select in the Broker Statistics Graph view for a
message flow are:
v Total elapsed time
v Maximum elapsed time
v Minimum elapsed time
v Total processor time
v Maximum processor time
v Minimum processor time
v Count of invocations
v Number of input terminals
v Number of output terminals

Related concepts:
“Message flow accounting and statistics data” on page 3281
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.
Related tasks:
“Viewing message flow accounting and statistics data” on page 3300
You can use the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer to view snapshot accounting and statistics
data as it is produced by the broker.
“Starting accounting and statistics data collection in the WebSphere Message
Broker Explorer” on page 3299
Use the WebSphere Message Broker Explorer to start collecting snapshot
accounting and statistics data for your brokers, execution groups, and message
flows. You can then view the accounting and statistics data in the Broker Statistics
and Broker Statistics Graph views.
“Filtering message flow accounting and statistics data” on page 3302
You can select the metrics for the snapshot accounting and statistics data that are
displayed in the Broker Statistics and Broker Statistics Graph views in the
WebSphere Message Broker Explorer.

Resource statistics data
Learn about the measurements for which data is returned when you activate
resource statistics collection.

Statistics information is collected for the following resource types:
v CICS
v CORBA
v File
v File Transfer Protocol
v FTEAgent
v IBM Sterling Connect:Direct

Chapter 14. Reference 6745

v Java Virtual Machine (JVM)
v JDBC connection pools
v ODBC
v Outbound sockets
v Parsers
v Security
v SOAP
v TCPIP Client Nodes
v TCPIP Server Nodes

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

The information collected, which is different for each type, is shown in the
following tables.
Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Example of an XML publication for resource statistics
This example message shows an XML publication that contains resource statistics
data.

A single XML publication includes all the statistics information that is reported for
the resource types listed in “Resource statistics data” on page 6745. The publication
message starts with information that identifies the broker and the execution group
to which the statistics apply.

For information about subscribing to these publication messages, see “Subscribing
to statistics reports” on page 3317.

6746 WebSphere Message Broker Version 7.0.0.8

The following message is an example that shows three sections, one for each of
three different resource types, and the values that are returned for each type. The
output lines in this example have been split to improve readability.
<ResourceStatistics

brokerLabel="STRESS1"
brokerUUID="1a09649b-c9b9-4efe-a9c0-5275f6dd6c3f"
executionGroupName="eg.EAS.JVM.1"
executionGroupUUID="d6a3b481-2401-0000-0080-c5acc915fa62"
collectionStartDate="2009-10-22" collectionStartTime="11:42:17"
startDate="2009-10-23" startTime="17:59:36.152"
endDate="2009-10-23" endTime="17:59:56.154"
timezone="Europe/London">
<ResourceType name="JVM">
<resourceIdentifier name="summary"

InitialMemoryInMB="32" UsedMemoryInMB="30"
CommittedMemoryInMB="52" MaxMemoryInMB="-1"
CumulativeGCTimeInSeconds="0"
CumulativeNumberOfGCCollections="32"/>

<resourceIdentifier name="Heap Memory"
InitialMemoryInMB="32" UsedMemoryInMB="14"
CommittedMemoryInMB="32" MaxMemoryInMB="256"/>

<resourceIdentifier name="Non-Heap Memory"
InitialMemoryInMB="0" UsedMemoryInMB="16"
CommittedMemoryInMB="20" MaxMemoryInMB="-1"/>

<resourceIdentifier name="Garbage Collection - J9 GC"
CumulativeGCTimeInSeconds="0"
CumulativeNumberOfGCCollections="32"/>

</ResourceType>

<ResourceType name="Security">
<resourceIdentifier name="summary"

TotalCacheEntries="10"
TotalOperations="9"
TotalSuccessfulOperations="6"
TotalOperationsServicedByCache="3"/>

<resourceIdentifier name="LDAP"
TotalOperations="3"
TotalSuccessfulOperations="1"
TotalOperationsServicedByCache="0"
TotalCacheEntries="0"/>

<resourceIdentifier name="WS-Trust v1.3 STS"
TotalOperations="6"
TotalSuccessfulOperations="5"
TotalOperationsServicedByCache="3"
TotalCacheEntries="0"/>

</ResourceType>
<ResourceType name="Sockets">
<resourceIdentifier name="summary"

TotalMessages="826"
TotalSocketsOpened="0"
AverageSocketsOpenedPerMinute="0"
TotalBytesSent="1715189"
AverageBytesSentPerSecond="85758"
TotalBytesReceived="116879"
AverageBytesReceivedPerSecond="5843"
AverageBytesSentPerMessage="2076"
AverageBytesReceivedPerMessage="141"
SentMessageSize_0-1KB="0"
SentMessageSize_1KB-10KB="826"
SentMessageSize_10KB-100KB="0"
SentMessageSize_100KB-1MB="0"
SentMessageSize_1MB-10MB="0"
SentMessageSize_Over10MB="0"
ReceivedMessageSize_0-1KB="826"
ReceivedMessageSize_1KB-10KB="0"
ReceivedMessageSize_10KB-100KB="0"

Chapter 14. Reference 6747

ReceivedMessageSize_100KB-1MB="0"
ReceivedMessageSize_1MB-10MB="0"
ReceivedMessageSize_Over10MB="0"/>

<resourceIdentifier name="9.146.149.86.7900"
TotalMessages="413"
AverageMessagesPerMinute="1239"
TotalSocketsOpened="0"
AverageSocketsOpenedPerMinute="0"
TotalBytesSent="837977"
AverageBytesSentPerSecond="41898"
TotalBytesReceived="60298"
AverageBytesReceivedPerSecond="3014"
AverageBytesSentPerMessage="2029"
AverageBytesReceivedPerMessage="146"
SentMessageSize_0-1KB="0"
SentMessageSize_1KB-10KB="413"
SentMessageSize_10KB-100KB="0"
SentMessageSize_100KB-1MB="0"
SentMessageSize_1MB-10MB="0"
SentMessageSize_Over10MB="0"
ReceivedMessageSize_0-1KB="413"
ReceivedMessageSize_1KB-10KB="0"
ReceivedMessageSize_10KB-100KB="0"
ReceivedMessageSize_100KB-1MB="0"
ReceivedMessageSize_1MB-10MB="0"
ReceivedMessageSize_Over10MB="0"/>

<resourceIdentifier name="localhost.7900"
TotalMessages="413"
AverageMessagesPerMinute="1239"
TotalSocketsOpened="0"
AverageSocketsOpenedPerMinute="0"
TotalBytesSent="877212"
AverageBytesSentPerSecond="43860"
TotalBytesReceived="56581"
AverageBytesReceivedPerSecond="2829"
AverageBytesSentPerMessage="2124"
AverageBytesReceivedPerMessage="137"
SentMessageSize_0-1KB="0"
SentMessageSize_1KB-10KB="413"
SentMessageSize_10KB-100KB="0"
SentMessageSize_100KB-1MB="0"
SentMessageSize_1MB-10MB="0"
SentMessageSize_Over10MB="0"
ReceivedMessageSize_0-1KB="413"
ReceivedMessageSize_1KB-10KB="0"
ReceivedMessageSize_10KB-100KB="0"
ReceivedMessageSize_100KB-1MB="0"
ReceivedMessageSize_1MB-10MB="0"
ReceivedMessageSize_Over10MB="0"/>

</ResourceType>
<ResourceType name="Message parsers">
<resourceIdentifier name="summary"

Threads="1"
ApproxMemKB="3"
MaxReadKB="1"
MaxWrittenKB="0"
Fields="100"
Reads="1"
FailedReads="0"
Writes="0"
FailedWrites="0"/>

<resourceIdentifier name="Flow1.XMLNSC"
Threads="1"
ApproxMemKB="3"
MaxReadKB="1"
MaxWrittenKB="0"
Fields="100"

6748 WebSphere Message Broker Version 7.0.0.8

Reads="1"
FailedReads="0"
Writes="0"
FailedWrites="0"/>

</ResourceType>
</ResourceStatistics>

All times are reported in local time, and the timezone used is reported by the
timezone attribute in the standard TZ Area/Location format. The date is in the
format yyyy-MM-dd, and time is in the format HH:mm:ss, independent of locale
and timezone.

The collectionStartDate and collectionStartTime specify when resource statistics
collection started, typically when the execution group was last started.

The endDate and endTime specify when the statistics data in the current message
was gathered. The startDate and startTime is when the previous set of data was
reported.
Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: CICS
Learn about the data that is returned for the CICS resource type when you activate
resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

A CICSRequest node calls CICS Transaction Server for z/OS programs. Use these
resource statistics to review how many successful and unsuccessful calls the node
is making to CICS, how many unsuccessful requests are related to security issues
such as authentication failures, and how often connection attempts fail.

A statistics summary is returned for the whole execution group, followed by a
breakdown for each named CICS Transaction Server for z/OS region.

Chapter 14. Reference 6749

The following table describes the measurements that are returned for each CICS
region. Each row of statistics represents a CICS region, which is identified either by
a configurable service, or by the CICSRequest node CICS server URL.
v In this example, the configurable service is identified by

myCICSConnectionService, and the broker is identified by APPLIDBRKApp and
qualifier BRKQual:
myCICSConnectionService.BRKApp.BRKQual

v In this example, the CICSRequest node CICS server URL is identified by
tcp://mycicsregion.com:12345:
tcp://mycicsregion.com:12345

Measurements Description

RequestSuccess The number of requests to CICS that are successful.

RequestFailures The total number of requests to CICS that fail. The value that
is returned by this measurement does not include connection
failures. Connection failure values are returned by the
ConnectionAttemptFailures measurement.

RequestSecurityFailures The number of failed requests to CICS that were caused by
security issues, such as authentication failures.

ConnectionAttemptFailures The number of connection attempts that fail.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.
“CICSRequest node” on page 4321
Use the CICSRequest node to call CICS Transaction Server for z/OS programs over
TCP/IP-based IP InterCommunications (IPIC) protocol.

6750 WebSphere Message Broker Version 7.0.0.8

Resource statistics data: CORBA
Learn about the data that is returned for the CORBA resource type when you
activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

A CORBARequest node calls a CORBA server. Use these resource statistics to
review how many calls the node is making to the CORBA server, and how many
of those calls are successful or result in CORBA exceptions. A statistics summary is
returned for the whole execution group.

The following table describes the measurements that are returned for each CORBA
node. The measurements apply to the number of calls since the execution group
started.

Measurements Description

OutboundInvocations The total number of calls made to a CORBA server.

OutboundSuccessfulInvocationsThe number of calls to the CORBA server that are successful.

OutboundCorbaExceptions The number of calls to the CORBA server that result in
CORBA exceptions.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.
“CORBARequest node” on page 4349
Use the CORBARequest node to call an external CORBA application over Internet

Chapter 14. Reference 6751

Inter-Orb Protocol (IIOP).

Resource statistics data: File
Learn about the data that is returned for the file resource type when you activate
resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

A summary is displayed for the local file system of any file actions done by any
type of file node. It does not have any other entries; there is only one local file
system. Remote file systems are reported in FTEAgent and FTP resource statistics.

Measurements Description

FilesRead The number of files successfully read by any file node

RecordsRead The number of records read by either a file input node, FTE
input node, or a file read node

BytesRead The total number of bytes read by either a file input node,
FTE input node, or a file read node

FilesCreated The number of files successfully created by a file output node

RecordsWritten The number of records written to files by a file output node
or FTE output node

BytesWritten The total number of bytes written by a file output node or
FTE output node

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
“Managed file transfers using WebSphere MQ File Transfer Edition” on page 1869
Transfer files, with file transfer metadata, in a timely and reliable manner.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.

6752 WebSphere Message Broker Version 7.0.0.8

“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: File Transfer Protocol
Learn about the data that is returned for the File Transfer Protocol resource type
when you activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

A summary is displayed of file transfers that occur in the execution and a list for
each server used.

Measurements Description

Protocol The protocol used: either FTP or SFTP

FTPGets The number of transfers from a remote server to the file
system of the broker

BytesReceived The number of bytes transferred from a remote server to the
file system of the broker

FTPPuts The number of transfers from the file system of the broker to
a remote server

BytesSent The number of bytes transferred from the file system of the
broker to a remote server
Note: The FTPPuts counter can increase in two cases: either
when a new file is transferred, or when an append is made to
an existing file.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
“Managed file transfers using WebSphere MQ File Transfer Edition” on page 1869
Transfer files, with file transfer metadata, in a timely and reliable manner.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.

Chapter 14. Reference 6753

“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: FTEAgent
Learn about the data that is returned for the FTEAgent resource type when you
activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

The FTE agent is an embedded FTE component that allows WebSphere Message
Broker to send and receive files by using WebSphere MQ File Transfer Edition. A
one-to-one mapping exists between an execution group and its FTE agent.
Therefore, the resource manager statistics provide an accurate picture of the
WebSphere MQ File Transfer Edition activity of that execution group.

The following table describes the measurements that are returned for the agent.

Measurements Description

inboundTransfers The number of transfers received by the agent.

outboundTransfers The number of transfers sent by the agent.

inboundBytes The number of bytes received by the agent.

outboundBytes The number of bytes sent by the agent.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
“Managed file transfers using WebSphere MQ File Transfer Edition” on page 1869
Transfer files, with file transfer metadata, in a timely and reliable manner.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.

6754 WebSphere Message Broker Version 7.0.0.8

“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: IBM Sterling Connect:Direct
Learn about the data that is returned for the CDServer resource type when you
activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

Statistics are available for all Connect:Direct server activity, together with one line
for each configurable service used.

The following table describes the measurements that are returned.

Measurements Description

connectionDetails The host name and port for the Connect:Direct server that is being
connected to, in the format <hostname>:port.

For the summary line, this property is set to an empty string.

inboundTransfers The number of transfers received by the Connect:Direct server selected
for processing in a message flow.

inboundBytes Total number of bytes received in transfers, selected from
Connect:Direct server.

nohitTransfers The number of transfers received by the Connect:Direct server not
selected for processing in a message flow.

Reasons for not processing a transfer include:

v The WebSphere Message Broker system has no access to the
transferred file.

v A deployed CDInput node has a filter that matches the transferred
file.

This number gives the total for the whole broker and not just this
execution group.

outboundTransfers The number of transfers sent to the Connect:Direct server.

outboundBytes Total number of bytes contained in transfers sent to the Connect:Direct
server.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.

Chapter 14. Reference 6755

“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: Java Virtual Machine (JVM)
Learn about the data that is returned for the JVM resource type when you activate
resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

Each execution group starts its own Java Virtual Machine (JVM), which provides
support for all Java activities in that execution group. Some Java activity is present
in the execution group even if you have not yet deployed or started message flows
in that group. Use these resource statistics to review how much memory is in use
by the JVM, and how often garbage collection might be occurring in the execution
group.

Statistics are collected for the following JVM resources:
v Heap memory
v Non-heap memory
v Garbage collection

A summary is also provided, which adds the values in the three groups.

The special value -1 is returned for measurements that are undefined or are not
set.

The following table describes the measurements that are returned for each of the
listed resources. The garbage collection measurements are cumulative, and
continue to increase until you stop statistics collection.

Measurements Resource Description

InitialMemoryInMB v Heap memory
v Non-heap

memory

The initial amount of memory that the JVM
requests from the operating system for memory
management during startup. Its value might be
undefined.

6756 WebSphere Message Broker Version 7.0.0.8

Measurements Resource Description

UsedMemoryinMB v Heap memory
v Non-heap

memory

The amount of memory that is currently in use.

CommittedMemoryInMBv Heap memory
v Non-heap

memory

The amount of memory that is allocated to the JVM
by the operating system.

MaxMemoryInMB v Heap memory
v Non-heap

memory

The maximum amount of memory that can be used
for memory management. Its value might be
undefined.

CumulativeGCTimeInSecondsGarbage
collection

The accumulated garbage collection elapsed time in
seconds for this instance of the JVM. Its value
might be undefined.

CumulativeNumberOfGCCollectionsGarbage
collection

The total number of garbage collections that have
occurred for this instance of the JVM. Its value
might be undefined.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: JDBC connection pools
Learn about the data that is returned for the JDBC connection pools resource type
when you activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

Chapter 14. Reference 6757

A statistics summary is returned for each JDBC provider defined in the broker
configurable service that is switched to use connection pools. The following
examples are named JDBC data sources:
v DB2
v Oracle
v Microsoft SQLServer

The following table describes the measurements that are returned for each JDBC
Provider configurable service.

Measurements Description

NameOfJDBCProvider The name of the JDBCProviders configurable service that is
using connection pooling. If there are no connection pools
started, this defaults to none.

MaxSizeOfPool The maximum size of the connection pool.

ActualSizeOfPool A snapshot of the number of connections currently in the pool
when the statistics were reported.

CumulativeRequests A count of the number of requests received by the connection
pool during this accounting period.

CumulativeDelayedRequestsThe number of times a request for a connection could not be
satisfied immediately, because the number of allocated
connections reached the maximum pool size and no connections
are currently available.

MaxDelayInMilliseconds The maximum time a caller waited for a connection to be
allocated, in milliseconds.

CumulativeTimedOutRequestsA count of the number of requests for connections that could
not be satisfied within 15 seconds.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.

6758 WebSphere Message Broker Version 7.0.0.8

“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: ODBC
Learn about the data that is returned for the ODBC resource type when you
activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

Statistics are reported for each ODBC DSN that was accessed since the execution
group started. XA connections are distinguished from non-XA connections from the
same DSN. Each resource is named either DSN or DSN (XA). This information is
published on topic $SYS/Broker/brokerName/ResourceStatistics/
executionGroupLabel.

Measurements Description

ExecuteSuccess The total number of times any statement was run against this
DSN.

ExecuteFailure The total number of times any statement failed against this DSN.

ActiveConnections The number of connections currently open to this DSN.

ClosedConnections The number of connections to this DSN that were ever open, but
are now closed. This figure includes connections closed due to an
error, forced closed by the DBMS or closed by broker because it
was no longer required (for example, thread idle for 60 seconds).

ConnectionErrors The number of times a connection to this DSN was detected to
have a connection error (which would have caused the error to
be closed and therefore also contributed to the closed
connections measurement).

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.

Chapter 14. Reference 6759

“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: Outbound sockets
Learn about the data that is returned for the sockets resource type when you
activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

Outbound sockets are used by the execution group when a message is sent out
through a SOAP, SCA, or HTTP request node. SOAP and SCA nodes always use
keepalive sockets; therefore outbound sockets are reused for many requests.
HTTPRequest nodes use keepalive sockets only if you set the property Enable
HTTP/1.1 keep-alive. Use these resource statistics to review whether you are
reusing outbound sockets, and to see the size and volume of message data that is
flowing through those sockets.

A statistics summary is returned, followed by an entry for each outbound socket
endpoint, which is defined by its URL. Examples of endpoints are localhost:7080
and www.soaphub.org:80.

The following table describes the measurements that are returned for each
endpoint that was accessed since the execution group was last restarted.

Measurements Description

TotalSockets The number of outbound sockets that have been opened since
the last execution group restart.

TotalMessages The number of requests for a socket; for example, from a
SOAPRequest node.

TotalDataSent_KB The number of bytes sent, in kilobytes (KB).

TotalDataReceived_KB The number of bytes received, in kilobytes (KB).

SentMessageSize_0-1KB
SentMessageSize_1KB-10KB
SentMessageSize_10KB-100KB
SentMessageSize_100KB-1MB
SentMessageSize_1MB-10MB
SentMessageSize_Over10MB

The number of messages sent in each size range. For example,
a message of 999 bytes is counted in SentMessageSize_0-1KB;
a message of 1000 bytes is counted in SentMessageSize_1KB-
10KB.

ReceivedMessageSize_0-1KB
ReceivedMessageSize_1KB-10KB
ReceivedMessageSize_10KB-100KB
ReceivedMessageSize_100KB-1MB
ReceivedMessageSize_1MB-10MB
ReceivedMessageSize_Over10MB

The number of messages received in each size range.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.

6760 WebSphere Message Broker Version 7.0.0.8

Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: Parsers
Learn about the data that is returned for the parsers resource type when you
activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

All message flows in an execution group create parsers to parse and write input
and output messages. Use the Parsers statistics to see how much resource is being
used by the message trees and bit streams that these parsers own.

A statistics summary is returned, followed by an entry for accumulation by parser
type for each message flow. The rows are named in the style <Message
Flow>.<Parser>. A row is shown for every parser type used by that message flow.
Additional instances are included in the accumulated statistics for each message
flow.

The following table describes the statistics that are returned for each message flow
parser since the execution group was last restarted.

Measurements Description

Threads The number of message flow threads that contributed to the
statistics for a message flows parser type accumulation.

ApproxMemKB The approximate amount of user data-related memory used
for the named message flow parser type. It is not possible to
calculate the exact amount of memory used by a parser.

MaxReadKB Shows the largest bit stream parsed by the parser type for the
named message flow.

Chapter 14. Reference 6761

Measurements Description

MaxWrittenKB Shows the largest bit stream written by the parser type for the
named message flow.

Fields Shows the number of message fields associated with the
named message flow parser type. These fields are retained by
the parser and are used for constructing the message trees.

Reads The number of successful parses that were completed by the
named message flow parser type.

FailedReads The number of failed parses that occurred for the named
message flow parser type.

Writes The number of successful writes that were completed by the
named message flow parser type.

FailedWrites The number of failed writes that occurred for the named
message flow parser type.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: Security
Learn about the data that is returned for the security resource type when you
activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

6762 WebSphere Message Broker Version 7.0.0.8

When a message flow is configured with a security profile, requests are typically
made to a security provider or security token server (STS) to process and approve
authentication, mapping, or authorization. Use the security resource statistics to
review the number of requests that are made, how many of those requests are
successful, and how many are being serviced from the security cache.

A statistics summary is returned for the whole execution group, followed by a
breakdown for each named security provider. Examples of named security
providers are WS-Trust v1.3 STS and LDAP.

The following table describes the measurements that are returned for each
provider.

Measurements Description

TotalOperations The number of security operations (authentication, mapping,
or authorization) since collection started. A security profile
with both authentication and authorization counts as two
operations.

TotalSuccessfulOperations The number of security operations (authentication, mapping,
or authorization) that were approved.

TotalOperationsServicedByCacheThe number of security operations (authentication, mapping,
or authorization) that were serviced from the security cache
(without accessing the STS directly).

TotalCacheEntries The total number of security operation result entries in the
security cache. A security operation is defined in the security
profile as authentication, mapping, or authorization. A cache
entry might include a returned security token.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering

Chapter 14. Reference 6763

options for resources in the broker.

Resource statistics data: SOAP
Learn about the data that is returned for the SOAPInbound resource type when
you activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

The SOAPInput and SOAPReply nodes send and receive SOAP messages. Use the
SOAPInput resource statistics to review how many inbound messages the
SOAPInput node is receiving, how many replies the SOAPReply node is sending,
and how many of those calls are successful or result in SOAP Faults, on a
per-operation basis. Statistics for the SOAP nodes are collected with both HTTP
and JMS transport. You can review the name of the applied policy set if one is
defined. A statistics summary is returned for the whole execution group.

The following table describes the measurements that are returned for the
SOAPInput and SOAPReply nodes. These statistics do not include messages which
timed out.

Measurements Description

Name This measurement takes one of the following values:
v "Summary"
v Flow.Node.Operation
v [Undeployed].Flow.Node.Operation

where Flow is the name of your message flow, Node is the
node name, and Operation is the name of the operation.

InboundMessagesTotal The total number of SOAP messages received from the client.
This measurement is equal to the sum of
InboundMessagesMadeFlow and
InboundMessagesFaultedBeforeFlow.

RepliesSentTotal The total number of SOAP replies sent back to the client. This
measurement is equal to the sum of SuccessfulRepliesSent
and FaultRepliesSent.

InboundMessagesMadeFlow The number of messages that made the flow without faulting.

InboundMessagesFaultedBeforeFlowThe number of messages that faulted before reaching the flow.
This measurement includes input messages that are sent down
the Failure terminal.

SuccessfulRepliesSent The number of successful replies, without SOAP Fault, sent to
the client.

FaultRepliesSent The number of SOAP Fault replies sent to client. These faults
can be user-defined faults or broker exceptions.

PolicySetApplied The name of the policy set if one was defined.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:

6764 WebSphere Message Broker Version 7.0.0.8

“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: TCPIP Client Nodes
Learn about the data that is returned for the TCPIP Client Nodes resource type
when you activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

Use these statistics to get a view of the level of activity and health of TCP/IP
nodes in an execution group. You can see how many connection managers are
active and reporting statistics, and the following details from each:

Measurements Description

OpenConnections The current number of open connections

ClosedConnections The total number of connections that were closed since the last
execution group restart

MessagesReceived The total number of messages received (by TCPIPClientInput
or TCPIPClientReceive nodes)

MessagesSent The total number of messages sent (by TCPIPClientOutput
nodes)

BytesSent The total amount of data sent (by TCPIPClientOutput nodes),
excluding SSL wrappers.

BytesReceived The total amount of data received (by TCPIPClientInput or
TCPIPClientReceive nodes), excluding SSL wrappers.

FailedConnections The total number of attempted connections that failed since
the last execution group restarts.

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating

Chapter 14. Reference 6765

details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Resource statistics data: TCPIP Server Nodes
Learn about the data that is returned for the TCPIP Server Nodes resource type
when you activate resource statistics collection.

You can view these statistics in the WebSphere Message Broker Explorer, or you
can write a program that subscribes to a publication (single XML message) that
returns this data. For an example of the publication message, see Example XML
output.

Use these statistics to get a view of the level of activity and health of TCP/IP
nodes in an execution group. You can see how many connection managers are
active and reporting statistics, and the following details from each:

Measurements Description

OpenConnections The current number of open connections

ClosedConnections The total number of connections that were closed since the last
execution group restart

MessagesReceived The total number of messages received (by TCPIPServerInput
or TCPIPServerReceive nodes)

MessagesSent The total number of messages sent (by TCPIPServerOutput
nodes)

BytesSent The total amount of data sent (by TCPIPServerOutput nodes),
excluding SSL wrappers.

BytesReceived The total amount of data received (by TCPIPServerInput or
TCPIPServerReceive nodes), excluding SSL wrappers.

FailedSSLConnections The total number of attempted inbound SSL connections from
external clients that failed or were refused since the last
execution group restart.

6766 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“Resource statistics” on page 3306
Resource statistics are collected by a broker to record performance and operating
details of resources that are used by execution groups.
Related tasks:
“Monitoring resource performance” on page 3305
You can collect statistics to assess the performance of certain resources used by
execution groups.
“Viewing resource statistics data in the WebSphere Message Broker Explorer” on
page 3313
Use the WebSphere Message Broker Explorer to view resource statistics data for
your execution groups in the Broker Resources and Broker Resources Graph views.

“Subscribing to statistics reports” on page 3317
You can subscribe to topics that return statistics about the operation of your
message flows and resource managers.
Related reference:
“Resource statistics data” on page 6745
Learn about the measurements for which data is returned when you activate
resource statistics collection.
“mqsichangeresourcestats command” on page 3819
Use the mqsichangeresourcestats command to control statistics gathering for
resources in the broker.
“mqsireportresourcestats command” on page 3944
Use the mqsireportresourcestats command to display current statistics gathering
options for resources in the broker.

Monitoring message flows
The following reference topics on monitoring message flows are available:
v “Monitoring profile” on page 6768
v “The monitoring event” on page 6774
v “Correlation and monitoring events” on page 6778
Related concepts:
“Deciding how to configure monitoring events for message flows” on page 3325
Decide whether to use monitoring properties, or a monitoring profile configurable
service, to customize the events produced by a message flow.
“Monitoring scenarios” on page 3323
Events can be used to support transaction monitoring, transaction auditing and
business process monitoring.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
“Activating monitoring” on page 3334
Use the mqsichangeflowmonitoring command to activate monitoring after you have
configured monitoring event sources.
Related reference:

Chapter 14. Reference 6767

“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

Monitoring profile
To customize events after a message flow has been deployed, but without
redeploying the flow, use a monitoring profile configurable service. By using this
service, you can apply a monitoring profile to one or more message flows.

A monitoring profile is an XML document that specifies the event sources in a
message flow that will emit events, and the properties of those events. The
monitoring profile XML must conform to XML schema file MonitoringProfile.xsd.

Outline monitoring profile

Here is an outline monitoring profile that contains a single event source to
illustrate the structure:

<p:monitoringProfile
xmlns:p="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0.3/monitoring/profile" p:version="2.0">

<p:eventSource p:enabled="true" p:eventSourceAddress="SOAPInput.transaction.Start">
<p:eventPointDataQuery>

<p:eventIdentity>
<p:eventName p:literal="" p:queryText=""/>

</p:eventIdentity>
<p:eventCorrelation>

<p:localTransactionId p:queryText="" p:sourceOfId="automatic"/>
<p:parentTransactionId p:queryText="" p:sourceOfId="automatic"/>
<p:globalTransactionId p:queryText="" p:sourceOfId="automatic"/>

</p:eventCorrelation>
<p:eventFilter p:queryText="true()"/> <p:eventUOW p:unitOfWork="messageFlow" /> </p:eventPointDataQuery>

<p:applicationDataQuery>
<p:simpleContent p:dataType="boolean" p:name="" p:targetNamespace="">

<p:valueQuery p:queryText=""/>
</p:simpleContent>
<p:complexContent p:name="" targetNamespace="">

<p:payloadQuery p:queryText=""/>
</p:complexContent>

</p:applicationDataQuery>
<p:bitstreamDataQuery p:bitstreamContent="all" p:encoding="base64Binary"/>

</p:eventSource>
</p:monitoringProfile>

The root element is p:monitoringProfile. It contains one or more p:eventSource
elements, each of which specifies an event source and defines its properties. Each
p:eventSource element contains:
v A p:eventPointDataQuery element that provides key information about the

event.
v Optional: A p:applicationDataQuery element if the event payload will include

data fields extracted from a message.
v Optional: A p:bitstreamDataQuery element if the event payload will include

bitstream data from a message.

Creating a monitoring profile

To help you create monitoring profiles, the following sample contains an outline
monitoring profile XML file and the monitoring profile XML schema file
(MonitoringProfile.xsd):
v WebSphere Business Monitor

Validate your monitoring profiles against the XML schema to ensure that they are
correct.

6768 WebSphere Message Broker Version 7.0.0.8

You can view information about samples only when you use the information
center that is integrated with the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when you use the information center
that is integrated with the WebSphere Message Broker Toolkit.

Tip: If you have a deployed message flow that has monitoring properties
configured using the Message Flow editor, you can use the
mqsireportflowmonitoring command to create the equivalent monitoring profile
XML file for the message flow. You can use this profile as a starting point for
creating other monitoring profiles.

The following steps describe how to create a monitoring profile XML. Follow these
steps for each p:eventSource element.
1. Specify the p:eventSource/@p:eventSourceAddress attribute.

This is a string that uniquely identifies the event source in the message flow. It
must follow the fixed format for transaction events and terminal events, as
shown in the following table:

Event type Event source address

Transaction Start event nodelabel.transaction.Start

Transaction End event nodelabel.transaction.End

Transaction Rollback event nodelabel.transaction.Rollback

Terminal event nodelabel.terminal.<Terminal>

Note: nodelabel is the label of the node as known by the broker runtime
components. If the node is in a subflow the label reflects this. For example,
flow A contains an instance of flow B as a subflow labeled myB; flow B contains
an instance of a Compute node labeled myCompute. The nodelabel for the
Compute node is myB.myCompute.
In the emitted event, the address string of the event source is set in the
wmb:eventData/@wmb:eventSourceAddress attribute.

2. Optional: Specify the name by which events from this event source will be
known, in the p:eventPointDataQuery/p:eventIdentity/p:eventName element.
v If the event name is a fixed string, complete the p:eventName/@p:literal

attribute
v If the event name is to be extracted from a field in the message, complete the

p:eventName/@p:queryText attribute by specifying an XPath query.
In the emitted event, the event name is set in the wmb:eventPointData/
wmb:eventIdentity/@wmb:eventName attribute.
If p:eventName element is not supplied, @wmb:eventName in the emitted event
defaults to @p:eventSourceAddress.

3. Optional: Complete the p:eventPointDataQuery/p:eventFilter/@p:queryText
attribute by specifying an XPath expression to control whether the event is
emitted. The expression must evaluate to true (the event is emitted), or false
(the event is not emitted). The expression can reference fields in the message
tree, or elsewhere in the message assembly. If an event does not contain an
eventFilter element, the event is always emitted.
Using this facility, you can tailor event emissions to your business
requirements, by filtering out events that do not match a set of rules. This can
reduce the number of events emitted, and reduce the workload on your
monitoring application.

Chapter 14. Reference 6769

4. Optional: Complete the p:applicationDataQuery element, if the event is to
contain selected data fields extracted from the message. You can extract one or
more fields from the message data and include it with the event. The fields can
be simple or complex.
v For each simple data field, complete a p:simpleContent element:

– Complete the p:simpleContent/p:valueQuery/@p:queryText attribute by
specifying an XPath query.

– Complete the p:simpleContent/@p:name, @p:namespace and @p:dataType
attributes. The @p:dataType value must be one of boolean, date, dateTime,
decimal, duration, integer, string or time.

v For each complex data field, complete a p:complexContent element:
– Complete the p:complexContent/p:payloadQuery/@p:queryText attribute

by specifying an XPath query.
– Complete the p:complexContent/@p:name and @p:namespace attributes.

This facility is commonly used for communicating significant business data in a
business event. If the event contains the input bit stream, this facility can also
be used to extract key fields, allowing another application to provide an audit
trail or to resubmit failed messages.
In the emitted event, the extracted data is set in the wmb:applicationData/
wmb:simpleContent and wmb:applicationData/wmb:complexContent elements.

5. Optional: Complete the p:bitstreamDataQuery element, if the event is to
capture message bitstream data:
v Complete the @p:bitstreamContent attribute. The attribute value must be one

of headers, body, or all.
v Complete the @p:encoding attribute. The attribute value must be one of

CDATA, base64Binary or hexBinary.
In the emitted event, the extracted bitstream data is set in the
wmb:bitstreamData/wmb:bitstream element.

6. Optional: Complete the p:eventPointDataQuery/p:eventCorrelation element.
For information about correlation, see “Correlation and monitoring events” on
page 6778.
Every emitted monitoring event can contain up to three correlation attributes. If
no correlation information is specified in the monitoring profile, no correlation
attributes will be used.
a. Optional: Complete the p:localTransactionId element.
v If you want to reuse the local correlator from the Environment tree, set

the p:localTransactionId/@p:sourceOfId attribute to automatic. If no
local correlator exists yet, a new unique value will be generated and
saved in the Environment tree.

v If you want to use a value contained in a location in the message, set the
p:localTransactionId/@p:sourceOfId attribute to query, then complete
the p:localTransactionId/@p:queryText attribute by specifying an XPath
query. Ensure that the specified location contains a correlator value
unique to this invocation of the message flow. The value is saved in the
Environment tree.

b. Optional: Complete the p:parentTransactionId element.
v If you want to reuse the parent correlator from the Environment tree, set

the p:parentTransactionId/@p:sourceOfId attribute to automatic. If no
parent correlator exists yet, no parent correlator will be used.

v If you want to use a value contained in a location in the message, set the
p:parentTransactionId/@p:sourceOfId attribute to query, then complete

6770 WebSphere Message Broker Version 7.0.0.8

the p:parentTransactionId/@p:queryText attribute by specifying an
XPath query. Ensure that the specified location contains a suitable value
for the parent correlator. The value is saved in the Environment tree.

c. Optional: Complete the p:globalTransactionId element.
v If you want to reuse the global correlator from the Environment tree, set

the p:globalTransactionId/@p:sourceOfId attribute to automatic. If no
global correlator exists yet, no global correlator will be used.

v If you want to use a value contained in a location in the message, set the
p:globalTransactionId/@p:sourceOfId attribute to query, then complete
the p:globalTransactionId/@p:queryText attribute by specifying an XPath
query. Ensure that the specified location contains a suitable value for the
global correlator. The value is saved in the Environment tree.

7. Complete the p:eventPointDataQuery/p:eventUOW element. This determines
whether the emission of monitoring events by a message flow is coordinated
with the message flow transaction, or is in an independent unit of work, or is
not in a unit of work.
Set the p:eventUOW/@p:unitOfWork attribute to one of the following values:

messageFlow
The event, and all other events with this setting, are emitted only if the
message flow commits its unit of work successfully.

If the transaction start event is specified to be included in the message
flow unit of work, but the message processing fails and this unit of
work is not published, the transaction start event will be included in an
independent unit of work. This ensures that your monitoring
application receives a pair of events (start and rollback), rather than
receiving a rollback event in isolation.

independent
The event is emitted in a second unit of work, independent of the main
unit of work. The event, and all other events with this setting are
emitted whether or not the main unit of work commits successfully.

An independent transaction can be started only if the main transaction
has been either committed or rolled back. If the Commit count property
of the flow is greater than one, (“Configurable message flow
properties” on page 4020), or the Commit by message group property is
set (“Receiving messages in a WebSphere MQ message group” on page
1554), the events targeted for the independent transaction are instead
emitted out of sync point, and a message is output stating that this has
been done.

none The event is emitted out of sync point (not in any unit of work.) The
event is emitted when the message passes through the event source,
and is available for reading immediately.

Not all these options are available on all event types. The allowed values are
shown in the following table:

Event Type Allowed values

transaction.Start messageFlow
independent
none

transaction.End messageFlow
none

Chapter 14. Reference 6771

Event Type Allowed values

transaction.Rollback independent
none

terminal messageFlow
independent
none

If you do not include the eventUOW element for an event source, transactionality
for all events issued from that source, except transaction.rollback events,
defaults to messageFlow. Transactionality for transaction.rollback events defaults
to independent.

XPath queries and XML namespaces

If an XPath query contains a component that has an XML namespace, the XPath
contains a namespace prefix for the namespace. For example, the following XPath
refers to components in two different namespaces:

<p:localTransactionId p:sourceOfId="query" p:queryText="$Body/soapenv:Header/wsa:messageID" />

For the broker to resolve the namespace prefix, the namespace URL must also be
provided. Supply a prefix mapping element for each namespace:

<p:localTransactionId p:sourceOfId="query" p:queryText="$Body/soapenv:Header/wsa:messageID">
<p:prefixMapping p:prefix="soapenv" p:URI="http://www.w3.org/2003/05/soap-envelope" />
<p:prefixMapping p:prefix="wsa" p:URI="http://www.w3.org/2005/08/addressing" />

</p:localTransactionId>

Monitoring profile examples

The following XML documents conform to the monitoring profile schema

Monitoring profile 1: Two event sources, each supplying an event name
<p:monitoringProfile
xmlns:p="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0.3/monitoring/profile" p:version="2.0">
<p:eventSource p:eventSourceAddress="SOAPInput.transaction.Start">
<p:eventPointDataQuery>
<p:eventIdentity>
<p:eventName p:literal="SOAP start event"/>

</p:eventIdentity>
</p:eventPointDataQuery>
</p:eventSource>
<p:eventSource p:eventSourceAddress="SOAPInput.transaction.End">
<p:eventPointDataQuery>
<p:eventIdentity>
<p:eventName p:literal="SOAP end event"/>

</p:eventIdentity>
</p:eventPointDataQuery>
</p:eventSource>
</p:monitoringProfile>

Monitoring profile 2: Supply an alternative local correlator
<p:monitoringProfile
xmlns:p="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0.3/monitoring/profile" p:version="2.0">
<p:eventSource p:eventSourceAddress="SOAPInput.transaction.Start">
<p:eventPointDataQuery>
<p:eventCorrelation>
<p:localTransactionId p:queryText="$Body/soapenv:Header/wsa:messageID" p:sourceOfId="query">
<p:prefixMapping p:prefix="soapenv" p:URI="http://www.w3.org/2003/05/soap-envelope"/>
<p:prefixMapping p:prefix="wsa" p:URI="http://www.w3.org/2005/08/addressing"/>

</p:localTransactionId>
</p:eventCorrelation>

</p:eventPointDataQuery>
</p:eventSource>
</p:monitoringProfile>

6772 WebSphere Message Broker Version 7.0.0.8

Monitoring profile 3: Include two simple fields from the message
<p:monitoringProfile
xmlns:p="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0.3/monitoring/profile" p:version="2.0">
<p:eventSource p:eventSourceAddress="MQInput.terminal.out">
<p:applicationDataQuery>
<p:simpleContent p:dataType="integer" p:name="InvoiceNumber">
<p:valueQuery p:queryText="$Body/invoice/invoiceNo"/>

</p:simpleContent>
<p:simpleContent p:dataType="string" p:name="BatchID">
<p:valueQuery p:queryText="$Body/batch/batchNo"/>

</p:simpleContent>
</p:applicationDataQuery>
</p:eventSource>
</p:monitoringProfile>

Monitoring profile 4: Include the bitstream, encoded as CDATA

By default, bitstreams are encoded in base64Binary format. The following
monitoring profile changes the encoding to CDATA.

<p:monitoringProfile
xmlns:p="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0.3/monitoring/profile" p:version="2.0">
<p:eventSource p:eventSourceAddress="MQInput.terminal.out">

<p:bitstreamDataQuery p:bitstreamContent="body" p:encoding="CDATA"/>
</p:eventSource>
</p:monitoringProfile>

CDATA encoding is not suitable for all types of data. Use CDATA only when
@p:bitstreamContent="body". Do not use CDATA if your message bitstreams might
contain characters that are not allowed in XML (see http://www.w3.org/TR/2006/
REC-xml-20060816/#charsets).
Related concepts:
“Deciding how to configure monitoring events for message flows” on page 3325
Decide whether to use monitoring properties, or a monitoring profile configurable
service, to customize the events produced by a message flow.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.
“Activating monitoring” on page 3334
Use the mqsichangeflowmonitoring command to activate monitoring after you have
configured monitoring event sources.
“Enabling and disabling event sources” on page 3336
When events have been configured for a message flow and deployed to the broker,
you can enable and disable individual events. You can do this from the command
line, without having to redeploy the message flow, or you can do this from the
Message Flow Editor, in which case you must redeploy.
“Reporting monitoring settings” on page 3343
Use the mqsireportflowmonitoring command to report monitoring settings for a
flow.
Related reference:

Chapter 14. Reference 6773

http://www.w3.org/TR/2006/REC-xml-20060816/#charsets
http://www.w3.org/TR/2006/REC-xml-20060816/#charsets

“The monitoring event”
You can configure WebSphere Message Broker to emit a monitoring event (an XML
document) when something interesting happens. Events are typically emitted to
support transaction monitoring, transaction auditing, and business process
monitoring. The event XML conforms to the monitoring event schema
WMBEvent.xsd.
Related information:
“Correlation and monitoring events” on page 6778
A monitoring application uses correlation attributes to identify events that belong
to the same business transaction.

The monitoring event
You can configure WebSphere Message Broker to emit a monitoring event (an XML
document) when something interesting happens. Events are typically emitted to
support transaction monitoring, transaction auditing, and business process
monitoring. The event XML conforms to the monitoring event schema
WMBEvent.xsd.

You can find the WMBEvent.xsd schema file in the WBMonitorEventsProject folder
of the WebSphere Business Monitor sample when you import it to your workspace.
The WMBEvent.xsd file is also available in the default message catalog. To access the
schema from the WebSphere Message Broker Toolkit, click File > New > Message
Definition File From > IBM supplied message > Message Broker Monitoring
Event.

Each event contains the following information:
v Source of the event
v Name of the event
v Creation time and sequence number
v Correlation ID for events emitted by the same transaction or unit of work
v Details of the message flow

Tip: A terminal emits an event only if the message passes through that terminal.
In particular, the output terminal of an output node emits events only if it is
connected.

A monitoring event can also contain the following items:
v Application data extracted from the message.
v Part or all of the message bit stream.

The bit stream cannot be included in monitoring events if one of the following
nodes created the message:
– FileInput, if the message domain is MRM or XMLNSC
– TCPIPClientInput, if the message domain is MRM or XMLNSC
– TCPIPServerInput, if the message domain is MRM or XMLNSC
– SOAPInput, SOAPAsyncResponse
– Any of the following Adapter input nodes:

- PeopleSoftInput
- SiebelInput
- JDEdwardsInput
- TwineballInput

6774 WebSphere Message Broker Version 7.0.0.8

Note: The bit stream can be included if a SAPInput node created the
message.

The bit stream cannot be included in monitoring events if the message is a
response from one of the following nodes:
– SOAPRequest
– Any of the Adapter request nodes:

- SAPRequest
- PeopleSoftRequest
- SiebelRequest
- JDEdwardsRequest
- TwineballRequest

A warning is logged to user trace if an event source is configured to include the
bit stream, but it cannot be included. You might be able to extract some or all of
the data in the message as Event Payload; be aware that large event messages
might affect performance.

Use either the monitoring properties of a message flow or a monitoring profile
configurable service to configure the following items:
v Where an event is emitted from
v The content of the event

Sequence number

To enable software that processes events, such as WebSphere Business Monitor, to
sequence them correctly, both an ISO 8601 time stamp and a counter attribute are
produced. The counter attribute is in the EventSequence element of the monitoring
event. This counter starts at 1 for the first event produced by the processing of a
message (normally the transaction.Start event) and is incremented for each
subsequent event produced. It is reset to 1 at the start of the next message. The
creation time and counter are always produced on all monitoring events. The
software processing the events can choose which field, or a combination of the
two, to use to sequence the events.

If a message is processed successfully, the monitoring events generated have a
contiguous, incrementing set of counter values, starting at 1 and assigned at the
time when the event is created. If a message fails and is rolled back, there might be
gaps in the counter sequence. The missing values are those used for events that
were produced as part of the message flow unit of work that was rolled back.

Monitoring events can be included in the main unit of work of a message flow, an
independent unit of work, or outside of a unit of work. Consequently, if a message
flow fails the sequence numbers are not guaranteed to be contiguous. For example
consider the following scenario:
v Sequence 1: the transaction start event.
v Sequence 2, 3, 4: events in the message flow unit of work.
v Sequence 5: the independent unit of work.
v Sequence 6: an event outside of a unit of work.
v Sequence 7: an event in the message flow unit of work.
v Sequence 8: an event outside of a unit of work.
v The flow then fails and is rolled back.
v Sequence 9: the transaction rollback event in the independent unit of work.

Chapter 14. Reference 6775

Only sequence numbers 1, 5, 6, 8 and 9 are sent to the monitoring application.

Example event
<?xml version="1.0" encoding="UTF-8"?>
<wmb:event xmlns:wmb=http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0/monitoring/event>

<wmb:eventPointData>
<wmb:eventData wmb:eventSourceAddress="MQInput1.terminal.in"

wmb:eventSchemaVersion="6.1.0.3" wmb:productVersion="7000">
<wmb:eventIdentity wmb:eventName="MQInput event"/>
<wmb:eventSequence wmb:creationTime="2001-12-31T12:00:00+01:00" wmb:counter=’2’/>
<wmb:eventCorrelation wmb:localTransactionId="123"

wmb:parentTransactionId="456"
wmb:globalTransactionId="789"/>

</wmb:eventData>
<wmb:messageFlowData>

<wmb:broker wmb:UUID="d53122ae-1c01-0000-0080-b1b02528c6bf"
wmb:name="myBroker"/>

<wmb:executionGroup wmb:UUID="d43122ae-1c01-0000-0080-b1b02528c6bf"
wmb:name="default"/>

<wmb:messageFlow wmb:UUID="e6d224ae-1c01-0000-0080-9100cd1a61f7"
wmb:name="myMessageFlow" wmb:threadId="4201"
wmb:uniqueFlowName="myBroker.default.myMessageFlow"/>

<wmb:node wmb:nodeLabel="MQInput1" wmb:nodeType="ComIbmMqInputNode"
wmb:terminal="in" wmb:detail="MYMESSAGEFLOW.IN"/>

</wmb:messageFlowData>
</wmb:eventPointData>
<wmb:applicationData xmlns="">

<wmb:simpleContent wmb:name="invoiceNo" wmb:targetNamespace=""
wmb:dataType="string" wmb:value="567"/>

<wmb:complexContent wmb:elementName="customerName" wmb:targetNamespace="">
<customerName>

<firstName>Steve</firstName>
<lastName>Bloggs</lastName>

</customerName>
</wmb:complexContent>

</wmb:applicationData>
<wmb:bitstreamData>

<wmb:bitstream wmb:encoding="base64Binary">TUQgIAIAAAAAAAAACAAAAP////8AAAAAIgIAALUBAAAgICAgICAg
IAAAAAAAAAAAQU1RIFFNMSAgICAgICAgIHo640ggABsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAgICAgICAgICAgI
CAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFFNMSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC
Ag</wmb:bitstream>

</wmb:bitstreamData>
</wmb:event>

Default content of monitoring events

When an event is emitted, the fields in the event are created using the information
provided by the monitoring properties of the message flow, or a monitoring profile
configurable service if one has been applied to the message flow. Any event field
that is not explicitly specified is given a default value as shown in the table.

Field in event Default Value

eventData/@wmb:eventSourceAddress No default; you must provide this information.

eventData/@wmb:eventSchemaVersion 6.1.0.3

eventData/@wmb:productVersion 7000

eventData/eventIdentity/
@wmb:eventName

The default is derived from
@eventSourceAddress

eventData/eventSequence/@counter The counter is set to 1 for first event emitted
and increased by 1 for each subsequent event.

eventData/eventSequence/@creationTime The date and time when the event was created.

6776 WebSphere Message Broker Version 7.0.0.8

Field in event Default Value

eventData/eventCorrelation/
@localTransactionId

A generated unique identifier.

eventData/eventCorrelation/
@parentTransactionId

No default. Unless you set this value, an
empty string is used.

eventData/eventCorrelation/
@globalTransactionId

No default. Unless you set this value, an
empty string is used.

messageFlowData/broker/@name The name of the broker.

messageFlowData/broker/@UUID The UUID of the broker.

messageFlowData/executionGroup/
@name

The name of the execution group.

messageFlowData/executionGroup/
@UUID

The UUID of the execution group.

messageFlowData/messageFlow/@name The name of the message flow.

messageFlowData/messageFlow/@UUID The UUID of the message flow.

messageFlowData/messageFlow/
@uniqueFlowName

A string composed of the names of the broker,
execution group, and flow in the form:
brokerName.executionGroupName.flowName

messageFlowData/messageFlow/
@threadId

The thread ID of the message flow. The format
depends on the platform.

messageFlowData/node/@nodeLabel The label of the node that emitted the event.

messageFlowData/node/@nodeType The type of the node that emitted the event.

messageFlowData/node/@nodeDetail Optional information about the node.

MQInput
The name of the queue.

Other nodes
Omitted.

applicationData No default; omitted if not provided.

bitstreamData No default; omitted if not provided.

XPath queries that end in a wildcard

If an XPath query ends in a wildcard, each element node or attribute node appears
in a separate complexContent or simpleContent folder in the emitted event.
Related concepts:
“Deciding how to configure monitoring events for message flows” on page 3325
Decide whether to use monitoring properties, or a monitoring profile configurable
service, to customize the events produced by a message flow.
Related tasks:
“Business-level monitoring” on page 3319
You can configure your message flow to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.

Chapter 14. Reference 6777

“Activating monitoring” on page 3334
Use the mqsichangeflowmonitoring command to activate monitoring after you have
configured monitoring event sources.
“Enabling and disabling event sources” on page 3336
When events have been configured for a message flow and deployed to the broker,
you can enable and disable individual events. You can do this from the command
line, without having to redeploy the message flow, or you can do this from the
Message Flow Editor, in which case you must redeploy.
“Creating a monitoring model for use by WebSphere Business Monitor” on page
3338
Enable WebSphere Business Monitor to monitor WebSphere Message Broker events.

“Reporting monitoring settings” on page 3343
Use the mqsireportflowmonitoring command to report monitoring settings for a
flow.
Related reference:
“Monitoring profile” on page 6768
To customize events after a message flow has been deployed, but without
redeploying the flow, use a monitoring profile configurable service. By using this
service, you can apply a monitoring profile to one or more message flows.

Correlation and monitoring events
A monitoring application uses correlation attributes to identify events that belong
to the same business transaction.

A business transaction can be any of the following scenarios:
v A single invocation of a message flow.
v Multiple invocations of the same message flow from a parent application. The

parent application might be another message flow.
v Multiple invocations of various message flows from a parent application. The

parent application might be another message flow.

Three correlation attributes are available for you to use in your events: local
correlator, parent correlator and global correlator. The exact usage of the correlation
attributes varies depending on the requirements. For example, a parent application
can pass its transaction identifier to the child message flow (perhaps in a header)
so that the child message flow can report it in the event as a parent correlator.

Every emitted monitoring event can contain a local correlator, a parent correlator,
and a global correlator. Correlation information is placed in the following attributes
of the event:
wmb:eventPointData/wmb:eventCorrelation/@wmb:localTransactionId
wmb:eventPointData/wmb:eventCorrelation/@wmb:parentTransactionId
wmb:eventPointData/wmb:eventCorrelation/@wmb:globalTransactionId

You can specify correlation information when you configure the event.

If you do not specify any correlation information when you configure your events,
no correlation attributes will be used.

If you do specify correlation information, you must configure the correlation
attributes to be used, and where they will read their value from. Typically you

6778 WebSphere Message Broker Version 7.0.0.8

need to specify correlation information only for the first event source in the
message flow; by default all later event sources retrieve the same value from the
Environment tree.

The exact steps for specifying correlation information depend on whether you are
using monitoring properties or a monitoring profile to configure your events, but
the principle is the same for both techniques:

Local correlator

If you want to reuse the local correlator from the Environment tree, specify
Automatic. If no local correlator exists yet, a new unique value will be
generated and saved in the Environment tree.

If you want to use a value contained in a location in the message, specify
the location of the correlator by supplying an XPath into the message tree.
Ensure that the specified location contains a correlator value unique to this
invocation of the message flow. The extracted value is saved in the
Environment tree as the local correlator.

Parent correlator

If you want to reuse the parent correlator from the Environment tree,
specify Automatic. If no parent correlator exists yet, no parent correlator
will be used.

If you want to use a value contained in a location in the message, specify
the location of the correlator by supplying an XPath into the message tree.
Ensure that the specified location contains a suitable value for the parent
correlator. The extracted value is saved in the Environment tree as the
parent correlator.

Global correlator

If you want to reuse the global correlator from the Environment tree,
specify Automatic. If no global correlator exists yet, no global correlator
will be used.

If you want to use a value contained in a location in the message, specify
the location of the correlator by supplying an XPath into the message tree.
Ensure that the specified location contains a suitable value for the global
correlator. The extracted value is saved in the Environment tree as the
global correlator.

When a correlator value has been set, it is saved in the Environment tree. Later
event sources can reuse the saved value by specifying Automatic. There is no need
to use the same XPath in all the event sources in your message flow, and doing so
might adversely affect performance.

The locations in the Environment tree used to save correlator values for use by
later events are:
Environment.Monitoring.EventCorrelation.localTransactionId
Environment.Monitoring.EventCorrelation.parentTransactionId
Environment.Monitoring.EventCorrelation.globalTransactionId

The following message tree locations often contain a value that can be used as a
correlator:

Chapter 14. Reference 6779

$Root/MQMD/MsgId
$Root/MQMD/CorrelId
$Root/JMSTransport/Transport_Folders/Header_Values/JMSMessageID
$Root/JMSTransport/Transport_Folders/Header_Values/JMSCorrelationID
$LocalEnvironment/Destination/HTTP/RequestIdentifier
$LocalEnvironment/Wildcard/WildcardMatch

Tip: If the three available correlators are not sufficient, you can configure the event
to extract other correlation fields from the message and place them in the
wmb:applicationData/wmb:simpleContent section of the event.

Tip: The Collector node and the AggregateControl node do not preserve the
Environment tree for later nodes in the message flow. If you want to use the same
correlator value later in the flow, ensure that the correlator value is available in the
message tree, and that the first event source after the Collector or
AggregateControl node specifies the location of the correlator by supplying an
XPath into the message tree.

Scenarios

Scenario 1: In this scenario, all three correlators are used to monitor data that
starts in an external process. Several message flows then transform the data.
v The globalTransactionID field contains an identifier from the message header or

payload. This identifier correlates events from the external process and
WebSphere Message Broker.

v The parentTransactionID correlates events in WebSphere Message Broker from
different message flows.

v The localTransactionID correlates events from the same message flow.

Scenario 2: In this scenario, the parentTransactionID field is used to correlate
request and reply messages between two message flows:
v The Request flow sends a purchaseOrder request to an external application for

processing.
v The Reply flow receives a confirmation reply from the external application when

the purchaseOrder has been processed.

You need to correlate the request and replies belonging to the same purchase order.
You can do this by setting the parentTransactionID to a field in the purchaseOrder,
such as a purchaseOrderID, which is available in both the request and reply.
Related concepts:
“Deciding how to configure monitoring events for message flows” on page 3325
Decide whether to use monitoring properties, or a monitoring profile configurable
service, to customize the events produced by a message flow.
“Monitoring scenarios” on page 3323
Events can be used to support transaction monitoring, transaction auditing and
business process monitoring.
Related tasks:
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.

6780 WebSphere Message Broker Version 7.0.0.8

“Adding files to a broker archive” on page 3223
To deploy files to an execution group, include them in a broker archive (BAR) file.
“Activating monitoring” on page 3334
Use the mqsichangeflowmonitoring command to activate monitoring after you have
configured monitoring event sources.
Related reference:
“Monitoring profile” on page 6768
To customize events after a message flow has been deployed, but without
redeploying the flow, use a monitoring profile configurable service. By using this
service, you can apply a monitoring profile to one or more message flows.
“mqsichangeflowmonitoring command” on page 3738
Use the mqsichangeflowmonitoring command to enable monitoring of message
flows.

Example XPath expressions for event filtering
Use numeric, string, or Boolean expressions when configuring an event source, to
determine whether the event is emitted.

When you configure an event source, using either monitoring properties or a
monitoring profile, you use an XPath expression to determine whether the event is
emitted.
v If the event is always required, use true().
v If the event is required only in certain circumstances, use an expression of the

form
xpath-query relational-operator value

Comparing numeric values

To emit an event only when the value is greater than 10 000, for example, enter an
expression such as this:
$Body/StockTrade[1]/Details[1]/Value[1] > 10000

The [1] suffixes in the query specify that the first occurrence of the element within
its parent is required. If these suffixes are not specified, the XPath engine searches
the message for other occurrences of each element. This search might adversely
affect performance.

Comparing string values

To emit an event only when the company is "Stock Co" for example:
$Body/StockTrade[1]/Details[1]/Company[1] = ’Stock Co’

Comparing Boolean values

Consider the example of a shares transfer approval. The approval flag in the
message tree is a Boolean value. You cannot simply specify the element name,
because this always returns true if the element exists. Instead, you query the value
of the element, and compare the value to the string 'true' to yield the actual true or
false result. The XPath query is:
$Body/StockTrade[1]/Shares[1]/Transfer[1]/Approved[1] = ’true’

XPath queries that return a nodeset, such as $Body/StockTrade[1]/Details[1], are
always evaluated as false, because they cannot be converted to a Boolean value.
Related concepts:

Chapter 14. Reference 6781

“Monitoring basics” on page 3320
Message flows can be configured to emit events. The events can be read and used
by other applications for transaction monitoring, transaction auditing, and business
process monitoring.
Related tasks:
“Configuring monitoring event sources using monitoring properties” on page 3327
In the Message flow Editor, use the Monitoring tab on the properties of a node to
add one or more monitoring events.
“Configuring monitoring event sources using a monitoring profile” on page 762
You can create a monitoring profile and use the mqsichangeflowmonitoring
command to configure your message flows to emit monitoring events.

XPath expressions that are not suitable for the export monitoring
information option
Some XPath expressions produce a warning on the Monitoring tab.

The following expressions are not suitable for the export monitoring information
option used to create a monitor model in WebSphere Business Monitor Version 7,
and produce a warning. If you export monitoring information for any of the
following listed expressions, an event part is not generated for that XPath
expression, and a warning message is written to the
flowProjectName_batchgen.report.txt file.

$Body
$Body/
$DestinationList
$DestinationList/
$Environment
$Environment/
$ExceptionList
$ExceptionList/
$LocalEnvironment
$LocalEnvironment/
$Properties
$Properties/
$Root
$Root/
$Root/<domain parser or header>
$Root/<domain parser or header>/
$Root/SOAP/Attachment
$Root/SOAP/Attachment/
$Root/SOAP/Body
$Root/SOAP/Body/
$Root/SOAP/Header
$Root/SOAP/Header/

Note: This list is an exact match. For example, the expression $LocalEnvironment/
Destination/MQ/Defaults/queueName is valid, although $LocalEnvironment is not.
Related tasks:
“Creating a monitor model for WebSphere Business Monitor V7” on page 3341
Export monitoring information from WebSphere Message Broker to create a
monitoring model for WebSphere Business Monitor V7

6782 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker Toolkit
The WebSphere Message Broker Toolkit provides your application development
environment on Windows and Linux on x86.

Within the WebSphere Message Broker Toolkit, you can access resources through
several perspectives, and create and modify them using the supplied editors:
v Perspectives
v Editors
v Resource types

For information about how to use the keyboard in the WebSphere Message Broker
Toolkit, see “WebSphere Message Broker Explorer and WebSphere Message Broker
Toolkit keyboard shortcuts” on page 6828.

When you create resources in the WebSphere Message Broker Toolkit, or import
resources into the WebSphere Message Broker Toolkit, be aware of the file system
limit of 256 characters that is imposed by the Windows file system. This limit can
cause restrictions in path specifications to resources (for example, message flow
projects), and might cause access problems if the combination of path and resource
name exceeds this limit. Keep installation locations and resource names short to
avoid problems associated with this restriction.

Resource editors do not automatically reflect the changes that you make in one
window in additional windows that you have opened to view the same resource.
Close and reopen additional windows each time you update a resource in an
editor session.

A minimum display resolution of at least 1024 x 768 is required for some dialogs;
for example, the Preferences dialog.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related tasks:
“Configuring the workbench” on page 570
You can configure various settings in the workbench to suit your requirements and
your working environment.

Perspectives in the WebSphere Message Broker Toolkit
The following links provide a description of each of the perspectives in the
WebSphere Message Broker Toolkit:
v “Broker Application Development perspective” on page 6784
v “Debug perspective” on page 6789
v “Plug-in Development perspective” on page 6792
Related concepts:
“WebSphere Message Broker Toolkit perspectives” on page 34
A perspective is a group of views and editors that shows various aspects of the
resources in the WebSphere Message Broker Toolkit.

Chapter 14. Reference 6783

Broker Application Development perspective
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Typically, you complete the following tasks in this perspective:
v Developing message flows and message sets.
v Enqueuing and dequeuing test and production messages, which is useful when

you are debugging message flows.
v Creating user-defined nodes and user-defined node projects.

The following figure shows the Broker Application Development perspective of the
WebSphere Message Broker Toolkit. The TextMessenger.msgflow file in the Broker
Development view is open in the Message Flow editor.

The Broker Application Development perspective provides several views to
navigate, browse, and update your resources.

Broker Development view:
Use the Broker Development view to navigate and browse your resources, and to
select resources for editing. You can also use this view to access the Quick Start
wizards, which help you create the basic resources that are required for a broker
application.

The Broker Development view contains the following sections:
v <all resources> (a working set selection list)
v Pattern Instances
v Projects

6784 WebSphere Message Broker Version 7.0.0.8

When the Broker Development view contains projects in the Projects section, to
display the list of Quick Starts, click Quick Starts.

When the Broker Development view does not contain projects in the Projects
section, the Quick Starts list is displayed in the Projects section.

The following Quick Starts links are shown:

Quick Starts

Start building your message flow application with one of the following tasks.
Start from scratch
Start from WSDL and/or XSD files
Start from existing message set
Start from adapter connection
Start from SCA Import or Export
Start from patterns
Start from samples

The Projects section of the Broker Development view displays a hierarchical view
of the following message flow and message set resource files:
v Pattern instance projects
v User-defined nodes
v Message flow projects
v Message flows
v ESQL files
v Mappings files
v Flow test files
v Broker archive files
v Message set projects
v Message sets
v Message definition files
v Java projects
v Data Design projects

When you create resources, they are grouped by file type in logical categories
within the hierarchy, and placed in virtual folders. These virtual folders are
described in “Resources” on page 36.

Other folders and files that are created for the message flow project or message set
project are placed directly under the project folders.

You can hide the categories (virtual folders) by clicking Hide Categories on
the Broker Development view toolbar. You can use the Hide Categories menu item
or button to toggle between category mode and non-category mode.

You can also toggle between showing and hiding broker schema (in a message
flow project) and namespaces (in a message set project), by selecting Hide
Namespaces from the view menu (shown by a down arrow) in the Broker
Development view toolbar. By default, broker schema and namespaces are shown.
This option is available only in category mode.

Chapter 14. Reference 6785

You can toggle between showing and hiding file extensions for files that are under
virtual folders, broker schema (or namespaces) and messageSet.mset. To toggle
between hiding and showing the file extensions, select Hide Categorized File
Extensions from view menu (shown by the down arrow) in the Broker
Development view toolbar. By default, file extensions are shown. Other files and
folders that are directly under the project are not affected by this option.

By default, the hierarchy view contains the resource files for all of your projects.
However, you can limit the number of resources that are displayed in the Broker
Development view by organizing and displaying them in working sets. A working
set is a logical collection of projects, which makes it easier to manage and work
with your application projects. When you create a pattern instance project by using
the Patterns Explorer view, the pattern instance project is placed into a working set
of the same name. For more information about working sets, see “Working sets”
on page 42.

You use specialized editors to open and edit all the resources in the Broker
Development view, except project files.

Editor view:
Double-click a resource in the Broker Development view to open the associated
editor in the Editor view.

The WebSphere Message Broker Toolkit shows the Message Flow editor by default
for working with the content of message flow files.

The WebSphere Message Broker Toolkit provides the following specialized editors
by default for working with the content of message flow and message set files:

ESQL editor
For viewing and updating the ESQL statements that are associated with
Compute, Database, and Filter nodes.

Message Category editor
For creating, viewing, and updating message categories that you define
within the MRM domain.

Message Definition editor
For creating, viewing, and updating messages that you define within the
MRM domain.

Message Flow editor
For creating, viewing, and updating message flows, and the nodes and
user-defined nodes that define them.

Message Mapping editor
For defining transformations between data sources and targets, without the
requirement for programming in XPath, XSLT, XQuery, Java, or ESQL.

Message Set editor
For creating, viewing, and updating message sets that you define within
the MRM domain.

Outline view:
The Outline view provides a summary of the content of the resource that is
currently open in the Editor view.

6786 WebSphere Message Broker Version 7.0.0.8

Click the Overview Mode icon

to switch to the Overview view, which
provides a useful summary for large, complex message flows because it shows a
small-scale version of the flow. Click the Overview Mode icon again to return to
the Outline view.

Brokers view:
Use the Brokers view to create and work with brokers in the WebSphere Message
Broker Toolkit. Brokers that are created on the local system are automatically
displayed in the Brokers view. Remote brokers can be added to the Brokers view.
When you open or switch to the Brokers view, the WebSphere Message Broker
Toolkit attempts to connect to brokers on the local system and to any remote
brokers that have been defined; see “Brokers view” on page 6796.

Properties view:
The Properties view displays the properties for the node that is selected in the
Editor view. The Properties are grouped and displayed on tabs, which are listed on
the left of the Properties view.

Problems view:
The Problems view displays any messages (information and error) that are
associated with the resource that is currently open in the Editor view. For example,
if you save a message flow that has an error (such as a mandatory property not
set), you can check the content of the Problems view to determine any corrections
that you must make. When you double-click a Problems view entry, the
appropriate editor opens the resource that contains an error, and positions the
cursor at the point of the error (where possible).

Deployment Log view:
The Deployment Log view shows the result of deploying brokers that are in the
WebSphere Message Broker Toolkit; see “Deployment Log view” on page 6797.

Data Project Explorer view:
The Data Project Explorer view displays Data design and Data development
projects. You can use the Data Project explorer to work with these projects and
other data objects.

Data Source Explorer view:
The Data Source Explorer view displays database connections. You can use the
Data Source Explorer view to create database connections.

Patterns Explorer view:
The Patterns Explorer view displays patterns that you can use in the WebSphere
Message Broker Toolkit. You can use the Patterns Explorer view to configure and
apply patterns for use in your environment. Select a pattern in the Patterns
Explorer view to see more information about the pattern; see “Choosing a pattern”
on page 1313.

Tasks view:
The Tasks view displays outstanding tasks to be completed. You can create tasks
within the Tasks view by selecting Add Task. For example, if you would like to
record reminders to follow up on something later, add it to the Tasks view. When
you add a task, you have the option of associating it with a resource so that you
can use the Tasks view to quickly open that resource for editing.

Broker Application Development perspective toolbar:

Chapter 14. Reference 6787

You can add icons to the toolbar for the actions that you might want to complete
in the perspective. To add icons to the toolbar, complete the following steps.
1. Click Window > Customize Perspective. The Customize Perspective dialog box

is displayed.
2. Click the Command Groups Availability tab. This tab displays the available

command groups and their corresponding menu bar details and toolbar details.
3. Click a command group name to display its toolbar details. The available

command groups and toolbar details for the icons that you might want to use
in the perspective are shown in the Available command groups table.

4. Select the command groups that you want to add, and click OK. The toolbar
displays the icons from the selected command groups.

Available command
groups

Toolbar details:
icon Toolbar details: label and action

ESQL Actions Generate a New Message Flow ESQL File

Mapping Actions Create a Message Map File

Message Creation Create a New Message Set

Create a New Message Definition File

Create a New Message Category File

Message Flow
Element Creation

Create a New Message Flow Project

Create a New Broker Schema

Create a New Message Flow

Message Set Generate a Web Service Definition File

Generate HTML Documentation for a
Message Set

Generate an XML Schema from a Message
Definition File

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Packaging and deployment overview” on page 3210
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker. Message flows and associated resources are
packaged in broker archive (BAR) files for deployment.
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.

6788 WebSphere Message Broker Version 7.0.0.8

“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
“Quick Start wizards overview” on page 1409
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to
containers for the resources that you need when you develop a message flow.
“Editors” on page 35
An editor is a component of the WebSphere Message Broker Toolkit. Editors are
typically used to edit or browse resources, which are the files, folders, and projects
that exist in the workbench.
“Debug perspective”
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Creating a working set” on page 575
Create a working set to limit the number of resources that are displayed in the
Broker Development view.
“Developing message flow applications from a wizard” on page 1408
A Quick Start wizard sets up the basic resources that are required to develop a
message flow application. The wizard sets up and gives names to containers for
the resources in which you then develop your message flow.
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
“Debugging a message flow” on page 3157
Use the tasks described in this section of the documentation to manage and work
with the flow debugger.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.
“Editors in the WebSphere Message Broker Toolkit” on page 6793
“Plug-in Development perspective” on page 6792
You can use the Plug-in Development perspective to create user-defined node
projects and user-defined nodes in the WebSphere Message Broker Toolkit,
however, the preferred option is to use the Broker Application Development
perspective.

Debug perspective
The Debug perspective is where you test and debug a graphical representation of
your message flows using the message flow debugger.

The following figure shows the Debug perspective of the WebSphere Message
Broker Toolkit. In the figure, the LargeMsgSupport_MRM_XML message flow is
being debugged.

Chapter 14. Reference 6789

Debug perspective views: The Debug perspective contains the following views:

Debug view
Displays the deployed message flow types for a selected host to help you
manage flow debugging. Toolbar buttons are provided for controlling the
execution of the flow. You can start, stop, and resume a flow, step into, and
out of a subflow, and step into the source code.

When you attach the flow debugger to the flow runtime engine, the Debug
view displays the names of the following flow-related entities:
v The host computer and the flow runtime engine that it is running. This

is shown as a concatenation of the names of the following entities,
delimited by colons.
– The host computer
– The broker
– The execution group
– The flow engine

The entry is identified by the flow runtime engine symbol. For example:

–

TestPC01:WMQIV5BR:TestExecution:DataFlowEngine

v The flows that are deployed in the flow runtime engine, identified by
the flow symbol, for example:

–

TestFlow

v When a breakpoint is reached, the flow instances that have been created
for each flow, identified by the following symbol, for example:

–

3068 (Paused)

In the Debug view, you can perform the following debugging tasks:
v Query a flow runtime engine for currently deployed flows
v Detach a flow runtime engine from the flow debugger
v Resume flow execution

6790 WebSphere Message Broker Version 7.0.0.8

v Run to termination
v Step over a node
v Step into or out of a subflow
v Step over, into, or out of, source code

Breakpoints view
Lists the breakpoints that have been set on connections in your message
flow. In this view you can add, disable, enable or remove breakpoints. You
can also restrict a breakpoint to one or more specific instances of a message
flow using the Properties view.

The Breakpoints view and the Variables view share the same pane. Click
one of the tabs to select the view that you want.

The Breakpoints view displays the breakpoints that are set in all instances
of a selected flow. Each breakpoint is identified by one of two symbols (as
also used in the Message Flow editor) as follows:

v breakpoint enabled

v breakpoint disabled

In the Breakpoints view, you can perform the following debugging tasks:
v Remove breakpoints
v Disable or enable breakpoints
v Restrict breakpoints to one or more instances of a flow

Variables view
When a message flow is interrupted by a breakpoint, you can view the
message content to check whether the message flow is executing as
expected, and to make any changes required.

The Variables view and the Breakpoints view share the same pane. Click
one of the tabs to select the view that you want.

The Variables view displays the messages that are currently traveling
through the flow. Use the view to examine or change the content of a
message in a flow during debugging.

Message Flow editor view
The Message Flow editor graphically displays and debugs flows. In this
view you can add breakpoints to the connections of a message flow.

The Message Flow editor also displays any breakpoints that are set in the
flow. Each breakpoint is identified by a symbol as follows:

v breakpoint enabled.

v breakpoint disabled.

v flow paused at breakpoint.

Also the editor displays the following symbol above a node:

v flow paused at a node containing ESQL code or Java code that the
flow debugger can step into

In the Broker Application Development perspective, the Message Flow
editor is used to create, graphically display, and edit flows. For details of

Chapter 14. Reference 6791

the other uses of this editor, see the description in “Message Flow editor”
on page 6810 and the tasks in “Defining message flow content” on page
1488.

Related concepts:
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
Chapter 10, “Testing and debugging message flow applications,” on page 3143
Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Message flow debugger” on page 6718
The flow debugger is a visual interface that supports the debugging of message
flow applications in the WebSphere Message Broker Toolkit.

Plug-in Development perspective
You can use the Plug-in Development perspective to create user-defined node
projects and user-defined nodes in the WebSphere Message Broker Toolkit,
however, the preferred option is to use the Broker Application Development
perspective.

A user-defined node is an Eclipse plug-in that adds a category of nodes to the
Message Flow editor palette. To use the Broker Application Development
perspective to create user-defined node projects and user-defined nodes in the
WebSphere Message Broker Toolkit, see “Broker Application Development
perspective” on page 6784.

The New User-defined Node Project wizard creates the supporting WebSphere
Message Broker Toolkit files for your user-defined node.
Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related tasks:
“Creating the user interface representation of a user-defined node in the
WebSphere Message Broker Toolkit” on page 3079
When you are developing a user-defined node in Java or C only, you must create
the user interface representation of the node in the WebSphere Message Broker
Toolkit.
Related reference:
“Plug-in Development projects and files” on page 6825
“Message Node editor” on page 6818
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

6792 WebSphere Message Broker Version 7.0.0.8

Editors in the WebSphere Message Broker Toolkit
More information about each of the editors provided by WebSphere Message
Broker Toolkit can be found in the following topics:
v “Broker Archive editor” on page 6794
v “Brokers view” on page 6796
v “Deployment Log view” on page 6797
v “ESQL editor” on page 6798
v “Impact Analysis view” on page 6801
v “Message Category editor” on page 6802
v “Message Definition editor” on page 6804
v “Message Flow editor” on page 6810
v “Message Mapping editor” on page 4981
v “Message Node editor” on page 6818
v “Message set editor” on page 6819
Related concepts:
“Editors” on page 35
An editor is a component of the WebSphere Message Broker Toolkit. Editors are
typically used to edit or browse resources, which are the files, folders, and projects
that exist in the workbench.
Related tasks:
“Changing ESQL editor settings” on page 2409
When you open an ESQL file in the editor view, you can tailor the editor
appearance by changing editor settings.
Related reference:
“Editor preferences and localized settings”
If you want to share the files that are associated with message flow and message
set development, you must ensure that the files and the content of these files are
compatible and can be shared by users working on different systems and in
different locales.

Editor preferences and localized settings
If you want to share the files that are associated with message flow and message
set development, you must ensure that the files and the content of these files are
compatible and can be shared by users working on different systems and in
different locales.

You can share the following files:
v Message flow definition files (.msgflow)
v ESQL files (.esql)
v Mappings files (.msgmap)
v Message set files (.mset)
v Message files (.mxsd and .xsd)
v Message category files (.category)

Restrict the names of these files to a specific set that all your users can understand,
for example the characters in the US English code page (a to z, A to Z, 0 to 9, plus
special characters underscore and hyphen). This is not a restriction, nor is it
enforced, but the users must be able to use each others resources without
confusion or error.

Chapter 14. Reference 6793

The contents of all files listed above, with the exception of ESQL files, are stored in
UTF-8, and are therefore common, regardless of individual user settings.

The contents of the ESQL files, which users can edit directly, are governed by the
editor preference settings that you specify in the workbench:
1. Click Window > Preferences.
2. Expand the Workbench item on the left. Click Editors. Within "Text file

encoding", select the code page that you want content to be stored in:
a. If you select Default, this represents the default code page for the locale in

which you are currently working.
b. If you select Other, you can choose one from the list of available code

pages.

If you expect users to share ESQL files, by using either shared drives across a
LAN, or a shared repository such as CVS, you must ensure that all users set the
editor preference to be the same value. This allows each user to work in their
current locale, but be able to access and work with files created by any other user.
For example, select UTF-8 to ensure consistent ESQL file content that is accessible
by all users regardless of current locale.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Message modeling” on page 1154
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.
“Publish/Subscribe” on page 2215
Publish/subscribe is a style of messaging application in which the providers of
information (publishers) are decoupled from the consumers of that information
(subscribers).
Related tasks:
Chapter 9, “Developing message flow applications,” on page 1019
Develop message flows to process your business messages and data.
“Constructing message models” on page 2838
This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.
Related reference:
“Perspectives in the WebSphere Message Broker Toolkit” on page 6783
“Editors in the WebSphere Message Broker Toolkit” on page 6793

Broker Archive editor
Use the Broker Archive editor to create and manage broker archive (BAR) files.

The Broker Archive editor is available in both the WebSphere Message Broker
Toolkit and the WebSphere Message Broker Explorer. Using this editor, you can
add, edit, build, and remove deployable resources to a BAR file. You can also use
command-line tools to create BAR files.

Broker Archive editor views:
The Broker Archive editor includes these views:

6794 WebSphere Message Broker Version 7.0.0.8

Prepare view
The Prepare view displays the options for creating a new broker archive
file. The Prepare view is available only in the WebSphere Message Broker
Toolkit. Use the Prepare view to add and build deployable resources to the
BAR file. All available resources in the current workspace (including Java,
XML and XSL/XSLT files, message flows, message sets, and adapters) are
included with each build type. Resources that are identified but that do not
match resources in the workspace are highlighted.

You can select the items that you want to include in the broker archive,
and use the build options to perform the following tasks:
v Select items to add or remove from the broker archive
v Include source files
v Override the properties of configurable items

The Build options are:
v Include source files to include source files
v Remove contents of Broker Archive before building to remove all

existing contents of the broker archive file before building the new
broker archive file

v Override configurable properties values to override the existing
configurable property values. Check this option to override any value set
by the flow compiler, that is, the values from the message flow. If you
do not check this option the properties in the broker.xml file are used
when compiling a message flow.

Manage and Configure view
The Manage and Configure view displays the message flows, message sets,
and other files that are currently in the BAR file. Use the icons to add, edit,
and remove files from the BAR file. When you select a message flow in the
list, its properties, including configurable properties, are displayed in the
Properties view. You can also expand the message flows to display the
nodes in the message flow. When you select a node the associated
configurable properties are displayed in the Properties view. To edit a
property, replace the current value with a new value.

You can filter the content in the Manage and Configure view, by selecting
one of the available options from the Filter by list:
v Built resources
v Built resources with source
v Configurable properties

To display resources with specific names, type a filter string in the Filter by
field. For example, to display all resources that contain SWIFT in the name,
type SWIFT into the Filter by field.

User Log view
The User view displays the build information for the broker archive user
log. Use the User Log view to review or clear the details in the user log of
the BAR file.

Service Log view
The Service view displays system information for the current build in the
broker archive Service log. Use the Service Log view to review or clear the
details in the service log of the BAR file.

Broker Archive editor toolbar:
The icons on the toolbar in the Manage and Configure page, and their actions are
shown in the following table.

Chapter 14. Reference 6795

Icon Label Action

Build Builds a broker archive file,
making any changes that
have been specified

Remove Removes message flows,
message sets, or other items
from this archive

Edit Edits selected message flows,
message sets, or other items
in this archive

Add Adds message flows,
message sets, or other items
to this archive

Related concepts:
“Broker archive” on page 3216
The unit of deployment to the broker is the broker archive or BAR file.
“Version and keyword information for deployable objects” on page 1443
Use the Broker Archive editor to view the version and keyword information of
deployable objects.
Related tasks:
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“mqsireadbar command” on page 3697
Use the mqsireadbar command to read a deployable BAR file and identify its
defined keywords.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Brokers view
Use the Brokers view to create and work with brokers in the WebSphere Message
Broker Toolkit.

By default, the Brokers view is displayed at the bottom of the Broker Application
Development perspective in the WebSphere Message Broker Toolkit. If the Brokers
view is not displayed, you can show it by clicking Window > Show View > Other
> Broker Runtime > Brokers.

Brokers that are created on the local system are automatically displayed in the
Brokers view. You can add remote brokers to the Brokers view. When you open or
switch to the Brokers view, the WebSphere Message Broker Toolkit attempts to
connect to brokers on the local system, and any remote brokers that have been
defined. Warnings and errors might be displayed if the WebSphere Message Broker
Toolkit cannot connect to brokers, for example, if the broker is stopped, or the
queue manager listener is not running.

Right-click the Brokers folder in the Brokers view to display the following options:
v New Local Broker
v Connect to a Remote Broker

6796 WebSphere Message Broker Version 7.0.0.8

If you specify a keystore or truststore in the remote connection information, you
are prompted to enter a password for the keystore or truststore when you
connect to the remote broker.

v Connect to a Remote Broker Using *.broker File
v Refresh

Related tasks:
Chapter 6, “Configuring brokers for development environments,” on page 563
Set up application development environments on Linux on x86 or Windows to
create, test, and deploy message flows and associated resources.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
“Connecting to a remote broker” on page 902
To administer your brokers by using the WebSphere Message Broker Toolkit or
WebSphere Message Broker Explorer, you must connect to the broker.
“Deploying resources” on page 3234
Deploy message flow applications to execution groups by sending a broker archive
(BAR) file to a broker, which unpacks and stores the contents ready for when your
message flows are started.
“Attaching the flow debugger to an execution group for debugging” on page 3160
Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.
Related reference:
“WebSphere Message Broker Toolkit” on page 6783
The WebSphere Message Broker Toolkit provides your application development
environment on Windows and Linux on x86.

Deployment Log view
The Deployment Log view shows the result of deployment actions on brokers in
the WebSphere Message Broker Toolkit.

The Deployment Log view is displayed at the bottom of the Broker Application
Development perspective in the WebSphere Message Broker Toolkit. If the
Deployment Log view is not displayed, you can show it by clicking Window >
Show View > Other > Broker Runtime > Deployment Log.

Right-clicking in the Deployment Log view displays a menu with the following
item:
v Clean Log

Clears all log entries from the Deployment Log view, but does not delete the log
entries from the administration log.
Messages are automatically cleared after 72 hours.

Columns in the Deployment Log view:
Details

The Details column displays the message number, the name of the broker that the
deployment message has come from, and the detail of the deployment message.

Chapter 14. Reference 6797

Timestamp

The Timestamp column displays the date and time for each of the deployment
messages from the broker.
Related tasks:
“Viewing Administration log information” on page 1007
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.
“Saving Administration log information” on page 1008
Save the Administration log information that is written to the Administration Log
view in the WebSphere Message Broker Explorer.
“Clearing Administration log information” on page 1009
Clear Administration log information to reduce the size of the log by using either
the WebSphere Message Broker Explorer or the CMP API.
Related reference:
“Administration Log view” on page 6840
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.

ESQL editor
The ESQL editor is the default editor provided by the Broker Application
Development perspective for editing ESQL (.esql) files.

The editor is launched in the editor area when you select the menu item Open
ESQL for a Compute, Database, or Filter node, or when you double-click an ESQL
file in the Broker Development view.

ESQL editor views:
The ESQL editor has the following views:

Broker Development view
The Broker Development view shows all the resources in your workspace,
that is all message set resources and all message flow resources, including
ESQL files.

Editor view
The editor view shows the contents of the resource that is currently open.
It also shows tabs for each of the resource that you have open so that you
can quickly switch between them.

Outline view
The Outline view displays any schemas, defined constants, modules, and
routines that you have referenced in this ESQL file.

Problems view
The problems view displays the warning and error messages that are
generated by the editor's validation when you save the ESQL file. If you
double-click an error, the editor indicates where it is located by moving the
cursor to the corresponding ESQL code.

ESQL editor functions:
The ESQL editor provides:

6798 WebSphere Message Broker Version 7.0.0.8

v A context sensitive Content Assist. You can invoke Content Assist from the Edit
menu or, on some systems, by pressing Ctrl+Space if that has not been assigned
to another function.
Content Assist helps you construct references to the content of the Properties
folder. When you use the ESQL editor with predefined messages, it also helps
you construct field references.
When you use the ESQL editor with the database schema definitions, Content
Assist helps you construct schema, table, and column references. You can also
use the ESQL editor to call user-defined maps.
When you create functions and procedures within the ESQL file, the names that
you define must not start with the characters IBM_ (IBM underscore).

Note: To get Content Assist to work, you must set up a project reference from
the project containing the ESQL or mappings to the project containing the
message set. For information about setting up a project reference, see “Project
references” on page 44.

v Automatic code formatting.

Right-click in the editor view to access the following additional functions:
v Undo and Revert File: To undo a change that you have made to the ESQL file,

click Undo. If you want to undo all the changes since the last time you saved,
you can reinstate them by clicking Revert File.

v Cut, Copy, and Paste: Standard editor functions.
v Shift Right and Shift Left: Standard editor functions.
v Save: Save your changes.
v Comment and Uncomment: Click Comment to change a line of ESQL code into

a comment. Click Uncomment to change a comment into a line of ESQL code.
v Format. This function formats all selected lines of code (unless only partially

selected, when they are ignored), or, if no lines are selected, formats the entire
file (correcting alignments and indentation).

v Organize Schema Paths and Add Schema Path: These functions assist you with
broker schema management.
Click Organize Schema Paths, and a broker schema that contain procedures or
function called by the ESQL file is automatically added to the PATH statement
(if you have not already added it). This function scans the ESQL file for
instances of procedures or function residing in schemas not already fully
qualified in the file.
Click Add Schema Path when you code a call to a procedure or function
residing in a different broker schema to paths you have included on the PATH
statement, and this schema is added to the PATH statement. Ensure that the
cursor is on the name of the procedure you are calling.

ESQL editor preferences:
You can modify settings that affect the way the ESQL code is handled:
v Editor Settings (how code is displayed in the editor view):

– Text font
– Displayed tab width (default 4)
– Background and foreground colors (for comments, statements, and so on)

v Validation Settings (what level of validation is performed when you save the
file):
Validation detects four potential problems:

Chapter 14. Reference 6799

Unresolved identifiers
The validator attempts to resolve all identifiers that you have referenced
(for example, a message field).

Message references mismatch message definition
If a message definition exists (messages in the MRM domain only), the
validator checks that the use of the reference is consistent with its
definition (for example, the action against a numeric field is a valid
numeric action).

Database references mismatch database schema
The validator checks that the use of the reference is consistent with the
database schema (for example, the action against a numeric field is a
valid numeric action).

Use of deprecated keywords
The validator checks if you have used keywords that have been
deprecated in this release.

For each of these situations, select one of the following validation settings:

Ignore No validation is performed.

Warning
The validator writes warning messages to the Problems view for each
potential problem that it detects. Warning is the default setting.

Error The validator writes error messages to the Problems view for each
potential problem that it detects.

Validation does not check that you have specified names in the case in which
you declared them. The names of modules, functions, and procedures are not
case sensitive; all other names (schemas, constants, variables, and labels) are case
sensitive. Check that the names that you use match the declarations for those
names, because the broker handles these names in a case sensitive way, and
generates a runtime error if they do not match.

For details of how to change these preferences, see “Changing ESQL preferences”
on page 2408.

ESQL editor toolbar:
The ESQL editor does not provide additional icons and actions on the toolbar.
Related concepts:
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
Related tasks:
“Developing ESQL” on page 2370
Customize processing implemented by the Compute, Database, DatabaseInput, and
Filter nodes in your message flows by coding ESQL.
“Changing ESQL preferences” on page 2408
You can modify the way in which ESQL is displayed in the editor and validated by
the editor:
Related reference:
“ESQL statements” on page 5067
You can use ESQL statements to manipulate message trees, update databases, or

6800 WebSphere Message Broker Version 7.0.0.8

interact with nodes.
“Calling ESQL functions” on page 5168
Most ESQL functions belong to a schema called SQL and this is particularly useful
if you have functions with the same name.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Editor preferences and localized settings” on page 6793
If you want to share the files that are associated with message flow and message
set development, you must ensure that the files and the content of these files are
compatible and can be shared by users working on different systems and in
different locales.

Impact Analysis view
The Impact Analysis view shows information about selected resources, which
changes have been marked as complete, and previous results. You can also use this
view to copy results to the clipboard.

The Impact Analysis dialog box

When you have run impact analysis, you see a list of affected resources in the
Impact Analysis dialog box.
v At the top is a one-line description of the operation.
v The middle table shows the primary impacts, and therefore the actions that must

be performed to make this change.
v The bottom table shows secondary impacts (other objects in the workspace that

are affected by this change.) Some secondary impacts might not be shown; for
more information, see “Impact analysis: reference” on page 4174.

For both tables, you can reorder columns by dragging the column heading to a
new location, and sort information in each column by clicking the column heading.
No changes are made to the objects listed, and you cannot use this window to
change any of the objects.

You can click Copy Analysis to Clipboard to paste the results of the analysis into
an external application.
v If the application supports tables, the information is pasted as a table.

Applications that support tables include Lotus Symphony® spreadsheets,
Microsoft Word, and Microsoft Excel.

v If the application does not support tables, the information is pasted as text.

To switch easily between the impact analysis results and file editors, click Show in
view to view the results in the Impact Analysis view.

The Impact Analysis view

After you have run impact analysis, the Impact Analysis view is displayed at the
bottom of the Broker Application Development perspective in the WebSphere
Message Broker Toolkit.

The left pane lists the affected resources and the right pane provides some tips to
guide you. If you select one of the resources in the left pane, more information is
provided in the right pane.

Chapter 14. Reference 6801

Resources that you have not selected are in bold. After you have viewed an item in
the list, it is no longer bold.

When you have made a change in the appropriate file editor, you can mark the
item in the results view as complete by clicking Mark as complete (represented on
the toolbar by a check mark). The completed item in the list is crossed out.

You can view previous impact analysis results by clicking the arrow to the right of
the show history icon.
Related concepts:
“Impact analysis: analyzing the effects of planned changes to your applications” on
page 1150
When developing an application, you might want to change the names of some
artifacts, or move them. Impact analysis reports the artifacts that are likely to be
affected by a particular change.
Related tasks:
“Analyzing planned changes to message flows” on page 1436
Use impact analysis to analyze the effect of renaming or moving message flows,
including subflows.
“Analyzing planned changes to message set resources” on page 1165
Use impact analysis to analyze the effect of renaming message definition or
deployable WSDL files.
“Analyzing planned changes to message model objects” on page 2897
Use impact analysis to analyze the effect of renaming message model objects.
“Analyzing the impact of changes to message maps” on page 2234
Use impact analysis to analyze the effect of renaming or moving message maps.
“Analyzing planned changes to ESQL objects” on page 2403
Use impact analysis to analyze the effect of renaming or moving ESQL objects, or
moving or changing the broker schema of an ESQL file.
“Enabling and disabling indexing” on page 1454
Enable indexing to support impact analysis.
Related reference:
“Impact analysis: reference” on page 4174
Some artifacts are excluded from secondary analysis.

Message Category editor
The Message Category editor is the default editor provided by the Broker
Application Development perspective for working with message category
(.category) files in a message set.

The editor is launched in the editor area when you open an existing message
category file using the Broker Development view, or when you create a new
message category file by using the New Message Category File wizard.

Message Category editor views:
The Message Category editor has the following views:

Broker Development view
The Broker Development view shows a hierarchical view of all the
resources that are currently in your workspace. By expanding the folder for
a message set project, you can see the resources, including the message
category file or files, that this message set project contains.

6802 WebSphere Message Broker Version 7.0.0.8

Editor view
You edit the properties of message category in the editor area of the
Message Category editor, which has a single tab, the Properties tab. This
tab provides:
v The Properties Hierarchy, which shows the hierarchy for a message

category file and the messages that have been added to it.
v The Details view, which when you select a message category file, shows

the properties of the message category, or of an individual message in
the category, depending on what you have selected in the Properties
Hierarchy.

There are tabs across the top of the editor area containing the file name for
each file that you have open, so that you can quickly switch between them.

Problems view
Each time you save a change within a message set project, the content is
validated to ensure that the message model follows certain rules. All
informational, warning or error messages relating to the validation appear
in this view.

Properties Hierarchy functions:
Right-click in the Properties Hierarchy to display the following menu items:
v Add Messages (available at the Message Category level only) adds a new

message to a message category file.
v Undo and Redo allow you to undo and redo changes to message category files.

These two menu items apply to adding new messages, and also to changes that
you make in the Details view. To undo a change that you have made to a
message category file but not yet saved, click Undo. If you undo a change, you
can reinstate it by clicking Redo.

v Delete (available at the individual Message level only) deletes the selected
message from the message category file.

Details view functions:
In the Details view, use the Message Category Kind field to specify whether the
message category will be used to generate WSDL (Web Services Description
Language) files.

If the Message Category Kind is WSDL, you must provide definitions in the Role
Name and Role Type fields for each message that you add to the message
category file. These two fields appear when you select a message in the Properties
Hierarchy.

Create all required documentation for a message set in the Documentation field.
Right-click in this field to display a menu of standard text editing menu items that
apply specifically to this field. You can undo changes, cut, copy, paste, and delete
text, and select all the text in the field.
Related concepts:
“Message categories” on page 1200
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.
Related tasks:
“Working with a message category file” on page 2923
This topic area lists the tasks that are involved when working with a message
category file.

Chapter 14. Reference 6803

“Generating a WSDL definition from a message set” on page 2968
To ensure the highest interoperability of your Web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Message category properties” on page 5413
A message category provides a way of grouping your messages.

Message Definition editor
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.

The editor is launched in the editor area when you open an existing message
definition file using the Broker Development view, or when you create a new
message definition file by using the New Message Definition File wizard.

You use the Message Definition editor to:
v Edit message definitions created by importing data structures using the XML

Schema, DTD, C or COBOL importers. The message definition file that the
import process creates is automatically populated with the imported content,
which you can then edit as required.

v Populate empty message definition files with message model objects by creating
the elements, attributes, groups, types and messages needed to represent your
message formats. The message model that you create can consist of both logical
and physical information, if appropriate physical formats exist in the message
set.

Message Definition editor views:
The Message Definition editor has the following views:

Broker Development view
The Broker Development view shows a hierarchical view of all the
resources that are currently in your workspace. By expanding the folder for
a message set project, you can see the resources, including message
definition file or files, that this message set project contains.

Outline view
You use the Outline view to select message set objects to display in the
editor area. When you open a message definition file, the Outline view
shows a hierarchical view of the messages, types, groups and elements and
attributes that the selected message definition contains.

Editor view
You edit the properties of message set objects in the editor area, which
displays the message definition information for the object that you have
currently selected in the Outline view. There are tabs across the top of the
editor area for each file that you have open, so that you can quickly switch
between them.

In the editor area, you can make any of the following types of change:
v Edit the logical structure of a message.
v Create and edit the physical structure and properties of a message.
v Create message definitions.

6804 WebSphere Message Broker Version 7.0.0.8

v Create common constructs within a message set for use with other
message definition files.

The Message Definition editor comprises an Overview editor and a
Properties editor. You switch between them by clicking the two tabs in the
lower left of the editor area. You can change the order in which the tabs
are displayed by changing the message set preferences.

Problems view
Each time you save a change within a message set project, the content is
validated to ensure that the message model follows certain rules. All
informational, warning or error messages relating to the validation appear
in this view. Double-click a message to display the properties of the
relevant object in the editor area. The location of this object is highlighted
at the appropriate levels in the Broker Development view and the Outline
view.

Message Definition editor functions:
For information on the functions that the Message Definition editor provides, refer
to the following topics:
v “Message Definition editor: Outline view” on page 6806
v “Message Definition editor: Overview editor” on page 6807
v “Message Definition editor: Properties editor” on page 6808
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
“Importing from other model representations to create message definitions” on
page 1254
You can add message definitions to your message set by importing application
message formats that already exist.
Related tasks:
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Linking from one message definition file to another” on page 2921
Add an 'include', or an 'import' to the file that you want to reference.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Message definition file properties” on page 5409
The properties of a message definition file.
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.
“Message set preferences” on page 5366
Preferences for message sets.

Chapter 14. Reference 6805

Message Definition editor: Outline view:

When you open a message definition file, the hierarchy for the selected file appears
in the Outline view. Use the Outline view to select objects whose details you want
to view and edit in the Message Definition editor area.

Global actions:
The toolbar icons in the Outline view provide a number of global actions that
apply to all levels of the displayed hierarchy. The icons in the toolbar and their
actions are shown in the following table.

Icon Label Action

Find Element Finds the specified message definition
construct.

Sort global constructs
alphabetically

If selected, global constructs are sorted
alphabetically. If not selected, global
constructs are displayed in the order
that you create them.

Collapse All Collapses all the levels that are currently
displayed in the Outline view.

You can also select these global actions from the toolbar menu that appears when

you click the

icon.

Common editing and navigation actions:

The Outline view provides the following common actions, which are also available
in the Overview editor. Right-click in the Outline view or Overview editor to
display the menu items.
v Copy and Paste provide standard editing functions.
v Undo and Redo allow you to undo and then redo changes that you have made.

To undo a change, click Undo. If you undo a change, you can reinstate it, if you
want to, by clicking Redo.

v Go To Declaration takes you to the appropriate point in the hierarchy (global
group from a group reference, global attribute from an attribute reference, global
element from an element reference, global element from a message) either in the
same or in a different message definition file.

v Go to Type Definition takes you to the appropriate point in the hierarchy.
v Go to Properties switches to the Properties view in the editor.
v Rename allows you to rename the selected message set object.
v Delete deletes the selected message set object.
v Save saves the current message set definition file.

Options for adding message model objects:

The Outline view provides options for adding the message model objects shown in
the following list. These options are also available in the Overview editor.
v Messages

Message
Message From Global Element
Message From Global Type

6806 WebSphere Message Broker Version 7.0.0.8

v Types
Complex Type
Simple Type Restriction
Simple Type List
Simple Type Union

v Groups
Group
Attribute Group

v Elements and Attributes
Global Element
Global Attribute

Right-click the appropriate level of the displayed hierarchy to display in more
detail what can be added at the selected level.
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
“Message modeling concepts” on page 1155
Message modeling is a way of predefining the message formats that are used by
your applications.
Related tasks:
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message definition file properties” on page 5409
The properties of a message definition file.
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.
“Message Definition editor: Overview editor”
The Overview editor displays the contents of the message set object that you select
in the Outline view, and you can view and change this object's most common
properties.
“Message Definition editor: Properties editor” on page 6808

Message Definition editor: Overview editor:

The Overview editor displays the contents of the message set object that you select
in the Outline view, and you can view and change this object's most common
properties.

The Overview editor appears when you click the Overview tab in the editor area.
Use the navigation buttons and links on the toolbar to move back and forth
between different objects. In the Overview editor you can make the following
types of change:
v Edit the displayed values of any of the following objects:

Chapter 14. Reference 6807

– Structure
– Type
– Min Occurs
– Max Occurs
To edit any of these values, click the appropriate field in the Overview editor.
Depending on the type of field, this either displays a list from which you can
choose, or it enables the field for direct editing.

v Add message model objects as in the Outline view.
To add a new message model object, right-click Structure, then click the
appropriate item from the displayed menu.
For example, the menu for Messages provides Add Message, Add Message
From Global Element, or Add Message From Global Type.

Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
Related tasks:
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
Related reference:
“Message definition file properties” on page 5409
The properties of a message definition file.
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.
“Message Definition editor: Outline view” on page 6806
When you open a message definition file, the hierarchy for the selected file appears
in the Outline view. Use the Outline view to select objects whose details you want
to view and edit in the Message Definition editor area.
“Message Definition editor: Properties editor”

“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.

Message Definition editor: Properties editor:

The Properties editor allows you to change the properties for the selected message
set object. The information that appears depends on what is currently selected in
the Outline view and Overview editor. The Properties editor appears when you
click the Properties tab in the editor area. The navigation buttons and links on the
toolbar allow you to move back and forth between different objects. The Properties
editor comprises the Properties Hierarchy and Details view.

Properties Hierarchy functions:

When you select a object in the Outline view, the Properties Hierarchy shows the
following hierarchy for the message definition file that is currently open in the
Message Definition editor:

6808 WebSphere Message Broker Version 7.0.0.8

v Logical properties
v Physical properties
v Documentation

Right-click in the Properties Hierarchy to display a number of menu items. The
displayed menu items depend on which level of the hierarchy you select:
v Undo and Redo are available for all levels in the Properties Hierarchy and apply

to changes that you make in the Details view for the currently selected object. To
undo a change that you have made to a file but not yet saved, click Undo. If
you undo a change, you can reinstate it by clicking Redo.

v Add Include and Add Import are available when the top level of the message
definition (.mxsd) file's hierarchy is displayed in the Outline view. They allow
you to link message definition files together.

v Apply default physical format settings is available for Physical formats only
and applies the default wire format settings for the selected object.

If you add a new physical format in the message set (messageSet.mset) file, this
new format is added under Physical Properties in the Properties Hierarchy. When
you click Physical Properties, a link to the Message Set editor appears in the
Details view.

Details view functions:

The Details view shows the properties for the object that is currently selected in
the Properties Hierarchy. You can save any changes to the properties as you make
them.

You create any required documentation for a message set in the Documentation
field. This field appears when you select an object under Documentation in the
Properties Hierarchy. Right-click in this field to display a menu of standard text
editing menu items that apply specifically to this field and allow you to undo
changes, cut, copy, paste and delete text, and select all the text in the field.
Related concepts:
“Message definition files” on page 1171
A message definition file contains the messages, elements, types, and groups which
make up a message model within a message set.
Related tasks:
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.
“Working with MRM message model objects” on page 2870
Add, configure, and delete objects.
“Linking from one message definition file to another” on page 2921
Add an 'include', or an 'import' to the file that you want to reference.
Related reference:
“Message definition file properties” on page 5409
The properties of a message definition file.
“Message Definition editor” on page 6804
The Message Definition editor is the default editor provided by the Broker
Application Development perspective for editing message definition (.mxsd) files.
“Message Definition editor: Outline view” on page 6806
When you open a message definition file, the hierarchy for the selected file appears
in the Outline view. Use the Outline view to select objects whose details you want

Chapter 14. Reference 6809

to view and edit in the Message Definition editor area.
“Message Definition editor: Overview editor” on page 6807
The Overview editor displays the contents of the message set object that you select
in the Outline view, and you can view and change this object's most common
properties.
“Message set editor” on page 6819
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.

Message Flow editor
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Open a message flow file (.msgflow) in the Broker Development view to launch
the appropriate editor in the Editor view. The Editor view is where you select
built-in and user-defined nodes, and the connections between them, to define a
message flow.

Message Flow editor views:
The Message Flow editor has the following views:

Broker Development view

The Broker Development view shows all the resources in your workspace;
that is, all message set resources, and all message flow resources.

Editor view

The editor view shows the contents of the resource that is currently open.
It also shows tabs for each of the resources that you have open so that you
can quickly switch between them.

When the resource that is open is a message flow, two tabs are displayed,
called Graph and User Defined Properties.

When you select Graph, the editor view contains a graphical display of the
message flow.

The Palette contains all the available nodes that you can include in the
message flow. By default, the palette appears on the left side of the editor
view. You can move it to the right side of the editor view by clicking the
palette while it is in collapsed mode, and dragging the bar to the right of
the editor view.

When you select the User Defined Properties tab, a User Defined
Properties editor is opened that allows you to change the User Defined
Properties of the message flow. The User Defined Properties editor consists
of a User Property Hierarchy view and a Details view.

The User Property Hierarchy view displays three icons, Add Property
Group, Add Property, and Delete that you can use to update the property
hierarchy. When you add a property, a Details view is opened. In the
Details view you can define the property Type and Default Value.

Outline view

The Outline view enables you to navigate to a particular node in a
message flow, and edit its properties.

Palette view

6810 WebSphere Message Broker Version 7.0.0.8

The Palette view lists the available nodes that you can select and include
in the message flow. For more information about the palette and how to
customize the layout and settings, see “Message flow node palette” on
page 1027.

Overview view

The Overview view provides a useful summary for large, complex message
flows because it shows a small-scale version of the flow. Click the tab to
show or hide the outline view.

Problems view

This view displays the warning and error messages that are generated by
the editor's validation when you save the message flow file. If you
double-click an error, the editor indicates where it is located (for example,
if you have not set a mandatory property in a node, it opens the Properties
view for that node).

Message Flow editor toolbar:
The icons in the toolbar and their actions are shown in the following table.

Icon Label Action

Manhattan Displays all node
connections as a series of
horizontal and vertical lines

Show grid Displays a grid of horizontal
and vertical dotted lines in
the background of the editor
area.

Grid properties Defines the horizontal and
vertical spacing of the grid
markers, and the gap
between the borders of the
editor area and the start of
the grid markers.

Align left Lines up the left edge of the
currently selected nodes.
Enabled only when more
than one node is selected.

Align center Lines up the horizontal
center point (between left
and right) of the currently
selected nodes. Enabled only
when more than one node is
selected.

Align right Lines up the right edge of all
the currently selected nodes.
Enabled only when more
than one node is selected.

Align top Lines up the top edge of the
currently selected nodes.
Enabled only when more
than one node is selected.

Chapter 14. Reference 6811

Icon Label Action

Align middle Lines up the vertical center
point (between top and
bottom) of the currently
selected nodes. Enabled only
when more than one node is
selected.

Align bottom Lines up the bottom edge of
the currently selected nodes.
Enabled only when more
than one node is selected.

Show distribute box Displays a rectangular box
around the currently selected
nodes.

Distribute horizontally Aligns the currently selected
nodes with the nearest right
or left edge within the
distribute box.

Distribute vertically Aligns the currently selected
nodes with the nearest top or
bottom edge within the
distribute box.

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related tasks:
“Defining message flow content” on page 1488
You can define message flow content by adding and configuring message flow
nodes and connecting them to form flows.
“Changing the palette layout” on page 1490
You can change the layout of the palette in the Message Flow editor.
“Changing the palette settings” on page 1490
How to use the Palette Settings dialog box.
“Customizing the palette” on page 1491
If you customize the message flow node palette, you can make it easier to find the
nodes that you use most often.
“Resolving problems when developing message flows” on page 3395
Use the advice given here to help you to resolve common problems that can arise
when developing message flows.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“User-defined nodes” on page 6415
You can define your own nodes to use in WebSphere Message Broker message
flows.

Message Flow editor hover-feedback:

6812 WebSphere Message Broker Version 7.0.0.8

In the Message Flow editor, you can display node and connection metadata by
holding the mouse pointer over a node or subflow in a message flow. To view
metadata information for a node, subflow, or connection:
1. Switch to the Broker Application Development perspective.
2. Open a message flow.
3. In the Message Flow editor, hold the mouse pointer over a node, a subflow, or

a node connection in the open message flow by placing the mouse over the
element.

A custom tooltip is displayed below the element.
v To turn the pop-up window into a scrollable window, press F2.
v To hide the pop-up window, either press Esc or move the mouse away from the

node.

Node and subflow feedback

When you hold the mouse pointer over a node or subflow in the Message Flow
editor, the pop-up window contains the following metadata information:
v The first line of text contains the node type and the display name of the node

instance. This line appears as bold text.
v The line below the node type and display name contains the node's short

description.
v The final line contains the node's long description.

If the node or subflow has no short or long description associated with it, only the
first line of text is displayed.

If the task list contains errors or warnings that are associated with the node or
subflow, the error or warning information is displayed instead of the metadata
information.

Connection feedback

When you hold the mouse pointer over a connection in the Message Flow editor,
hover-help is displayed, containing the names of the output and input terminals
that are connected.
Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Built-in nodes” on page 4293
WebSphere Message Broker supplies built-in nodes that you can use to define your
message flows.
“User-defined nodes” on page 6415
You can define your own nodes to use in WebSphere Message Broker message
flows.

Message Flow editor menus:

Chapter 14. Reference 6813

All the actions that you can perform in the Editor view of the Message Flow editor
are also available from a series of drop-down menus in WebSphere Message
Broker. When the Message Flow editor is open, the following menus appear in the
Workbench:

Menu Keyboard shortcut

Flow Alt + O

View Alt + V

Palette Alt + L

Run Alt + R

The Navigate menu also contains actions specific to the Message Flow editor.

Flow menu

The flow menu contains all the actions that address editing of the flow model.
Actions are statically positioned on the menu, and are enabled or disabled when
nodes or connections are selected in the editor.

The following actions are available:

Menu item Keyboard shortcut

Create Connection C

Add subflow... A

Rename... N

Locate Subflow... L

Promote Property P

Properties... R

View menu

The View menu contains all actions specific to the visual presentation of the flow
model.

Menu item Keyboard shortcut

Zoom In I

Zoom Out O

Manhattan Layout M

Show Grid G

Snap to Grid G

Grid Properties... P

Align A

Distribute D

Layout L

Rotate R

6814 WebSphere Message Broker Version 7.0.0.8

Palette menu

The Palette menu contains all actions specific to the Message Flow editor Palette.

Menu item Keyboard shortcut

Add Node to Canvas N

Customize T

Settings... S

Revert Palette to Defaults T

Run menu

The Run menu contains the flow debug actions.

Menu item Keyboard shortcut

Add Breakpoint A

Remove Breakpoint E

Add Breakpoints After Node A

Add Breakpoints Before Node B

Navigate menu

The Navigate menu contains the following actions specific to the Message Flow
editor:

Menu item Keyboard shortcut

Open Subflow O

Open Source S

Related concepts:
“Message flows overview” on page 1022
A message flow is a sequence of processing steps that run in the broker when an
input message is received.
“Flow debugger overview” on page 3158
Use the flow debugger in the WebSphere Message Broker Toolkit to track messages
through your message flows.
Related tasks:
“Adding a node by using the keyboard” on page 1498
You can use the keyboard to perform tasks in the Message Flow editor, such as
adding a node to the canvas.
Related reference:
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Chapter 14. Reference 6815

“WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
keyboard shortcuts” on page 6828
You can navigate all interfaces in the WebSphere Message Broker Explorer and
WebSphere Message Broker Toolkit by using the keyboard.

Adding a node by using the keyboard:

You can use the keyboard to perform tasks in the Message Flow editor, such as
adding a node to the canvas.

Before you begin

Before you start:
v Ensure that you have created or opened a message flow. For more information,

see “Creating a message flow” on page 1431 or “Opening an existing message
flow” on page 1433.

v Read the concept topic, “Message flow nodes” on page 1024.

Procedure

1. Open the message flow to which you want to add a node.
2. Open the Palette view or the Palette bar.
3. Select a node in the Palette view or Palette bar by using the up and down

arrows to highlight the node that you want to add to the canvas.
4. Add the node to the canvas by using one of the following methods:
v Press Alt + L, then press N.
v Press Shift + F10 to open the pop-up menu for the Palette, and press N.

The node that you selected in the Palette bar or Palette view is placed on the
canvas in the Editor view.
When you add a node to the canvas, the editor automatically assigns a name to
the node, but the name is highlighted and you can change it by entering a
name of your choice. If you do not change the default name at this time, you
can change it later by following the instructions in “Renaming a message flow
node” on page 1502. The default name is set to the type of node for the first
instance. For example, if you add an MQInput node to the canvas, it is given
the name MQInput. If you add a second MQInput node, the default name is
MQInput1; the third is MQInput2, and so on.

Results

You can move the node that you have placed on the canvas by using the keyboard
controls described in “WebSphere Message Broker Explorer and WebSphere
Message Broker Toolkit keyboard shortcuts” on page 6828.
Related concepts:
“Message flow node palette” on page 1027
The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.
Related tasks:
“Adding a message flow node” on page 1494
When you have created a message flow, add nodes to define its function.
“Dragging a resource from the Broker Development view” on page 1499
Drag a node or a related resource into the Message Flow editor.

6816 WebSphere Message Broker Version 7.0.0.8

Related reference:
“WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit
keyboard shortcuts” on page 6828
You can navigate all interfaces in the WebSphere Message Broker Explorer and
WebSphere Message Broker Toolkit by using the keyboard.
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Message Flow editor menus” on page 6813
“Accessibility features for WebSphere Message Broker” on page 135
Accessibility features help users who have a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Message Mapping editor
You use the Message Mapping editor to create and edit message mappings.

You can use the Message Mapping editor to set values for:
v The message destination
v Message headers
v Message content

Here is an example of the Message Mapping editor. There are separate panes for
working with sources, targets and expressions, as well as a spreadsheet view.

1. Source pane: displays a source message or database table
2. Target pane: displays a target message
3. Edit pane: displays the expression to be used to derive the target element value

1 2

3

4

Chapter 14. Reference 6817

4. Spreadsheet pane: displays a summary of the mappings in spreadsheet
columns (each target field and its value)

Use the Message Mapping editor to perform various mapping tasks.

Wizards and dialog boxes are provided for tasks such as adding mappable
elements, working with ESQL, and working with submaps. Mappings that are
created with the Message Mapping editor are automatically validated and
compiled, ready for adding to a broker archive (BAR) file, and subsequent
deployment to WebSphere Message Broker.
Related tasks:
“Using message mappings” on page 2228
Message mappings define the blueprint for creating a message.
“Configuring message mappings” on page 2237
Use the Message Mapping editor to configure a message mapping.
Related reference:
“Message Mapping editor Source pane” on page 4983
Details of the elements present in the Source pane of the Message Mapping Editor.

“Message Mapping editor Target pane” on page 4987
Details of the elements present in the Target pane of the Message Mapping Editor.
“Message Mapping editor Edit pane” on page 4990
Details of how you use the Edit pane of the Message Mapping Editor.
“Message Mapping editor Spreadsheet pane” on page 4991
Details of the actions available to you in the Spreadsheet pane of the Message
Mapping Editor.
“Message mappings” on page 4981
Edit and configure message maps using the Message Mapping editor.

Message Node editor
The Message Node editor is the default editor provided by the Plug-in
Development perspective for defining the content of user-defined nodes.

The editor is launched in the editor area of the perspective when a new message
flow node file (.msgnode) is created.

Message Node editor views

The Message Node editor has two tabs:

Terminals
This tab is for adding, renaming, or deleting input and output terminals
for the new node.

Properties
This tab is for adding properties and property groups to the node, and
defining property type.

Related concepts:
“User-defined extensions overview” on page 2971
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker.
Related reference:

6818 WebSphere Message Broker Version 7.0.0.8

“Plug-in Development perspective” on page 6792
You can use the Plug-in Development perspective to create user-defined node
projects and user-defined nodes in the WebSphere Message Broker Toolkit,
however, the preferred option is to use the Broker Application Development
perspective.
“Plug-in Development projects and files” on page 6825

Message set editor
The Message set editor is the default editor provided by the Broker Application
Development perspective for editing message set (messageSet.mset) files.

The editor is launched in the editor area when you open an existing message set
file using the Broker Development view, or when you create a new message set file
using the New Message Set File wizard.

Message set editor views:

The Message set editor has the following views:

Broker Development view
The Broker Development view shows a hierarchical view of all the
resources that are currently in your workspace. By expanding the folder for
a message set project, you can see the resources, including the message set
file, that this message set project contains.

Editor view
You edit the properties of message set in the editor area of the Message set
editor, which has a single tab, the Properties tab. This tab provides:
v The Properties Hierarchy, which provides a hierarchy with four basic

categories: Message Set, XML Wire Formats, Custom Wire Formats, and
Tagged/Delimited String Formats.

v The Details view, which displays the properties relating to the currently
selected level in the Properties Hierarchy.
You select the Default message domain you require from the read-only
drop down list. When you select the domain from the drop down list,
the corresponding Supported message domains check box is greyed out
and you cannot select it.
You can add other domains by selecting the appropriate check boxes in
Supported message domains.

There are tabs across the top of the editor area containing the file name for
each file that you have open; this enables you to quickly switch between
the open files.

Problems view
Each time that you save a change within a message set project, the content
is validated to ensure that the message model follows certain rules. All
informational, warning, or error, messages that relate to the validation
appear in the this view.

Properties Hierarchy functions:
Right-click in the Properties Hierarchy to display the menu items available for the
level of the hierarchy that you have currently selected:
v Undo and Redo are available for all levels in the Properties Hierarchy and apply

to changes that you make in the Details view. To undo a change that you have
made to a message set file, but have not yet saved, click Undo. If you undo a
change, you can reinstate it by clicking Redo.

Chapter 14. Reference 6819

v If XML Wire Formats, Custom Wire Formats, or Tagged/Delimited String
Formats are selected, menu items are available for adding physical format layers
to a message set file. These are Add XML Wire Format, Add Custom Wire
Format, and Add Tagged/Delimited String Format, respectively.

v If an existing physical format is selected, the following menu items are available
for the selected physical format layer:
– Apply default physical format settings applies the default physical format

settings to the selected physical format layer.
– Rename renames the selected physical format layer for the message set file.

Click Finish on the displayed window to confirm the change of name.
– Delete deletes the selected physical format layer from the message set file.

Click Finish on the displayed window to confirm the deletion.

Details view functions:
You use the Details view to define and edit global properties for the message set,
and to create and edit properties for the physical format layers that you have
added to the message set.

You create any required documentation for a message set in the Documentation
field. Right-click in this field to display a menu of standard text editing menu
items that apply specifically to this field and that allow you to undo changes, cut,
copy, paste and delete text, and select all the text in the field.
Related concepts:
“Message sets overview” on page 1162
A message set is a container for grouping messages and associated message
resources (elements, types, groups).
Related tasks:
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Message set preferences” on page 5366
Preferences for message sets.
“Message set properties” on page 5371
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

WSDL editor
Use the WSDL editor to browse and edit a WSDL file.

The WSDL editor is launched in the editor area of the Broker Application
Development perspective when you either double-click a WSDL file, or right-click
a WSDL file and select Open With; the WSDL editor is the default editor.

The Design view provides a graphical way to browse and edit your WSDL file.

Each type of top level WSDL object is shown within a tabular view, for example,
service, binding, and port type.

The service, binding, and port type objects are linked and a line is displayed to
denote a reference, or association, between these objects.

6820 WebSphere Message Broker Version 7.0.0.8

The WSDL editor has three panes called General, Documentation, and Extensions.
You can toggle between each pane.

WSDL editor panes:
General pane

The name of the top-level WSDL object you select is displayed at the top of the
pane. All WSDL objects have a Name field that you can edit.

The top-level WSDL object you select defines the layout of the General pane and
the number of rows in the table represents the structure of the object.

Some objects have an additional box that you can select, for example, Binding. In
this case, clicking Generate Binding Content starts the Binding wizard.

Documentation pane

The Documentation pane allows you to add notes.

Extensions pane

You can add an extension to the top-level object you have selected.

Click Add to display the Add Extension Components window. You can then select
from an extension category, a component, or both.

To add an extension category, select the category and click Add on the Add
Extension Components window. On the window that is displayed, enter a name
and select a schema. Click Add on this second window to add the category.

To add a component, select the component and click OK on the Add Extension
Components window.
Related reference:
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.
“Generate WSDL wizard” on page 6382
The Generate WSDL wizard creates a WSDL definition from a message set.
“Web service consumer message flow generated” on page 1420
This provides additional information in relation to the Configure New Web Service
Usage wizard about the message flow generated when the flow is a web service
consumer.

Resource types in the WebSphere Message Broker Toolkit
Links to information on projects and resource files.

The following links provide reference information about the projects and resource
files that are specific to WebSphere Message Broker Toolkit:
v “Message flow projects and files” on page 6822
v “Message set projects and files” on page 6823
v “Data Design projects and files” on page 6825
v “Plug-in Development projects and files” on page 6825 (for user-defined nodes

and parsers)

Chapter 14. Reference 6821

v “Java projects and files” on page 6826
v “Pattern instance projects” on page 6827
Related concepts:
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
Related reference:
“Rules for naming workspace objects” on page 6827

Message flow projects and files
You develop message flows in the Broker Application Development perspective.
Message flow resources are maintained within message flow projects. A message
flow project compiles to one or more deployable flows.

Message flow projects contain the following resource files:

.msgflow files
A message flow file is a graphical representation of a message flow,
containing message nodes and connections. It also contains property values
and overrides to define, implement and control the behavior of the
message flow nodes. The New Message Flow Wizard automatically creates
this file.

Default editor: Message Flow editor

.esql file
(Optional) ESQL modules containing compute, filter, and database ESQL
functions and procedures. If none of the message flows defined in the
project include any nodes that require ESQL, you do not need to create an
ESQL file.

Default editor: ESQL editor

.msgmap file
(Optional) Mapping transformation descriptions for messages and
databases. If none of the message flows defined in the project include any
nodes that require mappings, you do not need to create a mapping file.

Default editor: Message Mapping editor

You can define more than one message flow, each in a separate .msgflow file, in the
same message project.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message

6822 WebSphere Message Broker Version 7.0.0.8

Broker Toolkit.
Related tasks:
“Creating a message flow” on page 1431
Create a message flow to specify how to process messages in the broker. You can
create one or more message flows and deploy them to one or more brokers.
Related reference:
“Rules for naming workspace objects” on page 6827
“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.

Message set projects and files
A message set project contains all the resources associated with exactly one
message set. A message set is a logical grouping of messages and the objects
(elements, types and groups) that comprise them. It contains the following
resources, which you create and maintain in the Broker Application Development
perspective.

messageSet.mset file
A message set file contains those message model properties that are
common across all the content of the message set. It also contains the
physical format definitions for the message set. A message set project must
contain exactly one message set file.

Default editor: “Message set editor” on page 6819

.mxsd files
A message definition file contains, in XML Schema form, the logical model
and associated physical model for one or more messages. Each message set
requires at least one message definition file to describe its properties, and
you can have as many as you want within the same message set. One
message definition file can, if required, reference XML Schema objects in
another message definition file.

You can create a message definition file in a message set by importing any
of the following data structures:
v XML Schemas
v XML DTD
v C header files
v COBOL copybooks

Importing any of these data structures automatically creates the message
definition file and its content for you. Alternatively, you can create a blank
message definition file and add the message definitions yourself.

Default editor: “Message Definition editor” on page 6804

Previous versions of the message set model
The message definition contains the same application data that, previously,
was stored in the following separate files:
v Message set (MRProject) that contains wire formats and their default

properties
v Messages (MRMessage) that provides a unique name for a message and

specifies its element
v Elements (MRElement) that defines a node in the message tree

Chapter 14. Reference 6823

v Types (MRType) that specify the structure of elements
v Declaration Qualifiers (MRDeclaration Qualifier) that specify constraints

applied to elements in the message model

.category files
A message category file provides you with another way of grouping
related messages, for example for documentation generation, or for
convenience purposes such as specifying the messages that define a
complete request/reply transaction. You can also use a message category
file to assist in generating a Web Services Description Language (WSDL)
document. Message category files are optional, and you can have as many
as you want within the same message set.

Default editor: “Message Category editor” on page 6802

Once you have created and populated a message set, you can use it to generate
your message model in several different representations for use by your
applications:
v A message dictionary for deployment to the WebSphere Message Broker.
v A W3C XML Schema for use by an application that is building or processing

XML messages.
v A Web Services Description Language (WSDL) document that specifies the

interface for a Web Service.
v An HTML document for use by business analysts and developers.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
“The message model” on page 1160
The message model consists of the following components.
“XML Schema” on page 1172
XML Schema is an international standard from the World Wide Web Consortium
(W3C) that defines a language for describing the structure of XML documents.
“Generate message dictionaries” on page 1271
A message dictionary is data structure that describes all of the messages in a
message set in a form suitable for deployment to the MRM parser.
“Generate model representations” on page 1270
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.
Related tasks:
“Working with a message set project” on page 2838
Creating and deleting a message set.
“Working with a message set” on page 2840
Complete a variety of tasks that are involved in working with a message set.
“Working with a message definition file” on page 2863
Create, open, and delete a message definition file.

6824 WebSphere Message Broker Version 7.0.0.8

“Working with a message category file” on page 2923
This topic area lists the tasks that are involved when working with a message
category file.
Related reference:
“Rules for naming workspace objects” on page 6827

Data Design projects and files
A Data Design project contains resources relating to databases.

Data Design projects can contain the following resource files:

.dbm files
A database definition file contains information about a connection to a
database. The New Database Definition File wizard automatically creates
this file. The name of the database definition file is the name of the
database that the file connects to.

Default editor: Physical Data Model editor

You can define more than one database definition in the same Data Design project,
but each must be for a separate database.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Adding database definitions to the WebSphere Message Broker Toolkit” on page
2278
Use the New Database Definition File wizard to add database definitions to the
WebSphere Message Broker Toolkit.

Plug-in Development projects and files
A plug-in project can contain any WebSphere Message Broker Toolkit-developed
plug-in resource. In WebSphere Message Broker, it is used for user-defined
message nodes.

User-defined Message Nodes:
Plug-in development projects used to create Message Nodes contain these
resources:

.msgnode file
Contains the definition of the node.

palette.xmi file
Lists the user-defined nodes in the project and the Message Editor palette
group in which they are shown.

.html file
Contains the help files for the node.

Chapter 14. Reference 6825

.java file
Java source code for Property Editors and Compilers.

plugin.xml file
The plug-in manifest file that adds the node to the WebSphere Message
Broker installation

.properties file
National Language properties - contains the translations for Properties and
Terminals

.gif file
Icon - contains the image to associate with the node

Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
Related tasks:
“Creating a user-defined node project” on page 3080
When you create user-defined nodes, you must first create a user-defined node
project to contain the nodes and their supporting files.
“Implementing a user-defined parser” on page 3099
Create a user-defined parser to interpret messages with a different format and
structure.
Related reference:
“Rules for naming workspace objects” on page 6827

Java projects and files
Developing Java projects using a .java file

You develop Java projects using the Java perspective WebSphere Message Broker
Toolkit.

You can add any valid Java code to a JavaCompute node, making full use of the
Java user-defined node API to process an incoming message. You can use the Java
editing facilities of the Eclipse platform to develop your Java code.

If you have selected a user-defined message node, you have access to various
resources that include the .java file; this file includes Java source code for Property
Editors and Compilers.

You can also call Java methods directly from the Mapping node.
Related tasks:
“Managing Java Files” on page 2629
The Java code that you provide to modify or customize the behavior of a
JavaCompute node is stored in a Java project. WebSphere Message Broker uses the
Eclipse Java perspective for developing and administering Java files.
“Calling a Java method” on page 2310
To call an existing Java method from a mapping node, select the method from the

6826 WebSphere Message Broker Version 7.0.0.8

Call Existing Java Method wizard, or enter an XPath expression in the Edit pane.
Related reference:
“JavaCompute node” on page 4514
Use the JavaCompute node to work with messages by using the Java language.

Pattern instance projects
A pattern instance project contains project references to all the other projects in the
workspace that relate to a specific pattern instance.

Pattern instance projects are shown in the Broker Development view by default
when a pattern instance is generated. You can view all the generated resources that
relate to a pattern instance by selecting the pattern instance from the working set
selection list in the Broker Development view.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message
Broker Toolkit.
“Using patterns” on page 1312
Use patterns that are supplied with the WebSphere Message Broker Toolkit to
create resources that are used to solve a specific business problem.
Related tasks:
“Working with patterns in the Broker Development view” on page 1314
Using the Broker Development view to create patterns.

Rules for naming workspace objects
You can uniquely identify and locate a workspace resource using a namespace and
a name. An organization uses its own name to form a namespace, and all resource
names within that namespace are safe from clashes with those of another
organization. The combination of a user specified namespace and name is often
called the "fully qualified name". The unnamed namespace (name space="") is
supported.

Note, that you must not include an exclamation mark (!) in the workspace name.

WebSphere Message Broker defines an application symbol space using project
references. No fully qualified names can be duplicated across the application
symbol space. A Tasks List error is displayed if duplicate or ambiguous names are
detected within an application symbol space.
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“Resources” on page 36
The projects, folders, and files that you work with in the WebSphere Message
Broker Toolkit workspace are called resources. By default, these resources are stored
with their metadata in the workspace directory in your local file system. The
workspace directory is created the first time that you start the WebSphere Message

Chapter 14. Reference 6827

Broker Toolkit.
“Project references” on page 44
When a projects refers to other projects in the workspace, this is called a project
reference. When one project references another, the files in the referenced project are
available for use by the referring project. For example to configure certain nodes,
to create libraries of reusable message flows, and to enable Content Assist in the
ESQL editor.
Related reference:
“Resource types in the WebSphere Message Broker Toolkit” on page 6821
Links to information on projects and resource files.

WebSphere Message Broker Explorer and WebSphere
Message Broker Toolkit keyboard shortcuts

You can navigate all interfaces in the WebSphere Message Broker Explorer and
WebSphere Message Broker Toolkit by using the keyboard.

The following table shows the general shortcut keys that are provided in the
WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit.

Keyboard shortcut Result

Left, right, up, and down arrow keys Move in the direction shown on the key.

Tab Move the focus forward through the workbench.

Shift+Tab Move the focus backward through the workbench.

Esc Cancel the action.

Enter Commit the action.

Spacebar Select the object that currently has the focus.

Shift+F10 Open a pop-up menu.

Ctrl+F6 Open the Editors window. (Continue to hold down Ctrl to keep the window
open. Use the up and down arrow keys to select a file. Release Ctrl. Press
Enter.)

Ctrl+F7 Move between panes.

When you use the keyboard to navigate the toolbar of the Broker Development
view, use the Tab key to access the first icon on the toolbar, then use the arrow
keys to access other icons. For example, use the Tab key to access the Hide
Categories icon, then use the right arrow key to access the Collapse All icon.

Message Flow editor keyboard shortcuts

The following table shows keyboard shortcuts that are specific to the Message
Flow editor:

Keyboard shortcut Result when the Selection tool is active Result when the Connection tool is active

Left, right, up, and
down arrow keys

Select a node on the palette or on the canvas.

Use with Shift, or Ctrl+Spacebar, to select
multiple nodes.

Select a terminal on a node.

6828 WebSphere Message Broker Version 7.0.0.8

Keyboard shortcut Result when the Selection tool is active Result when the Connection tool is active

slash (/)
and
backslash (\)

Press slash (/) to cycle forwards, or press
backslash (\) to cycle backwards through the
connections of the selected node.

Use with Shift, or Ctrl+Spacebar, to select
multiple connections.

decimal key (.)
and
Shift+decimal key (.)

Press the decimal key (.) to cycle forwards,
or press Shift and the decimal key (.) to cycle
backwards through the move handles, or the
resize handles, of the currently selected
object on the canvas.

When a node is selected, use this shortcut to
activate the move handles, then use the
arrow keys to move the node. Press Enter to
confirm the move.

When a connection is selected, use this
shortcut to activate its resize handles, then
use the arrow keys to create bend points in
the connection. Press Enter to confirm the
move.

Esc Typically, pressing Esc cancels the previous
action. When there is no previous action to
cancel, and the Connection tool is selected,
pressing Esc activates the Selection tool.

The following examples show how to use the Message Flow editor keyboard
shortcuts.

Adding nodes from the palette to the canvas:

1. If the palette is already open, go straight to step 2. If the palette is not
already open, follow these steps to open the palette:
a. Open the Editors window.
b. Select the file that you want to use.
c. Press Tab until the focus moves to the palette arrow.
d. Press Enter, or Spacebar, to give focus to the palette.

2. Press Tab to give focus to the palette arrow.
3. Press Tab once to give focus to the drawers within the palette. (Note:

There are no visual highlights to indicate the focus.)
4. Use the up and down arrow keys to highlight the drawer required.

Press Enter.
5. Use the up and down arrow keys to highlight the node required.
6. Press Alt+L to open the palette menu, and select Add Node to Canvas.

Press Enter. The node is now on the canvas.

Moving nodes on the canvas:

1. Press Tab to give focus to the palette arrow. (It does not matter whether
the palette is open or closed.)

2. Press Tab two times. The focus is now on the canvas. (Note: There are
no visual highlights to indicate the focus.)

3. Select a node on the canvas.

Chapter 14. Reference 6829

4. Press the decimal key (.) to select one of the move handles around the
node.

5. Use the left, right, up, and down arrow keys to move the node to a
new location.

6. Press Enter to confirm the move.

Connecting nodes:

1. Press Tab to give focus to the palette arrow. (It does not matter whether
the palette is open or closed.)

2. Press Tab two times; the focus is now on the canvas. (Note: There are
no visual highlights to indicate the focus.)

3. Select the node on the canvas from which you want to create a
connection.

4. Press Shift+F10 to open a pop-up menu.
5. Use the arrow keys to select Create Connection. Press Enter. The

Terminal Selection window opens.
6. Press Tab until the focus is in the Select Terminal field. Use the arrow

keys to select a source (output) terminal.
7. Press Tab to select OK, press Enter to confirm your selection.
8. Use the arrow keys to select the input terminal of the target node. Press

Enter to confirm the connection.

Selecting a node connection:

1. Press Tab to give focus to the palette arrow. (It does not matter whether
the palette is open or closed.)

2. Press Tab two times. The focus is now on the canvas. (Note: There are
no visual highlights to indicate the focus.)

3. Use the arrow keys to select a node that has a connection you want to
select.

4. Use the slash (/) and backslash (\) keys to cycle through the
connections.

Creating a bend point:

1. Select a node connection.
2. Press the decimal key (.) until the midpoint of the connection is

selected.
3. Use the arrow keys to move the midpoint to a new location, and press

Enter to confirm the move.

Reconnecting an existing connection to a new terminal:

1. Select a node connection.
2. Press the decimal key (.) until the end of the connection that you want

to modify is selected.
3. Use the arrow keys to select a new source (input) terminal, and press

Enter to confirm your selection.
Related concepts:
“Message flow node palette” on page 1027
The palette in the Message Flow editor contains all the built-in nodes, which are
organized into categories, or drawers. A drawer is a container for a list of icons,
such as the Favorites drawer.
Related reference:

6830 WebSphere Message Broker Version 7.0.0.8

“Message Flow editor” on page 6810
The Message Flow editor is the default editor provided by the Broker Application
Development perspective for defining a graphical representation of a message flow
in the WebSphere Message Broker Toolkit, and for setting properties for individual
message flow nodes.
“Accessibility features for WebSphere Message Broker” on page 135
Accessibility features help users who have a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Workbench User Guide - Keyboard shortcuts for the Workbench, Java
development tools, and the debugger

What's new if you are migrating from Version 6.0
Find out about new features in WebSphere Message Broker if you are migrating
from Version 6.0.

See the following topics for high level information about new features in Version
6.1:
v “Web services”
v “Security” on page 6832
v “WebSphere Adapter nodes” on page 6833
v “File nodes” on page 6834
v “Other new nodes” on page 6835
v “Usability” on page 6836
v “Performance” on page 6837

Web services
Find out about the significant enhancements to Web services support including
integrated support for WebSphere Service Registry and Repository, Web services
security, and SOAP nodes.

SOAP nodes v Full support for Web Services Provider and
Consumer scenarios with 5 SOAP nodes:

– Provider nodes:

- “SOAPInput node” on page 4795

- “SOAPReply node” on page 4819

– Consumer nodes:

- “SOAPRequest node” on page 4828

- “SOAPAsyncRequest node” on page 4750

- “SOAPAsyncResponse node” on page 4777

– These nodes can be combined to provide a Web
service intermediary.

v Processing of SOAP payload and headers are
simplified by the following SOAP nodes:

– “SOAPEnvelope node” on page 4786

– “SOAPExtract node” on page 4790

Single SOAP domain for all Web
Services message formats

v A SOAP parser and SOAP tree format.

v Supported message formats are SOAP 1.1, SOAP 1.2,
SOAP with Attachments (SwA), and MTOM

v HTTP and HTTPS transports are supported.

Chapter 14. Reference 6831

Improved WSDL Integration v Simplified import and generation of WSDL.

v Improved WSDL editor.

v WSDL is now an integral part of a message set.

v WSDL from a message set can be used directly in the
creation and configuration of message flows,
including support for drag-and-drop operations.

Web services extensions v Support for WS-Addressing Endpoint References and
Message addressing properties.

v Support for WS-Security authentication, encryption,
and signing:

– Authentication using username and password.

– Authentication using X509 certificates.

– Comprehensive encryption and signing
algorithms.

– Configuration using Policy Sets.

WebSphere Service Registry and
Repository

v General concepts:

– WebSphere Service Registry and Repository
contains a variety of entities such as WSDL and
XSD, together with their relationships and
associated user properties.

– Governance can be achieved by using the
WebSphere Service Registry and Repository to
determine Message Broker processing.

v Runtime interactions:

– Message flows can use, access, and select specific
WebSphere Service Registry and Repository
entities.

– Nodes to support retrieval of entities and services:

- “EndpointLookup node” on page 4407

- “RegistryLookup node” on page 4646

Related tasks:
“Processing Web service messages” on page 1601
Use WebSphere Message Broker nodes and services to connect to other Web
services providers and consumers.

Security
WebSphere Message Broker provides enterprise-wide identity, authentication and
authorization with Tivoli and LDAP. Click on the links to get more information
about security in WebSphere Message Broker.

Security model v WebSphere Message Broker now has a powerful
runtime security model:

– Supporting cross domains security processing.

– Identity, Authentication and Authorization are
native capabilities.

v Support for major policy decision points technologies
including Tivoli and LDAP.

6832 WebSphere Message Broker Version 7.0.0.8

Identity v A rich identity context can be defined including
properties for source and mapped identities:

– Type

– Token

– Password

– Issued by

v MQ, HTTP, JMS, and SOAP transports can all
provide identity information.

v Identity attributes can be set on input and output
nodes.

v Identity information is also present in the Message
Tree.

Security profiles v You can configure different security profiles to
differentiate between the security requirements for
your different message flows and nodes.

v The security profile contains information on:

– Authentication type and configuration.

– Mapping type and configuration.

– Authorization type and configuration.

Related concepts:
“Security overview” on page 351
When you are designing a WebSphere Message Broker application it is important
to consider the security measures that are needed to protect the information in the
system.
“Message flow security overview” on page 383
WebSphere Message Broker provides a security manager, which enables you to
control access to individual messages in a message flow, using the identity of the
message.

WebSphere Adapter nodes
You can connect to Enterprise Information Systems using the integrated WebSphere
Adapter nodes. Highlights of the WebSphere Adapter nodes are provided in this
topic. Click on the links to get more information about the WebSphere Adapter
nodes.

Support for Enterprise
Information Systems

v Inbound and outbound support is provided for the
following Enterprise Information Systems (EIS):

– SAP

– Siebel

– PeopleSoft

v Enterprise Metadata Discovery (EMD) is used for
key data structure discovery and accelerated message
set generation.

v The use of the native message broker tree provides
high performance access to the EIS using WebSphere
Adapters.

v TwineBall input and request nodes provided as
sample nodes with their own EIS for learning about
how the WebSphere Adapter nodes work.

Chapter 14. Reference 6833

SAP Adapter nodes v Integrated SAP Adapter nodes enable you to interact
with SAP applications:

– “SAPInput node” on page 4676

– “SAPRequest node” on page 4685

Siebel Adapter nodes v Integrated Siebel Adapter nodes enable you to
interact with Siebel applications:

– “SiebelInput node” on page 4740

– “SiebelRequest node” on page 4745

PeopleSoft Adapter nodes v Integrated PeopleSoft Adapter nodes enable you to
interact with PeopleSoft applications:

– “PeopleSoftInput node” on page 4630

– “PeopleSoftRequest node” on page 4635

TwineBall Adapter nodes v Educational TwineBall Adapter nodes included to
help you learn how the WebSphere Adapter nodes
work:

– “TwineballInput node” on page 4951

– “TwineballRequest node” on page 4955

Related concepts:
“WebSphere Adapters nodes” on page 1914
A WebSphere Adapters node is a message flow node that is used to communicate
with Enterprise Information Systems (EIS), such as SAP, Siebel, JD Edwards, and
PeopleSoft.
Related reference:
“WebSphere Adapters properties” on page 4024
Reference information about the properties that you set for WebSphere Adapters
nodes.

File nodes
You can access, process, and produce very large files with the file input and output
nodes.

Built-in support for File
processing

v Two nodes support inbound and outbound file
processing:

– “FileInput node” on page 4415

– “FileOutput node” on page 4430

Large file handling v Very large files can be processed without using
excessive storage.

Record detection v Comprehensive support for record detection:

– Simple record detection: LF, CRLF, Fixed Length,
and user-defined.

– Parser: Use an existing message definition to
identify record boundaries.

v Advanced record detection techniques enable
simplified processing of large, repeating content files.

FTP support v Configure FTP server properties on the FileInput and
FileOutput nodes

6834 WebSphere Message Broker Version 7.0.0.8

Other new nodes
Find out about other new nodes in Version 6.1.

For information about new nodes in Version 7.0, see “What's new in Version 7.0?”
on page 7.

Collector node v Use the Collector node for complex condition
processing.

v Coordinate messages from one or more sources.

v Wait for multiple input conditions and process when
all satisfied.

v Messages matching the configured conditions are
grouped into message collections for processing.

v Configurable conditions include:

– Number of messages received.

– Messages received in a set period of time.

– Messages that match the contents of a correlation
path.

– Contents of messages that match a correlation
pattern.

DatabaseRetrieve node v Use the DatabaseRetrieve node to ensure that
information in a message is up to date.

v Look up information from a database row using a
message key, for example an account number, and
store it in a message.

v Configure the value for the message key using XPath
or ESQL syntax.

DatabaseRoute node v Use the DatabaseRoute node to pass through or
route messages using information from a database.

v Look up information from a database row using a
message key, for example an account number, and
store it in a message.

v Route the message for further processing based on
these XPath values.

v Messages can be routed to multiple destinations if
they are matched.

EmailOutput node v Use the EmailOutput node to send an email message
to one or more recipients from a message flow.

v This node builds and sends the email message to an
SMTP server that you specify.

v Several options are available to generate the email
message:
– Configure an email with a statically-defined

subject and text to a statically-defined list of
recipients.

– Configure a statically-defined email as a MIME
message, with an attachment derived from the
message tree.

– Create a dynamic email message where the SMTP
server, list of recipients, subject, text, and multiple
attachments are determined at run time.

– Pass a MIME message to the EmailOutput node
by using the MIME parser to write the MIME
message to a bit stream.

Chapter 14. Reference 6835

Route node v Use the Route node to direct messages that meet
certain criteria down different paths of a message
flow.

v XPath filter expressions are used to control
processing.

v Add extra output terminals to the node to route
matching expressions down a selected processing
path.

Related reference:
“Collector node” on page 4333
Use the Collector node to create message collections based on rules that you
configure in the node.
“DatabaseRetrieve node” on page 4363
Use the DatabaseRetrieve node to ensure that information in a message is up to
date.
“DatabaseRoute node” on page 4373
Use the DatabaseRoute node to route messages using information from a database
in conjunction with XPath expressions.
“EmailOutput node” on page 4400
Use the EmailOutput node to send email messages to one or more recipients.
“Route node” on page 4669
Use the Route node to direct messages that meet certain criteria down different
paths of a message flow.

Usability
Find out about usability enhancements to help make developing applications and
testing applications easier and faster. Click on the links to get more information
about usability enhancements in WebSphere Message Broker.

Message Broker Toolkit
improvements

v Quick Start wizards.

v Simplified and improved application development
wizards and editors.

v Enhanced graphical mapping.

v Simplified menus.

v Display projects in working sets.

v Categories for nodes on the node palette.

v Enhancements to message flow debugging.

v Enhancements to message broker archive editor.

v Drag WSDL on to the message flow canvas to speed
up development.

Improved test support in the
Message Broker Toolkit

v Create a test configuration to rapidly test message
flows.

v Template test messages are generated if you are
using a message set.

v Monitor test execution events.

v Test configurations can be saved for reuse and
analysis.

v Review and save test execution traces.

6836 WebSphere Message Broker Version 7.0.0.8

Samples v Additional samples demonstrating functionality.

v Categories for Technology samples:

– File processing

– Message formats

– Control and routing

– Message transformation

– Security

– Transports and connectivity

– Web services

You can view information about samples only when
you use the information center that is integrated with
the WebSphere Message Broker Toolkit or the online
information center. You can run samples only when
you use the information center that is integrated with
the WebSphere Message Broker Toolkit.

Help view v See context-sensitive help and related topics links by
using the Help view, even when you are using a
wizard or dialog box.

v Search the documentation and access fully indexed
help topics by using the Help view.

Related concepts:
“Quick Start wizards overview” on page 1409
You can use a Quick Start wizard to set up the basic resources that are required to
develop a message flow application. The wizard sets up and gives names to
containers for the resources that you need when you develop a message flow.
“Testing message flows by using the Test Client” on page 3144
You can test message flows in a safe environment before they are used on a
production system by using the Test Client.
“Samples” on page 98
The WebSphere Message Broker Toolkit provides samples that show the features
that are available in WebSphere Message Broker, and how to use them. This topic
provides links to the information about the individual samples.
Related tasks:
“Creating a working set” on page 575
Create a working set to limit the number of resources that are displayed in the
Broker Development view.
“Creating an application by using the Configure New Web Service Usage wizard”
on page 1417
Use these instructions to generate a message flow by using the Configure New
Web Service Usage wizard.
Related reference:
“Broker Archive editor” on page 6794
Use the Broker Archive editor to create and manage broker archive (BAR) files.

Performance
Find out about continued performance improvements in WebSphere Message
Broker.

Chapter 14. Reference 6837

Parser Performance v Significant XML message performance improvement.

v XML validation performance improvement.

v Opaque parsing for named XML elements to further
improve performance.

v Industry and existing message formats benefit from
binary and string parser improvements.

– Supporting cross domains security processing.

– Identity, Authentication and Authorization are
native capabilities.

v Support for major policy decision points technologies
including Tivoli and LDAP.

XSLT Performance v XSLT engine now directly accesses message tree
leading to major performance gains.

Storage Performance v Compacted runtime storage leads to a significant
reduction in the runtime storage usage.

WebSphere Message Broker Explorer views
The WebSphere Message Broker Explorer can be used to manage and administer
your brokers and deployed resources.

The WebSphere Message Broker Explorer is an extension of the WebSphere MQ
Explorer.

Typically, you carry out the following tasks in the WebSphere Message Broker
Explorer:
v Setting up your brokers, including:

– Creating brokers
– Connecting to brokers
– Removing brokers

v Adding and removing execution groups
v Editing and deploying broker archive (BAR) files
v Viewing the results of deployment and other broker activity in the

Administration log
v Viewing and editing broker properties
v Viewing and editing security profiles and policy sets
v Viewing and editing configurable properties
v Viewing message flow accounting and statistics data

The WebSphere Message Broker Explorer provides several views that you can use
to browse and update your broker resources.

If you cannot see the Brokers folder and Broker Archive Files folder in your MQ
Explorer session, you have not installed the broker-specific plug-ins that are
provided by WebSphere Message Broker Explorer. Close your WebSphere MQ
Explorer session, follow the instructions to install the WebSphere Message Broker
Explorer, then start the WebSphere MQ Explorer again.

6838 WebSphere Message Broker Version 7.0.0.8

Navigator view
The Navigator view shows folders that contain all the WebSphere MQ and broker
resources that are currently available for you to administer from the WebSphere
Message Broker Explorer. Right-click the WebSphere MQ folder to configure
settings that affect the whole of WebSphere MQ on your system, and to perform
other administration tasks.

The icons shown in the Navigator view indicate the status of the WebSphere MQ
and broker objects.

Right-click the Brokers folder to create brokers and view existing broker resources.
Right-click brokers, execution groups, and other broker objects to perform
configuration and administration tasks.

Right-click the Broker Archive Files folder to view and deploy broker archive files
to your brokers.

When you click a WebSphere MQ or broker object in the Navigator view,
properties associated with the object are shown in the Content view.

Content view
The Content view shows properties associated with a selected object in the
Navigator view. The properties that are shown depend on the associated object
that has been selected. With some objects, you can double-click properties shown
in the Content view to see more information, and to edit the properties.

Broker Statistics and Broker Statistics Graph views
Use the Broker Statistics and Broker Statistics Graph views in the WebSphere
Message Broker Explorer to view snapshot accounting and statistics data as the
broker produces it. For more information about viewing broker accounting and
statistics data, see “Viewing message flow accounting and statistics data” on page
3300.

Policy Sets and Policy Set Bindings editor
Use the Policy Sets and Policy Set Bindings editor for editing, saving, importing,
and exporting a policy set or binding. You can define all the WS-Security policies
for a single node, or a set of nodes. The policy set can be associated by the
administrator with either a message flow or a node. To access the Policy Sets and
Policy Set Bindings editor, right-click the broker and click Properties. Select the
Security tab and click Policy Sets. For more information about the Policy Sets and
Policy Set Bindings editor, see “Policy Sets and Policy Set Bindings editor” on page
6841.

Security Profiles editor
Use the Security Profiles editor to specify whether identity propagation,
authentication, authorization, and mapping are performed on the identity of
messages in the message flow, and if so, which external security provider is used.
For more information about Security Profiles, see “Security profiles” on page 387.

DataPower Security wizard
Use the DataPower Security wizard in the WebSphere Message Broker Explorer to
configure an external DataPower appliance to handle the WS-Security Policy for
your HTTP, HTTPS input, and SOAP nodes in your message flow. For more
information about the DataPower Security wizard, see “Configuring DataPower
security settings” on page 639.

Chapter 14. Reference 6839

Administration Log view
The Administration Log view shows administration log information for the broker
selected in the Navigator view. The messages in the Administration log show the
results from deployment or other actions you have performed on the broker.
Double-click individual messages to read the full content of the messages in the
Administration Log view.

You can save the messages from the Administration log, or permanently remove
the administration log information messages.

For more information about the Administration Log view, see “Administration Log
view.”
Related concepts:
“WebSphere Message Broker Toolkit” on page 31
The WebSphere Message Broker Toolkit is an integrated development environment
and graphical user interface based on the Eclipse platform.
“WebSphere Message Broker Explorer” on page 57
The WebSphere Message Broker Explorer is a graphical user interface based on the
Eclipse platform for administering your brokers.
Related tasks:
“Changing WebSphere Message Broker Explorer preferences” on page 654
Change preferences in the WebSphere Message Broker Explorer.
Chapter 8, “Administering brokers and broker resources,” on page 899
Administering brokers and associated broker resources includes the tasks that you
perform frequently to activate and manage those resources. Choose the method
you prefer to administer your brokers and associated resources.
Chapter 11, “Packaging and deploying,” on page 3209
Package resources that you create in the WebSphere Message Broker Toolkit, such
as message flows, and deploy them to execution groups on brokers.
Related reference:
“Administration Log view”
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.
“Broker Application Development perspective” on page 6784
The Broker Application Development perspective is the default perspective that is
displayed when you start the WebSphere Message Broker Toolkit.

Administration Log view
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.

The Administration Log view is displayed at the bottom of the WebSphere
Message Broker Explorer, and at the bottom of the Broker Application
Development perspective in the WebSphere Message Broker Toolkit. If the
Administration Log view is not displayed, you can show it by clicking Window >
Show View > Administration Log.

6840 WebSphere Message Broker Version 7.0.0.8

To view messages from a broker, the broker must be started, and you must be
connected to it. Click the broker in the Navigator view, to view deployment and
other messages in the Administration log.

Right-clicking in the Administration Log view displays the following menu items:
v Clear Administration Log

Clears all log entries from the Administration Log view and deletes the log
entries from the broker. You cannot retrieve a message that has been cleared.
Messages are automatically cleared when the broker starts.

v Save Log As

Saves the messages to a filename and path of your choice. Save Log As does not
remove messages from the Administration Log view or the broker.

Columns in the Administration Log view
Message

The Message column displays the message number.

Source

The Source column displays the reason the message was produced. Examples of
sources are: Administration Request, Administration Result, and Change
Notification.

Timestamp

The Timestamp column displays the date and time for each of the deployment
messages from the broker.

Message detail

The Message detail column displays the detail of the deployment message. To view
the full message, double-click the row containing the message. The message is
displayed in a new window.
Related tasks:
“Viewing Administration log information” on page 1007
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.
“Saving Administration log information” on page 1008
Save the Administration log information that is written to the Administration Log
view in the WebSphere Message Broker Explorer.
“Clearing Administration log information” on page 1009
Clear Administration log information to reduce the size of the log by using either
the WebSphere Message Broker Explorer or the CMP API.

Policy Sets and Policy Set Bindings editor
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.

Chapter 14. Reference 6841

Launching the editor

You must connect the WebSphere Message Broker Explorer to a broker before you
can edit policy sets and bindings.

To launch the Policy Sets and Policy Set Bindings editor, take the following steps:
1. Open the WebSphere Message Broker Explorer.
2. Right-click the broker with which you want to work, and click Properties.
3. Select the Security tab, and click Policy Sets.

The Policy Sets and Policy Set Bindings editor includes the following panels:
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on
page 6843
“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849

Policy set bindings

The administrator associates a policy set binding with a policy set when the policy
set binding is added. Information about the binding is then displayed on the main
panel of the policy set binding. You cannot change the policy set to which a
binding is associated. You can delete the policy set binding independently of the
policy set. However, deleting a policy set also deletes the associated policy set
binding.

The Policy Set Bindings editor includes the following panels:
“Policy Sets and Policy Set Bindings editor: Authentication and Protection
Tokens panel” on page 6854
“Policy Sets and Policy Set Bindings editor: Key Information panel” on page
6858
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel” on page
6860
“Policy Sets and Policy Set Bindings editor: Message Part Policies panel” on
page 6856
“Policy Sets and Policy Set Bindings editor: Message Expiration panel” on page
6862
“Policy Sets and Policy Set Bindings editor: Advanced panel” on page 6863

Related concepts:
“Policy sets” on page 774
Policy sets and bindings define and configure your WS-Security requirements,
supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,
SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.
Related tasks:
“Viewing and setting keystore and truststore runtime properties at broker level” on
page 780
Configure the message broker to refer to a keystore, a truststore, or both, before
deploying any message flows that require policy set or bindings for signature,
encryption, or X.509 Authentication.

6842 WebSphere Message Broker Version 7.0.0.8

“Implementing WS-Security” on page 769
Configure authentication, XML encryption, XML signature, and message expiration
by using the Policy Sets and Policy Set Bindings editor.
“Associating policy sets and bindings with message flows and nodes” on page 785
Use the Broker Archive editor to associate policy sets and bindings with message
flows and nodes, so that they are available to the broker at run time.

Policy Sets and Policy Set Bindings editor: Authentication
tokens panel
Use this panel, which is in the Policy Sets section of the editor, to create Username,
X.509, SAML, and LTPA authentication tokens.

You can further configure X.509 tokens in the bindings panels, at which time they
can be associated to key information.

Request and Response is always the same in any server/client relationship. A
message from a client to the server is a request, and the message back from the
server to the client is the response.

Fields

Table 292. Username authentication tokens

Field name Description and valid options

Token name Enter a user-defined name for the token policy.

When you add a new row, this field defaults to default_request. You
can select and change this value.

SOAP Message One of the following values:

v Request: a message from the client to the server.

v Response: a message from the server to the client.

When you add a new row, this field defaults to Request. You can
select and change this value.

WS-Security
Version

One of the following values:

v 1.0

v 1.1

When you add a new row, this field defaults to 1.0. You can select
and change this value.

Table 293. X.509 authentication tokens

Field name Description and valid options

Token name Enter a user-defined name for the token policy.

When you add a new row, this field defaults to default_request.
You can select and change this value.

SOAP Message One of the following values:

v Request: a message from the client to the server.

v Response: a message from the server to the client.

When you add a new row, this field defaults to Request. You can
select and change this value.

Chapter 14. Reference 6843

Table 293. X.509 authentication tokens (continued)

Field name Description and valid options

WS-Security
Version

One of the following values:

v 1.0

v 1.1

When you add a new row, this field defaults to 1.0. You can select
and change this value.

Token Type One of the following values:

v X.509 Version 3

v X.509 PKCS7

v X.509 PKI Path Version 1

When you add a new row, this field defaults to X.509 Version 3.
You can select and change this value.

Table 294. Other authentication tokens

Field name Description and valid options

Token name Enter a user-defined name for the token policy.

When you add a new row, this field defaults to default_request. You
can select and change this value.

Token Type One of the following values:

v SAML V1.1 pass-through

v SAML V2.0 pass-through

v LTPA V2 pass-through

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.
“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or
provider binding.
“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Part Policies panel” on page
6856
Use this panel, which is in the Policy Set Bindings section of the editor, to further

6844 WebSphere Message Broker Version 7.0.0.8

configure any message part protection tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Key Information panel” on page 6858
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated
policy set.
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel” on page 6860
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Expiration panel” on page
6862
Use this panel, which is in the Policy Set Bindings section of the editor, to define
settings for message expiration. When message expiration is enabled, the message
expires after the specified time interval.
“Policy Sets and Policy Set Bindings editor: Advanced panel” on page 6863
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute
applies to consumer binding only.

Policy Sets and Policy Set Bindings editor: Message Level
Protection panel
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.

Field Description and valid options

Message level
protection

Select this check box to specify that message level protection (using
digital signatures or encryption) is required. If this check box is
selected the other fields on this panel are available, and you can use
the associated panels to define signature and encryption policies.
This field is cleared by default.

Require signature
confirmation

Select this check box to require signature confirmation.

Include timestamp
in security header

Select this check box to include a time stamp in the header. You can
specify where the time stamp is placed in the header by using
Security header layout.

Security header
layout

Specify rules for the layout of the security header:

Strict - declarations must precede use
The declarations in the header must precede the use. This is
the default value.

Lax - order of contents can vary
The order of contents in the header can vary.

Lax but timestamp required first in header
The timestamp must be first in the header but the order of
the remaining elements can vary.

Lax but timestamp required last in header
The timestamp must be last in the header but the order of
the remaining elements can vary.

Tokens

Use this panel to define symmetric and asymmetric tokens to be used for signature
and encryption.

Chapter 14. Reference 6845

Associate the asymmetric tokens that you define here with parts of the message
that require signature and encryption. The tokens are also associated with private
keys or X.509 Public Key Certificates (PKCs), which are part of public/private key
pairs. Define one token for each distinct private key and PKC. The administrator
can create any number of asymmetric X.509 tokens.

Associate the symmetric tokens that you define here with parts of the message that
require signature and encryption. Only symmetric Kerberos tokens are supported.
The administrator can create any number of Kerberos tokens.

You can edit this panel only if the Message level protection check box is selected
on the Message Level Protection panel.

Field Name Description and valid options

Token Name Enter a name for the token.

Token Type Either:

Initiator
The initiator of the request and response conversation, who
owns the public/private pair of keys for which this token
refers.

Recipient
The recipient of the request and response conversation, who
owns the public/private pair of keys for which this token
refers.

When you add a new row, this field defaults to Initiator. You can
change this value.

WS-Security
Version

Either:

1.0

1.1

When you add a new row, this field defaults to 1.0. You can change
this value.

Token Type
(Asymmetric)

Any of:

X.509 Version 3

X.509 PKCS7

X.509 PKI Path Version 1

When you add a new row, this field defaults to X.509 Version 3.
You can change this value.

Token Type
(Symmetric)

Any of:

GSS_Kerberos5_AP_REQ

Kerberos5_AP_REQ

When you add a new row, this field defaults to
GSS_Kerberos5_AP_REQ. You can change this value.

Algorithms

Use this panel to set the supported cryptographic and canonicalization algorithms.
Algorithms are used to reconcile XML differences.

You can edit this panel only if Message level protection is selected on the Message
Level Protection panel.

6846 WebSphere Message Broker Version 7.0.0.8

Field Name Description and valid options

Algorithm suite Select the algorithm that is required for performing cryptographic
operations with symmetric or asymmetric key-based security tokens.
All of the algorithm values in this field specify an algorithm suite.
Algorithm suites and the values they each represent are detailed in
the Web Services Security Policy Language (WS-SecurityPolicy) July
2005 Version 1.1 specification. The default algorithm is
Basic128Rsa15.

Basic256

Basic192

Basic128

TripleDes

Basic256Rsa15

Basic192Rsa15

Basic128Rsa15

TripleDesRsa15

Basic256Sha256

Basic192Sha256

Basic128Sha256

TripleDesSha256

Basic256Sha256Rsa15

Basic192Sha256Rsa15

Basic128Sha256Rsa15

TripleDesSha256Rsa15

Canonicalization
algorithm

Select the type of canonicalization. The following supported
canonicalization algorithms are available in this list:

Exclusive canonicalization

Inclusive canonicalization

The default value is Exclusive canonicalization.

Use security token
reference
transformation

Select this check box to specify that the security token reference is
transformed. The default state is cleared.

This table defines values for the components of each algorithm suite.

Algorithm suite Digest Encryption
Symmetric
Key Wrap

Asymmetric
Key Wrap

Encryption
key
derivation

Signature key
derivation

Minimum
symmetric
key length

Basic256 Sha1 Aes256 KwAes256 KwRsaOaep PSha1L256 PSha1L192 256

Basic192 Sha1 Aes192 KwAes192 KwRsaOaep PSha1L192 PSha1L192 192

Basic128 Sha1 Aes128 KwAes128 KwRsaOaep PSha1L128 PSha1L128 128

TripleDes Sha1 TripleDes KwTripleDes KwRsaOaep PSha1L192 PSha1L192 192

Basic256Rsa15 Sha1 Aes256 KwAes256 KwRsa15 PSha1L256 PSha1L192 256

Basic192Rsa15 Sha1 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192 192

Basic128Rsa15 Sha1 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128 128

TripleDesRsa15 Sha1 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192 192

Basic256Sha256 Sha256 Aes256 KwAes256 KwRsaOaep PSha1L256 PSha1L192 256

Basic192Sha256 Sha256 Aes192 KwAes192 KwRsaOaep PSha1L192 PSha1L192 192

Basic128Sha256 Sha256 Aes128 KwAes128 KwRsaOaep PSha1L128 PSha1L128 128

Chapter 14. Reference 6847

Algorithm suite Digest Encryption
Symmetric
Key Wrap

Asymmetric
Key Wrap

Encryption
key
derivation

Signature key
derivation

Minimum
symmetric
key length

TripleDesSha256 Sha256 TripleDes KwTripleDes KwRsaOaep PSha1L192 PSha1L192 192

Basic256Sha256Rsa15 Sha256 Aes256 KwAes256 KwRsa15 PSha1L256 PSha1L192 256

Basic192Sha256Rsa15 Sha256 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192 192

Basic128Sha256Rsa15 Sha256 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128 128

TripleDesSha256Rsa15 Sha256 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192 192

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on page
6843
Use this panel, which is in the Policy Sets section of the editor, to create Username,
X.509, SAML, and LTPA authentication tokens.
“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or
provider binding.
“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Part Policies panel” on page
6856
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message part protection tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Key Information panel” on page 6858
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated
policy set.
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel” on page 6860
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Expiration panel” on page
6862
Use this panel, which is in the Policy Set Bindings section of the editor, to define
settings for message expiration. When message expiration is enabled, the message
expires after the specified time interval.
“Policy Sets and Policy Set Bindings editor: Advanced panel” on page 6863
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute

6848 WebSphere Message Broker Version 7.0.0.8

applies to consumer binding only.

Policy Sets and Policy Set Bindings editor: Message Part
Protection panel
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.

Create a row in this table for each part of the message that is to be encrypted or
signed.

Field Description and valid options

Name Enter a user-defined name for the part. You can replicate the name to
group several parts together; previously defined names are given as
options.

Security type Either:

Encryption

Signature

SOAP Message Either:

Request: a message from the client to the server.

Response: a message from the server to the client.

Message Body Determines that the whole message body is to be either encrypted or
signed.

If the whole message body is not to be encrypted or signed, further
configuration is needed in one of the subsequent panels: Aliases,
Qname, or Xpath.

Aliases

Use this panel to refer to an alias identified in a SOAPInput, SOAPRequest, or
SOAPAsyncRequest node. The message flow with which this policy set will be
associated in the Broker Archive editor must contain one of these nodes with an
alias defined.

When developing a message flow containing one of these nodes, the developer
might decide to identify a part of the message for which encryption or signature
applies. This identification is done in the WS Extension properties panel of the
node, by defining an XPath expression that refers to the part of the message and
an associated alias name. The administrator then refers to that alias name by using
this panel, and sets the correct security type for the alias on the corresponding
Message Part Protection panel.

You can edit the Aliases panel only if Message level protection is selected on the
Message Level Protection panel, and a part has been added in the Message Part
Protection panel.

Field Description and valid options

Name Select a name from the list. All names created in the corresponding
Message Part Protection panel are displayed.

Alias Enter the alias value defined on the SOAP node property panel.

Chapter 14. Reference 6849

Qname

Use this panel to define namespaces, and optional elements within those
namespaces, within the SOAP message header for which encryption or signature
applies.

Namespaces are used primarily when WS-Addressing headers exist. If no local
part name is specified to refer to specific elements, all elements in the SOAP
message header for the specified namespace apply.

To use the QName selection method, the SOAP header elements must be the
immediate children of the SOAP header. You cannot select header elements that are
subelements of other elements in the SOAP header that is using QName. To select
such elements, you must use an XPath expression.

You can edit the Qname panel only if Message level protection is selected on the
Message Level Protection panel, and a part has been added in the Message Part
Protection panel.

Field Description and valid options

Name Select a name from the list. All names created in the corresponding Message Part Protection panel are
displayed.

Local part An optional local part name within the namespace. In the following example, securitybinding is the
namespace; within that namespace, securityOutboundBindingConfig and
securityInboundBindingConfig are local parts.

<securitybinding:securityBindings
xmlns:securitybinding="http://www.example.com/xmlns/ws-securitybinding">

<securitybinding:securityBinding name="application">
<securitybinding:securityOutboundBindingConfig/>
<securitybinding:securityInboundBindingConfig>

<securitybinding:encryptionInfo name="con_myMPPToken">
<securitybinding:keyEncryptionKeyInfo reference="con_myToken_encmyMPPToken_keyinfo"/>
<securitybinding:encryptionPartReference reference="request:myMPPToken"/>

</securitybinding:encryptionInfo>
<securitybinding:keyInfo classname="com.ibm.ws.wssecurity.wssapi.CommonContentConsumer"

name="con_auth_keyinfo" type="STRREF">

NameSpace The namespace of the SOAP message headers for which encryption and signature apply.

Xpath

Use this panel to define an XPath expression that refers to an element in the
message to which encryption or signature applies.

Use this panel as an alternative, or in addition to, specifying XPath expressions
and aliases directly on the nodes.

You cannot edit the first table in the Xpath panel, which shows five different prefix
and namespaces values (based on the SOAP 1.1 specification). The second table
allows the administrator to paste a fully qualified XPath expression directly into
the XPath column, or select one from the list:

Envelope, Header, Security, Timestamp

Envelope, Header, Security

Envelope, Header, Security, Signature

Selecting one of the preceding options, causes the appropriate XPath expression to
be created for both SOAP 1.1 (http://schemas.xmlsoap.org/soap/envelope/) and

6850 WebSphere Message Broker Version 7.0.0.8

SOAP 1.2 (http://www.w3.org/2003/05/soap-envelope/). For example, selecting
Envelope, Header, Security, Timestamp results in the following XPath expressions
being added to the policy set:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Header’]
/*[namespace-uri()=

’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd’ and local-name()=’Security’]

/*[namespace-uri()=
’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd’ and local-name()=’Timestamp’]

/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Envelope’]

/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Header’]

/*[namespace-uri()=
’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd’ and local-name()=’Security’]

/*[namespace-uri()=
’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd’ and local-name()=’Timestamp’]

Line breaks have been added to enhance readability; in the Toolkit each expression
is pasted on a single line. The preceding expressions show the format of the fully
qualified XPath expression syntax required by the broker. If you paste your own
XPath expressions into the XPath column, ensure that they adhere to this syntax.
When you paste your own XPath expressions, the prefix and namespace table is
unavailable for substitution of values, and only a single expression is added to the
policy set, instead of both a SOAP 1.1 and SOAP 1.2 variant.

You can edit the Xpath panel only if Message level protection is selected on the
Message Level Protection panel, and a part has been added in the Message Part
Protection panel.

Field Description and valid options

Name Select a name from the list. All names created in the corresponding
Message Part Protection panel are displayed.

XPath A user-defined value that the administrator assigns to an element in
the SOAP message for encryption or signing.

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on page
6843
Use this panel, which is in the Policy Sets section of the editor, to create Username,
X.509, SAML, and LTPA authentication tokens.
“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or

Chapter 14. Reference 6851

provider binding.
“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Part Policies panel” on page
6856
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message part protection tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Key Information panel” on page 6858
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated
policy set.
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel” on page 6860
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Expiration panel” on page
6862
Use this panel, which is in the Policy Set Bindings section of the editor, to define
settings for message expiration. When message expiration is enabled, the message
expires after the specified time interval.
“Policy Sets and Policy Set Bindings editor: Advanced panel” on page 6863
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute
applies to consumer binding only.

Policy Sets and Policy Set Bindings editor: main panel
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or
provider binding.

A policy set binding must always be associated with a policy set. When adding a
policy set binding, the administrator must select, on the main panel, the policy set
with which it is associated. Changing the associated policy set on the main panel
removes any previous configuration for the policy set binding.

The administrator must also select whether the policy set binding is to be a
Consumer or Provider binding.

Consumer
A consumer policy set binding can apply only to the following nodes:

SOAPRequest
SOAPAsyncRequest
SOAPAsyncResponse

Provider
A provider policy set binding can apply only to the following nodes:

SOAPInput
SOAPReply

If your message flow incorporates both sets of nodes, create two policy set
bindings, one for the consumer nodes and the other for the provider nodes.

6852 WebSphere Message Broker Version 7.0.0.8

Associate both policy set bindings with the message flows in the BAR file editor. A
policy set binding can be deleted independently of the policy set, but a policy set
cannot be deleted when it has an associated policy set binding.

Use the Compatibility Mode option to control the internal name-spacing of the
bindings schema. When Compatibility Mode is selected, the policy set and
bindings are limited to supporting Username and X.509 tokens only. When you
create policy set bindings, Compatibility Mode is selected automatically based on
the version of the selected broker. It is also selected by default for policy set
bindings that were created with previous versions of WebSphere Message Broker. If
the policy set and bindings include new token types such as Kerberos, SAML
pass-through, or LTPA pass-through, you must deselect the Compatibility Mode
option. If you select Compatibility Mode on an existing policy set binding that
includes new token types (such as Kerberos, SAML pass-through, or LTPA
pass-through) a warning is displayed and these keys are ignored when the data is
saved.

You can also use the panel to rename the policy set binding.

Fields

Field Description and valid options

Name Enter a user-defined name for the binding.

Associated Policy
Set

Select the policy set with which this binding is to be associated.

This Policy Set
Binding
configuration will
be used with:

Select the appropriate choice:

Consumer

Provider

Compatibility
mode

When selected, this option enables Username and X.509 tokens only.
Deselect this option to enable new token types such as Kerberos,
SAML pass-through, or LTPA pass-through.

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on page
6843
Use this panel, which is in the Policy Sets section of the editor, to create Username,
X.509, SAML, and LTPA authentication tokens.
“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.
“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.

Chapter 14. Reference 6853

“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel”
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Part Policies panel” on page
6856
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message part protection tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Key Information panel” on page 6858
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated
policy set.
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel” on page 6860
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Expiration panel” on page
6862
Use this panel, which is in the Policy Set Bindings section of the editor, to define
settings for message expiration. When message expiration is enabled, the message
expires after the specified time interval.
“Policy Sets and Policy Set Bindings editor: Advanced panel” on page 6863
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute
applies to consumer binding only.

Policy Sets and Policy Set Bindings editor: Authentication and
Protection Tokens panel
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.

Fields

The table is prefilled, based on the following criteria
v Whether any X.509 authentication tokens exist in the associated policy set.
v Whether the SOAP message type of the authentication token is request or

response.
v Whether this policy set binding is defined as being a consumer or provider.

Each authentication token identified as requiring further information is added to
the table. An authentication token can require one of two types of additional
information:
v Key information in the form of a key name and key alias, for lookup in the

broker keystore.
v Verification information, which can be either TrustAny or TrustStore.

This table shows the different combinations of configuration for authentication
tokens and whether key information or verification information is required:

6854 WebSphere Message Broker Version 7.0.0.8

Authentication X.509 tokens

Policy set
configuration

Policy set
bindings
configuration SOAP message Key information Key password

Verification
information

request provider inbound N/A N/A required

response provider outbound required required N/A

request consumer outbound required required N/A

response consumer inbound N/A N/A required

Where N/A is displayed in a field, no information is required. Where an
authentication token is displayed, enter information in all fields that do not display
N/A, so that the policy set binding can be generated correctly in accordance with
the associated policy set.

Configure the broker to refer to a keystore and truststore. You might also need to
configure passwords for these stores, and specific key passwords. See “Viewing
and setting keystore and truststore runtime properties at broker level” on page 780
for further information.

Field name Description and valid options

Authentication
Token Name

Displays the names of all authentication X.509 tokens that require
further configuration. The token name is displayed after either
request: or response:, depending on the configuration of the token
in the associated policy set.

Key name The distinguished name (DN) that uniquely identifies the key in the
keystore defined by the broker. For example “CN=CommonName,
O=Organisation, C=Country"

Key Alias The key alias of the key in the keystore defined by the broker. The
broker also uses the key alias to look up the keystore password
associated with this key. You define this in the broker using the
mqsisetdbparms command.

Certificates Either:

TrustAny
With no security profile set, all certificates are trusted.

With a security profile set, the certificate is passed to the
security provider defined by the security profile for it to
establish trust. See “Setting up message flow security” on
page 431.

TrustStore
Certificates are checked against the public key certificates in
the truststore defined by the broker.

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on page
6843
Use this panel, which is in the Policy Sets section of the editor, to create Username,

Chapter 14. Reference 6855

X.509, SAML, and LTPA authentication tokens.
“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.
“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or
provider binding.
“Policy Sets and Policy Set Bindings editor: Message Part Policies panel”
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message part protection tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Key Information panel” on page 6858
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated
policy set.
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel” on page 6860
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Expiration panel” on page
6862
Use this panel, which is in the Policy Set Bindings section of the editor, to define
settings for message expiration. When message expiration is enabled, the message
expires after the specified time interval.
“Policy Sets and Policy Set Bindings editor: Advanced panel” on page 6863
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute
applies to consumer binding only.

Policy Sets and Policy Set Bindings editor: Message Part
Policies panel
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message part protection tokens defined in the associated policy set.

The panel has two tables: the first table is for tokens that are used to encrypt
message parts. The second table is for tokens used to sign message parts.

The tables are prefilled, based on the following criteria:
v Whether any message level protection tokens exist in the associated policy set.
v Whether the type of the message level protection token is initiator or recipient.
v Whether any message part protection tokens exist, and whether they define the

message body, alias, Qname or XPath.
v Whether the SOAP message type of the message part protection token is request

or response.
v Whether this policy set binding is defined as being a consumer or provider.

6856 WebSphere Message Broker Version 7.0.0.8

Each message part protection token that is added to one of the tables requires
additional settings in either the Key information panel or the Kerberos Settings
panel.

If you are using X.509 certificates, you must configure the Message Broker runtime
environment to refer to a keystore and truststore. You might also need to configure
passwords for these stores, and specific key passwords. See “Viewing and setting
keystore and truststore runtime properties at broker level” on page 780 for further
information.

If you are using Kerberos tickets, you must provide client credentials for accessing
the Kerberos Key Distribution Center (KDC). You can provide these credentials
either through a Username and password token type in the message tree properties
folder, or by using the mqsisetdbparms command. For more information, see
“Implementing WS-Security” on page 769.

Fields

Column Name Description and valid options

Encryption
Protection and
Signature
Protection

Displays the names of any Message Part Protection tokens that
require further configuration. The token name is displayed after either
request: or response:, depending on the configuration of the token
in the associated policy set.

Timestamp Either:

Yes

No

Nonce Either:

Yes

No

Encryption Either:

Data

Key

Token Click this column to see a list of all message level protection tokens.
Select the token that is to be associated with the message part
protection token.

Token Type Click this column to see a list of all token types. Token types can be
specified for outbound policies and optionally for inbound policies.
Select the appropriate token type from the list. Valid options are
STRREF, KEYID, EMB, KEYNAME, and X509ISSUER.

Order Defines the order that response message part policies should be
processed in. N/A is displayed where this column is not required for
certain combinations of tokens.

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on page
6843
Use this panel, which is in the Policy Sets section of the editor, to create Username,
X.509, SAML, and LTPA authentication tokens.

Chapter 14. Reference 6857

“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.
“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or
provider binding.
“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Key Information panel”
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated
policy set.
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel” on page 6860
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Expiration panel” on page
6862
Use this panel, which is in the Policy Set Bindings section of the editor, to define
settings for message expiration. When message expiration is enabled, the message
expires after the specified time interval.
“Policy Sets and Policy Set Bindings editor: Advanced panel” on page 6863
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute
applies to consumer binding only.
“mqsisetdbparms command” on page 3954
Use the mqsisetdbparms command to associate a specific user ID and password (or
SSH identity file) with one or more resources that are accessed by the broker.

Policy Sets and Policy Set Bindings editor: Key Information
panel
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated
policy set.

The table is prefilled based on the selections made in the message part policy
panel. Different combinations of message level protection tokens and message part
protection tokens require one or more of the following types of additional
information:
v Key information in the form of a key name and key alias, for lookup in the

broker keystore.
v Verification information, which can be either trustany or truststore.

6858 WebSphere Message Broker Version 7.0.0.8

Where a message level protection token is displayed, enter the required level of
information so that the policy set binding can be generated correctly in accordance
with the associated policy set.

Configure the broker to refer to a keystore and truststore. You might also need to
configure passwords for these stores, and specific key passwords. See “Viewing
and setting keystore and truststore runtime properties at broker level” on page 780
for further information.

Fields

Field name Description and valid options

Token Displays the names of any message level protection tokens that
require further configuration. The token name is displayed after either
request: or response:, depending on the configuration of the token
in the associated policy set.

Key Name The distinguished name (DN) that uniquely identifies the key in the
keystore that is defined in the broker using the mqsichangeproperties
command. For example “CN=CommonName, O=Organisation,
C=Country". When you require message level protection on the
inbound signature token and the key is not known in advance, enter
Any or leave blank.

Key Alias The key alias of the key in the keystore defined by the broker. When
you require message level protection on the inbound signature token
and the key is not known in advance, enter Any or leave blank. You
define the broker keystores using the mqsisetdbparms and
mqsichangeproperties commands.

Trust Either:

TrustAny
With no security profile set, all certificates are trusted.

With a security profile set, the certificate is passed to the
security provider defined by the security profile for it to
establish trust. See “Setting up message flow security” on
page 431.

TrustStore
Check against the public key certificates in the truststore
defined by the broker.

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on page
6843
Use this panel, which is in the Policy Sets section of the editor, to create Username,
X.509, SAML, and LTPA authentication tokens.
“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.

Chapter 14. Reference 6859

“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or
provider binding.
“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Part Policies panel” on page
6856
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message part protection tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Expiration panel” on page
6862
Use this panel, which is in the Policy Set Bindings section of the editor, to define
settings for message expiration. When message expiration is enabled, the message
expires after the specified time interval.
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel”
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Advanced panel” on page 6863
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute
applies to consumer binding only.

Policy Sets and Policy Set Bindings editor: Kerberos settings
panel
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.

This panel is enabled only if the Compatibility Mode option in the Policy Sets and
Policy Set Bindings editor: Main panel is deselected.

The table is pre-filled based on the Kerberos tokens in the associated policy.
Symmetric tokens configured in the policy require additional information for
consumer bindings only.

Fields

Field name Description and valid options

Token Displays the names of any Kerberos tokens that require further
configuration.

Target Service
Realm

The Kerberos target service realm. The default is a blank string, which
results in the Kerberos default being used; other realms can be
specified by changing this value.

6860 WebSphere Message Broker Version 7.0.0.8

Field name Description and valid options

Target Service
Name

The Kerberos target service name. The default is a blank string, which
results in the default from the WSDL being used; other names can be
specified by changing this value.

Target Service
Host

The Kerberos target service host. The default is a blank string, which
results in the Kerberos default being used; other hosts can be
specified by changing this value. This option is not applicable to
service providers.

Require Derived
Keys

Specify derived keys. Valid values are True or False. The default is
True.

Derived Key
Token Namespace

The namespace to use for derived keys. The default value is
WS-SecureConversation 1.3.

Key Size The key size for derived keys. The default is 16.

Acquire New
Tokens

Specifies whether a new ticket must be acquired from the Key
Distribution Center (KDC) for each request. Valid values are True or
False. The default is True. This option is not applicable to service
providers.

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on page
6843
Use this panel, which is in the Policy Sets section of the editor, to create Username,
X.509, SAML, and LTPA authentication tokens.
“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.
“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or
provider binding.
“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Part Policies panel” on page
6856
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message part protection tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Key Information panel” on page 6858
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated

Chapter 14. Reference 6861

policy set.
“Policy Sets and Policy Set Bindings editor: Message Expiration panel”
Use this panel, which is in the Policy Set Bindings section of the editor, to define
settings for message expiration. When message expiration is enabled, the message
expires after the specified time interval.
“Policy Sets and Policy Set Bindings editor: Advanced panel” on page 6863
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute
applies to consumer binding only.

Policy Sets and Policy Set Bindings editor: Message Expiration
panel
Use this panel, which is in the Policy Set Bindings section of the editor, to define
settings for message expiration. When message expiration is enabled, the message
expires after the specified time interval.

Fields

Field Name Description and valid options

Enable message
expiration

Enables message expiration.

Message timeout Timeout value for message expiration in minutes.

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on page
6843
Use this panel, which is in the Policy Sets section of the editor, to create Username,
X.509, SAML, and LTPA authentication tokens.
“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.
“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or
provider binding.
“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.

6862 WebSphere Message Broker Version 7.0.0.8

“Policy Sets and Policy Set Bindings editor: Message Part Policies panel” on page
6856
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message part protection tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Key Information panel” on page 6858
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated
policy set.
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel” on page 6860
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Advanced panel”
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute
applies to consumer binding only.

Policy Sets and Policy Set Bindings editor: Advanced panel
Use this panel, which is in the Policy Set Bindings section of the editor, to
configure the mustUnderstand attribute in the security header of the consumer
message. By default this check box is selected. If you unselect the check box, you
can omit the mustUnderstand=1 attribute from the security header. This attribute
applies to consumer binding only.

Fields

Field Name Description and valid options

Include
mustUnderstand
attribute in security
header

If you select this option, the mustUnderstand attribute of security
header is created with the value 1. Otherwise, the security header is
created with the value 0.

Check timestamp
of response
message

If you select this option, the ws-security timestamp response of the
message is checked. If you unselect this option, the broker does not
look for a timestamp in the response message. This option is valid
when you are using a consumer binding and you have enabled the
option Include timestamp in security header of the policy set
Message Level Protection panel.

Related reference:
“Policy Sets and Policy Set Bindings editor” on page 6841
The Policy Sets and Policy Set Bindings editor is the default editor for editing,
saving, importing, and exporting a policy set or binding. You can define all the
WS-Security policies for a single node, or a set of nodes. The policy set can be
associated by the administrator with either a message flow or a node.
“Policy Sets and Policy Set Bindings editor: Authentication tokens panel” on page
6843
Use this panel, which is in the Policy Sets section of the editor, to create Username,
X.509, SAML, and LTPA authentication tokens.
“Policy Sets and Policy Set Bindings editor: Message Level Protection panel” on
page 6845
Use this panel, which is in the Policy Sets section of the editor, to apply signatures
and encryption to the whole message, whether inbound or outbound.

Chapter 14. Reference 6863

|
|
|

“Policy Sets and Policy Set Bindings editor: Message Part Protection panel” on
page 6849
Use this panel, which is in the Policy Sets section of the editor, to define the parts
of a message that encryption and signature apply to. Encrypted parts are used to
protect message confidentiality. Signature parts are used for message integrity.
“Policy Sets and Policy Set Bindings editor: main panel” on page 6852
Use this panel, which is in the Policy Sets section of the editor, to associate a policy
set binding with a policy set, and to specify whether the binding is a consumer or
provider binding.
“Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens
panel” on page 6854
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any X.509 authentication tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Message Part Policies panel” on page
6856
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message part protection tokens defined in the associated policy set.
“Policy Sets and Policy Set Bindings editor: Key Information panel” on page 6858
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any message level protection tokens that are defined in the associated
policy set.
“Policy Sets and Policy Set Bindings editor: Kerberos settings panel” on page 6860
Use this panel, which is in the Policy Set Bindings section of the editor, to further
configure any Kerberos tokens that are defined in the associated policy set.

Troubleshooting
Use the reference information in this section to help you diagnose errors in
WebSphere Message Broker.

Select the appropriate topic from the following list to diagnose problems and errors
in WebSphere Message Broker:
v “Logs”
v “Trace” on page 6871
v “Trace logging from a user-defined C extension” on page 6693
v “Dumps” on page 6877
v “Abend files” on page 6880
v “WebSphere Message Broker event reports” on page 6883
v “WebSphere MQ facilities” on page 6890
v “Database facilities” on page 6891
v “Other sources of diagnostic information on z/OS” on page 6891
v “Solutions to similar problems” on page 6892
v “Resolving problems when installing” on page 3517
v “Resolving problems when uninstalling” on page 3525

Logs
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.

6864 WebSphere Message Broker Version 7.0.0.8

The information that is recorded in a log typically consists of a time stamp, which
indicates when the error occurred, and a brief description of the error, which can
be expanded to provide more details of the error. In some situations, a general
error is written and is followed by a group of more specific errors that provide
details about the general error.

When an error occurs, check STDOUT, STDERR, and the local error log first. These
logs record information about major activities within the system. All components
of WebSphere Message Broker provide diagnostic information whenever error or
warning conditions affect broker operation. These conditions include:
v Unsuccessful attempts to write a message to a WebSphere MQ output queue
v Errors interacting with databases
v The inability to parse an input message

Additional logs that are specific to WebSphere Message Broker are written to
record runtime errors, internal errors that are produced by the operating system or
your code, or errors related to the work that you are doing in a particular
perspective, all of which you can view using the WebSphere Message Broker
Toolkit.

Data is written to the following logs:
v “Standard system logs” on page 6866
v “Local error logs” on page 6867
v “WebSphere Message Broker logs” on page 6867
v “WebSphere MQ logs” on page 6869
v “Database logs” on page 6870
Related tasks:
“Viewing Administration log information” on page 1007
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
“Linux and UNIX systems: Configuring the syslog daemon” on page 3529
On Linux and UNIX systems, all WebSphere Message Broker messages (other than
messages that are generated by the command-line utilities) are sent to the syslog
subsystem.
“z/OS: Viewing broker job logs” on page 3530
On z/OS, the broker writes messages to the appropriate z/OS system log and job
logs. These messages might include information, warning, error, and severe
messages to indicate various situations and events.
Related reference:
“Administration Log view” on page 6840
The Administration Log view shows administration requests and their results,
changes made to objects, and the result of deployment actions on brokers. The
Administration Log view can also describe configuration changes that have been
automatically applied as a result of moving the broker from one version to
another; for example, after applying maintenance.

Chapter 14. Reference 6865

Standard system logs
The broker writes information, warning, and error messages to standard output
(STDOUT) and standard error (STDERR). The broker records this information for
the execution group and for the broker admin agent (bipbroker process).

On some operating systems, the two standard logs are written to separate files, but
the system might provide an option for the data to be recorded to a single merged
file. On other systems, the two targets are defined to a single, and you might have
the option to separate them. Check the documentation that is provided with your
operating system for more details about STDOUT and STDERR.

Brokers write records to both STDOUT and STDERR. Always check the contents of
the file or files when an error occurs.

Because the records are written whenever components are active, check
occasionally that the location of the file or files has sufficient space, or trim the file
contents on a regular basis.

The default location of STDOUT and STDERR depends on the operating system:

Operating system

Location of STDOUT and
STDERR for broker admin
agent

Location of STDOUT and
STDERR for execution
group

Linux UNIX Linux
and UNIX systems

/var/mqsi/components/
broker_name

/var/mqsi/components/
broker_name/
execution_group_uuid

Windows Windows systems A single file,
workpath\components\
broker_name\console.txt,
contains both STDOUT and
STDERR data, generated by
the admin agent, where
workpath is the working
directory defined for the
broker.

A single file,
workpath\components\
broker_name\
execution_group_uuid\
console.txt, contains both
STDOUT and STDERR data,
where workpath is the
working directory defined
for the broker.

z/OS

z/OS systems The job log for the broker

control address space.
The job log for the execution
group address spaces.

Related tasks:
“Viewing Administration log information” on page 1007
You can view Administration log information by using either the WebSphere
Message Broker Explorer, or the CMP API.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
“Linux and UNIX systems: Configuring the syslog daemon” on page 3529
On Linux and UNIX systems, all WebSphere Message Broker messages (other than
messages that are generated by the command-line utilities) are sent to the syslog
subsystem.
Related reference:
“Sample BIPCRBK file” on page 4006
The sample BIPCRBK file that is shipped with WebSphere Message Broker is
included here for your reference.

6866 WebSphere Message Broker Version 7.0.0.8

Local error logs
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.

Windows

On Windows, the local error log is the Windows Event log (Application

view).

UNIX

On UNIX and Linux systems, the local error log is the syslog. Where

syslog messages are sent depends on how you configure your UNIX or Linux
system.

z/OS

On z/OS, the local error log is the operator console.

Entries in the local error log that are generated by WebSphere Message Broker are
identified in the following way:

v Windows On Windows: by events from the source WebSphere Broker v**** and
a message number in the form nnnn, where **** is the current four-digit product
version number.

v UNIX On UNIX: by a message number in the form BIPnnnn.

v z/OS On z/OS: by a started task ID, and a message number in the form
BIPnnnn.

When a broker encounters an error, more than one message can be written to the
local error log. Typically these messages start with a general message (for example,
Could not process a message), and further messages give more details about the
cause of the error (for example, An error was detected while processing the
following SQL statement).

Windows

On Windows, the event log can fill up; ensure that you have a log size

that is sufficient, or that you have enabled circular logging.
Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
“Linux and UNIX systems: Configuring the syslog daemon” on page 3529
On Linux and UNIX systems, all WebSphere Message Broker messages (other than
messages that are generated by the command-line utilities) are sent to the syslog
subsystem.
“z/OS: Viewing broker job logs” on page 3530
On z/OS, the broker writes messages to the appropriate z/OS system log and job
logs. These messages might include information, warning, error, and severe
messages to indicate various situations and events.

WebSphere Message Broker logs
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.

Chapter 14. Reference 6867

The following logs are used for reporting errors and events:
v “Eclipse error log”
v “Broker Administration log or Deployment log”
v “The Problems or Alerts view”
v “TDS log”

Eclipse error log:
The Eclipse error log captures internal errors from Eclipse and the code associated
with your user-defined extensions. Check this log at run time for exceptions that
you might have caused during development. When errors are triggered, they are
added to the Error Log view of the Plug-in Development perspective, and you can
double-click each one to examine details. Entries are sorted in reverse chronological
order; that is, most recent first. You can open the Properties view to see entry
details. You can also clear the view when you have fixed all the errors, although
you cannot clear individual errors.

Some errors might be hierarchical; that is, a general entry for a complex problem
might be followed by a number of child entries that list the individual problems in
detail.

The same information that is shown in the Error Log view is stored in the .log file
in the workspace directory. The default location for the workspace directory
depends on your environment:

v Linux Linux on x86: user_home_dir/IBM/wmbt70/workspace/

v Windows Windows XP and Windows Server 2003: C:\Documents and
Settings\user_ID\IBM\wmbt70\workspace\

v Windows Windows 7, Windows Vista and Windows Server 2008:
C:\Users\user_ID\IBM\wmbt70\workspace\

The Eclipse error log shows errors that are generated only by the user ID that is
working with that particular WebSphere Message Broker Toolkit session.

Broker Administration log or Deployment log:
Broker Administration log information is written to the Administration log. This
log is stored and managed by the broker. The Administration log and displays
messages about events that occur within the broker, such as the results of a
deployment, or a change to broker properties. The messages can be information,
errors, or warnings. You view the messages in the Administration Log view in the
WebSphere Message Broker Explorer, and the Deployment log in the WebSphere
Message Broker Toolkit.

The Problems or Alerts view:
Either the Problems or the Alerts view is displayed, depending on the perspective
being used at the time.
v In the Broker Application Development perspective the Problems view shows

information messages, warnings, and errors for message flow applications and
associated resources, such as message flows, message sets, ESQL, Java, and
mapping.

TDS log:
When you use the Tagged/Delimited String (TDS) physical format messages, you
must conform to a number of rules that apply to the setting of values of properties.
These rules are checked at deploy time, and, if an inconsistency is found, error

6868 WebSphere Message Broker Version 7.0.0.8

message BIP1836 is displayed in the WebSphere Message Broker Toolkit. Details of
the error are written to the TDS.log file in the install_dir/log directory.

For more information about the rules for TDS physical format properties, see “TDS
message model integrity” on page 6295.
Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
“Viewing the Eclipse error log” on page 3532
The Eclipse error log captures internal errors that are caused by the operating
system or your code.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
Related reference:
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.
“WebSphere MQ logs”
WebSphere MQ messages are written to the local error log in the same way as
WebSphere Message Broker messages.
“Database logs” on page 6870
Databases write severe error and warning conditions to the local error log (syslog).
Typically, databases also write errors to a database log file, such as the db2diag.log
file on DB2.

WebSphere MQ logs
WebSphere MQ messages are written to the local error log in the same way as
WebSphere Message Broker messages.

WebSphere MQ messages start with the prefix AMQ followed by a number
between 4000 and 9999. The number specifies from which part of WebSphere MQ
the message originates:

4000 to 4999
Windows user interface messages

5000 to 5999
Installable services messages

6000 to 6999
Common services messages

7000 to 7999
WebSphere MQ product messages

8000 to 8999
WebSphere MQ administration messages

9000 to 9999
Remote messages

For a full explanation of each message, see the WebSphere MQ Library web page.

Chapter 14. Reference 6869

http://www.ibm.com/software/integration/wmq/library/

Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
“Windows: Viewing the local error log” on page 3527
The Windows Event Viewer is where WebSphere Message Broker writes records to
the local system. Use Windows system facilities to view this log.
“Linux and UNIX systems: Configuring the syslog daemon” on page 3529
On Linux and UNIX systems, all WebSphere Message Broker messages (other than
messages that are generated by the command-line utilities) are sent to the syslog
subsystem.
Related reference:
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.
“WebSphere MQ facilities” on page 6890
WebSphere Message Broker components depend on WebSphere MQ resources in
many ways. You can therefore gain valuable information from the WebSphere MQ
logs and events.

Database logs
Databases write severe error and warning conditions to the local error log (syslog).
Typically, databases also write errors to a database log file, such as the db2diag.log
file on DB2.

You can open the db2diag.log file in a text editor.

The following example shows a typical entry from the db2diag.log file:
Jun 18 15:02:53 bluj DB2[46827]: DB2(db2inst1.000(1))oper_system_services sqlobeep(2)
reports:(3)
Jun 18 15:02:53 (4) bluj (5) DB2[46827(6)]: extra symptom string provided:(7) RIDS/sqlesysc_
Jun 18 15:02:53 bluj DB2[46827]: data: (8) 54686973 20697320 616e2065 78616d70
Jun 18 15:02:53 bluj DB2[46827]: data: 6c65206f 66206c6f 67676564 20646174
Jun 18 15:02:53 bluj DB2[46827]: data: 61
Jun 18 15:02:53 bluj DB2[46827]: 2 piece(s) of dump data provided... to file(9) /u/db2inst1/
Jun 18 15:02:53 bluj DB2[46827]: 1. ’DUMP EXAMPLE #1’ has been dumped (10)
Jun 18 15:02:53 bluj DB2[46827]: 2. ’DUMP EXAMPLE #2’ has been dumped

The bold numbers in the example show various items in the log file:

(1) The instance name and node number

(2) The reporting component and function

(3) The probe ID and error and alert numbers

(4) A time stamp for when the event occurred

(5) The host name

(6) The process ID of the reporting process. Use the ps command to view

6870 WebSphere Message Broker Version 7.0.0.8

information about the process ID of the reporting process. For example,
enter the following command to get information about the reporting
process:
ps -fu 46827

(7) A symptom string that contains additional information about where and
why the problem occurred

(8) A hexadecimal dump of data that includes return codes and other
information that can be interpreted by your IBM Support Center

(9) Information about additional dump files. Larger structures and other
binary data might be dumped to additional files. The name of the file is
identified in the syslog file

(10) An entry to identify a piece of dump data
Related tasks:
Chapter 13, “Troubleshooting and support,” on page 3345
If you are having problems with your message flow applications, use the
techniques described in this section to help you to diagnose and solve the
problems.
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
Related reference:
“Database facilities” on page 6891
The database products used by WebSphere Message Broker also record information
that might be useful if you have any problems with their access.

Trace
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.

Trace is inactive by default, and must be explicitly activated by a command, or by
the WebSphere Message Broker Toolkit.

There are two main types of trace available in WebSphere Message Broker: user
trace and service trace. Typically, you utilize user trace for debugging your
applications; you can trace brokers, execution groups, and deployed message
flows. With service trace, you can activate more comprehensive broker tracing, and
start tracing for the WebSphere Message Broker Toolkit. You can also trace the
execution of all the commands described in “Commands” on page 3672.

When you start user tracing, you cause additional processing for every activity in
the component that you are tracing. Large quantities of data are generated by the
components. Expect performance to be affected while trace is active. You can limit
this additional processing by being selective about what you trace, and by
restricting the time during which trace is active.
Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which

Chapter 14. Reference 6871

information is written during component operation.
Related tasks:
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Checking user trace options” on page 3199
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers, execution groups
and message flows.
“Changing user trace options” on page 3201
Use the mqsichangetrace command to change the trace options that you have set.
You can also use the WebSphere Message Broker Explorer to change the trace
options for execution groups and assigned message flows.
“Retrieving user trace” on page 3204
Use the mqsireadlog command to access the trace information that is recorded by
the user trace facilities.
“Stopping user trace” on page 3202
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Stop user trace facilities by using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Starting service trace” on page 3534
Service trace is used to get detailed information about your environment for use by
your IBM Support Center.
“Checking service trace options” on page 3537
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers.
“Changing service trace options” on page 3538
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
change the service trace options that you have set.
“Retrieving service trace” on page 3542
Use the mqsireadlog command to access the trace information recorded by the
service trace facilities.
“Stopping service trace” on page 3540
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
stop an active service trace.
“Formatting trace” on page 3543
Use the mqsiformatlog command to format trace information.
“Interpreting trace” on page 3546
Use the information in a formatted trace file to identify unexpected behavior.
“Clearing old information from trace files” on page 3548
If the component that you are tracing has stopped, you can delete its trace files
from the log subdirectory of the WebSphere Message Broker home directory.
Related reference:
“WebSphere Message Broker logs” on page 6867
WebSphere Message Broker writes information to a number of product-specific
logs to report the results of actions that you take.
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the

6872 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker Toolkit.
“Service trace” on page 6875
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

User trace
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.

For more information about logs, see “Logs” on page 6864.

Typically, you use user trace for debugging your applications, as it can trace
brokers, execution groups, and deployed message flows.

You can use the WebSphere Message Broker Toolkit to control most of the trace
activity that you need. You can also use the WebSphere Message Broker Toolkit to
start and stop tracing on remote systems.

When you activate user trace, you cause additional processing for every activity in
the component that you are tracing. Large quantities of data are generated by the
components. Expect to see some effect on performance while user trace is active.
You can limit this additional processing by being selective about what you trace,
and by restricting the time during which trace is active.

The user trace log files:
When trace is active for any component, information is recorded in binary form.

The location of the trace logs depends on your environment:

Windows Windows
If you set the work path by using the -w parameter of the
mqsicreatebroker command, the location is workpath\log.

If you have not specified the broker work path, the default location is
%ALLUSERSPROFILE%\Application Data\IBM\MQSI\common\log where
%ALLUSERSPROFILE% is the environment variable that defines the system
working directory. The default directory depends on the operating system:

Chapter 14. Reference 6873

v On Windows XP and Windows Server 2003: C:\Documents and
Settings\All Users\Application Data\IBM\MQSI\common\log

v On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\
MQSI\common\log

The value might be different on your computer.

Linux UNIX Linux and UNIX
/var/mqsi/common/log

z/OS z/OS
/component_filesystem/log

The file names reflect the component and subcomponent for which the trace is
active. For example, the broker name and unique execution group identifier form
part of the file name when you are tracing activity within that execution group.

For example, if you have created a broker called MB7BROKER, you might see the
following files in the log subdirectory:
MB7BROKER.682ec116-dc00-0000-0080-ce28a236e03d.userTrace.bin.1
MB7BROKER.682ec116-dc00-0000-0080-ce28a236e03d.userTrace.bin.2

You cannot view these files directly; use the commands that are provided to access
the trace information and convert it to a viewable format. Use the mqsireadlog
command to retrieve the trace log for the specified component. Issue the command
on the computer on which the log was generated. You can specify the output to be
directed to a file, which is independent of operating system, and can be transferred
to other systems for browsing or formatting by using the mqsiformatlog command.

Using a Trace node:
If you include a Trace node in your message flows when you are developing and
testing them, this option not only gives you the ability to trace messages and
activity in the flow, but also allows you to specify an alternate target file for the
trace contents to isolate the detail in which you are interested. For details of how
to use and configure a Trace node, see the “Trace node” on page 4942 topic.
Related concepts:
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
“Starting user trace” on page 3197
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Start user trace facilities using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Checking user trace options” on page 3199
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to
check what tracing options are currently active for your brokers, execution groups

6874 WebSphere Message Broker Version 7.0.0.8

and message flows.
“Changing user trace options” on page 3201
Use the mqsichangetrace command to change the trace options that you have set.
You can also use the WebSphere Message Broker Explorer to change the trace
options for execution groups and assigned message flows.
“Retrieving user trace” on page 3204
Use the mqsireadlog command to access the trace information that is recorded by
the user trace facilities.
“Stopping user trace” on page 3202
Use user trace for debugging your applications; you can trace brokers, execution
groups, and deployed message flows. Stop user trace facilities by using the
mqsichangetrace command or the WebSphere Message Broker Explorer.
“Formatting trace” on page 3543
Use the mqsiformatlog command to format trace information.
“Interpreting trace” on page 3546
Use the information in a formatted trace file to identify unexpected behavior.
“Clearing old information from trace files” on page 3548
If the component that you are tracing has stopped, you can delete its trace files
from the log subdirectory of the WebSphere Message Broker home directory.
Related reference:
“Service trace”
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

Service trace
Service trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Event Log or to user trace. Service trace is inactive by
default; you must activate it explicitly by using a command.

With service trace, you can activate more comprehensive broker tracing, and start
tracing for the WebSphere Message Broker Toolkit. You can also trace the execution
of all the commands described in “Commands” on page 3672, including the trace

Chapter 14. Reference 6875

commands themselves. Use the mqsichangetrace command to work with service
trace; you cannot use the WebSphere Message Broker Toolkit.

Activate service trace only when you receive an error message that instructs you
to, or when directed to do so by your IBM Support Center.

When you activate service trace, you cause additional processing for every activity
in the component that you are tracing. Large quantities of data are generated by
the components. Expect performance to be affected while service trace is active.
You can limit this additional processing by being selective about what you trace,
and by restricting the time during which trace is active.

The location of the trace logs depends on your environment:

Windows Windows
If you have set the work path by using the -w parameter of the
mqsicreatebroker command, the location is workpath\log.

If you have not specified the broker work path, the default location is
%ALLUSERSPROFILE%\Application Data\IBM\MQSI\common\log where
%ALLUSERSPROFILE% is the environment variable that defines the system
working directory. The default directory depends on the operating system:
v On Windows XP and Windows Server 2003: C:\Documents and

Settings\All Users\Application Data\IBM\MQSI\common\log

v On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\
MQSI\common\log

The value might be different on your computer.

Linux UNIX Linux and UNIX
/var/mqsi/common/log

z/OS z/OS
/component_filesystem/log

The directory to which the service trace logs are written must be able to hold all
the logs for that computer. You might want to place it on a separate file system, if
allowed by your system operator.
Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
“Logs” on page 6864
If an error is reported by a WebSphere Message Broker component, start your
investigations into its causes by looking at the product and systems logs to which
information is written during component operation.
Related tasks:
“Starting service trace” on page 3534
Service trace is used to get detailed information about your environment for use by
your IBM Support Center.
“Checking service trace options” on page 3537
Use the mqsireporttrace command or the WebSphere Message Broker Explorer to

6876 WebSphere Message Broker Version 7.0.0.8

check what tracing options are currently active for your brokers.
“Changing service trace options” on page 3538
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
change the service trace options that you have set.
“Retrieving service trace” on page 3542
Use the mqsireadlog command to access the trace information recorded by the
service trace facilities.
“Stopping service trace” on page 3540
Use the mqsichangetrace command or the WebSphere Message Broker Explorer to
stop an active service trace.
“Formatting trace” on page 3543
Use the mqsiformatlog command to format trace information.
“Interpreting trace” on page 3546
Use the information in a formatted trace file to identify unexpected behavior.
“Clearing old information from trace files” on page 3548
If the component that you are tracing has stopped, you can delete its trace files
from the log subdirectory of the WebSphere Message Broker home directory.
Related reference:
“User trace” on page 6873
User trace is one of two types of optional trace that are available in WebSphere
Message Broker and provides more information than that provided by the entries
that are written to the Administration log. User trace is inactive by default; you
must activate it explicitly by using a command, or by selecting options in the
WebSphere Message Broker Toolkit.
“cciUserTrace” on page 6678
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.
“cciServiceTrace” on page 6663
Writes a message to service trace, if service trace is active.
“Commands” on page 3672
All WebSphere Message Broker Toolkit and runtime commands that are provided
on distributed systems are listed, grouped by function, with references to
command details.
“mqsichangetrace command” on page 3822
Use the mqsichangetrace command to set the tracing characteristics for a broker.
“mqsiformatlog command” on page 3880
Use the mqsiformatlog command to process the XML log created by mqsireadlog.
The command retrieves and formats any messages that the XML log contains into
a form suitable for the locale of the user who runs the command.
“mqsireadlog command” on page 3905
Use the mqsireadlog command to retrieve trace records for the specified
component.
“mqsireporttrace command” on page 3947
Use the mqsireporttrace command to display the trace options currently in effect.
Trace can be run only against a broker, or any of its resources.

Dumps
Under exceptional circumstances, Windows MiniDumps, UNIX core dumps, or
z/OS SVC or core dumps might be produced.

Chapter 14. Reference 6877

For example, if errors occur in the broker executable files, or in the infrastructure
main program. The amount and complexity of data produced in these cases
typically requires the assistance of your IBM Support Center, see “Contacting your
IBM Support Center” on page 3563.

Dumps on Windows
Windows MiniDumps might be produced by broker processes in extreme cases.
Windows MiniDumps are never produced during typical operation.

Windows MiniDumps are accompanied by a BIP2111 error message (a message
broker internal error) that contains the path to the MiniDump file in your
workpath/errors directory. MiniDump files have the extension .dmp. You can
analyze these MiniDumps by using a suitable debugger; contact IBM for assistance.

Dumps on UNIX systems
UNIX core dumps are produced by broker processes in extreme cases. UNIX core
dumps are never produced during typical operation.

A BIP2060 error message (the execution group stopped unexpectedly) might be
produced. Look in the directory where the broker was started to find the core
dump file. If this directory is not writable by the service ID, the core dumps are
produced in the service user ID's home directory.

You can analyze these core dumps by using a suitable debugger; contact IBM for
assistance.

Dumps on WebSphere Message Broker for z/OS
A broker produces an SVC dump that is written to a data set that is named by
using the system defined naming convention.

The format of this data set name can be displayed by using the dump options
command /D dump.

Typically, the name definition has the following format:
DUMP.&SYSNAME..&JOBNAME..D&DATE..T<IME..S&SEQ

and, for example, this format displays a resolved name of:
DUMP.MVS1.MQ83BRK.D080924.T171755.S00005

An SVC dump that is caused by z/OS or WebSphere Message Broker for z/OS is
written to the system's dump directory, and can be formatted with IPCS. The name
of the dump is listed on the z/OS syslog.

The following example shows the format of the output that you receive:
IEA794I SVC DUMP HAS CAPTURED:

DUMPID=006 REQUESTED BY JOB (MQ83BRK)
DUMP TITLE=MQ83BRK ,ABN=S0C4-00000004,C=M7500.600.BRKR

IEA611I COMPLETE DUMP ON DUMP.MVS1.MQ83BRK.D080924.T171851.S00006
DUMPID=006 REQUESTED BY JOB (MQ83BRK)
FOR ASID (00B8)
INCIDENT TOKEN: PLEXS MVS1 09/24/2008 16:19:11
ID = MQ83BRK ,ABN=S0C4-00000004

Under some circumstances, SVC dumps are not produced. Typically, dumps are
suppressed because of time or space problems, or security violations.

6878 WebSphere Message Broker Version 7.0.0.8

In addition, you can suppress SVC dumps that duplicate previous dumps by using
z/OS dump analysis and elimination (DAE), for example, use the command SET
DAE=xx. (DAE is a z/OS service that enables an installation to suppress SVC dumps
and ABEND SYSDUMP dumps that are not required because they duplicate
previously written dumps.)

The following example shows a message on the z/OS syslog, indicating whether
duplicates of SYSMDUMPs are suppressed:

IEA995I SYMPTOM DUMP OUTPUT 504
SYSTEM COMPLETION CODE=0C4 REASON CODE=00000004
TIME=11.02.24 SEQ=02327 CPU=0000 ASID=0060
PSW AT TIME OF ERROR 078D2000 8D70A656 ILC 4 INTC 04
ACTIVE LOAD MODULE ADDRESS=0D708F68 OFFSET=000016EE
NAME=SPECIALNAME

61939683 81936199 85A2F1F0 61A48689 */local/res10/ufi*
A7F5F161 82899561 82899789 94818995 *x51/bin/bipimain*

DATA AT PSW 0D70A650 - 91345000 00001F22 41209140
GPR 0-3 00000000 0D711B18 0D711B18 00000000
GPR 4-7 0D711300 0D70BD04 00000000 0D711B18
GPR 8-11 0D7121CF 0D7111D0 0D70C316 0D70B317
GPR 12-15 8D70A318 0D7111D0 00000312 00000000

END OF SYMPTOM DUMP
IEA838I SYSMDUMP SUPPRESSED AS A DUPLICATE OF: 505

ORIGINAL:DATE 01170 TIME 10:59:40:05 CPU 8A7645349672
MOD/#PATHNAM CSECT/BIPIP PIDS/5655G9700 AB/S00C4
REXN/IMBSIREC FI/9134500000001F2241209140 REGS/0C33E
HRC1/00000004 SUB1/INFRASTRUCTURE#MAIN

The MVS Diagnosis: Tools and Service Aids manual provides details about using
z/OS dump analysis and elimination.

In extreme cases, you might instead receive a core dump, which is written to the
started task user's directory. The maximum size of a core dump is defined through
MAXCORESIZE in the BPXPRMxx parmlib member. The IBM supplied default is 4
MB. To ensure the completeness of a core dump of any WebSphere Message Broker
for z/OS address space, change the value to 2 GB. The started task user's directory
must then have at least this size.

To make use of these core dumps, copy them to a partitioned data set by using the
TSO/E OGET command. Allocate the data set as a sequential data set with a logical
record length (LRECL) of 4160 and a record format of FBS. Specify a primary
allocation of at least 500 cylinders and a secondary allocation of at least 250
cylinders. The data set must be transferred in binary format. For example:
oget ’/u/user_directory/coredump.pid’ ’mvs_dataset_name.pid’ bin

To ensure that all of the diagnostic information is collected in these extreme cases,
specify the following dump options in SYS1.PARMLIB:
v Member IEADMP* SDATA=(LSQA,TRT,CB,ENQ,DM,IO,ERR,SUM)

v Member IEADMR* SDATA=(NUC,SQA,LSQA,SWA,TRT,RGN,LPA,CSA,SUM,GRSQ)

WebSphere Message Broker for z/OS abends
Abend code

2C1

Explanation
The WebSphere Message Broker for z/OS infrastructure encountered a
severe internal error. The reason code helps the IBM Support Center to
identify the source of the error. It has the format X’ppmmnnnn’, where pp

Chapter 14. Reference 6879

defines the part within the infrastructure where the error occurred, mm
defines the specific location of the error, and nnnn defines a recursion
index.

You can resolve the following reason codes but you must refer other codes
to the IBM Support Center.

ABN=S2C1-0001xxxx Error opening a file system file
The file system component might be full or the broker user ID might not
have the correct permissions to access files or directories in the file system
component.

ABN=S2C1-0113xxxx Region size too small

Source
WebSphere Message Broker for z/OS

System Action
The system might issue a dump.

Programmer Response
None

System Programmer Response
Search the problem-reporting databases for a fix for the problem. If no fix
exists, contact the IBM Support Center, providing the reason code and, if
present, the dump.

Related tasks:
“Checking for dumps” on page 3559
If a dump occurs on your system, an error message is produced.
“Using the DUMP command on z/OS” on page 3560
Follow the steps in this task to use the DUMP command on z/OS.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
Related reference:
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.
“Abend files”
When a process does not end normally an abend file is generated.

Abend files
When a process does not end normally an abend file is generated.

When a process does not end normally, an abend entry is made in the syslog, or
the Windows Event log. If there is more data to be written than is appropriate for
the log, a new file is created to contain it, and the log entry tells you the file name.
You need to send the file to your IBM Support Center for analysis.

Abend files are never generated during normal operation; always involve your
IBM Support Center when they do occur.

6880 WebSphere Message Broker Version 7.0.0.8

The new file is called:

Windows Windows
filename.abend; if you have set the workpath using the -w parameter of
the mqsicreatebroker command, the location is workpath\common\errors. If
you have not specified the broker workpath, the workpath can be resolved
by issuing the command echo %MQSI_WORKPATH% from the installation's
Command Console. If it is not possible to write to this directory, the file is
put in the workpath\common\log directory, but in either case the message in
the Event Log tells you where to find it.

UNIX UNIX
filename.abend in the /var/mqsi/common/errors directory.

z/OS z/OS
filename.abend in the /<component_HFS>/common/errors directory.

where filename is a unique dynamically-allocated name, as given in the syslog or
Event Log message.

The abend file might provide a stack for the failing thread; this might help you to
identify problems in the plug-in code when an abend occurs here. In which case,
for z/OS, this stack will be available in a CEEDUMP file in the same directory as
the abend file by default.

Each abend file contains a header that includes the following sections:
v Product details (the broker product that is being used)
v Operating System
v Environment (including the installation path and the process ID that contains the

failing thread)
v Deployment (including the component and, where applicable, the execution

group name and UUIDs)
v Build Information (for IBM internal use)
v Failure Location (including the time of failure and, where applicable, the

message flow name)

The content and organization of the abend file and its header are subject to change
without notice.

Periodically clear any unwanted abend files from the errors or z/OS log directory.
You can do this by moving the files to an archive, or by deleting them when they
are no longer needed. This ensures that the workpath does not become full; in
extreme conditions, your system performance can be degraded if significant space
is being used up with old abend files.
Related tasks:
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
Related reference:
“Dumps” on page 6877
Under exceptional circumstances, Windows MiniDumps, UNIX core dumps, or
z/OS SVC or core dumps might be produced.

Chapter 14. Reference 6881

“mqsicreatebroker command” on page 3831
Use the mqsicreatebroker command to create a broker and its associated resources.

“Solutions to similar problems” on page 6892
Various sources of information about problems with IBM licensed programs and
their use.

Abend in a user-defined extension
Information that applies only when you have written your own C language
user-defined extension.

If the broker on WebSphere Message Broker for z/OS abends, and you have a
user-defined extension written in the C programming language, you can use the
traceback to locate the source of the problem.

The traceback is placed into a CEEDUMP file, which resides in the
<component_HFS>/common/errors directory.

Each traceback is preceded by the date, time, and unique identifier; for example,
CEEDUMP file - CEEDUMP.20080924.171754.84017230

Consider the following example trace in the CEEDUMP file:
Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
38F9DBD0 CEEVRONU 0707D2B8 +00001004 CEEVRONU 0707D2B8 +00001004 CEEPLPKA HLE7730 Call
390253A0 1DF418F8 +000000DE ImbAbend::printStackForCurrentThread(int,bool,const void*,vo

1DF418F8 +000000DE *PATHNAM FP2.... Call
39025780 1E221258 +000003C2 ImbAbend::terminateProcessInternal(const void*,const bool,vo

1E221258 +000003C2 *PATHNAM FP2.... Call
39026080 1DF457F8 +000005BE IMBCOND 1DF457F8 +000005BE *PATHNAM FP2.... Call
39026120 0707B2E0 +00001252 CEEVROND 0707B338 +000011FA CEEPLPKA Call
38F9A928 CEEHDSP 06F7C4D0 +000024BC CEEHDSP 06F7C4D0 +000024BC CEEPLPKA HLE7730 Call
38F99DA8 CEEHRNUH 06F8B010 +00000092 CEEHRNUH 06F8B010 +00000092 CEEPLPKA HLE7730 Call
390261E0 38F39BB0 +000000F2 _NumCompute_evaluate

38F39BB0 +000000F2 *PATHNAM Exception
39027B00 33EFF078 +000004E4 ImbCniNode::evaluate(const ImbMessageAssembly&,const ImbData

33EFF078 +000004E4 *PATHNAM FP2.... Call
39028840 201AE2B0 +00000208 ImbDataFlowTerminal::evaluate(const ImbMessageAssembly&)

201AE2B0 +00000208 *PATHNAM FP2.... Call
39028920 201AE078 +000000BE ImbDataFlowTerminal::propagateInner(const ImbMessageAssembly

201AE078 +000000BE *PATHNAM FP2.... Call
39029220 201ABD70 +00000552 ImbDataFlowTerminal::propagate(const ImbMessageAssembly&)

201ABD70 +00000552 *PATHNAM FP2.... Call
39029360 32AC4878 +00003C2E ImbCommonInputNode::run(ImbOsThread*)

32AC4878 +00003C2E *PATHNAM FP2.... Call
3902BA00 32AD3488 +00000046 ImbCommonInputNode::Parameters::run(ImbOsThread*)

32AD3488 +00000046 *PATHNAM FP2.... Call
3902BA80 1DE7FD98 +00000074 ImbThreadPoolThreadFunction::run(ImbOsThread*)

1DE7FD98 +00000074 *PATHNAM FP2.... Call
3902C400 1E10A2E8 +000000A8 ImbOsThread::innerThreadBootStrapWrapper(void*)

1E10A2E8 +000000A8 *PATHNAM FP2.... Call
3902CD20 1E109E80 +0000025A ImbOsThread::threadBootStrap(void*)

1E109E80 +0000025A *PATHNAM FP2.... Call
3902D6A0 1E109E38 +00000008 threadBootStrapWrapper

1E109E38 +00000008 *PATHNAM FP2.... Call
3902D720 0707B2E0 +00001252 CEEVROND 0707B338 +000011FA CEEPLPKA Call
38FAAEE0 CEEOPCMM 00035438 +00000908 CEEOPCMM 00035438 +00000908 CEEBINIT HLE7730 Call

The message you see in the execution group joblog is:
CEE0374C CONDITION=CEE3204S TOKEN=00030C84 59C3C5C5 00000000

WHILE RUNNING PROGRAM _NumCompute_ev WHICH STARTS AT 38F39BB0
AT THE TIME OF INTERRUPT
PSW 078D1400 B8F39CA6
GPR 0-3 00000008 1C097DA8 00000001 1C097D88
GPR 4-7 390261E0 00000000 1B049080 B8F39C9A
GPR 8-B 33F093E8 1F9E1808 38F3A1D8 00000000

6882 WebSphere Message Broker Version 7.0.0.8

GPR C-F 38F98BD8 33FC1B20 39026C90 00000000
FLT 0-2 0000000000000018 0000000000000000
FLT 4-6 4018500208C00000 0000000000000000

By studying the joblog and the preceding trace output, you can see that the abend
is happening in a function called _NumCompute_evaluate. The following statement
in the trace calls ImbCniNode::evaluate which tells you that the error has occurred
in a user-defined extension.

Next, you see the following in the joblog or syslog:
IEA794I SVC DUMP HAS CAPTURED: 577
DUMPID=006 REQUESTED BY JOB (MQ83BRK)
DUMP TITLE=MQ83BRK ,ABN=S0C4-00000004,C=M7500.600.BRKR

followed by:
IEF196I IEF285I DUMP.MVS1.MQ83BRK.D080924.T171755.S00005 CATALOGED
IEF196I IEF285I VOL SER NOS= PSSD01.
IEA611I COMPLETE DUMP ON DUMP.MVS1.MQ83BRK.D080924.T171755.S00005 486
DUMPID=005 REQUESTED BY JOB (MQ83BRK)
FOR ASID (00BF)
INCIDENT TOKEN: PLEXS MVS1 09/24/2008 16:18:15
ID = MQ83BRK ,ABN=S0C4-00000004

This shows the location of the dump dataset.

If you are still unable to resolve the problem, send the CEEDUMP file and dump
dataset with joblogs and syslogs to your IBM Support Center for analysis.

If you do not have a user-defined extension and the broker abends, you need to
send the trace file to your IBM Support Center for analysis.
Related tasks:
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.
Related reference:
“Dumps” on page 6877
Under exceptional circumstances, Windows MiniDumps, UNIX core dumps, or
z/OS SVC or core dumps might be produced.
“Abend files” on page 6880
When a process does not end normally an abend file is generated.

WebSphere Message Broker event reports
Event messages are published by a broker in response to certain conditions that
occur while the broker is active.

Reports are raised in response to the following circumstances:
v “WebSphere Message Broker event reports: configuration changes” on page 6885
v “WebSphere Message Broker event reports: operational information” on page

6886

Further information about events is provided in the following topics:
v “WebSphere Message Broker event reports: general architecture” on page 6884
v “WebSphere Message Broker event reports: notification message schema” on

page 6887

Chapter 14. Reference 6883

The events are published on a series of system-defined topics. The body of the
message contains additional information in XML format. Every message is
generated in code page 1208.

The following set of events can be reported:

Configuration changes

v An execution group has been created, changed, or deleted
v A message flow has been created, changed, or deleted

Operational information

v A broker has been started or stopped
v A message flow has been started or stopped

Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.

WebSphere Message Broker event reports: general architecture
Brokers publish messages on reserved topics after significant events within the
broker. By subscribing to these topics, a client can be informed when these events
occur.

For each topic, the type of event and message body are explained. The body of
these messages is in XML format.

An event publication can contain more than one entry if the topic is the same (for
example, if several message flows are created in the same operation).

The general form of the system topics on which events are published is:
$SYS/Broker/broker_name/event_type/...

where:

broker_name
is the name of the broker issuing or raising this event.

event_type
is the type of the event and is one of:
v Configuration
v Neighbor
v Subscription
v Topic
v Status
v Expiry

This specification of topics helps clients to filter events, based on the broker from
which the event originated and the type of event. The clients register subscriptions
for these topics to receive the reports.

For specific events, additional information is included in the topic to help filter on
the specific object that raised the event. The inclusion of the string Broker at the
second level of the topic hierarchy allows for future extension to additional
subsystems that publish system management events through the broker.

6884 WebSphere Message Broker Version 7.0.0.8

Related concepts:
“The broker environment” on page 46
A broker is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in flight messages.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
Related reference:
“WebSphere Message Broker event reports: configuration changes”
Configuration changes include changes to the operational configuration of a single
broker or brokers (for example, the addition or removal of a message flow).
“WebSphere Message Broker event reports: operational information” on page 6886
Changes to the processing state of a broker or an individual message flow publish
events with predefined system topics.

WebSphere Message Broker event reports: configuration
changes
Configuration changes include changes to the operational configuration of a single
broker or brokers (for example, the addition or removal of a message flow).

This information is described in “Changes to the local configuration of the broker.”
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.

Changes to the local configuration of the broker:

An event is published to a system topic when an entity is created, changed, or
deleted.

Notification of changes to the broker's configuration (create, change, or delete
entities) is provided by publishing events on the following system topic:
$SYS/Broker/broker_name/Configuration/ExecutionGroup/exec_grp_name

where:

broker_name
is the name of the broker issuing this message

exec_grp_name
is the name of the execution group for which the configuration has
changed

One such event is published for each configuration request message that is
received and processed by an execution group within the broker and can thus
contain information that reflects complex configuration changes to multiple entities
within the broker.

Chapter 14. Reference 6885

The body of each publication is the part of the configuration request that causes
the event to be triggered. If an execution group is renamed, subsequent
publications that report the state of that execution group use the new name.

These events are published non-persistently as non-retained publications.

Only create, change, and delete actions on the message flow are reported.

Configuration change:
The following figure shows an example notification when a message flow is
created. The number of attributes mentioned in the example can vary.

Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.

WebSphere Message Broker event reports: operational
information
Changes to the processing state of a broker or an individual message flow publish
events with predefined system topics.

The following system topics are used:
$SYS/Broker/broker_name/Status

$SYS/Broker/broker_name/Status/ExecutionGroup/exec_grp_name

<Broker uuid="1234" label="Broker1" version="1">
<ExecutionGroup uuid="2345">
<Create>
<MessageFlow uuid="3456" label="MessageFlow1">
<!-- Create the Input and Output Nodes -->
<ComIbmMqInputNode uuid="4567"
queueName="InputQueue1" label="InputNode1" />

<ComIbmMqOutputNode uuid="5678"
queueName="OutputQueue1"
label="OutputNode1"/>

<ComIbmMqOutputNode uuid="6789"
queueManagerName="QueueManager1"
queueName="OutputQueue2"

label="OutputNode2"/>
<!-- Create the filter -->
<ComIbmFilterNode uuid="7890"

filterExpression="Company=IBM"
label="FilterNode1"/>

<!-- Connect them together -->
<Connection sourceNode="4567"
sourceTerminal="out"
targetNode="7890" targetTerminal="in"/>

<Connection sourceNode="7890"
sourceTerminal="true"
targetNode="5678" targetTerminal="in"/>

<Connection sourceNode="7890"
sourceTerminal="false"
targetNode="6789" targetTerminal="in"/>

</MessageFlow>
</Create>

</ExecutionGroup>
</Broker>

6886 WebSphere Message Broker Version 7.0.0.8

where:

broker_name
is the name of the broker whose execution state has changed

exec_grp_name
is the name of the execution group that contains the message flow whose
execution state has changed

The body of each publication is an XML message that gives additional information
concerning the state change that caused the event to be triggered, specifically
indicating whether the entity has been started or stopped.

For example, starting a message flow generates the following message:

Stopping a broker generates the following message body:

Currently, the only states that are notified for both brokers and message flows are
Started and Stopped.

These events are nonpersistent, retained publications.
Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.

WebSphere Message Broker event reports: notification message
schema
The structure of all valid notification messages.

This example describes the structure of the messages only. It does not define about
how many elements are in the messages or the order in which they appear. The
rules for the number of elements are:
v One broker element
v Other elements: zero, one, or more

There are no rules for the order of notification messages.

In this example, <...> denotes an XML element, and ??? indicates where
individual class names are allowed:

<Broker uuid="1234" label="Broker1" version="1">
<ExecutionGroup uuid="5678">

<Start>
<MessageFlow uuid="7812"/>

</Start>
</ExecutionGroup>
</Broker>

<Broker uuid="1234" label="Broker1" version="1">
<StatusChange state="Stopped"/>
</Broker>

Chapter 14. Reference 6887

<Broker identifier label>
. <ExecutionGroup identifier>
. . <Create>
. . . <MessageFlow message_flow_identifier message_flow_attributes>
. . . . <???Node node_identifier node_attributes>
. . . . <Connection connection_identifier>
. . <Change>
. . . <MessageFlow message_flow_identifier message_flow_attributes>
. . <Delete>
. . . <AllMessageFlows>
. . . <MessageFlow message_flow_identifier>
. . <Start>
. . . <AllMessageFlows>
. . . <MessageFlow message_flow_identifier>
. . <Stop>
. . . <AllMessageFlows>
. . . <MessageFlow message_flow_identifier>

Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.
Related reference:
“Identifiers and attributes used in the schema”
Identifiers and attributes in a schema have different characteristics.

Identifiers and attributes used in the schema:

Identifiers and attributes in a schema have different characteristics.

Items shown as [....] are optional attributes. Items shown as {xxx | yyy} mean
that the value can be one of the alternatives given. Items shown in italics mean
that the variable can have any value.

uuid The universally unique identifier for WebSphere Message Broker objects
(for example, nodes in a message flow)

client identifier
The delivery destination for the subscriber. For example:
mqrfh2:MB7QMGR:subscriberqueue
mqrfh:MB7QMGR:subscriberqueue2:CorrelId

identifier
uuid="uuid"

label label="label"

message_flow_identifier
uuid="message_flow_identifier" //This is typically a uuid

message_flow_attributes

[label=’label’]
[additionalInstances="number"]
[commitCount="number"]
[commitInterval"number"]
[coordinatedTransaction={"yes" | "no" }]

node_identifier
uuid=’node_flow_identifier’ //This is typically a number of
concatenated uuids

6888 WebSphere Message Broker Version 7.0.0.8

node_attributes
[label=’label’]

Others vary according to type. All are optional. See the node descriptions
for details.

connection_identifier

sourceNode=’source_node identifier’
sourceTerminal=’source_terminal_name’
targetNode=’target_node_identifier’
targetTerminal=’target_terminal_name’

neighbor_identifier
name="uuid"

neighbor_attributes
collectiveId={"" | "uuid"}

CollectiveId is set to "" if the neighbor is in the same collective as the
broker; otherwise, it is the identifier for the neighbor's collective.

mqbrokerconnection_attributes
queueManagerName="queueManagerName"

topic_identifier
name="topicName"

acl_identifier
principalName="userIdentifier"

acl_attributes

principalType={"user" | "group"}
[publish={"yes" | "no" | "inherit"}]
[subscribe={"yes" | "no" | "inherit"}]
[persistent={"yes" | "no" | "inherit"}]

subscription_identifier

clientId="client identifier"
[subscriptionPoint="subscriptionPointName"]
[filter="filterExpression"]

subscription_attributes

userId="userIdentifier"
persistent={"true" | "false" | "asPublish" | "asQDef"}
localOnly={"true" | "false"}
pubOnReqOnly={"true" | "false"}
informIfRet={"true" | "false"}
expiryTimeStamp={"GMTTimeStamp" | "0" }
createTimeStamp="GMTTimeStamp"
tempDynamicQueue={"true" | "false"}
clientContext="clientContext"

retainedpublication_identifier
[subscriptionPoint="subscriptionPointName"]

Related tasks:
“Creating a broker” on page 611
You can create brokers on every platform that is supported by WebSphere Message
Broker. The broker runs as a 64-bit application on all platforms except Linux on
x86 and Windows on x86.

Chapter 14. Reference 6889

WebSphere MQ facilities
WebSphere Message Broker components depend on WebSphere MQ resources in
many ways. You can therefore gain valuable information from the WebSphere MQ
logs and events.

WebSphere MQ logs
The WebSphere MQ product logs can be useful in diagnosing errors that occur in
your broker network. For example, if the WebSphere Message Broker Toolkit
cannot communicate with a broker, the channels that connect them might be
wrongly configured, or experiencing network problems.

On distributed systems, operational messages in a user-readable format (such as
queue manager started), are written to the error logs in the errors subdirectory of
the queue manager directory.

FFST files
First Failure Support Technology (FFST) records are normally severe, unrecoverable
errors, and indicate either a configuration problem with the system, or a
WebSphere MQ internal error. FFST files are named AMQnnnnn.mm.FDC, where nnnnn
is the ID of the process that is reporting the error, and mm is a sequence number.

On Windows, records are written to the install_dir\errors directory. Operational
messages and FFST records are also written to the Event log.

On UNIX and Linux systems, records are written to the /var/mqm/errors directory.
WebSphere MQ writes one line for each FFST containing the name of the FFST file
to the syslog, but no operational messages.

WebSphere MQ events
WebSphere MQ provides information about errors, warnings, and other significant
occurrences in queue managers in the form of instrumentation event messages.

You can activate event activity by using the MQSC or PCF interfaces in three areas:
v Queue manager events
v Performance events
v Channel events

When active, these event messages are sent to event queues that can be monitored
or triggered. You might find it appropriate to activate WebSphere MQ events when
you are investigating the performance, or unexpected behavior, of your broker
network.
Related tasks:
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.
“Using logs” on page 3526
There are a variety of logs that you can use to help with problem determination
and troubleshooting.
Related reference:
“Troubleshooting” on page 6864
Use the reference information in this section to help you diagnose errors in
WebSphere Message Broker.
“WebSphere MQ logs” on page 6869
WebSphere MQ messages are written to the local error log in the same way as

6890 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker messages.

Database facilities
The database products used by WebSphere Message Broker also record information
that might be useful if you have any problems with their access.

Refer to the database product documentation for details of logs and other problem
determination options.

Database logs
DB2 has a number of facilities that assist you with problem diagnosis and recovery.
For example, there are the error logs, db2diag.log on distributed systems, and
db2alert.log on z/OS, that contain error and alert information recorded by
various components of the DB2 product. Refer to the DB2 Troubleshooting Guide for
comprehensive information about what options are available, how to use them,
and how to interpret the information provided.

Other database products have similar logs; consult your database administrator or
database documentation for more information.

ODBC trace
You can trace ODBC activity; follow the instructions in “ODBC trace” on page
3551.

Trace information is sent to the location specified in the file referenced by the
environment variable:
v ODBCINI for data sources using the DataDirect drivers, or
v ODBCSYSINI for data sources using WebSphere Message Broker Database

Extender (IE02), or
v In the ODBC configuration on Windows

.
Related tasks:
“ODBC trace” on page 3551
You can use various methods to trace for ODBC activity, depending on the
operating system that you are using.
Related reference:
“Database logs” on page 6870
Databases write severe error and warning conditions to the local error log (syslog).
Typically, databases also write errors to a database log file, such as the db2diag.log
file on DB2.

Other sources of diagnostic information on z/OS
Other files that you might find useful for problem determination.

Files from a broker
The broker puts files into the file system. If you do not know where the files are
for the broker, look at the MQSI_REGISTRY value in the component profile (BIPBPROF)
in the component dataset. This is set to a value like /u/argo/VCP0BRK. Be careful to
access the file system on the correct system; if the file system is not shared, there
could be the same directory on each MVS image. To be sure, log on to the system
where the broker is running and access the file system. You can use the TSO ISHell
command, or go into OMVS itself. Go to the directory specified and select the
output directory. The traceodbc file should appear in this directory.

Chapter 14. Reference 6891

When submitting JCL from the component PDSE, output files are written to the
++HOME++ location. The following files should appear in this directory:
v ENVFILE
v bipprof
v ENVFILE.<8 character execution group name>

v bipprof.<8 character execution group name>

Files in the home directory
Other files are stored in the home directory of the user ID of the started task. The
MVS command D A, jobname displays the user ID of the job. The directory of the
user ID is typically /u/userid but you should check this with your system
programmer, or issue the TSO command LU userid OMVS. If you are authorized,
this command displays text including the HOME statement.

There might be several different sorts of files in the home directory, such as core
dump files.

Problems accessing files in the file system
If you cannot access a file system file or directory, it might be that you do not have
permission to do so. This could mean that you are not able to issue certain
commands. You need to ask the owner of the file or directory to give you
permission to use the file.
Related concepts:
“Trace” on page 6871
If you cannot get enough information about a particular problem from the entries
that are available in the various logs, the next troubleshooting method to consider
is using trace. Trace provides more details about what is happening while code
runs. The information produced from trace is sent to a specified trace record, so
that you or IBM support personnel can analyze it to discover the cause of your
problem.
Related tasks:
“Using the DUMP command on z/OS” on page 3560
Follow the steps in this task to use the DUMP command on z/OS.
Related reference:
“Local error logs” on page 6867
WebSphere Message Broker components use the local error log (also known as the
system log) to record information about major activities within the system. When
an error occurs, check the local error log first.
“Dumps” on page 6877
Under exceptional circumstances, Windows MiniDumps, UNIX core dumps, or
z/OS SVC or core dumps might be produced.
“Abend files” on page 6880
When a process does not end normally an abend file is generated.

Solutions to similar problems
Various sources of information about problems with IBM licensed programs and
their use.

Useful Web sites
Various Web sites are available on the Internet, not all managed by IBM, that you
might find useful aids to problem determination. Here are some URLs that you
might try:

6892 WebSphere Message Broker Version 7.0.0.8

v WebSphere Message Broker support web page
v WebSphere MQ Integrator newsgroup
v MQSeries.net

RETAIN
IBM keeps records of all known problems with its licensed programs on its
software support database (RETAIN). IBM Support Center staff continually update
this database as new problems that are found. They regularly search the database
to see if problems that they are told about are already known.

If you have access to one of IBM's search tools, such as INFORMATION/ACCESS
or INFORMATION/SYSTEM, you can look on the RETAIN database yourself. If
not, you can contact the IBM Support Center to search for you.

You can search the database using a string of keywords to see if a similar problem
exists.

You can use the keyword string (also called the symptom string) that appears in a
dump or SYS1.LOGREC record to search the database, or you can build your own
keyword string.

If the search is successful, you find a similar problem description and, usually, a
fix. If the search is unsuccessful, use these keywords when contacting IBM for
additional assistance, or when documenting a possible authorized program
analysis report (APAR).
Related tasks:
“Making initial checks” on page 3347
Before you start problem determination in detail, consider whether there is an
obvious cause of the problem, or an area of investigation that is likely to give
useful results. This approach to diagnosis can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.
“Dealing with problems” on page 3363
Learn how to resolve some of the typical problems that can occur.
“Contacting your IBM Support Center” on page 3563
If you cannot resolve problems that you find when you use WebSphere Message
Broker, or if you are directed to do so by an error message generated by
WebSphere Message Broker, you can request assistance from your IBM Support
Center.

Chapter 14. Reference 6893

http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_Message_Broker
news://news.software.ibm.com/ibm.software.websphere.mqintegrator
http://www.mqseries.net

6894 WebSphere Message Broker Version 7.0.0.8

Index

Special characters
$SYS/Broker 6884
@MessageBrokerCopyTransform 2678
@MessageBrokerLocalEnvironmentTransform 2680
@MessageBrokerRouter 2679
@MessageBrokerSimpleTransform 2677
"for expression" 5005

Numerics
32-bit platform support 3589
64-bit platform support 3589

A
abend files

checking 3562
general 6880
user-defined extension 6882

accessibility 135
information center 67
keyboard 135
keyboard shortcuts 6828
shortcut keys 135

accessing media
locally 253
remotely

server 257
target system 258

accounting and statistics data
See also message flows
message flows 3281

accounting origin 3284
collecting 3280
collection options 3282
details 6724
example output 6739
filtering in the Message Broker

Explorer 3302
metrics, in the Message Broker

Explorer 6744
output data formats 6725
output formats 3285
parameters, viewing 3294
resetting archive data 3297
setting accounting origin 3290
starting 3288
starting in the Message Broker

Explorer 3299
stopping 3293
stopping in the Message Broker

Explorer 3304
viewing in the Message Broker

Explorer 3300
accounting origin

message flows
accounting and statistics 3284
setting 3290

ACORD AL3 messages 6272
Adapter Connection wizard 2037

Adapter Connection wizard (continued)
JD Edwards EnterpriseOne 2032
PeopleSoft 4132
SAP 1922
Siebel 2013

Adapters (WebSphere)
connecting 2037
deploying 3240
deployment overview 3219
developing applications 2033
iterative deployment 3219
JD Edwards

inbound properties 4158
outbound properties 4165

JD Edwards EnterpriseOne
business objects 2031
event persistence 2028
event store 2029
inbound processing 2027
outbound processing 2025
overview 2023
properties 4146

PeopleSoft
adapter configuration

properties 4131
business objects 2021
business objects reference 4123
event store 2019
inbound processing 2018
inbound properties 4135
outbound processing 2016
outbound properties 4143
overview 2014
PeopleCode 4125
properties 4122
supported data operations 4124

SAP
adapter configuration

properties 4043
business object reference 4025
connection properties 4044
data operations 4026
high availability 2057
identity propagation 2066
inbound properties 4054
iterative discovery 2064
naming conventions 4034
outbound properties 4076
overview 1917
properties 4024
shared queues 2057
tuning for performance 3278

Siebel
adapter configuration

properties 4098
business objects 2011
business objects reference 4093
connection properties 4099
event store 2008
inbound processing 2007
inbound properties 4107

Adapters (WebSphere) (continued)
Siebel (continued)

naming conventions 4095
outbound processing 2005
outbound properties 4116
overview 2002
properties 4092
supported data operations 4094

adding error handling 2823
additional instances, file processing 1818
administration

brokers 899
Message Broker Administration

API 54
security requirements 3644
WebSphere Message Broker

Explorer 57
z/OS 3979

Administration API (CMP) 957
Administration Log editor

changing preferences 1010
Administration Log view 6840
administration queue

using 910
administrator workbench 57
Advanced event processing 1987

ABAP handler
creating 1992
overview 1990

business objects 2001
Call Transaction Recorder

wizard 1994
event notification 1997
event triggers 1999
inbound processing 1995
outbound processing 1988

AggregateControl node 4296
AggregateReply node 4299
AggregateRequest node 4303
aggregating XPath expressions 5003
aggregation 2718

database deadlocks, resolving 2750
exceptions, handling 2750
fan-in flows, creating 2728
fan-out flows, creating 2722
multiple AggregateControl

nodes 2741
overview 2718
requests and responses,

correlating 2744
storing events 753, 2752, 3269
timeout threads, setting 2739
timeouts, setting 2736

AIX
installing

Broker component 267
console interface 270
Message Broker Database

Extender 273
silent interface 272

6895

ALE
business object structure 1979
business objects 1978
event error handling 1965
event recovery 1966
IDocs, status updates 1972
inbound processing 1963
interfaces 1959
MQSeries link for R/3

migration 1973
outbound processing 1961
parsed IDocs, event processing 1967
pass-thru IDoc structure 1975
passthrough support 1973
transaction ID 1981
unparsed IDocs, event

processing 1970
alignment, nodes 1530
annotations 2676

adding 1531
copying 1534
deleting 1536
editing 1533
showing and hiding 1535

API, Message Broker Administration 54
APIs 1539
application clients

connectivity 1028
HTTP 1579
JMS 1681
MQGet node message

processing 1564
request-response, MQGet node 1569
Web services

call existing 1621
choosing an HTTP listener 1590,

1595, 1676
example HTTP messages 1599
HTTP compression 1597
HTTP flows 1585
implement existing interface 1630
implement existing interface to

new 1634
implement new 1625
scenarios 1620
SOAP domain message

flows 1635
switching to a broker-wide

listener 1593
switching to an embedded

listener 1592
WSDL applications 1615, 1661
XML domain message flows 1643

WebSphere MQ 1542
defining 1558
securing 1559

application log 3527
Application Messaging Interface

(AMI) 1539
application programming

interfaces 1539
Application Messaging Interface

(AMI) 1539
C language user-defined node 6416
C language user-defined

parsers 6538
Message Queue Interface (MQI) 1539

Application Transparent Transport Layer
Security 519

applications
deploying 3234
packaging 3221

applying service
broker 314
coexistence 314
Message Broker Explorer 330
Message Broker Toolkit 325
multiple installations 314

archive data
message flows 3282

resetting 3297
archive, Broker Archive editor 6794
AT-TLS 519
attribute group reference

CWF properties 5456, 5538
logical properties 5417, 5538
message models, adding to 2895
TDS format properties 5502, 5540
XML wire format properties 5477,

5539
attribute reference

CWF properties 5457, 5543
logical properties 5418, 5542
message models, adding to 2884
TDS format properties 5503, 5596
XML wire format properties 5478,

5573
attributes 1185

complex type, adding 2906
simple type, adding 2904

attributes, changing the type of 2903
authentication 398

configuring 450
LDAP 453
TFIM 460
WS-Trust V1.3 457

implementing 504
authentication tokens 6843
authorization 401

configuring 471
LDAP 472
TFIM 483
WS-Trust V1.3 475

for configuration tasks 353
for installation tasks 3628

B
backout service 338
backup

broker 1013
resources 1013

Message Broker Explorer
connection files 1016

Message Broker Explorer
workspace 1016

Message Broker Toolkit
workspace 1016

BAPI
business objects 1952
event recovery 1941
inbound processing 1937
inbound scenarios 1944
interfaces 1923

BAPI (continued)
nested 1955
outbound processing 1926
parameters and errors 1942
result set 1958
simple 1954
synchronous and asynchronous

RFC 1938
transaction 1956
transaction commit 1928

BAR files 3216
Broker Archive editor 6794
contents, refreshing 3233
creating 3222
deploying 3235
editing

manually 3225
properties 3227

importing 3242
message flows

adding 3223
adding multiple instances 3229

message sets, adding 3223
redeploying 3235

bend points 1033
adding 1527
removing 1528

BIP messages 3350
BIP2130 error message 3409
BIP5004 error message 3467
BLOB parser 1124
breakpoints 3166

adding 3166
disabling 3169
enabling 3169
removing 3170
restricting 3168

broker
applying service 314
description 260
function level 298
operation mode 298

Message Broker Explorer 642
problems

starting 3372
Broker Application Development

perspective 6784
broker archive 3216

configurable properties 3217
deployment 3213

Broker Archive editor 6794
broker archive files

Broker Archive editor 6794
creating 3222
deploying 3235
editing

manually 3225
properties 3227

importing 3242
message flows

adding 3223
adding multiple instances 3229

message sets, adding 3223
redeploying 3235

broker package, content 3611
broker properties, message flow 1144,

2380

6896 WebSphere Message Broker Version 7.0.0.8

Broker Response message 6407
Broker SCA definition

exporting SCA import or export 2945
generating 2967
message set, generating from 2967

broker schema 1036
creating 1429

broker sets 915
creating

automatically 918
manually 916

modifying 920
broker statistics, collecting on z/OS 608
broker tags

adding 917
brokers 46

administration 899
broker registry properties 3765
changing 631

Windows, Linux, and UNIX
systems 632

z/OS 634
checks when starting 3965
CMP session recovery 3575
configuration

changing 6885
local 6885

configuring 610
Message Broker Explorer 636
properties 637

configuring for high availability 826
configuring locales 819

code page converters 823
generating code page

converters 824
UNIX 820
Windows 822
z/OS 823

Configuring the XPath cache 765
connecting

defintions, exporting 907
defintions, importing 906
local 901
reconnecting, automatically 908
remote 902
remote, z/OS 904

creating 611
Linux 615
Message Broker Explorer 618
UNIX 615
Windows 616

customizing a new broker on
z/OS 620

component dataset
operations 624

Component information 622
copying the started task 629
creating execution group

environment file 627
creating the broker

component 629
creating the broker directory 623
creating the broker PDSE 622
creating the environment file 626
customizing the JCL 625
execution group user IDs 561
installation information 621

brokers (continued)
customizing a new broker on z/OS

(continued)
JCL variables 3994
required information 621
sample files 3995

deleting 930
Linux and UNIX systems 931
Windows 932
z/OS 933

deployed flows, querying 3187
disconnecting 909
execution groups 53

user IDs 560
functional level 51
grouping 915
high availabilty queue manager, using

with 844
HTTP and HTTPSConnector

parameters (SOAP nodes) 3805
httplistener parameters (HTTP

nodes) 3809
IBM Sterling Connect:Direct advanced

configuration information 727
IMSConnect configurable service

properties 733, 2139
JMSProvider configurable service

properties 748, 751, 1726
joblogs 3530
JVM properties 3814
log information

changing preferences 1010
clearing 1009
saving 1008
viewing 1007

managing 6796
migration

Version 6.0 193
Version 6.1 172

modifying 631
Windows, Linux, and UNIX

systems 632
z/OS 634

MonitoringProfile configurable service
properties 762, 3332

MSCS 854
multi-instance 827

backup and restore a broker 842
creating a broker 837
creating a queue manager 831
creating the shared

directories 829
deleting a broker 839
deleting a queue manager 841
listing a broker 842

naming conventions 581
operation mode 48

changing 655
checking 657

performance 3251
planning 580
PolicySet Bindings configurable

service properties 752, 787
PolicySets configurable service

properties 752, 787
proxy session recovery 3575
recovering after failure 3575

brokers (continued)
removing 933
sample files, z/OS

BIPBPROF 3995
BIPBRKP 4000
BIPBUBK 4004
BIPCRBK 4006
BIPDSNAO 4008
BIPEDIT 4009
BIPGEN 4010
BIPRSBK 4012

security 502
Message Broker Explorer 643

securitycache component
properties 3815

SecurityProfiles configurable service
properties 3801

servicefederation component
properties 3816

ServiceFederationManager object
properties 3818

starting
Message Broker Explorer,

using 925
Message Broker Toolkit,

using 925
starting and stopping 921

UNIX 922
Windows 923
z/OS 924

stopping
Message Broker Explorer,

using 926
Message Broker Toolkit,

using 926
system management 52
tuning 3254

configuration timeouts 3258
increasing stack size on Windows,

Linux, UNIX 3255
increasing stack size on

z/OS 3256
setting the JVM heap size 3254
tuning HEAP on z/OS 3257

verifying 630
viewing properties 928
WebSphere MQ resources 585
WebSphere MQ service

configuring 894
deleting 897
modifying 896
reporting and displaying 898
starting and stopping 894

windows cluster, using with 854
workbench, using 933

Brokers view 6796
browsers

supported versions 3598
business objects

Advanced event processing 2001
ALE 1978
BAPI 1952
JD Edwards EnterpriseOne 2031
PeopleSoft 2021
Query interface 1985
Siebel 2011

bytes messages, processing 1729

Index 6897

C
C common API 6641
C language

importing from C: supported
features 6347

importing message definitions 2934
CDInput node 4305

receiving a file 1847
CDOutput node 4312
changing the parser 1485
characters allowed in commands 3680
Check node 4318
CICS 2173

CICSConnection 739, 2206
COMMAREA or channel data

structures 2183
configurable services 739, 2206
connectivity 2174
local environment overrides 2191
mirror transactions 2189
Three-tier connectivity 2181
Two-tier connectivity 2177

CICS Transaction Gateway for
Multiplatforms 2173

connectivity 2174
CICS Transaction Server for z/OS 2173

connectivity 2174
CICSRequest node 4321
Citrix XenApp

system requirements 3605
Citrix XenApppublishing 302
Citrix XenAppusers 304
Citrix, publishing support 3590
class loading, user-defined Java

node 3120
ClearCase 45
ClearCase repository, enabling 574
client environment 31
cluster queues 1544
clustered environment, Siebel 2078
CMP 957

batch requests 1000
brokers

checking deploying results 984
connecting 975
deploying resources 982
managing 989
managing from JavaCompute

nodes 997
navigating 977

checking results 991
completion code 992
object notification 993

configuring environment 969
Eclipse 972
Linux, UNIX, and z/OS 971
Windows 970
without brokers 973

creating objects 990
problems 3510
resource statistics 998
samples 958

API Exerciser 962
API Exerciser, customizing 965
API Exerciser, managing

brokers 963

CMP (continued)
samples (continued)

API Exerciser, recording
scripts 967

API Exerciser, replaying
scripts 967

API Exerciser, viewing
brokers 963

broker management 960
deploy BAR 959
modifying 968

trace 3554
COBOL

importing from COBOL: supported
features 6350

importing message definitions 2937
code dependencies, Java 2633
code page converters 823

new 824
code pages

conversion 1151
converting with ESQL 2476
editor preferences 6793
support 3628

coexistence 139
collector node

collection expiry, setting 2772
collection name, setting 2774
configurable service, setting 2778
control messages, using 2779
event coordination, setting 2775
event handler properties,

setting 2769
event storage 756, 2781, 3272
input terminals, adding 2768
persistence mode, setting 2777

Collector node 4333
collector node, configuring 2767
collector node, using 2764
command environment

changing Java version
Linux and UNIX systems 310
Windows platforms 307

setting up 214, 306
Linux and UNIX systems 310
Linux and UNIX systems

execution groups 312
Windows platforms 307
Windows platforms execution

groups 309
command line

importing message definitions
C header files 2936, 2939, 2956,

2961
COBOL copybooks 2936, 2939,

2956, 2961
WSDL 2948
XML DTDs 2936, 2939, 2956, 2961
XML Schema 2936, 2939, 2956,

2961
command messages 6403

Delete Publication 6404
Publish 6405

commands 3672
characters allowed in 3680
problems

running 3364

commands (continued)
problems (continued)

special characters in 3356
responses to 3682
rules for using 3681
runtime 3715

mqsiaddbrokerinstance 3715
mqsibackupbroker 3720
mqsichangebroker 3723
mqsichangeflowmonitoring 3738
mqsichangeflowstats 3744
mqsichangeflowuserexits 3751
mqsichangeproperties 3756
mqsichangeresourcestats 3819
mqsichangetrace 3822
mqsicommandconsole 3830
mqsicreatebroker 3831
mqsicreateconfigurableservice 3849
mqsicreateexecutiongroup 3854
mqsicvp 3857
mqsideletebroker 3863
mqsideleteconfigurableservice 3866
mqsideleteexecutiongroup 3869
mqsideploy 3872
mqsiexplain 3879
mqsiformatlog 3880
mqsilist 3882
mqsimanagexalinks 3891
mqsimigratecomponents 3894
mqsimode 3899
mqsireadlog 3905
mqsireload 3909
mqsireloadsecurity 3911
mqsiremovebrokerinstance 3918
mqsireportbroker 3919
mqsireportflowmonitoring 3924
mqsireportflowstats 3929
mqsireportflowuserexits 3933
mqsireportproperties 3937
mqsireportresourcestats 3944
mqsireporttrace 3948
mqsirestorebroker 3952
mqsisetdbparms 3954
mqsisetsecurity 3964
mqsistart 3965
mqsistartmsgflow 3969
mqsistop 3972
mqsistopmsgflow 3975
setting up a command

environment 214, 306
runtime and toolkit 3683

mqsiapplybaroverride 3684
mqsireadbar 3697

syntax diagrams 3677, 5020
railroad diagrams 3678

toolkit 3699
mqsicreatebar 3699
mqsicreatemsgdefs 3702
mqsicreatemsgdefs C options

files 3705
mqsicreatemsgdefs COBOL options

file 3707
mqsicreatemsgdefs default options

file 3710
mqsicreatemsgdefs XSD options

file 3709
mqsicreatemsgdefsfromwsdl 3712

6898 WebSphere Message Broker Version 7.0.0.8

commands (continued)
z/OS console

guidance on using 3981
issuing to 3980

comment and path, message flows 1445
Common Object Request Broker

Architecture (CORBA) 2145
communications hardware,

supported 3588
compiling

user-defined C node or parser 3047,
3106

user-defined Java node 3074
complete broker archive

deployment 3213
complex type

message models, adding to 2889
complex types 1178

attribute, adding to an 2906
broker properties 1144, 2380
content validation properties 5422,

5611
CWF properties 5459, 5614
element, adding to an 2906
logical properties 5419, 5608

combinations of composition and
content validation 5612

repeats and duplicates 5613
TDS format properties 5505, 5616
XML wire format properties 5480,

5615
components

definition on z/OS 594
directory 594
execution groups 53
PDSE 595

compound elements
complex type CWF properties 6078
complex type logical properties 6073
complex type TDS format

properties 6087
complex type XML wire format

properties 6083
CWF properties 6077, 6095
logical properties 6070, 6092

value constraints 6074, 6095
TDS format properties 6086, 6151
XML wire format properties 6082,

6128
Compute node 4340
conditional mappings, configuring 2265
conditional mappings, creating 2312
configurable properties, broker

archive 3217
configurable properties, message

flow 4020
configurable services 1296

aggregation 753, 2752, 3269
create command 3849
delete command 3866
displaying 3937
EmailServer 1805
FtpServer 3794
IBM Sterling Connect:Direct 3798
IBM Sterling Connect:Direct advanced

configuration information 727
IMSConnect 733, 2139

configurable services (continued)
JMSProvider 748, 751, 1726

different versions 750
MonitoringProfile 762, 3332
PolicySet Bindings 752, 787
PolicySets 752, 787
properties 3767
resequence 758, 2807, 3274
SecurityProfiles 3801
SMTP 1798
timer 760, 2820, 3276
UserDefined 3804
workbench 644

creating 646
deleting 652
exporting 651
importing 650
modifying 649
modifying IBM defined 648
viewing 647

XPath cache 765
configuration

authorization 353
broker

changing 6885
local 6885

brokers 610
Message Broker Explorer 636

CWF physical properties
message model objects 2913
message sets 2850

database
authorizing access 662
connecting on z/OS 696
connecting to 668
creating 661
global coordination of

transactions 665
JDBC connections 683

documentation properties
message model objects 2910
message sets 2861

logical properties
message model objects 2909
message sets 2846

message category file properties 2929
message model objects 2896
message set preferences 2840
physical properties

message model objects 2912
message sets 2848

syslog daemon 3529
TDS Format physical properties

message model objects 2914
message sets 2852

timeouts 3258
XML Wire Format physical properties

message model objects 2916
message sets 2855

Configure New Web Service Usage
wizard, panel properties 6392

configuring
broker

properties 637
DataPower settings 639
debug port 641
development environment 563

configuring (continued)
creating a broker 569
default configuration 564
Default Configuration wizard 564

production environment 579
test environment 579
timeout flows 2809

configuring authentication 450
LDAP 453
TFIM 460
WS-Trust V1.3 457

configuring authorization 471
LDAP 472
TFIM 483
WS-Trust V1.3 475

configuring identity 447
configuring identity mapping 463
configuring temporary space

distributed systems 251
configuring your system

Default Configuration Wizard 291
kernel parameters 259

Connect:Direct, IBM Sterling
file transfer 1873
file transfer overview 1810
receiving a file 1847

connecting client applications 1537
connections 1032

creating with the mouse 1522
creating with the Terminal Selection

dialog box 1524
listing 1002
removing 1526
WebSphere MQ 4222

constructing message flows 1423
Content based filtering 6409

filter, specifying a 6410
using filters 6409

contents
broker packages 3611
supplemental packages 3614
WebSphere Message Broker Toolkit

package 3614
context-sensitive help 31
conventions, resource names 6827
coordinated message flows,

configuring 1290
coordination

database connections 4235
database support 4236

copying installation images 257
CORBA 2145

configurable service 735, 2170
connecting 2159
input message 2164
naming service 2154
nodes 2147
object reference name 2154

location, changing 735, 2170
parameters 2157
responses, processing 2167
supported operations 2149
troubleshooting 3396

CORBARequest node 4349
core dumps 6878
correlation names

logical message tree 1069

Index 6899

correlation names (continued)
XML constructs 4257

creating a security profile 433
creating user IDs 498
CSV messages 6276
customization

z/OS 3983
broker PDSE, contents of 3991
DB2 using data-sharing

groups 3990
disk space requirements 3586,

3989
naming conventions 3984
overview 592
planning checklist 3991
summary of required access 3985
tasks and roles 3984

z/OS environment 591
APF attributes, checking 607
Automatic Restart Manager

planning 603
event log messages 597
file system, mounting 604
file system, using 596
installation directory, checking

permission of 606
level of Java, checking 607
resource recovery service

planning 602
shared libraries 598
temporary directories 598
UNIX system services 598
z/OS workload manager, defining

started tasks to 602
CVS 45

repository, configuring 573
CWF 1214

data conversion 1218
model integrity 1215
multipart messages 1218
NULL handling 1216
NULL handling options 6257
physical format layers, adding 2848
physical properties

configuring for message model
objects 2913

configuring for message sets 2850
relationship to the logical

model 1219
CWF properties

attribute group reference 5456, 5538
attribute reference 5457, 5543
complex types 5459, 5614
compound elements 6077, 6095

complex types 6078
deprecated message model

objects 6076
element reference 5460, 5623
embedded simple types 6079, 6182
global attribute 5462, 5701
global attribute group 5463, 5743
global elements 5463, 5751
global group 5464, 5804
group reference 5465, 5812
key 5466, 5817
keyref 5467, 5820
local attribute 5467, 5827

CWF properties (continued)
local elements 5469, 5914
local group 5471, 6018
message 5473, 6027
message model objects 5455
message sets 5375
simple types 5474, 6054
unique 5474, 6058
wildcard attribute 5475, 6061
wildcard elements 5475, 6066

D
data

projects and files 6825
data conversion

configuring message flows 1293
CWF 1218
TDS format 1242

data source
z/OS

Compute node 4014
Database node 4014

data structures, importing 2931
data types

BLOB message 4244
DataObject domain 2150
elements 4237
fields 4237
IDL 2150
JMSOutput and JMSReply nodes,

using LocalEnvironment variables
with 4242

MRM message 6254
Properties subtree 4239
support for 5288
WebSphere MQ DestinationData

subtree 4240
WebSphere MQ header fields 4238
XMLNSC parser 1102

database connections
listing 1002
ODBC drivers 668
quiescing 1002
user database 2110
using a JDBC connection pool to

manage resources 1004
database definitions, adding 2278
database definitions, adding large 2280
Database node 4354
DatabaseInput node 4360
DatabaseRetrieve node 4363
DatabaseRoute node 4373
databases

accessing
setting your environment 681
using a solid ODBC driver 682

adding 2278
adding large 2280
authorizing access 662
code page support 4223
configuring a JDBC provider 684
connecting on z/OS 696
connecting to 668

on Windows 670
creating 661
data type support 5288

databases (continued)
database extender, syntax of

configuration files 3596
DBCS restrictions 3668
definitions, creating 2278
definitions, creating large 2280
facilities 6891
importing message definitions 2941
Java 2661
JDBC connections 683

authorizing access to
resources 694

global coordination of
transactions 691

securing 689
listing connections 1002
local 3595
location 3595
naming conventions 583
ODBC connections on Linux and

UNIX 674
problems

initial checks 3356
resolving 3491

quiescing 1002
remote 3595
security 495
stored procedures in ESQL 2503
supported 3591
transactional model 1285
Unicode string functions 3670
using a JDBC connection pool to

manage resources 1004
DataDelete node 4382
DataFlowEngine 53
datagram message, sending 4549
DataInsert node 4386
DataObject domain

data types 2150
DataObject parser 1114
DataPower settings, Message Broker

Explorer 639
DataUpdate node 4390
dateTime formats 6310

component defaults 6321
CWF binary data 6318
CWF encoded values 6319
defaults by logical type 6320
message set defaults 6321
string data 6311

daylight saving time U.S. 2007
changes 2859

DBCS, database restrictions 3668
Debug perspective 6789
debug port, configuring 641
debugging 3158

data 3180
ESQL 3182
Java 3183
mappings 3185
messages 3181

dequeuing 3164
enqueuing 3163
icons and symbols 6720
initial checks 3347
keyboard shortcuts 6719
message flows 3157

6900 WebSphere Message Broker Version 7.0.0.8

debugging (continued)
problems 3453

after debugging 3458
during debugging 3456
starting 3454
stopping 3454

starting 3160
stepping through message

flows 3172
default configuration

creating 291
Default Configuration wizard 564
resources created 291

Default Configuration
creating 106
wizard 107

default stack size
Windows, Lunix, UNIX 3255
z/OS 3256

Delete Publication command
message 6404

deploying XML Schemas 1274
deployment 3209

applications 3234
broker archive (bar) files 3235
checking results 3243
checking results using the CMP 984
complete 3209
delta 3209
iterative 3219
message flow applications 3234
message flows 3209
message sets 3209
overview 3210

broker archive (bar) files 3216
configurable properties 3217
message flow applications 3213
methods 3211

problems
after deployment 3451
during deployment 3440
preparing to deploy 3438

using the CMP 982
WebSphere Adapters nodes 3240

Deployment Log view 6797
deprecated message model objects

CWF properties 6076
logical properties 6070
physical properties 6075
properties by object 6090
TDS format properties 6085
XML wire format properties 6081

dequeuing, using in debugging 3164
description

properties
Message Broker Explorer 637

Destination (LocalEnvironment),
populating 2467

destination lists
creating 1477
using 2214

developer workbench 31
developing advanced applications 2970
developing applications

patterns 1309

development
Broker Application Development

perspective 6784
Plug-in Development

perspective 6792
development repository 45
diagnosis 6864

techniques 3345
typical problems 3363

directories, components 594
directory structures 3633
display, high-contrast 135
documentation properties

message model objects,
configuring 2910

message sets, configuring 2861
DTD support

XMLNS parser 1108
XMLNSC parser 1103

dumps 6878
checking 3559
core dumps 6878
DUMP command, z/OS 3560
SVC dumps 6878

DVD contents 3616
dynamic terminals, adding 1518

E
Eclipse 31

Update Manager, installing
plug-ins 302

Eclipse error log 6868
viewing 3532

EDIFACT messages 6266
editions, license options 3606
editors 35

Broker Archive 6794
ESQL 6798
localized settings 6793
Message Category 6802
Message Definition 6804
Message Flow 6810
Message Mapping 4981, 6817
Message Node 6818
Message Set 6819
palette

customizing 1491
layout, changing 1490
settings, changing 1490

policy sets 6842
preferences 6793
WSDL 6820

EIS connections 2037
timeout 726, 2039

EJB, calling 2666
element definitions for message

parsers 4237
element reference

CWF properties 5460, 5623
message models, adding to 2879
TDS format properties 5509, 5680
XML wire format properties 5481,

5657
element references

logical properties 5423, 5621
elements 1176

elements (continued)
complex type, adding 2906
predefined 1198
self-defining 1198
simple type, adding 2904

elements, changing the type of 2903
Email attachments

receiving 1801
sending 1790

EmailInput node 4394
EmailOutput node 4400
Emails

configurable services
EmailServer 753
SMTP 753

dynamic, creating 1791
MIME 1795
receiving 1799
responses 1804
sending 1787
troubleshooting 3398

embedded messages 2920
embedded simple types

CWF properties 6079, 6182
logical properties 6074, 6181
TDS format properties 6088, 6222
XML wire format properties 6084,

6215
empty elements

XMLNS parser 1106
XMLNSC parser 1092

encoding 1151
EndpointLookup node 4408
enqueuing, using in debugging 3163
Enterprise Information System,

connecting 2037
Environment tree 1055

accessing with ESQL 2469
environment variables 3642

MQSI_USE_NEW_DST 2859
environments

client 31
error diagnosis 6864

techniques 3345
typical problems 3363

error logs 3526
administration log

changing preferences 1010
clearing 1009
saving 1008
viewing 1007

application log 3527
broker logs 6868
database logs 6891

viewing 6870
Eclipse error log 6868

viewing 3532
local error log 3527
system log 3527
TDS log 6868
WebSphere Message Broker log 6868
WebSphere MQ log 6890

viewing 6869
z/OS joblogs 3530

error messages 3350
new, reused, and deleted in Version

7.0 221

Index 6901

errors
connecting failure terminals 2827
handling 2823
input node 2828
MQInput node 2829
saving message flows 1451
TimeoutNotification node 2833
TryCatch node 2836

ESQL
accessible from Java 1144, 2380
accessing databases 2115
adding keywords 2486
BLOB messages 2615
Broker attributes 1144, 2380
constants 5302
converting EBCDIC NL to ASCII

CRLF 2480
data

casting 2474
converting 2476
transforming 2473

data types 2373
database columns

referencing 2489
selecting data from 2491

database content, changing 2499
database state 2513
database updates, committing 2502
databases, interacting with 2487
datetime representation 5030
debugging 3182
Destination, populating 2467
developing 2370
editor 6798
elements

accessing 2420
setting or querying null 2420

elements, multiple occurrences
accessing known 2425
accessing unknown 2428

Environment tree, accessing 2469
errors 2506
example message 5311
ExceptionList tree, accessing 2471
exceptions 2511
explicit null handling 2420
field references 2381

anonymous 2430
creating 2431
syntax 5049

field types, referencing 2419
fields

copying those that repeat 2444
creating new 2434
manipulating those that repeat in a

message tree 2450
files

analyzing changes 2403
copying 2401
creating 2391
deleting 2412
moving 2406
opening 2393
renaming 2405
saving 2400
sharing 6793

functions 2385

ESQL (continued)
headers, accessing 2453
IDoc messages 2610
implicit null handling 2420
JMS messages 2609
JSON messages 2617

creating 2618
modifying 2621

keywords
non-reserved 5307
reserved 5307

like-parser-copy 2484
list type elements, working

with 2448
LocalEnvironment tree,

accessing 2463
mapping between a list and a

repeating element 2449
mapping functions 4998
message body data,

manipulating 2418
message format, changing 2484
message tree parts,

manipulating 2452
MIME messages 2612
modules 2388
MQCFH header, accessing 2458
MQMD header, accessing 2455
MQPCF header, accessing 2458
MQRFH2 header, accessing 2456
MRM domain messages

handling large 2605
working with 2601

MRM domain messages, accessing
attributes 2587
elements 2584
elements in groups 2589
embedded messages 2594
mixed content 2592
multiple occurrences 2585
namespace-enabled

messages 2596
MRM domain messages, null values

querying 2597
setting 2599

multiple database tables,
accessing 2496

nested statements 2384
node

creating 2394
deleting 2411
modifying 2398

numeric operators with
datetime 2439

operators 2382
complex comparison 5058
logical 5062
numeric 5064
rules for operator

precedence 5066
simple comparison 5057
string 5066

output messages, generating 2437
overview of 5019
preferences, changing 2408
problems in message flows 3400
procedures 2386

ESQL (continued)
Properties tree, accessing 2460
returns to SELECT, checking 2500
SELECT function 2515
settings

editor 2409
validation 2410

special characters 5305
statements 2383
stored procedures, invoking 2503
subfield, selecting 2443
syntax diagrams 3677, 5020
tailoring for different nodes 2416
time interval, calculating 2441
unlike-parser-copy 2484
variables 2374
XML domain, manipulating messages

in the 2581
XML messages

complex message,
transforming 2520

data, translating 2529
message and table data,

joining 2531
message data, joining 2526
scalar value, returning 2523
simple message,

transforming 2516
XMLNS domain, manipulating

messages in the 2564
XMLNSC domain, manipulating

messages in the 2547
ESQL data types

BOOLEAN 5021
database, ROW 5038
Datetime 5021

DATE 5022
GMTTIME 5024
GMTTIMESTAMP 5026
INTERVAL 5027
TIME 5023
TIMESTAMP 5025

ESQL to Java, mapping of 5043
ESQL to XML Schema, mapping

of 5044
ESQL to XPath, mapping of 5046
list of 5020
NULL 5032
numeric 5033

DECIMAL 5034
FLOAT 5036
INTEGER 5037

REFERENCE 5038
string 5040

BIT 5040
BLOB 5041
CHARACTER 5042

ESQL functions 5168
CAST

formatting and parsing dates as
strings 5253

formatting and parsing numbers as
strings 5250

formatting and parsing times as
strings 5253

complex 5242
CASE 5243

6902 WebSphere Message Broker Version 7.0.0.8

ESQL functions (continued)
complex (continued)

CAST 5245
data types from external

sources 5288
LIST constructor 5269
ROW and LIST combined 5270
ROW and LIST comparisons 5271
ROW constructor 5267
SELECT 5261
Supported casts 5273

database state 5168
SQLCODE 5169
SQLERRORTEXT 5170
SQLNATIVEERROR 5172
SQLSTATE 5173

datetime 5176
CURRENT_DATE 5179
CURRENT_GMTDATE 5180
CURRENT_GMTTIME 5181
CURRENT_GMTTIMESTAMP 5182
CURRENT_TIME 5179
CURRENT_TIMESTAMP 5180
EXTRACT 5177
LOCAL_TIMEZONE 5182

field 5224
ASBITSTREAM 5224
BITSTREAM 5228
FIELDNAME 5229
FIELDNAMESPACE 5230
FIELDTYPE 5231
FIELDVALUE 5234
FOR 5235
LASTMOVE 5237
SAMEFIELD 5237

implicit casts 5282
arithmetic operations 5285
assignment 5287
comparisons 5283

list 5238
CARDINALITY 5238
EXISTS 5240
SINGULAR 5241
THE 5242

miscellaneous 5290
BASE64DECODE 5291
BASE64ENCODE 5291
CHANGEIDENTIFIERTIMEOUT 5293
COALESCE 5294
EVAL 5294
NULLIF 5296
PASSTHRU 5297
SLEEP 5300
UUIDASBLOB 5300
UUIDASCHAR 5301

numeric 5183
ABS and ABSVAL 5184
ACOS 5185
ASIN 5185
ATAN 5186
ATAN2 5186
BITAND 5187
BITNOT 5187
BITOR 5188
BITXOR 5189
CEIL and CEILING 5190
COS 5190

ESQL functions (continued)
numeric (continued)

COSH 5191
COT 5192
DEGREES 5192
EXP 5193
FLOOR 5193
LN and LOG 5194
LOG10 5195
MOD 5195
POWER 5196
RADIANS 5196
RAND 5197
ROUND 5198
SIGN 5201
SIN 5202
SINH 5202
SQRT 5203
TAN 5203
TANH 5204
TRUNCATE 5205

string manipulation 5206
CONTAINS 5206
ENDSWITH 5207
LEFT 5208
LENGTH 5209
LOWER and LCASE 5210
LTRIM 5210
OVERLAY 5211
POSITION 5212
REPLACE 5213
REPLICATE 5214
RIGHT 5215
RTRIM 5216
SPACE 5217
STARTSWITH 5217
SUBSTRING 5218
TRANSLATE 5220
TRIM 5221
UPPER and UCASE 5223

ESQL statements 5067
ATTACH 5069
BEGIN ... END 5070
BROKER SCHEMA 5074

PATH clause 5075
CALL 5078
CASE 5081
CREATE 5083
CREATE FUNCTION 5091
CREATE MODULE 5101
CREATE PROCEDURE 5103
DECLARE 5117
DECLARE HANDLER 5124
DELETE 5130
DELETE FROM 5127
DETACH 5130
EVAL 5131
FOR 5133
IF 5134
INSERT 5136
ITERATE 5139
LEAVE 5141
list of available 5067
Local error handler 5124
LOG 5142
LOOP 5144
MOVE 5145

ESQL statements (continued)
PASSTHRU 5147
PROPAGATE 5150
REPEAT 5154
RESIGNAL 5155
RETURN 5156
SET 5159
THROW 5161
UPDATE 5164
WHILE 5167

event store
creating manually 2072
JD Edwards EnterpriseOne 2029
PeopleSoft 2019
Siebel 2008

events
configuration changes

broker 6885
local broker 6885

publications 6884
reports 6883
state changes, processing 6886

exception handling, Java 2668
exception processing

security 429
ExceptionList tree 1066

accessing with ESQL 2471
exceptions, message tree content 1053
execution groups 53

configuring as non-swappable on
z/OS 608

creating
Message Broker Explorer 937
Message Broker Toolkit 937
mqsicreateexecutiongroup 939

deleting
Message Broker Explorer 947
Message Broker Toolkit 947
mqsideleteexecutiongroup 949

message flows, removing 3247
recovering after failure 3576
workbench, using

renaming 940
Explorer

description 260, 261
Export SCA import or export from Broker

SCA definition wizard, panel
properties 6380

Export WSDL wizard, panel
properties 6390

exporting
from Broker SCA definition 2945
Project Interchange file 1453

external systems and resources 61
Extract node 4412

F
facets 1176
failure terminals, connecting 2827
fan-in flows, creating 2728
fan-out flows, creating 2722
fastpath applications 613
Favorites category (palette) 1492
FFST files 6890
field names, IDOC parser 6333

Index 6903

file systems, importing into
workbench 2932

FileInput node 4415
mqsiarchive subdirectory 1833
parsing file records 1817
reading a file 1834

FileOutput node 4430
Local environment overrides 4444
mqsiarchive subdirectory 1833
writing a file 1852

FileRead node 4444
reading a file 1834

files 37
data projects 6825
file processing 1814

additional instances 1818
file name patterns 1830
LocalEnvironment variables 1820
mqsiarchive subdirectory 1833
parsing file records 1817
reading a file 1834
shared access 1818
writing a file 1852

IBM Sterling Connect:Direct
overview 1810

Java 6826
managed file transfer 1869
message flows 6822
message sets 6823
parsing file records 1817
Patterns 6827
plug-in development 6825
problems in message flows 3402
reading 1834
secure file transfer 1864
sharing 6793
transferring with IBM Sterling

Connect:Direct 1873
transferring with SFTP 1864
transferring with WebSphere MQ File

Transfer Edition 1869
writing 1852

Filter node 4452
filters 2221
FIX messages 6275
fix packs 3359

function level available, setting 3723
Message Broker Explorer 330
Message Broker Toolkit 325
runtime 314

flow debugger 3158
ESQL nodes 3158
icons and symbols 6720
Java nodes 3158
keyboard shortcuts 6719
mapping nodes 3158

flow engine
attaching to 3160
detaching from 3191

flow instances
managing 3187
stepping through 3172

resuming execution 3173
running to completion 3174
stepping into subflows 3176
stepping out of subflows 3177
stepping over nodes 3175

flow instances (continued)
stepping through (continued)

stepping through source
code 3178

terminating 3188
FlowOrder node 4458
folders 37
FTE

administration 740
file transfer 1869
MQSC scripts 744

FTEInput node 4461
receiving a file 1834

FTEOutput node 4466
sending a file 1852

full version
package contents 3610

G
general industry standards,

supported 3607
Generate Broker SCA Definition wizard,

panel properties 6372
Generate WSDL wizard, panel

properties 6382
Generate XML Schema wizard 2965
Generate XML Schemas wizard 2963
generating message model

representations 1270
documentation 1277
message dictionary 1271
WSDL 1274
XML Schema 1272

global attribute
CWF properties 5462, 5701
logical properties 5425, 5698
message models, adding to 2881
TDS format properties 5511, 5713
XML wire format properties 5483,

5702
global attribute group 1188

CWF properties 5463, 5743
logical properties 5429, 5743
message models, adding to 2892
TDS format properties 5513, 5745
XML wire format properties 5485,

5744
global coordination

configuration
databases 665

DB2 700
JDBC 713
Oracle 705
Sybase 710

global elements
CWF properties 5463, 5751
logical properties 5430, 5747
TDS format properties 5514, 5763
XML wire format properties 5486,

5752
global environment, Java 2656
global group

CWF properties 5464, 5804
logical properties 5433, 5801
message models, adding to 2890
TDS format properties 5517, 5807

global group (continued)
XML wire format properties 5488,

5805
global groups 1183
global publications 2219
global type

message models, adding to 2876
glossary 113
group reference

CWF properties 5465, 5812
logical properties 5436, 5811
message models, adding to 2894
TDS format properties 5520, 5814
XML wire format properties 5488,

5814
groups, brokers 915

H
hardware, supported 3583
headers 2312

accessing 2453
Java

accessing 2652
copying 2653

mapping 5018
HEAP settings

tuning on z/OS 3257
z/OS 3257

help
information center 67
sources 68

Help view 31
help, context-sensitive 31
hidden files 3351
high availability

SAP 2057
high contrast display 135
HL7 messages 6267
HP-UX

installing
Broker component 267
console interface 270
Message Broker Database

Extender 273
silent interface 272

HTTP
headers 1583
message format 1582

HTTP nodes
problems 3407

HTTPHeader node 4470
HTTPInput node 4474
HTTPReply node 4484
HTTPRequest node 4488

I
IBM Sterling Connect:Direct

file transfer 1873
file transfer overview 1810
receiving a file 1847

IBM supplied messages, importing
message definitions 2942

IBM Support Assistant 3566

6904 WebSphere Message Broker Version 7.0.0.8

IBM Support Assistant Data
Collector 3566

console mode 3566
problem collector 3568

IBM Support Center 3563
IBM Tivoli License Manager

activating for WebSphere
Adapters 2036

installing 301
supported versions 3603

icons
Broker Application Development

perspective 6784
flow debugger 6720

identity 390
configuring 447
mapping 403

configuring 463
configuring TFIM V6.1 467
configuring TFIM V6.2 465

propagation 426
configuring a message flow

for 492
IDL 2145

data types 2150
dragging 2161
importing message definitions 2952

IDOC domain 6329
IDoc messages 6278

building the message model 6279
routing 2055

IDOC parser 1126
building the message model 6330

impact analysis 1150
ESQL files 2403
indexing 1454
map file 2234
message flows 1436
message model objects 2897
message sets 1165
view 6801

Import wizard 2932
importing

broker archive (bar) files 3242
copying and pasting 2932
dragging and dropping 2932
from C header files 2934
from COBOL copybooks 2937
from command line

C header files 2936, 2939, 2956,
2961

COBOL copybooks 2936, 2939,
2956, 2961

WSDL 2948
XML DTDs 2936, 2939, 2956, 2961
XML Schema 2936, 2939, 2956,

2961
from database definitions 2941
from IBM supplied messages 2942
from IDL 2952
from SCA import or export 2944
from WSDL 2946
from XML DTD 2954
from XML schema 2958
Import wizard 2932
message definitions 2931
other model representations 1254

importing (continued)
from C 1263
from COBOL 1265
from IBM supplied

messages 1261
from WSDL 1267
from XML DTD 1261
from XML schema 1256

problems 3389
Project Interchange file 1453
WSDL, accepting self-signed

certificates 2950
IMS 2129

connecting 733, 2139
connections 2137
Database Manager 2129
identity, propagating 2144
message structure 2135
nodes 2130

problems 3419
response models 2133
SSL (HTTPS) connection 550, 2142
Transaction Manager 2129
transactions and programs 2132

IMSRequest node 4504
incremental broker archive

deployment 3213
indexing 1454
inetd 157
information center 67
Information Management System

(IMS) 2129
Input node 4511
installation 231

accessing media
locally 253
remotely 256

AIX 267
authorization requirements 3628
checking 3348
command line options 3618
copying images 257
default location for broker 239
default location for toolkit 239
default WebSphere MQ

resources 3643
directory 593
directory structures 3633
Eclipse Update Manager

plug-ins 302
electronic images 3610
environment variables 3642
fix packs 231

Message Broker Explorer 330
Message Broker Toolkit 325
runtime 314

full version 3608
HP-UX 267
IBM Tivoli License Manager 301
images, downloaded 252
Installation Guide 233
INSTPATH 593
Linux

Broker component 267
WebSphere Message Broker

Toolkit 276
Linux and UNIX, service 320

installation (continued)
Linux main menu updates 3631
maintenance updates

Linux and UNIX 320
Windows 317
z/OS 322

Message Broker Explorer 280
console mode, Linux 287
console mode, Windows 285
screen reader 285
silent mode 288

package contents 3610
packages 3608
packaging options 3608
physical media 3610
readme.html file 232
registry contents 3641
requirements

browsers 3598
communications hardware 3588
databases 3591
disk space 3584
disk space on z/OS 3586, 3989
JRE 3598
operating systems 3590
WebSphere MQ 3598

response file
Message Broker Toolkit 3625
runtime components 3621

service 231
Linux and UNIX 320
Windows 317
z/OS 322

Solaris 267
system changes 3630
Trial Edition 3608
user-defined extensions 3125
verifying 90
what to install 260
Windows

Broker component 267
Launchpad 262
WebSphere Message Broker

Toolkit 276
Windows start menu updates 3631
Windows, service 317
wizard names 3626
working directory 239
z/OS, service 322

Installation Manager
command line invocation 276
installation directory 3600
maintaining integrity 3602
package group 3600
requirement 3600
shared resources directory 3600

installing
problems 3518

Interface Definition Language
(IDL) 2145

data types 2150
introduction 5

administering applications 95
administration 93
application development concepts 72
configuring applications 95
configuring brokers 91

Index 6905

introduction (continued)
deploying applications 86
message flow applications 72
message flows

developing 76
programming 78

message models
designing 83
developing 83

monitoring 93
new users 69
overview 69
planning brokers 91
previous users 91
problem determination 96
publish/subscribe

developing 86
scenarios 63
technical 27
testing applications 86
WebSphere Message Broker 5

ISA 3566
ISA Data Collector 3566

problem collector 3568
ISADC

console mode 3566
iterative deployment 3219
iterative discovery

SAP 2064
iterators, SPL 2695

filtering 2698
iterating over elements 2696
recursive 2697

J
Java

accessing attributes 2658
accessing elements 2640
accessing the exceptionlist tree 2656
accessing the global

environment 2656
calling a method from a mapping

node 2310
calling an EJB 2666
classloading 2635

configurable service 2636
code dependencies 2633
copying a message 2644
copying headers 2653
creating a filter 2647
creating a new message 2643
creating code 2629
creating elements 2646
debugging 3183
deploying code 2635
developing 2628
exception handling 2668
headers, accessing 2652
interacting with databases 2661
keywords 2660
logging errors 2668
managing applications 1005
managing files 2629
manipulating messages 2639
MQMD 2653
MQRFH2 2654

Java (continued)
opening files 2631
propagating a message 2648
saving files 2633
setting elements 2644
shared classloader 2637
supported JREs 3598
transforming messages 2643
updating the Local

Environment 2655
user-defined properties 2659
writing 2638
XPath 2649

Java API 5312
Java, broker attributes accessible

from 1144, 2380
JavaCompute node 4514

accessing databases 2661
using mbSQLStatement 2661
using SQLJ 2661
using types 2 and 4 JDBC 2661

calling an EJB 2666
JD Edwards

configurable services 725, 2093
connection details, changing 725,

2093
dependencies 2090

JDBC provider
authorizing access to resources 694
creating and configuring 684
global coordination of

transactions 691
securing connections 689

JDBC, types 2 and 4
used by JavaCompute node 2661

JDEdwardsInput node 4519
JDEdwardsRequest node 4524
JDT Java debugger 6723
JMS 1729

application communication
models 1708

application programming
interfaces 1680

batch acknowledgment
disabling 1728
enabling 1728

batch acknowledgments 751
brokering

connecting providers 1709
JMS providers 1709
message representation 1683
Oracle AQ 1712
transforming messages 1685
WebSphere Application Server

SIBus 1710
configuring resources 1714
creating a message for output 1700
deriving the parser 1698
header and property data 1694
JNDI

administered objects 1702
security 1725

message as input 1693
message domain 1707
message selector 1703
message structure 1688
message types 1690

JMS (continued)
output message 1700
parser 1698
payload processing 1696
preservation of Java type 1694
properties 1707, 1708
provider, adding 748, 1726
receiving a message 1693
representation of messages 1691
security 1725
selector 1703
transactionality 1705
troubleshooting 1730
working with 1709

JMSHeader node 4529
JMSInput node 4532

backout threshold 4544
coordinated transactions 4544

JMSMQTransform node 4547
JMSOutput node 4549
JMSReply node 4562
JNDI

administered objects 1702
security 1725

joblogs, z/OS 3530
JRE, supported versions 3598
JSON

PHP arrays 2685
JSON domain 6335
JSON messages 2617

creating 2618
modifying 2621

JSON parser 1128
JSONP

Consuming a service 1134
Providing a service 1133

JSONP support 1131
JVM

heap size 3269
properties 3814
setting the heap size 3254

K
Kerberos settings 6860
kernel, updating parameters 259
key

CWF properties 5466, 5817
logical properties 5437, 5817
TDS format properties 5521, 5818
XML wire format properties 5489,

5818
key information 6858
keyboard 135
keyboard shortcuts 6828

flow debugger 6719
keyref

CWF properties 5467, 5820
logical properties 5437, 5820
TDS format properties 5521, 5821
XML wire format properties 5490,

5821
keywords 4017

description properties 4017
displaying 1443, 3217
ESQL 2486
Java 2660

6906 WebSphere Message Broker Version 7.0.0.8

keywords (continued)
message flows 1445
subflows 1447
XSL style sheet 4975

L
Label node 4569
Launchpad

for installing 262
Installation 265

LDAP
security profiles 435

legal information
notices 109
trademarks 112

license
requirements 3606

linking objects by name 43
Linux

installing
Broker component 267
console interface 270
Message Broker Database

Extender 273
silent interface 272
WebSphere Message Broker

Toolkit 276
kernel parameters 259

list of available 5168
local attribute

CWF properties 5467, 5827
logical properties 5438, 5823
message models, adding to 2882
TDS format properties 5522, 5880
XML wire format properties 5490,

5857
local element

message models, adding to 2877
local elements

CWF properties 5469, 5914
logical properties 5442, 5910
TDS format properties 5524, 5971
XML wire format properties 5492,

5948
local environment, Java 2655
local error log 3527
local group

CWF properties 5471, 6018
logical properties 5446, 6015
message models, adding to 2891
TDS format properties 5527, 6021
XML wire format properties 5494,

6019
local publications 2219
LocalEnvironment tree 1056

accessing with ESQL 2463
file processing 1820
LocalEnvironment.File structure 1820
LocalEnvironment.Wildcard.WildcardMatch

structure 1820
LocalEnvironment.WrittenDestination.File

structure 1820
populating Destination 2467
using as scratchpad 2465

LocalEnvironment.File structure 1820
locales 3629

locales (continued)
changing 819
installing for WebSphere Message

Broker Toolkit 276
logical message tree

contents after exception 1053
correlation names 1069
Environment tree 1055
ExceptionList tree 1066
LocalEnvironment tree 1056
message body 1045
Properties folder 1045
structure 1042

logical message tree, viewing 1482
logical model

relationship to CWF 1219
relationship to TDS format 1243
relationship to XML Wire

Format 1251
logical properties

attribute group reference 5417, 5538
attribute reference 5418, 5542
complex types 5419, 5608

combinations of composition and
content validation 5612

content validation 5422, 5611
repeats and duplicates 5613

compound elements 6070, 6092
complex types 6073
value constraints 6074, 6095

configuring
message model objects 2909
message sets 2846

deprecated message model
objects 6070

element references 5423, 5621
embedded simple types 6074, 6181
global attribute group 5429, 5743
global attributes 5425, 5698
global elements 5430, 5747
global group 5433, 5801
group reference 5436, 5811
key 5437, 5817
keyref 5437, 5820
local attribute 5438, 5823
local elements 5442, 5910
local group 5446, 6015
message 5449, 6026
message model objects 5416
message sets 5371
simple types 5450, 6033

value constraints 5451, 6034
unique 5452, 6058
wildcard attribute 5453, 6061
wildcard elements 5453, 6065

logical tree structures 1159
logs 3526

administration log
changing preferences 1010
clearing 1009
saving 1008
viewing 1007

application log 3527
broker logs 6868
database logs 6891

viewing 6870
Eclipse error log 6868

logs (continued)
viewing 3532

local error log 6867
viewing 3527

STDERR 6866
STDOUT 6866
system log 3527
TDS log 6868
WebSphere Message Broker log 6868
WebSphere MQ log 6890

viewing 6869
z/OS joblogs 3530

lost messages, avoiding 1561

M
maintenance updates

installing
Linux and UNIX 320
Windows 317
z/OS 322

uninstalling
AIX 338
HP-UX 338
Linux 338
Solaris 338
Windows 338

map file
analyzing planned changes 2234
creating 2233

from DataDelete node 2284
from DataInsert node 2282
from DataUpdate node 2283
from node 2236

Mapping node 4571
casts 5009
functions 4997

ESQL mapping functions 4998
predefined mapping

functions 5007
Xpath mapping functions 5001

syntax 4995
mappings 2312

conditional
configuring 2265
creating 2312

configuring 2237
creating 2232
database

adding 2274
BLOB message to database 2297
change operation 2286
database to database 2295
database to message 2298
source 2287

databases 2277
debugging 3185
deleting data 2294
deleting source and target 2264
derived types 2230

hiding 2239
showing 2239

developing 2228
ESQL routines, calling 2308
examples 2318
from database stored

procedures 2290

Index 6907

mappings (continued)
from database tables 2288
from database user-defined

functions 2292
from source

by name 2242
by selection 2240
mapping by same name 2245
selecting matches 2244
similarity values 2245
synonym file, algorithm to

match 2253
synonym file, creating 2251
synonym file, format of 2247

from source messages 2254
headers and folders 2272

adding 2272
removing 2272

headers, configuring 2271
Java methods, calling 2310
list types 2230
LocalEnvironment, configuring 2271
map file, analyzing planned

changes 2234
map file, creating 2233

from Datadelete node 2284
from DataInsert node 2282
from DataUpdate node 2283
from mapping node 2236

mappable headers 5018
Mapping node casts 5009
Mapping node functions 4997

ESQL mapping functions 4998
predefined mapping

functions 5007
XPath mapping functions 5001

Mapping node syntax 4995
Message Mapping editor 4981, 6817

Edit pane 4990
Source pane 4983
Spreadsheet pane 4991
Target pane 4987

message, adding 2273
overview 2229
populate 2269
repeating elements, configuring 2266
restrictions 2314
scenarios 2318
schema structure 2230
SOAP 2311
statements, order 2312
submaps 2299

calling 2305
converting a message map 2302
converting an inline

mapping 2304
creating 2299
modify database 2301
wildcard source 2300

subroutines 2299
calling from ESQL 2306
user-defined, calling 2309

substituting elements
hiding 2238
showing 2238

substitution groups 2230

mappings (continued)
target, setting the value

to a constant 2257
to a WebSphere MQ

constant 2259
to an ESQL constant 2260
using a function 2261
using an expression 2261

union types 2230
wildcards 2230

mbSQLStatement
used by JavaCompute node 2661

mcd folder 6401
message

assembly 1042
CWF properties 5473, 6027
global complex types, adding

from 2875
global elements, adding from 2873
logical properties 5449, 6026
message models, adding to 2872
TDS format properties 5531, 6031
XML wire format properties 5495,

6027
message body 1045

ESQL, accessing with 2418
Message Broker Administration 54
Message Broker Administration API 54
Message Broker Explorer

applying service 330
broker operation mode 642
changing preferences 654
configuring brokers 636
information center updates 330
properties

configuring broker 637
description 637

security settings 643
using 89
working with UserDefined

configurable services 653
Message Broker Toolkit 31

applying service 325
changing repositories 327
setting proxies 329

changing capabilities 572
changing preferences 571
information center updates 325
integrating the Rational Team Concert

client 576
migration

Version 6.0 192
Version 6.1 171

problems 3480
appearance 3486
connecting 3482
error messages 3484
installing 3518
uninstalling 3525

using 70
workspace 291

message catalogs
creating 3138
multicultural support 3628
user-defined node or parser 3628

message categories 1200
member properties 5414

message categories (continued)
properties 5413

Message Category editor 6802
adding messages to message

categories 2926
message category file properties,

configuring 2929
message category file properties,

viewing 2929
message category files, opening 2925

message category files
creating 2924
deleting 2930
editing 6802
message

adding 2926
deleting 2928

opening 2925
properties, configuring 2929
properties, viewing 2929
working with 2923

message collection 2755
collector node, configuring 2767
collector node, using 2764
ESQL 2758
Java 2760

Message Definition editor 6804
message definition files,

opening 2864
message model objects, adding 2871
message model objects,

configuring 2896
Outline view 6806
Overview editor 6807
Properties editor 6808

message definition files 1171
adding an import 2921
adding an include 2921
configuring 2896
creating 2865
creating by importing 2931
creating from a C header file 2868
creating from a COBOL file 2868
creating from a WSDL file 2868
creating from an existing

resource 2868
creating from an IBM supplied

message 2868
creating from an XML DTD file 2868
creating from an XML Schema

file 2868
creating from scratch 2866
deleting 2869
deleting objects 2919
imports properties 5411
includes properties 5410
linking 2921
Message Definition editor 6804
multipart messages 2920
opening 2864
properties 5409
redefines properties 5412
working with 2863
XML schema 1172

extensions 1173
restrictions 1172

6908 WebSphere Message Broker Version 7.0.0.8

message definitions
creating 1253
generating WSDL, relationship to the

message model 1275
importing from C 1263
importing from COBOL 1265
importing from IBM supplied

messages 1261
importing from other model

representations 1254
importing from WSDL 1267

relationship to the message
model 1269

WSDL validation 1661
importing from XML DTD 1261
importing from XML schema 1256

message sets with namespaces
disabled 1259

message destination mode 4549
message domains 1159
message expiration 6862
message flow applications,

deploying 3234
message flow applications,

packaging 3221
Message Flow editor 6810
message flow nodes 4293

AggregateControl 4296
AggregateReply 4299
AggregateRequest 4303
CDInput 4305
CDOutput 4312
Check 4318
CICSRequest 4321
Collector 4333
Compute 4340
CORBA nodes 2147
CORBARequest 4349
Database 4354
DatabaseInput 4360
DatabaseRetrieve 4363
DatabaseRoute 4373
DataDelete 4382
DataInsert 4386
DataUpdate 4390
dynamic terminals, adding 1518
EmailInput 4394
EmailOutput 4400
EndpointLookup 4408
Extract 4412
FileInput 4415
FileOutput 4430

Local environment overrides 4444
FileRead 4444
Filter 4452
FlowOrder 4458
FTEInput 4461
FTEOutput 4466
HTTPHeader 4470
HTTPInput 4474
HTTPReply 4484
HTTPRequest 4488
IMS nodes 2130
IMSRequest 4504
Input 4511
JavaCompute 4514
JDEdwardsInput 4519

message flow nodes (continued)
JDEdwardsRequest 4524
JMSHeader 4529
JMSInput 4532

backout threshold 4544
coordinated transactions 4544

JMSMQTransform 4547
JMSOutput 4549
JMSReply 4562
Label 4569
Mapping 4571
MQGet 4578
MQHeader 4590
MQInput 4594
MQJMSTransform 4610
MQOptimizedFlow 4612
MQOutput 4612
MQReply 4621
Output 4626
Passthrough 4628
PeopleSoftInput 4630
PeopleSoftRequest 4635
PHPCompute 4639
Publication 4643
Real-timeInput 4646
Real-timeOptimizedFlow 4646
RegistryLookup 4646
Resequence 4651

state machine diagrams 4658
ResetContentDescriptor 4663
Route 4669
RouteToLabel 4673
SAPInput 4676
SAPReply 4682
SAPRequest 4685
SCA

SCAAsyncRequest 4691
SCAAsyncResponse 4698
SCAInput 4707
SCAReply 4726
SCARequest 4719

SCAAsyncRequest 4691
SCAAsyncResponse 4698
SCADAInput 4706
SCADAOutput 4707
SCAInput 4707
SCAReply 4726
SCARequest 4719
SecurityPEP 4729
Sequence 4736
SiebelInput 4740
SiebelRequest 4745
SOAPAsyncRequest 4750

backout threshold 4770
coordinated transactions 4770
Local environment overrides 4773

SOAPAsyncResponse 4777
coordinated transactions 4784

SOAPEnvelope 4786
SOAPExtract 4790
SOAPInput 4795

backout threshold 4817
coordinated transactions 4817

SOAPReply 4819
coordinated transactions 4823
Local environment overrides 4825

SOAPRequest 4828

message flow nodes (continued)
Configuring JMS temporary

dynamic queues 4848
coordinated transactions 4846
Local environment overrides 4850

TCPIPClientInput 4854
TCPIPClientOutput 4867
TCPIPClientReceive 4877
TCPIPServerInput 4890
TCPIPServerOutput 4903
TCPIPServerReceive 4913
Throw 4929
TimeoutControl 4932
TimeoutNotification 4936
Trace 4942
TryCatch 4949
TwineballInput 4951
TwineballRequest 4955
Validate 4959
Warehouse 4963
WebSphere Adapters 1914

PeopleSoftInput 4630
PeopleSoftRequest 4635
SAPInput 4676
SAPReply 4682
SAPRequest 4685
SiebelInput 4740
SiebelRequest 4745
TwineballInput 4951
TwineballRequest 4955

XSLTransform 4968
message flow security 383

configuring 431
message flows 1022

accessing databases 2112
configuring DatabaseInput

node 2121
event tables 2126
event-based database

integration 2118
extended database support 2117
from ESQL 2115
responding to database

updates 2123
accounting and statistics data 3281

accounting origin 3284
collecting 3280
collection options 3282
details 6724
example output 6739
filtering in the Message Broker

Explorer 3302
metrics, in the Message Broker

Explorer 6744
output data formats 6725
output formats 3285
parameters, modifying 3296
parameters, viewing 3294
resetting archive data 3297
setting accounting origin 3290
starting 3288
starting in the Message Broker

Explorer 3299
stopping 3293
stopping in the Message Broker

Explorer 3304

Index 6909

message flows (continued)
accounting and statistics data

(continued)
viewing in the Message Broker

Explorer 3300
aggregation 2718

database deadlocks,
resolving 2750

exceptions, handling 2750
fan-in flow, creating 2728
fan-out and fan-in flows,

associating 2733
fan-out flow, creating 2722
multiple AggregateControl

nodes 2741
requests and responses,

correlating 2744
storing events 753, 2752, 3269
timeout threads, setting 2739
timeouts, setting 2736
unknown and timeout message

exceptions 2752
annotations

adding 1531
copying 1534
deleting 1536
editing 1533

bend points 1033
adding 1527
removing 1528

Broker Application Development
perspective 6784

broker archive (bar) file, adding
to 3223

broker properties 1144, 2380
broker schemas

creating 1429
deleting 1442

broker-wide HTTP listener parameters
(HTTP nodes) 3809

built-in nodes 4293
Chinese code page GB18030 4221
cluster queues 1544
code page support 4176
collector node

control messages, using 2779
event storage 756, 2781, 3272

comment and path 1445
configurable properties 4020

Additional Instances 4020
Commit Count 4020
Commit Interval 4020
Coordinated Transaction 4020

configuration for globally coordinated
transactions 1290

connections 1032
adding with the mouse 1522
adding with the Terminal Selection

dialog 1524
removing 1526

Content based filtering
parameters 3805

conversion exception trace
output 4228

coordination 1281
database connections 4235
database support 4236

message flows (continued)
copying 1435
correcting save errors 1451
creating 1431
creating ESQL code 2394
creating using a Quick Start

wizard 1409
customizing nodes with ESQL 2413
data conversion 1293
data integrity 4223
data types 4237

BLOB message 4244
headers 4238
JMSOutput and JMSReply nodes,

using LocalEnvironment
variables with 4242

MRM message 6254
Properties subtree 4239
WebSphere MQ DestinationData

subtree 4240
database

connections 2110
listing connections 1002

database exception trace output 4226
Debug perspective 6789
debugging 3157
default error handling 1280
default version 4016
defining content 1488
deleting 1441

using WebSphere Message Broker
Explorer 953

using WebSphere Message Broker
Toolkit 953

deploying 3209
description properties 4017

keywords 4017
designing 1455
destination lists

creating 1477
using to route messages 2214

errors 2823
catching in TryCatch 2836
connecting failure terminals 2827
input node 2828
MQInput node 2829
TimeoutNotification node 2833

ESQL 2371
events

exporting monitoring
schemas 3338

reporting monitoring
settings 3343

exception list structure 4224
exceptions, catching in

TryCatch 2836
execution groups 53
execution model 1279
field names, IDOC parser 6333
FtpServer configurable service

properties 3794
generating documentation from 2962
generating events 3319
global coordination of transactions

databases 665
globally coordinated transaction 1281

message flows (continued)
HTTP and HTTPSConnector

parameters (SOAP nodes) 3805
httplistener parameters (HTTP

nodes) 3809
IBM Sterling Connect:Direct

configurable service
properties 3798

impact analysis 1436
input nodes

configuring JMS nodes 1716
defining characteristics 1475
using more than one 1473

JVM heap size 3269
keywords

description properties 4017
guidance 4017

logical message tree, viewing 1482
lost messages, avoiding 1561
managing 3187
managing ESQL files 2390
Mapping editor 4981, 6817
message collection 2755

collection expiry, setting 2772
collection name, setting 2774
collector node, configuring 2767
collector node, using 2764
configurable service, setting 2778
event coordination, setting 2775
event handler properties,

setting 2769
input terminals, adding 2768
persistence mode, setting 2777

message content, testing 2213
message parser element

definitions 4237
message sequencing

adding sequence numbers 2794
configuring 2783
duplicate messages 2793
ending message sequences 2790
event storage 758, 2807, 3274
maintaining sequential order 2799
missing messages 2806
overview 2784
reordering messages 2797
scenario 1 2800
scenario 2 2803
sequence groups 2786
starting message sequences 2787

message structure, testing 2211
MIME

message details 1120
tree details 1123

monitoring 3319
activating 3334
basics 3320
configuring event sources -

profile 762, 3332
configuring event sources -

properties 3327
correlation 6778
deciding how to configure

events 3325
enabling and disabling event

sources 3336
event 6774

6910 WebSphere Message Broker Version 7.0.0.8

message flows (continued)
monitoring (continued)

event filtering 6781
exporting schemas 3338
profile 6768
reporting 3343
types of 3323
XPath expressions 6782

moving 1439
node palette 1027
node subflows 1024
nodes

adding annotations 1531
adding with the GUI 1494
adding with the keyboard 1498,

6816
aligning 1530
arranging 1530
configuring 1503
connecting with the mouse 1522
connecting with the Terminal

Selection dialog 1524
copying annotations 1534
deciding which to use 1457
decision making 2209
deleting annotations 1536
dragging resources from the

Navigator 1499
dynamic terminals, adding 1518
editing annotations 1533
inserting in a flow 1525
installing user-defined

nodes 1496
removing 1519
renaming 1502
showing and hiding

annotations 1535
opening 1433
order, imposing 2212
palette

Favorites category 1492
Parse Timing property 4173
parser exception trace output 4230
parsers 1072

BLOB 1124
DataObject 1114
IDOC 1126
JMS 1116
JSON 1128
JSON message details 1136
JSONP 1131
MIME 1117
MQCFH 4245
MQCIH 4246
MQDLH 4248
MQIIH 4248
MQMD 4249
MQMDE 4251
MQRFH 4252
MQRFH2 4253
MQRFH2C 4253
MQRMH 4253
MQSAPH 4254
MQWIH 4255
MRM 1111
SMQ_BMH 4256
SOAP 1082

message flows (continued)
parsers (continued)

XML 1110
XMLNS 1104
XMLNSC 1090

porting 4233
preferences 4016
problems

after deployment 3451
appearance 3395
debugging 3453
deploying 3436
developing 3395
during deployment 3440
execution 3409
importing 3390
mappings 3423
migrating 3390
preparing to deploy 3438
trace 3427

programming interfaces 1038
projects 1035

creating 1425
creating using a Quick Start

wizard 1409
deleting 1428
managing 1424

projects and files 6822
promoted properties 1145

converging 1306
promoting 1298
removing 1304
renaming 1302

properties 1143
proxy servlet

Basic HTTP traffic handling 857
configuration parameters 878, 886
configuring 876
deploying 891
enabling WebSphere MQ

listener 889
installing 872
installing and customizing a Web

servlet container 874
JNDI 886
message flows component 864
overview 856
proxy servlet component 865
proxy servlet components 863
Proxy servlet HTTP traffic

handling 859
servlet container component 867
testing 892
Web addresses component 868
Web services clients

component 871
WebSphere Message Broker

component 870
redeploying 3189
removing from an execution

group 3247
renaming 1438
response time, optimizing 3264
restrictions for code page

GB18030 4221
save errors, correcting 1451
saving 1448

message flows (continued)
saving as 1450
security 383
shared queues 1546
showing and hiding

annotations 1535
stack size, determining 3268
starting 951
starting, all 941
stopping 952
stopping, all 944
style sheet keywords 4975
subflows 1030

adding 1501
configuring 1503
keywords 1447
removing 1519
renaming 1502

supported code sets 4176
system resources 3267
terminals 1034

dynamic terminals, adding 1518
testing 3144
threading 1279
throughput, optimizing 587, 3261
timeout control

automatic messages 2817
event storage 760, 2820, 3276
multiple messages 2815
performance 2822
sending a message 2813
sending messages at a specified

time 2815
transaction support 1281
TryCatch

catching exceptions 2836
unsuccessful run 3353
user database

DBCS restrictions 3668
quiescing 1002
Unicode string functions 3670

user exception trace output 4232
user exits 3015

deploying 3116
developing 3114
exploiting 2985

user-defined extensions 2971
user-defined nodes 6415
user-defined properties 1147
validating messages 1478
validation properties 4169
version and keywords 1445
version and keywords,

displaying 1443, 3217
WebSphere Adapters 2033
WebSphere MQ connections 4222
WebSphere MQ message groups

receiving messages 1554
sending messages 1556

WebSphere MQ message segments
sending segments 1557

which XML parser 1080
XML parsers 1084
z/OS data sources

Compute node 4014
Database node 4014

Index 6911

message groups
receiving 1554
sending 1556

message headers 1539
message level protection 6845
Message Mapping editor 4981, 6817

Edit pane 4990
Source pane 4983
Spreadsheet pane 4991
Target pane 4987

message model object properties
attribute group reference 5537
attribute reference 5541
complex types 5607
compound elements 6091
element reference 5620
embedded simple types 6180
global attribute 5697
global attribute group 5741
global elements 5746
global group 5800
group reference 5810
key 5816
keyref 5819
local attribute 5822
local elements 5909
local group 6014
message 6025
simple types 6032
unique 6057
wildcard attribute 6060
wildcard elements 6064

message model objects 1174
adding 2871
analyzing changes 2897
attribute groups 1188
attributes 1185
changing the type of an

attribute 2903
changing the type of an

element 2903
complex types 1178
configuring 2896

documentation properties 2910
logical properties 2909
physical properties 2912

copying 2901
CWF properties 5455
default physical format settings,

applying 2917
deleting 2919
elements 1176
groups 1183
identification 1191
impact analysis 2897
lists 1180
logical properties 5416
messages 1175
pasting 2902
physical properties 5455
properties by object 5536
renaming 2899
reordering 2900
restrictions 1180
simple types 1180

lists 1180
restrictions 1180

message model objects (continued)
simple types (continued)

unions 1180
value constraints 1188

TDS format properties 5501
type inheritance 1182
types 1177
unions 1180
value constraints, setting 2907
wildcard attributes 1187
wildcard elements 1186
working with 2870
XML wire format properties 5476

message model reference
information 5366

message modeling 1154
advantages of modeling

messages 1158
concepts 1155
logical tree structures 1159
message domains 1159
parsers 1159

message models 1160
attribute group reference,

adding 2895
attribute reference, adding 2884
complex type, adding 2889
constructing 2838
documentation, generating 1277
element reference, adding 2879
global attribute group, adding 2892
global attribute, adding 2881
global groups, adding 2890
global type, adding 2876
group reference, adding 2894
IDOC parser 6330
local attribute, adding 2882
local element, adding 2877
local group, adding 2891
message categories 1200
message definition files 1171
message dictionary, generating 1271
message sets 1162

identification 1167
limitations 1168
resources 1163
versions and keywords 1169

message, adding 2872
message, adding from global complex

types 2875
message, adding from global

elements 2873
model integrity 1210
model representations,

generating 1270
namespaces 1201

non-XML messages 1206
reusing message definition

files 1209
specifying in a message type 1208
XML messages 1205

object cardinality 1197
problem diagnosis 3459
simple type, adding 2886
substitution groups 1199
task list errors

applying a quick fix 2862

message models (continued)
task list errors (continued)

quick fix list 6336
wildcard attribute, adding 2885
wildcard elements, adding 2880
WSDL, generating 1274
XML Schema, deploying 1274
XML Schema, generating 1272
XML Schema, validating 1273

Message Node editor 6818
message part policies 6856
message part protection 6849
Message Queue Interface (MQI) 1539
message segments

sending 1557
message sequencing

adding sequence numbers 2794
configuring 2783
duplicate messages 2793
ending message sequences 2790
event storage 758, 2807, 3274
maintaining sequential order 2799
missing messages 2806
overview 2784
reordering messages 2797
scenario 1 2800
scenario 2 2803
sequence groups 2786
starting message sequences 2787

message serialization
input between separate brokers 1547
input between separate execution

groups 1549
input within an execution

group 1551
user tasks 1552

message service folders 6401
Message Set editor 6819

configuring physical formats 2848
documentation properties,

configuring 2861
logical properties 2846
message sets, opening 2841

message set files
creating 6819
creating using a Quick Start

wizard 1409
editing 6819

message set projects
creating 2842
creating using a Quick Start

wizard 1409
deleting 2839
working with 2839

message sets 1162
adding CWF layers 2848
adding TDS Format layers 2851
adding XML Wire Format

layers 2854
Broker Application Development

perspective 6784
broker archive (bar) file, adding

to 3223
configuring

CWF properties 2850
documentation properties 2861
logical properties 2846

6912 WebSphere Message Broker Version 7.0.0.8

message sets (continued)
configuring (continued)

physical format layers 2848
preferences 2840
TDS Format properties 2852
XML Wire Format properties 2855

creating 2842
creating using a Quick Start

wizard 1409
CWF properties 5375
daylight saving time U.S. 2007 2859
default physical format settings,

applying 2857
deleting 2862
deploying 3209
documentation properties 5408
generating documentation from 2962
identification 1167
impact analysis 1165
importing

from C: supported features 6347
from COBOL: supported

features 6350
from SCA Import or Export 6355
from WSDL: generated

objects 6356
from WSDL: restrictions 6356
from XML Schema: unsupported

features 6359
supported and unsupported

features 6346
limitations 1168
logical properties 5371
opening 2841
physical format layers

adding 2848
removing 2858
renaming 2856

preferences 5366
editors 5368
validation 5369
XML Schema importer 5370

problems
importing 3390
migrating 3390

projects and files 6823
resources 1163
TDS format properties 5381

defaults 5394
TDS mnemonics 5391, 6290

using existing message set in a Quick
Start wizard 1415

versions and keywords 1169
working with 2840
XML wire format properties 5400

In-line DTDs and the DOCTYPE
text property 5407

message tree options
XMLNSC parser 1101

messages 1175
BIP 3350
Broker Response 6407
debugging 3181
embedding 2920
headers

MQRFH 1539
MQRFH2 1539

messages (continued)
Java, manipulating 2639
message category file

adding to 2926
deleting from 2928

multipart 1191
identifying using Message

Identity 1193
identifying using Message

Path 1196
notification

attributes and identifiers 6888
schema 6887

parsing on demand 4173
partial parsing 4173
predefined 1198
problems 3467
self-defining 1198
self-defining and predefined 1076
test message, getting 3164
test message, putting 3163
validating

Fix property 4169
in message flows 1478
Include All Value Constraints

property 4169
Validate property 4169

migration 137
?wsdl flows 220
CMP applications 220
conditions for using migrated toolkit

resources 229
File nodes 217
problems 3389
restoring to Version 6.0 227
restoring to Version 6.1 225
reviewing technical changes in Version

7.0 205
setting up a command

environment 214, 306
supported migration paths 3579
updating error processing

routines 221
Version 6.0 183

ACLs 179, 200
backing up 187
broker configured using

MSCS 202
brokers 193
data definitions 217
HTTPRequest nodes 215
input trees 213
Message Broker Toolkit 192
message sets 209
preparing 185
SupportPac IA9Q 190
updating ODBC definitions 188
XSLTransform nodes 215

Version 6.1 163
ACLs 179, 200
backing up 167
broker configured using

MSCS 181
brokers 172
Message Broker Toolkit 171
preparing 165
updating ODBC definitions 168

MIME
message details 1120
parser 1117
tree details 1123

MIME domain 6322
parser restrictions 6327
parser use 6327
standard header fields 6323

model integrity
CWF 1215
TDS format 1239
XML Wire Format 1248

modeling messages 1154
advantages of modeling

messages 1158
concepts 1155

monitoring 3319
activating 3334
adding an event source

profile 762, 3332
properties 3327

basics 3320
configuring event sources

profile 762, 3332
properties 3327

correlation 6778
creating a business model for

WebSphere Business Monitor 3338
deciding how to configure

events 3325
enabling and disabling event

sources 3336
event 6774
event filtering 6781
exporting a monitoring profile 3343
profile 6768
reporting settings 3343
types of 3323
XPath expressions 6782

MQCFH header
accessing with ESQL 2458

MQGet node 4578
request-response scenario 1569

example message trees 1574
MQHeader node 4590
MQInput node 4594
MQJMSTransform node 4610
MQMD (message descriptor)

accessing with ESQL 2455
MQOptimizedFlow node 4612
MQOutput node 4612

using in debugging 3164
MQPCF header

accessing with ESQL 2458
MQReply node 4621
MQRFH2 header 6397

accessing with ESQL 2456
definition in C 6397
structure 6397

MQSI_REGISTRY 3641
MQSI_USE_NEW_DST environment

variable 2859
mqsiarchive subdirectory 1833
mqsilaunchpad 263
mqsiprofile 214, 306
MRM domain 6251

additional CWF information 6255

Index 6913

MRM domain (continued)
data conversion 6255
NULL handling options 6257

additional logical format, MRM model
restrictions 6252

additional TDS format
information 6264

industry standard formats 6265
message characteristics in the

MRM 6281
message model integrity 6295
NULL handling options 6293
regular expressions to parse data

elements 6301
additional XML wire format

information 6257
NULL handling options 6258

MRM: Generated model
representations 6338

document generation 6339
SCA definition generation 6340
WSDL generation 6340
XML Schema generation 6343

multicultural support
code page support 3628
locales 3629
message catalog 3628
WebSphere MQ 3628

multilevel wildcards 6395
multipart messages 1191

creating 2920
CWF 1218
identifying using Message

Identity 1193
identifying using Message Path 1196
TDS format 1241
XML Wire Format 1250

multiple broker installations
uninstallating 3620

N
name, linking by 43
namespace support

XML parsers 1109
namespaces 1201

non-XML messages 1206
reusing message definition files 1209
specifying in a message type 1208
XML messages 1205

namespaces in the MRM domain 1205
naming resources 6827
National Language Support

UNIX syslog 820
navigation

information center 67
network problems 3358
new function and capabilities

Version 7.0 7
Version 7.0 fix packs 15

New Message Category File
wizard 2924

New Message Definition File From
wizard 2868

New Message Definition File
wizard 2865

panel properties 6361

New Message Set Broker SCA Definition
wizard 2967

New Message Set Web Service Definition
wizard 2968

New Message Set wizard 2842
node palette 1027
node subflows 1024
nodes, stepping over using the flow

debugger 3175
notices 109
NULL handling

CWF 1216
CWF options 6257
TDS format 1240
TDS format options 6293
XML Wire Format 1249
XML wire format options 6258

NULL element and
NULLValAttr 6261

NULL representation for Binary
data 6262

NULL value 6260
null values

XMLNS parser 1106
XMLNSC parser 1092

numeric order in data conversion 1151

O
object keyword 1443, 3217
Object Request Broker (ORB) 2145
object version 1443, 3217
objects, linking by name 43
obsolete messages

removing 221
ODBC

connection
defining on Linux and UNIX 674
defining on Windows 670

odbc.ini sample file 3660
trace 3551

opaque parsing
XMLNS parser 1107
XMLNSC parser 1097

operating environments, supported 3583
operation mode 48

changing 655
Example: Changing the operation

mode 3904
Example: Changing the Trial

Edition to the full edition 3903
Moving from Trial Edition 656

checking 657
restrictions 3657

Oracle
naming restrictions for database

objects 4995
Oracle AQ 1712
ORB 2145
order

choosing messaging processing
order 587, 3261

imposing within a message
flow 2212

Output node 4626
overview 27

scenarios 63

P
package contents

broker component 3611
DVDs 3616

package group 3600
packaging

applications 3221
message flow applications 3221

packaging user-defined Java node or
parser 3118

PAGENT 522
Pager samples

running 291
setting up 291

palette
customizing 1491
Favorites category 1492
layout, changing 1490
settings, changing 1490

parser use 6335
parsers 1072

BLOB 1124
changing 1485
choosing 1078
DataObject 1114
IDOC 1126
JMS 1116
JSON 1128

Message tree mapping 1138
JSON message details 1136
JSONP 1131

Consuming a service 1134
Providing a service 1133

MIME 1117
MQCFH 4245
MQCIH 4246
MQDLH 4248
MQIIH 4248
MQMD 4249
MQMDE 4251
MQRFH 4252
MQRFH2 4253
MQRFH2C 4253
MQRMH 4253
MQSAPH 4254
MQWIH 4255
MRM 1111
null handling 1140
partial parsing 4173
SMQ_BMH 4256
SOAP 1082

message details 1084
tree details 1611

XML 1110
XMLNS 1104
XMLNSC 1090

parsing messages 1072
Passport Advantage, download

packages 3608
Passthrough node 4628
patterns 1310

built-in patterns 1332
choosing 1313
configuring pattern parameters 1313

import an existing
configuration 1330

developing applications 1309

6914 WebSphere Message Broker Version 7.0.0.8

patterns (continued)
generate a pattern instance

editing and regenerating a pattern
instance 1327

generating a pattern instance 1326
pattern categories 1331
pattern instance

projects and files 6827
reviewing summary and

tasks 1328
user-defined patterns 1334

building pattern plug-ins 1395
changing pattern parameter

IDs 1352
changing project references 1339
configuring categories 1350
configuring SOAP nodes 1352
creating 1336
creating a code plug-in

project 1366
creating a pattern archive 1398
creating a pattern authoring

project 1338
creating documentation 1342
creating enumerated types 1361
defining the target

properties 1342
defining the user interface 1343
differences between Websphere

Message Broker PHP and
PHP.net 5363

downloading from a pattern
communty website 1401

downloading from a pattern
communty website by using a
helper assistant 1402

downloading from a shared file
system 1404

editing enumerated types 1362
editing parameter groups 1346
enabling parameter groups 1347
enabling pattern parameters 1357
examples of Java API code 1369
examples of PHP API code 1390
extending 1340
installing pattern archives 1401
Java and PHP APIs 5344
Java API 5345
Java API - adding a node 1372
Java API - adding and connecting

user-defined nodes 1378
Java API - adding node

connections 1376
Java API - changing pattern

parameter values 1381
Java API - changing user-defined

properties 1381
Java API - copying a node 1374
Java API - creating ESQL

modules 1382
Java API - loading a message

flow 1370
Java API - positioning a

node 1374
Java API - removing a node 1376
Java API - removing node

connections 1380

patterns (continued)
user-defined patterns (continued)

Java API - renaming a message
flow 1384

Java API - renaming a node 1371
Java API - running PHP from

Java 1385
Java API - updating filter tables on

Route nodes 1386
modifying pattern instances by

using Java 1367
modifying pattern instances by

using Java or PHP 1364
modifying pattern instances by

using PHP 1389
packaging and distributing pattern

plug-ins 1397
PHP API 5345
PHP API - _MB superglobal

variables 5347
PHP API -

mb_pattern_run_template 5346
PHP extensions 5348
selecting source files 1338
testing 1396
testing a transformation

expression 1356
testing an enabling

expression 1359
testing group enabling

expressions 1349
testing Java code 1387
testing PHP code 1394
transforming pattern

parameters 1353
uninstalling a pattern

archive 1405
uploading a pattern archive 1399
using enumerated values for

pattern parameters 1360
using patterns 1312
working with patterns 1314

adding or removing project
references 1316

creating a working set 1319
deleting pattern instance

projects 1320
deleting pattern instance projects

with references 1321
deleting pattern instance projects

without project references 1322
deleting projects 1323
deleting projects not referenced by

a pattern instance project 1325
deleting projects referenced by a

pattern instance project 1324
focusing on a pattern

instance 1318
going to a referenced project 1316
showing a working set 1317

PeopleCode 4125
PeopleSoft

configurable services 723, 2086
connection details, changing 723,

2086
dependencies 2081

PeopleSoftInput node 4630

PeopleSoftRequest node 4635
PeopleTools custom event project 2084
performance

brokers 3251
considerations for design 586, 3252
message flow response time 3264
message flow throughput 587, 3261
problems 3505
regular expressions to parse TDS

messages 6309
SAP adapter 3278

perspectives 34
Broker Application

Development 6784
Debug 6789
overview 6783
Plug-in Development 6792
switching 34

PHP
accessing broker properties 2715
accessing headers 2711
accessing user-defined

properties 2716
annotations 2676

@MessageBrokerCopyTransform 2678
@MessageBrokerLocalEnvironmentTransform 2680
@MessageBrokerRouter 2679
@MessageBrokerSimpleTransform 2677

arrays
JSON 2685
XML 2682

associating code with the
PHPCompute node 2675

calling Java 2716
creating code 2672
deploying code 2691
developing 2670
element tree, traversing 2693
elements

accessing the message tree 2692
creating 2706
manipulating 2705

elements, accessing information 2701
Global Environment, updating 2714
Local Environment, updating 2713
MbsElement arrays 2684
messages

accessing the message tree 2710
copying 2703
creating 2702
routing 2709
transforming 2702

overview 2671
SPL iterators 2695

filtering 2698
iterating over elements 2696
recursive 2697

writing code 2673
XML namespace support 2708

PHPCompute node 4639
physical format layers 1212

CWF 1214
data conversion 1218
model integrity 1215
multipart messages 1218
NULL handling 1216

Index 6915

physical format layers (continued)
CWF (continued)

relationship to the logical
model 1219

CWF layers
adding 2848

daylight saving time U.S. 2007 2859
default settings, applying 2857
message model object properties,

configuring 2912
message sets, adding 2848
removing 2858
renaming 2856
TDS Format 1221

data conversion 1242
data element separation 1225
model integrity 1239
multipart messages 1241
NULL handling 1240
relationship to the logical

model 1243
TDS Format layers

adding 2851
XML Wire Format 1247

model integrity 1248
multipart messages 1250
NULL handling 1249
relationship to the logical

model 1251
xsi:type attributes 1252

XML Wire Format layers,
adding 2854

physical formats, applying default
settings to message model objects 2917

physical properties
configuring

message model objects 2912
message sets 2848

deprecated message model
objects 6075

message model objects 5455
planning

broker naming conventions 581
database naming conventions 583
resource naming conventions 581
WebSphere MQ naming

conventions 582
platform support, 32-bit and 64-bit 3589
Plug-in Development perspective 6792
plug-in development, projects and

files 6825
policy agent (PAGENT) 522
policy bindings

advanced 6863
authentication and protection

tokens 6854
Kerberos settings 6860
key information 6858
message expiration 6862
message part policies 6856

policy sets
associating with message flows and

nodes 785
authentication tokens 6843
editor 6842
implementing web services

security 770

policy sets (continued)
message level protection 6845
message part protection 6849
overview 774

populate 2269
port debug, configuring 641
predefined messages 1076
preferences

editors 6793
Message Broker Explorer,

changing 654
message sets 5366

configuring 2840
editors 5368
validation 5369
XML Schema importer 5370

preparing your system
accessing CDs and DVDs 252
configuring temporary space 251
distributed systems 251
kernel parameters 259
security 246

problem reports
collection 3566

console 3566
problems

BIP messages 3350
broker

starting 3372
CMP 3510
CMP race 3554
commands

running 3364
special characters 3356

databases, initial checks 3356
databases, resolving 3491
diagnosis 6864
diagnostic techniques 3345
error messages 3350
fix packs 3359
hidden files 3351
initial checks 3347
installation, checking 3348
installing 3518
logging off Windows 3349
maintenance updates 3359
mappings 3423
Message Broker Explorer 3489
Message Broker Toolkit 3480

appearance 3486
connecting 3482
error messages 3484

message flows
after deployment 3451
appearance 3395
CORBA 3396
debugging 3453
deploying 3436
developing 3395
during deployment 3440
Emails 3398
ESQL 3400
execution 3409
files 3402
HTTP and SOAP 3407
IMS 3419
preparing to deploy 3438

problems (continued)
message flows (continued)

running 3353
SOAP and HTTP 3407
trace 3427
Web Services 3407
WebSphere Adapters 3428

message models, developing 3459
message references 3423
messages 3467
network 3358
ODBC trace 3551
passwords 3359
performance 3505
publish/subscribe 3501
reproducing 3352
resources

creating 3369
deleting 3394
importing 3389
migrating 3389
starting 3371
stopping 3393

samples
running 3366

service updates 3359
setup, checking 3348
slow components 3360
starting

broker 3372
other resources 3380

system changes 3355
turning trace nodes on and off 3556
typical 3363
uninstalling 3525
UNIX environment variables 3350
user IDs 3358
user-defined extensions 3512
z/OS

checking 3361
diagnostic information 6891

processing events 2717
Processing files 1807
processing messages 1021

application programming
interfaces 1539

JMS 1679
TCPIP 1733
WebSphere MQ 1537

product requirements Web site 3582
profiles, security 387
Project Interchange file 1453
projects 37

data
resource files 6825

Java 6826
message flows 1035

resource files 6822
message sets 1161

resource files 6823
Patterns 6827
plug-in development 6825
reference property 44
working sets 575

promoted properties 1145
converging 1306
promoting 1298

6916 WebSphere Message Broker Version 7.0.0.8

promoted properties (continued)
removing 1304
renaming 1302

properties
complex 1144, 2380
deprecated message model

objects 6069
description

Message Broker Explorer 637
documentation, message sets 5408
JD Edwards EnterpriseOne

adapter 4146
message categories 5413
message category members 5414
message definition file imports 5411
message definition file includes 5410
message definition file

redefines 5412
message definition files 5409
message flow 1143
message model objects 5416
message sets, documentation 5408
PeopleSoft adapter 4122
SAP adapter 4024
Siebel adapter 4092
WebSphere Adapters nodes 4024

Properties folder 1045
Properties tree, accessing with

ESQL 2460
psc folder 6401
pscr folder 6401
public key cryptography 355
Publication node 4643
Publish command message 6405
publish/subscribe 2216

applications
developing 2215

filters 2221
migration

access control lists 146
adding repository definitions 154
migmbbrk 142
migrating a collective 151
migrating from Version 7 to

version 6 150
MQRFH header 149
new cluster, adding a queue

manager 159
new cluster, cluster-receiver

channels 154
new cluster, cluster-sender

channels 155
new cluster, defining cluster

queue 156
new cluster, organization of 153
new cluster, queue manager

repositories 161
new cluster, setting up 152
new cluster, testing 158
overview of 141
procedure required 147
queue manager repositories 153

node changes 2217
problems 3501
publications 2219
publishers 2218
subscribers 2220

publish/subscribe (continued)
subscription points 2222

Q
Query interface 1982

business objects 1985
outbound processing 1984

queue managers
multi-instance 828
recovering after failure, broker's queue

manager 3577
starting as a Windows service 929
stopping 930

queues
cluster 1544
shared 1546

quick fix, applying to task list
errors 2862

Quick Start CD
full version 3610
WebSphere Message Broker

Toolkit 3614
Quick Start Guide 3610
Quick Start wizards

Create New Web Service Usage
wizard 1417

introduction 1408
overview 1409
Start from adapter connection 1416
Start from existing message set

wizard 1415
Start from SCA Import/Export 1422
Start from scratch wizard 1411
Start from WSDL and/or XSD files

wizard 1413
quiescing databases 1002

R
RACF 251
RAD 3600
railroad diagrams, reading 3678
Rational Application Developer 3600
Rational products 3600
Rational Software Architect 3600
Rational Team Concert client 576
readme file 3581
Real-timeInput node 4646
Real-timeOptimizedFlow node 4646
recovery after failure 3574

broker failure 3575
broker's queue manager failure 3577
execution group failure 3576

redeploying BAR files 3235
reference, project 44
registry contents 3641
RegistryLookup node 4646
Remote Adapter Deployment 3606
renaming deployed objects 3246
repeating elements, configuring

mappings 2266
reply message, sending 4549
repository, development 45
request message, sending 4549

requirements
licensing 3606

Resequence node 4651
event storage 758, 2807, 3274
state machine diagrams 4658

ResetContentDescriptor node 4663
resource managers

changing statistics parameters 3819
reporting statistics 3944

resource statistics 3306
CMP samples 998
collecting 3305
data 6745

XML publication 6746
starting collection 3307
starting in the Message Broker

Explorer 3310
stopping collection 3308
stopping in the Message Broker

Explorer 3312
viewing data in the Message Broker

Explorer 3313
viewing status 3309
viewing status in the Message Broker

Explorer 3317
resources 37

brokers 46
data projects 6825
Java 6826
message flows 6822
message sets 6823
naming rules 6827
Patterns 6827
plug-in development 6825
problems

creating 3369
deleting 3394
importing 3389
migrating 3389
starting 3371
stopping 3393

references, show 1447
resource naming conventions 581
transactional model 1285
types 6821
working sets 42

response files
Message Broker Toolkit 3625
runtime components 3621

responses to commands 3682
restore

broker 1015
resources

Message Broker Explorer
workspace 1016

Message Broker Toolkit
workspace 1016

RETAIN database 6892
retained publications 2219
Route node 4669
RouteToLabel node 4673
routing messages 2209
RSA 3600
rules

resource names 6827
using commands 3681

Index 6917

S
sample file

odbc.ini 3660
samples

problems
running 3366

SAP
configurable services 719, 2053
connection details, changing 719,

2053
dependencies 2048
high availability 2057
identity propagation 2066
iterative discovery 2064
server, configuring 2051
shared queues

distributed systems 2058
z/OS 2061

tuning for performance 3278
SAPInput node 4676
SAPReply node 4682
SAPRequest node 4685
SCA 2095

developing applications for non-XML
data 2103

importing from SCA Import or
Export 6355

inbound message flows 2106
message flows 2105
nodes 2101
outbound message flows 2107
using broker SCA definitions to

configure message flows 2102
WebSphere Process Server 2097

SCA Import or Export
importing message definitions 2944

SCA nodes
SCAAsyncRequest 4691
SCAAsyncResponse 4698
SCAInput 4707
SCAReply 4726
SCARequest 4719

SCAAsyncRequest node 4691
SCAAsyncResponse node 4698
SCADAInput node 4706
SCADAOutput node 4707
SCAInput node 4707

Input Data Binding 4717
SCAReply node 4726
SCARequest node 4719
scenarios 63

WebSphere Message Broker 63
schemas, broker 1036
searching

information center 67
security 3644

authentication 398
configuring 450

authorization 401
configuring 471
TFIM V6.1 and TAM 416
TFIM V6.2 and TAM 419

broker 502
broker administration 362

actions and authorizations 3645
activating 381

security (continued)
broker administration (continued)

authorization on distributed
sytems 374

authorization on z/OS 376
authorization queues 366
commands and

authorizations 3646
disabling 380
enabling 369
migrating ACLs 179, 200
MQ Version 7.1 381
permissions 365

configuring authentication 450
HTTP basic authentication 451
LDAP 453
TFIM 460
WS-Trust V1.3 457

configuring authorization 471
LDAP 472
TFIM 483
WS-Trust V1.3 475

configuring identity 447
configuring identity mapping 463

TFIM V6.1 467
TFIM V6.2 465
WS-Trust V1.3 STS 465

databases 495
digital certificates 356
digital signatures 360
exceptions

processing 429
exits 354

invoking 555
for installation 247
for verification 291
identity 390

configuring 447
identity mapping 403

configuring 463
configuring TFIM V6.1 467
configuring TFIM V6.2 465

identity propagation 426
configuring a message flow

for 492
invoking message flow security

using a security enabled input
node 406

using a SecurityPEP node 411
Linux and UNIX systems 247
message flow 383

configuring 431
message flow for identity propagation,

configuring 492
planning 353
principals 246
problems 496
profiles 387

creating 433
LDAP 435
TFIM 444
WS-Trust V1.3 441

public key cryptography 355
requirements

Linux 3648
UNIX 3648
Windows 3651

security (continued)
requirements (continued)

z/OS 3655
user ID restrictions 246
WebSphere Message Broker

Explorer 500
WebSphere Message Broker

Toolkit 500
Windows

domain environment 249
overview 248

z/OS 251
SecurityPEP node 4729
self-defining messages 1076
Sequence node 4736
sequencing, messages 2784
service

applying
Message Broker Explorer fix

packs 330
Message Broker Toolkit fix

packs 325
runtime fix packs 314

backing out 338
installing

Linux and UNIX 320
Windows 317
z/OS 322

problems after applying 3359
removing from runtime

components 338
removing from the Message Broker

Explorer 350
removing from the toolkit 344
uninstalling

AIX 338
HP-UX 338
Linux 338
Solaris 338
Windows 338

updates 3359
Message Broker Explorer fix

packs 330
Message Broker Toolkit fix

packs 325
runtime fix packs 314

Service Federation Management 911
configuring execution group

properties 914
enabling the broker 912
servicefederation component

properties 3816
ServiceFederationManager object

properties 3818
service trace 6875

options
changing 3538
checking 3537

retrieving 3542
starting 3534
stopping 3540

service updates 3359
servicefederation component

properties 3816
ServiceFederationManager object

properties 3818
sets, brokers 915

6918 WebSphere Message Broker Version 7.0.0.8

setting accounting origin
message flows 3290

setup, checking 3348
SFM 911

configuring execution group
properties 914

enabling the broker 912
servicefederation component

properties 3816
ServiceFederationManager object

properties 3818
SFTP

file transfer 1864
shared access, file processing 1818
shared queues 1546

SAP on distributed systems 2058
SAP on z/OS 2061

shared resources directory 3600
shortcut keys 135
shortcuts, keyboard 6828
Siebel

application, configuring 2071
clustered environment,

connecting 2078
configurable services 721, 2075

different versions,
connecting 2077

connection details, changing 721,
2075

dependencies 2068
different versions, connecting 2077

SiebelInput node 4740
SiebelRequest node 4745
simple type

message models, adding to 2886
value constraints

setting 2907
simple types 1180

attribute, adding to an 2904
CWF properties 5474, 6054
element, adding to an 2904
lists 1180
logical properties 5450, 6033

value constraints 5451, 6034
restrictions 1180
TDS format properties 5532, 6056
unions 1180
value constraints 1188
XML wire format properties 5498,

6055
single-level wildcards 6395
snapshot data

message flows 3282
SOAP

rpc-encoded messages 1671
SOAP nodes

problems 3407
SOAP parser 1082
SOAPAsyncRequest node 4750

backout threshold 4770
coordinated transactions 4770
Local environment overrides 4773

SOAPAsyncResponse node 4777
coordinated transactions 4784

SOAPEnvelope node 4786
SOAPExtract node 4790
SOAPInput node 4795

SOAPInput node (continued)
backout threshold 4817
coordinated transactions 4817

SOAPReply node 4819
coordinated transactions 4823
Local environment overrides 4825

SOAPRequest node 4828
coordinated transactions 4846
Local environment overrides 4850

software license agreement 267
Solaris

installing
Broker component 267
console interface 270
Message Broker Database

Extender 273
silent interface 272

source code
stepping through 3178

special characters 6395
topic level separators 6395
wildcards 6395

specifying opaque elements
XMLNSC parser 1098

SPL iterators 2695
filtering 2698
iterating over elements 2696
recursive 2697

SQLJ
used by JavaCompute node 2661

SSL authentication
certificates, creating 542
CICSRequest node 547, 2197
cipher suites 511
HTTPInput and Reply nodes 535
HTTPRequest node 538
implementing 504
IMSRequest node 550, 2142
JMS nodes 530
MQ Java Client 541
setting up PKI 504
SOAPInput and SOAPReply

nodes 532
SOAPRequest and

SOAPAsyncRequest nodes 534
TCP/IP 551
z/OS 512

stack size
increasing 3268
increasing on Windows, Linux,

UNIX 3255
increasing on z/OS 3256

standards, supported 3607
start menu 3631
Starter Edition 3606
statistics and accounting data

message flows 3281
accounting origin 3284
collecting 3280
collection options 3282
filtering in the Message Broker

Explorer 3302
metrics, in the Message Broker

Explorer 6744
output formats 3285
parameters, modifying 3296
parameters, viewing 3294

statistics and accounting data (continued)
message flows (continued)

resetting archive data 3297
setting accounting origin 3290
starting 3288
starting in the Message Broker

Explorer 3299
stopping 3293
stopping in the Message Broker

Explorer 3304
viewing in the Message Broker

Explorer 3300
statistics reports

subscribing to 3318
subflows 1030

adding 1501
configuring 1503
keywords 1447
removing 1519
renaming 1502
stepping into 3176
stepping out of 3177

subscribing
statistics reports 3318

subscription points 2222
substitution groups 1199
Support Assistant

data collection 3566
Support Assistant Data Collector,

IBM 3566
Support Assistant, IBM 3566

console mode 3566
problem collector 3568

Support Center, IBM 3563
support Web site 3582
SVC dumps 6878
SWIFT messages 6268
symbols for flow debugger 6720
syslog daemon 3529
system log 3527
system management interfaces 52

T
TAM

authorization
TFIM V6.1 416
TFIM V6.2 419

configuring 480
task list errors, applying a quick

fix 2862
TCP/IP 1733

connection management 1743
nodes 1738

SSL 551
Scenarios

Message Broker using
TCP/IP 1749

TCP/IP only 1746
transport 1735
Working with 1750

TCPIPClientInput node 4854
TCPIPClientOutput node 4867
TCPIPClientReceive node 4877
TCPIPServerInput node 4890
TCPIPServerOutput node 4903
TCPIPServerReceive node 4913

Index 6919

TDS format 1221
data conversion 1242
data element separation 1225

data pattern separation
types 1237

delimited separation types 1232
fixed length separation

types 1227
tagged separation types 1228

log 6868
message model integrity 6295

general rules 6296
omission and truncation of

elements 6300
restrictions for nesting complex

types 6298
model integrity 1239
multipart messages 1241
NULL handling 1240
NULL handling options 6293
physical format layers, adding 2851
physical properties

configuring for message model
objects 2914

configuring for message sets 2852
regular expressions to parse data

elements 6301
multiple delimiters 6307
performance considerations 6309
syntax 6304
variable number of repeats 6308

relationship to the logical
model 1243

simple data values
determining the length of 1224

TDS format properties
attribute group reference 5502, 5540
attribute reference 5503, 5596
complex types 5505, 5616
compound elements 6086, 6151

complex types 6087
deprecated message model

objects 6085
element reference 5509, 5680
embedded simple types 6088, 6222
global attribute 5511, 5713
global attribute group 5513, 5745
global elements 5514, 5763
global group 5517, 5807
group reference 5520, 5814
key 5521, 5818
keyref 5521, 5821
local attribute 5522, 5880
local elements 5524, 5971
local group 5527, 6021
message 5531, 6031
message model objects 5501
message set defaults 5394
message sets 5381

TDS mnemonics 5391, 6290
simple types 5532, 6056
unique 5532, 6059
white space characters 5533
wildcard attribute 5534, 6063
wildcard elements 5534, 6068

TDS industry standard formats 6265
ACORD AL3 messages 6272

TDS industry standard formats
(continued)

fixed length AL3 6273
tagged encoded length to support

reversioning 6274
CSV messages 6276
EDIFACT messages 6266
FIX messages 6275
HL7 messages 6267
SWIFT messages 6268
TLOG messages 6270
X12 messages 6271

TDS log 6868
TDS message characteristics in the

MRM 6281
data element separation 6284
special characters to model a

message 6287
mnemonics as special

characters 6289
TDS mnemonics 5391, 6290

Terminal Services, Windows 248
terminals

dynamic 1034
dynamic terminals, adding 1518
message flows 1034

test messages
getting 3164
putting 3163

testing
message flows 3144

text-only Quick Tour 27
TFIM

security profiles 444
TFIM V6.1

authorization 416
module chain 487

TFIM V6.2
authorization 419
module chain 478

throughput
optimizing message flows 587, 3261

Throw node 4929
timeout control

automatic messages 2817
event storage 760, 2820, 3276
multiple messages 2815
performance 2822
sending a message 2813
sending messages at a specified

time 2815
timeout request messages

example XML 2812
predefined schema definition 2812
sending 2810

timeout threads
aggregation 2739

TimeoutControl node 4932
TimeoutNotification node 4936

error handling 2833
timeouts

aggregation 2736
deployment 3258

TLOG messages 6270
Toolkit 31

description 260, 261
SSL connection 3598

topic level separators 6395
topics, semantics of 6396
trace 6871

changing settings 3549
clearing files 3548
CMP 3554
formatting 3543
how to use 3533
interpreting 3546
ODBC trace 3551
service trace 6875
turning trace nodes on and off 3556
user trace 6873

Trace node 4942
turning on and off 3556

trademarks 112
transactional model 1285
transactionality

JMS 1705
transforming messages 2227
Trial Edition

license requirements 3606
package contents 3608
upgrading prerequisite products

WebSphere MQ 298
troubleshooting 6864

data collection 3566
console 3566

overview 3345
techniques 3345
typical problems 3363

trusted applications 613
TryCatch node 4949

catching exceptions 2836
TwineballInput node 4951
TwineballRequest node 4955

U
Unicode 823
uninstalling

AIX 333
console interface 335
manual 332
silent interface 337

console interface
AIX 335
HP-UX 335
Linux 335
Solaris 335
Windows 335

console mode
Message Broker Explorer 348

graphical interface
Linux, Message Broker

Explorer 347
toolkit 341
Windows, Message Broker

Explorer 347
HP-UX 333

console interface 335
manual 332
silent interface 337

Linux 333
console interface 335
manual 332
silent interface 337

6920 WebSphere Message Broker Version 7.0.0.8

uninstalling (continued)
maintenance updates

AIX 338
HP-UX 338
Linux 338
Solaris 338
Windows 338

manual
AIX 332
HP-UX 332
Linux 332
Solaris 332
Windows 332

multiple broker installations 3620
problems 3525
service

AIX 338
HP-UX 338
Linux, runtime 338
Linux, toolkit 344
Message Broker Explorer 350
Solaris 338
Windows, runtime 338
Windows, toolkit 344

silent interface
AIX 337
HP-UX 337
Linux 337
Solaris 337
toolkit 343
Windows 337

silent mode
Message Broker Explorer 349

Solaris 333
console interface 335
manual 332
silent interface 337

WebSphere Message Broker Database
Extender 339

Windows 333
console interface 335
manual 332
silent interface 337

unique
CWF properties 5474, 6058
logical properties 5452, 6058
TDS format properties 5532, 6059
XML wire format properties 5499,

6058
UNIX

environment variables 3350
kernel parameters 259
National Language Support for

syslog 820
upgrading

supported upgrade paths 3579
usage data on z/OS 3982
user databases

accessing 2112
from ESQL 2115

configuring DatabaseInput
node 2121

connections 2110
database extender, syntax of sample

configuration files 3596
event tables 2126

user databases (continued)
event-based database

integration 2118
extended database support 2117
location 3595
responding to database updates 2123
supported 3591

user exit API 6615
user exit implementation functions 6616

bipInitializeUserExits 6617
bipTerminateUserExits 6618
cciInputMessageCallback 6619
cciNodeCompletionCallback 6621
cciOutputMessageCallback 6626
cciPropagatedMessageCallback 6623
cciTransactionEventCallback 6625

user exit utility functions 6628
cciGetNodeAttribute 6629
cciGetNodeName 6630
cciGetNodeType 6631
cciGetSourceNode 6635
cciGetSourceTerminalName 6636
cciGetTargetNode 6637
cciGetTargetTerminalName 6637
cciRegisterUserExit 6638

user exits 3015
deploying 3116
developing 3114
exploiting 2985

user trace 6873
options

changing 3201
checking 3199

retrieving 3204
starting 3197
stopping 3202

user-defined exits
developing 2970

user-defined extensions 2971
creating 3022
creating in C 3027
creating in Java 3054
designing 3024
error handling 2973
exception handling 2973
node factory 2982
ODBC restrictions 2979
parser factory 2982

user-defined nodes 6415
C implementation functions 6417
C node and parser implementation

functions 6641
C skeleton code 6683
C utility functions 6419
changing 3135
class loading, Java nodes 3120
common utility functions 6643

cciGetBrokerInfo 6645
cciGetLastExceptionData 6647
cciGetLastExceptionDataW 6649
cciGetNodeType 6631
cciIsTraceActive 6670
cciLog 6651
cciLogW 6653
cciMbsToUcs 6655
cciRegisterForThreadStateChange 6656
cciRethrowLastException 6659

user-defined nodes (continued)
common utility functions (continued)

cciServiceDebugTrace 6660
cciServiceDebugTraceW 6661
cciServiceTrace 6663
cciServiceTraceW 6664
cciThrowException 6666
cciThrowExceptionW 6668
cciUcsToMbs 6672
cciUserDebugTrace 6674
cciUserDebugTraceW 6676
cciUserTrace 6678
cciUserTraceW 6681

compiling
C nodes 3047, 3106
Java nodes 3074

conversion
multi-byte strings to UCS 6655
UCS to multi-byte strings 6672

copying element tree
(cniCopyElementTree) 6430

creating 3025
creating from subflows 3076

from existing subflows 3078
from scratch 3077
Palette editor 3092

creating in Java 3054
creating message catalogs 3138
data buffer

output nodes 6537
retrieving bytes 6426
retrieving pointer 6427
retrieving size 6428

debug
cciServiceDebugTrace 6660
cciServiceDebugTraceW 6661
cciUserDebugTrace 6674
cciUserDebugTraceW 6676

designing
error and exception

handling 2973
storage management 2976
string handling 2977
threading 2978

developing 2970
diagnostic information

cciGetLastExceptionData 6647
cciGetLastExceptionDataW 6649

error and exception handling 2973
error logging

cciLog 6651
cciLogW 6653

event logging 3137
event logs

cciLog 6651
cciLogW 6653

exceptions
cciRethrowLastException 6659
cciThrowException 6666
cciThrowExceptionW 6668

execution model 2981
input nodes 2990

creating in C 3027
creating in Java 3055
extending capability in C 3034
life cycle in C 2991
life cycle in Java 2993

Index 6921

user-defined nodes (continued)
input nodes (continued)

planning 2995
restrictions 3055

installing 1496
from an update site 3124

installing in the toolkit 3128
installing on a broker 3125
message processing nodes 2996

creating in C 3036
creating in Java 3062
extending capability in C 3043
extending capability in Java 3069
life cycle in C 2997
life cycle in Java 3000
planning 3002

message sets 1497
MRM parser constants 6691
National Language Support 6694
node and parser implementation

functions 6641
cciRegCallback 6641

node implementation functions
cniCreateNodeContext 6447
cniDeleteNodeContext 6454
cniEvaluate 6475
cniGetAttribute 6482
cniGetAttribute2 6484
cniGetAttributeName 6485
cniGetAttributeName2 6487
cniRun 6504
cniSetAttribute 6511
retrieve attribute 6482
retrieve attribute name 6485
retrieve attribute name2 6487
retrieve attribute2 6484

node implementation functions in
C 6417

node utility functions 6419
broker information,

retrieving 6488
cciMessage object, retrieving 6490
cniAddAfter 6421
cniAddasFirstChild 6422
cniAddasLastChild 6424
cniAddBefore 6425
cniBufferByte 6426
cniBufferPointer 6427
cniBufferSize 6428
cniCopyElementTree 6430
cniCreateElementAfter 6431
cniCreateElementAfterUsingParser 6432
cniCreateElementAsFirstChild 6433
cniCreateElementAsFirstChildUsingParser 6435
cniCreateElementAsLastChild 6436
cniCreateElementAsLastChildFromBitstream 6438
cniCreateElementAsLastChildUsingParser 6440
cniCreateElementBefore 6442
cniCreateElementBeforeUsingParser 6443
cniCreateInputTerminal 6444
cniCreateMessage 6446
cniCreateNodeFactory 6449
cniCreateOutputTerminal 6450
cniDefineNodeClass 6451
cniDeleteMessage 6453
cniDetach 6455
cniDispatchThread 6456

user-defined nodes (continued)
node utility functions (continued)

cniElementAsBitstream 6458
cniElementName 6464
cniElementNamespace 6465
cniElementType 6467
cniElementValue group 6468
cniElementValueState 6471
cniElementValueType 6472
cniElementValueValue 6473
cniFinalize 6479
cniFirstChild 6481
cniGetBrokerInfo 6488
cniGetComplexAttribute 6476
cniGetEnvironmentMessage 6490
cniGetMessageContext 6491
cniGetOutputterminal 6477
cniGetParserClassName 6493
cniGetResourceProperty 6478
cniGetThreadContext 6494
cniIsTerminalAttached 6494
cniLastChild 6496
cniNextSibling 6497
cniParent 6498
cniPreviousSibling 6499
cniPropagate 6501
cniRootElement 6503
cniSearchElement group 6506
cniSearchElementInNamespace

group 6508
cniSetElementName 6513
cniSetElementNamespace 6514
cniSetElementType 6515
cniSetElementValue group 6516
cniSetElementValueValue 6519
cniSetInputBuffer 6520
cniSqlCreateModifyablePathExpression 6521
cniSqlCreateReadOnlyPathExpression 6524
cniSqlCreateStatement 6527
cniSqlDeletePathExpression 6529
cniSqlDeleteStatement 6530
cniSqlExecute 6531
cniSqlNavigatePath 6533
cniSqlSelect 6535
cniWriteBuffer 6537
creating SQL expressions 6527
creating, input terminals 6444
deleting SQL expressions 6530
executing SQL expressions 6531
get complex attribute 6476
get output terminal 6477
get resource property 6478
input buffer 6520
input terminals, creating 6444
message context, retrieving

address 6491
parser class name, retrieving 6493
retrieving address, message

context 6491
retrieving cciMessage object 6490
retrieving parser class name 6493
retrieving thread context 6494
retrieving, broker

information 6488
selecting SQL expressions 6535
SQL expressions, creating 6527
SQL expressions, deleting 6530

user-defined nodes (continued)
node utility functions (continued)

SQL expressions, executing 6531
SQL expressions, selecting 6535
terminals, checking if

attached 6494
output nodes 3006

creating in C 3036
creating in Java 3062
extending capability in C 3043
extending capability in Java 3069
life cycle 3007
planning 3008

packaging
as an update site 3123
as JAR files 3122
user-defined nodes projects 3121

packaging Java nodes 3118
parsers available 6689
plug-in, creating 3081
problems 3512
projects, creating 3080
rethrow exception

(cciRethrowLastException) 6659
return codes 6687
runtime environment 2980
sample node files 6412
samples 3017
service trace

cciServiceDebugTrace 6660
cciServiceDebugTraceW 6661
cciServiceTrace 6663
cciServiceTraceW 6664

setting and getting 3073
simulating 3097

debugging 3098
specific types 3073
subflow 3008
syntax elements

adding after 6421
adding as first child 6422
adding as last child 6424
adding before 6425
address of first child 6481
address of last child 6496
address of next sibling 6497
address of parent 6498
address of previous sibling 6499
address, value object 6473
attributes, setting 6511
bitstream, retrieving as 6458
creating after 6431
creating after, using parser 6432
creating as first child 6433
creating as first child, using

parser 6435
creating as last child 6436
creating as last child, from

bitstream 6438
creating as last child, using

parser 6440
creating before 6442
creating before, using parser 6443
creating context 6447
creating message 6446
creating, node factories 6449
creating, output terminals 6450

6922 WebSphere Message Broker Version 7.0.0.8

user-defined nodes (continued)
syntax elements (continued)

declaring, input nodes 6504
defining, node classes 6451
deleting context 6454
deleting message 6453
detaching 6455
dispatching, message flow

threads 6456
element names, retrieving 6464
finalizing processing 6479
from bitstream, creating as last

child 6438
input nodes, declaring 6504
message flow threads,

dispatching 6456
messages, propagating 6501
names, setting 6513
namespaces, retrieving 6465
namespaces, setting 6514
node classes, defining 6451
node factories, creating 6449
node processing 6475
output terminals, creating 6450
previous siblings, searching 6506
propagating messages 6501
retrieving as bitstream 6458
retrieving element names 6464
retrieving types 6467
retrieving values 6468
retrieving, namespaces 6465
retrieving, root element 6503
retrieving, states of values 6471
retrieving, types of values 6472
root element, retrieving 6503
searching elements in namespace

group 6508
searching previous siblings 6506
setting names 6513
setting namespaces 6514
setting types 6515
setting value addresses 6519
setting values 6516
setting, attributes 6511
states of values, retrieving 6471
types of values, retrieving 6472
types, retrieving 6467
types, setting 6515
using parser, creating after 6432
using parser, creating as first

child 6435
using parser, creating as last

child 6440
using parser, creating before 6443
value addresses, setting 6519
value object address 6473
values, retrieving 6468
values, setting 6516

testing 3094
thread state change

(cciRegisterForThreadStateChange) 6656
threading

(cciRegisterForThreadStateChange) 6656
throw exception

cciThrowException 6666
cciThrowExceptionW 6668

trace active (cciIsTraceActive) 6670

user-defined nodes (continued)
trace logging 6693
trace utility functions 6693
uninstalling 3136
updating and uninstalling

from an update site 3125
user interface representation 3079
user trace

cciUserDebugTrace 6674
cciUserDebugTraceW 6676
cciUserTrace 6678
cciUserTraceW 6681

XML parser constants 6691
user-defined nodes, editing 6818
user-defined parsers

C language API 6538
changing 3135
compiling 3047, 3106
creating in C 3099
data buffer

appending data 6546
byte, retrieving 6547
data, appending 6546
pointer, retrieving 6548
retrieving bytes 6547
retrieving pointer 6548
retrieving size 6550
size, retrieving 6550
writing to 6610

designing
error and exception

handling 2973
storage management 2976
string handling 2977
threading 2978

developing 2970
error and exception handling 2973
event logging 3137
execution model 2981
extending capability 3103
installing on a broker 3125
life cycle 3011
packaging 3118
parser implementation

functions 6538
context, deleting 6559
cpiCreateContext 6553
cpiDeleteContext 6559
cpiElementValue 6566
cpiNextParserClassName 6573
cpiNextParserCodedCharSetId 6574
cpiNextParserEncoding 6576
cpiParseBuffer 6580
cpiParseBufferEncoded 6582
cpiParseBufferFormatted 6583
cpiParserType 6591
cpiSetElementValue 6602
cpiSetNextParserClassName 6609
cpiWriteBuffer 6610
cpiWriteBufferEncoded 6612
cpiWriteBufferFormatted 6613
creating context 6553
deleting context 6559
parsing preparation 6580
retrieving values 6566
values, retrieving 6566
writing to data buffer 6610

user-defined parsers (continued)
parser utility functions 6539

adding after 6540
adding as first child 6541
adding as last child 6543
adding before 6544
addresses, retrieving first

child 6571
addresses, retrieving last

child 6572
addresses, retrieving next

sibling 6577
addresses, retrieving parent 6578
addresses, retrieving root

element 6592
cpiAddAfter 6540
cpiAddAsFirstChild 6541
cpiAddAsLastChild 6543
cpiAddBefore 6544
cpiAppendToBuffer 6546
cpiBufferByte 6547
cpiBufferPointer 6548
cpiBufferSize 6550
cpiCreateAndInitializeElement 6551
cpiCreateElement 6554
cpiCreateParserFactory 6555
cpiDefineParserClass 6557
cpiElementCompleteNext 6560
cpiElementCompletePrevious 6561
cpiElementName 6562
cpiElementNamespace 6563
cpiElementType 6565
cpiElementValue group 6567
cpiElementValueValue 6569
cpiFirstChild 6571
cpiLastChild 6572
cpiNextSibling 6577
cpiParent 6578
cpiParseFirstChild 6586
cpiParseLastChild 6587
cpiParseNextSibling 6589
cpiParsePreviousSibling 6590
cpiRootElement 6592
cpiSetCharacterValueFromBuffer 6594
cpiSetElementCompleteNext 6595
cpiSetElementCompletePrevious 6597
cpiSetElementName 6598
cpiSetElementNamespace 6599
cpiSetElementType 6601
cpiSetElementValue group 6604
cpiSetElementValueValue 6606
cpiSetNameFromBuffer 6608
creating default 6554
creating parser factories 6555
creating unattached 6551
defining parser class names 6557
first child parsing 6586
last child parsing 6587
names, retrieving 6562
namespaces, retrieving 6563
next child complete flag 6560
next sibling parsing 6589
parser classes, defining

names 6557
parser factories, creating 6555
parsing previous sibling 6590
parsing, first child 6586

Index 6923

user-defined parsers (continued)
parser utility functions (continued)

parsing, last child 6587
parsing, next sibling 6589
previous child complete flag 6561
previous sibling parsing 6590
retrieving first child address 6571
retrieving last child address 6572
retrieving names 6562
retrieving namespaces 6563
retrieving next sibling

address 6577
retrieving parent address 6578
retrieving root element

retrieving 6592
retrieving types 6565
set next child complete flag 6595
set previous child complete

flag 6597
types, retrieving 6565

planning 3013
return codes 6687
runtime environment 2980
sample parser files 6414
samples 3017
specific types 3015
syntax elements

names, setting 6598
namespaces, setting 6599
setting names 6598
setting namespaces 6599
setting types 6601
setting values 6602
setting values from buffer 6594
types, setting 6601
values, setting 6602
values, setting from buffer 6594

uninstalling 3136
user-defined properties

message flow 1147
using ESQL 2370
Using Java 2628
Using message collections 2755
Using message mappings 2228
Using PHP 2670
Using XSL Transform 2669
usr folder 6401
UTF-8 6793

V
Validate node 4959
validation

XMLNSC parser 1099
validation, message 1478
value constraints, setting 2907
verifying your installation

using the Explorer 295
using the Toolkit 291

version
default value 4016
displaying 1443, 3217

Version 7.0, what's new 7
version and keywords, message

flows 1445
views

Administration Log 6840

views (continued)
Brokers 6796
Deployment Log 6797

W
Warehouse node 4963
Web Service Definitions

message set, generating from 2968
Web services 1601

example HTTP messages 1599
Gateway mode 1645

one-way messages 1648
HTTP compression 1597
SOAP nodes

Gateway mode 1645, 1648
one-way messages 1648

SOAP or HTTP? 1582, 1614
using MTOM 1678
using timeouts 1595, 1676

web services addressing
example usage

building the logger message
flow 1640

building the main message
flow 1638

deploying the message
flows 1641

testing the message flows 1642
example use 1659
how to use 1650
information in local

environment 1657
overview 1617, 1650
SOAPAsync nodes, using with 1655
SOAPInput node, using with 1651
SOAPReply node, using with 1653
SOAPRequest node, using with 1654

Web Services message flows
problems 3407

WebSphere Adapters nodes 1914
deploying 3240
deployment overview 3219
EIS, connecting 2037

timeout 726, 2039
Enterprise Information System,

connecting 2037
IBM Tivoli License Manager,

activating 2036
iterative deployment 3219
JD Edwards

configurable services 725, 2093
connection details, changing 725,

2093
dependencies 2090

message flows, developing 2033
monitoring 3192
new event types, handling 2044
new services, calling 2042
PeopleCode 4125
PeopleSoft

configurable services 723, 2086
connection details, changing 723,

2086
dependencies 2081

PeopleSoftInput 4630
PeopleSoftRequest 4635

WebSphere Adapters nodes (continued)
PeopleTools custom event

project 2084
problems 3428
properties 4024

JD Edwards EnterpriseOne 4146
PeopleSoft 4122
SAP 4024
Siebel 4092

SAP
configurable services 719, 2053
connection details, changing 719,

2053
dependencies 2048
high availability 2057
identity propagation 2066
iterative discovery 2064
server, configuring 2051
shared queues 2057
tuning for performance 3278

SAPInput 4676
SAPReply 4682
SAPRequest 4685
secondary adapters 2040
Siebel

application, configuring 2071
clustered environment,

connecting 2078
configurable services 721, 2075
connection details, changing 721,

2075
dependencies 2068
different versions,

connecting 2077
SiebelInput 4740
SiebelRequest 4745
TwineballInput 4951
TwineballRequest 4955

WebSphere Application Server
SIBus 1710

WebSphere Integration Developer 3600
WebSphere Message Broker Database

Extender
configuring

AIX 275
HP-UX 275
Linux 275
Solaris 275

installing
AIX 273
HP-UX 273
Linux 273
Solaris 273

uninstalling 339
WebSphere Message Broker Explorer 57

connection security
security exits 500
SSL 500

security 500
WebSphere Message Broker Toolkit

connection security
security exits 500
SSL 500

installing
from CD on Linux 276
graphical interface 276
silent interface 279

6924 WebSphere Message Broker Version 7.0.0.8

WebSphere Message Broker Toolkit
(continued)

installing (continued)
summary 276

locales feature 276
package contents 3614
package group 276
security 500
shared resources directory 276
software license agreement 276

WebSphere MQ 5
connections 4222
default resources 3643
facilities 6890
infrastructure

designing 584
resources for brokers 585

log 6869
message groups

receiving messages 1554
sending messages 1556

message segments
sending segments 1557

messaging 5
naming conventions 582
planning for z/OS 601
supported versions 3598
trusted applications 613

WebSphere Service Registry and
Repository 1876

Cache 1888
setting up Cache

Notification 1890
local environment

defining search criteria 1891
EndpointLookup node

output 1894
RegistryLookup node

output 1897
nodes

changing configuration
parameters 1881

configuration parameters 1877
displaying configuration

parameters 1879
secure 1884

what to install 260
what's new in Version 7.0 7
white space characters, TDS format

properties 5533
WID 3600
wildcard attribute

CWF properties 5475, 6061
logical properties 5453, 6061
message models, adding to 2885
TDS format properties 5534, 6063
XML wire format properties 5499,

6062
wildcard attributes 1187
wildcard element

message models, adding to 2880
wildcard elements 1186

CWF properties 5475, 6066
logical properties 5453, 6065
TDS format properties 5534, 6068
XML wire format properties 5500,

6067

wildcards
in file name patterns 1830
multilevel 6395
single-level 6395

Windows
installing

Broker component 267
console interface 270
silent interface 272
WebSphere Message Broker

Toolkit 276
Launchpad

Installation 265
Terminal Services 248
UNC paths 252

Windows service, starting a queue
manager 929

wizards
Default Configuration wizard 107

work path
changing 1011
mounting 1011

workbench
Broker Application Development

perspective 6784
configurable services 644
Debug perspective 6789
Plug-in Development

perspective 6792
working directory 239
working sets 42

projects 575
Working with WebSphere Process

Server 2095
workspace 291
writing messages 1072
WS-Security

capabilities 790
implementing 770
mechanisms 768
security 766

WS-Trust V1.3
security profiles 441

WSDL 2968
accepting self-signed certificates when

importing 2950
applications 1615, 1661
configuring message flows 1664
importing from WSDL

generated objects 6356
restrictions 6356

importing message definitions 2946
query 1666
relationship to the message model

generating WSDL 1275
importing WSDL 1269

rpc-encoded SOAP messages 1671
styles 1671
URI formats 1668
use in a Quick Start wizard 1413
validation 1661

WSDL editor 6820

X
X12 messages 6271

XA coordination
configuration

databases 665
DB2 700
JDBC 713
Oracle 705
Sybase 710

XML DTD, importing message
definitions 2954

XML messages
validating against a schema 1273

XML namespaces in the MRM
domain 1201

XML parsers
namespace support 1109

XML rendering options 6262
XML schema 1172

extensions 1173
importing 2958
restrictions 1172

XML Schema
facets 1176
message definition file, generating

from 2965
message editor only features 6252

XML Schemas
message set, generating from 2963

XML Schemas, generating 2963
XML self-defining message

AttributeDef 4282
AttributeList 4282
DocTypeComment 4286
DocTypeDecl 4272
DocTypePI 4287
DocTypeWhiteSpace 4287
document type declaration 4271
DTD 4271

example 4288
ElementDef 4281
example message 4257
external DTD 4271
inline DTD 4271
message body 4262

AsisElementContent 4263
Attribute 4264
BitStream 4264
CDataSection 4265
Comment 4266
Content 4267
Element 4267
EntityReferenceEnd 4268
EntityReferenceStart 4268
example 4269
ProcessingInstruction 4270

NotationDecl 4275
WhiteSpace 4287
XML declaration 4258

example 4261
XML entities 4275

XML wire format
NULL handling options 6258

NULL element and
NULLValAttr 6261

NULL representation for Binary
data 6262

NULL value 6260
XML rendering options 6262

Index 6925

XML Wire Format 1247
model integrity 1248
multipart messages 1250
NULL handling 1249
physical format layers, adding 2854
physical properties

configuring for message model
objects 2916

configuring for message sets 2855
relationship to the logical

model 1251
xsi:type attributes 1252

XML wire format properties
attribute group reference 5477, 5539
attribute reference 5478, 5573
complex types 5480, 5615
compound elements 6082, 6128

complex types 6083
deprecated message model

objects 6081
element reference 5481, 5657
embedded simple types 6084, 6215
global attribute 5483, 5702
global attribute group 5485, 5744
global elements 5486, 5752
global group 5488, 5805
group reference 5488, 5814
key 5489, 5818
keyref 5490, 5821
local attribute 5490, 5857
local elements 5492, 5948
local group 5494, 6019
message 5495, 6027
message model objects 5476
message sets 5400

In-line DTDs and the DOCTYPE
text property 5407

simple types 5498, 6055
unique 5499, 6058
wildcard attribute 5499, 6062
wildcard elements 5500, 6067

XMLNS parser 1104
DTD support 1108

XMLNS parser (continued)
empty elements 1106
NULL values 1106

XMLNS parsers
opaque parsing 1107

XMLNSC parser 1090
data types 1102
DTD support 1103
empty elements 1092
field types 1094, 2550
message tree options 1101
null values 1092
opaque parsing 1097
specifying opaque elements 1098
validation 1099

XPath 2649
mapping functions 5001

aggregating XPath
expressions 5003

for expression 5005
XPath property editors 5047
XPLink 595
XSD

use in a Quick Start wizard 1413
XSL style sheet, keywords 4975
XSLTransform node 4968

Z
z/OS

administration 3979
broker statistics, collecting 608
brokers, creating 609
customization 3983

broker PDSE, contents of 3991
DB2 using data-sharing

groups 3990
disk space requirements 3586,

3989
naming conventions 3984
planning checklist 3991
summary of required access 3985
tasks and roles 3984

z/OS (continued)
customization variables, JCL 3994
customizing the environment 591

APF attributes, checking 607
Automatic Restart Manager

planning 603
event log messages 597
file system 596
installation directory, checking

permission of 606
level of Java, checking 607
mounting file systems 604
resource recovery service

planning 602
shared libraries 598
temporary directory space 598
TMPDIR 598
UNIX system services 598
z/OS workload manager, defining

started tasks to 602
data sources

Compute node 4014
Database node 4014

DUMP command 3560
execution groups, configuring as

non-swappable 608
guidance for issuing console

commands 3981
issuing commands to the

console 3980
migrating existing applications 162
moving from a distributed

environment 818
security considerations 597

setting up WebSphere MQ 558
setting up workbench access 559
setting up z/OS security 556

specific information 3979
START and STOP commands 3981
usage data on 3982
WebSphere MQ planning 601

6926 WebSphere Message Broker Version 7.0.0.8

	Contents
	Chapter 1. WebSphere Message Broker
	Chapter 2. WebSphere Message Broker overview
	WebSphere Message Broker introduction
	What's new in Version 7.0?
	New function added in Version 7.0 fix packs
	Fix pack V7.0.0.7 enhancements
	Fix pack V7.0.0.6 enhancements
	Fix pack V7.0.0.5 enhancements
	Fix pack V7.0.0.4 enhancements
	Fix pack V7.0.0.3 enhancements
	Fix pack V7.0.0.2 enhancements
	Fix pack V7.0.0.1 enhancements

	WebSphere Message Broker technical overview
	Create the broker environment
	Develop applications
	Deploy applications to the runtime environment
	Publish/Subscribe
	Further information
	WebSphere Message Broker Toolkit
	The WebSphere Message Broker Toolkit
	Accessing context-sensitive help
	WebSphere Message Broker Toolkit perspectives
	Editors
	Resources
	Development repository

	The broker environment
	Operation modes
	Controlling the functional level of WebSphere Message Broker
	System management interfaces
	Execution groups
	The Administration API for WebSphere Message Broker

	WebSphere Message Broker Explorer
	The WebSphere Message Broker Explorer
	Accessing context-sensitive help

	External systems and resources

	WebSphere Message Broker business scenario
	Mergers and acquisitions scenario

	Welcome to WebSphere Message Broker
	How do I use the information center?
	Where can I find other sources of help information?

	Where can I get an overview of WebSphere Message Broker?
	I am a developer; what tasks am I interested in?
	How do I use the WebSphere Message Broker Toolkit?
	How do I design and develop applications?

	I am an administrator; what tasks am I interested in?
	How do I use the WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit?
	How can I check that my installation was successful?
	What information is available for users of previous versions?
	How do I plan and configure brokers?
	How do I administer and monitor brokers?
	How do I deploy and configure message flow applications?
	How can I diagnose problems?

	Samples
	Creating the Default Configuration
	What the Default Configuration wizard creates

	Legal information for WebSphere Message Broker
	Notices for WebSphere Message Broker
	Trademarks in the WebSphere Message Broker Information Center

	Glossary of terms and abbreviations
	Accessibility features for WebSphere Message Broker

	Chapter 3. Migrating and upgrading
	Coexistence with previous versions and other products
	Migrating publish/subscribe information to WebSphere MQ
	WebSphere MQ migmbbrk command
	Access Control List (ACL) migration - publish/subscribe
	Migrating publish/subscribe from WebSphere Message Broker Version 6.0 or WebSphere Message Broker to WebSphere MQ
	Retained publications with headers in MQRFH format
	Migrating publish/subscribe information from WebSphere MQ to WebSphere Message Broker Version 6.0 or WebSphere Message Broker
	Migrating publish/subscribe collectives from WebSphere Message Broker Version 6.0 or WebSphere Message Broker to WebSphere MQ
	Setting up a new queue-manager cluster
	Decide on the organization of the cluster and its name
	Determine which queue managers should hold full repositories
	Alter the queue-manager definitions to add repository definitions
	Define the CLUSRCVR channels
	Define the CLUSSDR channels
	Define the cluster queue INVENTQ
	Verify and test the cluster
	Adding a new queue manager to a cluster
	Selecting queue managers to hold full repositories

	Migrating existing z/OS applications
	Migrating from Version 6.1 products
	Preparing for migration from Version 6.1
	Backing up WebSphere Message Broker resources
	Updating ODBC definitions when migrating
	Migrating the WebSphere Message Broker Toolkit development resources from Version 6.1 to Version 7.0
	Migrating a broker from WebSphere Message Broker to WebSphere Message Broker Version 7.0
	Migrating a Version 6.1 broker to Version 7.0 on distributed operating systems
	Migrating a Version 6.1 broker to Version 7.0 on z/OS

	Migrating Configuration Manager ACLs
	Migrating a Microsoft Windows WebSphere Message Broker that is configured using Microsoft Cluster Services (MSCS)

	Migrating from Version 6.0 products
	Preparing for migration from Version 6.0
	Backing up WebSphere Message Broker Version 6.0 resources
	Updating your ODBC definitions when migrating
	Migrating from SupportPac IA9Q
	Migrating the WebSphere Message Broker Toolkit development resources from Version 6.0 to Version 7.0
	Migrating a broker from WebSphere Message Broker Version 6.0 to WebSphere Message Broker Version 7.0
	Migrating a Version 6.0 broker to Version 7.0 on distributed operating systems
	Migrating a Version 6.0 broker to Version 7.0 on z/OS

	Migrating Configuration Manager ACLs
	Migrating a WebSphere Message Broker that is configured by using Microsoft Cluster Services (MSCS)

	Post-migration tasks
	Reviewing technical changes in Version 7.0
	Message set migration
	Input message tree modification

	Setting up a command environment
	Migrating a flow containing HTTPRequest nodes
	Migrating a flow containing XMLTransformation nodes
	Migrating a flow that contains File nodes
	Migrating a flow containing data definitions
	Migrating data definitions in the workbench
	How the migration works
	No title

	Migrating a flow supporting ?wsdl queries
	Migrating CMP applications
	Updating error processing routines

	Restoring migrated components to previous versions
	Restoring components and resources to Version 6.1
	Restoring components and resources to Version 6.0

	Conditions for using migrated resources with previous versions of the WebSphere Message Broker Toolkit

	Chapter 4. Installing and uninstalling
	Installing
	Finding the latest information
	Installation Guide
	Preparing for installation
	Coexistence and migration
	Coexistence
	Migration

	Preparing the system
	Setting up security
	Configuring temporary space on distributed systems
	Accessing CDs and DVDs
	Checking the kernel configuration on Linux and UNIX systems

	Choosing what to install
	Installing by using the Windows Launchpad
	Multiple installations on a single computer
	Installation summary
	Starting the Windows Launchpad

	Installing the Broker component
	Installing the Broker component in console mode
	Installing the Broker component in silent mode
	Installing the WebSphere Message Broker ODBC Database Extender (IE02)

	Installing the WebSphere Message Broker Toolkit
	Installing the WebSphere Message Broker Toolkit in silent mode

	Installing WebSphere Message Broker Explorer
	Installing the WebSphere Message Broker Explorer by using console mode with a screen reader
	Installing the WebSphere Message Broker Explorer in console mode on Windows
	Installing the WebSphere Message Broker Explorer in console mode on Linux
	Installing the WebSphere Message Broker Explorer in silent mode

	Verifying your WebSphere Message Broker installation
	Verifying your installation by using the WebSphere Message Broker Toolkit
	Verifying your installation using the WebSphere Message Broker Explorer

	Checking the broker operation mode and function level
	Configuring your brokers to conform to your license
	Changing the function levels of your brokers

	Installing complementary products
	Installing Tivoli License Manager
	Installing plug-ins using Eclipse Update Manager
	Publishing in a Citrix XenApp environment

	Setting up a command environment
	Command environment: Windows systems
	Execution group-specific command environment: Windows systems
	Command environment: Linux and UNIX systems
	Execution group-specific command environment: Linux and UNIX systems

	Applying service
	Applying service to the Broker component
	Applying service to the WebSphere Message Broker Toolkit
	Applying service to the WebSphere Message Broker Explorer

	Uninstalling
	Uninstalling the Broker component
	Uninstalling the Broker component by using the graphical interface
	Uninstalling the Broker component by using the console interface
	Uninstalling the Broker component by using the silent interface
	Uninstalling service for the Broker component
	Uninstalling the WebSphere Message Broker ODBC Database Extender (IE02)

	Uninstalling the WebSphere Message Broker Toolkit
	Uninstalling the WebSphere Message Broker Toolkit in graphical mode
	Uninstalling the WebSphere Message Broker Toolkit in silent mode
	Uninstalling service from the WebSphere Message Broker Toolkit

	Uninstalling the WebSphere Message Broker Explorer
	Uninstalling the WebSphere Message Broker Explorer on Windows
	Uninstalling the WebSphere Message Broker Explorer on Linux
	Uninstalling the WebSphere Message Broker Explorer in console mode
	Uninstalling the WebSphere Message Broker Explorer in silent mode
	Uninstalling service from the WebSphere Message Broker Explorer

	Chapter 5. Security
	Security overview
	Planning for security when you install WebSphere Message Broker
	Authorization for configuration tasks
	Security exits
	Public key cryptography
	Digital certificates
	Digital signatures

	Broker administration security
	Broker administration security overview
	Authorization on z/OS
	Authority checking
	Authority persistence
	Additional administration security
	Broker permissions and equivalent WebSphere MQ permissions
	Authorization queues for broker administration security

	Setting up broker administration security
	Enabling broker administration security
	Authorizing users for broker administration
	Disabling broker administration security

	Activating broker administration security for WebSphere MQ Version 7.1, or later

	Message flow security
	Message flow security overview
	Security profiles
	Identity
	Authentication and validation
	Authorization
	Identity mapping
	Invoking message flow security using a security enabled input node
	Invoking message flow security using a SecurityPEP node
	Authentication, mapping, and authorization with TFIM V6.1 and TAM
	Authentication, mapping, and authorization with TFIM V6.2 and TAM
	Identity and security token propagation
	Security exception processing

	Setting up message flow security
	Creating a security profile
	Configuring the extraction of an identity or security token
	Configuring identity authentication and security token validation
	Configuring identity mapping
	Configuring authorization
	Configuring for identity propagation
	Database security
	Diagnosing security problems

	Broker component security
	Creating user IDs
	Considering security for the WebSphere Message Broker Toolkit and WebSphere Message Broker Explorer
	Securing the channel between the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer and the broker
	

	Considering security for a broker
	Deciding which user account to use for the broker service ID
	Setting security on the broker queues
	Securing the broker registry

	Implementing SSL authentication
	Setting up a public key infrastructure
	Listing SSL cipher suites
	Implementing SSL authentication on z/OS
	Configuring the broker to use SSL with JMS nodes
	Configuring SOAPInput and SOAPReply nodes to use SSL (HTTPS)
	Configuring SOAPRequest and SOAPAsyncRequest nodes to use SSL (HTTPS)
	Configuring HTTPInput and HTTPReply nodes to use SSL (HTTPS)
	Configuring an HTTPRequest node to use SSL (HTTPS)
	Enabling SSL on the WebSphere MQ Java Client
	Securing the connection to CICS Transaction Server for z/OS by using SSL
	Securing the connection to IMS by using SSL
	SSL and the TCP/IP nodes

	Using security exits

	Setting up z/OS security
	Setting up WebSphere MQ
	Setting up WebSphere Message Broker Toolkit access on z/OS
	Execution group user IDs on z/OS
	Specifying an alternative user ID to run an execution group on z/OS

	Chapter 6. Configuring brokers for development environments
	Creating a default configuration
	Creating the default configuration
	Removing the default configuration

	Creating a development environment
	Creating a broker for a development environment

	Configuring the workbench
	Changing WebSphere Message Broker Toolkit preferences
	Changing workbench capabilities
	Configuring CVS to run with the WebSphere Message Broker Toolkit
	Configuring the WebSphere Message Broker Toolkit to run Rational ClearCase
	Creating a working set
	Integrating the Rational Team Concert client with the WebSphere Message Broker Toolkit

	Chapter 7. Configuring brokers for test and production environments
	Planning a broker environment
	Considering resource naming conventions
	Naming conventions for brokers and associated resources
	WebSphere MQ naming conventions
	Database naming conventions

	Designing the WebSphere MQ infrastructure
	WebSphere MQ resources for the broker

	Considering performance in the broker environment
	Optimizing message flow throughput

	Customizing the z/OS environment
	z/OS customization overview
	Installation directory on z/OS
	Components on z/OS
	Component directory on z/OS
	Component PDSE on z/OS
	XPLink on z/OS
	Using the file system on z/OS
	Administration log messages on z/OS
	Security considerations on z/OS

	Customizing UNIX System Services on z/OS
	WebSphere MQ planning for z/OS
	Resource Recovery Service planning on z/OS
	Defining the started tasks to z/OS Workload Manager (WLM)
	Automatic Restart Manager planning
	Mounting file systems
	Checking the permission of the installation directory
	Customizing the version of Java on z/OS
	Checking APF attributes of bipimain on z/OS
	Collecting broker statistics on z/OS
	Configuring an execution group address space as non-swappable on z/OS
	Creating a broker on WebSphere Message Broker for z/OS

	Configuring brokers
	Creating a broker
	Using WebSphere MQ trusted applications
	Creating a broker on Linux and UNIX systems
	Creating a broker on Windows
	Creating a broker using the WebSphere Message Broker Explorer
	Creating a broker on z/OS

	Verifying brokers

	Modifying a broker
	Modifying a broker on Windows, Linux, and UNIX systems
	Modifying a broker on z/OS

	Configuring brokers in the WebSphere Message Broker Explorer
	Configuring broker properties in the WebSphere Message Broker Explorer
	Configuring description properties in the WebSphere Message Broker Explorer
	Configuring DataPower security settings
	Configuring the flow debug port in the WebSphere Message Broker Explorer
	Changing the operation mode of your broker using the WebSphere Message Broker Explorer
	Changing the broker security settings in the WebSphere Message Broker Explorer

	Using the WebSphere Message Broker Explorer to work with configurable services
	Creating a new configurable service
	Viewing configurable services
	Modifying an IBM defined configurable service
	Modifying a configurable service
	Importing a configurable service
	Exporting a configurable service
	Deleting a configurable service

	Working with UserDefined configurable services
	Changing WebSphere Message Broker Explorer preferences

	Changing the operation mode of your broker
	Moving from Trial Edition

	Checking the operation mode of your broker
	Advanced configuration
	Configuring for applications
	Configuring user databases
	Configuring global coordination of transactions (two-phase commit)
	Configuring properties to connect to external resources
	Configuring internal resources required by flows

	WS-Security
	WS-Security mechanisms
	Implementing WS-Security
	Policy sets
	Message flow security and security profiles
	WS-Security capabilities

	Moving from WebSphere Message Broker on a distributed system to z/OS
	Moving user applications

	Changing locales
	Changing your locale on Linux and UNIX systems
	Changing your locale on Windows
	Changing your locale on z/OS
	Code page converters

	Configuring for high availability
	Configuring a WebSphere Message Broker to run in multi-instance mode
	Multi-instance queue managers
	Creating the shared directories
	Creating the WebSphere MQ multi-instance queue manager
	Creating the multi-instance broker
	Deleting a multi-instance broker
	Deleting a multi-instance queue manager
	Listing a multi-instance broker
	Back up and restore a multi-instance broker

	Using a broker with an existing high availability manager
	Using a broker with an existing Windows Cluster (Windows Server 2003 or 2008)
	HTTP proxy servlet overview
	HTTP traffic handling in WebSphere Message Broker
	HTTP traffic handling by using the proxy servlet in an external web servlet container
	HTTP proxy servlet; descriptions of required components
	Installing the proxy servlet
	Testing the proxy servlet

	Configuring a WebSphere Message Broker as a WebSphere MQ service
	Starting and stopping a WebSphere Message Broker as a WebSphere MQ service
	Modifying the WebSphere MQ service for a broker
	Deleting the WebSphere MQ service for a broker
	Reporting and displaying the status of WebSphere Message Broker that runs as a WebSphere MQ service

	Chapter 8. Administering brokers and broker resources
	Managing brokers
	Connecting to a local broker using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
	Connecting to a remote broker
	Connecting to a remote broker on z/OS in the WebSphere Message Broker Explorer
	Importing broker definitions into the WebSphere Message Broker Explorer
	Importing a broker definition into the WebSphere Message Broker Toolkit
	Importing a broker definition into the WebSphere Message Broker Explorer

	Exporting broker definitions from the WebSphere Message Broker Explorer
	Automatically reconnecting to a broker
	Disconnecting from a broker in the WebSphere Message Broker Explorer
	Using the Administration Queue
	Working with Service Federation Management (SFM)
	Enabling a broker for Service Federation Management
	Configuring the Service Federation Management properties of an execution group

	Grouping brokers by using broker sets
	Creating a manual broker set in the WebSphere Message Broker Explorer
	Adding and modifying broker tags in the WebSphere Message Broker Explorer
	Creating an automatic broker set in the WebSphere Message Broker Explorer
	Modifying broker sets in the WebSphere Message Broker Explorer

	Starting and stopping a broker
	Starting and stopping a broker on Linux and UNIX systems
	Starting and stopping a broker on Windows
	Starting and stopping a broker on z/OS
	Starting a local broker using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
	Stopping a local broker using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer

	Viewing broker properties
	Starting a WebSphere MQ queue manager as a Windows service
	Stopping a WebSphere MQ queue manager when you stop a broker
	Deleting a broker
	Deleting a broker on Linux and UNIX systems
	Deleting a broker on Windows
	Deleting a broker on z/OS
	Deleting a broker using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer

	Managing execution groups
	Creating an execution group
	Creating an execution group using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
	Creating an execution group using the mqsicreateexecutiongroup command

	Renaming an execution group using the WebSphere Message Broker Explorer
	Starting an execution group using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
	Starting an execution group with the WebSphere Message Broker Toolkit
	Starting an execution group with the WebSphere Message Broker Explorer
	Starting an execution group with the mqsistartmsgflow command
	

	Stopping an execution group using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
	Stopping an execution group with the WebSphere Message Broker Toolkit
	Stopping an execution group with the WebSphere Message Broker Explorer
	Stopping an execution group with the mqsistopmsgflow command
	

	Deleting an execution group
	Deleting an execution group by using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
	Deleting an execution group by using the mqsideleteexecutiongroup command

	Managing message flows
	Starting a message flow by using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
	Starting a message flow by using the WebSphere Message Broker Toolkit
	Starting a message flow by using the WebSphere Message Broker Explorer

	Stopping a message flow using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
	Stopping a message flow using the WebSphere Message Broker Toolkit
	Stopping a message flow using the WebSphere Message Broker Explorer

	Deleting a message flow using the WebSphere Message Broker Toolkit or WebSphere Message Broker Explorer
	Deleting a message flow using the WebSphere Message Broker Toolkit
	Deleting a message flow using the WebSphere Message Broker Explorer

	Setting user-defined properties dynamically at run time using the WebSphere Message Broker Explorer

	Developing applications that use the Administration API
	The Administration API for WebSphere Message Broker
	The Administration API samples
	Running the CMP Deploy BAR sample
	Running the CMP broker management sample
	Running the CMP API Exerciser sample
	Modifying the CMP samples

	Configuring an environment for developing and running CMP applications
	Configuring the Windows command-line environment to run CMP applications
	Configuring Linux, UNIX, and z/OS command-line environments to run CMP applications
	Configuring the Eclipse environment to run CMP applications
	Configuring environments without the broker component installed

	Connecting to a broker from a CMP application
	Navigating brokers and broker resources in a CMP application
	Deploying resources to a broker from a CMP application
	CMP API Exerciser
	Checking the results of deployment in a CMP application

	Setting message flow user-defined properties at run time in a CMP application
	Working with properties of a configurable service of type UserDefined at run time in a JavaCompute node
	Managing brokers in a CMP application
	Creating objects in a CMP application
	Checking the results of broker management in a CMP application

	Managing brokers from JavaCompute nodes
	Working with resource statistics in a CMP application
	Submitting batch requests from a CMP application

	Managing resources used by brokers
	Listing database connections that the broker holds
	Quiescing a database
	Using a JDBC connection pool to manage database resources used by an execution group

	Administering Java applications
	Tuning JVM parameters
	Configuring classloaders for Java user-defined nodes
	Configuring classloaders for JavaCompute nodes

	Accessing Administration log information
	Viewing Administration log information
	Saving Administration log information
	Clearing Administration log information
	Changing Administration Log view preferences

	Changing the location of the work path
	Changing the location of the work path on Windows systems
	Changing the location of the work path on Linux and UNIX systems

	Backing up resources
	Backing up the broker
	Restoring the broker
	Backing up the WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit workspace
	

	Chapter 9. Developing message flow applications
	Processing messages
	Message flows overview
	Message flow nodes
	Subflows
	Message flow connections
	Message flow projects
	Broker schemas
	Client application programming interfaces
	The message tree
	Parsers
	Properties
	Impact analysis: analyzing the effects of planned changes to your applications
	Data conversion

	Message modeling
	Message modeling concepts
	Why model messages?
	Message domains and parsers
	The message model
	Physical formats in the MRM domain
	Ways to create message definitions
	Generate model representations

	Message flow behavior
	Default message flow behavior
	Changing message flow behavior

	Developing message flow applications by using patterns
	Patterns
	Using patterns
	Choosing a pattern
	Working with patterns in the Broker Development view
	Generating a pattern instance
	Reviewing the pattern instance summary and tasks
	Importing an existing configuration

	Pattern categories
	Built-in patterns
	User-defined patterns
	Creating a user-defined pattern
	Extending a user-defined pattern
	Building pattern plug-ins
	Testing a user-defined pattern
	Packaging and distributing pattern plug-ins

	Developing message flow applications by using samples
	Developing message flow applications from a wizard
	Quick Start wizards overview
	Creating an application from scratch
	Creating an application based on WSDL or XSD files
	Creating an application based on an existing message set
	Creating an application that uses WebSphere Adapters
	Creating an application by using the Configure New Web Service Usage wizard
	Creating an application based on SCA import or export files

	Developing message flow applications from scratch
	Managing message flow resources
	Creating a message flow project
	Deleting a message flow project
	Creating a broker schema
	Creating a message flow
	Opening an existing message flow
	Copying a message flow by using copy
	Analyzing planned changes to message flows
	Renaming a message flow
	Moving a message flow
	Deleting a message flow
	Deleting a broker schema
	Version and keyword information for deployable objects
	Showing resource references
	Saving a message flow
	Importing and exporting resources in a Project Interchange file
	Enabling and disabling indexing

	Designing a message flow
	Deciding which nodes to use
	Using more than one input node
	Defining input message characteristics
	Creating destination lists
	Validating messages
	Viewing the logical message tree in trace output
	Changing the parser used in a message flow
	Providing user-defined properties to control behavior

	Defining message flow content
	Using the node palette
	Adding a message flow node
	Adding a subflow
	Renaming a message flow node
	Configuring a message flow node
	Using dynamic terminals
	Removing a message flow node
	Connecting message flow nodes
	Inserting nodes into existing message flows
	Removing a node connection
	Adding a bend point
	Removing a bend point
	Aligning and arranging nodes
	Adding annotations to a message flow or node

	Connecting client applications
	Processing WebSphere MQ messages
	Application programming interfaces
	WebSphere MQ Enterprise Transport
	Using WebSphere MQ cluster queues for input and output
	Using WebSphere MQ shared queues for input and output (z/OS)
	Configuring flows to handle WebSphere MQ message groups
	Enabling WebSphere MQ applications
	Ensuring that messages are not lost
	Using MQGet nodes

	Processing HTTP messages
	Web services: when to use SOAP or HTTP nodes
	HTTP message format
	HTTP headers
	Working with HTTP flows
	Web services example messages

	Processing Web service messages
	WebSphere Message Broker and Web services
	Message flows for Web services

	Processing JMS messages
	Java Message Service (JMS) API
	WebSphere Broker JMS Transport
	Working with JMS

	Processing TCP/IP messages
	WebSphere Broker TCP/IP Transport
	TCP/IP nodes
	Connection management
	Scenarios for WebSphere Message Broker and TCP/IP
	Working with TCP/IP

	Processing email messages
	Sending emails
	Receiving emails

	Working with files
	WebSphere Broker File Transport
	IBM Sterling Connect:Direct overview and concepts
	How the broker processes files
	How multiple file nodes share access to files in the same directory
	Using local environment variables with file nodes
	File name patterns
	Archiving
	Reading files
	Writing a file
	Transferring files securely by using SFTP
	Managed file transfers using WebSphere MQ File Transfer Edition
	Initiating a managed file transfer using IBM Sterling Connect:Direct

	WebSphere Service Registry and Repository
	Configuration parameters for the WebSphere Service Registry and Repository nodes
	Displaying the configuration parameters for the WebSphere Service Registry and Repository nodes
	Changing the configuration parameters for the WebSphere Service Registry and Repository nodes
	Accessing a secure WSRR repository
	Caching artifacts from the WebSphere Service Registry and Repository
	Dynamically defining the search criteria
	EndpointLookup node output
	RegistryLookup node output

	Connecting to Enterprise Information Systems
	WebSphere Broker Adapters Transport
	WebSphere Adapters nodes
	Developing message flows that use WebSphere Adapters

	Working with WebSphere Process Server
	Working with Service Component Architecture (SCA)
	Service Component Architecture (SCA) overview
	Interoperability with WebSphere Process Server
	SCA nodes
	Using Broker SCA definitions to configure message flows
	Developing SCA applications for non-XML data
	Message flows for Service Component Architecture (SCA)

	Working with databases
	Databases overview
	Accessing databases from message flows
	Accessing databases from ESQL
	Extended database support
	Event-based database integration

	Working with IMS
	IBM Information Management System (IMS)
	Preparing the environment for IMS nodes
	Securing the connection to IMS by using SSL
	Propagating security credentials to IMS

	Working with CORBA
	Common Object Request Broker Architecture (CORBA)
	Connecting to an external CORBA application

	Working with CICS Transaction Server for z/OS
	CICS Transaction Server for z/OS overview
	Connecting to a CICS Transaction Server for z/OS application

	Routing messages
	Using nodes for decision making
	Testing the message structure (Validate node)
	Controlling the order of processing in a message flow
	Testing the message content (Filter node)
	Using the destination list to route messages (RouteToLabel and Label nodes)

	Routing using publish/subscribe applications
	Publish/Subscribe
	Content based filtering using ESQL

	Transforming and enriching messages
	Using message mappings
	Message mapping overview
	Creating message mappings
	Message mapping scenarios

	Developing ESQL
	ESQL overview
	Managing ESQL files
	Writing ESQL

	Developing Java
	Managing Java Files
	Writing Java

	Using XSL Transform
	Using PHP
	PHP overview
	Creating PHP code for a PHPCompute node
	Using PHP arrays with XML
	Using PHP arrays with JSON
	Deploying code in a PHPCompute node
	Accessing elements in the message tree from a PHPCompute node
	Creating and transforming messages using a PHPCompute node
	XML support
	Routing a message using a PHPCompute node
	Accessing other parts of the message tree using the PHPCompute node
	Calling Java from PHP

	Processing events
	Using aggregation
	Message flow aggregation
	Configuring aggregation flows

	Using message collections
	Message collections
	Creating a message collection by using ESQL
	Creating a message collection by using Java
	Creating a flow that uses message collections
	Configuring the Collector node
	Using control messages with the Collector node
	Configuring the storage of events for Collector nodes

	Using message sequences
	Message sequencing
	Sequence groups
	Starting a message sequence
	Ending a message sequence
	Duplicate message processing
	Adding sequence numbers to messages
	Reordering messages in a message flow
	Maintaining the sequential order of messages
	Message sequencing scenario 1
	Message sequencing scenario 2
	Handling missing messages
	Configuring the storage of events for Resequence nodes

	Configuring timeout flows
	Sending timeout request messages
	Sending a message after a timed interval
	Sending a message multiple times after a specified start time
	Automatically generating messages to drive a flow
	Configuring the storage of events for timeout nodes
	Considering performance for timeout flows

	Handling errors in message flows
	Connecting failure terminals
	Managing errors in the input node
	Handling MQInput errors
	Handling timeout notification errors

	Catching exceptions in a TryCatch node

	Constructing message models
	Working with a message set project
	Deleting a message set project

	Working with a message set
	Configuring message set preferences
	Opening an existing message set
	Creating a message set
	Configuring logical properties: Message sets
	Working with physical formats
	Observing 2007 U.S. changes to daylight saving time
	Configuring documentation properties: Message sets
	Deleting a message set
	Applying a Quick Fix to a task list error

	Working with a message definition file
	Opening an existing message definition file
	Creating a message definition file
	Deleting a message definition file

	Working with MRM message model objects
	Adding MRM message model objects
	Configuring MRM message model objects
	Deleting objects

	Creating a multipart message
	Linking from one message definition file to another
	Include
	Import

	Working with a message category file
	Creating a message category file
	Opening an existing message category file
	Adding a message to a message category
	Deleting a message from a message category
	Viewing or configuring message category file properties
	Deleting a message category file

	Working with data structures
	Importing file systems into the WebSphere Message Broker Toolkit
	Importing from C
	Importing from COBOL copybooks
	Creating a message definition from a database definition
	Importing from IBM supplied messages
	Importing SCA import or SCA export components
	Exporting an SCA Import or Export from a Broker SCA definition
	Importing from WSDL
	Importing an IDL file
	Importing from XML DTD
	Importing from XML Schema

	Generating documentation from message sets and message flows
	Generating XML Schemas
	Generating multiple XML Schemas
	Generating an XML Schema

	Generating a Broker SCA definition from a message set
	Generating a WSDL definition from a message set

	Developing user-defined extensions
	User-defined extensions overview
	Why use a user-defined extension?
	Why use a user exit?
	Which type of user-defined extension to use
	Which language to use to implement a user-defined extension

	Implementing the supplied user-defined extension samples
	Implementing user-defined extensions
	Implementing a user-defined node
	Implementing a user-defined parser
	Implementing a user-defined exit
	Packaging and distributing user-defined extensions

	Chapter 10. Testing and debugging message flow applications
	Testing message flows by using the Test Client
	Test Client overview
	Testing a message flow
	Opening the Test Client editor
	Configuring the test settings
	Creating and editing a test message
	Selecting the deployment location for the message flow

	Using the Test Client in trace and debug mode

	Debugging a message flow
	Flow debugger overview
	Starting the flow debugger
	Attaching the flow debugger to an execution group for debugging
	Debug: putting a test message on an input queue
	Debug: getting a test message from an output queue

	Working with breakpoints in the flow debugger
	Adding breakpoints in the flow debugger
	Restricting breakpoints in the flow debugger to specific flow instances
	Enabling and disabling breakpoints in the flow debugger
	Removing breakpoints in the flow debugger

	Stepping through message flow instances in the debugger
	Debug: resuming message flow processing
	Debug: running to completion
	Debug: stepping over nodes
	Debug: stepping into subflows
	Debug: stepping out of subflows
	Debug: stepping through source code

	Debugging data
	Debugging messages
	Debugging ESQL
	Debugging Java
	Debugging mappings

	Managing flows and flow instances during debugging
	Debug: querying a broker to find deployed flows
	Debug: stopping a message flow instance
	Debug: redeploying a message flow
	Debug: ending a session

	Debugging message flows that contain WebSphere Adapters nodes

	Debugging by using trace
	Debugging with user trace
	Starting user trace
	Checking user trace options
	Changing user trace options
	Stopping user trace
	Retrieving user trace

	Debugging by adding Trace nodes to a message flow

	Chapter 11. Packaging and deploying
	Packaging and deployment overview
	Deployment methods
	Message flow application deployment
	Incremental BAR file deployment
	Complete BAR file deployment
	Broker archive
	Configurable properties of a broker archive
	Version and keyword information for deployable objects

	WebSphere Adapters deployment

	Packaging resources
	Creating a broker archive
	Using the WebSphere Message Broker Toolkit
	Using the mqsicreatebar command

	Adding files to a broker archive
	Editing a broker archive file manually
	Editing configurable properties
	Adding multiple instances of a message flow to a broker archive
	Configuring a message flow at deployment time with user-defined properties

	Refreshing the contents of a broker archive

	Deploying resources
	Deploying a broker archive file
	Using the WebSphere Message Broker Toolkit
	Using the WebSphere Message Broker Explorer
	Using the mqsideploy command
	Using the CMP API
	Redeploying a BAR file

	Deploying a message flow that uses WebSphere Adapters
	Importing a broker archive file to the WebSphere Message Broker Explorer

	Checking the results of deployment
	Using the WebSphere Message Broker Toolkit
	Using the WebSphere Message Broker Explorer
	Using the mqsideploy command
	Using the CMP API

	Renaming objects that are deployed to execution groups
	Removing a deployed object from an execution group
	Using the WebSphere Message Broker Toolkit
	Using the WebSphere Message Broker Explorer
	Using the mqsideploy command
	Using the CMP API

	Chapter 12. Performance and monitoring
	Performance
	Considering performance in the broker environment
	Tuning the broker
	Setting the JVM heap size
	Increasing the stack size on Windows, Linux, and UNIX systems
	Increasing the stack size on z/OS
	Tuning the HEAP settings on z/OS
	Setting configuration timeout values

	Message flow performance
	Optimizing message flow throughput
	Optimizing message flow response times
	System resources for message flow development

	Tuning the SAP adapter for scalability and performance
	Monitoring message flow performance
	Message flow accounting and statistics data
	Starting to collect message flow accounting and statistics data
	Stopping message flow accounting and statistics data collection
	Viewing message flow accounting and statistics data collection parameters
	Modifying message flow accounting and statistics data collection parameters
	Resetting message flow accounting and statistics archive data
	Starting accounting and statistics data collection in the WebSphere Message Broker Explorer
	Viewing message flow accounting and statistics data
	Filtering message flow accounting and statistics data
	Stopping accounting and statistics data collection in the WebSphere Message Broker Explorer

	Monitoring resource performance
	Resource statistics
	Starting resource statistics collection
	Stopping resource statistics collection
	Viewing status of resource statistics collection
	Starting resource statistics collection in the WebSphere Message Broker Explorer
	Stopping resource statistics collection in the WebSphere Message Broker Explorer
	Viewing resource statistics data in the WebSphere Message Broker Explorer
	Viewing the status of resource statistics collection in the WebSphere Message Broker Explorer

	Subscribing to statistics reports

	Business-level monitoring
	Monitoring basics
	Monitoring scenarios
	Deciding how to configure monitoring events for message flows
	Configuring monitoring event sources using monitoring properties
	Creating events
	Deploying monitoring properties
	Updating monitoring properties

	Configuring monitoring event sources using a monitoring profile
	Creating a monitoring profile
	Applying a monitoring profile
	Updating a monitoring profile

	Activating monitoring
	Activating monitoring from the command line
	Deactivating monitoring from the command line

	Enabling and disabling event sources
	Enabling and disabling events from the command line
	Enabling and disabling events from the Message Flow Editor

	Creating a monitoring model for use by WebSphere Business Monitor
	Creating a monitor model for WebSphere Business Monitor V6.2
	Creating a monitor model for WebSphere Business Monitor V7

	Reporting monitoring settings
	Report configured events for a message flow
	Report all possible events for a message flow
	Report specified events for a message flow
	Export a message flow's monitoring profile

	Chapter 13. Troubleshooting and support
	Troubleshooting overview
	Recording the symptoms of the problem
	Re-creating the problem
	Eliminating possible causes

	Making initial checks
	Has WebSphere Message Broker run successfully before?
	Did you log off Windows while WebSphere Message Broker components were active?
	Are the Linux and UNIX environment variables set correctly?
	Are there any error messages or return codes that explain the problem?
	Can you see all of your files and folders?
	Can you reproduce the problem?
	Has the message flow run successfully before?
	Have you made any changes since the last successful run?
	Is there a problem with descriptive text for a command?
	Is there a problem with a database?
	Is there a problem with the network?
	Does the problem affect all users?
	Have you recently changed a password?
	Have you applied any service updates?
	Do you have a component that is running slowly?
	Additional checks for z/OS users

	Dealing with problems
	Resolving problems when running commands
	Backing up or restoring the broker returns error BIP1253 or BIP1262
	ReportEvent() error message is issued on Windows when you attempt to run a command
	You want to run a command that uses SSL to administer a remote broker over a secured channel.
	A time-out error is issued when you attempt to run a command on AIX when Stack Execution Disable (SED) is enabled

	Resolving problems when running samples
	Resolving problems when creating resources
	Message BIP8081 is issued when creating a broker
	You cannot create files when creating a broker on AIX
	The JCL BIPGEN fails when you create a component on z/OS
	Your DataFlowEngine ends with an abend when you create a broker on HP-UX using Oracle
	Error message BIP2624 is issued when creating an execution group
	The Default Configuration wizard fails with invalid argument specified

	Resolving problems that occur when you start resources
	Resolving problems when starting a broker
	Resolving problems when starting other resources

	Resolving problems that occur when migrating or importing resources
	Resolving problems when migrating or importing message flows and message sets
	Resolving problems when migrating or importing other resources

	Resolving problems when stopping resources
	You cannot stop the broker
	You cannot stop the broker queue manager
	The execution group ends abnormally

	Resolving problems when deleting resources
	You cannot delete a project from your workspace
	

	Resolving problems when developing message flows
	Resolving appearance problems when developing message flows
	Resolving problems when you use CORBA nodes
	Resolving problems when you use Email nodes
	Resolving ESQL problems when developing message flows
	Problems when developing message flows with file nodes
	Resolving problems when you use HTTP and SOAP nodes
	Resolving implementation problems when developing message flows
	Resolving problems when you use IMS nodes
	Resolving mapping and message reference problems when developing message flows
	Resolving trace problems when developing message flows
	Resolving problems when developing message flows with WebSphere Adapters nodes
	Resolving other problems when developing message flows

	Resolving problems when deploying message flows or message sets
	Initial checks
	Common problems
	Resolving problems that occur when preparing to deploy message flows
	Resolving problems that occur during deployment of message flows
	Resolving problems that occur after deployment of message flows

	Resolving problems that occur when debugging message flows
	Resolving problems that occur when starting and stopping the debugger
	Resolving problems when debugging message flows
	Resolving problems that occur after debugging:

	Resolving problems when developing message models
	Your message definition file does not open
	A message definition file error is written to the task list
	Your physical format property values have reverted to defaults
	You are unable to enter text in the Message Definition editors
	Objects in your message definition file are not listed in alphabetic order
	Error messages are written to the task list after you have imported related XML Schema files
	A group contains two different elements with the same XML name in the same namespace
	You are unable to set up a message definition file to include a message definition file within another message definition file
	You want to make the Properties tab the default tab in the Message Definition editor
	Error message BIP5410 is issued because a union type cannot be resolved
	Error message BIP5395 is issued because an xsi:type attribute value does not correspond to a valid member type of the union
	Error message BIP5396 is issued because a data type does not correspond to any of the valid data types of the union
	A union type contains two or more simple types that are derived from the same fundamental type
	A list type is based on a union that also contains a list type
	A union type contains an enumeration or pattern facet
	Error message BIP5505 is issued because input data is not valid for the data type
	A deprecation error is issued on an imported .mrp file
	User trace detects an element length error
	MRM dateTime value has changed after it has been parsed

	Resolving problems when using messages
	A communication error is issued when you use the enqueue facility
	The enqueue facility is not picking up changes made to a message
	You do not know which header elements affect enqueue
	Enqueue message files are still listed after they have been deleted
	The ESQL transform of an XML message gives unexpected results
	An XML message loses carriage return characters
	The broker is unable to parse an XML message
	Unexpected characters are displayed when using the XSLTransform node on z/OS
	Error message BIP5004 is issued by the XMLNS parser
	Error message BIP5378 is issued by the MRM parser
	Error message BIP5005 is issued by the Compute node
	A message is propagated to the Failure terminal of a TimeoutControl node
	Message processing fails within a TimeoutNotification node
	An MRM CWF message is propagated to the Failure terminal
	Problems with XML attributes
	An MRM XML message exhibits unexpected behavior
	The MRM parser has failed to parse a message because two attributes have the same name
	You encounter problems when messages contain EBCDIC newline characters
	The MIME parser produces a runtime error while parsing a message
	Runtime errors are issued when you write a MIME message from the logical message tree
	Output message has an empty message body
	Output message has an invalid message body indicated by error message BIP5005, BIP5016, or BIP5017
	Error message BIP5651 is issued when receiving a SOAP with Attachments message from a WebSphere Application Server client
	WebSphere Application Server produces an error when receiving a SOAP with Attachments message
	java_lang_StackOverflowError on AIX when processing a message flow that contains Java nodes and uses Java 5
	Problems when using code page translation on HP-UX

	Resolving problems when you use the WebSphere Message Broker Toolkit
	Resolving problems that occur when connecting the WebSphere Message Broker Toolkit and a broker
	Resolving error messages that occur when using the WebSphere Message Broker Toolkit
	Resolving problems relating to the appearance of the workbench
	Resolving non-specific problems when using the WebSphere Message Broker Toolkit

	Resolving problems when using the WebSphere Message Broker Explorer
	Tracing problems with accounting and statistics
	The Brokers folder is missing
	You cannot open the information center on Red Hat Enterprise Linux
	Accounting and statistics do not work for a remote broker
	

	Resolving problems when using databases
	DB2 error message SQL0443N is issued
	DB2 error message SQL0805N is issued
	DB2 error message SQL0998N is issued on Linux
	DB2 error message SQL0998N or SQL1248N is issued
	DB2 error message SQL1040N is issued
	DB2 error message SQL1224N is issued when you connect to DB2
	DB2 or ODBC error messages are issued on z/OS
	You do not know how many database connections a broker requires
	You want to use XA with DB2 databases
	XA coordination fails if the database restarts while the broker is running
	Error message BIP2322 is issued when you access DB2 on z/OS
	Error message BIP2322 IM004 is issued when you connect to an Informix database
	On Oracle, a database operation fails to return any rows, even though the rows exist
	Broker commands fail when the Oracle 10g Release 2 client runs on Linux on POWER with Red Hat Enterprise Linux Advanced Server V4.0
	Error message BIP2322 Driver not capable is issued when you use an Informix database
	Database updates are not committed as expected
	You want to list the database connections that the broker holds
	The queue manager finds the XA resource manager is unavailable when configured for XA with DB2 on Windows
	Error messages are received when you are trying to remove a DB2 database on Windows when you are using a sample
	DB2 error message SQL7008N is issued
	SQLCODE -981 is issued when you access DB2 on z/OS

	Resolving problems when using publish/subscribe
	Application responses are not received
	Your application is not receiving publications
	Publishing a message causes a filter error
	Symbols in subscription filters cause problems
	The Publication node fails with MQRC 2035
	There are performance problems on AIX when the JIT compiler is not loaded

	Resolving problems with performance
	The system is continuously running slower
	You experience configuration problems with many components
	A WHILE loop in a large XML array takes a long time to process
	Remote waitForMessages calls with WebSphere MQ Everyplace are slow
	Performance is reduced for stored procedures
	Message flow performance is reduced when you access message trees with many repeating records
	You are experiencing poor performance in the WebSphere Message Broker Toolkit when working with large projects
	Performance is reduced when you run Web Services with small message sizes
	You are experiencing reduced Java performance, or Java performance degrades after debugging a message flow

	Resolving problems when developing Administration API applications
	Your CMP application hangs if the broker is not available
	You set a property of an object and query its value, but the value has not changed
	You cannot connect to a broker when using a .broker file

	Resolving problems with user-defined extensions
	You cannot deploy one of your user-defined nodes, despite having a plug-in LIL in the correct directory.
	You cannot deploy a flow with one of your user-defined nodes in it.
	You get problems when nodes try to use the ESQL path interface in the plug-in API
	After migration your custom property editor does not work
	Interpreting problems in user-defined extensions
	You want to debug classloading
	An error is issued when you deploy a user-defined extension on z/OS
	You cannot determine which user-defined extensions have been loaded by the broker on startup
	You are migrating a C user-defined node and cniDefineNodeClass returns CCI_INV_IMPL_FUNCTION.

	Resolving problems when installing
	Dealing with problems during installation
	Installation process is interrupted
	java.lang.UnsatisfiedLinkError
	RPM query fails
	Display problems
	Insufficient temporary space
	Fix Pack installation fails with license agreement error
	Installation fails with version error
	Dealing with problems during installation
	Dealing with problems during installation
	Installation Manager hangs
	Installation Manager does not show the WebSphere Message Broker Toolkit components
	Error restoring Installation Manager state
	WebSphere Message Broker Launchpad return code indicates that an installation has failed

	Resolving problems when uninstalling
	Space problems uninstalling on Solaris
	Files left behind after uninstallation completes
	The uninstallation process is interrupted

	Using logs
	Windows: Viewing the local error log
	Viewing the system log
	Viewing the application log
	Interpreting log information

	Linux and UNIX systems: Configuring the syslog daemon
	z/OS: Viewing broker job logs
	Understanding the broker address spaces
	Viewing the z/OS system console log
	Viewing the broker job logs
	Interpreting log information
	No title

	Viewing the Eclipse error log

	Using trace
	Starting service trace
	Example: starting service trace for the broker
	Example: starting service trace for an execution group

	Checking service trace options
	Example: checking service trace options for an execution group using the WebSphere Message Broker Explorer
	Example: checking service trace options for a broker

	Changing service trace options
	Example: changing service trace from debug to normal on an execution group using the WebSphere Message Broker Explorer
	Example: changing service trace from debug to normal

	Stopping service trace
	Example: stopping service trace on an execution group, using the WebSphere Message Broker Explorer
	Example: stopping service trace on an execution group, using the mqsichangetrace command
	Example: stopping service trace on the broker
	

	Retrieving service trace
	Example: retrieving service trace information in XML format
	Example: retrieving service trace information in XML format for an execution group

	Formatting trace
	Example: formatting service trace information for an execution group
	Example: formatting user trace information on Windows

	Interpreting trace
	Clearing old information from trace files
	Example: clearing the user trace log for the default execution group

	Changing trace settings from the WebSphere Message Broker Explorer
	Changing the WebSphere MQ Java Client trace settings
	Changing the CMP trace settings
	Changing the Broker Explorer trace settings

	ODBC trace
	Administration API (CMP) trace
	Enabling CMP API trace
	Disabling CMP API trace

	Switching Trace nodes on and off
	Example: switching off Trace nodes for an execution group on distributed systems, using the command line
	Example: switching off Trace nodes for an execution group on z/OS systems, using the command line
	Example: switching off Trace nodes for a message flow on distributed systems, using the command line
	Example: switching on Trace nodes for a message flow and an execution group on distributed systems, using the command line
	Example: switching off Trace nodes for a message flow on z/OS systems, using the command line
	Example: switching on Trace nodes for an execution group, using the WebSphere Message Broker Explorer
	Example: switching on Trace nodes for a message flow, using the WebSphere Message Broker Explorer

	Using dumps and abend files
	Checking for dumps
	Using the DUMP command on z/OS
	Checking for abend files

	Contacting your IBM Support Center
	IBM Support Assistant Data Collector
	Collecting data in console mode with IBM Support Assistant Data Collector
	Selecting a problem collector for IBM Support Assistant Data Collector

	Searching knowledge bases
	Getting product fixes
	Contacting IBM Software Support
	Determine the effect of the problem on your business
	Describe your problem and gather background information
	Submit your problem to IBM Software Support

	Recovering after failure
	Recovering after the broker fails
	Recovering after an execution group fails
	Recovering after the broker's queue manager fails

	Chapter 14. Reference
	Migration and upgrade
	Supported migration paths

	Installation
	System requirements
	Hardware requirements
	Software requirements
	License requirements

	General industry standards supported by WebSphere Message Broker
	Installation packages
	Packaging options
	Package contents

	Installation and uninstallation interfaces
	How to install and uninstall the Broker component
	How to install and uninstall the WebSphere Message Broker Toolkit
	Installation wizard names

	Installation and uninstallation authorization
	Multicultural support
	Locales

	System changes caused by installation and configuration
	Start and main menu updates after installation
	Directory structures after installation
	Registry changes created by installation and configuration
	Environment variables after installation
	Default WebSphere MQ resources created during installation and configuration

	Security requirements for administrative tasks
	Tasks and authorizations for broker administration security
	Commands and authorizations for broker administration security
	Security requirements for Linux and UNIX platforms
	Security requirements for Windows systems
	Security requirements for z/OS

	Configuration and administration
	Restrictions that apply in each operation mode
	Database configuration
	Sample DataDirect odbc.ini file
	Support for Unicode and DBCS data in databases

	Administration API
	Commands
	Summary of commands on Linux, UNIX, Windows, and z/OS systems
	Syntax diagrams
	Characters allowed in commands
	Rules for using commands
	Responses to commands
	Runtime and WebSphere Message Broker Toolkit commands (common)
	WebSphere Message Broker Toolkit commands
	Runtime commands

	z/OS configuration and administration specific information
	Administration in z/OS
	Issuing commands to the z/OS console
	Guidance for issuing console commands in z/OS
	START and STOP commands on z/OS
	Usage data on z/OS

	z/OS customization
	Naming conventions for WebSphere Message Broker for z/OS
	Customization tasks and roles on z/OS
	Disk space requirements on z/OS
	Binding a DB2 plan to use data-sharing groups on z/OS
	Customization planning checklist for z/OS
	Contents of the broker PDSE

	z/OS JCL variables
	z/OS sample files supplied
	Sample BIPBPROF file
	Sample BIPBRKP file
	Sample BIPBUBK file
	Sample BIPCRBK file
	Sample BIPDSNAO file
	Sample BIPEDIT file
	Sample BIPGEN file
	Sample BIPRSBK file

	Data sources on z/OS

	Message flow development
	Message flows
	Message flow preferences
	Description properties for a message flow
	Configurable message flow properties
	WebSphere Adapters properties
	Validation properties
	Parsing on demand
	Impact analysis: reference
	Supported code pages
	WebSphere MQ connections
	Data integrity in message flows
	Exception list structure
	Message flow porting
	Coordinated message flows
	Element definitions for message parsers
	XML constructs

	Built-in nodes
	AggregateControl node
	AggregateReply node
	AggregateRequest node
	CDInput node
	CDOutput node
	Check node
	CICSRequest node
	Collector node
	Compute node
	CORBARequest node
	Database node
	DatabaseInput node
	DatabaseRetrieve node
	DatabaseRoute node
	DataDelete node
	DataInsert node
	DataUpdate node
	EmailInput node
	EmailOutput node
	EndpointLookup node
	Extract node
	FileInput node
	FileOutput node
	FileRead node
	Filter node
	FlowOrder node
	FTEInput node
	FTEOutput node
	HTTPHeader node
	HTTPInput node
	HTTPReply node
	HTTPRequest node
	IMSRequest node
	Input node
	JavaCompute node
	JDEdwardsInput node
	JDEdwardsRequest node
	JMSHeader node
	JMSInput node
	JMSMQTransform node
	JMSOutput node
	JMSReply node
	Label node
	Mapping node
	MQGet node
	MQHeader node
	MQInput node
	MQJMSTransform node
	MQOptimizedFlow node
	MQOutput node
	MQReply node
	Output node
	Passthrough node
	PeopleSoftInput node
	PeopleSoftRequest node
	PHPCompute node
	Publication node
	Real-timeInput node
	Real-timeOptimizedFlow node
	RegistryLookup node
	Resequence node
	ResetContentDescriptor node
	Route node
	RouteToLabel node
	SAPInput node
	SAPReply node
	SAPRequest node
	SCAAsyncRequest node
	SCAAsyncResponse node
	SCADAInput node
	SCADAOutput node
	SCAInput node
	SCARequest node
	SCAReply node
	SecurityPEP node
	Sequence node
	SiebelInput node
	SiebelRequest node
	SOAPAsyncRequest node
	SOAPAsyncResponse node
	SOAPEnvelope node
	SOAPExtract node
	SOAPInput node
	SOAPReply node
	SOAPRequest node
	TCPIPClientInput node
	TCPIPClientOutput node
	TCPIPClientReceive node
	TCPIPServerInput node
	TCPIPServerOutput node
	TCPIPServerReceive node
	Throw node
	TimeoutControl node
	TimeoutNotification node
	Trace node
	TryCatch node
	TwineballInput node
	TwineballRequest node
	Validate node
	Warehouse node
	XSLTransform node

	Transformation interfaces
	Message mappings
	ESQL reference
	Java reference
	PHP API

	User-defined patterns
	Java API for user-defined patterns
	PHP API for user-defined patterns

	Message model reference information
	Message set preferences
	Message set properties
	Message definition file properties
	Message category properties
	Message model object properties
	Deprecated message model object properties
	Additional MRM domain information
	Additional MIME domain information
	Additional IDOC domain information
	JSON parser use and restrictions
	Message model task list errors that have a quick fix
	Generated model representations
	Import formats
	Message model wizards

	Publish/subscribe
	Special characters in topics
	Topic semantics and usage
	MQRFH2 header
	Command messages
	Content based filtering

	User-defined extensions
	Sample node files
	Sample parser files
	User-defined nodes
	C Header files
	C language user-defined node API
	C language user-defined parser API
	C user exit API
	C common API
	C skeleton code
	Property editor API
	Utility function return codes and values
	Available parsers
	XML, MRM, and XMLNSC parser constants
	Trace logging from a user-defined C extension
	Multicultural support considerations for message catalogs

	Web services external standards
	SOAP 1.1 and 1.2
	SOAP with Attachments
	SOAP MTOM
	SOAP over JMS
	WSDL Version 1.1
	WS-I Simple SOAP Binding Profile Version 1.0
	WS-I Basic Profile Version 1.1
	WSDL 1.1 Binding Extension for SOAP 1.2
	XML-Binary Optimised Packaging (XOP)
	SOAP Binding for MTOM 1.0
	Web Services Security: SOAP Message Security
	XML Encryption Syntax and Processing
	XML-Signature Syntax and Processing
	WebSphere Message Broker compliance with Web services standards

	Testing and debugging applications
	Test Client
	Test Client Events tab
	Test Client Configuration tab
	Test Client preferences
	Deployment Location wizard
	JMS events in the Test Client

	Message flow debugger
	Flow debugger shortcuts
	Flow debugger icons and symbols
	Java Debugger

	Performance and monitoring
	Message flow accounting and statistics data
	Message flow accounting and statistics details
	Message flow accounting and statistics output formats
	Example message flow accounting and statistics data
	Metrics for accounting and statistics data in the WebSphere Message Broker Explorer

	Resource statistics data
	Example of an XML publication for resource statistics
	Resource statistics data: CICS
	Resource statistics data: CORBA
	Resource statistics data: File
	Resource statistics data: File Transfer Protocol
	Resource statistics data: FTEAgent
	Resource statistics data: IBM Sterling Connect:Direct
	Resource statistics data: Java Virtual Machine (JVM)
	Resource statistics data: JDBC connection pools
	Resource statistics data: ODBC
	Resource statistics data: Outbound sockets
	Resource statistics data: Parsers
	Resource statistics data: Security
	Resource statistics data: SOAP
	Resource statistics data: TCPIP Client Nodes
	Resource statistics data: TCPIP Server Nodes

	Monitoring message flows
	Monitoring profile
	The monitoring event
	Correlation and monitoring events
	Example XPath expressions for event filtering
	XPath expressions that are not suitable for the export monitoring information option

	WebSphere Message Broker Toolkit
	Perspectives in the WebSphere Message Broker Toolkit
	Broker Application Development perspective
	Debug perspective
	Plug-in Development perspective

	Editors in the WebSphere Message Broker Toolkit
	Editor preferences and localized settings
	Broker Archive editor
	Brokers view
	Deployment Log view
	ESQL editor
	Impact Analysis view
	Message Category editor
	Message Definition editor
	Message Flow editor
	Message Mapping editor
	Message Node editor
	Message set editor
	WSDL editor

	Resource types in the WebSphere Message Broker Toolkit
	Message flow projects and files
	Message set projects and files
	Data Design projects and files
	Plug-in Development projects and files
	Java projects and files
	Pattern instance projects
	Rules for naming workspace objects

	WebSphere Message Broker Explorer and WebSphere Message Broker Toolkit keyboard shortcuts
	What's new if you are migrating from Version 6.0
	Web services
	Security
	WebSphere Adapter nodes
	File nodes
	Other new nodes
	Usability
	Performance

	WebSphere Message Broker Explorer views
	Navigator view
	Content view
	Broker Statistics and Broker Statistics Graph views
	Policy Sets and Policy Set Bindings editor
	Security Profiles editor
	DataPower Security wizard
	Administration Log view

	Administration Log view
	Columns in the Administration Log view

	Policy Sets and Policy Set Bindings editor
	Policy Sets and Policy Set Bindings editor: Authentication tokens panel
	Policy Sets and Policy Set Bindings editor: Message Level Protection panel
	Policy Sets and Policy Set Bindings editor: Message Part Protection panel
	Policy Sets and Policy Set Bindings editor: main panel
	Policy Sets and Policy Set Bindings editor: Authentication and Protection Tokens panel
	Policy Sets and Policy Set Bindings editor: Message Part Policies panel
	Policy Sets and Policy Set Bindings editor: Key Information panel
	Policy Sets and Policy Set Bindings editor: Kerberos settings panel
	Policy Sets and Policy Set Bindings editor: Message Expiration panel
	Policy Sets and Policy Set Bindings editor: Advanced panel

	Troubleshooting
	Logs
	Standard system logs
	Local error logs
	WebSphere Message Broker logs
	WebSphere MQ logs
	Database logs

	Trace
	User trace
	Service trace

	Dumps
	Dumps on Windows
	Dumps on UNIX systems
	Dumps on WebSphere Message Broker for z/OS
	WebSphere Message Broker for z/OS abends

	Abend files
	Abend in a user-defined extension
	WebSphere Message Broker event reports
	WebSphere Message Broker event reports: general architecture
	WebSphere Message Broker event reports: configuration changes
	WebSphere Message Broker event reports: operational information
	WebSphere Message Broker event reports: notification message schema

	WebSphere MQ facilities
	WebSphere MQ logs
	FFST files
	WebSphere MQ events

	Database facilities
	Database logs
	ODBC trace

	Other sources of diagnostic information on z/OS
	Files from a broker
	Files in the home directory
	Problems accessing files in the file system

	Solutions to similar problems
	Useful Web sites
	RETAIN

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

